(Ada) problem printing renaming which references a subprogram parameter
[binutils-gdb.git] / gdb / target.h
blob4781fbc59cf0c9d8c37f44471e9555be671a605f
1 /* Interface between GDB and target environments, including files and processes
3 Copyright (C) 1990-2018 Free Software Foundation, Inc.
5 Contributed by Cygnus Support. Written by John Gilmore.
7 This file is part of GDB.
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22 #if !defined (TARGET_H)
23 #define TARGET_H
25 struct objfile;
26 struct ui_file;
27 struct mem_attrib;
28 struct target_ops;
29 struct bp_location;
30 struct bp_target_info;
31 struct regcache;
32 struct target_section_table;
33 struct trace_state_variable;
34 struct trace_status;
35 struct uploaded_tsv;
36 struct uploaded_tp;
37 struct static_tracepoint_marker;
38 struct traceframe_info;
39 struct expression;
40 struct dcache_struct;
41 struct inferior;
43 #include "infrun.h" /* For enum exec_direction_kind. */
44 #include "breakpoint.h" /* For enum bptype. */
45 #include "common/scoped_restore.h"
47 /* This include file defines the interface between the main part
48 of the debugger, and the part which is target-specific, or
49 specific to the communications interface between us and the
50 target.
52 A TARGET is an interface between the debugger and a particular
53 kind of file or process. Targets can be STACKED in STRATA,
54 so that more than one target can potentially respond to a request.
55 In particular, memory accesses will walk down the stack of targets
56 until they find a target that is interested in handling that particular
57 address. STRATA are artificial boundaries on the stack, within
58 which particular kinds of targets live. Strata exist so that
59 people don't get confused by pushing e.g. a process target and then
60 a file target, and wondering why they can't see the current values
61 of variables any more (the file target is handling them and they
62 never get to the process target). So when you push a file target,
63 it goes into the file stratum, which is always below the process
64 stratum. */
66 #include "target/target.h"
67 #include "target/resume.h"
68 #include "target/wait.h"
69 #include "target/waitstatus.h"
70 #include "bfd.h"
71 #include "symtab.h"
72 #include "memattr.h"
73 #include "vec.h"
74 #include "gdb_signals.h"
75 #include "btrace.h"
76 #include "record.h"
77 #include "command.h"
78 #include "disasm.h"
79 #include "tracepoint.h"
81 #include "break-common.h" /* For enum target_hw_bp_type. */
83 enum strata
85 dummy_stratum, /* The lowest of the low */
86 file_stratum, /* Executable files, etc */
87 process_stratum, /* Executing processes or core dump files */
88 thread_stratum, /* Executing threads */
89 record_stratum, /* Support record debugging */
90 arch_stratum /* Architecture overrides */
93 enum thread_control_capabilities
95 tc_none = 0, /* Default: can't control thread execution. */
96 tc_schedlock = 1, /* Can lock the thread scheduler. */
99 /* The structure below stores information about a system call.
100 It is basically used in the "catch syscall" command, and in
101 every function that gives information about a system call.
103 It's also good to mention that its fields represent everything
104 that we currently know about a syscall in GDB. */
105 struct syscall
107 /* The syscall number. */
108 int number;
110 /* The syscall name. */
111 const char *name;
114 /* Return a pretty printed form of TARGET_OPTIONS.
115 Space for the result is malloc'd, caller must free. */
116 extern char *target_options_to_string (int target_options);
118 /* Possible types of events that the inferior handler will have to
119 deal with. */
120 enum inferior_event_type
122 /* Process a normal inferior event which will result in target_wait
123 being called. */
124 INF_REG_EVENT,
125 /* We are called to do stuff after the inferior stops. */
126 INF_EXEC_COMPLETE,
129 /* Target objects which can be transfered using target_read,
130 target_write, et cetera. */
132 enum target_object
134 /* AVR target specific transfer. See "avr-tdep.c" and "remote.c". */
135 TARGET_OBJECT_AVR,
136 /* SPU target specific transfer. See "spu-tdep.c". */
137 TARGET_OBJECT_SPU,
138 /* Transfer up-to LEN bytes of memory starting at OFFSET. */
139 TARGET_OBJECT_MEMORY,
140 /* Memory, avoiding GDB's data cache and trusting the executable.
141 Target implementations of to_xfer_partial never need to handle
142 this object, and most callers should not use it. */
143 TARGET_OBJECT_RAW_MEMORY,
144 /* Memory known to be part of the target's stack. This is cached even
145 if it is not in a region marked as such, since it is known to be
146 "normal" RAM. */
147 TARGET_OBJECT_STACK_MEMORY,
148 /* Memory known to be part of the target code. This is cached even
149 if it is not in a region marked as such. */
150 TARGET_OBJECT_CODE_MEMORY,
151 /* Kernel Unwind Table. See "ia64-tdep.c". */
152 TARGET_OBJECT_UNWIND_TABLE,
153 /* Transfer auxilliary vector. */
154 TARGET_OBJECT_AUXV,
155 /* StackGhost cookie. See "sparc-tdep.c". */
156 TARGET_OBJECT_WCOOKIE,
157 /* Target memory map in XML format. */
158 TARGET_OBJECT_MEMORY_MAP,
159 /* Flash memory. This object can be used to write contents to
160 a previously erased flash memory. Using it without erasing
161 flash can have unexpected results. Addresses are physical
162 address on target, and not relative to flash start. */
163 TARGET_OBJECT_FLASH,
164 /* Available target-specific features, e.g. registers and coprocessors.
165 See "target-descriptions.c". ANNEX should never be empty. */
166 TARGET_OBJECT_AVAILABLE_FEATURES,
167 /* Currently loaded libraries, in XML format. */
168 TARGET_OBJECT_LIBRARIES,
169 /* Currently loaded libraries specific for SVR4 systems, in XML format. */
170 TARGET_OBJECT_LIBRARIES_SVR4,
171 /* Currently loaded libraries specific to AIX systems, in XML format. */
172 TARGET_OBJECT_LIBRARIES_AIX,
173 /* Get OS specific data. The ANNEX specifies the type (running
174 processes, etc.). The data being transfered is expected to follow
175 the DTD specified in features/osdata.dtd. */
176 TARGET_OBJECT_OSDATA,
177 /* Extra signal info. Usually the contents of `siginfo_t' on unix
178 platforms. */
179 TARGET_OBJECT_SIGNAL_INFO,
180 /* The list of threads that are being debugged. */
181 TARGET_OBJECT_THREADS,
182 /* Collected static trace data. */
183 TARGET_OBJECT_STATIC_TRACE_DATA,
184 /* Traceframe info, in XML format. */
185 TARGET_OBJECT_TRACEFRAME_INFO,
186 /* Load maps for FDPIC systems. */
187 TARGET_OBJECT_FDPIC,
188 /* Darwin dynamic linker info data. */
189 TARGET_OBJECT_DARWIN_DYLD_INFO,
190 /* OpenVMS Unwind Information Block. */
191 TARGET_OBJECT_OPENVMS_UIB,
192 /* Branch trace data, in XML format. */
193 TARGET_OBJECT_BTRACE,
194 /* Branch trace configuration, in XML format. */
195 TARGET_OBJECT_BTRACE_CONF,
196 /* The pathname of the executable file that was run to create
197 a specified process. ANNEX should be a string representation
198 of the process ID of the process in question, in hexadecimal
199 format. */
200 TARGET_OBJECT_EXEC_FILE,
201 /* Possible future objects: TARGET_OBJECT_FILE, ... */
204 /* Possible values returned by target_xfer_partial, etc. */
206 enum target_xfer_status
208 /* Some bytes are transferred. */
209 TARGET_XFER_OK = 1,
211 /* No further transfer is possible. */
212 TARGET_XFER_EOF = 0,
214 /* The piece of the object requested is unavailable. */
215 TARGET_XFER_UNAVAILABLE = 2,
217 /* Generic I/O error. Note that it's important that this is '-1',
218 as we still have target_xfer-related code returning hardcoded
219 '-1' on error. */
220 TARGET_XFER_E_IO = -1,
222 /* Keep list in sync with target_xfer_status_to_string. */
225 /* Return the string form of STATUS. */
227 extern const char *
228 target_xfer_status_to_string (enum target_xfer_status status);
230 typedef struct static_tracepoint_marker *static_tracepoint_marker_p;
231 DEF_VEC_P(static_tracepoint_marker_p);
233 typedef enum target_xfer_status
234 target_xfer_partial_ftype (struct target_ops *ops,
235 enum target_object object,
236 const char *annex,
237 gdb_byte *readbuf,
238 const gdb_byte *writebuf,
239 ULONGEST offset,
240 ULONGEST len,
241 ULONGEST *xfered_len);
243 enum target_xfer_status
244 raw_memory_xfer_partial (struct target_ops *ops, gdb_byte *readbuf,
245 const gdb_byte *writebuf, ULONGEST memaddr,
246 LONGEST len, ULONGEST *xfered_len);
248 /* Request that OPS transfer up to LEN addressable units of the target's
249 OBJECT. When reading from a memory object, the size of an addressable unit
250 is architecture dependent and can be found using
251 gdbarch_addressable_memory_unit_size. Otherwise, an addressable unit is 1
252 byte long. BUF should point to a buffer large enough to hold the read data,
253 taking into account the addressable unit size. The OFFSET, for a seekable
254 object, specifies the starting point. The ANNEX can be used to provide
255 additional data-specific information to the target.
257 Return the number of addressable units actually transferred, or a negative
258 error code (an 'enum target_xfer_error' value) if the transfer is not
259 supported or otherwise fails. Return of a positive value less than
260 LEN indicates that no further transfer is possible. Unlike the raw
261 to_xfer_partial interface, callers of these functions do not need
262 to retry partial transfers. */
264 extern LONGEST target_read (struct target_ops *ops,
265 enum target_object object,
266 const char *annex, gdb_byte *buf,
267 ULONGEST offset, LONGEST len);
269 struct memory_read_result
271 memory_read_result (ULONGEST begin_, ULONGEST end_,
272 gdb::unique_xmalloc_ptr<gdb_byte> &&data_)
273 : begin (begin_),
274 end (end_),
275 data (std::move (data_))
279 ~memory_read_result () = default;
281 memory_read_result (memory_read_result &&other) = default;
283 DISABLE_COPY_AND_ASSIGN (memory_read_result);
285 /* First address that was read. */
286 ULONGEST begin;
287 /* Past-the-end address. */
288 ULONGEST end;
289 /* The data. */
290 gdb::unique_xmalloc_ptr<gdb_byte> data;
293 extern std::vector<memory_read_result> read_memory_robust
294 (struct target_ops *ops, const ULONGEST offset, const LONGEST len);
296 /* Request that OPS transfer up to LEN addressable units from BUF to the
297 target's OBJECT. When writing to a memory object, the addressable unit
298 size is architecture dependent and can be found using
299 gdbarch_addressable_memory_unit_size. Otherwise, an addressable unit is 1
300 byte long. The OFFSET, for a seekable object, specifies the starting point.
301 The ANNEX can be used to provide additional data-specific information to
302 the target.
304 Return the number of addressable units actually transferred, or a negative
305 error code (an 'enum target_xfer_status' value) if the transfer is not
306 supported or otherwise fails. Return of a positive value less than
307 LEN indicates that no further transfer is possible. Unlike the raw
308 to_xfer_partial interface, callers of these functions do not need to
309 retry partial transfers. */
311 extern LONGEST target_write (struct target_ops *ops,
312 enum target_object object,
313 const char *annex, const gdb_byte *buf,
314 ULONGEST offset, LONGEST len);
316 /* Similar to target_write, except that it also calls PROGRESS with
317 the number of bytes written and the opaque BATON after every
318 successful partial write (and before the first write). This is
319 useful for progress reporting and user interaction while writing
320 data. To abort the transfer, the progress callback can throw an
321 exception. */
323 LONGEST target_write_with_progress (struct target_ops *ops,
324 enum target_object object,
325 const char *annex, const gdb_byte *buf,
326 ULONGEST offset, LONGEST len,
327 void (*progress) (ULONGEST, void *),
328 void *baton);
330 /* Wrapper to perform a full read of unknown size. OBJECT/ANNEX will
331 be read using OPS. The return value will be -1 if the transfer
332 fails or is not supported; 0 if the object is empty; or the length
333 of the object otherwise. If a positive value is returned, a
334 sufficiently large buffer will be allocated using xmalloc and
335 returned in *BUF_P containing the contents of the object.
337 This method should be used for objects sufficiently small to store
338 in a single xmalloc'd buffer, when no fixed bound on the object's
339 size is known in advance. Don't try to read TARGET_OBJECT_MEMORY
340 through this function. */
342 extern LONGEST target_read_alloc (struct target_ops *ops,
343 enum target_object object,
344 const char *annex, gdb_byte **buf_p);
346 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
347 returned as a string. If an error occurs or the transfer is
348 unsupported, NULL is returned. Empty objects are returned as
349 allocated but empty strings. A warning is issued if the result
350 contains any embedded NUL bytes. */
352 extern gdb::unique_xmalloc_ptr<char> target_read_stralloc
353 (struct target_ops *ops, enum target_object object, const char *annex);
355 /* See target_ops->to_xfer_partial. */
356 extern target_xfer_partial_ftype target_xfer_partial;
358 /* Wrappers to target read/write that perform memory transfers. They
359 throw an error if the memory transfer fails.
