1 /* tc-arm.c -- Assemble for the ARM
2 Copyright (C) 1994-2019 Free Software Foundation, Inc.
3 Contributed by Richard Earnshaw (rwe@pegasus.esprit.ec.org)
4 Modified by David Taylor (dtaylor@armltd.co.uk)
5 Cirrus coprocessor mods by Aldy Hernandez (aldyh@redhat.com)
6 Cirrus coprocessor fixes by Petko Manolov (petkan@nucleusys.com)
7 Cirrus coprocessor fixes by Vladimir Ivanov (vladitx@nucleusys.com)
9 This file is part of GAS, the GNU Assembler.
11 GAS is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3, or (at your option)
16 GAS is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
21 You should have received a copy of the GNU General Public License
22 along with GAS; see the file COPYING. If not, write to the Free
23 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
30 #include "safe-ctype.h"
33 #include "libiberty.h"
34 #include "opcode/arm.h"
38 #include "dw2gencfi.h"
41 #include "dwarf2dbg.h"
44 /* Must be at least the size of the largest unwind opcode (currently two). */
45 #define ARM_OPCODE_CHUNK_SIZE 8
47 /* This structure holds the unwinding state. */
52 symbolS
* table_entry
;
53 symbolS
* personality_routine
;
54 int personality_index
;
55 /* The segment containing the function. */
58 /* Opcodes generated from this function. */
59 unsigned char * opcodes
;
62 /* The number of bytes pushed to the stack. */
64 /* We don't add stack adjustment opcodes immediately so that we can merge
65 multiple adjustments. We can also omit the final adjustment
66 when using a frame pointer. */
67 offsetT pending_offset
;
68 /* These two fields are set by both unwind_movsp and unwind_setfp. They
69 hold the reg+offset to use when restoring sp from a frame pointer. */
72 /* Nonzero if an unwind_setfp directive has been seen. */
74 /* Nonzero if the last opcode restores sp from fp_reg. */
75 unsigned sp_restored
:1;
78 /* Whether --fdpic was given. */
83 /* Results from operand parsing worker functions. */
87 PARSE_OPERAND_SUCCESS
,
89 PARSE_OPERAND_FAIL_NO_BACKTRACK
90 } parse_operand_result
;
99 /* Types of processor to assemble for. */
101 /* The code that was here used to select a default CPU depending on compiler
102 pre-defines which were only present when doing native builds, thus
103 changing gas' default behaviour depending upon the build host.
105 If you have a target that requires a default CPU option then the you
106 should define CPU_DEFAULT here. */
111 # define FPU_DEFAULT FPU_ARCH_FPA
112 # elif defined (TE_NetBSD)
114 # define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, but VFP order. */
116 /* Legacy a.out format. */
117 # define FPU_DEFAULT FPU_ARCH_FPA /* Soft-float, but FPA order. */
119 # elif defined (TE_VXWORKS)
120 # define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, VFP order. */
122 /* For backwards compatibility, default to FPA. */
123 # define FPU_DEFAULT FPU_ARCH_FPA
125 #endif /* ifndef FPU_DEFAULT */
127 #define streq(a, b) (strcmp (a, b) == 0)
129 /* Current set of feature bits available (CPU+FPU). Different from
130 selected_cpu + selected_fpu in case of autodetection since the CPU
131 feature bits are then all set. */
132 static arm_feature_set cpu_variant
;
133 /* Feature bits used in each execution state. Used to set build attribute
134 (in particular Tag_*_ISA_use) in CPU autodetection mode. */
135 static arm_feature_set arm_arch_used
;
136 static arm_feature_set thumb_arch_used
;
138 /* Flags stored in private area of BFD structure. */
139 static int uses_apcs_26
= FALSE
;
140 static int atpcs
= FALSE
;
141 static int support_interwork
= FALSE
;
142 static int uses_apcs_float
= FALSE
;
143 static int pic_code
= FALSE
;
144 static int fix_v4bx
= FALSE
;
145 /* Warn on using deprecated features. */
146 static int warn_on_deprecated
= TRUE
;
148 /* Understand CodeComposer Studio assembly syntax. */
149 bfd_boolean codecomposer_syntax
= FALSE
;
151 /* Variables that we set while parsing command-line options. Once all
152 options have been read we re-process these values to set the real
155 /* CPU and FPU feature bits set for legacy CPU and FPU options (eg. -marm1
156 instead of -mcpu=arm1). */
157 static const arm_feature_set
*legacy_cpu
= NULL
;
158 static const arm_feature_set
*legacy_fpu
= NULL
;
160 /* CPU, extension and FPU feature bits selected by -mcpu. */
161 static const arm_feature_set
*mcpu_cpu_opt
= NULL
;
162 static arm_feature_set
*mcpu_ext_opt
= NULL
;
163 static const arm_feature_set
*mcpu_fpu_opt
= NULL
;
165 /* CPU, extension and FPU feature bits selected by -march. */
166 static const arm_feature_set
*march_cpu_opt
= NULL
;
167 static arm_feature_set
*march_ext_opt
= NULL
;
168 static const arm_feature_set
*march_fpu_opt
= NULL
;
170 /* Feature bits selected by -mfpu. */
171 static const arm_feature_set
*mfpu_opt
= NULL
;
173 /* Constants for known architecture features. */
174 static const arm_feature_set fpu_default
= FPU_DEFAULT
;
175 static const arm_feature_set fpu_arch_vfp_v1 ATTRIBUTE_UNUSED
= FPU_ARCH_VFP_V1
;
176 static const arm_feature_set fpu_arch_vfp_v2
= FPU_ARCH_VFP_V2
;
177 static const arm_feature_set fpu_arch_vfp_v3 ATTRIBUTE_UNUSED
= FPU_ARCH_VFP_V3
;
178 static const arm_feature_set fpu_arch_neon_v1 ATTRIBUTE_UNUSED
= FPU_ARCH_NEON_V1
;
179 static const arm_feature_set fpu_arch_fpa
= FPU_ARCH_FPA
;
180 static const arm_feature_set fpu_any_hard
= FPU_ANY_HARD
;
182 static const arm_feature_set fpu_arch_maverick
= FPU_ARCH_MAVERICK
;
184 static const arm_feature_set fpu_endian_pure
= FPU_ARCH_ENDIAN_PURE
;
187 static const arm_feature_set cpu_default
= CPU_DEFAULT
;
190 static const arm_feature_set arm_ext_v1
= ARM_FEATURE_CORE_LOW (ARM_EXT_V1
);
191 static const arm_feature_set arm_ext_v2
= ARM_FEATURE_CORE_LOW (ARM_EXT_V2
);
192 static const arm_feature_set arm_ext_v2s
= ARM_FEATURE_CORE_LOW (ARM_EXT_V2S
);
193 static const arm_feature_set arm_ext_v3
= ARM_FEATURE_CORE_LOW (ARM_EXT_V3
);
194 static const arm_feature_set arm_ext_v3m
= ARM_FEATURE_CORE_LOW (ARM_EXT_V3M
);
195 static const arm_feature_set arm_ext_v4
= ARM_FEATURE_CORE_LOW (ARM_EXT_V4
);
196 static const arm_feature_set arm_ext_v4t
= ARM_FEATURE_CORE_LOW (ARM_EXT_V4T
);
197 static const arm_feature_set arm_ext_v5
= ARM_FEATURE_CORE_LOW (ARM_EXT_V5
);
198 static const arm_feature_set arm_ext_v4t_5
=
199 ARM_FEATURE_CORE_LOW (ARM_EXT_V4T
| ARM_EXT_V5
);
200 static const arm_feature_set arm_ext_v5t
= ARM_FEATURE_CORE_LOW (ARM_EXT_V5T
);
201 static const arm_feature_set arm_ext_v5e
= ARM_FEATURE_CORE_LOW (ARM_EXT_V5E
);
202 static const arm_feature_set arm_ext_v5exp
= ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP
);
203 static const arm_feature_set arm_ext_v5j
= ARM_FEATURE_CORE_LOW (ARM_EXT_V5J
);
204 static const arm_feature_set arm_ext_v6
= ARM_FEATURE_CORE_LOW (ARM_EXT_V6
);
205 static const arm_feature_set arm_ext_v6k
= ARM_FEATURE_CORE_LOW (ARM_EXT_V6K
);
206 static const arm_feature_set arm_ext_v6t2
= ARM_FEATURE_CORE_LOW (ARM_EXT_V6T2
);
207 /* Only for compatability of hint instructions. */
208 static const arm_feature_set arm_ext_v6k_v6t2
=
209 ARM_FEATURE_CORE_LOW (ARM_EXT_V6K
| ARM_EXT_V6T2
);
210 static const arm_feature_set arm_ext_v6_notm
=
211 ARM_FEATURE_CORE_LOW (ARM_EXT_V6_NOTM
);
212 static const arm_feature_set arm_ext_v6_dsp
=
213 ARM_FEATURE_CORE_LOW (ARM_EXT_V6_DSP
);
214 static const arm_feature_set arm_ext_barrier
=
215 ARM_FEATURE_CORE_LOW (ARM_EXT_BARRIER
);
216 static const arm_feature_set arm_ext_msr
=
217 ARM_FEATURE_CORE_LOW (ARM_EXT_THUMB_MSR
);
218 static const arm_feature_set arm_ext_div
= ARM_FEATURE_CORE_LOW (ARM_EXT_DIV
);
219 static const arm_feature_set arm_ext_v7
= ARM_FEATURE_CORE_LOW (ARM_EXT_V7
);
220 static const arm_feature_set arm_ext_v7a
= ARM_FEATURE_CORE_LOW (ARM_EXT_V7A
);
221 static const arm_feature_set arm_ext_v7r
= ARM_FEATURE_CORE_LOW (ARM_EXT_V7R
);
223 static const arm_feature_set ATTRIBUTE_UNUSED arm_ext_v7m
= ARM_FEATURE_CORE_LOW (ARM_EXT_V7M
);
225 static const arm_feature_set arm_ext_v8
= ARM_FEATURE_CORE_LOW (ARM_EXT_V8
);
226 static const arm_feature_set arm_ext_m
=
227 ARM_FEATURE_CORE (ARM_EXT_V6M
| ARM_EXT_V7M
,
228 ARM_EXT2_V8M
| ARM_EXT2_V8M_MAIN
);
229 static const arm_feature_set arm_ext_mp
= ARM_FEATURE_CORE_LOW (ARM_EXT_MP
);
230 static const arm_feature_set arm_ext_sec
= ARM_FEATURE_CORE_LOW (ARM_EXT_SEC
);
231 static const arm_feature_set arm_ext_os
= ARM_FEATURE_CORE_LOW (ARM_EXT_OS
);
232 static const arm_feature_set arm_ext_adiv
= ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV
);
233 static const arm_feature_set arm_ext_virt
= ARM_FEATURE_CORE_LOW (ARM_EXT_VIRT
);
234 static const arm_feature_set arm_ext_pan
= ARM_FEATURE_CORE_HIGH (ARM_EXT2_PAN
);
235 static const arm_feature_set arm_ext_v8m
= ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8M
);
236 static const arm_feature_set arm_ext_v8m_main
=
237 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8M_MAIN
);
238 static const arm_feature_set arm_ext_v8_1m_main
=
239 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8_1M_MAIN
);
240 /* Instructions in ARMv8-M only found in M profile architectures. */
241 static const arm_feature_set arm_ext_v8m_m_only
=
242 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8M
| ARM_EXT2_V8M_MAIN
);
243 static const arm_feature_set arm_ext_v6t2_v8m
=
244 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V6T2_V8M
);
245 /* Instructions shared between ARMv8-A and ARMv8-M. */
246 static const arm_feature_set arm_ext_atomics
=
247 ARM_FEATURE_CORE_HIGH (ARM_EXT2_ATOMICS
);
249 /* DSP instructions Tag_DSP_extension refers to. */
250 static const arm_feature_set arm_ext_dsp
=
251 ARM_FEATURE_CORE_LOW (ARM_EXT_V5E
| ARM_EXT_V5ExP
| ARM_EXT_V6_DSP
);
253 static const arm_feature_set arm_ext_ras
=
254 ARM_FEATURE_CORE_HIGH (ARM_EXT2_RAS
);
255 /* FP16 instructions. */
256 static const arm_feature_set arm_ext_fp16
=
257 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST
);
258 static const arm_feature_set arm_ext_fp16_fml
=
259 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_FML
);
260 static const arm_feature_set arm_ext_v8_2
=
261 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8_2A
);
262 static const arm_feature_set arm_ext_v8_3
=
263 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8_3A
);
264 static const arm_feature_set arm_ext_sb
=
265 ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB
);
266 static const arm_feature_set arm_ext_predres
=
267 ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES
);
269 static const arm_feature_set arm_arch_any
= ARM_ANY
;
271 static const arm_feature_set fpu_any
= FPU_ANY
;
273 static const arm_feature_set arm_arch_full ATTRIBUTE_UNUSED
= ARM_FEATURE (-1, -1, -1);
274 static const arm_feature_set arm_arch_t2
= ARM_ARCH_THUMB2
;
275 static const arm_feature_set arm_arch_none
= ARM_ARCH_NONE
;
277 static const arm_feature_set arm_cext_iwmmxt2
=
278 ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT2
);
279 static const arm_feature_set arm_cext_iwmmxt
=
280 ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT
);
281 static const arm_feature_set arm_cext_xscale
=
282 ARM_FEATURE_COPROC (ARM_CEXT_XSCALE
);
283 static const arm_feature_set arm_cext_maverick
=
284 ARM_FEATURE_COPROC (ARM_CEXT_MAVERICK
);
285 static const arm_feature_set fpu_fpa_ext_v1
=
286 ARM_FEATURE_COPROC (FPU_FPA_EXT_V1
);
287 static const arm_feature_set fpu_fpa_ext_v2
=
288 ARM_FEATURE_COPROC (FPU_FPA_EXT_V2
);
289 static const arm_feature_set fpu_vfp_ext_v1xd
=
290 ARM_FEATURE_COPROC (FPU_VFP_EXT_V1xD
);
291 static const arm_feature_set fpu_vfp_ext_v1
=
292 ARM_FEATURE_COPROC (FPU_VFP_EXT_V1
);
293 static const arm_feature_set fpu_vfp_ext_v2
=
294 ARM_FEATURE_COPROC (FPU_VFP_EXT_V2
);
295 static const arm_feature_set fpu_vfp_ext_v3xd
=
296 ARM_FEATURE_COPROC (FPU_VFP_EXT_V3xD
);
297 static const arm_feature_set fpu_vfp_ext_v3
=
298 ARM_FEATURE_COPROC (FPU_VFP_EXT_V3
);
299 static const arm_feature_set fpu_vfp_ext_d32
=
300 ARM_FEATURE_COPROC (FPU_VFP_EXT_D32
);
301 static const arm_feature_set fpu_neon_ext_v1
=
302 ARM_FEATURE_COPROC (FPU_NEON_EXT_V1
);
303 static const arm_feature_set fpu_vfp_v3_or_neon_ext
=
304 ARM_FEATURE_COPROC (FPU_NEON_EXT_V1
| FPU_VFP_EXT_V3
);
305 static const arm_feature_set mve_ext
=
306 ARM_FEATURE_COPROC (FPU_MVE
);
307 static const arm_feature_set mve_fp_ext
=
308 ARM_FEATURE_COPROC (FPU_MVE_FP
);
310 static const arm_feature_set fpu_vfp_fp16
=
311 ARM_FEATURE_COPROC (FPU_VFP_EXT_FP16
);
312 static const arm_feature_set fpu_neon_ext_fma
=
313 ARM_FEATURE_COPROC (FPU_NEON_EXT_FMA
);
315 static const arm_feature_set fpu_vfp_ext_fma
=
316 ARM_FEATURE_COPROC (FPU_VFP_EXT_FMA
);
317 static const arm_feature_set fpu_vfp_ext_armv8
=
318 ARM_FEATURE_COPROC (FPU_VFP_EXT_ARMV8
);
319 static const arm_feature_set fpu_vfp_ext_armv8xd
=
320 ARM_FEATURE_COPROC (FPU_VFP_EXT_ARMV8xD
);
321 static const arm_feature_set fpu_neon_ext_armv8
=
322 ARM_FEATURE_COPROC (FPU_NEON_EXT_ARMV8
);
323 static const arm_feature_set fpu_crypto_ext_armv8
=
324 ARM_FEATURE_COPROC (FPU_CRYPTO_EXT_ARMV8
);
325 static const arm_feature_set crc_ext_armv8
=
326 ARM_FEATURE_COPROC (CRC_EXT_ARMV8
);
327 static const arm_feature_set fpu_neon_ext_v8_1
=
328 ARM_FEATURE_COPROC (FPU_NEON_EXT_RDMA
);
329 static const arm_feature_set fpu_neon_ext_dotprod
=
330 ARM_FEATURE_COPROC (FPU_NEON_EXT_DOTPROD
);
332 static int mfloat_abi_opt
= -1;
333 /* Architecture feature bits selected by the last -mcpu/-march or .cpu/.arch
335 static arm_feature_set selected_arch
= ARM_ARCH_NONE
;
336 /* Extension feature bits selected by the last -mcpu/-march or .arch_extension
338 static arm_feature_set selected_ext
= ARM_ARCH_NONE
;
339 /* Feature bits selected by the last -mcpu/-march or by the combination of the
340 last .cpu/.arch directive .arch_extension directives since that
342 static arm_feature_set selected_cpu
= ARM_ARCH_NONE
;
343 /* FPU feature bits selected by the last -mfpu or .fpu directive. */
344 static arm_feature_set selected_fpu
= FPU_NONE
;
345 /* Feature bits selected by the last .object_arch directive. */
346 static arm_feature_set selected_object_arch
= ARM_ARCH_NONE
;
347 /* Must be long enough to hold any of the names in arm_cpus. */
348 static char selected_cpu_name
[20];
350 extern FLONUM_TYPE generic_floating_point_number
;
352 /* Return if no cpu was selected on command-line. */
354 no_cpu_selected (void)
356 return ARM_FEATURE_EQUAL (selected_cpu
, arm_arch_none
);
361 static int meabi_flags
= EABI_DEFAULT
;
363 static int meabi_flags
= EF_ARM_EABI_UNKNOWN
;
366 static int attributes_set_explicitly
[NUM_KNOWN_OBJ_ATTRIBUTES
];
371 return (EF_ARM_EABI_VERSION (meabi_flags
) >= EF_ARM_EABI_VER4
);
376 /* Pre-defined "_GLOBAL_OFFSET_TABLE_" */
377 symbolS
* GOT_symbol
;
380 /* 0: assemble for ARM,
381 1: assemble for Thumb,
382 2: assemble for Thumb even though target CPU does not support thumb
384 static int thumb_mode
= 0;
385 /* A value distinct from the possible values for thumb_mode that we
386 can use to record whether thumb_mode has been copied into the
387 tc_frag_data field of a frag. */
388 #define MODE_RECORDED (1 << 4)
390 /* Specifies the intrinsic IT insn behavior mode. */
391 enum implicit_it_mode
393 IMPLICIT_IT_MODE_NEVER
= 0x00,
394 IMPLICIT_IT_MODE_ARM
= 0x01,
395 IMPLICIT_IT_MODE_THUMB
= 0x02,
396 IMPLICIT_IT_MODE_ALWAYS
= (IMPLICIT_IT_MODE_ARM
| IMPLICIT_IT_MODE_THUMB
)
398 static int implicit_it_mode
= IMPLICIT_IT_MODE_ARM
;
400 /* If unified_syntax is true, we are processing the new unified
401 ARM/Thumb syntax. Important differences from the old ARM mode:
403 - Immediate operands do not require a # prefix.
404 - Conditional affixes always appear at the end of the
405 instruction. (For backward compatibility, those instructions
406 that formerly had them in the middle, continue to accept them
408 - The IT instruction may appear, and if it does is validated
409 against subsequent conditional affixes. It does not generate
412 Important differences from the old Thumb mode:
414 - Immediate operands do not require a # prefix.
415 - Most of the V6T2 instructions are only available in unified mode.
416 - The .N and .W suffixes are recognized and honored (it is an error
417 if they cannot be honored).
418 - All instructions set the flags if and only if they have an 's' affix.
419 - Conditional affixes may be used. They are validated against
420 preceding IT instructions. Unlike ARM mode, you cannot use a
421 conditional affix except in the scope of an IT instruction. */
423 static bfd_boolean unified_syntax
= FALSE
;
425 /* An immediate operand can start with #, and ld*, st*, pld operands
426 can contain [ and ]. We need to tell APP not to elide whitespace
427 before a [, which can appear as the first operand for pld.
428 Likewise, a { can appear as the first operand for push, pop, vld*, etc. */
429 const char arm_symbol_chars
[] = "#[]{}";
444 enum neon_el_type type
;
448 #define NEON_MAX_TYPE_ELS 4
452 struct neon_type_el el
[NEON_MAX_TYPE_ELS
];
456 enum pred_instruction_type
462 IF_INSIDE_IT_LAST_INSN
, /* Either outside or inside;
463 if inside, should be the last one. */
464 NEUTRAL_IT_INSN
, /* This could be either inside or outside,
465 i.e. BKPT and NOP. */
466 IT_INSN
, /* The IT insn has been parsed. */
467 VPT_INSN
, /* The VPT/VPST insn has been parsed. */
468 MVE_OUTSIDE_PRED_INSN
, /* Instruction to indicate a MVE instruction without
469 a predication code. */
470 MVE_UNPREDICABLE_INSN
/* MVE instruction that is non-predicable. */
473 /* The maximum number of operands we need. */
474 #define ARM_IT_MAX_OPERANDS 6
475 #define ARM_IT_MAX_RELOCS 3
480 unsigned long instruction
;
484 /* "uncond_value" is set to the value in place of the conditional field in
485 unconditional versions of the instruction, or -1 if nothing is
488 struct neon_type vectype
;
489 /* This does not indicate an actual NEON instruction, only that
490 the mnemonic accepts neon-style type suffixes. */
492 /* Set to the opcode if the instruction needs relaxation.
493 Zero if the instruction is not relaxed. */
497 bfd_reloc_code_real_type type
;
500 } relocs
[ARM_IT_MAX_RELOCS
];
502 enum pred_instruction_type pred_insn_type
;
508 struct neon_type_el vectype
;
509 unsigned present
: 1; /* Operand present. */
510 unsigned isreg
: 1; /* Operand was a register. */
511 unsigned immisreg
: 2; /* .imm field is a second register.
512 0: imm, 1: gpr, 2: MVE Q-register. */
513 unsigned isscalar
: 2; /* Operand is a (SIMD) scalar:
517 unsigned immisalign
: 1; /* Immediate is an alignment specifier. */
518 unsigned immisfloat
: 1; /* Immediate was parsed as a float. */
519 /* Note: we abuse "regisimm" to mean "is Neon register" in VMOV
520 instructions. This allows us to disambiguate ARM <-> vector insns. */
521 unsigned regisimm
: 1; /* 64-bit immediate, reg forms high 32 bits. */
522 unsigned isvec
: 1; /* Is a single, double or quad VFP/Neon reg. */
523 unsigned isquad
: 1; /* Operand is SIMD quad register. */
524 unsigned issingle
: 1; /* Operand is VFP single-precision register. */
525 unsigned iszr
: 1; /* Operand is ZR register. */
526 unsigned hasreloc
: 1; /* Operand has relocation suffix. */
527 unsigned writeback
: 1; /* Operand has trailing ! */
528 unsigned preind
: 1; /* Preindexed address. */
529 unsigned postind
: 1; /* Postindexed address. */
530 unsigned negative
: 1; /* Index register was negated. */
531 unsigned shifted
: 1; /* Shift applied to operation. */
532 unsigned shift_kind
: 3; /* Shift operation (enum shift_kind). */
533 } operands
[ARM_IT_MAX_OPERANDS
];
536 static struct arm_it inst
;
538 #define NUM_FLOAT_VALS 8
540 const char * fp_const
[] =
542 "0.0", "1.0", "2.0", "3.0", "4.0", "5.0", "0.5", "10.0", 0
545 LITTLENUM_TYPE fp_values
[NUM_FLOAT_VALS
][MAX_LITTLENUMS
];
555 #define CP_T_X 0x00008000
556 #define CP_T_Y 0x00400000
558 #define CONDS_BIT 0x00100000
559 #define LOAD_BIT 0x00100000
561 #define DOUBLE_LOAD_FLAG 0x00000001
565 const char * template_name
;
569 #define COND_ALWAYS 0xE
573 const char * template_name
;
577 struct asm_barrier_opt
579 const char * template_name
;
581 const arm_feature_set arch
;
584 /* The bit that distinguishes CPSR and SPSR. */
585 #define SPSR_BIT (1 << 22)
587 /* The individual PSR flag bits. */
588 #define PSR_c (1 << 16)
589 #define PSR_x (1 << 17)
590 #define PSR_s (1 << 18)
591 #define PSR_f (1 << 19)
596 bfd_reloc_code_real_type reloc
;
601 VFP_REG_Sd
, VFP_REG_Sm
, VFP_REG_Sn
,
602 VFP_REG_Dd
, VFP_REG_Dm
, VFP_REG_Dn
607 VFP_LDSTMIA
, VFP_LDSTMDB
, VFP_LDSTMIAX
, VFP_LDSTMDBX
610 /* Bits for DEFINED field in neon_typed_alias. */
611 #define NTA_HASTYPE 1
612 #define NTA_HASINDEX 2
614 struct neon_typed_alias
616 unsigned char defined
;
618 struct neon_type_el eltype
;
621 /* ARM register categories. This includes coprocessor numbers and various
622 architecture extensions' registers. Each entry should have an error message
623 in reg_expected_msgs below. */
653 /* Structure for a hash table entry for a register.
654 If TYPE is REG_TYPE_VFD or REG_TYPE_NQ, the NEON field can point to extra
655 information which states whether a vector type or index is specified (for a
656 register alias created with .dn or .qn). Otherwise NEON should be NULL. */
662 unsigned char builtin
;
663 struct neon_typed_alias
* neon
;
666 /* Diagnostics used when we don't get a register of the expected type. */
667 const char * const reg_expected_msgs
[] =
669 [REG_TYPE_RN
] = N_("ARM register expected"),
670 [REG_TYPE_CP
] = N_("bad or missing co-processor number"),
671 [REG_TYPE_CN
] = N_("co-processor register expected"),
672 [REG_TYPE_FN
] = N_("FPA register expected"),
673 [REG_TYPE_VFS
] = N_("VFP single precision register expected"),
674 [REG_TYPE_VFD
] = N_("VFP/Neon double precision register expected"),
675 [REG_TYPE_NQ
] = N_("Neon quad precision register expected"),
676 [REG_TYPE_VFSD
] = N_("VFP single or double precision register expected"),
677 [REG_TYPE_NDQ
] = N_("Neon double or quad precision register expected"),
678 [REG_TYPE_NSD
] = N_("Neon single or double precision register expected"),
679 [REG_TYPE_NSDQ
] = N_("VFP single, double or Neon quad precision register"
681 [REG_TYPE_VFC
] = N_("VFP system register expected"),
682 [REG_TYPE_MVF
] = N_("Maverick MVF register expected"),
683 [REG_TYPE_MVD
] = N_("Maverick MVD register expected"),
684 [REG_TYPE_MVFX
] = N_("Maverick MVFX register expected"),
685 [REG_TYPE_MVDX
] = N_("Maverick MVDX register expected"),
686 [REG_TYPE_MVAX
] = N_("Maverick MVAX register expected"),
687 [REG_TYPE_DSPSC
] = N_("Maverick DSPSC register expected"),
688 [REG_TYPE_MMXWR
] = N_("iWMMXt data register expected"),
689 [REG_TYPE_MMXWC
] = N_("iWMMXt control register expected"),
690 [REG_TYPE_MMXWCG
] = N_("iWMMXt scalar register expected"),
691 [REG_TYPE_XSCALE
] = N_("XScale accumulator register expected"),
692 [REG_TYPE_MQ
] = N_("MVE vector register expected"),
693 [REG_TYPE_RNB
] = N_("")
696 /* Some well known registers that we refer to directly elsewhere. */
702 /* ARM instructions take 4bytes in the object file, Thumb instructions
708 /* Basic string to match. */
709 const char * template_name
;
711 /* Parameters to instruction. */
712 unsigned int operands
[8];
714 /* Conditional tag - see opcode_lookup. */
715 unsigned int tag
: 4;
717 /* Basic instruction code. */
720 /* Thumb-format instruction code. */
723 /* Which architecture variant provides this instruction. */
724 const arm_feature_set
* avariant
;
725 const arm_feature_set
* tvariant
;
727 /* Function to call to encode instruction in ARM format. */
728 void (* aencode
) (void);
730 /* Function to call to encode instruction in Thumb format. */
731 void (* tencode
) (void);
733 /* Indicates whether this instruction may be vector predicated. */
734 unsigned int mayBeVecPred
: 1;
737 /* Defines for various bits that we will want to toggle. */
738 #define INST_IMMEDIATE 0x02000000
739 #define OFFSET_REG 0x02000000
740 #define HWOFFSET_IMM 0x00400000
741 #define SHIFT_BY_REG 0x00000010
742 #define PRE_INDEX 0x01000000
743 #define INDEX_UP 0x00800000
744 #define WRITE_BACK 0x00200000
745 #define LDM_TYPE_2_OR_3 0x00400000
746 #define CPSI_MMOD 0x00020000
748 #define LITERAL_MASK 0xf000f000
749 #define OPCODE_MASK 0xfe1fffff
750 #define V4_STR_BIT 0x00000020
751 #define VLDR_VMOV_SAME 0x0040f000
753 #define T2_SUBS_PC_LR 0xf3de8f00
755 #define DATA_OP_SHIFT 21
756 #define SBIT_SHIFT 20
758 #define T2_OPCODE_MASK 0xfe1fffff
759 #define T2_DATA_OP_SHIFT 21
760 #define T2_SBIT_SHIFT 20
762 #define A_COND_MASK 0xf0000000
763 #define A_PUSH_POP_OP_MASK 0x0fff0000
765 /* Opcodes for pushing/poping registers to/from the stack. */
766 #define A1_OPCODE_PUSH 0x092d0000
767 #define A2_OPCODE_PUSH 0x052d0004
768 #define A2_OPCODE_POP 0x049d0004
770 /* Codes to distinguish the arithmetic instructions. */
781 #define OPCODE_CMP 10
782 #define OPCODE_CMN 11
783 #define OPCODE_ORR 12
784 #define OPCODE_MOV 13
785 #define OPCODE_BIC 14
786 #define OPCODE_MVN 15
788 #define T2_OPCODE_AND 0
789 #define T2_OPCODE_BIC 1
790 #define T2_OPCODE_ORR 2
791 #define T2_OPCODE_ORN 3
792 #define T2_OPCODE_EOR 4
793 #define T2_OPCODE_ADD 8
794 #define T2_OPCODE_ADC 10
795 #define T2_OPCODE_SBC 11
796 #define T2_OPCODE_SUB 13
797 #define T2_OPCODE_RSB 14
799 #define T_OPCODE_MUL 0x4340
800 #define T_OPCODE_TST 0x4200
801 #define T_OPCODE_CMN 0x42c0
802 #define T_OPCODE_NEG 0x4240
803 #define T_OPCODE_MVN 0x43c0
805 #define T_OPCODE_ADD_R3 0x1800
806 #define T_OPCODE_SUB_R3 0x1a00
807 #define T_OPCODE_ADD_HI 0x4400
808 #define T_OPCODE_ADD_ST 0xb000
809 #define T_OPCODE_SUB_ST 0xb080
810 #define T_OPCODE_ADD_SP 0xa800
811 #define T_OPCODE_ADD_PC 0xa000
812 #define T_OPCODE_ADD_I8 0x3000
813 #define T_OPCODE_SUB_I8 0x3800
814 #define T_OPCODE_ADD_I3 0x1c00
815 #define T_OPCODE_SUB_I3 0x1e00
817 #define T_OPCODE_ASR_R 0x4100
818 #define T_OPCODE_LSL_R 0x4080
819 #define T_OPCODE_LSR_R 0x40c0
820 #define T_OPCODE_ROR_R 0x41c0
821 #define T_OPCODE_ASR_I 0x1000
822 #define T_OPCODE_LSL_I 0x0000
823 #define T_OPCODE_LSR_I 0x0800
825 #define T_OPCODE_MOV_I8 0x2000
826 #define T_OPCODE_CMP_I8 0x2800
827 #define T_OPCODE_CMP_LR 0x4280
828 #define T_OPCODE_MOV_HR 0x4600
829 #define T_OPCODE_CMP_HR 0x4500
831 #define T_OPCODE_LDR_PC 0x4800
832 #define T_OPCODE_LDR_SP 0x9800
833 #define T_OPCODE_STR_SP 0x9000
834 #define T_OPCODE_LDR_IW 0x6800
835 #define T_OPCODE_STR_IW 0x6000
836 #define T_OPCODE_LDR_IH 0x8800
837 #define T_OPCODE_STR_IH 0x8000
838 #define T_OPCODE_LDR_IB 0x7800
839 #define T_OPCODE_STR_IB 0x7000
840 #define T_OPCODE_LDR_RW 0x5800
841 #define T_OPCODE_STR_RW 0x5000
842 #define T_OPCODE_LDR_RH 0x5a00
843 #define T_OPCODE_STR_RH 0x5200
844 #define T_OPCODE_LDR_RB 0x5c00
845 #define T_OPCODE_STR_RB 0x5400
847 #define T_OPCODE_PUSH 0xb400
848 #define T_OPCODE_POP 0xbc00
850 #define T_OPCODE_BRANCH 0xe000
852 #define THUMB_SIZE 2 /* Size of thumb instruction. */
853 #define THUMB_PP_PC_LR 0x0100
854 #define THUMB_LOAD_BIT 0x0800
855 #define THUMB2_LOAD_BIT 0x00100000
857 #define BAD_SYNTAX _("syntax error")
858 #define BAD_ARGS _("bad arguments to instruction")
859 #define BAD_SP _("r13 not allowed here")
860 #define BAD_PC _("r15 not allowed here")
861 #define BAD_ODD _("Odd register not allowed here")
862 #define BAD_EVEN _("Even register not allowed here")
863 #define BAD_COND _("instruction cannot be conditional")
864 #define BAD_OVERLAP _("registers may not be the same")
865 #define BAD_HIREG _("lo register required")
866 #define BAD_THUMB32 _("instruction not supported in Thumb16 mode")
867 #define BAD_ADDR_MODE _("instruction does not accept this addressing mode")
868 #define BAD_BRANCH _("branch must be last instruction in IT block")
869 #define BAD_BRANCH_OFF _("branch out of range or not a multiple of 2")
870 #define BAD_NOT_IT _("instruction not allowed in IT block")
871 #define BAD_NOT_VPT _("instruction missing MVE vector predication code")
872 #define BAD_FPU _("selected FPU does not support instruction")
873 #define BAD_OUT_IT _("thumb conditional instruction should be in IT block")
874 #define BAD_OUT_VPT \
875 _("vector predicated instruction should be in VPT/VPST block")
876 #define BAD_IT_COND _("incorrect condition in IT block")
877 #define BAD_VPT_COND _("incorrect condition in VPT/VPST block")
878 #define BAD_IT_IT _("IT falling in the range of a previous IT block")
879 #define MISSING_FNSTART _("missing .fnstart before unwinding directive")
880 #define BAD_PC_ADDRESSING \
881 _("cannot use register index with PC-relative addressing")
882 #define BAD_PC_WRITEBACK \
883 _("cannot use writeback with PC-relative addressing")
884 #define BAD_RANGE _("branch out of range")
885 #define BAD_FP16 _("selected processor does not support fp16 instruction")
886 #define UNPRED_REG(R) _("using " R " results in unpredictable behaviour")
887 #define THUMB1_RELOC_ONLY _("relocation valid in thumb1 code only")
888 #define MVE_NOT_IT _("Warning: instruction is UNPREDICTABLE in an IT " \
890 #define MVE_NOT_VPT _("Warning: instruction is UNPREDICTABLE in a VPT " \
892 #define MVE_BAD_PC _("Warning: instruction is UNPREDICTABLE with PC" \
894 #define MVE_BAD_SP _("Warning: instruction is UNPREDICTABLE with SP" \
896 #define BAD_SIMD_TYPE _("bad type in SIMD instruction")
897 #define BAD_MVE_AUTO \
898 _("GAS auto-detection mode and -march=all is deprecated for MVE, please" \
899 " use a valid -march or -mcpu option.")
900 #define BAD_MVE_SRCDEST _("Warning: 32-bit element size and same destination "\
901 "and source operands makes instruction UNPREDICTABLE")
902 #define BAD_EL_TYPE _("bad element type for instruction")
903 #define MVE_BAD_QREG _("MVE vector register Q[0..7] expected")
905 static struct hash_control
* arm_ops_hsh
;
906 static struct hash_control
* arm_cond_hsh
;
907 static struct hash_control
* arm_vcond_hsh
;
908 static struct hash_control
* arm_shift_hsh
;
909 static struct hash_control
* arm_psr_hsh
;
910 static struct hash_control
* arm_v7m_psr_hsh
;
911 static struct hash_control
* arm_reg_hsh
;
912 static struct hash_control
* arm_reloc_hsh
;
913 static struct hash_control
* arm_barrier_opt_hsh
;
915 /* Stuff needed to resolve the label ambiguity
924 symbolS
* last_label_seen
;
925 static int label_is_thumb_function_name
= FALSE
;
927 /* Literal pool structure. Held on a per-section
928 and per-sub-section basis. */
930 #define MAX_LITERAL_POOL_SIZE 1024
931 typedef struct literal_pool
933 expressionS literals
[MAX_LITERAL_POOL_SIZE
];
934 unsigned int next_free_entry
;
940 struct dwarf2_line_info locs
[MAX_LITERAL_POOL_SIZE
];
942 struct literal_pool
* next
;
943 unsigned int alignment
;
946 /* Pointer to a linked list of literal pools. */
947 literal_pool
* list_of_pools
= NULL
;
949 typedef enum asmfunc_states
952 WAITING_ASMFUNC_NAME
,
956 static asmfunc_states asmfunc_state
= OUTSIDE_ASMFUNC
;
959 # define now_pred seg_info (now_seg)->tc_segment_info_data.current_pred
961 static struct current_pred now_pred
;
965 now_pred_compatible (int cond
)
967 return (cond
& ~1) == (now_pred
.cc
& ~1);
971 conditional_insn (void)
973 return inst
.cond
!= COND_ALWAYS
;
976 static int in_pred_block (void);
978 static int handle_pred_state (void);
980 static void force_automatic_it_block_close (void);
982 static void it_fsm_post_encode (void);
984 #define set_pred_insn_type(type) \
987 inst.pred_insn_type = type; \
988 if (handle_pred_state () == FAIL) \
993 #define set_pred_insn_type_nonvoid(type, failret) \
996 inst.pred_insn_type = type; \
997 if (handle_pred_state () == FAIL) \
1002 #define set_pred_insn_type_last() \
1005 if (inst.cond == COND_ALWAYS) \
1006 set_pred_insn_type (IF_INSIDE_IT_LAST_INSN); \
1008 set_pred_insn_type (INSIDE_IT_LAST_INSN); \
1014 /* This array holds the chars that always start a comment. If the
1015 pre-processor is disabled, these aren't very useful. */
1016 char arm_comment_chars
[] = "@";
1018 /* This array holds the chars that only start a comment at the beginning of
1019 a line. If the line seems to have the form '# 123 filename'
1020 .line and .file directives will appear in the pre-processed output. */
1021 /* Note that input_file.c hand checks for '#' at the beginning of the
1022 first line of the input file. This is because the compiler outputs
1023 #NO_APP at the beginning of its output. */
1024 /* Also note that comments like this one will always work. */
1025 const char line_comment_chars
[] = "#";
1027 char arm_line_separator_chars
[] = ";";
1029 /* Chars that can be used to separate mant
1030 from exp in floating point numbers. */
1031 const char EXP_CHARS
[] = "eE";
1033 /* Chars that mean this number is a floating point constant. */
1034 /* As in 0f12.456 */
1035 /* or 0d1.2345e12 */
1037 const char FLT_CHARS
[] = "rRsSfFdDxXeEpP";
1039 /* Prefix characters that indicate the start of an immediate
1041 #define is_immediate_prefix(C) ((C) == '#' || (C) == '$')
1043 /* Separator character handling. */
1045 #define skip_whitespace(str) do { if (*(str) == ' ') ++(str); } while (0)
1048 skip_past_char (char ** str
, char c
)
1050 /* PR gas/14987: Allow for whitespace before the expected character. */
1051 skip_whitespace (*str
);
1062 #define skip_past_comma(str) skip_past_char (str, ',')
1064 /* Arithmetic expressions (possibly involving symbols). */
1066 /* Return TRUE if anything in the expression is a bignum. */
1069 walk_no_bignums (symbolS
* sp
)
1071 if (symbol_get_value_expression (sp
)->X_op
== O_big
)
1074 if (symbol_get_value_expression (sp
)->X_add_symbol
)
1076 return (walk_no_bignums (symbol_get_value_expression (sp
)->X_add_symbol
)
1077 || (symbol_get_value_expression (sp
)->X_op_symbol
1078 && walk_no_bignums (symbol_get_value_expression (sp
)->X_op_symbol
)));
1084 static bfd_boolean in_my_get_expression
= FALSE
;
1086 /* Third argument to my_get_expression. */
1087 #define GE_NO_PREFIX 0
1088 #define GE_IMM_PREFIX 1
1089 #define GE_OPT_PREFIX 2
1090 /* This is a bit of a hack. Use an optional prefix, and also allow big (64-bit)
1091 immediates, as can be used in Neon VMVN and VMOV immediate instructions. */
1092 #define GE_OPT_PREFIX_BIG 3
1095 my_get_expression (expressionS
* ep
, char ** str
, int prefix_mode
)
1099 /* In unified syntax, all prefixes are optional. */
1101 prefix_mode
= (prefix_mode
== GE_OPT_PREFIX_BIG
) ? prefix_mode
1104 switch (prefix_mode
)
1106 case GE_NO_PREFIX
: break;
1108 if (!is_immediate_prefix (**str
))
1110 inst
.error
= _("immediate expression requires a # prefix");
1116 case GE_OPT_PREFIX_BIG
:
1117 if (is_immediate_prefix (**str
))
1124 memset (ep
, 0, sizeof (expressionS
));
1126 save_in
= input_line_pointer
;
1127 input_line_pointer
= *str
;
1128 in_my_get_expression
= TRUE
;
1130 in_my_get_expression
= FALSE
;
1132 if (ep
->X_op
== O_illegal
|| ep
->X_op
== O_absent
)
1134 /* We found a bad or missing expression in md_operand(). */
1135 *str
= input_line_pointer
;
1136 input_line_pointer
= save_in
;
1137 if (inst
.error
== NULL
)
1138 inst
.error
= (ep
->X_op
== O_absent
1139 ? _("missing expression") :_("bad expression"));
1143 /* Get rid of any bignums now, so that we don't generate an error for which
1144 we can't establish a line number later on. Big numbers are never valid
1145 in instructions, which is where this routine is always called. */
1146 if (prefix_mode
!= GE_OPT_PREFIX_BIG
1147 && (ep
->X_op
== O_big
1148 || (ep
->X_add_symbol
1149 && (walk_no_bignums (ep
->X_add_symbol
)
1151 && walk_no_bignums (ep
->X_op_symbol
))))))
1153 inst
.error
= _("invalid constant");
1154 *str
= input_line_pointer
;
1155 input_line_pointer
= save_in
;
1159 *str
= input_line_pointer
;
1160 input_line_pointer
= save_in
;
1164 /* Turn a string in input_line_pointer into a floating point constant
1165 of type TYPE, and store the appropriate bytes in *LITP. The number
1166 of LITTLENUMS emitted is stored in *SIZEP. An error message is
1167 returned, or NULL on OK.
1169 Note that fp constants aren't represent in the normal way on the ARM.
1170 In big endian mode, things are as expected. However, in little endian
1171 mode fp constants are big-endian word-wise, and little-endian byte-wise
1172 within the words. For example, (double) 1.1 in big endian mode is
1173 the byte sequence 3f f1 99 99 99 99 99 9a, and in little endian mode is
1174 the byte sequence 99 99 f1 3f 9a 99 99 99.
1176 ??? The format of 12 byte floats is uncertain according to gcc's arm.h. */
1179 md_atof (int type
, char * litP
, int * sizeP
)
1182 LITTLENUM_TYPE words
[MAX_LITTLENUMS
];
1214 return _("Unrecognized or unsupported floating point constant");
1217 t
= atof_ieee (input_line_pointer
, type
, words
);
1219 input_line_pointer
= t
;
1220 *sizeP
= prec
* sizeof (LITTLENUM_TYPE
);
1222 if (target_big_endian
)
1224 for (i
= 0; i
< prec
; i
++)
1226 md_number_to_chars (litP
, (valueT
) words
[i
], sizeof (LITTLENUM_TYPE
));
1227 litP
+= sizeof (LITTLENUM_TYPE
);
1232 if (ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_endian_pure
))
1233 for (i
= prec
- 1; i
>= 0; i
--)
1235 md_number_to_chars (litP
, (valueT
) words
[i
], sizeof (LITTLENUM_TYPE
));
1236 litP
+= sizeof (LITTLENUM_TYPE
);
1239 /* For a 4 byte float the order of elements in `words' is 1 0.
1240 For an 8 byte float the order is 1 0 3 2. */
1241 for (i
= 0; i
< prec
; i
+= 2)
1243 md_number_to_chars (litP
, (valueT
) words
[i
+ 1],
1244 sizeof (LITTLENUM_TYPE
));
1245 md_number_to_chars (litP
+ sizeof (LITTLENUM_TYPE
),
1246 (valueT
) words
[i
], sizeof (LITTLENUM_TYPE
));
1247 litP
+= 2 * sizeof (LITTLENUM_TYPE
);
1254 /* We handle all bad expressions here, so that we can report the faulty
1255 instruction in the error message. */
1258 md_operand (expressionS
* exp
)
1260 if (in_my_get_expression
)
1261 exp
->X_op
= O_illegal
;
1264 /* Immediate values. */
1267 /* Generic immediate-value read function for use in directives.
1268 Accepts anything that 'expression' can fold to a constant.
1269 *val receives the number. */
1272 immediate_for_directive (int *val
)
1275 exp
.X_op
= O_illegal
;
1277 if (is_immediate_prefix (*input_line_pointer
))
1279 input_line_pointer
++;
1283 if (exp
.X_op
!= O_constant
)
1285 as_bad (_("expected #constant"));
1286 ignore_rest_of_line ();
1289 *val
= exp
.X_add_number
;
1294 /* Register parsing. */
1296 /* Generic register parser. CCP points to what should be the
1297 beginning of a register name. If it is indeed a valid register
1298 name, advance CCP over it and return the reg_entry structure;
1299 otherwise return NULL. Does not issue diagnostics. */
1301 static struct reg_entry
*
1302 arm_reg_parse_multi (char **ccp
)
1306 struct reg_entry
*reg
;
1308 skip_whitespace (start
);
1310 #ifdef REGISTER_PREFIX
1311 if (*start
!= REGISTER_PREFIX
)
1315 #ifdef OPTIONAL_REGISTER_PREFIX
1316 if (*start
== OPTIONAL_REGISTER_PREFIX
)
1321 if (!ISALPHA (*p
) || !is_name_beginner (*p
))
1326 while (ISALPHA (*p
) || ISDIGIT (*p
) || *p
== '_');
1328 reg
= (struct reg_entry
*) hash_find_n (arm_reg_hsh
, start
, p
- start
);
1338 arm_reg_alt_syntax (char **ccp
, char *start
, struct reg_entry
*reg
,
1339 enum arm_reg_type type
)
1341 /* Alternative syntaxes are accepted for a few register classes. */
1348 /* Generic coprocessor register names are allowed for these. */
1349 if (reg
&& reg
->type
== REG_TYPE_CN
)
1354 /* For backward compatibility, a bare number is valid here. */
1356 unsigned long processor
= strtoul (start
, ccp
, 10);
1357 if (*ccp
!= start
&& processor
<= 15)
1362 case REG_TYPE_MMXWC
:
1363 /* WC includes WCG. ??? I'm not sure this is true for all
1364 instructions that take WC registers. */
1365 if (reg
&& reg
->type
== REG_TYPE_MMXWCG
)
1376 /* As arm_reg_parse_multi, but the register must be of type TYPE, and the
1377 return value is the register number or FAIL. */
1380 arm_reg_parse (char **ccp
, enum arm_reg_type type
)
1383 struct reg_entry
*reg
= arm_reg_parse_multi (ccp
);
1386 /* Do not allow a scalar (reg+index) to parse as a register. */
1387 if (reg
&& reg
->neon
&& (reg
->neon
->defined
& NTA_HASINDEX
))
1390 if (reg
&& reg
->type
== type
)
1393 if ((ret
= arm_reg_alt_syntax (ccp
, start
, reg
, type
)) != FAIL
)
1400 /* Parse a Neon type specifier. *STR should point at the leading '.'
1401 character. Does no verification at this stage that the type fits the opcode
1408 Can all be legally parsed by this function.
1410 Fills in neon_type struct pointer with parsed information, and updates STR
1411 to point after the parsed type specifier. Returns SUCCESS if this was a legal
1412 type, FAIL if not. */
1415 parse_neon_type (struct neon_type
*type
, char **str
)
1422 while (type
->elems
< NEON_MAX_TYPE_ELS
)
1424 enum neon_el_type thistype
= NT_untyped
;
1425 unsigned thissize
= -1u;
1432 /* Just a size without an explicit type. */
1436 switch (TOLOWER (*ptr
))
1438 case 'i': thistype
= NT_integer
; break;
1439 case 'f': thistype
= NT_float
; break;
1440 case 'p': thistype
= NT_poly
; break;
1441 case 's': thistype
= NT_signed
; break;
1442 case 'u': thistype
= NT_unsigned
; break;
1444 thistype
= NT_float
;
1449 as_bad (_("unexpected character `%c' in type specifier"), *ptr
);
1455 /* .f is an abbreviation for .f32. */
1456 if (thistype
== NT_float
&& !ISDIGIT (*ptr
))
1461 thissize
= strtoul (ptr
, &ptr
, 10);
1463 if (thissize
!= 8 && thissize
!= 16 && thissize
!= 32
1466 as_bad (_("bad size %d in type specifier"), thissize
);
1474 type
->el
[type
->elems
].type
= thistype
;
1475 type
->el
[type
->elems
].size
= thissize
;
1480 /* Empty/missing type is not a successful parse. */
1481 if (type
->elems
== 0)
1489 /* Errors may be set multiple times during parsing or bit encoding
1490 (particularly in the Neon bits), but usually the earliest error which is set
1491 will be the most meaningful. Avoid overwriting it with later (cascading)
1492 errors by calling this function. */
1495 first_error (const char *err
)
1501 /* Parse a single type, e.g. ".s32", leading period included. */
1503 parse_neon_operand_type (struct neon_type_el
*vectype
, char **ccp
)
1506 struct neon_type optype
;
1510 if (parse_neon_type (&optype
, &str
) == SUCCESS
)
1512 if (optype
.elems
== 1)
1513 *vectype
= optype
.el
[0];
1516 first_error (_("only one type should be specified for operand"));
1522 first_error (_("vector type expected"));
1534 /* Special meanings for indices (which have a range of 0-7), which will fit into
1537 #define NEON_ALL_LANES 15
1538 #define NEON_INTERLEAVE_LANES 14
1540 /* Record a use of the given feature. */
1542 record_feature_use (const arm_feature_set
*feature
)
1545 ARM_MERGE_FEATURE_SETS (thumb_arch_used
, thumb_arch_used
, *feature
);
1547 ARM_MERGE_FEATURE_SETS (arm_arch_used
, arm_arch_used
, *feature
);
1550 /* If the given feature available in the selected CPU, mark it as used.
1551 Returns TRUE iff feature is available. */
1553 mark_feature_used (const arm_feature_set
*feature
)
1556 /* Do not support the use of MVE only instructions when in auto-detection or
1558 if (((feature
== &mve_ext
) || (feature
== &mve_fp_ext
))
1559 && ARM_CPU_IS_ANY (cpu_variant
))
1561 first_error (BAD_MVE_AUTO
);
1564 /* Ensure the option is valid on the current architecture. */
1565 if (!ARM_CPU_HAS_FEATURE (cpu_variant
, *feature
))
1568 /* Add the appropriate architecture feature for the barrier option used.
1570 record_feature_use (feature
);
1575 /* Parse either a register or a scalar, with an optional type. Return the
1576 register number, and optionally fill in the actual type of the register
1577 when multiple alternatives were given (NEON_TYPE_NDQ) in *RTYPE, and
1578 type/index information in *TYPEINFO. */
1581 parse_typed_reg_or_scalar (char **ccp
, enum arm_reg_type type
,
1582 enum arm_reg_type
*rtype
,
1583 struct neon_typed_alias
*typeinfo
)
1586 struct reg_entry
*reg
= arm_reg_parse_multi (&str
);
1587 struct neon_typed_alias atype
;
1588 struct neon_type_el parsetype
;
1592 atype
.eltype
.type
= NT_invtype
;
1593 atype
.eltype
.size
= -1;
1595 /* Try alternate syntax for some types of register. Note these are mutually
1596 exclusive with the Neon syntax extensions. */
1599 int altreg
= arm_reg_alt_syntax (&str
, *ccp
, reg
, type
);
1607 /* Undo polymorphism when a set of register types may be accepted. */
1608 if ((type
== REG_TYPE_NDQ
1609 && (reg
->type
== REG_TYPE_NQ
|| reg
->type
== REG_TYPE_VFD
))
1610 || (type
== REG_TYPE_VFSD
1611 && (reg
->type
== REG_TYPE_VFS
|| reg
->type
== REG_TYPE_VFD
))
1612 || (type
== REG_TYPE_NSDQ
1613 && (reg
->type
== REG_TYPE_VFS
|| reg
->type
== REG_TYPE_VFD
1614 || reg
->type
== REG_TYPE_NQ
))
1615 || (type
== REG_TYPE_NSD
1616 && (reg
->type
== REG_TYPE_VFS
|| reg
->type
== REG_TYPE_VFD
))
1617 || (type
== REG_TYPE_MMXWC
1618 && (reg
->type
== REG_TYPE_MMXWCG
)))
1619 type
= (enum arm_reg_type
) reg
->type
;
1621 if (type
== REG_TYPE_MQ
)
1623 if (!ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
))
1626 if (!reg
|| reg
->type
!= REG_TYPE_NQ
)
1629 if (reg
->number
> 14 && !mark_feature_used (&fpu_vfp_ext_d32
))
1631 first_error (_("expected MVE register [q0..q7]"));
1636 else if (ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
)
1637 && (type
== REG_TYPE_NQ
))
1641 if (type
!= reg
->type
)
1647 if (parse_neon_operand_type (&parsetype
, &str
) == SUCCESS
)
1649 if ((atype
.defined
& NTA_HASTYPE
) != 0)
1651 first_error (_("can't redefine type for operand"));
1654 atype
.defined
|= NTA_HASTYPE
;
1655 atype
.eltype
= parsetype
;
1658 if (skip_past_char (&str
, '[') == SUCCESS
)
1660 if (type
!= REG_TYPE_VFD
1661 && !(type
== REG_TYPE_VFS
1662 && ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v8_2
))
1663 && !(type
== REG_TYPE_NQ
1664 && ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
)))
1666 if (ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
))
1667 first_error (_("only D and Q registers may be indexed"));
1669 first_error (_("only D registers may be indexed"));
1673 if ((atype
.defined
& NTA_HASINDEX
) != 0)
1675 first_error (_("can't change index for operand"));
1679 atype
.defined
|= NTA_HASINDEX
;
1681 if (skip_past_char (&str
, ']') == SUCCESS
)
1682 atype
.index
= NEON_ALL_LANES
;
1687 my_get_expression (&exp
, &str
, GE_NO_PREFIX
);
1689 if (exp
.X_op
!= O_constant
)
1691 first_error (_("constant expression required"));
1695 if (skip_past_char (&str
, ']') == FAIL
)
1698 atype
.index
= exp
.X_add_number
;
1713 /* Like arm_reg_parse, but also allow the following extra features:
1714 - If RTYPE is non-zero, return the (possibly restricted) type of the
1715 register (e.g. Neon double or quad reg when either has been requested).
1716 - If this is a Neon vector type with additional type information, fill
1717 in the struct pointed to by VECTYPE (if non-NULL).
1718 This function will fault on encountering a scalar. */
1721 arm_typed_reg_parse (char **ccp
, enum arm_reg_type type
,
1722 enum arm_reg_type
*rtype
, struct neon_type_el
*vectype
)
1724 struct neon_typed_alias atype
;
1726 int reg
= parse_typed_reg_or_scalar (&str
, type
, rtype
, &atype
);
1731 /* Do not allow regname(... to parse as a register. */
1735 /* Do not allow a scalar (reg+index) to parse as a register. */
1736 if ((atype
.defined
& NTA_HASINDEX
) != 0)
1738 first_error (_("register operand expected, but got scalar"));
1743 *vectype
= atype
.eltype
;
1750 #define NEON_SCALAR_REG(X) ((X) >> 4)
1751 #define NEON_SCALAR_INDEX(X) ((X) & 15)
1753 /* Parse a Neon scalar. Most of the time when we're parsing a scalar, we don't
1754 have enough information to be able to do a good job bounds-checking. So, we
1755 just do easy checks here, and do further checks later. */
1758 parse_scalar (char **ccp
, int elsize
, struct neon_type_el
*type
, enum
1759 arm_reg_type reg_type
)
1763 struct neon_typed_alias atype
;
1766 reg
= parse_typed_reg_or_scalar (&str
, reg_type
, NULL
, &atype
);
1784 if (reg
== FAIL
|| (atype
.defined
& NTA_HASINDEX
) == 0)
1787 if (reg_type
!= REG_TYPE_MQ
&& atype
.index
== NEON_ALL_LANES
)
1789 first_error (_("scalar must have an index"));
1792 else if (atype
.index
>= reg_size
/ elsize
)
1794 first_error (_("scalar index out of range"));
1799 *type
= atype
.eltype
;
1803 return reg
* 16 + atype
.index
;
1806 /* Types of registers in a list. */
1819 /* Parse an ARM register list. Returns the bitmask, or FAIL. */
1822 parse_reg_list (char ** strp
, enum reg_list_els etype
)
1828 gas_assert (etype
== REGLIST_RN
|| etype
== REGLIST_CLRM
);
1830 /* We come back here if we get ranges concatenated by '+' or '|'. */
1833 skip_whitespace (str
);
1846 const char apsr_str
[] = "apsr";
1847 int apsr_str_len
= strlen (apsr_str
);
1849 reg
= arm_reg_parse (&str
, REGLIST_RN
);
1850 if (etype
== REGLIST_CLRM
)
1852 if (reg
== REG_SP
|| reg
== REG_PC
)
1854 else if (reg
== FAIL
1855 && !strncasecmp (str
, apsr_str
, apsr_str_len
)
1856 && !ISALPHA (*(str
+ apsr_str_len
)))
1859 str
+= apsr_str_len
;
1864 first_error (_("r0-r12, lr or APSR expected"));
1868 else /* etype == REGLIST_RN. */
1872 first_error (_(reg_expected_msgs
[REGLIST_RN
]));
1883 first_error (_("bad range in register list"));
1887 for (i
= cur_reg
+ 1; i
< reg
; i
++)
1889 if (range
& (1 << i
))
1891 (_("Warning: duplicated register (r%d) in register list"),
1899 if (range
& (1 << reg
))
1900 as_tsktsk (_("Warning: duplicated register (r%d) in register list"),
1902 else if (reg
<= cur_reg
)
1903 as_tsktsk (_("Warning: register range not in ascending order"));
1908 while (skip_past_comma (&str
) != FAIL
1909 || (in_range
= 1, *str
++ == '-'));
1912 if (skip_past_char (&str
, '}') == FAIL
)
1914 first_error (_("missing `}'"));
1918 else if (etype
== REGLIST_RN
)
1922 if (my_get_expression (&exp
, &str
, GE_NO_PREFIX
))
1925 if (exp
.X_op
== O_constant
)
1927 if (exp
.X_add_number
1928 != (exp
.X_add_number
& 0x0000ffff))
1930 inst
.error
= _("invalid register mask");
1934 if ((range
& exp
.X_add_number
) != 0)
1936 int regno
= range
& exp
.X_add_number
;
1939 regno
= (1 << regno
) - 1;
1941 (_("Warning: duplicated register (r%d) in register list"),
1945 range
|= exp
.X_add_number
;
1949 if (inst
.relocs
[0].type
!= 0)
1951 inst
.error
= _("expression too complex");
1955 memcpy (&inst
.relocs
[0].exp
, &exp
, sizeof (expressionS
));
1956 inst
.relocs
[0].type
= BFD_RELOC_ARM_MULTI
;
1957 inst
.relocs
[0].pc_rel
= 0;
1961 if (*str
== '|' || *str
== '+')
1967 while (another_range
);
1973 /* Parse a VFP register list. If the string is invalid return FAIL.
1974 Otherwise return the number of registers, and set PBASE to the first
1975 register. Parses registers of type ETYPE.
1976 If REGLIST_NEON_D is used, several syntax enhancements are enabled:
1977 - Q registers can be used to specify pairs of D registers
1978 - { } can be omitted from around a singleton register list
1979 FIXME: This is not implemented, as it would require backtracking in
1982 This could be done (the meaning isn't really ambiguous), but doesn't
1983 fit in well with the current parsing framework.
1984 - 32 D registers may be used (also true for VFPv3).
1985 FIXME: Types are ignored in these register lists, which is probably a
1989 parse_vfp_reg_list (char **ccp
, unsigned int *pbase
, enum reg_list_els etype
,
1990 bfd_boolean
*partial_match
)
1995 enum arm_reg_type regtype
= (enum arm_reg_type
) 0;
1999 unsigned long mask
= 0;
2001 bfd_boolean vpr_seen
= FALSE
;
2002 bfd_boolean expect_vpr
=
2003 (etype
== REGLIST_VFP_S_VPR
) || (etype
== REGLIST_VFP_D_VPR
);
2005 if (skip_past_char (&str
, '{') == FAIL
)
2007 inst
.error
= _("expecting {");
2014 case REGLIST_VFP_S_VPR
:
2015 regtype
= REG_TYPE_VFS
;
2020 case REGLIST_VFP_D_VPR
:
2021 regtype
= REG_TYPE_VFD
;
2024 case REGLIST_NEON_D
:
2025 regtype
= REG_TYPE_NDQ
;
2032 if (etype
!= REGLIST_VFP_S
&& etype
!= REGLIST_VFP_S_VPR
)
2034 /* VFPv3 allows 32 D registers, except for the VFPv3-D16 variant. */
2035 if (ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_vfp_ext_d32
))
2039 ARM_MERGE_FEATURE_SETS (thumb_arch_used
, thumb_arch_used
,
2042 ARM_MERGE_FEATURE_SETS (arm_arch_used
, arm_arch_used
,
2049 base_reg
= max_regs
;
2050 *partial_match
= FALSE
;
2054 int setmask
= 1, addregs
= 1;
2055 const char vpr_str
[] = "vpr";
2056 int vpr_str_len
= strlen (vpr_str
);
2058 new_base
= arm_typed_reg_parse (&str
, regtype
, ®type
, NULL
);
2062 if (new_base
== FAIL
2063 && !strncasecmp (str
, vpr_str
, vpr_str_len
)
2064 && !ISALPHA (*(str
+ vpr_str_len
))
2070 base_reg
= 0; /* Canonicalize VPR only on d0 with 0 regs. */
2074 first_error (_("VPR expected last"));
2077 else if (new_base
== FAIL
)
2079 if (regtype
== REG_TYPE_VFS
)
2080 first_error (_("VFP single precision register or VPR "
2082 else /* regtype == REG_TYPE_VFD. */
2083 first_error (_("VFP/Neon double precision register or VPR "
2088 else if (new_base
== FAIL
)
2090 first_error (_(reg_expected_msgs
[regtype
]));
2094 *partial_match
= TRUE
;
2098 if (new_base
>= max_regs
)
2100 first_error (_("register out of range in list"));
2104 /* Note: a value of 2 * n is returned for the register Q<n>. */
2105 if (regtype
== REG_TYPE_NQ
)
2111 if (new_base
< base_reg
)
2112 base_reg
= new_base
;
2114 if (mask
& (setmask
<< new_base
))
2116 first_error (_("invalid register list"));
2120 if ((mask
>> new_base
) != 0 && ! warned
&& !vpr_seen
)
2122 as_tsktsk (_("register list not in ascending order"));
2126 mask
|= setmask
<< new_base
;
2129 if (*str
== '-') /* We have the start of a range expression */
2135 if ((high_range
= arm_typed_reg_parse (&str
, regtype
, NULL
, NULL
))
2138 inst
.error
= gettext (reg_expected_msgs
[regtype
]);
2142 if (high_range
>= max_regs
)
2144 first_error (_("register out of range in list"));
2148 if (regtype
== REG_TYPE_NQ
)
2149 high_range
= high_range
+ 1;
2151 if (high_range
<= new_base
)
2153 inst
.error
= _("register range not in ascending order");
2157 for (new_base
+= addregs
; new_base
<= high_range
; new_base
+= addregs
)
2159 if (mask
& (setmask
<< new_base
))
2161 inst
.error
= _("invalid register list");
2165 mask
|= setmask
<< new_base
;
2170 while (skip_past_comma (&str
) != FAIL
);
2174 /* Sanity check -- should have raised a parse error above. */
2175 if ((!vpr_seen
&& count
== 0) || count
> max_regs
)
2180 if (expect_vpr
&& !vpr_seen
)
2182 first_error (_("VPR expected last"));
2186 /* Final test -- the registers must be consecutive. */
2188 for (i
= 0; i
< count
; i
++)
2190 if ((mask
& (1u << i
)) == 0)
2192 inst
.error
= _("non-contiguous register range");
2202 /* True if two alias types are the same. */
2205 neon_alias_types_same (struct neon_typed_alias
*a
, struct neon_typed_alias
*b
)
2213 if (a
->defined
!= b
->defined
)
2216 if ((a
->defined
& NTA_HASTYPE
) != 0
2217 && (a
->eltype
.type
!= b
->eltype
.type
2218 || a
->eltype
.size
!= b
->eltype
.size
))
2221 if ((a
->defined
& NTA_HASINDEX
) != 0
2222 && (a
->index
!= b
->index
))
2228 /* Parse element/structure lists for Neon VLD<n> and VST<n> instructions.
2229 The base register is put in *PBASE.
2230 The lane (or one of the NEON_*_LANES constants) is placed in bits [3:0] of
2232 The register stride (minus one) is put in bit 4 of the return value.
2233 Bits [6:5] encode the list length (minus one).
2234 The type of the list elements is put in *ELTYPE, if non-NULL. */
2236 #define NEON_LANE(X) ((X) & 0xf)
2237 #define NEON_REG_STRIDE(X) ((((X) >> 4) & 1) + 1)
2238 #define NEON_REGLIST_LENGTH(X) ((((X) >> 5) & 3) + 1)
2241 parse_neon_el_struct_list (char **str
, unsigned *pbase
,
2243 struct neon_type_el
*eltype
)
2250 int leading_brace
= 0;
2251 enum arm_reg_type rtype
= REG_TYPE_NDQ
;
2252 const char *const incr_error
= mve
? _("register stride must be 1") :
2253 _("register stride must be 1 or 2");
2254 const char *const type_error
= _("mismatched element/structure types in list");
2255 struct neon_typed_alias firsttype
;
2256 firsttype
.defined
= 0;
2257 firsttype
.eltype
.type
= NT_invtype
;
2258 firsttype
.eltype
.size
= -1;
2259 firsttype
.index
= -1;
2261 if (skip_past_char (&ptr
, '{') == SUCCESS
)
2266 struct neon_typed_alias atype
;
2268 rtype
= REG_TYPE_MQ
;
2269 int getreg
= parse_typed_reg_or_scalar (&ptr
, rtype
, &rtype
, &atype
);
2273 first_error (_(reg_expected_msgs
[rtype
]));
2280 if (rtype
== REG_TYPE_NQ
)
2286 else if (reg_incr
== -1)
2288 reg_incr
= getreg
- base_reg
;
2289 if (reg_incr
< 1 || reg_incr
> 2)
2291 first_error (_(incr_error
));
2295 else if (getreg
!= base_reg
+ reg_incr
* count
)
2297 first_error (_(incr_error
));
2301 if (! neon_alias_types_same (&atype
, &firsttype
))
2303 first_error (_(type_error
));
2307 /* Handle Dn-Dm or Qn-Qm syntax. Can only be used with non-indexed list
2311 struct neon_typed_alias htype
;
2312 int hireg
, dregs
= (rtype
== REG_TYPE_NQ
) ? 2 : 1;
2314 lane
= NEON_INTERLEAVE_LANES
;
2315 else if (lane
!= NEON_INTERLEAVE_LANES
)
2317 first_error (_(type_error
));
2322 else if (reg_incr
!= 1)
2324 first_error (_("don't use Rn-Rm syntax with non-unit stride"));
2328 hireg
= parse_typed_reg_or_scalar (&ptr
, rtype
, NULL
, &htype
);
2331 first_error (_(reg_expected_msgs
[rtype
]));
2334 if (! neon_alias_types_same (&htype
, &firsttype
))
2336 first_error (_(type_error
));
2339 count
+= hireg
+ dregs
- getreg
;
2343 /* If we're using Q registers, we can't use [] or [n] syntax. */
2344 if (rtype
== REG_TYPE_NQ
)
2350 if ((atype
.defined
& NTA_HASINDEX
) != 0)
2354 else if (lane
!= atype
.index
)
2356 first_error (_(type_error
));
2360 else if (lane
== -1)
2361 lane
= NEON_INTERLEAVE_LANES
;
2362 else if (lane
!= NEON_INTERLEAVE_LANES
)
2364 first_error (_(type_error
));
2369 while ((count
!= 1 || leading_brace
) && skip_past_comma (&ptr
) != FAIL
);
2371 /* No lane set by [x]. We must be interleaving structures. */
2373 lane
= NEON_INTERLEAVE_LANES
;
2376 if (lane
== -1 || base_reg
== -1 || count
< 1 || (!mve
&& count
> 4)
2377 || (count
> 1 && reg_incr
== -1))
2379 first_error (_("error parsing element/structure list"));
2383 if ((count
> 1 || leading_brace
) && skip_past_char (&ptr
, '}') == FAIL
)
2385 first_error (_("expected }"));
2393 *eltype
= firsttype
.eltype
;
2398 return lane
| ((reg_incr
- 1) << 4) | ((count
- 1) << 5);
2401 /* Parse an explicit relocation suffix on an expression. This is
2402 either nothing, or a word in parentheses. Note that if !OBJ_ELF,
2403 arm_reloc_hsh contains no entries, so this function can only
2404 succeed if there is no () after the word. Returns -1 on error,
2405 BFD_RELOC_UNUSED if there wasn't any suffix. */
2408 parse_reloc (char **str
)
2410 struct reloc_entry
*r
;
2414 return BFD_RELOC_UNUSED
;
2419 while (*q
&& *q
!= ')' && *q
!= ',')
2424 if ((r
= (struct reloc_entry
*)
2425 hash_find_n (arm_reloc_hsh
, p
, q
- p
)) == NULL
)
2432 /* Directives: register aliases. */
2434 static struct reg_entry
*
2435 insert_reg_alias (char *str
, unsigned number
, int type
)
2437 struct reg_entry
*new_reg
;
2440 if ((new_reg
= (struct reg_entry
*) hash_find (arm_reg_hsh
, str
)) != 0)
2442 if (new_reg
->builtin
)
2443 as_warn (_("ignoring attempt to redefine built-in register '%s'"), str
);
2445 /* Only warn about a redefinition if it's not defined as the
2447 else if (new_reg
->number
!= number
|| new_reg
->type
!= type
)
2448 as_warn (_("ignoring redefinition of register alias '%s'"), str
);
2453 name
= xstrdup (str
);
2454 new_reg
= XNEW (struct reg_entry
);
2456 new_reg
->name
= name
;
2457 new_reg
->number
= number
;
2458 new_reg
->type
= type
;
2459 new_reg
->builtin
= FALSE
;
2460 new_reg
->neon
= NULL
;
2462 if (hash_insert (arm_reg_hsh
, name
, (void *) new_reg
))
2469 insert_neon_reg_alias (char *str
, int number
, int type
,
2470 struct neon_typed_alias
*atype
)
2472 struct reg_entry
*reg
= insert_reg_alias (str
, number
, type
);
2476 first_error (_("attempt to redefine typed alias"));
2482 reg
->neon
= XNEW (struct neon_typed_alias
);
2483 *reg
->neon
= *atype
;
2487 /* Look for the .req directive. This is of the form:
2489 new_register_name .req existing_register_name
2491 If we find one, or if it looks sufficiently like one that we want to
2492 handle any error here, return TRUE. Otherwise return FALSE. */
2495 create_register_alias (char * newname
, char *p
)
2497 struct reg_entry
*old
;
2498 char *oldname
, *nbuf
;
2501 /* The input scrubber ensures that whitespace after the mnemonic is
2502 collapsed to single spaces. */
2504 if (strncmp (oldname
, " .req ", 6) != 0)
2508 if (*oldname
== '\0')
2511 old
= (struct reg_entry
*) hash_find (arm_reg_hsh
, oldname
);
2514 as_warn (_("unknown register '%s' -- .req ignored"), oldname
);
2518 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2519 the desired alias name, and p points to its end. If not, then
2520 the desired alias name is in the global original_case_string. */
2521 #ifdef TC_CASE_SENSITIVE
2524 newname
= original_case_string
;
2525 nlen
= strlen (newname
);
2528 nbuf
= xmemdup0 (newname
, nlen
);
2530 /* Create aliases under the new name as stated; an all-lowercase
2531 version of the new name; and an all-uppercase version of the new
2533 if (insert_reg_alias (nbuf
, old
->number
, old
->type
) != NULL
)
2535 for (p
= nbuf
; *p
; p
++)
2538 if (strncmp (nbuf
, newname
, nlen
))
2540 /* If this attempt to create an additional alias fails, do not bother
2541 trying to create the all-lower case alias. We will fail and issue
2542 a second, duplicate error message. This situation arises when the
2543 programmer does something like:
2546 The second .req creates the "Foo" alias but then fails to create
2547 the artificial FOO alias because it has already been created by the
2549 if (insert_reg_alias (nbuf
, old
->number
, old
->type
) == NULL
)
2556 for (p
= nbuf
; *p
; p
++)
2559 if (strncmp (nbuf
, newname
, nlen
))
2560 insert_reg_alias (nbuf
, old
->number
, old
->type
);
2567 /* Create a Neon typed/indexed register alias using directives, e.g.:
2572 These typed registers can be used instead of the types specified after the
2573 Neon mnemonic, so long as all operands given have types. Types can also be
2574 specified directly, e.g.:
2575 vadd d0.s32, d1.s32, d2.s32 */
2578 create_neon_reg_alias (char *newname
, char *p
)
2580 enum arm_reg_type basetype
;
2581 struct reg_entry
*basereg
;
2582 struct reg_entry mybasereg
;
2583 struct neon_type ntype
;
2584 struct neon_typed_alias typeinfo
;
2585 char *namebuf
, *nameend ATTRIBUTE_UNUSED
;
2588 typeinfo
.defined
= 0;
2589 typeinfo
.eltype
.type
= NT_invtype
;
2590 typeinfo
.eltype
.size
= -1;
2591 typeinfo
.index
= -1;
2595 if (strncmp (p
, " .dn ", 5) == 0)
2596 basetype
= REG_TYPE_VFD
;
2597 else if (strncmp (p
, " .qn ", 5) == 0)
2598 basetype
= REG_TYPE_NQ
;
2607 basereg
= arm_reg_parse_multi (&p
);
2609 if (basereg
&& basereg
->type
!= basetype
)
2611 as_bad (_("bad type for register"));
2615 if (basereg
== NULL
)
2618 /* Try parsing as an integer. */
2619 my_get_expression (&exp
, &p
, GE_NO_PREFIX
);
2620 if (exp
.X_op
!= O_constant
)
2622 as_bad (_("expression must be constant"));
2625 basereg
= &mybasereg
;
2626 basereg
->number
= (basetype
== REG_TYPE_NQ
) ? exp
.X_add_number
* 2
2632 typeinfo
= *basereg
->neon
;
2634 if (parse_neon_type (&ntype
, &p
) == SUCCESS
)
2636 /* We got a type. */
2637 if (typeinfo
.defined
& NTA_HASTYPE
)
2639 as_bad (_("can't redefine the type of a register alias"));
2643 typeinfo
.defined
|= NTA_HASTYPE
;
2644 if (ntype
.elems
!= 1)
2646 as_bad (_("you must specify a single type only"));
2649 typeinfo
.eltype
= ntype
.el
[0];
2652 if (skip_past_char (&p
, '[') == SUCCESS
)
2655 /* We got a scalar index. */
2657 if (typeinfo
.defined
& NTA_HASINDEX
)
2659 as_bad (_("can't redefine the index of a scalar alias"));
2663 my_get_expression (&exp
, &p
, GE_NO_PREFIX
);
2665 if (exp
.X_op
!= O_constant
)
2667 as_bad (_("scalar index must be constant"));
2671 typeinfo
.defined
|= NTA_HASINDEX
;
2672 typeinfo
.index
= exp
.X_add_number
;
2674 if (skip_past_char (&p
, ']') == FAIL
)
2676 as_bad (_("expecting ]"));
2681 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2682 the desired alias name, and p points to its end. If not, then
2683 the desired alias name is in the global original_case_string. */
2684 #ifdef TC_CASE_SENSITIVE
2685 namelen
= nameend
- newname
;
2687 newname
= original_case_string
;
2688 namelen
= strlen (newname
);
2691 namebuf
= xmemdup0 (newname
, namelen
);
2693 insert_neon_reg_alias (namebuf
, basereg
->number
, basetype
,
2694 typeinfo
.defined
!= 0 ? &typeinfo
: NULL
);
2696 /* Insert name in all uppercase. */
2697 for (p
= namebuf
; *p
; p
++)
2700 if (strncmp (namebuf
, newname
, namelen
))
2701 insert_neon_reg_alias (namebuf
, basereg
->number
, basetype
,
2702 typeinfo
.defined
!= 0 ? &typeinfo
: NULL
);
2704 /* Insert name in all lowercase. */
2705 for (p
= namebuf
; *p
; p
++)
2708 if (strncmp (namebuf
, newname
, namelen
))
2709 insert_neon_reg_alias (namebuf
, basereg
->number
, basetype
,
2710 typeinfo
.defined
!= 0 ? &typeinfo
: NULL
);
2716 /* Should never be called, as .req goes between the alias and the
2717 register name, not at the beginning of the line. */
2720 s_req (int a ATTRIBUTE_UNUSED
)
2722 as_bad (_("invalid syntax for .req directive"));
2726 s_dn (int a ATTRIBUTE_UNUSED
)
2728 as_bad (_("invalid syntax for .dn directive"));
2732 s_qn (int a ATTRIBUTE_UNUSED
)
2734 as_bad (_("invalid syntax for .qn directive"));
2737 /* The .unreq directive deletes an alias which was previously defined
2738 by .req. For example:
2744 s_unreq (int a ATTRIBUTE_UNUSED
)
2749 name
= input_line_pointer
;
2751 while (*input_line_pointer
!= 0
2752 && *input_line_pointer
!= ' '
2753 && *input_line_pointer
!= '\n')
2754 ++input_line_pointer
;
2756 saved_char
= *input_line_pointer
;
2757 *input_line_pointer
= 0;
2760 as_bad (_("invalid syntax for .unreq directive"));
2763 struct reg_entry
*reg
= (struct reg_entry
*) hash_find (arm_reg_hsh
,
2767 as_bad (_("unknown register alias '%s'"), name
);
2768 else if (reg
->builtin
)
2769 as_warn (_("ignoring attempt to use .unreq on fixed register name: '%s'"),
2776 hash_delete (arm_reg_hsh
, name
, FALSE
);
2777 free ((char *) reg
->name
);
2782 /* Also locate the all upper case and all lower case versions.
2783 Do not complain if we cannot find one or the other as it
2784 was probably deleted above. */
2786 nbuf
= strdup (name
);
2787 for (p
= nbuf
; *p
; p
++)
2789 reg
= (struct reg_entry
*) hash_find (arm_reg_hsh
, nbuf
);
2792 hash_delete (arm_reg_hsh
, nbuf
, FALSE
);
2793 free ((char *) reg
->name
);
2799 for (p
= nbuf
; *p
; p
++)
2801 reg
= (struct reg_entry
*) hash_find (arm_reg_hsh
, nbuf
);
2804 hash_delete (arm_reg_hsh
, nbuf
, FALSE
);
2805 free ((char *) reg
->name
);
2815 *input_line_pointer
= saved_char
;
2816 demand_empty_rest_of_line ();
2819 /* Directives: Instruction set selection. */
2822 /* This code is to handle mapping symbols as defined in the ARM ELF spec.
2823 (See "Mapping symbols", section 4.5.5, ARM AAELF version 1.0).
2824 Note that previously, $a and $t has type STT_FUNC (BSF_OBJECT flag),
2825 and $d has type STT_OBJECT (BSF_OBJECT flag). Now all three are untyped. */
2827 /* Create a new mapping symbol for the transition to STATE. */
2830 make_mapping_symbol (enum mstate state
, valueT value
, fragS
*frag
)
2833 const char * symname
;
2840 type
= BSF_NO_FLAGS
;
2844 type
= BSF_NO_FLAGS
;
2848 type
= BSF_NO_FLAGS
;
2854 symbolP
= symbol_new (symname
, now_seg
, value
, frag
);
2855 symbol_get_bfdsym (symbolP
)->flags
|= type
| BSF_LOCAL
;
2860 THUMB_SET_FUNC (symbolP
, 0);
2861 ARM_SET_THUMB (symbolP
, 0);
2862 ARM_SET_INTERWORK (symbolP
, support_interwork
);
2866 THUMB_SET_FUNC (symbolP
, 1);
2867 ARM_SET_THUMB (symbolP
, 1);
2868 ARM_SET_INTERWORK (symbolP
, support_interwork
);
2876 /* Save the mapping symbols for future reference. Also check that
2877 we do not place two mapping symbols at the same offset within a
2878 frag. We'll handle overlap between frags in
2879 check_mapping_symbols.
2881 If .fill or other data filling directive generates zero sized data,
2882 the mapping symbol for the following code will have the same value
2883 as the one generated for the data filling directive. In this case,
2884 we replace the old symbol with the new one at the same address. */
2887 if (frag
->tc_frag_data
.first_map
!= NULL
)
2889 know (S_GET_VALUE (frag
->tc_frag_data
.first_map
) == 0);
2890 symbol_remove (frag
->tc_frag_data
.first_map
, &symbol_rootP
, &symbol_lastP
);
2892 frag
->tc_frag_data
.first_map
= symbolP
;
2894 if (frag
->tc_frag_data
.last_map
!= NULL
)
2896 know (S_GET_VALUE (frag
->tc_frag_data
.last_map
) <= S_GET_VALUE (symbolP
));
2897 if (S_GET_VALUE (frag
->tc_frag_data
.last_map
) == S_GET_VALUE (symbolP
))
2898 symbol_remove (frag
->tc_frag_data
.last_map
, &symbol_rootP
, &symbol_lastP
);
2900 frag
->tc_frag_data
.last_map
= symbolP
;
2903 /* We must sometimes convert a region marked as code to data during
2904 code alignment, if an odd number of bytes have to be padded. The
2905 code mapping symbol is pushed to an aligned address. */
2908 insert_data_mapping_symbol (enum mstate state
,
2909 valueT value
, fragS
*frag
, offsetT bytes
)
2911 /* If there was already a mapping symbol, remove it. */
2912 if (frag
->tc_frag_data
.last_map
!= NULL
2913 && S_GET_VALUE (frag
->tc_frag_data
.last_map
) == frag
->fr_address
+ value
)
2915 symbolS
*symp
= frag
->tc_frag_data
.last_map
;
2919 know (frag
->tc_frag_data
.first_map
== symp
);
2920 frag
->tc_frag_data
.first_map
= NULL
;
2922 frag
->tc_frag_data
.last_map
= NULL
;
2923 symbol_remove (symp
, &symbol_rootP
, &symbol_lastP
);
2926 make_mapping_symbol (MAP_DATA
, value
, frag
);
2927 make_mapping_symbol (state
, value
+ bytes
, frag
);
2930 static void mapping_state_2 (enum mstate state
, int max_chars
);
2932 /* Set the mapping state to STATE. Only call this when about to
2933 emit some STATE bytes to the file. */
2935 #define TRANSITION(from, to) (mapstate == (from) && state == (to))
2937 mapping_state (enum mstate state
)
2939 enum mstate mapstate
= seg_info (now_seg
)->tc_segment_info_data
.mapstate
;
2941 if (mapstate
== state
)
2942 /* The mapping symbol has already been emitted.
2943 There is nothing else to do. */
2946 if (state
== MAP_ARM
|| state
== MAP_THUMB
)
2948 All ARM instructions require 4-byte alignment.
2949 (Almost) all Thumb instructions require 2-byte alignment.
2951 When emitting instructions into any section, mark the section
2954 Some Thumb instructions are alignment-sensitive modulo 4 bytes,
2955 but themselves require 2-byte alignment; this applies to some
2956 PC- relative forms. However, these cases will involve implicit
2957 literal pool generation or an explicit .align >=2, both of
2958 which will cause the section to me marked with sufficient
2959 alignment. Thus, we don't handle those cases here. */
2960 record_alignment (now_seg
, state
== MAP_ARM
? 2 : 1);
2962 if (TRANSITION (MAP_UNDEFINED
, MAP_DATA
))
2963 /* This case will be evaluated later. */
2966 mapping_state_2 (state
, 0);
2969 /* Same as mapping_state, but MAX_CHARS bytes have already been
2970 allocated. Put the mapping symbol that far back. */
2973 mapping_state_2 (enum mstate state
, int max_chars
)
2975 enum mstate mapstate
= seg_info (now_seg
)->tc_segment_info_data
.mapstate
;
2977 if (!SEG_NORMAL (now_seg
))
2980 if (mapstate
== state
)
2981 /* The mapping symbol has already been emitted.
2982 There is nothing else to do. */
2985 if (TRANSITION (MAP_UNDEFINED
, MAP_ARM
)
2986 || TRANSITION (MAP_UNDEFINED
, MAP_THUMB
))
2988 struct frag
* const frag_first
= seg_info (now_seg
)->frchainP
->frch_root
;
2989 const int add_symbol
= (frag_now
!= frag_first
) || (frag_now_fix () > 0);
2992 make_mapping_symbol (MAP_DATA
, (valueT
) 0, frag_first
);
2995 seg_info (now_seg
)->tc_segment_info_data
.mapstate
= state
;
2996 make_mapping_symbol (state
, (valueT
) frag_now_fix () - max_chars
, frag_now
);
3000 #define mapping_state(x) ((void)0)
3001 #define mapping_state_2(x, y) ((void)0)
3004 /* Find the real, Thumb encoded start of a Thumb function. */
3008 find_real_start (symbolS
* symbolP
)
3011 const char * name
= S_GET_NAME (symbolP
);
3012 symbolS
* new_target
;
3014 /* This definition must agree with the one in gcc/config/arm/thumb.c. */
3015 #define STUB_NAME ".real_start_of"
3020 /* The compiler may generate BL instructions to local labels because
3021 it needs to perform a branch to a far away location. These labels
3022 do not have a corresponding ".real_start_of" label. We check
3023 both for S_IS_LOCAL and for a leading dot, to give a way to bypass
3024 the ".real_start_of" convention for nonlocal branches. */
3025 if (S_IS_LOCAL (symbolP
) || name
[0] == '.')
3028 real_start
= concat (STUB_NAME
, name
, NULL
);
3029 new_target
= symbol_find (real_start
);
3032 if (new_target
== NULL
)
3034 as_warn (_("Failed to find real start of function: %s\n"), name
);
3035 new_target
= symbolP
;
3043 opcode_select (int width
)
3050 if (!ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v4t
))
3051 as_bad (_("selected processor does not support THUMB opcodes"));
3054 /* No need to force the alignment, since we will have been
3055 coming from ARM mode, which is word-aligned. */
3056 record_alignment (now_seg
, 1);
3063 if (!ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v1
))
3064 as_bad (_("selected processor does not support ARM opcodes"));
3069 frag_align (2, 0, 0);
3071 record_alignment (now_seg
, 1);
3076 as_bad (_("invalid instruction size selected (%d)"), width
);
3081 s_arm (int ignore ATTRIBUTE_UNUSED
)
3084 demand_empty_rest_of_line ();
3088 s_thumb (int ignore ATTRIBUTE_UNUSED
)
3091 demand_empty_rest_of_line ();
3095 s_code (int unused ATTRIBUTE_UNUSED
)
3099 temp
= get_absolute_expression ();
3104 opcode_select (temp
);
3108 as_bad (_("invalid operand to .code directive (%d) (expecting 16 or 32)"), temp
);
3113 s_force_thumb (int ignore ATTRIBUTE_UNUSED
)
3115 /* If we are not already in thumb mode go into it, EVEN if
3116 the target processor does not support thumb instructions.
3117 This is used by gcc/config/arm/lib1funcs.asm for example
3118 to compile interworking support functions even if the
3119 target processor should not support interworking. */
3123 record_alignment (now_seg
, 1);
3126 demand_empty_rest_of_line ();
3130 s_thumb_func (int ignore ATTRIBUTE_UNUSED
)
3134 /* The following label is the name/address of the start of a Thumb function.
