1 /* Intel 386 target-dependent stuff.
3 Copyright (C) 1988-2023 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21 #include "opcode/i386.h"
22 #include "arch-utils.h"
24 #include "dummy-frame.h"
25 #include "dwarf2/frame.h"
27 #include "frame-base.h"
28 #include "frame-unwind.h"
37 #include "reggroups.h"
42 #include "target-float.h"
47 #include "i386-tdep.h"
48 #include "i387-tdep.h"
49 #include "gdbsupport/x86-xstate.h"
54 #include "record-full.h"
55 #include "target-descriptions.h"
56 #include "arch/i386.h"
61 #include "stap-probe.h"
62 #include "user-regs.h"
63 #include "cli/cli-utils.h"
64 #include "expression.h"
65 #include "parser-defs.h"
68 #include <unordered_set>
75 static const char * const i386_register_names
[] =
77 "eax", "ecx", "edx", "ebx",
78 "esp", "ebp", "esi", "edi",
79 "eip", "eflags", "cs", "ss",
80 "ds", "es", "fs", "gs",
81 "st0", "st1", "st2", "st3",
82 "st4", "st5", "st6", "st7",
83 "fctrl", "fstat", "ftag", "fiseg",
84 "fioff", "foseg", "fooff", "fop",
85 "xmm0", "xmm1", "xmm2", "xmm3",
86 "xmm4", "xmm5", "xmm6", "xmm7",
90 static const char * const i386_zmm_names
[] =
92 "zmm0", "zmm1", "zmm2", "zmm3",
93 "zmm4", "zmm5", "zmm6", "zmm7"
96 static const char * const i386_zmmh_names
[] =
98 "zmm0h", "zmm1h", "zmm2h", "zmm3h",
99 "zmm4h", "zmm5h", "zmm6h", "zmm7h"
102 static const char * const i386_k_names
[] =
104 "k0", "k1", "k2", "k3",
105 "k4", "k5", "k6", "k7"
108 static const char * const i386_ymm_names
[] =
110 "ymm0", "ymm1", "ymm2", "ymm3",
111 "ymm4", "ymm5", "ymm6", "ymm7",
114 static const char * const i386_ymmh_names
[] =
116 "ymm0h", "ymm1h", "ymm2h", "ymm3h",
117 "ymm4h", "ymm5h", "ymm6h", "ymm7h",
120 static const char * const i386_mpx_names
[] =
122 "bnd0raw", "bnd1raw", "bnd2raw", "bnd3raw", "bndcfgu", "bndstatus"
125 static const char * const i386_pkeys_names
[] =
130 /* Register names for MPX pseudo-registers. */
132 static const char * const i386_bnd_names
[] =
134 "bnd0", "bnd1", "bnd2", "bnd3"
137 /* Register names for MMX pseudo-registers. */
139 static const char * const i386_mmx_names
[] =
141 "mm0", "mm1", "mm2", "mm3",
142 "mm4", "mm5", "mm6", "mm7"
145 /* Register names for byte pseudo-registers. */
147 static const char * const i386_byte_names
[] =
149 "al", "cl", "dl", "bl",
150 "ah", "ch", "dh", "bh"
153 /* Register names for word pseudo-registers. */
155 static const char * const i386_word_names
[] =
157 "ax", "cx", "dx", "bx",
161 /* Constant used for reading/writing pseudo registers. In 64-bit mode, we have
162 16 lower ZMM regs that extend corresponding xmm/ymm registers. In addition,
163 we have 16 upper ZMM regs that have to be handled differently. */
165 const int num_lower_zmm_regs
= 16;
170 i386_mmx_regnum_p (struct gdbarch
*gdbarch
, int regnum
)
172 i386_gdbarch_tdep
*tdep
= gdbarch_tdep
<i386_gdbarch_tdep
> (gdbarch
);
173 int mm0_regnum
= tdep
->mm0_regnum
;
178 regnum
-= mm0_regnum
;
179 return regnum
>= 0 && regnum
< tdep
->num_mmx_regs
;
185 i386_byte_regnum_p (struct gdbarch
*gdbarch
, int regnum
)
187 i386_gdbarch_tdep
*tdep
= gdbarch_tdep
<i386_gdbarch_tdep
> (gdbarch
);
189 regnum
-= tdep
->al_regnum
;
190 return regnum
>= 0 && regnum
< tdep
->num_byte_regs
;
196 i386_word_regnum_p (struct gdbarch
*gdbarch
, int regnum
)
198 i386_gdbarch_tdep
*tdep
= gdbarch_tdep
<i386_gdbarch_tdep
> (gdbarch
);
200 regnum
-= tdep
->ax_regnum
;
201 return regnum
>= 0 && regnum
< tdep
->num_word_regs
;
204 /* Dword register? */
207 i386_dword_regnum_p (struct gdbarch
*gdbarch
, int regnum
)
209 i386_gdbarch_tdep
*tdep
= gdbarch_tdep
<i386_gdbarch_tdep
> (gdbarch
);
210 int eax_regnum
= tdep
->eax_regnum
;
215 regnum
-= eax_regnum
;
216 return regnum
>= 0 && regnum
< tdep
->num_dword_regs
;
219 /* AVX512 register? */
222 i386_zmmh_regnum_p (struct gdbarch
*gdbarch
, int regnum
)
224 i386_gdbarch_tdep
*tdep
= gdbarch_tdep
<i386_gdbarch_tdep
> (gdbarch
);
225 int zmm0h_regnum
= tdep
->zmm0h_regnum
;
227 if (zmm0h_regnum
< 0)
230 regnum
-= zmm0h_regnum
;
231 return regnum
>= 0 && regnum
< tdep
->num_zmm_regs
;
235 i386_zmm_regnum_p (struct gdbarch
*gdbarch
, int regnum
)
237 i386_gdbarch_tdep
*tdep
= gdbarch_tdep
<i386_gdbarch_tdep
> (gdbarch
);
238 int zmm0_regnum
= tdep
->zmm0_regnum
;
243 regnum
-= zmm0_regnum
;
244 return regnum
>= 0 && regnum
< tdep
->num_zmm_regs
;
248 i386_k_regnum_p (struct gdbarch
*gdbarch
, int regnum
)
250 i386_gdbarch_tdep
*tdep
= gdbarch_tdep
<i386_gdbarch_tdep
> (gdbarch
);
251 int k0_regnum
= tdep
->k0_regnum
;
257 return regnum
>= 0 && regnum
< I387_NUM_K_REGS
;
261 i386_ymmh_regnum_p (struct gdbarch
*gdbarch
, int regnum
)
263 i386_gdbarch_tdep
*tdep
= gdbarch_tdep
<i386_gdbarch_tdep
> (gdbarch
);
264 int ymm0h_regnum
= tdep
->ymm0h_regnum
;
266 if (ymm0h_regnum
< 0)
269 regnum
-= ymm0h_regnum
;
270 return regnum
>= 0 && regnum
< tdep
->num_ymm_regs
;
276 i386_ymm_regnum_p (struct gdbarch
*gdbarch
, int regnum
)
278 i386_gdbarch_tdep
*tdep
= gdbarch_tdep
<i386_gdbarch_tdep
> (gdbarch
);
279 int ymm0_regnum
= tdep
->ymm0_regnum
;
284 regnum
-= ymm0_regnum
;
285 return regnum
>= 0 && regnum
< tdep
->num_ymm_regs
;
289 i386_ymmh_avx512_regnum_p (struct gdbarch
*gdbarch
, int regnum
)
291 i386_gdbarch_tdep
*tdep
= gdbarch_tdep
<i386_gdbarch_tdep
> (gdbarch
);
292 int ymm16h_regnum
= tdep
->ymm16h_regnum
;
294 if (ymm16h_regnum
< 0)
297 regnum
-= ymm16h_regnum
;
298 return regnum
>= 0 && regnum
< tdep
->num_ymm_avx512_regs
;
302 i386_ymm_avx512_regnum_p (struct gdbarch
*gdbarch
, int regnum
)
304 i386_gdbarch_tdep
*tdep
= gdbarch_tdep
<i386_gdbarch_tdep
> (gdbarch
);
305 int ymm16_regnum
= tdep
->ymm16_regnum
;
307 if (ymm16_regnum
< 0)
310 regnum
-= ymm16_regnum
;
311 return regnum
>= 0 && regnum
< tdep
->num_ymm_avx512_regs
;
317 i386_bnd_regnum_p (struct gdbarch
*gdbarch
, int regnum
)
319 i386_gdbarch_tdep
*tdep
= gdbarch_tdep
<i386_gdbarch_tdep
> (gdbarch
);
320 int bnd0_regnum
= tdep
->bnd0_regnum
;
325 regnum
-= bnd0_regnum
;
326 return regnum
>= 0 && regnum
< I387_NUM_BND_REGS
;
332 i386_xmm_regnum_p (struct gdbarch
*gdbarch
, int regnum
)
334 i386_gdbarch_tdep
*tdep
= gdbarch_tdep
<i386_gdbarch_tdep
> (gdbarch
);
335 int num_xmm_regs
= I387_NUM_XMM_REGS (tdep
);
337 if (num_xmm_regs
== 0)
340 regnum
-= I387_XMM0_REGNUM (tdep
);
341 return regnum
>= 0 && regnum
< num_xmm_regs
;
344 /* XMM_512 register? */
347 i386_xmm_avx512_regnum_p (struct gdbarch
*gdbarch
, int regnum
)
349 i386_gdbarch_tdep
*tdep
= gdbarch_tdep
<i386_gdbarch_tdep
> (gdbarch
);
350 int num_xmm_avx512_regs
= I387_NUM_XMM_AVX512_REGS (tdep
);
352 if (num_xmm_avx512_regs
== 0)
355 regnum
-= I387_XMM16_REGNUM (tdep
);
356 return regnum
>= 0 && regnum
< num_xmm_avx512_regs
;
360 i386_mxcsr_regnum_p (struct gdbarch
*gdbarch
, int regnum
)
362 i386_gdbarch_tdep
*tdep
= gdbarch_tdep
<i386_gdbarch_tdep
> (gdbarch
);
364 if (I387_NUM_XMM_REGS (tdep
) == 0)
367 return (regnum
== I387_MXCSR_REGNUM (tdep
));
373 i386_fp_regnum_p (struct gdbarch
*gdbarch
, int regnum
)
375 i386_gdbarch_tdep
*tdep
= gdbarch_tdep
<i386_gdbarch_tdep
> (gdbarch
);
377 if (I387_ST0_REGNUM (tdep
) < 0)
380 return (I387_ST0_REGNUM (tdep
) <= regnum
381 && regnum
< I387_FCTRL_REGNUM (tdep
));
385 i386_fpc_regnum_p (struct gdbarch
*gdbarch
, int regnum
)
387 i386_gdbarch_tdep
*tdep
= gdbarch_tdep
<i386_gdbarch_tdep
> (gdbarch
);
389 if (I387_ST0_REGNUM (tdep
) < 0)
392 return (I387_FCTRL_REGNUM (tdep
) <= regnum
393 && regnum
< I387_XMM0_REGNUM (tdep
));
396 /* BNDr (raw) register? */
399 i386_bndr_regnum_p (struct gdbarch
*gdbarch
, int regnum
)
401 i386_gdbarch_tdep
*tdep
= gdbarch_tdep
<i386_gdbarch_tdep
> (gdbarch
);
403 if (I387_BND0R_REGNUM (tdep
) < 0)
406 regnum
-= tdep
->bnd0r_regnum
;
407 return regnum
>= 0 && regnum
< I387_NUM_BND_REGS
;
410 /* BND control register? */
413 i386_mpx_ctrl_regnum_p (struct gdbarch
*gdbarch
, int regnum
)
415 i386_gdbarch_tdep
*tdep
= gdbarch_tdep
<i386_gdbarch_tdep
> (gdbarch
);
417 if (I387_BNDCFGU_REGNUM (tdep
) < 0)
420 regnum
-= I387_BNDCFGU_REGNUM (tdep
);
421 return regnum
>= 0 && regnum
< I387_NUM_MPX_CTRL_REGS
;
427 i386_pkru_regnum_p (struct gdbarch
*gdbarch
, int regnum
)
429 i386_gdbarch_tdep
*tdep
= gdbarch_tdep
<i386_gdbarch_tdep
> (gdbarch
);
430 int pkru_regnum
= tdep
->pkru_regnum
;
435 regnum
-= pkru_regnum
;
436 return regnum
>= 0 && regnum
< I387_NUM_PKEYS_REGS
;
439 /* Return the name of register REGNUM, or the empty string if it is
440 an anonymous register. */
443 i386_register_name (struct gdbarch
*gdbarch
, int regnum
)
445 /* Hide the upper YMM registers. */
446 if (i386_ymmh_regnum_p (gdbarch
, regnum
))
449 /* Hide the upper YMM16-31 registers. */
450 if (i386_ymmh_avx512_regnum_p (gdbarch
, regnum
))
453 /* Hide the upper ZMM registers. */
454 if (i386_zmmh_regnum_p (gdbarch
, regnum
))
457 return tdesc_register_name (gdbarch
, regnum
);
460 /* Return the name of register REGNUM. */
463 i386_pseudo_register_name (struct gdbarch
*gdbarch
, int regnum
)
465 i386_gdbarch_tdep
*tdep
= gdbarch_tdep
<i386_gdbarch_tdep
> (gdbarch
);
466 if (i386_bnd_regnum_p (gdbarch
, regnum
))
467 return i386_bnd_names
[regnum
- tdep
->bnd0_regnum
];
468 if (i386_mmx_regnum_p (gdbarch
, regnum
))
469 return i386_mmx_names
[regnum
- I387_MM0_REGNUM (tdep
)];
470 else if (i386_ymm_regnum_p (gdbarch
, regnum
))
471 return i386_ymm_names
[regnum
- tdep
->ymm0_regnum
];
472 else if (i386_zmm_regnum_p (gdbarch
, regnum
))
473 return i386_zmm_names
[regnum
- tdep
->zmm0_regnum
];
474 else if (i386_byte_regnum_p (gdbarch
, regnum
))
475 return i386_byte_names
[regnum
- tdep
->al_regnum
];
476 else if (i386_word_regnum_p (gdbarch
, regnum
))
477 return i386_word_names
[regnum
- tdep
->ax_regnum
];
479 internal_error (_("invalid regnum"));
482 /* Convert a dbx register number REG to the appropriate register
483 number used by GDB. */
486 i386_dbx_reg_to_regnum (struct gdbarch
*gdbarch
, int reg
)
488 i386_gdbarch_tdep
*tdep
= gdbarch_tdep
<i386_gdbarch_tdep
> (gdbarch
);
490 /* This implements what GCC calls the "default" register map
491 (dbx_register_map[]). */
493 if (reg
>= 0 && reg
<= 7)
495 /* General-purpose registers. The debug info calls %ebp
496 register 4, and %esp register 5. */
503 else if (reg
>= 12 && reg
<= 19)
505 /* Floating-point registers. */
506 return reg
- 12 + I387_ST0_REGNUM (tdep
);
508 else if (reg
>= 21 && reg
<= 28)
511 int ymm0_regnum
= tdep
->ymm0_regnum
;
514 && i386_xmm_regnum_p (gdbarch
, reg
))
515 return reg
- 21 + ymm0_regnum
;
517 return reg
- 21 + I387_XMM0_REGNUM (tdep
);
519 else if (reg
>= 29 && reg
<= 36)
522 return reg
- 29 + I387_MM0_REGNUM (tdep
);
525 /* This will hopefully provoke a warning. */
526 return gdbarch_num_cooked_regs (gdbarch
);
529 /* Convert SVR4 DWARF register number REG to the appropriate register number
533 i386_svr4_dwarf_reg_to_regnum (struct gdbarch
*gdbarch
, int reg
)
535 i386_gdbarch_tdep
*tdep
= gdbarch_tdep
<i386_gdbarch_tdep
> (gdbarch
);
537 /* This implements the GCC register map that tries to be compatible
538 with the SVR4 C compiler for DWARF (svr4_dbx_register_map[]). */
540 /* The SVR4 register numbering includes %eip and %eflags, and
541 numbers the floating point registers differently. */
542 if (reg
>= 0 && reg
<= 9)
544 /* General-purpose registers. */
547 else if (reg
>= 11 && reg
<= 18)
549 /* Floating-point registers. */
550 return reg
- 11 + I387_ST0_REGNUM (tdep
);
552 else if (reg
>= 21 && reg
<= 36)
554 /* The SSE and MMX registers have the same numbers as with dbx. */
555 return i386_dbx_reg_to_regnum (gdbarch
, reg
);
560 case 37: return I387_FCTRL_REGNUM (tdep
);
561 case 38: return I387_FSTAT_REGNUM (tdep
);
562 case 39: return I387_MXCSR_REGNUM (tdep
);
563 case 40: return I386_ES_REGNUM
;
564 case 41: return I386_CS_REGNUM
;
565 case 42: return I386_SS_REGNUM
;
566 case 43: return I386_DS_REGNUM
;
567 case 44: return I386_FS_REGNUM
;
568 case 45: return I386_GS_REGNUM
;
574 /* Wrapper on i386_svr4_dwarf_reg_to_regnum to return
575 num_regs + num_pseudo_regs for other debug formats. */
578 i386_svr4_reg_to_regnum (struct gdbarch
*gdbarch
, int reg
)
580 int regnum
= i386_svr4_dwarf_reg_to_regnum (gdbarch
, reg
);
583 return gdbarch_num_cooked_regs (gdbarch
);
589 /* This is the variable that is set with "set disassembly-flavor", and
590 its legitimate values. */
591 static const char att_flavor
[] = "att";
592 static const char intel_flavor
[] = "intel";
593 static const char *const valid_flavors
[] =
599 static const char *disassembly_flavor
= att_flavor
;
602 /* Use the program counter to determine the contents and size of a
603 breakpoint instruction. Return a pointer to a string of bytes that
604 encode a breakpoint instruction, store the length of the string in
605 *LEN and optionally adjust *PC to point to the correct memory
606 location for inserting the breakpoint.
608 On the i386 we have a single breakpoint that fits in a single byte
609 and can be inserted anywhere.
611 This function is 64-bit safe. */
613 constexpr gdb_byte i386_break_insn
[] = { 0xcc }; /* int 3 */
615 typedef BP_MANIPULATION (i386_break_insn
) i386_breakpoint
;
618 /* Displaced instruction handling. */
620 /* Skip the legacy instruction prefixes in INSN.
621 Not all prefixes are valid for any particular insn
622 but we needn't care, the insn will fault if it's invalid.
623 The result is a pointer to the first opcode byte,
624 or NULL if we run off the end of the buffer. */
627 i386_skip_prefixes (gdb_byte
*insn
, size_t max_len
)
629 gdb_byte
*end
= insn
+ max_len
;
635 case DATA_PREFIX_OPCODE
:
636 case ADDR_PREFIX_OPCODE
:
637 case CS_PREFIX_OPCODE
:
638 case DS_PREFIX_OPCODE
:
639 case ES_PREFIX_OPCODE
:
640 case FS_PREFIX_OPCODE
:
641 case GS_PREFIX_OPCODE
:
642 case SS_PREFIX_OPCODE
:
643 case LOCK_PREFIX_OPCODE
:
644 case REPE_PREFIX_OPCODE
:
645 case REPNE_PREFIX_OPCODE
:
657 i386_absolute_jmp_p (const gdb_byte
*insn
)
659 /* jmp far (absolute address in operand). */
665 /* jump near, absolute indirect (/4). */
666 if ((insn
[1] & 0x38) == 0x20)
669 /* jump far, absolute indirect (/5). */
670 if ((insn
[1] & 0x38) == 0x28)
677 /* Return non-zero if INSN is a jump, zero otherwise. */
680 i386_jmp_p (const gdb_byte
*insn
)
682 /* jump short, relative. */
686 /* jump near, relative. */
690 return i386_absolute_jmp_p (insn
);
694 i386_absolute_call_p (const gdb_byte
*insn
)
696 /* call far, absolute. */
702 /* Call near, absolute indirect (/2). */
703 if ((insn
[1] & 0x38) == 0x10)
706 /* Call far, absolute indirect (/3). */
707 if ((insn
[1] & 0x38) == 0x18)
715 i386_ret_p (const gdb_byte
*insn
)
719 case 0xc2: /* ret near, pop N bytes. */
720 case 0xc3: /* ret near */
721 case 0xca: /* ret far, pop N bytes. */
722 case 0xcb: /* ret far */
723 case 0xcf: /* iret */
732 i386_call_p (const gdb_byte
*insn
)
734 if (i386_absolute_call_p (insn
))
737 /* call near, relative. */
744 /* Return non-zero if INSN is a system call, and set *LENGTHP to its
745 length in bytes. Otherwise, return zero. */
748 i386_syscall_p (const gdb_byte
*insn
, int *lengthp
)
750 /* Is it 'int $0x80'? */
751 if ((insn
[0] == 0xcd && insn
[1] == 0x80)
752 /* Or is it 'sysenter'? */
753 || (insn
[0] == 0x0f && insn
[1] == 0x34)
754 /* Or is it 'syscall'? */
755 || (insn
[0] == 0x0f && insn
[1] == 0x05))
764 /* The gdbarch insn_is_call method. */
767 i386_insn_is_call (struct gdbarch
*gdbarch
, CORE_ADDR addr
)
769 gdb_byte buf
[I386_MAX_INSN_LEN
], *insn
;
771 read_code (addr
, buf
, I386_MAX_INSN_LEN
);
772 insn
= i386_skip_prefixes (buf
, I386_MAX_INSN_LEN
);
774 return i386_call_p (insn
);
777 /* The gdbarch insn_is_ret method. */
780 i386_insn_is_ret (struct gdbarch
*gdbarch
, CORE_ADDR addr
)
782 gdb_byte buf
[I386_MAX_INSN_LEN
], *insn
;
784 read_code (addr
, buf
, I386_MAX_INSN_LEN
);
785 insn
= i386_skip_prefixes (buf
, I386_MAX_INSN_LEN
);
787 return i386_ret_p (insn
);
790 /* The gdbarch insn_is_jump method. */
793 i386_insn_is_jump (struct gdbarch
*gdbarch
, CORE_ADDR addr
)
795 gdb_byte buf
[I386_MAX_INSN_LEN
], *insn
;
797 read_code (addr
, buf
, I386_MAX_INSN_LEN
);
798 insn
= i386_skip_prefixes (buf
, I386_MAX_INSN_LEN
);
800 return i386_jmp_p (insn
);
803 /* Some kernels may run one past a syscall insn, so we have to cope. */
805 displaced_step_copy_insn_closure_up
806 i386_displaced_step_copy_insn (struct gdbarch
*gdbarch
,
807 CORE_ADDR from
, CORE_ADDR to
,
808 struct regcache
*regs
)
810 size_t len
= gdbarch_max_insn_length (gdbarch
);
811 std::unique_ptr
<i386_displaced_step_copy_insn_closure
> closure
812 (new i386_displaced_step_copy_insn_closure (len
));
813 gdb_byte
*buf
= closure
->buf
.data ();
815 read_memory (from
, buf
, len
);
817 /* GDB may get control back after the insn after the syscall.
818 Presumably this is a kernel bug.
819 If this is a syscall, make sure there's a nop afterwards. */
824 insn
= i386_skip_prefixes (buf
, len
);
825 if (insn
!= NULL
&& i386_syscall_p (insn
, &syscall_length
))
826 insn
[syscall_length
] = NOP_OPCODE
;
829 write_memory (to
, buf
, len
);
831 displaced_debug_printf ("%s->%s: %s",
832 paddress (gdbarch
, from
), paddress (gdbarch
, to
),
833 displaced_step_dump_bytes (buf
, len
).c_str ());
835 /* This is a work around for a problem with g++ 4.8. */
836 return displaced_step_copy_insn_closure_up (closure
.release ());
839 /* Fix up the state of registers and memory after having single-stepped
840 a displaced instruction. */
843 i386_displaced_step_fixup (struct gdbarch
*gdbarch
,
844 struct displaced_step_copy_insn_closure
*closure_
,
845 CORE_ADDR from
, CORE_ADDR to
,
846 struct regcache
*regs
)
848 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
850 /* The offset we applied to the instruction's address.
851 This could well be negative (when viewed as a signed 32-bit
852 value), but ULONGEST won't reflect that, so take care when
854 ULONGEST insn_offset
= to
- from
;
856 i386_displaced_step_copy_insn_closure
*closure
857 = (i386_displaced_step_copy_insn_closure
*) closure_
;
858 gdb_byte
*insn
= closure
->buf
.data ();
859 /* The start of the insn, needed in case we see some prefixes. */
860 gdb_byte
*insn_start
= insn
;
862 displaced_debug_printf ("fixup (%s, %s), insn = 0x%02x 0x%02x ...",
863 paddress (gdbarch
, from
), paddress (gdbarch
, to
),
866 /* The list of issues to contend with here is taken from
867 resume_execution in arch/i386/kernel/kprobes.c, Linux 2.6.20.
868 Yay for Free Software! */
870 /* Relocate the %eip, if necessary. */
872 /* The instruction recognizers we use assume any leading prefixes
873 have been skipped. */
875 /* This is the size of the buffer in closure. */
876 size_t max_insn_len
= gdbarch_max_insn_length (gdbarch
);
877 gdb_byte
*opcode
= i386_skip_prefixes (insn
, max_insn_len
);
878 /* If there are too many prefixes, just ignore the insn.
879 It will fault when run. */
884 /* Except in the case of absolute or indirect jump or call
885 instructions, or a return instruction, the new eip is relative to
886 the displaced instruction; make it relative. Well, signal
887 handler returns don't need relocation either, but we use the
888 value of %eip to recognize those; see below. */
889 if (! i386_absolute_jmp_p (insn
)
890 && ! i386_absolute_call_p (insn
)
891 && ! i386_ret_p (insn
))
896 regcache_cooked_read_unsigned (regs
, I386_EIP_REGNUM
, &orig_eip
);
898 /* A signal trampoline system call changes the %eip, resuming
899 execution of the main program after the signal handler has
900 returned. That makes them like 'return' instructions; we
901 shouldn't relocate %eip.
903 But most system calls don't, and we do need to relocate %eip.
905 Our heuristic for distinguishing these cases: if stepping
906 over the system call instruction left control directly after
907 the instruction, the we relocate --- control almost certainly
908 doesn't belong in the displaced copy. Otherwise, we assume
909 the instruction has put control where it belongs, and leave
910 it unrelocated. Goodness help us if there are PC-relative
912 if (i386_syscall_p (insn
, &insn_len
)
913 && orig_eip
!= to
+ (insn
- insn_start
) + insn_len
914 /* GDB can get control back after the insn after the syscall.
915 Presumably this is a kernel bug.
916 i386_displaced_step_copy_insn ensures its a nop,
917 we add one to the length for it. */
918 && orig_eip
!= to
+ (insn
- insn_start
) + insn_len
+ 1)
919 displaced_debug_printf ("syscall changed %%eip; not relocating");
922 ULONGEST eip
= (orig_eip
- insn_offset
) & 0xffffffffUL
;
924 /* If we just stepped over a breakpoint insn, we don't backup
925 the pc on purpose; this is to match behaviour without
928 regcache_cooked_write_unsigned (regs
, I386_EIP_REGNUM
, eip
);
930 displaced_debug_printf ("relocated %%eip from %s to %s",
931 paddress (gdbarch
, orig_eip
),
932 paddress (gdbarch
, eip
));
936 /* If the instruction was PUSHFL, then the TF bit will be set in the
937 pushed value, and should be cleared. We'll leave this for later,
938 since GDB already messes up the TF flag when stepping over a
941 /* If the instruction was a call, the return address now atop the
942 stack is the address following the copied instruction. We need
943 to make it the address following the original instruction. */
944 if (i386_call_p (insn
))
948 const ULONGEST retaddr_len
= 4;
950 regcache_cooked_read_unsigned (regs
, I386_ESP_REGNUM
, &esp
);
951 retaddr
= read_memory_unsigned_integer (esp
, retaddr_len
, byte_order
);
952 retaddr
= (retaddr
- insn_offset
) & 0xffffffffUL
;
953 write_memory_unsigned_integer (esp
, retaddr_len
, byte_order
, retaddr
);
955 displaced_debug_printf ("relocated return addr at %s to %s",
956 paddress (gdbarch
, esp
),
957 paddress (gdbarch
, retaddr
));
962 append_insns (CORE_ADDR
*to
, ULONGEST len
, const gdb_byte
*buf
)
964 target_write_memory (*to
, buf
, len
);
969 i386_relocate_instruction (struct gdbarch
*gdbarch
,
970 CORE_ADDR
*to
, CORE_ADDR oldloc
)
972 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
973 gdb_byte buf
[I386_MAX_INSN_LEN
];
974 int offset
= 0, rel32
, newrel
;
976 gdb_byte
*insn
= buf
;
978 read_memory (oldloc
, buf
, I386_MAX_INSN_LEN
);
980 insn_length
= gdb_buffered_insn_length (gdbarch
, insn
,
981 I386_MAX_INSN_LEN
, oldloc
);
983 /* Get past the prefixes. */
984 insn
= i386_skip_prefixes (insn
, I386_MAX_INSN_LEN
);
986 /* Adjust calls with 32-bit relative addresses as push/jump, with
987 the address pushed being the location where the original call in
988 the user program would return to. */
991 gdb_byte push_buf
[16];
992 unsigned int ret_addr
;
994 /* Where "ret" in the original code will return to. */
995 ret_addr
= oldloc
+ insn_length
;
996 push_buf
[0] = 0x68; /* pushq $... */
997 store_unsigned_integer (&push_buf
[1], 4, byte_order
, ret_addr
);
999 append_insns (to
, 5, push_buf
);
1001 /* Convert the relative call to a relative jump. */
1004 /* Adjust the destination offset. */
1005 rel32
= extract_signed_integer (insn
+ 1, 4, byte_order
);
1006 newrel
= (oldloc
- *to
) + rel32
;
1007 store_signed_integer (insn
+ 1, 4, byte_order
, newrel
);
1009 displaced_debug_printf ("adjusted insn rel32=%s at %s to rel32=%s at %s",
1010 hex_string (rel32
), paddress (gdbarch
, oldloc
),
1011 hex_string (newrel
), paddress (gdbarch
, *to
));
1013 /* Write the adjusted jump into its displaced location. */
1014 append_insns (to
, 5, insn
);
1018 /* Adjust jumps with 32-bit relative addresses. Calls are already
1020 if (insn
[0] == 0xe9)
1022 /* Adjust conditional jumps. */
1023 else if (insn
[0] == 0x0f && (insn
[1] & 0xf0) == 0x80)
1028 rel32
= extract_signed_integer (insn
+ offset
, 4, byte_order
);
1029 newrel
= (oldloc
- *to
) + rel32
;
1030 store_signed_integer (insn
+ offset
, 4, byte_order
, newrel
);
1031 displaced_debug_printf ("adjusted insn rel32=%s at %s to rel32=%s at %s",
1032 hex_string (rel32
), paddress (gdbarch
, oldloc
),
1033 hex_string (newrel
), paddress (gdbarch
, *to
));
1036 /* Write the adjusted instructions into their displaced
1038 append_insns (to
, insn_length
, buf
);
1042 #ifdef I386_REGNO_TO_SYMMETRY
1043 #error "The Sequent Symmetry is no longer supported."