361 NOTE: cagney/2003-10-23: The naming schema is lifted from
362 "frame.h". The parameter order is lifted from get_frame_memory,
363 which in turn lifted it from read_memory. */
365 extern void get_target_memory (struct target_ops *ops, CORE_ADDR addr,
366 gdb_byte *buf, LONGEST len);
367 extern ULONGEST get_target_memory_unsigned (struct target_ops *ops,
368 CORE_ADDR addr, int len,
369 enum bfd_endian byte_order);
371 struct thread_info; /* fwd decl for parameter list below: */
373 /* The type of the callback to the to_async method. */
375 typedef void async_callback_ftype (enum inferior_event_type event_type,
376 void *context);
378 /* Normally target debug printing is purely type-based. However,
379 sometimes it is necessary to override the debug printing on a
380 per-argument basis. This macro can be used, attribute-style, to
381 name the target debug printing function for a particular method
382 argument. FUNC is the name of the function. The macro's
383 definition is empty because it is only used by the
384 make-target-delegates script. */
386 #define TARGET_DEBUG_PRINTER(FUNC)
388 /* These defines are used to mark target_ops methods. The script
389 make-target-delegates scans these and auto-generates the base
390 method implementations. There are four macros that can be used:
392 1. TARGET_DEFAULT_IGNORE. There is no argument. The base method
393 does nothing. This is only valid if the method return type is
394 'void'.
396 2. TARGET_DEFAULT_NORETURN. The argument is a function call, like
397 'tcomplain ()'. The base method simply makes this call, which is
398 assumed not to return.
400 3. TARGET_DEFAULT_RETURN. The argument is a C expression. The
401 base method returns this expression's value.
403 4. TARGET_DEFAULT_FUNC. The argument is the name of a function.
404 make-target-delegates does not generate a base method in this case,
405 but instead uses the argument function as the base method. */
407 #define TARGET_DEFAULT_IGNORE()
408 #define TARGET_DEFAULT_NORETURN(ARG)
409 #define TARGET_DEFAULT_RETURN(ARG)
410 #define TARGET_DEFAULT_FUNC(ARG)
412 struct target_ops
414 struct target_ops *beneath; /* To the target under this one. */
415 const char *to_shortname; /* Name this target type */
416 const char *to_longname; /* Name for printing */
417 const char *to_doc; /* Documentation. Does not include trailing
418 newline, and starts with a one-line descrip-
419 tion (probably similar to to_longname). */
420 /* Per-target scratch pad. */
421 void *to_data;
422 /* The open routine takes the rest of the parameters from the
423 command, and (if successful) pushes a new target onto the
424 stack. Targets should supply this routine, if only to provide
425 an error message. */
426 void (*to_open) (const char *, int);
427 /* Old targets with a static target vector provide "to_close".
428 New re-entrant targets provide "to_xclose" and that is expected
429 to xfree everything (including the "struct target_ops"). */
430 void (*to_xclose) (struct target_ops *targ);
431 void (*to_close) (struct target_ops *);
432 /* Attaches to a process on the target side. Arguments are as
433 passed to the `attach' command by the user. This routine can
434 be called when the target is not on the target-stack, if the
435 target_can_run routine returns 1; in that case, it must push
436 itself onto the stack. Upon exit, the target should be ready
437 for normal operations, and should be ready to deliver the
438 status of the process immediately (without waiting) to an
439 upcoming target_wait call. */
440 void (*to_attach) (struct target_ops *ops, const char *, int);
441 void (*to_post_attach) (struct target_ops *, int)
442 TARGET_DEFAULT_IGNORE ();
443 void (*to_detach) (struct target_ops *ops, const char *, int)
444 TARGET_DEFAULT_IGNORE ();
445 void (*to_disconnect) (struct target_ops *, const char *, int)
446 TARGET_DEFAULT_NORETURN (tcomplain ());
447 void (*to_resume) (struct target_ops *, ptid_t,
448 int TARGET_DEBUG_PRINTER (target_debug_print_step),
449 enum gdb_signal)
450 TARGET_DEFAULT_NORETURN (noprocess ());
451 void (*to_commit_resume) (struct target_ops *)
452 TARGET_DEFAULT_IGNORE ();
453 ptid_t (*to_wait) (struct target_ops *,
454 ptid_t, struct target_waitstatus *,
455 int TARGET_DEBUG_PRINTER (target_debug_print_options))
456 TARGET_DEFAULT_FUNC (default_target_wait);
457 void (*to_fetch_registers) (struct target_ops *, struct regcache *, int)
458 TARGET_DEFAULT_IGNORE ();
459 void (*to_store_registers) (struct target_ops *, struct regcache *, int)
460 TARGET_DEFAULT_NORETURN (noprocess ());
461 void (*to_prepare_to_store) (struct target_ops *, struct regcache *)
462 TARGET_DEFAULT_NORETURN (noprocess ());
464 void (*to_files_info) (struct target_ops *)
465 TARGET_DEFAULT_IGNORE ();
466 int (*to_insert_breakpoint) (struct target_ops *, struct gdbarch *,
467 struct bp_target_info *)
468 TARGET_DEFAULT_FUNC (memory_insert_breakpoint);
469 int (*to_remove_breakpoint) (struct target_ops *, struct gdbarch *,
470 struct bp_target_info *,
471 enum remove_bp_reason)
472 TARGET_DEFAULT_FUNC (memory_remove_breakpoint);
474 /* Returns true if the target stopped because it executed a
475 software breakpoint. This is necessary for correct background
476 execution / non-stop mode operation, and for correct PC
477 adjustment on targets where the PC needs to be adjusted when a
478 software breakpoint triggers. In these modes, by the time GDB
479 processes a breakpoint event, the breakpoint may already be
480 done from the target, so GDB needs to be able to tell whether
481 it should ignore the event and whether it should adjust the PC.
482 See adjust_pc_after_break. */
483 int (*to_stopped_by_sw_breakpoint) (struct target_ops *)
484 TARGET_DEFAULT_RETURN (0);
485 /* Returns true if the above method is supported. */
486 int (*to_supports_stopped_by_sw_breakpoint) (struct target_ops *)
487 TARGET_DEFAULT_RETURN (0);
489 /* Returns true if the target stopped for a hardware breakpoint.
490 Likewise, if the target supports hardware breakpoints, this
491 method is necessary for correct background execution / non-stop
492 mode operation. Even though hardware breakpoints do not
493 require PC adjustment, GDB needs to be able to tell whether the
494 hardware breakpoint event is a delayed event for a breakpoint
495 that is already gone and should thus be ignored. */
496 int (*to_stopped_by_hw_breakpoint) (struct target_ops *)
497 TARGET_DEFAULT_RETURN (0);
498 /* Returns true if the above method is supported. */
499 int (*to_supports_stopped_by_hw_breakpoint) (struct target_ops *)
500 TARGET_DEFAULT_RETURN (0);
502 int (*to_can_use_hw_breakpoint) (struct target_ops *,
503 enum bptype, int, int)
504 TARGET_DEFAULT_RETURN (0);
505 int (*to_ranged_break_num_registers) (struct target_ops *)
506 TARGET_DEFAULT_RETURN (-1);
507 int (*to_insert_hw_breakpoint) (struct target_ops *,
508 struct gdbarch *, struct bp_target_info *)
509 TARGET_DEFAULT_RETURN (-1);
510 int (*to_remove_hw_breakpoint) (struct target_ops *,
511 struct gdbarch *, struct bp_target_info *)
512 TARGET_DEFAULT_RETURN (-1);
514 /* Documentation of what the two routines below are expected to do is
515 provided with the corresponding target_* macros. */
516 int (*to_remove_watchpoint) (struct target_ops *, CORE_ADDR, int,
517 enum target_hw_bp_type, struct expression *)
518 TARGET_DEFAULT_RETURN (-1);
519 int (*to_insert_watchpoint) (struct target_ops *, CORE_ADDR, int,
520 enum target_hw_bp_type, struct expression *)
521 TARGET_DEFAULT_RETURN (-1);
523 int (*to_insert_mask_watchpoint) (struct target_ops *,
524 CORE_ADDR, CORE_ADDR,
525 enum target_hw_bp_type)
526 TARGET_DEFAULT_RETURN (1);
527 int (*to_remove_mask_watchpoint) (struct target_ops *,
528 CORE_ADDR, CORE_ADDR,
529 enum target_hw_bp_type)
530 TARGET_DEFAULT_RETURN (1);
531 int (*to_stopped_by_watchpoint) (struct target_ops *)
532 TARGET_DEFAULT_RETURN (0);
533 int to_have_steppable_watchpoint;
534 int to_have_continuable_watchpoint;
535 int (*to_stopped_data_address) (struct target_ops *, CORE_ADDR *)
536 TARGET_DEFAULT_RETURN (0);
537 int (*to_watchpoint_addr_within_range) (struct target_ops *,
538 CORE_ADDR, CORE_ADDR, int)
539 TARGET_DEFAULT_FUNC (default_watchpoint_addr_within_range);
541 /* Documentation of this routine is provided with the corresponding
542 target_* macro. */
543 int (*to_region_ok_for_hw_watchpoint) (struct target_ops *,
544 CORE_ADDR, int)
545 TARGET_DEFAULT_FUNC (default_region_ok_for_hw_watchpoint);
547 int (*to_can_accel_watchpoint_condition) (struct target_ops *,
548 CORE_ADDR, int, int,
549 struct expression *)
550 TARGET_DEFAULT_RETURN (0);
551 int (*to_masked_watch_num_registers) (struct target_ops *,
552 CORE_ADDR, CORE_ADDR)
553 TARGET_DEFAULT_RETURN (-1);
555 /* Return 1 for sure target can do single step. Return -1 for
556 unknown. Return 0 for target can't do. */
557 int (*to_can_do_single_step) (struct target_ops *)
558 TARGET_DEFAULT_RETURN (-1);
560 void (*to_terminal_init) (struct target_ops *)
561 TARGET_DEFAULT_IGNORE ();
562 void (*to_terminal_inferior) (struct target_ops *)
563 TARGET_DEFAULT_IGNORE ();
564 void (*to_terminal_ours_for_output) (struct target_ops *)
565 TARGET_DEFAULT_IGNORE ();
566 void (*to_terminal_ours) (struct target_ops *)
567 TARGET_DEFAULT_IGNORE ();
568 void (*to_terminal_info) (struct target_ops *, const char *, int)
569 TARGET_DEFAULT_FUNC (default_terminal_info);
570 void (*to_kill) (struct target_ops *)
571 TARGET_DEFAULT_NORETURN (noprocess ());
572 void (*to_load) (struct target_ops *, const char *, int)
573 TARGET_DEFAULT_NORETURN (tcomplain ());
574 /* Start an inferior process and set inferior_ptid to its pid.
