1 // symtab.cc -- the gold symbol table
3 // Copyright (C) 2006-2024 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
6 // This file is part of gold.
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
35 #include "dwarf_reader.h"
39 #include "workqueue.h"
43 #include "incremental.h"
50 // Initialize fields in Symbol. This initializes everything except
51 // u1_, u2_ and source_.
54 Symbol::init_fields(const char* name
, const char* version
,
55 elfcpp::STT type
, elfcpp::STB binding
,
56 elfcpp::STV visibility
, unsigned char nonvis
)
59 this->version_
= version
;
60 this->symtab_index_
= 0;
61 this->dynsym_index_
= 0;
62 this->got_offsets_
.init();
63 this->plt_offset_
= -1U;
65 this->binding_
= binding
;
66 this->visibility_
= visibility
;
67 this->nonvis_
= nonvis
;
68 this->is_def_
= false;
69 this->is_forwarder_
= false;
70 this->has_alias_
= false;
71 this->needs_dynsym_entry_
= false;
72 this->in_reg_
= false;
73 this->in_dyn_
= false;
74 this->has_warning_
= false;
75 this->is_copied_from_dynobj_
= false;
76 this->is_forced_local_
= false;
77 this->is_ordinary_shndx_
= false;
78 this->in_real_elf_
= false;
79 this->is_defined_in_discarded_section_
= false;
80 this->undef_binding_set_
= false;
81 this->undef_binding_weak_
= false;
82 this->is_predefined_
= false;
83 this->is_protected_
= false;
84 this->non_zero_localentry_
= false;
87 // Return the demangled version of the symbol's name, but only
88 // if the --demangle flag was set.
91 demangle(const char* name
)
93 if (!parameters
->options().do_demangle())
96 // cplus_demangle allocates memory for the result it returns,
97 // and returns NULL if the name is already demangled.
98 char* demangled_name
= cplus_demangle(name
, DMGL_ANSI
| DMGL_PARAMS
);
99 if (demangled_name
== NULL
)
102 std::string
retval(demangled_name
);
103 free(demangled_name
);
108 Symbol::demangled_name() const
110 return demangle(this->name());
113 // Initialize the fields in the base class Symbol for SYM in OBJECT.
115 template<int size
, bool big_endian
>
117 Symbol::init_base_object(const char* name
, const char* version
, Object
* object
,
118 const elfcpp::Sym
<size
, big_endian
>& sym
,
119 unsigned int st_shndx
, bool is_ordinary
)
121 this->init_fields(name
, version
, sym
.get_st_type(), sym
.get_st_bind(),
122 sym
.get_st_visibility(), sym
.get_st_nonvis());
123 this->u1_
.object
= object
;
124 this->u2_
.shndx
= st_shndx
;
125 this->is_ordinary_shndx_
= is_ordinary
;
126 this->source_
= FROM_OBJECT
;
127 this->in_reg_
= !object
->is_dynamic();
128 this->in_dyn_
= object
->is_dynamic();
129 this->in_real_elf_
= object
->pluginobj() == NULL
;
132 // Initialize the fields in the base class Symbol for a symbol defined
133 // in an Output_data.
136 Symbol::init_base_output_data(const char* name
, const char* version
,
137 Output_data
* od
, elfcpp::STT type
,
138 elfcpp::STB binding
, elfcpp::STV visibility
,
139 unsigned char nonvis
, bool offset_is_from_end
,
142 this->init_fields(name
, version
, type
, binding
, visibility
, nonvis
);
143 this->u1_
.output_data
= od
;
144 this->u2_
.offset_is_from_end
= offset_is_from_end
;
145 this->source_
= IN_OUTPUT_DATA
;
146 this->in_reg_
= true;
147 this->in_real_elf_
= true;
148 this->is_predefined_
= is_predefined
;
151 // Initialize the fields in the base class Symbol for a symbol defined
152 // in an Output_segment.
155 Symbol::init_base_output_segment(const char* name
, const char* version
,
156 Output_segment
* os
, elfcpp::STT type
,
157 elfcpp::STB binding
, elfcpp::STV visibility
,
158 unsigned char nonvis
,
159 Segment_offset_base offset_base
,
162 this->init_fields(name
, version
, type
, binding
, visibility
, nonvis
);
163 this->u1_
.output_segment
= os
;
164 this->u2_
.offset_base
= offset_base
;
165 this->source_
= IN_OUTPUT_SEGMENT
;
166 this->in_reg_
= true;
167 this->in_real_elf_
= true;
168 this->is_predefined_
= is_predefined
;
171 // Initialize the fields in the base class Symbol for a symbol defined
175 Symbol::init_base_constant(const char* name
, const char* version
,
176 elfcpp::STT type
, elfcpp::STB binding
,
177 elfcpp::STV visibility
, unsigned char nonvis
,
180 this->init_fields(name
, version
, type
, binding
, visibility
, nonvis
);
181 this->source_
= IS_CONSTANT
;
182 this->in_reg_
= true;
183 this->in_real_elf_
= true;
184 this->is_predefined_
= is_predefined
;
187 // Initialize the fields in the base class Symbol for an undefined
191 Symbol::init_base_undefined(const char* name
, const char* version
,
192 elfcpp::STT type
, elfcpp::STB binding
,
193 elfcpp::STV visibility
, unsigned char nonvis
)
195 this->init_fields(name
, version
, type
, binding
, visibility
, nonvis
);
196 this->dynsym_index_
= -1U;
197 this->source_
= IS_UNDEFINED
;
198 this->in_reg_
= true;
199 this->in_real_elf_
= true;
202 // Allocate a common symbol in the base.
205 Symbol::allocate_base_common(Output_data
* od
)
207 gold_assert(this->is_common());
208 this->source_
= IN_OUTPUT_DATA
;
209 this->u1_
.output_data
= od
;
210 this->u2_
.offset_is_from_end
= false;
213 // Initialize the fields in Sized_symbol for SYM in OBJECT.
216 template<bool big_endian
>
218 Sized_symbol
<size
>::init_object(const char* name
, const char* version
,
220 const elfcpp::Sym
<size
, big_endian
>& sym
,
221 unsigned int st_shndx
, bool is_ordinary
)
223 this->init_base_object(name
, version
, object
, sym
, st_shndx
, is_ordinary
);
224 this->value_
= sym
.get_st_value();
225 this->symsize_
= sym
.get_st_size();
228 // Initialize the fields in Sized_symbol for a symbol defined in an
233 Sized_symbol
<size
>::init_output_data(const char* name
, const char* version
,
234 Output_data
* od
, Value_type value
,
235 Size_type symsize
, elfcpp::STT type
,
237 elfcpp::STV visibility
,
238 unsigned char nonvis
,
239 bool offset_is_from_end
,
242 this->init_base_output_data(name
, version
, od
, type
, binding
, visibility
,
243 nonvis
, offset_is_from_end
, is_predefined
);
244 this->value_
= value
;
245 this->symsize_
= symsize
;
248 // Initialize the fields in Sized_symbol for a symbol defined in an
253 Sized_symbol
<size
>::init_output_segment(const char* name
, const char* version
,
254 Output_segment
* os
, Value_type value
,
255 Size_type symsize
, elfcpp::STT type
,
257 elfcpp::STV visibility
,
258 unsigned char nonvis
,
259 Segment_offset_base offset_base
,
262 this->init_base_output_segment(name
, version
, os
, type
, binding
, visibility
,
263 nonvis
, offset_base
, is_predefined
);
264 this->value_
= value
;
265 this->symsize_
= symsize
;
268 // Initialize the fields in Sized_symbol for a symbol defined as a
273 Sized_symbol
<size
>::init_constant(const char* name
, const char* version
,
274 Value_type value
, Size_type symsize
,
275 elfcpp::STT type
, elfcpp::STB binding
,
276 elfcpp::STV visibility
, unsigned char nonvis
,
279 this->init_base_constant(name
, version
, type
, binding
, visibility
, nonvis
,
281 this->value_
= value
;
282 this->symsize_
= symsize
;
285 // Initialize the fields in Sized_symbol for an undefined symbol.
289 Sized_symbol
<size
>::init_undefined(const char* name
, const char* version
,
290 Value_type value
, elfcpp::STT type
,
291 elfcpp::STB binding
, elfcpp::STV visibility
,
292 unsigned char nonvis
)
294 this->init_base_undefined(name
, version
, type
, binding
, visibility
, nonvis
);
295 this->value_
= value
;
299 // Return an allocated string holding the symbol's name as
300 // name@version. This is used for relocatable links.
303 Symbol::versioned_name() const
305 gold_assert(this->version_
!= NULL
);
306 std::string ret
= this->name_
;
310 ret
+= this->version_
;
314 // Return true if SHNDX represents a common symbol.
317 Symbol::is_common_shndx(unsigned int shndx
)
319 return (shndx
== elfcpp::SHN_COMMON
320 || shndx
== parameters
->target().small_common_shndx()
321 || shndx
== parameters
->target().large_common_shndx());
324 // Allocate a common symbol.
328 Sized_symbol
<size
>::allocate_common(Output_data
* od
, Value_type value
)
330 this->allocate_base_common(od
);
331 this->value_
= value
;
334 // The ""'s around str ensure str is a string literal, so sizeof works.
335 #define strprefix(var, str) (strncmp(var, str, sizeof("" str "") - 1) == 0)
337 // Return true if this symbol should be added to the dynamic symbol
341 Symbol::should_add_dynsym_entry(Symbol_table
* symtab
) const
343 // If the symbol is only present on plugin files, the plugin decided we
345 if (!this->in_real_elf())
348 // If the symbol is used by a dynamic relocation, we need to add it.
349 if (this->needs_dynsym_entry())
352 // If this symbol's section is not added, the symbol need not be added.
353 // The section may have been GCed. Note that export_dynamic is being
354 // overridden here. This should not be done for shared objects.
355 if (parameters
->options().gc_sections()
356 && !parameters
->options().shared()
357 && this->source() == Symbol::FROM_OBJECT
358 && !this->object()->is_dynamic())
360 Relobj
* relobj
= static_cast<Relobj
*>(this->object());
362 unsigned int shndx
= this->shndx(&is_ordinary
);
363 if (is_ordinary
&& shndx
!= elfcpp::SHN_UNDEF
364 && !relobj
->is_section_included(shndx
)
365 && !symtab
->is_section_folded(relobj
, shndx
))
369 // If the symbol was forced dynamic in a --dynamic-list file
370 // or an --export-dynamic-symbol option, add it.
371 if (!this->is_from_dynobj()
372 && (parameters
->options().in_dynamic_list(this->name())
373 || parameters
->options().is_export_dynamic_symbol(this->name())))
375 if (!this->is_forced_local())
377 gold_warning(_("Cannot export local symbol '%s'"),
378 this->demangled_name().c_str());
382 // If the symbol was forced local in a version script, do not add it.
383 if (this->is_forced_local())
386 // If dynamic-list-data was specified, add any STT_OBJECT.
387 if (parameters
->options().dynamic_list_data()
388 && !this->is_from_dynobj()
389 && this->type() == elfcpp::STT_OBJECT
)
392 // If --dynamic-list-cpp-new was specified, add any new/delete symbol.
393 // If --dynamic-list-cpp-typeinfo was specified, add any typeinfo symbols.
394 if ((parameters
->options().dynamic_list_cpp_new()
395 || parameters
->options().dynamic_list_cpp_typeinfo())
396 && !this->is_from_dynobj())
398 // TODO(csilvers): We could probably figure out if we're an operator
399 // new/delete or typeinfo without the need to demangle.
400 char* demangled_name
= cplus_demangle(this->name(),
401 DMGL_ANSI
| DMGL_PARAMS
);
402 if (demangled_name
== NULL
)
404 // Not a C++ symbol, so it can't satisfy these flags
406 else if (parameters
->options().dynamic_list_cpp_new()
407 && (strprefix(demangled_name
, "operator new")
408 || strprefix(demangled_name
, "operator delete")))
410 free(demangled_name
);
413 else if (parameters
->options().dynamic_list_cpp_typeinfo()
414 && (strprefix(demangled_name
, "typeinfo name for")
415 || strprefix(demangled_name
, "typeinfo for")))
417 free(demangled_name
);
421 free(demangled_name
);
424 // If exporting all symbols or building a shared library,
425 // or the symbol should be globally unique (GNU_UNIQUE),
426 // and the symbol is defined in a regular object and is
427 // externally visible, we need to add it.
428 if ((parameters
->options().export_dynamic()
429 || parameters
->options().shared()
430 || (parameters
->options().gnu_unique()
431 && this->binding() == elfcpp::STB_GNU_UNIQUE
))
432 && !this->is_from_dynobj()
433 && !this->is_undefined()
434 && this->is_externally_visible())
440 // Return true if the final value of this symbol is known at link
444 Symbol::final_value_is_known() const
446 // If we are not generating an executable, then no final values are
447 // known, since they will change at runtime, with the exception of
448 // TLS symbols in a position-independent executable.
449 if ((parameters
->options().output_is_position_independent()
450 || parameters
->options().relocatable())
451 && !(this->type() == elfcpp::STT_TLS
452 && parameters
->options().pie()))
454 // Non-default weak undefined symbols in executable and shared
455 // library are always resolved to 0 at runtime.
456 if (this->visibility() != elfcpp::STV_DEFAULT
457 && this->is_weak_undefined()
458 && !parameters
->options().relocatable())
464 // If the symbol is not from an object file, and is not undefined,
465 // then it is defined, and known.
466 if (this->source_
!= FROM_OBJECT
)
468 if (this->source_
!= IS_UNDEFINED
)
473 // If the symbol is from a dynamic object, then the final value
475 if (this->object()->is_dynamic())
478 // If the symbol is not undefined (it is defined or common),
479 // then the final value is known.
480 if (!this->is_undefined())
484 // If the symbol is undefined, then whether the final value is known
485 // depends on whether we are doing a static link. If we are doing a
486 // dynamic link, then the final value could be filled in at runtime.
487 // This could reasonably be the case for a weak undefined symbol.
488 return parameters
->doing_static_link();
491 // Return the output section where this symbol is defined.
494 Symbol::output_section() const
496 switch (this->source_
)
500 unsigned int shndx
= this->u2_
.shndx
;
501 if (shndx
!= elfcpp::SHN_UNDEF
&& this->is_ordinary_shndx_
)
503 gold_assert(!this->u1_
.object
->is_dynamic());
504 gold_assert(this->u1_
.object
->pluginobj() == NULL
);
505 Relobj
* relobj
= static_cast<Relobj
*>(this->u1_
.object
);
506 return relobj
->output_section(shndx
);
512 return this->u1_
.output_data
->output_section();
514 case IN_OUTPUT_SEGMENT
:
524 // Set the symbol's output section. This is used for symbols defined
525 // in scripts. This should only be called after the symbol table has
529 Symbol::set_output_section(Output_section
* os
)
531 switch (this->source_
)
535 gold_assert(this->output_section() == os
);
538 this->source_
= IN_OUTPUT_DATA
;
539 this->u1_
.output_data
= os
;
540 this->u2_
.offset_is_from_end
= false;
542 case IN_OUTPUT_SEGMENT
:
549 // Set the symbol's output segment. This is used for pre-defined
550 // symbols whose segments aren't known until after layout is done
551 // (e.g., __ehdr_start).
