1 /* tc-mips.c -- assemble code for a MIPS chip.
2 Copyright (C) 1993-2023 Free Software Foundation, Inc.
3 Contributed by the OSF and Ralph Campbell.
4 Written by Keith Knowles and Ralph Campbell, working independently.
5 Modified for ECOFF and R4000 support by Ian Lance Taylor of Cygnus
8 This file is part of GAS.
10 GAS is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3, or (at your option)
15 GAS is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
20 You should have received a copy of the GNU General Public License
21 along with GAS; see the file COPYING. If not, write to the Free
22 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
28 #include "safe-ctype.h"
30 #include "opcode/mips.h"
32 #include "dwarf2dbg.h"
33 #include "dw2gencfi.h"
35 /* Check assumptions made in this file. */
36 typedef char static_assert1
[sizeof (offsetT
) < 8 ? -1 : 1];
37 typedef char static_assert2
[sizeof (valueT
) < 8 ? -1 : 1];
40 #define DBG(x) printf x
45 #define streq(a, b) (strcmp (a, b) == 0)
47 #define SKIP_SPACE_TABS(S) \
48 do { while (*(S) == ' ' || *(S) == '\t') ++(S); } while (0)
50 /* Clean up namespace so we can include obj-elf.h too. */
51 static int mips_output_flavor (void);
52 static int mips_output_flavor (void) { return OUTPUT_FLAVOR
; }
53 #undef OBJ_PROCESS_STAB
60 #undef obj_frob_file_after_relocs
61 #undef obj_frob_symbol
63 #undef obj_sec_sym_ok_for_reloc
64 #undef OBJ_COPY_SYMBOL_ATTRIBUTES
67 /* Fix any of them that we actually care about. */
69 #define OUTPUT_FLAVOR mips_output_flavor()
73 #ifndef ECOFF_DEBUGGING
74 #define NO_ECOFF_DEBUGGING
75 #define ECOFF_DEBUGGING 0
78 int mips_flag_mdebug
= -1;
80 /* Control generation of .pdr sections. Off by default on IRIX: the native
81 linker doesn't know about and discards them, but relocations against them
82 remain, leading to rld crashes. */
84 int mips_flag_pdr
= false;
86 int mips_flag_pdr
= true;
91 static char *mips_regmask_frag
;
92 static char *mips_flags_frag
;
99 #define PIC_CALL_REG 25
109 #define ILLEGAL_REG (32)
111 #define AT mips_opts.at
113 extern int target_big_endian
;
115 /* The name of the readonly data section. */
116 #define RDATA_SECTION_NAME ".rodata"
118 /* Ways in which an instruction can be "appended" to the output. */
120 /* Just add it normally. */
123 /* Add it normally and then add a nop. */
126 /* Turn an instruction with a delay slot into a "compact" version. */
129 /* Insert the instruction before the last one. */
133 /* Information about an instruction, including its format, operands
137 /* The opcode's entry in mips_opcodes or mips16_opcodes. */
138 const struct mips_opcode
*insn_mo
;
140 /* The 16-bit or 32-bit bitstring of the instruction itself. This is
141 a copy of INSN_MO->match with the operands filled in. If we have
142 decided to use an extended MIPS16 instruction, this includes the
144 unsigned long insn_opcode
;
146 /* The name if this is an label. */
149 /* The target label name if this is an branch. */
152 /* The frag that contains the instruction. */
155 /* The offset into FRAG of the first instruction byte. */
158 /* The relocs associated with the instruction, if any. */
161 /* True if this entry cannot be moved from its current position. */
162 unsigned int fixed_p
: 1;
164 /* True if this instruction occurred in a .set noreorder block. */
165 unsigned int noreorder_p
: 1;
167 /* True for mips16 instructions that jump to an absolute address. */
168 unsigned int mips16_absolute_jump_p
: 1;
170 /* True if this instruction is complete. */
171 unsigned int complete_p
: 1;
173 /* True if this instruction is cleared from history by unconditional
175 unsigned int cleared_p
: 1;
178 /* The ABI to use. */
189 /* MIPS ABI we are using for this output file. */
190 static enum mips_abi_level mips_abi
= NO_ABI
;
192 /* Whether or not we have code that can call pic code. */
193 int mips_abicalls
= false;
195 /* Whether or not we have code which can be put into a shared
197 static bool mips_in_shared
= true;
199 /* This is the set of options which may be modified by the .set
200 pseudo-op. We use a struct so that .set push and .set pop are more
203 struct mips_set_options
205 /* MIPS ISA (Instruction Set Architecture) level. This is set to -1
206 if it has not been initialized. Changed by `.set mipsN', and the
207 -mipsN command line option, and the default CPU. */
209 /* Enabled Application Specific Extensions (ASEs). Changed by `.set
210 <asename>', by command line options, and based on the default
213 /* Whether we are assembling for the mips16 processor. 0 if we are
214 not, 1 if we are, and -1 if the value has not been initialized.
215 Changed by `.set mips16' and `.set nomips16', and the -mips16 and
216 -nomips16 command line options, and the default CPU. */
218 /* Whether we are assembling for the mipsMIPS ASE. 0 if we are not,
219 1 if we are, and -1 if the value has not been initialized. Changed
220 by `.set micromips' and `.set nomicromips', and the -mmicromips
221 and -mno-micromips command line options, and the default CPU. */
223 /* Non-zero if we should not reorder instructions. Changed by `.set
224 reorder' and `.set noreorder'. */
226 /* Non-zero if we should not permit the register designated "assembler
227 temporary" to be used in instructions. The value is the register
228 number, normally $at ($1). Changed by `.set at=REG', `.set noat'
229 (same as `.set at=$0') and `.set at' (same as `.set at=$1'). */
231 /* Non-zero if we should warn when a macro instruction expands into
232 more than one machine instruction. Changed by `.set nomacro' and
234 int warn_about_macros
;
235 /* Non-zero if we should not move instructions. Changed by `.set
236 move', `.set volatile', `.set nomove', and `.set novolatile'. */
238 /* Non-zero if we should not optimize branches by moving the target
239 of the branch into the delay slot. Actually, we don't perform
240 this optimization anyhow. Changed by `.set bopt' and `.set
243 /* Non-zero if we should not autoextend mips16 instructions.
244 Changed by `.set autoextend' and `.set noautoextend'. */
246 /* True if we should only emit 32-bit microMIPS instructions.
247 Changed by `.set insn32' and `.set noinsn32', and the -minsn32
248 and -mno-insn32 command line options. */
250 /* Restrict general purpose registers and floating point registers
251 to 32 bit. This is initially determined when -mgp32 or -mfp32
252 is passed but can changed if the assembler code uses .set mipsN. */
255 /* MIPS architecture (CPU) type. Changed by .set arch=FOO, the -march
256 command line option, and the default CPU. */
258 /* True if ".set sym32" is in effect. */
260 /* True if floating-point operations are not allowed. Changed by .set
261 softfloat or .set hardfloat, by command line options -msoft-float or
262 -mhard-float. The default is false. */
265 /* True if only single-precision floating-point operations are allowed.
266 Changed by .set singlefloat or .set doublefloat, command-line options
267 -msingle-float or -mdouble-float. The default is false. */
270 /* 1 if single-precision operations on odd-numbered registers are
274 /* The set of ASEs that should be enabled for the user specified
275 architecture. This cannot be inferred from 'arch' for all cores
276 as processors only have a unique 'arch' if they add architecture
277 specific instructions (UDI). */
281 /* Specifies whether module level options have been checked yet. */
282 static bool file_mips_opts_checked
= false;
284 /* Do we support nan2008? 0 if we don't, 1 if we do, and -1 if the
285 value has not been initialized. Changed by `.nan legacy' and
286 `.nan 2008', and the -mnan=legacy and -mnan=2008 command line
287 options, and the default CPU. */
288 static int mips_nan2008
= -1;
290 /* This is the struct we use to hold the module level set of options.
291 Note that we must set the isa field to ISA_UNKNOWN and the ASE, gp and
292 fp fields to -1 to indicate that they have not been initialized. */
294 static struct mips_set_options file_mips_opts
=
296 /* isa */ ISA_UNKNOWN
, /* ase */ 0, /* mips16 */ -1, /* micromips */ -1,
297 /* noreorder */ 0, /* at */ ATREG
, /* warn_about_macros */ 0,
298 /* nomove */ 0, /* nobopt */ 0, /* noautoextend */ 0, /* insn32 */ false,
299 /* gp */ -1, /* fp */ -1, /* arch */ CPU_UNKNOWN
, /* sym32 */ false,
300 /* soft_float */ false, /* single_float */ false, /* oddspreg */ -1,
304 /* This is similar to file_mips_opts, but for the current set of options. */
306 static struct mips_set_options mips_opts
=
308 /* isa */ ISA_UNKNOWN
, /* ase */ 0, /* mips16 */ -1, /* micromips */ -1,
309 /* noreorder */ 0, /* at */ ATREG
, /* warn_about_macros */ 0,
310 /* nomove */ 0, /* nobopt */ 0, /* noautoextend */ 0, /* insn32 */ false,
311 /* gp */ -1, /* fp */ -1, /* arch */ CPU_UNKNOWN
, /* sym32 */ false,
312 /* soft_float */ false, /* single_float */ false, /* oddspreg */ -1,
316 /* Which bits of file_ase were explicitly set or cleared by ASE options. */
317 static unsigned int file_ase_explicit
;
319 /* These variables are filled in with the masks of registers used.
320 The object format code reads them and puts them in the appropriate
322 unsigned long mips_gprmask
;
323 unsigned long mips_cprmask
[4];
325 /* True if any MIPS16 code was produced. */
326 static int file_ase_mips16
;
328 #define ISA_SUPPORTS_MIPS16E (mips_opts.isa == ISA_MIPS32 \
329 || mips_opts.isa == ISA_MIPS32R2 \
330 || mips_opts.isa == ISA_MIPS32R3 \
331 || mips_opts.isa == ISA_MIPS32R5 \
332 || mips_opts.isa == ISA_MIPS64 \
333 || mips_opts.isa == ISA_MIPS64R2 \
334 || mips_opts.isa == ISA_MIPS64R3 \
335 || mips_opts.isa == ISA_MIPS64R5)
337 /* True if any microMIPS code was produced. */
338 static int file_ase_micromips
;
340 /* True if we want to create R_MIPS_JALR for jalr $25. */
342 #define MIPS_JALR_HINT_P(EXPR) HAVE_NEWABI
344 /* As a GNU extension, we use R_MIPS_JALR for o32 too. However,
345 because there's no place for any addend, the only acceptable
346 expression is a bare symbol. */
347 #define MIPS_JALR_HINT_P(EXPR) \
348 (!HAVE_IN_PLACE_ADDENDS \
349 || ((EXPR)->X_op == O_symbol && (EXPR)->X_add_number == 0))
352 /* The argument of the -march= flag. The architecture we are assembling. */
353 static const char *mips_arch_string
;
355 /* The argument of the -mtune= flag. The architecture for which we
357 static int mips_tune
= CPU_UNKNOWN
;
358 static const char *mips_tune_string
;
360 /* True when generating 32-bit code for a 64-bit processor. */
361 static int mips_32bitmode
= 0;
363 /* True if the given ABI requires 32-bit registers. */
364 #define ABI_NEEDS_32BIT_REGS(ABI) ((ABI) == O32_ABI)
366 /* Likewise 64-bit registers. */
367 #define ABI_NEEDS_64BIT_REGS(ABI) \
369 || (ABI) == N64_ABI \
372 #define ISA_IS_R6(ISA) \
373 ((ISA) == ISA_MIPS32R6 \
374 || (ISA) == ISA_MIPS64R6)
376 /* Return true if ISA supports 64 bit wide gp registers. */
377 #define ISA_HAS_64BIT_REGS(ISA) \
378 ((ISA) == ISA_MIPS3 \
379 || (ISA) == ISA_MIPS4 \
380 || (ISA) == ISA_MIPS5 \
381 || (ISA) == ISA_MIPS64 \
382 || (ISA) == ISA_MIPS64R2 \
383 || (ISA) == ISA_MIPS64R3 \
384 || (ISA) == ISA_MIPS64R5 \
385 || (ISA) == ISA_MIPS64R6)
387 /* Return true if ISA supports 64 bit wide float registers. */
388 #define ISA_HAS_64BIT_FPRS(ISA) \
389 ((ISA) == ISA_MIPS3 \
390 || (ISA) == ISA_MIPS4 \
391 || (ISA) == ISA_MIPS5 \
392 || (ISA) == ISA_MIPS32R2 \
393 || (ISA) == ISA_MIPS32R3 \
394 || (ISA) == ISA_MIPS32R5 \
395 || (ISA) == ISA_MIPS32R6 \
396 || (ISA) == ISA_MIPS64 \
397 || (ISA) == ISA_MIPS64R2 \
398 || (ISA) == ISA_MIPS64R3 \
399 || (ISA) == ISA_MIPS64R5 \
400 || (ISA) == ISA_MIPS64R6)
402 /* Return true if ISA supports 64-bit right rotate (dror et al.)
404 #define ISA_HAS_DROR(ISA) \
405 ((ISA) == ISA_MIPS64R2 \
406 || (ISA) == ISA_MIPS64R3 \
407 || (ISA) == ISA_MIPS64R5 \
408 || (ISA) == ISA_MIPS64R6 \
409 || (mips_opts.micromips \
410 && ISA_HAS_64BIT_REGS (ISA)) \
413 /* Return true if ISA supports 32-bit right rotate (ror et al.)
415 #define ISA_HAS_ROR(ISA) \
416 ((ISA) == ISA_MIPS32R2 \
417 || (ISA) == ISA_MIPS32R3 \
418 || (ISA) == ISA_MIPS32R5 \
419 || (ISA) == ISA_MIPS32R6 \
420 || (ISA) == ISA_MIPS64R2 \
421 || (ISA) == ISA_MIPS64R3 \
422 || (ISA) == ISA_MIPS64R5 \
423 || (ISA) == ISA_MIPS64R6 \
424 || (mips_opts.ase & ASE_SMARTMIPS) \
425 || mips_opts.micromips \
428 /* Return true if ISA supports single-precision floats in odd registers. */
429 #define ISA_HAS_ODD_SINGLE_FPR(ISA, CPU)\
430 (((ISA) == ISA_MIPS32 \
431 || (ISA) == ISA_MIPS32R2 \
432 || (ISA) == ISA_MIPS32R3 \
433 || (ISA) == ISA_MIPS32R5 \
434 || (ISA) == ISA_MIPS32R6 \
435 || (ISA) == ISA_MIPS64 \
436 || (ISA) == ISA_MIPS64R2 \
437 || (ISA) == ISA_MIPS64R3 \
438 || (ISA) == ISA_MIPS64R5 \
439 || (ISA) == ISA_MIPS64R6 \
440 || (CPU) == CPU_ALLEGREX \
441 || (CPU) == CPU_R5900) \
442 && ((CPU) != CPU_GS464 \
443 || (CPU) != CPU_GS464E \
444 || (CPU) != CPU_GS264E))
446 /* Return true if ISA supports move to/from high part of a 64-bit
447 floating-point register. */
448 #define ISA_HAS_MXHC1(ISA) \
449 ((ISA) == ISA_MIPS32R2 \
450 || (ISA) == ISA_MIPS32R3 \
451 || (ISA) == ISA_MIPS32R5 \
452 || (ISA) == ISA_MIPS32R6 \
453 || (ISA) == ISA_MIPS64R2 \
454 || (ISA) == ISA_MIPS64R3 \
455 || (ISA) == ISA_MIPS64R5 \
456 || (ISA) == ISA_MIPS64R6)
458 /* Return true if ISA supports legacy NAN. */
459 #define ISA_HAS_LEGACY_NAN(ISA) \
460 ((ISA) == ISA_MIPS1 \
461 || (ISA) == ISA_MIPS2 \
462 || (ISA) == ISA_MIPS3 \
463 || (ISA) == ISA_MIPS4 \
464 || (ISA) == ISA_MIPS5 \
465 || (ISA) == ISA_MIPS32 \
466 || (ISA) == ISA_MIPS32R2 \
467 || (ISA) == ISA_MIPS32R3 \
468 || (ISA) == ISA_MIPS32R5 \
469 || (ISA) == ISA_MIPS64 \
470 || (ISA) == ISA_MIPS64R2 \
471 || (ISA) == ISA_MIPS64R3 \
472 || (ISA) == ISA_MIPS64R5)
475 (mips_opts.gp == 64 && !ISA_HAS_64BIT_REGS (mips_opts.isa) \
480 (mips_opts.fp == 64 && !ISA_HAS_64BIT_FPRS (mips_opts.isa) \
484 #define HAVE_NEWABI (mips_abi == N32_ABI || mips_abi == N64_ABI)
486 #define HAVE_64BIT_OBJECTS (mips_abi == N64_ABI)
488 /* True if relocations are stored in-place. */
489 #define HAVE_IN_PLACE_ADDENDS (!HAVE_NEWABI)
491 /* The ABI-derived address size. */
492 #define HAVE_64BIT_ADDRESSES \
493 (GPR_SIZE == 64 && (mips_abi == EABI_ABI || mips_abi == N64_ABI))
494 #define HAVE_32BIT_ADDRESSES (!HAVE_64BIT_ADDRESSES)
496 /* The size of symbolic constants (i.e., expressions of the form
497 "SYMBOL" or "SYMBOL + OFFSET"). */
498 #define HAVE_32BIT_SYMBOLS \
499 (HAVE_32BIT_ADDRESSES || !HAVE_64BIT_OBJECTS || mips_opts.sym32)
500 #define HAVE_64BIT_SYMBOLS (!HAVE_32BIT_SYMBOLS)
502 /* Addresses are loaded in different ways, depending on the address size
503 in use. The n32 ABI Documentation also mandates the use of additions
504 with overflow checking, but existing implementations don't follow it. */
505 #define ADDRESS_ADD_INSN \
506 (HAVE_32BIT_ADDRESSES ? "addu" : "daddu")
508 #define ADDRESS_ADDI_INSN \
509 (HAVE_32BIT_ADDRESSES ? "addiu" : "daddiu")
511 #define ADDRESS_LOAD_INSN \
512 (HAVE_32BIT_ADDRESSES ? "lw" : "ld")
514 #define ADDRESS_STORE_INSN \
515 (HAVE_32BIT_ADDRESSES ? "sw" : "sd")
517 /* Return true if the given CPU supports the MIPS16 ASE. */
518 #define CPU_HAS_MIPS16(cpu) \
519 (startswith (TARGET_CPU, "mips16") \
520 || startswith (TARGET_CANONICAL, "mips-lsi-elf"))
522 /* Return true if the given CPU supports the microMIPS ASE. */
523 #define CPU_HAS_MICROMIPS(cpu) 0
525 /* True if CPU has a dror instruction. */
526 #define CPU_HAS_DROR(CPU) ((CPU) == CPU_VR5400 || (CPU) == CPU_VR5500)
528 /* True if CPU has a ror instruction. */
529 #define CPU_HAS_ROR(CPU) (CPU_HAS_DROR (CPU) || (CPU) == CPU_ALLEGREX)
531 /* True if CPU is in the Octeon family. */
532 #define CPU_IS_OCTEON(CPU) ((CPU) == CPU_OCTEON || (CPU) == CPU_OCTEONP \
533 || (CPU) == CPU_OCTEON2 || (CPU) == CPU_OCTEON3)
535 /* True if CPU has seq/sne and seqi/snei instructions. */
536 #define CPU_HAS_SEQ(CPU) (CPU_IS_OCTEON (CPU))
538 /* True, if CPU has support for ldc1 and sdc1. */
539 #define CPU_HAS_LDC1_SDC1(CPU) (mips_opts.isa != ISA_MIPS1 \
540 && (CPU) != CPU_ALLEGREX \
541 && (CPU) != CPU_R5900)
543 /* True if mflo and mfhi can be immediately followed by instructions
544 which write to the HI and LO registers.
546 According to MIPS specifications, MIPS ISAs I, II, and III need
547 (at least) two instructions between the reads of HI/LO and
548 instructions which write them, and later ISAs do not. Contradicting
549 the MIPS specifications, some MIPS IV processor user manuals (e.g.
550 the UM for the NEC Vr5000) document needing the instructions between
551 HI/LO reads and writes, as well. Therefore, we declare only MIPS32,
552 MIPS64 and later ISAs to have the interlocks, plus any specific
553 earlier-ISA CPUs for which CPU documentation declares that the
554 instructions are really interlocked. */
555 #define hilo_interlocks \
556 (mips_opts.isa == ISA_MIPS32 \
557 || mips_opts.isa == ISA_MIPS32R2 \
558 || mips_opts.isa == ISA_MIPS32R3 \
559 || mips_opts.isa == ISA_MIPS32R5 \
560 || mips_opts.isa == ISA_MIPS32R6 \
561 || mips_opts.isa == ISA_MIPS64 \
562 || mips_opts.isa == ISA_MIPS64R2 \
563 || mips_opts.isa == ISA_MIPS64R3 \
564 || mips_opts.isa == ISA_MIPS64R5 \
565 || mips_opts.isa == ISA_MIPS64R6 \
566 || mips_opts.arch == CPU_ALLEGREX \
567 || mips_opts.arch == CPU_R4010 \
568 || mips_opts.arch == CPU_R5900 \
569 || mips_opts.arch == CPU_R10000 \
570 || mips_opts.arch == CPU_R12000 \
571 || mips_opts.arch == CPU_R14000 \
572 || mips_opts.arch == CPU_R16000 \
573 || mips_opts.arch == CPU_RM7000 \
574 || mips_opts.arch == CPU_VR5500 \
575 || mips_opts.micromips \
578 /* Whether the processor uses hardware interlocks to protect reads
579 from the GPRs after they are loaded from memory, and thus does not
580 require nops to be inserted. This applies to instructions marked
581 INSN_LOAD_MEMORY. These nops are only required at MIPS ISA
582 level I and microMIPS mode instructions are always interlocked. */
583 #define gpr_interlocks \
584 (mips_opts.isa != ISA_MIPS1 \
585 || mips_opts.arch == CPU_R3900 \
586 || mips_opts.arch == CPU_R5900 \
587 || mips_opts.micromips \
590 /* Whether the processor uses hardware interlocks to avoid delays
591 required by coprocessor instructions, and thus does not require
592 nops to be inserted. This applies to instructions marked
593 INSN_LOAD_COPROC, INSN_COPROC_MOVE, and to delays between
594 instructions marked INSN_WRITE_COND_CODE and ones marked
595 INSN_READ_COND_CODE. These nops are only required at MIPS ISA
596 levels I, II, and III and microMIPS mode instructions are always
598 /* Itbl support may require additional care here. */
599 #define cop_interlocks \
600 ((mips_opts.isa != ISA_MIPS1 \
601 && mips_opts.isa != ISA_MIPS2 \
602 && mips_opts.isa != ISA_MIPS3) \
603 || mips_opts.arch == CPU_R4300 \
604 || mips_opts.micromips \
607 /* Whether the processor uses hardware interlocks to protect reads
608 from coprocessor registers after they are loaded from memory, and
609 thus does not require nops to be inserted. This applies to
610 instructions marked INSN_COPROC_MEMORY_DELAY. These nops are only
611 requires at MIPS ISA level I and microMIPS mode instructions are
612 always interlocked. */
613 #define cop_mem_interlocks \
614 (mips_opts.isa != ISA_MIPS1 \
615 || mips_opts.micromips \
618 /* Is this a mfhi or mflo instruction? */
619 #define MF_HILO_INSN(PINFO) \
620 ((PINFO & INSN_READ_HI) || (PINFO & INSN_READ_LO))
622 /* Whether code compression (either of the MIPS16 or the microMIPS ASEs)
623 has been selected. This implies, in particular, that addresses of text
624 labels have their LSB set. */
625 #define HAVE_CODE_COMPRESSION \
626 ((mips_opts.mips16 | mips_opts.micromips) != 0)
628 /* The minimum and maximum signed values that can be stored in a GPR. */
629 #define GPR_SMAX ((offsetT) (((valueT) 1 << (GPR_SIZE - 1)) - 1))
630 #define GPR_SMIN (-GPR_SMAX - 1)
632 /* MIPS PIC level. */
634 enum mips_pic_level mips_pic
;
636 /* 1 if we should generate 32 bit offsets from the $gp register in
637 SVR4_PIC mode. Currently has no meaning in other modes. */
638 static int mips_big_got
= 0;
640 /* 1 if trap instructions should used for overflow rather than break
642 static int mips_trap
= 0;
644 /* 1 if double width floating point constants should not be constructed
645 by assembling two single width halves into two single width floating
646 point registers which just happen to alias the double width destination
647 register. On some architectures this aliasing can be disabled by a bit
648 in the status register, and the setting of this bit cannot be determined
649 automatically at assemble time. */
650 static int mips_disable_float_construction
;
652 /* Non-zero if any .set noreorder directives were used. */
654 static int mips_any_noreorder
;
656 /* Non-zero if nops should be inserted when the register referenced in
657 an mfhi/mflo instruction is read in the next two instructions. */
658 static int mips_7000_hilo_fix
;
660 /* The size of objects in the small data section. */
661 static unsigned int g_switch_value
= 8;
662 /* Whether the -G option was used. */
663 static int g_switch_seen
= 0;
668 /* If we can determine in advance that GP optimization won't be
669 possible, we can skip the relaxation stuff that tries to produce
670 GP-relative references. This makes delay slot optimization work
673 This function can only provide a guess, but it seems to work for
674 gcc output. It needs to guess right for gcc, otherwise gcc
675 will put what it thinks is a GP-relative instruction in a branch
678 I don't know if a fix is needed for the SVR4_PIC mode. I've only
679 fixed it for the non-PIC mode. KR 95/04/07 */
680 static int nopic_need_relax (symbolS
*, int);
682 /* Handle of the OPCODE hash table. */
683 static htab_t op_hash
= NULL
;
685 /* The opcode hash table we use for the mips16. */
686 static htab_t mips16_op_hash
= NULL
;
688 /* The opcode hash table we use for the microMIPS ASE. */
689 static htab_t micromips_op_hash
= NULL
;
691 /* This array holds the chars that always start a comment. If the
692 pre-processor is disabled, these aren't very useful. */
693 const char comment_chars
[] = "#";
695 /* This array holds the chars that only start a comment at the beginning of
696 a line. If the line seems to have the form '# 123 filename'
697 .line and .file directives will appear in the pre-processed output. */
698 /* Note that input_file.c hand checks for '#' at the beginning of the
699 first line of the input file. This is because the compiler outputs
700 #NO_APP at the beginning of its output. */
701 /* Also note that C style comments are always supported. */
702 const char line_comment_chars
[] = "#";
704 /* This array holds machine specific line separator characters. */
705 const char line_separator_chars
[] = ";";
707 /* Chars that can be used to separate mant from exp in floating point nums. */
708 const char EXP_CHARS
[] = "eE";
710 /* Chars that mean this number is a floating point constant.
713 const char FLT_CHARS
[] = "rRsSfFdDxXpP";
715 /* Also be aware that MAXIMUM_NUMBER_OF_CHARS_FOR_FLOAT may have to be
716 changed in read.c . Ideally it shouldn't have to know about it at all,
717 but nothing is ideal around here. */
719 /* Types of printf format used for instruction-related error messages.
720 "I" means int ("%d") and "S" means string ("%s"). */
721 enum mips_insn_error_format
728 /* Information about an error that was found while assembling the current
730 struct mips_insn_error
732 /* We sometimes need to match an instruction against more than one
733 opcode table entry. Errors found during this matching are reported
734 against a particular syntactic argument rather than against the
735 instruction as a whole. We grade these messages so that errors
736 against argument N have a greater priority than an error against
737 any argument < N, since the former implies that arguments up to N
738 were acceptable and that the opcode entry was therefore a closer match.
739 If several matches report an error against the same argument,
740 we only use that error if it is the same in all cases.
742 min_argnum is the minimum argument number for which an error message
743 should be accepted. It is 0 if MSG is against the instruction as
747 /* The printf()-style message, including its format and arguments. */
748 enum mips_insn_error_format format
;
757 /* The error that should be reported for the current instruction. */
758 static struct mips_insn_error insn_error
;
760 static int auto_align
= 1;
762 /* When outputting SVR4 PIC code, the assembler needs to know the
763 offset in the stack frame from which to restore the $gp register.
764 This is set by the .cprestore pseudo-op, and saved in this
766 static offsetT mips_cprestore_offset
= -1;
768 /* Similar for NewABI PIC code, where $gp is callee-saved. NewABI has some
769 more optimizations, it can use a register value instead of a memory-saved
770 offset and even an other register than $gp as global pointer. */
771 static offsetT mips_cpreturn_offset
= -1;
772 static int mips_cpreturn_register
= -1;
773 static int mips_gp_register
= GP
;
774 static int mips_gprel_offset
= 0;
776 /* Whether mips_cprestore_offset has been set in the current function
777 (or whether it has already been warned about, if not). */
778 static int mips_cprestore_valid
= 0;
780 /* This is the register which holds the stack frame, as set by the
781 .frame pseudo-op. This is needed to implement .cprestore. */
782 static int mips_frame_reg
= SP
;
784 /* Whether mips_frame_reg has been set in the current function
785 (or whether it has already been warned about, if not). */
786 static int mips_frame_reg_valid
= 0;
788 /* To output NOP instructions correctly, we need to keep information
789 about the previous two instructions. */
791 /* Whether we are optimizing. The default value of 2 means to remove
792 unneeded NOPs and swap branch instructions when possible. A value
793 of 1 means to not swap branches. A value of 0 means to always
795 static int mips_optimize
= 2;
797 /* Debugging level. -g sets this to 2. -gN sets this to N. -g0 is
798 equivalent to seeing no -g option at all. */
799 static int mips_debug
= 0;
801 /* The maximum number of NOPs needed to avoid the VR4130 mflo/mfhi errata. */
802 #define MAX_VR4130_NOPS 4
804 /* The maximum number of NOPs needed to fill delay slots. */
805 #define MAX_DELAY_NOPS 2
807 /* The maximum number of NOPs needed for any purpose. */
810 /* The maximum range of context length of ll/sc. */
811 #define MAX_LLSC_RANGE 20
813 /* A list of previous instructions, with index 0 being the most recent.
814 We need to look back MAX_NOPS instructions when filling delay slots
815 or working around processor errata. We need to look back one
816 instruction further if we're thinking about using history[0] to
817 fill a branch delay slot. */
818 static struct mips_cl_insn history
[1 + MAX_NOPS
+ MAX_LLSC_RANGE
];
820 /* The maximum number of LABELS detect for the same address. */
821 #define MAX_LABELS_SAME 10
823 /* Arrays of operands for each instruction. */
824 #define MAX_OPERANDS 6
825 struct mips_operand_array
827 const struct mips_operand
*operand
[MAX_OPERANDS
];
829 static struct mips_operand_array
*mips_operands
;
830 static struct mips_operand_array
*mips16_operands
;
831 static struct mips_operand_array
*micromips_operands
;
833 /* Nop instructions used by emit_nop. */
834 static struct mips_cl_insn nop_insn
;
835 static struct mips_cl_insn mips16_nop_insn
;
836 static struct mips_cl_insn micromips_nop16_insn
;
837 static struct mips_cl_insn micromips_nop32_insn
;
839 /* Sync instructions used by insert sync. */
840 static struct mips_cl_insn sync_insn
;
842 /* The appropriate nop for the current mode. */
843 #define NOP_INSN (mips_opts.mips16 \
845 : (mips_opts.micromips \
846 ? (mips_opts.insn32 \
847 ? µmips_nop32_insn \
848 : µmips_nop16_insn) \
851 /* The size of NOP_INSN in bytes. */
852 #define NOP_INSN_SIZE ((mips_opts.mips16 \
853 || (mips_opts.micromips && !mips_opts.insn32)) \
856 /* If this is set, it points to a frag holding nop instructions which
857 were inserted before the start of a noreorder section. If those
858 nops turn out to be unnecessary, the size of the frag can be
860 static fragS
*prev_nop_frag
;
862 /* The number of nop instructions we created in prev_nop_frag. */
863 static int prev_nop_frag_holds
;
865 /* The number of nop instructions that we know we need in
867 static int prev_nop_frag_required
;
869 /* The number of instructions we've seen since prev_nop_frag. */
870 static int prev_nop_frag_since
;
872 /* Relocations against symbols are sometimes done in two parts, with a HI
873 relocation and a LO relocation. Each relocation has only 16 bits of
874 space to store an addend. This means that in order for the linker to
875 handle carries correctly, it must be able to locate both the HI and
876 the LO relocation. This means that the relocations must appear in
877 order in the relocation table.
879 In order to implement this, we keep track of each unmatched HI
880 relocation. We then sort them so that they immediately precede the
881 corresponding LO relocation. */
886 struct mips_hi_fixup
*next
;
889 /* The section this fixup is in. */
893 /* The list of unmatched HI relocs. */
895 static struct mips_hi_fixup
*mips_hi_fixup_list
;
897 /* Map mips16 register numbers to normal MIPS register numbers. */
899 static const unsigned int mips16_to_32_reg_map
[] =
901 16, 17, 2, 3, 4, 5, 6, 7
904 /* Map microMIPS register numbers to normal MIPS register numbers. */
906 #define micromips_to_32_reg_d_map mips16_to_32_reg_map
908 /* The microMIPS registers with type h. */
909 static const unsigned int micromips_to_32_reg_h_map1
[] =
911 5, 5, 6, 4, 4, 4, 4, 4
913 static const unsigned int micromips_to_32_reg_h_map2
[] =
915 6, 7, 7, 21, 22, 5, 6, 7
918 /* The microMIPS registers with type m. */
919 static const unsigned int micromips_to_32_reg_m_map
[] =
921 0, 17, 2, 3, 16, 18, 19, 20
924 #define micromips_to_32_reg_n_map micromips_to_32_reg_m_map
926 /* Classifies the kind of instructions we're interested in when
927 implementing -mfix-vr4120. */
928 enum fix_vr4120_class
936 NUM_FIX_VR4120_CLASSES
939 /* ...likewise -mfix-loongson2f-jump. */
940 static bool mips_fix_loongson2f_jump
;
942 /* ...likewise -mfix-loongson2f-nop. */
943 static bool mips_fix_loongson2f_nop
;
945 /* True if -mfix-loongson2f-nop or -mfix-loongson2f-jump passed. */
946 static bool mips_fix_loongson2f
;
948 /* Given two FIX_VR4120_* values X and Y, bit Y of element X is set if
949 there must be at least one other instruction between an instruction
950 of type X and an instruction of type Y. */
951 static unsigned int vr4120_conflicts
[NUM_FIX_VR4120_CLASSES
];
953 /* True if -mfix-vr4120 is in force. */
954 static int mips_fix_vr4120
;
956 /* ...likewise -mfix-vr4130. */
957 static int mips_fix_vr4130
;
959 /* ...likewise -mfix-24k. */
960 static int mips_fix_24k
;
962 /* ...likewise -mfix-rm7000 */
963 static int mips_fix_rm7000
;
965 /* ...likewise -mfix-cn63xxp1 */
966 static bool mips_fix_cn63xxp1
;
968 /* ...likewise -mfix-r5900 */
969 static bool mips_fix_r5900
;
970 static bool mips_fix_r5900_explicit
;
972 /* ...likewise -mfix-loongson3-llsc. */
973 static bool mips_fix_loongson3_llsc
= DEFAULT_MIPS_FIX_LOONGSON3_LLSC
;
975 /* We don't relax branches by default, since this causes us to expand
976 `la .l2 - .l1' if there's a branch between .l1 and .l2, because we
977 fail to compute the offset before expanding the macro to the most
978 efficient expansion. */
980 static int mips_relax_branch
;
982 /* TRUE if checks are suppressed for invalid branches between ISA modes.
983 Needed for broken assembly produced by some GCC versions and some
984 sloppy code out there, where branches to data labels are present. */
985 static bool mips_ignore_branch_isa
;
987 /* The expansion of many macros depends on the type of symbol that
988 they refer to. For example, when generating position-dependent code,
989 a macro that refers to a symbol may have two different expansions,
990 one which uses GP-relative addresses and one which uses absolute
991 addresses. When generating SVR4-style PIC, a macro may have
992 different expansions for local and global symbols.
994 We handle these situations by generating both sequences and putting
995 them in variant frags. In position-dependent code, the first sequence
996 will be the GP-relative one and the second sequence will be the
997 absolute one. In SVR4 PIC, the first sequence will be for global
998 symbols and the second will be for local symbols.
1000 The frag's "subtype" is RELAX_ENCODE (FIRST, SECOND), where FIRST and
1001 SECOND are the lengths of the two sequences in bytes. These fields
1002 can be extracted using RELAX_FIRST() and RELAX_SECOND(). In addition,
1003 the subtype has the following flags:
1006 Set if generating PIC code.
1009 Set if it has been decided that we should use the second
1010 sequence instead of the first.
1013 Set in the first variant frag if the macro's second implementation
1014 is longer than its first. This refers to the macro as a whole,
1015 not an individual relaxation.
1018 Set in the first variant frag if the macro appeared in a .set nomacro
1019 block and if one alternative requires a warning but the other does not.
1022 Like RELAX_NOMACRO, but indicates that the macro appears in a branch
1025 RELAX_DELAY_SLOT_16BIT
1026 Like RELAX_DELAY_SLOT, but indicates that the delay slot requires a
1029 RELAX_DELAY_SLOT_SIZE_FIRST
1030 Like RELAX_DELAY_SLOT, but indicates that the first implementation of
1031 the macro is of the wrong size for the branch delay slot.
1033 RELAX_DELAY_SLOT_SIZE_SECOND
1034 Like RELAX_DELAY_SLOT, but indicates that the second implementation of
1035 the macro is of the wrong size for the branch delay slot.
1037 The frag's "opcode" points to the first fixup for relaxable code.
1039 Relaxable macros are generated using a sequence such as:
1041 relax_start (SYMBOL);
1042 ... generate first expansion ...
1044 ... generate second expansion ...
1047 The code and fixups for the unwanted alternative are discarded
1048 by md_convert_frag. */
1049 #define RELAX_ENCODE(FIRST, SECOND, PIC) \
1050 (((FIRST) << 8) | (SECOND) | ((PIC) ? 0x10000 : 0))
1052 #define RELAX_FIRST(X) (((X) >> 8) & 0xff)
1053 #define RELAX_SECOND(X) ((X) & 0xff)
1054 #define RELAX_PIC(X) (((X) & 0x10000) != 0)
1055 #define RELAX_USE_SECOND 0x20000
1056 #define RELAX_SECOND_LONGER 0x40000
1057 #define RELAX_NOMACRO 0x80000
1058 #define RELAX_DELAY_SLOT 0x100000
1059 #define RELAX_DELAY_SLOT_16BIT 0x200000
1060 #define RELAX_DELAY_SLOT_SIZE_FIRST 0x400000
1061 #define RELAX_DELAY_SLOT_SIZE_SECOND 0x800000
1063 /* Branch without likely bit. If label is out of range, we turn:
1065 beq reg1, reg2, label
1075 with the following opcode replacements:
1082 bltzal <-> bgezal (with jal label instead of j label)
1084 Even though keeping the delay slot instruction in the delay slot of
1085 the branch would be more efficient, it would be very tricky to do
1086 correctly, because we'd have to introduce a variable frag *after*
1087 the delay slot instruction, and expand that instead. Let's do it
1088 the easy way for now, even if the branch-not-taken case now costs
1089 one additional instruction. Out-of-range branches are not supposed
1090 to be common, anyway.
1092 Branch likely. If label is out of range, we turn:
1094 beql reg1, reg2, label
1095 delay slot (annulled if branch not taken)
1104 delay slot (executed only if branch taken)
1107 It would be possible to generate a shorter sequence by losing the
1108 likely bit, generating something like:
1113 delay slot (executed only if branch taken)
1125 bltzall -> bgezal (with jal label instead of j label)
1126 bgezall -> bltzal (ditto)
1129 but it's not clear that it would actually improve performance. */
1130 #define RELAX_BRANCH_ENCODE(at, pic, \
1131 uncond, likely, link, toofar) \
1132 ((relax_substateT) \
1135 | ((pic) ? 0x20 : 0) \
1136 | ((toofar) ? 0x40 : 0) \
1137 | ((link) ? 0x80 : 0) \
1138 | ((likely) ? 0x100 : 0) \
1139 | ((uncond) ? 0x200 : 0)))
1140 #define RELAX_BRANCH_P(i) (((i) & 0xf0000000) == 0xc0000000)
1141 #define RELAX_BRANCH_UNCOND(i) (((i) & 0x200) != 0)
1142 #define RELAX_BRANCH_LIKELY(i) (((i) & 0x100) != 0)
1143 #define RELAX_BRANCH_LINK(i) (((i) & 0x80) != 0)
1144 #define RELAX_BRANCH_TOOFAR(i) (((i) & 0x40) != 0)
1145 #define RELAX_BRANCH_PIC(i) (((i) & 0x20) != 0)
1146 #define RELAX_BRANCH_AT(i) ((i) & 0x1f)
1148 /* For mips16 code, we use an entirely different form of relaxation.
1149 mips16 supports two versions of most instructions which take
1150 immediate values: a small one which takes some small value, and a
1151 larger one which takes a 16 bit value. Since branches also follow
1152 this pattern, relaxing these values is required.
1154 We can assemble both mips16 and normal MIPS code in a single
1155 object. Therefore, we need to support this type of relaxation at
1156 the same time that we support the relaxation described above. We
1157 use the high bit of the subtype field to distinguish these cases.
1159 The information we store for this type of relaxation is the
1160 argument code found in the opcode file for this relocation, whether
1161 the user explicitly requested a small or extended form, and whether
1162 the relocation is in a jump or jal delay slot. That tells us the
1163 size of the value, and how it should be stored. We also store
1164 whether the fragment is considered to be extended or not. We also
1165 store whether this is known to be a branch to a different section,
1166 whether we have tried to relax this frag yet, and whether we have
1167 ever extended a PC relative fragment because of a shift count. */
1168 #define RELAX_MIPS16_ENCODE(type, e2, pic, sym32, nomacro, \
1173 | ((e2) ? 0x100 : 0) \
1174 | ((pic) ? 0x200 : 0) \
1175 | ((sym32) ? 0x400 : 0) \
1176 | ((nomacro) ? 0x800 : 0) \
1177 | ((small) ? 0x1000 : 0) \
1178 | ((ext) ? 0x2000 : 0) \
1179 | ((dslot) ? 0x4000 : 0) \
1180 | ((jal_dslot) ? 0x8000 : 0))
1182 #define RELAX_MIPS16_P(i) (((i) & 0xc0000000) == 0x80000000)
1183 #define RELAX_MIPS16_TYPE(i) ((i) & 0xff)
1184 #define RELAX_MIPS16_E2(i) (((i) & 0x100) != 0)
1185 #define RELAX_MIPS16_PIC(i) (((i) & 0x200) != 0)
1186 #define RELAX_MIPS16_SYM32(i) (((i) & 0x400) != 0)
1187 #define RELAX_MIPS16_NOMACRO(i) (((i) & 0x800) != 0)
1188 #define RELAX_MIPS16_USER_SMALL(i) (((i) & 0x1000) != 0)
1189 #define RELAX_MIPS16_USER_EXT(i) (((i) & 0x2000) != 0)
1190 #define RELAX_MIPS16_DSLOT(i) (((i) & 0x4000) != 0)
1191 #define RELAX_MIPS16_JAL_DSLOT(i) (((i) & 0x8000) != 0)
1193 #define RELAX_MIPS16_EXTENDED(i) (((i) & 0x10000) != 0)
1194 #define RELAX_MIPS16_MARK_EXTENDED(i) ((i) | 0x10000)
1195 #define RELAX_MIPS16_CLEAR_EXTENDED(i) ((i) & ~0x10000)
1196 #define RELAX_MIPS16_ALWAYS_EXTENDED(i) (((i) & 0x20000) != 0)
1197 #define RELAX_MIPS16_MARK_ALWAYS_EXTENDED(i) ((i) | 0x20000)
1198 #define RELAX_MIPS16_CLEAR_ALWAYS_EXTENDED(i) ((i) & ~0x20000)
1199 #define RELAX_MIPS16_MACRO(i) (((i) & 0x40000) != 0)
1200 #define RELAX_MIPS16_MARK_MACRO(i) ((i) | 0x40000)
1201 #define RELAX_MIPS16_CLEAR_MACRO(i) ((i) & ~0x40000)
1203 /* For microMIPS code, we use relaxation similar to one we use for
1204 MIPS16 code. Some instructions that take immediate values support
1205 two encodings: a small one which takes some small value, and a
1206 larger one which takes a 16 bit value. As some branches also follow
1207 this pattern, relaxing these values is required.
1209 We can assemble both microMIPS and normal MIPS code in a single
1210 object. Therefore, we need to support this type of relaxation at
1211 the same time that we support the relaxation described above. We
1212 use one of the high bits of the subtype field to distinguish these
1215 The information we store for this type of relaxation is the argument
1216 code found in the opcode file for this relocation, the register
1217 selected as the assembler temporary, whether in the 32-bit
1218 instruction mode, whether the branch is unconditional, whether it is
1219 compact, whether there is no delay-slot instruction available to fill
1220 in, whether it stores the link address implicitly in $ra, whether
1221 relaxation of out-of-range 32-bit branches to a sequence of
1222 instructions is enabled, and whether the displacement of a branch is
1223 too large to fit as an immediate argument of a 16-bit and a 32-bit
1224 branch, respectively. */
1225 #define RELAX_MICROMIPS_ENCODE(type, at, insn32, pic, \
1226 uncond, compact, link, nods, \
1227 relax32, toofar16, toofar32) \
1230 | (((at) & 0x1f) << 8) \
1231 | ((insn32) ? 0x2000 : 0) \
1232 | ((pic) ? 0x4000 : 0) \
1233 | ((uncond) ? 0x8000 : 0) \
1234 | ((compact) ? 0x10000 : 0) \
1235 | ((link) ? 0x20000 : 0) \
1236 | ((nods) ? 0x40000 : 0) \
1237 | ((relax32) ? 0x80000 : 0) \
1238 | ((toofar16) ? 0x100000 : 0) \
1239 | ((toofar32) ? 0x200000 : 0))
1240 #define RELAX_MICROMIPS_P(i) (((i) & 0xc0000000) == 0x40000000)
1241 #define RELAX_MICROMIPS_TYPE(i) ((i) & 0xff)
1242 #define RELAX_MICROMIPS_AT(i) (((i) >> 8) & 0x1f)
1243 #define RELAX_MICROMIPS_INSN32(i) (((i) & 0x2000) != 0)
1244 #define RELAX_MICROMIPS_PIC(i) (((i) & 0x4000) != 0)
1245 #define RELAX_MICROMIPS_UNCOND(i) (((i) & 0x8000) != 0)
1246 #define RELAX_MICROMIPS_COMPACT(i) (((i) & 0x10000) != 0)
1247 #define RELAX_MICROMIPS_LINK(i) (((i) & 0x20000) != 0)
1248 #define RELAX_MICROMIPS_NODS(i) (((i) & 0x40000) != 0)
1249 #define RELAX_MICROMIPS_RELAX32(i) (((i) & 0x80000) != 0)
1251 #define RELAX_MICROMIPS_TOOFAR16(i) (((i) & 0x100000) != 0)
1252 #define RELAX_MICROMIPS_MARK_TOOFAR16(i) ((i) | 0x100000)
1253 #define RELAX_MICROMIPS_CLEAR_TOOFAR16(i) ((i) & ~0x100000)
1254 #define RELAX_MICROMIPS_TOOFAR32(i) (((i) & 0x200000) != 0)
1255 #define RELAX_MICROMIPS_MARK_TOOFAR32(i) ((i) | 0x200000)
1256 #define RELAX_MICROMIPS_CLEAR_TOOFAR32(i) ((i) & ~0x200000)
1258 /* Sign-extend 16-bit value X. */
1259 #define SEXT_16BIT(X) ((((X) + 0x8000) & 0xffff) - 0x8000)
1261 /* Is the given value a sign-extended 32-bit value? */
1262 #define IS_SEXT_32BIT_NUM(x) \
1263 (((x) &~ (offsetT) 0x7fffffff) == 0 \
1264 || (((x) &~ (offsetT) 0x7fffffff) == ~ (offsetT) 0x7fffffff))
1266 /* Is the given value a sign-extended 16-bit value? */
1267 #define IS_SEXT_16BIT_NUM(x) \
1268 (((x) &~ (offsetT) 0x7fff) == 0 \
1269 || (((x) &~ (offsetT) 0x7fff) == ~ (offsetT) 0x7fff))
1271 /* Is the given value a sign-extended 12-bit value? */
1272 #define IS_SEXT_12BIT_NUM(x) \
1273 (((((x) & 0xfff) ^ 0x800LL) - 0x800LL) == (x))
1275 /* Is the given value a sign-extended 9-bit value? */
1276 #define IS_SEXT_9BIT_NUM(x) \
1277 (((((x) & 0x1ff) ^ 0x100LL) - 0x100LL) == (x))
1279 /* Is the given value a zero-extended 32-bit value? Or a negated one? */
1280 #define IS_ZEXT_32BIT_NUM(x) \
1281 (((x) &~ (offsetT) 0xffffffff) == 0 \
1282 || (((x) &~ (offsetT) 0xffffffff) == ~ (offsetT) 0xffffffff))
1284 /* Extract bits MASK << SHIFT from STRUCT and shift them right
1286 #define EXTRACT_BITS(STRUCT, MASK, SHIFT) \
1287 (((STRUCT) >> (SHIFT)) & (MASK))
1289 /* Extract the operand given by FIELD from mips_cl_insn INSN. */
1290 #define EXTRACT_OPERAND(MICROMIPS, FIELD, INSN) \
1292 ? EXTRACT_BITS ((INSN).insn_opcode, OP_MASK_##FIELD, OP_SH_##FIELD) \
1293 : EXTRACT_BITS ((INSN).insn_opcode, \
1294 MICROMIPSOP_MASK_##FIELD, MICROMIPSOP_SH_##FIELD))
1295 #define MIPS16_EXTRACT_OPERAND(FIELD, INSN) \
1296 EXTRACT_BITS ((INSN).insn_opcode, \
1297 MIPS16OP_MASK_##FIELD, \
1298 MIPS16OP_SH_##FIELD)
1300 /* The MIPS16 EXTEND opcode, shifted left 16 places. */
1301 #define MIPS16_EXTEND (0xf000U << 16)
1303 /* Whether or not we are emitting a branch-likely macro. */
1304 static bool emit_branch_likely_macro
= false;
1306 /* Global variables used when generating relaxable macros. See the
1307 comment above RELAX_ENCODE for more details about how relaxation
1310 /* 0 if we're not emitting a relaxable macro.
1311 1 if we're emitting the first of the two relaxation alternatives.
1312 2 if we're emitting the second alternative. */
1315 /* The first relaxable fixup in the current frag. (In other words,
1316 the first fixup that refers to relaxable code.) */
1319 /* sizes[0] says how many bytes of the first alternative are stored in
1320 the current frag. Likewise sizes[1] for the second alternative. */
1321 unsigned int sizes
[2];
1323 /* The symbol on which the choice of sequence depends. */
1327 /* Global variables used to decide whether a macro needs a warning. */
1329 /* True if the macro is in a branch delay slot. */
1332 /* Set to the length in bytes required if the macro is in a delay slot
1333 that requires a specific length of instruction, otherwise zero. */
1334 unsigned int delay_slot_length
;
1336 /* For relaxable macros, sizes[0] is the length of the first alternative
1337 in bytes and sizes[1] is the length of the second alternative.
1338 For non-relaxable macros, both elements give the length of the
1340 unsigned int sizes
[2];
1342 /* For relaxable macros, first_insn_sizes[0] is the length of the first
1343 instruction of the first alternative in bytes and first_insn_sizes[1]
1344 is the length of the first instruction of the second alternative.
1345 For non-relaxable macros, both elements give the length of the first
1346 instruction in bytes.
1348 Set to zero if we haven't yet seen the first instruction. */
1349 unsigned int first_insn_sizes
[2];
1351 /* For relaxable macros, insns[0] is the number of instructions for the
1352 first alternative and insns[1] is the number of instructions for the
1355 For non-relaxable macros, both elements give the number of
1356 instructions for the macro. */
1357 unsigned int insns
[2];
1359 /* The first variant frag for this macro. */
1361 } mips_macro_warning
;
1363 /* Prototypes for static functions. */
1365 enum mips_regclass
{ MIPS_GR_REG
, MIPS_FP_REG
, MIPS16_REG
};
1367 static void append_insn
1368 (struct mips_cl_insn
*, expressionS
*, bfd_reloc_code_real_type
*,
1370 static void mips_no_prev_insn (void);
1371 static void macro_build (expressionS
*, const char *, const char *, ...);
1372 static void mips16_macro_build
1373 (expressionS
*, const char *, const char *, va_list *);
1374 static void load_register (int, expressionS
*, int);
1375 static void macro_start (void);
1376 static void macro_end (void);
1377 static void macro (struct mips_cl_insn
*ip
, char *str
);
1378 static void mips16_macro (struct mips_cl_insn
* ip
);
1379 static void mips_ip (char *str
, struct mips_cl_insn
* ip
);
1380 static void mips16_ip (char *str
, struct mips_cl_insn
* ip
);
1381 static unsigned long mips16_immed_extend (offsetT
, unsigned int);
1382 static void mips16_immed
1383 (const char *, unsigned int, int, bfd_reloc_code_real_type
, offsetT
,
1384 unsigned int, unsigned long *);
1385 static size_t my_getSmallExpression
1386 (expressionS
*, bfd_reloc_code_real_type
*, char *);
1387 static void my_getExpression (expressionS
*, char *);
1388 static void s_align (int);
1389 static void s_change_sec (int);
1390 static void s_change_section (int);
1391 static void s_cons (int);
1392 static void s_float_cons (int);
1393 static void s_mips_globl (int);
1394 static void s_option (int);
1395 static void s_mipsset (int);
1396 static void s_abicalls (int);
1397 static void s_cpload (int);
1398 static void s_cpsetup (int);
1399 static void s_cplocal (int);
1400 static void s_cprestore (int);
1401 static void s_cpreturn (int);
1402 static void s_dtprelword (int);
1403 static void s_dtpreldword (int);
1404 static void s_tprelword (int);
1405 static void s_tpreldword (int);
1406 static void s_gpvalue (int);
1407 static void s_gpword (int);
1408 static void s_gpdword (int);
1409 static void s_ehword (int);
1410 static void s_cpadd (int);
1411 static void s_insn (int);
1412 static void s_nan (int);
1413 static void s_module (int);
1414 static void s_mips_ent (int);
1415 static void s_mips_end (int);
1416 static void s_mips_frame (int);
1417 static void s_mips_mask (int reg_type
);
1418 static void s_mips_stab (int);
1419 static void s_mips_weakext (int);
1420 static void s_mips_file (int);
1421 static void s_mips_loc (int);
1422 static bool pic_need_relax (symbolS
*);
1423 static int relaxed_branch_length (fragS
*, asection
*, int);
1424 static int relaxed_micromips_16bit_branch_length (fragS
*, asection
*, int);
1425 static int relaxed_micromips_32bit_branch_length (fragS
*, asection
*, int);
1426 static void file_mips_check_options (void);
1428 /* Table and functions used to map between CPU/ISA names, and
1429 ISA levels, and CPU numbers. */
1431 struct mips_cpu_info
1433 const char *name
; /* CPU or ISA name. */
1434 int flags
; /* MIPS_CPU_* flags. */
1435 int ase
; /* Set of ASEs implemented by the CPU. */
1436 int isa
; /* ISA level. */
1437 int cpu
; /* CPU number (default CPU if ISA). */
1440 #define MIPS_CPU_IS_ISA 0x0001 /* Is this an ISA? (If 0, a CPU.) */
1442 static const struct mips_cpu_info
*mips_parse_cpu (const char *, const char *);
1443 static const struct mips_cpu_info
*mips_cpu_info_from_isa (int);
1444 static const struct mips_cpu_info
*mips_cpu_info_from_arch (int);
1446 /* Command-line options. */
1447 const char *md_shortopts
= "O::g::G:";
1451 OPTION_MARCH
= OPTION_MD_BASE
,
1483 OPTION_NO_SMARTMIPS
,
1493 OPTION_NO_MICROMIPS
,
1508 OPTION_M7000_HILO_FIX
,
1509 OPTION_MNO_7000_HILO_FIX
,
1513 OPTION_NO_FIX_RM7000
,
1514 OPTION_FIX_LOONGSON3_LLSC
,
1515 OPTION_NO_FIX_LOONGSON3_LLSC
,
1516 OPTION_FIX_LOONGSON2F_JUMP
,
1517 OPTION_NO_FIX_LOONGSON2F_JUMP
,
1518 OPTION_FIX_LOONGSON2F_NOP
,
1519 OPTION_NO_FIX_LOONGSON2F_NOP
,
1521 OPTION_NO_FIX_VR4120
,
1523 OPTION_NO_FIX_VR4130
,
1524 OPTION_FIX_CN63XXP1
,
1525 OPTION_NO_FIX_CN63XXP1
,
1527 OPTION_NO_FIX_R5900
,
1534 OPTION_CONSTRUCT_FLOATS
,
1535 OPTION_NO_CONSTRUCT_FLOATS
,
1539 OPTION_RELAX_BRANCH
,
1540 OPTION_NO_RELAX_BRANCH
,
1541 OPTION_IGNORE_BRANCH_ISA
,
1542 OPTION_NO_IGNORE_BRANCH_ISA
,
1551 OPTION_SINGLE_FLOAT
,
1552 OPTION_DOUBLE_FLOAT
,
1565 OPTION_MVXWORKS_PIC
,
1568 OPTION_NO_ODD_SPREG
,
1571 OPTION_LOONGSON_MMI
,
1572 OPTION_NO_LOONGSON_MMI
,
1573 OPTION_LOONGSON_CAM
,
1574 OPTION_NO_LOONGSON_CAM
,
1575 OPTION_LOONGSON_EXT
,
1576 OPTION_NO_LOONGSON_EXT
,
1577 OPTION_LOONGSON_EXT2
,
1578 OPTION_NO_LOONGSON_EXT2
,
1582 struct option md_longopts
[] =
1584 /* Options which specify architecture. */
1585 {"march", required_argument
, NULL
, OPTION_MARCH
},
1586 {"mtune", required_argument
, NULL
, OPTION_MTUNE
},
1587 {"mips0", no_argument
, NULL
, OPTION_MIPS1
},
1588 {"mips1", no_argument
, NULL
, OPTION_MIPS1
},
1589 {"mips2", no_argument
, NULL
, OPTION_MIPS2
},
1590 {"mips3", no_argument
, NULL
, OPTION_MIPS3
},
1591 {"mips4", no_argument
, NULL
, OPTION_MIPS4
},
1592 {"mips5", no_argument
, NULL
, OPTION_MIPS5
},
1593 {"mips32", no_argument
, NULL
, OPTION_MIPS32
},
1594 {"mips64", no_argument
, NULL
, OPTION_MIPS64
},
1595 {"mips32r2", no_argument
, NULL
, OPTION_MIPS32R2
},
1596 {"mips32r3", no_argument
, NULL
, OPTION_MIPS32R3
},
1597 {"mips32r5", no_argument
, NULL
, OPTION_MIPS32R5
},
1598 {"mips32r6", no_argument
, NULL
, OPTION_MIPS32R6
},
1599 {"mips64r2", no_argument
, NULL
, OPTION_MIPS64R2
},
1600 {"mips64r3", no_argument
, NULL
, OPTION_MIPS64R3
},
1601 {"mips64r5", no_argument
, NULL
, OPTION_MIPS64R5
},
1602 {"mips64r6", no_argument
, NULL
, OPTION_MIPS64R6
},
1604 /* Options which specify Application Specific Extensions (ASEs). */
1605 {"mips16", no_argument
, NULL
, OPTION_MIPS16
},
1606 {"no-mips16", no_argument
, NULL
, OPTION_NO_MIPS16
},
1607 {"mips3d", no_argument
, NULL
, OPTION_MIPS3D
},
1608 {"no-mips3d", no_argument
, NULL
, OPTION_NO_MIPS3D
},
1609 {"mdmx", no_argument
, NULL
, OPTION_MDMX
},
1610 {"no-mdmx", no_argument
, NULL
, OPTION_NO_MDMX
},
1611 {"mdsp", no_argument
, NULL
, OPTION_DSP
},
1612 {"mno-dsp", no_argument
, NULL
, OPTION_NO_DSP
},
1613 {"mmt", no_argument
, NULL
, OPTION_MT
},
1614 {"mno-mt", no_argument
, NULL
, OPTION_NO_MT
},
1615 {"msmartmips", no_argument
, NULL
, OPTION_SMARTMIPS
},
1616 {"mno-smartmips", no_argument
, NULL
, OPTION_NO_SMARTMIPS
},
1617 {"mdspr2", no_argument
, NULL
, OPTION_DSPR2
},
1618 {"mno-dspr2", no_argument
, NULL
, OPTION_NO_DSPR2
},
1619 {"mdspr3", no_argument
, NULL
, OPTION_DSPR3
},
1620 {"mno-dspr3", no_argument
, NULL
, OPTION_NO_DSPR3
},
1621 {"meva", no_argument
, NULL
, OPTION_EVA
},
1622 {"mno-eva", no_argument
, NULL
, OPTION_NO_EVA
},
1623 {"mmicromips", no_argument
, NULL
, OPTION_MICROMIPS
},
1624 {"mno-micromips", no_argument
, NULL
, OPTION_NO_MICROMIPS
},
1625 {"mmcu", no_argument
, NULL
, OPTION_MCU
},
1626 {"mno-mcu", no_argument
, NULL
, OPTION_NO_MCU
},
1627 {"mvirt", no_argument
, NULL
, OPTION_VIRT
},
1628 {"mno-virt", no_argument
, NULL
, OPTION_NO_VIRT
},
1629 {"mmsa", no_argument
, NULL
, OPTION_MSA
},
1630 {"mno-msa", no_argument
, NULL
, OPTION_NO_MSA
},
1631 {"mxpa", no_argument
, NULL
, OPTION_XPA
},
1632 {"mno-xpa", no_argument
, NULL
, OPTION_NO_XPA
},
1633 {"mmips16e2", no_argument
, NULL
, OPTION_MIPS16E2
},
1634 {"mno-mips16e2", no_argument
, NULL
, OPTION_NO_MIPS16E2
},
1635 {"mcrc", no_argument
, NULL
, OPTION_CRC
},
1636 {"mno-crc", no_argument
, NULL
, OPTION_NO_CRC
},
1637 {"mginv", no_argument
, NULL
, OPTION_GINV
},
1638 {"mno-ginv", no_argument
, NULL
, OPTION_NO_GINV
},
1639 {"mloongson-mmi", no_argument
, NULL
, OPTION_LOONGSON_MMI
},
1640 {"mno-loongson-mmi", no_argument
, NULL
, OPTION_NO_LOONGSON_MMI
},
1641 {"mloongson-cam", no_argument
, NULL
, OPTION_LOONGSON_CAM
},
1642 {"mno-loongson-cam", no_argument
, NULL
, OPTION_NO_LOONGSON_CAM
},
1643 {"mloongson-ext", no_argument
, NULL
, OPTION_LOONGSON_EXT
},
1644 {"mno-loongson-ext", no_argument
, NULL
, OPTION_NO_LOONGSON_EXT
},
1645 {"mloongson-ext2", no_argument
, NULL
, OPTION_LOONGSON_EXT2
},
1646 {"mno-loongson-ext2", no_argument
, NULL
, OPTION_NO_LOONGSON_EXT2
},
1648 /* Old-style architecture options. Don't add more of these. */
1649 {"m4650", no_argument
, NULL
, OPTION_M4650
},
1650 {"no-m4650", no_argument
, NULL
, OPTION_NO_M4650
},
1651 {"m4010", no_argument
, NULL
, OPTION_M4010
},
1652 {"no-m4010", no_argument
, NULL
, OPTION_NO_M4010
},
1653 {"m4100", no_argument
, NULL
, OPTION_M4100
},
1654 {"no-m4100", no_argument
, NULL
, OPTION_NO_M4100
},
1655 {"m3900", no_argument
, NULL
, OPTION_M3900
},
1656 {"no-m3900", no_argument
, NULL
, OPTION_NO_M3900
},
1658 /* Options which enable bug fixes. */
1659 {"mfix7000", no_argument
, NULL
, OPTION_M7000_HILO_FIX
},
1660 {"no-fix-7000", no_argument
, NULL
, OPTION_MNO_7000_HILO_FIX
},
1661 {"mno-fix7000", no_argument
, NULL
, OPTION_MNO_7000_HILO_FIX
},
1662 {"mfix-loongson3-llsc", no_argument
, NULL
, OPTION_FIX_LOONGSON3_LLSC
},
1663 {"mno-fix-loongson3-llsc", no_argument
, NULL
, OPTION_NO_FIX_LOONGSON3_LLSC
},
1664 {"mfix-loongson2f-jump", no_argument
, NULL
, OPTION_FIX_LOONGSON2F_JUMP
},
1665 {"mno-fix-loongson2f-jump", no_argument
, NULL
, OPTION_NO_FIX_LOONGSON2F_JUMP
},
1666 {"mfix-loongson2f-nop", no_argument
, NULL
, OPTION_FIX_LOONGSON2F_NOP
},
1667 {"mno-fix-loongson2f-nop", no_argument
, NULL
, OPTION_NO_FIX_LOONGSON2F_NOP
},
1668 {"mfix-vr4120", no_argument
, NULL
, OPTION_FIX_VR4120
},
1669 {"mno-fix-vr4120", no_argument
, NULL
, OPTION_NO_FIX_VR4120
},
1670 {"mfix-vr4130", no_argument
, NULL
, OPTION_FIX_VR4130
},
1671 {"mno-fix-vr4130", no_argument
, NULL
, OPTION_NO_FIX_VR4130
},
1672 {"mfix-24k", no_argument
, NULL
, OPTION_FIX_24K
},
1673 {"mno-fix-24k", no_argument
, NULL
, OPTION_NO_FIX_24K
},
1674 {"mfix-rm7000", no_argument
, NULL
, OPTION_FIX_RM7000
},
1675 {"mno-fix-rm7000", no_argument
, NULL
, OPTION_NO_FIX_RM7000
},
1676 {"mfix-cn63xxp1", no_argument
, NULL
, OPTION_FIX_CN63XXP1
},
1677 {"mno-fix-cn63xxp1", no_argument
, NULL
, OPTION_NO_FIX_CN63XXP1
},
1678 {"mfix-r5900", no_argument
, NULL
, OPTION_FIX_R5900
},
1679 {"mno-fix-r5900", no_argument
, NULL
, OPTION_NO_FIX_R5900
},
1681 /* Miscellaneous options. */
1682 {"trap", no_argument
, NULL
, OPTION_TRAP
},
1683 {"no-break", no_argument
, NULL
, OPTION_TRAP
},
1684 {"break", no_argument
, NULL
, OPTION_BREAK
},
1685 {"no-trap", no_argument
, NULL
, OPTION_BREAK
},
1686 {"EB", no_argument
, NULL
, OPTION_EB
},
1687 {"EL", no_argument
, NULL
, OPTION_EL
},
1688 {"mfp32", no_argument
, NULL
, OPTION_FP32
},
1689 {"mgp32", no_argument
, NULL
, OPTION_GP32
},
1690 {"construct-floats", no_argument
, NULL
, OPTION_CONSTRUCT_FLOATS
},
1691 {"no-construct-floats", no_argument
, NULL
, OPTION_NO_CONSTRUCT_FLOATS
},
1692 {"mfp64", no_argument
, NULL
, OPTION_FP64
},
1693 {"mfpxx", no_argument
, NULL
, OPTION_FPXX
},
1694 {"mgp64", no_argument
, NULL
, OPTION_GP64
},
1695 {"relax-branch", no_argument
, NULL
, OPTION_RELAX_BRANCH
},
1696 {"no-relax-branch", no_argument
, NULL
, OPTION_NO_RELAX_BRANCH
},
1697 {"mignore-branch-isa", no_argument
, NULL
, OPTION_IGNORE_BRANCH_ISA
},
1698 {"mno-ignore-branch-isa", no_argument
, NULL
, OPTION_NO_IGNORE_BRANCH_ISA
},
1699 {"minsn32", no_argument
, NULL
, OPTION_INSN32
},
1700 {"mno-insn32", no_argument
, NULL
, OPTION_NO_INSN32
},
1701 {"mshared", no_argument
, NULL
, OPTION_MSHARED
},
1702 {"mno-shared", no_argument
, NULL
, OPTION_MNO_SHARED
},
1703 {"msym32", no_argument
, NULL
, OPTION_MSYM32
},
1704 {"mno-sym32", no_argument
, NULL
, OPTION_MNO_SYM32
},
1705 {"msoft-float", no_argument
, NULL
, OPTION_SOFT_FLOAT
},
1706 {"mhard-float", no_argument
, NULL
, OPTION_HARD_FLOAT
},
1707 {"msingle-float", no_argument
, NULL
, OPTION_SINGLE_FLOAT
},
1708 {"mdouble-float", no_argument
, NULL
, OPTION_DOUBLE_FLOAT
},
1709 {"modd-spreg", no_argument
, NULL
, OPTION_ODD_SPREG
},
1710 {"mno-odd-spreg", no_argument
, NULL
, OPTION_NO_ODD_SPREG
},
1712 /* Strictly speaking this next option is ELF specific,
1713 but we allow it for other ports as well in order to
1714 make testing easier. */
1715 {"32", no_argument
, NULL
, OPTION_32
},
1717 /* ELF-specific options. */
1718 {"KPIC", no_argument
, NULL
, OPTION_CALL_SHARED
},
1719 {"call_shared", no_argument
, NULL
, OPTION_CALL_SHARED
},
1720 {"call_nonpic", no_argument
, NULL
, OPTION_CALL_NONPIC
},
1721 {"non_shared", no_argument
, NULL
, OPTION_NON_SHARED
},
1722 {"xgot", no_argument
, NULL
, OPTION_XGOT
},
1723 {"mabi", required_argument
, NULL
, OPTION_MABI
},
1724 {"n32", no_argument
, NULL
, OPTION_N32
},
1725 {"64", no_argument
, NULL
, OPTION_64
},
1726 {"mdebug", no_argument
, NULL
, OPTION_MDEBUG
},
1727 {"no-mdebug", no_argument
, NULL
, OPTION_NO_MDEBUG
},
1728 {"mpdr", no_argument
, NULL
, OPTION_PDR
},
1729 {"mno-pdr", no_argument
, NULL
, OPTION_NO_PDR
},
1730 {"mvxworks-pic", no_argument
, NULL
, OPTION_MVXWORKS_PIC
},
1731 {"mnan", required_argument
, NULL
, OPTION_NAN
},
1733 {NULL
, no_argument
, NULL
, 0}
1735 size_t md_longopts_size
= sizeof (md_longopts
);
1737 /* Information about either an Application Specific Extension or an
1738 optional architecture feature that, for simplicity, we treat in the
1739 same way as an ASE. */
1742 /* The name of the ASE, used in both the command-line and .set options. */
1745 /* The associated ASE_* flags. If the ASE is available on both 32-bit
1746 and 64-bit architectures, the flags here refer to the subset that
1747 is available on both. */
1750 /* The ASE_* flag used for instructions that are available on 64-bit
1751 architectures but that are not included in FLAGS. */
1752 unsigned int flags64
;
1754 /* The command-line options that turn the ASE on and off. */
1758 /* The minimum required architecture revisions for MIPS32, MIPS64,
1759 microMIPS32 and microMIPS64, or -1 if the extension isn't supported. */
1762 int micromips32_rev
;
1763 int micromips64_rev
;
1765 /* The architecture where the ASE was removed or -1 if the extension has not
1770 /* A table of all supported ASEs. */
1771 static const struct mips_ase mips_ases
[] = {
1772 { "dsp", ASE_DSP
, ASE_DSP64
,
1773 OPTION_DSP
, OPTION_NO_DSP
,
1777 { "dspr2", ASE_DSP
| ASE_DSPR2
, 0,
1778 OPTION_DSPR2
, OPTION_NO_DSPR2
,
1782 { "dspr3", ASE_DSP
| ASE_DSPR2
| ASE_DSPR3
, 0,
1783 OPTION_DSPR3
, OPTION_NO_DSPR3
,
1787 { "eva", ASE_EVA
, 0,
1788 OPTION_EVA
, OPTION_NO_EVA
,
1792 { "mcu", ASE_MCU
, 0,
1793 OPTION_MCU
, OPTION_NO_MCU
,
1797 /* Deprecated in MIPS64r5, but we don't implement that yet. */
1798 { "mdmx", ASE_MDMX
, 0,
1799 OPTION_MDMX
, OPTION_NO_MDMX
,
1803 /* Requires 64-bit FPRs, so the minimum MIPS32 revision is 2. */
1804 { "mips3d", ASE_MIPS3D
, 0,
1805 OPTION_MIPS3D
, OPTION_NO_MIPS3D
,
1810 OPTION_MT
, OPTION_NO_MT
,
1814 { "smartmips", ASE_SMARTMIPS
, 0,
1815 OPTION_SMARTMIPS
, OPTION_NO_SMARTMIPS
,
1819 { "virt", ASE_VIRT
, ASE_VIRT64
,
1820 OPTION_VIRT
, OPTION_NO_VIRT
,
1824 { "msa", ASE_MSA
, ASE_MSA64
,
1825 OPTION_MSA
, OPTION_NO_MSA
,
1829 { "xpa", ASE_XPA
, 0,
1830 OPTION_XPA
, OPTION_NO_XPA
,
1834 { "mips16e2", ASE_MIPS16E2
, 0,
1835 OPTION_MIPS16E2
, OPTION_NO_MIPS16E2
,
1839 { "crc", ASE_CRC
, ASE_CRC64
,
1840 OPTION_CRC
, OPTION_NO_CRC
,
1844 { "ginv", ASE_GINV
, 0,
1845 OPTION_GINV
, OPTION_NO_GINV
,
1849 { "loongson-mmi", ASE_LOONGSON_MMI
, 0,
1850 OPTION_LOONGSON_MMI
, OPTION_NO_LOONGSON_MMI
,
1854 { "loongson-cam", ASE_LOONGSON_CAM
, 0,
1855 OPTION_LOONGSON_CAM
, OPTION_NO_LOONGSON_CAM
,
1859 { "loongson-ext", ASE_LOONGSON_EXT
, 0,
1860 OPTION_LOONGSON_EXT
, OPTION_NO_LOONGSON_EXT
,
1864 { "loongson-ext2", ASE_LOONGSON_EXT
| ASE_LOONGSON_EXT2
, 0,
1865 OPTION_LOONGSON_EXT2
, OPTION_NO_LOONGSON_EXT2
,
1870 /* The set of ASEs that require -mfp64. */
1871 #define FP64_ASES (ASE_MIPS3D | ASE_MDMX | ASE_MSA)
1873 /* Groups of ASE_* flags that represent different revisions of an ASE. */
1874 static const unsigned int mips_ase_groups
[] = {
1875 ASE_DSP
| ASE_DSPR2
| ASE_DSPR3
,
1876 ASE_LOONGSON_EXT
| ASE_LOONGSON_EXT2
1881 The following pseudo-ops from the Kane and Heinrich MIPS book
1882 should be defined here, but are currently unsupported: .alias,
1883 .galive, .gjaldef, .gjrlive, .livereg, .noalias.
1885 The following pseudo-ops from the Kane and Heinrich MIPS book are
1886 specific to the type of debugging information being generated, and
1887 should be defined by the object format: .aent, .begin, .bend,
1888 .bgnb, .end, .endb, .ent, .fmask, .frame, .loc, .mask, .verstamp,
1891 The following pseudo-ops from the Kane and Heinrich MIPS book are
1892 not MIPS CPU specific, but are also not specific to the object file
1893 format. This file is probably the best place to define them, but
1894 they are not currently supported: .asm0, .endr, .lab, .struct. */
1896 static const pseudo_typeS mips_pseudo_table
[] =
1898 /* MIPS specific pseudo-ops. */
1899 {"option", s_option
, 0},
1900 {"set", s_mipsset
, 0},
1901 {"rdata", s_change_sec
, 'r'},
1902 {"sdata", s_change_sec
, 's'},
1903 {"livereg", s_ignore
, 0},
1904 {"abicalls", s_abicalls
, 0},
1905 {"cpload", s_cpload
, 0},
1906 {"cpsetup", s_cpsetup
, 0},
1907 {"cplocal", s_cplocal
, 0},
1908 {"cprestore", s_cprestore
, 0},
1909 {"cpreturn", s_cpreturn
, 0},
1910 {"dtprelword", s_dtprelword
, 0},
1911 {"dtpreldword", s_dtpreldword
, 0},
1912 {"tprelword", s_tprelword
, 0},
1913 {"tpreldword", s_tpreldword
, 0},
1914 {"gpvalue", s_gpvalue
, 0},
1915 {"gpword", s_gpword
, 0},
1916 {"gpdword", s_gpdword
, 0},
1917 {"ehword", s_ehword
, 0},
1918 {"cpadd", s_cpadd
, 0},
1919 {"insn", s_insn
, 0},
1921 {"module", s_module
, 0},
1923 /* Relatively generic pseudo-ops that happen to be used on MIPS
1925 {"asciiz", stringer
, 8 + 1},
1926 {"bss", s_change_sec
, 'b'},
1928 {"half", s_cons
, 1},
1929 {"dword", s_cons
, 3},
1930 {"weakext", s_mips_weakext
, 0},
1931 {"origin", s_org
, 0},
1932 {"repeat", s_rept
, 0},
1934 /* For MIPS this is non-standard, but we define it for consistency. */
1935 {"sbss", s_change_sec
, 'B'},
1937 /* These pseudo-ops are defined in read.c, but must be overridden
1938 here for one reason or another. */
1939 {"align", s_align
, 0},
1940 {"byte", s_cons
, 0},
1941 {"data", s_change_sec
, 'd'},
1942 {"double", s_float_cons
, 'd'},
1943 {"float", s_float_cons
, 'f'},
1944 {"globl", s_mips_globl
, 0},
1945 {"global", s_mips_globl
, 0},
1946 {"hword", s_cons
, 1},
1948 {"long", s_cons
, 2},
1949 {"octa", s_cons
, 4},
1950 {"quad", s_cons
, 3},
1951 {"section", s_change_section
, 0},
1952 {"short", s_cons
, 1},
1953 {"single", s_float_cons
, 'f'},
1954 {"stabd", s_mips_stab
, 'd'},
1955 {"stabn", s_mips_stab
, 'n'},
1956 {"stabs", s_mips_stab
, 's'},
1957 {"text", s_change_sec
, 't'},
1958 {"word", s_cons
, 2},
1960 { "extern", ecoff_directive_extern
, 0},
1965 static const pseudo_typeS mips_nonecoff_pseudo_table
[] =
1967 /* These pseudo-ops should be defined by the object file format.
1968 However, a.out doesn't support them, so we have versions here. */
1969 {"aent", s_mips_ent
, 1},
1970 {"bgnb", s_ignore
, 0},
1971 {"end", s_mips_end
, 0},
1972 {"endb", s_ignore
, 0},
1973 {"ent", s_mips_ent
, 0},
1974 {"file", s_mips_file
, 0},
1975 {"fmask", s_mips_mask
, 'F'},
1976 {"frame", s_mips_frame
, 0},
1977 {"loc", s_mips_loc
, 0},
1978 {"mask", s_mips_mask
, 'R'},
1979 {"verstamp", s_ignore
, 0},
1983 /* Export the ABI address size for use by TC_ADDRESS_BYTES for the
1984 purpose of the `.dc.a' internal pseudo-op. */
1987 mips_address_bytes (void)
1989 file_mips_check_options ();
1990 return HAVE_64BIT_ADDRESSES
? 8 : 4;
1993 extern void pop_insert (const pseudo_typeS
*);
1996 mips_pop_insert (void)
1998 pop_insert (mips_pseudo_table
);
1999 if (! ECOFF_DEBUGGING
)
2000 pop_insert (mips_nonecoff_pseudo_table
);
2003 /* Symbols labelling the current insn. */
2005 struct insn_label_list
2007 struct insn_label_list
*next
;
2011 static struct insn_label_list
*free_insn_labels
;
2012 #define label_list tc_segment_info_data.labels
2014 static void mips_clear_insn_labels (void);
2015 static void mips_mark_labels (void);
2016 static void mips_compressed_mark_labels (void);
2019 mips_clear_insn_labels (void)
2021 struct insn_label_list
**pl
;
2022 segment_info_type
*si
;
2026 for (pl
= &free_insn_labels
; *pl
!= NULL
; pl
= &(*pl
)->next
)
2029 si
= seg_info (now_seg
);
2030 *pl
= si
->label_list
;
2031 si
->label_list
= NULL
;
2035 /* Mark instruction labels in MIPS16/microMIPS mode. */
2038 mips_mark_labels (void)
2040 if (HAVE_CODE_COMPRESSION
)
2041 mips_compressed_mark_labels ();
2044 static char *expr_parse_end
;
2046 /* An expression in a macro instruction. This is set by mips_ip and
2047 mips16_ip and when populated is always an O_constant. */
2049 static expressionS imm_expr
;
2051 /* The relocatable field in an instruction and the relocs associated
2052 with it. These variables are used for instructions like LUI and
2053 JAL as well as true offsets. They are also used for address
2054 operands in macros. */
2056 static expressionS offset_expr
;
2057 static bfd_reloc_code_real_type offset_reloc
[3]
2058 = {BFD_RELOC_UNUSED
, BFD_RELOC_UNUSED
, BFD_RELOC_UNUSED
};
2060 /* This is set to the resulting size of the instruction to be produced
2061 by mips16_ip if an explicit extension is used or by mips_ip if an
2062 explicit size is supplied. */
2064 static unsigned int forced_insn_length
;
2066 /* True if we are assembling an instruction. All dot symbols defined during
2067 this time should be treated as code labels. */
2069 static bool mips_assembling_insn
;
2071 /* The pdr segment for per procedure frame/regmask info. Not used for
2074 static segT pdr_seg
;
2076 /* The default target format to use. */
2078 #if defined (TE_FreeBSD)
2079 #define ELF_TARGET(PREFIX, ENDIAN) PREFIX "trad" ENDIAN "mips-freebsd"
2080 #elif defined (TE_TMIPS)
2081 #define ELF_TARGET(PREFIX, ENDIAN) PREFIX "trad" ENDIAN "mips"
2083 #define ELF_TARGET(PREFIX, ENDIAN) PREFIX ENDIAN "mips"
2087 mips_target_format (void)
2089 switch (OUTPUT_FLAVOR
)
2091 case bfd_target_elf_flavour
:
2093 if (!HAVE_64BIT_OBJECTS
&& !HAVE_NEWABI
)
2094 return (target_big_endian
2095 ? "elf32-bigmips-vxworks"
2096 : "elf32-littlemips-vxworks");
2098 return (target_big_endian
2099 ? (HAVE_64BIT_OBJECTS
2100 ? ELF_TARGET ("elf64-", "big")
2102 ? ELF_TARGET ("elf32-n", "big")
2103 : ELF_TARGET ("elf32-", "big")))
2104 : (HAVE_64BIT_OBJECTS
2105 ? ELF_TARGET ("elf64-", "little")
2107 ? ELF_TARGET ("elf32-n", "little")
2108 : ELF_TARGET ("elf32-", "little"))));
2115 /* Return the ISA revision that is currently in use, or 0 if we are
2116 generating code for MIPS V or below. */
2121 if (mips_opts
.isa
== ISA_MIPS32R2
|| mips_opts
.isa
== ISA_MIPS64R2
)
2124 if (mips_opts
.isa
== ISA_MIPS32R3
|| mips_opts
.isa
== ISA_MIPS64R3
)
2127 if (mips_opts
.isa
== ISA_MIPS32R5
|| mips_opts
.isa
== ISA_MIPS64R5
)
2130 if (mips_opts
.isa
== ISA_MIPS32R6
|| mips_opts
.isa
== ISA_MIPS64R6
)
2133 /* microMIPS implies revision 2 or above. */
2134 if (mips_opts
.micromips
)
2137 if (mips_opts
.isa
== ISA_MIPS32
|| mips_opts
.isa
== ISA_MIPS64
)
2143 /* Return the mask of all ASEs that are revisions of those in FLAGS. */
2146 mips_ase_mask (unsigned int flags
)
2150 for (i
= 0; i
< ARRAY_SIZE (mips_ase_groups
); i
++)
2151 if (flags
& mips_ase_groups
[i
])
2152 flags
|= mips_ase_groups
[i
];
2156 /* Check whether the current ISA supports ASE. Issue a warning if
2160 mips_check_isa_supports_ase (const struct mips_ase
*ase
)
2164 static unsigned int warned_isa
;
2165 static unsigned int warned_fp32
;
2167 if (ISA_HAS_64BIT_REGS (mips_opts
.isa
))
2168 min_rev
= mips_opts
.micromips
? ase
->micromips64_rev
: ase
->mips64_rev
;
2170 min_rev
= mips_opts
.micromips
? ase
->micromips32_rev
: ase
->mips32_rev
;
2171 if ((min_rev
< 0 || mips_isa_rev () < min_rev
)
2172 && (warned_isa
& ase
->flags
) != ase
->flags
)
2174 warned_isa
|= ase
->flags
;
2175 base
= mips_opts
.micromips
? "microMIPS" : "MIPS";
2176 size
= ISA_HAS_64BIT_REGS (mips_opts
.isa
) ? 64 : 32;
2178 as_warn (_("the %d-bit %s architecture does not support the"
2179 " `%s' extension"), size
, base
, ase
->name
);
2181 as_warn (_("the `%s' extension requires %s%d revision %d or greater"),
2182 ase
->name
, base
, size
, min_rev
);
2184 else if ((ase
->rem_rev
> 0 && mips_isa_rev () >= ase
->rem_rev
)
2185 && (warned_isa
& ase
->flags
) != ase
->flags
)
2187 warned_isa
|= ase
->flags
;
2188 base
= mips_opts
.micromips
? "microMIPS" : "MIPS";
2189 size
= ISA_HAS_64BIT_REGS (mips_opts
.isa
) ? 64 : 32;
2190 as_warn (_("the `%s' extension was removed in %s%d revision %d"),
2191 ase
->name
, base
, size
, ase
->rem_rev
);
2194 if ((ase
->flags
& FP64_ASES
)
2195 && mips_opts
.fp
!= 64
2196 && (warned_fp32
& ase
->flags
) != ase
->flags
)
2198 warned_fp32
|= ase
->flags
;
2199 as_warn (_("the `%s' extension requires 64-bit FPRs"), ase
->name
);
2203 /* Check all enabled ASEs to see whether they are supported by the
2204 chosen architecture. */
2207 mips_check_isa_supports_ases (void)
2209 unsigned int i
, mask
;
2211 for (i
= 0; i
< ARRAY_SIZE (mips_ases
); i
++)
2213 mask
= mips_ase_mask (mips_ases
[i
].flags
);
2214 if ((mips_opts
.ase
& mask
) == mips_ases
[i
].flags
)
2215 mips_check_isa_supports_ase (&mips_ases
[i
]);
2219 /* Set the state of ASE to ENABLED_P. Return the mask of ASE_* flags
2220 that were affected. */
2223 mips_set_ase (const struct mips_ase
*ase
, struct mips_set_options
*opts
,
2228 mask
= mips_ase_mask (ase
->flags
);
2231 /* Clear combination ASE flags, which need to be recalculated based on
2232 updated regular ASE settings. */
2233 opts
->ase
&= ~(ASE_MIPS16E2_MT
| ASE_XPA_VIRT
| ASE_EVA_R6
);
2236 opts
->ase
|= ase
->flags
;
2238 /* The Virtualization ASE has eXtended Physical Addressing (XPA)
2239 instructions which are only valid when both ASEs are enabled.