1046 /* According to the System V ABI, the registers %ebp, %ebx, %edi, %esi
1047 and %esp "belong" to the calling function. Therefore these
1048 registers should be saved if they're going to be modified. */
1050 /* The maximum number of saved registers. This should include all
1051 registers mentioned above, and %eip. */
1052 #define I386_NUM_SAVED_REGS I386_NUM_GREGS
1054 struct i386_frame_cache
1062 /* Saved registers. */
1063 CORE_ADDR saved_regs
[I386_NUM_SAVED_REGS
];
1068 /* Stack space reserved for local variables. */
1072 /* Allocate and initialize a frame cache. */
1074 static struct i386_frame_cache
*
1075 i386_alloc_frame_cache (void)
1077 struct i386_frame_cache
*cache
;
1080 cache
= FRAME_OBSTACK_ZALLOC (struct i386_frame_cache
);
1085 cache
->sp_offset
= -4;
1088 /* Saved registers. We initialize these to -1 since zero is a valid
1089 offset (that's where %ebp is supposed to be stored). */
1090 for (i
= 0; i
< I386_NUM_SAVED_REGS
; i
++)
1091 cache
->saved_regs
[i
] = -1;
1092 cache
->saved_sp
= 0;
1093 cache
->saved_sp_reg
= -1;
1094 cache
->pc_in_eax
= 0;
1096 /* Frameless until proven otherwise. */
1102 /* If the instruction at PC is a jump, return the address of its
1103 target. Otherwise, return PC. */
1106 i386_follow_jump (struct gdbarch
*gdbarch
, CORE_ADDR pc
)
1108 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
1113 if (target_read_code (pc
, &op
, 1))
1120 op
= read_code_unsigned_integer (pc
+ 1, 1, byte_order
);
1126 /* Relative jump: if data16 == 0, disp32, else disp16. */
1129 delta
= read_memory_integer (pc
+ 2, 2, byte_order
);
1131 /* Include the size of the jmp instruction (including the
1137 delta
= read_memory_integer (pc
+ 1, 4, byte_order
);
1139 /* Include the size of the jmp instruction. */
1144 /* Relative jump, disp8 (ignore data16). */
1145 delta
= read_memory_integer (pc
+ data16
+ 1, 1, byte_order
);
1147 delta
+= data16
+ 2;
1154 /* Check whether PC points at a prologue for a function returning a
1155 structure or union. If so, it updates CACHE and returns the
1156 address of the first instruction after the code sequence that
1157 removes the "hidden" argument from the stack or CURRENT_PC,
1158 whichever is smaller. Otherwise, return PC. */
1161 i386_analyze_struct_return (CORE_ADDR pc
, CORE_ADDR current_pc
,
1162 struct i386_frame_cache
*cache
)
1164 /* Functions that return a structure or union start with:
1167 xchgl %eax, (%esp) 0x87 0x04 0x24
1168 or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
1170 (the System V compiler puts out the second `xchg' instruction,
1171 and the assembler doesn't try to optimize it, so the 'sib' form
1172 gets generated). This sequence is used to get the address of the
1173 return buffer for a function that returns a structure. */
1174 static gdb_byte proto1
[3] = { 0x87, 0x04, 0x24 };
1175 static gdb_byte proto2
[4] = { 0x87, 0x44, 0x24, 0x00 };
1179 if (current_pc
<= pc
)
1182 if (target_read_code (pc
, &op
, 1))
1185 if (op
!= 0x58) /* popl %eax */
1188 if (target_read_code (pc
+ 1, buf
, 4))
1191 if (memcmp (buf
, proto1
, 3) != 0 && memcmp (buf
, proto2
, 4) != 0)
1194 if (current_pc
== pc
)
1196 cache
->sp_offset
+= 4;
1200 if (current_pc
== pc
+ 1)
1202 cache
->pc_in_eax
= 1;
1206 if (buf
[1] == proto1
[1])
1213 i386_skip_probe (CORE_ADDR pc
)
1215 /* A function may start with
1229 if (target_read_code (pc
, &op
, 1))
1232 if (op
== 0x68 || op
== 0x6a)
1236 /* Skip past the `pushl' instruction; it has either a one-byte or a
1237 four-byte operand, depending on the opcode. */
1243 /* Read the following 8 bytes, which should be `call _probe' (6
1244 bytes) followed by `addl $4,%esp' (2 bytes). */
1245 read_memory (pc
+ delta
, buf
, sizeof (buf
));
1246 if (buf
[0] == 0xe8 && buf
[6] == 0xc4 && buf
[7] == 0x4)
1247 pc
+= delta
+ sizeof (buf
);
1253 /* GCC 4.1 and later, can put code in the prologue to realign the
1254 stack pointer. Check whether PC points to such code, and update
1255 CACHE accordingly. Return the first instruction after the code
1256 sequence or CURRENT_PC, whichever is smaller. If we don't
1257 recognize the code, return PC. */
1260 i386_analyze_stack_align (CORE_ADDR pc
, CORE_ADDR current_pc
,
1261 struct i386_frame_cache
*cache
)
1263 /* There are 2 code sequences to re-align stack before the frame
1266 1. Use a caller-saved saved register:
1272 2. Use a callee-saved saved register:
1279 "andl $-XXX, %esp" can be either 3 bytes or 6 bytes:
1281 0x83 0xe4 0xf0 andl $-16, %esp
1282 0x81 0xe4 0x00 0xff 0xff 0xff andl $-256, %esp
1287 int offset
, offset_and
;
1288 static int regnums
[8] = {
1289 I386_EAX_REGNUM
, /* %eax */
1290 I386_ECX_REGNUM
, /* %ecx */
1291 I386_EDX_REGNUM
, /* %edx */
1292 I386_EBX_REGNUM
, /* %ebx */
1293 I386_ESP_REGNUM
, /* %esp */
1294 I386_EBP_REGNUM
, /* %ebp */
1295 I386_ESI_REGNUM
, /* %esi */
1296 I386_EDI_REGNUM
/* %edi */
1299 if (target_read_code (pc
, buf
, sizeof buf
))
1302 /* Check caller-saved saved register. The first instruction has
1303 to be "leal 4(%esp), %reg". */
1304 if (buf
[0] == 0x8d && buf
[2] == 0x24 && buf
[3] == 0x4)
1306 /* MOD must be binary 10 and R/M must be binary 100. */
1307 if ((buf
[1] & 0xc7) != 0x44)
1310 /* REG has register number. */
1311 reg
= (buf
[1] >> 3) & 7;
1316 /* Check callee-saved saved register. The first instruction
1317 has to be "pushl %reg". */
1318 if ((buf
[0] & 0xf8) != 0x50)
1324 /* The next instruction has to be "leal 8(%esp), %reg". */
1325 if (buf
[1] != 0x8d || buf
[3] != 0x24 || buf
[4] != 0x8)
1328 /* MOD must be binary 10 and R/M must be binary 100. */
1329 if ((buf
[2] & 0xc7) != 0x44)
1332 /* REG has register number. Registers in pushl and leal have to
1334 if (reg
!= ((buf
[2] >> 3) & 7))
1340 /* Rigister can't be %esp nor %ebp. */
1341 if (reg
== 4 || reg
== 5)
1344 /* The next instruction has to be "andl $-XXX, %esp". */
1345 if (buf
[offset
+ 1] != 0xe4
1346 || (buf
[offset
] != 0x81 && buf
[offset
] != 0x83))
1349 offset_and
= offset
;
1350 offset
+= buf
[offset
] == 0x81 ? 6 : 3;
1352 /* The next instruction has to be "pushl -4(%reg)". 8bit -4 is
1353 0xfc. REG must be binary 110 and MOD must be binary 01. */
1354 if (buf
[offset
] != 0xff
1355 || buf
[offset
+ 2] != 0xfc
1356 || (buf
[offset
+ 1] & 0xf8) != 0x70)
1359 /* R/M has register. Registers in leal and pushl have to be the
1361 if (reg
!= (buf
[offset
+ 1] & 7))
1364 if (current_pc
> pc
+ offset_and
)
1365 cache
->saved_sp_reg
= regnums
[reg
];
1367 return std::min (pc
+ offset
+ 3, current_pc
);
1370 /* Maximum instruction length we need to handle. */
1371 #define I386_MAX_MATCHED_INSN_LEN 6
1373 /* Instruction description. */
1377 gdb_byte insn
[I386_MAX_MATCHED_INSN_LEN
];
1378 gdb_byte mask
[I386_MAX_MATCHED_INSN_LEN
];
1381 /* Return whether instruction at PC matches PATTERN. */
1384 i386_match_pattern (CORE_ADDR pc
, struct i386_insn pattern
)
1388 if (target_read_code (pc
, &op
, 1))
1391 if ((op
& pattern
.mask
[0]) == pattern
.insn
[0])
1393 gdb_byte buf
[I386_MAX_MATCHED_INSN_LEN
- 1];
1394 int insn_matched
= 1;
1397 gdb_assert (pattern
.len
> 1);
1398 gdb_assert (pattern
.len
<= I386_MAX_MATCHED_INSN_LEN
);
1400 if (target_read_code (pc
+ 1, buf
, pattern
.len
- 1))
1403 for (i
= 1; i
< pattern
.len
; i
++)
1405 if ((buf
[i
- 1] & pattern
.mask
[i
]) != pattern
.insn
[i
])
1408 return insn_matched
;
1413 /* Search for the instruction at PC in the list INSN_PATTERNS. Return
1414 the first instruction description that matches. Otherwise, return
1417 static struct i386_insn
*
1418 i386_match_insn (CORE_ADDR pc
, struct i386_insn
*insn_patterns
)
1420 struct i386_insn
*pattern
;
1422 for (pattern
= insn_patterns
; pattern
->len
> 0; pattern
++)
1424 if (i386_match_pattern (pc
, *pattern
))
1431 /* Return whether PC points inside a sequence of instructions that
1432 matches INSN_PATTERNS. */
1435 i386_match_insn_block (CORE_ADDR pc
, struct i386_insn
*insn_patterns
)
1437 CORE_ADDR current_pc
;
1439 struct i386_insn
*insn
;
1441 insn
= i386_match_insn (pc
, insn_patterns
);
1446 ix
= insn
- insn_patterns
;
1447 for (i
= ix
- 1; i
>= 0; i
--)
1449 current_pc
-= insn_patterns
[i
].len
;
1451 if (!i386_match_pattern (current_pc
, insn_patterns
[i
]))
1455 current_pc
= pc
+ insn
->len
;
1456 for (insn
= insn_patterns
+ ix
+ 1; insn
->len
> 0; insn
++)
1458 if (!i386_match_pattern (current_pc
, *insn
))
1461 current_pc
+= insn
->len
;
1467 /* Some special instructions that might be migrated by GCC into the
1468 part of the prologue that sets up the new stack frame. Because the
1469 stack frame hasn't been setup yet, no registers have been saved
1470 yet, and only the scratch registers %eax, %ecx and %edx can be
1473 static i386_insn i386_frame_setup_skip_insns
[] =
1475 /* Check for `movb imm8, r' and `movl imm32, r'.
1477 ??? Should we handle 16-bit operand-sizes here? */
1479 /* `movb imm8, %al' and `movb imm8, %ah' */
1480 /* `movb imm8, %cl' and `movb imm8, %ch' */
1481 { 2, { 0xb0, 0x00 }, { 0xfa, 0x00 } },
1482 /* `movb imm8, %dl' and `movb imm8, %dh' */
1483 { 2, { 0xb2, 0x00 }, { 0xfb, 0x00 } },
1484 /* `movl imm32, %eax' and `movl imm32, %ecx' */
1485 { 5, { 0xb8 }, { 0xfe } },
1486 /* `movl imm32, %edx' */
1487 { 5, { 0xba }, { 0xff } },
1489 /* Check for `mov imm32, r32'. Note that there is an alternative
1490 encoding for `mov m32, %eax'.
1492 ??? Should we handle SIB addressing here?
1493 ??? Should we handle 16-bit operand-sizes here? */
1495 /* `movl m32, %eax' */
1496 { 5, { 0xa1 }, { 0xff } },
1497 /* `movl m32, %eax' and `mov; m32, %ecx' */
1498 { 6, { 0x89, 0x05 }, {0xff, 0xf7 } },
1499 /* `movl m32, %edx' */
1500 { 6, { 0x89, 0x15 }, {0xff, 0xff } },
1502 /* Check for `xorl r32, r32' and the equivalent `subl r32, r32'.
1503 Because of the symmetry, there are actually two ways to encode
1504 these instructions; opcode bytes 0x29 and 0x2b for `subl' and
1505 opcode bytes 0x31 and 0x33 for `xorl'. */
1507 /* `subl %eax, %eax' */
1508 { 2, { 0x29, 0xc0 }, { 0xfd, 0xff } },
1509 /* `subl %ecx, %ecx' */
1510 { 2, { 0x29, 0xc9 }, { 0xfd, 0xff } },
1511 /* `subl %edx, %edx' */
1512 { 2, { 0x29, 0xd2 }, { 0xfd, 0xff } },
1513 /* `xorl %eax, %eax' */
1514 { 2, { 0x31, 0xc0 }, { 0xfd, 0xff } },
1515 /* `xorl %ecx, %ecx' */
1516 { 2, { 0x31, 0xc9 }, { 0xfd, 0xff } },
1517 /* `xorl %edx, %edx' */
1518 { 2, { 0x31, 0xd2 }, { 0xfd, 0xff } },
1522 /* Check whether PC points to an endbr32 instruction. */
1524 i386_skip_endbr (CORE_ADDR pc
)
1526 static const gdb_byte endbr32
[] = { 0xf3, 0x0f, 0x1e, 0xfb };
1528 gdb_byte buf
[sizeof (endbr32
)];
1530 /* Stop there if we can't read the code */
1531 if (target_read_code (pc
, buf
, sizeof (endbr32
)))
1534 /* If the instruction isn't an endbr32, stop */
1535 if (memcmp (buf
, endbr32
, sizeof (endbr32
)) != 0)
1538 return pc
+ sizeof (endbr32
);
1541 /* Check whether PC points to a no-op instruction. */
1543 i386_skip_noop (CORE_ADDR pc
)
1548 if (target_read_code (pc
, &op
, 1))
1554 /* Ignore `nop' instruction. */
1558 if (target_read_code (pc
, &op
, 1))
1562 /* Ignore no-op instruction `mov %edi, %edi'.
1563 Microsoft system dlls often start with
1564 a `mov %edi,%edi' instruction.
1565 The 5 bytes before the function start are
1566 filled with `nop' instructions.
1567 This pattern can be used for hot-patching:
1568 The `mov %edi, %edi' instruction can be replaced by a
1569 near jump to the location of the 5 `nop' instructions
1570 which can be replaced by a 32-bit jump to anywhere
1571 in the 32-bit address space. */
1573 else if (op
== 0x8b)
1575 if (target_read_code (pc
+ 1, &op
, 1))
1581 if (target_read_code (pc
, &op
, 1))
1591 /* Check whether PC points at a code that sets up a new stack frame.
1592 If so, it updates CACHE and returns the address of the first
1593 instruction after the sequence that sets up the frame or LIMIT,
1594 whichever is smaller. If we don't recognize the code, return PC. */
1597 i386_analyze_frame_setup (struct gdbarch
*gdbarch
,
1598 CORE_ADDR pc
, CORE_ADDR limit
,
1599 struct i386_frame_cache
*cache
)
1601 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
1602 struct i386_insn
*insn
;
1609 if (target_read_code (pc
, &op
, 1))
1612 if (op
== 0x55) /* pushl %ebp */
1614 /* Take into account that we've executed the `pushl %ebp' that
1615 starts this instruction sequence. */
1616 cache
->saved_regs
[I386_EBP_REGNUM
] = 0;
1617 cache
->sp_offset
+= 4;
1620 /* If that's all, return now. */
1624 /* Check for some special instructions that might be migrated by
1625 GCC into the prologue and skip them. At this point in the
1626 prologue, code should only touch the scratch registers %eax,
1627 %ecx and %edx, so while the number of possibilities is sheer,
1630 Make sure we only skip these instructions if we later see the
1631 `movl %esp, %ebp' that actually sets up the frame. */
1632 while (pc
+ skip
< limit
)
1634 insn
= i386_match_insn (pc
+ skip
, i386_frame_setup_skip_insns
);
1641 /* If that's all, return now. */
1642 if (limit
<= pc
+ skip
)
1645 if (target_read_code (pc
+ skip
, &op
, 1))
1648 /* The i386 prologue looks like
1654 and a different prologue can be generated for atom.
1658 lea -0x10(%esp),%esp
1660 We handle both of them here. */
1664 /* Check for `movl %esp, %ebp' -- can be written in two ways. */
1666 if (read_code_unsigned_integer (pc
+ skip
+ 1, 1, byte_order
)
1672 if (read_code_unsigned_integer (pc
+ skip
+ 1, 1, byte_order
)
1677 case 0x8d: /* Check for 'lea (%ebp), %ebp'. */
1678 if (read_code_unsigned_integer (pc
+ skip
+ 1, 2, byte_order
)
1687 /* OK, we actually have a frame. We just don't know how large
1688 it is yet. Set its size to zero. We'll adjust it if
1689 necessary. We also now commit to skipping the special
1690 instructions mentioned before. */
1693 /* If that's all, return now. */
1697 /* Check for stack adjustment
1703 NOTE: You can't subtract a 16-bit immediate from a 32-bit
1704 reg, so we don't have to worry about a data16 prefix. */
1705 if (target_read_code (pc
, &op
, 1))
1709 /* `subl' with 8-bit immediate. */
1710 if (read_code_unsigned_integer (pc
+ 1, 1, byte_order
) != 0xec)
1711 /* Some instruction starting with 0x83 other than `subl'. */
1714 /* `subl' with signed 8-bit immediate (though it wouldn't
1715 make sense to be negative). */
1716 cache
->locals
= read_code_integer (pc
+ 2, 1, byte_order
);
1719 else if (op
== 0x81)
1721 /* Maybe it is `subl' with a 32-bit immediate. */
1722 if (read_code_unsigned_integer (pc
+ 1, 1, byte_order
) != 0xec)
1723 /* Some instruction starting with 0x81 other than `subl'. */
1726 /* It is `subl' with a 32-bit immediate. */
1727 cache
->locals
= read_code_integer (pc
+ 2, 4, byte_order
);
1730 else if (op
== 0x8d)
1732 /* The ModR/M byte is 0x64. */
1733 if (read_code_unsigned_integer (pc
+ 1, 1, byte_order
) != 0x64)
1735 /* 'lea' with 8-bit displacement. */
1736 cache
->locals
= -1 * read_code_integer (pc
+ 3, 1, byte_order
);
1741 /* Some instruction other than `subl' nor 'lea'. */
1745 else if (op
== 0xc8) /* enter */
1747 cache
->locals
= read_code_unsigned_integer (pc
+ 1, 2, byte_order
);
1754 /* Check whether PC points at code that saves registers on the stack.
1755 If so, it updates CACHE and returns the address of the first
1756 instruction after the register saves or CURRENT_PC, whichever is
1757 smaller. Otherwise, return PC. */
1760 i386_analyze_register_saves (CORE_ADDR pc
, CORE_ADDR current_pc
,
1761 struct i386_frame_cache
*cache
)
1763 CORE_ADDR offset
= 0;
1767 if (cache
->locals
> 0)
1768 offset
-= cache
->locals
;
1769 for (i
= 0; i
< 8 && pc
< current_pc
; i
++)
1771 if (target_read_code (pc
, &op
, 1))
1773 if (op
< 0x50 || op
> 0x57)
1777 cache
->saved_regs
[op
- 0x50] = offset
;
1778 cache
->sp_offset
+= 4;
1785 /* Do a full analysis of the prologue at PC and update CACHE
1786 accordingly. Bail out early if CURRENT_PC is reached. Return the
1787 address where the analysis stopped.
1789 We handle these cases:
1791 The startup sequence can be at the start of the function, or the
1792 function can start with a branch to startup code at the end.
1794 %ebp can be set up with either the 'enter' instruction, or "pushl
1795 %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
1796 once used in the System V compiler).
1798 Local space is allocated just below the saved %ebp by either the
1799 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a
1800 16-bit unsigned argument for space to allocate, and the 'addl'
1801 instruction could have either a signed byte, or 32-bit immediate.
1803 Next, the registers used by this function are pushed. With the
1804 System V compiler they will always be in the order: %edi, %esi,
1805 %ebx (and sometimes a harmless bug causes it to also save but not
1806 restore %eax); however, the code below is willing to see the pushes
1807 in any order, and will handle up to 8 of them.
1809 If the setup sequence is at the end of the function, then the next
1810 instruction will be a branch back to the start. */
1813 i386_analyze_prologue (struct gdbarch
*gdbarch
,
1814 CORE_ADDR pc
, CORE_ADDR current_pc
,
1815 struct i386_frame_cache
*cache
)
1817 pc
= i386_skip_endbr (pc
);
1818 pc
= i386_skip_noop (pc
);
1819 pc
= i386_follow_jump (gdbarch
, pc
);
1820 pc
= i386_analyze_struct_return (pc
, current_pc
, cache
);
1821 pc
= i386_skip_probe (pc
);
1822 pc
= i386_analyze_stack_align (pc
, current_pc
, cache
);
1823 pc
= i386_analyze_frame_setup (gdbarch
, pc
, current_pc
, cache
);
1824 return i386_analyze_register_saves (pc
, current_pc
, cache
);
1827 /* Return PC of first real instruction. */
1830 i386_skip_prologue (struct gdbarch
*gdbarch
, CORE_ADDR start_pc
)
1832 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
1834 static gdb_byte pic_pat
[6] =
1836 0xe8, 0, 0, 0, 0, /* call 0x0 */
1837 0x5b, /* popl %ebx */
1839 struct i386_frame_cache cache
;
1843 CORE_ADDR func_addr
;
1845 if (find_pc_partial_function (start_pc
, NULL
, &func_addr
, NULL
))
1847 CORE_ADDR post_prologue_pc
1848 = skip_prologue_using_sal (gdbarch
, func_addr
);
1849 struct compunit_symtab
*cust
= find_pc_compunit_symtab (func_addr
);
1851 /* LLVM backend (Clang/Flang) always emits a line note before the
1852 prologue and another one after. We trust clang and newer Intel
1853 compilers to emit usable line notes. */
1854 if (post_prologue_pc
1856 && cust
->producer () != NULL
1857 && (producer_is_llvm (cust
->producer ())
1858 || producer_is_icc_ge_19 (cust
->producer ()))))
1859 return std::max (start_pc
, post_prologue_pc
);
1863 pc
= i386_analyze_prologue (gdbarch
, start_pc
, 0xffffffff, &cache
);
1864 if (cache
.locals
< 0)
1867 /* Found valid frame setup. */
1869 /* The native cc on SVR4 in -K PIC mode inserts the following code
1870 to get the address of the global offset table (GOT) into register
1875 movl %ebx,x(%ebp) (optional)
1878 This code is with the rest of the prologue (at the end of the
1879 function), so we have to skip it to get to the first real
1880 instruction at the start of the function. */
1882 for (i
= 0; i
< 6; i
++)
1884 if (target_read_code (pc
+ i
, &op
, 1))
1887 if (pic_pat
[i
] != op
)
1894 if (target_read_code (pc
+ delta
, &op
, 1))
1897 if (op
== 0x89) /* movl %ebx, x(%ebp) */
1899 op
= read_code_unsigned_integer (pc
+ delta
+ 1, 1, byte_order
);
1901 if (op
== 0x5d) /* One byte offset from %ebp. */
1903 else if (op
== 0x9d) /* Four byte offset from %ebp. */
1905 else /* Unexpected instruction. */
1908 if (target_read_code (pc
+ delta
, &op
, 1))
1913 if (delta
> 0 && op
== 0x81
1914 && read_code_unsigned_integer (pc
+ delta
+ 1, 1, byte_order
)
1921 /* If the function starts with a branch (to startup code at the end)
1922 the last instruction should bring us back to the first
1923 instruction of the real code. */
1924 if (i386_follow_jump (gdbarch
, start_pc
) != start_pc
)
1925 pc
= i386_follow_jump (gdbarch
, pc
);
1930 /* Check that the code pointed to by PC corresponds to a call to
1931 __main, skip it if so. Return PC otherwise. */
1934 i386_skip_main_prologue (struct gdbarch
*gdbarch
, CORE_ADDR pc
)
1936 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
1939 if (target_read_code (pc
, &op
, 1))
1945 if (target_read_code (pc
+ 1, buf
, sizeof buf
) == 0)
1947 /* Make sure address is computed correctly as a 32bit
1948 integer even if CORE_ADDR is 64 bit wide. */
1949 struct bound_minimal_symbol s
;
1950 CORE_ADDR call_dest
;
1952 call_dest
= pc
+ 5 + extract_signed_integer (buf
, 4, byte_order
);
1953 call_dest
= call_dest
& 0xffffffffU
;
1954 s
= lookup_minimal_symbol_by_pc (call_dest
);
1955 if (s
.minsym
!= NULL
1956 && s
.minsym
->linkage_name () != NULL
1957 && strcmp (s
.minsym
->linkage_name (), "__main") == 0)
1965 /* This function is 64-bit safe. */
1968 i386_unwind_pc (struct gdbarch
*gdbarch
, frame_info_ptr next_frame
)
1972 frame_unwind_register (next_frame
, gdbarch_pc_regnum (gdbarch
), buf
);
1973 return extract_typed_address (buf
, builtin_type (gdbarch
)->builtin_func_ptr
);
1977 /* Normal frames. */
1980 i386_frame_cache_1 (frame_info_ptr this_frame
,
1981 struct i386_frame_cache
*cache
)
1983 struct gdbarch
*gdbarch
= get_frame_arch (this_frame
);
1984 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
1988 cache
->pc
= get_frame_func (this_frame
);
1990 /* In principle, for normal frames, %ebp holds the frame pointer,
1991 which holds the base address for the current stack frame.
1992 However, for functions that don't need it, the frame pointer is
1993 optional. For these "frameless" functions the frame pointer is
1994 actually the frame pointer of the calling frame. Signal
1995 trampolines are just a special case of a "frameless" function.
1996 They (usually) share their frame pointer with the frame that was
1997 in progress when the signal occurred. */
1999 get_frame_register (this_frame
, I386_EBP_REGNUM
, buf
);
2000 cache
->base
= extract_unsigned_integer (buf
, 4, byte_order
);
2001 if (cache
->base
== 0)
2007 /* For normal frames, %eip is stored at 4(%ebp). */
2008 cache
->saved_regs
[I386_EIP_REGNUM
] = 4;
2011 i386_analyze_prologue (gdbarch
, cache
->pc
, get_frame_pc (this_frame
),
2014 if (cache
->locals
< 0)
2016 /* We didn't find a valid frame, which means that CACHE->base
2017 currently holds the frame pointer for our calling frame. If
2018 we're at the start of a function, or somewhere half-way its
2019 prologue, the function's frame probably hasn't been fully
2020 setup yet. Try to reconstruct the base address for the stack
2021 frame by looking at the stack pointer. For truly "frameless"
2022 functions this might work too. */
2024 if (cache
->saved_sp_reg
!= -1)
2026 /* Saved stack pointer has been saved. */
2027 get_frame_register (this_frame
, cache
->saved_sp_reg
, buf
);
2028 cache
->saved_sp
= extract_unsigned_integer (buf
, 4, byte_order
);
2030 /* We're halfway aligning the stack. */
2031 cache
->base
= ((cache
->saved_sp
- 4) & 0xfffffff0) - 4;
2032 cache
->saved_regs
[I386_EIP_REGNUM
] = cache
->saved_sp
- 4;
2034 /* This will be added back below. */
2035 cache
->saved_regs
[I386_EIP_REGNUM
] -= cache
->base
;
2037 else if (cache
->pc
!= 0
2038 || target_read_code (get_frame_pc (this_frame
), buf
, 1))
2040 /* We're in a known function, but did not find a frame
2041 setup. Assume that the function does not use %ebp.
2042 Alternatively, we may have jumped to an invalid
2043 address; in that case there is definitely no new
2045 get_frame_register (this_frame
, I386_ESP_REGNUM
, buf
);
2046 cache
->base
= extract_unsigned_integer (buf
, 4, byte_order
)
2050 /* We're in an unknown function. We could not find the start
2051 of the function to analyze the prologue; our best option is
2052 to assume a typical frame layout with the caller's %ebp
2054 cache
->saved_regs
[I386_EBP_REGNUM
] = 0;
2057 if (cache
->saved_sp_reg
!= -1)
2059 /* Saved stack pointer has been saved (but the SAVED_SP_REG
2060 register may be unavailable). */
2061 if (cache
->saved_sp
== 0
2062 && deprecated_frame_register_read (this_frame
,
2063 cache
->saved_sp_reg
, buf
))
2064 cache
->saved_sp
= extract_unsigned_integer (buf
, 4, byte_order
);
2066 /* Now that we have the base address for the stack frame we can
2067 calculate the value of %esp in the calling frame. */
2068 else if (cache
->saved_sp
== 0)
2069 cache
->saved_sp
= cache
->base
+ 8;
2071 /* Adjust all the saved registers such that they contain addresses
2072 instead of offsets. */
2073 for (i
= 0; i
< I386_NUM_SAVED_REGS
; i
++)
2074 if (cache
->saved_regs
[i
] != -1)
2075 cache
->saved_regs
[i
] += cache
->base
;
2080 static struct i386_frame_cache
*
2081 i386_frame_cache (frame_info_ptr this_frame
, void **this_cache
)
2083 struct i386_frame_cache
*cache
;
2086 return (struct i386_frame_cache
*) *this_cache
;
2088 cache
= i386_alloc_frame_cache ();
2089 *this_cache
= cache
;
2093 i386_frame_cache_1 (this_frame
, cache
);
2095 catch (const gdb_exception_error
&ex
)
2097 if (ex
.error
!= NOT_AVAILABLE_ERROR
)
2105 i386_frame_this_id (frame_info_ptr this_frame
, void **this_cache
,
2106 struct frame_id
*this_id
)
2108 struct i386_frame_cache
*cache
= i386_frame_cache (this_frame
, this_cache
);
2111 (*this_id
) = frame_id_build_unavailable_stack (cache
->pc
);
2112 else if (cache
->base
== 0)
2114 /* This marks the outermost frame. */
2118 /* See the end of i386_push_dummy_call. */
2119 (*this_id
) = frame_id_build (cache
->base
+ 8, cache
->pc
);
2123 static enum unwind_stop_reason
2124 i386_frame_unwind_stop_reason (frame_info_ptr this_frame
,
2127 struct i386_frame_cache
*cache
= i386_frame_cache (this_frame
, this_cache
);
2130 return UNWIND_UNAVAILABLE
;
2132 /* This marks the outermost frame. */
2133 if (cache
->base
== 0)
2134 return UNWIND_OUTERMOST
;
2136 return UNWIND_NO_REASON
;
2139 static struct value
*
2140 i386_frame_prev_register (frame_info_ptr this_frame
, void **this_cache
,
2143 struct i386_frame_cache
*cache
= i386_frame_cache (this_frame
, this_cache
);
2145 gdb_assert (regnum
>= 0);
2147 /* The System V ABI says that:
2149 "The flags register contains the system flags, such as the
2150 direction flag and the carry flag. The direction flag must be
2151 set to the forward (that is, zero) direction before entry and
2152 upon exit from a function. Other user flags have no specified
2153 role in the standard calling sequence and are not preserved."
2155 To guarantee the "upon exit" part of that statement we fake a
2156 saved flags register that has its direction flag cleared.
2158 Note that GCC doesn't seem to rely on the fact that the direction
2159 flag is cleared after a function return; it always explicitly
2160 clears the flag before operations where it matters.
2162 FIXME: kettenis/20030316: I'm not quite sure whether this is the
2163 right thing to do. The way we fake the flags register here makes
2164 it impossible to change it. */
2166 if (regnum
== I386_EFLAGS_REGNUM
)
2170 val
= get_frame_register_unsigned (this_frame
, regnum
);
2172 return frame_unwind_got_constant (this_frame
, regnum
, val
);
2175 if (regnum
== I386_EIP_REGNUM
&& cache
->pc_in_eax
)
2176 return frame_unwind_got_register (this_frame
, regnum
, I386_EAX_REGNUM
);
2178 if (regnum
== I386_ESP_REGNUM
2179 && (cache
->saved_sp
!= 0 || cache
->saved_sp_reg
!= -1))
2181 /* If the SP has been saved, but we don't know where, then this
2182 means that SAVED_SP_REG register was found unavailable back
2183 when we built the cache. */
2184 if (cache
->saved_sp
== 0)
2185 return frame_unwind_got_register (this_frame
, regnum
,
2186 cache
->saved_sp_reg
);
2188 return frame_unwind_got_constant (this_frame
, regnum
,
2192 if (regnum
< I386_NUM_SAVED_REGS
&& cache
->saved_regs
[regnum
] != -1)
2193 return frame_unwind_got_memory (this_frame
, regnum
,
2194 cache
->saved_regs
[regnum
]);
2196 return frame_unwind_got_register (this_frame
, regnum
, regnum
);
2199 static const struct frame_unwind i386_frame_unwind
=
2203 i386_frame_unwind_stop_reason
,
2205 i386_frame_prev_register
,
2207 default_frame_sniffer
2210 /* Normal frames, but in a function epilogue. */
2212 /* Implement the stack_frame_destroyed_p gdbarch method.
