1 /* MIPS Simulator definition.
2 Copyright (C) 1997-2024 Free Software Foundation, Inc.
3 Contributed by Cygnus Support.
5 This file is part of the MIPS sim.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23 #define SIM_CORE_SIGNAL(SD,CPU,CIA,MAP,NR_BYTES,ADDR,TRANSFER,ERROR) \
24 mips_core_signal ((SD), (CPU), (CIA), (MAP), (NR_BYTES), (ADDR), (TRANSFER), (ERROR))
26 #include "sim-basics.h"
28 #include "bfd/elf-bfd.h"
31 /* Deprecated macros and types for manipulating 64bit values. Use
32 ../common/sim-bits.h and ../common/sim-endian.h macros instead. */
34 typedef int64_t word64
;
35 typedef uint64_t uword64
;
37 #define WORD64LO(t) (unsigned int)((t)&0xFFFFFFFF)
38 #define WORD64HI(t) (unsigned int)(((uword64)(t))>>32)
39 #define SET64LO(t) (((uword64)(t))&0xFFFFFFFF)
40 #define SET64HI(t) (((uword64)(t))<<32)
41 #define WORD64(h,l) ((word64)((SET64HI(h)|SET64LO(l))))
42 #define UWORD64(h,l) (SET64HI(h)|SET64LO(l))
44 /* Check if a value will fit within a halfword: */
45 #define NOTHALFWORDVALUE(v) ((((((uword64)(v)>>16) == 0) && !((v) & ((unsigned)1 << 15))) || (((((uword64)(v)>>32) == 0xFFFFFFFF) && ((((uword64)(v)>>16) & 0xFFFF) == 0xFFFF)) && ((v) & ((unsigned)1 << 15)))) ? (1 == 0) : (1 == 1))
63 /* Floating-point operations: */
68 /* FPU registers must be one of the following types. All other values
69 are reserved (and undefined). */
76 /* The following is a special case for FP conditions where only
77 the lower 32bits are considered. This is a HACK. */
79 /* The following are well outside the normal acceptable format
80 range, and are used in the register status vector. */
81 fmt_unknown
= 0x10000000,
82 fmt_uninterpreted
= 0x20000000,
83 fmt_uninterpreted_32
= 0x40000000,
84 fmt_uninterpreted_64
= 0x80000000U
,
87 /* For paired word (pw) operations, the opcode representation is fmt_word,
88 but register transfers (StoreFPR, ValueFPR, etc.) are done as fmt_long. */
89 #define fmt_pw fmt_long
91 /* This should be the COC1 value at the start of the preceding
93 #define PREVCOC1() ((STATE & simPCOC1) ? 1 : 0)
95 #ifdef TARGET_ENABLE_FR
96 /* FIXME: this should be enabled for all targets, but needs testing first. */
97 #define SizeFGR() (((WITH_TARGET_FLOATING_POINT_BITSIZE) == 64) \
98 ? ((SR & status_FR) ? 64 : 32) \
99 : (WITH_TARGET_FLOATING_POINT_BITSIZE))
101 #define SizeFGR() (WITH_TARGET_FLOATING_POINT_BITSIZE)
108 /* HI/LO register accesses */
110 /* For some MIPS targets, the HI/LO registers have certain timing
111 restrictions in that, for instance, a read of a HI register must be
112 separated by at least three instructions from a preceeding read.
114 The struct below is used to record the last access by each of A MT,
115 MF or other OP instruction to a HI/LO register. See mips.igen for
118 typedef struct _hilo_access
{
123 typedef struct _hilo_history
{
132 /* Integer ALU operations: */
136 #define ALU32_END(ANS) \
137 if (ALU32_HAD_OVERFLOW) \
138 SignalExceptionIntegerOverflow (); \
139 (ANS) = (int32_t) ALU32_OVERFLOW_RESULT
142 #define ALU64_END(ANS) \
143 if (ALU64_HAD_OVERFLOW) \
144 SignalExceptionIntegerOverflow (); \
145 (ANS) = ALU64_OVERFLOW_RESULT;
151 /* The following is probably not used for MIPS IV onwards: */
152 /* Slots for delayed register updates. For the moment we just have a
153 fixed number of slots (rather than a more generic, dynamic
154 system). This keeps the simulator fast. However, we only allow
155 for the register update to be delayed for a single instruction
157 #define PSLOTS (8) /* Maximum number of instruction cycles */
159 typedef struct _pending_write_queue
{
163 int slot_delay
[PSLOTS
];
164 int slot_size
[PSLOTS
];
165 int slot_bit
[PSLOTS
];
166 void *slot_dest
[PSLOTS
];
167 uint64_t slot_value
[PSLOTS
];
168 } pending_write_queue
;
170 #ifndef PENDING_TRACE
171 #define PENDING_TRACE 0
173 #define PENDING_IN (MIPS_SIM_CPU (CPU)->pending.in)
174 #define PENDING_OUT (MIPS_SIM_CPU (CPU)->pending.out)
175 #define PENDING_TOTAL (MIPS_SIM_CPU (CPU)->pending.total)
176 #define PENDING_SLOT_SIZE (MIPS_SIM_CPU (CPU)->pending.slot_size)
177 #define PENDING_SLOT_BIT (MIPS_SIM_CPU (CPU)->pending.slot_bit)
178 #define PENDING_SLOT_DELAY (MIPS_SIM_CPU (CPU)->pending.slot_delay)
179 #define PENDING_SLOT_DEST (MIPS_SIM_CPU (CPU)->pending.slot_dest)
180 #define PENDING_SLOT_VALUE (MIPS_SIM_CPU (CPU)->pending.slot_value)
182 /* Invalidate the pending write queue, all pending writes are
185 #define PENDING_INVALIDATE() \
186 memset (&MIPS_SIM_CPU (CPU)->pending, 0, sizeof (MIPS_SIM_CPU (CPU)->pending))
188 /* Schedule a write to DEST for N cycles time. For 64 bit
189 destinations, schedule two writes. For floating point registers,
190 the caller should schedule a write to both the dest register and
191 the FPR_STATE register. When BIT is non-negative, only BIT of DEST
194 #define PENDING_SCHED(DEST,VAL,DELAY,BIT) \
196 if (PENDING_SLOT_DEST[PENDING_IN] != NULL) \
197 sim_engine_abort (SD, CPU, cia, \
198 "PENDING_SCHED - buffer overflow\n"); \
200 sim_io_eprintf (SD, "PENDING_SCHED - 0x%lx - dest 0x%lx, val 0x%lx, bit %d, size %d, pending_in %d, pending_out %d, pending_total %d\n", \
201 (unsigned long) cia, (unsigned long) &(DEST), \
202 (unsigned long) (VAL), (BIT), (int) sizeof (DEST),\
203 PENDING_IN, PENDING_OUT, PENDING_TOTAL); \
204 PENDING_SLOT_DELAY[PENDING_IN] = (DELAY) + 1; \
205 PENDING_SLOT_DEST[PENDING_IN] = &(DEST); \
206 PENDING_SLOT_VALUE[PENDING_IN] = (VAL); \
207 PENDING_SLOT_SIZE[PENDING_IN] = sizeof (DEST); \
208 PENDING_SLOT_BIT[PENDING_IN] = (BIT); \
209 PENDING_IN = (PENDING_IN + 1) % PSLOTS; \
210 PENDING_TOTAL += 1; \
213 #define PENDING_WRITE(DEST,VAL,DELAY) PENDING_SCHED(DEST,VAL,DELAY,-1)
214 #define PENDING_BIT(DEST,VAL,DELAY,BIT) PENDING_SCHED(DEST,VAL,DELAY,BIT)
216 #define PENDING_TICK() pending_tick (SD, CPU, cia)
218 #define PENDING_FLUSH() abort () /* think about this one */
219 #define PENDING_FP() abort () /* think about this one */
221 /* For backward compatibility */
222 #define PENDING_FILL(R,VAL) \
224 if ((R) >= FGR_BASE && (R) < FGR_BASE + NR_FGR) \
226 PENDING_SCHED(FGR[(R) - FGR_BASE], VAL, 1, -1); \
227 PENDING_SCHED(FPR_STATE[(R) - FGR_BASE], fmt_uninterpreted, 1, -1); \
230 PENDING_SCHED(GPR[(R)], VAL, 1, -1); \
236 FLOP_ADD
, FLOP_SUB
, FLOP_MUL
, FLOP_MADD
,
237 FLOP_MSUB
, FLOP_MAX
=10, FLOP_MIN
, FLOP_ABS
,
238 FLOP_ITOF0
=14, FLOP_FTOI0
=18, FLOP_NEG
=23
242 /* The internal representation of an MDMX accumulator.
