1 // resolve.cc -- symbol resolution for gold
3 // Copyright (C) 2006-2024 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
6 // This file is part of gold.
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
34 // Symbol methods used in this file.
36 // This symbol is being overridden by another symbol whose version is
37 // VERSION. Update the VERSION_ field accordingly.
40 Symbol::override_version(const char* version
)
44 // This is the case where this symbol is NAME/VERSION, and the
45 // version was not marked as hidden. That makes it the default
46 // version, so we create NAME/NULL. Later we see another symbol
47 // NAME/NULL, and that symbol is overriding this one. In this
48 // case, since NAME/VERSION is the default, we make NAME/NULL
49 // override NAME/VERSION as well. They are already the same
50 // Symbol structure. Setting the VERSION_ field to NULL ensures
51 // that it will be output with the correct, empty, version.
52 this->version_
= version
;
56 // This is the case where this symbol is NAME/VERSION_ONE, and
57 // now we see NAME/VERSION_TWO, and NAME/VERSION_TWO is
58 // overriding NAME. If VERSION_ONE and VERSION_TWO are
59 // different, then this can only happen when VERSION_ONE is NULL
60 // and VERSION_TWO is not hidden.
61 gold_assert(this->version_
== version
|| this->version_
== NULL
);
62 this->version_
= version
;
66 // This symbol is being overidden by another symbol whose visibility
67 // is VISIBILITY. Updated the VISIBILITY_ field accordingly.
70 Symbol::override_visibility(elfcpp::STV visibility
)
72 // The rule for combining visibility is that we always choose the
73 // most constrained visibility. In order of increasing constraint,
74 // visibility goes PROTECTED, HIDDEN, INTERNAL. This is the reverse
75 // of the numeric values, so the effect is that we always want the
76 // smallest non-zero value.
77 if (visibility
!= elfcpp::STV_DEFAULT
)
79 if (this->visibility_
== elfcpp::STV_DEFAULT
)
80 this->visibility_
= visibility
;
81 else if (this->visibility_
> visibility
)
82 this->visibility_
= visibility
;
86 // Override the fields in Symbol.
88 template<int size
, bool big_endian
>
90 Symbol::override_base(const elfcpp::Sym
<size
, big_endian
>& sym
,
91 unsigned int st_shndx
, bool is_ordinary
,
92 Object
* object
, const char* version
)
94 gold_assert(this->source_
== FROM_OBJECT
);
95 this->u1_
.object
= object
;
96 this->override_version(version
);
97 this->u2_
.shndx
= st_shndx
;
98 this->is_ordinary_shndx_
= is_ordinary
;
99 // Don't override st_type from plugin placeholder symbols.
100 if (object
->pluginobj() == NULL
)
101 this->type_
= sym
.get_st_type();
102 this->binding_
= sym
.get_st_bind();
103 this->override_visibility(sym
.get_st_visibility());
104 this->nonvis_
= sym
.get_st_nonvis();
105 if (object
->is_dynamic())
106 this->in_dyn_
= true;
108 this->in_reg_
= true;
111 // Override the fields in Sized_symbol.
114 template<bool big_endian
>
116 Sized_symbol
<size
>::override(const elfcpp::Sym
<size
, big_endian
>& sym
,
117 unsigned st_shndx
, bool is_ordinary
,
118 Object
* object
, const char* version
)
120 this->override_base(sym
, st_shndx
, is_ordinary
, object
, version
);
121 this->value_
= sym
.get_st_value();
122 this->symsize_
= sym
.get_st_size();
125 // Override TOSYM with symbol FROMSYM, defined in OBJECT, with version
126 // VERSION. This handles all aliases of TOSYM.
128 template<int size
, bool big_endian
>
130 Symbol_table::override(Sized_symbol
<size
>* tosym
,
131 const elfcpp::Sym
<size
, big_endian
>& fromsym
,
132 unsigned int st_shndx
, bool is_ordinary
,
133 Object
* object
, const char* version
)
135 tosym
->override(fromsym
, st_shndx
, is_ordinary
, object
, version
);
136 if (tosym
->has_alias())
138 Symbol
* sym
= this->weak_aliases_
[tosym
];
139 gold_assert(sym
!= NULL
);
140 Sized_symbol
<size
>* ssym
= this->get_sized_symbol
<size
>(sym
);
143 ssym
->override(fromsym
, st_shndx
, is_ordinary
, object
, version
);
144 sym
= this->weak_aliases_
[ssym
];
145 gold_assert(sym
!= NULL
);
146 ssym
= this->get_sized_symbol
<size
>(sym
);
148 while (ssym
!= tosym
);
152 // The resolve functions build a little code for each symbol.
153 // Bit 0: 0 for global, 1 for weak.
154 // Bit 1: 0 for regular object, 1 for shared object
155 // Bits 2-3: 0 for normal, 1 for undefined, 2 for common
156 // This gives us values from 0 to 11.
