1 /* Perform non-arithmetic operations on values, for GDB.
2 Copyright 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996
3 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
33 #include "gdb_string.h"
35 /* Default to coercing float to double in function calls only when there is
36 no prototype. Otherwise on targets where the debug information is incorrect
37 for either the prototype or non-prototype case, we can force it by defining
38 COERCE_FLOAT_TO_DOUBLE in the target configuration file. */
40 #ifndef COERCE_FLOAT_TO_DOUBLE
41 #define COERCE_FLOAT_TO_DOUBLE (param_type == NULL)
44 /* Local functions. */
46 static int typecmp
PARAMS ((int staticp
, struct type
*t1
[], value_ptr t2
[]));
49 static CORE_ADDR find_function_addr
PARAMS ((value_ptr
, struct type
**));
50 static value_ptr value_arg_coerce
PARAMS ((value_ptr
, struct type
*));
54 #ifndef PUSH_ARGUMENTS
55 static CORE_ADDR value_push
PARAMS ((CORE_ADDR
, value_ptr
));
58 static value_ptr search_struct_field
PARAMS ((char *, value_ptr
, int,
61 static value_ptr search_struct_method
PARAMS ((char *, value_ptr
*,
63 int, int *, struct type
*));
65 static int check_field_in
PARAMS ((struct type
*, const char *));
67 static CORE_ADDR allocate_space_in_inferior
PARAMS ((int));
69 static value_ptr cast_into_complex
PARAMS ((struct type
*, value_ptr
));
71 #define VALUE_SUBSTRING_START(VAL) VALUE_FRAME(VAL)
73 /* Flag for whether we want to abandon failed expression evals by default. */
76 static int auto_abandon
= 0;
80 /* Find the address of function name NAME in the inferior. */
83 find_function_in_inferior (name
)
86 register struct symbol
*sym
;
87 sym
= lookup_symbol (name
, 0, VAR_NAMESPACE
, 0, NULL
);
90 if (SYMBOL_CLASS (sym
) != LOC_BLOCK
)
92 error ("\"%s\" exists in this program but is not a function.",
95 return value_of_variable (sym
, NULL
);
99 struct minimal_symbol
*msymbol
= lookup_minimal_symbol(name
, NULL
, NULL
);
104 type
= lookup_pointer_type (builtin_type_char
);
105 type
= lookup_function_type (type
);
106 type
= lookup_pointer_type (type
);
107 maddr
= (LONGEST
) SYMBOL_VALUE_ADDRESS (msymbol
);
108 return value_from_longest (type
, maddr
);
112 error ("evaluation of this expression requires the program to have a function \"%s\".", name
);
117 /* Allocate NBYTES of space in the inferior using the inferior's malloc
118 and return a value that is a pointer to the allocated space. */
121 value_allocate_space_in_inferior (len
)
125 register value_ptr val
= find_function_in_inferior ("malloc");
127 blocklen
= value_from_longest (builtin_type_int
, (LONGEST
) len
);
128 val
= call_function_by_hand (val
, 1, &blocklen
);
129 if (value_logical_not (val
))
131 error ("No memory available to program.");
137 allocate_space_in_inferior (len
)
140 return value_as_long (value_allocate_space_in_inferior (len
));
143 /* Cast value ARG2 to type TYPE and return as a value.
144 More general than a C cast: accepts any two types of the same length,
145 and if ARG2 is an lvalue it can be cast into anything at all. */
146 /* In C++, casts may change pointer or object representations. */
149 value_cast (type
, arg2
)
151 register value_ptr arg2
;
153 register enum type_code code1
;
154 register enum type_code code2
;
158 if (VALUE_TYPE (arg2
) == type
)
161 CHECK_TYPEDEF (type
);
162 code1
= TYPE_CODE (type
);
164 type2
= check_typedef (VALUE_TYPE (arg2
));
166 /* A cast to an undetermined-length array_type, such as (TYPE [])OBJECT,
167 is treated like a cast to (TYPE [N])OBJECT,
168 where N is sizeof(OBJECT)/sizeof(TYPE). */
169 if (code1
== TYPE_CODE_ARRAY
)
171 struct type
*element_type
= TYPE_TARGET_TYPE (type
);
172 unsigned element_length
= TYPE_LENGTH (check_typedef (element_type
));
173 if (element_length
> 0
174 && TYPE_ARRAY_UPPER_BOUND_TYPE (type
) == BOUND_CANNOT_BE_DETERMINED
)
176 struct type
*range_type
= TYPE_INDEX_TYPE (type
);
177 int val_length
= TYPE_LENGTH (type2
);
178 LONGEST low_bound
, high_bound
, new_length
;
179 if (get_discrete_bounds (range_type
, &low_bound
, &high_bound
) < 0)
180 low_bound
= 0, high_bound
= 0;
181 new_length
= val_length
/ element_length
;
182 if (val_length
% element_length
!= 0)
183 warning("array element type size does not divide object size in cast");
184 /* FIXME-type-allocation: need a way to free this type when we are
186 range_type
= create_range_type ((struct type
*) NULL
,
187 TYPE_TARGET_TYPE (range_type
),
189 new_length
+ low_bound
- 1);
190 VALUE_TYPE (arg2
) = create_array_type ((struct type
*) NULL
,
191 element_type
, range_type
);
196 if (current_language
->c_style_arrays
197 && TYPE_CODE (type2
) == TYPE_CODE_ARRAY
)
198 arg2
= value_coerce_array (arg2
);
200 if (TYPE_CODE (type2
) == TYPE_CODE_FUNC
)
201 arg2
= value_coerce_function (arg2
);
203 type2
= check_typedef (VALUE_TYPE (arg2
));
204 COERCE_VARYING_ARRAY (arg2
, type2
);
205 code2
= TYPE_CODE (type2
);
207 if (code1
== TYPE_CODE_COMPLEX
)
208 return cast_into_complex (type
, arg2
);
209 if (code1
== TYPE_CODE_BOOL
|| code1
== TYPE_CODE_CHAR
)
210 code1
= TYPE_CODE_INT
;
211 if (code2
== TYPE_CODE_BOOL
|| code2
== TYPE_CODE_CHAR
)
212 code2
= TYPE_CODE_INT
;
214 scalar
= (code2
== TYPE_CODE_INT
|| code2
== TYPE_CODE_FLT
215 || code2
== TYPE_CODE_ENUM
|| code2
== TYPE_CODE_RANGE
);
217 if ( code1
== TYPE_CODE_STRUCT
218 && code2
== TYPE_CODE_STRUCT
219 && TYPE_NAME (type
) != 0)
221 /* Look in the type of the source to see if it contains the
222 type of the target as a superclass. If so, we'll need to
223 offset the object in addition to changing its type. */
224 value_ptr v
= search_struct_field (type_name_no_tag (type
),
228 VALUE_TYPE (v
) = type
;
232 if (code1
== TYPE_CODE_FLT
&& scalar
)
233 return value_from_double (type
, value_as_double (arg2
));
234 else if ((code1
== TYPE_CODE_INT
|| code1
== TYPE_CODE_ENUM
235 || code1
== TYPE_CODE_RANGE
)
236 && (scalar
|| code2
== TYPE_CODE_PTR
))
237 return value_from_longest (type
, value_as_long (arg2
));
238 else if (TYPE_LENGTH (type
) == TYPE_LENGTH (type2
))
240 if (code1
== TYPE_CODE_PTR
&& code2
== TYPE_CODE_PTR
)
242 /* Look in the type of the source to see if it contains the
243 type of the target as a superclass. If so, we'll need to
244 offset the pointer rather than just change its type. */
245 struct type
*t1
= check_typedef (TYPE_TARGET_TYPE (type
));
246 struct type
*t2
= check_typedef (TYPE_TARGET_TYPE (type2
));
247 if ( TYPE_CODE (t1
) == TYPE_CODE_STRUCT
248 && TYPE_CODE (t2
) == TYPE_CODE_STRUCT
249 && TYPE_NAME (t1
) != 0) /* if name unknown, can't have supercl */
251 value_ptr v
= search_struct_field (type_name_no_tag (t1
),
252 value_ind (arg2
), 0, t2
, 1);
256 VALUE_TYPE (v
) = type
;
260 /* No superclass found, just fall through to change ptr type. */
262 VALUE_TYPE (arg2
) = type
;
265 else if (chill_varying_type (type
))
267 struct type
*range1
, *range2
, *eltype1
, *eltype2
;
270 LONGEST low_bound
, high_bound
;
271 char *valaddr
, *valaddr_data
;
272 if (code2
== TYPE_CODE_BITSTRING
)
273 error ("not implemented: converting bitstring to varying type");
274 if ((code2
!= TYPE_CODE_ARRAY
&& code2
!= TYPE_CODE_STRING
)
275 || (eltype1
= check_typedef (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type
, 1))),
276 eltype2
= check_typedef (TYPE_TARGET_TYPE (type2
)),
277 (TYPE_LENGTH (eltype1
) != TYPE_LENGTH (eltype2
)
278 /* || TYPE_CODE (eltype1) != TYPE_CODE (eltype2) */ )))
279 error ("Invalid conversion to varying type");
280 range1
= TYPE_FIELD_TYPE (TYPE_FIELD_TYPE (type
, 1), 0);
281 range2
= TYPE_FIELD_TYPE (type2
, 0);
282 if (get_discrete_bounds (range1
, &low_bound
, &high_bound
) < 0)
285 count1
= high_bound
- low_bound
+ 1;
286 if (get_discrete_bounds (range2
, &low_bound
, &high_bound
) < 0)
287 count1
= -1, count2
= 0; /* To force error before */
289 count2
= high_bound
- low_bound
+ 1;
291 error ("target varying type is too small");
292 val
= allocate_value (type
);
293 valaddr
= VALUE_CONTENTS_RAW (val
);
294 valaddr_data
= valaddr
+ TYPE_FIELD_BITPOS (type
, 1) / 8;
295 /* Set val's __var_length field to count2. */
296 store_signed_integer (valaddr
, TYPE_LENGTH (TYPE_FIELD_TYPE (type
, 0)),
298 /* Set the __var_data field to count2 elements copied from arg2. */
299 memcpy (valaddr_data
, VALUE_CONTENTS (arg2
),
300 count2
* TYPE_LENGTH (eltype2
));
301 /* Zero the rest of the __var_data field of val. */
302 memset (valaddr_data
+ count2
* TYPE_LENGTH (eltype2
), '\0',
303 (count1
- count2
) * TYPE_LENGTH (eltype2
));
306 else if (VALUE_LVAL (arg2
) == lval_memory
)
308 return value_at_lazy (type
, VALUE_ADDRESS (arg2
) + VALUE_OFFSET (arg2
),
309 VALUE_BFD_SECTION (arg2
));
311 else if (code1
== TYPE_CODE_VOID
)
313 return value_zero (builtin_type_void
, not_lval
);
317 error ("Invalid cast.");
322 /* Create a value of type TYPE that is zero, and return it. */
325 value_zero (type
, lv
)
329 register value_ptr val
= allocate_value (type
);
331 memset (VALUE_CONTENTS (val
), 0, TYPE_LENGTH (check_typedef (type
)));
332 VALUE_LVAL (val
) = lv
;
337 /* Return a value with type TYPE located at ADDR.