243 Note that 24 and 48 bit accumulator elements are represented in
244 32 or 64 bits. Since the accumulators are 2's complement with
245 overflow suppressed, high-order bits can be ignored in most contexts. */
247 typedef int32_t signed24
;
248 typedef int64_t signed48
;
256 /* Conventional system arguments. */
257 #define SIM_STATE sim_cpu *cpu, address_word cia
258 #define SIM_ARGS CPU, cia
260 struct mips_sim_cpu
{
262 /* The following are internal simulator state variables: */
263 address_word dspc
; /* delay-slot PC */
264 #define DSPC (MIPS_SIM_CPU (CPU)->dspc)
266 #define DELAY_SLOT(TARGET) NIA = delayslot32 (SD_, (TARGET))
267 #define FORBIDDEN_SLOT() { NIA = forbiddenslot32 (SD_); }
268 #define NULLIFY_NEXT_INSTRUCTION() NIA = nullify_next_insn32 (SD_)
271 /* State of the simulator */
273 unsigned int dsstate
;
274 #define STATE (MIPS_SIM_CPU (CPU)->state)
275 #define DSSTATE (MIPS_SIM_CPU (CPU)->dsstate)
277 /* Flags in the "state" variable: */
278 #define simHALTEX (1 << 2) /* 0 = run; 1 = halt on exception */
279 #define simHALTIN (1 << 3) /* 0 = run; 1 = halt on interrupt */
280 #define simTRACE (1 << 8) /* 1 = trace address activity */
281 #define simPCOC0 (1 << 17) /* COC[1] from current */
282 #define simPCOC1 (1 << 18) /* COC[1] from previous */
283 #define simDELAYSLOT (1 << 24) /* 1 = delay slot entry exists */
284 #define simSKIPNEXT (1 << 25) /* 0 = do nothing; 1 = skip instruction */
285 #define simSIGINT (1 << 28) /* 0 = do nothing; 1 = SIGINT has occured */
286 #define simJALDELAYSLOT (1 << 29) /* 1 = in jal delay slot */
287 #define simFORBIDDENSLOT (1 << 30) /* 1 = n forbidden slot */
289 #ifndef ENGINE_ISSUE_PREFIX_HOOK
290 #define ENGINE_ISSUE_PREFIX_HOOK() \
292 /* Perform any pending writes */ \
294 /* Set previous flag, depending on current: */ \
295 if (STATE & simPCOC0) \
298 STATE &= ~simPCOC1; \
299 /* and update the current value: */ \
303 STATE &= ~simPCOC0; \
305 #endif /* ENGINE_ISSUE_PREFIX_HOOK */
308 /* This is nasty, since we have to rely on matching the register
309 numbers used by GDB. Unfortunately, depending on the MIPS target
310 GDB uses different register numbers. We cannot just include the
311 relevant "gdb/tm.h" link, since GDB may not be configured before
312 the sim world, and also the GDB header file requires too much other
316 #define LAST_EMBED_REGNUM (96)
317 #define NUM_REGS (LAST_EMBED_REGNUM + 1)
319 #define FP0_REGNUM 38 /* Floating point register 0 (single float) */
320 #define FCRCS_REGNUM 70 /* FP control/status */
321 #define FCRIR_REGNUM 71 /* FP implementation/revision */
325 /* To keep this default simulator simple, and fast, we use a direct
326 vector of registers. The internal simulator engine then uses
327 manifests to access the correct slot. */
329 unsigned_word registers
[LAST_EMBED_REGNUM
+ 1];
331 int register_widths
[NUM_REGS
];
332 #define REGISTERS (MIPS_SIM_CPU (CPU)->registers)
334 #define GPR (®ISTERS[0])
335 #define GPR_SET(N,VAL) (REGISTERS[(N)] = (VAL))
337 #define LO (REGISTERS[33])
338 #define HI (REGISTERS[34])
340 #define PC (REGISTERS[PCIDX])
341 #define CAUSE (REGISTERS[36])
343 #define SR (REGISTERS[SRIDX]) /* CPU status register */
345 #define FCR0 (REGISTERS[FCR0IDX]) /* really a 32bit register */
346 #define FCR31IDX (70)
347 #define FCR31 (REGISTERS[FCR31IDX]) /* really a 32bit register */
349 #define Debug (REGISTERS[86])
350 #define DEPC (REGISTERS[87])
351 #define EPC (REGISTERS[88])
352 #define ACX (REGISTERS[89])
354 #define AC0LOIDX (33) /* Must be the same register as LO */
355 #define AC0HIIDX (34) /* Must be the same register as HI */
356 #define AC1LOIDX (90)
357 #define AC1HIIDX (91)
358 #define AC2LOIDX (92)
359 #define AC2HIIDX (93)
360 #define AC3LOIDX (94)
361 #define AC3HIIDX (95)
363 #define DSPLO(N) (REGISTERS[DSPLO_REGNUM[N]])
364 #define DSPHI(N) (REGISTERS[DSPHI_REGNUM[N]])
366 #define DSPCRIDX (96) /* DSP control register */
367 #define DSPCR (REGISTERS[DSPCRIDX])
369 #define DSPCR_POS_SHIFT (0)
370 #define DSPCR_POS_MASK (0x3f)
371 #define DSPCR_POS_SMASK (DSPCR_POS_MASK << DSPCR_POS_SHIFT)
373 #define DSPCR_SCOUNT_SHIFT (7)
374 #define DSPCR_SCOUNT_MASK (0x3f)
375 #define DSPCR_SCOUNT_SMASK (DSPCR_SCOUNT_MASK << DSPCR_SCOUNT_SHIFT)
377 #define DSPCR_CARRY_SHIFT (13)
378 #define DSPCR_CARRY_MASK (1)
379 #define DSPCR_CARRY_SMASK (DSPCR_CARRY_MASK << DSPCR_CARRY_SHIFT)
380 #define DSPCR_CARRY (1 << DSPCR_CARRY_SHIFT)
382 #define DSPCR_EFI_SHIFT (14)
383 #define DSPCR_EFI_MASK (1)
384 #define DSPCR_EFI_SMASK (DSPCR_EFI_MASK << DSPCR_EFI_SHIFT)
385 #define DSPCR_EFI (1 << DSPCR_EFI_MASK)
387 #define DSPCR_OUFLAG_SHIFT (16)
388 #define DSPCR_OUFLAG_MASK (0xff)
389 #define DSPCR_OUFLAG_SMASK (DSPCR_OUFLAG_MASK << DSPCR_OUFLAG_SHIFT)
390 #define DSPCR_OUFLAG4 (1 << (DSPCR_OUFLAG_SHIFT + 4))
391 #define DSPCR_OUFLAG5 (1 << (DSPCR_OUFLAG_SHIFT + 5))
392 #define DSPCR_OUFLAG6 (1 << (DSPCR_OUFLAG_SHIFT + 6))