158 static const int global_or_weak_shift
= 0;
159 static const unsigned int global_flag
= 0 << global_or_weak_shift
;
160 static const unsigned int weak_flag
= 1 << global_or_weak_shift
;
162 static const int regular_or_dynamic_shift
= 1;
163 static const unsigned int regular_flag
= 0 << regular_or_dynamic_shift
;
164 static const unsigned int dynamic_flag
= 1 << regular_or_dynamic_shift
;
166 static const int def_undef_or_common_shift
= 2;
167 static const unsigned int def_flag
= 0 << def_undef_or_common_shift
;
168 static const unsigned int undef_flag
= 1 << def_undef_or_common_shift
;
169 static const unsigned int common_flag
= 2 << def_undef_or_common_shift
;
171 // This convenience function combines all the flags based on facts
175 symbol_to_bits(elfcpp::STB binding
, bool is_dynamic
,
176 unsigned int shndx
, bool is_ordinary
)
182 case elfcpp::STB_GLOBAL
:
183 case elfcpp::STB_GNU_UNIQUE
:
187 case elfcpp::STB_WEAK
:
191 case elfcpp::STB_LOCAL
:
192 // We should only see externally visible symbols in the symbol
194 gold_error(_("invalid STB_LOCAL symbol in external symbols"));
199 // Any target which wants to handle STB_LOOS, etc., needs to
200 // define a resolve method.
201 gold_error(_("unsupported symbol binding %d"), static_cast<int>(binding
));
206 bits
|= dynamic_flag
;
208 bits
|= regular_flag
;
212 case elfcpp::SHN_UNDEF
:
216 case elfcpp::SHN_COMMON
:
222 if (!is_ordinary
&& Symbol::is_common_shndx(shndx
))
232 // Resolve a symbol. This is called the second and subsequent times
233 // we see a symbol. TO is the pre-existing symbol. ST_SHNDX is the
234 // section index for SYM, possibly adjusted for many sections.
235 // IS_ORDINARY is whether ST_SHNDX is a normal section index rather
236 // than a special code. ORIG_ST_SHNDX is the original section index,
237 // before any munging because of discarded sections, except that all
238 // non-ordinary section indexes are mapped to SHN_UNDEF. VERSION is
239 // the version of SYM.
241 template<int size
, bool big_endian
>
243 Symbol_table::resolve(Sized_symbol
<size
>* to
,
244 const elfcpp::Sym
<size
, big_endian
>& sym
,
245 unsigned int st_shndx
, bool is_ordinary
,
246 unsigned int orig_st_shndx
,
247 Object
* object
, const char* version
,
248 bool is_default_version
)
251 const unsigned int to_shndx
= to
->shndx(&to_is_ordinary
);
253 // Likewise for an absolute symbol defined twice with the same value.
255 && st_shndx
== elfcpp::SHN_ABS
257 && to_shndx
== elfcpp::SHN_ABS
258 && to
->value() == sym
.get_st_value())
261 if (parameters
->target().has_resolve())
263 Sized_target
<size
, big_endian
>* sized_target
;
264 sized_target
= parameters
->sized_target
<size
, big_endian
>();
265 if (sized_target
->resolve(to
, sym
, object
, version
))
269 if (!object
->is_dynamic())
271 if (sym
.get_st_type() == elfcpp::STT_COMMON
272 && (is_ordinary
|| !Symbol::is_common_shndx(st_shndx
)))
274 gold_warning(_("STT_COMMON symbol '%s' in %s "
275 "is not in a common section"),
276 to
->demangled_name().c_str(),
277 to
->object()->name().c_str());
280 // Record that we've seen this symbol in a regular object.
283 else if (st_shndx
== elfcpp::SHN_UNDEF
284 && (to
->visibility() == elfcpp::STV_HIDDEN
285 || to
->visibility() == elfcpp::STV_INTERNAL
))
287 // The symbol is hidden, so a reference from a shared object
288 // cannot bind to it. We tried issuing a warning in this case,
289 // but that produces false positives when the symbol is
290 // actually resolved in a different shared object (PR 15574).
295 // Record that we've seen this symbol in a dynamic object.
299 // Record if we've seen this symbol in a real ELF object (i.e., the
300 // symbol is referenced from outside the world known to the plugin).
301 if (object
->pluginobj() == NULL
&& !object
->is_dynamic())
302 to
->set_in_real_elf();
304 // If we're processing replacement files, allow new symbols to override
305 // the placeholders from the plugin objects.
306 // Treat common symbols specially since it is possible that an ELF
307 // file increased the size of the alignment.
308 if (to
->source() == Symbol::FROM_OBJECT
)
310 Pluginobj
* obj
= to
->object()->pluginobj();
312 && parameters
->options().plugins()->in_replacement_phase())
314 bool adjust_common
= false;
315 typename Sized_symbol
<size
>::Size_type tosize
= 0;
316 typename Sized_symbol
<size
>::Value_type tovalue
= 0;
318 && !is_ordinary
&& Symbol::is_common_shndx(st_shndx
))
320 adjust_common
= true;
321 tosize
= to
->symsize();
322 tovalue
= to
->value();
324 this->override(to
, sym
, st_shndx
, is_ordinary
, object
, version
);
327 if (tosize
> to
->symsize())
328 to
->set_symsize(tosize
);
329 if (tovalue
> to
->value())
330 to
->set_value(tovalue
);
336 // A new weak undefined reference, merging with an old weak
337 // reference, could be a One Definition Rule (ODR) violation --
338 // especially if the types or sizes of the references differ. We'll
339 // store such pairs and look them up later to make sure they
340 // actually refer to the same lines of code. We also check
341 // combinations of weak and strong, which might occur if one case is
342 // inline and the other is not. (Note: not all ODR violations can
343 // be found this way, and not everything this finds is an ODR
344 // violation. But it's helpful to warn about.)
