1 /* Perform arithmetic and other operations on values, for GDB.
3 Copyright (C) 1986-2023 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
24 #include "expression.h"
27 #include "target-float.h"
29 #include "gdbsupport/byte-vector.h"
32 /* Forward declarations. */
33 static struct value
*value_subscripted_rvalue (struct value
*array
,
37 /* Define whether or not the C operator '/' truncates towards zero for
38 differently signed operands (truncation direction is undefined in C). */
40 #ifndef TRUNCATION_TOWARDS_ZERO
41 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
44 /* Given a pointer, return the size of its target.
45 If the pointer type is void *, then return 1.
46 If the target type is incomplete, then error out.
47 This isn't a general purpose function, but just a
48 helper for value_ptradd. */
51 find_size_for_pointer_math (struct type
*ptr_type
)
54 struct type
*ptr_target
;
56 gdb_assert (ptr_type
->code () == TYPE_CODE_PTR
);
57 ptr_target
= check_typedef (ptr_type
->target_type ());
59 sz
= type_length_units (ptr_target
);
62 if (ptr_type
->code () == TYPE_CODE_VOID
)
68 name
= ptr_target
->name ();
70 error (_("Cannot perform pointer math on incomplete types, "
71 "try casting to a known type, or void *."));
73 error (_("Cannot perform pointer math on incomplete type \"%s\", "
74 "try casting to a known type, or void *."), name
);
80 /* Given a pointer ARG1 and an integral value ARG2, return the
81 result of C-style pointer arithmetic ARG1 + ARG2. */
84 value_ptradd (struct value
*arg1
, LONGEST arg2
)
86 struct type
*valptrtype
;
90 arg1
= coerce_array (arg1
);
91 valptrtype
= check_typedef (value_type (arg1
));
92 sz
= find_size_for_pointer_math (valptrtype
);
94 result
= value_from_pointer (valptrtype
,
95 value_as_address (arg1
) + sz
* arg2
);
96 if (VALUE_LVAL (result
) != lval_internalvar
)
97 set_value_component_location (result
, arg1
);
101 /* Given two compatible pointer values ARG1 and ARG2, return the
102 result of C-style pointer arithmetic ARG1 - ARG2. */
105 value_ptrdiff (struct value
*arg1
, struct value
*arg2
)
107 struct type
*type1
, *type2
;
110 arg1
= coerce_array (arg1
);
111 arg2
= coerce_array (arg2
);
112 type1
= check_typedef (value_type (arg1
));
113 type2
= check_typedef (value_type (arg2
));
115 gdb_assert (type1
->code () == TYPE_CODE_PTR
);
116 gdb_assert (type2
->code () == TYPE_CODE_PTR
);
118 if (check_typedef (type1
->target_type ())->length ()
119 != check_typedef (type2
->target_type ())->length ())
120 error (_("First argument of `-' is a pointer and "
121 "second argument is neither\n"
122 "an integer nor a pointer of the same type."));
124 sz
= type_length_units (check_typedef (type1
->target_type ()));
127 warning (_("Type size unknown, assuming 1. "
128 "Try casting to a known type, or void *."));
132 return (value_as_long (arg1
) - value_as_long (arg2
)) / sz
;
135 /* Return the value of ARRAY[IDX].
137 ARRAY may be of type TYPE_CODE_ARRAY or TYPE_CODE_STRING. If the
138 current language supports C-style arrays, it may also be TYPE_CODE_PTR.
140 See comments in value_coerce_array() for rationale for reason for
141 doing lower bounds adjustment here rather than there.
142 FIXME: Perhaps we should validate that the index is valid and if
143 verbosity is set, warn about invalid indices (but still use them). */
146 value_subscript (struct value
*array
, LONGEST index
)
148 bool c_style
= current_language
->c_style_arrays_p ();
151 array
= coerce_ref (array
);
152 tarray
= check_typedef (value_type (array
));
154 if (tarray
->code () == TYPE_CODE_ARRAY
155 || tarray
->code () == TYPE_CODE_STRING
)
157 struct type
*range_type
= tarray
->index_type ();
158 gdb::optional
<LONGEST
> lowerbound
= get_discrete_low_bound (range_type
);
159 if (!lowerbound
.has_value ())
162 if (VALUE_LVAL (array
) != lval_memory
)
163 return value_subscripted_rvalue (array
, index
, *lowerbound
);
165 gdb::optional
<LONGEST
> upperbound
166 = get_discrete_high_bound (range_type
);
168 if (!upperbound
.has_value ())
171 if (index
>= *lowerbound
&& index
<= *upperbound
)
172 return value_subscripted_rvalue (array
, index
, *lowerbound
);
176 /* Emit warning unless we have an array of unknown size.
177 An array of unknown size has lowerbound 0 and upperbound -1. */
178 if (*upperbound
> -1)
179 warning (_("array or string index out of range"));
180 /* fall doing C stuff */
184 index
-= *lowerbound
;
185 array
= value_coerce_array (array
);
189 return value_ind (value_ptradd (array
, index
));
191 error (_("not an array or string"));
194 /* Return the value of EXPR[IDX], expr an aggregate rvalue
195 (eg, a vector register). This routine used to promote floats
196 to doubles, but no longer does. */
198 static struct value
*
199 value_subscripted_rvalue (struct value
*array
, LONGEST index
,
202 struct type
*array_type
= check_typedef (value_type (array
));
203 struct type
*elt_type
= array_type
->target_type ();
204 LONGEST elt_size
= type_length_units (elt_type
);
206 /* Fetch the bit stride and convert it to a byte stride, assuming 8 bits
208 LONGEST stride
= array_type
->bit_stride ();
211 struct gdbarch
*arch
= elt_type
->arch ();
212 int unit_size
= gdbarch_addressable_memory_unit_size (arch
);
213 elt_size
= stride
/ (unit_size
* 8);
216 LONGEST elt_offs
= elt_size
* (index
- lowerbound
);
217 bool array_upper_bound_undefined
218 = array_type
->bounds ()->high
.kind () == PROP_UNDEFINED
;
220 if (index
< lowerbound
221 || (!array_upper_bound_undefined
222 && elt_offs
>= type_length_units (array_type
))
223 || (VALUE_LVAL (array
) != lval_memory
&& array_upper_bound_undefined
))
225 if (type_not_associated (array_type
))
226 error (_("no such vector element (vector not associated)"));
227 else if (type_not_allocated (array_type
))
228 error (_("no such vector element (vector not allocated)"));
230 error (_("no such vector element"));
233 if (is_dynamic_type (elt_type
))
237 address
= value_address (array
) + elt_offs
;
238 elt_type
= resolve_dynamic_type (elt_type
, {}, address
);
241 return value_from_component (array
, elt_type
, elt_offs
);
245 /* Check to see if either argument is a structure, or a reference to
246 one. This is called so we know whether to go ahead with the normal
247 binop or look for a user defined function instead.