339 Call value_at only if the data needs to be fetched immediately;
340 if we can be 'lazy' and defer the fetch, perhaps indefinately, call
341 value_at_lazy instead. value_at_lazy simply records the address of
342 the data and sets the lazy-evaluation-required flag. The lazy flag
343 is tested in the VALUE_CONTENTS macro, which is used if and when
344 the contents are actually required. */
347 value_at (type
, addr
, sect
)
352 register value_ptr val
;
354 if (TYPE_CODE (check_typedef (type
)) == TYPE_CODE_VOID
)
355 error ("Attempt to dereference a generic pointer.");
357 val
= allocate_value (type
);
359 #ifdef GDB_TARGET_IS_D10V
360 if (TYPE_TARGET_TYPE(type
) && TYPE_CODE(TYPE_TARGET_TYPE(type
)) == TYPE_CODE_FUNC
)
364 read_memory (addr
, (char *)&snum
, 2);
365 num
= D10V_MAKE_IADDR(snum
);
366 memcpy( VALUE_CONTENTS_RAW (val
), &num
, 4);
371 read_memory_section (addr
, VALUE_CONTENTS_RAW (val
), TYPE_LENGTH (type
), sect
);
373 VALUE_LVAL (val
) = lval_memory
;
374 VALUE_ADDRESS (val
) = addr
;
375 VALUE_BFD_SECTION (val
) = sect
;
380 /* Return a lazy value with type TYPE located at ADDR (cf. value_at). */
383 value_at_lazy (type
, addr
, sect
)
388 register value_ptr val
;
390 if (TYPE_CODE (check_typedef (type
)) == TYPE_CODE_VOID
)
391 error ("Attempt to dereference a generic pointer.");
393 val
= allocate_value (type
);
395 VALUE_LVAL (val
) = lval_memory
;
396 VALUE_ADDRESS (val
) = addr
;
397 VALUE_LAZY (val
) = 1;
398 VALUE_BFD_SECTION (val
) = sect
;
403 /* Called only from the VALUE_CONTENTS macro, if the current data for
404 a variable needs to be loaded into VALUE_CONTENTS(VAL). Fetches the
405 data from the user's process, and clears the lazy flag to indicate
406 that the data in the buffer is valid.
408 If the value is zero-length, we avoid calling read_memory, which would
409 abort. We mark the value as fetched anyway -- all 0 bytes of it.
411 This function returns a value because it is used in the VALUE_CONTENTS
412 macro as part of an expression, where a void would not work. The
416 value_fetch_lazy (val
)
417 register value_ptr val
;
419 CORE_ADDR addr
= VALUE_ADDRESS (val
) + VALUE_OFFSET (val
);
420 int length
= TYPE_LENGTH (VALUE_TYPE (val
));
422 #ifdef GDB_TARGET_IS_D10V
423 struct type
*type
= VALUE_TYPE(val
);
424 if (TYPE_TARGET_TYPE(type
) && TYPE_CODE(TYPE_TARGET_TYPE(type
)) == TYPE_CODE_FUNC
)
428 read_memory (addr
, (char *)&snum
, 2);
429 num
= D10V_MAKE_IADDR(snum
);
430 memcpy( VALUE_CONTENTS_RAW (val
), &num
, 4);
436 read_memory_section (addr
, VALUE_CONTENTS_RAW (val
), length
,
437 VALUE_BFD_SECTION (val
));
438 VALUE_LAZY (val
) = 0;
443 /* Store the contents of FROMVAL into the location of TOVAL.
444 Return a new value with the location of TOVAL and contents of FROMVAL. */
447 value_assign (toval
, fromval
)
448 register value_ptr toval
, fromval
;
450 register struct type
*type
;
451 register value_ptr val
;
452 char raw_buffer
[MAX_REGISTER_RAW_SIZE
];
455 if (!toval
->modifiable
)
456 error ("Left operand of assignment is not a modifiable lvalue.");
460 type
= VALUE_TYPE (toval
);
461 if (VALUE_LVAL (toval
) != lval_internalvar
)
462 fromval
= value_cast (type
, fromval
);
464 COERCE_ARRAY (fromval
);
465 CHECK_TYPEDEF (type
);
467 /* If TOVAL is a special machine register requiring conversion
468 of program values to a special raw format,
469 convert FROMVAL's contents now, with result in `raw_buffer',
470 and set USE_BUFFER to the number of bytes to write. */
472 #ifdef REGISTER_CONVERTIBLE
473 if (VALUE_REGNO (toval
) >= 0
474 && REGISTER_CONVERTIBLE (VALUE_REGNO (toval
)))
476 int regno
= VALUE_REGNO (toval
);
477 if (REGISTER_CONVERTIBLE (regno
))
479 struct type
*fromtype
= check_typedef (VALUE_TYPE (fromval
));
480 REGISTER_CONVERT_TO_RAW (fromtype
, regno
,
481 VALUE_CONTENTS (fromval
), raw_buffer
);
482 use_buffer
= REGISTER_RAW_SIZE (regno
);
487 switch (VALUE_LVAL (toval
))
489 case lval_internalvar
:
490 set_internalvar (VALUE_INTERNALVAR (toval
), fromval
);
491 return value_copy (VALUE_INTERNALVAR (toval
)->value
);
493 case lval_internalvar_component
:
494 set_internalvar_component (VALUE_INTERNALVAR (toval
),
495 VALUE_OFFSET (toval
),
496 VALUE_BITPOS (toval
),
497 VALUE_BITSIZE (toval
),
502 if (VALUE_BITSIZE (toval
))
504 char buffer
[sizeof (LONGEST
)];
505 /* We assume that the argument to read_memory is in units of
506 host chars. FIXME: Is that correct? */
507 int len
= (VALUE_BITPOS (toval
)
508 + VALUE_BITSIZE (toval
)
512 if (len
> (int) sizeof (LONGEST
))
513 error ("Can't handle bitfields which don't fit in a %d bit word.",
514 sizeof (LONGEST
) * HOST_CHAR_BIT
);
516 read_memory (VALUE_ADDRESS (toval
) + VALUE_OFFSET (toval
),
518 modify_field (buffer
, value_as_long (fromval
),
519 VALUE_BITPOS (toval
), VALUE_BITSIZE (toval
));
520 write_memory (VALUE_ADDRESS (toval
) + VALUE_OFFSET (toval
),
524 write_memory (VALUE_ADDRESS (toval
) + VALUE_OFFSET (toval
),
525 raw_buffer
, use_buffer
);
527 write_memory (VALUE_ADDRESS (toval
) + VALUE_OFFSET (toval
),
528 VALUE_CONTENTS (fromval
), TYPE_LENGTH (type
));
532 if (VALUE_BITSIZE (toval
))
534 char buffer
[sizeof (LONGEST
)];
535 int len
= REGISTER_RAW_SIZE (VALUE_REGNO (toval
));
537 if (len
> (int) sizeof (LONGEST
))
538 error ("Can't handle bitfields in registers larger than %d bits.",
539 sizeof (LONGEST
) * HOST_CHAR_BIT
);
541 if (VALUE_BITPOS (toval
) + VALUE_BITSIZE (toval
)
542 > len
* HOST_CHAR_BIT
)
543 /* Getting this right would involve being very careful about
546 Can't handle bitfield which doesn't fit in a single register.");
548 read_register_bytes (VALUE_ADDRESS (toval
) + VALUE_OFFSET (toval
),
550 modify_field (buffer
, value_as_long (fromval
),
551 VALUE_BITPOS (toval
), VALUE_BITSIZE (toval
));
552 write_register_bytes (VALUE_ADDRESS (toval
) + VALUE_OFFSET (toval
),
556 write_register_bytes (VALUE_ADDRESS (toval
) + VALUE_OFFSET (toval
),
557 raw_buffer
, use_buffer
);
560 /* Do any conversion necessary when storing this type to more
561 than one register. */
562 #ifdef REGISTER_CONVERT_FROM_TYPE
563 memcpy (raw_buffer
, VALUE_CONTENTS (fromval
), TYPE_LENGTH (type
));
564 REGISTER_CONVERT_FROM_TYPE(VALUE_REGNO (toval
), type
, raw_buffer
);
565 write_register_bytes (VALUE_ADDRESS (toval
) + VALUE_OFFSET (toval
),
566 raw_buffer
, TYPE_LENGTH (type
));
568 write_register_bytes (VALUE_ADDRESS (toval
) + VALUE_OFFSET (toval
),
569 VALUE_CONTENTS (fromval
), TYPE_LENGTH (type
));
572 /* Assigning to the stack pointer, frame pointer, and other
573 (architecture and calling convention specific) registers may
574 cause the frame cache to be out of date. We just do this
575 on all assignments to registers for simplicity; I doubt the slowdown
577 reinit_frame_cache ();
580 case lval_reg_frame_relative
:
582 /* value is stored in a series of registers in the frame
583 specified by the structure. Copy that value out, modify
584 it, and copy it back in. */
585 int amount_to_copy
= (VALUE_BITSIZE (toval
) ? 1 : TYPE_LENGTH (type
));
586 int reg_size
= REGISTER_RAW_SIZE (VALUE_FRAME_REGNUM (toval
));
587 int byte_offset
= VALUE_OFFSET (toval
) % reg_size
;
588 int reg_offset
= VALUE_OFFSET (toval
) / reg_size
;
591 /* Make the buffer large enough in all cases. */
592 char *buffer
= (char *) alloca (amount_to_copy
594 + MAX_REGISTER_RAW_SIZE
);
597 struct frame_info
*frame
;
599 /* Figure out which frame this is in currently. */
600 for (frame
= get_current_frame ();
601 frame
&& FRAME_FP (frame
) != VALUE_FRAME (toval
);
602 frame
= get_prev_frame (frame
))
606 error ("Value being assigned to is no longer active.");
608 amount_to_copy
+= (reg_size
- amount_to_copy
% reg_size
);
611 for ((regno
= VALUE_FRAME_REGNUM (toval
) + reg_offset