345 if (parameters
->options().detect_odr_violations()
346 && (sym
.get_st_bind() == elfcpp::STB_WEAK
347 || to
->binding() == elfcpp::STB_WEAK
)
348 && orig_st_shndx
!= elfcpp::SHN_UNDEF
350 && to_shndx
!= elfcpp::SHN_UNDEF
351 && sym
.get_st_size() != 0 // Ignore weird 0-sized symbols.
352 && to
->symsize() != 0
353 && (sym
.get_st_type() != to
->type()
354 || sym
.get_st_size() != to
->symsize())
355 // C does not have a concept of ODR, so we only need to do this
356 // on C++ symbols. These have (mangled) names starting with _Z.
357 && to
->name()[0] == '_' && to
->name()[1] == 'Z')
359 Symbol_location fromloc
360 = { object
, orig_st_shndx
, static_cast<off_t
>(sym
.get_st_value()) };
361 Symbol_location toloc
= { to
->object(), to_shndx
,
362 static_cast<off_t
>(to
->value()) };
363 this->candidate_odr_violations_
[to
->name()].insert(fromloc
);
364 this->candidate_odr_violations_
[to
->name()].insert(toloc
);
367 // Plugins don't provide a symbol type, so adopt the existing type
368 // if the FROM symbol is from a plugin.
369 elfcpp::STT fromtype
= (object
->pluginobj() != NULL
371 : sym
.get_st_type());
372 unsigned int frombits
= symbol_to_bits(sym
.get_st_bind(),
373 object
->is_dynamic(),
374 st_shndx
, is_ordinary
);
376 bool adjust_common_sizes
;
378 typename Sized_symbol
<size
>::Size_type tosize
= to
->symsize();
379 if (Symbol_table::should_override(to
, frombits
, fromtype
, OBJECT
,
380 object
, &adjust_common_sizes
,
381 &adjust_dyndef
, is_default_version
))
383 elfcpp::STB orig_tobinding
= to
->binding();
384 typename Sized_symbol
<size
>::Value_type tovalue
= to
->value();
385 this->override(to
, sym
, st_shndx
, is_ordinary
, object
, version
);
386 if (adjust_common_sizes
)
388 if (tosize
> to
->symsize())
389 to
->set_symsize(tosize
);
390 if (tovalue
> to
->value())
391 to
->set_value(tovalue
);
395 // We are overriding an UNDEF or WEAK UNDEF with a DYN DEF.
396 // Remember which kind of UNDEF it was for future reference.
397 to
->set_undef_binding(orig_tobinding
);
402 if (adjust_common_sizes
)
404 if (sym
.get_st_size() > tosize
)
405 to
->set_symsize(sym
.get_st_size());
406 if (sym
.get_st_value() > to
->value())
407 to
->set_value(sym
.get_st_value());
411 // We are keeping a DYN DEF after seeing an UNDEF or WEAK UNDEF.
412 // Remember which kind of UNDEF it was.
413 to
->set_undef_binding(sym
.get_st_bind());
415 // The ELF ABI says that even for a reference to a symbol we
416 // merge the visibility.
417 to
->override_visibility(sym
.get_st_visibility());
420 // If we have a non-WEAK reference from a regular object to a
421 // dynamic object, mark the dynamic object as needed.
422 if (to
->is_from_dynobj() && to
->in_reg() && !to
->is_undef_binding_weak())
423 to
->object()->set_is_needed();
425 if (adjust_common_sizes
&& parameters
->options().warn_common())
427 if (tosize
> sym
.get_st_size())
428 Symbol_table::report_resolve_problem(false,
429 _("common of '%s' overriding "
432 else if (tosize
< sym
.get_st_size())
433 Symbol_table::report_resolve_problem(false,
434 _("common of '%s' overidden by "
438 Symbol_table::report_resolve_problem(false,
439 _("multiple common of '%s'"),
444 // Handle the core of symbol resolution. This is called with the
445 // existing symbol, TO, and a bitflag describing the new symbol. This
446 // returns true if we should override the existing symbol with the new
447 // one, and returns false otherwise. It sets *ADJUST_COMMON_SIZES to
448 // true if we should set the symbol size to the maximum of the TO and
449 // FROM sizes. It handles error conditions.
452 Symbol_table::should_override(const Symbol
* to
, unsigned int frombits
,
453 elfcpp::STT fromtype
, Defined defined
,
454 Object
* object
, bool* adjust_common_sizes
,
455 bool* adjust_dyndef
, bool is_default_version
)
457 *adjust_common_sizes
= false;
458 *adjust_dyndef
= false;
461 if (to
->source() == Symbol::IS_UNDEFINED
)
462 tobits
= symbol_to_bits(to
->binding(), false, elfcpp::SHN_UNDEF
, true);
463 else if (to
->source() != Symbol::FROM_OBJECT
)
464 tobits
= symbol_to_bits(to
->binding(), false, elfcpp::SHN_ABS
, false);
468 unsigned int shndx
= to
->shndx(&is_ordinary
);
469 tobits
= symbol_to_bits(to
->binding(),
470 to
->object()->is_dynamic(),
475 if ((to
->type() == elfcpp::STT_TLS
) ^ (fromtype
== elfcpp::STT_TLS
)
476 && !to
->is_placeholder())
477 Symbol_table::report_resolve_problem(true,
478 _("symbol '%s' used as both __thread "
480 to
, defined
, object
);
482 // We use a giant switch table for symbol resolution. This code is
483 // unwieldy, but: 1) it is efficient; 2) we definitely handle all
484 // cases; 3) it is easy to change the handling of a particular case.
