1 // output.cc -- manage the output file for gold
3 // Copyright (C) 2006-2022 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
6 // This file is part of gold.
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
33 #ifdef HAVE_SYS_MMAN_H
37 #include "libiberty.h"
40 #include "parameters.h"
45 #include "descriptors.h"
49 // For systems without mmap support.
51 # define mmap gold_mmap
52 # define munmap gold_munmap
53 # define mremap gold_mremap
55 # define MAP_FAILED (reinterpret_cast<void*>(-1))
64 # define MAP_PRIVATE 0
66 # ifndef MAP_ANONYMOUS
67 # define MAP_ANONYMOUS 0
74 # define ENOSYS EINVAL
78 gold_mmap(void *, size_t, int, int, int, off_t
)
85 gold_munmap(void *, size_t)
92 gold_mremap(void *, size_t, size_t, int)
100 #if defined(HAVE_MMAP) && !defined(HAVE_MREMAP)
101 # define mremap gold_mremap
102 extern "C" void *gold_mremap(void *, size_t, size_t, int);
105 // Some BSD systems still use MAP_ANON instead of MAP_ANONYMOUS
106 #ifndef MAP_ANONYMOUS
107 # define MAP_ANONYMOUS MAP_ANON
110 #ifndef MREMAP_MAYMOVE
111 # define MREMAP_MAYMOVE 1
114 // Mingw does not have S_ISLNK.
116 # define S_ISLNK(mode) 0
122 // A wrapper around posix_fallocate. If we don't have posix_fallocate,
123 // or the --no-posix-fallocate option is set, we try the fallocate
124 // system call directly. If that fails, we use ftruncate to set
125 // the file size and hope that there is enough disk space.
128 gold_fallocate(int o
, off_t offset
, off_t len
)
133 #ifdef HAVE_POSIX_FALLOCATE
134 if (parameters
->options().posix_fallocate())
136 int err
= ::posix_fallocate(o
, offset
, len
);
137 if (err
!= EINVAL
&& err
!= ENOSYS
&& err
!= EOPNOTSUPP
)
140 #endif // defined(HAVE_POSIX_FALLOCATE)
142 #ifdef HAVE_FALLOCATE
145 int err
= ::fallocate(o
, 0, offset
, len
);
146 if (err
< 0 && errno
!= EINVAL
&& errno
!= ENOSYS
&& errno
!= EOPNOTSUPP
)
149 #endif // defined(HAVE_FALLOCATE)
152 if (::ftruncate(o
, offset
+ len
) < 0)
157 // Output_data variables.
159 bool Output_data::allocated_sizes_are_fixed
;
161 // Output_data methods.
163 Output_data::~Output_data()
167 // Return the default alignment for the target size.
170 Output_data::default_alignment()
172 return Output_data::default_alignment_for_size(
173 parameters
->target().get_size());
176 // Return the default alignment for a size--32 or 64.
179 Output_data::default_alignment_for_size(int size
)
189 // Output_section_header methods. This currently assumes that the
190 // segment and section lists are complete at construction time.
192 Output_section_headers::Output_section_headers(
193 const Layout
* layout
,
194 const Layout::Segment_list
* segment_list
,
195 const Layout::Section_list
* section_list
,
196 const Layout::Section_list
* unattached_section_list
,
197 const Stringpool
* secnamepool
,
198 const Output_section
* shstrtab_section
)
200 segment_list_(segment_list
),
201 section_list_(section_list
),
202 unattached_section_list_(unattached_section_list
),
203 secnamepool_(secnamepool
),
204 shstrtab_section_(shstrtab_section
)
208 // Compute the current data size.
211 Output_section_headers::do_size() const
213 // Count all the sections. Start with 1 for the null section.
215 if (!parameters
->options().relocatable())
217 for (Layout::Segment_list::const_iterator p
=
218 this->segment_list_
->begin();
219 p
!= this->segment_list_
->end();
221 if ((*p
)->type() == elfcpp::PT_LOAD
)
222 count
+= (*p
)->output_section_count();
226 for (Layout::Section_list::const_iterator p
=
227 this->section_list_
->begin();
228 p
!= this->section_list_
->end();
230 if (((*p
)->flags() & elfcpp::SHF_ALLOC
) != 0)
233 count
+= this->unattached_section_list_
->size();
235 const int size
= parameters
->target().get_size();
238 shdr_size
= elfcpp::Elf_sizes
<32>::shdr_size
;
240 shdr_size
= elfcpp::Elf_sizes
<64>::shdr_size
;
244 return count
* shdr_size
;
247 // Write out the section headers.
250 Output_section_headers::do_write(Output_file
* of
)
252 switch (parameters
->size_and_endianness())
254 #ifdef HAVE_TARGET_32_LITTLE
255 case Parameters::TARGET_32_LITTLE
:
256 this->do_sized_write
<32, false>(of
);
259 #ifdef HAVE_TARGET_32_BIG
260 case Parameters::TARGET_32_BIG
:
261 this->do_sized_write
<32, true>(of
);
264 #ifdef HAVE_TARGET_64_LITTLE
265 case Parameters::TARGET_64_LITTLE
:
266 this->do_sized_write
<64, false>(of
);
269 #ifdef HAVE_TARGET_64_BIG
270 case Parameters::TARGET_64_BIG
:
271 this->do_sized_write
<64, true>(of
);
279 template<int size
, bool big_endian
>
281 Output_section_headers::do_sized_write(Output_file
* of
)
283 off_t all_shdrs_size
= this->data_size();
284 unsigned char* view
= of
->get_output_view(this->offset(), all_shdrs_size
);
286 const int shdr_size
= elfcpp::Elf_sizes
<size
>::shdr_size
;
287 unsigned char* v
= view
;
290 typename
elfcpp::Shdr_write
<size
, big_endian
> oshdr(v
);
291 oshdr
.put_sh_name(0);
292 oshdr
.put_sh_type(elfcpp::SHT_NULL
);
293 oshdr
.put_sh_flags(0);
294 oshdr
.put_sh_addr(0);
295 oshdr
.put_sh_offset(0);
297 size_t section_count
= (this->data_size()
298 / elfcpp::Elf_sizes
<size
>::shdr_size
);
299 if (section_count
< elfcpp::SHN_LORESERVE
)
300 oshdr
.put_sh_size(0);
302 oshdr
.put_sh_size(section_count
);
304 unsigned int shstrndx
= this->shstrtab_section_
->out_shndx();
305 if (shstrndx
< elfcpp::SHN_LORESERVE
)
306 oshdr
.put_sh_link(0);
308 oshdr
.put_sh_link(shstrndx
);
310 size_t segment_count
= this->segment_list_
->size();
311 oshdr
.put_sh_info(segment_count
>= elfcpp::PN_XNUM
? segment_count
: 0);
313 oshdr
.put_sh_addralign(0);
314 oshdr
.put_sh_entsize(0);
319 unsigned int shndx
= 1;
320 if (!parameters
->options().relocatable())
322 for (Layout::Segment_list::const_iterator p
=
323 this->segment_list_
->begin();
324 p
!= this->segment_list_
->end();
326 v
= (*p
)->write_section_headers
<size
, big_endian
>(this->layout_
,
333 for (Layout::Section_list::const_iterator p
=
334 this->section_list_
->begin();
335 p
!= this->section_list_
->end();
338 // We do unallocated sections below, except that group
339 // sections have to come first.
340 if (((*p
)->flags() & elfcpp::SHF_ALLOC
) == 0
341 && (*p
)->type() != elfcpp::SHT_GROUP
)
343 gold_assert(shndx
== (*p
)->out_shndx());
344 elfcpp::Shdr_write
<size
, big_endian
> oshdr(v
);
345 (*p
)->write_header(this->layout_
, this->secnamepool_
, &oshdr
);
351 for (Layout::Section_list::const_iterator p
=
352 this->unattached_section_list_
->begin();
353 p
!= this->unattached_section_list_
->end();
356 // For a relocatable link, we did unallocated group sections
357 // above, since they have to come first.
358 if ((*p
)->type() == elfcpp::SHT_GROUP
359 && parameters
->options().relocatable())
361 gold_assert(shndx
== (*p
)->out_shndx());
362 elfcpp::Shdr_write
<size
, big_endian
> oshdr(v
);
363 (*p
)->write_header(this->layout_
, this->secnamepool_
, &oshdr
);
368 of
->write_output_view(this->offset(), all_shdrs_size
, view
);
371 // Output_segment_header methods.
373 Output_segment_headers::Output_segment_headers(
374 const Layout::Segment_list
& segment_list
)
375 : segment_list_(segment_list
)
377 this->set_current_data_size_for_child(this->do_size());
381 Output_segment_headers::do_write(Output_file
* of
)
383 switch (parameters
->size_and_endianness())
385 #ifdef HAVE_TARGET_32_LITTLE
386 case Parameters::TARGET_32_LITTLE
:
387 this->do_sized_write
<32, false>(of
);
390 #ifdef HAVE_TARGET_32_BIG
391 case Parameters::TARGET_32_BIG
:
392 this->do_sized_write
<32, true>(of
);
395 #ifdef HAVE_TARGET_64_LITTLE
396 case Parameters::TARGET_64_LITTLE
:
397 this->do_sized_write
<64, false>(of
);
400 #ifdef HAVE_TARGET_64_BIG
401 case Parameters::TARGET_64_BIG
:
402 this->do_sized_write
<64, true>(of
);
410 template<int size
, bool big_endian
>
412 Output_segment_headers::do_sized_write(Output_file
* of
)
414 const int phdr_size
= elfcpp::Elf_sizes
<size
>::phdr_size
;
415 off_t all_phdrs_size
= this->segment_list_
.size() * phdr_size
;
416 gold_assert(all_phdrs_size
== this->data_size());
417 unsigned char* view
= of
->get_output_view(this->offset(),
419 unsigned char* v
= view
;
420 for (Layout::Segment_list::const_iterator p
= this->segment_list_
.begin();
421 p
!= this->segment_list_
.end();
424 elfcpp::Phdr_write
<size
, big_endian
> ophdr(v
);
425 (*p
)->write_header(&ophdr
);
429 gold_assert(v
- view
== all_phdrs_size
);
431 of
->write_output_view(this->offset(), all_phdrs_size
, view
);
435 Output_segment_headers::do_size() const
437 const int size
= parameters
->target().get_size();
440 phdr_size
= elfcpp::Elf_sizes
<32>::phdr_size
;
442 phdr_size
= elfcpp::Elf_sizes
<64>::phdr_size
;
446 return this->segment_list_
.size() * phdr_size
;
449 // Output_file_header methods.
451 Output_file_header::Output_file_header(Target
* target
,
452 const Symbol_table
* symtab
,
453 const Output_segment_headers
* osh
)
456 segment_header_(osh
),
457 section_header_(NULL
),
460 this->set_data_size(this->do_size());
463 // Set the section table information for a file header.
466 Output_file_header::set_section_info(const Output_section_headers
* shdrs
,
467 const Output_section
* shstrtab
)
469 this->section_header_
= shdrs
;
470 this->shstrtab_
= shstrtab
;
473 // Write out the file header.
476 Output_file_header::do_write(Output_file
* of
)
478 gold_assert(this->offset() == 0);
480 switch (parameters
->size_and_endianness())
482 #ifdef HAVE_TARGET_32_LITTLE
483 case Parameters::TARGET_32_LITTLE
:
484 this->do_sized_write
<32, false>(of
);
487 #ifdef HAVE_TARGET_32_BIG
488 case Parameters::TARGET_32_BIG
:
489 this->do_sized_write
<32, true>(of
);
492 #ifdef HAVE_TARGET_64_LITTLE
493 case Parameters::TARGET_64_LITTLE
:
494 this->do_sized_write
<64, false>(of
);
497 #ifdef HAVE_TARGET_64_BIG
498 case Parameters::TARGET_64_BIG
:
499 this->do_sized_write
<64, true>(of
);
507 // Write out the file header with appropriate size and endianness.
509 template<int size
, bool big_endian
>
511 Output_file_header::do_sized_write(Output_file
* of
)
513 gold_assert(this->offset() == 0);
515 int ehdr_size
= elfcpp::Elf_sizes
<size
>::ehdr_size
;
516 unsigned char* view
= of
->get_output_view(0, ehdr_size
);
517 elfcpp::Ehdr_write
<size
, big_endian
> oehdr(view
);
519 unsigned char e_ident
[elfcpp::EI_NIDENT
];
520 memset(e_ident
, 0, elfcpp::EI_NIDENT
);
521 e_ident
[elfcpp::EI_MAG0
] = elfcpp::ELFMAG0
;
522 e_ident
[elfcpp::EI_MAG1
] = elfcpp::ELFMAG1
;
523 e_ident
[elfcpp::EI_MAG2
] = elfcpp::ELFMAG2
;
524 e_ident
[elfcpp::EI_MAG3
] = elfcpp::ELFMAG3
;
526 e_ident
[elfcpp::EI_CLASS
] = elfcpp::ELFCLASS32
;
528 e_ident
[elfcpp::EI_CLASS
] = elfcpp::ELFCLASS64
;
531 e_ident
[elfcpp::EI_DATA
] = (big_endian
532 ? elfcpp::ELFDATA2MSB
533 : elfcpp::ELFDATA2LSB
);
534 e_ident
[elfcpp::EI_VERSION
] = elfcpp::EV_CURRENT
;
535 oehdr
.put_e_ident(e_ident
);
538 if (parameters
->options().relocatable())
539 e_type
= elfcpp::ET_REL
;
540 else if (parameters
->options().output_is_position_independent())
541 e_type
= elfcpp::ET_DYN
;
543 e_type
= elfcpp::ET_EXEC
;
544 oehdr
.put_e_type(e_type
);
546 oehdr
.put_e_machine(this->target_
->machine_code());
547 oehdr
.put_e_version(elfcpp::EV_CURRENT
);
549 oehdr
.put_e_entry(this->entry
<size
>());
551 if (this->segment_header_
== NULL
)
552 oehdr
.put_e_phoff(0);
554 oehdr
.put_e_phoff(this->segment_header_
->offset());
556 oehdr
.put_e_shoff(this->section_header_
->offset());
557 oehdr
.put_e_flags(this->target_
->processor_specific_flags());
558 oehdr
.put_e_ehsize(elfcpp::Elf_sizes
<size
>::ehdr_size
);
560 if (this->segment_header_
== NULL
)
562 oehdr
.put_e_phentsize(0);
563 oehdr
.put_e_phnum(0);
567 oehdr
.put_e_phentsize(elfcpp::Elf_sizes
<size
>::phdr_size
);
568 size_t phnum
= (this->segment_header_
->data_size()
569 / elfcpp::Elf_sizes
<size
>::phdr_size
);
570 if (phnum
> elfcpp::PN_XNUM
)
571 phnum
= elfcpp::PN_XNUM
;
572 oehdr
.put_e_phnum(phnum
);
575 oehdr
.put_e_shentsize(elfcpp::Elf_sizes
<size
>::shdr_size
);
576 size_t section_count
= (this->section_header_
->data_size()
577 / elfcpp::Elf_sizes
<size
>::shdr_size
);
579 if (section_count
< elfcpp::SHN_LORESERVE
)
580 oehdr
.put_e_shnum(this->section_header_
->data_size()
581 / elfcpp::Elf_sizes
<size
>::shdr_size
);
583 oehdr
.put_e_shnum(0);
585 unsigned int shstrndx
= this->shstrtab_
->out_shndx();
586 if (shstrndx
< elfcpp::SHN_LORESERVE
)
587 oehdr
.put_e_shstrndx(this->shstrtab_
->out_shndx());
589 oehdr
.put_e_shstrndx(elfcpp::SHN_XINDEX
);
591 // Let the target adjust the ELF header, e.g., to set EI_OSABI in
592 // the e_ident field.
593 this->target_
->adjust_elf_header(view
, ehdr_size
);
595 of
->write_output_view(0, ehdr_size
, view
);
598 // Return the value to use for the entry address.
601 typename
elfcpp::Elf_types
<size
>::Elf_Addr
602 Output_file_header::entry()
604 const bool should_issue_warning
= (parameters
->options().entry() != NULL
605 && !parameters
->options().relocatable()
606 && !parameters
->options().shared());
607 const char* entry
= parameters
->entry();
608 Symbol
* sym
= this->symtab_
->lookup(entry
);
610 typename Sized_symbol
<size
>::Value_type v
;
613 Sized_symbol
<size
>* ssym
;
614 ssym
= this->symtab_
->get_sized_symbol
<size
>(sym
);
615 if (!ssym
->is_defined() && should_issue_warning
)
616 gold_warning("entry symbol '%s' exists but is not defined", entry
);
621 // We couldn't find the entry symbol. See if we can parse it as
622 // a number. This supports, e.g., -e 0x1000.
624 v
= strtoull(entry
, &endptr
, 0);
627 if (should_issue_warning
)
628 gold_warning("cannot find entry symbol '%s'", entry
);
636 // Compute the current data size.
639 Output_file_header::do_size() const
641 const int size
= parameters
->target().get_size();
643 return elfcpp::Elf_sizes
<32>::ehdr_size
;
645 return elfcpp::Elf_sizes
<64>::ehdr_size
;
650 // Output_data_const methods.
653 Output_data_const::do_write(Output_file
* of
)
655 of
->write(this->offset(), this->data_
.data(), this->data_
.size());
658 // Output_data_const_buffer methods.
661 Output_data_const_buffer::do_write(Output_file
* of
)
663 of
->write(this->offset(), this->p_
, this->data_size());
666 // Output_section_data methods.
668 // Record the output section, and set the entry size and such.
671 Output_section_data::set_output_section(Output_section
* os
)
673 gold_assert(this->output_section_
== NULL
);
674 this->output_section_
= os
;
675 this->do_adjust_output_section(os
);
678 // Return the section index of the output section.
681 Output_section_data::do_out_shndx() const
683 gold_assert(this->output_section_
!= NULL
);
684 return this->output_section_
->out_shndx();
687 // Set the alignment, which means we may need to update the alignment
688 // of the output section.
691 Output_section_data::set_addralign(uint64_t addralign
)
693 this->addralign_
= addralign
;
694 if (this->output_section_
!= NULL
695 && this->output_section_
->addralign() < addralign
)
696 this->output_section_
->set_addralign(addralign
);
699 // Output_data_strtab methods.
701 // Set the final data size.
704 Output_data_strtab::set_final_data_size()
706 this->strtab_
->set_string_offsets();
707 this->set_data_size(this->strtab_
->get_strtab_size());
710 // Write out a string table.
713 Output_data_strtab::do_write(Output_file
* of
)
715 this->strtab_
->write(of
, this->offset());
718 // Output_reloc methods.
720 // A reloc against a global symbol.
722 template<bool dynamic
, int size
, bool big_endian
>
723 Output_reloc
<elfcpp::SHT_REL
, dynamic
, size
, big_endian
>::Output_reloc(
731 : address_(address
), local_sym_index_(GSYM_CODE
), type_(type
),
732 is_relative_(is_relative
), is_symbolless_(is_symbolless
),
733 is_section_symbol_(false), use_plt_offset_(use_plt_offset
), shndx_(INVALID_CODE
)
735 // this->type_ is a bitfield; make sure TYPE fits.
736 gold_assert(this->type_
== type
);
737 this->u1_
.gsym
= gsym
;
740 this->set_needs_dynsym_index();
743 template<bool dynamic
, int size
, bool big_endian
>
744 Output_reloc
<elfcpp::SHT_REL
, dynamic
, size
, big_endian
>::Output_reloc(
747 Sized_relobj
<size
, big_endian
>* relobj
,
753 : address_(address
), local_sym_index_(GSYM_CODE
), type_(type
),
754 is_relative_(is_relative
), is_symbolless_(is_symbolless
),
755 is_section_symbol_(false), use_plt_offset_(use_plt_offset
), shndx_(shndx
)
757 gold_assert(shndx
!= INVALID_CODE
);
758 // this->type_ is a bitfield; make sure TYPE fits.
759 gold_assert(this->type_
== type
);
760 this->u1_
.gsym
= gsym
;
761 this->u2_
.relobj
= relobj
;
763 this->set_needs_dynsym_index();
766 // A reloc against a local symbol.
768 template<bool dynamic
, int size
, bool big_endian
>
769 Output_reloc
<elfcpp::SHT_REL
, dynamic
, size
, big_endian
>::Output_reloc(
770 Sized_relobj
<size
, big_endian
>* relobj
,
771 unsigned int local_sym_index
,
777 bool is_section_symbol
,
779 : address_(address
), local_sym_index_(local_sym_index
), type_(type
),
780 is_relative_(is_relative
), is_symbolless_(is_symbolless
),
781 is_section_symbol_(is_section_symbol
), use_plt_offset_(use_plt_offset
),
784 gold_assert(local_sym_index
!= GSYM_CODE
785 && local_sym_index
!= INVALID_CODE
);
786 // this->type_ is a bitfield; make sure TYPE fits.