554 Symbol::set_output_segment(Output_segment
* os
, Segment_offset_base base
)
556 gold_assert(this->is_predefined_
);
557 this->source_
= IN_OUTPUT_SEGMENT
;
558 this->u1_
.output_segment
= os
;
559 this->u2_
.offset_base
= base
;
562 // Set the symbol to undefined. This is used for pre-defined
563 // symbols whose segments aren't known until after layout is done
564 // (e.g., __ehdr_start).
567 Symbol::set_undefined()
569 this->source_
= IS_UNDEFINED
;
570 this->is_predefined_
= false;
573 // Class Symbol_table.
575 Symbol_table::Symbol_table(unsigned int count
,
576 const Version_script_info
& version_script
)
577 : saw_undefined_(0), offset_(0), has_gnu_output_(false), table_(count
),
578 namepool_(), forwarders_(), commons_(), tls_commons_(), small_commons_(),
579 large_commons_(), forced_locals_(), warnings_(),
580 version_script_(version_script
), gc_(NULL
), icf_(NULL
),
583 namepool_
.reserve(count
);
586 Symbol_table::~Symbol_table()
590 // The symbol table key equality function. This is called with
594 Symbol_table::Symbol_table_eq::operator()(const Symbol_table_key
& k1
,
595 const Symbol_table_key
& k2
) const
597 return k1
.first
== k2
.first
&& k1
.second
== k2
.second
;
601 Symbol_table::is_section_folded(Relobj
* obj
, unsigned int shndx
) const
603 return (parameters
->options().icf_enabled()
604 && this->icf_
->is_section_folded(obj
, shndx
));
607 // For symbols that have been listed with a -u or --export-dynamic-symbol
608 // option, add them to the work list to avoid gc'ing them.
611 Symbol_table::gc_mark_undef_symbols(Layout
* layout
)
613 for (options::String_set::const_iterator p
=
614 parameters
->options().undefined_begin();
615 p
!= parameters
->options().undefined_end();
618 const char* name
= p
->c_str();
619 Symbol
* sym
= this->lookup(name
);
620 gold_assert(sym
!= NULL
);
621 if (sym
->source() == Symbol::FROM_OBJECT
622 && !sym
->object()->is_dynamic())
624 this->gc_mark_symbol(sym
);
628 for (options::String_set::const_iterator p
=
629 parameters
->options().export_dynamic_symbol_begin();
630 p
!= parameters
->options().export_dynamic_symbol_end();
633 const char* name
= p
->c_str();
634 Symbol
* sym
= this->lookup(name
);
635 // It's not an error if a symbol named by --export-dynamic-symbol
638 && sym
->source() == Symbol::FROM_OBJECT
639 && !sym
->object()->is_dynamic())
641 this->gc_mark_symbol(sym
);
645 for (Script_options::referenced_const_iterator p
=
646 layout
->script_options()->referenced_begin();
647 p
!= layout
->script_options()->referenced_end();
650 Symbol
* sym
= this->lookup(p
->c_str());
651 gold_assert(sym
!= NULL
);
652 if (sym
->source() == Symbol::FROM_OBJECT
653 && !sym
->object()->is_dynamic())
655 this->gc_mark_symbol(sym
);
661 Symbol_table::gc_mark_symbol(Symbol
* sym
)
663 // Add the object and section to the work list.
665 unsigned int shndx
= sym
->shndx(&is_ordinary
);
666 if (is_ordinary
&& shndx
!= elfcpp::SHN_UNDEF
&& !sym
->object()->is_dynamic())
668 gold_assert(this->gc_
!= NULL
);
669 Relobj
* relobj
= static_cast<Relobj
*>(sym
->object());
670 this->gc_
->worklist().push_back(Section_id(relobj
, shndx
));
672 parameters
->target().gc_mark_symbol(this, sym
);
675 // When doing garbage collection, keep symbols that have been seen in
678 Symbol_table::gc_mark_dyn_syms(Symbol
* sym
)
680 if (sym
->in_dyn() && sym
->source() == Symbol::FROM_OBJECT
681 && !sym
->object()->is_dynamic())
682 this->gc_mark_symbol(sym
);
685 // Make TO a symbol which forwards to FROM.
688 Symbol_table::make_forwarder(Symbol
* from
, Symbol
* to
)
690 gold_assert(from
!= to
);
691 gold_assert(!from
->is_forwarder() && !to
->is_forwarder());
692 this->forwarders_
[from
] = to
;
693 from
->set_forwarder();
696 // Resolve the forwards from FROM, returning the real symbol.
699 Symbol_table::resolve_forwards(const Symbol
* from
) const
701 gold_assert(from
->is_forwarder());
702 Unordered_map
<const Symbol
*, Symbol
*>::const_iterator p
=
703 this->forwarders_
.find(from
);
704 gold_assert(p
!= this->forwarders_
.end());
708 // Look up a symbol by name.
711 Symbol_table::lookup(const char* name
, const char* version
) const
713 Stringpool::Key name_key
;
714 name
= this->namepool_
.find(name
, &name_key
);
718 Stringpool::Key version_key
= 0;
721 version
= this->namepool_
.find(version
, &version_key
);
726 Symbol_table_key
key(name_key
, version_key
);
727 Symbol_table::Symbol_table_type::const_iterator p
= this->table_
.find(key
);
728 if (p
== this->table_
.end())
733 // Resolve a Symbol with another Symbol. This is only used in the
734 // unusual case where there are references to both an unversioned
735 // symbol and a symbol with a version, and we then discover that that
736 // version is the default version. Because this is unusual, we do
737 // this the slow way, by converting back to an ELF symbol.
739 template<int size
, bool big_endian
>
741 Symbol_table::resolve(Sized_symbol
<size
>* to
, const Sized_symbol
<size
>* from
)
743 unsigned char buf
[elfcpp::Elf_sizes
<size
>::sym_size
];
744 elfcpp::Sym_write
<size
, big_endian
> esym(buf
);
745 // We don't bother to set the st_name or the st_shndx field.
746 esym
.put_st_value(from
->value());
747 esym
.put_st_size(from
->symsize());
748 esym
.put_st_info(from
->binding(), from
->type());
749 esym
.put_st_other(from
->visibility(), from
->nonvis());
751 unsigned int shndx
= from
->shndx(&is_ordinary
);
752 this->resolve(to
, esym
.sym(), shndx
, is_ordinary
, shndx
, from
->object(),
753 from
->version(), true);
758 if (parameters
->options().gc_sections())
759 this->gc_mark_dyn_syms(to
);
762 // Record that a symbol is forced to be local by a version script or
766 Symbol_table::force_local(Symbol
* sym
)
768 if (!sym
->is_defined() && !sym
->is_common())
770 if (sym
->is_forced_local())
772 // We already got this one.
775 sym
->set_is_forced_local();
776 this->forced_locals_
.push_back(sym
);
779 // Adjust NAME for wrapping, and update *NAME_KEY if necessary. This
780 // is only called for undefined symbols, when at least one --wrap
784 Symbol_table::wrap_symbol(const char* name
, Stringpool::Key
* name_key
)
786 // For some targets, we need to ignore a specific character when
787 // wrapping, and add it back later.
789 if (name
[0] == parameters
->target().wrap_char())
795 if (parameters
->options().is_wrap(name
))
797 // Turn NAME into __wrap_NAME.
804 // This will give us both the old and new name in NAMEPOOL_, but
805 // that is OK. Only the versions we need will wind up in the
806 // real string table in the output file.
807 return this->namepool_
.add(s
.c_str(), true, name_key
);
810 const char* const real_prefix
= "__real_";
811 const size_t real_prefix_length
= strlen(real_prefix
);
812 if (strncmp(name
, real_prefix
, real_prefix_length
) == 0
813 && parameters
->options().is_wrap(name
+ real_prefix_length
))
815 // Turn __real_NAME into NAME.
819 s
+= name
+ real_prefix_length
;
820 return this->namepool_
.add(s
.c_str(), true, name_key
);
826 // This is called when we see a symbol NAME/VERSION, and the symbol
827 // already exists in the symbol table, and VERSION is marked as being
828 // the default version. SYM is the NAME/VERSION symbol we just added.
829 // DEFAULT_IS_NEW is true if this is the first time we have seen the
830 // symbol NAME/NULL. PDEF points to the entry for NAME/NULL.
832 template<int size
, bool big_endian
>
834 Symbol_table::define_default_version(Sized_symbol
<size
>* sym
,
836 Symbol_table_type::iterator pdef
)
840 // This is the first time we have seen NAME/NULL. Make
841 // NAME/NULL point to NAME/VERSION, and mark SYM as the default
844 sym
->set_is_default();
846 else if (pdef
->second
== sym
)
848 // NAME/NULL already points to NAME/VERSION. Don't mark the
849 // symbol as the default if it is not already the default.
853 // This is the unfortunate case where we already have entries
854 // for both NAME/VERSION and NAME/NULL. We now see a symbol
855 // NAME/VERSION where VERSION is the default version. We have
856 // already resolved this new symbol with the existing
857 // NAME/VERSION symbol.
859 // It's possible that NAME/NULL and NAME/VERSION are both
860 // defined in regular objects. This can only happen if one
861 // object file defines foo and another defines foo@@ver. This
862 // is somewhat obscure, but we call it a multiple definition
865 // It's possible that NAME/NULL actually has a version, in which
866 // case it won't be the same as VERSION. This happens with
867 // ver_test_7.so in the testsuite for the symbol t2_2. We see
868 // t2_2@@VER2, so we define both t2_2/VER2 and t2_2/NULL. We
869 // then see an unadorned t2_2 in an object file and give it
870 // version VER1 from the version script. This looks like a
871 // default definition for VER1, so it looks like we should merge
872 // t2_2/NULL with t2_2/VER1. That doesn't make sense, but it's
873 // not obvious that this is an error, either. So we just punt.
875 // If one of the symbols has non-default visibility, and the
876 // other is defined in a shared object, then they are different
879 // If the two symbols are from different shared objects,
880 // they are different symbols.
882 // Otherwise, we just resolve the symbols as though they were
885 if (pdef
->second
->version() != NULL
)
886 gold_assert(pdef
->second
->version() != sym
->version());
887 else if (sym
->visibility() != elfcpp::STV_DEFAULT
888 && pdef
->second
->is_from_dynobj())
890 else if (pdef
->second
->visibility() != elfcpp::STV_DEFAULT
891 && sym
->is_from_dynobj())
893 else if (pdef
->second
->is_from_dynobj()
894 && sym
->is_from_dynobj()
895 && pdef
->second
->is_defined()
896 && pdef
->second
->object() != sym
->object())
900 const Sized_symbol
<size
>* symdef
;
901 symdef
= this->get_sized_symbol
<size
>(pdef
->second
);
902 Symbol_table::resolve
<size
, big_endian
>(sym
, symdef
);
903 this->make_forwarder(pdef
->second
, sym
);
905 sym
->set_is_default();
910 // Add one symbol from OBJECT to the symbol table. NAME is symbol
911 // name and VERSION is the version; both are canonicalized. DEF is
912 // whether this is the default version. ST_SHNDX is the symbol's
913 // section index; IS_ORDINARY is whether this is a normal section
914 // rather than a special code.
916 // If IS_DEFAULT_VERSION is true, then this is the definition of a
917 // default version of a symbol. That means that any lookup of
918 // NAME/NULL and any lookup of NAME/VERSION should always return the
919 // same symbol. This is obvious for references, but in particular we
920 // want to do this for definitions: overriding NAME/NULL should also
921 // override NAME/VERSION. If we don't do that, it would be very hard
922 // to override functions in a shared library which uses versioning.
924 // We implement this by simply making both entries in the hash table
925 // point to the same Symbol structure. That is easy enough if this is
926 // the first time we see NAME/NULL or NAME/VERSION, but it is possible
927 // that we have seen both already, in which case they will both have
928 // independent entries in the symbol table. We can't simply change
929 // the symbol table entry, because we have pointers to the entries
930 // attached to the object files. So we mark the entry attached to the
931 // object file as a forwarder, and record it in the forwarders_ map.
932 // Note that entries in the hash table will never be marked as
935 // ORIG_ST_SHNDX and ST_SHNDX are almost always the same.
936 // ORIG_ST_SHNDX is the section index in the input file, or SHN_UNDEF
937 // for a special section code. ST_SHNDX may be modified if the symbol
938 // is defined in a section being discarded.
940 template<int size
, bool big_endian
>
942 Symbol_table::add_from_object(Object
* object
,
944 Stringpool::Key name_key
,
946 Stringpool::Key version_key
,
947 bool is_default_version
,
948 const elfcpp::Sym
<size
, big_endian
>& sym
,
949 unsigned int st_shndx
,
951 unsigned int orig_st_shndx
)
953 // Print a message if this symbol is being traced.
954 if (parameters
->options().is_trace_symbol(name
))
956 if (orig_st_shndx
== elfcpp::SHN_UNDEF
)
957 gold_info(_("%s: reference to %s"), object
->name().c_str(), name
);
959 gold_info(_("%s: definition of %s"), object
->name().c_str(), name
);
962 // For an undefined symbol, we may need to adjust the name using
964 if (orig_st_shndx
== elfcpp::SHN_UNDEF
965 && parameters
->options().any_wrap())
967 const char* wrap_name
= this->wrap_symbol(name
, &name_key
);
968 if (wrap_name
!= name
)
970 // If we see a reference to malloc with version GLIBC_2.0,
971 // and we turn it into a reference to __wrap_malloc, then we
972 // discard the version number. Otherwise the user would be
973 // required to specify the correct version for
981 Symbol
* const snull
= NULL
;
982 std::pair
<typename
Symbol_table_type::iterator
, bool> ins
=
983 this->table_
.insert(std::make_pair(std::make_pair(name_key
, version_key
),
986 std::pair
<typename
Symbol_table_type::iterator
, bool> insdefault
=
987 std::make_pair(this->table_
.end(), false);
988 if (is_default_version
)
990 const Stringpool::Key vnull_key
= 0;
991 insdefault
= this->table_
.insert(std::make_pair(std::make_pair(name_key
,
996 // ins.first: an iterator, which is a pointer to a pair.
997 // ins.first->first: the key (a pair of name and version).
998 // ins.first->second: the value (Symbol*).
999 // ins.second: true if new entry was inserted, false if not.
1001 Sized_symbol
<size
>* ret
= NULL
;
1002 bool was_undefined_in_reg
;
1006 // We already have an entry for NAME/VERSION.
1007 ret
= this->get_sized_symbol
<size
>(ins
.first
->second
);
1008 gold_assert(ret
!= NULL
);
1010 bool ret_is_ordinary
;
1011 const unsigned int ret_shndx
= ret
->shndx(&ret_is_ordinary
);
1013 was_undefined_in_reg
= ret
->is_undefined() && ret
->in_reg();
1014 // Commons from plugins are just placeholders.
1015 was_common
= ret
->is_common() && ret
->object()->pluginobj() == NULL
;
1017 // It's possible for a symbol to be defined in an object file
1018 // using .symver to give it a version, and for there to also be
1019 // a linker script giving that symbol the same version. We
1020 // don't want to give a multiple-definition error for this
1021 // harmless redefinition.