,
613 amount_copied
< amount_to_copy
;
614 amount_copied
+= reg_size
, regno
++)
616 get_saved_register (buffer
+ amount_copied
,
617 (int *)NULL
, (CORE_ADDR
*)NULL
,
618 frame
, regno
, (enum lval_type
*)NULL
);
621 /* Modify what needs to be modified. */
622 if (VALUE_BITSIZE (toval
))
623 modify_field (buffer
+ byte_offset
,
624 value_as_long (fromval
),
625 VALUE_BITPOS (toval
), VALUE_BITSIZE (toval
));
627 memcpy (buffer
+ byte_offset
, raw_buffer
, use_buffer
);
629 memcpy (buffer
+ byte_offset
, VALUE_CONTENTS (fromval
),
633 for ((regno
= VALUE_FRAME_REGNUM (toval
) + reg_offset
,
635 amount_copied
< amount_to_copy
;
636 amount_copied
+= reg_size
, regno
++)
642 /* Just find out where to put it. */
643 get_saved_register ((char *)NULL
,
644 &optim
, &addr
, frame
, regno
, &lval
);
647 error ("Attempt to assign to a value that was optimized out.");
648 if (lval
== lval_memory
)
649 write_memory (addr
, buffer
+ amount_copied
, reg_size
);
650 else if (lval
== lval_register
)
651 write_register_bytes (addr
, buffer
+ amount_copied
, reg_size
);
653 error ("Attempt to assign to an unmodifiable value.");
660 error ("Left operand of assignment is not an lvalue.");
663 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
664 If the field is signed, and is negative, then sign extend. */
665 if ((VALUE_BITSIZE (toval
) > 0)
666 && (VALUE_BITSIZE (toval
) < 8 * (int) sizeof (LONGEST
)))
668 LONGEST fieldval
= value_as_long (fromval
);
669 LONGEST valmask
= (((ULONGEST
) 1) << VALUE_BITSIZE (toval
)) - 1;
672 if (!TYPE_UNSIGNED (type
) && (fieldval
& (valmask
^ (valmask
>> 1))))
673 fieldval
|= ~valmask
;
675 fromval
= value_from_longest (type
, fieldval
);
678 val
= value_copy (toval
);
679 memcpy (VALUE_CONTENTS_RAW (val
), VALUE_CONTENTS (fromval
),
681 VALUE_TYPE (val
) = type
;
686 /* Extend a value VAL to COUNT repetitions of its type. */
689 value_repeat (arg1
, count
)
693 register value_ptr val
;
695 if (VALUE_LVAL (arg1
) != lval_memory
)
696 error ("Only values in memory can be extended with '@'.");
698 error ("Invalid number %d of repetitions.", count
);
700 val
= allocate_repeat_value (VALUE_TYPE (arg1
), count
);
702 read_memory (VALUE_ADDRESS (arg1
) + VALUE_OFFSET (arg1
),
703 VALUE_CONTENTS_RAW (val
),
704 TYPE_LENGTH (VALUE_TYPE (val
)));
705 VALUE_LVAL (val
) = lval_memory
;
706 VALUE_ADDRESS (val
) = VALUE_ADDRESS (arg1
) + VALUE_OFFSET (arg1
);
712 value_of_variable (var
, b
)
717 struct frame_info
*frame
= NULL
;
720 frame
= NULL
; /* Use selected frame. */
721 else if (symbol_read_needs_frame (var
))
723 frame
= block_innermost_frame (b
);
725 if (BLOCK_FUNCTION (b
)
726 && SYMBOL_NAME (BLOCK_FUNCTION (b
)))
727 error ("No frame is currently executing in block %s.",
728 SYMBOL_NAME (BLOCK_FUNCTION (b
)));
730 error ("No frame is currently executing in specified block");
733 val
= read_var_value (var
, frame
);
735 error ("Address of symbol \"%s\" is unknown.", SYMBOL_SOURCE_NAME (var
));
740 /* Given a value which is an array, return a value which is a pointer to its
741 first element, regardless of whether or not the array has a nonzero lower
744 FIXME: A previous comment here indicated that this routine should be
745 substracting the array's lower bound. It's not clear to me that this
746 is correct. Given an array subscripting operation, it would certainly
747 work to do the adjustment here, essentially computing:
749 (&array[0] - (lowerbound * sizeof array[0])) + (index * sizeof array[0])
751 However I believe a more appropriate and logical place to account for
752 the lower bound is to do so in value_subscript, essentially computing:
754 (&array[0] + ((index - lowerbound) * sizeof array[0]))
756 As further evidence consider what would happen with operations other
757 than array subscripting, where the caller would get back a value that
758 had an address somewhere before the actual first element of the array,
759 and the information about the lower bound would be lost because of
760 the coercion to pointer type.
764 value_coerce_array (arg1
)
767 register struct type
*type
= check_typedef (VALUE_TYPE (arg1
));
769 if (VALUE_LVAL (arg1
) != lval_memory
)
770 error ("Attempt to take address of value not located in memory.");
772 return value_from_longest (lookup_pointer_type (TYPE_TARGET_TYPE (type
)),
773 (LONGEST
) (VALUE_ADDRESS (arg1
) + VALUE_OFFSET (arg1
)));
776 /* Given a value which is a function, return a value which is a pointer
780 value_coerce_function (arg1
)
785 if (VALUE_LVAL (arg1
) != lval_memory
)
786 error ("Attempt to take address of value not located in memory.");
788 retval
= value_from_longest (lookup_pointer_type (VALUE_TYPE (arg1
)),
789 (LONGEST
) (VALUE_ADDRESS (arg1
) + VALUE_OFFSET (arg1
)));
790 VALUE_BFD_SECTION (retval
) = VALUE_BFD_SECTION (arg1
);
794 /* Return a pointer value for the object for which ARG1 is the contents. */
802 struct type
*type
= check_typedef (VALUE_TYPE (arg1
));
803 if (TYPE_CODE (type
) == TYPE_CODE_REF
)
805 /* Copy the value, but change the type from (T&) to (T*).
806 We keep the same location information, which is efficient,
807 and allows &(&X) to get the location containing the reference. */
808 value_ptr arg2
= value_copy (arg1
);
809 VALUE_TYPE (arg2
) = lookup_pointer_type (TYPE_TARGET_TYPE (type
));
812 if (TYPE_CODE (type
) == TYPE_CODE_FUNC
)
813 return value_coerce_function (arg1
);
815 if (VALUE_LVAL (arg1
) != lval_memory
)
816 error ("Attempt to take address of value not located in memory.");
818 retval
= value_from_longest (lookup_pointer_type (VALUE_TYPE (arg1
)),
819 (LONGEST
) (VALUE_ADDRESS (arg1
) + VALUE_OFFSET (arg1
)));
820 VALUE_BFD_SECTION (retval
) = VALUE_BFD_SECTION (arg1
);
824 /* Given a value of a pointer type, apply the C unary * operator to it. */
832 type1
= check_typedef (VALUE_TYPE (arg1
));
834 if (TYPE_CODE (type1
) == TYPE_CODE_MEMBER
)
835 error ("not implemented: member types in value_ind");
837 /* Allow * on an integer so we can cast it to whatever we want.
838 This returns an int, which seems like the most C-like thing
839 to do. "long long" variables are rare enough that
840 BUILTIN_TYPE_LONGEST would seem to be a mistake. */
841 if (TYPE_CODE (type1
) == TYPE_CODE_INT
)
842 return value_at (builtin_type_int
,
843 (CORE_ADDR
) value_as_long (arg1
),
844 VALUE_BFD_SECTION (arg1
));
845 else if (TYPE_CODE (type1
) == TYPE_CODE_PTR
)
846 return value_at_lazy (TYPE_TARGET_TYPE (type1
), value_as_pointer (arg1
),
847 VALUE_BFD_SECTION (arg1
));
848 error ("Attempt to take contents of a non-pointer value.");
849 return 0; /* For lint -- never reached */
852 /* Pushing small parts of stack frames. */
854 /* Push one word (the size of object that a register holds). */
861 register int len
= REGISTER_SIZE
;
862 char buffer
[MAX_REGISTER_RAW_SIZE
];
864 store_unsigned_integer (buffer
, len
, word
);
867 write_memory (sp
, buffer
, len
);
868 #else /* stack grows upward */
869 write_memory (sp
, buffer
, len
);
871 #endif /* stack grows upward */
876 /* Push LEN bytes with data at BUFFER. */
879 push_bytes (sp
, buffer
, len
)
886 write_memory (sp
, buffer
, len
);
887 #else /* stack grows upward */
888 write_memory (sp
, buffer
, len
);
890 #endif /* stack grows upward */
895 /* Push onto the stack the specified value VALUE. */
897 #ifndef PUSH_ARGUMENTS
901 register CORE_ADDR sp
;
904 register int len
= TYPE_LENGTH (VALUE_TYPE (arg
));
908 write_memory (sp
, VALUE_CONTENTS (arg
), len
);
909 #else /* stack grows upward */
910 write_memory (sp
, VALUE_CONTENTS (arg
), len
);
912 #endif /* stack grows upward */
917 #endif /* !PUSH_ARGUMENTS */
920 /* Perform the standard coercions that are specified
921 for arguments to be passed to C functions.