787 gold_assert(this->type_
== type
);
788 this->u1_
.relobj
= relobj
;
791 this->set_needs_dynsym_index();
794 template<bool dynamic
, int size
, bool big_endian
>
795 Output_reloc
<elfcpp::SHT_REL
, dynamic
, size
, big_endian
>::Output_reloc(
796 Sized_relobj
<size
, big_endian
>* relobj
,
797 unsigned int local_sym_index
,
803 bool is_section_symbol
,
805 : address_(address
), local_sym_index_(local_sym_index
), type_(type
),
806 is_relative_(is_relative
), is_symbolless_(is_symbolless
),
807 is_section_symbol_(is_section_symbol
), use_plt_offset_(use_plt_offset
),
810 gold_assert(local_sym_index
!= GSYM_CODE
811 && local_sym_index
!= INVALID_CODE
);
812 gold_assert(shndx
!= INVALID_CODE
);
813 // this->type_ is a bitfield; make sure TYPE fits.
814 gold_assert(this->type_
== type
);
815 this->u1_
.relobj
= relobj
;
816 this->u2_
.relobj
= relobj
;
818 this->set_needs_dynsym_index();
821 // A reloc against the STT_SECTION symbol of an output section.
823 template<bool dynamic
, int size
, bool big_endian
>
824 Output_reloc
<elfcpp::SHT_REL
, dynamic
, size
, big_endian
>::Output_reloc(
830 : address_(address
), local_sym_index_(SECTION_CODE
), type_(type
),
831 is_relative_(is_relative
), is_symbolless_(is_relative
),
832 is_section_symbol_(true), use_plt_offset_(false), shndx_(INVALID_CODE
)
834 // this->type_ is a bitfield; make sure TYPE fits.
835 gold_assert(this->type_
== type
);
839 this->set_needs_dynsym_index();
841 os
->set_needs_symtab_index();
844 template<bool dynamic
, int size
, bool big_endian
>
845 Output_reloc
<elfcpp::SHT_REL
, dynamic
, size
, big_endian
>::Output_reloc(
848 Sized_relobj
<size
, big_endian
>* relobj
,
852 : address_(address
), local_sym_index_(SECTION_CODE
), type_(type
),
853 is_relative_(is_relative
), is_symbolless_(is_relative
),
854 is_section_symbol_(true), use_plt_offset_(false), shndx_(shndx
)
856 gold_assert(shndx
!= INVALID_CODE
);
857 // this->type_ is a bitfield; make sure TYPE fits.
858 gold_assert(this->type_
== type
);
860 this->u2_
.relobj
= relobj
;
862 this->set_needs_dynsym_index();
864 os
->set_needs_symtab_index();
867 // An absolute or relative relocation.
869 template<bool dynamic
, int size
, bool big_endian
>
870 Output_reloc
<elfcpp::SHT_REL
, dynamic
, size
, big_endian
>::Output_reloc(
875 : address_(address
), local_sym_index_(0), type_(type
),
876 is_relative_(is_relative
), is_symbolless_(false),
877 is_section_symbol_(false), use_plt_offset_(false), shndx_(INVALID_CODE
)
879 // this->type_ is a bitfield; make sure TYPE fits.
880 gold_assert(this->type_
== type
);
881 this->u1_
.relobj
= NULL
;
885 template<bool dynamic
, int size
, bool big_endian
>
886 Output_reloc
<elfcpp::SHT_REL
, dynamic
, size
, big_endian
>::Output_reloc(
888 Sized_relobj
<size
, big_endian
>* relobj
,
892 : address_(address
), local_sym_index_(0), type_(type
),
893 is_relative_(is_relative
), is_symbolless_(false),
894 is_section_symbol_(false), use_plt_offset_(false), shndx_(shndx
)
896 gold_assert(shndx
!= INVALID_CODE
);
897 // this->type_ is a bitfield; make sure TYPE fits.
898 gold_assert(this->type_
== type
);
899 this->u1_
.relobj
= NULL
;
900 this->u2_
.relobj
= relobj
;
903 // A target specific relocation.
905 template<bool dynamic
, int size
, bool big_endian
>
906 Output_reloc
<elfcpp::SHT_REL
, dynamic
, size
, big_endian
>::Output_reloc(
911 : address_(address
), local_sym_index_(TARGET_CODE
), type_(type
),
912 is_relative_(false), is_symbolless_(false),
913 is_section_symbol_(false), use_plt_offset_(false), shndx_(INVALID_CODE
)
915 // this->type_ is a bitfield; make sure TYPE fits.
916 gold_assert(this->type_
== type
);
921 template<bool dynamic
, int size
, bool big_endian
>
922 Output_reloc
<elfcpp::SHT_REL
, dynamic
, size
, big_endian
>::Output_reloc(
925 Sized_relobj
<size
, big_endian
>* relobj
,
928 : address_(address
), local_sym_index_(TARGET_CODE
), type_(type
),
929 is_relative_(false), is_symbolless_(false),
930 is_section_symbol_(false), use_plt_offset_(false), shndx_(shndx
)
932 gold_assert(shndx
!= INVALID_CODE
);
933 // this->type_ is a bitfield; make sure TYPE fits.
934 gold_assert(this->type_
== type
);
936 this->u2_
.relobj
= relobj
;
939 // Record that we need a dynamic symbol index for this relocation.
941 template<bool dynamic
, int size
, bool big_endian
>
943 Output_reloc
<elfcpp::SHT_REL
, dynamic
, size
, big_endian
>::
944 set_needs_dynsym_index()
946 if (this->is_symbolless_
)
948 switch (this->local_sym_index_
)
954 this->u1_
.gsym
->set_needs_dynsym_entry();
958 this->u1_
.os
->set_needs_dynsym_index();
962 // The target must take care of this if necessary.
970 const unsigned int lsi
= this->local_sym_index_
;
971 Sized_relobj_file
<size
, big_endian
>* relobj
=
972 this->u1_
.relobj
->sized_relobj();
973 gold_assert(relobj
!= NULL
);
974 if (!this->is_section_symbol_
)
975 relobj
->set_needs_output_dynsym_entry(lsi
);
977 relobj
->output_section(lsi
)->set_needs_dynsym_index();
983 // Get the symbol index of a relocation.
985 template<bool dynamic
, int size
, bool big_endian
>
987 Output_reloc
<elfcpp::SHT_REL
, dynamic
, size
, big_endian
>::get_symbol_index()
991 if (this->is_symbolless_
)
993 switch (this->local_sym_index_
)
999 if (this->u1_
.gsym
== NULL
)
1002 index
= this->u1_
.gsym
->dynsym_index();
1004 index
= this->u1_
.gsym
->symtab_index();
1009 index
= this->u1_
.os
->dynsym_index();
1011 index
= this->u1_
.os
->symtab_index();
1015 index
= parameters
->target().reloc_symbol_index(this->u1_
.arg
,
1020 // Relocations without symbols use a symbol index of 0.
1026 const unsigned int lsi
= this->local_sym_index_
;
1027 Sized_relobj_file
<size
, big_endian
>* relobj
=
1028 this->u1_
.relobj
->sized_relobj();
1029 gold_assert(relobj
!= NULL
);
1030 if (!this->is_section_symbol_
)
1033 index
= relobj
->dynsym_index(lsi
);
1035 index
= relobj
->symtab_index(lsi
);
1039 Output_section
* os
= relobj
->output_section(lsi
);
1040 gold_assert(os
!= NULL
);
1042 index
= os
->dynsym_index();
1044 index
= os
->symtab_index();
1049 gold_assert(index
!= -1U);
1053 // For a local section symbol, get the address of the offset ADDEND
1054 // within the input section.
1056 template<bool dynamic
, int size
, bool big_endian
>
1057 typename
elfcpp::Elf_types
<size
>::Elf_Addr
1058 Output_reloc
<elfcpp::SHT_REL
, dynamic
, size
, big_endian
>::
1059 local_section_offset(Addend addend
) const
1061 gold_assert(this->local_sym_index_
!= GSYM_CODE
1062 && this->local_sym_index_
!= SECTION_CODE
1063 && this->local_sym_index_
!= TARGET_CODE
1064 && this->local_sym_index_
!= INVALID_CODE
1065 && this->local_sym_index_
!= 0
1066 && this->is_section_symbol_
);
1067 const unsigned int lsi
= this->local_sym_index_
;
1068 Output_section
* os
= this->u1_
.relobj
->output_section(lsi
);
1069 gold_assert(os
!= NULL
);
1070 Address offset
= this->u1_
.relobj
->get_output_section_offset(lsi
);
1071 if (offset
!= invalid_address
)
1072 return offset
+ addend
;
1073 // This is a merge section.
1074 Sized_relobj_file
<size
, big_endian
>* relobj
=
1075 this->u1_
.relobj
->sized_relobj();
1076 gold_assert(relobj
!= NULL
);
1077 offset
= os
->output_address(relobj
, lsi
, addend
);
1078 gold_assert(offset
!= invalid_address
);
1082 // Get the output address of a relocation.
1084 template<bool dynamic
, int size
, bool big_endian
>
1085 typename
elfcpp::Elf_types
<size
>::Elf_Addr
1086 Output_reloc
<elfcpp::SHT_REL
, dynamic
, size
, big_endian
>::get_address() const
1088 Address address
= this->address_
;
1089 if (this->shndx_
!= INVALID_CODE
)
1091 Output_section
* os
= this->u2_
.relobj
->output_section(this->shndx_
);
1092 gold_assert(os
!= NULL
);
1093 Address off
= this->u2_
.relobj
->get_output_section_offset(this->shndx_
);
1094 if (off
!= invalid_address
)
1095 address
+= os
->address() + off
;
1098 Sized_relobj_file
<size
, big_endian
>* relobj
=
1099 this->u2_
.relobj
->sized_relobj();
1100 gold_assert(relobj
!= NULL
);
1101 address
= os
->output_address(relobj
, this->shndx_
, address
);
1102 gold_assert(address
!= invalid_address
);
1105 else if (this->u2_
.od
!= NULL
)
1106 address
+= this->u2_
.od
->address();
1110 // Write out the offset and info fields of a Rel or Rela relocation
1113 template<bool dynamic
, int size
, bool big_endian
>
1114 template<typename Write_rel
>
1116 Output_reloc
<elfcpp::SHT_REL
, dynamic
, size
, big_endian
>::write_rel(
1117 Write_rel
* wr
) const
1119 wr
->put_r_offset(this->get_address());
1120 unsigned int sym_index
= this->get_symbol_index();
1121 wr
->put_r_info(elfcpp::elf_r_info
<size
>(sym_index
, this->type_
));
1124 // Write out a Rel relocation.
1126 template<bool dynamic
, int size
, bool big_endian
>
1128 Output_reloc
<elfcpp::SHT_REL
, dynamic
, size
, big_endian
>::write(
1129 unsigned char* pov
) const
1131 elfcpp::Rel_write
<size
, big_endian
> orel(pov
);
1132 this->write_rel(&orel
);
1135 // Get the value of the symbol referred to by a Rel relocation.
1137 template<bool dynamic
, int size
, bool big_endian
>
1138 typename
elfcpp::Elf_types
<size
>::Elf_Addr
1139 Output_reloc
<elfcpp::SHT_REL
, dynamic
, size
, big_endian
>::symbol_value(
1140 Addend addend
) const
1142 if (this->local_sym_index_
== GSYM_CODE
)
1144 const Sized_symbol
<size
>* sym
;
1145 sym
= static_cast<const Sized_symbol
<size
>*>(this->u1_
.gsym
);
1146 if (this->use_plt_offset_
&& sym
->has_plt_offset())
1147 return parameters
->target().plt_address_for_global(sym
);
1149 return sym
->value() + addend
;
1151 if (this->local_sym_index_
== SECTION_CODE
)
1153 gold_assert(!this->use_plt_offset_
);
1154 return this->u1_
.os
->address() + addend
;
1156 gold_assert(this->local_sym_index_
!= TARGET_CODE
1157 && this->local_sym_index_
!= INVALID_CODE
1158 && this->local_sym_index_
!= 0
1159 && !this->is_section_symbol_
);
1160 const unsigned int lsi
= this->local_sym_index_
;
1161 Sized_relobj_file
<size
, big_endian
>* relobj
=
1162 this->u1_
.relobj
->sized_relobj();
1163 gold_assert(relobj
!= NULL
);
1164 if (this->use_plt_offset_
)
1165 return parameters
->target().plt_address_for_local(relobj
, lsi
);
1166 const Symbol_value
<size
>* symval
= relobj
->local_symbol(lsi
);
1167 return symval
->value(relobj
, addend
);
1170 // Reloc comparison. This function sorts the dynamic relocs for the
1171 // benefit of the dynamic linker. First we sort all relative relocs
1172 // to the front. Among relative relocs, we sort by output address.
1173 // Among non-relative relocs, we sort by symbol index, then by output
1176 template<bool dynamic
, int size
, bool big_endian
>
1178 Output_reloc
<elfcpp::SHT_REL
, dynamic
, size
, big_endian
>::
1179 compare(const Output_reloc
<elfcpp::SHT_REL
, dynamic
, size
, big_endian
>& r2
)
1182 if (this->is_relative_
)
1184 if (!r2
.is_relative_
)
1186 // Otherwise sort by reloc address below.
1188 else if (r2
.is_relative_
)
1192 unsigned int sym1
= this->get_symbol_index();
1193 unsigned int sym2
= r2
.get_symbol_index();
1196 else if (sym1
> sym2
)
1198 // Otherwise sort by reloc address.
1201 section_offset_type addr1
= this->get_address();
1202 section_offset_type addr2
= r2
.get_address();
1205 else if (addr1
> addr2
)
1208 // Final tie breaker, in order to generate the same output on any
1209 // host: reloc type.
1210 unsigned int type1
= this->type_
;
1211 unsigned int type2
= r2
.type_
;
1214 else if (type1
> type2
)
1217 // These relocs appear to be exactly the same.
1221 // Write out a Rela relocation.
1223 template<bool dynamic
, int size
, bool big_endian
>
1225 Output_reloc
<elfcpp::SHT_RELA
, dynamic
, size
, big_endian
>::write(
1226 unsigned char* pov
) const
1228 elfcpp::Rela_write
<size
, big_endian
> orel(pov
);
1229 this->rel_
.write_rel(&orel
);
1230 Addend addend
= this->addend_
;
1231 if (this->rel_
.is_target_specific())
1232 addend
= parameters
->target().reloc_addend(this->rel_
.target_arg(),
1233 this->rel_
.type(), addend
);
1234 else if (this->rel_
.is_symbolless())
1235 addend
= this->rel_
.symbol_value(addend
);
1236 else if (this->rel_
.is_local_section_symbol())
1237 addend
= this->rel_
.local_section_offset(addend
);
1238 orel
.put_r_addend(addend
);
1241 // Output_data_reloc_base methods.
1243 // Adjust the output section.
1245 template<int sh_type
, bool dynamic
, int size
, bool big_endian
>
1247 Output_data_reloc_base
<sh_type
, dynamic
, size
, big_endian
>
1248 ::do_adjust_output_section(Output_section
* os
)
1250 if (sh_type
== elfcpp::SHT_REL
)
1251 os
->set_entsize(elfcpp::Elf_sizes
<size
>::rel_size
);
1252 else if (sh_type
== elfcpp::SHT_RELA
)
1253 os
->set_entsize(elfcpp::Elf_sizes
<size
>::rela_size
);
1257 // A STT_GNU_IFUNC symbol may require a IRELATIVE reloc when doing a
1258 // static link. The backends will generate a dynamic reloc section
1259 // to hold this. In that case we don't want to link to the dynsym
1260 // section, because there isn't one.
1262 os
->set_should_link_to_symtab();
1263 else if (parameters
->doing_static_link())
1266 os
->set_should_link_to_dynsym();
1269 // Standard relocation writer, which just calls Output_reloc::write().
1271 template<int sh_type
, bool dynamic
, int size
, bool big_endian
>
1272 struct Output_reloc_writer
1274 typedef Output_reloc
<sh_type
, dynamic
, size
, big_endian
> Output_reloc_type
;
1275 typedef std::vector
<Output_reloc_type
> Relocs
;
1278 write(typename
Relocs::const_iterator p
, unsigned char* pov
)
1282 // Write out relocation data.
1284 template<int sh_type
, bool dynamic
, int size
, bool big_endian
>
1286 Output_data_reloc_base
<sh_type
, dynamic
, size
, big_endian
>::do_write(
1289 typedef Output_reloc_writer
<sh_type
, dynamic
, size
, big_endian
> Writer
;
1290 this->do_write_generic
<Writer
>(of
);
1293 // Class Output_relocatable_relocs.
1295 template<int sh_type
, int size
, bool big_endian
>
1297 Output_relocatable_relocs
<sh_type
, size
, big_endian
>::set_final_data_size()
1299 this->set_data_size(this->rr_
->output_reloc_count()
1300 * Reloc_types
<sh_type
, size
, big_endian
>::reloc_size
);
1303 // class Output_data_group.
1305 template<int size
, bool big_endian
>
1306 Output_data_group
<size
, big_endian
>::Output_data_group(
1307 Sized_relobj_file
<size
, big_endian
>* relobj
,
1308 section_size_type entry_count
,
1309 elfcpp::Elf_Word flags
,
1310 std::vector
<unsigned int>* input_shndxes
)
1311 : Output_section_data(entry_count
* 4, 4, false),
1315 this->input_shndxes_
.swap(*input_shndxes
);
1318 // Write out the section group, which means translating the section
1319 // indexes to apply to the output file.
1321 template<int size
, bool big_endian
>
1323 Output_data_group
<size
, big_endian
>::do_write(Output_file
* of
)
1325 const off_t off
= this->offset();
1326 const section_size_type oview_size
=
1327 convert_to_section_size_type(this->data_size());
1328 unsigned char* const oview
= of
->get_output_view(off
, oview_size
);
1330 elfcpp::Elf_Word
* contents
= reinterpret_cast<elfcpp::Elf_Word
*>(oview
);
1331 elfcpp::Swap
<32, big_endian
>::writeval(contents
, this->flags_
);
1334 for (std::vector
<unsigned int>::const_iterator p
=
1335 this->input_shndxes_
.begin();
1336 p
!= this->input_shndxes_
.end();
1339 Output_section
* os
= this->relobj_
->output_section(*p
);
1341 unsigned int output_shndx
;
1343 output_shndx
= os
->out_shndx();
1346 this->relobj_
->error(_("section group retained but "
1347 "group element discarded"));
1351 elfcpp::Swap
<32, big_endian
>::writeval(contents
, output_shndx
);
1354 size_t wrote
= reinterpret_cast<unsigned char*>(contents
) - oview
;
1355 gold_assert(wrote
== oview_size
);
1357 of
->write_output_view(off
, oview_size
, oview
);
1359 // We no longer need this information.
1360 this->input_shndxes_
.clear();
1363 // Output_data_got::Got_entry methods.
1365 // Write out the entry.
1367 template<int got_size
, bool big_endian
>
1369 Output_data_got
<got_size
, big_endian
>::Got_entry::write(
1370 Output_data_got_base
* got
,
1371 unsigned int got_indx
,
1372 unsigned char* pov
) const
1376 switch (this->local_sym_index_
)
1380 // If the symbol is resolved locally, we need to write out the
1381 // link-time value, which will be relocated dynamically by a
1382 // RELATIVE relocation.
1383 Symbol
* gsym
= this->u_
.gsym
;
1384 if (this->use_plt_or_tls_offset_
&& gsym
->has_plt_offset())
1385 val
= parameters
->target().plt_address_for_global(gsym
);
1388 switch (parameters
->size_and_endianness())
1390 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1391 case Parameters::TARGET_32_LITTLE
:
1392 case Parameters::TARGET_32_BIG
:
1394 // This cast is ugly. We don't want to put a
1395 // virtual method in Symbol, because we want Symbol
1396 // to be as small as possible.
1397 Sized_symbol
<32>::Value_type v
;
1398 v
= static_cast<Sized_symbol
<32>*>(gsym
)->value();
1399 val
= convert_types
<Valtype
, Sized_symbol
<32>::Value_type
>(v
);
1403 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1404 case Parameters::TARGET_64_LITTLE
:
1405 case Parameters::TARGET_64_BIG
:
1407 Sized_symbol
<64>::Value_type v
;
1408 v
= static_cast<Sized_symbol
<64>*>(gsym
)->value();
1409 val
= convert_types
<Valtype
, Sized_symbol
<64>::Value_type
>(v
);
1416 // If this is a GOT entry for a known value global symbol,
1417 // then the value should include the addend. If the value
1418 // is not known leave the value as zero; The GOT entry
1419 // will be set by a dynamic relocation.
1420 if (this->addend_
&& gsym
->final_value_is_known())
1421 val
+= this->addend_
;
1422 if (this->use_plt_or_tls_offset_
1423 && gsym
->type() == elfcpp::STT_TLS
)
1424 val
+= parameters
->target().tls_offset_for_global(gsym
,
1432 val
= this->u_
.constant
;
1436 // If we're doing an incremental update, don't touch this GOT entry.