575 EXEC_FILE is the file to run.
576 ALLARGS is a string containing the arguments to the program.
577 ENV is the environment vector to pass. Errors reported with error().
578 On VxWorks and various standalone systems, we ignore exec_file. */
579 void (*to_create_inferior) (struct target_ops *,
580 const char *, const std::string &,
581 char **, int);
582 void (*to_post_startup_inferior) (struct target_ops *, ptid_t)
583 TARGET_DEFAULT_IGNORE ();
584 int (*to_insert_fork_catchpoint) (struct target_ops *, int)
585 TARGET_DEFAULT_RETURN (1);
586 int (*to_remove_fork_catchpoint) (struct target_ops *, int)
587 TARGET_DEFAULT_RETURN (1);
588 int (*to_insert_vfork_catchpoint) (struct target_ops *, int)
589 TARGET_DEFAULT_RETURN (1);
590 int (*to_remove_vfork_catchpoint) (struct target_ops *, int)
591 TARGET_DEFAULT_RETURN (1);
592 int (*to_follow_fork) (struct target_ops *, int, int)
593 TARGET_DEFAULT_FUNC (default_follow_fork);
594 int (*to_insert_exec_catchpoint) (struct target_ops *, int)
595 TARGET_DEFAULT_RETURN (1);
596 int (*to_remove_exec_catchpoint) (struct target_ops *, int)
597 TARGET_DEFAULT_RETURN (1);
598 void (*to_follow_exec) (struct target_ops *, struct inferior *, char *)
599 TARGET_DEFAULT_IGNORE ();
600 int (*to_set_syscall_catchpoint) (struct target_ops *,
601 int, bool, int,
602 gdb::array_view<const int>)
603 TARGET_DEFAULT_RETURN (1);
604 int (*to_has_exited) (struct target_ops *, int, int, int *)
605 TARGET_DEFAULT_RETURN (0);
606 void (*to_mourn_inferior) (struct target_ops *)
607 TARGET_DEFAULT_FUNC (default_mourn_inferior);
608 /* Note that to_can_run is special and can be invoked on an
609 unpushed target. Targets defining this method must also define
610 to_can_async_p and to_supports_non_stop. */
611 int (*to_can_run) (struct target_ops *)
612 TARGET_DEFAULT_RETURN (0);
614 /* Documentation of this routine is provided with the corresponding
615 target_* macro. */
616 void (*to_pass_signals) (struct target_ops *, int,
617 unsigned char * TARGET_DEBUG_PRINTER (target_debug_print_signals))
618 TARGET_DEFAULT_IGNORE ();
620 /* Documentation of this routine is provided with the
621 corresponding target_* function. */
622 void (*to_program_signals) (struct target_ops *, int,
623 unsigned char * TARGET_DEBUG_PRINTER (target_debug_print_signals))
624 TARGET_DEFAULT_IGNORE ();
626 int (*to_thread_alive) (struct target_ops *, ptid_t ptid)
627 TARGET_DEFAULT_RETURN (0);
628 void (*to_update_thread_list) (struct target_ops *)
629 TARGET_DEFAULT_IGNORE ();
630 const char *(*to_pid_to_str) (struct target_ops *, ptid_t)
631 TARGET_DEFAULT_FUNC (default_pid_to_str);
632 const char *(*to_extra_thread_info) (struct target_ops *, struct thread_info *)
633 TARGET_DEFAULT_RETURN (NULL);
634 const char *(*to_thread_name) (struct target_ops *, struct thread_info *)
635 TARGET_DEFAULT_RETURN (NULL);
636 struct thread_info *(*to_thread_handle_to_thread_info) (struct target_ops *,
637 const gdb_byte *,
638 int,
639 struct inferior *inf)
640 TARGET_DEFAULT_RETURN (NULL);
641 void (*to_stop) (struct target_ops *, ptid_t)
642 TARGET_DEFAULT_IGNORE ();
643 void (*to_interrupt) (struct target_ops *, ptid_t)
644 TARGET_DEFAULT_IGNORE ();
645 void (*to_pass_ctrlc) (struct target_ops *)
646 TARGET_DEFAULT_FUNC (default_target_pass_ctrlc);
647 void (*to_rcmd) (struct target_ops *,
648 const char *command, struct ui_file *output)
649 TARGET_DEFAULT_FUNC (default_rcmd);
650 char *(*to_pid_to_exec_file) (struct target_ops *, int pid)
651 TARGET_DEFAULT_RETURN (NULL);
652 void (*to_log_command) (struct target_ops *, const char *)
653 TARGET_DEFAULT_IGNORE ();
654 struct target_section_table *(*to_get_section_table) (struct target_ops *)
655 TARGET_DEFAULT_RETURN (NULL);
656 enum strata to_stratum;
657 int (*to_has_all_memory) (struct target_ops *);
658 int (*to_has_memory) (struct target_ops *);
659 int (*to_has_stack) (struct target_ops *);
660 int (*to_has_registers) (struct target_ops *);
661 int (*to_has_execution) (struct target_ops *, ptid_t);
662 int to_has_thread_control; /* control thread execution */
663 int to_attach_no_wait;
664 /* This method must be implemented in some situations. See the
665 comment on 'to_can_run'. */
666 int (*to_can_async_p) (struct target_ops *)
667 TARGET_DEFAULT_RETURN (0);
668 int (*to_is_async_p) (struct target_ops *)
669 TARGET_DEFAULT_RETURN (0);
670 void (*to_async) (struct target_ops *, int)
671 TARGET_DEFAULT_NORETURN (tcomplain ());
672 void (*to_thread_events) (struct target_ops *, int)
673 TARGET_DEFAULT_IGNORE ();
674 /* This method must be implemented in some situations. See the
675 comment on 'to_can_run'. */
676 int (*to_supports_non_stop) (struct target_ops *)
677 TARGET_DEFAULT_RETURN (0);
678 /* Return true if the target operates in non-stop mode even with
679 "set non-stop off". */
680 int (*to_always_non_stop_p) (struct target_ops *)
681 TARGET_DEFAULT_RETURN (0);
682 /* find_memory_regions support method for gcore */
683 int (*to_find_memory_regions) (struct target_ops *,
684 find_memory_region_ftype func, void *data)
685 TARGET_DEFAULT_FUNC (dummy_find_memory_regions);
686 /* make_corefile_notes support method for gcore */
687 char * (*to_make_corefile_notes) (struct target_ops *, bfd *, int *)
688 TARGET_DEFAULT_FUNC (dummy_make_corefile_notes);
689 /* get_bookmark support method for bookmarks */
690 gdb_byte * (*to_get_bookmark) (struct target_ops *, const char *, int)
691 TARGET_DEFAULT_NORETURN (tcomplain ());
692 /* goto_bookmark support method for bookmarks */
693 void (*to_goto_bookmark) (struct target_ops *, const gdb_byte *, int)
694 TARGET_DEFAULT_NORETURN (tcomplain ());
695 /* Return the thread-local address at OFFSET in the
696 thread-local storage for the thread PTID and the shared library
697 or executable file given by OBJFILE. If that block of
698 thread-local storage hasn't been allocated yet, this function
699 may return an error. LOAD_MODULE_ADDR may be zero for statically
700 linked multithreaded inferiors. */
701 CORE_ADDR (*to_get_thread_local_address) (struct target_ops *ops,
702 ptid_t ptid,
703 CORE_ADDR load_module_addr,
704 CORE_ADDR offset)
705 TARGET_DEFAULT_NORETURN (generic_tls_error ());
707 /* Request that OPS transfer up to LEN addressable units of the target's
708 OBJECT. When reading from a memory object, the size of an addressable
709 unit is architecture dependent and can be found using
710 gdbarch_addressable_memory_unit_size. Otherwise, an addressable unit is
711 1 byte long. The OFFSET, for a seekable object, specifies the
712 starting point. The ANNEX can be used to provide additional
713 data-specific information to the target.
715 Return the transferred status, error or OK (an
716 'enum target_xfer_status' value). Save the number of addressable units
717 actually transferred in *XFERED_LEN if transfer is successful
718 (TARGET_XFER_OK) or the number unavailable units if the requested
719 data is unavailable (TARGET_XFER_UNAVAILABLE). *XFERED_LEN
720 smaller than LEN does not indicate the end of the object, only
721 the end of the transfer; higher level code should continue
722 transferring if desired. This is handled in target.c.
724 The interface does not support a "retry" mechanism. Instead it
725 assumes that at least one addressable unit will be transfered on each
726 successful call.
728 NOTE: cagney/2003-10-17: The current interface can lead to
729 fragmented transfers. Lower target levels should not implement
730 hacks, such as enlarging the transfer, in an attempt to
731 compensate for this. Instead, the target stack should be
732 extended so that it implements supply/collect methods and a
733 look-aside object cache. With that available, the lowest
734 target can safely and freely "push" data up the stack.
736 See target_read and target_write for more information. One,
737 and only one, of readbuf or writebuf must be non-NULL. */
739 enum target_xfer_status (*to_xfer_partial) (struct target_ops *ops,
740 enum target_object object,
741 const char *annex,
742 gdb_byte *readbuf,
743 const gdb_byte *writebuf,
744 ULONGEST offset, ULONGEST len,
745 ULONGEST *xfered_len)
746 TARGET_DEFAULT_RETURN (TARGET_XFER_E_IO);
748 /* Return the limit on the size of any single memory transfer
749 for the target. */
751 ULONGEST (*to_get_memory_xfer_limit) (struct target_ops *)
752 TARGET_DEFAULT_RETURN (ULONGEST_MAX);
754 /* Returns the memory map for the target. A return value of NULL
755 means that no memory map is available. If a memory address
756 does not fall within any returned regions, it's assumed to be
757 RAM. The returned memory regions should not overlap.
759 The order of regions does not matter; target_memory_map will
760 sort regions by starting address. For that reason, this
761 function should not be called directly except via
762 target_memory_map.
764 This method should not cache data; if the memory map could
765 change unexpectedly, it should be invalidated, and higher
766 layers will re-fetch it. */
767 std::vector<mem_region> (*to_memory_map) (struct target_ops *)
768 TARGET_DEFAULT_RETURN (std::vector<mem_region> ());
770 /* Erases the region of flash memory starting at ADDRESS, of
771 length LENGTH.
773 Precondition: both ADDRESS and ADDRESS+LENGTH should be aligned
774 on flash block boundaries, as reported by 'to_memory_map'. */
775 void (*to_flash_erase) (struct target_ops *,
776 ULONGEST address, LONGEST length)
777 TARGET_DEFAULT_NORETURN (tcomplain ());
779 /* Finishes a flash memory write sequence. After this operation
780 all flash memory should be available for writing and the result
781 of reading from areas written by 'to_flash_write' should be
782 equal to what was written. */
783 void (*to_flash_done) (struct target_ops *)
784 TARGET_DEFAULT_NORETURN (tcomplain ());
786 /* Describe the architecture-specific features of this target. If
787 OPS doesn't have a description, this should delegate to the
788 "beneath" target. Returns the description found, or NULL if no
789 description was available. */
790 const struct target_desc *(*to_read_description) (struct target_ops *ops)
791 TARGET_DEFAULT_RETURN (NULL);
793 /* Build the PTID of the thread on which a given task is running,
794 based on LWP and THREAD. These values are extracted from the
795 task Private_Data section of the Ada Task Control Block, and
796 their interpretation depends on the target. */
797 ptid_t (*to_get_ada_task_ptid) (struct target_ops *,
798 long lwp, long thread)
799 TARGET_DEFAULT_FUNC (default_get_ada_task_ptid);
801 /* Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
802 Return 0 if *READPTR is already at the end of the buffer.
803 Return -1 if there is insufficient buffer for a whole entry.
804 Return 1 if an entry was read into *TYPEP and *VALP. */
805 int (*to_auxv_parse) (struct target_ops *ops, gdb_byte **readptr,
806 gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp)
807 TARGET_DEFAULT_FUNC (default_auxv_parse);
809 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
810 sequence of bytes in PATTERN with length PATTERN_LEN.
812 The result is 1 if found, 0 if not found, and -1 if there was an error
813 requiring halting of the search (e.g. memory read error).
814 If the pattern is found the address is recorded in FOUND_ADDRP. */
815 int (*to_search_memory) (struct target_ops *ops,
816 CORE_ADDR start_addr, ULONGEST search_space_len,
817 const gdb_byte *pattern, ULONGEST pattern_len,
818 CORE_ADDR *found_addrp)
819 TARGET_DEFAULT_FUNC (default_search_memory);
821 /* Can target execute in reverse? */
822 int (*to_can_execute_reverse) (struct target_ops *)
823 TARGET_DEFAULT_RETURN (0);
825 /* The direction the target is currently executing. Must be
826 implemented on targets that support reverse execution and async
827 mode. The default simply returns forward execution. */
828 enum exec_direction_kind (*to_execution_direction) (struct target_ops *)
829 TARGET_DEFAULT_FUNC (default_execution_direction);
831 /* Does this target support debugging multiple processes
832 simultaneously? */
833 int (*to_supports_multi_process) (struct target_ops *)
834 TARGET_DEFAULT_RETURN (0);
836 /* Does this target support enabling and disabling tracepoints while a trace
837 experiment is running? */
838 int (*to_supports_enable_disable_tracepoint) (struct target_ops *)
839 TARGET_DEFAULT_RETURN (0);
841 /* Does this target support disabling address space randomization? */
842 int (*to_supports_disable_randomization) (struct target_ops *);
844 /* Does this target support the tracenz bytecode for string collection? */
845 int (*to_supports_string_tracing) (struct target_ops *)
846 TARGET_DEFAULT_RETURN (0);
848 /* Does this target support evaluation of breakpoint conditions on its
849 end? */
850 int (*to_supports_evaluation_of_breakpoint_conditions) (struct target_ops *)
851 TARGET_DEFAULT_RETURN (0);
853 /* Does this target support evaluation of breakpoint commands on its
854 end? */
855 int (*to_can_run_breakpoint_commands) (struct target_ops *)
856 TARGET_DEFAULT_RETURN (0);
858 /* Determine current architecture of thread PTID.
860 The target is supposed to determine the architecture of the code where
861 the target is currently stopped at (on Cell, if a target is in spu_run,
862 to_thread_architecture would return SPU, otherwise PPC32 or PPC64).
863 This is architecture used to perform decr_pc_after_break adjustment,
864 and also determines the frame architecture of the innermost frame.
865 ptrace operations need to operate according to target_gdbarch ().
867 The default implementation always returns target_gdbarch (). */
868 struct gdbarch *(*to_thread_architecture) (struct target_ops *, ptid_t)
869 TARGET_DEFAULT_FUNC (default_thread_architecture);
871 /* Determine current address space of thread PTID.
873 The default implementation always returns the inferior's
874 address space. */
875 struct address_space *(*to_thread_address_space) (struct target_ops *,
876 ptid_t)
877 TARGET_DEFAULT_FUNC (default_thread_address_space);
879 /* Target file operations. */
881 /* Return nonzero if the filesystem seen by the current inferior
882 is the local filesystem, zero otherwise. */
883 int (*to_filesystem_is_local) (struct target_ops *)
884 TARGET_DEFAULT_RETURN (1);
886 /* Open FILENAME on the target, in the filesystem as seen by INF,
887 using FLAGS and MODE. If INF is NULL, use the filesystem seen
888 by the debugger (GDB or, for remote targets, the remote stub).