2214 The epilogue is defined here as the 'ret' instruction, which will
2215 follow any instruction such as 'leave' or 'pop %ebp' that destroys
2216 the function's stack frame. */
2219 i386_stack_frame_destroyed_p (struct gdbarch
*gdbarch
, CORE_ADDR pc
)
2222 struct compunit_symtab
*cust
;
2224 cust
= find_pc_compunit_symtab (pc
);
2225 if (cust
!= NULL
&& cust
->epilogue_unwind_valid ())
2228 if (target_read_memory (pc
, &insn
, 1))
2229 return 0; /* Can't read memory at pc. */
2231 if (insn
!= 0xc3) /* 'ret' instruction. */
2238 i386_epilogue_frame_sniffer (const struct frame_unwind
*self
,
2239 frame_info_ptr this_frame
,
2240 void **this_prologue_cache
)
2242 if (frame_relative_level (this_frame
) == 0)
2243 return i386_stack_frame_destroyed_p (get_frame_arch (this_frame
),
2244 get_frame_pc (this_frame
));
2249 static struct i386_frame_cache
*
2250 i386_epilogue_frame_cache (frame_info_ptr this_frame
, void **this_cache
)
2252 struct i386_frame_cache
*cache
;
2256 return (struct i386_frame_cache
*) *this_cache
;
2258 cache
= i386_alloc_frame_cache ();
2259 *this_cache
= cache
;
2263 cache
->pc
= get_frame_func (this_frame
);
2265 /* At this point the stack looks as if we just entered the
2266 function, with the return address at the top of the
2268 sp
= get_frame_register_unsigned (this_frame
, I386_ESP_REGNUM
);
2269 cache
->base
= sp
+ cache
->sp_offset
;
2270 cache
->saved_sp
= cache
->base
+ 8;
2271 cache
->saved_regs
[I386_EIP_REGNUM
] = cache
->base
+ 4;
2275 catch (const gdb_exception_error
&ex
)
2277 if (ex
.error
!= NOT_AVAILABLE_ERROR
)
2284 static enum unwind_stop_reason
2285 i386_epilogue_frame_unwind_stop_reason (frame_info_ptr this_frame
,
2288 struct i386_frame_cache
*cache
=
2289 i386_epilogue_frame_cache (this_frame
, this_cache
);
2292 return UNWIND_UNAVAILABLE
;
2294 return UNWIND_NO_REASON
;
2298 i386_epilogue_frame_this_id (frame_info_ptr this_frame
,
2300 struct frame_id
*this_id
)
2302 struct i386_frame_cache
*cache
=
2303 i386_epilogue_frame_cache (this_frame
, this_cache
);
2306 (*this_id
) = frame_id_build_unavailable_stack (cache
->pc
);
2308 (*this_id
) = frame_id_build (cache
->base
+ 8, cache
->pc
);
2311 static struct value
*
2312 i386_epilogue_frame_prev_register (frame_info_ptr this_frame
,
2313 void **this_cache
, int regnum
)
2315 /* Make sure we've initialized the cache. */
2316 i386_epilogue_frame_cache (this_frame
, this_cache
);
2318 return i386_frame_prev_register (this_frame
, this_cache
, regnum
);
2321 static const struct frame_unwind i386_epilogue_frame_unwind
=
2325 i386_epilogue_frame_unwind_stop_reason
,
2326 i386_epilogue_frame_this_id
,
2327 i386_epilogue_frame_prev_register
,
2329 i386_epilogue_frame_sniffer
2333 /* Stack-based trampolines. */
2335 /* These trampolines are used on cross x86 targets, when taking the
2336 address of a nested function. When executing these trampolines,
2337 no stack frame is set up, so we are in a similar situation as in
2338 epilogues and i386_epilogue_frame_this_id can be re-used. */
2340 /* Static chain passed in register. */
2342 static i386_insn i386_tramp_chain_in_reg_insns
[] =
2344 /* `movl imm32, %eax' and `movl imm32, %ecx' */
2345 { 5, { 0xb8 }, { 0xfe } },
2348 { 5, { 0xe9 }, { 0xff } },
2353 /* Static chain passed on stack (when regparm=3). */
2355 static i386_insn i386_tramp_chain_on_stack_insns
[] =
2358 { 5, { 0x68 }, { 0xff } },
2361 { 5, { 0xe9 }, { 0xff } },
2366 /* Return whether PC points inside a stack trampoline. */
2369 i386_in_stack_tramp_p (CORE_ADDR pc
)
2374 /* A stack trampoline is detected if no name is associated
2375 to the current pc and if it points inside a trampoline
2378 find_pc_partial_function (pc
, &name
, NULL
, NULL
);
2382 if (target_read_memory (pc
, &insn
, 1))
2385 if (!i386_match_insn_block (pc
, i386_tramp_chain_in_reg_insns
)
2386 && !i386_match_insn_block (pc
, i386_tramp_chain_on_stack_insns
))
2393 i386_stack_tramp_frame_sniffer (const struct frame_unwind
*self
,
2394 frame_info_ptr this_frame
,
2397 if (frame_relative_level (this_frame
) == 0)
2398 return i386_in_stack_tramp_p (get_frame_pc (this_frame
));
2403 static const struct frame_unwind i386_stack_tramp_frame_unwind
=
2407 i386_epilogue_frame_unwind_stop_reason
,
2408 i386_epilogue_frame_this_id
,
2409 i386_epilogue_frame_prev_register
,
2411 i386_stack_tramp_frame_sniffer
2414 /* Generate a bytecode expression to get the value of the saved PC. */
2417 i386_gen_return_address (struct gdbarch
*gdbarch
,
2418 struct agent_expr
*ax
, struct axs_value
*value
,
2421 /* The following sequence assumes the traditional use of the base
2423 ax_reg (ax
, I386_EBP_REGNUM
);
2425 ax_simple (ax
, aop_add
);
2426 value
->type
= register_type (gdbarch
, I386_EIP_REGNUM
);
2427 value
->kind
= axs_lvalue_memory
;
2431 /* Signal trampolines. */
2433 static struct i386_frame_cache
*
2434 i386_sigtramp_frame_cache (frame_info_ptr this_frame
, void **this_cache
)
2436 struct gdbarch
*gdbarch
= get_frame_arch (this_frame
);
2437 i386_gdbarch_tdep
*tdep
= gdbarch_tdep
<i386_gdbarch_tdep
> (gdbarch
);
2438 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
2439 struct i386_frame_cache
*cache
;
2444 return (struct i386_frame_cache
*) *this_cache
;
2446 cache
= i386_alloc_frame_cache ();
2450 get_frame_register (this_frame
, I386_ESP_REGNUM
, buf
);
2451 cache
->base
= extract_unsigned_integer (buf
, 4, byte_order
) - 4;
2453 addr
= tdep
->sigcontext_addr (this_frame
);
2454 if (tdep
->sc_reg_offset
)
2458 gdb_assert (tdep
->sc_num_regs
<= I386_NUM_SAVED_REGS
);
2460 for (i
= 0; i
< tdep
->sc_num_regs
; i
++)
2461 if (tdep
->sc_reg_offset
[i
] != -1)
2462 cache
->saved_regs
[i
] = addr
+ tdep
->sc_reg_offset
[i
];
2466 cache
->saved_regs
[I386_EIP_REGNUM
] = addr
+ tdep
->sc_pc_offset
;
2467 cache
->saved_regs
[I386_ESP_REGNUM
] = addr
+ tdep
->sc_sp_offset
;
2472 catch (const gdb_exception_error
&ex
)
2474 if (ex
.error
!= NOT_AVAILABLE_ERROR
)
2478 *this_cache
= cache
;
2482 static enum unwind_stop_reason
2483 i386_sigtramp_frame_unwind_stop_reason (frame_info_ptr this_frame
,
2486 struct i386_frame_cache
*cache
=
2487 i386_sigtramp_frame_cache (this_frame
, this_cache
);
2490 return UNWIND_UNAVAILABLE
;
2492 return UNWIND_NO_REASON
;
2496 i386_sigtramp_frame_this_id (frame_info_ptr this_frame
, void **this_cache
,
2497 struct frame_id
*this_id
)
2499 struct i386_frame_cache
*cache
=
2500 i386_sigtramp_frame_cache (this_frame
, this_cache
);
2503 (*this_id
) = frame_id_build_unavailable_stack (get_frame_pc (this_frame
));
2506 /* See the end of i386_push_dummy_call. */
2507 (*this_id
) = frame_id_build (cache
->base
+ 8, get_frame_pc (this_frame
));
2511 static struct value
*
2512 i386_sigtramp_frame_prev_register (frame_info_ptr this_frame
,
2513 void **this_cache
, int regnum
)
2515 /* Make sure we've initialized the cache. */
2516 i386_sigtramp_frame_cache (this_frame
, this_cache
);
2518 return i386_frame_prev_register (this_frame
, this_cache
, regnum
);
2522 i386_sigtramp_frame_sniffer (const struct frame_unwind
*self
,
2523 frame_info_ptr this_frame
,
2524 void **this_prologue_cache
)
2526 gdbarch
*arch
= get_frame_arch (this_frame
);
2527 i386_gdbarch_tdep
*tdep
= gdbarch_tdep
<i386_gdbarch_tdep
> (arch
);
2529 /* We shouldn't even bother if we don't have a sigcontext_addr
2531 if (tdep
->sigcontext_addr
== NULL
)
2534 if (tdep
->sigtramp_p
!= NULL
)
2536 if (tdep
->sigtramp_p (this_frame
))
2540 if (tdep
->sigtramp_start
!= 0)
2542 CORE_ADDR pc
= get_frame_pc (this_frame
);
2544 gdb_assert (tdep
->sigtramp_end
!= 0);
2545 if (pc
>= tdep
->sigtramp_start
&& pc
< tdep
->sigtramp_end
)
2552 static const struct frame_unwind i386_sigtramp_frame_unwind
=
2556 i386_sigtramp_frame_unwind_stop_reason
,
2557 i386_sigtramp_frame_this_id
,
2558 i386_sigtramp_frame_prev_register
,
2560 i386_sigtramp_frame_sniffer
2565 i386_frame_base_address (frame_info_ptr this_frame
, void **this_cache
)
2567 struct i386_frame_cache
*cache
= i386_frame_cache (this_frame
, this_cache
);
2572 static const struct frame_base i386_frame_base
=
2575 i386_frame_base_address
,
2576 i386_frame_base_address
,
2577 i386_frame_base_address
2580 static struct frame_id
2581 i386_dummy_id (struct gdbarch
*gdbarch
, frame_info_ptr this_frame
)
2585 fp
= get_frame_register_unsigned (this_frame
, I386_EBP_REGNUM
);
2587 /* See the end of i386_push_dummy_call. */
2588 return frame_id_build (fp
+ 8, get_frame_pc (this_frame
));
2591 /* _Decimal128 function return values need 16-byte alignment on the
2595 i386_frame_align (struct gdbarch
*gdbarch
, CORE_ADDR sp
)
2597 return sp
& -(CORE_ADDR
)16;
2601 /* Figure out where the longjmp will land. Slurp the args out of the
2602 stack. We expect the first arg to be a pointer to the jmp_buf
2603 structure from which we extract the address that we will land at.
2604 This address is copied into PC. This routine returns non-zero on
2608 i386_get_longjmp_target (frame_info_ptr frame
, CORE_ADDR
*pc
)
2611 CORE_ADDR sp
, jb_addr
;
2612 struct gdbarch
*gdbarch
= get_frame_arch (frame
);
2613 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
2614 i386_gdbarch_tdep
*tdep
= gdbarch_tdep
<i386_gdbarch_tdep
> (gdbarch
);
2615 int jb_pc_offset
= tdep
->jb_pc_offset
;
2617 /* If JB_PC_OFFSET is -1, we have no way to find out where the
2618 longjmp will land. */
2619 if (jb_pc_offset
== -1)
2622 get_frame_register (frame
, I386_ESP_REGNUM
, buf
);
2623 sp
= extract_unsigned_integer (buf
, 4, byte_order
);
2624 if (target_read_memory (sp
+ 4, buf
, 4))
2627 jb_addr
= extract_unsigned_integer (buf
, 4, byte_order
);
2628 if (target_read_memory (jb_addr
+ jb_pc_offset
, buf
, 4))
2631 *pc
= extract_unsigned_integer (buf
, 4, byte_order
);
2636 /* Check whether TYPE must be 16-byte-aligned when passed as a
2637 function argument. 16-byte vectors, _Decimal128 and structures or
2638 unions containing such types must be 16-byte-aligned; other
2639 arguments are 4-byte-aligned. */
2642 i386_16_byte_align_p (struct type
*type
)
2644 type
= check_typedef (type
);
2645 if ((type
->code () == TYPE_CODE_DECFLOAT
2646 || (type
->code () == TYPE_CODE_ARRAY
&& type
->is_vector ()))
2647 && type
->length () == 16)
2649 if (type
->code () == TYPE_CODE_ARRAY
)
2650 return i386_16_byte_align_p (type
->target_type ());
2651 if (type
->code () == TYPE_CODE_STRUCT
2652 || type
->code () == TYPE_CODE_UNION
)
2655 for (i
= 0; i
< type
->num_fields (); i
++)
2657 if (field_is_static (&type
->field (i
)))
2659 if (i386_16_byte_align_p (type
->field (i
).type ()))
2666 /* Implementation for set_gdbarch_push_dummy_code. */
2669 i386_push_dummy_code (struct gdbarch
*gdbarch
, CORE_ADDR sp
, CORE_ADDR funaddr
,
2670 struct value
**args
, int nargs
, struct type
*value_type
,
2671 CORE_ADDR
*real_pc
, CORE_ADDR
*bp_addr
,
2672 struct regcache
*regcache
)
2674 /* Use 0xcc breakpoint - 1 byte. */
2678 /* Keep the stack aligned. */
2682 /* The "push_dummy_call" gdbarch method, optionally with the thiscall
2683 calling convention. */
2686 i386_thiscall_push_dummy_call (struct gdbarch
*gdbarch
, struct value
*function
,
2687 struct regcache
*regcache
, CORE_ADDR bp_addr
,
2688 int nargs
, struct value
**args
, CORE_ADDR sp
,
2689 function_call_return_method return_method
,
2690 CORE_ADDR struct_addr
, bool thiscall
)
2692 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
2698 /* BND registers can be in arbitrary values at the moment of the
2699 inferior call. This can cause boundary violations that are not
2700 due to a real bug or even desired by the user. The best to be done
2701 is set the BND registers to allow access to the whole memory, INIT
2702 state, before pushing the inferior call. */
2703 i387_reset_bnd_regs (gdbarch
, regcache
);
2705 /* Determine the total space required for arguments and struct
2706 return address in a first pass (allowing for 16-byte-aligned
2707 arguments), then push arguments in a second pass. */
2709 for (write_pass
= 0; write_pass
< 2; write_pass
++)
2711 int args_space_used
= 0;
2713 if (return_method
== return_method_struct
)
2717 /* Push value address. */
2718 store_unsigned_integer (buf
, 4, byte_order
, struct_addr
);
2719 write_memory (sp
, buf
, 4);
2720 args_space_used
+= 4;
2726 for (i
= thiscall
? 1 : 0; i
< nargs
; i
++)
2728 int len
= value_enclosing_type (args
[i
])->length ();
2732 if (i386_16_byte_align_p (value_enclosing_type (args
[i
])))
2733 args_space_used
= align_up (args_space_used
, 16);
2735 write_memory (sp
+ args_space_used
,
2736 value_contents_all (args
[i
]).data (), len
);
2737 /* The System V ABI says that:
2739 "An argument's size is increased, if necessary, to make it a
2740 multiple of [32-bit] words. This may require tail padding,
2741 depending on the size of the argument."
2743 This makes sure the stack stays word-aligned. */
2744 args_space_used
+= align_up (len
, 4);
2748 if (i386_16_byte_align_p (value_enclosing_type (args
[i
])))
2749 args_space
= align_up (args_space
, 16);
2750 args_space
+= align_up (len
, 4);
2758 /* The original System V ABI only requires word alignment,
2759 but modern incarnations need 16-byte alignment in order
2760 to support SSE. Since wasting a few bytes here isn't
2761 harmful we unconditionally enforce 16-byte alignment. */
2766 /* Store return address. */
2768 store_unsigned_integer (buf
, 4, byte_order
, bp_addr
);
2769 write_memory (sp
, buf
, 4);
2771 /* Finally, update the stack pointer... */
2772 store_unsigned_integer (buf
, 4, byte_order
, sp
);
2773 regcache
->cooked_write (I386_ESP_REGNUM
, buf
);
2775 /* ...and fake a frame pointer. */
2776 regcache
->cooked_write (I386_EBP_REGNUM
, buf
);
2778 /* The 'this' pointer needs to be in ECX. */
2780 regcache
->cooked_write (I386_ECX_REGNUM
,
2781 value_contents_all (args
[0]).data ());
2783 /* If the PLT is position-independent, the SYSTEM V ABI requires %ebx to be
2784 set to the address of the GOT when doing a call to a PLT address.
2785 Note that we do not try to determine whether the PLT is
2786 position-independent, we just set the register regardless. */
2787 CORE_ADDR func_addr
= find_function_addr (function
, nullptr, nullptr);
2788 if (in_plt_section (func_addr
))
2790 struct objfile
*objf
= nullptr;
2791 asection
*asect
= nullptr;
2792 obj_section
*osect
= nullptr;
2794 /* Get object file containing func_addr. */
2795 obj_section
*func_section
= find_pc_section (func_addr
);
2796 if (func_section
!= nullptr)
2797 objf
= func_section
->objfile
;
2799 if (objf
!= nullptr)
2801 /* Get corresponding .got.plt or .got section. */
2802 asect
= bfd_get_section_by_name (objf
->obfd
.get (), ".got.plt");
2803 if (asect
== nullptr)
2804 asect
= bfd_get_section_by_name (objf
->obfd
.get (), ".got");
2807 if (asect
!= nullptr)
2808 /* Translate asection to obj_section. */
2809 osect
= maint_obj_section_from_bfd_section (objf
->obfd
.get (),
2812 if (osect
!= nullptr)
2814 /* Store the section address in %ebx. */
2815 store_unsigned_integer (buf
, 4, byte_order
, osect
->addr ());
2816 regcache
->cooked_write (I386_EBX_REGNUM
, buf
);
2820 /* If we would only do this for a position-independent PLT, it would
2821 make sense to issue a warning here. */
2825 /* MarkK wrote: This "+ 8" is all over the place:
2826 (i386_frame_this_id, i386_sigtramp_frame_this_id,
2827 i386_dummy_id). It's there, since all frame unwinders for
2828 a given target have to agree (within a certain margin) on the
2829 definition of the stack address of a frame. Otherwise frame id
2830 comparison might not work correctly. Since DWARF2/GCC uses the
2831 stack address *before* the function call as a frame's CFA. On
2832 the i386, when %ebp is used as a frame pointer, the offset
2833 between the contents %ebp and the CFA as defined by GCC. */
2837 /* Implement the "push_dummy_call" gdbarch method. */
2840 i386_push_dummy_call (struct gdbarch
*gdbarch
, struct value
*function
,
2841 struct regcache
*regcache
, CORE_ADDR bp_addr
, int nargs
,
2842 struct value
**args
, CORE_ADDR sp
,
2843 function_call_return_method return_method
,
2844 CORE_ADDR struct_addr
)
2846 return i386_thiscall_push_dummy_call (gdbarch
, function
, regcache
, bp_addr
,
2847 nargs
, args
, sp
, return_method
,
2848 struct_addr
, false);
2851 /* These registers are used for returning integers (and on some
2852 targets also for returning `struct' and `union' values when their
2853 size and alignment match an integer type). */
2854 #define LOW_RETURN_REGNUM I386_EAX_REGNUM /* %eax */
2855 #define HIGH_RETURN_REGNUM I386_EDX_REGNUM /* %edx */
2857 /* Read, for architecture GDBARCH, a function return value of TYPE
2858 from REGCACHE, and copy that into VALBUF. */
2861 i386_extract_return_value (struct gdbarch
*gdbarch
, struct type
*type
,
2862 struct regcache
*regcache
, gdb_byte
*valbuf
)
2864 i386_gdbarch_tdep
*tdep
= gdbarch_tdep
<i386_gdbarch_tdep
> (gdbarch
);
2865 int len
= type
->length ();
2866 gdb_byte buf
[I386_MAX_REGISTER_SIZE
];
2868 /* _Float16 and _Float16 _Complex values are returned via xmm0. */
2869 if (((type
->code () == TYPE_CODE_FLT
) && len
== 2)
2870 || ((type
->code () == TYPE_CODE_COMPLEX
) && len
== 4))
2872 regcache
->raw_read (I387_XMM0_REGNUM (tdep
), valbuf
);
2875 else if (type
->code () == TYPE_CODE_FLT
)
2877 if (tdep
->st0_regnum
< 0)
2879 warning (_("Cannot find floating-point return value."));
2880 memset (valbuf
, 0, len
);
2884 /* Floating-point return values can be found in %st(0). Convert
2885 its contents to the desired type. This is probably not
2886 exactly how it would happen on the target itself, but it is
2887 the best we can do. */
2888 regcache
->raw_read (I386_ST0_REGNUM
, buf
);
2889 target_float_convert (buf
, i387_ext_type (gdbarch
), valbuf
, type
);
2893 int low_size
= register_size (gdbarch
, LOW_RETURN_REGNUM
);
2894 int high_size
= register_size (gdbarch
, HIGH_RETURN_REGNUM
);
2896 if (len
<= low_size
)
2898 regcache
->raw_read (LOW_RETURN_REGNUM
, buf
);
2899 memcpy (valbuf
, buf
, len
);
2901 else if (len
<= (low_size
+ high_size
))
2903 regcache
->raw_read (LOW_RETURN_REGNUM
, buf
);
2904 memcpy (valbuf
, buf
, low_size
);
2905 regcache
->raw_read (HIGH_RETURN_REGNUM
, buf
);
2906 memcpy (valbuf
+ low_size
, buf
, len
- low_size
);
2909 internal_error (_("Cannot extract return value of %d bytes long."),
2914 /* Write, for architecture GDBARCH, a function return value of TYPE
2915 from VALBUF into REGCACHE. */
2918 i386_store_return_value (struct gdbarch
*gdbarch
, struct type
*type
,
2919 struct regcache
*regcache
, const gdb_byte
*valbuf
)
2921 i386_gdbarch_tdep
*tdep
= gdbarch_tdep
<i386_gdbarch_tdep
> (gdbarch
);
2922 int len
= type
->length ();
2924 if (type
->code () == TYPE_CODE_FLT
)
2927 gdb_byte buf
[I386_MAX_REGISTER_SIZE
];
2929 if (tdep
->st0_regnum
< 0)
2931 warning (_("Cannot set floating-point return value."));
2935 /* Returning floating-point values is a bit tricky. Apart from
2936 storing the return value in %st(0), we have to simulate the
2937 state of the FPU at function return point. */
2939 /* Convert the value found in VALBUF to the extended
2940 floating-point format used by the FPU. This is probably
2941 not exactly how it would happen on the target itself, but
2942 it is the best we can do. */
2943 target_float_convert (valbuf
, type
, buf
, i387_ext_type (gdbarch
));
2944 regcache
->raw_write (I386_ST0_REGNUM
, buf
);
2946 /* Set the top of the floating-point register stack to 7. The
2947 actual value doesn't really matter, but 7 is what a normal
2948 function return would end up with if the program started out
2949 with a freshly initialized FPU. */
2950 regcache_raw_read_unsigned (regcache
, I387_FSTAT_REGNUM (tdep
), &fstat
);
2952 regcache_raw_write_unsigned (regcache
, I387_FSTAT_REGNUM (tdep
), fstat
);
2954 /* Mark %st(1) through %st(7) as empty. Since we set the top of
2955 the floating-point register stack to 7, the appropriate value
2956 for the tag word is 0x3fff. */
2957 regcache_raw_write_unsigned (regcache
, I387_FTAG_REGNUM (tdep
), 0x3fff);
2961 int low_size
= register_size (gdbarch
, LOW_RETURN_REGNUM
);
2962 int high_size
= register_size (gdbarch
, HIGH_RETURN_REGNUM
);
2964 if (len
<= low_size
)
2965 regcache
->raw_write_part (LOW_RETURN_REGNUM
, 0, len
, valbuf
);
2966 else if (len
<= (low_size
+ high_size
))
2968 regcache
->raw_write (LOW_RETURN_REGNUM
, valbuf
);
2969 regcache
->raw_write_part (HIGH_RETURN_REGNUM
, 0, len
- low_size
,
2973 internal_error (_("Cannot store return value of %d bytes long."), len
);
2978 /* This is the variable that is set with "set struct-convention", and
2979 its legitimate values. */
2980 static const char default_struct_convention
[] = "default";
2981 static const char pcc_struct_convention
[] = "pcc";
2982 static const char reg_struct_convention
[] = "reg";
2983 static const char *const valid_conventions
[] =
2985 default_struct_convention
,
2986 pcc_struct_convention
,
2987 reg_struct_convention
,
2990 static const char *struct_convention
= default_struct_convention
;
2992 /* Return non-zero if TYPE, which is assumed to be a structure,
2993 a union type, or an array type, should be returned in registers
2994 for architecture GDBARCH. */
2997 i386_reg_struct_return_p (struct gdbarch
*gdbarch
, struct type
*type
)
2999 i386_gdbarch_tdep
*tdep
= gdbarch_tdep
<i386_gdbarch_tdep
> (gdbarch
);
3000 enum type_code code
= type
->code ();
3001 int len
= type
->length ();
3003 gdb_assert (code
== TYPE_CODE_STRUCT
3004 || code
== TYPE_CODE_UNION
3005 || code
== TYPE_CODE_ARRAY
);
3007 if (struct_convention
== pcc_struct_convention
3008 || (struct_convention
== default_struct_convention
3009 && tdep
->struct_return
== pcc_struct_return
))
3012 /* Structures consisting of a single `float', `double' or 'long
3013 double' member are returned in %st(0). */
3014 if (code
== TYPE_CODE_STRUCT
&& type
->num_fields () == 1)
3016 type
= check_typedef (type
->field (0).type ());
3017 if (type
->code () == TYPE_CODE_FLT
)
3018 return (len
== 4 || len
== 8 || len
== 12);
3021 return (len
== 1 || len
== 2 || len
== 4 || len
== 8);
3024 /* Determine, for architecture GDBARCH, how a return value of TYPE
3025 should be returned. If it is supposed to be returned in registers,
3026 and READBUF is non-zero, read the appropriate value from REGCACHE,
3027 and copy it into READBUF. If WRITEBUF is non-zero, write the value
3028 from WRITEBUF into REGCACHE. */
3030 static enum return_value_convention
3031 i386_return_value (struct gdbarch
*gdbarch
, struct value
*function
,
3032 struct type
*type
, struct regcache
*regcache
,
3033 gdb_byte
*readbuf
, const gdb_byte
*writebuf
)
3035 enum type_code code
= type
->code ();
3037 if (((code
== TYPE_CODE_STRUCT
3038 || code
== TYPE_CODE_UNION
3039 || code
== TYPE_CODE_ARRAY
)
3040 && !i386_reg_struct_return_p (gdbarch
, type
))
3041 /* Complex double and long double uses the struct return convention. */
3042 || (code
== TYPE_CODE_COMPLEX
&& type
->length () == 16)
3043 || (code
== TYPE_CODE_COMPLEX
&& type
->length () == 24)
3044 /* 128-bit decimal float uses the struct return convention. */
3045 || (code
== TYPE_CODE_DECFLOAT
&& type
->length () == 16))
3047 /* The System V ABI says that:
3049 "A function that returns a structure or union also sets %eax
3050 to the value of the original address of the caller's area
3051 before it returns. Thus when the caller receives control
3052 again, the address of the returned object resides in register
3053 %eax and can be used to access the object."
3055 So the ABI guarantees that we can always find the return
3056 value just after the function has returned. */
3058 /* Note that the ABI doesn't mention functions returning arrays,
3059 which is something possible in certain languages such as Ada.