249 For now, we do not overload the `=' operator. */
252 binop_types_user_defined_p (enum exp_opcode op
,
253 struct type
*type1
, struct type
*type2
)
255 if (op
== BINOP_ASSIGN
)
258 type1
= check_typedef (type1
);
259 if (TYPE_IS_REFERENCE (type1
))
260 type1
= check_typedef (type1
->target_type ());
262 type2
= check_typedef (type2
);
263 if (TYPE_IS_REFERENCE (type2
))
264 type2
= check_typedef (type2
->target_type ());
266 return (type1
->code () == TYPE_CODE_STRUCT
267 || type2
->code () == TYPE_CODE_STRUCT
);
270 /* Check to see if either argument is a structure, or a reference to
271 one. This is called so we know whether to go ahead with the normal
272 binop or look for a user defined function instead.
274 For now, we do not overload the `=' operator. */
277 binop_user_defined_p (enum exp_opcode op
,
278 struct value
*arg1
, struct value
*arg2
)
280 return binop_types_user_defined_p (op
, value_type (arg1
), value_type (arg2
));
283 /* Check to see if argument is a structure. This is called so
284 we know whether to go ahead with the normal unop or look for a
285 user defined function instead.
287 For now, we do not overload the `&' operator. */
290 unop_user_defined_p (enum exp_opcode op
, struct value
*arg1
)
296 type1
= check_typedef (value_type (arg1
));
297 if (TYPE_IS_REFERENCE (type1
))
298 type1
= check_typedef (type1
->target_type ());
299 return type1
->code () == TYPE_CODE_STRUCT
;
302 /* Try to find an operator named OPERATOR which takes NARGS arguments
303 specified in ARGS. If the operator found is a static member operator
304 *STATIC_MEMFUNP will be set to 1, and otherwise 0.
305 The search if performed through find_overload_match which will handle
306 member operators, non member operators, operators imported implicitly or
307 explicitly, and perform correct overload resolution in all of the above
308 situations or combinations thereof. */
310 static struct value
*
311 value_user_defined_cpp_op (gdb::array_view
<value
*> args
, char *oper
,
312 int *static_memfuncp
, enum noside noside
)
315 struct symbol
*symp
= NULL
;
316 struct value
*valp
= NULL
;
318 find_overload_match (args
, oper
, BOTH
/* could be method */,
320 NULL
/* pass NULL symbol since symbol is unknown */,
321 &valp
, &symp
, static_memfuncp
, 0, noside
);
328 /* This is a non member function and does not
329 expect a reference as its first argument
330 rather the explicit structure. */
331 args
[0] = value_ind (args
[0]);
332 return value_of_variable (symp
, 0);
335 error (_("Could not find %s."), oper
);
338 /* Lookup user defined operator NAME. Return a value representing the
339 function, otherwise return NULL. */
341 static struct value
*
342 value_user_defined_op (struct value
**argp
, gdb::array_view
<value
*> args
,
343 char *name
, int *static_memfuncp
, enum noside noside
)
345 struct value
*result
= NULL
;
347 if (current_language
->la_language
== language_cplus
)
349 result
= value_user_defined_cpp_op (args
, name
, static_memfuncp
,
353 result
= value_struct_elt (argp
, args
, name
, static_memfuncp
,
359 /* We know either arg1 or arg2 is a structure, so try to find the right
360 user defined function. Create an argument vector that calls
361 arg1.operator @ (arg1,arg2) and return that value (where '@' is any
362 binary operator which is legal for GNU C++).
364 OP is the operator, and if it is BINOP_ASSIGN_MODIFY, then OTHEROP
365 is the opcode saying how to modify it. Otherwise, OTHEROP is
369 value_x_binop (struct value
*arg1
, struct value
*arg2
, enum exp_opcode op
,
370 enum exp_opcode otherop
, enum noside noside
)
376 arg1
= coerce_ref (arg1
);
377 arg2
= coerce_ref (arg2
);
379 /* now we know that what we have to do is construct our
380 arg vector and find the right function to call it with. */
382 if (check_typedef (value_type (arg1
))->code () != TYPE_CODE_STRUCT
)
383 error (_("Can't do that binary op on that type")); /* FIXME be explicit */
385 value
*argvec_storage
[3];
386 gdb::array_view
<value
*> argvec
= argvec_storage
;
388 argvec
[1] = value_addr (arg1
);
391 /* Make the right function name up. */
392 strcpy (tstr
, "operator__");
417 case BINOP_BITWISE_AND
:
420 case BINOP_BITWISE_IOR
:
423 case BINOP_BITWISE_XOR
:
426 case BINOP_LOGICAL_AND
:
429 case BINOP_LOGICAL_OR
:
441 case BINOP_ASSIGN_MODIFY
:
459 case BINOP_BITWISE_AND
:
462 case BINOP_BITWISE_IOR
:
465 case BINOP_BITWISE_XOR
:
468 case BINOP_MOD
: /* invalid */
470 error (_("Invalid binary operation specified."));
473 case BINOP_SUBSCRIPT
:
494 case BINOP_MOD
: /* invalid */
496 error (_("Invalid binary operation specified."));
499 argvec
[0] = value_user_defined_op (&arg1
, argvec
.slice (1), tstr
,
500 &static_memfuncp
, noside
);
506 argvec
[1] = argvec
[0];
507 argvec
= argvec
.slice (1);
509 if (value_type (argvec
[0])->code () == TYPE_CODE_XMETHOD
)
511 /* Static xmethods are not supported yet. */
512 gdb_assert (static_memfuncp
== 0);
513 if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
515 struct type
*return_type
516 = result_type_of_xmethod (argvec
[0], argvec
.slice (1));
518 if (return_type
== NULL
)
519 error (_("Xmethod is missing return type."));
520 return value_zero (return_type
, VALUE_LVAL (arg1
));
522 return call_xmethod (argvec
[0], argvec
.slice (1));
524 if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
526 struct type
*return_type
;
528 return_type
= check_typedef (value_type (argvec
[0]))->target_type ();
529 return value_zero (return_type
, VALUE_LVAL (arg1
));
531 return call_function_by_hand (argvec
[0], NULL
,
532 argvec
.slice (1, 2 - static_memfuncp
));
534 throw_error (NOT_FOUND_ERROR
,
535 _("member function %s not found"), tstr
);
538 /* We know that arg1 is a structure, so try to find a unary user
539 defined operator that matches the operator in question.