1437 if (parameters
->incremental_update())
1439 val
= this->u_
.constant
;
1444 const Relobj
* object
= this->u_
.object
;
1445 const unsigned int lsi
= this->local_sym_index_
;
1446 bool is_tls
= object
->local_is_tls(lsi
);
1447 if (this->use_plt_or_tls_offset_
&& !is_tls
)
1448 val
= parameters
->target().plt_address_for_local(object
, lsi
);
1451 uint64_t lval
= object
->local_symbol_value(lsi
, this->addend_
);
1452 val
= convert_types
<Valtype
, uint64_t>(lval
);
1453 if (this->use_plt_or_tls_offset_
&& is_tls
)
1454 val
+= parameters
->target().tls_offset_for_local(object
, lsi
,
1462 elfcpp::Swap
<got_size
, big_endian
>::writeval(pov
, val
);
1465 // Output_data_got methods.
1467 // Add an entry for a global symbol to the GOT. This returns true if
1468 // this is a new GOT entry, false if the symbol already had a GOT
1471 template<int got_size
, bool big_endian
>
1473 Output_data_got
<got_size
, big_endian
>::add_global(Symbol
* gsym
,
1474 unsigned int got_type
,
1477 if (gsym
->has_got_offset(got_type
, addend
))
1480 unsigned int got_offset
= this->add_got_entry(Got_entry(gsym
, false, addend
));
1481 gsym
->set_got_offset(got_type
, got_offset
, addend
);
1485 // Like add_global, but use the PLT offset.
1487 template<int got_size
, bool big_endian
>
1489 Output_data_got
<got_size
, big_endian
>::add_global_plt(Symbol
* gsym
,
1490 unsigned int got_type
,
1493 if (gsym
->has_got_offset(got_type
, addend
))
1496 unsigned int got_offset
= this->add_got_entry(Got_entry(gsym
, true, addend
));
1497 gsym
->set_got_offset(got_type
, got_offset
, addend
);
1501 // Add an entry for a global symbol to the GOT, and add a dynamic
1502 // relocation of type R_TYPE for the GOT entry.
1504 template<int got_size
, bool big_endian
>
1506 Output_data_got
<got_size
, big_endian
>::add_global_with_rel(
1508 unsigned int got_type
,
1509 Output_data_reloc_generic
* rel_dyn
,
1510 unsigned int r_type
,
1513 if (gsym
->has_got_offset(got_type
, addend
))
1516 unsigned int got_offset
= this->add_got_entry(Got_entry());
1517 gsym
->set_got_offset(got_type
, got_offset
, addend
);
1518 rel_dyn
->add_global_generic(gsym
, r_type
, this, got_offset
, addend
);
1521 // Add a pair of entries for a global symbol to the GOT, and add
1522 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1523 // If R_TYPE_2 == 0, add the second entry with no relocation.
1524 template<int got_size
, bool big_endian
>
1526 Output_data_got
<got_size
, big_endian
>::add_global_pair_with_rel(
1528 unsigned int got_type
,
1529 Output_data_reloc_generic
* rel_dyn
,
1530 unsigned int r_type_1
,
1531 unsigned int r_type_2
,
1534 if (gsym
->has_got_offset(got_type
, addend
))
1537 unsigned int got_offset
= this->add_got_entry_pair(Got_entry(), Got_entry());
1538 gsym
->set_got_offset(got_type
, got_offset
, addend
);
1539 rel_dyn
->add_global_generic(gsym
, r_type_1
, this, got_offset
, addend
);
1542 rel_dyn
->add_global_generic(gsym
, r_type_2
, this,
1543 got_offset
+ got_size
/ 8, addend
);
1546 // Add an entry for a local symbol plus ADDEND to the GOT. This returns
1547 // true if this is a new GOT entry, false if the symbol already has a GOT
1550 template<int got_size
, bool big_endian
>
1552 Output_data_got
<got_size
, big_endian
>::add_local(
1554 unsigned int symndx
,
1555 unsigned int got_type
,
1558 if (object
->local_has_got_offset(symndx
, got_type
, addend
))
1561 unsigned int got_offset
= this->add_got_entry(Got_entry(object
, symndx
,
1563 object
->set_local_got_offset(symndx
, got_type
, got_offset
, addend
);
1567 // Like add_local, but use the PLT offset.
1569 template<int got_size
, bool big_endian
>
1571 Output_data_got
<got_size
, big_endian
>::add_local_plt(
1573 unsigned int symndx
,
1574 unsigned int got_type
,
1577 if (object
->local_has_got_offset(symndx
, got_type
, addend
))
1580 unsigned int got_offset
= this->add_got_entry(Got_entry(object
, symndx
,
1582 object
->set_local_got_offset(symndx
, got_type
, got_offset
, addend
);
1586 // Add an entry for a local symbol plus ADDEND to the GOT, and add a dynamic
1587 // relocation of type R_TYPE for the GOT entry.
1589 template<int got_size
, bool big_endian
>
1591 Output_data_got
<got_size
, big_endian
>::add_local_with_rel(
1593 unsigned int symndx
,
1594 unsigned int got_type
,
1595 Output_data_reloc_generic
* rel_dyn
,
1596 unsigned int r_type
,
1599 if (object
->local_has_got_offset(symndx
, got_type
, addend
))
1602 unsigned int got_offset
= this->add_got_entry(Got_entry());
1603 object
->set_local_got_offset(symndx
, got_type
, got_offset
, addend
);
1604 rel_dyn
->add_local_generic(object
, symndx
, r_type
, this, got_offset
,
1608 // Add a pair of entries for a local symbol plus ADDEND to the GOT, and add
1609 // a dynamic relocation of type R_TYPE using the section symbol of
1610 // the output section to which input section SHNDX maps, on the first.
1611 // The first got entry will have a value of zero, the second the
1612 // value of the local symbol.
1613 template<int got_size
, bool big_endian
>
1615 Output_data_got
<got_size
, big_endian
>::add_local_pair_with_rel(
1617 unsigned int symndx
,
1619 unsigned int got_type
,
1620 Output_data_reloc_generic
* rel_dyn
,
1621 unsigned int r_type
,
1624 if (object
->local_has_got_offset(symndx
, got_type
, addend
))
1627 unsigned int got_offset
=
1628 this->add_got_entry_pair(Got_entry(),
1629 Got_entry(object
, symndx
, false, addend
));
1630 object
->set_local_got_offset(symndx
, got_type
, got_offset
, addend
);
1631 Output_section
* os
= object
->output_section(shndx
);
1632 rel_dyn
->add_output_section_generic(os
, r_type
, this, got_offset
, addend
);
1635 // Add a pair of entries for a local symbol to the GOT, and add
1636 // a dynamic relocation of type R_TYPE using STN_UNDEF on the first.
1637 // The first got entry will have a value of zero, the second the
1638 // value of the local symbol offset by Target::tls_offset_for_local.
1639 template<int got_size
, bool big_endian
>
1641 Output_data_got
<got_size
, big_endian
>::add_local_tls_pair(
1643 unsigned int symndx
,
1644 unsigned int got_type
,
1645 Output_data_reloc_generic
* rel_dyn
,
1646 unsigned int r_type
,
1649 if (object
->local_has_got_offset(symndx
, got_type
, addend
))
1652 unsigned int got_offset
1653 = this->add_got_entry_pair(Got_entry(),
1654 Got_entry(object
, symndx
, true, addend
));
1655 object
->set_local_got_offset(symndx
, got_type
, got_offset
, addend
);
1656 rel_dyn
->add_local_generic(object
, 0, r_type
, this, got_offset
, addend
);
1659 // Reserve a slot in the GOT for a local symbol or the second slot of a pair.
1661 template<int got_size
, bool big_endian
>
1663 Output_data_got
<got_size
, big_endian
>::reserve_local(
1666 unsigned int sym_index
,
1667 unsigned int got_type
,
1670 this->do_reserve_slot(i
);
1671 object
->set_local_got_offset(sym_index
, got_type
, this->got_offset(i
), addend
);
1674 // Reserve a slot in the GOT for a global symbol.
1676 template<int got_size
, bool big_endian
>
1678 Output_data_got
<got_size
, big_endian
>::reserve_global(
1681 unsigned int got_type
,
1684 this->do_reserve_slot(i
);
1685 gsym
->set_got_offset(got_type
, this->got_offset(i
), addend
);
1688 // Write out the GOT.
1690 template<int got_size
, bool big_endian
>
1692 Output_data_got
<got_size
, big_endian
>::do_write(Output_file
* of
)
1694 const int add
= got_size
/ 8;
1696 const off_t off
= this->offset();
1697 const off_t oview_size
= this->data_size();
1698 unsigned char* const oview
= of
->get_output_view(off
, oview_size
);
1700 unsigned char* pov
= oview
;
1701 for (unsigned int i
= 0; i
< this->entries_
.size(); ++i
)
1703 this->entries_
[i
].write(this, i
, pov
);
1707 gold_assert(pov
- oview
== oview_size
);
1709 of
->write_output_view(off
, oview_size
, oview
);
1711 // We no longer need the GOT entries.
1712 this->entries_
.clear();
1715 // Create a new GOT entry and return its offset.
1717 template<int got_size
, bool big_endian
>
1719 Output_data_got
<got_size
, big_endian
>::add_got_entry(Got_entry got_entry
)
1721 if (!this->is_data_size_valid())
1723 this->entries_
.push_back(got_entry
);
1724 this->set_got_size();
1725 return this->last_got_offset();
1729 // For an incremental update, find an available slot.
1730 off_t got_offset
= this->free_list_
.allocate(got_size
/ 8,
1732 if (got_offset
== -1)
1733 gold_fallback(_("out of patch space (GOT);"
1734 " relink with --incremental-full"));
1735 unsigned int got_index
= got_offset
/ (got_size
/ 8);
1736 gold_assert(got_index
< this->entries_
.size());
1737 this->entries_
[got_index
] = got_entry
;
1738 return static_cast<unsigned int>(got_offset
);
1742 // Create a pair of new GOT entries and return the offset of the first.
1744 template<int got_size
, bool big_endian
>
1746 Output_data_got
<got_size
, big_endian
>::add_got_entry_pair(
1747 Got_entry got_entry_1
,
1748 Got_entry got_entry_2
)
1750 if (!this->is_data_size_valid())
1752 unsigned int got_offset
;
1753 this->entries_
.push_back(got_entry_1
);
1754 got_offset
= this->last_got_offset();
1755 this->entries_
.push_back(got_entry_2
);
1756 this->set_got_size();
1761 // For an incremental update, find an available pair of slots.
1762 off_t got_offset
= this->free_list_
.allocate(2 * got_size
/ 8,
1764 if (got_offset
== -1)
1765 gold_fallback(_("out of patch space (GOT);"
1766 " relink with --incremental-full"));
1767 unsigned int got_index
= got_offset
/ (got_size
/ 8);
1768 gold_assert(got_index
< this->entries_
.size());
1769 this->entries_
[got_index
] = got_entry_1
;
1770 this->entries_
[got_index
+ 1] = got_entry_2
;
1771 return static_cast<unsigned int>(got_offset
);
1775 // Replace GOT entry I with a new value.
1777 template<int got_size
, bool big_endian
>
1779 Output_data_got
<got_size
, big_endian
>::replace_got_entry(
1781 Got_entry got_entry
)
1783 gold_assert(i
< this->entries_
.size());
1784 this->entries_
[i
] = got_entry
;
1787 // Output_data_dynamic::Dynamic_entry methods.
1789 // Write out the entry.
1791 template<int size
, bool big_endian
>
1793 Output_data_dynamic::Dynamic_entry::write(
1795 const Stringpool
* pool
) const
1797 typename
elfcpp::Elf_types
<size
>::Elf_WXword val
;
1798 switch (this->offset_
)
1800 case DYNAMIC_NUMBER
:
1804 case DYNAMIC_SECTION_SIZE
:
1805 val
= this->u_
.od
->data_size();
1806 if (this->od2
!= NULL
)
1807 val
+= this->od2
->data_size();
1810 case DYNAMIC_SYMBOL
:
1812 const Sized_symbol
<size
>* s
=
1813 static_cast<const Sized_symbol
<size
>*>(this->u_
.sym
);
1818 case DYNAMIC_STRING
:
1819 val
= pool
->get_offset(this->u_
.str
);
1822 case DYNAMIC_CUSTOM
:
1823 val
= parameters
->target().dynamic_tag_custom_value(this->tag_
);
1827 val
= this->u_
.od
->address() + this->offset_
;
1831 elfcpp::Dyn_write
<size
, big_endian
> dw(pov
);
1832 dw
.put_d_tag(this->tag_
);
1836 // Output_data_dynamic methods.
1838 // Adjust the output section to set the entry size.
1841 Output_data_dynamic::do_adjust_output_section(Output_section
* os
)
1843 if (parameters
->target().get_size() == 32)
1844 os
->set_entsize(elfcpp::Elf_sizes
<32>::dyn_size
);
1845 else if (parameters
->target().get_size() == 64)
1846 os
->set_entsize(elfcpp::Elf_sizes
<64>::dyn_size
);
1851 // Get a dynamic entry offset.
1854 Output_data_dynamic::get_entry_offset(elfcpp::DT tag
) const
1858 if (parameters
->target().get_size() == 32)
1859 dyn_size
= elfcpp::Elf_sizes
<32>::dyn_size
;
1860 else if (parameters
->target().get_size() == 64)
1861 dyn_size
= elfcpp::Elf_sizes
<64>::dyn_size
;
1865 for (size_t i
= 0; i
< entries_
.size(); ++i
)
1866 if (entries_
[i
].tag() == tag
)
1867 return i
* dyn_size
;
1872 // Set the final data size.
1875 Output_data_dynamic::set_final_data_size()
1877 // Add the terminating entry if it hasn't been added.
1878 // Because of relaxation, we can run this multiple times.
1879 if (this->entries_
.empty() || this->entries_
.back().tag() != elfcpp::DT_NULL
)
1881 int extra
= parameters
->options().spare_dynamic_tags();
1882 for (int i
= 0; i
< extra
; ++i
)
1883 this->add_constant(elfcpp::DT_NULL
, 0);
1884 this->add_constant(elfcpp::DT_NULL
, 0);
1888 if (parameters
->target().get_size() == 32)
1889 dyn_size
= elfcpp::Elf_sizes
<32>::dyn_size
;
1890 else if (parameters
->target().get_size() == 64)
1891 dyn_size
= elfcpp::Elf_sizes
<64>::dyn_size
;
1894 this->set_data_size(this->entries_
.size() * dyn_size
);
1897 // Write out the dynamic entries.
1900 Output_data_dynamic::do_write(Output_file
* of
)
1902 switch (parameters
->size_and_endianness())
1904 #ifdef HAVE_TARGET_32_LITTLE
1905 case Parameters::TARGET_32_LITTLE
:
1906 this->sized_write
<32, false>(of
);
1909 #ifdef HAVE_TARGET_32_BIG
1910 case Parameters::TARGET_32_BIG
:
1911 this->sized_write
<32, true>(of
);
1914 #ifdef HAVE_TARGET_64_LITTLE
1915 case Parameters::TARGET_64_LITTLE
:
1916 this->sized_write
<64, false>(of
);
1919 #ifdef HAVE_TARGET_64_BIG
1920 case Parameters::TARGET_64_BIG
:
1921 this->sized_write
<64, true>(of
);
1929 template<int size
, bool big_endian
>
1931 Output_data_dynamic::sized_write(Output_file
* of
)
1933 const int dyn_size
= elfcpp::Elf_sizes
<size
>::dyn_size
;
1935 const off_t offset
= this->offset();
1936 const off_t oview_size
= this->data_size();
1937 unsigned char* const oview
= of
->get_output_view(offset
, oview_size
);
1939 unsigned char* pov
= oview
;
1940 for (typename
Dynamic_entries::const_iterator p
= this->entries_
.begin();
1941 p
!= this->entries_
.end();
1944 p
->write
<size
, big_endian
>(pov
, this->pool_
);
1948 gold_assert(pov
- oview
== oview_size
);
1950 of
->write_output_view(offset
, oview_size
, oview
);
1952 // We no longer need the dynamic entries.
1953 this->entries_
.clear();
1956 // Class Output_symtab_xindex.
1959 Output_symtab_xindex::do_write(Output_file
* of
)
1961 const off_t offset
= this->offset();
1962 const off_t oview_size
= this->data_size();
1963 unsigned char* const oview
= of
->get_output_view(offset
, oview_size
);
1965 memset(oview
, 0, oview_size
);
1967 if (parameters
->target().is_big_endian())
1968 this->endian_do_write
<true>(oview
);
1970 this->endian_do_write
<false>(oview
);
1972 of
->write_output_view(offset
, oview_size
, oview
);
1974 // We no longer need the data.
1975 this->entries_
.clear();
1978 template<bool big_endian
>
1980 Output_symtab_xindex::endian_do_write(unsigned char* const oview
)
1982 for (Xindex_entries::const_iterator p
= this->entries_
.begin();
1983 p
!= this->entries_
.end();
1986 unsigned int symndx
= p
->first
;
1987 gold_assert(static_cast<off_t
>(symndx
) * 4 < this->data_size());
1988 elfcpp::Swap
<32, big_endian
>::writeval(oview
+ symndx
* 4, p
->second
);
1992 // Output_fill_debug_info methods.
1994 // Return the minimum size needed for a dummy compilation unit header.
1997 Output_fill_debug_info::do_minimum_hole_size() const
1999 // Compile unit header fields: unit_length, version, debug_abbrev_offset,
2001 const size_t len
= 4 + 2 + 4 + 1;
2002 // For type units, add type_signature, type_offset.
2003 if (this->is_debug_types_
)
2008 // Write a dummy compilation unit header to fill a hole in the
2009 // .debug_info or .debug_types section.
2012 Output_fill_debug_info::do_write(Output_file
* of
, off_t off
, size_t len
) const
2014 gold_debug(DEBUG_INCREMENTAL
, "fill_debug_info(%08lx, %08lx)",
2015 static_cast<long>(off
), static_cast<long>(len
));
2017 gold_assert(len
>= this->do_minimum_hole_size());
2019 unsigned char* const oview
= of
->get_output_view(off
, len
);
2020 unsigned char* pov
= oview
;
2022 // Write header fields: unit_length, version, debug_abbrev_offset,
2024 if (this->is_big_endian())
2026 elfcpp::Swap_unaligned
<32, true>::writeval(pov
, len
- 4);
2027 elfcpp::Swap_unaligned
<16, true>::writeval(pov
+ 4, this->version
);
2028 elfcpp::Swap_unaligned
<32, true>::writeval(pov
+ 6, 0);
2032 elfcpp::Swap_unaligned
<32, false>::writeval(pov
, len
- 4);
2033 elfcpp::Swap_unaligned
<16, false>::writeval(pov
+ 4, this->version
);
2034 elfcpp::Swap_unaligned
<32, false>::writeval(pov
+ 6, 0);
2039 // For type units, the additional header fields -- type_signature,
2040 // type_offset -- can be filled with zeroes.
2042 // Fill the remainder of the free space with zeroes. The first
2043 // zero should tell the consumer there are no DIEs to read in this
2044 // compilation unit.
2045 if (pov
< oview
+ len
)
2046 memset(pov
, 0, oview
+ len
- pov
);
2048 of
->write_output_view(off
, len
, oview
);
2051 // Output_fill_debug_line methods.
2053 // Return the minimum size needed for a dummy line number program header.
2056 Output_fill_debug_line::do_minimum_hole_size() const
2058 // Line number program header fields: unit_length, version, header_length,
2059 // minimum_instruction_length, default_is_stmt, line_base, line_range,
2060 // opcode_base, standard_opcode_lengths[], include_directories, filenames.
2061 const size_t len
= 4 + 2 + 4 + this->header_length
;
2065 // Write a dummy line number program header to fill a hole in the
2066 // .debug_line section.
2069 Output_fill_debug_line::do_write(Output_file
* of
, off_t off
, size_t len
) const
2071 gold_debug(DEBUG_INCREMENTAL
, "fill_debug_line(%08lx, %08lx)",
2072 static_cast<long>(off
), static_cast<long>(len
));
2074 gold_assert(len
>= this->do_minimum_hole_size());
2076 unsigned char* const oview
= of
->get_output_view(off
, len
);
2077 unsigned char* pov
= oview
;
2079 // Write header fields: unit_length, version, header_length,
2080 // minimum_instruction_length, default_is_stmt, line_base, line_range,
2081 // opcode_base, standard_opcode_lengths[], include_directories, filenames.
2082 // We set the header_length field to cover the entire hole, so the
2083 // line number program is empty.
