arm: Support pac_key_* register operand for MRS/MSR in Armv8.1-M Mainline
[binutils-gdb.git] / gold / symtab.cc
blob91b551cae1da4d3bcf7962c64a4a41be6e4b8e3c
1 // symtab.cc -- the gold symbol table
3 // Copyright (C) 2006-2024 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
6 // This file is part of gold.
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
23 #include "gold.h"
25 #include <cstring>
26 #include <stdint.h>
27 #include <algorithm>
28 #include <set>
29 #include <string>
30 #include <utility>
31 #include "demangle.h"
33 #include "gc.h"
34 #include "object.h"
35 #include "dwarf_reader.h"
36 #include "dynobj.h"
37 #include "output.h"
38 #include "target.h"
39 #include "workqueue.h"
40 #include "symtab.h"
41 #include "script.h"
42 #include "plugin.h"
43 #include "incremental.h"
45 namespace gold
48 // Class Symbol.
50 // Initialize fields in Symbol. This initializes everything except
51 // u1_, u2_ and source_.
53 void
54 Symbol::init_fields(const char* name, const char* version,
55 elfcpp::STT type, elfcpp::STB binding,
56 elfcpp::STV visibility, unsigned char nonvis)
58 this->name_ = name;
59 this->version_ = version;
60 this->symtab_index_ = 0;
61 this->dynsym_index_ = 0;
62 this->got_offsets_.init();
63 this->plt_offset_ = -1U;
64 this->type_ = type;
65 this->binding_ = binding;
66 this->visibility_ = visibility;
67 this->nonvis_ = nonvis;
68 this->is_def_ = false;
69 this->is_forwarder_ = false;
70 this->has_alias_ = false;
71 this->needs_dynsym_entry_ = false;
72 this->in_reg_ = false;
73 this->in_dyn_ = false;
74 this->has_warning_ = false;
75 this->is_copied_from_dynobj_ = false;
76 this->is_forced_local_ = false;
77 this->is_ordinary_shndx_ = false;
78 this->in_real_elf_ = false;
79 this->is_defined_in_discarded_section_ = false;
80 this->undef_binding_set_ = false;
81 this->undef_binding_weak_ = false;
82 this->is_predefined_ = false;
83 this->is_protected_ = false;
84 this->non_zero_localentry_ = false;
87 // Return the demangled version of the symbol's name, but only
88 // if the --demangle flag was set.
90 static std::string
91 demangle(const char* name)
93 if (!parameters->options().do_demangle())
94 return name;
96 // cplus_demangle allocates memory for the result it returns,
97 // and returns NULL if the name is already demangled.
98 char* demangled_name = cplus_demangle(name, DMGL_ANSI | DMGL_PARAMS);
99 if (demangled_name == NULL)
100 return name;
102 std::string retval(demangled_name);
103 free(demangled_name);
104 return retval;
107 std::string
108 Symbol::demangled_name() const
110 return demangle(this->name());
113 // Initialize the fields in the base class Symbol for SYM in OBJECT.
115 template<int size, bool big_endian>
116 void
117 Symbol::init_base_object(const char* name, const char* version, Object* object,
118 const elfcpp::Sym<size, big_endian>& sym,
119 unsigned int st_shndx, bool is_ordinary)
121 this->init_fields(name, version, sym.get_st_type(), sym.get_st_bind(),
122 sym.get_st_visibility(), sym.get_st_nonvis());
123 this->u1_.object = object;
124 this->u2_.shndx = st_shndx;
125 this->is_ordinary_shndx_ = is_ordinary;
126 this->source_ = FROM_OBJECT;
127 this->in_reg_ = !object->is_dynamic();
128 this->in_dyn_ = object->is_dynamic();
129 this->in_real_elf_ = object->pluginobj() == NULL;
132 // Initialize the fields in the base class Symbol for a symbol defined
133 // in an Output_data.
135 void
136 Symbol::init_base_output_data(const char* name, const char* version,
137 Output_data* od, elfcpp::STT type,
138 elfcpp::STB binding, elfcpp::STV visibility,
139 unsigned char nonvis, bool offset_is_from_end,
140 bool is_predefined)
142 this->init_fields(name, version, type, binding, visibility, nonvis);
143 this->u1_.output_data = od;
144 this->u2_.offset_is_from_end = offset_is_from_end;
145 this->source_ = IN_OUTPUT_DATA;
146 this->in_reg_ = true;
147 this->in_real_elf_ = true;
148 this->is_predefined_ = is_predefined;
151 // Initialize the fields in the base class Symbol for a symbol defined
152 // in an Output_segment.
154 void
155 Symbol::init_base_output_segment(const char* name, const char* version,
156 Output_segment* os, elfcpp::STT type,
157 elfcpp::STB binding, elfcpp::STV visibility,
158 unsigned char nonvis,
159 Segment_offset_base offset_base,
160 bool is_predefined)
162 this->init_fields(name, version, type, binding, visibility, nonvis);
163 this->u1_.output_segment = os;
164 this->u2_.offset_base = offset_base;
165 this->source_ = IN_OUTPUT_SEGMENT;
166 this->in_reg_ = true;
167 this->in_real_elf_ = true;
168 this->is_predefined_ = is_predefined;
171 // Initialize the fields in the base class Symbol for a symbol defined
172 // as a constant.
174 void
175 Symbol::init_base_constant(const char* name, const char* version,
176 elfcpp::STT type, elfcpp::STB binding,
177 elfcpp::STV visibility, unsigned char nonvis,
178 bool is_predefined)
180 this->init_fields(name, version, type, binding, visibility, nonvis);
181 this->source_ = IS_CONSTANT;
182 this->in_reg_ = true;
183 this->in_real_elf_ = true;
184 this->is_predefined_ = is_predefined;
187 // Initialize the fields in the base class Symbol for an undefined
188 // symbol.
190 void
191 Symbol::init_base_undefined(const char* name, const char* version,
192 elfcpp::STT type, elfcpp::STB binding,
193 elfcpp::STV visibility, unsigned char nonvis)
195 this->init_fields(name, version, type, binding, visibility, nonvis);
196 this->dynsym_index_ = -1U;
197 this->source_ = IS_UNDEFINED;
198 this->in_reg_ = true;
199 this->in_real_elf_ = true;
202 // Allocate a common symbol in the base.
204 void
205 Symbol::allocate_base_common(Output_data* od)
207 gold_assert(this->is_common());
208 this->source_ = IN_OUTPUT_DATA;
209 this->u1_.output_data = od;
210 this->u2_.offset_is_from_end = false;
213 // Initialize the fields in Sized_symbol for SYM in OBJECT.
215 template<int size>
216 template<bool big_endian>
217 void
218 Sized_symbol<size>::init_object(const char* name, const char* version,
219 Object* object,
220 const elfcpp::Sym<size, big_endian>& sym,
221 unsigned int st_shndx, bool is_ordinary)
223 this->init_base_object(name, version, object, sym, st_shndx, is_ordinary);
224 this->value_ = sym.get_st_value();
225 this->symsize_ = sym.get_st_size();
228 // Initialize the fields in Sized_symbol for a symbol defined in an
229 // Output_data.
231 template<int size>
232 void
233 Sized_symbol<size>::init_output_data(const char* name, const char* version,
234 Output_data* od, Value_type value,
235 Size_type symsize, elfcpp::STT type,
236 elfcpp::STB binding,
237 elfcpp::STV visibility,
238 unsigned char nonvis,
239 bool offset_is_from_end,
240 bool is_predefined)
242 this->init_base_output_data(name, version, od, type, binding, visibility,
243 nonvis, offset_is_from_end, is_predefined);
244 this->value_ = value;
245 this->symsize_ = symsize;
248 // Initialize the fields in Sized_symbol for a symbol defined in an
249 // Output_segment.
251 template<int size>
252 void
253 Sized_symbol<size>::init_output_segment(const char* name, const char* version,
254 Output_segment* os, Value_type value,
255 Size_type symsize, elfcpp::STT type,
256 elfcpp::STB binding,
257 elfcpp::STV visibility,
258 unsigned char nonvis,
259 Segment_offset_base offset_base,
260 bool is_predefined)
262 this->init_base_output_segment(name, version, os, type, binding, visibility,
263 nonvis, offset_base, is_predefined);
264 this->value_ = value;
265 this->symsize_ = symsize;
268 // Initialize the fields in Sized_symbol for a symbol defined as a
269 // constant.
271 template<int size>
272 void
273 Sized_symbol<size>::init_constant(const char* name, const char* version,
274 Value_type value, Size_type symsize,
275 elfcpp::STT type, elfcpp::STB binding,
276 elfcpp::STV visibility, unsigned char nonvis,
277 bool is_predefined)
279 this->init_base_constant(name, version, type, binding, visibility, nonvis,
280 is_predefined);
281 this->value_ = value;
282 this->symsize_ = symsize;
285 // Initialize the fields in Sized_symbol for an undefined symbol.
287 template<int size>
288 void
289 Sized_symbol<size>::init_undefined(const char* name, const char* version,
290 Value_type value, elfcpp::STT type,
291 elfcpp::STB binding, elfcpp::STV visibility,
292 unsigned char nonvis)
294 this->init_base_undefined(name, version, type, binding, visibility, nonvis);
295 this->value_ = value;
296 this->symsize_ = 0;
299 // Return an allocated string holding the symbol's name as
300 // name@version. This is used for relocatable links.
302 std::string
303 Symbol::versioned_name() const
305 gold_assert(this->version_ != NULL);
306 std::string ret = this->name_;
307 ret.push_back('@');
308 if (this->is_def_)
309 ret.push_back('@');
310 ret += this->version_;
311 return ret;
314 // Return true if SHNDX represents a common symbol.
316 bool
317 Symbol::is_common_shndx(unsigned int shndx)
319 return (shndx == elfcpp::SHN_COMMON
320 || shndx == parameters->target().small_common_shndx()
321 || shndx == parameters->target().large_common_shndx());
324 // Allocate a common symbol.
326 template<int size>
327 void
328 Sized_symbol<size>::allocate_common(Output_data* od, Value_type value)
330 this->allocate_base_common(od);
331 this->value_ = value;
334 // The ""'s around str ensure str is a string literal, so sizeof works.
335 #define strprefix(var, str) (strncmp(var, str, sizeof("" str "") - 1) == 0)
337 // Return true if this symbol should be added to the dynamic symbol
338 // table.
340 bool
341 Symbol::should_add_dynsym_entry(Symbol_table* symtab) const
343 // If the symbol is only present on plugin files, the plugin decided we
344 // don't need it.
345 if (!this->in_real_elf())
346 return false;
348 // If the symbol is used by a dynamic relocation, we need to add it.
349 if (this->needs_dynsym_entry())
350 return true;
352 // If this symbol's section is not added, the symbol need not be added.
353 // The section may have been GCed. Note that export_dynamic is being
354 // overridden here. This should not be done for shared objects.
355 if (parameters->options().gc_sections()
356 && !parameters->options().shared()
357 && this->source() == Symbol::FROM_OBJECT
358 && !this->object()->is_dynamic())
360 Relobj* relobj = static_cast<Relobj*>(this->object());
361 bool is_ordinary;
362 unsigned int shndx = this->shndx(&is_ordinary);
363 if (is_ordinary && shndx != elfcpp::SHN_UNDEF
364 && !relobj->is_section_included(shndx)
365 && !symtab->is_section_folded(relobj, shndx))
366 return false;
369 // If the symbol was forced dynamic in a --dynamic-list file
370 // or an --export-dynamic-symbol option, add it.
371 if (!this->is_from_dynobj()
372 && (parameters->options().in_dynamic_list(this->name())
373 || parameters->options().is_export_dynamic_symbol(this->name())))
375 if (!this->is_forced_local())
376 return true;
377 gold_warning(_("Cannot export local symbol '%s'"),
378 this->demangled_name().c_str());
379 return false;
382 // If the symbol was forced local in a version script, do not add it.
383 if (this->is_forced_local())
384 return false;
386 // If dynamic-list-data was specified, add any STT_OBJECT.
387 if (parameters->options().dynamic_list_data()
388 && !this->is_from_dynobj()
389 && this->type() == elfcpp::STT_OBJECT)
390 return true;
392 // If --dynamic-list-cpp-new was specified, add any new/delete symbol.
393 // If --dynamic-list-cpp-typeinfo was specified, add any typeinfo symbols.
394 if ((parameters->options().dynamic_list_cpp_new()
395 || parameters->options().dynamic_list_cpp_typeinfo())
396 && !this->is_from_dynobj())
398 // TODO(csilvers): We could probably figure out if we're an operator
399 // new/delete or typeinfo without the need to demangle.
400 char* demangled_name = cplus_demangle(this->name(),
401 DMGL_ANSI | DMGL_PARAMS);
402 if (demangled_name == NULL)
404 // Not a C++ symbol, so it can't satisfy these flags
406 else if (parameters->options().dynamic_list_cpp_new()
407 && (strprefix(demangled_name, "operator new")
408 || strprefix(demangled_name, "operator delete")))
410 free(demangled_name);
411 return true;
413 else if (parameters->options().dynamic_list_cpp_typeinfo()
414 && (strprefix(demangled_name, "typeinfo name for")
415 || strprefix(demangled_name, "typeinfo for")))
417 free(demangled_name);
418 return true;
420 else
421 free(demangled_name);
424 // If exporting all symbols or building a shared library,
425 // or the symbol should be globally unique (GNU_UNIQUE),
426 // and the symbol is defined in a regular object and is
427 // externally visible, we need to add it.
428 if ((parameters->options().export_dynamic()
429 || parameters->options().shared()
430 || (parameters->options().gnu_unique()
431 && this->binding() == elfcpp::STB_GNU_UNIQUE))
432 && !this->is_from_dynobj()
433 && !this->is_undefined()
434 && this->is_externally_visible())
435 return true;
437 return false;
440 // Return true if the final value of this symbol is known at link
441 // time.
443 bool
444 Symbol::final_value_is_known() const
446 // If we are not generating an executable, then no final values are
447 // known, since they will change at runtime, with the exception of
448 // TLS symbols in a position-independent executable.
449 if ((parameters->options().output_is_position_independent()
450 || parameters->options().relocatable())
451 && !(this->type() == elfcpp::STT_TLS
452 && parameters->options().pie()))
454 // Non-default weak undefined symbols in executable and shared
455 // library are always resolved to 0 at runtime.
456 if (this->visibility() != elfcpp::STV_DEFAULT
457 && this->is_weak_undefined()
458 && !parameters->options().relocatable())
459 return true;
461 return false;
464 // If the symbol is not from an object file, and is not undefined,
465 // then it is defined, and known.
466 if (this->source_ != FROM_OBJECT)
468 if (this->source_ != IS_UNDEFINED)
469 return true;
471 else
473 // If the symbol is from a dynamic object, then the final value
474 // is not known.
475 if (this->object()->is_dynamic())
476 return false;
478 // If the symbol is not undefined (it is defined or common),
479 // then the final value is known.
480 if (!this->is_undefined())
481 return true;
484 // If the symbol is undefined, then whether the final value is known
485 // depends on whether we are doing a static link. If we are doing a
486 // dynamic link, then the final value could be filled in at runtime.
487 // This could reasonably be the case for a weak undefined symbol.
488 return parameters->doing_static_link();
491 // Return the output section where this symbol is defined.
493 Output_section*
494 Symbol::output_section() const
496 switch (this->source_)
498 case FROM_OBJECT:
500 unsigned int shndx = this->u2_.shndx;
501 if (shndx != elfcpp::SHN_UNDEF && this->is_ordinary_shndx_)
503 gold_assert(!this->u1_.object->is_dynamic());
504 gold_assert(this->u1_.object->pluginobj() == NULL);
505 Relobj* relobj = static_cast<Relobj*>(this->u1_.object);
506 return relobj->output_section(shndx);
508 return NULL;
511 case IN_OUTPUT_DATA:
512 return this->u1_.output_data->output_section();
514 case IN_OUTPUT_SEGMENT:
515 case IS_CONSTANT:
516 case IS_UNDEFINED:
517 return NULL;
519 default:
520 gold_unreachable();
524 // Set the symbol's output section. This is used for symbols defined
525 // in scripts. This should only be called after the symbol table has
526 // been finalized.
