1 /* Target-dependent code for GDB, the GNU debugger.
2 Copyright 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997
3 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
29 #include "xcoffsolib.h"
31 extern struct obstack frame_cache_obstack
;
35 /* Nonzero if we just simulated a single step break. */
38 /* Breakpoint shadows for the single step instructions will be kept here. */
40 static struct sstep_breaks
{
41 /* Address, or 0 if this is not in use. */
43 /* Shadow contents. */
47 /* Hook for determining the TOC address when calling functions in the
48 inferior under AIX. The initialization code in rs6000-nat.c sets
49 this hook to point to find_toc_address. */
51 CORE_ADDR (*find_toc_address_hook
) PARAMS ((CORE_ADDR
)) = NULL
;
53 /* Static function prototypes */
55 static CORE_ADDR branch_dest
PARAMS ((int opcode
, int instr
, CORE_ADDR pc
,
58 static void frame_get_cache_fsr
PARAMS ((struct frame_info
*fi
,
59 struct rs6000_framedata
*fdatap
));
61 static void pop_dummy_frame
PARAMS ((void));
63 /* Calculate the destination of a branch/jump. Return -1 if not a branch. */
66 branch_dest (opcode
, instr
, pc
, safety
)
77 absolute
= (int) ((instr
>> 1) & 1);
81 immediate
= ((instr
& ~3) << 6) >> 6; /* br unconditional */
85 dest
= pc
+ immediate
;
89 immediate
= ((instr
& ~3) << 16) >> 16; /* br conditional */
93 dest
= pc
+ immediate
;
97 ext_op
= (instr
>>1) & 0x3ff;
99 if (ext_op
== 16) /* br conditional register */
101 dest
= read_register (LR_REGNUM
) & ~3;
103 /* If we are about to return from a signal handler, dest is
104 something like 0x3c90. The current frame is a signal handler
105 caller frame, upon completion of the sigreturn system call
106 execution will return to the saved PC in the frame. */
107 if (dest
< TEXT_SEGMENT_BASE
)
109 struct frame_info
*fi
;
111 fi
= get_current_frame ();
113 dest
= read_memory_integer (fi
->frame
+ SIG_FRAME_PC_OFFSET
,
118 else if (ext_op
== 528) /* br cond to count reg */
120 dest
= read_register (CTR_REGNUM
) & ~3;
122 /* If we are about to execute a system call, dest is something
123 like 0x22fc or 0x3b00. Upon completion the system call
124 will return to the address in the link register. */
125 if (dest
< TEXT_SEGMENT_BASE
)
126 dest
= read_register (LR_REGNUM
) & ~3;
133 return (dest
< TEXT_SEGMENT_BASE
) ? safety
: dest
;
138 /* AIX does not support PT_STEP. Simulate it. */
142 enum target_signal signal
;
144 #define INSNLEN(OPCODE) 4
146 static char le_breakp
[] = LITTLE_BREAKPOINT
;
147 static char be_breakp
[] = BIG_BREAKPOINT
;
148 char *breakp
= TARGET_BYTE_ORDER
== BIG_ENDIAN
? be_breakp
: le_breakp
;
157 insn
= read_memory_integer (loc
, 4);
159 breaks
[0] = loc
+ INSNLEN(insn
);
161 breaks
[1] = branch_dest (opcode
, insn
, loc
, breaks
[0]);
163 /* Don't put two breakpoints on the same address. */
164 if (breaks
[1] == breaks
[0])
167 stepBreaks
[1].address
= 0;
169 for (ii
=0; ii
< 2; ++ii
) {
171 /* ignore invalid breakpoint. */
172 if ( breaks
[ii
] == -1)
175 read_memory (breaks
[ii
], stepBreaks
[ii
].data
, 4);
177 write_memory (breaks
[ii
], breakp
, 4);
178 stepBreaks
[ii
].address
= breaks
[ii
];
184 /* remove step breakpoints. */
185 for (ii
=0; ii
< 2; ++ii
)
186 if (stepBreaks
[ii
].address
!= 0)
188 (stepBreaks
[ii
].address
, stepBreaks
[ii
].data
, 4);
192 errno
= 0; /* FIXME, don't ignore errors! */
193 /* What errors? {read,write}_memory call error(). */
197 /* return pc value after skipping a function prologue and also return
198 information about a function frame.
200 in struct rs6000_frameinfo fdata:
201 - frameless is TRUE, if function does not have a frame.
202 - nosavedpc is TRUE, if function does not save %pc value in its frame.
203 - offset is the number of bytes used in the frame to save registers.
204 - saved_gpr is the number of the first saved gpr.
205 - saved_fpr is the number of the first saved fpr.
206 - alloca_reg is the number of the register used for alloca() handling.
