arm: Support pac_key_* register operand for MRS/MSR in Armv8.1-M Mainline
[binutils-gdb.git] / gdbserver / linux-ppc-low.cc
blob3a929dc84881e631f36804ef3a7903857861235d
1 /* GNU/Linux/PowerPC specific low level interface, for the remote server for
2 GDB.
3 Copyright (C) 1995-2024 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20 #include "linux-low.h"
22 #include "elf/common.h"
23 #include <sys/uio.h>
24 #include <elf.h>
25 #include <asm/ptrace.h>
27 #include "arch/ppc-linux-common.h"
28 #include "arch/ppc-linux-tdesc.h"
29 #include "nat/ppc-linux.h"
30 #include "nat/linux-ptrace.h"
31 #include "linux-ppc-tdesc-init.h"
32 #include "ax.h"
33 #include "tracepoint.h"
35 #define PPC_FIELD(value, from, len) \
36 (((value) >> (32 - (from) - (len))) & ((1 << (len)) - 1))
37 #define PPC_SEXT(v, bs) \
38 ((((CORE_ADDR) (v) & (((CORE_ADDR) 1 << (bs)) - 1)) \
39 ^ ((CORE_ADDR) 1 << ((bs) - 1))) \
40 - ((CORE_ADDR) 1 << ((bs) - 1)))
41 #define PPC_OP6(insn) PPC_FIELD (insn, 0, 6)
42 #define PPC_BO(insn) PPC_FIELD (insn, 6, 5)
43 #define PPC_LI(insn) (PPC_SEXT (PPC_FIELD (insn, 6, 24), 24) << 2)
44 #define PPC_BD(insn) (PPC_SEXT (PPC_FIELD (insn, 16, 14), 14) << 2)
46 /* Linux target op definitions for the PowerPC architecture. */
48 class ppc_target : public linux_process_target
50 public:
52 const regs_info *get_regs_info () override;
54 const gdb_byte *sw_breakpoint_from_kind (int kind, int *size) override;
56 bool supports_z_point_type (char z_type) override;
59 void low_collect_ptrace_register (regcache *regcache, int regno,
60 char *buf) override;
62 void low_supply_ptrace_register (regcache *regcache, int regno,
63 const char *buf) override;
65 bool supports_tracepoints () override;
67 bool supports_fast_tracepoints () override;
69 int install_fast_tracepoint_jump_pad
70 (CORE_ADDR tpoint, CORE_ADDR tpaddr, CORE_ADDR collector,
71 CORE_ADDR lockaddr, ULONGEST orig_size, CORE_ADDR *jump_entry,
72 CORE_ADDR *trampoline, ULONGEST *trampoline_size,
73 unsigned char *jjump_pad_insn, ULONGEST *jjump_pad_insn_size,
74 CORE_ADDR *adjusted_insn_addr, CORE_ADDR *adjusted_insn_addr_end,
75 char *err) override;
77 int get_min_fast_tracepoint_insn_len () override;
79 struct emit_ops *emit_ops () override;
81 int get_ipa_tdesc_idx () override;
83 protected:
85 void low_arch_setup () override;
87 bool low_cannot_fetch_register (int regno) override;
89 bool low_cannot_store_register (int regno) override;
91 bool low_supports_breakpoints () override;
93 CORE_ADDR low_get_pc (regcache *regcache) override;
95 void low_set_pc (regcache *regcache, CORE_ADDR newpc) override;
97 bool low_breakpoint_at (CORE_ADDR pc) override;
99 int low_insert_point (raw_bkpt_type type, CORE_ADDR addr,
100 int size, raw_breakpoint *bp) override;
102 int low_remove_point (raw_bkpt_type type, CORE_ADDR addr,
103 int size, raw_breakpoint *bp) override;
105 int low_get_thread_area (int lwpid, CORE_ADDR *addrp) override;
108 /* The singleton target ops object. */
110 static ppc_target the_ppc_target;
112 /* Holds the AT_HWCAP auxv entry. */
114 static unsigned long ppc_hwcap;
116 /* Holds the AT_HWCAP2 auxv entry. */
118 static unsigned long ppc_hwcap2;
121 #define ppc_num_regs 73
123 #ifdef __powerpc64__
124 /* We use a constant for FPSCR instead of PT_FPSCR, because
125 many shipped PPC64 kernels had the wrong value in ptrace.h. */
126 static int ppc_regmap[] =
127 {PT_R0 * 8, PT_R1 * 8, PT_R2 * 8, PT_R3 * 8,
128 PT_R4 * 8, PT_R5 * 8, PT_R6 * 8, PT_R7 * 8,
129 PT_R8 * 8, PT_R9 * 8, PT_R10 * 8, PT_R11 * 8,
130 PT_R12 * 8, PT_R13 * 8, PT_R14 * 8, PT_R15 * 8,
131 PT_R16 * 8, PT_R17 * 8, PT_R18 * 8, PT_R19 * 8,
132 PT_R20 * 8, PT_R21 * 8, PT_R22 * 8, PT_R23 * 8,
133 PT_R24 * 8, PT_R25 * 8, PT_R26 * 8, PT_R27 * 8,
134 PT_R28 * 8, PT_R29 * 8, PT_R30 * 8, PT_R31 * 8,
135 PT_FPR0*8, PT_FPR0*8 + 8, PT_FPR0*8+16, PT_FPR0*8+24,
136 PT_FPR0*8+32, PT_FPR0*8+40, PT_FPR0*8+48, PT_FPR0*8+56,
137 PT_FPR0*8+64, PT_FPR0*8+72, PT_FPR0*8+80, PT_FPR0*8+88,
138 PT_FPR0*8+96, PT_FPR0*8+104, PT_FPR0*8+112, PT_FPR0*8+120,
139 PT_FPR0*8+128, PT_FPR0*8+136, PT_FPR0*8+144, PT_FPR0*8+152,
140 PT_FPR0*8+160, PT_FPR0*8+168, PT_FPR0*8+176, PT_FPR0*8+184,
141 PT_FPR0*8+192, PT_FPR0*8+200, PT_FPR0*8+208, PT_FPR0*8+216,
142 PT_FPR0*8+224, PT_FPR0*8+232, PT_FPR0*8+240, PT_FPR0*8+248,
143 PT_NIP * 8, PT_MSR * 8, PT_CCR * 8, PT_LNK * 8,
144 PT_CTR * 8, PT_XER * 8, PT_FPR0*8 + 256,
145 PT_ORIG_R3 * 8, PT_TRAP * 8 };
146 #else
147 /* Currently, don't check/send MQ. */
148 static int ppc_regmap[] =
149 {PT_R0 * 4, PT_R1 * 4, PT_R2 * 4, PT_R3 * 4,
150 PT_R4 * 4, PT_R5 * 4, PT_R6 * 4, PT_R7 * 4,
151 PT_R8 * 4, PT_R9 * 4, PT_R10 * 4, PT_R11 * 4,
152 PT_R12 * 4, PT_R13 * 4, PT_R14 * 4, PT_R15 * 4,
153 PT_R16 * 4, PT_R17 * 4, PT_R18 * 4, PT_R19 * 4,
154 PT_R20 * 4, PT_R21 * 4, PT_R22 * 4, PT_R23 * 4,
155 PT_R24 * 4, PT_R25 * 4, PT_R26 * 4, PT_R27 * 4,
156 PT_R28 * 4, PT_R29 * 4, PT_R30 * 4, PT_R31 * 4,
157 PT_FPR0*4, PT_FPR0*4 + 8, PT_FPR0*4+16, PT_FPR0*4+24,
158 PT_FPR0*4+32, PT_FPR0*4+40, PT_FPR0*4+48, PT_FPR0*4+56,
159 PT_FPR0*4+64, PT_FPR0*4+72, PT_FPR0*4+80, PT_FPR0*4+88,
160 PT_FPR0*4+96, PT_FPR0*4+104, PT_FPR0*4+112, PT_FPR0*4+120,
161 PT_FPR0*4+128, PT_FPR0*4+136, PT_FPR0*4+144, PT_FPR0*4+152,
162 PT_FPR0*4+160, PT_FPR0*4+168, PT_FPR0*4+176, PT_FPR0*4+184,
163 PT_FPR0*4+192, PT_FPR0*4+200, PT_FPR0*4+208, PT_FPR0*4+216,
164 PT_FPR0*4+224, PT_FPR0*4+232, PT_FPR0*4+240, PT_FPR0*4+248,
165 PT_NIP * 4, PT_MSR * 4, PT_CCR * 4, PT_LNK * 4,
166 PT_CTR * 4, PT_XER * 4, PT_FPSCR * 4,
167 PT_ORIG_R3 * 4, PT_TRAP * 4
170 static int ppc_regmap_e500[] =
171 {PT_R0 * 4, PT_R1 * 4, PT_R2 * 4, PT_R3 * 4,
172 PT_R4 * 4, PT_R5 * 4, PT_R6 * 4, PT_R7 * 4,
173 PT_R8 * 4, PT_R9 * 4, PT_R10 * 4, PT_R11 * 4,
174 PT_R12 * 4, PT_R13 * 4, PT_R14 * 4, PT_R15 * 4,
175 PT_R16 * 4, PT_R17 * 4, PT_R18 * 4, PT_R19 * 4,
176 PT_R20 * 4, PT_R21 * 4, PT_R22 * 4, PT_R23 * 4,
177 PT_R24 * 4, PT_R25 * 4, PT_R26 * 4, PT_R27 * 4,
178 PT_R28 * 4, PT_R29 * 4, PT_R30 * 4, PT_R31 * 4,
179 -1, -1, -1, -1,
180 -1, -1, -1, -1,
181 -1, -1, -1, -1,
182 -1, -1, -1, -1,
183 -1, -1, -1, -1,
184 -1, -1, -1, -1,
185 -1, -1, -1, -1,
186 -1, -1, -1, -1,
187 PT_NIP * 4, PT_MSR * 4, PT_CCR * 4, PT_LNK * 4,
188 PT_CTR * 4, PT_XER * 4, -1,
189 PT_ORIG_R3 * 4, PT_TRAP * 4
191 #endif
193 /* Check whether the kernel provides a register set with number
194 REGSET_ID of size REGSETSIZE for process/thread TID. */
196 static int
197 ppc_check_regset (int tid, int regset_id, int regsetsize)
199 void *buf = alloca (regsetsize);
200 struct iovec iov;
202 iov.iov_base = buf;
203 iov.iov_len = regsetsize;
205 if (ptrace (PTRACE_GETREGSET, tid, regset_id, &iov) >= 0
206 || errno == ENODATA)
207 return 1;
208 return 0;
211 bool
212 ppc_target::low_cannot_store_register (int regno)
214 const struct target_desc *tdesc = current_process ()->tdesc;
216 #ifndef __powerpc64__
217 /* Some kernels do not allow us to store fpscr. */
218 if (!(ppc_hwcap & PPC_FEATURE_HAS_SPE)
219 && regno == find_regno (tdesc, "fpscr"))
220 return true;
221 #endif
223 /* Some kernels do not allow us to store orig_r3 or trap. */
224 if (regno == find_regno (tdesc, "orig_r3")
225 || regno == find_regno (tdesc, "trap"))
226 return true;
228 return false;
231 bool
232 ppc_target::low_cannot_fetch_register (int regno)
234 return false;
237 void
238 ppc_target::low_collect_ptrace_register (regcache *regcache, int regno,
239 char *buf)
241 memset (buf, 0, sizeof (long));
243 if (__BYTE_ORDER == __LITTLE_ENDIAN)
245 /* Little-endian values always sit at the left end of the buffer. */
246 collect_register (regcache, regno, buf);
248 else if (__BYTE_ORDER == __BIG_ENDIAN)
250 /* Big-endian values sit at the right end of the buffer. In case of
251 registers whose sizes are smaller than sizeof (long), we must use a
252 padding to access them correctly. */
253 int size = register_size (regcache->tdesc, regno);
255 if (size < sizeof (long))
256 collect_register (regcache, regno, buf + sizeof (long) - size);
257 else
258 collect_register (regcache, regno, buf);
260 else
261 perror_with_name ("Unexpected byte order");
264 void
265 ppc_target::low_supply_ptrace_register (regcache *regcache, int regno,
266 const char *buf)
268 if (__BYTE_ORDER == __LITTLE_ENDIAN)
270 /* Little-endian values always sit at the left end of the buffer. */
271 supply_register (regcache, regno, buf);
273 else if (__BYTE_ORDER == __BIG_ENDIAN)
275 /* Big-endian values sit at the right end of the buffer. In case of
276 registers whose sizes are smaller than sizeof (long), we must use a
277 padding to access them correctly. */
278 int size = register_size (regcache->tdesc, regno);
280 if (size < sizeof (long))
281 supply_register (regcache, regno, buf + sizeof (long) - size);
282 else
283 supply_register (regcache, regno, buf);
285 else
286 perror_with_name ("Unexpected byte order");
289 bool
290 ppc_target::low_supports_breakpoints ()
292 return true;
295 CORE_ADDR
296 ppc_target::low_get_pc (regcache *regcache)
298 if (register_size (regcache->tdesc, 0) == 4)
300 unsigned int pc;
301 collect_register_by_name (regcache, "pc", &pc);
302 return (CORE_ADDR) pc;
304 else
306 unsigned long pc;
307 collect_register_by_name (regcache, "pc", &pc);
308 return (CORE_ADDR) pc;
312 void
313 ppc_target::low_set_pc (regcache *regcache, CORE_ADDR pc)
315 if (register_size (regcache->tdesc, 0) == 4)
317 unsigned int newpc = pc;
318 supply_register_by_name (regcache, "pc", &newpc);
320 else
322 unsigned long newpc = pc;
323 supply_register_by_name (regcache, "pc", &newpc);
327 #ifndef __powerpc64__
328 static int ppc_regmap_adjusted;
329 #endif
332 /* Correct in either endianness.
333 This instruction is "twge r2, r2", which GDB uses as a software
334 breakpoint. */
335 static const unsigned int ppc_breakpoint = 0x7d821008;
336 #define ppc_breakpoint_len 4
338 /* Implementation of target ops method "sw_breakpoint_from_kind". */
340 const gdb_byte *
341 ppc_target::sw_breakpoint_from_kind (int kind, int *size)
343 *size = ppc_breakpoint_len;
344 return (const gdb_byte *) &ppc_breakpoint;
347 bool
348 ppc_target::low_breakpoint_at (CORE_ADDR where)
350 unsigned int insn;
352 read_memory (where, (unsigned char *) &insn, 4);
353 if (insn == ppc_breakpoint)
354 return true;
355 /* If necessary, recognize more trap instructions here. GDB only uses
356 the one. */
358 return false;
361 /* Implement supports_z_point_type target-ops.
362 Returns true if type Z_TYPE breakpoint is supported.
364 Handling software breakpoint at server side, so tracepoints
365 and breakpoints can be inserted at the same location. */
367 bool
368 ppc_target::supports_z_point_type (char z_type)
370 switch (z_type)
372 case Z_PACKET_SW_BP:
373 return true;
374 case Z_PACKET_HW_BP:
375 case Z_PACKET_WRITE_WP:
376 case Z_PACKET_ACCESS_WP:
377 default:
378 return false;
382 /* Implement the low_insert_point linux target op.
383 Returns 0 on success, -1 on failure and 1 on unsupported. */
386 ppc_target::low_insert_point (raw_bkpt_type type, CORE_ADDR addr,
387 int size, raw_breakpoint *bp)
389 switch (type)
391 case raw_bkpt_type_sw:
392 return insert_memory_breakpoint (bp);
394 case raw_bkpt_type_hw:
395 case raw_bkpt_type_write_wp:
396 case raw_bkpt_type_access_wp:
397 default:
398 /* Unsupported. */
399 return 1;
403 /* Implement the low_remove_point linux target op.