528 void
529 Symbol::set_output_section(Output_section* os)
531 switch (this->source_)
533 case FROM_OBJECT:
534 case IN_OUTPUT_DATA:
535 gold_assert(this->output_section() == os);
536 break;
537 case IS_CONSTANT:
538 this->source_ = IN_OUTPUT_DATA;
539 this->u1_.output_data = os;
540 this->u2_.offset_is_from_end = false;
541 break;
542 case IN_OUTPUT_SEGMENT:
543 case IS_UNDEFINED:
544 default:
545 gold_unreachable();
549 // Set the symbol's output segment. This is used for pre-defined
550 // symbols whose segments aren't known until after layout is done
551 // (e.g., __ehdr_start).
553 void
554 Symbol::set_output_segment(Output_segment* os, Segment_offset_base base)
556 gold_assert(this->is_predefined_);
557 this->source_ = IN_OUTPUT_SEGMENT;
558 this->u1_.output_segment = os;
559 this->u2_.offset_base = base;
562 // Set the symbol to undefined. This is used for pre-defined
563 // symbols whose segments aren't known until after layout is done
564 // (e.g., __ehdr_start).
566 void
567 Symbol::set_undefined()
569 this->source_ = IS_UNDEFINED;
570 this->is_predefined_ = false;
573 // Class Symbol_table.
575 Symbol_table::Symbol_table(unsigned int count,
576 const Version_script_info& version_script)
577 : saw_undefined_(0), offset_(0), has_gnu_output_(false), table_(count),
578 namepool_(), forwarders_(), commons_(), tls_commons_(), small_commons_(),
579 large_commons_(), forced_locals_(), warnings_(),
580 version_script_(version_script), gc_(NULL), icf_(NULL),
581 target_symbols_()
583 namepool_.reserve(count);
586 Symbol_table::~Symbol_table()
590 // The symbol table key equality function. This is called with
591 // Stringpool keys.
593 inline bool
594 Symbol_table::Symbol_table_eq::operator()(const Symbol_table_key& k1,
595 const Symbol_table_key& k2) const
597 return k1.first == k2.first && k1.second == k2.second;
600 bool
601 Symbol_table::is_section_folded(Relobj* obj, unsigned int shndx) const
603 return (parameters->options().icf_enabled()
604 && this->icf_->is_section_folded(obj, shndx));
607 // For symbols that have been listed with a -u or --export-dynamic-symbol
608 // option, add them to the work list to avoid gc'ing them.
610 void
611 Symbol_table::gc_mark_undef_symbols(Layout* layout)
613 for (options::String_set::const_iterator p =
614 parameters->options().undefined_begin();
615 p != parameters->options().undefined_end();
616 ++p)
618 const char* name = p->c_str();
619 Symbol* sym = this->lookup(name);
620 gold_assert(sym != NULL);
621 if (sym->source() == Symbol::FROM_OBJECT
622 && !sym->object()->is_dynamic())
624 this->gc_mark_symbol(sym);
628 for (options::String_set::const_iterator p =
629 parameters->options().export_dynamic_symbol_begin();
630 p != parameters->options().export_dynamic_symbol_end();
631 ++p)
633 const char* name = p->c_str();
634 Symbol* sym = this->lookup(name);
635 // It's not an error if a symbol named by --export-dynamic-symbol
636 // is undefined.
637 if (sym != NULL
638 && sym->source() == Symbol::FROM_OBJECT
639 && !sym->object()->is_dynamic())
641 this->gc_mark_symbol(sym);
645 for (Script_options::referenced_const_iterator p =
646 layout->script_options()->referenced_begin();
647 p != layout->script_options()->referenced_end();
648 ++p)
650 Symbol* sym = this->lookup(p->c_str());
651 gold_assert(sym != NULL);
652 if (sym->source() == Symbol::FROM_OBJECT
653 && !sym->object()->is_dynamic())
655 this->gc_mark_symbol(sym);
660 void
661 Symbol_table::gc_mark_symbol(Symbol* sym)
663 // Add the object and section to the work list.
664 bool is_ordinary;
665 unsigned int shndx = sym->shndx(&is_ordinary);
666 if (is_ordinary && shndx != elfcpp::SHN_UNDEF && !sym->object()->is_dynamic())
668 gold_assert(this->gc_!= NULL);
669 Relobj* relobj = static_cast<Relobj*>(sym->object());
670 this->gc_->worklist().push_back(Section_id(relobj, shndx));
672 parameters->target().gc_mark_symbol(this, sym);
675 // When doing garbage collection, keep symbols that have been seen in
676 // dynamic objects.
677 inline void
678 Symbol_table::gc_mark_dyn_syms(Symbol* sym)
680 if (sym->in_dyn() && sym->source() == Symbol::FROM_OBJECT
681 && !sym->object()->is_dynamic())
682 this->gc_mark_symbol(sym);
685 // Make TO a symbol which forwards to FROM.
687 void
688 Symbol_table::make_forwarder(Symbol* from, Symbol* to)
690 gold_assert(from != to);
691 gold_assert(!from->is_forwarder() && !to->is_forwarder());
692 this->forwarders_[from] = to;
693 from->set_forwarder();
696 // Resolve the forwards from FROM, returning the real symbol.
698 Symbol*
699 Symbol_table::resolve_forwards(const Symbol* from) const
701 gold_assert(from->is_forwarder());
702 Unordered_map<const Symbol*, Symbol*>::const_iterator p =
703 this->forwarders_.find(from);
704 gold_assert(p != this->forwarders_.end());
705 return p->second;
708 // Look up a symbol by name.
710 Symbol*
711 Symbol_table::lookup(const char* name, const char* version) const
713 Stringpool::Key name_key;
714 name = this->namepool_.find(name, &name_key);
715 if (name == NULL)
716 return NULL;
718 Stringpool::Key version_key = 0;
719 if (version != NULL)
721 version = this->namepool_.find(version, &version_key);
722 if (version == NULL)
723 return NULL;
726 Symbol_table_key key(name_key, version_key);
727 Symbol_table::Symbol_table_type::const_iterator p = this->table_.find(key);
728 if (p == this->table_.end())
729 return NULL;
730 return p->second;
733 // Resolve a Symbol with another Symbol. This is only used in the
734 // unusual case where there are references to both an unversioned
735 // symbol and a symbol with a version, and we then discover that that
736 // version is the default version. Because this is unusual, we do
737 // this the slow way, by converting back to an ELF symbol.
739 template<int size, bool big_endian>
740 void
741 Symbol_table::resolve(Sized_symbol<size>* to, const Sized_symbol<size>* from)
743 unsigned char buf[elfcpp::Elf_sizes<size>::sym_size];
744 elfcpp::Sym_write<size, big_endian> esym(buf);
745 // We don't bother to set the st_name or the st_shndx field.
746 esym.put_st_value(from->value());
747 esym.put_st_size(from->symsize());
748 esym.put_st_info(from->binding(), from->type());
749 esym.put_st_other(from->visibility(), from->nonvis());
750 bool is_ordinary;
751 unsigned int shndx = from->shndx(&is_ordinary);
752 this->resolve(to, esym.sym(), shndx, is_ordinary, shndx, from->object(),
753 from->version(), true);
754 if (from->in_reg())
755 to->set_in_reg();
756 if (from->in_dyn())
757 to->set_in_dyn();
758 if (parameters->options().gc_sections())
759 this->gc_mark_dyn_syms(to);
762 // Record that a symbol is forced to be local by a version script or
763 // by visibility.
765 void
766 Symbol_table::force_local(Symbol* sym)
768 if (!sym->is_defined() && !sym->is_common())
769 return;
770 if (sym->is_forced_local())
772 // We already got this one.
773 return;
775 sym->set_is_forced_local();
776 this->forced_locals_.push_back(sym);
779 // Adjust NAME for wrapping, and update *NAME_KEY if necessary. This
780 // is only called for undefined symbols, when at least one --wrap
781 // option was used.
783 const char*
784 Symbol_table::wrap_symbol(const char* name, Stringpool::Key* name_key)
786 // For some targets, we need to ignore a specific character when
787 // wrapping, and add it back later.
788 char prefix = '\0';
789 if (name[0] == parameters->target().wrap_char())
791 prefix = name[0];
792 ++name;
795 if (parameters->options().is_wrap(name))
797 // Turn NAME into __wrap_NAME.
798 std::string s;
799 if (prefix != '\0')
800 s += prefix;
801 s += "__wrap_";
802 s += name;
804 // This will give us both the old and new name in NAMEPOOL_, but
805 // that is OK. Only the versions we need will wind up in the
806 // real string table in the output file.
807 return this->namepool_.add(s.c_str(), true, name_key);
810 const char* const real_prefix = "__real_";
811 const size_t real_prefix_length = strlen(real_prefix);
812 if (strncmp(name, real_prefix, real_prefix_length) == 0
813 && parameters->options().is_wrap(name + real_prefix_length))
815 // Turn __real_NAME into NAME.
816 std::string s;
817 if (prefix != '\0')
818 s += prefix;
819 s += name + real_prefix_length;
820 return this->namepool_.add(s.c_str(), true, name_key);
823 return name;
826 // This is called when we see a symbol NAME/VERSION, and the symbol
827 // already exists in the symbol table, and VERSION is marked as being
828 // the default version. SYM is the NAME/VERSION symbol we just added.
829 // DEFAULT_IS_NEW is true if this is the first time we have seen the
830 // symbol NAME/NULL. PDEF points to the entry for NAME/NULL.
832 template<int size, bool big_endian>
833 void
834 Symbol_table::define_default_version(Sized_symbol<size>* sym,
835 bool default_is_new,
836 Symbol_table_type::iterator pdef)
838 if (default_is_new)
840 // This is the first time we have seen NAME/NULL. Make
841 // NAME/NULL point to NAME/VERSION, and mark SYM as the default
842 // version.
843 pdef->second = sym;
844 sym->set_is_default();
846 else if (pdef->second == sym)
848 // NAME/NULL already points to NAME/VERSION. Don't mark the
849 // symbol as the default if it is not already the default.
851 else
853 // This is the unfortunate case where we already have entries
854 // for both NAME/VERSION and NAME/NULL. We now see a symbol
855 // NAME/VERSION where VERSION is the default version. We have
856 // already resolved this new symbol with the existing
857 // NAME/VERSION symbol.
859 // It's possible that NAME/NULL and NAME/VERSION are both
860 // defined in regular objects. This can only happen if one
861 // object file defines foo and another defines foo@@ver. This
862 // is somewhat obscure, but we call it a multiple definition
863 // error.
865 // It's possible that NAME/NULL actually has a version, in which
866 // case it won't be the same as VERSION. This happens with
867 // ver_test_7.so in the testsuite for the symbol t2_2. We see
868 // t2_2@@VER2, so we define both t2_2/VER2 and t2_2/NULL. We
869 // then see an unadorned t2_2 in an object file and give it
870 // version VER1 from the version script. This looks like a
871 // default definition for VER1, so it looks like we should merge
872 // t2_2/NULL with t2_2/VER1. That doesn't make sense, but it's
873 // not obvious that this is an error, either. So we just punt.
875 // If one of the symbols has non-default visibility, and the
876 // other is defined in a shared object, then they are different
877 // symbols.
879 // If the two symbols are from different shared objects,
880 // they are different symbols.
882 // Otherwise, we just resolve the symbols as though they were
883 // the same.
885 if (pdef->second->version() != NULL)
886 gold_assert(pdef->second->version() != sym->version());
887 else if (sym->visibility() != elfcpp::STV_DEFAULT
888 && pdef->second->is_from_dynobj())
890 else if (pdef->second->visibility() != elfcpp::STV_DEFAULT
891 && sym->is_from_dynobj())
893 else if (pdef->second->is_from_dynobj()
894 && sym->is_from_dynobj()
895 && pdef->second->is_defined()
896 && pdef->second->object() != sym->object())
898 else
900 const Sized_symbol<size>* symdef;
901 symdef = this->get_sized_symbol<size>(pdef->second);
902 Symbol_table::resolve<size, big_endian>(sym, symdef);
903 this->make_forwarder(pdef->second, sym);
904 pdef->second = sym;
905 sym->set_is_default();
910 // Add one symbol from OBJECT to the symbol table. NAME is symbol
911 // name and VERSION is the version; both are canonicalized. DEF is
912 // whether this is the default version. ST_SHNDX is the symbol's
913 // section index; IS_ORDINARY is whether this is a normal section
914 // rather than a special code.
916 // If IS_DEFAULT_VERSION is true, then this is the definition of a
917 // default version of a symbol. That means that any lookup of
918 // NAME/NULL and any lookup of NAME/VERSION should always return the
919 // same symbol. This is obvious for references, but in particular we
920 // want to do this for definitions: overriding NAME/NULL should also
921 // override NAME/VERSION. If we don't do that, it would be very hard
922 // to override functions in a shared library which uses versioning.
924 // We implement this by simply making both entries in the hash table
925 // point to the same Symbol structure. That is easy enough if this is
926 // the first time we see NAME/NULL or NAME/VERSION, but it is possible
927 // that we have seen both already, in which case they will both have
928 // independent entries in the symbol table. We can't simply change
929 // the symbol table entry, because we have pointers to the entries
930 // attached to the object files. So we mark the entry attached to the
931 // object file as a forwarder, and record it in the forwarders_ map.
932 // Note that entries in the hash table will never be marked as
933 // forwarders.
935 // ORIG_ST_SHNDX and ST_SHNDX are almost always the same.
936 // ORIG_ST_SHNDX is the section index in the input file, or SHN_UNDEF
937 // for a special section code. ST_SHNDX may be modified if the symbol
938 // is defined in a section being discarded.
940 template<int size, bool big_endian>
941 Sized_symbol<size>*
942 Symbol_table::add_from_object(Object* object,
943 const char* name,
944 Stringpool::Key name_key,
945 const char* version,
946 Stringpool::Key version_key,
947 bool is_default_version,
948 const elfcpp::Sym<size, big_endian>& sym,
949 unsigned int st_shndx,
950 bool is_ordinary,
951 unsigned int orig_st_shndx)
953 // Print a message if this symbol is being traced.
954 if (parameters->options().is_trace_symbol(name))
956 if (orig_st_shndx == elfcpp::SHN_UNDEF)
957 gold_info(_("%s: reference to %s"), object->name().c_str(), name);
958 else
959 gold_info(_("%s: definition of %s"), object->name().c_str(), name);
962 // For an undefined symbol, we may need to adjust the name using
963 // --wrap.
964 if (orig_st_shndx == elfcpp::SHN_UNDEF
965 && parameters->options().any_wrap())
967 const char* wrap_name = this->wrap_symbol(name, &name_key);
968 if (wrap_name != name)
970 // If we see a reference to malloc with version GLIBC_2.0,
971 // and we turn it into a reference to __wrap_malloc, then we
972 // discard the version number. Otherwise the user would be
973 // required to specify the correct version for
974 // __wrap_malloc.
975 version = NULL;
976 version_key = 0;
977 name = wrap_name;
981 Symbol* const snull = NULL;
982 std::pair<typename Symbol_table_type::iterator, bool> ins =
983 this->table_.insert(std::make_pair(std::make_pair(name_key, version_key),
984 snull));
986 std::pair<typename Symbol_table_type::iterator, bool> insdefault =
987 std::make_pair(this->table_.end(), false);
988 if (is_default_version)
990 const Stringpool::Key vnull_key = 0;
991 insdefault = this->table_.insert(std::make_pair(std::make_pair(name_key,
992 vnull_key),
993 snull));
996 // ins.first: an iterator, which is a pointer to a pair.
997 // ins.first->first: the key (a pair of name and version).
998 // ins.first->second: the value (Symbol*).
999 // ins.second: true if new entry was inserted, false if not.
1001 Sized_symbol<size>* ret = NULL;
1002 bool was_undefined_in_reg;
1003 bool was_common;
1004 if (!ins.second)
1006 // We already have an entry for NAME/VERSION.
1007 ret = this->get_sized_symbol<size>(ins.first->second);
1008 gold_assert(ret != NULL);
1010 bool ret_is_ordinary;
1011 const unsigned int ret_shndx = ret->shndx(&ret_is_ordinary);
1013 was_undefined_in_reg = ret->is_undefined() && ret->in_reg();
1014 // Commons from plugins are just placeholders.
1015 was_common = ret->is_common() && ret->object()->pluginobj() == NULL;
1017 // It's possible for a symbol to be defined in an object file
1018 // using .symver to give it a version, and for there to also be
1019 // a linker script giving that symbol the same version. We
1020 // don't want to give a multiple-definition error for this
1021 // harmless redefinition.
