arm: Support pac_key_* register operand for MRS/MSR in Armv8.1-M Mainline
[binutils-gdb.git] / gold / resolve.cc
blobf05589551f424e6d96fd0f63e0292ce92f1c410f
1 // resolve.cc -- symbol resolution for gold
3 // Copyright (C) 2006-2024 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
6 // This file is part of gold.
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
23 #include "gold.h"
25 #include "elfcpp.h"
26 #include "target.h"
27 #include "object.h"
28 #include "symtab.h"
29 #include "plugin.h"
31 namespace gold
34 // Symbol methods used in this file.
36 // This symbol is being overridden by another symbol whose version is
37 // VERSION. Update the VERSION_ field accordingly.
39 inline void
40 Symbol::override_version(const char* version)
42 if (version == NULL)
44 // This is the case where this symbol is NAME/VERSION, and the
45 // version was not marked as hidden. That makes it the default
46 // version, so we create NAME/NULL. Later we see another symbol
47 // NAME/NULL, and that symbol is overriding this one. In this
48 // case, since NAME/VERSION is the default, we make NAME/NULL
49 // override NAME/VERSION as well. They are already the same
50 // Symbol structure. Setting the VERSION_ field to NULL ensures
51 // that it will be output with the correct, empty, version.
52 this->version_ = version;
54 else
56 // This is the case where this symbol is NAME/VERSION_ONE, and
57 // now we see NAME/VERSION_TWO, and NAME/VERSION_TWO is
58 // overriding NAME. If VERSION_ONE and VERSION_TWO are
59 // different, then this can only happen when VERSION_ONE is NULL
60 // and VERSION_TWO is not hidden.
61 gold_assert(this->version_ == version || this->version_ == NULL);
62 this->version_ = version;
66 // This symbol is being overidden by another symbol whose visibility
67 // is VISIBILITY. Updated the VISIBILITY_ field accordingly.
69 inline void
70 Symbol::override_visibility(elfcpp::STV visibility)
72 // The rule for combining visibility is that we always choose the
73 // most constrained visibility. In order of increasing constraint,
74 // visibility goes PROTECTED, HIDDEN, INTERNAL. This is the reverse
75 // of the numeric values, so the effect is that we always want the
76 // smallest non-zero value.
77 if (visibility != elfcpp::STV_DEFAULT)
79 if (this->visibility_ == elfcpp::STV_DEFAULT)
80 this->visibility_ = visibility;
81 else if (this->visibility_ > visibility)
82 this->visibility_ = visibility;
86 // Override the fields in Symbol.
88 template<int size, bool big_endian>
89 void
90 Symbol::override_base(const elfcpp::Sym<size, big_endian>& sym,
91 unsigned int st_shndx, bool is_ordinary,
92 Object* object, const char* version)
94 gold_assert(this->source_ == FROM_OBJECT);
95 this->u1_.object = object;
96 this->override_version(version);
97 this->u2_.shndx = st_shndx;
98 this->is_ordinary_shndx_ = is_ordinary;
99 // Don't override st_type from plugin placeholder symbols.
100 if (object->pluginobj() == NULL)
101 this->type_ = sym.get_st_type();
102 this->binding_ = sym.get_st_bind();
103 this->override_visibility(sym.get_st_visibility());
104 this->nonvis_ = sym.get_st_nonvis();
105 if (object->is_dynamic())
106 this->in_dyn_ = true;
107 else
108 this->in_reg_ = true;
111 // Override the fields in Sized_symbol.
113 template<int size>
114 template<bool big_endian>
115 void
116 Sized_symbol<size>::override(const elfcpp::Sym<size, big_endian>& sym,
117 unsigned st_shndx, bool is_ordinary,
118 Object* object, const char* version)
120 this->override_base(sym, st_shndx, is_ordinary, object, version);
121 this->value_ = sym.get_st_value();
122 this->symsize_ = sym.get_st_size();
125 // Override TOSYM with symbol FROMSYM, defined in OBJECT, with version
126 // VERSION. This handles all aliases of TOSYM.
128 template<int size, bool big_endian>
129 void
130 Symbol_table::override(Sized_symbol<size>* tosym,
131 const elfcpp::Sym<size, big_endian>& fromsym,
132 unsigned int st_shndx, bool is_ordinary,
133 Object* object, const char* version)
135 tosym->override(fromsym, st_shndx, is_ordinary, object, version);
136 if (tosym->has_alias())
138 Symbol* sym = this->weak_aliases_[tosym];
139 gold_assert(sym != NULL);
140 Sized_symbol<size>* ssym = this->get_sized_symbol<size>(sym);
143 ssym->override(fromsym, st_shndx, is_ordinary, object, version);
144 sym = this->weak_aliases_[ssym];
145 gold_assert(sym != NULL);
146 ssym = this->get_sized_symbol<size>(sym);
148 while (ssym != tosym);
152 // The resolve functions build a little code for each symbol.
153 // Bit 0: 0 for global, 1 for weak.
154 // Bit 1: 0 for regular object, 1 for shared object
155 // Bits 2-3: 0 for normal, 1 for undefined, 2 for common
156 // This gives us values from 0 to 11.
158 static const int global_or_weak_shift = 0;
159 static const unsigned int global_flag = 0 << global_or_weak_shift;
160 static const unsigned int weak_flag = 1 << global_or_weak_shift;
162 static const int regular_or_dynamic_shift = 1;
163 static const unsigned int regular_flag = 0 << regular_or_dynamic_shift;
164 static const unsigned int dynamic_flag = 1 << regular_or_dynamic_shift;
166 static const int def_undef_or_common_shift = 2;
167 static const unsigned int def_flag = 0 << def_undef_or_common_shift;
168 static const unsigned int undef_flag = 1 << def_undef_or_common_shift;
169 static const unsigned int common_flag = 2 << def_undef_or_common_shift;
171 // This convenience function combines all the flags based on facts
172 // about the symbol.