1022 bool check_version
= false;
1023 bool erase_default_version
= false;
1024 bool no_default_version
= false;
1025 if (ret
->source() == Symbol::FROM_OBJECT
1027 && ret_shndx
== st_shndx
)
1029 if (ret
->object() == object
)
1030 check_version
= true;
1032 if (version
!= NULL
&& version
== ret
->version())
1034 // Don't give a multiple-definition error if the hidden
1035 // version from .symver is the same as the default version
1036 // from the unversioned symbol.
1037 if (is_default_version
&& !ret
->is_default ())
1039 no_default_version
= true;
1040 if (insdefault
.second
)
1042 // Don't make the unversioned symbol the default
1044 is_default_version
= false;
1045 erase_default_version
= true;
1046 check_version
= true;
1049 else if (!is_default_version
&& ret
->is_default ())
1051 // Don't make the unversioned symbol the default
1053 ret
->set_is_not_default();
1054 no_default_version
= true;
1055 check_version
= true;
1061 && ret
->is_defined()
1063 && (no_default_version
1064 || ret
->value() == sym
.get_st_value())))
1065 this->resolve(ret
, sym
, st_shndx
, is_ordinary
, orig_st_shndx
,
1066 object
, version
, is_default_version
);
1068 if (parameters
->options().gc_sections())
1069 this->gc_mark_dyn_syms(ret
);
1071 if (is_default_version
)
1072 this->define_default_version
<size
, big_endian
>(ret
, insdefault
.second
,
1076 if (version
!= NULL
&& check_version
)
1078 // We have seen NAME/VERSION already, and marked it as the
1079 // default version, but now we see a definition for
1080 // NAME/VERSION that is not the default version. This can
1081 // happen when the assembler generates two symbols for
1082 // a symbol as a result of a ".symver foo,foo@VER"
1083 // directive. We see the first unversioned symbol and
1084 // we may mark it as the default version (from a
1085 // version script); then we see the second versioned
1086 // symbol and we need to override the first.
1087 // In any other case, the two symbols should have generated
1088 // a multiple definition error.
1089 // (See PR gold/18703.)
1090 // If the hidden version from .symver is the same as the
1091 // default version from the unversioned symbol, don't make
1092 // the unversioned symbol the default versioned symbol.
1093 const Stringpool::Key vnull_key
= 0;
1094 if (erase_default_version
)
1095 this->table_
.erase(std::make_pair(name_key
, vnull_key
));
1096 else if (ret
->object() == object
)
1098 ret
->set_is_not_default();
1099 this->table_
.erase(std::make_pair(name_key
, vnull_key
));
1106 // This is the first time we have seen NAME/VERSION.
1107 gold_assert(ins
.first
->second
== NULL
);
1109 if (is_default_version
&& !insdefault
.second
)
1111 // We already have an entry for NAME/NULL. If we override
1112 // it, then change it to NAME/VERSION.
1113 ret
= this->get_sized_symbol
<size
>(insdefault
.first
->second
);
1115 // If the existing symbol already has a version,
1116 // don't override it with the new symbol.
1117 // This should only happen when the new symbol
1118 // is from a shared library.
1119 if (ret
->version() != NULL
)
1121 if (!object
->is_dynamic())
1123 gold_warning(_("%s: conflicting default version definition"
1125 object
->name().c_str(), name
, version
);
1126 if (ret
->source() == Symbol::FROM_OBJECT
)
1127 gold_info(_("%s: %s: previous definition of %s@@%s here"),
1129 ret
->object()->name().c_str(),
1130 name
, ret
->version());
1133 is_default_version
= false;
1137 was_undefined_in_reg
= ret
->is_undefined() && ret
->in_reg();
1138 // Commons from plugins are just placeholders.
1139 was_common
= (ret
->is_common()
1140 && ret
->object()->pluginobj() == NULL
);
1142 this->resolve(ret
, sym
, st_shndx
, is_ordinary
, orig_st_shndx
,
1143 object
, version
, is_default_version
);
1144 if (parameters
->options().gc_sections())
1145 this->gc_mark_dyn_syms(ret
);
1146 ins
.first
->second
= ret
;
1152 was_undefined_in_reg
= false;
1155 Sized_target
<size
, big_endian
>* target
=
1156 parameters
->sized_target
<size
, big_endian
>();
1157 if (!target
->has_make_symbol())
1158 ret
= new Sized_symbol
<size
>();
1161 ret
= target
->make_symbol(name
, sym
.get_st_type(), object
,
1162 st_shndx
, sym
.get_st_value());
1165 // This means that we don't want a symbol table
1167 if (!is_default_version
)
1168 this->table_
.erase(ins
.first
);
1171 this->table_
.erase(insdefault
.first
);
1172 // Inserting INSDEFAULT invalidated INS.
1173 this->table_
.erase(std::make_pair(name_key
,
1180 ret
->init_object(name
, version
, object
, sym
, st_shndx
, is_ordinary
);
1182 ins
.first
->second
= ret
;
1183 if (is_default_version
)
1185 // This is the first time we have seen NAME/NULL. Point
1186 // it at the new entry for NAME/VERSION.
1187 gold_assert(insdefault
.second
);
1188 insdefault
.first
->second
= ret
;
1192 if (is_default_version
)
1193 ret
->set_is_default();
1196 // Record every time we see a new undefined symbol, to speed up archive
1197 // groups. We only care about symbols undefined in regular objects here
1198 // because undefined symbols only in dynamic objects should't trigger rescans.
1199 if (!was_undefined_in_reg
&& ret
->is_undefined() && ret
->in_reg())
1201 ++this->saw_undefined_
;
1202 if (parameters
->options().has_plugins())
1203 parameters
->options().plugins()->new_undefined_symbol(ret
);
1206 // Keep track of common symbols, to speed up common symbol
1207 // allocation. Don't record commons from plugin objects;
1208 // we need to wait until we see the real symbol in the
1209 // replacement file.
1210 if (!was_common
&& ret
->is_common() && ret
->object()->pluginobj() == NULL
)
1212 if (ret
->type() == elfcpp::STT_TLS
)
1213 this->tls_commons_
.push_back(ret
);
1214 else if (!is_ordinary
1215 && st_shndx
== parameters
->target().small_common_shndx())
1216 this->small_commons_
.push_back(ret
);
1217 else if (!is_ordinary
1218 && st_shndx
== parameters
->target().large_common_shndx())
1219 this->large_commons_
.push_back(ret
);
1221 this->commons_
.push_back(ret
);
1224 // If we're not doing a relocatable link, then any symbol with
1225 // hidden or internal visibility is local.
1226 if ((ret
->visibility() == elfcpp::STV_HIDDEN
1227 || ret
->visibility() == elfcpp::STV_INTERNAL
)
1228 && (ret
->binding() == elfcpp::STB_GLOBAL
1229 || ret
->binding() == elfcpp::STB_GNU_UNIQUE
1230 || ret
->binding() == elfcpp::STB_WEAK
)
1231 && !parameters
->options().relocatable())
1232 this->force_local(ret
);
1237 // Add all the symbols in a relocatable object to the hash table.
1239 template<int size
, bool big_endian
>
1241 Symbol_table::add_from_relobj(
1242 Sized_relobj_file
<size
, big_endian
>* relobj
,
1243 const unsigned char* syms
,
1245 size_t symndx_offset
,
1246 const char* sym_names
,
1247 size_t sym_name_size
,
1248 typename Sized_relobj_file
<size
, big_endian
>::Symbols
* sympointers
,
1253 gold_assert(size
== parameters
->target().get_size());
1255 const int sym_size
= elfcpp::Elf_sizes
<size
>::sym_size
;
1257 const bool just_symbols
= relobj
->just_symbols();
1259 const unsigned char* p
= syms
;
1260 for (size_t i
= 0; i
< count
; ++i
, p
+= sym_size
)
1262 (*sympointers
)[i
] = NULL
;
1264 elfcpp::Sym
<size
, big_endian
> sym(p
);
1266 unsigned int st_name
= sym
.get_st_name();
1267 if (st_name
>= sym_name_size
)
1269 relobj
->error(_("bad global symbol name offset %u at %zu"),
1274 const char* name
= sym_names
+ st_name
;
1276 if (!parameters
->options().relocatable()
1279 && strcmp (name
+ (name
[2] == '_'), "__gnu_lto_slim") == 0)
1280 gold_info(_("%s: plugin needed to handle lto object"),
1281 relobj
->name().c_str());
1284 unsigned int st_shndx
= relobj
->adjust_sym_shndx(i
+ symndx_offset
,
1287 unsigned int orig_st_shndx
= st_shndx
;
1289 orig_st_shndx
= elfcpp::SHN_UNDEF
;
1291 if (st_shndx
!= elfcpp::SHN_UNDEF
)
1294 // A symbol defined in a section which we are not including must
1295 // be treated as an undefined symbol.
1296 bool is_defined_in_discarded_section
= false;
1297 if (st_shndx
!= elfcpp::SHN_UNDEF
1299 && !relobj
->is_section_included(st_shndx
)
1300 && !this->is_section_folded(relobj
, st_shndx
))
1302 st_shndx
= elfcpp::SHN_UNDEF
;
1303 is_defined_in_discarded_section
= true;
1306 // In an object file, an '@' in the name separates the symbol
1307 // name from the version name. If there are two '@' characters,
1308 // this is the default version.
1309 const char* ver
= strchr(name
, '@');
1310 Stringpool::Key ver_key
= 0;
1312 // IS_DEFAULT_VERSION: is the version default?
1313 // IS_FORCED_LOCAL: is the symbol forced local?
1314 bool is_default_version
= false;
1315 bool is_forced_local
= false;
1317 // FIXME: For incremental links, we don't store version information,
1318 // so we need to ignore version symbols for now.
1319 if (parameters
->incremental_update() && ver
!= NULL
)
1321 namelen
= ver
- name
;
1327 // The symbol name is of the form foo@VERSION or foo@@VERSION
1328 namelen
= ver
- name
;
1332 is_default_version
= true;
1335 ver
= this->namepool_
.add(ver
, true, &ver_key
);
1337 // We don't want to assign a version to an undefined symbol,
1338 // even if it is listed in the version script. FIXME: What
1339 // about a common symbol?
1342 namelen
= strlen(name
);
1343 if (!this->version_script_
.empty()
1344 && st_shndx
!= elfcpp::SHN_UNDEF
)
1346 // The symbol name did not have a version, but the
1347 // version script may assign a version anyway.
1348 std::string version
;
1350 if (this->version_script_
.get_symbol_version(name
, &version
,
1354 is_forced_local
= true;
1355 else if (!version
.empty())
1357 ver
= this->namepool_
.add_with_length(version
.c_str(),
1361 is_default_version
= true;
1367 elfcpp::Sym
<size
, big_endian
>* psym
= &sym
;
1368 unsigned char symbuf
[sym_size
];
1369 elfcpp::Sym
<size
, big_endian
> sym2(symbuf
);
1372 memcpy(symbuf
, p
, sym_size
);
1373 elfcpp::Sym_write
<size
, big_endian
> sw(symbuf
);
1374 if (orig_st_shndx
!= elfcpp::SHN_UNDEF
1376 && relobj
->e_type() == elfcpp::ET_REL
)
1378 // Symbol values in relocatable object files are section
1379 // relative. This is normally what we want, but since here
1380 // we are converting the symbol to absolute we need to add
1381 // the section address. The section address in an object
1382 // file is normally zero, but people can use a linker
1383 // script to change it.
1384 sw
.put_st_value(sym
.get_st_value()
1385 + relobj
->section_address(orig_st_shndx
));
1387 st_shndx
= elfcpp::SHN_ABS
;
1388 is_ordinary
= false;
1392 // Fix up visibility if object has no-export set.
1393 if (relobj
->no_export()
1394 && (orig_st_shndx
!= elfcpp::SHN_UNDEF
|| !is_ordinary
))
1396 // We may have copied symbol already above.
1399 memcpy(symbuf
, p
, sym_size
);
1403 elfcpp::STV visibility
= sym2
.get_st_visibility();
1404 if (visibility
== elfcpp::STV_DEFAULT
1405 || visibility
== elfcpp::STV_PROTECTED
)
1407 elfcpp::Sym_write
<size
, big_endian
> sw(symbuf
);
1408 unsigned char nonvis
= sym2
.get_st_nonvis();
1409 sw
.put_st_other(elfcpp::STV_HIDDEN
, nonvis
);
1413 Stringpool::Key name_key
;
1414 name
= this->namepool_
.add_with_length(name
, namelen
, true,
1417 Sized_symbol
<size
>* res
;
1418 res
= this->add_from_object(relobj
, name
, name_key
, ver
, ver_key
,
1419 is_default_version
, *psym
, st_shndx
,
1420 is_ordinary
, orig_st_shndx
);
1425 if (is_forced_local
)
1426 this->force_local(res
);
1428 // Do not treat this symbol as garbage if this symbol will be
1429 // exported to the dynamic symbol table. This is true when
1430 // building a shared library or using --export-dynamic and
1431 // the symbol is externally visible.
1432 if (parameters
->options().gc_sections()
1433 && res
->is_externally_visible()
1434 && !res
->is_from_dynobj()
1435 && (parameters
->options().shared()
1436 || parameters
->options().export_dynamic()
1437 || parameters
->options().in_dynamic_list(res
->name())))
1438 this->gc_mark_symbol(res
);
1440 if (is_defined_in_discarded_section
)
1441 res
->set_is_defined_in_discarded_section();
1443 (*sympointers
)[i
] = res
;
1447 // Add a symbol from a plugin-claimed file.
1449 template<int size
, bool big_endian
>
1451 Symbol_table::add_from_pluginobj(
1452 Sized_pluginobj
<size
, big_endian
>* obj
,
1455 elfcpp::Sym
<size
, big_endian
>* sym
)
1457 unsigned int st_shndx
= sym
->get_st_shndx();
1458 bool is_ordinary
= st_shndx
< elfcpp::SHN_LORESERVE
;
1460 Stringpool::Key ver_key
= 0;
1461 bool is_default_version
= false;
1462 bool is_forced_local
= false;
1466 ver
= this->namepool_
.add(ver
, true, &ver_key
);
1468 // We don't want to assign a version to an undefined symbol,
1469 // even if it is listed in the version script. FIXME: What
1470 // about a common symbol?
1473 if (!this->version_script_
.empty()
1474 && st_shndx
!= elfcpp::SHN_UNDEF
)
1476 // The symbol name did not have a version, but the
1477 // version script may assign a version anyway.
1478 std::string version
;
1480 if (this->version_script_
.get_symbol_version(name
, &version
,
1484 is_forced_local
= true;
1485 else if (!version
.empty())
1487 ver
= this->namepool_
.add_with_length(version
.c_str(),
1491 is_default_version
= true;
1497 Stringpool::Key name_key
;
1498 name
= this->namepool_
.add(name
, true, &name_key
);
1500 Sized_symbol
<size
>* res
;
1501 res
= this->add_from_object(obj
, name
, name_key
, ver
, ver_key
,
1502 is_default_version
, *sym
, st_shndx
,
1503 is_ordinary
, st_shndx
);
1508 if (is_forced_local
)
1509 this->force_local(res
);
1514 // Add all the symbols in a dynamic object to the hash table.