3135 We need to know this for the interworking support. */
3136 label_is_thumb_function_name
= TRUE
;
3139 /* Perform a .set directive, but also mark the alias as
3140 being a thumb function. */
3143 s_thumb_set (int equiv
)
3145 /* XXX the following is a duplicate of the code for s_set() in read.c
3146 We cannot just call that code as we need to get at the symbol that
3153 /* Especial apologies for the random logic:
3154 This just grew, and could be parsed much more simply!
3156 delim
= get_symbol_name (& name
);
3157 end_name
= input_line_pointer
;
3158 (void) restore_line_pointer (delim
);
3160 if (*input_line_pointer
!= ',')
3163 as_bad (_("expected comma after name \"%s\""), name
);
3165 ignore_rest_of_line ();
3169 input_line_pointer
++;
3172 if (name
[0] == '.' && name
[1] == '\0')
3174 /* XXX - this should not happen to .thumb_set. */
3178 if ((symbolP
= symbol_find (name
)) == NULL
3179 && (symbolP
= md_undefined_symbol (name
)) == NULL
)
3182 /* When doing symbol listings, play games with dummy fragments living
3183 outside the normal fragment chain to record the file and line info
3185 if (listing
& LISTING_SYMBOLS
)
3187 extern struct list_info_struct
* listing_tail
;
3188 fragS
* dummy_frag
= (fragS
* ) xmalloc (sizeof (fragS
));
3190 memset (dummy_frag
, 0, sizeof (fragS
));
3191 dummy_frag
->fr_type
= rs_fill
;
3192 dummy_frag
->line
= listing_tail
;
3193 symbolP
= symbol_new (name
, undefined_section
, 0, dummy_frag
);
3194 dummy_frag
->fr_symbol
= symbolP
;
3198 symbolP
= symbol_new (name
, undefined_section
, 0, &zero_address_frag
);
3201 /* "set" symbols are local unless otherwise specified. */
3202 SF_SET_LOCAL (symbolP
);
3203 #endif /* OBJ_COFF */
3204 } /* Make a new symbol. */
3206 symbol_table_insert (symbolP
);
3211 && S_IS_DEFINED (symbolP
)
3212 && S_GET_SEGMENT (symbolP
) != reg_section
)
3213 as_bad (_("symbol `%s' already defined"), S_GET_NAME (symbolP
));
3215 pseudo_set (symbolP
);
3217 demand_empty_rest_of_line ();
3219 /* XXX Now we come to the Thumb specific bit of code. */
3221 THUMB_SET_FUNC (symbolP
, 1);
3222 ARM_SET_THUMB (symbolP
, 1);
3223 #if defined OBJ_ELF || defined OBJ_COFF
3224 ARM_SET_INTERWORK (symbolP
, support_interwork
);
3228 /* Directives: Mode selection. */
3230 /* .syntax [unified|divided] - choose the new unified syntax
3231 (same for Arm and Thumb encoding, modulo slight differences in what
3232 can be represented) or the old divergent syntax for each mode. */
3234 s_syntax (int unused ATTRIBUTE_UNUSED
)
3238 delim
= get_symbol_name (& name
);
3240 if (!strcasecmp (name
, "unified"))
3241 unified_syntax
= TRUE
;
3242 else if (!strcasecmp (name
, "divided"))
3243 unified_syntax
= FALSE
;
3246 as_bad (_("unrecognized syntax mode \"%s\""), name
);
3249 (void) restore_line_pointer (delim
);
3250 demand_empty_rest_of_line ();
3253 /* Directives: sectioning and alignment. */
3256 s_bss (int ignore ATTRIBUTE_UNUSED
)
3258 /* We don't support putting frags in the BSS segment, we fake it by
3259 marking in_bss, then looking at s_skip for clues. */
3260 subseg_set (bss_section
, 0);
3261 demand_empty_rest_of_line ();
3263 #ifdef md_elf_section_change_hook
3264 md_elf_section_change_hook ();
3269 s_even (int ignore ATTRIBUTE_UNUSED
)
3271 /* Never make frag if expect extra pass. */
3273 frag_align (1, 0, 0);
3275 record_alignment (now_seg
, 1);
3277 demand_empty_rest_of_line ();
3280 /* Directives: CodeComposer Studio. */
3282 /* .ref (for CodeComposer Studio syntax only). */
3284 s_ccs_ref (int unused ATTRIBUTE_UNUSED
)
3286 if (codecomposer_syntax
)
3287 ignore_rest_of_line ();
3289 as_bad (_(".ref pseudo-op only available with -mccs flag."));
3292 /* If name is not NULL, then it is used for marking the beginning of a
3293 function, whereas if it is NULL then it means the function end. */
3295 asmfunc_debug (const char * name
)
3297 static const char * last_name
= NULL
;
3301 gas_assert (last_name
== NULL
);
3304 if (debug_type
== DEBUG_STABS
)
3305 stabs_generate_asm_func (name
, name
);
3309 gas_assert (last_name
!= NULL
);
3311 if (debug_type
== DEBUG_STABS
)
3312 stabs_generate_asm_endfunc (last_name
, last_name
);
3319 s_ccs_asmfunc (int unused ATTRIBUTE_UNUSED
)
3321 if (codecomposer_syntax
)
3323 switch (asmfunc_state
)
3325 case OUTSIDE_ASMFUNC
:
3326 asmfunc_state
= WAITING_ASMFUNC_NAME
;
3329 case WAITING_ASMFUNC_NAME
:
3330 as_bad (_(".asmfunc repeated."));
3333 case WAITING_ENDASMFUNC
:
3334 as_bad (_(".asmfunc without function."));
3337 demand_empty_rest_of_line ();
3340 as_bad (_(".asmfunc pseudo-op only available with -mccs flag."));
3344 s_ccs_endasmfunc (int unused ATTRIBUTE_UNUSED
)
3346 if (codecomposer_syntax
)
3348 switch (asmfunc_state
)
3350 case OUTSIDE_ASMFUNC
:
3351 as_bad (_(".endasmfunc without a .asmfunc."));
3354 case WAITING_ASMFUNC_NAME
:
3355 as_bad (_(".endasmfunc without function."));
3358 case WAITING_ENDASMFUNC
:
3359 asmfunc_state
= OUTSIDE_ASMFUNC
;
3360 asmfunc_debug (NULL
);
3363 demand_empty_rest_of_line ();
3366 as_bad (_(".endasmfunc pseudo-op only available with -mccs flag."));
3370 s_ccs_def (int name
)
3372 if (codecomposer_syntax
)
3375 as_bad (_(".def pseudo-op only available with -mccs flag."));
3378 /* Directives: Literal pools. */
3380 static literal_pool
*
3381 find_literal_pool (void)
3383 literal_pool
* pool
;
3385 for (pool
= list_of_pools
; pool
!= NULL
; pool
= pool
->next
)
3387 if (pool
->section
== now_seg
3388 && pool
->sub_section
== now_subseg
)
3395 static literal_pool
*
3396 find_or_make_literal_pool (void)
3398 /* Next literal pool ID number. */
3399 static unsigned int latest_pool_num
= 1;
3400 literal_pool
* pool
;
3402 pool
= find_literal_pool ();
3406 /* Create a new pool. */
3407 pool
= XNEW (literal_pool
);
3411 pool
->next_free_entry
= 0;
3412 pool
->section
= now_seg
;
3413 pool
->sub_section
= now_subseg
;
3414 pool
->next
= list_of_pools
;
3415 pool
->symbol
= NULL
;
3416 pool
->alignment
= 2;
3418 /* Add it to the list. */
3419 list_of_pools
= pool
;
3422 /* New pools, and emptied pools, will have a NULL symbol. */
3423 if (pool
->symbol
== NULL
)
3425 pool
->symbol
= symbol_create (FAKE_LABEL_NAME
, undefined_section
,
3426 (valueT
) 0, &zero_address_frag
);
3427 pool
->id
= latest_pool_num
++;
3434 /* Add the literal in the global 'inst'
3435 structure to the relevant literal pool. */
3438 add_to_lit_pool (unsigned int nbytes
)
3440 #define PADDING_SLOT 0x1
3441 #define LIT_ENTRY_SIZE_MASK 0xFF
3442 literal_pool
* pool
;
3443 unsigned int entry
, pool_size
= 0;
3444 bfd_boolean padding_slot_p
= FALSE
;
3450 imm1
= inst
.operands
[1].imm
;
3451 imm2
= (inst
.operands
[1].regisimm
? inst
.operands
[1].reg
3452 : inst
.relocs
[0].exp
.X_unsigned
? 0
3453 : ((bfd_int64_t
) inst
.operands
[1].imm
) >> 32);
3454 if (target_big_endian
)
3457 imm2
= inst
.operands
[1].imm
;
3461 pool
= find_or_make_literal_pool ();
3463 /* Check if this literal value is already in the pool. */
3464 for (entry
= 0; entry
< pool
->next_free_entry
; entry
++)
3468 if ((pool
->literals
[entry
].X_op
== inst
.relocs
[0].exp
.X_op
)
3469 && (inst
.relocs
[0].exp
.X_op
== O_constant
)
3470 && (pool
->literals
[entry
].X_add_number
3471 == inst
.relocs
[0].exp
.X_add_number
)
3472 && (pool
->literals
[entry
].X_md
== nbytes
)
3473 && (pool
->literals
[entry
].X_unsigned
3474 == inst
.relocs
[0].exp
.X_unsigned
))
3477 if ((pool
->literals
[entry
].X_op
== inst
.relocs
[0].exp
.X_op
)
3478 && (inst
.relocs
[0].exp
.X_op
== O_symbol
)
3479 && (pool
->literals
[entry
].X_add_number
3480 == inst
.relocs
[0].exp
.X_add_number
)
3481 && (pool
->literals
[entry
].X_add_symbol
3482 == inst
.relocs
[0].exp
.X_add_symbol
)
3483 && (pool
->literals
[entry
].X_op_symbol
3484 == inst
.relocs
[0].exp
.X_op_symbol
)
3485 && (pool
->literals
[entry
].X_md
== nbytes
))
3488 else if ((nbytes
== 8)
3489 && !(pool_size
& 0x7)
3490 && ((entry
+ 1) != pool
->next_free_entry
)
3491 && (pool
->literals
[entry
].X_op
== O_constant
)
3492 && (pool
->literals
[entry
].X_add_number
== (offsetT
) imm1
)
3493 && (pool
->literals
[entry
].X_unsigned
3494 == inst
.relocs
[0].exp
.X_unsigned
)
3495 && (pool
->literals
[entry
+ 1].X_op
== O_constant
)
3496 && (pool
->literals
[entry
+ 1].X_add_number
== (offsetT
) imm2
)
3497 && (pool
->literals
[entry
+ 1].X_unsigned
3498 == inst
.relocs
[0].exp
.X_unsigned
))
3501 padding_slot_p
= ((pool
->literals
[entry
].X_md
>> 8) == PADDING_SLOT
);
3502 if (padding_slot_p
&& (nbytes
== 4))
3508 /* Do we need to create a new entry? */
3509 if (entry
== pool
->next_free_entry
)
3511 if (entry
>= MAX_LITERAL_POOL_SIZE
)
3513 inst
.error
= _("literal pool overflow");
3519 /* For 8-byte entries, we align to an 8-byte boundary,
3520 and split it into two 4-byte entries, because on 32-bit
3521 host, 8-byte constants are treated as big num, thus
3522 saved in "generic_bignum" which will be overwritten
3523 by later assignments.
3525 We also need to make sure there is enough space for
3528 We also check to make sure the literal operand is a
3530 if (!(inst
.relocs
[0].exp
.X_op
== O_constant
3531 || inst
.relocs
[0].exp
.X_op
== O_big
))
3533 inst
.error
= _("invalid type for literal pool");
3536 else if (pool_size
& 0x7)
3538 if ((entry
+ 2) >= MAX_LITERAL_POOL_SIZE
)
3540 inst
.error
= _("literal pool overflow");
3544 pool
->literals
[entry
] = inst
.relocs
[0].exp
;
3545 pool
->literals
[entry
].X_op
= O_constant
;
3546 pool
->literals
[entry
].X_add_number
= 0;
3547 pool
->literals
[entry
++].X_md
= (PADDING_SLOT
<< 8) | 4;
3548 pool
->next_free_entry
+= 1;
3551 else if ((entry
+ 1) >= MAX_LITERAL_POOL_SIZE
)
3553 inst
.error
= _("literal pool overflow");
3557 pool
->literals
[entry
] = inst
.relocs
[0].exp
;
3558 pool
->literals
[entry
].X_op
= O_constant
;
3559 pool
->literals
[entry
].X_add_number
= imm1
;
3560 pool
->literals
[entry
].X_unsigned
= inst
.relocs
[0].exp
.X_unsigned
;
3561 pool
->literals
[entry
++].X_md
= 4;
3562 pool
->literals
[entry
] = inst
.relocs
[0].exp
;
3563 pool
->literals
[entry
].X_op
= O_constant
;
3564 pool
->literals
[entry
].X_add_number
= imm2
;
3565 pool
->literals
[entry
].X_unsigned
= inst
.relocs
[0].exp
.X_unsigned
;
3566 pool
->literals
[entry
].X_md
= 4;
3567 pool
->alignment
= 3;
3568 pool
->next_free_entry
+= 1;
3572 pool
->literals
[entry
] = inst
.relocs
[0].exp
;
3573 pool
->literals
[entry
].X_md
= 4;
3577 /* PR ld/12974: Record the location of the first source line to reference
3578 this entry in the literal pool. If it turns out during linking that the
3579 symbol does not exist we will be able to give an accurate line number for
3580 the (first use of the) missing reference. */
3581 if (debug_type
== DEBUG_DWARF2
)
3582 dwarf2_where (pool
->locs
+ entry
);
3584 pool
->next_free_entry
+= 1;
3586 else if (padding_slot_p
)
3588 pool
->literals
[entry
] = inst
.relocs
[0].exp
;
3589 pool
->literals
[entry
].X_md
= nbytes
;
3592 inst
.relocs
[0].exp
.X_op
= O_symbol
;
3593 inst
.relocs
[0].exp
.X_add_number
= pool_size
;
3594 inst
.relocs
[0].exp
.X_add_symbol
= pool
->symbol
;
3600 tc_start_label_without_colon (void)
3602 bfd_boolean ret
= TRUE
;
3604 if (codecomposer_syntax
&& asmfunc_state
== WAITING_ASMFUNC_NAME
)
3606 const char *label
= input_line_pointer
;
3608 while (!is_end_of_line
[(int) label
[-1]])
3613 as_bad (_("Invalid label '%s'"), label
);
3617 asmfunc_debug (label
);
3619 asmfunc_state
= WAITING_ENDASMFUNC
;
3625 /* Can't use symbol_new here, so have to create a symbol and then at
3626 a later date assign it a value. That's what these functions do. */
3629 symbol_locate (symbolS
* symbolP
,
3630 const char * name
, /* It is copied, the caller can modify. */
3631 segT segment
, /* Segment identifier (SEG_<something>). */
3632 valueT valu
, /* Symbol value. */
3633 fragS
* frag
) /* Associated fragment. */
3636 char * preserved_copy_of_name
;
3638 name_length
= strlen (name
) + 1; /* +1 for \0. */
3639 obstack_grow (¬es
, name
, name_length
);
3640 preserved_copy_of_name
= (char *) obstack_finish (¬es
);
3642 #ifdef tc_canonicalize_symbol_name
3643 preserved_copy_of_name
=
3644 tc_canonicalize_symbol_name (preserved_copy_of_name
);
3647 S_SET_NAME (symbolP
, preserved_copy_of_name
);
3649 S_SET_SEGMENT (symbolP
, segment
);
3650 S_SET_VALUE (symbolP
, valu
);
3651 symbol_clear_list_pointers (symbolP
);
3653 symbol_set_frag (symbolP
, frag
);
3655 /* Link to end of symbol chain. */
3657 extern int symbol_table_frozen
;
3659 if (symbol_table_frozen
)
3663 symbol_append (symbolP
, symbol_lastP
, & symbol_rootP
, & symbol_lastP
);
3665 obj_symbol_new_hook (symbolP
);
3667 #ifdef tc_symbol_new_hook
3668 tc_symbol_new_hook (symbolP
);
3672 verify_symbol_chain (symbol_rootP
, symbol_lastP
);
3673 #endif /* DEBUG_SYMS */
3677 s_ltorg (int ignored ATTRIBUTE_UNUSED
)
3680 literal_pool
* pool
;
3683 pool
= find_literal_pool ();
3685 || pool
->symbol
== NULL
3686 || pool
->next_free_entry
== 0)
3689 /* Align pool as you have word accesses.
3690 Only make a frag if we have to. */
3692 frag_align (pool
->alignment
, 0, 0);
3694 record_alignment (now_seg
, 2);
3697 seg_info (now_seg
)->tc_segment_info_data
.mapstate
= MAP_DATA
;
3698 make_mapping_symbol (MAP_DATA
, (valueT
) frag_now_fix (), frag_now
);
3700 sprintf (sym_name
, "$$lit_\002%x", pool
->id
);
3702 symbol_locate (pool
->symbol
, sym_name
, now_seg
,
3703 (valueT
) frag_now_fix (), frag_now
);
3704 symbol_table_insert (pool
->symbol
);
3706 ARM_SET_THUMB (pool
->symbol
, thumb_mode
);
3708 #if defined OBJ_COFF || defined OBJ_ELF
3709 ARM_SET_INTERWORK (pool
->symbol
, support_interwork
);
3712 for (entry
= 0; entry
< pool
->next_free_entry
; entry
++)
3715 if (debug_type
== DEBUG_DWARF2
)
3716 dwarf2_gen_line_info (frag_now_fix (), pool
->locs
+ entry
);
3718 /* First output the expression in the instruction to the pool. */
3719 emit_expr (&(pool
->literals
[entry
]),
3720 pool
->literals
[entry
].X_md
& LIT_ENTRY_SIZE_MASK
);
3723 /* Mark the pool as empty. */
3724 pool
->next_free_entry
= 0;
3725 pool
->symbol
= NULL
;
3729 /* Forward declarations for functions below, in the MD interface
3731 static void fix_new_arm (fragS
*, int, short, expressionS
*, int, int);
3732 static valueT
create_unwind_entry (int);
3733 static void start_unwind_section (const segT
, int);
3734 static void add_unwind_opcode (valueT
, int);
3735 static void flush_pending_unwind (void);
3737 /* Directives: Data. */
3740 s_arm_elf_cons (int nbytes
)
3744 #ifdef md_flush_pending_output
3745 md_flush_pending_output ();
3748 if (is_it_end_of_statement ())
3750 demand_empty_rest_of_line ();
3754 #ifdef md_cons_align
3755 md_cons_align (nbytes
);
3758 mapping_state (MAP_DATA
);
3762 char *base
= input_line_pointer
;
3766 if (exp
.X_op
!= O_symbol
)
3767 emit_expr (&exp
, (unsigned int) nbytes
);
3770 char *before_reloc
= input_line_pointer
;
3771 reloc
= parse_reloc (&input_line_pointer
);
3774 as_bad (_("unrecognized relocation suffix"));
3775 ignore_rest_of_line ();
3778 else if (reloc
== BFD_RELOC_UNUSED
)
3779 emit_expr (&exp
, (unsigned int) nbytes
);
3782 reloc_howto_type
*howto
= (reloc_howto_type
*)
3783 bfd_reloc_type_lookup (stdoutput
,
3784 (bfd_reloc_code_real_type
) reloc
);
3785 int size
= bfd_get_reloc_size (howto
);
3787 if (reloc
== BFD_RELOC_ARM_PLT32
)
3789 as_bad (_("(plt) is only valid on branch targets"));
3790 reloc
= BFD_RELOC_UNUSED
;
3795 as_bad (ngettext ("%s relocations do not fit in %d byte",
3796 "%s relocations do not fit in %d bytes",
3798 howto
->name
, nbytes
);
3801 /* We've parsed an expression stopping at O_symbol.
3802 But there may be more expression left now that we
3803 have parsed the relocation marker. Parse it again.
3804 XXX Surely there is a cleaner way to do this. */
3805 char *p
= input_line_pointer
;
3807 char *save_buf
= XNEWVEC (char, input_line_pointer
- base
);
3809 memcpy (save_buf
, base
, input_line_pointer
- base
);
3810 memmove (base
+ (input_line_pointer
- before_reloc
),
3811 base
, before_reloc
- base
);
3813 input_line_pointer
= base
+ (input_line_pointer
-before_reloc
);
3815 memcpy (base
, save_buf
, p
- base
);
3817 offset
= nbytes
- size
;
3818 p
= frag_more (nbytes
);
3819 memset (p
, 0, nbytes
);
3820 fix_new_exp (frag_now
, p
- frag_now
->fr_literal
+ offset
,
3821 size
, &exp
, 0, (enum bfd_reloc_code_real
) reloc
);
3827 while (*input_line_pointer
++ == ',');
3829 /* Put terminator back into stream. */
3830 input_line_pointer
--;
3831 demand_empty_rest_of_line ();
3834 /* Emit an expression containing a 32-bit thumb instruction.
3835 Implementation based on put_thumb32_insn. */
3838 emit_thumb32_expr (expressionS
* exp
)
3840 expressionS exp_high
= *exp
;
3842 exp_high
.X_add_number
= (unsigned long)exp_high
.X_add_number
>> 16;
3843 emit_expr (& exp_high
, (unsigned int) THUMB_SIZE
);
3844 exp
->X_add_number
&= 0xffff;
3845 emit_expr (exp
, (unsigned int) THUMB_SIZE
);
3848 /* Guess the instruction size based on the opcode. */
3851 thumb_insn_size (int opcode
)
3853 if ((unsigned int) opcode
< 0xe800u
)
3855 else if ((unsigned int) opcode
>= 0xe8000000u
)
3862 emit_insn (expressionS
*exp
, int nbytes
)
3866 if (exp
->X_op
== O_constant
)
3871 size
= thumb_insn_size (exp
->X_add_number
);
3875 if (size
== 2 && (unsigned int)exp
->X_add_number
> 0xffffu
)
3877 as_bad (_(".inst.n operand too big. "\
3878 "Use .inst.w instead"));
3883 if (now_pred
.state
== AUTOMATIC_PRED_BLOCK
)
3884 set_pred_insn_type_nonvoid (OUTSIDE_PRED_INSN
, 0);
3886 set_pred_insn_type_nonvoid (NEUTRAL_IT_INSN
, 0);
3888 if (thumb_mode
&& (size
> THUMB_SIZE
) && !target_big_endian
)
3889 emit_thumb32_expr (exp
);
3891 emit_expr (exp
, (unsigned int) size
);
3893 it_fsm_post_encode ();
3897 as_bad (_("cannot determine Thumb instruction size. " \
3898 "Use .inst.n/.inst.w instead"));
3901 as_bad (_("constant expression required"));
3906 /* Like s_arm_elf_cons but do not use md_cons_align and
3907 set the mapping state to MAP_ARM/MAP_THUMB. */
3910 s_arm_elf_inst (int nbytes
)
3912 if (is_it_end_of_statement ())
3914 demand_empty_rest_of_line ();
3918 /* Calling mapping_state () here will not change ARM/THUMB,
3919 but will ensure not to be in DATA state. */
3922 mapping_state (MAP_THUMB
);
3927 as_bad (_("width suffixes are invalid in ARM mode"));
3928 ignore_rest_of_line ();
3934 mapping_state (MAP_ARM
);
3943 if (! emit_insn (& exp
, nbytes
))
3945 ignore_rest_of_line ();
3949 while (*input_line_pointer
++ == ',');
3951 /* Put terminator back into stream. */
3952 input_line_pointer
--;
3953 demand_empty_rest_of_line ();
3956 /* Parse a .rel31 directive. */
3959 s_arm_rel31 (int ignored ATTRIBUTE_UNUSED
)
3966 if (*input_line_pointer
== '1')
3967 highbit
= 0x80000000;
3968 else if (*input_line_pointer
!= '0')
3969 as_bad (_("expected 0 or 1"));
3971 input_line_pointer
++;
3972 if (*input_line_pointer
!= ',')
3973 as_bad (_("missing comma"));
3974 input_line_pointer
++;
3976 #ifdef md_flush_pending_output
3977 md_flush_pending_output ();
3980 #ifdef md_cons_align
3984 mapping_state (MAP_DATA
);
3989 md_number_to_chars (p
, highbit
, 4);
3990 fix_new_arm (frag_now
, p
- frag_now
->fr_literal
, 4, &exp
, 1,
3991 BFD_RELOC_ARM_PREL31
);
3993 demand_empty_rest_of_line ();
3996 /* Directives: AEABI stack-unwind tables. */
3998 /* Parse an unwind_fnstart directive. Simply records the current location. */
4001 s_arm_unwind_fnstart (int ignored ATTRIBUTE_UNUSED
)
4003 demand_empty_rest_of_line ();
4004 if (unwind
.proc_start
)
4006 as_bad (_("duplicate .fnstart directive"));
4010 /* Mark the start of the function. */
4011 unwind
.proc_start
= expr_build_dot ();
4013 /* Reset the rest of the unwind info. */
4014 unwind
.opcode_count
= 0;
4015 unwind
.table_entry
= NULL
;
4016 unwind
.personality_routine
= NULL
;
4017 unwind
.personality_index
= -1;
4018 unwind
.frame_size
= 0;
4019 unwind
.fp_offset
= 0;
4020 unwind
.fp_reg
= REG_SP
;
4022 unwind
.sp_restored
= 0;
4026 /* Parse a handlerdata directive. Creates the exception handling table entry
4027 for the function. */
4030 s_arm_unwind_handlerdata (int ignored ATTRIBUTE_UNUSED
)
4032 demand_empty_rest_of_line ();
4033 if (!unwind
.proc_start
)
4034 as_bad (MISSING_FNSTART
);
4036 if (unwind
.table_entry
)
4037 as_bad (_("duplicate .handlerdata directive"));
4039 create_unwind_entry (1);
4042 /* Parse an unwind_fnend directive. Generates the index table entry. */
4045 s_arm_unwind_fnend (int ignored ATTRIBUTE_UNUSED
)
4050 unsigned int marked_pr_dependency
;
4052 demand_empty_rest_of_line ();
4054 if (!unwind
.proc_start
)
4056 as_bad (_(".fnend directive without .fnstart"));
4060 /* Add eh table entry. */
4061 if (unwind
.table_entry
== NULL
)
4062 val
= create_unwind_entry (0);
4066 /* Add index table entry. This is two words. */
4067 start_unwind_section (unwind
.saved_seg
, 1);
4068 frag_align (2, 0, 0);
4069 record_alignment (now_seg
, 2);
4071 ptr
= frag_more (8);
4073 where
= frag_now_fix () - 8;
4075 /* Self relative offset of the function start. */
4076 fix_new (frag_now
, where
, 4, unwind
.proc_start
, 0, 1,
4077 BFD_RELOC_ARM_PREL31
);
4079 /* Indicate dependency on EHABI-defined personality routines to the
4080 linker, if it hasn't been done already. */
4081 marked_pr_dependency
4082 = seg_info (now_seg
)->tc_segment_info_data
.marked_pr_dependency
;
4083 if (unwind
.personality_index
>= 0 && unwind
.personality_index
< 3
4084 && !(marked_pr_dependency
& (1 << unwind
.personality_index
)))
4086 static const char *const name
[] =
4088 "__aeabi_unwind_cpp_pr0",
4089 "__aeabi_unwind_cpp_pr1",
4090 "__aeabi_unwind_cpp_pr2"
4092 symbolS
*pr
= symbol_find_or_make (name
[unwind
.personality_index
]);
4093 fix_new (frag_now
, where
, 0, pr
, 0, 1, BFD_RELOC_NONE
);
4094 seg_info (now_seg
)->tc_segment_info_data
.marked_pr_dependency
4095 |= 1 << unwind
.personality_index
;
4099 /* Inline exception table entry. */
4100 md_number_to_chars (ptr
+ 4, val
, 4);
4102 /* Self relative offset of the table entry. */
4103 fix_new (frag_now
, where
+ 4, 4, unwind
.table_entry
, 0, 1,
4104 BFD_RELOC_ARM_PREL31
);
4106 /* Restore the original section. */
4107 subseg_set (unwind
.saved_seg
, unwind
.saved_subseg
);
4109 unwind
.proc_start
= NULL
;
4113 /* Parse an unwind_cantunwind directive. */
4116 s_arm_unwind_cantunwind (int ignored ATTRIBUTE_UNUSED
)
4118 demand_empty_rest_of_line ();
4119 if (!unwind
.proc_start
)
4120 as_bad (MISSING_FNSTART
);
4122 if (unwind
.personality_routine
|| unwind
.personality_index
!= -1)
4123 as_bad (_("personality routine specified for cantunwind frame"));
4125 unwind
.personality_index
= -2;
4129 /* Parse a personalityindex directive. */
4132 s_arm_unwind_personalityindex (int ignored ATTRIBUTE_UNUSED
)
4136 if (!unwind
.proc_start
)
4137 as_bad (MISSING_FNSTART
);
4139 if (unwind
.personality_routine
|| unwind
.personality_index
!= -1)
4140 as_bad (_("duplicate .personalityindex directive"));
4144 if (exp
.X_op
!= O_constant
4145 || exp
.X_add_number
< 0 || exp
.X_add_number
> 15)
4147 as_bad (_("bad personality routine number"));
4148 ignore_rest_of_line ();
4152 unwind
.personality_index
= exp
.X_add_number
;
4154 demand_empty_rest_of_line ();
4158 /* Parse a personality directive. */
4161 s_arm_unwind_personality (int ignored ATTRIBUTE_UNUSED
)
4165 if (!unwind
.proc_start
)
4166 as_bad (MISSING_FNSTART
);
4168 if (unwind
.personality_routine
|| unwind
.personality_index
!= -1)
4169 as_bad (_("duplicate .personality directive"));
4171 c
= get_symbol_name (& name
);
4172 p
= input_line_pointer
;
4174 ++ input_line_pointer
;
4175 unwind
.personality_routine
= symbol_find_or_make (name
);
4177 demand_empty_rest_of_line ();
4181 /* Parse a directive saving core registers. */
4184 s_arm_unwind_save_core (void)
4190 range
= parse_reg_list (&input_line_pointer
, REGLIST_RN
);
4193 as_bad (_("expected register list"));
4194 ignore_rest_of_line ();
4198 demand_empty_rest_of_line ();
4200 /* Turn .unwind_movsp ip followed by .unwind_save {..., ip, ...}
4201 into .unwind_save {..., sp...}. We aren't bothered about the value of
4202 ip because it is clobbered by calls. */
4203 if (unwind
.sp_restored
&& unwind
.fp_reg
== 12
4204 && (range
& 0x3000) == 0x1000)
4206 unwind
.opcode_count
--;
4207 unwind
.sp_restored
= 0;
4208 range
= (range
| 0x2000) & ~0x1000;
4209 unwind
.pending_offset
= 0;
4215 /* See if we can use the short opcodes. These pop a block of up to 8
4216 registers starting with r4, plus maybe r14. */
4217 for (n
= 0; n
< 8; n
++)
4219 /* Break at the first non-saved register. */
4220 if ((range
& (1 << (n
+ 4))) == 0)
4223 /* See if there are any other bits set. */
4224 if (n
== 0 || (range
& (0xfff0 << n
) & 0xbff0) != 0)
4226 /* Use the long form. */
4227 op
= 0x8000 | ((range
>> 4) & 0xfff);
4228 add_unwind_opcode (op
, 2);
4232 /* Use the short form. */
4234 op
= 0xa8; /* Pop r14. */
4236 op
= 0xa0; /* Do not pop r14. */
4238 add_unwind_opcode (op
, 1);
4245 op
= 0xb100 | (range
& 0xf);
4246 add_unwind_opcode (op
, 2);
4249 /* Record the number of bytes pushed. */
4250 for (n
= 0; n
< 16; n
++)
4252 if (range
& (1 << n
))
4253 unwind
.frame_size
+= 4;
4258 /* Parse a directive saving FPA registers. */
4261 s_arm_unwind_save_fpa (int reg
)
4267 /* Get Number of registers to transfer. */
4268 if (skip_past_comma (&input_line_pointer
) != FAIL
)
4271 exp
.X_op
= O_illegal
;
4273 if (exp
.X_op
!= O_constant
)
4275 as_bad (_("expected , <constant>"));
4276 ignore_rest_of_line ();
4280 num_regs
= exp
.X_add_number
;
4282 if (num_regs
< 1 || num_regs
> 4)
4284 as_bad (_("number of registers must be in the range [1:4]"));
4285 ignore_rest_of_line ();
4289 demand_empty_rest_of_line ();
4294 op
= 0xb4 | (num_regs
- 1);
4295 add_unwind_opcode (op
, 1);
4300 op
= 0xc800 | (reg
<< 4) | (num_regs
- 1);
4301 add_unwind_opcode (op
, 2);
4303 unwind
.frame_size
+= num_regs
* 12;
4307 /* Parse a directive saving VFP registers for ARMv6 and above. */
4310 s_arm_unwind_save_vfp_armv6 (void)
4315 int num_vfpv3_regs
= 0;
4316 int num_regs_below_16
;
4317 bfd_boolean partial_match
;
4319 count
= parse_vfp_reg_list (&input_line_pointer
, &start
, REGLIST_VFP_D
,
4323 as_bad (_("expected register list"));
4324 ignore_rest_of_line ();
4328 demand_empty_rest_of_line ();
4330 /* We always generate FSTMD/FLDMD-style unwinding opcodes (rather
4331 than FSTMX/FLDMX-style ones). */
4333 /* Generate opcode for (VFPv3) registers numbered in the range 16 .. 31. */
4335 num_vfpv3_regs
= count
;
4336 else if (start
+ count
> 16)
4337 num_vfpv3_regs
= start
+ count
- 16;
4339 if (num_vfpv3_regs
> 0)
4341 int start_offset
= start
> 16 ? start
- 16 : 0;
4342 op
= 0xc800 | (start_offset
<< 4) | (num_vfpv3_regs
- 1);
4343 add_unwind_opcode (op
, 2);
4346 /* Generate opcode for registers numbered in the range 0 .. 15. */
4347 num_regs_below_16
= num_vfpv3_regs
> 0 ? 16 - (int) start
: count
;
4348 gas_assert (num_regs_below_16
+ num_vfpv3_regs
== count
);
4349 if (num_regs_below_16
> 0)
4351 op
= 0xc900 | (start
<< 4) | (num_regs_below_16
- 1);
4352 add_unwind_opcode (op
, 2);
4355 unwind
.frame_size
+= count
* 8;
4359 /* Parse a directive saving VFP registers for pre-ARMv6. */
4362 s_arm_unwind_save_vfp (void)
4367 bfd_boolean partial_match
;
4369 count
= parse_vfp_reg_list (&input_line_pointer
, ®
, REGLIST_VFP_D
,
4373 as_bad (_("expected register list"));
4374 ignore_rest_of_line ();
4378 demand_empty_rest_of_line ();
4383 op
= 0xb8 | (count
- 1);
4384 add_unwind_opcode (op
, 1);
4389 op
= 0xb300 | (reg
<< 4) | (count
- 1);
4390 add_unwind_opcode (op
, 2);
4392 unwind
.frame_size
+= count
* 8 + 4;
4396 /* Parse a directive saving iWMMXt data registers. */
4399 s_arm_unwind_save_mmxwr (void)
4407 if (*input_line_pointer
== '{')
4408 input_line_pointer
++;
4412 reg
= arm_reg_parse (&input_line_pointer
, REG_TYPE_MMXWR
);
4416 as_bad ("%s", _(reg_expected_msgs
[REG_TYPE_MMXWR
]));
4421 as_tsktsk (_("register list not in ascending order"));
4424 if (*input_line_pointer
== '-')
4426 input_line_pointer
++;
4427 hi_reg
= arm_reg_parse (&input_line_pointer
, REG_TYPE_MMXWR
);
4430 as_bad ("%s", _(reg_expected_msgs
[REG_TYPE_MMXWR
]));
4433 else if (reg
>= hi_reg
)
4435 as_bad (_("bad register range"));
4438 for (; reg
< hi_reg
; reg
++)
4442 while (skip_past_comma (&input_line_pointer
) != FAIL
);
4444 skip_past_char (&input_line_pointer
, '}');
4446 demand_empty_rest_of_line ();
4448 /* Generate any deferred opcodes because we're going to be looking at
4450 flush_pending_unwind ();
4452 for (i
= 0; i
< 16; i
++)
4454 if (mask
& (1 << i
))
4455 unwind
.frame_size
+= 8;
4458 /* Attempt to combine with a previous opcode. We do this because gcc
4459 likes to output separate unwind directives for a single block of
4461 if (unwind
.opcode_count
> 0)
4463 i
= unwind
.opcodes
[unwind
.opcode_count
- 1];
4464 if ((i
& 0xf8) == 0xc0)
4467 /* Only merge if the blocks are contiguous. */
4470 if ((mask
& 0xfe00) == (1 << 9))
4472 mask
|= ((1 << (i
+ 11)) - 1) & 0xfc00;
4473 unwind
.opcode_count
--;
4476 else if (i
== 6 && unwind
.opcode_count
>= 2)
4478 i
= unwind
.opcodes
[unwind
.opcode_count
- 2];
4482 op
= 0xffff << (reg
- 1);
4484 && ((mask
& op
) == (1u << (reg
- 1))))
4486 op
= (1 << (reg
+ i
+ 1)) - 1;
4487 op
&= ~((1 << reg
) - 1);
4489 unwind
.opcode_count
-= 2;
4496 /* We want to generate opcodes in the order the registers have been
4497 saved, ie. descending order. */
4498 for (reg
= 15; reg
>= -1; reg
--)
4500 /* Save registers in blocks. */
4502 || !(mask
& (1 << reg
)))
4504 /* We found an unsaved reg. Generate opcodes to save the
4511 op
= 0xc0 | (hi_reg
- 10);
4512 add_unwind_opcode (op
, 1);
4517 op
= 0xc600 | ((reg
+ 1) << 4) | ((hi_reg
- reg
) - 1);
4518 add_unwind_opcode (op
, 2);
4527 ignore_rest_of_line ();
4531 s_arm_unwind_save_mmxwcg (void)
4538 if (*input_line_pointer
== '{')
4539 input_line_pointer
++;
4541 skip_whitespace (input_line_pointer
);
4545 reg
= arm_reg_parse (&input_line_pointer
, REG_TYPE_MMXWCG
);
4549 as_bad ("%s", _(reg_expected_msgs
[REG_TYPE_MMXWCG
]));
4555 as_tsktsk (_("register list not in ascending order"));
4558 if (*input_line_pointer
== '-')
4560 input_line_pointer
++;
4561 hi_reg
= arm_reg_parse (&input_line_pointer
, REG_TYPE_MMXWCG
);
4564 as_bad ("%s", _(reg_expected_msgs
[REG_TYPE_MMXWCG
]));
4567 else if (reg
>= hi_reg
)
4569 as_bad (_("bad register range"));
4572 for (; reg
< hi_reg
; reg
++)
4576 while (skip_past_comma (&input_line_pointer
) != FAIL
);
4578 skip_past_char (&input_line_pointer
, '}');
4580 demand_empty_rest_of_line ();
4582 /* Generate any deferred opcodes because we're going to be looking at
4584 flush_pending_unwind ();
4586 for (reg
= 0; reg
< 16; reg
++)
4588 if (mask
& (1 << reg
))
4589 unwind
.frame_size
+= 4;
4592 add_unwind_opcode (op
, 2);
4595 ignore_rest_of_line ();
4599 /* Parse an unwind_save directive.
4600 If the argument is non-zero, this is a .vsave directive. */
4603 s_arm_unwind_save (int arch_v6
)
4606 struct reg_entry
*reg
;
4607 bfd_boolean had_brace
= FALSE
;
4609 if (!unwind
.proc_start
)
4610 as_bad (MISSING_FNSTART
);
4612 /* Figure out what sort of save we have. */
4613 peek
= input_line_pointer
;
4621 reg
= arm_reg_parse_multi (&peek
);
4625 as_bad (_("register expected"));
4626 ignore_rest_of_line ();
4635 as_bad (_("FPA .unwind_save does not take a register list"));
4636 ignore_rest_of_line ();
4639 input_line_pointer
= peek
;
4640 s_arm_unwind_save_fpa (reg
->number
);
4644 s_arm_unwind_save_core ();
4649 s_arm_unwind_save_vfp_armv6 ();
4651 s_arm_unwind_save_vfp ();
4654 case REG_TYPE_MMXWR
:
4655 s_arm_unwind_save_mmxwr ();
4658 case REG_TYPE_MMXWCG
:
4659 s_arm_unwind_save_mmxwcg ();
4663 as_bad (_(".unwind_save does not support this kind of register"));
4664 ignore_rest_of_line ();
4669 /* Parse an unwind_movsp directive. */
4672 s_arm_unwind_movsp (int ignored ATTRIBUTE_UNUSED
)
4678 if (!unwind
.proc_start
)
4679 as_bad (MISSING_FNSTART
);
4681 reg
= arm_reg_parse (&input_line_pointer
, REG_TYPE_RN
);
4684 as_bad ("%s", _(reg_expected_msgs
[REG_TYPE_RN
]));
4685 ignore_rest_of_line ();
4689 /* Optional constant. */
4690 if (skip_past_comma (&input_line_pointer
) != FAIL
)
4692 if (immediate_for_directive (&offset
) == FAIL
)
4698 demand_empty_rest_of_line ();
4700 if (reg
== REG_SP
|| reg
== REG_PC
)
4702 as_bad (_("SP and PC not permitted in .unwind_movsp directive"));
4706 if (unwind
.fp_reg
!= REG_SP
)
4707 as_bad (_("unexpected .unwind_movsp directive"));
4709 /* Generate opcode to restore the value. */
4711 add_unwind_opcode (op
, 1);
4713 /* Record the information for later. */
4714 unwind
.fp_reg
= reg
;
4715 unwind
.fp_offset
= unwind
.frame_size
- offset
;
4716 unwind
.sp_restored
= 1;
4719 /* Parse an unwind_pad directive. */
4722 s_arm_unwind_pad (int ignored ATTRIBUTE_UNUSED
)
4726 if (!unwind
.proc_start
)
4727 as_bad (MISSING_FNSTART
);
4729 if (immediate_for_directive (&offset
) == FAIL
)
4734 as_bad (_("stack increment must be multiple of 4"));
4735 ignore_rest_of_line ();
4739 /* Don't generate any opcodes, just record the details for later. */
4740 unwind
.frame_size
+= offset
;
4741 unwind
.pending_offset
+= offset
;
4743 demand_empty_rest_of_line ();
4746 /* Parse an unwind_setfp directive. */
4749 s_arm_unwind_setfp (int ignored ATTRIBUTE_UNUSED
)
4755 if (!unwind
.proc_start
)
4756 as_bad (MISSING_FNSTART
);
4758 fp_reg
= arm_reg_parse (&input_line_pointer
, REG_TYPE_RN
);
4759 if (skip_past_comma (&input_line_pointer
) == FAIL
)
4762 sp_reg
= arm_reg_parse (&input_line_pointer
, REG_TYPE_RN
);
4764 if (fp_reg
== FAIL
|| sp_reg
== FAIL
)
4766 as_bad (_("expected <reg>, <reg>"));
4767 ignore_rest_of_line ();
4771 /* Optional constant. */
4772 if (skip_past_comma (&input_line_pointer
) != FAIL
)
4774 if (immediate_for_directive (&offset
) == FAIL
)
4780 demand_empty_rest_of_line ();
4782 if (sp_reg
!= REG_SP
&& sp_reg
!= unwind
.fp_reg
)
4784 as_bad (_("register must be either sp or set by a previous"
4785 "unwind_movsp directive"));
4789 /* Don't generate any opcodes, just record the information for later. */
4790 unwind
.fp_reg
= fp_reg
;
4792 if (sp_reg
== REG_SP
)
4793 unwind
.fp_offset
= unwind
.frame_size
- offset
;
4795 unwind
.fp_offset
-= offset
;
4798 /* Parse an unwind_raw directive. */
4801 s_arm_unwind_raw (int ignored ATTRIBUTE_UNUSED
)
4804 /* This is an arbitrary limit. */
4805 unsigned char op
[16];
4808 if (!unwind
.proc_start
)
4809 as_bad (MISSING_FNSTART
);
4812 if (exp
.X_op
== O_constant
4813 && skip_past_comma (&input_line_pointer
) != FAIL
)
4815 unwind
.frame_size
+= exp
.X_add_number
;
4819 exp
.X_op
= O_illegal
;
4821 if (exp
.X_op
!= O_constant
)
4823 as_bad (_("expected <offset>, <opcode>"));
4824 ignore_rest_of_line ();
4830 /* Parse the opcode. */
4835 as_bad (_("unwind opcode too long"));
4836 ignore_rest_of_line ();
4838 if (exp
.X_op
!= O_constant
|| exp
.X_add_number
& ~0xff)
4840 as_bad (_("invalid unwind opcode"));
4841 ignore_rest_of_line ();
4844 op
[count
++] = exp
.X_add_number
;
4846 /* Parse the next byte. */
4847 if (skip_past_comma (&input_line_pointer
) == FAIL
)
4853 /* Add the opcode bytes in reverse order. */
4855 add_unwind_opcode (op
[count
], 1);
4857 demand_empty_rest_of_line ();
4861 /* Parse a .eabi_attribute directive. */
4864 s_arm_eabi_attribute (int ignored ATTRIBUTE_UNUSED
)
4866 int tag
= obj_elf_vendor_attribute (OBJ_ATTR_PROC
);
4868 if (tag
>= 0 && tag
< NUM_KNOWN_OBJ_ATTRIBUTES
)
4869 attributes_set_explicitly
[tag
] = 1;
4872 /* Emit a tls fix for the symbol. */
4875 s_arm_tls_descseq (int ignored ATTRIBUTE_UNUSED
)
4879 #ifdef md_flush_pending_output
4880 md_flush_pending_output ();
4883 #ifdef md_cons_align
4887 /* Since we're just labelling the code, there's no need to define a
4890 p
= obstack_next_free (&frchain_now
->frch_obstack
);
4891 fix_new_arm (frag_now
, p
- frag_now
->fr_literal
, 4, &exp
, 0,
4892 thumb_mode
? BFD_RELOC_ARM_THM_TLS_DESCSEQ
4893 : BFD_RELOC_ARM_TLS_DESCSEQ
);
4895 #endif /* OBJ_ELF */
4897 static void s_arm_arch (int);
4898 static void s_arm_object_arch (int);
4899 static void s_arm_cpu (int);
4900 static void s_arm_fpu (int);
4901 static void s_arm_arch_extension (int);
4906 pe_directive_secrel (int dummy ATTRIBUTE_UNUSED
)
4913 if (exp
.X_op
== O_symbol
)
4914 exp
.X_op
= O_secrel
;
4916 emit_expr (&exp
, 4);
4918 while (*input_line_pointer
++ == ',');
4920 input_line_pointer
--;
4921 demand_empty_rest_of_line ();
4925 /* This table describes all the machine specific pseudo-ops the assembler
4926 has to support. The fields are:
4927 pseudo-op name without dot
4928 function to call to execute this pseudo-op
4929 Integer arg to pass to the function. */
4931 const pseudo_typeS md_pseudo_table
[] =
4933 /* Never called because '.req' does not start a line. */
4934 { "req", s_req
, 0 },
4935 /* Following two are likewise never called. */
4938 { "unreq", s_unreq
, 0 },
4939 { "bss", s_bss
, 0 },
4940 { "align", s_align_ptwo
, 2 },
4941 { "arm", s_arm
, 0 },
4942 { "thumb", s_thumb
, 0 },
4943 { "code", s_code
, 0 },
4944 { "force_thumb", s_force_thumb
, 0 },
4945 { "thumb_func", s_thumb_func
, 0 },
4946 { "thumb_set", s_thumb_set
, 0 },
4947 { "even", s_even
, 0 },
4948 { "ltorg", s_ltorg
, 0 },
4949 { "pool", s_ltorg
, 0 },
4950 { "syntax", s_syntax
, 0 },
4951 { "cpu", s_arm_cpu
, 0 },
4952 { "arch", s_arm_arch
, 0 },
4953 { "object_arch", s_arm_object_arch
, 0 },
4954 { "fpu", s_arm_fpu
, 0 },
4955 { "arch_extension", s_arm_arch_extension
, 0 },
4957 { "word", s_arm_elf_cons
, 4 },
4958 { "long", s_arm_elf_cons
, 4 },
4959 { "inst.n", s_arm_elf_inst
, 2 },
4960 { "inst.w", s_arm_elf_inst
, 4 },
4961 { "inst", s_arm_elf_inst
, 0 },
4962 { "rel31", s_arm_rel31
, 0 },
4963 { "fnstart", s_arm_unwind_fnstart
, 0 },
4964 { "fnend", s_arm_unwind_fnend
, 0 },
4965 { "cantunwind", s_arm_unwind_cantunwind
, 0 },
4966 { "personality", s_arm_unwind_personality
, 0 },
4967 { "personalityindex", s_arm_unwind_personalityindex
, 0 },
4968 { "handlerdata", s_arm_unwind_handlerdata
, 0 },
4969 { "save", s_arm_unwind_save
, 0 },
4970 { "vsave", s_arm_unwind_save
, 1 },
4971 { "movsp", s_arm_unwind_movsp
, 0 },
4972 { "pad", s_arm_unwind_pad
, 0 },
4973 { "setfp", s_arm_unwind_setfp
, 0 },
4974 { "unwind_raw", s_arm_unwind_raw
, 0 },
4975 { "eabi_attribute", s_arm_eabi_attribute
, 0 },
4976 { "tlsdescseq", s_arm_tls_descseq
, 0 },
4980 /* These are used for dwarf. */
4984 /* These are used for dwarf2. */
4985 { "file", dwarf2_directive_file
, 0 },
4986 { "loc", dwarf2_directive_loc
, 0 },
4987 { "loc_mark_labels", dwarf2_directive_loc_mark_labels
, 0 },
4989 { "extend", float_cons
, 'x' },
4990 { "ldouble", float_cons
, 'x' },
4991 { "packed", float_cons
, 'p' },
4993 {"secrel32", pe_directive_secrel
, 0},
4996 /* These are for compatibility with CodeComposer Studio. */
4997 {"ref", s_ccs_ref
, 0},
4998 {"def", s_ccs_def
, 0},
4999 {"asmfunc", s_ccs_asmfunc
, 0},
5000 {"endasmfunc", s_ccs_endasmfunc
, 0},
5005 /* Parser functions used exclusively in instruction operands. */
5007 /* Generic immediate-value read function for use in insn parsing.
5008 STR points to the beginning of the immediate (the leading #);
5009 VAL receives the value; if the value is outside [MIN, MAX]
5010 issue an error. PREFIX_OPT is true if the immediate prefix is
5014 parse_immediate (char **str
, int *val
, int min
, int max
,
5015 bfd_boolean prefix_opt
)
5019 my_get_expression (&exp
, str
, prefix_opt
? GE_OPT_PREFIX
: GE_IMM_PREFIX
);
5020 if (exp
.X_op
!= O_constant
)
5022 inst
.error
= _("constant expression required");
5026 if (exp
.X_add_number
< min
|| exp
.X_add_number
> max
)
5028 inst
.error
= _("immediate value out of range");
5032 *val
= exp
.X_add_number
;
5036 /* Less-generic immediate-value read function with the possibility of loading a
5037 big (64-bit) immediate, as required by Neon VMOV, VMVN and logic immediate
5038 instructions. Puts the result directly in inst.operands[i]. */
5041 parse_big_immediate (char **str
, int i
, expressionS
*in_exp
,
5042 bfd_boolean allow_symbol_p
)
5045 expressionS
*exp_p
= in_exp
? in_exp
: &exp
;
5048 my_get_expression (exp_p
, &ptr
, GE_OPT_PREFIX_BIG
);
5050 if (exp_p
->X_op
== O_constant
)
5052 inst
.operands
[i
].imm
= exp_p
->X_add_number
& 0xffffffff;
5053 /* If we're on a 64-bit host, then a 64-bit number can be returned using
5054 O_constant. We have to be careful not to break compilation for
5055 32-bit X_add_number, though. */
5056 if ((exp_p
->X_add_number
& ~(offsetT
)(0xffffffffU
)) != 0)
5058 /* X >> 32 is illegal if sizeof (exp_p->X_add_number) == 4. */
5059 inst
.operands
[i
].reg
= (((exp_p
->X_add_number
>> 16) >> 16)
5061 inst
.operands
[i
].regisimm
= 1;
5064 else if (exp_p
->X_op
== O_big
5065 && LITTLENUM_NUMBER_OF_BITS
* exp_p
->X_add_number
> 32)
5067 unsigned parts
= 32 / LITTLENUM_NUMBER_OF_BITS
, j
, idx
= 0;
5069 /* Bignums have their least significant bits in
5070 generic_bignum[0]. Make sure we put 32 bits in imm and
5071 32 bits in reg, in a (hopefully) portable way. */
5072 gas_assert (parts
!= 0);
5074 /* Make sure that the number is not too big.
5075 PR 11972: Bignums can now be sign-extended to the
5076 size of a .octa so check that the out of range bits
5077 are all zero or all one. */
5078 if (LITTLENUM_NUMBER_OF_BITS
* exp_p
->X_add_number
> 64)
5080 LITTLENUM_TYPE m
= -1;
5082 if (generic_bignum
[parts
* 2] != 0
5083 && generic_bignum
[parts
* 2] != m
)
5086 for (j
= parts
* 2 + 1; j
< (unsigned) exp_p
->X_add_number
; j
++)
5087 if (generic_bignum
[j
] != generic_bignum
[j
-1])
5091 inst
.operands
[i
].imm
= 0;
5092 for (j
= 0; j
< parts
; j
++, idx
++)
5093 inst
.operands
[i
].imm
|= generic_bignum
[idx
]
5094 << (LITTLENUM_NUMBER_OF_BITS
* j
);
5095 inst
.operands
[i
].reg
= 0;
5096 for (j
= 0; j
< parts
; j
++, idx
++)
5097 inst
.operands
[i
].reg
|= generic_bignum
[idx
]
5098 << (LITTLENUM_NUMBER_OF_BITS
* j
);
5099 inst
.operands
[i
].regisimm
= 1;
5101 else if (!(exp_p
->X_op
== O_symbol
&& allow_symbol_p
))
5109 /* Returns the pseudo-register number of an FPA immediate constant,
5110 or FAIL if there isn't a valid constant here. */
5113 parse_fpa_immediate (char ** str
)
5115 LITTLENUM_TYPE words
[MAX_LITTLENUMS
];
5121 /* First try and match exact strings, this is to guarantee
5122 that some formats will work even for cross assembly. */
5124 for (i
= 0; fp_const
[i
]; i
++)
5126 if (strncmp (*str
, fp_const
[i
], strlen (fp_const
[i
])) == 0)
5130 *str
+= strlen (fp_const
[i
]);
5131 if (is_end_of_line
[(unsigned char) **str
])
5137 /* Just because we didn't get a match doesn't mean that the constant
5138 isn't valid, just that it is in a format that we don't
5139 automatically recognize. Try parsing it with the standard
5140 expression routines. */
5142 memset (words
, 0, MAX_LITTLENUMS
* sizeof (LITTLENUM_TYPE
));
5144 /* Look for a raw floating point number. */
5145 if ((save_in
= atof_ieee (*str
, 'x', words
)) != NULL
5146 && is_end_of_line
[(unsigned char) *save_in
])
5148 for (i
= 0; i
< NUM_FLOAT_VALS
; i
++)
5150 for (j
= 0; j
< MAX_LITTLENUMS
; j
++)
5152 if (words
[j
] != fp_values
[i
][j
])
5156 if (j
== MAX_LITTLENUMS
)
5164 /* Try and parse a more complex expression, this will probably fail
5165 unless the code uses a floating point prefix (eg "0f"). */
5166 save_in
= input_line_pointer
;
5167 input_line_pointer
= *str
;
5168 if (expression (&exp
) == absolute_section
5169 && exp
.X_op
== O_big
5170 && exp
.X_add_number
< 0)
5172 /* FIXME: 5 = X_PRECISION, should be #define'd where we can use it.
5174 #define X_PRECISION 5
5175 #define E_PRECISION 15L
5176 if (gen_to_words (words
, X_PRECISION
, E_PRECISION
) == 0)
5178 for (i
= 0; i
< NUM_FLOAT_VALS
; i
++)
5180 for (j
= 0; j
< MAX_LITTLENUMS
; j
++)
5182 if (words
[j
] != fp_values
[i
][j
])
5186 if (j
== MAX_LITTLENUMS
)
5188 *str
= input_line_pointer
;
5189 input_line_pointer
= save_in
;
5196 *str
= input_line_pointer
;
5197 input_line_pointer
= save_in
;
5198 inst
.error
= _("invalid FPA immediate expression");
5202 /* Returns 1 if a number has "quarter-precision" float format
5203 0baBbbbbbc defgh000 00000000 00000000. */
5206 is_quarter_float (unsigned imm
)
5208 int bs
= (imm
& 0x20000000) ? 0x3e000000 : 0x40000000;
5209 return (imm
& 0x7ffff) == 0 && ((imm
& 0x7e000000) ^ bs
) == 0;
5213 /* Detect the presence of a floating point or integer zero constant,
5217 parse_ifimm_zero (char **in
)
5221 if (!is_immediate_prefix (**in
))
5223 /* In unified syntax, all prefixes are optional. */
5224 if (!unified_syntax
)
5230 /* Accept #0x0 as a synonym for #0. */
5231 if (strncmp (*in
, "0x", 2) == 0)
5234 if (parse_immediate (in
, &val
, 0, 0, TRUE
) == FAIL
)
5239 error_code
= atof_generic (in
, ".", EXP_CHARS
,
5240 &generic_floating_point_number
);
5243 && generic_floating_point_number
.sign
== '+'
5244 && (generic_floating_point_number
.low
5245 > generic_floating_point_number
.leader
))
5251 /* Parse an 8-bit "quarter-precision" floating point number of the form:
5252 0baBbbbbbc defgh000 00000000 00000000.
5253 The zero and minus-zero cases need special handling, since they can't be
5254 encoded in the "quarter-precision" float format, but can nonetheless be
5255 loaded as integer constants. */
5258 parse_qfloat_immediate (char **ccp
, int *immed
)
5262 LITTLENUM_TYPE words
[MAX_LITTLENUMS
];
5263 int found_fpchar
= 0;
5265 skip_past_char (&str
, '#');
5267 /* We must not accidentally parse an integer as a floating-point number. Make
5268 sure that the value we parse is not an integer by checking for special
5269 characters '.' or 'e'.
5270 FIXME: This is a horrible hack, but doing better is tricky because type
5271 information isn't in a very usable state at parse time. */
5273 skip_whitespace (fpnum
);
5275 if (strncmp (fpnum
, "0x", 2) == 0)
5279 for (; *fpnum
!= '\0' && *fpnum
!= ' ' && *fpnum
!= '\n'; fpnum
++)
5280 if (*fpnum
== '.' || *fpnum
== 'e' || *fpnum
== 'E')
5290 if ((str
= atof_ieee (str
, 's', words
)) != NULL
)
5292 unsigned fpword
= 0;
5295 /* Our FP word must be 32 bits (single-precision FP). */
5296 for (i
= 0; i
< 32 / LITTLENUM_NUMBER_OF_BITS
; i
++)
5298 fpword
<<= LITTLENUM_NUMBER_OF_BITS
;
5302 if (is_quarter_float (fpword
) || (fpword
& 0x7fffffff) == 0)
5315 /* Shift operands. */
5318 SHIFT_LSL
, SHIFT_LSR
, SHIFT_ASR
, SHIFT_ROR
, SHIFT_RRX
, SHIFT_UXTW
5321 struct asm_shift_name
5324 enum shift_kind kind
;
5327 /* Third argument to parse_shift. */
5328 enum parse_shift_mode
5330 NO_SHIFT_RESTRICT
, /* Any kind of shift is accepted. */
5331 SHIFT_IMMEDIATE
, /* Shift operand must be an immediate. */
5332 SHIFT_LSL_OR_ASR_IMMEDIATE
, /* Shift must be LSL or ASR immediate. */
5333 SHIFT_ASR_IMMEDIATE
, /* Shift must be ASR immediate. */
5334 SHIFT_LSL_IMMEDIATE
, /* Shift must be LSL immediate. */
5335 SHIFT_UXTW_IMMEDIATE
/* Shift must be UXTW immediate. */
5338 /* Parse a <shift> specifier on an ARM data processing instruction.
5339 This has three forms:
5341 (LSL|LSR|ASL|ASR|ROR) Rs
5342 (LSL|LSR|ASL|ASR|ROR) #imm
5345 Note that ASL is assimilated to LSL in the instruction encoding, and
5346 RRX to ROR #0 (which cannot be written as such). */
5349 parse_shift (char **str
, int i
, enum parse_shift_mode mode
)
5351 const struct asm_shift_name
*shift_name
;
5352 enum shift_kind shift
;
5357 for (p
= *str
; ISALPHA (*p
); p
++)
5362 inst
.error
= _("shift expression expected");
5366 shift_name
= (const struct asm_shift_name
*) hash_find_n (arm_shift_hsh
, *str
,
5369 if (shift_name
== NULL
)
5371 inst
.error
= _("shift expression expected");
5375 shift
= shift_name
->kind
;
5379 case NO_SHIFT_RESTRICT
:
5380 case SHIFT_IMMEDIATE
:
5381 if (shift
== SHIFT_UXTW
)
5383 inst
.error
= _("'UXTW' not allowed here");
5388 case SHIFT_LSL_OR_ASR_IMMEDIATE
:
5389 if (shift
!= SHIFT_LSL
&& shift
!= SHIFT_ASR
)
5391 inst
.error
= _("'LSL' or 'ASR' required");
5396 case SHIFT_LSL_IMMEDIATE
:
5397 if (shift
!= SHIFT_LSL
)
5399 inst
.error
= _("'LSL' required");
5404 case SHIFT_ASR_IMMEDIATE
:
5405 if (shift
!= SHIFT_ASR
)
5407 inst
.error
= _("'ASR' required");
5411 case SHIFT_UXTW_IMMEDIATE
:
5412 if (shift
!= SHIFT_UXTW
)
5414 inst
.error
= _("'UXTW' required");
5422 if (shift
!= SHIFT_RRX
)
5424 /* Whitespace can appear here if the next thing is a bare digit. */
5425 skip_whitespace (p
);
5427 if (mode
== NO_SHIFT_RESTRICT
5428 && (reg
= arm_reg_parse (&p
, REG_TYPE_RN
)) != FAIL
)
5430 inst
.operands
[i
].imm
= reg
;
5431 inst
.operands
[i
].immisreg
= 1;
5433 else if (my_get_expression (&inst
.relocs
[0].exp
, &p
, GE_IMM_PREFIX
))
5436 inst
.operands
[i
].shift_kind
= shift
;
5437 inst
.operands
[i
].shifted
= 1;
5442 /* Parse a <shifter_operand> for an ARM data processing instruction:
5445 #<immediate>, <rotate>
5449 where <shift> is defined by parse_shift above, and <rotate> is a
5450 multiple of 2 between 0 and 30. Validation of immediate operands
5451 is deferred to md_apply_fix. */
5454 parse_shifter_operand (char **str
, int i
)
5459 if ((value
= arm_reg_parse (str
, REG_TYPE_RN
)) != FAIL
)
5461 inst
.operands
[i
].reg
= value
;
5462 inst
.operands
[i
].isreg
= 1;
5464 /* parse_shift will override this if appropriate */
5465 inst
.relocs
[0].exp
.X_op
= O_constant
;
5466 inst
.relocs
[0].exp
.X_add_number
= 0;
5468 if (skip_past_comma (str
) == FAIL
)
5471 /* Shift operation on register. */
5472 return parse_shift (str
, i
, NO_SHIFT_RESTRICT
);
5475 if (my_get_expression (&inst
.relocs
[0].exp
, str
, GE_IMM_PREFIX
))
5478 if (skip_past_comma (str
) == SUCCESS
)
5480 /* #x, y -- ie explicit rotation by Y. */
5481 if (my_get_expression (&exp
, str
, GE_NO_PREFIX
))
5484 if (exp
.X_op
!= O_constant
|| inst
.relocs
[0].exp
.X_op
!= O_constant
)
5486 inst
.error
= _("constant expression expected");
5490 value
= exp
.X_add_number
;
5491 if (value
< 0 || value
> 30 || value
% 2 != 0)
5493 inst
.error
= _("invalid rotation");
5496 if (inst
.relocs
[0].exp
.X_add_number
< 0
5497 || inst
.relocs
[0].exp
.X_add_number
> 255)
5499 inst
.error
= _("invalid constant");
5503 /* Encode as specified. */
5504 inst
.operands
[i
].imm
= inst
.relocs
[0].exp
.X_add_number
| value
<< 7;
5508 inst
.relocs
[0].type
= BFD_RELOC_ARM_IMMEDIATE
;
5509 inst
.relocs
[0].pc_rel
= 0;
5513 /* Group relocation information. Each entry in the table contains the
5514 textual name of the relocation as may appear in assembler source
5515 and must end with a colon.
5516 Along with this textual name are the relocation codes to be used if
5517 the corresponding instruction is an ALU instruction (ADD or SUB only),
5518 an LDR, an LDRS, or an LDC. */
5520 struct group_reloc_table_entry
5531 /* Varieties of non-ALU group relocation. */
5539 static struct group_reloc_table_entry group_reloc_table
[] =
5540 { /* Program counter relative: */
5542 BFD_RELOC_ARM_ALU_PC_G0_NC
, /* ALU */
5547 BFD_RELOC_ARM_ALU_PC_G0
, /* ALU */
5548 BFD_RELOC_ARM_LDR_PC_G0
, /* LDR */
5549 BFD_RELOC_ARM_LDRS_PC_G0
, /* LDRS */
5550 BFD_RELOC_ARM_LDC_PC_G0
}, /* LDC */
5552 BFD_RELOC_ARM_ALU_PC_G1_NC
, /* ALU */
5557 BFD_RELOC_ARM_ALU_PC_G1
, /* ALU */
5558 BFD_RELOC_ARM_LDR_PC_G1
, /* LDR */
5559 BFD_RELOC_ARM_LDRS_PC_G1
, /* LDRS */
5560 BFD_RELOC_ARM_LDC_PC_G1
}, /* LDC */
5562 BFD_RELOC_ARM_ALU_PC_G2
, /* ALU */
5563 BFD_RELOC_ARM_LDR_PC_G2
, /* LDR */
5564 BFD_RELOC_ARM_LDRS_PC_G2
, /* LDRS */
5565 BFD_RELOC_ARM_LDC_PC_G2
}, /* LDC */
5566 /* Section base relative */
5568 BFD_RELOC_ARM_ALU_SB_G0_NC
, /* ALU */
5573 BFD_RELOC_ARM_ALU_SB_G0
, /* ALU */
5574 BFD_RELOC_ARM_LDR_SB_G0
, /* LDR */
5575 BFD_RELOC_ARM_LDRS_SB_G0
, /* LDRS */
5576 BFD_RELOC_ARM_LDC_SB_G0
}, /* LDC */
5578 BFD_RELOC_ARM_ALU_SB_G1_NC
, /* ALU */
5583 BFD_RELOC_ARM_ALU_SB_G1
, /* ALU */
5584 BFD_RELOC_ARM_LDR_SB_G1
, /* LDR */
5585 BFD_RELOC_ARM_LDRS_SB_G1
, /* LDRS */
5586 BFD_RELOC_ARM_LDC_SB_G1
}, /* LDC */
5588 BFD_RELOC_ARM_ALU_SB_G2
, /* ALU */
5589 BFD_RELOC_ARM_LDR_SB_G2
, /* LDR */
5590 BFD_RELOC_ARM_LDRS_SB_G2
, /* LDRS */
5591 BFD_RELOC_ARM_LDC_SB_G2
}, /* LDC */
5592 /* Absolute thumb alu relocations. */
5594 BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
,/* ALU. */
5599 BFD_RELOC_ARM_THUMB_ALU_ABS_G1_NC
,/* ALU. */
5604 BFD_RELOC_ARM_THUMB_ALU_ABS_G2_NC
,/* ALU. */
5609 BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC
,/* ALU. */
5614 /* Given the address of a pointer pointing to the textual name of a group
5615 relocation as may appear in assembler source, attempt to find its details
5616 in group_reloc_table. The pointer will be updated to the character after
5617 the trailing colon. On failure, FAIL will be returned; SUCCESS
5618 otherwise. On success, *entry will be updated to point at the relevant
5619 group_reloc_table entry. */
5622 find_group_reloc_table_entry (char **str
, struct group_reloc_table_entry
**out
)
5625 for (i
= 0; i
< ARRAY_SIZE (group_reloc_table
); i
++)
5627 int length
= strlen (group_reloc_table
[i
].name
);
5629 if (strncasecmp (group_reloc_table
[i
].name
, *str
, length
) == 0
5630 && (*str
)[length
] == ':')
5632 *out
= &group_reloc_table
[i
];
5633 *str
+= (length
+ 1);
5641 /* Parse a <shifter_operand> for an ARM data processing instruction
5642 (as for parse_shifter_operand) where group relocations are allowed:
5645 #<immediate>, <rotate>
5646 #:<group_reloc>:<expression>
5650 where <group_reloc> is one of the strings defined in group_reloc_table.
5651 The hashes are optional.
5653 Everything else is as for parse_shifter_operand. */
5655 static parse_operand_result
5656 parse_shifter_operand_group_reloc (char **str
, int i
)
5658 /* Determine if we have the sequence of characters #: or just :
5659 coming next. If we do, then we check for a group relocation.
5660 If we don't, punt the whole lot to parse_shifter_operand. */
5662 if (((*str
)[0] == '#' && (*str
)[1] == ':')
5663 || (*str
)[0] == ':')
5665 struct group_reloc_table_entry
*entry
;
5667 if ((*str
)[0] == '#')
5672 /* Try to parse a group relocation. Anything else is an error. */
5673 if (find_group_reloc_table_entry (str
, &entry
) == FAIL
)
5675 inst
.error
= _("unknown group relocation");
5676 return PARSE_OPERAND_FAIL_NO_BACKTRACK
;
5679 /* We now have the group relocation table entry corresponding to
5680 the name in the assembler source. Next, we parse the expression. */
5681 if (my_get_expression (&inst
.relocs
[0].exp
, str
, GE_NO_PREFIX
))
5682 return PARSE_OPERAND_FAIL_NO_BACKTRACK
;
5684 /* Record the relocation type (always the ALU variant here). */
5685 inst
.relocs
[0].type
= (bfd_reloc_code_real_type
) entry
->alu_code
;
5686 gas_assert (inst
.relocs
[0].type
!= 0);
5688 return PARSE_OPERAND_SUCCESS
;
5691 return parse_shifter_operand (str
, i
) == SUCCESS
5692 ? PARSE_OPERAND_SUCCESS
: PARSE_OPERAND_FAIL
;
5694 /* Never reached. */
5697 /* Parse a Neon alignment expression. Information is written to
5698 inst.operands[i]. We assume the initial ':' has been skipped.
5700 align .imm = align << 8, .immisalign=1, .preind=0 */
5701 static parse_operand_result
5702 parse_neon_alignment (char **str
, int i
)
5707 my_get_expression (&exp
, &p
, GE_NO_PREFIX
);
5709 if (exp
.X_op
!= O_constant
)
5711 inst
.error
= _("alignment must be constant");
5712 return PARSE_OPERAND_FAIL
;
5715 inst
.operands
[i
].imm
= exp
.X_add_number
<< 8;
5716 inst
.operands
[i
].immisalign
= 1;
5717 /* Alignments are not pre-indexes. */
5718 inst
.operands
[i
].preind
= 0;
5721 return PARSE_OPERAND_SUCCESS
;
5724 /* Parse all forms of an ARM address expression. Information is written
5725 to inst.operands[i] and/or inst.relocs[0].
5727 Preindexed addressing (.preind=1):
5729 [Rn, #offset] .reg=Rn .relocs[0].exp=offset
5730 [Rn, +/-Rm] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5731 [Rn, +/-Rm, shift] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5732 .shift_kind=shift .relocs[0].exp=shift_imm
5734 These three may have a trailing ! which causes .writeback to be set also.
5736 Postindexed addressing (.postind=1, .writeback=1):
5738 [Rn], #offset .reg=Rn .relocs[0].exp=offset
5739 [Rn], +/-Rm .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5740 [Rn], +/-Rm, shift .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5741 .shift_kind=shift .relocs[0].exp=shift_imm
5743 Unindexed addressing (.preind=0, .postind=0):
5745 [Rn], {option} .reg=Rn .imm=option .immisreg=0
5749 [Rn]{!} shorthand for [Rn,#0]{!}
5750 =immediate .isreg=0 .relocs[0].exp=immediate
5751 label .reg=PC .relocs[0].pc_rel=1 .relocs[0].exp=label
5753 It is the caller's responsibility to check for addressing modes not
5754 supported by the instruction, and to set inst.relocs[0].type. */
5756 static parse_operand_result
5757 parse_address_main (char **str
, int i
, int group_relocations
,
5758 group_reloc_type group_type
)
5763 if (skip_past_char (&p
, '[') == FAIL
)
5765 if (skip_past_char (&p
, '=') == FAIL
)
5767 /* Bare address - translate to PC-relative offset. */
5768 inst
.relocs
[0].pc_rel
= 1;
5769 inst
.operands
[i
].reg
= REG_PC
;
5770 inst
.operands
[i
].isreg
= 1;
5771 inst
.operands
[i
].preind
= 1;
5773 if (my_get_expression (&inst
.relocs
[0].exp
, &p
, GE_OPT_PREFIX_BIG
))
5774 return PARSE_OPERAND_FAIL
;
5776 else if (parse_big_immediate (&p
, i
, &inst
.relocs
[0].exp
,
5777 /*allow_symbol_p=*/TRUE
))
5778 return PARSE_OPERAND_FAIL
;
5781 return PARSE_OPERAND_SUCCESS
;
5784 /* PR gas/14887: Allow for whitespace after the opening bracket. */
5785 skip_whitespace (p
);
5787 if (group_type
== GROUP_MVE
)
5789 enum arm_reg_type rtype
= REG_TYPE_MQ
;
5790 struct neon_type_el et
;
5791 if ((reg
= arm_typed_reg_parse (&p
, rtype
, &rtype
, &et
)) != FAIL
)
5793 inst
.operands
[i
].isquad
= 1;
5795 else if ((reg
= arm_reg_parse (&p
, REG_TYPE_RN
)) == FAIL
)
5797 inst
.error
= BAD_ADDR_MODE
;
5798 return PARSE_OPERAND_FAIL
;
5801 else if ((reg
= arm_reg_parse (&p
, REG_TYPE_RN
)) == FAIL
)
5803 if (group_type
== GROUP_MVE
)
5804 inst
.error
= BAD_ADDR_MODE
;
5806 inst
.error
= _(reg_expected_msgs
[REG_TYPE_RN
]);
5807 return PARSE_OPERAND_FAIL
;
5809 inst
.operands
[i
].reg
= reg
;
5810 inst
.operands
[i
].isreg
= 1;
5812 if (skip_past_comma (&p
) == SUCCESS
)
5814 inst
.operands
[i
].preind
= 1;
5817 else if (*p
== '-') p
++, inst
.operands
[i
].negative
= 1;
5819 enum arm_reg_type rtype
= REG_TYPE_MQ
;
5820 struct neon_type_el et
;
5821 if (group_type
== GROUP_MVE
5822 && (reg
= arm_typed_reg_parse (&p
, rtype
, &rtype
, &et
)) != FAIL
)
5824 inst
.operands
[i
].immisreg
= 2;
5825 inst
.operands
[i
].imm
= reg
;
5827 if (skip_past_comma (&p
) == SUCCESS
)
5829 if (parse_shift (&p
, i
, SHIFT_UXTW_IMMEDIATE
) == SUCCESS
)
5831 inst
.operands
[i
].imm
|= inst
.relocs
[0].exp
.X_add_number
<< 5;
5832 inst
.relocs
[0].exp
.X_add_number
= 0;
5835 return PARSE_OPERAND_FAIL
;
5838 else if ((reg
= arm_reg_parse (&p
, REG_TYPE_RN
)) != FAIL
)
5840 inst
.operands
[i
].imm
= reg
;
5841 inst
.operands
[i
].immisreg
= 1;
5843 if (skip_past_comma (&p
) == SUCCESS
)
5844 if (parse_shift (&p
, i
, SHIFT_IMMEDIATE
) == FAIL
)
5845 return PARSE_OPERAND_FAIL
;
5847 else if (skip_past_char (&p
, ':') == SUCCESS
)
5849 /* FIXME: '@' should be used here, but it's filtered out by generic
5850 code before we get to see it here. This may be subject to
5852 parse_operand_result result
= parse_neon_alignment (&p
, i
);
5854 if (result
!= PARSE_OPERAND_SUCCESS
)
5859 if (inst
.operands
[i
].negative
)
5861 inst
.operands
[i
].negative
= 0;
5865 if (group_relocations
5866 && ((*p
== '#' && *(p
+ 1) == ':') || *p
== ':'))
5868 struct group_reloc_table_entry
*entry
;
5870 /* Skip over the #: or : sequence. */
5876 /* Try to parse a group relocation. Anything else is an
5878 if (find_group_reloc_table_entry (&p
, &entry
) == FAIL
)
5880 inst
.error
= _("unknown group relocation");
5881 return PARSE_OPERAND_FAIL_NO_BACKTRACK
;
5884 /* We now have the group relocation table entry corresponding to
5885 the name in the assembler source. Next, we parse the
5887 if (my_get_expression (&inst
.relocs
[0].exp
, &p
, GE_NO_PREFIX
))
5888 return PARSE_OPERAND_FAIL_NO_BACKTRACK
;
5890 /* Record the relocation type. */
5895 = (bfd_reloc_code_real_type
) entry
->ldr_code
;
5900 = (bfd_reloc_code_real_type
) entry
->ldrs_code
;
5905 = (bfd_reloc_code_real_type
) entry
->ldc_code
;
5912 if (inst
.relocs
[0].type
== 0)
5914 inst
.error
= _("this group relocation is not allowed on this instruction");
5915 return PARSE_OPERAND_FAIL_NO_BACKTRACK
;
5922 if (my_get_expression (&inst
.relocs
[0].exp
, &p
, GE_IMM_PREFIX
))
5923 return PARSE_OPERAND_FAIL
;
5924 /* If the offset is 0, find out if it's a +0 or -0. */
5925 if (inst
.relocs
[0].exp
.X_op
== O_constant
5926 && inst
.relocs
[0].exp
.X_add_number
== 0)
5928 skip_whitespace (q
);
5932 skip_whitespace (q
);
5935 inst
.operands
[i
].negative
= 1;
5940 else if (skip_past_char (&p
, ':') == SUCCESS
)
5942 /* FIXME: '@' should be used here, but it's filtered out by generic code
5943 before we get to see it here. This may be subject to change. */
5944 parse_operand_result result
= parse_neon_alignment (&p
, i
);
5946 if (result
!= PARSE_OPERAND_SUCCESS
)
5950 if (skip_past_char (&p
, ']') == FAIL
)
5952 inst
.error
= _("']' expected");
5953 return PARSE_OPERAND_FAIL
;
5956 if (skip_past_char (&p
, '!') == SUCCESS
)
5957 inst
.operands
[i
].writeback
= 1;
5959 else if (skip_past_comma (&p
) == SUCCESS
)
5961 if (skip_past_char (&p
, '{') == SUCCESS
)
5963 /* [Rn], {expr} - unindexed, with option */
5964 if (parse_immediate (&p
, &inst
.operands
[i
].imm
,
5965 0, 255, TRUE
) == FAIL
)
5966 return PARSE_OPERAND_FAIL
;
5968 if (skip_past_char (&p
, '}') == FAIL
)
5970 inst
.error
= _("'}' expected at end of 'option' field");
5971 return PARSE_OPERAND_FAIL
;
5973 if (inst
.operands
[i
].preind
)
5975 inst
.error
= _("cannot combine index with option");
5976 return PARSE_OPERAND_FAIL
;
5979 return PARSE_OPERAND_SUCCESS
;
5983 inst
.operands
[i
].postind
= 1;
5984 inst
.operands
[i
].writeback
= 1;
5986 if (inst
.operands
[i
].preind
)
5988 inst
.error
= _("cannot combine pre- and post-indexing");
5989 return PARSE_OPERAND_FAIL
;
5993 else if (*p
== '-') p
++, inst
.operands
[i
].negative
= 1;
5995 enum arm_reg_type rtype
= REG_TYPE_MQ
;
5996 struct neon_type_el et
;
5997 if (group_type
== GROUP_MVE
5998 && (reg
= arm_typed_reg_parse (&p
, rtype
, &rtype
, &et
)) != FAIL
)
6000 inst
.operands
[i
].immisreg
= 2;
6001 inst
.operands
[i
].imm
= reg
;
6003 else if ((reg
= arm_reg_parse (&p
, REG_TYPE_RN
)) != FAIL
)
6005 /* We might be using the immediate for alignment already. If we
6006 are, OR the register number into the low-order bits. */
6007 if (inst
.operands
[i
].immisalign
)
6008 inst
.operands
[i
].imm
|= reg
;
6010 inst
.operands
[i
].imm
= reg
;
6011 inst
.operands
[i
].immisreg
= 1;
6013 if (skip_past_comma (&p
) == SUCCESS
)
6014 if (parse_shift (&p
, i
, SHIFT_IMMEDIATE
) == FAIL
)
6015 return PARSE_OPERAND_FAIL
;
6021 if (inst
.operands
[i
].negative
)
6023 inst
.operands
[i
].negative
= 0;
6026 if (my_get_expression (&inst
.relocs
[0].exp
, &p
, GE_IMM_PREFIX
))
6027 return PARSE_OPERAND_FAIL
;
6028 /* If the offset is 0, find out if it's a +0 or -0. */
6029 if (inst
.relocs
[0].exp
.X_op
== O_constant
6030 && inst
.relocs
[0].exp
.X_add_number
== 0)
6032 skip_whitespace (q
);
6036 skip_whitespace (q
);
6039 inst
.operands
[i
].negative
= 1;
6045 /* If at this point neither .preind nor .postind is set, we have a
6046 bare [Rn]{!}, which is shorthand for [Rn,#0]{!}. */
6047 if (inst
.operands
[i
].preind
== 0 && inst
.operands
[i
].postind
== 0)
6049 inst
.operands
[i
].preind
= 1;
6050 inst
.relocs
[0].exp
.X_op
= O_constant
;
6051 inst
.relocs
[0].exp
.X_add_number
= 0;
6054 return PARSE_OPERAND_SUCCESS
;
6058 parse_address (char **str
, int i
)
6060 return parse_address_main (str
, i
, 0, GROUP_LDR
) == PARSE_OPERAND_SUCCESS
6064 static parse_operand_result
6065 parse_address_group_reloc (char **str
, int i
, group_reloc_type type
)
6067 return parse_address_main (str
, i
, 1, type
);
6070 /* Parse an operand for a MOVW or MOVT instruction. */
6072 parse_half (char **str
)
6077 skip_past_char (&p
, '#');
6078 if (strncasecmp (p
, ":lower16:", 9) == 0)
6079 inst
.relocs
[0].type
= BFD_RELOC_ARM_MOVW
;
6080 else if (strncasecmp (p
, ":upper16:", 9) == 0)
6081 inst
.relocs
[0].type
= BFD_RELOC_ARM_MOVT
;
6083 if (inst
.relocs
[0].type
!= BFD_RELOC_UNUSED
)
6086 skip_whitespace (p
);
6089 if (my_get_expression (&inst
.relocs
[0].exp
, &p
, GE_NO_PREFIX
))
6092 if (inst
.relocs
[0].type
== BFD_RELOC_UNUSED
)
6094 if (inst
.relocs
[0].exp
.X_op
!= O_constant
)
6096 inst
.error
= _("constant expression expected");
6099 if (inst
.relocs
[0].exp
.X_add_number
< 0
6100 || inst
.relocs
[0].exp
.X_add_number
> 0xffff)
6102 inst
.error
= _("immediate value out of range");
6110 /* Miscellaneous. */
6112 /* Parse a PSR flag operand. The value returned is FAIL on syntax error,
6113 or a bitmask suitable to be or-ed into the ARM msr instruction. */
6115 parse_psr (char **str
, bfd_boolean lhs
)
6118 unsigned long psr_field
;
6119 const struct asm_psr
*psr
;
6121 bfd_boolean is_apsr
= FALSE
;
6122 bfd_boolean m_profile
= ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_m
);
6124 /* PR gas/12698: If the user has specified -march=all then m_profile will
6125 be TRUE, but we want to ignore it in this case as we are building for any
6126 CPU type, including non-m variants. */
6127 if (ARM_FEATURE_CORE_EQUAL (selected_cpu
, arm_arch_any
))
6130 /* CPSR's and SPSR's can now be lowercase. This is just a convenience
6131 feature for ease of use and backwards compatibility. */
6133 if (strncasecmp (p
, "SPSR", 4) == 0)
6136 goto unsupported_psr
;
6138 psr_field
= SPSR_BIT
;
6140 else if (strncasecmp (p
, "CPSR", 4) == 0)
6143 goto unsupported_psr
;
6147 else if (strncasecmp (p
, "APSR", 4) == 0)
6149 /* APSR[_<bits>] can be used as a synonym for CPSR[_<flags>] on ARMv7-A
6150 and ARMv7-R architecture CPUs. */
6159 while (ISALNUM (*p
) || *p
== '_');
6161 if (strncasecmp (start
, "iapsr", 5) == 0
6162 || strncasecmp (start
, "eapsr", 5) == 0
6163 || strncasecmp (start
, "xpsr", 4) == 0
6164 || strncasecmp (start
, "psr", 3) == 0)
6165 p
= start
+ strcspn (start
, "rR") + 1;
6167 psr
= (const struct asm_psr
*) hash_find_n (arm_v7m_psr_hsh
, start
,
6173 /* If APSR is being written, a bitfield may be specified. Note that
6174 APSR itself is handled above. */
6175 if (psr
->field
<= 3)
6177 psr_field
= psr
->field
;
6183 /* M-profile MSR instructions have the mask field set to "10", except
6184 *PSR variants which modify APSR, which may use a different mask (and
6185 have been handled already). Do that by setting the PSR_f field
6187 return psr
->field
| (lhs
? PSR_f
: 0);
6190 goto unsupported_psr
;
6196 /* A suffix follows. */
6202 while (ISALNUM (*p
) || *p
== '_');
6206 /* APSR uses a notation for bits, rather than fields. */
6207 unsigned int nzcvq_bits
= 0;
6208 unsigned int g_bit
= 0;
6211 for (bit
= start
; bit
!= p
; bit
++)
6213 switch (TOLOWER (*bit
))
6216 nzcvq_bits
|= (nzcvq_bits
& 0x01) ? 0x20 : 0x01;
6220 nzcvq_bits
|= (nzcvq_bits
& 0x02) ? 0x20 : 0x02;
6224 nzcvq_bits
|= (nzcvq_bits
& 0x04) ? 0x20 : 0x04;
6228 nzcvq_bits
|= (nzcvq_bits
& 0x08) ? 0x20 : 0x08;
6232 nzcvq_bits
|= (nzcvq_bits
& 0x10) ? 0x20 : 0x10;
6236 g_bit
|= (g_bit
& 0x1) ? 0x2 : 0x1;
6240 inst
.error
= _("unexpected bit specified after APSR");
6245 if (nzcvq_bits
== 0x1f)
6250 if (!ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_v6_dsp
))
6252 inst
.error
= _("selected processor does not "
6253 "support DSP extension");
6260 if ((nzcvq_bits
& 0x20) != 0
6261 || (nzcvq_bits
!= 0x1f && nzcvq_bits
!= 0)
6262 || (g_bit
& 0x2) != 0)
6264 inst
.error
= _("bad bitmask specified after APSR");
6270 psr
= (const struct asm_psr
*) hash_find_n (arm_psr_hsh
, start
,
6275 psr_field
|= psr
->field
;
6281 goto error
; /* Garbage after "[CS]PSR". */
6283 /* Unadorned APSR is equivalent to APSR_nzcvq/CPSR_f (for writes). This
6284 is deprecated, but allow it anyway. */
6288 as_tsktsk (_("writing to APSR without specifying a bitmask is "
6291 else if (!m_profile
)
6292 /* These bits are never right for M-profile devices: don't set them
6293 (only code paths which read/write APSR reach here). */
6294 psr_field
|= (PSR_c
| PSR_f
);
6300 inst
.error
= _("selected processor does not support requested special "
6301 "purpose register");
6305 inst
.error
= _("flag for {c}psr instruction expected");
6310 parse_sys_vldr_vstr (char **str
)
6319 {"FPSCR", 0x1, 0x0},
6320 {"FPSCR_nzcvqc", 0x2, 0x0},
6323 {"FPCXTNS", 0x6, 0x1},
6324 {"FPCXTS", 0x7, 0x1}
6326 char *op_end
= strchr (*str
, ',');
6327 size_t op_strlen
= op_end
- *str
;
6329 for (i
= 0; i
< sizeof (sysregs
) / sizeof (sysregs
[0]); i
++)
6331 if (!strncmp (*str
, sysregs
[i
].name
, op_strlen
))
6333 val
= sysregs
[i
].regl
| (sysregs
[i
].regh
<< 3);
6342 /* Parse the flags argument to CPSI[ED]. Returns FAIL on error, or a
6343 value suitable for splatting into the AIF field of the instruction. */
6346 parse_cps_flags (char **str
)
6355 case '\0': case ',':
6358 case 'a': case 'A': saw_a_flag
= 1; val
|= 0x4; break;
6359 case 'i': case 'I': saw_a_flag
= 1; val
|= 0x2; break;
6360 case 'f': case 'F': saw_a_flag
= 1; val
|= 0x1; break;
6363 inst
.error
= _("unrecognized CPS flag");
6368 if (saw_a_flag
== 0)
6370 inst
.error
= _("missing CPS flags");
6378 /* Parse an endian specifier ("BE" or "LE", case insensitive);
6379 returns 0 for big-endian, 1 for little-endian, FAIL for an error. */
6382 parse_endian_specifier (char **str
)
6387 if (strncasecmp (s
, "BE", 2))
6389 else if (strncasecmp (s
, "LE", 2))
6393 inst
.error
= _("valid endian specifiers are be or le");
6397 if (ISALNUM (s
[2]) || s
[2] == '_')
6399 inst
.error
= _("valid endian specifiers are be or le");
6404 return little_endian
;
6407 /* Parse a rotation specifier: ROR #0, #8, #16, #24. *val receives a
6408 value suitable for poking into the rotate field of an sxt or sxta
6409 instruction, or FAIL on error. */
6412 parse_ror (char **str
)
6417 if (strncasecmp (s
, "ROR", 3) == 0)
6421 inst
.error
= _("missing rotation field after comma");
6425 if (parse_immediate (&s
, &rot
, 0, 24, FALSE
) == FAIL
)
6430 case 0: *str
= s
; return 0x0;
6431 case 8: *str
= s
; return 0x1;
6432 case 16: *str
= s
; return 0x2;
6433 case 24: *str
= s
; return 0x3;
6436 inst
.error
= _("rotation can only be 0, 8, 16, or 24");
6441 /* Parse a conditional code (from conds[] below). The value returned is in the
6442 range 0 .. 14, or FAIL. */
6444 parse_cond (char **str
)
6447 const struct asm_cond
*c
;
6449 /* Condition codes are always 2 characters, so matching up to
6450 3 characters is sufficient. */
6455 while (ISALPHA (*q
) && n
< 3)
6457 cond
[n
] = TOLOWER (*q
);
6462 c
= (const struct asm_cond
*) hash_find_n (arm_cond_hsh
, cond
, n
);
6465 inst
.error
= _("condition required");
6473 /* Parse an option for a barrier instruction. Returns the encoding for the
6476 parse_barrier (char **str
)
6479 const struct asm_barrier_opt
*o
;
6482 while (ISALPHA (*q
))
6485 o
= (const struct asm_barrier_opt
*) hash_find_n (arm_barrier_opt_hsh
, p
,
6490 if (!mark_feature_used (&o
->arch
))
6497 /* Parse the operands of a table branch instruction. Similar to a memory
6500 parse_tb (char **str
)
6505 if (skip_past_char (&p
, '[') == FAIL
)
6507 inst
.error
= _("'[' expected");
6511 if ((reg
= arm_reg_parse (&p
, REG_TYPE_RN
)) == FAIL
)
6513 inst
.error
= _(reg_expected_msgs
[REG_TYPE_RN
]);
6516 inst
.operands
[0].reg
= reg
;
6518 if (skip_past_comma (&p
) == FAIL
)
6520 inst
.error
= _("',' expected");
6524 if ((reg
= arm_reg_parse (&p
, REG_TYPE_RN
)) == FAIL
)
6526 inst
.error
= _(reg_expected_msgs
[REG_TYPE_RN
]);
6529 inst
.operands
[0].imm
= reg
;
6531 if (skip_past_comma (&p
) == SUCCESS
)
6533 if (parse_shift (&p
, 0, SHIFT_LSL_IMMEDIATE
) == FAIL
)
6535 if (inst
.relocs
[0].exp
.X_add_number
!= 1)
6537 inst
.error
= _("invalid shift");
6540 inst
.operands
[0].shifted
= 1;
6543 if (skip_past_char (&p
, ']') == FAIL
)
6545 inst
.error
= _("']' expected");
6552 /* Parse the operands of a Neon VMOV instruction. See do_neon_mov for more
6553 information on the types the operands can take and how they are encoded.