2240 This sets the ASE_XPA_VIRT flag when both ASEs are present. */
2241 if ((opts
->ase
& (ASE_XPA
| ASE_VIRT
)) == (ASE_XPA
| ASE_VIRT
))
2243 opts
->ase
|= ASE_XPA_VIRT
;
2244 mask
|= ASE_XPA_VIRT
;
2246 if ((opts
->ase
& (ASE_MIPS16E2
| ASE_MT
)) == (ASE_MIPS16E2
| ASE_MT
))
2248 opts
->ase
|= ASE_MIPS16E2_MT
;
2249 mask
|= ASE_MIPS16E2_MT
;
2252 /* The EVA Extension has instructions which are only valid when the R6 ISA
2253 is enabled. This sets the ASE_EVA_R6 flag when both EVA and R6 ISA are
2255 if (((opts
->ase
& ASE_EVA
) != 0) && ISA_IS_R6 (opts
->isa
))
2257 opts
->ase
|= ASE_EVA_R6
;
2264 /* Return the ASE called NAME, or null if none. */
2266 static const struct mips_ase
*
2267 mips_lookup_ase (const char *name
)
2271 for (i
= 0; i
< ARRAY_SIZE (mips_ases
); i
++)
2272 if (strcmp (name
, mips_ases
[i
].name
) == 0)
2273 return &mips_ases
[i
];
2277 /* Return the length of a microMIPS instruction in bytes. If bits of
2278 the mask beyond the low 16 are 0, then it is a 16-bit instruction,
2279 otherwise it is a 32-bit instruction. */
2281 static inline unsigned int
2282 micromips_insn_length (const struct mips_opcode
*mo
)
2284 return mips_opcode_32bit_p (mo
) ? 4 : 2;
2287 /* Return the length of MIPS16 instruction OPCODE. */
2289 static inline unsigned int
2290 mips16_opcode_length (unsigned long opcode
)
2292 return (opcode
>> 16) == 0 ? 2 : 4;
2295 /* Return the length of instruction INSN. */
2297 static inline unsigned int
2298 insn_length (const struct mips_cl_insn
*insn
)
2300 if (mips_opts
.micromips
)
2301 return micromips_insn_length (insn
->insn_mo
);
2302 else if (mips_opts
.mips16
)
2303 return mips16_opcode_length (insn
->insn_opcode
);
2308 /* Initialise INSN from opcode entry MO. Leave its position unspecified. */
2311 create_insn (struct mips_cl_insn
*insn
, const struct mips_opcode
*mo
)
2316 insn
->insn_opcode
= mo
->match
;
2319 for (i
= 0; i
< ARRAY_SIZE (insn
->fixp
); i
++)
2320 insn
->fixp
[i
] = NULL
;
2321 insn
->fixed_p
= (mips_opts
.noreorder
> 0);
2322 insn
->noreorder_p
= (mips_opts
.noreorder
> 0);
2323 insn
->mips16_absolute_jump_p
= 0;
2324 insn
->complete_p
= 0;
2325 insn
->cleared_p
= 0;
2328 /* Get a list of all the operands in INSN. */
2330 static const struct mips_operand_array
*
2331 insn_operands (const struct mips_cl_insn
*insn
)
2333 if (insn
->insn_mo
>= &mips_opcodes
[0]
2334 && insn
->insn_mo
< &mips_opcodes
[NUMOPCODES
])
2335 return &mips_operands
[insn
->insn_mo
- &mips_opcodes
[0]];
2337 if (insn
->insn_mo
>= &mips16_opcodes
[0]
2338 && insn
->insn_mo
< &mips16_opcodes
[bfd_mips16_num_opcodes
])
2339 return &mips16_operands
[insn
->insn_mo
- &mips16_opcodes
[0]];
2341 if (insn
->insn_mo
>= µmips_opcodes
[0]
2342 && insn
->insn_mo
< µmips_opcodes
[bfd_micromips_num_opcodes
])
2343 return µmips_operands
[insn
->insn_mo
- µmips_opcodes
[0]];
2348 /* Get a description of operand OPNO of INSN. */
2350 static const struct mips_operand
*
2351 insn_opno (const struct mips_cl_insn
*insn
, unsigned opno
)
2353 const struct mips_operand_array
*operands
;
2355 operands
= insn_operands (insn
);
2356 if (opno
>= MAX_OPERANDS
|| !operands
->operand
[opno
])
2358 return operands
->operand
[opno
];
2361 /* Install UVAL as the value of OPERAND in INSN. */
2364 insn_insert_operand (struct mips_cl_insn
*insn
,
2365 const struct mips_operand
*operand
, unsigned int uval
)
2367 if (mips_opts
.mips16
2368 && operand
->type
== OP_INT
&& operand
->lsb
== 0
2369 && mips_opcode_32bit_p (insn
->insn_mo
))
2370 insn
->insn_opcode
|= mips16_immed_extend (uval
, operand
->size
);
2372 insn
->insn_opcode
= mips_insert_operand (operand
, insn
->insn_opcode
, uval
);
2375 /* Extract the value of OPERAND from INSN. */
2377 static inline unsigned
2378 insn_extract_operand (const struct mips_cl_insn
*insn
,
2379 const struct mips_operand
*operand
)
2381 return mips_extract_operand (operand
, insn
->insn_opcode
);
2384 /* Record the current MIPS16/microMIPS mode in now_seg. */
2387 mips_record_compressed_mode (void)
2389 segment_info_type
*si
;
2391 si
= seg_info (now_seg
);
2392 if (si
->tc_segment_info_data
.mips16
!= mips_opts
.mips16
)
2393 si
->tc_segment_info_data
.mips16
= mips_opts
.mips16
;
2394 if (si
->tc_segment_info_data
.micromips
!= mips_opts
.micromips
)
2395 si
->tc_segment_info_data
.micromips
= mips_opts
.micromips
;
2398 /* Read a standard MIPS instruction from BUF. */
2400 static unsigned long
2401 read_insn (char *buf
)
2403 if (target_big_endian
)
2404 return bfd_getb32 ((bfd_byte
*) buf
);
2406 return bfd_getl32 ((bfd_byte
*) buf
);
2409 /* Write standard MIPS instruction INSN to BUF. Return a pointer to
2413 write_insn (char *buf
, unsigned int insn
)
2415 md_number_to_chars (buf
, insn
, 4);
2419 /* Read a microMIPS or MIPS16 opcode from BUF, given that it
2420 has length LENGTH. */
2422 static unsigned long
2423 read_compressed_insn (char *buf
, unsigned int length
)
2429 for (i
= 0; i
< length
; i
+= 2)
2432 if (target_big_endian
)
2433 insn
|= bfd_getb16 ((char *) buf
);
2435 insn
|= bfd_getl16 ((char *) buf
);
2441 /* Write microMIPS or MIPS16 instruction INSN to BUF, given that the
2442 instruction is LENGTH bytes long. Return a pointer to the next byte. */
2445 write_compressed_insn (char *buf
, unsigned int insn
, unsigned int length
)
2449 for (i
= 0; i
< length
; i
+= 2)
2450 md_number_to_chars (buf
+ i
, insn
>> ((length
- i
- 2) * 8), 2);
2451 return buf
+ length
;
2454 /* Install INSN at the location specified by its "frag" and "where" fields. */
2457 install_insn (const struct mips_cl_insn
*insn
)
2459 char *f
= insn
->frag
->fr_literal
+ insn
->where
;
2460 if (HAVE_CODE_COMPRESSION
)
2461 write_compressed_insn (f
, insn
->insn_opcode
, insn_length (insn
));
2463 write_insn (f
, insn
->insn_opcode
);
2464 mips_record_compressed_mode ();
2467 /* Move INSN to offset WHERE in FRAG. Adjust the fixups accordingly
2468 and install the opcode in the new location. */
2471 move_insn (struct mips_cl_insn
*insn
, fragS
*frag
, long where
)
2476 insn
->where
= where
;
2477 for (i
= 0; i
< ARRAY_SIZE (insn
->fixp
); i
++)
2478 if (insn
->fixp
[i
] != NULL
)
2480 insn
->fixp
[i
]->fx_frag
= frag
;
2481 insn
->fixp
[i
]->fx_where
= where
;
2483 install_insn (insn
);
2486 /* Add INSN to the end of the output. */
2489 add_fixed_insn (struct mips_cl_insn
*insn
)
2491 char *f
= frag_more (insn_length (insn
));
2492 move_insn (insn
, frag_now
, f
- frag_now
->fr_literal
);
2495 /* Start a variant frag and move INSN to the start of the variant part,
2496 marking it as fixed. The other arguments are as for frag_var. */
2499 add_relaxed_insn (struct mips_cl_insn
*insn
, int max_chars
, int var
,
2500 relax_substateT subtype
, symbolS
*symbol
, offsetT offset
)
2502 frag_grow (max_chars
);
2503 move_insn (insn
, frag_now
, frag_more (0) - frag_now
->fr_literal
);
2505 frag_var (rs_machine_dependent
, max_chars
, var
,
2506 subtype
, symbol
, offset
, NULL
);
2509 /* Insert N copies of INSN into the history buffer, starting at
2510 position FIRST. Neither FIRST nor N need to be clipped. */
2513 insert_into_history (unsigned int first
, unsigned int n
,
2514 const struct mips_cl_insn
*insn
)
2516 if (mips_relax
.sequence
!= 2)
2520 for (i
= ARRAY_SIZE (history
); i
-- > first
;)
2522 history
[i
] = history
[i
- n
];
2528 /* Clear the error in insn_error. */
2531 clear_insn_error (void)
2533 memset (&insn_error
, 0, sizeof (insn_error
));
2536 /* Possibly record error message MSG for the current instruction.
2537 If the error is about a particular argument, ARGNUM is the 1-based
2538 number of that argument, otherwise it is 0. FORMAT is the format
2539 of MSG. Return true if MSG was used, false if the current message
2543 set_insn_error_format (int argnum
, enum mips_insn_error_format format
,
2548 /* Give priority to errors against specific arguments, and to
2549 the first whole-instruction message. */
2555 /* Keep insn_error if it is against a later argument. */
2556 if (argnum
< insn_error
.min_argnum
)
2559 /* If both errors are against the same argument but are different,
2560 give up on reporting a specific error for this argument.
2561 See the comment about mips_insn_error for details. */
2562 if (argnum
== insn_error
.min_argnum
2564 && strcmp (insn_error
.msg
, msg
) != 0)
2567 insn_error
.min_argnum
+= 1;
2571 insn_error
.min_argnum
= argnum
;
2572 insn_error
.format
= format
;
2573 insn_error
.msg
= msg
;
2577 /* Record an instruction error with no % format fields. ARGNUM and MSG are
2578 as for set_insn_error_format. */
2581 set_insn_error (int argnum
, const char *msg
)
2583 set_insn_error_format (argnum
, ERR_FMT_PLAIN
, msg
);
2586 /* Record an instruction error with one %d field I. ARGNUM and MSG are
2587 as for set_insn_error_format. */
2590 set_insn_error_i (int argnum
, const char *msg
, int i
)
2592 if (set_insn_error_format (argnum
, ERR_FMT_I
, msg
))
2596 /* Record an instruction error with two %s fields S1 and S2. ARGNUM and MSG
2597 are as for set_insn_error_format. */
2600 set_insn_error_ss (int argnum
, const char *msg
, const char *s1
, const char *s2
)
2602 if (set_insn_error_format (argnum
, ERR_FMT_SS
, msg
))
2604 insn_error
.u
.ss
[0] = s1
;
2605 insn_error
.u
.ss
[1] = s2
;
2609 /* Report the error in insn_error, which is against assembly code STR. */
2612 report_insn_error (const char *str
)
2614 const char *msg
= concat (insn_error
.msg
, " `%s'", NULL
);
2616 switch (insn_error
.format
)
2623 as_bad (msg
, insn_error
.u
.i
, str
);
2627 as_bad (msg
, insn_error
.u
.ss
[0], insn_error
.u
.ss
[1], str
);
2631 free ((char *) msg
);
2634 /* Initialize vr4120_conflicts. There is a bit of duplication here:
2635 the idea is to make it obvious at a glance that each errata is
2639 init_vr4120_conflicts (void)
2641 #define CONFLICT(FIRST, SECOND) \
2642 vr4120_conflicts[FIX_VR4120_##FIRST] |= 1 << FIX_VR4120_##SECOND
2644 /* Errata 21 - [D]DIV[U] after [D]MACC */
2645 CONFLICT (MACC
, DIV
);
2646 CONFLICT (DMACC
, DIV
);
2648 /* Errata 23 - Continuous DMULT[U]/DMACC instructions. */
2649 CONFLICT (DMULT
, DMULT
);
2650 CONFLICT (DMULT
, DMACC
);
2651 CONFLICT (DMACC
, DMULT
);
2652 CONFLICT (DMACC
, DMACC
);
2654 /* Errata 24 - MT{LO,HI} after [D]MACC */
2655 CONFLICT (MACC
, MTHILO
);
2656 CONFLICT (DMACC
, MTHILO
);
2658 /* VR4181A errata MD(1): "If a MULT, MULTU, DMULT or DMULTU
2659 instruction is executed immediately after a MACC or DMACC
2660 instruction, the result of [either instruction] is incorrect." */
2661 CONFLICT (MACC
, MULT
);
2662 CONFLICT (MACC
, DMULT
);
2663 CONFLICT (DMACC
, MULT
);
2664 CONFLICT (DMACC
, DMULT
);
2666 /* VR4181A errata MD(4): "If a MACC or DMACC instruction is
2667 executed immediately after a DMULT, DMULTU, DIV, DIVU,
2668 DDIV or DDIVU instruction, the result of the MACC or
2669 DMACC instruction is incorrect.". */
2670 CONFLICT (DMULT
, MACC
);
2671 CONFLICT (DMULT
, DMACC
);
2672 CONFLICT (DIV
, MACC
);
2673 CONFLICT (DIV
, DMACC
);
2683 #define RNUM_MASK 0x00000ff
2684 #define RTYPE_MASK 0x0ffff00
2685 #define RTYPE_NUM 0x0000100
2686 #define RTYPE_FPU 0x0000200
2687 #define RTYPE_FCC 0x0000400
2688 #define RTYPE_VEC 0x0000800
2689 #define RTYPE_GP 0x0001000
2690 #define RTYPE_CP0 0x0002000
2691 #define RTYPE_PC 0x0004000
2692 #define RTYPE_ACC 0x0008000
2693 #define RTYPE_CCC 0x0010000
2694 #define RTYPE_VI 0x0020000
2695 #define RTYPE_VF 0x0040000
2696 #define RTYPE_R5900_I 0x0080000
2697 #define RTYPE_R5900_Q 0x0100000
2698 #define RTYPE_R5900_R 0x0200000
2699 #define RTYPE_R5900_ACC 0x0400000
2700 #define RTYPE_MSA 0x0800000
2701 #define RWARN 0x8000000
2703 #define GENERIC_REGISTER_NUMBERS \
2704 {"$0", RTYPE_NUM | 0}, \
2705 {"$1", RTYPE_NUM | 1}, \
2706 {"$2", RTYPE_NUM | 2}, \
2707 {"$3", RTYPE_NUM | 3}, \
2708 {"$4", RTYPE_NUM | 4}, \
2709 {"$5", RTYPE_NUM | 5}, \
2710 {"$6", RTYPE_NUM | 6}, \
2711 {"$7", RTYPE_NUM | 7}, \
2712 {"$8", RTYPE_NUM | 8}, \
2713 {"$9", RTYPE_NUM | 9}, \
2714 {"$10", RTYPE_NUM | 10}, \
2715 {"$11", RTYPE_NUM | 11}, \
2716 {"$12", RTYPE_NUM | 12}, \
2717 {"$13", RTYPE_NUM | 13}, \
2718 {"$14", RTYPE_NUM | 14}, \
2719 {"$15", RTYPE_NUM | 15}, \
2720 {"$16", RTYPE_NUM | 16}, \
2721 {"$17", RTYPE_NUM | 17}, \
2722 {"$18", RTYPE_NUM | 18}, \
2723 {"$19", RTYPE_NUM | 19}, \
2724 {"$20", RTYPE_NUM | 20}, \
2725 {"$21", RTYPE_NUM | 21}, \
2726 {"$22", RTYPE_NUM | 22}, \
2727 {"$23", RTYPE_NUM | 23}, \
2728 {"$24", RTYPE_NUM | 24}, \
2729 {"$25", RTYPE_NUM | 25}, \
2730 {"$26", RTYPE_NUM | 26}, \
2731 {"$27", RTYPE_NUM | 27}, \
2732 {"$28", RTYPE_NUM | 28}, \
2733 {"$29", RTYPE_NUM | 29}, \
2734 {"$30", RTYPE_NUM | 30}, \
2735 {"$31", RTYPE_NUM | 31}
2737 #define FPU_REGISTER_NAMES \
2738 {"$f0", RTYPE_FPU | 0}, \
2739 {"$f1", RTYPE_FPU | 1}, \
2740 {"$f2", RTYPE_FPU | 2}, \
2741 {"$f3", RTYPE_FPU | 3}, \
2742 {"$f4", RTYPE_FPU | 4}, \
2743 {"$f5", RTYPE_FPU | 5}, \
2744 {"$f6", RTYPE_FPU | 6}, \
2745 {"$f7", RTYPE_FPU | 7}, \
2746 {"$f8", RTYPE_FPU | 8}, \
2747 {"$f9", RTYPE_FPU | 9}, \
2748 {"$f10", RTYPE_FPU | 10}, \
2749 {"$f11", RTYPE_FPU | 11}, \
2750 {"$f12", RTYPE_FPU | 12}, \
2751 {"$f13", RTYPE_FPU | 13}, \
2752 {"$f14", RTYPE_FPU | 14}, \
2753 {"$f15", RTYPE_FPU | 15}, \
2754 {"$f16", RTYPE_FPU | 16}, \
2755 {"$f17", RTYPE_FPU | 17}, \
2756 {"$f18", RTYPE_FPU | 18}, \
2757 {"$f19", RTYPE_FPU | 19}, \
2758 {"$f20", RTYPE_FPU | 20}, \
2759 {"$f21", RTYPE_FPU | 21}, \
2760 {"$f22", RTYPE_FPU | 22}, \
2761 {"$f23", RTYPE_FPU | 23}, \
2762 {"$f24", RTYPE_FPU | 24}, \
2763 {"$f25", RTYPE_FPU | 25}, \
2764 {"$f26", RTYPE_FPU | 26}, \
2765 {"$f27", RTYPE_FPU | 27}, \
2766 {"$f28", RTYPE_FPU | 28}, \
2767 {"$f29", RTYPE_FPU | 29}, \
2768 {"$f30", RTYPE_FPU | 30}, \
2769 {"$f31", RTYPE_FPU | 31}
2771 #define FPU_CONDITION_CODE_NAMES \
2772 {"$fcc0", RTYPE_FCC | 0}, \
2773 {"$fcc1", RTYPE_FCC | 1}, \
2774 {"$fcc2", RTYPE_FCC | 2}, \
2775 {"$fcc3", RTYPE_FCC | 3}, \
2776 {"$fcc4", RTYPE_FCC | 4}, \
2777 {"$fcc5", RTYPE_FCC | 5}, \
2778 {"$fcc6", RTYPE_FCC | 6}, \
2779 {"$fcc7", RTYPE_FCC | 7}
2781 #define COPROC_CONDITION_CODE_NAMES \
2782 {"$cc0", RTYPE_FCC | RTYPE_CCC | 0}, \
2783 {"$cc1", RTYPE_FCC | RTYPE_CCC | 1}, \
2784 {"$cc2", RTYPE_FCC | RTYPE_CCC | 2}, \
2785 {"$cc3", RTYPE_FCC | RTYPE_CCC | 3}, \
2786 {"$cc4", RTYPE_FCC | RTYPE_CCC | 4}, \
2787 {"$cc5", RTYPE_FCC | RTYPE_CCC | 5}, \
2788 {"$cc6", RTYPE_FCC | RTYPE_CCC | 6}, \
2789 {"$cc7", RTYPE_FCC | RTYPE_CCC | 7}
2791 #define N32N64_SYMBOLIC_REGISTER_NAMES \
2792 {"$a4", RTYPE_GP | 8}, \
2793 {"$a5", RTYPE_GP | 9}, \
2794 {"$a6", RTYPE_GP | 10}, \
2795 {"$a7", RTYPE_GP | 11}, \
2796 {"$ta0", RTYPE_GP | 8}, /* alias for $a4 */ \
2797 {"$ta1", RTYPE_GP | 9}, /* alias for $a5 */ \
2798 {"$ta2", RTYPE_GP | 10}, /* alias for $a6 */ \
2799 {"$ta3", RTYPE_GP | 11}, /* alias for $a7 */ \
2800 {"$t0", RTYPE_GP | 12}, \
2801 {"$t1", RTYPE_GP | 13}, \
2802 {"$t2", RTYPE_GP | 14}, \
2803 {"$t3", RTYPE_GP | 15}
2805 #define O32_SYMBOLIC_REGISTER_NAMES \
2806 {"$t0", RTYPE_GP | 8}, \
2807 {"$t1", RTYPE_GP | 9}, \
2808 {"$t2", RTYPE_GP | 10}, \
2809 {"$t3", RTYPE_GP | 11}, \
2810 {"$t4", RTYPE_GP | 12}, \
2811 {"$t5", RTYPE_GP | 13}, \
2812 {"$t6", RTYPE_GP | 14}, \
2813 {"$t7", RTYPE_GP | 15}, \
2814 {"$ta0", RTYPE_GP | 12}, /* alias for $t4 */ \
2815 {"$ta1", RTYPE_GP | 13}, /* alias for $t5 */ \
2816 {"$ta2", RTYPE_GP | 14}, /* alias for $t6 */ \
2817 {"$ta3", RTYPE_GP | 15} /* alias for $t7 */
2819 /* Remaining symbolic register names. */
2820 #define SYMBOLIC_REGISTER_NAMES \
2821 {"$zero", RTYPE_GP | 0}, \
2822 {"$at", RTYPE_GP | 1}, \
2823 {"$AT", RTYPE_GP | 1}, \
2824 {"$v0", RTYPE_GP | 2}, \
2825 {"$v1", RTYPE_GP | 3}, \
2826 {"$a0", RTYPE_GP | 4}, \
2827 {"$a1", RTYPE_GP | 5}, \
2828 {"$a2", RTYPE_GP | 6}, \
2829 {"$a3", RTYPE_GP | 7}, \
2830 {"$s0", RTYPE_GP | 16}, \
2831 {"$s1", RTYPE_GP | 17}, \
2832 {"$s2", RTYPE_GP | 18}, \
2833 {"$s3", RTYPE_GP | 19}, \
2834 {"$s4", RTYPE_GP | 20}, \
2835 {"$s5", RTYPE_GP | 21}, \
2836 {"$s6", RTYPE_GP | 22}, \
2837 {"$s7", RTYPE_GP | 23}, \
2838 {"$t8", RTYPE_GP | 24}, \
2839 {"$t9", RTYPE_GP | 25}, \
2840 {"$k0", RTYPE_GP | 26}, \
2841 {"$kt0", RTYPE_GP | 26}, \
2842 {"$k1", RTYPE_GP | 27}, \
2843 {"$kt1", RTYPE_GP | 27}, \
2844 {"$gp", RTYPE_GP | 28}, \
2845 {"$sp", RTYPE_GP | 29}, \
2846 {"$s8", RTYPE_GP | 30}, \
2847 {"$fp", RTYPE_GP | 30}, \
2848 {"$ra", RTYPE_GP | 31}
2850 #define MIPS16_SPECIAL_REGISTER_NAMES \
2851 {"$pc", RTYPE_PC | 0}
2853 #define MDMX_VECTOR_REGISTER_NAMES \
2854 /* {"$v0", RTYPE_VEC | 0}, Clash with REG 2 above. */ \
2855 /* {"$v1", RTYPE_VEC | 1}, Clash with REG 3 above. */ \
2856 {"$v2", RTYPE_VEC | 2}, \
2857 {"$v3", RTYPE_VEC | 3}, \
2858 {"$v4", RTYPE_VEC | 4}, \
2859 {"$v5", RTYPE_VEC | 5}, \
2860 {"$v6", RTYPE_VEC | 6}, \
2861 {"$v7", RTYPE_VEC | 7}, \
2862 {"$v8", RTYPE_VEC | 8}, \
2863 {"$v9", RTYPE_VEC | 9}, \
2864 {"$v10", RTYPE_VEC | 10}, \
2865 {"$v11", RTYPE_VEC | 11}, \
2866 {"$v12", RTYPE_VEC | 12}, \
2867 {"$v13", RTYPE_VEC | 13}, \
2868 {"$v14", RTYPE_VEC | 14}, \
2869 {"$v15", RTYPE_VEC | 15}, \
2870 {"$v16", RTYPE_VEC | 16}, \
2871 {"$v17", RTYPE_VEC | 17}, \
2872 {"$v18", RTYPE_VEC | 18}, \
2873 {"$v19", RTYPE_VEC | 19}, \
2874 {"$v20", RTYPE_VEC | 20}, \
2875 {"$v21", RTYPE_VEC | 21}, \
2876 {"$v22", RTYPE_VEC | 22}, \
2877 {"$v23", RTYPE_VEC | 23}, \
2878 {"$v24", RTYPE_VEC | 24}, \
2879 {"$v25", RTYPE_VEC | 25}, \
2880 {"$v26", RTYPE_VEC | 26}, \
2881 {"$v27", RTYPE_VEC | 27}, \
2882 {"$v28", RTYPE_VEC | 28}, \
2883 {"$v29", RTYPE_VEC | 29}, \
2884 {"$v30", RTYPE_VEC | 30}, \
2885 {"$v31", RTYPE_VEC | 31}
2887 #define R5900_I_NAMES \
2888 {"$I", RTYPE_R5900_I | 0}
2890 #define R5900_Q_NAMES \
2891 {"$Q", RTYPE_R5900_Q | 0}
2893 #define R5900_R_NAMES \
2894 {"$R", RTYPE_R5900_R | 0}
2896 #define R5900_ACC_NAMES \
2897 {"$ACC", RTYPE_R5900_ACC | 0 }
2899 #define MIPS_DSP_ACCUMULATOR_NAMES \
2900 {"$ac0", RTYPE_ACC | 0}, \
2901 {"$ac1", RTYPE_ACC | 1}, \
2902 {"$ac2", RTYPE_ACC | 2}, \
2903 {"$ac3", RTYPE_ACC | 3}
2905 static const struct regname reg_names
[] = {
2906 GENERIC_REGISTER_NUMBERS
,
2908 FPU_CONDITION_CODE_NAMES
,
2909 COPROC_CONDITION_CODE_NAMES
,
2911 /* The $txx registers depends on the abi,
2912 these will be added later into the symbol table from
2913 one of the tables below once mips_abi is set after
2914 parsing of arguments from the command line. */
2915 SYMBOLIC_REGISTER_NAMES
,
2917 MIPS16_SPECIAL_REGISTER_NAMES
,
2918 MDMX_VECTOR_REGISTER_NAMES
,
2923 MIPS_DSP_ACCUMULATOR_NAMES
,
2927 static const struct regname reg_names_o32
[] = {
2928 O32_SYMBOLIC_REGISTER_NAMES
,
2932 static const struct regname reg_names_n32n64
[] = {
2933 N32N64_SYMBOLIC_REGISTER_NAMES
,
2937 /* Register symbols $v0 and $v1 map to GPRs 2 and 3, but they can also be
2938 interpreted as vector registers 0 and 1. If SYMVAL is the value of one
2939 of these register symbols, return the associated vector register,
2940 otherwise return SYMVAL itself. */
2943 mips_prefer_vec_regno (unsigned int symval
)
2945 if ((symval
& -2) == (RTYPE_GP
| 2))
2946 return RTYPE_VEC
| (symval
& 1);
2950 /* Return true if string [S, E) is a valid register name, storing its
2951 symbol value in *SYMVAL_PTR if so. */
2954 mips_parse_register_1 (char *s
, char *e
, unsigned int *symval_ptr
)
2959 /* Terminate name. */
2963 /* Look up the name. */
2964 symbol
= symbol_find (s
);
2967 if (!symbol
|| S_GET_SEGMENT (symbol
) != reg_section
)
2970 *symval_ptr
= S_GET_VALUE (symbol
);
2974 /* Return true if the string at *SPTR is a valid register name. Allow it
2975 to have a VU0-style channel suffix of the form x?y?z?w? if CHANNELS_PTR
2978 When returning true, move *SPTR past the register, store the
2979 register's symbol value in *SYMVAL_PTR and the channel mask in
2980 *CHANNELS_PTR (if nonnull). The symbol value includes the register
2981 number (RNUM_MASK) and register type (RTYPE_MASK). The channel mask
2982 is a 4-bit value of the form XYZW and is 0 if no suffix was given. */
2985 mips_parse_register (char **sptr
, unsigned int *symval_ptr
,
2986 unsigned int *channels_ptr
)
2990 unsigned int channels
, symval
, bit
;
2992 /* Find end of name. */
2994 if (is_name_beginner (*e
))
2996 while (is_part_of_name (*e
))
3000 if (!mips_parse_register_1 (s
, e
, &symval
))
3005 /* Eat characters from the end of the string that are valid
3006 channel suffixes. The preceding register must be $ACC or
3007 end with a digit, so there is no ambiguity. */
3010 for (q
= "wzyx"; *q
; q
++, bit
<<= 1)
3011 if (m
> s
&& m
[-1] == *q
)
3018 || !mips_parse_register_1 (s
, m
, &symval
)
3019 || (symval
& (RTYPE_VI
| RTYPE_VF
| RTYPE_R5900_ACC
)) == 0)
3024 *symval_ptr
= symval
;
3026 *channels_ptr
= channels
;
3030 /* Check if SPTR points at a valid register specifier according to TYPES.
3031 If so, then return 1, advance S to consume the specifier and store
3032 the register's number in REGNOP, otherwise return 0. */
3035 reg_lookup (char **s
, unsigned int types
, unsigned int *regnop
)
3039 if (mips_parse_register (s
, ®no
, NULL
))
3041 if (types
& RTYPE_VEC
)
3042 regno
= mips_prefer_vec_regno (regno
);
3051 as_warn (_("unrecognized register name `%s'"), *s
);
3056 return regno
<= RNUM_MASK
;
3059 /* Parse a VU0 "x?y?z?w?" channel mask at S and store the associated
3060 mask in *CHANNELS. Return a pointer to the first unconsumed character. */
3063 mips_parse_vu0_channels (char *s
, unsigned int *channels
)
3068 for (i
= 0; i
< 4; i
++)
3069 if (*s
== "xyzw"[i
])
3071 *channels
|= 1 << (3 - i
);
3077 /* Token types for parsed operand lists. */
3078 enum mips_operand_token_type
{
3079 /* A plain register, e.g. $f2. */
3082 /* A 4-bit XYZW channel mask. */
3085 /* A constant vector index, e.g. [1]. */
3088 /* A register vector index, e.g. [$2]. */
3091 /* A continuous range of registers, e.g. $s0-$s4. */
3094 /* A (possibly relocated) expression. */
3097 /* A floating-point value. */
3100 /* A single character. This can be '(', ')' or ',', but '(' only appears
3104 /* A doubled character, either "--" or "++". */
3107 /* The end of the operand list. */
3111 /* A parsed operand token. */
3112 struct mips_operand_token
3114 /* The type of token. */
3115 enum mips_operand_token_type type
;
3118 /* The register symbol value for an OT_REG or OT_REG_INDEX. */
3121 /* The 4-bit channel mask for an OT_CHANNEL_SUFFIX. */
3122 unsigned int channels
;
3124 /* The integer value of an OT_INTEGER_INDEX. */
3127 /* The two register symbol values involved in an OT_REG_RANGE. */
3129 unsigned int regno1
;
3130 unsigned int regno2
;
3133 /* The value of an OT_INTEGER. The value is represented as an
3134 expression and the relocation operators that were applied to
3135 that expression. The reloc entries are BFD_RELOC_UNUSED if no
3136 relocation operators were used. */
3139 bfd_reloc_code_real_type relocs
[3];
3142 /* The binary data for an OT_FLOAT constant, and the number of bytes
3145 unsigned char data
[8];
3149 /* The character represented by an OT_CHAR or OT_DOUBLE_CHAR. */
3154 /* An obstack used to construct lists of mips_operand_tokens. */
3155 static struct obstack mips_operand_tokens
;
3157 /* Give TOKEN type TYPE and add it to mips_operand_tokens. */
3160 mips_add_token (struct mips_operand_token
*token
,
3161 enum mips_operand_token_type type
)
3164 obstack_grow (&mips_operand_tokens
, token
, sizeof (*token
));
3167 /* Check whether S is '(' followed by a register name. Add OT_CHAR
3168 and OT_REG tokens for them if so, and return a pointer to the first
3169 unconsumed character. Return null otherwise. */
3172 mips_parse_base_start (char *s
)
3174 struct mips_operand_token token
;
3175 unsigned int regno
, channels
;
3182 SKIP_SPACE_TABS (s
);
3184 /* Only match "--" as part of a base expression. In other contexts "--X"
3185 is a double negative. */
3186 decrement_p
= (s
[0] == '-' && s
[1] == '-');
3190 SKIP_SPACE_TABS (s
);
3193 /* Allow a channel specifier because that leads to better error messages
3194 than treating something like "$vf0x++" as an expression. */
3195 if (!mips_parse_register (&s
, ®no
, &channels
))
3199 mips_add_token (&token
, OT_CHAR
);
3204 mips_add_token (&token
, OT_DOUBLE_CHAR
);
3207 token
.u
.regno
= regno
;
3208 mips_add_token (&token
, OT_REG
);
3212 token
.u
.channels
= channels
;
3213 mips_add_token (&token
, OT_CHANNELS
);
3216 /* For consistency, only match "++" as part of base expressions too. */
3217 SKIP_SPACE_TABS (s
);
3218 if (s
[0] == '+' && s
[1] == '+')
3222 mips_add_token (&token
, OT_DOUBLE_CHAR
);
3228 /* Parse one or more tokens from S. Return a pointer to the first
3229 unconsumed character on success. Return null if an error was found
3230 and store the error text in insn_error. FLOAT_FORMAT is as for
3231 mips_parse_arguments. */
3234 mips_parse_argument_token (char *s
, char float_format
)
3236 char *end
, *save_in
;
3238 unsigned int regno1
, regno2
, channels
;
3239 struct mips_operand_token token
;
3241 /* First look for "($reg", since we want to treat that as an
3242 OT_CHAR and OT_REG rather than an expression. */
3243 end
= mips_parse_base_start (s
);
3247 /* Handle other characters that end up as OT_CHARs. */
3248 if (*s
== ')' || *s
== ',')
3251 mips_add_token (&token
, OT_CHAR
);
3256 /* Handle tokens that start with a register. */
3257 if (mips_parse_register (&s
, ®no1
, &channels
))
3261 /* A register and a VU0 channel suffix. */
3262 token
.u
.regno
= regno1
;
3263 mips_add_token (&token
, OT_REG
);
3265 token
.u
.channels
= channels
;
3266 mips_add_token (&token
, OT_CHANNELS
);
3270 SKIP_SPACE_TABS (s
);
3273 /* A register range. */
3275 SKIP_SPACE_TABS (s
);
3276 if (!mips_parse_register (&s
, ®no2
, NULL
))
3278 set_insn_error (0, _("invalid register range"));
3282 token
.u
.reg_range
.regno1
= regno1
;
3283 token
.u
.reg_range
.regno2
= regno2
;
3284 mips_add_token (&token
, OT_REG_RANGE
);
3288 /* Add the register itself. */
3289 token
.u
.regno
= regno1
;
3290 mips_add_token (&token
, OT_REG
);
3292 /* Check for a vector index. */
3296 SKIP_SPACE_TABS (s
);
3297 if (mips_parse_register (&s
, &token
.u
.regno
, NULL
))
3298 mips_add_token (&token
, OT_REG_INDEX
);
3301 expressionS element
;
3303 my_getExpression (&element
, s
);
3304 if (element
.X_op
!= O_constant
)
3306 set_insn_error (0, _("vector element must be constant"));
3310 token
.u
.index
= element
.X_add_number
;
3311 mips_add_token (&token
, OT_INTEGER_INDEX
);
3313 SKIP_SPACE_TABS (s
);
3316 set_insn_error (0, _("missing `]'"));
3326 /* First try to treat expressions as floats. */
3327 save_in
= input_line_pointer
;
3328 input_line_pointer
= s
;
3329 err
= md_atof (float_format
, (char *) token
.u
.flt
.data
,
3330 &token
.u
.flt
.length
);
3331 end
= input_line_pointer
;
3332 input_line_pointer
= save_in
;
3335 set_insn_error (0, err
);
3340 mips_add_token (&token
, OT_FLOAT
);
3345 /* Treat everything else as an integer expression. */
3346 token
.u
.integer
.relocs
[0] = BFD_RELOC_UNUSED
;
3347 token
.u
.integer
.relocs
[1] = BFD_RELOC_UNUSED
;
3348 token
.u
.integer
.relocs
[2] = BFD_RELOC_UNUSED
;
3349 my_getSmallExpression (&token
.u
.integer
.value
, token
.u
.integer
.relocs
, s
);
3351 mips_add_token (&token
, OT_INTEGER
);
3355 /* S points to the operand list for an instruction. FLOAT_FORMAT is 'f'
3356 if expressions should be treated as 32-bit floating-point constants,
3357 'd' if they should be treated as 64-bit floating-point constants,
3358 or 0 if they should be treated as integer expressions (the usual case).
3360 Return a list of tokens on success, otherwise return 0. The caller
3361 must obstack_free the list after use. */
3363 static struct mips_operand_token
*
3364 mips_parse_arguments (char *s
, char float_format
)
3366 struct mips_operand_token token
;
3368 SKIP_SPACE_TABS (s
);
3371 s
= mips_parse_argument_token (s
, float_format
);
3374 obstack_free (&mips_operand_tokens
,
3375 obstack_finish (&mips_operand_tokens
));
3378 SKIP_SPACE_TABS (s
);
3380 mips_add_token (&token
, OT_END
);
3381 return (struct mips_operand_token
*) obstack_finish (&mips_operand_tokens
);
3384 /* Return TRUE if opcode MO is valid on the currently selected ISA, ASE
3385 and architecture. Use is_opcode_valid_16 for MIPS16 opcodes. */
3388 is_opcode_valid (const struct mips_opcode
*mo
)
3390 int isa
= mips_opts
.isa
;
3391 int ase
= mips_opts
.ase
;
3395 if (ISA_HAS_64BIT_REGS (isa
))
3396 for (i
= 0; i
< ARRAY_SIZE (mips_ases
); i
++)
3397 if ((ase
& mips_ases
[i
].flags
) == mips_ases
[i
].flags
)
3398 ase
|= mips_ases
[i
].flags64
;
3400 if (!opcode_is_member (mo
, isa
, ase
, mips_opts
.arch
))
3403 /* Check whether the instruction or macro requires single-precision or
3404 double-precision floating-point support. Note that this information is
3405 stored differently in the opcode table for insns and macros. */
3406 if (mo
->pinfo
== INSN_MACRO
)
3408 fp_s
= mo
->pinfo2
& INSN2_M_FP_S
;
3409 fp_d
= mo
->pinfo2
& INSN2_M_FP_D
;
3413 fp_s
= mo
->pinfo
& FP_S
;
3414 fp_d
= mo
->pinfo
& FP_D
;
3417 if (fp_d
&& (mips_opts
.soft_float
|| mips_opts
.single_float
))
3420 if (fp_s
&& mips_opts
.soft_float
)
3426 /* Return TRUE if the MIPS16 opcode MO is valid on the currently
3427 selected ISA and architecture. */
3430 is_opcode_valid_16 (const struct mips_opcode
*mo
)
3432 int isa
= mips_opts
.isa
;
3433 int ase
= mips_opts
.ase
;
3436 if (ISA_HAS_64BIT_REGS (isa
))
3437 for (i
= 0; i
< ARRAY_SIZE (mips_ases
); i
++)
3438 if ((ase
& mips_ases
[i
].flags
) == mips_ases
[i
].flags
)
3439 ase
|= mips_ases
[i
].flags64
;
3441 return opcode_is_member (mo
, isa
, ase
, mips_opts
.arch
);
3444 /* Return TRUE if the size of the microMIPS opcode MO matches one
3445 explicitly requested. Always TRUE in the standard MIPS mode.
3446 Use is_size_valid_16 for MIPS16 opcodes. */
3449 is_size_valid (const struct mips_opcode
*mo
)
3451 if (!mips_opts
.micromips
)
3454 if (mips_opts
.insn32
)
3456 if (mo
->pinfo
!= INSN_MACRO
&& micromips_insn_length (mo
) != 4)
3458 if ((mo
->pinfo2
& INSN2_BRANCH_DELAY_16BIT
) != 0)
3461 if (!forced_insn_length
)
3463 if (mo
->pinfo
== INSN_MACRO
)
3465 return forced_insn_length
== micromips_insn_length (mo
);
3468 /* Return TRUE if the size of the MIPS16 opcode MO matches one
3469 explicitly requested. */
3472 is_size_valid_16 (const struct mips_opcode
*mo
)
3474 if (!forced_insn_length
)
3476 if (mo
->pinfo
== INSN_MACRO
)
3478 if (forced_insn_length
== 2 && mips_opcode_32bit_p (mo
))
3480 if (forced_insn_length
== 4 && (mo
->pinfo2
& INSN2_SHORT_ONLY
))
3485 /* Return TRUE if the microMIPS opcode MO is valid for the delay slot
3486 of the preceding instruction. Always TRUE in the standard MIPS mode.
3488 We don't accept macros in 16-bit delay slots to avoid a case where
3489 a macro expansion fails because it relies on a preceding 32-bit real
3490 instruction to have matched and does not handle the operands correctly.
3491 The only macros that may expand to 16-bit instructions are JAL that
3492 cannot be placed in a delay slot anyway, and corner cases of BALIGN
3493 and BGT (that likewise cannot be placed in a delay slot) that decay to
3494 a NOP. In all these cases the macros precede any corresponding real
3495 instruction definitions in the opcode table, so they will match in the
3496 second pass where the size of the delay slot is ignored and therefore
3497 produce correct code. */
3500 is_delay_slot_valid (const struct mips_opcode
*mo
)
3502 if (!mips_opts
.micromips
)
3505 if (mo
->pinfo
== INSN_MACRO
)
3506 return (history
[0].insn_mo
->pinfo2
& INSN2_BRANCH_DELAY_16BIT
) == 0;
3507 if ((history
[0].insn_mo
->pinfo2
& INSN2_BRANCH_DELAY_32BIT
) != 0
3508 && micromips_insn_length (mo
) != 4)
3510 if ((history
[0].insn_mo
->pinfo2
& INSN2_BRANCH_DELAY_16BIT
) != 0
3511 && micromips_insn_length (mo
) != 2)
3517 /* For consistency checking, verify that all bits of OPCODE are specified
3518 either by the match/mask part of the instruction definition, or by the
3519 operand list. Also build up a list of operands in OPERANDS.
3521 INSN_BITS says which bits of the instruction are significant.
3522 If OPCODE is a standard or microMIPS instruction, DECODE_OPERAND
3523 provides the mips_operand description of each operand. DECODE_OPERAND
3524 is null for MIPS16 instructions. */
3527 validate_mips_insn (const struct mips_opcode
*opcode
,
3528 unsigned long insn_bits
,
3529 const struct mips_operand
*(*decode_operand
) (const char *),
3530 struct mips_operand_array
*operands
)
3533 unsigned long used_bits
, doubled
, undefined
, opno
, mask
;
3534 const struct mips_operand
*operand
;
3536 mask
= (opcode
->pinfo
== INSN_MACRO
? 0 : opcode
->mask
);
3537 if ((mask
& opcode
->match
) != opcode
->match
)
3539 as_bad (_("internal: bad mips opcode (mask error): %s %s"),
3540 opcode
->name
, opcode
->args
);
3545 if (opcode
->pinfo2
& INSN2_VU0_CHANNEL_SUFFIX
)
3546 used_bits
= mips_insert_operand (&mips_vu0_channel_mask
, used_bits
, -1);
3547 for (s
= opcode
->args
; *s
; ++s
)
3560 if (!decode_operand
)
3561 operand
= decode_mips16_operand (*s
, mips_opcode_32bit_p (opcode
));
3563 operand
= decode_operand (s
);
3564 if (!operand
&& opcode
->pinfo
!= INSN_MACRO
)
3566 as_bad (_("internal: unknown operand type: %s %s"),
3567 opcode
->name
, opcode
->args
);
3570 gas_assert (opno
< MAX_OPERANDS
);
3571 operands
->operand
[opno
] = operand
;
3572 if (!decode_operand
&& operand
3573 && operand
->type
== OP_INT
&& operand
->lsb
== 0
3574 && mips_opcode_32bit_p (opcode
))
3575 used_bits
|= mips16_immed_extend (-1, operand
->size
);
3576 else if (operand
&& operand
->type
!= OP_VU0_MATCH_SUFFIX
)
3578 used_bits
= mips_insert_operand (operand
, used_bits
, -1);
3579 if (operand
->type
== OP_MDMX_IMM_REG
)
3580 /* Bit 5 is the format selector (OB vs QH). The opcode table
3581 has separate entries for each format. */
3582 used_bits
&= ~(1 << (operand
->lsb
+ 5));
3583 if (operand
->type
== OP_ENTRY_EXIT_LIST
)
3584 used_bits
&= ~(mask
& 0x700);
3585 /* interAptiv MR2 SAVE/RESTORE instructions have a discontiguous
3586 operand field that cannot be fully described with LSB/SIZE. */
3587 if (operand
->type
== OP_SAVE_RESTORE_LIST
&& operand
->lsb
== 6)
3588 used_bits
&= ~0x6000;
3590 /* Skip prefix characters. */
3591 if (decode_operand
&& (*s
== '+' || *s
== 'm' || *s
== '-'))
3596 doubled
= used_bits
& mask
& insn_bits
;
3599 as_bad (_("internal: bad mips opcode (bits 0x%08lx doubly defined):"
3600 " %s %s"), doubled
, opcode
->name
, opcode
->args
);
3604 undefined
= ~used_bits
& insn_bits
;
3605 if (opcode
->pinfo
!= INSN_MACRO
&& undefined
)
3607 as_bad (_("internal: bad mips opcode (bits 0x%08lx undefined): %s %s"),
3608 undefined
, opcode
->name
, opcode
->args
);
3611 used_bits
&= ~insn_bits
;
3614 as_bad (_("internal: bad mips opcode (bits 0x%08lx defined): %s %s"),
3615 used_bits
, opcode
->name
, opcode
->args
);
3621 /* The MIPS16 version of validate_mips_insn. */
3624 validate_mips16_insn (const struct mips_opcode
*opcode
,
3625 struct mips_operand_array
*operands
)
3627 unsigned long insn_bits
= mips_opcode_32bit_p (opcode
) ? 0xffffffff : 0xffff;
3629 return validate_mips_insn (opcode
, insn_bits
, 0, operands
);
3632 /* The microMIPS version of validate_mips_insn. */
3635 validate_micromips_insn (const struct mips_opcode
*opc
,
3636 struct mips_operand_array
*operands
)
3638 unsigned long insn_bits
;
3639 unsigned long major
;
3640 unsigned int length
;
3642 if (opc
->pinfo
== INSN_MACRO
)
3643 return validate_mips_insn (opc
, 0xffffffff, decode_micromips_operand
,
3646 length
= micromips_insn_length (opc
);
3647 if (length
!= 2 && length
!= 4)
3649 as_bad (_("internal error: bad microMIPS opcode (incorrect length: %u): "
3650 "%s %s"), length
, opc
->name
, opc
->args
);
3653 major
= opc
->match
>> (10 + 8 * (length
- 2));
3654 if ((length
== 2 && (major
& 7) != 1 && (major
& 6) != 2)
3655 || (length
== 4 && (major
& 7) != 0 && (major
& 4) != 4))
3657 as_bad (_("internal error: bad microMIPS opcode "
3658 "(opcode/length mismatch): %s %s"), opc
->name
, opc
->args
);
3662 /* Shift piecewise to avoid an overflow where unsigned long is 32-bit. */
3663 insn_bits
= 1 << 4 * length
;
3664 insn_bits
<<= 4 * length
;
3666 return validate_mips_insn (opc
, insn_bits
, decode_micromips_operand
,
3670 /* This function is called once, at assembler startup time. It should set up
3671 all the tables, etc. that the MD part of the assembler will need. */
3679 if (mips_pic
!= NO_PIC
)
3681 if (g_switch_seen
&& g_switch_value
!= 0)
3682 as_bad (_("-G may not be used in position-independent code"));
3685 else if (mips_abicalls
)
3687 if (g_switch_seen
&& g_switch_value
!= 0)
3688 as_bad (_("-G may not be used with abicalls"));
3692 if (! bfd_set_arch_mach (stdoutput
, bfd_arch_mips
, file_mips_opts
.arch
))
3693 as_warn (_("could not set architecture and machine"));
3695 op_hash
= str_htab_create ();
3697 mips_operands
= XCNEWVEC (struct mips_operand_array
, NUMOPCODES
);
3698 for (i
= 0; i
< NUMOPCODES
;)
3700 const char *name
= mips_opcodes
[i
].name
;
3702 if (str_hash_insert (op_hash
, name
, &mips_opcodes
[i
], 0) != NULL
)
3703 as_fatal (_("duplicate %s"), name
);
3706 if (!validate_mips_insn (&mips_opcodes
[i
], 0xffffffff,
3707 decode_mips_operand
, &mips_operands
[i
]))
3710 if (nop_insn
.insn_mo
== NULL
&& strcmp (name
, "nop") == 0)
3712 create_insn (&nop_insn
, mips_opcodes
+ i
);
3713 if (mips_fix_loongson2f_nop
)
3714 nop_insn
.insn_opcode
= LOONGSON2F_NOP_INSN
;
3715 nop_insn
.fixed_p
= 1;
3718 if (sync_insn
.insn_mo
== NULL
&& strcmp (name
, "sync") == 0)
3719 create_insn (&sync_insn
, mips_opcodes
+ i
);
3723 while ((i
< NUMOPCODES
) && !strcmp (mips_opcodes
[i
].name
, name
));
3726 mips16_op_hash
= str_htab_create ();
3727 mips16_operands
= XCNEWVEC (struct mips_operand_array
,
3728 bfd_mips16_num_opcodes
);
3731 while (i
< bfd_mips16_num_opcodes
)
3733 const char *name
= mips16_opcodes
[i
].name
;
3735 if (str_hash_insert (mips16_op_hash
, name
, &mips16_opcodes
[i
], 0))
3736 as_fatal (_("duplicate %s"), name
);
3739 if (!validate_mips16_insn (&mips16_opcodes
[i
], &mips16_operands
[i
]))
3741 if (mips16_nop_insn
.insn_mo
== NULL
&& strcmp (name
, "nop") == 0)
3743 create_insn (&mips16_nop_insn
, mips16_opcodes
+ i
);
3744 mips16_nop_insn
.fixed_p
= 1;
3748 while (i
< bfd_mips16_num_opcodes
3749 && strcmp (mips16_opcodes
[i
].name
, name
) == 0);
3752 micromips_op_hash
= str_htab_create ();
3753 micromips_operands
= XCNEWVEC (struct mips_operand_array
,
3754 bfd_micromips_num_opcodes
);
3757 while (i
< bfd_micromips_num_opcodes
)
3759 const char *name
= micromips_opcodes
[i
].name
;
3761 if (str_hash_insert (micromips_op_hash
, name
, µmips_opcodes
[i
], 0))
3762 as_fatal (_("duplicate %s"), name
);
3765 struct mips_cl_insn
*micromips_nop_insn
;
3767 if (!validate_micromips_insn (µmips_opcodes
[i
],
3768 µmips_operands
[i
]))
3771 if (micromips_opcodes
[i
].pinfo
!= INSN_MACRO
)
3773 if (micromips_insn_length (micromips_opcodes
+ i
) == 2)
3774 micromips_nop_insn
= µmips_nop16_insn
;
3775 else if (micromips_insn_length (micromips_opcodes
+ i
) == 4)
3776 micromips_nop_insn
= µmips_nop32_insn
;
3780 if (micromips_nop_insn
->insn_mo
== NULL
3781 && strcmp (name
, "nop") == 0)
3783 create_insn (micromips_nop_insn
, micromips_opcodes
+ i
);
3784 micromips_nop_insn
->fixed_p
= 1;
3788 while (++i
< bfd_micromips_num_opcodes
3789 && strcmp (micromips_opcodes
[i
].name
, name
) == 0);
3793 as_fatal (_("broken assembler, no assembly attempted"));
3795 /* We add all the general register names to the symbol table. This
3796 helps us detect invalid uses of them. */
3797 for (i
= 0; reg_names
[i
].name
; i
++)
3798 symbol_table_insert (symbol_new (reg_names
[i
].name
, reg_section
,
3802 for (i
= 0; reg_names_n32n64
[i
].name
; i
++)
3803 symbol_table_insert (symbol_new (reg_names_n32n64
[i
].name
, reg_section
,
3805 reg_names_n32n64
[i
].num
));
3807 for (i
= 0; reg_names_o32
[i
].name
; i
++)
3808 symbol_table_insert (symbol_new (reg_names_o32
[i
].name
, reg_section
,
3810 reg_names_o32
[i
].num
));
3812 for (i
= 0; i
< 32; i
++)
3816 /* R5900 VU0 floating-point register. */
3817 sprintf (regname
, "$vf%d", i
);
3818 symbol_table_insert (symbol_new (regname
, reg_section
,
3819 &zero_address_frag
, RTYPE_VF
| i
));
3821 /* R5900 VU0 integer register. */
3822 sprintf (regname
, "$vi%d", i
);
3823 symbol_table_insert (symbol_new (regname
, reg_section
,
3824 &zero_address_frag
, RTYPE_VI
| i
));
3827 sprintf (regname
, "$w%d", i
);
3828 symbol_table_insert (symbol_new (regname
, reg_section
,
3829 &zero_address_frag
, RTYPE_MSA
| i
));
3832 obstack_init (&mips_operand_tokens
);
3834 mips_no_prev_insn ();
3837 mips_cprmask
[0] = 0;
3838 mips_cprmask
[1] = 0;
3839 mips_cprmask
[2] = 0;
3840 mips_cprmask
[3] = 0;
3842 /* set the default alignment for the text section (2**2) */
3843 record_alignment (text_section
, 2);
3845 bfd_set_gp_size (stdoutput
, g_switch_value
);
3847 /* On a native system other than VxWorks, sections must be aligned
3848 to 16 byte boundaries. When configured for an embedded ELF
3849 target, we don't bother. */
3850 if (!startswith (TARGET_OS
, "elf")
3851 && !startswith (TARGET_OS
, "vxworks"))
3853 bfd_set_section_alignment (text_section
, 4);
3854 bfd_set_section_alignment (data_section
, 4);
3855 bfd_set_section_alignment (bss_section
, 4);
3858 /* Create a .reginfo section for register masks and a .mdebug
3859 section for debugging information. */
3867 subseg
= now_subseg
;
3869 /* The ABI says this section should be loaded so that the
3870 running program can access it. However, we don't load it
3871 if we are configured for an embedded target. */
3872 flags
= SEC_READONLY
| SEC_DATA
;
3873 if (!startswith (TARGET_OS
, "elf"))
3874 flags
|= SEC_ALLOC
| SEC_LOAD
;
3876 if (mips_abi
!= N64_ABI
)
3878 sec
= subseg_new (".reginfo", (subsegT
) 0);
3880 bfd_set_section_flags (sec
, flags
);
3881 bfd_set_section_alignment (sec
, HAVE_NEWABI
? 3 : 2);
3883 mips_regmask_frag
= frag_more (sizeof (Elf32_External_RegInfo
));
3887 /* The 64-bit ABI uses a .MIPS.options section rather than
3888 .reginfo section. */
3889 sec
= subseg_new (".MIPS.options", (subsegT
) 0);
3890 bfd_set_section_flags (sec
, flags
);
3891 bfd_set_section_alignment (sec
, 3);
3893 /* Set up the option header. */
3895 Elf_Internal_Options opthdr
;
3898 opthdr
.kind
= ODK_REGINFO
;
3899 opthdr
.size
= (sizeof (Elf_External_Options
)
3900 + sizeof (Elf64_External_RegInfo
));
3903 f
= frag_more (sizeof (Elf_External_Options
));
3904 bfd_mips_elf_swap_options_out (stdoutput
, &opthdr
,
3905 (Elf_External_Options
*) f
);
3907 mips_regmask_frag
= frag_more (sizeof (Elf64_External_RegInfo
));
3911 sec
= subseg_new (".MIPS.abiflags", (subsegT
) 0);
3912 bfd_set_section_flags (sec
,
3913 SEC_READONLY
| SEC_DATA
| SEC_ALLOC
| SEC_LOAD
);
3914 bfd_set_section_alignment (sec
, 3);
3915 mips_flags_frag
= frag_more (sizeof (Elf_External_ABIFlags_v0
));
3917 if (ECOFF_DEBUGGING
)
3919 sec
= subseg_new (".mdebug", (subsegT
) 0);
3920 bfd_set_section_flags (sec
, SEC_HAS_CONTENTS
| SEC_READONLY
);
3921 bfd_set_section_alignment (sec
, 2);
3923 else if (mips_flag_pdr
)
3925 pdr_seg
= subseg_new (".pdr", (subsegT
) 0);
3926 bfd_set_section_flags (pdr_seg
,
3927 SEC_READONLY
| SEC_RELOC
| SEC_DEBUGGING
);
3928 bfd_set_section_alignment (pdr_seg
, 2);
3931 subseg_set (seg
, subseg
);
3934 if (mips_fix_vr4120
)
3935 init_vr4120_conflicts ();
3939 fpabi_incompatible_with (int fpabi
, const char *what
)
3941 as_warn (_(".gnu_attribute %d,%d is incompatible with `%s'"),
3942 Tag_GNU_MIPS_ABI_FP
, fpabi
, what
);
3946 fpabi_requires (int fpabi
, const char *what
)
3948 as_warn (_(".gnu_attribute %d,%d requires `%s'"),
3949 Tag_GNU_MIPS_ABI_FP
, fpabi
, what
);
3952 /* Check -mabi and register sizes against the specified FP ABI. */
3954 check_fpabi (int fpabi
)
3958 case Val_GNU_MIPS_ABI_FP_DOUBLE
:
3959 if (file_mips_opts
.soft_float
)
3960 fpabi_incompatible_with (fpabi
, "softfloat");
3961 else if (file_mips_opts
.single_float
)
3962 fpabi_incompatible_with (fpabi
, "singlefloat");
3963 if (file_mips_opts
.gp
== 64 && file_mips_opts
.fp
== 32)
3964 fpabi_incompatible_with (fpabi
, "gp=64 fp=32");
3965 else if (file_mips_opts
.gp
== 32 && file_mips_opts
.fp
== 64)
3966 fpabi_incompatible_with (fpabi
, "gp=32 fp=64");
3969 case Val_GNU_MIPS_ABI_FP_XX
:
3970 if (mips_abi
!= O32_ABI
)
3971 fpabi_requires (fpabi
, "-mabi=32");
3972 else if (file_mips_opts
.soft_float
)
3973 fpabi_incompatible_with (fpabi
, "softfloat");
3974 else if (file_mips_opts
.single_float
)
3975 fpabi_incompatible_with (fpabi
, "singlefloat");
3976 else if (file_mips_opts
.fp
!= 0)
3977 fpabi_requires (fpabi
, "fp=xx");
3980 case Val_GNU_MIPS_ABI_FP_64A
:
3981 case Val_GNU_MIPS_ABI_FP_64
:
3982 if (mips_abi
!= O32_ABI
)
3983 fpabi_requires (fpabi
, "-mabi=32");
3984 else if (file_mips_opts
.soft_float
)
3985 fpabi_incompatible_with (fpabi
, "softfloat");
3986 else if (file_mips_opts
.single_float
)
3987 fpabi_incompatible_with (fpabi
, "singlefloat");
3988 else if (file_mips_opts
.fp
!= 64)
3989 fpabi_requires (fpabi
, "fp=64");
3990 else if (fpabi
== Val_GNU_MIPS_ABI_FP_64
&& !file_mips_opts
.oddspreg
)
3991 fpabi_incompatible_with (fpabi
, "nooddspreg");
3992 else if (fpabi
== Val_GNU_MIPS_ABI_FP_64A
&& file_mips_opts
.oddspreg
)
3993 fpabi_requires (fpabi
, "nooddspreg");
3996 case Val_GNU_MIPS_ABI_FP_SINGLE
:
3997 if (file_mips_opts
.soft_float
)
3998 fpabi_incompatible_with (fpabi
, "softfloat");
3999 else if (!file_mips_opts
.single_float
)
4000 fpabi_requires (fpabi
, "singlefloat");
4003 case Val_GNU_MIPS_ABI_FP_SOFT
:
4004 if (!file_mips_opts
.soft_float
)
4005 fpabi_requires (fpabi
, "softfloat");
4008 case Val_GNU_MIPS_ABI_FP_OLD_64
:
4009 as_warn (_(".gnu_attribute %d,%d is no longer supported"),
4010 Tag_GNU_MIPS_ABI_FP
, fpabi
);
4013 case Val_GNU_MIPS_ABI_FP_NAN2008
:
4014 /* Silently ignore compatibility value. */
4018 as_warn (_(".gnu_attribute %d,%d is not a recognized"
4019 " floating-point ABI"), Tag_GNU_MIPS_ABI_FP
, fpabi
);
4024 /* Perform consistency checks on the current options. */
4027 mips_check_options (struct mips_set_options
*opts
, bool abi_checks
)
4029 /* Check the size of integer registers agrees with the ABI and ISA. */
4030 if (opts
->gp
== 64 && !ISA_HAS_64BIT_REGS (opts
->isa
))
4031 as_bad (_("`gp=64' used with a 32-bit processor"));
4033 && opts
->gp
== 32 && ABI_NEEDS_64BIT_REGS (mips_abi
))
4034 as_bad (_("`gp=32' used with a 64-bit ABI"));
4036 && opts
->gp
== 64 && ABI_NEEDS_32BIT_REGS (mips_abi
))
4037 as_bad (_("`gp=64' used with a 32-bit ABI"));
4039 /* Check the size of the float registers agrees with the ABI and ISA. */
4043 if (!CPU_HAS_LDC1_SDC1 (opts
->arch
))
4044 as_bad (_("`fp=xx' used with a cpu lacking ldc1/sdc1 instructions"));
4045 else if (opts
->single_float
== 1)
4046 as_bad (_("`fp=xx' cannot be used with `singlefloat'"));
4049 if (!ISA_HAS_64BIT_FPRS (opts
->isa
))
4050 as_bad (_("`fp=64' used with a 32-bit fpu"));
4052 && ABI_NEEDS_32BIT_REGS (mips_abi
)
4053 && !ISA_HAS_MXHC1 (opts
->isa
))
4054 as_warn (_("`fp=64' used with a 32-bit ABI"));
4058 && ABI_NEEDS_64BIT_REGS (mips_abi
))
4059 as_warn (_("`fp=32' used with a 64-bit ABI"));
4060 if (ISA_IS_R6 (opts
->isa
) && opts
->single_float
== 0)
4061 as_bad (_("`fp=32' used with a MIPS R6 cpu"));
4064 as_bad (_("Unknown size of floating point registers"));
4068 if (ABI_NEEDS_64BIT_REGS (mips_abi
) && !opts
->oddspreg
)
4069 as_bad (_("`nooddspreg` cannot be used with a 64-bit ABI"));
4071 if (opts
->micromips
== 1 && opts
->mips16
== 1)
4072 as_bad (_("`%s' cannot be used with `%s'"), "mips16", "micromips");
4073 else if (ISA_IS_R6 (opts
->isa
)
4074 && (opts
->micromips
== 1
4075 || opts
->mips16
== 1))
4076 as_fatal (_("`%s' cannot be used with `%s'"),
4077 opts
->micromips
? "micromips" : "mips16",
4078 mips_cpu_info_from_isa (opts
->isa
)->name
);
4080 if (ISA_IS_R6 (opts
->isa
) && mips_relax_branch
)
4081 as_fatal (_("branch relaxation is not supported in `%s'"),
4082 mips_cpu_info_from_isa (opts
->isa
)->name
);
4085 /* Perform consistency checks on the module level options exactly once.
4086 This is a deferred check that happens:
4087 at the first .set directive
4088 or, at the first pseudo op that generates code (inc .dc.a)
4089 or, at the first instruction
4093 file_mips_check_options (void)
4095 if (file_mips_opts_checked
)
4098 /* The following code determines the register size.
4099 Similar code was added to GCC 3.3 (see override_options() in
4100 config/mips/mips.c). The GAS and GCC code should be kept in sync
4101 as much as possible. */
4103 if (file_mips_opts
.gp
< 0)
4105 /* Infer the integer register size from the ABI and processor.
4106 Restrict ourselves to 32-bit registers if that's all the
4107 processor has, or if the ABI cannot handle 64-bit registers. */
4108 file_mips_opts
.gp
= (ABI_NEEDS_32BIT_REGS (mips_abi
)
4109 || !ISA_HAS_64BIT_REGS (file_mips_opts
.isa
))
4113 if (file_mips_opts
.fp
< 0)
4115 /* No user specified float register size.
4116 ??? GAS treats single-float processors as though they had 64-bit
4117 float registers (although it complains when double-precision
4118 instructions are used). As things stand, saying they have 32-bit
4119 registers would lead to spurious "register must be even" messages.
4120 So here we assume float registers are never smaller than the
4122 if (file_mips_opts
.gp
== 64)
4123 /* 64-bit integer registers implies 64-bit float registers. */
4124 file_mips_opts
.fp
= 64;
4125 else if ((file_mips_opts
.ase
& FP64_ASES
)
4126 && ISA_HAS_64BIT_FPRS (file_mips_opts
.isa
))
4127 /* Handle ASEs that require 64-bit float registers, if possible. */
4128 file_mips_opts
.fp
= 64;
4129 else if (ISA_IS_R6 (mips_opts
.isa
))
4130 /* R6 implies 64-bit float registers. */
4131 file_mips_opts
.fp
= 64;
4133 /* 32-bit float registers. */
4134 file_mips_opts
.fp
= 32;
4137 /* Disable operations on odd-numbered floating-point registers by default
4138 when using the FPXX ABI. */
4139 if (file_mips_opts
.oddspreg
< 0)
4141 if (file_mips_opts
.fp
== 0)
4142 file_mips_opts
.oddspreg
= 0;
4144 file_mips_opts
.oddspreg
= 1;
4147 /* End of GCC-shared inference code. */
4149 /* This flag is set when we have a 64-bit capable CPU but use only
4150 32-bit wide registers. Note that EABI does not use it. */
4151 if (ISA_HAS_64BIT_REGS (file_mips_opts
.isa
)
4152 && ((mips_abi
== NO_ABI
&& file_mips_opts
.gp
== 32)
4153 || mips_abi
== O32_ABI
))
4156 if (file_mips_opts
.isa
== ISA_MIPS1
&& mips_trap
)
4157 as_bad (_("trap exception not supported at ISA 1"));
4159 /* If the selected architecture includes support for ASEs, enable
4160 generation of code for them. */
4161 if (file_mips_opts
.mips16
== -1)
4162 file_mips_opts
.mips16
= (CPU_HAS_MIPS16 (file_mips_opts
.arch
)) ? 1 : 0;
4163 if (file_mips_opts
.micromips
== -1)
4164 file_mips_opts
.micromips
= (CPU_HAS_MICROMIPS (file_mips_opts
.arch
))
4167 if (mips_nan2008
== -1)
4168 mips_nan2008
= (ISA_HAS_LEGACY_NAN (file_mips_opts
.isa
)) ? 0 : 1;
4169 else if (!ISA_HAS_LEGACY_NAN (file_mips_opts
.isa
) && mips_nan2008
== 0)
4170 as_fatal (_("`%s' does not support legacy NaN"),
4171 mips_cpu_info_from_arch (file_mips_opts
.arch
)->name
);
4173 /* Some ASEs require 64-bit FPRs, so -mfp32 should stop those ASEs from
4174 being selected implicitly. */
4175 if (file_mips_opts
.fp
!= 64)
4176 file_ase_explicit
|= ASE_MIPS3D
| ASE_MDMX
| ASE_MSA
;
4178 /* If the user didn't explicitly select or deselect a particular ASE,
4179 use the default setting for the CPU. */
4180 file_mips_opts
.ase
|= (file_mips_opts
.init_ase
& ~file_ase_explicit
);
4182 /* Set up the current options. These may change throughout assembly. */
4183 mips_opts
= file_mips_opts
;
4185 mips_check_isa_supports_ases ();
4186 mips_check_options (&file_mips_opts
, true);
4187 file_mips_opts_checked
= true;
4189 if (!bfd_set_arch_mach (stdoutput
, bfd_arch_mips
, file_mips_opts
.arch
))
4190 as_warn (_("could not set architecture and machine"));
4194 md_assemble (char *str
)
4196 struct mips_cl_insn insn
;
4197 bfd_reloc_code_real_type unused_reloc
[3]
4198 = {BFD_RELOC_UNUSED
, BFD_RELOC_UNUSED
, BFD_RELOC_UNUSED
};
4200 file_mips_check_options ();
4202 imm_expr
.X_op
= O_absent
;
4203 offset_expr
.X_op
= O_absent
;
4204 offset_reloc
[0] = BFD_RELOC_UNUSED
;
4205 offset_reloc
[1] = BFD_RELOC_UNUSED
;
4206 offset_reloc
[2] = BFD_RELOC_UNUSED
;
4208 mips_mark_labels ();
4209 mips_assembling_insn
= true;
4210 clear_insn_error ();
4212 if (mips_opts
.mips16
)
4213 mips16_ip (str
, &insn
);
4216 mips_ip (str
, &insn
);
4217 DBG ((_("returned from mips_ip(%s) insn_opcode = 0x%x\n"),
4218 str
, insn
.insn_opcode
));
4222 report_insn_error (str
);
4223 else if (insn
.insn_mo
->pinfo
== INSN_MACRO
)
4226 if (mips_opts
.mips16
)
4227 mips16_macro (&insn
);
4234 if (offset_expr
.X_op
!= O_absent
)
4235 append_insn (&insn
, &offset_expr
, offset_reloc
, false);
4237 append_insn (&insn
, NULL
, unused_reloc
, false);
4240 mips_assembling_insn
= false;
4243 /* Convenience functions for abstracting away the differences between
4244 MIPS16 and non-MIPS16 relocations. */
4247 mips16_reloc_p (bfd_reloc_code_real_type reloc
)
4251 case BFD_RELOC_MIPS16_JMP
:
4252 case BFD_RELOC_MIPS16_GPREL
:
4253 case BFD_RELOC_MIPS16_GOT16
:
4254 case BFD_RELOC_MIPS16_CALL16
:
4255 case BFD_RELOC_MIPS16_HI16_S
:
4256 case BFD_RELOC_MIPS16_HI16
:
4257 case BFD_RELOC_MIPS16_LO16
:
4258 case BFD_RELOC_MIPS16_16_PCREL_S1
:
4267 micromips_reloc_p (bfd_reloc_code_real_type reloc
)
4271 case BFD_RELOC_MICROMIPS_7_PCREL_S1
:
4272 case BFD_RELOC_MICROMIPS_10_PCREL_S1
:
4273 case BFD_RELOC_MICROMIPS_16_PCREL_S1
:
4274 case BFD_RELOC_MICROMIPS_GPREL16
:
4275 case BFD_RELOC_MICROMIPS_JMP
:
4276 case BFD_RELOC_MICROMIPS_HI16
:
4277 case BFD_RELOC_MICROMIPS_HI16_S
:
4278 case BFD_RELOC_MICROMIPS_LO16
:
4279 case BFD_RELOC_MICROMIPS_LITERAL
:
4280 case BFD_RELOC_MICROMIPS_GOT16
:
4281 case BFD_RELOC_MICROMIPS_CALL16
:
4282 case BFD_RELOC_MICROMIPS_GOT_HI16
:
4283 case BFD_RELOC_MICROMIPS_GOT_LO16
:
4284 case BFD_RELOC_MICROMIPS_CALL_HI16
:
4285 case BFD_RELOC_MICROMIPS_CALL_LO16
:
4286 case BFD_RELOC_MICROMIPS_SUB
:
4287 case BFD_RELOC_MICROMIPS_GOT_PAGE
:
4288 case BFD_RELOC_MICROMIPS_GOT_OFST
:
4289 case BFD_RELOC_MICROMIPS_GOT_DISP
:
4290 case BFD_RELOC_MICROMIPS_HIGHEST
:
4291 case BFD_RELOC_MICROMIPS_HIGHER
:
4292 case BFD_RELOC_MICROMIPS_SCN_DISP
:
4293 case BFD_RELOC_MICROMIPS_JALR
:
4302 jmp_reloc_p (bfd_reloc_code_real_type reloc
)
4304 return reloc
== BFD_RELOC_MIPS_JMP
|| reloc
== BFD_RELOC_MICROMIPS_JMP
;
4308 b_reloc_p (bfd_reloc_code_real_type reloc
)
4310 return (reloc
== BFD_RELOC_MIPS_26_PCREL_S2
4311 || reloc
== BFD_RELOC_MIPS_21_PCREL_S2
4312 || reloc
== BFD_RELOC_16_PCREL_S2
4313 || reloc
== BFD_RELOC_MIPS16_16_PCREL_S1
4314 || reloc
== BFD_RELOC_MICROMIPS_16_PCREL_S1
4315 || reloc
== BFD_RELOC_MICROMIPS_10_PCREL_S1
4316 || reloc
== BFD_RELOC_MICROMIPS_7_PCREL_S1
);
4320 got16_reloc_p (bfd_reloc_code_real_type reloc
)
4322 return (reloc
== BFD_RELOC_MIPS_GOT16
|| reloc
== BFD_RELOC_MIPS16_GOT16
4323 || reloc
== BFD_RELOC_MICROMIPS_GOT16
);
4327 hi16_reloc_p (bfd_reloc_code_real_type reloc
)
4329 return (reloc
== BFD_RELOC_HI16_S
|| reloc
== BFD_RELOC_MIPS16_HI16_S
4330 || reloc
== BFD_RELOC_MICROMIPS_HI16_S
);
4334 lo16_reloc_p (bfd_reloc_code_real_type reloc
)
4336 return (reloc
== BFD_RELOC_LO16
|| reloc
== BFD_RELOC_MIPS16_LO16
4337 || reloc
== BFD_RELOC_MICROMIPS_LO16
);
4341 jalr_reloc_p (bfd_reloc_code_real_type reloc
)
4343 return reloc
== BFD_RELOC_MIPS_JALR
|| reloc
== BFD_RELOC_MICROMIPS_JALR
;
4347 gprel16_reloc_p (bfd_reloc_code_real_type reloc
)
4349 return (reloc
== BFD_RELOC_GPREL16
|| reloc
== BFD_RELOC_MIPS16_GPREL
4350 || reloc
== BFD_RELOC_MICROMIPS_GPREL16
);
4353 /* Return true if RELOC is a PC-relative relocation that does not have
4354 full address range. */
4357 limited_pcrel_reloc_p (bfd_reloc_code_real_type reloc
)
4361 case BFD_RELOC_16_PCREL_S2
:
4362 case BFD_RELOC_MIPS16_16_PCREL_S1
:
4363 case BFD_RELOC_MICROMIPS_7_PCREL_S1
:
4364 case BFD_RELOC_MICROMIPS_10_PCREL_S1
:
4365 case BFD_RELOC_MICROMIPS_16_PCREL_S1
:
4366 case BFD_RELOC_MIPS_21_PCREL_S2
:
4367 case BFD_RELOC_MIPS_26_PCREL_S2
:
4368 case BFD_RELOC_MIPS_18_PCREL_S3
:
4369 case BFD_RELOC_MIPS_19_PCREL_S2
:
4372 case BFD_RELOC_32_PCREL
:
4373 case BFD_RELOC_HI16_S_PCREL
:
4374 case BFD_RELOC_LO16_PCREL
:
4375 return HAVE_64BIT_ADDRESSES
;
4382 /* Return true if the given relocation might need a matching %lo().
4383 This is only "might" because SVR4 R_MIPS_GOT16 relocations only
4384 need a matching %lo() when applied to local symbols. */
4387 reloc_needs_lo_p (bfd_reloc_code_real_type reloc
)
4389 return (HAVE_IN_PLACE_ADDENDS
4390 && (hi16_reloc_p (reloc
)
4391 /* VxWorks R_MIPS_GOT16 relocs never need a matching %lo();
4392 all GOT16 relocations evaluate to "G". */
4393 || (got16_reloc_p (reloc
) && mips_pic
!= VXWORKS_PIC
)));
4396 /* Return the type of %lo() reloc needed by RELOC, given that
4397 reloc_needs_lo_p. */
4399 static inline bfd_reloc_code_real_type
4400 matching_lo_reloc (bfd_reloc_code_real_type reloc
)
4402 return (mips16_reloc_p (reloc
) ? BFD_RELOC_MIPS16_LO16
4403 : (micromips_reloc_p (reloc
) ? BFD_RELOC_MICROMIPS_LO16
4407 /* Return true if the given fixup is followed by a matching R_MIPS_LO16
4411 fixup_has_matching_lo_p (fixS
*fixp
)
4413 return (fixp
->fx_next
!= NULL
4414 && fixp
->fx_next
->fx_r_type
== matching_lo_reloc (fixp
->fx_r_type
)
4415 && fixp
->fx_addsy
== fixp
->fx_next
->fx_addsy
4416 && fixp
->fx_offset
== fixp
->fx_next
->fx_offset
);
4419 /* Move all labels in LABELS to the current insertion point. TEXT_P
4420 says whether the labels refer to text or data. */
4423 mips_move_labels (struct insn_label_list
*labels
, bool text_p
)
4425 struct insn_label_list
*l
;
4428 for (l
= labels
; l
!= NULL
; l
= l
->next
)
4430 gas_assert (S_GET_SEGMENT (l
->label
) == now_seg
);
4431 symbol_set_frag (l
->label
, frag_now
);
4432 val
= (valueT
) frag_now_fix ();
4433 /* MIPS16/microMIPS text labels are stored as odd.
4434 We just carry the ISA mode bit forward. */
4435 if (text_p
&& HAVE_CODE_COMPRESSION
)
4436 val
|= (S_GET_VALUE (l
->label
) & 0x1);
4437 S_SET_VALUE (l
->label
, val
);
4441 /* Move all labels in insn_labels to the current insertion point
4442 and treat them as text labels. */
4445 mips_move_text_labels (void)
4447 mips_move_labels (seg_info (now_seg
)->label_list
, true);
4450 /* Duplicate the test for LINK_ONCE sections as in `adjust_reloc_syms'. */
4453 s_is_linkonce (symbolS
*sym
, segT from_seg
)
4455 bool linkonce
= false;
4456 segT symseg
= S_GET_SEGMENT (sym
);
4458 if (symseg
!= from_seg
&& !S_IS_LOCAL (sym
))
4460 if ((bfd_section_flags (symseg
) & SEC_LINK_ONCE
))
4462 /* The GNU toolchain uses an extension for ELF: a section
4463 beginning with the magic string .gnu.linkonce is a
4464 linkonce section. */
4465 if (startswith (segment_name (symseg
), ".gnu.linkonce"))
4471 /* Mark MIPS16 or microMIPS instruction label LABEL. This permits the
4472 linker to handle them specially, such as generating jalx instructions
4473 when needed. We also make them odd for the duration of the assembly,
4474 in order to generate the right sort of code. We will make them even
4475 in the adjust_symtab routine, while leaving them marked. This is
4476 convenient for the debugger and the disassembler. The linker knows
4477 to make them odd again. */
4480 mips_compressed_mark_label (symbolS
*label
)
4482 gas_assert (HAVE_CODE_COMPRESSION
);
4484 if (mips_opts
.mips16
)
4485 S_SET_OTHER (label
, ELF_ST_SET_MIPS16 (S_GET_OTHER (label
)));
4487 S_SET_OTHER (label
, ELF_ST_SET_MICROMIPS (S_GET_OTHER (label
)));
4488 if ((S_GET_VALUE (label
) & 1) == 0
4489 /* Don't adjust the address if the label is global or weak, or
4490 in a link-once section, since we'll be emitting symbol reloc
4491 references to it which will be patched up by the linker, and
4492 the final value of the symbol may or may not be MIPS16/microMIPS. */
4493 && !S_IS_WEAK (label
)
4494 && !S_IS_EXTERNAL (label
)
4495 && !s_is_linkonce (label
, now_seg
))
4496 S_SET_VALUE (label
, S_GET_VALUE (label
) | 1);
4499 /* Mark preceding MIPS16 or microMIPS instruction labels. */
4502 mips_compressed_mark_labels (void)
4504 struct insn_label_list
*l
;
4506 for (l
= seg_info (now_seg
)->label_list
; l
!= NULL
; l
= l
->next
)
4507 mips_compressed_mark_label (l
->label
);
4510 /* End the current frag. Make it a variant frag and record the
4514 relax_close_frag (void)
4516 mips_macro_warning
.first_frag
= frag_now
;
4517 frag_var (rs_machine_dependent
, 0, 0,
4518 RELAX_ENCODE (mips_relax
.sizes
[0], mips_relax
.sizes
[1],
4519 mips_pic
!= NO_PIC
),
4520 mips_relax
.symbol
, 0, (char *) mips_relax
.first_fixup
);
4522 memset (&mips_relax
.sizes
, 0, sizeof (mips_relax
.sizes
));
4523 mips_relax
.first_fixup
= 0;
4526 /* Start a new relaxation sequence whose expansion depends on SYMBOL.
4527 See the comment above RELAX_ENCODE for more details. */
4530 relax_start (symbolS
*symbol
)
4532 gas_assert (mips_relax
.sequence
== 0);
4533 mips_relax
.sequence
= 1;
4534 mips_relax
.symbol
= symbol
;
4537 /* Start generating the second version of a relaxable sequence.
4538 See the comment above RELAX_ENCODE for more details. */
4543 gas_assert (mips_relax
.sequence
== 1);
4544 mips_relax
.sequence
= 2;
4547 /* End the current relaxable sequence. */
4552 gas_assert (mips_relax
.sequence
== 2);
4553 relax_close_frag ();
4554 mips_relax
.sequence
= 0;
4557 /* Return true if IP is a delayed branch or jump. */
4560 delayed_branch_p (const struct mips_cl_insn
*ip
)
4562 return (ip
->insn_mo
->pinfo
& (INSN_UNCOND_BRANCH_DELAY
4563 | INSN_COND_BRANCH_DELAY
4564 | INSN_COND_BRANCH_LIKELY
)) != 0;
4567 /* Return true if IP is a compact branch or jump. */
4570 compact_branch_p (const struct mips_cl_insn
*ip
)
4572 return (ip
->insn_mo
->pinfo2
& (INSN2_UNCOND_BRANCH
4573 | INSN2_COND_BRANCH
)) != 0;
4576 /* Return true if IP is an unconditional branch or jump. */
4579 uncond_branch_p (const struct mips_cl_insn
*ip
)
4581 return ((ip
->insn_mo
->pinfo
& INSN_UNCOND_BRANCH_DELAY
) != 0
4582 || (ip
->insn_mo
->pinfo2
& INSN2_UNCOND_BRANCH
) != 0);
4585 /* Return true if IP is a branch-likely instruction. */
4588 branch_likely_p (const struct mips_cl_insn
*ip
)
4590 return (ip
->insn_mo
->pinfo
& INSN_COND_BRANCH_LIKELY
) != 0;
4593 /* Return the type of nop that should be used to fill the delay slot
4594 of delayed branch IP. */
4596 static struct mips_cl_insn
*
4597 get_delay_slot_nop (const struct mips_cl_insn
*ip
)
4599 if (mips_opts
.micromips
4600 && (ip
->insn_mo
->pinfo2
& INSN2_BRANCH_DELAY_32BIT
))
4601 return µmips_nop32_insn
;
4605 /* Return a mask that has bit N set if OPCODE reads the register(s)
4609 insn_read_mask (const struct mips_opcode
*opcode
)
4611 return (opcode
->pinfo
& INSN_READ_ALL
) >> INSN_READ_SHIFT
;
4614 /* Return a mask that has bit N set if OPCODE writes to the register(s)
4618 insn_write_mask (const struct mips_opcode
*opcode
)
4620 return (opcode
->pinfo
& INSN_WRITE_ALL
) >> INSN_WRITE_SHIFT
;
4623 /* Return a mask of the registers specified by operand OPERAND of INSN.