1516 template<int size
, bool big_endian
>
1518 Symbol_table::add_from_dynobj(
1519 Sized_dynobj
<size
, big_endian
>* dynobj
,
1520 const unsigned char* syms
,
1522 const char* sym_names
,
1523 size_t sym_name_size
,
1524 const unsigned char* versym
,
1526 const std::vector
<const char*>* version_map
,
1527 typename Sized_relobj_file
<size
, big_endian
>::Symbols
* sympointers
,
1532 gold_assert(size
== parameters
->target().get_size());
1534 if (dynobj
->just_symbols())
1536 gold_error(_("--just-symbols does not make sense with a shared object"));
1540 // FIXME: For incremental links, we don't store version information,
1541 // so we need to ignore version symbols for now.
1542 if (parameters
->incremental_update())
1545 if (versym
!= NULL
&& versym_size
/ 2 < count
)
1547 dynobj
->error(_("too few symbol versions"));
1551 const int sym_size
= elfcpp::Elf_sizes
<size
>::sym_size
;
1553 // We keep a list of all STT_OBJECT symbols, so that we can resolve
1554 // weak aliases. This is necessary because if the dynamic object
1555 // provides the same variable under two names, one of which is a
1556 // weak definition, and the regular object refers to the weak
1557 // definition, we have to put both the weak definition and the
1558 // strong definition into the dynamic symbol table. Given a weak
1559 // definition, the only way that we can find the corresponding
1560 // strong definition, if any, is to search the symbol table.
1561 std::vector
<Sized_symbol
<size
>*> object_symbols
;
1563 const unsigned char* p
= syms
;
1564 const unsigned char* vs
= versym
;
1565 for (size_t i
= 0; i
< count
; ++i
, p
+= sym_size
, vs
+= 2)
1567 elfcpp::Sym
<size
, big_endian
> sym(p
);
1569 if (sympointers
!= NULL
)
1570 (*sympointers
)[i
] = NULL
;
1572 // Ignore symbols with local binding or that have
1573 // internal or hidden visibility.
1574 if (sym
.get_st_bind() == elfcpp::STB_LOCAL
1575 || sym
.get_st_visibility() == elfcpp::STV_INTERNAL
1576 || sym
.get_st_visibility() == elfcpp::STV_HIDDEN
)
1579 // A protected symbol in a shared library must be treated as a
1580 // normal symbol when viewed from outside the shared library.
1581 // Implement this by overriding the visibility here.
1582 // Likewise, an IFUNC symbol in a shared library must be treated
1583 // as a normal FUNC symbol.
1584 elfcpp::Sym
<size
, big_endian
>* psym
= &sym
;
1585 unsigned char symbuf
[sym_size
];
1586 elfcpp::Sym
<size
, big_endian
> sym2(symbuf
);
1587 if (sym
.get_st_visibility() == elfcpp::STV_PROTECTED
1588 || sym
.get_st_type() == elfcpp::STT_GNU_IFUNC
)
1590 memcpy(symbuf
, p
, sym_size
);
1591 elfcpp::Sym_write
<size
, big_endian
> sw(symbuf
);
1592 if (sym
.get_st_visibility() == elfcpp::STV_PROTECTED
)
1593 sw
.put_st_other(elfcpp::STV_DEFAULT
, sym
.get_st_nonvis());
1594 if (sym
.get_st_type() == elfcpp::STT_GNU_IFUNC
)
1595 sw
.put_st_info(sym
.get_st_bind(), elfcpp::STT_FUNC
);
1599 unsigned int st_name
= psym
->get_st_name();
1600 if (st_name
>= sym_name_size
)
1602 dynobj
->error(_("bad symbol name offset %u at %zu"),
1607 const char* name
= sym_names
+ st_name
;
1610 unsigned int st_shndx
= dynobj
->adjust_sym_shndx(i
, psym
->get_st_shndx(),
1613 if (st_shndx
!= elfcpp::SHN_UNDEF
)
1616 Sized_symbol
<size
>* res
;
1620 Stringpool::Key name_key
;
1621 name
= this->namepool_
.add(name
, true, &name_key
);
1622 res
= this->add_from_object(dynobj
, name
, name_key
, NULL
, 0,
1623 false, *psym
, st_shndx
, is_ordinary
,
1628 // Read the version information.
1630 unsigned int v
= elfcpp::Swap
<16, big_endian
>::readval(vs
);
1632 bool hidden
= (v
& elfcpp::VERSYM_HIDDEN
) != 0;
1633 v
&= elfcpp::VERSYM_VERSION
;
1635 // The Sun documentation says that V can be VER_NDX_LOCAL,
1636 // or VER_NDX_GLOBAL, or a version index. The meaning of
1637 // VER_NDX_LOCAL is defined as "Symbol has local scope."
1638 // The old GNU linker will happily generate VER_NDX_LOCAL
1639 // for an undefined symbol. I don't know what the Sun
1640 // linker will generate.
1642 if (v
== static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL
)
1643 && st_shndx
!= elfcpp::SHN_UNDEF
)
1645 // This symbol should not be visible outside the object.
1649 // At this point we are definitely going to add this symbol.
1650 Stringpool::Key name_key
;
1651 name
= this->namepool_
.add(name
, true, &name_key
);
1653 if (v
== static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL
)
1654 || v
== static_cast<unsigned int>(elfcpp::VER_NDX_GLOBAL
))
1656 // This symbol does not have a version.
1657 res
= this->add_from_object(dynobj
, name
, name_key
, NULL
, 0,
1658 false, *psym
, st_shndx
, is_ordinary
,
1663 if (v
>= version_map
->size())
1665 dynobj
->error(_("versym for symbol %zu out of range: %u"),
1670 const char* version
= (*version_map
)[v
];
1671 if (version
== NULL
)
1673 dynobj
->error(_("versym for symbol %zu has no name: %u"),
1678 Stringpool::Key version_key
;
1679 version
= this->namepool_
.add(version
, true, &version_key
);
1681 // If this is an absolute symbol, and the version name
1682 // and symbol name are the same, then this is the
1683 // version definition symbol. These symbols exist to
1684 // support using -u to pull in particular versions. We
1685 // do not want to record a version for them.
1686 if (st_shndx
== elfcpp::SHN_ABS
1688 && name_key
== version_key
)
1689 res
= this->add_from_object(dynobj
, name
, name_key
, NULL
, 0,
1690 false, *psym
, st_shndx
, is_ordinary
,
1694 const bool is_default_version
=
1695 !hidden
&& st_shndx
!= elfcpp::SHN_UNDEF
;
1696 res
= this->add_from_object(dynobj
, name
, name_key
, version
,
1697 version_key
, is_default_version
,
1699 is_ordinary
, st_shndx
);
1707 // Note that it is possible that RES was overridden by an
1708 // earlier object, in which case it can't be aliased here.
1709 if (st_shndx
!= elfcpp::SHN_UNDEF
1711 && psym
->get_st_type() == elfcpp::STT_OBJECT
1712 && res
->source() == Symbol::FROM_OBJECT
1713 && res
->object() == dynobj
)
1714 object_symbols
.push_back(res
);
1716 // If the symbol has protected visibility in the dynobj,
1717 // mark it as such if it was not overridden.
1718 if (res
->source() == Symbol::FROM_OBJECT
1719 && res
->object() == dynobj
1720 && sym
.get_st_visibility() == elfcpp::STV_PROTECTED
)
1721 res
->set_is_protected();
1723 if (sympointers
!= NULL
)
1724 (*sympointers
)[i
] = res
;
1727 this->record_weak_aliases(&object_symbols
);
1730 // Add a symbol from a incremental object file.
1732 template<int size
, bool big_endian
>
1734 Symbol_table::add_from_incrobj(
1738 elfcpp::Sym
<size
, big_endian
>* sym
)
1740 unsigned int st_shndx
= sym
->get_st_shndx();
1741 bool is_ordinary
= st_shndx
< elfcpp::SHN_LORESERVE
;
1743 Stringpool::Key ver_key
= 0;
1744 bool is_default_version
= false;
1746 Stringpool::Key name_key
;
1747 name
= this->namepool_
.add(name
, true, &name_key
);
1749 Sized_symbol
<size
>* res
;
1750 res
= this->add_from_object(obj
, name
, name_key
, ver
, ver_key
,
1751 is_default_version
, *sym
, st_shndx
,
1752 is_ordinary
, st_shndx
);
1757 // This is used to sort weak aliases. We sort them first by section
1758 // index, then by offset, then by weak ahead of strong.
1761 class Weak_alias_sorter
1764 bool operator()(const Sized_symbol
<size
>*, const Sized_symbol
<size
>*) const;
1769 Weak_alias_sorter
<size
>::operator()(const Sized_symbol
<size
>* s1
,
1770 const Sized_symbol
<size
>* s2
) const
1773 unsigned int s1_shndx
= s1
->shndx(&is_ordinary
);
1774 gold_assert(is_ordinary
);
1775 unsigned int s2_shndx
= s2
->shndx(&is_ordinary
);
1776 gold_assert(is_ordinary
);
1777 if (s1_shndx
!= s2_shndx
)
1778 return s1_shndx
< s2_shndx
;
1780 if (s1
->value() != s2
->value())
1781 return s1
->value() < s2
->value();
1782 if (s1
->binding() != s2
->binding())
1784 if (s1
->binding() == elfcpp::STB_WEAK
)
1786 if (s2
->binding() == elfcpp::STB_WEAK
)
1789 return std::string(s1
->name()) < std::string(s2
->name());
1792 // SYMBOLS is a list of object symbols from a dynamic object. Look
1793 // for any weak aliases, and record them so that if we add the weak
1794 // alias to the dynamic symbol table, we also add the corresponding
1799 Symbol_table::record_weak_aliases(std::vector
<Sized_symbol
<size
>*>* symbols
)
1801 // Sort the vector by section index, then by offset, then by weak
1803 std::sort(symbols
->begin(), symbols
->end(), Weak_alias_sorter
<size
>());
1805 // Walk through the vector. For each weak definition, record
1807 for (typename
std::vector
<Sized_symbol
<size
>*>::const_iterator p
=
1809 p
!= symbols
->end();
1812 if ((*p
)->binding() != elfcpp::STB_WEAK
)
1815 // Build a circular list of weak aliases. Each symbol points to
1816 // the next one in the circular list.
1818 Sized_symbol
<size
>* from_sym
= *p
;
1819 typename
std::vector
<Sized_symbol
<size
>*>::const_iterator q
;
1820 for (q
= p
+ 1; q
!= symbols
->end(); ++q
)
1823 if ((*q
)->shndx(&dummy
) != from_sym
->shndx(&dummy
)
1824 || (*q
)->value() != from_sym
->value())
1827 this->weak_aliases_
[from_sym
] = *q
;
1828 from_sym
->set_has_alias();
1834 this->weak_aliases_
[from_sym
] = *p
;
1835 from_sym
->set_has_alias();
1842 // Create and return a specially defined symbol. If ONLY_IF_REF is
1843 // true, then only create the symbol if there is a reference to it.
1844 // If this does not return NULL, it sets *POLDSYM to the existing
1845 // symbol if there is one. This sets *RESOLVE_OLDSYM if we should
1846 // resolve the newly created symbol to the old one. This
1847 // canonicalizes *PNAME and *PVERSION.
1849 template<int size
, bool big_endian
>
1851 Symbol_table::define_special_symbol(const char** pname
, const char** pversion
,
1853 elfcpp::STV visibility
,
1854 Sized_symbol
<size
>** poldsym
,
1855 bool* resolve_oldsym
, bool is_forced_local
)
1857 *resolve_oldsym
= false;
1860 // If the caller didn't give us a version, see if we get one from
1861 // the version script.
1863 bool is_default_version
= false;
1864 if (!is_forced_local
&& *pversion
== NULL
)
1867 if (this->version_script_
.get_symbol_version(*pname
, &v
, &is_global
))
1869 if (is_global
&& !v
.empty())
1871 *pversion
= v
.c_str();
1872 // If we get the version from a version script, then we
1873 // are also the default version.
1874 is_default_version
= true;
1880 Sized_symbol
<size
>* sym
;
1882 bool add_to_table
= false;
1883 typename
Symbol_table_type::iterator add_loc
= this->table_
.end();
1884 bool add_def_to_table
= false;
1885 typename
Symbol_table_type::iterator add_def_loc
= this->table_
.end();
1889 oldsym
= this->lookup(*pname
, *pversion
);
1890 if (oldsym
== NULL
&& is_default_version
)
1891 oldsym
= this->lookup(*pname
, NULL
);
1894 if (!oldsym
->is_undefined())
1896 // Skip if the old definition is from a regular object.
1897 if (!oldsym
->is_from_dynobj())
1900 // If the symbol has hidden or internal visibility, ignore
1901 // definition and reference from a dynamic object.
1902 if ((visibility
== elfcpp::STV_HIDDEN
1903 || visibility
== elfcpp::STV_INTERNAL
)
1904 && !oldsym
->in_reg())
1908 *pname
= oldsym
->name();
1909 if (is_default_version
)
1910 *pversion
= this->namepool_
.add(*pversion
, true, NULL
);
1912 *pversion
= oldsym
->version();
1916 // Canonicalize NAME and VERSION.
1917 Stringpool::Key name_key
;
1918 *pname
= this->namepool_
.add(*pname
, true, &name_key
);
1920 Stringpool::Key version_key
= 0;
1921 if (*pversion
!= NULL
)
1922 *pversion
= this->namepool_
.add(*pversion
, true, &version_key
);
1924 Symbol
* const snull
= NULL
;
1925 std::pair
<typename
Symbol_table_type::iterator
, bool> ins
=
1926 this->table_
.insert(std::make_pair(std::make_pair(name_key
,
1930 std::pair
<typename
Symbol_table_type::iterator
, bool> insdefault
=
1931 std::make_pair(this->table_
.end(), false);
1932 if (is_default_version
)
1934 const Stringpool::Key vnull
= 0;
1936 this->table_
.insert(std::make_pair(std::make_pair(name_key
,
1943 // We already have a symbol table entry for NAME/VERSION.
1944 oldsym
= ins
.first
->second
;
1945 gold_assert(oldsym
!= NULL
);
1947 if (is_default_version
)
1949 Sized_symbol
<size
>* soldsym
=
1950 this->get_sized_symbol
<size
>(oldsym
);
1951 this->define_default_version
<size
, big_endian
>(soldsym
,
1958 // We haven't seen this symbol before.
1959 gold_assert(ins
.first
->second
== NULL
);
1961 add_to_table
= true;
1962 add_loc
= ins
.first
;
1964 if (is_default_version
1965 && !insdefault
.second
1966 && insdefault
.first
->second
->version() == NULL
)
1968 // We are adding NAME/VERSION, and it is the default
1969 // version. We already have an entry for NAME/NULL
1970 // that does not already have a version.
1971 oldsym
= insdefault
.first
->second
;
1972 *resolve_oldsym
= true;
1978 if (is_default_version
)
1980 add_def_to_table
= true;
1981 add_def_loc
= insdefault
.first
;
1987 const Target
& target
= parameters
->target();
1988 if (!target
.has_make_symbol())
1989 sym
= new Sized_symbol
<size
>();
1992 Sized_target
<size
, big_endian
>* sized_target
=
1993 parameters
->sized_target
<size
, big_endian
>();
1994 sym
= sized_target
->make_symbol(*pname
, elfcpp::STT_NOTYPE
,
1995 NULL
, elfcpp::SHN_UNDEF
, 0);
2001 add_loc
->second
= sym
;
2003 gold_assert(oldsym
!= NULL
);
2005 if (add_def_to_table
)
2006 add_def_loc
->second
= sym
;
2008 *poldsym
= this->get_sized_symbol
<size
>(oldsym
);
2013 // Define a symbol based on an Output_data.