404 Returns 0 on success, -1 on failure and 1 on unsupported. */
407 ppc_target::low_remove_point (raw_bkpt_type type, CORE_ADDR addr,
408 int size, raw_breakpoint *bp)
410 switch (type)
412 case raw_bkpt_type_sw:
413 return remove_memory_breakpoint (bp);
415 case raw_bkpt_type_hw:
416 case raw_bkpt_type_write_wp:
417 case raw_bkpt_type_access_wp:
418 default:
419 /* Unsupported. */
420 return 1;
424 /* Provide only a fill function for the general register set. ps_lgetregs
425 will use this for NPTL support. */
427 static void ppc_fill_gregset (struct regcache *regcache, void *buf)
429 int i;
431 ppc_target *my_ppc_target = (ppc_target *) the_linux_target;
433 for (i = 0; i < 32; i++)
434 my_ppc_target->low_collect_ptrace_register (regcache, i,
435 (char *) buf + ppc_regmap[i]);
437 for (i = 64; i < 70; i++)
438 my_ppc_target->low_collect_ptrace_register (regcache, i,
439 (char *) buf + ppc_regmap[i]);
441 for (i = 71; i < 73; i++)
442 my_ppc_target->low_collect_ptrace_register (regcache, i,
443 (char *) buf + ppc_regmap[i]);
446 /* Program Priority Register regset fill function. */
448 static void
449 ppc_fill_pprregset (struct regcache *regcache, void *buf)
451 char *ppr = (char *) buf;
453 collect_register_by_name (regcache, "ppr", ppr);
456 /* Program Priority Register regset store function. */
458 static void
459 ppc_store_pprregset (struct regcache *regcache, const void *buf)
461 const char *ppr = (const char *) buf;
463 supply_register_by_name (regcache, "ppr", ppr);
466 /* Data Stream Control Register regset fill function. */
468 static void
469 ppc_fill_dscrregset (struct regcache *regcache, void *buf)
471 char *dscr = (char *) buf;
473 collect_register_by_name (regcache, "dscr", dscr);
476 /* Data Stream Control Register regset store function. */
478 static void
479 ppc_store_dscrregset (struct regcache *regcache, const void *buf)
481 const char *dscr = (const char *) buf;
483 supply_register_by_name (regcache, "dscr", dscr);
486 /* Target Address Register regset fill function. */
488 static void
489 ppc_fill_tarregset (struct regcache *regcache, void *buf)
491 char *tar = (char *) buf;
493 collect_register_by_name (regcache, "tar", tar);
496 /* Target Address Register regset store function. */
498 static void
499 ppc_store_tarregset (struct regcache *regcache, const void *buf)
501 const char *tar = (const char *) buf;
503 supply_register_by_name (regcache, "tar", tar);
506 /* Event-Based Branching regset store function. Unless the inferior
507 has a perf event open, ptrace can return in error when reading and
508 writing to the regset, with ENODATA. For reading, the registers
509 will correctly show as unavailable. For writing, gdbserver
510 currently only caches any register writes from P and G packets and
511 the stub always tries to write all the regsets when resuming the
512 inferior, which would result in frequent warnings. For this
513 reason, we don't define a fill function. This also means that the
514 client-side regcache will be dirty if the user tries to write to
515 the EBB registers. G packets that the client sends to write to
516 unrelated registers will also include data for EBB registers, even
517 if they are unavailable. */
519 static void
520 ppc_store_ebbregset (struct regcache *regcache, const void *buf)
522 const char *regset = (const char *) buf;
524 /* The order in the kernel regset is: EBBRR, EBBHR, BESCR. In the
525 .dat file is BESCR, EBBHR, EBBRR. */
526 supply_register_by_name (regcache, "ebbrr", &regset[0]);
527 supply_register_by_name (regcache, "ebbhr", &regset[8]);
528 supply_register_by_name (regcache, "bescr", &regset[16]);
531 /* Performance Monitoring Unit regset fill function. */
533 static void
534 ppc_fill_pmuregset (struct regcache *regcache, void *buf)
536 char *regset = (char *) buf;
538 /* The order in the kernel regset is SIAR, SDAR, SIER, MMCR2, MMCR0.
539 In the .dat file is MMCR0, MMCR2, SIAR, SDAR, SIER. */
540 collect_register_by_name (regcache, "siar", &regset[0]);
541 collect_register_by_name (regcache, "sdar", &regset[8]);
542 collect_register_by_name (regcache, "sier", &regset[16]);
543 collect_register_by_name (regcache, "mmcr2", &regset[24]);
544 collect_register_by_name (regcache, "mmcr0", &regset[32]);
547 /* Performance Monitoring Unit regset store function. */
549 static void
550 ppc_store_pmuregset (struct regcache *regcache, const void *buf)
552 const char *regset = (const char *) buf;
554 supply_register_by_name (regcache, "siar", &regset[0]);
555 supply_register_by_name (regcache, "sdar", &regset[8]);
556 supply_register_by_name (regcache, "sier", &regset[16]);
557 supply_register_by_name (regcache, "mmcr2", &regset[24]);
558 supply_register_by_name (regcache, "mmcr0", &regset[32]);
561 /* Hardware Transactional Memory special-purpose register regset fill
562 function. */
564 static void
565 ppc_fill_tm_sprregset (struct regcache *regcache, void *buf)
567 int i, base;
568 char *regset = (char *) buf;
570 base = find_regno (regcache->tdesc, "tfhar");
571 for (i = 0; i < 3; i++)
572 collect_register (regcache, base + i, &regset[i * 8]);
575 /* Hardware Transactional Memory special-purpose register regset store
576 function. */
578 static void
579 ppc_store_tm_sprregset (struct regcache *regcache, const void *buf)
581 int i, base;
582 const char *regset = (const char *) buf;
584 base = find_regno (regcache->tdesc, "tfhar");
585 for (i = 0; i < 3; i++)
586 supply_register (regcache, base + i, &regset[i * 8]);
589 /* For the same reasons as the EBB regset, none of the HTM
590 checkpointed regsets have a fill function. These registers are
591 only available if the inferior is in a transaction. */
593 /* Hardware Transactional Memory checkpointed general-purpose regset
594 store function. */
596 static void
597 ppc_store_tm_cgprregset (struct regcache *regcache, const void *buf)
599 int i, base, size, endian_offset;
600 const char *regset = (const char *) buf;
602 base = find_regno (regcache->tdesc, "cr0");
603 size = register_size (regcache->tdesc, base);
605 gdb_assert (size == 4 || size == 8);
607 for (i = 0; i < 32; i++)
608 supply_register (regcache, base + i, &regset[i * size]);
610 endian_offset = 0;
612 if ((size == 8) && (__BYTE_ORDER == __BIG_ENDIAN))
613 endian_offset = 4;
615 supply_register_by_name (regcache, "ccr",
616 &regset[PT_CCR * size + endian_offset]);
618 supply_register_by_name (regcache, "cxer",
619 &regset[PT_XER * size + endian_offset]);
621 supply_register_by_name (regcache, "clr", &regset[PT_LNK * size]);
622 supply_register_by_name (regcache, "cctr", &regset[PT_CTR * size]);
625 /* Hardware Transactional Memory checkpointed floating-point regset
626 store function. */
628 static void
629 ppc_store_tm_cfprregset (struct regcache *regcache, const void *buf)
631 int i, base;
632 const char *regset = (const char *) buf;
634 base = find_regno (regcache->tdesc, "cf0");
636 for (i = 0; i < 32; i++)
637 supply_register (regcache, base + i, &regset[i * 8]);
639 supply_register_by_name (regcache, "cfpscr", &regset[32 * 8]);
642 /* Hardware Transactional Memory checkpointed vector regset store
643 function. */
645 static void
646 ppc_store_tm_cvrregset (struct regcache *regcache, const void *buf)
648 int i, base;
649 const char *regset = (const char *) buf;
650 int vscr_offset = 0;
652 base = find_regno (regcache->tdesc, "cvr0");
654 for (i = 0; i < 32; i++)
655 supply_register (regcache, base + i, &regset[i * 16]);
657 if (__BYTE_ORDER == __BIG_ENDIAN)
658 vscr_offset = 12;
660 supply_register_by_name (regcache, "cvscr",
661 &regset[32 * 16 + vscr_offset]);
663 supply_register_by_name (regcache, "cvrsave", &regset[33 * 16]);
666 /* Hardware Transactional Memory checkpointed vector-scalar regset
667 store function. */
669 static void
670 ppc_store_tm_cvsxregset (struct regcache *regcache, const void *buf)
672 int i, base;
673 const char *regset = (const char *) buf;
675 base = find_regno (regcache->tdesc, "cvs0h");
676 for (i = 0; i < 32; i++)
677 supply_register (regcache, base + i, &regset[i * 8]);
680 /* Hardware Transactional Memory checkpointed Program Priority
681 Register regset store function. */
683 static void
684 ppc_store_tm_cpprregset (struct regcache *regcache, const void *buf)
686 const char *cppr = (const char *) buf;
688 supply_register_by_name (regcache, "cppr", cppr);
691 /* Hardware Transactional Memory checkpointed Data Stream Control
692 Register regset store function. */
694 static void
695 ppc_store_tm_cdscrregset (struct regcache *regcache, const void *buf)
697 const char *cdscr = (const char *) buf;
699 supply_register_by_name (regcache, "cdscr", cdscr);
702 /* Hardware Transactional Memory checkpointed Target Address Register
703 regset store function. */
705 static void
706 ppc_store_tm_ctarregset (struct regcache *regcache, const void *buf)
708 const char *ctar = (const char *) buf;
710 supply_register_by_name (regcache, "ctar", ctar);
713 static void
714 ppc_fill_vsxregset (struct regcache *regcache, void *buf)
716 int i, base;
717 char *regset = (char *) buf;
719 base = find_regno (regcache->tdesc, "vs0h");
720 for (i = 0; i < 32; i++)
721 collect_register (regcache, base + i, &regset[i * 8]);
724 static void
725 ppc_store_vsxregset (struct regcache *regcache, const void *buf)
727 int i, base;
728 const char *regset = (const char *) buf;
730 base = find_regno (regcache->tdesc, "vs0h");
731 for (i = 0; i < 32; i++)
732 supply_register (regcache, base + i, &regset[i * 8]);
735 static void
736 ppc_fill_vrregset (struct regcache *regcache, void *buf)
738 int i, base;
739 char *regset = (char *) buf;
740 int vscr_offset = 0;
742 base = find_regno (regcache->tdesc, "vr0");
743 for (i = 0; i < 32; i++)
744 collect_register (regcache, base + i, &regset[i * 16]);
746 if (__BYTE_ORDER == __BIG_ENDIAN)
747 vscr_offset = 12;
749 collect_register_by_name (regcache, "vscr",
750 &regset[32 * 16 + vscr_offset]);
752 collect_register_by_name (regcache, "vrsave", &regset[33 * 16]);
755 static void
756 ppc_store_vrregset (struct regcache *regcache, const void *buf)
758 int i, base;
759 const char *regset = (const char *) buf;
760 int vscr_offset = 0;
762 base = find_regno (regcache->tdesc, "vr0");
763 for (i = 0; i < 32; i++)
764 supply_register (regcache, base + i, &regset[i * 16]);
766 if (__BYTE_ORDER == __BIG_ENDIAN)
767 vscr_offset = 12;
769 supply_register_by_name (regcache, "vscr",
770 &regset[32 * 16 + vscr_offset]);
771 supply_register_by_name (regcache, "vrsave", &regset[33 * 16]);
774 struct gdb_evrregset_t
776 unsigned long evr[32];
777 unsigned long long acc;
778 unsigned long spefscr;
781 static void
782 ppc_fill_evrregset (struct regcache *regcache, void *buf)
784 int i, ev0;
785 struct gdb_evrregset_t *regset = (struct gdb_evrregset_t *) buf;
787 ev0 = find_regno (regcache->tdesc, "ev0h");
788 for (i = 0; i < 32; i++)
789 collect_register (regcache, ev0 + i, &regset->evr[i]);
791 collect_register_by_name (regcache, "acc", &regset->acc);
792 collect_register_by_name (regcache, "spefscr", &regset->spefscr);
795 static void
796 ppc_store_evrregset (struct regcache *regcache, const void *buf)
798 int i, ev0;
799 const struct gdb_evrregset_t *regset = (const struct gdb_evrregset_t *) buf;
801 ev0 = find_regno (regcache->tdesc, "ev0h");
802 for (i = 0; i < 32; i++)
803 supply_register (regcache, ev0 + i, &regset->evr[i]);
805 supply_register_by_name (regcache, "acc", &regset->acc);
806 supply_register_by_name (regcache, "spefscr", &regset->spefscr);
809 static struct regset_info ppc_regsets[] = {
810 /* List the extra register sets before GENERAL_REGS. That way we will
811 fetch them every time, but still fall back to PTRACE_PEEKUSER for the
812 general registers. Some kernels support these, but not the newer
813 PPC_PTRACE_GETREGS. */
814 { PTRACE_GETREGSET, PTRACE_SETREGSET, NT_PPC_TM_CTAR, 0, EXTENDED_REGS,
815 NULL, ppc_store_tm_ctarregset },
816 { PTRACE_GETREGSET, PTRACE_SETREGSET, NT_PPC_TM_CDSCR, 0, EXTENDED_REGS,
817 NULL, ppc_store_tm_cdscrregset },
818 { PTRACE_GETREGSET, PTRACE_SETREGSET, NT_PPC_TM_CPPR, 0, EXTENDED_REGS,
819 NULL, ppc_store_tm_cpprregset },
820 { PTRACE_GETREGSET, PTRACE_SETREGSET, NT_PPC_TM_CVSX, 0, EXTENDED_REGS,
821 NULL, ppc_store_tm_cvsxregset },
822 { PTRACE_GETREGSET, PTRACE_SETREGSET, NT_PPC_TM_CVMX, 0, EXTENDED_REGS,
823 NULL, ppc_store_tm_cvrregset },
824 { PTRACE_GETREGSET, PTRACE_SETREGSET, NT_PPC_TM_CFPR, 0, EXTENDED_REGS,
825 NULL, ppc_store_tm_cfprregset },
826 { PTRACE_GETREGSET, PTRACE_SETREGSET, NT_PPC_TM_CGPR, 0, EXTENDED_REGS,
827 NULL, ppc_store_tm_cgprregset },
828 { PTRACE_GETREGSET, PTRACE_SETREGSET, NT_PPC_TM_SPR, 0, EXTENDED_REGS,
829 ppc_fill_tm_sprregset, ppc_store_tm_sprregset },
830 { PTRACE_GETREGSET, PTRACE_SETREGSET, NT_PPC_EBB, 0, EXTENDED_REGS,
831 NULL, ppc_store_ebbregset },
832 { PTRACE_GETREGSET, PTRACE_SETREGSET, NT_PPC_PMU, 0, EXTENDED_REGS,
833 ppc_fill_pmuregset, ppc_store_pmuregset },
834 { PTRACE_GETREGSET, PTRACE_SETREGSET, NT_PPC_TAR, 0, EXTENDED_REGS,
835 ppc_fill_tarregset, ppc_store_tarregset },
836 { PTRACE_GETREGSET, PTRACE_SETREGSET, NT_PPC_PPR, 0, EXTENDED_REGS,
837 ppc_fill_pprregset, ppc_store_pprregset },
838 { PTRACE_GETREGSET, PTRACE_SETREGSET, NT_PPC_DSCR, 0, EXTENDED_REGS,
839 ppc_fill_dscrregset, ppc_store_dscrregset },
840 { PTRACE_GETVSXREGS, PTRACE_SETVSXREGS, 0, 0, EXTENDED_REGS,
841 ppc_fill_vsxregset, ppc_store_vsxregset },
842 { PTRACE_GETVRREGS, PTRACE_SETVRREGS, 0, 0, EXTENDED_REGS,
843 ppc_fill_vrregset, ppc_store_vrregset },
844 { PTRACE_GETEVRREGS, PTRACE_SETEVRREGS, 0, 0, EXTENDED_REGS,
845 ppc_fill_evrregset, ppc_store_evrregset },
846 { 0, 0, 0, 0, GENERAL_REGS, ppc_fill_gregset, NULL },
847 NULL_REGSET
850 static struct usrregs_info ppc_usrregs_info =
852 ppc_num_regs,
853 ppc_regmap,
856 static struct regsets_info ppc_regsets_info =
858 ppc_regsets, /* regsets */
859 0, /* num_regsets */
860 NULL, /* disabled_regsets */
863 static struct regs_info myregs_info =
865 NULL, /* regset_bitmap */
866 &ppc_usrregs_info,
867 &ppc_regsets_info
870 const regs_info *
871 ppc_target::get_regs_info ()
873 return &myregs_info;
876 void
877 ppc_target::low_arch_setup ()
879 const struct target_desc *tdesc;
880 struct regset_info *regset;
881 struct ppc_linux_features features = ppc_linux_no_features;
882 int tid = current_thread->id.lwp ();
884 features.wordsize = ppc_linux_target_wordsize (tid);
886 if (features.wordsize == 4)
887 tdesc = tdesc_powerpc_32l;
888 else
889 tdesc = tdesc_powerpc_64l;
891 current_process ()->tdesc = tdesc;
893 /* The value of current_process ()->tdesc needs to be set for this
894 call. */
895 ppc_hwcap = linux_get_hwcap (current_thread->id.pid (), features.wordsize);
896 ppc_hwcap2 = linux_get_hwcap2 (current_thread->id.pid (), features.wordsize);
898 features.isa205 = ppc_linux_has_isa205 (ppc_hwcap);
900 if (ppc_hwcap & PPC_FEATURE_HAS_VSX)
901 features.vsx = true;
903 if (ppc_hwcap & PPC_FEATURE_HAS_ALTIVEC)
904 features.altivec = true;
906 if ((ppc_hwcap2 & PPC_FEATURE2_DSCR)
907 && ppc_check_regset (tid, NT_PPC_DSCR, PPC_LINUX_SIZEOF_DSCRREGSET)
908 && ppc_check_regset (tid, NT_PPC_PPR, PPC_LINUX_SIZEOF_PPRREGSET))
910 features.ppr_dscr = true;
911 if ((ppc_hwcap2 & PPC_FEATURE2_ARCH_2_07)
912 && (ppc_hwcap2 & PPC_FEATURE2_TAR)
913 && (ppc_hwcap2 & PPC_FEATURE2_EBB)
914 && ppc_check_regset (tid, NT_PPC_TAR,
915 PPC_LINUX_SIZEOF_TARREGSET)
916 && ppc_check_regset (tid, NT_PPC_EBB,
917 PPC_LINUX_SIZEOF_EBBREGSET)
918 && ppc_check_regset (tid, NT_PPC_PMU,
919 PPC_LINUX_SIZEOF_PMUREGSET))
921 features.isa207 = true;
922 if ((ppc_hwcap2 & PPC_FEATURE2_HTM)
923 && ppc_check_regset (tid, NT_PPC_TM_SPR,
924 PPC_LINUX_SIZEOF_TM_SPRREGSET))
925 features.htm = true;
929 tdesc = ppc_linux_match_description (features);
931 /* On 32-bit machines, check for SPE registers.