485 // The alternative would be a series of conditionals, but it is easy
486 // to get the ordering wrong. This could also be done as a table,
487 // but that is no easier to understand than this large switch
490 // These are the values generated by the bit codes.
493 DEF
= global_flag
| regular_flag
| def_flag
,
494 WEAK_DEF
= weak_flag
| regular_flag
| def_flag
,
495 DYN_DEF
= global_flag
| dynamic_flag
| def_flag
,
496 DYN_WEAK_DEF
= weak_flag
| dynamic_flag
| def_flag
,
497 UNDEF
= global_flag
| regular_flag
| undef_flag
,
498 WEAK_UNDEF
= weak_flag
| regular_flag
| undef_flag
,
499 DYN_UNDEF
= global_flag
| dynamic_flag
| undef_flag
,
500 DYN_WEAK_UNDEF
= weak_flag
| dynamic_flag
| undef_flag
,
501 COMMON
= global_flag
| regular_flag
| common_flag
,
502 WEAK_COMMON
= weak_flag
| regular_flag
| common_flag
,
503 DYN_COMMON
= global_flag
| dynamic_flag
| common_flag
,
504 DYN_WEAK_COMMON
= weak_flag
| dynamic_flag
| common_flag
507 switch (tobits
* 16 + frombits
)
510 // Two definitions of the same symbol.
512 // If either symbol is defined by an object included using
513 // --just-symbols, then don't warn. This is for compatibility
514 // with the GNU linker. FIXME: This is a hack.
515 if ((to
->source() == Symbol::FROM_OBJECT
&& to
->object()->just_symbols())
516 || (object
!= NULL
&& object
->just_symbols()))
519 if (!parameters
->options().muldefs())
520 Symbol_table::report_resolve_problem(true,
521 _("multiple definition of '%s'"),
522 to
, defined
, object
);
525 case WEAK_DEF
* 16 + DEF
:
526 // We've seen a weak definition, and now we see a strong
527 // definition. In the original SVR4 linker, this was treated as
528 // a multiple definition error. In the Solaris linker and the
529 // GNU linker, a weak definition followed by a regular
530 // definition causes the weak definition to be overridden. We
531 // are currently compatible with the GNU linker. In the future
532 // we should add a target specific option to change this.
536 case DYN_DEF
* 16 + DEF
:
537 case DYN_WEAK_DEF
* 16 + DEF
:
538 // We've seen a definition in a dynamic object, and now we see a
539 // definition in a regular object. The definition in the
540 // regular object overrides the definition in the dynamic
544 case UNDEF
* 16 + DEF
:
545 case WEAK_UNDEF
* 16 + DEF
:
546 case DYN_UNDEF
* 16 + DEF
:
547 case DYN_WEAK_UNDEF
* 16 + DEF
:
548 // We've seen an undefined reference, and now we see a
549 // definition. We use the definition.
552 case COMMON
* 16 + DEF
:
553 case WEAK_COMMON
* 16 + DEF
:
554 case DYN_COMMON
* 16 + DEF
:
555 case DYN_WEAK_COMMON
* 16 + DEF
:
556 // We've seen a common symbol and now we see a definition. The
557 // definition overrides.
558 if (parameters
->options().warn_common())
559 Symbol_table::report_resolve_problem(false,
560 _("definition of '%s' overriding "
562 to
, defined
, object
);
565 case DEF
* 16 + WEAK_DEF
:
566 case WEAK_DEF
* 16 + WEAK_DEF
:
567 // We've seen a definition and now we see a weak definition. We
568 // ignore the new weak definition.
571 case DYN_DEF
* 16 + WEAK_DEF
:
572 case DYN_WEAK_DEF
* 16 + WEAK_DEF
:
573 // We've seen a dynamic definition and now we see a regular weak
574 // definition. The regular weak definition overrides.
577 case UNDEF
* 16 + WEAK_DEF
:
578 case WEAK_UNDEF
* 16 + WEAK_DEF
:
579 case DYN_UNDEF
* 16 + WEAK_DEF
:
580 case DYN_WEAK_UNDEF
* 16 + WEAK_DEF
:
581 // A weak definition of a currently undefined symbol.
584 case COMMON
* 16 + WEAK_DEF
:
585 case WEAK_COMMON
* 16 + WEAK_DEF
:
586 // A weak definition does not override a common definition.
589 case DYN_COMMON
* 16 + WEAK_DEF
:
590 case DYN_WEAK_COMMON
* 16 + WEAK_DEF
:
591 // A weak definition does override a definition in a dynamic
593 if (parameters
->options().warn_common())
594 Symbol_table::report_resolve_problem(false,
595 _("definition of '%s' overriding "
596 "dynamic common definition"),
597 to
, defined
, object
);
600 case DEF
* 16 + DYN_DEF
:
601 case WEAK_DEF
* 16 + DYN_DEF
:
602 // Ignore a dynamic definition if we already have a definition.
605 case DYN_DEF
* 16 + DYN_DEF
:
606 case DYN_WEAK_DEF
* 16 + DYN_DEF
:
607 // Ignore a dynamic definition if we already have a definition,
608 // unless the existing definition is an unversioned definition
609 // in the same dynamic object, and the new definition is a
611 if (to
->object() == object
612 && to
->version() == NULL
613 && is_default_version
)
615 // Or, if the existing definition is in an unused --as-needed library,
616 // and the reference is weak, let the new definition override.