4624 Ignore registers of type OP_REG_<t> unless bit OP_REG_<t> of TYPE_MASK
4628 operand_reg_mask (const struct mips_cl_insn
*insn
,
4629 const struct mips_operand
*operand
,
4630 unsigned int type_mask
)
4632 unsigned int uval
, vsel
;
4634 switch (operand
->type
)
4641 case OP_ADDIUSP_INT
:
4642 case OP_ENTRY_EXIT_LIST
:
4643 case OP_REPEAT_DEST_REG
:
4644 case OP_REPEAT_PREV_REG
:
4647 case OP_VU0_MATCH_SUFFIX
:
4655 case OP_OPTIONAL_REG
:
4657 const struct mips_reg_operand
*reg_op
;
4659 reg_op
= (const struct mips_reg_operand
*) operand
;
4660 if (!(type_mask
& (1 << reg_op
->reg_type
)))
4662 uval
= insn_extract_operand (insn
, operand
);
4663 return 1u << mips_decode_reg_operand (reg_op
, uval
);
4668 const struct mips_reg_pair_operand
*pair_op
;
4670 pair_op
= (const struct mips_reg_pair_operand
*) operand
;
4671 if (!(type_mask
& (1 << pair_op
->reg_type
)))
4673 uval
= insn_extract_operand (insn
, operand
);
4674 return (1u << pair_op
->reg1_map
[uval
]) | (1u << pair_op
->reg2_map
[uval
]);
4677 case OP_CLO_CLZ_DEST
:
4678 if (!(type_mask
& (1 << OP_REG_GP
)))
4680 uval
= insn_extract_operand (insn
, operand
);
4681 return (1u << (uval
& 31)) | (1u << (uval
>> 5));
4684 if (!(type_mask
& (1 << OP_REG_GP
)))
4686 uval
= insn_extract_operand (insn
, operand
);
4687 gas_assert ((uval
& 31) == (uval
>> 5));
4688 return 1u << (uval
& 31);
4691 case OP_NON_ZERO_REG
:
4692 if (!(type_mask
& (1 << OP_REG_GP
)))
4694 uval
= insn_extract_operand (insn
, operand
);
4695 return 1u << (uval
& 31);
4697 case OP_LWM_SWM_LIST
:
4700 case OP_SAVE_RESTORE_LIST
:
4703 case OP_MDMX_IMM_REG
:
4704 if (!(type_mask
& (1 << OP_REG_VEC
)))
4706 uval
= insn_extract_operand (insn
, operand
);
4708 if ((vsel
& 0x18) == 0x18)
4710 return 1u << (uval
& 31);
4713 if (!(type_mask
& (1 << OP_REG_GP
)))
4715 return 1u << insn_extract_operand (insn
, operand
);
4720 /* Return a mask of the registers specified by operands OPNO_MASK of INSN,
4721 where bit N of OPNO_MASK is set if operand N should be included.
4722 Ignore registers of type OP_REG_<t> unless bit OP_REG_<t> of TYPE_MASK
4726 insn_reg_mask (const struct mips_cl_insn
*insn
,
4727 unsigned int type_mask
, unsigned int opno_mask
)
4729 unsigned int opno
, reg_mask
;
4733 while (opno_mask
!= 0)
4736 reg_mask
|= operand_reg_mask (insn
, insn_opno (insn
, opno
), type_mask
);
4743 /* Return the mask of core registers that IP reads. */
4746 gpr_read_mask (const struct mips_cl_insn
*ip
)
4748 unsigned long pinfo
, pinfo2
;
4751 mask
= insn_reg_mask (ip
, 1 << OP_REG_GP
, insn_read_mask (ip
->insn_mo
));
4752 pinfo
= ip
->insn_mo
->pinfo
;
4753 pinfo2
= ip
->insn_mo
->pinfo2
;
4754 if (pinfo
& INSN_UDI
)
4756 /* UDI instructions have traditionally been assumed to read RS
4758 mask
|= 1 << EXTRACT_OPERAND (mips_opts
.micromips
, RT
, *ip
);
4759 mask
|= 1 << EXTRACT_OPERAND (mips_opts
.micromips
, RS
, *ip
);
4761 if (pinfo
& INSN_READ_GPR_24
)
4763 if (pinfo2
& INSN2_READ_GPR_16
)
4765 if (pinfo2
& INSN2_READ_SP
)
4767 if (pinfo2
& INSN2_READ_GPR_31
)
4769 /* Don't include register 0. */
4773 /* Return the mask of core registers that IP writes. */
4776 gpr_write_mask (const struct mips_cl_insn
*ip
)
4778 unsigned long pinfo
, pinfo2
;
4781 mask
= insn_reg_mask (ip
, 1 << OP_REG_GP
, insn_write_mask (ip
->insn_mo
));
4782 pinfo
= ip
->insn_mo
->pinfo
;
4783 pinfo2
= ip
->insn_mo
->pinfo2
;
4784 if (pinfo
& INSN_WRITE_GPR_24
)
4786 if (pinfo
& INSN_WRITE_GPR_31
)
4788 if (pinfo
& INSN_UDI
)
4789 /* UDI instructions have traditionally been assumed to write to RD. */
4790 mask
|= 1 << EXTRACT_OPERAND (mips_opts
.micromips
, RD
, *ip
);
4791 if (pinfo2
& INSN2_WRITE_SP
)
4793 /* Don't include register 0. */
4797 /* Return the mask of floating-point registers that IP reads. */
4800 fpr_read_mask (const struct mips_cl_insn
*ip
)
4802 unsigned long pinfo
;
4805 mask
= insn_reg_mask (ip
, ((1 << OP_REG_FP
) | (1 << OP_REG_VEC
)
4806 | (1 << OP_REG_MSA
)),
4807 insn_read_mask (ip
->insn_mo
));
4808 pinfo
= ip
->insn_mo
->pinfo
;
4809 /* Conservatively treat all operands to an FP_D instruction are doubles.
4810 (This is overly pessimistic for things like cvt.d.s.) */
4811 if (FPR_SIZE
!= 64 && (pinfo
& FP_D
))
4816 /* Return the mask of floating-point registers that IP writes. */
4819 fpr_write_mask (const struct mips_cl_insn
*ip
)
4821 unsigned long pinfo
;
4824 mask
= insn_reg_mask (ip
, ((1 << OP_REG_FP
) | (1 << OP_REG_VEC
)
4825 | (1 << OP_REG_MSA
)),
4826 insn_write_mask (ip
->insn_mo
));
4827 pinfo
= ip
->insn_mo
->pinfo
;
4828 /* Conservatively treat all operands to an FP_D instruction are doubles.
4829 (This is overly pessimistic for things like cvt.s.d.) */
4830 if (FPR_SIZE
!= 64 && (pinfo
& FP_D
))
4835 /* Operand OPNUM of INSN is an odd-numbered floating-point register.
4836 Check whether that is allowed. */
4839 mips_oddfpreg_ok (const struct mips_opcode
*insn
, int opnum
)
4841 const char *s
= insn
->name
;
4842 bool oddspreg
= (ISA_HAS_ODD_SINGLE_FPR (mips_opts
.isa
, mips_opts
.arch
)
4843 || FPR_SIZE
== 64) && mips_opts
.oddspreg
;
4845 if (insn
->pinfo
== INSN_MACRO
)
4846 /* Let a macro pass, we'll catch it later when it is expanded. */
4849 /* Single-precision coprocessor loads and moves are OK for 32-bit registers,
4850 otherwise it depends on oddspreg. */
4851 if ((insn
->pinfo
& FP_S
)
4852 && (insn
->pinfo
& (INSN_LOAD_MEMORY
| INSN_STORE_MEMORY
4853 | INSN_LOAD_COPROC
| INSN_COPROC_MOVE
)))
4854 return FPR_SIZE
== 32 || oddspreg
;
4856 /* Allow odd registers for single-precision ops and double-precision if the
4857 floating-point registers are 64-bit wide. */
4858 switch (insn
->pinfo
& (FP_S
| FP_D
))
4864 return FPR_SIZE
== 64;
4869 /* Cvt.w.x and cvt.x.w allow an odd register for a 'w' or 's' operand. */
4870 s
= strchr (insn
->name
, '.');
4871 if (s
!= NULL
&& opnum
== 2)
4872 s
= strchr (s
+ 1, '.');
4873 if (s
!= NULL
&& (s
[1] == 'w' || s
[1] == 's'))
4876 return FPR_SIZE
== 64;
4879 /* Information about an instruction argument that we're trying to match. */
4880 struct mips_arg_info
4882 /* The instruction so far. */
4883 struct mips_cl_insn
*insn
;
4885 /* The first unconsumed operand token. */
4886 struct mips_operand_token
*token
;
4888 /* The 1-based operand number, in terms of insn->insn_mo->args. */
4891 /* The 1-based argument number, for error reporting. This does not
4892 count elided optional registers, etc.. */
4895 /* The last OP_REG operand seen, or ILLEGAL_REG if none. */
4896 unsigned int last_regno
;
4898 /* If the first operand was an OP_REG, this is the register that it
4899 specified, otherwise it is ILLEGAL_REG. */
4900 unsigned int dest_regno
;
4902 /* The value of the last OP_INT operand. Only used for OP_MSB,
4903 where it gives the lsb position. */
4904 unsigned int last_op_int
;
4906 /* If true, match routines should assume that no later instruction
4907 alternative matches and should therefore be as accommodating as
4908 possible. Match routines should not report errors if something
4909 is only invalid for !LAX_MATCH. */
4912 /* True if a reference to the current AT register was seen. */
4916 /* Record that the argument is out of range. */
4919 match_out_of_range (struct mips_arg_info
*arg
)
4921 set_insn_error_i (arg
->argnum
, _("operand %d out of range"), arg
->argnum
);
4924 /* Record that the argument isn't constant but needs to be. */
4927 match_not_constant (struct mips_arg_info
*arg
)
4929 set_insn_error_i (arg
->argnum
, _("operand %d must be constant"),
4933 /* Try to match an OT_CHAR token for character CH. Consume the token
4934 and return true on success, otherwise return false. */
4937 match_char (struct mips_arg_info
*arg
, char ch
)
4939 if (arg
->token
->type
== OT_CHAR
&& arg
->token
->u
.ch
== ch
)
4949 /* Try to get an expression from the next tokens in ARG. Consume the
4950 tokens and return true on success, storing the expression value in
4951 VALUE and relocation types in R. */
4954 match_expression (struct mips_arg_info
*arg
, expressionS
*value
,
4955 bfd_reloc_code_real_type
*r
)
4957 /* If the next token is a '(' that was parsed as being part of a base
4958 expression, assume we have an elided offset. The later match will fail
4959 if this turns out to be wrong. */
4960 if (arg
->token
->type
== OT_CHAR
&& arg
->token
->u
.ch
== '(')
4962 value
->X_op
= O_constant
;
4963 value
->X_add_number
= 0;
4964 r
[0] = r
[1] = r
[2] = BFD_RELOC_UNUSED
;
4968 /* Reject register-based expressions such as "0+$2" and "(($2))".
4969 For plain registers the default error seems more appropriate. */
4970 if (arg
->token
->type
== OT_INTEGER
4971 && arg
->token
->u
.integer
.value
.X_op
== O_register
)
4973 set_insn_error (arg
->argnum
, _("register value used as expression"));
4977 if (arg
->token
->type
== OT_INTEGER
)
4979 *value
= arg
->token
->u
.integer
.value
;
4980 memcpy (r
, arg
->token
->u
.integer
.relocs
, 3 * sizeof (*r
));
4986 (arg
->argnum
, _("operand %d must be an immediate expression"),
4991 /* Try to get a constant expression from the next tokens in ARG. Consume
4992 the tokens and return true on success, storing the constant value
4996 match_const_int (struct mips_arg_info
*arg
, offsetT
*value
)
4999 bfd_reloc_code_real_type r
[3];
5001 if (!match_expression (arg
, &ex
, r
))
5004 if (r
[0] == BFD_RELOC_UNUSED
&& ex
.X_op
== O_constant
)
5005 *value
= ex
.X_add_number
;
5008 if (r
[0] == BFD_RELOC_UNUSED
&& ex
.X_op
== O_big
)
5009 match_out_of_range (arg
);
5011 match_not_constant (arg
);
5017 /* Return the RTYPE_* flags for a register operand of type TYPE that
5018 appears in instruction OPCODE. */
5021 convert_reg_type (const struct mips_opcode
*opcode
,
5022 enum mips_reg_operand_type type
)
5027 return RTYPE_NUM
| RTYPE_GP
;
5030 /* Allow vector register names for MDMX if the instruction is a 64-bit
5031 FPR load, store or move (including moves to and from GPRs). */
5032 if ((mips_opts
.ase
& ASE_MDMX
)
5033 && (opcode
->pinfo
& FP_D
)
5034 && (opcode
->pinfo
& (INSN_COPROC_MOVE
5035 | INSN_COPROC_MEMORY_DELAY
5038 | INSN_STORE_MEMORY
)))
5039 return RTYPE_FPU
| RTYPE_VEC
;
5043 if (opcode
->pinfo
& (FP_D
| FP_S
))
5044 return RTYPE_CCC
| RTYPE_FCC
;
5048 if (opcode
->membership
& INSN_5400
)
5050 return RTYPE_FPU
| RTYPE_VEC
;
5056 case OP_REG_CONTROL
:
5057 if (opcode
->name
[strlen (opcode
->name
) - 1] == '0')
5058 return RTYPE_NUM
| RTYPE_CP0
;
5065 return RTYPE_NUM
| RTYPE_VI
;
5068 return RTYPE_NUM
| RTYPE_VF
;
5070 case OP_REG_R5900_I
:
5071 return RTYPE_R5900_I
;
5073 case OP_REG_R5900_Q
:
5074 return RTYPE_R5900_Q
;
5076 case OP_REG_R5900_R
:
5077 return RTYPE_R5900_R
;
5079 case OP_REG_R5900_ACC
:
5080 return RTYPE_R5900_ACC
;
5085 case OP_REG_MSA_CTRL
:
5091 /* ARG is register REGNO, of type TYPE. Warn about any dubious registers. */
5094 check_regno (struct mips_arg_info
*arg
,
5095 enum mips_reg_operand_type type
, unsigned int regno
)
5097 if (AT
&& type
== OP_REG_GP
&& regno
== AT
)
5098 arg
->seen_at
= true;
5100 if (type
== OP_REG_FP
5102 && !mips_oddfpreg_ok (arg
->insn
->insn_mo
, arg
->opnum
))
5104 /* This was a warning prior to introducing O32 FPXX and FP64 support
5105 so maintain a warning for FP32 but raise an error for the new
5108 as_warn (_("float register should be even, was %d"), regno
);
5110 as_bad (_("float register should be even, was %d"), regno
);
5113 if (type
== OP_REG_CCC
)
5118 name
= arg
->insn
->insn_mo
->name
;
5119 length
= strlen (name
);
5120 if ((regno
& 1) != 0
5121 && ((length
>= 3 && strcmp (name
+ length
- 3, ".ps") == 0)
5122 || (length
>= 5 && startswith (name
+ length
- 5, "any2"))))
5123 as_warn (_("condition code register should be even for %s, was %d"),
5126 if ((regno
& 3) != 0
5127 && (length
>= 5 && startswith (name
+ length
- 5, "any4")))
5128 as_warn (_("condition code register should be 0 or 4 for %s, was %d"),
5133 /* ARG is a register with symbol value SYMVAL. Try to interpret it as
5134 a register of type TYPE. Return true on success, storing the register
5135 number in *REGNO and warning about any dubious uses. */
5138 match_regno (struct mips_arg_info
*arg
, enum mips_reg_operand_type type
,
5139 unsigned int symval
, unsigned int *regno
)
5141 if (type
== OP_REG_VEC
)
5142 symval
= mips_prefer_vec_regno (symval
);
5143 if (!(symval
& convert_reg_type (arg
->insn
->insn_mo
, type
)))
5146 *regno
= symval
& RNUM_MASK
;
5147 check_regno (arg
, type
, *regno
);
5151 /* Try to interpret the next token in ARG as a register of type TYPE.
5152 Consume the token and return true on success, storing the register
5153 number in *REGNO. Return false on failure. */
5156 match_reg (struct mips_arg_info
*arg
, enum mips_reg_operand_type type
,
5157 unsigned int *regno
)
5159 if (arg
->token
->type
== OT_REG
5160 && match_regno (arg
, type
, arg
->token
->u
.regno
, regno
))
5168 /* Try to interpret the next token in ARG as a range of registers of type TYPE.
5169 Consume the token and return true on success, storing the register numbers
5170 in *REGNO1 and *REGNO2. Return false on failure. */
5173 match_reg_range (struct mips_arg_info
*arg
, enum mips_reg_operand_type type
,
5174 unsigned int *regno1
, unsigned int *regno2
)
5176 if (match_reg (arg
, type
, regno1
))
5181 if (arg
->token
->type
== OT_REG_RANGE
5182 && match_regno (arg
, type
, arg
->token
->u
.reg_range
.regno1
, regno1
)
5183 && match_regno (arg
, type
, arg
->token
->u
.reg_range
.regno2
, regno2
)
5184 && *regno1
<= *regno2
)
5192 /* OP_INT matcher. */
5195 match_int_operand (struct mips_arg_info
*arg
,
5196 const struct mips_operand
*operand_base
)
5198 const struct mips_int_operand
*operand
;
5200 int min_val
, max_val
, factor
;
5203 operand
= (const struct mips_int_operand
*) operand_base
;
5204 factor
= 1 << operand
->shift
;
5205 min_val
= mips_int_operand_min (operand
);
5206 max_val
= mips_int_operand_max (operand
);
5208 if (operand_base
->lsb
== 0
5209 && operand_base
->size
== 16
5210 && operand
->shift
== 0
5211 && operand
->bias
== 0
5212 && (operand
->max_val
== 32767 || operand
->max_val
== 65535))
5214 /* The operand can be relocated. */
5215 if (!match_expression (arg
, &offset_expr
, offset_reloc
))
5218 if (offset_expr
.X_op
== O_big
)
5220 match_out_of_range (arg
);
5224 if (offset_reloc
[0] != BFD_RELOC_UNUSED
)
5225 /* Relocation operators were used. Accept the argument and
5226 leave the relocation value in offset_expr and offset_relocs
5227 for the caller to process. */
5230 if (offset_expr
.X_op
!= O_constant
)
5232 /* Accept non-constant operands if no later alternative matches,
5233 leaving it for the caller to process. */
5234 if (!arg
->lax_match
)
5236 match_not_constant (arg
);
5239 offset_reloc
[0] = BFD_RELOC_LO16
;
5243 /* Clear the global state; we're going to install the operand
5245 sval
= offset_expr
.X_add_number
;
5246 offset_expr
.X_op
= O_absent
;
5248 /* For compatibility with older assemblers, we accept
5249 0x8000-0xffff as signed 16-bit numbers when only
5250 signed numbers are allowed. */
5253 max_val
= ((1 << operand_base
->size
) - 1) << operand
->shift
;
5254 if (!arg
->lax_match
&& sval
<= max_val
)
5256 match_out_of_range (arg
);
5263 if (!match_const_int (arg
, &sval
))
5267 arg
->last_op_int
= sval
;
5269 if (sval
< min_val
|| sval
> max_val
|| sval
% factor
)
5271 match_out_of_range (arg
);
5275 uval
= (unsigned int) sval
>> operand
->shift
;
5276 uval
-= operand
->bias
;
5278 /* Handle -mfix-cn63xxp1. */
5280 && mips_fix_cn63xxp1
5281 && !mips_opts
.micromips
5282 && strcmp ("pref", arg
->insn
->insn_mo
->name
) == 0)
5297 /* The rest must be changed to 28. */
5302 insn_insert_operand (arg
->insn
, operand_base
, uval
);
5306 /* OP_MAPPED_INT matcher. */
5309 match_mapped_int_operand (struct mips_arg_info
*arg
,
5310 const struct mips_operand
*operand_base
)
5312 const struct mips_mapped_int_operand
*operand
;
5313 unsigned int uval
, num_vals
;
5316 operand
= (const struct mips_mapped_int_operand
*) operand_base
;
5317 if (!match_const_int (arg
, &sval
))
5320 num_vals
= 1 << operand_base
->size
;
5321 for (uval
= 0; uval
< num_vals
; uval
++)
5322 if (operand
->int_map
[uval
] == sval
)
5324 if (uval
== num_vals
)
5326 match_out_of_range (arg
);
5330 insn_insert_operand (arg
->insn
, operand_base
, uval
);
5334 /* OP_MSB matcher. */
5337 match_msb_operand (struct mips_arg_info
*arg
,
5338 const struct mips_operand
*operand_base
)
5340 const struct mips_msb_operand
*operand
;
5341 int min_val
, max_val
, max_high
;
5342 offsetT size
, sval
, high
;
5344 operand
= (const struct mips_msb_operand
*) operand_base
;
5345 min_val
= operand
->bias
;
5346 max_val
= min_val
+ (1 << operand_base
->size
) - 1;
5347 max_high
= operand
->opsize
;
5349 if (!match_const_int (arg
, &size
))
5352 high
= size
+ arg
->last_op_int
;
5353 sval
= operand
->add_lsb
? high
: size
;
5355 if (size
< 0 || high
> max_high
|| sval
< min_val
|| sval
> max_val
)
5357 match_out_of_range (arg
);
5360 insn_insert_operand (arg
->insn
, operand_base
, sval
- min_val
);
5364 /* OP_REG matcher. */
5367 match_reg_operand (struct mips_arg_info
*arg
,
5368 const struct mips_operand
*operand_base
)
5370 const struct mips_reg_operand
*operand
;
5371 unsigned int regno
, uval
, num_vals
;
5373 operand
= (const struct mips_reg_operand
*) operand_base
;
5374 if (!match_reg (arg
, operand
->reg_type
, ®no
))
5377 if (operand
->reg_map
)
5379 num_vals
= 1 << operand
->root
.size
;
5380 for (uval
= 0; uval
< num_vals
; uval
++)
5381 if (operand
->reg_map
[uval
] == regno
)
5383 if (num_vals
== uval
)
5389 arg
->last_regno
= regno
;
5390 if (arg
->opnum
== 1)
5391 arg
->dest_regno
= regno
;
5392 insn_insert_operand (arg
->insn
, operand_base
, uval
);
5396 /* OP_REG_PAIR matcher. */
5399 match_reg_pair_operand (struct mips_arg_info
*arg
,
5400 const struct mips_operand
*operand_base
)
5402 const struct mips_reg_pair_operand
*operand
;
5403 unsigned int regno1
, regno2
, uval
, num_vals
;
5405 operand
= (const struct mips_reg_pair_operand
*) operand_base
;
5406 if (!match_reg (arg
, operand
->reg_type
, ®no1
)
5407 || !match_char (arg
, ',')
5408 || !match_reg (arg
, operand
->reg_type
, ®no2
))
5411 num_vals
= 1 << operand_base
->size
;
5412 for (uval
= 0; uval
< num_vals
; uval
++)
5413 if (operand
->reg1_map
[uval
] == regno1
&& operand
->reg2_map
[uval
] == regno2
)
5415 if (uval
== num_vals
)
5418 insn_insert_operand (arg
->insn
, operand_base
, uval
);
5422 /* OP_PCREL matcher. The caller chooses the relocation type. */
5425 match_pcrel_operand (struct mips_arg_info
*arg
)
5427 bfd_reloc_code_real_type r
[3];
5429 return match_expression (arg
, &offset_expr
, r
) && r
[0] == BFD_RELOC_UNUSED
;
5432 /* OP_PERF_REG matcher. */
5435 match_perf_reg_operand (struct mips_arg_info
*arg
,
5436 const struct mips_operand
*operand
)
5440 if (!match_const_int (arg
, &sval
))
5445 || (mips_opts
.arch
== CPU_R5900
5446 && (strcmp (arg
->insn
->insn_mo
->name
, "mfps") == 0
5447 || strcmp (arg
->insn
->insn_mo
->name
, "mtps") == 0))))
5449 set_insn_error (arg
->argnum
, _("invalid performance register"));
5453 insn_insert_operand (arg
->insn
, operand
, sval
);
5457 /* OP_ADDIUSP matcher. */
5460 match_addiusp_operand (struct mips_arg_info
*arg
,
5461 const struct mips_operand
*operand
)
5466 if (!match_const_int (arg
, &sval
))
5471 match_out_of_range (arg
);
5476 if (!(sval
>= -258 && sval
<= 257) || (sval
>= -2 && sval
<= 1))
5478 match_out_of_range (arg
);
5482 uval
= (unsigned int) sval
;
5483 uval
= ((uval
>> 1) & ~0xff) | (uval
& 0xff);
5484 insn_insert_operand (arg
->insn
, operand
, uval
);
5488 /* OP_CLO_CLZ_DEST matcher. */
5491 match_clo_clz_dest_operand (struct mips_arg_info
*arg
,
5492 const struct mips_operand
*operand
)
5496 if (!match_reg (arg
, OP_REG_GP
, ®no
))
5499 insn_insert_operand (arg
->insn
, operand
, regno
| (regno
<< 5));
5503 /* OP_CHECK_PREV matcher. */
5506 match_check_prev_operand (struct mips_arg_info
*arg
,
5507 const struct mips_operand
*operand_base
)
5509 const struct mips_check_prev_operand
*operand
;
5512 operand
= (const struct mips_check_prev_operand
*) operand_base
;
5514 if (!match_reg (arg
, OP_REG_GP
, ®no
))
5517 if (!operand
->zero_ok
&& regno
== 0)
5520 if ((operand
->less_than_ok
&& regno
< arg
->last_regno
)
5521 || (operand
->greater_than_ok
&& regno
> arg
->last_regno
)
5522 || (operand
->equal_ok
&& regno
== arg
->last_regno
))
5524 arg
->last_regno
= regno
;
5525 insn_insert_operand (arg
->insn
, operand_base
, regno
);
5532 /* OP_SAME_RS_RT matcher. */
5535 match_same_rs_rt_operand (struct mips_arg_info
*arg
,
5536 const struct mips_operand
*operand
)
5540 if (!match_reg (arg
, OP_REG_GP
, ®no
))
5545 set_insn_error (arg
->argnum
, _("the source register must not be $0"));
5549 arg
->last_regno
= regno
;
5551 insn_insert_operand (arg
->insn
, operand
, regno
| (regno
<< 5));
5555 /* OP_LWM_SWM_LIST matcher. */
5558 match_lwm_swm_list_operand (struct mips_arg_info
*arg
,
5559 const struct mips_operand
*operand
)
5561 unsigned int reglist
, sregs
, ra
, regno1
, regno2
;
5562 struct mips_arg_info reset
;
5565 if (!match_reg_range (arg
, OP_REG_GP
, ®no1
, ®no2
))
5569 if (regno2
== FP
&& regno1
>= S0
&& regno1
<= S7
)
5574 reglist
|= ((1U << regno2
<< 1) - 1) & -(1U << regno1
);
5577 while (match_char (arg
, ',')
5578 && match_reg_range (arg
, OP_REG_GP
, ®no1
, ®no2
));
5581 if (operand
->size
== 2)
5583 /* The list must include both ra and s0-sN, for 0 <= N <= 3. E.g.:
5589 and any permutations of these. */
5590 if ((reglist
& 0xfff1ffff) != 0x80010000)
5593 sregs
= (reglist
>> 17) & 7;
5598 /* The list must include at least one of ra and s0-sN,
5599 for 0 <= N <= 8. (Note that there is a gap between s7 and s8,
5600 which are $23 and $30 respectively.) E.g.:
5608 and any permutations of these. */
5609 if ((reglist
& 0x3f00ffff) != 0)
5612 ra
= (reglist
>> 27) & 0x10;
5613 sregs
= ((reglist
>> 22) & 0x100) | ((reglist
>> 16) & 0xff);
5616 if ((sregs
& -sregs
) != sregs
)
5619 insn_insert_operand (arg
->insn
, operand
, (ffs (sregs
) - 1) | ra
);
5623 /* OP_ENTRY_EXIT_LIST matcher. */
5626 match_entry_exit_operand (struct mips_arg_info
*arg
,
5627 const struct mips_operand
*operand
)
5632 /* The format is the same for both ENTRY and EXIT, but the constraints
5634 is_exit
= strcmp (arg
->insn
->insn_mo
->name
, "exit") == 0;
5635 mask
= (is_exit
? 7 << 3 : 0);
5638 unsigned int regno1
, regno2
;
5641 if (match_reg_range (arg
, OP_REG_GP
, ®no1
, ®no2
))
5643 else if (match_reg_range (arg
, OP_REG_FP
, ®no1
, ®no2
))
5648 if (is_exit
&& is_freg
&& regno1
== 0 && regno2
< 2)
5651 mask
|= (5 + regno2
) << 3;
5653 else if (!is_exit
&& regno1
== 4 && regno2
>= 4 && regno2
<= 7)
5654 mask
|= (regno2
- 3) << 3;
5655 else if (regno1
== 16 && regno2
>= 16 && regno2
<= 17)
5656 mask
|= (regno2
- 15) << 1;
5657 else if (regno1
== RA
&& regno2
== RA
)
5662 while (match_char (arg
, ','));
5664 insn_insert_operand (arg
->insn
, operand
, mask
);
5668 /* Encode regular MIPS SAVE/RESTORE instruction operands according to
5669 the argument register mask AMASK, the number of static registers
5670 saved NSREG, the $ra, $s0 and $s1 register specifiers RA, S0 and S1
5671 respectively, and the frame size FRAME_SIZE. */
5674 mips_encode_save_restore (unsigned int amask
, unsigned int nsreg
,
5675 unsigned int ra
, unsigned int s0
, unsigned int s1
,
5676 unsigned int frame_size
)
5678 return ((nsreg
<< 23) | ((frame_size
& 0xf0) << 15) | (amask
<< 15)
5679 | (ra
<< 12) | (s0
<< 11) | (s1
<< 10) | ((frame_size
& 0xf) << 6));
5682 /* Encode MIPS16 SAVE/RESTORE instruction operands according to the
5683 argument register mask AMASK, the number of static registers saved
5684 NSREG, the $ra, $s0 and $s1 register specifiers RA, S0 and S1
5685 respectively, and the frame size FRAME_SIZE. */
5688 mips16_encode_save_restore (unsigned int amask
, unsigned int nsreg
,
5689 unsigned int ra
, unsigned int s0
, unsigned int s1
,
5690 unsigned int frame_size
)
5694 args
= (ra
<< 6) | (s0
<< 5) | (s1
<< 4) | (frame_size
& 0xf);
5695 if (nsreg
|| amask
|| frame_size
== 0 || frame_size
> 16)
5696 args
|= (MIPS16_EXTEND
| (nsreg
<< 24) | (amask
<< 16)
5697 | ((frame_size
& 0xf0) << 16));
5701 /* OP_SAVE_RESTORE_LIST matcher. */
5704 match_save_restore_list_operand (struct mips_arg_info
*arg
)
5706 unsigned int opcode
, args
, statics
, sregs
;
5707 unsigned int num_frame_sizes
, num_args
, num_statics
, num_sregs
;
5708 unsigned int arg_mask
, ra
, s0
, s1
;
5711 opcode
= arg
->insn
->insn_opcode
;
5713 num_frame_sizes
= 0;
5722 unsigned int regno1
, regno2
;
5724 if (arg
->token
->type
== OT_INTEGER
)
5726 /* Handle the frame size. */
5727 if (!match_const_int (arg
, &frame_size
))
5729 num_frame_sizes
+= 1;
5733 if (!match_reg_range (arg
, OP_REG_GP
, ®no1
, ®no2
))
5736 while (regno1
<= regno2
)
5738 if (regno1
>= 4 && regno1
<= 7)
5740 if (num_frame_sizes
== 0)
5742 args
|= 1 << (regno1
- 4);
5744 /* statics $a0-$a3 */
5745 statics
|= 1 << (regno1
- 4);
5747 else if (regno1
>= 16 && regno1
<= 23)
5749 sregs
|= 1 << (regno1
- 16);
5750 else if (regno1
== 30)
5753 else if (regno1
== 31)
5754 /* Add $ra to insn. */
5764 while (match_char (arg
, ','));
5766 /* Encode args/statics combination. */
5769 else if (args
== 0xf)
5770 /* All $a0-$a3 are args. */
5771 arg_mask
= MIPS_SVRS_ALL_ARGS
;
5772 else if (statics
== 0xf)
5773 /* All $a0-$a3 are statics. */
5774 arg_mask
= MIPS_SVRS_ALL_STATICS
;
5777 /* Count arg registers. */
5787 /* Count static registers. */
5789 while (statics
& 0x8)
5791 statics
= (statics
<< 1) & 0xf;
5797 /* Encode args/statics. */
5798 arg_mask
= (num_args
<< 2) | num_statics
;
5801 /* Encode $s0/$s1. */
5802 if (sregs
& (1 << 0)) /* $s0 */
5804 if (sregs
& (1 << 1)) /* $s1 */
5808 /* Encode $s2-$s8. */
5818 /* Encode frame size. */
5819 if (num_frame_sizes
== 0)
5821 set_insn_error (arg
->argnum
, _("missing frame size"));
5824 if (num_frame_sizes
> 1)
5826 set_insn_error (arg
->argnum
, _("frame size specified twice"));
5829 if ((frame_size
& 7) != 0 || frame_size
< 0 || frame_size
> 0xff * 8)
5831 set_insn_error (arg
->argnum
, _("invalid frame size"));
5836 /* Finally build the instruction. */
5837 if (mips_opts
.mips16
)
5838 opcode
|= mips16_encode_save_restore (arg_mask
, num_sregs
, ra
, s0
, s1
,
5840 else if (!mips_opts
.micromips
)
5841 opcode
|= mips_encode_save_restore (arg_mask
, num_sregs
, ra
, s0
, s1
,
5846 arg
->insn
->insn_opcode
= opcode
;
5850 /* OP_MDMX_IMM_REG matcher. */
5853 match_mdmx_imm_reg_operand (struct mips_arg_info
*arg
,
5854 const struct mips_operand
*operand
)
5856 unsigned int regno
, uval
;
5858 const struct mips_opcode
*opcode
;
5860 /* The mips_opcode records whether this is an octobyte or quadhalf
5861 instruction. Start out with that bit in place. */
5862 opcode
= arg
->insn
->insn_mo
;
5863 uval
= mips_extract_operand (operand
, opcode
->match
);
5864 is_qh
= (uval
!= 0);
5866 if (arg
->token
->type
== OT_REG
)
5868 if ((opcode
->membership
& INSN_5400
)
5869 && strcmp (opcode
->name
, "rzu.ob") == 0)
5871 set_insn_error_i (arg
->argnum
, _("operand %d must be an immediate"),
5876 if (!match_regno (arg
, OP_REG_VEC
, arg
->token
->u
.regno
, ®no
))
5880 /* Check whether this is a vector register or a broadcast of
5881 a single element. */
5882 if (arg
->token
->type
== OT_INTEGER_INDEX
)
5884 if (arg
->token
->u
.index
> (is_qh
? 3 : 7))
5886 set_insn_error (arg
->argnum
, _("invalid element selector"));
5889 uval
|= arg
->token
->u
.index
<< (is_qh
? 2 : 1) << 5;
5894 /* A full vector. */
5895 if ((opcode
->membership
& INSN_5400
)
5896 && (strcmp (opcode
->name
, "sll.ob") == 0
5897 || strcmp (opcode
->name
, "srl.ob") == 0))
5899 set_insn_error_i (arg
->argnum
, _("operand %d must be scalar"),
5905 uval
|= MDMX_FMTSEL_VEC_QH
<< 5;
5907 uval
|= MDMX_FMTSEL_VEC_OB
<< 5;
5915 if (!match_const_int (arg
, &sval
))
5917 if (sval
< 0 || sval
> 31)
5919 match_out_of_range (arg
);
5922 uval
|= (sval
& 31);
5924 uval
|= MDMX_FMTSEL_IMM_QH
<< 5;
5926 uval
|= MDMX_FMTSEL_IMM_OB
<< 5;
5928 insn_insert_operand (arg
->insn
, operand
, uval
);
5932 /* OP_IMM_INDEX matcher. */
5935 match_imm_index_operand (struct mips_arg_info
*arg
,
5936 const struct mips_operand
*operand
)
5938 unsigned int max_val
;
5940 if (arg
->token
->type
!= OT_INTEGER_INDEX
)
5943 max_val
= (1 << operand
->size
) - 1;
5944 if (arg
->token
->u
.index
> max_val
)
5946 match_out_of_range (arg
);
5949 insn_insert_operand (arg
->insn
, operand
, arg
->token
->u
.index
);
5954 /* OP_REG_INDEX matcher. */
5957 match_reg_index_operand (struct mips_arg_info
*arg
,
5958 const struct mips_operand
*operand
)
5962 if (arg
->token
->type
!= OT_REG_INDEX
)
5965 if (!match_regno (arg
, OP_REG_GP
, arg
->token
->u
.regno
, ®no
))
5968 insn_insert_operand (arg
->insn
, operand
, regno
);
5973 /* OP_PC matcher. */
5976 match_pc_operand (struct mips_arg_info
*arg
)
5978 if (arg
->token
->type
== OT_REG
&& (arg
->token
->u
.regno
& RTYPE_PC
))
5986 /* OP_REG28 matcher. */
5989 match_reg28_operand (struct mips_arg_info
*arg
)
5993 if (arg
->token
->type
== OT_REG
5994 && match_regno (arg
, OP_REG_GP
, arg
->token
->u
.regno
, ®no
)
6003 /* OP_NON_ZERO_REG matcher. */
6006 match_non_zero_reg_operand (struct mips_arg_info
*arg
,
6007 const struct mips_operand
*operand
)
6011 if (!match_reg (arg
, OP_REG_GP
, ®no
))
6016 set_insn_error (arg
->argnum
, _("the source register must not be $0"));
6020 arg
->last_regno
= regno
;
6021 insn_insert_operand (arg
->insn
, operand
, regno
);
6025 /* OP_REPEAT_DEST_REG and OP_REPEAT_PREV_REG matcher. OTHER_REGNO is the
6026 register that we need to match. */
6029 match_tied_reg_operand (struct mips_arg_info
*arg
, unsigned int other_regno
)
6033 return match_reg (arg
, OP_REG_GP
, ®no
) && regno
== other_regno
;
6036 /* Try to match a floating-point constant from ARG for LI.S or LI.D.
6037 LENGTH is the length of the value in bytes (4 for float, 8 for double)
6038 and USING_GPRS says whether the destination is a GPR rather than an FPR.
6040 Return the constant in IMM and OFFSET as follows:
6042 - If the constant should be loaded via memory, set IMM to O_absent and
6043 OFFSET to the memory address.
6045 - Otherwise, if the constant should be loaded into two 32-bit registers,
6046 set IMM to the O_constant to load into the high register and OFFSET
6047 to the corresponding value for the low register.
6049 - Otherwise, set IMM to the full O_constant and set OFFSET to O_absent.
6051 These constants only appear as the last operand in an instruction,
6052 and every instruction that accepts them in any variant accepts them
6053 in all variants. This means we don't have to worry about backing out
6054 any changes if the instruction does not match. We just match
6055 unconditionally and report an error if the constant is invalid. */
6058 match_float_constant (struct mips_arg_info
*arg
, expressionS
*imm
,
6059 expressionS
*offset
, int length
, bool using_gprs
)
6064 const char *newname
;
6065 unsigned char *data
;
6067 /* Where the constant is placed is based on how the MIPS assembler
6070 length == 4 && using_gprs -- immediate value only
6071 length == 8 && using_gprs -- .rdata or immediate value
6072 length == 4 && !using_gprs -- .lit4 or immediate value
6073 length == 8 && !using_gprs -- .lit8 or immediate value
6075 The .lit4 and .lit8 sections are only used if permitted by the
6077 if (arg
->token
->type
!= OT_FLOAT
)
6079 set_insn_error (arg
->argnum
, _("floating-point expression required"));
6083 gas_assert (arg
->token
->u
.flt
.length
== length
);
6084 data
= arg
->token
->u
.flt
.data
;
6087 /* Handle 32-bit constants for which an immediate value is best. */
6090 || g_switch_value
< 4
6091 || (data
[0] == 0 && data
[1] == 0)
6092 || (data
[2] == 0 && data
[3] == 0)))
6094 imm
->X_op
= O_constant
;
6095 if (!target_big_endian
)
6096 imm
->X_add_number
= bfd_getl32 (data
);
6098 imm
->X_add_number
= bfd_getb32 (data
);
6099 offset
->X_op
= O_absent
;
6103 /* Handle 64-bit constants for which an immediate value is best. */
6105 && !mips_disable_float_construction
6106 /* Constants can only be constructed in GPRs and copied to FPRs if the
6107 GPRs are at least as wide as the FPRs or MTHC1 is available.
6108 Unlike most tests for 32-bit floating-point registers this check
6109 specifically looks for GPR_SIZE == 32 as the FPXX ABI does not
6110 permit 64-bit moves without MXHC1.
6111 Force the constant into memory otherwise. */
6114 || ISA_HAS_MXHC1 (mips_opts
.isa
)
6116 && ((data
[0] == 0 && data
[1] == 0)
6117 || (data
[2] == 0 && data
[3] == 0))
6118 && ((data
[4] == 0 && data
[5] == 0)
6119 || (data
[6] == 0 && data
[7] == 0)))
6121 /* The value is simple enough to load with a couple of instructions.
6122 If using 32-bit registers, set IMM to the high order 32 bits and
6123 OFFSET to the low order 32 bits. Otherwise, set IMM to the entire
6125 if (GPR_SIZE
== 32 || (!using_gprs
&& FPR_SIZE
!= 64))
6127 imm
->X_op
= O_constant
;
6128 offset
->X_op
= O_constant
;
6129 if (!target_big_endian
)
6131 imm
->X_add_number
= bfd_getl32 (data
+ 4);
6132 offset
->X_add_number
= bfd_getl32 (data
);
6136 imm
->X_add_number
= bfd_getb32 (data
);
6137 offset
->X_add_number
= bfd_getb32 (data
+ 4);
6139 if (offset
->X_add_number
== 0)
6140 offset
->X_op
= O_absent
;
6144 imm
->X_op
= O_constant
;
6145 if (!target_big_endian
)
6146 imm
->X_add_number
= bfd_getl64 (data
);
6148 imm
->X_add_number
= bfd_getb64 (data
);
6149 offset
->X_op
= O_absent
;
6154 /* Switch to the right section. */
6156 subseg
= now_subseg
;
6159 gas_assert (!using_gprs
&& g_switch_value
>= 4);
6164 if (using_gprs
|| g_switch_value
< 8)
6165 newname
= RDATA_SECTION_NAME
;
6170 new_seg
= subseg_new (newname
, (subsegT
) 0);
6171 bfd_set_section_flags (new_seg
,
6172 SEC_ALLOC
| SEC_LOAD
| SEC_READONLY
| SEC_DATA
);
6173 frag_align (length
== 4 ? 2 : 3, 0, 0);
6174 if (!startswith (TARGET_OS
, "elf"))
6175 record_alignment (new_seg
, 4);
6177 record_alignment (new_seg
, length
== 4 ? 2 : 3);
6179 as_bad (_("cannot use `%s' in this section"), arg
->insn
->insn_mo
->name
);
6181 /* Set the argument to the current address in the section. */
6182 imm
->X_op
= O_absent
;
6183 offset
->X_op
= O_symbol
;
6184 offset
->X_add_symbol
= symbol_temp_new_now ();
6185 offset
->X_add_number
= 0;
6187 /* Put the floating point number into the section. */
6188 p
= frag_more (length
);
6189 memcpy (p
, data
, length
);
6191 /* Switch back to the original section. */
6192 subseg_set (seg
, subseg
);
6196 /* OP_VU0_SUFFIX and OP_VU0_MATCH_SUFFIX matcher; MATCH_P selects between
6200 match_vu0_suffix_operand (struct mips_arg_info
*arg
,
6201 const struct mips_operand
*operand
,
6206 /* The operand can be an XYZW mask or a single 2-bit channel index
6207 (with X being 0). */
6208 gas_assert (operand
->size
== 2 || operand
->size
== 4);
6210 /* The suffix can be omitted when it is already part of the opcode. */
6211 if (arg
->token
->type
!= OT_CHANNELS
)
6214 uval
= arg
->token
->u
.channels
;
6215 if (operand
->size
== 2)
6217 /* Check that a single bit is set and convert it into a 2-bit index. */
6218 if ((uval
& -uval
) != uval
)
6220 uval
= 4 - ffs (uval
);
6223 if (match_p
&& insn_extract_operand (arg
->insn
, operand
) != uval
)
6228 insn_insert_operand (arg
->insn
, operand
, uval
);
6232 /* Try to match a token from ARG against OPERAND. Consume the token
6233 and return true on success, otherwise return false. */
6236 match_operand (struct mips_arg_info
*arg
,
6237 const struct mips_operand
*operand
)
6239 switch (operand
->type
)
6242 return match_int_operand (arg
, operand
);
6245 return match_mapped_int_operand (arg
, operand
);
6248 return match_msb_operand (arg
, operand
);
6251 case OP_OPTIONAL_REG
:
6252 return match_reg_operand (arg
, operand
);
6255 return match_reg_pair_operand (arg
, operand
);
6258 return match_pcrel_operand (arg
);
6261 return match_perf_reg_operand (arg
, operand
);
6263 case OP_ADDIUSP_INT
:
6264 return match_addiusp_operand (arg
, operand
);
6266 case OP_CLO_CLZ_DEST
:
6267 return match_clo_clz_dest_operand (arg
, operand
);
6269 case OP_LWM_SWM_LIST
:
6270 return match_lwm_swm_list_operand (arg
, operand
);
6272 case OP_ENTRY_EXIT_LIST
:
6273 return match_entry_exit_operand (arg
, operand
);
6275 case OP_SAVE_RESTORE_LIST
:
6276 return match_save_restore_list_operand (arg
);
6278 case OP_MDMX_IMM_REG
:
6279 return match_mdmx_imm_reg_operand (arg
, operand
);
6281 case OP_REPEAT_DEST_REG
:
6282 return match_tied_reg_operand (arg
, arg
->dest_regno
);
6284 case OP_REPEAT_PREV_REG
:
6285 return match_tied_reg_operand (arg
, arg
->last_regno
);
6288 return match_pc_operand (arg
);
6291 return match_reg28_operand (arg
);
6294 return match_vu0_suffix_operand (arg
, operand
, false);
6296 case OP_VU0_MATCH_SUFFIX
:
6297 return match_vu0_suffix_operand (arg
, operand
, true);
6300 return match_imm_index_operand (arg
, operand
);
6303 return match_reg_index_operand (arg
, operand
);
6306 return match_same_rs_rt_operand (arg
, operand
);
6309 return match_check_prev_operand (arg
, operand
);
6311 case OP_NON_ZERO_REG
:
6312 return match_non_zero_reg_operand (arg
, operand
);
6317 /* ARG is the state after successfully matching an instruction.
6318 Issue any queued-up warnings. */
6321 check_completed_insn (struct mips_arg_info
*arg
)
6326 as_warn (_("used $at without \".set noat\""));
6328 as_warn (_("used $%u with \".set at=$%u\""), AT
, AT
);
6332 /* Return true if modifying general-purpose register REG needs a delay. */
6335 reg_needs_delay (unsigned int reg
)
6337 unsigned long prev_pinfo
;
6339 prev_pinfo
= history
[0].insn_mo
->pinfo
;
6340 if (!mips_opts
.noreorder
6341 && (((prev_pinfo
& INSN_LOAD_MEMORY
) && !gpr_interlocks
)
6342 || ((prev_pinfo
& INSN_LOAD_COPROC
) && !cop_interlocks
))
6343 && (gpr_write_mask (&history
[0]) & (1 << reg
)))
6349 /* Classify an instruction according to the FIX_VR4120_* enumeration.
6350 Return NUM_FIX_VR4120_CLASSES if the instruction isn't affected
6351 by VR4120 errata. */
6354 classify_vr4120_insn (const char *name
)
6356 if (startswith (name
, "macc"))
6357 return FIX_VR4120_MACC
;
6358 if (startswith (name
, "dmacc"))
6359 return FIX_VR4120_DMACC
;
6360 if (startswith (name
, "mult"))
6361 return FIX_VR4120_MULT
;
6362 if (startswith (name
, "dmult"))
6363 return FIX_VR4120_DMULT
;
6364 if (strstr (name
, "div"))
6365 return FIX_VR4120_DIV
;
6366 if (strcmp (name
, "mtlo") == 0 || strcmp (name
, "mthi") == 0)
6367 return FIX_VR4120_MTHILO
;
6368 return NUM_FIX_VR4120_CLASSES
;
6371 #define INSN_ERET 0x42000018
6372 #define INSN_DERET 0x4200001f
6373 #define INSN_DMULT 0x1c
6374 #define INSN_DMULTU 0x1d
6376 /* Return the number of instructions that must separate INSN1 and INSN2,
6377 where INSN1 is the earlier instruction. Return the worst-case value
6378 for any INSN2 if INSN2 is null. */
6381 insns_between (const struct mips_cl_insn
*insn1
,
6382 const struct mips_cl_insn
*insn2
)
6384 unsigned long pinfo1
, pinfo2
;
6387 /* If INFO2 is null, pessimistically assume that all flags are set for
6388 the second instruction. */
6389 pinfo1
= insn1
->insn_mo
->pinfo
;
6390 pinfo2
= insn2
? insn2
->insn_mo
->pinfo
: ~0U;
6392 /* For most targets, write-after-read dependencies on the HI and LO
6393 registers must be separated by at least two instructions. */
6394 if (!hilo_interlocks
)
6396 if ((pinfo1
& INSN_READ_LO
) && (pinfo2
& INSN_WRITE_LO
))
6398 if ((pinfo1
& INSN_READ_HI
) && (pinfo2
& INSN_WRITE_HI
))
6402 /* If we're working around r7000 errata, there must be two instructions
6403 between an mfhi or mflo and any instruction that uses the result. */
6404 if (mips_7000_hilo_fix
6405 && !mips_opts
.micromips
6406 && MF_HILO_INSN (pinfo1
)
6407 && (insn2
== NULL
|| (gpr_read_mask (insn2
) & gpr_write_mask (insn1
))))
6410 /* If we're working around 24K errata, one instruction is required
6411 if an ERET or DERET is followed by a branch instruction. */
6412 if (mips_fix_24k
&& !mips_opts
.micromips
)
6414 if (insn1
->insn_opcode
== INSN_ERET
6415 || insn1
->insn_opcode
== INSN_DERET
)
6418 || insn2
->insn_opcode
== INSN_ERET
6419 || insn2
->insn_opcode
== INSN_DERET
6420 || delayed_branch_p (insn2
))
6425 /* If we're working around PMC RM7000 errata, there must be three
6426 nops between a dmult and a load instruction. */
6427 if (mips_fix_rm7000
&& !mips_opts
.micromips
)
6429 if ((insn1
->insn_opcode
& insn1
->insn_mo
->mask
) == INSN_DMULT
6430 || (insn1
->insn_opcode
& insn1
->insn_mo
->mask
) == INSN_DMULTU
)
6432 if (pinfo2
& INSN_LOAD_MEMORY
)
6437 /* If working around VR4120 errata, check for combinations that need
6438 a single intervening instruction. */
6439 if (mips_fix_vr4120
&& !mips_opts
.micromips
)
6441 unsigned int class1
, class2
;
6443 class1
= classify_vr4120_insn (insn1
->insn_mo
->name
);
6444 if (class1
!= NUM_FIX_VR4120_CLASSES
&& vr4120_conflicts
[class1
] != 0)
6448 class2
= classify_vr4120_insn (insn2
->insn_mo
->name
);
6449 if (vr4120_conflicts
[class1
] & (1 << class2
))
6454 if (!HAVE_CODE_COMPRESSION
)
6456 /* Check for GPR or coprocessor load delays. All such delays
6457 are on the RT register. */
6458 /* Itbl support may require additional care here. */
6459 if ((!gpr_interlocks
&& (pinfo1
& INSN_LOAD_MEMORY
))
6460 || (!cop_interlocks
&& (pinfo1
& INSN_LOAD_COPROC
)))
6462 if (insn2
== NULL
|| (gpr_read_mask (insn2
) & gpr_write_mask (insn1
)))
6466 /* Check for generic coprocessor hazards.
6468 This case is not handled very well. There is no special
6469 knowledge of CP0 handling, and the coprocessors other than
6470 the floating point unit are not distinguished at all. */
6471 /* Itbl support may require additional care here. FIXME!
6472 Need to modify this to include knowledge about
6473 user specified delays! */
6474 else if ((!cop_interlocks
&& (pinfo1
& INSN_COPROC_MOVE
))
6475 || (!cop_mem_interlocks
&& (pinfo1
& INSN_COPROC_MEMORY_DELAY
)))
6477 /* Handle cases where INSN1 writes to a known general coprocessor
6478 register. There must be a one instruction delay before INSN2
6479 if INSN2 reads that register, otherwise no delay is needed. */
6480 mask
= fpr_write_mask (insn1
);
6483 if (!insn2
|| (mask
& fpr_read_mask (insn2
)) != 0)
6488 /* Read-after-write dependencies on the control registers
6489 require a two-instruction gap. */
6490 if ((pinfo1
& INSN_WRITE_COND_CODE
)
6491 && (pinfo2
& INSN_READ_COND_CODE
))
6494 /* We don't know exactly what INSN1 does. If INSN2 is
6495 also a coprocessor instruction, assume there must be
6496 a one instruction gap. */
6497 if (pinfo2
& INSN_COP
)
6502 /* Check for read-after-write dependencies on the coprocessor
6503 control registers in cases where INSN1 does not need a general
6504 coprocessor delay. This means that INSN1 is a floating point
6505 comparison instruction. */
6506 /* Itbl support may require additional care here. */
6507 else if (!cop_interlocks
6508 && (pinfo1
& INSN_WRITE_COND_CODE
)
6509 && (pinfo2
& INSN_READ_COND_CODE
))
6513 /* Forbidden slots can not contain Control Transfer Instructions (CTIs)
6514 CTIs include all branches and jumps, nal, eret, eretnc, deret, wait
6516 if ((insn1
->insn_mo
->pinfo2
& INSN2_FORBIDDEN_SLOT
)
6517 && ((pinfo2
& INSN_NO_DELAY_SLOT
)
6518 || (insn2
&& delayed_branch_p (insn2
))))
6524 /* Return the number of nops that would be needed to work around the
6525 VR4130 mflo/mfhi errata if instruction INSN immediately followed
6526 the MAX_VR4130_NOPS instructions described by HIST. Ignore hazards
6527 that are contained within the first IGNORE instructions of HIST. */
6530 nops_for_vr4130 (int ignore
, const struct mips_cl_insn
*hist
,
6531 const struct mips_cl_insn
*insn
)
6536 /* Check if the instruction writes to HI or LO. MTHI and MTLO
6537 are not affected by the errata. */
6539 && ((insn
->insn_mo
->pinfo
& (INSN_WRITE_HI
| INSN_WRITE_LO
)) == 0
6540 || strcmp (insn
->insn_mo
->name
, "mtlo") == 0
6541 || strcmp (insn
->insn_mo
->name
, "mthi") == 0))
6544 /* Search for the first MFLO or MFHI. */
6545 for (i
= 0; i
< MAX_VR4130_NOPS
; i
++)
6546 if (MF_HILO_INSN (hist
[i
].insn_mo
->pinfo
))
6548 /* Extract the destination register. */
6549 mask
= gpr_write_mask (&hist
[i
]);
6551 /* No nops are needed if INSN reads that register. */
6552 if (insn
!= NULL
&& (gpr_read_mask (insn
) & mask
) != 0)
6555 /* ...or if any of the intervening instructions do. */
6556 for (j
= 0; j
< i
; j
++)
6557 if (gpr_read_mask (&hist
[j
]) & mask
)
6561 return MAX_VR4130_NOPS
- i
;
6566 #define BASE_REG_EQ(INSN1, INSN2) \
6567 ((((INSN1) >> OP_SH_RS) & OP_MASK_RS) \
6568 == (((INSN2) >> OP_SH_RS) & OP_MASK_RS))
6570 /* Return the minimum alignment for this store instruction. */
6573 fix_24k_align_to (const struct mips_opcode
*mo
)
6575 if (strcmp (mo
->name
, "sh") == 0)
6578 if (strcmp (mo
->name
, "swc1") == 0
6579 || strcmp (mo
->name
, "swc2") == 0
6580 || strcmp (mo
->name
, "sw") == 0
6581 || strcmp (mo
->name
, "sc") == 0
6582 || strcmp (mo
->name
, "s.s") == 0)
6585 if (strcmp (mo
->name
, "sdc1") == 0
6586 || strcmp (mo
->name
, "sdc2") == 0
6587 || strcmp (mo
->name
, "s.d") == 0)
6594 struct fix_24k_store_info
6596 /* Immediate offset, if any, for this store instruction. */
6598 /* Alignment required by this store instruction. */
6600 /* True for register offsets. */
6601 int register_offset
;
6604 /* Comparison function used by qsort. */
6607 fix_24k_sort (const void *a
, const void *b
)
6609 const struct fix_24k_store_info
*pos1
= a
;
6610 const struct fix_24k_store_info
*pos2
= b
;
6612 return (pos1
->off
- pos2
->off
);
6615 /* INSN is a store instruction. Try to record the store information
6616 in STINFO. Return false if the information isn't known. */
6619 fix_24k_record_store_info (struct fix_24k_store_info
*stinfo
,
6620 const struct mips_cl_insn
*insn
)
6622 /* The instruction must have a known offset. */
6623 if (!insn
->complete_p
|| !strstr (insn
->insn_mo
->args
, "o("))
6626 stinfo
->off
= (insn
->insn_opcode
>> OP_SH_IMMEDIATE
) & OP_MASK_IMMEDIATE
;
6627 stinfo
->align_to
= fix_24k_align_to (insn
->insn_mo
);
6631 /* Return the number of nops that would be needed to work around the 24k
6632 "lost data on stores during refill" errata if instruction INSN
6633 immediately followed the 2 instructions described by HIST.
6634 Ignore hazards that are contained within the first IGNORE
6635 instructions of HIST.
6637 Problem: The FSB (fetch store buffer) acts as an intermediate buffer
6638 for the data cache refills and store data. The following describes
6639 the scenario where the store data could be lost.
6641 * A data cache miss, due to either a load or a store, causing fill
6642 data to be supplied by the memory subsystem
6643 * The first three doublewords of fill data are returned and written
6645 * A sequence of four stores occurs in consecutive cycles around the
6646 final doubleword of the fill:
6650 * Zero, One or more instructions
6653 The four stores A-D must be to different doublewords of the line that
6654 is being filled. The fourth instruction in the sequence above permits
6655 the fill of the final doubleword to be transferred from the FSB into
6656 the cache. In the sequence above, the stores may be either integer
6657 (sb, sh, sw, swr, swl, sc) or coprocessor (swc1/swc2, sdc1/sdc2,
6658 swxc1, sdxc1, suxc1) stores, as long as the four stores are to
6659 different doublewords on the line. If the floating point unit is
6660 running in 1:2 mode, it is not possible to create the sequence above
6661 using only floating point store instructions.
6663 In this case, the cache line being filled is incorrectly marked
6664 invalid, thereby losing the data from any store to the line that
6665 occurs between the original miss and the completion of the five
6666 cycle sequence shown above.
6668 The workarounds are:
6670 * Run the data cache in write-through mode.
6671 * Insert a non-store instruction between
6672 Store A and Store B or Store B and Store C. */
6675 nops_for_24k (int ignore
, const struct mips_cl_insn
*hist
,
6676 const struct mips_cl_insn
*insn
)
6678 struct fix_24k_store_info pos
[3];
6679 int align
, i
, base_offset
;
6684 /* If the previous instruction wasn't a store, there's nothing to
6686 if ((hist
[0].insn_mo
->pinfo
& INSN_STORE_MEMORY
) == 0)
6689 /* If the instructions after the previous one are unknown, we have
6690 to assume the worst. */
6694 /* Check whether we are dealing with three consecutive stores. */
6695 if ((insn
->insn_mo
->pinfo
& INSN_STORE_MEMORY
) == 0
6696 || (hist
[1].insn_mo
->pinfo
& INSN_STORE_MEMORY
) == 0)
6699 /* If we don't know the relationship between the store addresses,
6700 assume the worst. */
6701 if (!BASE_REG_EQ (insn
->insn_opcode
, hist
[0].insn_opcode
)
6702 || !BASE_REG_EQ (insn
->insn_opcode
, hist
[1].insn_opcode
))
6705 if (!fix_24k_record_store_info (&pos
[0], insn
)
6706 || !fix_24k_record_store_info (&pos
[1], &hist
[0])
6707 || !fix_24k_record_store_info (&pos
[2], &hist
[1]))
6710 qsort (&pos
, 3, sizeof (struct fix_24k_store_info
), fix_24k_sort
);
6712 /* Pick a value of ALIGN and X such that all offsets are adjusted by
6713 X bytes and such that the base register + X is known to be aligned
6716 if (((insn
->insn_opcode
>> OP_SH_RS
) & OP_MASK_RS
) == SP
)
6720 align
= pos
[0].align_to
;
6721 base_offset
= pos
[0].off
;
6722 for (i
= 1; i
< 3; i
++)
6723 if (align
< pos
[i
].align_to
)
6725 align
= pos
[i
].align_to
;
6726 base_offset
= pos
[i
].off
;
6728 for (i
= 0; i
< 3; i
++)
6729 pos
[i
].off
-= base_offset
;
6732 pos
[0].off
&= ~align
+ 1;
6733 pos
[1].off
&= ~align
+ 1;
6734 pos
[2].off
&= ~align
+ 1;
6736 /* If any two stores write to the same chunk, they also write to the
6737 same doubleword. The offsets are still sorted at this point. */
6738 if (pos
[0].off
== pos
[1].off
|| pos
[1].off
== pos
[2].off
)
6741 /* A range of at least 9 bytes is needed for the stores to be in
6742 non-overlapping doublewords. */
6743 if (pos
[2].off
- pos
[0].off
<= 8)
6746 if (pos
[2].off
- pos
[1].off
>= 24
6747 || pos
[1].off
- pos
[0].off
>= 24
6748 || pos
[2].off
- pos
[0].off
>= 32)
6754 /* Return the number of nops that would be needed if instruction INSN
6755 immediately followed the MAX_NOPS instructions given by HIST,
6756 where HIST[0] is the most recent instruction. Ignore hazards
6757 between INSN and the first IGNORE instructions in HIST.
6759 If INSN is null, return the worse-case number of nops for any
6763 nops_for_insn (int ignore
, const struct mips_cl_insn
*hist
,
6764 const struct mips_cl_insn
*insn
)
6766 int i
, nops
, tmp_nops
;
6769 for (i
= ignore
; i
< MAX_DELAY_NOPS
; i
++)
6771 tmp_nops
= insns_between (hist
+ i
, insn
) - i
;
6772 if (tmp_nops
> nops
)
6776 if (mips_fix_vr4130
&& !mips_opts
.micromips
)
6778 tmp_nops
= nops_for_vr4130 (ignore
, hist
, insn
);
6779 if (tmp_nops
> nops
)
6783 if (mips_fix_24k
&& !mips_opts
.micromips
)
6785 tmp_nops
= nops_for_24k (ignore
, hist
, insn
);
6786 if (tmp_nops
> nops
)
6793 /* The variable arguments provide NUM_INSNS extra instructions that
6794 might be added to HIST. Return the largest number of nops that
6795 would be needed after the extended sequence, ignoring hazards
6796 in the first IGNORE instructions. */
6799 nops_for_sequence (int num_insns
, int ignore
,
6800 const struct mips_cl_insn
*hist
, ...)
6803 struct mips_cl_insn buffer
[MAX_NOPS
];
6804 struct mips_cl_insn
*cursor
;
6807 va_start (args
, hist
);
6808 cursor
= buffer
+ num_insns
;
6809 memcpy (cursor
, hist
, (MAX_NOPS
- num_insns
) * sizeof (*cursor
));
6810 while (cursor
> buffer
)
6811 *--cursor
= *va_arg (args
, const struct mips_cl_insn
*);
6813 nops
= nops_for_insn (ignore
, buffer
, NULL
);
6818 /* Like nops_for_insn, but if INSN is a branch, take into account the
6819 worst-case delay for the branch target. */
6822 nops_for_insn_or_target (int ignore
, const struct mips_cl_insn
*hist
,
6823 const struct mips_cl_insn
*insn
)
6827 nops
= nops_for_insn (ignore
, hist
, insn
);
6828 if (delayed_branch_p (insn
))
6830 tmp_nops
= nops_for_sequence (2, ignore
? ignore
+ 2 : 0,
6831 hist
, insn
, get_delay_slot_nop (insn
));
6832 if (tmp_nops
> nops
)
6835 else if (compact_branch_p (insn
))
6837 tmp_nops
= nops_for_sequence (1, ignore
? ignore
+ 1 : 0, hist
, insn
);
6838 if (tmp_nops
> nops
)
6844 /* Fix NOP issue: Replace nops by "or at,at,zero". */
6847 fix_loongson2f_nop (struct mips_cl_insn
* ip
)
6849 gas_assert (!HAVE_CODE_COMPRESSION
);
6850 if (strcmp (ip
->insn_mo
->name
, "nop") == 0)
6851 ip
->insn_opcode
= LOONGSON2F_NOP_INSN
;
6854 /* Fix Jump Issue: Eliminate instruction fetch from outside 256M region
6855 jr target pc &= 'hffff_ffff_cfff_ffff. */
6858 fix_loongson2f_jump (struct mips_cl_insn
* ip
)
6860 gas_assert (!HAVE_CODE_COMPRESSION
);
6861 if (strcmp (ip
->insn_mo
->name
, "j") == 0
6862 || strcmp (ip
->insn_mo
->name
, "jr") == 0
6863 || strcmp (ip
->insn_mo
->name
, "jalr") == 0)
6871 sreg
= EXTRACT_OPERAND (0, RS
, *ip
);
6872 if (sreg
== ZERO
|| sreg
== KT0
|| sreg
== KT1
|| sreg
== ATREG
)
6875 ep
.X_op
= O_constant
;
6876 ep
.X_add_number
= 0xcfff0000;
6877 macro_build (&ep
, "lui", "t,u", ATREG
, BFD_RELOC_HI16
);
6878 ep
.X_add_number
= 0xffff;
6879 macro_build (&ep
, "ori", "t,r,i", ATREG
, ATREG
, BFD_RELOC_LO16
);
6880 macro_build (NULL
, "and", "d,v,t", sreg
, sreg
, ATREG
);
6885 fix_loongson2f (struct mips_cl_insn
* ip
)
6887 if (mips_fix_loongson2f_nop
)
6888 fix_loongson2f_nop (ip
);
6890 if (mips_fix_loongson2f_jump
)
6891 fix_loongson2f_jump (ip
);
6895 has_label_name (const char *arr
[], size_t len
,const char *s
)
6898 for (i
= 0; i
< len
; i
++)
6902 if (streq (arr
[i
], s
))
6908 /* Fix loongson3 llsc errata: Insert sync before ll/lld. */
6911 fix_loongson3_llsc (struct mips_cl_insn
* ip
)
6913 gas_assert (!HAVE_CODE_COMPRESSION
);
6915 /* If is an local label and the insn is not sync,
6916 look forward that whether an branch between ll/sc jump to here
6917 if so, insert a sync. */
6918 if (seg_info (now_seg
)->label_list
6919 && S_IS_LOCAL (seg_info (now_seg
)->label_list
->label
)
6920 && (strcmp (ip
->insn_mo
->name
, "sync") != 0))
6924 const char *label_names
[MAX_LABELS_SAME
];
6925 const char *label_name
;
6927 label_name
= S_GET_NAME (seg_info (now_seg
)->label_list
->label
);
6928 label_names
[0] = label_name
;
6929 struct insn_label_list
*llist
= seg_info (now_seg
)->label_list
;
6930 label_value
= S_GET_VALUE (llist
->label
);
6932 for (i
= 1; i
< MAX_LABELS_SAME
; i
++)
6934 llist
= llist
->next
;
6937 if (S_GET_VALUE (llist
->label
) == label_value
)
6938 label_names
[i
] = S_GET_NAME (llist
->label
);
6942 for (; i
< MAX_LABELS_SAME
; i
++)
6943 label_names
[i
] = NULL
;
6945 unsigned long lookback
= ARRAY_SIZE (history
);
6946 for (i
= 0; i
< lookback
; i
++)
6948 if (streq (history
[i
].insn_mo
->name
, "sc")
6949 || streq (history
[i
].insn_mo
->name
, "scd"))
6953 for (j
= i
+ 1; j
< lookback
; j
++)
6955 if (streq (history
[j
].insn_mo
->name
, "ll")
6956 || streq (history
[j
].insn_mo
->name
, "lld"))
6959 if (delayed_branch_p (&history
[j
]))
6961 if (has_label_name (label_names
,
6965 add_fixed_insn (&sync_insn
);
6966 insert_into_history (0, 1, &sync_insn
);
6975 /* If we find a sc, we look forward to look for an branch insn,
6976 and see whether it jump back and out of ll/sc. */
6977 else if (streq (ip
->insn_mo
->name
, "sc") || streq (ip
->insn_mo
->name
, "scd"))
6979 unsigned long lookback
= ARRAY_SIZE (history
) - 1;
6982 for (i
= 0; i
< lookback
; i
++)
6984 if (streq (history
[i
].insn_mo
->name
, "ll")
6985 || streq (history
[i
].insn_mo
->name
, "lld"))
6988 if (delayed_branch_p (&history
[i
]))
6992 for (j
= i
+ 1; j
< lookback
; j
++)
6994 if (streq (history
[j
].insn_mo
->name
, "ll")
6995 || streq (history
[j
].insn_mo
->name
, "lld"))
6999 for (; j
< lookback
; j
++)
7001 if (history
[j
].label
[0] != '\0'
7002 && streq (history
[j
].label
, history
[i
].target
)
7003 && strcmp (history
[j
+1].insn_mo
->name
, "sync") != 0)
7005 add_fixed_insn (&sync_insn
);
7006 insert_into_history (++j
, 1, &sync_insn
);
7013 /* Skip if there is a sync before ll/lld. */
7014 if ((strcmp (ip
->insn_mo
->name
, "ll") == 0
7015 || strcmp (ip
->insn_mo
->name
, "lld") == 0)
7016 && (strcmp (history
[0].insn_mo
->name
, "sync") != 0))
7018 add_fixed_insn (&sync_insn
);
7019 insert_into_history (0, 1, &sync_insn
);
7023 /* IP is a branch that has a delay slot, and we need to fill it
7024 automatically. Return true if we can do that by swapping IP
7025 with the previous instruction.
7026 ADDRESS_EXPR is an operand of the instruction to be used with
7030 can_swap_branch_p (struct mips_cl_insn
*ip
, expressionS
*address_expr
,
7031 bfd_reloc_code_real_type
*reloc_type
)
7033 unsigned long pinfo
, pinfo2
, prev_pinfo
, prev_pinfo2
;
7034 unsigned int gpr_read
, gpr_write
, prev_gpr_read
, prev_gpr_write
;
7035 unsigned int fpr_read
, prev_fpr_write
;
7037 /* -O2 and above is required for this optimization. */
7038 if (mips_optimize
< 2)
7041 /* If we have seen .set volatile or .set nomove, don't optimize. */
7042 if (mips_opts
.nomove
)
7045 /* We can't swap if the previous instruction's position is fixed. */
7046 if (history
[0].fixed_p
)
7049 /* If the previous previous insn was in a .set noreorder, we can't
7050 swap. Actually, the MIPS assembler will swap in this situation.
7051 However, gcc configured -with-gnu-as will generate code like
7059 in which we can not swap the bne and INSN. If gcc is not configured
7060 -with-gnu-as, it does not output the .set pseudo-ops. */
7061 if (history
[1].noreorder_p
)
7064 /* If the previous instruction had a fixup in mips16 mode, we can not swap.
7065 This means that the previous instruction was a 4-byte one anyhow. */
7066 if (mips_opts
.mips16
&& history
[0].fixp
[0])
7069 /* If the branch is itself the target of a branch, we can not swap.
7070 We cheat on this; all we check for is whether there is a label on
7071 this instruction. If there are any branches to anything other than
7072 a label, users must use .set noreorder. */
7073 if (seg_info (now_seg
)->label_list
)
7076 /* If the previous instruction is in a variant frag other than this
7077 branch's one, we cannot do the swap. This does not apply to
7078 MIPS16 code, which uses variant frags for different purposes. */
7079 if (!mips_opts
.mips16
7081 && history
[0].frag
->fr_type
== rs_machine_dependent
)
7084 /* We do not swap with instructions that cannot architecturally
7085 be placed in a branch delay slot, such as SYNC or ERET. We
7086 also refrain from swapping with a trap instruction, since it
7087 complicates trap handlers to have the trap instruction be in
7089 prev_pinfo
= history
[0].insn_mo
->pinfo
;
7090 if (prev_pinfo
& INSN_NO_DELAY_SLOT
)
7093 /* Check for conflicts between the branch and the instructions
7094 before the candidate delay slot. */
7095 if (nops_for_insn (0, history
+ 1, ip
) > 0)
7098 /* Check for conflicts between the swapped sequence and the
7099 target of the branch. */
7100 if (nops_for_sequence (2, 0, history
+ 1, ip
, history
) > 0)
7103 /* If the branch reads a register that the previous
7104 instruction sets, we can not swap. */
7105 gpr_read
= gpr_read_mask (ip
);
7106 prev_gpr_write
= gpr_write_mask (&history
[0]);
7107 if (gpr_read
& prev_gpr_write
)
7110 fpr_read
= fpr_read_mask (ip
);
7111 prev_fpr_write
= fpr_write_mask (&history
[0]);
7112 if (fpr_read
& prev_fpr_write
)
7115 /* If the branch writes a register that the previous
7116 instruction sets, we can not swap. */
7117 gpr_write
= gpr_write_mask (ip
);
7118 if (gpr_write
& prev_gpr_write
)
7121 /* If the branch writes a register that the previous
7122 instruction reads, we can not swap. */
7123 prev_gpr_read
= gpr_read_mask (&history
[0]);
7124 if (gpr_write
& prev_gpr_read
)
7127 /* If one instruction sets a condition code and the
7128 other one uses a condition code, we can not swap. */
7129 pinfo
= ip
->insn_mo
->pinfo
;
7130 if ((pinfo
& INSN_READ_COND_CODE
)
7131 && (prev_pinfo
& INSN_WRITE_COND_CODE
))
7133 if ((pinfo
& INSN_WRITE_COND_CODE
)
7134 && (prev_pinfo
& INSN_READ_COND_CODE
))
7137 /* If the previous instruction uses the PC, we can not swap. */
7138 prev_pinfo2
= history
[0].insn_mo
->pinfo2
;
7139 if (prev_pinfo2
& INSN2_READ_PC
)
7142 /* If the previous instruction has an incorrect size for a fixed
7143 branch delay slot in microMIPS mode, we cannot swap. */
7144 pinfo2
= ip
->insn_mo
->pinfo2
;
7145 if (mips_opts
.micromips
7146 && (pinfo2
& INSN2_BRANCH_DELAY_16BIT
)
7147 && insn_length (history
) != 2)
7149 if (mips_opts
.micromips
7150 && (pinfo2
& INSN2_BRANCH_DELAY_32BIT
)
7151 && insn_length (history
) != 4)
7154 /* On the R5900 short loops need to be fixed by inserting a NOP in the
7157 The short loop bug under certain conditions causes loops to execute
7158 only once or twice. We must ensure that the assembler never
7159 generates loops that satisfy all of the following conditions:
7161 - a loop consists of less than or equal to six instructions
7162 (including the branch delay slot);
7163 - a loop contains only one conditional branch instruction at the end
7165 - a loop does not contain any other branch or jump instructions;
7166 - a branch delay slot of the loop is not NOP (EE 2.9 or later).
7168 We need to do this because of a hardware bug in the R5900 chip. */
7170 /* Check if instruction has a parameter, ignore "j $31". */
7171 && (address_expr
!= NULL
)
7172 /* Parameter must be 16 bit. */
7173 && (*reloc_type
== BFD_RELOC_16_PCREL_S2
)
7174 /* Branch to same segment. */
7175 && (S_GET_SEGMENT (address_expr
->X_add_symbol
) == now_seg
)
7176 /* Branch to same code fragment. */
7177 && (symbol_get_frag (address_expr
->X_add_symbol
) == frag_now
)
7178 /* Can only calculate branch offset if value is known. */
7179 && symbol_constant_p (address_expr
->X_add_symbol
)
7180 /* Check if branch is really conditional. */
7181 && !((ip
->insn_opcode
& 0xffff0000) == 0x10000000 /* beq $0,$0 */
7182 || (ip
->insn_opcode
& 0xffff0000) == 0x04010000 /* bgez $0 */
7183 || (ip
->insn_opcode
& 0xffff0000) == 0x04110000)) /* bgezal $0 */
7186 /* Check if loop is shorter than or equal to 6 instructions
7187 including branch and delay slot. */
7188 distance
= frag_now_fix () - S_GET_VALUE (address_expr
->X_add_symbol
);
7195 /* When the loop includes branches or jumps,
7196 it is not a short loop. */
7197 for (i
= 0; i
< (distance
/ 4); i
++)
7199 if ((history
[i
].cleared_p
)
7200 || delayed_branch_p (&history
[i
]))
7208 /* Insert nop after branch to fix short loop. */
7217 /* Decide how we should add IP to the instruction stream.
7218 ADDRESS_EXPR is an operand of the instruction to be used with
7221 static enum append_method
7222 get_append_method (struct mips_cl_insn
*ip
, expressionS
*address_expr
,
7223 bfd_reloc_code_real_type
*reloc_type
)
7225 /* The relaxed version of a macro sequence must be inherently
7227 if (mips_relax
.sequence
== 2)
7230 /* We must not dabble with instructions in a ".set noreorder" block. */
7231 if (mips_opts
.noreorder
)
7234 /* Otherwise, it's our responsibility to fill branch delay slots. */
7235 if (delayed_branch_p (ip
))
7237 if (!branch_likely_p (ip
)
7238 && can_swap_branch_p (ip
, address_expr
, reloc_type
))
7241 if (mips_opts
.mips16
7242 && ISA_SUPPORTS_MIPS16E
7243 && gpr_read_mask (ip
) != 0)
7244 return APPEND_ADD_COMPACT
;
7246 if (mips_opts
.micromips
7247 && ((ip
->insn_opcode
& 0xffe0) == 0x4580
7248 || (!forced_insn_length
7249 && ((ip
->insn_opcode
& 0xfc00) == 0xcc00
7250 || (ip
->insn_opcode
& 0xdc00) == 0x8c00))
7251 || (ip
->insn_opcode
& 0xdfe00000) == 0x94000000
7252 || (ip
->insn_opcode
& 0xdc1f0000) == 0x94000000))
7253 return APPEND_ADD_COMPACT
;
7255 return APPEND_ADD_WITH_NOP
;
7261 /* IP is an instruction whose opcode we have just changed, END points
7262 to the end of the opcode table processed. Point IP->insn_mo to the
7263 new opcode's definition. */
7266 find_altered_opcode (struct mips_cl_insn
*ip
, const struct mips_opcode
*end
)
7268 const struct mips_opcode
*mo
;
7270 for (mo
= ip
->insn_mo
; mo
< end
; mo
++)
7271 if (mo
->pinfo
!= INSN_MACRO
7272 && (ip
->insn_opcode
& mo
->mask
) == mo
->match
)
7280 /* IP is a MIPS16 instruction whose opcode we have just changed.
7281 Point IP->insn_mo to the new opcode's definition. */
7284 find_altered_mips16_opcode (struct mips_cl_insn
*ip
)
7286 find_altered_opcode (ip
, &mips16_opcodes
[bfd_mips16_num_opcodes
]);
7289 /* IP is a microMIPS instruction whose opcode we have just changed.
7290 Point IP->insn_mo to the new opcode's definition. */
7293 find_altered_micromips_opcode (struct mips_cl_insn
*ip
)
7295 find_altered_opcode (ip
, µmips_opcodes
[bfd_micromips_num_opcodes
]);
7298 /* For microMIPS macros, we need to generate a local number label
7299 as the target of branches. */
7300 #define MICROMIPS_LABEL_CHAR '\037'
7301 static unsigned long micromips_target_label
;
7302 static char micromips_target_name
[32];
7305 micromips_label_name (void)
7307 char *p
= micromips_target_name
;
7308 char symbol_name_temporary
[24];
7316 l
= micromips_target_label
;
7317 #ifdef LOCAL_LABEL_PREFIX
7318 *p
++ = LOCAL_LABEL_PREFIX
;
7321 *p
++ = MICROMIPS_LABEL_CHAR
;
7324 symbol_name_temporary
[i
++] = l
% 10 + '0';
7329 *p
++ = symbol_name_temporary
[--i
];
7332 return micromips_target_name
;
7336 micromips_label_expr (expressionS
*label_expr
)
7338 label_expr
->X_op
= O_symbol
;
7339 label_expr
->X_add_symbol
= symbol_find_or_make (micromips_label_name ());
7340 label_expr
->X_add_number
= 0;
7344 micromips_label_inc (void)
7346 micromips_target_label
++;
7347 *micromips_target_name
= '\0';
7351 micromips_add_label (void)
7355 s
= colon (micromips_label_name ());
7356 micromips_label_inc ();
7357 S_SET_OTHER (s
, ELF_ST_SET_MICROMIPS (S_GET_OTHER (s
)));
7360 /* If assembling microMIPS code, then return the microMIPS reloc
7361 corresponding to the requested one if any. Otherwise return
7362 the reloc unchanged. */
7364 static bfd_reloc_code_real_type
7365 micromips_map_reloc (bfd_reloc_code_real_type reloc
)
7367 static const bfd_reloc_code_real_type relocs
[][2] =
7369 /* Keep sorted incrementally by the left-hand key. */
7370 { BFD_RELOC_16_PCREL_S2
, BFD_RELOC_MICROMIPS_16_PCREL_S1
},
7371 { BFD_RELOC_GPREL16
, BFD_RELOC_MICROMIPS_GPREL16
},
7372 { BFD_RELOC_MIPS_JMP
, BFD_RELOC_MICROMIPS_JMP
},
7373 { BFD_RELOC_HI16
, BFD_RELOC_MICROMIPS_HI16
},
7374 { BFD_RELOC_HI16_S
, BFD_RELOC_MICROMIPS_HI16_S
},
7375 { BFD_RELOC_LO16
, BFD_RELOC_MICROMIPS_LO16
},
7376 { BFD_RELOC_MIPS_LITERAL
, BFD_RELOC_MICROMIPS_LITERAL
},
7377 { BFD_RELOC_MIPS_GOT16
, BFD_RELOC_MICROMIPS_GOT16
},
7378 { BFD_RELOC_MIPS_CALL16
, BFD_RELOC_MICROMIPS_CALL16
},
7379 { BFD_RELOC_MIPS_GOT_HI16
, BFD_RELOC_MICROMIPS_GOT_HI16
},
7380 { BFD_RELOC_MIPS_GOT_LO16
, BFD_RELOC_MICROMIPS_GOT_LO16
},
7381 { BFD_RELOC_MIPS_CALL_HI16
, BFD_RELOC_MICROMIPS_CALL_HI16
},
7382 { BFD_RELOC_MIPS_CALL_LO16
, BFD_RELOC_MICROMIPS_CALL_LO16
},
7383 { BFD_RELOC_MIPS_SUB
, BFD_RELOC_MICROMIPS_SUB
},
7384 { BFD_RELOC_MIPS_GOT_PAGE
, BFD_RELOC_MICROMIPS_GOT_PAGE
},
7385 { BFD_RELOC_MIPS_GOT_OFST
, BFD_RELOC_MICROMIPS_GOT_OFST
},
7386 { BFD_RELOC_MIPS_GOT_DISP
, BFD_RELOC_MICROMIPS_GOT_DISP
},
7387 { BFD_RELOC_MIPS_HIGHEST
, BFD_RELOC_MICROMIPS_HIGHEST
},
7388 { BFD_RELOC_MIPS_HIGHER
, BFD_RELOC_MICROMIPS_HIGHER
},
7389 { BFD_RELOC_MIPS_SCN_DISP
, BFD_RELOC_MICROMIPS_SCN_DISP
},
7390 { BFD_RELOC_MIPS_TLS_GD
, BFD_RELOC_MICROMIPS_TLS_GD
},
7391 { BFD_RELOC_MIPS_TLS_LDM
, BFD_RELOC_MICROMIPS_TLS_LDM
},
7392 { BFD_RELOC_MIPS_TLS_DTPREL_HI16
, BFD_RELOC_MICROMIPS_TLS_DTPREL_HI16
},
7393 { BFD_RELOC_MIPS_TLS_DTPREL_LO16
, BFD_RELOC_MICROMIPS_TLS_DTPREL_LO16
},
7394 { BFD_RELOC_MIPS_TLS_GOTTPREL
, BFD_RELOC_MICROMIPS_TLS_GOTTPREL
},
7395 { BFD_RELOC_MIPS_TLS_TPREL_HI16
, BFD_RELOC_MICROMIPS_TLS_TPREL_HI16
},
7396 { BFD_RELOC_MIPS_TLS_TPREL_LO16
, BFD_RELOC_MICROMIPS_TLS_TPREL_LO16
}
7398 bfd_reloc_code_real_type r
;
7401 if (!mips_opts
.micromips
)
7403 for (i
= 0; i
< ARRAY_SIZE (relocs
); i
++)
7409 return relocs
[i
][1];
7414 /* Try to resolve relocation RELOC against constant OPERAND at assembly time.