2016 Symbol_table::define_in_output_data(const char* name
,
2017 const char* version
,
2023 elfcpp::STB binding
,
2024 elfcpp::STV visibility
,
2025 unsigned char nonvis
,
2026 bool offset_is_from_end
,
2029 if (parameters
->target().get_size() == 32)
2031 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2032 return this->do_define_in_output_data
<32>(name
, version
, defined
, od
,
2033 value
, symsize
, type
, binding
,
2041 else if (parameters
->target().get_size() == 64)
2043 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2044 return this->do_define_in_output_data
<64>(name
, version
, defined
, od
,
2045 value
, symsize
, type
, binding
,
2057 // Define a symbol in an Output_data, sized version.
2061 Symbol_table::do_define_in_output_data(
2063 const char* version
,
2066 typename
elfcpp::Elf_types
<size
>::Elf_Addr value
,
2067 typename
elfcpp::Elf_types
<size
>::Elf_WXword symsize
,
2069 elfcpp::STB binding
,
2070 elfcpp::STV visibility
,
2071 unsigned char nonvis
,
2072 bool offset_is_from_end
,
2075 Sized_symbol
<size
>* sym
;
2076 Sized_symbol
<size
>* oldsym
;
2077 bool resolve_oldsym
;
2078 const bool is_forced_local
= binding
== elfcpp::STB_LOCAL
;
2080 if (parameters
->target().is_big_endian())
2082 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2083 sym
= this->define_special_symbol
<size
, true>(&name
, &version
,
2095 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2096 sym
= this->define_special_symbol
<size
, false>(&name
, &version
,
2110 sym
->init_output_data(name
, version
, od
, value
, symsize
, type
, binding
,
2111 visibility
, nonvis
, offset_is_from_end
,
2112 defined
== PREDEFINED
);
2116 if (is_forced_local
|| this->version_script_
.symbol_is_local(name
))
2117 this->force_local(sym
);
2118 else if (version
!= NULL
)
2119 sym
->set_is_default();
2123 if (Symbol_table::should_override_with_special(oldsym
, type
, defined
))
2124 this->override_with_special(oldsym
, sym
);
2130 if (defined
== PREDEFINED
2131 && (is_forced_local
|| this->version_script_
.symbol_is_local(name
)))
2132 this->force_local(oldsym
);
2138 // Define a symbol based on an Output_segment.
2141 Symbol_table::define_in_output_segment(const char* name
,
2142 const char* version
,
2148 elfcpp::STB binding
,
2149 elfcpp::STV visibility
,
2150 unsigned char nonvis
,
2151 Symbol::Segment_offset_base offset_base
,
2154 if (parameters
->target().get_size() == 32)
2156 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2157 return this->do_define_in_output_segment
<32>(name
, version
, defined
, os
,
2158 value
, symsize
, type
,
2159 binding
, visibility
, nonvis
,
2160 offset_base
, only_if_ref
);
2165 else if (parameters
->target().get_size() == 64)
2167 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2168 return this->do_define_in_output_segment
<64>(name
, version
, defined
, os
,
2169 value
, symsize
, type
,
2170 binding
, visibility
, nonvis
,
2171 offset_base
, only_if_ref
);
2180 // Define a symbol in an Output_segment, sized version.
2184 Symbol_table::do_define_in_output_segment(
2186 const char* version
,
2189 typename
elfcpp::Elf_types
<size
>::Elf_Addr value
,
2190 typename
elfcpp::Elf_types
<size
>::Elf_WXword symsize
,
2192 elfcpp::STB binding
,
2193 elfcpp::STV visibility
,
2194 unsigned char nonvis
,
2195 Symbol::Segment_offset_base offset_base
,
2198 Sized_symbol
<size
>* sym
;
2199 Sized_symbol
<size
>* oldsym
;
2200 bool resolve_oldsym
;
2201 const bool is_forced_local
= binding
== elfcpp::STB_LOCAL
;
2203 if (parameters
->target().is_big_endian())
2205 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2206 sym
= this->define_special_symbol
<size
, true>(&name
, &version
,
2218 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2219 sym
= this->define_special_symbol
<size
, false>(&name
, &version
,
2233 sym
->init_output_segment(name
, version
, os
, value
, symsize
, type
, binding
,
2234 visibility
, nonvis
, offset_base
,
2235 defined
== PREDEFINED
);
2239 if (is_forced_local
|| this->version_script_
.symbol_is_local(name
))
2240 this->force_local(sym
);
2241 else if (version
!= NULL
)
2242 sym
->set_is_default();
2246 if (Symbol_table::should_override_with_special(oldsym
, type
, defined
))
2247 this->override_with_special(oldsym
, sym
);
2253 if (is_forced_local
|| this->version_script_
.symbol_is_local(name
))
2254 this->force_local(oldsym
);
2260 // Define a special symbol with a constant value. It is a multiple
2261 // definition error if this symbol is already defined.
2264 Symbol_table::define_as_constant(const char* name
,
2265 const char* version
,
2270 elfcpp::STB binding
,
2271 elfcpp::STV visibility
,
2272 unsigned char nonvis
,
2274 bool force_override
)
2276 if (parameters
->target().get_size() == 32)
2278 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2279 return this->do_define_as_constant
<32>(name
, version
, defined
, value
,
2280 symsize
, type
, binding
,
2281 visibility
, nonvis
, only_if_ref
,
2287 else if (parameters
->target().get_size() == 64)
2289 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2290 return this->do_define_as_constant
<64>(name
, version
, defined
, value
,
2291 symsize
, type
, binding
,
2292 visibility
, nonvis
, only_if_ref
,
2302 // Define a symbol as a constant, sized version.
2306 Symbol_table::do_define_as_constant(
2308 const char* version
,
2310 typename
elfcpp::Elf_types
<size
>::Elf_Addr value
,
2311 typename
elfcpp::Elf_types
<size
>::Elf_WXword symsize
,
2313 elfcpp::STB binding
,
2314 elfcpp::STV visibility
,
2315 unsigned char nonvis
,
2317 bool force_override
)
2319 Sized_symbol
<size
>* sym
;
2320 Sized_symbol
<size
>* oldsym
;
2321 bool resolve_oldsym
;
2322 const bool is_forced_local
= binding
== elfcpp::STB_LOCAL
;
2324 if (parameters
->target().is_big_endian())
2326 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2327 sym
= this->define_special_symbol
<size
, true>(&name
, &version
,
2339 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2340 sym
= this->define_special_symbol
<size
, false>(&name
, &version
,
2354 sym
->init_constant(name
, version
, value
, symsize
, type
, binding
, visibility
,
2355 nonvis
, defined
== PREDEFINED
);
2359 // Version symbols are absolute symbols with name == version.
2360 // We don't want to force them to be local.
2361 if ((version
== NULL
2364 && (is_forced_local
|| this->version_script_
.symbol_is_local(name
)))
2365 this->force_local(sym
);
2366 else if (version
!= NULL
2367 && (name
!= version
|| value
!= 0))
2368 sym
->set_is_default();
2373 || Symbol_table::should_override_with_special(oldsym
, type
, defined
))
2374 this->override_with_special(oldsym
, sym
);
2380 if (is_forced_local
|| this->version_script_
.symbol_is_local(name
))
2381 this->force_local(oldsym
);
2387 // Define a set of symbols in output sections.
2390 Symbol_table::define_symbols(const Layout
* layout
, int count
,
2391 const Define_symbol_in_section
* p
,
2394 for (int i
= 0; i
< count
; ++i
, ++p
)
2396 Output_section
* os
= layout
->find_output_section(p
->output_section
);
2398 this->define_in_output_data(p
->name
, NULL
, PREDEFINED
, os
, p
->value
,
2399 p
->size
, p
->type
, p
->binding
,
2400 p
->visibility
, p
->nonvis
,
2401 p
->offset_is_from_end
,
2402 only_if_ref
|| p
->only_if_ref
);
2404 this->define_as_constant(p
->name
, NULL
, PREDEFINED
, 0, p
->size
,
2405 p
->type
, p
->binding
, p
->visibility
, p
->nonvis
,
2406 only_if_ref
|| p
->only_if_ref
,
2411 // Define a set of symbols in output segments.
2414 Symbol_table::define_symbols(const Layout
* layout
, int count
,
2415 const Define_symbol_in_segment
* p
,
2418 for (int i
= 0; i
< count
; ++i
, ++p
)
2420 Output_segment
* os
= layout
->find_output_segment(p
->segment_type
,
2421 p
->segment_flags_set
,
2422 p
->segment_flags_clear
);
2424 this->define_in_output_segment(p
->name
, NULL
, PREDEFINED
, os
, p
->value
,
2425 p
->size
, p
->type
, p
->binding
,
2426 p
->visibility
, p
->nonvis
,
2428 only_if_ref
|| p
->only_if_ref
);
2430 this->define_as_constant(p
->name
, NULL
, PREDEFINED
, 0, p
->size
,
2431 p
->type
, p
->binding
, p
->visibility
, p
->nonvis
,
2432 only_if_ref
|| p
->only_if_ref
,
2437 // Define CSYM using a COPY reloc. POSD is the Output_data where the
2438 // symbol should be defined--typically a .dyn.bss section. VALUE is
2439 // the offset within POSD.
2443 Symbol_table::define_with_copy_reloc(
2444 Sized_symbol
<size
>* csym
,
2446 typename
elfcpp::Elf_types
<size
>::Elf_Addr value
)
2448 gold_assert(csym
->is_from_dynobj());
2449 gold_assert(!csym
->is_copied_from_dynobj());
2450 Object
* object
= csym
->object();
2451 gold_assert(object
->is_dynamic());
2452 Dynobj
* dynobj
= static_cast<Dynobj
*>(object
);
2454 // Our copied variable has to override any variable in a shared
2456 elfcpp::STB binding
= csym
->binding();
2457 if (binding
== elfcpp::STB_WEAK
)
2458 binding
= elfcpp::STB_GLOBAL
;
2460 this->define_in_output_data(csym
->name(), csym
->version(), COPY
,
2461 posd
, value
, csym
->symsize(),
2462 csym
->type(), binding
,
2463 csym
->visibility(), csym
->nonvis(),
2466 csym
->set_is_copied_from_dynobj();
2467 csym
->set_needs_dynsym_entry();
2469 this->copied_symbol_dynobjs_
[csym
] = dynobj
;
2471 // We have now defined all aliases, but we have not entered them all
2472 // in the copied_symbol_dynobjs_ map.
2473 if (csym
->has_alias())
2478 sym
= this->weak_aliases_
[sym
];
2481 gold_assert(sym
->output_data() == posd
);
2483 sym
->set_is_copied_from_dynobj();
2484 this->copied_symbol_dynobjs_
[sym
] = dynobj
;
2489 // SYM is defined using a COPY reloc. Return the dynamic object where
2490 // the original definition was found.
2493 Symbol_table::get_copy_source(const Symbol
* sym
) const
2495 gold_assert(sym
->is_copied_from_dynobj());
2496 Copied_symbol_dynobjs::const_iterator p
=
2497 this->copied_symbol_dynobjs_
.find(sym
);
2498 gold_assert(p
!= this->copied_symbol_dynobjs_
.end());
2502 // Add any undefined symbols named on the command line.
2505 Symbol_table::add_undefined_symbols_from_command_line(Layout
* layout
)
2507 if (parameters
->options().any_undefined()
2508 || layout
->script_options()->any_unreferenced())
2510 if (parameters
->target().get_size() == 32)
2512 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2513 this->do_add_undefined_symbols_from_command_line
<32>(layout
);
2518 else if (parameters
->target().get_size() == 64)
2520 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2521 this->do_add_undefined_symbols_from_command_line
<64>(layout
);
2533 Symbol_table::do_add_undefined_symbols_from_command_line(Layout
* layout
)
2535 for (options::String_set::const_iterator p
=
2536 parameters
->options().undefined_begin();
2537 p
!= parameters
->options().undefined_end();
2539 this->add_undefined_symbol_from_command_line
<size
>(p
->c_str());
2541 for (Script_options::referenced_const_iterator p
=
2542 layout
->script_options()->referenced_begin();
2543 p
!= layout
->script_options()->referenced_end();
2545 this->add_undefined_symbol_from_command_line
<size
>(p
->c_str());
2550 Symbol_table::add_undefined_symbol_from_command_line(const char* name
)
2552 if (this->lookup(name
) != NULL
)
2555 const char* version
= NULL
;
2557 Sized_symbol
<size
>* sym
;
2558 Sized_symbol
<size
>* oldsym
;
2559 bool resolve_oldsym
;
2560 if (parameters
->target().is_big_endian())
2562 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2563 sym
= this->define_special_symbol
<size
, true>(&name
, &version
,
2565 elfcpp::STV_DEFAULT
,
2575 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2576 sym
= this->define_special_symbol
<size
, false>(&name
, &version
,
2578 elfcpp::STV_DEFAULT
,
2587 gold_assert(oldsym
== NULL
);
2589 sym
->init_undefined(name
, version
, 0, elfcpp::STT_NOTYPE
, elfcpp::STB_GLOBAL
,
2590 elfcpp::STV_DEFAULT
, 0);
2591 ++this->saw_undefined_
;
2594 // Set the dynamic symbol indexes. INDEX is the index of the first
2595 // global dynamic symbol. Pointers to the global symbols are stored
2596 // into the vector SYMS. The names are added to DYNPOOL.
2597 // This returns an updated dynamic symbol index.
2600 Symbol_table::set_dynsym_indexes(unsigned int index
,
2601 unsigned int* pforced_local_count
,
2602 std::vector
<Symbol
*>* syms
,
2603 Stringpool
* dynpool
,
2606 // First process all the symbols which have been forced to be local,
2607 // as they must appear before all global symbols.
2608 unsigned int forced_local_count
= 0;
2609 for (Forced_locals::iterator p
= this->forced_locals_
.begin();
2610 p
!= this->forced_locals_
.end();
2614 gold_assert(sym
->is_forced_local());
2615 if (sym
->has_dynsym_index())
2617 if (!sym
->should_add_dynsym_entry(this))
2618 sym
->set_dynsym_index(-1U);
2621 sym
->set_dynsym_index(index
);
2623 ++forced_local_count
;
2624 dynpool
->add(sym
->name(), false, NULL
);
2625 if (sym
->type() == elfcpp::STT_GNU_IFUNC
)
2626 this->set_has_gnu_output();
2629 *pforced_local_count
= forced_local_count
;
2631 // Allow a target to set dynsym indexes.