6554 Up to four operands may be read; this function handles setting the
6555 ".present" field for each read operand itself.
6556 Updates STR and WHICH_OPERAND if parsing is successful and returns SUCCESS,
6557 else returns FAIL. */
6560 parse_neon_mov (char **str
, int *which_operand
)
6562 int i
= *which_operand
, val
;
6563 enum arm_reg_type rtype
;
6565 struct neon_type_el optype
;
6567 if ((val
= parse_scalar (&ptr
, 8, &optype
, REG_TYPE_MQ
)) != FAIL
)
6569 /* Cases 17 or 19. */
6570 inst
.operands
[i
].reg
= val
;
6571 inst
.operands
[i
].isvec
= 1;
6572 inst
.operands
[i
].isscalar
= 2;
6573 inst
.operands
[i
].vectype
= optype
;
6574 inst
.operands
[i
++].present
= 1;
6576 if (skip_past_comma (&ptr
) == FAIL
)
6579 if ((val
= arm_reg_parse (&ptr
, REG_TYPE_RN
)) != FAIL
)
6581 /* Case 17: VMOV<c>.<dt> <Qd[idx]>, <Rt> */
6582 inst
.operands
[i
].reg
= val
;
6583 inst
.operands
[i
].isreg
= 1;
6584 inst
.operands
[i
].present
= 1;
6586 else if ((val
= parse_scalar (&ptr
, 8, &optype
, REG_TYPE_MQ
)) != FAIL
)
6588 /* Case 19: VMOV<c> <Qd[idx]>, <Qd[idx2]>, <Rt>, <Rt2> */
6589 inst
.operands
[i
].reg
= val
;
6590 inst
.operands
[i
].isvec
= 1;
6591 inst
.operands
[i
].isscalar
= 2;
6592 inst
.operands
[i
].vectype
= optype
;
6593 inst
.operands
[i
++].present
= 1;
6595 if (skip_past_comma (&ptr
) == FAIL
)
6598 if ((val
= arm_reg_parse (&ptr
, REG_TYPE_RN
)) == FAIL
)
6601 inst
.operands
[i
].reg
= val
;
6602 inst
.operands
[i
].isreg
= 1;
6603 inst
.operands
[i
++].present
= 1;
6605 if (skip_past_comma (&ptr
) == FAIL
)
6608 if ((val
= arm_reg_parse (&ptr
, REG_TYPE_RN
)) == FAIL
)
6611 inst
.operands
[i
].reg
= val
;
6612 inst
.operands
[i
].isreg
= 1;
6613 inst
.operands
[i
].present
= 1;
6617 first_error (_("expected ARM or MVE vector register"));
6621 else if ((val
= parse_scalar (&ptr
, 8, &optype
, REG_TYPE_VFD
)) != FAIL
)
6623 /* Case 4: VMOV<c><q>.<size> <Dn[x]>, <Rd>. */
6624 inst
.operands
[i
].reg
= val
;
6625 inst
.operands
[i
].isscalar
= 1;
6626 inst
.operands
[i
].vectype
= optype
;
6627 inst
.operands
[i
++].present
= 1;
6629 if (skip_past_comma (&ptr
) == FAIL
)
6632 if ((val
= arm_reg_parse (&ptr
, REG_TYPE_RN
)) == FAIL
)
6635 inst
.operands
[i
].reg
= val
;
6636 inst
.operands
[i
].isreg
= 1;
6637 inst
.operands
[i
].present
= 1;
6639 else if (((val
= arm_typed_reg_parse (&ptr
, REG_TYPE_NSDQ
, &rtype
, &optype
))
6641 || ((val
= arm_typed_reg_parse (&ptr
, REG_TYPE_MQ
, &rtype
, &optype
))
6644 /* Cases 0, 1, 2, 3, 5 (D only). */
6645 if (skip_past_comma (&ptr
) == FAIL
)
6648 inst
.operands
[i
].reg
= val
;
6649 inst
.operands
[i
].isreg
= 1;
6650 inst
.operands
[i
].isquad
= (rtype
== REG_TYPE_NQ
);
6651 inst
.operands
[i
].issingle
= (rtype
== REG_TYPE_VFS
);
6652 inst
.operands
[i
].isvec
= 1;
6653 inst
.operands
[i
].vectype
= optype
;
6654 inst
.operands
[i
++].present
= 1;
6656 if ((val
= arm_reg_parse (&ptr
, REG_TYPE_RN
)) != FAIL
)
6658 /* Case 5: VMOV<c><q> <Dm>, <Rd>, <Rn>.
6659 Case 13: VMOV <Sd>, <Rm> */
6660 inst
.operands
[i
].reg
= val
;
6661 inst
.operands
[i
].isreg
= 1;
6662 inst
.operands
[i
].present
= 1;
6664 if (rtype
== REG_TYPE_NQ
)
6666 first_error (_("can't use Neon quad register here"));
6669 else if (rtype
!= REG_TYPE_VFS
)
6672 if (skip_past_comma (&ptr
) == FAIL
)
6674 if ((val
= arm_reg_parse (&ptr
, REG_TYPE_RN
)) == FAIL
)
6676 inst
.operands
[i
].reg
= val
;
6677 inst
.operands
[i
].isreg
= 1;
6678 inst
.operands
[i
].present
= 1;
6681 else if ((val
= arm_typed_reg_parse (&ptr
, REG_TYPE_NSDQ
, &rtype
,
6684 /* Case 0: VMOV<c><q> <Qd>, <Qm>
6685 Case 1: VMOV<c><q> <Dd>, <Dm>
6686 Case 8: VMOV.F32 <Sd>, <Sm>
6687 Case 15: VMOV <Sd>, <Se>, <Rn>, <Rm> */
6689 inst
.operands
[i
].reg
= val
;
6690 inst
.operands
[i
].isreg
= 1;
6691 inst
.operands
[i
].isquad
= (rtype
== REG_TYPE_NQ
);
6692 inst
.operands
[i
].issingle
= (rtype
== REG_TYPE_VFS
);
6693 inst
.operands
[i
].isvec
= 1;
6694 inst
.operands
[i
].vectype
= optype
;
6695 inst
.operands
[i
].present
= 1;
6697 if (skip_past_comma (&ptr
) == SUCCESS
)
6702 if ((val
= arm_reg_parse (&ptr
, REG_TYPE_RN
)) == FAIL
)
6705 inst
.operands
[i
].reg
= val
;
6706 inst
.operands
[i
].isreg
= 1;
6707 inst
.operands
[i
++].present
= 1;
6709 if (skip_past_comma (&ptr
) == FAIL
)
6712 if ((val
= arm_reg_parse (&ptr
, REG_TYPE_RN
)) == FAIL
)
6715 inst
.operands
[i
].reg
= val
;
6716 inst
.operands
[i
].isreg
= 1;
6717 inst
.operands
[i
].present
= 1;
6720 else if (parse_qfloat_immediate (&ptr
, &inst
.operands
[i
].imm
) == SUCCESS
)
6721 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<float-imm>
6722 Case 3: VMOV<c><q>.<dt> <Dd>, #<float-imm>
6723 Case 10: VMOV.F32 <Sd>, #<imm>
6724 Case 11: VMOV.F64 <Dd>, #<imm> */
6725 inst
.operands
[i
].immisfloat
= 1;
6726 else if (parse_big_immediate (&ptr
, i
, NULL
, /*allow_symbol_p=*/FALSE
)
6728 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<imm>
6729 Case 3: VMOV<c><q>.<dt> <Dd>, #<imm> */
6733 first_error (_("expected <Rm> or <Dm> or <Qm> operand"));
6737 else if ((val
= arm_reg_parse (&ptr
, REG_TYPE_RN
)) != FAIL
)
6739 /* Cases 6, 7, 16, 18. */
6740 inst
.operands
[i
].reg
= val
;
6741 inst
.operands
[i
].isreg
= 1;
6742 inst
.operands
[i
++].present
= 1;
6744 if (skip_past_comma (&ptr
) == FAIL
)
6747 if ((val
= parse_scalar (&ptr
, 8, &optype
, REG_TYPE_MQ
)) != FAIL
)
6749 /* Case 18: VMOV<c>.<dt> <Rt>, <Qn[idx]> */
6750 inst
.operands
[i
].reg
= val
;
6751 inst
.operands
[i
].isscalar
= 2;
6752 inst
.operands
[i
].present
= 1;
6753 inst
.operands
[i
].vectype
= optype
;
6755 else if ((val
= parse_scalar (&ptr
, 8, &optype
, REG_TYPE_VFD
)) != FAIL
)
6757 /* Case 6: VMOV<c><q>.<dt> <Rd>, <Dn[x]> */
6758 inst
.operands
[i
].reg
= val
;
6759 inst
.operands
[i
].isscalar
= 1;
6760 inst
.operands
[i
].present
= 1;
6761 inst
.operands
[i
].vectype
= optype
;
6763 else if ((val
= arm_reg_parse (&ptr
, REG_TYPE_RN
)) != FAIL
)
6765 inst
.operands
[i
].reg
= val
;
6766 inst
.operands
[i
].isreg
= 1;
6767 inst
.operands
[i
++].present
= 1;
6769 if (skip_past_comma (&ptr
) == FAIL
)
6772 if ((val
= arm_typed_reg_parse (&ptr
, REG_TYPE_VFSD
, &rtype
, &optype
))
6775 /* Case 7: VMOV<c><q> <Rd>, <Rn>, <Dm> */
6777 inst
.operands
[i
].reg
= val
;
6778 inst
.operands
[i
].isreg
= 1;
6779 inst
.operands
[i
].isvec
= 1;
6780 inst
.operands
[i
].issingle
= (rtype
== REG_TYPE_VFS
);
6781 inst
.operands
[i
].vectype
= optype
;
6782 inst
.operands
[i
].present
= 1;
6784 if (rtype
== REG_TYPE_VFS
)
6788 if (skip_past_comma (&ptr
) == FAIL
)
6790 if ((val
= arm_typed_reg_parse (&ptr
, REG_TYPE_VFS
, NULL
,
6793 first_error (_(reg_expected_msgs
[REG_TYPE_VFS
]));
6796 inst
.operands
[i
].reg
= val
;
6797 inst
.operands
[i
].isreg
= 1;
6798 inst
.operands
[i
].isvec
= 1;
6799 inst
.operands
[i
].issingle
= 1;
6800 inst
.operands
[i
].vectype
= optype
;
6801 inst
.operands
[i
].present
= 1;
6806 if ((val
= parse_scalar (&ptr
, 8, &optype
, REG_TYPE_MQ
))
6809 /* Case 16: VMOV<c> <Rt>, <Rt2>, <Qd[idx]>, <Qd[idx2]> */
6810 inst
.operands
[i
].reg
= val
;
6811 inst
.operands
[i
].isvec
= 1;
6812 inst
.operands
[i
].isscalar
= 2;
6813 inst
.operands
[i
].vectype
= optype
;
6814 inst
.operands
[i
++].present
= 1;
6816 if (skip_past_comma (&ptr
) == FAIL
)
6819 if ((val
= parse_scalar (&ptr
, 8, &optype
, REG_TYPE_MQ
))
6822 first_error (_(reg_expected_msgs
[REG_TYPE_MQ
]));
6825 inst
.operands
[i
].reg
= val
;
6826 inst
.operands
[i
].isvec
= 1;
6827 inst
.operands
[i
].isscalar
= 2;
6828 inst
.operands
[i
].vectype
= optype
;
6829 inst
.operands
[i
].present
= 1;
6833 first_error (_("VFP single, double or MVE vector register"
6839 else if ((val
= arm_typed_reg_parse (&ptr
, REG_TYPE_VFS
, NULL
, &optype
))
6843 inst
.operands
[i
].reg
= val
;
6844 inst
.operands
[i
].isreg
= 1;
6845 inst
.operands
[i
].isvec
= 1;
6846 inst
.operands
[i
].issingle
= 1;
6847 inst
.operands
[i
].vectype
= optype
;
6848 inst
.operands
[i
].present
= 1;
6853 first_error (_("parse error"));
6857 /* Successfully parsed the operands. Update args. */
6863 first_error (_("expected comma"));
6867 first_error (_(reg_expected_msgs
[REG_TYPE_RN
]));
6871 /* Use this macro when the operand constraints are different
6872 for ARM and THUMB (e.g. ldrd). */
6873 #define MIX_ARM_THUMB_OPERANDS(arm_operand, thumb_operand) \
6874 ((arm_operand) | ((thumb_operand) << 16))
6876 /* Matcher codes for parse_operands. */
6877 enum operand_parse_code
6879 OP_stop
, /* end of line */
6881 OP_RR
, /* ARM register */
6882 OP_RRnpc
, /* ARM register, not r15 */
6883 OP_RRnpcsp
, /* ARM register, neither r15 nor r13 (a.k.a. 'BadReg') */
6884 OP_RRnpcb
, /* ARM register, not r15, in square brackets */
6885 OP_RRnpctw
, /* ARM register, not r15 in Thumb-state or with writeback,
6886 optional trailing ! */
6887 OP_RRw
, /* ARM register, not r15, optional trailing ! */
6888 OP_RCP
, /* Coprocessor number */
6889 OP_RCN
, /* Coprocessor register */
6890 OP_RF
, /* FPA register */
6891 OP_RVS
, /* VFP single precision register */
6892 OP_RVD
, /* VFP double precision register (0..15) */
6893 OP_RND
, /* Neon double precision register (0..31) */
6894 OP_RNDMQ
, /* Neon double precision (0..31) or MVE vector register. */
6895 OP_RNDMQR
, /* Neon double precision (0..31), MVE vector or ARM register.
6897 OP_RNQ
, /* Neon quad precision register */
6898 OP_RNQMQ
, /* Neon quad or MVE vector register. */
6899 OP_RVSD
, /* VFP single or double precision register */
6900 OP_RVSD_COND
, /* VFP single, double precision register or condition code. */
6901 OP_RVSDMQ
, /* VFP single, double precision or MVE vector register. */
6902 OP_RNSD
, /* Neon single or double precision register */
6903 OP_RNDQ
, /* Neon double or quad precision register */
6904 OP_RNDQMQ
, /* Neon double, quad or MVE vector register. */
6905 OP_RNDQMQR
, /* Neon double, quad, MVE vector or ARM register. */
6906 OP_RNSDQ
, /* Neon single, double or quad precision register */
6907 OP_RNSC
, /* Neon scalar D[X] */
6908 OP_RVC
, /* VFP control register */
6909 OP_RMF
, /* Maverick F register */
6910 OP_RMD
, /* Maverick D register */
6911 OP_RMFX
, /* Maverick FX register */
6912 OP_RMDX
, /* Maverick DX register */
6913 OP_RMAX
, /* Maverick AX register */
6914 OP_RMDS
, /* Maverick DSPSC register */
6915 OP_RIWR
, /* iWMMXt wR register */
6916 OP_RIWC
, /* iWMMXt wC register */
6917 OP_RIWG
, /* iWMMXt wCG register */
6918 OP_RXA
, /* XScale accumulator register */
6920 OP_RNSDQMQ
, /* Neon single, double or quad register or MVE vector register
6922 OP_RNSDQMQR
, /* Neon single, double or quad register, MVE vector register or
6924 OP_RMQ
, /* MVE vector register. */
6925 OP_RMQRZ
, /* MVE vector or ARM register including ZR. */
6926 OP_RMQRR
, /* MVE vector or ARM register. */
6928 /* New operands for Armv8.1-M Mainline. */
6929 OP_LR
, /* ARM LR register */
6930 OP_RRe
, /* ARM register, only even numbered. */
6931 OP_RRo
, /* ARM register, only odd numbered, not r13 or r15. */
6932 OP_RRnpcsp_I32
, /* ARM register (no BadReg) or literal 1 .. 32 */
6934 OP_REGLST
, /* ARM register list */
6935 OP_CLRMLST
, /* CLRM register list */
6936 OP_VRSLST
, /* VFP single-precision register list */
6937 OP_VRDLST
, /* VFP double-precision register list */
6938 OP_VRSDLST
, /* VFP single or double-precision register list (& quad) */
6939 OP_NRDLST
, /* Neon double-precision register list (d0-d31, qN aliases) */
6940 OP_NSTRLST
, /* Neon element/structure list */
6941 OP_VRSDVLST
, /* VFP single or double-precision register list and VPR */
6942 OP_MSTRLST2
, /* MVE vector list with two elements. */
6943 OP_MSTRLST4
, /* MVE vector list with four elements. */
6945 OP_RNDQ_I0
, /* Neon D or Q reg, or immediate zero. */
6946 OP_RVSD_I0
, /* VFP S or D reg, or immediate zero. */
6947 OP_RSVD_FI0
, /* VFP S or D reg, or floating point immediate zero. */
6948 OP_RSVDMQ_FI0
, /* VFP S, D, MVE vector register or floating point immediate
6950 OP_RR_RNSC
, /* ARM reg or Neon scalar. */
6951 OP_RNSD_RNSC
, /* Neon S or D reg, or Neon scalar. */
6952 OP_RNSDQ_RNSC
, /* Vector S, D or Q reg, or Neon scalar. */
6953 OP_RNSDQ_RNSC_MQ
, /* Vector S, D or Q reg, Neon scalar or MVE vector register.
6955 OP_RNSDQ_RNSC_MQ_RR
, /* Vector S, D or Q reg, or MVE vector reg , or Neon
6956 scalar, or ARM register. */
6957 OP_RNDQ_RNSC
, /* Neon D or Q reg, or Neon scalar. */
6958 OP_RNDQ_RNSC_RR
, /* Neon D or Q reg, Neon scalar, or ARM register. */
6959 OP_RNDQMQ_RNSC_RR
, /* Neon D or Q reg, Neon scalar, MVE vector or ARM
6961 OP_RNDQMQ_RNSC
, /* Neon D, Q or MVE vector reg, or Neon scalar. */
6962 OP_RND_RNSC
, /* Neon D reg, or Neon scalar. */
6963 OP_VMOV
, /* Neon VMOV operands. */
6964 OP_RNDQ_Ibig
, /* Neon D or Q reg, or big immediate for logic and VMVN. */
6965 /* Neon D, Q or MVE vector register, or big immediate for logic and VMVN. */
6967 OP_RNDQ_I63b
, /* Neon D or Q reg, or immediate for shift. */
6968 OP_RIWR_I32z
, /* iWMMXt wR register, or immediate 0 .. 32 for iWMMXt2. */
6969 OP_VLDR
, /* VLDR operand. */
6971 OP_I0
, /* immediate zero */
6972 OP_I7
, /* immediate value 0 .. 7 */
6973 OP_I15
, /* 0 .. 15 */
6974 OP_I16
, /* 1 .. 16 */
6975 OP_I16z
, /* 0 .. 16 */
6976 OP_I31
, /* 0 .. 31 */
6977 OP_I31w
, /* 0 .. 31, optional trailing ! */
6978 OP_I32
, /* 1 .. 32 */
6979 OP_I32z
, /* 0 .. 32 */
6980 OP_I63
, /* 0 .. 63 */
6981 OP_I63s
, /* -64 .. 63 */
6982 OP_I64
, /* 1 .. 64 */
6983 OP_I64z
, /* 0 .. 64 */
6984 OP_I255
, /* 0 .. 255 */
6986 OP_I4b
, /* immediate, prefix optional, 1 .. 4 */
6987 OP_I7b
, /* 0 .. 7 */
6988 OP_I15b
, /* 0 .. 15 */
6989 OP_I31b
, /* 0 .. 31 */
6991 OP_SH
, /* shifter operand */
6992 OP_SHG
, /* shifter operand with possible group relocation */
6993 OP_ADDR
, /* Memory address expression (any mode) */
6994 OP_ADDRMVE
, /* Memory address expression for MVE's VSTR/VLDR. */
6995 OP_ADDRGLDR
, /* Mem addr expr (any mode) with possible LDR group reloc */
6996 OP_ADDRGLDRS
, /* Mem addr expr (any mode) with possible LDRS group reloc */
6997 OP_ADDRGLDC
, /* Mem addr expr (any mode) with possible LDC group reloc */
6998 OP_EXP
, /* arbitrary expression */
6999 OP_EXPi
, /* same, with optional immediate prefix */
7000 OP_EXPr
, /* same, with optional relocation suffix */
7001 OP_EXPs
, /* same, with optional non-first operand relocation suffix */
7002 OP_HALF
, /* 0 .. 65535 or low/high reloc. */
7003 OP_IROT1
, /* VCADD rotate immediate: 90, 270. */
7004 OP_IROT2
, /* VCMLA rotate immediate: 0, 90, 180, 270. */
7006 OP_CPSF
, /* CPS flags */
7007 OP_ENDI
, /* Endianness specifier */
7008 OP_wPSR
, /* CPSR/SPSR/APSR mask for msr (writing). */
7009 OP_rPSR
, /* CPSR/SPSR/APSR mask for msr (reading). */
7010 OP_COND
, /* conditional code */
7011 OP_TB
, /* Table branch. */
7013 OP_APSR_RR
, /* ARM register or "APSR_nzcv". */
7015 OP_RRnpc_I0
, /* ARM register or literal 0 */
7016 OP_RR_EXr
, /* ARM register or expression with opt. reloc stuff. */
7017 OP_RR_EXi
, /* ARM register or expression with imm prefix */
7018 OP_RF_IF
, /* FPA register or immediate */
7019 OP_RIWR_RIWC
, /* iWMMXt R or C reg */
7020 OP_RIWC_RIWG
, /* iWMMXt wC or wCG reg */
7022 /* Optional operands. */
7023 OP_oI7b
, /* immediate, prefix optional, 0 .. 7 */
7024 OP_oI31b
, /* 0 .. 31 */
7025 OP_oI32b
, /* 1 .. 32 */
7026 OP_oI32z
, /* 0 .. 32 */
7027 OP_oIffffb
, /* 0 .. 65535 */
7028 OP_oI255c
, /* curly-brace enclosed, 0 .. 255 */
7030 OP_oRR
, /* ARM register */
7031 OP_oLR
, /* ARM LR register */
7032 OP_oRRnpc
, /* ARM register, not the PC */
7033 OP_oRRnpcsp
, /* ARM register, neither the PC nor the SP (a.k.a. BadReg) */
7034 OP_oRRw
, /* ARM register, not r15, optional trailing ! */
7035 OP_oRND
, /* Optional Neon double precision register */
7036 OP_oRNQ
, /* Optional Neon quad precision register */
7037 OP_oRNDQMQ
, /* Optional Neon double, quad or MVE vector register. */
7038 OP_oRNDQ
, /* Optional Neon double or quad precision register */
7039 OP_oRNSDQ
, /* Optional single, double or quad precision vector register */
7040 OP_oRNSDQMQ
, /* Optional single, double or quad register or MVE vector
7042 OP_oSHll
, /* LSL immediate */
7043 OP_oSHar
, /* ASR immediate */
7044 OP_oSHllar
, /* LSL or ASR immediate */
7045 OP_oROR
, /* ROR 0/8/16/24 */
7046 OP_oBARRIER_I15
, /* Option argument for a barrier instruction. */
7048 OP_oRMQRZ
, /* optional MVE vector or ARM register including ZR. */
7050 /* Some pre-defined mixed (ARM/THUMB) operands. */
7051 OP_RR_npcsp
= MIX_ARM_THUMB_OPERANDS (OP_RR
, OP_RRnpcsp
),
7052 OP_RRnpc_npcsp
= MIX_ARM_THUMB_OPERANDS (OP_RRnpc
, OP_RRnpcsp
),
7053 OP_oRRnpc_npcsp
= MIX_ARM_THUMB_OPERANDS (OP_oRRnpc
, OP_oRRnpcsp
),
7055 OP_FIRST_OPTIONAL
= OP_oI7b
7058 /* Generic instruction operand parser. This does no encoding and no
7059 semantic validation; it merely squirrels values away in the inst
7060 structure. Returns SUCCESS or FAIL depending on whether the
7061 specified grammar matched. */
7063 parse_operands (char *str
, const unsigned int *pattern
, bfd_boolean thumb
)
7065 unsigned const int *upat
= pattern
;
7066 char *backtrack_pos
= 0;
7067 const char *backtrack_error
= 0;
7068 int i
, val
= 0, backtrack_index
= 0;
7069 enum arm_reg_type rtype
;
7070 parse_operand_result result
;
7071 unsigned int op_parse_code
;
7072 bfd_boolean partial_match
;
7074 #define po_char_or_fail(chr) \
7077 if (skip_past_char (&str, chr) == FAIL) \
7082 #define po_reg_or_fail(regtype) \
7085 val = arm_typed_reg_parse (& str, regtype, & rtype, \
7086 & inst.operands[i].vectype); \
7089 first_error (_(reg_expected_msgs[regtype])); \
7092 inst.operands[i].reg = val; \
7093 inst.operands[i].isreg = 1; \
7094 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
7095 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
7096 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
7097 || rtype == REG_TYPE_VFD \
7098 || rtype == REG_TYPE_NQ); \
7099 inst.operands[i].iszr = (rtype == REG_TYPE_ZR); \
7103 #define po_reg_or_goto(regtype, label) \
7106 val = arm_typed_reg_parse (& str, regtype, & rtype, \
7107 & inst.operands[i].vectype); \
7111 inst.operands[i].reg = val; \
7112 inst.operands[i].isreg = 1; \
7113 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
7114 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
7115 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
7116 || rtype == REG_TYPE_VFD \
7117 || rtype == REG_TYPE_NQ); \
7118 inst.operands[i].iszr = (rtype == REG_TYPE_ZR); \
7122 #define po_imm_or_fail(min, max, popt) \
7125 if (parse_immediate (&str, &val, min, max, popt) == FAIL) \
7127 inst.operands[i].imm = val; \
7131 #define po_scalar_or_goto(elsz, label, reg_type) \
7134 val = parse_scalar (& str, elsz, & inst.operands[i].vectype, \
7138 inst.operands[i].reg = val; \
7139 inst.operands[i].isscalar = 1; \
7143 #define po_misc_or_fail(expr) \
7151 #define po_misc_or_fail_no_backtrack(expr) \
7155 if (result == PARSE_OPERAND_FAIL_NO_BACKTRACK) \
7156 backtrack_pos = 0; \
7157 if (result != PARSE_OPERAND_SUCCESS) \
7162 #define po_barrier_or_imm(str) \
7165 val = parse_barrier (&str); \
7166 if (val == FAIL && ! ISALPHA (*str)) \
7169 /* ISB can only take SY as an option. */ \
7170 || ((inst.instruction & 0xf0) == 0x60 \
7173 inst.error = _("invalid barrier type"); \
7174 backtrack_pos = 0; \
7180 skip_whitespace (str
);
7182 for (i
= 0; upat
[i
] != OP_stop
; i
++)
7184 op_parse_code
= upat
[i
];
7185 if (op_parse_code
>= 1<<16)
7186 op_parse_code
= thumb
? (op_parse_code
>> 16)
7187 : (op_parse_code
& ((1<<16)-1));
7189 if (op_parse_code
>= OP_FIRST_OPTIONAL
)
7191 /* Remember where we are in case we need to backtrack. */
7192 backtrack_pos
= str
;
7193 backtrack_error
= inst
.error
;
7194 backtrack_index
= i
;
7197 if (i
> 0 && (i
> 1 || inst
.operands
[0].present
))
7198 po_char_or_fail (',');
7200 switch (op_parse_code
)
7212 case OP_RR
: po_reg_or_fail (REG_TYPE_RN
); break;
7213 case OP_RCP
: po_reg_or_fail (REG_TYPE_CP
); break;
7214 case OP_RCN
: po_reg_or_fail (REG_TYPE_CN
); break;
7215 case OP_RF
: po_reg_or_fail (REG_TYPE_FN
); break;
7216 case OP_RVS
: po_reg_or_fail (REG_TYPE_VFS
); break;
7217 case OP_RVD
: po_reg_or_fail (REG_TYPE_VFD
); break;
7220 po_reg_or_goto (REG_TYPE_RN
, try_rndmq
);
7224 po_reg_or_goto (REG_TYPE_MQ
, try_rnd
);
7227 case OP_RND
: po_reg_or_fail (REG_TYPE_VFD
); break;
7229 po_reg_or_goto (REG_TYPE_VFC
, coproc_reg
);
7231 /* Also accept generic coprocessor regs for unknown registers. */
7233 po_reg_or_fail (REG_TYPE_CN
);
7235 case OP_RMF
: po_reg_or_fail (REG_TYPE_MVF
); break;
7236 case OP_RMD
: po_reg_or_fail (REG_TYPE_MVD
); break;
7237 case OP_RMFX
: po_reg_or_fail (REG_TYPE_MVFX
); break;
7238 case OP_RMDX
: po_reg_or_fail (REG_TYPE_MVDX
); break;
7239 case OP_RMAX
: po_reg_or_fail (REG_TYPE_MVAX
); break;
7240 case OP_RMDS
: po_reg_or_fail (REG_TYPE_DSPSC
); break;
7241 case OP_RIWR
: po_reg_or_fail (REG_TYPE_MMXWR
); break;
7242 case OP_RIWC
: po_reg_or_fail (REG_TYPE_MMXWC
); break;
7243 case OP_RIWG
: po_reg_or_fail (REG_TYPE_MMXWCG
); break;
7244 case OP_RXA
: po_reg_or_fail (REG_TYPE_XSCALE
); break;
7247 po_reg_or_goto (REG_TYPE_MQ
, try_nq
);
7250 case OP_RNQ
: po_reg_or_fail (REG_TYPE_NQ
); break;
7251 case OP_RNSD
: po_reg_or_fail (REG_TYPE_NSD
); break;
7253 po_reg_or_goto (REG_TYPE_RN
, try_rndqmq
);
7258 po_reg_or_goto (REG_TYPE_MQ
, try_rndq
);
7262 case OP_RNDQ
: po_reg_or_fail (REG_TYPE_NDQ
); break;
7264 po_reg_or_goto (REG_TYPE_MQ
, try_rvsd
);
7267 case OP_RVSD
: po_reg_or_fail (REG_TYPE_VFSD
); break;
7269 po_reg_or_goto (REG_TYPE_VFSD
, try_cond
);
7272 case OP_RNSDQ
: po_reg_or_fail (REG_TYPE_NSDQ
); break;
7274 po_reg_or_goto (REG_TYPE_RN
, try_mq
);
7279 po_reg_or_goto (REG_TYPE_MQ
, try_nsdq2
);
7282 po_reg_or_fail (REG_TYPE_NSDQ
);
7286 po_reg_or_goto (REG_TYPE_RN
, try_rmq
);
7290 po_reg_or_fail (REG_TYPE_MQ
);
7292 /* Neon scalar. Using an element size of 8 means that some invalid
7293 scalars are accepted here, so deal with those in later code. */
7294 case OP_RNSC
: po_scalar_or_goto (8, failure
, REG_TYPE_VFD
); break;
7298 po_reg_or_goto (REG_TYPE_NDQ
, try_imm0
);
7301 po_imm_or_fail (0, 0, TRUE
);
7306 po_reg_or_goto (REG_TYPE_VFSD
, try_imm0
);
7310 po_reg_or_goto (REG_TYPE_MQ
, try_rsvd_fi0
);
7315 po_reg_or_goto (REG_TYPE_VFSD
, try_ifimm0
);
7318 if (parse_ifimm_zero (&str
))
7319 inst
.operands
[i
].imm
= 0;
7323 = _("only floating point zero is allowed as immediate value");
7331 po_scalar_or_goto (8, try_rr
, REG_TYPE_VFD
);
7334 po_reg_or_fail (REG_TYPE_RN
);
7338 case OP_RNSDQ_RNSC_MQ_RR
:
7339 po_reg_or_goto (REG_TYPE_RN
, try_rnsdq_rnsc_mq
);
7342 case OP_RNSDQ_RNSC_MQ
:
7343 po_reg_or_goto (REG_TYPE_MQ
, try_rnsdq_rnsc
);
7348 po_scalar_or_goto (8, try_nsdq
, REG_TYPE_VFD
);
7352 po_reg_or_fail (REG_TYPE_NSDQ
);
7359 po_scalar_or_goto (8, try_s_scalar
, REG_TYPE_VFD
);
7362 po_scalar_or_goto (4, try_nsd
, REG_TYPE_VFS
);
7365 po_reg_or_fail (REG_TYPE_NSD
);
7369 case OP_RNDQMQ_RNSC_RR
:
7370 po_reg_or_goto (REG_TYPE_MQ
, try_rndq_rnsc_rr
);
7373 case OP_RNDQ_RNSC_RR
:
7374 po_reg_or_goto (REG_TYPE_RN
, try_rndq_rnsc
);
7376 case OP_RNDQMQ_RNSC
:
7377 po_reg_or_goto (REG_TYPE_MQ
, try_rndq_rnsc
);
7382 po_scalar_or_goto (8, try_ndq
, REG_TYPE_VFD
);
7385 po_reg_or_fail (REG_TYPE_NDQ
);
7391 po_scalar_or_goto (8, try_vfd
, REG_TYPE_VFD
);
7394 po_reg_or_fail (REG_TYPE_VFD
);
7399 /* WARNING: parse_neon_mov can move the operand counter, i. If we're
7400 not careful then bad things might happen. */
7401 po_misc_or_fail (parse_neon_mov (&str
, &i
) == FAIL
);
7404 case OP_RNDQMQ_Ibig
:
7405 po_reg_or_goto (REG_TYPE_MQ
, try_rndq_ibig
);
7410 po_reg_or_goto (REG_TYPE_NDQ
, try_immbig
);
7413 /* There's a possibility of getting a 64-bit immediate here, so
7414 we need special handling. */
7415 if (parse_big_immediate (&str
, i
, NULL
, /*allow_symbol_p=*/FALSE
)
7418 inst
.error
= _("immediate value is out of range");
7426 po_reg_or_goto (REG_TYPE_NDQ
, try_shimm
);
7429 po_imm_or_fail (0, 63, TRUE
);
7434 po_char_or_fail ('[');
7435 po_reg_or_fail (REG_TYPE_RN
);
7436 po_char_or_fail (']');
7442 po_reg_or_fail (REG_TYPE_RN
);
7443 if (skip_past_char (&str
, '!') == SUCCESS
)
7444 inst
.operands
[i
].writeback
= 1;
7448 case OP_I7
: po_imm_or_fail ( 0, 7, FALSE
); break;
7449 case OP_I15
: po_imm_or_fail ( 0, 15, FALSE
); break;
7450 case OP_I16
: po_imm_or_fail ( 1, 16, FALSE
); break;
7451 case OP_I16z
: po_imm_or_fail ( 0, 16, FALSE
); break;
7452 case OP_I31
: po_imm_or_fail ( 0, 31, FALSE
); break;
7453 case OP_I32
: po_imm_or_fail ( 1, 32, FALSE
); break;
7454 case OP_I32z
: po_imm_or_fail ( 0, 32, FALSE
); break;
7455 case OP_I63s
: po_imm_or_fail (-64, 63, FALSE
); break;
7456 case OP_I63
: po_imm_or_fail ( 0, 63, FALSE
); break;
7457 case OP_I64
: po_imm_or_fail ( 1, 64, FALSE
); break;
7458 case OP_I64z
: po_imm_or_fail ( 0, 64, FALSE
); break;
7459 case OP_I255
: po_imm_or_fail ( 0, 255, FALSE
); break;
7461 case OP_I4b
: po_imm_or_fail ( 1, 4, TRUE
); break;
7463 case OP_I7b
: po_imm_or_fail ( 0, 7, TRUE
); break;
7464 case OP_I15b
: po_imm_or_fail ( 0, 15, TRUE
); break;
7466 case OP_I31b
: po_imm_or_fail ( 0, 31, TRUE
); break;
7467 case OP_oI32b
: po_imm_or_fail ( 1, 32, TRUE
); break;
7468 case OP_oI32z
: po_imm_or_fail ( 0, 32, TRUE
); break;
7469 case OP_oIffffb
: po_imm_or_fail ( 0, 0xffff, TRUE
); break;
7471 /* Immediate variants */
7473 po_char_or_fail ('{');
7474 po_imm_or_fail (0, 255, TRUE
);
7475 po_char_or_fail ('}');
7479 /* The expression parser chokes on a trailing !, so we have
7480 to find it first and zap it. */
7483 while (*s
&& *s
!= ',')
7488 inst
.operands
[i
].writeback
= 1;
7490 po_imm_or_fail (0, 31, TRUE
);
7498 po_misc_or_fail (my_get_expression (&inst
.relocs
[0].exp
, &str
,
7503 po_misc_or_fail (my_get_expression (&inst
.relocs
[0].exp
, &str
,
7508 po_misc_or_fail (my_get_expression (&inst
.relocs
[0].exp
, &str
,
7510 if (inst
.relocs
[0].exp
.X_op
== O_symbol
)
7512 val
= parse_reloc (&str
);
7515 inst
.error
= _("unrecognized relocation suffix");
7518 else if (val
!= BFD_RELOC_UNUSED
)
7520 inst
.operands
[i
].imm
= val
;
7521 inst
.operands
[i
].hasreloc
= 1;
7527 po_misc_or_fail (my_get_expression (&inst
.relocs
[i
].exp
, &str
,
7529 if (inst
.relocs
[i
].exp
.X_op
== O_symbol
)
7531 inst
.operands
[i
].hasreloc
= 1;
7533 else if (inst
.relocs
[i
].exp
.X_op
== O_constant
)
7535 inst
.operands
[i
].imm
= inst
.relocs
[i
].exp
.X_add_number
;
7536 inst
.operands
[i
].hasreloc
= 0;
7540 /* Operand for MOVW or MOVT. */
7542 po_misc_or_fail (parse_half (&str
));
7545 /* Register or expression. */
7546 case OP_RR_EXr
: po_reg_or_goto (REG_TYPE_RN
, EXPr
); break;
7547 case OP_RR_EXi
: po_reg_or_goto (REG_TYPE_RN
, EXPi
); break;
7549 /* Register or immediate. */
7550 case OP_RRnpc_I0
: po_reg_or_goto (REG_TYPE_RN
, I0
); break;
7551 I0
: po_imm_or_fail (0, 0, FALSE
); break;
7553 case OP_RF_IF
: po_reg_or_goto (REG_TYPE_FN
, IF
); break;
7555 if (!is_immediate_prefix (*str
))
7558 val
= parse_fpa_immediate (&str
);
7561 /* FPA immediates are encoded as registers 8-15.
7562 parse_fpa_immediate has already applied the offset. */
7563 inst
.operands
[i
].reg
= val
;
7564 inst
.operands
[i
].isreg
= 1;
7567 case OP_RIWR_I32z
: po_reg_or_goto (REG_TYPE_MMXWR
, I32z
); break;
7568 I32z
: po_imm_or_fail (0, 32, FALSE
); break;
7570 /* Two kinds of register. */
7573 struct reg_entry
*rege
= arm_reg_parse_multi (&str
);
7575 || (rege
->type
!= REG_TYPE_MMXWR
7576 && rege
->type
!= REG_TYPE_MMXWC
7577 && rege
->type
!= REG_TYPE_MMXWCG
))
7579 inst
.error
= _("iWMMXt data or control register expected");
7582 inst
.operands
[i
].reg
= rege
->number
;
7583 inst
.operands
[i
].isreg
= (rege
->type
== REG_TYPE_MMXWR
);
7589 struct reg_entry
*rege
= arm_reg_parse_multi (&str
);
7591 || (rege
->type
!= REG_TYPE_MMXWC
7592 && rege
->type
!= REG_TYPE_MMXWCG
))
7594 inst
.error
= _("iWMMXt control register expected");
7597 inst
.operands
[i
].reg
= rege
->number
;
7598 inst
.operands
[i
].isreg
= 1;
7603 case OP_CPSF
: val
= parse_cps_flags (&str
); break;
7604 case OP_ENDI
: val
= parse_endian_specifier (&str
); break;
7605 case OP_oROR
: val
= parse_ror (&str
); break;
7607 case OP_COND
: val
= parse_cond (&str
); break;
7608 case OP_oBARRIER_I15
:
7609 po_barrier_or_imm (str
); break;
7611 if (parse_immediate (&str
, &val
, 0, 15, TRUE
) == FAIL
)
7617 po_reg_or_goto (REG_TYPE_RNB
, try_psr
);
7618 if (!ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_virt
))
7620 inst
.error
= _("Banked registers are not available with this "
7626 val
= parse_psr (&str
, op_parse_code
== OP_wPSR
);
7630 po_reg_or_goto (REG_TYPE_VFSD
, try_sysreg
);
7633 val
= parse_sys_vldr_vstr (&str
);
7637 po_reg_or_goto (REG_TYPE_RN
, try_apsr
);
7640 /* Parse "APSR_nvzc" operand (for FMSTAT-equivalent MRS
7642 if (strncasecmp (str
, "APSR_", 5) == 0)
7649 case 'c': found
= (found
& 1) ? 16 : found
| 1; break;
7650 case 'n': found
= (found
& 2) ? 16 : found
| 2; break;
7651 case 'z': found
= (found
& 4) ? 16 : found
| 4; break;
7652 case 'v': found
= (found
& 8) ? 16 : found
| 8; break;
7653 default: found
= 16;
7657 inst
.operands
[i
].isvec
= 1;
7658 /* APSR_nzcv is encoded in instructions as if it were the REG_PC. */
7659 inst
.operands
[i
].reg
= REG_PC
;
7666 po_misc_or_fail (parse_tb (&str
));
7669 /* Register lists. */
7671 val
= parse_reg_list (&str
, REGLIST_RN
);
7674 inst
.operands
[i
].writeback
= 1;
7680 val
= parse_reg_list (&str
, REGLIST_CLRM
);
7684 val
= parse_vfp_reg_list (&str
, &inst
.operands
[i
].reg
, REGLIST_VFP_S
,
7689 val
= parse_vfp_reg_list (&str
, &inst
.operands
[i
].reg
, REGLIST_VFP_D
,
7694 /* Allow Q registers too. */
7695 val
= parse_vfp_reg_list (&str
, &inst
.operands
[i
].reg
,
7696 REGLIST_NEON_D
, &partial_match
);
7700 val
= parse_vfp_reg_list (&str
, &inst
.operands
[i
].reg
,
7701 REGLIST_VFP_S
, &partial_match
);
7702 inst
.operands
[i
].issingle
= 1;
7707 val
= parse_vfp_reg_list (&str
, &inst
.operands
[i
].reg
,
7708 REGLIST_VFP_D_VPR
, &partial_match
);
7709 if (val
== FAIL
&& !partial_match
)
7712 val
= parse_vfp_reg_list (&str
, &inst
.operands
[i
].reg
,
7713 REGLIST_VFP_S_VPR
, &partial_match
);
7714 inst
.operands
[i
].issingle
= 1;
7719 val
= parse_vfp_reg_list (&str
, &inst
.operands
[i
].reg
,
7720 REGLIST_NEON_D
, &partial_match
);
7725 val
= parse_neon_el_struct_list (&str
, &inst
.operands
[i
].reg
,
7726 1, &inst
.operands
[i
].vectype
);
7727 if (val
!= (((op_parse_code
== OP_MSTRLST2
) ? 3 : 7) << 5 | 0xe))
7731 val
= parse_neon_el_struct_list (&str
, &inst
.operands
[i
].reg
,
7732 0, &inst
.operands
[i
].vectype
);
7735 /* Addressing modes */
7737 po_misc_or_fail (parse_address_group_reloc (&str
, i
, GROUP_MVE
));
7741 po_misc_or_fail (parse_address (&str
, i
));
7745 po_misc_or_fail_no_backtrack (
7746 parse_address_group_reloc (&str
, i
, GROUP_LDR
));
7750 po_misc_or_fail_no_backtrack (
7751 parse_address_group_reloc (&str
, i
, GROUP_LDRS
));
7755 po_misc_or_fail_no_backtrack (
7756 parse_address_group_reloc (&str
, i
, GROUP_LDC
));
7760 po_misc_or_fail (parse_shifter_operand (&str
, i
));
7764 po_misc_or_fail_no_backtrack (
7765 parse_shifter_operand_group_reloc (&str
, i
));
7769 po_misc_or_fail (parse_shift (&str
, i
, SHIFT_LSL_IMMEDIATE
));
7773 po_misc_or_fail (parse_shift (&str
, i
, SHIFT_ASR_IMMEDIATE
));
7777 po_misc_or_fail (parse_shift (&str
, i
, SHIFT_LSL_OR_ASR_IMMEDIATE
));
7782 po_reg_or_goto (REG_TYPE_MQ
, try_rr_zr
);
7785 po_reg_or_goto (REG_TYPE_RN
, ZR
);
7788 po_reg_or_fail (REG_TYPE_ZR
);
7792 as_fatal (_("unhandled operand code %d"), op_parse_code
);
7795 /* Various value-based sanity checks and shared operations. We
7796 do not signal immediate failures for the register constraints;
7797 this allows a syntax error to take precedence. */
7798 switch (op_parse_code
)
7806 if (inst
.operands
[i
].isreg
&& inst
.operands
[i
].reg
== REG_PC
)
7807 inst
.error
= BAD_PC
;
7812 if (inst
.operands
[i
].isreg
)
7814 if (inst
.operands
[i
].reg
== REG_PC
)
7815 inst
.error
= BAD_PC
;
7816 else if (inst
.operands
[i
].reg
== REG_SP
7817 /* The restriction on Rd/Rt/Rt2 on Thumb mode has been
7818 relaxed since ARMv8-A. */
7819 && !ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v8
))
7822 inst
.error
= BAD_SP
;
7828 if (inst
.operands
[i
].isreg
7829 && inst
.operands
[i
].reg
== REG_PC
7830 && (inst
.operands
[i
].writeback
|| thumb
))
7831 inst
.error
= BAD_PC
;
7836 if (inst
.operands
[i
].isreg
)
7846 case OP_oBARRIER_I15
:
7859 inst
.operands
[i
].imm
= val
;
7864 if (inst
.operands
[i
].reg
!= REG_LR
)
7865 inst
.error
= _("operand must be LR register");
7870 if (!inst
.operands
[i
].iszr
&& inst
.operands
[i
].reg
== REG_PC
)
7871 inst
.error
= BAD_PC
;
7875 if (inst
.operands
[i
].isreg
7876 && (inst
.operands
[i
].reg
& 0x00000001) != 0)
7877 inst
.error
= BAD_ODD
;
7881 if (inst
.operands
[i
].isreg
)
7883 if ((inst
.operands
[i
].reg
& 0x00000001) != 1)
7884 inst
.error
= BAD_EVEN
;
7885 else if (inst
.operands
[i
].reg
== REG_SP
)
7886 as_tsktsk (MVE_BAD_SP
);
7887 else if (inst
.operands
[i
].reg
== REG_PC
)
7888 inst
.error
= BAD_PC
;
7896 /* If we get here, this operand was successfully parsed. */
7897 inst
.operands
[i
].present
= 1;
7901 inst
.error
= BAD_ARGS
;
7906 /* The parse routine should already have set inst.error, but set a
7907 default here just in case. */
7909 inst
.error
= BAD_SYNTAX
;
7913 /* Do not backtrack over a trailing optional argument that
7914 absorbed some text. We will only fail again, with the
7915 'garbage following instruction' error message, which is
7916 probably less helpful than the current one. */
7917 if (backtrack_index
== i
&& backtrack_pos
!= str
7918 && upat
[i
+1] == OP_stop
)
7921 inst
.error
= BAD_SYNTAX
;
7925 /* Try again, skipping the optional argument at backtrack_pos. */
7926 str
= backtrack_pos
;
7927 inst
.error
= backtrack_error
;
7928 inst
.operands
[backtrack_index
].present
= 0;
7929 i
= backtrack_index
;
7933 /* Check that we have parsed all the arguments. */
7934 if (*str
!= '\0' && !inst
.error
)
7935 inst
.error
= _("garbage following instruction");
7937 return inst
.error
? FAIL
: SUCCESS
;
7940 #undef po_char_or_fail
7941 #undef po_reg_or_fail
7942 #undef po_reg_or_goto
7943 #undef po_imm_or_fail
7944 #undef po_scalar_or_fail
7945 #undef po_barrier_or_imm
7947 /* Shorthand macro for instruction encoding functions issuing errors. */
7948 #define constraint(expr, err) \
7959 /* Reject "bad registers" for Thumb-2 instructions. Many Thumb-2
7960 instructions are unpredictable if these registers are used. This
7961 is the BadReg predicate in ARM's Thumb-2 documentation.
7963 Before ARMv8-A, REG_PC and REG_SP were not allowed in quite a few
7964 places, while the restriction on REG_SP was relaxed since ARMv8-A. */
7965 #define reject_bad_reg(reg) \
7967 if (reg == REG_PC) \
7969 inst.error = BAD_PC; \
7972 else if (reg == REG_SP \
7973 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8)) \
7975 inst.error = BAD_SP; \
7980 /* If REG is R13 (the stack pointer), warn that its use is
7982 #define warn_deprecated_sp(reg) \
7984 if (warn_on_deprecated && reg == REG_SP) \
7985 as_tsktsk (_("use of r13 is deprecated")); \
7988 /* Functions for operand encoding. ARM, then Thumb. */
7990 #define rotate_left(v, n) (v << (n & 31) | v >> ((32 - n) & 31))
7992 /* If the current inst is scalar ARMv8.2 fp16 instruction, do special encoding.
7994 The only binary encoding difference is the Coprocessor number. Coprocessor
7995 9 is used for half-precision calculations or conversions. The format of the
7996 instruction is the same as the equivalent Coprocessor 10 instruction that
7997 exists for Single-Precision operation. */
8000 do_scalar_fp16_v82_encode (void)
8002 if (inst
.cond
< COND_ALWAYS
)
8003 as_warn (_("ARMv8.2 scalar fp16 instruction cannot be conditional,"
8004 " the behaviour is UNPREDICTABLE"));
8005 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_fp16
),
8008 inst
.instruction
= (inst
.instruction
& 0xfffff0ff) | 0x900;
8009 mark_feature_used (&arm_ext_fp16
);
8012 /* If VAL can be encoded in the immediate field of an ARM instruction,
8013 return the encoded form. Otherwise, return FAIL. */
8016 encode_arm_immediate (unsigned int val
)
8023 for (i
= 2; i
< 32; i
+= 2)
8024 if ((a
= rotate_left (val
, i
)) <= 0xff)
8025 return a
| (i
<< 7); /* 12-bit pack: [shift-cnt,const]. */
8030 /* If VAL can be encoded in the immediate field of a Thumb32 instruction,
8031 return the encoded form. Otherwise, return FAIL. */
8033 encode_thumb32_immediate (unsigned int val
)
8040 for (i
= 1; i
<= 24; i
++)
8043 if ((val
& ~(0xff << i
)) == 0)
8044 return ((val
>> i
) & 0x7f) | ((32 - i
) << 7);
8048 if (val
== ((a
<< 16) | a
))
8050 if (val
== ((a
<< 24) | (a
<< 16) | (a
<< 8) | a
))
8054 if (val
== ((a
<< 16) | a
))
8055 return 0x200 | (a
>> 8);
8059 /* Encode a VFP SP or DP register number into inst.instruction. */
8062 encode_arm_vfp_reg (int reg
, enum vfp_reg_pos pos
)
8064 if ((pos
== VFP_REG_Dd
|| pos
== VFP_REG_Dn
|| pos
== VFP_REG_Dm
)
8067 if (ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_vfp_ext_d32
))
8070 ARM_MERGE_FEATURE_SETS (thumb_arch_used
, thumb_arch_used
,
8073 ARM_MERGE_FEATURE_SETS (arm_arch_used
, arm_arch_used
,
8078 first_error (_("D register out of range for selected VFP version"));
8086 inst
.instruction
|= ((reg
>> 1) << 12) | ((reg
& 1) << 22);
8090 inst
.instruction
|= ((reg
>> 1) << 16) | ((reg
& 1) << 7);
8094 inst
.instruction
|= ((reg
>> 1) << 0) | ((reg
& 1) << 5);
8098 inst
.instruction
|= ((reg
& 15) << 12) | ((reg
>> 4) << 22);
8102 inst
.instruction
|= ((reg
& 15) << 16) | ((reg
>> 4) << 7);
8106 inst
.instruction
|= (reg
& 15) | ((reg
>> 4) << 5);
8114 /* Encode a <shift> in an ARM-format instruction. The immediate,
8115 if any, is handled by md_apply_fix. */
8117 encode_arm_shift (int i
)
8119 /* register-shifted register. */
8120 if (inst
.operands
[i
].immisreg
)
8123 for (op_index
= 0; op_index
<= i
; ++op_index
)
8125 /* Check the operand only when it's presented. In pre-UAL syntax,
8126 if the destination register is the same as the first operand, two
8127 register form of the instruction can be used. */
8128 if (inst
.operands
[op_index
].present
&& inst
.operands
[op_index
].isreg
8129 && inst
.operands
[op_index
].reg
== REG_PC
)
8130 as_warn (UNPRED_REG ("r15"));
8133 if (inst
.operands
[i
].imm
== REG_PC
)
8134 as_warn (UNPRED_REG ("r15"));
8137 if (inst
.operands
[i
].shift_kind
== SHIFT_RRX
)
8138 inst
.instruction
|= SHIFT_ROR
<< 5;
8141 inst
.instruction
|= inst
.operands
[i
].shift_kind
<< 5;
8142 if (inst
.operands
[i
].immisreg
)
8144 inst
.instruction
|= SHIFT_BY_REG
;
8145 inst
.instruction
|= inst
.operands
[i
].imm
<< 8;
8148 inst
.relocs
[0].type
= BFD_RELOC_ARM_SHIFT_IMM
;
8153 encode_arm_shifter_operand (int i
)
8155 if (inst
.operands
[i
].isreg
)
8157 inst
.instruction
|= inst
.operands
[i
].reg
;
8158 encode_arm_shift (i
);
8162 inst
.instruction
|= INST_IMMEDIATE
;
8163 if (inst
.relocs
[0].type
!= BFD_RELOC_ARM_IMMEDIATE
)
8164 inst
.instruction
|= inst
.operands
[i
].imm
;
8168 /* Subroutine of encode_arm_addr_mode_2 and encode_arm_addr_mode_3. */
8170 encode_arm_addr_mode_common (int i
, bfd_boolean is_t
)
8173 Generate an error if the operand is not a register. */
8174 constraint (!inst
.operands
[i
].isreg
,
8175 _("Instruction does not support =N addresses"));
8177 inst
.instruction
|= inst
.operands
[i
].reg
<< 16;
8179 if (inst
.operands
[i
].preind
)
8183 inst
.error
= _("instruction does not accept preindexed addressing");
8186 inst
.instruction
|= PRE_INDEX
;
8187 if (inst
.operands
[i
].writeback
)
8188 inst
.instruction
|= WRITE_BACK
;
8191 else if (inst
.operands
[i
].postind
)
8193 gas_assert (inst
.operands
[i
].writeback
);
8195 inst
.instruction
|= WRITE_BACK
;
8197 else /* unindexed - only for coprocessor */
8199 inst
.error
= _("instruction does not accept unindexed addressing");
8203 if (((inst
.instruction
& WRITE_BACK
) || !(inst
.instruction
& PRE_INDEX
))
8204 && (((inst
.instruction
& 0x000f0000) >> 16)
8205 == ((inst
.instruction
& 0x0000f000) >> 12)))
8206 as_warn ((inst
.instruction
& LOAD_BIT
)
8207 ? _("destination register same as write-back base")
8208 : _("source register same as write-back base"));
8211 /* inst.operands[i] was set up by parse_address. Encode it into an
8212 ARM-format mode 2 load or store instruction. If is_t is true,
8213 reject forms that cannot be used with a T instruction (i.e. not
8216 encode_arm_addr_mode_2 (int i
, bfd_boolean is_t
)
8218 const bfd_boolean is_pc
= (inst
.operands
[i
].reg
== REG_PC
);
8220 encode_arm_addr_mode_common (i
, is_t
);
8222 if (inst
.operands
[i
].immisreg
)
8224 constraint ((inst
.operands
[i
].imm
== REG_PC
8225 || (is_pc
&& inst
.operands
[i
].writeback
)),
8227 inst
.instruction
|= INST_IMMEDIATE
; /* yes, this is backwards */
8228 inst
.instruction
|= inst
.operands
[i
].imm
;
8229 if (!inst
.operands
[i
].negative
)
8230 inst
.instruction
|= INDEX_UP
;
8231 if (inst
.operands
[i
].shifted
)
8233 if (inst
.operands
[i
].shift_kind
== SHIFT_RRX
)
8234 inst
.instruction
|= SHIFT_ROR
<< 5;
8237 inst
.instruction
|= inst
.operands
[i
].shift_kind
<< 5;
8238 inst
.relocs
[0].type
= BFD_RELOC_ARM_SHIFT_IMM
;
8242 else /* immediate offset in inst.relocs[0] */
8244 if (is_pc
&& !inst
.relocs
[0].pc_rel
)
8246 const bfd_boolean is_load
= ((inst
.instruction
& LOAD_BIT
) != 0);
8248 /* If is_t is TRUE, it's called from do_ldstt. ldrt/strt
8249 cannot use PC in addressing.
8250 PC cannot be used in writeback addressing, either. */
8251 constraint ((is_t
|| inst
.operands
[i
].writeback
),
8254 /* Use of PC in str is deprecated for ARMv7. */
8255 if (warn_on_deprecated
8257 && ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_v7
))
8258 as_tsktsk (_("use of PC in this instruction is deprecated"));
8261 if (inst
.relocs
[0].type
== BFD_RELOC_UNUSED
)
8263 /* Prefer + for zero encoded value. */
8264 if (!inst
.operands
[i
].negative
)
8265 inst
.instruction
|= INDEX_UP
;
8266 inst
.relocs
[0].type
= BFD_RELOC_ARM_OFFSET_IMM
;
8271 /* inst.operands[i] was set up by parse_address. Encode it into an
8272 ARM-format mode 3 load or store instruction. Reject forms that
8273 cannot be used with such instructions. If is_t is true, reject
8274 forms that cannot be used with a T instruction (i.e. not
8277 encode_arm_addr_mode_3 (int i
, bfd_boolean is_t
)
8279 if (inst
.operands
[i
].immisreg
&& inst
.operands
[i
].shifted
)
8281 inst
.error
= _("instruction does not accept scaled register index");
8285 encode_arm_addr_mode_common (i
, is_t
);
8287 if (inst
.operands
[i
].immisreg
)
8289 constraint ((inst
.operands
[i
].imm
== REG_PC
8290 || (is_t
&& inst
.operands
[i
].reg
== REG_PC
)),
8292 constraint (inst
.operands
[i
].reg
== REG_PC
&& inst
.operands
[i
].writeback
,
8294 inst
.instruction
|= inst
.operands
[i
].imm
;
8295 if (!inst
.operands
[i
].negative
)
8296 inst
.instruction
|= INDEX_UP
;
8298 else /* immediate offset in inst.relocs[0] */
8300 constraint ((inst
.operands
[i
].reg
== REG_PC
&& !inst
.relocs
[0].pc_rel
8301 && inst
.operands
[i
].writeback
),
8303 inst
.instruction
|= HWOFFSET_IMM
;
8304 if (inst
.relocs
[0].type
== BFD_RELOC_UNUSED
)
8306 /* Prefer + for zero encoded value. */
8307 if (!inst
.operands
[i
].negative
)
8308 inst
.instruction
|= INDEX_UP
;
8310 inst
.relocs
[0].type
= BFD_RELOC_ARM_OFFSET_IMM8
;
8315 /* Write immediate bits [7:0] to the following locations:
8317 |28/24|23 19|18 16|15 4|3 0|
8318 | a |x x x x x|b c d|x x x x x x x x x x x x|e f g h|
8320 This function is used by VMOV/VMVN/VORR/VBIC. */
8323 neon_write_immbits (unsigned immbits
)
8325 inst
.instruction
|= immbits
& 0xf;
8326 inst
.instruction
|= ((immbits
>> 4) & 0x7) << 16;
8327 inst
.instruction
|= ((immbits
>> 7) & 0x1) << (thumb_mode
? 28 : 24);
8330 /* Invert low-order SIZE bits of XHI:XLO. */
8333 neon_invert_size (unsigned *xlo
, unsigned *xhi
, int size
)
8335 unsigned immlo
= xlo
? *xlo
: 0;
8336 unsigned immhi
= xhi
? *xhi
: 0;
8341 immlo
= (~immlo
) & 0xff;
8345 immlo
= (~immlo
) & 0xffff;
8349 immhi
= (~immhi
) & 0xffffffff;
8353 immlo
= (~immlo
) & 0xffffffff;
8367 /* True if IMM has form 0bAAAAAAAABBBBBBBBCCCCCCCCDDDDDDDD for bits
8371 neon_bits_same_in_bytes (unsigned imm
)
8373 return ((imm
& 0x000000ff) == 0 || (imm
& 0x000000ff) == 0x000000ff)
8374 && ((imm
& 0x0000ff00) == 0 || (imm
& 0x0000ff00) == 0x0000ff00)
8375 && ((imm
& 0x00ff0000) == 0 || (imm
& 0x00ff0000) == 0x00ff0000)
8376 && ((imm
& 0xff000000) == 0 || (imm
& 0xff000000) == 0xff000000);
8379 /* For immediate of above form, return 0bABCD. */
8382 neon_squash_bits (unsigned imm
)
8384 return (imm
& 0x01) | ((imm
& 0x0100) >> 7) | ((imm
& 0x010000) >> 14)
8385 | ((imm
& 0x01000000) >> 21);
8388 /* Compress quarter-float representation to 0b...000 abcdefgh. */
8391 neon_qfloat_bits (unsigned imm
)
8393 return ((imm
>> 19) & 0x7f) | ((imm
>> 24) & 0x80);
8396 /* Returns CMODE. IMMBITS [7:0] is set to bits suitable for inserting into
8397 the instruction. *OP is passed as the initial value of the op field, and
8398 may be set to a different value depending on the constant (i.e.
8399 "MOV I64, 0bAAAAAAAABBBB..." which uses OP = 1 despite being MOV not
8400 MVN). If the immediate looks like a repeated pattern then also
8401 try smaller element sizes. */
8404 neon_cmode_for_move_imm (unsigned immlo
, unsigned immhi
, int float_p
,
8405 unsigned *immbits
, int *op
, int size
,
8406 enum neon_el_type type
)
8408 /* Only permit float immediates (including 0.0/-0.0) if the operand type is
8410 if (type
== NT_float
&& !float_p
)
8413 if (type
== NT_float
&& is_quarter_float (immlo
) && immhi
== 0)
8415 if (size
!= 32 || *op
== 1)
8417 *immbits
= neon_qfloat_bits (immlo
);
8423 if (neon_bits_same_in_bytes (immhi
)
8424 && neon_bits_same_in_bytes (immlo
))
8428 *immbits
= (neon_squash_bits (immhi
) << 4)
8429 | neon_squash_bits (immlo
);
8440 if (immlo
== (immlo
& 0x000000ff))
8445 else if (immlo
== (immlo
& 0x0000ff00))
8447 *immbits
= immlo
>> 8;
8450 else if (immlo
== (immlo
& 0x00ff0000))
8452 *immbits
= immlo
>> 16;
8455 else if (immlo
== (immlo
& 0xff000000))
8457 *immbits
= immlo
>> 24;
8460 else if (immlo
== ((immlo
& 0x0000ff00) | 0x000000ff))
8462 *immbits
= (immlo
>> 8) & 0xff;
8465 else if (immlo
== ((immlo
& 0x00ff0000) | 0x0000ffff))
8467 *immbits
= (immlo
>> 16) & 0xff;
8471 if ((immlo
& 0xffff) != (immlo
>> 16))
8478 if (immlo
== (immlo
& 0x000000ff))
8483 else if (immlo
== (immlo
& 0x0000ff00))
8485 *immbits
= immlo
>> 8;
8489 if ((immlo
& 0xff) != (immlo
>> 8))
8494 if (immlo
== (immlo
& 0x000000ff))
8496 /* Don't allow MVN with 8-bit immediate. */
8506 #if defined BFD_HOST_64_BIT
8507 /* Returns TRUE if double precision value V may be cast
8508 to single precision without loss of accuracy. */
8511 is_double_a_single (bfd_int64_t v
)
8513 int exp
= (int)((v
>> 52) & 0x7FF);
8514 bfd_int64_t mantissa
= (v
& (bfd_int64_t
)0xFFFFFFFFFFFFFULL
);
8516 return (exp
== 0 || exp
== 0x7FF
8517 || (exp
>= 1023 - 126 && exp
<= 1023 + 127))
8518 && (mantissa
& 0x1FFFFFFFl
) == 0;
8521 /* Returns a double precision value casted to single precision
8522 (ignoring the least significant bits in exponent and mantissa). */
8525 double_to_single (bfd_int64_t v
)
8527 int sign
= (int) ((v
>> 63) & 1l);
8528 int exp
= (int) ((v
>> 52) & 0x7FF);
8529 bfd_int64_t mantissa
= (v
& (bfd_int64_t
)0xFFFFFFFFFFFFFULL
);
8535 exp
= exp
- 1023 + 127;
8544 /* No denormalized numbers. */
8550 return (sign
<< 31) | (exp
<< 23) | mantissa
;
8552 #endif /* BFD_HOST_64_BIT */
8561 static void do_vfp_nsyn_opcode (const char *);
8563 /* inst.relocs[0].exp describes an "=expr" load pseudo-operation.
8564 Determine whether it can be performed with a move instruction; if
8565 it can, convert inst.instruction to that move instruction and
8566 return TRUE; if it can't, convert inst.instruction to a literal-pool
8567 load and return FALSE. If this is not a valid thing to do in the
8568 current context, set inst.error and return TRUE.
8570 inst.operands[i] describes the destination register. */
8573 move_or_literal_pool (int i
, enum lit_type t
, bfd_boolean mode_3
)
8576 bfd_boolean thumb_p
= (t
== CONST_THUMB
);
8577 bfd_boolean arm_p
= (t
== CONST_ARM
);
8580 tbit
= (inst
.instruction
> 0xffff) ? THUMB2_LOAD_BIT
: THUMB_LOAD_BIT
;
8584 if ((inst
.instruction
& tbit
) == 0)
8586 inst
.error
= _("invalid pseudo operation");
8590 if (inst
.relocs
[0].exp
.X_op
!= O_constant
8591 && inst
.relocs
[0].exp
.X_op
!= O_symbol
8592 && inst
.relocs
[0].exp
.X_op
!= O_big
)
8594 inst
.error
= _("constant expression expected");
8598 if (inst
.relocs
[0].exp
.X_op
== O_constant
8599 || inst
.relocs
[0].exp
.X_op
== O_big
)
8601 #if defined BFD_HOST_64_BIT
8606 if (inst
.relocs
[0].exp
.X_op
== O_big
)
8608 LITTLENUM_TYPE w
[X_PRECISION
];
8611 if (inst
.relocs
[0].exp
.X_add_number
== -1)
8613 gen_to_words (w
, X_PRECISION
, E_PRECISION
);
8615 /* FIXME: Should we check words w[2..5] ? */
8620 #if defined BFD_HOST_64_BIT
8622 ((((((((bfd_int64_t
) l
[3] & LITTLENUM_MASK
)
8623 << LITTLENUM_NUMBER_OF_BITS
)
8624 | ((bfd_int64_t
) l
[2] & LITTLENUM_MASK
))
8625 << LITTLENUM_NUMBER_OF_BITS
)
8626 | ((bfd_int64_t
) l
[1] & LITTLENUM_MASK
))
8627 << LITTLENUM_NUMBER_OF_BITS
)
8628 | ((bfd_int64_t
) l
[0] & LITTLENUM_MASK
));
8630 v
= ((l
[1] & LITTLENUM_MASK
) << LITTLENUM_NUMBER_OF_BITS
)
8631 | (l
[0] & LITTLENUM_MASK
);
8635 v
= inst
.relocs
[0].exp
.X_add_number
;
8637 if (!inst
.operands
[i
].issingle
)
8641 /* LDR should not use lead in a flag-setting instruction being
8642 chosen so we do not check whether movs can be used. */
8644 if ((ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v6t2
)
8645 || ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v6t2_v8m
))
8646 && inst
.operands
[i
].reg
!= 13
8647 && inst
.operands
[i
].reg
!= 15)
8649 /* Check if on thumb2 it can be done with a mov.w, mvn or
8650 movw instruction. */
8651 unsigned int newimm
;
8652 bfd_boolean isNegated
;
8654 newimm
= encode_thumb32_immediate (v
);
8655 if (newimm
!= (unsigned int) FAIL
)
8659 newimm
= encode_thumb32_immediate (~v
);
8660 if (newimm
!= (unsigned int) FAIL
)
8664 /* The number can be loaded with a mov.w or mvn
8666 if (newimm
!= (unsigned int) FAIL
8667 && ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v6t2
))
8669 inst
.instruction
= (0xf04f0000 /* MOV.W. */
8670 | (inst
.operands
[i
].reg
<< 8));
8671 /* Change to MOVN. */
8672 inst
.instruction
|= (isNegated
? 0x200000 : 0);
8673 inst
.instruction
|= (newimm
& 0x800) << 15;
8674 inst
.instruction
|= (newimm
& 0x700) << 4;
8675 inst
.instruction
|= (newimm
& 0x0ff);
8678 /* The number can be loaded with a movw instruction. */
8679 else if ((v
& ~0xFFFF) == 0
8680 && ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v6t2_v8m
))
8682 int imm
= v
& 0xFFFF;
8684 inst
.instruction
= 0xf2400000; /* MOVW. */
8685 inst
.instruction
|= (inst
.operands
[i
].reg
<< 8);
8686 inst
.instruction
|= (imm
& 0xf000) << 4;
8687 inst
.instruction
|= (imm
& 0x0800) << 15;
8688 inst
.instruction
|= (imm
& 0x0700) << 4;
8689 inst
.instruction
|= (imm
& 0x00ff);
8696 int value
= encode_arm_immediate (v
);
8700 /* This can be done with a mov instruction. */
8701 inst
.instruction
&= LITERAL_MASK
;
8702 inst
.instruction
|= INST_IMMEDIATE
| (OPCODE_MOV
<< DATA_OP_SHIFT
);
8703 inst
.instruction
|= value
& 0xfff;
8707 value
= encode_arm_immediate (~ v
);
8710 /* This can be done with a mvn instruction. */
8711 inst
.instruction
&= LITERAL_MASK
;
8712 inst
.instruction
|= INST_IMMEDIATE
| (OPCODE_MVN
<< DATA_OP_SHIFT
);
8713 inst
.instruction
|= value
& 0xfff;
8717 else if (t
== CONST_VEC
&& ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_neon_ext_v1
))
8720 unsigned immbits
= 0;
8721 unsigned immlo
= inst
.operands
[1].imm
;
8722 unsigned immhi
= inst
.operands
[1].regisimm
8723 ? inst
.operands
[1].reg
8724 : inst
.relocs
[0].exp
.X_unsigned
8726 : ((bfd_int64_t
)((int) immlo
)) >> 32;
8727 int cmode
= neon_cmode_for_move_imm (immlo
, immhi
, FALSE
, &immbits
,
8728 &op
, 64, NT_invtype
);
8732 neon_invert_size (&immlo
, &immhi
, 64);
8734 cmode
= neon_cmode_for_move_imm (immlo
, immhi
, FALSE
, &immbits
,
8735 &op
, 64, NT_invtype
);
8740 inst
.instruction
= (inst
.instruction
& VLDR_VMOV_SAME
)
8746 /* Fill other bits in vmov encoding for both thumb and arm. */
8748 inst
.instruction
|= (0x7U
<< 29) | (0xF << 24);
8750 inst
.instruction
|= (0xFU
<< 28) | (0x1 << 25);
8751 neon_write_immbits (immbits
);
8759 /* Check if vldr Rx, =constant could be optimized to vmov Rx, #constant. */
8760 if (inst
.operands
[i
].issingle
8761 && is_quarter_float (inst
.operands
[1].imm
)
8762 && ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_vfp_ext_v3xd
))
8764 inst
.operands
[1].imm
=
8765 neon_qfloat_bits (v
);
8766 do_vfp_nsyn_opcode ("fconsts");
8770 /* If our host does not support a 64-bit type then we cannot perform
8771 the following optimization. This mean that there will be a
8772 discrepancy between the output produced by an assembler built for
8773 a 32-bit-only host and the output produced from a 64-bit host, but
8774 this cannot be helped. */
8775 #if defined BFD_HOST_64_BIT
8776 else if (!inst
.operands
[1].issingle
8777 && ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_vfp_ext_v3
))
8779 if (is_double_a_single (v
)
8780 && is_quarter_float (double_to_single (v
)))
8782 inst
.operands
[1].imm
=
8783 neon_qfloat_bits (double_to_single (v
));
8784 do_vfp_nsyn_opcode ("fconstd");
8792 if (add_to_lit_pool ((!inst
.operands
[i
].isvec
8793 || inst
.operands
[i
].issingle
) ? 4 : 8) == FAIL
)
8796 inst
.operands
[1].reg
= REG_PC
;
8797 inst
.operands
[1].isreg
= 1;
8798 inst
.operands
[1].preind
= 1;
8799 inst
.relocs
[0].pc_rel
= 1;
8800 inst
.relocs
[0].type
= (thumb_p
8801 ? BFD_RELOC_ARM_THUMB_OFFSET
8803 ? BFD_RELOC_ARM_HWLITERAL
8804 : BFD_RELOC_ARM_LITERAL
));
8808 /* inst.operands[i] was set up by parse_address. Encode it into an
8809 ARM-format instruction. Reject all forms which cannot be encoded
8810 into a coprocessor load/store instruction. If wb_ok is false,
8811 reject use of writeback; if unind_ok is false, reject use of
8812 unindexed addressing. If reloc_override is not 0, use it instead
8813 of BFD_ARM_CP_OFF_IMM, unless the initial relocation is a group one
8814 (in which case it is preserved). */
8817 encode_arm_cp_address (int i
, int wb_ok
, int unind_ok
, int reloc_override
)
8819 if (!inst
.operands
[i
].isreg
)
8822 if (! inst
.operands
[0].isvec
)
8824 inst
.error
= _("invalid co-processor operand");
8827 if (move_or_literal_pool (0, CONST_VEC
, /*mode_3=*/FALSE
))
8831 inst
.instruction
|= inst
.operands
[i
].reg
<< 16;
8833 gas_assert (!(inst
.operands
[i
].preind
&& inst
.operands
[i
].postind
));
8835 if (!inst
.operands
[i
].preind
&& !inst
.operands
[i
].postind
) /* unindexed */
8837 gas_assert (!inst
.operands
[i
].writeback
);
8840 inst
.error
= _("instruction does not support unindexed addressing");
8843 inst
.instruction
|= inst
.operands
[i
].imm
;
8844 inst
.instruction
|= INDEX_UP
;
8848 if (inst
.operands
[i
].preind
)
8849 inst
.instruction
|= PRE_INDEX
;
8851 if (inst
.operands
[i
].writeback
)
8853 if (inst
.operands
[i
].reg
== REG_PC
)
8855 inst
.error
= _("pc may not be used with write-back");
8860 inst
.error
= _("instruction does not support writeback");
8863 inst
.instruction
|= WRITE_BACK
;
8867 inst
.relocs
[0].type
= (bfd_reloc_code_real_type
) reloc_override
;
8868 else if ((inst
.relocs
[0].type
< BFD_RELOC_ARM_ALU_PC_G0_NC
8869 || inst
.relocs
[0].type
> BFD_RELOC_ARM_LDC_SB_G2
)
8870 && inst
.relocs
[0].type
!= BFD_RELOC_ARM_LDR_PC_G0
)
8873 inst
.relocs
[0].type
= BFD_RELOC_ARM_T32_CP_OFF_IMM
;
8875 inst
.relocs
[0].type
= BFD_RELOC_ARM_CP_OFF_IMM
;
8878 /* Prefer + for zero encoded value. */
8879 if (!inst
.operands
[i
].negative
)
8880 inst
.instruction
|= INDEX_UP
;
8885 /* Functions for instruction encoding, sorted by sub-architecture.
8886 First some generics; their names are taken from the conventional
8887 bit positions for register arguments in ARM format instructions. */
8897 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
8903 inst
.instruction
|= inst
.operands
[0].reg
<< 16;
8909 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
8910 inst
.instruction
|= inst
.operands
[1].reg
;
8916 inst
.instruction
|= inst
.operands
[0].reg
;
8917 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
8923 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
8924 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
8930 inst
.instruction
|= inst
.operands
[0].reg
<< 16;
8931 inst
.instruction
|= inst
.operands
[1].reg
<< 12;
8937 inst
.instruction
|= inst
.operands
[0].reg
<< 8;
8938 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
8942 check_obsolete (const arm_feature_set
*feature
, const char *msg
)
8944 if (ARM_CPU_IS_ANY (cpu_variant
))
8946 as_tsktsk ("%s", msg
);
8949 else if (ARM_CPU_HAS_FEATURE (cpu_variant
, *feature
))
8961 unsigned Rn
= inst
.operands
[2].reg
;
8962 /* Enforce restrictions on SWP instruction. */
8963 if ((inst
.instruction
& 0x0fbfffff) == 0x01000090)
8965 constraint (Rn
== inst
.operands
[0].reg
|| Rn
== inst
.operands
[1].reg
,
8966 _("Rn must not overlap other operands"));
8968 /* SWP{b} is obsolete for ARMv8-A, and deprecated for ARMv6* and ARMv7.
8970 if (!check_obsolete (&arm_ext_v8
,
8971 _("swp{b} use is obsoleted for ARMv8 and later"))
8972 && warn_on_deprecated
8973 && ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v6
))
8974 as_tsktsk (_("swp{b} use is deprecated for ARMv6 and ARMv7"));
8977 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
8978 inst
.instruction
|= inst
.operands
[1].reg
;
8979 inst
.instruction
|= Rn
<< 16;
8985 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
8986 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
8987 inst
.instruction
|= inst
.operands
[2].reg
;
8993 constraint ((inst
.operands
[2].reg
== REG_PC
), BAD_PC
);
8994 constraint (((inst
.relocs
[0].exp
.X_op
!= O_constant
8995 && inst
.relocs
[0].exp
.X_op
!= O_illegal
)
8996 || inst
.relocs
[0].exp
.X_add_number
!= 0),
8998 inst
.instruction
|= inst
.operands
[0].reg
;
8999 inst
.instruction
|= inst
.operands
[1].reg
<< 12;
9000 inst
.instruction
|= inst
.operands
[2].reg
<< 16;
9006 inst
.instruction
|= inst
.operands
[0].imm
;
9012 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
9013 encode_arm_cp_address (1, TRUE
, TRUE
, 0);
9016 /* ARM instructions, in alphabetical order by function name (except
9017 that wrapper functions appear immediately after the function they
9020 /* This is a pseudo-op of the form "adr rd, label" to be converted
9021 into a relative address of the form "add rd, pc, #label-.-8". */
9026 inst
.instruction
|= (inst
.operands
[0].reg
<< 12); /* Rd */
9028 /* Frag hacking will turn this into a sub instruction if the offset turns
9029 out to be negative. */
9030 inst
.relocs
[0].type
= BFD_RELOC_ARM_IMMEDIATE
;
9031 inst
.relocs
[0].pc_rel
= 1;
9032 inst
.relocs
[0].exp
.X_add_number
-= 8;
9034 if (support_interwork
9035 && inst
.relocs
[0].exp
.X_op
== O_symbol
9036 && inst
.relocs
[0].exp
.X_add_symbol
!= NULL
9037 && S_IS_DEFINED (inst
.relocs
[0].exp
.X_add_symbol
)
9038 && THUMB_IS_FUNC (inst
.relocs
[0].exp
.X_add_symbol
))
9039 inst
.relocs
[0].exp
.X_add_number
|= 1;
9042 /* This is a pseudo-op of the form "adrl rd, label" to be converted
9043 into a relative address of the form:
9044 add rd, pc, #low(label-.-8)"
9045 add rd, rd, #high(label-.-8)" */
9050 inst
.instruction
|= (inst
.operands
[0].reg
<< 12); /* Rd */
9052 /* Frag hacking will turn this into a sub instruction if the offset turns
9053 out to be negative. */
9054 inst
.relocs
[0].type
= BFD_RELOC_ARM_ADRL_IMMEDIATE
;
9055 inst
.relocs
[0].pc_rel
= 1;
9056 inst
.size
= INSN_SIZE
* 2;
9057 inst
.relocs
[0].exp
.X_add_number
-= 8;
9059 if (support_interwork
9060 && inst
.relocs
[0].exp
.X_op
== O_symbol
9061 && inst
.relocs
[0].exp
.X_add_symbol
!= NULL
9062 && S_IS_DEFINED (inst
.relocs
[0].exp
.X_add_symbol
)
9063 && THUMB_IS_FUNC (inst
.relocs
[0].exp
.X_add_symbol
))
9064 inst
.relocs
[0].exp
.X_add_number
|= 1;
9070 constraint (inst
.relocs
[0].type
>= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
9071 && inst
.relocs
[0].type
<= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC
,
9073 if (!inst
.operands
[1].present
)
9074 inst
.operands
[1].reg
= inst
.operands
[0].reg
;
9075 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
9076 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
9077 encode_arm_shifter_operand (2);
9083 if (inst
.operands
[0].present
)
9084 inst
.instruction
|= inst
.operands
[0].imm
;
9086 inst
.instruction
|= 0xf;
9092 unsigned int msb
= inst
.operands
[1].imm
+ inst
.operands
[2].imm
;
9093 constraint (msb
> 32, _("bit-field extends past end of register"));
9094 /* The instruction encoding stores the LSB and MSB,
9095 not the LSB and width. */
9096 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
9097 inst
.instruction
|= inst
.operands
[1].imm
<< 7;
9098 inst
.instruction
|= (msb
- 1) << 16;
9106 /* #0 in second position is alternative syntax for bfc, which is
9107 the same instruction but with REG_PC in the Rm field. */
9108 if (!inst
.operands
[1].isreg
)
9109 inst
.operands
[1].reg
= REG_PC
;
9111 msb
= inst
.operands
[2].imm
+ inst
.operands
[3].imm
;
9112 constraint (msb
> 32, _("bit-field extends past end of register"));
9113 /* The instruction encoding stores the LSB and MSB,
9114 not the LSB and width. */
9115 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
9116 inst
.instruction
|= inst
.operands
[1].reg
;
9117 inst
.instruction
|= inst
.operands
[2].imm
<< 7;
9118 inst
.instruction
|= (msb
- 1) << 16;
9124 constraint (inst
.operands
[2].imm
+ inst
.operands
[3].imm
> 32,
9125 _("bit-field extends past end of register"));
9126 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
9127 inst
.instruction
|= inst
.operands
[1].reg
;
9128 inst
.instruction
|= inst
.operands
[2].imm
<< 7;
9129 inst
.instruction
|= (inst
.operands
[3].imm
- 1) << 16;
9132 /* ARM V5 breakpoint instruction (argument parse)
9133 BKPT <16 bit unsigned immediate>
9134 Instruction is not conditional.
9135 The bit pattern given in insns[] has the COND_ALWAYS condition,
9136 and it is an error if the caller tried to override that. */
9141 /* Top 12 of 16 bits to bits 19:8. */
9142 inst
.instruction
|= (inst
.operands
[0].imm
& 0xfff0) << 4;
9144 /* Bottom 4 of 16 bits to bits 3:0. */
9145 inst
.instruction
|= inst
.operands
[0].imm
& 0xf;
9149 encode_branch (int default_reloc
)
9151 if (inst
.operands
[0].hasreloc
)
9153 constraint (inst
.operands
[0].imm
!= BFD_RELOC_ARM_PLT32
9154 && inst
.operands
[0].imm
!= BFD_RELOC_ARM_TLS_CALL
,
9155 _("the only valid suffixes here are '(plt)' and '(tlscall)'"));
9156 inst
.relocs
[0].type
= inst
.operands
[0].imm
== BFD_RELOC_ARM_PLT32
9157 ? BFD_RELOC_ARM_PLT32
9158 : thumb_mode
? BFD_RELOC_ARM_THM_TLS_CALL
: BFD_RELOC_ARM_TLS_CALL
;
9161 inst
.relocs
[0].type
= (bfd_reloc_code_real_type
) default_reloc
;
9162 inst
.relocs
[0].pc_rel
= 1;
9169 if (EF_ARM_EABI_VERSION (meabi_flags
) >= EF_ARM_EABI_VER4
)
9170 encode_branch (BFD_RELOC_ARM_PCREL_JUMP
);
9173 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH
);
9180 if (EF_ARM_EABI_VERSION (meabi_flags
) >= EF_ARM_EABI_VER4
)
9182 if (inst
.cond
== COND_ALWAYS
)
9183 encode_branch (BFD_RELOC_ARM_PCREL_CALL
);
9185 encode_branch (BFD_RELOC_ARM_PCREL_JUMP
);
9189 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH
);
9192 /* ARM V5 branch-link-exchange instruction (argument parse)
9193 BLX <target_addr> ie BLX(1)
9194 BLX{<condition>} <Rm> ie BLX(2)
9195 Unfortunately, there are two different opcodes for this mnemonic.
9196 So, the insns[].value is not used, and the code here zaps values
9197 into inst.instruction.
9198 Also, the <target_addr> can be 25 bits, hence has its own reloc. */
9203 if (inst
.operands
[0].isreg
)
9205 /* Arg is a register; the opcode provided by insns[] is correct.
9206 It is not illegal to do "blx pc", just useless. */
9207 if (inst
.operands
[0].reg
== REG_PC
)
9208 as_tsktsk (_("use of r15 in blx in ARM mode is not really useful"));
9210 inst
.instruction
|= inst
.operands
[0].reg
;
9214 /* Arg is an address; this instruction cannot be executed
9215 conditionally, and the opcode must be adjusted.
9216 We retain the BFD_RELOC_ARM_PCREL_BLX till the very end
9217 where we generate out a BFD_RELOC_ARM_PCREL_CALL instead. */
9218 constraint (inst
.cond
!= COND_ALWAYS
, BAD_COND
);
9219 inst
.instruction
= 0xfa000000;
9220 encode_branch (BFD_RELOC_ARM_PCREL_BLX
);
9227 bfd_boolean want_reloc
;
9229 if (inst
.operands
[0].reg
== REG_PC
)
9230 as_tsktsk (_("use of r15 in bx in ARM mode is not really useful"));
9232 inst
.instruction
|= inst
.operands
[0].reg
;
9233 /* Output R_ARM_V4BX relocations if is an EABI object that looks like
9234 it is for ARMv4t or earlier. */
9235 want_reloc
= !ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_v5
);
9236 if (!ARM_FEATURE_ZERO (selected_object_arch
)
9237 && !ARM_CPU_HAS_FEATURE (selected_object_arch
, arm_ext_v5
))
9241 if (EF_ARM_EABI_VERSION (meabi_flags
) < EF_ARM_EABI_VER4
)
9246 inst
.relocs
[0].type
= BFD_RELOC_ARM_V4BX
;
9250 /* ARM v5TEJ. Jump to Jazelle code. */
9255 if (inst
.operands
[0].reg
== REG_PC
)
9256 as_tsktsk (_("use of r15 in bxj is not really useful"));
9258 inst
.instruction
|= inst
.operands
[0].reg
;
9261 /* Co-processor data operation:
9262 CDP{cond} <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>}
9263 CDP2 <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>} */
9267 inst
.instruction
|= inst
.operands
[0].reg
<< 8;
9268 inst
.instruction
|= inst
.operands
[1].imm
<< 20;
9269 inst
.instruction
|= inst
.operands
[2].reg
<< 12;
9270 inst
.instruction
|= inst
.operands
[3].reg
<< 16;
9271 inst
.instruction
|= inst
.operands
[4].reg
;
9272 inst
.instruction
|= inst
.operands
[5].imm
<< 5;
9278 inst
.instruction
|= inst
.operands
[0].reg
<< 16;
9279 encode_arm_shifter_operand (1);
9282 /* Transfer between coprocessor and ARM registers.
9283 MRC{cond} <coproc>, <opcode_1>, <Rd>, <CRn>, <CRm>{, <opcode_2>}
9288 No special properties. */
9290 struct deprecated_coproc_regs_s
9297 arm_feature_set deprecated
;
9298 arm_feature_set obsoleted
;
9299 const char *dep_msg
;
9300 const char *obs_msg
;
9303 #define DEPR_ACCESS_V8 \
9304 N_("This coprocessor register access is deprecated in ARMv8")
9306 /* Table of all deprecated coprocessor registers. */
9307 static struct deprecated_coproc_regs_s deprecated_coproc_regs
[] =
9309 {15, 0, 7, 10, 5, /* CP15DMB. */
9310 ARM_FEATURE_CORE_LOW (ARM_EXT_V8
), ARM_ARCH_NONE
,
9311 DEPR_ACCESS_V8
, NULL
},
9312 {15, 0, 7, 10, 4, /* CP15DSB. */
9313 ARM_FEATURE_CORE_LOW (ARM_EXT_V8
), ARM_ARCH_NONE
,
9314 DEPR_ACCESS_V8
, NULL
},
9315 {15, 0, 7, 5, 4, /* CP15ISB. */
9316 ARM_FEATURE_CORE_LOW (ARM_EXT_V8
), ARM_ARCH_NONE
,
9317 DEPR_ACCESS_V8
, NULL
},
9318 {14, 6, 1, 0, 0, /* TEEHBR. */
9319 ARM_FEATURE_CORE_LOW (ARM_EXT_V8
), ARM_ARCH_NONE
,
9320 DEPR_ACCESS_V8
, NULL
},
9321 {14, 6, 0, 0, 0, /* TEECR. */
9322 ARM_FEATURE_CORE_LOW (ARM_EXT_V8
), ARM_ARCH_NONE
,
9323 DEPR_ACCESS_V8
, NULL
},
9326 #undef DEPR_ACCESS_V8
9328 static const size_t deprecated_coproc_reg_count
=
9329 sizeof (deprecated_coproc_regs
) / sizeof (deprecated_coproc_regs
[0]);
9337 Rd
= inst
.operands
[2].reg
;
9340 if (inst
.instruction
== 0xee000010
9341 || inst
.instruction
== 0xfe000010)
9343 reject_bad_reg (Rd
);
9344 else if (!ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v8
))
9346 constraint (Rd
== REG_SP
, BAD_SP
);
9351 if (inst
.instruction
== 0xe000010)
9352 constraint (Rd
== REG_PC
, BAD_PC
);
9355 for (i
= 0; i
< deprecated_coproc_reg_count
; ++i
)
9357 const struct deprecated_coproc_regs_s
*r
=
9358 deprecated_coproc_regs
+ i
;
9360 if (inst
.operands
[0].reg
== r
->cp
9361 && inst
.operands
[1].imm
== r
->opc1
9362 && inst
.operands
[3].reg
== r
->crn
9363 && inst
.operands
[4].reg
== r
->crm
9364 && inst
.operands
[5].imm
== r
->opc2
)
9366 if (! ARM_CPU_IS_ANY (cpu_variant
)
9367 && warn_on_deprecated
9368 && ARM_CPU_HAS_FEATURE (cpu_variant
, r
->deprecated
))
9369 as_tsktsk ("%s", r
->dep_msg
);
9373 inst
.instruction
|= inst
.operands
[0].reg
<< 8;
9374 inst
.instruction
|= inst
.operands
[1].imm
<< 21;
9375 inst
.instruction
|= Rd
<< 12;
9376 inst
.instruction
|= inst
.operands
[3].reg
<< 16;
9377 inst
.instruction
|= inst
.operands
[4].reg
;
9378 inst
.instruction
|= inst
.operands
[5].imm
<< 5;
9381 /* Transfer between coprocessor register and pair of ARM registers.