2084 if (this->is_big_endian())
2086 elfcpp::Swap_unaligned
<32, true>::writeval(pov
, len
- 4);
2087 elfcpp::Swap_unaligned
<16, true>::writeval(pov
+ 4, this->version
);
2088 elfcpp::Swap_unaligned
<32, true>::writeval(pov
+ 6, len
- (4 + 2 + 4));
2092 elfcpp::Swap_unaligned
<32, false>::writeval(pov
, len
- 4);
2093 elfcpp::Swap_unaligned
<16, false>::writeval(pov
+ 4, this->version
);
2094 elfcpp::Swap_unaligned
<32, false>::writeval(pov
+ 6, len
- (4 + 2 + 4));
2097 *pov
++ = 1; // minimum_instruction_length
2098 *pov
++ = 0; // default_is_stmt
2099 *pov
++ = 0; // line_base
2100 *pov
++ = 5; // line_range
2101 *pov
++ = 13; // opcode_base
2102 *pov
++ = 0; // standard_opcode_lengths[1]
2103 *pov
++ = 1; // standard_opcode_lengths[2]
2104 *pov
++ = 1; // standard_opcode_lengths[3]
2105 *pov
++ = 1; // standard_opcode_lengths[4]
2106 *pov
++ = 1; // standard_opcode_lengths[5]
2107 *pov
++ = 0; // standard_opcode_lengths[6]
2108 *pov
++ = 0; // standard_opcode_lengths[7]
2109 *pov
++ = 0; // standard_opcode_lengths[8]
2110 *pov
++ = 1; // standard_opcode_lengths[9]
2111 *pov
++ = 0; // standard_opcode_lengths[10]
2112 *pov
++ = 0; // standard_opcode_lengths[11]
2113 *pov
++ = 1; // standard_opcode_lengths[12]
2114 *pov
++ = 0; // include_directories (empty)
2115 *pov
++ = 0; // filenames (empty)
2117 // Some consumers don't check the header_length field, and simply
2118 // start reading the line number program immediately following the
2119 // header. For those consumers, we fill the remainder of the free
2120 // space with DW_LNS_set_basic_block opcodes. These are effectively
2121 // no-ops: the resulting line table program will not create any rows.
2122 if (pov
< oview
+ len
)
2123 memset(pov
, elfcpp::DW_LNS_set_basic_block
, oview
+ len
- pov
);
2125 of
->write_output_view(off
, len
, oview
);
2128 // Output_section::Input_section methods.
2130 // Return the current data size. For an input section we store the size here.
2131 // For an Output_section_data, we have to ask it for the size.
2134 Output_section::Input_section::current_data_size() const
2136 if (this->is_input_section())
2137 return this->u1_
.data_size
;
2140 this->u2_
.posd
->pre_finalize_data_size();
2141 return this->u2_
.posd
->current_data_size();
2145 // Return the data size. For an input section we store the size here.
2146 // For an Output_section_data, we have to ask it for the size.
2149 Output_section::Input_section::data_size() const
2151 if (this->is_input_section())
2152 return this->u1_
.data_size
;
2154 return this->u2_
.posd
->data_size();
2157 // Return the object for an input section.
2160 Output_section::Input_section::relobj() const
2162 if (this->is_input_section())
2163 return this->u2_
.object
;
2164 else if (this->is_merge_section())
2166 gold_assert(this->u2_
.pomb
->first_relobj() != NULL
);
2167 return this->u2_
.pomb
->first_relobj();
2169 else if (this->is_relaxed_input_section())
2170 return this->u2_
.poris
->relobj();
2175 // Return the input section index for an input section.
2178 Output_section::Input_section::shndx() const
2180 if (this->is_input_section())
2181 return this->shndx_
;
2182 else if (this->is_merge_section())
2184 gold_assert(this->u2_
.pomb
->first_relobj() != NULL
);
2185 return this->u2_
.pomb
->first_shndx();
2187 else if (this->is_relaxed_input_section())
2188 return this->u2_
.poris
->shndx();
2193 // Set the address and file offset.
2196 Output_section::Input_section::set_address_and_file_offset(
2199 off_t section_file_offset
)
2201 if (this->is_input_section())
2202 this->u2_
.object
->set_section_offset(this->shndx_
,
2203 file_offset
- section_file_offset
);
2205 this->u2_
.posd
->set_address_and_file_offset(address
, file_offset
);
2208 // Reset the address and file offset.
2211 Output_section::Input_section::reset_address_and_file_offset()
2213 if (!this->is_input_section())
2214 this->u2_
.posd
->reset_address_and_file_offset();
2217 // Finalize the data size.
2220 Output_section::Input_section::finalize_data_size()
2222 if (!this->is_input_section())
2223 this->u2_
.posd
->finalize_data_size();
2226 // Try to turn an input offset into an output offset. We want to
2227 // return the output offset relative to the start of this
2228 // Input_section in the output section.
2231 Output_section::Input_section::output_offset(
2232 const Relobj
* object
,
2234 section_offset_type offset
,
2235 section_offset_type
* poutput
) const
2237 if (!this->is_input_section())
2238 return this->u2_
.posd
->output_offset(object
, shndx
, offset
, poutput
);
2241 if (this->shndx_
!= shndx
|| this->u2_
.object
!= object
)
2248 // Write out the data. We don't have to do anything for an input
2249 // section--they are handled via Object::relocate--but this is where
2250 // we write out the data for an Output_section_data.
2253 Output_section::Input_section::write(Output_file
* of
)
2255 if (!this->is_input_section())
2256 this->u2_
.posd
->write(of
);
2259 // Write the data to a buffer. As for write(), we don't have to do
2260 // anything for an input section.
2263 Output_section::Input_section::write_to_buffer(unsigned char* buffer
)
2265 if (!this->is_input_section())
2266 this->u2_
.posd
->write_to_buffer(buffer
);
2269 // Print to a map file.
2272 Output_section::Input_section::print_to_mapfile(Mapfile
* mapfile
) const
2274 switch (this->shndx_
)
2276 case OUTPUT_SECTION_CODE
:
2277 case MERGE_DATA_SECTION_CODE
:
2278 case MERGE_STRING_SECTION_CODE
:
2279 this->u2_
.posd
->print_to_mapfile(mapfile
);
2282 case RELAXED_INPUT_SECTION_CODE
:
2284 Output_relaxed_input_section
* relaxed_section
=
2285 this->relaxed_input_section();
2286 mapfile
->print_input_section(relaxed_section
->relobj(),
2287 relaxed_section
->shndx());
2291 mapfile
->print_input_section(this->u2_
.object
, this->shndx_
);
2296 // Output_section methods.
2298 // Construct an Output_section. NAME will point into a Stringpool.
2300 Output_section::Output_section(const char* name
, elfcpp::Elf_Word type
,
2301 elfcpp::Elf_Xword flags
)
2306 link_section_(NULL
),
2308 info_section_(NULL
),
2313 order_(ORDER_INVALID
),
2318 first_input_offset_(0),
2320 postprocessing_buffer_(NULL
),
2321 needs_symtab_index_(false),
2322 needs_dynsym_index_(false),
2323 should_link_to_symtab_(false),
2324 should_link_to_dynsym_(false),
2325 after_input_sections_(false),
2326 requires_postprocessing_(false),
2327 found_in_sections_clause_(false),
2328 has_load_address_(false),
2329 info_uses_section_index_(false),
2330 input_section_order_specified_(false),
2331 may_sort_attached_input_sections_(false),
2332 must_sort_attached_input_sections_(false),
2333 attached_input_sections_are_sorted_(false),
2335 is_small_section_(false),
2336 is_large_section_(false),
2337 generate_code_fills_at_write_(false),
2338 is_entsize_zero_(false),
2339 section_offsets_need_adjustment_(false),
2341 always_keeps_input_sections_(false),
2342 has_fixed_layout_(false),
2343 is_patch_space_allowed_(false),
2344 is_unique_segment_(false),
2346 extra_segment_flags_(0),
2347 segment_alignment_(0),
2349 lookup_maps_(new Output_section_lookup_maps
),
2351 free_space_fill_(NULL
),
2353 reloc_section_(NULL
)
2355 // An unallocated section has no address. Forcing this means that
2356 // we don't need special treatment for symbols defined in debug
2358 if ((flags
& elfcpp::SHF_ALLOC
) == 0)
2359 this->set_address(0);
2362 Output_section::~Output_section()
2364 delete this->checkpoint_
;
2367 // Set the entry size.
2370 Output_section::set_entsize(uint64_t v
)
2372 if (this->is_entsize_zero_
)
2374 else if (this->entsize_
== 0)
2376 else if (this->entsize_
!= v
)
2379 this->is_entsize_zero_
= 1;
2383 // Add the input section SHNDX, with header SHDR, named SECNAME, in
2384 // OBJECT, to the Output_section. RELOC_SHNDX is the index of a
2385 // relocation section which applies to this section, or 0 if none, or
2386 // -1U if more than one. Return the offset of the input section
2387 // within the output section. Return -1 if the input section will
2388 // receive special handling. In the normal case we don't always keep
2389 // track of input sections for an Output_section. Instead, each
2390 // Object keeps track of the Output_section for each of its input
2391 // sections. However, if HAVE_SECTIONS_SCRIPT is true, we do keep
2392 // track of input sections here; this is used when SECTIONS appears in
2395 template<int size
, bool big_endian
>
2397 Output_section::add_input_section(Layout
* layout
,
2398 Sized_relobj_file
<size
, big_endian
>* object
,
2400 const char* secname
,
2401 const elfcpp::Shdr
<size
, big_endian
>& shdr
,
2402 unsigned int reloc_shndx
,
2403 bool have_sections_script
)
2405 section_size_type input_section_size
= shdr
.get_sh_size();
2406 section_size_type uncompressed_size
;
2407 elfcpp::Elf_Xword addralign
= shdr
.get_sh_addralign();
2408 if (object
->section_is_compressed(shndx
, &uncompressed_size
,
2410 input_section_size
= uncompressed_size
;
2412 if ((addralign
& (addralign
- 1)) != 0)
2414 object
->error(_("invalid alignment %lu for section \"%s\""),
2415 static_cast<unsigned long>(addralign
), secname
);
2419 if (addralign
> this->addralign_
)
2420 this->addralign_
= addralign
;
2422 typename
elfcpp::Elf_types
<size
>::Elf_WXword sh_flags
= shdr
.get_sh_flags();
2423 uint64_t entsize
= shdr
.get_sh_entsize();
2425 // .debug_str is a mergeable string section, but is not always so
2426 // marked by compilers. Mark manually here so we can optimize.
2427 if (strcmp(secname
, ".debug_str") == 0)
2429 sh_flags
|= (elfcpp::SHF_MERGE
| elfcpp::SHF_STRINGS
);
2433 this->update_flags_for_input_section(sh_flags
);
2434 this->set_entsize(entsize
);
2436 // If this is a SHF_MERGE section, we pass all the input sections to
2437 // a Output_data_merge. We don't try to handle relocations for such
2438 // a section. We don't try to handle empty merge sections--they
2439 // mess up the mappings, and are useless anyhow.
2440 // FIXME: Need to handle merge sections during incremental update.
2441 if ((sh_flags
& elfcpp::SHF_MERGE
) != 0
2443 && shdr
.get_sh_size() > 0
2444 && !parameters
->incremental())
2446 // Keep information about merged input sections for rebuilding fast
2447 // lookup maps if we have sections-script or we do relaxation.
2448 bool keeps_input_sections
= (this->always_keeps_input_sections_
2449 || have_sections_script
2450 || parameters
->target().may_relax());
2452 if (this->add_merge_input_section(object
, shndx
, sh_flags
, entsize
,
2453 addralign
, keeps_input_sections
))
2455 // Tell the relocation routines that they need to call the
2456 // output_offset method to determine the final address.
2461 off_t offset_in_section
;
2463 if (this->has_fixed_layout())
2465 // For incremental updates, find a chunk of unused space in the section.
2466 offset_in_section
= this->free_list_
.allocate(input_section_size
,
2468 if (offset_in_section
== -1)
2469 gold_fallback(_("out of patch space in section %s; "
2470 "relink with --incremental-full"),
2472 return offset_in_section
;
2475 offset_in_section
= this->current_data_size_for_child();
2476 off_t aligned_offset_in_section
= align_address(offset_in_section
,
2478 this->set_current_data_size_for_child(aligned_offset_in_section
2479 + input_section_size
);
2481 // Determine if we want to delay code-fill generation until the output
2482 // section is written. When the target is relaxing, we want to delay fill
2483 // generating to avoid adjusting them during relaxation. Also, if we are
2484 // sorting input sections we must delay fill generation.
2485 if (!this->generate_code_fills_at_write_
2486 && !have_sections_script
2487 && (sh_flags
& elfcpp::SHF_EXECINSTR
) != 0
2488 && parameters
->target().has_code_fill()
2489 && (parameters
->target().may_relax()
2490 || layout
->is_section_ordering_specified()))
2492 gold_assert(this->fills_
.empty());
2493 this->generate_code_fills_at_write_
= true;
2496 if (aligned_offset_in_section
> offset_in_section
2497 && !this->generate_code_fills_at_write_
2498 && !have_sections_script
2499 && (sh_flags
& elfcpp::SHF_EXECINSTR
) != 0
2500 && parameters
->target().has_code_fill())
2502 // We need to add some fill data. Using fill_list_ when
2503 // possible is an optimization, since we will often have fill
2504 // sections without input sections.
2505 off_t fill_len
= aligned_offset_in_section
- offset_in_section
;
2506 if (this->input_sections_
.empty())
2507 this->fills_
.push_back(Fill(offset_in_section
, fill_len
));
2510 std::string
fill_data(parameters
->target().code_fill(fill_len
));
2511 Output_data_const
* odc
= new Output_data_const(fill_data
, 1);
2512 this->input_sections_
.push_back(Input_section(odc
));
2516 // We need to keep track of this section if we are already keeping
2517 // track of sections, or if we are relaxing. Also, if this is a
2518 // section which requires sorting, or which may require sorting in
2519 // the future, we keep track of the sections. If the
2520 // --section-ordering-file option is used to specify the order of
2521 // sections, we need to keep track of sections.
2522 if (this->always_keeps_input_sections_
2523 || have_sections_script
2524 || !this->input_sections_
.empty()
2525 || this->may_sort_attached_input_sections()
2526 || this->must_sort_attached_input_sections()
2527 || parameters
->options().user_set_Map()
2528 || parameters
->target().may_relax()
2529 || layout
->is_section_ordering_specified())
2531 Input_section
isecn(object
, shndx
, input_section_size
, addralign
);
2532 /* If section ordering is requested by specifying a ordering file,
2533 using --section-ordering-file, match the section name with
2535 if (parameters
->options().section_ordering_file())
2537 unsigned int section_order_index
=
2538 layout
->find_section_order_index(std::string(secname
));
2539 if (section_order_index
!= 0)
2541 isecn
.set_section_order_index(section_order_index
);
2542 this->set_input_section_order_specified();
2545 this->input_sections_
.push_back(isecn
);
2548 return aligned_offset_in_section
;
2551 // Add arbitrary data to an output section.
2554 Output_section::add_output_section_data(Output_section_data
* posd
)
2556 Input_section
inp(posd
);
2557 this->add_output_section_data(&inp
);
2559 if (posd
->is_data_size_valid())
2561 off_t offset_in_section
;
2562 if (this->has_fixed_layout())
2564 // For incremental updates, find a chunk of unused space.
2565 offset_in_section
= this->free_list_
.allocate(posd
->data_size(),
2566 posd
->addralign(), 0);
2567 if (offset_in_section
== -1)
2568 gold_fallback(_("out of patch space in section %s; "
2569 "relink with --incremental-full"),
2571 // Finalize the address and offset now.
2572 uint64_t addr
= this->address();
2573 off_t offset
= this->offset();
2574 posd
->set_address_and_file_offset(addr
+ offset_in_section
,
2575 offset
+ offset_in_section
);
2579 offset_in_section
= this->current_data_size_for_child();
2580 off_t aligned_offset_in_section
= align_address(offset_in_section
,
2582 this->set_current_data_size_for_child(aligned_offset_in_section
2583 + posd
->data_size());
2586 else if (this->has_fixed_layout())
2588 // For incremental updates, arrange for the data to have a fixed layout.
2589 // This will mean that additions to the data must be allocated from
2590 // free space within the containing output section.
2591 uint64_t addr
= this->address();
2592 posd
->set_address(addr
);
2593 posd
->set_file_offset(0);
2594 // FIXME: This should eventually be unreachable.
2595 // gold_unreachable();
2599 // Add a relaxed input section.
2602 Output_section::add_relaxed_input_section(Layout
* layout
,
2603 Output_relaxed_input_section
* poris
,
2604 const std::string
& name
)
2606 Input_section
inp(poris
);
2608 // If the --section-ordering-file option is used to specify the order of
2609 // sections, we need to keep track of sections.
2610 if (layout
->is_section_ordering_specified())
2612 unsigned int section_order_index
=
2613 layout
->find_section_order_index(name
);
2614 if (section_order_index
!= 0)
2616 inp
.set_section_order_index(section_order_index
);
2617 this->set_input_section_order_specified();
2621 this->add_output_section_data(&inp
);
2622 if (this->lookup_maps_
->is_valid())
2623 this->lookup_maps_
->add_relaxed_input_section(poris
->relobj(),
2624 poris
->shndx(), poris
);
2626 // For a relaxed section, we use the current data size. Linker scripts
2627 // get all the input sections, including relaxed one from an output
2628 // section and add them back to the same output section to compute the
2629 // output section size. If we do not account for sizes of relaxed input
2630 // sections, an output section would be incorrectly sized.
2631 off_t offset_in_section
= this->current_data_size_for_child();
2632 off_t aligned_offset_in_section
= align_address(offset_in_section
,
2633 poris
->addralign());
2634 this->set_current_data_size_for_child(aligned_offset_in_section
2635 + poris
->current_data_size());
2638 // Add arbitrary data to an output section by Input_section.
2641 Output_section::add_output_section_data(Input_section
* inp
)
2643 if (this->input_sections_
.empty())
2644 this->first_input_offset_
= this->current_data_size_for_child();
2646 this->input_sections_
.push_back(*inp
);
2648 uint64_t addralign
= inp
->addralign();
2649 if (addralign
> this->addralign_
)
2650 this->addralign_
= addralign
;
2652 inp
->set_output_section(this);
2655 // Add a merge section to an output section.
2658 Output_section::add_output_merge_section(Output_section_data
* posd
,
2659 bool is_string
, uint64_t entsize
)
2661 Input_section
inp(posd
, is_string
, entsize
);
2662 this->add_output_section_data(&inp
);
2665 // Add an input section to a SHF_MERGE section.
2668 Output_section::add_merge_input_section(Relobj
* object
, unsigned int shndx
,
2669 uint64_t flags
, uint64_t entsize
,
2671 bool keeps_input_sections
)
2673 // We cannot merge sections with entsize == 0.
2677 bool is_string
= (flags
& elfcpp::SHF_STRINGS
) != 0;
2679 // We cannot restore merged input section states.
2680 gold_assert(this->checkpoint_
== NULL
);
2682 // Look up merge sections by required properties.
2683 // Currently, we only invalidate the lookup maps in script processing
2684 // and relaxation. We should not have done either when we reach here.
2685 // So we assume that the lookup maps are valid to simply code.
2686 gold_assert(this->lookup_maps_
->is_valid());
2687 Merge_section_properties
msp(is_string
, entsize
, addralign
);
2688 Output_merge_base
* pomb
= this->lookup_maps_
->find_merge_section(msp
);
2689 bool is_new
= false;
2692 gold_assert(pomb
->is_string() == is_string
2693 && pomb
->entsize() == entsize
2694 && pomb
->addralign() == addralign
);
2698 // Create a new Output_merge_data or Output_merge_string_data.
2700 pomb
= new Output_merge_data(entsize
, addralign
);
2706 pomb
= new Output_merge_string
<char>(addralign
);
2709 pomb
= new Output_merge_string
<uint16_t>(addralign
);
2712 pomb
= new Output_merge_string
<uint32_t>(addralign
);
2718 // If we need to do script processing or relaxation, we need to keep
2719 // the original input sections to rebuild the fast lookup maps.
2720 if (keeps_input_sections
)
2721 pomb
->set_keeps_input_sections();
2725 if (pomb
->add_input_section(object
, shndx
))
2727 // Add new merge section to this output section and link merge
2728 // section properties to new merge section in map.
2731 this->add_output_merge_section(pomb
, is_string
, entsize
);
2732 this->lookup_maps_
->add_merge_section(msp
, pomb
);
2739 // If add_input_section failed, delete new merge section to avoid
2740 // exporting empty merge sections in Output_section::get_input_section.
2747 // Build a relaxation map to speed up relaxation of existing input sections.
2748 // Look up to the first LIMIT elements in INPUT_SECTIONS.