889 If WARN_IF_SLOW is nonzero, print a warning message if the file
890 is being accessed over a link that may be slow. Return a
891 target file descriptor, or -1 if an error occurs (and set
892 *TARGET_ERRNO). */
893 int (*to_fileio_open) (struct target_ops *,
894 struct inferior *inf, const char *filename,
895 int flags, int mode, int warn_if_slow,
896 int *target_errno);
898 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
899 Return the number of bytes written, or -1 if an error occurs
900 (and set *TARGET_ERRNO). */
901 int (*to_fileio_pwrite) (struct target_ops *,
902 int fd, const gdb_byte *write_buf, int len,
903 ULONGEST offset, int *target_errno);
905 /* Read up to LEN bytes FD on the target into READ_BUF.
906 Return the number of bytes read, or -1 if an error occurs
907 (and set *TARGET_ERRNO). */
908 int (*to_fileio_pread) (struct target_ops *,
909 int fd, gdb_byte *read_buf, int len,
910 ULONGEST offset, int *target_errno);
912 /* Get information about the file opened as FD and put it in
913 SB. Return 0 on success, or -1 if an error occurs (and set
914 *TARGET_ERRNO). */
915 int (*to_fileio_fstat) (struct target_ops *,
916 int fd, struct stat *sb, int *target_errno);
918 /* Close FD on the target. Return 0, or -1 if an error occurs
919 (and set *TARGET_ERRNO). */
920 int (*to_fileio_close) (struct target_ops *, int fd, int *target_errno);
922 /* Unlink FILENAME on the target, in the filesystem as seen by
923 INF. If INF is NULL, use the filesystem seen by the debugger
924 (GDB or, for remote targets, the remote stub). Return 0, or
925 -1 if an error occurs (and set *TARGET_ERRNO). */
926 int (*to_fileio_unlink) (struct target_ops *,
927 struct inferior *inf,
928 const char *filename,
929 int *target_errno);
931 /* Read value of symbolic link FILENAME on the target, in the
932 filesystem as seen by INF. If INF is NULL, use the filesystem
933 seen by the debugger (GDB or, for remote targets, the remote
934 stub). Return a null-terminated string allocated via xmalloc,
935 or NULL if an error occurs (and set *TARGET_ERRNO). */
936 char *(*to_fileio_readlink) (struct target_ops *,
937 struct inferior *inf,
938 const char *filename,
939 int *target_errno);
942 /* Implement the "info proc" command. */
943 void (*to_info_proc) (struct target_ops *, const char *,
944 enum info_proc_what);
946 /* Tracepoint-related operations. */
948 /* Prepare the target for a tracing run. */
949 void (*to_trace_init) (struct target_ops *)
950 TARGET_DEFAULT_NORETURN (tcomplain ());
952 /* Send full details of a tracepoint location to the target. */
953 void (*to_download_tracepoint) (struct target_ops *,
954 struct bp_location *location)
955 TARGET_DEFAULT_NORETURN (tcomplain ());
957 /* Is the target able to download tracepoint locations in current
958 state? */
959 int (*to_can_download_tracepoint) (struct target_ops *)
960 TARGET_DEFAULT_RETURN (0);
962 /* Send full details of a trace state variable to the target. */
963 void (*to_download_trace_state_variable) (struct target_ops *,
964 struct trace_state_variable *tsv)
965 TARGET_DEFAULT_NORETURN (tcomplain ());
967 /* Enable a tracepoint on the target. */
968 void (*to_enable_tracepoint) (struct target_ops *,
969 struct bp_location *location)
970 TARGET_DEFAULT_NORETURN (tcomplain ());
972 /* Disable a tracepoint on the target. */
973 void (*to_disable_tracepoint) (struct target_ops *,
974 struct bp_location *location)
975 TARGET_DEFAULT_NORETURN (tcomplain ());
977 /* Inform the target info of memory regions that are readonly
978 (such as text sections), and so it should return data from
979 those rather than look in the trace buffer. */
980 void (*to_trace_set_readonly_regions) (struct target_ops *)
981 TARGET_DEFAULT_NORETURN (tcomplain ());
983 /* Start a trace run. */
984 void (*to_trace_start) (struct target_ops *)
985 TARGET_DEFAULT_NORETURN (tcomplain ());
987 /* Get the current status of a tracing run. */
988 int (*to_get_trace_status) (struct target_ops *, struct trace_status *ts)
989 TARGET_DEFAULT_RETURN (-1);
991 void (*to_get_tracepoint_status) (struct target_ops *,
992 struct breakpoint *tp,
993 struct uploaded_tp *utp)
994 TARGET_DEFAULT_NORETURN (tcomplain ());
996 /* Stop a trace run. */
997 void (*to_trace_stop) (struct target_ops *)
998 TARGET_DEFAULT_NORETURN (tcomplain ());
1000 /* Ask the target to find a trace frame of the given type TYPE,
1001 using NUM, ADDR1, and ADDR2 as search parameters. Returns the
1002 number of the trace frame, and also the tracepoint number at
1003 TPP. If no trace frame matches, return -1. May throw if the
1004 operation fails. */
1005 int (*to_trace_find) (struct target_ops *,
1006 enum trace_find_type type, int num,
1007 CORE_ADDR addr1, CORE_ADDR addr2, int *tpp)
1008 TARGET_DEFAULT_RETURN (-1);
1010 /* Get the value of the trace state variable number TSV, returning
1011 1 if the value is known and writing the value itself into the
1012 location pointed to by VAL, else returning 0. */
1013 int (*to_get_trace_state_variable_value) (struct target_ops *,
1014 int tsv, LONGEST *val)
1015 TARGET_DEFAULT_RETURN (0);
1017 int (*to_save_trace_data) (struct target_ops *, const char *filename)
1018 TARGET_DEFAULT_NORETURN (tcomplain ());
1020 int (*to_upload_tracepoints) (struct target_ops *,
1021 struct uploaded_tp **utpp)
1022 TARGET_DEFAULT_RETURN (0);
1024 int (*to_upload_trace_state_variables) (struct target_ops *,
1025 struct uploaded_tsv **utsvp)
1026 TARGET_DEFAULT_RETURN (0);
1028 LONGEST (*to_get_raw_trace_data) (struct target_ops *, gdb_byte *buf,
1029 ULONGEST offset, LONGEST len)
1030 TARGET_DEFAULT_NORETURN (tcomplain ());
1032 /* Get the minimum length of instruction on which a fast tracepoint
1033 may be set on the target. If this operation is unsupported,
1034 return -1. If for some reason the minimum length cannot be
1035 determined, return 0. */
1036 int (*to_get_min_fast_tracepoint_insn_len) (struct target_ops *)
1037 TARGET_DEFAULT_RETURN (-1);
1039 /* Set the target's tracing behavior in response to unexpected
1040 disconnection - set VAL to 1 to keep tracing, 0 to stop. */
1041 void (*to_set_disconnected_tracing) (struct target_ops *, int val)
1042 TARGET_DEFAULT_IGNORE ();
1043 void (*to_set_circular_trace_buffer) (struct target_ops *, int val)
1044 TARGET_DEFAULT_IGNORE ();
1045 /* Set the size of trace buffer in the target. */
1046 void (*to_set_trace_buffer_size) (struct target_ops *, LONGEST val)
1047 TARGET_DEFAULT_IGNORE ();
1049 /* Add/change textual notes about the trace run, returning 1 if
1050 successful, 0 otherwise. */
1051 int (*to_set_trace_notes) (struct target_ops *,
1052 const char *user, const char *notes,
1053 const char *stopnotes)
1054 TARGET_DEFAULT_RETURN (0);
1056 /* Return the processor core that thread PTID was last seen on.
1057 This information is updated only when:
1058 - update_thread_list is called
1059 - thread stops
1060 If the core cannot be determined -- either for the specified
1061 thread, or right now, or in this debug session, or for this
1062 target -- return -1. */
1063 int (*to_core_of_thread) (struct target_ops *, ptid_t ptid)
1064 TARGET_DEFAULT_RETURN (-1);
1066 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range
1067 matches the contents of [DATA,DATA+SIZE). Returns 1 if there's
1068 a match, 0 if there's a mismatch, and -1 if an error is
1069 encountered while reading memory. */
1070 int (*to_verify_memory) (struct target_ops *, const gdb_byte *data,
1071 CORE_ADDR memaddr, ULONGEST size)
1072 TARGET_DEFAULT_FUNC (default_verify_memory);
1074 /* Return the address of the start of the Thread Information Block
1075 a Windows OS specific feature. */
1076 int (*to_get_tib_address) (struct target_ops *,
1077 ptid_t ptid, CORE_ADDR *addr)
1078 TARGET_DEFAULT_NORETURN (tcomplain ());
1080 /* Send the new settings of write permission variables. */
1081 void (*to_set_permissions) (struct target_ops *)
1082 TARGET_DEFAULT_IGNORE ();
1084 /* Look for a static tracepoint marker at ADDR, and fill in MARKER
1085 with its details. Return 1 on success, 0 on failure. */
1086 int (*to_static_tracepoint_marker_at) (struct target_ops *, CORE_ADDR,
1087 struct static_tracepoint_marker *marker)
1088 TARGET_DEFAULT_RETURN (0);
1090 /* Return a vector of all tracepoints markers string id ID, or all
1091 markers if ID is NULL. */
1092 VEC(static_tracepoint_marker_p) *(*to_static_tracepoint_markers_by_strid) (struct target_ops *, const char *id)
1093 TARGET_DEFAULT_NORETURN (tcomplain ());
1095 /* Return a traceframe info object describing the current
1096 traceframe's contents. This method should not cache data;
1097 higher layers take care of caching, invalidating, and
1098 re-fetching when necessary. */
1099 traceframe_info_up (*to_traceframe_info) (struct target_ops *)
1100 TARGET_DEFAULT_NORETURN (tcomplain ());
1102 /* Ask the target to use or not to use agent according to USE. Return 1
1103 successful, 0 otherwise. */
1104 int (*to_use_agent) (struct target_ops *, int use)
1105 TARGET_DEFAULT_NORETURN (tcomplain ());
1107 /* Is the target able to use agent in current state? */
1108 int (*to_can_use_agent) (struct target_ops *)
1109 TARGET_DEFAULT_RETURN (0);
1111 /* Check whether the target supports branch tracing. */
1112 int (*to_supports_btrace) (struct target_ops *, enum btrace_format)
1113 TARGET_DEFAULT_RETURN (0);
1115 /* Enable branch tracing for PTID using CONF configuration.
1116 Return a branch trace target information struct for reading and for
1117 disabling branch trace. */
1118 struct btrace_target_info *(*to_enable_btrace) (struct target_ops *,
1119 ptid_t ptid,
1120 const struct btrace_config *conf)
1121 TARGET_DEFAULT_NORETURN (tcomplain ());
1123 /* Disable branch tracing and deallocate TINFO. */
1124 void (*to_disable_btrace) (struct target_ops *,
1125 struct btrace_target_info *tinfo)
1126 TARGET_DEFAULT_NORETURN (tcomplain ());
1128 /* Disable branch tracing and deallocate TINFO. This function is similar
1129 to to_disable_btrace, except that it is called during teardown and is
1130 only allowed to perform actions that are safe. A counter-example would
1131 be attempting to talk to a remote target. */
1132 void (*to_teardown_btrace) (struct target_ops *,
1133 struct btrace_target_info *tinfo)
1134 TARGET_DEFAULT_NORETURN (tcomplain ());
1136 /* Read branch trace data for the thread indicated by BTINFO into DATA.
1137 DATA is cleared before new trace is added. */
1138 enum btrace_error (*to_read_btrace) (struct target_ops *self,
1139 struct btrace_data *data,
1140 struct btrace_target_info *btinfo,
1141 enum btrace_read_type type)
1142 TARGET_DEFAULT_NORETURN (tcomplain ());
1144 /* Get the branch trace configuration. */
1145 const struct btrace_config *(*to_btrace_conf) (struct target_ops *self,
1146 const struct btrace_target_info *)
1147 TARGET_DEFAULT_RETURN (NULL);
1149 /* Current recording method. */
1150 enum record_method (*to_record_method) (struct target_ops *, ptid_t ptid)
1151 TARGET_DEFAULT_RETURN (RECORD_METHOD_NONE);
1153 /* Stop trace recording. */
1154 void (*to_stop_recording) (struct target_ops *)
1155 TARGET_DEFAULT_IGNORE ();
1157 /* Print information about the recording. */
1158 void (*to_info_record) (struct target_ops *)
1159 TARGET_DEFAULT_IGNORE ();
1161 /* Save the recorded execution trace into a file. */
1162 void (*to_save_record) (struct target_ops *, const char *filename)
1163 TARGET_DEFAULT_NORETURN (tcomplain ());
1165 /* Delete the recorded execution trace from the current position
1166 onwards. */
1167 void (*to_delete_record) (struct target_ops *)
1168 TARGET_DEFAULT_NORETURN (tcomplain ());
1170 /* Query if the record target is currently replaying PTID. */
1171 int (*to_record_is_replaying) (struct target_ops *, ptid_t ptid)
1172 TARGET_DEFAULT_RETURN (0);
1174 /* Query if the record target will replay PTID if it were resumed in
1175 execution direction DIR. */
1176 int (*to_record_will_replay) (struct target_ops *, ptid_t ptid, int dir)
1177 TARGET_DEFAULT_RETURN (0);
1179 /* Stop replaying. */
1180 void (*to_record_stop_replaying) (struct target_ops *)
1181 TARGET_DEFAULT_IGNORE ();
1183 /* Go to the begin of the execution trace. */
1184 void (*to_goto_record_begin) (struct target_ops *)
1185 TARGET_DEFAULT_NORETURN (tcomplain ());
1187 /* Go to the end of the execution trace. */
1188 void (*to_goto_record_end) (struct target_ops *)
1189 TARGET_DEFAULT_NORETURN (tcomplain ());
1191 /* Go to a specific location in the recorded execution trace. */
1192 void (*to_goto_record) (struct target_ops *, ULONGEST insn)
1193 TARGET_DEFAULT_NORETURN (tcomplain ());
1195 /* Disassemble SIZE instructions in the recorded execution trace from
1196 the current position.