2632 if (parameters
->target().has_custom_set_dynsym_indexes())
2634 std::vector
<Symbol
*> dyn_symbols
;
2635 for (Symbol_table_type::iterator p
= this->table_
.begin();
2636 p
!= this->table_
.end();
2639 Symbol
* sym
= p
->second
;
2640 if (sym
->is_forced_local())
2642 if (!sym
->should_add_dynsym_entry(this))
2643 sym
->set_dynsym_index(-1U);
2646 dyn_symbols
.push_back(sym
);
2647 if (sym
->type() == elfcpp::STT_GNU_IFUNC
2648 || (sym
->binding() == elfcpp::STB_GNU_UNIQUE
2649 && parameters
->options().gnu_unique()))
2650 this->set_has_gnu_output();
2654 return parameters
->target().set_dynsym_indexes(&dyn_symbols
, index
, syms
,
2655 dynpool
, versions
, this);
2658 for (Symbol_table_type::iterator p
= this->table_
.begin();
2659 p
!= this->table_
.end();
2662 Symbol
* sym
= p
->second
;
2664 if (sym
->is_forced_local())
2667 // Note that SYM may already have a dynamic symbol index, since
2668 // some symbols appear more than once in the symbol table, with
2669 // and without a version.
2671 if (!sym
->should_add_dynsym_entry(this))
2672 sym
->set_dynsym_index(-1U);
2673 else if (!sym
->has_dynsym_index())
2675 sym
->set_dynsym_index(index
);
2677 syms
->push_back(sym
);
2678 dynpool
->add(sym
->name(), false, NULL
);
2679 if (sym
->type() == elfcpp::STT_GNU_IFUNC
2680 || (sym
->binding() == elfcpp::STB_GNU_UNIQUE
2681 && parameters
->options().gnu_unique()))
2682 this->set_has_gnu_output();
2684 // Record any version information, except those from
2685 // as-needed libraries not seen to be needed. Note that the
2686 // is_needed state for such libraries can change in this loop.
2687 if (sym
->version() != NULL
)
2689 if (!sym
->is_from_dynobj()
2690 || !sym
->object()->as_needed()
2691 || sym
->object()->is_needed())
2692 versions
->record_version(this, dynpool
, sym
);
2695 if (parameters
->options().warn_drop_version())
2696 gold_warning(_("discarding version information for "
2697 "%s@%s, defined in unused shared library %s "
2698 "(linked with --as-needed)"),
2699 sym
->name(), sym
->version(),
2700 sym
->object()->name().c_str());
2701 sym
->clear_version();
2707 // Finish up the versions. In some cases this may add new dynamic
2709 index
= versions
->finalize(this, index
, syms
);
2711 // Process target-specific symbols.
2712 for (std::vector
<Symbol
*>::iterator p
= this->target_symbols_
.begin();
2713 p
!= this->target_symbols_
.end();
2716 (*p
)->set_dynsym_index(index
);
2718 syms
->push_back(*p
);
2719 dynpool
->add((*p
)->name(), false, NULL
);
2725 // Set the final values for all the symbols. The index of the first
2726 // global symbol in the output file is *PLOCAL_SYMCOUNT. Record the
2727 // file offset OFF. Add their names to POOL. Return the new file
2728 // offset. Update *PLOCAL_SYMCOUNT if necessary. DYNOFF and
2729 // DYN_GLOBAL_INDEX refer to the start of the symbols that will be
2730 // written from the global symbol table in Symtab::write_globals(),
2731 // which will include forced-local symbols. DYN_GLOBAL_INDEX is
2732 // not necessarily the same as the sh_info field for the .dynsym
2733 // section, which will point to the first real global symbol.
2736 Symbol_table::finalize(off_t off
, off_t dynoff
, size_t dyn_global_index
,
2737 size_t dyncount
, Stringpool
* pool
,
2738 unsigned int* plocal_symcount
)
2742 gold_assert(*plocal_symcount
!= 0);
2743 this->first_global_index_
= *plocal_symcount
;
2745 this->dynamic_offset_
= dynoff
;
2746 this->first_dynamic_global_index_
= dyn_global_index
;
2747 this->dynamic_count_
= dyncount
;
2749 if (parameters
->target().get_size() == 32)
2751 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_32_LITTLE)
2752 ret
= this->sized_finalize
<32>(off
, pool
, plocal_symcount
);
2757 else if (parameters
->target().get_size() == 64)
2759 #if defined(HAVE_TARGET_64_BIG) || defined(HAVE_TARGET_64_LITTLE)
2760 ret
= this->sized_finalize
<64>(off
, pool
, plocal_symcount
);
2768 if (this->has_gnu_output_
)
2770 Target
* target
= const_cast<Target
*>(¶meters
->target());
2771 if (target
->osabi() == elfcpp::ELFOSABI_NONE
)
2772 target
->set_osabi(elfcpp::ELFOSABI_GNU
);
2775 // Now that we have the final symbol table, we can reliably note
2776 // which symbols should get warnings.
2777 this->warnings_
.note_warnings(this);
2782 // SYM is going into the symbol table at *PINDEX. Add the name to
2783 // POOL, update *PINDEX and *POFF.
2787 Symbol_table::add_to_final_symtab(Symbol
* sym
, Stringpool
* pool
,
2788 unsigned int* pindex
, off_t
* poff
)
2790 sym
->set_symtab_index(*pindex
);
2791 if (sym
->version() == NULL
|| !parameters
->options().relocatable())
2792 pool
->add(sym
->name(), false, NULL
);
2794 pool
->add(sym
->versioned_name(), true, NULL
);
2796 *poff
+= elfcpp::Elf_sizes
<size
>::sym_size
;
2799 // Set the final value for all the symbols. This is called after
2800 // Layout::finalize, so all the output sections have their final
2805 Symbol_table::sized_finalize(off_t off
, Stringpool
* pool
,
2806 unsigned int* plocal_symcount
)
2808 off
= align_address(off
, size
>> 3);
2809 this->offset_
= off
;
2811 unsigned int index
= *plocal_symcount
;
2812 const unsigned int orig_index
= index
;
2814 // First do all the symbols which have been forced to be local, as
2815 // they must appear before all global symbols.
2816 for (Forced_locals::iterator p
= this->forced_locals_
.begin();
2817 p
!= this->forced_locals_
.end();
2821 gold_assert(sym
->is_forced_local());
2822 if (this->sized_finalize_symbol
<size
>(sym
))
2824 this->add_to_final_symtab
<size
>(sym
, pool
, &index
, &off
);
2826 if (sym
->type() == elfcpp::STT_GNU_IFUNC
)
2827 this->set_has_gnu_output();
2831 // Now do all the remaining symbols.
2832 for (Symbol_table_type::iterator p
= this->table_
.begin();
2833 p
!= this->table_
.end();
2836 Symbol
* sym
= p
->second
;
2837 if (this->sized_finalize_symbol
<size
>(sym
))
2839 this->add_to_final_symtab
<size
>(sym
, pool
, &index
, &off
);
2840 if (sym
->type() == elfcpp::STT_GNU_IFUNC
2841 || (sym
->binding() == elfcpp::STB_GNU_UNIQUE
2842 && parameters
->options().gnu_unique()))
2843 this->set_has_gnu_output();
2847 // Now do target-specific symbols.
2848 for (std::vector
<Symbol
*>::iterator p
= this->target_symbols_
.begin();
2849 p
!= this->target_symbols_
.end();
2852 this->add_to_final_symtab
<size
>(*p
, pool
, &index
, &off
);
2855 this->output_count_
= index
- orig_index
;
2860 // Compute the final value of SYM and store status in location PSTATUS.
2861 // During relaxation, this may be called multiple times for a symbol to
2862 // compute its would-be final value in each relaxation pass.
2865 typename Sized_symbol
<size
>::Value_type
2866 Symbol_table::compute_final_value(
2867 const Sized_symbol
<size
>* sym
,
2868 Compute_final_value_status
* pstatus
) const
2870 typedef typename Sized_symbol
<size
>::Value_type Value_type
;
2873 switch (sym
->source())
2875 case Symbol::FROM_OBJECT
:
2878 unsigned int shndx
= sym
->shndx(&is_ordinary
);
2881 && shndx
!= elfcpp::SHN_ABS
2882 && !Symbol::is_common_shndx(shndx
))
2884 *pstatus
= CFVS_UNSUPPORTED_SYMBOL_SECTION
;
2888 Object
* symobj
= sym
->object();
2889 if (symobj
->is_dynamic())
2892 shndx
= elfcpp::SHN_UNDEF
;
2894 else if (symobj
->pluginobj() != NULL
)
2897 shndx
= elfcpp::SHN_UNDEF
;
2899 else if (shndx
== elfcpp::SHN_UNDEF
)
2901 else if (!is_ordinary
2902 && (shndx
== elfcpp::SHN_ABS
2903 || Symbol::is_common_shndx(shndx
)))
2904 value
= sym
->value();
2907 Relobj
* relobj
= static_cast<Relobj
*>(symobj
);
2908 Output_section
* os
= relobj
->output_section(shndx
);
2910 if (this->is_section_folded(relobj
, shndx
))
2912 gold_assert(os
== NULL
);
2913 // Get the os of the section it is folded onto.
2914 Section_id folded
= this->icf_
->get_folded_section(relobj
,
2916 gold_assert(folded
.first
!= NULL
);
2917 Relobj
* folded_obj
= reinterpret_cast<Relobj
*>(folded
.first
);
2918 unsigned folded_shndx
= folded
.second
;
2920 os
= folded_obj
->output_section(folded_shndx
);
2921 gold_assert(os
!= NULL
);
2923 // Replace (relobj, shndx) with canonical ICF input section.
2924 shndx
= folded_shndx
;
2925 relobj
= folded_obj
;
2928 uint64_t secoff64
= relobj
->output_section_offset(shndx
);
2931 bool static_or_reloc
= (parameters
->doing_static_link() ||
2932 parameters
->options().relocatable());
2933 gold_assert(static_or_reloc
|| sym
->dynsym_index() == -1U);
2935 *pstatus
= CFVS_NO_OUTPUT_SECTION
;
2939 if (secoff64
== -1ULL)
2941 // The section needs special handling (e.g., a merge section).
2943 value
= os
->output_address(relobj
, shndx
, sym
->value());
2948 convert_types
<Value_type
, uint64_t>(secoff64
);
2949 if (sym
->type() == elfcpp::STT_TLS
)
2950 value
= sym
->value() + os
->tls_offset() + secoff
;
2952 value
= sym
->value() + os
->address() + secoff
;
2958 case Symbol::IN_OUTPUT_DATA
:
2960 Output_data
* od
= sym
->output_data();
2961 value
= sym
->value();
2962 if (sym
->type() != elfcpp::STT_TLS
)
2963 value
+= od
->address();
2966 Output_section
* os
= od
->output_section();
2967 gold_assert(os
!= NULL
);
2968 value
+= os
->tls_offset() + (od
->address() - os
->address());
2970 if (sym
->offset_is_from_end())
2971 value
+= od
->data_size();
2975 case Symbol::IN_OUTPUT_SEGMENT
:
2977 Output_segment
* os
= sym
->output_segment();
2978 value
= sym
->value();
2979 if (sym
->type() != elfcpp::STT_TLS
)
2980 value
+= os
->vaddr();
2981 switch (sym
->offset_base())
2983 case Symbol::SEGMENT_START
:
2985 case Symbol::SEGMENT_END
:
2986 value
+= os
->memsz();
2988 case Symbol::SEGMENT_BSS
:
2989 value
+= os
->filesz();
2997 case Symbol::IS_CONSTANT
:
2998 value
= sym
->value();
3001 case Symbol::IS_UNDEFINED
:
3013 // Finalize the symbol SYM. This returns true if the symbol should be
3014 // added to the symbol table, false otherwise.
3018 Symbol_table::sized_finalize_symbol(Symbol
* unsized_sym
)
3020 typedef typename Sized_symbol
<size
>::Value_type Value_type
;
3022 Sized_symbol
<size
>* sym
= static_cast<Sized_symbol
<size
>*>(unsized_sym
);
3024 // The default version of a symbol may appear twice in the symbol
3025 // table. We only need to finalize it once.
3026 if (sym
->has_symtab_index())
3031 gold_assert(!sym
->has_symtab_index());
3032 sym
->set_symtab_index(-1U);
3033 gold_assert(sym
->dynsym_index() == -1U);
3037 // If the symbol is only present on plugin files, the plugin decided we
3039 if (!sym
->in_real_elf())
3041 gold_assert(!sym
->has_symtab_index());
3042 sym
->set_symtab_index(-1U);
3046 // Compute final symbol value.
3047 Compute_final_value_status status
;
3048 Value_type value
= this->compute_final_value(sym
, &status
);
3054 case CFVS_UNSUPPORTED_SYMBOL_SECTION
:
3057 unsigned int shndx
= sym
->shndx(&is_ordinary
);
3058 gold_error(_("%s: unsupported symbol section 0x%x"),
3059 sym
->demangled_name().c_str(), shndx
);
3062 case CFVS_NO_OUTPUT_SECTION
:
3063 sym
->set_symtab_index(-1U);
3069 sym
->set_value(value
);
3071 if (parameters
->options().strip_all()
3072 || !parameters
->options().should_retain_symbol(sym
->name()))
3074 sym
->set_symtab_index(-1U);
3081 // Write out the global symbols.
3084 Symbol_table::write_globals(const Stringpool
* sympool
,
3085 const Stringpool
* dynpool
,
3086 Output_symtab_xindex
* symtab_xindex
,
3087 Output_symtab_xindex
* dynsym_xindex
,
3088 Output_file
* of
) const
3090 switch (parameters
->size_and_endianness())
3092 #ifdef HAVE_TARGET_32_LITTLE
3093 case Parameters::TARGET_32_LITTLE
:
3094 this->sized_write_globals
<32, false>(sympool
, dynpool
, symtab_xindex
,
3098 #ifdef HAVE_TARGET_32_BIG
3099 case Parameters::TARGET_32_BIG
:
3100 this->sized_write_globals
<32, true>(sympool
, dynpool
, symtab_xindex
,
3104 #ifdef HAVE_TARGET_64_LITTLE
3105 case Parameters::TARGET_64_LITTLE
:
3106 this->sized_write_globals
<64, false>(sympool
, dynpool
, symtab_xindex
,
3110 #ifdef HAVE_TARGET_64_BIG
3111 case Parameters::TARGET_64_BIG
:
3112 this->sized_write_globals
<64, true>(sympool
, dynpool
, symtab_xindex
,
3121 // Write out the global symbols.
3123 template<int size
, bool big_endian
>
3125 Symbol_table::sized_write_globals(const Stringpool
* sympool
,
3126 const Stringpool
* dynpool
,
3127 Output_symtab_xindex
* symtab_xindex
,
3128 Output_symtab_xindex
* dynsym_xindex
,
3129 Output_file
* of
) const
3131 const Target
& target
= parameters
->target();
3133 const int sym_size
= elfcpp::Elf_sizes
<size
>::sym_size
;
3135 const unsigned int output_count
= this->output_count_
;
3136 const section_size_type oview_size
= output_count
* sym_size
;
3137 const unsigned int first_global_index
= this->first_global_index_
;
3138 unsigned char* psyms
;
3139 if (this->offset_
== 0 || output_count
== 0)
3142 psyms
= of
->get_output_view(this->offset_
, oview_size
);
3144 const unsigned int dynamic_count
= this->dynamic_count_
;
3145 const section_size_type dynamic_size
= dynamic_count
* sym_size
;
3146 const unsigned int first_dynamic_global_index
=
3147 this->first_dynamic_global_index_
;
3148 unsigned char* dynamic_view
;
3149 if (this->dynamic_offset_
== 0 || dynamic_count
== 0)
3150 dynamic_view
= NULL
;
3152 dynamic_view
= of
->get_output_view(this->dynamic_offset_
, dynamic_size
);
3154 for (Symbol_table_type::const_iterator p
= this->table_
.begin();
3155 p
!= this->table_
.end();
3158 Sized_symbol
<size
>* sym
= static_cast<Sized_symbol
<size
>*>(p
->second
);
3160 // Possibly warn about unresolved symbols in shared libraries.