208 - gpr_offset is the offset of the saved gprs
209 - fpr_offset is the offset of the saved fprs
210 - lr_offset is the offset of the saved lr
211 - cr_offset is the offset of the saved cr
214 #define SIGNED_SHORT(x) \
215 ((sizeof (short) == 2) \
216 ? ((int)(short)(x)) \
217 : ((int)((((x) & 0xffff) ^ 0x8000) - 0x8000)))
219 #define GET_SRC_REG(x) (((x) >> 21) & 0x1f)
222 skip_prologue (pc
, fdata
)
224 struct rs6000_framedata
*fdata
;
226 CORE_ADDR orig_pc
= pc
;
234 int minimal_toc_loaded
= 0;
235 static struct rs6000_framedata zero_frame
;
238 fdata
->saved_gpr
= -1;
239 fdata
->saved_fpr
= -1;
240 fdata
->alloca_reg
= -1;
241 fdata
->frameless
= 1;
242 fdata
->nosavedpc
= 1;
244 if (target_read_memory (pc
, buf
, 4))
245 return pc
; /* Can't access it -- assume no prologue. */
247 /* Assume that subsequent fetches can fail with low probability. */
252 op
= read_memory_integer (pc
, 4);
254 if ((op
& 0xfc1fffff) == 0x7c0802a6) { /* mflr Rx */
255 lr_reg
= (op
& 0x03e00000) | 0x90010000;
258 } else if ((op
& 0xfc1fffff) == 0x7c000026) { /* mfcr Rx */
259 cr_reg
= (op
& 0x03e00000) | 0x90010000;
262 } else if ((op
& 0xfc1f0000) == 0xd8010000) { /* stfd Rx,NUM(r1) */
263 reg
= GET_SRC_REG (op
);
264 if (fdata
->saved_fpr
== -1 || fdata
->saved_fpr
> reg
) {
265 fdata
->saved_fpr
= reg
;
266 fdata
->fpr_offset
= SIGNED_SHORT (op
) + offset
;
270 } else if (((op
& 0xfc1f0000) == 0xbc010000) || /* stm Rx, NUM(r1) */
271 ((op
& 0xfc1f0000) == 0x90010000 && /* st rx,NUM(r1), rx >= r13 */
272 (op
& 0x03e00000) >= 0x01a00000)) {
274 reg
= GET_SRC_REG (op
);
275 if (fdata
->saved_gpr
== -1 || fdata
->saved_gpr
> reg
) {
276 fdata
->saved_gpr
= reg
;
277 fdata
->gpr_offset
= SIGNED_SHORT (op
) + offset
;
281 } else if ((op
& 0xffff0000) == 0x3c000000) { /* addis 0,0,NUM, used for >= 32k frames */
282 fdata
->offset
= (op
& 0x0000ffff) << 16;
283 fdata
->frameless
= 0;
286 } else if ((op
& 0xffff0000) == 0x60000000) { /* ori 0,0,NUM, 2nd half of >= 32k frames */
287 fdata
->offset
|= (op
& 0x0000ffff);
288 fdata
->frameless
= 0;
291 } else if ((op
& 0xffff0000) == lr_reg
) { /* st Rx,NUM(r1) where Rx == lr */
292 fdata
->lr_offset
= SIGNED_SHORT (op
) + offset
;
293 fdata
->nosavedpc
= 0;
297 } else if ((op
& 0xffff0000) == cr_reg
) { /* st Rx,NUM(r1) where Rx == cr */
298 fdata
->cr_offset
= SIGNED_SHORT (op
) + offset
;
302 } else if (op
== 0x48000005) { /* bl .+4 used in -mrelocatable */
305 } else if (op
== 0x48000004) { /* b .+4 (xlc) */
308 } else if (((op
& 0xffff0000) == 0x801e0000 || /* lwz 0,NUM(r30), used in V.4 -mrelocatable */
309 op
== 0x7fc0f214) && /* add r30,r0,r30, used in V.4 -mrelocatable */
310 lr_reg
== 0x901e0000) {
313 } else if ((op
& 0xffff0000) == 0x3fc00000 || /* addis 30,0,foo@ha, used in V.4 -mminimal-toc */
314 (op
& 0xffff0000) == 0x3bde0000) { /* addi 30,30,foo@l */
317 } else if ((op
& 0xfc000000) == 0x48000000) { /* bl foo, to save fprs??? */
319 fdata
->frameless
= 0;
320 /* Don't skip over the subroutine call if it is not within the first
321 three instructions of the prologue. */
322 if ((pc
- orig_pc
) > 8)
325 op
= read_memory_integer (pc
+4, 4);
327 /* At this point, make sure this is not a trampoline function
328 (a function that simply calls another functions, and nothing else).