1197 If SIZE < 0, disassemble abs (SIZE) preceding instructions; otherwise,
1198 disassemble SIZE succeeding instructions. */
1199 void (*to_insn_history) (struct target_ops *, int size,
1200 gdb_disassembly_flags flags)
1201 TARGET_DEFAULT_NORETURN (tcomplain ());
1203 /* Disassemble SIZE instructions in the recorded execution trace around
1204 FROM.
1205 If SIZE < 0, disassemble abs (SIZE) instructions before FROM; otherwise,
1206 disassemble SIZE instructions after FROM. */
1207 void (*to_insn_history_from) (struct target_ops *,
1208 ULONGEST from, int size,
1209 gdb_disassembly_flags flags)
1210 TARGET_DEFAULT_NORETURN (tcomplain ());
1212 /* Disassemble a section of the recorded execution trace from instruction
1213 BEGIN (inclusive) to instruction END (inclusive). */
1214 void (*to_insn_history_range) (struct target_ops *,
1215 ULONGEST begin, ULONGEST end,
1216 gdb_disassembly_flags flags)
1217 TARGET_DEFAULT_NORETURN (tcomplain ());
1219 /* Print a function trace of the recorded execution trace.
1220 If SIZE < 0, print abs (SIZE) preceding functions; otherwise, print SIZE
1221 succeeding functions. */
1222 void (*to_call_history) (struct target_ops *, int size, int flags)
1223 TARGET_DEFAULT_NORETURN (tcomplain ());
1225 /* Print a function trace of the recorded execution trace starting
1226 at function FROM.
1227 If SIZE < 0, print abs (SIZE) functions before FROM; otherwise, print
1228 SIZE functions after FROM. */
1229 void (*to_call_history_from) (struct target_ops *,
1230 ULONGEST begin, int size, int flags)
1231 TARGET_DEFAULT_NORETURN (tcomplain ());
1233 /* Print a function trace of an execution trace section from function BEGIN
1234 (inclusive) to function END (inclusive). */
1235 void (*to_call_history_range) (struct target_ops *,
1236 ULONGEST begin, ULONGEST end, int flags)
1237 TARGET_DEFAULT_NORETURN (tcomplain ());
1239 /* Nonzero if TARGET_OBJECT_LIBRARIES_SVR4 may be read with a
1240 non-empty annex. */
1241 int (*to_augmented_libraries_svr4_read) (struct target_ops *)
1242 TARGET_DEFAULT_RETURN (0);
1244 /* Those unwinders are tried before any other arch unwinders. If
1245 SELF doesn't have unwinders, it should delegate to the
1246 "beneath" target. */
1247 const struct frame_unwind *(*to_get_unwinder) (struct target_ops *self)
1248 TARGET_DEFAULT_RETURN (NULL);
1250 const struct frame_unwind *(*to_get_tailcall_unwinder) (struct target_ops *self)
1251 TARGET_DEFAULT_RETURN (NULL);
1253 /* Prepare to generate a core file. */
1254 void (*to_prepare_to_generate_core) (struct target_ops *)
1255 TARGET_DEFAULT_IGNORE ();
1257 /* Cleanup after generating a core file. */
1258 void (*to_done_generating_core) (struct target_ops *)
1259 TARGET_DEFAULT_IGNORE ();
1261 int to_magic;
1262 /* Need sub-structure for target machine related rather than comm related?
1266 /* Magic number for checking ops size. If a struct doesn't end with this
1267 number, somebody changed the declaration but didn't change all the
1268 places that initialize one. */
1270 #define OPS_MAGIC 3840
1272 /* The ops structure for our "current" target process. This should
1273 never be NULL. If there is no target, it points to the dummy_target. */
1275 extern struct target_ops current_target;
1277 /* Define easy words for doing these operations on our current target. */
1279 #define target_shortname (current_target.to_shortname)
1280 #define target_longname (current_target.to_longname)
1282 /* Does whatever cleanup is required for a target that we are no
1283 longer going to be calling. This routine is automatically always
1284 called after popping the target off the target stack - the target's
1285 own methods are no longer available through the target vector.
1286 Closing file descriptors and freeing all memory allocated memory are
1287 typical things it should do. */
1289 void target_close (struct target_ops *targ);
1291 /* Find the correct target to use for "attach". If a target on the
1292 current stack supports attaching, then it is returned. Otherwise,
1293 the default run target is returned. */
1295 extern struct target_ops *find_attach_target (void);
1297 /* Find the correct target to use for "run". If a target on the
1298 current stack supports creating a new inferior, then it is
1299 returned. Otherwise, the default run target is returned. */
1301 extern struct target_ops *find_run_target (void);
1303 /* Some targets don't generate traps when attaching to the inferior,
1304 or their target_attach implementation takes care of the waiting.
1305 These targets must set to_attach_no_wait. */
1307 #define target_attach_no_wait \
1308 (current_target.to_attach_no_wait)
1310 /* The target_attach operation places a process under debugger control,
1311 and stops the process.
1313 This operation provides a target-specific hook that allows the
1314 necessary bookkeeping to be performed after an attach completes. */
1315 #define target_post_attach(pid) \
1316 (*current_target.to_post_attach) (&current_target, pid)
1318 /* Display a message indicating we're about to detach from the current
1319 inferior process. */
1321 extern void target_announce_detach (int from_tty);
1323 /* Takes a program previously attached to and detaches it.
1324 The program may resume execution (some targets do, some don't) and will
1325 no longer stop on signals, etc. We better not have left any breakpoints
1326 in the program or it'll die when it hits one. ARGS is arguments
1327 typed by the user (e.g. a signal to send the process). FROM_TTY
1328 says whether to be verbose or not. */
1330 extern void target_detach (const char *, int);
1332 /* Disconnect from the current target without resuming it (leaving it
1333 waiting for a debugger). */
1335 extern void target_disconnect (const char *, int);
1337 /* Resume execution (or prepare for execution) of a target thread,
1338 process or all processes. STEP says whether to hardware
1339 single-step or to run free; SIGGNAL is the signal to be given to
1340 the target, or GDB_SIGNAL_0 for no signal. The caller may not pass
1341 GDB_SIGNAL_DEFAULT. A specific PTID means `step/resume only this
1342 process id'. A wildcard PTID (all threads, or all threads of
1343 process) means `step/resume INFERIOR_PTID, and let other threads
1344 (for which the wildcard PTID matches) resume with their
1345 'thread->suspend.stop_signal' signal (usually GDB_SIGNAL_0) if it
1346 is in "pass" state, or with no signal if in "no pass" state.
1348 In order to efficiently handle batches of resumption requests,
1349 targets may implement this method such that it records the
1350 resumption request, but defers the actual resumption to the
1351 target_commit_resume method implementation. See
1352 target_commit_resume below. */
1353 extern void target_resume (ptid_t ptid, int step, enum gdb_signal signal);
1355 /* Commit a series of resumption requests previously prepared with
1356 target_resume calls.
1358 GDB always calls target_commit_resume after calling target_resume
1359 one or more times. A target may thus use this method in
1360 coordination with the target_resume method to batch target-side
1361 resumption requests. In that case, the target doesn't actually
1362 resume in its target_resume implementation. Instead, it prepares
1363 the resumption in target_resume, and defers the actual resumption
1364 to target_commit_resume. E.g., the remote target uses this to
1365 coalesce multiple resumption requests in a single vCont packet. */
1366 extern void target_commit_resume ();
1368 /* Setup to defer target_commit_resume calls, and reactivate
1369 target_commit_resume on destruction, if it was previously
1370 active. */
1371 extern scoped_restore_tmpl<int> make_scoped_defer_target_commit_resume ();
1373 /* For target_read_memory see target/target.h. */
1375 /* The default target_ops::to_wait implementation. */
1377 extern ptid_t default_target_wait (struct target_ops *ops,
1378 ptid_t ptid,
1379 struct target_waitstatus *status,
1380 int options);
1382 /* Fetch at least register REGNO, or all regs if regno == -1. No result. */
1384 extern void target_fetch_registers (struct regcache *regcache, int regno);
1386 /* Store at least register REGNO, or all regs if REGNO == -1.
1387 It can store as many registers as it wants to, so target_prepare_to_store
1388 must have been previously called. Calls error() if there are problems. */
1390 extern void target_store_registers (struct regcache *regcache, int regs);
1392 /* Get ready to modify the registers array. On machines which store
1393 individual registers, this doesn't need to do anything. On machines
1394 which store all the registers in one fell swoop, this makes sure
1395 that REGISTERS contains all the registers from the program being
1396 debugged. */
1398 #define target_prepare_to_store(regcache) \
1399 (*current_target.to_prepare_to_store) (&current_target, regcache)
1401 /* Determine current address space of thread PTID. */
1403 struct address_space *target_thread_address_space (ptid_t);
1405 /* Implement the "info proc" command. This returns one if the request
1406 was handled, and zero otherwise. It can also throw an exception if
1407 an error was encountered while attempting to handle the
1408 request. */
1410 int target_info_proc (const char *, enum info_proc_what);
1412 /* Returns true if this target can disable address space randomization. */
1414 int target_supports_disable_randomization (void);
1416 /* Returns true if this target can enable and disable tracepoints
1417 while a trace experiment is running. */
1419 #define target_supports_enable_disable_tracepoint() \
1420 (*current_target.to_supports_enable_disable_tracepoint) (&current_target)
1422 #define target_supports_string_tracing() \
1423 (*current_target.to_supports_string_tracing) (&current_target)
1425 /* Returns true if this target can handle breakpoint conditions
1426 on its end. */
1428 #define target_supports_evaluation_of_breakpoint_conditions() \
1429 (*current_target.to_supports_evaluation_of_breakpoint_conditions) (&current_target)
1431 /* Returns true if this target can handle breakpoint commands
1432 on its end. */
1434 #define target_can_run_breakpoint_commands() \
1435 (*current_target.to_can_run_breakpoint_commands) (&current_target)
1437 extern int target_read_string (CORE_ADDR, char **, int, int *);
1439 /* For target_read_memory see target/target.h. */
1441 extern int target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr,
1442 ssize_t len);
1444 extern int target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1446 extern int target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1448 /* For target_write_memory see target/target.h. */
1450 extern int target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
1451 ssize_t len);
1453 /* Fetches the target's memory map. If one is found it is sorted
1454 and returned, after some consistency checking. Otherwise, NULL
1455 is returned. */
1456 std::vector<mem_region> target_memory_map (void);
1458 /* Erases all flash memory regions on the target. */
1459 void flash_erase_command (const char *cmd, int from_tty);
1461 /* Erase the specified flash region. */
1462 void target_flash_erase (ULONGEST address, LONGEST length);
1464 /* Finish a sequence of flash operations. */
1465 void target_flash_done (void);
1467 /* Describes a request for a memory write operation. */
1468 struct memory_write_request
1470 /* Begining address that must be written. */
1471 ULONGEST begin;
1472 /* Past-the-end address. */
1473 ULONGEST end;
1474 /* The data to write. */
1475 gdb_byte *data;
1476 /* A callback baton for progress reporting for this request. */
1477 void *baton;
1479 typedef struct memory_write_request memory_write_request_s;
1480 DEF_VEC_O(memory_write_request_s);
1482 /* Enumeration specifying different flash preservation behaviour. */
1483 enum flash_preserve_mode
1485 flash_preserve,
1486 flash_discard
1489 /* Write several memory blocks at once. This version can be more
1490 efficient than making several calls to target_write_memory, in
1491 particular because it can optimize accesses to flash memory.
1493 Moreover, this is currently the only memory access function in gdb
1494 that supports writing to flash memory, and it should be used for
1495 all cases where access to flash memory is desirable.
1497 REQUESTS is the vector (see vec.h) of memory_write_request.
1498 PRESERVE_FLASH_P indicates what to do with blocks which must be
1499 erased, but not completely rewritten.
1500 PROGRESS_CB is a function that will be periodically called to provide
1501 feedback to user. It will be called with the baton corresponding
1502 to the request currently being written. It may also be called
1503 with a NULL baton, when preserved flash sectors are being rewritten.