618 && to
->is_undef_binding_weak()
619 && to
->object()->as_needed()
620 && !to
->object()->is_needed())
624 case UNDEF
* 16 + DYN_DEF
:
625 case DYN_UNDEF
* 16 + DYN_DEF
:
626 case DYN_WEAK_UNDEF
* 16 + DYN_DEF
:
627 // Use a dynamic definition if we have a reference.
630 case WEAK_UNDEF
* 16 + DYN_DEF
:
631 // When overriding a weak undef by a dynamic definition,
632 // we need to remember that the original undef was weak.
633 *adjust_dyndef
= true;
636 case COMMON
* 16 + DYN_DEF
:
637 case WEAK_COMMON
* 16 + DYN_DEF
:
638 // Ignore a dynamic definition if we already have a common
642 case DEF
* 16 + DYN_WEAK_DEF
:
643 case WEAK_DEF
* 16 + DYN_WEAK_DEF
:
644 // Ignore a weak dynamic definition if we already have a
648 case UNDEF
* 16 + DYN_WEAK_DEF
:
649 // When overriding an undef by a dynamic weak definition,
650 // we need to remember that the original undef was not weak.
651 *adjust_dyndef
= true;
654 case DYN_UNDEF
* 16 + DYN_WEAK_DEF
:
655 case DYN_WEAK_UNDEF
* 16 + DYN_WEAK_DEF
:
656 // Use a weak dynamic definition if we have a reference.
659 case WEAK_UNDEF
* 16 + DYN_WEAK_DEF
:
660 // When overriding a weak undef by a dynamic definition,
661 // we need to remember that the original undef was weak.
662 *adjust_dyndef
= true;
665 case COMMON
* 16 + DYN_WEAK_DEF
:
666 case WEAK_COMMON
* 16 + DYN_WEAK_DEF
:
667 // Ignore a weak dynamic definition if we already have a common
671 case DYN_COMMON
* 16 + DYN_DEF
:
672 case DYN_WEAK_COMMON
* 16 + DYN_DEF
:
673 case DYN_DEF
* 16 + DYN_WEAK_DEF
:
674 case DYN_WEAK_DEF
* 16 + DYN_WEAK_DEF
:
675 case DYN_COMMON
* 16 + DYN_WEAK_DEF
:
676 case DYN_WEAK_COMMON
* 16 + DYN_WEAK_DEF
:
677 // If the existing definition is in an unused --as-needed library,
678 // and the reference is weak, let a new dynamic definition override.
680 && to
->is_undef_binding_weak()
681 && to
->object()->as_needed()
682 && !to
->object()->is_needed())
686 case DEF
* 16 + UNDEF
:
687 case WEAK_DEF
* 16 + UNDEF
:
688 case UNDEF
* 16 + UNDEF
:
689 // A new undefined reference tells us nothing.
692 case DYN_DEF
* 16 + UNDEF
:
693 case DYN_WEAK_DEF
* 16 + UNDEF
:
694 // For a dynamic def, we need to remember which kind of undef we see.
695 *adjust_dyndef
= true;
698 case WEAK_UNDEF
* 16 + UNDEF
:
699 case DYN_UNDEF
* 16 + UNDEF
:
700 case DYN_WEAK_UNDEF
* 16 + UNDEF
:
701 // A strong undef overrides a dynamic or weak undef.
704 case COMMON
* 16 + UNDEF
:
705 case WEAK_COMMON
* 16 + UNDEF
:
706 case DYN_COMMON
* 16 + UNDEF
:
707 case DYN_WEAK_COMMON
* 16 + UNDEF
:
708 // A new undefined reference tells us nothing.
711 case DEF
* 16 + WEAK_UNDEF
:
712 case WEAK_DEF
* 16 + WEAK_UNDEF
:
713 case UNDEF
* 16 + WEAK_UNDEF
:
714 case WEAK_UNDEF
* 16 + WEAK_UNDEF
:
715 case DYN_UNDEF
* 16 + WEAK_UNDEF
:
716 case COMMON
* 16 + WEAK_UNDEF
:
717 case WEAK_COMMON
* 16 + WEAK_UNDEF
:
718 case DYN_COMMON
* 16 + WEAK_UNDEF
:
719 case DYN_WEAK_COMMON
* 16 + WEAK_UNDEF
:
720 // A new weak undefined reference tells us nothing unless the
721 // exisiting symbol is a dynamic weak reference.
724 case DYN_WEAK_UNDEF
* 16 + WEAK_UNDEF
:
725 // A new weak reference overrides an existing dynamic weak reference.
726 // This is necessary because a dynamic weak reference remembers
727 // the old binding, which may not be weak. If we keeps the existing
728 // dynamic weak reference, the weakness may be dropped in the output.
731 case DYN_DEF
* 16 + WEAK_UNDEF
:
732 case DYN_WEAK_DEF
* 16 + WEAK_UNDEF
:
733 // For a dynamic def, we need to remember which kind of undef we see.
734 *adjust_dyndef
= true;
737 case DEF
* 16 + DYN_UNDEF
:
738 case WEAK_DEF
* 16 + DYN_UNDEF
:
739 case DYN_DEF
* 16 + DYN_UNDEF
:
740 case DYN_WEAK_DEF
* 16 + DYN_UNDEF
:
741 case UNDEF
* 16 + DYN_UNDEF
:
742 case WEAK_UNDEF
* 16 + DYN_UNDEF
:
743 case DYN_UNDEF
* 16 + DYN_UNDEF
:
744 case DYN_WEAK_UNDEF
* 16 + DYN_UNDEF
:
745 case COMMON
* 16 + DYN_UNDEF
:
746 case WEAK_COMMON
* 16 + DYN_UNDEF
:
747 case DYN_COMMON
* 16 + DYN_UNDEF
:
748 case DYN_WEAK_COMMON
* 16 + DYN_UNDEF
:
749 // A new dynamic undefined reference tells us nothing.