540 Create an argument vector that calls arg1.operator @ (arg1)
541 and return that value (where '@' is (almost) any unary operator which
542 is legal for GNU C++). */
545 value_x_unop (struct value
*arg1
, enum exp_opcode op
, enum noside noside
)
547 struct gdbarch
*gdbarch
= value_type (arg1
)->arch ();
549 char tstr
[13], mangle_tstr
[13];
550 int static_memfuncp
, nargs
;
552 arg1
= coerce_ref (arg1
);
554 /* now we know that what we have to do is construct our
555 arg vector and find the right function to call it with. */
557 if (check_typedef (value_type (arg1
))->code () != TYPE_CODE_STRUCT
)
558 error (_("Can't do that unary op on that type")); /* FIXME be explicit */
560 value
*argvec_storage
[3];
561 gdb::array_view
<value
*> argvec
= argvec_storage
;
563 argvec
[1] = value_addr (arg1
);
568 /* Make the right function name up. */
569 strcpy (tstr
, "operator__");
571 strcpy (mangle_tstr
, "__");
574 case UNOP_PREINCREMENT
:
577 case UNOP_PREDECREMENT
:
580 case UNOP_POSTINCREMENT
:
582 argvec
[2] = value_from_longest (builtin_type (gdbarch
)->builtin_int
, 0);
585 case UNOP_POSTDECREMENT
:
587 argvec
[2] = value_from_longest (builtin_type (gdbarch
)->builtin_int
, 0);
590 case UNOP_LOGICAL_NOT
:
593 case UNOP_COMPLEMENT
:
609 error (_("Invalid unary operation specified."));
612 argvec
[0] = value_user_defined_op (&arg1
, argvec
.slice (1, nargs
), tstr
,
613 &static_memfuncp
, noside
);
619 argvec
[1] = argvec
[0];
620 argvec
= argvec
.slice (1);
622 if (value_type (argvec
[0])->code () == TYPE_CODE_XMETHOD
)
624 /* Static xmethods are not supported yet. */
625 gdb_assert (static_memfuncp
== 0);
626 if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
628 struct type
*return_type
629 = result_type_of_xmethod (argvec
[0], argvec
[1]);
631 if (return_type
== NULL
)
632 error (_("Xmethod is missing return type."));
633 return value_zero (return_type
, VALUE_LVAL (arg1
));
635 return call_xmethod (argvec
[0], argvec
[1]);
637 if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
639 struct type
*return_type
;
641 return_type
= check_typedef (value_type (argvec
[0]))->target_type ();
642 return value_zero (return_type
, VALUE_LVAL (arg1
));
644 return call_function_by_hand (argvec
[0], NULL
,
645 argvec
.slice (1, nargs
));
647 throw_error (NOT_FOUND_ERROR
,
648 _("member function %s not found"), tstr
);
652 /* Concatenate two values. One value must be an array; and the other
653 value must either be an array with the same element type, or be of
654 the array's element type. */
657 value_concat (struct value
*arg1
, struct value
*arg2
)
659 struct type
*type1
= check_typedef (value_type (arg1
));
660 struct type
*type2
= check_typedef (value_type (arg2
));
662 if (type1
->code () != TYPE_CODE_ARRAY
&& type2
->code () != TYPE_CODE_ARRAY
)
663 error ("no array provided to concatenation");
666 struct type
*elttype1
= type1
;
667 if (elttype1
->code () == TYPE_CODE_ARRAY
)
669 elttype1
= elttype1
->target_type ();
670 if (!get_array_bounds (type1
, &low1
, &high1
))
671 error (_("could not determine array bounds on left-hand-side of "
672 "array concatenation"));
681 struct type
*elttype2
= type2
;
682 if (elttype2
->code () == TYPE_CODE_ARRAY
)
684 elttype2
= elttype2
->target_type ();
685 if (!get_array_bounds (type2
, &low2
, &high2
))
686 error (_("could not determine array bounds on right-hand-side of "
687 "array concatenation"));
695 if (!types_equal (elttype1
, elttype2
))
696 error (_("concatenation with different element types"));
698 LONGEST lowbound
= current_language
->c_style_arrays_p () ? 0 : 1;
699 LONGEST n_elts
= (high1
- low1
+ 1) + (high2
- low2
+ 1);
700 struct type
*atype
= lookup_array_range_type (elttype1
,
702 lowbound
+ n_elts
- 1);
704 struct value
*result
= allocate_value (atype
);
705 gdb::array_view
<gdb_byte
> contents
= value_contents_raw (result
);
706 gdb::array_view
<const gdb_byte
> lhs_contents
= value_contents (arg1
);
707 gdb::array_view
<const gdb_byte
> rhs_contents
= value_contents (arg2
);
708 gdb::copy (lhs_contents
, contents
.slice (0, lhs_contents
.size ()));
709 gdb::copy (rhs_contents
, contents
.slice (lhs_contents
.size ()));
714 /* Integer exponentiation: V1**V2, where both arguments are
715 integers. Requires V1 != 0 if V2 < 0. Returns 1 for 0 ** 0. */
718 integer_pow (LONGEST v1
, LONGEST v2
)
723 error (_("Attempt to raise 0 to negative power."));
729 /* The Russian Peasant's Algorithm. */
745 /* Obtain argument values for binary operation, converting from
746 other types if one of them is not floating point. */
748 value_args_as_target_float (struct value
*arg1
, struct value
*arg2
,
749 gdb_byte
*x
, struct type
**eff_type_x
,
750 gdb_byte
*y
, struct type
**eff_type_y
)
752 struct type
*type1
, *type2
;
754 type1
= check_typedef (value_type (arg1
));
755 type2
= check_typedef (value_type (arg2
));
757 /* At least one of the arguments must be of floating-point type. */
758 gdb_assert (is_floating_type (type1
) || is_floating_type (type2
));
760 if (is_floating_type (type1
) && is_floating_type (type2
)
761 && type1
->code () != type2
->code ())
762 /* The DFP extension to the C language does not allow mixing of
763 * decimal float types with other float types in expressions
764 * (see WDTR 24732, page 12). */
765 error (_("Mixing decimal floating types with "
766 "other floating types is not allowed."));
768 /* Obtain value of arg1, converting from other types if necessary. */
770 if (is_floating_type (type1
))
773 memcpy (x
, value_contents (arg1
).data (), type1
->length ());
775 else if (is_integral_type (type1
))
778 if (type1
->is_unsigned ())
779 target_float_from_ulongest (x
, *eff_type_x
, value_as_long (arg1
));
781 target_float_from_longest (x
, *eff_type_x
, value_as_long (arg1
));
784 error (_("Don't know how to convert from %s to %s."), type1
->name (),
787 /* Obtain value of arg2, converting from other types if necessary. */
789 if (is_floating_type (type2
))
792 memcpy (y
, value_contents (arg2
).data (), type2
->length ());
794 else if (is_integral_type (type2
))
797 if (type2
->is_unsigned ())
798 target_float_from_ulongest (y
, *eff_type_y
, value_as_long (arg2
));
800 target_float_from_longest (y
, *eff_type_y
, value_as_long (arg2
));
803 error (_("Don't know how to convert from %s to %s."), type1
->name (),
807 /* Assuming at last one of ARG1 or ARG2 is a fixed point value,