923 If PARAM_TYPE is non-NULL, it is the expected parameter type. */
926 value_arg_coerce (arg
, param_type
)
928 struct type
*param_type
;
930 register struct type
*arg_type
= check_typedef (VALUE_TYPE (arg
));
931 register struct type
*type
932 = param_type
? check_typedef (param_type
) : arg_type
;
934 switch (TYPE_CODE (type
))
937 if (TYPE_CODE (arg_type
) != TYPE_CODE_REF
)
939 arg
= value_addr (arg
);
940 VALUE_TYPE (arg
) = param_type
;
948 if (TYPE_LENGTH (type
) < TYPE_LENGTH (builtin_type_int
))
949 type
= builtin_type_int
;
952 /* coerce float to double, unless the function prototype specifies float */
953 if (COERCE_FLOAT_TO_DOUBLE
)
955 if (TYPE_LENGTH (type
) < TYPE_LENGTH (builtin_type_double
))
956 type
= builtin_type_double
;
957 else if (TYPE_LENGTH (type
) > TYPE_LENGTH (builtin_type_double
))
958 type
= builtin_type_long_double
;
962 type
= lookup_pointer_type (type
);
964 case TYPE_CODE_ARRAY
:
965 if (current_language
->c_style_arrays
)
966 type
= lookup_pointer_type (TYPE_TARGET_TYPE (type
));
968 case TYPE_CODE_UNDEF
:
970 case TYPE_CODE_STRUCT
:
971 case TYPE_CODE_UNION
:
974 case TYPE_CODE_RANGE
:
975 case TYPE_CODE_STRING
:
976 case TYPE_CODE_BITSTRING
:
977 case TYPE_CODE_ERROR
:
978 case TYPE_CODE_MEMBER
:
979 case TYPE_CODE_METHOD
:
980 case TYPE_CODE_COMPLEX
:
985 return value_cast (type
, arg
);
988 /* Determine a function's address and its return type from its value.
989 Calls error() if the function is not valid for calling. */
992 find_function_addr (function
, retval_type
)
994 struct type
**retval_type
;
996 register struct type
*ftype
= check_typedef (VALUE_TYPE (function
));
997 register enum type_code code
= TYPE_CODE (ftype
);
998 struct type
*value_type
;
1001 /* If it's a member function, just look at the function
1004 /* Determine address to call. */
1005 if (code
== TYPE_CODE_FUNC
|| code
== TYPE_CODE_METHOD
)
1007 funaddr
= VALUE_ADDRESS (function
);
1008 value_type
= TYPE_TARGET_TYPE (ftype
);
1010 else if (code
== TYPE_CODE_PTR
)
1012 funaddr
= value_as_pointer (function
);
1013 ftype
= check_typedef (TYPE_TARGET_TYPE (ftype
));
1014 if (TYPE_CODE (ftype
) == TYPE_CODE_FUNC
1015 || TYPE_CODE (ftype
) == TYPE_CODE_METHOD
)
1017 #ifdef CONVERT_FROM_FUNC_PTR_ADDR
1018 /* FIXME: This is a workaround for the unusual function
1019 pointer representation on the RS/6000, see comment
1020 in config/rs6000/tm-rs6000.h */
1021 funaddr
= CONVERT_FROM_FUNC_PTR_ADDR (funaddr
);
1023 value_type
= TYPE_TARGET_TYPE (ftype
);
1026 value_type
= builtin_type_int
;
1028 else if (code
== TYPE_CODE_INT
)
1030 /* Handle the case of functions lacking debugging info.
1031 Their values are characters since their addresses are char */
1032 if (TYPE_LENGTH (ftype
) == 1)
1033 funaddr
= value_as_pointer (value_addr (function
));
1035 /* Handle integer used as address of a function. */
1036 funaddr
= (CORE_ADDR
) value_as_long (function
);
1038 value_type
= builtin_type_int
;
1041 error ("Invalid data type for function to be called.");
1043 *retval_type
= value_type
;
1047 /* All this stuff with a dummy frame may seem unnecessarily complicated
1048 (why not just save registers in GDB?). The purpose of pushing a dummy
1049 frame which looks just like a real frame is so that if you call a
1050 function and then hit a breakpoint (get a signal, etc), "backtrace"
1051 will look right. Whether the backtrace needs to actually show the
1052 stack at the time the inferior function was called is debatable, but
1053 it certainly needs to not display garbage. So if you are contemplating
1054 making dummy frames be different from normal frames, consider that. */
1056 /* Perform a function call in the inferior.
1057 ARGS is a vector of values of arguments (NARGS of them).
1058 FUNCTION is a value, the function to be called.
1059 Returns a value representing what the function returned.
1060 May fail to return, if a breakpoint or signal is hit
1061 during the execution of the function.
1063 ARGS is modified to contain coerced values. */
1066 call_function_by_hand (function
, nargs
, args
)
1071 register CORE_ADDR sp
;
1074 /* CALL_DUMMY is an array of words (REGISTER_SIZE), but each word
1075 is in host byte order. Before calling FIX_CALL_DUMMY, we byteswap it
1076 and remove any extra bytes which might exist because ULONGEST is
1077 bigger than REGISTER_SIZE. */
1078 static ULONGEST dummy
[] = CALL_DUMMY
;
1079 char dummy1
[REGISTER_SIZE
* sizeof dummy
/ sizeof (ULONGEST
)];
1081 struct type
*value_type
;
1082 unsigned char struct_return
;
1083 CORE_ADDR struct_addr
= 0;
1084 struct inferior_status inf_status
;
1085 struct cleanup
*old_chain
;
1087 int using_gcc
; /* Set to version of gcc in use, or zero if not gcc */
1089 struct type
*ftype
= check_typedef (SYMBOL_TYPE (function
));
1091 if (!target_has_execution
)
1094 save_inferior_status (&inf_status
, 1);
1095 old_chain
= make_cleanup (restore_inferior_status
, &inf_status
);
1097 /* PUSH_DUMMY_FRAME is responsible for saving the inferior registers
1098 (and POP_FRAME for restoring them). (At least on most machines)
1099 they are saved on the stack in the inferior. */
1102 old_sp
= sp
= read_sp ();
1104 #if 1 INNER_THAN 2 /* Stack grows down */
1105 sp
-= sizeof dummy1
;
1107 #else /* Stack grows up */
1109 sp
+= sizeof dummy1
;
1112 funaddr
= find_function_addr (function
, &value_type
);
1113 CHECK_TYPEDEF (value_type
);
1116 struct block
*b
= block_for_pc (funaddr
);
1117 /* If compiled without -g, assume GCC 2. */
1118 using_gcc
= (b
== NULL
? 2 : BLOCK_GCC_COMPILED (b
));
1121 /* Are we returning a value using a structure return or a normal
1124 struct_return
= using_struct_return (function
, funaddr
, value_type
,
1127 /* Create a call sequence customized for this function
1128 and the number of arguments for it. */
1129 for (i
= 0; i
< (int) (sizeof (dummy
) / sizeof (dummy
[0])); i
++)
1130 store_unsigned_integer (&dummy1
[i
* REGISTER_SIZE
],
1132 (ULONGEST
)dummy
[i
]);
1134 #ifdef GDB_TARGET_IS_HPPA
1135 real_pc
= FIX_CALL_DUMMY (dummy1
, start_sp
, funaddr
, nargs
, args
,
1136 value_type
, using_gcc
);
1138 FIX_CALL_DUMMY (dummy1
, start_sp
, funaddr
, nargs
, args
,
1139 value_type
, using_gcc
);
1143 #if CALL_DUMMY_LOCATION == ON_STACK
1144 write_memory (start_sp
, (char *)dummy1
, sizeof dummy1
);
1145 #endif /* On stack. */
1147 #if CALL_DUMMY_LOCATION == BEFORE_TEXT_END
1148 /* Convex Unix prohibits executing in the stack segment. */
1149 /* Hope there is empty room at the top of the text segment. */
1151 extern CORE_ADDR text_end
;
1154 for (start_sp
= text_end
- sizeof dummy1
; start_sp
< text_end
; ++start_sp
)
1155 if (read_memory_integer (start_sp
, 1) != 0)
1156 error ("text segment full -- no place to put call");
1159 real_pc
= text_end
- sizeof dummy1
;
1160 write_memory (real_pc
, (char *)dummy1
, sizeof dummy1
);
1162 #endif /* Before text_end. */
1164 #if CALL_DUMMY_LOCATION == AFTER_TEXT_END
1166 extern CORE_ADDR text_end
;
1170 errcode
= target_write_memory (real_pc
, (char *)dummy1
, sizeof dummy1
);
1172 error ("Cannot write text segment -- call_function failed");
1174 #endif /* After text_end. */
1176 #if CALL_DUMMY_LOCATION == AT_ENTRY_POINT
1178 #endif /* At entry point. */
1181 sp
= old_sp
; /* It really is used, for some ifdef's... */
1184 if (nargs
< TYPE_NFIELDS (ftype
))
1185 error ("too few arguments in function call");
1187 for (i
= nargs
- 1; i
>= 0; i
--)
1189 struct type
*param_type
;
1190 if (TYPE_NFIELDS (ftype
) > i
)
1191 param_type
= TYPE_FIELD_TYPE (ftype
, i
);
1194 args
[i
] = value_arg_coerce (args
[i
], param_type
);
1197 #if defined (REG_STRUCT_HAS_ADDR)
1199 /* This is a machine like the sparc, where we may need to pass a pointer
1200 to the structure, not the structure itself. */
1201 for (i
= nargs
- 1; i
>= 0; i
--)
1203 struct type
*arg_type
= check_typedef (VALUE_TYPE (args
[i
]));
1204 if ((TYPE_CODE (arg_type
) == TYPE_CODE_STRUCT
1205 || TYPE_CODE (arg_type
) == TYPE_CODE_UNION
1206 || TYPE_CODE (arg_type
) == TYPE_CODE_ARRAY
1207 || TYPE_CODE (arg_type
) == TYPE_CODE_STRING
1208 || TYPE_CODE (arg_type
) == TYPE_CODE_BITSTRING
1209 || TYPE_CODE (arg_type
) == TYPE_CODE_SET
1210 || (TYPE_CODE (arg_type
) == TYPE_CODE_FLT
1211 && TYPE_LENGTH (arg_type
) > 8)
1213 && REG_STRUCT_HAS_ADDR (using_gcc
, arg_type
))
1216 int len
= TYPE_LENGTH (arg_type
);
1218 /* MVS 11/22/96: I think at least some of this stack_align code is
1219 really broken. Better to let PUSH_ARGUMENTS adjust the stack in
1220 a target-defined manner. */
1221 int aligned_len
= STACK_ALIGN (len
);
1223 int aligned_len
= len
;
1225 #if !(1 INNER_THAN 2)
1226 /* The stack grows up, so the address of the thing we push
1227 is the stack pointer before we push it. */
1232 /* Push the structure. */
1233 write_memory (sp
, VALUE_CONTENTS (args
[i
]), len
);
1235 /* The stack grows down, so the address of the thing we push
1236 is the stack pointer after we push it. */
1241 /* The value we're going to pass is the address of the thing
1243 args
[i
] = value_from_longest (lookup_pointer_type (value_type
),
1248 #endif /* REG_STRUCT_HAS_ADDR. */
1250 /* Reserve space for the return structure to be written on the
1251 stack, if necessary */
1255 int len
= TYPE_LENGTH (value_type
);
1257 /* MVS 11/22/96: I think at least some of this stack_align code is