3161 this->warn_about_undefined_dynobj_symbol(sym
);
3163 unsigned int sym_index
= sym
->symtab_index();
3164 unsigned int dynsym_index
;
3165 if (dynamic_view
== NULL
)
3168 dynsym_index
= sym
->dynsym_index();
3170 if (sym_index
== -1U && dynsym_index
== -1U)
3172 // This symbol is not included in the output file.
3177 typename
elfcpp::Elf_types
<size
>::Elf_Addr sym_value
= sym
->value();
3178 typename
elfcpp::Elf_types
<size
>::Elf_Addr dynsym_value
= sym_value
;
3179 elfcpp::STB binding
= sym
->binding();
3181 // If --weak-unresolved-symbols is set, change binding of unresolved
3182 // global symbols to STB_WEAK.
3183 if (parameters
->options().weak_unresolved_symbols()
3184 && binding
== elfcpp::STB_GLOBAL
3185 && sym
->is_undefined())
3186 binding
= elfcpp::STB_WEAK
;
3188 // If --no-gnu-unique is set, change STB_GNU_UNIQUE to STB_GLOBAL.
3189 if (binding
== elfcpp::STB_GNU_UNIQUE
3190 && !parameters
->options().gnu_unique())
3191 binding
= elfcpp::STB_GLOBAL
;
3193 switch (sym
->source())
3195 case Symbol::FROM_OBJECT
:
3198 unsigned int in_shndx
= sym
->shndx(&is_ordinary
);
3201 && in_shndx
!= elfcpp::SHN_ABS
3202 && !Symbol::is_common_shndx(in_shndx
))
3204 gold_error(_("%s: unsupported symbol section 0x%x"),
3205 sym
->demangled_name().c_str(), in_shndx
);
3210 Object
* symobj
= sym
->object();
3211 if (symobj
->is_dynamic())
3213 if (sym
->needs_dynsym_value())
3214 dynsym_value
= target
.dynsym_value(sym
);
3215 shndx
= elfcpp::SHN_UNDEF
;
3216 if (sym
->is_undef_binding_weak())
3217 binding
= elfcpp::STB_WEAK
;
3219 binding
= elfcpp::STB_GLOBAL
;
3221 else if (symobj
->pluginobj() != NULL
)
3222 shndx
= elfcpp::SHN_UNDEF
;
3223 else if (in_shndx
== elfcpp::SHN_UNDEF
3225 && (in_shndx
== elfcpp::SHN_ABS
3226 || Symbol::is_common_shndx(in_shndx
))))
3230 Relobj
* relobj
= static_cast<Relobj
*>(symobj
);
3231 Output_section
* os
= relobj
->output_section(in_shndx
);
3232 if (this->is_section_folded(relobj
, in_shndx
))
3234 // This global symbol must be written out even though
3236 // Get the os of the section it is folded onto.
3238 this->icf_
->get_folded_section(relobj
, in_shndx
);
3239 gold_assert(folded
.first
!=NULL
);
3240 Relobj
* folded_obj
=
3241 reinterpret_cast<Relobj
*>(folded
.first
);
3242 os
= folded_obj
->output_section(folded
.second
);
3243 gold_assert(os
!= NULL
);
3245 gold_assert(os
!= NULL
);
3246 shndx
= os
->out_shndx();
3248 if (shndx
>= elfcpp::SHN_LORESERVE
)
3250 if (sym_index
!= -1U)
3251 symtab_xindex
->add(sym_index
, shndx
);
3252 if (dynsym_index
!= -1U)
3253 dynsym_xindex
->add(dynsym_index
, shndx
);
3254 shndx
= elfcpp::SHN_XINDEX
;
3257 // In object files symbol values are section
3259 if (parameters
->options().relocatable())
3260 sym_value
-= os
->address();
3266 case Symbol::IN_OUTPUT_DATA
:
3268 Output_data
* od
= sym
->output_data();
3270 shndx
= od
->out_shndx();
3271 if (shndx
>= elfcpp::SHN_LORESERVE
)
3273 if (sym_index
!= -1U)
3274 symtab_xindex
->add(sym_index
, shndx
);
3275 if (dynsym_index
!= -1U)
3276 dynsym_xindex
->add(dynsym_index
, shndx
);
3277 shndx
= elfcpp::SHN_XINDEX
;
3280 // In object files symbol values are section
3282 if (parameters
->options().relocatable())
3284 Output_section
* os
= od
->output_section();
3285 gold_assert(os
!= NULL
);
3286 sym_value
-= os
->address();
3291 case Symbol::IN_OUTPUT_SEGMENT
:
3293 Output_segment
* oseg
= sym
->output_segment();
3294 Output_section
* osect
= oseg
->first_section();
3296 shndx
= elfcpp::SHN_ABS
;
3298 shndx
= osect
->out_shndx();
3302 case Symbol::IS_CONSTANT
:
3303 shndx
= elfcpp::SHN_ABS
;
3306 case Symbol::IS_UNDEFINED
:
3307 shndx
= elfcpp::SHN_UNDEF
;
3314 if (sym_index
!= -1U)
3316 sym_index
-= first_global_index
;
3317 gold_assert(sym_index
< output_count
);
3318 unsigned char* ps
= psyms
+ (sym_index
* sym_size
);
3319 this->sized_write_symbol
<size
, big_endian
>(sym
, sym_value
, shndx
,
3320 binding
, sympool
, ps
);
3323 if (dynsym_index
!= -1U)
3325 dynsym_index
-= first_dynamic_global_index
;
3326 gold_assert(dynsym_index
< dynamic_count
);
3327 unsigned char* pd
= dynamic_view
+ (dynsym_index
* sym_size
);
3328 this->sized_write_symbol
<size
, big_endian
>(sym
, dynsym_value
, shndx
,
3329 binding
, dynpool
, pd
);
3330 // Allow a target to adjust dynamic symbol value.
3331 parameters
->target().adjust_dyn_symbol(sym
, pd
);
3335 // Write the target-specific symbols.
3336 for (std::vector
<Symbol
*>::const_iterator p
= this->target_symbols_
.begin();
3337 p
!= this->target_symbols_
.end();
3340 Sized_symbol
<size
>* sym
= static_cast<Sized_symbol
<size
>*>(*p
);
3342 unsigned int sym_index
= sym
->symtab_index();
3343 unsigned int dynsym_index
;
3344 if (dynamic_view
== NULL
)
3347 dynsym_index
= sym
->dynsym_index();
3350 switch (sym
->source())
3352 case Symbol::IS_CONSTANT
:
3353 shndx
= elfcpp::SHN_ABS
;
3355 case Symbol::IS_UNDEFINED
:
3356 shndx
= elfcpp::SHN_UNDEF
;
3362 if (sym_index
!= -1U)
3364 sym_index
-= first_global_index
;
3365 gold_assert(sym_index
< output_count
);
3366 unsigned char* ps
= psyms
+ (sym_index
* sym_size
);
3367 this->sized_write_symbol
<size
, big_endian
>(sym
, sym
->value(), shndx
,
3368 sym
->binding(), sympool
,
3372 if (dynsym_index
!= -1U)
3374 dynsym_index
-= first_dynamic_global_index
;
3375 gold_assert(dynsym_index
< dynamic_count
);
3376 unsigned char* pd
= dynamic_view
+ (dynsym_index
* sym_size
);
3377 this->sized_write_symbol
<size
, big_endian
>(sym
, sym
->value(), shndx
,
3378 sym
->binding(), dynpool
,
3383 of
->write_output_view(this->offset_
, oview_size
, psyms
);
3384 if (dynamic_view
!= NULL
)
3385 of
->write_output_view(this->dynamic_offset_
, dynamic_size
, dynamic_view
);
3388 // Write out the symbol SYM, in section SHNDX, to P. POOL is the
3389 // strtab holding the name.
3391 template<int size
, bool big_endian
>
3393 Symbol_table::sized_write_symbol(
3394 Sized_symbol
<size
>* sym
,
3395 typename
elfcpp::Elf_types
<size
>::Elf_Addr value
,
3397 elfcpp::STB binding
,
3398 const Stringpool
* pool
,
3399 unsigned char* p
) const
3401 elfcpp::Sym_write
<size
, big_endian
> osym(p
);
3402 if (sym
->version() == NULL
|| !parameters
->options().relocatable())
3403 osym
.put_st_name(pool
->get_offset(sym
->name()));
3405 osym
.put_st_name(pool
->get_offset(sym
->versioned_name()));
3406 osym
.put_st_value(value
);
3407 // Use a symbol size of zero for undefined symbols from shared libraries.
3408 if (shndx
== elfcpp::SHN_UNDEF
&& sym
->is_from_dynobj())
3409 osym
.put_st_size(0);
3411 osym
.put_st_size(sym
->symsize());
3412 elfcpp::STT type
= sym
->type();
3413 gold_assert(type
!= elfcpp::STT_GNU_IFUNC
|| !sym
->is_from_dynobj());
3414 // A version script may have overridden the default binding.
3415 if (sym
->is_forced_local())
3416 osym
.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL
, type
));
3418 osym
.put_st_info(elfcpp::elf_st_info(binding
, type
));
3419 osym
.put_st_other(elfcpp::elf_st_other(sym
->visibility(), sym
->nonvis()));
3420 osym
.put_st_shndx(shndx
);
3423 // Check for unresolved symbols in shared libraries. This is
3424 // controlled by the --allow-shlib-undefined option.
3426 // We only warn about libraries for which we have seen all the
3427 // DT_NEEDED entries. We don't try to track down DT_NEEDED entries
3428 // which were not seen in this link. If we didn't see a DT_NEEDED
3429 // entry, we aren't going to be able to reliably report whether the
3430 // symbol is undefined.
3432 // We also don't warn about libraries found in a system library
3433 // directory (e.g., /lib or /usr/lib); we assume that those libraries
3434 // are OK. This heuristic avoids problems on GNU/Linux, in which -ldl
3435 // can have undefined references satisfied by ld-linux.so.
3438 Symbol_table::warn_about_undefined_dynobj_symbol(Symbol
* sym
) const
3441 if (sym
->source() == Symbol::FROM_OBJECT
3442 && sym
->object()->is_dynamic()
3443 && sym
->shndx(&dummy
) == elfcpp::SHN_UNDEF
3444 && sym
->binding() != elfcpp::STB_WEAK
3445 && !parameters
->options().allow_shlib_undefined()
3446 && !parameters
->target().is_defined_by_abi(sym
)
3447 && !sym
->object()->is_in_system_directory())
3449 // A very ugly cast.
3450 Dynobj
* dynobj
= static_cast<Dynobj
*>(sym
->object());
3451 if (!dynobj
->has_unknown_needed_entries())
3452 gold_undefined_symbol(sym
);
3456 // Write out a section symbol. Return the update offset.
3459 Symbol_table::write_section_symbol(const Output_section
* os
,
3460 Output_symtab_xindex
* symtab_xindex
,
3464 switch (parameters
->size_and_endianness())
3466 #ifdef HAVE_TARGET_32_LITTLE
3467 case Parameters::TARGET_32_LITTLE
:
3468 this->sized_write_section_symbol
<32, false>(os
, symtab_xindex
, of
,
3472 #ifdef HAVE_TARGET_32_BIG
3473 case Parameters::TARGET_32_BIG
:
3474 this->sized_write_section_symbol
<32, true>(os
, symtab_xindex
, of
,
3478 #ifdef HAVE_TARGET_64_LITTLE
3479 case Parameters::TARGET_64_LITTLE
:
3480 this->sized_write_section_symbol
<64, false>(os
, symtab_xindex
, of
,
3484 #ifdef HAVE_TARGET_64_BIG
3485 case Parameters::TARGET_64_BIG
:
3486 this->sized_write_section_symbol
<64, true>(os
, symtab_xindex
, of
,
3495 // Write out a section symbol, specialized for size and endianness.
3497 template<int size
, bool big_endian
>
3499 Symbol_table::sized_write_section_symbol(const Output_section
* os
,
3500 Output_symtab_xindex
* symtab_xindex
,
3504 const int sym_size
= elfcpp::Elf_sizes
<size
>::sym_size
;
3506 unsigned char* pov
= of
->get_output_view(offset
, sym_size
);
3508 elfcpp::Sym_write
<size
, big_endian
> osym(pov
);
3509 osym
.put_st_name(0);
3510 if (parameters
->options().relocatable())
3511 osym
.put_st_value(0);
3513 osym
.put_st_value(os
->address());
3514 osym
.put_st_size(0);
3515 osym
.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL
,
3516 elfcpp::STT_SECTION
));
3517 osym
.put_st_other(elfcpp::elf_st_other(elfcpp::STV_DEFAULT
, 0));
3519 unsigned int shndx
= os
->out_shndx();
3520 if (shndx
>= elfcpp::SHN_LORESERVE
)
3522 symtab_xindex
->add(os
->symtab_index(), shndx
);
3523 shndx
= elfcpp::SHN_XINDEX
;
3525 osym
.put_st_shndx(shndx
);
3527 of
->write_output_view(offset
, sym_size
, pov
);
3530 // Print statistical information to stderr. This is used for --stats.
3533 Symbol_table::print_stats() const
3535 #if defined(HAVE_TR1_UNORDERED_MAP) || defined(HAVE_EXT_HASH_MAP)
3536 fprintf(stderr
, _("%s: symbol table entries: %zu; buckets: %zu\n"),
3537 program_name
, this->table_
.size(), this->table_
.bucket_count());
3539 fprintf(stderr
, _("%s: symbol table entries: %zu\n"),
3540 program_name
, this->table_
.size());
3542 this->namepool_
.print_stats("symbol table stringpool");
3545 // We check for ODR violations by looking for symbols with the same
3546 // name for which the debugging information reports that they were
3547 // defined in disjoint source locations. When comparing the source
3548 // location, we consider instances with the same base filename to be
3549 // the same. This is because different object files/shared libraries
3550 // can include the same header file using different paths, and
3551 // different optimization settings can make the line number appear to
3552 // be a couple lines off, and we don't want to report an ODR violation
3555 // This struct is used to compare line information, as returned by
3556 // Dwarf_line_info::one_addr2line. It implements a < comparison
3557 // operator used with std::sort.
3559 struct Odr_violation_compare
3562 operator()(const std::string
& s1
, const std::string
& s2
) const
3564 // Inputs should be of the form "dirname/filename:linenum" where
3565 // "dirname/" is optional. We want to compare just the filename:linenum.
3567 // Find the last '/' in each string.
3568 std::string::size_type s1begin
= s1
.rfind('/');
3569 std::string::size_type s2begin
= s2
.rfind('/');
3570 // If there was no '/' in a string, start at the beginning.
3571 if (s1begin
== std::string::npos
)
3573 if (s2begin
== std::string::npos
)
3575 return s1
.compare(s1begin
, std::string::npos
,
3576 s2
, s2begin
, std::string::npos
) < 0;
3580 // Returns all of the lines attached to LOC, not just the one the
3581 // instruction actually came from.
