Update copyright year range in header of all files managed by GDB
[binutils-gdb.git] / gdb / rs6000-aix-nat.c
blob8c9dc1a6e68cdc028fbd9cc7e57493e107fe3297
1 /* IBM RS/6000 native-dependent code for GDB, the GNU debugger.
3 Copyright (C) 1986-2023 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20 #include "defs.h"
21 #include "inferior.h"
22 #include "target.h"
23 #include "gdbcore.h"
24 #include "symfile.h"
25 #include "objfiles.h"
26 #include "bfd.h"
27 #include "gdb-stabs.h"
28 #include "regcache.h"
29 #include "arch-utils.h"
30 #include "inf-child.h"
31 #include "inf-ptrace.h"
32 #include "ppc-tdep.h"
33 #include "rs6000-aix-tdep.h"
34 #include "exec.h"
35 #include "observable.h"
36 #include "xcoffread.h"
38 #include <sys/ptrace.h>
39 #include <sys/reg.h>
41 #include <sys/dir.h>
42 #include <sys/user.h>
43 #include <signal.h>
44 #include <sys/ioctl.h>
45 #include <fcntl.h>
47 #include <a.out.h>
48 #include <sys/file.h>
49 #include <sys/stat.h>
50 #include "gdb_bfd.h"
51 #include <sys/core.h>
52 #define __LDINFO_PTRACE32__ /* for __ld_info32 */
53 #define __LDINFO_PTRACE64__ /* for __ld_info64 */
54 #include <sys/ldr.h>
55 #include <sys/systemcfg.h>
57 /* Header files for getting ppid in AIX of a child process. */
58 #include <procinfo.h>
59 #include <sys/types.h>
61 /* On AIX4.3+, sys/ldr.h provides different versions of struct ld_info for
62 debugging 32-bit and 64-bit processes. Define a typedef and macros for
63 accessing fields in the appropriate structures. */
65 /* In 32-bit compilation mode (which is the only mode from which ptrace()
66 works on 4.3), __ld_info32 is #defined as equivalent to ld_info. */
68 #if defined (__ld_info32) || defined (__ld_info64)
69 # define ARCH3264
70 #endif
72 /* Return whether the current architecture is 64-bit. */
74 #ifndef ARCH3264
75 # define ARCH64() 0
76 #else
77 # define ARCH64() (register_size (target_gdbarch (), 0) == 8)
78 #endif
80 class rs6000_nat_target final : public inf_ptrace_target
82 public:
83 void fetch_registers (struct regcache *, int) override;
84 void store_registers (struct regcache *, int) override;
86 enum target_xfer_status xfer_partial (enum target_object object,
87 const char *annex,
88 gdb_byte *readbuf,
89 const gdb_byte *writebuf,
90 ULONGEST offset, ULONGEST len,
91 ULONGEST *xfered_len) override;
93 void create_inferior (const char *, const std::string &,
94 char **, int) override;
96 ptid_t wait (ptid_t, struct target_waitstatus *, target_wait_flags) override;
98 /* Fork detection related functions, For adding multi process debugging
99 support. */
100 void follow_fork (inferior *, ptid_t, target_waitkind, bool, bool) override;
102 protected:
104 void post_startup_inferior (ptid_t ptid) override;
106 private:
107 enum target_xfer_status
108 xfer_shared_libraries (enum target_object object,
109 const char *annex, gdb_byte *readbuf,
110 const gdb_byte *writebuf,
111 ULONGEST offset, ULONGEST len,
112 ULONGEST *xfered_len);
115 static rs6000_nat_target the_rs6000_nat_target;
117 /* The below declaration is to track number of times, parent has
118 reported fork event before its children. */
120 static std::list<pid_t> aix_pending_parent;
122 /* The below declaration is for a child process event that
123 is reported before its corresponding parent process in
124 the event of a fork (). */
126 static std::list<pid_t> aix_pending_children;
128 static void
129 aix_remember_child (pid_t pid)
131 aix_pending_children.push_front (pid);
134 static void
135 aix_remember_parent (pid_t pid)
137 aix_pending_parent.push_front (pid);
140 /* This function returns a parent of a child process. */
142 static pid_t
143 find_my_aix_parent (pid_t child_pid)
145 struct procsinfo ProcessBuffer1;