1022 bool check_version = false;
1023 bool erase_default_version = false;
1024 bool no_default_version = false;
1025 if (ret->source() == Symbol::FROM_OBJECT
1026 && is_ordinary
1027 && ret_shndx == st_shndx)
1029 if (ret->object() == object)
1030 check_version = true;
1032 if (version != NULL && version == ret->version())
1034 // Don't give a multiple-definition error if the hidden
1035 // version from .symver is the same as the default version
1036 // from the unversioned symbol.
1037 if (is_default_version && !ret->is_default ())
1039 no_default_version = true;
1040 if (insdefault.second)
1042 // Don't make the unversioned symbol the default
1043 // version.
1044 is_default_version = false;
1045 erase_default_version = true;
1046 check_version = true;
1049 else if (!is_default_version && ret->is_default ())
1051 // Don't make the unversioned symbol the default
1052 // version.
1053 ret->set_is_not_default();
1054 no_default_version = true;
1055 check_version = true;
1060 if (!(check_version
1061 && ret->is_defined()
1062 && ret_is_ordinary
1063 && (no_default_version
1064 || ret->value() == sym.get_st_value())))
1065 this->resolve(ret, sym, st_shndx, is_ordinary, orig_st_shndx,
1066 object, version, is_default_version);
1068 if (parameters->options().gc_sections())
1069 this->gc_mark_dyn_syms(ret);
1071 if (is_default_version)
1072 this->define_default_version<size, big_endian>(ret, insdefault.second,
1073 insdefault.first);
1074 else
1076 if (version != NULL && check_version)
1078 // We have seen NAME/VERSION already, and marked it as the
1079 // default version, but now we see a definition for
1080 // NAME/VERSION that is not the default version. This can
1081 // happen when the assembler generates two symbols for
1082 // a symbol as a result of a ".symver foo,foo@VER"
1083 // directive. We see the first unversioned symbol and
1084 // we may mark it as the default version (from a
1085 // version script); then we see the second versioned
1086 // symbol and we need to override the first.
1087 // In any other case, the two symbols should have generated
1088 // a multiple definition error.
1089 // (See PR gold/18703.)
1090 // If the hidden version from .symver is the same as the
1091 // default version from the unversioned symbol, don't make
1092 // the unversioned symbol the default versioned symbol.
1093 const Stringpool::Key vnull_key = 0;
1094 if (erase_default_version)
1095 this->table_.erase(std::make_pair(name_key, vnull_key));
1096 else if (ret->object() == object)
1098 ret->set_is_not_default();
1099 this->table_.erase(std::make_pair(name_key, vnull_key));
1104 else
1106 // This is the first time we have seen NAME/VERSION.
1107 gold_assert(ins.first->second == NULL);
1109 if (is_default_version && !insdefault.second)
1111 // We already have an entry for NAME/NULL. If we override
1112 // it, then change it to NAME/VERSION.
1113 ret = this->get_sized_symbol<size>(insdefault.first->second);
1115 // If the existing symbol already has a version,
1116 // don't override it with the new symbol.
1117 // This should only happen when the new symbol
1118 // is from a shared library.
1119 if (ret->version() != NULL)
1121 if (!object->is_dynamic())
1123 gold_warning(_("%s: conflicting default version definition"
1124 " for %s@@%s"),
1125 object->name().c_str(), name, version);
1126 if (ret->source() == Symbol::FROM_OBJECT)
1127 gold_info(_("%s: %s: previous definition of %s@@%s here"),
1128 program_name,
1129 ret->object()->name().c_str(),
1130 name, ret->version());
1132 ret = NULL;
1133 is_default_version = false;
1135 else
1137 was_undefined_in_reg = ret->is_undefined() && ret->in_reg();
1138 // Commons from plugins are just placeholders.
1139 was_common = (ret->is_common()
1140 && ret->object()->pluginobj() == NULL);
1142 this->resolve(ret, sym, st_shndx, is_ordinary, orig_st_shndx,
1143 object, version, is_default_version);
1144 if (parameters->options().gc_sections())
1145 this->gc_mark_dyn_syms(ret);
1146 ins.first->second = ret;
1150 if (ret == NULL)
1152 was_undefined_in_reg = false;
1153 was_common = false;
1155 Sized_target<size, big_endian>* target =
1156 parameters->sized_target<size, big_endian>();
1157 if (!target->has_make_symbol())
1158 ret = new Sized_symbol<size>();
1159 else
1161 ret = target->make_symbol(name, sym.get_st_type(), object,
1162 st_shndx, sym.get_st_value());
1163 if (ret == NULL)
1165 // This means that we don't want a symbol table
1166 // entry after all.
1167 if (!is_default_version)
1168 this->table_.erase(ins.first);
1169 else
1171 this->table_.erase(insdefault.first);
1172 // Inserting INSDEFAULT invalidated INS.
1173 this->table_.erase(std::make_pair(name_key,
1174 version_key));
1176 return NULL;
1180 ret->init_object(name, version, object, sym, st_shndx, is_ordinary);
1182 ins.first->second = ret;
1183 if (is_default_version)
1185 // This is the first time we have seen NAME/NULL. Point
1186 // it at the new entry for NAME/VERSION.
1187 gold_assert(insdefault.second);
1188 insdefault.first->second = ret;
1192 if (is_default_version)
1193 ret->set_is_default();
1196 // Record every time we see a new undefined symbol, to speed up archive
1197 // groups. We only care about symbols undefined in regular objects here
1198 // because undefined symbols only in dynamic objects should't trigger rescans.
1199 if (!was_undefined_in_reg && ret->is_undefined() && ret->in_reg())
1201 ++this->saw_undefined_;
1202 if (parameters->options().has_plugins())
1203 parameters->options().plugins()->new_undefined_symbol(ret);
1206 // Keep track of common symbols, to speed up common symbol
1207 // allocation. Don't record commons from plugin objects;
1208 // we need to wait until we see the real symbol in the
1209 // replacement file.
1210 if (!was_common && ret->is_common() && ret->object()->pluginobj() == NULL)
1212 if (ret->type() == elfcpp::STT_TLS)
1213 this->tls_commons_.push_back(ret);
1214 else if (!is_ordinary
1215 && st_shndx == parameters->target().small_common_shndx())
1216 this->small_commons_.push_back(ret);
1217 else if (!is_ordinary
1218 && st_shndx == parameters->target().large_common_shndx())
1219 this->large_commons_.push_back(ret);
1220 else
1221 this->commons_.push_back(ret);
1224 // If we're not doing a relocatable link, then any symbol with
1225 // hidden or internal visibility is local.
1226 if ((ret->visibility() == elfcpp::STV_HIDDEN
1227 || ret->visibility() == elfcpp::STV_INTERNAL)
1228 && (ret->binding() == elfcpp::STB_GLOBAL
1229 || ret->binding() == elfcpp::STB_GNU_UNIQUE
1230 || ret->binding() == elfcpp::STB_WEAK)
1231 && !parameters->options().relocatable())
1232 this->force_local(ret);
1234 return ret;
1237 // Add all the symbols in a relocatable object to the hash table.
1239 template<int size, bool big_endian>
1240 void
1241 Symbol_table::add_from_relobj(
1242 Sized_relobj_file<size, big_endian>* relobj,
1243 const unsigned char* syms,
1244 size_t count,
1245 size_t symndx_offset,
1246 const char* sym_names,
1247 size_t sym_name_size,
1248 typename Sized_relobj_file<size, big_endian>::Symbols* sympointers,
1249 size_t* defined)
1251 *defined = 0;
1253 gold_assert(size == parameters->target().get_size());
1255 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1257 const bool just_symbols = relobj->just_symbols();
1259 const unsigned char* p = syms;
1260 for (size_t i = 0; i < count; ++i, p += sym_size)
1262 (*sympointers)[i] = NULL;
1264 elfcpp::Sym<size, big_endian> sym(p);
1266 unsigned int st_name = sym.get_st_name();
1267 if (st_name >= sym_name_size)
1269 relobj->error(_("bad global symbol name offset %u at %zu"),
1270 st_name, i);
1271 continue;
1274 const char* name = sym_names + st_name;
1276 if (!parameters->options().relocatable()
1277 && name[0] == '_'
1278 && name[1] == '_'
1279 && strcmp (name + (name[2] == '_'), "__gnu_lto_slim") == 0)
1280 gold_info(_("%s: plugin needed to handle lto object"),
1281 relobj->name().c_str());
1283 bool is_ordinary;
1284 unsigned int st_shndx = relobj->adjust_sym_shndx(i + symndx_offset,
1285 sym.get_st_shndx(),
1286 &is_ordinary);
1287 unsigned int orig_st_shndx = st_shndx;
1288 if (!is_ordinary)
1289 orig_st_shndx = elfcpp::SHN_UNDEF;
1291 if (st_shndx != elfcpp::SHN_UNDEF)
1292 ++*defined;
1294 // A symbol defined in a section which we are not including must
1295 // be treated as an undefined symbol.
1296 bool is_defined_in_discarded_section = false;
1297 if (st_shndx != elfcpp::SHN_UNDEF
1298 && is_ordinary
1299 && !relobj->is_section_included(st_shndx)
1300 && !this->is_section_folded(relobj, st_shndx))
1302 st_shndx = elfcpp::SHN_UNDEF;
1303 is_defined_in_discarded_section = true;
1306 // In an object file, an '@' in the name separates the symbol
1307 // name from the version name. If there are two '@' characters,
1308 // this is the default version.
1309 const char* ver = strchr(name, '@');
1310 Stringpool::Key ver_key = 0;
1311 int namelen = 0;
1312 // IS_DEFAULT_VERSION: is the version default?
1313 // IS_FORCED_LOCAL: is the symbol forced local?
1314 bool is_default_version = false;
1315 bool is_forced_local = false;
1317 // FIXME: For incremental links, we don't store version information,
1318 // so we need to ignore version symbols for now.
1319 if (parameters->incremental_update() && ver != NULL)
1321 namelen = ver - name;
1322 ver = NULL;
1325 if (ver != NULL)
1327 // The symbol name is of the form foo@VERSION or foo@@VERSION
1328 namelen = ver - name;
1329 ++ver;
1330 if (*ver == '@')
1332 is_default_version = true;
1333 ++ver;
1335 ver = this->namepool_.add(ver, true, &ver_key);
1337 // We don't want to assign a version to an undefined symbol,
1338 // even if it is listed in the version script. FIXME: What
1339 // about a common symbol?
1340 else
1342 namelen = strlen(name);
1343 if (!this->version_script_.empty()
1344 && st_shndx != elfcpp::SHN_UNDEF)
1346 // The symbol name did not have a version, but the
1347 // version script may assign a version anyway.
1348 std::string version;
1349 bool is_global;
1350 if (this->version_script_.get_symbol_version(name, &version,
1351 &is_global))
1353 if (!is_global)
1354 is_forced_local = true;
1355 else if (!version.empty())
1357 ver = this->namepool_.add_with_length(version.c_str(),
1358 version.length(),
1359 true,
1360 &ver_key);
1361 is_default_version = true;
1367 elfcpp::Sym<size, big_endian>* psym = &sym;
1368 unsigned char symbuf[sym_size];
1369 elfcpp::Sym<size, big_endian> sym2(symbuf);
1370 if (just_symbols)
1372 memcpy(symbuf, p, sym_size);
1373 elfcpp::Sym_write<size, big_endian> sw(symbuf);
1374 if (orig_st_shndx != elfcpp::SHN_UNDEF
1375 && is_ordinary
1376 && relobj->e_type() == elfcpp::ET_REL)
1378 // Symbol values in relocatable object files are section
1379 // relative. This is normally what we want, but since here
1380 // we are converting the symbol to absolute we need to add
1381 // the section address. The section address in an object
1382 // file is normally zero, but people can use a linker
1383 // script to change it.
1384 sw.put_st_value(sym.get_st_value()
1385 + relobj->section_address(orig_st_shndx));
1387 st_shndx = elfcpp::SHN_ABS;
1388 is_ordinary = false;
1389 psym = &sym2;
1392 // Fix up visibility if object has no-export set.
1393 if (relobj->no_export()
1394 && (orig_st_shndx != elfcpp::SHN_UNDEF || !is_ordinary))
1396 // We may have copied symbol already above.
1397 if (psym != &sym2)
1399 memcpy(symbuf, p, sym_size);
1400 psym = &sym2;
1403 elfcpp::STV visibility = sym2.get_st_visibility();
1404 if (visibility == elfcpp::STV_DEFAULT
1405 || visibility == elfcpp::STV_PROTECTED)
1407 elfcpp::Sym_write<size, big_endian> sw(symbuf);
1408 unsigned char nonvis = sym2.get_st_nonvis();
1409 sw.put_st_other(elfcpp::STV_HIDDEN, nonvis);
1413 Stringpool::Key name_key;
1414 name = this->namepool_.add_with_length(name, namelen, true,
1415 &name_key);
1417 Sized_symbol<size>* res;
1418 res = this->add_from_object(relobj, name, name_key, ver, ver_key,
1419 is_default_version, *psym, st_shndx,
1420 is_ordinary, orig_st_shndx);
1422 if (res == NULL)
1423 continue;
1425 if (is_forced_local)
1426 this->force_local(res);
1428 // Do not treat this symbol as garbage if this symbol will be
1429 // exported to the dynamic symbol table. This is true when
1430 // building a shared library or using --export-dynamic and
1431 // the symbol is externally visible.
1432 if (parameters->options().gc_sections()
1433 && res->is_externally_visible()
1434 && !res->is_from_dynobj()
1435 && (parameters->options().shared()
1436 || parameters->options().export_dynamic()
1437 || parameters->options().in_dynamic_list(res->name())))
1438 this->gc_mark_symbol(res);
1440 if (is_defined_in_discarded_section)
1441 res->set_is_defined_in_discarded_section();
1443 (*sympointers)[i] = res;
1447 // Add a symbol from a plugin-claimed file.
1449 template<int size, bool big_endian>
1450 Symbol*
1451 Symbol_table::add_from_pluginobj(
1452 Sized_pluginobj<size, big_endian>* obj,
1453 const char* name,
1454 const char* ver,
1455 elfcpp::Sym<size, big_endian>* sym)
1457 unsigned int st_shndx = sym->get_st_shndx();
1458 bool is_ordinary = st_shndx < elfcpp::SHN_LORESERVE;
1460 Stringpool::Key ver_key = 0;
1461 bool is_default_version = false;
1462 bool is_forced_local = false;
1464 if (ver != NULL)
1466 ver = this->namepool_.add(ver, true, &ver_key);
1468 // We don't want to assign a version to an undefined symbol,
1469 // even if it is listed in the version script. FIXME: What
1470 // about a common symbol?
1471 else
1473 if (!this->version_script_.empty()
1474 && st_shndx != elfcpp::SHN_UNDEF)
1476 // The symbol name did not have a version, but the
1477 // version script may assign a version anyway.
1478 std::string version;
1479 bool is_global;
1480 if (this->version_script_.get_symbol_version(name, &version,
1481 &is_global))
1483 if (!is_global)
1484 is_forced_local = true;
1485 else if (!version.empty())
1487 ver = this->namepool_.add_with_length(version.c_str(),
1488 version.length(),
1489 true,
1490 &ver_key);
1491 is_default_version = true;
1497 Stringpool::Key name_key;
1498 name = this->namepool_.add(name, true, &name_key);
1500 Sized_symbol<size>* res;
1501 res = this->add_from_object(obj, name, name_key, ver, ver_key,
1502 is_default_version, *sym, st_shndx,
1503 is_ordinary, st_shndx);
1505 if (res == NULL)
1506 return NULL;
1508 if (is_forced_local)
1509 this->force_local(res);
1511 return res;
1514 // Add all the symbols in a dynamic object to the hash table.
1516 template<int size, bool big_endian>
1517 void
1518 Symbol_table::add_from_dynobj(
1519 Sized_dynobj<size, big_endian>* dynobj,
1520 const unsigned char* syms,
1521 size_t count,
1522 const char* sym_names,
1523 size_t sym_name_size,
1524 const unsigned char* versym,
1525 size_t versym_size,
1526 const std::vector<const char*>* version_map,
1527 typename Sized_relobj_file<size, big_endian>::Symbols* sympointers,
1528 size_t* defined)
1530 *defined = 0;
1532 gold_assert(size == parameters->target().get_size());
1534 if (dynobj->just_symbols())
1536 gold_error(_("--just-symbols does not make sense with a shared object"));
1537 return;
1540 // FIXME: For incremental links, we don't store version information,
1541 // so we need to ignore version symbols for now.