932 Set the low target's regmap field as appropriately. */
933 #ifndef __powerpc64__
934 if (ppc_hwcap & PPC_FEATURE_HAS_SPE)
935 tdesc = tdesc_powerpc_e500l;
937 if (!ppc_regmap_adjusted)
939 if (ppc_hwcap & PPC_FEATURE_HAS_SPE)
940 ppc_usrregs_info.regmap = ppc_regmap_e500;
942 /* If the FPSCR is 64-bit wide, we need to fetch the whole
943 64-bit slot and not just its second word. The PT_FPSCR
944 supplied in a 32-bit GDB compilation doesn't reflect
945 this. */
946 if (register_size (tdesc, 70) == 8)
947 ppc_regmap[70] = (48 + 2*32) * sizeof (long);
949 ppc_regmap_adjusted = 1;
951 #endif
953 current_process ()->tdesc = tdesc;
955 for (regset = ppc_regsets; regset->size >= 0; regset++)
956 switch (regset->get_request)
958 case PTRACE_GETVRREGS:
959 regset->size = features.altivec ? PPC_LINUX_SIZEOF_VRREGSET : 0;
960 break;
961 case PTRACE_GETVSXREGS:
962 regset->size = features.vsx ? PPC_LINUX_SIZEOF_VSXREGSET : 0;
963 break;
964 case PTRACE_GETEVRREGS:
965 if (ppc_hwcap & PPC_FEATURE_HAS_SPE)
966 regset->size = 32 * 4 + 8 + 4;
967 else
968 regset->size = 0;
969 break;
970 case PTRACE_GETREGSET:
971 switch (regset->nt_type)
973 case NT_PPC_PPR:
974 regset->size = (features.ppr_dscr ?
975 PPC_LINUX_SIZEOF_PPRREGSET : 0);
976 break;
977 case NT_PPC_DSCR:
978 regset->size = (features.ppr_dscr ?
979 PPC_LINUX_SIZEOF_DSCRREGSET : 0);
980 break;
981 case NT_PPC_TAR:
982 regset->size = (features.isa207 ?
983 PPC_LINUX_SIZEOF_TARREGSET : 0);
984 break;
985 case NT_PPC_EBB:
986 regset->size = (features.isa207 ?
987 PPC_LINUX_SIZEOF_EBBREGSET : 0);
988 break;
989 case NT_PPC_PMU:
990 regset->size = (features.isa207 ?
991 PPC_LINUX_SIZEOF_PMUREGSET : 0);
992 break;
993 case NT_PPC_TM_SPR:
994 regset->size = (features.htm ?
995 PPC_LINUX_SIZEOF_TM_SPRREGSET : 0);
996 break;
997 case NT_PPC_TM_CGPR:
998 if (features.wordsize == 4)
999 regset->size = (features.htm ?
1000 PPC32_LINUX_SIZEOF_CGPRREGSET : 0);
1001 else
1002 regset->size = (features.htm ?
1003 PPC64_LINUX_SIZEOF_CGPRREGSET : 0);
1004 break;
1005 case NT_PPC_TM_CFPR:
1006 regset->size = (features.htm ?
1007 PPC_LINUX_SIZEOF_CFPRREGSET : 0);
1008 break;
1009 case NT_PPC_TM_CVMX:
1010 regset->size = (features.htm ?
1011 PPC_LINUX_SIZEOF_CVMXREGSET : 0);
1012 break;
1013 case NT_PPC_TM_CVSX:
1014 regset->size = (features.htm ?
1015 PPC_LINUX_SIZEOF_CVSXREGSET : 0);
1016 break;
1017 case NT_PPC_TM_CPPR:
1018 regset->size = (features.htm ?
1019 PPC_LINUX_SIZEOF_CPPRREGSET : 0);
1020 break;
1021 case NT_PPC_TM_CDSCR:
1022 regset->size = (features.htm ?
1023 PPC_LINUX_SIZEOF_CDSCRREGSET : 0);
1024 break;
1025 case NT_PPC_TM_CTAR:
1026 regset->size = (features.htm ?
1027 PPC_LINUX_SIZEOF_CTARREGSET : 0);
1028 break;
1029 default:
1030 break;
1032 break;
1033 default:
1034 break;
1038 /* Implementation of target ops method "supports_tracepoints". */
1040 bool
1041 ppc_target::supports_tracepoints ()
1043 return true;
1046 /* Get the thread area address. This is used to recognize which
1047 thread is which when tracing with the in-process agent library. We
1048 don't read anything from the address, and treat it as opaque; it's
1049 the address itself that we assume is unique per-thread. */
1052 ppc_target::low_get_thread_area (int lwpid, CORE_ADDR *addr)
1054 struct lwp_info *lwp = find_lwp_pid (ptid_t (lwpid));
1055 struct thread_info *thr = get_lwp_thread (lwp);
1056 struct regcache *regcache = get_thread_regcache (thr, 1);
1057 ULONGEST tp = 0;
1059 #ifdef __powerpc64__
1060 if (register_size (regcache->tdesc, 0) == 8)
1061 collect_register_by_name (regcache, "r13", &tp);
1062 else
1063 #endif
1064 collect_register_by_name (regcache, "r2", &tp);
1066 *addr = tp;
1068 return 0;
1071 #ifdef __powerpc64__
1073 /* Older glibc doesn't provide this. */
1075 #ifndef EF_PPC64_ABI
1076 #define EF_PPC64_ABI 3
1077 #endif
1079 /* Returns 1 if inferior is using ELFv2 ABI. Undefined for 32-bit
1080 inferiors. */
1082 static int
1083 is_elfv2_inferior (void)
1085 /* To be used as fallback if we're unable to determine the right result -
1086 assume inferior uses the same ABI as gdbserver. */
1087 #if _CALL_ELF == 2
1088 const int def_res = 1;
1089 #else
1090 const int def_res = 0;
1091 #endif
1092 CORE_ADDR phdr;
1093 Elf64_Ehdr ehdr;
1095 const struct target_desc *tdesc = current_process ()->tdesc;
1096 int wordsize = register_size (tdesc, 0);
1098 if (!linux_get_auxv (current_thread->id.pid (), wordsize, AT_PHDR, &phdr))
1099 return def_res;
1101 /* Assume ELF header is at the beginning of the page where program headers
1102 are located. If it doesn't look like one, bail. */
1104 read_inferior_memory (phdr & ~0xfff, (unsigned char *) &ehdr, sizeof ehdr);
1105 if (memcmp(ehdr.e_ident, ELFMAG, SELFMAG))
1106 return def_res;
1108 return (ehdr.e_flags & EF_PPC64_ABI) == 2;
1111 #endif
1113 /* Generate a ds-form instruction in BUF and return the number of bytes written
1115 0 6 11 16 30 32
1116 | OPCD | RST | RA | DS |XO| */
1118 __attribute__((unused)) /* Maybe unused due to conditional compilation. */
1119 static int
1120 gen_ds_form (uint32_t *buf, int opcd, int rst, int ra, int ds, int xo)
1122 uint32_t insn;
1124 gdb_assert ((opcd & ~0x3f) == 0);
1125 gdb_assert ((rst & ~0x1f) == 0);
1126 gdb_assert ((ra & ~0x1f) == 0);
1127 gdb_assert ((xo & ~0x3) == 0);
1129 insn = (rst << 21) | (ra << 16) | (ds & 0xfffc) | (xo & 0x3);
1130 *buf = (opcd << 26) | insn;
1131 return 1;
1134 /* Followings are frequently used ds-form instructions. */
1136 #define GEN_STD(buf, rs, ra, offset) gen_ds_form (buf, 62, rs, ra, offset, 0)
1137 #define GEN_STDU(buf, rs, ra, offset) gen_ds_form (buf, 62, rs, ra, offset, 1)
1138 #define GEN_LD(buf, rt, ra, offset) gen_ds_form (buf, 58, rt, ra, offset, 0)
1139 #define GEN_LDU(buf, rt, ra, offset) gen_ds_form (buf, 58, rt, ra, offset, 1)
1141 /* Generate a d-form instruction in BUF.
1143 0 6 11 16 32
1144 | OPCD | RST | RA | D | */
1146 static int
1147 gen_d_form (uint32_t *buf, int opcd, int rst, int ra, int si)
1149 uint32_t insn;
1151 gdb_assert ((opcd & ~0x3f) == 0);
1152 gdb_assert ((rst & ~0x1f) == 0);
1153 gdb_assert ((ra & ~0x1f) == 0);
1155 insn = (rst << 21) | (ra << 16) | (si & 0xffff);
1156 *buf = (opcd << 26) | insn;
1157 return 1;
1160 /* Followings are frequently used d-form instructions. */
1162 #define GEN_ADDI(buf, rt, ra, si) gen_d_form (buf, 14, rt, ra, si)
1163 #define GEN_ADDIS(buf, rt, ra, si) gen_d_form (buf, 15, rt, ra, si)
1164 #define GEN_LI(buf, rt, si) GEN_ADDI (buf, rt, 0, si)
1165 #define GEN_LIS(buf, rt, si) GEN_ADDIS (buf, rt, 0, si)
1166 #define GEN_ORI(buf, rt, ra, si) gen_d_form (buf, 24, rt, ra, si)
1167 #define GEN_ORIS(buf, rt, ra, si) gen_d_form (buf, 25, rt, ra, si)
1168 #define GEN_LWZ(buf, rt, ra, si) gen_d_form (buf, 32, rt, ra, si)
1169 #define GEN_STW(buf, rt, ra, si) gen_d_form (buf, 36, rt, ra, si)
1170 #define GEN_STWU(buf, rt, ra, si) gen_d_form (buf, 37, rt, ra, si)
1172 /* Generate a xfx-form instruction in BUF and return the number of bytes
1173 written.
1175 0 6 11 21 31 32
1176 | OPCD | RST | RI | XO |/| */
1178 static int
1179 gen_xfx_form (uint32_t *buf, int opcd, int rst, int ri, int xo)
1181 uint32_t insn;
1182 unsigned int n = ((ri & 0x1f) << 5) | ((ri >> 5) & 0x1f);
1184 gdb_assert ((opcd & ~0x3f) == 0);
1185 gdb_assert ((rst & ~0x1f) == 0);
1186 gdb_assert ((xo & ~0x3ff) == 0);
1188 insn = (rst << 21) | (n << 11) | (xo << 1);
1189 *buf = (opcd << 26) | insn;
1190 return 1;
1193 /* Followings are frequently used xfx-form instructions. */
1195 #define GEN_MFSPR(buf, rt, spr) gen_xfx_form (buf, 31, rt, spr, 339)
1196 #define GEN_MTSPR(buf, rt, spr) gen_xfx_form (buf, 31, rt, spr, 467)
1197 #define GEN_MFCR(buf, rt) gen_xfx_form (buf, 31, rt, 0, 19)
1198 #define GEN_MTCR(buf, rt) gen_xfx_form (buf, 31, rt, 0x3cf, 144)
1199 #define GEN_SYNC(buf, L, E) gen_xfx_form (buf, 31, L & 0x3, \
1200 E & 0xf, 598)
1201 #define GEN_LWSYNC(buf) GEN_SYNC (buf, 1, 0)
1204 /* Generate a x-form instruction in BUF and return the number of bytes written.
1206 0 6 11 16 21 31 32
1207 | OPCD | RST | RA | RB | XO |RC| */
1209 static int
1210 gen_x_form (uint32_t *buf, int opcd, int rst, int ra, int rb, int xo, int rc)
1212 uint32_t insn;
1214 gdb_assert ((opcd & ~0x3f) == 0);
1215 gdb_assert ((rst & ~0x1f) == 0);
1216 gdb_assert ((ra & ~0x1f) == 0);
1217 gdb_assert ((rb & ~0x1f) == 0);
1218 gdb_assert ((xo & ~0x3ff) == 0);
1219 gdb_assert ((rc & ~1) == 0);
1221 insn = (rst << 21) | (ra << 16) | (rb << 11) | (xo << 1) | rc;
1222 *buf = (opcd << 26) | insn;
1223 return 1;
1226 /* Followings are frequently used x-form instructions. */
1228 #define GEN_OR(buf, ra, rs, rb) gen_x_form (buf, 31, rs, ra, rb, 444, 0)
1229 #define GEN_MR(buf, ra, rs) GEN_OR (buf, ra, rs, rs)
1230 #define GEN_LWARX(buf, rt, ra, rb) gen_x_form (buf, 31, rt, ra, rb, 20, 0)
1231 #define GEN_STWCX(buf, rs, ra, rb) gen_x_form (buf, 31, rs, ra, rb, 150, 1)
1232 /* Assume bf = cr7. */
1233 #define GEN_CMPW(buf, ra, rb) gen_x_form (buf, 31, 28, ra, rb, 0, 0)
1236 /* Generate a md-form instruction in BUF and return the number of bytes written.