174 static unsigned int
175 symbol_to_bits(elfcpp::STB binding, bool is_dynamic,
176 unsigned int shndx, bool is_ordinary)
178 unsigned int bits;
180 switch (binding)
182 case elfcpp::STB_GLOBAL:
183 case elfcpp::STB_GNU_UNIQUE:
184 bits = global_flag;
185 break;
187 case elfcpp::STB_WEAK:
188 bits = weak_flag;
189 break;
191 case elfcpp::STB_LOCAL:
192 // We should only see externally visible symbols in the symbol
193 // table.
194 gold_error(_("invalid STB_LOCAL symbol in external symbols"));
195 bits = global_flag;
196 break;
198 default:
199 // Any target which wants to handle STB_LOOS, etc., needs to
200 // define a resolve method.
201 gold_error(_("unsupported symbol binding %d"), static_cast<int>(binding));
202 bits = global_flag;
205 if (is_dynamic)
206 bits |= dynamic_flag;
207 else
208 bits |= regular_flag;
210 switch (shndx)
212 case elfcpp::SHN_UNDEF:
213 bits |= undef_flag;
214 break;
216 case elfcpp::SHN_COMMON:
217 if (!is_ordinary)
218 bits |= common_flag;
219 break;
221 default:
222 if (!is_ordinary && Symbol::is_common_shndx(shndx))
223 bits |= common_flag;
224 else
225 bits |= def_flag;
226 break;
229 return bits;
232 // Resolve a symbol. This is called the second and subsequent times
233 // we see a symbol. TO is the pre-existing symbol. ST_SHNDX is the
234 // section index for SYM, possibly adjusted for many sections.
235 // IS_ORDINARY is whether ST_SHNDX is a normal section index rather
236 // than a special code. ORIG_ST_SHNDX is the original section index,
237 // before any munging because of discarded sections, except that all
238 // non-ordinary section indexes are mapped to SHN_UNDEF. VERSION is
239 // the version of SYM.
241 template<int size, bool big_endian>
242 void
243 Symbol_table::resolve(Sized_symbol<size>* to,
244 const elfcpp::Sym<size, big_endian>& sym,
245 unsigned int st_shndx, bool is_ordinary,
246 unsigned int orig_st_shndx,
247 Object* object, const char* version,
248 bool is_default_version)
250 bool to_is_ordinary;
251 const unsigned int to_shndx = to->shndx(&to_is_ordinary);
253 // Likewise for an absolute symbol defined twice with the same value.
254 if (!is_ordinary
255 && st_shndx == elfcpp::SHN_ABS
256 && !to_is_ordinary
257 && to_shndx == elfcpp::SHN_ABS
258 && to->value() == sym.get_st_value())
259 return;
261 if (parameters->target().has_resolve())
263 Sized_target<size, big_endian>* sized_target;
264 sized_target = parameters->sized_target<size, big_endian>();
265 if (sized_target->resolve(to, sym, object, version))
266 return;
269 if (!object->is_dynamic())
271 if (sym.get_st_type() == elfcpp::STT_COMMON
272 && (is_ordinary || !Symbol::is_common_shndx(st_shndx)))
274 gold_warning(_("STT_COMMON symbol '%s' in %s "
275 "is not in a common section"),
276 to->demangled_name().c_str(),
277 to->object()->name().c_str());
278 return;
280 // Record that we've seen this symbol in a regular object.
281 to->set_in_reg();
283 else if (st_shndx == elfcpp::SHN_UNDEF
284 && (to->visibility() == elfcpp::STV_HIDDEN
285 || to->visibility() == elfcpp::STV_INTERNAL))
287 // The symbol is hidden, so a reference from a shared object
288 // cannot bind to it. We tried issuing a warning in this case,
289 // but that produces false positives when the symbol is
290 // actually resolved in a different shared object (PR 15574).
291 return;
293 else
295 // Record that we've seen this symbol in a dynamic object.
296 to->set_in_dyn();
299 // Record if we've seen this symbol in a real ELF object (i.e., the
300 // symbol is referenced from outside the world known to the plugin).
301 if (object->pluginobj() == NULL && !object->is_dynamic())
302 to->set_in_real_elf();
304 // If we're processing replacement files, allow new symbols to override
305 // the placeholders from the plugin objects.
306 // Treat common symbols specially since it is possible that an ELF
307 // file increased the size of the alignment.
308 if (to->source() == Symbol::FROM_OBJECT)
310 Pluginobj* obj = to->object()->pluginobj();
311 if (obj != NULL
312 && parameters->options().plugins()->in_replacement_phase())
314 bool adjust_common = false;
315 typename Sized_symbol<size>::Size_type tosize = 0;
316 typename Sized_symbol<size>::Value_type tovalue = 0;
317 if (to->is_common()
318 && !is_ordinary && Symbol::is_common_shndx(st_shndx))
320 adjust_common = true;
321 tosize = to->symsize();
322 tovalue = to->value();
324 this->override(to, sym, st_shndx, is_ordinary, object, version);
325 if (adjust_common)
327 if (tosize > to->symsize())
328 to->set_symsize(tosize);
329 if (tovalue > to->value())
330 to->set_value(tovalue);
332 return;
336 // A new weak undefined reference, merging with an old weak
337 // reference, could be a One Definition Rule (ODR) violation --
338 // especially if the types or sizes of the references differ. We'll
339 // store such pairs and look them up later to make sure they
340 // actually refer to the same lines of code. We also check
341 // combinations of weak and strong, which might occur if one case is
342 // inline and the other is not. (Note: not all ODR violations can
343 // be found this way, and not everything this finds is an ODR
344 // violation. But it's helpful to warn about.)