393 #define DSPCR_OUFLAG7 (1 << (DSPCR_OUFLAG_SHIFT + 7))
395 #define DSPCR_CCOND_SHIFT (24)
396 #define DSPCR_CCOND_MASK (0xf)
397 #define DSPCR_CCOND_SMASK (DSPCR_CCOND_MASK << DSPCR_CCOND_SHIFT)
399 /* All internal state modified by signal_exception() that may need to be
400 rolled back for passing moment-of-exception image back to gdb. */
401 unsigned_word exc_trigger_registers
[LAST_EMBED_REGNUM
+ 1];
402 unsigned_word exc_suspend_registers
[LAST_EMBED_REGNUM
+ 1];
405 #define SIM_CPU_EXCEPTION_TRIGGER(SD,CPU,CIA) mips_cpu_exception_trigger(SD,CPU,CIA)
406 #define SIM_CPU_EXCEPTION_SUSPEND(SD,CPU,EXC) mips_cpu_exception_suspend(SD,CPU,EXC)
407 #define SIM_CPU_EXCEPTION_RESUME(SD,CPU,EXC) mips_cpu_exception_resume(SD,CPU,EXC)
409 unsigned_word c0_config_reg
;
410 #define C0_CONFIG (MIPS_SIM_CPU (CPU)->c0_config_reg)
412 /* The following are pseudonyms for standard registers */
413 #define ZERO (REGISTERS[0])
414 #define V0 (REGISTERS[2])
415 #define A0 (REGISTERS[4])
416 #define A1 (REGISTERS[5])
417 #define A2 (REGISTERS[6])
418 #define A3 (REGISTERS[7])
420 #define T8 (REGISTERS[T8IDX])
422 #define SP (REGISTERS[SPIDX])
424 #define RA (REGISTERS[RAIDX])
426 /* While space is allocated in the main registers arrray for some of
427 the COP0 registers, that space isn't sufficient. Unknown COP0
428 registers overflow into the array below */
430 #define NR_COP0_GPR 32
431 unsigned_word cop0_gpr
[NR_COP0_GPR
];
432 #define COP0_GPR (MIPS_SIM_CPU (CPU)->cop0_gpr)
433 #define COP0_BADVADDR (COP0_GPR[8])
435 /* While space is allocated for the floating point registers in the
436 main registers array, they are stored separatly. This is because
437 their size may not necessarily match the size of either the
438 general-purpose or system specific registers. */
440 #define FGR_BASE FP0_REGNUM
442 #define FGR (MIPS_SIM_CPU (CPU)->fgr)
444 /* Keep the current format state for each register: */
445 FP_formats fpr_state
[32];
446 #define FPR_STATE (MIPS_SIM_CPU (CPU)->fpr_state)
448 pending_write_queue pending
;
450 /* The MDMX accumulator (used only for MDMX ASE). */
451 MDMX_accumulator acc
;
452 #define ACC (MIPS_SIM_CPU (CPU)->acc)
454 /* LLBIT = Load-Linked bit. A bit of "virtual" state used by atomic
455 read-write instructions. It is set when a linked load occurs. It
456 is tested and cleared by the conditional store. It is cleared
457 (during other CPU operations) when a store to the location would
458 no longer be atomic. In particular, it is cleared by exception
459 return instructions. */
461 #define LLBIT (MIPS_SIM_CPU (CPU)->llbit)
464 /* The HIHISTORY and LOHISTORY timestamps are used to ensure that
465 corruptions caused by using the HI or LO register too close to a
466 following operation is spotted. See mips.igen for more details. */
468 hilo_history hi_history
;
469 #define HIHISTORY (&MIPS_SIM_CPU (CPU)->hi_history)
470 hilo_history lo_history
;
471 #define LOHISTORY (&MIPS_SIM_CPU (CPU)->lo_history)
473 #define MIPS_SIM_CPU(cpu) ((struct mips_sim_cpu *) CPU_ARCH_DATA (cpu))
475 extern void mips_sim_close (SIM_DESC sd
, int quitting
);
476 #define SIM_CLOSE_HOOK(...) mips_sim_close (__VA_ARGS__)
478 /* FIXME: At present much of the simulator is still static */
479 struct mips_sim_state
{
480 /* microMIPS ISA mode. */
483 #define MIPS_SIM_STATE(sd) ((struct mips_sim_state *) STATE_ARCH_DATA (sd))
486 /* Status information: */
488 /* TODO : these should be the bitmasks for these bits within the
489 status register. At the moment the following are VR4300
491 #define status_KSU_mask (0x18) /* mask for KSU bits */
492 #define status_KSU_shift (3) /* shift for field */
493 #define ksu_kernel (0x0)
494 #define ksu_supervisor (0x1)
495 #define ksu_user (0x2)
496 #define ksu_unknown (0x3)
498 #define SR_KSU ((SR & status_KSU_mask) >> status_KSU_shift)
500 #define status_IE (1 << 0) /* Interrupt enable */
501 #define status_EIE (1 << 16) /* Enable Interrupt Enable */
502 #define status_EXL (1 << 1) /* Exception level */
503 #define status_RE (1 << 25) /* Reverse Endian in user mode */
504 #define status_FR (1 << 26) /* enables MIPS III additional FP registers */
505 #define status_SR (1 << 20) /* soft reset or NMI */
506 #define status_BEV (1 << 22) /* Location of general exception vectors */
507 #define status_TS (1 << 21) /* TLB shutdown has occurred */
508 #define status_ERL (1 << 2) /* Error level */
509 #define status_IM7 (1 << 15) /* Timer Interrupt Mask */
510 #define status_RP (1 << 27) /* Reduced Power mode */
512 /* Specializations for TX39 family */
513 #define status_IEc (1 << 0) /* Interrupt enable (current) */
514 #define status_KUc (1 << 1) /* Kernel/User mode */
515 #define status_IEp (1 << 2) /* Interrupt enable (previous) */
516 #define status_KUp (1 << 3) /* Kernel/User mode */
517 #define status_IEo (1 << 4) /* Interrupt enable (old) */
518 #define status_KUo (1 << 5) /* Kernel/User mode */
519 #define status_IM_mask (0xff) /* Interrupt mask */