329 If the next is not a nop, this branch was part of the function
332 if (op
== 0x4def7b82 || op
== 0) /* crorc 15, 15, 15 */
333 break; /* don't skip over this branch */
337 /* update stack pointer */
338 } else if ((op
& 0xffff0000) == 0x94210000) { /* stu r1,NUM(r1) */
339 fdata
->frameless
= 0;
340 fdata
->offset
= SIGNED_SHORT (op
);
341 offset
= fdata
->offset
;
344 } else if (op
== 0x7c21016e) { /* stwux 1,1,0 */
345 fdata
->frameless
= 0;
346 offset
= fdata
->offset
;
349 /* Load up minimal toc pointer */
350 } else if ((op
>> 22) == 0x20f
351 && ! minimal_toc_loaded
) { /* l r31,... or l r30,... */
352 minimal_toc_loaded
= 1;
355 /* store parameters in stack */
356 } else if ((op
& 0xfc1f0000) == 0x90010000 || /* st rx,NUM(r1) */
357 (op
& 0xfc1f0000) == 0xd8010000 || /* stfd Rx,NUM(r1) */
358 (op
& 0xfc1f0000) == 0xfc010000) { /* frsp, fp?,NUM(r1) */
361 /* store parameters in stack via frame pointer */
363 ((op
& 0xfc1f0000) == 0x901f0000 || /* st rx,NUM(r1) */
364 (op
& 0xfc1f0000) == 0xd81f0000 || /* stfd Rx,NUM(r1) */
365 (op
& 0xfc1f0000) == 0xfc1f0000)) { /* frsp, fp?,NUM(r1) */
368 /* Set up frame pointer */
369 } else if (op
== 0x603f0000 /* oril r31, r1, 0x0 */
370 || op
== 0x7c3f0b78) { /* mr r31, r1 */
371 fdata
->frameless
= 0;
373 fdata
->alloca_reg
= 31;
376 /* Another way to set up the frame pointer. */
377 } else if ((op
& 0xfc1fffff) == 0x38010000) { /* addi rX, r1, 0x0 */
378 fdata
->frameless
= 0;
380 fdata
->alloca_reg
= (op
& ~0x38010000) >> 21;
389 /* I have problems with skipping over __main() that I need to address
390 * sometime. Previously, I used to use misc_function_vector which
391 * didn't work as well as I wanted to be. -MGO */
393 /* If the first thing after skipping a prolog is a branch to a function,
394 this might be a call to an initializer in main(), introduced by gcc2.
395 We'd like to skip over it as well. Fortunately, xlc does some extra
396 work before calling a function right after a prologue, thus we can
397 single out such gcc2 behaviour. */
400 if ((op
& 0xfc000001) == 0x48000001) { /* bl foo, an initializer function? */
401 op
= read_memory_integer (pc
+4, 4);
403 if (op
== 0x4def7b82) { /* cror 0xf, 0xf, 0xf (nop) */
405 /* check and see if we are in main. If so, skip over this initializer
408 tmp
= find_pc_misc_function (pc
);
409 if (tmp
>= 0 && STREQ (misc_function_vector
[tmp
].name
, "main"))
415 fdata
->offset
= - fdata
->offset
;
420 /*************************************************************************
421 Support for creating pushind a dummy frame into the stack, and popping
423 *************************************************************************/
425 /* The total size of dummy frame is 436, which is;
430 and 24 extra bytes for the callee's link area. The last 24 bytes
431 for the link area might not be necessary, since it will be taken
432 care of by push_arguments(). */
434 #define DUMMY_FRAME_SIZE 436
436 #define DUMMY_FRAME_ADDR_SIZE 10
438 /* Make sure you initialize these in somewhere, in case gdb gives up what it
439 was debugging and starts debugging something else. FIXMEibm */
441 static int dummy_frame_count
= 0;
442 static int dummy_frame_size
= 0;
443 static CORE_ADDR
*dummy_frame_addr
= 0;
445 extern int stop_stack_dummy
;
447 /* push a dummy frame into stack, save all register. Currently we are saving
448 only gpr's and fpr's, which is not good enough! FIXMEmgo */
455 /* Same thing, target byte order. */
460 /* Same thing, target byte order. */
463 /* Needed to figure out where to save the dummy link area.
464 FIXME: There should be an easier way to do this, no? tiemann 9/9/95. */
465 struct rs6000_framedata fdata
;
469 target_fetch_registers (-1);
471 if (dummy_frame_count
>= dummy_frame_size
) {
472 dummy_frame_size
+= DUMMY_FRAME_ADDR_SIZE
;
473 if (dummy_frame_addr
)
474 dummy_frame_addr
= (CORE_ADDR
*) xrealloc
475 (dummy_frame_addr
, sizeof(CORE_ADDR
) * (dummy_frame_size
));
477 dummy_frame_addr
= (CORE_ADDR
*)
478 xmalloc (sizeof(CORE_ADDR
) * (dummy_frame_size
));
481 sp
= read_register(SP_REGNUM
);
482 pc
= read_register(PC_REGNUM
);
483 store_address (pc_targ
, 4, pc
);
485 (void) skip_prologue (get_pc_function_start (pc
) + FUNCTION_START_OFFSET
, &fdata
);
487 dummy_frame_addr
[dummy_frame_count
++] = sp
;
489 /* Be careful! If the stack pointer is not decremented first, then kernel
490 thinks he is free to use the space underneath it. And kernel actually
491 uses that area for IPC purposes when executing ptrace(2) calls. So
492 before writing register values into the new frame, decrement and update
493 %sp first in order to secure your frame. */
495 /* FIXME: We don't check if the stack really has this much space.