147 if (getprocs (&ProcessBuffer1, sizeof (ProcessBuffer1),
148 NULL, 0, &child_pid, 1) != 1)
149 return 0;
150 else
151 return ProcessBuffer1.pi_ppid;
154 /* In the below function we check if there was any child
155 process pending. If it exists we return it from the
156 list, otherwise we return a null. */
158 static pid_t
159 has_my_aix_child_reported (pid_t parent_pid)
161 pid_t child = 0;
162 auto it = std::find_if (aix_pending_children.begin (),
163 aix_pending_children.end (),
164 [=] (pid_t child_pid)
166 return find_my_aix_parent (child_pid) == parent_pid;
168 if (it != aix_pending_children.end ())
170 child = *it;
171 aix_pending_children.erase (it);
173 return child;
176 /* In the below function we check if there was any parent
177 process pending. If it exists we return it from the
178 list, otherwise we return a null. */
180 static pid_t
181 has_my_aix_parent_reported (pid_t child_pid)
183 pid_t my_parent = find_my_aix_parent (child_pid);
184 auto it = std::find (aix_pending_parent.begin (),
185 aix_pending_parent.end (),
186 my_parent);
187 if (it != aix_pending_parent.end ())
189 aix_pending_parent.erase (it);
190 return my_parent;
192 return 0;
195 /* Given REGNO, a gdb register number, return the corresponding
196 number suitable for use as a ptrace() parameter. Return -1 if
197 there's no suitable mapping. Also, set the int pointed to by
198 ISFLOAT to indicate whether REGNO is a floating point register. */
200 static int
201 regmap (struct gdbarch *gdbarch, int regno, int *isfloat)
203 ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
205 *isfloat = 0;
206 if (tdep->ppc_gp0_regnum <= regno
207 && regno < tdep->ppc_gp0_regnum + ppc_num_gprs)
208 return regno;
209 else if (tdep->ppc_fp0_regnum >= 0
210 && tdep->ppc_fp0_regnum <= regno
211 && regno < tdep->ppc_fp0_regnum + ppc_num_fprs)
213 *isfloat = 1;
214 return regno - tdep->ppc_fp0_regnum + FPR0;
216 else if (regno == gdbarch_pc_regnum (gdbarch))
217 return IAR;
218 else if (regno == tdep->ppc_ps_regnum)
219 return MSR;
220 else if (regno == tdep->ppc_cr_regnum)
221 return CR;
222 else if (regno == tdep->ppc_lr_regnum)
223 return LR;
224 else if (regno == tdep->ppc_ctr_regnum)
225 return CTR;
226 else if (regno == tdep->ppc_xer_regnum)
227 return XER;
228 else if (tdep->ppc_fpscr_regnum >= 0
229 && regno == tdep->ppc_fpscr_regnum)
230 return FPSCR;
231 else if (tdep->ppc_mq_regnum >= 0 && regno == tdep->ppc_mq_regnum)
232 return MQ;
233 else
234 return -1;
237 /* Call ptrace(REQ, ID, ADDR, DATA, BUF). */
239 static int
240 rs6000_ptrace32 (int req, int id, int *addr, int data, int *buf)
242 #ifdef HAVE_PTRACE64
243 int ret = ptrace64 (req, id, (uintptr_t) addr, data, buf);
244 #else
245 int ret = ptrace (req, id, (int *)addr, data, buf);
246 #endif
247 #if 0
248 printf ("rs6000_ptrace32 (%d, %d, 0x%x, %08x, 0x%x) = 0x%x\n",
249 req, id, (unsigned int)addr, data, (unsigned int)buf, ret);
250 #endif
251 return ret;
254 /* Call ptracex(REQ, ID, ADDR, DATA, BUF). */
256 static int
257 rs6000_ptrace64 (int req, int id, long long addr, int data, void *buf)
259 #ifdef ARCH3264
260 # ifdef HAVE_PTRACE64
261 int ret = ptrace64 (req, id, addr, data, (PTRACE_TYPE_ARG5) buf);
262 # else
263 int ret = ptracex (req, id, addr, data, (PTRACE_TYPE_ARG5) buf);
264 # endif
265 #else
266 int ret = 0;
267 #endif
268 #if 0
269 printf ("rs6000_ptrace64 (%d, %d, %s, %08x, 0x%x) = 0x%x\n",
270 req, id, hex_string (addr), data, (unsigned int)buf, ret);
271 #endif
272 return ret;
275 void rs6000_nat_target::post_startup_inferior (ptid_t ptid)
278 /* In AIX to turn on multi process debugging in ptrace
279 PT_MULTI is the option to be passed,
280 with the process ID which can fork () and
281 the data parameter [fourth parameter] must be 1. */