808 perform the binary operation OP on these two operands, and return
809 the resulting value (also as a fixed point). */
811 static struct value
*
812 fixed_point_binop (struct value
*arg1
, struct value
*arg2
, enum exp_opcode op
)
814 struct type
*type1
= check_typedef (value_type (arg1
));
815 struct type
*type2
= check_typedef (value_type (arg2
));
816 const struct language_defn
*language
= current_language
;
818 struct gdbarch
*gdbarch
= type1
->arch ();
823 gdb_assert (is_fixed_point_type (type1
) || is_fixed_point_type (type2
));
824 if (op
== BINOP_MUL
|| op
== BINOP_DIV
)
826 v1
= value_to_gdb_mpq (arg1
);
827 v2
= value_to_gdb_mpq (arg2
);
829 /* The code below uses TYPE1 for the result type, so make sure
830 it is set properly. */
831 if (!is_fixed_point_type (type1
))
836 if (!is_fixed_point_type (type1
))
838 arg1
= value_cast (type2
, arg1
);
841 if (!is_fixed_point_type (type2
))
843 arg2
= value_cast (type1
, arg2
);
847 v1
.read_fixed_point (value_contents (arg1
),
848 type_byte_order (type1
), type1
->is_unsigned (),
849 type1
->fixed_point_scaling_factor ());
850 v2
.read_fixed_point (value_contents (arg2
),
851 type_byte_order (type2
), type2
->is_unsigned (),
852 type2
->fixed_point_scaling_factor ());
855 auto fixed_point_to_value
= [type1
] (const gdb_mpq
&fp
)
857 value
*fp_val
= allocate_value (type1
);
860 (value_contents_raw (fp_val
),
861 type_byte_order (type1
),
862 type1
->is_unsigned (),
863 type1
->fixed_point_scaling_factor ());
871 mpq_add (res
.val
, v1
.val
, v2
.val
);
872 val
= fixed_point_to_value (res
);
876 mpq_sub (res
.val
, v1
.val
, v2
.val
);
877 val
= fixed_point_to_value (res
);
881 val
= fixed_point_to_value (mpq_cmp (v1
.val
, v2
.val
) < 0 ? v1
: v2
);
885 val
= fixed_point_to_value (mpq_cmp (v1
.val
, v2
.val
) > 0 ? v1
: v2
);
889 mpq_mul (res
.val
, v1
.val
, v2
.val
);
890 val
= fixed_point_to_value (res
);
894 if (mpq_sgn (v2
.val
) == 0)
895 error (_("Division by zero"));
896 mpq_div (res
.val
, v1
.val
, v2
.val
);
897 val
= fixed_point_to_value (res
);
901 val
= value_from_ulongest (language_bool_type (language
, gdbarch
),
902 mpq_cmp (v1
.val
, v2
.val
) == 0 ? 1 : 0);
906 val
= value_from_ulongest (language_bool_type (language
, gdbarch
),
907 mpq_cmp (v1
.val
, v2
.val
) < 0 ? 1 : 0);
911 error (_("Integer-only operation on fixed point number."));
917 /* A helper function that finds the type to use for a binary operation
918 involving TYPE1 and TYPE2. */
921 promotion_type (struct type
*type1
, struct type
*type2
)
923 struct type
*result_type
;
925 if (is_floating_type (type1
) || is_floating_type (type2
))
927 /* If only one type is floating-point, use its type.
928 Otherwise use the bigger type. */
929 if (!is_floating_type (type1
))
931 else if (!is_floating_type (type2
))
933 else if (type2
->length () > type1
->length ())
941 if (type1
->length () > type2
->length ())
943 else if (type2
->length () > type1
->length ())
945 else if (type1
->is_unsigned ())
947 else if (type2
->is_unsigned ())
956 static struct value
*scalar_binop (struct value
*arg1
, struct value
*arg2
,
959 /* Perform a binary operation on complex operands. */
961 static struct value
*
962 complex_binop (struct value
*arg1
, struct value
*arg2
, enum exp_opcode op
)
964 struct type
*arg1_type
= check_typedef (value_type (arg1
));
965 struct type
*arg2_type
= check_typedef (value_type (arg2
));
967 struct value
*arg1_real
, *arg1_imag
, *arg2_real
, *arg2_imag
;
968 if (arg1_type
->code () == TYPE_CODE_COMPLEX
)
970 arg1_real
= value_real_part (arg1
);
971 arg1_imag
= value_imaginary_part (arg1
);
976 arg1_imag
= value_zero (arg1_type
, not_lval
);
978 if (arg2_type
->code () == TYPE_CODE_COMPLEX
)
980 arg2_real
= value_real_part (arg2
);
981 arg2_imag
= value_imaginary_part (arg2
);
986 arg2_imag
= value_zero (arg2_type
, not_lval
);
989 struct type
*comp_type
= promotion_type (value_type (arg1_real
),
990 value_type (arg2_real
));
991 if (!can_create_complex_type (comp_type
))
992 error (_("Argument to complex arithmetic operation not supported."));
994 arg1_real
= value_cast (comp_type
, arg1_real
);
995 arg1_imag
= value_cast (comp_type
, arg1_imag
);
996 arg2_real
= value_cast (comp_type
, arg2_real
);
997 arg2_imag
= value_cast (comp_type
, arg2_imag
);
999 struct type
*result_type
= init_complex_type (nullptr, comp_type
);
1001 struct value
*result_real
, *result_imag
;
1006 result_real
= scalar_binop (arg1_real
, arg2_real
, op
);
1007 result_imag
= scalar_binop (arg1_imag
, arg2_imag
, op
);
1012 struct value
*x1
= scalar_binop (arg1_real
, arg2_real
, op
);
1013 struct value
*x2
= scalar_binop (arg1_imag
, arg2_imag
, op
);
1014 result_real
= scalar_binop (x1
, x2
, BINOP_SUB
);
1016 x1
= scalar_binop (arg1_real
, arg2_imag
, op
);
1017 x2
= scalar_binop (arg1_imag
, arg2_real
, op
);
1018 result_imag
= scalar_binop (x1
, x2
, BINOP_ADD
);
1024 if (arg2_type
->code () == TYPE_CODE_COMPLEX
)
1026 struct value
*conjugate
= value_complement (arg2
);
1027 /* We have to reconstruct ARG1, in case the type was
1029 arg1
= value_literal_complex (arg1_real
, arg1_imag
, result_type
);
1031 struct value
*numerator
= scalar_binop (arg1
, conjugate
,
1033 arg1_real
= value_real_part (numerator
);
1034 arg1_imag
= value_imaginary_part (numerator
);
1036 struct value
*x1
= scalar_binop (arg2_real
, arg2_real
, BINOP_MUL
);
1037 struct value
*x2
= scalar_binop (arg2_imag
, arg2_imag
, BINOP_MUL
);
1038 arg2_real
= scalar_binop (x1
, x2
, BINOP_ADD
);
1041 result_real
= scalar_binop (arg1_real
, arg2_real
, op
);
1042 result_imag
= scalar_binop (arg1_imag
, arg2_real
, op
);
1047 case BINOP_NOTEQUAL
:
1049 struct value
*x1
= scalar_binop (arg1_real
, arg2_real
, op
);
1050 struct value
*x2
= scalar_binop (arg1_imag
, arg2_imag
, op
);
1052 LONGEST v1
= value_as_long (x1
);
1053 LONGEST v2
= value_as_long (x2
);
1055 if (op
== BINOP_EQUAL
)
1060 return value_from_longest (value_type (x1
), v1
);
1065 error (_("Invalid binary operation on numbers."));
1068 return value_literal_complex (result_real
, result_imag
, result_type
);
1071 /* Return the type's length in bits. */
1074 type_length_bits (type
*type
)
1076 int unit_size
= gdbarch_addressable_memory_unit_size (type
->arch ());
1077 return unit_size
* 8 * type
->length ();
1080 /* Check whether the RHS value of a shift is valid in C/C++ semantics.