520 #define status_IM_shift (8)
521 #define status_NMI (1 << 20) /* NMI */
522 #define status_NMI (1 << 20) /* NMI */
524 /* Status bits used by MIPS32/MIPS64. */
525 #define status_UX (1 << 5) /* 64-bit user addrs */
526 #define status_SX (1 << 6) /* 64-bit supervisor addrs */
527 #define status_KX (1 << 7) /* 64-bit kernel addrs */
528 #define status_TS (1 << 21) /* TLB shutdown has occurred */
529 #define status_PX (1 << 23) /* Enable 64 bit operations */
530 #define status_MX (1 << 24) /* Enable MDMX resources */
531 #define status_CU0 (1 << 28) /* Coprocessor 0 usable */
532 #define status_CU1 (1 << 29) /* Coprocessor 1 usable */
533 #define status_CU2 (1 << 30) /* Coprocessor 2 usable */
534 #define status_CU3 (1 << 31) /* Coprocessor 3 usable */
535 /* Bits reserved for implementations: */
536 #define status_SBX (1 << 16) /* Enable SiByte SB-1 extensions. */
538 /* From R6 onwards, some instructions (e.g. ADDIUPC) change behaviour based
539 * on the Status.UX bits to either sign extend, or act as full 64 bit. */
540 #define status_optional_EXTEND32(x) ((SR & status_UX) ? x : EXTEND32(x))
542 #define cause_BD ((unsigned)1 << 31) /* L1 Exception in branch delay slot */
543 #define cause_BD2 (1 << 30) /* L2 Exception in branch delay slot */
544 #define cause_CE_mask 0x30000000 /* Coprocessor exception */
545 #define cause_CE_shift 28
546 #define cause_EXC2_mask 0x00070000
547 #define cause_EXC2_shift 16
548 #define cause_IP7 (1 << 15) /* Interrupt pending */
549 #define cause_SIOP (1 << 12) /* SIO pending */
550 #define cause_IP3 (1 << 11) /* Int 0 pending */
551 #define cause_IP2 (1 << 10) /* Int 1 pending */
553 #define cause_EXC_mask (0x1c) /* Exception code */
554 #define cause_EXC_shift (2)
556 #define cause_SW0 (1 << 8) /* Software interrupt 0 */
557 #define cause_SW1 (1 << 9) /* Software interrupt 1 */
558 #define cause_IP_mask (0x3f) /* Interrupt pending field */
559 #define cause_IP_shift (10)
561 #define cause_set_EXC(x) CAUSE = (CAUSE & ~cause_EXC_mask) | ((x << cause_EXC_shift) & cause_EXC_mask)
562 #define cause_set_EXC2(x) CAUSE = (CAUSE & ~cause_EXC2_mask) | ((x << cause_EXC2_shift) & cause_EXC2_mask)
565 /* NOTE: We keep the following status flags as bit values (1 for true,
566 0 for false). This allows them to be used in binary boolean
567 operations without worrying about what exactly the non-zero true
571 #ifdef SUBTARGET_R3900
572 #define UserMode ((SR & status_KUc) ? 1 : 0)
574 #define UserMode ((((SR & status_KSU_mask) >> status_KSU_shift) == ksu_user) ? 1 : 0)
575 #endif /* SUBTARGET_R3900 */
578 /* Hardware configuration. Affects endianness of LoadMemory and
579 StoreMemory and the endianness of Kernel and Supervisor mode
580 execution. The value is 0 for little-endian; 1 for big-endian. */
581 #define BigEndianMem (CURRENT_TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
582 /*(state & simBE) ? 1 : 0)*/
585 /* This mode is selected if in User mode with the RE bit being set in
586 SR (Status Register). It reverses the endianness of load and store
588 #define ReverseEndian (((SR & status_RE) && UserMode) ? 1 : 0)
591 /* The endianness for load and store instructions (0=little;1=big). In
592 User mode this endianness may be switched by setting the state_RE
593 bit in the SR register. Thus, BigEndianCPU may be computed as
594 (BigEndianMem EOR ReverseEndian). */
595 #define BigEndianCPU (BigEndianMem ^ ReverseEndian) /* Already bits */
601 /* NOTE: These numbers depend on the processor architecture being
603 enum ExceptionCause
{
610 InstructionFetch
= 6,
614 ReservedInstruction
= 10,
615 CoProcessorUnusable
= 11,
616 IntegerOverflow
= 12, /* Arithmetic overflow (IDT monitor raises SIGFPE) */
619 DebugBreakPoint
= 16, /* Impl. dep. in MIPS32/MIPS64. */
624 NMIReset
= 31, /* Reserved in MIPS32/MIPS64. */
627 /* The following exception code is actually private to the simulator
628 world. It is *NOT* a processor feature, and is used to signal
629 run-time errors in the simulator. */
630 SimulatorFault
= 0xFFFFFFFF
633 #define TLB_REFILL (0)
634 #define TLB_INVALID (1)
637 /* The following break instructions are reserved for use by the
638 simulator. The first is used to halt the simulation. The second
639 is used by gdb for break-points. NOTE: Care must be taken, since
640 this value may be used in later revisions of the MIPS ISA. */
641 #define HALT_INSTRUCTION_MASK (0x03FFFFC0)
643 #define HALT_INSTRUCTION (0x03ff000d)
644 #define HALT_INSTRUCTION2 (0x0000ffcd)
647 #define BREAKPOINT_INSTRUCTION (0x0005000d)
648 #define BREAKPOINT_INSTRUCTION2 (0x0000014d)
652 void interrupt_event (SIM_DESC sd
, void *data
);
654 void signal_exception (SIM_DESC sd
, sim_cpu
*cpu
, address_word cia
, int exception
, ...);
655 #define SignalException(exc,instruction) signal_exception (SD, CPU, cia, (exc), (instruction))
656 #define SignalExceptionInterrupt(level) signal_exception (SD, CPU, cia, Interrupt, level)