496 This is a problem on the ppc simulator (which only grants one page
497 (4096 bytes) by default. */
499 write_register (SP_REGNUM
, sp
-DUMMY_FRAME_SIZE
);
501 /* gdb relies on the state of current_frame. We'd better update it,
502 otherwise things like do_registers_info() wouldn't work properly! */
504 flush_cached_frames ();
506 /* save program counter in link register's space. */
507 write_memory (sp
+ (fdata
.lr_offset
? fdata
.lr_offset
: DEFAULT_LR_SAVE
),
510 /* save all floating point and general purpose registers here. */
513 for (ii
= 0; ii
< 32; ++ii
)
514 write_memory (sp
-8-(ii
*8), ®isters
[REGISTER_BYTE (31-ii
+FP0_REGNUM
)], 8);
517 for (ii
=1; ii
<=32; ++ii
)
518 write_memory (sp
-256-(ii
*4), ®isters
[REGISTER_BYTE (32-ii
)], 4);
520 /* so far, 32*2 + 32 words = 384 bytes have been written.
521 7 extra registers in our register set: pc, ps, cnd, lr, cnt, xer, mq */
523 for (ii
=1; ii
<= (LAST_SP_REGNUM
-FIRST_SP_REGNUM
+1); ++ii
) {
524 write_memory (sp
-384-(ii
*4),
525 ®isters
[REGISTER_BYTE (FPLAST_REGNUM
+ ii
)], 4);
528 /* Save sp or so called back chain right here. */
529 store_address (sp_targ
, 4, sp
);
530 write_memory (sp
-DUMMY_FRAME_SIZE
, sp_targ
, 4);
531 sp
-= DUMMY_FRAME_SIZE
;
533 /* And finally, this is the back chain. */
534 write_memory (sp
+8, pc_targ
, 4);
538 /* Pop a dummy frame.
540 In rs6000 when we push a dummy frame, we save all of the registers. This
541 is usually done before user calls a function explicitly.
543 After a dummy frame is pushed, some instructions are copied into stack,
544 and stack pointer is decremented even more. Since we don't have a frame
545 pointer to get back to the parent frame of the dummy, we start having
546 trouble poping it. Therefore, we keep a dummy frame stack, keeping
547 addresses of dummy frames as such. When poping happens and when we
548 detect that was a dummy frame, we pop it back to its parent by using
549 dummy frame stack (`dummy_frame_addr' array).
551 FIXME: This whole concept is broken. You should be able to detect
552 a dummy stack frame *on the user's stack itself*. When you do,
553 then you know the format of that stack frame -- including its
554 saved SP register! There should *not* be a separate stack in the
555 GDB process that keeps track of these dummy frames! -- gnu@cygnus.com Aug92
563 sp
= dummy_frame_addr
[--dummy_frame_count
];
565 /* restore all fpr's. */
566 for (ii
= 1; ii
<= 32; ++ii
)
567 read_memory (sp
-(ii
*8), ®isters
[REGISTER_BYTE (32-ii
+FP0_REGNUM
)], 8);
569 /* restore all gpr's */
570 for (ii
=1; ii
<= 32; ++ii
) {
571 read_memory (sp
-256-(ii
*4), ®isters
[REGISTER_BYTE (32-ii
)], 4);
574 /* restore the rest of the registers. */
575 for (ii
=1; ii
<=(LAST_SP_REGNUM
-FIRST_SP_REGNUM
+1); ++ii
)
576 read_memory (sp
-384-(ii
*4),
577 ®isters
[REGISTER_BYTE (FPLAST_REGNUM
+ ii
)], 4);
579 read_memory (sp
-(DUMMY_FRAME_SIZE
-8),
580 ®isters
[REGISTER_BYTE(PC_REGNUM
)], 4);
582 /* when a dummy frame was being pushed, we had to decrement %sp first, in
583 order to secure astack space. Thus, saved %sp (or %r1) value, is not the
584 one we should restore. Change it with the one we need. */
586 *(int*)®isters
[REGISTER_BYTE(FP_REGNUM
)] = sp
;
588 /* Now we can restore all registers. */
590 target_store_registers (-1);
592 flush_cached_frames ();
596 /* pop the innermost frame, go back to the caller. */
601 CORE_ADDR pc
, lr
, sp
, prev_sp
; /* %pc, %lr, %sp */
602 struct rs6000_framedata fdata
;
603 struct frame_info
*frame
= get_current_frame ();
607 sp
= FRAME_FP (frame
);
609 if (stop_stack_dummy
&& dummy_frame_count
) {
614 /* Make sure that all registers are valid. */
615 read_register_bytes (0, NULL
, REGISTER_BYTES
);
617 /* figure out previous %pc value. If the function is frameless, it is
618 still in the link register, otherwise walk the frames and retrieve the
619 saved %pc value in the previous frame. */
621 addr
= get_pc_function_start (frame
->pc
) + FUNCTION_START_OFFSET
;
622 (void) skip_prologue (addr
, &fdata
);
627 prev_sp
= read_memory_integer (sp
, 4);
628 if (fdata
.lr_offset
== 0)
629 lr
= read_register (LR_REGNUM
);
631 lr
= read_memory_integer (prev_sp
+ fdata
.lr_offset
, 4);
633 /* reset %pc value. */
634 write_register (PC_REGNUM
, lr
);
636 /* reset register values if any was saved earlier. */
637 addr
= prev_sp
- fdata
.offset
;
639 if (fdata
.saved_gpr
!= -1)
640 for (ii
= fdata
.saved_gpr
; ii
<= 31; ++ii
) {
641 read_memory (addr
, ®isters
[REGISTER_BYTE (ii
)], 4);
645 if (fdata
.saved_fpr
!= -1)
646 for (ii
= fdata
.saved_fpr
; ii
<= 31; ++ii
) {
647 read_memory (addr
, ®isters
[REGISTER_BYTE (ii
+FP0_REGNUM
)], 8);
651 write_register (SP_REGNUM
, prev_sp
);
652 target_store_registers (-1);
653 flush_cached_frames ();
656 /* fixup the call sequence of a dummy function, with the real function address.