1258 really broken. Better to let PUSH_ARGUMENTS adjust the stack in
1259 a target-defined manner. */
1260 len
= STACK_ALIGN (len
);
1271 #if defined(STACK_ALIGN) && (1 INNER_THAN 2)
1272 /* MVS 11/22/96: I think at least some of this stack_align code is
1273 really broken. Better to let PUSH_ARGUMENTS adjust the stack in
1274 a target-defined manner. */
1276 /* If stack grows down, we must leave a hole at the top. */
1279 for (i
= nargs
- 1; i
>= 0; i
--)
1280 len
+= TYPE_LENGTH (VALUE_TYPE (args
[i
]));
1281 #ifdef CALL_DUMMY_STACK_ADJUST
1282 len
+= CALL_DUMMY_STACK_ADJUST
;
1284 sp
-= STACK_ALIGN (len
) - len
;
1286 #endif /* STACK_ALIGN */
1288 #ifdef PUSH_ARGUMENTS
1289 PUSH_ARGUMENTS(nargs
, args
, sp
, struct_return
, struct_addr
);
1290 #else /* !PUSH_ARGUMENTS */
1291 for (i
= nargs
- 1; i
>= 0; i
--)
1292 sp
= value_push (sp
, args
[i
]);
1293 #endif /* !PUSH_ARGUMENTS */
1295 #ifdef PUSH_RETURN_ADDRESS /* for targets that use no CALL_DUMMY */
1296 /* There are a number of targets now which actually don't write any
1297 CALL_DUMMY instructions into the target, but instead just save the
1298 machine state, push the arguments, and jump directly to the callee
1299 function. Since this doesn't actually involve executing a JSR/BSR
1300 instruction, the return address must be set up by hand, either by
1301 pushing onto the stack or copying into a return-address register
1302 as appropriate. Formerly this has been done in PUSH_ARGUMENTS,
1303 but that's overloading its functionality a bit, so I'm making it
1304 explicit to do it here. */
1305 sp
= PUSH_RETURN_ADDRESS(real_pc
, sp
);
1306 #endif /* PUSH_RETURN_ADDRESS */
1308 #if defined(STACK_ALIGN) && !(1 INNER_THAN 2)
1310 /* If stack grows up, we must leave a hole at the bottom, note
1311 that sp already has been advanced for the arguments! */
1312 #ifdef CALL_DUMMY_STACK_ADJUST
1313 sp
+= CALL_DUMMY_STACK_ADJUST
;
1315 sp
= STACK_ALIGN (sp
);
1317 #endif /* STACK_ALIGN */
1319 /* XXX This seems wrong. For stacks that grow down we shouldn't do
1321 /* MVS 11/22/96: I think at least some of this stack_align code is
1322 really broken. Better to let PUSH_ARGUMENTS adjust the stack in
1323 a target-defined manner. */
1324 #ifdef CALL_DUMMY_STACK_ADJUST
1326 sp
-= CALL_DUMMY_STACK_ADJUST
;
1328 #endif /* CALL_DUMMY_STACK_ADJUST */
1330 /* Store the address at which the structure is supposed to be
1331 written. Note that this (and the code which reserved the space
1332 above) assumes that gcc was used to compile this function. Since
1333 it doesn't cost us anything but space and if the function is pcc
1334 it will ignore this value, we will make that assumption.
1336 Also note that on some machines (like the sparc) pcc uses a
1337 convention like gcc's. */
1340 STORE_STRUCT_RETURN (struct_addr
, sp
);
1342 /* Write the stack pointer. This is here because the statements above
1343 might fool with it. On SPARC, this write also stores the register
1344 window into the right place in the new stack frame, which otherwise
1345 wouldn't happen. (See store_inferior_registers in sparc-nat.c.) */
1349 char retbuf
[REGISTER_BYTES
];
1351 struct symbol
*symbol
;
1354 symbol
= find_pc_function (funaddr
);
1357 name
= SYMBOL_SOURCE_NAME (symbol
);
1361 /* Try the minimal symbols. */
1362 struct minimal_symbol
*msymbol
= lookup_minimal_symbol_by_pc (funaddr
);
1366 name
= SYMBOL_SOURCE_NAME (msymbol
);
1372 sprintf (format
, "at %s", local_hex_format ());
1374 /* FIXME-32x64: assumes funaddr fits in a long. */
1375 sprintf (name
, format
, (unsigned long) funaddr
);
1378 /* Execute the stack dummy routine, calling FUNCTION.
1379 When it is done, discard the empty frame
1380 after storing the contents of all regs into retbuf. */
1381 if (run_stack_dummy (real_pc
+ CALL_DUMMY_START_OFFSET
, retbuf
))
1383 /* We stopped somewhere besides the call dummy. */
1385 /* If we did the cleanups, we would print a spurious error message
1386 (Unable to restore previously selected frame), would write the
1387 registers from the inf_status (which is wrong), and would do other
1388 wrong things (like set stop_bpstat to the wrong thing). */
1389 discard_cleanups (old_chain
);
1390 /* Prevent memory leak. */
1391 bpstat_clear (&inf_status
.stop_bpstat
);
1393 /* The following error message used to say "The expression
1394 which contained the function call has been discarded." It
1395 is a hard concept to explain in a few words. Ideally, GDB
1396 would be able to resume evaluation of the expression when
1397 the function finally is done executing. Perhaps someday
1398 this will be implemented (it would not be easy). */
1400 /* FIXME: Insert a bunch of wrap_here; name can be very long if it's
1401 a C++ name with arguments and stuff. */
1403 The program being debugged stopped while in a function called from GDB.\n\
1404 When the function (%s) is done executing, GDB will silently\n\
1405 stop (instead of continuing to evaluate the expression containing\n\
1406 the function call).", name
);
1409 do_cleanups (old_chain
);
1411 /* Figure out the value returned by the function. */
1412 return value_being_returned (value_type
, retbuf
, struct_return
);
1415 #else /* no CALL_DUMMY. */
1417 call_function_by_hand (function
, nargs
, args
)
1422 error ("Cannot invoke functions on this machine.");
1424 #endif /* no CALL_DUMMY. */
1427 /* Create a value for an array by allocating space in the inferior, copying
1428 the data into that space, and then setting up an array value.
1430 The array bounds are set from LOWBOUND and HIGHBOUND, and the array is
1431 populated from the values passed in ELEMVEC.
1433 The element type of the array is inherited from the type of the
1434 first element, and all elements must have the same size (though we
1435 don't currently enforce any restriction on their types). */
1438 value_array (lowbound
, highbound
, elemvec
)
1445 unsigned int typelength
;
1447 struct type
*rangetype
;
1448 struct type
*arraytype
;
1451 /* Validate that the bounds are reasonable and that each of the elements
1452 have the same size. */
1454 nelem
= highbound
- lowbound
+ 1;
1457 error ("bad array bounds (%d, %d)", lowbound
, highbound
);
1459 typelength
= TYPE_LENGTH (VALUE_TYPE (elemvec
[0]));
1460 for (idx
= 1; idx
< nelem
; idx
++)
1462 if (TYPE_LENGTH (VALUE_TYPE (elemvec
[idx
])) != typelength
)
1464 error ("array elements must all be the same size");
1468 rangetype
= create_range_type ((struct type
*) NULL
, builtin_type_int
,
1469 lowbound
, highbound
);
1470 arraytype
= create_array_type ((struct type
*) NULL
,
1471 VALUE_TYPE (elemvec
[0]), rangetype
);
1473 if (!current_language
->c_style_arrays
)
1475 val
= allocate_value (arraytype
);
1476 for (idx
= 0; idx
< nelem
; idx
++)
1478 memcpy (VALUE_CONTENTS_RAW (val
) + (idx
* typelength
),
1479 VALUE_CONTENTS (elemvec
[idx
]),
1482 VALUE_BFD_SECTION (val
) = VALUE_BFD_SECTION (elemvec
[0]);
1486 /* Allocate space to store the array in the inferior, and then initialize
1487 it by copying in each element. FIXME: Is it worth it to create a
1488 local buffer in which to collect each value and then write all the
1489 bytes in one operation? */
1491 addr
= allocate_space_in_inferior (nelem
* typelength
);
1492 for (idx
= 0; idx
< nelem
; idx
++)
1494 write_memory (addr
+ (idx
* typelength
), VALUE_CONTENTS (elemvec
[idx
]),
1498 /* Create the array type and set up an array value to be evaluated lazily. */
1500 val
= value_at_lazy (arraytype
, addr
, VALUE_BFD_SECTION (elemvec
[0]));
1504 /* Create a value for a string constant by allocating space in the inferior,
1505 copying the data into that space, and returning the address with type
1506 TYPE_CODE_STRING. PTR points to the string constant data; LEN is number
1508 Note that string types are like array of char types with a lower bound of
1509 zero and an upper bound of LEN - 1. Also note that the string may contain
1510 embedded null bytes. */
1513 value_string (ptr
, len
)
1518 int lowbound
= current_language
->string_lower_bound
;
1519 struct type
*rangetype
= create_range_type ((struct type
*) NULL
,
1521 lowbound
, len
+ lowbound
- 1);
1522 struct type
*stringtype
1523 = create_string_type ((struct type
*) NULL
, rangetype
);
1526 if (current_language
->c_style_arrays
== 0)
1528 val
= allocate_value (stringtype
);
1529 memcpy (VALUE_CONTENTS_RAW (val
), ptr
, len
);
1534 /* Allocate space to store the string in the inferior, and then
1535 copy LEN bytes from PTR in gdb to that address in the inferior. */
1537 addr
= allocate_space_in_inferior (len
);
1538 write_memory (addr
, ptr
, len
);
1540 val
= value_at_lazy (stringtype
, addr
, NULL
);
1545 value_bitstring (ptr
, len
)
1550 struct type
*domain_type
= create_range_type (NULL
, builtin_type_int
,
1552 struct type
*type
= create_set_type ((struct type
*) NULL
, domain_type
);
1553 TYPE_CODE (type
) = TYPE_CODE_BITSTRING
;
1554 val
= allocate_value (type
);
1555 memcpy (VALUE_CONTENTS_RAW (val
), ptr
, TYPE_LENGTH (type
));
1559 /* See if we can pass arguments in T2 to a function which takes arguments
1560 of types T1. Both t1 and t2 are NULL-terminated vectors. If some
1561 arguments need coercion of some sort, then the coerced values are written
1562 into T2. Return value is 0 if the arguments could be matched, or the
1563 position at which they differ if not.