3060 In this case, the value is returned as if it was wrapped in
3061 a record, so the convention applied to records also applies
3068 regcache_raw_read_unsigned (regcache
, I386_EAX_REGNUM
, &addr
);
3069 read_memory (addr
, readbuf
, type
->length ());
3072 return RETURN_VALUE_ABI_RETURNS_ADDRESS
;
3075 /* This special case is for structures consisting of a single
3076 `float', `double' or 'long double' member. These structures are
3077 returned in %st(0). For these structures, we call ourselves
3078 recursively, changing TYPE into the type of the first member of
3079 the structure. Since that should work for all structures that
3080 have only one member, we don't bother to check the member's type
3082 if (code
== TYPE_CODE_STRUCT
&& type
->num_fields () == 1)
3084 type
= check_typedef (type
->field (0).type ());
3085 return i386_return_value (gdbarch
, function
, type
, regcache
,
3090 i386_extract_return_value (gdbarch
, type
, regcache
, readbuf
);
3092 i386_store_return_value (gdbarch
, type
, regcache
, writebuf
);
3094 return RETURN_VALUE_REGISTER_CONVENTION
;
3099 i387_ext_type (struct gdbarch
*gdbarch
)
3101 i386_gdbarch_tdep
*tdep
= gdbarch_tdep
<i386_gdbarch_tdep
> (gdbarch
);
3103 if (!tdep
->i387_ext_type
)
3105 tdep
->i387_ext_type
= tdesc_find_type (gdbarch
, "i387_ext");
3106 gdb_assert (tdep
->i387_ext_type
!= NULL
);
3109 return tdep
->i387_ext_type
;
3112 /* Construct type for pseudo BND registers. We can't use
3113 tdesc_find_type since a complement of one value has to be used
3114 to describe the upper bound. */
3116 static struct type
*
3117 i386_bnd_type (struct gdbarch
*gdbarch
)
3119 i386_gdbarch_tdep
*tdep
= gdbarch_tdep
<i386_gdbarch_tdep
> (gdbarch
);
3122 if (!tdep
->i386_bnd_type
)
3125 const struct builtin_type
*bt
= builtin_type (gdbarch
);
3127 /* The type we're building is described bellow: */
3132 void *ubound
; /* One complement of raw ubound field. */
3136 t
= arch_composite_type (gdbarch
,
3137 "__gdb_builtin_type_bound128", TYPE_CODE_STRUCT
);
3139 append_composite_type_field (t
, "lbound", bt
->builtin_data_ptr
);
3140 append_composite_type_field (t
, "ubound", bt
->builtin_data_ptr
);
3142 t
->set_name ("builtin_type_bound128");
3143 tdep
->i386_bnd_type
= t
;
3146 return tdep
->i386_bnd_type
;
3149 /* Construct vector type for pseudo ZMM registers. We can't use
3150 tdesc_find_type since ZMM isn't described in target description. */
3152 static struct type
*
3153 i386_zmm_type (struct gdbarch
*gdbarch
)
3155 i386_gdbarch_tdep
*tdep
= gdbarch_tdep
<i386_gdbarch_tdep
> (gdbarch
);
3157 if (!tdep
->i386_zmm_type
)
3159 const struct builtin_type
*bt
= builtin_type (gdbarch
);
3161 /* The type we're building is this: */
3163 union __gdb_builtin_type_vec512i
3165 int128_t v4_int128
[4];
3166 int64_t v8_int64
[8];
3167 int32_t v16_int32
[16];
3168 int16_t v32_int16
[32];
3169 int8_t v64_int8
[64];
3170 double v8_double
[8];
3171 float v16_float
[16];
3172 float16_t v32_half
[32];
3173 bfloat16_t v32_bfloat16
[32];
3179 t
= arch_composite_type (gdbarch
,
3180 "__gdb_builtin_type_vec512i", TYPE_CODE_UNION
);
3181 append_composite_type_field (t
, "v32_bfloat16",
3182 init_vector_type (bt
->builtin_bfloat16
, 32));
3183 append_composite_type_field (t
, "v32_half",
3184 init_vector_type (bt
->builtin_half
, 32));
3185 append_composite_type_field (t
, "v16_float",
3186 init_vector_type (bt
->builtin_float
, 16));
3187 append_composite_type_field (t
, "v8_double",
3188 init_vector_type (bt
->builtin_double
, 8));
3189 append_composite_type_field (t
, "v64_int8",
3190 init_vector_type (bt
->builtin_int8
, 64));
3191 append_composite_type_field (t
, "v32_int16",
3192 init_vector_type (bt
->builtin_int16
, 32));
3193 append_composite_type_field (t
, "v16_int32",
3194 init_vector_type (bt
->builtin_int32
, 16));
3195 append_composite_type_field (t
, "v8_int64",
3196 init_vector_type (bt
->builtin_int64
, 8));
3197 append_composite_type_field (t
, "v4_int128",
3198 init_vector_type (bt
->builtin_int128
, 4));
3200 t
->set_is_vector (true);
3201 t
->set_name ("builtin_type_vec512i");
3202 tdep
->i386_zmm_type
= t
;
3205 return tdep
->i386_zmm_type
;
3208 /* Construct vector type for pseudo YMM registers. We can't use
3209 tdesc_find_type since YMM isn't described in target description. */
3211 static struct type
*
3212 i386_ymm_type (struct gdbarch
*gdbarch
)
3214 i386_gdbarch_tdep
*tdep
= gdbarch_tdep
<i386_gdbarch_tdep
> (gdbarch
);
3216 if (!tdep
->i386_ymm_type
)
3218 const struct builtin_type
*bt
= builtin_type (gdbarch
);
3220 /* The type we're building is this: */
3222 union __gdb_builtin_type_vec256i
3224 int128_t v2_int128
[2];
3225 int64_t v4_int64
[4];
3226 int32_t v8_int32
[8];
3227 int16_t v16_int16
[16];
3228 int8_t v32_int8
[32];
3229 double v4_double
[4];
3231 float16_t v16_half
[16];
3232 bfloat16_t v16_bfloat16
[16];
3238 t
= arch_composite_type (gdbarch
,
3239 "__gdb_builtin_type_vec256i", TYPE_CODE_UNION
);
3240 append_composite_type_field (t
, "v16_bfloat16",
3241 init_vector_type (bt
->builtin_bfloat16
, 16));
3242 append_composite_type_field (t
, "v16_half",
3243 init_vector_type (bt
->builtin_half
, 16));
3244 append_composite_type_field (t
, "v8_float",
3245 init_vector_type (bt
->builtin_float
, 8));
3246 append_composite_type_field (t
, "v4_double",
3247 init_vector_type (bt
->builtin_double
, 4));
3248 append_composite_type_field (t
, "v32_int8",
3249 init_vector_type (bt
->builtin_int8
, 32));
3250 append_composite_type_field (t
, "v16_int16",
3251 init_vector_type (bt
->builtin_int16
, 16));
3252 append_composite_type_field (t
, "v8_int32",
3253 init_vector_type (bt
->builtin_int32
, 8));
3254 append_composite_type_field (t
, "v4_int64",
3255 init_vector_type (bt
->builtin_int64
, 4));
3256 append_composite_type_field (t
, "v2_int128",
3257 init_vector_type (bt
->builtin_int128
, 2));
3259 t
->set_is_vector (true);
3260 t
->set_name ("builtin_type_vec256i");
3261 tdep
->i386_ymm_type
= t
;
3264 return tdep
->i386_ymm_type
;
3267 /* Construct vector type for MMX registers. */
3268 static struct type
*
3269 i386_mmx_type (struct gdbarch
*gdbarch
)
3271 i386_gdbarch_tdep
*tdep
= gdbarch_tdep
<i386_gdbarch_tdep
> (gdbarch
);
3273 if (!tdep
->i386_mmx_type
)
3275 const struct builtin_type
*bt
= builtin_type (gdbarch
);
3277 /* The type we're building is this: */
3279 union __gdb_builtin_type_vec64i
3282 int32_t v2_int32
[2];
3283 int16_t v4_int16
[4];
3290 t
= arch_composite_type (gdbarch
,
3291 "__gdb_builtin_type_vec64i", TYPE_CODE_UNION
);
3293 append_composite_type_field (t
, "uint64", bt
->builtin_int64
);
3294 append_composite_type_field (t
, "v2_int32",
3295 init_vector_type (bt
->builtin_int32
, 2));
3296 append_composite_type_field (t
, "v4_int16",
3297 init_vector_type (bt
->builtin_int16
, 4));
3298 append_composite_type_field (t
, "v8_int8",
3299 init_vector_type (bt
->builtin_int8
, 8));
3301 t
->set_is_vector (true);
3302 t
->set_name ("builtin_type_vec64i");
3303 tdep
->i386_mmx_type
= t
;
3306 return tdep
->i386_mmx_type
;
3309 /* Return the GDB type object for the "standard" data type of data in
3313 i386_pseudo_register_type (struct gdbarch
*gdbarch
, int regnum
)
3315 if (i386_bnd_regnum_p (gdbarch
, regnum
))
3316 return i386_bnd_type (gdbarch
);
3317 if (i386_mmx_regnum_p (gdbarch
, regnum
))
3318 return i386_mmx_type (gdbarch
);
3319 else if (i386_ymm_regnum_p (gdbarch
, regnum
))
3320 return i386_ymm_type (gdbarch
);
3321 else if (i386_ymm_avx512_regnum_p (gdbarch
, regnum
))
3322 return i386_ymm_type (gdbarch
);
3323 else if (i386_zmm_regnum_p (gdbarch
, regnum
))
3324 return i386_zmm_type (gdbarch
);
3327 const struct builtin_type
*bt
= builtin_type (gdbarch
);
3328 if (i386_byte_regnum_p (gdbarch
, regnum
))
3329 return bt
->builtin_int8
;
3330 else if (i386_word_regnum_p (gdbarch
, regnum
))
3331 return bt
->builtin_int16
;
3332 else if (i386_dword_regnum_p (gdbarch
, regnum
))
3333 return bt
->builtin_int32
;
3334 else if (i386_k_regnum_p (gdbarch
, regnum
))
3335 return bt
->builtin_int64
;
3338 internal_error (_("invalid regnum"));
3341 /* Map a cooked register onto a raw register or memory. For the i386,
3342 the MMX registers need to be mapped onto floating point registers. */
3345 i386_mmx_regnum_to_fp_regnum (readable_regcache
*regcache
, int regnum
)
3347 gdbarch
*arch
= regcache
->arch ();
3348 i386_gdbarch_tdep
*tdep
= gdbarch_tdep
<i386_gdbarch_tdep
> (arch
);
3353 mmxreg
= regnum
- tdep
->mm0_regnum
;
3354 regcache
->raw_read (I387_FSTAT_REGNUM (tdep
), &fstat
);
3355 tos
= (fstat
>> 11) & 0x7;
3356 fpreg
= (mmxreg
+ tos
) % 8;
3358 return (I387_ST0_REGNUM (tdep
) + fpreg
);
3361 /* A helper function for us by i386_pseudo_register_read_value and
3362 amd64_pseudo_register_read_value. It does all the work but reads
3363 the data into an already-allocated value. */
3366 i386_pseudo_register_read_into_value (struct gdbarch
*gdbarch
,
3367 readable_regcache
*regcache
,
3369 struct value
*result_value
)
3371 gdb_byte raw_buf
[I386_MAX_REGISTER_SIZE
];
3372 enum register_status status
;
3373 gdb_byte
*buf
= value_contents_raw (result_value
).data ();
3375 if (i386_mmx_regnum_p (gdbarch
, regnum
))
3377 int fpnum
= i386_mmx_regnum_to_fp_regnum (regcache
, regnum
);
3379 /* Extract (always little endian). */
3380 status
= regcache
->raw_read (fpnum
, raw_buf
);
3381 if (status
!= REG_VALID
)
3382 mark_value_bytes_unavailable (result_value
, 0,
3383 value_type (result_value
)->length ());
3385 memcpy (buf
, raw_buf
, register_size (gdbarch
, regnum
));
3389 i386_gdbarch_tdep
*tdep
= gdbarch_tdep
<i386_gdbarch_tdep
> (gdbarch
);
3390 if (i386_bnd_regnum_p (gdbarch
, regnum
))
3392 regnum
-= tdep
->bnd0_regnum
;
3394 /* Extract (always little endian). Read lower 128bits. */
3395 status
= regcache
->raw_read (I387_BND0R_REGNUM (tdep
) + regnum
,
3397 if (status
!= REG_VALID
)
3398 mark_value_bytes_unavailable (result_value
, 0, 16);
3401 enum bfd_endian byte_order
= gdbarch_byte_order (target_gdbarch ());
3402 LONGEST upper
, lower
;
3403 int size
= builtin_type (gdbarch
)->builtin_data_ptr
->length ();
3405 lower
= extract_unsigned_integer (raw_buf
, 8, byte_order
);
3406 upper
= extract_unsigned_integer (raw_buf
+ 8, 8, byte_order
);
3409 memcpy (buf
, &lower
, size
);
3410 memcpy (buf
+ size
, &upper
, size
);
3413 else if (i386_k_regnum_p (gdbarch
, regnum
))
3415 regnum
-= tdep
->k0_regnum
;
3417 /* Extract (always little endian). */
3418 status
= regcache
->raw_read (tdep
->k0_regnum
+ regnum
, raw_buf
);
3419 if (status
!= REG_VALID
)
3420 mark_value_bytes_unavailable (result_value
, 0, 8);
3422 memcpy (buf
, raw_buf
, 8);
3424 else if (i386_zmm_regnum_p (gdbarch
, regnum
))
3426 regnum
-= tdep
->zmm0_regnum
;
3428 if (regnum
< num_lower_zmm_regs
)
3430 /* Extract (always little endian). Read lower 128bits. */
3431 status
= regcache
->raw_read (I387_XMM0_REGNUM (tdep
) + regnum
,
3433 if (status
!= REG_VALID
)
3434 mark_value_bytes_unavailable (result_value
, 0, 16);
3436 memcpy (buf
, raw_buf
, 16);
3438 /* Extract (always little endian). Read upper 128bits. */
3439 status
= regcache
->raw_read (tdep
->ymm0h_regnum
+ regnum
,
3441 if (status
!= REG_VALID
)
3442 mark_value_bytes_unavailable (result_value
, 16, 16);
3444 memcpy (buf
+ 16, raw_buf
, 16);
3448 /* Extract (always little endian). Read lower 128bits. */
3449 status
= regcache
->raw_read (I387_XMM16_REGNUM (tdep
) + regnum
3450 - num_lower_zmm_regs
,
3452 if (status
!= REG_VALID
)
3453 mark_value_bytes_unavailable (result_value
, 0, 16);
3455 memcpy (buf
, raw_buf
, 16);
3457 /* Extract (always little endian). Read upper 128bits. */
3458 status
= regcache
->raw_read (I387_YMM16H_REGNUM (tdep
) + regnum
3459 - num_lower_zmm_regs
,
3461 if (status
!= REG_VALID
)
3462 mark_value_bytes_unavailable (result_value
, 16, 16);
3464 memcpy (buf
+ 16, raw_buf
, 16);
3467 /* Read upper 256bits. */
3468 status
= regcache
->raw_read (tdep
->zmm0h_regnum
+ regnum
,
3470 if (status
!= REG_VALID
)
3471 mark_value_bytes_unavailable (result_value
, 32, 32);
3473 memcpy (buf
+ 32, raw_buf
, 32);
3475 else if (i386_ymm_regnum_p (gdbarch
, regnum
))
3477 regnum
-= tdep
->ymm0_regnum
;
3479 /* Extract (always little endian). Read lower 128bits. */
3480 status
= regcache
->raw_read (I387_XMM0_REGNUM (tdep
) + regnum
,
3482 if (status
!= REG_VALID
)
3483 mark_value_bytes_unavailable (result_value
, 0, 16);
3485 memcpy (buf
, raw_buf
, 16);
3486 /* Read upper 128bits. */
3487 status
= regcache
->raw_read (tdep
->ymm0h_regnum
+ regnum
,
3489 if (status
!= REG_VALID
)
3490 mark_value_bytes_unavailable (result_value
, 16, 32);
3492 memcpy (buf
+ 16, raw_buf
, 16);
3494 else if (i386_ymm_avx512_regnum_p (gdbarch
, regnum
))
3496 regnum
-= tdep
->ymm16_regnum
;
3497 /* Extract (always little endian). Read lower 128bits. */
3498 status
= regcache
->raw_read (I387_XMM16_REGNUM (tdep
) + regnum
,
3500 if (status
!= REG_VALID
)
3501 mark_value_bytes_unavailable (result_value
, 0, 16);
3503 memcpy (buf
, raw_buf
, 16);
3504 /* Read upper 128bits. */
3505 status
= regcache
->raw_read (tdep
->ymm16h_regnum
+ regnum
,
3507 if (status
!= REG_VALID
)
3508 mark_value_bytes_unavailable (result_value
, 16, 16);
3510 memcpy (buf
+ 16, raw_buf
, 16);
3512 else if (i386_word_regnum_p (gdbarch
, regnum
))
3514 int gpnum
= regnum
- tdep
->ax_regnum
;
3516 /* Extract (always little endian). */
3517 status
= regcache
->raw_read (gpnum
, raw_buf
);
3518 if (status
!= REG_VALID
)
3519 mark_value_bytes_unavailable (result_value
, 0,
3520 value_type (result_value
)->length ());
3522 memcpy (buf
, raw_buf
, 2);
3524 else if (i386_byte_regnum_p (gdbarch
, regnum
))
3526 int gpnum
= regnum
- tdep
->al_regnum
;
3528 /* Extract (always little endian). We read both lower and
3530 status
= regcache
->raw_read (gpnum
% 4, raw_buf
);
3531 if (status
!= REG_VALID
)
3532 mark_value_bytes_unavailable (result_value
, 0,
3533 value_type (result_value
)->length ());
3534 else if (gpnum
>= 4)
3535 memcpy (buf
, raw_buf
+ 1, 1);
3537 memcpy (buf
, raw_buf
, 1);
3540 internal_error (_("invalid regnum"));
3544 static struct value
*
3545 i386_pseudo_register_read_value (struct gdbarch
*gdbarch
,
3546 readable_regcache
*regcache
,
3549 struct value
*result
;
3551 result
= allocate_value (register_type (gdbarch
, regnum
));
3552 VALUE_LVAL (result
) = lval_register
;
3553 VALUE_REGNUM (result
) = regnum
;
3555 i386_pseudo_register_read_into_value (gdbarch
, regcache
, regnum
, result
);
3561 i386_pseudo_register_write (struct gdbarch
*gdbarch
, struct regcache
*regcache
,
3562 int regnum
, const gdb_byte
*buf
)
3564 gdb_byte raw_buf
[I386_MAX_REGISTER_SIZE
];
3566 if (i386_mmx_regnum_p (gdbarch
, regnum
))
3568 int fpnum
= i386_mmx_regnum_to_fp_regnum (regcache
, regnum
);
3571 regcache
->raw_read (fpnum
, raw_buf
);
3572 /* ... Modify ... (always little endian). */
3573 memcpy (raw_buf
, buf
, register_size (gdbarch
, regnum
));
3575 regcache
->raw_write (fpnum
, raw_buf
);
3579 i386_gdbarch_tdep
*tdep
= gdbarch_tdep
<i386_gdbarch_tdep
> (gdbarch
);
3581 if (i386_bnd_regnum_p (gdbarch
, regnum
))
3583 ULONGEST upper
, lower
;
3584 int size
= builtin_type (gdbarch
)->builtin_data_ptr
->length ();
3585 enum bfd_endian byte_order
= gdbarch_byte_order (target_gdbarch ());
3587 /* New values from input value. */
3588 regnum
-= tdep
->bnd0_regnum
;
3589 lower
= extract_unsigned_integer (buf
, size
, byte_order
);
3590 upper
= extract_unsigned_integer (buf
+ size
, size
, byte_order
);
3592 /* Fetching register buffer. */
3593 regcache
->raw_read (I387_BND0R_REGNUM (tdep
) + regnum
,
3598 /* Set register bits. */
3599 memcpy (raw_buf
, &lower
, 8);
3600 memcpy (raw_buf
+ 8, &upper
, 8);
3602 regcache
->raw_write (I387_BND0R_REGNUM (tdep
) + regnum
, raw_buf
);
3604 else if (i386_k_regnum_p (gdbarch
, regnum
))
3606 regnum
-= tdep
->k0_regnum
;
3608 regcache
->raw_write (tdep
->k0_regnum
+ regnum
, buf
);
3610 else if (i386_zmm_regnum_p (gdbarch
, regnum
))
3612 regnum
-= tdep
->zmm0_regnum
;
3614 if (regnum
< num_lower_zmm_regs
)
3616 /* Write lower 128bits. */
3617 regcache
->raw_write (I387_XMM0_REGNUM (tdep
) + regnum
, buf
);
3618 /* Write upper 128bits. */
3619 regcache
->raw_write (I387_YMM0_REGNUM (tdep
) + regnum
, buf
+ 16);
3623 /* Write lower 128bits. */
3624 regcache
->raw_write (I387_XMM16_REGNUM (tdep
) + regnum
3625 - num_lower_zmm_regs
, buf
);
3626 /* Write upper 128bits. */
3627 regcache
->raw_write (I387_YMM16H_REGNUM (tdep
) + regnum
3628 - num_lower_zmm_regs
, buf
+ 16);
3630 /* Write upper 256bits. */
3631 regcache
->raw_write (tdep
->zmm0h_regnum
+ regnum
, buf
+ 32);
3633 else if (i386_ymm_regnum_p (gdbarch
, regnum
))
3635 regnum
-= tdep
->ymm0_regnum
;
3637 /* ... Write lower 128bits. */
3638 regcache
->raw_write (I387_XMM0_REGNUM (tdep
) + regnum
, buf
);
3639 /* ... Write upper 128bits. */
3640 regcache
->raw_write (tdep
->ymm0h_regnum
+ regnum
, buf
+ 16);
3642 else if (i386_ymm_avx512_regnum_p (gdbarch
, regnum
))
3644 regnum
-= tdep
->ymm16_regnum
;
3646 /* ... Write lower 128bits. */
3647 regcache
->raw_write (I387_XMM16_REGNUM (tdep
) + regnum
, buf
);
3648 /* ... Write upper 128bits. */
3649 regcache
->raw_write (tdep
->ymm16h_regnum
+ regnum
, buf
+ 16);
3651 else if (i386_word_regnum_p (gdbarch
, regnum
))
3653 int gpnum
= regnum
- tdep
->ax_regnum
;
3656 regcache
->raw_read (gpnum
, raw_buf
);
3657 /* ... Modify ... (always little endian). */
3658 memcpy (raw_buf
, buf
, 2);
3660 regcache
->raw_write (gpnum
, raw_buf
);
3662 else if (i386_byte_regnum_p (gdbarch
, regnum
))
3664 int gpnum
= regnum
- tdep
->al_regnum
;
3666 /* Read ... We read both lower and upper registers. */
3667 regcache
->raw_read (gpnum
% 4, raw_buf
);
3668 /* ... Modify ... (always little endian). */
3670 memcpy (raw_buf
+ 1, buf
, 1);
3672 memcpy (raw_buf
, buf
, 1);
3674 regcache
->raw_write (gpnum
% 4, raw_buf
);
3677 internal_error (_("invalid regnum"));
3681 /* Implement the 'ax_pseudo_register_collect' gdbarch method. */
3684 i386_ax_pseudo_register_collect (struct gdbarch
*gdbarch
,
3685 struct agent_expr
*ax
, int regnum
)
3687 i386_gdbarch_tdep
*tdep
= gdbarch_tdep
<i386_gdbarch_tdep
> (gdbarch
);
3689 if (i386_mmx_regnum_p (gdbarch
, regnum
))
3691 /* MMX to FPU register mapping depends on current TOS. Let's just
3692 not care and collect everything... */
3695 ax_reg_mask (ax
, I387_FSTAT_REGNUM (tdep
));
3696 for (i
= 0; i
< 8; i
++)
3697 ax_reg_mask (ax
, I387_ST0_REGNUM (tdep
) + i
);
3700 else if (i386_bnd_regnum_p (gdbarch
, regnum
))
3702 regnum
-= tdep
->bnd0_regnum
;
3703 ax_reg_mask (ax
, I387_BND0R_REGNUM (tdep
) + regnum
);
3706 else if (i386_k_regnum_p (gdbarch
, regnum
))
3708 regnum
-= tdep
->k0_regnum
;
3709 ax_reg_mask (ax
, tdep
->k0_regnum
+ regnum
);
3712 else if (i386_zmm_regnum_p (gdbarch
, regnum
))
3714 regnum
-= tdep
->zmm0_regnum
;
3715 if (regnum
< num_lower_zmm_regs
)
3717 ax_reg_mask (ax
, I387_XMM0_REGNUM (tdep
) + regnum
);
3718 ax_reg_mask (ax
, tdep
->ymm0h_regnum
+ regnum
);
3722 ax_reg_mask (ax
, I387_XMM16_REGNUM (tdep
) + regnum
3723 - num_lower_zmm_regs
);
3724 ax_reg_mask (ax
, I387_YMM16H_REGNUM (tdep
) + regnum
3725 - num_lower_zmm_regs
);
3727 ax_reg_mask (ax
, tdep
->zmm0h_regnum
+ regnum
);
3730 else if (i386_ymm_regnum_p (gdbarch
, regnum
))
3732 regnum
-= tdep
->ymm0_regnum
;
3733 ax_reg_mask (ax
, I387_XMM0_REGNUM (tdep
) + regnum
);
3734 ax_reg_mask (ax
, tdep
->ymm0h_regnum
+ regnum
);
3737 else if (i386_ymm_avx512_regnum_p (gdbarch
, regnum
))
3739 regnum
-= tdep
->ymm16_regnum
;
3740 ax_reg_mask (ax
, I387_XMM16_REGNUM (tdep
) + regnum
);
3741 ax_reg_mask (ax
, tdep
->ymm16h_regnum
+ regnum
);
3744 else if (i386_word_regnum_p (gdbarch
, regnum
))
3746 int gpnum
= regnum
- tdep
->ax_regnum
;
3748 ax_reg_mask (ax
, gpnum
);
3751 else if (i386_byte_regnum_p (gdbarch
, regnum
))
3753 int gpnum
= regnum
- tdep
->al_regnum
;
3755 ax_reg_mask (ax
, gpnum
% 4);
3759 internal_error (_("invalid regnum"));
3764 /* Return the register number of the register allocated by GCC after
3765 REGNUM, or -1 if there is no such register. */
3768 i386_next_regnum (int regnum
)
3770 /* GCC allocates the registers in the order:
3772 %eax, %edx, %ecx, %ebx, %esi, %edi, %ebp, %esp, ...
3774 Since storing a variable in %esp doesn't make any sense we return
3775 -1 for %ebp and for %esp itself. */
3776 static int next_regnum
[] =
3778 I386_EDX_REGNUM
, /* Slot for %eax. */
3779 I386_EBX_REGNUM
, /* Slot for %ecx. */
3780 I386_ECX_REGNUM
, /* Slot for %edx. */
3781 I386_ESI_REGNUM
, /* Slot for %ebx. */
3782 -1, -1, /* Slots for %esp and %ebp. */
3783 I386_EDI_REGNUM
, /* Slot for %esi. */
3784 I386_EBP_REGNUM
/* Slot for %edi. */
3787 if (regnum
>= 0 && regnum
< sizeof (next_regnum
) / sizeof (next_regnum
[0]))
3788 return next_regnum
[regnum
];
3793 /* Return nonzero if a value of type TYPE stored in register REGNUM
3794 needs any special handling. */
3797 i386_convert_register_p (struct gdbarch
*gdbarch
,
3798 int regnum
, struct type
*type
)
3800 int len
= type
->length ();
3802 /* Values may be spread across multiple registers. Most debugging
3803 formats aren't expressive enough to specify the locations, so
3804 some heuristics is involved. Right now we only handle types that
3805 have a length that is a multiple of the word size, since GCC
3806 doesn't seem to put any other types into registers. */
3807 if (len
> 4 && len
% 4 == 0)
3809 int last_regnum
= regnum
;
3813 last_regnum
= i386_next_regnum (last_regnum
);
3817 if (last_regnum
!= -1)
3821 return i387_convert_register_p (gdbarch
, regnum
, type
);
3824 /* Read a value of type TYPE from register REGNUM in frame FRAME, and
3825 return its contents in TO. */
3828 i386_register_to_value (frame_info_ptr frame
, int regnum
,
3829 struct type
*type
, gdb_byte
*to
,
3830 int *optimizedp
, int *unavailablep
)
3832 struct gdbarch
*gdbarch
= get_frame_arch (frame
);
3833 int len
= type
->length ();
3835 if (i386_fp_regnum_p (gdbarch
, regnum
))
3836 return i387_register_to_value (frame
, regnum
, type
, to
,
3837 optimizedp
, unavailablep
);
3839 /* Read a value spread across multiple registers. */
3841 gdb_assert (len
> 4 && len
% 4 == 0);
3845 gdb_assert (regnum
!= -1);
3846 gdb_assert (register_size (gdbarch
, regnum
) == 4);
3848 if (!get_frame_register_bytes (frame
, regnum
, 0,
3849 gdb::make_array_view (to
,
3850 register_size (gdbarch
,
3852 optimizedp
, unavailablep
))
3855 regnum
= i386_next_regnum (regnum
);
3860 *optimizedp
= *unavailablep
= 0;
3864 /* Write the contents FROM of a value of type TYPE into register
3865 REGNUM in frame FRAME. */
3868 i386_value_to_register (frame_info_ptr frame
, int regnum
,
3869 struct type
*type
, const gdb_byte
*from
)
3871 int len
= type
->length ();
3873 if (i386_fp_regnum_p (get_frame_arch (frame
), regnum
))
3875 i387_value_to_register (frame
, regnum
, type
, from
);
3879 /* Write a value spread across multiple registers. */
3881 gdb_assert (len
> 4 && len
% 4 == 0);
3885 gdb_assert (regnum
!= -1);
3886 gdb_assert (register_size (get_frame_arch (frame
), regnum
) == 4);
3888 put_frame_register (frame
, regnum
, from
);
3889 regnum
= i386_next_regnum (regnum
);
3895 /* Supply register REGNUM from the buffer specified by GREGS and LEN
3896 in the general-purpose register set REGSET to register cache
3897 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
3900 i386_supply_gregset (const struct regset
*regset
, struct regcache
*regcache
,
3901 int regnum
, const void *gregs
, size_t len
)
3903 struct gdbarch
*gdbarch
= regcache
->arch ();
3904 const i386_gdbarch_tdep
*tdep
= gdbarch_tdep
<i386_gdbarch_tdep
> (gdbarch
);
3905 const gdb_byte
*regs
= (const gdb_byte
*) gregs
;
3908 gdb_assert (len
>= tdep
->sizeof_gregset
);
3910 for (i
= 0; i
< tdep
->gregset_num_regs
; i
++)
3912 if ((regnum
== i
|| regnum
== -1)
3913 && tdep
->gregset_reg_offset
[i
] != -1)
3914 regcache
->raw_supply (i
, regs
+ tdep
->gregset_reg_offset
[i
]);
3918 /* Collect register REGNUM from the register cache REGCACHE and store
3919 it in the buffer specified by GREGS and LEN as described by the
3920 general-purpose register set REGSET. If REGNUM is -1, do this for
3921 all registers in REGSET. */
3924 i386_collect_gregset (const struct regset
*regset
,
3925 const struct regcache
*regcache
,
3926 int regnum
, void *gregs
, size_t len
)
3928 struct gdbarch
*gdbarch
= regcache
->arch ();
3929 const i386_gdbarch_tdep
*tdep
= gdbarch_tdep
<i386_gdbarch_tdep
> (gdbarch
);
3930 gdb_byte
*regs
= (gdb_byte
*) gregs
;
3933 gdb_assert (len
>= tdep
->sizeof_gregset
);
3935 for (i
= 0; i
< tdep
->gregset_num_regs
; i
++)
3937 if ((regnum
== i
|| regnum
== -1)
3938 && tdep
->gregset_reg_offset
[i
] != -1)
3939 regcache
->raw_collect (i
, regs
+ tdep
->gregset_reg_offset
[i
]);
3943 /* Supply register REGNUM from the buffer specified by FPREGS and LEN
3944 in the floating-point register set REGSET to register cache
3945 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
3948 i386_supply_fpregset (const struct regset
*regset
, struct regcache
*regcache
,
3949 int regnum
, const void *fpregs
, size_t len
)
3951 struct gdbarch
*gdbarch
= regcache
->arch ();
3952 const i386_gdbarch_tdep
*tdep
= gdbarch_tdep
<i386_gdbarch_tdep
> (gdbarch
);
3954 if (len
== I387_SIZEOF_FXSAVE
)
3956 i387_supply_fxsave (regcache
, regnum
, fpregs
);
3960 gdb_assert (len
>= tdep
->sizeof_fpregset
);
3961 i387_supply_fsave (regcache
, regnum
, fpregs
);
3964 /* Collect register REGNUM from the register cache REGCACHE and store
3965 it in the buffer specified by FPREGS and LEN as described by the
3966 floating-point register set REGSET. If REGNUM is -1, do this for
3967 all registers in REGSET. */
3970 i386_collect_fpregset (const struct regset
*regset
,
3971 const struct regcache
*regcache
,
3972 int regnum
, void *fpregs
, size_t len
)
3974 struct gdbarch
*gdbarch
= regcache
->arch ();
3975 const i386_gdbarch_tdep
*tdep
= gdbarch_tdep
<i386_gdbarch_tdep
> (gdbarch
);
3977 if (len
== I387_SIZEOF_FXSAVE
)
3979 i387_collect_fxsave (regcache
, regnum
, fpregs
);
3983 gdb_assert (len
>= tdep
->sizeof_fpregset
);
3984 i387_collect_fsave (regcache
, regnum
, fpregs
);
3987 /* Register set definitions. */
3989 const struct regset i386_gregset
=
3991 NULL
, i386_supply_gregset
, i386_collect_gregset
3994 const struct regset i386_fpregset
=
3996 NULL
, i386_supply_fpregset
, i386_collect_fpregset
3999 /* Default iterator over core file register note sections. */
4002 i386_iterate_over_regset_sections (struct gdbarch
*gdbarch
,
4003 iterate_over_regset_sections_cb
*cb
,
4005 const struct regcache
*regcache
)
4007 i386_gdbarch_tdep
*tdep
= gdbarch_tdep
<i386_gdbarch_tdep
> (gdbarch
);
4009 cb (".reg", tdep
->sizeof_gregset
, tdep
->sizeof_gregset
, &i386_gregset
, NULL
,
4011 if (tdep
->sizeof_fpregset
)
4012 cb (".reg2", tdep
->sizeof_fpregset
, tdep
->sizeof_fpregset
, tdep
->fpregset
,
4017 /* Stuff for WIN32 PE style DLL's but is pretty generic really. */
4020 i386_pe_skip_trampoline_code (frame_info_ptr frame
,
4021 CORE_ADDR pc
, char *name
)
4023 struct gdbarch
*gdbarch
= get_frame_arch (frame
);
4024 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
4027 if (pc
&& read_memory_unsigned_integer (pc
, 2, byte_order
) == 0x25ff)
4029 unsigned long indirect
=
4030 read_memory_unsigned_integer (pc
+ 2, 4, byte_order
);
4031 struct minimal_symbol
*indsym
=
4032 indirect
? lookup_minimal_symbol_by_pc (indirect
).minsym
: 0;
4033 const char *symname
= indsym
? indsym
->linkage_name () : 0;
4037 if (startswith (symname
, "__imp_")
4038 || startswith (symname
, "_imp_"))
4040 read_memory_unsigned_integer (indirect
, 4, byte_order
);
4043 return 0; /* Not a trampoline. */
4047 /* Return whether the THIS_FRAME corresponds to a sigtramp
4051 i386_sigtramp_p (frame_info_ptr this_frame
)
4053 CORE_ADDR pc
= get_frame_pc (this_frame
);
4056 find_pc_partial_function (pc
, &name
, NULL
, NULL
);
4057 return (name
&& strcmp ("_sigtramp", name
) == 0);
4061 /* We have two flavours of disassembly. The machinery on this page
4062 deals with switching between those. */
4065 i386_print_insn (bfd_vma pc
, struct disassemble_info
*info
)
4067 gdb_assert (disassembly_flavor
== att_flavor
4068 || disassembly_flavor
== intel_flavor
);
4070 info
->disassembler_options
= disassembly_flavor
;
4072 return default_print_insn (pc
, info
);
4076 /* There are a few i386 architecture variants that differ only
4077 slightly from the generic i386 target. For now, we don't give them
4078 their own source file, but include them here. As a consequence,
4079 they'll always be included. */
4081 /* System V Release 4 (SVR4). */
4083 /* Return whether THIS_FRAME corresponds to a SVR4 sigtramp
4087 i386_svr4_sigtramp_p (frame_info_ptr this_frame
)
4089 CORE_ADDR pc
= get_frame_pc (this_frame
);
4092 /* The origin of these symbols is currently unknown. */
4093 find_pc_partial_function (pc
, &name
, NULL
, NULL
);
4094 return (name
&& (strcmp ("_sigreturn", name
) == 0
4095 || strcmp ("sigvechandler", name
) == 0));
4098 /* Assuming THIS_FRAME is for a SVR4 sigtramp routine, return the
4099 address of the associated sigcontext (ucontext) structure. */
4102 i386_svr4_sigcontext_addr (frame_info_ptr this_frame
)
4104 struct gdbarch
*gdbarch
= get_frame_arch (this_frame
);
4105 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
4109 get_frame_register (this_frame
, I386_ESP_REGNUM
, buf
);
4110 sp
= extract_unsigned_integer (buf
, 4, byte_order
);
4112 return read_memory_unsigned_integer (sp
+ 8, 4, byte_order
);
4117 /* Implementation of `gdbarch_stap_is_single_operand', as defined in
4121 i386_stap_is_single_operand (struct gdbarch
*gdbarch
, const char *s
)
4123 return (*s
== '$' /* Literal number. */
4124 || (isdigit (*s
) && s
[1] == '(' && s
[2] == '%') /* Displacement. */
4125 || (*s
== '(' && s
[1] == '%') /* Register indirection. */
4126 || (*s
== '%' && isalpha (s
[1]))); /* Register access. */
4129 /* Helper function for i386_stap_parse_special_token.
4131 This function parses operands of the form `-8+3+1(%rbp)', which
4132 must be interpreted as `*(-8 + 3 - 1 + (void *) $eax)'.
4134 Return true if the operand was parsed successfully, false
4137 static expr::operation_up
4138 i386_stap_parse_special_token_triplet (struct gdbarch
*gdbarch
,
4139 struct stap_parse_info
*p
)
4141 const char *s
= p
->arg
;
4143 if (isdigit (*s
) || *s
== '-' || *s
== '+')
4147 long displacements
[3];
4152 got_minus
[0] = false;
4158 got_minus
[0] = true;
4161 if (!isdigit ((unsigned char) *s
))
4164 displacements
[0] = strtol (s
, &endp
, 10);
4167 if (*s
!= '+' && *s
!= '-')
4169 /* We are not dealing with a triplet. */
4173 got_minus
[1] = false;
4179 got_minus
[1] = true;
4182 if (!isdigit ((unsigned char) *s
))
4185 displacements
[1] = strtol (s
, &endp
, 10);
4188 if (*s
!= '+' && *s
!= '-')
4190 /* We are not dealing with a triplet. */
4194 got_minus
[2] = false;
4200 got_minus
[2] = true;
4203 if (!isdigit ((unsigned char) *s
))
4206 displacements
[2] = strtol (s
, &endp
, 10);
4209 if (*s
!= '(' || s
[1] != '%')
4215 while (isalnum (*s
))
4221 len
= s
- start
- 1;
4222 std::string
regname (start
, len
);
4224 if (user_reg_map_name_to_regnum (gdbarch
, regname
.c_str (), len
) == -1)
4225 error (_("Invalid register name `%s' on expression `%s'."),
4226 regname
.c_str (), p
->saved_arg
);
4229 for (i
= 0; i
< 3; i
++)
4231 LONGEST this_val
= displacements
[i
];
4233 this_val
= -this_val
;
4239 using namespace expr
;
4241 struct type
*long_type
= builtin_type (gdbarch
)->builtin_long
;
4243 = make_operation
<long_const_operation
> (long_type
, value
);
4246 = make_operation
<register_operation
> (std::move (regname
));
4247 struct type
*void_ptr
= builtin_type (gdbarch
)->builtin_data_ptr
;
4248 reg
= make_operation
<unop_cast_operation
> (std::move (reg
), void_ptr
);
4251 = make_operation
<add_operation
> (std::move (reg
), std::move (offset
));
4252 struct type
*arg_ptr_type
= lookup_pointer_type (p
->arg_type
);
4253 sum
= make_operation
<unop_cast_operation
> (std::move (sum
),
4255 return make_operation
<unop_ind_operation
> (std::move (sum
));
4261 /* Helper function for i386_stap_parse_special_token.