283 if (!ARCH64 ())
284 rs6000_ptrace32 (PT_MULTI, ptid.pid(), 0, 1, 0);
285 else
286 rs6000_ptrace64 (PT_MULTI, ptid.pid(), 0, 1, 0);
289 void
290 rs6000_nat_target::follow_fork (inferior *child_inf, ptid_t child_ptid,
291 target_waitkind fork_kind, bool follow_child,
292 bool detach_fork)
295 /* Once the fork event is detected the infrun.c code
296 calls the target_follow_fork to take care of
297 follow child and detach the child activity which is
298 done using the function below. */
300 inf_ptrace_target::follow_fork (child_inf, child_ptid, fork_kind,
301 follow_child, detach_fork);
303 /* If we detach fork and follow child we do not want the child
304 process to geneate events that ptrace can trace. Hence we
305 detach it. */
307 if (detach_fork && !follow_child)
309 if (ARCH64 ())
310 rs6000_ptrace64 (PT_DETACH, child_ptid.pid (), 0, 0, 0);
311 else
312 rs6000_ptrace32 (PT_DETACH, child_ptid.pid (), 0, 0, 0);
316 /* Fetch register REGNO from the inferior. */
318 static void
319 fetch_register (struct regcache *regcache, int regno)
321 struct gdbarch *gdbarch = regcache->arch ();
322 int addr[PPC_MAX_REGISTER_SIZE];
323 int nr, isfloat;
324 pid_t pid = regcache->ptid ().pid ();
326 /* Retrieved values may be -1, so infer errors from errno. */
327 errno = 0;
329 nr = regmap (gdbarch, regno, &isfloat);
331 /* Floating-point registers. */
332 if (isfloat)
333 rs6000_ptrace32 (PT_READ_FPR, pid, addr, nr, 0);
335 /* Bogus register number. */
336 else if (nr < 0)
338 if (regno >= gdbarch_num_regs (gdbarch))
339 gdb_printf (gdb_stderr,
340 "gdb error: register no %d not implemented.\n",
341 regno);
342 return;
345 /* Fixed-point registers. */
346 else
348 if (!ARCH64 ())
349 *addr = rs6000_ptrace32 (PT_READ_GPR, pid, (int *) nr, 0, 0);
350 else
352 /* PT_READ_GPR requires the buffer parameter to point to long long,
353 even if the register is really only 32 bits. */
354 long long buf;
355 rs6000_ptrace64 (PT_READ_GPR, pid, nr, 0, &buf);
356 if (register_size (gdbarch, regno) == 8)
357 memcpy (addr, &buf, 8);
358 else
359 *addr = buf;
363 if (!errno)
364 regcache->raw_supply (regno, (char *) addr);
365 else
367 #if 0
368 /* FIXME: this happens 3 times at the start of each 64-bit program. */
369 perror (_("ptrace read"));
370 #endif
371 errno = 0;
375 /* Store register REGNO back into the inferior. */
377 static void
378 store_register (struct regcache *regcache, int regno)
380 struct gdbarch *gdbarch = regcache->arch ();
381 int addr[PPC_MAX_REGISTER_SIZE];
382 int nr, isfloat;
383 pid_t pid = regcache->ptid ().pid ();
385 /* Fetch the register's value from the register cache. */
386 regcache->raw_collect (regno, addr);
388 /* -1 can be a successful return value, so infer errors from errno. */
389 errno = 0;
391 nr = regmap (gdbarch, regno, &isfloat);
393 /* Floating-point registers. */
394 if (isfloat)
395 rs6000_ptrace32 (PT_WRITE_FPR, pid, addr, nr, 0);
397 /* Bogus register number. */
398 else if (nr < 0)
400 if (regno >= gdbarch_num_regs (gdbarch))
401 gdb_printf (gdb_stderr,
402 "gdb error: register no %d not implemented.\n",
403 regno);
406 /* Fixed-point registers. */
407 else
409 /* The PT_WRITE_GPR operation is rather odd. For 32-bit inferiors,
410 the register's value is passed by value, but for 64-bit inferiors,
411 the address of a buffer containing the value is passed. */
412 if (!ARCH64 ())
413 rs6000_ptrace32 (PT_WRITE_GPR, pid, (int *) nr, *addr, 0);
414 else
416 /* PT_WRITE_GPR requires the buffer parameter to point to an 8-byte
417 area, even if the register is really only 32 bits. */
418 long long buf;
419 if (register_size (gdbarch, regno) == 8)
420 memcpy (&buf, addr, 8);
421 else
422 buf = *addr;
423 rs6000_ptrace64 (PT_WRITE_GPR, pid, nr, 0, &buf);