1505 The function returns 0 on success, and error otherwise. */
1506 int target_write_memory_blocks (VEC(memory_write_request_s) *requests,
1507 enum flash_preserve_mode preserve_flash_p,
1508 void (*progress_cb) (ULONGEST, void *));
1510 /* Print a line about the current target. */
1512 #define target_files_info() \
1513 (*current_target.to_files_info) (&current_target)
1515 /* Insert a breakpoint at address BP_TGT->placed_address in
1516 the target machine. Returns 0 for success, and returns non-zero or
1517 throws an error (with a detailed failure reason error code and
1518 message) otherwise. */
1520 extern int target_insert_breakpoint (struct gdbarch *gdbarch,
1521 struct bp_target_info *bp_tgt);
1523 /* Remove a breakpoint at address BP_TGT->placed_address in the target
1524 machine. Result is 0 for success, non-zero for error. */
1526 extern int target_remove_breakpoint (struct gdbarch *gdbarch,
1527 struct bp_target_info *bp_tgt,
1528 enum remove_bp_reason reason);
1530 /* Return true if the target stack has a non-default
1531 "to_terminal_ours" method. */
1533 extern int target_supports_terminal_ours (void);
1535 /* Kill the inferior process. Make it go away. */
1537 extern void target_kill (void);
1539 /* Load an executable file into the target process. This is expected
1540 to not only bring new code into the target process, but also to
1541 update GDB's symbol tables to match.
1543 ARG contains command-line arguments, to be broken down with
1544 buildargv (). The first non-switch argument is the filename to
1545 load, FILE; the second is a number (as parsed by strtoul (..., ...,
1546 0)), which is an offset to apply to the load addresses of FILE's
1547 sections. The target may define switches, or other non-switch
1548 arguments, as it pleases. */
1550 extern void target_load (const char *arg, int from_tty);
1552 /* Some targets (such as ttrace-based HPUX) don't allow us to request
1553 notification of inferior events such as fork and vork immediately
1554 after the inferior is created. (This because of how gdb gets an
1555 inferior created via invoking a shell to do it. In such a scenario,
1556 if the shell init file has commands in it, the shell will fork and
1557 exec for each of those commands, and we will see each such fork
1558 event. Very bad.)
1560 Such targets will supply an appropriate definition for this function. */
1562 #define target_post_startup_inferior(ptid) \
1563 (*current_target.to_post_startup_inferior) (&current_target, ptid)
1565 /* On some targets, we can catch an inferior fork or vfork event when
1566 it occurs. These functions insert/remove an already-created
1567 catchpoint for such events. They return 0 for success, 1 if the
1568 catchpoint type is not supported and -1 for failure. */
1570 #define target_insert_fork_catchpoint(pid) \
1571 (*current_target.to_insert_fork_catchpoint) (&current_target, pid)
1573 #define target_remove_fork_catchpoint(pid) \
1574 (*current_target.to_remove_fork_catchpoint) (&current_target, pid)
1576 #define target_insert_vfork_catchpoint(pid) \
1577 (*current_target.to_insert_vfork_catchpoint) (&current_target, pid)
1579 #define target_remove_vfork_catchpoint(pid) \
1580 (*current_target.to_remove_vfork_catchpoint) (&current_target, pid)
1582 /* If the inferior forks or vforks, this function will be called at
1583 the next resume in order to perform any bookkeeping and fiddling
1584 necessary to continue debugging either the parent or child, as
1585 requested, and releasing the other. Information about the fork
1586 or vfork event is available via get_last_target_status ().
1587 This function returns 1 if the inferior should not be resumed
1588 (i.e. there is another event pending). */
1590 int target_follow_fork (int follow_child, int detach_fork);
1592 /* Handle the target-specific bookkeeping required when the inferior
1593 makes an exec call. INF is the exec'd inferior. */
1595 void target_follow_exec (struct inferior *inf, char *execd_pathname);
1597 /* On some targets, we can catch an inferior exec event when it
1598 occurs. These functions insert/remove an already-created
1599 catchpoint for such events. They return 0 for success, 1 if the
1600 catchpoint type is not supported and -1 for failure. */
1602 #define target_insert_exec_catchpoint(pid) \
1603 (*current_target.to_insert_exec_catchpoint) (&current_target, pid)
1605 #define target_remove_exec_catchpoint(pid) \
1606 (*current_target.to_remove_exec_catchpoint) (&current_target, pid)
1608 /* Syscall catch.
1610 NEEDED is true if any syscall catch (of any kind) is requested.
1611 If NEEDED is false, it means the target can disable the mechanism to
1612 catch system calls because there are no more catchpoints of this type.
1614 ANY_COUNT is nonzero if a generic (filter-less) syscall catch is
1615 being requested. In this case, SYSCALL_COUNTS should be ignored.
1617 SYSCALL_COUNTS is an array of ints, indexed by syscall number. An
1618 element in this array is nonzero if that syscall should be caught.
1619 This argument only matters if ANY_COUNT is zero.
1621 Return 0 for success, 1 if syscall catchpoints are not supported or -1
1622 for failure. */
1624 #define target_set_syscall_catchpoint(pid, needed, any_count, syscall_counts) \
1625 (*current_target.to_set_syscall_catchpoint) (&current_target, \
1626 pid, needed, any_count, \
1627 syscall_counts)
1629 /* Returns TRUE if PID has exited. And, also sets EXIT_STATUS to the
1630 exit code of PID, if any. */
1632 #define target_has_exited(pid,wait_status,exit_status) \
1633 (*current_target.to_has_exited) (&current_target, \
1634 pid,wait_status,exit_status)
1636 /* The debugger has completed a blocking wait() call. There is now
1637 some process event that must be processed. This function should
1638 be defined by those targets that require the debugger to perform
1639 cleanup or internal state changes in response to the process event. */
1641 /* For target_mourn_inferior see target/target.h. */
1643 /* Does target have enough data to do a run or attach command? */
1645 #define target_can_run(t) \
1646 ((t)->to_can_run) (t)
1648 /* Set list of signals to be handled in the target.
1650 PASS_SIGNALS is an array of size NSIG, indexed by target signal number
1651 (enum gdb_signal). For every signal whose entry in this array is
1652 non-zero, the target is allowed -but not required- to skip reporting
1653 arrival of the signal to the GDB core by returning from target_wait,
1654 and to pass the signal directly to the inferior instead.
1656 However, if the target is hardware single-stepping a thread that is
1657 about to receive a signal, it needs to be reported in any case, even
1658 if mentioned in a previous target_pass_signals call. */
1660 extern void target_pass_signals (int nsig, unsigned char *pass_signals);
1662 /* Set list of signals the target may pass to the inferior. This
1663 directly maps to the "handle SIGNAL pass/nopass" setting.
1665 PROGRAM_SIGNALS is an array of size NSIG, indexed by target signal
1666 number (enum gdb_signal). For every signal whose entry in this
1667 array is non-zero, the target is allowed to pass the signal to the
1668 inferior. Signals not present in the array shall be silently
1669 discarded. This does not influence whether to pass signals to the
1670 inferior as a result of a target_resume call. This is useful in
1671 scenarios where the target needs to decide whether to pass or not a
1672 signal to the inferior without GDB core involvement, such as for
1673 example, when detaching (as threads may have been suspended with
1674 pending signals not reported to GDB). */
1676 extern void target_program_signals (int nsig, unsigned char *program_signals);
1678 /* Check to see if a thread is still alive. */
1680 extern int target_thread_alive (ptid_t ptid);
1682 /* Sync the target's threads with GDB's thread list. */
1684 extern void target_update_thread_list (void);
1686 /* Make target stop in a continuable fashion. (For instance, under
1687 Unix, this should act like SIGSTOP). Note that this function is
1688 asynchronous: it does not wait for the target to become stopped
1689 before returning. If this is the behavior you want please use
1690 target_stop_and_wait. */
1692 extern void target_stop (ptid_t ptid);
1694 /* Interrupt the target just like the user typed a ^C on the
1695 inferior's controlling terminal. (For instance, under Unix, this
1696 should act like SIGINT). This function is asynchronous. */
1698 extern void target_interrupt (ptid_t ptid);
1700 /* Pass a ^C, as determined to have been pressed by checking the quit
1701 flag, to the target. Normally calls target_interrupt, but remote
1702 targets may take the opportunity to detect the remote side is not
1703 responding and offer to disconnect. */
1705 extern void target_pass_ctrlc (void);
1707 /* The default target_ops::to_pass_ctrlc implementation. Simply calls
1708 target_interrupt. */
1709 extern void default_target_pass_ctrlc (struct target_ops *ops);
1711 /* Send the specified COMMAND to the target's monitor
1712 (shell,interpreter) for execution. The result of the query is
1713 placed in OUTBUF. */
1715 #define target_rcmd(command, outbuf) \
1716 (*current_target.to_rcmd) (&current_target, command, outbuf)
1719 /* Does the target include all of memory, or only part of it? This
1720 determines whether we look up the target chain for other parts of
1721 memory if this target can't satisfy a request. */
1723 extern int target_has_all_memory_1 (void);
1724 #define target_has_all_memory target_has_all_memory_1 ()
1726 /* Does the target include memory? (Dummy targets don't.) */
1728 extern int target_has_memory_1 (void);
1729 #define target_has_memory target_has_memory_1 ()
1731 /* Does the target have a stack? (Exec files don't, VxWorks doesn't, until
1732 we start a process.) */
1734 extern int target_has_stack_1 (void);
1735 #define target_has_stack target_has_stack_1 ()
1737 /* Does the target have registers? (Exec files don't.) */
1739 extern int target_has_registers_1 (void);
1740 #define target_has_registers target_has_registers_1 ()
1742 /* Does the target have execution? Can we make it jump (through
1743 hoops), or pop its stack a few times? This means that the current
1744 target is currently executing; for some targets, that's the same as
1745 whether or not the target is capable of execution, but there are
1746 also targets which can be current while not executing. In that
1747 case this will become true after to_create_inferior or
1748 to_attach. */
1750 extern int target_has_execution_1 (ptid_t);
1752 /* Like target_has_execution_1, but always passes inferior_ptid. */
1754 extern int target_has_execution_current (void);
1756 #define target_has_execution target_has_execution_current ()
1758 /* Default implementations for process_stratum targets. Return true
1759 if there's a selected inferior, false otherwise. */
1761 extern int default_child_has_all_memory (struct target_ops *ops);
1762 extern int default_child_has_memory (struct target_ops *ops);
1763 extern int default_child_has_stack (struct target_ops *ops);
1764 extern int default_child_has_registers (struct target_ops *ops);
1765 extern int default_child_has_execution (struct target_ops *ops,
1766 ptid_t the_ptid);
1768 /* Can the target support the debugger control of thread execution?
1769 Can it lock the thread scheduler? */
1771 #define target_can_lock_scheduler \
1772 (current_target.to_has_thread_control & tc_schedlock)
1774 /* Controls whether async mode is permitted. */
1775 extern int target_async_permitted;
1777 /* Can the target support asynchronous execution? */
1778 #define target_can_async_p() (current_target.to_can_async_p (&current_target))
1780 /* Is the target in asynchronous execution mode? */
1781 #define target_is_async_p() (current_target.to_is_async_p (&current_target))
1783 /* Enables/disabled async target events. */
1784 extern void target_async (int enable);
1786 /* Enables/disables thread create and exit events. */
1787 extern void target_thread_events (int enable);
1789 /* Whether support for controlling the target backends always in
1790 non-stop mode is enabled. */
1791 extern enum auto_boolean target_non_stop_enabled;
1793 /* Is the target in non-stop mode? Some targets control the inferior
1794 in non-stop mode even with "set non-stop off". Always true if "set
1795 non-stop" is on. */
1796 extern int target_is_non_stop_p (void);
1798 #define target_execution_direction() \
1799 (current_target.to_execution_direction (&current_target))
1801 /* Converts a process id to a string. Usually, the string just contains
1802 `process xyz', but on some systems it may contain
1803 `process xyz thread abc'. */
1805 extern const char *target_pid_to_str (ptid_t ptid);
1807 extern const char *normal_pid_to_str (ptid_t ptid);
1809 /* Return a short string describing extra information about PID,
1810 e.g. "sleeping", "runnable", "running on LWP 3". Null return value
1811 is okay. */
1813 #define target_extra_thread_info(TP) \
1814 (current_target.to_extra_thread_info (&current_target, TP))
1816 /* Return the thread's name, or NULL if the target is unable to determine it.
1817 The returned value must not be freed by the caller. */
1819 extern const char *target_thread_name (struct thread_info *);
1821 /* Given a pointer to a thread library specific thread handle and
1822 its length, return a pointer to the corresponding thread_info struct. */
1824 extern struct thread_info *target_thread_handle_to_thread_info
1825 (const gdb_byte *thread_handle, int handle_len, struct inferior *inf);
1827 /* Attempts to find the pathname of the executable file
1828 that was run to create a specified process.
1830 The process PID must be stopped when this operation is used.
1832 If the executable file cannot be determined, NULL is returned.
1834 Else, a pointer to a character string containing the pathname
1835 is returned. This string should be copied into a buffer by
1836 the client if the string will not be immediately used, or if
1837 it must persist. */
1839 #define target_pid_to_exec_file(pid) \
1840 (current_target.to_pid_to_exec_file) (&current_target, pid)
1842 /* See the to_thread_architecture description in struct target_ops. */
1844 #define target_thread_architecture(ptid) \
1845 (current_target.to_thread_architecture (&current_target, ptid))
1848 * Iterator function for target memory regions.