7415 Return true on success, storing the resolved value in RESULT. */
7418 calculate_reloc (bfd_reloc_code_real_type reloc
, offsetT operand
,
7423 case BFD_RELOC_MIPS_HIGHEST
:
7424 case BFD_RELOC_MICROMIPS_HIGHEST
:
7425 *result
= ((operand
+ 0x800080008000ull
) >> 48) & 0xffff;
7428 case BFD_RELOC_MIPS_HIGHER
:
7429 case BFD_RELOC_MICROMIPS_HIGHER
:
7430 *result
= ((operand
+ 0x80008000ull
) >> 32) & 0xffff;
7433 case BFD_RELOC_HI16_S
:
7434 case BFD_RELOC_HI16_S_PCREL
:
7435 case BFD_RELOC_MICROMIPS_HI16_S
:
7436 case BFD_RELOC_MIPS16_HI16_S
:
7437 *result
= ((operand
+ 0x8000) >> 16) & 0xffff;
7440 case BFD_RELOC_HI16
:
7441 case BFD_RELOC_MICROMIPS_HI16
:
7442 case BFD_RELOC_MIPS16_HI16
:
7443 *result
= (operand
>> 16) & 0xffff;
7446 case BFD_RELOC_LO16
:
7447 case BFD_RELOC_LO16_PCREL
:
7448 case BFD_RELOC_MICROMIPS_LO16
:
7449 case BFD_RELOC_MIPS16_LO16
:
7450 *result
= operand
& 0xffff;
7453 case BFD_RELOC_UNUSED
:
7462 /* Output an instruction. IP is the instruction information.
7463 ADDRESS_EXPR is an operand of the instruction to be used with
7464 RELOC_TYPE. EXPANSIONP is true if the instruction is part of
7465 a macro expansion. */
7468 append_insn (struct mips_cl_insn
*ip
, expressionS
*address_expr
,
7469 bfd_reloc_code_real_type
*reloc_type
, bool expansionp
)
7471 unsigned long prev_pinfo2
, pinfo
;
7472 bool relaxed_branch
= false;
7473 enum append_method method
;
7477 if (mips_fix_loongson2f
&& !HAVE_CODE_COMPRESSION
)
7478 fix_loongson2f (ip
);
7480 ip
->target
[0] = '\0';
7481 if (offset_expr
.X_op
== O_symbol
)
7482 strncpy (ip
->target
, S_GET_NAME (offset_expr
.X_add_symbol
), 15);
7483 ip
->label
[0] = '\0';
7484 if (seg_info (now_seg
)->label_list
)
7485 strncpy (ip
->label
, S_GET_NAME (seg_info (now_seg
)->label_list
->label
), 15);
7486 if (mips_fix_loongson3_llsc
&& !HAVE_CODE_COMPRESSION
)
7487 fix_loongson3_llsc (ip
);
7489 file_ase_mips16
|= mips_opts
.mips16
;
7490 file_ase_micromips
|= mips_opts
.micromips
;
7492 prev_pinfo2
= history
[0].insn_mo
->pinfo2
;
7493 pinfo
= ip
->insn_mo
->pinfo
;
7495 /* Don't raise alarm about `nods' frags as they'll fill in the right
7496 kind of nop in relaxation if required. */
7497 if (mips_opts
.micromips
7499 && !(history
[0].frag
7500 && history
[0].frag
->fr_type
== rs_machine_dependent
7501 && RELAX_MICROMIPS_P (history
[0].frag
->fr_subtype
)
7502 && RELAX_MICROMIPS_NODS (history
[0].frag
->fr_subtype
))
7503 && (((prev_pinfo2
& INSN2_BRANCH_DELAY_16BIT
) != 0
7504 && micromips_insn_length (ip
->insn_mo
) != 2)
7505 || ((prev_pinfo2
& INSN2_BRANCH_DELAY_32BIT
) != 0
7506 && micromips_insn_length (ip
->insn_mo
) != 4)))
7507 as_warn (_("wrong size instruction in a %u-bit branch delay slot"),
7508 (prev_pinfo2
& INSN2_BRANCH_DELAY_16BIT
) != 0 ? 16 : 32);
7510 if (address_expr
== NULL
)
7512 else if (reloc_type
[0] <= BFD_RELOC_UNUSED
7513 && reloc_type
[1] == BFD_RELOC_UNUSED
7514 && reloc_type
[2] == BFD_RELOC_UNUSED
7515 && address_expr
->X_op
== O_constant
)
7517 switch (*reloc_type
)
7519 case BFD_RELOC_MIPS_JMP
:
7523 /* Shift is 2, unusually, for microMIPS JALX. */
7524 shift
= (mips_opts
.micromips
7525 && strcmp (ip
->insn_mo
->name
, "jalx") != 0) ? 1 : 2;
7526 if ((address_expr
->X_add_number
& ((1 << shift
) - 1)) != 0)
7527 as_bad (_("jump to misaligned address (0x%lx)"),
7528 (unsigned long) address_expr
->X_add_number
);
7529 ip
->insn_opcode
|= ((address_expr
->X_add_number
>> shift
)
7535 case BFD_RELOC_MIPS16_JMP
:
7536 if ((address_expr
->X_add_number
& 3) != 0)
7537 as_bad (_("jump to misaligned address (0x%lx)"),
7538 (unsigned long) address_expr
->X_add_number
);
7540 (((address_expr
->X_add_number
& 0x7c0000) << 3)
7541 | ((address_expr
->X_add_number
& 0xf800000) >> 7)
7542 | ((address_expr
->X_add_number
& 0x3fffc) >> 2));
7546 case BFD_RELOC_16_PCREL_S2
:
7550 shift
= mips_opts
.micromips
? 1 : 2;
7551 if ((address_expr
->X_add_number
& ((1 << shift
) - 1)) != 0)
7552 as_bad (_("branch to misaligned address (0x%lx)"),
7553 (unsigned long) address_expr
->X_add_number
);
7554 if (!mips_relax_branch
)
7556 if ((address_expr
->X_add_number
+ (1 << (shift
+ 15)))
7557 & ~((1 << (shift
+ 16)) - 1))
7558 as_bad (_("branch address range overflow (0x%lx)"),
7559 (unsigned long) address_expr
->X_add_number
);
7560 ip
->insn_opcode
|= ((address_expr
->X_add_number
>> shift
)
7566 case BFD_RELOC_MIPS_21_PCREL_S2
:
7571 if ((address_expr
->X_add_number
& ((1 << shift
) - 1)) != 0)
7572 as_bad (_("branch to misaligned address (0x%lx)"),
7573 (unsigned long) address_expr
->X_add_number
);
7574 if ((address_expr
->X_add_number
+ (1 << (shift
+ 20)))
7575 & ~((1 << (shift
+ 21)) - 1))
7576 as_bad (_("branch address range overflow (0x%lx)"),
7577 (unsigned long) address_expr
->X_add_number
);
7578 ip
->insn_opcode
|= ((address_expr
->X_add_number
>> shift
)
7583 case BFD_RELOC_MIPS_26_PCREL_S2
:
7588 if ((address_expr
->X_add_number
& ((1 << shift
) - 1)) != 0)
7589 as_bad (_("branch to misaligned address (0x%lx)"),
7590 (unsigned long) address_expr
->X_add_number
);
7591 if ((address_expr
->X_add_number
+ (1 << (shift
+ 25)))
7592 & ~((1 << (shift
+ 26)) - 1))
7593 as_bad (_("branch address range overflow (0x%lx)"),
7594 (unsigned long) address_expr
->X_add_number
);
7595 ip
->insn_opcode
|= ((address_expr
->X_add_number
>> shift
)
7604 if (calculate_reloc (*reloc_type
, address_expr
->X_add_number
,
7607 ip
->insn_opcode
|= value
& 0xffff;
7615 if (mips_relax
.sequence
!= 2 && !mips_opts
.noreorder
)
7617 /* There are a lot of optimizations we could do that we don't.
7618 In particular, we do not, in general, reorder instructions.
7619 If you use gcc with optimization, it will reorder
7620 instructions and generally do much more optimization then we
7621 do here; repeating all that work in the assembler would only
7622 benefit hand written assembly code, and does not seem worth
7624 int nops
= (mips_optimize
== 0
7625 ? nops_for_insn (0, history
, NULL
)
7626 : nops_for_insn_or_target (0, history
, ip
));
7630 unsigned long old_frag_offset
;
7633 old_frag
= frag_now
;
7634 old_frag_offset
= frag_now_fix ();
7636 for (i
= 0; i
< nops
; i
++)
7637 add_fixed_insn (NOP_INSN
);
7638 insert_into_history (0, nops
, NOP_INSN
);
7642 listing_prev_line ();
7643 /* We may be at the start of a variant frag. In case we
7644 are, make sure there is enough space for the frag
7645 after the frags created by listing_prev_line. The
7646 argument to frag_grow here must be at least as large
7647 as the argument to all other calls to frag_grow in
7648 this file. We don't have to worry about being in the
7649 middle of a variant frag, because the variants insert
7650 all needed nop instructions themselves. */
7654 mips_move_text_labels ();
7656 #ifndef NO_ECOFF_DEBUGGING
7657 if (ECOFF_DEBUGGING
)
7658 ecoff_fix_loc (old_frag
, old_frag_offset
);
7662 else if (mips_relax
.sequence
!= 2 && prev_nop_frag
!= NULL
)
7666 /* Work out how many nops in prev_nop_frag are needed by IP,
7667 ignoring hazards generated by the first prev_nop_frag_since
7669 nops
= nops_for_insn_or_target (prev_nop_frag_since
, history
, ip
);
7670 gas_assert (nops
<= prev_nop_frag_holds
);
7672 /* Enforce NOPS as a minimum. */
7673 if (nops
> prev_nop_frag_required
)
7674 prev_nop_frag_required
= nops
;
7676 if (prev_nop_frag_holds
== prev_nop_frag_required
)
7678 /* Settle for the current number of nops. Update the history
7679 accordingly (for the benefit of any future .set reorder code). */
7680 prev_nop_frag
= NULL
;
7681 insert_into_history (prev_nop_frag_since
,
7682 prev_nop_frag_holds
, NOP_INSN
);
7686 /* Allow this instruction to replace one of the nops that was
7687 tentatively added to prev_nop_frag. */
7688 prev_nop_frag
->fr_fix
-= NOP_INSN_SIZE
;
7689 prev_nop_frag_holds
--;
7690 prev_nop_frag_since
++;
7694 method
= get_append_method (ip
, address_expr
, reloc_type
);
7695 branch_disp
= method
== APPEND_SWAP
? insn_length (history
) : 0;
7697 dwarf2_emit_insn (0);
7698 /* We want MIPS16 and microMIPS debug info to use ISA-encoded addresses,
7699 so "move" the instruction address accordingly.
7701 Also, it doesn't seem appropriate for the assembler to reorder .loc
7702 entries. If this instruction is a branch that we are going to swap
7703 with the previous instruction, the two instructions should be
7704 treated as a unit, and the debug information for both instructions
7705 should refer to the start of the branch sequence. Using the
7706 current position is certainly wrong when swapping a 32-bit branch
7707 and a 16-bit delay slot, since the current position would then be
7708 in the middle of a branch. */
7709 dwarf2_move_insn ((HAVE_CODE_COMPRESSION
? 1 : 0) - branch_disp
);
7711 relax32
= (mips_relax_branch
7712 /* Don't try branch relaxation within .set nomacro, or within
7713 .set noat if we use $at for PIC computations. If it turns
7714 out that the branch was out-of-range, we'll get an error. */
7715 && !mips_opts
.warn_about_macros
7716 && (mips_opts
.at
|| mips_pic
== NO_PIC
)
7717 /* Don't relax BPOSGE32/64 or BC1ANY2T/F and BC1ANY4T/F
7718 as they have no complementing branches. */
7719 && !(ip
->insn_mo
->ase
& (ASE_MIPS3D
| ASE_DSP64
| ASE_DSP
)));
7721 if (!HAVE_CODE_COMPRESSION
7724 && *reloc_type
== BFD_RELOC_16_PCREL_S2
7725 && delayed_branch_p (ip
))
7727 relaxed_branch
= true;
7728 add_relaxed_insn (ip
, (relaxed_branch_length
7730 uncond_branch_p (ip
) ? -1
7731 : branch_likely_p (ip
) ? 1
7734 (AT
, mips_pic
!= NO_PIC
,
7735 uncond_branch_p (ip
),
7736 branch_likely_p (ip
),
7737 pinfo
& INSN_WRITE_GPR_31
,
7739 address_expr
->X_add_symbol
,
7740 address_expr
->X_add_number
);
7741 *reloc_type
= BFD_RELOC_UNUSED
;
7743 else if (mips_opts
.micromips
7745 && ((relax32
&& *reloc_type
== BFD_RELOC_16_PCREL_S2
)
7746 || *reloc_type
> BFD_RELOC_UNUSED
)
7747 && (delayed_branch_p (ip
) || compact_branch_p (ip
))
7748 /* Don't try branch relaxation when users specify
7749 16-bit/32-bit instructions. */
7750 && !forced_insn_length
)
7752 bool relax16
= (method
!= APPEND_ADD_COMPACT
7753 && *reloc_type
> BFD_RELOC_UNUSED
);
7754 int type
= relax16
? *reloc_type
- BFD_RELOC_UNUSED
: 0;
7755 int uncond
= uncond_branch_p (ip
) ? -1 : 0;
7756 int compact
= compact_branch_p (ip
) || method
== APPEND_ADD_COMPACT
;
7757 int nods
= method
== APPEND_ADD_WITH_NOP
;
7758 int al
= pinfo
& INSN_WRITE_GPR_31
;
7759 int length32
= nods
? 8 : 4;
7761 gas_assert (address_expr
!= NULL
);
7762 gas_assert (!mips_relax
.sequence
);
7764 relaxed_branch
= true;
7766 method
= APPEND_ADD
;
7768 length32
= relaxed_micromips_32bit_branch_length (NULL
, NULL
, uncond
);
7769 add_relaxed_insn (ip
, length32
, relax16
? 2 : 4,
7770 RELAX_MICROMIPS_ENCODE (type
, AT
, mips_opts
.insn32
,
7772 uncond
, compact
, al
, nods
,
7774 address_expr
->X_add_symbol
,
7775 address_expr
->X_add_number
);
7776 *reloc_type
= BFD_RELOC_UNUSED
;
7778 else if (mips_opts
.mips16
&& *reloc_type
> BFD_RELOC_UNUSED
)
7780 bool require_unextended
;
7781 bool require_extended
;
7785 if (forced_insn_length
!= 0)
7787 require_unextended
= forced_insn_length
== 2;
7788 require_extended
= forced_insn_length
== 4;
7792 require_unextended
= (mips_opts
.noautoextend
7793 && !mips_opcode_32bit_p (ip
->insn_mo
));
7794 require_extended
= 0;
7797 /* We need to set up a variant frag. */
7798 gas_assert (address_expr
!= NULL
);
7799 /* Pass any `O_symbol' expression unchanged as an `expr_section'
7800 symbol created by `make_expr_symbol' may not get a necessary
7801 external relocation produced. */
7802 if (address_expr
->X_op
== O_symbol
)
7804 symbol
= address_expr
->X_add_symbol
;
7805 offset
= address_expr
->X_add_number
;
7809 symbol
= make_expr_symbol (address_expr
);
7810 symbol_append (symbol
, symbol_lastP
, &symbol_rootP
, &symbol_lastP
);
7813 add_relaxed_insn (ip
, 12, 0,
7815 (*reloc_type
- BFD_RELOC_UNUSED
,
7816 mips_opts
.ase
& ASE_MIPS16E2
,
7819 mips_opts
.warn_about_macros
,
7820 require_unextended
, require_extended
,
7821 delayed_branch_p (&history
[0]),
7822 history
[0].mips16_absolute_jump_p
),
7825 else if (mips_opts
.mips16
&& insn_length (ip
) == 2)
7827 if (!delayed_branch_p (ip
))
7828 /* Make sure there is enough room to swap this instruction with
7829 a following jump instruction. */
7831 add_fixed_insn (ip
);
7835 if (mips_opts
.mips16
7836 && mips_opts
.noreorder
7837 && delayed_branch_p (&history
[0]))
7838 as_warn (_("extended instruction in delay slot"));
7840 if (mips_relax
.sequence
)
7842 /* If we've reached the end of this frag, turn it into a variant
7843 frag and record the information for the instructions we've
7845 if (frag_room () < 4)
7846 relax_close_frag ();
7847 mips_relax
.sizes
[mips_relax
.sequence
- 1] += insn_length (ip
);
7850 if (mips_relax
.sequence
!= 2)
7852 if (mips_macro_warning
.first_insn_sizes
[0] == 0)
7853 mips_macro_warning
.first_insn_sizes
[0] = insn_length (ip
);
7854 mips_macro_warning
.sizes
[0] += insn_length (ip
);
7855 mips_macro_warning
.insns
[0]++;
7857 if (mips_relax
.sequence
!= 1)
7859 if (mips_macro_warning
.first_insn_sizes
[1] == 0)
7860 mips_macro_warning
.first_insn_sizes
[1] = insn_length (ip
);
7861 mips_macro_warning
.sizes
[1] += insn_length (ip
);
7862 mips_macro_warning
.insns
[1]++;
7865 if (mips_opts
.mips16
)
7868 ip
->mips16_absolute_jump_p
= (*reloc_type
== BFD_RELOC_MIPS16_JMP
);
7870 add_fixed_insn (ip
);
7873 if (!ip
->complete_p
&& *reloc_type
< BFD_RELOC_UNUSED
)
7875 bfd_reloc_code_real_type final_type
[3];
7876 reloc_howto_type
*howto0
;
7877 reloc_howto_type
*howto
;
7880 /* Perform any necessary conversion to microMIPS relocations
7881 and find out how many relocations there actually are. */
7882 for (i
= 0; i
< 3 && reloc_type
[i
] != BFD_RELOC_UNUSED
; i
++)
7883 final_type
[i
] = micromips_map_reloc (reloc_type
[i
]);
7885 /* In a compound relocation, it is the final (outermost)
7886 operator that determines the relocated field. */
7887 howto
= howto0
= bfd_reloc_type_lookup (stdoutput
, final_type
[i
- 1]);
7892 howto0
= bfd_reloc_type_lookup (stdoutput
, final_type
[0]);
7893 ip
->fixp
[0] = fix_new_exp (ip
->frag
, ip
->where
,
7894 bfd_get_reloc_size (howto
),
7896 howto0
&& howto0
->pc_relative
,
7898 /* Record non-PIC mode in `fx_tcbit2' for `md_apply_fix'. */
7899 ip
->fixp
[0]->fx_tcbit2
= mips_pic
== NO_PIC
;
7901 /* Tag symbols that have a R_MIPS16_26 relocation against them. */
7902 if (final_type
[0] == BFD_RELOC_MIPS16_JMP
&& ip
->fixp
[0]->fx_addsy
)
7903 *symbol_get_tc (ip
->fixp
[0]->fx_addsy
) = 1;
7905 /* These relocations can have an addend that won't fit in
7906 4 octets for 64bit assembly. */
7908 && ! howto
->partial_inplace
7909 && (reloc_type
[0] == BFD_RELOC_16
7910 || reloc_type
[0] == BFD_RELOC_32
7911 || reloc_type
[0] == BFD_RELOC_MIPS_JMP
7912 || reloc_type
[0] == BFD_RELOC_GPREL16
7913 || reloc_type
[0] == BFD_RELOC_MIPS_LITERAL
7914 || reloc_type
[0] == BFD_RELOC_GPREL32
7915 || reloc_type
[0] == BFD_RELOC_64
7916 || reloc_type
[0] == BFD_RELOC_CTOR
7917 || reloc_type
[0] == BFD_RELOC_MIPS_SUB
7918 || reloc_type
[0] == BFD_RELOC_MIPS_HIGHEST
7919 || reloc_type
[0] == BFD_RELOC_MIPS_HIGHER
7920 || reloc_type
[0] == BFD_RELOC_MIPS_SCN_DISP
7921 || reloc_type
[0] == BFD_RELOC_MIPS_16
7922 || reloc_type
[0] == BFD_RELOC_MIPS_RELGOT
7923 || reloc_type
[0] == BFD_RELOC_MIPS16_GPREL
7924 || hi16_reloc_p (reloc_type
[0])
7925 || lo16_reloc_p (reloc_type
[0])))
7926 ip
->fixp
[0]->fx_no_overflow
= 1;
7928 /* These relocations can have an addend that won't fit in 2 octets. */
7929 if (reloc_type
[0] == BFD_RELOC_MICROMIPS_7_PCREL_S1
7930 || reloc_type
[0] == BFD_RELOC_MICROMIPS_10_PCREL_S1
)
7931 ip
->fixp
[0]->fx_no_overflow
= 1;
7933 if (mips_relax
.sequence
)
7935 if (mips_relax
.first_fixup
== 0)
7936 mips_relax
.first_fixup
= ip
->fixp
[0];
7938 else if (reloc_needs_lo_p (*reloc_type
))
7940 struct mips_hi_fixup
*hi_fixup
;
7942 /* Reuse the last entry if it already has a matching %lo. */
7943 hi_fixup
= mips_hi_fixup_list
;
7945 || !fixup_has_matching_lo_p (hi_fixup
->fixp
))
7947 hi_fixup
= XNEW (struct mips_hi_fixup
);
7948 hi_fixup
->next
= mips_hi_fixup_list
;
7949 mips_hi_fixup_list
= hi_fixup
;
7951 hi_fixup
->fixp
= ip
->fixp
[0];
7952 hi_fixup
->seg
= now_seg
;
7955 /* Add fixups for the second and third relocations, if given.
7956 Note that the ABI allows the second relocation to be
7957 against RSS_UNDEF, RSS_GP, RSS_GP0 or RSS_LOC. At the
7958 moment we only use RSS_UNDEF, but we could add support
7959 for the others if it ever becomes necessary. */
7960 for (i
= 1; i
< 3; i
++)
7961 if (reloc_type
[i
] != BFD_RELOC_UNUSED
)
7963 ip
->fixp
[i
] = fix_new (ip
->frag
, ip
->where
,
7964 ip
->fixp
[0]->fx_size
, NULL
, 0,
7965 false, final_type
[i
]);
7967 /* Use fx_tcbit to mark compound relocs. */
7968 ip
->fixp
[0]->fx_tcbit
= 1;
7969 ip
->fixp
[i
]->fx_tcbit
= 1;
7973 /* Update the register mask information. */
7974 mips_gprmask
|= gpr_read_mask (ip
) | gpr_write_mask (ip
);
7975 mips_cprmask
[1] |= fpr_read_mask (ip
) | fpr_write_mask (ip
);
7980 insert_into_history (0, 1, ip
);
7983 case APPEND_ADD_WITH_NOP
:
7985 struct mips_cl_insn
*nop
;
7987 insert_into_history (0, 1, ip
);
7988 nop
= get_delay_slot_nop (ip
);
7989 add_fixed_insn (nop
);
7990 insert_into_history (0, 1, nop
);
7991 if (mips_relax
.sequence
)
7992 mips_relax
.sizes
[mips_relax
.sequence
- 1] += insn_length (nop
);
7996 case APPEND_ADD_COMPACT
:
7997 /* Convert MIPS16 jr/jalr into a "compact" jump. */
7998 if (mips_opts
.mips16
)
8000 ip
->insn_opcode
|= 0x0080;
8001 find_altered_mips16_opcode (ip
);
8003 /* Convert microMIPS instructions. */
8004 else if (mips_opts
.micromips
)
8007 if ((ip
->insn_opcode
& 0xffe0) == 0x4580)
8008 ip
->insn_opcode
|= 0x0020;
8010 else if ((ip
->insn_opcode
& 0xfc00) == 0xcc00)
8011 ip
->insn_opcode
= 0x40e00000;
8012 /* beqz16->beqzc, bnez16->bnezc */
8013 else if ((ip
->insn_opcode
& 0xdc00) == 0x8c00)
8015 unsigned long regno
;
8017 regno
= ip
->insn_opcode
>> MICROMIPSOP_SH_MD
;
8018 regno
&= MICROMIPSOP_MASK_MD
;
8019 regno
= micromips_to_32_reg_d_map
[regno
];
8020 ip
->insn_opcode
= (((ip
->insn_opcode
<< 9) & 0x00400000)
8021 | (regno
<< MICROMIPSOP_SH_RS
)
8022 | 0x40a00000) ^ 0x00400000;
8024 /* beqz->beqzc, bnez->bnezc */
8025 else if ((ip
->insn_opcode
& 0xdfe00000) == 0x94000000)
8026 ip
->insn_opcode
= ((ip
->insn_opcode
& 0x001f0000)
8027 | ((ip
->insn_opcode
>> 7) & 0x00400000)
8028 | 0x40a00000) ^ 0x00400000;
8029 /* beq $0->beqzc, bne $0->bnezc */
8030 else if ((ip
->insn_opcode
& 0xdc1f0000) == 0x94000000)
8031 ip
->insn_opcode
= (((ip
->insn_opcode
>>
8032 (MICROMIPSOP_SH_RT
- MICROMIPSOP_SH_RS
))
8033 & (MICROMIPSOP_MASK_RS
<< MICROMIPSOP_SH_RS
))
8034 | ((ip
->insn_opcode
>> 7) & 0x00400000)
8035 | 0x40a00000) ^ 0x00400000;
8038 find_altered_micromips_opcode (ip
);
8043 insert_into_history (0, 1, ip
);
8048 struct mips_cl_insn delay
= history
[0];
8050 if (relaxed_branch
|| delay
.frag
!= ip
->frag
)
8052 /* Add the delay slot instruction to the end of the
8053 current frag and shrink the fixed part of the
8054 original frag. If the branch occupies the tail of
8055 the latter, move it backwards to cover the gap. */
8056 delay
.frag
->fr_fix
-= branch_disp
;
8057 if (delay
.frag
== ip
->frag
)
8058 move_insn (ip
, ip
->frag
, ip
->where
- branch_disp
);
8059 add_fixed_insn (&delay
);
8063 /* If this is not a relaxed branch and we are in the
8064 same frag, then just swap the instructions. */
8065 move_insn (ip
, delay
.frag
, delay
.where
);
8066 move_insn (&delay
, ip
->frag
, ip
->where
+ insn_length (ip
));
8070 insert_into_history (0, 1, &delay
);
8075 /* If we have just completed an unconditional branch, clear the history. */
8076 if ((delayed_branch_p (&history
[1]) && uncond_branch_p (&history
[1]))
8077 || (compact_branch_p (&history
[0]) && uncond_branch_p (&history
[0])))
8081 mips_no_prev_insn ();
8083 for (i
= 0; i
< ARRAY_SIZE (history
); i
++)
8084 history
[i
].cleared_p
= 1;
8087 /* We need to emit a label at the end of branch-likely macros. */
8088 if (emit_branch_likely_macro
)
8090 emit_branch_likely_macro
= false;
8091 micromips_add_label ();
8094 /* We just output an insn, so the next one doesn't have a label. */
8095 mips_clear_insn_labels ();
8098 /* Forget that there was any previous instruction or label.
8099 When BRANCH is true, the branch history is also flushed. */
8102 mips_no_prev_insn (void)
8104 prev_nop_frag
= NULL
;
8105 insert_into_history (0, ARRAY_SIZE (history
), NOP_INSN
);
8106 mips_clear_insn_labels ();
8109 /* This function must be called before we emit something other than
8110 instructions. It is like mips_no_prev_insn except that it inserts
8111 any NOPS that might be needed by previous instructions. */
8114 mips_emit_delays (void)
8116 if (! mips_opts
.noreorder
)
8118 int nops
= nops_for_insn (0, history
, NULL
);
8122 add_fixed_insn (NOP_INSN
);
8123 mips_move_text_labels ();
8126 mips_no_prev_insn ();
8129 /* Start a (possibly nested) noreorder block. */
8132 start_noreorder (void)
8134 if (mips_opts
.noreorder
== 0)
8139 /* None of the instructions before the .set noreorder can be moved. */
8140 for (i
= 0; i
< ARRAY_SIZE (history
); i
++)
8141 history
[i
].fixed_p
= 1;
8143 /* Insert any nops that might be needed between the .set noreorder
8144 block and the previous instructions. We will later remove any
8145 nops that turn out not to be needed. */
8146 nops
= nops_for_insn (0, history
, NULL
);
8149 if (mips_optimize
!= 0)
8151 /* Record the frag which holds the nop instructions, so
8152 that we can remove them if we don't need them. */
8153 frag_grow (nops
* NOP_INSN_SIZE
);
8154 prev_nop_frag
= frag_now
;
8155 prev_nop_frag_holds
= nops
;
8156 prev_nop_frag_required
= 0;
8157 prev_nop_frag_since
= 0;
8160 for (; nops
> 0; --nops
)
8161 add_fixed_insn (NOP_INSN
);
8163 /* Move on to a new frag, so that it is safe to simply
8164 decrease the size of prev_nop_frag. */
8165 frag_wane (frag_now
);
8167 mips_move_text_labels ();
8169 mips_mark_labels ();
8170 mips_clear_insn_labels ();
8172 mips_opts
.noreorder
++;
8173 mips_any_noreorder
= 1;
8176 /* End a nested noreorder block. */
8179 end_noreorder (void)
8181 mips_opts
.noreorder
--;
8182 if (mips_opts
.noreorder
== 0 && prev_nop_frag
!= NULL
)
8184 /* Commit to inserting prev_nop_frag_required nops and go back to
8185 handling nop insertion the .set reorder way. */
8186 prev_nop_frag
->fr_fix
-= ((prev_nop_frag_holds
- prev_nop_frag_required
)
8188 insert_into_history (prev_nop_frag_since
,
8189 prev_nop_frag_required
, NOP_INSN
);
8190 prev_nop_frag
= NULL
;
8194 /* Sign-extend 32-bit mode constants that have bit 31 set and all
8195 higher bits unset. */
8198 normalize_constant_expr (expressionS
*ex
)
8200 if (ex
->X_op
== O_constant
8201 && IS_ZEXT_32BIT_NUM (ex
->X_add_number
))
8202 ex
->X_add_number
= (((ex
->X_add_number
& 0xffffffff) ^ 0x80000000)
8206 /* Sign-extend 32-bit mode address offsets that have bit 31 set and
8207 all higher bits unset. */
8210 normalize_address_expr (expressionS
*ex
)
8212 if (((ex
->X_op
== O_constant
&& HAVE_32BIT_ADDRESSES
)
8213 || (ex
->X_op
== O_symbol
&& HAVE_32BIT_SYMBOLS
))
8214 && IS_ZEXT_32BIT_NUM (ex
->X_add_number
))
8215 ex
->X_add_number
= (((ex
->X_add_number
& 0xffffffff) ^ 0x80000000)
8219 /* Try to match TOKENS against OPCODE, storing the result in INSN.
8220 Return true if the match was successful.
8222 OPCODE_EXTRA is a value that should be ORed into the opcode
8223 (used for VU0 channel suffixes, etc.). MORE_ALTS is true if
8224 there are more alternatives after OPCODE and SOFT_MATCH is
8225 as for mips_arg_info. */
8228 match_insn (struct mips_cl_insn
*insn
, const struct mips_opcode
*opcode
,
8229 struct mips_operand_token
*tokens
, unsigned int opcode_extra
,
8230 bool lax_match
, bool complete_p
)
8233 struct mips_arg_info arg
;
8234 const struct mips_operand
*operand
;
8237 imm_expr
.X_op
= O_absent
;
8238 offset_expr
.X_op
= O_absent
;
8239 offset_reloc
[0] = BFD_RELOC_UNUSED
;
8240 offset_reloc
[1] = BFD_RELOC_UNUSED
;
8241 offset_reloc
[2] = BFD_RELOC_UNUSED
;
8243 create_insn (insn
, opcode
);
8244 /* When no opcode suffix is specified, assume ".xyzw". */
8245 if ((opcode
->pinfo2
& INSN2_VU0_CHANNEL_SUFFIX
) != 0 && opcode_extra
== 0)
8246 insn
->insn_opcode
|= 0xf << mips_vu0_channel_mask
.lsb
;
8248 insn
->insn_opcode
|= opcode_extra
;
8249 memset (&arg
, 0, sizeof (arg
));
8253 arg
.last_regno
= ILLEGAL_REG
;
8254 arg
.dest_regno
= ILLEGAL_REG
;
8255 arg
.lax_match
= lax_match
;
8256 for (args
= opcode
->args
;; ++args
)
8258 if (arg
.token
->type
== OT_END
)
8260 /* Handle unary instructions in which only one operand is given.
8261 The source is then the same as the destination. */
8262 if (arg
.opnum
== 1 && *args
== ',')
8264 operand
= (mips_opts
.micromips
8265 ? decode_micromips_operand (args
+ 1)
8266 : decode_mips_operand (args
+ 1));
8267 if (operand
&& mips_optional_operand_p (operand
))
8275 /* Treat elided base registers as $0. */
8276 if (strcmp (args
, "(b)") == 0)
8284 /* The register suffix is optional. */
8289 /* Fail the match if there were too few operands. */
8293 /* Successful match. */
8296 clear_insn_error ();
8297 if (arg
.dest_regno
== arg
.last_regno
8298 && startswith (insn
->insn_mo
->name
, "jalr"))
8302 (0, _("source and destination must be different"));
8303 else if (arg
.last_regno
== 31)
8305 (0, _("a destination register must be supplied"));
8307 else if (arg
.last_regno
== 31
8308 && (startswith (insn
->insn_mo
->name
, "bltzal")
8309 || startswith (insn
->insn_mo
->name
, "bgezal")))
8310 set_insn_error (0, _("the source register must not be $31"));
8311 check_completed_insn (&arg
);
8315 /* Fail the match if the line has too many operands. */
8319 /* Handle characters that need to match exactly. */
8320 if (*args
== '(' || *args
== ')' || *args
== ',')
8322 if (match_char (&arg
, *args
))
8329 if (arg
.token
->type
== OT_DOUBLE_CHAR
8330 && arg
.token
->u
.ch
== *args
)
8338 /* Handle special macro operands. Work out the properties of
8347 *offset_reloc
= BFD_RELOC_MIPS_19_PCREL_S2
;
8351 *offset_reloc
= BFD_RELOC_MIPS_18_PCREL_S3
;
8360 *offset_reloc
= BFD_RELOC_MIPS_JMP
;
8364 *offset_reloc
= BFD_RELOC_MIPS_26_PCREL_S2
;
8368 *offset_reloc
= BFD_RELOC_MIPS_21_PCREL_S2
;
8374 if (!match_const_int (&arg
, &imm_expr
.X_add_number
))
8376 imm_expr
.X_op
= O_constant
;
8378 normalize_constant_expr (&imm_expr
);
8382 if (arg
.token
->type
== OT_CHAR
&& arg
.token
->u
.ch
== '(')
8384 /* Assume that the offset has been elided and that what
8385 we saw was a base register. The match will fail later
8386 if that assumption turns out to be wrong. */
8387 offset_expr
.X_op
= O_constant
;
8388 offset_expr
.X_add_number
= 0;
8392 if (!match_expression (&arg
, &offset_expr
, offset_reloc
))
8394 normalize_address_expr (&offset_expr
);
8399 if (!match_float_constant (&arg
, &imm_expr
, &offset_expr
,
8405 if (!match_float_constant (&arg
, &imm_expr
, &offset_expr
,
8411 if (!match_float_constant (&arg
, &imm_expr
, &offset_expr
,
8417 if (!match_float_constant (&arg
, &imm_expr
, &offset_expr
,
8423 *offset_reloc
= BFD_RELOC_16_PCREL_S2
;
8427 *offset_reloc
= BFD_RELOC_MIPS_JMP
;
8431 gas_assert (mips_opts
.micromips
);
8437 if (!forced_insn_length
)
8438 *offset_reloc
= (int) BFD_RELOC_UNUSED
+ c
;
8440 *offset_reloc
= BFD_RELOC_MICROMIPS_10_PCREL_S1
;
8442 *offset_reloc
= BFD_RELOC_MICROMIPS_7_PCREL_S1
;
8448 operand
= (mips_opts
.micromips
8449 ? decode_micromips_operand (args
)
8450 : decode_mips_operand (args
));
8454 /* Skip prefixes. */
8455 if (*args
== '+' || *args
== 'm' || *args
== '-')
8458 if (mips_optional_operand_p (operand
)
8460 && (arg
.token
[0].type
!= OT_REG
8461 || arg
.token
[1].type
== OT_END
))
8463 /* Assume that the register has been elided and is the
8464 same as the first operand. */
8469 if (!match_operand (&arg
, operand
))
8474 /* Like match_insn, but for MIPS16. */
8477 match_mips16_insn (struct mips_cl_insn
*insn
, const struct mips_opcode
*opcode
,
8478 struct mips_operand_token
*tokens
)
8481 const struct mips_operand
*operand
;
8482 const struct mips_operand
*ext_operand
;
8484 int required_insn_length
;
8485 struct mips_arg_info arg
;
8488 if (forced_insn_length
)
8489 required_insn_length
= forced_insn_length
;
8490 else if (mips_opts
.noautoextend
&& !mips_opcode_32bit_p (opcode
))
8491 required_insn_length
= 2;
8493 required_insn_length
= 0;
8495 create_insn (insn
, opcode
);
8496 imm_expr
.X_op
= O_absent
;
8497 offset_expr
.X_op
= O_absent
;
8498 offset_reloc
[0] = BFD_RELOC_UNUSED
;
8499 offset_reloc
[1] = BFD_RELOC_UNUSED
;
8500 offset_reloc
[2] = BFD_RELOC_UNUSED
;
8503 memset (&arg
, 0, sizeof (arg
));
8507 arg
.last_regno
= ILLEGAL_REG
;
8508 arg
.dest_regno
= ILLEGAL_REG
;
8510 for (args
= opcode
->args
;; ++args
)
8514 if (arg
.token
->type
== OT_END
)
8518 /* Handle unary instructions in which only one operand is given.
8519 The source is then the same as the destination. */
8520 if (arg
.opnum
== 1 && *args
== ',')
8522 operand
= decode_mips16_operand (args
[1], false);
8523 if (operand
&& mips_optional_operand_p (operand
))
8531 /* Fail the match if there were too few operands. */
8535 /* Successful match. Stuff the immediate value in now, if
8537 clear_insn_error ();
8538 if (opcode
->pinfo
== INSN_MACRO
)
8540 gas_assert (relax_char
== 0 || relax_char
== 'p');
8541 gas_assert (*offset_reloc
== BFD_RELOC_UNUSED
);
8544 && offset_expr
.X_op
== O_constant
8546 && calculate_reloc (*offset_reloc
,
8547 offset_expr
.X_add_number
,
8550 mips16_immed (NULL
, 0, relax_char
, *offset_reloc
, value
,
8551 required_insn_length
, &insn
->insn_opcode
);
8552 offset_expr
.X_op
= O_absent
;
8553 *offset_reloc
= BFD_RELOC_UNUSED
;
8555 else if (relax_char
&& *offset_reloc
!= BFD_RELOC_UNUSED
)
8557 if (required_insn_length
== 2)
8558 set_insn_error (0, _("invalid unextended operand value"));
8559 else if (!mips_opcode_32bit_p (opcode
))
8561 forced_insn_length
= 4;
8562 insn
->insn_opcode
|= MIPS16_EXTEND
;
8565 else if (relax_char
)
8566 *offset_reloc
= (int) BFD_RELOC_UNUSED
+ relax_char
;
8568 check_completed_insn (&arg
);
8572 /* Fail the match if the line has too many operands. */
8576 /* Handle characters that need to match exactly. */
8577 if (*args
== '(' || *args
== ')' || *args
== ',')
8579 if (match_char (&arg
, *args
))
8599 if (!match_const_int (&arg
, &imm_expr
.X_add_number
))
8601 imm_expr
.X_op
= O_constant
;
8603 normalize_constant_expr (&imm_expr
);
8608 *offset_reloc
= BFD_RELOC_MIPS16_JMP
;
8612 operand
= decode_mips16_operand (c
, mips_opcode_32bit_p (opcode
));
8616 if (operand
->type
== OP_PCREL
)
8620 ext_operand
= decode_mips16_operand (c
, true);
8621 if (operand
!= ext_operand
)
8623 if (arg
.token
->type
== OT_CHAR
&& arg
.token
->u
.ch
== '(')
8625 offset_expr
.X_op
= O_constant
;
8626 offset_expr
.X_add_number
= 0;
8631 if (!match_expression (&arg
, &offset_expr
, offset_reloc
))
8634 /* '8' is used for SLTI(U) and has traditionally not
8635 been allowed to take relocation operators. */
8636 if (offset_reloc
[0] != BFD_RELOC_UNUSED
8637 && (ext_operand
->size
!= 16 || c
== '8'))
8639 match_not_constant (&arg
);
8643 if (offset_expr
.X_op
== O_big
)
8645 match_out_of_range (&arg
);
8654 if (mips_optional_operand_p (operand
)
8656 && (arg
.token
[0].type
!= OT_REG
8657 || arg
.token
[1].type
== OT_END
))
8659 /* Assume that the register has been elided and is the
8660 same as the first operand. */
8665 if (!match_operand (&arg
, operand
))
8670 /* Record that the current instruction is invalid for the current ISA. */
8673 match_invalid_for_isa (void)
8676 (0, _("opcode not supported on this processor: %s (%s)"),
8677 mips_cpu_info_from_arch (mips_opts
.arch
)->name
,
8678 mips_cpu_info_from_isa (mips_opts
.isa
)->name
);
8681 /* Try to match TOKENS against a series of opcode entries, starting at FIRST.
8682 Return true if a definite match or failure was found, storing any match
8683 in INSN. OPCODE_EXTRA is a value that should be ORed into the opcode
8684 (to handle things like VU0 suffixes). LAX_MATCH is true if we have already
8685 tried and failed to match under normal conditions and now want to try a
8686 more relaxed match. */
8689 match_insns (struct mips_cl_insn
*insn
, const struct mips_opcode
*first
,
8690 const struct mips_opcode
*past
, struct mips_operand_token
*tokens
,
8691 int opcode_extra
, bool lax_match
)
8693 const struct mips_opcode
*opcode
;
8694 const struct mips_opcode
*invalid_delay_slot
;
8695 bool seen_valid_for_isa
, seen_valid_for_size
;
8697 /* Search for a match, ignoring alternatives that don't satisfy the
8698 current ISA or forced_length. */
8699 invalid_delay_slot
= 0;
8700 seen_valid_for_isa
= false;
8701 seen_valid_for_size
= false;
8705 gas_assert (strcmp (opcode
->name
, first
->name
) == 0);
8706 if (is_opcode_valid (opcode
))
8708 seen_valid_for_isa
= true;
8709 if (is_size_valid (opcode
))
8713 seen_valid_for_size
= true;
8714 delay_slot_ok
= is_delay_slot_valid (opcode
);
8715 if (match_insn (insn
, opcode
, tokens
, opcode_extra
,
8716 lax_match
, delay_slot_ok
))
8720 if (!invalid_delay_slot
)
8721 invalid_delay_slot
= opcode
;
8730 while (opcode
< past
&& strcmp (opcode
->name
, first
->name
) == 0);
8732 /* If the only matches we found had the wrong length for the delay slot,
8733 pick the first such match. We'll issue an appropriate warning later. */
8734 if (invalid_delay_slot
)
8736 if (match_insn (insn
, invalid_delay_slot
, tokens
, opcode_extra
,
8742 /* Handle the case where we didn't try to match an instruction because
8743 all the alternatives were incompatible with the current ISA. */
8744 if (!seen_valid_for_isa
)
8746 match_invalid_for_isa ();
8750 /* Handle the case where we didn't try to match an instruction because
8751 all the alternatives were of the wrong size. */
8752 if (!seen_valid_for_size
)
8754 if (mips_opts
.insn32
)
8755 set_insn_error (0, _("opcode not supported in the `insn32' mode"));
8758 (0, _("unrecognized %d-bit version of microMIPS opcode"),
8759 8 * forced_insn_length
);
8766 /* Like match_insns, but for MIPS16. */
8769 match_mips16_insns (struct mips_cl_insn
*insn
, const struct mips_opcode
*first
,
8770 struct mips_operand_token
*tokens
)
8772 const struct mips_opcode
*opcode
;
8773 bool seen_valid_for_isa
;
8774 bool seen_valid_for_size
;
8776 /* Search for a match, ignoring alternatives that don't satisfy the
8777 current ISA. There are no separate entries for extended forms so
8778 we deal with forced_length later. */
8779 seen_valid_for_isa
= false;
8780 seen_valid_for_size
= false;
8784 gas_assert (strcmp (opcode
->name
, first
->name
) == 0);
8785 if (is_opcode_valid_16 (opcode
))
8787 seen_valid_for_isa
= true;
8788 if (is_size_valid_16 (opcode
))
8790 seen_valid_for_size
= true;
8791 if (match_mips16_insn (insn
, opcode
, tokens
))
8797 while (opcode
< &mips16_opcodes
[bfd_mips16_num_opcodes
]
8798 && strcmp (opcode
->name
, first
->name
) == 0);
8800 /* Handle the case where we didn't try to match an instruction because
8801 all the alternatives were incompatible with the current ISA. */
8802 if (!seen_valid_for_isa
)
8804 match_invalid_for_isa ();
8808 /* Handle the case where we didn't try to match an instruction because
8809 all the alternatives were of the wrong size. */
8810 if (!seen_valid_for_size
)
8812 if (forced_insn_length
== 2)
8814 (0, _("unrecognized unextended version of MIPS16 opcode"));
8817 (0, _("unrecognized extended version of MIPS16 opcode"));
8824 /* Set up global variables for the start of a new macro. */
8829 memset (&mips_macro_warning
.sizes
, 0, sizeof (mips_macro_warning
.sizes
));
8830 memset (&mips_macro_warning
.first_insn_sizes
, 0,
8831 sizeof (mips_macro_warning
.first_insn_sizes
));
8832 memset (&mips_macro_warning
.insns
, 0, sizeof (mips_macro_warning
.insns
));
8833 mips_macro_warning
.delay_slot_p
= (mips_opts
.noreorder
8834 && delayed_branch_p (&history
[0]));
8836 && history
[0].frag
->fr_type
== rs_machine_dependent
8837 && RELAX_MICROMIPS_P (history
[0].frag
->fr_subtype
)
8838 && RELAX_MICROMIPS_NODS (history
[0].frag
->fr_subtype
))
8839 mips_macro_warning
.delay_slot_length
= 0;
8841 switch (history
[0].insn_mo
->pinfo2
8842 & (INSN2_BRANCH_DELAY_32BIT
| INSN2_BRANCH_DELAY_16BIT
))
8844 case INSN2_BRANCH_DELAY_32BIT
:
8845 mips_macro_warning
.delay_slot_length
= 4;
8847 case INSN2_BRANCH_DELAY_16BIT
:
8848 mips_macro_warning
.delay_slot_length
= 2;
8851 mips_macro_warning
.delay_slot_length
= 0;
8854 mips_macro_warning
.first_frag
= NULL
;
8857 /* Given that a macro is longer than one instruction or of the wrong size,
8858 return the appropriate warning for it. Return null if no warning is
8859 needed. SUBTYPE is a bitmask of RELAX_DELAY_SLOT, RELAX_DELAY_SLOT_16BIT,
8860 RELAX_DELAY_SLOT_SIZE_FIRST, RELAX_DELAY_SLOT_SIZE_SECOND,
8861 and RELAX_NOMACRO. */
8864 macro_warning (relax_substateT subtype
)
8866 if (subtype
& RELAX_DELAY_SLOT
)
8867 return _("macro instruction expanded into multiple instructions"
8868 " in a branch delay slot");
8869 else if (subtype
& RELAX_NOMACRO
)
8870 return _("macro instruction expanded into multiple instructions");
8871 else if (subtype
& (RELAX_DELAY_SLOT_SIZE_FIRST
8872 | RELAX_DELAY_SLOT_SIZE_SECOND
))
8873 return ((subtype
& RELAX_DELAY_SLOT_16BIT
)
8874 ? _("macro instruction expanded into a wrong size instruction"
8875 " in a 16-bit branch delay slot")
8876 : _("macro instruction expanded into a wrong size instruction"
8877 " in a 32-bit branch delay slot"));
8882 /* Finish up a macro. Emit warnings as appropriate. */
8887 /* Relaxation warning flags. */
8888 relax_substateT subtype
= 0;
8890 /* Check delay slot size requirements. */
8891 if (mips_macro_warning
.delay_slot_length
== 2)
8892 subtype
|= RELAX_DELAY_SLOT_16BIT
;
8893 if (mips_macro_warning
.delay_slot_length
!= 0)
8895 if (mips_macro_warning
.delay_slot_length
8896 != mips_macro_warning
.first_insn_sizes
[0])
8897 subtype
|= RELAX_DELAY_SLOT_SIZE_FIRST
;
8898 if (mips_macro_warning
.delay_slot_length
8899 != mips_macro_warning
.first_insn_sizes
[1])
8900 subtype
|= RELAX_DELAY_SLOT_SIZE_SECOND
;
8903 /* Check instruction count requirements. */
8904 if (mips_macro_warning
.insns
[0] > 1 || mips_macro_warning
.insns
[1] > 1)
8906 if (mips_macro_warning
.insns
[1] > mips_macro_warning
.insns
[0])
8907 subtype
|= RELAX_SECOND_LONGER
;
8908 if (mips_opts
.warn_about_macros
)
8909 subtype
|= RELAX_NOMACRO
;
8910 if (mips_macro_warning
.delay_slot_p
)
8911 subtype
|= RELAX_DELAY_SLOT
;
8914 /* If both alternatives fail to fill a delay slot correctly,
8915 emit the warning now. */
8916 if ((subtype
& RELAX_DELAY_SLOT_SIZE_FIRST
) != 0
8917 && (subtype
& RELAX_DELAY_SLOT_SIZE_SECOND
) != 0)
8922 s
= subtype
& (RELAX_DELAY_SLOT_16BIT
8923 | RELAX_DELAY_SLOT_SIZE_FIRST
8924 | RELAX_DELAY_SLOT_SIZE_SECOND
);
8925 msg
= macro_warning (s
);
8927 as_warn ("%s", msg
);
8931 /* If both implementations are longer than 1 instruction, then emit the
8933 if (mips_macro_warning
.insns
[0] > 1 && mips_macro_warning
.insns
[1] > 1)
8938 s
= subtype
& (RELAX_SECOND_LONGER
| RELAX_NOMACRO
| RELAX_DELAY_SLOT
);
8939 msg
= macro_warning (s
);
8941 as_warn ("%s", msg
);
8945 /* If any flags still set, then one implementation might need a warning
8946 and the other either will need one of a different kind or none at all.
8947 Pass any remaining flags over to relaxation. */
8948 if (mips_macro_warning
.first_frag
!= NULL
)
8949 mips_macro_warning
.first_frag
->fr_subtype
|= subtype
;
8952 /* Instruction operand formats used in macros that vary between
8953 standard MIPS and microMIPS code. */
8955 static const char * const brk_fmt
[2][2] = { { "c", "c" }, { "mF", "c" } };
8956 static const char * const cop12_fmt
[2] = { "E,o(b)", "E,~(b)" };
8957 static const char * const jalr_fmt
[2] = { "d,s", "t,s" };
8958 static const char * const lui_fmt
[2] = { "t,u", "s,u" };
8959 static const char * const mem12_fmt
[2] = { "t,o(b)", "t,~(b)" };
8960 static const char * const mfhl_fmt
[2][2] = { { "d", "d" }, { "mj", "s" } };
8961 static const char * const shft_fmt
[2] = { "d,w,<", "t,r,<" };
8962 static const char * const trap_fmt
[2] = { "s,t,q", "s,t,|" };
8964 #define BRK_FMT (brk_fmt[mips_opts.micromips][mips_opts.insn32])
8965 #define COP12_FMT (ISA_IS_R6 (mips_opts.isa) ? "E,+:(d)" \
8966 : cop12_fmt[mips_opts.micromips])
8967 #define JALR_FMT (jalr_fmt[mips_opts.micromips])
8968 #define LUI_FMT (lui_fmt[mips_opts.micromips])
8969 #define MEM12_FMT (mem12_fmt[mips_opts.micromips])
8970 #define LL_SC_FMT (ISA_IS_R6 (mips_opts.isa) ? "t,+j(b)" \
8971 : mem12_fmt[mips_opts.micromips])
8972 #define MFHL_FMT (mfhl_fmt[mips_opts.micromips][mips_opts.insn32])
8973 #define SHFT_FMT (shft_fmt[mips_opts.micromips])
8974 #define TRAP_FMT (trap_fmt[mips_opts.micromips])
8976 /* Read a macro's relocation codes from *ARGS and store them in *R.
8977 The first argument in *ARGS will be either the code for a single
8978 relocation or -1 followed by the three codes that make up a
8979 composite relocation. */
8982 macro_read_relocs (va_list *args
, bfd_reloc_code_real_type
*r
)
8986 next
= va_arg (*args
, int);
8988 r
[0] = (bfd_reloc_code_real_type
) next
;
8991 for (i
= 0; i
< 3; i
++)
8992 r
[i
] = (bfd_reloc_code_real_type
) va_arg (*args
, int);
8993 /* This function is only used for 16-bit relocation fields.
8994 To make the macro code simpler, treat an unrelocated value
8995 in the same way as BFD_RELOC_LO16. */
8996 if (r
[0] == BFD_RELOC_UNUSED
)
8997 r
[0] = BFD_RELOC_LO16
;
9001 /* Build an instruction created by a macro expansion. This is passed
9002 a pointer to the count of instructions created so far, an
9003 expression, the name of the instruction to build, an operand format
9004 string, and corresponding arguments. */
9007 macro_build (expressionS
*ep
, const char *name
, const char *fmt
, ...)
9009 const struct mips_opcode
*mo
= NULL
;
9010 bfd_reloc_code_real_type r
[3];
9011 const struct mips_opcode
*amo
;
9012 const struct mips_operand
*operand
;
9014 struct mips_cl_insn insn
;
9018 va_start (args
, fmt
);
9020 if (mips_opts
.mips16
)
9022 mips16_macro_build (ep
, name
, fmt
, &args
);
9027 r
[0] = BFD_RELOC_UNUSED
;
9028 r
[1] = BFD_RELOC_UNUSED
;
9029 r
[2] = BFD_RELOC_UNUSED
;
9030 hash
= mips_opts
.micromips
? micromips_op_hash
: op_hash
;
9031 amo
= (struct mips_opcode
*) str_hash_find (hash
, name
);
9033 gas_assert (strcmp (name
, amo
->name
) == 0);
9037 /* Search until we get a match for NAME. It is assumed here that
9038 macros will never generate MDMX, MIPS-3D, or MT instructions.
9039 We try to match an instruction that fulfills the branch delay
9040 slot instruction length requirement (if any) of the previous
9041 instruction. While doing this we record the first instruction
9042 seen that matches all the other conditions and use it anyway
9043 if the requirement cannot be met; we will issue an appropriate
9044 warning later on. */
9045 if (strcmp (fmt
, amo
->args
) == 0
9046 && amo
->pinfo
!= INSN_MACRO
9047 && is_opcode_valid (amo
)
9048 && is_size_valid (amo
))
9050 if (is_delay_slot_valid (amo
))
9060 gas_assert (amo
->name
);
9062 while (strcmp (name
, amo
->name
) == 0);
9065 create_insn (&insn
, mo
);
9078 macro_read_relocs (&args
, r
);
9079 gas_assert (*r
== BFD_RELOC_GPREL16
9080 || *r
== BFD_RELOC_MIPS_HIGHER
9081 || *r
== BFD_RELOC_HI16_S
9082 || *r
== BFD_RELOC_LO16
9083 || *r
== BFD_RELOC_MIPS_GOT_OFST
9084 || (mips_opts
.micromips
9085 && (*r
== BFD_RELOC_MIPS_16
9086 || *r
== BFD_RELOC_MIPS_GOT16
9087 || *r
== BFD_RELOC_MIPS_CALL16
9088 || *r
== BFD_RELOC_MIPS_GOT_HI16
9089 || *r
== BFD_RELOC_MIPS_GOT_LO16
9090 || *r
== BFD_RELOC_MIPS_CALL_HI16
9091 || *r
== BFD_RELOC_MIPS_CALL_LO16
9092 || *r
== BFD_RELOC_MIPS_SUB
9093 || *r
== BFD_RELOC_MIPS_GOT_PAGE
9094 || *r
== BFD_RELOC_MIPS_HIGHEST
9095 || *r
== BFD_RELOC_MIPS_GOT_DISP
9096 || *r
== BFD_RELOC_MIPS_TLS_GD
9097 || *r
== BFD_RELOC_MIPS_TLS_LDM
9098 || *r
== BFD_RELOC_MIPS_TLS_DTPREL_HI16
9099 || *r
== BFD_RELOC_MIPS_TLS_DTPREL_LO16
9100 || *r
== BFD_RELOC_MIPS_TLS_GOTTPREL
9101 || *r
== BFD_RELOC_MIPS_TLS_TPREL_HI16
9102 || *r
== BFD_RELOC_MIPS_TLS_TPREL_LO16
)));
9106 macro_read_relocs (&args
, r
);
9110 macro_read_relocs (&args
, r
);
9111 gas_assert (ep
!= NULL
9112 && (ep
->X_op
== O_constant
9113 || (ep
->X_op
== O_symbol
9114 && (*r
== BFD_RELOC_MIPS_HIGHEST
9115 || *r
== BFD_RELOC_HI16_S
9116 || *r
== BFD_RELOC_HI16
9117 || *r
== BFD_RELOC_GPREL16
9118 || *r
== BFD_RELOC_MIPS_GOT_HI16
9119 || *r
== BFD_RELOC_MIPS_CALL_HI16
))));
9123 gas_assert (ep
!= NULL
);
9126 * This allows macro() to pass an immediate expression for
9127 * creating short branches without creating a symbol.
9129 * We don't allow branch relaxation for these branches, as
9130 * they should only appear in ".set nomacro" anyway.
9132 if (ep
->X_op
== O_constant
)
9134 /* For microMIPS we always use relocations for branches.
9135 So we should not resolve immediate values. */
9136 gas_assert (!mips_opts
.micromips
);
9138 if ((ep
->X_add_number
& 3) != 0)
9139 as_bad (_("branch to misaligned address (0x%lx)"),
9140 (unsigned long) ep
->X_add_number
);
9141 if ((ep
->X_add_number
+ 0x20000) & ~0x3ffff)
9142 as_bad (_("branch address range overflow (0x%lx)"),
9143 (unsigned long) ep
->X_add_number
);
9144 insn
.insn_opcode
|= (ep
->X_add_number
>> 2) & 0xffff;
9148 *r
= BFD_RELOC_16_PCREL_S2
;
9152 gas_assert (ep
!= NULL
);
9153 *r
= BFD_RELOC_MIPS_JMP
;
9157 operand
= (mips_opts
.micromips
9158 ? decode_micromips_operand (fmt
)
9159 : decode_mips_operand (fmt
));
9163 uval
= va_arg (args
, int);
9164 if (operand
->type
== OP_CLO_CLZ_DEST
)
9165 uval
|= (uval
<< 5);
9166 insn_insert_operand (&insn
, operand
, uval
);
9168 if (*fmt
== '+' || *fmt
== 'm' || *fmt
== '-')
9174 gas_assert (*r
== BFD_RELOC_UNUSED
? ep
== NULL
: ep
!= NULL
);
9176 append_insn (&insn
, ep
, r
, true);
9180 mips16_macro_build (expressionS
*ep
, const char *name
, const char *fmt
,
9183 struct mips_opcode
*mo
;
9184 struct mips_cl_insn insn
;
9185 const struct mips_operand
*operand
;
9186 bfd_reloc_code_real_type r
[3]
9187 = {BFD_RELOC_UNUSED
, BFD_RELOC_UNUSED
, BFD_RELOC_UNUSED
};
9189 mo
= (struct mips_opcode
*) str_hash_find (mips16_op_hash
, name
);
9191 gas_assert (strcmp (name
, mo
->name
) == 0);
9193 while (strcmp (fmt
, mo
->args
) != 0 || mo
->pinfo
== INSN_MACRO
)
9196 gas_assert (mo
->name
);
9197 gas_assert (strcmp (name
, mo
->name
) == 0);
9200 create_insn (&insn
, mo
);
9237 gas_assert (ep
!= NULL
);
9239 if (ep
->X_op
!= O_constant
)
9240 *r
= (int) BFD_RELOC_UNUSED
+ c
;
9241 else if (calculate_reloc (*r
, ep
->X_add_number
, &value
))
9243 mips16_immed (NULL
, 0, c
, *r
, value
, 0, &insn
.insn_opcode
);
9245 *r
= BFD_RELOC_UNUSED
;
9251 operand
= decode_mips16_operand (c
, false);
9255 insn_insert_operand (&insn
, operand
, va_arg (*args
, int));
9260 gas_assert (*r
== BFD_RELOC_UNUSED
? ep
== NULL
: ep
!= NULL
);
9262 append_insn (&insn
, ep
, r
, true);
9266 * Generate a "jalr" instruction with a relocation hint to the called
9267 * function. This occurs in NewABI PIC code.
9270 macro_build_jalr (expressionS
*ep
, int cprestore
)
9272 static const bfd_reloc_code_real_type jalr_relocs
[2]
9273 = { BFD_RELOC_MIPS_JALR
, BFD_RELOC_MICROMIPS_JALR
};
9274 bfd_reloc_code_real_type jalr_reloc
= jalr_relocs
[mips_opts
.micromips
];
9278 if (MIPS_JALR_HINT_P (ep
))
9283 if (mips_opts
.micromips
)
9285 jalr
= ((mips_opts
.noreorder
&& !cprestore
) || mips_opts
.insn32
9286 ? "jalr" : "jalrs");
9287 if (MIPS_JALR_HINT_P (ep
)
9289 || (history
[0].insn_mo
->pinfo2
& INSN2_BRANCH_DELAY_32BIT
))
9290 macro_build (NULL
, jalr
, "t,s", RA
, PIC_CALL_REG
);
9292 macro_build (NULL
, jalr
, "mj", PIC_CALL_REG
);
9295 macro_build (NULL
, "jalr", "d,s", RA
, PIC_CALL_REG
);
9296 if (MIPS_JALR_HINT_P (ep
))
9297 fix_new_exp (frag_now
, f
- frag_now
->fr_literal
, 4, ep
, false, jalr_reloc
);
9301 * Generate a "lui" instruction.
9304 macro_build_lui (expressionS
*ep
, int regnum
)
9306 gas_assert (! mips_opts
.mips16
);
9308 if (ep
->X_op
!= O_constant
)
9310 gas_assert (ep
->X_op
== O_symbol
);
9311 /* _gp_disp is a special case, used from s_cpload.
9312 __gnu_local_gp is used if mips_no_shared. */
9313 gas_assert (mips_pic
== NO_PIC
9315 && strcmp (S_GET_NAME (ep
->X_add_symbol
), "_gp_disp") == 0)
9316 || (! mips_in_shared
9317 && strcmp (S_GET_NAME (ep
->X_add_symbol
),
9318 "__gnu_local_gp") == 0));
9321 macro_build (ep
, "lui", LUI_FMT
, regnum
, BFD_RELOC_HI16_S
);
9324 /* Generate a sequence of instructions to do a load or store from a constant
9325 offset off of a base register (breg) into/from a target register (treg),
9326 using AT if necessary. */
9328 macro_build_ldst_constoffset (expressionS
*ep
, const char *op
,
9329 int treg
, int breg
, int dbl
)
9331 gas_assert (ep
->X_op
== O_constant
);
9333 /* Sign-extending 32-bit constants makes their handling easier. */
9335 normalize_constant_expr (ep
);
9337 /* Right now, this routine can only handle signed 32-bit constants. */
9338 if (! IS_SEXT_32BIT_NUM(ep
->X_add_number
+ 0x8000))
9339 as_warn (_("operand overflow"));
9341 if (IS_SEXT_16BIT_NUM(ep
->X_add_number
))
9343 /* Signed 16-bit offset will fit in the op. Easy! */
9344 macro_build (ep
, op
, "t,o(b)", treg
, BFD_RELOC_LO16
, breg
);
9348 /* 32-bit offset, need multiple instructions and AT, like:
9349 lui $tempreg,const_hi (BFD_RELOC_HI16_S)
9350 addu $tempreg,$tempreg,$breg
9351 <op> $treg,const_lo($tempreg) (BFD_RELOC_LO16)
9352 to handle the complete offset. */
9353 macro_build_lui (ep
, AT
);
9354 macro_build (NULL
, ADDRESS_ADD_INSN
, "d,v,t", AT
, AT
, breg
);
9355 macro_build (ep
, op
, "t,o(b)", treg
, BFD_RELOC_LO16
, AT
);
9358 as_bad (_("macro used $at after \".set noat\""));
9363 * Generates code to set the $at register to true (one)
9364 * if reg is less than the immediate expression.
9367 set_at (int reg
, int unsignedp
)
9369 if (imm_expr
.X_add_number
>= -0x8000
9370 && imm_expr
.X_add_number
< 0x8000)
9371 macro_build (&imm_expr
, unsignedp
? "sltiu" : "slti", "t,r,j",
9372 AT
, reg
, BFD_RELOC_LO16
);
9375 load_register (AT
, &imm_expr
, GPR_SIZE
== 64);
9376 macro_build (NULL
, unsignedp
? "sltu" : "slt", "d,v,t", AT
, reg
, AT
);
9380 /* Count the leading zeroes by performing a binary chop. This is a
9381 bulky bit of source, but performance is a LOT better for the
9382 majority of values than a simple loop to count the bits:
9383 for (lcnt = 0; (lcnt < 32); lcnt++)
9384 if ((v) & (1 << (31 - lcnt)))
9386 However it is not code size friendly, and the gain will drop a bit
9387 on certain cached systems.
9389 #define COUNT_TOP_ZEROES(v) \
9390 (((v) & ~0xffff) == 0 \
9391 ? ((v) & ~0xff) == 0 \
9392 ? ((v) & ~0xf) == 0 \
9393 ? ((v) & ~0x3) == 0 \
9394 ? ((v) & ~0x1) == 0 \
9399 : ((v) & ~0x7) == 0 \
9402 : ((v) & ~0x3f) == 0 \
9403 ? ((v) & ~0x1f) == 0 \
9406 : ((v) & ~0x7f) == 0 \
9409 : ((v) & ~0xfff) == 0 \
9410 ? ((v) & ~0x3ff) == 0 \
9411 ? ((v) & ~0x1ff) == 0 \
9414 : ((v) & ~0x7ff) == 0 \
9417 : ((v) & ~0x3fff) == 0 \
9418 ? ((v) & ~0x1fff) == 0 \
9421 : ((v) & ~0x7fff) == 0 \
9424 : ((v) & ~0xffffff) == 0 \
9425 ? ((v) & ~0xfffff) == 0 \
9426 ? ((v) & ~0x3ffff) == 0 \
9427 ? ((v) & ~0x1ffff) == 0 \
9430 : ((v) & ~0x7ffff) == 0 \
9433 : ((v) & ~0x3fffff) == 0 \
9434 ? ((v) & ~0x1fffff) == 0 \
9437 : ((v) & ~0x7fffff) == 0 \
9440 : ((v) & ~0xfffffff) == 0 \
9441 ? ((v) & ~0x3ffffff) == 0 \
9442 ? ((v) & ~0x1ffffff) == 0 \
9445 : ((v) & ~0x7ffffff) == 0 \
9448 : ((v) & ~0x3fffffff) == 0 \
9449 ? ((v) & ~0x1fffffff) == 0 \
9452 : ((v) & ~0x7fffffff) == 0 \
9457 * This routine generates the least number of instructions necessary to load
9458 * an absolute expression value into a register.
9461 load_register (int reg
, expressionS
*ep
, int dbl
)
9464 expressionS hi32
, lo32
;
9466 if (ep
->X_op
!= O_big
)
9468 gas_assert (ep
->X_op
== O_constant
);
9470 /* Sign-extending 32-bit constants makes their handling easier. */
9472 normalize_constant_expr (ep
);
9474 if (IS_SEXT_16BIT_NUM (ep
->X_add_number
))
9476 /* We can handle 16 bit signed values with an addiu to
9477 $zero. No need to ever use daddiu here, since $zero and
9478 the result are always correct in 32 bit mode. */
9479 macro_build (ep
, "addiu", "t,r,j", reg
, 0, BFD_RELOC_LO16
);
9482 else if (ep
->X_add_number
>= 0 && ep
->X_add_number
< 0x10000)
9484 /* We can handle 16 bit unsigned values with an ori to
9486 macro_build (ep
, "ori", "t,r,i", reg
, 0, BFD_RELOC_LO16
);
9489 else if ((IS_SEXT_32BIT_NUM (ep
->X_add_number
)))
9491 /* 32 bit values require an lui. */
9492 macro_build (ep
, "lui", LUI_FMT
, reg
, BFD_RELOC_HI16
);
9493 if ((ep
->X_add_number
& 0xffff) != 0)
9494 macro_build (ep
, "ori", "t,r,i", reg
, reg
, BFD_RELOC_LO16
);
9499 /* The value is larger than 32 bits. */
9501 if (!dbl
|| GPR_SIZE
== 32)
9503 as_bad (_("number (0x%" PRIx64
") larger than 32 bits"),
9505 macro_build (ep
, "addiu", "t,r,j", reg
, 0, BFD_RELOC_LO16
);
9509 if (ep
->X_op
!= O_big
)
9512 hi32
.X_add_number
= (valueT
) hi32
.X_add_number
>> 16;
9513 hi32
.X_add_number
= (valueT
) hi32
.X_add_number
>> 16;
9514 hi32
.X_add_number
&= 0xffffffff;
9516 lo32
.X_add_number
&= 0xffffffff;
9520 gas_assert (ep
->X_add_number
> 2);
9521 if (ep
->X_add_number
== 3)
9522 generic_bignum
[3] = 0;
9523 else if (ep
->X_add_number
> 4)
9524 as_bad (_("number larger than 64 bits"));
9525 lo32
.X_op
= O_constant
;
9526 lo32
.X_add_number
= generic_bignum
[0] + (generic_bignum
[1] << 16);
9527 hi32
.X_op
= O_constant
;
9528 hi32
.X_add_number
= generic_bignum
[2] + (generic_bignum
[3] << 16);
9531 if (hi32
.X_add_number
== 0)
9536 unsigned long hi
, lo
;
9538 if (hi32
.X_add_number
== (offsetT
) 0xffffffff)
9540 if ((lo32
.X_add_number
& 0xffff8000) == 0xffff8000)
9542 macro_build (&lo32
, "addiu", "t,r,j", reg
, 0, BFD_RELOC_LO16
);
9545 if (lo32
.X_add_number
& 0x80000000)
9547 macro_build (&lo32
, "lui", LUI_FMT
, reg
, BFD_RELOC_HI16
);
9548 if (lo32
.X_add_number
& 0xffff)
9549 macro_build (&lo32
, "ori", "t,r,i", reg
, reg
, BFD_RELOC_LO16
);
9554 /* Check for 16bit shifted constant. We know that hi32 is
9555 non-zero, so start the mask on the first bit of the hi32
9560 unsigned long himask
, lomask
;
9564 himask
= 0xffff >> (32 - shift
);
9565 lomask
= (0xffffU
<< shift
) & 0xffffffff;
9569 himask
= 0xffffU
<< (shift
- 32);
9572 if ((hi32
.X_add_number
& ~(offsetT
) himask
) == 0
9573 && (lo32
.X_add_number
& ~(offsetT
) lomask
) == 0)
9577 tmp
.X_op
= O_constant
;
9579 tmp
.X_add_number
= ((hi32
.X_add_number
<< (32 - shift
))
9580 | (lo32
.X_add_number
>> shift
));
9582 tmp
.X_add_number
= hi32
.X_add_number
>> (shift
- 32);
9583 macro_build (&tmp
, "ori", "t,r,i", reg
, 0, BFD_RELOC_LO16
);
9584 macro_build (NULL
, (shift
>= 32) ? "dsll32" : "dsll", SHFT_FMT
,
9585 reg
, reg
, (shift
>= 32) ? shift
- 32 : shift
);
9590 while (shift
<= (64 - 16));
9592 /* Find the bit number of the lowest one bit, and store the
9593 shifted value in hi/lo. */
9594 hi
= (unsigned long) (hi32
.X_add_number
& 0xffffffff);
9595 lo
= (unsigned long) (lo32
.X_add_number
& 0xffffffff);
9599 while ((lo
& 1) == 0)
9606 lo
|= (hi
& ((2UL << (bit
- 1)) - 1)) << (32 - bit
);
9613 while ((hi
& 1) == 0)
9622 /* Optimize if the shifted value is a (power of 2) - 1. */
9623 if ((hi
== 0 && ((lo
+ 1) & lo
) == 0)
9624 || (lo
== 0xffffffff && ((hi
+ 1) & hi
) == 0))
9626 shift
= COUNT_TOP_ZEROES ((unsigned int) hi32
.X_add_number
);
9631 /* This instruction will set the register to be all
9633 tmp
.X_op
= O_constant
;
9634 tmp
.X_add_number
= (offsetT
) -1;
9635 macro_build (&tmp
, "addiu", "t,r,j", reg
, 0, BFD_RELOC_LO16
);
9639 macro_build (NULL
, (bit
>= 32) ? "dsll32" : "dsll", SHFT_FMT
,
9640 reg
, reg
, (bit
>= 32) ? bit
- 32 : bit
);
9642 macro_build (NULL
, (shift
>= 32) ? "dsrl32" : "dsrl", SHFT_FMT
,
9643 reg
, reg
, (shift
>= 32) ? shift
- 32 : shift
);
9648 /* Sign extend hi32 before calling load_register, because we can
9649 generally get better code when we load a sign extended value. */
9650 if ((hi32
.X_add_number
& 0x80000000) != 0)
9651 hi32
.X_add_number
|= ~(offsetT
) 0xffffffff;
9652 load_register (reg
, &hi32
, 0);
9655 if ((lo32
.X_add_number
& 0xffff0000) == 0)
9659 macro_build (NULL
, "dsll32", SHFT_FMT
, reg
, freg
, 0);
9667 if ((freg
== 0) && (lo32
.X_add_number
== (offsetT
) 0xffffffff))
9669 macro_build (&lo32
, "lui", LUI_FMT
, reg
, BFD_RELOC_HI16
);
9670 macro_build (NULL
, "dsrl32", SHFT_FMT
, reg
, reg
, 0);
9676 macro_build (NULL
, "dsll", SHFT_FMT
, reg
, freg
, 16);
9680 mid16
.X_add_number
>>= 16;
9681 macro_build (&mid16
, "ori", "t,r,i", reg
, freg
, BFD_RELOC_LO16
);
9682 macro_build (NULL
, "dsll", SHFT_FMT
, reg
, reg
, 16);
9685 if ((lo32
.X_add_number
& 0xffff) != 0)
9686 macro_build (&lo32
, "ori", "t,r,i", reg
, freg
, BFD_RELOC_LO16
);
9690 load_delay_nop (void)
9692 if (!gpr_interlocks
)
9693 macro_build (NULL
, "nop", "");
9696 /* Load an address into a register. */
9699 load_address (int reg
, expressionS
*ep
, int *used_at
)
9701 if (ep
->X_op
!= O_constant
9702 && ep
->X_op
!= O_symbol
)
9704 as_bad (_("expression too complex"));
9705 ep
->X_op
= O_constant
;
9708 if (ep
->X_op
== O_constant
)
9710 load_register (reg
, ep
, HAVE_64BIT_ADDRESSES
);
9714 if (mips_pic
== NO_PIC
)
9716 /* If this is a reference to a GP relative symbol, we want
9717 addiu $reg,$gp,<sym> (BFD_RELOC_GPREL16)
9719 lui $reg,<sym> (BFD_RELOC_HI16_S)
9720 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
9721 If we have an addend, we always use the latter form.
9723 With 64bit address space and a usable $at we want
9724 lui $reg,<sym> (BFD_RELOC_MIPS_HIGHEST)
9725 lui $at,<sym> (BFD_RELOC_HI16_S)
9726 daddiu $reg,<sym> (BFD_RELOC_MIPS_HIGHER)
9727 daddiu $at,<sym> (BFD_RELOC_LO16)
9731 If $at is already in use, we use a path which is suboptimal
9732 on superscalar processors.
9733 lui $reg,<sym> (BFD_RELOC_MIPS_HIGHEST)
9734 daddiu $reg,<sym> (BFD_RELOC_MIPS_HIGHER)
9736 daddiu $reg,<sym> (BFD_RELOC_HI16_S)
9738 daddiu $reg,<sym> (BFD_RELOC_LO16)
9740 For GP relative symbols in 64bit address space we can use
9741 the same sequence as in 32bit address space. */
9742 if (HAVE_64BIT_SYMBOLS
)
9744 if ((valueT
) ep
->X_add_number
<= MAX_GPREL_OFFSET
9745 && !nopic_need_relax (ep
->X_add_symbol
, 1))
9747 relax_start (ep
->X_add_symbol
);
9748 macro_build (ep
, ADDRESS_ADDI_INSN
, "t,r,j", reg
,
9749 mips_gp_register
, BFD_RELOC_GPREL16
);
9753 if (*used_at
== 0 && mips_opts
.at
)
9755 macro_build (ep
, "lui", LUI_FMT
, reg
, BFD_RELOC_MIPS_HIGHEST
);
9756 macro_build (ep
, "lui", LUI_FMT
, AT
, BFD_RELOC_HI16_S
);
9757 macro_build (ep
, "daddiu", "t,r,j", reg
, reg
,
9758 BFD_RELOC_MIPS_HIGHER
);
9759 macro_build (ep
, "daddiu", "t,r,j", AT
, AT
, BFD_RELOC_LO16
);
9760 macro_build (NULL
, "dsll32", SHFT_FMT
, reg
, reg
, 0);
9761 macro_build (NULL
, "daddu", "d,v,t", reg
, reg
, AT
);
9766 macro_build (ep
, "lui", LUI_FMT
, reg
, BFD_RELOC_MIPS_HIGHEST
);
9767 macro_build (ep
, "daddiu", "t,r,j", reg
, reg
,
9768 BFD_RELOC_MIPS_HIGHER
);
9769 macro_build (NULL
, "dsll", SHFT_FMT
, reg
, reg
, 16);
9770 macro_build (ep
, "daddiu", "t,r,j", reg
, reg
, BFD_RELOC_HI16_S
);
9771 macro_build (NULL
, "dsll", SHFT_FMT
, reg
, reg
, 16);
9772 macro_build (ep
, "daddiu", "t,r,j", reg
, reg
, BFD_RELOC_LO16
);
9775 if (mips_relax
.sequence
)
9780 if ((valueT
) ep
->X_add_number
<= MAX_GPREL_OFFSET
9781 && !nopic_need_relax (ep
->X_add_symbol
, 1))
9783 relax_start (ep
->X_add_symbol
);
9784 macro_build (ep
, ADDRESS_ADDI_INSN
, "t,r,j", reg
,
9785 mips_gp_register
, BFD_RELOC_GPREL16
);
9788 macro_build_lui (ep
, reg
);
9789 macro_build (ep
, ADDRESS_ADDI_INSN
, "t,r,j",
9790 reg
, reg
, BFD_RELOC_LO16
);
9791 if (mips_relax
.sequence
)
9795 else if (!mips_big_got
)
9799 /* If this is a reference to an external symbol, we want
9800 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9802 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9804 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
9805 If there is a constant, it must be added in after.
9807 If we have NewABI, we want
9808 lw $reg,<sym+cst>($gp) (BFD_RELOC_MIPS_GOT_DISP)
9809 unless we're referencing a global symbol with a non-zero
9810 offset, in which case cst must be added separately. */
9813 if (ep
->X_add_number
)
9815 ex
.X_add_number
= ep
->X_add_number
;
9816 ep
->X_add_number
= 0;
9817 relax_start (ep
->X_add_symbol
);
9818 macro_build (ep
, ADDRESS_LOAD_INSN
, "t,o(b)", reg
,
9819 BFD_RELOC_MIPS_GOT_DISP
, mips_gp_register
);
9820 if (ex
.X_add_number
< -0x8000 || ex
.X_add_number
>= 0x8000)
9821 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9822 ex
.X_op
= O_constant
;
9823 macro_build (&ex
, ADDRESS_ADDI_INSN
, "t,r,j",
9824 reg
, reg
, BFD_RELOC_LO16
);
9825 ep
->X_add_number
= ex
.X_add_number
;
9828 macro_build (ep
, ADDRESS_LOAD_INSN
, "t,o(b)", reg
,
9829 BFD_RELOC_MIPS_GOT_DISP
, mips_gp_register
);
9830 if (mips_relax
.sequence
)
9835 ex
.X_add_number
= ep
->X_add_number
;
9836 ep
->X_add_number
= 0;
9837 macro_build (ep
, ADDRESS_LOAD_INSN
, "t,o(b)", reg
,
9838 BFD_RELOC_MIPS_GOT16
, mips_gp_register
);
9840 relax_start (ep
->X_add_symbol
);
9842 macro_build (ep
, ADDRESS_ADDI_INSN
, "t,r,j", reg
, reg
,
9846 if (ex
.X_add_number
!= 0)
9848 if (ex
.X_add_number
< -0x8000 || ex
.X_add_number
>= 0x8000)
9849 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9850 ex
.X_op
= O_constant
;
9851 macro_build (&ex
, ADDRESS_ADDI_INSN
, "t,r,j",
9852 reg
, reg
, BFD_RELOC_LO16
);
9856 else if (mips_big_got
)
9860 /* This is the large GOT case. If this is a reference to an
9861 external symbol, we want
9862 lui $reg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
9864 lw $reg,<sym>($reg) (BFD_RELOC_MIPS_GOT_LO16)
9866 Otherwise, for a reference to a local symbol in old ABI, we want
9867 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9869 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
9870 If there is a constant, it must be added in after.
9872 In the NewABI, for local symbols, with or without offsets, we want:
9873 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
9874 addiu $reg,$reg,<sym> (BFD_RELOC_MIPS_GOT_OFST)
9878 ex
.X_add_number
= ep
->X_add_number
;
9879 ep
->X_add_number
= 0;
9880 relax_start (ep
->X_add_symbol
);
9881 macro_build (ep
, "lui", LUI_FMT
, reg
, BFD_RELOC_MIPS_GOT_HI16
);
9882 macro_build (NULL
, ADDRESS_ADD_INSN
, "d,v,t",
9883 reg
, reg
, mips_gp_register
);
9884 macro_build (ep
, ADDRESS_LOAD_INSN
, "t,o(b)",
9885 reg
, BFD_RELOC_MIPS_GOT_LO16
, reg
);
9886 if (ex
.X_add_number
< -0x8000 || ex
.X_add_number
>= 0x8000)
9887 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9888 else if (ex
.X_add_number
)
9890 ex
.X_op
= O_constant
;
9891 macro_build (&ex
, ADDRESS_ADDI_INSN
, "t,r,j", reg
, reg
,
9895 ep
->X_add_number
= ex
.X_add_number
;
9897 macro_build (ep
, ADDRESS_LOAD_INSN
, "t,o(b)", reg
,
9898 BFD_RELOC_MIPS_GOT_PAGE
, mips_gp_register
);
9899 macro_build (ep
, ADDRESS_ADDI_INSN
, "t,r,j", reg
, reg
,
9900 BFD_RELOC_MIPS_GOT_OFST
);
9905 ex
.X_add_number
= ep
->X_add_number
;
9906 ep
->X_add_number
= 0;
9907 relax_start (ep
->X_add_symbol
);
9908 macro_build (ep
, "lui", LUI_FMT
, reg
, BFD_RELOC_MIPS_GOT_HI16
);
9909 macro_build (NULL
, ADDRESS_ADD_INSN
, "d,v,t",
9910 reg
, reg
, mips_gp_register
);
9911 macro_build (ep
, ADDRESS_LOAD_INSN
, "t,o(b)",
9912 reg
, BFD_RELOC_MIPS_GOT_LO16
, reg
);
9914 if (reg_needs_delay (mips_gp_register
))
9916 /* We need a nop before loading from $gp. This special
9917 check is required because the lui which starts the main
9918 instruction stream does not refer to $gp, and so will not
9919 insert the nop which may be required. */
9920 macro_build (NULL
, "nop", "");
9922 macro_build (ep
, ADDRESS_LOAD_INSN
, "t,o(b)", reg
,
9923 BFD_RELOC_MIPS_GOT16
, mips_gp_register
);
9925 macro_build (ep
, ADDRESS_ADDI_INSN
, "t,r,j", reg
, reg
,
9929 if (ex
.X_add_number
!= 0)
9931 if (ex
.X_add_number
< -0x8000 || ex
.X_add_number
>= 0x8000)
9932 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9933 ex
.X_op
= O_constant
;
9934 macro_build (&ex
, ADDRESS_ADDI_INSN
, "t,r,j", reg
, reg
,
9942 if (!mips_opts
.at
&& *used_at
== 1)
9943 as_bad (_("macro used $at after \".set noat\""));
9946 /* Move the contents of register SOURCE into register DEST. */
9949 move_register (int dest
, int source
)
9951 /* Prefer to use a 16-bit microMIPS instruction unless the previous
9952 instruction specifically requires a 32-bit one. */
9953 if (mips_opts
.micromips
9954 && !mips_opts
.insn32
9955 && !(history
[0].insn_mo
->pinfo2
& INSN2_BRANCH_DELAY_32BIT
))
9956 macro_build (NULL
, "move", "mp,mj", dest
, source
);
9958 macro_build (NULL
, "or", "d,v,t", dest
, source
, 0);
9961 /* Emit an SVR4 PIC sequence to load address LOCAL into DEST, where
9962 LOCAL is the sum of a symbol and a 16-bit or 32-bit displacement.
9963 The two alternatives are:
9965 Global symbol Local symbol
9966 ------------- ------------
9967 lw DEST,%got(SYMBOL) lw DEST,%got(SYMBOL + OFFSET)
9969 addiu DEST,DEST,OFFSET addiu DEST,DEST,%lo(SYMBOL + OFFSET)
9971 load_got_offset emits the first instruction and add_got_offset
9972 emits the second for a 16-bit offset or add_got_offset_hilo emits
9973 a sequence to add a 32-bit offset using a scratch register. */
9976 load_got_offset (int dest
, expressionS
*local
)
9981 global
.X_add_number
= 0;
9983 relax_start (local
->X_add_symbol
);
9984 macro_build (&global
, ADDRESS_LOAD_INSN
, "t,o(b)", dest
,
9985 BFD_RELOC_MIPS_GOT16
, mips_gp_register
);
9987 macro_build (local
, ADDRESS_LOAD_INSN
, "t,o(b)", dest
,
9988 BFD_RELOC_MIPS_GOT16
, mips_gp_register
);
9993 add_got_offset (int dest
, expressionS
*local
)
9997 global
.X_op
= O_constant
;
9998 global
.X_op_symbol
= NULL
;
9999 global
.X_add_symbol
= NULL
;
10000 global
.X_add_number
= local
->X_add_number
;
10002 relax_start (local
->X_add_symbol
);
10003 macro_build (&global
, ADDRESS_ADDI_INSN
, "t,r,j",
10004 dest
, dest
, BFD_RELOC_LO16
);
10006 macro_build (local
, ADDRESS_ADDI_INSN
, "t,r,j", dest
, dest
, BFD_RELOC_LO16
);
10011 add_got_offset_hilo (int dest
, expressionS
*local
, int tmp
)
10013 expressionS global
;
10014 int hold_mips_optimize
;
10016 global
.X_op
= O_constant
;
10017 global
.X_op_symbol
= NULL
;
10018 global
.X_add_symbol
= NULL
;
10019 global
.X_add_number
= local
->X_add_number
;
10021 relax_start (local
->X_add_symbol
);
10022 load_register (tmp
, &global
, HAVE_64BIT_ADDRESSES
);
10024 /* Set mips_optimize around the lui instruction to avoid
10025 inserting an unnecessary nop after the lw. */
10026 hold_mips_optimize
= mips_optimize
;
10028 macro_build_lui (&global
, tmp
);
10029 mips_optimize
= hold_mips_optimize
;
10030 macro_build (local
, ADDRESS_ADDI_INSN
, "t,r,j", tmp
, tmp
, BFD_RELOC_LO16
);
10033 macro_build (NULL
, ADDRESS_ADD_INSN
, "d,v,t", dest
, dest
, tmp
);
10036 /* Emit a sequence of instructions to emulate a branch likely operation.