427 if (errno)
429 perror (_("ptrace write"));
430 errno = 0;
434 /* Read from the inferior all registers if REGNO == -1 and just register
435 REGNO otherwise. */
437 void
438 rs6000_nat_target::fetch_registers (struct regcache *regcache, int regno)
440 struct gdbarch *gdbarch = regcache->arch ();
441 if (regno != -1)
442 fetch_register (regcache, regno);
444 else
446 ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
448 /* Read 32 general purpose registers. */
449 for (regno = tdep->ppc_gp0_regnum;
450 regno < tdep->ppc_gp0_regnum + ppc_num_gprs;
451 regno++)
453 fetch_register (regcache, regno);
456 /* Read general purpose floating point registers. */
457 if (tdep->ppc_fp0_regnum >= 0)
458 for (regno = 0; regno < ppc_num_fprs; regno++)
459 fetch_register (regcache, tdep->ppc_fp0_regnum + regno);
461 /* Read special registers. */
462 fetch_register (regcache, gdbarch_pc_regnum (gdbarch));
463 fetch_register (regcache, tdep->ppc_ps_regnum);
464 fetch_register (regcache, tdep->ppc_cr_regnum);
465 fetch_register (regcache, tdep->ppc_lr_regnum);
466 fetch_register (regcache, tdep->ppc_ctr_regnum);
467 fetch_register (regcache, tdep->ppc_xer_regnum);
468 if (tdep->ppc_fpscr_regnum >= 0)
469 fetch_register (regcache, tdep->ppc_fpscr_regnum);
470 if (tdep->ppc_mq_regnum >= 0)
471 fetch_register (regcache, tdep->ppc_mq_regnum);
475 /* Store our register values back into the inferior.
476 If REGNO is -1, do this for all registers.
477 Otherwise, REGNO specifies which register (so we can save time). */
479 void
480 rs6000_nat_target::store_registers (struct regcache *regcache, int regno)
482 struct gdbarch *gdbarch = regcache->arch ();
483 if (regno != -1)
484 store_register (regcache, regno);
486 else
488 ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
490 /* Write general purpose registers first. */
491 for (regno = tdep->ppc_gp0_regnum;
492 regno < tdep->ppc_gp0_regnum + ppc_num_gprs;
493 regno++)
495 store_register (regcache, regno);
498 /* Write floating point registers. */
499 if (tdep->ppc_fp0_regnum >= 0)
500 for (regno = 0; regno < ppc_num_fprs; regno++)
501 store_register (regcache, tdep->ppc_fp0_regnum + regno);
503 /* Write special registers. */
504 store_register (regcache, gdbarch_pc_regnum (gdbarch));
505 store_register (regcache, tdep->ppc_ps_regnum);
506 store_register (regcache, tdep->ppc_cr_regnum);
507 store_register (regcache, tdep->ppc_lr_regnum);
508 store_register (regcache, tdep->ppc_ctr_regnum);
509 store_register (regcache, tdep->ppc_xer_regnum);
510 if (tdep->ppc_fpscr_regnum >= 0)
511 store_register (regcache, tdep->ppc_fpscr_regnum);
512 if (tdep->ppc_mq_regnum >= 0)
513 store_register (regcache, tdep->ppc_mq_regnum);
517 /* Implement the to_xfer_partial target_ops method. */
519 enum target_xfer_status
520 rs6000_nat_target::xfer_partial (enum target_object object,
521 const char *annex, gdb_byte *readbuf,
522 const gdb_byte *writebuf,
523 ULONGEST offset, ULONGEST len,
524 ULONGEST *xfered_len)
526 pid_t pid = inferior_ptid.pid ();
527 int arch64 = ARCH64 ();
529 switch (object)
531 case TARGET_OBJECT_LIBRARIES_AIX:
532 return xfer_shared_libraries (object, annex,
533 readbuf, writebuf,
534 offset, len, xfered_len);
535 case TARGET_OBJECT_MEMORY:
537 union
539 PTRACE_TYPE_RET word;
540 gdb_byte byte[sizeof (PTRACE_TYPE_RET)];
541 } buffer;
542 ULONGEST rounded_offset;
543 LONGEST partial_len;
545 /* Round the start offset down to the next long word
546 boundary. */
547 rounded_offset = offset & -(ULONGEST) sizeof (PTRACE_TYPE_RET);
549 /* Since ptrace will transfer a single word starting at that
550 rounded_offset the partial_len needs to be adjusted down to
551 that (remember this function only does a single transfer).