4263 This function parses operands of the form `register base +
4264 (register index * size) + offset', as represented in
4265 `(%rcx,%rax,8)', or `[OFFSET](BASE_REG,INDEX_REG[,SIZE])'.
4267 Return true if the operand was parsed successfully, false
4270 static expr::operation_up
4271 i386_stap_parse_special_token_three_arg_disp (struct gdbarch
*gdbarch
,
4272 struct stap_parse_info
*p
)
4274 const char *s
= p
->arg
;
4276 if (isdigit (*s
) || *s
== '(' || *s
== '-' || *s
== '+')
4278 bool offset_minus
= false;
4280 bool size_minus
= false;
4291 offset_minus
= true;
4294 if (offset_minus
&& !isdigit (*s
))
4301 offset
= strtol (s
, &endp
, 10);
4305 if (*s
!= '(' || s
[1] != '%')
4311 while (isalnum (*s
))
4314 if (*s
!= ',' || s
[1] != '%')
4317 len_base
= s
- start
;
4318 std::string
base (start
, len_base
);
4320 if (user_reg_map_name_to_regnum (gdbarch
, base
.c_str (), len_base
) == -1)
4321 error (_("Invalid register name `%s' on expression `%s'."),
4322 base
.c_str (), p
->saved_arg
);
4327 while (isalnum (*s
))
4330 len_index
= s
- start
;
4331 std::string
index (start
, len_index
);
4333 if (user_reg_map_name_to_regnum (gdbarch
, index
.c_str (),
4335 error (_("Invalid register name `%s' on expression `%s'."),
4336 index
.c_str (), p
->saved_arg
);
4338 if (*s
!= ',' && *s
!= ')')
4354 size
= strtol (s
, &endp
, 10);
4364 using namespace expr
;
4366 struct type
*long_type
= builtin_type (gdbarch
)->builtin_long
;
4367 operation_up reg
= make_operation
<register_operation
> (std::move (base
));
4374 = make_operation
<long_const_operation
> (long_type
, offset
);
4375 reg
= make_operation
<add_operation
> (std::move (reg
),
4379 operation_up ind_reg
4380 = make_operation
<register_operation
> (std::move (index
));
4387 = make_operation
<long_const_operation
> (long_type
, size
);
4388 ind_reg
= make_operation
<mul_operation
> (std::move (ind_reg
),
4393 = make_operation
<add_operation
> (std::move (reg
),
4394 std::move (ind_reg
));
4396 struct type
*arg_ptr_type
= lookup_pointer_type (p
->arg_type
);
4397 sum
= make_operation
<unop_cast_operation
> (std::move (sum
),
4399 return make_operation
<unop_ind_operation
> (std::move (sum
));
4405 /* Implementation of `gdbarch_stap_parse_special_token', as defined in
4409 i386_stap_parse_special_token (struct gdbarch
*gdbarch
,
4410 struct stap_parse_info
*p
)
4412 /* The special tokens to be parsed here are:
4414 - `register base + (register index * size) + offset', as represented
4415 in `(%rcx,%rax,8)', or `[OFFSET](BASE_REG,INDEX_REG[,SIZE])'.
4417 - Operands of the form `-8+3+1(%rbp)', which must be interpreted as
4418 `*(-8 + 3 - 1 + (void *) $eax)'. */
4420 expr::operation_up result
4421 = i386_stap_parse_special_token_triplet (gdbarch
, p
);
4423 if (result
== nullptr)
4424 result
= i386_stap_parse_special_token_three_arg_disp (gdbarch
, p
);
4429 /* Implementation of 'gdbarch_stap_adjust_register', as defined in
4433 i386_stap_adjust_register (struct gdbarch
*gdbarch
, struct stap_parse_info
*p
,
4434 const std::string
®name
, int regnum
)
4436 static const std::unordered_set
<std::string
> reg_assoc
4437 = { "ax", "bx", "cx", "dx",
4438 "si", "di", "bp", "sp" };
4440 /* If we are dealing with a register whose size is less than the size
4441 specified by the "[-]N@" prefix, and it is one of the registers that
4442 we know has an extended variant available, then use the extended
4443 version of the register instead. */
4444 if (register_size (gdbarch
, regnum
) < p
->arg_type
->length ()
4445 && reg_assoc
.find (regname
) != reg_assoc
.end ())
4446 return "e" + regname
;
4448 /* Otherwise, just use the requested register. */
4454 /* gdbarch gnu_triplet_regexp method. Both arches are acceptable as GDB always
4455 also supplies -m64 or -m32 by gdbarch_gcc_target_options. */
4458 i386_gnu_triplet_regexp (struct gdbarch
*gdbarch
)
4460 return "(x86_64|i.86)";
4465 /* Implement the "in_indirect_branch_thunk" gdbarch function. */
4468 i386_in_indirect_branch_thunk (struct gdbarch
*gdbarch
, CORE_ADDR pc
)
4470 return x86_in_indirect_branch_thunk (pc
, i386_register_names
,
4471 I386_EAX_REGNUM
, I386_EIP_REGNUM
);
4477 i386_elf_init_abi (struct gdbarch_info info
, struct gdbarch
*gdbarch
)
4479 static const char *const stap_integer_prefixes
[] = { "$", NULL
};
4480 static const char *const stap_register_prefixes
[] = { "%", NULL
};
4481 static const char *const stap_register_indirection_prefixes
[] = { "(",
4483 static const char *const stap_register_indirection_suffixes
[] = { ")",
4486 /* We typically use stabs-in-ELF with the SVR4 register numbering. */
4487 set_gdbarch_stab_reg_to_regnum (gdbarch
, i386_svr4_reg_to_regnum
);
4489 /* Registering SystemTap handlers. */
4490 set_gdbarch_stap_integer_prefixes (gdbarch
, stap_integer_prefixes
);
4491 set_gdbarch_stap_register_prefixes (gdbarch
, stap_register_prefixes
);
4492 set_gdbarch_stap_register_indirection_prefixes (gdbarch
,
4493 stap_register_indirection_prefixes
);
4494 set_gdbarch_stap_register_indirection_suffixes (gdbarch
,
4495 stap_register_indirection_suffixes
);
4496 set_gdbarch_stap_is_single_operand (gdbarch
,
4497 i386_stap_is_single_operand
);
4498 set_gdbarch_stap_parse_special_token (gdbarch
,
4499 i386_stap_parse_special_token
);
4500 set_gdbarch_stap_adjust_register (gdbarch
,
4501 i386_stap_adjust_register
);
4503 set_gdbarch_in_indirect_branch_thunk (gdbarch
,
4504 i386_in_indirect_branch_thunk
);
4507 /* System V Release 4 (SVR4). */
4510 i386_svr4_init_abi (struct gdbarch_info info
, struct gdbarch
*gdbarch
)
4512 i386_gdbarch_tdep
*tdep
= gdbarch_tdep
<i386_gdbarch_tdep
> (gdbarch
);
4514 /* System V Release 4 uses ELF. */
4515 i386_elf_init_abi (info
, gdbarch
);
4517 /* System V Release 4 has shared libraries. */
4518 set_gdbarch_skip_trampoline_code (gdbarch
, find_solib_trampoline_target
);
4520 tdep
->sigtramp_p
= i386_svr4_sigtramp_p
;
4521 tdep
->sigcontext_addr
= i386_svr4_sigcontext_addr
;
4522 tdep
->sc_pc_offset
= 36 + 14 * 4;
4523 tdep
->sc_sp_offset
= 36 + 17 * 4;
4525 tdep
->jb_pc_offset
= 20;
4530 /* i386 register groups. In addition to the normal groups, add "mmx"
4533 static const reggroup
*i386_sse_reggroup
;
4534 static const reggroup
*i386_mmx_reggroup
;
4537 i386_init_reggroups (void)
4539 i386_sse_reggroup
= reggroup_new ("sse", USER_REGGROUP
);
4540 i386_mmx_reggroup
= reggroup_new ("mmx", USER_REGGROUP
);
4544 i386_add_reggroups (struct gdbarch
*gdbarch
)
4546 reggroup_add (gdbarch
, i386_sse_reggroup
);
4547 reggroup_add (gdbarch
, i386_mmx_reggroup
);
4551 i386_register_reggroup_p (struct gdbarch
*gdbarch
, int regnum
,
4552 const struct reggroup
*group
)
4554 const i386_gdbarch_tdep
*tdep
= gdbarch_tdep
<i386_gdbarch_tdep
> (gdbarch
);
4555 int fp_regnum_p
, mmx_regnum_p
, xmm_regnum_p
, mxcsr_regnum_p
,
4556 ymm_regnum_p
, ymmh_regnum_p
, ymm_avx512_regnum_p
, ymmh_avx512_regnum_p
,
4557 bndr_regnum_p
, bnd_regnum_p
, zmm_regnum_p
, zmmh_regnum_p
,
4558 mpx_ctrl_regnum_p
, xmm_avx512_regnum_p
,
4559 avx512_p
, avx_p
, sse_p
, pkru_regnum_p
;
4561 /* Don't include pseudo registers, except for MMX, in any register
4563 if (i386_byte_regnum_p (gdbarch
, regnum
))
4566 if (i386_word_regnum_p (gdbarch
, regnum
))
4569 if (i386_dword_regnum_p (gdbarch
, regnum
))
4572 mmx_regnum_p
= i386_mmx_regnum_p (gdbarch
, regnum
);
4573 if (group
== i386_mmx_reggroup
)
4574 return mmx_regnum_p
;
4576 pkru_regnum_p
= i386_pkru_regnum_p(gdbarch
, regnum
);
4577 xmm_regnum_p
= i386_xmm_regnum_p (gdbarch
, regnum
);
4578 xmm_avx512_regnum_p
= i386_xmm_avx512_regnum_p (gdbarch
, regnum
);
4579 mxcsr_regnum_p
= i386_mxcsr_regnum_p (gdbarch
, regnum
);
4580 if (group
== i386_sse_reggroup
)
4581 return xmm_regnum_p
|| xmm_avx512_regnum_p
|| mxcsr_regnum_p
;
4583 ymm_regnum_p
= i386_ymm_regnum_p (gdbarch
, regnum
);
4584 ymm_avx512_regnum_p
= i386_ymm_avx512_regnum_p (gdbarch
, regnum
);
4585 zmm_regnum_p
= i386_zmm_regnum_p (gdbarch
, regnum
);
4587 avx512_p
= ((tdep
->xcr0
& X86_XSTATE_AVX_AVX512_MASK
)
4588 == X86_XSTATE_AVX_AVX512_MASK
);
4589 avx_p
= ((tdep
->xcr0
& X86_XSTATE_AVX_AVX512_MASK
)
4590 == X86_XSTATE_AVX_MASK
) && !avx512_p
;
4591 sse_p
= ((tdep
->xcr0
& X86_XSTATE_AVX_AVX512_MASK
)
4592 == X86_XSTATE_SSE_MASK
) && !avx512_p
&& ! avx_p
;
4594 if (group
== vector_reggroup
)
4595 return (mmx_regnum_p
4596 || (zmm_regnum_p
&& avx512_p
)
4597 || ((ymm_regnum_p
|| ymm_avx512_regnum_p
) && avx_p
)
4598 || ((xmm_regnum_p
|| xmm_avx512_regnum_p
) && sse_p
)
4601 fp_regnum_p
= (i386_fp_regnum_p (gdbarch
, regnum
)
4602 || i386_fpc_regnum_p (gdbarch
, regnum
));
4603 if (group
== float_reggroup
)
4606 /* For "info reg all", don't include upper YMM registers nor XMM
4607 registers when AVX is supported. */
4608 ymmh_regnum_p
= i386_ymmh_regnum_p (gdbarch
, regnum
);
4609 ymmh_avx512_regnum_p
= i386_ymmh_avx512_regnum_p (gdbarch
, regnum
);
4610 zmmh_regnum_p
= i386_zmmh_regnum_p (gdbarch
, regnum
);
4611 if (group
== all_reggroup
4612 && (((xmm_regnum_p
|| xmm_avx512_regnum_p
) && !sse_p
)
4613 || ((ymm_regnum_p
|| ymm_avx512_regnum_p
) && !avx_p
)
4615 || ymmh_avx512_regnum_p
4619 bnd_regnum_p
= i386_bnd_regnum_p (gdbarch
, regnum
);
4620 if (group
== all_reggroup
4621 && ((bnd_regnum_p
&& (tdep
->xcr0
& X86_XSTATE_MPX_MASK
))))
4622 return bnd_regnum_p
;
4624 bndr_regnum_p
= i386_bndr_regnum_p (gdbarch
, regnum
);
4625 if (group
== all_reggroup
4626 && ((bndr_regnum_p
&& (tdep
->xcr0
& X86_XSTATE_MPX_MASK
))))
4629 mpx_ctrl_regnum_p
= i386_mpx_ctrl_regnum_p (gdbarch
, regnum
);
4630 if (group
== all_reggroup
4631 && ((mpx_ctrl_regnum_p
&& (tdep
->xcr0
& X86_XSTATE_MPX_MASK
))))
4632 return mpx_ctrl_regnum_p
;
4634 if (group
== general_reggroup
)
4635 return (!fp_regnum_p
4639 && !xmm_avx512_regnum_p
4642 && !ymm_avx512_regnum_p
4643 && !ymmh_avx512_regnum_p
4646 && !mpx_ctrl_regnum_p
4651 return default_register_reggroup_p (gdbarch
, regnum
, group
);
4655 /* Get the ARGIth function argument for the current function. */
4658 i386_fetch_pointer_argument (frame_info_ptr frame
, int argi
,
4661 struct gdbarch
*gdbarch
= get_frame_arch (frame
);
4662 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
4663 CORE_ADDR sp
= get_frame_register_unsigned (frame
, I386_ESP_REGNUM
);
4664 return read_memory_unsigned_integer (sp
+ (4 * (argi
+ 1)), 4, byte_order
);
4667 #define PREFIX_REPZ 0x01
4668 #define PREFIX_REPNZ 0x02
4669 #define PREFIX_LOCK 0x04
4670 #define PREFIX_DATA 0x08
4671 #define PREFIX_ADDR 0x10
4683 /* i386 arith/logic operations */
4696 struct i386_record_s
4698 struct gdbarch
*gdbarch
;
4699 struct regcache
*regcache
;
4700 CORE_ADDR orig_addr
;
4706 uint8_t mod
, reg
, rm
;
4715 /* Parse the "modrm" part of the memory address irp->addr points at.
4716 Returns -1 if something goes wrong, 0 otherwise. */
4719 i386_record_modrm (struct i386_record_s
*irp
)
4721 struct gdbarch
*gdbarch
= irp
->gdbarch
;
4723 if (record_read_memory (gdbarch
, irp
->addr
, &irp
->modrm
, 1))
4727 irp
->mod
= (irp
->modrm
>> 6) & 3;
4728 irp
->reg
= (irp
->modrm
>> 3) & 7;
4729 irp
->rm
= irp
->modrm
& 7;
4734 /* Extract the memory address that the current instruction writes to,
4735 and return it in *ADDR. Return -1 if something goes wrong. */
4738 i386_record_lea_modrm_addr (struct i386_record_s
*irp
, uint64_t *addr
)
4740 struct gdbarch
*gdbarch
= irp
->gdbarch
;
4741 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
4746 if (irp
->aflag
|| irp
->regmap
[X86_RECORD_R8_REGNUM
])
4753 uint8_t base
= irp
->rm
;
4758 if (record_read_memory (gdbarch
, irp
->addr
, &byte
, 1))
4761 scale
= (byte
>> 6) & 3;
4762 index
= ((byte
>> 3) & 7) | irp
->rex_x
;
4770 if ((base
& 7) == 5)
4773 if (record_read_memory (gdbarch
, irp
->addr
, buf
, 4))
4776 *addr
= extract_signed_integer (buf
, 4, byte_order
);
4777 if (irp
->regmap
[X86_RECORD_R8_REGNUM
] && !havesib
)
4778 *addr
+= irp
->addr
+ irp
->rip_offset
;
4782 if (record_read_memory (gdbarch
, irp
->addr
, buf
, 1))
4785 *addr
= (int8_t) buf
[0];
4788 if (record_read_memory (gdbarch
, irp
->addr
, buf
, 4))
4790 *addr
= extract_signed_integer (buf
, 4, byte_order
);
4798 if (base
== 4 && irp
->popl_esp_hack
)
4799 *addr
+= irp
->popl_esp_hack
;
4800 regcache_raw_read_unsigned (irp
->regcache
, irp
->regmap
[base
],
4803 if (irp
->aflag
== 2)
4808 *addr
= (uint32_t) (offset64
+ *addr
);
4810 if (havesib
&& (index
!= 4 || scale
!= 0))
4812 regcache_raw_read_unsigned (irp
->regcache
, irp
->regmap
[index
],
4814 if (irp
->aflag
== 2)
4815 *addr
+= offset64
<< scale
;
4817 *addr
= (uint32_t) (*addr
+ (offset64
<< scale
));
4822 /* Since we are in 64-bit mode with ADDR32 prefix, zero-extend
4823 address from 32-bit to 64-bit. */
4824 *addr
= (uint32_t) *addr
;
4835 if (record_read_memory (gdbarch
, irp
->addr
, buf
, 2))
4838 *addr
= extract_signed_integer (buf
, 2, byte_order
);
4844 if (record_read_memory (gdbarch
, irp
->addr
, buf
, 1))
4847 *addr
= (int8_t) buf
[0];
4850 if (record_read_memory (gdbarch
, irp
->addr
, buf
, 2))
4853 *addr
= extract_signed_integer (buf
, 2, byte_order
);
4860 regcache_raw_read_unsigned (irp
->regcache
,
4861 irp
->regmap
[X86_RECORD_REBX_REGNUM
],
4863 *addr
= (uint32_t) (*addr
+ offset64
);
4864 regcache_raw_read_unsigned (irp
->regcache
,
4865 irp
->regmap
[X86_RECORD_RESI_REGNUM
],
4867 *addr
= (uint32_t) (*addr
+ offset64
);
4870 regcache_raw_read_unsigned (irp
->regcache
,
4871 irp
->regmap
[X86_RECORD_REBX_REGNUM
],
4873 *addr
= (uint32_t) (*addr
+ offset64
);
4874 regcache_raw_read_unsigned (irp
->regcache
,
4875 irp
->regmap
[X86_RECORD_REDI_REGNUM
],
4877 *addr
= (uint32_t) (*addr
+ offset64
);
4880 regcache_raw_read_unsigned (irp
->regcache
,
4881 irp
->regmap
[X86_RECORD_REBP_REGNUM
],
4883 *addr
= (uint32_t) (*addr
+ offset64
);
4884 regcache_raw_read_unsigned (irp
->regcache
,
4885 irp
->regmap
[X86_RECORD_RESI_REGNUM
],
4887 *addr
= (uint32_t) (*addr
+ offset64
);
4890 regcache_raw_read_unsigned (irp
->regcache
,
4891 irp
->regmap
[X86_RECORD_REBP_REGNUM
],
4893 *addr
= (uint32_t) (*addr
+ offset64
);
4894 regcache_raw_read_unsigned (irp
->regcache
,
4895 irp
->regmap
[X86_RECORD_REDI_REGNUM
],
4897 *addr
= (uint32_t) (*addr
+ offset64
);
4900 regcache_raw_read_unsigned (irp
->regcache
,
4901 irp
->regmap
[X86_RECORD_RESI_REGNUM
],
4903 *addr
= (uint32_t) (*addr
+ offset64
);
4906 regcache_raw_read_unsigned (irp
->regcache
,
4907 irp
->regmap
[X86_RECORD_REDI_REGNUM
],
4909 *addr
= (uint32_t) (*addr
+ offset64
);
4912 regcache_raw_read_unsigned (irp
->regcache
,
4913 irp
->regmap
[X86_RECORD_REBP_REGNUM
],
4915 *addr
= (uint32_t) (*addr
+ offset64
);
4918 regcache_raw_read_unsigned (irp
->regcache
,
4919 irp
->regmap
[X86_RECORD_REBX_REGNUM
],
4921 *addr
= (uint32_t) (*addr
+ offset64
);
4931 /* Record the address and contents of the memory that will be changed
4932 by the current instruction. Return -1 if something goes wrong, 0
4936 i386_record_lea_modrm (struct i386_record_s
*irp
)
4938 struct gdbarch
*gdbarch
= irp
->gdbarch
;
4941 if (irp
->override
>= 0)
4943 if (record_full_memory_query
)
4946 Process record ignores the memory change of instruction at address %s\n\
4947 because it can't get the value of the segment register.\n\
4948 Do you want to stop the program?"),
4949 paddress (gdbarch
, irp
->orig_addr
)))
4956 if (i386_record_lea_modrm_addr (irp
, &addr
))
4959 if (record_full_arch_list_add_mem (addr
, 1 << irp
->ot
))
4965 /* Record the effects of a push operation. Return -1 if something
4966 goes wrong, 0 otherwise. */
4969 i386_record_push (struct i386_record_s
*irp
, int size
)
4973 if (record_full_arch_list_add_reg (irp
->regcache
,
4974 irp
->regmap
[X86_RECORD_RESP_REGNUM
]))
4976 regcache_raw_read_unsigned (irp
->regcache
,
4977 irp
->regmap
[X86_RECORD_RESP_REGNUM
],
4979 if (record_full_arch_list_add_mem ((CORE_ADDR
) addr
- size
, size
))
4986 /* Defines contents to record. */
4987 #define I386_SAVE_FPU_REGS 0xfffd
4988 #define I386_SAVE_FPU_ENV 0xfffe
4989 #define I386_SAVE_FPU_ENV_REG_STACK 0xffff
4991 /* Record the values of the floating point registers which will be
4992 changed by the current instruction. Returns -1 if something is
4993 wrong, 0 otherwise. */
4995 static int i386_record_floats (struct gdbarch
*gdbarch
,
4996 struct i386_record_s
*ir
,
4999 i386_gdbarch_tdep
*tdep
= gdbarch_tdep
<i386_gdbarch_tdep
> (gdbarch
);
5002 /* Oza: Because of floating point insn push/pop of fpu stack is going to
5003 happen. Currently we store st0-st7 registers, but we need not store all
5004 registers all the time, in future we use ftag register and record only
5005 those who are not marked as an empty. */
5007 if (I386_SAVE_FPU_REGS
== iregnum
)
5009 for (i
= I387_ST0_REGNUM (tdep
); i
<= I387_ST0_REGNUM (tdep
) + 7; i
++)
5011 if (record_full_arch_list_add_reg (ir
->regcache
, i
))
5015 else if (I386_SAVE_FPU_ENV
== iregnum
)
5017 for (i
= I387_FCTRL_REGNUM (tdep
); i
<= I387_FOP_REGNUM (tdep
); i
++)
5019 if (record_full_arch_list_add_reg (ir
->regcache
, i
))
5023 else if (I386_SAVE_FPU_ENV_REG_STACK
== iregnum
)
5025 for (i
= I387_ST0_REGNUM (tdep
); i
<= I387_FOP_REGNUM (tdep
); i
++)
5026 if (record_full_arch_list_add_reg (ir
->regcache
, i
))
5029 else if ((iregnum
>= I387_ST0_REGNUM (tdep
)) &&
5030 (iregnum
<= I387_FOP_REGNUM (tdep
)))
5032 if (record_full_arch_list_add_reg (ir
->regcache
,iregnum
))
5037 /* Parameter error. */
5040 if(I386_SAVE_FPU_ENV
!= iregnum
)
5042 for (i
= I387_FCTRL_REGNUM (tdep
); i
<= I387_FOP_REGNUM (tdep
); i
++)
5044 if (record_full_arch_list_add_reg (ir
->regcache
, i
))
5051 /* Parse the current instruction, and record the values of the
5052 registers and memory that will be changed by the current
5053 instruction. Returns -1 if something goes wrong, 0 otherwise. */
5055 #define I386_RECORD_FULL_ARCH_LIST_ADD_REG(regnum) \
5056 record_full_arch_list_add_reg (ir.regcache, ir.regmap[(regnum)])
5059 i386_process_record (struct gdbarch
*gdbarch
, struct regcache
*regcache
,
5060 CORE_ADDR input_addr
)
5062 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
5068 gdb_byte buf
[I386_MAX_REGISTER_SIZE
];
5069 struct i386_record_s ir
;
5070 i386_gdbarch_tdep
*tdep
= gdbarch_tdep
<i386_gdbarch_tdep
> (gdbarch
);
5074 memset (&ir
, 0, sizeof (struct i386_record_s
));
5075 ir
.regcache
= regcache
;
5076 ir
.addr
= input_addr
;
5077 ir
.orig_addr
= input_addr
;
5081 ir
.popl_esp_hack
= 0;
5082 ir
.regmap
= tdep
->record_regmap
;
5083 ir
.gdbarch
= gdbarch
;
5085 if (record_debug
> 1)
5086 gdb_printf (gdb_stdlog
, "Process record: i386_process_record "
5088 paddress (gdbarch
, ir
.addr
));
5093 if (record_read_memory (gdbarch
, ir
.addr
, &opcode8
, 1))
5096 switch (opcode8
) /* Instruction prefixes */
5098 case REPE_PREFIX_OPCODE
:
5099 prefixes
|= PREFIX_REPZ
;
5101 case REPNE_PREFIX_OPCODE
:
5102 prefixes
|= PREFIX_REPNZ
;
5104 case LOCK_PREFIX_OPCODE
:
5105 prefixes
|= PREFIX_LOCK
;
5107 case CS_PREFIX_OPCODE
:
5108 ir
.override
= X86_RECORD_CS_REGNUM
;
5110 case SS_PREFIX_OPCODE
:
5111 ir
.override
= X86_RECORD_SS_REGNUM
;
5113 case DS_PREFIX_OPCODE
:
5114 ir
.override
= X86_RECORD_DS_REGNUM
;
5116 case ES_PREFIX_OPCODE
:
5117 ir
.override
= X86_RECORD_ES_REGNUM
;
5119 case FS_PREFIX_OPCODE
:
5120 ir
.override
= X86_RECORD_FS_REGNUM
;
5122 case GS_PREFIX_OPCODE
:
5123 ir
.override
= X86_RECORD_GS_REGNUM
;
5125 case DATA_PREFIX_OPCODE
:
5126 prefixes
|= PREFIX_DATA
;
5128 case ADDR_PREFIX_OPCODE
:
5129 prefixes
|= PREFIX_ADDR
;
5131 case 0x40: /* i386 inc %eax */
5132 case 0x41: /* i386 inc %ecx */
5133 case 0x42: /* i386 inc %edx */
5134 case 0x43: /* i386 inc %ebx */
5135 case 0x44: /* i386 inc %esp */
5136 case 0x45: /* i386 inc %ebp */
5137 case 0x46: /* i386 inc %esi */
5138 case 0x47: /* i386 inc %edi */
5139 case 0x48: /* i386 dec %eax */
5140 case 0x49: /* i386 dec %ecx */
5141 case 0x4a: /* i386 dec %edx */
5142 case 0x4b: /* i386 dec %ebx */
5143 case 0x4c: /* i386 dec %esp */
5144 case 0x4d: /* i386 dec %ebp */
5145 case 0x4e: /* i386 dec %esi */
5146 case 0x4f: /* i386 dec %edi */
5147 if (ir
.regmap
[X86_RECORD_R8_REGNUM
]) /* 64 bit target */
5150 rex_w
= (opcode8
>> 3) & 1;
5151 rex_r
= (opcode8
& 0x4) << 1;
5152 ir
.rex_x
= (opcode8
& 0x2) << 2;
5153 ir
.rex_b
= (opcode8
& 0x1) << 3;
5155 else /* 32 bit target */
5164 if (ir
.regmap
[X86_RECORD_R8_REGNUM
] && rex_w
== 1)
5170 if (prefixes
& PREFIX_DATA
)
5173 if (prefixes
& PREFIX_ADDR
)
5175 else if (ir
.regmap
[X86_RECORD_R8_REGNUM
])
5178 /* Now check op code. */
5179 opcode
= (uint32_t) opcode8
;
5184 if (record_read_memory (gdbarch
, ir
.addr
, &opcode8
, 1))
5187 opcode
= (uint32_t) opcode8
| 0x0f00;
5191 case 0x00: /* arith & logic */
5239 if (((opcode
>> 3) & 7) != OP_CMPL
)
5241 if ((opcode
& 1) == 0)
5244 ir
.ot
= ir
.dflag
+ OT_WORD
;
5246 switch ((opcode
>> 1) & 3)
5248 case 0: /* OP Ev, Gv */
5249 if (i386_record_modrm (&ir
))
5253 if (i386_record_lea_modrm (&ir
))
5259 if (ir
.ot
== OT_BYTE
&& !ir
.regmap
[X86_RECORD_R8_REGNUM
])
5261 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir
.rm
);
5264 case 1: /* OP Gv, Ev */
5265 if (i386_record_modrm (&ir
))
5268 if (ir
.ot
== OT_BYTE
&& !ir
.regmap
[X86_RECORD_R8_REGNUM
])
5270 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir
.reg
);
5272 case 2: /* OP A, Iv */
5273 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM
);
5277 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
5280 case 0x80: /* GRP1 */
5284 if (i386_record_modrm (&ir
))
5287 if (ir
.reg
!= OP_CMPL
)
5289 if ((opcode
& 1) == 0)
5292 ir
.ot
= ir
.dflag
+ OT_WORD
;
5299 ir
.rip_offset
= (ir
.ot
> OT_LONG
) ? 4 : (1 << ir
.ot
);
5300 if (i386_record_lea_modrm (&ir
))
5304 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir
.rm
| ir
.rex_b
);
5306 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
5309 case 0x40: /* inc */
5318 case 0x48: /* dec */
5327 I386_RECORD_FULL_ARCH_LIST_ADD_REG (opcode
& 7);
5328 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
5331 case 0xf6: /* GRP3 */
5333 if ((opcode
& 1) == 0)
5336 ir
.ot
= ir
.dflag
+ OT_WORD
;
5337 if (i386_record_modrm (&ir
))
5340 if (ir
.mod
!= 3 && ir
.reg
== 0)
5341 ir
.rip_offset
= (ir
.ot
> OT_LONG
) ? 4 : (1 << ir
.ot
);
5346 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
5352 if (i386_record_lea_modrm (&ir
))
5358 if (ir
.ot
== OT_BYTE
&& !ir
.regmap
[X86_RECORD_R8_REGNUM
])
5360 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir
.rm
);
5362 if (ir
.reg
== 3) /* neg */
5363 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
5369 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM
);
5370 if (ir
.ot
!= OT_BYTE
)
5371 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM
);
5372 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
5376 opcode
= opcode
<< 8 | ir
.modrm
;
5382 case 0xfe: /* GRP4 */
5383 case 0xff: /* GRP5 */
5384 if (i386_record_modrm (&ir
))
5386 if (ir
.reg
>= 2 && opcode
== 0xfe)
5389 opcode
= opcode
<< 8 | ir
.modrm
;
5396 if ((opcode
& 1) == 0)
5399 ir
.ot
= ir
.dflag
+ OT_WORD
;
5402 if (i386_record_lea_modrm (&ir
))
5408 if (ir
.ot
== OT_BYTE
&& !ir
.regmap
[X86_RECORD_R8_REGNUM
])
5410 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir
.rm
);
5412 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
5415 if (ir
.regmap
[X86_RECORD_R8_REGNUM
] && ir
.dflag
)
5417 if (i386_record_push (&ir
, 1 << (ir
.dflag
+ 1)))
5419 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
5422 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM
);
5423 if (i386_record_push (&ir
, 1 << (ir
.dflag
+ 1)))
5425 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
5429 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
5432 if (ir
.regmap
[X86_RECORD_R8_REGNUM
] && ir
.dflag
)
5434 if (i386_record_push (&ir
, 1 << (ir
.dflag
+ 1)))
5439 opcode
= opcode
<< 8 | ir
.modrm
;
5445 case 0x84: /* test */
5449 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
5452 case 0x98: /* CWDE/CBW */
5453 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM
);
5456 case 0x99: /* CDQ/CWD */
5457 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM
);
5458 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM
);
5461 case 0x0faf: /* imul */
5464 ir
.ot
= ir
.dflag
+ OT_WORD
;
5465 if (i386_record_modrm (&ir
))
5468 ir
.rip_offset
= (ir
.ot
> OT_LONG
) ? 4 : (1 << ir
.ot
);
5469 else if (opcode
== 0x6b)
5472 if (ir
.ot
== OT_BYTE
&& !ir
.regmap
[X86_RECORD_R8_REGNUM
])
5474 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir
.reg
);
5475 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
5478 case 0x0fc0: /* xadd */
5480 if ((opcode
& 1) == 0)
5483 ir
.ot
= ir
.dflag
+ OT_WORD
;
5484 if (i386_record_modrm (&ir
))
5489 if (ir
.ot
== OT_BYTE
&& !ir
.regmap
[X86_RECORD_R8_REGNUM
])
5491 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir
.reg
);
5492 if (ir
.ot
== OT_BYTE
&& !ir
.regmap
[X86_RECORD_R8_REGNUM
])
5494 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir
.rm
);
5498 if (i386_record_lea_modrm (&ir
))
5500 if (ir
.ot
== OT_BYTE
&& !ir
.regmap
[X86_RECORD_R8_REGNUM
])
5502 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir
.reg
);
5504 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
5507 case 0x0fb0: /* cmpxchg */
5509 if ((opcode
& 1) == 0)
5512 ir
.ot
= ir
.dflag
+ OT_WORD
;
5513 if (i386_record_modrm (&ir
))
5518 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM
);
5519 if (ir
.ot
== OT_BYTE
&& !ir
.regmap
[X86_RECORD_R8_REGNUM
])
5521 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir
.reg
);
5525 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM
);
5526 if (i386_record_lea_modrm (&ir
))
5529 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
5532 case 0x0fc7: /* cmpxchg8b / rdrand / rdseed */
5533 if (i386_record_modrm (&ir
))
5537 /* rdrand and rdseed use the 3 bits of the REG field of ModR/M as
5538 an extended opcode. rdrand has bits 110 (/6) and rdseed
5539 has bits 111 (/7). */
5540 if (ir
.reg
== 6 || ir
.reg
== 7)
5542 /* The storage register is described by the 3 R/M bits, but the
5543 REX.B prefix may be used to give access to registers
5544 R8~R15. In this case ir.rex_b + R/M will give us the register
5545 in the range R8~R15.