9382 MCRR{cond} <coproc>, <opcode>, <Rd>, <Rn>, <CRm>.
9387 Two XScale instructions are special cases of these:
9389 MAR{cond} acc0, <RdLo>, <RdHi> == MCRR{cond} p0, #0, <RdLo>, <RdHi>, c0
9390 MRA{cond} acc0, <RdLo>, <RdHi> == MRRC{cond} p0, #0, <RdLo>, <RdHi>, c0
9392 Result unpredictable if Rd or Rn is R15. */
9399 Rd
= inst
.operands
[2].reg
;
9400 Rn
= inst
.operands
[3].reg
;
9404 reject_bad_reg (Rd
);
9405 reject_bad_reg (Rn
);
9409 constraint (Rd
== REG_PC
, BAD_PC
);
9410 constraint (Rn
== REG_PC
, BAD_PC
);
9413 /* Only check the MRRC{2} variants. */
9414 if ((inst
.instruction
& 0x0FF00000) == 0x0C500000)
9416 /* If Rd == Rn, error that the operation is
9417 unpredictable (example MRRC p3,#1,r1,r1,c4). */
9418 constraint (Rd
== Rn
, BAD_OVERLAP
);
9421 inst
.instruction
|= inst
.operands
[0].reg
<< 8;
9422 inst
.instruction
|= inst
.operands
[1].imm
<< 4;
9423 inst
.instruction
|= Rd
<< 12;
9424 inst
.instruction
|= Rn
<< 16;
9425 inst
.instruction
|= inst
.operands
[4].reg
;
9431 inst
.instruction
|= inst
.operands
[0].imm
<< 6;
9432 if (inst
.operands
[1].present
)
9434 inst
.instruction
|= CPSI_MMOD
;
9435 inst
.instruction
|= inst
.operands
[1].imm
;
9442 inst
.instruction
|= inst
.operands
[0].imm
;
9448 unsigned Rd
, Rn
, Rm
;
9450 Rd
= inst
.operands
[0].reg
;
9451 Rn
= (inst
.operands
[1].present
9452 ? inst
.operands
[1].reg
: Rd
);
9453 Rm
= inst
.operands
[2].reg
;
9455 constraint ((Rd
== REG_PC
), BAD_PC
);
9456 constraint ((Rn
== REG_PC
), BAD_PC
);
9457 constraint ((Rm
== REG_PC
), BAD_PC
);
9459 inst
.instruction
|= Rd
<< 16;
9460 inst
.instruction
|= Rn
<< 0;
9461 inst
.instruction
|= Rm
<< 8;
9467 /* There is no IT instruction in ARM mode. We
9468 process it to do the validation as if in
9469 thumb mode, just in case the code gets
9470 assembled for thumb using the unified syntax. */
9475 set_pred_insn_type (IT_INSN
);
9476 now_pred
.mask
= (inst
.instruction
& 0xf) | 0x10;
9477 now_pred
.cc
= inst
.operands
[0].imm
;
9481 /* If there is only one register in the register list,
9482 then return its register number. Otherwise return -1. */
9484 only_one_reg_in_list (int range
)
9486 int i
= ffs (range
) - 1;
9487 return (i
> 15 || range
!= (1 << i
)) ? -1 : i
;
9491 encode_ldmstm(int from_push_pop_mnem
)
9493 int base_reg
= inst
.operands
[0].reg
;
9494 int range
= inst
.operands
[1].imm
;
9497 inst
.instruction
|= base_reg
<< 16;
9498 inst
.instruction
|= range
;
9500 if (inst
.operands
[1].writeback
)
9501 inst
.instruction
|= LDM_TYPE_2_OR_3
;
9503 if (inst
.operands
[0].writeback
)
9505 inst
.instruction
|= WRITE_BACK
;
9506 /* Check for unpredictable uses of writeback. */
9507 if (inst
.instruction
& LOAD_BIT
)
9509 /* Not allowed in LDM type 2. */
9510 if ((inst
.instruction
& LDM_TYPE_2_OR_3
)
9511 && ((range
& (1 << REG_PC
)) == 0))
9512 as_warn (_("writeback of base register is UNPREDICTABLE"));
9513 /* Only allowed if base reg not in list for other types. */
9514 else if (range
& (1 << base_reg
))
9515 as_warn (_("writeback of base register when in register list is UNPREDICTABLE"));
9519 /* Not allowed for type 2. */
9520 if (inst
.instruction
& LDM_TYPE_2_OR_3
)
9521 as_warn (_("writeback of base register is UNPREDICTABLE"));
9522 /* Only allowed if base reg not in list, or first in list. */
9523 else if ((range
& (1 << base_reg
))
9524 && (range
& ((1 << base_reg
) - 1)))
9525 as_warn (_("if writeback register is in list, it must be the lowest reg in the list"));
9529 /* If PUSH/POP has only one register, then use the A2 encoding. */
9530 one_reg
= only_one_reg_in_list (range
);
9531 if (from_push_pop_mnem
&& one_reg
>= 0)
9533 int is_push
= (inst
.instruction
& A_PUSH_POP_OP_MASK
) == A1_OPCODE_PUSH
;
9535 if (is_push
&& one_reg
== 13 /* SP */)
9536 /* PR 22483: The A2 encoding cannot be used when
9537 pushing the stack pointer as this is UNPREDICTABLE. */
9540 inst
.instruction
&= A_COND_MASK
;
9541 inst
.instruction
|= is_push
? A2_OPCODE_PUSH
: A2_OPCODE_POP
;
9542 inst
.instruction
|= one_reg
<< 12;
9549 encode_ldmstm (/*from_push_pop_mnem=*/FALSE
);
9552 /* ARMv5TE load-consecutive (argument parse)
9561 constraint (inst
.operands
[0].reg
% 2 != 0,
9562 _("first transfer register must be even"));
9563 constraint (inst
.operands
[1].present
9564 && inst
.operands
[1].reg
!= inst
.operands
[0].reg
+ 1,
9565 _("can only transfer two consecutive registers"));
9566 constraint (inst
.operands
[0].reg
== REG_LR
, _("r14 not allowed here"));
9567 constraint (!inst
.operands
[2].isreg
, _("'[' expected"));
9569 if (!inst
.operands
[1].present
)
9570 inst
.operands
[1].reg
= inst
.operands
[0].reg
+ 1;
9572 /* encode_arm_addr_mode_3 will diagnose overlap between the base
9573 register and the first register written; we have to diagnose
9574 overlap between the base and the second register written here. */
9576 if (inst
.operands
[2].reg
== inst
.operands
[1].reg
9577 && (inst
.operands
[2].writeback
|| inst
.operands
[2].postind
))
9578 as_warn (_("base register written back, and overlaps "
9579 "second transfer register"));
9581 if (!(inst
.instruction
& V4_STR_BIT
))
9583 /* For an index-register load, the index register must not overlap the
9584 destination (even if not write-back). */
9585 if (inst
.operands
[2].immisreg
9586 && ((unsigned) inst
.operands
[2].imm
== inst
.operands
[0].reg
9587 || (unsigned) inst
.operands
[2].imm
== inst
.operands
[1].reg
))
9588 as_warn (_("index register overlaps transfer register"));
9590 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
9591 encode_arm_addr_mode_3 (2, /*is_t=*/FALSE
);
9597 constraint (!inst
.operands
[1].isreg
|| !inst
.operands
[1].preind
9598 || inst
.operands
[1].postind
|| inst
.operands
[1].writeback
9599 || inst
.operands
[1].immisreg
|| inst
.operands
[1].shifted
9600 || inst
.operands
[1].negative
9601 /* This can arise if the programmer has written
9603 or if they have mistakenly used a register name as the last
9606 It is very difficult to distinguish between these two cases
9607 because "rX" might actually be a label. ie the register
9608 name has been occluded by a symbol of the same name. So we
9609 just generate a general 'bad addressing mode' type error
9610 message and leave it up to the programmer to discover the
9611 true cause and fix their mistake. */
9612 || (inst
.operands
[1].reg
== REG_PC
),
9615 constraint (inst
.relocs
[0].exp
.X_op
!= O_constant
9616 || inst
.relocs
[0].exp
.X_add_number
!= 0,
9617 _("offset must be zero in ARM encoding"));
9619 constraint ((inst
.operands
[1].reg
== REG_PC
), BAD_PC
);
9621 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
9622 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
9623 inst
.relocs
[0].type
= BFD_RELOC_UNUSED
;
9629 constraint (inst
.operands
[0].reg
% 2 != 0,
9630 _("even register required"));
9631 constraint (inst
.operands
[1].present
9632 && inst
.operands
[1].reg
!= inst
.operands
[0].reg
+ 1,
9633 _("can only load two consecutive registers"));
9634 /* If op 1 were present and equal to PC, this function wouldn't
9635 have been called in the first place. */
9636 constraint (inst
.operands
[0].reg
== REG_LR
, _("r14 not allowed here"));
9638 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
9639 inst
.instruction
|= inst
.operands
[2].reg
<< 16;
9642 /* In both ARM and thumb state 'ldr pc, #imm' with an immediate
9643 which is not a multiple of four is UNPREDICTABLE. */
9645 check_ldr_r15_aligned (void)
9647 constraint (!(inst
.operands
[1].immisreg
)
9648 && (inst
.operands
[0].reg
== REG_PC
9649 && inst
.operands
[1].reg
== REG_PC
9650 && (inst
.relocs
[0].exp
.X_add_number
& 0x3)),
9651 _("ldr to register 15 must be 4-byte aligned"));
9657 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
9658 if (!inst
.operands
[1].isreg
)
9659 if (move_or_literal_pool (0, CONST_ARM
, /*mode_3=*/FALSE
))
9661 encode_arm_addr_mode_2 (1, /*is_t=*/FALSE
);
9662 check_ldr_r15_aligned ();
9668 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
9670 if (inst
.operands
[1].preind
)
9672 constraint (inst
.relocs
[0].exp
.X_op
!= O_constant
9673 || inst
.relocs
[0].exp
.X_add_number
!= 0,
9674 _("this instruction requires a post-indexed address"));
9676 inst
.operands
[1].preind
= 0;
9677 inst
.operands
[1].postind
= 1;
9678 inst
.operands
[1].writeback
= 1;
9680 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
9681 encode_arm_addr_mode_2 (1, /*is_t=*/TRUE
);
9684 /* Halfword and signed-byte load/store operations. */
9689 constraint (inst
.operands
[0].reg
== REG_PC
, BAD_PC
);
9690 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
9691 if (!inst
.operands
[1].isreg
)
9692 if (move_or_literal_pool (0, CONST_ARM
, /*mode_3=*/TRUE
))
9694 encode_arm_addr_mode_3 (1, /*is_t=*/FALSE
);
9700 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
9702 if (inst
.operands
[1].preind
)
9704 constraint (inst
.relocs
[0].exp
.X_op
!= O_constant
9705 || inst
.relocs
[0].exp
.X_add_number
!= 0,
9706 _("this instruction requires a post-indexed address"));
9708 inst
.operands
[1].preind
= 0;
9709 inst
.operands
[1].postind
= 1;
9710 inst
.operands
[1].writeback
= 1;
9712 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
9713 encode_arm_addr_mode_3 (1, /*is_t=*/TRUE
);
9716 /* Co-processor register load/store.
9717 Format: <LDC|STC>{cond}[L] CP#,CRd,<address> */
9721 inst
.instruction
|= inst
.operands
[0].reg
<< 8;
9722 inst
.instruction
|= inst
.operands
[1].reg
<< 12;
9723 encode_arm_cp_address (2, TRUE
, TRUE
, 0);
9729 /* This restriction does not apply to mls (nor to mla in v6 or later). */
9730 if (inst
.operands
[0].reg
== inst
.operands
[1].reg
9731 && !ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_v6
)
9732 && !(inst
.instruction
& 0x00400000))
9733 as_tsktsk (_("Rd and Rm should be different in mla"));
9735 inst
.instruction
|= inst
.operands
[0].reg
<< 16;
9736 inst
.instruction
|= inst
.operands
[1].reg
;
9737 inst
.instruction
|= inst
.operands
[2].reg
<< 8;
9738 inst
.instruction
|= inst
.operands
[3].reg
<< 12;
9744 constraint (inst
.relocs
[0].type
>= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
9745 && inst
.relocs
[0].type
<= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC
,
9747 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
9748 encode_arm_shifter_operand (1);
9751 /* ARM V6T2 16-bit immediate register load: MOV[WT]{cond} Rd, #<imm16>. */
9758 top
= (inst
.instruction
& 0x00400000) != 0;
9759 constraint (top
&& inst
.relocs
[0].type
== BFD_RELOC_ARM_MOVW
,
9760 _(":lower16: not allowed in this instruction"));
9761 constraint (!top
&& inst
.relocs
[0].type
== BFD_RELOC_ARM_MOVT
,
9762 _(":upper16: not allowed in this instruction"));
9763 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
9764 if (inst
.relocs
[0].type
== BFD_RELOC_UNUSED
)
9766 imm
= inst
.relocs
[0].exp
.X_add_number
;
9767 /* The value is in two pieces: 0:11, 16:19. */
9768 inst
.instruction
|= (imm
& 0x00000fff);
9769 inst
.instruction
|= (imm
& 0x0000f000) << 4;
9774 do_vfp_nsyn_mrs (void)
9776 if (inst
.operands
[0].isvec
)
9778 if (inst
.operands
[1].reg
!= 1)
9779 first_error (_("operand 1 must be FPSCR"));
9780 memset (&inst
.operands
[0], '\0', sizeof (inst
.operands
[0]));
9781 memset (&inst
.operands
[1], '\0', sizeof (inst
.operands
[1]));
9782 do_vfp_nsyn_opcode ("fmstat");
9784 else if (inst
.operands
[1].isvec
)
9785 do_vfp_nsyn_opcode ("fmrx");
9793 do_vfp_nsyn_msr (void)
9795 if (inst
.operands
[0].isvec
)
9796 do_vfp_nsyn_opcode ("fmxr");
9806 unsigned Rt
= inst
.operands
[0].reg
;
9808 if (thumb_mode
&& Rt
== REG_SP
)
9810 inst
.error
= BAD_SP
;
9814 /* MVFR2 is only valid at ARMv8-A. */
9815 if (inst
.operands
[1].reg
== 5)
9816 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_vfp_ext_armv8
),
9819 /* APSR_ sets isvec. All other refs to PC are illegal. */
9820 if (!inst
.operands
[0].isvec
&& Rt
== REG_PC
)
9822 inst
.error
= BAD_PC
;
9826 /* If we get through parsing the register name, we just insert the number
9827 generated into the instruction without further validation. */
9828 inst
.instruction
|= (inst
.operands
[1].reg
<< 16);
9829 inst
.instruction
|= (Rt
<< 12);
9835 unsigned Rt
= inst
.operands
[1].reg
;
9838 reject_bad_reg (Rt
);
9839 else if (Rt
== REG_PC
)
9841 inst
.error
= BAD_PC
;
9845 /* MVFR2 is only valid for ARMv8-A. */
9846 if (inst
.operands
[0].reg
== 5)
9847 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_vfp_ext_armv8
),
9850 /* If we get through parsing the register name, we just insert the number
9851 generated into the instruction without further validation. */
9852 inst
.instruction
|= (inst
.operands
[0].reg
<< 16);
9853 inst
.instruction
|= (Rt
<< 12);
9861 if (do_vfp_nsyn_mrs () == SUCCESS
)
9864 constraint (inst
.operands
[0].reg
== REG_PC
, BAD_PC
);
9865 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
9867 if (inst
.operands
[1].isreg
)
9869 br
= inst
.operands
[1].reg
;
9870 if (((br
& 0x200) == 0) && ((br
& 0xf0000) != 0xf0000))
9871 as_bad (_("bad register for mrs"));
9875 /* mrs only accepts CPSR/SPSR/CPSR_all/SPSR_all. */
9876 constraint ((inst
.operands
[1].imm
& (PSR_c
|PSR_x
|PSR_s
|PSR_f
))
9878 _("'APSR', 'CPSR' or 'SPSR' expected"));
9879 br
= (15<<16) | (inst
.operands
[1].imm
& SPSR_BIT
);
9882 inst
.instruction
|= br
;
9885 /* Two possible forms:
9886 "{C|S}PSR_<field>, Rm",
9887 "{C|S}PSR_f, #expression". */
9892 if (do_vfp_nsyn_msr () == SUCCESS
)
9895 inst
.instruction
|= inst
.operands
[0].imm
;
9896 if (inst
.operands
[1].isreg
)
9897 inst
.instruction
|= inst
.operands
[1].reg
;
9900 inst
.instruction
|= INST_IMMEDIATE
;
9901 inst
.relocs
[0].type
= BFD_RELOC_ARM_IMMEDIATE
;
9902 inst
.relocs
[0].pc_rel
= 0;
9909 constraint (inst
.operands
[2].reg
== REG_PC
, BAD_PC
);
9911 if (!inst
.operands
[2].present
)
9912 inst
.operands
[2].reg
= inst
.operands
[0].reg
;
9913 inst
.instruction
|= inst
.operands
[0].reg
<< 16;
9914 inst
.instruction
|= inst
.operands
[1].reg
;
9915 inst
.instruction
|= inst
.operands
[2].reg
<< 8;
9917 if (inst
.operands
[0].reg
== inst
.operands
[1].reg
9918 && !ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_v6
))
9919 as_tsktsk (_("Rd and Rm should be different in mul"));
9922 /* Long Multiply Parser
9923 UMULL RdLo, RdHi, Rm, Rs
9924 SMULL RdLo, RdHi, Rm, Rs
9925 UMLAL RdLo, RdHi, Rm, Rs
9926 SMLAL RdLo, RdHi, Rm, Rs. */
9931 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
9932 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
9933 inst
.instruction
|= inst
.operands
[2].reg
;
9934 inst
.instruction
|= inst
.operands
[3].reg
<< 8;
9936 /* rdhi and rdlo must be different. */
9937 if (inst
.operands
[0].reg
== inst
.operands
[1].reg
)
9938 as_tsktsk (_("rdhi and rdlo must be different"));
9940 /* rdhi, rdlo and rm must all be different before armv6. */
9941 if ((inst
.operands
[0].reg
== inst
.operands
[2].reg
9942 || inst
.operands
[1].reg
== inst
.operands
[2].reg
)
9943 && !ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_v6
))
9944 as_tsktsk (_("rdhi, rdlo and rm must all be different"));
9950 if (inst
.operands
[0].present
9951 || ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_v6k
))
9953 /* Architectural NOP hints are CPSR sets with no bits selected. */
9954 inst
.instruction
&= 0xf0000000;
9955 inst
.instruction
|= 0x0320f000;
9956 if (inst
.operands
[0].present
)
9957 inst
.instruction
|= inst
.operands
[0].imm
;
9961 /* ARM V6 Pack Halfword Bottom Top instruction (argument parse).
9962 PKHBT {<cond>} <Rd>, <Rn>, <Rm> {, LSL #<shift_imm>}
9963 Condition defaults to COND_ALWAYS.
9964 Error if Rd, Rn or Rm are R15. */
9969 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
9970 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
9971 inst
.instruction
|= inst
.operands
[2].reg
;
9972 if (inst
.operands
[3].present
)
9973 encode_arm_shift (3);
9976 /* ARM V6 PKHTB (Argument Parse). */
9981 if (!inst
.operands
[3].present
)
9983 /* If the shift specifier is omitted, turn the instruction
9984 into pkhbt rd, rm, rn. */
9985 inst
.instruction
&= 0xfff00010;
9986 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
9987 inst
.instruction
|= inst
.operands
[1].reg
;
9988 inst
.instruction
|= inst
.operands
[2].reg
<< 16;
9992 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
9993 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
9994 inst
.instruction
|= inst
.operands
[2].reg
;
9995 encode_arm_shift (3);
9999 /* ARMv5TE: Preload-Cache
10000 MP Extensions: Preload for write
10004 Syntactically, like LDR with B=1, W=0, L=1. */
10009 constraint (!inst
.operands
[0].isreg
,
10010 _("'[' expected after PLD mnemonic"));
10011 constraint (inst
.operands
[0].postind
,
10012 _("post-indexed expression used in preload instruction"));
10013 constraint (inst
.operands
[0].writeback
,
10014 _("writeback used in preload instruction"));
10015 constraint (!inst
.operands
[0].preind
,
10016 _("unindexed addressing used in preload instruction"));
10017 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE
);
10020 /* ARMv7: PLI <addr_mode> */
10024 constraint (!inst
.operands
[0].isreg
,
10025 _("'[' expected after PLI mnemonic"));
10026 constraint (inst
.operands
[0].postind
,
10027 _("post-indexed expression used in preload instruction"));
10028 constraint (inst
.operands
[0].writeback
,
10029 _("writeback used in preload instruction"));
10030 constraint (!inst
.operands
[0].preind
,
10031 _("unindexed addressing used in preload instruction"));
10032 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE
);
10033 inst
.instruction
&= ~PRE_INDEX
;
10039 constraint (inst
.operands
[0].writeback
,
10040 _("push/pop do not support {reglist}^"));
10041 inst
.operands
[1] = inst
.operands
[0];
10042 memset (&inst
.operands
[0], 0, sizeof inst
.operands
[0]);
10043 inst
.operands
[0].isreg
= 1;
10044 inst
.operands
[0].writeback
= 1;
10045 inst
.operands
[0].reg
= REG_SP
;
10046 encode_ldmstm (/*from_push_pop_mnem=*/TRUE
);
10049 /* ARM V6 RFE (Return from Exception) loads the PC and CPSR from the
10050 word at the specified address and the following word
10052 Unconditionally executed.
10053 Error if Rn is R15. */
10058 inst
.instruction
|= inst
.operands
[0].reg
<< 16;
10059 if (inst
.operands
[0].writeback
)
10060 inst
.instruction
|= WRITE_BACK
;
10063 /* ARM V6 ssat (argument parse). */
10068 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
10069 inst
.instruction
|= (inst
.operands
[1].imm
- 1) << 16;
10070 inst
.instruction
|= inst
.operands
[2].reg
;
10072 if (inst
.operands
[3].present
)
10073 encode_arm_shift (3);
10076 /* ARM V6 usat (argument parse). */
10081 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
10082 inst
.instruction
|= inst
.operands
[1].imm
<< 16;
10083 inst
.instruction
|= inst
.operands
[2].reg
;
10085 if (inst
.operands
[3].present
)
10086 encode_arm_shift (3);
10089 /* ARM V6 ssat16 (argument parse). */
10094 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
10095 inst
.instruction
|= ((inst
.operands
[1].imm
- 1) << 16);
10096 inst
.instruction
|= inst
.operands
[2].reg
;
10102 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
10103 inst
.instruction
|= inst
.operands
[1].imm
<< 16;
10104 inst
.instruction
|= inst
.operands
[2].reg
;
10107 /* ARM V6 SETEND (argument parse). Sets the E bit in the CPSR while
10108 preserving the other bits.
10110 setend <endian_specifier>, where <endian_specifier> is either
10116 if (warn_on_deprecated
10117 && ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v8
))
10118 as_tsktsk (_("setend use is deprecated for ARMv8"));
10120 if (inst
.operands
[0].imm
)
10121 inst
.instruction
|= 0x200;
10127 unsigned int Rm
= (inst
.operands
[1].present
10128 ? inst
.operands
[1].reg
10129 : inst
.operands
[0].reg
);
10131 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
10132 inst
.instruction
|= Rm
;
10133 if (inst
.operands
[2].isreg
) /* Rd, {Rm,} Rs */
10135 inst
.instruction
|= inst
.operands
[2].reg
<< 8;
10136 inst
.instruction
|= SHIFT_BY_REG
;
10137 /* PR 12854: Error on extraneous shifts. */
10138 constraint (inst
.operands
[2].shifted
,
10139 _("extraneous shift as part of operand to shift insn"));
10142 inst
.relocs
[0].type
= BFD_RELOC_ARM_SHIFT_IMM
;
10148 inst
.relocs
[0].type
= BFD_RELOC_ARM_SMC
;
10149 inst
.relocs
[0].pc_rel
= 0;
10155 inst
.relocs
[0].type
= BFD_RELOC_ARM_HVC
;
10156 inst
.relocs
[0].pc_rel
= 0;
10162 inst
.relocs
[0].type
= BFD_RELOC_ARM_SWI
;
10163 inst
.relocs
[0].pc_rel
= 0;
10169 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_pan
),
10170 _("selected processor does not support SETPAN instruction"));
10172 inst
.instruction
|= ((inst
.operands
[0].imm
& 1) << 9);
10178 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_pan
),
10179 _("selected processor does not support SETPAN instruction"));
10181 inst
.instruction
|= (inst
.operands
[0].imm
<< 3);
10184 /* ARM V5E (El Segundo) signed-multiply-accumulate (argument parse)
10185 SMLAxy{cond} Rd,Rm,Rs,Rn
10186 SMLAWy{cond} Rd,Rm,Rs,Rn
10187 Error if any register is R15. */
10192 inst
.instruction
|= inst
.operands
[0].reg
<< 16;
10193 inst
.instruction
|= inst
.operands
[1].reg
;
10194 inst
.instruction
|= inst
.operands
[2].reg
<< 8;
10195 inst
.instruction
|= inst
.operands
[3].reg
<< 12;
10198 /* ARM V5E (El Segundo) signed-multiply-accumulate-long (argument parse)
10199 SMLALxy{cond} Rdlo,Rdhi,Rm,Rs
10200 Error if any register is R15.
10201 Warning if Rdlo == Rdhi. */
10206 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
10207 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
10208 inst
.instruction
|= inst
.operands
[2].reg
;
10209 inst
.instruction
|= inst
.operands
[3].reg
<< 8;
10211 if (inst
.operands
[0].reg
== inst
.operands
[1].reg
)
10212 as_tsktsk (_("rdhi and rdlo must be different"));
10215 /* ARM V5E (El Segundo) signed-multiply (argument parse)
10216 SMULxy{cond} Rd,Rm,Rs
10217 Error if any register is R15. */
10222 inst
.instruction
|= inst
.operands
[0].reg
<< 16;
10223 inst
.instruction
|= inst
.operands
[1].reg
;
10224 inst
.instruction
|= inst
.operands
[2].reg
<< 8;
10227 /* ARM V6 srs (argument parse). The variable fields in the encoding are
10228 the same for both ARM and Thumb-2. */
10235 if (inst
.operands
[0].present
)
10237 reg
= inst
.operands
[0].reg
;
10238 constraint (reg
!= REG_SP
, _("SRS base register must be r13"));
10243 inst
.instruction
|= reg
<< 16;
10244 inst
.instruction
|= inst
.operands
[1].imm
;
10245 if (inst
.operands
[0].writeback
|| inst
.operands
[1].writeback
)
10246 inst
.instruction
|= WRITE_BACK
;
10249 /* ARM V6 strex (argument parse). */
10254 constraint (!inst
.operands
[2].isreg
|| !inst
.operands
[2].preind
10255 || inst
.operands
[2].postind
|| inst
.operands
[2].writeback
10256 || inst
.operands
[2].immisreg
|| inst
.operands
[2].shifted
10257 || inst
.operands
[2].negative
10258 /* See comment in do_ldrex(). */
10259 || (inst
.operands
[2].reg
== REG_PC
),
10262 constraint (inst
.operands
[0].reg
== inst
.operands
[1].reg
10263 || inst
.operands
[0].reg
== inst
.operands
[2].reg
, BAD_OVERLAP
);
10265 constraint (inst
.relocs
[0].exp
.X_op
!= O_constant
10266 || inst
.relocs
[0].exp
.X_add_number
!= 0,
10267 _("offset must be zero in ARM encoding"));
10269 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
10270 inst
.instruction
|= inst
.operands
[1].reg
;
10271 inst
.instruction
|= inst
.operands
[2].reg
<< 16;
10272 inst
.relocs
[0].type
= BFD_RELOC_UNUSED
;
10276 do_t_strexbh (void)
10278 constraint (!inst
.operands
[2].isreg
|| !inst
.operands
[2].preind
10279 || inst
.operands
[2].postind
|| inst
.operands
[2].writeback
10280 || inst
.operands
[2].immisreg
|| inst
.operands
[2].shifted
10281 || inst
.operands
[2].negative
,
10284 constraint (inst
.operands
[0].reg
== inst
.operands
[1].reg
10285 || inst
.operands
[0].reg
== inst
.operands
[2].reg
, BAD_OVERLAP
);
10293 constraint (inst
.operands
[1].reg
% 2 != 0,
10294 _("even register required"));
10295 constraint (inst
.operands
[2].present
10296 && inst
.operands
[2].reg
!= inst
.operands
[1].reg
+ 1,
10297 _("can only store two consecutive registers"));
10298 /* If op 2 were present and equal to PC, this function wouldn't
10299 have been called in the first place. */
10300 constraint (inst
.operands
[1].reg
== REG_LR
, _("r14 not allowed here"));
10302 constraint (inst
.operands
[0].reg
== inst
.operands
[1].reg
10303 || inst
.operands
[0].reg
== inst
.operands
[1].reg
+ 1
10304 || inst
.operands
[0].reg
== inst
.operands
[3].reg
,
10307 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
10308 inst
.instruction
|= inst
.operands
[1].reg
;
10309 inst
.instruction
|= inst
.operands
[3].reg
<< 16;
10316 constraint (inst
.operands
[0].reg
== inst
.operands
[1].reg
10317 || inst
.operands
[0].reg
== inst
.operands
[2].reg
, BAD_OVERLAP
);
10325 constraint (inst
.operands
[0].reg
== inst
.operands
[1].reg
10326 || inst
.operands
[0].reg
== inst
.operands
[2].reg
, BAD_OVERLAP
);
10331 /* ARM V6 SXTAH extracts a 16-bit value from a register, sign
10332 extends it to 32-bits, and adds the result to a value in another
10333 register. You can specify a rotation by 0, 8, 16, or 24 bits
10334 before extracting the 16-bit value.
10335 SXTAH{<cond>} <Rd>, <Rn>, <Rm>{, <rotation>}
10336 Condition defaults to COND_ALWAYS.
10337 Error if any register uses R15. */
10342 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
10343 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
10344 inst
.instruction
|= inst
.operands
[2].reg
;
10345 inst
.instruction
|= inst
.operands
[3].imm
<< 10;
10350 SXTH {<cond>} <Rd>, <Rm>{, <rotation>}
10351 Condition defaults to COND_ALWAYS.
10352 Error if any register uses R15. */
10357 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
10358 inst
.instruction
|= inst
.operands
[1].reg
;
10359 inst
.instruction
|= inst
.operands
[2].imm
<< 10;
10362 /* VFP instructions. In a logical order: SP variant first, monad
10363 before dyad, arithmetic then move then load/store. */
10366 do_vfp_sp_monadic (void)
10368 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_vfp_ext_v1xd
)
10369 && !ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
),
10372 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Sd
);
10373 encode_arm_vfp_reg (inst
.operands
[1].reg
, VFP_REG_Sm
);
10377 do_vfp_sp_dyadic (void)
10379 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Sd
);
10380 encode_arm_vfp_reg (inst
.operands
[1].reg
, VFP_REG_Sn
);
10381 encode_arm_vfp_reg (inst
.operands
[2].reg
, VFP_REG_Sm
);
10385 do_vfp_sp_compare_z (void)
10387 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Sd
);
10391 do_vfp_dp_sp_cvt (void)
10393 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Dd
);
10394 encode_arm_vfp_reg (inst
.operands
[1].reg
, VFP_REG_Sm
);
10398 do_vfp_sp_dp_cvt (void)
10400 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Sd
);
10401 encode_arm_vfp_reg (inst
.operands
[1].reg
, VFP_REG_Dm
);
10405 do_vfp_reg_from_sp (void)
10407 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_vfp_ext_v1xd
)
10408 && !ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
),
10411 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
10412 encode_arm_vfp_reg (inst
.operands
[1].reg
, VFP_REG_Sn
);
10416 do_vfp_reg2_from_sp2 (void)
10418 constraint (inst
.operands
[2].imm
!= 2,
10419 _("only two consecutive VFP SP registers allowed here"));
10420 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
10421 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
10422 encode_arm_vfp_reg (inst
.operands
[2].reg
, VFP_REG_Sm
);
10426 do_vfp_sp_from_reg (void)
10428 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_vfp_ext_v1xd
)
10429 && !ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
),
10432 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Sn
);
10433 inst
.instruction
|= inst
.operands
[1].reg
<< 12;
10437 do_vfp_sp2_from_reg2 (void)
10439 constraint (inst
.operands
[0].imm
!= 2,
10440 _("only two consecutive VFP SP registers allowed here"));
10441 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Sm
);
10442 inst
.instruction
|= inst
.operands
[1].reg
<< 12;
10443 inst
.instruction
|= inst
.operands
[2].reg
<< 16;
10447 do_vfp_sp_ldst (void)
10449 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Sd
);
10450 encode_arm_cp_address (1, FALSE
, TRUE
, 0);
10454 do_vfp_dp_ldst (void)
10456 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Dd
);
10457 encode_arm_cp_address (1, FALSE
, TRUE
, 0);
10462 vfp_sp_ldstm (enum vfp_ldstm_type ldstm_type
)
10464 if (inst
.operands
[0].writeback
)
10465 inst
.instruction
|= WRITE_BACK
;
10467 constraint (ldstm_type
!= VFP_LDSTMIA
,
10468 _("this addressing mode requires base-register writeback"));
10469 inst
.instruction
|= inst
.operands
[0].reg
<< 16;
10470 encode_arm_vfp_reg (inst
.operands
[1].reg
, VFP_REG_Sd
);
10471 inst
.instruction
|= inst
.operands
[1].imm
;
10475 vfp_dp_ldstm (enum vfp_ldstm_type ldstm_type
)
10479 if (inst
.operands
[0].writeback
)
10480 inst
.instruction
|= WRITE_BACK
;
10482 constraint (ldstm_type
!= VFP_LDSTMIA
&& ldstm_type
!= VFP_LDSTMIAX
,
10483 _("this addressing mode requires base-register writeback"));
10485 inst
.instruction
|= inst
.operands
[0].reg
<< 16;
10486 encode_arm_vfp_reg (inst
.operands
[1].reg
, VFP_REG_Dd
);
10488 count
= inst
.operands
[1].imm
<< 1;
10489 if (ldstm_type
== VFP_LDSTMIAX
|| ldstm_type
== VFP_LDSTMDBX
)
10492 inst
.instruction
|= count
;
10496 do_vfp_sp_ldstmia (void)
10498 vfp_sp_ldstm (VFP_LDSTMIA
);
10502 do_vfp_sp_ldstmdb (void)
10504 vfp_sp_ldstm (VFP_LDSTMDB
);
10508 do_vfp_dp_ldstmia (void)
10510 vfp_dp_ldstm (VFP_LDSTMIA
);
10514 do_vfp_dp_ldstmdb (void)
10516 vfp_dp_ldstm (VFP_LDSTMDB
);
10520 do_vfp_xp_ldstmia (void)
10522 vfp_dp_ldstm (VFP_LDSTMIAX
);
10526 do_vfp_xp_ldstmdb (void)
10528 vfp_dp_ldstm (VFP_LDSTMDBX
);
10532 do_vfp_dp_rd_rm (void)
10534 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_vfp_ext_v1
)
10535 && !ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
),
10538 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Dd
);
10539 encode_arm_vfp_reg (inst
.operands
[1].reg
, VFP_REG_Dm
);
10543 do_vfp_dp_rn_rd (void)
10545 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Dn
);
10546 encode_arm_vfp_reg (inst
.operands
[1].reg
, VFP_REG_Dd
);
10550 do_vfp_dp_rd_rn (void)
10552 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Dd
);
10553 encode_arm_vfp_reg (inst
.operands
[1].reg
, VFP_REG_Dn
);
10557 do_vfp_dp_rd_rn_rm (void)
10559 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_vfp_ext_v2
)
10560 && !ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
),
10563 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Dd
);
10564 encode_arm_vfp_reg (inst
.operands
[1].reg
, VFP_REG_Dn
);
10565 encode_arm_vfp_reg (inst
.operands
[2].reg
, VFP_REG_Dm
);
10569 do_vfp_dp_rd (void)
10571 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Dd
);
10575 do_vfp_dp_rm_rd_rn (void)
10577 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_vfp_ext_v2
)
10578 && !ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
),
10581 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Dm
);
10582 encode_arm_vfp_reg (inst
.operands
[1].reg
, VFP_REG_Dd
);
10583 encode_arm_vfp_reg (inst
.operands
[2].reg
, VFP_REG_Dn
);
10586 /* VFPv3 instructions. */
10588 do_vfp_sp_const (void)
10590 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Sd
);
10591 inst
.instruction
|= (inst
.operands
[1].imm
& 0xf0) << 12;
10592 inst
.instruction
|= (inst
.operands
[1].imm
& 0x0f);
10596 do_vfp_dp_const (void)
10598 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Dd
);
10599 inst
.instruction
|= (inst
.operands
[1].imm
& 0xf0) << 12;
10600 inst
.instruction
|= (inst
.operands
[1].imm
& 0x0f);
10604 vfp_conv (int srcsize
)
10606 int immbits
= srcsize
- inst
.operands
[1].imm
;
10608 if (srcsize
== 16 && !(immbits
>= 0 && immbits
<= srcsize
))
10610 /* If srcsize is 16, inst.operands[1].imm must be in the range 0-16.
10611 i.e. immbits must be in range 0 - 16. */
10612 inst
.error
= _("immediate value out of range, expected range [0, 16]");
10615 else if (srcsize
== 32 && !(immbits
>= 0 && immbits
< srcsize
))
10617 /* If srcsize is 32, inst.operands[1].imm must be in the range 1-32.
10618 i.e. immbits must be in range 0 - 31. */
10619 inst
.error
= _("immediate value out of range, expected range [1, 32]");
10623 inst
.instruction
|= (immbits
& 1) << 5;
10624 inst
.instruction
|= (immbits
>> 1);
10628 do_vfp_sp_conv_16 (void)
10630 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Sd
);
10635 do_vfp_dp_conv_16 (void)
10637 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Dd
);
10642 do_vfp_sp_conv_32 (void)
10644 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Sd
);
10649 do_vfp_dp_conv_32 (void)
10651 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Dd
);
10655 /* FPA instructions. Also in a logical order. */
10660 inst
.instruction
|= inst
.operands
[0].reg
<< 16;
10661 inst
.instruction
|= inst
.operands
[1].reg
;
10665 do_fpa_ldmstm (void)
10667 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
10668 switch (inst
.operands
[1].imm
)
10670 case 1: inst
.instruction
|= CP_T_X
; break;
10671 case 2: inst
.instruction
|= CP_T_Y
; break;
10672 case 3: inst
.instruction
|= CP_T_Y
| CP_T_X
; break;
10677 if (inst
.instruction
& (PRE_INDEX
| INDEX_UP
))
10679 /* The instruction specified "ea" or "fd", so we can only accept
10680 [Rn]{!}. The instruction does not really support stacking or
10681 unstacking, so we have to emulate these by setting appropriate
10682 bits and offsets. */
10683 constraint (inst
.relocs
[0].exp
.X_op
!= O_constant
10684 || inst
.relocs
[0].exp
.X_add_number
!= 0,
10685 _("this instruction does not support indexing"));
10687 if ((inst
.instruction
& PRE_INDEX
) || inst
.operands
[2].writeback
)
10688 inst
.relocs
[0].exp
.X_add_number
= 12 * inst
.operands
[1].imm
;
10690 if (!(inst
.instruction
& INDEX_UP
))
10691 inst
.relocs
[0].exp
.X_add_number
= -inst
.relocs
[0].exp
.X_add_number
;
10693 if (!(inst
.instruction
& PRE_INDEX
) && inst
.operands
[2].writeback
)
10695 inst
.operands
[2].preind
= 0;
10696 inst
.operands
[2].postind
= 1;
10700 encode_arm_cp_address (2, TRUE
, TRUE
, 0);
10703 /* iWMMXt instructions: strictly in alphabetical order. */
10706 do_iwmmxt_tandorc (void)
10708 constraint (inst
.operands
[0].reg
!= REG_PC
, _("only r15 allowed here"));
10712 do_iwmmxt_textrc (void)
10714 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
10715 inst
.instruction
|= inst
.operands
[1].imm
;
10719 do_iwmmxt_textrm (void)
10721 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
10722 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
10723 inst
.instruction
|= inst
.operands
[2].imm
;
10727 do_iwmmxt_tinsr (void)
10729 inst
.instruction
|= inst
.operands
[0].reg
<< 16;
10730 inst
.instruction
|= inst
.operands
[1].reg
<< 12;
10731 inst
.instruction
|= inst
.operands
[2].imm
;
10735 do_iwmmxt_tmia (void)
10737 inst
.instruction
|= inst
.operands
[0].reg
<< 5;
10738 inst
.instruction
|= inst
.operands
[1].reg
;
10739 inst
.instruction
|= inst
.operands
[2].reg
<< 12;
10743 do_iwmmxt_waligni (void)
10745 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
10746 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
10747 inst
.instruction
|= inst
.operands
[2].reg
;
10748 inst
.instruction
|= inst
.operands
[3].imm
<< 20;
10752 do_iwmmxt_wmerge (void)
10754 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
10755 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
10756 inst
.instruction
|= inst
.operands
[2].reg
;
10757 inst
.instruction
|= inst
.operands
[3].imm
<< 21;
10761 do_iwmmxt_wmov (void)
10763 /* WMOV rD, rN is an alias for WOR rD, rN, rN. */
10764 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
10765 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
10766 inst
.instruction
|= inst
.operands
[1].reg
;
10770 do_iwmmxt_wldstbh (void)
10773 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
10775 reloc
= BFD_RELOC_ARM_T32_CP_OFF_IMM_S2
;
10777 reloc
= BFD_RELOC_ARM_CP_OFF_IMM_S2
;
10778 encode_arm_cp_address (1, TRUE
, FALSE
, reloc
);
10782 do_iwmmxt_wldstw (void)
10784 /* RIWR_RIWC clears .isreg for a control register. */
10785 if (!inst
.operands
[0].isreg
)
10787 constraint (inst
.cond
!= COND_ALWAYS
, BAD_COND
);
10788 inst
.instruction
|= 0xf0000000;
10791 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
10792 encode_arm_cp_address (1, TRUE
, TRUE
, 0);
10796 do_iwmmxt_wldstd (void)
10798 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
10799 if (ARM_CPU_HAS_FEATURE (cpu_variant
, arm_cext_iwmmxt2
)
10800 && inst
.operands
[1].immisreg
)
10802 inst
.instruction
&= ~0x1a000ff;
10803 inst
.instruction
|= (0xfU
<< 28);
10804 if (inst
.operands
[1].preind
)
10805 inst
.instruction
|= PRE_INDEX
;
10806 if (!inst
.operands
[1].negative
)
10807 inst
.instruction
|= INDEX_UP
;
10808 if (inst
.operands
[1].writeback
)
10809 inst
.instruction
|= WRITE_BACK
;
10810 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
10811 inst
.instruction
|= inst
.relocs
[0].exp
.X_add_number
<< 4;
10812 inst
.instruction
|= inst
.operands
[1].imm
;
10815 encode_arm_cp_address (1, TRUE
, FALSE
, 0);
10819 do_iwmmxt_wshufh (void)
10821 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
10822 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
10823 inst
.instruction
|= ((inst
.operands
[2].imm
& 0xf0) << 16);
10824 inst
.instruction
|= (inst
.operands
[2].imm
& 0x0f);
10828 do_iwmmxt_wzero (void)
10830 /* WZERO reg is an alias for WANDN reg, reg, reg. */
10831 inst
.instruction
|= inst
.operands
[0].reg
;
10832 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
10833 inst
.instruction
|= inst
.operands
[0].reg
<< 16;
10837 do_iwmmxt_wrwrwr_or_imm5 (void)
10839 if (inst
.operands
[2].isreg
)
10842 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, arm_cext_iwmmxt2
),
10843 _("immediate operand requires iWMMXt2"));
10845 if (inst
.operands
[2].imm
== 0)
10847 switch ((inst
.instruction
>> 20) & 0xf)
10853 /* w...h wrd, wrn, #0 -> wrorh wrd, wrn, #16. */
10854 inst
.operands
[2].imm
= 16;
10855 inst
.instruction
= (inst
.instruction
& 0xff0fffff) | (0x7 << 20);
10861 /* w...w wrd, wrn, #0 -> wrorw wrd, wrn, #32. */
10862 inst
.operands
[2].imm
= 32;
10863 inst
.instruction
= (inst
.instruction
& 0xff0fffff) | (0xb << 20);
10870 /* w...d wrd, wrn, #0 -> wor wrd, wrn, wrn. */
10872 wrn
= (inst
.instruction
>> 16) & 0xf;
10873 inst
.instruction
&= 0xff0fff0f;
10874 inst
.instruction
|= wrn
;
10875 /* Bail out here; the instruction is now assembled. */
10880 /* Map 32 -> 0, etc. */
10881 inst
.operands
[2].imm
&= 0x1f;
10882 inst
.instruction
|= (0xfU
<< 28) | ((inst
.operands
[2].imm
& 0x10) << 4) | (inst
.operands
[2].imm
& 0xf);
10886 /* Cirrus Maverick instructions. Simple 2-, 3-, and 4-register
10887 operations first, then control, shift, and load/store. */
10889 /* Insns like "foo X,Y,Z". */
10892 do_mav_triple (void)
10894 inst
.instruction
|= inst
.operands
[0].reg
<< 16;
10895 inst
.instruction
|= inst
.operands
[1].reg
;
10896 inst
.instruction
|= inst
.operands
[2].reg
<< 12;
10899 /* Insns like "foo W,X,Y,Z".
10900 where W=MVAX[0:3] and X,Y,Z=MVFX[0:15]. */
10905 inst
.instruction
|= inst
.operands
[0].reg
<< 5;
10906 inst
.instruction
|= inst
.operands
[1].reg
<< 12;
10907 inst
.instruction
|= inst
.operands
[2].reg
<< 16;
10908 inst
.instruction
|= inst
.operands
[3].reg
;
10911 /* cfmvsc32<cond> DSPSC,MVDX[15:0]. */
10913 do_mav_dspsc (void)
10915 inst
.instruction
|= inst
.operands
[1].reg
<< 12;
10918 /* Maverick shift immediate instructions.
10919 cfsh32<cond> MVFX[15:0],MVFX[15:0],Shift[6:0].
10920 cfsh64<cond> MVDX[15:0],MVDX[15:0],Shift[6:0]. */
10923 do_mav_shift (void)
10925 int imm
= inst
.operands
[2].imm
;
10927 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
10928 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
10930 /* Bits 0-3 of the insn should have bits 0-3 of the immediate.
10931 Bits 5-7 of the insn should have bits 4-6 of the immediate.
10932 Bit 4 should be 0. */
10933 imm
= (imm
& 0xf) | ((imm
& 0x70) << 1);
10935 inst
.instruction
|= imm
;
10938 /* XScale instructions. Also sorted arithmetic before move. */
10940 /* Xscale multiply-accumulate (argument parse)
10943 MIAxycc acc0,Rm,Rs. */
10948 inst
.instruction
|= inst
.operands
[1].reg
;
10949 inst
.instruction
|= inst
.operands
[2].reg
<< 12;
10952 /* Xscale move-accumulator-register (argument parse)
10954 MARcc acc0,RdLo,RdHi. */
10959 inst
.instruction
|= inst
.operands
[1].reg
<< 12;
10960 inst
.instruction
|= inst
.operands
[2].reg
<< 16;
10963 /* Xscale move-register-accumulator (argument parse)
10965 MRAcc RdLo,RdHi,acc0. */
10970 constraint (inst
.operands
[0].reg
== inst
.operands
[1].reg
, BAD_OVERLAP
);
10971 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
10972 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
10975 /* Encoding functions relevant only to Thumb. */
10977 /* inst.operands[i] is a shifted-register operand; encode
10978 it into inst.instruction in the format used by Thumb32. */
10981 encode_thumb32_shifted_operand (int i
)
10983 unsigned int value
= inst
.relocs
[0].exp
.X_add_number
;
10984 unsigned int shift
= inst
.operands
[i
].shift_kind
;
10986 constraint (inst
.operands
[i
].immisreg
,
10987 _("shift by register not allowed in thumb mode"));
10988 inst
.instruction
|= inst
.operands
[i
].reg
;
10989 if (shift
== SHIFT_RRX
)
10990 inst
.instruction
|= SHIFT_ROR
<< 4;
10993 constraint (inst
.relocs
[0].exp
.X_op
!= O_constant
,
10994 _("expression too complex"));
10996 constraint (value
> 32
10997 || (value
== 32 && (shift
== SHIFT_LSL
10998 || shift
== SHIFT_ROR
)),
10999 _("shift expression is too large"));
11003 else if (value
== 32)
11006 inst
.instruction
|= shift
<< 4;
11007 inst
.instruction
|= (value
& 0x1c) << 10;
11008 inst
.instruction
|= (value
& 0x03) << 6;
11013 /* inst.operands[i] was set up by parse_address. Encode it into a
11014 Thumb32 format load or store instruction. Reject forms that cannot
11015 be used with such instructions. If is_t is true, reject forms that
11016 cannot be used with a T instruction; if is_d is true, reject forms
11017 that cannot be used with a D instruction. If it is a store insn,
11018 reject PC in Rn. */
11021 encode_thumb32_addr_mode (int i
, bfd_boolean is_t
, bfd_boolean is_d
)
11023 const bfd_boolean is_pc
= (inst
.operands
[i
].reg
== REG_PC
);
11025 constraint (!inst
.operands
[i
].isreg
,
11026 _("Instruction does not support =N addresses"));
11028 inst
.instruction
|= inst
.operands
[i
].reg
<< 16;
11029 if (inst
.operands
[i
].immisreg
)
11031 constraint (is_pc
, BAD_PC_ADDRESSING
);
11032 constraint (is_t
|| is_d
, _("cannot use register index with this instruction"));
11033 constraint (inst
.operands
[i
].negative
,
11034 _("Thumb does not support negative register indexing"));
11035 constraint (inst
.operands
[i
].postind
,
11036 _("Thumb does not support register post-indexing"));
11037 constraint (inst
.operands
[i
].writeback
,
11038 _("Thumb does not support register indexing with writeback"));
11039 constraint (inst
.operands
[i
].shifted
&& inst
.operands
[i
].shift_kind
!= SHIFT_LSL
,
11040 _("Thumb supports only LSL in shifted register indexing"));
11042 inst
.instruction
|= inst
.operands
[i
].imm
;
11043 if (inst
.operands
[i
].shifted
)
11045 constraint (inst
.relocs
[0].exp
.X_op
!= O_constant
,
11046 _("expression too complex"));
11047 constraint (inst
.relocs
[0].exp
.X_add_number
< 0
11048 || inst
.relocs
[0].exp
.X_add_number
> 3,
11049 _("shift out of range"));
11050 inst
.instruction
|= inst
.relocs
[0].exp
.X_add_number
<< 4;
11052 inst
.relocs
[0].type
= BFD_RELOC_UNUSED
;
11054 else if (inst
.operands
[i
].preind
)
11056 constraint (is_pc
&& inst
.operands
[i
].writeback
, BAD_PC_WRITEBACK
);
11057 constraint (is_t
&& inst
.operands
[i
].writeback
,
11058 _("cannot use writeback with this instruction"));
11059 constraint (is_pc
&& ((inst
.instruction
& THUMB2_LOAD_BIT
) == 0),
11060 BAD_PC_ADDRESSING
);
11064 inst
.instruction
|= 0x01000000;
11065 if (inst
.operands
[i
].writeback
)
11066 inst
.instruction
|= 0x00200000;
11070 inst
.instruction
|= 0x00000c00;
11071 if (inst
.operands
[i
].writeback
)
11072 inst
.instruction
|= 0x00000100;
11074 inst
.relocs
[0].type
= BFD_RELOC_ARM_T32_OFFSET_IMM
;
11076 else if (inst
.operands
[i
].postind
)
11078 gas_assert (inst
.operands
[i
].writeback
);
11079 constraint (is_pc
, _("cannot use post-indexing with PC-relative addressing"));
11080 constraint (is_t
, _("cannot use post-indexing with this instruction"));
11083 inst
.instruction
|= 0x00200000;
11085 inst
.instruction
|= 0x00000900;
11086 inst
.relocs
[0].type
= BFD_RELOC_ARM_T32_OFFSET_IMM
;
11088 else /* unindexed - only for coprocessor */
11089 inst
.error
= _("instruction does not accept unindexed addressing");
11092 /* Table of Thumb instructions which exist in both 16- and 32-bit
11093 encodings (the latter only in post-V6T2 cores). The index is the
11094 value used in the insns table below. When there is more than one
11095 possible 16-bit encoding for the instruction, this table always
11097 Also contains several pseudo-instructions used during relaxation. */
11098 #define T16_32_TAB \
11099 X(_adc, 4140, eb400000), \
11100 X(_adcs, 4140, eb500000), \
11101 X(_add, 1c00, eb000000), \
11102 X(_adds, 1c00, eb100000), \
11103 X(_addi, 0000, f1000000), \
11104 X(_addis, 0000, f1100000), \
11105 X(_add_pc,000f, f20f0000), \
11106 X(_add_sp,000d, f10d0000), \
11107 X(_adr, 000f, f20f0000), \
11108 X(_and, 4000, ea000000), \
11109 X(_ands, 4000, ea100000), \
11110 X(_asr, 1000, fa40f000), \
11111 X(_asrs, 1000, fa50f000), \
11112 X(_b, e000, f000b000), \
11113 X(_bcond, d000, f0008000), \
11114 X(_bf, 0000, f040e001), \
11115 X(_bfcsel,0000, f000e001), \
11116 X(_bfx, 0000, f060e001), \
11117 X(_bfl, 0000, f000c001), \
11118 X(_bflx, 0000, f070e001), \
11119 X(_bic, 4380, ea200000), \
11120 X(_bics, 4380, ea300000), \
11121 X(_cmn, 42c0, eb100f00), \
11122 X(_cmp, 2800, ebb00f00), \
11123 X(_cpsie, b660, f3af8400), \
11124 X(_cpsid, b670, f3af8600), \
11125 X(_cpy, 4600, ea4f0000), \
11126 X(_dec_sp,80dd, f1ad0d00), \
11127 X(_dls, 0000, f040e001), \
11128 X(_eor, 4040, ea800000), \
11129 X(_eors, 4040, ea900000), \
11130 X(_inc_sp,00dd, f10d0d00), \
11131 X(_ldmia, c800, e8900000), \
11132 X(_ldr, 6800, f8500000), \
11133 X(_ldrb, 7800, f8100000), \
11134 X(_ldrh, 8800, f8300000), \
11135 X(_ldrsb, 5600, f9100000), \
11136 X(_ldrsh, 5e00, f9300000), \
11137 X(_ldr_pc,4800, f85f0000), \
11138 X(_ldr_pc2,4800, f85f0000), \
11139 X(_ldr_sp,9800, f85d0000), \
11140 X(_le, 0000, f00fc001), \
11141 X(_lsl, 0000, fa00f000), \
11142 X(_lsls, 0000, fa10f000), \
11143 X(_lsr, 0800, fa20f000), \
11144 X(_lsrs, 0800, fa30f000), \
11145 X(_mov, 2000, ea4f0000), \
11146 X(_movs, 2000, ea5f0000), \
11147 X(_mul, 4340, fb00f000), \
11148 X(_muls, 4340, ffffffff), /* no 32b muls */ \
11149 X(_mvn, 43c0, ea6f0000), \
11150 X(_mvns, 43c0, ea7f0000), \
11151 X(_neg, 4240, f1c00000), /* rsb #0 */ \
11152 X(_negs, 4240, f1d00000), /* rsbs #0 */ \
11153 X(_orr, 4300, ea400000), \
11154 X(_orrs, 4300, ea500000), \
11155 X(_pop, bc00, e8bd0000), /* ldmia sp!,... */ \
11156 X(_push, b400, e92d0000), /* stmdb sp!,... */ \
11157 X(_rev, ba00, fa90f080), \
11158 X(_rev16, ba40, fa90f090), \
11159 X(_revsh, bac0, fa90f0b0), \
11160 X(_ror, 41c0, fa60f000), \
11161 X(_rors, 41c0, fa70f000), \
11162 X(_sbc, 4180, eb600000), \
11163 X(_sbcs, 4180, eb700000), \
11164 X(_stmia, c000, e8800000), \
11165 X(_str, 6000, f8400000), \
11166 X(_strb, 7000, f8000000), \
11167 X(_strh, 8000, f8200000), \
11168 X(_str_sp,9000, f84d0000), \
11169 X(_sub, 1e00, eba00000), \
11170 X(_subs, 1e00, ebb00000), \
11171 X(_subi, 8000, f1a00000), \
11172 X(_subis, 8000, f1b00000), \
11173 X(_sxtb, b240, fa4ff080), \
11174 X(_sxth, b200, fa0ff080), \
11175 X(_tst, 4200, ea100f00), \
11176 X(_uxtb, b2c0, fa5ff080), \
11177 X(_uxth, b280, fa1ff080), \
11178 X(_nop, bf00, f3af8000), \
11179 X(_yield, bf10, f3af8001), \
11180 X(_wfe, bf20, f3af8002), \
11181 X(_wfi, bf30, f3af8003), \
11182 X(_wls, 0000, f040c001), \
11183 X(_sev, bf40, f3af8004), \
11184 X(_sevl, bf50, f3af8005), \
11185 X(_udf, de00, f7f0a000)
11187 /* To catch errors in encoding functions, the codes are all offset by
11188 0xF800, putting them in one of the 32-bit prefix ranges, ergo undefined
11189 as 16-bit instructions. */
11190 #define X(a,b,c) T_MNEM##a
11191 enum t16_32_codes
{ T16_32_OFFSET
= 0xF7FF, T16_32_TAB
};
11194 #define X(a,b,c) 0x##b
11195 static const unsigned short thumb_op16
[] = { T16_32_TAB
};
11196 #define THUMB_OP16(n) (thumb_op16[(n) - (T16_32_OFFSET + 1)])
11199 #define X(a,b,c) 0x##c
11200 static const unsigned int thumb_op32
[] = { T16_32_TAB
};
11201 #define THUMB_OP32(n) (thumb_op32[(n) - (T16_32_OFFSET + 1)])
11202 #define THUMB_SETS_FLAGS(n) (THUMB_OP32 (n) & 0x00100000)
11206 /* Thumb instruction encoders, in alphabetical order. */
11208 /* ADDW or SUBW. */
11211 do_t_add_sub_w (void)
11215 Rd
= inst
.operands
[0].reg
;
11216 Rn
= inst
.operands
[1].reg
;
11218 /* If Rn is REG_PC, this is ADR; if Rn is REG_SP, then this
11219 is the SP-{plus,minus}-immediate form of the instruction. */
11221 constraint (Rd
== REG_PC
, BAD_PC
);
11223 reject_bad_reg (Rd
);
11225 inst
.instruction
|= (Rn
<< 16) | (Rd
<< 8);
11226 inst
.relocs
[0].type
= BFD_RELOC_ARM_T32_IMM12
;
11229 /* Parse an add or subtract instruction. We get here with inst.instruction
11230 equaling any of THUMB_OPCODE_add, adds, sub, or subs. */
11233 do_t_add_sub (void)
11237 Rd
= inst
.operands
[0].reg
;
11238 Rs
= (inst
.operands
[1].present
11239 ? inst
.operands
[1].reg
/* Rd, Rs, foo */
11240 : inst
.operands
[0].reg
); /* Rd, foo -> Rd, Rd, foo */
11243 set_pred_insn_type_last ();
11245 if (unified_syntax
)
11248 bfd_boolean narrow
;
11251 flags
= (inst
.instruction
== T_MNEM_adds
11252 || inst
.instruction
== T_MNEM_subs
);
11254 narrow
= !in_pred_block ();
11256 narrow
= in_pred_block ();
11257 if (!inst
.operands
[2].isreg
)
11261 if (!ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v8
))
11262 constraint (Rd
== REG_SP
&& Rs
!= REG_SP
, BAD_SP
);
11264 add
= (inst
.instruction
== T_MNEM_add
11265 || inst
.instruction
== T_MNEM_adds
);
11267 if (inst
.size_req
!= 4)
11269 /* Attempt to use a narrow opcode, with relaxation if
11271 if (Rd
== REG_SP
&& Rs
== REG_SP
&& !flags
)
11272 opcode
= add
? T_MNEM_inc_sp
: T_MNEM_dec_sp
;
11273 else if (Rd
<= 7 && Rs
== REG_SP
&& add
&& !flags
)
11274 opcode
= T_MNEM_add_sp
;
11275 else if (Rd
<= 7 && Rs
== REG_PC
&& add
&& !flags
)
11276 opcode
= T_MNEM_add_pc
;
11277 else if (Rd
<= 7 && Rs
<= 7 && narrow
)
11280 opcode
= add
? T_MNEM_addis
: T_MNEM_subis
;
11282 opcode
= add
? T_MNEM_addi
: T_MNEM_subi
;
11286 inst
.instruction
= THUMB_OP16(opcode
);
11287 inst
.instruction
|= (Rd
<< 4) | Rs
;
11288 if (inst
.relocs
[0].type
< BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
11289 || (inst
.relocs
[0].type
11290 > BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC
))
11292 if (inst
.size_req
== 2)
11293 inst
.relocs
[0].type
= BFD_RELOC_ARM_THUMB_ADD
;
11295 inst
.relax
= opcode
;
11299 constraint (inst
.size_req
== 2, BAD_HIREG
);
11301 if (inst
.size_req
== 4
11302 || (inst
.size_req
!= 2 && !opcode
))
11304 constraint ((inst
.relocs
[0].type
11305 >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
)
11306 && (inst
.relocs
[0].type
11307 <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC
) ,
11308 THUMB1_RELOC_ONLY
);
11311 constraint (add
, BAD_PC
);
11312 constraint (Rs
!= REG_LR
|| inst
.instruction
!= T_MNEM_subs
,
11313 _("only SUBS PC, LR, #const allowed"));
11314 constraint (inst
.relocs
[0].exp
.X_op
!= O_constant
,
11315 _("expression too complex"));
11316 constraint (inst
.relocs
[0].exp
.X_add_number
< 0
11317 || inst
.relocs
[0].exp
.X_add_number
> 0xff,
11318 _("immediate value out of range"));
11319 inst
.instruction
= T2_SUBS_PC_LR
11320 | inst
.relocs
[0].exp
.X_add_number
;
11321 inst
.relocs
[0].type
= BFD_RELOC_UNUSED
;
11324 else if (Rs
== REG_PC
)
11326 /* Always use addw/subw. */
11327 inst
.instruction
= add
? 0xf20f0000 : 0xf2af0000;
11328 inst
.relocs
[0].type
= BFD_RELOC_ARM_T32_IMM12
;
11332 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
11333 inst
.instruction
= (inst
.instruction
& 0xe1ffffff)
11336 inst
.relocs
[0].type
= BFD_RELOC_ARM_T32_IMMEDIATE
;
11338 inst
.relocs
[0].type
= BFD_RELOC_ARM_T32_ADD_IMM
;
11340 inst
.instruction
|= Rd
<< 8;
11341 inst
.instruction
|= Rs
<< 16;
11346 unsigned int value
= inst
.relocs
[0].exp
.X_add_number
;
11347 unsigned int shift
= inst
.operands
[2].shift_kind
;
11349 Rn
= inst
.operands
[2].reg
;
11350 /* See if we can do this with a 16-bit instruction. */
11351 if (!inst
.operands
[2].shifted
&& inst
.size_req
!= 4)
11353 if (Rd
> 7 || Rs
> 7 || Rn
> 7)
11358 inst
.instruction
= ((inst
.instruction
== T_MNEM_adds
11359 || inst
.instruction
== T_MNEM_add
)
11361 : T_OPCODE_SUB_R3
);
11362 inst
.instruction
|= Rd
| (Rs
<< 3) | (Rn
<< 6);
11366 if (inst
.instruction
== T_MNEM_add
&& (Rd
== Rs
|| Rd
== Rn
))
11368 /* Thumb-1 cores (except v6-M) require at least one high
11369 register in a narrow non flag setting add. */
11370 if (Rd
> 7 || Rn
> 7
11371 || ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_v6t2
)
11372 || ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_msr
))
11379 inst
.instruction
= T_OPCODE_ADD_HI
;
11380 inst
.instruction
|= (Rd
& 8) << 4;
11381 inst
.instruction
|= (Rd
& 7);
11382 inst
.instruction
|= Rn
<< 3;
11388 constraint (Rd
== REG_PC
, BAD_PC
);
11389 if (!ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v8
))
11390 constraint (Rd
== REG_SP
&& Rs
!= REG_SP
, BAD_SP
);
11391 constraint (Rs
== REG_PC
, BAD_PC
);
11392 reject_bad_reg (Rn
);
11394 /* If we get here, it can't be done in 16 bits. */
11395 constraint (inst
.operands
[2].shifted
&& inst
.operands
[2].immisreg
,
11396 _("shift must be constant"));
11397 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
11398 inst
.instruction
|= Rd
<< 8;
11399 inst
.instruction
|= Rs
<< 16;
11400 constraint (Rd
== REG_SP
&& Rs
== REG_SP
&& value
> 3,
11401 _("shift value over 3 not allowed in thumb mode"));
11402 constraint (Rd
== REG_SP
&& Rs
== REG_SP
&& shift
!= SHIFT_LSL
,
11403 _("only LSL shift allowed in thumb mode"));
11404 encode_thumb32_shifted_operand (2);
11409 constraint (inst
.instruction
== T_MNEM_adds
11410 || inst
.instruction
== T_MNEM_subs
,
11413 if (!inst
.operands
[2].isreg
) /* Rd, Rs, #imm */
11415 constraint ((Rd
> 7 && (Rd
!= REG_SP
|| Rs
!= REG_SP
))
11416 || (Rs
> 7 && Rs
!= REG_SP
&& Rs
!= REG_PC
),
11419 inst
.instruction
= (inst
.instruction
== T_MNEM_add
11420 ? 0x0000 : 0x8000);
11421 inst
.instruction
|= (Rd
<< 4) | Rs
;
11422 inst
.relocs
[0].type
= BFD_RELOC_ARM_THUMB_ADD
;
11426 Rn
= inst
.operands
[2].reg
;
11427 constraint (inst
.operands
[2].shifted
, _("unshifted register required"));
11429 /* We now have Rd, Rs, and Rn set to registers. */
11430 if (Rd
> 7 || Rs
> 7 || Rn
> 7)
11432 /* Can't do this for SUB. */
11433 constraint (inst
.instruction
== T_MNEM_sub
, BAD_HIREG
);
11434 inst
.instruction
= T_OPCODE_ADD_HI
;
11435 inst
.instruction
|= (Rd
& 8) << 4;
11436 inst
.instruction
|= (Rd
& 7);
11438 inst
.instruction
|= Rn
<< 3;
11440 inst
.instruction
|= Rs
<< 3;
11442 constraint (1, _("dest must overlap one source register"));
11446 inst
.instruction
= (inst
.instruction
== T_MNEM_add
11447 ? T_OPCODE_ADD_R3
: T_OPCODE_SUB_R3
);
11448 inst
.instruction
|= Rd
| (Rs
<< 3) | (Rn
<< 6);
11458 Rd
= inst
.operands
[0].reg
;
11459 reject_bad_reg (Rd
);
11461 if (unified_syntax
&& inst
.size_req
== 0 && Rd
<= 7)
11463 /* Defer to section relaxation. */
11464 inst
.relax
= inst
.instruction
;
11465 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
11466 inst
.instruction
|= Rd
<< 4;
11468 else if (unified_syntax
&& inst
.size_req
!= 2)
11470 /* Generate a 32-bit opcode. */
11471 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
11472 inst
.instruction
|= Rd
<< 8;
11473 inst
.relocs
[0].type
= BFD_RELOC_ARM_T32_ADD_PC12
;
11474 inst
.relocs
[0].pc_rel
= 1;
11478 /* Generate a 16-bit opcode. */
11479 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
11480 inst
.relocs
[0].type
= BFD_RELOC_ARM_THUMB_ADD
;
11481 inst
.relocs
[0].exp
.X_add_number
-= 4; /* PC relative adjust. */
11482 inst
.relocs
[0].pc_rel
= 1;
11483 inst
.instruction
|= Rd
<< 4;
11486 if (inst
.relocs
[0].exp
.X_op
== O_symbol
11487 && inst
.relocs
[0].exp
.X_add_symbol
!= NULL
11488 && S_IS_DEFINED (inst
.relocs
[0].exp
.X_add_symbol
)
11489 && THUMB_IS_FUNC (inst
.relocs
[0].exp
.X_add_symbol
))
11490 inst
.relocs
[0].exp
.X_add_number
+= 1;
11493 /* Arithmetic instructions for which there is just one 16-bit
11494 instruction encoding, and it allows only two low registers.
11495 For maximal compatibility with ARM syntax, we allow three register
11496 operands even when Thumb-32 instructions are not available, as long
11497 as the first two are identical. For instance, both "sbc r0,r1" and
11498 "sbc r0,r0,r1" are allowed. */
11504 Rd
= inst
.operands
[0].reg
;
11505 Rs
= (inst
.operands
[1].present
11506 ? inst
.operands
[1].reg
/* Rd, Rs, foo */
11507 : inst
.operands
[0].reg
); /* Rd, foo -> Rd, Rd, foo */
11508 Rn
= inst
.operands
[2].reg
;
11510 reject_bad_reg (Rd
);
11511 reject_bad_reg (Rs
);
11512 if (inst
.operands
[2].isreg
)
11513 reject_bad_reg (Rn
);
11515 if (unified_syntax
)
11517 if (!inst
.operands
[2].isreg
)
11519 /* For an immediate, we always generate a 32-bit opcode;
11520 section relaxation will shrink it later if possible. */
11521 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
11522 inst
.instruction
= (inst
.instruction
& 0xe1ffffff) | 0x10000000;
11523 inst
.instruction
|= Rd
<< 8;
11524 inst
.instruction
|= Rs
<< 16;
11525 inst
.relocs
[0].type
= BFD_RELOC_ARM_T32_IMMEDIATE
;
11529 bfd_boolean narrow
;
11531 /* See if we can do this with a 16-bit instruction. */
11532 if (THUMB_SETS_FLAGS (inst
.instruction
))
11533 narrow
= !in_pred_block ();
11535 narrow
= in_pred_block ();
11537 if (Rd
> 7 || Rn
> 7 || Rs
> 7)
11539 if (inst
.operands
[2].shifted
)
11541 if (inst
.size_req
== 4)
11547 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
11548 inst
.instruction
|= Rd
;
11549 inst
.instruction
|= Rn
<< 3;
11553 /* If we get here, it can't be done in 16 bits. */
11554 constraint (inst
.operands
[2].shifted
11555 && inst
.operands
[2].immisreg
,
11556 _("shift must be constant"));
11557 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
11558 inst
.instruction
|= Rd
<< 8;
11559 inst
.instruction
|= Rs
<< 16;
11560 encode_thumb32_shifted_operand (2);
11565 /* On its face this is a lie - the instruction does set the
11566 flags. However, the only supported mnemonic in this mode
11567 says it doesn't. */
11568 constraint (THUMB_SETS_FLAGS (inst
.instruction
), BAD_THUMB32
);
11570 constraint (!inst
.operands
[2].isreg
|| inst
.operands
[2].shifted
,
11571 _("unshifted register required"));
11572 constraint (Rd
> 7 || Rs
> 7 || Rn
> 7, BAD_HIREG
);
11573 constraint (Rd
!= Rs
,
11574 _("dest and source1 must be the same register"));
11576 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
11577 inst
.instruction
|= Rd
;
11578 inst
.instruction
|= Rn
<< 3;
11582 /* Similarly, but for instructions where the arithmetic operation is
11583 commutative, so we can allow either of them to be different from
11584 the destination operand in a 16-bit instruction. For instance, all
11585 three of "adc r0,r1", "adc r0,r0,r1", and "adc r0,r1,r0" are
11592 Rd
= inst
.operands
[0].reg
;
11593 Rs
= (inst
.operands
[1].present
11594 ? inst
.operands
[1].reg
/* Rd, Rs, foo */
11595 : inst
.operands
[0].reg
); /* Rd, foo -> Rd, Rd, foo */
11596 Rn
= inst
.operands
[2].reg
;
11598 reject_bad_reg (Rd
);
11599 reject_bad_reg (Rs
);
11600 if (inst
.operands
[2].isreg
)
11601 reject_bad_reg (Rn
);
11603 if (unified_syntax
)
11605 if (!inst
.operands
[2].isreg
)
11607 /* For an immediate, we always generate a 32-bit opcode;
11608 section relaxation will shrink it later if possible. */
11609 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
11610 inst
.instruction
= (inst
.instruction
& 0xe1ffffff) | 0x10000000;
11611 inst
.instruction
|= Rd
<< 8;
11612 inst
.instruction
|= Rs
<< 16;
11613 inst
.relocs
[0].type
= BFD_RELOC_ARM_T32_IMMEDIATE
;
11617 bfd_boolean narrow
;
11619 /* See if we can do this with a 16-bit instruction. */
11620 if (THUMB_SETS_FLAGS (inst
.instruction
))
11621 narrow
= !in_pred_block ();
11623 narrow
= in_pred_block ();
11625 if (Rd
> 7 || Rn
> 7 || Rs
> 7)
11627 if (inst
.operands
[2].shifted
)
11629 if (inst
.size_req
== 4)
11636 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
11637 inst
.instruction
|= Rd
;
11638 inst
.instruction
|= Rn
<< 3;
11643 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
11644 inst
.instruction
|= Rd
;
11645 inst
.instruction
|= Rs
<< 3;
11650 /* If we get here, it can't be done in 16 bits. */
11651 constraint (inst
.operands
[2].shifted
11652 && inst
.operands
[2].immisreg
,
11653 _("shift must be constant"));
11654 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
11655 inst
.instruction
|= Rd
<< 8;
11656 inst
.instruction
|= Rs
<< 16;
11657 encode_thumb32_shifted_operand (2);
11662 /* On its face this is a lie - the instruction does set the
11663 flags. However, the only supported mnemonic in this mode
11664 says it doesn't. */
11665 constraint (THUMB_SETS_FLAGS (inst
.instruction
), BAD_THUMB32
);
11667 constraint (!inst
.operands
[2].isreg
|| inst
.operands
[2].shifted
,
11668 _("unshifted register required"));
11669 constraint (Rd
> 7 || Rs
> 7 || Rn
> 7, BAD_HIREG
);
11671 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
11672 inst
.instruction
|= Rd
;
11675 inst
.instruction
|= Rn
<< 3;
11677 inst
.instruction
|= Rs
<< 3;
11679 constraint (1, _("dest must overlap one source register"));
11687 unsigned int msb
= inst
.operands
[1].imm
+ inst
.operands
[2].imm
;
11688 constraint (msb
> 32, _("bit-field extends past end of register"));
11689 /* The instruction encoding stores the LSB and MSB,
11690 not the LSB and width. */
11691 Rd
= inst
.operands
[0].reg
;
11692 reject_bad_reg (Rd
);
11693 inst
.instruction
|= Rd
<< 8;
11694 inst
.instruction
|= (inst
.operands
[1].imm
& 0x1c) << 10;
11695 inst
.instruction
|= (inst
.operands
[1].imm
& 0x03) << 6;
11696 inst
.instruction
|= msb
- 1;
11705 Rd
= inst
.operands
[0].reg
;
11706 reject_bad_reg (Rd
);
11708 /* #0 in second position is alternative syntax for bfc, which is
11709 the same instruction but with REG_PC in the Rm field. */
11710 if (!inst
.operands
[1].isreg
)
11714 Rn
= inst
.operands
[1].reg
;
11715 reject_bad_reg (Rn
);
11718 msb
= inst
.operands
[2].imm
+ inst
.operands
[3].imm
;
11719 constraint (msb
> 32, _("bit-field extends past end of register"));
11720 /* The instruction encoding stores the LSB and MSB,
11721 not the LSB and width. */
11722 inst
.instruction
|= Rd
<< 8;
11723 inst
.instruction
|= Rn
<< 16;
11724 inst
.instruction
|= (inst
.operands
[2].imm
& 0x1c) << 10;
11725 inst
.instruction
|= (inst
.operands
[2].imm
& 0x03) << 6;
11726 inst
.instruction
|= msb
- 1;
11734 Rd
= inst
.operands
[0].reg
;
11735 Rn
= inst
.operands
[1].reg
;
11737 reject_bad_reg (Rd
);
11738 reject_bad_reg (Rn
);
11740 constraint (inst
.operands
[2].imm
+ inst
.operands
[3].imm
> 32,
11741 _("bit-field extends past end of register"));
11742 inst
.instruction
|= Rd
<< 8;
11743 inst
.instruction
|= Rn
<< 16;
11744 inst
.instruction
|= (inst
.operands
[2].imm
& 0x1c) << 10;
11745 inst
.instruction
|= (inst
.operands
[2].imm
& 0x03) << 6;
11746 inst
.instruction
|= inst
.operands
[3].imm
- 1;
11749 /* ARM V5 Thumb BLX (argument parse)
11750 BLX <target_addr> which is BLX(1)
11751 BLX <Rm> which is BLX(2)
11752 Unfortunately, there are two different opcodes for this mnemonic.
11753 So, the insns[].value is not used, and the code here zaps values
11754 into inst.instruction.
11756 ??? How to take advantage of the additional two bits of displacement
11757 available in Thumb32 mode? Need new relocation? */
11762 set_pred_insn_type_last ();
11764 if (inst
.operands
[0].isreg
)
11766 constraint (inst
.operands
[0].reg
== REG_PC
, BAD_PC
);
11767 /* We have a register, so this is BLX(2). */
11768 inst
.instruction
|= inst
.operands
[0].reg
<< 3;
11772 /* No register. This must be BLX(1). */
11773 inst
.instruction
= 0xf000e800;
11774 encode_branch (BFD_RELOC_THUMB_PCREL_BLX
);
11783 bfd_reloc_code_real_type reloc
;
11786 set_pred_insn_type (IF_INSIDE_IT_LAST_INSN
);
11788 if (in_pred_block ())
11790 /* Conditional branches inside IT blocks are encoded as unconditional
11792 cond
= COND_ALWAYS
;
11797 if (cond
!= COND_ALWAYS
)
11798 opcode
= T_MNEM_bcond
;
11800 opcode
= inst
.instruction
;
11803 && (inst
.size_req
== 4
11804 || (inst
.size_req
!= 2
11805 && (inst
.operands
[0].hasreloc
11806 || inst
.relocs
[0].exp
.X_op
== O_constant
))))
11808 inst
.instruction
= THUMB_OP32(opcode
);
11809 if (cond
== COND_ALWAYS
)
11810 reloc
= BFD_RELOC_THUMB_PCREL_BRANCH25
;
11813 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v6t2
),
11814 _("selected architecture does not support "
11815 "wide conditional branch instruction"));
11817 gas_assert (cond
!= 0xF);
11818 inst
.instruction
|= cond
<< 22;
11819 reloc
= BFD_RELOC_THUMB_PCREL_BRANCH20
;
11824 inst
.instruction
= THUMB_OP16(opcode
);
11825 if (cond
== COND_ALWAYS
)
11826 reloc
= BFD_RELOC_THUMB_PCREL_BRANCH12
;
11829 inst
.instruction
|= cond
<< 8;
11830 reloc
= BFD_RELOC_THUMB_PCREL_BRANCH9
;
11832 /* Allow section relaxation. */
11833 if (unified_syntax
&& inst
.size_req
!= 2)
11834 inst
.relax
= opcode
;
11836 inst
.relocs
[0].type
= reloc
;
11837 inst
.relocs
[0].pc_rel
= 1;
11840 /* Actually do the work for Thumb state bkpt and hlt. The only difference
11841 between the two is the maximum immediate allowed - which is passed in
11844 do_t_bkpt_hlt1 (int range
)
11846 constraint (inst
.cond
!= COND_ALWAYS
,
11847 _("instruction is always unconditional"));
11848 if (inst
.operands
[0].present
)
11850 constraint (inst
.operands
[0].imm
> range
,
11851 _("immediate value out of range"));
11852 inst
.instruction
|= inst
.operands
[0].imm
;
11855 set_pred_insn_type (NEUTRAL_IT_INSN
);
11861 do_t_bkpt_hlt1 (63);
11867 do_t_bkpt_hlt1 (255);
11871 do_t_branch23 (void)
11873 set_pred_insn_type_last ();
11874 encode_branch (BFD_RELOC_THUMB_PCREL_BRANCH23
);
11876 /* md_apply_fix blows up with 'bl foo(PLT)' where foo is defined in
11877 this file. We used to simply ignore the PLT reloc type here --
11878 the branch encoding is now needed to deal with TLSCALL relocs.
11879 So if we see a PLT reloc now, put it back to how it used to be to
11880 keep the preexisting behaviour. */
11881 if (inst
.relocs
[0].type
== BFD_RELOC_ARM_PLT32
)
11882 inst
.relocs
[0].type
= BFD_RELOC_THUMB_PCREL_BRANCH23
;
11884 #if defined(OBJ_COFF)
11885 /* If the destination of the branch is a defined symbol which does not have
11886 the THUMB_FUNC attribute, then we must be calling a function which has
11887 the (interfacearm) attribute. We look for the Thumb entry point to that
11888 function and change the branch to refer to that function instead. */
11889 if ( inst
.relocs
[0].exp
.X_op
== O_symbol
11890 && inst
.relocs
[0].exp
.X_add_symbol
!= NULL
11891 && S_IS_DEFINED (inst
.relocs
[0].exp
.X_add_symbol
)
11892 && ! THUMB_IS_FUNC (inst
.relocs
[0].exp
.X_add_symbol
))
11893 inst
.relocs
[0].exp
.X_add_symbol
11894 = find_real_start (inst
.relocs
[0].exp
.X_add_symbol
);
11901 set_pred_insn_type_last ();
11902 inst
.instruction
|= inst
.operands
[0].reg
<< 3;
11903 /* ??? FIXME: Should add a hacky reloc here if reg is REG_PC. The reloc
11904 should cause the alignment to be checked once it is known. This is
11905 because BX PC only works if the instruction is word aligned. */
11913 set_pred_insn_type_last ();
11914 Rm
= inst
.operands
[0].reg
;
11915 reject_bad_reg (Rm
);
11916 inst
.instruction
|= Rm
<< 16;
11925 Rd
= inst
.operands
[0].reg
;
11926 Rm
= inst
.operands
[1].reg
;
11928 reject_bad_reg (Rd
);
11929 reject_bad_reg (Rm
);
11931 inst
.instruction
|= Rd
<< 8;
11932 inst
.instruction
|= Rm
<< 16;
11933 inst
.instruction
|= Rm
;
11939 set_pred_insn_type (OUTSIDE_PRED_INSN
);
11945 set_pred_insn_type (OUTSIDE_PRED_INSN
);
11946 inst
.instruction
|= inst
.operands
[0].imm
;
11952 set_pred_insn_type (OUTSIDE_PRED_INSN
);
11954 && (inst
.operands
[1].present
|| inst
.size_req
== 4)
11955 && ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v6_notm
))
11957 unsigned int imod
= (inst
.instruction
& 0x0030) >> 4;
11958 inst
.instruction
= 0xf3af8000;
11959 inst
.instruction
|= imod
<< 9;
11960 inst
.instruction
|= inst
.operands
[0].imm
<< 5;
11961 if (inst
.operands
[1].present
)
11962 inst
.instruction
|= 0x100 | inst
.operands
[1].imm
;
11966 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v1
)
11967 && (inst
.operands
[0].imm
& 4),
11968 _("selected processor does not support 'A' form "
11969 "of this instruction"));
11970 constraint (inst
.operands
[1].present
|| inst
.size_req
== 4,
11971 _("Thumb does not support the 2-argument "
11972 "form of this instruction"));
11973 inst
.instruction
|= inst
.operands
[0].imm
;
11977 /* THUMB CPY instruction (argument parse). */
11982 if (inst
.size_req
== 4)
11984 inst
.instruction
= THUMB_OP32 (T_MNEM_mov
);
11985 inst
.instruction
|= inst
.operands
[0].reg
<< 8;
11986 inst
.instruction
|= inst
.operands
[1].reg
;
11990 inst
.instruction
|= (inst
.operands
[0].reg
& 0x8) << 4;
11991 inst
.instruction
|= (inst
.operands
[0].reg
& 0x7);
11992 inst
.instruction
|= inst
.operands
[1].reg
<< 3;
11999 set_pred_insn_type (OUTSIDE_PRED_INSN
);
12000 constraint (inst
.operands
[0].reg
> 7, BAD_HIREG
);
12001 inst
.instruction
|= inst
.operands
[0].reg
;
12002 inst
.relocs
[0].pc_rel
= 1;
12003 inst
.relocs
[0].type
= BFD_RELOC_THUMB_PCREL_BRANCH7
;
12009 inst
.instruction
|= inst
.operands
[0].imm
;
12015 unsigned Rd
, Rn
, Rm
;
12017 Rd
= inst
.operands
[0].reg
;
12018 Rn
= (inst
.operands
[1].present
12019 ? inst
.operands
[1].reg
: Rd
);
12020 Rm
= inst
.operands
[2].reg
;
12022 reject_bad_reg (Rd
);
12023 reject_bad_reg (Rn
);
12024 reject_bad_reg (Rm
);
12026 inst
.instruction
|= Rd
<< 8;
12027 inst
.instruction
|= Rn
<< 16;
12028 inst
.instruction
|= Rm
;
12034 if (unified_syntax
&& inst
.size_req
== 4)
12035 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
12037 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
12043 unsigned int cond
= inst
.operands
[0].imm
;
12045 set_pred_insn_type (IT_INSN
);
12046 now_pred
.mask
= (inst
.instruction
& 0xf) | 0x10;
12047 now_pred
.cc
= cond
;
12048 now_pred
.warn_deprecated
= FALSE
;
12049 now_pred
.type
= SCALAR_PRED
;
12051 /* If the condition is a negative condition, invert the mask. */
12052 if ((cond
& 0x1) == 0x0)
12054 unsigned int mask
= inst
.instruction
& 0x000f;
12056 if ((mask
& 0x7) == 0)
12058 /* No conversion needed. */
12059 now_pred
.block_length
= 1;
12061 else if ((mask
& 0x3) == 0)
12064 now_pred
.block_length
= 2;
12066 else if ((mask
& 0x1) == 0)
12069 now_pred
.block_length
= 3;
12074 now_pred
.block_length
= 4;
12077 inst
.instruction
&= 0xfff0;
12078 inst
.instruction
|= mask
;
12081 inst
.instruction
|= cond
<< 4;
12084 /* Helper function used for both push/pop and ldm/stm. */
12086 encode_thumb2_multi (bfd_boolean do_io
, int base
, unsigned mask
,
12087 bfd_boolean writeback
)
12089 bfd_boolean load
, store
;
12091 gas_assert (base
!= -1 || !do_io
);
12092 load
= do_io
&& ((inst
.instruction
& (1 << 20)) != 0);
12093 store
= do_io
&& !load
;
12095 if (mask
& (1 << 13))
12096 inst
.error
= _("SP not allowed in register list");
12098 if (do_io
&& (mask
& (1 << base
)) != 0
12100 inst
.error
= _("having the base register in the register list when "
12101 "using write back is UNPREDICTABLE");
12105 if (mask
& (1 << 15))
12107 if (mask
& (1 << 14))
12108 inst
.error
= _("LR and PC should not both be in register list");
12110 set_pred_insn_type_last ();
12115 if (mask
& (1 << 15))
12116 inst
.error
= _("PC not allowed in register list");
12119 if (do_io
&& ((mask
& (mask
- 1)) == 0))
12121 /* Single register transfers implemented as str/ldr. */
12124 if (inst
.instruction
& (1 << 23))
12125 inst
.instruction
= 0x00000b04; /* ia! -> [base], #4 */
12127 inst
.instruction
= 0x00000d04; /* db! -> [base, #-4]! */
12131 if (inst
.instruction
& (1 << 23))
12132 inst
.instruction
= 0x00800000; /* ia -> [base] */
12134 inst
.instruction
= 0x00000c04; /* db -> [base, #-4] */
12137 inst
.instruction
|= 0xf8400000;
12139 inst
.instruction
|= 0x00100000;
12141 mask
= ffs (mask
) - 1;
12144 else if (writeback
)
12145 inst
.instruction
|= WRITE_BACK
;
12147 inst
.instruction
|= mask
;
12149 inst
.instruction
|= base
<< 16;
12155 /* This really doesn't seem worth it. */
12156 constraint (inst
.relocs
[0].type
!= BFD_RELOC_UNUSED
,
12157 _("expression too complex"));
12158 constraint (inst
.operands
[1].writeback
,
12159 _("Thumb load/store multiple does not support {reglist}^"));
12161 if (unified_syntax
)
12163 bfd_boolean narrow
;
12167 /* See if we can use a 16-bit instruction. */
12168 if (inst
.instruction
< 0xffff /* not ldmdb/stmdb */
12169 && inst
.size_req
!= 4
12170 && !(inst
.operands
[1].imm
& ~0xff))
12172 mask
= 1 << inst
.operands
[0].reg
;
12174 if (inst
.operands
[0].reg
<= 7)
12176 if (inst
.instruction
== T_MNEM_stmia
12177 ? inst
.operands
[0].writeback
12178 : (inst
.operands
[0].writeback
12179 == !(inst
.operands
[1].imm
& mask
)))
12181 if (inst
.instruction
== T_MNEM_stmia
12182 && (inst
.operands
[1].imm
& mask
)
12183 && (inst
.operands
[1].imm
& (mask
- 1)))
12184 as_warn (_("value stored for r%d is UNKNOWN"),
12185 inst
.operands
[0].reg
);
12187 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
12188 inst
.instruction
|= inst
.operands
[0].reg
<< 8;
12189 inst
.instruction
|= inst
.operands
[1].imm
;
12192 else if ((inst
.operands
[1].imm
& (inst
.operands
[1].imm
-1)) == 0)
12194 /* This means 1 register in reg list one of 3 situations:
12195 1. Instruction is stmia, but without writeback.