1238 0 6 11 16 21 27 30 31 32
1239 | OPCD | RS | RA | sh | mb | XO |sh|Rc| */
1241 static int
1242 gen_md_form (uint32_t *buf, int opcd, int rs, int ra, int sh, int mb,
1243 int xo, int rc)
1245 uint32_t insn;
1246 unsigned int n = ((mb & 0x1f) << 1) | ((mb >> 5) & 0x1);
1247 unsigned int sh0_4 = sh & 0x1f;
1248 unsigned int sh5 = (sh >> 5) & 1;
1250 gdb_assert ((opcd & ~0x3f) == 0);
1251 gdb_assert ((rs & ~0x1f) == 0);
1252 gdb_assert ((ra & ~0x1f) == 0);
1253 gdb_assert ((sh & ~0x3f) == 0);
1254 gdb_assert ((mb & ~0x3f) == 0);
1255 gdb_assert ((xo & ~0x7) == 0);
1256 gdb_assert ((rc & ~0x1) == 0);
1258 insn = (rs << 21) | (ra << 16) | (sh0_4 << 11) | (n << 5)
1259 | (sh5 << 1) | (xo << 2) | (rc & 1);
1260 *buf = (opcd << 26) | insn;
1261 return 1;
1264 /* The following are frequently used md-form instructions. */
1266 #define GEN_RLDICL(buf, ra, rs ,sh, mb) \
1267 gen_md_form (buf, 30, rs, ra, sh, mb, 0, 0)
1268 #define GEN_RLDICR(buf, ra, rs ,sh, mb) \
1269 gen_md_form (buf, 30, rs, ra, sh, mb, 1, 0)
1271 /* Generate a i-form instruction in BUF and return the number of bytes written.
1273 0 6 30 31 32
1274 | OPCD | LI |AA|LK| */
1276 static int
1277 gen_i_form (uint32_t *buf, int opcd, int li, int aa, int lk)
1279 uint32_t insn;
1281 gdb_assert ((opcd & ~0x3f) == 0);
1283 insn = (li & 0x3fffffc) | (aa & 1) | (lk & 1);
1284 *buf = (opcd << 26) | insn;
1285 return 1;
1288 /* The following are frequently used i-form instructions. */
1290 #define GEN_B(buf, li) gen_i_form (buf, 18, li, 0, 0)
1291 #define GEN_BL(buf, li) gen_i_form (buf, 18, li, 0, 1)
1293 /* Generate a b-form instruction in BUF and return the number of bytes written.
1295 0 6 11 16 30 31 32
1296 | OPCD | BO | BI | BD |AA|LK| */
1298 static int
1299 gen_b_form (uint32_t *buf, int opcd, int bo, int bi, int bd,
1300 int aa, int lk)
1302 uint32_t insn;
1304 gdb_assert ((opcd & ~0x3f) == 0);
1305 gdb_assert ((bo & ~0x1f) == 0);
1306 gdb_assert ((bi & ~0x1f) == 0);
1308 insn = (bo << 21) | (bi << 16) | (bd & 0xfffc) | (aa & 1) | (lk & 1);
1309 *buf = (opcd << 26) | insn;
1310 return 1;
1313 /* The following are frequently used b-form instructions. */
1314 /* Assume bi = cr7. */
1315 #define GEN_BNE(buf, bd) gen_b_form (buf, 16, 0x4, (7 << 2) | 2, bd, 0 ,0)
1317 /* GEN_LOAD and GEN_STORE generate 64- or 32-bit load/store for ppc64 or ppc32
1318 respectively. They are primary used for save/restore GPRs in jump-pad,
1319 not used for bytecode compiling. */
1321 #ifdef __powerpc64__
1322 #define GEN_LOAD(buf, rt, ra, si, is_64) (is_64 ? \
1323 GEN_LD (buf, rt, ra, si) : \
1324 GEN_LWZ (buf, rt, ra, si))
1325 #define GEN_STORE(buf, rt, ra, si, is_64) (is_64 ? \
1326 GEN_STD (buf, rt, ra, si) : \
1327 GEN_STW (buf, rt, ra, si))
1328 #else
1329 #define GEN_LOAD(buf, rt, ra, si, is_64) GEN_LWZ (buf, rt, ra, si)
1330 #define GEN_STORE(buf, rt, ra, si, is_64) GEN_STW (buf, rt, ra, si)
1331 #endif
1333 /* Generate a sequence of instructions to load IMM in the register REG.
1334 Write the instructions in BUF and return the number of bytes written. */
1336 static int
1337 gen_limm (uint32_t *buf, int reg, uint64_t imm, int is_64)
1339 uint32_t *p = buf;
1341 if ((imm + 32768) < 65536)
1343 /* li reg, imm[15:0] */
1344 p += GEN_LI (p, reg, imm);
1346 else if ((imm >> 32) == 0)
1348 /* lis reg, imm[31:16]
1349 ori reg, reg, imm[15:0]
1350 rldicl reg, reg, 0, 32 */
1351 p += GEN_LIS (p, reg, (imm >> 16) & 0xffff);
1352 if ((imm & 0xffff) != 0)
1353 p += GEN_ORI (p, reg, reg, imm & 0xffff);
1354 /* Clear upper 32-bit if sign-bit is set. */
1355 if (imm & (1u << 31) && is_64)
1356 p += GEN_RLDICL (p, reg, reg, 0, 32);
1358 else
1360 gdb_assert (is_64);
1361 /* lis reg, <imm[63:48]>
1362 ori reg, reg, <imm[48:32]>
1363 rldicr reg, reg, 32, 31
1364 oris reg, reg, <imm[31:16]>
1365 ori reg, reg, <imm[15:0]> */
1366 p += GEN_LIS (p, reg, ((imm >> 48) & 0xffff));
1367 if (((imm >> 32) & 0xffff) != 0)
1368 p += GEN_ORI (p, reg, reg, ((imm >> 32) & 0xffff));
1369 p += GEN_RLDICR (p, reg, reg, 32, 31);
1370 if (((imm >> 16) & 0xffff) != 0)
1371 p += GEN_ORIS (p, reg, reg, ((imm >> 16) & 0xffff));
1372 if ((imm & 0xffff) != 0)
1373 p += GEN_ORI (p, reg, reg, (imm & 0xffff));
1376 return p - buf;
1379 /* Generate a sequence for atomically exchange at location LOCK.
1380 This code sequence clobbers r6, r7, r8. LOCK is the location for
1381 the atomic-xchg, OLD_VALUE is expected old value stored in the
1382 location, and R_NEW is a register for the new value. */
1384 static int
1385 gen_atomic_xchg (uint32_t *buf, CORE_ADDR lock, int old_value, int r_new,
1386 int is_64)
1388 const int r_lock = 6;
1389 const int r_old = 7;
1390 const int r_tmp = 8;
1391 uint32_t *p = buf;
1394 1: lwarx TMP, 0, LOCK
1395 cmpwi TMP, OLD
1396 bne 1b
1397 stwcx. NEW, 0, LOCK
1398 bne 1b */
1400 p += gen_limm (p, r_lock, lock, is_64);
1401 p += gen_limm (p, r_old, old_value, is_64);
1403 p += GEN_LWARX (p, r_tmp, 0, r_lock);
1404 p += GEN_CMPW (p, r_tmp, r_old);
1405 p += GEN_BNE (p, -8);
1406 p += GEN_STWCX (p, r_new, 0, r_lock);
1407 p += GEN_BNE (p, -16);
1409 return p - buf;
1412 /* Generate a sequence of instructions for calling a function
1413 at address of FN. Return the number of bytes are written in BUF. */
1415 static int
1416 gen_call (uint32_t *buf, CORE_ADDR fn, int is_64, int is_opd)
1418 uint32_t *p = buf;
1420 /* Must be called by r12 for caller to calculate TOC address. */
1421 p += gen_limm (p, 12, fn, is_64);
1422 if (is_opd)
1424 p += GEN_LOAD (p, 11, 12, 16, is_64);
1425 p += GEN_LOAD (p, 2, 12, 8, is_64);
1426 p += GEN_LOAD (p, 12, 12, 0, is_64);
1428 p += GEN_MTSPR (p, 12, 9); /* mtctr r12 */
1429 *p++ = 0x4e800421; /* bctrl */
1431 return p - buf;
1434 /* Copy the instruction from OLDLOC to *TO, and update *TO to *TO + size
1435 of instruction. This function is used to adjust pc-relative instructions
1436 when copying. */
1438 static void
1439 ppc_relocate_instruction (CORE_ADDR *to, CORE_ADDR oldloc)
1441 uint32_t insn, op6;
1442 long rel, newrel;
1444 read_inferior_memory (oldloc, (unsigned char *) &insn, 4);
1445 op6 = PPC_OP6 (insn);
1447 if (op6 == 18 && (insn & 2) == 0)
1449 /* branch && AA = 0 */
1450 rel = PPC_LI (insn);
1451 newrel = (oldloc - *to) + rel;
1453 /* Out of range. Cannot relocate instruction. */
1454 if (newrel >= (1 << 25) || newrel < -(1 << 25))
1455 return;
1457 insn = (insn & ~0x3fffffc) | (newrel & 0x3fffffc);
1459 else if (op6 == 16 && (insn & 2) == 0)
1461 /* conditional branch && AA = 0 */
1463 /* If the new relocation is too big for even a 26-bit unconditional
1464 branch, there is nothing we can do. Just abort.
1466 Otherwise, if it can be fit in 16-bit conditional branch, just
1467 copy the instruction and relocate the address.
1469 If the it's big for conditional-branch (16-bit), try to invert the
1470 condition and jump with 26-bit branch. For example,
1472 beq .Lgoto
1473 INSN1
1477 bne 1f (+8)
1478 b .Lgoto
1479 1:INSN1
1481 After this transform, we are actually jump from *TO+4 instead of *TO,
1482 so check the relocation again because it will be 1-insn farther then
1483 before if *TO is after OLDLOC.
1486 For BDNZT (or so) is transformed from
1488 bdnzt eq, .Lgoto
1489 INSN1
1493 bdz 1f (+12)
1494 bf eq, 1f (+8)
1495 b .Lgoto
1496 1:INSN1
1498 See also "BO field encodings". */
1500 rel = PPC_BD (insn);
1501 newrel = (oldloc - *to) + rel;
1503 if (newrel < (1 << 15) && newrel >= -(1 << 15))
1504 insn = (insn & ~0xfffc) | (newrel & 0xfffc);
1505 else if ((PPC_BO (insn) & 0x14) == 0x4 || (PPC_BO (insn) & 0x14) == 0x10)
1507 newrel -= 4;
1509 /* Out of range. Cannot relocate instruction. */
1510 if (newrel >= (1 << 25) || newrel < -(1 << 25))
1511 return;
1513 if ((PPC_BO (insn) & 0x14) == 0x4)
1514 insn ^= (1 << 24);
1515 else if ((PPC_BO (insn) & 0x14) == 0x10)
1516 insn ^= (1 << 22);
1518 /* Jump over the unconditional branch. */
1519 insn = (insn & ~0xfffc) | 0x8;
1520 target_write_memory (*to, (unsigned char *) &insn, 4);
1521 *to += 4;
1523 /* Build a unconditional branch and copy LK bit. */
1524 insn = (18 << 26) | (0x3fffffc & newrel) | (insn & 0x3);
1525 target_write_memory (*to, (unsigned char *) &insn, 4);
1526 *to += 4;
1528 return;
1530 else if ((PPC_BO (insn) & 0x14) == 0)
1532 uint32_t bdnz_insn = (16 << 26) | (0x10 << 21) | 12;
1533 uint32_t bf_insn = (16 << 26) | (0x4 << 21) | 8;
1535 newrel -= 8;
1537 /* Out of range. Cannot relocate instruction. */
1538 if (newrel >= (1 << 25) || newrel < -(1 << 25))
1539 return;
1541 /* Copy BI field. */
1542 bf_insn |= (insn & 0x1f0000);
1544 /* Invert condition. */
1545 bdnz_insn |= (insn ^ (1 << 22)) & (1 << 22);
1546 bf_insn |= (insn ^ (1 << 24)) & (1 << 24);
1548 target_write_memory (*to, (unsigned char *) &bdnz_insn, 4);
1549 *to += 4;
1550 target_write_memory (*to, (unsigned char *) &bf_insn, 4);
1551 *to += 4;
1553 /* Build a unconditional branch and copy LK bit. */
1554 insn = (18 << 26) | (0x3fffffc & newrel) | (insn & 0x3);
1555 target_write_memory (*to, (unsigned char *) &insn, 4);
1556 *to += 4;
1558 return;
1560 else /* (BO & 0x14) == 0x14, branch always. */
1562 /* Out of range. Cannot relocate instruction. */
1563 if (newrel >= (1 << 25) || newrel < -(1 << 25))
1564 return;
1566 /* Build a unconditional branch and copy LK bit. */
1567 insn = (18 << 26) | (0x3fffffc & newrel) | (insn & 0x3);
1568 target_write_memory (*to, (unsigned char *) &insn, 4);
1569 *to += 4;
1571 return;
1575 target_write_memory (*to, (unsigned char *) &insn, 4);
1576 *to += 4;
1579 bool
1580 ppc_target::supports_fast_tracepoints ()
1582 return true;
1585 /* Implement install_fast_tracepoint_jump_pad of target_ops.