1081 SHIFT_COUNT is the shift amount, SHIFT_COUNT_TYPE is the type of
1082 the shift count value, used to determine whether the type is
1083 signed, and RESULT_TYPE is the result type. This is used to avoid
1084 both negative and too-large shift amounts, which are undefined, and
1085 would crash a GDB built with UBSan. Depending on the current
1086 language, if the shift is not valid, this either warns and returns
1087 false, or errors out. Returns true if valid. */
1090 check_valid_shift_count (int op
, type
*result_type
,
1091 type
*shift_count_type
, ULONGEST shift_count
)
1093 if (!shift_count_type
->is_unsigned () && (LONGEST
) shift_count
< 0)
1095 auto error_or_warning
= [] (const char *msg
)
1097 /* Shifts by a negative amount are always an error in Go. Other
1098 languages are more permissive and their compilers just warn or
1099 have modes to disable the errors. */
1100 if (current_language
->la_language
== language_go
)
1101 error (("%s"), msg
);
1103 warning (("%s"), msg
);
1106 if (op
== BINOP_RSH
)
1107 error_or_warning (_("right shift count is negative"));
1109 error_or_warning (_("left shift count is negative"));
1113 if (shift_count
>= type_length_bits (result_type
))
1115 /* In Go, shifting by large amounts is defined. Be silent and
1116 still return false, as the caller's error path does the right
1118 if (current_language
->la_language
!= language_go
)
1120 if (op
== BINOP_RSH
)
1121 warning (_("right shift count >= width of type"));
1123 warning (_("left shift count >= width of type"));
1131 /* Perform a binary operation on two operands which have reasonable
1132 representations as integers or floats. This includes booleans,
1133 characters, integers, or floats.
1134 Does not support addition and subtraction on pointers;
1135 use value_ptradd, value_ptrsub or value_ptrdiff for those operations. */
1137 static struct value
*
1138 scalar_binop (struct value
*arg1
, struct value
*arg2
, enum exp_opcode op
)
1141 struct type
*type1
, *type2
, *result_type
;
1143 arg1
= coerce_ref (arg1
);
1144 arg2
= coerce_ref (arg2
);
1146 type1
= check_typedef (value_type (arg1
));
1147 type2
= check_typedef (value_type (arg2
));
1149 if (type1
->code () == TYPE_CODE_COMPLEX
1150 || type2
->code () == TYPE_CODE_COMPLEX
)
1151 return complex_binop (arg1
, arg2
, op
);
1153 if ((!is_floating_value (arg1
)
1154 && !is_integral_type (type1
)
1155 && !is_fixed_point_type (type1
))
1156 || (!is_floating_value (arg2
)
1157 && !is_integral_type (type2
)
1158 && !is_fixed_point_type (type2
)))
1159 error (_("Argument to arithmetic operation not a number or boolean."));
1161 if (is_fixed_point_type (type1
) || is_fixed_point_type (type2
))
1162 return fixed_point_binop (arg1
, arg2
, op
);
1164 if (is_floating_type (type1
) || is_floating_type (type2
))
1166 result_type
= promotion_type (type1
, type2
);
1167 val
= allocate_value (result_type
);
1169 struct type
*eff_type_v1
, *eff_type_v2
;
1170 gdb::byte_vector v1
, v2
;
1171 v1
.resize (result_type
->length ());
1172 v2
.resize (result_type
->length ());
1174 value_args_as_target_float (arg1
, arg2
,
1175 v1
.data (), &eff_type_v1
,
1176 v2
.data (), &eff_type_v2
);
1177 target_float_binop (op
, v1
.data (), eff_type_v1
,
1178 v2
.data (), eff_type_v2
,
1179 value_contents_raw (val
).data (), result_type
);
1181 else if (type1
->code () == TYPE_CODE_BOOL
1182 || type2
->code () == TYPE_CODE_BOOL
)
1184 LONGEST v1
, v2
, v
= 0;
1186 v1
= value_as_long (arg1
);
1187 v2
= value_as_long (arg2
);
1191 case BINOP_BITWISE_AND
:
1195 case BINOP_BITWISE_IOR
:
1199 case BINOP_BITWISE_XOR
:
1207 case BINOP_NOTEQUAL
:
1212 error (_("Invalid operation on booleans."));
1215 result_type
= type1
;
1217 val
= allocate_value (result_type
);
1218 store_signed_integer (value_contents_raw (val
).data (),
1219 result_type
->length (),
1220 type_byte_order (result_type
),
1224 /* Integral operations here. */
1226 /* Determine type length of the result, and if the operation should
1227 be done unsigned. For exponentiation and shift operators,
1228 use the length and type of the left operand. Otherwise,
1229 use the signedness of the operand with the greater length.