2751 Output_section::build_relaxation_map(
2752 const Input_section_list
& input_sections
,
2754 Relaxation_map
* relaxation_map
) const
2756 for (size_t i
= 0; i
< limit
; ++i
)
2758 const Input_section
& is(input_sections
[i
]);
2759 if (is
.is_input_section() || is
.is_relaxed_input_section())
2761 Section_id
sid(is
.relobj(), is
.shndx());
2762 (*relaxation_map
)[sid
] = i
;
2767 // Convert regular input sections in INPUT_SECTIONS into relaxed input
2768 // sections in RELAXED_SECTIONS. MAP is a prebuilt map from section id
2769 // indices of INPUT_SECTIONS.
2772 Output_section::convert_input_sections_in_list_to_relaxed_sections(
2773 const std::vector
<Output_relaxed_input_section
*>& relaxed_sections
,
2774 const Relaxation_map
& map
,
2775 Input_section_list
* input_sections
)
2777 for (size_t i
= 0; i
< relaxed_sections
.size(); ++i
)
2779 Output_relaxed_input_section
* poris
= relaxed_sections
[i
];
2780 Section_id
sid(poris
->relobj(), poris
->shndx());
2781 Relaxation_map::const_iterator p
= map
.find(sid
);
2782 gold_assert(p
!= map
.end());
2783 gold_assert((*input_sections
)[p
->second
].is_input_section());
2785 // Remember section order index of original input section
2786 // if it is set. Copy it to the relaxed input section.
2788 (*input_sections
)[p
->second
].section_order_index();
2789 (*input_sections
)[p
->second
] = Input_section(poris
);
2790 (*input_sections
)[p
->second
].set_section_order_index(soi
);
2794 // Convert regular input sections into relaxed input sections. RELAXED_SECTIONS
2795 // is a vector of pointers to Output_relaxed_input_section or its derived
2796 // classes. The relaxed sections must correspond to existing input sections.
2799 Output_section::convert_input_sections_to_relaxed_sections(
2800 const std::vector
<Output_relaxed_input_section
*>& relaxed_sections
)
2802 gold_assert(parameters
->target().may_relax());
2804 // We want to make sure that restore_states does not undo the effect of
2805 // this. If there is no checkpoint active, just search the current
2806 // input section list and replace the sections there. If there is
2807 // a checkpoint, also replace the sections there.
2809 // By default, we look at the whole list.
2810 size_t limit
= this->input_sections_
.size();
2812 if (this->checkpoint_
!= NULL
)
2814 // Replace input sections with relaxed input section in the saved
2815 // copy of the input section list.
2816 if (this->checkpoint_
->input_sections_saved())
2819 this->build_relaxation_map(
2820 *(this->checkpoint_
->input_sections()),
2821 this->checkpoint_
->input_sections()->size(),
2823 this->convert_input_sections_in_list_to_relaxed_sections(
2826 this->checkpoint_
->input_sections());
2830 // We have not copied the input section list yet. Instead, just
2831 // look at the portion that would be saved.
2832 limit
= this->checkpoint_
->input_sections_size();
2836 // Convert input sections in input_section_list.
2838 this->build_relaxation_map(this->input_sections_
, limit
, &map
);
2839 this->convert_input_sections_in_list_to_relaxed_sections(
2842 &this->input_sections_
);
2844 // Update fast look-up map.
2845 if (this->lookup_maps_
->is_valid())
2846 for (size_t i
= 0; i
< relaxed_sections
.size(); ++i
)
2848 Output_relaxed_input_section
* poris
= relaxed_sections
[i
];
2849 this->lookup_maps_
->add_relaxed_input_section(poris
->relobj(),
2850 poris
->shndx(), poris
);
2854 // Update the output section flags based on input section flags.
2857 Output_section::update_flags_for_input_section(elfcpp::Elf_Xword flags
)
2859 // If we created the section with SHF_ALLOC clear, we set the
2860 // address. If we are now setting the SHF_ALLOC flag, we need to
2862 if ((this->flags_
& elfcpp::SHF_ALLOC
) == 0
2863 && (flags
& elfcpp::SHF_ALLOC
) != 0)
2864 this->mark_address_invalid();
2866 this->flags_
|= (flags
2867 & (elfcpp::SHF_WRITE
2869 | elfcpp::SHF_EXECINSTR
));
2871 if ((flags
& elfcpp::SHF_MERGE
) == 0)
2872 this->flags_
&=~ elfcpp::SHF_MERGE
;
2875 if (this->current_data_size_for_child() == 0)
2876 this->flags_
|= elfcpp::SHF_MERGE
;
2879 if ((flags
& elfcpp::SHF_STRINGS
) == 0)
2880 this->flags_
&=~ elfcpp::SHF_STRINGS
;
2883 if (this->current_data_size_for_child() == 0)
2884 this->flags_
|= elfcpp::SHF_STRINGS
;
2888 // Find the merge section into which an input section with index SHNDX in
2889 // OBJECT has been added. Return NULL if none found.
2891 const Output_section_data
*
2892 Output_section::find_merge_section(const Relobj
* object
,
2893 unsigned int shndx
) const
2895 return object
->find_merge_section(shndx
);
2898 // Build the lookup maps for relaxed sections. This needs
2899 // to be declared as a const method so that it is callable with a const
2900 // Output_section pointer. The method only updates states of the maps.
2903 Output_section::build_lookup_maps() const
2905 this->lookup_maps_
->clear();
2906 for (Input_section_list::const_iterator p
= this->input_sections_
.begin();
2907 p
!= this->input_sections_
.end();
2910 if (p
->is_relaxed_input_section())
2912 Output_relaxed_input_section
* poris
= p
->relaxed_input_section();
2913 this->lookup_maps_
->add_relaxed_input_section(poris
->relobj(),
2914 poris
->shndx(), poris
);
2919 // Find an relaxed input section corresponding to an input section
2920 // in OBJECT with index SHNDX.
2922 const Output_relaxed_input_section
*
2923 Output_section::find_relaxed_input_section(const Relobj
* object
,
2924 unsigned int shndx
) const
2926 if (!this->lookup_maps_
->is_valid())
2927 this->build_lookup_maps();
2928 return this->lookup_maps_
->find_relaxed_input_section(object
, shndx
);
2931 // Given an address OFFSET relative to the start of input section
2932 // SHNDX in OBJECT, return whether this address is being included in
2933 // the final link. This should only be called if SHNDX in OBJECT has
2934 // a special mapping.
2937 Output_section::is_input_address_mapped(const Relobj
* object
,
2941 // Look at the Output_section_data_maps first.
2942 const Output_section_data
* posd
= this->find_merge_section(object
, shndx
);
2944 posd
= this->find_relaxed_input_section(object
, shndx
);
2948 section_offset_type output_offset
;
2949 bool found
= posd
->output_offset(object
, shndx
, offset
, &output_offset
);
2950 // By default we assume that the address is mapped. See comment at the
2954 return output_offset
!= -1;
2957 // Fall back to the slow look-up.
2958 for (Input_section_list::const_iterator p
= this->input_sections_
.begin();
2959 p
!= this->input_sections_
.end();
2962 section_offset_type output_offset
;
2963 if (p
->output_offset(object
, shndx
, offset
, &output_offset
))
2964 return output_offset
!= -1;
2967 // By default we assume that the address is mapped. This should
2968 // only be called after we have passed all sections to Layout. At
2969 // that point we should know what we are discarding.
2973 // Given an address OFFSET relative to the start of input section
2974 // SHNDX in object OBJECT, return the output offset relative to the
2975 // start of the input section in the output section. This should only
2976 // be called if SHNDX in OBJECT has a special mapping.
2979 Output_section::output_offset(const Relobj
* object
, unsigned int shndx
,
2980 section_offset_type offset
) const
2982 // This can only be called meaningfully when we know the data size
2984 gold_assert(this->is_data_size_valid());
2986 // Look at the Output_section_data_maps first.
2987 const Output_section_data
* posd
= this->find_merge_section(object
, shndx
);
2989 posd
= this->find_relaxed_input_section(object
, shndx
);
2992 section_offset_type output_offset
;
2993 bool found
= posd
->output_offset(object
, shndx
, offset
, &output_offset
);
2995 return output_offset
;
2998 // Fall back to the slow look-up.
2999 for (Input_section_list::const_iterator p
= this->input_sections_
.begin();
3000 p
!= this->input_sections_
.end();
3003 section_offset_type output_offset
;
3004 if (p
->output_offset(object
, shndx
, offset
, &output_offset
))
3005 return output_offset
;
3010 // Return the output virtual address of OFFSET relative to the start
3011 // of input section SHNDX in object OBJECT.
3014 Output_section::output_address(const Relobj
* object
, unsigned int shndx
,
3017 uint64_t addr
= this->address() + this->first_input_offset_
;
3019 // Look at the Output_section_data_maps first.
3020 const Output_section_data
* posd
= this->find_merge_section(object
, shndx
);
3022 posd
= this->find_relaxed_input_section(object
, shndx
);
3023 if (posd
!= NULL
&& posd
->is_address_valid())
3025 section_offset_type output_offset
;
3026 bool found
= posd
->output_offset(object
, shndx
, offset
, &output_offset
);
3028 return posd
->address() + output_offset
;
3031 // Fall back to the slow look-up.
3032 for (Input_section_list::const_iterator p
= this->input_sections_
.begin();
3033 p
!= this->input_sections_
.end();
3036 addr
= align_address(addr
, p
->addralign());
3037 section_offset_type output_offset
;
3038 if (p
->output_offset(object
, shndx
, offset
, &output_offset
))
3040 if (output_offset
== -1)
3042 return addr
+ output_offset
;
3044 addr
+= p
->data_size();
3047 // If we get here, it means that we don't know the mapping for this
3048 // input section. This might happen in principle if
3049 // add_input_section were called before add_output_section_data.
3050 // But it should never actually happen.
3055 // Find the output address of the start of the merged section for
3056 // input section SHNDX in object OBJECT.
3059 Output_section::find_starting_output_address(const Relobj
* object
,
3061 uint64_t* paddr
) const
3063 const Output_section_data
* data
= this->find_merge_section(object
, shndx
);
3067 // FIXME: This becomes a bottle-neck if we have many relaxed sections.
3068 // Looking up the merge section map does not always work as we sometimes
3069 // find a merge section without its address set.
3070 uint64_t addr
= this->address() + this->first_input_offset_
;
3071 for (Input_section_list::const_iterator p
= this->input_sections_
.begin();
3072 p
!= this->input_sections_
.end();
3075 addr
= align_address(addr
, p
->addralign());
3077 // It would be nice if we could use the existing output_offset
3078 // method to get the output offset of input offset 0.
3079 // Unfortunately we don't know for sure that input offset 0 is
3081 if (!p
->is_input_section() && p
->output_section_data() == data
)
3087 addr
+= p
->data_size();
3090 // We couldn't find a merge output section for this input section.
3094 // Update the data size of an Output_section.
3097 Output_section::update_data_size()
3099 if (this->input_sections_
.empty())
3102 if (this->must_sort_attached_input_sections()
3103 || this->input_section_order_specified())
3104 this->sort_attached_input_sections();
3106 off_t off
= this->first_input_offset_
;
3107 for (Input_section_list::iterator p
= this->input_sections_
.begin();
3108 p
!= this->input_sections_
.end();
3111 off
= align_address(off
, p
->addralign());
3112 off
+= p
->current_data_size();
3115 this->set_current_data_size_for_child(off
);
3118 // Set the data size of an Output_section. This is where we handle
3119 // setting the addresses of any Output_section_data objects.
3122 Output_section::set_final_data_size()
3126 if (this->input_sections_
.empty())
3127 data_size
= this->current_data_size_for_child();
3130 if (this->must_sort_attached_input_sections()
3131 || this->input_section_order_specified())
3132 this->sort_attached_input_sections();
3134 uint64_t address
= this->address();
3135 off_t startoff
= this->offset();
3136 off_t off
= this->first_input_offset_
;
3137 for (Input_section_list::iterator p
= this->input_sections_
.begin();
3138 p
!= this->input_sections_
.end();
3141 off
= align_address(off
, p
->addralign());
3142 p
->set_address_and_file_offset(address
+ off
, startoff
+ off
,
3144 off
+= p
->data_size();
3149 // For full incremental links, we want to allocate some patch space
3150 // in most sections for subsequent incremental updates.
3151 if (this->is_patch_space_allowed_
&& parameters
->incremental_full())
3153 double pct
= parameters
->options().incremental_patch();
3154 size_t extra
= static_cast<size_t>(data_size
* pct
);
3155 if (this->free_space_fill_
!= NULL
3156 && this->free_space_fill_
->minimum_hole_size() > extra
)
3157 extra
= this->free_space_fill_
->minimum_hole_size();
3158 off_t new_size
= align_address(data_size
+ extra
, this->addralign());
3159 this->patch_space_
= new_size
- data_size
;
3160 gold_debug(DEBUG_INCREMENTAL
,
3161 "set_final_data_size: %08lx + %08lx: section %s",
3162 static_cast<long>(data_size
),
3163 static_cast<long>(this->patch_space_
),
3165 data_size
= new_size
;
3168 this->set_data_size(data_size
);
3171 // Reset the address and file offset.
3174 Output_section::do_reset_address_and_file_offset()
3176 // An unallocated section has no address. Forcing this means that
3177 // we don't need special treatment for symbols defined in debug
3178 // sections. We do the same in the constructor. This does not
3179 // apply to NOLOAD sections though.
3180 if (((this->flags_
& elfcpp::SHF_ALLOC
) == 0) && !this->is_noload_
)
3181 this->set_address(0);
3183 for (Input_section_list::iterator p
= this->input_sections_
.begin();
3184 p
!= this->input_sections_
.end();
3186 p
->reset_address_and_file_offset();
3188 // Remove any patch space that was added in set_final_data_size.
3189 if (this->patch_space_
> 0)
3191 this->set_current_data_size_for_child(this->current_data_size_for_child()
3192 - this->patch_space_
);
3193 this->patch_space_
= 0;
3197 // Return true if address and file offset have the values after reset.
3200 Output_section::do_address_and_file_offset_have_reset_values() const
3202 if (this->is_offset_valid())
3205 // An unallocated section has address 0 after its construction or a reset.
3206 if ((this->flags_
& elfcpp::SHF_ALLOC
) == 0)
3207 return this->is_address_valid() && this->address() == 0;
3209 return !this->is_address_valid();
3212 // Set the TLS offset. Called only for SHT_TLS sections.
3215 Output_section::do_set_tls_offset(uint64_t tls_base
)
3217 this->tls_offset_
= this->address() - tls_base
;
3220 // In a few cases we need to sort the input sections attached to an
3221 // output section. This is used to implement the type of constructor
3222 // priority ordering implemented by the GNU linker, in which the
3223 // priority becomes part of the section name and the sections are
3224 // sorted by name. We only do this for an output section if we see an
3225 // attached input section matching ".ctors.*", ".dtors.*",
3226 // ".init_array.*" or ".fini_array.*".
3228 class Output_section::Input_section_sort_entry
3231 Input_section_sort_entry()
3232 : input_section_(), index_(-1U), section_name_()
3235 Input_section_sort_entry(const Input_section
& input_section
,
3237 bool must_sort_attached_input_sections
,
3238 const char* output_section_name
)
3239 : input_section_(input_section
), index_(index
), section_name_()
3241 if ((input_section
.is_input_section()
3242 || input_section
.is_relaxed_input_section())
3243 && must_sort_attached_input_sections
)
3245 // This is only called single-threaded from Layout::finalize,
3246 // so it is OK to lock. Unfortunately we have no way to pass
3248 const Task
* dummy_task
= reinterpret_cast<const Task
*>(-1);
3249 Object
* obj
= (input_section
.is_input_section()
3250 ? input_section
.relobj()
3251 : input_section
.relaxed_input_section()->relobj());
3252 Task_lock_obj
<Object
> tl(dummy_task
, obj
);
3254 // This is a slow operation, which should be cached in
3255 // Layout::layout if this becomes a speed problem.
3256 this->section_name_
= obj
->section_name(input_section
.shndx());
3258 else if (input_section
.is_output_section_data()
3259 && must_sort_attached_input_sections
)
3261 // For linker-generated sections, use the output section name.
3262 this->section_name_
.assign(output_section_name
);
3266 // Return the Input_section.
3267 const Input_section
&
3268 input_section() const
3270 gold_assert(this->index_
!= -1U);
3271 return this->input_section_
;
3274 // The index of this entry in the original list. This is used to
3275 // make the sort stable.
3279 gold_assert(this->index_
!= -1U);
3280 return this->index_
;
3283 // The section name.
3285 section_name() const
3287 return this->section_name_
;
3290 // Return true if the section name has a priority. This is assumed
3291 // to be true if it has a dot after the initial dot.
3293 has_priority() const
3295 return this->section_name_
.find('.', 1) != std::string::npos
;
3298 // Return the priority. Believe it or not, gcc encodes the priority
3299 // differently for .ctors/.dtors and .init_array/.fini_array
3302 get_priority() const
3305 if (is_prefix_of(".ctors.", this->section_name_
.c_str())
3306 || is_prefix_of(".dtors.", this->section_name_
.c_str()))
3308 else if (is_prefix_of(".init_array.", this->section_name_
.c_str())
3309 || is_prefix_of(".fini_array.", this->section_name_
.c_str()))
3314 unsigned long prio
= strtoul((this->section_name_
.c_str()
3315 + (is_ctors
? 7 : 12)),
3320 return 65535 - prio
;
3325 // Return true if this an input file whose base name matches
3326 // FILE_NAME. The base name must have an extension of ".o", and
3327 // must be exactly FILE_NAME.o or FILE_NAME, one character, ".o".
3328 // This is to match crtbegin.o as well as crtbeginS.o without
3329 // getting confused by other possibilities. Overall matching the
3330 // file name this way is a dreadful hack, but the GNU linker does it
3331 // in order to better support gcc, and we need to be compatible.
3333 match_file_name(const char* file_name
) const
3335 if (this->input_section_
.is_output_section_data())
3337 return Layout::match_file_name(this->input_section_
.relobj(), file_name
);
3340 // Returns 1 if THIS should appear before S in section order, -1 if S
3341 // appears before THIS and 0 if they are not comparable.
3343 compare_section_ordering(const Input_section_sort_entry
& s
) const
3345 unsigned int this_secn_index
= this->input_section_
.section_order_index();
3346 unsigned int s_secn_index
= s
.input_section().section_order_index();
3347 if (this_secn_index
> 0 && s_secn_index
> 0)
3349 if (this_secn_index
< s_secn_index
)
3351 else if (this_secn_index
> s_secn_index
)
3358 // The Input_section we are sorting.
3359 Input_section input_section_
;
3360 // The index of this Input_section in the original list.
3361 unsigned int index_
;
3362 // The section name if there is one.
3363 std::string section_name_
;
3366 // Return true if S1 should come before S2 in the output section.
3369 Output_section::Input_section_sort_compare::operator()(
3370 const Output_section::Input_section_sort_entry
& s1
,
3371 const Output_section::Input_section_sort_entry
& s2
) const
3373 // crtbegin.o must come first.
3374 bool s1_begin
= s1
.match_file_name("crtbegin");
3375 bool s2_begin
= s2
.match_file_name("crtbegin");
3376 if (s1_begin
|| s2_begin
)
3382 return s1
.index() < s2
.index();
3385 // crtend.o must come last.
3386 bool s1_end
= s1
.match_file_name("crtend");
3387 bool s2_end
= s2
.match_file_name("crtend");
3388 if (s1_end
|| s2_end
)
3394 return s1
.index() < s2
.index();
3397 // A section with a priority follows a section without a priority.
3398 bool s1_has_priority
= s1
.has_priority();
3399 bool s2_has_priority
= s2
.has_priority();
3400 if (s1_has_priority
&& !s2_has_priority
)
3402 if (!s1_has_priority
&& s2_has_priority
)
3405 // Check if a section order exists for these sections through a section
3406 // ordering file. If sequence_num is 0, an order does not exist.
3407 int sequence_num
= s1
.compare_section_ordering(s2
);
3408 if (sequence_num
!= 0)
3409 return sequence_num
== 1;
3411 // Otherwise we sort by name.
3412 int compare
= s1
.section_name().compare(s2
.section_name());
3416 // Otherwise we keep the input order.
3417 return s1
.index() < s2
.index();
3420 // Return true if S1 should come before S2 in an .init_array or .fini_array
3424 Output_section::Input_section_sort_init_fini_compare::operator()(
3425 const Output_section::Input_section_sort_entry
& s1
,
3426 const Output_section::Input_section_sort_entry
& s2
) const
3428 // A section without a priority follows a section with a priority.
3429 // This is the reverse of .ctors and .dtors sections.
3430 bool s1_has_priority
= s1
.has_priority();
3431 bool s2_has_priority
= s2
.has_priority();
3432 if (s1_has_priority
&& !s2_has_priority
)
3434 if (!s1_has_priority
&& s2_has_priority
)
3437 // .ctors and .dtors sections without priority come after
3438 // .init_array and .fini_array sections without priority.