345 if (parameters->options().detect_odr_violations()
346 && (sym.get_st_bind() == elfcpp::STB_WEAK
347 || to->binding() == elfcpp::STB_WEAK)
348 && orig_st_shndx != elfcpp::SHN_UNDEF
349 && to_is_ordinary
350 && to_shndx != elfcpp::SHN_UNDEF
351 && sym.get_st_size() != 0 // Ignore weird 0-sized symbols.
352 && to->symsize() != 0
353 && (sym.get_st_type() != to->type()
354 || sym.get_st_size() != to->symsize())
355 // C does not have a concept of ODR, so we only need to do this
356 // on C++ symbols. These have (mangled) names starting with _Z.
357 && to->name()[0] == '_' && to->name()[1] == 'Z')
359 Symbol_location fromloc
360 = { object, orig_st_shndx, static_cast<off_t>(sym.get_st_value()) };
361 Symbol_location toloc = { to->object(), to_shndx,
362 static_cast<off_t>(to->value()) };
363 this->candidate_odr_violations_[to->name()].insert(fromloc);
364 this->candidate_odr_violations_[to->name()].insert(toloc);
367 // Plugins don't provide a symbol type, so adopt the existing type
368 // if the FROM symbol is from a plugin.
369 elfcpp::STT fromtype = (object->pluginobj() != NULL
370 ? to->type()
371 : sym.get_st_type());
372 unsigned int frombits = symbol_to_bits(sym.get_st_bind(),
373 object->is_dynamic(),
374 st_shndx, is_ordinary);
376 bool adjust_common_sizes;
377 bool adjust_dyndef;
378 typename Sized_symbol<size>::Size_type tosize = to->symsize();
379 if (Symbol_table::should_override(to, frombits, fromtype, OBJECT,
380 object, &adjust_common_sizes,
381 &adjust_dyndef, is_default_version))
383 elfcpp::STB orig_tobinding = to->binding();
384 typename Sized_symbol<size>::Value_type tovalue = to->value();
385 this->override(to, sym, st_shndx, is_ordinary, object, version);
386 if (adjust_common_sizes)
388 if (tosize > to->symsize())
389 to->set_symsize(tosize);
390 if (tovalue > to->value())
391 to->set_value(tovalue);
393 if (adjust_dyndef)
395 // We are overriding an UNDEF or WEAK UNDEF with a DYN DEF.
396 // Remember which kind of UNDEF it was for future reference.
397 to->set_undef_binding(orig_tobinding);
400 else
402 if (adjust_common_sizes)
404 if (sym.get_st_size() > tosize)
405 to->set_symsize(sym.get_st_size());
406 if (sym.get_st_value() > to->value())
407 to->set_value(sym.get_st_value());
409 if (adjust_dyndef)
411 // We are keeping a DYN DEF after seeing an UNDEF or WEAK UNDEF.
412 // Remember which kind of UNDEF it was.
413 to->set_undef_binding(sym.get_st_bind());
415 // The ELF ABI says that even for a reference to a symbol we
416 // merge the visibility.
417 to->override_visibility(sym.get_st_visibility());
420 // If we have a non-WEAK reference from a regular object to a
421 // dynamic object, mark the dynamic object as needed.
422 if (to->is_from_dynobj() && to->in_reg() && !to->is_undef_binding_weak())
423 to->object()->set_is_needed();
425 if (adjust_common_sizes && parameters->options().warn_common())
427 if (tosize > sym.get_st_size())
428 Symbol_table::report_resolve_problem(false,
429 _("common of '%s' overriding "
430 "smaller common"),
431 to, OBJECT, object);
432 else if (tosize < sym.get_st_size())
433 Symbol_table::report_resolve_problem(false,
434 _("common of '%s' overidden by "
435 "larger common"),
436 to, OBJECT, object);
437 else
438 Symbol_table::report_resolve_problem(false,
439 _("multiple common of '%s'"),
440 to, OBJECT, object);
444 // Handle the core of symbol resolution. This is called with the
445 // existing symbol, TO, and a bitflag describing the new symbol. This
446 // returns true if we should override the existing symbol with the new
447 // one, and returns false otherwise. It sets *ADJUST_COMMON_SIZES to
448 // true if we should set the symbol size to the maximum of the TO and
449 // FROM sizes. It handles error conditions.
451 bool
452 Symbol_table::should_override(const Symbol* to, unsigned int frombits,
453 elfcpp::STT fromtype, Defined defined,
454 Object* object, bool* adjust_common_sizes,
455 bool* adjust_dyndef, bool is_default_version)
457 *adjust_common_sizes = false;
458 *adjust_dyndef = false;
460 unsigned int tobits;
461 if (to->source() == Symbol::IS_UNDEFINED)
462 tobits = symbol_to_bits(to->binding(), false, elfcpp::SHN_UNDEF, true);
463 else if (to->source() != Symbol::FROM_OBJECT)
464 tobits = symbol_to_bits(to->binding(), false, elfcpp::SHN_ABS, false);
465 else
467 bool is_ordinary;
468 unsigned int shndx = to->shndx(&is_ordinary);
469 tobits = symbol_to_bits(to->binding(),
470 to->object()->is_dynamic(),
471 shndx,
472 is_ordinary);
475 if ((to->type() == elfcpp::STT_TLS) ^ (fromtype == elfcpp::STT_TLS)
476 && !to->is_placeholder())
477 Symbol_table::report_resolve_problem(true,
478 _("symbol '%s' used as both __thread "
479 "and non-__thread"),
480 to, defined, object);
482 // We use a giant switch table for symbol resolution. This code is
483 // unwieldy, but: 1) it is efficient; 2) we definitely handle all
484 // cases; 3) it is easy to change the handling of a particular case.