657 #define SignalExceptionInstructionFetch() signal_exception (SD, CPU, cia, InstructionFetch)
658 #define SignalExceptionAddressStore() signal_exception (SD, CPU, cia, AddressStore)
659 #define SignalExceptionAddressLoad() signal_exception (SD, CPU, cia, AddressLoad)
660 #define SignalExceptionDataReference() signal_exception (SD, CPU, cia, DataReference)
661 #define SignalExceptionSimulatorFault(buf) signal_exception (SD, CPU, cia, SimulatorFault, buf)
662 #define SignalExceptionFPE() signal_exception (SD, CPU, cia, FPE)
663 #define SignalExceptionIntegerOverflow() signal_exception (SD, CPU, cia, IntegerOverflow)
664 #define SignalExceptionCoProcessorUnusable(cop) signal_exception (SD, CPU, cia, CoProcessorUnusable)
665 #define SignalExceptionNMIReset() signal_exception (SD, CPU, cia, NMIReset)
666 #define SignalExceptionTLBRefillStore() signal_exception (SD, CPU, cia, TLBStore, TLB_REFILL)
667 #define SignalExceptionTLBRefillLoad() signal_exception (SD, CPU, cia, TLBLoad, TLB_REFILL)
668 #define SignalExceptionTLBInvalidStore() signal_exception (SD, CPU, cia, TLBStore, TLB_INVALID)
669 #define SignalExceptionTLBInvalidLoad() signal_exception (SD, CPU, cia, TLBLoad, TLB_INVALID)
670 #define SignalExceptionTLBModification() signal_exception (SD, CPU, cia, TLBModification)
671 #define SignalExceptionMDMX() signal_exception (SD, CPU, cia, MDMX)
672 #define SignalExceptionWatch() signal_exception (SD, CPU, cia, Watch)
673 #define SignalExceptionMCheck() signal_exception (SD, CPU, cia, MCheck)
674 #define SignalExceptionCacheErr() signal_exception (SD, CPU, cia, CacheErr)
676 /* Co-processor accesses */
678 /* XXX FIXME: For now, assume that FPU (cp1) is always usable. */
679 #define COP_Usable(coproc_num) (coproc_num == 1)
681 void cop_lw (SIM_DESC sd
, sim_cpu
*cpu
, address_word cia
, int coproc_num
, int coproc_reg
, unsigned int memword
);
682 void cop_ld (SIM_DESC sd
, sim_cpu
*cpu
, address_word cia
, int coproc_num
, int coproc_reg
, uword64 memword
);
683 unsigned int cop_sw (SIM_DESC sd
, sim_cpu
*cpu
, address_word cia
, int coproc_num
, int coproc_reg
);
684 uword64
cop_sd (SIM_DESC sd
, sim_cpu
*cpu
, address_word cia
, int coproc_num
, int coproc_reg
);
686 #define COP_LW(coproc_num,coproc_reg,memword) \
687 cop_lw (SD, CPU, cia, coproc_num, coproc_reg, memword)
688 #define COP_LD(coproc_num,coproc_reg,memword) \
689 cop_ld (SD, CPU, cia, coproc_num, coproc_reg, memword)
690 #define COP_SW(coproc_num,coproc_reg) \
691 cop_sw (SD, CPU, cia, coproc_num, coproc_reg)
692 #define COP_SD(coproc_num,coproc_reg) \
693 cop_sd (SD, CPU, cia, coproc_num, coproc_reg)
696 void decode_coproc (SIM_DESC sd
, sim_cpu
*cpu
, address_word cia
,
697 unsigned int instruction
, int coprocnum
, CP0_operation op
,
698 int rt
, int rd
, int sel
);
699 #define DecodeCoproc(instruction,coprocnum,op,rt,rd,sel) \
700 decode_coproc (SD, CPU, cia, (instruction), (coprocnum), (op), \
703 int sim_monitor (SIM_DESC sd
, sim_cpu
*cpu
, address_word cia
, unsigned int arg
);
707 uint64_t value_fpr (SIM_STATE
, int fpr
, FP_formats
);
708 #define ValueFPR(FPR,FMT) value_fpr (SIM_ARGS, (FPR), (FMT))
709 void store_fpr (SIM_STATE
, int fpr
, FP_formats fmt
, uint64_t value
);
710 #define StoreFPR(FPR,FMT,VALUE) store_fpr (SIM_ARGS, (FPR), (FMT), (VALUE))
711 uint64_t ps_lower (SIM_STATE
, uint64_t op
);
712 #define PSLower(op) ps_lower (SIM_ARGS, op)
713 uint64_t ps_upper (SIM_STATE
, uint64_t op
);
714 #define PSUpper(op) ps_upper (SIM_ARGS, op)
715 uint64_t pack_ps (SIM_STATE
, uint64_t op1
, uint64_t op2
, FP_formats from
);
716 #define PackPS(op1,op2) pack_ps (SIM_ARGS, op1, op2, fmt_single)
720 unsigned_word
value_fcr (SIM_STATE
, int fcr
);
721 #define ValueFCR(FCR) value_fcr (SIM_ARGS, (FCR))
722 void store_fcr (SIM_STATE
, int fcr
, unsigned_word value
);
723 #define StoreFCR(FCR,VALUE) store_fcr (SIM_ARGS, (FCR), (VALUE))
724 void test_fcsr (SIM_STATE
);
725 #define TestFCSR() test_fcsr (SIM_ARGS)
728 /* FPU operations. */
730 #define FP_R6CMP_AF 0x0
731 #define FP_R6CMP_EQ 0x2
732 #define FP_R6CMP_LE 0x6
733 #define FP_R6CMP_LT 0x4
734 #define FP_R6CMP_NE 0x13
735 #define FP_R6CMP_OR 0x11
736 #define FP_R6CMP_UEQ 0x3
737 #define FP_R6CMP_ULE 0x7
738 #define FP_R6CMP_ULT 0x5
739 #define FP_R6CMP_UN 0x1
740 #define FP_R6CMP_UNE 0x12
743 #define FP_R6CMP_SAF 0x8
744 #define FP_R6CMP_SEQ 0xa
745 #define FP_R6CMP_SLE 0xe
746 #define FP_R6CMP_SLT 0xc
747 #define FP_R6CMP_SNE 0x1b
748 #define FP_R6CMP_SOR 0x19
749 #define FP_R6CMP_SUEQ 0xb
750 #define FP_R6CMP_SULE 0xf
751 #define FP_R6CMP_SULT 0xd
752 #define FP_R6CMP_SUN 0x9
753 #define FP_R6CMP_SUNE 0x1a
756 #define FP_R6CLASS_SNAN (1<<0)
757 #define FP_R6CLASS_QNAN (1<<1)
758 #define FP_R6CLASS_NEGINF (1<<2)
759 #define FP_R6CLASS_NEGNORM (1<<3)
760 #define FP_R6CLASS_NEGSUB (1<<4)
761 #define FP_R6CLASS_NEGZERO (1<<5)
762 #define FP_R6CLASS_POSINF (1<<6)
763 #define FP_R6CLASS_POSNORM (1<<7)
764 #define FP_R6CLASS_POSSUB (1<<8)