1542 if (parameters->incremental_update())
1543 versym = NULL;
1545 if (versym != NULL && versym_size / 2 < count)
1547 dynobj->error(_("too few symbol versions"));
1548 return;
1551 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1553 // We keep a list of all STT_OBJECT symbols, so that we can resolve
1554 // weak aliases. This is necessary because if the dynamic object
1555 // provides the same variable under two names, one of which is a
1556 // weak definition, and the regular object refers to the weak
1557 // definition, we have to put both the weak definition and the
1558 // strong definition into the dynamic symbol table. Given a weak
1559 // definition, the only way that we can find the corresponding
1560 // strong definition, if any, is to search the symbol table.
1561 std::vector<Sized_symbol<size>*> object_symbols;
1563 const unsigned char* p = syms;
1564 const unsigned char* vs = versym;
1565 for (size_t i = 0; i < count; ++i, p += sym_size, vs += 2)
1567 elfcpp::Sym<size, big_endian> sym(p);
1569 if (sympointers != NULL)
1570 (*sympointers)[i] = NULL;
1572 // Ignore symbols with local binding or that have
1573 // internal or hidden visibility.
1574 if (sym.get_st_bind() == elfcpp::STB_LOCAL
1575 || sym.get_st_visibility() == elfcpp::STV_INTERNAL
1576 || sym.get_st_visibility() == elfcpp::STV_HIDDEN)
1577 continue;
1579 // A protected symbol in a shared library must be treated as a
1580 // normal symbol when viewed from outside the shared library.
1581 // Implement this by overriding the visibility here.
1582 // Likewise, an IFUNC symbol in a shared library must be treated
1583 // as a normal FUNC symbol.
1584 elfcpp::Sym<size, big_endian>* psym = &sym;
1585 unsigned char symbuf[sym_size];
1586 elfcpp::Sym<size, big_endian> sym2(symbuf);
1587 if (sym.get_st_visibility() == elfcpp::STV_PROTECTED
1588 || sym.get_st_type() == elfcpp::STT_GNU_IFUNC)
1590 memcpy(symbuf, p, sym_size);
1591 elfcpp::Sym_write<size, big_endian> sw(symbuf);
1592 if (sym.get_st_visibility() == elfcpp::STV_PROTECTED)
1593 sw.put_st_other(elfcpp::STV_DEFAULT, sym.get_st_nonvis());
1594 if (sym.get_st_type() == elfcpp::STT_GNU_IFUNC)
1595 sw.put_st_info(sym.get_st_bind(), elfcpp::STT_FUNC);
1596 psym = &sym2;
1599 unsigned int st_name = psym->get_st_name();
1600 if (st_name >= sym_name_size)
1602 dynobj->error(_("bad symbol name offset %u at %zu"),
1603 st_name, i);
1604 continue;
1607 const char* name = sym_names + st_name;
1609 bool is_ordinary;
1610 unsigned int st_shndx = dynobj->adjust_sym_shndx(i, psym->get_st_shndx(),
1611 &is_ordinary);
1613 if (st_shndx != elfcpp::SHN_UNDEF)
1614 ++*defined;
1616 Sized_symbol<size>* res;
1618 if (versym == NULL)
1620 Stringpool::Key name_key;
1621 name = this->namepool_.add(name, true, &name_key);
1622 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1623 false, *psym, st_shndx, is_ordinary,
1624 st_shndx);
1626 else
1628 // Read the version information.
1630 unsigned int v = elfcpp::Swap<16, big_endian>::readval(vs);
1632 bool hidden = (v & elfcpp::VERSYM_HIDDEN) != 0;
1633 v &= elfcpp::VERSYM_VERSION;
1635 // The Sun documentation says that V can be VER_NDX_LOCAL,
1636 // or VER_NDX_GLOBAL, or a version index. The meaning of
1637 // VER_NDX_LOCAL is defined as "Symbol has local scope."
1638 // The old GNU linker will happily generate VER_NDX_LOCAL
1639 // for an undefined symbol. I don't know what the Sun
1640 // linker will generate.
1642 if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
1643 && st_shndx != elfcpp::SHN_UNDEF)
1645 // This symbol should not be visible outside the object.
1646 continue;
1649 // At this point we are definitely going to add this symbol.
1650 Stringpool::Key name_key;
1651 name = this->namepool_.add(name, true, &name_key);
1653 if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
1654 || v == static_cast<unsigned int>(elfcpp::VER_NDX_GLOBAL))
1656 // This symbol does not have a version.
1657 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1658 false, *psym, st_shndx, is_ordinary,
1659 st_shndx);
1661 else
1663 if (v >= version_map->size())
1665 dynobj->error(_("versym for symbol %zu out of range: %u"),
1666 i, v);
1667 continue;
1670 const char* version = (*version_map)[v];
1671 if (version == NULL)
1673 dynobj->error(_("versym for symbol %zu has no name: %u"),
1674 i, v);
1675 continue;
1678 Stringpool::Key version_key;
1679 version = this->namepool_.add(version, true, &version_key);
1681 // If this is an absolute symbol, and the version name
1682 // and symbol name are the same, then this is the
1683 // version definition symbol. These symbols exist to
1684 // support using -u to pull in particular versions. We
1685 // do not want to record a version for them.
1686 if (st_shndx == elfcpp::SHN_ABS
1687 && !is_ordinary
1688 && name_key == version_key)
1689 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1690 false, *psym, st_shndx, is_ordinary,
1691 st_shndx);
1692 else
1694 const bool is_default_version =
1695 !hidden && st_shndx != elfcpp::SHN_UNDEF;
1696 res = this->add_from_object(dynobj, name, name_key, version,
1697 version_key, is_default_version,
1698 *psym, st_shndx,
1699 is_ordinary, st_shndx);
1704 if (res == NULL)
1705 continue;
1707 // Note that it is possible that RES was overridden by an
1708 // earlier object, in which case it can't be aliased here.
1709 if (st_shndx != elfcpp::SHN_UNDEF
1710 && is_ordinary
1711 && psym->get_st_type() == elfcpp::STT_OBJECT
1712 && res->source() == Symbol::FROM_OBJECT
1713 && res->object() == dynobj)
1714 object_symbols.push_back(res);
1716 // If the symbol has protected visibility in the dynobj,
1717 // mark it as such if it was not overridden.
1718 if (res->source() == Symbol::FROM_OBJECT
1719 && res->object() == dynobj
1720 && sym.get_st_visibility() == elfcpp::STV_PROTECTED)
1721 res->set_is_protected();
1723 if (sympointers != NULL)
1724 (*sympointers)[i] = res;
1727 this->record_weak_aliases(&object_symbols);
1730 // Add a symbol from a incremental object file.
1732 template<int size, bool big_endian>
1733 Sized_symbol<size>*
1734 Symbol_table::add_from_incrobj(
1735 Object* obj,
1736 const char* name,
1737 const char* ver,
1738 elfcpp::Sym<size, big_endian>* sym)
1740 unsigned int st_shndx = sym->get_st_shndx();
1741 bool is_ordinary = st_shndx < elfcpp::SHN_LORESERVE;
1743 Stringpool::Key ver_key = 0;
1744 bool is_default_version = false;
1746 Stringpool::Key name_key;
1747 name = this->namepool_.add(name, true, &name_key);
1749 Sized_symbol<size>* res;
1750 res = this->add_from_object(obj, name, name_key, ver, ver_key,
1751 is_default_version, *sym, st_shndx,
1752 is_ordinary, st_shndx);
1754 return res;
1757 // This is used to sort weak aliases. We sort them first by section
1758 // index, then by offset, then by weak ahead of strong.
1760 template<int size>
1761 class Weak_alias_sorter
1763 public:
1764 bool operator()(const Sized_symbol<size>*, const Sized_symbol<size>*) const;
1767 template<int size>
1768 bool
1769 Weak_alias_sorter<size>::operator()(const Sized_symbol<size>* s1,
1770 const Sized_symbol<size>* s2) const
1772 bool is_ordinary;
1773 unsigned int s1_shndx = s1->shndx(&is_ordinary);
1774 gold_assert(is_ordinary);
1775 unsigned int s2_shndx = s2->shndx(&is_ordinary);
1776 gold_assert(is_ordinary);
1777 if (s1_shndx != s2_shndx)
1778 return s1_shndx < s2_shndx;
1780 if (s1->value() != s2->value())
1781 return s1->value() < s2->value();
1782 if (s1->binding() != s2->binding())
1784 if (s1->binding() == elfcpp::STB_WEAK)
1785 return true;
1786 if (s2->binding() == elfcpp::STB_WEAK)
1787 return false;
1789 return std::string(s1->name()) < std::string(s2->name());
1792 // SYMBOLS is a list of object symbols from a dynamic object. Look
1793 // for any weak aliases, and record them so that if we add the weak
1794 // alias to the dynamic symbol table, we also add the corresponding
1795 // strong symbol.
1797 template<int size>
1798 void
1799 Symbol_table::record_weak_aliases(std::vector<Sized_symbol<size>*>* symbols)
1801 // Sort the vector by section index, then by offset, then by weak
1802 // ahead of strong.
1803 std::sort(symbols->begin(), symbols->end(), Weak_alias_sorter<size>());
1805 // Walk through the vector. For each weak definition, record
1806 // aliases.
1807 for (typename std::vector<Sized_symbol<size>*>::const_iterator p =
1808 symbols->begin();
1809 p != symbols->end();
1810 ++p)
1812 if ((*p)->binding() != elfcpp::STB_WEAK)
1813 continue;
1815 // Build a circular list of weak aliases. Each symbol points to
1816 // the next one in the circular list.
1818 Sized_symbol<size>* from_sym = *p;
1819 typename std::vector<Sized_symbol<size>*>::const_iterator q;
1820 for (q = p + 1; q != symbols->end(); ++q)
1822 bool dummy;
1823 if ((*q)->shndx(&dummy) != from_sym->shndx(&dummy)
1824 || (*q)->value() != from_sym->value())
1825 break;
1827 this->weak_aliases_[from_sym] = *q;
1828 from_sym->set_has_alias();
1829 from_sym = *q;
1832 if (from_sym != *p)
1834 this->weak_aliases_[from_sym] = *p;
1835 from_sym->set_has_alias();
1838 p = q - 1;
1842 // Create and return a specially defined symbol. If ONLY_IF_REF is
1843 // true, then only create the symbol if there is a reference to it.
1844 // If this does not return NULL, it sets *POLDSYM to the existing
1845 // symbol if there is one. This sets *RESOLVE_OLDSYM if we should
1846 // resolve the newly created symbol to the old one. This
1847 // canonicalizes *PNAME and *PVERSION.
1849 template<int size, bool big_endian>
1850 Sized_symbol<size>*
1851 Symbol_table::define_special_symbol(const char** pname, const char** pversion,
1852 bool only_if_ref,
1853 elfcpp::STV visibility,
1854 Sized_symbol<size>** poldsym,
1855 bool* resolve_oldsym, bool is_forced_local)
1857 *resolve_oldsym = false;
1858 *poldsym = NULL;
1860 // If the caller didn't give us a version, see if we get one from
1861 // the version script.
1862 std::string v;
1863 bool is_default_version = false;
1864 if (!is_forced_local && *pversion == NULL)
1866 bool is_global;
1867 if (this->version_script_.get_symbol_version(*pname, &v, &is_global))
1869 if (is_global && !v.empty())
1871 *pversion = v.c_str();
1872 // If we get the version from a version script, then we
1873 // are also the default version.
1874 is_default_version = true;
1879 Symbol* oldsym;
1880 Sized_symbol<size>* sym;
1882 bool add_to_table = false;
1883 typename Symbol_table_type::iterator add_loc = this->table_.end();
1884 bool add_def_to_table = false;
1885 typename Symbol_table_type::iterator add_def_loc = this->table_.end();
1887 if (only_if_ref)
1889 oldsym = this->lookup(*pname, *pversion);
1890 if (oldsym == NULL && is_default_version)
1891 oldsym = this->lookup(*pname, NULL);
1892 if (oldsym == NULL)
1893 return NULL;
1894 if (!oldsym->is_undefined())
1896 // Skip if the old definition is from a regular object.
1897 if (!oldsym->is_from_dynobj())
1898 return NULL;
1900 // If the symbol has hidden or internal visibility, ignore
1901 // definition and reference from a dynamic object.
1902 if ((visibility == elfcpp::STV_HIDDEN
1903 || visibility == elfcpp::STV_INTERNAL)
1904 && !oldsym->in_reg())
1905 return NULL;
1908 *pname = oldsym->name();
1909 if (is_default_version)
1910 *pversion = this->namepool_.add(*pversion, true, NULL);
1911 else
1912 *pversion = oldsym->version();
1914 else
1916 // Canonicalize NAME and VERSION.
1917 Stringpool::Key name_key;
1918 *pname = this->namepool_.add(*pname, true, &name_key);
1920 Stringpool::Key version_key = 0;
1921 if (*pversion != NULL)
1922 *pversion = this->namepool_.add(*pversion, true, &version_key);
1924 Symbol* const snull = NULL;
1925 std::pair<typename Symbol_table_type::iterator, bool> ins =
1926 this->table_.insert(std::make_pair(std::make_pair(name_key,
1927 version_key),
1928 snull));
1930 std::pair<typename Symbol_table_type::iterator, bool> insdefault =
1931 std::make_pair(this->table_.end(), false);
1932 if (is_default_version)
1934 const Stringpool::Key vnull = 0;
1935 insdefault =
1936 this->table_.insert(std::make_pair(std::make_pair(name_key,
1937 vnull),
1938 snull));
1941 if (!ins.second)
1943 // We already have a symbol table entry for NAME/VERSION.
1944 oldsym = ins.first->second;
1945 gold_assert(oldsym != NULL);
1947 if (is_default_version)
1949 Sized_symbol<size>* soldsym =
1950 this->get_sized_symbol<size>(oldsym);
1951 this->define_default_version<size, big_endian>(soldsym,
1952 insdefault.second,
1953 insdefault.first);
1956 else
1958 // We haven't seen this symbol before.
1959 gold_assert(ins.first->second == NULL);
1961 add_to_table = true;
1962 add_loc = ins.first;
1964 if (is_default_version
1965 && !insdefault.second
1966 && insdefault.first->second->version() == NULL)
1968 // We are adding NAME/VERSION, and it is the default
1969 // version. We already have an entry for NAME/NULL
1970 // that does not already have a version.
1971 oldsym = insdefault.first->second;
1972 *resolve_oldsym = true;
1974 else
1976 oldsym = NULL;
1978 if (is_default_version)
1980 add_def_to_table = true;
1981 add_def_loc = insdefault.first;
1987 const Target& target = parameters->target();
1988 if (!target.has_make_symbol())
1989 sym = new Sized_symbol<size>();
1990 else
1992 Sized_target<size, big_endian>* sized_target =
1993 parameters->sized_target<size, big_endian>();
1994 sym = sized_target->make_symbol(*pname, elfcpp::STT_NOTYPE,
1995 NULL, elfcpp::SHN_UNDEF, 0);
1996 if (sym == NULL)
1997 return NULL;
2000 if (add_to_table)
2001 add_loc->second = sym;
2002 else
2003 gold_assert(oldsym != NULL);
2005 if (add_def_to_table)
2006 add_def_loc->second = sym;
2008 *poldsym = this->get_sized_symbol<size>(oldsym);
2010 return sym;
2013 // Define a symbol based on an Output_data.
2015 Symbol*
2016 Symbol_table::define_in_output_data(const char* name,
2017 const char* version,
2018 Defined defined,
2019 Output_data* od,
2020 uint64_t value,
2021 uint64_t symsize,
2022 elfcpp::STT type,
2023 elfcpp::STB binding,
2024 elfcpp::STV visibility,
2025 unsigned char nonvis,
2026 bool offset_is_from_end,
2027 bool only_if_ref)
2029 if (parameters->target().get_size() == 32)
2031 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2032 return this->do_define_in_output_data<32>(name, version, defined, od,
2033 value, symsize, type, binding,
2034 visibility, nonvis,
2035 offset_is_from_end,
2036 only_if_ref);
2037 #else
2038 gold_unreachable();
2039 #endif
2041 else if (parameters->target().get_size() == 64)
2043 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2044 return this->do_define_in_output_data<64>(name, version, defined, od,
2045 value, symsize, type, binding,
2046 visibility, nonvis,
2047 offset_is_from_end,
2048 only_if_ref);
2049 #else
2050 gold_unreachable();
2051 #endif
2053 else
2054 gold_unreachable();
2057 // Define a symbol in an Output_data, sized version.