485 // The alternative would be a series of conditionals, but it is easy
486 // to get the ordering wrong. This could also be done as a table,
487 // but that is no easier to understand than this large switch
488 // statement.
490 // These are the values generated by the bit codes.
491 enum
493 DEF = global_flag | regular_flag | def_flag,
494 WEAK_DEF = weak_flag | regular_flag | def_flag,
495 DYN_DEF = global_flag | dynamic_flag | def_flag,
496 DYN_WEAK_DEF = weak_flag | dynamic_flag | def_flag,
497 UNDEF = global_flag | regular_flag | undef_flag,
498 WEAK_UNDEF = weak_flag | regular_flag | undef_flag,
499 DYN_UNDEF = global_flag | dynamic_flag | undef_flag,
500 DYN_WEAK_UNDEF = weak_flag | dynamic_flag | undef_flag,
501 COMMON = global_flag | regular_flag | common_flag,
502 WEAK_COMMON = weak_flag | regular_flag | common_flag,
503 DYN_COMMON = global_flag | dynamic_flag | common_flag,
504 DYN_WEAK_COMMON = weak_flag | dynamic_flag | common_flag
507 switch (tobits * 16 + frombits)
509 case DEF * 16 + DEF:
510 // Two definitions of the same symbol.
512 // If either symbol is defined by an object included using
513 // --just-symbols, then don't warn. This is for compatibility
514 // with the GNU linker. FIXME: This is a hack.
515 if ((to->source() == Symbol::FROM_OBJECT && to->object()->just_symbols())
516 || (object != NULL && object->just_symbols()))
517 return false;
519 if (!parameters->options().muldefs())
520 Symbol_table::report_resolve_problem(true,
521 _("multiple definition of '%s'"),
522 to, defined, object);
523 return false;
525 case WEAK_DEF * 16 + DEF:
526 // We've seen a weak definition, and now we see a strong
527 // definition. In the original SVR4 linker, this was treated as
528 // a multiple definition error. In the Solaris linker and the
529 // GNU linker, a weak definition followed by a regular
530 // definition causes the weak definition to be overridden. We
531 // are currently compatible with the GNU linker. In the future
532 // we should add a target specific option to change this.
533 // FIXME.
534 return true;
536 case DYN_DEF * 16 + DEF:
537 case DYN_WEAK_DEF * 16 + DEF:
538 // We've seen a definition in a dynamic object, and now we see a
539 // definition in a regular object. The definition in the
540 // regular object overrides the definition in the dynamic
541 // object.
542 return true;
544 case UNDEF * 16 + DEF:
545 case WEAK_UNDEF * 16 + DEF:
546 case DYN_UNDEF * 16 + DEF:
547 case DYN_WEAK_UNDEF * 16 + DEF:
548 // We've seen an undefined reference, and now we see a
549 // definition. We use the definition.
550 return true;
552 case COMMON * 16 + DEF:
553 case WEAK_COMMON * 16 + DEF:
554 case DYN_COMMON * 16 + DEF:
555 case DYN_WEAK_COMMON * 16 + DEF:
556 // We've seen a common symbol and now we see a definition. The
557 // definition overrides.
558 if (parameters->options().warn_common())
559 Symbol_table::report_resolve_problem(false,
560 _("definition of '%s' overriding "
561 "common"),
562 to, defined, object);
563 return true;
565 case DEF * 16 + WEAK_DEF:
566 case WEAK_DEF * 16 + WEAK_DEF:
567 // We've seen a definition and now we see a weak definition. We
568 // ignore the new weak definition.
569 return false;
571 case DYN_DEF * 16 + WEAK_DEF:
572 case DYN_WEAK_DEF * 16 + WEAK_DEF:
573 // We've seen a dynamic definition and now we see a regular weak
574 // definition. The regular weak definition overrides.
575 return true;
577 case UNDEF * 16 + WEAK_DEF:
578 case WEAK_UNDEF * 16 + WEAK_DEF:
579 case DYN_UNDEF * 16 + WEAK_DEF:
580 case DYN_WEAK_UNDEF * 16 + WEAK_DEF:
581 // A weak definition of a currently undefined symbol.
582 return true;
584 case COMMON * 16 + WEAK_DEF:
585 case WEAK_COMMON * 16 + WEAK_DEF:
586 // A weak definition does not override a common definition.
587 return false;
589 case DYN_COMMON * 16 + WEAK_DEF:
590 case DYN_WEAK_COMMON * 16 + WEAK_DEF:
591 // A weak definition does override a definition in a dynamic
592 // object.
593 if (parameters->options().warn_common())
594 Symbol_table::report_resolve_problem(false,
595 _("definition of '%s' overriding "
596 "dynamic common definition"),
597 to, defined, object);
598 return true;
600 case DEF * 16 + DYN_DEF:
601 case WEAK_DEF * 16 + DYN_DEF:
602 // Ignore a dynamic definition if we already have a definition.
603 return false;
605 case DYN_DEF * 16 + DYN_DEF:
606 case DYN_WEAK_DEF * 16 + DYN_DEF:
607 // Ignore a dynamic definition if we already have a definition,
608 // unless the existing definition is an unversioned definition
609 // in the same dynamic object, and the new definition is a
610 // default version.
611 if (to->object() == object
612 && to->version() == NULL
613 && is_default_version)
614 return true;
615 // Or, if the existing definition is in an unused --as-needed library,
616 // and the reference is weak, let the new definition override.