1565 STATICP is nonzero if the T1 argument list came from a
1566 static member function.
1568 For non-static member functions, we ignore the first argument,
1569 which is the type of the instance variable. This is because we want
1570 to handle calls with objects from derived classes. This is not
1571 entirely correct: we should actually check to make sure that a
1572 requested operation is type secure, shouldn't we? FIXME. */
1575 typecmp (staticp
, t1
, t2
)
1584 if (staticp
&& t1
== 0)
1588 if (TYPE_CODE (t1
[0]) == TYPE_CODE_VOID
) return 0;
1589 if (t1
[!staticp
] == 0) return 0;
1590 for (i
= !staticp
; t1
[i
] && TYPE_CODE (t1
[i
]) != TYPE_CODE_VOID
; i
++)
1592 struct type
*tt1
, *tt2
;
1595 tt1
= check_typedef (t1
[i
]);
1596 tt2
= check_typedef (VALUE_TYPE(t2
[i
]));
1597 if (TYPE_CODE (tt1
) == TYPE_CODE_REF
1598 /* We should be doing hairy argument matching, as below. */
1599 && (TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (tt1
))) == TYPE_CODE (tt2
)))
1601 if (TYPE_CODE (tt2
) == TYPE_CODE_ARRAY
)
1602 t2
[i
] = value_coerce_array (t2
[i
]);
1604 t2
[i
] = value_addr (t2
[i
]);
1608 while (TYPE_CODE (tt1
) == TYPE_CODE_PTR
1609 && ( TYPE_CODE (tt2
) == TYPE_CODE_ARRAY
1610 || TYPE_CODE (tt2
) == TYPE_CODE_PTR
))
1612 tt1
= check_typedef (TYPE_TARGET_TYPE(tt1
));
1613 tt2
= check_typedef (TYPE_TARGET_TYPE(tt2
));
1615 if (TYPE_CODE(tt1
) == TYPE_CODE(tt2
)) continue;
1616 /* Array to pointer is a `trivial conversion' according to the ARM. */
1618 /* We should be doing much hairier argument matching (see section 13.2
1619 of the ARM), but as a quick kludge, just check for the same type
1621 if (TYPE_CODE (t1
[i
]) != TYPE_CODE (VALUE_TYPE (t2
[i
])))
1624 if (!t1
[i
]) return 0;
1625 return t2
[i
] ? i
+1 : 0;
1628 /* Helper function used by value_struct_elt to recurse through baseclasses.
1629 Look for a field NAME in ARG1. Adjust the address of ARG1 by OFFSET bytes,
1630 and search in it assuming it has (class) type TYPE.
1631 If found, return value, else return NULL.
1633 If LOOKING_FOR_BASECLASS, then instead of looking for struct fields,
1634 look for a baseclass named NAME. */
1637 search_struct_field (name
, arg1
, offset
, type
, looking_for_baseclass
)
1639 register value_ptr arg1
;
1641 register struct type
*type
;
1642 int looking_for_baseclass
;
1646 CHECK_TYPEDEF (type
);
1648 if (! looking_for_baseclass
)
1649 for (i
= TYPE_NFIELDS (type
) - 1; i
>= TYPE_N_BASECLASSES (type
); i
--)
1651 char *t_field_name
= TYPE_FIELD_NAME (type
, i
);
1653 if (t_field_name
&& STREQ (t_field_name
, name
))
1656 if (TYPE_FIELD_STATIC (type
, i
))
1658 char *phys_name
= TYPE_FIELD_STATIC_PHYSNAME (type
, i
);
1659 struct symbol
*sym
=
1660 lookup_symbol (phys_name
, 0, VAR_NAMESPACE
, 0, NULL
);
1662 error ("Internal error: could not find physical static variable named %s",
1664 v
= value_at (TYPE_FIELD_TYPE (type
, i
),
1665 SYMBOL_VALUE_ADDRESS (sym
), SYMBOL_BFD_SECTION (sym
));
1668 v
= value_primitive_field (arg1
, offset
, i
, type
);
1670 error("there is no field named %s", name
);
1675 && (t_field_name
[0] == '\0'
1676 || (TYPE_CODE (type
) == TYPE_CODE_UNION
1677 && STREQ (t_field_name
, "else"))))
1679 struct type
*field_type
= TYPE_FIELD_TYPE (type
, i
);
1680 if (TYPE_CODE (field_type
) == TYPE_CODE_UNION
1681 || TYPE_CODE (field_type
) == TYPE_CODE_STRUCT
)
1683 /* Look for a match through the fields of an anonymous union,
1684 or anonymous struct. C++ provides anonymous unions.
1686 In the GNU Chill implementation of variant record types,
1687 each <alternative field> has an (anonymous) union type,
1688 each member of the union represents a <variant alternative>.
1689 Each <variant alternative> is represented as a struct,
1690 with a member for each <variant field>. */
1693 int new_offset
= offset
;
1695 /* This is pretty gross. In G++, the offset in an anonymous
1696 union is relative to the beginning of the enclosing struct.
1697 In the GNU Chill implementation of variant records,
1698 the bitpos is zero in an anonymous union field, so we
1699 have to add the offset of the union here. */
1700 if (TYPE_CODE (field_type
) == TYPE_CODE_STRUCT
1701 || (TYPE_NFIELDS (field_type
) > 0
1702 && TYPE_FIELD_BITPOS (field_type
, 0) == 0))
1703 new_offset
+= TYPE_FIELD_BITPOS (type
, i
) / 8;
1705 v
= search_struct_field (name
, arg1
, new_offset
, field_type
,
1706 looking_for_baseclass
);
1713 for (i
= TYPE_N_BASECLASSES (type
) - 1; i
>= 0; i
--)
1716 struct type
*basetype
= check_typedef (TYPE_BASECLASS (type
, i
));
1717 /* If we are looking for baseclasses, this is what we get when we
1718 hit them. But it could happen that the base part's member name
1719 is not yet filled in. */
1720 int found_baseclass
= (looking_for_baseclass
1721 && TYPE_BASECLASS_NAME (type
, i
) != NULL
1722 && STREQ (name
, TYPE_BASECLASS_NAME (type
, i
)));
1724 if (BASETYPE_VIA_VIRTUAL (type
, i
))
1726 int boffset
= VALUE_OFFSET (arg1
) + offset
;
1727 boffset
= baseclass_offset (type
, i
,
1728 VALUE_CONTENTS (arg1
) + boffset
,
1729 VALUE_ADDRESS (arg1
) + boffset
);
1731 error ("virtual baseclass botch");
1732 if (found_baseclass
)
1734 value_ptr v2
= allocate_value (basetype
);
1735 VALUE_LVAL (v2
) = VALUE_LVAL (arg1
);
1736 VALUE_ADDRESS (v2
) = VALUE_ADDRESS (arg1
);
1737 VALUE_OFFSET (v2
) = VALUE_OFFSET (arg1
) + offset
+ boffset
;
1738 if (VALUE_LAZY (arg1
))
1739 VALUE_LAZY (v2
) = 1;
1741 memcpy (VALUE_CONTENTS_RAW (v2
),
1742 VALUE_CONTENTS_RAW (arg1
) + offset
+ boffset
,
1743 TYPE_LENGTH (basetype
));
1746 v
= search_struct_field (name
, arg1
, offset
+ boffset
,
1747 TYPE_BASECLASS (type
, i
),
1748 looking_for_baseclass
);
1750 else if (found_baseclass
)
1751 v
= value_primitive_field (arg1
, offset
, i
, type
);
1753 v
= search_struct_field (name
, arg1
,
1754 offset
+ TYPE_BASECLASS_BITPOS (type
, i
) / 8,
1755 basetype
, looking_for_baseclass
);
1761 /* Helper function used by value_struct_elt to recurse through baseclasses.
1762 Look for a field NAME in ARG1. Adjust the address of ARG1 by OFFSET bytes,
1763 and search in it assuming it has (class) type TYPE.
1764 If found, return value, else if name matched and args not return (value)-1,
1765 else return NULL. */
1768 search_struct_method (name
, arg1p
, args
, offset
, static_memfuncp
, type
)
1770 register value_ptr
*arg1p
, *args
;
1771 int offset
, *static_memfuncp
;
1772 register struct type
*type
;
1776 int name_matched
= 0;
1777 char dem_opname
[64];
1779 CHECK_TYPEDEF (type
);
1780 for (i
= TYPE_NFN_FIELDS (type
) - 1; i
>= 0; i
--)
1782 char *t_field_name
= TYPE_FN_FIELDLIST_NAME (type
, i
);
1783 /* FIXME! May need to check for ARM demangling here */
1784 if (strncmp(t_field_name
, "__", 2)==0 ||
1785 strncmp(t_field_name
, "op", 2)==0 ||
1786 strncmp(t_field_name
, "type", 4)==0 )
1788 if (cplus_demangle_opname(t_field_name
, dem_opname
, DMGL_ANSI
))
1789 t_field_name
= dem_opname
;
1790 else if (cplus_demangle_opname(t_field_name
, dem_opname
, 0))
1791 t_field_name
= dem_opname
;
1793 if (t_field_name
&& STREQ (t_field_name
, name
))
1795 int j
= TYPE_FN_FIELDLIST_LENGTH (type
, i
) - 1;
1796 struct fn_field
*f
= TYPE_FN_FIELDLIST1 (type
, i
);
1799 if (j
> 0 && args
== 0)
1800 error ("cannot resolve overloaded method `%s'", name
);
1803 if (TYPE_FN_FIELD_STUB (f
, j
))
1804 check_stub_method (type
, i
, j
);
1805 if (!typecmp (TYPE_FN_FIELD_STATIC_P (f
, j
),
1806 TYPE_FN_FIELD_ARGS (f
, j
), args
))
1808 if (TYPE_FN_FIELD_VIRTUAL_P (f
, j
))
1809 return value_virtual_fn_field (arg1p
, f
, j
, type
, offset
);
1810 if (TYPE_FN_FIELD_STATIC_P (f
, j
) && static_memfuncp
)
1811 *static_memfuncp
= 1;
1812 v
= value_fn_field (arg1p
, f
, j
, type
, offset
);
1813 if (v
!= NULL
) return v
;
1820 for (i
= TYPE_N_BASECLASSES (type
) - 1; i
>= 0; i
--)
1824 if (BASETYPE_VIA_VIRTUAL (type
, i
))
1826 base_offset
= VALUE_OFFSET (*arg1p
) + offset
;
1828 baseclass_offset (type
, i
,
1829 VALUE_CONTENTS (*arg1p
) + base_offset
,
1830 VALUE_ADDRESS (*arg1p
) + base_offset
);
1831 if (base_offset
== -1)
1832 error ("virtual baseclass botch");
1836 base_offset
= TYPE_BASECLASS_BITPOS (type
, i
) / 8;
1838 v
= search_struct_method (name
, arg1p
, args
, base_offset
+ offset
,
1839 static_memfuncp
, TYPE_BASECLASS (type
, i
));
1840 if (v
== (value_ptr
) -1)
1846 /* FIXME-bothner: Why is this commented out? Why is it here? */
1847 /* *arg1p = arg1_tmp;*/
1851 if (name_matched
) return (value_ptr
) -1;
1855 /* Given *ARGP, a value of type (pointer to a)* structure/union,
1856 extract the component named NAME from the ultimate target structure/union
1857 and return it as a value with its appropriate type.