657 its argumets will be passed by gdb. */
660 rs6000_fix_call_dummy (dummyname
, pc
, fun
, nargs
, args
, type
, gcc_p
)
669 #define TOC_ADDR_OFFSET 20
670 #define TARGET_ADDR_OFFSET 28
673 CORE_ADDR target_addr
;
675 if (find_toc_address_hook
!= NULL
)
679 tocvalue
= (*find_toc_address_hook
) (fun
);
680 ii
= *(int*)((char*)dummyname
+ TOC_ADDR_OFFSET
);
681 ii
= (ii
& 0xffff0000) | (tocvalue
>> 16);
682 *(int*)((char*)dummyname
+ TOC_ADDR_OFFSET
) = ii
;
684 ii
= *(int*)((char*)dummyname
+ TOC_ADDR_OFFSET
+4);
685 ii
= (ii
& 0xffff0000) | (tocvalue
& 0x0000ffff);
686 *(int*)((char*)dummyname
+ TOC_ADDR_OFFSET
+4) = ii
;
690 ii
= *(int*)((char*)dummyname
+ TARGET_ADDR_OFFSET
);
691 ii
= (ii
& 0xffff0000) | (target_addr
>> 16);
692 *(int*)((char*)dummyname
+ TARGET_ADDR_OFFSET
) = ii
;
694 ii
= *(int*)((char*)dummyname
+ TARGET_ADDR_OFFSET
+4);
695 ii
= (ii
& 0xffff0000) | (target_addr
& 0x0000ffff);
696 *(int*)((char*)dummyname
+ TARGET_ADDR_OFFSET
+4) = ii
;
699 /* Pass the arguments in either registers, or in the stack. In RS6000,
700 the first eight words of the argument list (that might be less than
701 eight parameters if some parameters occupy more than one word) are
702 passed in r3..r11 registers. float and double parameters are
703 passed in fpr's, in addition to that. Rest of the parameters if any
704 are passed in user stack. There might be cases in which half of the
705 parameter is copied into registers, the other half is pushed into
708 If the function is returning a structure, then the return address is passed
709 in r3, then the first 7 words of the parameters can be passed in registers,
713 push_arguments (nargs
, args
, sp
, struct_return
, struct_addr
)
718 CORE_ADDR struct_addr
;
722 int argno
; /* current argument number */
723 int argbytes
; /* current argument byte */
724 char tmp_buffer
[50];
725 int f_argno
= 0; /* current floating point argno */
731 if ( dummy_frame_count
<= 0)
732 printf_unfiltered ("FATAL ERROR -push_arguments()! frame not found!!\n");
734 /* The first eight words of ther arguments are passed in registers. Copy
737 If the function is returning a `struct', then the first word (which
738 will be passed in r3) is used for struct return address. In that
739 case we should advance one word and start from r4 register to copy
742 ii
= struct_return
? 1 : 0;
744 for (argno
=0, argbytes
=0; argno
< nargs
&& ii
<8; ++ii
) {
747 type
= check_typedef (VALUE_TYPE (arg
));
748 len
= TYPE_LENGTH (type
);
750 if (TYPE_CODE (type
) == TYPE_CODE_FLT
) {
752 /* floating point arguments are passed in fpr's, as well as gpr's.