617 if (to->in_reg()
618 && to->is_undef_binding_weak()
619 && to->object()->as_needed()
620 && !to->object()->is_needed())
621 return true;
622 return false;
624 case UNDEF * 16 + DYN_DEF:
625 case DYN_UNDEF * 16 + DYN_DEF:
626 case DYN_WEAK_UNDEF * 16 + DYN_DEF:
627 // Use a dynamic definition if we have a reference.
628 return true;
630 case WEAK_UNDEF * 16 + DYN_DEF:
631 // When overriding a weak undef by a dynamic definition,
632 // we need to remember that the original undef was weak.
633 *adjust_dyndef = true;
634 return true;
636 case COMMON * 16 + DYN_DEF:
637 case WEAK_COMMON * 16 + DYN_DEF:
638 // Ignore a dynamic definition if we already have a common
639 // definition.
640 return false;
642 case DEF * 16 + DYN_WEAK_DEF:
643 case WEAK_DEF * 16 + DYN_WEAK_DEF:
644 // Ignore a weak dynamic definition if we already have a
645 // definition.
646 return false;
648 case UNDEF * 16 + DYN_WEAK_DEF:
649 // When overriding an undef by a dynamic weak definition,
650 // we need to remember that the original undef was not weak.
651 *adjust_dyndef = true;
652 return true;
654 case DYN_UNDEF * 16 + DYN_WEAK_DEF:
655 case DYN_WEAK_UNDEF * 16 + DYN_WEAK_DEF:
656 // Use a weak dynamic definition if we have a reference.
657 return true;
659 case WEAK_UNDEF * 16 + DYN_WEAK_DEF:
660 // When overriding a weak undef by a dynamic definition,
661 // we need to remember that the original undef was weak.
662 *adjust_dyndef = true;
663 return true;
665 case COMMON * 16 + DYN_WEAK_DEF:
666 case WEAK_COMMON * 16 + DYN_WEAK_DEF:
667 // Ignore a weak dynamic definition if we already have a common
668 // definition.
669 return false;
671 case DYN_COMMON * 16 + DYN_DEF:
672 case DYN_WEAK_COMMON * 16 + DYN_DEF:
673 case DYN_DEF * 16 + DYN_WEAK_DEF:
674 case DYN_WEAK_DEF * 16 + DYN_WEAK_DEF:
675 case DYN_COMMON * 16 + DYN_WEAK_DEF:
676 case DYN_WEAK_COMMON * 16 + DYN_WEAK_DEF:
677 // If the existing definition is in an unused --as-needed library,
678 // and the reference is weak, let a new dynamic definition override.
679 if (to->in_reg()
680 && to->is_undef_binding_weak()
681 && to->object()->as_needed()
682 && !to->object()->is_needed())
683 return true;
684 return false;
686 case DEF * 16 + UNDEF:
687 case WEAK_DEF * 16 + UNDEF:
688 case UNDEF * 16 + UNDEF:
689 // A new undefined reference tells us nothing.
690 return false;
692 case DYN_DEF * 16 + UNDEF:
693 case DYN_WEAK_DEF * 16 + UNDEF:
694 // For a dynamic def, we need to remember which kind of undef we see.
695 *adjust_dyndef = true;
696 return false;
698 case WEAK_UNDEF * 16 + UNDEF:
699 case DYN_UNDEF * 16 + UNDEF:
700 case DYN_WEAK_UNDEF * 16 + UNDEF:
701 // A strong undef overrides a dynamic or weak undef.
702 return true;
704 case COMMON * 16 + UNDEF:
705 case WEAK_COMMON * 16 + UNDEF:
706 case DYN_COMMON * 16 + UNDEF:
707 case DYN_WEAK_COMMON * 16 + UNDEF:
708 // A new undefined reference tells us nothing.
709 return false;
711 case DEF * 16 + WEAK_UNDEF:
712 case WEAK_DEF * 16 + WEAK_UNDEF:
713 case UNDEF * 16 + WEAK_UNDEF:
714 case WEAK_UNDEF * 16 + WEAK_UNDEF:
715 case DYN_UNDEF * 16 + WEAK_UNDEF:
716 case COMMON * 16 + WEAK_UNDEF:
717 case WEAK_COMMON * 16 + WEAK_UNDEF:
718 case DYN_COMMON * 16 + WEAK_UNDEF:
719 case DYN_WEAK_COMMON * 16 + WEAK_UNDEF:
720 // A new weak undefined reference tells us nothing unless the
721 // exisiting symbol is a dynamic weak reference.
722 return false;
724 case DYN_WEAK_UNDEF * 16 + WEAK_UNDEF:
725 // A new weak reference overrides an existing dynamic weak reference.
726 // This is necessary because a dynamic weak reference remembers
727 // the old binding, which may not be weak. If we keeps the existing
728 // dynamic weak reference, the weakness may be dropped in the output.
729 return true;
731 case DYN_DEF * 16 + WEAK_UNDEF:
732 case DYN_WEAK_DEF * 16 + WEAK_UNDEF:
733 // For a dynamic def, we need to remember which kind of undef we see.
734 *adjust_dyndef = true;
735 return false;
737 case DEF * 16 + DYN_UNDEF:
738 case WEAK_DEF * 16 + DYN_UNDEF:
739 case DYN_DEF * 16 + DYN_UNDEF:
740 case DYN_WEAK_DEF * 16 + DYN_UNDEF:
741 case UNDEF * 16 + DYN_UNDEF:
742 case WEAK_UNDEF * 16 + DYN_UNDEF:
743 case DYN_UNDEF * 16 + DYN_UNDEF:
744 case DYN_WEAK_UNDEF * 16 + DYN_UNDEF:
745 case COMMON * 16 + DYN_UNDEF:
746 case WEAK_COMMON * 16 + DYN_UNDEF:
747 case DYN_COMMON * 16 + DYN_UNDEF:
748 case DYN_WEAK_COMMON * 16 + DYN_UNDEF:
749 // A new dynamic undefined reference tells us nothing.