2059 template<int size>
2060 Sized_symbol<size>*
2061 Symbol_table::do_define_in_output_data(
2062 const char* name,
2063 const char* version,
2064 Defined defined,
2065 Output_data* od,
2066 typename elfcpp::Elf_types<size>::Elf_Addr value,
2067 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
2068 elfcpp::STT type,
2069 elfcpp::STB binding,
2070 elfcpp::STV visibility,
2071 unsigned char nonvis,
2072 bool offset_is_from_end,
2073 bool only_if_ref)
2075 Sized_symbol<size>* sym;
2076 Sized_symbol<size>* oldsym;
2077 bool resolve_oldsym;
2078 const bool is_forced_local = binding == elfcpp::STB_LOCAL;
2080 if (parameters->target().is_big_endian())
2082 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2083 sym = this->define_special_symbol<size, true>(&name, &version,
2084 only_if_ref,
2085 visibility,
2086 &oldsym,
2087 &resolve_oldsym,
2088 is_forced_local);
2089 #else
2090 gold_unreachable();
2091 #endif
2093 else
2095 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2096 sym = this->define_special_symbol<size, false>(&name, &version,
2097 only_if_ref,
2098 visibility,
2099 &oldsym,
2100 &resolve_oldsym,
2101 is_forced_local);
2102 #else
2103 gold_unreachable();
2104 #endif
2107 if (sym == NULL)
2108 return NULL;
2110 sym->init_output_data(name, version, od, value, symsize, type, binding,
2111 visibility, nonvis, offset_is_from_end,
2112 defined == PREDEFINED);
2114 if (oldsym == NULL)
2116 if (is_forced_local || this->version_script_.symbol_is_local(name))
2117 this->force_local(sym);
2118 else if (version != NULL)
2119 sym->set_is_default();
2120 return sym;
2123 if (Symbol_table::should_override_with_special(oldsym, type, defined))
2124 this->override_with_special(oldsym, sym);
2126 if (resolve_oldsym)
2127 return sym;
2128 else
2130 if (defined == PREDEFINED
2131 && (is_forced_local || this->version_script_.symbol_is_local(name)))
2132 this->force_local(oldsym);
2133 delete sym;
2134 return oldsym;
2138 // Define a symbol based on an Output_segment.
2140 Symbol*
2141 Symbol_table::define_in_output_segment(const char* name,
2142 const char* version,
2143 Defined defined,
2144 Output_segment* os,
2145 uint64_t value,
2146 uint64_t symsize,
2147 elfcpp::STT type,
2148 elfcpp::STB binding,
2149 elfcpp::STV visibility,
2150 unsigned char nonvis,
2151 Symbol::Segment_offset_base offset_base,
2152 bool only_if_ref)
2154 if (parameters->target().get_size() == 32)
2156 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2157 return this->do_define_in_output_segment<32>(name, version, defined, os,
2158 value, symsize, type,
2159 binding, visibility, nonvis,
2160 offset_base, only_if_ref);
2161 #else
2162 gold_unreachable();
2163 #endif
2165 else if (parameters->target().get_size() == 64)
2167 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2168 return this->do_define_in_output_segment<64>(name, version, defined, os,
2169 value, symsize, type,
2170 binding, visibility, nonvis,
2171 offset_base, only_if_ref);
2172 #else
2173 gold_unreachable();
2174 #endif
2176 else
2177 gold_unreachable();
2180 // Define a symbol in an Output_segment, sized version.
2182 template<int size>
2183 Sized_symbol<size>*
2184 Symbol_table::do_define_in_output_segment(
2185 const char* name,
2186 const char* version,
2187 Defined defined,
2188 Output_segment* os,
2189 typename elfcpp::Elf_types<size>::Elf_Addr value,
2190 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
2191 elfcpp::STT type,
2192 elfcpp::STB binding,
2193 elfcpp::STV visibility,
2194 unsigned char nonvis,
2195 Symbol::Segment_offset_base offset_base,
2196 bool only_if_ref)
2198 Sized_symbol<size>* sym;
2199 Sized_symbol<size>* oldsym;
2200 bool resolve_oldsym;
2201 const bool is_forced_local = binding == elfcpp::STB_LOCAL;
2203 if (parameters->target().is_big_endian())
2205 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2206 sym = this->define_special_symbol<size, true>(&name, &version,
2207 only_if_ref,
2208 visibility,
2209 &oldsym,
2210 &resolve_oldsym,
2211 is_forced_local);
2212 #else
2213 gold_unreachable();
2214 #endif
2216 else
2218 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2219 sym = this->define_special_symbol<size, false>(&name, &version,
2220 only_if_ref,
2221 visibility,
2222 &oldsym,
2223 &resolve_oldsym,
2224 is_forced_local);
2225 #else
2226 gold_unreachable();
2227 #endif
2230 if (sym == NULL)
2231 return NULL;
2233 sym->init_output_segment(name, version, os, value, symsize, type, binding,
2234 visibility, nonvis, offset_base,
2235 defined == PREDEFINED);
2237 if (oldsym == NULL)
2239 if (is_forced_local || this->version_script_.symbol_is_local(name))
2240 this->force_local(sym);
2241 else if (version != NULL)
2242 sym->set_is_default();
2243 return sym;
2246 if (Symbol_table::should_override_with_special(oldsym, type, defined))
2247 this->override_with_special(oldsym, sym);
2249 if (resolve_oldsym)
2250 return sym;
2251 else
2253 if (is_forced_local || this->version_script_.symbol_is_local(name))
2254 this->force_local(oldsym);
2255 delete sym;
2256 return oldsym;
2260 // Define a special symbol with a constant value. It is a multiple
2261 // definition error if this symbol is already defined.
2263 Symbol*
2264 Symbol_table::define_as_constant(const char* name,
2265 const char* version,
2266 Defined defined,
2267 uint64_t value,
2268 uint64_t symsize,
2269 elfcpp::STT type,
2270 elfcpp::STB binding,
2271 elfcpp::STV visibility,
2272 unsigned char nonvis,
2273 bool only_if_ref,
2274 bool force_override)
2276 if (parameters->target().get_size() == 32)
2278 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2279 return this->do_define_as_constant<32>(name, version, defined, value,
2280 symsize, type, binding,
2281 visibility, nonvis, only_if_ref,
2282 force_override);
2283 #else
2284 gold_unreachable();
2285 #endif
2287 else if (parameters->target().get_size() == 64)
2289 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2290 return this->do_define_as_constant<64>(name, version, defined, value,
2291 symsize, type, binding,
2292 visibility, nonvis, only_if_ref,
2293 force_override);
2294 #else
2295 gold_unreachable();
2296 #endif
2298 else
2299 gold_unreachable();
2302 // Define a symbol as a constant, sized version.
2304 template<int size>
2305 Sized_symbol<size>*
2306 Symbol_table::do_define_as_constant(
2307 const char* name,
2308 const char* version,
2309 Defined defined,
2310 typename elfcpp::Elf_types<size>::Elf_Addr value,
2311 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
2312 elfcpp::STT type,
2313 elfcpp::STB binding,
2314 elfcpp::STV visibility,
2315 unsigned char nonvis,
2316 bool only_if_ref,
2317 bool force_override)
2319 Sized_symbol<size>* sym;
2320 Sized_symbol<size>* oldsym;
2321 bool resolve_oldsym;
2322 const bool is_forced_local = binding == elfcpp::STB_LOCAL;
2324 if (parameters->target().is_big_endian())
2326 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2327 sym = this->define_special_symbol<size, true>(&name, &version,
2328 only_if_ref,
2329 visibility,
2330 &oldsym,
2331 &resolve_oldsym,
2332 is_forced_local);
2333 #else
2334 gold_unreachable();
2335 #endif
2337 else
2339 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2340 sym = this->define_special_symbol<size, false>(&name, &version,
2341 only_if_ref,
2342 visibility,
2343 &oldsym,
2344 &resolve_oldsym,
2345 is_forced_local);
2346 #else
2347 gold_unreachable();
2348 #endif
2351 if (sym == NULL)
2352 return NULL;
2354 sym->init_constant(name, version, value, symsize, type, binding, visibility,
2355 nonvis, defined == PREDEFINED);
2357 if (oldsym == NULL)
2359 // Version symbols are absolute symbols with name == version.
2360 // We don't want to force them to be local.
2361 if ((version == NULL
2362 || name != version
2363 || value != 0)
2364 && (is_forced_local || this->version_script_.symbol_is_local(name)))
2365 this->force_local(sym);
2366 else if (version != NULL
2367 && (name != version || value != 0))
2368 sym->set_is_default();
2369 return sym;
2372 if (force_override
2373 || Symbol_table::should_override_with_special(oldsym, type, defined))
2374 this->override_with_special(oldsym, sym);
2376 if (resolve_oldsym)
2377 return sym;
2378 else
2380 if (is_forced_local || this->version_script_.symbol_is_local(name))
2381 this->force_local(oldsym);
2382 delete sym;
2383 return oldsym;
2387 // Define a set of symbols in output sections.
2389 void
2390 Symbol_table::define_symbols(const Layout* layout, int count,
2391 const Define_symbol_in_section* p,
2392 bool only_if_ref)
2394 for (int i = 0; i < count; ++i, ++p)
2396 Output_section* os = layout->find_output_section(p->output_section);
2397 if (os != NULL)
2398 this->define_in_output_data(p->name, NULL, PREDEFINED, os, p->value,
2399 p->size, p->type, p->binding,
2400 p->visibility, p->nonvis,
2401 p->offset_is_from_end,
2402 only_if_ref || p->only_if_ref);
2403 else
2404 this->define_as_constant(p->name, NULL, PREDEFINED, 0, p->size,
2405 p->type, p->binding, p->visibility, p->nonvis,
2406 only_if_ref || p->only_if_ref,
2407 false);
2411 // Define a set of symbols in output segments.
2413 void
2414 Symbol_table::define_symbols(const Layout* layout, int count,
2415 const Define_symbol_in_segment* p,
2416 bool only_if_ref)
2418 for (int i = 0; i < count; ++i, ++p)
2420 Output_segment* os = layout->find_output_segment(p->segment_type,
2421 p->segment_flags_set,
2422 p->segment_flags_clear);
2423 if (os != NULL)
2424 this->define_in_output_segment(p->name, NULL, PREDEFINED, os, p->value,
2425 p->size, p->type, p->binding,
2426 p->visibility, p->nonvis,
2427 p->offset_base,
2428 only_if_ref || p->only_if_ref);
2429 else
2430 this->define_as_constant(p->name, NULL, PREDEFINED, 0, p->size,
2431 p->type, p->binding, p->visibility, p->nonvis,
2432 only_if_ref || p->only_if_ref,
2433 false);
2437 // Define CSYM using a COPY reloc. POSD is the Output_data where the
2438 // symbol should be defined--typically a .dyn.bss section. VALUE is
2439 // the offset within POSD.
2441 template<int size>
2442 void
2443 Symbol_table::define_with_copy_reloc(
2444 Sized_symbol<size>* csym,
2445 Output_data* posd,
2446 typename elfcpp::Elf_types<size>::Elf_Addr value)
2448 gold_assert(csym->is_from_dynobj());
2449 gold_assert(!csym->is_copied_from_dynobj());
2450 Object* object = csym->object();
2451 gold_assert(object->is_dynamic());
2452 Dynobj* dynobj = static_cast<Dynobj*>(object);
2454 // Our copied variable has to override any variable in a shared
2455 // library.
2456 elfcpp::STB binding = csym->binding();
2457 if (binding == elfcpp::STB_WEAK)
2458 binding = elfcpp::STB_GLOBAL;
2460 this->define_in_output_data(csym->name(), csym->version(), COPY,
2461 posd, value, csym->symsize(),
2462 csym->type(), binding,
2463 csym->visibility(), csym->nonvis(),
2464 false, false);
2466 csym->set_is_copied_from_dynobj();
2467 csym->set_needs_dynsym_entry();
2469 this->copied_symbol_dynobjs_[csym] = dynobj;
2471 // We have now defined all aliases, but we have not entered them all
2472 // in the copied_symbol_dynobjs_ map.
2473 if (csym->has_alias())
2475 Symbol* sym = csym;
2476 while (true)
2478 sym = this->weak_aliases_[sym];
2479 if (sym == csym)
2480 break;
2481 gold_assert(sym->output_data() == posd);
2483 sym->set_is_copied_from_dynobj();
2484 this->copied_symbol_dynobjs_[sym] = dynobj;
2489 // SYM is defined using a COPY reloc. Return the dynamic object where
2490 // the original definition was found.
2492 Dynobj*
2493 Symbol_table::get_copy_source(const Symbol* sym) const
2495 gold_assert(sym->is_copied_from_dynobj());
2496 Copied_symbol_dynobjs::const_iterator p =
2497 this->copied_symbol_dynobjs_.find(sym);
2498 gold_assert(p != this->copied_symbol_dynobjs_.end());
2499 return p->second;
2502 // Add any undefined symbols named on the command line.
2504 void
2505 Symbol_table::add_undefined_symbols_from_command_line(Layout* layout)
2507 if (parameters->options().any_undefined()
2508 || layout->script_options()->any_unreferenced())
2510 if (parameters->target().get_size() == 32)
2512 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2513 this->do_add_undefined_symbols_from_command_line<32>(layout);
2514 #else
2515 gold_unreachable();
2516 #endif
2518 else if (parameters->target().get_size() == 64)
2520 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2521 this->do_add_undefined_symbols_from_command_line<64>(layout);
2522 #else
2523 gold_unreachable();
2524 #endif
2526 else
2527 gold_unreachable();
2531 template<int size>
2532 void
2533 Symbol_table::do_add_undefined_symbols_from_command_line(Layout* layout)
2535 for (options::String_set::const_iterator p =
2536 parameters->options().undefined_begin();
2537 p != parameters->options().undefined_end();
2538 ++p)
2539 this->add_undefined_symbol_from_command_line<size>(p->c_str());
2541 for (Script_options::referenced_const_iterator p =
2542 layout->script_options()->referenced_begin();
2543 p != layout->script_options()->referenced_end();
2544 ++p)
2545 this->add_undefined_symbol_from_command_line<size>(p->c_str());
2548 template<int size>
2549 void
2550 Symbol_table::add_undefined_symbol_from_command_line(const char* name)
2552 if (this->lookup(name) != NULL)
2553 return;
2555 const char* version = NULL;
2557 Sized_symbol<size>* sym;
2558 Sized_symbol<size>* oldsym;
2559 bool resolve_oldsym;
2560 if (parameters->target().is_big_endian())
2562 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2563 sym = this->define_special_symbol<size, true>(&name, &version,
2564 false,
2565 elfcpp::STV_DEFAULT,
2566 &oldsym,
2567 &resolve_oldsym,
2568 false);
2569 #else
2570 gold_unreachable();
2571 #endif
2573 else
2575 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2576 sym = this->define_special_symbol<size, false>(&name, &version,
2577 false,
2578 elfcpp::STV_DEFAULT,
2579 &oldsym,
2580 &resolve_oldsym,
2581 false);
2582 #else
2583 gold_unreachable();
2584 #endif
2587 gold_assert(oldsym == NULL);
2589 sym->init_undefined(name, version, 0, elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
2590 elfcpp::STV_DEFAULT, 0);
2591 ++this->saw_undefined_;
2594 // Set the dynamic symbol indexes. INDEX is the index of the first
2595 // global dynamic symbol. Pointers to the global symbols are stored
2596 // into the vector SYMS. The names are added to DYNPOOL.
2597 // This returns an updated dynamic symbol index.
2599 unsigned int
2600 Symbol_table::set_dynsym_indexes(unsigned int index,
2601 unsigned int* pforced_local_count,
2602 std::vector<Symbol*>* syms,
2603 Stringpool* dynpool,
2604 Versions* versions)
2606 // First process all the symbols which have been forced to be local,
2607 // as they must appear before all global symbols.
2608 unsigned int forced_local_count = 0;
2609 for (Forced_locals::iterator p = this->forced_locals_.begin();
2610 p != this->forced_locals_.end();
2611 ++p)
2613 Symbol* sym = *p;
2614 gold_assert(sym->is_forced_local());
2615 if (sym->has_dynsym_index())
2616 continue;
2617 if (!sym->should_add_dynsym_entry(this))
2618 sym->set_dynsym_index(-1U);
2619 else
2621 sym->set_dynsym_index(index);
2622 ++index;
2623 ++forced_local_count;
2624 dynpool->add(sym->name(), false, NULL);
2625 if (sym->type() == elfcpp::STT_GNU_IFUNC)
2626 this->set_has_gnu_output();
2629 *pforced_local_count = forced_local_count;
2631 // Allow a target to set dynsym indexes.