10037 BR is an ordinary branch corresponding to one to be emulated. BRNEG
10038 is its complementing branch with the original condition negated.
10039 CALL is set if the original branch specified the link operation.
10040 EP, FMT, SREG and TREG specify the usual macro_build() parameters.
10042 Code like this is produced in the noreorder mode:
10047 delay slot (executed only if branch taken)
10050 or, if CALL is set:
10055 delay slot (executed only if branch taken)
10058 In the reorder mode the delay slot would be filled with a nop anyway,
10059 so code produced is simply:
10064 This function is used when producing code for the microMIPS ASE that
10065 does not implement branch likely instructions in hardware. */
10068 macro_build_branch_likely (const char *br
, const char *brneg
,
10069 int call
, expressionS
*ep
, const char *fmt
,
10070 unsigned int sreg
, unsigned int treg
)
10072 int noreorder
= mips_opts
.noreorder
;
10075 gas_assert (mips_opts
.micromips
);
10076 start_noreorder ();
10079 micromips_label_expr (&expr1
);
10080 macro_build (&expr1
, brneg
, fmt
, sreg
, treg
);
10081 macro_build (NULL
, "nop", "");
10082 macro_build (ep
, call
? "bal" : "b", "p");
10084 /* Set to true so that append_insn adds a label. */
10085 emit_branch_likely_macro
= true;
10089 macro_build (ep
, br
, fmt
, sreg
, treg
);
10090 macro_build (NULL
, "nop", "");
10095 /* Emit a coprocessor branch-likely macro specified by TYPE, using CC as
10096 the condition code tested. EP specifies the branch target. */
10099 macro_build_branch_ccl (int type
, expressionS
*ep
, unsigned int cc
)
10101 const int call
= 0;
10126 macro_build_branch_likely (br
, brneg
, call
, ep
, "N,p", cc
, ZERO
);
10129 /* Emit a two-argument branch macro specified by TYPE, using SREG as
10130 the register tested. EP specifies the branch target. */
10133 macro_build_branch_rs (int type
, expressionS
*ep
, unsigned int sreg
)
10135 const char *brneg
= NULL
;
10145 br
= mips_opts
.micromips
? "bgez" : "bgezl";
10149 gas_assert (mips_opts
.micromips
);
10150 br
= mips_opts
.insn32
? "bgezal" : "bgezals";
10158 br
= mips_opts
.micromips
? "bgtz" : "bgtzl";
10165 br
= mips_opts
.micromips
? "blez" : "blezl";
10172 br
= mips_opts
.micromips
? "bltz" : "bltzl";
10176 gas_assert (mips_opts
.micromips
);
10177 br
= mips_opts
.insn32
? "bltzal" : "bltzals";
10184 if (mips_opts
.micromips
&& brneg
)
10185 macro_build_branch_likely (br
, brneg
, call
, ep
, "s,p", sreg
, ZERO
);
10187 macro_build (ep
, br
, "s,p", sreg
);
10190 /* Emit a three-argument branch macro specified by TYPE, using SREG and
10191 TREG as the registers tested. EP specifies the branch target. */
10194 macro_build_branch_rsrt (int type
, expressionS
*ep
,
10195 unsigned int sreg
, unsigned int treg
)
10197 const char *brneg
= NULL
;
10198 const int call
= 0;
10209 br
= mips_opts
.micromips
? "beq" : "beql";
10218 br
= mips_opts
.micromips
? "bne" : "bnel";
10224 if (mips_opts
.micromips
&& brneg
)
10225 macro_build_branch_likely (br
, brneg
, call
, ep
, "s,t,p", sreg
, treg
);
10227 macro_build (ep
, br
, "s,t,p", sreg
, treg
);
10230 /* Return the high part that should be loaded in order to make the low
10231 part of VALUE accessible using an offset of OFFBITS bits. */
10234 offset_high_part (offsetT value
, unsigned int offbits
)
10241 bias
= 1 << (offbits
- 1);
10242 low_mask
= bias
* 2 - 1;
10243 return (value
+ bias
) & ~low_mask
;
10246 /* Return true if the value stored in offset_expr and offset_reloc
10247 fits into a signed offset of OFFBITS bits. RANGE is the maximum
10248 amount that the caller wants to add without inducing overflow
10249 and ALIGN is the known alignment of the value in bytes. */
10252 small_offset_p (unsigned int range
, unsigned int align
, unsigned int offbits
)
10256 /* Accept any relocation operator if overflow isn't a concern. */
10257 if (range
< align
&& *offset_reloc
!= BFD_RELOC_UNUSED
)
10260 /* These relocations are guaranteed not to overflow in correct links. */
10261 if (*offset_reloc
== BFD_RELOC_MIPS_LITERAL
10262 || gprel16_reloc_p (*offset_reloc
))
10265 if (offset_expr
.X_op
== O_constant
10266 && offset_high_part (offset_expr
.X_add_number
, offbits
) == 0
10267 && offset_high_part (offset_expr
.X_add_number
+ range
, offbits
) == 0)
10274 * This routine implements the seemingly endless macro or synthesized
10275 * instructions and addressing modes in the mips assembly language. Many
10276 * of these macros are simple and are similar to each other. These could
10277 * probably be handled by some kind of table or grammar approach instead of
10278 * this verbose method. Others are not simple macros but are more like
10279 * optimizing code generation.
10280 * One interesting optimization is when several store macros appear
10281 * consecutively that would load AT with the upper half of the same address.
10282 * The ensuing load upper instructions are omitted. This implies some kind
10283 * of global optimization. We currently only optimize within a single macro.
10284 * For many of the load and store macros if the address is specified as a
10285 * constant expression in the first 64k of memory (ie ld $2,0x4000c) we
10286 * first load register 'at' with zero and use it as the base register. The
10287 * mips assembler simply uses register $zero. Just one tiny optimization
10291 macro (struct mips_cl_insn
*ip
, char *str
)
10293 const struct mips_operand_array
*operands
;
10294 unsigned int breg
, i
;
10295 unsigned int tempreg
;
10298 expressionS label_expr
;
10313 int ll_sc_paired
= 0;
10316 int hold_mips_optimize
;
10317 unsigned int align
;
10318 unsigned int op
[MAX_OPERANDS
];
10320 gas_assert (! mips_opts
.mips16
);
10322 operands
= insn_operands (ip
);
10323 for (i
= 0; i
< MAX_OPERANDS
; i
++)
10324 if (operands
->operand
[i
])
10325 op
[i
] = insn_extract_operand (ip
, operands
->operand
[i
]);
10329 mask
= ip
->insn_mo
->mask
;
10331 label_expr
.X_op
= O_constant
;
10332 label_expr
.X_op_symbol
= NULL
;
10333 label_expr
.X_add_symbol
= NULL
;
10334 label_expr
.X_add_number
= 0;
10336 expr1
.X_op
= O_constant
;
10337 expr1
.X_op_symbol
= NULL
;
10338 expr1
.X_add_symbol
= NULL
;
10339 expr1
.X_add_number
= 1;
10346 /* Fall through. */
10354 start_noreorder ();
10356 if (mips_opts
.micromips
)
10357 micromips_label_expr (&label_expr
);
10359 label_expr
.X_add_number
= 8;
10360 macro_build (&label_expr
, "bgez", "s,p", op
[1]);
10361 if (op
[0] == op
[1])
10362 macro_build (NULL
, "nop", "");
10364 move_register (op
[0], op
[1]);
10365 macro_build (NULL
, dbl
? "dsub" : "sub", "d,v,t", op
[0], 0, op
[1]);
10366 if (mips_opts
.micromips
)
10367 micromips_add_label ();
10375 if (ISA_IS_R6 (mips_opts
.isa
))
10387 if (!mips_opts
.micromips
&& !ISA_IS_R6 (mips_opts
.isa
))
10389 if (imm_expr
.X_add_number
>= -0x200
10390 && imm_expr
.X_add_number
< 0x200
10391 && !ISA_IS_R6 (mips_opts
.isa
))
10393 macro_build (NULL
, s
, "t,r,.", op
[0], op
[1],
10394 (int) imm_expr
.X_add_number
);
10403 if (imm_expr
.X_add_number
>= -0x8000
10404 && imm_expr
.X_add_number
< 0x8000)
10406 macro_build (&imm_expr
, s
, "t,r,j", op
[0], op
[1], BFD_RELOC_LO16
);
10411 load_register (AT
, &imm_expr
, dbl
);
10412 macro_build (NULL
, s2
, "d,v,t", op
[0], op
[1], AT
);
10431 if (imm_expr
.X_add_number
>= 0
10432 && imm_expr
.X_add_number
< 0x10000)
10434 if (mask
!= M_NOR_I
)
10435 macro_build (&imm_expr
, s
, "t,r,i", op
[0], op
[1], BFD_RELOC_LO16
);
10438 macro_build (&imm_expr
, "ori", "t,r,i",
10439 op
[0], op
[1], BFD_RELOC_LO16
);
10440 macro_build (NULL
, "nor", "d,v,t", op
[0], op
[0], 0);
10446 load_register (AT
, &imm_expr
, GPR_SIZE
== 64);
10447 macro_build (NULL
, s2
, "d,v,t", op
[0], op
[1], AT
);
10451 switch (imm_expr
.X_add_number
)
10454 macro_build (NULL
, "nop", "");
10457 macro_build (NULL
, "packrl.ph", "d,s,t", op
[0], op
[0], op
[1]);
10461 macro_build (NULL
, "balign", "t,s,2", op
[0], op
[1],
10462 (int) imm_expr
.X_add_number
);
10465 as_bad (_("BALIGN immediate not 0, 1, 2 or 3 (%lu)"),
10466 (unsigned long) imm_expr
.X_add_number
);
10475 gas_assert (mips_opts
.micromips
);
10476 macro_build_branch_ccl (mask
, &offset_expr
,
10477 EXTRACT_OPERAND (1, BCC
, *ip
));
10484 if (imm_expr
.X_add_number
== 0)
10490 load_register (op
[1], &imm_expr
, GPR_SIZE
== 64);
10492 /* Fall through. */
10495 macro_build_branch_rsrt (mask
, &offset_expr
, op
[0], op
[1]);
10500 /* Fall through. */
10503 macro_build_branch_rs (likely
? M_BGEZL
: M_BGEZ
, &offset_expr
, op
[0]);
10504 else if (op
[0] == 0)
10505 macro_build_branch_rs (likely
? M_BLEZL
: M_BLEZ
, &offset_expr
, op
[1]);
10509 macro_build (NULL
, "slt", "d,v,t", AT
, op
[0], op
[1]);
10510 macro_build_branch_rsrt (likely
? M_BEQL
: M_BEQ
,
10511 &offset_expr
, AT
, ZERO
);
10521 macro_build_branch_rs (mask
, &offset_expr
, op
[0]);
10526 /* Fall through. */
10528 /* Check for > max integer. */
10529 if (imm_expr
.X_add_number
>= GPR_SMAX
)
10532 /* Result is always false. */
10534 macro_build (NULL
, "nop", "");
10536 macro_build_branch_rsrt (M_BNEL
, &offset_expr
, ZERO
, ZERO
);
10539 ++imm_expr
.X_add_number
;
10540 /* Fall through. */
10543 if (mask
== M_BGEL_I
)
10545 if (imm_expr
.X_add_number
== 0)
10547 macro_build_branch_rs (likely
? M_BGEZL
: M_BGEZ
,
10548 &offset_expr
, op
[0]);
10551 if (imm_expr
.X_add_number
== 1)
10553 macro_build_branch_rs (likely
? M_BGTZL
: M_BGTZ
,
10554 &offset_expr
, op
[0]);
10557 if (imm_expr
.X_add_number
<= GPR_SMIN
)
10560 /* Result is always true. */
10561 as_warn (_("branch %s is always true"), ip
->insn_mo
->name
);
10562 macro_build (&offset_expr
, "b", "p");
10567 macro_build_branch_rsrt (likely
? M_BEQL
: M_BEQ
,
10568 &offset_expr
, AT
, ZERO
);
10573 /* Fall through. */
10577 else if (op
[0] == 0)
10578 macro_build_branch_rsrt (likely
? M_BEQL
: M_BEQ
,
10579 &offset_expr
, ZERO
, op
[1]);
10583 macro_build (NULL
, "sltu", "d,v,t", AT
, op
[0], op
[1]);
10584 macro_build_branch_rsrt (likely
? M_BEQL
: M_BEQ
,
10585 &offset_expr
, AT
, ZERO
);
10591 /* Fall through. */
10595 && imm_expr
.X_add_number
== -1))
10597 ++imm_expr
.X_add_number
;
10598 /* Fall through. */
10601 if (mask
== M_BGEUL_I
)
10603 if (imm_expr
.X_add_number
== 0)
10605 else if (imm_expr
.X_add_number
== 1)
10606 macro_build_branch_rsrt (likely
? M_BNEL
: M_BNE
,
10607 &offset_expr
, op
[0], ZERO
);
10612 macro_build_branch_rsrt (likely
? M_BEQL
: M_BEQ
,
10613 &offset_expr
, AT
, ZERO
);
10619 /* Fall through. */
10622 macro_build_branch_rs (likely
? M_BGTZL
: M_BGTZ
, &offset_expr
, op
[0]);
10623 else if (op
[0] == 0)
10624 macro_build_branch_rs (likely
? M_BLTZL
: M_BLTZ
, &offset_expr
, op
[1]);
10628 macro_build (NULL
, "slt", "d,v,t", AT
, op
[1], op
[0]);
10629 macro_build_branch_rsrt (likely
? M_BNEL
: M_BNE
,
10630 &offset_expr
, AT
, ZERO
);
10636 /* Fall through. */
10639 macro_build_branch_rsrt (likely
? M_BNEL
: M_BNE
,
10640 &offset_expr
, op
[0], ZERO
);
10641 else if (op
[0] == 0)
10646 macro_build (NULL
, "sltu", "d,v,t", AT
, op
[1], op
[0]);
10647 macro_build_branch_rsrt (likely
? M_BNEL
: M_BNE
,
10648 &offset_expr
, AT
, ZERO
);
10654 /* Fall through. */
10657 macro_build_branch_rs (likely
? M_BLEZL
: M_BLEZ
, &offset_expr
, op
[0]);
10658 else if (op
[0] == 0)
10659 macro_build_branch_rs (likely
? M_BGEZL
: M_BGEZ
, &offset_expr
, op
[1]);
10663 macro_build (NULL
, "slt", "d,v,t", AT
, op
[1], op
[0]);
10664 macro_build_branch_rsrt (likely
? M_BEQL
: M_BEQ
,
10665 &offset_expr
, AT
, ZERO
);
10671 /* Fall through. */
10673 if (imm_expr
.X_add_number
>= GPR_SMAX
)
10675 ++imm_expr
.X_add_number
;
10676 /* Fall through. */
10679 if (mask
== M_BLTL_I
)
10681 if (imm_expr
.X_add_number
== 0)
10682 macro_build_branch_rs (likely
? M_BLTZL
: M_BLTZ
, &offset_expr
, op
[0]);
10683 else if (imm_expr
.X_add_number
== 1)
10684 macro_build_branch_rs (likely
? M_BLEZL
: M_BLEZ
, &offset_expr
, op
[0]);
10689 macro_build_branch_rsrt (likely
? M_BNEL
: M_BNE
,
10690 &offset_expr
, AT
, ZERO
);
10696 /* Fall through. */
10699 macro_build_branch_rsrt (likely
? M_BEQL
: M_BEQ
,
10700 &offset_expr
, op
[0], ZERO
);
10701 else if (op
[0] == 0)
10706 macro_build (NULL
, "sltu", "d,v,t", AT
, op
[1], op
[0]);
10707 macro_build_branch_rsrt (likely
? M_BEQL
: M_BEQ
,
10708 &offset_expr
, AT
, ZERO
);
10714 /* Fall through. */
10718 && imm_expr
.X_add_number
== -1))
10720 ++imm_expr
.X_add_number
;
10721 /* Fall through. */
10724 if (mask
== M_BLTUL_I
)
10726 if (imm_expr
.X_add_number
== 0)
10728 else if (imm_expr
.X_add_number
== 1)
10729 macro_build_branch_rsrt (likely
? M_BEQL
: M_BEQ
,
10730 &offset_expr
, op
[0], ZERO
);
10735 macro_build_branch_rsrt (likely
? M_BNEL
: M_BNE
,
10736 &offset_expr
, AT
, ZERO
);
10742 /* Fall through. */
10745 macro_build_branch_rs (likely
? M_BLTZL
: M_BLTZ
, &offset_expr
, op
[0]);
10746 else if (op
[0] == 0)
10747 macro_build_branch_rs (likely
? M_BGTZL
: M_BGTZ
, &offset_expr
, op
[1]);
10751 macro_build (NULL
, "slt", "d,v,t", AT
, op
[0], op
[1]);
10752 macro_build_branch_rsrt (likely
? M_BNEL
: M_BNE
,
10753 &offset_expr
, AT
, ZERO
);
10759 /* Fall through. */
10763 else if (op
[0] == 0)
10764 macro_build_branch_rsrt (likely
? M_BNEL
: M_BNE
,
10765 &offset_expr
, ZERO
, op
[1]);
10769 macro_build (NULL
, "sltu", "d,v,t", AT
, op
[0], op
[1]);
10770 macro_build_branch_rsrt (likely
? M_BNEL
: M_BNE
,
10771 &offset_expr
, AT
, ZERO
);
10777 /* Fall through. */
10783 /* Fall through. */
10789 as_warn (_("divide by zero"));
10791 macro_build (NULL
, "teq", TRAP_FMT
, ZERO
, ZERO
, 7);
10793 macro_build (NULL
, "break", BRK_FMT
, 7);
10797 start_noreorder ();
10800 macro_build (NULL
, "teq", TRAP_FMT
, op
[2], ZERO
, 7);
10801 macro_build (NULL
, dbl
? "ddiv" : "div", "z,s,t", op
[1], op
[2]);
10805 if (mips_opts
.micromips
)
10806 micromips_label_expr (&label_expr
);
10808 label_expr
.X_add_number
= 8;
10809 macro_build (&label_expr
, "bne", "s,t,p", op
[2], ZERO
);
10810 macro_build (NULL
, dbl
? "ddiv" : "div", "z,s,t", op
[1], op
[2]);
10811 macro_build (NULL
, "break", BRK_FMT
, 7);
10812 if (mips_opts
.micromips
)
10813 micromips_add_label ();
10815 expr1
.X_add_number
= -1;
10817 load_register (AT
, &expr1
, dbl
);
10818 if (mips_opts
.micromips
)
10819 micromips_label_expr (&label_expr
);
10821 label_expr
.X_add_number
= mips_trap
? (dbl
? 12 : 8) : (dbl
? 20 : 16);
10822 macro_build (&label_expr
, "bne", "s,t,p", op
[2], AT
);
10825 expr1
.X_add_number
= 1;
10826 load_register (AT
, &expr1
, dbl
);
10827 macro_build (NULL
, "dsll32", SHFT_FMT
, AT
, AT
, 31);
10831 expr1
.X_add_number
= 0x80000000;
10832 macro_build (&expr1
, "lui", LUI_FMT
, AT
, BFD_RELOC_HI16
);
10836 macro_build (NULL
, "teq", TRAP_FMT
, op
[1], AT
, 6);
10837 /* We want to close the noreorder block as soon as possible, so
10838 that later insns are available for delay slot filling. */
10843 if (mips_opts
.micromips
)
10844 micromips_label_expr (&label_expr
);
10846 label_expr
.X_add_number
= 8;
10847 macro_build (&label_expr
, "bne", "s,t,p", op
[1], AT
);
10848 macro_build (NULL
, "nop", "");
10850 /* We want to close the noreorder block as soon as possible, so
10851 that later insns are available for delay slot filling. */
10854 macro_build (NULL
, "break", BRK_FMT
, 6);
10856 if (mips_opts
.micromips
)
10857 micromips_add_label ();
10858 macro_build (NULL
, s
, MFHL_FMT
, op
[0]);
10897 if (imm_expr
.X_add_number
== 0)
10899 as_warn (_("divide by zero"));
10901 macro_build (NULL
, "teq", TRAP_FMT
, ZERO
, ZERO
, 7);
10903 macro_build (NULL
, "break", BRK_FMT
, 7);
10906 if (imm_expr
.X_add_number
== 1)
10908 if (strcmp (s2
, "mflo") == 0)
10909 move_register (op
[0], op
[1]);
10911 move_register (op
[0], ZERO
);
10914 if (imm_expr
.X_add_number
== -1 && s
[strlen (s
) - 1] != 'u')
10916 if (strcmp (s2
, "mflo") == 0)
10917 macro_build (NULL
, dbl
? "dneg" : "neg", "d,w", op
[0], op
[1]);
10919 move_register (op
[0], ZERO
);
10924 load_register (AT
, &imm_expr
, dbl
);
10925 macro_build (NULL
, s
, "z,s,t", op
[1], AT
);
10926 macro_build (NULL
, s2
, MFHL_FMT
, op
[0]);
10945 start_noreorder ();
10948 macro_build (NULL
, "teq", TRAP_FMT
, op
[2], ZERO
, 7);
10949 macro_build (NULL
, s
, "z,s,t", op
[1], op
[2]);
10950 /* We want to close the noreorder block as soon as possible, so
10951 that later insns are available for delay slot filling. */
10956 if (mips_opts
.micromips
)
10957 micromips_label_expr (&label_expr
);
10959 label_expr
.X_add_number
= 8;
10960 macro_build (&label_expr
, "bne", "s,t,p", op
[2], ZERO
);
10961 macro_build (NULL
, s
, "z,s,t", op
[1], op
[2]);
10963 /* We want to close the noreorder block as soon as possible, so
10964 that later insns are available for delay slot filling. */
10966 macro_build (NULL
, "break", BRK_FMT
, 7);
10967 if (mips_opts
.micromips
)
10968 micromips_add_label ();
10970 macro_build (NULL
, s2
, MFHL_FMT
, op
[0]);
10975 /* Fall through. */
10981 /* Fall through. */
10984 /* Load the address of a symbol into a register. If breg is not
10985 zero, we then add a base register to it. */
10988 if (dbl
&& GPR_SIZE
== 32)
10989 as_warn (_("dla used to load 32-bit register; recommend using la "
10992 if (!dbl
&& HAVE_64BIT_OBJECTS
)
10993 as_warn (_("la used to load 64-bit address; recommend using dla "
10996 if (small_offset_p (0, align
, 16))
10998 macro_build (&offset_expr
, ADDRESS_ADDI_INSN
, "t,r,j", op
[0], breg
,
10999 -1, offset_reloc
[0], offset_reloc
[1], offset_reloc
[2]);
11003 if (mips_opts
.at
&& (op
[0] == breg
))
11011 if (offset_expr
.X_op
!= O_symbol
11012 && offset_expr
.X_op
!= O_constant
)
11014 as_bad (_("expression too complex"));
11015 offset_expr
.X_op
= O_constant
;
11018 if (offset_expr
.X_op
== O_constant
)
11019 load_register (tempreg
, &offset_expr
, HAVE_64BIT_ADDRESSES
);
11020 else if (mips_pic
== NO_PIC
)
11022 /* If this is a reference to a GP relative symbol, we want
11023 addiu $tempreg,$gp,<sym> (BFD_RELOC_GPREL16)
11025 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
11026 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
11027 If we have a constant, we need two instructions anyhow,
11028 so we may as well always use the latter form.
11030 With 64bit address space and a usable $at we want
11031 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
11032 lui $at,<sym> (BFD_RELOC_HI16_S)
11033 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
11034 daddiu $at,<sym> (BFD_RELOC_LO16)
11036 daddu $tempreg,$tempreg,$at
11038 If $at is already in use, we use a path which is suboptimal
11039 on superscalar processors.
11040 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
11041 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
11043 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
11045 daddiu $tempreg,<sym> (BFD_RELOC_LO16)
11047 For GP relative symbols in 64bit address space we can use
11048 the same sequence as in 32bit address space. */
11049 if (HAVE_64BIT_SYMBOLS
)
11051 if ((valueT
) offset_expr
.X_add_number
<= MAX_GPREL_OFFSET
11052 && !nopic_need_relax (offset_expr
.X_add_symbol
, 1))
11054 relax_start (offset_expr
.X_add_symbol
);
11055 macro_build (&offset_expr
, ADDRESS_ADDI_INSN
, "t,r,j",
11056 tempreg
, mips_gp_register
, BFD_RELOC_GPREL16
);
11060 if (used_at
== 0 && mips_opts
.at
)
11062 macro_build (&offset_expr
, "lui", LUI_FMT
,
11063 tempreg
, BFD_RELOC_MIPS_HIGHEST
);
11064 macro_build (&offset_expr
, "lui", LUI_FMT
,
11065 AT
, BFD_RELOC_HI16_S
);
11066 macro_build (&offset_expr
, "daddiu", "t,r,j",
11067 tempreg
, tempreg
, BFD_RELOC_MIPS_HIGHER
);
11068 macro_build (&offset_expr
, "daddiu", "t,r,j",
11069 AT
, AT
, BFD_RELOC_LO16
);
11070 macro_build (NULL
, "dsll32", SHFT_FMT
, tempreg
, tempreg
, 0);
11071 macro_build (NULL
, "daddu", "d,v,t", tempreg
, tempreg
, AT
);
11076 macro_build (&offset_expr
, "lui", LUI_FMT
,
11077 tempreg
, BFD_RELOC_MIPS_HIGHEST
);
11078 macro_build (&offset_expr
, "daddiu", "t,r,j",
11079 tempreg
, tempreg
, BFD_RELOC_MIPS_HIGHER
);
11080 macro_build (NULL
, "dsll", SHFT_FMT
, tempreg
, tempreg
, 16);
11081 macro_build (&offset_expr
, "daddiu", "t,r,j",
11082 tempreg
, tempreg
, BFD_RELOC_HI16_S
);
11083 macro_build (NULL
, "dsll", SHFT_FMT
, tempreg
, tempreg
, 16);
11084 macro_build (&offset_expr
, "daddiu", "t,r,j",
11085 tempreg
, tempreg
, BFD_RELOC_LO16
);
11088 if (mips_relax
.sequence
)
11093 if ((valueT
) offset_expr
.X_add_number
<= MAX_GPREL_OFFSET
11094 && !nopic_need_relax (offset_expr
.X_add_symbol
, 1))
11096 relax_start (offset_expr
.X_add_symbol
);
11097 macro_build (&offset_expr
, ADDRESS_ADDI_INSN
, "t,r,j",
11098 tempreg
, mips_gp_register
, BFD_RELOC_GPREL16
);
11101 if (!IS_SEXT_32BIT_NUM (offset_expr
.X_add_number
))
11102 as_bad (_("offset too large"));
11103 macro_build_lui (&offset_expr
, tempreg
);
11104 macro_build (&offset_expr
, ADDRESS_ADDI_INSN
, "t,r,j",
11105 tempreg
, tempreg
, BFD_RELOC_LO16
);
11106 if (mips_relax
.sequence
)
11110 else if (!mips_big_got
&& !HAVE_NEWABI
)
11112 int lw_reloc_type
= (int) BFD_RELOC_MIPS_GOT16
;
11114 /* If this is a reference to an external symbol, and there
11115 is no constant, we want
11116 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11117 or for lca or if tempreg is PIC_CALL_REG
11118 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
11119 For a local symbol, we want
11120 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11122 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
11124 If we have a small constant, and this is a reference to
11125 an external symbol, we want
11126 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11128 addiu $tempreg,$tempreg,<constant>
11129 For a local symbol, we want the same instruction
11130 sequence, but we output a BFD_RELOC_LO16 reloc on the
11133 If we have a large constant, and this is a reference to
11134 an external symbol, we want
11135 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11136 lui $at,<hiconstant>
11137 addiu $at,$at,<loconstant>
11138 addu $tempreg,$tempreg,$at
11139 For a local symbol, we want the same instruction
11140 sequence, but we output a BFD_RELOC_LO16 reloc on the
11144 if (offset_expr
.X_add_number
== 0)
11146 if (mips_pic
== SVR4_PIC
11148 && (call
|| tempreg
== PIC_CALL_REG
))
11149 lw_reloc_type
= (int) BFD_RELOC_MIPS_CALL16
;
11151 relax_start (offset_expr
.X_add_symbol
);
11152 macro_build (&offset_expr
, ADDRESS_LOAD_INSN
, "t,o(b)", tempreg
,
11153 lw_reloc_type
, mips_gp_register
);
11156 /* We're going to put in an addu instruction using
11157 tempreg, so we may as well insert the nop right
11162 macro_build (&offset_expr
, ADDRESS_LOAD_INSN
, "t,o(b)",
11163 tempreg
, BFD_RELOC_MIPS_GOT16
, mips_gp_register
);
11165 macro_build (&offset_expr
, ADDRESS_ADDI_INSN
, "t,r,j",
11166 tempreg
, tempreg
, BFD_RELOC_LO16
);
11168 /* FIXME: If breg == 0, and the next instruction uses
11169 $tempreg, then if this variant case is used an extra
11170 nop will be generated. */
11172 else if (offset_expr
.X_add_number
>= -0x8000
11173 && offset_expr
.X_add_number
< 0x8000)
11175 load_got_offset (tempreg
, &offset_expr
);
11177 add_got_offset (tempreg
, &offset_expr
);
11181 expr1
.X_add_number
= offset_expr
.X_add_number
;
11182 offset_expr
.X_add_number
=
11183 SEXT_16BIT (offset_expr
.X_add_number
);
11184 load_got_offset (tempreg
, &offset_expr
);
11185 offset_expr
.X_add_number
= expr1
.X_add_number
;
11186 /* If we are going to add in a base register, and the
11187 target register and the base register are the same,
11188 then we are using AT as a temporary register. Since
11189 we want to load the constant into AT, we add our
11190 current AT (from the global offset table) and the
11191 register into the register now, and pretend we were
11192 not using a base register. */
11196 macro_build (NULL
, ADDRESS_ADD_INSN
, "d,v,t",
11201 add_got_offset_hilo (tempreg
, &offset_expr
, AT
);
11205 else if (!mips_big_got
&& HAVE_NEWABI
)
11207 int add_breg_early
= 0;
11209 /* If this is a reference to an external, and there is no
11210 constant, or local symbol (*), with or without a
11212 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
11213 or for lca or if tempreg is PIC_CALL_REG
11214 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
11216 If we have a small constant, and this is a reference to
11217 an external symbol, we want
11218 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
11219 addiu $tempreg,$tempreg,<constant>
11221 If we have a large constant, and this is a reference to
11222 an external symbol, we want
11223 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
11224 lui $at,<hiconstant>
11225 addiu $at,$at,<loconstant>
11226 addu $tempreg,$tempreg,$at
11228 (*) Other assemblers seem to prefer GOT_PAGE/GOT_OFST for
11229 local symbols, even though it introduces an additional
11232 if (offset_expr
.X_add_number
)
11234 expr1
.X_add_number
= offset_expr
.X_add_number
;
11235 offset_expr
.X_add_number
= 0;
11237 relax_start (offset_expr
.X_add_symbol
);
11238 macro_build (&offset_expr
, ADDRESS_LOAD_INSN
, "t,o(b)", tempreg
,
11239 BFD_RELOC_MIPS_GOT_DISP
, mips_gp_register
);
11241 if (expr1
.X_add_number
>= -0x8000
11242 && expr1
.X_add_number
< 0x8000)
11244 macro_build (&expr1
, ADDRESS_ADDI_INSN
, "t,r,j",
11245 tempreg
, tempreg
, BFD_RELOC_LO16
);
11247 else if (IS_SEXT_32BIT_NUM (expr1
.X_add_number
+ 0x8000))
11251 /* If we are going to add in a base register, and the
11252 target register and the base register are the same,
11253 then we are using AT as a temporary register. Since
11254 we want to load the constant into AT, we add our
11255 current AT (from the global offset table) and the
11256 register into the register now, and pretend we were
11257 not using a base register. */
11262 gas_assert (tempreg
== AT
);
11263 macro_build (NULL
, ADDRESS_ADD_INSN
, "d,v,t",
11266 add_breg_early
= 1;
11269 load_register (AT
, &expr1
, HAVE_64BIT_ADDRESSES
);
11270 macro_build (NULL
, ADDRESS_ADD_INSN
, "d,v,t",
11276 as_bad (_("PIC code offset overflow (max 32 signed bits)"));
11279 offset_expr
.X_add_number
= expr1
.X_add_number
;
11281 macro_build (&offset_expr
, ADDRESS_LOAD_INSN
, "t,o(b)", tempreg
,
11282 BFD_RELOC_MIPS_GOT_DISP
, mips_gp_register
);
11283 if (add_breg_early
)
11285 macro_build (NULL
, ADDRESS_ADD_INSN
, "d,v,t",
11286 op
[0], tempreg
, breg
);
11292 else if (breg
== 0 && (call
|| tempreg
== PIC_CALL_REG
))
11294 relax_start (offset_expr
.X_add_symbol
);
11295 macro_build (&offset_expr
, ADDRESS_LOAD_INSN
, "t,o(b)", tempreg
,
11296 BFD_RELOC_MIPS_CALL16
, mips_gp_register
);
11298 macro_build (&offset_expr
, ADDRESS_LOAD_INSN
, "t,o(b)", tempreg
,
11299 BFD_RELOC_MIPS_GOT_DISP
, mips_gp_register
);
11304 macro_build (&offset_expr
, ADDRESS_LOAD_INSN
, "t,o(b)", tempreg
,
11305 BFD_RELOC_MIPS_GOT_DISP
, mips_gp_register
);
11308 else if (mips_big_got
&& !HAVE_NEWABI
)
11311 int lui_reloc_type
= (int) BFD_RELOC_MIPS_GOT_HI16
;
11312 int lw_reloc_type
= (int) BFD_RELOC_MIPS_GOT_LO16
;
11313 int local_reloc_type
= (int) BFD_RELOC_MIPS_GOT16
;
11315 /* This is the large GOT case. If this is a reference to an
11316 external symbol, and there is no constant, we want
11317 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
11318 addu $tempreg,$tempreg,$gp
11319 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
11320 or for lca or if tempreg is PIC_CALL_REG
11321 lui $tempreg,<sym> (BFD_RELOC_MIPS_CALL_HI16)
11322 addu $tempreg,$tempreg,$gp
11323 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_CALL_LO16)
11324 For a local symbol, we want
11325 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11327 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
11329 If we have a small constant, and this is a reference to
11330 an external symbol, we want
11331 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
11332 addu $tempreg,$tempreg,$gp
11333 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
11335 addiu $tempreg,$tempreg,<constant>
11336 For a local symbol, we want
11337 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11339 addiu $tempreg,$tempreg,<constant> (BFD_RELOC_LO16)
11341 If we have a large constant, and this is a reference to
11342 an external symbol, we want
11343 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
11344 addu $tempreg,$tempreg,$gp
11345 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
11346 lui $at,<hiconstant>
11347 addiu $at,$at,<loconstant>
11348 addu $tempreg,$tempreg,$at
11349 For a local symbol, we want
11350 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11351 lui $at,<hiconstant>
11352 addiu $at,$at,<loconstant> (BFD_RELOC_LO16)
11353 addu $tempreg,$tempreg,$at
11356 expr1
.X_add_number
= offset_expr
.X_add_number
;
11357 offset_expr
.X_add_number
= 0;
11358 relax_start (offset_expr
.X_add_symbol
);
11359 gpdelay
= reg_needs_delay (mips_gp_register
);
11360 if (expr1
.X_add_number
== 0 && breg
== 0
11361 && (call
|| tempreg
== PIC_CALL_REG
))
11363 lui_reloc_type
= (int) BFD_RELOC_MIPS_CALL_HI16
;
11364 lw_reloc_type
= (int) BFD_RELOC_MIPS_CALL_LO16
;
11366 macro_build (&offset_expr
, "lui", LUI_FMT
, tempreg
, lui_reloc_type
);
11367 macro_build (NULL
, ADDRESS_ADD_INSN
, "d,v,t",
11368 tempreg
, tempreg
, mips_gp_register
);
11369 macro_build (&offset_expr
, ADDRESS_LOAD_INSN
, "t,o(b)",
11370 tempreg
, lw_reloc_type
, tempreg
);
11371 if (expr1
.X_add_number
== 0)
11375 /* We're going to put in an addu instruction using
11376 tempreg, so we may as well insert the nop right
11381 else if (expr1
.X_add_number
>= -0x8000
11382 && expr1
.X_add_number
< 0x8000)
11385 macro_build (&expr1
, ADDRESS_ADDI_INSN
, "t,r,j",
11386 tempreg
, tempreg
, BFD_RELOC_LO16
);
11392 /* If we are going to add in a base register, and the
11393 target register and the base register are the same,
11394 then we are using AT as a temporary register. Since
11395 we want to load the constant into AT, we add our
11396 current AT (from the global offset table) and the
11397 register into the register now, and pretend we were
11398 not using a base register. */
11403 gas_assert (tempreg
== AT
);
11405 macro_build (NULL
, ADDRESS_ADD_INSN
, "d,v,t",
11410 load_register (AT
, &expr1
, HAVE_64BIT_ADDRESSES
);
11411 macro_build (NULL
, ADDRESS_ADD_INSN
, "d,v,t", dreg
, dreg
, AT
);
11415 offset_expr
.X_add_number
= SEXT_16BIT (expr1
.X_add_number
);
11420 /* This is needed because this instruction uses $gp, but
11421 the first instruction on the main stream does not. */
11422 macro_build (NULL
, "nop", "");
11425 macro_build (&offset_expr
, ADDRESS_LOAD_INSN
, "t,o(b)", tempreg
,
11426 local_reloc_type
, mips_gp_register
);
11427 if (expr1
.X_add_number
>= -0x8000
11428 && expr1
.X_add_number
< 0x8000)
11431 macro_build (&offset_expr
, ADDRESS_ADDI_INSN
, "t,r,j",
11432 tempreg
, tempreg
, BFD_RELOC_LO16
);
11433 /* FIXME: If add_number is 0, and there was no base
11434 register, the external symbol case ended with a load,
11435 so if the symbol turns out to not be external, and
11436 the next instruction uses tempreg, an unnecessary nop
11437 will be inserted. */
11443 /* We must add in the base register now, as in the
11444 external symbol case. */
11445 gas_assert (tempreg
== AT
);
11447 macro_build (NULL
, ADDRESS_ADD_INSN
, "d,v,t",
11450 /* We set breg to 0 because we have arranged to add
11451 it in in both cases. */
11455 macro_build_lui (&expr1
, AT
);
11456 macro_build (&offset_expr
, ADDRESS_ADDI_INSN
, "t,r,j",
11457 AT
, AT
, BFD_RELOC_LO16
);
11458 macro_build (NULL
, ADDRESS_ADD_INSN
, "d,v,t",
11459 tempreg
, tempreg
, AT
);
11464 else if (mips_big_got
&& HAVE_NEWABI
)
11466 int lui_reloc_type
= (int) BFD_RELOC_MIPS_GOT_HI16
;
11467 int lw_reloc_type
= (int) BFD_RELOC_MIPS_GOT_LO16
;
11468 int add_breg_early
= 0;
11470 /* This is the large GOT case. If this is a reference to an
11471 external symbol, and there is no constant, we want
11472 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
11473 add $tempreg,$tempreg,$gp
11474 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
11475 or for lca or if tempreg is PIC_CALL_REG
11476 lui $tempreg,<sym> (BFD_RELOC_MIPS_CALL_HI16)
11477 add $tempreg,$tempreg,$gp
11478 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_CALL_LO16)
11480 If we have a small constant, and this is a reference to
11481 an external symbol, we want
11482 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
11483 add $tempreg,$tempreg,$gp
11484 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
11485 addi $tempreg,$tempreg,<constant>
11487 If we have a large constant, and this is a reference to
11488 an external symbol, we want
11489 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
11490 addu $tempreg,$tempreg,$gp
11491 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
11492 lui $at,<hiconstant>
11493 addi $at,$at,<loconstant>
11494 add $tempreg,$tempreg,$at
11496 If we have NewABI, and we know it's a local symbol, we want
11497 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
11498 addiu $reg,$reg,<sym> (BFD_RELOC_MIPS_GOT_OFST)
11499 otherwise we have to resort to GOT_HI16/GOT_LO16. */
11501 relax_start (offset_expr
.X_add_symbol
);
11503 expr1
.X_add_number
= offset_expr
.X_add_number
;
11504 offset_expr
.X_add_number
= 0;
11506 if (expr1
.X_add_number
== 0 && breg
== 0
11507 && (call
|| tempreg
== PIC_CALL_REG
))
11509 lui_reloc_type
= (int) BFD_RELOC_MIPS_CALL_HI16
;
11510 lw_reloc_type
= (int) BFD_RELOC_MIPS_CALL_LO16
;
11512 macro_build (&offset_expr
, "lui", LUI_FMT
, tempreg
, lui_reloc_type
);
11513 macro_build (NULL
, ADDRESS_ADD_INSN
, "d,v,t",
11514 tempreg
, tempreg
, mips_gp_register
);
11515 macro_build (&offset_expr
, ADDRESS_LOAD_INSN
, "t,o(b)",
11516 tempreg
, lw_reloc_type
, tempreg
);
11518 if (expr1
.X_add_number
== 0)
11520 else if (expr1
.X_add_number
>= -0x8000
11521 && expr1
.X_add_number
< 0x8000)
11523 macro_build (&expr1
, ADDRESS_ADDI_INSN
, "t,r,j",
11524 tempreg
, tempreg
, BFD_RELOC_LO16
);
11526 else if (IS_SEXT_32BIT_NUM (expr1
.X_add_number
+ 0x8000))
11530 /* If we are going to add in a base register, and the
11531 target register and the base register are the same,
11532 then we are using AT as a temporary register. Since
11533 we want to load the constant into AT, we add our
11534 current AT (from the global offset table) and the
11535 register into the register now, and pretend we were
11536 not using a base register. */
11541 gas_assert (tempreg
== AT
);
11542 macro_build (NULL
, ADDRESS_ADD_INSN
, "d,v,t",
11545 add_breg_early
= 1;
11548 load_register (AT
, &expr1
, HAVE_64BIT_ADDRESSES
);
11549 macro_build (NULL
, ADDRESS_ADD_INSN
, "d,v,t", dreg
, dreg
, AT
);
11554 as_bad (_("PIC code offset overflow (max 32 signed bits)"));
11557 offset_expr
.X_add_number
= expr1
.X_add_number
;
11558 macro_build (&offset_expr
, ADDRESS_LOAD_INSN
, "t,o(b)", tempreg
,
11559 BFD_RELOC_MIPS_GOT_PAGE
, mips_gp_register
);
11560 macro_build (&offset_expr
, ADDRESS_ADDI_INSN
, "t,r,j", tempreg
,
11561 tempreg
, BFD_RELOC_MIPS_GOT_OFST
);
11562 if (add_breg_early
)
11564 macro_build (NULL
, ADDRESS_ADD_INSN
, "d,v,t",
11565 op
[0], tempreg
, breg
);
11575 macro_build (NULL
, ADDRESS_ADD_INSN
, "d,v,t", op
[0], tempreg
, breg
);
11579 gas_assert (!mips_opts
.micromips
);
11580 macro_build (NULL
, "c2", "C", (op
[0] << 16) | 0x01);
11584 gas_assert (!mips_opts
.micromips
);
11585 macro_build (NULL
, "c2", "C", 0x02);
11589 gas_assert (!mips_opts
.micromips
);
11590 macro_build (NULL
, "c2", "C", (op
[0] << 16) | 0x02);
11594 gas_assert (!mips_opts
.micromips
);
11595 macro_build (NULL
, "c2", "C", 3);
11599 gas_assert (!mips_opts
.micromips
);
11600 macro_build (NULL
, "c2", "C", (op
[0] << 16) | 0x03);
11604 /* The j instruction may not be used in PIC code, since it
11605 requires an absolute address. We convert it to a b
11607 if (mips_pic
== NO_PIC
)
11608 macro_build (&offset_expr
, "j", "a");
11610 macro_build (&offset_expr
, "b", "p");
11613 /* The jal instructions must be handled as macros because when
11614 generating PIC code they expand to multi-instruction
11615 sequences. Normally they are simple instructions. */
11619 /* Fall through. */
11621 gas_assert (mips_opts
.micromips
);
11622 if (mips_opts
.insn32
)
11624 as_bad (_("opcode not supported in the `insn32' mode `%s'"), str
);
11632 /* Fall through. */
11635 if (mips_pic
== NO_PIC
)
11637 s
= jals
? "jalrs" : "jalr";
11638 if (mips_opts
.micromips
11639 && !mips_opts
.insn32
11641 && !(history
[0].insn_mo
->pinfo2
& INSN2_BRANCH_DELAY_32BIT
))
11642 macro_build (NULL
, s
, "mj", op
[1]);
11644 macro_build (NULL
, s
, JALR_FMT
, op
[0], op
[1]);
11648 int cprestore
= (mips_pic
== SVR4_PIC
&& !HAVE_NEWABI
11649 && mips_cprestore_offset
>= 0);
11651 if (op
[1] != PIC_CALL_REG
)
11652 as_warn (_("MIPS PIC call to register other than $25"));
11654 s
= ((mips_opts
.micromips
11655 && !mips_opts
.insn32
11656 && (!mips_opts
.noreorder
|| cprestore
))
11657 ? "jalrs" : "jalr");
11658 if (mips_opts
.micromips
11659 && !mips_opts
.insn32
11661 && !(history
[0].insn_mo
->pinfo2
& INSN2_BRANCH_DELAY_32BIT
))
11662 macro_build (NULL
, s
, "mj", op
[1]);
11664 macro_build (NULL
, s
, JALR_FMT
, op
[0], op
[1]);
11665 if (mips_pic
== SVR4_PIC
&& !HAVE_NEWABI
)
11667 if (mips_cprestore_offset
< 0)
11668 as_warn (_("no .cprestore pseudo-op used in PIC code"));
11671 if (!mips_frame_reg_valid
)
11673 as_warn (_("no .frame pseudo-op used in PIC code"));
11674 /* Quiet this warning. */
11675 mips_frame_reg_valid
= 1;
11677 if (!mips_cprestore_valid
)
11679 as_warn (_("no .cprestore pseudo-op used in PIC code"));
11680 /* Quiet this warning. */
11681 mips_cprestore_valid
= 1;
11683 if (mips_opts
.noreorder
)
11684 macro_build (NULL
, "nop", "");
11685 expr1
.X_add_number
= mips_cprestore_offset
;
11686 macro_build_ldst_constoffset (&expr1
, ADDRESS_LOAD_INSN
,
11689 HAVE_64BIT_ADDRESSES
);
11697 gas_assert (mips_opts
.micromips
);
11698 if (mips_opts
.insn32
)
11700 as_bad (_("opcode not supported in the `insn32' mode `%s'"), str
);
11704 /* Fall through. */
11706 if (mips_pic
== NO_PIC
)
11707 macro_build (&offset_expr
, jals
? "jals" : "jal", "a");
11708 else if (mips_pic
== SVR4_PIC
)
11710 /* If this is a reference to an external symbol, and we are
11711 using a small GOT, we want
11712 lw $25,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
11716 lw $gp,cprestore($sp)
11717 The cprestore value is set using the .cprestore
11718 pseudo-op. If we are using a big GOT, we want
11719 lui $25,<sym> (BFD_RELOC_MIPS_CALL_HI16)
11721 lw $25,<sym>($25) (BFD_RELOC_MIPS_CALL_LO16)
11725 lw $gp,cprestore($sp)
11726 If the symbol is not external, we want
11727 lw $25,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11729 addiu $25,$25,<sym> (BFD_RELOC_LO16)
11732 lw $gp,cprestore($sp)
11734 For NewABI, we use the same CALL16 or CALL_HI16/CALL_LO16
11735 sequences above, minus nops, unless the symbol is local,
11736 which enables us to use GOT_PAGE/GOT_OFST (big got) or
11742 relax_start (offset_expr
.X_add_symbol
);
11743 macro_build (&offset_expr
, ADDRESS_LOAD_INSN
, "t,o(b)",
11744 PIC_CALL_REG
, BFD_RELOC_MIPS_CALL16
,
11747 macro_build (&offset_expr
, ADDRESS_LOAD_INSN
, "t,o(b)",
11748 PIC_CALL_REG
, BFD_RELOC_MIPS_GOT_DISP
,
11754 relax_start (offset_expr
.X_add_symbol
);
11755 macro_build (&offset_expr
, "lui", LUI_FMT
, PIC_CALL_REG
,
11756 BFD_RELOC_MIPS_CALL_HI16
);
11757 macro_build (NULL
, ADDRESS_ADD_INSN
, "d,v,t", PIC_CALL_REG
,
11758 PIC_CALL_REG
, mips_gp_register
);
11759 macro_build (&offset_expr
, ADDRESS_LOAD_INSN
, "t,o(b)",
11760 PIC_CALL_REG
, BFD_RELOC_MIPS_CALL_LO16
,
11763 macro_build (&offset_expr
, ADDRESS_LOAD_INSN
, "t,o(b)",
11764 PIC_CALL_REG
, BFD_RELOC_MIPS_GOT_PAGE
,
11766 macro_build (&offset_expr
, ADDRESS_ADDI_INSN
, "t,r,j",
11767 PIC_CALL_REG
, PIC_CALL_REG
,
11768 BFD_RELOC_MIPS_GOT_OFST
);
11772 macro_build_jalr (&offset_expr
, 0);
11776 relax_start (offset_expr
.X_add_symbol
);
11779 macro_build (&offset_expr
, ADDRESS_LOAD_INSN
, "t,o(b)",
11780 PIC_CALL_REG
, BFD_RELOC_MIPS_CALL16
,
11789 gpdelay
= reg_needs_delay (mips_gp_register
);
11790 macro_build (&offset_expr
, "lui", LUI_FMT
, PIC_CALL_REG
,
11791 BFD_RELOC_MIPS_CALL_HI16
);
11792 macro_build (NULL
, ADDRESS_ADD_INSN
, "d,v,t", PIC_CALL_REG
,
11793 PIC_CALL_REG
, mips_gp_register
);
11794 macro_build (&offset_expr
, ADDRESS_LOAD_INSN
, "t,o(b)",
11795 PIC_CALL_REG
, BFD_RELOC_MIPS_CALL_LO16
,
11800 macro_build (NULL
, "nop", "");
11802 macro_build (&offset_expr
, ADDRESS_LOAD_INSN
, "t,o(b)",
11803 PIC_CALL_REG
, BFD_RELOC_MIPS_GOT16
,
11806 macro_build (&offset_expr
, ADDRESS_ADDI_INSN
, "t,r,j",
11807 PIC_CALL_REG
, PIC_CALL_REG
, BFD_RELOC_LO16
);
11809 macro_build_jalr (&offset_expr
, mips_cprestore_offset
>= 0);
11811 if (mips_cprestore_offset
< 0)
11812 as_warn (_("no .cprestore pseudo-op used in PIC code"));
11815 if (!mips_frame_reg_valid
)
11817 as_warn (_("no .frame pseudo-op used in PIC code"));
11818 /* Quiet this warning. */
11819 mips_frame_reg_valid
= 1;
11821 if (!mips_cprestore_valid
)
11823 as_warn (_("no .cprestore pseudo-op used in PIC code"));
11824 /* Quiet this warning. */
11825 mips_cprestore_valid
= 1;
11827 if (mips_opts
.noreorder
)
11828 macro_build (NULL
, "nop", "");
11829 expr1
.X_add_number
= mips_cprestore_offset
;
11830 macro_build_ldst_constoffset (&expr1
, ADDRESS_LOAD_INSN
,
11833 HAVE_64BIT_ADDRESSES
);
11837 else if (mips_pic
== VXWORKS_PIC
)
11838 as_bad (_("non-PIC jump used in PIC library"));
11945 gas_assert (!mips_opts
.micromips
);
11948 /* Itbl support may require additional care here. */
11954 /* Itbl support may require additional care here. */
11960 offbits
= (mips_opts
.micromips
? 12
11961 : ISA_IS_R6 (mips_opts
.isa
) ? 11
11963 /* Itbl support may require additional care here. */
11967 gas_assert (!mips_opts
.micromips
);
11970 /* Itbl support may require additional care here. */
11976 offbits
= (mips_opts
.micromips
? 12 : 16);
11981 offbits
= (mips_opts
.micromips
? 12 : 16);
11986 /* Itbl support may require additional care here. */
11992 offbits
= (mips_opts
.micromips
? 12
11993 : ISA_IS_R6 (mips_opts
.isa
) ? 11
11995 /* Itbl support may require additional care here. */
12001 /* Itbl support may require additional care here. */
12007 /* Itbl support may require additional care here. */
12013 offbits
= (mips_opts
.micromips
? 12 : 16);
12018 offbits
= (mips_opts
.micromips
? 12 : 16);
12023 offbits
= (mips_opts
.micromips
? 12
12024 : ISA_IS_R6 (mips_opts
.isa
) ? 9
12030 offbits
= (mips_opts
.micromips
? 12
12031 : ISA_IS_R6 (mips_opts
.isa
) ? 9
12037 offbits
= (mips_opts
.micromips
? 12 : 16);
12040 gas_assert (mips_opts
.micromips
);
12047 gas_assert (mips_opts
.micromips
);
12056 s
= ip
->insn_mo
->name
;
12062 gas_assert (mips_opts
.micromips
);
12068 gas_assert (mips_opts
.micromips
);
12075 /* Try to use one the the load registers to compute the base address.
12076 We don't want to use $0 as tempreg. */
12079 if ((op
[0] == ZERO
&& op
[3] == op
[1])
12080 || (op
[1] == ZERO
&& op
[3] == op
[0])
12081 || (op
[0] == ZERO
&& op
[1] == ZERO
))
12083 else if (op
[0] != op
[3] && op
[0] != ZERO
)
12090 if (op
[2] == op
[0] + lp
|| op
[0] + lp
== ZERO
)
12093 tempreg
= op
[0] + lp
;
12110 gas_assert (!mips_opts
.micromips
);
12113 /* Itbl support may require additional care here. */
12119 /* Itbl support may require additional care here. */
12125 offbits
= (mips_opts
.micromips
? 12
12126 : ISA_IS_R6 (mips_opts
.isa
) ? 11
12128 /* Itbl support may require additional care here. */
12132 gas_assert (!mips_opts
.micromips
);
12135 /* Itbl support may require additional care here. */
12141 offbits
= (mips_opts
.micromips
? 12 : 16);
12146 offbits
= (mips_opts
.micromips
? 12 : 16);
12151 offbits
= (mips_opts
.micromips
? 12
12152 : ISA_IS_R6 (mips_opts
.isa
) ? 9
12158 offbits
= (mips_opts
.micromips
? 12
12159 : ISA_IS_R6 (mips_opts
.isa
) ? 9
12165 s
= ip
->insn_mo
->name
;
12172 fmt
= (mips_opts
.micromips
? "k,~(b)"
12173 : ISA_IS_R6 (mips_opts
.isa
) ? "k,+j(b)"
12175 offbits
= (mips_opts
.micromips
? 12
12176 : ISA_IS_R6 (mips_opts
.isa
) ? 9
12186 fmt
= (mips_opts
.micromips
? "k,~(b)"
12187 : ISA_IS_R6 (mips_opts
.isa
) ? "k,+j(b)"
12189 offbits
= (mips_opts
.micromips
? 12
12190 : ISA_IS_R6 (mips_opts
.isa
) ? 9
12202 /* Itbl support may require additional care here. */
12207 offbits
= (mips_opts
.micromips
? 12
12208 : ISA_IS_R6 (mips_opts
.isa
) ? 11
12210 /* Itbl support may require additional care here. */
12216 /* Itbl support may require additional care here. */
12220 gas_assert (!mips_opts
.micromips
);
12223 /* Itbl support may require additional care here. */
12229 offbits
= (mips_opts
.micromips
? 12 : 16);
12234 offbits
= (mips_opts
.micromips
? 12 : 16);
12237 gas_assert (mips_opts
.micromips
);
12243 gas_assert (mips_opts
.micromips
);
12249 gas_assert (mips_opts
.micromips
);
12255 gas_assert (mips_opts
.micromips
);
12263 breg
= ll_sc_paired
? op
[3] : op
[2];
12264 if (small_offset_p (0, align
, 16))
12266 /* The first case exists for M_LD_AB and M_SD_AB, which are
12267 macros for o32 but which should act like normal instructions
12270 macro_build (&offset_expr
, s
, fmt
, op
[0], -1, offset_reloc
[0],
12271 offset_reloc
[1], offset_reloc
[2], breg
);
12272 else if (small_offset_p (0, align
, offbits
))
12277 macro_build (NULL
, s
, fmt
, op
[0], op
[1], breg
);
12279 macro_build (NULL
, s
, fmt
, op
[0], breg
);
12282 macro_build (NULL
, s
, fmt
, op
[0],
12283 (int) offset_expr
.X_add_number
, breg
);
12289 macro_build (&offset_expr
, ADDRESS_ADDI_INSN
, "t,r,j",
12290 tempreg
, breg
, -1, offset_reloc
[0],
12291 offset_reloc
[1], offset_reloc
[2]);
12295 macro_build (NULL
, s
, fmt
, op
[0], op
[1], tempreg
);
12297 macro_build (NULL
, s
, fmt
, op
[0], tempreg
);
12300 macro_build (NULL
, s
, fmt
, op
[0], 0, tempreg
);
12308 if (offset_expr
.X_op
!= O_constant
12309 && offset_expr
.X_op
!= O_symbol
)
12311 as_bad (_("expression too complex"));
12312 offset_expr
.X_op
= O_constant
;
12315 if (HAVE_32BIT_ADDRESSES
12316 && !IS_SEXT_32BIT_NUM (offset_expr
.X_add_number
))
12318 as_bad (_("number (0x%" PRIx64
") larger than 32 bits"),
12319 offset_expr
.X_add_number
);
12322 /* A constant expression in PIC code can be handled just as it
12323 is in non PIC code. */
12324 if (offset_expr
.X_op
== O_constant
)
12326 expr1
.X_add_number
= offset_high_part (offset_expr
.X_add_number
,
12327 offbits
== 0 ? 16 : offbits
);
12328 offset_expr
.X_add_number
-= expr1
.X_add_number
;
12330 load_register (tempreg
, &expr1
, HAVE_64BIT_ADDRESSES
);
12332 macro_build (NULL
, ADDRESS_ADD_INSN
, "d,v,t",
12333 tempreg
, tempreg
, breg
);
12336 if (offset_expr
.X_add_number
!= 0)
12337 macro_build (&offset_expr
, ADDRESS_ADDI_INSN
,
12338 "t,r,j", tempreg
, tempreg
, BFD_RELOC_LO16
);
12340 macro_build (NULL
, s
, fmt
, op
[0], op
[1], tempreg
);
12342 macro_build (NULL
, s
, fmt
, op
[0], tempreg
);
12344 else if (offbits
== 16)
12345 macro_build (&offset_expr
, s
, fmt
, op
[0], BFD_RELOC_LO16
, tempreg
);
12347 macro_build (NULL
, s
, fmt
, op
[0],
12348 (int) offset_expr
.X_add_number
, tempreg
);
12350 else if (offbits
!= 16)
12352 /* The offset field is too narrow to be used for a low-part
12353 relocation, so load the whole address into the auxiliary
12355 load_address (tempreg
, &offset_expr
, &used_at
);
12357 macro_build (NULL
, ADDRESS_ADD_INSN
, "d,v,t",
12358 tempreg
, tempreg
, breg
);
12362 macro_build (NULL
, s
, fmt
, op
[0], op
[1], tempreg
);
12364 macro_build (NULL
, s
, fmt
, op
[0], tempreg
);
12367 macro_build (NULL
, s
, fmt
, op
[0], 0, tempreg
);
12369 else if (mips_pic
== NO_PIC
)
12371 /* If this is a reference to a GP relative symbol, and there
12372 is no base register, we want
12373 <op> op[0],<sym>($gp) (BFD_RELOC_GPREL16)
12374 Otherwise, if there is no base register, we want
12375 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
12376 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
12377 If we have a constant, we need two instructions anyhow,
12378 so we always use the latter form.
12380 If we have a base register, and this is a reference to a
12381 GP relative symbol, we want
12382 addu $tempreg,$breg,$gp
12383 <op> op[0],<sym>($tempreg) (BFD_RELOC_GPREL16)
12385 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
12386 addu $tempreg,$tempreg,$breg
12387 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
12388 With a constant we always use the latter case.
12390 With 64bit address space and no base register and $at usable,
12392 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
12393 lui $at,<sym> (BFD_RELOC_HI16_S)
12394 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
12397 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
12398 If we have a base register, we want
12399 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
12400 lui $at,<sym> (BFD_RELOC_HI16_S)
12401 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
12405 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
12407 Without $at we can't generate the optimal path for superscalar
12408 processors here since this would require two temporary registers.
12409 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
12410 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
12412 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
12414 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
12415 If we have a base register, we want
12416 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
12417 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
12419 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
12421 daddu $tempreg,$tempreg,$breg
12422 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
12424 For GP relative symbols in 64bit address space we can use
12425 the same sequence as in 32bit address space. */
12426 if (HAVE_64BIT_SYMBOLS
)
12428 if ((valueT
) offset_expr
.X_add_number
<= MAX_GPREL_OFFSET
12429 && !nopic_need_relax (offset_expr
.X_add_symbol
, 1))
12431 relax_start (offset_expr
.X_add_symbol
);
12434 macro_build (&offset_expr
, s
, fmt
, op
[0],
12435 BFD_RELOC_GPREL16
, mips_gp_register
);
12439 macro_build (NULL
, ADDRESS_ADD_INSN
, "d,v,t",
12440 tempreg
, breg
, mips_gp_register
);
12441 macro_build (&offset_expr
, s
, fmt
, op
[0],
12442 BFD_RELOC_GPREL16
, tempreg
);
12447 if (used_at
== 0 && mips_opts
.at
)
12449 macro_build (&offset_expr
, "lui", LUI_FMT
, tempreg
,
12450 BFD_RELOC_MIPS_HIGHEST
);
12451 macro_build (&offset_expr
, "lui", LUI_FMT
, AT
,
12453 macro_build (&offset_expr
, "daddiu", "t,r,j", tempreg
,
12454 tempreg
, BFD_RELOC_MIPS_HIGHER
);
12456 macro_build (NULL
, "daddu", "d,v,t", AT
, AT
, breg
);
12457 macro_build (NULL
, "dsll32", SHFT_FMT
, tempreg
, tempreg
, 0);
12458 macro_build (NULL
, "daddu", "d,v,t", tempreg
, tempreg
, AT
);
12459 macro_build (&offset_expr
, s
, fmt
, op
[0], BFD_RELOC_LO16
,
12465 macro_build (&offset_expr
, "lui", LUI_FMT
, tempreg
,
12466 BFD_RELOC_MIPS_HIGHEST
);
12467 macro_build (&offset_expr
, "daddiu", "t,r,j", tempreg
,
12468 tempreg
, BFD_RELOC_MIPS_HIGHER
);
12469 macro_build (NULL
, "dsll", SHFT_FMT
, tempreg
, tempreg
, 16);
12470 macro_build (&offset_expr
, "daddiu", "t,r,j", tempreg
,
12471 tempreg
, BFD_RELOC_HI16_S
);
12472 macro_build (NULL
, "dsll", SHFT_FMT
, tempreg
, tempreg
, 16);
12474 macro_build (NULL
, "daddu", "d,v,t",
12475 tempreg
, tempreg
, breg
);
12476 macro_build (&offset_expr
, s
, fmt
, op
[0],
12477 BFD_RELOC_LO16
, tempreg
);
12480 if (mips_relax
.sequence
)
12487 if ((valueT
) offset_expr
.X_add_number
<= MAX_GPREL_OFFSET
12488 && !nopic_need_relax (offset_expr
.X_add_symbol
, 1))
12490 relax_start (offset_expr
.X_add_symbol
);
12491 macro_build (&offset_expr
, s
, fmt
, op
[0], BFD_RELOC_GPREL16
,
12495 macro_build_lui (&offset_expr
, tempreg
);
12496 macro_build (&offset_expr
, s
, fmt
, op
[0],
12497 BFD_RELOC_LO16
, tempreg
);
12498 if (mips_relax
.sequence
)
12503 if ((valueT
) offset_expr
.X_add_number
<= MAX_GPREL_OFFSET
12504 && !nopic_need_relax (offset_expr
.X_add_symbol
, 1))
12506 relax_start (offset_expr
.X_add_symbol
);
12507 macro_build (NULL
, ADDRESS_ADD_INSN
, "d,v,t",
12508 tempreg
, breg
, mips_gp_register
);
12509 macro_build (&offset_expr
, s
, fmt
, op
[0],
12510 BFD_RELOC_GPREL16
, tempreg
);
12513 macro_build_lui (&offset_expr
, tempreg
);
12514 macro_build (NULL
, ADDRESS_ADD_INSN
, "d,v,t",
12515 tempreg
, tempreg
, breg
);
12516 macro_build (&offset_expr
, s
, fmt
, op
[0],
12517 BFD_RELOC_LO16
, tempreg
);
12518 if (mips_relax
.sequence
)
12522 else if (!mips_big_got
)
12524 int lw_reloc_type
= (int) BFD_RELOC_MIPS_GOT16
;
12526 /* If this is a reference to an external symbol, we want
12527 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12529 <op> op[0],0($tempreg)
12531 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12533 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
12534 <op> op[0],0($tempreg)
12536 For NewABI, we want
12537 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
12538 <op> op[0],<sym>($tempreg) (BFD_RELOC_MIPS_GOT_OFST)
12540 If there is a base register, we add it to $tempreg before
12541 the <op>. If there is a constant, we stick it in the
12542 <op> instruction. We don't handle constants larger than
12543 16 bits, because we have no way to load the upper 16 bits
12544 (actually, we could handle them for the subset of cases
12545 in which we are not using $at). */
12546 gas_assert (offset_expr
.X_op
== O_symbol
);
12549 macro_build (&offset_expr
, ADDRESS_LOAD_INSN
, "t,o(b)", tempreg
,
12550 BFD_RELOC_MIPS_GOT_PAGE
, mips_gp_register
);
12552 macro_build (NULL
, ADDRESS_ADD_INSN
, "d,v,t",
12553 tempreg
, tempreg
, breg
);
12554 macro_build (&offset_expr
, s
, fmt
, op
[0],
12555 BFD_RELOC_MIPS_GOT_OFST
, tempreg
);
12558 expr1
.X_add_number
= offset_expr
.X_add_number
;
12559 offset_expr
.X_add_number
= 0;
12560 if (expr1
.X_add_number
< -0x8000
12561 || expr1
.X_add_number
>= 0x8000)
12562 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
12563 macro_build (&offset_expr
, ADDRESS_LOAD_INSN
, "t,o(b)", tempreg
,
12564 lw_reloc_type
, mips_gp_register
);
12566 relax_start (offset_expr
.X_add_symbol
);
12568 macro_build (&offset_expr
, ADDRESS_ADDI_INSN
, "t,r,j", tempreg
,
12569 tempreg
, BFD_RELOC_LO16
);
12572 macro_build (NULL
, ADDRESS_ADD_INSN
, "d,v,t",
12573 tempreg
, tempreg
, breg
);
12574 macro_build (&expr1
, s
, fmt
, op
[0], BFD_RELOC_LO16
, tempreg
);
12576 else if (mips_big_got
&& !HAVE_NEWABI
)
12580 /* If this is a reference to an external symbol, we want
12581 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
12582 addu $tempreg,$tempreg,$gp
12583 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
12584 <op> op[0],0($tempreg)
12586 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12588 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
12589 <op> op[0],0($tempreg)
12590 If there is a base register, we add it to $tempreg before
12591 the <op>. If there is a constant, we stick it in the
12592 <op> instruction. We don't handle constants larger than
12593 16 bits, because we have no way to load the upper 16 bits
12594 (actually, we could handle them for the subset of cases
12595 in which we are not using $at). */
12596 gas_assert (offset_expr
.X_op
== O_symbol
);
12597 expr1
.X_add_number
= offset_expr
.X_add_number
;
12598 offset_expr
.X_add_number
= 0;
12599 if (expr1
.X_add_number
< -0x8000
12600 || expr1
.X_add_number
>= 0x8000)
12601 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
12602 gpdelay
= reg_needs_delay (mips_gp_register
);
12603 relax_start (offset_expr
.X_add_symbol
);
12604 macro_build (&offset_expr
, "lui", LUI_FMT
, tempreg
,
12605 BFD_RELOC_MIPS_GOT_HI16
);
12606 macro_build (NULL
, ADDRESS_ADD_INSN
, "d,v,t", tempreg
, tempreg
,
12608 macro_build (&offset_expr
, ADDRESS_LOAD_INSN
, "t,o(b)", tempreg
,
12609 BFD_RELOC_MIPS_GOT_LO16
, tempreg
);
12612 macro_build (NULL
, "nop", "");
12613 macro_build (&offset_expr
, ADDRESS_LOAD_INSN
, "t,o(b)", tempreg
,
12614 BFD_RELOC_MIPS_GOT16
, mips_gp_register
);
12616 macro_build (&offset_expr
, ADDRESS_ADDI_INSN
, "t,r,j", tempreg
,
12617 tempreg
, BFD_RELOC_LO16
);
12621 macro_build (NULL
, ADDRESS_ADD_INSN
, "d,v,t",
12622 tempreg
, tempreg
, breg
);
12623 macro_build (&expr1
, s
, fmt
, op
[0], BFD_RELOC_LO16
, tempreg
);
12625 else if (mips_big_got
&& HAVE_NEWABI
)
12627 /* If this is a reference to an external symbol, we want
12628 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
12629 add $tempreg,$tempreg,$gp
12630 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
12631 <op> op[0],<ofst>($tempreg)
12632 Otherwise, for local symbols, we want:
12633 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
12634 <op> op[0],<sym>($tempreg) (BFD_RELOC_MIPS_GOT_OFST) */
12635 gas_assert (offset_expr
.X_op
== O_symbol
);
12636 expr1
.X_add_number
= offset_expr
.X_add_number
;
12637 offset_expr
.X_add_number
= 0;
12638 if (expr1
.X_add_number
< -0x8000
12639 || expr1
.X_add_number
>= 0x8000)
12640 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
12641 relax_start (offset_expr
.X_add_symbol
);
12642 macro_build (&offset_expr
, "lui", LUI_FMT
, tempreg
,
12643 BFD_RELOC_MIPS_GOT_HI16
);
12644 macro_build (NULL
, ADDRESS_ADD_INSN
, "d,v,t", tempreg
, tempreg
,
12646 macro_build (&offset_expr
, ADDRESS_LOAD_INSN
, "t,o(b)", tempreg
,
12647 BFD_RELOC_MIPS_GOT_LO16
, tempreg
);
12649 macro_build (NULL
, ADDRESS_ADD_INSN
, "d,v,t",
12650 tempreg
, tempreg
, breg
);
12651 macro_build (&expr1
, s
, fmt
, op
[0], BFD_RELOC_LO16
, tempreg
);
12654 offset_expr
.X_add_number
= expr1
.X_add_number
;
12655 macro_build (&offset_expr
, ADDRESS_LOAD_INSN
, "t,o(b)", tempreg
,
12656 BFD_RELOC_MIPS_GOT_PAGE
, mips_gp_register
);
12658 macro_build (NULL
, ADDRESS_ADD_INSN
, "d,v,t",
12659 tempreg
, tempreg
, breg
);
12660 macro_build (&offset_expr
, s
, fmt
, op
[0],
12661 BFD_RELOC_MIPS_GOT_OFST
, tempreg
);
12670 gas_assert (mips_opts
.micromips
);
12671 gas_assert (mips_opts
.insn32
);
12672 start_noreorder ();
12673 macro_build (NULL
, "jr", "s", RA
);
12674 expr1
.X_add_number
= op
[0] << 2;
12675 macro_build (&expr1
, "addiu", "t,r,j", SP
, SP
, BFD_RELOC_LO16
);
12680 gas_assert (mips_opts
.micromips
);
12681 gas_assert (mips_opts
.insn32
);
12682 macro_build (NULL
, "jr", "s", op
[0]);
12683 if (mips_opts
.noreorder
)
12684 macro_build (NULL
, "nop", "");
12689 load_register (op
[0], &imm_expr
, 0);
12693 load_register (op
[0], &imm_expr
, 1);
12697 if (imm_expr
.X_op
== O_constant
)
12700 load_register (AT
, &imm_expr
, 0);
12701 macro_build (NULL
, "mtc1", "t,G", AT
, op
[0]);
12706 gas_assert (imm_expr
.X_op
== O_absent
12707 && offset_expr
.X_op
== O_symbol
12708 && strcmp (segment_name (S_GET_SEGMENT
12709 (offset_expr
.X_add_symbol
)),
12711 && offset_expr
.X_add_number
== 0);
12712 macro_build (&offset_expr
, "lwc1", "T,o(b)", op
[0],
12713 BFD_RELOC_MIPS_LITERAL
, mips_gp_register
);
12718 /* Check if we have a constant in IMM_EXPR. If the GPRs are 64 bits
12719 wide, IMM_EXPR is the entire value. Otherwise IMM_EXPR is the high
12720 order 32 bits of the value and the low order 32 bits are either
12721 zero or in OFFSET_EXPR. */
12722 if (imm_expr
.X_op
== O_constant
)
12724 if (GPR_SIZE
== 64)
12725 load_register (op
[0], &imm_expr
, 1);
12730 if (target_big_endian
)
12742 load_register (hreg
, &imm_expr
, 0);
12745 if (offset_expr
.X_op
== O_absent
)
12746 move_register (lreg
, 0);
12749 gas_assert (offset_expr
.X_op
== O_constant
);
12750 load_register (lreg
, &offset_expr
, 0);
12756 gas_assert (imm_expr
.X_op
== O_absent
);
12758 /* We know that sym is in the .rdata section. First we get the
12759 upper 16 bits of the address. */
12760 if (mips_pic
== NO_PIC
)
12762 macro_build_lui (&offset_expr
, AT
);
12767 macro_build (&offset_expr
, ADDRESS_LOAD_INSN
, "t,o(b)", AT
,
12768 BFD_RELOC_MIPS_GOT16
, mips_gp_register
);
12772 /* Now we load the register(s). */
12773 if (GPR_SIZE
== 64)
12776 macro_build (&offset_expr
, "ld", "t,o(b)", op
[0],
12777 BFD_RELOC_LO16
, AT
);
12782 macro_build (&offset_expr
, "lw", "t,o(b)", op
[0],
12783 BFD_RELOC_LO16
, AT
);
12786 /* FIXME: How in the world do we deal with the possible
12788 offset_expr
.X_add_number
+= 4;
12789 macro_build (&offset_expr
, "lw", "t,o(b)",
12790 op
[0] + 1, BFD_RELOC_LO16
, AT
);
12796 /* Check if we have a constant in IMM_EXPR. If the FPRs are 64 bits
12797 wide, IMM_EXPR is the entire value and the GPRs are known to be 64
12798 bits wide as well. Otherwise IMM_EXPR is the high order 32 bits of
12799 the value and the low order 32 bits are either zero or in
12801 if (imm_expr
.X_op
== O_constant
)
12804 if (((FPR_SIZE
== 64 && GPR_SIZE
== 64)
12805 || !ISA_HAS_MXHC1 (mips_opts
.isa
))
12806 && imm_expr
.X_add_number
!= 0)
12810 load_register (AT
, &imm_expr
, FPR_SIZE
== 64);
12812 if (FPR_SIZE
== 64 && GPR_SIZE
== 64)
12813 macro_build (NULL
, "dmtc1", "t,S", tempreg
, op
[0]);
12816 if (!ISA_HAS_MXHC1 (mips_opts
.isa
))
12818 if (FPR_SIZE
!= 32)
12819 as_bad (_("Unable to generate `%s' compliant code "
12821 (FPR_SIZE
== 64) ? "fp64" : "fpxx");
12823 macro_build (NULL
, "mtc1", "t,G", tempreg
, op
[0] + 1);
12825 if (offset_expr
.X_op
== O_absent
)
12826 macro_build (NULL
, "mtc1", "t,G", 0, op
[0]);
12829 gas_assert (offset_expr
.X_op
== O_constant
);
12830 load_register (AT
, &offset_expr
, 0);
12831 macro_build (NULL
, "mtc1", "t,G", AT
, op
[0]);
12833 if (ISA_HAS_MXHC1 (mips_opts
.isa
))
12835 if (imm_expr
.X_add_number
!= 0)
12839 load_register (AT
, &imm_expr
, 0);
12841 macro_build (NULL
, "mthc1", "t,G", tempreg
, op
[0]);
12847 gas_assert (imm_expr
.X_op
== O_absent
12848 && offset_expr
.X_op
== O_symbol
12849 && offset_expr
.X_add_number
== 0);
12850 s
= segment_name (S_GET_SEGMENT (offset_expr
.X_add_symbol
));
12851 if (strcmp (s
, ".lit8") == 0)
12853 op
[2] = mips_gp_register
;
12854 offset_reloc
[0] = BFD_RELOC_MIPS_LITERAL
;
12855 offset_reloc
[1] = BFD_RELOC_UNUSED
;
12856 offset_reloc
[2] = BFD_RELOC_UNUSED
;
12860 gas_assert (strcmp (s
, RDATA_SECTION_NAME
) == 0);
12862 if (mips_pic
!= NO_PIC
)
12863 macro_build (&offset_expr
, ADDRESS_LOAD_INSN
, "t,o(b)", AT
,
12864 BFD_RELOC_MIPS_GOT16
, mips_gp_register
);
12867 /* FIXME: This won't work for a 64 bit address. */
12868 macro_build_lui (&offset_expr
, AT
);
12872 offset_reloc
[0] = BFD_RELOC_LO16
;
12873 offset_reloc
[1] = BFD_RELOC_UNUSED
;
12874 offset_reloc
[2] = BFD_RELOC_UNUSED
;
12877 /* Fall through. */
12880 /* The MIPS assembler seems to check for X_add_number not
12881 being double aligned and generating:
12884 addiu at,at,%lo(foo+1)
12887 But, the resulting address is the same after relocation so why
12888 generate the extra instruction? */
12889 /* Itbl support may require additional care here. */
12892 if (CPU_HAS_LDC1_SDC1 (mips_opts
.arch
))
12901 gas_assert (!mips_opts
.micromips
);
12902 /* Itbl support may require additional care here. */
12905 if (CPU_HAS_LDC1_SDC1 (mips_opts
.arch
))
12925 if (GPR_SIZE
== 64)
12935 if (GPR_SIZE
== 64)
12943 /* Even on a big endian machine $fn comes before $fn+1. We have
12944 to adjust when loading from memory. We set coproc if we must
12945 load $fn+1 first. */
12946 /* Itbl support may require additional care here. */
12947 if (!target_big_endian
)
12951 if (small_offset_p (0, align
, 16))
12954 if (!small_offset_p (4, align
, 16))
12956 macro_build (&offset_expr
, ADDRESS_ADDI_INSN
, "t,r,j", AT
, breg
,
12957 -1, offset_reloc
[0], offset_reloc
[1],
12959 expr1
.X_add_number
= 0;
12963 offset_reloc
[0] = BFD_RELOC_LO16
;
12964 offset_reloc
[1] = BFD_RELOC_UNUSED
;
12965 offset_reloc
[2] = BFD_RELOC_UNUSED
;
12967 if (strcmp (s
, "lw") == 0 && op
[0] == breg
)
12969 ep
->X_add_number
+= 4;
12970 macro_build (ep
, s
, fmt
, op
[0] + 1, -1, offset_reloc
[0],
12971 offset_reloc
[1], offset_reloc
[2], breg
);
12972 ep
->X_add_number
-= 4;
12973 macro_build (ep
, s
, fmt
, op
[0], -1, offset_reloc
[0],
12974 offset_reloc
[1], offset_reloc
[2], breg
);
12978 macro_build (ep
, s
, fmt
, coproc
? op
[0] + 1 : op
[0], -1,
12979 offset_reloc
[0], offset_reloc
[1], offset_reloc
[2],
12981 ep
->X_add_number
+= 4;
12982 macro_build (ep
, s
, fmt
, coproc
? op
[0] : op
[0] + 1, -1,
12983 offset_reloc
[0], offset_reloc
[1], offset_reloc
[2],
12989 if (offset_expr
.X_op
!= O_symbol
12990 && offset_expr
.X_op
!= O_constant
)
12992 as_bad (_("expression too complex"));
12993 offset_expr
.X_op
= O_constant
;
12996 if (HAVE_32BIT_ADDRESSES
12997 && !IS_SEXT_32BIT_NUM (offset_expr
.X_add_number
))
12999 as_bad (_("number (0x%" PRIx64
") larger than 32 bits"),
13000 offset_expr
.X_add_number
);
13003 if (mips_pic
== NO_PIC
|| offset_expr
.X_op
== O_constant
)
13005 /* If this is a reference to a GP relative symbol, we want
13006 <op> op[0],<sym>($gp) (BFD_RELOC_GPREL16)
13007 <op> op[0]+1,<sym>+4($gp) (BFD_RELOC_GPREL16)
13008 If we have a base register, we use this
13010 <op> op[0],<sym>($at) (BFD_RELOC_GPREL16)
13011 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_GPREL16)
13012 If this is not a GP relative symbol, we want
13013 lui $at,<sym> (BFD_RELOC_HI16_S)
13014 <op> op[0],<sym>($at) (BFD_RELOC_LO16)
13015 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_LO16)
13016 If there is a base register, we add it to $at after the
13017 lui instruction. If there is a constant, we always use
13019 if (offset_expr
.X_op
== O_symbol
13020 && (valueT
) offset_expr
.X_add_number
<= MAX_GPREL_OFFSET
13021 && !nopic_need_relax (offset_expr
.X_add_symbol
, 1))
13023 relax_start (offset_expr
.X_add_symbol
);
13026 tempreg
= mips_gp_register
;
13030 macro_build (NULL
, ADDRESS_ADD_INSN
, "d,v,t",
13031 AT
, breg
, mips_gp_register
);
13036 /* Itbl support may require additional care here. */
13037 macro_build (&offset_expr
, s
, fmt
, coproc
? op
[0] + 1 : op
[0],
13038 BFD_RELOC_GPREL16
, tempreg
);
13039 offset_expr
.X_add_number
+= 4;
13041 /* Set mips_optimize to 2 to avoid inserting an
13043 hold_mips_optimize
= mips_optimize
;
13045 /* Itbl support may require additional care here. */
13046 macro_build (&offset_expr
, s
, fmt
, coproc
? op
[0] : op
[0] + 1,
13047 BFD_RELOC_GPREL16
, tempreg
);
13048 mips_optimize
= hold_mips_optimize
;
13052 offset_expr
.X_add_number
-= 4;
13055 if (offset_high_part (offset_expr
.X_add_number
, 16)
13056 != offset_high_part (offset_expr
.X_add_number
+ 4, 16))
13058 load_address (AT
, &offset_expr
, &used_at
);
13059 offset_expr
.X_op
= O_constant
;
13060 offset_expr
.X_add_number
= 0;
13063 macro_build_lui (&offset_expr
, AT
);
13065 macro_build (NULL
, ADDRESS_ADD_INSN
, "d,v,t", AT
, breg
, AT
);
13066 /* Itbl support may require additional care here. */
13067 macro_build (&offset_expr
, s
, fmt
, coproc
? op
[0] + 1 : op
[0],
13068 BFD_RELOC_LO16
, AT
);
13069 /* FIXME: How do we handle overflow here? */
13070 offset_expr
.X_add_number
+= 4;
13071 /* Itbl support may require additional care here. */
13072 macro_build (&offset_expr
, s
, fmt
, coproc
? op
[0] : op
[0] + 1,
13073 BFD_RELOC_LO16
, AT
);
13074 if (mips_relax
.sequence
)
13077 else if (!mips_big_got
)
13079 /* If this is a reference to an external symbol, we want
13080 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
13083 <op> op[0]+1,4($at)
13085 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
13087 <op> op[0],<sym>($at) (BFD_RELOC_LO16)
13088 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_LO16)
13089 If there is a base register we add it to $at before the
13090 lwc1 instructions. If there is a constant we include it
13091 in the lwc1 instructions. */
13093 expr1
.X_add_number
= offset_expr
.X_add_number
;
13094 if (expr1
.X_add_number
< -0x8000
13095 || expr1
.X_add_number
>= 0x8000 - 4)
13096 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
13097 load_got_offset (AT
, &offset_expr
);
13100 macro_build (NULL
, ADDRESS_ADD_INSN
, "d,v,t", AT
, breg
, AT
);
13102 /* Set mips_optimize to 2 to avoid inserting an undesired
13104 hold_mips_optimize
= mips_optimize
;
13107 /* Itbl support may require additional care here. */
13108 relax_start (offset_expr
.X_add_symbol
);
13109 macro_build (&expr1
, s
, fmt
, coproc
? op
[0] + 1 : op
[0],
13110 BFD_RELOC_LO16
, AT
);
13111 expr1
.X_add_number
+= 4;
13112 macro_build (&expr1
, s
, fmt
, coproc
? op
[0] : op
[0] + 1,
13113 BFD_RELOC_LO16
, AT
);
13115 macro_build (&offset_expr
, s
, fmt
, coproc
? op
[0] + 1 : op
[0],
13116 BFD_RELOC_LO16
, AT
);
13117 offset_expr
.X_add_number
+= 4;
13118 macro_build (&offset_expr
, s
, fmt
, coproc
? op
[0] : op
[0] + 1,
13119 BFD_RELOC_LO16
, AT
);
13122 mips_optimize
= hold_mips_optimize
;
13124 else if (mips_big_got
)
13128 /* If this is a reference to an external symbol, we want
13129 lui $at,<sym> (BFD_RELOC_MIPS_GOT_HI16)
13131 lw $at,<sym>($at) (BFD_RELOC_MIPS_GOT_LO16)
13134 <op> op[0]+1,4($at)
13136 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
13138 <op> op[0],<sym>($at) (BFD_RELOC_LO16)
13139 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_LO16)
13140 If there is a base register we add it to $at before the
13141 lwc1 instructions. If there is a constant we include it
13142 in the lwc1 instructions. */
13144 expr1
.X_add_number
= offset_expr
.X_add_number
;
13145 offset_expr
.X_add_number
= 0;
13146 if (expr1
.X_add_number
< -0x8000
13147 || expr1
.X_add_number
>= 0x8000 - 4)
13148 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
13149 gpdelay
= reg_needs_delay (mips_gp_register
);
13150 relax_start (offset_expr
.X_add_symbol
);
13151 macro_build (&offset_expr
, "lui", LUI_FMT
,
13152 AT
, BFD_RELOC_MIPS_GOT_HI16
);
13153 macro_build (NULL
, ADDRESS_ADD_INSN
, "d,v,t",
13154 AT
, AT
, mips_gp_register
);
13155 macro_build (&offset_expr
, ADDRESS_LOAD_INSN
, "t,o(b)",
13156 AT
, BFD_RELOC_MIPS_GOT_LO16
, AT
);
13159 macro_build (NULL
, ADDRESS_ADD_INSN
, "d,v,t", AT
, breg
, AT
);
13160 /* Itbl support may require additional care here. */
13161 macro_build (&expr1
, s
, fmt
, coproc
? op
[0] + 1 : op
[0],
13162 BFD_RELOC_LO16
, AT
);
13163 expr1
.X_add_number
+= 4;
13165 /* Set mips_optimize to 2 to avoid inserting an undesired
13167 hold_mips_optimize
= mips_optimize
;
13169 /* Itbl support may require additional care here. */
13170 macro_build (&expr1
, s
, fmt
, coproc
? op
[0] : op
[0] + 1,
13171 BFD_RELOC_LO16
, AT
);
13172 mips_optimize
= hold_mips_optimize
;
13173 expr1
.X_add_number
-= 4;
13176 offset_expr
.X_add_number
= expr1
.X_add_number
;
13178 macro_build (NULL
, "nop", "");
13179 macro_build (&offset_expr
, ADDRESS_LOAD_INSN
, "t,o(b)", AT
,
13180 BFD_RELOC_MIPS_GOT16
, mips_gp_register
);
13183 macro_build (NULL
, ADDRESS_ADD_INSN
, "d,v,t", AT
, breg
, AT
);
13184 /* Itbl support may require additional care here. */
13185 macro_build (&offset_expr
, s
, fmt
, coproc
? op
[0] + 1 : op
[0],
13186 BFD_RELOC_LO16
, AT
);
13187 offset_expr
.X_add_number
+= 4;
13189 /* Set mips_optimize to 2 to avoid inserting an undesired
13191 hold_mips_optimize
= mips_optimize
;
13193 /* Itbl support may require additional care here. */
13194 macro_build (&offset_expr
, s
, fmt
, coproc
? op
[0] : op
[0] + 1,
13195 BFD_RELOC_LO16
, AT
);
13196 mips_optimize
= hold_mips_optimize
;
13210 gas_assert (!mips_opts
.micromips
);
13215 /* New code added to support COPZ instructions.