750 return false;
752 case DEF * 16 + DYN_WEAK_UNDEF:
753 case WEAK_DEF * 16 + DYN_WEAK_UNDEF:
754 case DYN_DEF * 16 + DYN_WEAK_UNDEF:
755 case DYN_WEAK_DEF * 16 + DYN_WEAK_UNDEF:
756 case UNDEF * 16 + DYN_WEAK_UNDEF:
757 case WEAK_UNDEF * 16 + DYN_WEAK_UNDEF:
758 case DYN_UNDEF * 16 + DYN_WEAK_UNDEF:
759 case DYN_WEAK_UNDEF * 16 + DYN_WEAK_UNDEF:
760 case COMMON * 16 + DYN_WEAK_UNDEF:
761 case WEAK_COMMON * 16 + DYN_WEAK_UNDEF:
762 case DYN_COMMON * 16 + DYN_WEAK_UNDEF:
763 case DYN_WEAK_COMMON * 16 + DYN_WEAK_UNDEF:
764 // A new weak dynamic undefined reference tells us nothing.
765 return false;
767 case DEF * 16 + COMMON:
768 // A common symbol does not override a definition.
769 if (parameters->options().warn_common())
770 Symbol_table::report_resolve_problem(false,
771 _("common '%s' overridden by "
772 "previous definition"),
773 to, defined, object);
774 return false;
776 case WEAK_DEF * 16 + COMMON:
777 case DYN_DEF * 16 + COMMON:
778 case DYN_WEAK_DEF * 16 + COMMON:
779 // A common symbol does override a weak definition or a dynamic
780 // definition.
781 return true;
783 case UNDEF * 16 + COMMON:
784 case WEAK_UNDEF * 16 + COMMON:
785 case DYN_UNDEF * 16 + COMMON:
786 case DYN_WEAK_UNDEF * 16 + COMMON:
787 // A common symbol is a definition for a reference.
788 return true;
790 case COMMON * 16 + COMMON:
791 // Set the size to the maximum.
792 *adjust_common_sizes = true;
793 return false;
795 case WEAK_COMMON * 16 + COMMON:
796 // I'm not sure just what a weak common symbol means, but
797 // presumably it can be overridden by a regular common symbol.
798 return true;
800 case DYN_COMMON * 16 + COMMON:
801 case DYN_WEAK_COMMON * 16 + COMMON:
802 // Use the real common symbol, but adjust the size if necessary.
803 *adjust_common_sizes = true;
804 return true;
806 case DEF * 16 + WEAK_COMMON:
807 case WEAK_DEF * 16 + WEAK_COMMON:
808 case DYN_DEF * 16 + WEAK_COMMON:
809 case DYN_WEAK_DEF * 16 + WEAK_COMMON:
810 // Whatever a weak common symbol is, it won't override a
811 // definition.
812 return false;
814 case UNDEF * 16 + WEAK_COMMON:
815 case WEAK_UNDEF * 16 + WEAK_COMMON:
816 case DYN_UNDEF * 16 + WEAK_COMMON:
817 case DYN_WEAK_UNDEF * 16 + WEAK_COMMON:
818 // A weak common symbol is better than an undefined symbol.
819 return true;
821 case COMMON * 16 + WEAK_COMMON:
822 case WEAK_COMMON * 16 + WEAK_COMMON:
823 case DYN_COMMON * 16 + WEAK_COMMON:
824 case DYN_WEAK_COMMON * 16 + WEAK_COMMON:
825 // Ignore a weak common symbol in the presence of a real common
826 // symbol.
827 return false;
829 case DEF * 16 + DYN_COMMON:
830 case WEAK_DEF * 16 + DYN_COMMON:
831 case DYN_DEF * 16 + DYN_COMMON:
832 case DYN_WEAK_DEF * 16 + DYN_COMMON:
833 // Ignore a dynamic common symbol in the presence of a
834 // definition.
835 return false;
837 case UNDEF * 16 + DYN_COMMON:
838 case WEAK_UNDEF * 16 + DYN_COMMON:
839 case DYN_UNDEF * 16 + DYN_COMMON:
840 case DYN_WEAK_UNDEF * 16 + DYN_COMMON:
841 // A dynamic common symbol is a definition of sorts.
842 return true;
844 case COMMON * 16 + DYN_COMMON:
845 case WEAK_COMMON * 16 + DYN_COMMON:
846 case DYN_COMMON * 16 + DYN_COMMON:
847 case DYN_WEAK_COMMON * 16 + DYN_COMMON:
848 // Set the size to the maximum.
849 *adjust_common_sizes = true;
850 return false;
852 case DEF * 16 + DYN_WEAK_COMMON:
853 case WEAK_DEF * 16 + DYN_WEAK_COMMON:
854 case DYN_DEF * 16 + DYN_WEAK_COMMON:
855 case DYN_WEAK_DEF * 16 + DYN_WEAK_COMMON:
856 // A common symbol is ignored in the face of a definition.
857 return false;
859 case UNDEF * 16 + DYN_WEAK_COMMON:
860 case WEAK_UNDEF * 16 + DYN_WEAK_COMMON:
861 case DYN_UNDEF * 16 + DYN_WEAK_COMMON:
862 case DYN_WEAK_UNDEF * 16 + DYN_WEAK_COMMON:
863 // I guess a weak common symbol is better than a definition.