2632 if (parameters->target().has_custom_set_dynsym_indexes())
2634 std::vector<Symbol*> dyn_symbols;
2635 for (Symbol_table_type::iterator p = this->table_.begin();
2636 p != this->table_.end();
2637 ++p)
2639 Symbol* sym = p->second;
2640 if (sym->is_forced_local())
2641 continue;
2642 if (!sym->should_add_dynsym_entry(this))
2643 sym->set_dynsym_index(-1U);
2644 else
2646 dyn_symbols.push_back(sym);
2647 if (sym->type() == elfcpp::STT_GNU_IFUNC
2648 || (sym->binding() == elfcpp::STB_GNU_UNIQUE
2649 && parameters->options().gnu_unique()))
2650 this->set_has_gnu_output();
2654 return parameters->target().set_dynsym_indexes(&dyn_symbols, index, syms,
2655 dynpool, versions, this);
2658 for (Symbol_table_type::iterator p = this->table_.begin();
2659 p != this->table_.end();
2660 ++p)
2662 Symbol* sym = p->second;
2664 if (sym->is_forced_local())
2665 continue;
2667 // Note that SYM may already have a dynamic symbol index, since
2668 // some symbols appear more than once in the symbol table, with
2669 // and without a version.
2671 if (!sym->should_add_dynsym_entry(this))
2672 sym->set_dynsym_index(-1U);
2673 else if (!sym->has_dynsym_index())
2675 sym->set_dynsym_index(index);
2676 ++index;
2677 syms->push_back(sym);
2678 dynpool->add(sym->name(), false, NULL);
2679 if (sym->type() == elfcpp::STT_GNU_IFUNC
2680 || (sym->binding() == elfcpp::STB_GNU_UNIQUE
2681 && parameters->options().gnu_unique()))
2682 this->set_has_gnu_output();
2684 // Record any version information, except those from
2685 // as-needed libraries not seen to be needed. Note that the
2686 // is_needed state for such libraries can change in this loop.
2687 if (sym->version() != NULL)
2689 if (!sym->is_from_dynobj()
2690 || !sym->object()->as_needed()
2691 || sym->object()->is_needed())
2692 versions->record_version(this, dynpool, sym);
2693 else
2695 if (parameters->options().warn_drop_version())
2696 gold_warning(_("discarding version information for "
2697 "%s@%s, defined in unused shared library %s "
2698 "(linked with --as-needed)"),
2699 sym->name(), sym->version(),
2700 sym->object()->name().c_str());
2701 sym->clear_version();
2707 // Finish up the versions. In some cases this may add new dynamic
2708 // symbols.
2709 index = versions->finalize(this, index, syms);
2711 // Process target-specific symbols.
2712 for (std::vector<Symbol*>::iterator p = this->target_symbols_.begin();
2713 p != this->target_symbols_.end();
2714 ++p)
2716 (*p)->set_dynsym_index(index);
2717 ++index;
2718 syms->push_back(*p);
2719 dynpool->add((*p)->name(), false, NULL);
2722 return index;
2725 // Set the final values for all the symbols. The index of the first
2726 // global symbol in the output file is *PLOCAL_SYMCOUNT. Record the
2727 // file offset OFF. Add their names to POOL. Return the new file
2728 // offset. Update *PLOCAL_SYMCOUNT if necessary. DYNOFF and
2729 // DYN_GLOBAL_INDEX refer to the start of the symbols that will be
2730 // written from the global symbol table in Symtab::write_globals(),
2731 // which will include forced-local symbols. DYN_GLOBAL_INDEX is
2732 // not necessarily the same as the sh_info field for the .dynsym
2733 // section, which will point to the first real global symbol.
2735 off_t
2736 Symbol_table::finalize(off_t off, off_t dynoff, size_t dyn_global_index,
2737 size_t dyncount, Stringpool* pool,
2738 unsigned int* plocal_symcount)
2740 off_t ret;
2742 gold_assert(*plocal_symcount != 0);
2743 this->first_global_index_ = *plocal_symcount;
2745 this->dynamic_offset_ = dynoff;
2746 this->first_dynamic_global_index_ = dyn_global_index;
2747 this->dynamic_count_ = dyncount;
2749 if (parameters->target().get_size() == 32)
2751 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_32_LITTLE)
2752 ret = this->sized_finalize<32>(off, pool, plocal_symcount);
2753 #else
2754 gold_unreachable();
2755 #endif
2757 else if (parameters->target().get_size() == 64)
2759 #if defined(HAVE_TARGET_64_BIG) || defined(HAVE_TARGET_64_LITTLE)
2760 ret = this->sized_finalize<64>(off, pool, plocal_symcount);
2761 #else
2762 gold_unreachable();
2763 #endif
2765 else
2766 gold_unreachable();
2768 if (this->has_gnu_output_)
2770 Target* target = const_cast<Target*>(&parameters->target());
2771 if (target->osabi() == elfcpp::ELFOSABI_NONE)
2772 target->set_osabi(elfcpp::ELFOSABI_GNU);
2775 // Now that we have the final symbol table, we can reliably note
2776 // which symbols should get warnings.
2777 this->warnings_.note_warnings(this);
2779 return ret;
2782 // SYM is going into the symbol table at *PINDEX. Add the name to
2783 // POOL, update *PINDEX and *POFF.
2785 template<int size>
2786 void
2787 Symbol_table::add_to_final_symtab(Symbol* sym, Stringpool* pool,
2788 unsigned int* pindex, off_t* poff)
2790 sym->set_symtab_index(*pindex);
2791 if (sym->version() == NULL || !parameters->options().relocatable())
2792 pool->add(sym->name(), false, NULL);
2793 else
2794 pool->add(sym->versioned_name(), true, NULL);
2795 ++*pindex;
2796 *poff += elfcpp::Elf_sizes<size>::sym_size;
2799 // Set the final value for all the symbols. This is called after
2800 // Layout::finalize, so all the output sections have their final
2801 // address.
2803 template<int size>
2804 off_t
2805 Symbol_table::sized_finalize(off_t off, Stringpool* pool,
2806 unsigned int* plocal_symcount)
2808 off = align_address(off, size >> 3);
2809 this->offset_ = off;
2811 unsigned int index = *plocal_symcount;
2812 const unsigned int orig_index = index;
2814 // First do all the symbols which have been forced to be local, as
2815 // they must appear before all global symbols.
2816 for (Forced_locals::iterator p = this->forced_locals_.begin();
2817 p != this->forced_locals_.end();
2818 ++p)
2820 Symbol* sym = *p;
2821 gold_assert(sym->is_forced_local());
2822 if (this->sized_finalize_symbol<size>(sym))
2824 this->add_to_final_symtab<size>(sym, pool, &index, &off);
2825 ++*plocal_symcount;
2826 if (sym->type() == elfcpp::STT_GNU_IFUNC)
2827 this->set_has_gnu_output();
2831 // Now do all the remaining symbols.
2832 for (Symbol_table_type::iterator p = this->table_.begin();
2833 p != this->table_.end();
2834 ++p)
2836 Symbol* sym = p->second;
2837 if (this->sized_finalize_symbol<size>(sym))
2839 this->add_to_final_symtab<size>(sym, pool, &index, &off);
2840 if (sym->type() == elfcpp::STT_GNU_IFUNC
2841 || (sym->binding() == elfcpp::STB_GNU_UNIQUE
2842 && parameters->options().gnu_unique()))
2843 this->set_has_gnu_output();
2847 // Now do target-specific symbols.
2848 for (std::vector<Symbol*>::iterator p = this->target_symbols_.begin();
2849 p != this->target_symbols_.end();
2850 ++p)
2852 this->add_to_final_symtab<size>(*p, pool, &index, &off);
2855 this->output_count_ = index - orig_index;
2857 return off;
2860 // Compute the final value of SYM and store status in location PSTATUS.
2861 // During relaxation, this may be called multiple times for a symbol to
2862 // compute its would-be final value in each relaxation pass.
2864 template<int size>
2865 typename Sized_symbol<size>::Value_type
2866 Symbol_table::compute_final_value(
2867 const Sized_symbol<size>* sym,
2868 Compute_final_value_status* pstatus) const
2870 typedef typename Sized_symbol<size>::Value_type Value_type;
2871 Value_type value;
2873 switch (sym->source())
2875 case Symbol::FROM_OBJECT:
2877 bool is_ordinary;
2878 unsigned int shndx = sym->shndx(&is_ordinary);
2880 if (!is_ordinary
2881 && shndx != elfcpp::SHN_ABS
2882 && !Symbol::is_common_shndx(shndx))
2884 *pstatus = CFVS_UNSUPPORTED_SYMBOL_SECTION;
2885 return 0;
2888 Object* symobj = sym->object();
2889 if (symobj->is_dynamic())
2891 value = 0;
2892 shndx = elfcpp::SHN_UNDEF;
2894 else if (symobj->pluginobj() != NULL)
2896 value = 0;
2897 shndx = elfcpp::SHN_UNDEF;
2899 else if (shndx == elfcpp::SHN_UNDEF)
2900 value = 0;
2901 else if (!is_ordinary
2902 && (shndx == elfcpp::SHN_ABS
2903 || Symbol::is_common_shndx(shndx)))
2904 value = sym->value();
2905 else
2907 Relobj* relobj = static_cast<Relobj*>(symobj);
2908 Output_section* os = relobj->output_section(shndx);
2910 if (this->is_section_folded(relobj, shndx))
2912 gold_assert(os == NULL);
2913 // Get the os of the section it is folded onto.
2914 Section_id folded = this->icf_->get_folded_section(relobj,
2915 shndx);
2916 gold_assert(folded.first != NULL);
2917 Relobj* folded_obj = reinterpret_cast<Relobj*>(folded.first);
2918 unsigned folded_shndx = folded.second;
2920 os = folded_obj->output_section(folded_shndx);
2921 gold_assert(os != NULL);
2923 // Replace (relobj, shndx) with canonical ICF input section.
2924 shndx = folded_shndx;
2925 relobj = folded_obj;
2928 uint64_t secoff64 = relobj->output_section_offset(shndx);
2929 if (os == NULL)
2931 bool static_or_reloc = (parameters->doing_static_link() ||
2932 parameters->options().relocatable());
2933 gold_assert(static_or_reloc || sym->dynsym_index() == -1U);
2935 *pstatus = CFVS_NO_OUTPUT_SECTION;
2936 return 0;
2939 if (secoff64 == -1ULL)
2941 // The section needs special handling (e.g., a merge section).
2943 value = os->output_address(relobj, shndx, sym->value());
2945 else
2947 Value_type secoff =
2948 convert_types<Value_type, uint64_t>(secoff64);
2949 if (sym->type() == elfcpp::STT_TLS)
2950 value = sym->value() + os->tls_offset() + secoff;
2951 else
2952 value = sym->value() + os->address() + secoff;
2956 break;
2958 case Symbol::IN_OUTPUT_DATA:
2960 Output_data* od = sym->output_data();
2961 value = sym->value();
2962 if (sym->type() != elfcpp::STT_TLS)
2963 value += od->address();
2964 else
2966 Output_section* os = od->output_section();
2967 gold_assert(os != NULL);
2968 value += os->tls_offset() + (od->address() - os->address());
2970 if (sym->offset_is_from_end())
2971 value += od->data_size();
2973 break;
2975 case Symbol::IN_OUTPUT_SEGMENT:
2977 Output_segment* os = sym->output_segment();
2978 value = sym->value();
2979 if (sym->type() != elfcpp::STT_TLS)
2980 value += os->vaddr();
2981 switch (sym->offset_base())
2983 case Symbol::SEGMENT_START:
2984 break;
2985 case Symbol::SEGMENT_END:
2986 value += os->memsz();
2987 break;
2988 case Symbol::SEGMENT_BSS:
2989 value += os->filesz();
2990 break;
2991 default:
2992 gold_unreachable();
2995 break;
2997 case Symbol::IS_CONSTANT:
2998 value = sym->value();
2999 break;
3001 case Symbol::IS_UNDEFINED:
3002 value = 0;
3003 break;
3005 default:
3006 gold_unreachable();
3009 *pstatus = CFVS_OK;
3010 return value;
3013 // Finalize the symbol SYM. This returns true if the symbol should be
3014 // added to the symbol table, false otherwise.
3016 template<int size>
3017 bool
3018 Symbol_table::sized_finalize_symbol(Symbol* unsized_sym)
3020 typedef typename Sized_symbol<size>::Value_type Value_type;
3022 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(unsized_sym);
3024 // The default version of a symbol may appear twice in the symbol
3025 // table. We only need to finalize it once.
3026 if (sym->has_symtab_index())
3027 return false;
3029 if (!sym->in_reg())
3031 gold_assert(!sym->has_symtab_index());
3032 sym->set_symtab_index(-1U);
3033 gold_assert(sym->dynsym_index() == -1U);
3034 return false;
3037 // If the symbol is only present on plugin files, the plugin decided we
3038 // don't need it.
3039 if (!sym->in_real_elf())
3041 gold_assert(!sym->has_symtab_index());
3042 sym->set_symtab_index(-1U);
3043 return false;
3046 // Compute final symbol value.
3047 Compute_final_value_status status;
3048 Value_type value = this->compute_final_value(sym, &status);
3050 switch (status)
3052 case CFVS_OK:
3053 break;
3054 case CFVS_UNSUPPORTED_SYMBOL_SECTION:
3056 bool is_ordinary;
3057 unsigned int shndx = sym->shndx(&is_ordinary);
3058 gold_error(_("%s: unsupported symbol section 0x%x"),
3059 sym->demangled_name().c_str(), shndx);
3061 break;
3062 case CFVS_NO_OUTPUT_SECTION:
3063 sym->set_symtab_index(-1U);
3064 return false;
3065 default:
3066 gold_unreachable();
3069 sym->set_value(value);
3071 if (parameters->options().strip_all()
3072 || !parameters->options().should_retain_symbol(sym->name()))
3074 sym->set_symtab_index(-1U);
3075 return false;
3078 return true;
3081 // Write out the global symbols.
3083 void
3084 Symbol_table::write_globals(const Stringpool* sympool,
3085 const Stringpool* dynpool,
3086 Output_symtab_xindex* symtab_xindex,
3087 Output_symtab_xindex* dynsym_xindex,
3088 Output_file* of) const
3090 switch (parameters->size_and_endianness())
3092 #ifdef HAVE_TARGET_32_LITTLE
3093 case Parameters::TARGET_32_LITTLE:
3094 this->sized_write_globals<32, false>(sympool, dynpool, symtab_xindex,
3095 dynsym_xindex, of);
3096 break;
3097 #endif
3098 #ifdef HAVE_TARGET_32_BIG
3099 case Parameters::TARGET_32_BIG:
3100 this->sized_write_globals<32, true>(sympool, dynpool, symtab_xindex,
3101 dynsym_xindex, of);
3102 break;
3103 #endif
3104 #ifdef HAVE_TARGET_64_LITTLE
3105 case Parameters::TARGET_64_LITTLE:
3106 this->sized_write_globals<64, false>(sympool, dynpool, symtab_xindex,
3107 dynsym_xindex, of);
3108 break;
3109 #endif
3110 #ifdef HAVE_TARGET_64_BIG
3111 case Parameters::TARGET_64_BIG:
3112 this->sized_write_globals<64, true>(sympool, dynpool, symtab_xindex,
3113 dynsym_xindex, of);
3114 break;
3115 #endif
3116 default:
3117 gold_unreachable();
3121 // Write out the global symbols.
3123 template<int size, bool big_endian>
3124 void
3125 Symbol_table::sized_write_globals(const Stringpool* sympool,
3126 const Stringpool* dynpool,
3127 Output_symtab_xindex* symtab_xindex,
3128 Output_symtab_xindex* dynsym_xindex,
3129 Output_file* of) const
3131 const Target& target = parameters->target();
3133 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
3135 const unsigned int output_count = this->output_count_;
3136 const section_size_type oview_size = output_count * sym_size;
3137 const unsigned int first_global_index = this->first_global_index_;
3138 unsigned char* psyms;
3139 if (this->offset_ == 0 || output_count == 0)
3140 psyms = NULL;
3141 else
3142 psyms = of->get_output_view(this->offset_, oview_size);
3144 const unsigned int dynamic_count = this->dynamic_count_;
3145 const section_size_type dynamic_size = dynamic_count * sym_size;
3146 const unsigned int first_dynamic_global_index =
3147 this->first_dynamic_global_index_;
3148 unsigned char* dynamic_view;
3149 if (this->dynamic_offset_ == 0 || dynamic_count == 0)
3150 dynamic_view = NULL;
3151 else
3152 dynamic_view = of->get_output_view(this->dynamic_offset_, dynamic_size);
3154 for (Symbol_table_type::const_iterator p = this->table_.begin();
3155 p != this->table_.end();
3156 ++p)
3158 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(p->second);
3160 // Possibly warn about unresolved symbols in shared libraries.