5547 REX.W may also be used to access 64-bit registers, but we
5548 already record entire registers and not just partial bits
5550 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir
.rex_b
+ ir
.rm
);
5551 /* These instructions also set conditional bits. */
5552 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
5557 /* We don't handle this particular instruction yet. */
5559 opcode
= opcode
<< 8 | ir
.modrm
;
5563 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM
);
5564 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM
);
5565 if (i386_record_lea_modrm (&ir
))
5567 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
5570 case 0x50: /* push */
5580 if (ir
.regmap
[X86_RECORD_R8_REGNUM
] && ir
.dflag
)
5582 if (i386_record_push (&ir
, 1 << (ir
.dflag
+ 1)))
5586 case 0x06: /* push es */
5587 case 0x0e: /* push cs */
5588 case 0x16: /* push ss */
5589 case 0x1e: /* push ds */
5590 if (ir
.regmap
[X86_RECORD_R8_REGNUM
])
5595 if (i386_record_push (&ir
, 1 << (ir
.dflag
+ 1)))
5599 case 0x0fa0: /* push fs */
5600 case 0x0fa8: /* push gs */
5601 if (ir
.regmap
[X86_RECORD_R8_REGNUM
])
5606 if (i386_record_push (&ir
, 1 << (ir
.dflag
+ 1)))
5610 case 0x60: /* pusha */
5611 if (ir
.regmap
[X86_RECORD_R8_REGNUM
])
5616 if (i386_record_push (&ir
, 1 << (ir
.dflag
+ 4)))
5620 case 0x58: /* pop */
5628 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM
);
5629 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode
& 0x7) | ir
.rex_b
);
5632 case 0x61: /* popa */
5633 if (ir
.regmap
[X86_RECORD_R8_REGNUM
])
5638 for (regnum
= X86_RECORD_REAX_REGNUM
;
5639 regnum
<= X86_RECORD_REDI_REGNUM
;
5641 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum
);
5644 case 0x8f: /* pop */
5645 if (ir
.regmap
[X86_RECORD_R8_REGNUM
])
5646 ir
.ot
= ir
.dflag
? OT_QUAD
: OT_WORD
;
5648 ir
.ot
= ir
.dflag
+ OT_WORD
;
5649 if (i386_record_modrm (&ir
))
5652 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir
.rm
| ir
.rex_b
);
5655 ir
.popl_esp_hack
= 1 << ir
.ot
;
5656 if (i386_record_lea_modrm (&ir
))
5659 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM
);
5662 case 0xc8: /* enter */
5663 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM
);
5664 if (ir
.regmap
[X86_RECORD_R8_REGNUM
] && ir
.dflag
)
5666 if (i386_record_push (&ir
, 1 << (ir
.dflag
+ 1)))
5670 case 0xc9: /* leave */
5671 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM
);
5672 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM
);
5675 case 0x07: /* pop es */
5676 if (ir
.regmap
[X86_RECORD_R8_REGNUM
])
5681 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM
);
5682 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_ES_REGNUM
);
5683 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
5686 case 0x17: /* pop ss */
5687 if (ir
.regmap
[X86_RECORD_R8_REGNUM
])
5692 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM
);
5693 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_SS_REGNUM
);
5694 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
5697 case 0x1f: /* pop ds */
5698 if (ir
.regmap
[X86_RECORD_R8_REGNUM
])
5703 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM
);
5704 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_DS_REGNUM
);
5705 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
5708 case 0x0fa1: /* pop fs */
5709 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM
);
5710 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_FS_REGNUM
);
5711 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
5714 case 0x0fa9: /* pop gs */
5715 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM
);
5716 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM
);
5717 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
5720 case 0x88: /* mov */
5724 if ((opcode
& 1) == 0)
5727 ir
.ot
= ir
.dflag
+ OT_WORD
;
5729 if (i386_record_modrm (&ir
))
5734 if (opcode
== 0xc6 || opcode
== 0xc7)
5735 ir
.rip_offset
= (ir
.ot
> OT_LONG
) ? 4 : (1 << ir
.ot
);
5736 if (i386_record_lea_modrm (&ir
))
5741 if (opcode
== 0xc6 || opcode
== 0xc7)
5743 if (ir
.ot
== OT_BYTE
&& !ir
.regmap
[X86_RECORD_R8_REGNUM
])
5745 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir
.rm
);
5749 case 0x8a: /* mov */
5751 if ((opcode
& 1) == 0)
5754 ir
.ot
= ir
.dflag
+ OT_WORD
;
5755 if (i386_record_modrm (&ir
))
5758 if (ir
.ot
== OT_BYTE
&& !ir
.regmap
[X86_RECORD_R8_REGNUM
])
5760 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir
.reg
);
5763 case 0x8c: /* mov seg */
5764 if (i386_record_modrm (&ir
))
5769 opcode
= opcode
<< 8 | ir
.modrm
;
5774 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir
.rm
);
5778 if (i386_record_lea_modrm (&ir
))
5783 case 0x8e: /* mov seg */
5784 if (i386_record_modrm (&ir
))
5789 regnum
= X86_RECORD_ES_REGNUM
;
5792 regnum
= X86_RECORD_SS_REGNUM
;
5795 regnum
= X86_RECORD_DS_REGNUM
;
5798 regnum
= X86_RECORD_FS_REGNUM
;
5801 regnum
= X86_RECORD_GS_REGNUM
;
5805 opcode
= opcode
<< 8 | ir
.modrm
;
5809 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum
);
5810 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
5813 case 0x0fb6: /* movzbS */
5814 case 0x0fb7: /* movzwS */
5815 case 0x0fbe: /* movsbS */
5816 case 0x0fbf: /* movswS */
5817 if (i386_record_modrm (&ir
))
5819 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir
.reg
| rex_r
);
5822 case 0x8d: /* lea */
5823 if (i386_record_modrm (&ir
))
5828 opcode
= opcode
<< 8 | ir
.modrm
;
5833 if (ir
.ot
== OT_BYTE
&& !ir
.regmap
[X86_RECORD_R8_REGNUM
])
5835 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir
.reg
);
5838 case 0xa0: /* mov EAX */
5841 case 0xd7: /* xlat */
5842 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM
);
5845 case 0xa2: /* mov EAX */
5847 if (ir
.override
>= 0)
5849 if (record_full_memory_query
)
5852 Process record ignores the memory change of instruction at address %s\n\
5853 because it can't get the value of the segment register.\n\
5854 Do you want to stop the program?"),
5855 paddress (gdbarch
, ir
.orig_addr
)))
5861 if ((opcode
& 1) == 0)
5864 ir
.ot
= ir
.dflag
+ OT_WORD
;
5867 if (record_read_memory (gdbarch
, ir
.addr
, buf
, 8))
5870 addr
= extract_unsigned_integer (buf
, 8, byte_order
);
5874 if (record_read_memory (gdbarch
, ir
.addr
, buf
, 4))
5877 addr
= extract_unsigned_integer (buf
, 4, byte_order
);
5881 if (record_read_memory (gdbarch
, ir
.addr
, buf
, 2))
5884 addr
= extract_unsigned_integer (buf
, 2, byte_order
);
5886 if (record_full_arch_list_add_mem (addr
, 1 << ir
.ot
))
5891 case 0xb0: /* mov R, Ib */
5899 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((ir
.regmap
[X86_RECORD_R8_REGNUM
])
5900 ? ((opcode
& 0x7) | ir
.rex_b
)
5901 : ((opcode
& 0x7) & 0x3));
5904 case 0xb8: /* mov R, Iv */
5912 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode
& 0x7) | ir
.rex_b
);
5915 case 0x91: /* xchg R, EAX */
5922 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM
);
5923 I386_RECORD_FULL_ARCH_LIST_ADD_REG (opcode
& 0x7);
5926 case 0x86: /* xchg Ev, Gv */
5928 if ((opcode
& 1) == 0)
5931 ir
.ot
= ir
.dflag
+ OT_WORD
;
5932 if (i386_record_modrm (&ir
))
5937 if (ir
.ot
== OT_BYTE
&& !ir
.regmap
[X86_RECORD_R8_REGNUM
])
5939 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir
.rm
);
5943 if (i386_record_lea_modrm (&ir
))
5947 if (ir
.ot
== OT_BYTE
&& !ir
.regmap
[X86_RECORD_R8_REGNUM
])
5949 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir
.reg
);
5952 case 0xc4: /* les Gv */
5953 case 0xc5: /* lds Gv */
5954 if (ir
.regmap
[X86_RECORD_R8_REGNUM
])
5960 case 0x0fb2: /* lss Gv */
5961 case 0x0fb4: /* lfs Gv */
5962 case 0x0fb5: /* lgs Gv */
5963 if (i386_record_modrm (&ir
))
5971 opcode
= opcode
<< 8 | ir
.modrm
;
5976 case 0xc4: /* les Gv */
5977 regnum
= X86_RECORD_ES_REGNUM
;
5979 case 0xc5: /* lds Gv */
5980 regnum
= X86_RECORD_DS_REGNUM
;
5982 case 0x0fb2: /* lss Gv */
5983 regnum
= X86_RECORD_SS_REGNUM
;
5985 case 0x0fb4: /* lfs Gv */
5986 regnum
= X86_RECORD_FS_REGNUM
;
5988 case 0x0fb5: /* lgs Gv */
5989 regnum
= X86_RECORD_GS_REGNUM
;
5992 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum
);
5993 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir
.reg
| rex_r
);
5994 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
5997 case 0xc0: /* shifts */
6003 if ((opcode
& 1) == 0)
6006 ir
.ot
= ir
.dflag
+ OT_WORD
;
6007 if (i386_record_modrm (&ir
))
6009 if (ir
.mod
!= 3 && (opcode
== 0xd2 || opcode
== 0xd3))
6011 if (i386_record_lea_modrm (&ir
))
6017 if (ir
.ot
== OT_BYTE
&& !ir
.regmap
[X86_RECORD_R8_REGNUM
])
6019 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir
.rm
);
6021 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
6028 if (i386_record_modrm (&ir
))
6032 if (record_full_arch_list_add_reg (ir
.regcache
, ir
.rm
))
6037 if (i386_record_lea_modrm (&ir
))
6042 case 0xd8: /* Floats. */
6050 if (i386_record_modrm (&ir
))
6052 ir
.reg
|= ((opcode
& 7) << 3);
6058 if (i386_record_lea_modrm_addr (&ir
, &addr64
))
6066 /* For fcom, ficom nothing to do. */
6072 /* For fcomp, ficomp pop FPU stack, store all. */
6073 if (i386_record_floats (gdbarch
, &ir
, I386_SAVE_FPU_REGS
))
6100 /* For fadd, fmul, fsub, fsubr, fdiv, fdivr, fiadd, fimul,
6101 fisub, fisubr, fidiv, fidivr, modR/M.reg is an extension
6102 of code, always affects st(0) register. */
6103 if (i386_record_floats (gdbarch
, &ir
, I387_ST0_REGNUM (tdep
)))
6127 /* Handling fld, fild. */
6128 if (i386_record_floats (gdbarch
, &ir
, I386_SAVE_FPU_REGS
))
6132 switch (ir
.reg
>> 4)
6135 if (record_full_arch_list_add_mem (addr64
, 4))
6139 if (record_full_arch_list_add_mem (addr64
, 8))
6145 if (record_full_arch_list_add_mem (addr64
, 2))
6151 switch (ir
.reg
>> 4)
6154 if (record_full_arch_list_add_mem (addr64
, 4))
6156 if (3 == (ir
.reg
& 7))
6158 /* For fstp m32fp. */
6159 if (i386_record_floats (gdbarch
, &ir
,
6160 I386_SAVE_FPU_REGS
))
6165 if (record_full_arch_list_add_mem (addr64
, 4))
6167 if ((3 == (ir
.reg
& 7))
6168 || (5 == (ir
.reg
& 7))
6169 || (7 == (ir
.reg
& 7)))
6171 /* For fstp insn. */
6172 if (i386_record_floats (gdbarch
, &ir
,
6173 I386_SAVE_FPU_REGS
))
6178 if (record_full_arch_list_add_mem (addr64
, 8))
6180 if (3 == (ir
.reg
& 7))
6182 /* For fstp m64fp. */
6183 if (i386_record_floats (gdbarch
, &ir
,
6184 I386_SAVE_FPU_REGS
))
6189 if ((3 <= (ir
.reg
& 7)) && (6 <= (ir
.reg
& 7)))
6191 /* For fistp, fbld, fild, fbstp. */
6192 if (i386_record_floats (gdbarch
, &ir
,
6193 I386_SAVE_FPU_REGS
))
6198 if (record_full_arch_list_add_mem (addr64
, 2))
6207 if (i386_record_floats (gdbarch
, &ir
,
6208 I386_SAVE_FPU_ENV_REG_STACK
))
6213 if (i386_record_floats (gdbarch
, &ir
, I387_FCTRL_REGNUM (tdep
)))
6218 if (i386_record_floats (gdbarch
, &ir
,
6219 I386_SAVE_FPU_ENV_REG_STACK
))
6225 if (record_full_arch_list_add_mem (addr64
, 28))
6230 if (record_full_arch_list_add_mem (addr64
, 14))
6236 if (record_full_arch_list_add_mem (addr64
, 2))
6238 /* Insn fstp, fbstp. */
6239 if (i386_record_floats (gdbarch
, &ir
, I386_SAVE_FPU_REGS
))
6244 if (record_full_arch_list_add_mem (addr64
, 10))
6250 if (record_full_arch_list_add_mem (addr64
, 28))
6256 if (record_full_arch_list_add_mem (addr64
, 14))
6260 if (record_full_arch_list_add_mem (addr64
, 80))
6263 if (i386_record_floats (gdbarch
, &ir
,
6264 I386_SAVE_FPU_ENV_REG_STACK
))
6268 if (record_full_arch_list_add_mem (addr64
, 8))
6271 if (i386_record_floats (gdbarch
, &ir
, I386_SAVE_FPU_REGS
))
6276 opcode
= opcode
<< 8 | ir
.modrm
;
6281 /* Opcode is an extension of modR/M byte. */
6287 if (i386_record_floats (gdbarch
, &ir
, I387_ST0_REGNUM (tdep
)))
6291 if (0x0c == (ir
.modrm
>> 4))
6293 if ((ir
.modrm
& 0x0f) <= 7)
6295 if (i386_record_floats (gdbarch
, &ir
,
6296 I386_SAVE_FPU_REGS
))
6301 if (i386_record_floats (gdbarch
, &ir
,
6302 I387_ST0_REGNUM (tdep
)))
6304 /* If only st(0) is changing, then we have already
6306 if ((ir
.modrm
& 0x0f) - 0x08)
6308 if (i386_record_floats (gdbarch
, &ir
,
6309 I387_ST0_REGNUM (tdep
) +
6310 ((ir
.modrm
& 0x0f) - 0x08)))
6328 if (i386_record_floats (gdbarch
, &ir
,
6329 I387_ST0_REGNUM (tdep
)))
6347 if (i386_record_floats (gdbarch
, &ir
,
6348 I386_SAVE_FPU_REGS
))
6352 if (i386_record_floats (gdbarch
, &ir
,
6353 I387_ST0_REGNUM (tdep
)))
6355 if (i386_record_floats (gdbarch
, &ir
,
6356 I387_ST0_REGNUM (tdep
) + 1))
6363 if (0xe9 == ir
.modrm
)
6365 if (i386_record_floats (gdbarch
, &ir
, I386_SAVE_FPU_REGS
))
6368 else if ((0x0c == ir
.modrm
>> 4) || (0x0d == ir
.modrm
>> 4))
6370 if (i386_record_floats (gdbarch
, &ir
,
6371 I387_ST0_REGNUM (tdep
)))
6373 if (((ir
.modrm
& 0x0f) > 0) && ((ir
.modrm
& 0x0f) <= 7))
6375 if (i386_record_floats (gdbarch
, &ir
,
6376 I387_ST0_REGNUM (tdep
) +
6380 else if ((ir
.modrm
& 0x0f) - 0x08)
6382 if (i386_record_floats (gdbarch
, &ir
,
6383 I387_ST0_REGNUM (tdep
) +
6384 ((ir
.modrm
& 0x0f) - 0x08)))
6390 if (0xe3 == ir
.modrm
)
6392 if (i386_record_floats (gdbarch
, &ir
, I386_SAVE_FPU_ENV
))
6395 else if ((0x0c == ir
.modrm
>> 4) || (0x0d == ir
.modrm
>> 4))
6397 if (i386_record_floats (gdbarch
, &ir
,
6398 I387_ST0_REGNUM (tdep
)))
6400 if (((ir
.modrm
& 0x0f) > 0) && ((ir
.modrm
& 0x0f) <= 7))
6402 if (i386_record_floats (gdbarch
, &ir
,
6403 I387_ST0_REGNUM (tdep
) +
6407 else if ((ir
.modrm
& 0x0f) - 0x08)
6409 if (i386_record_floats (gdbarch
, &ir
,
6410 I387_ST0_REGNUM (tdep
) +
6411 ((ir
.modrm
& 0x0f) - 0x08)))
6417 if ((0x0c == ir
.modrm
>> 4)
6418 || (0x0d == ir
.modrm
>> 4)
6419 || (0x0f == ir
.modrm
>> 4))
6421 if ((ir
.modrm
& 0x0f) <= 7)
6423 if (i386_record_floats (gdbarch
, &ir
,
6424 I387_ST0_REGNUM (tdep
) +
6430 if (i386_record_floats (gdbarch
, &ir
,
6431 I387_ST0_REGNUM (tdep
) +
6432 ((ir
.modrm
& 0x0f) - 0x08)))
6438 if (0x0c == ir
.modrm
>> 4)
6440 if (i386_record_floats (gdbarch
, &ir
,
6441 I387_FTAG_REGNUM (tdep
)))
6444 else if ((0x0d == ir
.modrm
>> 4) || (0x0e == ir
.modrm
>> 4))
6446 if ((ir
.modrm
& 0x0f) <= 7)
6448 if (i386_record_floats (gdbarch
, &ir
,
6449 I387_ST0_REGNUM (tdep
) +
6455 if (i386_record_floats (gdbarch
, &ir
,
6456 I386_SAVE_FPU_REGS
))
6462 if ((0x0c == ir
.modrm
>> 4)
6463 || (0x0e == ir
.modrm
>> 4)
6464 || (0x0f == ir
.modrm
>> 4)
6465 || (0xd9 == ir
.modrm
))
6467 if (i386_record_floats (gdbarch
, &ir
, I386_SAVE_FPU_REGS
))
6472 if (0xe0 == ir
.modrm
)
6474 if (record_full_arch_list_add_reg (ir
.regcache
,
6478 else if ((0x0f == ir
.modrm
>> 4) || (0x0e == ir
.modrm
>> 4))
6480 if (i386_record_floats (gdbarch
, &ir
, I386_SAVE_FPU_REGS
))
6488 case 0xa4: /* movsS */
6490 case 0xaa: /* stosS */
6492 case 0x6c: /* insS */
6494 regcache_raw_read_unsigned (ir
.regcache
,
6495 ir
.regmap
[X86_RECORD_RECX_REGNUM
],
6501 if ((opcode
& 1) == 0)
6504 ir
.ot
= ir
.dflag
+ OT_WORD
;
6505 regcache_raw_read_unsigned (ir
.regcache
,
6506 ir
.regmap
[X86_RECORD_REDI_REGNUM
],
6509 regcache_raw_read_unsigned (ir
.regcache
,
6510 ir
.regmap
[X86_RECORD_ES_REGNUM
],
6512 regcache_raw_read_unsigned (ir
.regcache
,
6513 ir
.regmap
[X86_RECORD_DS_REGNUM
],
6515 if (ir
.aflag
&& (es
!= ds
))
6517 /* addr += ((uint32_t) read_register (I386_ES_REGNUM)) << 4; */
6518 if (record_full_memory_query
)
6521 Process record ignores the memory change of instruction at address %s\n\
6522 because it can't get the value of the segment register.\n\
6523 Do you want to stop the program?"),
6524 paddress (gdbarch
, ir
.orig_addr
)))
6530 if (record_full_arch_list_add_mem (addr
, 1 << ir
.ot
))
6534 if (prefixes
& (PREFIX_REPZ
| PREFIX_REPNZ
))
6535 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM
);
6536 if (opcode
== 0xa4 || opcode
== 0xa5)
6537 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM
);
6538 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM
);
6539 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
6543 case 0xa6: /* cmpsS */
6545 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM
);
6546 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM
);
6547 if (prefixes
& (PREFIX_REPZ
| PREFIX_REPNZ
))
6548 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM
);
6549 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
6552 case 0xac: /* lodsS */
6554 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM
);
6555 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM
);
6556 if (prefixes
& (PREFIX_REPZ
| PREFIX_REPNZ
))
6557 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM
);
6558 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
6561 case 0xae: /* scasS */
6563 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM
);
6564 if (prefixes
& (PREFIX_REPZ
| PREFIX_REPNZ
))
6565 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM
);
6566 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
6569 case 0x6e: /* outsS */
6571 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM
);
6572 if (prefixes
& (PREFIX_REPZ
| PREFIX_REPNZ
))
6573 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM
);
6574 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
6577 case 0xe4: /* port I/O */
6581 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
6582 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM
);
6592 case 0xc2: /* ret im */
6593 case 0xc3: /* ret */
6594 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM
);
6595 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
6598 case 0xca: /* lret im */
6599 case 0xcb: /* lret */
6600 case 0xcf: /* iret */
6601 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM
);
6602 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM
);
6603 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
6606 case 0xe8: /* call im */
6607 if (ir
.regmap
[X86_RECORD_R8_REGNUM
] && ir
.dflag
)
6609 if (i386_record_push (&ir
, 1 << (ir
.dflag
+ 1)))
6613 case 0x9a: /* lcall im */
6614 if (ir
.regmap
[X86_RECORD_R8_REGNUM
])
6619 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM
);
6620 if (i386_record_push (&ir
, 1 << (ir
.dflag
+ 1)))
6624 case 0xe9: /* jmp im */
6625 case 0xea: /* ljmp im */
6626 case 0xeb: /* jmp Jb */
6627 case 0x70: /* jcc Jb */
6643 case 0x0f80: /* jcc Jv */
6661 case 0x0f90: /* setcc Gv */
6677 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
6679 if (i386_record_modrm (&ir
))
6682 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir
.rex_b
? (ir
.rm
| ir
.rex_b
)
6686 if (i386_record_lea_modrm (&ir
))
6691 case 0x0f40: /* cmov Gv, Ev */
6707 if (i386_record_modrm (&ir
))
6710 if (ir
.dflag
== OT_BYTE
)
6712 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir
.reg
);
6716 case 0x9c: /* pushf */
6717 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
6718 if (ir
.regmap
[X86_RECORD_R8_REGNUM
] && ir
.dflag
)
6720 if (i386_record_push (&ir
, 1 << (ir
.dflag
+ 1)))
6724 case 0x9d: /* popf */
6725 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM
);
6726 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
6729 case 0x9e: /* sahf */
6730 if (ir
.regmap
[X86_RECORD_R8_REGNUM
])
6736 case 0xf5: /* cmc */
6737 case 0xf8: /* clc */
6738 case 0xf9: /* stc */
6739 case 0xfc: /* cld */
6740 case 0xfd: /* std */
6741 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
6744 case 0x9f: /* lahf */
6745 if (ir
.regmap
[X86_RECORD_R8_REGNUM
])
6750 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
6751 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM
);
6754 /* bit operations */
6755 case 0x0fba: /* bt/bts/btr/btc Gv, im */
6756 ir
.ot
= ir
.dflag
+ OT_WORD
;
6757 if (i386_record_modrm (&ir
))
6762 opcode
= opcode
<< 8 | ir
.modrm
;
6768 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir
.rm
| ir
.rex_b
);
6771 if (i386_record_lea_modrm (&ir
))
6775 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
6778 case 0x0fa3: /* bt Gv, Ev */
6779 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
6782 case 0x0fab: /* bts */
6783 case 0x0fb3: /* btr */
6784 case 0x0fbb: /* btc */
6785 ir
.ot
= ir
.dflag
+ OT_WORD
;
6786 if (i386_record_modrm (&ir
))
6789 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir
.rm
| ir
.rex_b
);
6793 if (i386_record_lea_modrm_addr (&ir
, &addr64
))
6795 regcache_raw_read_unsigned (ir
.regcache
,
6796 ir
.regmap
[ir
.reg
| rex_r
],
6801 addr64
+= ((int16_t) addr
>> 4) << 4;
6804 addr64
+= ((int32_t) addr
>> 5) << 5;
6807 addr64
+= ((int64_t) addr
>> 6) << 6;
6810 if (record_full_arch_list_add_mem (addr64
, 1 << ir
.ot
))
6812 if (i386_record_lea_modrm (&ir
))
6815 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
6818 case 0x0fbc: /* bsf */
6819 case 0x0fbd: /* bsr */
6820 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir
.reg
| rex_r
);
6821 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
6825 case 0x27: /* daa */
6826 case 0x2f: /* das */
6827 case 0x37: /* aaa */
6828 case 0x3f: /* aas */
6829 case 0xd4: /* aam */
6830 case 0xd5: /* aad */
6831 if (ir
.regmap
[X86_RECORD_R8_REGNUM
])
6836 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM
);
6837 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
6841 case 0x90: /* nop */
6842 if (prefixes
& PREFIX_LOCK
)
6849 case 0x9b: /* fwait */
6850 if (record_read_memory (gdbarch
, ir
.addr
, &opcode8
, 1))
6852 opcode
= (uint32_t) opcode8
;
6858 case 0xcc: /* int3 */
6859 gdb_printf (gdb_stderr
,
6860 _("Process record does not support instruction "
6867 case 0xcd: /* int */
6871 if (record_read_memory (gdbarch
, ir
.addr
, &interrupt
, 1))
6874 if (interrupt
!= 0x80
6875 || tdep
->i386_intx80_record
== NULL
)
6877 gdb_printf (gdb_stderr
,
6878 _("Process record does not support "
6879 "instruction int 0x%02x.\n"),
6884 ret
= tdep
->i386_intx80_record (ir
.regcache
);
6891 case 0xce: /* into */
6892 gdb_printf (gdb_stderr
,
6893 _("Process record does not support "
6894 "instruction into.\n"));
6899 case 0xfa: /* cli */
6900 case 0xfb: /* sti */
6903 case 0x62: /* bound */
6904 gdb_printf (gdb_stderr
,
6905 _("Process record does not support "
6906 "instruction bound.\n"));
6911 case 0x0fc8: /* bswap reg */
6919 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode
& 7) | ir
.rex_b
);
6922 case 0xd6: /* salc */
6923 if (ir
.regmap
[X86_RECORD_R8_REGNUM
])
6928 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM
);
6929 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
6932 case 0xe0: /* loopnz */
6933 case 0xe1: /* loopz */
6934 case 0xe2: /* loop */
6935 case 0xe3: /* jecxz */
6936 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM
);
6937 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
6940 case 0x0f30: /* wrmsr */
6941 gdb_printf (gdb_stderr
,
6942 _("Process record does not support "
6943 "instruction wrmsr.\n"));
6948 case 0x0f32: /* rdmsr */
6949 gdb_printf (gdb_stderr
,
6950 _("Process record does not support "
6951 "instruction rdmsr.\n"));
6956 case 0x0f31: /* rdtsc */
6957 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM
);
6958 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM
);
6961 case 0x0f34: /* sysenter */
6964 if (ir
.regmap
[X86_RECORD_R8_REGNUM
])
6969 if (tdep
->i386_sysenter_record
== NULL
)
6971 gdb_printf (gdb_stderr
,
6972 _("Process record does not support "
6973 "instruction sysenter.\n"));
6977 ret
= tdep
->i386_sysenter_record (ir
.regcache
);
6983 case 0x0f35: /* sysexit */
6984 gdb_printf (gdb_stderr
,
6985 _("Process record does not support "
6986 "instruction sysexit.\n"));
6991 case 0x0f05: /* syscall */
6994 if (tdep
->i386_syscall_record
== NULL
)
6996 gdb_printf (gdb_stderr
,
6997 _("Process record does not support "
6998 "instruction syscall.\n"));
7002 ret
= tdep
->i386_syscall_record (ir
.regcache
);
7008 case 0x0f07: /* sysret */
7009 gdb_printf (gdb_stderr
,
7010 _("Process record does not support "
7011 "instruction sysret.\n"));
7016 case 0x0fa2: /* cpuid */
7017 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM
);
7018 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM
);
7019 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM
);
7020 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM
);
7023 case 0xf4: /* hlt */
7024 gdb_printf (gdb_stderr
,
7025 _("Process record does not support "
7026 "instruction hlt.\n"));
7032 if (i386_record_modrm (&ir
))
7039 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir
.rm
| ir
.rex_b
);
7043 if (i386_record_lea_modrm (&ir
))
7052 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
7056 opcode
= opcode
<< 8 | ir
.modrm
;
7063 if (i386_record_modrm (&ir