864 return true;
866 case COMMON * 16 + DYN_WEAK_COMMON:
867 case WEAK_COMMON * 16 + DYN_WEAK_COMMON:
868 case DYN_COMMON * 16 + DYN_WEAK_COMMON:
869 case DYN_WEAK_COMMON * 16 + DYN_WEAK_COMMON:
870 // Set the size to the maximum.
871 *adjust_common_sizes = true;
872 return false;
874 default:
875 gold_unreachable();
879 // Issue an error or warning due to symbol resolution. IS_ERROR
880 // indicates an error rather than a warning. MSG is the error
881 // message; it is expected to have a %s for the symbol name. TO is
882 // the existing symbol. DEFINED/OBJECT is where the new symbol was
883 // found.
885 // FIXME: We should have better location information here. When the
886 // symbol is defined, we should be able to pull the location from the
887 // debug info if there is any.
889 void
890 Symbol_table::report_resolve_problem(bool is_error, const char* msg,
891 const Symbol* to, Defined defined,
892 Object* object)
894 std::string demangled(to->demangled_name());
895 size_t len = strlen(msg) + demangled.length() + 10;
896 char* buf = new char[len];
897 snprintf(buf, len, msg, demangled.c_str());
899 const char* objname;
900 switch (defined)
902 case OBJECT:
903 objname = object->name().c_str();
904 break;
905 case COPY:
906 objname = _("COPY reloc");
907 break;
908 case DEFSYM:
909 case UNDEFINED:
910 objname = _("command line");
911 break;
912 case SCRIPT:
913 objname = _("linker script");
914 break;
915 case PREDEFINED:
916 case INCREMENTAL_BASE:
917 objname = _("linker defined");
918 break;
919 default:
920 gold_unreachable();
923 if (is_error)
924 gold_error("%s: %s", objname, buf);
925 else
926 gold_warning("%s: %s", objname, buf);
928 delete[] buf;
930 if (to->source() == Symbol::FROM_OBJECT)
931 objname = to->object()->name().c_str();
932 else
933 objname = _("command line");
934 gold_info("%s: %s: previous definition here", program_name, objname);
937 // Completely override existing symbol. Everything bar name_,
938 // version_, and is_forced_local_ flag are copied. version_ is
939 // cleared if from->version_ is clear. Returns true if this symbol
940 // should be forced local.
941 bool
942 Symbol::clone(const Symbol* from)
944 // Don't allow cloning after dynamic linking info is attached to symbols.
945 // We aren't prepared to merge such.
946 gold_assert(!this->has_symtab_index() && !from->has_symtab_index());
947 gold_assert(!this->has_dynsym_index() && !from->has_dynsym_index());
948 gold_assert(this->got_offset_list() == NULL
949 && from->got_offset_list() == NULL);
950 gold_assert(!this->has_plt_offset() && !from->has_plt_offset());
952 if (!from->version_)
953 this->version_ = from->version_;
954 this->u1_ = from->u1_;
955 this->u2_ = from->u2_;
956 this->type_ = from->type_;
957 this->binding_ = from->binding_;
958 this->visibility_ = from->visibility_;
959 this->nonvis_ = from->nonvis_;
960 this->source_ = from->source_;
961 this->is_def_ = from->is_def_;
962 this->is_forwarder_ = from->is_forwarder_;
963 this->has_alias_ = from->has_alias_;
964 this->needs_dynsym_entry_ = from->needs_dynsym_entry_;
965 this->in_reg_ = from->in_reg_;
966 this->in_dyn_ = from->in_dyn_;
967 this->needs_dynsym_value_ = from->needs_dynsym_value_;
968 this->has_warning_ = from->has_warning_;
969 this->is_copied_from_dynobj_ = from->is_copied_from_dynobj_;
970 this->is_ordinary_shndx_ = from->is_ordinary_shndx_;
971 this->in_real_elf_ = from->in_real_elf_;
972 this->is_defined_in_discarded_section_
973 = from->is_defined_in_discarded_section_;
974 this->undef_binding_set_ = from->undef_binding_set_;
975 this->undef_binding_weak_ = from->undef_binding_weak_;
976 this->is_predefined_ = from->is_predefined_;
977 this->is_protected_ = from->is_protected_;
978 this->non_zero_localentry_ = from->non_zero_localentry_;
980 return !this->is_forced_local_ && from->is_forced_local_;
983 template <int size>
984 bool
985 Sized_symbol<size>::clone(const Sized_symbol<size>* from)
987 this->value_ = from->value_;
988 this->symsize_ = from->symsize_;
989 return Symbol::clone(from);
992 // A special case of should_override which is only called for a strong
993 // defined symbol from a regular object file. This is used when
994 // defining special symbols.
996 bool
997 Symbol_table::should_override_with_special(const Symbol* to,
998 elfcpp::STT fromtype,
999 Defined defined)
1001 bool adjust_common_sizes;
1002 bool adjust_dyn_def;
1003 unsigned int frombits = global_flag | regular_flag | def_flag;
1004 bool ret = Symbol_table::should_override(to, frombits, fromtype, defined,
1005 NULL, &adjust_common_sizes,
1006 &adjust_dyn_def, false);
1007 gold_assert(!adjust_common_sizes && !adjust_dyn_def);
1008 return ret;
1011 // Override symbol base with a special symbol.
1013 void
1014 Symbol::override_base_with_special(const Symbol* from)
1016 bool same_name = this->name_ == from->name_;
1017 gold_assert(same_name || this->has_alias());
1019 // If we are overriding an undef, remember the original binding.