753 There are 13 fpr's reserved for passing parameters. At this point
754 there is no way we would run out of them. */
758 "Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno
);
760 memcpy (®isters
[REGISTER_BYTE(FP0_REGNUM
+ 1 + f_argno
)], VALUE_CONTENTS (arg
),
767 /* Argument takes more than one register. */
768 while (argbytes
< len
) {
770 *(int*)®isters
[REGISTER_BYTE(ii
+3)] = 0;
771 memcpy (®isters
[REGISTER_BYTE(ii
+3)],
772 ((char*)VALUE_CONTENTS (arg
))+argbytes
,
773 (len
- argbytes
) > 4 ? 4 : len
- argbytes
);
777 goto ran_out_of_registers_for_arguments
;
782 else { /* Argument can fit in one register. No problem. */
783 *(int*)®isters
[REGISTER_BYTE(ii
+3)] = 0;
784 memcpy (®isters
[REGISTER_BYTE(ii
+3)], VALUE_CONTENTS (arg
), len
);
789 ran_out_of_registers_for_arguments
:
791 /* location for 8 parameters are always reserved. */
794 /* another six words for back chain, TOC register, link register, etc. */
797 /* if there are more arguments, allocate space for them in
798 the stack, then push them starting from the ninth one. */
800 if ((argno
< nargs
) || argbytes
) {
804 space
+= ((len
- argbytes
+ 3) & -4);
810 for (; jj
< nargs
; ++jj
) {
811 value_ptr val
= args
[jj
];
812 space
+= ((TYPE_LENGTH (VALUE_TYPE (val
))) + 3) & -4;
815 /* add location required for the rest of the parameters */
816 space
= (space
+ 7) & -8;
819 /* This is another instance we need to be concerned about securing our
820 stack space. If we write anything underneath %sp (r1), we might conflict
821 with the kernel who thinks he is free to use this area. So, update %sp
822 first before doing anything else. */
824 write_register (SP_REGNUM
, sp
);
826 /* if the last argument copied into the registers didn't fit there
827 completely, push the rest of it into stack. */
831 sp
+24+(ii
*4), ((char*)VALUE_CONTENTS (arg
))+argbytes
, len
- argbytes
);
833 ii
+= ((len
- argbytes
+ 3) & -4) / 4;
836 /* push the rest of the arguments into stack. */
837 for (; argno
< nargs
; ++argno
) {
840 type
= check_typedef (VALUE_TYPE (arg
));
841 len
= TYPE_LENGTH (type
);
844 /* float types should be passed in fpr's, as well as in the stack. */
845 if (TYPE_CODE (type
) == TYPE_CODE_FLT
&& f_argno
< 13) {
849 "Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno
);
851 memcpy (®isters
[REGISTER_BYTE(FP0_REGNUM
+ 1 + f_argno
)], VALUE_CONTENTS (arg
),
856 write_memory (sp
+24+(ii
*4), (char *) VALUE_CONTENTS (arg
), len
);
857 ii
+= ((len
+ 3) & -4) / 4;
861 /* Secure stack areas first, before doing anything else. */
862 write_register (SP_REGNUM
, sp
);
864 saved_sp
= dummy_frame_addr
[dummy_frame_count
- 1];
865 read_memory (saved_sp
, tmp_buffer
, 24);
866 write_memory (sp
, tmp_buffer
, 24);
868 /* set back chain properly */
869 store_address (tmp_buffer
, 4, saved_sp
);
870 write_memory (sp
, tmp_buffer
, 4);
872 target_store_registers (-1);
876 /* a given return value in `regbuf' with a type `valtype', extract and copy its
877 value into `valbuf' */
880 extract_return_value (valtype
, regbuf
, valbuf
)
881 struct type
*valtype
;
882 char regbuf
[REGISTER_BYTES
];
887 if (TYPE_CODE (valtype
) == TYPE_CODE_FLT
) {
890 /* floats and doubles are returned in fpr1. fpr's have a size of 8 bytes.
891 We need to truncate the return value into float size (4 byte) if
894 if (TYPE_LENGTH (valtype
) > 4) /* this is a double */
895 memcpy (valbuf
, ®buf
[REGISTER_BYTE (FP0_REGNUM
+ 1)],
896 TYPE_LENGTH (valtype
));
898 memcpy (&dd
, ®buf
[REGISTER_BYTE (FP0_REGNUM
+ 1)], 8);
900 memcpy (valbuf
, &ff
, sizeof(float));
904 /* return value is copied starting from r3. */
905 if (TARGET_BYTE_ORDER
== BIG_ENDIAN
906 && TYPE_LENGTH (valtype
) < REGISTER_RAW_SIZE (3))
907 offset
= REGISTER_RAW_SIZE (3) - TYPE_LENGTH (valtype
);
909 memcpy (valbuf
, regbuf
+ REGISTER_BYTE (3) + offset
,
910 TYPE_LENGTH (valtype
));
915 /* keep structure return address in this variable.
916 FIXME: This is a horrid kludge which should not be allowed to continue
917 living. This only allows a single nested call to a structure-returning
918 function. Come on, guys! -- gnu@cygnus.com, Aug 92 */
920 CORE_ADDR rs6000_struct_return_address
;
923 /* Indirect function calls use a piece of trampoline code to do context
924 switching, i.e. to set the new TOC table. Skip such code if we are on
925 its first instruction (as when we have single-stepped to here).