1586 See target.h for details. */
1589 ppc_target::install_fast_tracepoint_jump_pad (CORE_ADDR tpoint,
1590 CORE_ADDR tpaddr,
1591 CORE_ADDR collector,
1592 CORE_ADDR lockaddr,
1593 ULONGEST orig_size,
1594 CORE_ADDR *jump_entry,
1595 CORE_ADDR *trampoline,
1596 ULONGEST *trampoline_size,
1597 unsigned char *jjump_pad_insn,
1598 ULONGEST *jjump_pad_insn_size,
1599 CORE_ADDR *adjusted_insn_addr,
1600 CORE_ADDR *adjusted_insn_addr_end,
1601 char *err)
1603 uint32_t buf[256];
1604 uint32_t *p = buf;
1605 int j, offset;
1606 CORE_ADDR buildaddr = *jump_entry;
1607 const CORE_ADDR entryaddr = *jump_entry;
1608 int rsz, min_frame, frame_size, tp_reg;
1609 #ifdef __powerpc64__
1610 struct regcache *regcache = get_thread_regcache (current_thread, 0);
1611 int is_64 = register_size (regcache->tdesc, 0) == 8;
1612 int is_opd = is_64 && !is_elfv2_inferior ();
1613 #else
1614 int is_64 = 0, is_opd = 0;
1615 #endif
1617 #ifdef __powerpc64__
1618 if (is_64)
1620 /* Minimum frame size is 32 bytes for ELFv2, and 112 bytes for ELFv1. */
1621 rsz = 8;
1622 min_frame = 112;
1623 frame_size = (40 * rsz) + min_frame;
1624 tp_reg = 13;
1626 else
1628 #endif
1629 rsz = 4;
1630 min_frame = 16;
1631 frame_size = (40 * rsz) + min_frame;
1632 tp_reg = 2;
1633 #ifdef __powerpc64__
1635 #endif
1637 /* Stack frame layout for this jump pad,
1639 High thread_area (r13/r2) |
1640 tpoint - collecting_t obj
1641 PC/<tpaddr> | +36
1642 CTR | +35
1643 LR | +34
1644 XER | +33
1645 CR | +32
1646 R31 |
1647 R29 |
1648 ... |
1649 R1 | +1
1650 R0 - collected registers
1651 ... |
1652 ... |
1653 Low Back-chain -
1656 The code flow of this jump pad,
1658 1. Adjust SP
1659 2. Save GPR and SPR
1660 3. Prepare argument
1661 4. Call gdb_collector
1662 5. Restore GPR and SPR
1663 6. Restore SP
1664 7. Build a jump for back to the program
1665 8. Copy/relocate original instruction
1666 9. Build a jump for replacing original instruction. */
1668 /* Adjust stack pointer. */
1669 if (is_64)
1670 p += GEN_STDU (p, 1, 1, -frame_size); /* stdu r1,-frame_size(r1) */
1671 else
1672 p += GEN_STWU (p, 1, 1, -frame_size); /* stwu r1,-frame_size(r1) */
1674 /* Store GPRs. Save R1 later, because it had just been modified, but
1675 we want the original value. */
1676 for (j = 2; j < 32; j++)
1677 p += GEN_STORE (p, j, 1, min_frame + j * rsz, is_64);
1678 p += GEN_STORE (p, 0, 1, min_frame + 0 * rsz, is_64);
1679 /* Set r0 to the original value of r1 before adjusting stack frame,
1680 and then save it. */
1681 p += GEN_ADDI (p, 0, 1, frame_size);
1682 p += GEN_STORE (p, 0, 1, min_frame + 1 * rsz, is_64);
1684 /* Save CR, XER, LR, and CTR. */
1685 p += GEN_MFCR (p, 3); /* mfcr r3 */
1686 p += GEN_MFSPR (p, 4, 1); /* mfxer r4 */
1687 p += GEN_MFSPR (p, 5, 8); /* mflr r5 */
1688 p += GEN_MFSPR (p, 6, 9); /* mfctr r6 */
1689 p += GEN_STORE (p, 3, 1, min_frame + 32 * rsz, is_64);/* std r3, 32(r1) */
1690 p += GEN_STORE (p, 4, 1, min_frame + 33 * rsz, is_64);/* std r4, 33(r1) */
1691 p += GEN_STORE (p, 5, 1, min_frame + 34 * rsz, is_64);/* std r5, 34(r1) */
1692 p += GEN_STORE (p, 6, 1, min_frame + 35 * rsz, is_64);/* std r6, 35(r1) */
1694 /* Save PC<tpaddr> */
1695 p += gen_limm (p, 3, tpaddr, is_64);
1696 p += GEN_STORE (p, 3, 1, min_frame + 36 * rsz, is_64);
1699 /* Setup arguments to collector. */
1700 /* Set r4 to collected registers. */
1701 p += GEN_ADDI (p, 4, 1, min_frame);
1702 /* Set r3 to TPOINT. */
1703 p += gen_limm (p, 3, tpoint, is_64);
1705 /* Prepare collecting_t object for lock. */
1706 p += GEN_STORE (p, 3, 1, min_frame + 37 * rsz, is_64);
1707 p += GEN_STORE (p, tp_reg, 1, min_frame + 38 * rsz, is_64);
1708 /* Set R5 to collecting object. */
1709 p += GEN_ADDI (p, 5, 1, 37 * rsz);
1711 p += GEN_LWSYNC (p);
1712 p += gen_atomic_xchg (p, lockaddr, 0, 5, is_64);
1713 p += GEN_LWSYNC (p);
1715 /* Call to collector. */
1716 p += gen_call (p, collector, is_64, is_opd);
1718 /* Simply write 0 to release the lock. */
1719 p += gen_limm (p, 3, lockaddr, is_64);
1720 p += gen_limm (p, 4, 0, is_64);
1721 p += GEN_LWSYNC (p);
1722 p += GEN_STORE (p, 4, 3, 0, is_64);
1724 /* Restore stack and registers. */
1725 p += GEN_LOAD (p, 3, 1, min_frame + 32 * rsz, is_64); /* ld r3, 32(r1) */
1726 p += GEN_LOAD (p, 4, 1, min_frame + 33 * rsz, is_64); /* ld r4, 33(r1) */
1727 p += GEN_LOAD (p, 5, 1, min_frame + 34 * rsz, is_64); /* ld r5, 34(r1) */
1728 p += GEN_LOAD (p, 6, 1, min_frame + 35 * rsz, is_64); /* ld r6, 35(r1) */
1729 p += GEN_MTCR (p, 3); /* mtcr r3 */
1730 p += GEN_MTSPR (p, 4, 1); /* mtxer r4 */
1731 p += GEN_MTSPR (p, 5, 8); /* mtlr r5 */
1732 p += GEN_MTSPR (p, 6, 9); /* mtctr r6 */
1734 /* Restore GPRs. */
1735 for (j = 2; j < 32; j++)
1736 p += GEN_LOAD (p, j, 1, min_frame + j * rsz, is_64);
1737 p += GEN_LOAD (p, 0, 1, min_frame + 0 * rsz, is_64);
1738 /* Restore SP. */
1739 p += GEN_ADDI (p, 1, 1, frame_size);
1741 /* Flush instructions to inferior memory. */
1742 target_write_memory (buildaddr, (unsigned char *) buf, (p - buf) * 4);
1744 /* Now, insert the original instruction to execute in the jump pad. */
1745 *adjusted_insn_addr = buildaddr + (p - buf) * 4;
1746 *adjusted_insn_addr_end = *adjusted_insn_addr;
1747 ppc_relocate_instruction (adjusted_insn_addr_end, tpaddr);
1749 /* Verify the relocation size. If should be 4 for normal copy,
1750 8 or 12 for some conditional branch. */
1751 if ((*adjusted_insn_addr_end - *adjusted_insn_addr == 0)
1752 || (*adjusted_insn_addr_end - *adjusted_insn_addr > 12))
1754 sprintf (err, "E.Unexpected instruction length = %d"
1755 "when relocate instruction.",
1756 (int) (*adjusted_insn_addr_end - *adjusted_insn_addr));
1757 return 1;
1760 buildaddr = *adjusted_insn_addr_end;
1761 p = buf;
1762 /* Finally, write a jump back to the program. */
1763 offset = (tpaddr + 4) - buildaddr;
1764 if (offset >= (1 << 25) || offset < -(1 << 25))
1766 sprintf (err, "E.Jump back from jump pad too far from tracepoint "
1767 "(offset 0x%x > 26-bit).", offset);
1768 return 1;
1770 /* b <tpaddr+4> */
1771 p += GEN_B (p, offset);
1772 target_write_memory (buildaddr, (unsigned char *) buf, (p - buf) * 4);
1773 *jump_entry = buildaddr + (p - buf) * 4;
1775 /* The jump pad is now built. Wire in a jump to our jump pad. This
1776 is always done last (by our caller actually), so that we can
1777 install fast tracepoints with threads running. This relies on
1778 the agent's atomic write support. */
1779 offset = entryaddr - tpaddr;
1780 if (offset >= (1 << 25) || offset < -(1 << 25))
1782 sprintf (err, "E.Jump back from jump pad too far from tracepoint "
1783 "(offset 0x%x > 26-bit).", offset);
1784 return 1;
1786 /* b <jentry> */
1787 GEN_B ((uint32_t *) jjump_pad_insn, offset);
1788 *jjump_pad_insn_size = 4;
1790 return 0;
1793 /* Returns the minimum instruction length for installing a tracepoint. */
1796 ppc_target::get_min_fast_tracepoint_insn_len ()
1798 return 4;
1801 /* Emits a given buffer into the target at current_insn_ptr. Length
1802 is in units of 32-bit words. */
1804 static void
1805 emit_insns (uint32_t *buf, int n)
1807 n = n * sizeof (uint32_t);
1808 target_write_memory (current_insn_ptr, (unsigned char *) buf, n);
1809 current_insn_ptr += n;
1812 #define __EMIT_ASM(NAME, INSNS) \
1813 do \
1815 extern uint32_t start_bcax_ ## NAME []; \
1816 extern uint32_t end_bcax_ ## NAME []; \
1817 emit_insns (start_bcax_ ## NAME, \
1818 end_bcax_ ## NAME - start_bcax_ ## NAME); \
1819 __asm__ (".section .text.__ppcbcax\n\t" \
1820 "start_bcax_" #NAME ":\n\t" \
1821 INSNS "\n\t" \
1822 "end_bcax_" #NAME ":\n\t" \
1823 ".previous\n\t"); \
1824 } while (0)
1826 #define _EMIT_ASM(NAME, INSNS) __EMIT_ASM (NAME, INSNS)
1827 #define EMIT_ASM(INSNS) _EMIT_ASM (__LINE__, INSNS)
1831 Bytecode execution stack frame - 32-bit
1833 | LR save area (SP + 4)
1834 SP' -> +- Back chain (SP + 0)
1835 | Save r31 for access saved arguments
1836 | Save r30 for bytecode stack pointer
1837 | Save r4 for incoming argument *value
1838 | Save r3 for incoming argument regs
1839 r30 -> +- Bytecode execution stack
1841 | 64-byte (8 doublewords) at initial.
1842 | Expand stack as needed.
1845 | Some padding for minimum stack frame and 16-byte alignment.
1846 | 16 bytes.
1847 SP +- Back-chain (SP')
1849 initial frame size
1850 = 16 + (4 * 4) + 64
1851 = 96
1853 r30 is the stack-pointer for bytecode machine.
1854 It should point to next-empty, so we can use LDU for pop.
1855 r3 is used for cache of the high part of TOP value.
1856 It was the first argument, pointer to regs.
1857 r4 is used for cache of the low part of TOP value.
1858 It was the second argument, pointer to the result.
1859 We should set *result = TOP after leaving this function.
1861 Note:
1862 * To restore stack at epilogue
1863 => sp = r31
1864 * To check stack is big enough for bytecode execution.
1865 => r30 - 8 > SP + 8
1866 * To return execution result.
1867 => 0(r4) = TOP
1871 /* Regardless of endian, register 3 is always high part, 4 is low part.
1872 These defines are used when the register pair is stored/loaded.
1873 Likewise, to simplify code, have a similar define for 5:6. */
1875 #if __BYTE_ORDER == __LITTLE_ENDIAN
1876 #define TOP_FIRST "4"
1877 #define TOP_SECOND "3"
1878 #define TMP_FIRST "6"
1879 #define TMP_SECOND "5"
1880 #else
1881 #define TOP_FIRST "3"
1882 #define TOP_SECOND "4"
1883 #define TMP_FIRST "5"
1884 #define TMP_SECOND "6"
1885 #endif
1887 /* Emit prologue in inferior memory. See above comments. */
1889 static void
1890 ppc_emit_prologue (void)
1892 EMIT_ASM (/* Save return address. */
1893 "mflr 0 \n"
1894 "stw 0, 4(1) \n"
1895 /* Adjust SP. 96 is the initial frame size. */
1896 "stwu 1, -96(1) \n"
1897 /* Save r30 and incoming arguments. */
1898 "stw 31, 96-4(1) \n"
1899 "stw 30, 96-8(1) \n"
1900 "stw 4, 96-12(1) \n"
1901 "stw 3, 96-16(1) \n"
1902 /* Point r31 to original r1 for access arguments. */
1903 "addi 31, 1, 96 \n"
1904 /* Set r30 to pointing stack-top. */
1905 "addi 30, 1, 64 \n"
1906 /* Initial r3/TOP to 0. */
1907 "li 3, 0 \n"
1908 "li 4, 0 \n");
1911 /* Emit epilogue in inferior memory. See above comments. */
1913 static void
1914 ppc_emit_epilogue (void)
1916 EMIT_ASM (/* *result = TOP */
1917 "lwz 5, -12(31) \n"
1918 "stw " TOP_FIRST ", 0(5) \n"
1919 "stw " TOP_SECOND ", 4(5) \n"
1920 /* Restore registers. */
1921 "lwz 31, -4(31) \n"
1922 "lwz 30, -8(31) \n"
1923 /* Restore SP. */
1924 "lwz 1, 0(1) \n"
1925 /* Restore LR. */
1926 "lwz 0, 4(1) \n"
1927 /* Return 0 for no-error. */
1928 "li 3, 0 \n"
1929 "mtlr 0 \n"
1930 "blr \n");
1933 /* TOP = stack[--sp] + TOP */
1935 static void
1936 ppc_emit_add (void)
1938 EMIT_ASM ("lwzu " TMP_FIRST ", 8(30) \n"
1939 "lwz " TMP_SECOND ", 4(30)\n"
1940 "addc 4, 6, 4 \n"
1941 "adde 3, 5, 3 \n");
1944 /* TOP = stack[--sp] - TOP */
1946 static void
1947 ppc_emit_sub (void)
1949 EMIT_ASM ("lwzu " TMP_FIRST ", 8(30) \n"
1950 "lwz " TMP_SECOND ", 4(30) \n"
1951 "subfc 4, 4, 6 \n"
1952 "subfe 3, 3, 5 \n");
1955 /* TOP = stack[--sp] * TOP */
1957 static void
1958 ppc_emit_mul (void)
1960 EMIT_ASM ("lwzu " TMP_FIRST ", 8(30) \n"
1961 "lwz " TMP_SECOND ", 4(30) \n"
1962 "mulhwu 7, 6, 4 \n"
1963 "mullw 3, 6, 3 \n"
1964 "mullw 5, 4, 5 \n"
1965 "mullw 4, 6, 4 \n"
1966 "add 3, 5, 3 \n"
1967 "add 3, 7, 3 \n");
1970 /* TOP = stack[--sp] << TOP */
1972 static void
1973 ppc_emit_lsh (void)
1975 EMIT_ASM ("lwzu " TMP_FIRST ", 8(30) \n"
1976 "lwz " TMP_SECOND ", 4(30) \n"
1977 "subfic 3, 4, 32\n" /* r3 = 32 - TOP */
1978 "addi 7, 4, -32\n" /* r7 = TOP - 32 */
1979 "slw 5, 5, 4\n" /* Shift high part left */
1980 "slw 4, 6, 4\n" /* Shift low part left */
1981 "srw 3, 6, 3\n" /* Shift low to high if shift < 32 */
1982 "slw 7, 6, 7\n" /* Shift low to high if shift >= 32 */
1983 "or 3, 5, 3\n"
1984 "or 3, 7, 3\n"); /* Assemble high part */
1987 /* Top = stack[--sp] >> TOP
1988 (Arithmetic shift right) */
1990 static void
1991 ppc_emit_rsh_signed (void)
1993 EMIT_ASM ("lwzu " TMP_FIRST ", 8(30) \n"
1994 "lwz " TMP_SECOND ", 4(30) \n"
1995 "addi 7, 4, -32\n" /* r7 = TOP - 32 */
1996 "sraw 3, 5, 4\n" /* Shift high part right */
1997 "cmpwi 7, 1\n"
1998 "blt 0, 1f\n" /* If shift <= 32, goto 1: */
1999 "sraw 4, 5, 7\n" /* Shift high to low */
2000 "b 2f\n"
2001 "1:\n"
2002 "subfic 7, 4, 32\n" /* r7 = 32 - TOP */
2003 "srw 4, 6, 4\n" /* Shift low part right */
2004 "slw 5, 5, 7\n" /* Shift high to low */
2005 "or 4, 4, 5\n" /* Assemble low part */
2006 "2:\n");
2009 /* Top = stack[--sp] >> TOP
2010 (Logical shift right) */
2012 static void
2013 ppc_emit_rsh_unsigned (void)
2015 EMIT_ASM ("lwzu " TMP_FIRST ", 8(30) \n"
2016 "lwz " TMP_SECOND ", 4(30) \n"
2017 "subfic 3, 4, 32\n" /* r3 = 32 - TOP */
2018 "addi 7, 4, -32\n" /* r7 = TOP - 32 */
2019 "srw 6, 6, 4\n" /* Shift low part right */
2020 "slw 3, 5, 3\n" /* Shift high to low if shift < 32 */
2021 "srw 7, 5, 7\n" /* Shift high to low if shift >= 32 */
2022 "or 6, 6, 3\n"
2023 "srw 3, 5, 4\n" /* Shift high part right */
2024 "or 4, 6, 7\n"); /* Assemble low part */
2027 /* Emit code for signed-extension specified by ARG. */
2029 static void
2030 ppc_emit_ext (int arg)
2032 switch (arg)
2034 case 8:
2035 EMIT_ASM ("extsb 4, 4\n"
2036 "srawi 3, 4, 31");
2037 break;
2038 case 16:
2039 EMIT_ASM ("extsh 4, 4\n"
2040 "srawi 3, 4, 31");
2041 break;
2042 case 32:
2043 EMIT_ASM ("srawi 3, 4, 31");
2044 break;
2045 default:
2046 emit_error = 1;
2050 /* Emit code for zero-extension specified by ARG. */
2052 static void
2053 ppc_emit_zero_ext (int arg)
2055 switch (arg)
2057 case 8:
2058 EMIT_ASM ("clrlwi 4,4,24\n"
2059 "li 3, 0\n");
2060 break;
2061 case 16:
2062 EMIT_ASM ("clrlwi 4,4,16\n"
2063 "li 3, 0\n");
2064 break;
2065 case 32:
2066 EMIT_ASM ("li 3, 0");
2067 break;
2068 default:
2069 emit_error = 1;
2073 /* TOP = !TOP
2074 i.e., TOP = (TOP == 0) ? 1 : 0; */
2076 static void
2077 ppc_emit_log_not (void)
2079 EMIT_ASM ("or 4, 3, 4 \n"
2080 "cntlzw 4, 4 \n"
2081 "srwi 4, 4, 5 \n"
2082 "li 3, 0 \n");
2085 /* TOP = stack[--sp] & TOP */
2087 static void
2088 ppc_emit_bit_and (void)
2090 EMIT_ASM ("lwzu " TMP_FIRST ", 8(30) \n"
2091 "lwz " TMP_SECOND ", 4(30) \n"
2092 "and 4, 6, 4 \n"
2093 "and 3, 5, 3 \n");
2096 /* TOP = stack[--sp] | TOP */
2098 static void
2099 ppc_emit_bit_or (void)
2101 EMIT_ASM ("lwzu " TMP_FIRST ", 8(30) \n"
2102 "lwz " TMP_SECOND ", 4(30) \n"
2103 "or 4, 6, 4 \n"
2104 "or 3, 5, 3 \n");
2107 /* TOP = stack[--sp] ^ TOP */
2109 static void
2110 ppc_emit_bit_xor (void)
2112 EMIT_ASM ("lwzu " TMP_FIRST ", 8(30) \n"
2113 "lwz " TMP_SECOND ", 4(30) \n"
2114 "xor 4, 6, 4 \n"
2115 "xor 3, 5, 3 \n");
2118 /* TOP = ~TOP
2119 i.e., TOP = ~(TOP | TOP) */
2121 static void
2122 ppc_emit_bit_not (void)
2124 EMIT_ASM ("nor 3, 3, 3 \n"
2125 "nor 4, 4, 4 \n");
2128 /* TOP = stack[--sp] == TOP */
2130 static void
2131 ppc_emit_equal (void)
2133 EMIT_ASM ("lwzu " TMP_FIRST ", 8(30) \n"
2134 "lwz " TMP_SECOND ", 4(30) \n"
2135 "xor 4, 6, 4 \n"
2136 "xor 3, 5, 3 \n"
2137 "or 4, 3, 4 \n"
2138 "cntlzw 4, 4 \n"
2139 "srwi 4, 4, 5 \n"
2140 "li 3, 0 \n");
2143 /* TOP = stack[--sp] < TOP
2144 (Signed comparison) */
2146 static void
2147 ppc_emit_less_signed (void)
2149 EMIT_ASM ("lwzu " TMP_FIRST ", 8(30) \n"
2150 "lwz " TMP_SECOND ", 4(30) \n"
2151 "cmplw 6, 6, 4 \n"
2152 "cmpw 7, 5, 3 \n"
2153 /* CR6 bit 0 = low less and high equal */
2154 "crand 6*4+0, 6*4+0, 7*4+2\n"
2155 /* CR7 bit 0 = (low less and high equal) or high less */
2156 "cror 7*4+0, 7*4+0, 6*4+0\n"
2157 "mfcr 4 \n"
2158 "rlwinm 4, 4, 29, 31, 31 \n"
2159 "li 3, 0 \n");
2162 /* TOP = stack[--sp] < TOP
2163 (Unsigned comparison) */
2165 static void
2166 ppc_emit_less_unsigned (void)
2168 EMIT_ASM ("lwzu " TMP_FIRST ", 8(30) \n"
2169 "lwz " TMP_SECOND ", 4(30) \n"
2170 "cmplw 6, 6, 4 \n"
2171 "cmplw 7, 5, 3 \n"
2172 /* CR6 bit 0 = low less and high equal */
2173 "crand 6*4+0, 6*4+0, 7*4+2\n"
2174 /* CR7 bit 0 = (low less and high equal) or high less */
2175 "cror 7*4+0, 7*4+0, 6*4+0\n"
2176 "mfcr 4 \n"
2177 "rlwinm 4, 4, 29, 31, 31 \n"
2178 "li 3, 0 \n");
2181 /* Access the memory address in TOP in size of SIZE.