))
7074 opcode
= opcode
<< 8 | ir
.modrm
;
7077 if (ir
.override
>= 0)
7079 if (record_full_memory_query
)
7082 Process record ignores the memory change of instruction at address %s\n\
7083 because it can't get the value of the segment register.\n\
7084 Do you want to stop the program?"),
7085 paddress (gdbarch
, ir
.orig_addr
)))
7091 if (i386_record_lea_modrm_addr (&ir
, &addr64
))
7093 if (record_full_arch_list_add_mem (addr64
, 2))
7096 if (ir
.regmap
[X86_RECORD_R8_REGNUM
])
7098 if (record_full_arch_list_add_mem (addr64
, 8))
7103 if (record_full_arch_list_add_mem (addr64
, 4))
7114 case 0: /* monitor */
7117 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
7121 opcode
= opcode
<< 8 | ir
.modrm
;
7129 if (ir
.override
>= 0)
7131 if (record_full_memory_query
)
7134 Process record ignores the memory change of instruction at address %s\n\
7135 because it can't get the value of the segment register.\n\
7136 Do you want to stop the program?"),
7137 paddress (gdbarch
, ir
.orig_addr
)))
7145 if (i386_record_lea_modrm_addr (&ir
, &addr64
))
7147 if (record_full_arch_list_add_mem (addr64
, 2))
7150 if (ir
.regmap
[X86_RECORD_R8_REGNUM
])
7152 if (record_full_arch_list_add_mem (addr64
, 8))
7157 if (record_full_arch_list_add_mem (addr64
, 4))
7169 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM
);
7170 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM
);
7174 else if (ir
.rm
== 1)
7182 opcode
= opcode
<< 8 | ir
.modrm
;
7189 if (record_full_arch_list_add_reg (ir
.regcache
, ir
.rm
| ir
.rex_b
))
7195 if (i386_record_lea_modrm (&ir
))
7198 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
7201 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
7203 case 7: /* invlpg */
7206 if (ir
.rm
== 0 && ir
.regmap
[X86_RECORD_R8_REGNUM
])
7207 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM
);
7211 opcode
= opcode
<< 8 | ir
.modrm
;
7216 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
7220 opcode
= opcode
<< 8 | ir
.modrm
;
7226 case 0x0f08: /* invd */
7227 case 0x0f09: /* wbinvd */
7230 case 0x63: /* arpl */
7231 if (i386_record_modrm (&ir
))
7233 if (ir
.mod
== 3 || ir
.regmap
[X86_RECORD_R8_REGNUM
])
7235 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir
.regmap
[X86_RECORD_R8_REGNUM
]
7236 ? (ir
.reg
| rex_r
) : ir
.rm
);
7240 ir
.ot
= ir
.dflag
? OT_LONG
: OT_WORD
;
7241 if (i386_record_lea_modrm (&ir
))
7244 if (!ir
.regmap
[X86_RECORD_R8_REGNUM
])
7245 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
7248 case 0x0f02: /* lar */
7249 case 0x0f03: /* lsl */
7250 if (i386_record_modrm (&ir
))
7252 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir
.reg
| rex_r
);
7253 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
7257 if (i386_record_modrm (&ir
))
7259 if (ir
.mod
== 3 && ir
.reg
== 3)
7262 opcode
= opcode
<< 8 | ir
.modrm
;
7274 /* nop (multi byte) */
7277 case 0x0f20: /* mov reg, crN */
7278 case 0x0f22: /* mov crN, reg */
7279 if (i386_record_modrm (&ir
))
7281 if ((ir
.modrm
& 0xc0) != 0xc0)
7284 opcode
= opcode
<< 8 | ir
.modrm
;
7295 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
7297 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir
.rm
| ir
.rex_b
);
7301 opcode
= opcode
<< 8 | ir
.modrm
;
7307 case 0x0f21: /* mov reg, drN */
7308 case 0x0f23: /* mov drN, reg */
7309 if (i386_record_modrm (&ir
))
7311 if ((ir
.modrm
& 0xc0) != 0xc0 || ir
.reg
== 4
7312 || ir
.reg
== 5 || ir
.reg
>= 8)
7315 opcode
= opcode
<< 8 | ir
.modrm
;
7319 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
7321 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir
.rm
| ir
.rex_b
);
7324 case 0x0f06: /* clts */
7325 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
7328 /* MMX 3DNow! SSE SSE2 SSE3 SSSE3 SSE4 */
7330 case 0x0f0d: /* 3DNow! prefetch */
7333 case 0x0f0e: /* 3DNow! femms */
7334 case 0x0f77: /* emms */
7335 if (i386_fpc_regnum_p (gdbarch
, I387_FTAG_REGNUM(tdep
)))
7337 record_full_arch_list_add_reg (ir
.regcache
, I387_FTAG_REGNUM(tdep
));
7340 case 0x0f0f: /* 3DNow! data */
7341 if (i386_record_modrm (&ir
))
7343 if (record_read_memory (gdbarch
, ir
.addr
, &opcode8
, 1))
7348 case 0x0c: /* 3DNow! pi2fw */
7349 case 0x0d: /* 3DNow! pi2fd */
7350 case 0x1c: /* 3DNow! pf2iw */
7351 case 0x1d: /* 3DNow! pf2id */
7352 case 0x8a: /* 3DNow! pfnacc */
7353 case 0x8e: /* 3DNow! pfpnacc */
7354 case 0x90: /* 3DNow! pfcmpge */
7355 case 0x94: /* 3DNow! pfmin */
7356 case 0x96: /* 3DNow! pfrcp */
7357 case 0x97: /* 3DNow! pfrsqrt */
7358 case 0x9a: /* 3DNow! pfsub */
7359 case 0x9e: /* 3DNow! pfadd */
7360 case 0xa0: /* 3DNow! pfcmpgt */
7361 case 0xa4: /* 3DNow! pfmax */
7362 case 0xa6: /* 3DNow! pfrcpit1 */
7363 case 0xa7: /* 3DNow! pfrsqit1 */
7364 case 0xaa: /* 3DNow! pfsubr */
7365 case 0xae: /* 3DNow! pfacc */
7366 case 0xb0: /* 3DNow! pfcmpeq */
7367 case 0xb4: /* 3DNow! pfmul */
7368 case 0xb6: /* 3DNow! pfrcpit2 */
7369 case 0xb7: /* 3DNow! pmulhrw */
7370 case 0xbb: /* 3DNow! pswapd */
7371 case 0xbf: /* 3DNow! pavgusb */
7372 if (!i386_mmx_regnum_p (gdbarch
, I387_MM0_REGNUM (tdep
) + ir
.reg
))
7373 goto no_support_3dnow_data
;
7374 record_full_arch_list_add_reg (ir
.regcache
, ir
.reg
);
7378 no_support_3dnow_data
:
7379 opcode
= (opcode
<< 8) | opcode8
;
7385 case 0x0faa: /* rsm */
7386 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
7387 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM
);
7388 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM
);
7389 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM
);
7390 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM
);
7391 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM
);
7392 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM
);
7393 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM
);
7394 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM
);
7398 if (i386_record_modrm (&ir
))
7402 case 0: /* fxsave */
7406 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
7407 if (i386_record_lea_modrm_addr (&ir
, &tmpu64
))
7409 if (record_full_arch_list_add_mem (tmpu64
, 512))
7414 case 1: /* fxrstor */
7418 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
7420 for (i
= I387_MM0_REGNUM (tdep
);
7421 i386_mmx_regnum_p (gdbarch
, i
); i
++)
7422 record_full_arch_list_add_reg (ir
.regcache
, i
);
7424 for (i
= I387_XMM0_REGNUM (tdep
);
7425 i386_xmm_regnum_p (gdbarch
, i
); i
++)
7426 record_full_arch_list_add_reg (ir
.regcache
, i
);
7428 if (i386_mxcsr_regnum_p (gdbarch
, I387_MXCSR_REGNUM(tdep
)))
7429 record_full_arch_list_add_reg (ir
.regcache
,
7430 I387_MXCSR_REGNUM(tdep
));
7432 for (i
= I387_ST0_REGNUM (tdep
);
7433 i386_fp_regnum_p (gdbarch
, i
); i
++)
7434 record_full_arch_list_add_reg (ir
.regcache
, i
);
7436 for (i
= I387_FCTRL_REGNUM (tdep
);
7437 i386_fpc_regnum_p (gdbarch
, i
); i
++)
7438 record_full_arch_list_add_reg (ir
.regcache
, i
);
7442 case 2: /* ldmxcsr */
7443 if (!i386_mxcsr_regnum_p (gdbarch
, I387_MXCSR_REGNUM(tdep
)))
7445 record_full_arch_list_add_reg (ir
.regcache
, I387_MXCSR_REGNUM(tdep
));
7448 case 3: /* stmxcsr */
7450 if (i386_record_lea_modrm (&ir
))
7454 case 5: /* lfence */
7455 case 6: /* mfence */
7456 case 7: /* sfence clflush */
7460 opcode
= (opcode
<< 8) | ir
.modrm
;
7466 case 0x0fc3: /* movnti */
7467 ir
.ot
= (ir
.dflag
== 2) ? OT_QUAD
: OT_LONG
;
7468 if (i386_record_modrm (&ir
))
7473 if (i386_record_lea_modrm (&ir
))
7477 /* Add prefix to opcode. */
7592 /* Mask out PREFIX_ADDR. */
7593 switch ((prefixes
& ~PREFIX_ADDR
))
7605 reswitch_prefix_add
:
7613 if (record_read_memory (gdbarch
, ir
.addr
, &opcode8
, 1))
7616 opcode
= (uint32_t) opcode8
| opcode
<< 8;
7617 goto reswitch_prefix_add
;
7620 case 0x0f10: /* movups */
7621 case 0x660f10: /* movupd */
7622 case 0xf30f10: /* movss */
7623 case 0xf20f10: /* movsd */
7624 case 0x0f12: /* movlps */
7625 case 0x660f12: /* movlpd */
7626 case 0xf30f12: /* movsldup */
7627 case 0xf20f12: /* movddup */
7628 case 0x0f14: /* unpcklps */
7629 case 0x660f14: /* unpcklpd */
7630 case 0x0f15: /* unpckhps */
7631 case 0x660f15: /* unpckhpd */
7632 case 0x0f16: /* movhps */
7633 case 0x660f16: /* movhpd */
7634 case 0xf30f16: /* movshdup */
7635 case 0x0f28: /* movaps */
7636 case 0x660f28: /* movapd */
7637 case 0x0f2a: /* cvtpi2ps */
7638 case 0x660f2a: /* cvtpi2pd */
7639 case 0xf30f2a: /* cvtsi2ss */
7640 case 0xf20f2a: /* cvtsi2sd */
7641 case 0x0f2c: /* cvttps2pi */
7642 case 0x660f2c: /* cvttpd2pi */
7643 case 0x0f2d: /* cvtps2pi */
7644 case 0x660f2d: /* cvtpd2pi */
7645 case 0x660f3800: /* pshufb */
7646 case 0x660f3801: /* phaddw */
7647 case 0x660f3802: /* phaddd */
7648 case 0x660f3803: /* phaddsw */
7649 case 0x660f3804: /* pmaddubsw */
7650 case 0x660f3805: /* phsubw */
7651 case 0x660f3806: /* phsubd */
7652 case 0x660f3807: /* phsubsw */
7653 case 0x660f3808: /* psignb */
7654 case 0x660f3809: /* psignw */
7655 case 0x660f380a: /* psignd */
7656 case 0x660f380b: /* pmulhrsw */
7657 case 0x660f3810: /* pblendvb */
7658 case 0x660f3814: /* blendvps */
7659 case 0x660f3815: /* blendvpd */
7660 case 0x660f381c: /* pabsb */
7661 case 0x660f381d: /* pabsw */
7662 case 0x660f381e: /* pabsd */
7663 case 0x660f3820: /* pmovsxbw */
7664 case 0x660f3821: /* pmovsxbd */
7665 case 0x660f3822: /* pmovsxbq */
7666 case 0x660f3823: /* pmovsxwd */
7667 case 0x660f3824: /* pmovsxwq */
7668 case 0x660f3825: /* pmovsxdq */
7669 case 0x660f3828: /* pmuldq */
7670 case 0x660f3829: /* pcmpeqq */
7671 case 0x660f382a: /* movntdqa */
7672 case 0x660f3a08: /* roundps */
7673 case 0x660f3a09: /* roundpd */
7674 case 0x660f3a0a: /* roundss */
7675 case 0x660f3a0b: /* roundsd */
7676 case 0x660f3a0c: /* blendps */
7677 case 0x660f3a0d: /* blendpd */
7678 case 0x660f3a0e: /* pblendw */
7679 case 0x660f3a0f: /* palignr */
7680 case 0x660f3a20: /* pinsrb */
7681 case 0x660f3a21: /* insertps */
7682 case 0x660f3a22: /* pinsrd pinsrq */
7683 case 0x660f3a40: /* dpps */
7684 case 0x660f3a41: /* dppd */
7685 case 0x660f3a42: /* mpsadbw */
7686 case 0x660f3a60: /* pcmpestrm */
7687 case 0x660f3a61: /* pcmpestri */
7688 case 0x660f3a62: /* pcmpistrm */
7689 case 0x660f3a63: /* pcmpistri */
7690 case 0x0f51: /* sqrtps */
7691 case 0x660f51: /* sqrtpd */
7692 case 0xf20f51: /* sqrtsd */
7693 case 0xf30f51: /* sqrtss */
7694 case 0x0f52: /* rsqrtps */
7695 case 0xf30f52: /* rsqrtss */
7696 case 0x0f53: /* rcpps */
7697 case 0xf30f53: /* rcpss */
7698 case 0x0f54: /* andps */
7699 case 0x660f54: /* andpd */
7700 case 0x0f55: /* andnps */
7701 case 0x660f55: /* andnpd */
7702 case 0x0f56: /* orps */
7703 case 0x660f56: /* orpd */
7704 case 0x0f57: /* xorps */
7705 case 0x660f57: /* xorpd */
7706 case 0x0f58: /* addps */
7707 case 0x660f58: /* addpd */
7708 case 0xf20f58: /* addsd */
7709 case 0xf30f58: /* addss */
7710 case 0x0f59: /* mulps */
7711 case 0x660f59: /* mulpd */
7712 case 0xf20f59: /* mulsd */
7713 case 0xf30f59: /* mulss */
7714 case 0x0f5a: /* cvtps2pd */
7715 case 0x660f5a: /* cvtpd2ps */
7716 case 0xf20f5a: /* cvtsd2ss */
7717 case 0xf30f5a: /* cvtss2sd */
7718 case 0x0f5b: /* cvtdq2ps */
7719 case 0x660f5b: /* cvtps2dq */
7720 case 0xf30f5b: /* cvttps2dq */
7721 case 0x0f5c: /* subps */
7722 case 0x660f5c: /* subpd */
7723 case 0xf20f5c: /* subsd */
7724 case 0xf30f5c: /* subss */
7725 case 0x0f5d: /* minps */
7726 case 0x660f5d: /* minpd */
7727 case 0xf20f5d: /* minsd */
7728 case 0xf30f5d: /* minss */
7729 case 0x0f5e: /* divps */
7730 case 0x660f5e: /* divpd */
7731 case 0xf20f5e: /* divsd */
7732 case 0xf30f5e: /* divss */
7733 case 0x0f5f: /* maxps */
7734 case 0x660f5f: /* maxpd */
7735 case 0xf20f5f: /* maxsd */
7736 case 0xf30f5f: /* maxss */
7737 case 0x660f60: /* punpcklbw */
7738 case 0x660f61: /* punpcklwd */
7739 case 0x660f62: /* punpckldq */
7740 case 0x660f63: /* packsswb */
7741 case 0x660f64: /* pcmpgtb */
7742 case 0x660f65: /* pcmpgtw */
7743 case 0x660f66: /* pcmpgtd */
7744 case 0x660f67: /* packuswb */
7745 case 0x660f68: /* punpckhbw */
7746 case 0x660f69: /* punpckhwd */
7747 case 0x660f6a: /* punpckhdq */
7748 case 0x660f6b: /* packssdw */
7749 case 0x660f6c: /* punpcklqdq */
7750 case 0x660f6d: /* punpckhqdq */
7751 case 0x660f6e: /* movd */
7752 case 0x660f6f: /* movdqa */
7753 case 0xf30f6f: /* movdqu */
7754 case 0x660f70: /* pshufd */
7755 case 0xf20f70: /* pshuflw */
7756 case 0xf30f70: /* pshufhw */
7757 case 0x660f74: /* pcmpeqb */
7758 case 0x660f75: /* pcmpeqw */
7759 case 0x660f76: /* pcmpeqd */
7760 case 0x660f7c: /* haddpd */
7761 case 0xf20f7c: /* haddps */
7762 case 0x660f7d: /* hsubpd */
7763 case 0xf20f7d: /* hsubps */
7764 case 0xf30f7e: /* movq */
7765 case 0x0fc2: /* cmpps */
7766 case 0x660fc2: /* cmppd */
7767 case 0xf20fc2: /* cmpsd */
7768 case 0xf30fc2: /* cmpss */
7769 case 0x660fc4: /* pinsrw */
7770 case 0x0fc6: /* shufps */
7771 case 0x660fc6: /* shufpd */
7772 case 0x660fd0: /* addsubpd */
7773 case 0xf20fd0: /* addsubps */
7774 case 0x660fd1: /* psrlw */
7775 case 0x660fd2: /* psrld */
7776 case 0x660fd3: /* psrlq */
7777 case 0x660fd4: /* paddq */
7778 case 0x660fd5: /* pmullw */
7779 case 0xf30fd6: /* movq2dq */
7780 case 0x660fd8: /* psubusb */
7781 case 0x660fd9: /* psubusw */
7782 case 0x660fda: /* pminub */
7783 case 0x660fdb: /* pand */
7784 case 0x660fdc: /* paddusb */
7785 case 0x660fdd: /* paddusw */
7786 case 0x660fde: /* pmaxub */
7787 case 0x660fdf: /* pandn */
7788 case 0x660fe0: /* pavgb */
7789 case 0x660fe1: /* psraw */
7790 case 0x660fe2: /* psrad */
7791 case 0x660fe3: /* pavgw */
7792 case 0x660fe4: /* pmulhuw */
7793 case 0x660fe5: /* pmulhw */
7794 case 0x660fe6: /* cvttpd2dq */
7795 case 0xf20fe6: /* cvtpd2dq */
7796 case 0xf30fe6: /* cvtdq2pd */
7797 case 0x660fe8: /* psubsb */
7798 case 0x660fe9: /* psubsw */
7799 case 0x660fea: /* pminsw */
7800 case 0x660feb: /* por */
7801 case 0x660fec: /* paddsb */
7802 case 0x660fed: /* paddsw */
7803 case 0x660fee: /* pmaxsw */
7804 case 0x660fef: /* pxor */
7805 case 0xf20ff0: /* lddqu */
7806 case 0x660ff1: /* psllw */
7807 case 0x660ff2: /* pslld */
7808 case 0x660ff3: /* psllq */
7809 case 0x660ff4: /* pmuludq */
7810 case 0x660ff5: /* pmaddwd */
7811 case 0x660ff6: /* psadbw */
7812 case 0x660ff8: /* psubb */
7813 case 0x660ff9: /* psubw */
7814 case 0x660ffa: /* psubd */
7815 case 0x660ffb: /* psubq */
7816 case 0x660ffc: /* paddb */
7817 case 0x660ffd: /* paddw */
7818 case 0x660ffe: /* paddd */
7819 if (i386_record_modrm (&ir
))
7822 if (!i386_xmm_regnum_p (gdbarch
, I387_XMM0_REGNUM (tdep
) + ir
.reg
))
7824 record_full_arch_list_add_reg (ir
.regcache
,
7825 I387_XMM0_REGNUM (tdep
) + ir
.reg
);
7826 if ((opcode
& 0xfffffffc) == 0x660f3a60)
7827 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
7830 case 0x0f11: /* movups */
7831 case 0x660f11: /* movupd */
7832 case 0xf30f11: /* movss */
7833 case 0xf20f11: /* movsd */
7834 case 0x0f13: /* movlps */
7835 case 0x660f13: /* movlpd */
7836 case 0x0f17: /* movhps */
7837 case 0x660f17: /* movhpd */
7838 case 0x0f29: /* movaps */
7839 case 0x660f29: /* movapd */
7840 case 0x660f3a14: /* pextrb */
7841 case 0x660f3a15: /* pextrw */
7842 case 0x660f3a16: /* pextrd pextrq */
7843 case 0x660f3a17: /* extractps */
7844 case 0x660f7f: /* movdqa */
7845 case 0xf30f7f: /* movdqu */
7846 if (i386_record_modrm (&ir
))
7850 if (opcode
== 0x0f13 || opcode
== 0x660f13
7851 || opcode
== 0x0f17 || opcode
== 0x660f17)
7854 if (!i386_xmm_regnum_p (gdbarch
,
7855 I387_XMM0_REGNUM (tdep
) + ir
.rm
))
7857 record_full_arch_list_add_reg (ir
.regcache
,
7858 I387_XMM0_REGNUM (tdep
) + ir
.rm
);
7880 if (i386_record_lea_modrm (&ir
))
7885 case 0x0f2b: /* movntps */
7886 case 0x660f2b: /* movntpd */
7887 case 0x0fe7: /* movntq */
7888 case 0x660fe7: /* movntdq */
7891 if (opcode
== 0x0fe7)
7895 if (i386_record_lea_modrm (&ir
))
7899 case 0xf30f2c: /* cvttss2si */
7900 case 0xf20f2c: /* cvttsd2si */
7901 case 0xf30f2d: /* cvtss2si */
7902 case 0xf20f2d: /* cvtsd2si */
7903 case 0xf20f38f0: /* crc32 */
7904 case 0xf20f38f1: /* crc32 */
7905 case 0x0f50: /* movmskps */
7906 case 0x660f50: /* movmskpd */
7907 case 0x0fc5: /* pextrw */
7908 case 0x660fc5: /* pextrw */
7909 case 0x0fd7: /* pmovmskb */
7910 case 0x660fd7: /* pmovmskb */
7911 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir
.reg
| rex_r
);
7914 case 0x0f3800: /* pshufb */
7915 case 0x0f3801: /* phaddw */
7916 case 0x0f3802: /* phaddd */
7917 case 0x0f3803: /* phaddsw */
7918 case 0x0f3804: /* pmaddubsw */
7919 case 0x0f3805: /* phsubw */
7920 case 0x0f3806: /* phsubd */
7921 case 0x0f3807: /* phsubsw */
7922 case 0x0f3808: /* psignb */
7923 case 0x0f3809: /* psignw */
7924 case 0x0f380a: /* psignd */
7925 case 0x0f380b: /* pmulhrsw */
7926 case 0x0f381c: /* pabsb */
7927 case 0x0f381d: /* pabsw */
7928 case 0x0f381e: /* pabsd */
7929 case 0x0f382b: /* packusdw */
7930 case 0x0f3830: /* pmovzxbw */
7931 case 0x0f3831: /* pmovzxbd */
7932 case 0x0f3832: /* pmovzxbq */
7933 case 0x0f3833: /* pmovzxwd */
7934 case 0x0f3834: /* pmovzxwq */
7935 case 0x0f3835: /* pmovzxdq */
7936 case 0x0f3837: /* pcmpgtq */
7937 case 0x0f3838: /* pminsb */
7938 case 0x0f3839: /* pminsd */
7939 case 0x0f383a: /* pminuw */
7940 case 0x0f383b: /* pminud */
7941 case 0x0f383c: /* pmaxsb */
7942 case 0x0f383d: /* pmaxsd */
7943 case 0x0f383e: /* pmaxuw */
7944 case 0x0f383f: /* pmaxud */
7945 case 0x0f3840: /* pmulld */
7946 case 0x0f3841: /* phminposuw */
7947 case 0x0f3a0f: /* palignr */
7948 case 0x0f60: /* punpcklbw */
7949 case 0x0f61: /* punpcklwd */
7950 case 0x0f62: /* punpckldq */
7951 case 0x0f63: /* packsswb */
7952 case 0x0f64: /* pcmpgtb */
7953 case 0x0f65: /* pcmpgtw */
7954 case 0x0f66: /* pcmpgtd */
7955 case 0x0f67: /* packuswb */
7956 case 0x0f68: /* punpckhbw */
7957 case 0x0f69: /* punpckhwd */
7958 case 0x0f6a: /* punpckhdq */
7959 case 0x0f6b: /* packssdw */
7960 case 0x0f6e: /* movd */
7961 case 0x0f6f: /* movq */
7962 case 0x0f70: /* pshufw */
7963 case 0x0f74: /* pcmpeqb */
7964 case 0x0f75: /* pcmpeqw */
7965 case 0x0f76: /* pcmpeqd */
7966 case 0x0fc4: /* pinsrw */
7967 case 0x0fd1: /* psrlw */
7968 case 0x0fd2: /* psrld */
7969 case 0x0fd3: /* psrlq */
7970 case 0x0fd4: /* paddq */
7971 case 0x0fd5: /* pmullw */
7972 case 0xf20fd6: /* movdq2q */
7973 case 0x0fd8: /* psubusb */
7974 case 0x0fd9: /* psubusw */
7975 case 0x0fda: /* pminub */
7976 case 0x0fdb: /* pand */
7977 case 0x0fdc: /* paddusb */
7978 case 0x0fdd: /* paddusw */
7979 case 0x0fde: /* pmaxub */
7980 case 0x0fdf: /* pandn */
7981 case 0x0fe0: /* pavgb */
7982 case 0x0fe1: /* psraw */
7983 case 0x0fe2: /* psrad */
7984 case 0x0fe3: /* pavgw */
7985 case 0x0fe4: /* pmulhuw */
7986 case 0x0fe5: /* pmulhw */
7987 case 0x0fe8: /* psubsb */
7988 case 0x0fe9: /* psubsw */
7989 case 0x0fea: /* pminsw */
7990 case 0x0feb: /* por */
7991 case 0x0fec: /* paddsb */
7992 case 0x0fed: /* paddsw */
7993 case 0x0fee: /* pmaxsw */
7994 case 0x0fef: /* pxor */
7995 case 0x0ff1: /* psllw */
7996 case 0x0ff2: /* pslld */
7997 case 0x0ff3: /* psllq */
7998 case 0x0ff4: /* pmuludq */
7999 case 0x0ff5: /* pmaddwd */
8000 case 0x0ff6: /* psadbw */
8001 case 0x0ff8: /* psubb */
8002 case 0x0ff9: /* psubw */
8003 case 0x0ffa: /* psubd */
8004 case 0x0ffb: /* psubq */
8005 case 0x0ffc: /* paddb */
8006 case 0x0ffd: /* paddw */
8007 case 0x0ffe: /* paddd */
8008 if (i386_record_modrm (&ir
))
8010 if (!i386_mmx_regnum_p (gdbarch
, I387_MM0_REGNUM (tdep
) + ir
.reg
))
8012 record_full_arch_list_add_reg (ir
.regcache
,
8013 I387_MM0_REGNUM (tdep
) + ir
.reg
);
8016 case 0x0f71: /* psllw */
8017 case 0x0f72: /* pslld */
8018 case 0x0f73: /* psllq */
8019 if (i386_record_modrm (&ir
))
8021 if (!i386_mmx_regnum_p (gdbarch
, I387_MM0_REGNUM (tdep
) + ir
.rm
))
8023 record_full_arch_list_add_reg (ir
.regcache
,
8024 I387_MM0_REGNUM (tdep
) + ir
.rm
);
8027 case 0x660f71: /* psllw */
8028 case 0x660f72: /* pslld */
8029 case 0x660f73: /* psllq */
8030 if (i386_record_modrm (&ir
))
8033 if (!i386_xmm_regnum_p (gdbarch
, I387_XMM0_REGNUM (tdep
) + ir
.rm
))
8035 record_full_arch_list_add_reg (ir
.regcache
,
8036 I387_XMM0_REGNUM (tdep
) + ir
.rm
);
8039 case 0x0f7e: /* movd */
8040 case 0x660f7e: /* movd */
8041 if (i386_record_modrm (&ir
))
8044 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir
.rm
| ir
.rex_b
);
8051 if (i386_record_lea_modrm (&ir
))
8056 case 0x0f7f: /* movq */
8057 if (i386_record_modrm (&ir
))
8061 if (!i386_mmx_regnum_p (gdbarch
, I387_MM0_REGNUM (tdep
) + ir
.rm
))
8063 record_full_arch_list_add_reg (ir
.regcache
,
8064 I387_MM0_REGNUM (tdep
) + ir
.rm
);
8069 if (i386_record_lea_modrm (&ir
))
8074 case 0xf30fb8: /* popcnt */
8075 if (i386_record_modrm (&ir
))
8077 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir
.reg
);
8078 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
8081 case 0x660fd6: /* movq */
8082 if (i386_record_modrm (&ir
))
8087 if (!i386_xmm_regnum_p (gdbarch
,
8088 I387_XMM0_REGNUM (tdep
) + ir
.rm
))
8090 record_full_arch_list_add_reg (ir
.regcache
,
8091 I387_XMM0_REGNUM (tdep
) + ir
.rm
);
8096 if (i386_record_lea_modrm (&ir
))
8101 case 0x660f3817: /* ptest */
8102 case 0x0f2e: /* ucomiss */
8103 case 0x660f2e: /* ucomisd */
8104 case 0x0f2f: /* comiss */
8105 case 0x660f2f: /* comisd */
8106 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
8109 case 0x0ff7: /* maskmovq */
8110 regcache_raw_read_unsigned (ir
.regcache
,
8111 ir
.regmap
[X86_RECORD_REDI_REGNUM
],
8113 if (record_full_arch_list_add_mem (addr
, 64))
8117 case 0x660ff7: /* maskmovdqu */
8118 regcache_raw_read_unsigned (ir
.regcache
,
8119 ir
.regmap
[X86_RECORD_REDI_REGNUM
],
8121 if (record_full_arch_list_add_mem (addr
, 128))
8136 /* In the future, maybe still need to deal with need_dasm. */
8137 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REIP_REGNUM
);
8138 if (record_full_arch_list_add_end ())
8144 gdb_printf (gdb_stderr
,
8145 _("Process record does not support instruction 0x%02x "
8146 "at address %s.\n"),
8147 (unsigned int) (opcode
),
8148 paddress (gdbarch
, ir
.orig_addr
));
8152 static const int i386_record_regmap
[] =
8154 I386_EAX_REGNUM
, I386_ECX_REGNUM
, I386_EDX_REGNUM
, I386_EBX_REGNUM
,
8155 I386_ESP_REGNUM
, I386_EBP_REGNUM
, I386_ESI_REGNUM
, I386_EDI_REGNUM
,
8156 0, 0, 0, 0, 0, 0, 0, 0,
8157 I386_EIP_REGNUM
, I386_EFLAGS_REGNUM
, I386_CS_REGNUM
, I386_SS_REGNUM
,
8158 I386_DS_REGNUM
, I386_ES_REGNUM
, I386_FS_REGNUM
, I386_GS_REGNUM
8161 /* Check that the given address appears suitable for a fast
8162 tracepoint, which on x86-64 means that we need an instruction of at
8163 least 5 bytes, so that we can overwrite it with a 4-byte-offset
8164 jump and not have to worry about program jumps to an address in the
8165 middle of the tracepoint jump. On x86, it may be possible to use
8166 4-byte jumps with a 2-byte offset to a trampoline located in the
8167 bottom 64 KiB of memory. Returns 1 if OK, and writes a size
8168 of instruction to replace, and 0 if not, plus an explanatory
8172 i386_fast_tracepoint_valid_at (struct gdbarch
*gdbarch
, CORE_ADDR addr
,
8177 /* Ask the target for the minimum instruction length supported. */
8178 jumplen
= target_get_min_fast_tracepoint_insn_len ();
8182 /* If the target does not support the get_min_fast_tracepoint_insn_len
8183 operation, assume that fast tracepoints will always be implemented
8184 using 4-byte relative jumps on both x86 and x86-64. */
8187 else if (jumplen
== 0)
8189 /* If the target does support get_min_fast_tracepoint_insn_len but
8190 returns zero, then the IPA has not loaded yet. In this case,
8191 we optimistically assume that truncated 2-byte relative jumps
8192 will be available on x86, and compensate later if this assumption
8193 turns out to be incorrect. On x86-64 architectures, 4-byte relative
8194 jumps will always be used. */
8195 jumplen
= (register_size (gdbarch
, 0) == 8) ? 5 : 4;
8198 /* Check for fit. */
8199 len
= gdb_insn_length (gdbarch
, addr
);
8203 /* Return a bit of target-specific detail to add to the caller's
8204 generic failure message. */
8206 *msg
= string_printf (_("; instruction is only %d bytes long, "
8207 "need at least %d bytes for the jump"),
8219 /* Return a floating-point format for a floating-point variable of
8220 length LEN in bits. If non-NULL, NAME is the name of its type.