926 Also skip shared library trampoline code (which is different from
927 indirect function call trampolines).
928 Result is desired PC to step until, or NULL if we are not in
932 skip_trampoline_code (pc
)
935 register unsigned int ii
, op
;
936 CORE_ADDR solib_target_pc
;
938 static unsigned trampoline_code
[] = {
939 0x800b0000, /* l r0,0x0(r11) */
940 0x90410014, /* st r2,0x14(r1) */
941 0x7c0903a6, /* mtctr r0 */
942 0x804b0004, /* l r2,0x4(r11) */
943 0x816b0008, /* l r11,0x8(r11) */
944 0x4e800420, /* bctr */
949 /* If pc is in a shared library trampoline, return its target. */
950 solib_target_pc
= find_solib_trampoline_target (pc
);
952 return solib_target_pc
;
954 for (ii
=0; trampoline_code
[ii
]; ++ii
) {
955 op
= read_memory_integer (pc
+ (ii
*4), 4);
956 if (op
!= trampoline_code
[ii
])
959 ii
= read_register (11); /* r11 holds destination addr */
960 pc
= read_memory_integer (ii
, 4); /* (r11) value */
964 /* Determines whether the function FI has a frame on the stack or not. */
967 frameless_function_invocation (fi
)
968 struct frame_info
*fi
;
970 CORE_ADDR func_start
;
971 struct rs6000_framedata fdata
;
973 /* Don't even think about framelessness except on the innermost frame
974 or if the function was interrupted by a signal. */
975 if (fi
->next
!= NULL
&& !fi
->next
->signal_handler_caller
)
978 func_start
= get_pc_function_start (fi
->pc
);
980 /* If we failed to find the start of the function, it is a mistake
981 to inspect the instructions. */
985 /* A frame with a zero PC is usually created by dereferencing a NULL
986 function pointer, normally causing an immediate core dump of the
987 inferior. Mark function as frameless, as the inferior has no chance
988 of setting up a stack frame. */
995 func_start
+= FUNCTION_START_OFFSET
;
996 (void) skip_prologue (func_start
, &fdata
);
997 return fdata
.frameless
;
1000 /* Return the PC saved in a frame */
1004 struct frame_info
*fi
;
1006 CORE_ADDR func_start
;
1007 struct rs6000_framedata fdata
;
1009 if (fi
->signal_handler_caller
)
1010 return read_memory_integer (fi
->frame
+ SIG_FRAME_PC_OFFSET
, 4);
1012 func_start
= get_pc_function_start (fi
->pc
) + FUNCTION_START_OFFSET
;
1014 /* If we failed to find the start of the function, it is a mistake
1015 to inspect the instructions. */
1019 (void) skip_prologue (func_start
, &fdata
);
1021 if (fdata
.lr_offset
== 0 && fi
->next
!= NULL
)
1023 if (fi
->next
->signal_handler_caller
)
1024 return read_memory_integer (fi
->next
->frame
+ SIG_FRAME_LR_OFFSET
, 4);
1026 return read_memory_integer (rs6000_frame_chain (fi
) + DEFAULT_LR_SAVE
,
1030 if (fdata
.lr_offset
== 0)
1031 return read_register (LR_REGNUM
);
1033 return read_memory_integer (rs6000_frame_chain (fi
) + fdata
.lr_offset
, 4);
1036 /* If saved registers of frame FI are not known yet, read and cache them.
1037 &FDATAP contains rs6000_framedata; TDATAP can be NULL,
1038 in which case the framedata are read. */
1041 frame_get_cache_fsr (fi
, fdatap
)
1042 struct frame_info
*fi
;
1043 struct rs6000_framedata
*fdatap
;
1046 CORE_ADDR frame_addr
;
1047 struct rs6000_framedata work_fdata
;
1052 if (fdatap
== NULL
) {
1053 fdatap
= &work_fdata
;
1054 (void) skip_prologue (get_pc_function_start (fi
->pc
), fdatap
);
1057 fi
->cache_fsr
= (struct frame_saved_regs
*)
1058 obstack_alloc (&frame_cache_obstack
, sizeof (struct frame_saved_regs
));
1059 memset (fi
->cache_fsr
, '\0', sizeof (struct frame_saved_regs
));
1061 if (fi
->prev
&& fi
->prev
->frame
)
1062 frame_addr
= fi
->prev
->frame
;
1064 frame_addr
= read_memory_integer (fi
->frame
, 4);
1066 /* if != -1, fdatap->saved_fpr is the smallest number of saved_fpr.
1067 All fpr's from saved_fpr to fp31 are saved. */
1069 if (fdatap
->saved_fpr
>= 0) {
1070 int fpr_offset
= frame_addr
+ fdatap
->fpr_offset
;
1071 for (ii
= fdatap
->saved_fpr
; ii
< 32; ii
++) {
1072 fi
->cache_fsr
->regs
[FP0_REGNUM
+ ii
] = fpr_offset
;
1077 /* if != -1, fdatap->saved_gpr is the smallest number of saved_gpr.