552 Should the required length be even less, adjust it down
553 again. */
554 partial_len = (rounded_offset + sizeof (PTRACE_TYPE_RET)) - offset;
555 if (partial_len > len)
556 partial_len = len;
558 if (writebuf)
560 /* If OFFSET:PARTIAL_LEN is smaller than
561 ROUNDED_OFFSET:WORDSIZE then a read/modify write will
562 be needed. Read in the entire word. */
563 if (rounded_offset < offset
564 || (offset + partial_len
565 < rounded_offset + sizeof (PTRACE_TYPE_RET)))
567 /* Need part of initial word -- fetch it. */
568 if (arch64)
569 buffer.word = rs6000_ptrace64 (PT_READ_I, pid,
570 rounded_offset, 0, NULL);
571 else
572 buffer.word = rs6000_ptrace32 (PT_READ_I, pid,
573 (int *) (uintptr_t)
574 rounded_offset,
575 0, NULL);
578 /* Copy data to be written over corresponding part of
579 buffer. */
580 memcpy (buffer.byte + (offset - rounded_offset),
581 writebuf, partial_len);
583 errno = 0;
584 if (arch64)
585 rs6000_ptrace64 (PT_WRITE_D, pid,
586 rounded_offset, buffer.word, NULL);
587 else
588 rs6000_ptrace32 (PT_WRITE_D, pid,
589 (int *) (uintptr_t) rounded_offset,
590 buffer.word, NULL);
591 if (errno)
592 return TARGET_XFER_EOF;
595 if (readbuf)
597 errno = 0;
598 if (arch64)
599 buffer.word = rs6000_ptrace64 (PT_READ_I, pid,
600 rounded_offset, 0, NULL);
601 else
602 buffer.word = rs6000_ptrace32 (PT_READ_I, pid,
603 (int *)(uintptr_t)rounded_offset,
604 0, NULL);
605 if (errno)
606 return TARGET_XFER_EOF;
608 /* Copy appropriate bytes out of the buffer. */
609 memcpy (readbuf, buffer.byte + (offset - rounded_offset),
610 partial_len);
613 *xfered_len = (ULONGEST) partial_len;
614 return TARGET_XFER_OK;
617 default:
618 return TARGET_XFER_E_IO;
622 /* Wait for the child specified by PTID to do something. Return the
623 process ID of the child, or MINUS_ONE_PTID in case of error; store
624 the status in *OURSTATUS. */
626 ptid_t
627 rs6000_nat_target::wait (ptid_t ptid, struct target_waitstatus *ourstatus,
628 target_wait_flags options)
630 pid_t pid;
631 int status, save_errno;
633 while (1)
635 set_sigint_trap ();
639 pid = waitpid (ptid.pid (), &status, 0);
640 save_errno = errno;
642 while (pid == -1 && errno == EINTR);
644 clear_sigint_trap ();
646 if (pid == -1)
648 gdb_printf (gdb_stderr,
649 _("Child process unexpectedly missing: %s.\n"),
650 safe_strerror (save_errno));
652 ourstatus->set_ignore ();
653 return minus_one_ptid;
656 /* Ignore terminated detached child processes. */
657 if (!WIFSTOPPED (status) && find_inferior_pid (this, pid) == nullptr)
658 continue;
660 /* Check for a fork () event. */
661 if ((status & 0xff) == W_SFWTED)
663 /* Checking whether it is a parent or a child event. */
665 /* If the event is a child we check if there was a parent
666 event recorded before. If yes we got the parent child
667 relationship. If not we push this child and wait for
668 the next fork () event. */
669 if (find_inferior_pid (this, pid) == nullptr)
671 pid_t parent_pid = has_my_aix_parent_reported (pid);
672 if (parent_pid > 0)
674 ourstatus->set_forked (ptid_t (pid));
675 return ptid_t (parent_pid);
677 aix_remember_child (pid);
680 /* If the event is a parent we check if there was a child
681 event recorded before. If yes we got the parent child
682 relationship. If not we push this parent and wait for
683 the next fork () event. */
684 else
686 pid_t child_pid = has_my_aix_child_reported (pid);
687 if (child_pid > 0)
689 ourstatus->set_forked (ptid_t (child_pid));
690 return ptid_t (pid);
692 aix_remember_parent (pid);
694 continue;
697 break;
700 /* AIX has a couple of strange returns from wait(). */
702 /* stop after load" status. */
703 if (status == 0x57c)
704 ourstatus->set_loaded ();