1230 If both operands are of equal length, use unsigned operation
1231 if one of the operands is unsigned. */
1232 if (op
== BINOP_RSH
|| op
== BINOP_LSH
|| op
== BINOP_EXP
)
1233 result_type
= type1
;
1235 result_type
= promotion_type (type1
, type2
);
1237 if (result_type
->is_unsigned ())
1239 LONGEST v2_signed
= value_as_long (arg2
);
1240 ULONGEST v1
, v2
, v
= 0;
1242 v1
= (ULONGEST
) value_as_long (arg1
);
1243 v2
= (ULONGEST
) v2_signed
;
1264 error (_("Division by zero"));
1268 v
= uinteger_pow (v1
, v2_signed
);
1275 error (_("Division by zero"));
1279 /* Knuth 1.2.4, integer only. Note that unlike the C '%' op,
1280 v1 mod 0 has a defined value, v1. */
1288 /* Note floor(v1/v2) == v1/v2 for unsigned. */
1294 if (!check_valid_shift_count (op
, result_type
, type2
, v2
))
1301 if (!check_valid_shift_count (op
, result_type
, type2
, v2
))
1307 case BINOP_BITWISE_AND
:
1311 case BINOP_BITWISE_IOR
:
1315 case BINOP_BITWISE_XOR
:
1319 case BINOP_LOGICAL_AND
:
1323 case BINOP_LOGICAL_OR
:
1328 v
= v1
< v2
? v1
: v2
;
1332 v
= v1
> v2
? v1
: v2
;
1339 case BINOP_NOTEQUAL
:
1360 error (_("Invalid binary operation on numbers."));
1363 val
= allocate_value (result_type
);
1364 store_unsigned_integer (value_contents_raw (val
).data (),
1365 value_type (val
)->length (),
1366 type_byte_order (result_type
),
1371 LONGEST v1
, v2
, v
= 0;
1373 v1
= value_as_long (arg1
);
1374 v2
= value_as_long (arg2
);
1383 /* Avoid runtime error: signed integer overflow: \
1384 0 - -9223372036854775808 cannot be represented in type
1386 v
= (ULONGEST
)v1
- (ULONGEST
)v2
;
1398 error (_("Division by zero"));
1402 v
= integer_pow (v1
, v2
);
1409 error (_("Division by zero"));
1413 /* Knuth 1.2.4, integer only. Note that unlike the C '%' op,
1414 X mod 0 has a defined value, X. */
1422 /* Compute floor. */
1423 if (TRUNCATION_TOWARDS_ZERO
&& (v
< 0) && ((v1
% v2
) != 0))
1432 if (!check_valid_shift_count (op
, result_type
, type2
, v2
))
1436 /* Cast to unsigned to avoid undefined behavior on
1437 signed shift overflow (unless C++20 or later),
1438 which would crash GDB when built with UBSan.
1439 Note we don't warn on left signed shift overflow,
1440 because starting with C++20, that is actually
1441 defined behavior. Also, note GDB assumes 2's
1442 complement throughout. */
1443 v
= (ULONGEST
) v1
<< v2
;
1448 if (!check_valid_shift_count (op
, result_type
, type2
, v2
))
1450 /* Pretend the too-large shift was decomposed in a
1451 number of smaller shifts. An arithmetic signed
1452 right shift of a negative number always yields -1
1453 with such semantics. This is the right thing to
1454 do for Go, and we might as well do it for
1455 languages where it is undefined. Also, pretend a
1456 shift by a negative number was a shift by the
1457 negative number cast to unsigned, which is the
1458 same as shifting by a too-large number. */
1468 case BINOP_BITWISE_AND
:
1472 case BINOP_BITWISE_IOR
:
1476 case BINOP_BITWISE_XOR
:
1480 case BINOP_LOGICAL_AND
:
1484 case BINOP_LOGICAL_OR
:
1489 v
= v1
< v2
? v1
: v2
;
1493 v
= v1
> v2
? v1
: v2
;
1500 case BINOP_NOTEQUAL
:
1521 error (_("Invalid binary operation on numbers."));
1524 val
= allocate_value (result_type
);
1525 store_signed_integer (value_contents_raw (val
).data (),
1526 value_type (val
)->length (),
1527 type_byte_order (result_type
),
1535 /* Widen a scalar value SCALAR_VALUE to vector type VECTOR_TYPE by
1536 replicating SCALAR_VALUE for each element of the vector. Only scalar
1537 types that can be cast to the type of one element of the vector are
1538 acceptable. The newly created vector value is returned upon success,
1539 otherwise an error is thrown. */
1542 value_vector_widen (struct value
*scalar_value
, struct type
*vector_type
)
1544 /* Widen the scalar to a vector. */
1545 struct type
*eltype
, *scalar_type
;
1546 struct value
*elval
;
1547 LONGEST low_bound
, high_bound
;
1550 vector_type
= check_typedef (vector_type
);
1552 gdb_assert (vector_type
->code () == TYPE_CODE_ARRAY
1553 && vector_type
->is_vector ());
1555 if (!get_array_bounds (vector_type
, &low_bound
, &high_bound
))
1556 error (_("Could not determine the vector bounds"));
1558 eltype
= check_typedef (vector_type
->target_type ());
1559 elval
= value_cast (eltype
, scalar_value
);
1561 scalar_type
= check_typedef (value_type (scalar_value
));
1563 /* If we reduced the length of the scalar then check we didn't loose any
1565 if (eltype
->length () < scalar_type
->length ()
1566 && !value_equal (elval
, scalar_value
))
1567 error (_("conversion of scalar to vector involves truncation"));
1569 value
*val
= allocate_value (vector_type
);
1570 gdb::array_view
<gdb_byte
> val_contents
= value_contents_writeable (val
);
1571 int elt_len
= eltype
->length ();
1573 for (i
= 0; i
< high_bound
- low_bound
+ 1; i
++)
1574 /* Duplicate the contents of elval into the destination vector. */
1575 copy (value_contents_all (elval
),
1576 val_contents
.slice (i
* elt_len
, elt_len
));
1581 /* Performs a binary operation on two vector operands by calling scalar_binop
1582 for each pair of vector components. */
1584 static struct value
*
1585 vector_binop (struct value
*val1
, struct value
*val2
, enum exp_opcode op
)
1587 struct type
*type1
, *type2
, *eltype1
, *eltype2
;
1588 int t1_is_vec
, t2_is_vec
, elsize
, i
;
1589 LONGEST low_bound1
, high_bound1
, low_bound2
, high_bound2
;
1591 type1
= check_typedef (value_type (val1
));
1592 type2
= check_typedef (value_type (val2
));
1594 t1_is_vec
= (type1
->code () == TYPE_CODE_ARRAY
1595 && type1
->is_vector ()) ? 1 : 0;
1596 t2_is_vec
= (type2
->code () == TYPE_CODE_ARRAY
1597 && type2
->is_vector ()) ? 1 : 0;
1599 if (!t1_is_vec
|| !t2_is_vec
)
1600 error (_("Vector operations are only supported among vectors"));
1602 if (!get_array_bounds (type1
, &low_bound1
, &high_bound1
)
1603 || !get_array_bounds (type2
, &low_bound2
, &high_bound2
))
1604 error (_("Could not determine the vector bounds"));
1606 eltype1
= check_typedef (type1