13216 This code builds table entries out of the macros in mip_opcodes.
13217 R4000 uses interlocks to handle coproc delays.
13218 Other chips (like the R3000) require nops to be inserted for delays.
13220 FIXME: Currently, we require that the user handle delays.
13221 In order to fill delay slots for non-interlocked chips,
13222 we must have a way to specify delays based on the coprocessor.
13223 Eg. 4 cycles if load coproc reg from memory, 1 if in cache, etc.
13224 What are the side-effects of the cop instruction?
13225 What cache support might we have and what are its effects?
13226 Both coprocessor & memory require delays. how long???
13227 What registers are read/set/modified?
13229 If an itbl is provided to interpret cop instructions,
13230 this knowledge can be encoded in the itbl spec. */
13244 gas_assert (!mips_opts
.micromips
);
13245 /* For now we just do C (same as Cz). The parameter will be
13246 stored in insn_opcode by mips_ip. */
13247 macro_build (NULL
, s
, "C", (int) ip
->insn_opcode
);
13251 move_register (op
[0], op
[1]);
13255 gas_assert (mips_opts
.micromips
);
13256 gas_assert (mips_opts
.insn32
);
13257 move_register (micromips_to_32_reg_h_map1
[op
[0]],
13258 micromips_to_32_reg_m_map
[op
[1]]);
13259 move_register (micromips_to_32_reg_h_map2
[op
[0]],
13260 micromips_to_32_reg_n_map
[op
[2]]);
13265 /* Fall through. */
13267 if (mips_opts
.arch
== CPU_R5900
)
13268 macro_build (NULL
, dbl
? "dmultu" : "multu", "d,s,t", op
[0], op
[1],
13272 macro_build (NULL
, dbl
? "dmultu" : "multu", "s,t", op
[1], op
[2]);
13273 macro_build (NULL
, "mflo", MFHL_FMT
, op
[0]);
13279 /* Fall through. */
13281 /* The MIPS assembler some times generates shifts and adds. I'm
13282 not trying to be that fancy. GCC should do this for us
13285 load_register (AT
, &imm_expr
, dbl
);
13286 macro_build (NULL
, dbl
? "dmult" : "mult", "s,t", op
[1], AT
);
13287 macro_build (NULL
, "mflo", MFHL_FMT
, op
[0]);
13292 /* Fall through. */
13299 /* Fall through. */
13302 start_noreorder ();
13305 load_register (AT
, &imm_expr
, dbl
);
13306 macro_build (NULL
, dbl
? "dmult" : "mult", "s,t",
13307 op
[1], imm
? AT
: op
[2]);
13308 macro_build (NULL
, "mflo", MFHL_FMT
, op
[0]);
13309 macro_build (NULL
, dbl
? "dsra32" : "sra", SHFT_FMT
, op
[0], op
[0], 31);
13310 macro_build (NULL
, "mfhi", MFHL_FMT
, AT
);
13312 macro_build (NULL
, "tne", TRAP_FMT
, op
[0], AT
, 6);
13315 if (mips_opts
.micromips
)
13316 micromips_label_expr (&label_expr
);
13318 label_expr
.X_add_number
= 8;
13319 macro_build (&label_expr
, "beq", "s,t,p", op
[0], AT
);
13320 macro_build (NULL
, "nop", "");
13321 macro_build (NULL
, "break", BRK_FMT
, 6);
13322 if (mips_opts
.micromips
)
13323 micromips_add_label ();
13326 macro_build (NULL
, "mflo", MFHL_FMT
, op
[0]);
13331 /* Fall through. */
13338 /* Fall through. */
13341 start_noreorder ();
13344 load_register (AT
, &imm_expr
, dbl
);
13345 macro_build (NULL
, dbl
? "dmultu" : "multu", "s,t",
13346 op
[1], imm
? AT
: op
[2]);
13347 macro_build (NULL
, "mfhi", MFHL_FMT
, AT
);
13348 macro_build (NULL
, "mflo", MFHL_FMT
, op
[0]);
13350 macro_build (NULL
, "tne", TRAP_FMT
, AT
, ZERO
, 6);
13353 if (mips_opts
.micromips
)
13354 micromips_label_expr (&label_expr
);
13356 label_expr
.X_add_number
= 8;
13357 macro_build (&label_expr
, "beq", "s,t,p", AT
, ZERO
);
13358 macro_build (NULL
, "nop", "");
13359 macro_build (NULL
, "break", BRK_FMT
, 6);
13360 if (mips_opts
.micromips
)
13361 micromips_add_label ();
13367 if (ISA_HAS_DROR (mips_opts
.isa
) || CPU_HAS_DROR (mips_opts
.arch
))
13369 if (op
[0] == op
[1])
13376 macro_build (NULL
, "dnegu", "d,w", tempreg
, op
[2]);
13377 macro_build (NULL
, "drorv", "d,t,s", op
[0], op
[1], tempreg
);
13381 macro_build (NULL
, "dsubu", "d,v,t", AT
, ZERO
, op
[2]);
13382 macro_build (NULL
, "dsrlv", "d,t,s", AT
, op
[1], AT
);
13383 macro_build (NULL
, "dsllv", "d,t,s", op
[0], op
[1], op
[2]);
13384 macro_build (NULL
, "or", "d,v,t", op
[0], op
[0], AT
);
13388 if (ISA_HAS_ROR (mips_opts
.isa
) || CPU_HAS_ROR (mips_opts
.arch
))
13390 if (op
[0] == op
[1])
13397 macro_build (NULL
, "negu", "d,w", tempreg
, op
[2]);
13398 macro_build (NULL
, "rorv", "d,t,s", op
[0], op
[1], tempreg
);
13402 macro_build (NULL
, "subu", "d,v,t", AT
, ZERO
, op
[2]);
13403 macro_build (NULL
, "srlv", "d,t,s", AT
, op
[1], AT
);
13404 macro_build (NULL
, "sllv", "d,t,s", op
[0], op
[1], op
[2]);
13405 macro_build (NULL
, "or", "d,v,t", op
[0], op
[0], AT
);
13414 rot
= imm_expr
.X_add_number
& 0x3f;
13415 if (ISA_HAS_DROR (mips_opts
.isa
) || CPU_HAS_DROR (mips_opts
.arch
))
13417 rot
= (64 - rot
) & 0x3f;
13419 macro_build (NULL
, "dror32", SHFT_FMT
, op
[0], op
[1], rot
- 32);
13421 macro_build (NULL
, "dror", SHFT_FMT
, op
[0], op
[1], rot
);
13426 macro_build (NULL
, "dsrl", SHFT_FMT
, op
[0], op
[1], 0);
13429 l
= (rot
< 0x20) ? "dsll" : "dsll32";
13430 rr
= ((0x40 - rot
) < 0x20) ? "dsrl" : "dsrl32";
13433 macro_build (NULL
, l
, SHFT_FMT
, AT
, op
[1], rot
);
13434 macro_build (NULL
, rr
, SHFT_FMT
, op
[0], op
[1], (0x20 - rot
) & 0x1f);
13435 macro_build (NULL
, "or", "d,v,t", op
[0], op
[0], AT
);
13443 rot
= imm_expr
.X_add_number
& 0x1f;
13444 if (ISA_HAS_ROR (mips_opts
.isa
) || CPU_HAS_ROR (mips_opts
.arch
))
13446 macro_build (NULL
, "ror", SHFT_FMT
, op
[0], op
[1],
13447 (32 - rot
) & 0x1f);
13452 macro_build (NULL
, "srl", SHFT_FMT
, op
[0], op
[1], 0);
13456 macro_build (NULL
, "sll", SHFT_FMT
, AT
, op
[1], rot
);
13457 macro_build (NULL
, "srl", SHFT_FMT
, op
[0], op
[1], (0x20 - rot
) & 0x1f);
13458 macro_build (NULL
, "or", "d,v,t", op
[0], op
[0], AT
);
13463 if (ISA_HAS_DROR (mips_opts
.isa
) || CPU_HAS_DROR (mips_opts
.arch
))
13465 macro_build (NULL
, "drorv", "d,t,s", op
[0], op
[1], op
[2]);
13469 macro_build (NULL
, "dsubu", "d,v,t", AT
, ZERO
, op
[2]);
13470 macro_build (NULL
, "dsllv", "d,t,s", AT
, op
[1], AT
);
13471 macro_build (NULL
, "dsrlv", "d,t,s", op
[0], op
[1], op
[2]);
13472 macro_build (NULL
, "or", "d,v,t", op
[0], op
[0], AT
);
13476 if (ISA_HAS_ROR (mips_opts
.isa
) || CPU_HAS_ROR (mips_opts
.arch
))
13478 macro_build (NULL
, "rorv", "d,t,s", op
[0], op
[1], op
[2]);
13482 macro_build (NULL
, "subu", "d,v,t", AT
, ZERO
, op
[2]);
13483 macro_build (NULL
, "sllv", "d,t,s", AT
, op
[1], AT
);
13484 macro_build (NULL
, "srlv", "d,t,s", op
[0], op
[1], op
[2]);
13485 macro_build (NULL
, "or", "d,v,t", op
[0], op
[0], AT
);
13494 rot
= imm_expr
.X_add_number
& 0x3f;
13495 if (ISA_HAS_DROR (mips_opts
.isa
) || CPU_HAS_DROR (mips_opts
.arch
))
13498 macro_build (NULL
, "dror32", SHFT_FMT
, op
[0], op
[1], rot
- 32);
13500 macro_build (NULL
, "dror", SHFT_FMT
, op
[0], op
[1], rot
);
13505 macro_build (NULL
, "dsrl", SHFT_FMT
, op
[0], op
[1], 0);
13508 rr
= (rot
< 0x20) ? "dsrl" : "dsrl32";
13509 l
= ((0x40 - rot
) < 0x20) ? "dsll" : "dsll32";
13512 macro_build (NULL
, rr
, SHFT_FMT
, AT
, op
[1], rot
);
13513 macro_build (NULL
, l
, SHFT_FMT
, op
[0], op
[1], (0x20 - rot
) & 0x1f);
13514 macro_build (NULL
, "or", "d,v,t", op
[0], op
[0], AT
);
13522 rot
= imm_expr
.X_add_number
& 0x1f;
13523 if (ISA_HAS_ROR (mips_opts
.isa
) || CPU_HAS_ROR (mips_opts
.arch
))
13525 macro_build (NULL
, "ror", SHFT_FMT
, op
[0], op
[1], rot
);
13530 macro_build (NULL
, "srl", SHFT_FMT
, op
[0], op
[1], 0);
13534 macro_build (NULL
, "srl", SHFT_FMT
, AT
, op
[1], rot
);
13535 macro_build (NULL
, "sll", SHFT_FMT
, op
[0], op
[1], (0x20 - rot
) & 0x1f);
13536 macro_build (NULL
, "or", "d,v,t", op
[0], op
[0], AT
);
13542 macro_build (&expr1
, "sltiu", "t,r,j", op
[0], op
[2], BFD_RELOC_LO16
);
13543 else if (op
[2] == 0)
13544 macro_build (&expr1
, "sltiu", "t,r,j", op
[0], op
[1], BFD_RELOC_LO16
);
13547 macro_build (NULL
, "xor", "d,v,t", op
[0], op
[1], op
[2]);
13548 macro_build (&expr1
, "sltiu", "t,r,j", op
[0], op
[0], BFD_RELOC_LO16
);
13553 if (imm_expr
.X_add_number
== 0)
13555 macro_build (&expr1
, "sltiu", "t,r,j", op
[0], op
[1], BFD_RELOC_LO16
);
13560 as_warn (_("instruction %s: result is always false"),
13561 ip
->insn_mo
->name
);
13562 move_register (op
[0], 0);
13565 if (CPU_HAS_SEQ (mips_opts
.arch
)
13566 && -512 <= imm_expr
.X_add_number
13567 && imm_expr
.X_add_number
< 512)
13569 macro_build (NULL
, "seqi", "t,r,+Q", op
[0], op
[1],
13570 (int) imm_expr
.X_add_number
);
13573 if (imm_expr
.X_add_number
>= 0
13574 && imm_expr
.X_add_number
< 0x10000)
13575 macro_build (&imm_expr
, "xori", "t,r,i", op
[0], op
[1], BFD_RELOC_LO16
);
13576 else if (imm_expr
.X_add_number
> -0x8000
13577 && imm_expr
.X_add_number
< 0)
13579 imm_expr
.X_add_number
= -imm_expr
.X_add_number
;
13580 macro_build (&imm_expr
, GPR_SIZE
== 32 ? "addiu" : "daddiu",
13581 "t,r,j", op
[0], op
[1], BFD_RELOC_LO16
);
13583 else if (CPU_HAS_SEQ (mips_opts
.arch
))
13586 load_register (AT
, &imm_expr
, GPR_SIZE
== 64);
13587 macro_build (NULL
, "seq", "d,v,t", op
[0], op
[1], AT
);
13592 load_register (AT
, &imm_expr
, GPR_SIZE
== 64);
13593 macro_build (NULL
, "xor", "d,v,t", op
[0], op
[1], AT
);
13596 macro_build (&expr1
, "sltiu", "t,r,j", op
[0], op
[0], BFD_RELOC_LO16
);
13599 case M_SGE
: /* X >= Y <==> not (X < Y) */
13605 macro_build (NULL
, s
, "d,v,t", op
[0], op
[1], op
[2]);
13606 macro_build (&expr1
, "xori", "t,r,i", op
[0], op
[0], BFD_RELOC_LO16
);
13609 case M_SGE_I
: /* X >= I <==> not (X < I). */
13611 if (imm_expr
.X_add_number
>= -0x8000
13612 && imm_expr
.X_add_number
< 0x8000)
13613 macro_build (&imm_expr
, mask
== M_SGE_I
? "slti" : "sltiu", "t,r,j",
13614 op
[0], op
[1], BFD_RELOC_LO16
);
13617 load_register (AT
, &imm_expr
, GPR_SIZE
== 64);
13618 macro_build (NULL
, mask
== M_SGE_I
? "slt" : "sltu", "d,v,t",
13622 macro_build (&expr1
, "xori", "t,r,i", op
[0], op
[0], BFD_RELOC_LO16
);
13625 case M_SGT
: /* X > Y <==> Y < X. */
13631 macro_build (NULL
, s
, "d,v,t", op
[0], op
[2], op
[1]);
13634 case M_SGT_I
: /* X > I <==> I < X. */
13641 load_register (AT
, &imm_expr
, GPR_SIZE
== 64);
13642 macro_build (NULL
, s
, "d,v,t", op
[0], AT
, op
[1]);
13645 case M_SLE
: /* X <= Y <==> Y >= X <==> not (Y < X). */
13651 macro_build (NULL
, s
, "d,v,t", op
[0], op
[2], op
[1]);
13652 macro_build (&expr1
, "xori", "t,r,i", op
[0], op
[0], BFD_RELOC_LO16
);
13655 case M_SLE_I
: /* X <= I <==> I >= X <==> not (I < X) */
13662 load_register (AT
, &imm_expr
, GPR_SIZE
== 64);
13663 macro_build (NULL
, s
, "d,v,t", op
[0], AT
, op
[1]);
13664 macro_build (&expr1
, "xori", "t,r,i", op
[0], op
[0], BFD_RELOC_LO16
);
13668 if (imm_expr
.X_add_number
>= -0x8000
13669 && imm_expr
.X_add_number
< 0x8000)
13671 macro_build (&imm_expr
, "slti", "t,r,j", op
[0], op
[1],
13676 load_register (AT
, &imm_expr
, GPR_SIZE
== 64);
13677 macro_build (NULL
, "slt", "d,v,t", op
[0], op
[1], AT
);
13681 if (imm_expr
.X_add_number
>= -0x8000
13682 && imm_expr
.X_add_number
< 0x8000)
13684 macro_build (&imm_expr
, "sltiu", "t,r,j", op
[0], op
[1],
13689 load_register (AT
, &imm_expr
, GPR_SIZE
== 64);
13690 macro_build (NULL
, "sltu", "d,v,t", op
[0], op
[1], AT
);
13695 macro_build (NULL
, "sltu", "d,v,t", op
[0], 0, op
[2]);
13696 else if (op
[2] == 0)
13697 macro_build (NULL
, "sltu", "d,v,t", op
[0], 0, op
[1]);
13700 macro_build (NULL
, "xor", "d,v,t", op
[0], op
[1], op
[2]);
13701 macro_build (NULL
, "sltu", "d,v,t", op
[0], 0, op
[0]);
13706 if (imm_expr
.X_add_number
== 0)
13708 macro_build (NULL
, "sltu", "d,v,t", op
[0], 0, op
[1]);
13713 as_warn (_("instruction %s: result is always true"),
13714 ip
->insn_mo
->name
);
13715 macro_build (&expr1
, GPR_SIZE
== 32 ? "addiu" : "daddiu", "t,r,j",
13716 op
[0], 0, BFD_RELOC_LO16
);
13719 if (CPU_HAS_SEQ (mips_opts
.arch
)
13720 && -512 <= imm_expr
.X_add_number
13721 && imm_expr
.X_add_number
< 512)
13723 macro_build (NULL
, "snei", "t,r,+Q", op
[0], op
[1],
13724 (int) imm_expr
.X_add_number
);
13727 if (imm_expr
.X_add_number
>= 0
13728 && imm_expr
.X_add_number
< 0x10000)
13730 macro_build (&imm_expr
, "xori", "t,r,i", op
[0], op
[1],
13733 else if (imm_expr
.X_add_number
> -0x8000
13734 && imm_expr
.X_add_number
< 0)
13736 imm_expr
.X_add_number
= -imm_expr
.X_add_number
;
13737 macro_build (&imm_expr
, GPR_SIZE
== 32 ? "addiu" : "daddiu",
13738 "t,r,j", op
[0], op
[1], BFD_RELOC_LO16
);
13740 else if (CPU_HAS_SEQ (mips_opts
.arch
))
13743 load_register (AT
, &imm_expr
, GPR_SIZE
== 64);
13744 macro_build (NULL
, "sne", "d,v,t", op
[0], op
[1], AT
);
13749 load_register (AT
, &imm_expr
, GPR_SIZE
== 64);
13750 macro_build (NULL
, "xor", "d,v,t", op
[0], op
[1], AT
);
13753 macro_build (NULL
, "sltu", "d,v,t", op
[0], 0, op
[0]);
13759 if (ISA_IS_R6 (mips_opts
.isa
))
13771 if (!mips_opts
.micromips
&& !ISA_IS_R6 (mips_opts
.isa
))
13773 if (imm_expr
.X_add_number
> -0x200
13774 && imm_expr
.X_add_number
<= 0x200
13775 && !ISA_IS_R6 (mips_opts
.isa
))
13777 macro_build (NULL
, s
, "t,r,.", op
[0], op
[1],
13778 (int) -imm_expr
.X_add_number
);
13787 if (imm_expr
.X_add_number
> -0x8000
13788 && imm_expr
.X_add_number
<= 0x8000)
13790 imm_expr
.X_add_number
= -imm_expr
.X_add_number
;
13791 macro_build (&imm_expr
, s
, "t,r,j", op
[0], op
[1], BFD_RELOC_LO16
);
13796 load_register (AT
, &imm_expr
, dbl
);
13797 macro_build (NULL
, s2
, "d,v,t", op
[0], op
[1], AT
);
13819 load_register (AT
, &imm_expr
, GPR_SIZE
== 64);
13820 macro_build (NULL
, s
, "s,t", op
[0], AT
);
13825 gas_assert (!mips_opts
.micromips
);
13826 gas_assert (mips_opts
.isa
== ISA_MIPS1
);
13830 * Is the double cfc1 instruction a bug in the mips assembler;
13831 * or is there a reason for it?
13833 start_noreorder ();
13834 macro_build (NULL
, "cfc1", "t,g", op
[2], FCSR
);
13835 macro_build (NULL
, "cfc1", "t,g", op
[2], FCSR
);
13836 macro_build (NULL
, "nop", "");
13837 expr1
.X_add_number
= 3;
13838 macro_build (&expr1
, "ori", "t,r,i", AT
, op
[2], BFD_RELOC_LO16
);
13839 expr1
.X_add_number
= 2;
13840 macro_build (&expr1
, "xori", "t,r,i", AT
, AT
, BFD_RELOC_LO16
);
13841 macro_build (NULL
, "ctc1", "t,g", AT
, FCSR
);
13842 macro_build (NULL
, "nop", "");
13843 macro_build (NULL
, mask
== M_TRUNCWD
? "cvt.w.d" : "cvt.w.s", "D,S",
13845 macro_build (NULL
, "ctc1", "t,g", op
[2], FCSR
);
13846 macro_build (NULL
, "nop", "");
13863 offbits
= (mips_opts
.micromips
? 12 : 16);
13869 offbits
= (mips_opts
.micromips
? 12 : 16);
13881 offbits
= (mips_opts
.micromips
? 12 : 16);
13888 offbits
= (mips_opts
.micromips
? 12 : 16);
13894 large_offset
= !small_offset_p (off
, align
, offbits
);
13896 expr1
.X_add_number
= 0;
13901 if (small_offset_p (0, align
, 16))
13902 macro_build (ep
, ADDRESS_ADDI_INSN
, "t,r,j", tempreg
, breg
, -1,
13903 offset_reloc
[0], offset_reloc
[1], offset_reloc
[2]);
13906 load_address (tempreg
, ep
, &used_at
);
13908 macro_build (NULL
, ADDRESS_ADD_INSN
, "d,v,t",
13909 tempreg
, tempreg
, breg
);
13911 offset_reloc
[0] = BFD_RELOC_LO16
;
13912 offset_reloc
[1] = BFD_RELOC_UNUSED
;
13913 offset_reloc
[2] = BFD_RELOC_UNUSED
;
13918 else if (!ust
&& op
[0] == breg
)
13929 if (!target_big_endian
)
13930 ep
->X_add_number
+= off
;
13932 macro_build (NULL
, s
, "t,~(b)", tempreg
, (int) ep
->X_add_number
, breg
);
13934 macro_build (ep
, s
, "t,o(b)", tempreg
, -1,
13935 offset_reloc
[0], offset_reloc
[1], offset_reloc
[2], breg
);
13937 if (!target_big_endian
)
13938 ep
->X_add_number
-= off
;
13940 ep
->X_add_number
+= off
;
13942 macro_build (NULL
, s2
, "t,~(b)",
13943 tempreg
, (int) ep
->X_add_number
, breg
);
13945 macro_build (ep
, s2
, "t,o(b)", tempreg
, -1,
13946 offset_reloc
[0], offset_reloc
[1], offset_reloc
[2], breg
);
13948 /* If necessary, move the result in tempreg to the final destination. */
13949 if (!ust
&& op
[0] != tempreg
)
13951 /* Protect second load's delay slot. */
13953 move_register (op
[0], tempreg
);
13959 if (target_big_endian
== ust
)
13960 ep
->X_add_number
+= off
;
13961 tempreg
= ust
|| large_offset
? op
[0] : AT
;
13962 macro_build (ep
, s
, "t,o(b)", tempreg
, -1,
13963 offset_reloc
[0], offset_reloc
[1], offset_reloc
[2], breg
);
13965 /* For halfword transfers we need a temporary register to shuffle
13966 bytes. Unfortunately for M_USH_A we have none available before
13967 the next store as AT holds the base address. We deal with this
13968 case by clobbering TREG and then restoring it as with ULH. */
13969 tempreg
= ust
== large_offset
? op
[0] : AT
;
13971 macro_build (NULL
, "srl", SHFT_FMT
, tempreg
, op
[0], 8);
13973 if (target_big_endian
== ust
)
13974 ep
->X_add_number
-= off
;
13976 ep
->X_add_number
+= off
;
13977 macro_build (ep
, s2
, "t,o(b)", tempreg
, -1,
13978 offset_reloc
[0], offset_reloc
[1], offset_reloc
[2], breg
);
13980 /* For M_USH_A re-retrieve the LSB. */
13981 if (ust
&& large_offset
)
13983 if (target_big_endian
)
13984 ep
->X_add_number
+= off
;
13986 ep
->X_add_number
-= off
;
13987 macro_build (&expr1
, "lbu", "t,o(b)", AT
, -1,
13988 offset_reloc
[0], offset_reloc
[1], offset_reloc
[2], AT
);
13990 /* For ULH and M_USH_A OR the LSB in. */
13991 if (!ust
|| large_offset
)
13993 tempreg
= !large_offset
? AT
: op
[0];
13994 macro_build (NULL
, "sll", SHFT_FMT
, tempreg
, tempreg
, 8);
13995 macro_build (NULL
, "or", "d,v,t", op
[0], op
[0], AT
);
14000 /* FIXME: Check if this is one of the itbl macros, since they
14001 are added dynamically. */
14002 as_bad (_("macro %s not implemented yet"), ip
->insn_mo
->name
);
14005 if (!mips_opts
.at
&& used_at
)
14006 as_bad (_("macro used $at after \".set noat\""));
14009 /* Implement macros in mips16 mode. */
14012 mips16_macro (struct mips_cl_insn
*ip
)
14014 const struct mips_operand_array
*operands
;
14019 const char *s
, *s2
, *s3
;
14020 unsigned int op
[MAX_OPERANDS
];
14023 mask
= ip
->insn_mo
->mask
;
14025 operands
= insn_operands (ip
);
14026 for (i
= 0; i
< MAX_OPERANDS
; i
++)
14027 if (operands
->operand
[i
])
14028 op
[i
] = insn_extract_operand (ip
, operands
->operand
[i
]);
14032 expr1
.X_op
= O_constant
;
14033 expr1
.X_op_symbol
= NULL
;
14034 expr1
.X_add_symbol
= NULL
;
14035 expr1
.X_add_number
= 1;
14046 /* Fall through. */
14052 /* Fall through. */
14056 start_noreorder ();
14057 macro_build (NULL
, dbl
? "ddiv" : "div", ".,x,y", op
[1], op
[2]);
14058 expr1
.X_add_number
= 2;
14059 macro_build (&expr1
, "bnez", "x,p", op
[2]);
14060 macro_build (NULL
, "break", "6", 7);
14062 /* FIXME: The normal code checks for of -1 / -0x80000000 here,
14063 since that causes an overflow. We should do that as well,
14064 but I don't see how to do the comparisons without a temporary
14067 macro_build (NULL
, s
, "x", op
[0]);
14086 start_noreorder ();
14087 macro_build (NULL
, s
, ".,x,y", op
[1], op
[2]);
14088 expr1
.X_add_number
= 2;
14089 macro_build (&expr1
, "bnez", "x,p", op
[2]);
14090 macro_build (NULL
, "break", "6", 7);
14092 macro_build (NULL
, s2
, "x", op
[0]);
14097 /* Fall through. */
14099 macro_build (NULL
, dbl
? "dmultu" : "multu", "x,y", op
[1], op
[2]);
14100 macro_build (NULL
, "mflo", "x", op
[0]);
14108 imm_expr
.X_add_number
= -imm_expr
.X_add_number
;
14109 macro_build (&imm_expr
, dbl
? "daddiu" : "addiu", "y,x,F", op
[0], op
[1]);
14113 imm_expr
.X_add_number
= -imm_expr
.X_add_number
;
14114 macro_build (&imm_expr
, "addiu", "x,k", op
[0]);
14118 imm_expr
.X_add_number
= -imm_expr
.X_add_number
;
14119 macro_build (&imm_expr
, "daddiu", "y,j", op
[0]);
14141 goto do_reverse_branch
;
14145 goto do_reverse_branch
;
14157 goto do_reverse_branch
;
14168 macro_build (NULL
, s
, "x,y", op
[0], op
[1]);
14169 macro_build (&offset_expr
, s2
, "p");
14196 goto do_addone_branch_i
;
14201 goto do_addone_branch_i
;
14216 goto do_addone_branch_i
;
14222 do_addone_branch_i
:
14223 ++imm_expr
.X_add_number
;
14226 macro_build (&imm_expr
, s
, s3
, op
[0]);
14227 macro_build (&offset_expr
, s2
, "p");
14231 expr1
.X_add_number
= 0;
14232 macro_build (&expr1
, "slti", "x,8", op
[1]);
14233 if (op
[0] != op
[1])
14234 macro_build (NULL
, "move", "y,X", op
[0], mips16_to_32_reg_map
[op
[1]]);
14235 expr1
.X_add_number
= 2;
14236 macro_build (&expr1
, "bteqz", "p");
14237 macro_build (NULL
, "neg", "x,w", op
[0], op
[0]);
14242 /* Look up instruction [START, START + LENGTH) in HASH. Record any extra
14243 opcode bits in *OPCODE_EXTRA. */
14245 static struct mips_opcode
*
14246 mips_lookup_insn (htab_t hash
, const char *start
,
14247 ssize_t length
, unsigned int *opcode_extra
)
14249 char *name
, *dot
, *p
;
14250 unsigned int mask
, suffix
;
14252 struct mips_opcode
*insn
;
14254 /* Make a copy of the instruction so that we can fiddle with it. */
14255 name
= xstrndup (start
, length
);
14257 /* Look up the instruction as-is. */
14258 insn
= (struct mips_opcode
*) str_hash_find (hash
, name
);
14262 dot
= strchr (name
, '.');
14265 /* Try to interpret the text after the dot as a VU0 channel suffix. */
14266 p
= mips_parse_vu0_channels (dot
+ 1, &mask
);
14267 if (*p
== 0 && mask
!= 0)
14270 insn
= (struct mips_opcode
*) str_hash_find (hash
, name
);
14272 if (insn
&& (insn
->pinfo2
& INSN2_VU0_CHANNEL_SUFFIX
) != 0)
14274 *opcode_extra
|= mask
<< mips_vu0_channel_mask
.lsb
;
14280 if (mips_opts
.micromips
)
14282 /* See if there's an instruction size override suffix,
14283 either `16' or `32', at the end of the mnemonic proper,
14284 that defines the operation, i.e. before the first `.'
14285 character if any. Strip it and retry. */
14286 opend
= dot
!= NULL
? dot
- name
: length
;
14287 if (opend
>= 3 && name
[opend
- 2] == '1' && name
[opend
- 1] == '6')
14289 else if (opend
>= 2 && name
[opend
- 2] == '3' && name
[opend
- 1] == '2')
14295 memmove (name
+ opend
- 2, name
+ opend
, length
- opend
+ 1);
14296 insn
= (struct mips_opcode
*) str_hash_find (hash
, name
);
14299 forced_insn_length
= suffix
;
14311 /* Assemble an instruction into its binary format. If the instruction
14312 is a macro, set imm_expr and offset_expr to the values associated
14313 with "I" and "A" operands respectively. Otherwise store the value
14314 of the relocatable field (if any) in offset_expr. In both cases
14315 set offset_reloc to the relocation operators applied to offset_expr. */
14318 mips_ip (char *str
, struct mips_cl_insn
*insn
)
14320 const struct mips_opcode
*first
, *past
;
14324 struct mips_operand_token
*tokens
;
14325 unsigned int opcode_extra
;
14327 if (mips_opts
.micromips
)
14329 hash
= micromips_op_hash
;
14330 past
= µmips_opcodes
[bfd_micromips_num_opcodes
];
14335 past
= &mips_opcodes
[NUMOPCODES
];
14337 forced_insn_length
= 0;
14340 /* We first try to match an instruction up to a space or to the end. */
14341 for (end
= 0; str
[end
] != '\0' && !ISSPACE (str
[end
]); end
++)
14344 first
= mips_lookup_insn (hash
, str
, end
, &opcode_extra
);
14347 set_insn_error (0, _("unrecognized opcode"));
14351 if (strcmp (first
->name
, "li.s") == 0)
14353 else if (strcmp (first
->name
, "li.d") == 0)
14357 tokens
= mips_parse_arguments (str
+ end
, format
);
14361 if (!match_insns (insn
, first
, past
, tokens
, opcode_extra
, false)
14362 && !match_insns (insn
, first
, past
, tokens
, opcode_extra
, true))
14363 set_insn_error (0, _("invalid operands"));
14365 obstack_free (&mips_operand_tokens
, tokens
);
14368 /* As for mips_ip, but used when assembling MIPS16 code.
14369 Also set forced_insn_length to the resulting instruction size in
14370 bytes if the user explicitly requested a small or extended instruction. */
14373 mips16_ip (char *str
, struct mips_cl_insn
*insn
)
14376 struct mips_opcode
*first
;
14377 struct mips_operand_token
*tokens
;
14380 for (s
= str
; *s
!= '\0' && *s
!= '.' && *s
!= ' '; ++s
)
14402 else if (*s
== 'e')
14409 else if (*s
++ == ' ')
14411 set_insn_error (0, _("unrecognized opcode"));
14414 forced_insn_length
= l
;
14417 first
= (struct mips_opcode
*) str_hash_find (mips16_op_hash
, str
);
14422 set_insn_error (0, _("unrecognized opcode"));
14426 tokens
= mips_parse_arguments (s
, 0);
14430 if (!match_mips16_insns (insn
, first
, tokens
))
14431 set_insn_error (0, _("invalid operands"));
14433 obstack_free (&mips_operand_tokens
, tokens
);
14436 /* Marshal immediate value VAL for an extended MIPS16 instruction.
14437 NBITS is the number of significant bits in VAL. */
14439 static unsigned long
14440 mips16_immed_extend (offsetT val
, unsigned int nbits
)
14445 val
&= (1U << nbits
) - 1;
14446 if (nbits
== 16 || nbits
== 9)
14448 extval
= ((val
>> 11) & 0x1f) | (val
& 0x7e0);
14451 else if (nbits
== 15)
14453 extval
= ((val
>> 11) & 0xf) | (val
& 0x7f0);
14456 else if (nbits
== 6)
14458 extval
= ((val
& 0x1f) << 6) | (val
& 0x20);
14461 return (extval
<< 16) | val
;
14464 /* Like decode_mips16_operand, but require the operand to be defined and
14465 require it to be an integer. */
14467 static const struct mips_int_operand
*
14468 mips16_immed_operand (int type
, bool extended_p
)
14470 const struct mips_operand
*operand
;
14472 operand
= decode_mips16_operand (type
, extended_p
);
14473 if (!operand
|| (operand
->type
!= OP_INT
&& operand
->type
!= OP_PCREL
))
14475 return (const struct mips_int_operand
*) operand
;
14478 /* Return true if SVAL fits OPERAND. RELOC is as for mips16_immed. */
14481 mips16_immed_in_range_p (const struct mips_int_operand
*operand
,
14482 bfd_reloc_code_real_type reloc
, offsetT sval
)
14484 int min_val
, max_val
;
14486 min_val
= mips_int_operand_min (operand
);
14487 max_val
= mips_int_operand_max (operand
);
14488 if (reloc
!= BFD_RELOC_UNUSED
)
14491 sval
= SEXT_16BIT (sval
);
14496 return (sval
>= min_val
14498 && (sval
& ((1 << operand
->shift
) - 1)) == 0);
14501 /* Install immediate value VAL into MIPS16 instruction *INSN,
14502 extending it if necessary. The instruction in *INSN may
14503 already be extended.
14505 RELOC is the relocation that produced VAL, or BFD_RELOC_UNUSED
14506 if none. In the former case, VAL is a 16-bit number with no
14507 defined signedness.
14509 TYPE is the type of the immediate field. USER_INSN_LENGTH
14510 is the length that the user requested, or 0 if none. */
14513 mips16_immed (const char *file
, unsigned int line
, int type
,
14514 bfd_reloc_code_real_type reloc
, offsetT val
,
14515 unsigned int user_insn_length
, unsigned long *insn
)
14517 const struct mips_int_operand
*operand
;
14518 unsigned int uval
, length
;
14520 operand
= mips16_immed_operand (type
, false);
14521 if (!mips16_immed_in_range_p (operand
, reloc
, val
))
14523 /* We need an extended instruction. */
14524 if (user_insn_length
== 2)
14525 as_bad_where (file
, line
, _("invalid unextended operand value"));
14527 *insn
|= MIPS16_EXTEND
;
14529 else if (user_insn_length
== 4)
14531 /* The operand doesn't force an unextended instruction to be extended.
14532 Warn if the user wanted an extended instruction anyway. */
14533 *insn
|= MIPS16_EXTEND
;
14534 as_warn_where (file
, line
,
14535 _("extended operand requested but not required"));
14538 length
= mips16_opcode_length (*insn
);
14541 operand
= mips16_immed_operand (type
, true);
14542 if (!mips16_immed_in_range_p (operand
, reloc
, val
))
14543 as_bad_where (file
, line
,
14544 _("operand value out of range for instruction"));
14546 uval
= ((unsigned int) val
>> operand
->shift
) - operand
->bias
;
14547 if (length
== 2 || operand
->root
.lsb
!= 0)
14548 *insn
= mips_insert_operand (&operand
->root
, *insn
, uval
);
14550 *insn
|= mips16_immed_extend (uval
, operand
->root
.size
);
14553 struct percent_op_match
14556 bfd_reloc_code_real_type reloc
;
14559 static const struct percent_op_match mips_percent_op
[] =
14561 {"%lo", BFD_RELOC_LO16
},
14562 {"%call_hi", BFD_RELOC_MIPS_CALL_HI16
},
14563 {"%call_lo", BFD_RELOC_MIPS_CALL_LO16
},
14564 {"%call16", BFD_RELOC_MIPS_CALL16
},
14565 {"%got_disp", BFD_RELOC_MIPS_GOT_DISP
},
14566 {"%got_page", BFD_RELOC_MIPS_GOT_PAGE
},
14567 {"%got_ofst", BFD_RELOC_MIPS_GOT_OFST
},
14568 {"%got_hi", BFD_RELOC_MIPS_GOT_HI16
},
14569 {"%got_lo", BFD_RELOC_MIPS_GOT_LO16
},
14570 {"%got", BFD_RELOC_MIPS_GOT16
},
14571 {"%gp_rel", BFD_RELOC_GPREL16
},
14572 {"%gprel", BFD_RELOC_GPREL16
},
14573 {"%half", BFD_RELOC_MIPS_16
},
14574 {"%highest", BFD_RELOC_MIPS_HIGHEST
},
14575 {"%higher", BFD_RELOC_MIPS_HIGHER
},
14576 {"%neg", BFD_RELOC_MIPS_SUB
},
14577 {"%tlsgd", BFD_RELOC_MIPS_TLS_GD
},
14578 {"%tlsldm", BFD_RELOC_MIPS_TLS_LDM
},
14579 {"%dtprel_hi", BFD_RELOC_MIPS_TLS_DTPREL_HI16
},
14580 {"%dtprel_lo", BFD_RELOC_MIPS_TLS_DTPREL_LO16
},
14581 {"%tprel_hi", BFD_RELOC_MIPS_TLS_TPREL_HI16
},
14582 {"%tprel_lo", BFD_RELOC_MIPS_TLS_TPREL_LO16
},
14583 {"%gottprel", BFD_RELOC_MIPS_TLS_GOTTPREL
},
14584 {"%hi", BFD_RELOC_HI16_S
},
14585 {"%pcrel_hi", BFD_RELOC_HI16_S_PCREL
},
14586 {"%pcrel_lo", BFD_RELOC_LO16_PCREL
}
14589 static const struct percent_op_match mips16_percent_op
[] =
14591 {"%lo", BFD_RELOC_MIPS16_LO16
},
14592 {"%gp_rel", BFD_RELOC_MIPS16_GPREL
},
14593 {"%gprel", BFD_RELOC_MIPS16_GPREL
},
14594 {"%got", BFD_RELOC_MIPS16_GOT16
},
14595 {"%call16", BFD_RELOC_MIPS16_CALL16
},
14596 {"%hi", BFD_RELOC_MIPS16_HI16_S
},
14597 {"%tlsgd", BFD_RELOC_MIPS16_TLS_GD
},
14598 {"%tlsldm", BFD_RELOC_MIPS16_TLS_LDM
},
14599 {"%dtprel_hi", BFD_RELOC_MIPS16_TLS_DTPREL_HI16
},
14600 {"%dtprel_lo", BFD_RELOC_MIPS16_TLS_DTPREL_LO16
},
14601 {"%tprel_hi", BFD_RELOC_MIPS16_TLS_TPREL_HI16
},
14602 {"%tprel_lo", BFD_RELOC_MIPS16_TLS_TPREL_LO16
},
14603 {"%gottprel", BFD_RELOC_MIPS16_TLS_GOTTPREL
}
14607 /* Return true if *STR points to a relocation operator. When returning true,
14608 move *STR over the operator and store its relocation code in *RELOC.
14609 Leave both *STR and *RELOC alone when returning false. */
14612 parse_relocation (char **str
, bfd_reloc_code_real_type
*reloc
)
14614 const struct percent_op_match
*percent_op
;
14617 if (mips_opts
.mips16
)
14619 percent_op
= mips16_percent_op
;
14620 limit
= ARRAY_SIZE (mips16_percent_op
);
14624 percent_op
= mips_percent_op
;
14625 limit
= ARRAY_SIZE (mips_percent_op
);
14628 for (i
= 0; i
< limit
; i
++)
14629 if (strncasecmp (*str
, percent_op
[i
].str
, strlen (percent_op
[i
].str
)) == 0)
14631 int len
= strlen (percent_op
[i
].str
);
14633 if (!ISSPACE ((*str
)[len
]) && (*str
)[len
] != '(')
14636 *str
+= strlen (percent_op
[i
].str
);
14637 *reloc
= percent_op
[i
].reloc
;
14639 /* Check whether the output BFD supports this relocation.
14640 If not, issue an error and fall back on something safe. */
14641 if (!bfd_reloc_type_lookup (stdoutput
, percent_op
[i
].reloc
))
14643 as_bad (_("relocation %s isn't supported by the current ABI"),
14644 percent_op
[i
].str
);
14645 *reloc
= BFD_RELOC_UNUSED
;
14653 /* Parse string STR as a 16-bit relocatable operand. Store the
14654 expression in *EP and the relocations in the array starting
14655 at RELOC. Return the number of relocation operators used.
14657 On exit, EXPR_PARSE_END points to the first character after the
14661 my_getSmallExpression (expressionS
*ep
, bfd_reloc_code_real_type
*reloc
,
14664 bfd_reloc_code_real_type reversed_reloc
[3];
14665 size_t reloc_index
, i
;
14666 int crux_depth
, str_depth
;
14669 /* Search for the start of the main expression, recoding relocations
14670 in REVERSED_RELOC. End the loop with CRUX pointing to the start
14671 of the main expression and with CRUX_DEPTH containing the number
14672 of open brackets at that point. */
14679 crux_depth
= str_depth
;
14681 /* Skip over whitespace and brackets, keeping count of the number
14683 while (*str
== ' ' || *str
== '\t' || *str
== '(')
14688 && reloc_index
< (HAVE_NEWABI
? 3 : 1)
14689 && parse_relocation (&str
, &reversed_reloc
[reloc_index
]));
14691 my_getExpression (ep
, crux
);
14692 str
= expr_parse_end
;
14694 /* Match every open bracket. */
14695 while (crux_depth
> 0 && (*str
== ')' || *str
== ' ' || *str
== '\t'))
14699 if (crux_depth
> 0)
14700 as_bad (_("unclosed '('"));
14702 expr_parse_end
= str
;
14704 for (i
= 0; i
< reloc_index
; i
++)
14705 reloc
[i
] = reversed_reloc
[reloc_index
- 1 - i
];
14707 return reloc_index
;
14711 my_getExpression (expressionS
*ep
, char *str
)
14715 save_in
= input_line_pointer
;
14716 input_line_pointer
= str
;
14718 expr_parse_end
= input_line_pointer
;
14719 input_line_pointer
= save_in
;
14723 md_atof (int type
, char *litP
, int *sizeP
)
14725 return ieee_md_atof (type
, litP
, sizeP
, target_big_endian
);
14729 md_number_to_chars (char *buf
, valueT val
, int n
)
14731 if (target_big_endian
)
14732 number_to_chars_bigendian (buf
, val
, n
);
14734 number_to_chars_littleendian (buf
, val
, n
);
14737 static int support_64bit_objects(void)
14739 const char **list
, **l
;
14742 list
= bfd_target_list ();
14743 for (l
= list
; *l
!= NULL
; l
++)
14744 if (strcmp (*l
, ELF_TARGET ("elf64-", "big")) == 0
14745 || strcmp (*l
, ELF_TARGET ("elf64-", "little")) == 0)
14747 yes
= (*l
!= NULL
);
14752 /* Set STRING_PTR (either &mips_arch_string or &mips_tune_string) to
14753 NEW_VALUE. Warn if another value was already specified. Note:
14754 we have to defer parsing the -march and -mtune arguments in order
14755 to handle 'from-abi' correctly, since the ABI might be specified
14756 in a later argument. */
14759 mips_set_option_string (const char **string_ptr
, const char *new_value
)
14761 if (*string_ptr
!= 0 && strcasecmp (*string_ptr
, new_value
) != 0)
14762 as_warn (_("a different %s was already specified, is now %s"),
14763 string_ptr
== &mips_arch_string
? "-march" : "-mtune",
14766 *string_ptr
= new_value
;
14770 md_parse_option (int c
, const char *arg
)
14774 for (i
= 0; i
< ARRAY_SIZE (mips_ases
); i
++)
14775 if (c
== mips_ases
[i
].option_on
|| c
== mips_ases
[i
].option_off
)
14777 file_ase_explicit
|= mips_set_ase (&mips_ases
[i
], &file_mips_opts
,
14778 c
== mips_ases
[i
].option_on
);
14784 case OPTION_CONSTRUCT_FLOATS
:
14785 mips_disable_float_construction
= 0;
14788 case OPTION_NO_CONSTRUCT_FLOATS
:
14789 mips_disable_float_construction
= 1;
14801 target_big_endian
= 1;
14805 target_big_endian
= 0;
14811 else if (arg
[0] == '0')
14813 else if (arg
[0] == '1')
14823 mips_debug
= atoi (arg
);
14827 file_mips_opts
.isa
= ISA_MIPS1
;
14831 file_mips_opts
.isa
= ISA_MIPS2
;
14835 file_mips_opts
.isa
= ISA_MIPS3
;
14839 file_mips_opts
.isa
= ISA_MIPS4
;
14843 file_mips_opts
.isa
= ISA_MIPS5
;
14846 case OPTION_MIPS32
:
14847 file_mips_opts
.isa
= ISA_MIPS32
;
14850 case OPTION_MIPS32R2
:
14851 file_mips_opts
.isa
= ISA_MIPS32R2
;
14854 case OPTION_MIPS32R3
:
14855 file_mips_opts
.isa
= ISA_MIPS32R3
;
14858 case OPTION_MIPS32R5
:
14859 file_mips_opts
.isa
= ISA_MIPS32R5
;
14862 case OPTION_MIPS32R6
:
14863 file_mips_opts
.isa
= ISA_MIPS32R6
;
14866 case OPTION_MIPS64R2
:
14867 file_mips_opts
.isa
= ISA_MIPS64R2
;
14870 case OPTION_MIPS64R3
:
14871 file_mips_opts
.isa
= ISA_MIPS64R3
;
14874 case OPTION_MIPS64R5
:
14875 file_mips_opts
.isa
= ISA_MIPS64R5
;
14878 case OPTION_MIPS64R6
:
14879 file_mips_opts
.isa
= ISA_MIPS64R6
;
14882 case OPTION_MIPS64
:
14883 file_mips_opts
.isa
= ISA_MIPS64
;
14887 mips_set_option_string (&mips_tune_string
, arg
);
14891 mips_set_option_string (&mips_arch_string
, arg
);
14895 mips_set_option_string (&mips_arch_string
, "4650");
14896 mips_set_option_string (&mips_tune_string
, "4650");
14899 case OPTION_NO_M4650
:
14903 mips_set_option_string (&mips_arch_string
, "4010");
14904 mips_set_option_string (&mips_tune_string
, "4010");
14907 case OPTION_NO_M4010
:
14911 mips_set_option_string (&mips_arch_string
, "4100");
14912 mips_set_option_string (&mips_tune_string
, "4100");
14915 case OPTION_NO_M4100
:
14919 mips_set_option_string (&mips_arch_string
, "3900");
14920 mips_set_option_string (&mips_tune_string
, "3900");
14923 case OPTION_NO_M3900
:
14926 case OPTION_MICROMIPS
:
14927 if (file_mips_opts
.mips16
== 1)
14929 as_bad (_("-mmicromips cannot be used with -mips16"));
14932 file_mips_opts
.micromips
= 1;
14933 mips_no_prev_insn ();
14936 case OPTION_NO_MICROMIPS
:
14937 file_mips_opts
.micromips
= 0;
14938 mips_no_prev_insn ();
14941 case OPTION_MIPS16
:
14942 if (file_mips_opts
.micromips
== 1)
14944 as_bad (_("-mips16 cannot be used with -micromips"));
14947 file_mips_opts
.mips16
= 1;
14948 mips_no_prev_insn ();
14951 case OPTION_NO_MIPS16
:
14952 file_mips_opts
.mips16
= 0;
14953 mips_no_prev_insn ();
14956 case OPTION_FIX_24K
:
14960 case OPTION_NO_FIX_24K
:
14964 case OPTION_FIX_RM7000
:
14965 mips_fix_rm7000
= 1;
14968 case OPTION_NO_FIX_RM7000
:
14969 mips_fix_rm7000
= 0;
14972 case OPTION_FIX_LOONGSON3_LLSC
:
14973 mips_fix_loongson3_llsc
= true;
14976 case OPTION_NO_FIX_LOONGSON3_LLSC
:
14977 mips_fix_loongson3_llsc
= false;
14980 case OPTION_FIX_LOONGSON2F_JUMP
:
14981 mips_fix_loongson2f_jump
= true;
14984 case OPTION_NO_FIX_LOONGSON2F_JUMP
:
14985 mips_fix_loongson2f_jump
= false;
14988 case OPTION_FIX_LOONGSON2F_NOP
:
14989 mips_fix_loongson2f_nop
= true;
14992 case OPTION_NO_FIX_LOONGSON2F_NOP
:
14993 mips_fix_loongson2f_nop
= false;
14996 case OPTION_FIX_VR4120
:
14997 mips_fix_vr4120
= 1;
15000 case OPTION_NO_FIX_VR4120
:
15001 mips_fix_vr4120
= 0;
15004 case OPTION_FIX_VR4130
:
15005 mips_fix_vr4130
= 1;
15008 case OPTION_NO_FIX_VR4130
:
15009 mips_fix_vr4130
= 0;
15012 case OPTION_FIX_CN63XXP1
:
15013 mips_fix_cn63xxp1
= true;
15016 case OPTION_NO_FIX_CN63XXP1
:
15017 mips_fix_cn63xxp1
= false;
15020 case OPTION_FIX_R5900
:
15021 mips_fix_r5900
= true;
15022 mips_fix_r5900_explicit
= true;
15025 case OPTION_NO_FIX_R5900
:
15026 mips_fix_r5900
= false;
15027 mips_fix_r5900_explicit
= true;
15030 case OPTION_RELAX_BRANCH
:
15031 mips_relax_branch
= 1;
15034 case OPTION_NO_RELAX_BRANCH
:
15035 mips_relax_branch
= 0;
15038 case OPTION_IGNORE_BRANCH_ISA
:
15039 mips_ignore_branch_isa
= true;
15042 case OPTION_NO_IGNORE_BRANCH_ISA
:
15043 mips_ignore_branch_isa
= false;
15046 case OPTION_INSN32
:
15047 file_mips_opts
.insn32
= true;
15050 case OPTION_NO_INSN32
:
15051 file_mips_opts
.insn32
= false;
15054 case OPTION_MSHARED
:
15055 mips_in_shared
= true;
15058 case OPTION_MNO_SHARED
:
15059 mips_in_shared
= false;
15062 case OPTION_MSYM32
:
15063 file_mips_opts
.sym32
= true;
15066 case OPTION_MNO_SYM32
:
15067 file_mips_opts
.sym32
= false;
15070 /* When generating ELF code, we permit -KPIC and -call_shared to
15071 select SVR4_PIC, and -non_shared to select no PIC. This is
15072 intended to be compatible with Irix 5. */
15073 case OPTION_CALL_SHARED
:
15074 mips_pic
= SVR4_PIC
;
15075 mips_abicalls
= true;
15078 case OPTION_CALL_NONPIC
:
15080 mips_abicalls
= true;
15083 case OPTION_NON_SHARED
:
15085 mips_abicalls
= false;
15088 /* The -xgot option tells the assembler to use 32 bit offsets
15089 when accessing the got in SVR4_PIC mode. It is for Irix
15096 g_switch_value
= atoi (arg
);
15100 /* The -32, -n32 and -64 options are shortcuts for -mabi=32, -mabi=n32
15103 mips_abi
= O32_ABI
;
15107 mips_abi
= N32_ABI
;
15111 mips_abi
= N64_ABI
;
15112 if (!support_64bit_objects())
15113 as_fatal (_("no compiled in support for 64 bit object file format"));
15117 file_mips_opts
.gp
= 32;
15121 file_mips_opts
.gp
= 64;
15125 file_mips_opts
.fp
= 32;
15129 file_mips_opts
.fp
= 0;
15133 file_mips_opts
.fp
= 64;
15136 case OPTION_ODD_SPREG
:
15137 file_mips_opts
.oddspreg
= 1;
15140 case OPTION_NO_ODD_SPREG
:
15141 file_mips_opts
.oddspreg
= 0;
15144 case OPTION_SINGLE_FLOAT
:
15145 file_mips_opts
.single_float
= 1;
15148 case OPTION_DOUBLE_FLOAT
:
15149 file_mips_opts
.single_float
= 0;
15152 case OPTION_SOFT_FLOAT
:
15153 file_mips_opts
.soft_float
= 1;
15156 case OPTION_HARD_FLOAT
:
15157 file_mips_opts
.soft_float
= 0;
15161 if (strcmp (arg
, "32") == 0)
15162 mips_abi
= O32_ABI
;
15163 else if (strcmp (arg
, "o64") == 0)
15164 mips_abi
= O64_ABI
;
15165 else if (strcmp (arg
, "n32") == 0)
15166 mips_abi
= N32_ABI
;
15167 else if (strcmp (arg
, "64") == 0)
15169 mips_abi
= N64_ABI
;
15170 if (! support_64bit_objects())
15171 as_fatal (_("no compiled in support for 64 bit object file "
15174 else if (strcmp (arg
, "eabi") == 0)
15175 mips_abi
= EABI_ABI
;
15178 as_fatal (_("invalid abi -mabi=%s"), arg
);
15183 case OPTION_M7000_HILO_FIX
:
15184 mips_7000_hilo_fix
= true;
15187 case OPTION_MNO_7000_HILO_FIX
:
15188 mips_7000_hilo_fix
= false;
15191 case OPTION_MDEBUG
:
15192 mips_flag_mdebug
= true;
15195 case OPTION_NO_MDEBUG
:
15196 mips_flag_mdebug
= false;
15200 mips_flag_pdr
= true;
15203 case OPTION_NO_PDR
:
15204 mips_flag_pdr
= false;
15207 case OPTION_MVXWORKS_PIC
:
15208 mips_pic
= VXWORKS_PIC
;
15212 if (strcmp (arg
, "2008") == 0)
15214 else if (strcmp (arg
, "legacy") == 0)
15218 as_fatal (_("invalid NaN setting -mnan=%s"), arg
);
15227 mips_fix_loongson2f
= mips_fix_loongson2f_nop
|| mips_fix_loongson2f_jump
;
15232 /* Set up globals to tune for the ISA or processor described by INFO. */
15235 mips_set_tune (const struct mips_cpu_info
*info
)
15238 mips_tune
= info
->cpu
;
15243 mips_after_parse_args (void)
15245 const struct mips_cpu_info
*arch_info
= 0;
15246 const struct mips_cpu_info
*tune_info
= 0;
15248 /* GP relative stuff not working for PE. */
15249 if (startswith (TARGET_OS
, "pe"))
15251 if (g_switch_seen
&& g_switch_value
!= 0)
15252 as_bad (_("-G not supported in this configuration"));
15253 g_switch_value
= 0;
15256 if (mips_abi
== NO_ABI
)
15257 mips_abi
= MIPS_DEFAULT_ABI
;
15259 /* The following code determines the architecture.
15260 Similar code was added to GCC 3.3 (see override_options() in
15261 config/mips/mips.c). The GAS and GCC code should be kept in sync
15262 as much as possible. */
15264 if (mips_arch_string
!= 0)
15265 arch_info
= mips_parse_cpu ("-march", mips_arch_string
);
15267 if (file_mips_opts
.isa
!= ISA_UNKNOWN
)
15269 /* Handle -mipsN. At this point, file_mips_opts.isa contains the
15270 ISA level specified by -mipsN, while arch_info->isa contains
15271 the -march selection (if any). */
15272 if (arch_info
!= 0)
15274 /* -march takes precedence over -mipsN, since it is more descriptive.
15275 There's no harm in specifying both as long as the ISA levels
15277 if (file_mips_opts
.isa
!= arch_info
->isa
)
15278 as_bad (_("-%s conflicts with the other architecture options,"
15279 " which imply -%s"),
15280 mips_cpu_info_from_isa (file_mips_opts
.isa
)->name
,
15281 mips_cpu_info_from_isa (arch_info
->isa
)->name
);
15284 arch_info
= mips_cpu_info_from_isa (file_mips_opts
.isa
);
15287 if (arch_info
== 0)
15289 arch_info
= mips_parse_cpu ("default CPU", MIPS_CPU_STRING_DEFAULT
);
15290 gas_assert (arch_info
);
15293 if (ABI_NEEDS_64BIT_REGS (mips_abi
) && !ISA_HAS_64BIT_REGS (arch_info
->isa
))
15294 as_bad (_("-march=%s is not compatible with the selected ABI"),
15297 file_mips_opts
.arch
= arch_info
->cpu
;
15298 file_mips_opts
.isa
= arch_info
->isa
;
15299 file_mips_opts
.init_ase
= arch_info
->ase
;
15301 /* The EVA Extension has instructions which are only valid when the R6 ISA
15302 is enabled. This sets the ASE_EVA_R6 flag when both EVA and R6 ISA are
15304 if (((file_mips_opts
.ase
& ASE_EVA
) != 0) && ISA_IS_R6 (file_mips_opts
.isa
))
15305 file_mips_opts
.ase
|= ASE_EVA_R6
;
15307 /* Set up initial mips_opts state. */
15308 mips_opts
= file_mips_opts
;
15310 /* For the R5900 default to `-mfix-r5900' unless the user told otherwise. */
15311 if (!mips_fix_r5900_explicit
)
15312 mips_fix_r5900
= file_mips_opts
.arch
== CPU_R5900
;
15314 /* The register size inference code is now placed in
15315 file_mips_check_options. */
15317 /* Optimize for file_mips_opts.arch, unless -mtune selects a different
15319 if (mips_tune_string
!= 0)
15320 tune_info
= mips_parse_cpu ("-mtune", mips_tune_string
);
15322 if (tune_info
== 0)
15323 mips_set_tune (arch_info
);
15325 mips_set_tune (tune_info
);
15327 if (mips_flag_mdebug
< 0)
15328 mips_flag_mdebug
= 0;
15332 mips_init_after_args (void)
15334 /* Initialize opcodes. */
15335 bfd_mips_num_opcodes
= bfd_mips_num_builtin_opcodes
;
15336 mips_opcodes
= (struct mips_opcode
*) mips_builtin_opcodes
;
15340 md_pcrel_from (fixS
*fixP
)
15342 valueT addr
= fixP
->fx_where
+ fixP
->fx_frag
->fr_address
;
15344 switch (fixP
->fx_r_type
)
15346 case BFD_RELOC_MICROMIPS_7_PCREL_S1
:
15347 case BFD_RELOC_MICROMIPS_10_PCREL_S1
:
15348 /* Return the address of the delay slot. */
15351 case BFD_RELOC_MICROMIPS_16_PCREL_S1
:
15352 case BFD_RELOC_MICROMIPS_JMP
:
15353 case BFD_RELOC_MIPS16_16_PCREL_S1
:
15354 case BFD_RELOC_16_PCREL_S2
:
15355 case BFD_RELOC_MIPS_21_PCREL_S2
:
15356 case BFD_RELOC_MIPS_26_PCREL_S2
:
15357 case BFD_RELOC_MIPS_JMP
:
15358 /* Return the address of the delay slot. */
15361 case BFD_RELOC_MIPS_18_PCREL_S3
:
15362 /* Return the aligned address of the doubleword containing
15363 the instruction. */
15371 /* This is called before the symbol table is processed. In order to
15372 work with gcc when using mips-tfile, we must keep all local labels.
15373 However, in other cases, we want to discard them. If we were
15374 called with -g, but we didn't see any debugging information, it may
15375 mean that gcc is smuggling debugging information through to
15376 mips-tfile, in which case we must generate all local labels. */
15379 mips_frob_file_before_adjust (void)
15381 #ifndef NO_ECOFF_DEBUGGING
15382 if (ECOFF_DEBUGGING
15384 && ! ecoff_debugging_seen
)
15385 flag_keep_locals
= 1;
15389 /* Sort any unmatched HI16 and GOT16 relocs so that they immediately precede
15390 the corresponding LO16 reloc. This is called before md_apply_fix and
15391 tc_gen_reloc. Unmatched relocs can only be generated by use of explicit
15392 relocation operators.
15394 For our purposes, a %lo() expression matches a %got() or %hi()
15397 (a) it refers to the same symbol; and
15398 (b) the offset applied in the %lo() expression is no lower than
15399 the offset applied in the %got() or %hi().
15401 (b) allows us to cope with code like:
15404 lh $4,%lo(foo+2)($4)
15406 ...which is legal on RELA targets, and has a well-defined behaviour
15407 if the user knows that adding 2 to "foo" will not induce a carry to
15410 When several %lo()s match a particular %got() or %hi(), we use the
15411 following rules to distinguish them:
15413 (1) %lo()s with smaller offsets are a better match than %lo()s with
15416 (2) %lo()s with no matching %got() or %hi() are better than those
15417 that already have a matching %got() or %hi().
15419 (3) later %lo()s are better than earlier %lo()s.
15421 These rules are applied in order.
15423 (1) means, among other things, that %lo()s with identical offsets are
15424 chosen if they exist.
15426 (2) means that we won't associate several high-part relocations with
15427 the same low-part relocation unless there's no alternative. Having
15428 several high parts for the same low part is a GNU extension; this rule
15429 allows careful users to avoid it.
15431 (3) is purely cosmetic. mips_hi_fixup_list is is in reverse order,
15432 with the last high-part relocation being at the front of the list.
15433 It therefore makes sense to choose the last matching low-part
15434 relocation, all other things being equal. It's also easier
15435 to code that way. */
15438 mips_frob_file (void)
15440 struct mips_hi_fixup
*l
;
15441 bfd_reloc_code_real_type looking_for_rtype
= BFD_RELOC_UNUSED
;
15443 for (l
= mips_hi_fixup_list
; l
!= NULL
; l
= l
->next
)
15445 segment_info_type
*seginfo
;
15447 fixS
**hi_pos
, **lo_pos
, **pos
;
15449 gas_assert (reloc_needs_lo_p (l
->fixp
->fx_r_type
));
15451 /* If a GOT16 relocation turns out to be against a global symbol,
15452 there isn't supposed to be a matching LO. Ignore %gots against
15453 constants; we'll report an error for those later. */
15454 if (got16_reloc_p (l
->fixp
->fx_r_type
)
15455 && !pic_need_relax (l
->fixp
->fx_addsy
))
15458 /* Check quickly whether the next fixup happens to be a matching %lo. */
15459 if (fixup_has_matching_lo_p (l
->fixp
))
15462 seginfo
= seg_info (l
->seg
);
15464 /* Set HI_POS to the position of this relocation in the chain.
15465 Set LO_POS to the position of the chosen low-part relocation.
15466 MATCHED_LO_P is true on entry to the loop if *POS is a low-part
15467 relocation that matches an immediately-preceding high-part
15471 matched_lo_p
= false;
15472 looking_for_rtype
= matching_lo_reloc (l
->fixp
->fx_r_type
);
15474 for (pos
= &seginfo
->fix_root
; *pos
!= NULL
; pos
= &(*pos
)->fx_next
)
15476 if (*pos
== l
->fixp
)
15479 if ((*pos
)->fx_r_type
== looking_for_rtype
15480 && symbol_same_p ((*pos
)->fx_addsy
, l
->fixp
->fx_addsy
)
15481 && (*pos
)->fx_offset
>= l
->fixp
->fx_offset
15483 || (*pos
)->fx_offset
< (*lo_pos
)->fx_offset
15485 && (*pos
)->fx_offset
== (*lo_pos
)->fx_offset
)))
15488 matched_lo_p
= (reloc_needs_lo_p ((*pos
)->fx_r_type
)
15489 && fixup_has_matching_lo_p (*pos
));
15492 /* If we found a match, remove the high-part relocation from its
15493 current position and insert it before the low-part relocation.
15494 Make the offsets match so that fixup_has_matching_lo_p()
15497 We don't warn about unmatched high-part relocations since some
15498 versions of gcc have been known to emit dead "lui ...%hi(...)"
15500 if (lo_pos
!= NULL
)
15502 l
->fixp
->fx_offset
= (*lo_pos
)->fx_offset
;
15503 if (l
->fixp
->fx_next
!= *lo_pos
)
15505 *hi_pos
= l
->fixp
->fx_next
;
15506 l
->fixp
->fx_next
= *lo_pos
;
15514 mips_force_relocation (fixS
*fixp
)
15516 if (generic_force_reloc (fixp
))
15519 /* We want to keep BFD_RELOC_MICROMIPS_*_PCREL_S1 relocation,
15520 so that the linker relaxation can update targets. */
15521 if (fixp
->fx_r_type
== BFD_RELOC_MICROMIPS_7_PCREL_S1
15522 || fixp
->fx_r_type
== BFD_RELOC_MICROMIPS_10_PCREL_S1
15523 || fixp
->fx_r_type
== BFD_RELOC_MICROMIPS_16_PCREL_S1
)
15526 /* We want to keep BFD_RELOC_16_PCREL_S2 BFD_RELOC_MIPS_21_PCREL_S2
15527 and BFD_RELOC_MIPS_26_PCREL_S2 relocations against MIPS16 and
15528 microMIPS symbols so that we can do cross-mode branch diagnostics
15529 and BAL to JALX conversion by the linker. */
15530 if ((fixp
->fx_r_type
== BFD_RELOC_16_PCREL_S2
15531 || fixp
->fx_r_type
== BFD_RELOC_MIPS_21_PCREL_S2
15532 || fixp
->fx_r_type
== BFD_RELOC_MIPS_26_PCREL_S2
)
15534 && ELF_ST_IS_COMPRESSED (S_GET_OTHER (fixp
->fx_addsy
)))
15537 /* We want all PC-relative relocations to be kept for R6 relaxation. */
15538 if (ISA_IS_R6 (file_mips_opts
.isa
)
15539 && (fixp
->fx_r_type
== BFD_RELOC_16_PCREL_S2
15540 || fixp
->fx_r_type
== BFD_RELOC_MIPS_21_PCREL_S2
15541 || fixp
->fx_r_type
== BFD_RELOC_MIPS_26_PCREL_S2
15542 || fixp
->fx_r_type
== BFD_RELOC_MIPS_18_PCREL_S3
15543 || fixp
->fx_r_type
== BFD_RELOC_MIPS_19_PCREL_S2
15544 || fixp
->fx_r_type
== BFD_RELOC_HI16_S_PCREL
15545 || fixp
->fx_r_type
== BFD_RELOC_LO16_PCREL
))
15551 /* Implement TC_FORCE_RELOCATION_ABS. */
15554 mips_force_relocation_abs (fixS
*fixp
)
15556 if (generic_force_reloc (fixp
))
15559 /* These relocations do not have enough bits in the in-place addend
15560 to hold an arbitrary absolute section's offset. */
15561 if (HAVE_IN_PLACE_ADDENDS
&& limited_pcrel_reloc_p (fixp
->fx_r_type
))
15567 /* Read the instruction associated with RELOC from BUF. */
15569 static unsigned int
15570 read_reloc_insn (char *buf
, bfd_reloc_code_real_type reloc
)
15572 if (mips16_reloc_p (reloc
) || micromips_reloc_p (reloc
))
15573 return read_compressed_insn (buf
, 4);
15575 return read_insn (buf
);
15578 /* Write instruction INSN to BUF, given that it has been relocated
15582 write_reloc_insn (char *buf
, bfd_reloc_code_real_type reloc
,
15583 unsigned long insn
)
15585 if (mips16_reloc_p (reloc
) || micromips_reloc_p (reloc
))
15586 write_compressed_insn (buf
, insn
, 4);
15588 write_insn (buf
, insn
);
15591 /* Return TRUE if the instruction pointed to by FIXP is an invalid jump
15592 to a symbol in another ISA mode, which cannot be converted to JALX. */
15595 fix_bad_cross_mode_jump_p (fixS
*fixP
)
15597 unsigned long opcode
;
15601 if (!fixP
->fx_addsy
|| S_FORCE_RELOC (fixP
->fx_addsy
, true))
15604 other
= S_GET_OTHER (fixP
->fx_addsy
);
15605 buf
= fixP
->fx_frag
->fr_literal
+ fixP
->fx_where
;
15606 opcode
= read_reloc_insn (buf
, fixP
->fx_r_type
) >> 26;
15607 switch (fixP
->fx_r_type
)
15609 case BFD_RELOC_MIPS_JMP
:
15610 return opcode
!= 0x1d && opcode
!= 0x03 && ELF_ST_IS_COMPRESSED (other
);
15611 case BFD_RELOC_MICROMIPS_JMP
:
15612 return opcode
!= 0x3c && opcode
!= 0x3d && !ELF_ST_IS_MICROMIPS (other
);
15618 /* Return TRUE if the instruction pointed to by FIXP is an invalid JALX
15619 jump to a symbol in the same ISA mode. */
15622 fix_bad_same_mode_jalx_p (fixS
*fixP
)
15624 unsigned long opcode
;
15628 if (!fixP
->fx_addsy
|| S_FORCE_RELOC (fixP
->fx_addsy
, true))
15631 other
= S_GET_OTHER (fixP
->fx_addsy
);
15632 buf
= fixP
->fx_frag
->fr_literal
+ fixP
->fx_where
;
15633 opcode
= read_reloc_insn (buf
, fixP
->fx_r_type
) >> 26;
15634 switch (fixP
->fx_r_type
)
15636 case BFD_RELOC_MIPS_JMP
:
15637 return opcode
== 0x1d && !ELF_ST_IS_COMPRESSED (other
);
15638 case BFD_RELOC_MIPS16_JMP
:
15639 return opcode
== 0x07 && ELF_ST_IS_COMPRESSED (other
);
15640 case BFD_RELOC_MICROMIPS_JMP
:
15641 return opcode
== 0x3c && ELF_ST_IS_COMPRESSED (other
);
15647 /* Return TRUE if the instruction pointed to by FIXP is an invalid jump
15648 to a symbol whose value plus addend is not aligned according to the
15649 ultimate (after linker relaxation) jump instruction's immediate field
15650 requirement, either to (1 << SHIFT), or, for jumps from microMIPS to
15651 regular MIPS code, to (1 << 2). */
15654 fix_bad_misaligned_jump_p (fixS
*fixP
, int shift
)
15656 bool micro_to_mips_p
;
15660 if (!fixP
->fx_addsy
|| S_FORCE_RELOC (fixP
->fx_addsy
, true))
15663 other
= S_GET_OTHER (fixP
->fx_addsy
);
15664 val
= S_GET_VALUE (fixP
->fx_addsy
) | ELF_ST_IS_COMPRESSED (other
);
15665 val
+= fixP
->fx_offset
;
15666 micro_to_mips_p
= (fixP
->fx_r_type
== BFD_RELOC_MICROMIPS_JMP
15667 && !ELF_ST_IS_MICROMIPS (other
));
15668 return ((val
& ((1 << (micro_to_mips_p
? 2 : shift
)) - 1))
15669 != ELF_ST_IS_COMPRESSED (other
));
15672 /* Return TRUE if the instruction pointed to by FIXP is an invalid branch
15673 to a symbol whose annotation indicates another ISA mode. For absolute
15674 symbols check the ISA bit instead.
15676 We accept BFD_RELOC_16_PCREL_S2 relocations against MIPS16 and microMIPS
15677 symbols or BFD_RELOC_MICROMIPS_16_PCREL_S1 relocations against regular
15678 MIPS symbols and associated with BAL instructions as these instructions
15679 may be converted to JALX by the linker. */
15682 fix_bad_cross_mode_branch_p (fixS
*fixP
)
15685 unsigned long opcode
;
15691 if (mips_ignore_branch_isa
)
15694 if (!fixP
->fx_addsy
|| S_FORCE_RELOC (fixP
->fx_addsy
, true))
15697 symsec
= S_GET_SEGMENT (fixP
->fx_addsy
);
15698 absolute_p
= bfd_is_abs_section (symsec
);
15700 val
= S_GET_VALUE (fixP
->fx_addsy
) + fixP
->fx_offset
;
15701 other
= S_GET_OTHER (fixP
->fx_addsy
);
15703 buf
= fixP
->fx_frag
->fr_literal
+ fixP
->fx_where
;
15704 opcode
= read_reloc_insn (buf
, fixP
->fx_r_type
) >> 16;
15705 switch (fixP
->fx_r_type
)
15707 case BFD_RELOC_16_PCREL_S2
:
15708 return ((absolute_p
? val
& 1 : ELF_ST_IS_COMPRESSED (other
))
15709 && opcode
!= 0x0411);
15710 case BFD_RELOC_MICROMIPS_16_PCREL_S1
:
15711 return ((absolute_p
? !(val
& 1) : !ELF_ST_IS_MICROMIPS (other
))
15712 && opcode
!= 0x4060);
15713 case BFD_RELOC_MIPS_21_PCREL_S2
:
15714 case BFD_RELOC_MIPS_26_PCREL_S2
:
15715 return absolute_p
? val
& 1 : ELF_ST_IS_COMPRESSED (other
);
15716 case BFD_RELOC_MIPS16_16_PCREL_S1
:
15717 return absolute_p
? !(val
& 1) : !ELF_ST_IS_MIPS16 (other
);
15718 case BFD_RELOC_MICROMIPS_7_PCREL_S1
:
15719 case BFD_RELOC_MICROMIPS_10_PCREL_S1
:
15720 return absolute_p
? !(val
& 1) : !ELF_ST_IS_MICROMIPS (other
);
15726 /* Return TRUE if the symbol plus addend associated with a regular MIPS
15727 branch instruction pointed to by FIXP is not aligned according to the
15728 branch instruction's immediate field requirement. We need the addend
15729 to preserve the ISA bit and also the sum must not have bit 2 set. We
15730 must explicitly OR in the ISA bit from symbol annotation as the bit
15731 won't be set in the symbol's value then. */
15734 fix_bad_misaligned_branch_p (fixS
*fixP
)
15743 if (!fixP
->fx_addsy
|| S_FORCE_RELOC (fixP
->fx_addsy
, true))
15746 symsec
= S_GET_SEGMENT (fixP
->fx_addsy
);
15747 absolute_p
= bfd_is_abs_section (symsec
);
15749 val
= S_GET_VALUE (fixP
->fx_addsy
);
15750 other
= S_GET_OTHER (fixP
->fx_addsy
);
15751 off
= fixP
->fx_offset
;
15753 isa_bit
= absolute_p
? (val
+ off
) & 1 : ELF_ST_IS_COMPRESSED (other
);
15754 val
|= ELF_ST_IS_COMPRESSED (other
);
15756 return (val
& 0x3) != isa_bit
;
15759 /* Calculate the relocation target by masking off ISA mode bit before
15760 combining symbol and addend. */
15763 fix_bad_misaligned_address (fixS
*fixP
)
15768 gas_assert (fixP
!= NULL
&& fixP
->fx_addsy
!= NULL
);
15769 val
= S_GET_VALUE (fixP
->fx_addsy
);
15770 off
= fixP
->fx_offset
;
15771 isa_mode
= (ELF_ST_IS_COMPRESSED (S_GET_OTHER (fixP
->fx_addsy
))
15774 return ((val
& ~isa_mode
) + off
);
15777 /* Make the necessary checks on a regular MIPS branch pointed to by FIXP
15778 and its calculated value VAL. */
15781 fix_validate_branch (fixS
*fixP
, valueT val
)
15783 if (fixP
->fx_done
&& (val
& 0x3) != 0)
15784 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
15785 _("branch to misaligned address (0x%lx)"),
15786 (long) (val
+ md_pcrel_from (fixP
)));
15787 else if (fix_bad_cross_mode_branch_p (fixP
))
15788 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
15789 _("branch to a symbol in another ISA mode"));
15790 else if (fix_bad_misaligned_branch_p (fixP
))
15791 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
15792 _("branch to misaligned address (0x%lx)"),
15793 (long) fix_bad_misaligned_address (fixP
));
15794 else if (HAVE_IN_PLACE_ADDENDS
&& (fixP
->fx_offset
& 0x3) != 0)
15795 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
15796 _("cannot encode misaligned addend "
15797 "in the relocatable field (0x%lx)"),
15798 (long) fixP
->fx_offset
);
15801 /* Apply a fixup to the object file. */
15804 md_apply_fix (fixS
*fixP
, valueT
*valP
, segT seg ATTRIBUTE_UNUSED
)
15807 unsigned long insn
;
15808 reloc_howto_type
*howto
;
15810 if (fixP
->fx_pcrel
)
15811 switch (fixP
->fx_r_type
)
15813 case BFD_RELOC_16_PCREL_S2
:
15814 case BFD_RELOC_MIPS16_16_PCREL_S1
:
15815 case BFD_RELOC_MICROMIPS_7_PCREL_S1
:
15816 case BFD_RELOC_MICROMIPS_10_PCREL_S1
:
15817 case BFD_RELOC_MICROMIPS_16_PCREL_S1
:
15818 case BFD_RELOC_32_PCREL
:
15819 case BFD_RELOC_MIPS_21_PCREL_S2
:
15820 case BFD_RELOC_MIPS_26_PCREL_S2
:
15821 case BFD_RELOC_MIPS_18_PCREL_S3
:
15822 case BFD_RELOC_MIPS_19_PCREL_S2
:
15823 case BFD_RELOC_HI16_S_PCREL
:
15824 case BFD_RELOC_LO16_PCREL
:
15828 fixP
->fx_r_type
= BFD_RELOC_32_PCREL
;
15832 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
15833 _("PC-relative reference to a different section"));
15837 /* Handle BFD_RELOC_8 and BFD_RELOC_16. Punt on other bfd
15838 relocations that have no MIPS ELF equivalent. */
15839 if (fixP
->fx_r_type
!= BFD_RELOC_8
15840 && fixP
->fx_r_type
!= BFD_RELOC_16
)
15842 howto
= bfd_reloc_type_lookup (stdoutput
, fixP
->fx_r_type
);
15847 gas_assert (fixP
->fx_size
== 2
15848 || fixP
->fx_size
== 4
15849 || fixP
->fx_r_type
== BFD_RELOC_8
15850 || fixP
->fx_r_type
== BFD_RELOC_64
15851 || fixP
->fx_r_type
== BFD_RELOC_CTOR
15852 || fixP
->fx_r_type
== BFD_RELOC_MIPS_SUB
15853 || fixP
->fx_r_type
== BFD_RELOC_MICROMIPS_SUB
15854 || fixP
->fx_r_type
== BFD_RELOC_VTABLE_INHERIT
15855 || fixP
->fx_r_type
== BFD_RELOC_VTABLE_ENTRY
15856 || fixP
->fx_r_type
== BFD_RELOC_MIPS_TLS_DTPREL64
15857 || fixP
->fx_r_type
== BFD_RELOC_NONE
);
15859 buf
= fixP
->fx_frag
->fr_literal
+ fixP
->fx_where
;
15861 /* Don't treat parts of a composite relocation as done. There are two
15864 (1) The second and third parts will be against 0 (RSS_UNDEF) but
15865 should nevertheless be emitted if the first part is.