12196 2. lmdia without writeback, but with Rn not in
12198 3. ldmia with writeback, but with Rn in reglist.
12199 Case 3 is UNPREDICTABLE behaviour, so we handle
12200 case 1 and 2 which can be converted into a 16-bit
12201 str or ldr. The SP cases are handled below. */
12202 unsigned long opcode
;
12203 /* First, record an error for Case 3. */
12204 if (inst
.operands
[1].imm
& mask
12205 && inst
.operands
[0].writeback
)
12207 _("having the base register in the register list when "
12208 "using write back is UNPREDICTABLE");
12210 opcode
= (inst
.instruction
== T_MNEM_stmia
? T_MNEM_str
12212 inst
.instruction
= THUMB_OP16 (opcode
);
12213 inst
.instruction
|= inst
.operands
[0].reg
<< 3;
12214 inst
.instruction
|= (ffs (inst
.operands
[1].imm
)-1);
12218 else if (inst
.operands
[0] .reg
== REG_SP
)
12220 if (inst
.operands
[0].writeback
)
12223 THUMB_OP16 (inst
.instruction
== T_MNEM_stmia
12224 ? T_MNEM_push
: T_MNEM_pop
);
12225 inst
.instruction
|= inst
.operands
[1].imm
;
12228 else if ((inst
.operands
[1].imm
& (inst
.operands
[1].imm
-1)) == 0)
12231 THUMB_OP16 (inst
.instruction
== T_MNEM_stmia
12232 ? T_MNEM_str_sp
: T_MNEM_ldr_sp
);
12233 inst
.instruction
|= ((ffs (inst
.operands
[1].imm
)-1) << 8);
12241 if (inst
.instruction
< 0xffff)
12242 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
12244 encode_thumb2_multi (TRUE
/* do_io */, inst
.operands
[0].reg
,
12245 inst
.operands
[1].imm
,
12246 inst
.operands
[0].writeback
);
12251 constraint (inst
.operands
[0].reg
> 7
12252 || (inst
.operands
[1].imm
& ~0xff), BAD_HIREG
);
12253 constraint (inst
.instruction
!= T_MNEM_ldmia
12254 && inst
.instruction
!= T_MNEM_stmia
,
12255 _("Thumb-2 instruction only valid in unified syntax"));
12256 if (inst
.instruction
== T_MNEM_stmia
)
12258 if (!inst
.operands
[0].writeback
)
12259 as_warn (_("this instruction will write back the base register"));
12260 if ((inst
.operands
[1].imm
& (1 << inst
.operands
[0].reg
))
12261 && (inst
.operands
[1].imm
& ((1 << inst
.operands
[0].reg
) - 1)))
12262 as_warn (_("value stored for r%d is UNKNOWN"),
12263 inst
.operands
[0].reg
);
12267 if (!inst
.operands
[0].writeback
12268 && !(inst
.operands
[1].imm
& (1 << inst
.operands
[0].reg
)))
12269 as_warn (_("this instruction will write back the base register"));
12270 else if (inst
.operands
[0].writeback
12271 && (inst
.operands
[1].imm
& (1 << inst
.operands
[0].reg
)))
12272 as_warn (_("this instruction will not write back the base register"));
12275 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
12276 inst
.instruction
|= inst
.operands
[0].reg
<< 8;
12277 inst
.instruction
|= inst
.operands
[1].imm
;
12284 constraint (!inst
.operands
[1].isreg
|| !inst
.operands
[1].preind
12285 || inst
.operands
[1].postind
|| inst
.operands
[1].writeback
12286 || inst
.operands
[1].immisreg
|| inst
.operands
[1].shifted
12287 || inst
.operands
[1].negative
,
12290 constraint ((inst
.operands
[1].reg
== REG_PC
), BAD_PC
);
12292 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
12293 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
12294 inst
.relocs
[0].type
= BFD_RELOC_ARM_T32_OFFSET_U8
;
12300 if (!inst
.operands
[1].present
)
12302 constraint (inst
.operands
[0].reg
== REG_LR
,
12303 _("r14 not allowed as first register "
12304 "when second register is omitted"));
12305 inst
.operands
[1].reg
= inst
.operands
[0].reg
+ 1;
12307 constraint (inst
.operands
[0].reg
== inst
.operands
[1].reg
,
12310 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
12311 inst
.instruction
|= inst
.operands
[1].reg
<< 8;
12312 inst
.instruction
|= inst
.operands
[2].reg
<< 16;
12318 unsigned long opcode
;
12321 if (inst
.operands
[0].isreg
12322 && !inst
.operands
[0].preind
12323 && inst
.operands
[0].reg
== REG_PC
)
12324 set_pred_insn_type_last ();
12326 opcode
= inst
.instruction
;
12327 if (unified_syntax
)
12329 if (!inst
.operands
[1].isreg
)
12331 if (opcode
<= 0xffff)
12332 inst
.instruction
= THUMB_OP32 (opcode
);
12333 if (move_or_literal_pool (0, CONST_THUMB
, /*mode_3=*/FALSE
))
12336 if (inst
.operands
[1].isreg
12337 && !inst
.operands
[1].writeback
12338 && !inst
.operands
[1].shifted
&& !inst
.operands
[1].postind
12339 && !inst
.operands
[1].negative
&& inst
.operands
[0].reg
<= 7
12340 && opcode
<= 0xffff
12341 && inst
.size_req
!= 4)
12343 /* Insn may have a 16-bit form. */
12344 Rn
= inst
.operands
[1].reg
;
12345 if (inst
.operands
[1].immisreg
)
12347 inst
.instruction
= THUMB_OP16 (opcode
);
12349 if (Rn
<= 7 && inst
.operands
[1].imm
<= 7)
12351 else if (opcode
!= T_MNEM_ldr
&& opcode
!= T_MNEM_str
)
12352 reject_bad_reg (inst
.operands
[1].imm
);
12354 else if ((Rn
<= 7 && opcode
!= T_MNEM_ldrsh
12355 && opcode
!= T_MNEM_ldrsb
)
12356 || ((Rn
== REG_PC
|| Rn
== REG_SP
) && opcode
== T_MNEM_ldr
)
12357 || (Rn
== REG_SP
&& opcode
== T_MNEM_str
))
12364 if (inst
.relocs
[0].pc_rel
)
12365 opcode
= T_MNEM_ldr_pc2
;
12367 opcode
= T_MNEM_ldr_pc
;
12371 if (opcode
== T_MNEM_ldr
)
12372 opcode
= T_MNEM_ldr_sp
;
12374 opcode
= T_MNEM_str_sp
;
12376 inst
.instruction
= inst
.operands
[0].reg
<< 8;
12380 inst
.instruction
= inst
.operands
[0].reg
;
12381 inst
.instruction
|= inst
.operands
[1].reg
<< 3;
12383 inst
.instruction
|= THUMB_OP16 (opcode
);
12384 if (inst
.size_req
== 2)
12385 inst
.relocs
[0].type
= BFD_RELOC_ARM_THUMB_OFFSET
;
12387 inst
.relax
= opcode
;
12391 /* Definitely a 32-bit variant. */
12393 /* Warning for Erratum 752419. */
12394 if (opcode
== T_MNEM_ldr
12395 && inst
.operands
[0].reg
== REG_SP
12396 && inst
.operands
[1].writeback
== 1
12397 && !inst
.operands
[1].immisreg
)
12399 if (no_cpu_selected ()
12400 || (ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v7
)
12401 && !ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v7a
)
12402 && !ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v7r
)))
12403 as_warn (_("This instruction may be unpredictable "
12404 "if executed on M-profile cores "
12405 "with interrupts enabled."));
12408 /* Do some validations regarding addressing modes. */
12409 if (inst
.operands
[1].immisreg
)
12410 reject_bad_reg (inst
.operands
[1].imm
);
12412 constraint (inst
.operands
[1].writeback
== 1
12413 && inst
.operands
[0].reg
== inst
.operands
[1].reg
,
12416 inst
.instruction
= THUMB_OP32 (opcode
);
12417 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
12418 encode_thumb32_addr_mode (1, /*is_t=*/FALSE
, /*is_d=*/FALSE
);
12419 check_ldr_r15_aligned ();
12423 constraint (inst
.operands
[0].reg
> 7, BAD_HIREG
);
12425 if (inst
.instruction
== T_MNEM_ldrsh
|| inst
.instruction
== T_MNEM_ldrsb
)
12427 /* Only [Rn,Rm] is acceptable. */
12428 constraint (inst
.operands
[1].reg
> 7 || inst
.operands
[1].imm
> 7, BAD_HIREG
);
12429 constraint (!inst
.operands
[1].isreg
|| !inst
.operands
[1].immisreg
12430 || inst
.operands
[1].postind
|| inst
.operands
[1].shifted
12431 || inst
.operands
[1].negative
,
12432 _("Thumb does not support this addressing mode"));
12433 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
12437 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
12438 if (!inst
.operands
[1].isreg
)
12439 if (move_or_literal_pool (0, CONST_THUMB
, /*mode_3=*/FALSE
))
12442 constraint (!inst
.operands
[1].preind
12443 || inst
.operands
[1].shifted
12444 || inst
.operands
[1].writeback
,
12445 _("Thumb does not support this addressing mode"));
12446 if (inst
.operands
[1].reg
== REG_PC
|| inst
.operands
[1].reg
== REG_SP
)
12448 constraint (inst
.instruction
& 0x0600,
12449 _("byte or halfword not valid for base register"));
12450 constraint (inst
.operands
[1].reg
== REG_PC
12451 && !(inst
.instruction
& THUMB_LOAD_BIT
),
12452 _("r15 based store not allowed"));
12453 constraint (inst
.operands
[1].immisreg
,
12454 _("invalid base register for register offset"));
12456 if (inst
.operands
[1].reg
== REG_PC
)
12457 inst
.instruction
= T_OPCODE_LDR_PC
;
12458 else if (inst
.instruction
& THUMB_LOAD_BIT
)
12459 inst
.instruction
= T_OPCODE_LDR_SP
;
12461 inst
.instruction
= T_OPCODE_STR_SP
;
12463 inst
.instruction
|= inst
.operands
[0].reg
<< 8;
12464 inst
.relocs
[0].type
= BFD_RELOC_ARM_THUMB_OFFSET
;
12468 constraint (inst
.operands
[1].reg
> 7, BAD_HIREG
);
12469 if (!inst
.operands
[1].immisreg
)
12471 /* Immediate offset. */
12472 inst
.instruction
|= inst
.operands
[0].reg
;
12473 inst
.instruction
|= inst
.operands
[1].reg
<< 3;
12474 inst
.relocs
[0].type
= BFD_RELOC_ARM_THUMB_OFFSET
;
12478 /* Register offset. */
12479 constraint (inst
.operands
[1].imm
> 7, BAD_HIREG
);
12480 constraint (inst
.operands
[1].negative
,
12481 _("Thumb does not support this addressing mode"));
12484 switch (inst
.instruction
)
12486 case T_OPCODE_STR_IW
: inst
.instruction
= T_OPCODE_STR_RW
; break;
12487 case T_OPCODE_STR_IH
: inst
.instruction
= T_OPCODE_STR_RH
; break;
12488 case T_OPCODE_STR_IB
: inst
.instruction
= T_OPCODE_STR_RB
; break;
12489 case T_OPCODE_LDR_IW
: inst
.instruction
= T_OPCODE_LDR_RW
; break;
12490 case T_OPCODE_LDR_IH
: inst
.instruction
= T_OPCODE_LDR_RH
; break;
12491 case T_OPCODE_LDR_IB
: inst
.instruction
= T_OPCODE_LDR_RB
; break;
12492 case 0x5600 /* ldrsb */:
12493 case 0x5e00 /* ldrsh */: break;
12497 inst
.instruction
|= inst
.operands
[0].reg
;
12498 inst
.instruction
|= inst
.operands
[1].reg
<< 3;
12499 inst
.instruction
|= inst
.operands
[1].imm
<< 6;
12505 if (!inst
.operands
[1].present
)
12507 inst
.operands
[1].reg
= inst
.operands
[0].reg
+ 1;
12508 constraint (inst
.operands
[0].reg
== REG_LR
,
12509 _("r14 not allowed here"));
12510 constraint (inst
.operands
[0].reg
== REG_R12
,
12511 _("r12 not allowed here"));
12514 if (inst
.operands
[2].writeback
12515 && (inst
.operands
[0].reg
== inst
.operands
[2].reg
12516 || inst
.operands
[1].reg
== inst
.operands
[2].reg
))
12517 as_warn (_("base register written back, and overlaps "
12518 "one of transfer registers"));
12520 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
12521 inst
.instruction
|= inst
.operands
[1].reg
<< 8;
12522 encode_thumb32_addr_mode (2, /*is_t=*/FALSE
, /*is_d=*/TRUE
);
12528 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
12529 encode_thumb32_addr_mode (1, /*is_t=*/TRUE
, /*is_d=*/FALSE
);
12535 unsigned Rd
, Rn
, Rm
, Ra
;
12537 Rd
= inst
.operands
[0].reg
;
12538 Rn
= inst
.operands
[1].reg
;
12539 Rm
= inst
.operands
[2].reg
;
12540 Ra
= inst
.operands
[3].reg
;
12542 reject_bad_reg (Rd
);
12543 reject_bad_reg (Rn
);
12544 reject_bad_reg (Rm
);
12545 reject_bad_reg (Ra
);
12547 inst
.instruction
|= Rd
<< 8;
12548 inst
.instruction
|= Rn
<< 16;
12549 inst
.instruction
|= Rm
;
12550 inst
.instruction
|= Ra
<< 12;
12556 unsigned RdLo
, RdHi
, Rn
, Rm
;
12558 RdLo
= inst
.operands
[0].reg
;
12559 RdHi
= inst
.operands
[1].reg
;
12560 Rn
= inst
.operands
[2].reg
;
12561 Rm
= inst
.operands
[3].reg
;
12563 reject_bad_reg (RdLo
);
12564 reject_bad_reg (RdHi
);
12565 reject_bad_reg (Rn
);
12566 reject_bad_reg (Rm
);
12568 inst
.instruction
|= RdLo
<< 12;
12569 inst
.instruction
|= RdHi
<< 8;
12570 inst
.instruction
|= Rn
<< 16;
12571 inst
.instruction
|= Rm
;
12575 do_t_mov_cmp (void)
12579 Rn
= inst
.operands
[0].reg
;
12580 Rm
= inst
.operands
[1].reg
;
12583 set_pred_insn_type_last ();
12585 if (unified_syntax
)
12587 int r0off
= (inst
.instruction
== T_MNEM_mov
12588 || inst
.instruction
== T_MNEM_movs
) ? 8 : 16;
12589 unsigned long opcode
;
12590 bfd_boolean narrow
;
12591 bfd_boolean low_regs
;
12593 low_regs
= (Rn
<= 7 && Rm
<= 7);
12594 opcode
= inst
.instruction
;
12595 if (in_pred_block ())
12596 narrow
= opcode
!= T_MNEM_movs
;
12598 narrow
= opcode
!= T_MNEM_movs
|| low_regs
;
12599 if (inst
.size_req
== 4
12600 || inst
.operands
[1].shifted
)
12603 /* MOVS PC, LR is encoded as SUBS PC, LR, #0. */
12604 if (opcode
== T_MNEM_movs
&& inst
.operands
[1].isreg
12605 && !inst
.operands
[1].shifted
12609 inst
.instruction
= T2_SUBS_PC_LR
;
12613 if (opcode
== T_MNEM_cmp
)
12615 constraint (Rn
== REG_PC
, BAD_PC
);
12618 /* In the Thumb-2 ISA, use of R13 as Rm is deprecated,
12620 warn_deprecated_sp (Rm
);
12621 /* R15 was documented as a valid choice for Rm in ARMv6,
12622 but as UNPREDICTABLE in ARMv7. ARM's proprietary
12623 tools reject R15, so we do too. */
12624 constraint (Rm
== REG_PC
, BAD_PC
);
12627 reject_bad_reg (Rm
);
12629 else if (opcode
== T_MNEM_mov
12630 || opcode
== T_MNEM_movs
)
12632 if (inst
.operands
[1].isreg
)
12634 if (opcode
== T_MNEM_movs
)
12636 reject_bad_reg (Rn
);
12637 reject_bad_reg (Rm
);
12641 /* This is mov.n. */
12642 if ((Rn
== REG_SP
|| Rn
== REG_PC
)
12643 && (Rm
== REG_SP
|| Rm
== REG_PC
))
12645 as_tsktsk (_("Use of r%u as a source register is "
12646 "deprecated when r%u is the destination "
12647 "register."), Rm
, Rn
);
12652 /* This is mov.w. */
12653 constraint (Rn
== REG_PC
, BAD_PC
);
12654 constraint (Rm
== REG_PC
, BAD_PC
);
12655 if (!ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v8
))
12656 constraint (Rn
== REG_SP
&& Rm
== REG_SP
, BAD_SP
);
12660 reject_bad_reg (Rn
);
12663 if (!inst
.operands
[1].isreg
)
12665 /* Immediate operand. */
12666 if (!in_pred_block () && opcode
== T_MNEM_mov
)
12668 if (low_regs
&& narrow
)
12670 inst
.instruction
= THUMB_OP16 (opcode
);
12671 inst
.instruction
|= Rn
<< 8;
12672 if (inst
.relocs
[0].type
< BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
12673 || inst
.relocs
[0].type
> BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC
)
12675 if (inst
.size_req
== 2)
12676 inst
.relocs
[0].type
= BFD_RELOC_ARM_THUMB_IMM
;
12678 inst
.relax
= opcode
;
12683 constraint ((inst
.relocs
[0].type
12684 >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
)
12685 && (inst
.relocs
[0].type
12686 <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC
) ,
12687 THUMB1_RELOC_ONLY
);
12689 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
12690 inst
.instruction
= (inst
.instruction
& 0xe1ffffff) | 0x10000000;
12691 inst
.instruction
|= Rn
<< r0off
;
12692 inst
.relocs
[0].type
= BFD_RELOC_ARM_T32_IMMEDIATE
;
12695 else if (inst
.operands
[1].shifted
&& inst
.operands
[1].immisreg
12696 && (inst
.instruction
== T_MNEM_mov
12697 || inst
.instruction
== T_MNEM_movs
))
12699 /* Register shifts are encoded as separate shift instructions. */
12700 bfd_boolean flags
= (inst
.instruction
== T_MNEM_movs
);
12702 if (in_pred_block ())
12707 if (inst
.size_req
== 4)
12710 if (!low_regs
|| inst
.operands
[1].imm
> 7)
12716 switch (inst
.operands
[1].shift_kind
)
12719 opcode
= narrow
? T_OPCODE_LSL_R
: THUMB_OP32 (T_MNEM_lsl
);
12722 opcode
= narrow
? T_OPCODE_ASR_R
: THUMB_OP32 (T_MNEM_asr
);
12725 opcode
= narrow
? T_OPCODE_LSR_R
: THUMB_OP32 (T_MNEM_lsr
);
12728 opcode
= narrow
? T_OPCODE_ROR_R
: THUMB_OP32 (T_MNEM_ror
);
12734 inst
.instruction
= opcode
;
12737 inst
.instruction
|= Rn
;
12738 inst
.instruction
|= inst
.operands
[1].imm
<< 3;
12743 inst
.instruction
|= CONDS_BIT
;
12745 inst
.instruction
|= Rn
<< 8;
12746 inst
.instruction
|= Rm
<< 16;
12747 inst
.instruction
|= inst
.operands
[1].imm
;
12752 /* Some mov with immediate shift have narrow variants.
12753 Register shifts are handled above. */
12754 if (low_regs
&& inst
.operands
[1].shifted
12755 && (inst
.instruction
== T_MNEM_mov
12756 || inst
.instruction
== T_MNEM_movs
))
12758 if (in_pred_block ())
12759 narrow
= (inst
.instruction
== T_MNEM_mov
);
12761 narrow
= (inst
.instruction
== T_MNEM_movs
);
12766 switch (inst
.operands
[1].shift_kind
)
12768 case SHIFT_LSL
: inst
.instruction
= T_OPCODE_LSL_I
; break;
12769 case SHIFT_LSR
: inst
.instruction
= T_OPCODE_LSR_I
; break;
12770 case SHIFT_ASR
: inst
.instruction
= T_OPCODE_ASR_I
; break;
12771 default: narrow
= FALSE
; break;
12777 inst
.instruction
|= Rn
;
12778 inst
.instruction
|= Rm
<< 3;
12779 inst
.relocs
[0].type
= BFD_RELOC_ARM_THUMB_SHIFT
;
12783 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
12784 inst
.instruction
|= Rn
<< r0off
;
12785 encode_thumb32_shifted_operand (1);
12789 switch (inst
.instruction
)
12792 /* In v4t or v5t a move of two lowregs produces unpredictable
12793 results. Don't allow this. */
12796 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v6
),
12797 "MOV Rd, Rs with two low registers is not "
12798 "permitted on this architecture");
12799 ARM_MERGE_FEATURE_SETS (thumb_arch_used
, thumb_arch_used
,
12803 inst
.instruction
= T_OPCODE_MOV_HR
;
12804 inst
.instruction
|= (Rn
& 0x8) << 4;
12805 inst
.instruction
|= (Rn
& 0x7);
12806 inst
.instruction
|= Rm
<< 3;
12810 /* We know we have low registers at this point.
12811 Generate LSLS Rd, Rs, #0. */
12812 inst
.instruction
= T_OPCODE_LSL_I
;
12813 inst
.instruction
|= Rn
;
12814 inst
.instruction
|= Rm
<< 3;
12820 inst
.instruction
= T_OPCODE_CMP_LR
;
12821 inst
.instruction
|= Rn
;
12822 inst
.instruction
|= Rm
<< 3;
12826 inst
.instruction
= T_OPCODE_CMP_HR
;
12827 inst
.instruction
|= (Rn
& 0x8) << 4;
12828 inst
.instruction
|= (Rn
& 0x7);
12829 inst
.instruction
|= Rm
<< 3;
12836 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
12838 /* PR 10443: Do not silently ignore shifted operands. */
12839 constraint (inst
.operands
[1].shifted
,
12840 _("shifts in CMP/MOV instructions are only supported in unified syntax"));
12842 if (inst
.operands
[1].isreg
)
12844 if (Rn
< 8 && Rm
< 8)
12846 /* A move of two lowregs is encoded as ADD Rd, Rs, #0
12847 since a MOV instruction produces unpredictable results. */
12848 if (inst
.instruction
== T_OPCODE_MOV_I8
)
12849 inst
.instruction
= T_OPCODE_ADD_I3
;
12851 inst
.instruction
= T_OPCODE_CMP_LR
;
12853 inst
.instruction
|= Rn
;
12854 inst
.instruction
|= Rm
<< 3;
12858 if (inst
.instruction
== T_OPCODE_MOV_I8
)
12859 inst
.instruction
= T_OPCODE_MOV_HR
;
12861 inst
.instruction
= T_OPCODE_CMP_HR
;
12867 constraint (Rn
> 7,
12868 _("only lo regs allowed with immediate"));
12869 inst
.instruction
|= Rn
<< 8;
12870 inst
.relocs
[0].type
= BFD_RELOC_ARM_THUMB_IMM
;
12881 top
= (inst
.instruction
& 0x00800000) != 0;
12882 if (inst
.relocs
[0].type
== BFD_RELOC_ARM_MOVW
)
12884 constraint (top
, _(":lower16: not allowed in this instruction"));
12885 inst
.relocs
[0].type
= BFD_RELOC_ARM_THUMB_MOVW
;
12887 else if (inst
.relocs
[0].type
== BFD_RELOC_ARM_MOVT
)
12889 constraint (!top
, _(":upper16: not allowed in this instruction"));
12890 inst
.relocs
[0].type
= BFD_RELOC_ARM_THUMB_MOVT
;
12893 Rd
= inst
.operands
[0].reg
;
12894 reject_bad_reg (Rd
);
12896 inst
.instruction
|= Rd
<< 8;
12897 if (inst
.relocs
[0].type
== BFD_RELOC_UNUSED
)
12899 imm
= inst
.relocs
[0].exp
.X_add_number
;
12900 inst
.instruction
|= (imm
& 0xf000) << 4;
12901 inst
.instruction
|= (imm
& 0x0800) << 15;
12902 inst
.instruction
|= (imm
& 0x0700) << 4;
12903 inst
.instruction
|= (imm
& 0x00ff);
12908 do_t_mvn_tst (void)
12912 Rn
= inst
.operands
[0].reg
;
12913 Rm
= inst
.operands
[1].reg
;
12915 if (inst
.instruction
== T_MNEM_cmp
12916 || inst
.instruction
== T_MNEM_cmn
)
12917 constraint (Rn
== REG_PC
, BAD_PC
);
12919 reject_bad_reg (Rn
);
12920 reject_bad_reg (Rm
);
12922 if (unified_syntax
)
12924 int r0off
= (inst
.instruction
== T_MNEM_mvn
12925 || inst
.instruction
== T_MNEM_mvns
) ? 8 : 16;
12926 bfd_boolean narrow
;
12928 if (inst
.size_req
== 4
12929 || inst
.instruction
> 0xffff
12930 || inst
.operands
[1].shifted
12931 || Rn
> 7 || Rm
> 7)
12933 else if (inst
.instruction
== T_MNEM_cmn
12934 || inst
.instruction
== T_MNEM_tst
)
12936 else if (THUMB_SETS_FLAGS (inst
.instruction
))
12937 narrow
= !in_pred_block ();
12939 narrow
= in_pred_block ();
12941 if (!inst
.operands
[1].isreg
)
12943 /* For an immediate, we always generate a 32-bit opcode;
12944 section relaxation will shrink it later if possible. */
12945 if (inst
.instruction
< 0xffff)
12946 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
12947 inst
.instruction
= (inst
.instruction
& 0xe1ffffff) | 0x10000000;
12948 inst
.instruction
|= Rn
<< r0off
;
12949 inst
.relocs
[0].type
= BFD_RELOC_ARM_T32_IMMEDIATE
;
12953 /* See if we can do this with a 16-bit instruction. */
12956 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
12957 inst
.instruction
|= Rn
;
12958 inst
.instruction
|= Rm
<< 3;
12962 constraint (inst
.operands
[1].shifted
12963 && inst
.operands
[1].immisreg
,
12964 _("shift must be constant"));
12965 if (inst
.instruction
< 0xffff)
12966 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
12967 inst
.instruction
|= Rn
<< r0off
;
12968 encode_thumb32_shifted_operand (1);
12974 constraint (inst
.instruction
> 0xffff
12975 || inst
.instruction
== T_MNEM_mvns
, BAD_THUMB32
);
12976 constraint (!inst
.operands
[1].isreg
|| inst
.operands
[1].shifted
,
12977 _("unshifted register required"));
12978 constraint (Rn
> 7 || Rm
> 7,
12981 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
12982 inst
.instruction
|= Rn
;
12983 inst
.instruction
|= Rm
<< 3;
12992 if (do_vfp_nsyn_mrs () == SUCCESS
)
12995 Rd
= inst
.operands
[0].reg
;
12996 reject_bad_reg (Rd
);
12997 inst
.instruction
|= Rd
<< 8;
12999 if (inst
.operands
[1].isreg
)
13001 unsigned br
= inst
.operands
[1].reg
;
13002 if (((br
& 0x200) == 0) && ((br
& 0xf000) != 0xf000))
13003 as_bad (_("bad register for mrs"));
13005 inst
.instruction
|= br
& (0xf << 16);
13006 inst
.instruction
|= (br
& 0x300) >> 4;
13007 inst
.instruction
|= (br
& SPSR_BIT
) >> 2;
13011 int flags
= inst
.operands
[1].imm
& (PSR_c
|PSR_x
|PSR_s
|PSR_f
|SPSR_BIT
);
13013 if (ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_m
))
13015 /* PR gas/12698: The constraint is only applied for m_profile.
13016 If the user has specified -march=all, we want to ignore it as
13017 we are building for any CPU type, including non-m variants. */
13018 bfd_boolean m_profile
=
13019 !ARM_FEATURE_CORE_EQUAL (selected_cpu
, arm_arch_any
);
13020 constraint ((flags
!= 0) && m_profile
, _("selected processor does "
13021 "not support requested special purpose register"));
13024 /* mrs only accepts APSR/CPSR/SPSR/CPSR_all/SPSR_all (for non-M profile
13026 constraint ((flags
& ~SPSR_BIT
) != (PSR_c
|PSR_f
),
13027 _("'APSR', 'CPSR' or 'SPSR' expected"));
13029 inst
.instruction
|= (flags
& SPSR_BIT
) >> 2;
13030 inst
.instruction
|= inst
.operands
[1].imm
& 0xff;
13031 inst
.instruction
|= 0xf0000;
13041 if (do_vfp_nsyn_msr () == SUCCESS
)
13044 constraint (!inst
.operands
[1].isreg
,
13045 _("Thumb encoding does not support an immediate here"));
13047 if (inst
.operands
[0].isreg
)
13048 flags
= (int)(inst
.operands
[0].reg
);
13050 flags
= inst
.operands
[0].imm
;
13052 if (ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_m
))
13054 int bits
= inst
.operands
[0].imm
& (PSR_c
|PSR_x
|PSR_s
|PSR_f
|SPSR_BIT
);
13056 /* PR gas/12698: The constraint is only applied for m_profile.
13057 If the user has specified -march=all, we want to ignore it as
13058 we are building for any CPU type, including non-m variants. */
13059 bfd_boolean m_profile
=
13060 !ARM_FEATURE_CORE_EQUAL (selected_cpu
, arm_arch_any
);
13061 constraint (((ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_v6_dsp
)
13062 && (bits
& ~(PSR_s
| PSR_f
)) != 0)
13063 || (!ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_v6_dsp
)
13064 && bits
!= PSR_f
)) && m_profile
,
13065 _("selected processor does not support requested special "
13066 "purpose register"));
13069 constraint ((flags
& 0xff) != 0, _("selected processor does not support "
13070 "requested special purpose register"));
13072 Rn
= inst
.operands
[1].reg
;
13073 reject_bad_reg (Rn
);
13075 inst
.instruction
|= (flags
& SPSR_BIT
) >> 2;
13076 inst
.instruction
|= (flags
& 0xf0000) >> 8;
13077 inst
.instruction
|= (flags
& 0x300) >> 4;
13078 inst
.instruction
|= (flags
& 0xff);
13079 inst
.instruction
|= Rn
<< 16;
13085 bfd_boolean narrow
;
13086 unsigned Rd
, Rn
, Rm
;
13088 if (!inst
.operands
[2].present
)
13089 inst
.operands
[2].reg
= inst
.operands
[0].reg
;
13091 Rd
= inst
.operands
[0].reg
;
13092 Rn
= inst
.operands
[1].reg
;
13093 Rm
= inst
.operands
[2].reg
;
13095 if (unified_syntax
)
13097 if (inst
.size_req
== 4
13103 else if (inst
.instruction
== T_MNEM_muls
)
13104 narrow
= !in_pred_block ();
13106 narrow
= in_pred_block ();
13110 constraint (inst
.instruction
== T_MNEM_muls
, BAD_THUMB32
);
13111 constraint (Rn
> 7 || Rm
> 7,
13118 /* 16-bit MULS/Conditional MUL. */
13119 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
13120 inst
.instruction
|= Rd
;
13123 inst
.instruction
|= Rm
<< 3;
13125 inst
.instruction
|= Rn
<< 3;
13127 constraint (1, _("dest must overlap one source register"));
13131 constraint (inst
.instruction
!= T_MNEM_mul
,
13132 _("Thumb-2 MUL must not set flags"));
13134 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
13135 inst
.instruction
|= Rd
<< 8;
13136 inst
.instruction
|= Rn
<< 16;
13137 inst
.instruction
|= Rm
<< 0;
13139 reject_bad_reg (Rd
);
13140 reject_bad_reg (Rn
);
13141 reject_bad_reg (Rm
);
13148 unsigned RdLo
, RdHi
, Rn
, Rm
;
13150 RdLo
= inst
.operands
[0].reg
;
13151 RdHi
= inst
.operands
[1].reg
;
13152 Rn
= inst
.operands
[2].reg
;
13153 Rm
= inst
.operands
[3].reg
;
13155 reject_bad_reg (RdLo
);
13156 reject_bad_reg (RdHi
);
13157 reject_bad_reg (Rn
);
13158 reject_bad_reg (Rm
);
13160 inst
.instruction
|= RdLo
<< 12;
13161 inst
.instruction
|= RdHi
<< 8;
13162 inst
.instruction
|= Rn
<< 16;
13163 inst
.instruction
|= Rm
;
13166 as_tsktsk (_("rdhi and rdlo must be different"));
13172 set_pred_insn_type (NEUTRAL_IT_INSN
);
13174 if (unified_syntax
)
13176 if (inst
.size_req
== 4 || inst
.operands
[0].imm
> 15)
13178 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
13179 inst
.instruction
|= inst
.operands
[0].imm
;
13183 /* PR9722: Check for Thumb2 availability before
13184 generating a thumb2 nop instruction. */
13185 if (ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_v6t2
))
13187 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
13188 inst
.instruction
|= inst
.operands
[0].imm
<< 4;
13191 inst
.instruction
= 0x46c0;
13196 constraint (inst
.operands
[0].present
,
13197 _("Thumb does not support NOP with hints"));
13198 inst
.instruction
= 0x46c0;
13205 if (unified_syntax
)
13207 bfd_boolean narrow
;
13209 if (THUMB_SETS_FLAGS (inst
.instruction
))
13210 narrow
= !in_pred_block ();
13212 narrow
= in_pred_block ();
13213 if (inst
.operands
[0].reg
> 7 || inst
.operands
[1].reg
> 7)
13215 if (inst
.size_req
== 4)
13220 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
13221 inst
.instruction
|= inst
.operands
[0].reg
<< 8;
13222 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
13226 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
13227 inst
.instruction
|= inst
.operands
[0].reg
;
13228 inst
.instruction
|= inst
.operands
[1].reg
<< 3;
13233 constraint (inst
.operands
[0].reg
> 7 || inst
.operands
[1].reg
> 7,
13235 constraint (THUMB_SETS_FLAGS (inst
.instruction
), BAD_THUMB32
);
13237 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
13238 inst
.instruction
|= inst
.operands
[0].reg
;
13239 inst
.instruction
|= inst
.operands
[1].reg
<< 3;
13248 Rd
= inst
.operands
[0].reg
;
13249 Rn
= inst
.operands
[1].present
? inst
.operands
[1].reg
: Rd
;
13251 reject_bad_reg (Rd
);
13252 /* Rn == REG_SP is unpredictable; Rn == REG_PC is MVN. */
13253 reject_bad_reg (Rn
);
13255 inst
.instruction
|= Rd
<< 8;
13256 inst
.instruction
|= Rn
<< 16;
13258 if (!inst
.operands
[2].isreg
)
13260 inst
.instruction
= (inst
.instruction
& 0xe1ffffff) | 0x10000000;
13261 inst
.relocs
[0].type
= BFD_RELOC_ARM_T32_IMMEDIATE
;
13267 Rm
= inst
.operands
[2].reg
;
13268 reject_bad_reg (Rm
);
13270 constraint (inst
.operands
[2].shifted
13271 && inst
.operands
[2].immisreg
,
13272 _("shift must be constant"));
13273 encode_thumb32_shifted_operand (2);
13280 unsigned Rd
, Rn
, Rm
;
13282 Rd
= inst
.operands
[0].reg
;
13283 Rn
= inst
.operands
[1].reg
;
13284 Rm
= inst
.operands
[2].reg
;
13286 reject_bad_reg (Rd
);
13287 reject_bad_reg (Rn
);
13288 reject_bad_reg (Rm
);
13290 inst
.instruction
|= Rd
<< 8;
13291 inst
.instruction
|= Rn
<< 16;
13292 inst
.instruction
|= Rm
;
13293 if (inst
.operands
[3].present
)
13295 unsigned int val
= inst
.relocs
[0].exp
.X_add_number
;
13296 constraint (inst
.relocs
[0].exp
.X_op
!= O_constant
,
13297 _("expression too complex"));
13298 inst
.instruction
|= (val
& 0x1c) << 10;
13299 inst
.instruction
|= (val
& 0x03) << 6;
13306 if (!inst
.operands
[3].present
)
13310 inst
.instruction
&= ~0x00000020;
13312 /* PR 10168. Swap the Rm and Rn registers. */
13313 Rtmp
= inst
.operands
[1].reg
;
13314 inst
.operands
[1].reg
= inst
.operands
[2].reg
;
13315 inst
.operands
[2].reg
= Rtmp
;
13323 if (inst
.operands
[0].immisreg
)
13324 reject_bad_reg (inst
.operands
[0].imm
);
13326 encode_thumb32_addr_mode (0, /*is_t=*/FALSE
, /*is_d=*/FALSE
);
13330 do_t_push_pop (void)
13334 constraint (inst
.operands
[0].writeback
,
13335 _("push/pop do not support {reglist}^"));
13336 constraint (inst
.relocs
[0].type
!= BFD_RELOC_UNUSED
,
13337 _("expression too complex"));
13339 mask
= inst
.operands
[0].imm
;
13340 if (inst
.size_req
!= 4 && (mask
& ~0xff) == 0)
13341 inst
.instruction
= THUMB_OP16 (inst
.instruction
) | mask
;
13342 else if (inst
.size_req
!= 4
13343 && (mask
& ~0xff) == (1U << (inst
.instruction
== T_MNEM_push
13344 ? REG_LR
: REG_PC
)))
13346 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
13347 inst
.instruction
|= THUMB_PP_PC_LR
;
13348 inst
.instruction
|= mask
& 0xff;
13350 else if (unified_syntax
)
13352 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
13353 encode_thumb2_multi (TRUE
/* do_io */, 13, mask
, TRUE
);
13357 inst
.error
= _("invalid register list to push/pop instruction");
13365 if (unified_syntax
)
13366 encode_thumb2_multi (FALSE
/* do_io */, -1, inst
.operands
[0].imm
, FALSE
);
13369 inst
.error
= _("invalid register list to push/pop instruction");
13375 do_t_vscclrm (void)
13377 if (inst
.operands
[0].issingle
)
13379 inst
.instruction
|= (inst
.operands
[0].reg
& 0x1) << 22;
13380 inst
.instruction
|= (inst
.operands
[0].reg
& 0x1e) << 11;
13381 inst
.instruction
|= inst
.operands
[0].imm
;
13385 inst
.instruction
|= (inst
.operands
[0].reg
& 0x10) << 18;
13386 inst
.instruction
|= (inst
.operands
[0].reg
& 0xf) << 12;
13387 inst
.instruction
|= 1 << 8;
13388 inst
.instruction
|= inst
.operands
[0].imm
<< 1;
13397 Rd
= inst
.operands
[0].reg
;
13398 Rm
= inst
.operands
[1].reg
;
13400 reject_bad_reg (Rd
);
13401 reject_bad_reg (Rm
);
13403 inst
.instruction
|= Rd
<< 8;
13404 inst
.instruction
|= Rm
<< 16;
13405 inst
.instruction
|= Rm
;
13413 Rd
= inst
.operands
[0].reg
;
13414 Rm
= inst
.operands
[1].reg
;
13416 reject_bad_reg (Rd
);
13417 reject_bad_reg (Rm
);
13419 if (Rd
<= 7 && Rm
<= 7
13420 && inst
.size_req
!= 4)
13422 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
13423 inst
.instruction
|= Rd
;
13424 inst
.instruction
|= Rm
<< 3;
13426 else if (unified_syntax
)
13428 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
13429 inst
.instruction
|= Rd
<< 8;
13430 inst
.instruction
|= Rm
<< 16;
13431 inst
.instruction
|= Rm
;
13434 inst
.error
= BAD_HIREG
;
13442 Rd
= inst
.operands
[0].reg
;
13443 Rm
= inst
.operands
[1].reg
;
13445 reject_bad_reg (Rd
);
13446 reject_bad_reg (Rm
);
13448 inst
.instruction
|= Rd
<< 8;
13449 inst
.instruction
|= Rm
;
13457 Rd
= inst
.operands
[0].reg
;
13458 Rs
= (inst
.operands
[1].present
13459 ? inst
.operands
[1].reg
/* Rd, Rs, foo */
13460 : inst
.operands
[0].reg
); /* Rd, foo -> Rd, Rd, foo */
13462 reject_bad_reg (Rd
);
13463 reject_bad_reg (Rs
);
13464 if (inst
.operands
[2].isreg
)
13465 reject_bad_reg (inst
.operands
[2].reg
);
13467 inst
.instruction
|= Rd
<< 8;
13468 inst
.instruction
|= Rs
<< 16;
13469 if (!inst
.operands
[2].isreg
)
13471 bfd_boolean narrow
;
13473 if ((inst
.instruction
& 0x00100000) != 0)
13474 narrow
= !in_pred_block ();
13476 narrow
= in_pred_block ();
13478 if (Rd
> 7 || Rs
> 7)
13481 if (inst
.size_req
== 4 || !unified_syntax
)
13484 if (inst
.relocs
[0].exp
.X_op
!= O_constant
13485 || inst
.relocs
[0].exp
.X_add_number
!= 0)
13488 /* Turn rsb #0 into 16-bit neg. We should probably do this via
13489 relaxation, but it doesn't seem worth the hassle. */
13492 inst
.relocs
[0].type
= BFD_RELOC_UNUSED
;
13493 inst
.instruction
= THUMB_OP16 (T_MNEM_negs
);
13494 inst
.instruction
|= Rs
<< 3;
13495 inst
.instruction
|= Rd
;
13499 inst
.instruction
= (inst
.instruction
& 0xe1ffffff) | 0x10000000;
13500 inst
.relocs
[0].type
= BFD_RELOC_ARM_T32_IMMEDIATE
;
13504 encode_thumb32_shifted_operand (2);
13510 if (warn_on_deprecated
13511 && ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v8
))
13512 as_tsktsk (_("setend use is deprecated for ARMv8"));
13514 set_pred_insn_type (OUTSIDE_PRED_INSN
);
13515 if (inst
.operands
[0].imm
)
13516 inst
.instruction
|= 0x8;
13522 if (!inst
.operands
[1].present
)
13523 inst
.operands
[1].reg
= inst
.operands
[0].reg
;
13525 if (unified_syntax
)
13527 bfd_boolean narrow
;
13530 switch (inst
.instruction
)
13533 case T_MNEM_asrs
: shift_kind
= SHIFT_ASR
; break;
13535 case T_MNEM_lsls
: shift_kind
= SHIFT_LSL
; break;
13537 case T_MNEM_lsrs
: shift_kind
= SHIFT_LSR
; break;
13539 case T_MNEM_rors
: shift_kind
= SHIFT_ROR
; break;
13543 if (THUMB_SETS_FLAGS (inst
.instruction
))
13544 narrow
= !in_pred_block ();
13546 narrow
= in_pred_block ();
13547 if (inst
.operands
[0].reg
> 7 || inst
.operands
[1].reg
> 7)
13549 if (!inst
.operands
[2].isreg
&& shift_kind
== SHIFT_ROR
)
13551 if (inst
.operands
[2].isreg
13552 && (inst
.operands
[1].reg
!= inst
.operands
[0].reg
13553 || inst
.operands
[2].reg
> 7))
13555 if (inst
.size_req
== 4)
13558 reject_bad_reg (inst
.operands
[0].reg
);
13559 reject_bad_reg (inst
.operands
[1].reg
);
13563 if (inst
.operands
[2].isreg
)
13565 reject_bad_reg (inst
.operands
[2].reg
);
13566 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
13567 inst
.instruction
|= inst
.operands
[0].reg
<< 8;
13568 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
13569 inst
.instruction
|= inst
.operands
[2].reg
;
13571 /* PR 12854: Error on extraneous shifts. */
13572 constraint (inst
.operands
[2].shifted
,
13573 _("extraneous shift as part of operand to shift insn"));
13577 inst
.operands
[1].shifted
= 1;
13578 inst
.operands
[1].shift_kind
= shift_kind
;
13579 inst
.instruction
= THUMB_OP32 (THUMB_SETS_FLAGS (inst
.instruction
)
13580 ? T_MNEM_movs
: T_MNEM_mov
);
13581 inst
.instruction
|= inst
.operands
[0].reg
<< 8;
13582 encode_thumb32_shifted_operand (1);
13583 /* Prevent the incorrect generation of an ARM_IMMEDIATE fixup. */
13584 inst
.relocs
[0].type
= BFD_RELOC_UNUSED
;
13589 if (inst
.operands
[2].isreg
)
13591 switch (shift_kind
)
13593 case SHIFT_ASR
: inst
.instruction
= T_OPCODE_ASR_R
; break;
13594 case SHIFT_LSL
: inst
.instruction
= T_OPCODE_LSL_R
; break;
13595 case SHIFT_LSR
: inst
.instruction
= T_OPCODE_LSR_R
; break;
13596 case SHIFT_ROR
: inst
.instruction
= T_OPCODE_ROR_R
; break;
13600 inst
.instruction
|= inst
.operands
[0].reg
;
13601 inst
.instruction
|= inst
.operands
[2].reg
<< 3;
13603 /* PR 12854: Error on extraneous shifts. */
13604 constraint (inst
.operands
[2].shifted
,
13605 _("extraneous shift as part of operand to shift insn"));
13609 switch (shift_kind
)
13611 case SHIFT_ASR
: inst
.instruction
= T_OPCODE_ASR_I
; break;
13612 case SHIFT_LSL
: inst
.instruction
= T_OPCODE_LSL_I
; break;
13613 case SHIFT_LSR
: inst
.instruction
= T_OPCODE_LSR_I
; break;
13616 inst
.relocs
[0].type
= BFD_RELOC_ARM_THUMB_SHIFT
;
13617 inst
.instruction
|= inst
.operands
[0].reg
;
13618 inst
.instruction
|= inst
.operands
[1].reg
<< 3;
13624 constraint (inst
.operands
[0].reg
> 7
13625 || inst
.operands
[1].reg
> 7, BAD_HIREG
);
13626 constraint (THUMB_SETS_FLAGS (inst
.instruction
), BAD_THUMB32
);
13628 if (inst
.operands
[2].isreg
) /* Rd, {Rs,} Rn */
13630 constraint (inst
.operands
[2].reg
> 7, BAD_HIREG
);
13631 constraint (inst
.operands
[0].reg
!= inst
.operands
[1].reg
,
13632 _("source1 and dest must be same register"));
13634 switch (inst
.instruction
)
13636 case T_MNEM_asr
: inst
.instruction
= T_OPCODE_ASR_R
; break;
13637 case T_MNEM_lsl
: inst
.instruction
= T_OPCODE_LSL_R
; break;
13638 case T_MNEM_lsr
: inst
.instruction
= T_OPCODE_LSR_R
; break;
13639 case T_MNEM_ror
: inst
.instruction
= T_OPCODE_ROR_R
; break;
13643 inst
.instruction
|= inst
.operands
[0].reg
;
13644 inst
.instruction
|= inst
.operands
[2].reg
<< 3;
13646 /* PR 12854: Error on extraneous shifts. */
13647 constraint (inst
.operands
[2].shifted
,
13648 _("extraneous shift as part of operand to shift insn"));
13652 switch (inst
.instruction
)
13654 case T_MNEM_asr
: inst
.instruction
= T_OPCODE_ASR_I
; break;
13655 case T_MNEM_lsl
: inst
.instruction
= T_OPCODE_LSL_I
; break;
13656 case T_MNEM_lsr
: inst
.instruction
= T_OPCODE_LSR_I
; break;
13657 case T_MNEM_ror
: inst
.error
= _("ror #imm not supported"); return;
13660 inst
.relocs
[0].type
= BFD_RELOC_ARM_THUMB_SHIFT
;
13661 inst
.instruction
|= inst
.operands
[0].reg
;
13662 inst
.instruction
|= inst
.operands
[1].reg
<< 3;
13670 unsigned Rd
, Rn
, Rm
;
13672 Rd
= inst
.operands
[0].reg
;
13673 Rn
= inst
.operands
[1].reg
;
13674 Rm
= inst
.operands
[2].reg
;
13676 reject_bad_reg (Rd
);
13677 reject_bad_reg (Rn
);
13678 reject_bad_reg (Rm
);
13680 inst
.instruction
|= Rd
<< 8;
13681 inst
.instruction
|= Rn
<< 16;
13682 inst
.instruction
|= Rm
;
13688 unsigned Rd
, Rn
, Rm
;
13690 Rd
= inst
.operands
[0].reg
;
13691 Rm
= inst
.operands
[1].reg
;
13692 Rn
= inst
.operands
[2].reg
;
13694 reject_bad_reg (Rd
);
13695 reject_bad_reg (Rn
);
13696 reject_bad_reg (Rm
);
13698 inst
.instruction
|= Rd
<< 8;
13699 inst
.instruction
|= Rn
<< 16;
13700 inst
.instruction
|= Rm
;
13706 unsigned int value
= inst
.relocs
[0].exp
.X_add_number
;
13707 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v7a
),
13708 _("SMC is not permitted on this architecture"));
13709 constraint (inst
.relocs
[0].exp
.X_op
!= O_constant
,
13710 _("expression too complex"));
13711 inst
.relocs
[0].type
= BFD_RELOC_UNUSED
;
13712 inst
.instruction
|= (value
& 0xf000) >> 12;
13713 inst
.instruction
|= (value
& 0x0ff0);
13714 inst
.instruction
|= (value
& 0x000f) << 16;
13715 /* PR gas/15623: SMC instructions must be last in an IT block. */
13716 set_pred_insn_type_last ();
13722 unsigned int value
= inst
.relocs
[0].exp
.X_add_number
;
13724 inst
.relocs
[0].type
= BFD_RELOC_UNUSED
;
13725 inst
.instruction
|= (value
& 0x0fff);
13726 inst
.instruction
|= (value
& 0xf000) << 4;
13730 do_t_ssat_usat (int bias
)
13734 Rd
= inst
.operands
[0].reg
;
13735 Rn
= inst
.operands
[2].reg
;
13737 reject_bad_reg (Rd
);
13738 reject_bad_reg (Rn
);
13740 inst
.instruction
|= Rd
<< 8;
13741 inst
.instruction
|= inst
.operands
[1].imm
- bias
;
13742 inst
.instruction
|= Rn
<< 16;
13744 if (inst
.operands
[3].present
)
13746 offsetT shift_amount
= inst
.relocs
[0].exp
.X_add_number
;
13748 inst
.relocs
[0].type
= BFD_RELOC_UNUSED
;
13750 constraint (inst
.relocs
[0].exp
.X_op
!= O_constant
,
13751 _("expression too complex"));
13753 if (shift_amount
!= 0)
13755 constraint (shift_amount
> 31,
13756 _("shift expression is too large"));
13758 if (inst
.operands
[3].shift_kind
== SHIFT_ASR
)
13759 inst
.instruction
|= 0x00200000; /* sh bit. */
13761 inst
.instruction
|= (shift_amount
& 0x1c) << 10;
13762 inst
.instruction
|= (shift_amount
& 0x03) << 6;
13770 do_t_ssat_usat (1);
13778 Rd
= inst
.operands
[0].reg
;
13779 Rn
= inst
.operands
[2].reg
;
13781 reject_bad_reg (Rd
);
13782 reject_bad_reg (Rn
);
13784 inst
.instruction
|= Rd
<< 8;
13785 inst
.instruction
|= inst
.operands
[1].imm
- 1;
13786 inst
.instruction
|= Rn
<< 16;
13792 constraint (!inst
.operands
[2].isreg
|| !inst
.operands
[2].preind
13793 || inst
.operands
[2].postind
|| inst
.operands
[2].writeback
13794 || inst
.operands
[2].immisreg
|| inst
.operands
[2].shifted
13795 || inst
.operands
[2].negative
,
13798 constraint (inst
.operands
[2].reg
== REG_PC
, BAD_PC
);
13800 inst
.instruction
|= inst
.operands
[0].reg
<< 8;
13801 inst
.instruction
|= inst
.operands
[1].reg
<< 12;
13802 inst
.instruction
|= inst
.operands
[2].reg
<< 16;
13803 inst
.relocs
[0].type
= BFD_RELOC_ARM_T32_OFFSET_U8
;
13809 if (!inst
.operands
[2].present
)
13810 inst
.operands
[2].reg
= inst
.operands
[1].reg
+ 1;
13812 constraint (inst
.operands
[0].reg
== inst
.operands
[1].reg
13813 || inst
.operands
[0].reg
== inst
.operands
[2].reg
13814 || inst
.operands
[0].reg
== inst
.operands
[3].reg
,
13817 inst
.instruction
|= inst
.operands
[0].reg
;
13818 inst
.instruction
|= inst
.operands
[1].reg
<< 12;
13819 inst
.instruction
|= inst
.operands
[2].reg
<< 8;
13820 inst
.instruction
|= inst
.operands
[3].reg
<< 16;
13826 unsigned Rd
, Rn
, Rm
;
13828 Rd
= inst
.operands
[0].reg
;
13829 Rn
= inst
.operands
[1].reg
;
13830 Rm
= inst
.operands
[2].reg
;
13832 reject_bad_reg (Rd
);
13833 reject_bad_reg (Rn
);
13834 reject_bad_reg (Rm
);
13836 inst
.instruction
|= Rd
<< 8;
13837 inst
.instruction
|= Rn
<< 16;
13838 inst
.instruction
|= Rm
;
13839 inst
.instruction
|= inst
.operands
[3].imm
<< 4;
13847 Rd
= inst
.operands
[0].reg
;
13848 Rm
= inst
.operands
[1].reg
;
13850 reject_bad_reg (Rd
);
13851 reject_bad_reg (Rm
);
13853 if (inst
.instruction
<= 0xffff
13854 && inst
.size_req
!= 4
13855 && Rd
<= 7 && Rm
<= 7
13856 && (!inst
.operands
[2].present
|| inst
.operands
[2].imm
== 0))
13858 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
13859 inst
.instruction
|= Rd
;
13860 inst
.instruction
|= Rm
<< 3;
13862 else if (unified_syntax
)
13864 if (inst
.instruction
<= 0xffff)
13865 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
13866 inst
.instruction
|= Rd
<< 8;
13867 inst
.instruction
|= Rm
;
13868 inst
.instruction
|= inst
.operands
[2].imm
<< 4;
13872 constraint (inst
.operands
[2].present
&& inst
.operands
[2].imm
!= 0,
13873 _("Thumb encoding does not support rotation"));
13874 constraint (1, BAD_HIREG
);
13881 inst
.relocs
[0].type
= BFD_RELOC_ARM_SWI
;
13890 half
= (inst
.instruction
& 0x10) != 0;
13891 set_pred_insn_type_last ();
13892 constraint (inst
.operands
[0].immisreg
,
13893 _("instruction requires register index"));
13895 Rn
= inst
.operands
[0].reg
;
13896 Rm
= inst
.operands
[0].imm
;
13898 if (!ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v8
))
13899 constraint (Rn
== REG_SP
, BAD_SP
);
13900 reject_bad_reg (Rm
);
13902 constraint (!half
&& inst
.operands
[0].shifted
,
13903 _("instruction does not allow shifted index"));
13904 inst
.instruction
|= (Rn
<< 16) | Rm
;
13910 if (!inst
.operands
[0].present
)
13911 inst
.operands
[0].imm
= 0;
13913 if ((unsigned int) inst
.operands
[0].imm
> 255 || inst
.size_req
== 4)
13915 constraint (inst
.size_req
== 2,
13916 _("immediate value out of range"));
13917 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
13918 inst
.instruction
|= (inst
.operands
[0].imm
& 0xf000u
) << 4;
13919 inst
.instruction
|= (inst
.operands
[0].imm
& 0x0fffu
) << 0;
13923 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
13924 inst
.instruction
|= inst
.operands
[0].imm
;
13927 set_pred_insn_type (NEUTRAL_IT_INSN
);
13934 do_t_ssat_usat (0);
13942 Rd
= inst
.operands
[0].reg
;
13943 Rn
= inst
.operands
[2].reg
;
13945 reject_bad_reg (Rd
);
13946 reject_bad_reg (Rn
);
13948 inst
.instruction
|= Rd
<< 8;
13949 inst
.instruction
|= inst
.operands
[1].imm
;
13950 inst
.instruction
|= Rn
<< 16;
13953 /* Checking the range of the branch offset (VAL) with NBITS bits
13954 and IS_SIGNED signedness. Also checks the LSB to be 0. */
13956 v8_1_branch_value_check (int val
, int nbits
, int is_signed
)
13958 gas_assert (nbits
> 0 && nbits
<= 32);
13961 int cmp
= (1 << (nbits
- 1));
13962 if ((val
< -cmp
) || (val
>= cmp
) || (val
& 0x01))
13967 if ((val
<= 0) || (val
>= (1 << nbits
)) || (val
& 0x1))
13973 /* For branches in Armv8.1-M Mainline. */
13975 do_t_branch_future (void)
13977 unsigned long insn
= inst
.instruction
;
13979 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
13980 if (inst
.operands
[0].hasreloc
== 0)
13982 if (v8_1_branch_value_check (inst
.operands
[0].imm
, 5, FALSE
) == FAIL
)
13983 as_bad (BAD_BRANCH_OFF
);
13985 inst
.instruction
|= ((inst
.operands
[0].imm
& 0x1f) >> 1) << 23;
13989 inst
.relocs
[0].type
= BFD_RELOC_THUMB_PCREL_BRANCH5
;
13990 inst
.relocs
[0].pc_rel
= 1;
13996 if (inst
.operands
[1].hasreloc
== 0)
13998 int val
= inst
.operands
[1].imm
;
13999 if (v8_1_branch_value_check (inst
.operands
[1].imm
, 17, TRUE
) == FAIL
)
14000 as_bad (BAD_BRANCH_OFF
);
14002 int immA
= (val
& 0x0001f000) >> 12;
14003 int immB
= (val
& 0x00000ffc) >> 2;
14004 int immC
= (val
& 0x00000002) >> 1;
14005 inst
.instruction
|= (immA
<< 16) | (immB
<< 1) | (immC
<< 11);
14009 inst
.relocs
[1].type
= BFD_RELOC_ARM_THUMB_BF17
;
14010 inst
.relocs
[1].pc_rel
= 1;
14015 if (inst
.operands
[1].hasreloc
== 0)
14017 int val
= inst
.operands
[1].imm
;
14018 if (v8_1_branch_value_check (inst
.operands
[1].imm
, 19, TRUE
) == FAIL
)
14019 as_bad (BAD_BRANCH_OFF
);
14021 int immA
= (val
& 0x0007f000) >> 12;
14022 int immB
= (val
& 0x00000ffc) >> 2;
14023 int immC
= (val
& 0x00000002) >> 1;
14024 inst
.instruction
|= (immA
<< 16) | (immB
<< 1) | (immC
<< 11);
14028 inst
.relocs
[1].type
= BFD_RELOC_ARM_THUMB_BF19
;
14029 inst
.relocs
[1].pc_rel
= 1;
14033 case T_MNEM_bfcsel
:
14035 if (inst
.operands
[1].hasreloc
== 0)
14037 int val
= inst
.operands
[1].imm
;
14038 int immA
= (val
& 0x00001000) >> 12;
14039 int immB
= (val
& 0x00000ffc) >> 2;
14040 int immC
= (val
& 0x00000002) >> 1;
14041 inst
.instruction
|= (immA
<< 16) | (immB
<< 1) | (immC
<< 11);
14045 inst
.relocs
[1].type
= BFD_RELOC_ARM_THUMB_BF13
;
14046 inst
.relocs
[1].pc_rel
= 1;
14050 if (inst
.operands
[2].hasreloc
== 0)
14052 constraint ((inst
.operands
[0].hasreloc
!= 0), BAD_ARGS
);
14053 int val2
= inst
.operands
[2].imm
;
14054 int val0
= inst
.operands
[0].imm
& 0x1f;
14055 int diff
= val2
- val0
;
14057 inst
.instruction
|= 1 << 17; /* T bit. */
14058 else if (diff
!= 2)
14059 as_bad (_("out of range label-relative fixup value"));
14063 constraint ((inst
.operands
[0].hasreloc
== 0), BAD_ARGS
);
14064 inst
.relocs
[2].type
= BFD_RELOC_THUMB_PCREL_BFCSEL
;
14065 inst
.relocs
[2].pc_rel
= 1;
14069 constraint (inst
.cond
!= COND_ALWAYS
, BAD_COND
);
14070 inst
.instruction
|= (inst
.operands
[3].imm
& 0xf) << 18;
14075 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
14082 /* Helper function for do_t_loloop to handle relocations. */
14084 v8_1_loop_reloc (int is_le
)
14086 if (inst
.relocs
[0].exp
.X_op
== O_constant
)
14088 int value
= inst
.relocs
[0].exp
.X_add_number
;
14089 value
= (is_le
) ? -value
: value
;
14091 if (v8_1_branch_value_check (value
, 12, FALSE
) == FAIL
)
14092 as_bad (BAD_BRANCH_OFF
);
14096 immh
= (value
& 0x00000ffc) >> 2;
14097 imml
= (value
& 0x00000002) >> 1;
14099 inst
.instruction
|= (imml
<< 11) | (immh
<< 1);
14103 inst
.relocs
[0].type
= BFD_RELOC_ARM_THUMB_LOOP12
;
14104 inst
.relocs
[0].pc_rel
= 1;
14108 /* To handle the Scalar Low Overhead Loop instructions
14109 in Armv8.1-M Mainline. */
14113 unsigned long insn
= inst
.instruction
;
14115 set_pred_insn_type (OUTSIDE_PRED_INSN
);
14116 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
14122 if (!inst
.operands
[0].present
)
14123 inst
.instruction
|= 1 << 21;
14125 v8_1_loop_reloc (TRUE
);
14129 v8_1_loop_reloc (FALSE
);
14130 /* Fall through. */
14132 constraint (inst
.operands
[1].isreg
!= 1, BAD_ARGS
);
14133 inst
.instruction
|= (inst
.operands
[1].reg
<< 16);
14140 /* MVE instruction encoder helpers. */
14141 #define M_MNEM_vabav 0xee800f01
14142 #define M_MNEM_vmladav 0xeef00e00
14143 #define M_MNEM_vmladava 0xeef00e20
14144 #define M_MNEM_vmladavx 0xeef01e00
14145 #define M_MNEM_vmladavax 0xeef01e20
14146 #define M_MNEM_vmlsdav 0xeef00e01
14147 #define M_MNEM_vmlsdava 0xeef00e21
14148 #define M_MNEM_vmlsdavx 0xeef01e01
14149 #define M_MNEM_vmlsdavax 0xeef01e21
14150 #define M_MNEM_vmullt 0xee011e00
14151 #define M_MNEM_vmullb 0xee010e00
14152 #define M_MNEM_vst20 0xfc801e00
14153 #define M_MNEM_vst21 0xfc801e20
14154 #define M_MNEM_vst40 0xfc801e01
14155 #define M_MNEM_vst41 0xfc801e21
14156 #define M_MNEM_vst42 0xfc801e41
14157 #define M_MNEM_vst43 0xfc801e61
14158 #define M_MNEM_vld20 0xfc901e00
14159 #define M_MNEM_vld21 0xfc901e20
14160 #define M_MNEM_vld40 0xfc901e01
14161 #define M_MNEM_vld41 0xfc901e21
14162 #define M_MNEM_vld42 0xfc901e41
14163 #define M_MNEM_vld43 0xfc901e61
14164 #define M_MNEM_vstrb 0xec000e00
14165 #define M_MNEM_vstrh 0xec000e10
14166 #define M_MNEM_vstrw 0xec000e40
14167 #define M_MNEM_vstrd 0xec000e50
14168 #define M_MNEM_vldrb 0xec100e00
14169 #define M_MNEM_vldrh 0xec100e10
14170 #define M_MNEM_vldrw 0xec100e40
14171 #define M_MNEM_vldrd 0xec100e50
14172 #define M_MNEM_vmovlt 0xeea01f40
14173 #define M_MNEM_vmovlb 0xeea00f40
14174 #define M_MNEM_vmovnt 0xfe311e81
14175 #define M_MNEM_vmovnb 0xfe310e81
14176 #define M_MNEM_vadc 0xee300f00
14177 #define M_MNEM_vadci 0xee301f00
14178 #define M_MNEM_vbrsr 0xfe011e60
14179 #define M_MNEM_vaddlv 0xee890f00
14180 #define M_MNEM_vaddlva 0xee890f20
14181 #define M_MNEM_vaddv 0xeef10f00
14182 #define M_MNEM_vaddva 0xeef10f20
14183 #define M_MNEM_vddup 0xee011f6e
14184 #define M_MNEM_vdwdup 0xee011f60
14185 #define M_MNEM_vidup 0xee010f6e
14186 #define M_MNEM_viwdup 0xee010f60
14187 #define M_MNEM_vmaxv 0xeee20f00
14188 #define M_MNEM_vmaxav 0xeee00f00
14189 #define M_MNEM_vminv 0xeee20f80
14190 #define M_MNEM_vminav 0xeee00f80
14191 #define M_MNEM_vmlaldav 0xee800e00
14192 #define M_MNEM_vmlaldava 0xee800e20
14193 #define M_MNEM_vmlaldavx 0xee801e00
14194 #define M_MNEM_vmlaldavax 0xee801e20
14195 #define M_MNEM_vmlsldav 0xee800e01
14196 #define M_MNEM_vmlsldava 0xee800e21
14197 #define M_MNEM_vmlsldavx 0xee801e01
14198 #define M_MNEM_vmlsldavax 0xee801e21
14199 #define M_MNEM_vrmlaldavhx 0xee801f00
14200 #define M_MNEM_vrmlaldavhax 0xee801f20
14201 #define M_MNEM_vrmlsldavh 0xfe800e01
14202 #define M_MNEM_vrmlsldavha 0xfe800e21
14203 #define M_MNEM_vrmlsldavhx 0xfe801e01
14204 #define M_MNEM_vrmlsldavhax 0xfe801e21
14206 /* Neon instruction encoder helpers. */
14208 /* Encodings for the different types for various Neon opcodes. */
14210 /* An "invalid" code for the following tables. */
14213 struct neon_tab_entry
14216 unsigned float_or_poly
;
14217 unsigned scalar_or_imm
;
14220 /* Map overloaded Neon opcodes to their respective encodings. */
14221 #define NEON_ENC_TAB \
14222 X(vabd, 0x0000700, 0x1200d00, N_INV), \
14223 X(vabdl, 0x0800700, N_INV, N_INV), \
14224 X(vmax, 0x0000600, 0x0000f00, N_INV), \
14225 X(vmin, 0x0000610, 0x0200f00, N_INV), \
14226 X(vpadd, 0x0000b10, 0x1000d00, N_INV), \
14227 X(vpmax, 0x0000a00, 0x1000f00, N_INV), \
14228 X(vpmin, 0x0000a10, 0x1200f00, N_INV), \
14229 X(vadd, 0x0000800, 0x0000d00, N_INV), \
14230 X(vaddl, 0x0800000, N_INV, N_INV), \
14231 X(vsub, 0x1000800, 0x0200d00, N_INV), \
14232 X(vsubl, 0x0800200, N_INV, N_INV), \
14233 X(vceq, 0x1000810, 0x0000e00, 0x1b10100), \
14234 X(vcge, 0x0000310, 0x1000e00, 0x1b10080), \
14235 X(vcgt, 0x0000300, 0x1200e00, 0x1b10000), \
14236 /* Register variants of the following two instructions are encoded as
14237 vcge / vcgt with the operands reversed. */ \
14238 X(vclt, 0x0000300, 0x1200e00, 0x1b10200), \
14239 X(vcle, 0x0000310, 0x1000e00, 0x1b10180), \
14240 X(vfma, N_INV, 0x0000c10, N_INV), \
14241 X(vfms, N_INV, 0x0200c10, N_INV), \
14242 X(vmla, 0x0000900, 0x0000d10, 0x0800040), \
14243 X(vmls, 0x1000900, 0x0200d10, 0x0800440), \
14244 X(vmul, 0x0000910, 0x1000d10, 0x0800840), \
14245 X(vmull, 0x0800c00, 0x0800e00, 0x0800a40), /* polynomial not float. */ \
14246 X(vmlal, 0x0800800, N_INV, 0x0800240), \
14247 X(vmlsl, 0x0800a00, N_INV, 0x0800640), \
14248 X(vqdmlal, 0x0800900, N_INV, 0x0800340), \
14249 X(vqdmlsl, 0x0800b00, N_INV, 0x0800740), \
14250 X(vqdmull, 0x0800d00, N_INV, 0x0800b40), \
14251 X(vqdmulh, 0x0000b00, N_INV, 0x0800c40), \
14252 X(vqrdmulh, 0x1000b00, N_INV, 0x0800d40), \
14253 X(vqrdmlah, 0x3000b10, N_INV, 0x0800e40), \
14254 X(vqrdmlsh, 0x3000c10, N_INV, 0x0800f40), \
14255 X(vshl, 0x0000400, N_INV, 0x0800510), \
14256 X(vqshl, 0x0000410, N_INV, 0x0800710), \
14257 X(vand, 0x0000110, N_INV, 0x0800030), \
14258 X(vbic, 0x0100110, N_INV, 0x0800030), \
14259 X(veor, 0x1000110, N_INV, N_INV), \
14260 X(vorn, 0x0300110, N_INV, 0x0800010), \
14261 X(vorr, 0x0200110, N_INV, 0x0800010), \
14262 X(vmvn, 0x1b00580, N_INV, 0x0800030), \
14263 X(vshll, 0x1b20300, N_INV, 0x0800a10), /* max shift, immediate. */ \
14264 X(vcvt, 0x1b30600, N_INV, 0x0800e10), /* integer, fixed-point. */ \
14265 X(vdup, 0xe800b10, N_INV, 0x1b00c00), /* arm, scalar. */ \
14266 X(vld1, 0x0200000, 0x0a00000, 0x0a00c00), /* interlv, lane, dup. */ \
14267 X(vst1, 0x0000000, 0x0800000, N_INV), \
14268 X(vld2, 0x0200100, 0x0a00100, 0x0a00d00), \
14269 X(vst2, 0x0000100, 0x0800100, N_INV), \
14270 X(vld3, 0x0200200, 0x0a00200, 0x0a00e00), \
14271 X(vst3, 0x0000200, 0x0800200, N_INV), \
14272 X(vld4, 0x0200300, 0x0a00300, 0x0a00f00), \
14273 X(vst4, 0x0000300, 0x0800300, N_INV), \
14274 X(vmovn, 0x1b20200, N_INV, N_INV), \
14275 X(vtrn, 0x1b20080, N_INV, N_INV), \
14276 X(vqmovn, 0x1b20200, N_INV, N_INV), \
14277 X(vqmovun, 0x1b20240, N_INV, N_INV), \
14278 X(vnmul, 0xe200a40, 0xe200b40, N_INV), \
14279 X(vnmla, 0xe100a40, 0xe100b40, N_INV), \
14280 X(vnmls, 0xe100a00, 0xe100b00, N_INV), \
14281 X(vfnma, 0xe900a40, 0xe900b40, N_INV), \
14282 X(vfnms, 0xe900a00, 0xe900b00, N_INV), \
14283 X(vcmp, 0xeb40a40, 0xeb40b40, N_INV), \
14284 X(vcmpz, 0xeb50a40, 0xeb50b40, N_INV), \
14285 X(vcmpe, 0xeb40ac0, 0xeb40bc0, N_INV), \
14286 X(vcmpez, 0xeb50ac0, 0xeb50bc0, N_INV), \
14287 X(vseleq, 0xe000a00, N_INV, N_INV), \
14288 X(vselvs, 0xe100a00, N_INV, N_INV), \
14289 X(vselge, 0xe200a00, N_INV, N_INV), \
14290 X(vselgt, 0xe300a00, N_INV, N_INV), \
14291 X(vmaxnm, 0xe800a00, 0x3000f10, N_INV), \
14292 X(vminnm, 0xe800a40, 0x3200f10, N_INV), \
14293 X(vcvta, 0xebc0a40, 0x3bb0000, N_INV), \
14294 X(vrintr, 0xeb60a40, 0x3ba0400, N_INV), \
14295 X(vrinta, 0xeb80a40, 0x3ba0400, N_INV), \
14296 X(aes, 0x3b00300, N_INV, N_INV), \
14297 X(sha3op, 0x2000c00, N_INV, N_INV), \
14298 X(sha1h, 0x3b902c0, N_INV, N_INV), \
14299 X(sha2op, 0x3ba0380, N_INV, N_INV)
14303 #define X(OPC,I,F,S) N_MNEM_##OPC
14308 static const struct neon_tab_entry neon_enc_tab
[] =
14310 #define X(OPC,I,F,S) { (I), (F), (S) }
14315 /* Do not use these macros; instead, use NEON_ENCODE defined below. */
14316 #define NEON_ENC_INTEGER_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
14317 #define NEON_ENC_ARMREG_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
14318 #define NEON_ENC_POLY_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
14319 #define NEON_ENC_FLOAT_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
14320 #define NEON_ENC_SCALAR_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
14321 #define NEON_ENC_IMMED_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
14322 #define NEON_ENC_INTERLV_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
14323 #define NEON_ENC_LANE_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
14324 #define NEON_ENC_DUP_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
14325 #define NEON_ENC_SINGLE_(X) \
14326 ((neon_enc_tab[(X) & 0x0fffffff].integer) | ((X) & 0xf0000000))
14327 #define NEON_ENC_DOUBLE_(X) \
14328 ((neon_enc_tab[(X) & 0x0fffffff].float_or_poly) | ((X) & 0xf0000000))
14329 #define NEON_ENC_FPV8_(X) \
14330 ((neon_enc_tab[(X) & 0x0fffffff].integer) | ((X) & 0xf000000))
14332 #define NEON_ENCODE(type, inst) \
14335 inst.instruction = NEON_ENC_##type##_ (inst.instruction); \
14336 inst.is_neon = 1; \
14340 #define check_neon_suffixes \
14343 if (!inst.error && inst.vectype.elems > 0 && !inst.is_neon) \
14345 as_bad (_("invalid neon suffix for non neon instruction")); \
14351 /* Define shapes for instruction operands. The following mnemonic characters
14352 are used in this table:
14354 F - VFP S<n> register
14355 D - Neon D<n> register
14356 Q - Neon Q<n> register
14360 L - D<n> register list
14362 This table is used to generate various data:
14363 - enumerations of the form NS_DDR to be used as arguments to
14365 - a table classifying shapes into single, double, quad, mixed.
14366 - a table used to drive neon_select_shape. */
14368 #define NEON_SHAPE_DEF \
14369 X(4, (R, R, Q, Q), QUAD), \
14370 X(4, (Q, R, R, I), QUAD), \
14371 X(4, (R, R, S, S), QUAD), \
14372 X(4, (S, S, R, R), QUAD), \
14373 X(3, (Q, R, I), QUAD), \
14374 X(3, (I, Q, Q), QUAD), \
14375 X(3, (I, Q, R), QUAD), \
14376 X(3, (R, Q, Q), QUAD), \
14377 X(3, (D, D, D), DOUBLE), \
14378 X(3, (Q, Q, Q), QUAD), \
14379 X(3, (D, D, I), DOUBLE), \
14380 X(3, (Q, Q, I), QUAD), \
14381 X(3, (D, D, S), DOUBLE), \
14382 X(3, (Q, Q, S), QUAD), \
14383 X(3, (Q, Q, R), QUAD), \
14384 X(3, (R, R, Q), QUAD), \
14385 X(2, (R, Q), QUAD), \
14386 X(2, (D, D), DOUBLE), \
14387 X(2, (Q, Q), QUAD), \
14388 X(2, (D, S), DOUBLE), \
14389 X(2, (Q, S), QUAD), \
14390 X(2, (D, R), DOUBLE), \
14391 X(2, (Q, R), QUAD), \
14392 X(2, (D, I), DOUBLE), \
14393 X(2, (Q, I), QUAD), \
14394 X(3, (D, L, D), DOUBLE), \
14395 X(2, (D, Q), MIXED), \
14396 X(2, (Q, D), MIXED), \
14397 X(3, (D, Q, I), MIXED), \
14398 X(3, (Q, D, I), MIXED), \
14399 X(3, (Q, D, D), MIXED), \
14400 X(3, (D, Q, Q), MIXED), \
14401 X(3, (Q, Q, D), MIXED), \
14402 X(3, (Q, D, S), MIXED), \
14403 X(3, (D, Q, S), MIXED), \
14404 X(4, (D, D, D, I), DOUBLE), \
14405 X(4, (Q, Q, Q, I), QUAD), \
14406 X(4, (D, D, S, I), DOUBLE), \
14407 X(4, (Q, Q, S, I), QUAD), \
14408 X(2, (F, F), SINGLE), \
14409 X(3, (F, F, F), SINGLE), \
14410 X(2, (F, I), SINGLE), \
14411 X(2, (F, D), MIXED), \
14412 X(2, (D, F), MIXED), \
14413 X(3, (F, F, I), MIXED), \
14414 X(4, (R, R, F, F), SINGLE), \
14415 X(4, (F, F, R, R), SINGLE), \
14416 X(3, (D, R, R), DOUBLE), \
14417 X(3, (R, R, D), DOUBLE), \
14418 X(2, (S, R), SINGLE), \
14419 X(2, (R, S), SINGLE), \
14420 X(2, (F, R), SINGLE), \
14421 X(2, (R, F), SINGLE), \
14422 /* Half float shape supported so far. */\
14423 X (2, (H, D), MIXED), \
14424 X (2, (D, H), MIXED), \
14425 X (2, (H, F), MIXED), \
14426 X (2, (F, H), MIXED), \
14427 X (2, (H, H), HALF), \
14428 X (2, (H, R), HALF), \
14429 X (2, (R, H), HALF), \
14430 X (2, (H, I), HALF), \
14431 X (3, (H, H, H), HALF), \
14432 X (3, (H, F, I), MIXED), \
14433 X (3, (F, H, I), MIXED), \
14434 X (3, (D, H, H), MIXED), \
14435 X (3, (D, H, S), MIXED)
14437 #define S2(A,B) NS_##A##B
14438 #define S3(A,B,C) NS_##A##B##C
14439 #define S4(A,B,C,D) NS_##A##B##C##D
14441 #define X(N, L, C) S##N L
14454 enum neon_shape_class
14463 #define X(N, L, C) SC_##C
14465 static enum neon_shape_class neon_shape_class
[] =
14484 /* Register widths of above. */
14485 static unsigned neon_shape_el_size
[] =
14497 struct neon_shape_info
14500 enum neon_shape_el el
[NEON_MAX_TYPE_ELS
];
14503 #define S2(A,B) { SE_##A, SE_##B }
14504 #define S3(A,B,C) { SE_##A, SE_##B, SE_##C }
14505 #define S4(A,B,C,D) { SE_##A, SE_##B, SE_##C, SE_##D }
14507 #define X(N, L, C) { N, S##N L }
14509 static struct neon_shape_info neon_shape_tab
[] =
14519 /* Bit masks used in type checking given instructions.
14520 'N_EQK' means the type must be the same as (or based on in some way) the key
14521 type, which itself is marked with the 'N_KEY' bit. If the 'N_EQK' bit is
14522 set, various other bits can be set as well in order to modify the meaning of
14523 the type constraint. */
14525 enum neon_type_mask
14549 N_KEY
= 0x1000000, /* Key element (main type specifier). */
14550 N_EQK
= 0x2000000, /* Given operand has the same type & size as the key. */
14551 N_VFP
= 0x4000000, /* VFP mode: operand size must match register width. */
14552 N_UNT
= 0x8000000, /* Must be explicitly untyped. */
14553 N_DBL
= 0x0000001, /* If N_EQK, this operand is twice the size. */
14554 N_HLF
= 0x0000002, /* If N_EQK, this operand is half the size. */
14555 N_SGN
= 0x0000004, /* If N_EQK, this operand is forced to be signed. */
14556 N_UNS
= 0x0000008, /* If N_EQK, this operand is forced to be unsigned. */
14557 N_INT
= 0x0000010, /* If N_EQK, this operand is forced to be integer. */
14558 N_FLT
= 0x0000020, /* If N_EQK, this operand is forced to be float. */
14559 N_SIZ
= 0x0000040, /* If N_EQK, this operand is forced to be size-only. */
14561 N_MAX_NONSPECIAL
= N_P64
14564 #define N_ALLMODS (N_DBL | N_HLF | N_SGN | N_UNS | N_INT | N_FLT | N_SIZ)
14566 #define N_SU_ALL (N_S8 | N_S16 | N_S32 | N_S64 | N_U8 | N_U16 | N_U32 | N_U64)
14567 #define N_SU_32 (N_S8 | N_S16 | N_S32 | N_U8 | N_U16 | N_U32)
14568 #define N_SU_16_64 (N_S16 | N_S32 | N_S64 | N_U16 | N_U32 | N_U64)
14569 #define N_S_32 (N_S8 | N_S16 | N_S32)
14570 #define N_F_16_32 (N_F16 | N_F32)
14571 #define N_SUF_32 (N_SU_32 | N_F_16_32)
14572 #define N_I_ALL (N_I8 | N_I16 | N_I32 | N_I64)
14573 #define N_IF_32 (N_I8 | N_I16 | N_I32 | N_F16 | N_F32)
14574 #define N_F_ALL (N_F16 | N_F32 | N_F64)
14575 #define N_I_MVE (N_I8 | N_I16 | N_I32)
14576 #define N_F_MVE (N_F16 | N_F32)
14577 #define N_SU_MVE (N_S8 | N_S16 | N_S32 | N_U8 | N_U16 | N_U32)
14579 /* Pass this as the first type argument to neon_check_type to ignore types
14581 #define N_IGNORE_TYPE (N_KEY | N_EQK)
14583 /* Select a "shape" for the current instruction (describing register types or
14584 sizes) from a list of alternatives. Return NS_NULL if the current instruction
14585 doesn't fit. For non-polymorphic shapes, checking is usually done as a
14586 function of operand parsing, so this function doesn't need to be called.
14587 Shapes should be listed in order of decreasing length. */
14589 static enum neon_shape
14590 neon_select_shape (enum neon_shape shape
, ...)
14593 enum neon_shape first_shape
= shape
;
14595 /* Fix missing optional operands. FIXME: we don't know at this point how
14596 many arguments we should have, so this makes the assumption that we have
14597 > 1. This is true of all current Neon opcodes, I think, but may not be
14598 true in the future. */
14599 if (!inst
.operands
[1].present
)
14600 inst
.operands
[1] = inst
.operands
[0];
14602 va_start (ap
, shape
);
14604 for (; shape
!= NS_NULL
; shape
= (enum neon_shape
) va_arg (ap
, int))
14609 for (j
= 0; j
< neon_shape_tab
[shape
].els
; j
++)
14611 if (!inst
.operands
[j
].present
)
14617 switch (neon_shape_tab
[shape
].el
[j
])
14619 /* If a .f16, .16, .u16, .s16 type specifier is given over
14620 a VFP single precision register operand, it's essentially
14621 means only half of the register is used.
14623 If the type specifier is given after the mnemonics, the
14624 information is stored in inst.vectype. If the type specifier
14625 is given after register operand, the information is stored
14626 in inst.operands[].vectype.
14628 When there is only one type specifier, and all the register
14629 operands are the same type of hardware register, the type
14630 specifier applies to all register operands.
14632 If no type specifier is given, the shape is inferred from
14633 operand information.
14636 vadd.f16 s0, s1, s2: NS_HHH
14637 vabs.f16 s0, s1: NS_HH
14638 vmov.f16 s0, r1: NS_HR
14639 vmov.f16 r0, s1: NS_RH
14640 vcvt.f16 r0, s1: NS_RH
14641 vcvt.f16.s32 s2, s2, #29: NS_HFI
14642 vcvt.f16.s32 s2, s2: NS_HF
14645 if (!(inst
.operands
[j
].isreg
14646 && inst
.operands
[j
].isvec
14647 && inst
.operands
[j
].issingle
14648 && !inst
.operands
[j
].isquad
14649 && ((inst
.vectype
.elems
== 1
14650 && inst
.vectype
.el
[0].size
== 16)
14651 || (inst
.vectype
.elems
> 1
14652 && inst
.vectype
.el
[j
].size
== 16)
14653 || (inst
.vectype
.elems
== 0
14654 && inst
.operands
[j
].vectype
.type
!= NT_invtype
14655 && inst
.operands
[j
].vectype
.size
== 16))))
14660 if (!(inst
.operands
[j
].isreg
14661 && inst
.operands
[j
].isvec
14662 && inst
.operands
[j
].issingle
14663 && !inst
.operands
[j
].isquad
14664 && ((inst
.vectype
.elems
== 1 && inst
.vectype
.el
[0].size
== 32)
14665 || (inst
.vectype
.elems
> 1 && inst
.vectype
.el
[j
].size
== 32)
14666 || (inst
.vectype
.elems
== 0
14667 && (inst
.operands
[j
].vectype
.size
== 32
14668 || inst
.operands
[j
].vectype
.type
== NT_invtype
)))))
14673 if (!(inst
.operands
[j
].isreg
14674 && inst
.operands
[j
].isvec
14675 && !inst
.operands
[j
].isquad
14676 && !inst
.operands
[j
].issingle
))
14681 if (!(inst
.operands
[j
].isreg
14682 && !inst
.operands
[j
].isvec
))
14687 if (!(inst
.operands
[j
].isreg
14688 && inst
.operands
[j
].isvec
14689 && inst
.operands
[j
].isquad
14690 && !inst
.operands
[j
].issingle
))
14695 if (!(!inst
.operands
[j
].isreg
14696 && !inst
.operands
[j
].isscalar
))
14701 if (!(!inst
.operands
[j
].isreg
14702 && inst
.operands
[j
].isscalar
))
14712 if (matches
&& (j
>= ARM_IT_MAX_OPERANDS
|| !inst
.operands
[j
].present
))
14713 /* We've matched all the entries in the shape table, and we don't
14714 have any left over operands which have not been matched. */
14720 if (shape
== NS_NULL
&& first_shape
!= NS_NULL
)
14721 first_error (_("invalid instruction shape"));
14726 /* True if SHAPE is predominantly a quadword operation (most of the time, this
14727 means the Q bit should be set). */
14730 neon_quad (enum neon_shape shape
)
14732 return neon_shape_class
[shape
] == SC_QUAD
;
14736 neon_modify_type_size (unsigned typebits
, enum neon_el_type
*g_type
,
14739 /* Allow modification to be made to types which are constrained to be
14740 based on the key element, based on bits set alongside N_EQK. */
14741 if ((typebits
& N_EQK
) != 0)
14743 if ((typebits
& N_HLF
) != 0)
14745 else if ((typebits
& N_DBL
) != 0)
14747 if ((typebits
& N_SGN
) != 0)
14748 *g_type
= NT_signed
;
14749 else if ((typebits
& N_UNS
) != 0)
14750 *g_type
= NT_unsigned
;
14751 else if ((typebits
& N_INT
) != 0)
14752 *g_type
= NT_integer
;
14753 else if ((typebits
& N_FLT
) != 0)
14754 *g_type
= NT_float
;
14755 else if ((typebits
& N_SIZ
) != 0)
14756 *g_type
= NT_untyped
;
14760 /* Return operand OPNO promoted by bits set in THISARG. KEY should be the "key"
14761 operand type, i.e. the single type specified in a Neon instruction when it
14762 is the only one given. */
14764 static struct neon_type_el
14765 neon_type_promote (struct neon_type_el
*key
, unsigned thisarg
)
14767 struct neon_type_el dest
= *key
;
14769 gas_assert ((thisarg
& N_EQK
) != 0);
14771 neon_modify_type_size (thisarg
, &dest
.type
, &dest
.size
);
14776 /* Convert Neon type and size into compact bitmask representation. */
14778 static enum neon_type_mask
14779 type_chk_of_el_type (enum neon_el_type type
, unsigned size
)
14786 case 8: return N_8
;
14787 case 16: return N_16
;
14788 case 32: return N_32
;
14789 case 64: return N_64
;
14797 case 8: return N_I8
;
14798 case 16: return N_I16
;
14799 case 32: return N_I32
;
14800 case 64: return N_I64
;
14808 case 16: return N_F16
;
14809 case 32: return N_F32
;
14810 case 64: return N_F64
;
14818 case 8: return N_P8
;
14819 case 16: return N_P16
;
14820 case 64: return N_P64
;
14828 case 8: return N_S8
;
14829 case 16: return N_S16
;
14830 case 32: return N_S32
;
14831 case 64: return N_S64
;
14839 case 8: return N_U8
;
14840 case 16: return N_U16
;
14841 case 32: return N_U32
;
14842 case 64: return N_U64
;
14853 /* Convert compact Neon bitmask type representation to a type and size. Only
14854 handles the case where a single bit is set in the mask. */
14857 el_type_of_type_chk (enum neon_el_type
*type
, unsigned *size
,
14858 enum neon_type_mask mask
)
14860 if ((mask
& N_EQK
) != 0)
14863 if ((mask
& (N_S8
| N_U8
| N_I8
| N_8
| N_P8
)) != 0)
14865 else if ((mask
& (N_S16
| N_U16
| N_I16
| N_16
| N_F16
| N_P16
)) != 0)
14867 else if ((mask
& (N_S32
| N_U32
| N_I32
| N_32
| N_F32
)) != 0)
14869 else if ((mask
& (N_S64
| N_U64
| N_I64
| N_64
| N_F64
| N_P64
)) != 0)
14874 if ((mask
& (N_S8
| N_S16
| N_S32
| N_S64
)) != 0)
14876 else if ((mask
& (N_U8
| N_U16
| N_U32
| N_U64
)) != 0)
14877 *type
= NT_unsigned
;
14878 else if ((mask
& (N_I8
| N_I16
| N_I32
| N_I64
)) != 0)
14879 *type
= NT_integer
;
14880 else if ((mask
& (N_8
| N_16
| N_32
| N_64
)) != 0)
14881 *type
= NT_untyped
;
14882 else if ((mask
& (N_P8
| N_P16
| N_P64
)) != 0)
14884 else if ((mask
& (N_F_ALL
)) != 0)
14892 /* Modify a bitmask of allowed types. This is only needed for type
14896 modify_types_allowed (unsigned allowed
, unsigned mods
)
14899 enum neon_el_type type
;
14905 for (i
= 1; i
<= N_MAX_NONSPECIAL
; i
<<= 1)
14907 if (el_type_of_type_chk (&type
, &size
,
14908 (enum neon_type_mask
) (allowed
& i
)) == SUCCESS
)
14910 neon_modify_type_size (mods
, &type
, &size
);
14911 destmask
|= type_chk_of_el_type (type
, size
);
14918 /* Check type and return type classification.
14919 The manual states (paraphrase): If one datatype is given, it indicates the
14921 - the second operand, if there is one
14922 - the operand, if there is no second operand
14923 - the result, if there are no operands.
14924 This isn't quite good enough though, so we use a concept of a "key" datatype
14925 which is set on a per-instruction basis, which is the one which matters when
14926 only one data type is written.
14927 Note: this function has side-effects (e.g. filling in missing operands). All
14928 Neon instructions should call it before performing bit encoding. */
14930 static struct neon_type_el
14931 neon_check_type (unsigned els
, enum neon_shape ns
, ...)