->target_type ());
1607 eltype2
= check_typedef (type2
->target_type ());
1608 elsize
= eltype1
->length ();
1610 if (eltype1
->code () != eltype2
->code ()
1611 || elsize
!= eltype2
->length ()
1612 || eltype1
->is_unsigned () != eltype2
->is_unsigned ()
1613 || low_bound1
!= low_bound2
|| high_bound1
!= high_bound2
)
1614 error (_("Cannot perform operation on vectors with different types"));
1616 value
*val
= allocate_value (type1
);
1617 gdb::array_view
<gdb_byte
> val_contents
= value_contents_writeable (val
);
1618 scoped_value_mark mark
;
1619 for (i
= 0; i
< high_bound1
- low_bound1
+ 1; i
++)
1621 value
*tmp
= value_binop (value_subscript (val1
, i
),
1622 value_subscript (val2
, i
), op
);
1623 copy (value_contents_all (tmp
),
1624 val_contents
.slice (i
* elsize
, elsize
));
1630 /* Perform a binary operation on two operands. */
1633 value_binop (struct value
*arg1
, struct value
*arg2
, enum exp_opcode op
)
1636 struct type
*type1
= check_typedef (value_type (arg1
));
1637 struct type
*type2
= check_typedef (value_type (arg2
));
1638 int t1_is_vec
= (type1
->code () == TYPE_CODE_ARRAY
1639 && type1
->is_vector ());
1640 int t2_is_vec
= (type2
->code () == TYPE_CODE_ARRAY
1641 && type2
->is_vector ());
1643 if (!t1_is_vec
&& !t2_is_vec
)
1644 val
= scalar_binop (arg1
, arg2
, op
);
1645 else if (t1_is_vec
&& t2_is_vec
)
1646 val
= vector_binop (arg1
, arg2
, op
);
1649 /* Widen the scalar operand to a vector. */
1650 struct value
**v
= t1_is_vec
? &arg2
: &arg1
;
1651 struct type
*t
= t1_is_vec
? type2
: type1
;
1653 if (t
->code () != TYPE_CODE_FLT
1654 && t
->code () != TYPE_CODE_DECFLOAT
1655 && !is_integral_type (t
))
1656 error (_("Argument to operation not a number or boolean."));
1658 /* Replicate the scalar value to make a vector value. */
1659 *v
= value_vector_widen (*v
, t1_is_vec
? type1
: type2
);
1661 val
= vector_binop (arg1
, arg2
, op
);
1670 value_logical_not (struct value
*arg1
)
1676 arg1
= coerce_array (arg1
);
1677 type1
= check_typedef (value_type (arg1
));
1679 if (is_floating_value (arg1
))
1680 return target_float_is_zero (value_contents (arg1
).data (), type1
);
1682 len
= type1
->length ();
1683 p
= value_contents (arg1
).data ();
1694 /* Perform a comparison on two string values (whose content are not
1695 necessarily null terminated) based on their length. */
1698 value_strcmp (struct value
*arg1
, struct value
*arg2
)
1700 int len1
= value_type (arg1
)->length ();
1701 int len2
= value_type (arg2
)->length ();
1702 const gdb_byte
*s1
= value_contents (arg1
).data ();
1703 const gdb_byte
*s2
= value_contents (arg2
).data ();
1704 int i
, len
= len1
< len2
? len1
: len2
;
1706 for (i
= 0; i
< len
; i
++)
1710 else if (s1
[i
] > s2
[i
])
1718 else if (len1
> len2
)
1724 /* Simulate the C operator == by returning a 1
1725 iff ARG1 and ARG2 have equal contents. */
1728 value_equal (struct value
*arg1
, struct value
*arg2
)
1733 struct type
*type1
, *type2
;
1734 enum type_code code1
;
1735 enum type_code code2
;
1736 int is_int1
, is_int2
;
1738 arg1
= coerce_array (arg1
);
1739 arg2
= coerce_array (arg2
);
1741 type1
= check_typedef (value_type (arg1
));
1742 type2
= check_typedef (value_type (arg2
));
1743 code1
= type1
->code ();
1744 code2
= type2
->code ();
1745 is_int1
= is_integral_type (type1
);
1746 is_int2
= is_integral_type (type2
);
1748 if (is_int1
&& is_int2
)
1749 return longest_to_int (value_as_long (value_binop (arg1
, arg2
,
1751 else if ((is_floating_value (arg1
) || is_int1
)
1752 && (is_floating_value (arg2
) || is_int2
))
1754 struct type
*eff_type_v1
, *eff_type_v2
;
1755 gdb::byte_vector v1
, v2
;
1756 v1
.resize (std::max (type1
->length (), type2
->length ()));
1757 v2
.resize (std::max (type1
->length (), type2
->length ()));
1759 value_args_as_target_float (arg1
, arg2
,
1760 v1
.data (), &eff_type_v1
,
1761 v2
.data (), &eff_type_v2
);
1763 return target_float_compare (v1
.data (), eff_type_v1
,
1764 v2
.data (), eff_type_v2
) == 0;
1767 /* FIXME: Need to promote to either CORE_ADDR or LONGEST, whichever
1769 else if (code1
== TYPE_CODE_PTR
&& is_int2
)
1770 return value_as_address (arg1
) == (CORE_ADDR
) value_as_long (arg2
);
1771 else if (code2
== TYPE_CODE_PTR
&& is_int1
)
1772 return (CORE_ADDR
) value_as_long (arg1
) == value_as_address (arg2
);
1774 else if (code1
== code2
1775 && ((len
= (int) type1
->length ())
1776 == (int) type2
->length ()))
1778 p1
= value_contents (arg1
).data ();
1779 p2
= value_contents (arg2
).data ();
1787 else if (code1
== TYPE_CODE_STRING
&& code2
== TYPE_CODE_STRING
)
1789 return value_strcmp (arg1
, arg2
) == 0;
1792 error (_("Invalid type combination in equality test."));
1795 /* Compare values based on their raw contents. Useful for arrays since
1796 value_equal coerces them to pointers, thus comparing just the address
1797 of the array instead of its contents. */
1800 value_equal_contents (struct value
*arg1
, struct value
*arg2
)
1802 struct type
*type1
, *type2
;
1804 type1
= check_typedef (value_type (arg1
));
1805 type2
= check_typedef (value_type (arg2
));
1807 return (type1
->code () == type2
->code ()
1808 && type1
->length () == type2
->length ()
1809 && memcmp (value_contents (arg1
).data (),
1810 value_contents (arg2
).data (),
1811 type1
->length ()) == 0);
1814 /* Simulate the C operator < by returning 1
1815 iff ARG1's contents are less than ARG2's. */
1818 value_less (struct value
*arg1
, struct value
*arg2
)
1820 enum type_code code1
;
1821 enum type_code code2
;
1822 struct type
*type1
, *type2
;
1823 int is_int1
, is_int2
;
1825 arg1
= coerce_array (arg1
);
1826 arg2
= coerce_array (arg2
);
1828 type1
= check_typedef (value_type (arg1
));
1829 type2
= check_typedef (value_type (arg2
));
1830 code1
= type1
->code ();
1831 code2
= type2
->code ();
1832 is_int1
= is_integral_type (type1
);
1833 is_int2
= is_integral_type (type2
);
1835 if ((is_int1
&& is_int2
)
1836 || (is_fixed_point_type (type1
) && is_fixed_point_type (type2
)))