752 case DEF
* 16 + DYN_WEAK_UNDEF
:
753 case WEAK_DEF
* 16 + DYN_WEAK_UNDEF
:
754 case DYN_DEF
* 16 + DYN_WEAK_UNDEF
:
755 case DYN_WEAK_DEF
* 16 + DYN_WEAK_UNDEF
:
756 case UNDEF
* 16 + DYN_WEAK_UNDEF
:
757 case WEAK_UNDEF
* 16 + DYN_WEAK_UNDEF
:
758 case DYN_UNDEF
* 16 + DYN_WEAK_UNDEF
:
759 case DYN_WEAK_UNDEF
* 16 + DYN_WEAK_UNDEF
:
760 case COMMON
* 16 + DYN_WEAK_UNDEF
:
761 case WEAK_COMMON
* 16 + DYN_WEAK_UNDEF
:
762 case DYN_COMMON
* 16 + DYN_WEAK_UNDEF
:
763 case DYN_WEAK_COMMON
* 16 + DYN_WEAK_UNDEF
:
764 // A new weak dynamic undefined reference tells us nothing.
767 case DEF
* 16 + COMMON
:
768 // A common symbol does not override a definition.
769 if (parameters
->options().warn_common())
770 Symbol_table::report_resolve_problem(false,
771 _("common '%s' overridden by "
772 "previous definition"),
773 to
, defined
, object
);
776 case WEAK_DEF
* 16 + COMMON
:
777 case DYN_DEF
* 16 + COMMON
:
778 case DYN_WEAK_DEF
* 16 + COMMON
:
779 // A common symbol does override a weak definition or a dynamic
783 case UNDEF
* 16 + COMMON
:
784 case WEAK_UNDEF
* 16 + COMMON
:
785 case DYN_UNDEF
* 16 + COMMON
:
786 case DYN_WEAK_UNDEF
* 16 + COMMON
:
787 // A common symbol is a definition for a reference.
790 case COMMON
* 16 + COMMON
:
791 // Set the size to the maximum.
792 *adjust_common_sizes
= true;
795 case WEAK_COMMON
* 16 + COMMON
:
796 // I'm not sure just what a weak common symbol means, but
797 // presumably it can be overridden by a regular common symbol.
800 case DYN_COMMON
* 16 + COMMON
:
801 case DYN_WEAK_COMMON
* 16 + COMMON
:
802 // Use the real common symbol, but adjust the size if necessary.
803 *adjust_common_sizes
= true;
806 case DEF
* 16 + WEAK_COMMON
:
807 case WEAK_DEF
* 16 + WEAK_COMMON
:
808 case DYN_DEF
* 16 + WEAK_COMMON
:
809 case DYN_WEAK_DEF
* 16 + WEAK_COMMON
:
810 // Whatever a weak common symbol is, it won't override a
814 case UNDEF
* 16 + WEAK_COMMON
:
815 case WEAK_UNDEF
* 16 + WEAK_COMMON
:
816 case DYN_UNDEF
* 16 + WEAK_COMMON
:
817 case DYN_WEAK_UNDEF
* 16 + WEAK_COMMON
:
818 // A weak common symbol is better than an undefined symbol.
821 case COMMON
* 16 + WEAK_COMMON
:
822 case WEAK_COMMON
* 16 + WEAK_COMMON
:
823 case DYN_COMMON
* 16 + WEAK_COMMON
:
824 case DYN_WEAK_COMMON
* 16 + WEAK_COMMON
:
825 // Ignore a weak common symbol in the presence of a real common
829 case DEF
* 16 + DYN_COMMON
:
830 case WEAK_DEF
* 16 + DYN_COMMON
:
831 case DYN_DEF
* 16 + DYN_COMMON
:
832 case DYN_WEAK_DEF
* 16 + DYN_COMMON
:
833 // Ignore a dynamic common symbol in the presence of a
837 case UNDEF
* 16 + DYN_COMMON
:
838 case WEAK_UNDEF
* 16 + DYN_COMMON
:
839 case DYN_UNDEF
* 16 + DYN_COMMON
:
840 case DYN_WEAK_UNDEF
* 16 + DYN_COMMON
:
841 // A dynamic common symbol is a definition of sorts.
844 case COMMON
* 16 + DYN_COMMON
:
845 case WEAK_COMMON
* 16 + DYN_COMMON
:
846 case DYN_COMMON
* 16 + DYN_COMMON
:
847 case DYN_WEAK_COMMON
* 16 + DYN_COMMON
:
848 // Set the size to the maximum.
849 *adjust_common_sizes
= true;
852 case DEF
* 16 + DYN_WEAK_COMMON
:
853 case WEAK_DEF
* 16 + DYN_WEAK_COMMON
:
854 case DYN_DEF
* 16 + DYN_WEAK_COMMON
:
855 case DYN_WEAK_DEF
* 16 + DYN_WEAK_COMMON
:
856 // A common symbol is ignored in the face of a definition.