765 #define FP_R6CLASS_POSZERO (1<<9)
767 void fp_cmp (SIM_STATE
, uint64_t op1
, uint64_t op2
, FP_formats fmt
,
768 int abs
, int cond
, int cc
);
769 #define Compare(op1,op2,fmt,cond,cc) \
770 fp_cmp(SIM_ARGS, op1, op2, fmt, 0, cond, cc)
771 uint64_t fp_r6_cmp (SIM_STATE
, uint64_t op1
, uint64_t op2
,
772 FP_formats fmt
, int cond
);
773 #define R6Compare(op1,op2,fmt,cond) fp_r6_cmp(SIM_ARGS, op1, op2, fmt, cond)
774 uint64_t fp_classify(SIM_STATE
, uint64_t op
, FP_formats fmt
);
775 #define Classify(op, fmt) fp_classify(SIM_ARGS, op, fmt)
776 int fp_rint(SIM_STATE
, uint64_t op
, uint64_t *ans
, FP_formats fmt
);
777 #define RoundToIntegralExact(op, ans, fmt) fp_rint(SIM_ARGS, op, ans, fmt)
778 uint64_t fp_abs (SIM_STATE
, uint64_t op
, FP_formats fmt
);
779 #define AbsoluteValue(op,fmt) fp_abs(SIM_ARGS, op, fmt)
780 uint64_t fp_neg (SIM_STATE
, uint64_t op
, FP_formats fmt
);
781 #define Negate(op,fmt) fp_neg(SIM_ARGS, op, fmt)
782 uint64_t fp_add (SIM_STATE
, uint64_t op1
, uint64_t op2
, FP_formats fmt
);
783 #define Add(op1,op2,fmt) fp_add(SIM_ARGS, op1, op2, fmt)
784 uint64_t fp_sub (SIM_STATE
, uint64_t op1
, uint64_t op2
, FP_formats fmt
);
785 #define Sub(op1,op2,fmt) fp_sub(SIM_ARGS, op1, op2, fmt)
786 uint64_t fp_mul (SIM_STATE
, uint64_t op1
, uint64_t op2
, FP_formats fmt
);
787 #define Multiply(op1,op2,fmt) fp_mul(SIM_ARGS, op1, op2, fmt)
788 uint64_t fp_div (SIM_STATE
, uint64_t op1
, uint64_t op2
, FP_formats fmt
);
789 #define Divide(op1,op2,fmt) fp_div(SIM_ARGS, op1, op2, fmt)
790 uint64_t fp_min (SIM_STATE
, uint64_t op1
, uint64_t op2
, FP_formats fmt
);
791 #define Min(op1,op2,fmt) fp_min(SIM_ARGS, op1, op2, fmt)
792 uint64_t fp_max (SIM_STATE
, uint64_t op1
, uint64_t op2
, FP_formats fmt
);
793 #define Max(op1,op2,fmt) fp_max(SIM_ARGS, op1, op2, fmt)
794 uint64_t fp_mina (SIM_STATE
, uint64_t op1
, uint64_t op2
, FP_formats fmt
);
795 #define MinA(op1,op2,fmt) fp_mina(SIM_ARGS, op1, op2, fmt)
796 uint64_t fp_maxa (SIM_STATE
, uint64_t op1
, uint64_t op2
, FP_formats fmt
);
797 #define MaxA(op1,op2,fmt) fp_maxa(SIM_ARGS, op1, op2, fmt)
798 uint64_t fp_recip (SIM_STATE
, uint64_t op
, FP_formats fmt
);
799 #define Recip(op,fmt) fp_recip(SIM_ARGS, op, fmt)
800 uint64_t fp_sqrt (SIM_STATE
, uint64_t op
, FP_formats fmt
);
801 #define SquareRoot(op,fmt) fp_sqrt(SIM_ARGS, op, fmt)
802 uint64_t fp_rsqrt (SIM_STATE
, uint64_t op
, FP_formats fmt
);
803 #define RSquareRoot(op,fmt) fp_rsqrt(SIM_ARGS, op, fmt)
804 uint64_t fp_madd (SIM_STATE
, uint64_t op1
, uint64_t op2
,
805 uint64_t op3
, FP_formats fmt
);
806 #define FusedMultiplyAdd(op1,op2,op3,fmt) fp_fmadd(SIM_ARGS, op1, op2, op3, fmt)
807 uint64_t fp_fmadd (SIM_STATE
, uint64_t op1
, uint64_t op2
,
808 uint64_t op3
, FP_formats fmt
);
809 #define FusedMultiplySub(op1,op2,op3,fmt) fp_fmsub(SIM_ARGS, op1, op2, op3, fmt)
810 uint64_t fp_fmsub (SIM_STATE
, uint64_t op1
, uint64_t op2
,
811 uint64_t op3
, FP_formats fmt
);
812 #define MultiplyAdd(op1,op2,op3,fmt) fp_madd(SIM_ARGS, op1, op2, op3, fmt)
813 uint64_t fp_msub (SIM_STATE
, uint64_t op1
, uint64_t op2
,
814 uint64_t op3
, FP_formats fmt
);
815 #define MultiplySub(op1,op2,op3,fmt) fp_msub(SIM_ARGS, op1, op2, op3, fmt)
816 uint64_t fp_nmadd (SIM_STATE
, uint64_t op1
, uint64_t op2
,
817 uint64_t op3
, FP_formats fmt
);
818 #define NegMultiplyAdd(op1,op2,op3,fmt) fp_nmadd(SIM_ARGS, op1, op2, op3, fmt)
819 uint64_t fp_nmsub (SIM_STATE
, uint64_t op1
, uint64_t op2
,
820 uint64_t op3
, FP_formats fmt
);
821 #define NegMultiplySub(op1,op2,op3,fmt) fp_nmsub(SIM_ARGS, op1, op2, op3, fmt)
822 uint64_t convert (SIM_STATE
, int rm
, uint64_t op
, FP_formats from
, FP_formats to
);
823 #define Convert(rm,op,from,to) convert (SIM_ARGS, rm, op, from, to)
824 uint64_t convert_ps (SIM_STATE
, int rm
, uint64_t op
, FP_formats from
,
826 #define ConvertPS(rm,op,from,to) convert_ps (SIM_ARGS, rm, op, from, to)
829 /* MIPS-3D ASE operations. */
830 #define CompareAbs(op1,op2,fmt,cond,cc) \
831 fp_cmp(SIM_ARGS, op1, op2, fmt, 1, cond, cc)
832 uint64_t fp_add_r (SIM_STATE
, uint64_t op1
, uint64_t op2
, FP_formats fmt
);
833 #define AddR(op1,op2,fmt) fp_add_r(SIM_ARGS, op1, op2, fmt)
834 uint64_t fp_mul_r (SIM_STATE
, uint64_t op1
, uint64_t op2
, FP_formats fmt
);
835 #define MultiplyR(op1,op2,fmt) fp_mul_r(SIM_ARGS, op1, op2, fmt)
836 uint64_t fp_recip1 (SIM_STATE
, uint64_t op
, FP_formats fmt
);
837 #define Recip1(op,fmt) fp_recip1(SIM_ARGS, op, fmt)
838 uint64_t fp_recip2 (SIM_STATE
, uint64_t op1
, uint64_t op2
, FP_formats fmt
);
839 #define Recip2(op1,op2,fmt) fp_recip2(SIM_ARGS, op1, op2, fmt)
840 uint64_t fp_rsqrt1 (SIM_STATE
, uint64_t op
, FP_formats fmt
);
841 #define RSquareRoot1(op,fmt) fp_rsqrt1(SIM_ARGS, op, fmt)
842 uint64_t fp_rsqrt2 (SIM_STATE
, uint64_t op1
, uint64_t op2
, FP_formats fmt
);
843 #define RSquareRoot2(op1,op2,fmt) fp_rsqrt2(SIM_ARGS, op1, op2, fmt)
848 typedef unsigned int MX_fmtsel
; /* MDMX format select field (5 bits). */