1858 ERR is used in the error message if *ARGP's type is wrong.
1860 C++: ARGS is a list of argument types to aid in the selection of
1861 an appropriate method. Also, handle derived types.
1863 STATIC_MEMFUNCP, if non-NULL, points to a caller-supplied location
1864 where the truthvalue of whether the function that was resolved was
1865 a static member function or not is stored.
1867 ERR is an error message to be printed in case the field is not found. */
1870 value_struct_elt (argp
, args
, name
, static_memfuncp
, err
)
1871 register value_ptr
*argp
, *args
;
1873 int *static_memfuncp
;
1876 register struct type
*t
;
1879 COERCE_ARRAY (*argp
);
1881 t
= check_typedef (VALUE_TYPE (*argp
));
1883 /* Follow pointers until we get to a non-pointer. */
1885 while (TYPE_CODE (t
) == TYPE_CODE_PTR
|| TYPE_CODE (t
) == TYPE_CODE_REF
)
1887 *argp
= value_ind (*argp
);
1888 /* Don't coerce fn pointer to fn and then back again! */
1889 if (TYPE_CODE (VALUE_TYPE (*argp
)) != TYPE_CODE_FUNC
)
1890 COERCE_ARRAY (*argp
);
1891 t
= check_typedef (VALUE_TYPE (*argp
));
1894 if (TYPE_CODE (t
) == TYPE_CODE_MEMBER
)
1895 error ("not implemented: member type in value_struct_elt");
1897 if ( TYPE_CODE (t
) != TYPE_CODE_STRUCT
1898 && TYPE_CODE (t
) != TYPE_CODE_UNION
)
1899 error ("Attempt to extract a component of a value that is not a %s.", err
);
1901 /* Assume it's not, unless we see that it is. */
1902 if (static_memfuncp
)
1903 *static_memfuncp
=0;
1907 /* if there are no arguments ...do this... */
1909 /* Try as a field first, because if we succeed, there
1910 is less work to be done. */
1911 v
= search_struct_field (name
, *argp
, 0, t
, 0);
1915 /* C++: If it was not found as a data field, then try to
1916 return it as a pointer to a method. */
1918 if (destructor_name_p (name
, t
))
1919 error ("Cannot get value of destructor");
1921 v
= search_struct_method (name
, argp
, args
, 0, static_memfuncp
, t
);
1923 if (v
== (value_ptr
) -1)
1924 error ("Cannot take address of a method");
1927 if (TYPE_NFN_FIELDS (t
))
1928 error ("There is no member or method named %s.", name
);
1930 error ("There is no member named %s.", name
);
1935 if (destructor_name_p (name
, t
))
1939 /* Destructors are a special case. */
1940 int m_index
, f_index
;
1943 if (get_destructor_fn_field (t
, &m_index
, &f_index
))
1945 v
= value_fn_field (NULL
, TYPE_FN_FIELDLIST1 (t
, m_index
),
1949 error ("could not find destructor function named %s.", name
);
1955 error ("destructor should not have any argument");
1959 v
= search_struct_method (name
, argp
, args
, 0, static_memfuncp
, t
);
1961 if (v
== (value_ptr
) -1)
1963 error("Argument list of %s mismatch with component in the structure.", name
);
1967 /* See if user tried to invoke data as function. If so,
1968 hand it back. If it's not callable (i.e., a pointer to function),
1969 gdb should give an error. */
1970 v
= search_struct_field (name
, *argp
, 0, t
, 0);
1974 error ("Structure has no component named %s.", name
);
1978 /* C++: return 1 is NAME is a legitimate name for the destructor
1979 of type TYPE. If TYPE does not have a destructor, or
1980 if NAME is inappropriate for TYPE, an error is signaled. */
1982 destructor_name_p (name
, type
)
1984 const struct type
*type
;
1986 /* destructors are a special case. */
1990 char *dname
= type_name_no_tag (type
);
1991 char *cp
= strchr (dname
, '<');
1994 /* Do not compare the template part for template classes. */
1996 len
= strlen (dname
);
1999 if (strlen (name
+ 1) != len
|| !STREQN (dname
, name
+ 1, len
))
2000 error ("name of destructor must equal name of class");
2007 /* Helper function for check_field: Given TYPE, a structure/union,
2008 return 1 if the component named NAME from the ultimate
2009 target structure/union is defined, otherwise, return 0. */
2012 check_field_in (type
, name
)
2013 register struct type
*type
;
2018 for (i
= TYPE_NFIELDS (type
) - 1; i
>= TYPE_N_BASECLASSES (type
); i
--)
2020 char *t_field_name
= TYPE_FIELD_NAME (type
, i
);
2021 if (t_field_name
&& STREQ (t_field_name
, name
))
2025 /* C++: If it was not found as a data field, then try to
2026 return it as a pointer to a method. */
2028 /* Destructors are a special case. */
2029 if (destructor_name_p (name
, type
))
2031 int m_index
, f_index
;
2033 return get_destructor_fn_field (type
, &m_index
, &f_index
);
2036 for (i
= TYPE_NFN_FIELDS (type
) - 1; i
>= 0; --i
)
2038 if (STREQ (TYPE_FN_FIELDLIST_NAME (type
, i
), name
))
2042 for (i
= TYPE_N_BASECLASSES (type
) - 1; i
>= 0; i
--)
2043 if (check_field_in (TYPE_BASECLASS (type
, i
), name
))
2050 /* C++: Given ARG1, a value of type (pointer to a)* structure/union,
2051 return 1 if the component named NAME from the ultimate
2052 target structure/union is defined, otherwise, return 0. */
2055 check_field (arg1
, name
)
2056 register value_ptr arg1
;
2059 register struct type
*t
;
2061 COERCE_ARRAY (arg1
);
2063 t
= VALUE_TYPE (arg1
);
2065 /* Follow pointers until we get to a non-pointer. */
2070 if (TYPE_CODE (t
) != TYPE_CODE_PTR
&& TYPE_CODE (t
) != TYPE_CODE_REF
)
2072 t
= TYPE_TARGET_TYPE (t
);
2075 if (TYPE_CODE (t
) == TYPE_CODE_MEMBER
)
2076 error ("not implemented: member type in check_field");
2078 if ( TYPE_CODE (t
) != TYPE_CODE_STRUCT
2079 && TYPE_CODE (t
) != TYPE_CODE_UNION
)
2080 error ("Internal error: `this' is not an aggregate");
2082 return check_field_in (t
, name
);
2085 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
2086 return the address of this member as a "pointer to member"
2087 type. If INTYPE is non-null, then it will be the type
2088 of the member we are looking for. This will help us resolve
2089 "pointers to member functions". This function is used
2090 to resolve user expressions of the form "DOMAIN::NAME". */
2093 value_struct_elt_for_reference (domain
, offset
, curtype
, name
, intype
)
2094 struct type
*domain
, *curtype
, *intype
;
2098 register struct type
*t
= curtype
;
2102 if ( TYPE_CODE (t
) != TYPE_CODE_STRUCT
2103 && TYPE_CODE (t
) != TYPE_CODE_UNION
)
2104 error ("Internal error: non-aggregate type to value_struct_elt_for_reference");
2106 for (i
= TYPE_NFIELDS (t
) - 1; i
>= TYPE_N_BASECLASSES (t
); i
--)
2108 char *t_field_name
= TYPE_FIELD_NAME (t
, i
);
2110 if (t_field_name
&& STREQ (t_field_name
, name
))
2112 if (TYPE_FIELD_STATIC (t
, i
))
2114 char *phys_name
= TYPE_FIELD_STATIC_PHYSNAME (t
, i
);
2115 struct symbol
*sym
=
2116 lookup_symbol (phys_name
, 0, VAR_NAMESPACE
, 0, NULL
);
2118 error ("Internal error: could not find physical static variable named %s",
2120 return value_at (SYMBOL_TYPE (sym
),
2121 SYMBOL_VALUE_ADDRESS (sym
),
2122 SYMBOL_BFD_SECTION (sym
));
2124 if (TYPE_FIELD_PACKED (t
, i
))
2125 error ("pointers to bitfield members not allowed");
2127 return value_from_longest
2128 (lookup_reference_type (lookup_member_type (TYPE_FIELD_TYPE (t
, i
),
2130 offset
+ (LONGEST
) (TYPE_FIELD_BITPOS (t
, i
) >> 3));
2134 /* C++: If it was not found as a data field, then try to
2135 return it as a pointer to a method. */
2137 /* Destructors are a special case. */
2138 if (destructor_name_p (name
, t
))
2140 error ("member pointers to destructors not implemented yet");
2143 /* Perform all necessary dereferencing. */
2144 while (intype
&& TYPE_CODE (intype
) == TYPE_CODE_PTR
)
2145 intype
= TYPE_TARGET_TYPE (intype
);
2147 for (i
= TYPE_NFN_FIELDS (t
) - 1; i
>= 0; --i
)
2149 char *t_field_name
= TYPE_FN_FIELDLIST_NAME (t
, i
);
2150 char dem_opname
[64];
2152 if (strncmp(t_field_name
, "__", 2)==0 ||
2153 strncmp(t_field_name
, "op", 2)==0 ||
2154 strncmp(t_field_name
, "type", 4)==0 )
2156 if (cplus_demangle_opname(t_field_name
, dem_opname
, DMGL_ANSI
))
2157 t_field_name
= dem_opname
;
2158 else if (cplus_demangle_opname(t_field_name
, dem_opname
, 0))
2159 t_field_name
= dem_opname
;
2161 if (t_field_name
&& STREQ (t_field_name
, name
))
2163 int j
= TYPE_FN_FIELDLIST_LENGTH (t
, i
);
2164 struct fn_field
*f
= TYPE_FN_FIELDLIST1 (t
, i
);
2166 if (intype
== 0 && j
> 1)
2167 error ("non-unique member `%s' requires type instantiation", name
);
2171 if (TYPE_FN_FIELD_TYPE (f
, j
) == intype
)
2174 error ("no member function matches that type instantiation");
2179 if (TYPE_FN_FIELD_STUB (f
, j
))
2180 check_stub_method (t
, i
, j
);
2181 if (TYPE_FN_FIELD_VIRTUAL_P (f
, j
))
2183 return value_from_longest
2184 (lookup_reference_type
2185 (lookup_member_type (TYPE_FN_FIELD_TYPE (f
, j
),
2187 (LONGEST
) METHOD_PTR_FROM_VOFFSET (TYPE_FN_FIELD_VOFFSET (f
, j
)));
2191 struct symbol
*s
= lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f
, j
),
2192 0, VAR_NAMESPACE
, 0, NULL
);
2199 v
= read_var_value (s
, 0);
2201 VALUE_TYPE (v
) = lookup_reference_type
2202 (lookup_member_type (TYPE_FN_FIELD_TYPE (f
, j
),
2210 for (i
= TYPE_N_BASECLASSES (t
) - 1; i
>= 0; i
--)
2215 if (BASETYPE_VIA_VIRTUAL (t
, i
))
2218 base_offset
= TYPE_BASECLASS_BITPOS (t
, i
) / 8;
2219 v
= value_struct_elt_for_reference (domain
,
2220 offset
+ base_offset
,
2221 TYPE_BASECLASS (t
, i
),
2230 /* C++: return the value of the class instance variable, if one exists.