15867 (2) In normal usage, composite relocations are never assembly-time
15868 constants. The easiest way of dealing with the pathological
15869 exceptions is to generate a relocation against STN_UNDEF and
15870 leave everything up to the linker. */
15871 if (fixP
->fx_addsy
== NULL
&& !fixP
->fx_pcrel
&& fixP
->fx_tcbit
== 0)
15874 switch (fixP
->fx_r_type
)
15876 case BFD_RELOC_MIPS_TLS_GD
:
15877 case BFD_RELOC_MIPS_TLS_LDM
:
15878 case BFD_RELOC_MIPS_TLS_DTPREL32
:
15879 case BFD_RELOC_MIPS_TLS_DTPREL64
:
15880 case BFD_RELOC_MIPS_TLS_DTPREL_HI16
:
15881 case BFD_RELOC_MIPS_TLS_DTPREL_LO16
:
15882 case BFD_RELOC_MIPS_TLS_GOTTPREL
:
15883 case BFD_RELOC_MIPS_TLS_TPREL32
:
15884 case BFD_RELOC_MIPS_TLS_TPREL64
:
15885 case BFD_RELOC_MIPS_TLS_TPREL_HI16
:
15886 case BFD_RELOC_MIPS_TLS_TPREL_LO16
:
15887 case BFD_RELOC_MICROMIPS_TLS_GD
:
15888 case BFD_RELOC_MICROMIPS_TLS_LDM
:
15889 case BFD_RELOC_MICROMIPS_TLS_DTPREL_HI16
:
15890 case BFD_RELOC_MICROMIPS_TLS_DTPREL_LO16
:
15891 case BFD_RELOC_MICROMIPS_TLS_GOTTPREL
:
15892 case BFD_RELOC_MICROMIPS_TLS_TPREL_HI16
:
15893 case BFD_RELOC_MICROMIPS_TLS_TPREL_LO16
:
15894 case BFD_RELOC_MIPS16_TLS_GD
:
15895 case BFD_RELOC_MIPS16_TLS_LDM
:
15896 case BFD_RELOC_MIPS16_TLS_DTPREL_HI16
:
15897 case BFD_RELOC_MIPS16_TLS_DTPREL_LO16
:
15898 case BFD_RELOC_MIPS16_TLS_GOTTPREL
:
15899 case BFD_RELOC_MIPS16_TLS_TPREL_HI16
:
15900 case BFD_RELOC_MIPS16_TLS_TPREL_LO16
:
15901 if (fixP
->fx_addsy
)
15902 S_SET_THREAD_LOCAL (fixP
->fx_addsy
);
15904 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
15905 _("TLS relocation against a constant"));
15908 case BFD_RELOC_MIPS_JMP
:
15909 case BFD_RELOC_MIPS16_JMP
:
15910 case BFD_RELOC_MICROMIPS_JMP
:
15914 gas_assert (!fixP
->fx_done
);
15916 /* Shift is 2, unusually, for microMIPS JALX. */
15917 if (fixP
->fx_r_type
== BFD_RELOC_MICROMIPS_JMP
15918 && (read_compressed_insn (buf
, 4) >> 26) != 0x3c)
15923 if (fix_bad_cross_mode_jump_p (fixP
))
15924 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
15925 _("jump to a symbol in another ISA mode"));
15926 else if (fix_bad_same_mode_jalx_p (fixP
))
15927 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
15928 _("JALX to a symbol in the same ISA mode"));
15929 else if (fix_bad_misaligned_jump_p (fixP
, shift
))
15930 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
15931 _("jump to misaligned address (0x%lx)"),
15932 (long) fix_bad_misaligned_address (fixP
));
15933 else if (HAVE_IN_PLACE_ADDENDS
15934 && (fixP
->fx_offset
& ((1 << shift
) - 1)) != 0)
15935 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
15936 _("cannot encode misaligned addend "
15937 "in the relocatable field (0x%lx)"),
15938 (long) fixP
->fx_offset
);
15940 /* Fall through. */
15942 case BFD_RELOC_MIPS_SHIFT5
:
15943 case BFD_RELOC_MIPS_SHIFT6
:
15944 case BFD_RELOC_MIPS_GOT_DISP
:
15945 case BFD_RELOC_MIPS_GOT_PAGE
:
15946 case BFD_RELOC_MIPS_GOT_OFST
:
15947 case BFD_RELOC_MIPS_SUB
:
15948 case BFD_RELOC_MIPS_INSERT_A
:
15949 case BFD_RELOC_MIPS_INSERT_B
:
15950 case BFD_RELOC_MIPS_DELETE
:
15951 case BFD_RELOC_MIPS_HIGHEST
:
15952 case BFD_RELOC_MIPS_HIGHER
:
15953 case BFD_RELOC_MIPS_SCN_DISP
:
15954 case BFD_RELOC_MIPS_RELGOT
:
15955 case BFD_RELOC_MIPS_JALR
:
15956 case BFD_RELOC_HI16
:
15957 case BFD_RELOC_HI16_S
:
15958 case BFD_RELOC_LO16
:
15959 case BFD_RELOC_GPREL16
:
15960 case BFD_RELOC_MIPS_LITERAL
:
15961 case BFD_RELOC_MIPS_CALL16
:
15962 case BFD_RELOC_MIPS_GOT16
:
15963 case BFD_RELOC_GPREL32
:
15964 case BFD_RELOC_MIPS_GOT_HI16
:
15965 case BFD_RELOC_MIPS_GOT_LO16
:
15966 case BFD_RELOC_MIPS_CALL_HI16
:
15967 case BFD_RELOC_MIPS_CALL_LO16
:
15968 case BFD_RELOC_HI16_S_PCREL
:
15969 case BFD_RELOC_LO16_PCREL
:
15970 case BFD_RELOC_MIPS16_GPREL
:
15971 case BFD_RELOC_MIPS16_GOT16
:
15972 case BFD_RELOC_MIPS16_CALL16
:
15973 case BFD_RELOC_MIPS16_HI16
:
15974 case BFD_RELOC_MIPS16_HI16_S
:
15975 case BFD_RELOC_MIPS16_LO16
:
15976 case BFD_RELOC_MICROMIPS_GOT_DISP
:
15977 case BFD_RELOC_MICROMIPS_GOT_PAGE
:
15978 case BFD_RELOC_MICROMIPS_GOT_OFST
:
15979 case BFD_RELOC_MICROMIPS_SUB
:
15980 case BFD_RELOC_MICROMIPS_HIGHEST
:
15981 case BFD_RELOC_MICROMIPS_HIGHER
:
15982 case BFD_RELOC_MICROMIPS_SCN_DISP
:
15983 case BFD_RELOC_MICROMIPS_JALR
:
15984 case BFD_RELOC_MICROMIPS_HI16
:
15985 case BFD_RELOC_MICROMIPS_HI16_S
:
15986 case BFD_RELOC_MICROMIPS_LO16
:
15987 case BFD_RELOC_MICROMIPS_GPREL16
:
15988 case BFD_RELOC_MICROMIPS_LITERAL
:
15989 case BFD_RELOC_MICROMIPS_CALL16
:
15990 case BFD_RELOC_MICROMIPS_GOT16
:
15991 case BFD_RELOC_MICROMIPS_GOT_HI16
:
15992 case BFD_RELOC_MICROMIPS_GOT_LO16
:
15993 case BFD_RELOC_MICROMIPS_CALL_HI16
:
15994 case BFD_RELOC_MICROMIPS_CALL_LO16
:
15995 case BFD_RELOC_MIPS_EH
:
16000 if (calculate_reloc (fixP
->fx_r_type
, *valP
, &value
))
16002 insn
= read_reloc_insn (buf
, fixP
->fx_r_type
);
16003 if (mips16_reloc_p (fixP
->fx_r_type
))
16004 insn
|= mips16_immed_extend (value
, 16);
16006 insn
|= (value
& 0xffff);
16007 write_reloc_insn (buf
, fixP
->fx_r_type
, insn
);
16010 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
16011 _("unsupported constant in relocation"));
16016 /* This is handled like BFD_RELOC_32, but we output a sign
16017 extended value if we are only 32 bits. */
16020 if (8 <= sizeof (valueT
))
16021 md_number_to_chars (buf
, *valP
, 8);
16026 if ((*valP
& 0x80000000) != 0)
16030 md_number_to_chars (buf
+ (target_big_endian
? 4 : 0), *valP
, 4);
16031 md_number_to_chars (buf
+ (target_big_endian
? 0 : 4), hiv
, 4);
16036 case BFD_RELOC_RVA
:
16038 case BFD_RELOC_32_PCREL
:
16039 case BFD_RELOC_MIPS_16
:
16042 /* If we are deleting this reloc entry, we must fill in the
16043 value now. This can happen if we have a .word which is not
16044 resolved when it appears but is later defined. */
16046 md_number_to_chars (buf
, *valP
, fixP
->fx_size
);
16049 case BFD_RELOC_MIPS_21_PCREL_S2
:
16050 fix_validate_branch (fixP
, *valP
);
16051 if (!fixP
->fx_done
)
16054 if (*valP
+ 0x400000 <= 0x7fffff)
16056 insn
= read_insn (buf
);
16057 insn
|= (*valP
>> 2) & 0x1fffff;
16058 write_insn (buf
, insn
);
16061 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
16062 _("branch out of range"));
16065 case BFD_RELOC_MIPS_26_PCREL_S2
:
16066 fix_validate_branch (fixP
, *valP
);
16067 if (!fixP
->fx_done
)
16070 if (*valP
+ 0x8000000 <= 0xfffffff)
16072 insn
= read_insn (buf
);
16073 insn
|= (*valP
>> 2) & 0x3ffffff;
16074 write_insn (buf
, insn
);
16077 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
16078 _("branch out of range"));
16081 case BFD_RELOC_MIPS_18_PCREL_S3
:
16082 if (fixP
->fx_addsy
&& (S_GET_VALUE (fixP
->fx_addsy
) & 0x7) != 0)
16083 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
16084 _("PC-relative access using misaligned symbol (%lx)"),
16085 (long) S_GET_VALUE (fixP
->fx_addsy
));
16086 if ((fixP
->fx_offset
& 0x7) != 0)
16087 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
16088 _("PC-relative access using misaligned offset (%lx)"),
16089 (long) fixP
->fx_offset
);
16090 if (!fixP
->fx_done
)
16093 if (*valP
+ 0x100000 <= 0x1fffff)
16095 insn
= read_insn (buf
);
16096 insn
|= (*valP
>> 3) & 0x3ffff;
16097 write_insn (buf
, insn
);
16100 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
16101 _("PC-relative access out of range"));
16104 case BFD_RELOC_MIPS_19_PCREL_S2
:
16105 if ((*valP
& 0x3) != 0)
16106 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
16107 _("PC-relative access to misaligned address (%lx)"),
16109 if (!fixP
->fx_done
)
16112 if (*valP
+ 0x100000 <= 0x1fffff)
16114 insn
= read_insn (buf
);
16115 insn
|= (*valP
>> 2) & 0x7ffff;
16116 write_insn (buf
, insn
);
16119 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
16120 _("PC-relative access out of range"));
16123 case BFD_RELOC_16_PCREL_S2
:
16124 fix_validate_branch (fixP
, *valP
);
16126 /* We need to save the bits in the instruction since fixup_segment()
16127 might be deleting the relocation entry (i.e., a branch within
16128 the current segment). */
16129 if (! fixP
->fx_done
)
16132 /* Update old instruction data. */
16133 insn
= read_insn (buf
);
16135 if (*valP
+ 0x20000 <= 0x3ffff)
16137 insn
|= (*valP
>> 2) & 0xffff;
16138 write_insn (buf
, insn
);
16140 else if (fixP
->fx_tcbit2
16142 && fixP
->fx_frag
->fr_address
>= text_section
->vma
16143 && (fixP
->fx_frag
->fr_address
16144 < text_section
->vma
+ bfd_section_size (text_section
))
16145 && ((insn
& 0xffff0000) == 0x10000000 /* beq $0,$0 */
16146 || (insn
& 0xffff0000) == 0x04010000 /* bgez $0 */
16147 || (insn
& 0xffff0000) == 0x04110000)) /* bgezal $0 */
16149 /* The branch offset is too large. If this is an
16150 unconditional branch, and we are not generating PIC code,
16151 we can convert it to an absolute jump instruction. */
16152 if ((insn
& 0xffff0000) == 0x04110000) /* bgezal $0 */
16153 insn
= 0x0c000000; /* jal */
16155 insn
= 0x08000000; /* j */
16156 fixP
->fx_r_type
= BFD_RELOC_MIPS_JMP
;
16158 fixP
->fx_addsy
= section_symbol (text_section
);
16159 *valP
+= md_pcrel_from (fixP
);
16160 write_insn (buf
, insn
);
16164 /* If we got here, we have branch-relaxation disabled,
16165 and there's nothing we can do to fix this instruction
16166 without turning it into a longer sequence. */
16167 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
16168 _("branch out of range"));
16172 case BFD_RELOC_MIPS16_16_PCREL_S1
:
16173 case BFD_RELOC_MICROMIPS_7_PCREL_S1
:
16174 case BFD_RELOC_MICROMIPS_10_PCREL_S1
:
16175 case BFD_RELOC_MICROMIPS_16_PCREL_S1
:
16176 gas_assert (!fixP
->fx_done
);
16177 if (fix_bad_cross_mode_branch_p (fixP
))
16178 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
16179 _("branch to a symbol in another ISA mode"));
16180 else if (fixP
->fx_addsy
16181 && !S_FORCE_RELOC (fixP
->fx_addsy
, true)
16182 && !bfd_is_abs_section (S_GET_SEGMENT (fixP
->fx_addsy
))
16183 && (fixP
->fx_offset
& 0x1) != 0)
16184 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
16185 _("branch to misaligned address (0x%lx)"),
16186 (long) fix_bad_misaligned_address (fixP
));
16187 else if (HAVE_IN_PLACE_ADDENDS
&& (fixP
->fx_offset
& 0x1) != 0)
16188 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
16189 _("cannot encode misaligned addend "
16190 "in the relocatable field (0x%lx)"),
16191 (long) fixP
->fx_offset
);
16194 case BFD_RELOC_VTABLE_INHERIT
:
16197 && !S_IS_DEFINED (fixP
->fx_addsy
)
16198 && !S_IS_WEAK (fixP
->fx_addsy
))
16199 S_SET_WEAK (fixP
->fx_addsy
);
16202 case BFD_RELOC_NONE
:
16203 case BFD_RELOC_VTABLE_ENTRY
:
16211 /* Remember value for tc_gen_reloc. */
16212 fixP
->fx_addnumber
= *valP
;
16222 c
= get_symbol_name (&name
);
16223 p
= (symbolS
*) symbol_find_or_make (name
);
16224 (void) restore_line_pointer (c
);
16228 /* Align the current frag to a given power of two. If a particular
16229 fill byte should be used, FILL points to an integer that contains
16230 that byte, otherwise FILL is null.
16232 This function used to have the comment:
16234 The MIPS assembler also automatically adjusts any preceding label.
16236 The implementation therefore applied the adjustment to a maximum of
16237 one label. However, other label adjustments are applied to batches
16238 of labels, and adjusting just one caused problems when new labels
16239 were added for the sake of debugging or unwind information.
16240 We therefore adjust all preceding labels (given as LABELS) instead. */
16243 mips_align (int to
, int *fill
, struct insn_label_list
*labels
)
16245 mips_emit_delays ();
16246 mips_record_compressed_mode ();
16247 if (fill
== NULL
&& subseg_text_p (now_seg
))
16248 frag_align_code (to
, 0);
16250 frag_align (to
, fill
? *fill
: 0, 0);
16251 record_alignment (now_seg
, to
);
16252 mips_move_labels (labels
, subseg_text_p (now_seg
));
16255 /* Align to a given power of two. .align 0 turns off the automatic
16256 alignment used by the data creating pseudo-ops. */
16259 s_align (int x ATTRIBUTE_UNUSED
)
16261 int temp
, fill_value
, *fill_ptr
;
16262 long max_alignment
= 28;
16264 file_mips_check_options ();
16266 /* o Note that the assembler pulls down any immediately preceding label
16267 to the aligned address.
16268 o It's not documented but auto alignment is reinstated by
16269 a .align pseudo instruction.
16270 o Note also that after auto alignment is turned off the mips assembler
16271 issues an error on attempt to assemble an improperly aligned data item.
16274 temp
= get_absolute_expression ();
16275 if (temp
> max_alignment
)
16276 as_bad (_("alignment too large, %d assumed"), temp
= max_alignment
);
16279 as_warn (_("alignment negative, 0 assumed"));
16282 if (*input_line_pointer
== ',')
16284 ++input_line_pointer
;
16285 fill_value
= get_absolute_expression ();
16286 fill_ptr
= &fill_value
;
16291 mips_mark_labels ();
16295 segment_info_type
*si
= seg_info (now_seg
);
16296 struct insn_label_list
*l
= si
->label_list
;
16297 /* Auto alignment should be switched on by next section change. */
16299 mips_align (temp
, fill_ptr
, l
);
16306 demand_empty_rest_of_line ();
16310 s_change_sec (int sec
)
16314 /* The ELF backend needs to know that we are changing sections, so
16315 that .previous works correctly. We could do something like check
16316 for an obj_section_change_hook macro, but that might be confusing
16317 as it would not be appropriate to use it in the section changing
16318 functions in read.c, since obj-elf.c intercepts those. FIXME:
16319 This should be cleaner, somehow. */
16320 obj_elf_section_change_hook ();
16322 mips_emit_delays ();
16333 subseg_set (bss_section
, (subsegT
) get_absolute_expression ());
16334 demand_empty_rest_of_line ();
16338 seg
= subseg_new (RDATA_SECTION_NAME
,
16339 (subsegT
) get_absolute_expression ());
16340 bfd_set_section_flags (seg
, (SEC_ALLOC
| SEC_LOAD
| SEC_READONLY
16341 | SEC_RELOC
| SEC_DATA
));
16342 if (!startswith (TARGET_OS
, "elf"))
16343 record_alignment (seg
, 4);
16344 demand_empty_rest_of_line ();
16348 seg
= subseg_new (".sdata", (subsegT
) get_absolute_expression ());
16349 bfd_set_section_flags (seg
, (SEC_ALLOC
| SEC_LOAD
| SEC_RELOC
16350 | SEC_DATA
| SEC_SMALL_DATA
));
16351 if (!startswith (TARGET_OS
, "elf"))
16352 record_alignment (seg
, 4);
16353 demand_empty_rest_of_line ();
16357 seg
= subseg_new (".sbss", (subsegT
) get_absolute_expression ());
16358 bfd_set_section_flags (seg
, SEC_ALLOC
| SEC_SMALL_DATA
);
16359 if (!startswith (TARGET_OS
, "elf"))
16360 record_alignment (seg
, 4);
16361 demand_empty_rest_of_line ();
16369 s_change_section (int ignore ATTRIBUTE_UNUSED
)
16372 const char *section_name
;
16373 char c
, next_c
= 0;
16376 int section_entry_size
;
16377 int section_alignment
;
16379 saved_ilp
= input_line_pointer
;
16380 section_name
= obj_elf_section_name ();
16381 if (section_name
== NULL
)
16383 c
= input_line_pointer
[0];
16385 next_c
= input_line_pointer
[1];
16387 /* Do we have .section Name<,"flags">? */
16388 if (c
!= ',' || (c
== ',' && next_c
== '"'))
16390 input_line_pointer
= saved_ilp
;
16391 obj_elf_section (ignore
);
16395 input_line_pointer
++;
16397 /* Do we have .section Name<,type><,flag><,entry_size><,alignment> */
16399 section_type
= get_absolute_expression ();
16403 if (*input_line_pointer
++ == ',')
16404 section_flag
= get_absolute_expression ();
16408 if (*input_line_pointer
++ == ',')
16409 section_entry_size
= get_absolute_expression ();
16411 section_entry_size
= 0;
16413 if (*input_line_pointer
++ == ',')
16414 section_alignment
= get_absolute_expression ();
16416 section_alignment
= 0;
16418 /* FIXME: really ignore? */
16419 (void) section_alignment
;
16421 /* When using the generic form of .section (as implemented by obj-elf.c),
16422 there's no way to set the section type to SHT_MIPS_DWARF. Users have
16423 traditionally had to fall back on the more common @progbits instead.
16425 There's nothing really harmful in this, since bfd will correct
16426 SHT_PROGBITS to SHT_MIPS_DWARF before writing out the file. But it
16427 means that, for backwards compatibility, the special_section entries
16428 for dwarf sections must use SHT_PROGBITS rather than SHT_MIPS_DWARF.
16430 Even so, we shouldn't force users of the MIPS .section syntax to
16431 incorrectly label the sections as SHT_PROGBITS. The best compromise
16432 seems to be to map SHT_MIPS_DWARF to SHT_PROGBITS before calling the
16433 generic type-checking code. */
16434 if (section_type
== SHT_MIPS_DWARF
)
16435 section_type
= SHT_PROGBITS
;
16437 obj_elf_change_section (section_name
, section_type
, section_flag
,
16438 section_entry_size
, 0, 0, 0);
16442 mips_enable_auto_align (void)
16448 s_cons (int log_size
)
16450 segment_info_type
*si
= seg_info (now_seg
);
16451 struct insn_label_list
*l
= si
->label_list
;
16453 mips_emit_delays ();
16454 if (log_size
> 0 && auto_align
)
16455 mips_align (log_size
, 0, l
);
16456 cons (1 << log_size
);
16457 mips_clear_insn_labels ();
16461 s_float_cons (int type
)
16463 segment_info_type
*si
= seg_info (now_seg
);
16464 struct insn_label_list
*l
= si
->label_list
;
16466 mips_emit_delays ();
16471 mips_align (3, 0, l
);
16473 mips_align (2, 0, l
);
16477 mips_clear_insn_labels ();
16480 /* Handle .globl. We need to override it because on Irix 5 you are
16483 where foo is an undefined symbol, to mean that foo should be
16484 considered to be the address of a function. */
16487 s_mips_globl (int x ATTRIBUTE_UNUSED
)
16495 c
= get_symbol_name (&name
);
16496 symbolP
= symbol_find_or_make (name
);
16497 S_SET_EXTERNAL (symbolP
);
16499 *input_line_pointer
= c
;
16500 SKIP_WHITESPACE_AFTER_NAME ();
16502 if (!is_end_of_line
[(unsigned char) *input_line_pointer
]
16503 && (*input_line_pointer
!= ','))
16508 c
= get_symbol_name (&secname
);
16509 sec
= bfd_get_section_by_name (stdoutput
, secname
);
16511 as_bad (_("%s: no such section"), secname
);
16512 (void) restore_line_pointer (c
);
16514 if (sec
!= NULL
&& (sec
->flags
& SEC_CODE
) != 0)
16515 symbol_get_bfdsym (symbolP
)->flags
|= BSF_FUNCTION
;
16518 c
= *input_line_pointer
;
16521 input_line_pointer
++;
16522 SKIP_WHITESPACE ();
16523 if (is_end_of_line
[(unsigned char) *input_line_pointer
])
16529 demand_empty_rest_of_line ();
16533 /* The Irix 5 and 6 assemblers set the type of any common symbol and
16534 any undefined non-function symbol to STT_OBJECT. We try to be
16535 compatible, since newer Irix 5 and 6 linkers care. */
16538 mips_frob_symbol (symbolS
*symp ATTRIBUTE_UNUSED
)
16540 /* This late in assembly we can set BSF_OBJECT indiscriminately
16541 and let elf.c:swap_out_syms sort out the symbol type. */
16542 flagword
*flags
= &symbol_get_bfdsym (symp
)->flags
;
16543 if ((*flags
& (BSF_GLOBAL
| BSF_WEAK
)) != 0
16544 || !S_IS_DEFINED (symp
))
16545 *flags
|= BSF_OBJECT
;
16550 s_option (int x ATTRIBUTE_UNUSED
)
16555 c
= get_symbol_name (&opt
);
16559 /* FIXME: What does this mean? */
16561 else if (startswith (opt
, "pic") && ISDIGIT (opt
[3]) && opt
[4] == '\0')
16565 i
= atoi (opt
+ 3);
16566 if (i
!= 0 && i
!= 2)
16567 as_bad (_(".option pic%d not supported"), i
);
16568 else if (mips_pic
== VXWORKS_PIC
)
16569 as_bad (_(".option pic%d not supported in VxWorks PIC mode"), i
);
16574 mips_pic
= SVR4_PIC
;
16575 mips_abicalls
= true;
16578 if (mips_pic
== SVR4_PIC
)
16580 if (g_switch_seen
&& g_switch_value
!= 0)
16581 as_warn (_("-G may not be used with SVR4 PIC code"));
16582 g_switch_value
= 0;
16583 bfd_set_gp_size (stdoutput
, 0);
16587 as_warn (_("unrecognized option \"%s\""), opt
);
16589 (void) restore_line_pointer (c
);
16590 demand_empty_rest_of_line ();
16593 /* This structure is used to hold a stack of .set values. */
16595 struct mips_option_stack
16597 struct mips_option_stack
*next
;
16598 struct mips_set_options options
;
16601 static struct mips_option_stack
*mips_opts_stack
;
16603 /* Return status for .set/.module option handling. */
16605 enum code_option_type
16607 /* Unrecognized option. */
16608 OPTION_TYPE_BAD
= -1,
16610 /* Ordinary option. */
16611 OPTION_TYPE_NORMAL
,
16613 /* ISA changing option. */
16617 /* Handle common .set/.module options. Return status indicating option
16620 static enum code_option_type
16621 parse_code_option (char * name
)
16623 bool isa_set
= false;
16624 const struct mips_ase
*ase
;
16626 if (startswith (name
, "at="))
16628 char *s
= name
+ 3;
16630 if (!reg_lookup (&s
, RTYPE_NUM
| RTYPE_GP
, &mips_opts
.at
))
16631 as_bad (_("unrecognized register name `%s'"), s
);
16633 else if (strcmp (name
, "at") == 0)
16634 mips_opts
.at
= ATREG
;
16635 else if (strcmp (name
, "noat") == 0)
16636 mips_opts
.at
= ZERO
;
16637 else if (strcmp (name
, "move") == 0 || strcmp (name
, "novolatile") == 0)
16638 mips_opts
.nomove
= 0;
16639 else if (strcmp (name
, "nomove") == 0 || strcmp (name
, "volatile") == 0)
16640 mips_opts
.nomove
= 1;
16641 else if (strcmp (name
, "bopt") == 0)
16642 mips_opts
.nobopt
= 0;
16643 else if (strcmp (name
, "nobopt") == 0)
16644 mips_opts
.nobopt
= 1;
16645 else if (strcmp (name
, "gp=32") == 0)
16647 else if (strcmp (name
, "gp=64") == 0)
16649 else if (strcmp (name
, "fp=32") == 0)
16651 else if (strcmp (name
, "fp=xx") == 0)
16653 else if (strcmp (name
, "fp=64") == 0)
16655 else if (strcmp (name
, "softfloat") == 0)
16656 mips_opts
.soft_float
= 1;
16657 else if (strcmp (name
, "hardfloat") == 0)
16658 mips_opts
.soft_float
= 0;
16659 else if (strcmp (name
, "singlefloat") == 0)
16660 mips_opts
.single_float
= 1;
16661 else if (strcmp (name
, "doublefloat") == 0)
16662 mips_opts
.single_float
= 0;
16663 else if (strcmp (name
, "nooddspreg") == 0)
16664 mips_opts
.oddspreg
= 0;
16665 else if (strcmp (name
, "oddspreg") == 0)
16666 mips_opts
.oddspreg
= 1;
16667 else if (strcmp (name
, "mips16") == 0
16668 || strcmp (name
, "MIPS-16") == 0)
16669 mips_opts
.mips16
= 1;
16670 else if (strcmp (name
, "nomips16") == 0
16671 || strcmp (name
, "noMIPS-16") == 0)
16672 mips_opts
.mips16
= 0;
16673 else if (strcmp (name
, "micromips") == 0)
16674 mips_opts
.micromips
= 1;
16675 else if (strcmp (name
, "nomicromips") == 0)
16676 mips_opts
.micromips
= 0;
16677 else if (name
[0] == 'n'
16679 && (ase
= mips_lookup_ase (name
+ 2)))
16680 mips_set_ase (ase
, &mips_opts
, false);
16681 else if ((ase
= mips_lookup_ase (name
)))
16682 mips_set_ase (ase
, &mips_opts
, true);
16683 else if (startswith (name
, "mips") || startswith (name
, "arch="))
16685 /* Permit the user to change the ISA and architecture on the fly.
16686 Needless to say, misuse can cause serious problems. */
16687 if (startswith (name
, "arch="))
16689 const struct mips_cpu_info
*p
;
16691 p
= mips_parse_cpu ("internal use", name
+ 5);
16693 as_bad (_("unknown architecture %s"), name
+ 5);
16696 mips_opts
.arch
= p
->cpu
;
16697 mips_opts
.isa
= p
->isa
;
16699 mips_opts
.init_ase
= p
->ase
;
16702 else if (startswith (name
, "mips"))
16704 const struct mips_cpu_info
*p
;
16706 p
= mips_parse_cpu ("internal use", name
);
16708 as_bad (_("unknown ISA level %s"), name
+ 4);
16711 mips_opts
.arch
= p
->cpu
;
16712 mips_opts
.isa
= p
->isa
;
16714 mips_opts
.init_ase
= p
->ase
;
16718 as_bad (_("unknown ISA or architecture %s"), name
);
16720 else if (strcmp (name
, "autoextend") == 0)
16721 mips_opts
.noautoextend
= 0;
16722 else if (strcmp (name
, "noautoextend") == 0)
16723 mips_opts
.noautoextend
= 1;
16724 else if (strcmp (name
, "insn32") == 0)
16725 mips_opts
.insn32
= true;
16726 else if (strcmp (name
, "noinsn32") == 0)
16727 mips_opts
.insn32
= false;
16728 else if (strcmp (name
, "sym32") == 0)
16729 mips_opts
.sym32
= true;
16730 else if (strcmp (name
, "nosym32") == 0)
16731 mips_opts
.sym32
= false;
16733 return OPTION_TYPE_BAD
;
16735 return isa_set
? OPTION_TYPE_ISA
: OPTION_TYPE_NORMAL
;
16738 /* Handle the .set pseudo-op. */
16741 s_mipsset (int x ATTRIBUTE_UNUSED
)
16743 enum code_option_type type
= OPTION_TYPE_NORMAL
;
16744 char *name
= input_line_pointer
, ch
;
16746 file_mips_check_options ();
16748 while (!is_end_of_line
[(unsigned char) *input_line_pointer
])
16749 ++input_line_pointer
;
16750 ch
= *input_line_pointer
;
16751 *input_line_pointer
= '\0';
16753 if (strchr (name
, ','))
16755 /* Generic ".set" directive; use the generic handler. */
16756 *input_line_pointer
= ch
;
16757 input_line_pointer
= name
;
16762 if (strcmp (name
, "reorder") == 0)
16764 if (mips_opts
.noreorder
)
16767 else if (strcmp (name
, "noreorder") == 0)
16769 if (!mips_opts
.noreorder
)
16770 start_noreorder ();
16772 else if (strcmp (name
, "macro") == 0)
16773 mips_opts
.warn_about_macros
= 0;
16774 else if (strcmp (name
, "nomacro") == 0)
16776 if (mips_opts
.noreorder
== 0)
16777 as_bad (_("`noreorder' must be set before `nomacro'"));
16778 mips_opts
.warn_about_macros
= 1;
16780 else if (strcmp (name
, "gp=default") == 0)
16781 mips_opts
.gp
= file_mips_opts
.gp
;
16782 else if (strcmp (name
, "fp=default") == 0)
16783 mips_opts
.fp
= file_mips_opts
.fp
;
16784 else if (strcmp (name
, "mips0") == 0 || strcmp (name
, "arch=default") == 0)
16786 mips_opts
.isa
= file_mips_opts
.isa
;
16787 mips_opts
.arch
= file_mips_opts
.arch
;
16788 mips_opts
.init_ase
= file_mips_opts
.init_ase
;
16789 mips_opts
.gp
= file_mips_opts
.gp
;
16790 mips_opts
.fp
= file_mips_opts
.fp
;
16792 else if (strcmp (name
, "push") == 0)
16794 struct mips_option_stack
*s
;
16796 s
= XNEW (struct mips_option_stack
);
16797 s
->next
= mips_opts_stack
;
16798 s
->options
= mips_opts
;
16799 mips_opts_stack
= s
;
16801 else if (strcmp (name
, "pop") == 0)
16803 struct mips_option_stack
*s
;
16805 s
= mips_opts_stack
;
16807 as_bad (_(".set pop with no .set push"));
16810 /* If we're changing the reorder mode we need to handle
16811 delay slots correctly. */
16812 if (s
->options
.noreorder
&& ! mips_opts
.noreorder
)
16813 start_noreorder ();
16814 else if (! s
->options
.noreorder
&& mips_opts
.noreorder
)
16817 mips_opts
= s
->options
;
16818 mips_opts_stack
= s
->next
;
16824 type
= parse_code_option (name
);
16825 if (type
== OPTION_TYPE_BAD
)
16826 as_warn (_("tried to set unrecognized symbol: %s\n"), name
);
16829 /* The use of .set [arch|cpu]= historically 'fixes' the width of gp and fp
16830 registers based on what is supported by the arch/cpu. */
16831 if (type
== OPTION_TYPE_ISA
)
16833 switch (mips_opts
.isa
)
16838 /* MIPS I cannot support FPXX. */
16840 /* fall-through. */
16847 if (mips_opts
.fp
!= 0)
16863 if (mips_opts
.fp
!= 0)
16865 if (mips_opts
.arch
== CPU_R5900
)
16872 as_bad (_("unknown ISA level %s"), name
+ 4);
16877 mips_check_options (&mips_opts
, false);
16879 mips_check_isa_supports_ases ();
16880 *input_line_pointer
= ch
;
16881 demand_empty_rest_of_line ();
16884 /* Handle the .module pseudo-op. */
16887 s_module (int ignore ATTRIBUTE_UNUSED
)
16889 char *name
= input_line_pointer
, ch
;
16891 while (!is_end_of_line
[(unsigned char) *input_line_pointer
])
16892 ++input_line_pointer
;
16893 ch
= *input_line_pointer
;
16894 *input_line_pointer
= '\0';
16896 if (!file_mips_opts_checked
)
16898 if (parse_code_option (name
) == OPTION_TYPE_BAD
)
16899 as_bad (_(".module used with unrecognized symbol: %s\n"), name
);
16901 /* Update module level settings from mips_opts. */
16902 file_mips_opts
= mips_opts
;
16905 as_bad (_(".module is not permitted after generating code"));
16907 *input_line_pointer
= ch
;
16908 demand_empty_rest_of_line ();
16911 /* Handle the .abicalls pseudo-op. I believe this is equivalent to
16912 .option pic2. It means to generate SVR4 PIC calls. */
16915 s_abicalls (int ignore ATTRIBUTE_UNUSED
)
16917 mips_pic
= SVR4_PIC
;
16918 mips_abicalls
= true;
16920 if (g_switch_seen
&& g_switch_value
!= 0)
16921 as_warn (_("-G may not be used with SVR4 PIC code"));
16922 g_switch_value
= 0;
16924 bfd_set_gp_size (stdoutput
, 0);
16925 demand_empty_rest_of_line ();
16928 /* Handle the .cpload pseudo-op. This is used when generating SVR4
16929 PIC code. It sets the $gp register for the function based on the
16930 function address, which is in the register named in the argument.
16931 This uses a relocation against _gp_disp, which is handled specially
16932 by the linker. The result is:
16933 lui $gp,%hi(_gp_disp)
16934 addiu $gp,$gp,%lo(_gp_disp)
16935 addu $gp,$gp,.cpload argument
16936 The .cpload argument is normally $25 == $t9.
16938 The -mno-shared option changes this to:
16939 lui $gp,%hi(__gnu_local_gp)
16940 addiu $gp,$gp,%lo(__gnu_local_gp)
16941 and the argument is ignored. This saves an instruction, but the
16942 resulting code is not position independent; it uses an absolute
16943 address for __gnu_local_gp. Thus code assembled with -mno-shared
16944 can go into an ordinary executable, but not into a shared library. */
16947 s_cpload (int ignore ATTRIBUTE_UNUSED
)
16953 file_mips_check_options ();
16955 /* If we are not generating SVR4 PIC code, or if this is NewABI code,
16956 .cpload is ignored. */
16957 if (mips_pic
!= SVR4_PIC
|| HAVE_NEWABI
)
16963 if (mips_opts
.mips16
)
16965 as_bad (_("%s not supported in MIPS16 mode"), ".cpload");
16966 ignore_rest_of_line ();
16970 /* .cpload should be in a .set noreorder section. */
16971 if (mips_opts
.noreorder
== 0)
16972 as_warn (_(".cpload not in noreorder section"));
16974 reg
= tc_get_register (0);
16976 /* If we need to produce a 64-bit address, we are better off using
16977 the default instruction sequence. */
16978 in_shared
= mips_in_shared
|| HAVE_64BIT_SYMBOLS
;
16980 ex
.X_op
= O_symbol
;
16981 ex
.X_add_symbol
= symbol_find_or_make (in_shared
? "_gp_disp" :
16983 ex
.X_op_symbol
= NULL
;
16984 ex
.X_add_number
= 0;
16986 /* In ELF, this symbol is implicitly an STT_OBJECT symbol. */
16987 symbol_get_bfdsym (ex
.X_add_symbol
)->flags
|= BSF_OBJECT
;
16989 mips_mark_labels ();
16990 mips_assembling_insn
= true;
16993 macro_build_lui (&ex
, mips_gp_register
);
16994 macro_build (&ex
, "addiu", "t,r,j", mips_gp_register
,
16995 mips_gp_register
, BFD_RELOC_LO16
);
16997 macro_build (NULL
, "addu", "d,v,t", mips_gp_register
,
16998 mips_gp_register
, reg
);
17001 mips_assembling_insn
= false;
17002 demand_empty_rest_of_line ();
17005 /* Handle the .cpsetup pseudo-op defined for NewABI PIC code. The syntax is:
17006 .cpsetup $reg1, offset|$reg2, label
17008 If offset is given, this results in:
17009 sd $gp, offset($sp)
17010 lui $gp, %hi(%neg(%gp_rel(label)))
17011 addiu $gp, $gp, %lo(%neg(%gp_rel(label)))
17012 daddu $gp, $gp, $reg1
17014 If $reg2 is given, this results in:
17016 lui $gp, %hi(%neg(%gp_rel(label)))
17017 addiu $gp, $gp, %lo(%neg(%gp_rel(label)))
17018 daddu $gp, $gp, $reg1
17019 $reg1 is normally $25 == $t9.
17021 The -mno-shared option replaces the last three instructions with
17023 addiu $gp,$gp,%lo(_gp) */
17026 s_cpsetup (int ignore ATTRIBUTE_UNUSED
)
17028 expressionS ex_off
;
17029 expressionS ex_sym
;
17032 file_mips_check_options ();
17034 /* If we are not generating SVR4 PIC code, .cpsetup is ignored.
17035 We also need NewABI support. */
17036 if (mips_pic
!= SVR4_PIC
|| ! HAVE_NEWABI
)
17042 if (mips_opts
.mips16
)
17044 as_bad (_("%s not supported in MIPS16 mode"), ".cpsetup");
17045 ignore_rest_of_line ();
17049 reg1
= tc_get_register (0);
17050 SKIP_WHITESPACE ();
17051 if (*input_line_pointer
!= ',')
17053 as_bad (_("missing argument separator ',' for .cpsetup"));
17057 ++input_line_pointer
;
17058 SKIP_WHITESPACE ();
17059 if (*input_line_pointer
== '$')
17061 mips_cpreturn_register
= tc_get_register (0);
17062 mips_cpreturn_offset
= -1;
17066 mips_cpreturn_offset
= get_absolute_expression ();
17067 mips_cpreturn_register
= -1;
17069 SKIP_WHITESPACE ();
17070 if (*input_line_pointer
!= ',')
17072 as_bad (_("missing argument separator ',' for .cpsetup"));
17076 ++input_line_pointer
;
17077 SKIP_WHITESPACE ();
17078 expression (&ex_sym
);
17080 mips_mark_labels ();
17081 mips_assembling_insn
= true;
17084 if (mips_cpreturn_register
== -1)
17086 ex_off
.X_op
= O_constant
;
17087 ex_off
.X_add_symbol
= NULL
;
17088 ex_off
.X_op_symbol
= NULL
;
17089 ex_off
.X_add_number
= mips_cpreturn_offset
;
17091 macro_build (&ex_off
, "sd", "t,o(b)", mips_gp_register
,
17092 BFD_RELOC_LO16
, SP
);
17095 move_register (mips_cpreturn_register
, mips_gp_register
);
17097 if (mips_in_shared
|| HAVE_64BIT_SYMBOLS
)
17099 macro_build (&ex_sym
, "lui", LUI_FMT
, mips_gp_register
,
17100 -1, BFD_RELOC_GPREL16
, BFD_RELOC_MIPS_SUB
,
17103 macro_build (&ex_sym
, "addiu", "t,r,j", mips_gp_register
,
17104 mips_gp_register
, -1, BFD_RELOC_GPREL16
,
17105 BFD_RELOC_MIPS_SUB
, BFD_RELOC_LO16
);
17107 macro_build (NULL
, ADDRESS_ADD_INSN
, "d,v,t", mips_gp_register
,
17108 mips_gp_register
, reg1
);
17114 ex
.X_op
= O_symbol
;
17115 ex
.X_add_symbol
= symbol_find_or_make ("__gnu_local_gp");
17116 ex
.X_op_symbol
= NULL
;
17117 ex
.X_add_number
= 0;
17119 /* In ELF, this symbol is implicitly an STT_OBJECT symbol. */
17120 symbol_get_bfdsym (ex
.X_add_symbol
)->flags
|= BSF_OBJECT
;
17122 macro_build_lui (&ex
, mips_gp_register
);
17123 macro_build (&ex
, "addiu", "t,r,j", mips_gp_register
,
17124 mips_gp_register
, BFD_RELOC_LO16
);
17129 mips_assembling_insn
= false;
17130 demand_empty_rest_of_line ();
17134 s_cplocal (int ignore ATTRIBUTE_UNUSED
)
17136 file_mips_check_options ();
17138 /* If we are not generating SVR4 PIC code, or if this is not NewABI code,
17139 .cplocal is ignored. */
17140 if (mips_pic
!= SVR4_PIC
|| ! HAVE_NEWABI
)
17146 if (mips_opts
.mips16
)
17148 as_bad (_("%s not supported in MIPS16 mode"), ".cplocal");
17149 ignore_rest_of_line ();
17153 mips_gp_register
= tc_get_register (0);
17154 demand_empty_rest_of_line ();
17157 /* Handle the .cprestore pseudo-op. This stores $gp into a given
17158 offset from $sp. The offset is remembered, and after making a PIC
17159 call $gp is restored from that location. */
17162 s_cprestore (int ignore ATTRIBUTE_UNUSED
)
17166 file_mips_check_options ();
17168 /* If we are not generating SVR4 PIC code, or if this is NewABI code,
17169 .cprestore is ignored. */
17170 if (mips_pic
!= SVR4_PIC
|| HAVE_NEWABI
)
17176 if (mips_opts
.mips16
)
17178 as_bad (_("%s not supported in MIPS16 mode"), ".cprestore");
17179 ignore_rest_of_line ();
17183 mips_cprestore_offset
= get_absolute_expression ();
17184 mips_cprestore_valid
= 1;
17186 ex
.X_op
= O_constant
;
17187 ex
.X_add_symbol
= NULL
;
17188 ex
.X_op_symbol
= NULL
;
17189 ex
.X_add_number
= mips_cprestore_offset
;
17191 mips_mark_labels ();
17192 mips_assembling_insn
= true;
17195 macro_build_ldst_constoffset (&ex
, ADDRESS_STORE_INSN
, mips_gp_register
,
17196 SP
, HAVE_64BIT_ADDRESSES
);
17199 mips_assembling_insn
= false;
17200 demand_empty_rest_of_line ();
17203 /* Handle the .cpreturn pseudo-op defined for NewABI PIC code. If an offset
17204 was given in the preceding .cpsetup, it results in:
17205 ld $gp, offset($sp)
17207 If a register $reg2 was given there, it results in:
17208 or $gp, $reg2, $0 */
17211 s_cpreturn (int ignore ATTRIBUTE_UNUSED
)
17215 file_mips_check_options ();
17217 /* If we are not generating SVR4 PIC code, .cpreturn is ignored.
17218 We also need NewABI support. */
17219 if (mips_pic
!= SVR4_PIC
|| ! HAVE_NEWABI
)
17225 if (mips_opts
.mips16
)
17227 as_bad (_("%s not supported in MIPS16 mode"), ".cpreturn");
17228 ignore_rest_of_line ();
17232 mips_mark_labels ();
17233 mips_assembling_insn
= true;
17236 if (mips_cpreturn_register
== -1)
17238 ex
.X_op
= O_constant
;
17239 ex
.X_add_symbol
= NULL
;
17240 ex
.X_op_symbol
= NULL
;
17241 ex
.X_add_number
= mips_cpreturn_offset
;
17243 macro_build (&ex
, "ld", "t,o(b)", mips_gp_register
, BFD_RELOC_LO16
, SP
);
17246 move_register (mips_gp_register
, mips_cpreturn_register
);
17250 mips_assembling_insn
= false;
17251 demand_empty_rest_of_line ();
17254 /* Handle a .dtprelword, .dtpreldword, .tprelword, or .tpreldword
17255 pseudo-op; DIRSTR says which. The pseudo-op generates a BYTES-size
17256 DTP- or TP-relative relocation of type RTYPE, for use in either DWARF
17257 debug information or MIPS16 TLS. */
17260 s_tls_rel_directive (const size_t bytes
, const char *dirstr
,
17261 bfd_reloc_code_real_type rtype
)
17268 if (ex
.X_op
!= O_symbol
)
17270 as_bad (_("unsupported use of %s"), dirstr
);
17271 ignore_rest_of_line ();
17274 p
= frag_more (bytes
);
17275 md_number_to_chars (p
, 0, bytes
);
17276 fix_new_exp (frag_now
, p
- frag_now
->fr_literal
, bytes
, &ex
, false, rtype
);
17277 demand_empty_rest_of_line ();
17278 mips_clear_insn_labels ();
17281 /* Handle .dtprelword. */
17284 s_dtprelword (int ignore ATTRIBUTE_UNUSED
)
17286 s_tls_rel_directive (4, ".dtprelword", BFD_RELOC_MIPS_TLS_DTPREL32
);
17289 /* Handle .dtpreldword. */
17292 s_dtpreldword (int ignore ATTRIBUTE_UNUSED
)
17294 s_tls_rel_directive (8, ".dtpreldword", BFD_RELOC_MIPS_TLS_DTPREL64
);
17297 /* Handle .tprelword. */
17300 s_tprelword (int ignore ATTRIBUTE_UNUSED
)
17302 s_tls_rel_directive (4, ".tprelword", BFD_RELOC_MIPS_TLS_TPREL32
);
17305 /* Handle .tpreldword. */
17308 s_tpreldword (int ignore ATTRIBUTE_UNUSED
)
17310 s_tls_rel_directive (8, ".tpreldword", BFD_RELOC_MIPS_TLS_TPREL64
);
17313 /* Handle the .gpvalue pseudo-op. This is used when generating NewABI PIC
17314 code. It sets the offset to use in gp_rel relocations. */
17317 s_gpvalue (int ignore ATTRIBUTE_UNUSED
)
17319 /* If we are not generating SVR4 PIC code, .gpvalue is ignored.
17320 We also need NewABI support. */
17321 if (mips_pic
!= SVR4_PIC
|| ! HAVE_NEWABI
)
17327 mips_gprel_offset
= get_absolute_expression ();
17329 demand_empty_rest_of_line ();
17332 /* Handle the .gpword pseudo-op. This is used when generating PIC
17333 code. It generates a 32 bit GP relative reloc. */
17336 s_gpword (int ignore ATTRIBUTE_UNUSED
)
17338 segment_info_type
*si
;
17339 struct insn_label_list
*l
;
17343 /* When not generating PIC code, this is treated as .word. */
17344 if (mips_pic
!= SVR4_PIC
)
17350 si
= seg_info (now_seg
);
17351 l
= si
->label_list
;
17352 mips_emit_delays ();
17354 mips_align (2, 0, l
);
17357 mips_clear_insn_labels ();
17359 if (ex
.X_op
!= O_symbol
|| ex
.X_add_number
!= 0)
17361 as_bad (_("unsupported use of .gpword"));
17362 ignore_rest_of_line ();
17366 md_number_to_chars (p
, 0, 4);
17367 fix_new_exp (frag_now
, p
- frag_now
->fr_literal
, 4, &ex
, false,
17368 BFD_RELOC_GPREL32
);
17370 demand_empty_rest_of_line ();
17374 s_gpdword (int ignore ATTRIBUTE_UNUSED
)
17376 segment_info_type
*si
;
17377 struct insn_label_list
*l
;
17381 /* When not generating PIC code, this is treated as .dword. */
17382 if (mips_pic
!= SVR4_PIC
)
17388 si
= seg_info (now_seg
);
17389 l
= si
->label_list
;
17390 mips_emit_delays ();
17392 mips_align (3, 0, l
);
17395 mips_clear_insn_labels ();
17397 if (ex
.X_op
!= O_symbol
|| ex
.X_add_number
!= 0)
17399 as_bad (_("unsupported use of .gpdword"));
17400 ignore_rest_of_line ();
17404 md_number_to_chars (p
, 0, 8);
17405 fix_new_exp (frag_now
, p
- frag_now
->fr_literal
, 4, &ex
, false,
17406 BFD_RELOC_GPREL32
)->fx_tcbit
= 1;
17408 /* GPREL32 composed with 64 gives a 64-bit GP offset. */
17409 fix_new (frag_now
, p
- frag_now
->fr_literal
, 8, NULL
, 0,
17410 false, BFD_RELOC_64
)->fx_tcbit
= 1;
17412 demand_empty_rest_of_line ();
17415 /* Handle the .ehword pseudo-op. This is used when generating unwinding
17416 tables. It generates a R_MIPS_EH reloc. */
17419 s_ehword (int ignore ATTRIBUTE_UNUSED
)
17424 mips_emit_delays ();
17427 mips_clear_insn_labels ();
17429 if (ex
.X_op
!= O_symbol
|| ex
.X_add_number
!= 0)
17431 as_bad (_("unsupported use of .ehword"));
17432 ignore_rest_of_line ();
17436 md_number_to_chars (p
, 0, 4);
17437 fix_new_exp (frag_now
, p
- frag_now
->fr_literal
, 4, &ex
, false,
17438 BFD_RELOC_32_PCREL
);
17440 demand_empty_rest_of_line ();
17443 /* Handle the .cpadd pseudo-op. This is used when dealing with switch
17444 tables in SVR4 PIC code. */
17447 s_cpadd (int ignore ATTRIBUTE_UNUSED
)
17451 file_mips_check_options ();
17453 /* This is ignored when not generating SVR4 PIC code. */
17454 if (mips_pic
!= SVR4_PIC
)
17460 mips_mark_labels ();
17461 mips_assembling_insn
= true;
17463 /* Add $gp to the register named as an argument. */
17465 reg
= tc_get_register (0);
17466 macro_build (NULL
, ADDRESS_ADD_INSN
, "d,v,t", reg
, reg
, mips_gp_register
);
17469 mips_assembling_insn
= false;
17470 demand_empty_rest_of_line ();
17473 /* Handle the .insn pseudo-op. This marks instruction labels in
17474 mips16/micromips mode. This permits the linker to handle them specially,
17475 such as generating jalx instructions when needed. We also make
17476 them odd for the duration of the assembly, in order to generate the
17477 right sort of code. We will make them even in the adjust_symtab
17478 routine, while leaving them marked. This is convenient for the
17479 debugger and the disassembler. The linker knows to make them odd
17483 s_insn (int ignore ATTRIBUTE_UNUSED
)
17485 file_mips_check_options ();
17486 file_ase_mips16
|= mips_opts
.mips16
;
17487 file_ase_micromips
|= mips_opts
.micromips
;
17489 mips_mark_labels ();
17491 demand_empty_rest_of_line ();
17494 /* Handle the .nan pseudo-op. */
17497 s_nan (int ignore ATTRIBUTE_UNUSED
)
17499 static const char str_legacy
[] = "legacy";
17500 static const char str_2008
[] = "2008";
17503 for (i
= 0; !is_end_of_line
[(unsigned char) input_line_pointer
[i
]]; i
++);
17505 if (i
== sizeof (str_2008
) - 1
17506 && memcmp (input_line_pointer
, str_2008
, i
) == 0)
17508 else if (i
== sizeof (str_legacy
) - 1
17509 && memcmp (input_line_pointer
, str_legacy
, i
) == 0)
17511 if (ISA_HAS_LEGACY_NAN (file_mips_opts
.isa
))
17514 as_bad (_("`%s' does not support legacy NaN"),
17515 mips_cpu_info_from_isa (file_mips_opts
.isa
)->name
);
17518 as_bad (_("bad .nan directive"));
17520 input_line_pointer
+= i
;
17521 demand_empty_rest_of_line ();
17524 /* Handle a .stab[snd] directive. Ideally these directives would be
17525 implemented in a transparent way, so that removing them would not
17526 have any effect on the generated instructions. However, s_stab
17527 internally changes the section, so in practice we need to decide
17528 now whether the preceding label marks compressed code. We do not
17529 support changing the compression mode of a label after a .stab*
17530 directive, such as in:
17536 so the current mode wins. */
17539 s_mips_stab (int type
)
17541 file_mips_check_options ();
17542 mips_mark_labels ();
17546 /* Handle the .weakext pseudo-op as defined in Kane and Heinrich. */
17549 s_mips_weakext (int ignore ATTRIBUTE_UNUSED
)
17556 c
= get_symbol_name (&name
);
17557 symbolP
= symbol_find_or_make (name
);
17558 S_SET_WEAK (symbolP
);
17559 *input_line_pointer
= c
;
17561 SKIP_WHITESPACE_AFTER_NAME ();
17563 if (! is_end_of_line
[(unsigned char) *input_line_pointer
])
17565 if (S_IS_DEFINED (symbolP
))
17567 as_bad (_("ignoring attempt to redefine symbol %s"),
17568 S_GET_NAME (symbolP
));
17569 ignore_rest_of_line ();
17573 if (*input_line_pointer
== ',')
17575 ++input_line_pointer
;
17576 SKIP_WHITESPACE ();
17580 if (exp
.X_op
!= O_symbol
)
17582 as_bad (_("bad .weakext directive"));
17583 ignore_rest_of_line ();
17586 symbol_set_value_expression (symbolP
, &exp
);
17589 demand_empty_rest_of_line ();
17592 /* Parse a register string into a number. Called from the ECOFF code
17593 to parse .frame. The argument is non-zero if this is the frame
17594 register, so that we can record it in mips_frame_reg. */
17597 tc_get_register (int frame
)
17601 SKIP_WHITESPACE ();
17602 if (! reg_lookup (&input_line_pointer
, RWARN
| RTYPE_NUM
| RTYPE_GP
, ®
))
17606 mips_frame_reg
= reg
!= 0 ? reg
: SP
;
17607 mips_frame_reg_valid
= 1;
17608 mips_cprestore_valid
= 0;
17614 md_section_align (asection
*seg
, valueT addr
)
17616 int align
= bfd_section_alignment (seg
);
17618 /* We don't need to align ELF sections to the full alignment.
17619 However, Irix 5 may prefer that we align them at least to a 16
17620 byte boundary. We don't bother to align the sections if we
17621 are targeted for an embedded system. */
17622 if (startswith (TARGET_OS
, "elf"))
17627 return ((addr
+ (1 << align
) - 1) & -(1 << align
));
17630 /* Utility routine, called from above as well. If called while the
17631 input file is still being read, it's only an approximation. (For
17632 example, a symbol may later become defined which appeared to be
17633 undefined earlier.) */
17636 nopic_need_relax (symbolS
*sym
, int before_relaxing
)
17641 if (g_switch_value
> 0)
17643 const char *symname
;
17646 /* Find out whether this symbol can be referenced off the $gp
17647 register. It can be if it is smaller than the -G size or if
17648 it is in the .sdata or .sbss section. Certain symbols can
17649 not be referenced off the $gp, although it appears as though
17651 symname
= S_GET_NAME (sym
);
17652 if (symname
!= (const char *) NULL
17653 && (strcmp (symname
, "eprol") == 0
17654 || strcmp (symname
, "etext") == 0
17655 || strcmp (symname
, "_gp") == 0
17656 || strcmp (symname
, "edata") == 0
17657 || strcmp (symname
, "_fbss") == 0
17658 || strcmp (symname
, "_fdata") == 0
17659 || strcmp (symname
, "_ftext") == 0
17660 || strcmp (symname
, "end") == 0
17661 || strcmp (symname
, "_gp_disp") == 0))
17663 else if ((! S_IS_DEFINED (sym
) || S_IS_COMMON (sym
))
17665 #ifndef NO_ECOFF_DEBUGGING
17666 || (symbol_get_obj (sym
)->ecoff_extern_size
!= 0
17667 && (symbol_get_obj (sym
)->ecoff_extern_size
17668 <= g_switch_value
))
17670 /* We must defer this decision until after the whole
17671 file has been read, since there might be a .extern
17672 after the first use of this symbol. */
17673 || (before_relaxing
17674 #ifndef NO_ECOFF_DEBUGGING
17675 && symbol_get_obj (sym
)->ecoff_extern_size
== 0
17677 && S_GET_VALUE (sym
) == 0)
17678 || (S_GET_VALUE (sym
) != 0
17679 && S_GET_VALUE (sym
) <= g_switch_value
)))
17683 const char *segname
;
17685 segname
= segment_name (S_GET_SEGMENT (sym
));
17686 gas_assert (strcmp (segname
, ".lit8") != 0
17687 && strcmp (segname
, ".lit4") != 0);
17688 change
= (strcmp (segname
, ".sdata") != 0
17689 && strcmp (segname
, ".sbss") != 0
17690 && !startswith (segname
, ".sdata.")
17691 && !startswith (segname
, ".sbss.")
17692 && !startswith (segname
, ".gnu.linkonce.sb.")
17693 && !startswith (segname
, ".gnu.linkonce.s."));
17698 /* We are not optimizing for the $gp register. */
17703 /* Return true if the given symbol should be considered local for SVR4 PIC. */
17706 pic_need_relax (symbolS
*sym
)
17713 /* Handle the case of a symbol equated to another symbol. */
17714 while (symbol_equated_reloc_p (sym
))
17718 /* It's possible to get a loop here in a badly written program. */
17719 n
= symbol_get_value_expression (sym
)->X_add_symbol
;
17725 if (symbol_section_p (sym
))
17728 symsec
= S_GET_SEGMENT (sym
);
17730 /* This must duplicate the test in adjust_reloc_syms. */
17731 return (!bfd_is_und_section (symsec
)
17732 && !bfd_is_abs_section (symsec
)
17733 && !bfd_is_com_section (symsec
)
17734 /* A global or weak symbol is treated as external. */
17735 && (!S_IS_WEAK (sym
) && !S_IS_EXTERNAL (sym
)));
17738 /* Given a MIPS16 variant frag FRAGP and PC-relative operand PCREL_OP
17739 convert a section-relative value VAL to the equivalent PC-relative
17743 mips16_pcrel_val (fragS
*fragp
, const struct mips_pcrel_operand
*pcrel_op
,
17744 offsetT val
, long stretch
)
17749 gas_assert (pcrel_op
->root
.root
.type
== OP_PCREL
);
17751 sym_frag
= symbol_get_frag (fragp
->fr_symbol
);
17753 /* If the relax_marker of the symbol fragment differs from the
17754 relax_marker of this fragment, we have not yet adjusted the
17755 symbol fragment fr_address. We want to add in STRETCH in
17756 order to get a better estimate of the address. This
17757 particularly matters because of the shift bits. */
17758 if (stretch
!= 0 && sym_frag
->relax_marker
!= fragp
->relax_marker
)
17762 /* Adjust stretch for any alignment frag. Note that if have
17763 been expanding the earlier code, the symbol may be
17764 defined in what appears to be an earlier frag. FIXME:
17765 This doesn't handle the fr_subtype field, which specifies
17766 a maximum number of bytes to skip when doing an
17768 for (f
= fragp
; f
!= NULL
&& f
!= sym_frag
; f
= f
->fr_next
)
17770 if (f
->fr_type
== rs_align
|| f
->fr_type
== rs_align_code
)
17773 stretch
= -(-stretch
& ~((1 << (int) f
->fr_offset
) - 1));
17775 stretch
&= ~((1 << (int) f
->fr_offset
) - 1);
17784 addr
= fragp
->fr_address
+ fragp
->fr_fix
;
17786 /* The base address rules are complicated. The base address of
17787 a branch is the following instruction. The base address of a
17788 PC relative load or add is the instruction itself, but if it
17789 is in a delay slot (in which case it can not be extended) use
17790 the address of the instruction whose delay slot it is in. */
17791 if (pcrel_op
->include_isa_bit
)
17795 /* If we are currently assuming that this frag should be
17796 extended, then the current address is two bytes higher. */
17797 if (RELAX_MIPS16_EXTENDED (fragp
->fr_subtype
))
17800 /* Ignore the low bit in the target, since it will be set
17801 for a text label. */
17804 else if (RELAX_MIPS16_JAL_DSLOT (fragp
->fr_subtype
))
17806 else if (RELAX_MIPS16_DSLOT (fragp
->fr_subtype
))
17809 val
-= addr
& -(1 << pcrel_op
->align_log2
);
17814 /* Given a mips16 variant frag FRAGP, return non-zero if it needs an
17815 extended opcode. SEC is the section the frag is in. */
17818 mips16_extended_frag (fragS
*fragp
, asection
*sec
, long stretch
)
17820 const struct mips_int_operand
*operand
;
17825 if (RELAX_MIPS16_USER_SMALL (fragp
->fr_subtype
))
17827 if (RELAX_MIPS16_USER_EXT (fragp
->fr_subtype
))
17830 symsec
= S_GET_SEGMENT (fragp
->fr_symbol
);
17831 type
= RELAX_MIPS16_TYPE (fragp
->fr_subtype
);
17832 operand
= mips16_immed_operand (type
, false);
17833 if (S_FORCE_RELOC (fragp
->fr_symbol
, true)
17834 || (operand
->root
.type
== OP_PCREL
17836 : !bfd_is_abs_section (symsec
)))
17839 val
= S_GET_VALUE (fragp
->fr_symbol
) + fragp
->fr_offset
;
17841 if (operand
->root
.type
== OP_PCREL
)
17843 const struct mips_pcrel_operand
*pcrel_op
;
17846 if (RELAX_MIPS16_ALWAYS_EXTENDED (fragp
->fr_subtype
))
17849 pcrel_op
= (const struct mips_pcrel_operand
*) operand
;
17850 val
= mips16_pcrel_val (fragp
, pcrel_op
, val
, stretch
);
17852 /* If any of the shifted bits are set, we must use an extended
17853 opcode. If the address depends on the size of this
17854 instruction, this can lead to a loop, so we arrange to always
17855 use an extended opcode. */
17856 if ((val
& ((1 << operand
->shift
) - 1)) != 0)
17858 fragp
->fr_subtype
=
17859 RELAX_MIPS16_MARK_ALWAYS_EXTENDED (fragp
->fr_subtype
);
17863 /* If we are about to mark a frag as extended because the value
17864 is precisely the next value above maxtiny, then there is a
17865 chance of an infinite loop as in the following code:
17870 In this case when the la is extended, foo is 0x3fc bytes
17871 away, so the la can be shrunk, but then foo is 0x400 away, so
17872 the la must be extended. To avoid this loop, we mark the
17873 frag as extended if it was small, and is about to become
17874 extended with the next value above maxtiny. */
17875 maxtiny
= mips_int_operand_max (operand
);
17876 if (val
== maxtiny
+ (1 << operand
->shift
)
17877 && ! RELAX_MIPS16_EXTENDED (fragp
->fr_subtype
))
17879 fragp
->fr_subtype
=
17880 RELAX_MIPS16_MARK_ALWAYS_EXTENDED (fragp
->fr_subtype
);
17885 return !mips16_immed_in_range_p (operand
, BFD_RELOC_UNUSED
, val
);
17888 /* Given a MIPS16 variant frag FRAGP, return non-zero if it needs
17889 macro expansion. SEC is the section the frag is in. We only
17890 support PC-relative instructions (LA, DLA, LW, LD) here, in
17891 non-PIC code using 32-bit addressing. */
17894 mips16_macro_frag (fragS
*fragp
, asection
*sec
, long stretch
)
17896 const struct mips_pcrel_operand
*pcrel_op
;
17897 const struct mips_int_operand
*operand
;
17902 gas_assert (!RELAX_MIPS16_USER_SMALL (fragp
->fr_subtype
));
17904 if (RELAX_MIPS16_USER_EXT (fragp
->fr_subtype
))
17906 if (!RELAX_MIPS16_SYM32 (fragp
->fr_subtype
))
17909 type
= RELAX_MIPS16_TYPE (fragp
->fr_subtype
);
17915 symsec
= S_GET_SEGMENT (fragp
->fr_symbol
);
17916 if (bfd_is_abs_section (symsec
))
17918 if (RELAX_MIPS16_PIC (fragp
->fr_subtype
))
17920 if (S_FORCE_RELOC (fragp
->fr_symbol
, true) || sec
!= symsec
)
17923 operand
= mips16_immed_operand (type
, true);
17924 val
= S_GET_VALUE (fragp
->fr_symbol
) + fragp
->fr_offset
;
17925 pcrel_op
= (const struct mips_pcrel_operand
*) operand
;
17926 val
= mips16_pcrel_val (fragp
, pcrel_op
, val
, stretch
);
17928 return !mips16_immed_in_range_p (operand
, BFD_RELOC_UNUSED
, val
);
17935 /* Compute the length of a branch sequence, and adjust the
17936 RELAX_BRANCH_TOOFAR bit accordingly. If FRAGP is NULL, the
17937 worst-case length is computed, with UPDATE being used to indicate
17938 whether an unconditional (-1), branch-likely (+1) or regular (0)
17939 branch is to be computed. */
17941 relaxed_branch_length (fragS
*fragp
, asection
*sec
, int update
)
17947 && S_IS_DEFINED (fragp
->fr_symbol
)
17948 && !S_IS_WEAK (fragp
->fr_symbol
)
17949 && sec
== S_GET_SEGMENT (fragp
->fr_symbol
))
17954 val
= S_GET_VALUE (fragp
->fr_symbol
) + fragp
->fr_offset
;
17956 addr
= fragp
->fr_address
+ fragp
->fr_fix
+ 4;
17960 toofar
= val
< - (0x8000 << 2) || val
>= (0x8000 << 2);
17963 /* If the symbol is not defined or it's in a different segment,
17964 we emit the long sequence. */
17967 if (fragp
&& update
&& toofar
!= RELAX_BRANCH_TOOFAR (fragp
->fr_subtype
))
17969 = RELAX_BRANCH_ENCODE (RELAX_BRANCH_AT (fragp
->fr_subtype
),
17970 RELAX_BRANCH_PIC (fragp
->fr_subtype
),
17971 RELAX_BRANCH_UNCOND (fragp
->fr_subtype
),
17972 RELAX_BRANCH_LIKELY (fragp
->fr_subtype
),
17973 RELAX_BRANCH_LINK (fragp
->fr_subtype
),
17979 if (fragp
? RELAX_BRANCH_LIKELY (fragp
->fr_subtype
) : (update
> 0))
17982 if (!fragp
|| RELAX_BRANCH_PIC (fragp
->fr_subtype
))
17984 /* Additional space for PIC loading of target address. */
17986 if (mips_opts
.isa
== ISA_MIPS1
)
17987 /* Additional space for $at-stabilizing nop. */
17991 /* If branch is conditional. */
17992 if (fragp
? !RELAX_BRANCH_UNCOND (fragp
->fr_subtype
) : (update
>= 0))
17999 /* Get a FRAG's branch instruction delay slot size, either from the
18000 short-delay-slot bit of a branch-and-link instruction if AL is TRUE,
18001 or SHORT_INSN_SIZE otherwise. */
18004 frag_branch_delay_slot_size (fragS
*fragp
, bool al
, int short_insn_size
)
18006 char *buf
= fragp
->fr_literal
+ fragp
->fr_fix
;
18009 return (read_compressed_insn (buf
, 4) & 0x02000000) ? 2 : 4;
18011 return short_insn_size
;
18014 /* Compute the length of a branch sequence, and adjust the
18015 RELAX_MICROMIPS_TOOFAR32 bit accordingly. If FRAGP is NULL, the
18016 worst-case length is computed, with UPDATE being used to indicate
18017 whether an unconditional (-1), or regular (0) branch is to be
18021 relaxed_micromips_32bit_branch_length (fragS
*fragp
, asection
*sec
, int update
)
18023 bool insn32
= true;
18027 int short_insn_size
;
18033 insn32
= RELAX_MICROMIPS_INSN32 (fragp
->fr_subtype
);
18034 nods
= RELAX_MICROMIPS_NODS (fragp
->fr_subtype
);
18035 pic
= RELAX_MICROMIPS_PIC (fragp
->fr_subtype
);
18036 al
= RELAX_MICROMIPS_LINK (fragp
->fr_subtype
);
18038 short_insn_size
= insn32
? 4 : 2;
18041 && S_IS_DEFINED (fragp
->fr_symbol
)
18042 && !S_IS_WEAK (fragp
->fr_symbol
)
18043 && sec
== S_GET_SEGMENT (fragp
->fr_symbol
))
18048 val
= S_GET_VALUE (fragp
->fr_symbol
) + fragp
->fr_offset
;
18049 /* Ignore the low bit in the target, since it will be set
18050 for a text label. */
18051 if ((val
& 1) != 0)
18054 addr
= fragp
->fr_address
+ fragp
->fr_fix
+ 4;
18058 toofar
= val
< - (0x8000 << 1) || val
>= (0x8000 << 1);
18061 /* If the symbol is not defined or it's in a different segment,
18062 we emit the long sequence. */
18065 if (fragp
&& update
18066 && toofar
!= RELAX_MICROMIPS_TOOFAR32 (fragp
->fr_subtype
))
18067 fragp
->fr_subtype
= (toofar
18068 ? RELAX_MICROMIPS_MARK_TOOFAR32 (fragp
->fr_subtype
)
18069 : RELAX_MICROMIPS_CLEAR_TOOFAR32 (fragp
->fr_subtype
));
18074 bool compact_known
= fragp
!= NULL
;
18075 bool compact
= false;
18080 compact
= RELAX_MICROMIPS_COMPACT (fragp
->fr_subtype
);
18081 uncond
= RELAX_MICROMIPS_UNCOND (fragp
->fr_subtype
);
18084 uncond
= update
< 0;
18086 /* If label is out of range, we turn branch <br>:
18088 <br> label # 4 bytes
18095 # compact && (!PIC || insn32)
18098 if ((!pic
|| insn32
) && (!compact_known
|| compact
))
18099 length
+= short_insn_size
;
18101 /* If assembling PIC code, we further turn:
18107 lw/ld at, %got(label)(gp) # 4 bytes
18108 d/addiu at, %lo(label) # 4 bytes
18109 jr/c at # 2/4 bytes
18112 length
+= 4 + short_insn_size
;
18114 /* Add an extra nop if the jump has no compact form and we need
18115 to fill the delay slot. */
18116 if ((!pic
|| al
) && nods
)
18118 ? frag_branch_delay_slot_size (fragp
, al
, short_insn_size
)
18119 : short_insn_size
);
18121 /* If branch <br> is conditional, we prepend negated branch <brneg>:
18123 <brneg> 0f # 4 bytes
18124 nop # 2/4 bytes if !compact
18127 length
+= (compact_known
&& compact
) ? 4 : 4 + short_insn_size
;
18131 /* Add an extra nop to fill the delay slot. */
18132 gas_assert (fragp
);
18133 length
+= frag_branch_delay_slot_size (fragp
, al
, short_insn_size
);
18139 /* Compute the length of a branch, and adjust the RELAX_MICROMIPS_TOOFAR16
18140 bit accordingly. */
18143 relaxed_micromips_16bit_branch_length (fragS
*fragp
, asection
*sec
, int update
)
18148 && S_IS_DEFINED (fragp
->fr_symbol
)
18149 && !S_IS_WEAK (fragp
->fr_symbol
)
18150 && sec
== S_GET_SEGMENT (fragp
->fr_symbol
))
18156 val
= S_GET_VALUE (fragp
->fr_symbol
) + fragp
->fr_offset
;
18157 /* Ignore the low bit in the target, since it will be set
18158 for a text label. */
18159 if ((val
& 1) != 0)
18162 /* Assume this is a 2-byte branch. */
18163 addr
= fragp
->fr_address
+ fragp
->fr_fix
+ 2;
18165 /* We try to avoid the infinite loop by not adding 2 more bytes for
18170 type
= RELAX_MICROMIPS_TYPE (fragp
->fr_subtype
);
18172 toofar
= val
< - (0x200 << 1) || val
>= (0x200 << 1);
18173 else if (type
== 'E')
18174 toofar
= val
< - (0x40 << 1) || val
>= (0x40 << 1);
18179 /* If the symbol is not defined or it's in a different segment,
18180 we emit a normal 32-bit branch. */
18183 if (fragp
&& update
18184 && toofar
!= RELAX_MICROMIPS_TOOFAR16 (fragp
->fr_subtype
))
18186 = toofar
? RELAX_MICROMIPS_MARK_TOOFAR16 (fragp
->fr_subtype
)
18187 : RELAX_MICROMIPS_CLEAR_TOOFAR16 (fragp
->fr_subtype
);
18195 /* Estimate the size of a frag before relaxing. Unless this is the
18196 mips16, we are not really relaxing here, and the final size is
18197 encoded in the subtype information. For the mips16, we have to
18198 decide whether we are using an extended opcode or not. */
18201 md_estimate_size_before_relax (fragS
*fragp
, asection
*segtype
)
18205 if (RELAX_BRANCH_P (fragp
->fr_subtype
))
18208 fragp
->fr_var
= relaxed_branch_length (fragp
, segtype
, false);
18210 return fragp
->fr_var
;
18213 if (RELAX_MIPS16_P (fragp
->fr_subtype
))
18215 /* We don't want to modify the EXTENDED bit here; it might get us
18216 into infinite loops. We change it only in mips_relax_frag(). */
18217 if (RELAX_MIPS16_MACRO (fragp
->fr_subtype
))
18218 return RELAX_MIPS16_E2 (fragp
->fr_subtype
) ? 8 : 12;
18220 return RELAX_MIPS16_EXTENDED (fragp
->fr_subtype
) ? 4 : 2;
18223 if (RELAX_MICROMIPS_P (fragp
->fr_subtype
))
18227 if (RELAX_MICROMIPS_TYPE (fragp
->fr_subtype
) != 0)
18228 length
= relaxed_micromips_16bit_branch_length (fragp
, segtype
, false);
18229 if (length
== 4 && RELAX_MICROMIPS_RELAX32 (fragp
->fr_subtype
))
18230 length
= relaxed_micromips_32bit_branch_length (fragp
, segtype
, false);
18231 fragp
->fr_var
= length
;
18236 if (mips_pic
== VXWORKS_PIC
)
18237 /* For vxworks, GOT16 relocations never have a corresponding LO16. */
18239 else if (RELAX_PIC (fragp
->fr_subtype
))
18240 change
= pic_need_relax (fragp
->fr_symbol
);
18242 change
= nopic_need_relax (fragp
->fr_symbol
, 0);
18246 fragp
->fr_subtype
|= RELAX_USE_SECOND
;
18247 return -RELAX_FIRST (fragp
->fr_subtype
);
18250 return -RELAX_SECOND (fragp
->fr_subtype
);
18253 /* This is called to see whether a reloc against a defined symbol
18254 should be converted into a reloc against a section. */
18257 mips_fix_adjustable (fixS
*fixp
)
18259 if (fixp
->fx_r_type
== BFD_RELOC_VTABLE_INHERIT
18260 || fixp
->fx_r_type
== BFD_RELOC_VTABLE_ENTRY
)
18263 if (fixp
->fx_addsy
== NULL
)
18266 /* Allow relocs used for EH tables. */
18267 if (fixp
->fx_r_type
== BFD_RELOC_32_PCREL
)
18270 /* If symbol SYM is in a mergeable section, relocations of the form
18271 SYM + 0 can usually be made section-relative. The mergeable data
18272 is then identified by the section offset rather than by the symbol.
18274 However, if we're generating REL LO16 relocations, the offset is split
18275 between the LO16 and partnering high part relocation. The linker will
18276 need to recalculate the complete offset in order to correctly identify
18279 The linker has traditionally not looked for the partnering high part
18280 relocation, and has thus allowed orphaned R_MIPS_LO16 relocations to be
18281 placed anywhere. Rather than break backwards compatibility by changing
18282 this, it seems better not to force the issue, and instead keep the
18283 original symbol. This will work with either linker behavior. */
18284 if ((lo16_reloc_p (fixp
->fx_r_type
)
18285 || reloc_needs_lo_p (fixp
->fx_r_type
))
18286 && HAVE_IN_PLACE_ADDENDS
18287 && (S_GET_SEGMENT (fixp
->fx_addsy
)->flags
& SEC_MERGE
) != 0)
18290 /* There is no place to store an in-place offset for JALR relocations. */
18291 if (jalr_reloc_p (fixp
->fx_r_type
) && HAVE_IN_PLACE_ADDENDS
)
18294 /* Likewise an in-range offset of limited PC-relative relocations may
18295 overflow the in-place relocatable field if recalculated against the
18296 start address of the symbol's containing section.
18298 Also, PC relative relocations for MIPS R6 need to be symbol rather than
18299 section relative to allow linker relaxations to be performed later on. */
18300 if (limited_pcrel_reloc_p (fixp
->fx_r_type
)
18301 && (HAVE_IN_PLACE_ADDENDS
|| ISA_IS_R6 (file_mips_opts
.isa
)))
18304 /* R_MIPS16_26 relocations against non-MIPS16 functions might resolve
18305 to a floating-point stub. The same is true for non-R_MIPS16_26
18306 relocations against MIPS16 functions; in this case, the stub becomes
18307 the function's canonical address.
18309 Floating-point stubs are stored in unique .mips16.call.* or
18310 .mips16.fn.* sections. If a stub T for function F is in section S,
18311 the first relocation in section S must be against F; this is how the
18312 linker determines the target function. All relocations that might
18313 resolve to T must also be against F. We therefore have the following
18314 restrictions, which are given in an intentionally-redundant way:
18316 1. We cannot reduce R_MIPS16_26 relocations against non-MIPS16
18319 2. We cannot reduce a stub's relocations against non-MIPS16 symbols
18320 if that stub might be used.
18322 3. We cannot reduce non-R_MIPS16_26 relocations against MIPS16
18325 4. We cannot reduce a stub's relocations against MIPS16 symbols if
18326 that stub might be used.
18328 There is a further restriction:
18330 5. We cannot reduce jump relocations (R_MIPS_26, R_MIPS16_26 or
18331 R_MICROMIPS_26_S1) or branch relocations (R_MIPS_PC26_S2,
18332 R_MIPS_PC21_S2, R_MIPS_PC16, R_MIPS16_PC16_S1,
18333 R_MICROMIPS_PC16_S1, R_MICROMIPS_PC10_S1 or R_MICROMIPS_PC7_S1)
18334 against MIPS16 or microMIPS symbols because we need to keep the
18335 MIPS16 or microMIPS symbol for the purpose of mode mismatch
18336 detection and JAL or BAL to JALX instruction conversion in the
18339 For simplicity, we deal with (3)-(4) by not reducing _any_ relocation
18340 against a MIPS16 symbol. We deal with (5) by additionally leaving
18341 alone any jump and branch relocations against a microMIPS symbol.
18343 We deal with (1)-(2) by saying that, if there's a R_MIPS16_26
18344 relocation against some symbol R, no relocation against R may be
18345 reduced. (Note that this deals with (2) as well as (1) because
18346 relocations against global symbols will never be reduced on ELF
18347 targets.) This approach is a little simpler than trying to detect
18348 stub sections, and gives the "all or nothing" per-symbol consistency
18349 that we have for MIPS16 symbols. */
18350 if (fixp
->fx_subsy
== NULL
18351 && (ELF_ST_IS_MIPS16 (S_GET_OTHER (fixp
->fx_addsy
))
18352 || (ELF_ST_IS_MICROMIPS (S_GET_OTHER (fixp
->fx_addsy
))
18353 && (jmp_reloc_p (fixp
->fx_r_type
)
18354 || b_reloc_p (fixp
->fx_r_type
)))
18355 || *symbol_get_tc (fixp
->fx_addsy
)))
18361 /* Translate internal representation of relocation info to BFD target
18365 tc_gen_reloc (asection
*section ATTRIBUTE_UNUSED
, fixS
*fixp
)
18367 static arelent
*retval
[4];
18369 bfd_reloc_code_real_type code
;
18371 memset (retval
, 0, sizeof(retval
));
18372 reloc
= retval
[0] = XCNEW (arelent
);
18373 reloc
->sym_ptr_ptr
= XNEW (asymbol
*);
18374 *reloc
->sym_ptr_ptr
= symbol_get_bfdsym (fixp
->fx_addsy
);
18375 reloc
->address
= fixp
->fx_frag
->fr_address
+ fixp
->fx_where
;
18377 if (fixp
->fx_pcrel
)
18379 gas_assert (fixp
->fx_r_type
== BFD_RELOC_16_PCREL_S2
18380 || fixp
->fx_r_type
== BFD_RELOC_MIPS16_16_PCREL_S1
18381 || fixp
->fx_r_type
== BFD_RELOC_MICROMIPS_7_PCREL_S1
18382 || fixp
->fx_r_type
== BFD_RELOC_MICROMIPS_10_PCREL_S1
18383 || fixp
->fx_r_type
== BFD_RELOC_MICROMIPS_16_PCREL_S1
18384 || fixp
->fx_r_type
== BFD_RELOC_32_PCREL
18385 || fixp
->fx_r_type
== BFD_RELOC_MIPS_21_PCREL_S2
18386 || fixp
->fx_r_type
== BFD_RELOC_MIPS_26_PCREL_S2
18387 || fixp
->fx_r_type
== BFD_RELOC_MIPS_18_PCREL_S3
18388 || fixp
->fx_r_type
== BFD_RELOC_MIPS_19_PCREL_S2
18389 || fixp
->fx_r_type
== BFD_RELOC_HI16_S_PCREL
18390 || fixp
->fx_r_type
== BFD_RELOC_LO16_PCREL
);
18392 /* At this point, fx_addnumber is "symbol offset - pcrel address".