2182 Zero-extend the read value. */
2184 static void
2185 ppc_emit_ref (int size)
2187 switch (size)
2189 case 1:
2190 EMIT_ASM ("lbz 4, 0(4)\n"
2191 "li 3, 0");
2192 break;
2193 case 2:
2194 EMIT_ASM ("lhz 4, 0(4)\n"
2195 "li 3, 0");
2196 break;
2197 case 4:
2198 EMIT_ASM ("lwz 4, 0(4)\n"
2199 "li 3, 0");
2200 break;
2201 case 8:
2202 if (__BYTE_ORDER == __LITTLE_ENDIAN)
2203 EMIT_ASM ("lwz 3, 4(4)\n"
2204 "lwz 4, 0(4)");
2205 else
2206 EMIT_ASM ("lwz 3, 0(4)\n"
2207 "lwz 4, 4(4)");
2208 break;
2212 /* TOP = NUM */
2214 static void
2215 ppc_emit_const (LONGEST num)
2217 uint32_t buf[10];
2218 uint32_t *p = buf;
2220 p += gen_limm (p, 3, num >> 32 & 0xffffffff, 0);
2221 p += gen_limm (p, 4, num & 0xffffffff, 0);
2223 emit_insns (buf, p - buf);
2224 gdb_assert ((p - buf) <= (sizeof (buf) / sizeof (*buf)));
2227 /* Set TOP to the value of register REG by calling get_raw_reg function
2228 with two argument, collected buffer and register number. */
2230 static void
2231 ppc_emit_reg (int reg)
2233 uint32_t buf[13];
2234 uint32_t *p = buf;
2236 /* fctx->regs is passed in r3 and then saved in -16(31). */
2237 p += GEN_LWZ (p, 3, 31, -16);
2238 p += GEN_LI (p, 4, reg); /* li r4, reg */
2239 p += gen_call (p, get_raw_reg_func_addr (), 0, 0);
2241 emit_insns (buf, p - buf);
2242 gdb_assert ((p - buf) <= (sizeof (buf) / sizeof (*buf)));
2244 if (__BYTE_ORDER == __LITTLE_ENDIAN)
2246 EMIT_ASM ("mr 5, 4\n"
2247 "mr 4, 3\n"
2248 "mr 3, 5\n");
2252 /* TOP = stack[--sp] */
2254 static void
2255 ppc_emit_pop (void)
2257 EMIT_ASM ("lwzu " TOP_FIRST ", 8(30) \n"
2258 "lwz " TOP_SECOND ", 4(30) \n");
2261 /* stack[sp++] = TOP
2263 Because we may use up bytecode stack, expand 8 doublewords more
2264 if needed. */
2266 static void
2267 ppc_emit_stack_flush (void)
2269 /* Make sure bytecode stack is big enough before push.
2270 Otherwise, expand 64-byte more. */
2272 EMIT_ASM (" stw " TOP_FIRST ", 0(30) \n"
2273 " stw " TOP_SECOND ", 4(30)\n"
2274 " addi 5, 30, -(8 + 8) \n"
2275 " cmpw 7, 5, 1 \n"
2276 " bgt 7, 1f \n"
2277 " stwu 31, -64(1) \n"
2278 "1:addi 30, 30, -8 \n");
2281 /* Swap TOP and stack[sp-1] */
2283 static void
2284 ppc_emit_swap (void)
2286 EMIT_ASM ("lwz " TMP_FIRST ", 8(30) \n"
2287 "lwz " TMP_SECOND ", 12(30) \n"
2288 "stw " TOP_FIRST ", 8(30) \n"
2289 "stw " TOP_SECOND ", 12(30) \n"
2290 "mr 3, 5 \n"
2291 "mr 4, 6 \n");
2294 /* Discard N elements in the stack. Also used for ppc64. */
2296 static void
2297 ppc_emit_stack_adjust (int n)
2299 uint32_t buf[6];
2300 uint32_t *p = buf;
2302 n = n << 3;
2303 if ((n >> 15) != 0)
2305 emit_error = 1;
2306 return;
2309 p += GEN_ADDI (p, 30, 30, n);
2311 emit_insns (buf, p - buf);
2312 gdb_assert ((p - buf) <= (sizeof (buf) / sizeof (*buf)));
2315 /* Call function FN. */
2317 static void
2318 ppc_emit_call (CORE_ADDR fn)
2320 uint32_t buf[11];
2321 uint32_t *p = buf;
2323 p += gen_call (p, fn, 0, 0);
2325 emit_insns (buf, p - buf);
2326 gdb_assert ((p - buf) <= (sizeof (buf) / sizeof (*buf)));
2329 /* FN's prototype is `LONGEST(*fn)(int)'.
2330 TOP = fn (arg1)
2333 static void
2334 ppc_emit_int_call_1 (CORE_ADDR fn, int arg1)
2336 uint32_t buf[15];
2337 uint32_t *p = buf;
2339 /* Setup argument. arg1 is a 16-bit value. */
2340 p += gen_limm (p, 3, (uint32_t) arg1, 0);
2341 p += gen_call (p, fn, 0, 0);
2343 emit_insns (buf, p - buf);
2344 gdb_assert ((p - buf) <= (sizeof (buf) / sizeof (*buf)));
2346 if (__BYTE_ORDER == __LITTLE_ENDIAN)
2348 EMIT_ASM ("mr 5, 4\n"
2349 "mr 4, 3\n"
2350 "mr 3, 5\n");
2354 /* FN's prototype is `void(*fn)(int,LONGEST)'.
2355 fn (arg1, TOP)
2357 TOP should be preserved/restored before/after the call. */
2359 static void
2360 ppc_emit_void_call_2 (CORE_ADDR fn, int arg1)
2362 uint32_t buf[21];
2363 uint32_t *p = buf;
2365 /* Save TOP. 0(30) is next-empty. */
2366 p += GEN_STW (p, 3, 30, 0);
2367 p += GEN_STW (p, 4, 30, 4);
2369 /* Setup argument. arg1 is a 16-bit value. */
2370 if (__BYTE_ORDER == __LITTLE_ENDIAN)
2372 p += GEN_MR (p, 5, 4);
2373 p += GEN_MR (p, 6, 3);
2375 else
2377 p += GEN_MR (p, 5, 3);
2378 p += GEN_MR (p, 6, 4);
2380 p += gen_limm (p, 3, (uint32_t) arg1, 0);
2381 p += gen_call (p, fn, 0, 0);
2383 /* Restore TOP */
2384 p += GEN_LWZ (p, 3, 30, 0);
2385 p += GEN_LWZ (p, 4, 30, 4);
2387 emit_insns (buf, p - buf);
2388 gdb_assert ((p - buf) <= (sizeof (buf) / sizeof (*buf)));
2391 /* Note in the following goto ops:
2393 When emitting goto, the target address is later relocated by
2394 write_goto_address. OFFSET_P is the offset of the branch instruction
2395 in the code sequence, and SIZE_P is how to relocate the instruction,
2396 recognized by ppc_write_goto_address. In current implementation,
2397 SIZE can be either 24 or 14 for branch of conditional-branch instruction.
2400 /* If TOP is true, goto somewhere. Otherwise, just fall-through. */
2402 static void
2403 ppc_emit_if_goto (int *offset_p, int *size_p)
2405 EMIT_ASM ("or. 3, 3, 4 \n"
2406 "lwzu " TOP_FIRST ", 8(30) \n"
2407 "lwz " TOP_SECOND ", 4(30) \n"
2408 "1:bne 0, 1b \n");
2410 if (offset_p)
2411 *offset_p = 12;
2412 if (size_p)
2413 *size_p = 14;
2416 /* Unconditional goto. Also used for ppc64. */
2418 static void
2419 ppc_emit_goto (int *offset_p, int *size_p)
2421 EMIT_ASM ("1:b 1b");
2423 if (offset_p)
2424 *offset_p = 0;
2425 if (size_p)
2426 *size_p = 24;
2429 /* Goto if stack[--sp] == TOP */
2431 static void
2432 ppc_emit_eq_goto (int *offset_p, int *size_p)
2434 EMIT_ASM ("lwzu " TMP_FIRST ", 8(30) \n"
2435 "lwz " TMP_SECOND ", 4(30) \n"
2436 "xor 4, 6, 4 \n"
2437 "xor 3, 5, 3 \n"
2438 "or. 3, 3, 4 \n"
2439 "lwzu " TOP_FIRST ", 8(30) \n"
2440 "lwz " TOP_SECOND ", 4(30) \n"
2441 "1:beq 0, 1b \n");
2443 if (offset_p)
2444 *offset_p = 28;
2445 if (size_p)
2446 *size_p = 14;
2449 /* Goto if stack[--sp] != TOP */
2451 static void
2452 ppc_emit_ne_goto (int *offset_p, int *size_p)
2454 EMIT_ASM ("lwzu " TMP_FIRST ", 8(30) \n"
2455 "lwz " TMP_SECOND ", 4(30) \n"
2456 "xor 4, 6, 4 \n"
2457 "xor 3, 5, 3 \n"
2458 "or. 3, 3, 4 \n"
2459 "lwzu " TOP_FIRST ", 8(30) \n"
2460 "lwz " TOP_SECOND ", 4(30) \n"
2461 "1:bne 0, 1b \n");
2463 if (offset_p)
2464 *offset_p = 28;
2465 if (size_p)
2466 *size_p = 14;
2469 /* Goto if stack[--sp] < TOP */
2471 static void
2472 ppc_emit_lt_goto (int *offset_p, int *size_p)
2474 EMIT_ASM ("lwzu " TMP_FIRST ", 8(30) \n"
2475 "lwz " TMP_SECOND ", 4(30) \n"
2476 "cmplw 6, 6, 4 \n"
2477 "cmpw 7, 5, 3 \n"
2478 /* CR6 bit 0 = low less and high equal */
2479 "crand 6*4+0, 6*4+0, 7*4+2\n"
2480 /* CR7 bit 0 = (low less and high equal) or high less */
2481 "cror 7*4+0, 7*4+0, 6*4+0\n"
2482 "lwzu " TOP_FIRST ", 8(30) \n"
2483 "lwz " TOP_SECOND ", 4(30)\n"
2484 "1:blt 7, 1b \n");
2486 if (offset_p)
2487 *offset_p = 32;
2488 if (size_p)
2489 *size_p = 14;
2492 /* Goto if stack[--sp] <= TOP */
2494 static void
2495 ppc_emit_le_goto (int *offset_p, int *size_p)
2497 EMIT_ASM ("lwzu " TMP_FIRST ", 8(30) \n"
2498 "lwz " TMP_SECOND ", 4(30) \n"
2499 "cmplw 6, 6, 4 \n"
2500 "cmpw 7, 5, 3 \n"
2501 /* CR6 bit 0 = low less/equal and high equal */
2502 "crandc 6*4+0, 7*4+2, 6*4+1\n"
2503 /* CR7 bit 0 = (low less/eq and high equal) or high less */
2504 "cror 7*4+0, 7*4+0, 6*4+0\n"
2505 "lwzu " TOP_FIRST ", 8(30) \n"
2506 "lwz " TOP_SECOND ", 4(30)\n"
2507 "1:blt 7, 1b \n");
2509 if (offset_p)
2510 *offset_p = 32;
2511 if (size_p)
2512 *size_p = 14;
2515 /* Goto if stack[--sp] > TOP */
2517 static void
2518 ppc_emit_gt_goto (int *offset_p, int *size_p)
2520 EMIT_ASM ("lwzu " TMP_FIRST ", 8(30) \n"
2521 "lwz " TMP_SECOND ", 4(30) \n"
2522 "cmplw 6, 6, 4 \n"
2523 "cmpw 7, 5, 3 \n"
2524 /* CR6 bit 0 = low greater and high equal */
2525 "crand 6*4+0, 6*4+1, 7*4+2\n"
2526 /* CR7 bit 0 = (low greater and high equal) or high greater */
2527 "cror 7*4+0, 7*4+1, 6*4+0\n"
2528 "lwzu " TOP_FIRST ", 8(30) \n"
2529 "lwz " TOP_SECOND ", 4(30)\n"
2530 "1:blt 7, 1b \n");
2532 if (offset_p)
2533 *offset_p = 32;
2534 if (size_p)
2535 *size_p = 14;
2538 /* Goto if stack[--sp] >= TOP */
2540 static void
2541 ppc_emit_ge_goto (int *offset_p, int *size_p)
2543 EMIT_ASM ("lwzu " TMP_FIRST ", 8(30) \n"
2544 "lwz " TMP_SECOND ", 4(30) \n"
2545 "cmplw 6, 6, 4 \n"
2546 "cmpw 7, 5, 3 \n"
2547 /* CR6 bit 0 = low ge and high equal */
2548 "crandc 6*4+0, 7*4+2, 6*4+0\n"
2549 /* CR7 bit 0 = (low ge and high equal) or high greater */
2550 "cror 7*4+0, 7*4+1, 6*4+0\n"
2551 "lwzu " TOP_FIRST ", 8(30)\n"
2552 "lwz " TOP_SECOND ", 4(30)\n"
2553 "1:blt 7, 1b \n");
2555 if (offset_p)
2556 *offset_p = 32;
2557 if (size_p)
2558 *size_p = 14;
2561 /* Relocate previous emitted branch instruction. FROM is the address
2562 of the branch instruction, TO is the goto target address, and SIZE
2563 if the value we set by *SIZE_P before. Currently, it is either
2564 24 or 14 of branch and conditional-branch instruction.