2231 Flag COMPLAIN signals an error if the request is made in an
2232 inappropriate context. */
2235 value_of_this (complain
)
2238 struct symbol
*func
, *sym
;
2241 static const char funny_this
[] = "this";
2244 if (selected_frame
== 0)
2246 error ("no frame selected");
2249 func
= get_frame_function (selected_frame
);
2253 error ("no `this' in nameless context");
2257 b
= SYMBOL_BLOCK_VALUE (func
);
2258 i
= BLOCK_NSYMS (b
);
2261 error ("no args, no `this'");
2264 /* Calling lookup_block_symbol is necessary to get the LOC_REGISTER
2265 symbol instead of the LOC_ARG one (if both exist). */
2266 sym
= lookup_block_symbol (b
, funny_this
, VAR_NAMESPACE
);
2270 error ("current stack frame not in method");
2275 this = read_var_value (sym
, selected_frame
);
2276 if (this == 0 && complain
)
2277 error ("`this' argument at unknown address");
2281 /* Create a slice (sub-string, sub-array) of ARRAY, that is LENGTH elements
2282 long, starting at LOWBOUND. The result has the same lower bound as
2283 the original ARRAY. */
2286 value_slice (array
, lowbound
, length
)
2288 int lowbound
, length
;
2290 struct type
*slice_range_type
, *slice_type
, *range_type
;
2291 LONGEST lowerbound
, upperbound
, offset
;
2293 struct type
*array_type
;
2294 array_type
= check_typedef (VALUE_TYPE (array
));
2295 COERCE_VARYING_ARRAY (array
, array_type
);
2296 if (TYPE_CODE (array_type
) != TYPE_CODE_ARRAY
2297 && TYPE_CODE (array_type
) != TYPE_CODE_STRING
2298 && TYPE_CODE (array_type
) != TYPE_CODE_BITSTRING
)
2299 error ("cannot take slice of non-array");
2300 range_type
= TYPE_INDEX_TYPE (array_type
);
2301 if (get_discrete_bounds (range_type
, &lowerbound
, &upperbound
) < 0)
2302 error ("slice from bad array or bitstring");
2303 if (lowbound
< lowerbound
|| length
< 0
2304 || lowbound
+ length
- 1 > upperbound
2305 /* Chill allows zero-length strings but not arrays. */
2306 || (current_language
->la_language
== language_chill
2307 && length
== 0 && TYPE_CODE (array_type
) == TYPE_CODE_ARRAY
))
2308 error ("slice out of range");
2309 /* FIXME-type-allocation: need a way to free this type when we are
2311 slice_range_type
= create_range_type ((struct type
*) NULL
,
2312 TYPE_TARGET_TYPE (range_type
),
2313 lowbound
, lowbound
+ length
- 1);
2314 if (TYPE_CODE (array_type
) == TYPE_CODE_BITSTRING
)
2317 slice_type
= create_set_type ((struct type
*) NULL
, slice_range_type
);
2318 TYPE_CODE (slice_type
) = TYPE_CODE_BITSTRING
;
2319 slice
= value_zero (slice_type
, not_lval
);
2320 for (i
= 0; i
< length
; i
++)
2322 int element
= value_bit_index (array_type
,
2323 VALUE_CONTENTS (array
),
2326 error ("internal error accessing bitstring");
2327 else if (element
> 0)
2329 int j
= i
% TARGET_CHAR_BIT
;
2330 if (BITS_BIG_ENDIAN
)
2331 j
= TARGET_CHAR_BIT
- 1 - j
;
2332 VALUE_CONTENTS_RAW (slice
)[i
/ TARGET_CHAR_BIT
] |= (1 << j
);
2335 /* We should set the address, bitssize, and bitspos, so the clice
2336 can be used on the LHS, but that may require extensions to
2337 value_assign. For now, just leave as a non_lval. FIXME. */
2341 struct type
*element_type
= TYPE_TARGET_TYPE (array_type
);
2343 = (lowbound
- lowerbound
) * TYPE_LENGTH (check_typedef (element_type
));
2344 slice_type
= create_array_type ((struct type
*) NULL
, element_type
,
2346 TYPE_CODE (slice_type
) = TYPE_CODE (array_type
);
2347 slice
= allocate_value (slice_type
);
2348 if (VALUE_LAZY (array
))
2349 VALUE_LAZY (slice
) = 1;
2351 memcpy (VALUE_CONTENTS (slice
), VALUE_CONTENTS (array
) + offset
,
2352 TYPE_LENGTH (slice_type
));
2353 if (VALUE_LVAL (array
) == lval_internalvar
)
2354 VALUE_LVAL (slice
) = lval_internalvar_component
;
2356 VALUE_LVAL (slice
) = VALUE_LVAL (array
);
2357 VALUE_ADDRESS (slice
) = VALUE_ADDRESS (array
);
2358 VALUE_OFFSET (slice
) = VALUE_OFFSET (array
) + offset
;
2363 /* Assuming chill_varying_type (VARRAY) is true, return an equivalent
2364 value as a fixed-length array. */
2367 varying_to_slice (varray
)
2370 struct type
*vtype
= check_typedef (VALUE_TYPE (varray
));
2371 LONGEST length
= unpack_long (TYPE_FIELD_TYPE (vtype
, 0),
2372 VALUE_CONTENTS (varray
)
2373 + TYPE_FIELD_BITPOS (vtype
, 0) / 8);
2374 return value_slice (value_primitive_field (varray
, 0, 1, vtype
), 0, length
);
2377 /* Create a value for a FORTRAN complex number. Currently most of
2378 the time values are coerced to COMPLEX*16 (i.e. a complex number
2379 composed of 2 doubles. This really should be a smarter routine
2380 that figures out precision inteligently as opposed to assuming
2381 doubles. FIXME: fmb */
2384 value_literal_complex (arg1
, arg2
, type
)
2389 register value_ptr val
;
2390 struct type
*real_type
= TYPE_TARGET_TYPE (type
);
2392 val
= allocate_value (type
);
2393 arg1
= value_cast (real_type
, arg1
);
2394 arg2
= value_cast (real_type
, arg2
);
2396 memcpy (VALUE_CONTENTS_RAW (val
),
2397 VALUE_CONTENTS (arg1
), TYPE_LENGTH (real_type
));
2398 memcpy (VALUE_CONTENTS_RAW (val
) + TYPE_LENGTH (real_type
),
2399 VALUE_CONTENTS (arg2
), TYPE_LENGTH (real_type
));
2403 /* Cast a value into the appropriate complex data type. */
2406 cast_into_complex (type
, val
)
2408 register value_ptr val
;
2410 struct type
*real_type
= TYPE_TARGET_TYPE (type
);
2411 if (TYPE_CODE (VALUE_TYPE (val
)) == TYPE_CODE_COMPLEX
)
2413 struct type
*val_real_type
= TYPE_TARGET_TYPE (VALUE_TYPE (val
));
2414 value_ptr re_val
= allocate_value (val_real_type
);
2415 value_ptr im_val
= allocate_value (val_real_type
);
2417 memcpy (VALUE_CONTENTS_RAW (re_val
),
2418 VALUE_CONTENTS (val
), TYPE_LENGTH (val_real_type
));
2419 memcpy (VALUE_CONTENTS_RAW (im_val
),
2420 VALUE_CONTENTS (val
) + TYPE_LENGTH (val_real_type
),
2421 TYPE_LENGTH (val_real_type
));
2423 return value_literal_complex (re_val
, im_val
, type
);
2425 else if (TYPE_CODE (VALUE_TYPE (val
)) == TYPE_CODE_FLT
2426 || TYPE_CODE (VALUE_TYPE (val
)) == TYPE_CODE_INT
)
2427 return value_literal_complex (val
, value_zero (real_type
, not_lval
), type
);
2429 error ("cannot cast non-number to complex");
2433 _initialize_valops ()
2437 (add_set_cmd ("abandon", class_support
, var_boolean
, (char *)&auto_abandon
,
2438 "Set automatic abandonment of expressions upon failure.",