859 case UNDEF
* 16 + DYN_WEAK_COMMON
:
860 case WEAK_UNDEF
* 16 + DYN_WEAK_COMMON
:
861 case DYN_UNDEF
* 16 + DYN_WEAK_COMMON
:
862 case DYN_WEAK_UNDEF
* 16 + DYN_WEAK_COMMON
:
863 // I guess a weak common symbol is better than a definition.
866 case COMMON
* 16 + DYN_WEAK_COMMON
:
867 case WEAK_COMMON
* 16 + DYN_WEAK_COMMON
:
868 case DYN_COMMON
* 16 + DYN_WEAK_COMMON
:
869 case DYN_WEAK_COMMON
* 16 + DYN_WEAK_COMMON
:
870 // Set the size to the maximum.
871 *adjust_common_sizes
= true;
879 // Issue an error or warning due to symbol resolution. IS_ERROR
880 // indicates an error rather than a warning. MSG is the error
881 // message; it is expected to have a %s for the symbol name. TO is
882 // the existing symbol. DEFINED/OBJECT is where the new symbol was
885 // FIXME: We should have better location information here. When the
886 // symbol is defined, we should be able to pull the location from the
887 // debug info if there is any.
890 Symbol_table::report_resolve_problem(bool is_error
, const char* msg
,
891 const Symbol
* to
, Defined defined
,
894 std::string
demangled(to
->demangled_name());
895 size_t len
= strlen(msg
) + demangled
.length() + 10;
896 char* buf
= new char[len
];
897 snprintf(buf
, len
, msg
, demangled
.c_str());
903 objname
= object
->name().c_str();
906 objname
= _("COPY reloc");
910 objname
= _("command line");
913 objname
= _("linker script");
916 case INCREMENTAL_BASE
:
917 objname
= _("linker defined");
924 gold_error("%s: %s", objname
, buf
);
926 gold_warning("%s: %s", objname
, buf
);
930 if (to
->source() == Symbol::FROM_OBJECT
)
931 objname
= to
->object()->name().c_str();
933 objname
= _("command line");
934 gold_info("%s: %s: previous definition here", program_name
, objname
);
937 // Completely override existing symbol. Everything bar name_,
938 // version_, and is_forced_local_ flag are copied. version_ is
939 // cleared if from->version_ is clear. Returns true if this symbol
940 // should be forced local.
942 Symbol::clone(const Symbol
* from
)
944 // Don't allow cloning after dynamic linking info is attached to symbols.
945 // We aren't prepared to merge such.
946 gold_assert(!this->has_symtab_index() && !from
->has_symtab_index());
947 gold_assert(!this->has_dynsym_index() && !from
->has_dynsym_index());
948 gold_assert(this->got_offset_list() == NULL
949 && from
->got_offset_list() == NULL
);
950 gold_assert(!this->has_plt_offset() && !from
->has_plt_offset());
953 this->version_
= from
->version_
;
954 this->u1_
= from
->u1_
;
955 this->u2_
= from
->u2_
;
956 this->type_
= from
->type_
;
957 this->binding_
= from
->binding_
;
958 this->visibility_
= from
->visibility_
;
959 this->nonvis_
= from
->nonvis_
;
960 this->source_
= from
->source_
;
961 this->is_def_
= from
->is_def_
;
962 this->is_forwarder_
= from
->is_forwarder_
;
963 this->has_alias_
= from
->has_alias_
;
964 this->needs_dynsym_entry_
= from
->needs_dynsym_entry_
;
965 this->in_reg_
= from
->in_reg_
;
966 this->in_dyn_
= from
->in_dyn_
;
967 this->needs_dynsym_value_
= from
->needs_dynsym_value_
;
968 this->has_warning_
= from
->has_warning_
;
969 this->is_copied_from_dynobj_
= from
->is_copied_from_dynobj_
;
970 this->is_ordinary_shndx_
= from
->is_ordinary_shndx_
;
971 this->in_real_elf_
= from
->in_real_elf_
;
972 this->is_defined_in_discarded_section_
973 = from
->is_defined_in_discarded_section_
;
974 this->undef_binding_set_
= from
->undef_binding_set_
;
975 this->undef_binding_weak_
= from
->undef_binding_weak_
;
976 this->is_predefined_
= from
->is_predefined_
;
977 this->is_protected_
= from
->is_protected_
;
978 this->non_zero_localentry_
= from
->non_zero_localentry_
;
980 return !this->is_forced_local_
&& from
->is_forced_local_
;
985 Sized_symbol
<size
>::clone(const Sized_symbol
<size
>* from
)
987 this->value_
= from
->value_
;
988 this->symsize_
= from
->symsize_
;
989 return Symbol::clone(from
);
992 // A special case of should_override which is only called for a strong
993 // defined symbol from a regular object file. This is used when
994 // defining special symbols.
997 Symbol_table::should_override_with_special(const Symbol
* to
,
998 elfcpp::STT fromtype
,
1001 bool adjust_common_sizes
;
1002 bool adjust_dyn_def
;
1003 unsigned int frombits
= global_flag
| regular_flag
| def_flag
;
1004 bool ret
= Symbol_table::should_override(to
, frombits
, fromtype
, defined
,
1005 NULL
, &adjust_common_sizes
,
1006 &adjust_dyn_def
, false);
1007 gold_assert(!adjust_common_sizes
&& !adjust_dyn_def
);
1011 // Override symbol base with a special symbol.