18393 Relocations want only the symbol offset. */
18394 switch (fixp
->fx_r_type
)
18396 case BFD_RELOC_MIPS_18_PCREL_S3
:
18397 reloc
->addend
= fixp
->fx_addnumber
+ (reloc
->address
& ~7);
18400 reloc
->addend
= fixp
->fx_addnumber
+ reloc
->address
;
18404 else if (HAVE_IN_PLACE_ADDENDS
18405 && fixp
->fx_r_type
== BFD_RELOC_MICROMIPS_JMP
18406 && (read_compressed_insn (fixp
->fx_frag
->fr_literal
18407 + fixp
->fx_where
, 4) >> 26) == 0x3c)
18409 /* Shift is 2, unusually, for microMIPS JALX. Adjust the in-place
18410 addend accordingly. */
18411 reloc
->addend
= fixp
->fx_addnumber
>> 1;
18414 reloc
->addend
= fixp
->fx_addnumber
;
18416 /* Since the old MIPS ELF ABI uses Rel instead of Rela, encode the vtable
18417 entry to be used in the relocation's section offset. */
18418 if (! HAVE_NEWABI
&& fixp
->fx_r_type
== BFD_RELOC_VTABLE_ENTRY
)
18420 reloc
->address
= reloc
->addend
;
18424 code
= fixp
->fx_r_type
;
18426 reloc
->howto
= bfd_reloc_type_lookup (stdoutput
, code
);
18427 if (reloc
->howto
== NULL
)
18429 as_bad_where (fixp
->fx_file
, fixp
->fx_line
,
18430 _("cannot represent %s relocation in this object file"
18432 bfd_get_reloc_code_name (code
));
18439 /* Relax a machine dependent frag. This returns the amount by which
18440 the current size of the frag should change. */
18443 mips_relax_frag (asection
*sec
, fragS
*fragp
, long stretch
)
18445 if (RELAX_BRANCH_P (fragp
->fr_subtype
))
18447 offsetT old_var
= fragp
->fr_var
;
18449 fragp
->fr_var
= relaxed_branch_length (fragp
, sec
, true);
18451 return fragp
->fr_var
- old_var
;
18454 if (RELAX_MICROMIPS_P (fragp
->fr_subtype
))
18456 offsetT old_var
= fragp
->fr_var
;
18457 offsetT new_var
= 4;
18459 if (RELAX_MICROMIPS_TYPE (fragp
->fr_subtype
) != 0)
18460 new_var
= relaxed_micromips_16bit_branch_length (fragp
, sec
, true);
18461 if (new_var
== 4 && RELAX_MICROMIPS_RELAX32 (fragp
->fr_subtype
))
18462 new_var
= relaxed_micromips_32bit_branch_length (fragp
, sec
, true);
18463 fragp
->fr_var
= new_var
;
18465 return new_var
- old_var
;
18468 if (! RELAX_MIPS16_P (fragp
->fr_subtype
))
18471 if (!mips16_extended_frag (fragp
, sec
, stretch
))
18473 if (RELAX_MIPS16_MACRO (fragp
->fr_subtype
))
18475 fragp
->fr_subtype
= RELAX_MIPS16_CLEAR_MACRO (fragp
->fr_subtype
);
18476 return RELAX_MIPS16_E2 (fragp
->fr_subtype
) ? -6 : -10;
18478 else if (RELAX_MIPS16_EXTENDED (fragp
->fr_subtype
))
18480 fragp
->fr_subtype
= RELAX_MIPS16_CLEAR_EXTENDED (fragp
->fr_subtype
);
18486 else if (!mips16_macro_frag (fragp
, sec
, stretch
))
18488 if (RELAX_MIPS16_MACRO (fragp
->fr_subtype
))
18490 fragp
->fr_subtype
= RELAX_MIPS16_CLEAR_MACRO (fragp
->fr_subtype
);
18491 fragp
->fr_subtype
= RELAX_MIPS16_MARK_EXTENDED (fragp
->fr_subtype
);
18492 return RELAX_MIPS16_E2 (fragp
->fr_subtype
) ? -4 : -8;
18494 else if (!RELAX_MIPS16_EXTENDED (fragp
->fr_subtype
))
18496 fragp
->fr_subtype
= RELAX_MIPS16_MARK_EXTENDED (fragp
->fr_subtype
);
18504 if (RELAX_MIPS16_MACRO (fragp
->fr_subtype
))
18506 else if (RELAX_MIPS16_EXTENDED (fragp
->fr_subtype
))
18508 fragp
->fr_subtype
= RELAX_MIPS16_CLEAR_EXTENDED (fragp
->fr_subtype
);
18509 fragp
->fr_subtype
= RELAX_MIPS16_MARK_MACRO (fragp
->fr_subtype
);
18510 return RELAX_MIPS16_E2 (fragp
->fr_subtype
) ? 4 : 8;
18514 fragp
->fr_subtype
= RELAX_MIPS16_MARK_MACRO (fragp
->fr_subtype
);
18515 return RELAX_MIPS16_E2 (fragp
->fr_subtype
) ? 6 : 10;
18522 /* Convert a machine dependent frag. */
18525 md_convert_frag (bfd
*abfd ATTRIBUTE_UNUSED
, segT asec
, fragS
*fragp
)
18527 if (RELAX_BRANCH_P (fragp
->fr_subtype
))
18530 unsigned long insn
;
18533 buf
= fragp
->fr_literal
+ fragp
->fr_fix
;
18534 insn
= read_insn (buf
);
18536 if (!RELAX_BRANCH_TOOFAR (fragp
->fr_subtype
))
18538 /* We generate a fixup instead of applying it right now
18539 because, if there are linker relaxations, we're going to
18540 need the relocations. */
18541 fixp
= fix_new (fragp
, buf
- fragp
->fr_literal
, 4,
18542 fragp
->fr_symbol
, fragp
->fr_offset
,
18543 true, BFD_RELOC_16_PCREL_S2
);
18544 fixp
->fx_file
= fragp
->fr_file
;
18545 fixp
->fx_line
= fragp
->fr_line
;
18547 buf
= write_insn (buf
, insn
);
18553 as_warn_where (fragp
->fr_file
, fragp
->fr_line
,
18554 _("relaxed out-of-range branch into a jump"));
18556 if (RELAX_BRANCH_UNCOND (fragp
->fr_subtype
))
18559 if (!RELAX_BRANCH_LIKELY (fragp
->fr_subtype
))
18561 /* Reverse the branch. */
18562 switch ((insn
>> 28) & 0xf)
18565 if ((insn
& 0xff000000) == 0x47000000
18566 || (insn
& 0xff600000) == 0x45600000)
18568 /* BZ.df/BNZ.df, BZ.V/BNZ.V can have the condition
18569 reversed by tweaking bit 23. */
18570 insn
^= 0x00800000;
18574 /* bc[0-3][tf]l? instructions can have the condition
18575 reversed by tweaking a single TF bit, and their
18576 opcodes all have 0x4???????. */
18577 gas_assert ((insn
& 0xf3e00000) == 0x41000000);
18578 insn
^= 0x00010000;
18583 /* bltz 0x04000000 bgez 0x04010000
18584 bltzal 0x04100000 bgezal 0x04110000 */
18585 gas_assert ((insn
& 0xfc0e0000) == 0x04000000);
18586 insn
^= 0x00010000;
18590 /* beq 0x10000000 bne 0x14000000
18591 blez 0x18000000 bgtz 0x1c000000 */
18592 insn
^= 0x04000000;
18600 if (RELAX_BRANCH_LINK (fragp
->fr_subtype
))
18602 /* Clear the and-link bit. */
18603 gas_assert ((insn
& 0xfc1c0000) == 0x04100000);
18605 /* bltzal 0x04100000 bgezal 0x04110000
18606 bltzall 0x04120000 bgezall 0x04130000 */
18607 insn
&= ~0x00100000;
18610 /* Branch over the branch (if the branch was likely) or the
18611 full jump (not likely case). Compute the offset from the
18612 current instruction to branch to. */
18613 if (RELAX_BRANCH_LIKELY (fragp
->fr_subtype
))
18617 /* How many bytes in instructions we've already emitted? */
18618 i
= buf
- fragp
->fr_literal
- fragp
->fr_fix
;
18619 /* How many bytes in instructions from here to the end? */
18620 i
= fragp
->fr_var
- i
;
18622 /* Convert to instruction count. */
18624 /* Branch counts from the next instruction. */
18627 /* Branch over the jump. */
18628 buf
= write_insn (buf
, insn
);
18631 buf
= write_insn (buf
, 0);
18633 if (RELAX_BRANCH_LIKELY (fragp
->fr_subtype
))
18635 /* beql $0, $0, 2f */
18637 /* Compute the PC offset from the current instruction to
18638 the end of the variable frag. */
18639 /* How many bytes in instructions we've already emitted? */
18640 i
= buf
- fragp
->fr_literal
- fragp
->fr_fix
;
18641 /* How many bytes in instructions from here to the end? */
18642 i
= fragp
->fr_var
- i
;
18643 /* Convert to instruction count. */
18645 /* Don't decrement i, because we want to branch over the
18649 buf
= write_insn (buf
, insn
);
18650 buf
= write_insn (buf
, 0);
18654 if (!RELAX_BRANCH_PIC (fragp
->fr_subtype
))
18657 insn
= (RELAX_BRANCH_LINK (fragp
->fr_subtype
)
18658 ? 0x0c000000 : 0x08000000);
18660 fixp
= fix_new (fragp
, buf
- fragp
->fr_literal
, 4,
18661 fragp
->fr_symbol
, fragp
->fr_offset
,
18662 false, BFD_RELOC_MIPS_JMP
);
18663 fixp
->fx_file
= fragp
->fr_file
;
18664 fixp
->fx_line
= fragp
->fr_line
;
18666 buf
= write_insn (buf
, insn
);
18670 unsigned long at
= RELAX_BRANCH_AT (fragp
->fr_subtype
);
18672 /* lw/ld $at, <sym>($gp) R_MIPS_GOT16 */
18673 insn
= HAVE_64BIT_ADDRESSES
? 0xdf800000 : 0x8f800000;
18674 insn
|= at
<< OP_SH_RT
;
18676 fixp
= fix_new (fragp
, buf
- fragp
->fr_literal
, 4,
18677 fragp
->fr_symbol
, fragp
->fr_offset
,
18678 false, BFD_RELOC_MIPS_GOT16
);
18679 fixp
->fx_file
= fragp
->fr_file
;
18680 fixp
->fx_line
= fragp
->fr_line
;
18682 buf
= write_insn (buf
, insn
);
18684 if (mips_opts
.isa
== ISA_MIPS1
)
18686 buf
= write_insn (buf
, 0);
18688 /* d/addiu $at, $at, <sym> R_MIPS_LO16 */
18689 insn
= HAVE_64BIT_ADDRESSES
? 0x64000000 : 0x24000000;
18690 insn
|= at
<< OP_SH_RS
| at
<< OP_SH_RT
;
18692 fixp
= fix_new (fragp
, buf
- fragp
->fr_literal
, 4,
18693 fragp
->fr_symbol
, fragp
->fr_offset
,
18694 false, BFD_RELOC_LO16
);
18695 fixp
->fx_file
= fragp
->fr_file
;
18696 fixp
->fx_line
= fragp
->fr_line
;
18698 buf
= write_insn (buf
, insn
);
18701 if (RELAX_BRANCH_LINK (fragp
->fr_subtype
))
18705 insn
|= at
<< OP_SH_RS
;
18707 buf
= write_insn (buf
, insn
);
18711 fragp
->fr_fix
+= fragp
->fr_var
;
18712 gas_assert (buf
== fragp
->fr_literal
+ fragp
->fr_fix
);
18716 /* Relax microMIPS branches. */
18717 if (RELAX_MICROMIPS_P (fragp
->fr_subtype
))
18719 char *buf
= fragp
->fr_literal
+ fragp
->fr_fix
;
18720 bool compact
= RELAX_MICROMIPS_COMPACT (fragp
->fr_subtype
);
18721 bool insn32
= RELAX_MICROMIPS_INSN32 (fragp
->fr_subtype
);
18722 bool nods
= RELAX_MICROMIPS_NODS (fragp
->fr_subtype
);
18723 bool pic
= RELAX_MICROMIPS_PIC (fragp
->fr_subtype
);
18724 bool al
= RELAX_MICROMIPS_LINK (fragp
->fr_subtype
);
18725 int type
= RELAX_MICROMIPS_TYPE (fragp
->fr_subtype
);
18727 unsigned long insn
;
18730 fragp
->fr_fix
+= fragp
->fr_var
;
18732 /* Handle 16-bit branches that fit or are forced to fit. */
18733 if (type
!= 0 && !RELAX_MICROMIPS_TOOFAR16 (fragp
->fr_subtype
))
18735 /* We generate a fixup instead of applying it right now,
18736 because if there is linker relaxation, we're going to
18737 need the relocations. */
18741 fixp
= fix_new (fragp
, buf
- fragp
->fr_literal
, 2,
18742 fragp
->fr_symbol
, fragp
->fr_offset
,
18743 true, BFD_RELOC_MICROMIPS_10_PCREL_S1
);
18746 fixp
= fix_new (fragp
, buf
- fragp
->fr_literal
, 2,
18747 fragp
->fr_symbol
, fragp
->fr_offset
,
18748 true, BFD_RELOC_MICROMIPS_7_PCREL_S1
);
18754 fixp
->fx_file
= fragp
->fr_file
;
18755 fixp
->fx_line
= fragp
->fr_line
;
18757 /* These relocations can have an addend that won't fit in
18759 fixp
->fx_no_overflow
= 1;
18764 /* Handle 32-bit branches that fit or are forced to fit. */
18765 if (!RELAX_MICROMIPS_RELAX32 (fragp
->fr_subtype
)
18766 || !RELAX_MICROMIPS_TOOFAR32 (fragp
->fr_subtype
))
18768 /* We generate a fixup instead of applying it right now,
18769 because if there is linker relaxation, we're going to
18770 need the relocations. */
18771 fixp
= fix_new (fragp
, buf
- fragp
->fr_literal
, 4,
18772 fragp
->fr_symbol
, fragp
->fr_offset
,
18773 true, BFD_RELOC_MICROMIPS_16_PCREL_S1
);
18774 fixp
->fx_file
= fragp
->fr_file
;
18775 fixp
->fx_line
= fragp
->fr_line
;
18779 insn
= read_compressed_insn (buf
, 4);
18784 /* Check the short-delay-slot bit. */
18785 if (!al
|| (insn
& 0x02000000) != 0)
18786 buf
= write_compressed_insn (buf
, 0x0c00, 2);
18788 buf
= write_compressed_insn (buf
, 0x00000000, 4);
18791 gas_assert (buf
== fragp
->fr_literal
+ fragp
->fr_fix
);
18796 /* Relax 16-bit branches to 32-bit branches. */
18799 insn
= read_compressed_insn (buf
, 2);
18801 if ((insn
& 0xfc00) == 0xcc00) /* b16 */
18802 insn
= 0x94000000; /* beq */
18803 else if ((insn
& 0xdc00) == 0x8c00) /* beqz16/bnez16 */
18805 unsigned long regno
;
18807 regno
= (insn
>> MICROMIPSOP_SH_MD
) & MICROMIPSOP_MASK_MD
;
18808 regno
= micromips_to_32_reg_d_map
[regno
];
18809 insn
= ((insn
& 0x2000) << 16) | 0x94000000; /* beq/bne */
18810 insn
|= regno
<< MICROMIPSOP_SH_RS
;
18815 /* Nothing else to do, just write it out. */
18816 if (!RELAX_MICROMIPS_RELAX32 (fragp
->fr_subtype
)
18817 || !RELAX_MICROMIPS_TOOFAR32 (fragp
->fr_subtype
))
18819 buf
= write_compressed_insn (buf
, insn
, 4);
18821 buf
= write_compressed_insn (buf
, 0x0c00, 2);
18822 gas_assert (buf
== fragp
->fr_literal
+ fragp
->fr_fix
);
18827 insn
= read_compressed_insn (buf
, 4);
18829 /* Relax 32-bit branches to a sequence of instructions. */
18830 as_warn_where (fragp
->fr_file
, fragp
->fr_line
,
18831 _("relaxed out-of-range branch into a jump"));
18833 /* Set the short-delay-slot bit. */
18834 short_ds
= !al
|| (insn
& 0x02000000) != 0;
18836 if (!RELAX_MICROMIPS_UNCOND (fragp
->fr_subtype
))
18840 /* Reverse the branch. */
18841 if ((insn
& 0xfc000000) == 0x94000000 /* beq */
18842 || (insn
& 0xfc000000) == 0xb4000000) /* bne */
18843 insn
^= 0x20000000;
18844 else if ((insn
& 0xffe00000) == 0x40000000 /* bltz */
18845 || (insn
& 0xffe00000) == 0x40400000 /* bgez */
18846 || (insn
& 0xffe00000) == 0x40800000 /* blez */
18847 || (insn
& 0xffe00000) == 0x40c00000 /* bgtz */
18848 || (insn
& 0xffe00000) == 0x40a00000 /* bnezc */
18849 || (insn
& 0xffe00000) == 0x40e00000 /* beqzc */
18850 || (insn
& 0xffe00000) == 0x40200000 /* bltzal */
18851 || (insn
& 0xffe00000) == 0x40600000 /* bgezal */
18852 || (insn
& 0xffe00000) == 0x42200000 /* bltzals */
18853 || (insn
& 0xffe00000) == 0x42600000) /* bgezals */
18854 insn
^= 0x00400000;
18855 else if ((insn
& 0xffe30000) == 0x43800000 /* bc1f */
18856 || (insn
& 0xffe30000) == 0x43a00000 /* bc1t */
18857 || (insn
& 0xffe30000) == 0x42800000 /* bc2f */
18858 || (insn
& 0xffe30000) == 0x42a00000) /* bc2t */
18859 insn
^= 0x00200000;
18860 else if ((insn
& 0xff000000) == 0x83000000 /* BZ.df
18862 || (insn
& 0xff600000) == 0x81600000) /* BZ.V
18864 insn
^= 0x00800000;
18870 /* Clear the and-link and short-delay-slot bits. */
18871 gas_assert ((insn
& 0xfda00000) == 0x40200000);
18873 /* bltzal 0x40200000 bgezal 0x40600000 */
18874 /* bltzals 0x42200000 bgezals 0x42600000 */
18875 insn
&= ~0x02200000;
18878 /* Make a label at the end for use with the branch. */
18879 l
= symbol_new (micromips_label_name (), asec
, fragp
, fragp
->fr_fix
);
18880 micromips_label_inc ();
18881 S_SET_OTHER (l
, ELF_ST_SET_MICROMIPS (S_GET_OTHER (l
)));
18884 fixp
= fix_new (fragp
, buf
- fragp
->fr_literal
, 4, l
, 0, true,
18885 BFD_RELOC_MICROMIPS_16_PCREL_S1
);
18886 fixp
->fx_file
= fragp
->fr_file
;
18887 fixp
->fx_line
= fragp
->fr_line
;
18889 /* Branch over the jump. */
18890 buf
= write_compressed_insn (buf
, insn
, 4);
18896 buf
= write_compressed_insn (buf
, 0x00000000, 4);
18898 buf
= write_compressed_insn (buf
, 0x0c00, 2);
18904 unsigned long jal
= (short_ds
|| nods
18905 ? 0x74000000 : 0xf4000000); /* jal/s */
18907 /* j/jal/jals <sym> R_MICROMIPS_26_S1 */
18908 insn
= al
? jal
: 0xd4000000;
18910 fixp
= fix_new (fragp
, buf
- fragp
->fr_literal
, 4,
18911 fragp
->fr_symbol
, fragp
->fr_offset
,
18912 false, BFD_RELOC_MICROMIPS_JMP
);
18913 fixp
->fx_file
= fragp
->fr_file
;
18914 fixp
->fx_line
= fragp
->fr_line
;
18916 buf
= write_compressed_insn (buf
, insn
, 4);
18918 if (compact
|| nods
)
18922 buf
= write_compressed_insn (buf
, 0x00000000, 4);
18924 buf
= write_compressed_insn (buf
, 0x0c00, 2);
18929 unsigned long at
= RELAX_MICROMIPS_AT (fragp
->fr_subtype
);
18931 /* lw/ld $at, <sym>($gp) R_MICROMIPS_GOT16 */
18932 insn
= HAVE_64BIT_ADDRESSES
? 0xdc1c0000 : 0xfc1c0000;
18933 insn
|= at
<< MICROMIPSOP_SH_RT
;
18935 fixp
= fix_new (fragp
, buf
- fragp
->fr_literal
, 4,
18936 fragp
->fr_symbol
, fragp
->fr_offset
,
18937 false, BFD_RELOC_MICROMIPS_GOT16
);
18938 fixp
->fx_file
= fragp
->fr_file
;
18939 fixp
->fx_line
= fragp
->fr_line
;
18941 buf
= write_compressed_insn (buf
, insn
, 4);
18943 /* d/addiu $at, $at, <sym> R_MICROMIPS_LO16 */
18944 insn
= HAVE_64BIT_ADDRESSES
? 0x5c000000 : 0x30000000;
18945 insn
|= at
<< MICROMIPSOP_SH_RT
| at
<< MICROMIPSOP_SH_RS
;
18947 fixp
= fix_new (fragp
, buf
- fragp
->fr_literal
, 4,
18948 fragp
->fr_symbol
, fragp
->fr_offset
,
18949 false, BFD_RELOC_MICROMIPS_LO16
);
18950 fixp
->fx_file
= fragp
->fr_file
;
18951 fixp
->fx_line
= fragp
->fr_line
;
18953 buf
= write_compressed_insn (buf
, insn
, 4);
18958 insn
= 0x00000f3c | (al
? RA
: ZERO
) << MICROMIPSOP_SH_RT
;
18959 insn
|= at
<< MICROMIPSOP_SH_RS
;
18961 buf
= write_compressed_insn (buf
, insn
, 4);
18963 if (compact
|| nods
)
18965 buf
= write_compressed_insn (buf
, 0x00000000, 4);
18969 /* jr/jrc/jalr/jalrs $at */
18970 unsigned long jalr
= short_ds
? 0x45e0 : 0x45c0; /* jalr/s */
18971 unsigned long jr
= compact
|| nods
? 0x45a0 : 0x4580; /* jr/c */
18973 insn
= al
? jalr
: jr
;
18974 insn
|= at
<< MICROMIPSOP_SH_MJ
;
18976 buf
= write_compressed_insn (buf
, insn
, 2);
18981 buf
= write_compressed_insn (buf
, 0x0c00, 2);
18983 buf
= write_compressed_insn (buf
, 0x00000000, 4);
18988 gas_assert (buf
== fragp
->fr_literal
+ fragp
->fr_fix
);
18992 if (RELAX_MIPS16_P (fragp
->fr_subtype
))
18995 const struct mips_int_operand
*operand
;
18998 unsigned int user_length
;
19000 unsigned long insn
;
19005 type
= RELAX_MIPS16_TYPE (fragp
->fr_subtype
);
19006 operand
= mips16_immed_operand (type
, false);
19008 mac
= RELAX_MIPS16_MACRO (fragp
->fr_subtype
);
19009 ext
= RELAX_MIPS16_EXTENDED (fragp
->fr_subtype
);
19010 val
= resolve_symbol_value (fragp
->fr_symbol
) + fragp
->fr_offset
;
19012 symsec
= S_GET_SEGMENT (fragp
->fr_symbol
);
19013 need_reloc
= (S_FORCE_RELOC (fragp
->fr_symbol
, true)
19014 || (operand
->root
.type
== OP_PCREL
&& !mac
19016 : !bfd_is_abs_section (symsec
)));
19018 if (operand
->root
.type
== OP_PCREL
&& !mac
)
19020 const struct mips_pcrel_operand
*pcrel_op
;
19022 pcrel_op
= (const struct mips_pcrel_operand
*) operand
;
19024 if (pcrel_op
->include_isa_bit
&& !need_reloc
)
19026 if (!mips_ignore_branch_isa
19027 && !ELF_ST_IS_MIPS16 (S_GET_OTHER (fragp
->fr_symbol
)))
19028 as_bad_where (fragp
->fr_file
, fragp
->fr_line
,
19029 _("branch to a symbol in another ISA mode"));
19030 else if ((fragp
->fr_offset
& 0x1) != 0)
19031 as_bad_where (fragp
->fr_file
, fragp
->fr_line
,
19032 _("branch to misaligned address (0x%lx)"),
19033 (long) (resolve_symbol_value (fragp
->fr_symbol
)
19034 + (fragp
->fr_offset
& ~1)));
19037 val
= mips16_pcrel_val (fragp
, pcrel_op
, val
, 0);
19039 /* Make sure the section winds up with the alignment we have
19041 if (operand
->shift
> 0)
19042 record_alignment (asec
, operand
->shift
);
19045 if (RELAX_MIPS16_JAL_DSLOT (fragp
->fr_subtype
)
19046 || RELAX_MIPS16_DSLOT (fragp
->fr_subtype
))
19049 as_warn_where (fragp
->fr_file
, fragp
->fr_line
,
19050 _("macro instruction expanded into multiple "
19051 "instructions in a branch delay slot"));
19053 as_warn_where (fragp
->fr_file
, fragp
->fr_line
,
19054 _("extended instruction in a branch delay slot"));
19056 else if (RELAX_MIPS16_NOMACRO (fragp
->fr_subtype
) && mac
)
19057 as_warn_where (fragp
->fr_file
, fragp
->fr_line
,
19058 _("macro instruction expanded into multiple "
19061 buf
= fragp
->fr_literal
+ fragp
->fr_fix
;
19063 insn
= read_compressed_insn (buf
, 2);
19065 insn
|= MIPS16_EXTEND
;
19067 if (RELAX_MIPS16_USER_EXT (fragp
->fr_subtype
))
19069 else if (RELAX_MIPS16_USER_SMALL (fragp
->fr_subtype
))
19081 gas_assert (type
== 'A' || type
== 'B' || type
== 'E');
19082 gas_assert (RELAX_MIPS16_SYM32 (fragp
->fr_subtype
));
19084 e2
= RELAX_MIPS16_E2 (fragp
->fr_subtype
);
19090 gas_assert (!RELAX_MIPS16_PIC (fragp
->fr_subtype
));
19092 fixp
= fix_new (fragp
, buf
- fragp
->fr_literal
, 4,
19093 fragp
->fr_symbol
, fragp
->fr_offset
,
19094 false, BFD_RELOC_MIPS16_HI16_S
);
19095 fixp
->fx_file
= fragp
->fr_file
;
19096 fixp
->fx_line
= fragp
->fr_line
;
19098 fixp
= fix_new (fragp
, buf
- fragp
->fr_literal
+ (e2
? 4 : 8), 4,
19099 fragp
->fr_symbol
, fragp
->fr_offset
,
19100 false, BFD_RELOC_MIPS16_LO16
);
19101 fixp
->fx_file
= fragp
->fr_file
;
19102 fixp
->fx_line
= fragp
->fr_line
;
19107 switch (insn
& 0xf800)
19109 case 0x0800: /* ADDIU */
19110 reg
= (insn
>> 8) & 0x7;
19111 op
= 0xf0004800 | (reg
<< 8);
19113 case 0xb000: /* LW */
19114 reg
= (insn
>> 8) & 0x7;
19115 op
= 0xf0009800 | (reg
<< 8) | (reg
<< 5);
19117 case 0xf800: /* I64 */
19118 reg
= (insn
>> 5) & 0x7;
19119 switch (insn
& 0x0700)
19121 case 0x0400: /* LD */
19122 op
= 0xf0003800 | (reg
<< 8) | (reg
<< 5);
19124 case 0x0600: /* DADDIU */
19125 op
= 0xf000fd00 | (reg
<< 5);
19135 new = (e2
? 0xf0006820 : 0xf0006800) | (reg
<< 8); /* LUI/LI */
19136 new |= mips16_immed_extend ((val
+ 0x8000) >> 16, 16);
19137 buf
= write_compressed_insn (buf
, new, 4);
19140 new = 0xf4003000 | (reg
<< 8) | (reg
<< 5); /* SLL */
19141 buf
= write_compressed_insn (buf
, new, 4);
19143 op
|= mips16_immed_extend (val
, 16);
19144 buf
= write_compressed_insn (buf
, op
, 4);
19146 fragp
->fr_fix
+= e2
? 8 : 12;
19150 unsigned int length
= ext
? 4 : 2;
19154 bfd_reloc_code_real_type reloc
= BFD_RELOC_NONE
;
19161 reloc
= BFD_RELOC_MIPS16_16_PCREL_S1
;
19166 if (mac
|| reloc
== BFD_RELOC_NONE
)
19167 as_bad_where (fragp
->fr_file
, fragp
->fr_line
,
19168 _("unsupported relocation"));
19171 fixp
= fix_new (fragp
, buf
- fragp
->fr_literal
, 4,
19172 fragp
->fr_symbol
, fragp
->fr_offset
,
19174 fixp
->fx_file
= fragp
->fr_file
;
19175 fixp
->fx_line
= fragp
->fr_line
;
19178 as_bad_where (fragp
->fr_file
, fragp
->fr_line
,
19179 _("invalid unextended operand value"));
19182 mips16_immed (fragp
->fr_file
, fragp
->fr_line
, type
,
19183 BFD_RELOC_UNUSED
, val
, user_length
, &insn
);
19185 gas_assert (mips16_opcode_length (insn
) == length
);
19186 write_compressed_insn (buf
, insn
, length
);
19187 fragp
->fr_fix
+= length
;
19192 relax_substateT subtype
= fragp
->fr_subtype
;
19193 bool second_longer
= (subtype
& RELAX_SECOND_LONGER
) != 0;
19194 bool use_second
= (subtype
& RELAX_USE_SECOND
) != 0;
19195 unsigned int first
, second
;
19198 first
= RELAX_FIRST (subtype
);
19199 second
= RELAX_SECOND (subtype
);
19200 fixp
= (fixS
*) fragp
->fr_opcode
;
19202 /* If the delay slot chosen does not match the size of the instruction,
19203 then emit a warning. */
19204 if ((!use_second
&& (subtype
& RELAX_DELAY_SLOT_SIZE_FIRST
) != 0)
19205 || (use_second
&& (subtype
& RELAX_DELAY_SLOT_SIZE_SECOND
) != 0))
19210 s
= subtype
& (RELAX_DELAY_SLOT_16BIT
19211 | RELAX_DELAY_SLOT_SIZE_FIRST
19212 | RELAX_DELAY_SLOT_SIZE_SECOND
);
19213 msg
= macro_warning (s
);
19215 as_warn_where (fragp
->fr_file
, fragp
->fr_line
, "%s", msg
);
19219 /* Possibly emit a warning if we've chosen the longer option. */
19220 if (use_second
== second_longer
)
19226 & (RELAX_SECOND_LONGER
| RELAX_NOMACRO
| RELAX_DELAY_SLOT
));
19227 msg
= macro_warning (s
);
19229 as_warn_where (fragp
->fr_file
, fragp
->fr_line
, "%s", msg
);
19233 /* Go through all the fixups for the first sequence. Disable them
19234 (by marking them as done) if we're going to use the second
19235 sequence instead. */
19237 && fixp
->fx_frag
== fragp
19238 && fixp
->fx_where
+ second
< fragp
->fr_fix
)
19240 if (subtype
& RELAX_USE_SECOND
)
19242 fixp
= fixp
->fx_next
;
19245 /* Go through the fixups for the second sequence. Disable them if
19246 we're going to use the first sequence, otherwise adjust their
19247 addresses to account for the relaxation. */
19248 while (fixp
&& fixp
->fx_frag
== fragp
)
19250 if (subtype
& RELAX_USE_SECOND
)
19251 fixp
->fx_where
-= first
;
19254 fixp
= fixp
->fx_next
;
19257 /* Now modify the frag contents. */
19258 if (subtype
& RELAX_USE_SECOND
)
19262 start
= fragp
->fr_literal
+ fragp
->fr_fix
- first
- second
;
19263 memmove (start
, start
+ first
, second
);
19264 fragp
->fr_fix
-= first
;
19267 fragp
->fr_fix
-= second
;
19271 /* This function is called after the relocs have been generated.
19272 We've been storing mips16 text labels as odd. Here we convert them
19273 back to even for the convenience of the debugger. */
19276 mips_frob_file_after_relocs (void)
19279 unsigned int count
, i
;
19281 syms
= bfd_get_outsymbols (stdoutput
);
19282 count
= bfd_get_symcount (stdoutput
);
19283 for (i
= 0; i
< count
; i
++, syms
++)
19284 if (ELF_ST_IS_COMPRESSED (elf_symbol (*syms
)->internal_elf_sym
.st_other
)
19285 && ((*syms
)->value
& 1) != 0)
19287 (*syms
)->value
&= ~1;
19288 /* If the symbol has an odd size, it was probably computed
19289 incorrectly, so adjust that as well. */
19290 if ((elf_symbol (*syms
)->internal_elf_sym
.st_size
& 1) != 0)
19291 ++elf_symbol (*syms
)->internal_elf_sym
.st_size
;
19295 /* This function is called whenever a label is defined, including fake
19296 labels instantiated off the dot special symbol. It is used when
19297 handling branch delays; if a branch has a label, we assume we cannot
19298 move it. This also bumps the value of the symbol by 1 in compressed
19302 mips_record_label (symbolS
*sym
)
19304 segment_info_type
*si
= seg_info (now_seg
);
19305 struct insn_label_list
*l
;
19307 if (free_insn_labels
== NULL
)
19308 l
= XNEW (struct insn_label_list
);
19311 l
= free_insn_labels
;
19312 free_insn_labels
= l
->next
;
19316 l
->next
= si
->label_list
;
19317 si
->label_list
= l
;
19320 /* This function is called as tc_frob_label() whenever a label is defined
19321 and adds a DWARF-2 record we only want for true labels. */
19324 mips_define_label (symbolS
*sym
)
19326 mips_record_label (sym
);
19327 dwarf2_emit_label (sym
);
19330 /* This function is called by tc_new_dot_label whenever a new dot symbol
19334 mips_add_dot_label (symbolS
*sym
)
19336 mips_record_label (sym
);
19337 if (mips_assembling_insn
&& HAVE_CODE_COMPRESSION
)
19338 mips_compressed_mark_label (sym
);
19341 /* Converting ASE flags from internal to .MIPS.abiflags values. */
19342 static unsigned int
19343 mips_convert_ase_flags (int ase
)
19345 unsigned int ext_ases
= 0;
19348 ext_ases
|= AFL_ASE_DSP
;
19349 if (ase
& ASE_DSPR2
)
19350 ext_ases
|= AFL_ASE_DSPR2
;
19351 if (ase
& ASE_DSPR3
)
19352 ext_ases
|= AFL_ASE_DSPR3
;
19354 ext_ases
|= AFL_ASE_EVA
;
19356 ext_ases
|= AFL_ASE_MCU
;
19357 if (ase
& ASE_MDMX
)
19358 ext_ases
|= AFL_ASE_MDMX
;
19359 if (ase
& ASE_MIPS3D
)
19360 ext_ases
|= AFL_ASE_MIPS3D
;
19362 ext_ases
|= AFL_ASE_MT
;
19363 if (ase
& ASE_SMARTMIPS
)
19364 ext_ases
|= AFL_ASE_SMARTMIPS
;
19365 if (ase
& ASE_VIRT
)
19366 ext_ases
|= AFL_ASE_VIRT
;
19368 ext_ases
|= AFL_ASE_MSA
;
19370 ext_ases
|= AFL_ASE_XPA
;
19371 if (ase
& ASE_MIPS16E2
)
19372 ext_ases
|= file_ase_mips16
? AFL_ASE_MIPS16E2
: 0;
19374 ext_ases
|= AFL_ASE_CRC
;
19375 if (ase
& ASE_GINV
)
19376 ext_ases
|= AFL_ASE_GINV
;
19377 if (ase
& ASE_LOONGSON_MMI
)
19378 ext_ases
|= AFL_ASE_LOONGSON_MMI
;
19379 if (ase
& ASE_LOONGSON_CAM
)
19380 ext_ases
|= AFL_ASE_LOONGSON_CAM
;
19381 if (ase
& ASE_LOONGSON_EXT
)
19382 ext_ases
|= AFL_ASE_LOONGSON_EXT
;
19383 if (ase
& ASE_LOONGSON_EXT2
)
19384 ext_ases
|= AFL_ASE_LOONGSON_EXT2
;
19388 /* Some special processing for a MIPS ELF file. */
19391 mips_elf_final_processing (void)
19394 Elf_Internal_ABIFlags_v0 flags
;
19398 switch (file_mips_opts
.isa
)
19401 flags
.isa_level
= 1;
19404 flags
.isa_level
= 2;
19407 flags
.isa_level
= 3;
19410 flags
.isa_level
= 4;
19413 flags
.isa_level
= 5;
19416 flags
.isa_level
= 32;
19420 flags
.isa_level
= 32;
19424 flags
.isa_level
= 32;
19428 flags
.isa_level
= 32;
19432 flags
.isa_level
= 32;
19436 flags
.isa_level
= 64;
19440 flags
.isa_level
= 64;
19444 flags
.isa_level
= 64;
19448 flags
.isa_level
= 64;
19452 flags
.isa_level
= 64;
19457 flags
.gpr_size
= file_mips_opts
.gp
== 32 ? AFL_REG_32
: AFL_REG_64
;
19458 flags
.cpr1_size
= file_mips_opts
.soft_float
? AFL_REG_NONE
19459 : (file_mips_opts
.ase
& ASE_MSA
) ? AFL_REG_128
19460 : (file_mips_opts
.fp
== 64) ? AFL_REG_64
19462 flags
.cpr2_size
= AFL_REG_NONE
;
19463 flags
.fp_abi
= bfd_elf_get_obj_attr_int (stdoutput
, OBJ_ATTR_GNU
,
19464 Tag_GNU_MIPS_ABI_FP
);
19465 flags
.isa_ext
= bfd_mips_isa_ext (stdoutput
);
19466 flags
.ases
= mips_convert_ase_flags (file_mips_opts
.ase
);
19467 if (file_ase_mips16
)
19468 flags
.ases
|= AFL_ASE_MIPS16
;
19469 if (file_ase_micromips
)
19470 flags
.ases
|= AFL_ASE_MICROMIPS
;
19472 if ((ISA_HAS_ODD_SINGLE_FPR (file_mips_opts
.isa
, file_mips_opts
.arch
)
19473 || file_mips_opts
.fp
== 64)
19474 && file_mips_opts
.oddspreg
)
19475 flags
.flags1
|= AFL_FLAGS1_ODDSPREG
;
19478 bfd_mips_elf_swap_abiflags_v0_out (stdoutput
, &flags
,
19479 ((Elf_External_ABIFlags_v0
*)
19482 /* Write out the register information. */
19483 if (mips_abi
!= N64_ABI
)
19487 s
.ri_gprmask
= mips_gprmask
;
19488 s
.ri_cprmask
[0] = mips_cprmask
[0];
19489 s
.ri_cprmask
[1] = mips_cprmask
[1];
19490 s
.ri_cprmask
[2] = mips_cprmask
[2];
19491 s
.ri_cprmask
[3] = mips_cprmask
[3];
19492 /* The gp_value field is set by the MIPS ELF backend. */
19494 bfd_mips_elf32_swap_reginfo_out (stdoutput
, &s
,
19495 ((Elf32_External_RegInfo
*)
19496 mips_regmask_frag
));
19500 Elf64_Internal_RegInfo s
;
19502 s
.ri_gprmask
= mips_gprmask
;
19504 s
.ri_cprmask
[0] = mips_cprmask
[0];
19505 s
.ri_cprmask
[1] = mips_cprmask
[1];
19506 s
.ri_cprmask
[2] = mips_cprmask
[2];
19507 s
.ri_cprmask
[3] = mips_cprmask
[3];
19508 /* The gp_value field is set by the MIPS ELF backend. */
19510 bfd_mips_elf64_swap_reginfo_out (stdoutput
, &s
,
19511 ((Elf64_External_RegInfo
*)
19512 mips_regmask_frag
));
19515 /* Set the MIPS ELF flag bits. FIXME: There should probably be some
19516 sort of BFD interface for this. */
19517 if (mips_any_noreorder
)
19518 elf_elfheader (stdoutput
)->e_flags
|= EF_MIPS_NOREORDER
;
19519 if (mips_pic
!= NO_PIC
)
19521 elf_elfheader (stdoutput
)->e_flags
|= EF_MIPS_PIC
;
19522 elf_elfheader (stdoutput
)->e_flags
|= EF_MIPS_CPIC
;
19525 elf_elfheader (stdoutput
)->e_flags
|= EF_MIPS_CPIC
;
19527 /* Set MIPS ELF flags for ASEs. Note that not all ASEs have flags
19528 defined at present; this might need to change in future. */
19529 if (file_ase_mips16
)
19530 elf_elfheader (stdoutput
)->e_flags
|= EF_MIPS_ARCH_ASE_M16
;
19531 if (file_ase_micromips
)
19532 elf_elfheader (stdoutput
)->e_flags
|= EF_MIPS_ARCH_ASE_MICROMIPS
;
19533 if (file_mips_opts
.ase
& ASE_MDMX
)
19534 elf_elfheader (stdoutput
)->e_flags
|= EF_MIPS_ARCH_ASE_MDMX
;
19536 /* Set the MIPS ELF ABI flags. */
19537 if (mips_abi
== O32_ABI
&& USE_E_MIPS_ABI_O32
)
19538 elf_elfheader (stdoutput
)->e_flags
|= E_MIPS_ABI_O32
;
19539 else if (mips_abi
== O64_ABI
)
19540 elf_elfheader (stdoutput
)->e_flags
|= E_MIPS_ABI_O64
;
19541 else if (mips_abi
== EABI_ABI
)
19543 if (file_mips_opts
.gp
== 64)
19544 elf_elfheader (stdoutput
)->e_flags
|= E_MIPS_ABI_EABI64
;
19546 elf_elfheader (stdoutput
)->e_flags
|= E_MIPS_ABI_EABI32
;
19549 /* Nothing to do for N32_ABI or N64_ABI. */
19551 if (mips_32bitmode
)
19552 elf_elfheader (stdoutput
)->e_flags
|= EF_MIPS_32BITMODE
;
19554 if (mips_nan2008
== 1)
19555 elf_elfheader (stdoutput
)->e_flags
|= EF_MIPS_NAN2008
;
19557 /* 32 bit code with 64 bit FP registers. */
19558 fpabi
= bfd_elf_get_obj_attr_int (stdoutput
, OBJ_ATTR_GNU
,
19559 Tag_GNU_MIPS_ABI_FP
);
19560 if (fpabi
== Val_GNU_MIPS_ABI_FP_OLD_64
)
19561 elf_elfheader (stdoutput
)->e_flags
|= EF_MIPS_FP64
;
19564 typedef struct proc
{
19566 symbolS
*func_end_sym
;
19567 unsigned long reg_mask
;
19568 unsigned long reg_offset
;
19569 unsigned long fpreg_mask
;
19570 unsigned long fpreg_offset
;
19571 unsigned long frame_offset
;
19572 unsigned long frame_reg
;
19573 unsigned long pc_reg
;
19576 static procS cur_proc
;
19577 static procS
*cur_proc_ptr
;
19578 static int numprocs
;
19580 /* Implement NOP_OPCODE. We encode a MIPS16 nop as "1", a microMIPS nop
19581 as "2", and a normal nop as "0". */
19583 #define NOP_OPCODE_MIPS 0
19584 #define NOP_OPCODE_MIPS16 1
19585 #define NOP_OPCODE_MICROMIPS 2
19588 mips_nop_opcode (void)
19590 if (seg_info (now_seg
)->tc_segment_info_data
.micromips
)
19591 return NOP_OPCODE_MICROMIPS
;
19592 else if (seg_info (now_seg
)->tc_segment_info_data
.mips16
)
19593 return NOP_OPCODE_MIPS16
;
19595 return NOP_OPCODE_MIPS
;
19598 /* Fill in an rs_align_code fragment. Unlike elsewhere we want to use
19599 32-bit microMIPS NOPs here (if applicable). */
19602 mips_handle_align (fragS
*fragp
)
19606 int bytes
, size
, excess
;
19609 if (fragp
->fr_type
!= rs_align_code
)
19612 p
= fragp
->fr_literal
+ fragp
->fr_fix
;
19614 switch (nop_opcode
)
19616 case NOP_OPCODE_MICROMIPS
:
19617 opcode
= micromips_nop32_insn
.insn_opcode
;
19620 case NOP_OPCODE_MIPS16
:
19621 opcode
= mips16_nop_insn
.insn_opcode
;
19624 case NOP_OPCODE_MIPS
:
19626 opcode
= nop_insn
.insn_opcode
;
19631 bytes
= fragp
->fr_next
->fr_address
- fragp
->fr_address
- fragp
->fr_fix
;
19632 excess
= bytes
% size
;
19634 /* Handle the leading part if we're not inserting a whole number of
19635 instructions, and make it the end of the fixed part of the frag.
19636 Try to fit in a short microMIPS NOP if applicable and possible,
19637 and use zeroes otherwise. */
19638 gas_assert (excess
< 4);
19639 fragp
->fr_fix
+= excess
;
19644 /* Fall through. */
19646 if (nop_opcode
== NOP_OPCODE_MICROMIPS
&& !mips_opts
.insn32
)
19648 p
= write_compressed_insn (p
, micromips_nop16_insn
.insn_opcode
, 2);
19652 /* Fall through. */
19655 /* Fall through. */
19660 md_number_to_chars (p
, opcode
, size
);
19661 fragp
->fr_var
= size
;
19670 if (*input_line_pointer
== '-')
19672 ++input_line_pointer
;
19675 if (!ISDIGIT (*input_line_pointer
))
19676 as_bad (_("expected simple number"));
19677 if (input_line_pointer
[0] == '0')
19679 if (input_line_pointer
[1] == 'x')
19681 input_line_pointer
+= 2;
19682 while (ISXDIGIT (*input_line_pointer
))
19685 val
|= hex_value (*input_line_pointer
++);
19687 return negative
? -val
: val
;
19691 ++input_line_pointer
;
19692 while (ISDIGIT (*input_line_pointer
))
19695 val
|= *input_line_pointer
++ - '0';
19697 return negative
? -val
: val
;
19700 if (!ISDIGIT (*input_line_pointer
))
19702 printf (_(" *input_line_pointer == '%c' 0x%02x\n"),
19703 *input_line_pointer
, *input_line_pointer
);
19704 as_warn (_("invalid number"));
19707 while (ISDIGIT (*input_line_pointer
))
19710 val
+= *input_line_pointer
++ - '0';
19712 return negative
? -val
: val
;
19715 /* The .file directive; just like the usual .file directive, but there
19716 is an initial number which is the ECOFF file index. In the non-ECOFF
19717 case .file implies DWARF-2. */
19720 s_mips_file (int x ATTRIBUTE_UNUSED
)
19722 static int first_file_directive
= 0;
19724 if (ECOFF_DEBUGGING
)
19733 filename
= dwarf2_directive_filename ();
19735 /* Versions of GCC up to 3.1 start files with a ".file"
19736 directive even for stabs output. Make sure that this
19737 ".file" is handled. Note that you need a version of GCC
19738 after 3.1 in order to support DWARF-2 on MIPS. */
19739 if (filename
!= NULL
&& ! first_file_directive
)
19741 new_logical_line (filename
, -1);
19742 s_file_string (filename
);
19744 first_file_directive
= 1;
19748 /* The .loc directive, implying DWARF-2. */
19751 s_mips_loc (int x ATTRIBUTE_UNUSED
)
19753 if (!ECOFF_DEBUGGING
)
19754 dwarf2_directive_loc (0);
19757 /* The .end directive. */
19760 s_mips_end (int x ATTRIBUTE_UNUSED
)
19764 /* Following functions need their own .frame and .cprestore directives. */
19765 mips_frame_reg_valid
= 0;
19766 mips_cprestore_valid
= 0;
19768 if (!is_end_of_line
[(unsigned char) *input_line_pointer
])
19771 demand_empty_rest_of_line ();
19776 if ((bfd_section_flags (now_seg
) & SEC_CODE
) == 0)
19777 as_warn (_(".end not in text section"));
19781 as_warn (_(".end directive without a preceding .ent directive"));
19782 demand_empty_rest_of_line ();
19788 gas_assert (S_GET_NAME (p
));
19789 if (strcmp (S_GET_NAME (p
), S_GET_NAME (cur_proc_ptr
->func_sym
)))
19790 as_warn (_(".end symbol does not match .ent symbol"));
19792 if (debug_type
== DEBUG_STABS
)
19793 stabs_generate_asm_endfunc (S_GET_NAME (p
),
19797 as_warn (_(".end directive missing or unknown symbol"));
19799 /* Create an expression to calculate the size of the function. */
19800 if (p
&& cur_proc_ptr
)
19802 OBJ_SYMFIELD_TYPE
*obj
= symbol_get_obj (p
);
19803 expressionS
*exp
= XNEW (expressionS
);
19806 exp
->X_op
= O_subtract
;
19807 exp
->X_add_symbol
= symbol_temp_new_now ();
19808 exp
->X_op_symbol
= p
;
19809 exp
->X_add_number
= 0;
19811 cur_proc_ptr
->func_end_sym
= exp
->X_add_symbol
;
19814 #ifdef md_flush_pending_output
19815 md_flush_pending_output ();
19818 /* Generate a .pdr section. */
19819 if (!ECOFF_DEBUGGING
&& mips_flag_pdr
)
19821 segT saved_seg
= now_seg
;
19822 subsegT saved_subseg
= now_subseg
;
19826 gas_assert (pdr_seg
);
19827 subseg_set (pdr_seg
, 0);
19829 /* Write the symbol. */
19830 exp
.X_op
= O_symbol
;
19831 exp
.X_add_symbol
= p
;
19832 exp
.X_add_number
= 0;
19833 emit_expr (&exp
, 4);
19835 fragp
= frag_more (7 * 4);
19837 md_number_to_chars (fragp
, cur_proc_ptr
->reg_mask
, 4);
19838 md_number_to_chars (fragp
+ 4, cur_proc_ptr
->reg_offset
, 4);
19839 md_number_to_chars (fragp
+ 8, cur_proc_ptr
->fpreg_mask
, 4);
19840 md_number_to_chars (fragp
+ 12, cur_proc_ptr
->fpreg_offset
, 4);
19841 md_number_to_chars (fragp
+ 16, cur_proc_ptr
->frame_offset
, 4);
19842 md_number_to_chars (fragp
+ 20, cur_proc_ptr
->frame_reg
, 4);
19843 md_number_to_chars (fragp
+ 24, cur_proc_ptr
->pc_reg
, 4);
19845 subseg_set (saved_seg
, saved_subseg
);
19848 cur_proc_ptr
= NULL
;
19851 /* The .aent and .ent directives. */
19854 s_mips_ent (int aent
)
19858 symbolP
= get_symbol ();
19859 if (*input_line_pointer
== ',')
19860 ++input_line_pointer
;
19861 SKIP_WHITESPACE ();
19862 if (ISDIGIT (*input_line_pointer
)
19863 || *input_line_pointer
== '-')
19866 if ((bfd_section_flags (now_seg
) & SEC_CODE
) == 0)
19867 as_warn (_(".ent or .aent not in text section"));
19869 if (!aent
&& cur_proc_ptr
)
19870 as_warn (_("missing .end"));
19874 /* This function needs its own .frame and .cprestore directives. */
19875 mips_frame_reg_valid
= 0;
19876 mips_cprestore_valid
= 0;
19878 cur_proc_ptr
= &cur_proc
;
19879 memset (cur_proc_ptr
, '\0', sizeof (procS
));
19881 cur_proc_ptr
->func_sym
= symbolP
;
19885 if (debug_type
== DEBUG_STABS
)
19886 stabs_generate_asm_func (S_GET_NAME (symbolP
),
19887 S_GET_NAME (symbolP
));
19890 symbol_get_bfdsym (symbolP
)->flags
|= BSF_FUNCTION
;
19892 demand_empty_rest_of_line ();
19895 /* The .frame directive. If the mdebug section is present (IRIX 5 native)
19896 then ecoff.c (ecoff_directive_frame) is used. For embedded targets,
19897 s_mips_frame is used so that we can set the PDR information correctly.
19898 We can't use the ecoff routines because they make reference to the ecoff
19899 symbol table (in the mdebug section). */
19902 s_mips_frame (int ignore ATTRIBUTE_UNUSED
)
19904 if (ECOFF_DEBUGGING
)
19910 if (cur_proc_ptr
== (procS
*) NULL
)
19912 as_warn (_(".frame outside of .ent"));
19913 demand_empty_rest_of_line ();
19917 cur_proc_ptr
->frame_reg
= tc_get_register (1);
19919 SKIP_WHITESPACE ();
19920 if (*input_line_pointer
++ != ','
19921 || get_absolute_expression_and_terminator (&val
) != ',')
19923 as_warn (_("bad .frame directive"));
19924 --input_line_pointer
;
19925 demand_empty_rest_of_line ();
19929 cur_proc_ptr
->frame_offset
= val
;
19930 cur_proc_ptr
->pc_reg
= tc_get_register (0);
19932 demand_empty_rest_of_line ();
19936 /* The .fmask and .mask directives. If the mdebug section is present
19937 (IRIX 5 native) then ecoff.c (ecoff_directive_mask) is used. For
19938 embedded targets, s_mips_mask is used so that we can set the PDR
19939 information correctly. We can't use the ecoff routines because they
19940 make reference to the ecoff symbol table (in the mdebug section). */
19943 s_mips_mask (int reg_type
)
19945 if (ECOFF_DEBUGGING
)
19946 s_ignore (reg_type
);
19951 if (cur_proc_ptr
== (procS
*) NULL
)
19953 as_warn (_(".mask/.fmask outside of .ent"));
19954 demand_empty_rest_of_line ();
19958 if (get_absolute_expression_and_terminator (&mask
) != ',')
19960 as_warn (_("bad .mask/.fmask directive"));
19961 --input_line_pointer
;
19962 demand_empty_rest_of_line ();
19966 off
= get_absolute_expression ();
19968 if (reg_type
== 'F')
19970 cur_proc_ptr
->fpreg_mask
= mask
;
19971 cur_proc_ptr
->fpreg_offset
= off
;
19975 cur_proc_ptr
->reg_mask
= mask
;
19976 cur_proc_ptr
->reg_offset
= off
;
19979 demand_empty_rest_of_line ();
19983 /* A table describing all the processors gas knows about. Names are
19984 matched in the order listed.
19986 To ease comparison, please keep this table in the same order as
19987 gcc's mips_cpu_info_table[]. */
19988 static const struct mips_cpu_info mips_cpu_info_table
[] =
19990 /* Entries for generic ISAs. */
19991 { "mips1", MIPS_CPU_IS_ISA
, 0, ISA_MIPS1
, CPU_R3000
},
19992 { "mips2", MIPS_CPU_IS_ISA
, 0, ISA_MIPS2
, CPU_R6000
},
19993 { "mips3", MIPS_CPU_IS_ISA
, 0, ISA_MIPS3
, CPU_R4000
},
19994 { "mips4", MIPS_CPU_IS_ISA
, 0, ISA_MIPS4
, CPU_R8000
},
19995 { "mips5", MIPS_CPU_IS_ISA
, 0, ISA_MIPS5
, CPU_MIPS5
},
19996 { "mips32", MIPS_CPU_IS_ISA
, 0, ISA_MIPS32
, CPU_MIPS32
},
19997 { "mips32r2", MIPS_CPU_IS_ISA
, 0, ISA_MIPS32R2
, CPU_MIPS32R2
},
19998 { "mips32r3", MIPS_CPU_IS_ISA
, 0, ISA_MIPS32R3
, CPU_MIPS32R3
},
19999 { "mips32r5", MIPS_CPU_IS_ISA
, 0, ISA_MIPS32R5
, CPU_MIPS32R5
},
20000 { "mips32r6", MIPS_CPU_IS_ISA
, 0, ISA_MIPS32R6
, CPU_MIPS32R6
},
20001 { "mips64", MIPS_CPU_IS_ISA
, 0, ISA_MIPS64
, CPU_MIPS64
},
20002 { "mips64r2", MIPS_CPU_IS_ISA
, 0, ISA_MIPS64R2
, CPU_MIPS64R2
},
20003 { "mips64r3", MIPS_CPU_IS_ISA
, 0, ISA_MIPS64R3
, CPU_MIPS64R3
},
20004 { "mips64r5", MIPS_CPU_IS_ISA
, 0, ISA_MIPS64R5
, CPU_MIPS64R5
},
20005 { "mips64r6", MIPS_CPU_IS_ISA
, 0, ISA_MIPS64R6
, CPU_MIPS64R6
},
20008 { "r3000", 0, 0, ISA_MIPS1
, CPU_R3000
},
20009 { "r2000", 0, 0, ISA_MIPS1
, CPU_R3000
},
20010 { "r3900", 0, 0, ISA_MIPS1
, CPU_R3900
},
20013 { "r6000", 0, 0, ISA_MIPS2
, CPU_R6000
},
20014 { "allegrex", 0, 0, ISA_MIPS2
, CPU_ALLEGREX
},
20017 { "r4000", 0, 0, ISA_MIPS3
, CPU_R4000
},
20018 { "r4010", 0, 0, ISA_MIPS2
, CPU_R4010
},
20019 { "vr4100", 0, 0, ISA_MIPS3
, CPU_VR4100
},
20020 { "vr4111", 0, 0, ISA_MIPS3
, CPU_R4111
},
20021 { "vr4120", 0, 0, ISA_MIPS3
, CPU_VR4120
},
20022 { "vr4130", 0, 0, ISA_MIPS3
, CPU_VR4120
},
20023 { "vr4181", 0, 0, ISA_MIPS3
, CPU_R4111
},
20024 { "vr4300", 0, 0, ISA_MIPS3
, CPU_R4300
},
20025 { "r4400", 0, 0, ISA_MIPS3
, CPU_R4400
},
20026 { "r4600", 0, 0, ISA_MIPS3
, CPU_R4600
},
20027 { "orion", 0, 0, ISA_MIPS3
, CPU_R4600
},
20028 { "r4650", 0, 0, ISA_MIPS3
, CPU_R4650
},
20029 { "r5900", 0, 0, ISA_MIPS3
, CPU_R5900
},
20030 /* ST Microelectronics Loongson 2E and 2F cores. */
20031 { "loongson2e", 0, 0, ISA_MIPS3
, CPU_LOONGSON_2E
},
20032 { "loongson2f", 0, ASE_LOONGSON_MMI
, ISA_MIPS3
, CPU_LOONGSON_2F
},
20035 { "r8000", 0, 0, ISA_MIPS4
, CPU_R8000
},
20036 { "r10000", 0, 0, ISA_MIPS4
, CPU_R10000
},
20037 { "r12000", 0, 0, ISA_MIPS4
, CPU_R12000
},
20038 { "r14000", 0, 0, ISA_MIPS4
, CPU_R14000
},
20039 { "r16000", 0, 0, ISA_MIPS4
, CPU_R16000
},
20040 { "vr5000", 0, 0, ISA_MIPS4
, CPU_R5000
},
20041 { "vr5400", 0, 0, ISA_MIPS4
, CPU_VR5400
},
20042 { "vr5500", 0, 0, ISA_MIPS4
, CPU_VR5500
},
20043 { "rm5200", 0, 0, ISA_MIPS4
, CPU_R5000
},
20044 { "rm5230", 0, 0, ISA_MIPS4
, CPU_R5000
},
20045 { "rm5231", 0, 0, ISA_MIPS4
, CPU_R5000
},
20046 { "rm5261", 0, 0, ISA_MIPS4
, CPU_R5000
},
20047 { "rm5721", 0, 0, ISA_MIPS4
, CPU_R5000
},
20048 { "rm7000", 0, 0, ISA_MIPS4
, CPU_RM7000
},
20049 { "rm9000", 0, 0, ISA_MIPS4
, CPU_RM9000
},
20052 { "4kc", 0, 0, ISA_MIPS32
, CPU_MIPS32
},
20053 { "4km", 0, 0, ISA_MIPS32
, CPU_MIPS32
},
20054 { "4kp", 0, 0, ISA_MIPS32
, CPU_MIPS32
},
20055 { "4ksc", 0, ASE_SMARTMIPS
, ISA_MIPS32
, CPU_MIPS32
},
20057 /* MIPS 32 Release 2 */
20058 { "4kec", 0, 0, ISA_MIPS32R2
, CPU_MIPS32R2
},
20059 { "4kem", 0, 0, ISA_MIPS32R2
, CPU_MIPS32R2
},
20060 { "4kep", 0, 0, ISA_MIPS32R2
, CPU_MIPS32R2
},
20061 { "4ksd", 0, ASE_SMARTMIPS
, ISA_MIPS32R2
, CPU_MIPS32R2
},
20062 { "m4k", 0, 0, ISA_MIPS32R2
, CPU_MIPS32R2
},
20063 { "m4kp", 0, 0, ISA_MIPS32R2
, CPU_MIPS32R2
},
20064 { "m14k", 0, ASE_MCU
, ISA_MIPS32R2
, CPU_MIPS32R2
},
20065 { "m14kc", 0, ASE_MCU
, ISA_MIPS32R2
, CPU_MIPS32R2
},
20066 { "m14ke", 0, ASE_DSP
| ASE_DSPR2
| ASE_MCU
,
20067 ISA_MIPS32R2
, CPU_MIPS32R2
},
20068 { "m14kec", 0, ASE_DSP
| ASE_DSPR2
| ASE_MCU
,
20069 ISA_MIPS32R2
, CPU_MIPS32R2
},
20070 { "24kc", 0, 0, ISA_MIPS32R2
, CPU_MIPS32R2
},
20071 { "24kf2_1", 0, 0, ISA_MIPS32R2
, CPU_MIPS32R2
},
20072 { "24kf", 0, 0, ISA_MIPS32R2
, CPU_MIPS32R2
},
20073 { "24kf1_1", 0, 0, ISA_MIPS32R2
, CPU_MIPS32R2
},
20074 /* Deprecated forms of the above. */
20075 { "24kfx", 0, 0, ISA_MIPS32R2
, CPU_MIPS32R2
},
20076 { "24kx", 0, 0, ISA_MIPS32R2
, CPU_MIPS32R2
},
20077 /* 24KE is a 24K with DSP ASE, other ASEs are optional. */
20078 { "24kec", 0, ASE_DSP
, ISA_MIPS32R2
, CPU_MIPS32R2
},
20079 { "24kef2_1", 0, ASE_DSP
, ISA_MIPS32R2
, CPU_MIPS32R2
},
20080 { "24kef", 0, ASE_DSP
, ISA_MIPS32R2
, CPU_MIPS32R2
},
20081 { "24kef1_1", 0, ASE_DSP
, ISA_MIPS32R2
, CPU_MIPS32R2
},
20082 /* Deprecated forms of the above. */
20083 { "24kefx", 0, ASE_DSP
, ISA_MIPS32R2
, CPU_MIPS32R2
},
20084 { "24kex", 0, ASE_DSP
, ISA_MIPS32R2
, CPU_MIPS32R2
},
20085 /* 34K is a 24K with DSP and MT ASE, other ASEs are optional. */
20086 { "34kc", 0, ASE_DSP
| ASE_MT
, ISA_MIPS32R2
, CPU_MIPS32R2
},
20087 { "34kf2_1", 0, ASE_DSP
| ASE_MT
, ISA_MIPS32R2
, CPU_MIPS32R2
},
20088 { "34kf", 0, ASE_DSP
| ASE_MT
, ISA_MIPS32R2
, CPU_MIPS32R2
},
20089 { "34kf1_1", 0, ASE_DSP
| ASE_MT
, ISA_MIPS32R2
, CPU_MIPS32R2
},
20090 /* Deprecated forms of the above. */
20091 { "34kfx", 0, ASE_DSP
| ASE_MT
, ISA_MIPS32R2
, CPU_MIPS32R2
},
20092 { "34kx", 0, ASE_DSP
| ASE_MT
, ISA_MIPS32R2
, CPU_MIPS32R2
},
20093 /* 34Kn is a 34kc without DSP. */
20094 { "34kn", 0, ASE_MT
, ISA_MIPS32R2
, CPU_MIPS32R2
},
20095 /* 74K with DSP and DSPR2 ASE, other ASEs are optional. */
20096 { "74kc", 0, ASE_DSP
| ASE_DSPR2
, ISA_MIPS32R2
, CPU_MIPS32R2
},
20097 { "74kf2_1", 0, ASE_DSP
| ASE_DSPR2
, ISA_MIPS32R2
, CPU_MIPS32R2
},
20098 { "74kf", 0, ASE_DSP
| ASE_DSPR2
, ISA_MIPS32R2
, CPU_MIPS32R2
},
20099 { "74kf1_1", 0, ASE_DSP
| ASE_DSPR2
, ISA_MIPS32R2
, CPU_MIPS32R2
},
20100 { "74kf3_2", 0, ASE_DSP
| ASE_DSPR2
, ISA_MIPS32R2
, CPU_MIPS32R2
},
20101 /* Deprecated forms of the above. */
20102 { "74kfx", 0, ASE_DSP
| ASE_DSPR2
, ISA_MIPS32R2
, CPU_MIPS32R2
},
20103 { "74kx", 0, ASE_DSP
| ASE_DSPR2
, ISA_MIPS32R2
, CPU_MIPS32R2
},
20104 /* 1004K cores are multiprocessor versions of the 34K. */
20105 { "1004kc", 0, ASE_DSP
| ASE_MT
, ISA_MIPS32R2
, CPU_MIPS32R2
},
20106 { "1004kf2_1", 0, ASE_DSP
| ASE_MT
, ISA_MIPS32R2
, CPU_MIPS32R2
},
20107 { "1004kf", 0, ASE_DSP
| ASE_MT
, ISA_MIPS32R2
, CPU_MIPS32R2
},
20108 { "1004kf1_1", 0, ASE_DSP
| ASE_MT
, ISA_MIPS32R2
, CPU_MIPS32R2
},
20109 /* interaptiv is the new name for 1004kf. */
20110 { "interaptiv", 0, ASE_DSP
| ASE_MT
, ISA_MIPS32R2
, CPU_MIPS32R2
},
20111 { "interaptiv-mr2", 0,
20112 ASE_DSP
| ASE_EVA
| ASE_MT
| ASE_MIPS16E2
| ASE_MIPS16E2_MT
,
20113 ISA_MIPS32R3
, CPU_INTERAPTIV_MR2
},
20114 /* M5100 family. */
20115 { "m5100", 0, ASE_MCU
, ISA_MIPS32R5
, CPU_MIPS32R5
},
20116 { "m5101", 0, ASE_MCU
, ISA_MIPS32R5
, CPU_MIPS32R5
},
20117 /* P5600 with EVA and Virtualization ASEs, other ASEs are optional. */
20118 { "p5600", 0, ASE_VIRT
| ASE_EVA
| ASE_XPA
, ISA_MIPS32R5
, CPU_MIPS32R5
},
20121 { "5kc", 0, 0, ISA_MIPS64
, CPU_MIPS64
},
20122 { "5kf", 0, 0, ISA_MIPS64
, CPU_MIPS64
},
20123 { "20kc", 0, ASE_MIPS3D
, ISA_MIPS64
, CPU_MIPS64
},
20124 { "25kf", 0, ASE_MIPS3D
, ISA_MIPS64
, CPU_MIPS64
},
20126 /* Broadcom SB-1 CPU core. */
20127 { "sb1", 0, ASE_MIPS3D
| ASE_MDMX
, ISA_MIPS64
, CPU_SB1
},
20128 /* Broadcom SB-1A CPU core. */
20129 { "sb1a", 0, ASE_MIPS3D
| ASE_MDMX
, ISA_MIPS64
, CPU_SB1
},
20131 /* MIPS 64 Release 2. */
20132 /* Loongson CPU core. */
20133 /* -march=loongson3a is an alias of -march=gs464 for compatibility. */
20134 { "loongson3a", 0, ASE_LOONGSON_MMI
| ASE_LOONGSON_CAM
| ASE_LOONGSON_EXT
,
20135 ISA_MIPS64R2
, CPU_GS464
},
20136 { "gs464", 0, ASE_LOONGSON_MMI
| ASE_LOONGSON_CAM
| ASE_LOONGSON_EXT
,
20137 ISA_MIPS64R2
, CPU_GS464
},
20138 { "gs464e", 0, ASE_LOONGSON_MMI
| ASE_LOONGSON_CAM
| ASE_LOONGSON_EXT
20139 | ASE_LOONGSON_EXT2
, ISA_MIPS64R2
, CPU_GS464E
},
20140 { "gs264e", 0, ASE_LOONGSON_MMI
| ASE_LOONGSON_CAM
| ASE_LOONGSON_EXT
20141 | ASE_LOONGSON_EXT2
| ASE_MSA
| ASE_MSA64
, ISA_MIPS64R2
, CPU_GS264E
},
20143 /* Cavium Networks Octeon CPU core. */
20144 { "octeon", 0, 0, ISA_MIPS64R2
, CPU_OCTEON
},
20145 { "octeon+", 0, 0, ISA_MIPS64R2
, CPU_OCTEONP
},
20146 { "octeon2", 0, 0, ISA_MIPS64R2
, CPU_OCTEON2
},
20147 { "octeon3", 0, ASE_VIRT
| ASE_VIRT64
, ISA_MIPS64R5
, CPU_OCTEON3
},
20150 { "xlr", 0, 0, ISA_MIPS64
, CPU_XLR
},
20153 XLP is mostly like XLR, with the prominent exception that it is
20154 MIPS64R2 rather than MIPS64. */
20155 { "xlp", 0, 0, ISA_MIPS64R2
, CPU_XLR
},
20157 /* MIPS 64 Release 6. */
20158 { "i6400", 0, ASE_VIRT
| ASE_MSA
, ISA_MIPS64R6
, CPU_MIPS64R6
},
20159 { "i6500", 0, ASE_VIRT
| ASE_MSA
| ASE_CRC
| ASE_GINV
,
20160 ISA_MIPS64R6
, CPU_MIPS64R6
},
20161 { "p6600", 0, ASE_VIRT
| ASE_MSA
, ISA_MIPS64R6
, CPU_MIPS64R6
},
20164 { NULL
, 0, 0, 0, 0 }
20168 /* Return true if GIVEN is the same as CANONICAL, or if it is CANONICAL
20169 with a final "000" replaced by "k". Ignore case.
20171 Note: this function is shared between GCC and GAS. */
20174 mips_strict_matching_cpu_name_p (const char *canonical
, const char *given
)
20176 while (*given
!= 0 && TOLOWER (*given
) == TOLOWER (*canonical
))
20177 given
++, canonical
++;
20179 return ((*given
== 0 && *canonical
== 0)
20180 || (strcmp (canonical
, "000") == 0 && strcasecmp (given
, "k") == 0));
20184 /* Return true if GIVEN matches CANONICAL, where GIVEN is a user-supplied
20185 CPU name. We've traditionally allowed a lot of variation here.
20187 Note: this function is shared between GCC and GAS. */
20190 mips_matching_cpu_name_p (const char *canonical
, const char *given
)
20192 /* First see if the name matches exactly, or with a final "000"
20193 turned into "k". */
20194 if (mips_strict_matching_cpu_name_p (canonical
, given
))
20197 /* If not, try comparing based on numerical designation alone.
20198 See if GIVEN is an unadorned number, or 'r' followed by a number. */
20199 if (TOLOWER (*given
) == 'r')
20201 if (!ISDIGIT (*given
))
20204 /* Skip over some well-known prefixes in the canonical name,
20205 hoping to find a number there too. */
20206 if (TOLOWER (canonical
[0]) == 'v' && TOLOWER (canonical
[1]) == 'r')
20208 else if (TOLOWER (canonical
[0]) == 'r' && TOLOWER (canonical
[1]) == 'm')
20210 else if (TOLOWER (canonical
[0]) == 'r')
20213 return mips_strict_matching_cpu_name_p (canonical
, given
);
20217 /* Parse an option that takes the name of a processor as its argument.
20218 OPTION is the name of the option and CPU_STRING is the argument.
20219 Return the corresponding processor enumeration if the CPU_STRING is
20220 recognized, otherwise report an error and return null.
20222 A similar function exists in GCC. */
20224 static const struct mips_cpu_info
*
20225 mips_parse_cpu (const char *option
, const char *cpu_string
)
20227 const struct mips_cpu_info
*p
;
20229 /* 'from-abi' selects the most compatible architecture for the given
20230 ABI: MIPS I for 32-bit ABIs and MIPS III for 64-bit ABIs. For the
20231 EABIs, we have to decide whether we're using the 32-bit or 64-bit
20232 version. Look first at the -mgp options, if given, otherwise base
20233 the choice on MIPS_DEFAULT_64BIT.
20235 Treat NO_ABI like the EABIs. One reason to do this is that the
20236 plain 'mips' and 'mips64' configs have 'from-abi' as their default
20237 architecture. This code picks MIPS I for 'mips' and MIPS III for
20238 'mips64', just as we did in the days before 'from-abi'. */
20239 if (strcasecmp (cpu_string
, "from-abi") == 0)
20241 if (ABI_NEEDS_32BIT_REGS (mips_abi
))
20242 return mips_cpu_info_from_isa (ISA_MIPS1
);
20244 if (ABI_NEEDS_64BIT_REGS (mips_abi
))
20245 return mips_cpu_info_from_isa (ISA_MIPS3
);
20247 if (file_mips_opts
.gp
>= 0)
20248 return mips_cpu_info_from_isa (file_mips_opts
.gp
== 32
20249 ? ISA_MIPS1
: ISA_MIPS3
);
20251 return mips_cpu_info_from_isa (MIPS_DEFAULT_64BIT
20256 /* 'default' has traditionally been a no-op. Probably not very useful. */
20257 if (strcasecmp (cpu_string
, "default") == 0)
20260 for (p
= mips_cpu_info_table
; p
->name
!= 0; p
++)
20261 if (mips_matching_cpu_name_p (p
->name
, cpu_string
))
20264 as_bad (_("bad value (%s) for %s"), cpu_string
, option
);
20268 /* Return the canonical processor information for ISA (a member of the
20269 ISA_MIPS* enumeration). */
20271 static const struct mips_cpu_info
*
20272 mips_cpu_info_from_isa (int isa
)
20276 for (i
= 0; mips_cpu_info_table
[i
].name
!= NULL
; i
++)
20277 if ((mips_cpu_info_table
[i
].flags
& MIPS_CPU_IS_ISA
)
20278 && isa
== mips_cpu_info_table
[i
].isa
)
20279 return (&mips_cpu_info_table
[i
]);
20284 static const struct mips_cpu_info
*
20285 mips_cpu_info_from_arch (int arch
)
20289 for (i
= 0; mips_cpu_info_table
[i
].name
!= NULL
; i
++)
20290 if (arch
== mips_cpu_info_table
[i
].cpu
)
20291 return (&mips_cpu_info_table
[i
]);
20297 show (FILE *stream
, const char *string
, int *col_p
, int *first_p
)
20301 fprintf (stream
, "%24s", "");
20306 fprintf (stream
, ", ");
20310 if (*col_p
+ strlen (string
) > 72)
20312 fprintf (stream
, "\n%24s", "");
20316 fprintf (stream
, "%s", string
);
20317 *col_p
+= strlen (string
);
20323 md_show_usage (FILE *stream
)
20328 fprintf (stream
, _("\
20330 -EB generate big endian output\n\
20331 -EL generate little endian output\n\
20332 -g, -g2 do not remove unneeded NOPs or swap branches\n\
20333 -G NUM allow referencing objects up to NUM bytes\n\
20334 implicitly with the gp register [default 8]\n"));
20335 fprintf (stream
, _("\
20336 -mips1 generate MIPS ISA I instructions\n\
20337 -mips2 generate MIPS ISA II instructions\n\
20338 -mips3 generate MIPS ISA III instructions\n\
20339 -mips4 generate MIPS ISA IV instructions\n\
20340 -mips5 generate MIPS ISA V instructions\n\
20341 -mips32 generate MIPS32 ISA instructions\n\
20342 -mips32r2 generate MIPS32 release 2 ISA instructions\n\
20343 -mips32r3 generate MIPS32 release 3 ISA instructions\n\
20344 -mips32r5 generate MIPS32 release 5 ISA instructions\n\
20345 -mips32r6 generate MIPS32 release 6 ISA instructions\n\
20346 -mips64 generate MIPS64 ISA instructions\n\
20347 -mips64r2 generate MIPS64 release 2 ISA instructions\n\
20348 -mips64r3 generate MIPS64 release 3 ISA instructions\n\
20349 -mips64r5 generate MIPS64 release 5 ISA instructions\n\
20350 -mips64r6 generate MIPS64 release 6 ISA instructions\n\
20351 -march=CPU/-mtune=CPU generate code/schedule for CPU, where CPU is one of:\n"));
20355 for (i
= 0; mips_cpu_info_table
[i
].name
!= NULL
; i
++)
20356 show (stream
, mips_cpu_info_table
[i
].name
, &column
, &first
);
20357 show (stream
, "from-abi", &column
, &first
);
20358 fputc ('\n', stream
);
20360 fprintf (stream
, _("\
20361 -mCPU equivalent to -march=CPU -mtune=CPU. Deprecated.\n\
20362 -no-mCPU don't generate code specific to CPU.\n\
20363 For -mCPU and -no-mCPU, CPU must be one of:\n"));
20367 show (stream
, "3900", &column
, &first
);
20368 show (stream
, "4010", &column
, &first
);
20369 show (stream
, "4100", &column
, &first
);
20370 show (stream
, "4650", &column
, &first
);
20371 fputc ('\n', stream
);
20373 fprintf (stream
, _("\
20374 -mips16 generate mips16 instructions\n\
20375 -no-mips16 do not generate mips16 instructions\n"));
20376 fprintf (stream
, _("\
20377 -mmips16e2 generate MIPS16e2 instructions\n\
20378 -mno-mips16e2 do not generate MIPS16e2 instructions\n"));
20379 fprintf (stream
, _("\
20380 -mmicromips generate microMIPS instructions\n\
20381 -mno-micromips do not generate microMIPS instructions\n"));
20382 fprintf (stream
, _("\
20383 -msmartmips generate smartmips instructions\n\
20384 -mno-smartmips do not generate smartmips instructions\n"));
20385 fprintf (stream
, _("\
20386 -mdsp generate DSP instructions\n\
20387 -mno-dsp do not generate DSP instructions\n"));
20388 fprintf (stream
, _("\
20389 -mdspr2 generate DSP R2 instructions\n\
20390 -mno-dspr2 do not generate DSP R2 instructions\n"));
20391 fprintf (stream
, _("\
20392 -mdspr3 generate DSP R3 instructions\n\
20393 -mno-dspr3 do not generate DSP R3 instructions\n"));
20394 fprintf (stream
, _("\
20395 -mmt generate MT instructions\n\
20396 -mno-mt do not generate MT instructions\n"));
20397 fprintf (stream
, _("\
20398 -mmcu generate MCU instructions\n\
20399 -mno-mcu do not generate MCU instructions\n"));
20400 fprintf (stream
, _("\
20401 -mmsa generate MSA instructions\n\
20402 -mno-msa do not generate MSA instructions\n"));
20403 fprintf (stream
, _("\
20404 -mxpa generate eXtended Physical Address (XPA) instructions\n\
20405 -mno-xpa do not generate eXtended Physical Address (XPA) instructions\n"));
20406 fprintf (stream
, _("\
20407 -mvirt generate Virtualization instructions\n\
20408 -mno-virt do not generate Virtualization instructions\n"));
20409 fprintf (stream
, _("\
20410 -mcrc generate CRC instructions\n\
20411 -mno-crc do not generate CRC instructions\n"));
20412 fprintf (stream
, _("\
20413 -mginv generate Global INValidate (GINV) instructions\n\
20414 -mno-ginv do not generate Global INValidate instructions\n"));
20415 fprintf (stream
, _("\
20416 -mloongson-mmi generate Loongson MultiMedia extensions Instructions (MMI) instructions\n\
20417 -mno-loongson-mmi do not generate Loongson MultiMedia extensions Instructions\n"));
20418 fprintf (stream
, _("\
20419 -mloongson-cam generate Loongson Content Address Memory (CAM) instructions\n\
20420 -mno-loongson-cam do not generate Loongson Content Address Memory Instructions\n"));
20421 fprintf (stream
, _("\
20422 -mloongson-ext generate Loongson EXTensions (EXT) instructions\n\
20423 -mno-loongson-ext do not generate Loongson EXTensions Instructions\n"));
20424 fprintf (stream
, _("\
20425 -mloongson-ext2 generate Loongson EXTensions R2 (EXT2) instructions\n\
20426 -mno-loongson-ext2 do not generate Loongson EXTensions R2 Instructions\n"));
20427 fprintf (stream
, _("\
20428 -minsn32 only generate 32-bit microMIPS instructions\n\
20429 -mno-insn32 generate all microMIPS instructions\n"));
20430 #if DEFAULT_MIPS_FIX_LOONGSON3_LLSC
20431 fprintf (stream
, _("\
20432 -mfix-loongson3-llsc work around Loongson3 LL/SC errata, default\n\
20433 -mno-fix-loongson3-llsc disable work around Loongson3 LL/SC errata\n"));
20435 fprintf (stream
, _("\
20436 -mfix-loongson3-llsc work around Loongson3 LL/SC errata\n\
20437 -mno-fix-loongson3-llsc disable work around Loongson3 LL/SC errata, default\n"));
20439 fprintf (stream
, _("\
20440 -mfix-loongson2f-jump work around Loongson2F JUMP instructions\n\
20441 -mfix-loongson2f-nop work around Loongson2F NOP errata\n\
20442 -mfix-loongson3-llsc work around Loongson3 LL/SC errata\n\
20443 -mno-fix-loongson3-llsc disable work around Loongson3 LL/SC errata\n\
20444 -mfix-vr4120 work around certain VR4120 errata\n\
20445 -mfix-vr4130 work around VR4130 mflo/mfhi errata\n\
20446 -mfix-24k insert a nop after ERET and DERET instructions\n\
20447 -mfix-cn63xxp1 work around CN63XXP1 PREF errata\n\
20448 -mfix-r5900 work around R5900 short loop errata\n\
20449 -mgp32 use 32-bit GPRs, regardless of the chosen ISA\n\
20450 -mfp32 use 32-bit FPRs, regardless of the chosen ISA\n\
20451 -msym32 assume all symbols have 32-bit values\n\
20452 -O0 do not remove unneeded NOPs, do not swap branches\n\
20453 -O, -O1 remove unneeded NOPs, do not swap branches\n\
20454 -O2 remove unneeded NOPs and swap branches\n\
20455 --trap, --no-break trap exception on div by 0 and mult overflow\n\
20456 --break, --no-trap break exception on div by 0 and mult overflow\n"));
20457 fprintf (stream
, _("\
20458 -mhard-float allow floating-point instructions\n\
20459 -msoft-float do not allow floating-point instructions\n\
20460 -msingle-float only allow 32-bit floating-point operations\n\
20461 -mdouble-float allow 32-bit and 64-bit floating-point operations\n\
20462 --[no-]construct-floats [dis]allow floating point values to be constructed\n\
20463 --[no-]relax-branch [dis]allow out-of-range branches to be relaxed\n\
20464 -mignore-branch-isa accept invalid branches requiring an ISA mode switch\n\
20465 -mno-ignore-branch-isa reject invalid branches requiring an ISA mode switch\n\
20466 -mnan=ENCODING select an IEEE 754 NaN encoding convention, either of:\n"));
20470 show (stream
, "legacy", &column
, &first
);
20471 show (stream
, "2008", &column
, &first
);
20473 fputc ('\n', stream
);
20475 fprintf (stream
, _("\
20476 -KPIC, -call_shared generate SVR4 position independent code\n\
20477 -call_nonpic generate non-PIC code that can operate with DSOs\n\
20478 -mvxworks-pic generate VxWorks position independent code\n\
20479 -non_shared do not generate code that can operate with DSOs\n\
20480 -xgot assume a 32 bit GOT\n\
20481 -mpdr, -mno-pdr enable/disable creation of .pdr sections\n\
20482 -mshared, -mno-shared disable/enable .cpload optimization for\n\
20483 position dependent (non shared) code\n\
20484 -mabi=ABI create ABI conformant object file for:\n"));
20488 show (stream
, "32", &column
, &first
);
20489 show (stream
, "o64", &column
, &first
);
20490 show (stream
, "n32", &column
, &first
);
20491 show (stream
, "64", &column
, &first
);
20492 show (stream
, "eabi", &column
, &first
);
20494 fputc ('\n', stream
);
20496 fprintf (stream
, _("\
20497 -32 create o32 ABI object file%s\n"),
20498 MIPS_DEFAULT_ABI
== O32_ABI
? _(" (default)") : "");
20499 fprintf (stream
, _("\
20500 -n32 create n32 ABI object file%s\n"),
20501 MIPS_DEFAULT_ABI
== N32_ABI
? _(" (default)") : "");
20502 fprintf (stream
, _("\
20503 -64 create 64 ABI object file%s\n"),
20504 MIPS_DEFAULT_ABI
== N64_ABI
? _(" (default)") : "");
20509 mips_dwarf2_format (asection
*sec ATTRIBUTE_UNUSED
)
20511 if (HAVE_64BIT_SYMBOLS
)
20512 return dwarf2_format_64bit_irix
;
20514 return dwarf2_format_32bit
;
20519 mips_dwarf2_addr_size (void)
20521 if (HAVE_64BIT_OBJECTS
)
20527 /* Standard calling conventions leave the CFA at SP on entry. */
20529 mips_cfi_frame_initial_instructions (void)
20531 cfi_add_CFA_def_cfa_register (SP
);
20535 tc_mips_regname_to_dw2regnum (char *regname
)
20537 unsigned int regnum
= -1;
20540 if (reg_lookup (®name
, RTYPE_GP
| RTYPE_NUM
, ®
))
20546 /* Implement CONVERT_SYMBOLIC_ATTRIBUTE.
20547 Given a symbolic attribute NAME, return the proper integer value.
20548 Returns -1 if the attribute is not known. */
20551 mips_convert_symbolic_attribute (const char *name
)
20553 static const struct
20558 attribute_table
[] =
20560 #define T(tag) {#tag, tag}
20561 T (Tag_GNU_MIPS_ABI_FP
),
20562 T (Tag_GNU_MIPS_ABI_MSA
),
20570 for (i
= 0; i
< ARRAY_SIZE (attribute_table
); i
++)
20571 if (streq (name
, attribute_table
[i
].name
))
20572 return attribute_table
[i
].tag
;
20578 mips_md_finish (void)
20580 int fpabi
= Val_GNU_MIPS_ABI_FP_ANY
;
20582 mips_emit_delays ();
20584 as_warn (_("missing .end at end of assembly"));
20586 /* Just in case no code was emitted, do the consistency check. */
20587 file_mips_check_options ();
20589 /* Set a floating-point ABI if the user did not. */
20590 if (obj_elf_seen_attribute (OBJ_ATTR_GNU
, Tag_GNU_MIPS_ABI_FP
))
20592 /* Perform consistency checks on the floating-point ABI. */
20593 fpabi
= bfd_elf_get_obj_attr_int (stdoutput
, OBJ_ATTR_GNU
,
20594 Tag_GNU_MIPS_ABI_FP
);
20595 if (fpabi
!= Val_GNU_MIPS_ABI_FP_ANY
)
20596 check_fpabi (fpabi
);
20600 /* Soft-float gets precedence over single-float, the two options should
20601 not be used together so this should not matter. */
20602 if (file_mips_opts
.soft_float
== 1)
20603 fpabi
= Val_GNU_MIPS_ABI_FP_SOFT
;
20604 /* Single-float gets precedence over all double_float cases. */
20605 else if (file_mips_opts
.single_float
== 1)
20606 fpabi
= Val_GNU_MIPS_ABI_FP_SINGLE
;
20609 switch (file_mips_opts
.fp
)
20612 if (file_mips_opts
.gp
== 32)
20613 fpabi
= Val_GNU_MIPS_ABI_FP_DOUBLE
;
20616 fpabi
= Val_GNU_MIPS_ABI_FP_XX
;
20619 if (file_mips_opts
.gp
== 32 && !file_mips_opts
.oddspreg
)
20620 fpabi
= Val_GNU_MIPS_ABI_FP_64A
;
20621 else if (file_mips_opts
.gp
== 32)
20622 fpabi
= Val_GNU_MIPS_ABI_FP_64
;
20624 fpabi
= Val_GNU_MIPS_ABI_FP_DOUBLE
;
20629 bfd_elf_add_obj_attr_int (stdoutput
, OBJ_ATTR_GNU
,
20630 Tag_GNU_MIPS_ABI_FP
, fpabi
);
20634 /* Returns the relocation type required for a particular CFI encoding. */
20636 bfd_reloc_code_real_type
20637 mips_cfi_reloc_for_encoding (int encoding
)
20639 if (encoding
== (DW_EH_PE_sdata4
| DW_EH_PE_pcrel
))
20640 return BFD_RELOC_32_PCREL
;
20641 else return BFD_RELOC_NONE
;