1020 if (this->is_undefined())
1021 this->set_undef_binding(this->binding_);
1023 this->source_ = from->source_;
1024 switch (from->source_)
1026 case FROM_OBJECT:
1027 case IN_OUTPUT_DATA:
1028 case IN_OUTPUT_SEGMENT:
1029 this->u1_ = from->u1_;
1030 this->u2_ = from->u2_;
1031 break;
1032 case IS_CONSTANT:
1033 case IS_UNDEFINED:
1034 break;
1035 default:
1036 gold_unreachable();
1037 break;
1040 if (same_name)
1042 // When overriding a versioned symbol with a special symbol, we
1043 // may be changing the version. This will happen if we see a
1044 // special symbol such as "_end" defined in a shared object with
1045 // one version (from a version script), but we want to define it
1046 // here with a different version (from a different version
1047 // script).
1048 this->version_ = from->version_;
1050 this->type_ = from->type_;
1051 this->binding_ = from->binding_;
1052 this->override_visibility(from->visibility_);
1053 this->nonvis_ = from->nonvis_;
1055 // Special symbols are always considered to be regular symbols.
1056 this->in_reg_ = true;
1058 if (from->needs_dynsym_entry_)
1059 this->needs_dynsym_entry_ = true;
1060 if (from->needs_dynsym_value_)
1061 this->needs_dynsym_value_ = true;
1063 this->is_predefined_ = from->is_predefined_;
1065 // We shouldn't see these flags. If we do, we need to handle them
1066 // somehow.
1067 gold_assert(!from->is_forwarder_);
1068 gold_assert(!from->has_plt_offset());
1069 gold_assert(!from->has_warning_);
1070 gold_assert(!from->is_copied_from_dynobj_);
1071 gold_assert(!from->is_forced_local_);
1074 // Override a symbol with a special symbol.
1076 template<int size>
1077 void
1078 Sized_symbol<size>::override_with_special(const Sized_symbol<size>* from)
1080 this->override_base_with_special(from);
1081 this->value_ = from->value_;
1082 this->symsize_ = from->symsize_;
1085 // Override TOSYM with the special symbol FROMSYM. This handles all
1086 // aliases of TOSYM.
1088 template<int size>
1089 void
1090 Symbol_table::override_with_special(Sized_symbol<size>* tosym,
1091 const Sized_symbol<size>* fromsym)
1093 tosym->override_with_special(fromsym);
1094 if (tosym->has_alias())
1096 Symbol* sym = this->weak_aliases_[tosym];
1097 gold_assert(sym != NULL);
1098 Sized_symbol<size>* ssym = this->get_sized_symbol<size>(sym);
1101 ssym->override_with_special(fromsym);
1102 sym = this->weak_aliases_[ssym];
1103 gold_assert(sym != NULL);
1104 ssym = this->get_sized_symbol<size>(sym);
1106 while (ssym != tosym);
1108 if (tosym->binding() == elfcpp::STB_LOCAL
1109 || ((tosym->visibility() == elfcpp::STV_HIDDEN
1110 || tosym->visibility() == elfcpp::STV_INTERNAL)
1111 && (tosym->binding() == elfcpp::STB_GLOBAL
1112 || tosym->binding() == elfcpp::STB_GNU_UNIQUE
1113 || tosym->binding() == elfcpp::STB_WEAK)
1114 && !parameters->options().relocatable()))
1115 this->force_local(tosym);
1118 // Instantiate the templates we need. We could use the configure
1119 // script to restrict this to only the ones needed for implemented
1120 // targets.
1122 // We have to instantiate both big and little endian versions because
1123 // these are used by other templates that depends on size only.
1125 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1126 template
1127 void
1128 Symbol_table::resolve<32, false>(
1129 Sized_symbol<32>* to,
1130 const elfcpp::Sym<32, false>& sym,
1131 unsigned int st_shndx,
1132 bool is_ordinary,
1133 unsigned int orig_st_shndx,
1134 Object* object,
1135 const char* version,
1136 bool is_default_version);
1138 template
1139 void
1140 Symbol_table::resolve<32, true>(
1141 Sized_symbol<32>* to,
1142 const elfcpp::Sym<32, true>& sym,
1143 unsigned int st_shndx,
1144 bool is_ordinary,
1145 unsigned int orig_st_shndx,
1146 Object* object,
1147 const char* version,
1148 bool is_default_version);
1149 #endif
1151 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1152 template
1153 void
1154 Symbol_table::resolve<64, false>(
1155 Sized_symbol<64>* to,
1156 const elfcpp::Sym<64, false>& sym,
1157 unsigned int st_shndx,
1158 bool is_ordinary,
1159 unsigned int orig_st_shndx,
1160 Object* object,
1161 const char* version,
1162 bool is_default_version);
1164 template
1165 void
1166 Symbol_table::resolve<64, true>(
1167 Sized_symbol<64>* to,
1168 const elfcpp::Sym<64, true>& sym,
1169 unsigned int st_shndx,
1170 bool is_ordinary,
1171 unsigned int orig_st_shndx,
1172 Object* object,
1173 const char* version,
1174 bool is_default_version);
1175 #endif
1177 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1178 template
1179 void
1180 Symbol_table::override_with_special<32>(Sized_symbol<32>*,
1181 const Sized_symbol<32>*);
1182 #endif
1184 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1185 template
1186 void
1187 Symbol_table::override_with_special<64>(Sized_symbol<64>*,
1188 const Sized_symbol<64>*);
1189 #endif
1191 template
1192 bool
1193 Sized_symbol<32>::clone(const Sized_symbol<32>*);
1195 template
1196 bool
1197 Sized_symbol<64>::clone(const Sized_symbol<64>*);
1198 } // End namespace gold.