3439 if (!s1_has_priority
3440 && (s1
.section_name() == ".ctors" || s1
.section_name() == ".dtors")
3441 && s1
.section_name() != s2
.section_name())
3443 if (!s2_has_priority
3444 && (s2
.section_name() == ".ctors" || s2
.section_name() == ".dtors")
3445 && s2
.section_name() != s1
.section_name())
3448 // Sort by priority if we can.
3449 if (s1_has_priority
)
3451 unsigned int s1_prio
= s1
.get_priority();
3452 unsigned int s2_prio
= s2
.get_priority();
3453 if (s1_prio
< s2_prio
)
3455 else if (s1_prio
> s2_prio
)
3459 // Check if a section order exists for these sections through a section
3460 // ordering file. If sequence_num is 0, an order does not exist.
3461 int sequence_num
= s1
.compare_section_ordering(s2
);
3462 if (sequence_num
!= 0)
3463 return sequence_num
== 1;
3465 // Otherwise we sort by name.
3466 int compare
= s1
.section_name().compare(s2
.section_name());
3470 // Otherwise we keep the input order.
3471 return s1
.index() < s2
.index();
3474 // Return true if S1 should come before S2. Sections that do not match
3475 // any pattern in the section ordering file are placed ahead of the sections
3476 // that match some pattern.
3479 Output_section::Input_section_sort_section_order_index_compare::operator()(
3480 const Output_section::Input_section_sort_entry
& s1
,
3481 const Output_section::Input_section_sort_entry
& s2
) const
3483 unsigned int s1_secn_index
= s1
.input_section().section_order_index();
3484 unsigned int s2_secn_index
= s2
.input_section().section_order_index();
3486 // Keep input order if section ordering cannot determine order.
3487 if (s1_secn_index
== s2_secn_index
)
3488 return s1
.index() < s2
.index();
3490 return s1_secn_index
< s2_secn_index
;
3493 // Return true if S1 should come before S2. This is the sort comparison
3494 // function for .text to sort sections with prefixes
3495 // .text.{unlikely,exit,startup,hot} before other sections.
3498 Output_section::Input_section_sort_section_prefix_special_ordering_compare
3500 const Output_section::Input_section_sort_entry
& s1
,
3501 const Output_section::Input_section_sort_entry
& s2
) const
3503 // Some input section names have special ordering requirements.
3504 const char *s1_section_name
= s1
.section_name().c_str();
3505 const char *s2_section_name
= s2
.section_name().c_str();
3506 int o1
= Layout::special_ordering_of_input_section(s1_section_name
);
3507 int o2
= Layout::special_ordering_of_input_section(s2_section_name
);
3517 else if (is_prefix_of(".text.sorted", s1_section_name
))
3518 return strcmp(s1_section_name
, s2_section_name
) <= 0;
3520 // Keep input order otherwise.
3521 return s1
.index() < s2
.index();
3524 // Return true if S1 should come before S2. This is the sort comparison
3525 // function for sections to sort them by name.
3528 Output_section::Input_section_sort_section_name_compare
3530 const Output_section::Input_section_sort_entry
& s1
,
3531 const Output_section::Input_section_sort_entry
& s2
) const
3534 int compare
= s1
.section_name().compare(s2
.section_name());
3538 // Keep input order otherwise.
3539 return s1
.index() < s2
.index();
3542 // This updates the section order index of input sections according to the
3543 // the order specified in the mapping from Section id to order index.
3546 Output_section::update_section_layout(
3547 const Section_layout_order
* order_map
)
3549 for (Input_section_list::iterator p
= this->input_sections_
.begin();
3550 p
!= this->input_sections_
.end();
3553 if (p
->is_input_section()
3554 || p
->is_relaxed_input_section())
3556 Relobj
* obj
= (p
->is_input_section()
3558 : p
->relaxed_input_section()->relobj());
3559 unsigned int shndx
= p
->shndx();
3560 Section_layout_order::const_iterator it
3561 = order_map
->find(Section_id(obj
, shndx
));
3562 if (it
== order_map
->end())
3564 unsigned int section_order_index
= it
->second
;
3565 if (section_order_index
!= 0)
3567 p
->set_section_order_index(section_order_index
);
3568 this->set_input_section_order_specified();
3574 // Sort the input sections attached to an output section.
3577 Output_section::sort_attached_input_sections()
3579 if (this->attached_input_sections_are_sorted_
)
3582 if (this->checkpoint_
!= NULL
3583 && !this->checkpoint_
->input_sections_saved())
3584 this->checkpoint_
->save_input_sections();
3586 // The only thing we know about an input section is the object and
3587 // the section index. We need the section name. Recomputing this
3588 // is slow but this is an unusual case. If this becomes a speed
3589 // problem we can cache the names as required in Layout::layout.
3591 // We start by building a larger vector holding a copy of each
3592 // Input_section, plus its current index in the list and its name.
3593 std::vector
<Input_section_sort_entry
> sort_list
;
3596 for (Input_section_list::iterator p
= this->input_sections_
.begin();
3597 p
!= this->input_sections_
.end();
3599 sort_list
.push_back(Input_section_sort_entry(*p
, i
,
3600 this->must_sort_attached_input_sections(),
3603 // Sort the input sections.
3604 if (this->must_sort_attached_input_sections())
3606 if (this->type() == elfcpp::SHT_PREINIT_ARRAY
3607 || this->type() == elfcpp::SHT_INIT_ARRAY
3608 || this->type() == elfcpp::SHT_FINI_ARRAY
)
3609 std::sort(sort_list
.begin(), sort_list
.end(),
3610 Input_section_sort_init_fini_compare());
3611 else if (strcmp(parameters
->options().sort_section(), "name") == 0)
3612 std::sort(sort_list
.begin(), sort_list
.end(),
3613 Input_section_sort_section_name_compare());
3614 else if (strcmp(this->name(), ".text") == 0)
3615 std::sort(sort_list
.begin(), sort_list
.end(),
3616 Input_section_sort_section_prefix_special_ordering_compare());
3618 std::sort(sort_list
.begin(), sort_list
.end(),
3619 Input_section_sort_compare());
3623 gold_assert(this->input_section_order_specified());
3624 std::sort(sort_list
.begin(), sort_list
.end(),
3625 Input_section_sort_section_order_index_compare());
3628 // Copy the sorted input sections back to our list.
3629 this->input_sections_
.clear();
3630 for (std::vector
<Input_section_sort_entry
>::iterator p
= sort_list
.begin();
3631 p
!= sort_list
.end();
3633 this->input_sections_
.push_back(p
->input_section());
3636 // Remember that we sorted the input sections, since we might get
3638 this->attached_input_sections_are_sorted_
= true;
3641 // Write the section header to *OSHDR.
3643 template<int size
, bool big_endian
>
3645 Output_section::write_header(const Layout
* layout
,
3646 const Stringpool
* secnamepool
,
3647 elfcpp::Shdr_write
<size
, big_endian
>* oshdr
) const
3649 oshdr
->put_sh_name(secnamepool
->get_offset(this->name_
));
3650 oshdr
->put_sh_type(this->type_
);
3652 elfcpp::Elf_Xword flags
= this->flags_
;
3653 if (this->info_section_
!= NULL
&& this->info_uses_section_index_
)
3654 flags
|= elfcpp::SHF_INFO_LINK
;
3655 oshdr
->put_sh_flags(flags
);
3657 oshdr
->put_sh_addr(this->address());
3658 oshdr
->put_sh_offset(this->offset());
3659 oshdr
->put_sh_size(this->data_size());
3660 if (this->link_section_
!= NULL
)
3661 oshdr
->put_sh_link(this->link_section_
->out_shndx());
3662 else if (this->should_link_to_symtab_
)
3663 oshdr
->put_sh_link(layout
->symtab_section_shndx());
3664 else if (this->should_link_to_dynsym_
)
3665 oshdr
->put_sh_link(layout
->dynsym_section()->out_shndx());
3667 oshdr
->put_sh_link(this->link_
);
3669 elfcpp::Elf_Word info
;
3670 if (this->info_section_
!= NULL
)
3672 if (this->info_uses_section_index_
)
3673 info
= this->info_section_
->out_shndx();
3675 info
= this->info_section_
->symtab_index();
3677 else if (this->info_symndx_
!= NULL
)
3678 info
= this->info_symndx_
->symtab_index();
3681 oshdr
->put_sh_info(info
);
3683 oshdr
->put_sh_addralign(this->addralign_
);
3684 oshdr
->put_sh_entsize(this->entsize_
);
3687 // Write out the data. For input sections the data is written out by
3688 // Object::relocate, but we have to handle Output_section_data objects
3692 Output_section::do_write(Output_file
* of
)
3694 gold_assert(!this->requires_postprocessing());
3696 // If the target performs relaxation, we delay filler generation until now.
3697 gold_assert(!this->generate_code_fills_at_write_
|| this->fills_
.empty());
3699 off_t output_section_file_offset
= this->offset();
3700 for (Fill_list::iterator p
= this->fills_
.begin();
3701 p
!= this->fills_
.end();
3704 std::string
fill_data(parameters
->target().code_fill(p
->length()));
3705 of
->write(output_section_file_offset
+ p
->section_offset(),
3706 fill_data
.data(), fill_data
.size());
3709 off_t off
= this->offset() + this->first_input_offset_
;
3710 for (Input_section_list::iterator p
= this->input_sections_
.begin();
3711 p
!= this->input_sections_
.end();
3714 off_t aligned_off
= align_address(off
, p
->addralign());
3715 if (this->generate_code_fills_at_write_
&& (off
!= aligned_off
))
3717 size_t fill_len
= aligned_off
- off
;
3718 std::string
fill_data(parameters
->target().code_fill(fill_len
));
3719 of
->write(off
, fill_data
.data(), fill_data
.size());
3723 off
= aligned_off
+ p
->data_size();
3726 // For incremental links, fill in unused chunks in debug sections
3727 // with dummy compilation unit headers.
3728 if (this->free_space_fill_
!= NULL
)
3730 for (Free_list::Const_iterator p
= this->free_list_
.begin();
3731 p
!= this->free_list_
.end();
3734 off_t off
= p
->start_
;
3735 size_t len
= p
->end_
- off
;
3736 this->free_space_fill_
->write(of
, this->offset() + off
, len
);
3738 if (this->patch_space_
> 0)
3740 off_t off
= this->current_data_size_for_child() - this->patch_space_
;
3741 this->free_space_fill_
->write(of
, this->offset() + off
,
3742 this->patch_space_
);
3747 // If a section requires postprocessing, create the buffer to use.
3750 Output_section::create_postprocessing_buffer()
3752 gold_assert(this->requires_postprocessing());
3754 if (this->postprocessing_buffer_
!= NULL
)
3757 if (!this->input_sections_
.empty())
3759 off_t off
= this->first_input_offset_
;
3760 for (Input_section_list::iterator p
= this->input_sections_
.begin();
3761 p
!= this->input_sections_
.end();
3764 off
= align_address(off
, p
->addralign());
3765 p
->finalize_data_size();
3766 off
+= p
->data_size();
3768 this->set_current_data_size_for_child(off
);
3771 off_t buffer_size
= this->current_data_size_for_child();
3772 this->postprocessing_buffer_
= new unsigned char[buffer_size
];
3775 // Write all the data of an Output_section into the postprocessing
3776 // buffer. This is used for sections which require postprocessing,
3777 // such as compression. Input sections are handled by
3778 // Object::Relocate.
3781 Output_section::write_to_postprocessing_buffer()
3783 gold_assert(this->requires_postprocessing());
3785 // If the target performs relaxation, we delay filler generation until now.
3786 gold_assert(!this->generate_code_fills_at_write_
|| this->fills_
.empty());
3788 unsigned char* buffer
= this->postprocessing_buffer();
3789 for (Fill_list::iterator p
= this->fills_
.begin();
3790 p
!= this->fills_
.end();
3793 std::string
fill_data(parameters
->target().code_fill(p
->length()));
3794 memcpy(buffer
+ p
->section_offset(), fill_data
.data(),
3798 off_t off
= this->first_input_offset_
;
3799 for (Input_section_list::iterator p
= this->input_sections_
.begin();
3800 p
!= this->input_sections_
.end();
3803 off_t aligned_off
= align_address(off
, p
->addralign());
3804 if (this->generate_code_fills_at_write_
&& (off
!= aligned_off
))
3806 size_t fill_len
= aligned_off
- off
;
3807 std::string
fill_data(parameters
->target().code_fill(fill_len
));
3808 memcpy(buffer
+ off
, fill_data
.data(), fill_data
.size());
3811 p
->write_to_buffer(buffer
+ aligned_off
);
3812 off
= aligned_off
+ p
->data_size();
3816 // Get the input sections for linker script processing. We leave
3817 // behind the Output_section_data entries. Note that this may be
3818 // slightly incorrect for merge sections. We will leave them behind,
3819 // but it is possible that the script says that they should follow
3820 // some other input sections, as in:
3821 // .rodata { *(.rodata) *(.rodata.cst*) }
3822 // For that matter, we don't handle this correctly:
3823 // .rodata { foo.o(.rodata.cst*) *(.rodata.cst*) }
3824 // With luck this will never matter.
3827 Output_section::get_input_sections(
3829 const std::string
& fill
,
3830 std::list
<Input_section
>* input_sections
)
3832 if (this->checkpoint_
!= NULL
3833 && !this->checkpoint_
->input_sections_saved())
3834 this->checkpoint_
->save_input_sections();
3836 // Invalidate fast look-up maps.
3837 this->lookup_maps_
->invalidate();
3839 uint64_t orig_address
= address
;
3841 address
= align_address(address
, this->addralign());
3843 Input_section_list remaining
;
3844 for (Input_section_list::iterator p
= this->input_sections_
.begin();
3845 p
!= this->input_sections_
.end();
3848 if (p
->is_input_section()
3849 || p
->is_relaxed_input_section()
3850 || p
->is_merge_section())
3851 input_sections
->push_back(*p
);
3854 uint64_t aligned_address
= align_address(address
, p
->addralign());
3855 if (aligned_address
!= address
&& !fill
.empty())
3857 section_size_type length
=
3858 convert_to_section_size_type(aligned_address
- address
);
3859 std::string this_fill
;
3860 this_fill
.reserve(length
);
3861 while (this_fill
.length() + fill
.length() <= length
)
3863 if (this_fill
.length() < length
)
3864 this_fill
.append(fill
, 0, length
- this_fill
.length());
3866 Output_section_data
* posd
= new Output_data_const(this_fill
, 0);
3867 remaining
.push_back(Input_section(posd
));
3869 address
= aligned_address
;
3871 remaining
.push_back(*p
);
3873 p
->finalize_data_size();
3874 address
+= p
->data_size();
3878 this->input_sections_
.swap(remaining
);
3879 this->first_input_offset_
= 0;
3881 uint64_t data_size
= address
- orig_address
;
3882 this->set_current_data_size_for_child(data_size
);
3886 // Add a script input section. SIS is an Output_section::Input_section,
3887 // which can be either a plain input section or a special input section like
3888 // a relaxed input section. For a special input section, its size must be
3892 Output_section::add_script_input_section(const Input_section
& sis
)
3894 uint64_t data_size
= sis
.data_size();
3895 uint64_t addralign
= sis
.addralign();
3896 if (addralign
> this->addralign_
)
3897 this->addralign_
= addralign
;
3899 off_t offset_in_section
= this->current_data_size_for_child();
3900 off_t aligned_offset_in_section
= align_address(offset_in_section
,
3903 this->set_current_data_size_for_child(aligned_offset_in_section
3906 this->input_sections_
.push_back(sis
);
3908 // Update fast lookup maps if necessary.
3909 if (this->lookup_maps_
->is_valid())
3911 if (sis
.is_relaxed_input_section())
3913 Output_relaxed_input_section
* poris
= sis
.relaxed_input_section();
3914 this->lookup_maps_
->add_relaxed_input_section(poris
->relobj(),
3915 poris
->shndx(), poris
);
3920 // Save states for relaxation.
3923 Output_section::save_states()
3925 gold_assert(this->checkpoint_
== NULL
);
3926 Checkpoint_output_section
* checkpoint
=
3927 new Checkpoint_output_section(this->addralign_
, this->flags_
,
3928 this->input_sections_
,
3929 this->first_input_offset_
,
3930 this->attached_input_sections_are_sorted_
);
3931 this->checkpoint_
= checkpoint
;
3932 gold_assert(this->fills_
.empty());
3936 Output_section::discard_states()
3938 gold_assert(this->checkpoint_
!= NULL
);
3939 delete this->checkpoint_
;
3940 this->checkpoint_
= NULL
;
3941 gold_assert(this->fills_
.empty());
3943 // Simply invalidate the fast lookup maps since we do not keep
3945 this->lookup_maps_
->invalidate();
3949 Output_section::restore_states()
3951 gold_assert(this->checkpoint_
!= NULL
);
3952 Checkpoint_output_section
* checkpoint
= this->checkpoint_
;
3954 this->addralign_
= checkpoint
->addralign();
3955 this->flags_
= checkpoint
->flags();
3956 this->first_input_offset_
= checkpoint
->first_input_offset();
3958 if (!checkpoint
->input_sections_saved())
3960 // If we have not copied the input sections, just resize it.
3961 size_t old_size
= checkpoint
->input_sections_size();
3962 gold_assert(this->input_sections_
.size() >= old_size
);
3963 this->input_sections_
.resize(old_size
);
3967 // We need to copy the whole list. This is not efficient for
3968 // extremely large output with hundreads of thousands of input
3969 // objects. We may need to re-think how we should pass sections
3971 this->input_sections_
= *checkpoint
->input_sections();
3974 this->attached_input_sections_are_sorted_
=
3975 checkpoint
->attached_input_sections_are_sorted();
3977 // Simply invalidate the fast lookup maps since we do not keep
3979 this->lookup_maps_
->invalidate();
3982 // Update the section offsets of input sections in this. This is required if
3983 // relaxation causes some input sections to change sizes.
3986 Output_section::adjust_section_offsets()
3988 if (!this->section_offsets_need_adjustment_
)
3992 for (Input_section_list::iterator p
= this->input_sections_
.begin();
3993 p
!= this->input_sections_
.end();
3996 off
= align_address(off
, p
->addralign());
3997 if (p
->is_input_section())
3998 p
->relobj()->set_section_offset(p
->shndx(), off
);
3999 off
+= p
->data_size();
4002 this->section_offsets_need_adjustment_
= false;
4005 // Print to the map file.
4008 Output_section::do_print_to_mapfile(Mapfile
* mapfile
) const
4010 mapfile
->print_output_section(this);
4012 for (Input_section_list::const_iterator p
= this->input_sections_
.begin();
4013 p
!= this->input_sections_
.end();
4015 p
->print_to_mapfile(mapfile
);
4018 // Print stats for merge sections to stderr.
4021 Output_section::print_merge_stats()
4023 Input_section_list::iterator p
;
4024 for (p
= this->input_sections_
.begin();
4025 p
!= this->input_sections_
.end();
4027 p
->print_merge_stats(this->name_
);
4030 // Set a fixed layout for the section. Used for incremental update links.
4033 Output_section::set_fixed_layout(uint64_t sh_addr
, off_t sh_offset
,
4034 off_t sh_size
, uint64_t sh_addralign
)
4036 this->addralign_
= sh_addralign
;
4037 this->set_current_data_size(sh_size
);
4038 if ((this->flags_
& elfcpp::SHF_ALLOC
) != 0)
4039 this->set_address(sh_addr
);
4040 this->set_file_offset(sh_offset
);
4041 this->finalize_data_size();
4042 this->free_list_
.init(sh_size
, false);
4043 this->has_fixed_layout_
= true;
4046 // Reserve space within the fixed layout for the section. Used for
4047 // incremental update links.
4050 Output_section::reserve(uint64_t sh_offset
, uint64_t sh_size
)
4052 this->free_list_
.remove(sh_offset
, sh_offset
+ sh_size
);
4055 // Allocate space from the free list for the section. Used for
4056 // incremental update links.
4059 Output_section::allocate(off_t len
, uint64_t addralign
)
4061 return this->free_list_
.allocate(len
, addralign
, 0);
4064 // Output segment methods.
4066 Output_segment::Output_segment(elfcpp::Elf_Word type
, elfcpp::Elf_Word flags
)
4077 is_max_align_known_(false),
4078 are_addresses_set_(false),
4079 is_large_data_segment_(false),
4080 is_unique_segment_(false)
4082 // The ELF ABI specifies that a PT_TLS segment always has PF_R as
4084 if (type
== elfcpp::PT_TLS
)
4085 this->flags_
= elfcpp::PF_R
;
4088 // Add an Output_section to a PT_LOAD Output_segment.
4091 Output_segment::add_output_section_to_load(Layout
* layout
,
4093 elfcpp::Elf_Word seg_flags
)
4095 gold_assert(this->type() == elfcpp::PT_LOAD
);
4096 gold_assert((os
->flags() & elfcpp::SHF_ALLOC
) != 0);
4097 gold_assert(!this->is_max_align_known_
);
4098 gold_assert(os
->is_large_data_section() == this->is_large_data_segment());
4100 this->update_flags_for_output_section(seg_flags
);
4102 // We don't want to change the ordering if we have a linker script
4103 // with a SECTIONS clause.