14934 unsigned i
, pass
, key_el
= 0;
14935 unsigned types
[NEON_MAX_TYPE_ELS
];
14936 enum neon_el_type k_type
= NT_invtype
;
14937 unsigned k_size
= -1u;
14938 struct neon_type_el badtype
= {NT_invtype
, -1};
14939 unsigned key_allowed
= 0;
14941 /* Optional registers in Neon instructions are always (not) in operand 1.
14942 Fill in the missing operand here, if it was omitted. */
14943 if (els
> 1 && !inst
.operands
[1].present
)
14944 inst
.operands
[1] = inst
.operands
[0];
14946 /* Suck up all the varargs. */
14948 for (i
= 0; i
< els
; i
++)
14950 unsigned thisarg
= va_arg (ap
, unsigned);
14951 if (thisarg
== N_IGNORE_TYPE
)
14956 types
[i
] = thisarg
;
14957 if ((thisarg
& N_KEY
) != 0)
14962 if (inst
.vectype
.elems
> 0)
14963 for (i
= 0; i
< els
; i
++)
14964 if (inst
.operands
[i
].vectype
.type
!= NT_invtype
)
14966 first_error (_("types specified in both the mnemonic and operands"));
14970 /* Duplicate inst.vectype elements here as necessary.
14971 FIXME: No idea if this is exactly the same as the ARM assembler,
14972 particularly when an insn takes one register and one non-register
14974 if (inst
.vectype
.elems
== 1 && els
> 1)
14977 inst
.vectype
.elems
= els
;
14978 inst
.vectype
.el
[key_el
] = inst
.vectype
.el
[0];
14979 for (j
= 0; j
< els
; j
++)
14981 inst
.vectype
.el
[j
] = neon_type_promote (&inst
.vectype
.el
[key_el
],
14984 else if (inst
.vectype
.elems
== 0 && els
> 0)
14987 /* No types were given after the mnemonic, so look for types specified
14988 after each operand. We allow some flexibility here; as long as the
14989 "key" operand has a type, we can infer the others. */
14990 for (j
= 0; j
< els
; j
++)
14991 if (inst
.operands
[j
].vectype
.type
!= NT_invtype
)
14992 inst
.vectype
.el
[j
] = inst
.operands
[j
].vectype
;
14994 if (inst
.operands
[key_el
].vectype
.type
!= NT_invtype
)
14996 for (j
= 0; j
< els
; j
++)
14997 if (inst
.operands
[j
].vectype
.type
== NT_invtype
)
14998 inst
.vectype
.el
[j
] = neon_type_promote (&inst
.vectype
.el
[key_el
],
15003 first_error (_("operand types can't be inferred"));
15007 else if (inst
.vectype
.elems
!= els
)
15009 first_error (_("type specifier has the wrong number of parts"));
15013 for (pass
= 0; pass
< 2; pass
++)
15015 for (i
= 0; i
< els
; i
++)
15017 unsigned thisarg
= types
[i
];
15018 unsigned types_allowed
= ((thisarg
& N_EQK
) != 0 && pass
!= 0)
15019 ? modify_types_allowed (key_allowed
, thisarg
) : thisarg
;
15020 enum neon_el_type g_type
= inst
.vectype
.el
[i
].type
;
15021 unsigned g_size
= inst
.vectype
.el
[i
].size
;
15023 /* Decay more-specific signed & unsigned types to sign-insensitive
15024 integer types if sign-specific variants are unavailable. */
15025 if ((g_type
== NT_signed
|| g_type
== NT_unsigned
)
15026 && (types_allowed
& N_SU_ALL
) == 0)
15027 g_type
= NT_integer
;
15029 /* If only untyped args are allowed, decay any more specific types to
15030 them. Some instructions only care about signs for some element
15031 sizes, so handle that properly. */
15032 if (((types_allowed
& N_UNT
) == 0)
15033 && ((g_size
== 8 && (types_allowed
& N_8
) != 0)
15034 || (g_size
== 16 && (types_allowed
& N_16
) != 0)
15035 || (g_size
== 32 && (types_allowed
& N_32
) != 0)
15036 || (g_size
== 64 && (types_allowed
& N_64
) != 0)))
15037 g_type
= NT_untyped
;
15041 if ((thisarg
& N_KEY
) != 0)
15045 key_allowed
= thisarg
& ~N_KEY
;
15047 /* Check architecture constraint on FP16 extension. */
15049 && k_type
== NT_float
15050 && ! ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_fp16
))
15052 inst
.error
= _(BAD_FP16
);
15059 if ((thisarg
& N_VFP
) != 0)
15061 enum neon_shape_el regshape
;
15062 unsigned regwidth
, match
;
15064 /* PR 11136: Catch the case where we are passed a shape of NS_NULL. */
15067 first_error (_("invalid instruction shape"));
15070 regshape
= neon_shape_tab
[ns
].el
[i
];
15071 regwidth
= neon_shape_el_size
[regshape
];
15073 /* In VFP mode, operands must match register widths. If we
15074 have a key operand, use its width, else use the width of
15075 the current operand. */
15081 /* FP16 will use a single precision register. */
15082 if (regwidth
== 32 && match
== 16)
15084 if (ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_fp16
))
15088 inst
.error
= _(BAD_FP16
);
15093 if (regwidth
!= match
)
15095 first_error (_("operand size must match register width"));
15100 if ((thisarg
& N_EQK
) == 0)
15102 unsigned given_type
= type_chk_of_el_type (g_type
, g_size
);
15104 if ((given_type
& types_allowed
) == 0)
15106 first_error (BAD_SIMD_TYPE
);
15112 enum neon_el_type mod_k_type
= k_type
;
15113 unsigned mod_k_size
= k_size
;
15114 neon_modify_type_size (thisarg
, &mod_k_type
, &mod_k_size
);
15115 if (g_type
!= mod_k_type
|| g_size
!= mod_k_size
)
15117 first_error (_("inconsistent types in Neon instruction"));
15125 return inst
.vectype
.el
[key_el
];
15128 /* Neon-style VFP instruction forwarding. */
15130 /* Thumb VFP instructions have 0xE in the condition field. */
15133 do_vfp_cond_or_thumb (void)
15138 inst
.instruction
|= 0xe0000000;
15140 inst
.instruction
|= inst
.cond
<< 28;
15143 /* Look up and encode a simple mnemonic, for use as a helper function for the
15144 Neon-style VFP syntax. This avoids duplication of bits of the insns table,
15145 etc. It is assumed that operand parsing has already been done, and that the
15146 operands are in the form expected by the given opcode (this isn't necessarily
15147 the same as the form in which they were parsed, hence some massaging must
15148 take place before this function is called).
15149 Checks current arch version against that in the looked-up opcode. */
15152 do_vfp_nsyn_opcode (const char *opname
)
15154 const struct asm_opcode
*opcode
;
15156 opcode
= (const struct asm_opcode
*) hash_find (arm_ops_hsh
, opname
);
15161 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
,
15162 thumb_mode
? *opcode
->tvariant
: *opcode
->avariant
),
15169 inst
.instruction
= opcode
->tvalue
;
15170 opcode
->tencode ();
15174 inst
.instruction
= (inst
.cond
<< 28) | opcode
->avalue
;
15175 opcode
->aencode ();
15180 do_vfp_nsyn_add_sub (enum neon_shape rs
)
15182 int is_add
= (inst
.instruction
& 0x0fffffff) == N_MNEM_vadd
;
15184 if (rs
== NS_FFF
|| rs
== NS_HHH
)
15187 do_vfp_nsyn_opcode ("fadds");
15189 do_vfp_nsyn_opcode ("fsubs");
15191 /* ARMv8.2 fp16 instruction. */
15193 do_scalar_fp16_v82_encode ();
15198 do_vfp_nsyn_opcode ("faddd");
15200 do_vfp_nsyn_opcode ("fsubd");
15204 /* Check operand types to see if this is a VFP instruction, and if so call
15208 try_vfp_nsyn (int args
, void (*pfn
) (enum neon_shape
))
15210 enum neon_shape rs
;
15211 struct neon_type_el et
;
15216 rs
= neon_select_shape (NS_HH
, NS_FF
, NS_DD
, NS_NULL
);
15217 et
= neon_check_type (2, rs
, N_EQK
| N_VFP
, N_F_ALL
| N_KEY
| N_VFP
);
15221 rs
= neon_select_shape (NS_HHH
, NS_FFF
, NS_DDD
, NS_NULL
);
15222 et
= neon_check_type (3, rs
, N_EQK
| N_VFP
, N_EQK
| N_VFP
,
15223 N_F_ALL
| N_KEY
| N_VFP
);
15230 if (et
.type
!= NT_invtype
)
15241 do_vfp_nsyn_mla_mls (enum neon_shape rs
)
15243 int is_mla
= (inst
.instruction
& 0x0fffffff) == N_MNEM_vmla
;
15245 if (rs
== NS_FFF
|| rs
== NS_HHH
)
15248 do_vfp_nsyn_opcode ("fmacs");
15250 do_vfp_nsyn_opcode ("fnmacs");
15252 /* ARMv8.2 fp16 instruction. */
15254 do_scalar_fp16_v82_encode ();
15259 do_vfp_nsyn_opcode ("fmacd");
15261 do_vfp_nsyn_opcode ("fnmacd");
15266 do_vfp_nsyn_fma_fms (enum neon_shape rs
)
15268 int is_fma
= (inst
.instruction
& 0x0fffffff) == N_MNEM_vfma
;
15270 if (rs
== NS_FFF
|| rs
== NS_HHH
)
15273 do_vfp_nsyn_opcode ("ffmas");
15275 do_vfp_nsyn_opcode ("ffnmas");
15277 /* ARMv8.2 fp16 instruction. */
15279 do_scalar_fp16_v82_encode ();
15284 do_vfp_nsyn_opcode ("ffmad");
15286 do_vfp_nsyn_opcode ("ffnmad");
15291 do_vfp_nsyn_mul (enum neon_shape rs
)
15293 if (rs
== NS_FFF
|| rs
== NS_HHH
)
15295 do_vfp_nsyn_opcode ("fmuls");
15297 /* ARMv8.2 fp16 instruction. */
15299 do_scalar_fp16_v82_encode ();
15302 do_vfp_nsyn_opcode ("fmuld");
15306 do_vfp_nsyn_abs_neg (enum neon_shape rs
)
15308 int is_neg
= (inst
.instruction
& 0x80) != 0;
15309 neon_check_type (2, rs
, N_EQK
| N_VFP
, N_F_ALL
| N_VFP
| N_KEY
);
15311 if (rs
== NS_FF
|| rs
== NS_HH
)
15314 do_vfp_nsyn_opcode ("fnegs");
15316 do_vfp_nsyn_opcode ("fabss");
15318 /* ARMv8.2 fp16 instruction. */
15320 do_scalar_fp16_v82_encode ();
15325 do_vfp_nsyn_opcode ("fnegd");
15327 do_vfp_nsyn_opcode ("fabsd");
15331 /* Encode single-precision (only!) VFP fldm/fstm instructions. Double precision
15332 insns belong to Neon, and are handled elsewhere. */
15335 do_vfp_nsyn_ldm_stm (int is_dbmode
)
15337 int is_ldm
= (inst
.instruction
& (1 << 20)) != 0;
15341 do_vfp_nsyn_opcode ("fldmdbs");
15343 do_vfp_nsyn_opcode ("fldmias");
15348 do_vfp_nsyn_opcode ("fstmdbs");
15350 do_vfp_nsyn_opcode ("fstmias");
15355 do_vfp_nsyn_sqrt (void)
15357 enum neon_shape rs
= neon_select_shape (NS_HH
, NS_FF
, NS_DD
, NS_NULL
);
15358 neon_check_type (2, rs
, N_EQK
| N_VFP
, N_F_ALL
| N_KEY
| N_VFP
);
15360 if (rs
== NS_FF
|| rs
== NS_HH
)
15362 do_vfp_nsyn_opcode ("fsqrts");
15364 /* ARMv8.2 fp16 instruction. */
15366 do_scalar_fp16_v82_encode ();
15369 do_vfp_nsyn_opcode ("fsqrtd");
15373 do_vfp_nsyn_div (void)
15375 enum neon_shape rs
= neon_select_shape (NS_HHH
, NS_FFF
, NS_DDD
, NS_NULL
);
15376 neon_check_type (3, rs
, N_EQK
| N_VFP
, N_EQK
| N_VFP
,
15377 N_F_ALL
| N_KEY
| N_VFP
);
15379 if (rs
== NS_FFF
|| rs
== NS_HHH
)
15381 do_vfp_nsyn_opcode ("fdivs");
15383 /* ARMv8.2 fp16 instruction. */
15385 do_scalar_fp16_v82_encode ();
15388 do_vfp_nsyn_opcode ("fdivd");
15392 do_vfp_nsyn_nmul (void)
15394 enum neon_shape rs
= neon_select_shape (NS_HHH
, NS_FFF
, NS_DDD
, NS_NULL
);
15395 neon_check_type (3, rs
, N_EQK
| N_VFP
, N_EQK
| N_VFP
,
15396 N_F_ALL
| N_KEY
| N_VFP
);
15398 if (rs
== NS_FFF
|| rs
== NS_HHH
)
15400 NEON_ENCODE (SINGLE
, inst
);
15401 do_vfp_sp_dyadic ();
15403 /* ARMv8.2 fp16 instruction. */
15405 do_scalar_fp16_v82_encode ();
15409 NEON_ENCODE (DOUBLE
, inst
);
15410 do_vfp_dp_rd_rn_rm ();
15412 do_vfp_cond_or_thumb ();
15416 /* Turn a size (8, 16, 32, 64) into the respective bit number minus 3
15420 neon_logbits (unsigned x
)
15422 return ffs (x
) - 4;
15425 #define LOW4(R) ((R) & 0xf)
15426 #define HI1(R) (((R) >> 4) & 1)
15429 mve_get_vcmp_vpt_cond (struct neon_type_el et
)
15434 first_error (BAD_EL_TYPE
);
15437 switch (inst
.operands
[0].imm
)
15440 first_error (_("invalid condition"));
15462 /* only accept eq and ne. */
15463 if (inst
.operands
[0].imm
> 1)
15465 first_error (_("invalid condition"));
15468 return inst
.operands
[0].imm
;
15470 if (inst
.operands
[0].imm
== 0x2)
15472 else if (inst
.operands
[0].imm
== 0x8)
15476 first_error (_("invalid condition"));
15480 switch (inst
.operands
[0].imm
)
15483 first_error (_("invalid condition"));
15499 /* Should be unreachable. */
15506 /* We are dealing with a vector predicated block. */
15507 if (inst
.operands
[0].present
)
15509 enum neon_shape rs
= neon_select_shape (NS_IQQ
, NS_IQR
, NS_NULL
);
15510 struct neon_type_el et
15511 = neon_check_type (3, rs
, N_EQK
, N_KEY
| N_F_MVE
| N_I_MVE
| N_SU_32
,
15514 unsigned fcond
= mve_get_vcmp_vpt_cond (et
);
15516 constraint (inst
.operands
[1].reg
> 14, MVE_BAD_QREG
);
15518 if (et
.type
== NT_invtype
)
15521 if (et
.type
== NT_float
)
15523 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, mve_fp_ext
),
15525 constraint (et
.size
!= 16 && et
.size
!= 32, BAD_EL_TYPE
);
15526 inst
.instruction
|= (et
.size
== 16) << 28;
15527 inst
.instruction
|= 0x3 << 20;
15531 constraint (et
.size
!= 8 && et
.size
!= 16 && et
.size
!= 32,
15533 inst
.instruction
|= 1 << 28;
15534 inst
.instruction
|= neon_logbits (et
.size
) << 20;
15537 if (inst
.operands
[2].isquad
)
15539 inst
.instruction
|= HI1 (inst
.operands
[2].reg
) << 5;
15540 inst
.instruction
|= LOW4 (inst
.operands
[2].reg
);
15541 inst
.instruction
|= (fcond
& 0x2) >> 1;
15545 if (inst
.operands
[2].reg
== REG_SP
)
15546 as_tsktsk (MVE_BAD_SP
);
15547 inst
.instruction
|= 1 << 6;
15548 inst
.instruction
|= (fcond
& 0x2) << 4;
15549 inst
.instruction
|= inst
.operands
[2].reg
;
15551 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
) << 16;
15552 inst
.instruction
|= (fcond
& 0x4) << 10;
15553 inst
.instruction
|= (fcond
& 0x1) << 7;
15556 set_pred_insn_type (VPT_INSN
);
15558 now_pred
.mask
= ((inst
.instruction
& 0x00400000) >> 19)
15559 | ((inst
.instruction
& 0xe000) >> 13);
15560 now_pred
.warn_deprecated
= FALSE
;
15561 now_pred
.type
= VECTOR_PRED
;
15568 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
), BAD_FPU
);
15569 if (!inst
.operands
[1].isreg
|| !inst
.operands
[1].isquad
)
15570 first_error (_(reg_expected_msgs
[REG_TYPE_MQ
]));
15571 if (!inst
.operands
[2].present
)
15572 first_error (_("MVE vector or ARM register expected"));
15573 constraint (inst
.operands
[1].reg
> 14, MVE_BAD_QREG
);
15575 /* Deal with 'else' conditional MVE's vcmp, it will be parsed as vcmpe. */
15576 if ((inst
.instruction
& 0xffffffff) == N_MNEM_vcmpe
15577 && inst
.operands
[1].isquad
)
15579 inst
.instruction
= N_MNEM_vcmp
;
15583 if (inst
.cond
> COND_ALWAYS
)
15584 inst
.pred_insn_type
= INSIDE_VPT_INSN
;
15586 inst
.pred_insn_type
= MVE_OUTSIDE_PRED_INSN
;
15588 enum neon_shape rs
= neon_select_shape (NS_IQQ
, NS_IQR
, NS_NULL
);
15589 struct neon_type_el et
15590 = neon_check_type (3, rs
, N_EQK
, N_KEY
| N_F_MVE
| N_I_MVE
| N_SU_32
,
15593 constraint (rs
== NS_IQR
&& inst
.operands
[2].reg
== REG_PC
15594 && !inst
.operands
[2].iszr
, BAD_PC
);
15596 unsigned fcond
= mve_get_vcmp_vpt_cond (et
);
15598 inst
.instruction
= 0xee010f00;
15599 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
) << 16;
15600 inst
.instruction
|= (fcond
& 0x4) << 10;
15601 inst
.instruction
|= (fcond
& 0x1) << 7;
15602 if (et
.type
== NT_float
)
15604 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, mve_fp_ext
),
15606 inst
.instruction
|= (et
.size
== 16) << 28;
15607 inst
.instruction
|= 0x3 << 20;
15611 inst
.instruction
|= 1 << 28;
15612 inst
.instruction
|= neon_logbits (et
.size
) << 20;
15614 if (inst
.operands
[2].isquad
)
15616 inst
.instruction
|= HI1 (inst
.operands
[2].reg
) << 5;
15617 inst
.instruction
|= (fcond
& 0x2) >> 1;
15618 inst
.instruction
|= LOW4 (inst
.operands
[2].reg
);
15622 if (inst
.operands
[2].reg
== REG_SP
)
15623 as_tsktsk (MVE_BAD_SP
);
15624 inst
.instruction
|= 1 << 6;
15625 inst
.instruction
|= (fcond
& 0x2) << 4;
15626 inst
.instruction
|= inst
.operands
[2].reg
;
15634 do_mve_vmaxa_vmina (void)
15636 if (inst
.cond
> COND_ALWAYS
)
15637 inst
.pred_insn_type
= INSIDE_VPT_INSN
;
15639 inst
.pred_insn_type
= MVE_OUTSIDE_PRED_INSN
;
15641 enum neon_shape rs
= neon_select_shape (NS_QQ
, NS_NULL
);
15642 struct neon_type_el et
15643 = neon_check_type (2, rs
, N_EQK
, N_KEY
| N_S8
| N_S16
| N_S32
);
15645 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
15646 inst
.instruction
|= neon_logbits (et
.size
) << 18;
15647 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
15648 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 5;
15649 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
);
15654 do_mve_vfmas (void)
15656 enum neon_shape rs
= neon_select_shape (NS_QQR
, NS_NULL
);
15657 struct neon_type_el et
15658 = neon_check_type (3, rs
, N_F_MVE
| N_KEY
, N_EQK
, N_EQK
);
15660 if (inst
.cond
> COND_ALWAYS
)
15661 inst
.pred_insn_type
= INSIDE_VPT_INSN
;
15663 inst
.pred_insn_type
= MVE_OUTSIDE_PRED_INSN
;
15665 if (inst
.operands
[2].reg
== REG_SP
)
15666 as_tsktsk (MVE_BAD_SP
);
15667 else if (inst
.operands
[2].reg
== REG_PC
)
15668 as_tsktsk (MVE_BAD_PC
);
15670 inst
.instruction
|= (et
.size
== 16) << 28;
15671 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
15672 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
) << 16;
15673 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
15674 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 7;
15675 inst
.instruction
|= inst
.operands
[2].reg
;
15680 do_mve_viddup (void)
15682 if (inst
.cond
> COND_ALWAYS
)
15683 inst
.pred_insn_type
= INSIDE_VPT_INSN
;
15685 inst
.pred_insn_type
= MVE_OUTSIDE_PRED_INSN
;
15687 unsigned imm
= inst
.relocs
[0].exp
.X_add_number
;
15688 constraint (imm
!= 1 && imm
!= 2 && imm
!= 4 && imm
!= 8,
15689 _("immediate must be either 1, 2, 4 or 8"));
15691 enum neon_shape rs
;
15692 struct neon_type_el et
;
15694 if (inst
.instruction
== M_MNEM_vddup
|| inst
.instruction
== M_MNEM_vidup
)
15696 rs
= neon_select_shape (NS_QRI
, NS_NULL
);
15697 et
= neon_check_type (2, rs
, N_KEY
| N_U8
| N_U16
| N_U32
, N_EQK
);
15702 constraint ((inst
.operands
[2].reg
% 2) != 1, BAD_EVEN
);
15703 if (inst
.operands
[2].reg
== REG_SP
)
15704 as_tsktsk (MVE_BAD_SP
);
15705 else if (inst
.operands
[2].reg
== REG_PC
)
15706 first_error (BAD_PC
);
15708 rs
= neon_select_shape (NS_QRRI
, NS_NULL
);
15709 et
= neon_check_type (3, rs
, N_KEY
| N_U8
| N_U16
| N_U32
, N_EQK
, N_EQK
);
15710 Rm
= inst
.operands
[2].reg
>> 1;
15712 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
15713 inst
.instruction
|= neon_logbits (et
.size
) << 20;
15714 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
15715 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
15716 inst
.instruction
|= (imm
> 2) << 7;
15717 inst
.instruction
|= Rm
<< 1;
15718 inst
.instruction
|= (imm
== 2 || imm
== 8);
15723 do_mve_vmlas (void)
15725 enum neon_shape rs
= neon_select_shape (NS_QQR
, NS_NULL
);
15726 struct neon_type_el et
15727 = neon_check_type (3, rs
, N_EQK
, N_EQK
, N_SU_MVE
| N_KEY
);
15729 if (inst
.operands
[2].reg
== REG_PC
)
15730 as_tsktsk (MVE_BAD_PC
);
15731 else if (inst
.operands
[2].reg
== REG_SP
)
15732 as_tsktsk (MVE_BAD_SP
);
15734 if (inst
.cond
> COND_ALWAYS
)
15735 inst
.pred_insn_type
= INSIDE_VPT_INSN
;
15737 inst
.pred_insn_type
= MVE_OUTSIDE_PRED_INSN
;
15739 inst
.instruction
|= (et
.type
== NT_unsigned
) << 28;
15740 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
15741 inst
.instruction
|= neon_logbits (et
.size
) << 20;
15742 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
) << 16;
15743 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
15744 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 7;
15745 inst
.instruction
|= inst
.operands
[2].reg
;
15750 do_mve_vpsel (void)
15752 neon_select_shape (NS_QQQ
, NS_NULL
);
15754 if (inst
.cond
> COND_ALWAYS
)
15755 inst
.pred_insn_type
= INSIDE_VPT_INSN
;
15757 inst
.pred_insn_type
= MVE_OUTSIDE_PRED_INSN
;
15759 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
15760 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
) << 16;
15761 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
15762 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 7;
15763 inst
.instruction
|= HI1 (inst
.operands
[2].reg
) << 5;
15764 inst
.instruction
|= LOW4 (inst
.operands
[2].reg
);
15769 do_mve_vpnot (void)
15771 if (inst
.cond
> COND_ALWAYS
)
15772 inst
.pred_insn_type
= INSIDE_VPT_INSN
;
15774 inst
.pred_insn_type
= MVE_OUTSIDE_PRED_INSN
;
15778 do_mve_vmaxnma_vminnma (void)
15780 enum neon_shape rs
= neon_select_shape (NS_QQ
, NS_NULL
);
15781 struct neon_type_el et
15782 = neon_check_type (2, rs
, N_EQK
, N_F_MVE
| N_KEY
);
15784 if (inst
.cond
> COND_ALWAYS
)
15785 inst
.pred_insn_type
= INSIDE_VPT_INSN
;
15787 inst
.pred_insn_type
= MVE_OUTSIDE_PRED_INSN
;
15789 inst
.instruction
|= (et
.size
== 16) << 28;
15790 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
15791 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
15792 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 5;
15793 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
);
15798 do_mve_vcmul (void)
15800 enum neon_shape rs
= neon_select_shape (NS_QQQI
, NS_NULL
);
15801 struct neon_type_el et
15802 = neon_check_type (3, rs
, N_EQK
, N_EQK
, N_F_MVE
| N_KEY
);
15804 if (inst
.cond
> COND_ALWAYS
)
15805 inst
.pred_insn_type
= INSIDE_VPT_INSN
;
15807 inst
.pred_insn_type
= MVE_OUTSIDE_PRED_INSN
;
15809 unsigned rot
= inst
.relocs
[0].exp
.X_add_number
;
15810 constraint (rot
!= 0 && rot
!= 90 && rot
!= 180 && rot
!= 270,
15811 _("immediate out of range"));
15813 if (et
.size
== 32 && (inst
.operands
[0].reg
== inst
.operands
[1].reg
15814 || inst
.operands
[0].reg
== inst
.operands
[2].reg
))
15815 as_tsktsk (BAD_MVE_SRCDEST
);
15817 inst
.instruction
|= (et
.size
== 32) << 28;
15818 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
15819 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
) << 16;
15820 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
15821 inst
.instruction
|= (rot
> 90) << 12;
15822 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 7;
15823 inst
.instruction
|= HI1 (inst
.operands
[2].reg
) << 5;
15824 inst
.instruction
|= LOW4 (inst
.operands
[2].reg
);
15825 inst
.instruction
|= (rot
== 90 || rot
== 270);
15830 do_vfp_nsyn_cmp (void)
15832 enum neon_shape rs
;
15833 if (!inst
.operands
[0].isreg
)
15840 constraint (inst
.operands
[2].present
, BAD_SYNTAX
);
15841 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_vfp_ext_v1xd
),
15845 if (inst
.operands
[1].isreg
)
15847 rs
= neon_select_shape (NS_HH
, NS_FF
, NS_DD
, NS_NULL
);
15848 neon_check_type (2, rs
, N_EQK
| N_VFP
, N_F_ALL
| N_KEY
| N_VFP
);
15850 if (rs
== NS_FF
|| rs
== NS_HH
)
15852 NEON_ENCODE (SINGLE
, inst
);
15853 do_vfp_sp_monadic ();
15857 NEON_ENCODE (DOUBLE
, inst
);
15858 do_vfp_dp_rd_rm ();
15863 rs
= neon_select_shape (NS_HI
, NS_FI
, NS_DI
, NS_NULL
);
15864 neon_check_type (2, rs
, N_F_ALL
| N_KEY
| N_VFP
, N_EQK
);
15866 switch (inst
.instruction
& 0x0fffffff)
15869 inst
.instruction
+= N_MNEM_vcmpz
- N_MNEM_vcmp
;
15872 inst
.instruction
+= N_MNEM_vcmpez
- N_MNEM_vcmpe
;
15878 if (rs
== NS_FI
|| rs
== NS_HI
)
15880 NEON_ENCODE (SINGLE
, inst
);
15881 do_vfp_sp_compare_z ();
15885 NEON_ENCODE (DOUBLE
, inst
);
15889 do_vfp_cond_or_thumb ();
15891 /* ARMv8.2 fp16 instruction. */
15892 if (rs
== NS_HI
|| rs
== NS_HH
)
15893 do_scalar_fp16_v82_encode ();
15897 nsyn_insert_sp (void)
15899 inst
.operands
[1] = inst
.operands
[0];
15900 memset (&inst
.operands
[0], '\0', sizeof (inst
.operands
[0]));
15901 inst
.operands
[0].reg
= REG_SP
;
15902 inst
.operands
[0].isreg
= 1;
15903 inst
.operands
[0].writeback
= 1;
15904 inst
.operands
[0].present
= 1;
15908 do_vfp_nsyn_push (void)
15912 constraint (inst
.operands
[1].imm
< 1 || inst
.operands
[1].imm
> 16,
15913 _("register list must contain at least 1 and at most 16 "
15916 if (inst
.operands
[1].issingle
)
15917 do_vfp_nsyn_opcode ("fstmdbs");
15919 do_vfp_nsyn_opcode ("fstmdbd");
15923 do_vfp_nsyn_pop (void)
15927 constraint (inst
.operands
[1].imm
< 1 || inst
.operands
[1].imm
> 16,
15928 _("register list must contain at least 1 and at most 16 "
15931 if (inst
.operands
[1].issingle
)
15932 do_vfp_nsyn_opcode ("fldmias");
15934 do_vfp_nsyn_opcode ("fldmiad");
15937 /* Fix up Neon data-processing instructions, ORing in the correct bits for
15938 ARM mode or Thumb mode and moving the encoded bit 24 to bit 28. */
15941 neon_dp_fixup (struct arm_it
* insn
)
15943 unsigned int i
= insn
->instruction
;
15948 /* The U bit is at bit 24 by default. Move to bit 28 in Thumb mode. */
15959 insn
->instruction
= i
;
15963 mve_encode_qqr (int size
, int U
, int fp
)
15965 if (inst
.operands
[2].reg
== REG_SP
)
15966 as_tsktsk (MVE_BAD_SP
);
15967 else if (inst
.operands
[2].reg
== REG_PC
)
15968 as_tsktsk (MVE_BAD_PC
);
15973 if (((unsigned)inst
.instruction
) == 0xd00)
15974 inst
.instruction
= 0xee300f40;
15976 else if (((unsigned)inst
.instruction
) == 0x200d00)
15977 inst
.instruction
= 0xee301f40;
15979 else if (((unsigned)inst
.instruction
) == 0x1000d10)
15980 inst
.instruction
= 0xee310e60;
15982 /* Setting size which is 1 for F16 and 0 for F32. */
15983 inst
.instruction
|= (size
== 16) << 28;
15988 if (((unsigned)inst
.instruction
) == 0x800)
15989 inst
.instruction
= 0xee010f40;
15991 else if (((unsigned)inst
.instruction
) == 0x1000800)
15992 inst
.instruction
= 0xee011f40;
15994 else if (((unsigned)inst
.instruction
) == 0)
15995 inst
.instruction
= 0xee000f40;
15997 else if (((unsigned)inst
.instruction
) == 0x200)
15998 inst
.instruction
= 0xee001f40;
16000 else if (((unsigned)inst
.instruction
) == 0x900)
16001 inst
.instruction
= 0xee010e40;
16003 else if (((unsigned)inst
.instruction
) == 0x910)
16004 inst
.instruction
= 0xee011e60;
16006 else if (((unsigned)inst
.instruction
) == 0x10)
16007 inst
.instruction
= 0xee000f60;
16009 else if (((unsigned)inst
.instruction
) == 0x210)
16010 inst
.instruction
= 0xee001f60;
16012 else if (((unsigned)inst
.instruction
) == 0x3000b10)
16013 inst
.instruction
= 0xee000e40;
16015 else if (((unsigned)inst
.instruction
) == 0x0000b00)
16016 inst
.instruction
= 0xee010e60;
16018 else if (((unsigned)inst
.instruction
) == 0x1000b00)
16019 inst
.instruction
= 0xfe010e60;
16022 inst
.instruction
|= U
<< 28;
16024 /* Setting bits for size. */
16025 inst
.instruction
|= neon_logbits (size
) << 20;
16027 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
16028 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
16029 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
) << 16;
16030 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 7;
16031 inst
.instruction
|= inst
.operands
[2].reg
;
16036 mve_encode_rqq (unsigned bit28
, unsigned size
)
16038 inst
.instruction
|= bit28
<< 28;
16039 inst
.instruction
|= neon_logbits (size
) << 20;
16040 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
) << 16;
16041 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
16042 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 7;
16043 inst
.instruction
|= HI1 (inst
.operands
[2].reg
) << 5;
16044 inst
.instruction
|= LOW4 (inst
.operands
[2].reg
);
16049 mve_encode_qqq (int ubit
, int size
)
16052 inst
.instruction
|= (ubit
!= 0) << 28;
16053 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
16054 inst
.instruction
|= neon_logbits (size
) << 20;
16055 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
) << 16;
16056 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
16057 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 7;
16058 inst
.instruction
|= HI1 (inst
.operands
[2].reg
) << 5;
16059 inst
.instruction
|= LOW4 (inst
.operands
[2].reg
);
16065 mve_encode_rq (unsigned bit28
, unsigned size
)
16067 inst
.instruction
|= bit28
<< 28;
16068 inst
.instruction
|= neon_logbits (size
) << 18;
16069 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
16070 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
);
16075 mve_encode_rrqq (unsigned U
, unsigned size
)
16077 constraint (inst
.operands
[3].reg
> 14, MVE_BAD_QREG
);
16079 inst
.instruction
|= U
<< 28;
16080 inst
.instruction
|= (inst
.operands
[1].reg
>> 1) << 20;
16081 inst
.instruction
|= LOW4 (inst
.operands
[2].reg
) << 16;
16082 inst
.instruction
|= (size
== 32) << 16;
16083 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
16084 inst
.instruction
|= HI1 (inst
.operands
[2].reg
) << 7;
16085 inst
.instruction
|= inst
.operands
[3].reg
;
16089 /* Encode insns with bit pattern:
16091 |28/24|23|22 |21 20|19 16|15 12|11 8|7|6|5|4|3 0|
16092 | U |x |D |size | Rn | Rd |x x x x|N|Q|M|x| Rm |
16094 SIZE is passed in bits. -1 means size field isn't changed, in case it has a
16095 different meaning for some instruction. */
16098 neon_three_same (int isquad
, int ubit
, int size
)
16100 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
16101 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
16102 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
) << 16;
16103 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 7;
16104 inst
.instruction
|= LOW4 (inst
.operands
[2].reg
);
16105 inst
.instruction
|= HI1 (inst
.operands
[2].reg
) << 5;
16106 inst
.instruction
|= (isquad
!= 0) << 6;
16107 inst
.instruction
|= (ubit
!= 0) << 24;
16109 inst
.instruction
|= neon_logbits (size
) << 20;
16111 neon_dp_fixup (&inst
);
16114 /* Encode instructions of the form:
16116 |28/24|23|22|21 20|19 18|17 16|15 12|11 7|6|5|4|3 0|
16117 | U |x |D |x x |size |x x | Rd |x x x x x|Q|M|x| Rm |
16119 Don't write size if SIZE == -1. */
16122 neon_two_same (int qbit
, int ubit
, int size
)
16124 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
16125 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
16126 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
);
16127 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 5;
16128 inst
.instruction
|= (qbit
!= 0) << 6;
16129 inst
.instruction
|= (ubit
!= 0) << 24;
16132 inst
.instruction
|= neon_logbits (size
) << 18;
16134 neon_dp_fixup (&inst
);
16137 enum vfp_or_neon_is_neon_bits
16140 NEON_CHECK_ARCH
= 2,
16141 NEON_CHECK_ARCH8
= 4
16144 /* Call this function if an instruction which may have belonged to the VFP or
16145 Neon instruction sets, but turned out to be a Neon instruction (due to the
16146 operand types involved, etc.). We have to check and/or fix-up a couple of
16149 - Make sure the user hasn't attempted to make a Neon instruction
16151 - Alter the value in the condition code field if necessary.
16152 - Make sure that the arch supports Neon instructions.
16154 Which of these operations take place depends on bits from enum
16155 vfp_or_neon_is_neon_bits.
16157 WARNING: This function has side effects! If NEON_CHECK_CC is used and the
16158 current instruction's condition is COND_ALWAYS, the condition field is
16159 changed to inst.uncond_value. This is necessary because instructions shared
16160 between VFP and Neon may be conditional for the VFP variants only, and the
16161 unconditional Neon version must have, e.g., 0xF in the condition field. */
16164 vfp_or_neon_is_neon (unsigned check
)
16166 /* Conditions are always legal in Thumb mode (IT blocks). */
16167 if (!thumb_mode
&& (check
& NEON_CHECK_CC
))
16169 if (inst
.cond
!= COND_ALWAYS
)
16171 first_error (_(BAD_COND
));
16174 if (inst
.uncond_value
!= -1)
16175 inst
.instruction
|= inst
.uncond_value
<< 28;
16179 if (((check
& NEON_CHECK_ARCH
) && !mark_feature_used (&fpu_neon_ext_v1
))
16180 || ((check
& NEON_CHECK_ARCH8
)
16181 && !mark_feature_used (&fpu_neon_ext_armv8
)))
16183 first_error (_(BAD_FPU
));
16191 check_simd_pred_availability (int fp
, unsigned check
)
16193 if (inst
.cond
> COND_ALWAYS
)
16195 if (!ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
))
16197 inst
.error
= BAD_FPU
;
16200 inst
.pred_insn_type
= INSIDE_VPT_INSN
;
16202 else if (inst
.cond
< COND_ALWAYS
)
16204 if (ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
))
16205 inst
.pred_insn_type
= MVE_OUTSIDE_PRED_INSN
;
16206 else if (vfp_or_neon_is_neon (check
) == FAIL
)
16211 if (!ARM_CPU_HAS_FEATURE (cpu_variant
, fp
? mve_fp_ext
: mve_ext
)
16212 && vfp_or_neon_is_neon (check
) == FAIL
)
16215 if (ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
))
16216 inst
.pred_insn_type
= MVE_OUTSIDE_PRED_INSN
;
16221 /* Neon instruction encoders, in approximate order of appearance. */
16224 do_neon_dyadic_i_su (void)
16226 if (check_simd_pred_availability (0, NEON_CHECK_ARCH
| NEON_CHECK_CC
))
16229 enum neon_shape rs
;
16230 struct neon_type_el et
;
16231 if (ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
))
16232 rs
= neon_select_shape (NS_QQQ
, NS_QQR
, NS_NULL
);
16234 rs
= neon_select_shape (NS_DDD
, NS_QQQ
, NS_NULL
);
16236 et
= neon_check_type (3, rs
, N_EQK
, N_EQK
, N_SU_32
| N_KEY
);
16240 neon_three_same (neon_quad (rs
), et
.type
== NT_unsigned
, et
.size
);
16242 mve_encode_qqr (et
.size
, et
.type
== NT_unsigned
, 0);
16246 do_neon_dyadic_i64_su (void)
16248 if (check_simd_pred_availability (0, NEON_CHECK_CC
| NEON_CHECK_ARCH
))
16250 enum neon_shape rs
;
16251 struct neon_type_el et
;
16252 if (ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
))
16254 rs
= neon_select_shape (NS_QQR
, NS_QQQ
, NS_NULL
);
16255 et
= neon_check_type (3, rs
, N_EQK
, N_EQK
, N_SU_MVE
| N_KEY
);
16259 rs
= neon_select_shape (NS_DDD
, NS_QQQ
, NS_NULL
);
16260 et
= neon_check_type (3, rs
, N_EQK
, N_EQK
, N_SU_ALL
| N_KEY
);
16263 mve_encode_qqr (et
.size
, et
.type
== NT_unsigned
, 0);
16265 neon_three_same (neon_quad (rs
), et
.type
== NT_unsigned
, et
.size
);
16269 neon_imm_shift (int write_ubit
, int uval
, int isquad
, struct neon_type_el et
,
16272 unsigned size
= et
.size
>> 3;
16273 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
16274 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
16275 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
);
16276 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 5;
16277 inst
.instruction
|= (isquad
!= 0) << 6;
16278 inst
.instruction
|= immbits
<< 16;
16279 inst
.instruction
|= (size
>> 3) << 7;
16280 inst
.instruction
|= (size
& 0x7) << 19;
16282 inst
.instruction
|= (uval
!= 0) << 24;
16284 neon_dp_fixup (&inst
);
16288 do_neon_shl_imm (void)
16290 if (!inst
.operands
[2].isreg
)
16292 enum neon_shape rs
= neon_select_shape (NS_DDI
, NS_QQI
, NS_NULL
);
16293 struct neon_type_el et
= neon_check_type (2, rs
, N_EQK
, N_KEY
| N_I_ALL
);
16294 int imm
= inst
.operands
[2].imm
;
16296 constraint (imm
< 0 || (unsigned)imm
>= et
.size
,
16297 _("immediate out of range for shift"));
16298 NEON_ENCODE (IMMED
, inst
);
16299 neon_imm_shift (FALSE
, 0, neon_quad (rs
), et
, imm
);
16303 enum neon_shape rs
= neon_select_shape (NS_DDD
, NS_QQQ
, NS_NULL
);
16304 struct neon_type_el et
= neon_check_type (3, rs
,
16305 N_EQK
, N_SU_ALL
| N_KEY
, N_EQK
| N_SGN
);
16308 /* VSHL/VQSHL 3-register variants have syntax such as:
16310 whereas other 3-register operations encoded by neon_three_same have
16313 (i.e. with Dn & Dm reversed). Swap operands[1].reg and operands[2].reg
16315 tmp
= inst
.operands
[2].reg
;
16316 inst
.operands
[2].reg
= inst
.operands
[1].reg
;
16317 inst
.operands
[1].reg
= tmp
;
16318 NEON_ENCODE (INTEGER
, inst
);
16319 neon_three_same (neon_quad (rs
), et
.type
== NT_unsigned
, et
.size
);
16324 do_neon_qshl_imm (void)
16326 if (!inst
.operands
[2].isreg
)
16328 enum neon_shape rs
= neon_select_shape (NS_DDI
, NS_QQI
, NS_NULL
);
16329 struct neon_type_el et
= neon_check_type (2, rs
, N_EQK
, N_SU_ALL
| N_KEY
);
16330 int imm
= inst
.operands
[2].imm
;
16332 constraint (imm
< 0 || (unsigned)imm
>= et
.size
,
16333 _("immediate out of range for shift"));
16334 NEON_ENCODE (IMMED
, inst
);
16335 neon_imm_shift (TRUE
, et
.type
== NT_unsigned
, neon_quad (rs
), et
, imm
);
16339 enum neon_shape rs
= neon_select_shape (NS_DDD
, NS_QQQ
, NS_NULL
);
16340 struct neon_type_el et
= neon_check_type (3, rs
,
16341 N_EQK
, N_SU_ALL
| N_KEY
, N_EQK
| N_SGN
);
16344 /* See note in do_neon_shl_imm. */
16345 tmp
= inst
.operands
[2].reg
;
16346 inst
.operands
[2].reg
= inst
.operands
[1].reg
;
16347 inst
.operands
[1].reg
= tmp
;
16348 NEON_ENCODE (INTEGER
, inst
);
16349 neon_three_same (neon_quad (rs
), et
.type
== NT_unsigned
, et
.size
);
16354 do_neon_rshl (void)
16356 enum neon_shape rs
= neon_select_shape (NS_DDD
, NS_QQQ
, NS_NULL
);
16357 struct neon_type_el et
= neon_check_type (3, rs
,
16358 N_EQK
, N_EQK
, N_SU_ALL
| N_KEY
);
16361 tmp
= inst
.operands
[2].reg
;
16362 inst
.operands
[2].reg
= inst
.operands
[1].reg
;
16363 inst
.operands
[1].reg
= tmp
;
16364 neon_three_same (neon_quad (rs
), et
.type
== NT_unsigned
, et
.size
);
16368 neon_cmode_for_logic_imm (unsigned immediate
, unsigned *immbits
, int size
)
16370 /* Handle .I8 pseudo-instructions. */
16373 /* Unfortunately, this will make everything apart from zero out-of-range.
16374 FIXME is this the intended semantics? There doesn't seem much point in
16375 accepting .I8 if so. */
16376 immediate
|= immediate
<< 8;
16382 if (immediate
== (immediate
& 0x000000ff))
16384 *immbits
= immediate
;
16387 else if (immediate
== (immediate
& 0x0000ff00))
16389 *immbits
= immediate
>> 8;
16392 else if (immediate
== (immediate
& 0x00ff0000))
16394 *immbits
= immediate
>> 16;
16397 else if (immediate
== (immediate
& 0xff000000))
16399 *immbits
= immediate
>> 24;
16402 if ((immediate
& 0xffff) != (immediate
>> 16))
16403 goto bad_immediate
;
16404 immediate
&= 0xffff;
16407 if (immediate
== (immediate
& 0x000000ff))
16409 *immbits
= immediate
;
16412 else if (immediate
== (immediate
& 0x0000ff00))
16414 *immbits
= immediate
>> 8;
16419 first_error (_("immediate value out of range"));
16424 do_neon_logic (void)
16426 if (inst
.operands
[2].present
&& inst
.operands
[2].isreg
)
16428 enum neon_shape rs
= neon_select_shape (NS_DDD
, NS_QQQ
, NS_NULL
);
16430 && check_simd_pred_availability (0, NEON_CHECK_ARCH
| NEON_CHECK_CC
)
16433 else if (rs
!= NS_QQQ
16434 && !ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_neon_ext_v1
))
16435 first_error (BAD_FPU
);
16437 neon_check_type (3, rs
, N_IGNORE_TYPE
);
16438 /* U bit and size field were set as part of the bitmask. */
16439 NEON_ENCODE (INTEGER
, inst
);
16440 neon_three_same (neon_quad (rs
), 0, -1);
16444 const int three_ops_form
= (inst
.operands
[2].present
16445 && !inst
.operands
[2].isreg
);
16446 const int immoperand
= (three_ops_form
? 2 : 1);
16447 enum neon_shape rs
= (three_ops_form
16448 ? neon_select_shape (NS_DDI
, NS_QQI
, NS_NULL
)
16449 : neon_select_shape (NS_DI
, NS_QI
, NS_NULL
));
16450 /* Because neon_select_shape makes the second operand a copy of the first
16451 if the second operand is not present. */
16453 && check_simd_pred_availability (0, NEON_CHECK_ARCH
| NEON_CHECK_CC
)
16456 else if (rs
!= NS_QQI
16457 && !ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_neon_ext_v1
))
16458 first_error (BAD_FPU
);
16460 struct neon_type_el et
;
16461 if (ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
))
16462 et
= neon_check_type (2, rs
, N_I32
| N_I16
| N_KEY
, N_EQK
);
16464 et
= neon_check_type (2, rs
, N_I8
| N_I16
| N_I32
| N_I64
| N_F32
16467 if (et
.type
== NT_invtype
)
16469 enum neon_opc opcode
= (enum neon_opc
) inst
.instruction
& 0x0fffffff;
16474 if (three_ops_form
)
16475 constraint (inst
.operands
[0].reg
!= inst
.operands
[1].reg
,
16476 _("first and second operands shall be the same register"));
16478 NEON_ENCODE (IMMED
, inst
);
16480 immbits
= inst
.operands
[immoperand
].imm
;
16483 /* .i64 is a pseudo-op, so the immediate must be a repeating
16485 if (immbits
!= (inst
.operands
[immoperand
].regisimm
?
16486 inst
.operands
[immoperand
].reg
: 0))
16488 /* Set immbits to an invalid constant. */
16489 immbits
= 0xdeadbeef;
16496 cmode
= neon_cmode_for_logic_imm (immbits
, &immbits
, et
.size
);
16500 cmode
= neon_cmode_for_logic_imm (immbits
, &immbits
, et
.size
);
16504 /* Pseudo-instruction for VBIC. */
16505 neon_invert_size (&immbits
, 0, et
.size
);
16506 cmode
= neon_cmode_for_logic_imm (immbits
, &immbits
, et
.size
);
16510 /* Pseudo-instruction for VORR. */
16511 neon_invert_size (&immbits
, 0, et
.size
);
16512 cmode
= neon_cmode_for_logic_imm (immbits
, &immbits
, et
.size
);
16522 inst
.instruction
|= neon_quad (rs
) << 6;
16523 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
16524 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
16525 inst
.instruction
|= cmode
<< 8;
16526 neon_write_immbits (immbits
);
16528 neon_dp_fixup (&inst
);
16533 do_neon_bitfield (void)
16535 enum neon_shape rs
= neon_select_shape (NS_DDD
, NS_QQQ
, NS_NULL
);
16536 neon_check_type (3, rs
, N_IGNORE_TYPE
);
16537 neon_three_same (neon_quad (rs
), 0, -1);
16541 neon_dyadic_misc (enum neon_el_type ubit_meaning
, unsigned types
,
16544 enum neon_shape rs
= neon_select_shape (NS_DDD
, NS_QQQ
, NS_QQR
, NS_NULL
);
16545 struct neon_type_el et
= neon_check_type (3, rs
, N_EQK
| destbits
, N_EQK
,
16547 if (et
.type
== NT_float
)
16549 NEON_ENCODE (FLOAT
, inst
);
16551 mve_encode_qqr (et
.size
, 0, 1);
16553 neon_three_same (neon_quad (rs
), 0, et
.size
== 16 ? (int) et
.size
: -1);
16557 NEON_ENCODE (INTEGER
, inst
);
16559 mve_encode_qqr (et
.size
, et
.type
== ubit_meaning
, 0);
16561 neon_three_same (neon_quad (rs
), et
.type
== ubit_meaning
, et
.size
);
16567 do_neon_dyadic_if_su_d (void)
16569 /* This version only allow D registers, but that constraint is enforced during
16570 operand parsing so we don't need to do anything extra here. */
16571 neon_dyadic_misc (NT_unsigned
, N_SUF_32
, 0);
16575 do_neon_dyadic_if_i_d (void)
16577 /* The "untyped" case can't happen. Do this to stop the "U" bit being
16578 affected if we specify unsigned args. */
16579 neon_dyadic_misc (NT_untyped
, N_IF_32
, 0);
16583 do_mve_vstr_vldr_QI (int size
, int elsize
, int load
)
16585 constraint (size
< 32, BAD_ADDR_MODE
);
16586 constraint (size
!= elsize
, BAD_EL_TYPE
);
16587 constraint (inst
.operands
[1].immisreg
, BAD_ADDR_MODE
);
16588 constraint (!inst
.operands
[1].preind
, BAD_ADDR_MODE
);
16589 constraint (load
&& inst
.operands
[0].reg
== inst
.operands
[1].reg
,
16590 _("destination register and offset register may not be the"
16593 int imm
= inst
.relocs
[0].exp
.X_add_number
;
16600 constraint ((imm
% (size
/ 8) != 0)
16601 || imm
> (0x7f << neon_logbits (size
)),
16602 (size
== 32) ? _("immediate must be a multiple of 4 in the"
16603 " range of +/-[0,508]")
16604 : _("immediate must be a multiple of 8 in the"
16605 " range of +/-[0,1016]"));
16606 inst
.instruction
|= 0x11 << 24;
16607 inst
.instruction
|= add
<< 23;
16608 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
16609 inst
.instruction
|= inst
.operands
[1].writeback
<< 21;
16610 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
) << 16;
16611 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
16612 inst
.instruction
|= 1 << 12;
16613 inst
.instruction
|= (size
== 64) << 8;
16614 inst
.instruction
&= 0xffffff00;
16615 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 7;
16616 inst
.instruction
|= imm
>> neon_logbits (size
);
16620 do_mve_vstr_vldr_RQ (int size
, int elsize
, int load
)
16622 unsigned os
= inst
.operands
[1].imm
>> 5;
16623 constraint (os
!= 0 && size
== 8,
16624 _("can not shift offsets when accessing less than half-word"));
16625 constraint (os
&& os
!= neon_logbits (size
),
16626 _("shift immediate must be 1, 2 or 3 for half-word, word"
16627 " or double-word accesses respectively"));
16628 if (inst
.operands
[1].reg
== REG_PC
)
16629 as_tsktsk (MVE_BAD_PC
);
16634 constraint (elsize
>= 64, BAD_EL_TYPE
);
16637 constraint (elsize
< 16 || elsize
>= 64, BAD_EL_TYPE
);
16641 constraint (elsize
!= size
, BAD_EL_TYPE
);
16646 constraint (inst
.operands
[1].writeback
|| !inst
.operands
[1].preind
,
16650 constraint (inst
.operands
[0].reg
== (inst
.operands
[1].imm
& 0x1f),
16651 _("destination register and offset register may not be"
16653 constraint (size
== elsize
&& inst
.vectype
.el
[0].type
!= NT_unsigned
,
16655 constraint (inst
.vectype
.el
[0].type
!= NT_unsigned
16656 && inst
.vectype
.el
[0].type
!= NT_signed
, BAD_EL_TYPE
);
16657 inst
.instruction
|= (inst
.vectype
.el
[0].type
== NT_unsigned
) << 28;
16661 constraint (inst
.vectype
.el
[0].type
!= NT_untyped
, BAD_EL_TYPE
);
16664 inst
.instruction
|= 1 << 23;
16665 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
16666 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
16667 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
16668 inst
.instruction
|= neon_logbits (elsize
) << 7;
16669 inst
.instruction
|= HI1 (inst
.operands
[1].imm
) << 5;
16670 inst
.instruction
|= LOW4 (inst
.operands
[1].imm
);
16671 inst
.instruction
|= !!os
;
16675 do_mve_vstr_vldr_RI (int size
, int elsize
, int load
)
16677 enum neon_el_type type
= inst
.vectype
.el
[0].type
;
16679 constraint (size
>= 64, BAD_ADDR_MODE
);
16683 constraint (elsize
< 16 || elsize
>= 64, BAD_EL_TYPE
);
16686 constraint (elsize
!= size
, BAD_EL_TYPE
);
16693 constraint (elsize
!= size
&& type
!= NT_unsigned
16694 && type
!= NT_signed
, BAD_EL_TYPE
);
16698 constraint (elsize
!= size
&& type
!= NT_untyped
, BAD_EL_TYPE
);
16701 int imm
= inst
.relocs
[0].exp
.X_add_number
;
16709 if ((imm
% (size
/ 8) != 0) || imm
> (0x7f << neon_logbits (size
)))
16714 constraint (1, _("immediate must be in the range of +/-[0,127]"));
16717 constraint (1, _("immediate must be a multiple of 2 in the"
16718 " range of +/-[0,254]"));
16721 constraint (1, _("immediate must be a multiple of 4 in the"
16722 " range of +/-[0,508]"));
16727 if (size
!= elsize
)
16729 constraint (inst
.operands
[1].reg
> 7, BAD_HIREG
);
16730 constraint (inst
.operands
[0].reg
> 14,
16731 _("MVE vector register in the range [Q0..Q7] expected"));
16732 inst
.instruction
|= (load
&& type
== NT_unsigned
) << 28;
16733 inst
.instruction
|= (size
== 16) << 19;
16734 inst
.instruction
|= neon_logbits (elsize
) << 7;
16738 if (inst
.operands
[1].reg
== REG_PC
)
16739 as_tsktsk (MVE_BAD_PC
);
16740 else if (inst
.operands
[1].reg
== REG_SP
&& inst
.operands
[1].writeback
)
16741 as_tsktsk (MVE_BAD_SP
);
16742 inst
.instruction
|= 1 << 12;
16743 inst
.instruction
|= neon_logbits (size
) << 7;
16745 inst
.instruction
|= inst
.operands
[1].preind
<< 24;
16746 inst
.instruction
|= add
<< 23;
16747 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
16748 inst
.instruction
|= inst
.operands
[1].writeback
<< 21;
16749 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
16750 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
16751 inst
.instruction
&= 0xffffff80;
16752 inst
.instruction
|= imm
>> neon_logbits (size
);
16757 do_mve_vstr_vldr (void)
16762 if (inst
.cond
> COND_ALWAYS
)
16763 inst
.pred_insn_type
= INSIDE_VPT_INSN
;
16765 inst
.pred_insn_type
= MVE_OUTSIDE_PRED_INSN
;
16767 switch (inst
.instruction
)
16774 /* fall through. */
16780 /* fall through. */
16786 /* fall through. */
16792 /* fall through. */
16797 unsigned elsize
= inst
.vectype
.el
[0].size
;
16799 if (inst
.operands
[1].isquad
)
16801 /* We are dealing with [Q, imm]{!} cases. */
16802 do_mve_vstr_vldr_QI (size
, elsize
, load
);
16806 if (inst
.operands
[1].immisreg
== 2)
16808 /* We are dealing with [R, Q, {UXTW #os}] cases. */
16809 do_mve_vstr_vldr_RQ (size
, elsize
, load
);
16811 else if (!inst
.operands
[1].immisreg
)
16813 /* We are dealing with [R, Imm]{!}/[R], Imm cases. */
16814 do_mve_vstr_vldr_RI (size
, elsize
, load
);
16817 constraint (1, BAD_ADDR_MODE
);
16824 do_mve_vst_vld (void)
16826 if (!ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
))
16829 constraint (!inst
.operands
[1].preind
|| inst
.relocs
[0].exp
.X_add_symbol
!= 0
16830 || inst
.relocs
[0].exp
.X_add_number
!= 0
16831 || inst
.operands
[1].immisreg
!= 0,
16833 constraint (inst
.vectype
.el
[0].size
> 32, BAD_EL_TYPE
);
16834 if (inst
.operands
[1].reg
== REG_PC
)
16835 as_tsktsk (MVE_BAD_PC
);
16836 else if (inst
.operands
[1].reg
== REG_SP
&& inst
.operands
[1].writeback
)
16837 as_tsktsk (MVE_BAD_SP
);
16840 /* These instructions are one of the "exceptions" mentioned in
16841 handle_pred_state. They are MVE instructions that are not VPT compatible
16842 and do not accept a VPT code, thus appending such a code is a syntax
16844 if (inst
.cond
> COND_ALWAYS
)
16845 first_error (BAD_SYNTAX
);
16846 /* If we append a scalar condition code we can set this to
16847 MVE_OUTSIDE_PRED_INSN as it will also lead to a syntax error. */
16848 else if (inst
.cond
< COND_ALWAYS
)
16849 inst
.pred_insn_type
= MVE_OUTSIDE_PRED_INSN
;
16851 inst
.pred_insn_type
= MVE_UNPREDICABLE_INSN
;
16853 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
16854 inst
.instruction
|= inst
.operands
[1].writeback
<< 21;
16855 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
16856 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
16857 inst
.instruction
|= neon_logbits (inst
.vectype
.el
[0].size
) << 7;
16862 do_mve_vaddlv (void)
16864 enum neon_shape rs
= neon_select_shape (NS_RRQ
, NS_NULL
);
16865 struct neon_type_el et
16866 = neon_check_type (3, rs
, N_EQK
, N_EQK
, N_S32
| N_U32
| N_KEY
);
16868 if (et
.type
== NT_invtype
)
16869 first_error (BAD_EL_TYPE
);
16871 if (inst
.cond
> COND_ALWAYS
)
16872 inst
.pred_insn_type
= INSIDE_VPT_INSN
;
16874 inst
.pred_insn_type
= MVE_OUTSIDE_PRED_INSN
;
16876 constraint (inst
.operands
[1].reg
> 14, MVE_BAD_QREG
);
16878 inst
.instruction
|= (et
.type
== NT_unsigned
) << 28;
16879 inst
.instruction
|= inst
.operands
[1].reg
<< 19;
16880 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
16881 inst
.instruction
|= inst
.operands
[2].reg
;
16886 do_neon_dyadic_if_su (void)
16888 enum neon_shape rs
= neon_select_shape (NS_DDD
, NS_QQQ
, NS_QQR
, NS_NULL
);
16889 struct neon_type_el et
= neon_check_type (3, rs
, N_EQK
, N_EQK
,
16892 constraint ((inst
.instruction
== ((unsigned) N_MNEM_vmax
)
16893 || inst
.instruction
== ((unsigned) N_MNEM_vmin
))
16894 && et
.type
== NT_float
16895 && !ARM_CPU_HAS_FEATURE (cpu_variant
,fpu_neon_ext_v1
), BAD_FPU
);
16897 if (check_simd_pred_availability (et
.type
== NT_float
,
16898 NEON_CHECK_ARCH
| NEON_CHECK_CC
))
16901 neon_dyadic_misc (NT_unsigned
, N_SUF_32
, 0);
16905 do_neon_addsub_if_i (void)
16907 if (ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_vfp_ext_v1xd
)
16908 && try_vfp_nsyn (3, do_vfp_nsyn_add_sub
) == SUCCESS
)
16911 enum neon_shape rs
= neon_select_shape (NS_DDD
, NS_QQQ
, NS_QQR
, NS_NULL
);
16912 struct neon_type_el et
= neon_check_type (3, rs
, N_EQK
,
16913 N_EQK
, N_IF_32
| N_I64
| N_KEY
);
16915 constraint (rs
== NS_QQR
&& et
.size
== 64, BAD_FPU
);
16916 /* If we are parsing Q registers and the element types match MVE, which NEON
16917 also supports, then we must check whether this is an instruction that can
16918 be used by both MVE/NEON. This distinction can be made based on whether
16919 they are predicated or not. */
16920 if ((rs
== NS_QQQ
|| rs
== NS_QQR
) && et
.size
!= 64)
16922 if (check_simd_pred_availability (et
.type
== NT_float
,
16923 NEON_CHECK_ARCH
| NEON_CHECK_CC
))
16928 /* If they are either in a D register or are using an unsupported. */
16930 && vfp_or_neon_is_neon (NEON_CHECK_CC
| NEON_CHECK_ARCH
) == FAIL
)
16934 /* The "untyped" case can't happen. Do this to stop the "U" bit being
16935 affected if we specify unsigned args. */
16936 neon_dyadic_misc (NT_untyped
, N_IF_32
| N_I64
, 0);
16939 /* Swaps operands 1 and 2. If operand 1 (optional arg) was omitted, we want the
16941 V<op> A,B (A is operand 0, B is operand 2)
16946 so handle that case specially. */
16949 neon_exchange_operands (void)
16951 if (inst
.operands
[1].present
)
16953 void *scratch
= xmalloc (sizeof (inst
.operands
[0]));
16955 /* Swap operands[1] and operands[2]. */
16956 memcpy (scratch
, &inst
.operands
[1], sizeof (inst
.operands
[0]));
16957 inst
.operands
[1] = inst
.operands
[2];
16958 memcpy (&inst
.operands
[2], scratch
, sizeof (inst
.operands
[0]));
16963 inst
.operands
[1] = inst
.operands
[2];
16964 inst
.operands
[2] = inst
.operands
[0];
16969 neon_compare (unsigned regtypes
, unsigned immtypes
, int invert
)
16971 if (inst
.operands
[2].isreg
)
16974 neon_exchange_operands ();
16975 neon_dyadic_misc (NT_unsigned
, regtypes
, N_SIZ
);
16979 enum neon_shape rs
= neon_select_shape (NS_DDI
, NS_QQI
, NS_NULL
);
16980 struct neon_type_el et
= neon_check_type (2, rs
,
16981 N_EQK
| N_SIZ
, immtypes
| N_KEY
);
16983 NEON_ENCODE (IMMED
, inst
);
16984 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
16985 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
16986 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
);
16987 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 5;
16988 inst
.instruction
|= neon_quad (rs
) << 6;
16989 inst
.instruction
|= (et
.type
== NT_float
) << 10;
16990 inst
.instruction
|= neon_logbits (et
.size
) << 18;
16992 neon_dp_fixup (&inst
);
16999 neon_compare (N_SUF_32
, N_S_32
| N_F_16_32
, FALSE
);
17003 do_neon_cmp_inv (void)
17005 neon_compare (N_SUF_32
, N_S_32
| N_F_16_32
, TRUE
);
17011 neon_compare (N_IF_32
, N_IF_32
, FALSE
);
17014 /* For multiply instructions, we have the possibility of 16-bit or 32-bit
17015 scalars, which are encoded in 5 bits, M : Rm.
17016 For 16-bit scalars, the register is encoded in Rm[2:0] and the index in
17017 M:Rm[3], and for 32-bit scalars, the register is encoded in Rm[3:0] and the
17020 Dot Product instructions are similar to multiply instructions except elsize
17021 should always be 32.
17023 This function translates SCALAR, which is GAS's internal encoding of indexed
17024 scalar register, to raw encoding. There is also register and index range
17025 check based on ELSIZE. */
17028 neon_scalar_for_mul (unsigned scalar
, unsigned elsize
)
17030 unsigned regno
= NEON_SCALAR_REG (scalar
);
17031 unsigned elno
= NEON_SCALAR_INDEX (scalar
);
17036 if (regno
> 7 || elno
> 3)
17038 return regno
| (elno
<< 3);
17041 if (regno
> 15 || elno
> 1)
17043 return regno
| (elno
<< 4);
17047 first_error (_("scalar out of range for multiply instruction"));
17053 /* Encode multiply / multiply-accumulate scalar instructions. */
17056 neon_mul_mac (struct neon_type_el et
, int ubit
)
17060 /* Give a more helpful error message if we have an invalid type. */
17061 if (et
.type
== NT_invtype
)
17064 scalar
= neon_scalar_for_mul (inst
.operands
[2].reg
, et
.size
);
17065 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
17066 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
17067 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
) << 16;
17068 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 7;
17069 inst
.instruction
|= LOW4 (scalar
);
17070 inst
.instruction
|= HI1 (scalar
) << 5;
17071 inst
.instruction
|= (et
.type
== NT_float
) << 8;
17072 inst
.instruction
|= neon_logbits (et
.size
) << 20;
17073 inst
.instruction
|= (ubit
!= 0) << 24;
17075 neon_dp_fixup (&inst
);
17079 do_neon_mac_maybe_scalar (void)
17081 if (try_vfp_nsyn (3, do_vfp_nsyn_mla_mls
) == SUCCESS
)
17084 if (check_simd_pred_availability (0, NEON_CHECK_CC
| NEON_CHECK_ARCH
))
17087 if (inst
.operands
[2].isscalar
)
17089 constraint (ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
), BAD_FPU
);
17090 enum neon_shape rs
= neon_select_shape (NS_DDS
, NS_QQS
, NS_NULL
);
17091 struct neon_type_el et
= neon_check_type (3, rs
,
17092 N_EQK
, N_EQK
, N_I16
| N_I32
| N_F_16_32
| N_KEY
);
17093 NEON_ENCODE (SCALAR
, inst
);
17094 neon_mul_mac (et
, neon_quad (rs
));
17096 else if (!inst
.operands
[2].isvec
)
17098 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
), BAD_FPU
);
17100 enum neon_shape rs
= neon_select_shape (NS_QQR
, NS_NULL
);
17101 neon_check_type (3, rs
, N_EQK
, N_EQK
, N_SU_MVE
| N_KEY
);
17103 neon_dyadic_misc (NT_unsigned
, N_SU_MVE
, 0);
17107 constraint (ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
), BAD_FPU
);
17108 /* The "untyped" case can't happen. Do this to stop the "U" bit being
17109 affected if we specify unsigned args. */
17110 neon_dyadic_misc (NT_untyped
, N_IF_32
, 0);
17115 do_neon_fmac (void)
17117 if (ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_vfp_ext_fma
)
17118 && try_vfp_nsyn (3, do_vfp_nsyn_fma_fms
) == SUCCESS
)
17121 if (check_simd_pred_availability (1, NEON_CHECK_CC
| NEON_CHECK_ARCH
))
17124 if (ARM_CPU_HAS_FEATURE (cpu_variant
, mve_fp_ext
))
17126 enum neon_shape rs
= neon_select_shape (NS_QQQ
, NS_QQR
, NS_NULL
);
17127 struct neon_type_el et
= neon_check_type (3, rs
, N_F_MVE
| N_KEY
, N_EQK
,
17132 if (inst
.operands
[2].reg
== REG_SP
)
17133 as_tsktsk (MVE_BAD_SP
);
17134 else if (inst
.operands
[2].reg
== REG_PC
)
17135 as_tsktsk (MVE_BAD_PC
);
17137 inst
.instruction
= 0xee310e40;
17138 inst
.instruction
|= (et
.size
== 16) << 28;
17139 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
17140 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
) << 16;
17141 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
17142 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 6;
17143 inst
.instruction
|= inst
.operands
[2].reg
;
17150 constraint (!inst
.operands
[2].isvec
, BAD_FPU
);
17153 neon_dyadic_misc (NT_untyped
, N_IF_32
, 0);
17159 enum neon_shape rs
= neon_select_shape (NS_DDD
, NS_QQQ
, NS_NULL
);
17160 struct neon_type_el et
= neon_check_type (3, rs
,
17161 N_EQK
, N_EQK
, N_8
| N_16
| N_32
| N_KEY
);
17162 neon_three_same (neon_quad (rs
), 0, et
.size
);
17165 /* VMUL with 3 registers allows the P8 type. The scalar version supports the
17166 same types as the MAC equivalents. The polynomial type for this instruction
17167 is encoded the same as the integer type. */
17172 if (try_vfp_nsyn (3, do_vfp_nsyn_mul
) == SUCCESS
)
17175 if (check_simd_pred_availability (0, NEON_CHECK_CC
| NEON_CHECK_ARCH
))
17178 if (inst
.operands
[2].isscalar
)
17180 constraint (ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
), BAD_FPU
);
17181 do_neon_mac_maybe_scalar ();
17185 if (ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
))
17187 enum neon_shape rs
= neon_select_shape (NS_QQR
, NS_QQQ
, NS_NULL
);
17188 struct neon_type_el et
17189 = neon_check_type (3, rs
, N_EQK
, N_EQK
, N_I_MVE
| N_F_MVE
| N_KEY
);
17190 if (et
.type
== NT_float
)
17191 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, mve_fp_ext
),
17194 neon_dyadic_misc (NT_float
, N_I_MVE
| N_F_MVE
, 0);
17198 constraint (!inst
.operands
[2].isvec
, BAD_FPU
);
17199 neon_dyadic_misc (NT_poly
,
17200 N_I8
| N_I16
| N_I32
| N_F16
| N_F32
| N_P8
, 0);
17206 do_neon_qdmulh (void)
17208 if (check_simd_pred_availability (0, NEON_CHECK_ARCH
| NEON_CHECK_CC
))
17211 if (inst
.operands
[2].isscalar
)
17213 constraint (ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
), BAD_FPU
);
17214 enum neon_shape rs
= neon_select_shape (NS_DDS
, NS_QQS
, NS_NULL
);
17215 struct neon_type_el et
= neon_check_type (3, rs
,
17216 N_EQK
, N_EQK
, N_S16
| N_S32
| N_KEY
);
17217 NEON_ENCODE (SCALAR
, inst
);
17218 neon_mul_mac (et
, neon_quad (rs
));
17222 enum neon_shape rs
;
17223 struct neon_type_el et
;
17224 if (ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
))
17226 rs
= neon_select_shape (NS_QQR
, NS_QQQ
, NS_NULL
);
17227 et
= neon_check_type (3, rs
,
17228 N_EQK
, N_EQK
, N_S8
| N_S16
| N_S32
| N_KEY
);
17232 rs
= neon_select_shape (NS_DDD
, NS_QQQ
, NS_NULL
);
17233 et
= neon_check_type (3, rs
,
17234 N_EQK
, N_EQK
, N_S16
| N_S32
| N_KEY
);
17237 NEON_ENCODE (INTEGER
, inst
);
17239 mve_encode_qqr (et
.size
, 0, 0);
17241 /* The U bit (rounding) comes from bit mask. */
17242 neon_three_same (neon_quad (rs
), 0, et
.size
);
17247 do_mve_vaddv (void)
17249 enum neon_shape rs
= neon_select_shape (NS_RQ
, NS_NULL
);
17250 struct neon_type_el et
17251 = neon_check_type (2, rs
, N_EQK
, N_SU_32
| N_KEY
);
17253 if (et
.type
== NT_invtype
)
17254 first_error (BAD_EL_TYPE
);
17256 if (inst
.cond
> COND_ALWAYS
)
17257 inst
.pred_insn_type
= INSIDE_VPT_INSN
;
17259 inst
.pred_insn_type
= MVE_OUTSIDE_PRED_INSN
;
17261 constraint (inst
.operands
[1].reg
> 14, MVE_BAD_QREG
);
17263 mve_encode_rq (et
.type
== NT_unsigned
, et
.size
);
17267 do_mve_vhcadd (void)
17269 enum neon_shape rs
= neon_select_shape (NS_QQQI
, NS_NULL
);
17270 struct neon_type_el et
17271 = neon_check_type (3, rs
, N_EQK
, N_EQK
, N_S8
| N_S16
| N_S32
| N_KEY
);
17273 if (inst
.cond
> COND_ALWAYS
)
17274 inst
.pred_insn_type
= INSIDE_VPT_INSN
;
17276 inst
.pred_insn_type
= MVE_OUTSIDE_PRED_INSN
;
17278 unsigned rot
= inst
.relocs
[0].exp
.X_add_number
;
17279 constraint (rot
!= 90 && rot
!= 270, _("immediate out of range"));
17281 if (et
.size
== 32 && inst
.operands
[0].reg
== inst
.operands
[2].reg
)
17282 as_tsktsk (_("Warning: 32-bit element size and same first and third "
17283 "operand makes instruction UNPREDICTABLE"));
17285 mve_encode_qqq (0, et
.size
);
17286 inst
.instruction
|= (rot
== 270) << 12;
17291 do_mve_vqdmull (void)
17293 enum neon_shape rs
= neon_select_shape (NS_QQQ
, NS_QQR
, NS_NULL
);
17294 struct neon_type_el et
17295 = neon_check_type (3, rs
, N_EQK
, N_EQK
, N_S16
| N_S32
| N_KEY
);
17298 && (inst
.operands
[0].reg
== inst
.operands
[1].reg
17299 || (rs
== NS_QQQ
&& inst
.operands
[0].reg
== inst
.operands
[2].reg
)))
17300 as_tsktsk (BAD_MVE_SRCDEST
);
17302 if (inst
.cond
> COND_ALWAYS
)
17303 inst
.pred_insn_type
= INSIDE_VPT_INSN
;
17305 inst
.pred_insn_type
= MVE_OUTSIDE_PRED_INSN
;
17309 mve_encode_qqq (et
.size
== 32, 64);
17310 inst
.instruction
|= 1;
17314 mve_encode_qqr (64, et
.size
== 32, 0);
17315 inst
.instruction
|= 0x3 << 5;
17322 enum neon_shape rs
= neon_select_shape (NS_QQQ
, NS_NULL
);
17323 struct neon_type_el et
17324 = neon_check_type (3, rs
, N_KEY
| N_I32
, N_EQK
, N_EQK
);
17326 if (et
.type
== NT_invtype
)
17327 first_error (BAD_EL_TYPE
);
17329 if (inst
.cond
> COND_ALWAYS
)
17330 inst
.pred_insn_type
= INSIDE_VPT_INSN
;
17332 inst
.pred_insn_type
= MVE_OUTSIDE_PRED_INSN
;
17334 mve_encode_qqq (0, 64);
17338 do_mve_vbrsr (void)
17340 enum neon_shape rs
= neon_select_shape (NS_QQR
, NS_NULL
);
17341 struct neon_type_el et
17342 = neon_check_type (3, rs
, N_EQK
, N_EQK
, N_8
| N_16
| N_32
| N_KEY
);
17344 if (inst
.cond
> COND_ALWAYS
)
17345 inst
.pred_insn_type
= INSIDE_VPT_INSN
;
17347 inst
.pred_insn_type
= MVE_OUTSIDE_PRED_INSN
;
17349 mve_encode_qqr (et
.size
, 0, 0);
17355 neon_check_type (3, NS_QQQ
, N_EQK
, N_EQK
, N_I32
| N_KEY
);
17357 if (inst
.cond
> COND_ALWAYS
)
17358 inst
.pred_insn_type
= INSIDE_VPT_INSN
;
17360 inst
.pred_insn_type
= MVE_OUTSIDE_PRED_INSN
;
17362 mve_encode_qqq (1, 64);
17366 do_mve_vmulh (void)
17368 enum neon_shape rs
= neon_select_shape (NS_QQQ
, NS_NULL
);
17369 struct neon_type_el et
17370 = neon_check_type (3, rs
, N_EQK
, N_EQK
, N_SU_MVE
| N_KEY
);
17372 if (inst
.cond
> COND_ALWAYS
)
17373 inst
.pred_insn_type
= INSIDE_VPT_INSN
;
17375 inst
.pred_insn_type
= MVE_OUTSIDE_PRED_INSN
;
17377 mve_encode_qqq (et
.type
== NT_unsigned
, et
.size
);
17381 do_mve_vqdmlah (void)
17383 enum neon_shape rs
= neon_select_shape (NS_QQR
, NS_NULL
);
17384 struct neon_type_el et
17385 = neon_check_type (3, rs
, N_EQK
, N_EQK
, N_SU_MVE
| N_KEY
);
17387 if (inst
.cond
> COND_ALWAYS
)
17388 inst
.pred_insn_type
= INSIDE_VPT_INSN
;
17390 inst
.pred_insn_type
= MVE_OUTSIDE_PRED_INSN
;
17392 mve_encode_qqr (et
.size
, et
.type
== NT_unsigned
, 0);
17396 do_mve_vqdmladh (void)
17398 enum neon_shape rs
= neon_select_shape (NS_QQQ
, NS_NULL
);
17399 struct neon_type_el et
17400 = neon_check_type (3, rs
, N_EQK
, N_EQK
, N_S8
| N_S16
| N_S32
| N_KEY
);
17402 if (inst
.cond
> COND_ALWAYS
)
17403 inst
.pred_insn_type
= INSIDE_VPT_INSN
;
17405 inst
.pred_insn_type
= MVE_OUTSIDE_PRED_INSN
;
17408 && (inst
.operands
[0].reg
== inst
.operands
[1].reg
17409 || inst
.operands
[0].reg
== inst
.operands
[2].reg
))
17410 as_tsktsk (BAD_MVE_SRCDEST
);
17412 mve_encode_qqq (0, et
.size
);
17417 do_mve_vmull (void)
17420 enum neon_shape rs
= neon_select_shape (NS_HHH
, NS_FFF
, NS_DDD
, NS_DDS
,
17421 NS_QQS
, NS_QQQ
, NS_QQR
, NS_NULL
);
17422 if (!ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
)
17423 && inst
.cond
== COND_ALWAYS
17424 && ((unsigned)inst
.instruction
) == M_MNEM_vmullt
)
17429 struct neon_type_el et
= neon_check_type (3, rs
, N_EQK
, N_EQK
,
17430 N_SUF_32
| N_F64
| N_P8
17431 | N_P16
| N_I_MVE
| N_KEY
);
17432 if (((et
.type
== NT_poly
) && et
.size
== 8
17433 && ARM_CPU_IS_ANY (cpu_variant
))
17434 || (et
.type
== NT_integer
) || (et
.type
== NT_float
))
17441 constraint (rs
!= NS_QQQ
, BAD_FPU
);
17442 struct neon_type_el et
= neon_check_type (3, rs
, N_EQK
, N_EQK
,
17443 N_SU_32
| N_P8
| N_P16
| N_KEY
);
17445 /* We are dealing with MVE's vmullt. */
17447 && (inst
.operands
[0].reg
== inst
.operands
[1].reg
17448 || inst
.operands
[0].reg
== inst
.operands
[2].reg
))
17449 as_tsktsk (BAD_MVE_SRCDEST
);
17451 if (inst
.cond
> COND_ALWAYS
)
17452 inst
.pred_insn_type
= INSIDE_VPT_INSN
;
17454 inst
.pred_insn_type
= MVE_OUTSIDE_PRED_INSN
;
17456 if (et
.type
== NT_poly
)
17457 mve_encode_qqq (neon_logbits (et
.size
), 64);
17459 mve_encode_qqq (et
.type
== NT_unsigned
, et
.size
);
17464 inst
.instruction
= N_MNEM_vmul
;
17467 inst
.pred_insn_type
= INSIDE_IT_INSN
;
17472 do_mve_vabav (void)
17474 enum neon_shape rs
= neon_select_shape (NS_RQQ
, NS_NULL
);
17479 if (!ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
))
17482 struct neon_type_el et
= neon_check_type (2, NS_NULL
, N_EQK
, N_KEY
| N_S8
17483 | N_S16
| N_S32
| N_U8
| N_U16
17486 if (inst
.cond
> COND_ALWAYS
)
17487 inst
.pred_insn_type
= INSIDE_VPT_INSN
;
17489 inst
.pred_insn_type
= MVE_OUTSIDE_PRED_INSN
;
17491 mve_encode_rqq (et
.type
== NT_unsigned
, et
.size
);
17495 do_mve_vmladav (void)
17497 enum neon_shape rs
= neon_select_shape (NS_RQQ
, NS_NULL
);
17498 struct neon_type_el et
= neon_check_type (3, rs
,
17499 N_EQK
, N_EQK
, N_SU_MVE
| N_KEY
);
17501 if (et
.type
== NT_unsigned
17502 && (inst
.instruction
== M_MNEM_vmladavx
17503 || inst
.instruction
== M_MNEM_vmladavax
17504 || inst
.instruction
== M_MNEM_vmlsdav
17505 || inst
.instruction
== M_MNEM_vmlsdava
17506 || inst
.instruction
== M_MNEM_vmlsdavx
17507 || inst
.instruction
== M_MNEM_vmlsdavax
))
17508 first_error (BAD_SIMD_TYPE
);
17510 constraint (inst
.operands
[2].reg
> 14,
17511 _("MVE vector register in the range [Q0..Q7] expected"));
17513 if (inst
.cond
> COND_ALWAYS
)
17514 inst
.pred_insn_type
= INSIDE_VPT_INSN
;
17516 inst
.pred_insn_type
= MVE_OUTSIDE_PRED_INSN
;
17518 if (inst
.instruction
== M_MNEM_vmlsdav
17519 || inst
.instruction
== M_MNEM_vmlsdava
17520 || inst
.instruction
== M_MNEM_vmlsdavx
17521 || inst
.instruction
== M_MNEM_vmlsdavax
)
17522 inst
.instruction
|= (et
.size
== 8) << 28;
17524 inst
.instruction
|= (et
.size
== 8) << 8;
17526 mve_encode_rqq (et
.type
== NT_unsigned
, 64);
17527 inst
.instruction
|= (et
.size
== 32) << 16;
17531 do_mve_vmlaldav (void)
17533 enum neon_shape rs
= neon_select_shape (NS_RRQQ
, NS_NULL
);
17534 struct neon_type_el et
17535 = neon_check_type (4, rs
, N_EQK
, N_EQK
, N_EQK
,
17536 N_S16
| N_S32
| N_U16
| N_U32
| N_KEY
);
17538 if (et
.type
== NT_unsigned
17539 && (inst
.instruction
== M_MNEM_vmlsldav
17540 || inst
.instruction
== M_MNEM_vmlsldava
17541 || inst
.instruction
== M_MNEM_vmlsldavx
17542 || inst
.instruction
== M_MNEM_vmlsldavax
))
17543 first_error (BAD_SIMD_TYPE
);
17545 if (inst
.cond
> COND_ALWAYS
)
17546 inst
.pred_insn_type
= INSIDE_VPT_INSN
;
17548 inst
.pred_insn_type
= MVE_OUTSIDE_PRED_INSN
;
17550 mve_encode_rrqq (et
.type
== NT_unsigned
, et
.size
);
17554 do_mve_vrmlaldavh (void)
17556 struct neon_type_el et
;
17557 if (inst
.instruction
== M_MNEM_vrmlsldavh
17558 || inst
.instruction
== M_MNEM_vrmlsldavha
17559 || inst
.instruction
== M_MNEM_vrmlsldavhx
17560 || inst
.instruction
== M_MNEM_vrmlsldavhax
)
17562 et
= neon_check_type (4, NS_RRQQ
, N_EQK
, N_EQK
, N_EQK
, N_S32
| N_KEY
);
17563 if (inst
.operands
[1].reg
== REG_SP
)
17564 as_tsktsk (MVE_BAD_SP
);
17568 if (inst
.instruction
== M_MNEM_vrmlaldavhx
17569 || inst
.instruction
== M_MNEM_vrmlaldavhax
)
17570 et
= neon_check_type (4, NS_RRQQ
, N_EQK
, N_EQK
, N_EQK
, N_S32
| N_KEY
);
17572 et
= neon_check_type (4, NS_RRQQ
, N_EQK
, N_EQK
, N_EQK
,
17573 N_U32
| N_S32
| N_KEY
);
17574 /* vrmlaldavh's encoding with SP as the second, odd, GPR operand may alias
17575 with vmax/min instructions, making the use of SP in assembly really
17576 nonsensical, so instead of issuing a warning like we do for other uses
17577 of SP for the odd register operand we error out. */
17578 constraint (inst
.operands
[1].reg
== REG_SP
, BAD_SP
);
17581 /* Make sure we still check the second operand is an odd one and that PC is
17582 disallowed. This because we are parsing for any GPR operand, to be able
17583 to distinguish between giving a warning or an error for SP as described
17585 constraint ((inst
.operands
[1].reg
% 2) != 1, BAD_EVEN
);
17586 constraint (inst
.operands
[1].reg
== REG_PC
, BAD_PC
);
17588 if (inst
.cond
> COND_ALWAYS
)
17589 inst
.pred_insn_type
= INSIDE_VPT_INSN
;
17591 inst
.pred_insn_type
= MVE_OUTSIDE_PRED_INSN
;
17593 mve_encode_rrqq (et
.type
== NT_unsigned
, 0);
17598 do_mve_vmaxnmv (void)
17600 enum neon_shape rs
= neon_select_shape (NS_RQ
, NS_NULL
);
17601 struct neon_type_el et
17602 = neon_check_type (2, rs
, N_EQK
, N_F_MVE
| N_KEY
);
17604 if (inst
.cond
> COND_ALWAYS
)
17605 inst
.pred_insn_type
= INSIDE_VPT_INSN
;
17607 inst
.pred_insn_type
= MVE_OUTSIDE_PRED_INSN
;
17609 if (inst
.operands
[0].reg
== REG_SP
)
17610 as_tsktsk (MVE_BAD_SP
);
17611 else if (inst
.operands
[0].reg
== REG_PC
)
17612 as_tsktsk (MVE_BAD_PC
);
17614 mve_encode_rq (et
.size
== 16, 64);
17618 do_mve_vmaxv (void)
17620 enum neon_shape rs
= neon_select_shape (NS_RQ
, NS_NULL
);
17621 struct neon_type_el et
;
17623 if (inst
.instruction
== M_MNEM_vmaxv
|| inst
.instruction
== M_MNEM_vminv
)
17624 et
= neon_check_type (2, rs
, N_EQK
, N_SU_MVE
| N_KEY
);
17626 et
= neon_check_type (2, rs
, N_EQK
, N_S8
| N_S16
| N_S32
| N_KEY
);
17628 if (inst
.cond
> COND_ALWAYS
)
17629 inst
.pred_insn_type
= INSIDE_VPT_INSN
;
17631 inst
.pred_insn_type
= MVE_OUTSIDE_PRED_INSN
;
17633 if (inst
.operands
[0].reg
== REG_SP
)
17634 as_tsktsk (MVE_BAD_SP
);
17635 else if (inst
.operands
[0].reg
== REG_PC
)
17636 as_tsktsk (MVE_BAD_PC
);
17638 mve_encode_rq (et
.type
== NT_unsigned
, et
.size
);
17643 do_neon_qrdmlah (void)
17645 if (check_simd_pred_availability (0, NEON_CHECK_ARCH
| NEON_CHECK_CC
))
17647 if (!ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
))
17649 /* Check we're on the correct architecture. */
17650 if (!mark_feature_used (&fpu_neon_ext_armv8
))
17652 = _("instruction form not available on this architecture.");
17653 else if (!mark_feature_used (&fpu_neon_ext_v8_1
))
17655 as_warn (_("this instruction implies use of ARMv8.1 AdvSIMD."));
17656 record_feature_use (&fpu_neon_ext_v8_1
);
17658 if (inst
.operands
[2].isscalar
)
17660 enum neon_shape rs
= neon_select_shape (NS_DDS
, NS_QQS
, NS_NULL
);
17661 struct neon_type_el et
= neon_check_type (3, rs
,
17662 N_EQK
, N_EQK
, N_S16
| N_S32
| N_KEY
);
17663 NEON_ENCODE (SCALAR
, inst
);
17664 neon_mul_mac (et
, neon_quad (rs
));
17668 enum neon_shape rs
= neon_select_shape (NS_DDD
, NS_QQQ
, NS_NULL
);
17669 struct neon_type_el et
= neon_check_type (3, rs
,
17670 N_EQK
, N_EQK
, N_S16
| N_S32
| N_KEY
);
17671 NEON_ENCODE (INTEGER
, inst
);
17672 /* The U bit (rounding) comes from bit mask. */
17673 neon_three_same (neon_quad (rs
), 0, et
.size
);
17678 enum neon_shape rs
= neon_select_shape (NS_QQR
, NS_NULL
);
17679 struct neon_type_el et
17680 = neon_check_type (3, rs
, N_EQK
, N_EQK
, N_SU_MVE
| N_KEY
);
17682 NEON_ENCODE (INTEGER
, inst
);
17683 mve_encode_qqr (et
.size
, et
.type
== NT_unsigned
, 0);
17688 do_neon_fcmp_absolute (void)
17690 enum neon_shape rs
= neon_select_shape (NS_DDD
, NS_QQQ
, NS_NULL
);
17691 struct neon_type_el et
= neon_check_type (3, rs
, N_EQK
, N_EQK
,
17692 N_F_16_32
| N_KEY
);
17693 /* Size field comes from bit mask. */
17694 neon_three_same (neon_quad (rs
), 1, et
.size
== 16 ? (int) et
.size
: -1);
17698 do_neon_fcmp_absolute_inv (void)
17700 neon_exchange_operands ();
17701 do_neon_fcmp_absolute ();
17705 do_neon_step (void)
17707 enum neon_shape rs
= neon_select_shape (NS_DDD
, NS_QQQ
, NS_NULL
);
17708 struct neon_type_el et
= neon_check_type (3, rs
, N_EQK
, N_EQK
,
17709 N_F_16_32
| N_KEY
);
17710 neon_three_same (neon_quad (rs
), 0, et
.size
== 16 ? (int) et
.size
: -1);
17714 do_neon_abs_neg (void)
17716 enum neon_shape rs
;
17717 struct neon_type_el et
;
17719 if (try_vfp_nsyn (2, do_vfp_nsyn_abs_neg
) == SUCCESS
)
17722 rs
= neon_select_shape (NS_DD
, NS_QQ
, NS_NULL
);
17723 et
= neon_check_type (2, rs
, N_EQK
, N_S_32
| N_F_16_32
| N_KEY
);
17725 if (check_simd_pred_availability (et
.type
== NT_float
,
17726 NEON_CHECK_ARCH
| NEON_CHECK_CC
))
17729 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
17730 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
17731 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
);
17732 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 5;
17733 inst
.instruction
|= neon_quad (rs
) << 6;
17734 inst
.instruction
|= (et
.type
== NT_float
) << 10;
17735 inst
.instruction
|= neon_logbits (et
.size
) << 18;
17737 neon_dp_fixup (&inst
);
17743 enum neon_shape rs
= neon_select_shape (NS_DDI
, NS_QQI
, NS_NULL
);
17744 struct neon_type_el et
= neon_check_type (2, rs
,
17745 N_EQK
, N_8
| N_16
| N_32
| N_64
| N_KEY
);
17746 int imm
= inst
.operands
[2].imm
;
17747 constraint (imm
< 0 || (unsigned)imm
>= et
.size
,
17748 _("immediate out of range for insert"));
17749 neon_imm_shift (FALSE
, 0, neon_quad (rs
), et
, imm
);
17755 enum neon_shape rs
= neon_select_shape (NS_DDI
, NS_QQI
, NS_NULL
);
17756 struct neon_type_el et
= neon_check_type (2, rs
,
17757 N_EQK
, N_8
| N_16
| N_32
| N_64
| N_KEY
);
17758 int imm
= inst
.operands
[2].imm
;
17759 constraint (imm
< 1 || (unsigned)imm
> et
.size
,
17760 _("immediate out of range for insert"));
17761 neon_imm_shift (FALSE
, 0, neon_quad (rs
), et
, et
.size
- imm
);
17765 do_neon_qshlu_imm (void)
17767 enum neon_shape rs
= neon_select_shape (NS_DDI
, NS_QQI
, NS_NULL
);
17768 struct neon_type_el et
= neon_check_type (2, rs
,
17769 N_EQK
| N_UNS
, N_S8
| N_S16
| N_S32
| N_S64
| N_KEY
);
17770 int imm
= inst
.operands
[2].imm
;
17771 constraint (imm
< 0 || (unsigned)imm
>= et
.size
,
17772 _("immediate out of range for shift"));
17773 /* Only encodes the 'U present' variant of the instruction.