1078 All gpr's from saved_gpr to gpr31 are saved. */
1080 if (fdatap
->saved_gpr
>= 0) {
1081 int gpr_offset
= frame_addr
+ fdatap
->gpr_offset
;
1082 for (ii
= fdatap
->saved_gpr
; ii
< 32; ii
++) {
1083 fi
->cache_fsr
->regs
[ii
] = gpr_offset
;
1088 /* If != 0, fdatap->cr_offset is the offset from the frame that holds
1090 if (fdatap
->cr_offset
!= 0)
1091 fi
->cache_fsr
->regs
[CR_REGNUM
] = frame_addr
+ fdatap
->cr_offset
;
1093 /* If != 0, fdatap->lr_offset is the offset from the frame that holds
1095 if (fdatap
->lr_offset
!= 0)
1096 fi
->cache_fsr
->regs
[LR_REGNUM
] = frame_addr
+ fdatap
->lr_offset
;
1099 /* Return the address of a frame. This is the inital %sp value when the frame
1100 was first allocated. For functions calling alloca(), it might be saved in
1101 an alloca register. */
1104 frame_initial_stack_address (fi
)
1105 struct frame_info
*fi
;
1108 struct rs6000_framedata fdata
;
1109 struct frame_info
*callee_fi
;
1111 /* if the initial stack pointer (frame address) of this frame is known,
1115 return fi
->initial_sp
;
1117 /* find out if this function is using an alloca register.. */
1119 (void) skip_prologue (get_pc_function_start (fi
->pc
), &fdata
);
1121 /* if saved registers of this frame are not known yet, read and cache them. */
1124 frame_get_cache_fsr (fi
, &fdata
);
1126 /* If no alloca register used, then fi->frame is the value of the %sp for
1127 this frame, and it is good enough. */
1129 if (fdata
.alloca_reg
< 0) {
1130 fi
->initial_sp
= fi
->frame
;
1131 return fi
->initial_sp
;
1134 /* This function has an alloca register. If this is the top-most frame
1135 (with the lowest address), the value in alloca register is good. */
1138 return fi
->initial_sp
= read_register (fdata
.alloca_reg
);
1140 /* Otherwise, this is a caller frame. Callee has usually already saved
1141 registers, but there are exceptions (such as when the callee
1142 has no parameters). Find the address in which caller's alloca
1143 register is saved. */
1145 for (callee_fi
= fi
->next
; callee_fi
; callee_fi
= callee_fi
->next
) {
1147 if (!callee_fi
->cache_fsr
)
1148 frame_get_cache_fsr (callee_fi
, NULL
);
1150 /* this is the address in which alloca register is saved. */
1152 tmpaddr
= callee_fi
->cache_fsr
->regs
[fdata
.alloca_reg
];
1154 fi
->initial_sp
= read_memory_integer (tmpaddr
, 4);
1155 return fi
->initial_sp
;
1158 /* Go look into deeper levels of the frame chain to see if any one of
1159 the callees has saved alloca register. */
1162 /* If alloca register was not saved, by the callee (or any of its callees)
1163 then the value in the register is still good. */
1165 return fi
->initial_sp
= read_register (fdata
.alloca_reg
);
1169 rs6000_frame_chain (thisframe
)
1170 struct frame_info
*thisframe
;
1173 if (inside_entry_file ((thisframe
)->pc
))
1175 if (thisframe
->signal_handler_caller
)
1176 fp
= read_memory_integer (thisframe
->frame
+ SIG_FRAME_FP_OFFSET
, 4);
1177 else if (thisframe
->next
!= NULL
1178 && thisframe
->next
->signal_handler_caller
1179 && frameless_function_invocation (thisframe
))
1180 /* A frameless function interrupted by a signal did not change the
1182 fp
= FRAME_FP (thisframe
);
1184 fp
= read_memory_integer ((thisframe
)->frame
, 4);
1189 /* Return nonzero if ADDR (a function pointer) is in the data space and
1190 is therefore a special function pointer. */
1193 is_magic_function_pointer (addr
)
1196 struct obj_section
*s
;
1198 s
= find_pc_section (addr
);
1199 if (s
&& s
->the_bfd_section
->flags
& SEC_CODE
)
1205 #ifdef GDB_TARGET_POWERPC
1207 gdb_print_insn_powerpc (memaddr
, info
)
1209 disassemble_info
*info
;
1211 if (TARGET_BYTE_ORDER
== BIG_ENDIAN
)
1212 return print_insn_big_powerpc (memaddr
, info
);
1214 return print_insn_little_powerpc (memaddr
, info
);
1219 _initialize_rs6000_tdep ()
1221 /* FIXME, this should not be decided via ifdef. */
1222 #ifdef GDB_TARGET_POWERPC
1223 tm_print_insn
= gdb_print_insn_powerpc
;
1225 tm_print_insn
= print_insn_rs6000
;