4104 Output_section_order order
= os
->order();
4105 if (layout
->script_options()->saw_sections_clause())
4106 order
= static_cast<Output_section_order
>(0);
4108 gold_assert(order
!= ORDER_INVALID
);
4110 this->output_lists_
[order
].push_back(os
);
4113 // Add an Output_section to a non-PT_LOAD Output_segment.
4116 Output_segment::add_output_section_to_nonload(Output_section
* os
,
4117 elfcpp::Elf_Word seg_flags
)
4119 gold_assert(this->type() != elfcpp::PT_LOAD
);
4120 gold_assert((os
->flags() & elfcpp::SHF_ALLOC
) != 0);
4121 gold_assert(!this->is_max_align_known_
);
4123 this->update_flags_for_output_section(seg_flags
);
4125 this->output_lists_
[0].push_back(os
);
4128 // Remove an Output_section from this segment. It is an error if it
4132 Output_segment::remove_output_section(Output_section
* os
)
4134 for (int i
= 0; i
< static_cast<int>(ORDER_MAX
); ++i
)
4136 Output_data_list
* pdl
= &this->output_lists_
[i
];
4137 for (Output_data_list::iterator p
= pdl
->begin(); p
!= pdl
->end(); ++p
)
4149 // Add an Output_data (which need not be an Output_section) to the
4150 // start of a segment.
4153 Output_segment::add_initial_output_data(Output_data
* od
)
4155 gold_assert(!this->is_max_align_known_
);
4156 Output_data_list::iterator p
= this->output_lists_
[0].begin();
4157 this->output_lists_
[0].insert(p
, od
);
4160 // Return true if this segment has any sections which hold actual
4161 // data, rather than being a BSS section.
4164 Output_segment::has_any_data_sections() const
4166 for (int i
= 0; i
< static_cast<int>(ORDER_MAX
); ++i
)
4168 const Output_data_list
* pdl
= &this->output_lists_
[i
];
4169 for (Output_data_list::const_iterator p
= pdl
->begin();
4173 if (!(*p
)->is_section())
4175 if ((*p
)->output_section()->type() != elfcpp::SHT_NOBITS
)
4182 // Return whether the first data section (not counting TLS sections)
4183 // is a relro section.
4186 Output_segment::is_first_section_relro() const
4188 for (int i
= 0; i
< static_cast<int>(ORDER_MAX
); ++i
)
4190 if (i
== static_cast<int>(ORDER_TLS_BSS
))
4192 const Output_data_list
* pdl
= &this->output_lists_
[i
];
4195 Output_data
* p
= pdl
->front();
4196 return p
->is_section() && p
->output_section()->is_relro();
4202 // Return the maximum alignment of the Output_data in Output_segment.
4205 Output_segment::maximum_alignment()
4207 if (!this->is_max_align_known_
)
4209 for (int i
= 0; i
< static_cast<int>(ORDER_MAX
); ++i
)
4211 const Output_data_list
* pdl
= &this->output_lists_
[i
];
4212 uint64_t addralign
= Output_segment::maximum_alignment_list(pdl
);
4213 if (addralign
> this->max_align_
)
4214 this->max_align_
= addralign
;
4216 this->is_max_align_known_
= true;
4219 return this->max_align_
;
4222 // Return the maximum alignment of a list of Output_data.
4225 Output_segment::maximum_alignment_list(const Output_data_list
* pdl
)
4228 for (Output_data_list::const_iterator p
= pdl
->begin();
4232 uint64_t addralign
= (*p
)->addralign();
4233 if (addralign
> ret
)
4239 // Return whether this segment has any dynamic relocs.
4242 Output_segment::has_dynamic_reloc() const
4244 for (int i
= 0; i
< static_cast<int>(ORDER_MAX
); ++i
)
4245 if (this->has_dynamic_reloc_list(&this->output_lists_
[i
]))
4250 // Return whether this Output_data_list has any dynamic relocs.
4253 Output_segment::has_dynamic_reloc_list(const Output_data_list
* pdl
) const
4255 for (Output_data_list::const_iterator p
= pdl
->begin();
4258 if ((*p
)->has_dynamic_reloc())
4263 // Set the section addresses for an Output_segment. If RESET is true,
4264 // reset the addresses first. ADDR is the address and *POFF is the
4265 // file offset. Set the section indexes starting with *PSHNDX.
4266 // INCREASE_RELRO is the size of the portion of the first non-relro
4267 // section that should be included in the PT_GNU_RELRO segment.
4268 // If this segment has relro sections, and has been aligned for
4269 // that purpose, set *HAS_RELRO to TRUE. Return the address of
4270 // the immediately following segment. Update *HAS_RELRO, *POFF,
4274 Output_segment::set_section_addresses(const Target
* target
,
4275 Layout
* layout
, bool reset
,
4277 unsigned int* increase_relro
,
4280 unsigned int* pshndx
)
4282 gold_assert(this->type_
== elfcpp::PT_LOAD
);
4284 uint64_t last_relro_pad
= 0;
4285 off_t orig_off
= *poff
;
4287 bool in_tls
= false;
4289 // If we have relro sections, we need to pad forward now so that the
4290 // relro sections plus INCREASE_RELRO end on an abi page boundary.
4291 if (parameters
->options().relro()
4292 && this->is_first_section_relro()
4293 && (!this->are_addresses_set_
|| reset
))
4295 uint64_t relro_size
= 0;
4297 uint64_t max_align
= 0;
4298 for (int i
= 0; i
<= static_cast<int>(ORDER_RELRO_LAST
); ++i
)
4300 Output_data_list
* pdl
= &this->output_lists_
[i
];
4301 Output_data_list::iterator p
;
4302 for (p
= pdl
->begin(); p
!= pdl
->end(); ++p
)
4304 if (!(*p
)->is_section())
4306 uint64_t align
= (*p
)->addralign();
4307 if (align
> max_align
)
4309 if ((*p
)->is_section_flag_set(elfcpp::SHF_TLS
))
4313 // Align the first non-TLS section to the alignment
4314 // of the TLS segment.
4318 // Ignore the size of the .tbss section.
4319 if ((*p
)->is_section_flag_set(elfcpp::SHF_TLS
)
4320 && (*p
)->is_section_type(elfcpp::SHT_NOBITS
))
4322 relro_size
= align_address(relro_size
, align
);
4323 if ((*p
)->is_address_valid())
4324 relro_size
+= (*p
)->data_size();
4327 // FIXME: This could be faster.
4328 (*p
)->set_address_and_file_offset(relro_size
,
4330 relro_size
+= (*p
)->data_size();
4331 (*p
)->reset_address_and_file_offset();
4334 if (p
!= pdl
->end())
4337 relro_size
+= *increase_relro
;
4338 // Pad the total relro size to a multiple of the maximum
4339 // section alignment seen.
4340 uint64_t aligned_size
= align_address(relro_size
, max_align
);
4341 // Note the amount of padding added after the last relro section.
4342 last_relro_pad
= aligned_size
- relro_size
;
4345 uint64_t page_align
= parameters
->target().abi_pagesize();
4347 // Align to offset N such that (N + RELRO_SIZE) % PAGE_ALIGN == 0.
4348 uint64_t desired_align
= page_align
- (aligned_size
% page_align
);
4349 if (desired_align
< off
% page_align
)
4351 off
+= desired_align
- off
% page_align
;
4352 addr
+= off
- orig_off
;
4357 if (!reset
&& this->are_addresses_set_
)
4359 gold_assert(this->paddr_
== addr
);
4360 addr
= this->vaddr_
;
4364 this->vaddr_
= addr
;
4365 this->paddr_
= addr
;
4366 this->are_addresses_set_
= true;
4371 this->offset_
= orig_off
;
4376 for (int i
= 0; i
< static_cast<int>(ORDER_MAX
); ++i
)
4378 if (i
== static_cast<int>(ORDER_RELRO_LAST
))
4380 *poff
+= last_relro_pad
;
4381 foff
+= last_relro_pad
;
4382 addr
+= last_relro_pad
;
4383 if (this->output_lists_
[i
].empty())
4385 // If there is nothing in the ORDER_RELRO_LAST list,
4386 // the padding will occur at the end of the relro
4387 // segment, and we need to add it to *INCREASE_RELRO.
4388 *increase_relro
+= last_relro_pad
;
4391 addr
= this->set_section_list_addresses(layout
, reset
,
4392 &this->output_lists_
[i
],
4393 addr
, poff
, &foff
, pshndx
,
4396 // FOFF tracks the last offset used for the file image,
4397 // and *POFF tracks the last offset used for the memory image.
4398 // When not using a linker script, bss sections should all
4399 // be processed in the ORDER_SMALL_BSS and later buckets.
4400 gold_assert(*poff
== foff
4401 || i
== static_cast<int>(ORDER_TLS_BSS
)
4402 || i
>= static_cast<int>(ORDER_SMALL_BSS
)
4403 || layout
->script_options()->saw_sections_clause());
4405 this->filesz_
= foff
- orig_off
;
4411 // If the last section was a TLS section, align upward to the
4412 // alignment of the TLS segment, so that the overall size of the TLS
4413 // segment is aligned.
4416 uint64_t segment_align
= layout
->tls_segment()->maximum_alignment();
4417 *poff
= align_address(*poff
, segment_align
);
4420 this->memsz_
= *poff
- orig_off
;
4422 // Ignore the file offset adjustments made by the BSS Output_data
4426 // If code segments must contain only code, and this code segment is
4427 // page-aligned in the file, then fill it out to a whole page with
4428 // code fill (the tail of the segment will not be within any section).
4429 // Thus the entire code segment can be mapped from the file as whole
4430 // pages and that mapping will contain only valid instructions.
4431 if (target
->isolate_execinstr() && (this->flags() & elfcpp::PF_X
) != 0)
4433 uint64_t abi_pagesize
= target
->abi_pagesize();
4434 if (orig_off
% abi_pagesize
== 0 && off
% abi_pagesize
!= 0)
4436 size_t fill_size
= abi_pagesize
- (off
% abi_pagesize
);
4438 std::string fill_data
;
4439 if (target
->has_code_fill())
4440 fill_data
= target
->code_fill(fill_size
);
4442 fill_data
.resize(fill_size
); // Zero fill.
4444 Output_data_const
* fill
= new Output_data_const(fill_data
, 0);
4445 fill
->set_address(this->vaddr_
+ this->memsz_
);
4446 fill
->set_file_offset(off
);
4447 layout
->add_relax_output(fill
);
4450 gold_assert(off
% abi_pagesize
== 0);
4452 gold_assert(ret
% abi_pagesize
== 0);
4454 gold_assert((uint64_t) this->filesz_
== this->memsz_
);
4455 this->memsz_
= this->filesz_
+= fill_size
;
4464 // Set the addresses and file offsets in a list of Output_data
4468 Output_segment::set_section_list_addresses(Layout
* layout
, bool reset
,
4469 Output_data_list
* pdl
,
4470 uint64_t addr
, off_t
* poff
,
4472 unsigned int* pshndx
,
4475 off_t startoff
= *poff
;
4476 // For incremental updates, we may allocate non-fixed sections from
4477 // free space in the file. This keeps track of the high-water mark.
4478 off_t maxoff
= startoff
;
4480 off_t off
= startoff
;
4481 off_t foff
= *pfoff
;
4482 for (Output_data_list::iterator p
= pdl
->begin();
4486 bool is_bss
= (*p
)->is_section_type(elfcpp::SHT_NOBITS
);
4487 bool is_tls
= (*p
)->is_section_flag_set(elfcpp::SHF_TLS
);
4490 (*p
)->reset_address_and_file_offset();
4492 // When doing an incremental update or when using a linker script,
4493 // the section will most likely already have an address.
4494 if (!(*p
)->is_address_valid())
4496 uint64_t align
= (*p
)->addralign();
4500 // Give the first TLS section the alignment of the
4501 // entire TLS segment. Otherwise the TLS segment as a
4502 // whole may be misaligned.
4505 Output_segment
* tls_segment
= layout
->tls_segment();
4506 gold_assert(tls_segment
!= NULL
);
4507 uint64_t segment_align
= tls_segment
->maximum_alignment();
4508 gold_assert(segment_align
>= align
);
4509 align
= segment_align
;
4516 // If this is the first section after the TLS segment,
4517 // align it to at least the alignment of the TLS
4518 // segment, so that the size of the overall TLS segment
4522 uint64_t segment_align
=
4523 layout
->tls_segment()->maximum_alignment();
4524 if (segment_align
> align
)
4525 align
= segment_align
;
4531 if (!parameters
->incremental_update())
4533 gold_assert(off
== foff
|| is_bss
);
4534 off
= align_address(off
, align
);
4535 if (is_tls
|| !is_bss
)
4537 (*p
)->set_address_and_file_offset(addr
+ (off
- startoff
), foff
);
4541 // Incremental update: allocate file space from free list.
4542 (*p
)->pre_finalize_data_size();
4543 off_t current_size
= (*p
)->current_data_size();
4544 off
= layout
->allocate(current_size
, align
, startoff
);
4548 gold_assert((*p
)->output_section() != NULL
);
4549 gold_fallback(_("out of patch space for section %s; "
4550 "relink with --incremental-full"),
4551 (*p
)->output_section()->name());
4553 (*p
)->set_address_and_file_offset(addr
+ (off
- startoff
), foff
);
4554 if ((*p
)->data_size() > current_size
)
4556 gold_assert((*p
)->output_section() != NULL
);
4557 gold_fallback(_("%s: section changed size; "
4558 "relink with --incremental-full"),
4559 (*p
)->output_section()->name());
4563 else if (parameters
->incremental_update())
4565 // For incremental updates, use the fixed offset for the
4566 // high-water mark computation.
4567 off
= (*p
)->offset();
4572 // The script may have inserted a skip forward, but it
4573 // better not have moved backward.
4574 if ((*p
)->address() >= addr
+ (off
- startoff
))
4576 if (!is_bss
&& off
> foff
)
4577 gold_warning(_("script places BSS section in the middle "
4578 "of a LOAD segment; space will be allocated "
4580 off
+= (*p
)->address() - (addr
+ (off
- startoff
));
4581 if (is_tls
|| !is_bss
)
4586 if (!layout
->script_options()->saw_sections_clause())
4590 Output_section
* os
= (*p
)->output_section();
4592 // Cast to unsigned long long to avoid format warnings.
4593 unsigned long long previous_dot
=
4594 static_cast<unsigned long long>(addr
+ (off
- startoff
));
4595 unsigned long long dot
=
4596 static_cast<unsigned long long>((*p
)->address());
4599 gold_error(_("dot moves backward in linker script "
4600 "from 0x%llx to 0x%llx"), previous_dot
, dot
);
4602 gold_error(_("address of section '%s' moves backward "
4603 "from 0x%llx to 0x%llx"),
4604 os
->name(), previous_dot
, dot
);
4607 (*p
)->set_file_offset(foff
);
4608 (*p
)->finalize_data_size();
4611 if (parameters
->incremental_update())
4612 gold_debug(DEBUG_INCREMENTAL
,
4613 "set_section_list_addresses: %08lx %08lx %s",
4614 static_cast<long>(off
),
4615 static_cast<long>((*p
)->data_size()),
4616 ((*p
)->output_section() != NULL
4617 ? (*p
)->output_section()->name() : "(special)"));
4619 // We want to ignore the size of a SHF_TLS SHT_NOBITS
4620 // section. Such a section does not affect the size of a
4622 if (!is_tls
|| !is_bss
)
4623 off
+= (*p
)->data_size();
4625 // We don't allocate space in the file for SHT_NOBITS sections,
4626 // unless a script has force-placed one in the middle of a segment.
4633 if ((*p
)->is_section())
4635 (*p
)->set_out_shndx(*pshndx
);
4642 return addr
+ (maxoff
- startoff
);
4645 // For a non-PT_LOAD segment, set the offset from the sections, if
4646 // any. Add INCREASE to the file size and the memory size.
4649 Output_segment::set_offset(unsigned int increase
)
4651 gold_assert(this->type_
!= elfcpp::PT_LOAD
);
4653 gold_assert(!this->are_addresses_set_
);
4655 // A non-load section only uses output_lists_[0].
4657 Output_data_list
* pdl
= &this->output_lists_
[0];
4661 gold_assert(increase
== 0);
4664 this->are_addresses_set_
= true;
4666 this->min_p_align_
= 0;
4672 // Find the first and last section by address.
4673 const Output_data
* first
= NULL
;
4674 const Output_data
* last_data
= NULL
;
4675 const Output_data
* last_bss
= NULL
;
4676 for (Output_data_list::const_iterator p
= pdl
->begin();
4681 || (*p
)->address() < first
->address()
4682 || ((*p
)->address() == first
->address()
4683 && (*p
)->data_size() < first
->data_size()))
4685 const Output_data
** plast
;
4686 if ((*p
)->is_section()
4687 && (*p
)->output_section()->type() == elfcpp::SHT_NOBITS
)
4692 || (*p
)->address() > (*plast
)->address()
4693 || ((*p
)->address() == (*plast
)->address()
4694 && (*p
)->data_size() > (*plast
)->data_size()))
4698 this->vaddr_
= first
->address();
4699 this->paddr_
= (first
->has_load_address()
4700 ? first
->load_address()
4702 this->are_addresses_set_
= true;
4703 this->offset_
= first
->offset();
4705 if (last_data
== NULL
)
4708 this->filesz_
= (last_data
->address()
4709 + last_data
->data_size()
4712 const Output_data
* last
= last_bss
!= NULL
? last_bss
: last_data
;
4713 this->memsz_
= (last
->address()
4717 this->filesz_
+= increase
;
4718 this->memsz_
+= increase
;
4720 // If this is a RELRO segment, verify that the segment ends at a
4722 if (this->type_
== elfcpp::PT_GNU_RELRO
)
4724 uint64_t page_align
= parameters
->target().abi_pagesize();
4725 uint64_t segment_end
= this->vaddr_
+ this->memsz_
;
4726 if (parameters
->incremental_update())
4728 // The INCREASE_RELRO calculation is bypassed for an incremental
4729 // update, so we need to adjust the segment size manually here.
4730 segment_end
= align_address(segment_end
, page_align
);
4731 this->memsz_
= segment_end
- this->vaddr_
;
4734 gold_assert(segment_end
== align_address(segment_end
, page_align
));
4737 // If this is a TLS segment, align the memory size. The code in
4738 // set_section_list ensures that the section after the TLS segment
4739 // is aligned to give us room.
4740 if (this->type_
== elfcpp::PT_TLS
)
4742 uint64_t segment_align
= this->maximum_alignment();
4743 gold_assert(this->vaddr_
== align_address(this->vaddr_
, segment_align
));
4744 this->memsz_
= align_address(this->memsz_
, segment_align
);
4748 // Set the TLS offsets of the sections in the PT_TLS segment.
4751 Output_segment::set_tls_offsets()
4753 gold_assert(this->type_
== elfcpp::PT_TLS
);
4755 for (Output_data_list::iterator p
= this->output_lists_
[0].begin();
4756 p
!= this->output_lists_
[0].end();
4758 (*p
)->set_tls_offset(this->vaddr_
);
4761 // Return the first section.
4764 Output_segment::first_section() const
4766 for (int i
= 0; i
< static_cast<int>(ORDER_MAX
); ++i
)
4768 const Output_data_list
* pdl
= &this->output_lists_
[i
];
4769 for (Output_data_list::const_iterator p
= pdl
->begin();
4773 if ((*p
)->is_section())
4774 return (*p
)->output_section();
4780 // Return the number of Output_sections in an Output_segment.
4783 Output_segment::output_section_count() const
4785 unsigned int ret
= 0;
4786 for (int i
= 0; i
< static_cast<int>(ORDER_MAX
); ++i
)
4787 ret
+= this->output_section_count_list(&this->output_lists_
[i
]);
4791 // Return the number of Output_sections in an Output_data_list.
4794 Output_segment::output_section_count_list(const Output_data_list
* pdl
) const
4796 unsigned int count
= 0;
4797 for (Output_data_list::const_iterator p
= pdl
->begin();
4801 if ((*p
)->is_section())
4807 // Return the section attached to the list segment with the lowest
4808 // load address. This is used when handling a PHDRS clause in a
4812 Output_segment::section_with_lowest_load_address() const
4814 Output_section
* found
= NULL
;
4815 uint64_t found_lma
= 0;
4816 for (int i
= 0; i
< static_cast<int>(ORDER_MAX
); ++i
)
4817 this->lowest_load_address_in_list(&this->output_lists_
[i
], &found
,
4822 // Look through a list for a section with a lower load address.