3582 std::vector
<std::string
>
3583 Symbol_table::linenos_from_loc(const Task
* task
,
3584 const Symbol_location
& loc
)
3586 // We need to lock the object in order to read it. This
3587 // means that we have to run in a singleton Task. If we
3588 // want to run this in a general Task for better
3589 // performance, we will need one Task for object, plus
3590 // appropriate locking to ensure that we don't conflict with
3591 // other uses of the object. Also note, one_addr2line is not
3592 // currently thread-safe.
3593 Task_lock_obj
<Object
> tl(task
, loc
.object
);
3595 std::vector
<std::string
> result
;
3596 Symbol_location code_loc
= loc
;
3597 parameters
->target().function_location(&code_loc
);
3598 // 16 is the size of the object-cache that one_addr2line should use.
3599 std::string canonical_result
= Dwarf_line_info::one_addr2line(
3600 code_loc
.object
, code_loc
.shndx
, code_loc
.offset
, 16, &result
);
3601 if (!canonical_result
.empty())
3602 result
.push_back(canonical_result
);
3606 // OutputIterator that records if it was ever assigned to. This
3607 // allows it to be used with std::set_intersection() to check for
3608 // intersection rather than computing the intersection.
3609 struct Check_intersection
3611 Check_intersection()
3615 bool had_intersection() const
3616 { return this->value_
; }
3618 Check_intersection
& operator++()
3621 Check_intersection
& operator*()
3624 template<typename T
>
3625 Check_intersection
& operator=(const T
&)
3627 this->value_
= true;
3635 // Check candidate_odr_violations_ to find symbols with the same name
3636 // but apparently different definitions (different source-file/line-no
3637 // for each line assigned to the first instruction).
3640 Symbol_table::detect_odr_violations(const Task
* task
,
3641 const char* output_file_name
) const
3643 for (Odr_map::const_iterator it
= candidate_odr_violations_
.begin();
3644 it
!= candidate_odr_violations_
.end();
3647 const char* const symbol_name
= it
->first
;
3649 std::string first_object_name
;
3650 std::vector
<std::string
> first_object_linenos
;
3652 Unordered_set
<Symbol_location
, Symbol_location_hash
>::const_iterator
3653 locs
= it
->second
.begin();
3654 const Unordered_set
<Symbol_location
, Symbol_location_hash
>::const_iterator
3655 locs_end
= it
->second
.end();
3656 for (; locs
!= locs_end
&& first_object_linenos
.empty(); ++locs
)
3658 // Save the line numbers from the first definition to
3659 // compare to the other definitions. Ideally, we'd compare
3660 // every definition to every other, but we don't want to
3661 // take O(N^2) time to do this. This shortcut may cause
3662 // false negatives that appear or disappear depending on the
3663 // link order, but it won't cause false positives.
3664 first_object_name
= locs
->object
->name();
3665 first_object_linenos
= this->linenos_from_loc(task
, *locs
);
3667 if (first_object_linenos
.empty())
3670 // Sort by Odr_violation_compare to make std::set_intersection work.
3671 std::string first_object_canonical_result
= first_object_linenos
.back();
3672 std::sort(first_object_linenos
.begin(), first_object_linenos
.end(),
3673 Odr_violation_compare());
3675 for (; locs
!= locs_end
; ++locs
)
3677 std::vector
<std::string
> linenos
=
3678 this->linenos_from_loc(task
, *locs
);
3679 // linenos will be empty if we couldn't parse the debug info.
3680 if (linenos
.empty())
3682 // Sort by Odr_violation_compare to make std::set_intersection work.
3683 gold_assert(!linenos
.empty());
3684 std::string second_object_canonical_result
= linenos
.back();
3685 std::sort(linenos
.begin(), linenos
.end(), Odr_violation_compare());
3687 Check_intersection intersection_result
=
3688 std::set_intersection(first_object_linenos
.begin(),
3689 first_object_linenos
.end(),
3692 Check_intersection(),
3693 Odr_violation_compare());
3694 if (!intersection_result
.had_intersection())
3696 gold_warning(_("while linking %s: symbol '%s' defined in "
3697 "multiple places (possible ODR violation):"),
3698 output_file_name
, demangle(symbol_name
).c_str());
3699 // This only prints one location from each definition,
3700 // which may not be the location we expect to intersect
3701 // with another definition. We could print the whole
3702 // set of locations, but that seems too verbose.
3703 fprintf(stderr
, _(" %s from %s\n"),
3704 first_object_canonical_result
.c_str(),
3705 first_object_name
.c_str());
3706 fprintf(stderr
, _(" %s from %s\n"),
3707 second_object_canonical_result
.c_str(),
3708 locs
->object
->name().c_str());
3709 // Only print one broken pair, to avoid needing to
3710 // compare against a list of the disjoint definition
3711 // locations we've found so far. (If we kept comparing
3712 // against just the first one, we'd get a lot of
3713 // redundant complaints about the second definition
3719 // We only call one_addr2line() in this function, so we can clear its cache.
3720 Dwarf_line_info::clear_addr2line_cache();
3723 // Warnings functions.
3725 // Add a new warning.
3728 Warnings::add_warning(Symbol_table
* symtab
, const char* name
, Object
* obj
,
3729 const std::string
& warning
)
3731 name
= symtab
->canonicalize_name(name
);
3732 this->warnings_
[name
].set(obj
, warning
);
3735 // Look through the warnings and mark the symbols for which we should
3736 // warn. This is called during Layout::finalize when we know the
3737 // sources for all the symbols.
3740 Warnings::note_warnings(Symbol_table
* symtab
)
3742 for (Warning_table::iterator p
= this->warnings_
.begin();
3743 p
!= this->warnings_
.end();
3746 Symbol
* sym
= symtab
->lookup(p
->first
, NULL
);
3748 && sym
->source() == Symbol::FROM_OBJECT
3749 && sym
->object() == p
->second
.object
)
3750 sym
->set_has_warning();
3754 // Issue a warning. This is called when we see a relocation against a
3755 // symbol for which has a warning.
3757 template<int size
, bool big_endian
>
3759 Warnings::issue_warning(const Symbol
* sym
,
3760 const Relocate_info
<size
, big_endian
>* relinfo
,
3761 size_t relnum
, off_t reloffset
) const
3763 gold_assert(sym
->has_warning());
3765 // We don't want to issue a warning for a relocation against the
3766 // symbol in the same object file in which the symbol is defined.
3767 if (sym
->object() == relinfo
->object
)
3770 Warning_table::const_iterator p
= this->warnings_
.find(sym
->name());
3771 gold_assert(p
!= this->warnings_
.end());
3772 gold_warning_at_location(relinfo
, relnum
, reloffset
,
3773 "%s", p
->second
.text
.c_str());
3776 // Instantiate the templates we need. We could use the configure
3777 // script to restrict this to only the ones needed for implemented
3780 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3783 Sized_symbol
<32>::allocate_common(Output_data
*, Value_type
);
3786 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3789 Sized_symbol
<64>::allocate_common(Output_data
*, Value_type
);
3792 #ifdef HAVE_TARGET_32_LITTLE
3795 Symbol_table::add_from_relobj
<32, false>(
3796 Sized_relobj_file
<32, false>* relobj
,
3797 const unsigned char* syms
,
3799 size_t symndx_offset
,
3800 const char* sym_names
,
3801 size_t sym_name_size
,
3802 Sized_relobj_file
<32, false>::Symbols
* sympointers
,
3806 #ifdef HAVE_TARGET_32_BIG
3809 Symbol_table::add_from_relobj
<32, true>(
3810 Sized_relobj_file
<32, true>* relobj
,
3811 const unsigned char* syms
,
3813 size_t symndx_offset
,
3814 const char* sym_names
,
3815 size_t sym_name_size
,
3816 Sized_relobj_file
<32, true>::Symbols
* sympointers
,
3820 #ifdef HAVE_TARGET_64_LITTLE
3823 Symbol_table::add_from_relobj
<64, false>(
3824 Sized_relobj_file
<64, false>* relobj
,
3825 const unsigned char* syms
,
3827 size_t symndx_offset
,
3828 const char* sym_names
,
3829 size_t sym_name_size
,
3830 Sized_relobj_file
<64, false>::Symbols
* sympointers
,
3834 #ifdef HAVE_TARGET_64_BIG
3837 Symbol_table::add_from_relobj
<64, true>(
3838 Sized_relobj_file
<64, true>* relobj
,
3839 const unsigned char* syms
,
3841 size_t symndx_offset
,
3842 const char* sym_names
,
3843 size_t sym_name_size
,
3844 Sized_relobj_file
<64, true>::Symbols
* sympointers
,
3848 #ifdef HAVE_TARGET_32_LITTLE
3851 Symbol_table::add_from_pluginobj
<32, false>(
3852 Sized_pluginobj
<32, false>* obj
,
3855 elfcpp::Sym
<32, false>* sym
);
3858 #ifdef HAVE_TARGET_32_BIG
3861 Symbol_table::add_from_pluginobj
<32, true>(
3862 Sized_pluginobj
<32, true>* obj
,
3865 elfcpp::Sym
<32, true>* sym
);
3868 #ifdef HAVE_TARGET_64_LITTLE
3871 Symbol_table::add_from_pluginobj
<64, false>(
3872 Sized_pluginobj
<64, false>* obj
,
3875 elfcpp::Sym
<64, false>* sym
);
3878 #ifdef HAVE_TARGET_64_BIG
3881 Symbol_table::add_from_pluginobj
<64, true>(
3882 Sized_pluginobj
<64, true>* obj
,
3885 elfcpp::Sym
<64, true>* sym
);
3888 #ifdef HAVE_TARGET_32_LITTLE
3891 Symbol_table::add_from_dynobj
<32, false>(
3892 Sized_dynobj
<32, false>* dynobj
,
3893 const unsigned char* syms
,
3895 const char* sym_names
,
3896 size_t sym_name_size
,
3897 const unsigned char* versym
,
3899 const std::vector
<const char*>* version_map
,
3900 Sized_relobj_file
<32, false>::Symbols
* sympointers
,
3904 #ifdef HAVE_TARGET_32_BIG
3907 Symbol_table::add_from_dynobj
<32, true>(
3908 Sized_dynobj
<32, true>* dynobj
,
3909 const unsigned char* syms
,
3911 const char* sym_names
,
3912 size_t sym_name_size
,
3913 const unsigned char* versym
,
3915 const std::vector
<const char*>* version_map
,
3916 Sized_relobj_file
<32, true>::Symbols
* sympointers
,
3920 #ifdef HAVE_TARGET_64_LITTLE
3923 Symbol_table::add_from_dynobj
<64, false>(
3924 Sized_dynobj
<64, false>* dynobj
,
3925 const unsigned char* syms
,
3927 const char* sym_names
,
3928 size_t sym_name_size
,
3929 const unsigned char* versym
,
3931 const std::vector
<const char*>* version_map
,
3932 Sized_relobj_file
<64, false>::Symbols
* sympointers
,
3936 #ifdef HAVE_TARGET_64_BIG
3939 Symbol_table::add_from_dynobj
<64, true>(
3940 Sized_dynobj
<64, true>* dynobj
,
3941 const unsigned char* syms
,
3943 const char* sym_names
,
3944 size_t sym_name_size
,
3945 const unsigned char* versym
,
3947 const std::vector
<const char*>* version_map
,
3948 Sized_relobj_file
<64, true>::Symbols
* sympointers
,
3952 #ifdef HAVE_TARGET_32_LITTLE
3955 Symbol_table::add_from_incrobj(
3959 elfcpp::Sym
<32, false>* sym
);
3962 #ifdef HAVE_TARGET_32_BIG
3965 Symbol_table::add_from_incrobj(
3969 elfcpp::Sym
<32, true>* sym
);
3972 #ifdef HAVE_TARGET_64_LITTLE
3975 Symbol_table::add_from_incrobj(
3979 elfcpp::Sym
<64, false>* sym
);
3982 #ifdef HAVE_TARGET_64_BIG
3985 Symbol_table::add_from_incrobj(
3989 elfcpp::Sym
<64, true>* sym
);
3992 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3995 Symbol_table::define_with_copy_reloc
<32>(
3996 Sized_symbol
<32>* sym
,
3998 elfcpp::Elf_types
<32>::Elf_Addr value
);
4001 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
4004 Symbol_table::define_with_copy_reloc
<64>(
4005 Sized_symbol
<64>* sym
,
4007 elfcpp::Elf_types
<64>::Elf_Addr value
);
4010 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
4013 Sized_symbol
<32>::init_output_data(const char* name
, const char* version
,
4014 Output_data
* od
, Value_type value
,
4015 Size_type symsize
, elfcpp::STT type
,
4016 elfcpp::STB binding
,
4017 elfcpp::STV visibility
,
4018 unsigned char nonvis
,
4019 bool offset_is_from_end
,
4020 bool is_predefined
);
4024 Sized_symbol
<32>::init_constant(const char* name
, const char* version
,
4025 Value_type value
, Size_type symsize
,
4026 elfcpp::STT type
, elfcpp::STB binding
,
4027 elfcpp::STV visibility
, unsigned char nonvis
,
4028 bool is_predefined
);
4032 Sized_symbol
<32>::init_undefined(const char* name
, const char* version
,
4033 Value_type value
, elfcpp::STT type
,
4034 elfcpp::STB binding
, elfcpp::STV visibility
,
4035 unsigned char nonvis
);
4038 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
4041 Sized_symbol
<64>::init_output_data(const char* name
, const char* version
,
4042 Output_data
* od
, Value_type value
,
4043 Size_type symsize
, elfcpp::STT type
,
4044 elfcpp::STB binding
,
4045 elfcpp::STV visibility
,
4046 unsigned char nonvis
,
4047 bool offset_is_from_end
,
4048 bool is_predefined
);
4052 Sized_symbol
<64>::init_constant(const char* name
, const char* version
,
4053 Value_type value
, Size_type symsize
,
4054 elfcpp::STT type
, elfcpp::STB binding
,
4055 elfcpp::STV visibility
, unsigned char nonvis
,
4056 bool is_predefined
);
4060 Sized_symbol
<64>::init_undefined(const char* name
, const char* version
,
4061 Value_type value
, elfcpp::STT type
,
4062 elfcpp::STB binding
, elfcpp::STV visibility
,
4063 unsigned char nonvis
);
4066 #ifdef HAVE_TARGET_32_LITTLE
4069 Warnings::issue_warning
<32, false>(const Symbol
* sym
,
4070 const Relocate_info
<32, false>* relinfo
,
4071 size_t relnum
, off_t reloffset
) const;
4074 #ifdef HAVE_TARGET_32_BIG
4077 Warnings::issue_warning
<32, true>(const Symbol
* sym
,
4078 const Relocate_info
<32, true>* relinfo
,
4079 size_t relnum
, off_t reloffset
) const;
4082 #ifdef HAVE_TARGET_64_LITTLE
4085 Warnings::issue_warning
<64, false>(const Symbol
* sym
,
4086 const Relocate_info
<64, false>* relinfo
,
4087 size_t relnum
, off_t reloffset
) const;
4090 #ifdef HAVE_TARGET_64_BIG
4093 Warnings::issue_warning
<64, true>(const Symbol
* sym
,
4094 const Relocate_info
<64, true>* relinfo
,
4095 size_t relnum
, off_t reloffset
) const;
4098 } // End namespace gold.