705 /* 0x7f is signal 0. 0x17f and 0x137f are status returned
706 if we follow parent, a switch is made to a child post parent
707 execution and child continues its execution [user switches
708 to child and presses continue]. */
709 else if (status == 0x7f || status == 0x17f || status == 0x137f)
710 ourstatus->set_spurious ();
711 /* A normal waitstatus. Let the usual macros deal with it. */
712 else
713 *ourstatus = host_status_to_waitstatus (status);
715 return ptid_t (pid);
719 /* Set the current architecture from the host running GDB. Called when
720 starting a child process. */
722 void
723 rs6000_nat_target::create_inferior (const char *exec_file,
724 const std::string &allargs,
725 char **env, int from_tty)
727 enum bfd_architecture arch;
728 unsigned long mach;
729 bfd abfd;
731 inf_ptrace_target::create_inferior (exec_file, allargs, env, from_tty);
733 if (__power_rs ())
735 arch = bfd_arch_rs6000;
736 mach = bfd_mach_rs6k;
738 else
740 arch = bfd_arch_powerpc;
741 mach = bfd_mach_ppc;
744 /* FIXME: schauer/2002-02-25:
745 We don't know if we are executing a 32 or 64 bit executable,
746 and have no way to pass the proper word size to rs6000_gdbarch_init.
747 So we have to avoid switching to a new architecture, if the architecture
748 matches already.
749 Blindly calling rs6000_gdbarch_init used to work in older versions of
750 GDB, as rs6000_gdbarch_init incorrectly used the previous tdep to
751 determine the wordsize. */
752 if (current_program_space->exec_bfd ())
754 const struct bfd_arch_info *exec_bfd_arch_info;
756 exec_bfd_arch_info
757 = bfd_get_arch_info (current_program_space->exec_bfd ());
758 if (arch == exec_bfd_arch_info->arch)
759 return;
762 bfd_default_set_arch_mach (&abfd, arch, mach);
764 gdbarch_info info;
765 info.bfd_arch_info = bfd_get_arch_info (&abfd);
766 info.abfd = current_program_space->exec_bfd ();
768 if (!gdbarch_update_p (info))
769 internal_error (_("rs6000_create_inferior: failed "
770 "to select architecture"));
774 /* Shared Object support. */
776 /* Return the LdInfo data for the given process. Raises an error
777 if the data could not be obtained. */
779 static gdb::byte_vector
780 rs6000_ptrace_ldinfo (ptid_t ptid)
782 const int pid = ptid.pid ();
783 gdb::byte_vector ldi (1024);
784 int rc = -1;
786 while (1)
788 if (ARCH64 ())
789 rc = rs6000_ptrace64 (PT_LDINFO, pid, (unsigned long) ldi.data (),
790 ldi.size (), NULL);
791 else
792 rc = rs6000_ptrace32 (PT_LDINFO, pid, (int *) ldi.data (),
793 ldi.size (), NULL);
795 if (rc != -1)
796 break; /* Success, we got the entire ld_info data. */
798 if (errno != ENOMEM)
799 perror_with_name (_("ptrace ldinfo"));
801 /* ldi is not big enough. Double it and try again. */
802 ldi.resize (ldi.size () * 2);
805 return ldi;
808 /* Implement the to_xfer_partial target_ops method for
809 TARGET_OBJECT_LIBRARIES_AIX objects. */
811 enum target_xfer_status
812 rs6000_nat_target::xfer_shared_libraries
813 (enum target_object object,
814 const char *annex, gdb_byte *readbuf, const gdb_byte *writebuf,
815 ULONGEST offset, ULONGEST len, ULONGEST *xfered_len)
817 ULONGEST result;
819 /* This function assumes that it is being run with a live process.
820 Core files are handled via gdbarch. */
821 gdb_assert (target_has_execution ());
823 if (writebuf)
824 return TARGET_XFER_E_IO;
826 gdb::byte_vector ldi_buf = rs6000_ptrace_ldinfo (inferior_ptid);
827 result = rs6000_aix_ld_info_to_xml (target_gdbarch (), ldi_buf.data (),
828 readbuf, offset, len, 1);
830 if (result == 0)
831 return TARGET_XFER_EOF;
832 else
834 *xfered_len = result;
835 return TARGET_XFER_OK;
839 void _initialize_rs6000_nat ();
840 void
841 _initialize_rs6000_nat ()
843 add_inf_child_target (&the_rs6000_nat_target);