1849 * Calls a callback function once for each memory region 'mapped'
1850 * in the child process. Defined as a simple macro rather than
1851 * as a function macro so that it can be tested for nullity.
1854 #define target_find_memory_regions(FUNC, DATA) \
1855 (current_target.to_find_memory_regions) (&current_target, FUNC, DATA)
1858 * Compose corefile .note section.
1861 #define target_make_corefile_notes(BFD, SIZE_P) \
1862 (current_target.to_make_corefile_notes) (&current_target, BFD, SIZE_P)
1864 /* Bookmark interfaces. */
1865 #define target_get_bookmark(ARGS, FROM_TTY) \
1866 (current_target.to_get_bookmark) (&current_target, ARGS, FROM_TTY)
1868 #define target_goto_bookmark(ARG, FROM_TTY) \
1869 (current_target.to_goto_bookmark) (&current_target, ARG, FROM_TTY)
1871 /* Hardware watchpoint interfaces. */
1873 /* Returns non-zero if we were stopped by a hardware watchpoint (memory read or
1874 write). Only the INFERIOR_PTID task is being queried. */
1876 #define target_stopped_by_watchpoint() \
1877 ((*current_target.to_stopped_by_watchpoint) (&current_target))
1879 /* Returns non-zero if the target stopped because it executed a
1880 software breakpoint instruction. */
1882 #define target_stopped_by_sw_breakpoint() \
1883 ((*current_target.to_stopped_by_sw_breakpoint) (&current_target))
1885 #define target_supports_stopped_by_sw_breakpoint() \
1886 ((*current_target.to_supports_stopped_by_sw_breakpoint) (&current_target))
1888 #define target_stopped_by_hw_breakpoint() \
1889 ((*current_target.to_stopped_by_hw_breakpoint) (&current_target))
1891 #define target_supports_stopped_by_hw_breakpoint() \
1892 ((*current_target.to_supports_stopped_by_hw_breakpoint) (&current_target))
1894 /* Non-zero if we have steppable watchpoints */
1896 #define target_have_steppable_watchpoint \
1897 (current_target.to_have_steppable_watchpoint)
1899 /* Non-zero if we have continuable watchpoints */
1901 #define target_have_continuable_watchpoint \
1902 (current_target.to_have_continuable_watchpoint)
1904 /* Provide defaults for hardware watchpoint functions. */
1906 /* If the *_hw_beakpoint functions have not been defined
1907 elsewhere use the definitions in the target vector. */
1909 /* Returns positive if we can set a hardware watchpoint of type TYPE.
1910 Returns negative if the target doesn't have enough hardware debug
1911 registers available. Return zero if hardware watchpoint of type
1912 TYPE isn't supported. TYPE is one of bp_hardware_watchpoint,
1913 bp_read_watchpoint, bp_write_watchpoint, or bp_hardware_breakpoint.
1914 CNT is the number of such watchpoints used so far, including this
1915 one. OTHERTYPE is the number of watchpoints of other types than
1916 this one used so far. */
1918 #define target_can_use_hardware_watchpoint(TYPE,CNT,OTHERTYPE) \
1919 (*current_target.to_can_use_hw_breakpoint) (&current_target, \
1920 TYPE, CNT, OTHERTYPE)
1922 /* Returns the number of debug registers needed to watch the given
1923 memory region, or zero if not supported. */
1925 #define target_region_ok_for_hw_watchpoint(addr, len) \
1926 (*current_target.to_region_ok_for_hw_watchpoint) (&current_target, \
1927 addr, len)
1930 #define target_can_do_single_step() \
1931 (*current_target.to_can_do_single_step) (&current_target)
1933 /* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes.
1934 TYPE is 0 for write, 1 for read, and 2 for read/write accesses.
1935 COND is the expression for its condition, or NULL if there's none.
1936 Returns 0 for success, 1 if the watchpoint type is not supported,
1937 -1 for failure. */
1939 #define target_insert_watchpoint(addr, len, type, cond) \
1940 (*current_target.to_insert_watchpoint) (&current_target, \
1941 addr, len, type, cond)
1943 #define target_remove_watchpoint(addr, len, type, cond) \
1944 (*current_target.to_remove_watchpoint) (&current_target, \
1945 addr, len, type, cond)
1947 /* Insert a new masked watchpoint at ADDR using the mask MASK.
1948 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1949 or hw_access for an access watchpoint. Returns 0 for success, 1 if
1950 masked watchpoints are not supported, -1 for failure. */
1952 extern int target_insert_mask_watchpoint (CORE_ADDR, CORE_ADDR,
1953 enum target_hw_bp_type);
1955 /* Remove a masked watchpoint at ADDR with the mask MASK.
1956 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1957 or hw_access for an access watchpoint. Returns 0 for success, non-zero
1958 for failure. */
1960 extern int target_remove_mask_watchpoint (CORE_ADDR, CORE_ADDR,
1961 enum target_hw_bp_type);
1963 /* Insert a hardware breakpoint at address BP_TGT->placed_address in
1964 the target machine. Returns 0 for success, and returns non-zero or
1965 throws an error (with a detailed failure reason error code and
1966 message) otherwise. */
1968 #define target_insert_hw_breakpoint(gdbarch, bp_tgt) \
1969 (*current_target.to_insert_hw_breakpoint) (&current_target, \
1970 gdbarch, bp_tgt)
1972 #define target_remove_hw_breakpoint(gdbarch, bp_tgt) \
1973 (*current_target.to_remove_hw_breakpoint) (&current_target, \
1974 gdbarch, bp_tgt)
1976 /* Return number of debug registers needed for a ranged breakpoint,
1977 or -1 if ranged breakpoints are not supported. */
1979 extern int target_ranged_break_num_registers (void);
1981 /* Return non-zero if target knows the data address which triggered this
1982 target_stopped_by_watchpoint, in such case place it to *ADDR_P. Only the
1983 INFERIOR_PTID task is being queried. */
1984 #define target_stopped_data_address(target, addr_p) \
1985 (*(target)->to_stopped_data_address) (target, addr_p)
1987 /* Return non-zero if ADDR is within the range of a watchpoint spanning
1988 LENGTH bytes beginning at START. */
1989 #define target_watchpoint_addr_within_range(target, addr, start, length) \
1990 (*(target)->to_watchpoint_addr_within_range) (target, addr, start, length)
1992 /* Return non-zero if the target is capable of using hardware to evaluate
1993 the condition expression. In this case, if the condition is false when
1994 the watched memory location changes, execution may continue without the
1995 debugger being notified.
1997 Due to limitations in the hardware implementation, it may be capable of
1998 avoiding triggering the watchpoint in some cases where the condition
1999 expression is false, but may report some false positives as well.
2000 For this reason, GDB will still evaluate the condition expression when
2001 the watchpoint triggers. */
2002 #define target_can_accel_watchpoint_condition(addr, len, type, cond) \
2003 (*current_target.to_can_accel_watchpoint_condition) (&current_target, \
2004 addr, len, type, cond)
2006 /* Return number of debug registers needed for a masked watchpoint,
2007 -1 if masked watchpoints are not supported or -2 if the given address
2008 and mask combination cannot be used. */
2010 extern int target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask);
2012 /* Target can execute in reverse? */
2013 #define target_can_execute_reverse \
2014 current_target.to_can_execute_reverse (&current_target)
2016 extern const struct target_desc *target_read_description (struct target_ops *);
2018 #define target_get_ada_task_ptid(lwp, tid) \
2019 (*current_target.to_get_ada_task_ptid) (&current_target, lwp,tid)
2021 /* Utility implementation of searching memory. */
2022 extern int simple_search_memory (struct target_ops* ops,
2023 CORE_ADDR start_addr,
2024 ULONGEST search_space_len,
2025 const gdb_byte *pattern,
2026 ULONGEST pattern_len,
2027 CORE_ADDR *found_addrp);
2029 /* Main entry point for searching memory. */
2030 extern int target_search_memory (CORE_ADDR start_addr,
2031 ULONGEST search_space_len,
2032 const gdb_byte *pattern,
2033 ULONGEST pattern_len,
2034 CORE_ADDR *found_addrp);
2036 /* Target file operations. */
2038 /* Return nonzero if the filesystem seen by the current inferior
2039 is the local filesystem, zero otherwise. */
2040 #define target_filesystem_is_local() \
2041 current_target.to_filesystem_is_local (&current_target)
2043 /* Open FILENAME on the target, in the filesystem as seen by INF,
2044 using FLAGS and MODE. If INF is NULL, use the filesystem seen
2045 by the debugger (GDB or, for remote targets, the remote stub).
2046 Return a target file descriptor, or -1 if an error occurs (and
2047 set *TARGET_ERRNO). */
2048 extern int target_fileio_open (struct inferior *inf,
2049 const char *filename, int flags,
2050 int mode, int *target_errno);
2052 /* Like target_fileio_open, but print a warning message if the
2053 file is being accessed over a link that may be slow. */
2054 extern int target_fileio_open_warn_if_slow (struct inferior *inf,
2055 const char *filename,
2056 int flags,
2057 int mode,
2058 int *target_errno);
2060 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
2061 Return the number of bytes written, or -1 if an error occurs
2062 (and set *TARGET_ERRNO). */
2063 extern int target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
2064 ULONGEST offset, int *target_errno);
2066 /* Read up to LEN bytes FD on the target into READ_BUF.
2067 Return the number of bytes read, or -1 if an error occurs
2068 (and set *TARGET_ERRNO). */
2069 extern int target_fileio_pread (int fd, gdb_byte *read_buf, int len,
2070 ULONGEST offset, int *target_errno);
2072 /* Get information about the file opened as FD on the target
2073 and put it in SB. Return 0 on success, or -1 if an error
2074 occurs (and set *TARGET_ERRNO). */
2075 extern int target_fileio_fstat (int fd, struct stat *sb,
2076 int *target_errno);
2078 /* Close FD on the target. Return 0, or -1 if an error occurs
2079 (and set *TARGET_ERRNO). */
2080 extern int target_fileio_close (int fd, int *target_errno);
2082 /* Unlink FILENAME on the target, in the filesystem as seen by INF.
2083 If INF is NULL, use the filesystem seen by the debugger (GDB or,
2084 for remote targets, the remote stub). Return 0, or -1 if an error
2085 occurs (and set *TARGET_ERRNO). */
2086 extern int target_fileio_unlink (struct inferior *inf,
2087 const char *filename,
2088 int *target_errno);
2090 /* Read value of symbolic link FILENAME on the target, in the
2091 filesystem as seen by INF. If INF is NULL, use the filesystem seen
2092 by the debugger (GDB or, for remote targets, the remote stub).
2093 Return a null-terminated string allocated via xmalloc, or NULL if
2094 an error occurs (and set *TARGET_ERRNO). */
2095 extern char *target_fileio_readlink (struct inferior *inf,
2096 const char *filename,
2097 int *target_errno);
2099 /* Read target file FILENAME, in the filesystem as seen by INF. If
2100 INF is NULL, use the filesystem seen by the debugger (GDB or, for
2101 remote targets, the remote stub). The return value will be -1 if
2102 the transfer fails or is not supported; 0 if the object is empty;
2103 or the length of the object otherwise. If a positive value is
2104 returned, a sufficiently large buffer will be allocated using
2105 xmalloc and returned in *BUF_P containing the contents of the
2106 object.