2565 Also used for ppc64. */
2567 static void
2568 ppc_write_goto_address (CORE_ADDR from, CORE_ADDR to, int size)
2570 long rel = to - from;
2571 uint32_t insn;
2572 int opcd;
2574 read_inferior_memory (from, (unsigned char *) &insn, 4);
2575 opcd = (insn >> 26) & 0x3f;
2577 switch (size)
2579 case 14:
2580 if (opcd != 16
2581 || (rel >= (1 << 15) || rel < -(1 << 15)))
2582 emit_error = 1;
2583 insn = (insn & ~0xfffc) | (rel & 0xfffc);
2584 break;
2585 case 24:
2586 if (opcd != 18
2587 || (rel >= (1 << 25) || rel < -(1 << 25)))
2588 emit_error = 1;
2589 insn = (insn & ~0x3fffffc) | (rel & 0x3fffffc);
2590 break;
2591 default:
2592 emit_error = 1;
2595 if (!emit_error)
2596 target_write_memory (from, (unsigned char *) &insn, 4);
2599 /* Table of emit ops for 32-bit. */
2601 static struct emit_ops ppc_emit_ops_impl =
2603 ppc_emit_prologue,
2604 ppc_emit_epilogue,
2605 ppc_emit_add,
2606 ppc_emit_sub,
2607 ppc_emit_mul,
2608 ppc_emit_lsh,
2609 ppc_emit_rsh_signed,
2610 ppc_emit_rsh_unsigned,
2611 ppc_emit_ext,
2612 ppc_emit_log_not,
2613 ppc_emit_bit_and,
2614 ppc_emit_bit_or,
2615 ppc_emit_bit_xor,
2616 ppc_emit_bit_not,
2617 ppc_emit_equal,
2618 ppc_emit_less_signed,
2619 ppc_emit_less_unsigned,
2620 ppc_emit_ref,
2621 ppc_emit_if_goto,
2622 ppc_emit_goto,
2623 ppc_write_goto_address,
2624 ppc_emit_const,
2625 ppc_emit_call,
2626 ppc_emit_reg,
2627 ppc_emit_pop,
2628 ppc_emit_stack_flush,
2629 ppc_emit_zero_ext,
2630 ppc_emit_swap,
2631 ppc_emit_stack_adjust,
2632 ppc_emit_int_call_1,
2633 ppc_emit_void_call_2,
2634 ppc_emit_eq_goto,
2635 ppc_emit_ne_goto,
2636 ppc_emit_lt_goto,
2637 ppc_emit_le_goto,
2638 ppc_emit_gt_goto,
2639 ppc_emit_ge_goto
2642 #ifdef __powerpc64__
2646 Bytecode execution stack frame - 64-bit
2648 | LR save area (SP + 16)
2649 | CR save area (SP + 8)
2650 SP' -> +- Back chain (SP + 0)
2651 | Save r31 for access saved arguments
2652 | Save r30 for bytecode stack pointer
2653 | Save r4 for incoming argument *value
2654 | Save r3 for incoming argument regs
2655 r30 -> +- Bytecode execution stack
2657 | 64-byte (8 doublewords) at initial.
2658 | Expand stack as needed.
2661 | Some padding for minimum stack frame.
2662 | 112 for ELFv1.
2663 SP +- Back-chain (SP')
2665 initial frame size
2666 = 112 + (4 * 8) + 64
2667 = 208
2669 r30 is the stack-pointer for bytecode machine.
2670 It should point to next-empty, so we can use LDU for pop.
2671 r3 is used for cache of TOP value.
2672 It was the first argument, pointer to regs.
2673 r4 is the second argument, pointer to the result.
2674 We should set *result = TOP after leaving this function.
2676 Note:
2677 * To restore stack at epilogue
2678 => sp = r31
2679 * To check stack is big enough for bytecode execution.
2680 => r30 - 8 > SP + 112
2681 * To return execution result.
2682 => 0(r4) = TOP
2686 /* Emit prologue in inferior memory. See above comments. */
2688 static void
2689 ppc64v1_emit_prologue (void)
2691 /* On ELFv1, function pointers really point to function descriptor,
2692 so emit one here. We don't care about contents of words 1 and 2,
2693 so let them just overlap out code. */
2694 uint64_t opd = current_insn_ptr + 8;
2695 uint32_t buf[2];
2697 /* Mind the strict aliasing rules. */
2698 memcpy (buf, &opd, sizeof buf);
2699 emit_insns(buf, 2);
2700 EMIT_ASM (/* Save return address. */
2701 "mflr 0 \n"
2702 "std 0, 16(1) \n"
2703 /* Save r30 and incoming arguments. */
2704 "std 31, -8(1) \n"
2705 "std 30, -16(1) \n"
2706 "std 4, -24(1) \n"
2707 "std 3, -32(1) \n"
2708 /* Point r31 to current r1 for access arguments. */
2709 "mr 31, 1 \n"
2710 /* Adjust SP. 208 is the initial frame size. */
2711 "stdu 1, -208(1) \n"
2712 /* Set r30 to pointing stack-top. */
2713 "addi 30, 1, 168 \n"
2714 /* Initial r3/TOP to 0. */
2715 "li 3, 0 \n");
2718 /* Emit prologue in inferior memory. See above comments. */
2720 static void
2721 ppc64v2_emit_prologue (void)
2723 EMIT_ASM (/* Save return address. */
2724 "mflr 0 \n"
2725 "std 0, 16(1) \n"
2726 /* Save r30 and incoming arguments. */
2727 "std 31, -8(1) \n"
2728 "std 30, -16(1) \n"
2729 "std 4, -24(1) \n"
2730 "std 3, -32(1) \n"
2731 /* Point r31 to current r1 for access arguments. */
2732 "mr 31, 1 \n"
2733 /* Adjust SP. 208 is the initial frame size. */
2734 "stdu 1, -208(1) \n"
2735 /* Set r30 to pointing stack-top. */
2736 "addi 30, 1, 168 \n"
2737 /* Initial r3/TOP to 0. */
2738 "li 3, 0 \n");
2741 /* Emit epilogue in inferior memory. See above comments. */
2743 static void
2744 ppc64_emit_epilogue (void)
2746 EMIT_ASM (/* Restore SP. */
2747 "ld 1, 0(1) \n"
2748 /* *result = TOP */
2749 "ld 4, -24(1) \n"
2750 "std 3, 0(4) \n"
2751 /* Restore registers. */
2752 "ld 31, -8(1) \n"
2753 "ld 30, -16(1) \n"
2754 /* Restore LR. */
2755 "ld 0, 16(1) \n"
2756 /* Return 0 for no-error. */
2757 "li 3, 0 \n"
2758 "mtlr 0 \n"
2759 "blr \n");
2762 /* TOP = stack[--sp] + TOP */
2764 static void
2765 ppc64_emit_add (void)
2767 EMIT_ASM ("ldu 4, 8(30) \n"
2768 "add 3, 4, 3 \n");
2771 /* TOP = stack[--sp] - TOP */
2773 static void
2774 ppc64_emit_sub (void)
2776 EMIT_ASM ("ldu 4, 8(30) \n"
2777 "sub 3, 4, 3 \n");
2780 /* TOP = stack[--sp] * TOP */
2782 static void
2783 ppc64_emit_mul (void)
2785 EMIT_ASM ("ldu 4, 8(30) \n"
2786 "mulld 3, 4, 3 \n");
2789 /* TOP = stack[--sp] << TOP */
2791 static void
2792 ppc64_emit_lsh (void)
2794 EMIT_ASM ("ldu 4, 8(30) \n"
2795 "sld 3, 4, 3 \n");
2798 /* Top = stack[--sp] >> TOP
2799 (Arithmetic shift right) */
2801 static void
2802 ppc64_emit_rsh_signed (void)
2804 EMIT_ASM ("ldu 4, 8(30) \n"
2805 "srad 3, 4, 3 \n");
2808 /* Top = stack[--sp] >> TOP
2809 (Logical shift right) */
2811 static void
2812 ppc64_emit_rsh_unsigned (void)
2814 EMIT_ASM ("ldu 4, 8(30) \n"
2815 "srd 3, 4, 3 \n");
2818 /* Emit code for signed-extension specified by ARG. */
2820 static void
2821 ppc64_emit_ext (int arg)
2823 switch (arg)
2825 case 8:
2826 EMIT_ASM ("extsb 3, 3");
2827 break;
2828 case 16:
2829 EMIT_ASM ("extsh 3, 3");
2830 break;
2831 case 32:
2832 EMIT_ASM ("extsw 3, 3");
2833 break;
2834 default:
2835 emit_error = 1;
2839 /* Emit code for zero-extension specified by ARG. */
2841 static void
2842 ppc64_emit_zero_ext (int arg)
2844 switch (arg)
2846 case 8:
2847 EMIT_ASM ("rldicl 3,3,0,56");
2848 break;
2849 case 16:
2850 EMIT_ASM ("rldicl 3,3,0,48");
2851 break;
2852 case 32:
2853 EMIT_ASM ("rldicl 3,3,0,32");
2854 break;
2855 default:
2856 emit_error = 1;
2860 /* TOP = !TOP
2861 i.e., TOP = (TOP == 0) ? 1 : 0; */
2863 static void
2864 ppc64_emit_log_not (void)
2866 EMIT_ASM ("cntlzd 3, 3 \n"
2867 "srdi 3, 3, 6 \n");
2870 /* TOP = stack[--sp] & TOP */
2872 static void
2873 ppc64_emit_bit_and (void)
2875 EMIT_ASM ("ldu 4, 8(30) \n"
2876 "and 3, 4, 3 \n");
2879 /* TOP = stack[--sp] | TOP */
2881 static void
2882 ppc64_emit_bit_or (void)
2884 EMIT_ASM ("ldu 4, 8(30) \n"
2885 "or 3, 4, 3 \n");
2888 /* TOP = stack[--sp] ^ TOP */
2890 static void
2891 ppc64_emit_bit_xor (void)
2893 EMIT_ASM ("ldu 4, 8(30) \n"
2894 "xor 3, 4, 3 \n");
2897 /* TOP = ~TOP
2898 i.e., TOP = ~(TOP | TOP) */
2900 static void
2901 ppc64_emit_bit_not (void)
2903 EMIT_ASM ("nor 3, 3, 3 \n");
2906 /* TOP = stack[--sp] == TOP */
2908 static void
2909 ppc64_emit_equal (void)
2911 EMIT_ASM ("ldu 4, 8(30) \n"
2912 "xor 3, 3, 4 \n"
2913 "cntlzd 3, 3 \n"
2914 "srdi 3, 3, 6 \n");
2917 /* TOP = stack[--sp] < TOP
2918 (Signed comparison) */
2920 static void
2921 ppc64_emit_less_signed (void)
2923 EMIT_ASM ("ldu 4, 8(30) \n"
2924 "cmpd 7, 4, 3 \n"
2925 "mfcr 3 \n"
2926 "rlwinm 3, 3, 29, 31, 31 \n");
2929 /* TOP = stack[--sp] < TOP
2930 (Unsigned comparison) */
2932 static void
2933 ppc64_emit_less_unsigned (void)
2935 EMIT_ASM ("ldu 4, 8(30) \n"
2936 "cmpld 7, 4, 3 \n"
2937 "mfcr 3 \n"
2938 "rlwinm 3, 3, 29, 31, 31 \n");
2941 /* Access the memory address in TOP in size of SIZE.
2942 Zero-extend the read value. */
2944 static void
2945 ppc64_emit_ref (int size)
2947 switch (size)
2949 case 1:
2950 EMIT_ASM ("lbz 3, 0(3)");
2951 break;
2952 case 2:
2953 EMIT_ASM ("lhz 3, 0(3)");
2954 break;
2955 case 4:
2956 EMIT_ASM ("lwz 3, 0(3)");
2957 break;
2958 case 8:
2959 EMIT_ASM ("ld 3, 0(3)");
2960 break;
2964 /* TOP = NUM */
2966 static void
2967 ppc64_emit_const (LONGEST num)
2969 uint32_t buf[5];
2970 uint32_t *p = buf;
2972 p += gen_limm (p, 3, num, 1);
2974 emit_insns (buf, p - buf);
2975 gdb_assert ((p - buf) <= (sizeof (buf) / sizeof (*buf)));
2978 /* Set TOP to the value of register REG by calling get_raw_reg function
2979 with two argument, collected buffer and register number. */
2981 static void
2982 ppc64v1_emit_reg (int reg)
2984 uint32_t buf[15];
2985 uint32_t *p = buf;
2987 /* fctx->regs is passed in r3 and then saved in 176(1). */
2988 p += GEN_LD (p, 3, 31, -32);
2989 p += GEN_LI (p, 4, reg);
2990 p += GEN_STD (p, 2, 1, 40); /* Save TOC. */
2991 p += gen_call (p, get_raw_reg_func_addr (), 1, 1);
2992 p += GEN_LD (p, 2, 1, 40); /* Restore TOC. */
2994 emit_insns (buf, p - buf);
2995 gdb_assert ((p - buf) <= (sizeof (buf) / sizeof (*buf)));
2998 /* Likewise, for ELFv2. */
3000 static void
3001 ppc64v2_emit_reg (int reg)
3003 uint32_t buf[12];
3004 uint32_t *p = buf;
3006 /* fctx->regs is passed in r3 and then saved in 176(1). */
3007 p += GEN_LD (p, 3, 31, -32);
3008 p += GEN_LI (p, 4, reg);
3009 p += GEN_STD (p, 2, 1, 24); /* Save TOC. */
3010 p += gen_call (p, get_raw_reg_func_addr (), 1, 0);
3011 p += GEN_LD (p, 2, 1, 24); /* Restore TOC. */
3013 emit_insns (buf, p - buf);
3014 gdb_assert ((p - buf) <= (sizeof (buf) / sizeof (*buf)));
3017 /* TOP = stack[--sp] */
3019 static void
3020 ppc64_emit_pop (void)
3022 EMIT_ASM ("ldu 3, 8(30)");
3025 /* stack[sp++] = TOP
3027 Because we may use up bytecode stack, expand 8 doublewords more
3028 if needed. */
3030 static void
3031 ppc64_emit_stack_flush (void)
3033 /* Make sure bytecode stack is big enough before push.