17774 In this case, signed types have OP (bit 8) set to 0.
17775 Unsigned types have OP set to 1. */
17776 inst
.instruction
|= (et
.type
== NT_unsigned
) << 8;
17777 /* The rest of the bits are the same as other immediate shifts. */
17778 neon_imm_shift (FALSE
, 0, neon_quad (rs
), et
, imm
);
17782 do_neon_qmovn (void)
17784 struct neon_type_el et
= neon_check_type (2, NS_DQ
,
17785 N_EQK
| N_HLF
, N_SU_16_64
| N_KEY
);
17786 /* Saturating move where operands can be signed or unsigned, and the
17787 destination has the same signedness. */
17788 NEON_ENCODE (INTEGER
, inst
);
17789 if (et
.type
== NT_unsigned
)
17790 inst
.instruction
|= 0xc0;
17792 inst
.instruction
|= 0x80;
17793 neon_two_same (0, 1, et
.size
/ 2);
17797 do_neon_qmovun (void)
17799 struct neon_type_el et
= neon_check_type (2, NS_DQ
,
17800 N_EQK
| N_HLF
| N_UNS
, N_S16
| N_S32
| N_S64
| N_KEY
);
17801 /* Saturating move with unsigned results. Operands must be signed. */
17802 NEON_ENCODE (INTEGER
, inst
);
17803 neon_two_same (0, 1, et
.size
/ 2);
17807 do_neon_rshift_sat_narrow (void)
17809 /* FIXME: Types for narrowing. If operands are signed, results can be signed
17810 or unsigned. If operands are unsigned, results must also be unsigned. */
17811 struct neon_type_el et
= neon_check_type (2, NS_DQI
,
17812 N_EQK
| N_HLF
, N_SU_16_64
| N_KEY
);
17813 int imm
= inst
.operands
[2].imm
;
17814 /* This gets the bounds check, size encoding and immediate bits calculation
17818 /* VQ{R}SHRN.I<size> <Dd>, <Qm>, #0 is a synonym for
17819 VQMOVN.I<size> <Dd>, <Qm>. */
17822 inst
.operands
[2].present
= 0;
17823 inst
.instruction
= N_MNEM_vqmovn
;
17828 constraint (imm
< 1 || (unsigned)imm
> et
.size
,
17829 _("immediate out of range"));
17830 neon_imm_shift (TRUE
, et
.type
== NT_unsigned
, 0, et
, et
.size
- imm
);
17834 do_neon_rshift_sat_narrow_u (void)
17836 /* FIXME: Types for narrowing. If operands are signed, results can be signed
17837 or unsigned. If operands are unsigned, results must also be unsigned. */
17838 struct neon_type_el et
= neon_check_type (2, NS_DQI
,
17839 N_EQK
| N_HLF
| N_UNS
, N_S16
| N_S32
| N_S64
| N_KEY
);
17840 int imm
= inst
.operands
[2].imm
;
17841 /* This gets the bounds check, size encoding and immediate bits calculation
17845 /* VQSHRUN.I<size> <Dd>, <Qm>, #0 is a synonym for
17846 VQMOVUN.I<size> <Dd>, <Qm>. */
17849 inst
.operands
[2].present
= 0;
17850 inst
.instruction
= N_MNEM_vqmovun
;
17855 constraint (imm
< 1 || (unsigned)imm
> et
.size
,
17856 _("immediate out of range"));
17857 /* FIXME: The manual is kind of unclear about what value U should have in
17858 VQ{R}SHRUN instructions, but U=0, op=0 definitely encodes VRSHR, so it
17860 neon_imm_shift (TRUE
, 1, 0, et
, et
.size
- imm
);
17864 do_neon_movn (void)
17866 struct neon_type_el et
= neon_check_type (2, NS_DQ
,
17867 N_EQK
| N_HLF
, N_I16
| N_I32
| N_I64
| N_KEY
);
17868 NEON_ENCODE (INTEGER
, inst
);
17869 neon_two_same (0, 1, et
.size
/ 2);
17873 do_neon_rshift_narrow (void)
17875 struct neon_type_el et
= neon_check_type (2, NS_DQI
,
17876 N_EQK
| N_HLF
, N_I16
| N_I32
| N_I64
| N_KEY
);
17877 int imm
= inst
.operands
[2].imm
;
17878 /* This gets the bounds check, size encoding and immediate bits calculation
17882 /* If immediate is zero then we are a pseudo-instruction for
17883 VMOVN.I<size> <Dd>, <Qm> */
17886 inst
.operands
[2].present
= 0;
17887 inst
.instruction
= N_MNEM_vmovn
;
17892 constraint (imm
< 1 || (unsigned)imm
> et
.size
,
17893 _("immediate out of range for narrowing operation"));
17894 neon_imm_shift (FALSE
, 0, 0, et
, et
.size
- imm
);
17898 do_neon_shll (void)
17900 /* FIXME: Type checking when lengthening. */
17901 struct neon_type_el et
= neon_check_type (2, NS_QDI
,
17902 N_EQK
| N_DBL
, N_I8
| N_I16
| N_I32
| N_KEY
);
17903 unsigned imm
= inst
.operands
[2].imm
;
17905 if (imm
== et
.size
)
17907 /* Maximum shift variant. */
17908 NEON_ENCODE (INTEGER
, inst
);
17909 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
17910 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
17911 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
);
17912 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 5;
17913 inst
.instruction
|= neon_logbits (et
.size
) << 18;
17915 neon_dp_fixup (&inst
);
17919 /* A more-specific type check for non-max versions. */
17920 et
= neon_check_type (2, NS_QDI
,
17921 N_EQK
| N_DBL
, N_SU_32
| N_KEY
);
17922 NEON_ENCODE (IMMED
, inst
);
17923 neon_imm_shift (TRUE
, et
.type
== NT_unsigned
, 0, et
, imm
);
17927 /* Check the various types for the VCVT instruction, and return which version
17928 the current instruction is. */
17930 #define CVT_FLAVOUR_VAR \
17931 CVT_VAR (s32_f32, N_S32, N_F32, whole_reg, "ftosls", "ftosis", "ftosizs") \
17932 CVT_VAR (u32_f32, N_U32, N_F32, whole_reg, "ftouls", "ftouis", "ftouizs") \
17933 CVT_VAR (f32_s32, N_F32, N_S32, whole_reg, "fsltos", "fsitos", NULL) \
17934 CVT_VAR (f32_u32, N_F32, N_U32, whole_reg, "fultos", "fuitos", NULL) \
17935 /* Half-precision conversions. */ \
17936 CVT_VAR (s16_f16, N_S16, N_F16 | N_KEY, whole_reg, NULL, NULL, NULL) \
17937 CVT_VAR (u16_f16, N_U16, N_F16 | N_KEY, whole_reg, NULL, NULL, NULL) \
17938 CVT_VAR (f16_s16, N_F16 | N_KEY, N_S16, whole_reg, NULL, NULL, NULL) \
17939 CVT_VAR (f16_u16, N_F16 | N_KEY, N_U16, whole_reg, NULL, NULL, NULL) \
17940 CVT_VAR (f32_f16, N_F32, N_F16, whole_reg, NULL, NULL, NULL) \
17941 CVT_VAR (f16_f32, N_F16, N_F32, whole_reg, NULL, NULL, NULL) \
17942 /* New VCVT instructions introduced by ARMv8.2 fp16 extension. \
17943 Compared with single/double precision variants, only the co-processor \
17944 field is different, so the encoding flow is reused here. */ \
17945 CVT_VAR (f16_s32, N_F16 | N_KEY, N_S32, N_VFP, "fsltos", "fsitos", NULL) \
17946 CVT_VAR (f16_u32, N_F16 | N_KEY, N_U32, N_VFP, "fultos", "fuitos", NULL) \
17947 CVT_VAR (u32_f16, N_U32, N_F16 | N_KEY, N_VFP, "ftouls", "ftouis", "ftouizs")\
17948 CVT_VAR (s32_f16, N_S32, N_F16 | N_KEY, N_VFP, "ftosls", "ftosis", "ftosizs")\
17949 /* VFP instructions. */ \
17950 CVT_VAR (f32_f64, N_F32, N_F64, N_VFP, NULL, "fcvtsd", NULL) \
17951 CVT_VAR (f64_f32, N_F64, N_F32, N_VFP, NULL, "fcvtds", NULL) \
17952 CVT_VAR (s32_f64, N_S32, N_F64 | key, N_VFP, "ftosld", "ftosid", "ftosizd") \
17953 CVT_VAR (u32_f64, N_U32, N_F64 | key, N_VFP, "ftould", "ftouid", "ftouizd") \
17954 CVT_VAR (f64_s32, N_F64 | key, N_S32, N_VFP, "fsltod", "fsitod", NULL) \
17955 CVT_VAR (f64_u32, N_F64 | key, N_U32, N_VFP, "fultod", "fuitod", NULL) \
17956 /* VFP instructions with bitshift. */ \
17957 CVT_VAR (f32_s16, N_F32 | key, N_S16, N_VFP, "fshtos", NULL, NULL) \
17958 CVT_VAR (f32_u16, N_F32 | key, N_U16, N_VFP, "fuhtos", NULL, NULL) \
17959 CVT_VAR (f64_s16, N_F64 | key, N_S16, N_VFP, "fshtod", NULL, NULL) \
17960 CVT_VAR (f64_u16, N_F64 | key, N_U16, N_VFP, "fuhtod", NULL, NULL) \
17961 CVT_VAR (s16_f32, N_S16, N_F32 | key, N_VFP, "ftoshs", NULL, NULL) \
17962 CVT_VAR (u16_f32, N_U16, N_F32 | key, N_VFP, "ftouhs", NULL, NULL) \
17963 CVT_VAR (s16_f64, N_S16, N_F64 | key, N_VFP, "ftoshd", NULL, NULL) \
17964 CVT_VAR (u16_f64, N_U16, N_F64 | key, N_VFP, "ftouhd", NULL, NULL)
17966 #define CVT_VAR(C, X, Y, R, BSN, CN, ZN) \
17967 neon_cvt_flavour_##C,
17969 /* The different types of conversions we can do. */
17970 enum neon_cvt_flavour
17973 neon_cvt_flavour_invalid
,
17974 neon_cvt_flavour_first_fp
= neon_cvt_flavour_f32_f64
17979 static enum neon_cvt_flavour
17980 get_neon_cvt_flavour (enum neon_shape rs
)
17982 #define CVT_VAR(C,X,Y,R,BSN,CN,ZN) \
17983 et = neon_check_type (2, rs, (R) | (X), (R) | (Y)); \
17984 if (et.type != NT_invtype) \
17986 inst.error = NULL; \
17987 return (neon_cvt_flavour_##C); \
17990 struct neon_type_el et
;
17991 unsigned whole_reg
= (rs
== NS_FFI
|| rs
== NS_FD
|| rs
== NS_DF
17992 || rs
== NS_FF
) ? N_VFP
: 0;
17993 /* The instruction versions which take an immediate take one register
17994 argument, which is extended to the width of the full register. Thus the
17995 "source" and "destination" registers must have the same width. Hack that
17996 here by making the size equal to the key (wider, in this case) operand. */
17997 unsigned key
= (rs
== NS_QQI
|| rs
== NS_DDI
|| rs
== NS_FFI
) ? N_KEY
: 0;
18001 return neon_cvt_flavour_invalid
;
18016 /* Neon-syntax VFP conversions. */
18019 do_vfp_nsyn_cvt (enum neon_shape rs
, enum neon_cvt_flavour flavour
)
18021 const char *opname
= 0;
18023 if (rs
== NS_DDI
|| rs
== NS_QQI
|| rs
== NS_FFI
18024 || rs
== NS_FHI
|| rs
== NS_HFI
)
18026 /* Conversions with immediate bitshift. */
18027 const char *enc
[] =
18029 #define CVT_VAR(C,A,B,R,BSN,CN,ZN) BSN,
18035 if (flavour
< (int) ARRAY_SIZE (enc
))
18037 opname
= enc
[flavour
];
18038 constraint (inst
.operands
[0].reg
!= inst
.operands
[1].reg
,
18039 _("operands 0 and 1 must be the same register"));
18040 inst
.operands
[1] = inst
.operands
[2];
18041 memset (&inst
.operands
[2], '\0', sizeof (inst
.operands
[2]));
18046 /* Conversions without bitshift. */
18047 const char *enc
[] =
18049 #define CVT_VAR(C,A,B,R,BSN,CN,ZN) CN,
18055 if (flavour
< (int) ARRAY_SIZE (enc
))
18056 opname
= enc
[flavour
];
18060 do_vfp_nsyn_opcode (opname
);
18062 /* ARMv8.2 fp16 VCVT instruction. */
18063 if (flavour
== neon_cvt_flavour_s32_f16
18064 || flavour
== neon_cvt_flavour_u32_f16
18065 || flavour
== neon_cvt_flavour_f16_u32
18066 || flavour
== neon_cvt_flavour_f16_s32
)
18067 do_scalar_fp16_v82_encode ();
18071 do_vfp_nsyn_cvtz (void)
18073 enum neon_shape rs
= neon_select_shape (NS_FH
, NS_FF
, NS_FD
, NS_NULL
);
18074 enum neon_cvt_flavour flavour
= get_neon_cvt_flavour (rs
);
18075 const char *enc
[] =
18077 #define CVT_VAR(C,A,B,R,BSN,CN,ZN) ZN,
18083 if (flavour
< (int) ARRAY_SIZE (enc
) && enc
[flavour
])
18084 do_vfp_nsyn_opcode (enc
[flavour
]);
18088 do_vfp_nsyn_cvt_fpv8 (enum neon_cvt_flavour flavour
,
18089 enum neon_cvt_mode mode
)
18094 /* Targets like FPv5-SP-D16 don't support FP v8 instructions with
18095 D register operands. */
18096 if (flavour
== neon_cvt_flavour_s32_f64
18097 || flavour
== neon_cvt_flavour_u32_f64
)
18098 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_vfp_ext_armv8
),
18101 if (flavour
== neon_cvt_flavour_s32_f16
18102 || flavour
== neon_cvt_flavour_u32_f16
)
18103 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_fp16
),
18106 set_pred_insn_type (OUTSIDE_PRED_INSN
);
18110 case neon_cvt_flavour_s32_f64
:
18114 case neon_cvt_flavour_s32_f32
:
18118 case neon_cvt_flavour_s32_f16
:
18122 case neon_cvt_flavour_u32_f64
:
18126 case neon_cvt_flavour_u32_f32
:
18130 case neon_cvt_flavour_u32_f16
:
18135 first_error (_("invalid instruction shape"));
18141 case neon_cvt_mode_a
: rm
= 0; break;
18142 case neon_cvt_mode_n
: rm
= 1; break;
18143 case neon_cvt_mode_p
: rm
= 2; break;
18144 case neon_cvt_mode_m
: rm
= 3; break;
18145 default: first_error (_("invalid rounding mode")); return;
18148 NEON_ENCODE (FPV8
, inst
);
18149 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Sd
);
18150 encode_arm_vfp_reg (inst
.operands
[1].reg
, sz
== 1 ? VFP_REG_Dm
: VFP_REG_Sm
);
18151 inst
.instruction
|= sz
<< 8;
18153 /* ARMv8.2 fp16 VCVT instruction. */
18154 if (flavour
== neon_cvt_flavour_s32_f16
18155 ||flavour
== neon_cvt_flavour_u32_f16
)
18156 do_scalar_fp16_v82_encode ();
18157 inst
.instruction
|= op
<< 7;
18158 inst
.instruction
|= rm
<< 16;
18159 inst
.instruction
|= 0xf0000000;
18160 inst
.is_neon
= TRUE
;
18164 do_neon_cvt_1 (enum neon_cvt_mode mode
)
18166 enum neon_shape rs
= neon_select_shape (NS_DDI
, NS_QQI
, NS_FFI
, NS_DD
, NS_QQ
,
18167 NS_FD
, NS_DF
, NS_FF
, NS_QD
, NS_DQ
,
18168 NS_FH
, NS_HF
, NS_FHI
, NS_HFI
,
18170 enum neon_cvt_flavour flavour
= get_neon_cvt_flavour (rs
);
18172 if (flavour
== neon_cvt_flavour_invalid
)
18175 /* PR11109: Handle round-to-zero for VCVT conversions. */
18176 if (mode
== neon_cvt_mode_z
18177 && ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_arch_vfp_v2
)
18178 && (flavour
== neon_cvt_flavour_s16_f16
18179 || flavour
== neon_cvt_flavour_u16_f16
18180 || flavour
== neon_cvt_flavour_s32_f32
18181 || flavour
== neon_cvt_flavour_u32_f32
18182 || flavour
== neon_cvt_flavour_s32_f64
18183 || flavour
== neon_cvt_flavour_u32_f64
)
18184 && (rs
== NS_FD
|| rs
== NS_FF
))
18186 do_vfp_nsyn_cvtz ();
18190 /* ARMv8.2 fp16 VCVT conversions. */
18191 if (mode
== neon_cvt_mode_z
18192 && ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_fp16
)
18193 && (flavour
== neon_cvt_flavour_s32_f16
18194 || flavour
== neon_cvt_flavour_u32_f16
)
18197 do_vfp_nsyn_cvtz ();
18198 do_scalar_fp16_v82_encode ();
18202 /* VFP rather than Neon conversions. */
18203 if (flavour
>= neon_cvt_flavour_first_fp
)
18205 if (mode
== neon_cvt_mode_x
|| mode
== neon_cvt_mode_z
)
18206 do_vfp_nsyn_cvt (rs
, flavour
);
18208 do_vfp_nsyn_cvt_fpv8 (flavour
, mode
);
18216 if (mode
== neon_cvt_mode_z
18217 && (flavour
== neon_cvt_flavour_f16_s16
18218 || flavour
== neon_cvt_flavour_f16_u16
18219 || flavour
== neon_cvt_flavour_s16_f16
18220 || flavour
== neon_cvt_flavour_u16_f16
18221 || flavour
== neon_cvt_flavour_f32_u32
18222 || flavour
== neon_cvt_flavour_f32_s32
18223 || flavour
== neon_cvt_flavour_s32_f32
18224 || flavour
== neon_cvt_flavour_u32_f32
))
18226 if (check_simd_pred_availability (1, NEON_CHECK_CC
| NEON_CHECK_ARCH
))
18229 else if (mode
== neon_cvt_mode_n
)
18231 /* We are dealing with vcvt with the 'ne' condition. */
18233 inst
.instruction
= N_MNEM_vcvt
;
18234 do_neon_cvt_1 (neon_cvt_mode_z
);
18237 /* fall through. */
18241 unsigned enctab
[] = {0x0000100, 0x1000100, 0x0, 0x1000000,
18242 0x0000100, 0x1000100, 0x0, 0x1000000};
18244 if ((rs
!= NS_QQI
|| !ARM_CPU_HAS_FEATURE (cpu_variant
, mve_fp_ext
))
18245 && vfp_or_neon_is_neon (NEON_CHECK_CC
| NEON_CHECK_ARCH
) == FAIL
)
18248 if (ARM_CPU_HAS_FEATURE (cpu_variant
, mve_fp_ext
))
18250 constraint (inst
.operands
[2].present
&& inst
.operands
[2].imm
== 0,
18251 _("immediate value out of range"));
18254 case neon_cvt_flavour_f16_s16
:
18255 case neon_cvt_flavour_f16_u16
:
18256 case neon_cvt_flavour_s16_f16
:
18257 case neon_cvt_flavour_u16_f16
:
18258 constraint (inst
.operands
[2].imm
> 16,
18259 _("immediate value out of range"));
18261 case neon_cvt_flavour_f32_u32
:
18262 case neon_cvt_flavour_f32_s32
:
18263 case neon_cvt_flavour_s32_f32
:
18264 case neon_cvt_flavour_u32_f32
:
18265 constraint (inst
.operands
[2].imm
> 32,
18266 _("immediate value out of range"));
18269 inst
.error
= BAD_FPU
;
18274 /* Fixed-point conversion with #0 immediate is encoded as an
18275 integer conversion. */
18276 if (inst
.operands
[2].present
&& inst
.operands
[2].imm
== 0)
18278 NEON_ENCODE (IMMED
, inst
);
18279 if (flavour
!= neon_cvt_flavour_invalid
)
18280 inst
.instruction
|= enctab
[flavour
];
18281 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
18282 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
18283 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
);
18284 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 5;
18285 inst
.instruction
|= neon_quad (rs
) << 6;
18286 inst
.instruction
|= 1 << 21;
18287 if (flavour
< neon_cvt_flavour_s16_f16
)
18289 inst
.instruction
|= 1 << 21;
18290 immbits
= 32 - inst
.operands
[2].imm
;
18291 inst
.instruction
|= immbits
<< 16;
18295 inst
.instruction
|= 3 << 20;
18296 immbits
= 16 - inst
.operands
[2].imm
;
18297 inst
.instruction
|= immbits
<< 16;
18298 inst
.instruction
&= ~(1 << 9);
18301 neon_dp_fixup (&inst
);
18306 if ((mode
== neon_cvt_mode_a
|| mode
== neon_cvt_mode_n
18307 || mode
== neon_cvt_mode_m
|| mode
== neon_cvt_mode_p
)
18308 && (flavour
== neon_cvt_flavour_s16_f16
18309 || flavour
== neon_cvt_flavour_u16_f16
18310 || flavour
== neon_cvt_flavour_s32_f32
18311 || flavour
== neon_cvt_flavour_u32_f32
))
18313 if (check_simd_pred_availability (1,
18314 NEON_CHECK_CC
| NEON_CHECK_ARCH8
))
18317 else if (mode
== neon_cvt_mode_z
18318 && (flavour
== neon_cvt_flavour_f16_s16
18319 || flavour
== neon_cvt_flavour_f16_u16
18320 || flavour
== neon_cvt_flavour_s16_f16
18321 || flavour
== neon_cvt_flavour_u16_f16
18322 || flavour
== neon_cvt_flavour_f32_u32
18323 || flavour
== neon_cvt_flavour_f32_s32
18324 || flavour
== neon_cvt_flavour_s32_f32
18325 || flavour
== neon_cvt_flavour_u32_f32
))
18327 if (check_simd_pred_availability (1,
18328 NEON_CHECK_CC
| NEON_CHECK_ARCH
))
18331 /* fall through. */
18333 if (mode
!= neon_cvt_mode_x
&& mode
!= neon_cvt_mode_z
)
18336 NEON_ENCODE (FLOAT
, inst
);
18337 if (check_simd_pred_availability (1,
18338 NEON_CHECK_CC
| NEON_CHECK_ARCH8
))
18341 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
18342 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
18343 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
);
18344 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 5;
18345 inst
.instruction
|= neon_quad (rs
) << 6;
18346 inst
.instruction
|= (flavour
== neon_cvt_flavour_u16_f16
18347 || flavour
== neon_cvt_flavour_u32_f32
) << 7;
18348 inst
.instruction
|= mode
<< 8;
18349 if (flavour
== neon_cvt_flavour_u16_f16
18350 || flavour
== neon_cvt_flavour_s16_f16
)
18351 /* Mask off the original size bits and reencode them. */
18352 inst
.instruction
= ((inst
.instruction
& 0xfff3ffff) | (1 << 18));
18355 inst
.instruction
|= 0xfc000000;
18357 inst
.instruction
|= 0xf0000000;
18363 unsigned enctab
[] = { 0x100, 0x180, 0x0, 0x080,
18364 0x100, 0x180, 0x0, 0x080};
18366 NEON_ENCODE (INTEGER
, inst
);
18368 if (!ARM_CPU_HAS_FEATURE (cpu_variant
, mve_fp_ext
))
18370 if (vfp_or_neon_is_neon (NEON_CHECK_CC
| NEON_CHECK_ARCH
) == FAIL
)
18374 if (flavour
!= neon_cvt_flavour_invalid
)
18375 inst
.instruction
|= enctab
[flavour
];
18377 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
18378 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
18379 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
);
18380 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 5;
18381 inst
.instruction
|= neon_quad (rs
) << 6;
18382 if (flavour
>= neon_cvt_flavour_s16_f16
18383 && flavour
<= neon_cvt_flavour_f16_u16
)
18384 /* Half precision. */
18385 inst
.instruction
|= 1 << 18;
18387 inst
.instruction
|= 2 << 18;
18389 neon_dp_fixup (&inst
);
18394 /* Half-precision conversions for Advanced SIMD -- neon. */
18397 if (vfp_or_neon_is_neon (NEON_CHECK_CC
| NEON_CHECK_ARCH
) == FAIL
)
18401 && (inst
.vectype
.el
[0].size
!= 16 || inst
.vectype
.el
[1].size
!= 32))
18403 as_bad (_("operand size must match register width"));
18408 && ((inst
.vectype
.el
[0].size
!= 32 || inst
.vectype
.el
[1].size
!= 16)))
18410 as_bad (_("operand size must match register width"));
18415 inst
.instruction
= 0x3b60600;
18417 inst
.instruction
= 0x3b60700;
18419 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
18420 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
18421 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
);
18422 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 5;
18423 neon_dp_fixup (&inst
);
18427 /* Some VFP conversions go here (s32 <-> f32, u32 <-> f32). */
18428 if (mode
== neon_cvt_mode_x
|| mode
== neon_cvt_mode_z
)
18429 do_vfp_nsyn_cvt (rs
, flavour
);
18431 do_vfp_nsyn_cvt_fpv8 (flavour
, mode
);
18436 do_neon_cvtr (void)
18438 do_neon_cvt_1 (neon_cvt_mode_x
);
18444 do_neon_cvt_1 (neon_cvt_mode_z
);
18448 do_neon_cvta (void)
18450 do_neon_cvt_1 (neon_cvt_mode_a
);
18454 do_neon_cvtn (void)
18456 do_neon_cvt_1 (neon_cvt_mode_n
);
18460 do_neon_cvtp (void)
18462 do_neon_cvt_1 (neon_cvt_mode_p
);
18466 do_neon_cvtm (void)
18468 do_neon_cvt_1 (neon_cvt_mode_m
);
18472 do_neon_cvttb_2 (bfd_boolean t
, bfd_boolean to
, bfd_boolean is_double
)
18475 mark_feature_used (&fpu_vfp_ext_armv8
);
18477 encode_arm_vfp_reg (inst
.operands
[0].reg
,
18478 (is_double
&& !to
) ? VFP_REG_Dd
: VFP_REG_Sd
);
18479 encode_arm_vfp_reg (inst
.operands
[1].reg
,
18480 (is_double
&& to
) ? VFP_REG_Dm
: VFP_REG_Sm
);
18481 inst
.instruction
|= to
? 0x10000 : 0;
18482 inst
.instruction
|= t
? 0x80 : 0;
18483 inst
.instruction
|= is_double
? 0x100 : 0;
18484 do_vfp_cond_or_thumb ();
18488 do_neon_cvttb_1 (bfd_boolean t
)
18490 enum neon_shape rs
= neon_select_shape (NS_HF
, NS_HD
, NS_FH
, NS_FF
, NS_FD
,
18491 NS_DF
, NS_DH
, NS_QQ
, NS_QQI
, NS_NULL
);
18495 else if (rs
== NS_QQ
|| rs
== NS_QQI
)
18497 int single_to_half
= 0;
18498 if (check_simd_pred_availability (1, NEON_CHECK_ARCH
))
18501 enum neon_cvt_flavour flavour
= get_neon_cvt_flavour (rs
);
18503 if (ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
)
18504 && (flavour
== neon_cvt_flavour_u16_f16
18505 || flavour
== neon_cvt_flavour_s16_f16
18506 || flavour
== neon_cvt_flavour_f16_s16
18507 || flavour
== neon_cvt_flavour_f16_u16
18508 || flavour
== neon_cvt_flavour_u32_f32
18509 || flavour
== neon_cvt_flavour_s32_f32
18510 || flavour
== neon_cvt_flavour_f32_s32
18511 || flavour
== neon_cvt_flavour_f32_u32
))
18514 inst
.instruction
= N_MNEM_vcvt
;
18515 set_pred_insn_type (INSIDE_VPT_INSN
);
18516 do_neon_cvt_1 (neon_cvt_mode_z
);
18519 else if (rs
== NS_QQ
&& flavour
== neon_cvt_flavour_f32_f16
)
18520 single_to_half
= 1;
18521 else if (rs
== NS_QQ
&& flavour
!= neon_cvt_flavour_f16_f32
)
18523 first_error (BAD_FPU
);
18527 inst
.instruction
= 0xee3f0e01;
18528 inst
.instruction
|= single_to_half
<< 28;
18529 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
18530 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 13;
18531 inst
.instruction
|= t
<< 12;
18532 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 5;
18533 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
) << 1;
18536 else if (neon_check_type (2, rs
, N_F16
, N_F32
| N_VFP
).type
!= NT_invtype
)
18539 do_neon_cvttb_2 (t
, /*to=*/TRUE
, /*is_double=*/FALSE
);
18541 else if (neon_check_type (2, rs
, N_F32
| N_VFP
, N_F16
).type
!= NT_invtype
)
18544 do_neon_cvttb_2 (t
, /*to=*/FALSE
, /*is_double=*/FALSE
);
18546 else if (neon_check_type (2, rs
, N_F16
, N_F64
| N_VFP
).type
!= NT_invtype
)
18548 /* The VCVTB and VCVTT instructions with D-register operands
18549 don't work for SP only targets. */
18550 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_vfp_ext_armv8
),
18554 do_neon_cvttb_2 (t
, /*to=*/TRUE
, /*is_double=*/TRUE
);
18556 else if (neon_check_type (2, rs
, N_F64
| N_VFP
, N_F16
).type
!= NT_invtype
)
18558 /* The VCVTB and VCVTT instructions with D-register operands
18559 don't work for SP only targets. */
18560 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_vfp_ext_armv8
),
18564 do_neon_cvttb_2 (t
, /*to=*/FALSE
, /*is_double=*/TRUE
);
18571 do_neon_cvtb (void)
18573 do_neon_cvttb_1 (FALSE
);
18578 do_neon_cvtt (void)
18580 do_neon_cvttb_1 (TRUE
);
18584 neon_move_immediate (void)
18586 enum neon_shape rs
= neon_select_shape (NS_DI
, NS_QI
, NS_NULL
);
18587 struct neon_type_el et
= neon_check_type (2, rs
,
18588 N_I8
| N_I16
| N_I32
| N_I64
| N_F32
| N_KEY
, N_EQK
);
18589 unsigned immlo
, immhi
= 0, immbits
;
18590 int op
, cmode
, float_p
;
18592 constraint (et
.type
== NT_invtype
,
18593 _("operand size must be specified for immediate VMOV"));
18595 /* We start out as an MVN instruction if OP = 1, MOV otherwise. */
18596 op
= (inst
.instruction
& (1 << 5)) != 0;
18598 immlo
= inst
.operands
[1].imm
;
18599 if (inst
.operands
[1].regisimm
)
18600 immhi
= inst
.operands
[1].reg
;
18602 constraint (et
.size
< 32 && (immlo
& ~((1 << et
.size
) - 1)) != 0,
18603 _("immediate has bits set outside the operand size"));
18605 float_p
= inst
.operands
[1].immisfloat
;
18607 if ((cmode
= neon_cmode_for_move_imm (immlo
, immhi
, float_p
, &immbits
, &op
,
18608 et
.size
, et
.type
)) == FAIL
)
18610 /* Invert relevant bits only. */
18611 neon_invert_size (&immlo
, &immhi
, et
.size
);
18612 /* Flip from VMOV/VMVN to VMVN/VMOV. Some immediate types are unavailable
18613 with one or the other; those cases are caught by
18614 neon_cmode_for_move_imm. */
18616 if ((cmode
= neon_cmode_for_move_imm (immlo
, immhi
, float_p
, &immbits
,
18617 &op
, et
.size
, et
.type
)) == FAIL
)
18619 first_error (_("immediate out of range"));
18624 inst
.instruction
&= ~(1 << 5);
18625 inst
.instruction
|= op
<< 5;
18627 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
18628 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
18629 inst
.instruction
|= neon_quad (rs
) << 6;
18630 inst
.instruction
|= cmode
<< 8;
18632 neon_write_immbits (immbits
);
18638 if (check_simd_pred_availability (0, NEON_CHECK_CC
| NEON_CHECK_ARCH
))
18641 if (inst
.operands
[1].isreg
)
18643 enum neon_shape rs
;
18644 if (ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
))
18645 rs
= neon_select_shape (NS_QQ
, NS_NULL
);
18647 rs
= neon_select_shape (NS_DD
, NS_QQ
, NS_NULL
);
18649 NEON_ENCODE (INTEGER
, inst
);
18650 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
18651 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
18652 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
);
18653 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 5;
18654 inst
.instruction
|= neon_quad (rs
) << 6;
18658 NEON_ENCODE (IMMED
, inst
);
18659 neon_move_immediate ();
18662 neon_dp_fixup (&inst
);
18664 if (ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
))
18666 constraint (!inst
.operands
[1].isreg
&& !inst
.operands
[0].isquad
, BAD_FPU
);
18667 constraint ((inst
.instruction
& 0xd00) == 0xd00,
18668 _("immediate value out of range"));
18672 /* Encode instructions of form:
18674 |28/24|23|22|21 20|19 16|15 12|11 8|7|6|5|4|3 0|
18675 | U |x |D |size | Rn | Rd |x x x x|N|x|M|x| Rm | */
18678 neon_mixed_length (struct neon_type_el et
, unsigned size
)
18680 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
18681 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
18682 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
) << 16;
18683 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 7;
18684 inst
.instruction
|= LOW4 (inst
.operands
[2].reg
);
18685 inst
.instruction
|= HI1 (inst
.operands
[2].reg
) << 5;
18686 inst
.instruction
|= (et
.type
== NT_unsigned
) << 24;
18687 inst
.instruction
|= neon_logbits (size
) << 20;
18689 neon_dp_fixup (&inst
);
18693 do_neon_dyadic_long (void)
18695 enum neon_shape rs
= neon_select_shape (NS_QDD
, NS_QQQ
, NS_QQR
, NS_NULL
);
18698 if (vfp_or_neon_is_neon (NEON_CHECK_ARCH
| NEON_CHECK_CC
) == FAIL
)
18701 NEON_ENCODE (INTEGER
, inst
);
18702 /* FIXME: Type checking for lengthening op. */
18703 struct neon_type_el et
= neon_check_type (3, NS_QDD
,
18704 N_EQK
| N_DBL
, N_EQK
, N_SU_32
| N_KEY
);
18705 neon_mixed_length (et
, et
.size
);
18707 else if (ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
)
18708 && (inst
.cond
== 0xf || inst
.cond
== 0x10))
18710 /* If parsing for MVE, vaddl/vsubl/vabdl{e,t} can only be vadd/vsub/vabd
18711 in an IT block with le/lt conditions. */
18713 if (inst
.cond
== 0xf)
18715 else if (inst
.cond
== 0x10)
18718 inst
.pred_insn_type
= INSIDE_IT_INSN
;
18720 if (inst
.instruction
== N_MNEM_vaddl
)
18722 inst
.instruction
= N_MNEM_vadd
;
18723 do_neon_addsub_if_i ();
18725 else if (inst
.instruction
== N_MNEM_vsubl
)
18727 inst
.instruction
= N_MNEM_vsub
;
18728 do_neon_addsub_if_i ();
18730 else if (inst
.instruction
== N_MNEM_vabdl
)
18732 inst
.instruction
= N_MNEM_vabd
;
18733 do_neon_dyadic_if_su ();
18737 first_error (BAD_FPU
);
18741 do_neon_abal (void)
18743 struct neon_type_el et
= neon_check_type (3, NS_QDD
,
18744 N_EQK
| N_INT
| N_DBL
, N_EQK
, N_SU_32
| N_KEY
);
18745 neon_mixed_length (et
, et
.size
);
18749 neon_mac_reg_scalar_long (unsigned regtypes
, unsigned scalartypes
)
18751 if (inst
.operands
[2].isscalar
)
18753 struct neon_type_el et
= neon_check_type (3, NS_QDS
,
18754 N_EQK
| N_DBL
, N_EQK
, regtypes
| N_KEY
);
18755 NEON_ENCODE (SCALAR
, inst
);
18756 neon_mul_mac (et
, et
.type
== NT_unsigned
);
18760 struct neon_type_el et
= neon_check_type (3, NS_QDD
,
18761 N_EQK
| N_DBL
, N_EQK
, scalartypes
| N_KEY
);
18762 NEON_ENCODE (INTEGER
, inst
);
18763 neon_mixed_length (et
, et
.size
);
18768 do_neon_mac_maybe_scalar_long (void)
18770 neon_mac_reg_scalar_long (N_S16
| N_S32
| N_U16
| N_U32
, N_SU_32
);
18773 /* Like neon_scalar_for_mul, this function generate Rm encoding from GAS's
18774 internal SCALAR. QUAD_P is 1 if it's for Q format, otherwise it's 0. */
18777 neon_scalar_for_fmac_fp16_long (unsigned scalar
, unsigned quad_p
)
18779 unsigned regno
= NEON_SCALAR_REG (scalar
);
18780 unsigned elno
= NEON_SCALAR_INDEX (scalar
);
18784 if (regno
> 7 || elno
> 3)
18787 return ((regno
& 0x7)
18788 | ((elno
& 0x1) << 3)
18789 | (((elno
>> 1) & 0x1) << 5));
18793 if (regno
> 15 || elno
> 1)
18796 return (((regno
& 0x1) << 5)
18797 | ((regno
>> 1) & 0x7)
18798 | ((elno
& 0x1) << 3));
18802 first_error (_("scalar out of range for multiply instruction"));
18807 do_neon_fmac_maybe_scalar_long (int subtype
)
18809 enum neon_shape rs
;
18811 /* NOTE: vfmal/vfmsl use slightly different NEON three-same encoding. 'size"
18812 field (bits[21:20]) has different meaning. For scalar index variant, it's
18813 used to differentiate add and subtract, otherwise it's with fixed value
18817 if (inst
.cond
!= COND_ALWAYS
)
18818 as_warn (_("vfmal/vfmsl with FP16 type cannot be conditional, the "
18819 "behaviour is UNPREDICTABLE"));
18821 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_fp16_fml
),
18824 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_neon_ext_armv8
),
18827 /* vfmal/vfmsl are in three-same D/Q register format or the third operand can
18828 be a scalar index register. */
18829 if (inst
.operands
[2].isscalar
)
18831 high8
= 0xfe000000;
18834 rs
= neon_select_shape (NS_DHS
, NS_QDS
, NS_NULL
);
18838 high8
= 0xfc000000;
18841 inst
.instruction
|= (0x1 << 23);
18842 rs
= neon_select_shape (NS_DHH
, NS_QDD
, NS_NULL
);
18845 neon_check_type (3, rs
, N_EQK
, N_EQK
, N_KEY
| N_F16
);
18847 /* "opcode" from template has included "ubit", so simply pass 0 here. Also,
18848 the "S" bit in size field has been reused to differentiate vfmal and vfmsl,
18849 so we simply pass -1 as size. */
18850 unsigned quad_p
= (rs
== NS_QDD
|| rs
== NS_QDS
);
18851 neon_three_same (quad_p
, 0, size
);
18853 /* Undo neon_dp_fixup. Redo the high eight bits. */
18854 inst
.instruction
&= 0x00ffffff;
18855 inst
.instruction
|= high8
;
18857 #define LOW1(R) ((R) & 0x1)
18858 #define HI4(R) (((R) >> 1) & 0xf)
18859 /* Unlike usually NEON three-same, encoding for Vn and Vm will depend on
18860 whether the instruction is in Q form and whether Vm is a scalar indexed
18862 if (inst
.operands
[2].isscalar
)
18865 = neon_scalar_for_fmac_fp16_long (inst
.operands
[2].reg
, quad_p
);
18866 inst
.instruction
&= 0xffffffd0;
18867 inst
.instruction
|= rm
;
18871 /* Redo Rn as well. */
18872 inst
.instruction
&= 0xfff0ff7f;
18873 inst
.instruction
|= HI4 (inst
.operands
[1].reg
) << 16;
18874 inst
.instruction
|= LOW1 (inst
.operands
[1].reg
) << 7;
18879 /* Redo Rn and Rm. */
18880 inst
.instruction
&= 0xfff0ff50;
18881 inst
.instruction
|= HI4 (inst
.operands
[1].reg
) << 16;
18882 inst
.instruction
|= LOW1 (inst
.operands
[1].reg
) << 7;
18883 inst
.instruction
|= HI4 (inst
.operands
[2].reg
);
18884 inst
.instruction
|= LOW1 (inst
.operands
[2].reg
) << 5;
18889 do_neon_vfmal (void)
18891 return do_neon_fmac_maybe_scalar_long (0);
18895 do_neon_vfmsl (void)
18897 return do_neon_fmac_maybe_scalar_long (1);
18901 do_neon_dyadic_wide (void)
18903 struct neon_type_el et
= neon_check_type (3, NS_QQD
,
18904 N_EQK
| N_DBL
, N_EQK
| N_DBL
, N_SU_32
| N_KEY
);
18905 neon_mixed_length (et
, et
.size
);
18909 do_neon_dyadic_narrow (void)
18911 struct neon_type_el et
= neon_check_type (3, NS_QDD
,
18912 N_EQK
| N_DBL
, N_EQK
, N_I16
| N_I32
| N_I64
| N_KEY
);
18913 /* Operand sign is unimportant, and the U bit is part of the opcode,
18914 so force the operand type to integer. */
18915 et
.type
= NT_integer
;
18916 neon_mixed_length (et
, et
.size
/ 2);
18920 do_neon_mul_sat_scalar_long (void)
18922 neon_mac_reg_scalar_long (N_S16
| N_S32
, N_S16
| N_S32
);
18926 do_neon_vmull (void)
18928 if (inst
.operands
[2].isscalar
)
18929 do_neon_mac_maybe_scalar_long ();
18932 struct neon_type_el et
= neon_check_type (3, NS_QDD
,
18933 N_EQK
| N_DBL
, N_EQK
, N_SU_32
| N_P8
| N_P64
| N_KEY
);
18935 if (et
.type
== NT_poly
)
18936 NEON_ENCODE (POLY
, inst
);
18938 NEON_ENCODE (INTEGER
, inst
);
18940 /* For polynomial encoding the U bit must be zero, and the size must
18941 be 8 (encoded as 0b00) or, on ARMv8 or later 64 (encoded, non
18942 obviously, as 0b10). */
18945 /* Check we're on the correct architecture. */
18946 if (!mark_feature_used (&fpu_crypto_ext_armv8
))
18948 _("Instruction form not available on this architecture.");
18953 neon_mixed_length (et
, et
.size
);
18960 enum neon_shape rs
= neon_select_shape (NS_DDDI
, NS_QQQI
, NS_NULL
);
18961 struct neon_type_el et
= neon_check_type (3, rs
,
18962 N_EQK
, N_EQK
, N_8
| N_16
| N_32
| N_64
| N_KEY
);
18963 unsigned imm
= (inst
.operands
[3].imm
* et
.size
) / 8;
18965 constraint (imm
>= (unsigned) (neon_quad (rs
) ? 16 : 8),
18966 _("shift out of range"));
18967 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
18968 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
18969 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
) << 16;
18970 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 7;
18971 inst
.instruction
|= LOW4 (inst
.operands
[2].reg
);
18972 inst
.instruction
|= HI1 (inst
.operands
[2].reg
) << 5;
18973 inst
.instruction
|= neon_quad (rs
) << 6;
18974 inst
.instruction
|= imm
<< 8;
18976 neon_dp_fixup (&inst
);
18982 enum neon_shape rs
= neon_select_shape (NS_DD
, NS_QQ
, NS_NULL
);
18983 struct neon_type_el et
= neon_check_type (2, rs
,
18984 N_EQK
, N_8
| N_16
| N_32
| N_KEY
);
18985 unsigned op
= (inst
.instruction
>> 7) & 3;
18986 /* N (width of reversed regions) is encoded as part of the bitmask. We
18987 extract it here to check the elements to be reversed are smaller.
18988 Otherwise we'd get a reserved instruction. */
18989 unsigned elsize
= (op
== 2) ? 16 : (op
== 1) ? 32 : (op
== 0) ? 64 : 0;
18990 gas_assert (elsize
!= 0);
18991 constraint (et
.size
>= elsize
,
18992 _("elements must be smaller than reversal region"));
18993 neon_two_same (neon_quad (rs
), 1, et
.size
);
18999 if (inst
.operands
[1].isscalar
)
19001 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_neon_ext_v1
),
19003 enum neon_shape rs
= neon_select_shape (NS_DS
, NS_QS
, NS_NULL
);
19004 struct neon_type_el et
= neon_check_type (2, rs
,
19005 N_EQK
, N_8
| N_16
| N_32
| N_KEY
);
19006 unsigned sizebits
= et
.size
>> 3;
19007 unsigned dm
= NEON_SCALAR_REG (inst
.operands
[1].reg
);
19008 int logsize
= neon_logbits (et
.size
);
19009 unsigned x
= NEON_SCALAR_INDEX (inst
.operands
[1].reg
) << logsize
;
19011 if (vfp_or_neon_is_neon (NEON_CHECK_CC
) == FAIL
)
19014 NEON_ENCODE (SCALAR
, inst
);
19015 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
19016 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
19017 inst
.instruction
|= LOW4 (dm
);
19018 inst
.instruction
|= HI1 (dm
) << 5;
19019 inst
.instruction
|= neon_quad (rs
) << 6;
19020 inst
.instruction
|= x
<< 17;
19021 inst
.instruction
|= sizebits
<< 16;
19023 neon_dp_fixup (&inst
);
19027 enum neon_shape rs
= neon_select_shape (NS_DR
, NS_QR
, NS_NULL
);
19028 struct neon_type_el et
= neon_check_type (2, rs
,
19029 N_8
| N_16
| N_32
| N_KEY
, N_EQK
);
19032 if (check_simd_pred_availability (0, NEON_CHECK_ARCH
))
19036 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_neon_ext_v1
),
19039 if (ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
))
19041 if (inst
.operands
[1].reg
== REG_SP
)
19042 as_tsktsk (MVE_BAD_SP
);
19043 else if (inst
.operands
[1].reg
== REG_PC
)
19044 as_tsktsk (MVE_BAD_PC
);
19047 /* Duplicate ARM register to lanes of vector. */
19048 NEON_ENCODE (ARMREG
, inst
);
19051 case 8: inst
.instruction
|= 0x400000; break;
19052 case 16: inst
.instruction
|= 0x000020; break;
19053 case 32: inst
.instruction
|= 0x000000; break;
19056 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
) << 12;
19057 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 16;
19058 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 7;
19059 inst
.instruction
|= neon_quad (rs
) << 21;
19060 /* The encoding for this instruction is identical for the ARM and Thumb
19061 variants, except for the condition field. */
19062 do_vfp_cond_or_thumb ();
19067 do_mve_mov (int toQ
)
19069 if (!ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
))
19071 if (inst
.cond
> COND_ALWAYS
)
19072 inst
.pred_insn_type
= MVE_UNPREDICABLE_INSN
;
19074 unsigned Rt
= 0, Rt2
= 1, Q0
= 2, Q1
= 3;
19083 constraint (inst
.operands
[Q0
].reg
!= inst
.operands
[Q1
].reg
+ 2,
19084 _("Index one must be [2,3] and index two must be two less than"
19086 constraint (inst
.operands
[Rt
].reg
== inst
.operands
[Rt2
].reg
,
19087 _("General purpose registers may not be the same"));
19088 constraint (inst
.operands
[Rt
].reg
== REG_SP
19089 || inst
.operands
[Rt2
].reg
== REG_SP
,
19091 constraint (inst
.operands
[Rt
].reg
== REG_PC
19092 || inst
.operands
[Rt2
].reg
== REG_PC
,
19095 inst
.instruction
= 0xec000f00;
19096 inst
.instruction
|= HI1 (inst
.operands
[Q1
].reg
/ 32) << 23;
19097 inst
.instruction
|= !!toQ
<< 20;
19098 inst
.instruction
|= inst
.operands
[Rt2
].reg
<< 16;
19099 inst
.instruction
|= LOW4 (inst
.operands
[Q1
].reg
/ 32) << 13;
19100 inst
.instruction
|= (inst
.operands
[Q1
].reg
% 4) << 4;
19101 inst
.instruction
|= inst
.operands
[Rt
].reg
;
19107 if (!ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
))
19110 if (inst
.cond
> COND_ALWAYS
)
19111 inst
.pred_insn_type
= INSIDE_VPT_INSN
;
19113 inst
.pred_insn_type
= MVE_OUTSIDE_PRED_INSN
;
19115 struct neon_type_el et
= neon_check_type (2, NS_QQ
, N_EQK
, N_I16
| N_I32
19118 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
19119 inst
.instruction
|= (neon_logbits (et
.size
) - 1) << 18;
19120 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
19121 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 5;
19122 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
);
19127 /* VMOV has particularly many variations. It can be one of:
19128 0. VMOV<c><q> <Qd>, <Qm>
19129 1. VMOV<c><q> <Dd>, <Dm>
19130 (Register operations, which are VORR with Rm = Rn.)
19131 2. VMOV<c><q>.<dt> <Qd>, #<imm>
19132 3. VMOV<c><q>.<dt> <Dd>, #<imm>
19134 4. VMOV<c><q>.<size> <Dn[x]>, <Rd>
19135 (ARM register to scalar.)
19136 5. VMOV<c><q> <Dm>, <Rd>, <Rn>
19137 (Two ARM registers to vector.)
19138 6. VMOV<c><q>.<dt> <Rd>, <Dn[x]>
19139 (Scalar to ARM register.)
19140 7. VMOV<c><q> <Rd>, <Rn>, <Dm>
19141 (Vector to two ARM registers.)
19142 8. VMOV.F32 <Sd>, <Sm>
19143 9. VMOV.F64 <Dd>, <Dm>
19144 (VFP register moves.)
19145 10. VMOV.F32 <Sd>, #imm
19146 11. VMOV.F64 <Dd>, #imm
19147 (VFP float immediate load.)
19148 12. VMOV <Rd>, <Sm>
19149 (VFP single to ARM reg.)
19150 13. VMOV <Sd>, <Rm>
19151 (ARM reg to VFP single.)
19152 14. VMOV <Rd>, <Re>, <Sn>, <Sm>
19153 (Two ARM regs to two VFP singles.)
19154 15. VMOV <Sd>, <Se>, <Rn>, <Rm>
19155 (Two VFP singles to two ARM regs.)
19156 16. VMOV<c> <Rt>, <Rt2>, <Qd[idx]>, <Qd[idx2]>
19157 17. VMOV<c> <Qd[idx]>, <Qd[idx2]>, <Rt>, <Rt2>
19158 18. VMOV<c>.<dt> <Rt>, <Qn[idx]>
19159 19. VMOV<c>.<dt> <Qd[idx]>, <Rt>
19161 These cases can be disambiguated using neon_select_shape, except cases 1/9
19162 and 3/11 which depend on the operand type too.
19164 All the encoded bits are hardcoded by this function.
19166 Cases 4, 6 may be used with VFPv1 and above (only 32-bit transfers!).
19167 Cases 5, 7 may be used with VFPv2 and above.
19169 FIXME: Some of the checking may be a bit sloppy (in a couple of cases you
19170 can specify a type where it doesn't make sense to, and is ignored). */
19175 enum neon_shape rs
= neon_select_shape (NS_RRSS
, NS_SSRR
, NS_RRFF
, NS_FFRR
,
19176 NS_DRR
, NS_RRD
, NS_QQ
, NS_DD
, NS_QI
,
19177 NS_DI
, NS_SR
, NS_RS
, NS_FF
, NS_FI
,
19178 NS_RF
, NS_FR
, NS_HR
, NS_RH
, NS_HI
,
19180 struct neon_type_el et
;
19181 const char *ldconst
= 0;
19185 case NS_DD
: /* case 1/9. */
19186 et
= neon_check_type (2, rs
, N_EQK
, N_F64
| N_KEY
);
19187 /* It is not an error here if no type is given. */
19189 if (et
.type
== NT_float
&& et
.size
== 64)
19191 do_vfp_nsyn_opcode ("fcpyd");
19194 /* fall through. */
19196 case NS_QQ
: /* case 0/1. */
19198 if (check_simd_pred_availability (0, NEON_CHECK_CC
| NEON_CHECK_ARCH
))
19200 /* The architecture manual I have doesn't explicitly state which
19201 value the U bit should have for register->register moves, but
19202 the equivalent VORR instruction has U = 0, so do that. */
19203 inst
.instruction
= 0x0200110;
19204 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
19205 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
19206 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
);
19207 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 5;
19208 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
) << 16;
19209 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 7;
19210 inst
.instruction
|= neon_quad (rs
) << 6;
19212 neon_dp_fixup (&inst
);
19216 case NS_DI
: /* case 3/11. */
19217 et
= neon_check_type (2, rs
, N_EQK
, N_F64
| N_KEY
);
19219 if (et
.type
== NT_float
&& et
.size
== 64)
19221 /* case 11 (fconstd). */
19222 ldconst
= "fconstd";
19223 goto encode_fconstd
;
19225 /* fall through. */
19227 case NS_QI
: /* case 2/3. */
19228 if (check_simd_pred_availability (0, NEON_CHECK_CC
| NEON_CHECK_ARCH
))
19230 inst
.instruction
= 0x0800010;
19231 neon_move_immediate ();
19232 neon_dp_fixup (&inst
);
19235 case NS_SR
: /* case 4. */
19237 unsigned bcdebits
= 0;
19239 unsigned dn
= NEON_SCALAR_REG (inst
.operands
[0].reg
);
19240 unsigned x
= NEON_SCALAR_INDEX (inst
.operands
[0].reg
);
19242 /* .<size> is optional here, defaulting to .32. */
19243 if (inst
.vectype
.elems
== 0
19244 && inst
.operands
[0].vectype
.type
== NT_invtype
19245 && inst
.operands
[1].vectype
.type
== NT_invtype
)
19247 inst
.vectype
.el
[0].type
= NT_untyped
;
19248 inst
.vectype
.el
[0].size
= 32;
19249 inst
.vectype
.elems
= 1;
19252 et
= neon_check_type (2, NS_NULL
, N_8
| N_16
| N_32
| N_KEY
, N_EQK
);
19253 logsize
= neon_logbits (et
.size
);
19257 if (!ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
)
19258 && vfp_or_neon_is_neon (NEON_CHECK_ARCH
) == FAIL
)
19263 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_vfp_ext_v1
)
19264 && !ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
),
19268 if (ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
))
19270 if (inst
.operands
[1].reg
== REG_SP
)
19271 as_tsktsk (MVE_BAD_SP
);
19272 else if (inst
.operands
[1].reg
== REG_PC
)
19273 as_tsktsk (MVE_BAD_PC
);
19275 unsigned size
= inst
.operands
[0].isscalar
== 1 ? 64 : 128;
19277 constraint (et
.type
== NT_invtype
, _("bad type for scalar"));
19278 constraint (x
>= size
/ et
.size
, _("scalar index out of range"));
19283 case 8: bcdebits
= 0x8; break;
19284 case 16: bcdebits
= 0x1; break;
19285 case 32: bcdebits
= 0x0; break;
19289 bcdebits
|= (x
& ((1 << (3-logsize
)) - 1)) << logsize
;
19291 inst
.instruction
= 0xe000b10;
19292 do_vfp_cond_or_thumb ();
19293 inst
.instruction
|= LOW4 (dn
) << 16;
19294 inst
.instruction
|= HI1 (dn
) << 7;
19295 inst
.instruction
|= inst
.operands
[1].reg
<< 12;
19296 inst
.instruction
|= (bcdebits
& 3) << 5;
19297 inst
.instruction
|= ((bcdebits
>> 2) & 3) << 21;
19298 inst
.instruction
|= (x
>> (3-logsize
)) << 16;
19302 case NS_DRR
: /* case 5 (fmdrr). */
19303 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_vfp_ext_v2
)
19304 && !ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
),
19307 inst
.instruction
= 0xc400b10;
19308 do_vfp_cond_or_thumb ();
19309 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
);
19310 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 5;
19311 inst
.instruction
|= inst
.operands
[1].reg
<< 12;
19312 inst
.instruction
|= inst
.operands
[2].reg
<< 16;
19315 case NS_RS
: /* case 6. */
19318 unsigned dn
= NEON_SCALAR_REG (inst
.operands
[1].reg
);
19319 unsigned x
= NEON_SCALAR_INDEX (inst
.operands
[1].reg
);
19320 unsigned abcdebits
= 0;
19322 /* .<dt> is optional here, defaulting to .32. */
19323 if (inst
.vectype
.elems
== 0
19324 && inst
.operands
[0].vectype
.type
== NT_invtype
19325 && inst
.operands
[1].vectype
.type
== NT_invtype
)
19327 inst
.vectype
.el
[0].type
= NT_untyped
;
19328 inst
.vectype
.el
[0].size
= 32;
19329 inst
.vectype
.elems
= 1;
19332 et
= neon_check_type (2, NS_NULL
,
19333 N_EQK
, N_S8
| N_S16
| N_U8
| N_U16
| N_32
| N_KEY
);
19334 logsize
= neon_logbits (et
.size
);
19338 if (!ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
)
19339 && vfp_or_neon_is_neon (NEON_CHECK_CC
19340 | NEON_CHECK_ARCH
) == FAIL
)
19345 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_vfp_ext_v1
)
19346 && !ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
),
19350 if (ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
))
19352 if (inst
.operands
[0].reg
== REG_SP
)
19353 as_tsktsk (MVE_BAD_SP
);
19354 else if (inst
.operands
[0].reg
== REG_PC
)
19355 as_tsktsk (MVE_BAD_PC
);
19358 unsigned size
= inst
.operands
[1].isscalar
== 1 ? 64 : 128;
19360 constraint (et
.type
== NT_invtype
, _("bad type for scalar"));
19361 constraint (x
>= size
/ et
.size
, _("scalar index out of range"));
19365 case 8: abcdebits
= (et
.type
== NT_signed
) ? 0x08 : 0x18; break;
19366 case 16: abcdebits
= (et
.type
== NT_signed
) ? 0x01 : 0x11; break;
19367 case 32: abcdebits
= 0x00; break;
19371 abcdebits
|= (x
& ((1 << (3-logsize
)) - 1)) << logsize
;
19372 inst
.instruction
= 0xe100b10;
19373 do_vfp_cond_or_thumb ();
19374 inst
.instruction
|= LOW4 (dn
) << 16;
19375 inst
.instruction
|= HI1 (dn
) << 7;
19376 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
19377 inst
.instruction
|= (abcdebits
& 3) << 5;
19378 inst
.instruction
|= (abcdebits
>> 2) << 21;
19379 inst
.instruction
|= (x
>> (3-logsize
)) << 16;
19383 case NS_RRD
: /* case 7 (fmrrd). */
19384 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_vfp_ext_v2
)
19385 && !ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
),
19388 inst
.instruction
= 0xc500b10;
19389 do_vfp_cond_or_thumb ();
19390 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
19391 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
19392 inst
.instruction
|= LOW4 (inst
.operands
[2].reg
);
19393 inst
.instruction
|= HI1 (inst
.operands
[2].reg
) << 5;
19396 case NS_FF
: /* case 8 (fcpys). */
19397 do_vfp_nsyn_opcode ("fcpys");
19401 case NS_FI
: /* case 10 (fconsts). */
19402 ldconst
= "fconsts";
19404 if (!inst
.operands
[1].immisfloat
)
19407 /* Immediate has to fit in 8 bits so float is enough. */
19408 float imm
= (float) inst
.operands
[1].imm
;
19409 memcpy (&new_imm
, &imm
, sizeof (float));
19410 /* But the assembly may have been written to provide an integer
19411 bit pattern that equates to a float, so check that the
19412 conversion has worked. */
19413 if (is_quarter_float (new_imm
))
19415 if (is_quarter_float (inst
.operands
[1].imm
))
19416 as_warn (_("immediate constant is valid both as a bit-pattern and a floating point value (using the fp value)"));
19418 inst
.operands
[1].imm
= new_imm
;
19419 inst
.operands
[1].immisfloat
= 1;
19423 if (is_quarter_float (inst
.operands
[1].imm
))
19425 inst
.operands
[1].imm
= neon_qfloat_bits (inst
.operands
[1].imm
);
19426 do_vfp_nsyn_opcode (ldconst
);
19428 /* ARMv8.2 fp16 vmov.f16 instruction. */
19430 do_scalar_fp16_v82_encode ();
19433 first_error (_("immediate out of range"));
19437 case NS_RF
: /* case 12 (fmrs). */
19438 do_vfp_nsyn_opcode ("fmrs");
19439 /* ARMv8.2 fp16 vmov.f16 instruction. */
19441 do_scalar_fp16_v82_encode ();
19445 case NS_FR
: /* case 13 (fmsr). */
19446 do_vfp_nsyn_opcode ("fmsr");
19447 /* ARMv8.2 fp16 vmov.f16 instruction. */
19449 do_scalar_fp16_v82_encode ();
19459 /* The encoders for the fmrrs and fmsrr instructions expect three operands
19460 (one of which is a list), but we have parsed four. Do some fiddling to
19461 make the operands what do_vfp_reg2_from_sp2 and do_vfp_sp2_from_reg2
19463 case NS_RRFF
: /* case 14 (fmrrs). */
19464 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_vfp_ext_v2
)
19465 && !ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
),
19467 constraint (inst
.operands
[3].reg
!= inst
.operands
[2].reg
+ 1,
19468 _("VFP registers must be adjacent"));
19469 inst
.operands
[2].imm
= 2;
19470 memset (&inst
.operands
[3], '\0', sizeof (inst
.operands
[3]));
19471 do_vfp_nsyn_opcode ("fmrrs");
19474 case NS_FFRR
: /* case 15 (fmsrr). */
19475 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_vfp_ext_v2
)
19476 && !ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
),
19478 constraint (inst
.operands
[1].reg
!= inst
.operands
[0].reg
+ 1,
19479 _("VFP registers must be adjacent"));
19480 inst
.operands
[1] = inst
.operands
[2];
19481 inst
.operands
[2] = inst
.operands
[3];
19482 inst
.operands
[0].imm
= 2;
19483 memset (&inst
.operands
[3], '\0', sizeof (inst
.operands
[3]));
19484 do_vfp_nsyn_opcode ("fmsrr");
19488 /* neon_select_shape has determined that the instruction
19489 shape is wrong and has already set the error message. */
19500 if (!(inst
.operands
[0].present
&& inst
.operands
[0].isquad
19501 && inst
.operands
[1].present
&& inst
.operands
[1].isquad
19502 && !inst
.operands
[2].present
))
19504 inst
.instruction
= 0;
19507 set_pred_insn_type (INSIDE_IT_INSN
);
19512 if (!ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
))
19515 if (inst
.cond
!= COND_ALWAYS
)
19516 inst
.pred_insn_type
= INSIDE_VPT_INSN
;
19518 struct neon_type_el et
= neon_check_type (2, NS_QQ
, N_EQK
, N_S8
| N_U8
19519 | N_S16
| N_U16
| N_KEY
);
19521 inst
.instruction
|= (et
.type
== NT_unsigned
) << 28;
19522 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
19523 inst
.instruction
|= (neon_logbits (et
.size
) + 1) << 19;
19524 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
19525 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 5;
19526 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
);
19531 do_neon_rshift_round_imm (void)
19533 enum neon_shape rs
= neon_select_shape (NS_DDI
, NS_QQI
, NS_NULL
);
19534 struct neon_type_el et
= neon_check_type (2, rs
, N_EQK
, N_SU_ALL
| N_KEY
);
19535 int imm
= inst
.operands
[2].imm
;
19537 /* imm == 0 case is encoded as VMOV for V{R}SHR. */
19540 inst
.operands
[2].present
= 0;
19545 constraint (imm
< 1 || (unsigned)imm
> et
.size
,
19546 _("immediate out of range for shift"));
19547 neon_imm_shift (TRUE
, et
.type
== NT_unsigned
, neon_quad (rs
), et
,
19552 do_neon_movhf (void)
19554 enum neon_shape rs
= neon_select_shape (NS_HH
, NS_NULL
);
19555 constraint (rs
!= NS_HH
, _("invalid suffix"));
19557 if (inst
.cond
!= COND_ALWAYS
)
19561 as_warn (_("ARMv8.2 scalar fp16 instruction cannot be conditional,"
19562 " the behaviour is UNPREDICTABLE"));
19566 inst
.error
= BAD_COND
;
19571 do_vfp_sp_monadic ();
19574 inst
.instruction
|= 0xf0000000;
19578 do_neon_movl (void)
19580 struct neon_type_el et
= neon_check_type (2, NS_QD
,
19581 N_EQK
| N_DBL
, N_SU_32
| N_KEY
);
19582 unsigned sizebits
= et
.size
>> 3;
19583 inst
.instruction
|= sizebits
<< 19;
19584 neon_two_same (0, et
.type
== NT_unsigned
, -1);
19590 enum neon_shape rs
= neon_select_shape (NS_DD
, NS_QQ
, NS_NULL
);
19591 struct neon_type_el et
= neon_check_type (2, rs
,
19592 N_EQK
, N_8
| N_16
| N_32
| N_KEY
);
19593 NEON_ENCODE (INTEGER
, inst
);
19594 neon_two_same (neon_quad (rs
), 1, et
.size
);
19598 do_neon_zip_uzp (void)
19600 enum neon_shape rs
= neon_select_shape (NS_DD
, NS_QQ
, NS_NULL
);
19601 struct neon_type_el et
= neon_check_type (2, rs
,
19602 N_EQK
, N_8
| N_16
| N_32
| N_KEY
);
19603 if (rs
== NS_DD
&& et
.size
== 32)
19605 /* Special case: encode as VTRN.32 <Dd>, <Dm>. */
19606 inst
.instruction
= N_MNEM_vtrn
;
19610 neon_two_same (neon_quad (rs
), 1, et
.size
);
19614 do_neon_sat_abs_neg (void)
19616 if (check_simd_pred_availability (0, NEON_CHECK_CC
| NEON_CHECK_ARCH
))
19619 enum neon_shape rs
;
19620 if (ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
))
19621 rs
= neon_select_shape (NS_QQ
, NS_NULL
);
19623 rs
= neon_select_shape (NS_DD
, NS_QQ
, NS_NULL
);
19624 struct neon_type_el et
= neon_check_type (2, rs
,
19625 N_EQK
, N_S8
| N_S16
| N_S32
| N_KEY
);
19626 neon_two_same (neon_quad (rs
), 1, et
.size
);
19630 do_neon_pair_long (void)
19632 enum neon_shape rs
= neon_select_shape (NS_DD
, NS_QQ
, NS_NULL
);
19633 struct neon_type_el et
= neon_check_type (2, rs
, N_EQK
, N_SU_32
| N_KEY
);
19634 /* Unsigned is encoded in OP field (bit 7) for these instruction. */
19635 inst
.instruction
|= (et
.type
== NT_unsigned
) << 7;
19636 neon_two_same (neon_quad (rs
), 1, et
.size
);
19640 do_neon_recip_est (void)
19642 enum neon_shape rs
= neon_select_shape (NS_DD
, NS_QQ
, NS_NULL
);
19643 struct neon_type_el et
= neon_check_type (2, rs
,
19644 N_EQK
| N_FLT
, N_F_16_32
| N_U32
| N_KEY
);
19645 inst
.instruction
|= (et
.type
== NT_float
) << 8;
19646 neon_two_same (neon_quad (rs
), 1, et
.size
);
19652 if (check_simd_pred_availability (0, NEON_CHECK_ARCH
| NEON_CHECK_CC
))
19655 enum neon_shape rs
;
19656 if (ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
))
19657 rs
= neon_select_shape (NS_QQ
, NS_NULL
);
19659 rs
= neon_select_shape (NS_DD
, NS_QQ
, NS_NULL
);
19661 struct neon_type_el et
= neon_check_type (2, rs
,
19662 N_EQK
, N_S8
| N_S16
| N_S32
| N_KEY
);
19663 neon_two_same (neon_quad (rs
), 1, et
.size
);
19669 if (check_simd_pred_availability (0, NEON_CHECK_ARCH
| NEON_CHECK_CC
))
19672 enum neon_shape rs
;
19673 if (ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
))
19674 rs
= neon_select_shape (NS_QQ
, NS_NULL
);
19676 rs
= neon_select_shape (NS_DD
, NS_QQ
, NS_NULL
);
19678 struct neon_type_el et
= neon_check_type (2, rs
,
19679 N_EQK
, N_I8
| N_I16
| N_I32
| N_KEY
);
19680 neon_two_same (neon_quad (rs
), 1, et
.size
);
19686 enum neon_shape rs
= neon_select_shape (NS_DD
, NS_QQ
, NS_NULL
);
19687 struct neon_type_el et
= neon_check_type (2, rs
,
19688 N_EQK
| N_INT
, N_8
| N_KEY
);
19689 neon_two_same (neon_quad (rs
), 1, et
.size
);
19695 enum neon_shape rs
= neon_select_shape (NS_DD
, NS_QQ
, NS_NULL
);
19696 neon_two_same (neon_quad (rs
), 1, -1);
19700 do_neon_tbl_tbx (void)
19702 unsigned listlenbits
;
19703 neon_check_type (3, NS_DLD
, N_EQK
, N_EQK
, N_8
| N_KEY
);
19705 if (inst
.operands
[1].imm
< 1 || inst
.operands
[1].imm
> 4)
19707 first_error (_("bad list length for table lookup"));
19711 listlenbits
= inst
.operands
[1].imm
- 1;
19712 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
19713 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
19714 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
) << 16;
19715 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 7;
19716 inst
.instruction
|= LOW4 (inst
.operands
[2].reg
);
19717 inst
.instruction
|= HI1 (inst
.operands
[2].reg
) << 5;
19718 inst
.instruction
|= listlenbits
<< 8;
19720 neon_dp_fixup (&inst
);
19724 do_neon_ldm_stm (void)
19726 /* P, U and L bits are part of bitmask. */
19727 int is_dbmode
= (inst
.instruction
& (1 << 24)) != 0;
19728 unsigned offsetbits
= inst
.operands
[1].imm
* 2;
19730 if (inst
.operands
[1].issingle
)
19732 do_vfp_nsyn_ldm_stm (is_dbmode
);
19736 constraint (is_dbmode
&& !inst
.operands
[0].writeback
,
19737 _("writeback (!) must be used for VLDMDB and VSTMDB"));
19739 constraint (inst
.operands
[1].imm
< 1 || inst
.operands
[1].imm
> 16,
19740 _("register list must contain at least 1 and at most 16 "
19743 inst
.instruction
|= inst
.operands
[0].reg
<< 16;
19744 inst
.instruction
|= inst
.operands
[0].writeback
<< 21;
19745 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
) << 12;
19746 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 22;
19748 inst
.instruction
|= offsetbits
;
19750 do_vfp_cond_or_thumb ();
19754 do_neon_ldr_str (void)
19756 int is_ldr
= (inst
.instruction
& (1 << 20)) != 0;
19758 /* Use of PC in vstr in ARM mode is deprecated in ARMv7.
19759 And is UNPREDICTABLE in thumb mode. */
19761 && inst
.operands
[1].reg
== REG_PC
19762 && (ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_v7
) || thumb_mode
))
19765 inst
.error
= _("Use of PC here is UNPREDICTABLE");
19766 else if (warn_on_deprecated
)
19767 as_tsktsk (_("Use of PC here is deprecated"));
19770 if (inst
.operands
[0].issingle
)
19773 do_vfp_nsyn_opcode ("flds");
19775 do_vfp_nsyn_opcode ("fsts");
19777 /* ARMv8.2 vldr.16/vstr.16 instruction. */
19778 if (inst
.vectype
.el
[0].size
== 16)
19779 do_scalar_fp16_v82_encode ();
19784 do_vfp_nsyn_opcode ("fldd");
19786 do_vfp_nsyn_opcode ("fstd");
19791 do_t_vldr_vstr_sysreg (void)
19793 int fp_vldr_bitno
= 20, sysreg_vldr_bitno
= 20;
19794 bfd_boolean is_vldr
= ((inst
.instruction
& (1 << fp_vldr_bitno
)) != 0);
19796 /* Use of PC is UNPREDICTABLE. */
19797 if (inst
.operands
[1].reg
== REG_PC
)
19798 inst
.error
= _("Use of PC here is UNPREDICTABLE");
19800 if (inst
.operands
[1].immisreg
)
19801 inst
.error
= _("instruction does not accept register index");
19803 if (!inst
.operands
[1].isreg
)
19804 inst
.error
= _("instruction does not accept PC-relative addressing");
19806 if (abs (inst
.operands
[1].imm
) >= (1 << 7))
19807 inst
.error
= _("immediate value out of range");
19809 inst
.instruction
= 0xec000f80;
19811 inst
.instruction
|= 1 << sysreg_vldr_bitno
;
19812 encode_arm_cp_address (1, TRUE
, FALSE
, BFD_RELOC_ARM_T32_VLDR_VSTR_OFF_IMM
);
19813 inst
.instruction
|= (inst
.operands
[0].imm
& 0x7) << 13;
19814 inst
.instruction
|= (inst
.operands
[0].imm
& 0x8) << 19;
19818 do_vldr_vstr (void)
19820 bfd_boolean sysreg_op
= !inst
.operands
[0].isreg
;
19822 /* VLDR/VSTR (System Register). */
19825 if (!mark_feature_used (&arm_ext_v8_1m_main
))
19826 as_bad (_("Instruction not permitted on this architecture"));
19828 do_t_vldr_vstr_sysreg ();
19833 if (!mark_feature_used (&fpu_vfp_ext_v1xd
))
19834 as_bad (_("Instruction not permitted on this architecture"));
19835 do_neon_ldr_str ();
19839 /* "interleave" version also handles non-interleaving register VLD1/VST1
19843 do_neon_ld_st_interleave (void)
19845 struct neon_type_el et
= neon_check_type (1, NS_NULL
,
19846 N_8
| N_16
| N_32
| N_64
);
19847 unsigned alignbits
= 0;
19849 /* The bits in this table go:
19850 0: register stride of one (0) or two (1)
19851 1,2: register list length, minus one (1, 2, 3, 4).
19852 3,4: <n> in instruction type, minus one (VLD<n> / VST<n>).
19853 We use -1 for invalid entries. */
19854 const int typetable
[] =
19856 0x7, -1, 0xa, -1, 0x6, -1, 0x2, -1, /* VLD1 / VST1. */
19857 -1, -1, 0x8, 0x9, -1, -1, 0x3, -1, /* VLD2 / VST2. */
19858 -1, -1, -1, -1, 0x4, 0x5, -1, -1, /* VLD3 / VST3. */
19859 -1, -1, -1, -1, -1, -1, 0x0, 0x1 /* VLD4 / VST4. */
19863 if (et
.type
== NT_invtype
)
19866 if (inst
.operands
[1].immisalign
)
19867 switch (inst
.operands
[1].imm
>> 8)
19869 case 64: alignbits
= 1; break;
19871 if (NEON_REGLIST_LENGTH (inst
.operands
[0].imm
) != 2
19872 && NEON_REGLIST_LENGTH (inst
.operands
[0].imm
) != 4)
19873 goto bad_alignment
;
19877 if (NEON_REGLIST_LENGTH (inst
.operands
[0].imm
) != 4)
19878 goto bad_alignment
;
19883 first_error (_("bad alignment"));
19887 inst
.instruction
|= alignbits
<< 4;
19888 inst
.instruction
|= neon_logbits (et
.size
) << 6;
19890 /* Bits [4:6] of the immediate in a list specifier encode register stride
19891 (minus 1) in bit 4, and list length in bits [5:6]. We put the <n> of
19892 VLD<n>/VST<n> in bits [9:8] of the initial bitmask. Suck it out here, look
19893 up the right value for "type" in a table based on this value and the given
19894 list style, then stick it back. */
19895 idx
= ((inst
.operands
[0].imm
>> 4) & 7)
19896 | (((inst
.instruction
>> 8) & 3) << 3);
19898 typebits
= typetable
[idx
];
19900 constraint (typebits
== -1, _("bad list type for instruction"));
19901 constraint (((inst
.instruction
>> 8) & 3) && et
.size
== 64,
19904 inst
.instruction
&= ~0xf00;
19905 inst
.instruction
|= typebits
<< 8;
19908 /* Check alignment is valid for do_neon_ld_st_lane and do_neon_ld_dup.
19909 *DO_ALIGN is set to 1 if the relevant alignment bit should be set, 0
19910 otherwise. The variable arguments are a list of pairs of legal (size, align)
19911 values, terminated with -1. */
19914 neon_alignment_bit (int size
, int align
, int *do_alignment
, ...)
19917 int result
= FAIL
, thissize
, thisalign
;
19919 if (!inst
.operands
[1].immisalign
)
19925 va_start (ap
, do_alignment
);
19929 thissize
= va_arg (ap
, int);
19930 if (thissize
== -1)
19932 thisalign
= va_arg (ap
, int);
19934 if (size
== thissize
&& align
== thisalign
)
19937 while (result
!= SUCCESS
);
19941 if (result
== SUCCESS
)
19944 first_error (_("unsupported alignment for instruction"));
19950 do_neon_ld_st_lane (void)
19952 struct neon_type_el et
= neon_check_type (1, NS_NULL
, N_8
| N_16
| N_32
);
19953 int align_good
, do_alignment
= 0;
19954 int logsize
= neon_logbits (et
.size
);
19955 int align
= inst
.operands
[1].imm
>> 8;
19956 int n
= (inst
.instruction
>> 8) & 3;
19957 int max_el
= 64 / et
.size
;
19959 if (et
.type
== NT_invtype
)
19962 constraint (NEON_REGLIST_LENGTH (inst
.operands
[0].imm
) != n
+ 1,
19963 _("bad list length"));
19964 constraint (NEON_LANE (inst
.operands
[0].imm
) >= max_el
,
19965 _("scalar index out of range"));
19966 constraint (n
!= 0 && NEON_REG_STRIDE (inst
.operands
[0].imm
) == 2
19968 _("stride of 2 unavailable when element size is 8"));
19972 case 0: /* VLD1 / VST1. */
19973 align_good
= neon_alignment_bit (et
.size
, align
, &do_alignment
, 16, 16,
19975 if (align_good
== FAIL
)
19979 unsigned alignbits
= 0;
19982 case 16: alignbits
= 0x1; break;
19983 case 32: alignbits
= 0x3; break;
19986 inst
.instruction
|= alignbits
<< 4;
19990 case 1: /* VLD2 / VST2. */
19991 align_good
= neon_alignment_bit (et
.size
, align
, &do_alignment
, 8, 16,
19992 16, 32, 32, 64, -1);
19993 if (align_good
== FAIL
)
19996 inst
.instruction
|= 1 << 4;
19999 case 2: /* VLD3 / VST3. */
20000 constraint (inst
.operands
[1].immisalign
,
20001 _("can't use alignment with this instruction"));
20004 case 3: /* VLD4 / VST4. */
20005 align_good
= neon_alignment_bit (et
.size
, align
, &do_alignment
, 8, 32,
20006 16, 64, 32, 64, 32, 128, -1);
20007 if (align_good
== FAIL
)
20011 unsigned alignbits
= 0;
20014 case 8: alignbits
= 0x1; break;
20015 case 16: alignbits
= 0x1; break;
20016 case 32: alignbits
= (align
== 64) ? 0x1 : 0x2; break;
20019 inst
.instruction
|= alignbits
<< 4;
20026 /* Reg stride of 2 is encoded in bit 5 when size==16, bit 6 when size==32. */
20027 if (n
!= 0 && NEON_REG_STRIDE (inst
.operands
[0].imm
) == 2)
20028 inst
.instruction
|= 1 << (4 + logsize
);
20030 inst
.instruction
|= NEON_LANE (inst
.operands
[0].imm
) << (logsize
+ 5);
20031 inst
.instruction
|= logsize
<< 10;
20034 /* Encode single n-element structure to all lanes VLD<n> instructions. */
20037 do_neon_ld_dup (void)
20039 struct neon_type_el et
= neon_check_type (1, NS_NULL
, N_8
| N_16
| N_32
);
20040 int align_good
, do_alignment
= 0;
20042 if (et
.type
== NT_invtype
)
20045 switch ((inst
.instruction
>> 8) & 3)
20047 case 0: /* VLD1. */
20048 gas_assert (NEON_REG_STRIDE (inst
.operands
[0].imm
) != 2);
20049 align_good
= neon_alignment_bit (et
.size
, inst
.operands
[1].imm
>> 8,
20050 &do_alignment
, 16, 16, 32, 32, -1);
20051 if (align_good
== FAIL
)
20053 switch (NEON_REGLIST_LENGTH (inst
.operands
[0].imm
))
20056 case 2: inst
.instruction
|= 1 << 5; break;
20057 default: first_error (_("bad list length")); return;
20059 inst
.instruction
|= neon_logbits (et
.size
) << 6;
20062 case 1: /* VLD2. */
20063 align_good
= neon_alignment_bit (et
.size
, inst
.operands
[1].imm
>> 8,
20064 &do_alignment
, 8, 16, 16, 32, 32, 64,
20066 if (align_good
== FAIL
)
20068 constraint (NEON_REGLIST_LENGTH (inst
.operands
[0].imm
) != 2,
20069 _("bad list length"));
20070 if (NEON_REG_STRIDE (inst
.operands
[0].imm
) == 2)
20071 inst
.instruction
|= 1 << 5;
20072 inst
.instruction
|= neon_logbits (et
.size
) << 6;
20075 case 2: /* VLD3. */
20076 constraint (inst
.operands
[1].immisalign
,
20077 _("can't use alignment with this instruction"));
20078 constraint (NEON_REGLIST_LENGTH (inst
.operands
[0].imm
) != 3,
20079 _("bad list length"));
20080 if (NEON_REG_STRIDE (inst
.operands
[0].imm
) == 2)
20081 inst
.instruction
|= 1 << 5;
20082 inst
.instruction
|= neon_logbits (et
.size
) << 6;
20085 case 3: /* VLD4. */
20087 int align
= inst
.operands
[1].imm
>> 8;
20088 align_good
= neon_alignment_bit (et
.size
, align
, &do_alignment
, 8, 32,
20089 16, 64, 32, 64, 32, 128, -1);
20090 if (align_good
== FAIL
)
20092 constraint (NEON_REGLIST_LENGTH (inst
.operands
[0].imm
) != 4,
20093 _("bad list length"));
20094 if (NEON_REG_STRIDE (inst
.operands
[0].imm
) == 2)
20095 inst
.instruction
|= 1 << 5;
20096 if (et
.size
== 32 && align
== 128)
20097 inst
.instruction
|= 0x3 << 6;
20099 inst
.instruction
|= neon_logbits (et
.size
) << 6;
20106 inst
.instruction
|= do_alignment
<< 4;
20109 /* Disambiguate VLD<n> and VST<n> instructions, and fill in common bits (those
20110 apart from bits [11:4]. */
20113 do_neon_ldx_stx (void)
20115 if (inst
.operands
[1].isreg
)
20116 constraint (inst
.operands
[1].reg
== REG_PC
, BAD_PC
);
20118 switch (NEON_LANE (inst
.operands
[0].imm
))
20120 case NEON_INTERLEAVE_LANES
:
20121 NEON_ENCODE (INTERLV
, inst
);
20122 do_neon_ld_st_interleave ();
20125 case NEON_ALL_LANES
:
20126 NEON_ENCODE (DUP
, inst
);
20127 if (inst
.instruction
== N_INV
)
20129 first_error ("only loads support such operands");
20136 NEON_ENCODE (LANE
, inst
);
20137 do_neon_ld_st_lane ();
20140 /* L bit comes from bit mask. */
20141 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
20142 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
20143 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
20145 if (inst
.operands
[1].postind
)
20147 int postreg
= inst
.operands
[1].imm
& 0xf;
20148 constraint (!inst
.operands
[1].immisreg
,
20149 _("post-index must be a register"));
20150 constraint (postreg
== 0xd || postreg
== 0xf,
20151 _("bad register for post-index"));
20152 inst
.instruction
|= postreg
;
20156 constraint (inst
.operands
[1].immisreg
, BAD_ADDR_MODE
);
20157 constraint (inst
.relocs
[0].exp
.X_op
!= O_constant
20158 || inst
.relocs
[0].exp
.X_add_number
!= 0,
20161 if (inst
.operands
[1].writeback
)
20163 inst
.instruction
|= 0xd;
20166 inst
.instruction
|= 0xf;
20170 inst
.instruction
|= 0xf9000000;
20172 inst
.instruction
|= 0xf4000000;
20177 do_vfp_nsyn_fpv8 (enum neon_shape rs
)
20179 /* Targets like FPv5-SP-D16 don't support FP v8 instructions with
20180 D register operands. */
20181 if (neon_shape_class
[rs
] == SC_DOUBLE
)
20182 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_vfp_ext_armv8
),
20185 NEON_ENCODE (FPV8
, inst
);
20187 if (rs
== NS_FFF
|| rs
== NS_HHH
)
20189 do_vfp_sp_dyadic ();
20191 /* ARMv8.2 fp16 instruction. */
20193 do_scalar_fp16_v82_encode ();
20196 do_vfp_dp_rd_rn_rm ();
20199 inst
.instruction
|= 0x100;
20201 inst
.instruction
|= 0xf0000000;
20207 set_pred_insn_type (OUTSIDE_PRED_INSN
);
20209 if (try_vfp_nsyn (3, do_vfp_nsyn_fpv8
) != SUCCESS
)
20210 first_error (_("invalid instruction shape"));
20216 if (!ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
))
20217 set_pred_insn_type (OUTSIDE_PRED_INSN
);
20219 if (try_vfp_nsyn (3, do_vfp_nsyn_fpv8
) == SUCCESS
)
20222 if (check_simd_pred_availability (1, NEON_CHECK_CC
| NEON_CHECK_ARCH8
))
20225 neon_dyadic_misc (NT_untyped
, N_F_16_32
, 0);
20229 do_vrint_1 (enum neon_cvt_mode mode
)
20231 enum neon_shape rs
= neon_select_shape (NS_HH
, NS_FF
, NS_DD
, NS_QQ
, NS_NULL
);
20232 struct neon_type_el et
;
20237 /* Targets like FPv5-SP-D16 don't support FP v8 instructions with
20238 D register operands. */
20239 if (neon_shape_class
[rs
] == SC_DOUBLE
)
20240 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_vfp_ext_armv8
),
20243 et
= neon_check_type (2, rs
, N_EQK
| N_VFP
, N_F_ALL
| N_KEY
20245 if (et
.type
!= NT_invtype
)
20247 /* VFP encodings. */
20248 if (mode
== neon_cvt_mode_a
|| mode
== neon_cvt_mode_n
20249 || mode
== neon_cvt_mode_p
|| mode
== neon_cvt_mode_m
)
20250 set_pred_insn_type (OUTSIDE_PRED_INSN
);
20252 NEON_ENCODE (FPV8
, inst
);
20253 if (rs
== NS_FF
|| rs
== NS_HH
)
20254 do_vfp_sp_monadic ();
20256 do_vfp_dp_rd_rm ();
20260 case neon_cvt_mode_r
: inst
.instruction
|= 0x00000000; break;
20261 case neon_cvt_mode_z
: inst
.instruction
|= 0x00000080; break;
20262 case neon_cvt_mode_x
: inst
.instruction
|= 0x00010000; break;
20263 case neon_cvt_mode_a
: inst
.instruction
|= 0xf0000000; break;
20264 case neon_cvt_mode_n
: inst
.instruction
|= 0xf0010000; break;
20265 case neon_cvt_mode_p
: inst
.instruction
|= 0xf0020000; break;
20266 case neon_cvt_mode_m
: inst
.instruction
|= 0xf0030000; break;
20270 inst
.instruction
|= (rs
== NS_DD
) << 8;
20271 do_vfp_cond_or_thumb ();
20273 /* ARMv8.2 fp16 vrint instruction. */
20275 do_scalar_fp16_v82_encode ();
20279 /* Neon encodings (or something broken...). */
20281 et
= neon_check_type (2, rs
, N_EQK
, N_F_16_32
| N_KEY
);
20283 if (et
.type
== NT_invtype
)
20286 set_pred_insn_type (OUTSIDE_PRED_INSN
);
20287 NEON_ENCODE (FLOAT
, inst
);
20289 if (vfp_or_neon_is_neon (NEON_CHECK_CC
| NEON_CHECK_ARCH8
) == FAIL
)
20292 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
20293 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
20294 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
);
20295 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 5;
20296 inst
.instruction
|= neon_quad (rs
) << 6;
20297 /* Mask off the original size bits and reencode them. */
20298 inst
.instruction
= ((inst
.instruction
& 0xfff3ffff)
20299 | neon_logbits (et
.size
) << 18);
20303 case neon_cvt_mode_z
: inst
.instruction
|= 3 << 7; break;
20304 case neon_cvt_mode_x
: inst
.instruction
|= 1 << 7; break;
20305 case neon_cvt_mode_a
: inst
.instruction
|= 2 << 7; break;
20306 case neon_cvt_mode_n
: inst
.instruction
|= 0 << 7; break;
20307 case neon_cvt_mode_p
: inst
.instruction
|= 7 << 7; break;
20308 case neon_cvt_mode_m
: inst
.instruction
|= 5 << 7; break;
20309 case neon_cvt_mode_r
: inst
.error
= _("invalid rounding mode"); break;
20314 inst
.instruction
|= 0xfc000000;
20316 inst
.instruction
|= 0xf0000000;
20323 do_vrint_1 (neon_cvt_mode_x
);
20329 do_vrint_1 (neon_cvt_mode_z
);
20335 do_vrint_1 (neon_cvt_mode_r
);
20341 do_vrint_1 (neon_cvt_mode_a
);
20347 do_vrint_1 (neon_cvt_mode_n
);
20353 do_vrint_1 (neon_cvt_mode_p
);
20359 do_vrint_1 (neon_cvt_mode_m
);
20363 neon_scalar_for_vcmla (unsigned opnd
, unsigned elsize
)
20365 unsigned regno
= NEON_SCALAR_REG (opnd
);
20366 unsigned elno
= NEON_SCALAR_INDEX (opnd
);
20368 if (elsize
== 16 && elno
< 2 && regno
< 16)
20369 return regno
| (elno
<< 4);
20370 else if (elsize
== 32 && elno
== 0)
20373 first_error (_("scalar out of range"));
20380 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, mve_fp_ext
)
20381 && (!ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_neon_ext_armv8
)
20382 || !mark_feature_used (&arm_ext_v8_3
)), (BAD_FPU
));
20383 constraint (inst
.relocs
[0].exp
.X_op
!= O_constant
,
20384 _("expression too complex"));
20385 unsigned rot
= inst
.relocs
[0].exp
.X_add_number
;
20386 constraint (rot
!= 0 && rot
!= 90 && rot
!= 180 && rot
!= 270,
20387 _("immediate out of range"));
20390 if (check_simd_pred_availability (1, NEON_CHECK_ARCH8
| NEON_CHECK_CC
))
20393 if (inst
.operands
[2].isscalar
)
20395 if (ARM_CPU_HAS_FEATURE (cpu_variant
, mve_fp_ext
))
20396 first_error (_("invalid instruction shape"));
20397 enum neon_shape rs
= neon_select_shape (NS_DDSI
, NS_QQSI
, NS_NULL
);
20398 unsigned size
= neon_check_type (3, rs
, N_EQK
, N_EQK
,
20399 N_KEY
| N_F16
| N_F32
).size
;
20400 unsigned m
= neon_scalar_for_vcmla (inst
.operands
[2].reg
, size
);
20402 inst
.instruction
= 0xfe000800;
20403 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
20404 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
20405 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
) << 16;
20406 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 7;
20407 inst
.instruction
|= LOW4 (m
);
20408 inst
.instruction
|= HI1 (m
) << 5;
20409 inst
.instruction
|= neon_quad (rs
) << 6;
20410 inst
.instruction
|= rot
<< 20;
20411 inst
.instruction
|= (size
== 32) << 23;
20415 enum neon_shape rs
;
20416 if (ARM_CPU_HAS_FEATURE (cpu_variant
, mve_fp_ext
))
20417 rs
= neon_select_shape (NS_QQQI
, NS_NULL
);
20419 rs
= neon_select_shape (NS_DDDI
, NS_QQQI
, NS_NULL
);
20421 unsigned size
= neon_check_type (3, rs
, N_EQK
, N_EQK
,
20422 N_KEY
| N_F16
| N_F32
).size
;
20423 if (ARM_CPU_HAS_FEATURE (cpu_variant
, mve_fp_ext
) && size
== 32
20424 && (inst
.operands
[0].reg
== inst
.operands
[1].reg
20425 || inst
.operands
[0].reg
== inst
.operands
[2].reg
))
20426 as_tsktsk (BAD_MVE_SRCDEST
);
20428 neon_three_same (neon_quad (rs
), 0, -1);
20429 inst
.instruction
&= 0x00ffffff; /* Undo neon_dp_fixup. */
20430 inst
.instruction
|= 0xfc200800;
20431 inst
.instruction
|= rot
<< 23;
20432 inst
.instruction
|= (size
== 32) << 20;
20439 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
)
20440 && (!ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_neon_ext_armv8
)
20441 || !mark_feature_used (&arm_ext_v8_3
)), (BAD_FPU
));
20442 constraint (inst
.relocs
[0].exp
.X_op
!= O_constant
,
20443 _("expression too complex"));
20445 unsigned rot
= inst
.relocs
[0].exp
.X_add_number
;
20446 constraint (rot
!= 90 && rot
!= 270, _("immediate out of range"));
20447 enum neon_shape rs
;
20448 struct neon_type_el et
;
20449 if (!ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
))
20451 rs
= neon_select_shape (NS_DDDI
, NS_QQQI
, NS_NULL
);
20452 et
= neon_check_type (3, rs
, N_EQK
, N_EQK
, N_KEY
| N_F16
| N_F32
);
20456 rs
= neon_select_shape (NS_QQQI
, NS_NULL
);
20457 et
= neon_check_type (3, rs
, N_EQK
, N_EQK
, N_KEY
| N_F16
| N_F32
| N_I8
20459 if (et
.size
== 32 && inst
.operands
[0].reg
== inst
.operands
[2].reg
)
20460 as_tsktsk (_("Warning: 32-bit element size and same first and third "
20461 "operand makes instruction UNPREDICTABLE"));
20464 if (et
.type
== NT_invtype
)
20467 if (check_simd_pred_availability (et
.type
== NT_float
, NEON_CHECK_ARCH8
20471 if (et
.type
== NT_float
)
20473 neon_three_same (neon_quad (rs
), 0, -1);
20474 inst
.instruction
&= 0x00ffffff; /* Undo neon_dp_fixup. */
20475 inst
.instruction
|= 0xfc800800;
20476 inst
.instruction
|= (rot
== 270) << 24;
20477 inst
.instruction
|= (et
.size
== 32) << 20;
20481 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
), BAD_FPU
);
20482 inst
.instruction
= 0xfe000f00;
20483 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
20484 inst
.instruction
|= neon_logbits (et
.size
) << 20;
20485 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
) << 16;
20486 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
20487 inst
.instruction
|= (rot
== 270) << 12;
20488 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 7;
20489 inst
.instruction
|= HI1 (inst
.operands
[2].reg
) << 5;
20490 inst
.instruction
|= LOW4 (inst
.operands
[2].reg
);
20495 /* Dot Product instructions encoding support. */
20498 do_neon_dotproduct (int unsigned_p
)
20500 enum neon_shape rs
;
20501 unsigned scalar_oprd2
= 0;
20504 if (inst
.cond
!= COND_ALWAYS
)
20505 as_warn (_("Dot Product instructions cannot be conditional, the behaviour "
20506 "is UNPREDICTABLE"));
20508 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_neon_ext_armv8
),
20511 /* Dot Product instructions are in three-same D/Q register format or the third
20512 operand can be a scalar index register. */
20513 if (inst
.operands
[2].isscalar
)
20515 scalar_oprd2
= neon_scalar_for_mul (inst
.operands
[2].reg
, 32);
20516 high8
= 0xfe000000;
20517 rs
= neon_select_shape (NS_DDS
, NS_QQS
, NS_NULL
);
20521 high8
= 0xfc000000;
20522 rs
= neon_select_shape (NS_DDD
, NS_QQQ
, NS_NULL
);
20526 neon_check_type (3, rs
, N_EQK
, N_EQK
, N_KEY
| N_U8
);
20528 neon_check_type (3, rs
, N_EQK
, N_EQK
, N_KEY
| N_S8
);
20530 /* The "U" bit in traditional Three Same encoding is fixed to 0 for Dot
20531 Product instruction, so we pass 0 as the "ubit" parameter. And the
20532 "Size" field are fixed to 0x2, so we pass 32 as the "size" parameter. */
20533 neon_three_same (neon_quad (rs
), 0, 32);
20535 /* Undo neon_dp_fixup. Dot Product instructions are using a slightly
20536 different NEON three-same encoding. */
20537 inst
.instruction
&= 0x00ffffff;
20538 inst
.instruction
|= high8
;
20539 /* Encode 'U' bit which indicates signedness. */
20540 inst
.instruction
|= (unsigned_p
? 1 : 0) << 4;
20541 /* Re-encode operand2 if it's indexed scalar operand. What has been encoded
20542 from inst.operand[2].reg in neon_three_same is GAS's internal encoding, not
20543 the instruction encoding. */
20544 if (inst
.operands
[2].isscalar
)
20546 inst
.instruction
&= 0xffffffd0;
20547 inst
.instruction
|= LOW4 (scalar_oprd2
);
20548 inst
.instruction
|= HI1 (scalar_oprd2
) << 5;
20552 /* Dot Product instructions for signed integer. */
20555 do_neon_dotproduct_s (void)
20557 return do_neon_dotproduct (0);
20560 /* Dot Product instructions for unsigned integer. */
20563 do_neon_dotproduct_u (void)
20565 return do_neon_dotproduct (1);
20568 /* Crypto v1 instructions. */
20570 do_crypto_2op_1 (unsigned elttype
, int op
)
20572 set_pred_insn_type (OUTSIDE_PRED_INSN
);
20574 if (neon_check_type (2, NS_QQ
, N_EQK
| N_UNT
, elttype
| N_UNT
| N_KEY
).type
20580 NEON_ENCODE (INTEGER
, inst
);
20581 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
20582 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
20583 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
);
20584 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 5;
20586 inst
.instruction
|= op
<< 6;
20589 inst
.instruction
|= 0xfc000000;
20591 inst
.instruction
|= 0xf0000000;
20595 do_crypto_3op_1 (int u
, int op
)
20597 set_pred_insn_type (OUTSIDE_PRED_INSN
);
20599 if (neon_check_type (3, NS_QQQ
, N_EQK
| N_UNT
, N_EQK
| N_UNT
,
20600 N_32
| N_UNT
| N_KEY
).type
== NT_invtype
)
20605 NEON_ENCODE (INTEGER
, inst
);
20606 neon_three_same (1, u
, 8 << op
);
20612 do_crypto_2op_1 (N_8
, 0);
20618 do_crypto_2op_1 (N_8
, 1);
20624 do_crypto_2op_1 (N_8
, 2);
20630 do_crypto_2op_1 (N_8
, 3);
20636 do_crypto_3op_1 (0, 0);
20642 do_crypto_3op_1 (0, 1);
20648 do_crypto_3op_1 (0, 2);
20654 do_crypto_3op_1 (0, 3);
20660 do_crypto_3op_1 (1, 0);
20666 do_crypto_3op_1 (1, 1);
20670 do_sha256su1 (void)
20672 do_crypto_3op_1 (1, 2);
20678 do_crypto_2op_1 (N_32
, -1);
20684 do_crypto_2op_1 (N_32
, 0);
20688 do_sha256su0 (void)
20690 do_crypto_2op_1 (N_32
, 1);
20694 do_crc32_1 (unsigned int poly
, unsigned int sz
)
20696 unsigned int Rd
= inst
.operands
[0].reg
;
20697 unsigned int Rn
= inst
.operands
[1].reg
;
20698 unsigned int Rm
= inst
.operands
[2].reg
;
20700 set_pred_insn_type (OUTSIDE_PRED_INSN
);
20701 inst
.instruction
|= LOW4 (Rd
) << (thumb_mode
? 8 : 12);
20702 inst
.instruction
|= LOW4 (Rn
) << 16;
20703 inst
.instruction
|= LOW4 (Rm
);
20704 inst
.instruction
|= sz
<< (thumb_mode
? 4 : 21);
20705 inst
.instruction
|= poly
<< (thumb_mode
? 20 : 9);
20707 if (Rd
== REG_PC
|| Rn
== REG_PC
|| Rm
== REG_PC
)
20708 as_warn (UNPRED_REG ("r15"));
20750 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_vfp_ext_armv8
),
20752 neon_check_type (2, NS_FD
, N_S32
, N_F64
);
20753 do_vfp_sp_dp_cvt ();
20754 do_vfp_cond_or_thumb ();
20758 /* Overall per-instruction processing. */
20760 /* We need to be able to fix up arbitrary expressions in some statements.