1014 Symbol::override_base_with_special(const Symbol
* from
)
1016 bool same_name
= this->name_
== from
->name_
;
1017 gold_assert(same_name
|| this->has_alias());
1019 // If we are overriding an undef, remember the original binding.
1020 if (this->is_undefined())
1021 this->set_undef_binding(this->binding_
);
1023 this->source_
= from
->source_
;
1024 switch (from
->source_
)
1027 case IN_OUTPUT_DATA
:
1028 case IN_OUTPUT_SEGMENT
:
1029 this->u1_
= from
->u1_
;
1030 this->u2_
= from
->u2_
;
1042 // When overriding a versioned symbol with a special symbol, we
1043 // may be changing the version. This will happen if we see a
1044 // special symbol such as "_end" defined in a shared object with
1045 // one version (from a version script), but we want to define it
1046 // here with a different version (from a different version
1048 this->version_
= from
->version_
;
1050 this->type_
= from
->type_
;
1051 this->binding_
= from
->binding_
;
1052 this->override_visibility(from
->visibility_
);
1053 this->nonvis_
= from
->nonvis_
;
1055 // Special symbols are always considered to be regular symbols.
1056 this->in_reg_
= true;
1058 if (from
->needs_dynsym_entry_
)
1059 this->needs_dynsym_entry_
= true;
1060 if (from
->needs_dynsym_value_
)
1061 this->needs_dynsym_value_
= true;
1063 this->is_predefined_
= from
->is_predefined_
;
1065 // We shouldn't see these flags. If we do, we need to handle them
1067 gold_assert(!from
->is_forwarder_
);
1068 gold_assert(!from
->has_plt_offset());
1069 gold_assert(!from
->has_warning_
);
1070 gold_assert(!from
->is_copied_from_dynobj_
);
1071 gold_assert(!from
->is_forced_local_
);
1074 // Override a symbol with a special symbol.
1078 Sized_symbol
<size
>::override_with_special(const Sized_symbol
<size
>* from
)
1080 this->override_base_with_special(from
);
1081 this->value_
= from
->value_
;
1082 this->symsize_
= from
->symsize_
;
1085 // Override TOSYM with the special symbol FROMSYM. This handles all
1086 // aliases of TOSYM.
1090 Symbol_table::override_with_special(Sized_symbol
<size
>* tosym
,
1091 const Sized_symbol
<size
>* fromsym
)
1093 tosym
->override_with_special(fromsym
);
1094 if (tosym
->has_alias())
1096 Symbol
* sym
= this->weak_aliases_
[tosym
];
1097 gold_assert(sym
!= NULL
);
1098 Sized_symbol
<size
>* ssym
= this->get_sized_symbol
<size
>(sym
);
1101 ssym
->override_with_special(fromsym
);
1102 sym
= this->weak_aliases_
[ssym
];
1103 gold_assert(sym
!= NULL
);
1104 ssym
= this->get_sized_symbol
<size
>(sym
);
1106 while (ssym
!= tosym
);
1108 if (tosym
->binding() == elfcpp::STB_LOCAL
1109 || ((tosym
->visibility() == elfcpp::STV_HIDDEN
1110 || tosym
->visibility() == elfcpp::STV_INTERNAL
)
1111 && (tosym
->binding() == elfcpp::STB_GLOBAL
1112 || tosym
->binding() == elfcpp::STB_GNU_UNIQUE
1113 || tosym
->binding() == elfcpp::STB_WEAK
)
1114 && !parameters
->options().relocatable()))
1115 this->force_local(tosym
);
1118 // Instantiate the templates we need. We could use the configure
1119 // script to restrict this to only the ones needed for implemented
1122 // We have to instantiate both big and little endian versions because
1123 // these are used by other templates that depends on size only.
1125 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1128 Symbol_table::resolve
<32, false>(
1129 Sized_symbol
<32>* to
,
1130 const elfcpp::Sym
<32, false>& sym
,
1131 unsigned int st_shndx
,
1133 unsigned int orig_st_shndx
,
1135 const char* version
,
1136 bool is_default_version
);
1140 Symbol_table::resolve
<32, true>(
1141 Sized_symbol
<32>* to
,
1142 const elfcpp::Sym
<32, true>& sym
,
1143 unsigned int st_shndx
,
1145 unsigned int orig_st_shndx
,
1147 const char* version
,
1148 bool is_default_version
);
1151 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1154 Symbol_table::resolve
<64, false>(
1155 Sized_symbol
<64>* to
,
1156 const elfcpp::Sym
<64, false>& sym
,
1157 unsigned int st_shndx
,
1159 unsigned int orig_st_shndx
,
1161 const char* version
,
1162 bool is_default_version
);
1166 Symbol_table::resolve
<64, true>(
1167 Sized_symbol
<64>* to
,
1168 const elfcpp::Sym
<64, true>& sym
,
1169 unsigned int st_shndx
,
1171 unsigned int orig_st_shndx
,
1173 const char* version
,
1174 bool is_default_version
);
1177 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1180 Symbol_table::override_with_special
<32>(Sized_symbol
<32>*,
1181 const Sized_symbol
<32>*);
1184 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1187 Symbol_table::override_with_special
<64>(Sized_symbol
<64>*,
1188 const Sized_symbol
<64>*);
1193 Sized_symbol
<32>::clone(const Sized_symbol
<32>*);
1197 Sized_symbol
<64>::clone(const Sized_symbol
<64>*);
1198 } // End namespace gold.