4825 Output_segment::lowest_load_address_in_list(const Output_data_list
* pdl
,
4826 Output_section
** found
,
4827 uint64_t* found_lma
) const
4829 for (Output_data_list::const_iterator p
= pdl
->begin();
4833 if (!(*p
)->is_section())
4835 Output_section
* os
= static_cast<Output_section
*>(*p
);
4836 uint64_t lma
= (os
->has_load_address()
4837 ? os
->load_address()
4839 if (*found
== NULL
|| lma
< *found_lma
)
4847 // Write the segment data into *OPHDR.
4849 template<int size
, bool big_endian
>
4851 Output_segment::write_header(elfcpp::Phdr_write
<size
, big_endian
>* ophdr
)
4853 ophdr
->put_p_type(this->type_
);
4854 ophdr
->put_p_offset(this->offset_
);
4855 ophdr
->put_p_vaddr(this->vaddr_
);
4856 ophdr
->put_p_paddr(this->paddr_
);
4857 ophdr
->put_p_filesz(this->filesz_
);
4858 ophdr
->put_p_memsz(this->memsz_
);
4859 ophdr
->put_p_flags(this->flags_
);
4860 ophdr
->put_p_align(std::max(this->min_p_align_
, this->maximum_alignment()));
4863 // Write the section headers into V.
4865 template<int size
, bool big_endian
>
4867 Output_segment::write_section_headers(const Layout
* layout
,
4868 const Stringpool
* secnamepool
,
4870 unsigned int* pshndx
) const
4872 // Every section that is attached to a segment must be attached to a
4873 // PT_LOAD segment, so we only write out section headers for PT_LOAD
4875 if (this->type_
!= elfcpp::PT_LOAD
)
4878 for (int i
= 0; i
< static_cast<int>(ORDER_MAX
); ++i
)
4880 const Output_data_list
* pdl
= &this->output_lists_
[i
];
4881 v
= this->write_section_headers_list
<size
, big_endian
>(layout
,
4890 template<int size
, bool big_endian
>
4892 Output_segment::write_section_headers_list(const Layout
* layout
,
4893 const Stringpool
* secnamepool
,
4894 const Output_data_list
* pdl
,
4896 unsigned int* pshndx
) const
4898 const int shdr_size
= elfcpp::Elf_sizes
<size
>::shdr_size
;
4899 for (Output_data_list::const_iterator p
= pdl
->begin();
4903 if ((*p
)->is_section())
4905 const Output_section
* ps
= static_cast<const Output_section
*>(*p
);
4906 gold_assert(*pshndx
== ps
->out_shndx());
4907 elfcpp::Shdr_write
<size
, big_endian
> oshdr(v
);
4908 ps
->write_header(layout
, secnamepool
, &oshdr
);
4916 // Print the output sections to the map file.
4919 Output_segment::print_sections_to_mapfile(Mapfile
* mapfile
) const
4921 if (this->type() != elfcpp::PT_LOAD
)
4923 for (int i
= 0; i
< static_cast<int>(ORDER_MAX
); ++i
)
4924 this->print_section_list_to_mapfile(mapfile
, &this->output_lists_
[i
]);
4927 // Print an output section list to the map file.
4930 Output_segment::print_section_list_to_mapfile(Mapfile
* mapfile
,
4931 const Output_data_list
* pdl
) const
4933 for (Output_data_list::const_iterator p
= pdl
->begin();
4936 (*p
)->print_to_mapfile(mapfile
);
4939 // Output_file methods.
4941 Output_file::Output_file(const char* name
)
4946 map_is_anonymous_(false),
4947 map_is_allocated_(false),
4948 is_temporary_(false)
4952 // Try to open an existing file. Returns false if the file doesn't
4953 // exist, has a size of 0 or can't be mmapped. If BASE_NAME is not
4954 // NULL, open that file as the base for incremental linking, and
4955 // copy its contents to the new output file. This routine can
4956 // be called for incremental updates, in which case WRITABLE should
4957 // be true, or by the incremental-dump utility, in which case
4958 // WRITABLE should be false.
4961 Output_file::open_base_file(const char* base_name
, bool writable
)
4963 // The name "-" means "stdout".
4964 if (strcmp(this->name_
, "-") == 0)
4967 bool use_base_file
= base_name
!= NULL
;
4969 base_name
= this->name_
;
4970 else if (strcmp(base_name
, this->name_
) == 0)
4971 gold_fatal(_("%s: incremental base and output file name are the same"),
4974 // Don't bother opening files with a size of zero.
4976 if (::stat(base_name
, &s
) != 0)
4978 gold_info(_("%s: stat: %s"), base_name
, strerror(errno
));
4983 gold_info(_("%s: incremental base file is empty"), base_name
);
4987 // If we're using a base file, we want to open it read-only.
4991 int oflags
= writable
? O_RDWR
: O_RDONLY
;
4992 int o
= open_descriptor(-1, base_name
, oflags
, 0);
4995 gold_info(_("%s: open: %s"), base_name
, strerror(errno
));
4999 // If the base file and the output file are different, open a
5000 // new output file and read the contents from the base file into
5001 // the newly-mapped region.
5004 this->open(s
.st_size
);
5005 ssize_t bytes_to_read
= s
.st_size
;
5006 unsigned char* p
= this->base_
;
5007 while (bytes_to_read
> 0)
5009 ssize_t len
= ::read(o
, p
, bytes_to_read
);
5012 gold_info(_("%s: read failed: %s"), base_name
, strerror(errno
));
5017 gold_info(_("%s: file too short: read only %lld of %lld bytes"),
5019 static_cast<long long>(s
.st_size
- bytes_to_read
),
5020 static_cast<long long>(s
.st_size
));
5024 bytes_to_read
-= len
;
5031 this->file_size_
= s
.st_size
;
5033 if (!this->map_no_anonymous(writable
))
5035 release_descriptor(o
, true);
5037 this->file_size_
= 0;
5044 // Open the output file.
5047 Output_file::open(off_t file_size
)
5049 this->file_size_
= file_size
;
5051 // Unlink the file first; otherwise the open() may fail if the file
5052 // is busy (e.g. it's an executable that's currently being executed).
5054 // However, the linker may be part of a system where a zero-length
5055 // file is created for it to write to, with tight permissions (gcc
5056 // 2.95 did something like this). Unlinking the file would work
5057 // around those permission controls, so we only unlink if the file
5058 // has a non-zero size. We also unlink only regular files to avoid
5059 // trouble with directories/etc.
5061 // If we fail, continue; this command is merely a best-effort attempt
5062 // to improve the odds for open().
5064 // We let the name "-" mean "stdout"
5065 if (!this->is_temporary_
)
5067 if (strcmp(this->name_
, "-") == 0)
5068 this->o_
= STDOUT_FILENO
;
5072 if (::stat(this->name_
, &s
) == 0
5073 && (S_ISREG (s
.st_mode
) || S_ISLNK (s
.st_mode
)))
5076 ::unlink(this->name_
);
5077 else if (!parameters
->options().relocatable())
5079 // If we don't unlink the existing file, add execute
5080 // permission where read permissions already exist
5081 // and where the umask permits.
5082 int mask
= ::umask(0);
5084 s
.st_mode
|= (s
.st_mode
& 0444) >> 2;
5085 ::chmod(this->name_
, s
.st_mode
& ~mask
);
5089 int mode
= parameters
->options().relocatable() ? 0666 : 0777;
5090 int o
= open_descriptor(-1, this->name_
, O_RDWR
| O_CREAT
| O_TRUNC
,
5093 gold_fatal(_("%s: open: %s"), this->name_
, strerror(errno
));
5101 // Resize the output file.
5104 Output_file::resize(off_t file_size
)
5106 // If the mmap is mapping an anonymous memory buffer, this is easy:
5107 // just mremap to the new size. If it's mapping to a file, we want
5108 // to unmap to flush to the file, then remap after growing the file.
5109 if (this->map_is_anonymous_
)
5112 if (!this->map_is_allocated_
)
5114 base
= ::mremap(this->base_
, this->file_size_
, file_size
,
5116 if (base
== MAP_FAILED
)
5117 gold_fatal(_("%s: mremap: %s"), this->name_
, strerror(errno
));
5121 base
= realloc(this->base_
, file_size
);
5124 if (file_size
> this->file_size_
)
5125 memset(static_cast<char*>(base
) + this->file_size_
, 0,
5126 file_size
- this->file_size_
);
5128 this->base_
= static_cast<unsigned char*>(base
);
5129 this->file_size_
= file_size
;
5134 this->file_size_
= file_size
;
5135 if (!this->map_no_anonymous(true))
5136 gold_fatal(_("%s: mmap: %s"), this->name_
, strerror(errno
));
5140 // Map an anonymous block of memory which will later be written to the
5141 // file. Return whether the map succeeded.
5144 Output_file::map_anonymous()
5146 void* base
= ::mmap(NULL
, this->file_size_
, PROT_READ
| PROT_WRITE
,
5147 MAP_PRIVATE
| MAP_ANONYMOUS
, -1, 0);
5148 if (base
== MAP_FAILED
)
5150 base
= malloc(this->file_size_
);
5153 memset(base
, 0, this->file_size_
);
5154 this->map_is_allocated_
= true;
5156 this->base_
= static_cast<unsigned char*>(base
);
5157 this->map_is_anonymous_
= true;
5161 // Map the file into memory. Return whether the mapping succeeded.
5162 // If WRITABLE is true, map with write access.
5165 Output_file::map_no_anonymous(bool writable
)
5167 const int o
= this->o_
;
5169 // If the output file is not a regular file, don't try to mmap it;
5170 // instead, we'll mmap a block of memory (an anonymous buffer), and
5171 // then later write the buffer to the file.
5173 struct stat statbuf
;
5174 if (o
== STDOUT_FILENO
|| o
== STDERR_FILENO
5175 || ::fstat(o
, &statbuf
) != 0
5176 || !S_ISREG(statbuf
.st_mode
)
5177 || this->is_temporary_
)
5180 // Ensure that we have disk space available for the file. If we
5181 // don't do this, it is possible that we will call munmap, close,
5182 // and exit with dirty buffers still in the cache with no assigned
5183 // disk blocks. If the disk is out of space at that point, the
5184 // output file will wind up incomplete, but we will have already
5185 // exited. The alternative to fallocate would be to use fdatasync,
5186 // but that would be a more significant performance hit.
5189 int err
= gold_fallocate(o
, 0, this->file_size_
);
5191 gold_fatal(_("%s: %s"), this->name_
, strerror(err
));
5194 // Map the file into memory.
5195 int prot
= PROT_READ
;
5198 base
= ::mmap(NULL
, this->file_size_
, prot
, MAP_SHARED
, o
, 0);
5200 // The mmap call might fail because of file system issues: the file
5201 // system might not support mmap at all, or it might not support
5202 // mmap with PROT_WRITE.
5203 if (base
== MAP_FAILED
)
5206 this->map_is_anonymous_
= false;
5207 this->base_
= static_cast<unsigned char*>(base
);
5211 // Map the file into memory.
5216 if (parameters
->options().mmap_output_file()
5217 && this->map_no_anonymous(true))
5220 // The mmap call might fail because of file system issues: the file
5221 // system might not support mmap at all, or it might not support
5222 // mmap with PROT_WRITE. I'm not sure which errno values we will
5223 // see in all cases, so if the mmap fails for any reason and we
5224 // don't care about file contents, try for an anonymous map.
5225 if (this->map_anonymous())
5228 gold_fatal(_("%s: mmap: failed to allocate %lu bytes for output file: %s"),
5229 this->name_
, static_cast<unsigned long>(this->file_size_
),
5233 // Unmap the file from memory.
5236 Output_file::unmap()
5238 if (this->map_is_anonymous_
)
5240 // We've already written out the data, so there is no reason to
5241 // waste time unmapping or freeing the memory.
5245 if (::munmap(this->base_
, this->file_size_
) < 0)
5246 gold_error(_("%s: munmap: %s"), this->name_
, strerror(errno
));
5251 // Close the output file.
5254 Output_file::close()
5256 // If the map isn't file-backed, we need to write it now.
5257 if (this->map_is_anonymous_
&& !this->is_temporary_
)
5259 size_t bytes_to_write
= this->file_size_
;
5261 while (bytes_to_write
> 0)
5263 ssize_t bytes_written
= ::write(this->o_
, this->base_
+ offset
,
5265 if (bytes_written
== 0)
5266 gold_error(_("%s: write: unexpected 0 return-value"), this->name_
);
5267 else if (bytes_written
< 0)
5268 gold_error(_("%s: write: %s"), this->name_
, strerror(errno
));
5271 bytes_to_write
-= bytes_written
;
5272 offset
+= bytes_written
;
5278 // We don't close stdout or stderr
5279 if (this->o_
!= STDOUT_FILENO
5280 && this->o_
!= STDERR_FILENO
5281 && !this->is_temporary_
)
5282 if (::close(this->o_
) < 0)
5283 gold_error(_("%s: close: %s"), this->name_
, strerror(errno
));
5287 // Instantiate the templates we need. We could use the configure
5288 // script to restrict this to only the ones for implemented targets.
5290 #ifdef HAVE_TARGET_32_LITTLE
5293 Output_section::add_input_section
<32, false>(
5295 Sized_relobj_file
<32, false>* object
,
5297 const char* secname
,
5298 const elfcpp::Shdr
<32, false>& shdr
,
5299 unsigned int reloc_shndx
,
5300 bool have_sections_script
);
5303 #ifdef HAVE_TARGET_32_BIG
5306 Output_section::add_input_section
<32, true>(
5308 Sized_relobj_file
<32, true>* object
,
5310 const char* secname
,
5311 const elfcpp::Shdr
<32, true>& shdr
,
5312 unsigned int reloc_shndx
,
5313 bool have_sections_script
);
5316 #ifdef HAVE_TARGET_64_LITTLE
5319 Output_section::add_input_section
<64, false>(
5321 Sized_relobj_file
<64, false>* object
,
5323 const char* secname
,
5324 const elfcpp::Shdr
<64, false>& shdr
,
5325 unsigned int reloc_shndx
,
5326 bool have_sections_script
);
5329 #ifdef HAVE_TARGET_64_BIG
5332 Output_section::add_input_section
<64, true>(
5334 Sized_relobj_file
<64, true>* object
,
5336 const char* secname
,
5337 const elfcpp::Shdr
<64, true>& shdr
,
5338 unsigned int reloc_shndx
,
5339 bool have_sections_script
);
5342 #ifdef HAVE_TARGET_32_LITTLE
5344 class Output_reloc
<elfcpp::SHT_REL
, false, 32, false>;
5347 #ifdef HAVE_TARGET_32_BIG
5349 class Output_reloc
<elfcpp::SHT_REL
, false, 32, true>;
5352 #ifdef HAVE_TARGET_64_LITTLE
5354 class Output_reloc
<elfcpp::SHT_REL
, false, 64, false>;
5357 #ifdef HAVE_TARGET_64_BIG
5359 class Output_reloc
<elfcpp::SHT_REL
, false, 64, true>;
5362 #ifdef HAVE_TARGET_32_LITTLE
5364 class Output_reloc
<elfcpp::SHT_REL
, true, 32, false>;
5367 #ifdef HAVE_TARGET_32_BIG
5369 class Output_reloc
<elfcpp::SHT_REL
, true, 32, true>;
5372 #ifdef HAVE_TARGET_64_LITTLE
5374 class Output_reloc
<elfcpp::SHT_REL
, true, 64, false>;
5377 #ifdef HAVE_TARGET_64_BIG
5379 class Output_reloc
<elfcpp::SHT_REL
, true, 64, true>;
5382 #ifdef HAVE_TARGET_32_LITTLE
5384 class Output_reloc
<elfcpp::SHT_RELA
, false, 32, false>;
5387 #ifdef HAVE_TARGET_32_BIG
5389 class Output_reloc
<elfcpp::SHT_RELA
, false, 32, true>;
5392 #ifdef HAVE_TARGET_64_LITTLE
5394 class Output_reloc
<elfcpp::SHT_RELA
, false, 64, false>;
5397 #ifdef HAVE_TARGET_64_BIG
5399 class Output_reloc
<elfcpp::SHT_RELA
, false, 64, true>;
5402 #ifdef HAVE_TARGET_32_LITTLE
5404 class Output_reloc
<elfcpp::SHT_RELA
, true, 32, false>;
5407 #ifdef HAVE_TARGET_32_BIG
5409 class Output_reloc
<elfcpp::SHT_RELA
, true, 32, true>;
5412 #ifdef HAVE_TARGET_64_LITTLE
5414 class Output_reloc
<elfcpp::SHT_RELA
, true, 64, false>;
5417 #ifdef HAVE_TARGET_64_BIG
5419 class Output_reloc
<elfcpp::SHT_RELA
, true, 64, true>;
5422 #ifdef HAVE_TARGET_32_LITTLE
5424 class Output_data_reloc
<elfcpp::SHT_REL
, false, 32, false>;
5427 #ifdef HAVE_TARGET_32_BIG
5429 class Output_data_reloc
<elfcpp::SHT_REL
, false, 32, true>;
5432 #ifdef HAVE_TARGET_64_LITTLE
5434 class Output_data_reloc
<elfcpp::SHT_REL
, false, 64, false>;
5437 #ifdef HAVE_TARGET_64_BIG
5439 class Output_data_reloc
<elfcpp::SHT_REL
, false, 64, true>;
5442 #ifdef HAVE_TARGET_32_LITTLE
5444 class Output_data_reloc
<elfcpp::SHT_REL
, true, 32, false>;
5447 #ifdef HAVE_TARGET_32_BIG
5449 class Output_data_reloc
<elfcpp::SHT_REL
, true, 32, true>;
5452 #ifdef HAVE_TARGET_64_LITTLE
5454 class Output_data_reloc
<elfcpp::SHT_REL
, true, 64, false>;
5457 #ifdef HAVE_TARGET_64_BIG
5459 class Output_data_reloc
<elfcpp::SHT_REL
, true, 64, true>;
5462 #ifdef HAVE_TARGET_32_LITTLE
5464 class Output_data_reloc
<elfcpp::SHT_RELA
, false, 32, false>;
5467 #ifdef HAVE_TARGET_32_BIG
5469 class Output_data_reloc
<elfcpp::SHT_RELA
, false, 32, true>;
5472 #ifdef HAVE_TARGET_64_LITTLE
5474 class Output_data_reloc
<elfcpp::SHT_RELA
, false, 64, false>;
5477 #ifdef HAVE_TARGET_64_BIG
5479 class Output_data_reloc
<elfcpp::SHT_RELA
, false, 64, true>;
5482 #ifdef HAVE_TARGET_32_LITTLE
5484 class Output_data_reloc
<elfcpp::SHT_RELA
, true, 32, false>;
5487 #ifdef HAVE_TARGET_32_BIG
5489 class Output_data_reloc
<elfcpp::SHT_RELA
, true, 32, true>;
5492 #ifdef HAVE_TARGET_64_LITTLE
5494 class Output_data_reloc
<elfcpp::SHT_RELA
, true, 64, false>;
5497 #ifdef HAVE_TARGET_64_BIG
5499 class Output_data_reloc
<elfcpp::SHT_RELA
, true, 64, true>;
5502 #ifdef HAVE_TARGET_32_LITTLE
5504 class Output_relocatable_relocs
<elfcpp::SHT_REL
, 32, false>;
5507 #ifdef HAVE_TARGET_32_BIG
5509 class Output_relocatable_relocs
<elfcpp::SHT_REL
, 32, true>;
5512 #ifdef HAVE_TARGET_64_LITTLE
5514 class Output_relocatable_relocs
<elfcpp::SHT_REL
, 64, false>;
5517 #ifdef HAVE_TARGET_64_BIG
5519 class Output_relocatable_relocs
<elfcpp::SHT_REL
, 64, true>;
5522 #ifdef HAVE_TARGET_32_LITTLE
5524 class Output_relocatable_relocs
<elfcpp::SHT_RELA
, 32, false>;
5527 #ifdef HAVE_TARGET_32_BIG
5529 class Output_relocatable_relocs
<elfcpp::SHT_RELA
, 32, true>;
5532 #ifdef HAVE_TARGET_64_LITTLE
5534 class Output_relocatable_relocs
<elfcpp::SHT_RELA
, 64, false>;
5537 #ifdef HAVE_TARGET_64_BIG
5539 class Output_relocatable_relocs
<elfcpp::SHT_RELA
, 64, true>;
5542 #ifdef HAVE_TARGET_32_LITTLE
5544 class Output_data_group
<32, false>;
5547 #ifdef HAVE_TARGET_32_BIG
5549 class Output_data_group
<32, true>;
5552 #ifdef HAVE_TARGET_64_LITTLE
5554 class Output_data_group
<64, false>;
5557 #ifdef HAVE_TARGET_64_BIG
5559 class Output_data_group
<64, true>;
5563 class Output_data_got
<32, false>;
5566 class Output_data_got
<32, true>;
5569 class Output_data_got
<64, false>;
5572 class Output_data_got
<64, true>;
5574 } // End namespace gold.