3034 Otherwise, expand 64-byte more. */
3036 EMIT_ASM (" std 3, 0(30) \n"
3037 " addi 4, 30, -(112 + 8) \n"
3038 " cmpd 7, 4, 1 \n"
3039 " bgt 7, 1f \n"
3040 " stdu 31, -64(1) \n"
3041 "1:addi 30, 30, -8 \n");
3044 /* Swap TOP and stack[sp-1] */
3046 static void
3047 ppc64_emit_swap (void)
3049 EMIT_ASM ("ld 4, 8(30) \n"
3050 "std 3, 8(30) \n"
3051 "mr 3, 4 \n");
3054 /* Call function FN - ELFv1. */
3056 static void
3057 ppc64v1_emit_call (CORE_ADDR fn)
3059 uint32_t buf[13];
3060 uint32_t *p = buf;
3062 p += GEN_STD (p, 2, 1, 40); /* Save TOC. */
3063 p += gen_call (p, fn, 1, 1);
3064 p += GEN_LD (p, 2, 1, 40); /* Restore TOC. */
3066 emit_insns (buf, p - buf);
3067 gdb_assert ((p - buf) <= (sizeof (buf) / sizeof (*buf)));
3070 /* Call function FN - ELFv2. */
3072 static void
3073 ppc64v2_emit_call (CORE_ADDR fn)
3075 uint32_t buf[10];
3076 uint32_t *p = buf;
3078 p += GEN_STD (p, 2, 1, 24); /* Save TOC. */
3079 p += gen_call (p, fn, 1, 0);
3080 p += GEN_LD (p, 2, 1, 24); /* Restore TOC. */
3082 emit_insns (buf, p - buf);
3083 gdb_assert ((p - buf) <= (sizeof (buf) / sizeof (*buf)));
3086 /* FN's prototype is `LONGEST(*fn)(int)'.
3087 TOP = fn (arg1)
3090 static void
3091 ppc64v1_emit_int_call_1 (CORE_ADDR fn, int arg1)
3093 uint32_t buf[13];
3094 uint32_t *p = buf;
3096 /* Setup argument. arg1 is a 16-bit value. */
3097 p += gen_limm (p, 3, arg1, 1);
3098 p += GEN_STD (p, 2, 1, 40); /* Save TOC. */
3099 p += gen_call (p, fn, 1, 1);
3100 p += GEN_LD (p, 2, 1, 40); /* Restore TOC. */
3102 emit_insns (buf, p - buf);
3103 gdb_assert ((p - buf) <= (sizeof (buf) / sizeof (*buf)));
3106 /* Likewise for ELFv2. */
3108 static void
3109 ppc64v2_emit_int_call_1 (CORE_ADDR fn, int arg1)
3111 uint32_t buf[10];
3112 uint32_t *p = buf;
3114 /* Setup argument. arg1 is a 16-bit value. */
3115 p += gen_limm (p, 3, arg1, 1);
3116 p += GEN_STD (p, 2, 1, 24); /* Save TOC. */
3117 p += gen_call (p, fn, 1, 0);
3118 p += GEN_LD (p, 2, 1, 24); /* Restore TOC. */
3120 emit_insns (buf, p - buf);
3121 gdb_assert ((p - buf) <= (sizeof (buf) / sizeof (*buf)));
3124 /* FN's prototype is `void(*fn)(int,LONGEST)'.
3125 fn (arg1, TOP)
3127 TOP should be preserved/restored before/after the call. */
3129 static void
3130 ppc64v1_emit_void_call_2 (CORE_ADDR fn, int arg1)
3132 uint32_t buf[17];
3133 uint32_t *p = buf;
3135 /* Save TOP. 0(30) is next-empty. */
3136 p += GEN_STD (p, 3, 30, 0);
3138 /* Setup argument. arg1 is a 16-bit value. */
3139 p += GEN_MR (p, 4, 3); /* mr r4, r3 */
3140 p += gen_limm (p, 3, arg1, 1);
3141 p += GEN_STD (p, 2, 1, 40); /* Save TOC. */
3142 p += gen_call (p, fn, 1, 1);
3143 p += GEN_LD (p, 2, 1, 40); /* Restore TOC. */
3145 /* Restore TOP */
3146 p += GEN_LD (p, 3, 30, 0);
3148 emit_insns (buf, p - buf);
3149 gdb_assert ((p - buf) <= (sizeof (buf) / sizeof (*buf)));
3152 /* Likewise for ELFv2. */
3154 static void
3155 ppc64v2_emit_void_call_2 (CORE_ADDR fn, int arg1)
3157 uint32_t buf[14];
3158 uint32_t *p = buf;
3160 /* Save TOP. 0(30) is next-empty. */
3161 p += GEN_STD (p, 3, 30, 0);
3163 /* Setup argument. arg1 is a 16-bit value. */
3164 p += GEN_MR (p, 4, 3); /* mr r4, r3 */
3165 p += gen_limm (p, 3, arg1, 1);
3166 p += GEN_STD (p, 2, 1, 24); /* Save TOC. */
3167 p += gen_call (p, fn, 1, 0);
3168 p += GEN_LD (p, 2, 1, 24); /* Restore TOC. */
3170 /* Restore TOP */
3171 p += GEN_LD (p, 3, 30, 0);
3173 emit_insns (buf, p - buf);
3174 gdb_assert ((p - buf) <= (sizeof (buf) / sizeof (*buf)));
3177 /* If TOP is true, goto somewhere. Otherwise, just fall-through. */
3179 static void
3180 ppc64_emit_if_goto (int *offset_p, int *size_p)
3182 EMIT_ASM ("cmpdi 7, 3, 0 \n"
3183 "ldu 3, 8(30) \n"
3184 "1:bne 7, 1b \n");
3186 if (offset_p)
3187 *offset_p = 8;
3188 if (size_p)
3189 *size_p = 14;
3192 /* Goto if stack[--sp] == TOP */
3194 static void
3195 ppc64_emit_eq_goto (int *offset_p, int *size_p)
3197 EMIT_ASM ("ldu 4, 8(30) \n"
3198 "cmpd 7, 4, 3 \n"
3199 "ldu 3, 8(30) \n"
3200 "1:beq 7, 1b \n");
3202 if (offset_p)
3203 *offset_p = 12;
3204 if (size_p)
3205 *size_p = 14;
3208 /* Goto if stack[--sp] != TOP */
3210 static void
3211 ppc64_emit_ne_goto (int *offset_p, int *size_p)
3213 EMIT_ASM ("ldu 4, 8(30) \n"
3214 "cmpd 7, 4, 3 \n"
3215 "ldu 3, 8(30) \n"
3216 "1:bne 7, 1b \n");
3218 if (offset_p)
3219 *offset_p = 12;
3220 if (size_p)
3221 *size_p = 14;
3224 /* Goto if stack[--sp] < TOP */
3226 static void
3227 ppc64_emit_lt_goto (int *offset_p, int *size_p)
3229 EMIT_ASM ("ldu 4, 8(30) \n"
3230 "cmpd 7, 4, 3 \n"
3231 "ldu 3, 8(30) \n"
3232 "1:blt 7, 1b \n");
3234 if (offset_p)
3235 *offset_p = 12;
3236 if (size_p)
3237 *size_p = 14;
3240 /* Goto if stack[--sp] <= TOP */
3242 static void
3243 ppc64_emit_le_goto (int *offset_p, int *size_p)
3245 EMIT_ASM ("ldu 4, 8(30) \n"
3246 "cmpd 7, 4, 3 \n"
3247 "ldu 3, 8(30) \n"
3248 "1:ble 7, 1b \n");
3250 if (offset_p)
3251 *offset_p = 12;
3252 if (size_p)
3253 *size_p = 14;
3256 /* Goto if stack[--sp] > TOP */
3258 static void
3259 ppc64_emit_gt_goto (int *offset_p, int *size_p)
3261 EMIT_ASM ("ldu 4, 8(30) \n"
3262 "cmpd 7, 4, 3 \n"
3263 "ldu 3, 8(30) \n"
3264 "1:bgt 7, 1b \n");
3266 if (offset_p)
3267 *offset_p = 12;
3268 if (size_p)
3269 *size_p = 14;
3272 /* Goto if stack[--sp] >= TOP */
3274 static void
3275 ppc64_emit_ge_goto (int *offset_p, int *size_p)
3277 EMIT_ASM ("ldu 4, 8(30) \n"
3278 "cmpd 7, 4, 3 \n"
3279 "ldu 3, 8(30) \n"
3280 "1:bge 7, 1b \n");
3282 if (offset_p)
3283 *offset_p = 12;
3284 if (size_p)
3285 *size_p = 14;
3288 /* Table of emit ops for 64-bit ELFv1. */
3290 static struct emit_ops ppc64v1_emit_ops_impl =
3292 ppc64v1_emit_prologue,
3293 ppc64_emit_epilogue,
3294 ppc64_emit_add,
3295 ppc64_emit_sub,
3296 ppc64_emit_mul,
3297 ppc64_emit_lsh,
3298 ppc64_emit_rsh_signed,
3299 ppc64_emit_rsh_unsigned,
3300 ppc64_emit_ext,
3301 ppc64_emit_log_not,
3302 ppc64_emit_bit_and,
3303 ppc64_emit_bit_or,
3304 ppc64_emit_bit_xor,
3305 ppc64_emit_bit_not,
3306 ppc64_emit_equal,
3307 ppc64_emit_less_signed,
3308 ppc64_emit_less_unsigned,
3309 ppc64_emit_ref,
3310 ppc64_emit_if_goto,
3311 ppc_emit_goto,
3312 ppc_write_goto_address,
3313 ppc64_emit_const,
3314 ppc64v1_emit_call,
3315 ppc64v1_emit_reg,
3316 ppc64_emit_pop,
3317 ppc64_emit_stack_flush,
3318 ppc64_emit_zero_ext,
3319 ppc64_emit_swap,
3320 ppc_emit_stack_adjust,
3321 ppc64v1_emit_int_call_1,
3322 ppc64v1_emit_void_call_2,
3323 ppc64_emit_eq_goto,
3324 ppc64_emit_ne_goto,
3325 ppc64_emit_lt_goto,
3326 ppc64_emit_le_goto,
3327 ppc64_emit_gt_goto,
3328 ppc64_emit_ge_goto
3331 /* Table of emit ops for 64-bit ELFv2. */
3333 static struct emit_ops ppc64v2_emit_ops_impl =
3335 ppc64v2_emit_prologue,
3336 ppc64_emit_epilogue,
3337 ppc64_emit_add,
3338 ppc64_emit_sub,
3339 ppc64_emit_mul,
3340 ppc64_emit_lsh,
3341 ppc64_emit_rsh_signed,
3342 ppc64_emit_rsh_unsigned,
3343 ppc64_emit_ext,
3344 ppc64_emit_log_not,
3345 ppc64_emit_bit_and,
3346 ppc64_emit_bit_or,
3347 ppc64_emit_bit_xor,
3348 ppc64_emit_bit_not,
3349 ppc64_emit_equal,
3350 ppc64_emit_less_signed,
3351 ppc64_emit_less_unsigned,
3352 ppc64_emit_ref,
3353 ppc64_emit_if_goto,
3354 ppc_emit_goto,
3355 ppc_write_goto_address,
3356 ppc64_emit_const,
3357 ppc64v2_emit_call,
3358 ppc64v2_emit_reg,
3359 ppc64_emit_pop,
3360 ppc64_emit_stack_flush,
3361 ppc64_emit_zero_ext,
3362 ppc64_emit_swap,
3363 ppc_emit_stack_adjust,
3364 ppc64v2_emit_int_call_1,
3365 ppc64v2_emit_void_call_2,
3366 ppc64_emit_eq_goto,
3367 ppc64_emit_ne_goto,
3368 ppc64_emit_lt_goto,
3369 ppc64_emit_le_goto,
3370 ppc64_emit_gt_goto,
3371 ppc64_emit_ge_goto
3374 #endif
3376 /* Implementation of target ops method "emit_ops". */
3378 emit_ops *
3379 ppc_target::emit_ops ()
3381 #ifdef __powerpc64__
3382 struct regcache *regcache = get_thread_regcache (current_thread, 0);
3384 if (register_size (regcache->tdesc, 0) == 8)
3386 if (is_elfv2_inferior ())
3387 return &ppc64v2_emit_ops_impl;
3388 else
3389 return &ppc64v1_emit_ops_impl;
3391 #endif
3392 return &ppc_emit_ops_impl;
3395 /* Implementation of target ops method "get_ipa_tdesc_idx". */
3398 ppc_target::get_ipa_tdesc_idx ()
3400 struct regcache *regcache = get_thread_regcache (current_thread, 0);
3401 const struct target_desc *tdesc = regcache->tdesc;
3403 #ifdef __powerpc64__
3404 if (tdesc == tdesc_powerpc_64l)
3405 return PPC_TDESC_BASE;
3406 if (tdesc == tdesc_powerpc_altivec64l)
3407 return PPC_TDESC_ALTIVEC;
3408 if (tdesc == tdesc_powerpc_vsx64l)
3409 return PPC_TDESC_VSX;
3410 if (tdesc == tdesc_powerpc_isa205_64l)
3411 return PPC_TDESC_ISA205;
3412 if (tdesc == tdesc_powerpc_isa205_altivec64l)
3413 return PPC_TDESC_ISA205_ALTIVEC;
3414 if (tdesc == tdesc_powerpc_isa205_vsx64l)
3415 return PPC_TDESC_ISA205_VSX;
3416 if (tdesc == tdesc_powerpc_isa205_ppr_dscr_vsx64l)
3417 return PPC_TDESC_ISA205_PPR_DSCR_VSX;
3418 if (tdesc == tdesc_powerpc_isa207_vsx64l)
3419 return PPC_TDESC_ISA207_VSX;
3420 if (tdesc == tdesc_powerpc_isa207_htm_vsx64l)
3421 return PPC_TDESC_ISA207_HTM_VSX;
3422 #endif
3424 if (tdesc == tdesc_powerpc_32l)
3425 return PPC_TDESC_BASE;
3426 if (tdesc == tdesc_powerpc_altivec32l)
3427 return PPC_TDESC_ALTIVEC;
3428 if (tdesc == tdesc_powerpc_vsx32l)
3429 return PPC_TDESC_VSX;
3430 if (tdesc == tdesc_powerpc_isa205_32l)
3431 return PPC_TDESC_ISA205;
3432 if (tdesc == tdesc_powerpc_isa205_altivec32l)
3433 return PPC_TDESC_ISA205_ALTIVEC;
3434 if (tdesc == tdesc_powerpc_isa205_vsx32l)
3435 return PPC_TDESC_ISA205_VSX;
3436 if (tdesc == tdesc_powerpc_isa205_ppr_dscr_vsx32l)
3437 return PPC_TDESC_ISA205_PPR_DSCR_VSX;
3438 if (tdesc == tdesc_powerpc_isa207_vsx32l)
3439 return PPC_TDESC_ISA207_VSX;
3440 if (tdesc == tdesc_powerpc_isa207_htm_vsx32l)
3441 return PPC_TDESC_ISA207_HTM_VSX;
3442 if (tdesc == tdesc_powerpc_e500l)
3443 return PPC_TDESC_E500;
3445 return 0;
3448 /* The linux target ops object. */
3450 linux_process_target *the_linux_target = &the_ppc_target;
3452 void
3453 initialize_low_arch (void)
3455 /* Initialize the Linux target descriptions. */
3457 init_registers_powerpc_32l ();
3458 init_registers_powerpc_altivec32l ();
3459 init_registers_powerpc_vsx32l ();
3460 init_registers_powerpc_isa205_32l ();
3461 init_registers_powerpc_isa205_altivec32l ();
3462 init_registers_powerpc_isa205_vsx32l ();
3463 init_registers_powerpc_isa205_ppr_dscr_vsx32l ();
3464 init_registers_powerpc_isa207_vsx32l ();
3465 init_registers_powerpc_isa207_htm_vsx32l ();
3466 init_registers_powerpc_e500l ();
3467 #if __powerpc64__
3468 init_registers_powerpc_64l ();
3469 init_registers_powerpc_altivec64l ();
3470 init_registers_powerpc_vsx64l ();
3471 init_registers_powerpc_isa205_64l ();
3472 init_registers_powerpc_isa205_altivec64l ();
3473 init_registers_powerpc_isa205_vsx64l ();
3474 init_registers_powerpc_isa205_ppr_dscr_vsx64l ();
3475 init_registers_powerpc_isa207_vsx64l ();
3476 init_registers_powerpc_isa207_htm_vsx64l ();
3477 #endif
3479 initialize_regsets_info (&ppc_regsets_info);