2108 This method should be used for objects sufficiently small to store
2109 in a single xmalloc'd buffer, when no fixed bound on the object's
2110 size is known in advance. */
2111 extern LONGEST target_fileio_read_alloc (struct inferior *inf,
2112 const char *filename,
2113 gdb_byte **buf_p);
2115 /* Read target file FILENAME, in the filesystem as seen by INF. If
2116 INF is NULL, use the filesystem seen by the debugger (GDB or, for
2117 remote targets, the remote stub). The result is NUL-terminated and
2118 returned as a string, allocated using xmalloc. If an error occurs
2119 or the transfer is unsupported, NULL is returned. Empty objects
2120 are returned as allocated but empty strings. A warning is issued
2121 if the result contains any embedded NUL bytes. */
2122 extern gdb::unique_xmalloc_ptr<char> target_fileio_read_stralloc
2123 (struct inferior *inf, const char *filename);
2126 /* Tracepoint-related operations. */
2128 #define target_trace_init() \
2129 (*current_target.to_trace_init) (&current_target)
2131 #define target_download_tracepoint(t) \
2132 (*current_target.to_download_tracepoint) (&current_target, t)
2134 #define target_can_download_tracepoint() \
2135 (*current_target.to_can_download_tracepoint) (&current_target)
2137 #define target_download_trace_state_variable(tsv) \
2138 (*current_target.to_download_trace_state_variable) (&current_target, tsv)
2140 #define target_enable_tracepoint(loc) \
2141 (*current_target.to_enable_tracepoint) (&current_target, loc)
2143 #define target_disable_tracepoint(loc) \
2144 (*current_target.to_disable_tracepoint) (&current_target, loc)
2146 #define target_trace_start() \
2147 (*current_target.to_trace_start) (&current_target)
2149 #define target_trace_set_readonly_regions() \
2150 (*current_target.to_trace_set_readonly_regions) (&current_target)
2152 #define target_get_trace_status(ts) \
2153 (*current_target.to_get_trace_status) (&current_target, ts)
2155 #define target_get_tracepoint_status(tp,utp) \
2156 (*current_target.to_get_tracepoint_status) (&current_target, tp, utp)
2158 #define target_trace_stop() \
2159 (*current_target.to_trace_stop) (&current_target)
2161 #define target_trace_find(type,num,addr1,addr2,tpp) \
2162 (*current_target.to_trace_find) (&current_target, \
2163 (type), (num), (addr1), (addr2), (tpp))
2165 #define target_get_trace_state_variable_value(tsv,val) \
2166 (*current_target.to_get_trace_state_variable_value) (&current_target, \
2167 (tsv), (val))
2169 #define target_save_trace_data(filename) \
2170 (*current_target.to_save_trace_data) (&current_target, filename)
2172 #define target_upload_tracepoints(utpp) \
2173 (*current_target.to_upload_tracepoints) (&current_target, utpp)
2175 #define target_upload_trace_state_variables(utsvp) \
2176 (*current_target.to_upload_trace_state_variables) (&current_target, utsvp)
2178 #define target_get_raw_trace_data(buf,offset,len) \
2179 (*current_target.to_get_raw_trace_data) (&current_target, \
2180 (buf), (offset), (len))
2182 #define target_get_min_fast_tracepoint_insn_len() \
2183 (*current_target.to_get_min_fast_tracepoint_insn_len) (&current_target)
2185 #define target_set_disconnected_tracing(val) \
2186 (*current_target.to_set_disconnected_tracing) (&current_target, val)
2188 #define target_set_circular_trace_buffer(val) \
2189 (*current_target.to_set_circular_trace_buffer) (&current_target, val)
2191 #define target_set_trace_buffer_size(val) \
2192 (*current_target.to_set_trace_buffer_size) (&current_target, val)
2194 #define target_set_trace_notes(user,notes,stopnotes) \
2195 (*current_target.to_set_trace_notes) (&current_target, \
2196 (user), (notes), (stopnotes))
2198 #define target_get_tib_address(ptid, addr) \
2199 (*current_target.to_get_tib_address) (&current_target, (ptid), (addr))
2201 #define target_set_permissions() \
2202 (*current_target.to_set_permissions) (&current_target)
2204 #define target_static_tracepoint_marker_at(addr, marker) \
2205 (*current_target.to_static_tracepoint_marker_at) (&current_target, \
2206 addr, marker)
2208 #define target_static_tracepoint_markers_by_strid(marker_id) \
2209 (*current_target.to_static_tracepoint_markers_by_strid) (&current_target, \
2210 marker_id)
2212 #define target_traceframe_info() \
2213 (*current_target.to_traceframe_info) (&current_target)
2215 #define target_use_agent(use) \
2216 (*current_target.to_use_agent) (&current_target, use)
2218 #define target_can_use_agent() \
2219 (*current_target.to_can_use_agent) (&current_target)
2221 #define target_augmented_libraries_svr4_read() \
2222 (*current_target.to_augmented_libraries_svr4_read) (&current_target)
2224 /* Command logging facility. */
2226 #define target_log_command(p) \
2227 (*current_target.to_log_command) (&current_target, p)
2230 extern int target_core_of_thread (ptid_t ptid);
2232 /* See to_get_unwinder in struct target_ops. */
2233 extern const struct frame_unwind *target_get_unwinder (void);
2235 /* See to_get_tailcall_unwinder in struct target_ops. */
2236 extern const struct frame_unwind *target_get_tailcall_unwinder (void);
2238 /* This implements basic memory verification, reading target memory
2239 and performing the comparison here (as opposed to accelerated
2240 verification making use of the qCRC packet, for example). */
2242 extern int simple_verify_memory (struct target_ops* ops,
2243 const gdb_byte *data,
2244 CORE_ADDR memaddr, ULONGEST size);
2246 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range matches
2247 the contents of [DATA,DATA+SIZE). Returns 1 if there's a match, 0
2248 if there's a mismatch, and -1 if an error is encountered while
2249 reading memory. Throws an error if the functionality is found not
2250 to be supported by the current target. */
2251 int target_verify_memory (const gdb_byte *data,
2252 CORE_ADDR memaddr, ULONGEST size);
2254 /* Routines for maintenance of the target structures...
2256 complete_target_initialization: Finalize a target_ops by filling in
2257 any fields needed by the target implementation. Unnecessary for
2258 targets which are registered via add_target, as this part gets
2259 taken care of then.
2261 add_target: Add a target to the list of all possible targets.
2262 This only makes sense for targets that should be activated using
2263 the "target TARGET_NAME ..." command.
2265 push_target: Make this target the top of the stack of currently used
2266 targets, within its particular stratum of the stack. Result
2267 is 0 if now atop the stack, nonzero if not on top (maybe
2268 should warn user).
2270 unpush_target: Remove this from the stack of currently used targets,
2271 no matter where it is on the list. Returns 0 if no
2272 change, 1 if removed from stack. */
2274 extern void add_target (struct target_ops *);
2276 extern void add_target_with_completer (struct target_ops *t,
2277 completer_ftype *completer);
2279 extern void complete_target_initialization (struct target_ops *t);
2281 /* Adds a command ALIAS for target T and marks it deprecated. This is useful
2282 for maintaining backwards compatibility when renaming targets. */
2284 extern void add_deprecated_target_alias (struct target_ops *t,
2285 const char *alias);
2287 extern void push_target (struct target_ops *);
2289 extern int unpush_target (struct target_ops *);
2291 extern void target_pre_inferior (int);
2293 extern void target_preopen (int);
2295 /* Does whatever cleanup is required to get rid of all pushed targets. */
2296 extern void pop_all_targets (void);
2298 /* Like pop_all_targets, but pops only targets whose stratum is at or
2299 above STRATUM. */
2300 extern void pop_all_targets_at_and_above (enum strata stratum);
2302 /* Like pop_all_targets, but pops only targets whose stratum is
2303 strictly above ABOVE_STRATUM. */
2304 extern void pop_all_targets_above (enum strata above_stratum);
2306 extern int target_is_pushed (struct target_ops *t);
2308 extern CORE_ADDR target_translate_tls_address (struct objfile *objfile,
2309 CORE_ADDR offset);
2311 /* Struct target_section maps address ranges to file sections. It is
2312 mostly used with BFD files, but can be used without (e.g. for handling
2313 raw disks, or files not in formats handled by BFD). */
2315 struct target_section
2317 CORE_ADDR addr; /* Lowest address in section */
2318 CORE_ADDR endaddr; /* 1+highest address in section */
2320 struct bfd_section *the_bfd_section;
2322 /* The "owner" of the section.
2323 It can be any unique value. It is set by add_target_sections
2324 and used by remove_target_sections.
2325 For example, for executables it is a pointer to exec_bfd and
2326 for shlibs it is the so_list pointer. */
2327 void *owner;
2330 /* Holds an array of target sections. Defined by [SECTIONS..SECTIONS_END[. */
2332 struct target_section_table
2334 struct target_section *sections;
2335 struct target_section *sections_end;
2338 /* Return the "section" containing the specified address. */
2339 struct target_section *target_section_by_addr (struct target_ops *target,
2340 CORE_ADDR addr);
2342 /* Return the target section table this target (or the targets
2343 beneath) currently manipulate. */
2345 extern struct target_section_table *target_get_section_table
2346 (struct target_ops *target);
2348 /* From mem-break.c */
2350 extern int memory_remove_breakpoint (struct target_ops *, struct gdbarch *,
2351 struct bp_target_info *,
2352 enum remove_bp_reason);
2354 extern int memory_insert_breakpoint (struct target_ops *, struct gdbarch *,
2355 struct bp_target_info *);
2357 /* Check whether the memory at the breakpoint's placed address still
2358 contains the expected breakpoint instruction. */
2360 extern int memory_validate_breakpoint (struct gdbarch *gdbarch,
2361 struct bp_target_info *bp_tgt);
2363 extern int default_memory_remove_breakpoint (struct gdbarch *,
2364 struct bp_target_info *);
2366 extern int default_memory_insert_breakpoint (struct gdbarch *,
2367 struct bp_target_info *);
2370 /* From target.c */
2372 extern void initialize_targets (void);
2374 extern void noprocess (void) ATTRIBUTE_NORETURN;
2376 extern void target_require_runnable (void);
2378 extern struct target_ops *find_target_beneath (struct target_ops *);
2380 /* Find the target at STRATUM. If no target is at that stratum,
2381 return NULL. */
2383 struct target_ops *find_target_at (enum strata stratum);
2385 /* Read OS data object of type TYPE from the target, and return it in
2386 XML format. The result is NUL-terminated and returned as a string.
2387 If an error occurs or the transfer is unsupported, NULL is
2388 returned. Empty objects are returned as allocated but empty
2389 strings. */
2391 extern gdb::unique_xmalloc_ptr<char> target_get_osdata (const char *type);
2394 /* Stuff that should be shared among the various remote targets. */
2396 /* Debugging level. 0 is off, and non-zero values mean to print some debug
2397 information (higher values, more information). */
2398 extern int remote_debug;
2400 /* Speed in bits per second, or -1 which means don't mess with the speed. */
2401 extern int baud_rate;
2403 /* Parity for serial port */
2404 extern int serial_parity;
2406 /* Timeout limit for response from target. */
2407 extern int remote_timeout;
2411 /* Set the show memory breakpoints mode to show, and return a
2412 scoped_restore to restore it back to the current value. */
2413 extern scoped_restore_tmpl<int>
2414 make_scoped_restore_show_memory_breakpoints (int show);
2416 extern int may_write_registers;
2417 extern int may_write_memory;
2418 extern int may_insert_breakpoints;
2419 extern int may_insert_tracepoints;
2420 extern int may_insert_fast_tracepoints;
2421 extern int may_stop;
2423 extern void update_target_permissions (void);
2426 /* Imported from machine dependent code. */
2428 /* See to_supports_btrace in struct target_ops. */
2429 extern int target_supports_btrace (enum btrace_format);
2431 /* See to_enable_btrace in struct target_ops. */
2432 extern struct btrace_target_info *
2433 target_enable_btrace (ptid_t ptid, const struct btrace_config *);
2435 /* See to_disable_btrace in struct target_ops. */
2436 extern void target_disable_btrace (struct btrace_target_info *btinfo);
2438 /* See to_teardown_btrace in struct target_ops. */
2439 extern void target_teardown_btrace (struct btrace_target_info *btinfo);
2441 /* See to_read_btrace in struct target_ops. */
2442 extern enum btrace_error target_read_btrace (struct btrace_data *,
2443 struct btrace_target_info *,
2444 enum btrace_read_type);
2446 /* See to_btrace_conf in struct target_ops. */
2447 extern const struct btrace_config *
2448 target_btrace_conf (const struct btrace_target_info *);
2450 /* See to_stop_recording in struct target_ops. */
2451 extern void target_stop_recording (void);
2453 /* See to_save_record in struct target_ops. */
2454 extern void target_save_record (const char *filename);
2456 /* Query if the target supports deleting the execution log. */
2457 extern int target_supports_delete_record (void);
2459 /* See to_delete_record in struct target_ops. */
2460 extern void target_delete_record (void);
2462 /* See to_record_method. */
2463 extern enum record_method target_record_method (ptid_t ptid);
2465 /* See to_record_is_replaying in struct target_ops. */
2466 extern int target_record_is_replaying (ptid_t ptid);
2468 /* See to_record_will_replay in struct target_ops. */
2469 extern int target_record_will_replay (ptid_t ptid, int dir);
2471 /* See to_record_stop_replaying in struct target_ops. */
2472 extern void target_record_stop_replaying (void);
2474 /* See to_goto_record_begin in struct target_ops. */
2475 extern void target_goto_record_begin (void);
2477 /* See to_goto_record_end in struct target_ops. */
2478 extern void target_goto_record_end (void);
2480 /* See to_goto_record in struct target_ops. */
2481 extern void target_goto_record (ULONGEST insn);
2483 /* See to_insn_history. */
2484 extern void target_insn_history (int size, gdb_disassembly_flags flags);
2486 /* See to_insn_history_from. */
2487 extern void target_insn_history_from (ULONGEST from, int size,
2488 gdb_disassembly_flags flags);
2490 /* See to_insn_history_range. */
2491 extern void target_insn_history_range (ULONGEST begin, ULONGEST end,
2492 gdb_disassembly_flags flags);
2494 /* See to_call_history. */
2495 extern void target_call_history (int size, int flags);
2497 /* See to_call_history_from. */
2498 extern void target_call_history_from (ULONGEST begin, int size, int flags);
2500 /* See to_call_history_range. */
2501 extern void target_call_history_range (ULONGEST begin, ULONGEST end, int flags);
2503 /* See to_prepare_to_generate_core. */
2504 extern void target_prepare_to_generate_core (void);
2506 /* See to_done_generating_core. */
2507 extern void target_done_generating_core (void);
2509 #if GDB_SELF_TEST
2510 namespace selftests {
2512 /* A mock process_stratum target_ops that doesn't read/write registers
2513 anywhere. */
2515 class test_target_ops : public target_ops
2517 public:
2518 test_target_ops ();
2520 } // namespace selftests
2521 #endif /* GDB_SELF_TEST */
2523 #endif /* !defined (TARGET_H) */