1837 return longest_to_int (value_as_long (value_binop (arg1
, arg2
,
1839 else if ((is_floating_value (arg1
) || is_int1
)
1840 && (is_floating_value (arg2
) || is_int2
))
1842 struct type
*eff_type_v1
, *eff_type_v2
;
1843 gdb::byte_vector v1
, v2
;
1844 v1
.resize (std::max (type1
->length (), type2
->length ()));
1845 v2
.resize (std::max (type1
->length (), type2
->length ()));
1847 value_args_as_target_float (arg1
, arg2
,
1848 v1
.data (), &eff_type_v1
,
1849 v2
.data (), &eff_type_v2
);
1851 return target_float_compare (v1
.data (), eff_type_v1
,
1852 v2
.data (), eff_type_v2
) == -1;
1854 else if (code1
== TYPE_CODE_PTR
&& code2
== TYPE_CODE_PTR
)
1855 return value_as_address (arg1
) < value_as_address (arg2
);
1857 /* FIXME: Need to promote to either CORE_ADDR or LONGEST, whichever
1859 else if (code1
== TYPE_CODE_PTR
&& is_int2
)
1860 return value_as_address (arg1
) < (CORE_ADDR
) value_as_long (arg2
);
1861 else if (code2
== TYPE_CODE_PTR
&& is_int1
)
1862 return (CORE_ADDR
) value_as_long (arg1
) < value_as_address (arg2
);
1863 else if (code1
== TYPE_CODE_STRING
&& code2
== TYPE_CODE_STRING
)
1864 return value_strcmp (arg1
, arg2
) < 0;
1867 error (_("Invalid type combination in ordering comparison."));
1872 /* The unary operators +, - and ~. They free the argument ARG1. */
1875 value_pos (struct value
*arg1
)
1879 arg1
= coerce_ref (arg1
);
1880 type
= check_typedef (value_type (arg1
));
1882 if (is_integral_type (type
) || is_floating_value (arg1
)
1883 || (type
->code () == TYPE_CODE_ARRAY
&& type
->is_vector ())
1884 || type
->code () == TYPE_CODE_COMPLEX
)
1885 return value_from_contents (type
, value_contents (arg1
).data ());
1887 error (_("Argument to positive operation not a number."));
1891 value_neg (struct value
*arg1
)
1895 arg1
= coerce_ref (arg1
);
1896 type
= check_typedef (value_type (arg1
));
1898 if (is_integral_type (type
) || is_floating_type (type
))
1899 return value_binop (value_from_longest (type
, 0), arg1
, BINOP_SUB
);
1900 else if (is_fixed_point_type (type
))
1901 return value_binop (value_zero (type
, not_lval
), arg1
, BINOP_SUB
);
1902 else if (type
->code () == TYPE_CODE_ARRAY
&& type
->is_vector ())
1904 struct value
*val
= allocate_value (type
);
1905 struct type
*eltype
= check_typedef (type
->target_type ());
1907 LONGEST low_bound
, high_bound
;
1909 if (!get_array_bounds (type
, &low_bound
, &high_bound
))
1910 error (_("Could not determine the vector bounds"));
1912 gdb::array_view
<gdb_byte
> val_contents
= value_contents_writeable (val
);
1913 int elt_len
= eltype
->length ();
1915 for (i
= 0; i
< high_bound
- low_bound
+ 1; i
++)
1917 value
*tmp
= value_neg (value_subscript (arg1
, i
));
1918 copy (value_contents_all (tmp
),
1919 val_contents
.slice (i
* elt_len
, elt_len
));
1923 else if (type
->code () == TYPE_CODE_COMPLEX
)
1925 struct value
*real
= value_real_part (arg1
);
1926 struct value
*imag
= value_imaginary_part (arg1
);
1928 real
= value_neg (real
);
1929 imag
= value_neg (imag
);
1930 return value_literal_complex (real
, imag
, type
);
1933 error (_("Argument to negate operation not a number."));
1937 value_complement (struct value
*arg1
)
1942 arg1
= coerce_ref (arg1
);
1943 type
= check_typedef (value_type (arg1
));
1945 if (is_integral_type (type
))
1946 val
= value_from_longest (type
, ~value_as_long (arg1
));
1947 else if (type
->code () == TYPE_CODE_ARRAY
&& type
->is_vector ())
1949 struct type
*eltype
= check_typedef (type
->target_type ());
1951 LONGEST low_bound
, high_bound
;
1953 if (!get_array_bounds (type
, &low_bound
, &high_bound
))
1954 error (_("Could not determine the vector bounds"));
1956 val
= allocate_value (type
);
1957 gdb::array_view
<gdb_byte
> val_contents
= value_contents_writeable (val
);
1958 int elt_len
= eltype
->length ();
1960 for (i
= 0; i
< high_bound
- low_bound
+ 1; i
++)
1962 value
*tmp
= value_complement (value_subscript (arg1
, i
));
1963 copy (value_contents_all (tmp
),
1964 val_contents
.slice (i
* elt_len
, elt_len
));
1967 else if (type
->code () == TYPE_CODE_COMPLEX
)
1969 /* GCC has an extension that treats ~complex as the complex
1971 struct value
*real
= value_real_part (arg1
);
1972 struct value
*imag
= value_imaginary_part (arg1
);
1974 imag
= value_neg (imag
);
1975 return value_literal_complex (real
, imag
, type
);
1978 error (_("Argument to complement operation not an integer, boolean."));
1983 /* The INDEX'th bit of SET value whose value_type is TYPE,
1984 and whose value_contents is valaddr.
1985 Return -1 if out of range, -2 other error. */
1988 value_bit_index (struct type
*type
, const gdb_byte
*valaddr
, int index
)
1990 struct gdbarch
*gdbarch
= type
->arch ();
1991 LONGEST low_bound
, high_bound
;
1994 struct type
*range
= type
->index_type ();
1996 if (!get_discrete_bounds (range
, &low_bound
, &high_bound
))
1998 if (index
< low_bound
|| index
> high_bound
)
2000 rel_index
= index
- low_bound
;
2001 word
= extract_unsigned_integer (valaddr
+ (rel_index
/ TARGET_CHAR_BIT
), 1,
2002 type_byte_order (type
));
2003 rel_index
%= TARGET_CHAR_BIT
;
2004 if (gdbarch_byte_order (gdbarch
) == BFD_ENDIAN_BIG
)
2005 rel_index
= TARGET_CHAR_BIT
- 1 - rel_index
;
2006 return (word
>> rel_index
) & 1;
2010 value_in (struct value
*element
, struct value
*set
)
2013 struct type
*settype
= check_typedef (value_type (set
));
2014 struct type
*eltype
= check_typedef (value_type (element
));
2016 if (eltype
->code () == TYPE_CODE_RANGE
)
2017 eltype
= eltype
->target_type ();
2018 if (settype
->code () != TYPE_CODE_SET
)
2019 error (_("Second argument of 'IN' has wrong type"));
2020 if (eltype
->code () != TYPE_CODE_INT
2021 && eltype
->code () != TYPE_CODE_CHAR
2022 && eltype
->code () != TYPE_CODE_ENUM
2023 && eltype
->code () != TYPE_CODE_BOOL
)
2024 error (_("First argument of 'IN' has wrong type"));
2025 member
= value_bit_index (settype
, value_contents (set
).data (),
2026 value_as_long (element
));
2028 error (_("First argument of 'IN' not in range"));