8221 If no suitable type is found, return NULL. */
8223 static const struct floatformat
**
8224 i386_floatformat_for_type (struct gdbarch
*gdbarch
,
8225 const char *name
, int len
)
8227 if (len
== 128 && name
)
8228 if (strcmp (name
, "__float128") == 0
8229 || strcmp (name
, "_Float128") == 0
8230 || strcmp (name
, "complex _Float128") == 0
8231 || strcmp (name
, "complex(kind=16)") == 0
8232 || strcmp (name
, "complex*32") == 0
8233 || strcmp (name
, "COMPLEX*32") == 0
8234 || strcmp (name
, "quad complex") == 0
8235 || strcmp (name
, "real(kind=16)") == 0
8236 || strcmp (name
, "real*16") == 0
8237 || strcmp (name
, "REAL*16") == 0)
8238 return floatformats_ieee_quad
;
8240 return default_floatformat_for_type (gdbarch
, name
, len
);
8244 i386_validate_tdesc_p (i386_gdbarch_tdep
*tdep
,
8245 struct tdesc_arch_data
*tdesc_data
)
8247 const struct target_desc
*tdesc
= tdep
->tdesc
;
8248 const struct tdesc_feature
*feature_core
;
8250 const struct tdesc_feature
*feature_sse
, *feature_avx
, *feature_mpx
,
8251 *feature_avx512
, *feature_pkeys
, *feature_segments
;
8252 int i
, num_regs
, valid_p
;
8254 if (! tdesc_has_registers (tdesc
))
8257 /* Get core registers. */
8258 feature_core
= tdesc_find_feature (tdesc
, "org.gnu.gdb.i386.core");
8259 if (feature_core
== NULL
)
8262 /* Get SSE registers. */
8263 feature_sse
= tdesc_find_feature (tdesc
, "org.gnu.gdb.i386.sse");
8265 /* Try AVX registers. */
8266 feature_avx
= tdesc_find_feature (tdesc
, "org.gnu.gdb.i386.avx");
8268 /* Try MPX registers. */
8269 feature_mpx
= tdesc_find_feature (tdesc
, "org.gnu.gdb.i386.mpx");
8271 /* Try AVX512 registers. */
8272 feature_avx512
= tdesc_find_feature (tdesc
, "org.gnu.gdb.i386.avx512");
8274 /* Try segment base registers. */
8275 feature_segments
= tdesc_find_feature (tdesc
, "org.gnu.gdb.i386.segments");
8278 feature_pkeys
= tdesc_find_feature (tdesc
, "org.gnu.gdb.i386.pkeys");
8282 /* The XCR0 bits. */
8285 /* AVX512 register description requires AVX register description. */
8289 tdep
->xcr0
= X86_XSTATE_AVX_AVX512_MASK
;
8291 /* It may have been set by OSABI initialization function. */
8292 if (tdep
->k0_regnum
< 0)
8294 tdep
->k_register_names
= i386_k_names
;
8295 tdep
->k0_regnum
= I386_K0_REGNUM
;
8298 for (i
= 0; i
< I387_NUM_K_REGS
; i
++)
8299 valid_p
&= tdesc_numbered_register (feature_avx512
, tdesc_data
,
8300 tdep
->k0_regnum
+ i
,
8303 if (tdep
->num_zmm_regs
== 0)
8305 tdep
->zmmh_register_names
= i386_zmmh_names
;
8306 tdep
->num_zmm_regs
= 8;
8307 tdep
->zmm0h_regnum
= I386_ZMM0H_REGNUM
;
8310 for (i
= 0; i
< tdep
->num_zmm_regs
; i
++)
8311 valid_p
&= tdesc_numbered_register (feature_avx512
, tdesc_data
,
8312 tdep
->zmm0h_regnum
+ i
,
8313 tdep
->zmmh_register_names
[i
]);
8315 for (i
= 0; i
< tdep
->num_xmm_avx512_regs
; i
++)
8316 valid_p
&= tdesc_numbered_register (feature_avx512
, tdesc_data
,
8317 tdep
->xmm16_regnum
+ i
,
8318 tdep
->xmm_avx512_register_names
[i
]);
8320 for (i
= 0; i
< tdep
->num_ymm_avx512_regs
; i
++)
8321 valid_p
&= tdesc_numbered_register (feature_avx512
, tdesc_data
,
8322 tdep
->ymm16h_regnum
+ i
,
8323 tdep
->ymm16h_register_names
[i
]);
8327 /* AVX register description requires SSE register description. */
8331 if (!feature_avx512
)
8332 tdep
->xcr0
= X86_XSTATE_AVX_MASK
;
8334 /* It may have been set by OSABI initialization function. */
8335 if (tdep
->num_ymm_regs
== 0)
8337 tdep
->ymmh_register_names
= i386_ymmh_names
;
8338 tdep
->num_ymm_regs
= 8;
8339 tdep
->ymm0h_regnum
= I386_YMM0H_REGNUM
;
8342 for (i
= 0; i
< tdep
->num_ymm_regs
; i
++)
8343 valid_p
&= tdesc_numbered_register (feature_avx
, tdesc_data
,
8344 tdep
->ymm0h_regnum
+ i
,
8345 tdep
->ymmh_register_names
[i
]);
8347 else if (feature_sse
)
8348 tdep
->xcr0
= X86_XSTATE_SSE_MASK
;
8351 tdep
->xcr0
= X86_XSTATE_X87_MASK
;
8352 tdep
->num_xmm_regs
= 0;
8355 num_regs
= tdep
->num_core_regs
;
8356 for (i
= 0; i
< num_regs
; i
++)
8357 valid_p
&= tdesc_numbered_register (feature_core
, tdesc_data
, i
,
8358 tdep
->register_names
[i
]);
8362 /* Need to include %mxcsr, so add one. */
8363 num_regs
+= tdep
->num_xmm_regs
+ 1;
8364 for (; i
< num_regs
; i
++)
8365 valid_p
&= tdesc_numbered_register (feature_sse
, tdesc_data
, i
,
8366 tdep
->register_names
[i
]);
8371 tdep
->xcr0
|= X86_XSTATE_MPX_MASK
;
8373 if (tdep
->bnd0r_regnum
< 0)
8375 tdep
->mpx_register_names
= i386_mpx_names
;
8376 tdep
->bnd0r_regnum
= I386_BND0R_REGNUM
;
8377 tdep
->bndcfgu_regnum
= I386_BNDCFGU_REGNUM
;
8380 for (i
= 0; i
< I387_NUM_MPX_REGS
; i
++)
8381 valid_p
&= tdesc_numbered_register (feature_mpx
, tdesc_data
,
8382 I387_BND0R_REGNUM (tdep
) + i
,
8383 tdep
->mpx_register_names
[i
]);
8386 if (feature_segments
)
8388 if (tdep
->fsbase_regnum
< 0)
8389 tdep
->fsbase_regnum
= I386_FSBASE_REGNUM
;
8390 valid_p
&= tdesc_numbered_register (feature_segments
, tdesc_data
,
8391 tdep
->fsbase_regnum
, "fs_base");
8392 valid_p
&= tdesc_numbered_register (feature_segments
, tdesc_data
,
8393 tdep
->fsbase_regnum
+ 1, "gs_base");
8398 tdep
->xcr0
|= X86_XSTATE_PKRU
;
8399 if (tdep
->pkru_regnum
< 0)
8401 tdep
->pkeys_register_names
= i386_pkeys_names
;
8402 tdep
->pkru_regnum
= I386_PKRU_REGNUM
;
8403 tdep
->num_pkeys_regs
= 1;
8406 for (i
= 0; i
< I387_NUM_PKEYS_REGS
; i
++)
8407 valid_p
&= tdesc_numbered_register (feature_pkeys
, tdesc_data
,
8408 I387_PKRU_REGNUM (tdep
) + i
,
8409 tdep
->pkeys_register_names
[i
]);
8417 /* Implement the type_align gdbarch function. */
8420 i386_type_align (struct gdbarch
*gdbarch
, struct type
*type
)
8422 type
= check_typedef (type
);
8424 if (gdbarch_ptr_bit (gdbarch
) == 32)
8426 if ((type
->code () == TYPE_CODE_INT
8427 || type
->code () == TYPE_CODE_FLT
)
8428 && type
->length () > 4)
8431 /* Handle x86's funny long double. */
8432 if (type
->code () == TYPE_CODE_FLT
8433 && gdbarch_long_double_bit (gdbarch
) == type
->length () * 8)
8441 /* Note: This is called for both i386 and amd64. */
8443 static struct gdbarch
*
8444 i386_gdbarch_init (struct gdbarch_info info
, struct gdbarch_list
*arches
)
8446 struct gdbarch
*gdbarch
;
8447 const struct target_desc
*tdesc
;
8453 /* If there is already a candidate, use it. */
8454 arches
= gdbarch_list_lookup_by_info (arches
, &info
);
8456 return arches
->gdbarch
;
8458 /* Allocate space for the new architecture. Assume i386 for now. */
8459 i386_gdbarch_tdep
*tdep
= new i386_gdbarch_tdep
;
8460 gdbarch
= gdbarch_alloc (&info
, tdep
);
8462 /* General-purpose registers. */
8463 tdep
->gregset_reg_offset
= NULL
;
8464 tdep
->gregset_num_regs
= I386_NUM_GREGS
;
8465 tdep
->sizeof_gregset
= 0;
8467 /* Floating-point registers. */
8468 tdep
->sizeof_fpregset
= I387_SIZEOF_FSAVE
;
8469 tdep
->fpregset
= &i386_fpregset
;
8471 /* The default settings include the FPU registers, the MMX registers
8472 and the SSE registers. This can be overridden for a specific ABI
8473 by adjusting the members `st0_regnum', `mm0_regnum' and
8474 `num_xmm_regs' of `struct gdbarch_tdep', otherwise the registers
8475 will show up in the output of "info all-registers". */
8477 tdep
->st0_regnum
= I386_ST0_REGNUM
;
8479 /* I386_NUM_XREGS includes %mxcsr, so substract one. */
8480 tdep
->num_xmm_regs
= I386_NUM_XREGS
- 1;
8482 tdep
->jb_pc_offset
= -1;
8483 tdep
->struct_return
= pcc_struct_return
;
8484 tdep
->sigtramp_start
= 0;
8485 tdep
->sigtramp_end
= 0;
8486 tdep
->sigtramp_p
= i386_sigtramp_p
;
8487 tdep
->sigcontext_addr
= NULL
;
8488 tdep
->sc_reg_offset
= NULL
;
8489 tdep
->sc_pc_offset
= -1;
8490 tdep
->sc_sp_offset
= -1;
8492 tdep
->xsave_xcr0_offset
= -1;
8494 tdep
->record_regmap
= i386_record_regmap
;
8496 set_gdbarch_type_align (gdbarch
, i386_type_align
);
8498 /* The format used for `long double' on almost all i386 targets is
8499 the i387 extended floating-point format. In fact, of all targets
8500 in the GCC 2.95 tree, only OSF/1 does it different, and insists
8501 on having a `long double' that's not `long' at all. */
8502 set_gdbarch_long_double_format (gdbarch
, floatformats_i387_ext
);
8504 /* Although the i387 extended floating-point has only 80 significant
8505 bits, a `long double' actually takes up 96, probably to enforce
8507 set_gdbarch_long_double_bit (gdbarch
, 96);
8509 /* Support of bfloat16 format. */
8510 set_gdbarch_bfloat16_format (gdbarch
, floatformats_bfloat16
);
8512 /* Support for floating-point data type variants. */
8513 set_gdbarch_floatformat_for_type (gdbarch
, i386_floatformat_for_type
);
8515 /* Register numbers of various important registers. */
8516 set_gdbarch_sp_regnum (gdbarch
, I386_ESP_REGNUM
); /* %esp */
8517 set_gdbarch_pc_regnum (gdbarch
, I386_EIP_REGNUM
); /* %eip */
8518 set_gdbarch_ps_regnum (gdbarch
, I386_EFLAGS_REGNUM
); /* %eflags */
8519 set_gdbarch_fp0_regnum (gdbarch
, I386_ST0_REGNUM
); /* %st(0) */
8521 /* NOTE: kettenis/20040418: GCC does have two possible register
8522 numbering schemes on the i386: dbx and SVR4. These schemes
8523 differ in how they number %ebp, %esp, %eflags, and the
8524 floating-point registers, and are implemented by the arrays
8525 dbx_register_map[] and svr4_dbx_register_map in
8526 gcc/config/i386.c. GCC also defines a third numbering scheme in
8527 gcc/config/i386.c, which it designates as the "default" register
8528 map used in 64bit mode. This last register numbering scheme is
8529 implemented in dbx64_register_map, and is used for AMD64; see
8532 Currently, each GCC i386 target always uses the same register
8533 numbering scheme across all its supported debugging formats
8534 i.e. SDB (COFF), stabs and DWARF 2. This is because
8535 gcc/sdbout.c, gcc/dbxout.c and gcc/dwarf2out.c all use the
8536 DBX_REGISTER_NUMBER macro which is defined by each target's
8537 respective config header in a manner independent of the requested
8538 output debugging format.
8540 This does not match the arrangement below, which presumes that
8541 the SDB and stabs numbering schemes differ from the DWARF and
8542 DWARF 2 ones. The reason for this arrangement is that it is
8543 likely to get the numbering scheme for the target's
8544 default/native debug format right. For targets where GCC is the
8545 native compiler (FreeBSD, NetBSD, OpenBSD, GNU/Linux) or for
8546 targets where the native toolchain uses a different numbering
8547 scheme for a particular debug format (stabs-in-ELF on Solaris)
8548 the defaults below will have to be overridden, like
8549 i386_elf_init_abi() does. */
8551 /* Use the dbx register numbering scheme for stabs and COFF. */
8552 set_gdbarch_stab_reg_to_regnum (gdbarch
, i386_dbx_reg_to_regnum
);
8553 set_gdbarch_sdb_reg_to_regnum (gdbarch
, i386_dbx_reg_to_regnum
);
8555 /* Use the SVR4 register numbering scheme for DWARF 2. */
8556 set_gdbarch_dwarf2_reg_to_regnum (gdbarch
, i386_svr4_dwarf_reg_to_regnum
);
8558 /* We don't set gdbarch_stab_reg_to_regnum, since ECOFF doesn't seem to
8559 be in use on any of the supported i386 targets. */
8561 set_gdbarch_print_float_info (gdbarch
, i387_print_float_info
);
8563 set_gdbarch_get_longjmp_target (gdbarch
, i386_get_longjmp_target
);
8565 /* Call dummy code. */
8566 set_gdbarch_call_dummy_location (gdbarch
, ON_STACK
);
8567 set_gdbarch_push_dummy_code (gdbarch
, i386_push_dummy_code
);
8568 set_gdbarch_push_dummy_call (gdbarch
, i386_push_dummy_call
);
8569 set_gdbarch_frame_align (gdbarch
, i386_frame_align
);
8571 set_gdbarch_convert_register_p (gdbarch
, i386_convert_register_p
);
8572 set_gdbarch_register_to_value (gdbarch
, i386_register_to_value
);
8573 set_gdbarch_value_to_register (gdbarch
, i386_value_to_register
);
8575 set_gdbarch_return_value (gdbarch
, i386_return_value
);
8577 set_gdbarch_skip_prologue (gdbarch
, i386_skip_prologue
);
8579 /* Stack grows downward. */
8580 set_gdbarch_inner_than (gdbarch
, core_addr_lessthan
);
8582 set_gdbarch_breakpoint_kind_from_pc (gdbarch
, i386_breakpoint::kind_from_pc
);
8583 set_gdbarch_sw_breakpoint_from_kind (gdbarch
, i386_breakpoint::bp_from_kind
);
8585 set_gdbarch_decr_pc_after_break (gdbarch
, 1);
8586 set_gdbarch_max_insn_length (gdbarch
, I386_MAX_INSN_LEN
);
8588 set_gdbarch_frame_args_skip (gdbarch
, 8);
8590 set_gdbarch_print_insn (gdbarch
, i386_print_insn
);
8592 set_gdbarch_dummy_id (gdbarch
, i386_dummy_id
);
8594 set_gdbarch_unwind_pc (gdbarch
, i386_unwind_pc
);
8596 /* Add the i386 register groups. */
8597 i386_add_reggroups (gdbarch
);
8598 tdep
->register_reggroup_p
= i386_register_reggroup_p
;
8600 /* Helper for function argument information. */
8601 set_gdbarch_fetch_pointer_argument (gdbarch
, i386_fetch_pointer_argument
);
8603 /* Hook the function epilogue frame unwinder. This unwinder is
8604 appended to the list first, so that it supercedes the DWARF
8605 unwinder in function epilogues (where the DWARF unwinder
8606 currently fails). */
8607 frame_unwind_append_unwinder (gdbarch
, &i386_epilogue_frame_unwind
);
8609 /* Hook in the DWARF CFI frame unwinder. This unwinder is appended
8610 to the list before the prologue-based unwinders, so that DWARF
8611 CFI info will be used if it is available. */
8612 dwarf2_append_unwinders (gdbarch
);
8614 frame_base_set_default (gdbarch
, &i386_frame_base
);
8616 /* Pseudo registers may be changed by amd64_init_abi. */
8617 set_gdbarch_pseudo_register_read_value (gdbarch
,
8618 i386_pseudo_register_read_value
);
8619 set_gdbarch_pseudo_register_write (gdbarch
, i386_pseudo_register_write
);
8620 set_gdbarch_ax_pseudo_register_collect (gdbarch
,
8621 i386_ax_pseudo_register_collect
);
8623 set_tdesc_pseudo_register_type (gdbarch
, i386_pseudo_register_type
);
8624 set_tdesc_pseudo_register_name (gdbarch
, i386_pseudo_register_name
);
8626 /* Override the normal target description method to make the AVX
8627 upper halves anonymous. */
8628 set_gdbarch_register_name (gdbarch
, i386_register_name
);
8630 /* Even though the default ABI only includes general-purpose registers,
8631 floating-point registers and the SSE registers, we have to leave a
8632 gap for the upper AVX, MPX and AVX512 registers. */
8633 set_gdbarch_num_regs (gdbarch
, I386_NUM_REGS
);
8635 set_gdbarch_gnu_triplet_regexp (gdbarch
, i386_gnu_triplet_regexp
);
8637 /* Get the x86 target description from INFO. */
8638 tdesc
= info
.target_desc
;
8639 if (! tdesc_has_registers (tdesc
))
8640 tdesc
= i386_target_description (X86_XSTATE_SSE_MASK
, false);
8641 tdep
->tdesc
= tdesc
;
8643 tdep
->num_core_regs
= I386_NUM_GREGS
+ I387_NUM_REGS
;
8644 tdep
->register_names
= i386_register_names
;
8646 /* No upper YMM registers. */
8647 tdep
->ymmh_register_names
= NULL
;
8648 tdep
->ymm0h_regnum
= -1;
8650 /* No upper ZMM registers. */
8651 tdep
->zmmh_register_names
= NULL
;
8652 tdep
->zmm0h_regnum
= -1;
8654 /* No high XMM registers. */
8655 tdep
->xmm_avx512_register_names
= NULL
;
8656 tdep
->xmm16_regnum
= -1;
8658 /* No upper YMM16-31 registers. */
8659 tdep
->ymm16h_register_names
= NULL
;
8660 tdep
->ymm16h_regnum
= -1;
8662 tdep
->num_byte_regs
= 8;
8663 tdep
->num_word_regs
= 8;
8664 tdep
->num_dword_regs
= 0;
8665 tdep
->num_mmx_regs
= 8;
8666 tdep
->num_ymm_regs
= 0;
8668 /* No MPX registers. */
8669 tdep
->bnd0r_regnum
= -1;
8670 tdep
->bndcfgu_regnum
= -1;
8672 /* No AVX512 registers. */
8673 tdep
->k0_regnum
= -1;
8674 tdep
->num_zmm_regs
= 0;
8675 tdep
->num_ymm_avx512_regs
= 0;
8676 tdep
->num_xmm_avx512_regs
= 0;
8678 /* No PKEYS registers */
8679 tdep
->pkru_regnum
= -1;
8680 tdep
->num_pkeys_regs
= 0;
8682 /* No segment base registers. */
8683 tdep
->fsbase_regnum
= -1;
8685 tdesc_arch_data_up tdesc_data
= tdesc_data_alloc ();
8687 set_gdbarch_relocate_instruction (gdbarch
, i386_relocate_instruction
);
8689 set_gdbarch_gen_return_address (gdbarch
, i386_gen_return_address
);
8691 set_gdbarch_insn_is_call (gdbarch
, i386_insn_is_call
);
8692 set_gdbarch_insn_is_ret (gdbarch
, i386_insn_is_ret
);
8693 set_gdbarch_insn_is_jump (gdbarch
, i386_insn_is_jump
);
8695 /* Hook in ABI-specific overrides, if they have been registered.
8696 Note: If INFO specifies a 64 bit arch, this is where we turn
8697 a 32-bit i386 into a 64-bit amd64. */
8698 info
.tdesc_data
= tdesc_data
.get ();
8699 gdbarch_init_osabi (info
, gdbarch
);
8701 if (!i386_validate_tdesc_p (tdep
, tdesc_data
.get ()))
8704 gdbarch_free (gdbarch
);
8708 num_bnd_cooked
= (tdep
->bnd0r_regnum
> 0 ? I387_NUM_BND_REGS
: 0);
8710 /* Wire in pseudo registers. Number of pseudo registers may be
8712 set_gdbarch_num_pseudo_regs (gdbarch
, (tdep
->num_byte_regs
8713 + tdep
->num_word_regs
8714 + tdep
->num_dword_regs
8715 + tdep
->num_mmx_regs
8716 + tdep
->num_ymm_regs
8718 + tdep
->num_ymm_avx512_regs
8719 + tdep
->num_zmm_regs
));
8721 /* Target description may be changed. */
8722 tdesc
= tdep
->tdesc
;
8724 tdesc_use_registers (gdbarch
, tdesc
, std::move (tdesc_data
));
8726 /* Override gdbarch_register_reggroup_p set in tdesc_use_registers. */
8727 set_gdbarch_register_reggroup_p (gdbarch
, tdep
->register_reggroup_p
);
8729 /* Make %al the first pseudo-register. */
8730 tdep
->al_regnum
= gdbarch_num_regs (gdbarch
);
8731 tdep
->ax_regnum
= tdep
->al_regnum
+ tdep
->num_byte_regs
;
8733 ymm0_regnum
= tdep
->ax_regnum
+ tdep
->num_word_regs
;
8734 if (tdep
->num_dword_regs
)
8736 /* Support dword pseudo-register if it hasn't been disabled. */
8737 tdep
->eax_regnum
= ymm0_regnum
;
8738 ymm0_regnum
+= tdep
->num_dword_regs
;
8741 tdep
->eax_regnum
= -1;
8743 mm0_regnum
= ymm0_regnum
;
8744 if (tdep
->num_ymm_regs
)
8746 /* Support YMM pseudo-register if it is available. */
8747 tdep
->ymm0_regnum
= ymm0_regnum
;
8748 mm0_regnum
+= tdep
->num_ymm_regs
;
8751 tdep
->ymm0_regnum
= -1;
8753 if (tdep
->num_ymm_avx512_regs
)
8755 /* Support YMM16-31 pseudo registers if available. */
8756 tdep
->ymm16_regnum
= mm0_regnum
;
8757 mm0_regnum
+= tdep
->num_ymm_avx512_regs
;
8760 tdep
->ymm16_regnum
= -1;
8762 if (tdep
->num_zmm_regs
)
8764 /* Support ZMM pseudo-register if it is available. */
8765 tdep
->zmm0_regnum
= mm0_regnum
;
8766 mm0_regnum
+= tdep
->num_zmm_regs
;
8769 tdep
->zmm0_regnum
= -1;
8771 bnd0_regnum
= mm0_regnum
;
8772 if (tdep
->num_mmx_regs
!= 0)
8774 /* Support MMX pseudo-register if MMX hasn't been disabled. */
8775 tdep
->mm0_regnum
= mm0_regnum
;
8776 bnd0_regnum
+= tdep
->num_mmx_regs
;
8779 tdep
->mm0_regnum
= -1;
8781 if (tdep
->bnd0r_regnum
> 0)
8782 tdep
->bnd0_regnum
= bnd0_regnum
;
8784 tdep
-> bnd0_regnum
= -1;
8786 /* Hook in the legacy prologue-based unwinders last (fallback). */
8787 frame_unwind_append_unwinder (gdbarch
, &i386_stack_tramp_frame_unwind
);
8788 frame_unwind_append_unwinder (gdbarch
, &i386_sigtramp_frame_unwind
);
8789 frame_unwind_append_unwinder (gdbarch
, &i386_frame_unwind
);
8791 /* If we have a register mapping, enable the generic core file
8792 support, unless it has already been enabled. */
8793 if (tdep
->gregset_reg_offset
8794 && !gdbarch_iterate_over_regset_sections_p (gdbarch
))
8795 set_gdbarch_iterate_over_regset_sections
8796 (gdbarch
, i386_iterate_over_regset_sections
);
8798 set_gdbarch_fast_tracepoint_valid_at (gdbarch
,
8799 i386_fast_tracepoint_valid_at
);
8806 /* Return the target description for a specified XSAVE feature mask. */
8808 const struct target_desc
*
8809 i386_target_description (uint64_t xcr0
, bool segments
)
8811 static target_desc
*i386_tdescs \
8812 [2/*SSE*/][2/*AVX*/][2/*MPX*/][2/*AVX512*/][2/*PKRU*/][2/*segments*/] = {};
8813 target_desc
**tdesc
;
8815 tdesc
= &i386_tdescs
[(xcr0
& X86_XSTATE_SSE
) ? 1 : 0]
8816 [(xcr0
& X86_XSTATE_AVX
) ? 1 : 0]
8817 [(xcr0
& X86_XSTATE_MPX
) ? 1 : 0]
8818 [(xcr0
& X86_XSTATE_AVX512
) ? 1 : 0]
8819 [(xcr0
& X86_XSTATE_PKRU
) ? 1 : 0]
8823 *tdesc
= i386_create_target_description (xcr0
, false, segments
);
8828 #define MPX_BASE_MASK (~(ULONGEST) 0xfff)
8830 /* Find the bound directory base address. */
8832 static unsigned long
8833 i386_mpx_bd_base (void)
8835 struct regcache
*rcache
;
8837 enum register_status regstatus
;
8839 rcache
= get_current_regcache ();
8840 gdbarch
*arch
= rcache
->arch ();
8841 i386_gdbarch_tdep
*tdep
= gdbarch_tdep
<i386_gdbarch_tdep
> (arch
);
8843 regstatus
= regcache_raw_read_unsigned (rcache
, tdep
->bndcfgu_regnum
, &ret
);
8845 if (regstatus
!= REG_VALID
)
8846 error (_("BNDCFGU register invalid, read status %d."), regstatus
);
8848 return ret
& MPX_BASE_MASK
;
8852 i386_mpx_enabled (void)
8854 gdbarch
*arch
= get_current_arch ();
8855 i386_gdbarch_tdep
*tdep
= gdbarch_tdep
<i386_gdbarch_tdep
> (arch
);
8856 const struct target_desc
*tdesc
= tdep
->tdesc
;
8858 return (tdesc_find_feature (tdesc
, "org.gnu.gdb.i386.mpx") != NULL
);
8861 #define MPX_BD_MASK 0xfffffff00000ULL /* select bits [47:20] */
8862 #define MPX_BT_MASK 0x0000000ffff8 /* select bits [19:3] */
8863 #define MPX_BD_MASK_32 0xfffff000 /* select bits [31:12] */
8864 #define MPX_BT_MASK_32 0x00000ffc /* select bits [11:2] */
8866 /* Find the bound table entry given the pointer location and the base
8867 address of the table. */
8870 i386_mpx_get_bt_entry (CORE_ADDR ptr
, CORE_ADDR bd_base
)
8874 CORE_ADDR mpx_bd_mask
, bd_ptr_r_shift
, bd_ptr_l_shift
;
8875 CORE_ADDR bt_mask
, bt_select_r_shift
, bt_select_l_shift
;
8876 CORE_ADDR bd_entry_addr
;
8879 struct gdbarch
*gdbarch
= get_current_arch ();
8880 struct type
*data_ptr_type
= builtin_type (gdbarch
)->builtin_data_ptr
;
8883 if (gdbarch_ptr_bit (gdbarch
) == 64)
8885 mpx_bd_mask
= (CORE_ADDR
) MPX_BD_MASK
;
8886 bd_ptr_r_shift
= 20;
8888 bt_select_r_shift
= 3;
8889 bt_select_l_shift
= 5;
8890 bt_mask
= (CORE_ADDR
) MPX_BT_MASK
;
8892 if ( sizeof (CORE_ADDR
) == 4)
8893 error (_("bound table examination not supported\
8894 for 64-bit process with 32-bit GDB"));
8898 mpx_bd_mask
= MPX_BD_MASK_32
;
8899 bd_ptr_r_shift
= 12;
8901 bt_select_r_shift
= 2;
8902 bt_select_l_shift
= 4;
8903 bt_mask
= MPX_BT_MASK_32
;
8906 offset1
= ((ptr
& mpx_bd_mask
) >> bd_ptr_r_shift
) << bd_ptr_l_shift
;
8907 bd_entry_addr
= bd_base
+ offset1
;
8908 bd_entry
= read_memory_typed_address (bd_entry_addr
, data_ptr_type
);
8910 if ((bd_entry
& 0x1) == 0)
8911 error (_("Invalid bounds directory entry at %s."),
8912 paddress (get_current_arch (), bd_entry_addr
));
8914 /* Clearing status bit. */
8916 bt_addr
= bd_entry
& ~bt_select_r_shift
;
8917 offset2
= ((ptr
& bt_mask
) >> bt_select_r_shift
) << bt_select_l_shift
;
8919 return bt_addr
+ offset2
;
8922 /* Print routine for the mpx bounds. */
8925 i386_mpx_print_bounds (const CORE_ADDR bt_entry
[4])
8927 struct ui_out
*uiout
= current_uiout
;
8929 struct gdbarch
*gdbarch
= get_current_arch ();
8930 CORE_ADDR onecompl
= ~((CORE_ADDR
) 0);
8931 int bounds_in_map
= ((~bt_entry
[1] == 0 && bt_entry
[0] == onecompl
) ? 1 : 0);
8933 if (bounds_in_map
== 1)
8935 uiout
->text ("Null bounds on map:");
8936 uiout
->text (" pointer value = ");
8937 uiout
->field_core_addr ("pointer-value", gdbarch
, bt_entry
[2]);
8943 uiout
->text ("{lbound = ");
8944 uiout
->field_core_addr ("lower-bound", gdbarch
, bt_entry
[0]);
8945 uiout
->text (", ubound = ");
8947 /* The upper bound is stored in 1's complement. */
8948 uiout
->field_core_addr ("upper-bound", gdbarch
, ~bt_entry
[1]);
8949 uiout
->text ("}: pointer value = ");
8950 uiout
->field_core_addr ("pointer-value", gdbarch
, bt_entry
[2]);
8952 if (gdbarch_ptr_bit (gdbarch
) == 64)
8953 size
= ( (~(int64_t) bt_entry
[1]) - (int64_t) bt_entry
[0]);
8955 size
= ( ~((int32_t) bt_entry
[1]) - (int32_t) bt_entry
[0]);
8957 /* In case the bounds are 0x0 and 0xffff... the difference will be -1.
8958 -1 represents in this sense full memory access, and there is no need
8961 size
= (size
> -1 ? size
+ 1 : size
);
8962 uiout
->text (", size = ");
8963 uiout
->field_string ("size", plongest (size
));
8965 uiout
->text (", metadata = ");
8966 uiout
->field_core_addr ("metadata", gdbarch
, bt_entry
[3]);
8971 /* Implement the command "show mpx bound". */
8974 i386_mpx_info_bounds (const char *args
, int from_tty
)
8976 CORE_ADDR bd_base
= 0;
8978 CORE_ADDR bt_entry_addr
= 0;
8979 CORE_ADDR bt_entry
[4];
8981 struct gdbarch
*gdbarch
= get_current_arch ();
8982 struct type
*data_ptr_type
= builtin_type (gdbarch
)->builtin_data_ptr
;
8984 if (gdbarch_bfd_arch_info (gdbarch
)->arch
!= bfd_arch_i386
8985 || !i386_mpx_enabled ())
8987 gdb_printf (_("Intel Memory Protection Extensions not "
8988 "supported on this target.\n"));
8994 gdb_printf (_("Address of pointer variable expected.\n"));
8998 addr
= parse_and_eval_address (args
);
9000 bd_base
= i386_mpx_bd_base ();
9001 bt_entry_addr
= i386_mpx_get_bt_entry (addr
, bd_base
);
9003 memset (bt_entry
, 0, sizeof (bt_entry
));
9005 for (i
= 0; i
< 4; i
++)
9006 bt_entry
[i
] = read_memory_typed_address (bt_entry_addr
9007 + i
* data_ptr_type
->length (),
9010 i386_mpx_print_bounds (bt_entry
);
9013 /* Implement the command "set mpx bound". */
9016 i386_mpx_set_bounds (const char *args
, int from_tty
)
9018 CORE_ADDR bd_base
= 0;
9019 CORE_ADDR addr
, lower
, upper
;
9020 CORE_ADDR bt_entry_addr
= 0;
9021 CORE_ADDR bt_entry
[2];
9022 const char *input
= args
;
9024 struct gdbarch
*gdbarch
= get_current_arch ();
9025 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
9026 struct type
*data_ptr_type
= builtin_type (gdbarch
)->builtin_data_ptr
;
9028 if (gdbarch_bfd_arch_info (gdbarch
)->arch
!= bfd_arch_i386
9029 || !i386_mpx_enabled ())
9030 error (_("Intel Memory Protection Extensions not supported\
9034 error (_("Pointer value expected."));
9036 addr
= value_as_address (parse_to_comma_and_eval (&input
));
9038 if (input
[0] == ',')
9040 if (input
[0] == '\0')
9041 error (_("wrong number of arguments: missing lower and upper bound."));
9042 lower
= value_as_address (parse_to_comma_and_eval (&input
));
9044 if (input
[0] == ',')
9046 if (input
[0] == '\0')
9047 error (_("Wrong number of arguments; Missing upper bound."));
9048 upper
= value_as_address (parse_to_comma_and_eval (&input
));
9050 bd_base
= i386_mpx_bd_base ();
9051 bt_entry_addr
= i386_mpx_get_bt_entry (addr
, bd_base
);
9052 for (i
= 0; i
< 2; i
++)
9053 bt_entry
[i
] = read_memory_typed_address (bt_entry_addr
9054 + i
* data_ptr_type
->length (),
9056 bt_entry
[0] = (uint64_t) lower
;
9057 bt_entry
[1] = ~(uint64_t) upper
;
9059 for (i
= 0; i
< 2; i
++)
9060 write_memory_unsigned_integer (bt_entry_addr
9061 + i
* data_ptr_type
->length (),
9062 data_ptr_type
->length (), byte_order
,
9066 static struct cmd_list_element
*mpx_set_cmdlist
, *mpx_show_cmdlist
;
9068 void _initialize_i386_tdep ();
9070 _initialize_i386_tdep ()
9072 gdbarch_register (bfd_arch_i386
, i386_gdbarch_init
);
9074 /* Add the variable that controls the disassembly flavor. */
9075 add_setshow_enum_cmd ("disassembly-flavor", no_class
, valid_flavors
,
9076 &disassembly_flavor
, _("\
9077 Set the disassembly flavor."), _("\
9078 Show the disassembly flavor."), _("\
9079 The valid values are \"att\" and \"intel\", and the default value is \"att\"."),
9081 NULL
, /* FIXME: i18n: */
9082 &setlist
, &showlist
);
9084 /* Add the variable that controls the convention for returning
9086 add_setshow_enum_cmd ("struct-convention", no_class
, valid_conventions
,
9087 &struct_convention
, _("\
9088 Set the convention for returning small structs."), _("\
9089 Show the convention for returning small structs."), _("\
9090 Valid values are \"default\", \"pcc\" and \"reg\", and the default value\n\
9093 NULL
, /* FIXME: i18n: */
9094 &setlist
, &showlist
);
9096 /* Add "mpx" prefix for the set and show commands. */
9098 add_setshow_prefix_cmd
9099 ("mpx", class_support
,
9100 _("Set Intel Memory Protection Extensions specific variables."),
9101 _("Show Intel Memory Protection Extensions specific variables."),
9102 &mpx_set_cmdlist
, &mpx_show_cmdlist
, &setlist
, &showlist
);
9104 /* Add "bound" command for the show mpx commands list. */
9106 add_cmd ("bound", no_class
, i386_mpx_info_bounds
,
9107 "Show the memory bounds for a given array/pointer storage\
9108 in the bound table.",
9111 /* Add "bound" command for the set mpx commands list. */
9113 add_cmd ("bound", no_class
, i386_mpx_set_bounds
,
9114 "Set the memory bounds for a given array/pointer storage\
9115 in the bound table.",
9118 gdbarch_register_osabi (bfd_arch_i386
, 0, GDB_OSABI_SVR4
,
9119 i386_svr4_init_abi
);
9121 /* Initialize the i386-specific register groups. */
9122 i386_init_reggroups ();
9124 /* Tell remote stub that we support XML target description. */
9125 register_remote_support_xml ("i386");