849 #define ob_fmtsel(sel) (((sel)<<1)|0x0)
850 #define qh_fmtsel(sel) (((sel)<<2)|0x1)
852 #define fmt_mdmx fmt_uninterpreted
854 #define MX_VECT_AND (0)
855 #define MX_VECT_NOR (1)
856 #define MX_VECT_OR (2)
857 #define MX_VECT_XOR (3)
858 #define MX_VECT_SLL (4)
859 #define MX_VECT_SRL (5)
860 #define MX_VECT_ADD (6)
861 #define MX_VECT_SUB (7)
862 #define MX_VECT_MIN (8)
863 #define MX_VECT_MAX (9)
864 #define MX_VECT_MUL (10)
865 #define MX_VECT_MSGN (11)
866 #define MX_VECT_SRA (12)
867 #define MX_VECT_ABSD (13) /* SB-1 only. */
868 #define MX_VECT_AVG (14) /* SB-1 only. */
870 uint64_t mdmx_cpr_op (SIM_STATE
, int op
, uint64_t op1
, int vt
, MX_fmtsel fmtsel
);
871 #define MX_Add(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_ADD, op1, vt, fmtsel)
872 #define MX_And(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_AND, op1, vt, fmtsel)
873 #define MX_Max(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_MAX, op1, vt, fmtsel)
874 #define MX_Min(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_MIN, op1, vt, fmtsel)
875 #define MX_Msgn(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_MSGN, op1, vt, fmtsel)
876 #define MX_Mul(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_MUL, op1, vt, fmtsel)
877 #define MX_Nor(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_NOR, op1, vt, fmtsel)
878 #define MX_Or(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_OR, op1, vt, fmtsel)
879 #define MX_ShiftLeftLogical(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_SLL, op1, vt, fmtsel)
880 #define MX_ShiftRightArith(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_SRA, op1, vt, fmtsel)
881 #define MX_ShiftRightLogical(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_SRL, op1, vt, fmtsel)
882 #define MX_Sub(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_SUB, op1, vt, fmtsel)
883 #define MX_Xor(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_XOR, op1, vt, fmtsel)
884 #define MX_AbsDiff(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_ABSD, op1, vt, fmtsel)
885 #define MX_Avg(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_AVG, op1, vt, fmtsel)
890 void mdmx_cc_op (SIM_STATE
, int cond
, uint64_t op1
, int vt
, MX_fmtsel fmtsel
);
891 #define MX_Comp(op1,cond,vt,fmtsel) mdmx_cc_op(SIM_ARGS, cond, op1, vt, fmtsel)
893 uint64_t mdmx_pick_op (SIM_STATE
, int tf
, uint64_t op1
, int vt
, MX_fmtsel fmtsel
);
894 #define MX_Pick(tf,op1,vt,fmtsel) mdmx_pick_op(SIM_ARGS, tf, op1, vt, fmtsel)
896 #define MX_VECT_ADDA (0)
897 #define MX_VECT_ADDL (1)
898 #define MX_VECT_MULA (2)
899 #define MX_VECT_MULL (3)
900 #define MX_VECT_MULS (4)
901 #define MX_VECT_MULSL (5)
902 #define MX_VECT_SUBA (6)
903 #define MX_VECT_SUBL (7)
904 #define MX_VECT_ABSDA (8) /* SB-1 only. */
906 void mdmx_acc_op (SIM_STATE
, int op
, uint64_t op1
, int vt
, MX_fmtsel fmtsel
);
907 #define MX_AddA(op1,vt,fmtsel) mdmx_acc_op(SIM_ARGS, MX_VECT_ADDA, op1, vt, fmtsel)
908 #define MX_AddL(op1,vt,fmtsel) mdmx_acc_op(SIM_ARGS, MX_VECT_ADDL, op1, vt, fmtsel)
909 #define MX_MulA(op1,vt,fmtsel) mdmx_acc_op(SIM_ARGS, MX_VECT_MULA, op1, vt, fmtsel)
910 #define MX_MulL(op1,vt,fmtsel) mdmx_acc_op(SIM_ARGS, MX_VECT_MULL, op1, vt, fmtsel)
911 #define MX_MulS(op1,vt,fmtsel) mdmx_acc_op(SIM_ARGS, MX_VECT_MULS, op1, vt, fmtsel)
912 #define MX_MulSL(op1,vt,fmtsel) mdmx_acc_op(SIM_ARGS, MX_VECT_MULSL, op1, vt, fmtsel)
913 #define MX_SubA(op1,vt,fmtsel) mdmx_acc_op(SIM_ARGS, MX_VECT_SUBA, op1, vt, fmtsel)
914 #define MX_SubL(op1,vt,fmtsel) mdmx_acc_op(SIM_ARGS, MX_VECT_SUBL, op1, vt, fmtsel)
915 #define MX_AbsDiffC(op1,vt,fmtsel) mdmx_acc_op(SIM_ARGS, MX_VECT_ABSDA, op1, vt, fmtsel)
917 #define MX_FMT_OB (0)
918 #define MX_FMT_QH (1)
920 /* The following codes chosen to indicate the units of shift. */
925 uint64_t mdmx_rac_op (SIM_STATE
, int, int);
926 #define MX_RAC(op,fmt) mdmx_rac_op(SIM_ARGS, op, fmt)
928 void mdmx_wacl (SIM_STATE
, int, uint64_t, uint64_t);
929 #define MX_WACL(fmt,vs,vt) mdmx_wacl(SIM_ARGS, fmt, vs, vt)
930 void mdmx_wach (SIM_STATE
, int, uint64_t);
931 #define MX_WACH(fmt,vs) mdmx_wach(SIM_ARGS, fmt, vs)
933 #define MX_RND_AS (0)
934 #define MX_RND_AU (1)
935 #define MX_RND_ES (2)
936 #define MX_RND_EU (3)
937 #define MX_RND_ZS (4)
938 #define MX_RND_ZU (5)
940 uint64_t mdmx_round_op (SIM_STATE
, int, int, MX_fmtsel
);
941 #define MX_RNAS(vt,fmt) mdmx_round_op(SIM_ARGS, MX_RND_AS, vt, fmt)
942 #define MX_RNAU(vt,fmt) mdmx_round_op(SIM_ARGS, MX_RND_AU, vt, fmt)
943 #define MX_RNES(vt,fmt) mdmx_round_op(SIM_ARGS, MX_RND_ES, vt, fmt)
944 #define MX_RNEU(vt,fmt) mdmx_round_op(SIM_ARGS, MX_RND_EU, vt, fmt)
945 #define MX_RZS(vt,fmt) mdmx_round_op(SIM_ARGS, MX_RND_ZS, vt, fmt)
946 #define MX_RZU(vt,fmt) mdmx_round_op(SIM_ARGS, MX_RND_ZU, vt, fmt)
948 uint64_t mdmx_shuffle (SIM_STATE
, int, uint64_t, uint64_t);
949 #define MX_SHFL(shop,op1,op2) mdmx_shuffle(SIM_ARGS, shop, op1, op2)
953 /* Memory accesses */