3161 this->warn_about_undefined_dynobj_symbol(sym);
3163 unsigned int sym_index = sym->symtab_index();
3164 unsigned int dynsym_index;
3165 if (dynamic_view == NULL)
3166 dynsym_index = -1U;
3167 else
3168 dynsym_index = sym->dynsym_index();
3170 if (sym_index == -1U && dynsym_index == -1U)
3172 // This symbol is not included in the output file.
3173 continue;
3176 unsigned int shndx;
3177 typename elfcpp::Elf_types<size>::Elf_Addr sym_value = sym->value();
3178 typename elfcpp::Elf_types<size>::Elf_Addr dynsym_value = sym_value;
3179 elfcpp::STB binding = sym->binding();
3181 // If --weak-unresolved-symbols is set, change binding of unresolved
3182 // global symbols to STB_WEAK.
3183 if (parameters->options().weak_unresolved_symbols()
3184 && binding == elfcpp::STB_GLOBAL
3185 && sym->is_undefined())
3186 binding = elfcpp::STB_WEAK;
3188 // If --no-gnu-unique is set, change STB_GNU_UNIQUE to STB_GLOBAL.
3189 if (binding == elfcpp::STB_GNU_UNIQUE
3190 && !parameters->options().gnu_unique())
3191 binding = elfcpp::STB_GLOBAL;
3193 switch (sym->source())
3195 case Symbol::FROM_OBJECT:
3197 bool is_ordinary;
3198 unsigned int in_shndx = sym->shndx(&is_ordinary);
3200 if (!is_ordinary
3201 && in_shndx != elfcpp::SHN_ABS
3202 && !Symbol::is_common_shndx(in_shndx))
3204 gold_error(_("%s: unsupported symbol section 0x%x"),
3205 sym->demangled_name().c_str(), in_shndx);
3206 shndx = in_shndx;
3208 else
3210 Object* symobj = sym->object();
3211 if (symobj->is_dynamic())
3213 if (sym->needs_dynsym_value())
3214 dynsym_value = target.dynsym_value(sym);
3215 shndx = elfcpp::SHN_UNDEF;
3216 if (sym->is_undef_binding_weak())
3217 binding = elfcpp::STB_WEAK;
3218 else
3219 binding = elfcpp::STB_GLOBAL;
3221 else if (symobj->pluginobj() != NULL)
3222 shndx = elfcpp::SHN_UNDEF;
3223 else if (in_shndx == elfcpp::SHN_UNDEF
3224 || (!is_ordinary
3225 && (in_shndx == elfcpp::SHN_ABS
3226 || Symbol::is_common_shndx(in_shndx))))
3227 shndx = in_shndx;
3228 else
3230 Relobj* relobj = static_cast<Relobj*>(symobj);
3231 Output_section* os = relobj->output_section(in_shndx);
3232 if (this->is_section_folded(relobj, in_shndx))
3234 // This global symbol must be written out even though
3235 // it is folded.
3236 // Get the os of the section it is folded onto.
3237 Section_id folded =
3238 this->icf_->get_folded_section(relobj, in_shndx);
3239 gold_assert(folded.first !=NULL);
3240 Relobj* folded_obj =
3241 reinterpret_cast<Relobj*>(folded.first);
3242 os = folded_obj->output_section(folded.second);
3243 gold_assert(os != NULL);
3245 gold_assert(os != NULL);
3246 shndx = os->out_shndx();
3248 if (shndx >= elfcpp::SHN_LORESERVE)
3250 if (sym_index != -1U)
3251 symtab_xindex->add(sym_index, shndx);
3252 if (dynsym_index != -1U)
3253 dynsym_xindex->add(dynsym_index, shndx);
3254 shndx = elfcpp::SHN_XINDEX;
3257 // In object files symbol values are section
3258 // relative.
3259 if (parameters->options().relocatable())
3260 sym_value -= os->address();
3264 break;
3266 case Symbol::IN_OUTPUT_DATA:
3268 Output_data* od = sym->output_data();
3270 shndx = od->out_shndx();
3271 if (shndx >= elfcpp::SHN_LORESERVE)
3273 if (sym_index != -1U)
3274 symtab_xindex->add(sym_index, shndx);
3275 if (dynsym_index != -1U)
3276 dynsym_xindex->add(dynsym_index, shndx);
3277 shndx = elfcpp::SHN_XINDEX;
3280 // In object files symbol values are section
3281 // relative.
3282 if (parameters->options().relocatable())
3284 Output_section* os = od->output_section();
3285 gold_assert(os != NULL);
3286 sym_value -= os->address();
3289 break;
3291 case Symbol::IN_OUTPUT_SEGMENT:
3293 Output_segment* oseg = sym->output_segment();
3294 Output_section* osect = oseg->first_section();
3295 if (osect == NULL)
3296 shndx = elfcpp::SHN_ABS;
3297 else
3298 shndx = osect->out_shndx();
3300 break;
3302 case Symbol::IS_CONSTANT:
3303 shndx = elfcpp::SHN_ABS;
3304 break;
3306 case Symbol::IS_UNDEFINED:
3307 shndx = elfcpp::SHN_UNDEF;
3308 break;
3310 default:
3311 gold_unreachable();
3314 if (sym_index != -1U)
3316 sym_index -= first_global_index;
3317 gold_assert(sym_index < output_count);
3318 unsigned char* ps = psyms + (sym_index * sym_size);
3319 this->sized_write_symbol<size, big_endian>(sym, sym_value, shndx,
3320 binding, sympool, ps);
3323 if (dynsym_index != -1U)
3325 dynsym_index -= first_dynamic_global_index;
3326 gold_assert(dynsym_index < dynamic_count);
3327 unsigned char* pd = dynamic_view + (dynsym_index * sym_size);
3328 this->sized_write_symbol<size, big_endian>(sym, dynsym_value, shndx,
3329 binding, dynpool, pd);
3330 // Allow a target to adjust dynamic symbol value.
3331 parameters->target().adjust_dyn_symbol(sym, pd);
3335 // Write the target-specific symbols.
3336 for (std::vector<Symbol*>::const_iterator p = this->target_symbols_.begin();
3337 p != this->target_symbols_.end();
3338 ++p)
3340 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(*p);
3342 unsigned int sym_index = sym->symtab_index();
3343 unsigned int dynsym_index;
3344 if (dynamic_view == NULL)
3345 dynsym_index = -1U;
3346 else
3347 dynsym_index = sym->dynsym_index();
3349 unsigned int shndx;
3350 switch (sym->source())
3352 case Symbol::IS_CONSTANT:
3353 shndx = elfcpp::SHN_ABS;
3354 break;
3355 case Symbol::IS_UNDEFINED:
3356 shndx = elfcpp::SHN_UNDEF;
3357 break;
3358 default:
3359 gold_unreachable();
3362 if (sym_index != -1U)
3364 sym_index -= first_global_index;
3365 gold_assert(sym_index < output_count);
3366 unsigned char* ps = psyms + (sym_index * sym_size);
3367 this->sized_write_symbol<size, big_endian>(sym, sym->value(), shndx,
3368 sym->binding(), sympool,
3369 ps);
3372 if (dynsym_index != -1U)
3374 dynsym_index -= first_dynamic_global_index;
3375 gold_assert(dynsym_index < dynamic_count);
3376 unsigned char* pd = dynamic_view + (dynsym_index * sym_size);
3377 this->sized_write_symbol<size, big_endian>(sym, sym->value(), shndx,
3378 sym->binding(), dynpool,
3379 pd);
3383 of->write_output_view(this->offset_, oview_size, psyms);
3384 if (dynamic_view != NULL)
3385 of->write_output_view(this->dynamic_offset_, dynamic_size, dynamic_view);
3388 // Write out the symbol SYM, in section SHNDX, to P. POOL is the
3389 // strtab holding the name.
3391 template<int size, bool big_endian>
3392 void
3393 Symbol_table::sized_write_symbol(
3394 Sized_symbol<size>* sym,
3395 typename elfcpp::Elf_types<size>::Elf_Addr value,
3396 unsigned int shndx,
3397 elfcpp::STB binding,
3398 const Stringpool* pool,
3399 unsigned char* p) const
3401 elfcpp::Sym_write<size, big_endian> osym(p);
3402 if (sym->version() == NULL || !parameters->options().relocatable())
3403 osym.put_st_name(pool->get_offset(sym->name()));
3404 else
3405 osym.put_st_name(pool->get_offset(sym->versioned_name()));
3406 osym.put_st_value(value);
3407 // Use a symbol size of zero for undefined symbols from shared libraries.
3408 if (shndx == elfcpp::SHN_UNDEF && sym->is_from_dynobj())
3409 osym.put_st_size(0);
3410 else
3411 osym.put_st_size(sym->symsize());
3412 elfcpp::STT type = sym->type();
3413 gold_assert(type != elfcpp::STT_GNU_IFUNC || !sym->is_from_dynobj());
3414 // A version script may have overridden the default binding.
3415 if (sym->is_forced_local())
3416 osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL, type));
3417 else
3418 osym.put_st_info(elfcpp::elf_st_info(binding, type));
3419 osym.put_st_other(elfcpp::elf_st_other(sym->visibility(), sym->nonvis()));
3420 osym.put_st_shndx(shndx);
3423 // Check for unresolved symbols in shared libraries. This is
3424 // controlled by the --allow-shlib-undefined option.
3426 // We only warn about libraries for which we have seen all the
3427 // DT_NEEDED entries. We don't try to track down DT_NEEDED entries
3428 // which were not seen in this link. If we didn't see a DT_NEEDED
3429 // entry, we aren't going to be able to reliably report whether the
3430 // symbol is undefined.
3432 // We also don't warn about libraries found in a system library
3433 // directory (e.g., /lib or /usr/lib); we assume that those libraries
3434 // are OK. This heuristic avoids problems on GNU/Linux, in which -ldl
3435 // can have undefined references satisfied by ld-linux.so.
3437 inline void
3438 Symbol_table::warn_about_undefined_dynobj_symbol(Symbol* sym) const
3440 bool dummy;
3441 if (sym->source() == Symbol::FROM_OBJECT
3442 && sym->object()->is_dynamic()
3443 && sym->shndx(&dummy) == elfcpp::SHN_UNDEF
3444 && sym->binding() != elfcpp::STB_WEAK
3445 && !parameters->options().allow_shlib_undefined()
3446 && !parameters->target().is_defined_by_abi(sym)
3447 && !sym->object()->is_in_system_directory())
3449 // A very ugly cast.
3450 Dynobj* dynobj = static_cast<Dynobj*>(sym->object());
3451 if (!dynobj->has_unknown_needed_entries())
3452 gold_undefined_symbol(sym);
3456 // Write out a section symbol. Return the update offset.
3458 void
3459 Symbol_table::write_section_symbol(const Output_section* os,
3460 Output_symtab_xindex* symtab_xindex,
3461 Output_file* of,
3462 off_t offset) const
3464 switch (parameters->size_and_endianness())
3466 #ifdef HAVE_TARGET_32_LITTLE
3467 case Parameters::TARGET_32_LITTLE:
3468 this->sized_write_section_symbol<32, false>(os, symtab_xindex, of,
3469 offset);
3470 break;
3471 #endif
3472 #ifdef HAVE_TARGET_32_BIG
3473 case Parameters::TARGET_32_BIG:
3474 this->sized_write_section_symbol<32, true>(os, symtab_xindex, of,
3475 offset);
3476 break;
3477 #endif
3478 #ifdef HAVE_TARGET_64_LITTLE
3479 case Parameters::TARGET_64_LITTLE:
3480 this->sized_write_section_symbol<64, false>(os, symtab_xindex, of,
3481 offset);
3482 break;
3483 #endif
3484 #ifdef HAVE_TARGET_64_BIG
3485 case Parameters::TARGET_64_BIG:
3486 this->sized_write_section_symbol<64, true>(os, symtab_xindex, of,
3487 offset);
3488 break;
3489 #endif
3490 default:
3491 gold_unreachable();
3495 // Write out a section symbol, specialized for size and endianness.
3497 template<int size, bool big_endian>
3498 void
3499 Symbol_table::sized_write_section_symbol(const Output_section* os,
3500 Output_symtab_xindex* symtab_xindex,
3501 Output_file* of,
3502 off_t offset) const
3504 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
3506 unsigned char* pov = of->get_output_view(offset, sym_size);
3508 elfcpp::Sym_write<size, big_endian> osym(pov);
3509 osym.put_st_name(0);
3510 if (parameters->options().relocatable())
3511 osym.put_st_value(0);
3512 else
3513 osym.put_st_value(os->address());
3514 osym.put_st_size(0);
3515 osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL,
3516 elfcpp::STT_SECTION));
3517 osym.put_st_other(elfcpp::elf_st_other(elfcpp::STV_DEFAULT, 0));
3519 unsigned int shndx = os->out_shndx();
3520 if (shndx >= elfcpp::SHN_LORESERVE)
3522 symtab_xindex->add(os->symtab_index(), shndx);
3523 shndx = elfcpp::SHN_XINDEX;
3525 osym.put_st_shndx(shndx);
3527 of->write_output_view(offset, sym_size, pov);
3530 // Print statistical information to stderr. This is used for --stats.
3532 void
3533 Symbol_table::print_stats() const
3535 #if defined(HAVE_TR1_UNORDERED_MAP) || defined(HAVE_EXT_HASH_MAP)
3536 fprintf(stderr, _("%s: symbol table entries: %zu; buckets: %zu\n"),
3537 program_name, this->table_.size(), this->table_.bucket_count());
3538 #else
3539 fprintf(stderr, _("%s: symbol table entries: %zu\n"),
3540 program_name, this->table_.size());
3541 #endif
3542 this->namepool_.print_stats("symbol table stringpool");
3545 // We check for ODR violations by looking for symbols with the same
3546 // name for which the debugging information reports that they were
3547 // defined in disjoint source locations. When comparing the source
3548 // location, we consider instances with the same base filename to be
3549 // the same. This is because different object files/shared libraries
3550 // can include the same header file using different paths, and
3551 // different optimization settings can make the line number appear to
3552 // be a couple lines off, and we don't want to report an ODR violation
3553 // in those cases.
3555 // This struct is used to compare line information, as returned by
3556 // Dwarf_line_info::one_addr2line. It implements a < comparison
3557 // operator used with std::sort.
3559 struct Odr_violation_compare
3561 bool
3562 operator()(const std::string& s1, const std::string& s2) const
3564 // Inputs should be of the form "dirname/filename:linenum" where
3565 // "dirname/" is optional. We want to compare just the filename:linenum.
3567 // Find the last '/' in each string.
3568 std::string::size_type s1begin = s1.rfind('/');
3569 std::string::size_type s2begin = s2.rfind('/');
3570 // If there was no '/' in a string, start at the beginning.
3571 if (s1begin == std::string::npos)
3572 s1begin = 0;
3573 if (s2begin == std::string::npos)
3574 s2begin = 0;
3575 return s1.compare(s1begin, std::string::npos,
3576 s2, s2begin, std::string::npos) < 0;
3580 // Returns all of the lines attached to LOC, not just the one the
3581 // instruction actually came from.
3582 std::vector<std::string>
3583 Symbol_table::linenos_from_loc(const Task* task,
3584 const Symbol_location& loc)
3586 // We need to lock the object in order to read it. This
3587 // means that we have to run in a singleton Task. If we
3588 // want to run this in a general Task for better
3589 // performance, we will need one Task for object, plus
3590 // appropriate locking to ensure that we don't conflict with
3591 // other uses of the object. Also note, one_addr2line is not
3592 // currently thread-safe.
3593 Task_lock_obj<Object> tl(task, loc.object);
3595 std::vector<std::string> result;
3596 Symbol_location code_loc = loc;
3597 parameters->target().function_location(&code_loc);
3598 // 16 is the size of the object-cache that one_addr2line should use.
3599 std::string canonical_result = Dwarf_line_info::one_addr2line(
3600 code_loc.object, code_loc.shndx, code_loc.offset, 16, &result);
3601 if (!canonical_result.empty())
3602 result.push_back(canonical_result);
3603 return result;
3606 // OutputIterator that records if it was ever assigned to. This
3607 // allows it to be used with std::set_intersection() to check for
3608 // intersection rather than computing the intersection.
3609 struct Check_intersection
3611 Check_intersection()
3612 : value_(false)
3615 bool had_intersection() const
3616 { return this->value_; }
3618 Check_intersection& operator++()
3619 { return *this; }
3621 Check_intersection& operator*()
3622 { return *this; }
3624 template<typename T>
3625 Check_intersection& operator=(const T&)
3627 this->value_ = true;
3628 return *this;
3631 private:
3632 bool value_;
3635 // Check candidate_odr_violations_ to find symbols with the same name
3636 // but apparently different definitions (different source-file/line-no
3637 // for each line assigned to the first instruction).
3639 void
3640 Symbol_table::detect_odr_violations(const Task* task,
3641 const char* output_file_name) const
3643 for (Odr_map::const_iterator it = candidate_odr_violations_.begin();
3644 it != candidate_odr_violations_.end();
3645 ++it)
3647 const char* const symbol_name = it->first;
3649 std::string first_object_name;
3650 std::vector<std::string> first_object_linenos;
3652 Unordered_set<Symbol_location, Symbol_location_hash>::const_iterator
3653 locs = it->second.begin();
3654 const Unordered_set<Symbol_location, Symbol_location_hash>::const_iterator
3655 locs_end = it->second.end();
3656 for (; locs != locs_end && first_object_linenos.empty(); ++locs)
3658 // Save the line numbers from the first definition to
3659 // compare to the other definitions. Ideally, we'd compare
3660 // every definition to every other, but we don't want to
3661 // take O(N^2) time to do this. This shortcut may cause
3662 // false negatives that appear or disappear depending on the
3663 // link order, but it won't cause false positives.
3664 first_object_name = locs->object->name();
3665 first_object_linenos = this->linenos_from_loc(task, *locs);
3667 if (first_object_linenos.empty())
3668 continue;
3670 // Sort by Odr_violation_compare to make std::set_intersection work.
3671 std::string first_object_canonical_result = first_object_linenos.back();
3672 std::sort(first_object_linenos.begin(), first_object_linenos.end(),
3673 Odr_violation_compare());
3675 for (; locs != locs_end; ++locs)
3677 std::vector<std::string> linenos =
3678 this->linenos_from_loc(task, *locs);
3679 // linenos will be empty if we couldn't parse the debug info.
3680 if (linenos.empty())
3681 continue;
3682 // Sort by Odr_violation_compare to make std::set_intersection work.
3683 gold_assert(!linenos.empty());
3684 std::string second_object_canonical_result = linenos.back();
3685 std::sort(linenos.begin(), linenos.end(), Odr_violation_compare());
3687 Check_intersection intersection_result =
3688 std::set_intersection(first_object_linenos.begin(),
3689 first_object_linenos.end(),
3690 linenos.begin(),
3691 linenos.end(),
3692 Check_intersection(),
3693 Odr_violation_compare());
3694 if (!intersection_result.had_intersection())
3696 gold_warning(_("while linking %s: symbol '%s' defined in "
3697 "multiple places (possible ODR violation):"),
3698 output_file_name, demangle(symbol_name).c_str());
3699 // This only prints one location from each definition,
3700 // which may not be the location we expect to intersect
3701 // with another definition. We could print the whole
3702 // set of locations, but that seems too verbose.
3703 fprintf(stderr, _(" %s from %s\n"),
3704 first_object_canonical_result.c_str(),
3705 first_object_name.c_str());
3706 fprintf(stderr, _(" %s from %s\n"),
3707 second_object_canonical_result.c_str(),
3708 locs->object->name().c_str());
3709 // Only print one broken pair, to avoid needing to
3710 // compare against a list of the disjoint definition
3711 // locations we've found so far. (If we kept comparing
3712 // against just the first one, we'd get a lot of
3713 // redundant complaints about the second definition
3714 // location.)
3715 break;
3719 // We only call one_addr2line() in this function, so we can clear its cache.
3720 Dwarf_line_info::clear_addr2line_cache();
3723 // Warnings functions.
3725 // Add a new warning.
3727 void
3728 Warnings::add_warning(Symbol_table* symtab, const char* name, Object* obj,
3729 const std::string& warning)
3731 name = symtab->canonicalize_name(name);
3732 this->warnings_[name].set(obj, warning);
3735 // Look through the warnings and mark the symbols for which we should
3736 // warn. This is called during Layout::finalize when we know the
3737 // sources for all the symbols.
3739 void
3740 Warnings::note_warnings(Symbol_table* symtab)
3742 for (Warning_table::iterator p = this->warnings_.begin();
3743 p != this->warnings_.end();
3744 ++p)
3746 Symbol* sym = symtab->lookup(p->first, NULL);
3747 if (sym != NULL
3748 && sym->source() == Symbol::FROM_OBJECT
3749 && sym->object() == p->second.object)
3750 sym->set_has_warning();
3754 // Issue a warning. This is called when we see a relocation against a
3755 // symbol for which has a warning.
3757 template<int size, bool big_endian>
3758 void
3759 Warnings::issue_warning(const Symbol* sym,
3760 const Relocate_info<size, big_endian>* relinfo,
3761 size_t relnum, off_t reloffset) const
3763 gold_assert(sym->has_warning());
3765 // We don't want to issue a warning for a relocation against the
3766 // symbol in the same object file in which the symbol is defined.
3767 if (sym->object() == relinfo->object)
3768 return;
3770 Warning_table::const_iterator p = this->warnings_.find(sym->name());
3771 gold_assert(p != this->warnings_.end());
3772 gold_warning_at_location(relinfo, relnum, reloffset,
3773 "%s", p->second.text.c_str());
3776 // Instantiate the templates we need. We could use the configure
3777 // script to restrict this to only the ones needed for implemented
3778 // targets.
3780 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3781 template
3782 void
3783 Sized_symbol<32>::allocate_common(Output_data*, Value_type);
3784 #endif
3786 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3787 template
3788 void
3789 Sized_symbol<64>::allocate_common(Output_data*, Value_type);
3790 #endif
3792 #ifdef HAVE_TARGET_32_LITTLE
3793 template
3794 void
3795 Symbol_table::add_from_relobj<32, false>(
3796 Sized_relobj_file<32, false>* relobj,
3797 const unsigned char* syms,
3798 size_t count,
3799 size_t symndx_offset,
3800 const char* sym_names,
3801 size_t sym_name_size,
3802 Sized_relobj_file<32, false>::Symbols* sympointers,
3803 size_t* defined);
3804 #endif
3806 #ifdef HAVE_TARGET_32_BIG
3807 template
3808 void
3809 Symbol_table::add_from_relobj<32, true>(
3810 Sized_relobj_file<32, true>* relobj,
3811 const unsigned char* syms,
3812 size_t count,
3813 size_t symndx_offset,
3814 const char* sym_names,
3815 size_t sym_name_size,
3816 Sized_relobj_file<32, true>::Symbols* sympointers,
3817 size_t* defined);
3818 #endif
3820 #ifdef HAVE_TARGET_64_LITTLE
3821 template
3822 void
3823 Symbol_table::add_from_relobj<64, false>(
3824 Sized_relobj_file<64, false>* relobj,
3825 const unsigned char* syms,
3826 size_t count,
3827 size_t symndx_offset,
3828 const char* sym_names,
3829 size_t sym_name_size,
3830 Sized_relobj_file<64, false>::Symbols* sympointers,
3831 size_t* defined);
3832 #endif
3834 #ifdef HAVE_TARGET_64_BIG
3835 template
3836 void
3837 Symbol_table::add_from_relobj<64, true>(
3838 Sized_relobj_file<64, true>* relobj,
3839 const unsigned char* syms,
3840 size_t count,
3841 size_t symndx_offset,
3842 const char* sym_names,
3843 size_t sym_name_size,
3844 Sized_relobj_file<64, true>::Symbols* sympointers,
3845 size_t* defined);
3846 #endif
3848 #ifdef HAVE_TARGET_32_LITTLE
3849 template
3850 Symbol*
3851 Symbol_table::add_from_pluginobj<32, false>(
3852 Sized_pluginobj<32, false>* obj,
3853 const char* name,
3854 const char* ver,
3855 elfcpp::Sym<32, false>* sym);
3856 #endif
3858 #ifdef HAVE_TARGET_32_BIG
3859 template
3860 Symbol*
3861 Symbol_table::add_from_pluginobj<32, true>(
3862 Sized_pluginobj<32, true>* obj,
3863 const char* name,
3864 const char* ver,
3865 elfcpp::Sym<32, true>* sym);
3866 #endif
3868 #ifdef HAVE_TARGET_64_LITTLE
3869 template
3870 Symbol*
3871 Symbol_table::add_from_pluginobj<64, false>(
3872 Sized_pluginobj<64, false>* obj,
3873 const char* name,
3874 const char* ver,
3875 elfcpp::Sym<64, false>* sym);
3876 #endif
3878 #ifdef HAVE_TARGET_64_BIG
3879 template
3880 Symbol*
3881 Symbol_table::add_from_pluginobj<64, true>(
3882 Sized_pluginobj<64, true>* obj,
3883 const char* name,
3884 const char* ver,
3885 elfcpp::Sym<64, true>* sym);
3886 #endif
3888 #ifdef HAVE_TARGET_32_LITTLE
3889 template
3890 void
3891 Symbol_table::add_from_dynobj<32, false>(
3892 Sized_dynobj<32, false>* dynobj,
3893 const unsigned char* syms,
3894 size_t count,
3895 const char* sym_names,
3896 size_t sym_name_size,
3897 const unsigned char* versym,
3898 size_t versym_size,
3899 const std::vector<const char*>* version_map,
3900 Sized_relobj_file<32, false>::Symbols* sympointers,
3901 size_t* defined);
3902 #endif
3904 #ifdef HAVE_TARGET_32_BIG
3905 template
3906 void
3907 Symbol_table::add_from_dynobj<32, true>(
3908 Sized_dynobj<32, true>* dynobj,
3909 const unsigned char* syms,
3910 size_t count,
3911 const char* sym_names,
3912 size_t sym_name_size,
3913 const unsigned char* versym,
3914 size_t versym_size,
3915 const std::vector<const char*>* version_map,
3916 Sized_relobj_file<32, true>::Symbols* sympointers,
3917 size_t* defined);
3918 #endif
3920 #ifdef HAVE_TARGET_64_LITTLE
3921 template
3922 void
3923 Symbol_table::add_from_dynobj<64, false>(
3924 Sized_dynobj<64, false>* dynobj,
3925 const unsigned char* syms,
3926 size_t count,
3927 const char* sym_names,
3928 size_t sym_name_size,
3929 const unsigned char* versym,
3930 size_t versym_size,
3931 const std::vector<const char*>* version_map,
3932 Sized_relobj_file<64, false>::Symbols* sympointers,
3933 size_t* defined);
3934 #endif
3936 #ifdef HAVE_TARGET_64_BIG
3937 template
3938 void
3939 Symbol_table::add_from_dynobj<64, true>(
3940 Sized_dynobj<64, true>* dynobj,
3941 const unsigned char* syms,
3942 size_t count,
3943 const char* sym_names,
3944 size_t sym_name_size,
3945 const unsigned char* versym,
3946 size_t versym_size,
3947 const std::vector<const char*>* version_map,
3948 Sized_relobj_file<64, true>::Symbols* sympointers,
3949 size_t* defined);
3950 #endif
3952 #ifdef HAVE_TARGET_32_LITTLE
3953 template
3954 Sized_symbol<32>*
3955 Symbol_table::add_from_incrobj(
3956 Object* obj,
3957 const char* name,
3958 const char* ver,
3959 elfcpp::Sym<32, false>* sym);
3960 #endif
3962 #ifdef HAVE_TARGET_32_BIG
3963 template
3964 Sized_symbol<32>*
3965 Symbol_table::add_from_incrobj(
3966 Object* obj,
3967 const char* name,
3968 const char* ver,
3969 elfcpp::Sym<32, true>* sym);
3970 #endif
3972 #ifdef HAVE_TARGET_64_LITTLE
3973 template
3974 Sized_symbol<64>*
3975 Symbol_table::add_from_incrobj(
3976 Object* obj,
3977 const char* name,
3978 const char* ver,
3979 elfcpp::Sym<64, false>* sym);
3980 #endif
3982 #ifdef HAVE_TARGET_64_BIG
3983 template
3984 Sized_symbol<64>*
3985 Symbol_table::add_from_incrobj(
3986 Object* obj,
3987 const char* name,
3988 const char* ver,
3989 elfcpp::Sym<64, true>* sym);
3990 #endif
3992 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3993 template
3994 void
3995 Symbol_table::define_with_copy_reloc<32>(
3996 Sized_symbol<32>* sym,
3997 Output_data* posd,
3998 elfcpp::Elf_types<32>::Elf_Addr value);
3999 #endif
4001 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
4002 template
4003 void
4004 Symbol_table::define_with_copy_reloc<64>(
4005 Sized_symbol<64>* sym,
4006 Output_data* posd,
4007 elfcpp::Elf_types<64>::Elf_Addr value);
4008 #endif
4010 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
4011 template
4012 void
4013 Sized_symbol<32>::init_output_data(const char* name, const char* version,
4014 Output_data* od, Value_type value,
4015 Size_type symsize, elfcpp::STT type,
4016 elfcpp::STB binding,
4017 elfcpp::STV visibility,
4018 unsigned char nonvis,
4019 bool offset_is_from_end,
4020 bool is_predefined);
4022 template
4023 void
4024 Sized_symbol<32>::init_constant(const char* name, const char* version,
4025 Value_type value, Size_type symsize,
4026 elfcpp::STT type, elfcpp::STB binding,
4027 elfcpp::STV visibility, unsigned char nonvis,
4028 bool is_predefined);
4030 template
4031 void
4032 Sized_symbol<32>::init_undefined(const char* name, const char* version,
4033 Value_type value, elfcpp::STT type,
4034 elfcpp::STB binding, elfcpp::STV visibility,
4035 unsigned char nonvis);
4036 #endif
4038 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
4039 template
4040 void
4041 Sized_symbol<64>::init_output_data(const char* name, const char* version,
4042 Output_data* od, Value_type value,
4043 Size_type symsize, elfcpp::STT type,
4044 elfcpp::STB binding,
4045 elfcpp::STV visibility,
4046 unsigned char nonvis,
4047 bool offset_is_from_end,
4048 bool is_predefined);
4050 template
4051 void
4052 Sized_symbol<64>::init_constant(const char* name, const char* version,
4053 Value_type value, Size_type symsize,
4054 elfcpp::STT type, elfcpp::STB binding,
4055 elfcpp::STV visibility, unsigned char nonvis,
4056 bool is_predefined);
4058 template
4059 void
4060 Sized_symbol<64>::init_undefined(const char* name, const char* version,
4061 Value_type value, elfcpp::STT type,
4062 elfcpp::STB binding, elfcpp::STV visibility,
4063 unsigned char nonvis);
4064 #endif
4066 #ifdef HAVE_TARGET_32_LITTLE
4067 template
4068 void
4069 Warnings::issue_warning<32, false>(const Symbol* sym,
4070 const Relocate_info<32, false>* relinfo,
4071 size_t relnum, off_t reloffset) const;
4072 #endif
4074 #ifdef HAVE_TARGET_32_BIG
4075 template
4076 void
4077 Warnings::issue_warning<32, true>(const Symbol* sym,
4078 const Relocate_info<32, true>* relinfo,
4079 size_t relnum, off_t reloffset) const;
4080 #endif
4082 #ifdef HAVE_TARGET_64_LITTLE
4083 template
4084 void
4085 Warnings::issue_warning<64, false>(const Symbol* sym,
4086 const Relocate_info<64, false>* relinfo,
4087 size_t relnum, off_t reloffset) const;
4088 #endif
4090 #ifdef HAVE_TARGET_64_BIG
4091 template
4092 void
4093 Warnings::issue_warning<64, true>(const Symbol* sym,
4094 const Relocate_info<64, true>* relinfo,
4095 size_t relnum, off_t reloffset) const;
4096 #endif
4098 } // End namespace gold.