955 /* The following are generic to all versions of the MIPS architecture
958 #define isINSTRUCTION (1 == 0) /* FALSE */
959 #define isDATA (1 == 1) /* TRUE */
960 #define isLOAD (1 == 0) /* FALSE */
961 #define isSTORE (1 == 1) /* TRUE */
962 #define isREAL (1 == 0) /* FALSE */
963 #define isRAW (1 == 1) /* TRUE */
964 /* The parameter HOST (isTARGET / isHOST) is ignored */
965 #define isTARGET (1 == 0) /* FALSE */
966 /* #define isHOST (1 == 1) TRUE */
968 /* The "AccessLength" specifications for Loads and Stores. NOTE: This
969 is the number of bytes minus 1. */
970 #define AccessLength_BYTE (0)
971 #define AccessLength_HALFWORD (1)
972 #define AccessLength_TRIPLEBYTE (2)
973 #define AccessLength_WORD (3)
974 #define AccessLength_QUINTIBYTE (4)
975 #define AccessLength_SEXTIBYTE (5)
976 #define AccessLength_SEPTIBYTE (6)
977 #define AccessLength_DOUBLEWORD (7)
978 #define AccessLength_QUADWORD (15)
980 #define LOADDRMASK (WITH_TARGET_WORD_BITSIZE == 64 \
981 ? AccessLength_DOUBLEWORD /*7*/ \
982 : AccessLength_WORD /*3*/)
984 INLINE_SIM_MAIN (void) load_memory (SIM_DESC sd
, sim_cpu
*cpu
, address_word cia
, uword64
* memvalp
, uword64
* memval1p
, int CCA
, unsigned int AccessLength
, address_word pAddr
, address_word vAddr
, int IorD
);
985 #define LoadMemory(memvalp,memval1p,AccessLength,pAddr,vAddr,IorD,raw) \
986 load_memory (SD, CPU, cia, memvalp, memval1p, 0, AccessLength, pAddr, vAddr, IorD)
988 INLINE_SIM_MAIN (void) store_memory (SIM_DESC sd
, sim_cpu
*cpu
, address_word cia
, int CCA
, unsigned int AccessLength
, uword64 MemElem
, uword64 MemElem1
, address_word pAddr
, address_word vAddr
);
989 #define StoreMemory(AccessLength,MemElem,MemElem1,pAddr,vAddr,raw) \
990 store_memory (SD, CPU, cia, 0, AccessLength, MemElem, MemElem1, pAddr, vAddr)
992 INLINE_SIM_MAIN (void) cache_op (SIM_DESC sd
, sim_cpu
*cpu
, address_word cia
, int op
, address_word pAddr
, address_word vAddr
, unsigned int instruction
);
993 #define CacheOp(op,pAddr,vAddr,instruction) \
994 cache_op (SD, CPU, cia, op, pAddr, vAddr, instruction)
996 INLINE_SIM_MAIN (void) sync_operation (SIM_DESC sd
, sim_cpu
*cpu
, address_word cia
, int stype
);
997 #define SyncOperation(stype) \
998 sync_operation (SD, CPU, cia, (stype))
1000 void unpredictable_action (sim_cpu
*cpu
, address_word cia
);
1001 #define NotWordValue(val) not_word_value (SD_, (val))
1002 #define Unpredictable() unpredictable (SD_)
1003 #define UnpredictableResult() /* For now, do nothing. */
1005 INLINE_SIM_MAIN (uint32_t) ifetch32 (SIM_DESC sd
, sim_cpu
*cpu
, address_word cia
, address_word vaddr
);
1006 #define IMEM32(CIA) ifetch32 (SD, CPU, (CIA), (CIA))
1007 INLINE_SIM_MAIN (uint16_t) ifetch16 (SIM_DESC sd
, sim_cpu
*cpu
, address_word cia
, address_word vaddr
);
1008 #define IMEM16(CIA) ifetch16 (SD, CPU, (CIA), ((CIA) & ~1))
1009 #define IMEM16_IMMED(CIA,NR) ifetch16 (SD, CPU, (CIA), ((CIA) & ~1) + 2 * (NR))
1010 #define IMEM32_MICROMIPS(CIA) \
1011 (ifetch16 (SD, CPU, (CIA), (CIA)) << 16 | ifetch16 (SD, CPU, (CIA + 2), \
1013 #define IMEM16_MICROMIPS(CIA) ifetch16 (SD, CPU, (CIA), ((CIA)))
1015 #define MICROMIPS_MINOR_OPCODE(INSN) ((INSN & 0x1C00) >> 10)
1017 #define MICROMIPS_DELAYSLOT_SIZE_ANY 0
1018 #define MICROMIPS_DELAYSLOT_SIZE_16 2
1019 #define MICROMIPS_DELAYSLOT_SIZE_32 4
1021 extern int isa_mode
;
1023 #define ISA_MODE_MIPS32 0
1024 #define ISA_MODE_MICROMIPS 1
1026 address_word
micromips_instruction_decode (SIM_DESC sd
, sim_cpu
* cpu
,
1028 int instruction_size
);
1030 #if WITH_TRACE_ANY_P
1031 void dotrace (SIM_DESC sd
, sim_cpu
*cpu
, FILE *tracefh
, int type
, address_word address
, int width
, const char *comment
, ...) ATTRIBUTE_PRINTF (7, 8);
1032 extern FILE *tracefh
;
1034 #define dotrace(sd, cpu, tracefh, type, address, width, comment, ...)
1037 extern int DSPLO_REGNUM
[4];
1038 extern int DSPHI_REGNUM
[4];
1040 INLINE_SIM_MAIN (void) pending_tick (SIM_DESC sd
, sim_cpu
*cpu
, address_word cia
);
1041 extern SIM_CORE_SIGNAL_FN mips_core_signal ATTRIBUTE_NORETURN
;
1043 char* pr_addr (address_word addr
);
1044 char* pr_uword64 (uword64 addr
);
1047 #define GPR_CLEAR(N) do { GPR_SET((N),0); } while (0)
1049 void mips_cpu_exception_trigger(SIM_DESC sd
, sim_cpu
* cpu
, address_word pc
);
1050 void mips_cpu_exception_suspend(SIM_DESC sd
, sim_cpu
* cpu
, int exception
);
1051 void mips_cpu_exception_resume(SIM_DESC sd
, sim_cpu
* cpu
, int exception
);
1053 /* Macros for determining whether a MIPS IV or MIPS V part is subject
1054 to the hi/lo restrictions described in mips.igen. */
1056 #define MIPS_MACH_HAS_MT_HILO_HAZARD(SD) \
1057 (STATE_ARCHITECTURE (SD)->mach != bfd_mach_mips5500)
1059 #define MIPS_MACH_HAS_MULT_HILO_HAZARD(SD) \
1060 (STATE_ARCHITECTURE (SD)->mach != bfd_mach_mips5500)
1062 #define MIPS_MACH_HAS_DIV_HILO_HAZARD(SD) \
1063 (STATE_ARCHITECTURE (SD)->mach != bfd_mach_mips5500)
1065 #if H_REVEALS_MODULE_P (SIM_MAIN_INLINE)
1066 #include "sim-main.c"