20761 This is so that we can handle symbols that are an arbitrary distance from
20762 the pc. The most common cases are of the form ((+/-sym -/+ . - 8) & mask),
20763 which returns part of an address in a form which will be valid for
20764 a data instruction. We do this by pushing the expression into a symbol
20765 in the expr_section, and creating a fix for that. */
20768 fix_new_arm (fragS
* frag
,
20782 /* Create an absolute valued symbol, so we have something to
20783 refer to in the object file. Unfortunately for us, gas's
20784 generic expression parsing will already have folded out
20785 any use of .set foo/.type foo %function that may have
20786 been used to set type information of the target location,
20787 that's being specified symbolically. We have to presume
20788 the user knows what they are doing. */
20792 sprintf (name
, "*ABS*0x%lx", (unsigned long)exp
->X_add_number
);
20794 symbol
= symbol_find_or_make (name
);
20795 S_SET_SEGMENT (symbol
, absolute_section
);
20796 symbol_set_frag (symbol
, &zero_address_frag
);
20797 S_SET_VALUE (symbol
, exp
->X_add_number
);
20798 exp
->X_op
= O_symbol
;
20799 exp
->X_add_symbol
= symbol
;
20800 exp
->X_add_number
= 0;
20806 new_fix
= fix_new_exp (frag
, where
, size
, exp
, pc_rel
,
20807 (enum bfd_reloc_code_real
) reloc
);
20811 new_fix
= (fixS
*) fix_new (frag
, where
, size
, make_expr_symbol (exp
), 0,
20812 pc_rel
, (enum bfd_reloc_code_real
) reloc
);
20816 /* Mark whether the fix is to a THUMB instruction, or an ARM
20818 new_fix
->tc_fix_data
= thumb_mode
;
20821 /* Create a frg for an instruction requiring relaxation. */
20823 output_relax_insn (void)
20829 /* The size of the instruction is unknown, so tie the debug info to the
20830 start of the instruction. */
20831 dwarf2_emit_insn (0);
20833 switch (inst
.relocs
[0].exp
.X_op
)
20836 sym
= inst
.relocs
[0].exp
.X_add_symbol
;
20837 offset
= inst
.relocs
[0].exp
.X_add_number
;
20841 offset
= inst
.relocs
[0].exp
.X_add_number
;
20844 sym
= make_expr_symbol (&inst
.relocs
[0].exp
);
20848 to
= frag_var (rs_machine_dependent
, INSN_SIZE
, THUMB_SIZE
,
20849 inst
.relax
, sym
, offset
, NULL
/*offset, opcode*/);
20850 md_number_to_chars (to
, inst
.instruction
, THUMB_SIZE
);
20853 /* Write a 32-bit thumb instruction to buf. */
20855 put_thumb32_insn (char * buf
, unsigned long insn
)
20857 md_number_to_chars (buf
, insn
>> 16, THUMB_SIZE
);
20858 md_number_to_chars (buf
+ THUMB_SIZE
, insn
, THUMB_SIZE
);
20862 output_inst (const char * str
)
20868 as_bad ("%s -- `%s'", inst
.error
, str
);
20873 output_relax_insn ();
20876 if (inst
.size
== 0)
20879 to
= frag_more (inst
.size
);
20880 /* PR 9814: Record the thumb mode into the current frag so that we know
20881 what type of NOP padding to use, if necessary. We override any previous
20882 setting so that if the mode has changed then the NOPS that we use will
20883 match the encoding of the last instruction in the frag. */
20884 frag_now
->tc_frag_data
.thumb_mode
= thumb_mode
| MODE_RECORDED
;
20886 if (thumb_mode
&& (inst
.size
> THUMB_SIZE
))
20888 gas_assert (inst
.size
== (2 * THUMB_SIZE
));
20889 put_thumb32_insn (to
, inst
.instruction
);
20891 else if (inst
.size
> INSN_SIZE
)
20893 gas_assert (inst
.size
== (2 * INSN_SIZE
));
20894 md_number_to_chars (to
, inst
.instruction
, INSN_SIZE
);
20895 md_number_to_chars (to
+ INSN_SIZE
, inst
.instruction
, INSN_SIZE
);
20898 md_number_to_chars (to
, inst
.instruction
, inst
.size
);
20901 for (r
= 0; r
< ARM_IT_MAX_RELOCS
; r
++)
20903 if (inst
.relocs
[r
].type
!= BFD_RELOC_UNUSED
)
20904 fix_new_arm (frag_now
, to
- frag_now
->fr_literal
,
20905 inst
.size
, & inst
.relocs
[r
].exp
, inst
.relocs
[r
].pc_rel
,
20906 inst
.relocs
[r
].type
);
20909 dwarf2_emit_insn (inst
.size
);
20913 output_it_inst (int cond
, int mask
, char * to
)
20915 unsigned long instruction
= 0xbf00;
20918 instruction
|= mask
;
20919 instruction
|= cond
<< 4;
20923 to
= frag_more (2);
20925 dwarf2_emit_insn (2);
20929 md_number_to_chars (to
, instruction
, 2);
20934 /* Tag values used in struct asm_opcode's tag field. */
20937 OT_unconditional
, /* Instruction cannot be conditionalized.
20938 The ARM condition field is still 0xE. */
20939 OT_unconditionalF
, /* Instruction cannot be conditionalized
20940 and carries 0xF in its ARM condition field. */
20941 OT_csuffix
, /* Instruction takes a conditional suffix. */
20942 OT_csuffixF
, /* Some forms of the instruction take a scalar
20943 conditional suffix, others place 0xF where the
20944 condition field would be, others take a vector
20945 conditional suffix. */
20946 OT_cinfix3
, /* Instruction takes a conditional infix,
20947 beginning at character index 3. (In
20948 unified mode, it becomes a suffix.) */
20949 OT_cinfix3_deprecated
, /* The same as OT_cinfix3. This is used for
20950 tsts, cmps, cmns, and teqs. */
20951 OT_cinfix3_legacy
, /* Legacy instruction takes a conditional infix at
20952 character index 3, even in unified mode. Used for
20953 legacy instructions where suffix and infix forms
20954 may be ambiguous. */
20955 OT_csuf_or_in3
, /* Instruction takes either a conditional
20956 suffix or an infix at character index 3. */
20957 OT_odd_infix_unc
, /* This is the unconditional variant of an
20958 instruction that takes a conditional infix
20959 at an unusual position. In unified mode,
20960 this variant will accept a suffix. */
20961 OT_odd_infix_0
/* Values greater than or equal to OT_odd_infix_0
20962 are the conditional variants of instructions that
20963 take conditional infixes in unusual positions.
20964 The infix appears at character index
20965 (tag - OT_odd_infix_0). These are not accepted
20966 in unified mode. */
20969 /* Subroutine of md_assemble, responsible for looking up the primary
20970 opcode from the mnemonic the user wrote. STR points to the
20971 beginning of the mnemonic.
20973 This is not simply a hash table lookup, because of conditional
20974 variants. Most instructions have conditional variants, which are
20975 expressed with a _conditional affix_ to the mnemonic. If we were
20976 to encode each conditional variant as a literal string in the opcode
20977 table, it would have approximately 20,000 entries.
20979 Most mnemonics take this affix as a suffix, and in unified syntax,
20980 'most' is upgraded to 'all'. However, in the divided syntax, some
20981 instructions take the affix as an infix, notably the s-variants of
20982 the arithmetic instructions. Of those instructions, all but six
20983 have the infix appear after the third character of the mnemonic.
20985 Accordingly, the algorithm for looking up primary opcodes given
20988 1. Look up the identifier in the opcode table.
20989 If we find a match, go to step U.
20991 2. Look up the last two characters of the identifier in the
20992 conditions table. If we find a match, look up the first N-2
20993 characters of the identifier in the opcode table. If we
20994 find a match, go to step CE.
20996 3. Look up the fourth and fifth characters of the identifier in
20997 the conditions table. If we find a match, extract those
20998 characters from the identifier, and look up the remaining
20999 characters in the opcode table. If we find a match, go
21004 U. Examine the tag field of the opcode structure, in case this is
21005 one of the six instructions with its conditional infix in an
21006 unusual place. If it is, the tag tells us where to find the
21007 infix; look it up in the conditions table and set inst.cond
21008 accordingly. Otherwise, this is an unconditional instruction.
21009 Again set inst.cond accordingly. Return the opcode structure.
21011 CE. Examine the tag field to make sure this is an instruction that
21012 should receive a conditional suffix. If it is not, fail.
21013 Otherwise, set inst.cond from the suffix we already looked up,
21014 and return the opcode structure.
21016 CM. Examine the tag field to make sure this is an instruction that
21017 should receive a conditional infix after the third character.
21018 If it is not, fail. Otherwise, undo the edits to the current
21019 line of input and proceed as for case CE. */
21021 static const struct asm_opcode
*
21022 opcode_lookup (char **str
)
21026 const struct asm_opcode
*opcode
;
21027 const struct asm_cond
*cond
;
21030 /* Scan up to the end of the mnemonic, which must end in white space,
21031 '.' (in unified mode, or for Neon/VFP instructions), or end of string. */
21032 for (base
= end
= *str
; *end
!= '\0'; end
++)
21033 if (*end
== ' ' || *end
== '.')
21039 /* Handle a possible width suffix and/or Neon type suffix. */
21044 /* The .w and .n suffixes are only valid if the unified syntax is in
21046 if (unified_syntax
&& end
[1] == 'w')
21048 else if (unified_syntax
&& end
[1] == 'n')
21053 inst
.vectype
.elems
= 0;
21055 *str
= end
+ offset
;
21057 if (end
[offset
] == '.')
21059 /* See if we have a Neon type suffix (possible in either unified or
21060 non-unified ARM syntax mode). */
21061 if (parse_neon_type (&inst
.vectype
, str
) == FAIL
)
21064 else if (end
[offset
] != '\0' && end
[offset
] != ' ')
21070 /* Look for unaffixed or special-case affixed mnemonic. */
21071 opcode
= (const struct asm_opcode
*) hash_find_n (arm_ops_hsh
, base
,
21076 if (opcode
->tag
< OT_odd_infix_0
)
21078 inst
.cond
= COND_ALWAYS
;
21082 if (warn_on_deprecated
&& unified_syntax
)
21083 as_tsktsk (_("conditional infixes are deprecated in unified syntax"));
21084 affix
= base
+ (opcode
->tag
- OT_odd_infix_0
);
21085 cond
= (const struct asm_cond
*) hash_find_n (arm_cond_hsh
, affix
, 2);
21088 inst
.cond
= cond
->value
;
21091 if (ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
))
21093 /* Cannot have a conditional suffix on a mnemonic of less than a character.
21095 if (end
- base
< 2)
21098 cond
= (const struct asm_cond
*) hash_find_n (arm_vcond_hsh
, affix
, 1);
21099 opcode
= (const struct asm_opcode
*) hash_find_n (arm_ops_hsh
, base
,
21101 /* If this opcode can not be vector predicated then don't accept it with a
21102 vector predication code. */
21103 if (opcode
&& !opcode
->mayBeVecPred
)
21106 if (!opcode
|| !cond
)
21108 /* Cannot have a conditional suffix on a mnemonic of less than two
21110 if (end
- base
< 3)
21113 /* Look for suffixed mnemonic. */
21115 cond
= (const struct asm_cond
*) hash_find_n (arm_cond_hsh
, affix
, 2);
21116 opcode
= (const struct asm_opcode
*) hash_find_n (arm_ops_hsh
, base
,
21120 if (opcode
&& cond
)
21123 switch (opcode
->tag
)
21125 case OT_cinfix3_legacy
:
21126 /* Ignore conditional suffixes matched on infix only mnemonics. */
21130 case OT_cinfix3_deprecated
:
21131 case OT_odd_infix_unc
:
21132 if (!unified_syntax
)
21134 /* Fall through. */
21138 case OT_csuf_or_in3
:
21139 inst
.cond
= cond
->value
;
21142 case OT_unconditional
:
21143 case OT_unconditionalF
:
21145 inst
.cond
= cond
->value
;
21148 /* Delayed diagnostic. */
21149 inst
.error
= BAD_COND
;
21150 inst
.cond
= COND_ALWAYS
;
21159 /* Cannot have a usual-position infix on a mnemonic of less than
21160 six characters (five would be a suffix). */
21161 if (end
- base
< 6)
21164 /* Look for infixed mnemonic in the usual position. */
21166 cond
= (const struct asm_cond
*) hash_find_n (arm_cond_hsh
, affix
, 2);
21170 memcpy (save
, affix
, 2);
21171 memmove (affix
, affix
+ 2, (end
- affix
) - 2);
21172 opcode
= (const struct asm_opcode
*) hash_find_n (arm_ops_hsh
, base
,
21174 memmove (affix
+ 2, affix
, (end
- affix
) - 2);
21175 memcpy (affix
, save
, 2);
21178 && (opcode
->tag
== OT_cinfix3
21179 || opcode
->tag
== OT_cinfix3_deprecated
21180 || opcode
->tag
== OT_csuf_or_in3
21181 || opcode
->tag
== OT_cinfix3_legacy
))
21184 if (warn_on_deprecated
&& unified_syntax
21185 && (opcode
->tag
== OT_cinfix3
21186 || opcode
->tag
== OT_cinfix3_deprecated
))
21187 as_tsktsk (_("conditional infixes are deprecated in unified syntax"));
21189 inst
.cond
= cond
->value
;
21196 /* This function generates an initial IT instruction, leaving its block
21197 virtually open for the new instructions. Eventually,
21198 the mask will be updated by now_pred_add_mask () each time
21199 a new instruction needs to be included in the IT block.
21200 Finally, the block is closed with close_automatic_it_block ().
21201 The block closure can be requested either from md_assemble (),
21202 a tencode (), or due to a label hook. */
21205 new_automatic_it_block (int cond
)
21207 now_pred
.state
= AUTOMATIC_PRED_BLOCK
;
21208 now_pred
.mask
= 0x18;
21209 now_pred
.cc
= cond
;
21210 now_pred
.block_length
= 1;
21211 mapping_state (MAP_THUMB
);
21212 now_pred
.insn
= output_it_inst (cond
, now_pred
.mask
, NULL
);
21213 now_pred
.warn_deprecated
= FALSE
;
21214 now_pred
.insn_cond
= TRUE
;
21217 /* Close an automatic IT block.
21218 See comments in new_automatic_it_block (). */
21221 close_automatic_it_block (void)
21223 now_pred
.mask
= 0x10;
21224 now_pred
.block_length
= 0;
21227 /* Update the mask of the current automatically-generated IT
21228 instruction. See comments in new_automatic_it_block (). */
21231 now_pred_add_mask (int cond
)
21233 #define CLEAR_BIT(value, nbit) ((value) & ~(1 << (nbit)))
21234 #define SET_BIT_VALUE(value, bitvalue, nbit) (CLEAR_BIT (value, nbit) \
21235 | ((bitvalue) << (nbit)))
21236 const int resulting_bit
= (cond
& 1);
21238 now_pred
.mask
&= 0xf;
21239 now_pred
.mask
= SET_BIT_VALUE (now_pred
.mask
,
21241 (5 - now_pred
.block_length
));
21242 now_pred
.mask
= SET_BIT_VALUE (now_pred
.mask
,
21244 ((5 - now_pred
.block_length
) - 1));
21245 output_it_inst (now_pred
.cc
, now_pred
.mask
, now_pred
.insn
);
21248 #undef SET_BIT_VALUE
21251 /* The IT blocks handling machinery is accessed through the these functions:
21252 it_fsm_pre_encode () from md_assemble ()
21253 set_pred_insn_type () optional, from the tencode functions
21254 set_pred_insn_type_last () ditto
21255 in_pred_block () ditto
21256 it_fsm_post_encode () from md_assemble ()
21257 force_automatic_it_block_close () from label handling functions
21260 1) md_assemble () calls it_fsm_pre_encode () before calling tencode (),
21261 initializing the IT insn type with a generic initial value depending
21262 on the inst.condition.
21263 2) During the tencode function, two things may happen:
21264 a) The tencode function overrides the IT insn type by
21265 calling either set_pred_insn_type (type) or
21266 set_pred_insn_type_last ().
21267 b) The tencode function queries the IT block state by
21268 calling in_pred_block () (i.e. to determine narrow/not narrow mode).
21270 Both set_pred_insn_type and in_pred_block run the internal FSM state
21271 handling function (handle_pred_state), because: a) setting the IT insn
21272 type may incur in an invalid state (exiting the function),
21273 and b) querying the state requires the FSM to be updated.
21274 Specifically we want to avoid creating an IT block for conditional
21275 branches, so it_fsm_pre_encode is actually a guess and we can't
21276 determine whether an IT block is required until the tencode () routine
21277 has decided what type of instruction this actually it.
21278 Because of this, if set_pred_insn_type and in_pred_block have to be
21279 used, set_pred_insn_type has to be called first.
21281 set_pred_insn_type_last () is a wrapper of set_pred_insn_type (type),
21282 that determines the insn IT type depending on the inst.cond code.
21283 When a tencode () routine encodes an instruction that can be
21284 either outside an IT block, or, in the case of being inside, has to be
21285 the last one, set_pred_insn_type_last () will determine the proper
21286 IT instruction type based on the inst.cond code. Otherwise,
21287 set_pred_insn_type can be called for overriding that logic or
21288 for covering other cases.
21290 Calling handle_pred_state () may not transition the IT block state to
21291 OUTSIDE_PRED_BLOCK immediately, since the (current) state could be
21292 still queried. Instead, if the FSM determines that the state should
21293 be transitioned to OUTSIDE_PRED_BLOCK, a flag is marked to be closed
21294 after the tencode () function: that's what it_fsm_post_encode () does.
21296 Since in_pred_block () calls the state handling function to get an
21297 updated state, an error may occur (due to invalid insns combination).
21298 In that case, inst.error is set.
21299 Therefore, inst.error has to be checked after the execution of
21300 the tencode () routine.
21302 3) Back in md_assemble(), it_fsm_post_encode () is called to commit
21303 any pending state change (if any) that didn't take place in
21304 handle_pred_state () as explained above. */
21307 it_fsm_pre_encode (void)
21309 if (inst
.cond
!= COND_ALWAYS
)
21310 inst
.pred_insn_type
= INSIDE_IT_INSN
;
21312 inst
.pred_insn_type
= OUTSIDE_PRED_INSN
;
21314 now_pred
.state_handled
= 0;
21317 /* IT state FSM handling function. */
21318 /* MVE instructions and non-MVE instructions are handled differently because of
21319 the introduction of VPT blocks.
21320 Specifications say that any non-MVE instruction inside a VPT block is
21321 UNPREDICTABLE, with the exception of the BKPT instruction. Whereas most MVE
21322 instructions are deemed to be UNPREDICTABLE if inside an IT block. For the
21323 few exceptions we have MVE_UNPREDICABLE_INSN.
21324 The error messages provided depending on the different combinations possible
21325 are described in the cases below:
21326 For 'most' MVE instructions:
21327 1) In an IT block, with an IT code: syntax error
21328 2) In an IT block, with a VPT code: error: must be in a VPT block
21329 3) In an IT block, with no code: warning: UNPREDICTABLE
21330 4) In a VPT block, with an IT code: syntax error
21331 5) In a VPT block, with a VPT code: OK!
21332 6) In a VPT block, with no code: error: missing code
21333 7) Outside a pred block, with an IT code: error: syntax error
21334 8) Outside a pred block, with a VPT code: error: should be in a VPT block
21335 9) Outside a pred block, with no code: OK!
21336 For non-MVE instructions:
21337 10) In an IT block, with an IT code: OK!
21338 11) In an IT block, with a VPT code: syntax error
21339 12) In an IT block, with no code: error: missing code
21340 13) In a VPT block, with an IT code: error: should be in an IT block
21341 14) In a VPT block, with a VPT code: syntax error
21342 15) In a VPT block, with no code: UNPREDICTABLE
21343 16) Outside a pred block, with an IT code: error: should be in an IT block
21344 17) Outside a pred block, with a VPT code: syntax error
21345 18) Outside a pred block, with no code: OK!
21350 handle_pred_state (void)
21352 now_pred
.state_handled
= 1;
21353 now_pred
.insn_cond
= FALSE
;
21355 switch (now_pred
.state
)
21357 case OUTSIDE_PRED_BLOCK
:
21358 switch (inst
.pred_insn_type
)
21360 case MVE_UNPREDICABLE_INSN
:
21361 case MVE_OUTSIDE_PRED_INSN
:
21362 if (inst
.cond
< COND_ALWAYS
)
21364 /* Case 7: Outside a pred block, with an IT code: error: syntax
21366 inst
.error
= BAD_SYNTAX
;
21369 /* Case 9: Outside a pred block, with no code: OK! */
21371 case OUTSIDE_PRED_INSN
:
21372 if (inst
.cond
> COND_ALWAYS
)
21374 /* Case 17: Outside a pred block, with a VPT code: syntax error.
21376 inst
.error
= BAD_SYNTAX
;
21379 /* Case 18: Outside a pred block, with no code: OK! */
21382 case INSIDE_VPT_INSN
:
21383 /* Case 8: Outside a pred block, with a VPT code: error: should be in
21385 inst
.error
= BAD_OUT_VPT
;
21388 case INSIDE_IT_INSN
:
21389 case INSIDE_IT_LAST_INSN
:
21390 if (inst
.cond
< COND_ALWAYS
)
21392 /* Case 16: Outside a pred block, with an IT code: error: should
21393 be in an IT block. */
21394 if (thumb_mode
== 0)
21397 && !(implicit_it_mode
& IMPLICIT_IT_MODE_ARM
))
21398 as_tsktsk (_("Warning: conditional outside an IT block"\
21403 if ((implicit_it_mode
& IMPLICIT_IT_MODE_THUMB
)
21404 && ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v6t2
))
21406 /* Automatically generate the IT instruction. */
21407 new_automatic_it_block (inst
.cond
);
21408 if (inst
.pred_insn_type
== INSIDE_IT_LAST_INSN
)
21409 close_automatic_it_block ();
21413 inst
.error
= BAD_OUT_IT
;
21419 else if (inst
.cond
> COND_ALWAYS
)
21421 /* Case 17: Outside a pred block, with a VPT code: syntax error.
21423 inst
.error
= BAD_SYNTAX
;
21428 case IF_INSIDE_IT_LAST_INSN
:
21429 case NEUTRAL_IT_INSN
:
21433 if (inst
.cond
!= COND_ALWAYS
)
21434 first_error (BAD_SYNTAX
);
21435 now_pred
.state
= MANUAL_PRED_BLOCK
;
21436 now_pred
.block_length
= 0;
21437 now_pred
.type
= VECTOR_PRED
;
21441 now_pred
.state
= MANUAL_PRED_BLOCK
;
21442 now_pred
.block_length
= 0;
21443 now_pred
.type
= SCALAR_PRED
;
21448 case AUTOMATIC_PRED_BLOCK
:
21449 /* Three things may happen now:
21450 a) We should increment current it block size;
21451 b) We should close current it block (closing insn or 4 insns);
21452 c) We should close current it block and start a new one (due
21453 to incompatible conditions or
21454 4 insns-length block reached). */
21456 switch (inst
.pred_insn_type
)
21458 case INSIDE_VPT_INSN
:
21460 case MVE_UNPREDICABLE_INSN
:
21461 case MVE_OUTSIDE_PRED_INSN
:
21463 case OUTSIDE_PRED_INSN
:
21464 /* The closure of the block shall happen immediately,
21465 so any in_pred_block () call reports the block as closed. */
21466 force_automatic_it_block_close ();
21469 case INSIDE_IT_INSN
:
21470 case INSIDE_IT_LAST_INSN
:
21471 case IF_INSIDE_IT_LAST_INSN
:
21472 now_pred
.block_length
++;
21474 if (now_pred
.block_length
> 4
21475 || !now_pred_compatible (inst
.cond
))
21477 force_automatic_it_block_close ();
21478 if (inst
.pred_insn_type
!= IF_INSIDE_IT_LAST_INSN
)
21479 new_automatic_it_block (inst
.cond
);
21483 now_pred
.insn_cond
= TRUE
;
21484 now_pred_add_mask (inst
.cond
);
21487 if (now_pred
.state
== AUTOMATIC_PRED_BLOCK
21488 && (inst
.pred_insn_type
== INSIDE_IT_LAST_INSN
21489 || inst
.pred_insn_type
== IF_INSIDE_IT_LAST_INSN
))
21490 close_automatic_it_block ();
21493 case NEUTRAL_IT_INSN
:
21494 now_pred
.block_length
++;
21495 now_pred
.insn_cond
= TRUE
;
21497 if (now_pred
.block_length
> 4)
21498 force_automatic_it_block_close ();
21500 now_pred_add_mask (now_pred
.cc
& 1);
21504 close_automatic_it_block ();
21505 now_pred
.state
= MANUAL_PRED_BLOCK
;
21510 case MANUAL_PRED_BLOCK
:
21513 if (now_pred
.type
== SCALAR_PRED
)
21515 /* Check conditional suffixes. */
21516 cond
= now_pred
.cc
^ ((now_pred
.mask
>> 4) & 1) ^ 1;
21517 now_pred
.mask
<<= 1;
21518 now_pred
.mask
&= 0x1f;
21519 is_last
= (now_pred
.mask
== 0x10);
21523 now_pred
.cc
^= (now_pred
.mask
>> 4);
21524 cond
= now_pred
.cc
+ 0xf;
21525 now_pred
.mask
<<= 1;
21526 now_pred
.mask
&= 0x1f;
21527 is_last
= now_pred
.mask
== 0x10;
21529 now_pred
.insn_cond
= TRUE
;
21531 switch (inst
.pred_insn_type
)
21533 case OUTSIDE_PRED_INSN
:
21534 if (now_pred
.type
== SCALAR_PRED
)
21536 if (inst
.cond
== COND_ALWAYS
)
21538 /* Case 12: In an IT block, with no code: error: missing
21540 inst
.error
= BAD_NOT_IT
;
21543 else if (inst
.cond
> COND_ALWAYS
)
21545 /* Case 11: In an IT block, with a VPT code: syntax error.
21547 inst
.error
= BAD_SYNTAX
;
21550 else if (thumb_mode
)
21552 /* This is for some special cases where a non-MVE
21553 instruction is not allowed in an IT block, such as cbz,
21554 but are put into one with a condition code.
21555 You could argue this should be a syntax error, but we
21556 gave the 'not allowed in IT block' diagnostic in the
21557 past so we will keep doing so. */
21558 inst
.error
= BAD_NOT_IT
;
21565 /* Case 15: In a VPT block, with no code: UNPREDICTABLE. */
21566 as_tsktsk (MVE_NOT_VPT
);
21569 case MVE_OUTSIDE_PRED_INSN
:
21570 if (now_pred
.type
== SCALAR_PRED
)
21572 if (inst
.cond
== COND_ALWAYS
)
21574 /* Case 3: In an IT block, with no code: warning:
21576 as_tsktsk (MVE_NOT_IT
);
21579 else if (inst
.cond
< COND_ALWAYS
)
21581 /* Case 1: In an IT block, with an IT code: syntax error.
21583 inst
.error
= BAD_SYNTAX
;
21591 if (inst
.cond
< COND_ALWAYS
)
21593 /* Case 4: In a VPT block, with an IT code: syntax error.
21595 inst
.error
= BAD_SYNTAX
;
21598 else if (inst
.cond
== COND_ALWAYS
)
21600 /* Case 6: In a VPT block, with no code: error: missing
21602 inst
.error
= BAD_NOT_VPT
;
21610 case MVE_UNPREDICABLE_INSN
:
21611 as_tsktsk (now_pred
.type
== SCALAR_PRED
? MVE_NOT_IT
: MVE_NOT_VPT
);
21613 case INSIDE_IT_INSN
:
21614 if (inst
.cond
> COND_ALWAYS
)
21616 /* Case 11: In an IT block, with a VPT code: syntax error. */
21617 /* Case 14: In a VPT block, with a VPT code: syntax error. */
21618 inst
.error
= BAD_SYNTAX
;
21621 else if (now_pred
.type
== SCALAR_PRED
)
21623 /* Case 10: In an IT block, with an IT code: OK! */
21624 if (cond
!= inst
.cond
)
21626 inst
.error
= now_pred
.type
== SCALAR_PRED
? BAD_IT_COND
:
21633 /* Case 13: In a VPT block, with an IT code: error: should be
21635 inst
.error
= BAD_OUT_IT
;
21640 case INSIDE_VPT_INSN
:
21641 if (now_pred
.type
== SCALAR_PRED
)
21643 /* Case 2: In an IT block, with a VPT code: error: must be in a
21645 inst
.error
= BAD_OUT_VPT
;
21648 /* Case 5: In a VPT block, with a VPT code: OK! */
21649 else if (cond
!= inst
.cond
)
21651 inst
.error
= BAD_VPT_COND
;
21655 case INSIDE_IT_LAST_INSN
:
21656 case IF_INSIDE_IT_LAST_INSN
:
21657 if (now_pred
.type
== VECTOR_PRED
|| inst
.cond
> COND_ALWAYS
)
21659 /* Case 4: In a VPT block, with an IT code: syntax error. */
21660 /* Case 11: In an IT block, with a VPT code: syntax error. */
21661 inst
.error
= BAD_SYNTAX
;
21664 else if (cond
!= inst
.cond
)
21666 inst
.error
= BAD_IT_COND
;
21671 inst
.error
= BAD_BRANCH
;
21676 case NEUTRAL_IT_INSN
:
21677 /* The BKPT instruction is unconditional even in a IT or VPT
21682 if (now_pred
.type
== SCALAR_PRED
)
21684 inst
.error
= BAD_IT_IT
;
21687 /* fall through. */
21689 if (inst
.cond
== COND_ALWAYS
)
21691 /* Executing a VPT/VPST instruction inside an IT block or a
21692 VPT/VPST/IT instruction inside a VPT block is UNPREDICTABLE.
21694 if (now_pred
.type
== SCALAR_PRED
)
21695 as_tsktsk (MVE_NOT_IT
);
21697 as_tsktsk (MVE_NOT_VPT
);
21702 /* VPT/VPST do not accept condition codes. */
21703 inst
.error
= BAD_SYNTAX
;
21714 struct depr_insn_mask
21716 unsigned long pattern
;
21717 unsigned long mask
;
21718 const char* description
;
21721 /* List of 16-bit instruction patterns deprecated in an IT block in
21723 static const struct depr_insn_mask depr_it_insns
[] = {
21724 { 0xc000, 0xc000, N_("Short branches, Undefined, SVC, LDM/STM") },
21725 { 0xb000, 0xb000, N_("Miscellaneous 16-bit instructions") },
21726 { 0xa000, 0xb800, N_("ADR") },
21727 { 0x4800, 0xf800, N_("Literal loads") },
21728 { 0x4478, 0xf478, N_("Hi-register ADD, MOV, CMP, BX, BLX using pc") },
21729 { 0x4487, 0xfc87, N_("Hi-register ADD, MOV, CMP using pc") },
21730 /* NOTE: 0x00dd is not the real encoding, instead, it is the 'tvalue'
21731 field in asm_opcode. 'tvalue' is used at the stage this check happen. */
21732 { 0x00dd, 0x7fff, N_("ADD/SUB sp, sp #imm") },
21737 it_fsm_post_encode (void)
21741 if (!now_pred
.state_handled
)
21742 handle_pred_state ();
21744 if (now_pred
.insn_cond
21745 && !now_pred
.warn_deprecated
21746 && warn_on_deprecated
21747 && ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v8
)
21748 && !ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_m
))
21750 if (inst
.instruction
>= 0x10000)
21752 as_tsktsk (_("IT blocks containing 32-bit Thumb instructions are "
21753 "performance deprecated in ARMv8-A and ARMv8-R"));
21754 now_pred
.warn_deprecated
= TRUE
;
21758 const struct depr_insn_mask
*p
= depr_it_insns
;
21760 while (p
->mask
!= 0)
21762 if ((inst
.instruction
& p
->mask
) == p
->pattern
)
21764 as_tsktsk (_("IT blocks containing 16-bit Thumb "
21765 "instructions of the following class are "
21766 "performance deprecated in ARMv8-A and "
21767 "ARMv8-R: %s"), p
->description
);
21768 now_pred
.warn_deprecated
= TRUE
;
21776 if (now_pred
.block_length
> 1)
21778 as_tsktsk (_("IT blocks containing more than one conditional "
21779 "instruction are performance deprecated in ARMv8-A and "
21781 now_pred
.warn_deprecated
= TRUE
;
21785 is_last
= (now_pred
.mask
== 0x10);
21788 now_pred
.state
= OUTSIDE_PRED_BLOCK
;
21794 force_automatic_it_block_close (void)
21796 if (now_pred
.state
== AUTOMATIC_PRED_BLOCK
)
21798 close_automatic_it_block ();
21799 now_pred
.state
= OUTSIDE_PRED_BLOCK
;
21805 in_pred_block (void)
21807 if (!now_pred
.state_handled
)
21808 handle_pred_state ();
21810 return now_pred
.state
!= OUTSIDE_PRED_BLOCK
;
21813 /* Whether OPCODE only has T32 encoding. Since this function is only used by
21814 t32_insn_ok, OPCODE enabled by v6t2 extension bit do not need to be listed
21815 here, hence the "known" in the function name. */
21818 known_t32_only_insn (const struct asm_opcode
*opcode
)
21820 /* Original Thumb-1 wide instruction. */
21821 if (opcode
->tencode
== do_t_blx
21822 || opcode
->tencode
== do_t_branch23
21823 || ARM_CPU_HAS_FEATURE (*opcode
->tvariant
, arm_ext_msr
)
21824 || ARM_CPU_HAS_FEATURE (*opcode
->tvariant
, arm_ext_barrier
))
21827 /* Wide-only instruction added to ARMv8-M Baseline. */
21828 if (ARM_CPU_HAS_FEATURE (*opcode
->tvariant
, arm_ext_v8m_m_only
)
21829 || ARM_CPU_HAS_FEATURE (*opcode
->tvariant
, arm_ext_atomics
)
21830 || ARM_CPU_HAS_FEATURE (*opcode
->tvariant
, arm_ext_v6t2_v8m
)
21831 || ARM_CPU_HAS_FEATURE (*opcode
->tvariant
, arm_ext_div
))
21837 /* Whether wide instruction variant can be used if available for a valid OPCODE
21841 t32_insn_ok (arm_feature_set arch
, const struct asm_opcode
*opcode
)
21843 if (known_t32_only_insn (opcode
))
21846 /* Instruction with narrow and wide encoding added to ARMv8-M. Availability
21847 of variant T3 of B.W is checked in do_t_branch. */
21848 if (ARM_CPU_HAS_FEATURE (arch
, arm_ext_v8m
)
21849 && opcode
->tencode
== do_t_branch
)
21852 /* MOV accepts T1/T3 encodings under Baseline, T3 encoding is 32bit. */
21853 if (ARM_CPU_HAS_FEATURE (arch
, arm_ext_v8m
)
21854 && opcode
->tencode
== do_t_mov_cmp
21855 /* Make sure CMP instruction is not affected. */
21856 && opcode
->aencode
== do_mov
)
21859 /* Wide instruction variants of all instructions with narrow *and* wide
21860 variants become available with ARMv6t2. Other opcodes are either
21861 narrow-only or wide-only and are thus available if OPCODE is valid. */
21862 if (ARM_CPU_HAS_FEATURE (arch
, arm_ext_v6t2
))
21865 /* OPCODE with narrow only instruction variant or wide variant not
21871 md_assemble (char *str
)
21874 const struct asm_opcode
* opcode
;
21876 /* Align the previous label if needed. */
21877 if (last_label_seen
!= NULL
)
21879 symbol_set_frag (last_label_seen
, frag_now
);
21880 S_SET_VALUE (last_label_seen
, (valueT
) frag_now_fix ());
21881 S_SET_SEGMENT (last_label_seen
, now_seg
);
21884 memset (&inst
, '\0', sizeof (inst
));
21886 for (r
= 0; r
< ARM_IT_MAX_RELOCS
; r
++)
21887 inst
.relocs
[r
].type
= BFD_RELOC_UNUSED
;
21889 opcode
= opcode_lookup (&p
);
21892 /* It wasn't an instruction, but it might be a register alias of
21893 the form alias .req reg, or a Neon .dn/.qn directive. */
21894 if (! create_register_alias (str
, p
)
21895 && ! create_neon_reg_alias (str
, p
))
21896 as_bad (_("bad instruction `%s'"), str
);
21901 if (warn_on_deprecated
&& opcode
->tag
== OT_cinfix3_deprecated
)
21902 as_tsktsk (_("s suffix on comparison instruction is deprecated"));
21904 /* The value which unconditional instructions should have in place of the
21905 condition field. */
21906 inst
.uncond_value
= (opcode
->tag
== OT_csuffixF
) ? 0xf : -1;
21910 arm_feature_set variant
;
21912 variant
= cpu_variant
;
21913 /* Only allow coprocessor instructions on Thumb-2 capable devices. */
21914 if (!ARM_CPU_HAS_FEATURE (variant
, arm_arch_t2
))
21915 ARM_CLEAR_FEATURE (variant
, variant
, fpu_any_hard
);
21916 /* Check that this instruction is supported for this CPU. */
21917 if (!opcode
->tvariant
21918 || (thumb_mode
== 1
21919 && !ARM_CPU_HAS_FEATURE (variant
, *opcode
->tvariant
)))
21921 if (opcode
->tencode
== do_t_swi
)
21922 as_bad (_("SVC is not permitted on this architecture"));
21924 as_bad (_("selected processor does not support `%s' in Thumb mode"), str
);
21927 if (inst
.cond
!= COND_ALWAYS
&& !unified_syntax
21928 && opcode
->tencode
!= do_t_branch
)
21930 as_bad (_("Thumb does not support conditional execution"));
21934 /* Two things are addressed here:
21935 1) Implicit require narrow instructions on Thumb-1.
21936 This avoids relaxation accidentally introducing Thumb-2
21938 2) Reject wide instructions in non Thumb-2 cores.
21940 Only instructions with narrow and wide variants need to be handled
21941 but selecting all non wide-only instructions is easier. */
21942 if (!ARM_CPU_HAS_FEATURE (variant
, arm_ext_v6t2
)
21943 && !t32_insn_ok (variant
, opcode
))
21945 if (inst
.size_req
== 0)
21947 else if (inst
.size_req
== 4)
21949 if (ARM_CPU_HAS_FEATURE (variant
, arm_ext_v8m
))
21950 as_bad (_("selected processor does not support 32bit wide "
21951 "variant of instruction `%s'"), str
);
21953 as_bad (_("selected processor does not support `%s' in "
21954 "Thumb-2 mode"), str
);
21959 inst
.instruction
= opcode
->tvalue
;
21961 if (!parse_operands (p
, opcode
->operands
, /*thumb=*/TRUE
))
21963 /* Prepare the pred_insn_type for those encodings that don't set
21965 it_fsm_pre_encode ();
21967 opcode
->tencode ();
21969 it_fsm_post_encode ();
21972 if (!(inst
.error
|| inst
.relax
))
21974 gas_assert (inst
.instruction
< 0xe800 || inst
.instruction
> 0xffff);
21975 inst
.size
= (inst
.instruction
> 0xffff ? 4 : 2);
21976 if (inst
.size_req
&& inst
.size_req
!= inst
.size
)
21978 as_bad (_("cannot honor width suffix -- `%s'"), str
);
21983 /* Something has gone badly wrong if we try to relax a fixed size
21985 gas_assert (inst
.size_req
== 0 || !inst
.relax
);
21987 ARM_MERGE_FEATURE_SETS (thumb_arch_used
, thumb_arch_used
,
21988 *opcode
->tvariant
);
21989 /* Many Thumb-2 instructions also have Thumb-1 variants, so explicitly
21990 set those bits when Thumb-2 32-bit instructions are seen. The impact
21991 of relaxable instructions will be considered later after we finish all
21993 if (ARM_FEATURE_CORE_EQUAL (cpu_variant
, arm_arch_any
))
21994 variant
= arm_arch_none
;
21996 variant
= cpu_variant
;
21997 if (inst
.size
== 4 && !t32_insn_ok (variant
, opcode
))
21998 ARM_MERGE_FEATURE_SETS (thumb_arch_used
, thumb_arch_used
,
22001 check_neon_suffixes
;
22005 mapping_state (MAP_THUMB
);
22008 else if (ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v1
))
22012 /* bx is allowed on v5 cores, and sometimes on v4 cores. */
22013 is_bx
= (opcode
->aencode
== do_bx
);
22015 /* Check that this instruction is supported for this CPU. */
22016 if (!(is_bx
&& fix_v4bx
)
22017 && !(opcode
->avariant
&&
22018 ARM_CPU_HAS_FEATURE (cpu_variant
, *opcode
->avariant
)))
22020 as_bad (_("selected processor does not support `%s' in ARM mode"), str
);
22025 as_bad (_("width suffixes are invalid in ARM mode -- `%s'"), str
);
22029 inst
.instruction
= opcode
->avalue
;
22030 if (opcode
->tag
== OT_unconditionalF
)
22031 inst
.instruction
|= 0xFU
<< 28;
22033 inst
.instruction
|= inst
.cond
<< 28;
22034 inst
.size
= INSN_SIZE
;
22035 if (!parse_operands (p
, opcode
->operands
, /*thumb=*/FALSE
))
22037 it_fsm_pre_encode ();
22038 opcode
->aencode ();
22039 it_fsm_post_encode ();
22041 /* Arm mode bx is marked as both v4T and v5 because it's still required
22042 on a hypothetical non-thumb v5 core. */
22044 ARM_MERGE_FEATURE_SETS (arm_arch_used
, arm_arch_used
, arm_ext_v4t
);
22046 ARM_MERGE_FEATURE_SETS (arm_arch_used
, arm_arch_used
,
22047 *opcode
->avariant
);
22049 check_neon_suffixes
;
22053 mapping_state (MAP_ARM
);
22058 as_bad (_("attempt to use an ARM instruction on a Thumb-only processor "
22066 check_pred_blocks_finished (void)
22071 for (sect
= stdoutput
->sections
; sect
!= NULL
; sect
= sect
->next
)
22072 if (seg_info (sect
)->tc_segment_info_data
.current_pred
.state
22073 == MANUAL_PRED_BLOCK
)
22075 if (now_pred
.type
== SCALAR_PRED
)
22076 as_warn (_("section '%s' finished with an open IT block."),
22079 as_warn (_("section '%s' finished with an open VPT/VPST block."),
22083 if (now_pred
.state
== MANUAL_PRED_BLOCK
)
22085 if (now_pred
.type
== SCALAR_PRED
)
22086 as_warn (_("file finished with an open IT block."));
22088 as_warn (_("file finished with an open VPT/VPST block."));
22093 /* Various frobbings of labels and their addresses. */
22096 arm_start_line_hook (void)
22098 last_label_seen
= NULL
;
22102 arm_frob_label (symbolS
* sym
)
22104 last_label_seen
= sym
;
22106 ARM_SET_THUMB (sym
, thumb_mode
);
22108 #if defined OBJ_COFF || defined OBJ_ELF
22109 ARM_SET_INTERWORK (sym
, support_interwork
);
22112 force_automatic_it_block_close ();
22114 /* Note - do not allow local symbols (.Lxxx) to be labelled
22115 as Thumb functions. This is because these labels, whilst
22116 they exist inside Thumb code, are not the entry points for
22117 possible ARM->Thumb calls. Also, these labels can be used
22118 as part of a computed goto or switch statement. eg gcc
22119 can generate code that looks like this:
22121 ldr r2, [pc, .Laaa]
22131 The first instruction loads the address of the jump table.
22132 The second instruction converts a table index into a byte offset.
22133 The third instruction gets the jump address out of the table.
22134 The fourth instruction performs the jump.
22136 If the address stored at .Laaa is that of a symbol which has the
22137 Thumb_Func bit set, then the linker will arrange for this address
22138 to have the bottom bit set, which in turn would mean that the
22139 address computation performed by the third instruction would end
22140 up with the bottom bit set. Since the ARM is capable of unaligned
22141 word loads, the instruction would then load the incorrect address
22142 out of the jump table, and chaos would ensue. */
22143 if (label_is_thumb_function_name
22144 && (S_GET_NAME (sym
)[0] != '.' || S_GET_NAME (sym
)[1] != 'L')
22145 && (bfd_get_section_flags (stdoutput
, now_seg
) & SEC_CODE
) != 0)
22147 /* When the address of a Thumb function is taken the bottom
22148 bit of that address should be set. This will allow
22149 interworking between Arm and Thumb functions to work
22152 THUMB_SET_FUNC (sym
, 1);
22154 label_is_thumb_function_name
= FALSE
;
22157 dwarf2_emit_label (sym
);
22161 arm_data_in_code (void)
22163 if (thumb_mode
&& ! strncmp (input_line_pointer
+ 1, "data:", 5))
22165 *input_line_pointer
= '/';
22166 input_line_pointer
+= 5;
22167 *input_line_pointer
= 0;
22175 arm_canonicalize_symbol_name (char * name
)
22179 if (thumb_mode
&& (len
= strlen (name
)) > 5
22180 && streq (name
+ len
- 5, "/data"))
22181 *(name
+ len
- 5) = 0;
22186 /* Table of all register names defined by default. The user can
22187 define additional names with .req. Note that all register names
22188 should appear in both upper and lowercase variants. Some registers
22189 also have mixed-case names. */
22191 #define REGDEF(s,n,t) { #s, n, REG_TYPE_##t, TRUE, 0 }
22192 #define REGNUM(p,n,t) REGDEF(p##n, n, t)
22193 #define REGNUM2(p,n,t) REGDEF(p##n, 2 * n, t)
22194 #define REGSET(p,t) \
22195 REGNUM(p, 0,t), REGNUM(p, 1,t), REGNUM(p, 2,t), REGNUM(p, 3,t), \
22196 REGNUM(p, 4,t), REGNUM(p, 5,t), REGNUM(p, 6,t), REGNUM(p, 7,t), \
22197 REGNUM(p, 8,t), REGNUM(p, 9,t), REGNUM(p,10,t), REGNUM(p,11,t), \
22198 REGNUM(p,12,t), REGNUM(p,13,t), REGNUM(p,14,t), REGNUM(p,15,t)
22199 #define REGSETH(p,t) \
22200 REGNUM(p,16,t), REGNUM(p,17,t), REGNUM(p,18,t), REGNUM(p,19,t), \
22201 REGNUM(p,20,t), REGNUM(p,21,t), REGNUM(p,22,t), REGNUM(p,23,t), \
22202 REGNUM(p,24,t), REGNUM(p,25,t), REGNUM(p,26,t), REGNUM(p,27,t), \
22203 REGNUM(p,28,t), REGNUM(p,29,t), REGNUM(p,30,t), REGNUM(p,31,t)
22204 #define REGSET2(p,t) \
22205 REGNUM2(p, 0,t), REGNUM2(p, 1,t), REGNUM2(p, 2,t), REGNUM2(p, 3,t), \
22206 REGNUM2(p, 4,t), REGNUM2(p, 5,t), REGNUM2(p, 6,t), REGNUM2(p, 7,t), \
22207 REGNUM2(p, 8,t), REGNUM2(p, 9,t), REGNUM2(p,10,t), REGNUM2(p,11,t), \
22208 REGNUM2(p,12,t), REGNUM2(p,13,t), REGNUM2(p,14,t), REGNUM2(p,15,t)
22209 #define SPLRBANK(base,bank,t) \
22210 REGDEF(lr_##bank, 768|((base+0)<<16), t), \
22211 REGDEF(sp_##bank, 768|((base+1)<<16), t), \
22212 REGDEF(spsr_##bank, 768|(base<<16)|SPSR_BIT, t), \
22213 REGDEF(LR_##bank, 768|((base+0)<<16), t), \
22214 REGDEF(SP_##bank, 768|((base+1)<<16), t), \
22215 REGDEF(SPSR_##bank, 768|(base<<16)|SPSR_BIT, t)
22217 static const struct reg_entry reg_names
[] =
22219 /* ARM integer registers. */
22220 REGSET(r
, RN
), REGSET(R
, RN
),
22222 /* ATPCS synonyms. */
22223 REGDEF(a1
,0,RN
), REGDEF(a2
,1,RN
), REGDEF(a3
, 2,RN
), REGDEF(a4
, 3,RN
),
22224 REGDEF(v1
,4,RN
), REGDEF(v2
,5,RN
), REGDEF(v3
, 6,RN
), REGDEF(v4
, 7,RN
),
22225 REGDEF(v5
,8,RN
), REGDEF(v6
,9,RN
), REGDEF(v7
,10,RN
), REGDEF(v8
,11,RN
),
22227 REGDEF(A1
,0,RN
), REGDEF(A2
,1,RN
), REGDEF(A3
, 2,RN
), REGDEF(A4
, 3,RN
),
22228 REGDEF(V1
,4,RN
), REGDEF(V2
,5,RN
), REGDEF(V3
, 6,RN
), REGDEF(V4
, 7,RN
),
22229 REGDEF(V5
,8,RN
), REGDEF(V6
,9,RN
), REGDEF(V7
,10,RN
), REGDEF(V8
,11,RN
),
22231 /* Well-known aliases. */
22232 REGDEF(wr
, 7,RN
), REGDEF(sb
, 9,RN
), REGDEF(sl
,10,RN
), REGDEF(fp
,11,RN
),
22233 REGDEF(ip
,12,RN
), REGDEF(sp
,13,RN
), REGDEF(lr
,14,RN
), REGDEF(pc
,15,RN
),
22235 REGDEF(WR
, 7,RN
), REGDEF(SB
, 9,RN
), REGDEF(SL
,10,RN
), REGDEF(FP
,11,RN
),
22236 REGDEF(IP
,12,RN
), REGDEF(SP
,13,RN
), REGDEF(LR
,14,RN
), REGDEF(PC
,15,RN
),
22238 /* Defining the new Zero register from ARMv8.1-M. */
22242 /* Coprocessor numbers. */
22243 REGSET(p
, CP
), REGSET(P
, CP
),
22245 /* Coprocessor register numbers. The "cr" variants are for backward
22247 REGSET(c
, CN
), REGSET(C
, CN
),
22248 REGSET(cr
, CN
), REGSET(CR
, CN
),
22250 /* ARM banked registers. */
22251 REGDEF(R8_usr
,512|(0<<16),RNB
), REGDEF(r8_usr
,512|(0<<16),RNB
),
22252 REGDEF(R9_usr
,512|(1<<16),RNB
), REGDEF(r9_usr
,512|(1<<16),RNB
),
22253 REGDEF(R10_usr
,512|(2<<16),RNB
), REGDEF(r10_usr
,512|(2<<16),RNB
),
22254 REGDEF(R11_usr
,512|(3<<16),RNB
), REGDEF(r11_usr
,512|(3<<16),RNB
),
22255 REGDEF(R12_usr
,512|(4<<16),RNB
), REGDEF(r12_usr
,512|(4<<16),RNB
),
22256 REGDEF(SP_usr
,512|(5<<16),RNB
), REGDEF(sp_usr
,512|(5<<16),RNB
),
22257 REGDEF(LR_usr
,512|(6<<16),RNB
), REGDEF(lr_usr
,512|(6<<16),RNB
),
22259 REGDEF(R8_fiq
,512|(8<<16),RNB
), REGDEF(r8_fiq
,512|(8<<16),RNB
),
22260 REGDEF(R9_fiq
,512|(9<<16),RNB
), REGDEF(r9_fiq
,512|(9<<16),RNB
),
22261 REGDEF(R10_fiq
,512|(10<<16),RNB
), REGDEF(r10_fiq
,512|(10<<16),RNB
),
22262 REGDEF(R11_fiq
,512|(11<<16),RNB
), REGDEF(r11_fiq
,512|(11<<16),RNB
),
22263 REGDEF(R12_fiq
,512|(12<<16),RNB
), REGDEF(r12_fiq
,512|(12<<16),RNB
),
22264 REGDEF(SP_fiq
,512|(13<<16),RNB
), REGDEF(sp_fiq
,512|(13<<16),RNB
),
22265 REGDEF(LR_fiq
,512|(14<<16),RNB
), REGDEF(lr_fiq
,512|(14<<16),RNB
),
22266 REGDEF(SPSR_fiq
,512|(14<<16)|SPSR_BIT
,RNB
), REGDEF(spsr_fiq
,512|(14<<16)|SPSR_BIT
,RNB
),
22268 SPLRBANK(0,IRQ
,RNB
), SPLRBANK(0,irq
,RNB
),
22269 SPLRBANK(2,SVC
,RNB
), SPLRBANK(2,svc
,RNB
),
22270 SPLRBANK(4,ABT
,RNB
), SPLRBANK(4,abt
,RNB
),
22271 SPLRBANK(6,UND
,RNB
), SPLRBANK(6,und
,RNB
),
22272 SPLRBANK(12,MON
,RNB
), SPLRBANK(12,mon
,RNB
),
22273 REGDEF(elr_hyp
,768|(14<<16),RNB
), REGDEF(ELR_hyp
,768|(14<<16),RNB
),
22274 REGDEF(sp_hyp
,768|(15<<16),RNB
), REGDEF(SP_hyp
,768|(15<<16),RNB
),
22275 REGDEF(spsr_hyp
,768|(14<<16)|SPSR_BIT
,RNB
),
22276 REGDEF(SPSR_hyp
,768|(14<<16)|SPSR_BIT
,RNB
),
22278 /* FPA registers. */
22279 REGNUM(f
,0,FN
), REGNUM(f
,1,FN
), REGNUM(f
,2,FN
), REGNUM(f
,3,FN
),
22280 REGNUM(f
,4,FN
), REGNUM(f
,5,FN
), REGNUM(f
,6,FN
), REGNUM(f
,7, FN
),
22282 REGNUM(F
,0,FN
), REGNUM(F
,1,FN
), REGNUM(F
,2,FN
), REGNUM(F
,3,FN
),
22283 REGNUM(F
,4,FN
), REGNUM(F
,5,FN
), REGNUM(F
,6,FN
), REGNUM(F
,7, FN
),
22285 /* VFP SP registers. */
22286 REGSET(s
,VFS
), REGSET(S
,VFS
),
22287 REGSETH(s
,VFS
), REGSETH(S
,VFS
),
22289 /* VFP DP Registers. */
22290 REGSET(d
,VFD
), REGSET(D
,VFD
),
22291 /* Extra Neon DP registers. */
22292 REGSETH(d
,VFD
), REGSETH(D
,VFD
),
22294 /* Neon QP registers. */
22295 REGSET2(q
,NQ
), REGSET2(Q
,NQ
),
22297 /* VFP control registers. */
22298 REGDEF(fpsid
,0,VFC
), REGDEF(fpscr
,1,VFC
), REGDEF(fpexc
,8,VFC
),
22299 REGDEF(FPSID
,0,VFC
), REGDEF(FPSCR
,1,VFC
), REGDEF(FPEXC
,8,VFC
),
22300 REGDEF(fpinst
,9,VFC
), REGDEF(fpinst2
,10,VFC
),
22301 REGDEF(FPINST
,9,VFC
), REGDEF(FPINST2
,10,VFC
),
22302 REGDEF(mvfr0
,7,VFC
), REGDEF(mvfr1
,6,VFC
),
22303 REGDEF(MVFR0
,7,VFC
), REGDEF(MVFR1
,6,VFC
),
22304 REGDEF(mvfr2
,5,VFC
), REGDEF(MVFR2
,5,VFC
),
22306 /* Maverick DSP coprocessor registers. */
22307 REGSET(mvf
,MVF
), REGSET(mvd
,MVD
), REGSET(mvfx
,MVFX
), REGSET(mvdx
,MVDX
),
22308 REGSET(MVF
,MVF
), REGSET(MVD
,MVD
), REGSET(MVFX
,MVFX
), REGSET(MVDX
,MVDX
),
22310 REGNUM(mvax
,0,MVAX
), REGNUM(mvax
,1,MVAX
),
22311 REGNUM(mvax
,2,MVAX
), REGNUM(mvax
,3,MVAX
),
22312 REGDEF(dspsc
,0,DSPSC
),
22314 REGNUM(MVAX
,0,MVAX
), REGNUM(MVAX
,1,MVAX
),
22315 REGNUM(MVAX
,2,MVAX
), REGNUM(MVAX
,3,MVAX
),
22316 REGDEF(DSPSC
,0,DSPSC
),
22318 /* iWMMXt data registers - p0, c0-15. */
22319 REGSET(wr
,MMXWR
), REGSET(wR
,MMXWR
), REGSET(WR
, MMXWR
),
22321 /* iWMMXt control registers - p1, c0-3. */
22322 REGDEF(wcid
, 0,MMXWC
), REGDEF(wCID
, 0,MMXWC
), REGDEF(WCID
, 0,MMXWC
),
22323 REGDEF(wcon
, 1,MMXWC
), REGDEF(wCon
, 1,MMXWC
), REGDEF(WCON
, 1,MMXWC
),
22324 REGDEF(wcssf
, 2,MMXWC
), REGDEF(wCSSF
, 2,MMXWC
), REGDEF(WCSSF
, 2,MMXWC
),
22325 REGDEF(wcasf
, 3,MMXWC
), REGDEF(wCASF
, 3,MMXWC
), REGDEF(WCASF
, 3,MMXWC
),
22327 /* iWMMXt scalar (constant/offset) registers - p1, c8-11. */
22328 REGDEF(wcgr0
, 8,MMXWCG
), REGDEF(wCGR0
, 8,MMXWCG
), REGDEF(WCGR0
, 8,MMXWCG
),
22329 REGDEF(wcgr1
, 9,MMXWCG
), REGDEF(wCGR1
, 9,MMXWCG
), REGDEF(WCGR1
, 9,MMXWCG
),
22330 REGDEF(wcgr2
,10,MMXWCG
), REGDEF(wCGR2
,10,MMXWCG
), REGDEF(WCGR2
,10,MMXWCG
),
22331 REGDEF(wcgr3
,11,MMXWCG
), REGDEF(wCGR3
,11,MMXWCG
), REGDEF(WCGR3
,11,MMXWCG
),
22333 /* XScale accumulator registers. */
22334 REGNUM(acc
,0,XSCALE
), REGNUM(ACC
,0,XSCALE
),
22340 /* Table of all PSR suffixes. Bare "CPSR" and "SPSR" are handled
22341 within psr_required_here. */
22342 static const struct asm_psr psrs
[] =
22344 /* Backward compatibility notation. Note that "all" is no longer
22345 truly all possible PSR bits. */
22346 {"all", PSR_c
| PSR_f
},
22350 /* Individual flags. */
22356 /* Combinations of flags. */
22357 {"fs", PSR_f
| PSR_s
},
22358 {"fx", PSR_f
| PSR_x
},
22359 {"fc", PSR_f
| PSR_c
},
22360 {"sf", PSR_s
| PSR_f
},
22361 {"sx", PSR_s
| PSR_x
},
22362 {"sc", PSR_s
| PSR_c
},
22363 {"xf", PSR_x
| PSR_f
},
22364 {"xs", PSR_x
| PSR_s
},
22365 {"xc", PSR_x
| PSR_c
},
22366 {"cf", PSR_c
| PSR_f
},
22367 {"cs", PSR_c
| PSR_s
},
22368 {"cx", PSR_c
| PSR_x
},
22369 {"fsx", PSR_f
| PSR_s
| PSR_x
},
22370 {"fsc", PSR_f
| PSR_s
| PSR_c
},
22371 {"fxs", PSR_f
| PSR_x
| PSR_s
},
22372 {"fxc", PSR_f
| PSR_x
| PSR_c
},
22373 {"fcs", PSR_f
| PSR_c
| PSR_s
},
22374 {"fcx", PSR_f
| PSR_c
| PSR_x
},
22375 {"sfx", PSR_s
| PSR_f
| PSR_x
},
22376 {"sfc", PSR_s
| PSR_f
| PSR_c
},
22377 {"sxf", PSR_s
| PSR_x
| PSR_f
},
22378 {"sxc", PSR_s
| PSR_x
| PSR_c
},
22379 {"scf", PSR_s
| PSR_c
| PSR_f
},
22380 {"scx", PSR_s
| PSR_c
| PSR_x
},
22381 {"xfs", PSR_x
| PSR_f
| PSR_s
},
22382 {"xfc", PSR_x
| PSR_f
| PSR_c
},
22383 {"xsf", PSR_x
| PSR_s
| PSR_f
},
22384 {"xsc", PSR_x
| PSR_s
| PSR_c
},
22385 {"xcf", PSR_x
| PSR_c
| PSR_f
},
22386 {"xcs", PSR_x
| PSR_c
| PSR_s
},
22387 {"cfs", PSR_c
| PSR_f
| PSR_s
},
22388 {"cfx", PSR_c
| PSR_f
| PSR_x
},
22389 {"csf", PSR_c
| PSR_s
| PSR_f
},
22390 {"csx", PSR_c
| PSR_s
| PSR_x
},
22391 {"cxf", PSR_c
| PSR_x
| PSR_f
},
22392 {"cxs", PSR_c
| PSR_x
| PSR_s
},
22393 {"fsxc", PSR_f
| PSR_s
| PSR_x
| PSR_c
},
22394 {"fscx", PSR_f
| PSR_s
| PSR_c
| PSR_x
},
22395 {"fxsc", PSR_f
| PSR_x
| PSR_s
| PSR_c
},
22396 {"fxcs", PSR_f
| PSR_x
| PSR_c
| PSR_s
},
22397 {"fcsx", PSR_f
| PSR_c
| PSR_s
| PSR_x
},
22398 {"fcxs", PSR_f
| PSR_c
| PSR_x
| PSR_s
},
22399 {"sfxc", PSR_s
| PSR_f
| PSR_x
| PSR_c
},
22400 {"sfcx", PSR_s
| PSR_f
| PSR_c
| PSR_x
},
22401 {"sxfc", PSR_s
| PSR_x
| PSR_f
| PSR_c
},
22402 {"sxcf", PSR_s
| PSR_x
| PSR_c
| PSR_f
},
22403 {"scfx", PSR_s
| PSR_c
| PSR_f
| PSR_x
},
22404 {"scxf", PSR_s
| PSR_c
| PSR_x
| PSR_f
},
22405 {"xfsc", PSR_x
| PSR_f
| PSR_s
| PSR_c
},
22406 {"xfcs", PSR_x
| PSR_f
| PSR_c
| PSR_s
},
22407 {"xsfc", PSR_x
| PSR_s
| PSR_f
| PSR_c
},
22408 {"xscf", PSR_x
| PSR_s
| PSR_c
| PSR_f
},
22409 {"xcfs", PSR_x
| PSR_c
| PSR_f
| PSR_s
},
22410 {"xcsf", PSR_x
| PSR_c
| PSR_s
| PSR_f
},
22411 {"cfsx", PSR_c
| PSR_f
| PSR_s
| PSR_x
},
22412 {"cfxs", PSR_c
| PSR_f
| PSR_x
| PSR_s
},
22413 {"csfx", PSR_c
| PSR_s
| PSR_f
| PSR_x
},
22414 {"csxf", PSR_c
| PSR_s
| PSR_x
| PSR_f
},
22415 {"cxfs", PSR_c
| PSR_x
| PSR_f
| PSR_s
},
22416 {"cxsf", PSR_c
| PSR_x
| PSR_s
| PSR_f
},
22419 /* Table of V7M psr names. */
22420 static const struct asm_psr v7m_psrs
[] =
22422 {"apsr", 0x0 }, {"APSR", 0x0 },
22423 {"iapsr", 0x1 }, {"IAPSR", 0x1 },
22424 {"eapsr", 0x2 }, {"EAPSR", 0x2 },
22425 {"psr", 0x3 }, {"PSR", 0x3 },
22426 {"xpsr", 0x3 }, {"XPSR", 0x3 }, {"xPSR", 3 },
22427 {"ipsr", 0x5 }, {"IPSR", 0x5 },
22428 {"epsr", 0x6 }, {"EPSR", 0x6 },
22429 {"iepsr", 0x7 }, {"IEPSR", 0x7 },
22430 {"msp", 0x8 }, {"MSP", 0x8 },
22431 {"psp", 0x9 }, {"PSP", 0x9 },
22432 {"msplim", 0xa }, {"MSPLIM", 0xa },
22433 {"psplim", 0xb }, {"PSPLIM", 0xb },
22434 {"primask", 0x10}, {"PRIMASK", 0x10},
22435 {"basepri", 0x11}, {"BASEPRI", 0x11},
22436 {"basepri_max", 0x12}, {"BASEPRI_MAX", 0x12},
22437 {"faultmask", 0x13}, {"FAULTMASK", 0x13},
22438 {"control", 0x14}, {"CONTROL", 0x14},
22439 {"msp_ns", 0x88}, {"MSP_NS", 0x88},
22440 {"psp_ns", 0x89}, {"PSP_NS", 0x89},
22441 {"msplim_ns", 0x8a}, {"MSPLIM_NS", 0x8a},
22442 {"psplim_ns", 0x8b}, {"PSPLIM_NS", 0x8b},
22443 {"primask_ns", 0x90}, {"PRIMASK_NS", 0x90},
22444 {"basepri_ns", 0x91}, {"BASEPRI_NS", 0x91},
22445 {"faultmask_ns", 0x93}, {"FAULTMASK_NS", 0x93},
22446 {"control_ns", 0x94}, {"CONTROL_NS", 0x94},
22447 {"sp_ns", 0x98}, {"SP_NS", 0x98 }
22450 /* Table of all shift-in-operand names. */
22451 static const struct asm_shift_name shift_names
[] =
22453 { "asl", SHIFT_LSL
}, { "ASL", SHIFT_LSL
},
22454 { "lsl", SHIFT_LSL
}, { "LSL", SHIFT_LSL
},
22455 { "lsr", SHIFT_LSR
}, { "LSR", SHIFT_LSR
},
22456 { "asr", SHIFT_ASR
}, { "ASR", SHIFT_ASR
},
22457 { "ror", SHIFT_ROR
}, { "ROR", SHIFT_ROR
},
22458 { "rrx", SHIFT_RRX
}, { "RRX", SHIFT_RRX
},
22459 { "uxtw", SHIFT_UXTW
}, { "UXTW", SHIFT_UXTW
}
22462 /* Table of all explicit relocation names. */
22464 static struct reloc_entry reloc_names
[] =
22466 { "got", BFD_RELOC_ARM_GOT32
}, { "GOT", BFD_RELOC_ARM_GOT32
},
22467 { "gotoff", BFD_RELOC_ARM_GOTOFF
}, { "GOTOFF", BFD_RELOC_ARM_GOTOFF
},
22468 { "plt", BFD_RELOC_ARM_PLT32
}, { "PLT", BFD_RELOC_ARM_PLT32
},
22469 { "target1", BFD_RELOC_ARM_TARGET1
}, { "TARGET1", BFD_RELOC_ARM_TARGET1
},
22470 { "target2", BFD_RELOC_ARM_TARGET2
}, { "TARGET2", BFD_RELOC_ARM_TARGET2
},
22471 { "sbrel", BFD_RELOC_ARM_SBREL32
}, { "SBREL", BFD_RELOC_ARM_SBREL32
},
22472 { "tlsgd", BFD_RELOC_ARM_TLS_GD32
}, { "TLSGD", BFD_RELOC_ARM_TLS_GD32
},
22473 { "tlsldm", BFD_RELOC_ARM_TLS_LDM32
}, { "TLSLDM", BFD_RELOC_ARM_TLS_LDM32
},
22474 { "tlsldo", BFD_RELOC_ARM_TLS_LDO32
}, { "TLSLDO", BFD_RELOC_ARM_TLS_LDO32
},
22475 { "gottpoff",BFD_RELOC_ARM_TLS_IE32
}, { "GOTTPOFF",BFD_RELOC_ARM_TLS_IE32
},
22476 { "tpoff", BFD_RELOC_ARM_TLS_LE32
}, { "TPOFF", BFD_RELOC_ARM_TLS_LE32
},
22477 { "got_prel", BFD_RELOC_ARM_GOT_PREL
}, { "GOT_PREL", BFD_RELOC_ARM_GOT_PREL
},
22478 { "tlsdesc", BFD_RELOC_ARM_TLS_GOTDESC
},
22479 { "TLSDESC", BFD_RELOC_ARM_TLS_GOTDESC
},
22480 { "tlscall", BFD_RELOC_ARM_TLS_CALL
},
22481 { "TLSCALL", BFD_RELOC_ARM_TLS_CALL
},
22482 { "tlsdescseq", BFD_RELOC_ARM_TLS_DESCSEQ
},
22483 { "TLSDESCSEQ", BFD_RELOC_ARM_TLS_DESCSEQ
},
22484 { "gotfuncdesc", BFD_RELOC_ARM_GOTFUNCDESC
},
22485 { "GOTFUNCDESC", BFD_RELOC_ARM_GOTFUNCDESC
},
22486 { "gotofffuncdesc", BFD_RELOC_ARM_GOTOFFFUNCDESC
},
22487 { "GOTOFFFUNCDESC", BFD_RELOC_ARM_GOTOFFFUNCDESC
},
22488 { "funcdesc", BFD_RELOC_ARM_FUNCDESC
},
22489 { "FUNCDESC", BFD_RELOC_ARM_FUNCDESC
},
22490 { "tlsgd_fdpic", BFD_RELOC_ARM_TLS_GD32_FDPIC
}, { "TLSGD_FDPIC", BFD_RELOC_ARM_TLS_GD32_FDPIC
},
22491 { "tlsldm_fdpic", BFD_RELOC_ARM_TLS_LDM32_FDPIC
}, { "TLSLDM_FDPIC", BFD_RELOC_ARM_TLS_LDM32_FDPIC
},
22492 { "gottpoff_fdpic", BFD_RELOC_ARM_TLS_IE32_FDPIC
}, { "GOTTPOFF_FDIC", BFD_RELOC_ARM_TLS_IE32_FDPIC
},
22496 /* Table of all conditional affixes. */
22497 static const struct asm_cond conds
[] =
22501 {"cs", 0x2}, {"hs", 0x2},
22502 {"cc", 0x3}, {"ul", 0x3}, {"lo", 0x3},
22515 static const struct asm_cond vconds
[] =
22521 #define UL_BARRIER(L,U,CODE,FEAT) \
22522 { L, CODE, ARM_FEATURE_CORE_LOW (FEAT) }, \
22523 { U, CODE, ARM_FEATURE_CORE_LOW (FEAT) }
22525 static struct asm_barrier_opt barrier_opt_names
[] =
22527 UL_BARRIER ("sy", "SY", 0xf, ARM_EXT_BARRIER
),
22528 UL_BARRIER ("st", "ST", 0xe, ARM_EXT_BARRIER
),
22529 UL_BARRIER ("ld", "LD", 0xd, ARM_EXT_V8
),
22530 UL_BARRIER ("ish", "ISH", 0xb, ARM_EXT_BARRIER
),
22531 UL_BARRIER ("sh", "SH", 0xb, ARM_EXT_BARRIER
),
22532 UL_BARRIER ("ishst", "ISHST", 0xa, ARM_EXT_BARRIER
),
22533 UL_BARRIER ("shst", "SHST", 0xa, ARM_EXT_BARRIER
),
22534 UL_BARRIER ("ishld", "ISHLD", 0x9, ARM_EXT_V8
),
22535 UL_BARRIER ("un", "UN", 0x7, ARM_EXT_BARRIER
),
22536 UL_BARRIER ("nsh", "NSH", 0x7, ARM_EXT_BARRIER
),
22537 UL_BARRIER ("unst", "UNST", 0x6, ARM_EXT_BARRIER
),
22538 UL_BARRIER ("nshst", "NSHST", 0x6, ARM_EXT_BARRIER
),
22539 UL_BARRIER ("nshld", "NSHLD", 0x5, ARM_EXT_V8
),
22540 UL_BARRIER ("osh", "OSH", 0x3, ARM_EXT_BARRIER
),
22541 UL_BARRIER ("oshst", "OSHST", 0x2, ARM_EXT_BARRIER
),
22542 UL_BARRIER ("oshld", "OSHLD", 0x1, ARM_EXT_V8
)
22547 /* Table of ARM-format instructions. */
22549 /* Macros for gluing together operand strings. N.B. In all cases
22550 other than OPS0, the trailing OP_stop comes from default
22551 zero-initialization of the unspecified elements of the array. */
22552 #define OPS0() { OP_stop, }
22553 #define OPS1(a) { OP_##a, }
22554 #define OPS2(a,b) { OP_##a,OP_##b, }
22555 #define OPS3(a,b,c) { OP_##a,OP_##b,OP_##c, }
22556 #define OPS4(a,b,c,d) { OP_##a,OP_##b,OP_##c,OP_##d, }
22557 #define OPS5(a,b,c,d,e) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e, }
22558 #define OPS6(a,b,c,d,e,f) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e,OP_##f, }
22560 /* These macros are similar to the OPSn, but do not prepend the OP_ prefix.
22561 This is useful when mixing operands for ARM and THUMB, i.e. using the
22562 MIX_ARM_THUMB_OPERANDS macro.
22563 In order to use these macros, prefix the number of operands with _
22565 #define OPS_1(a) { a, }
22566 #define OPS_2(a,b) { a,b, }
22567 #define OPS_3(a,b,c) { a,b,c, }
22568 #define OPS_4(a,b,c,d) { a,b,c,d, }
22569 #define OPS_5(a,b,c,d,e) { a,b,c,d,e, }
22570 #define OPS_6(a,b,c,d,e,f) { a,b,c,d,e,f, }
22572 /* These macros abstract out the exact format of the mnemonic table and
22573 save some repeated characters. */
22575 /* The normal sort of mnemonic; has a Thumb variant; takes a conditional suffix. */
22576 #define TxCE(mnem, op, top, nops, ops, ae, te) \
22577 { mnem, OPS##nops ops, OT_csuffix, 0x##op, top, ARM_VARIANT, \
22578 THUMB_VARIANT, do_##ae, do_##te, 0 }
22580 /* Two variants of the above - TCE for a numeric Thumb opcode, tCE for
22581 a T_MNEM_xyz enumerator. */
22582 #define TCE(mnem, aop, top, nops, ops, ae, te) \
22583 TxCE (mnem, aop, 0x##top, nops, ops, ae, te)
22584 #define tCE(mnem, aop, top, nops, ops, ae, te) \
22585 TxCE (mnem, aop, T_MNEM##top, nops, ops, ae, te)
22587 /* Second most common sort of mnemonic: has a Thumb variant, takes a conditional
22588 infix after the third character. */
22589 #define TxC3(mnem, op, top, nops, ops, ae, te) \
22590 { mnem, OPS##nops ops, OT_cinfix3, 0x##op, top, ARM_VARIANT, \
22591 THUMB_VARIANT, do_##ae, do_##te, 0 }
22592 #define TxC3w(mnem, op, top, nops, ops, ae, te) \
22593 { mnem, OPS##nops ops, OT_cinfix3_deprecated, 0x##op, top, ARM_VARIANT, \
22594 THUMB_VARIANT, do_##ae, do_##te, 0 }
22595 #define TC3(mnem, aop, top, nops, ops, ae, te) \
22596 TxC3 (mnem, aop, 0x##top, nops, ops, ae, te)
22597 #define TC3w(mnem, aop, top, nops, ops, ae, te) \
22598 TxC3w (mnem, aop, 0x##top, nops, ops, ae, te)
22599 #define tC3(mnem, aop, top, nops, ops, ae, te) \
22600 TxC3 (mnem, aop, T_MNEM##top, nops, ops, ae, te)
22601 #define tC3w(mnem, aop, top, nops, ops, ae, te) \
22602 TxC3w (mnem, aop, T_MNEM##top, nops, ops, ae, te)
22604 /* Mnemonic that cannot be conditionalized. The ARM condition-code
22605 field is still 0xE. Many of the Thumb variants can be executed
22606 conditionally, so this is checked separately. */
22607 #define TUE(mnem, op, top, nops, ops, ae, te) \
22608 { mnem, OPS##nops ops, OT_unconditional, 0x##op, 0x##top, ARM_VARIANT, \
22609 THUMB_VARIANT, do_##ae, do_##te, 0 }
22611 /* Same as TUE but the encoding function for ARM and Thumb modes is the same.
22612 Used by mnemonics that have very minimal differences in the encoding for
22613 ARM and Thumb variants and can be handled in a common function. */
22614 #define TUEc(mnem, op, top, nops, ops, en) \
22615 { mnem, OPS##nops ops, OT_unconditional, 0x##op, 0x##top, ARM_VARIANT, \
22616 THUMB_VARIANT, do_##en, do_##en, 0 }
22618 /* Mnemonic that cannot be conditionalized, and bears 0xF in its ARM
22619 condition code field. */
22620 #define TUF(mnem, op, top, nops, ops, ae, te) \
22621 { mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##top, ARM_VARIANT, \
22622 THUMB_VARIANT, do_##ae, do_##te, 0 }
22624 /* ARM-only variants of all the above. */
22625 #define CE(mnem, op, nops, ops, ae) \
22626 { mnem, OPS##nops ops, OT_csuffix, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
22628 #define C3(mnem, op, nops, ops, ae) \
22629 { #mnem, OPS##nops ops, OT_cinfix3, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
22631 /* Thumb-only variants of TCE and TUE. */
22632 #define ToC(mnem, top, nops, ops, te) \
22633 { mnem, OPS##nops ops, OT_csuffix, 0x0, 0x##top, 0, THUMB_VARIANT, NULL, \
22636 #define ToU(mnem, top, nops, ops, te) \
22637 { mnem, OPS##nops ops, OT_unconditional, 0x0, 0x##top, 0, THUMB_VARIANT, \
22640 /* T_MNEM_xyz enumerator variants of ToC. */
22641 #define toC(mnem, top, nops, ops, te) \
22642 { mnem, OPS##nops ops, OT_csuffix, 0x0, T_MNEM##top, 0, THUMB_VARIANT, NULL, \
22645 /* T_MNEM_xyz enumerator variants of ToU. */
22646 #define toU(mnem, top, nops, ops, te) \
22647 { mnem, OPS##nops ops, OT_unconditional, 0x0, T_MNEM##top, 0, THUMB_VARIANT, \
22650 /* Legacy mnemonics that always have conditional infix after the third
22652 #define CL(mnem, op, nops, ops, ae) \
22653 { mnem, OPS##nops ops, OT_cinfix3_legacy, \
22654 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
22656 /* Coprocessor instructions. Isomorphic between Arm and Thumb-2. */
22657 #define cCE(mnem, op, nops, ops, ae) \
22658 { mnem, OPS##nops ops, OT_csuffix, 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae, 0 }
22660 /* mov instructions that are shared between coprocessor and MVE. */
22661 #define mcCE(mnem, op, nops, ops, ae) \
22662 { #mnem, OPS##nops ops, OT_csuffix, 0x##op, 0xe##op, ARM_VARIANT, THUMB_VARIANT, do_##ae, do_##ae, 0 }
22664 /* Legacy coprocessor instructions where conditional infix and conditional
22665 suffix are ambiguous. For consistency this includes all FPA instructions,
22666 not just the potentially ambiguous ones. */
22667 #define cCL(mnem, op, nops, ops, ae) \
22668 { mnem, OPS##nops ops, OT_cinfix3_legacy, \
22669 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae, 0 }
22671 /* Coprocessor, takes either a suffix or a position-3 infix
22672 (for an FPA corner case). */
22673 #define C3E(mnem, op, nops, ops, ae) \
22674 { mnem, OPS##nops ops, OT_csuf_or_in3, \
22675 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae, 0 }
22677 #define xCM_(m1, m2, m3, op, nops, ops, ae) \
22678 { m1 #m2 m3, OPS##nops ops, \
22679 sizeof (#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof (m1) - 1, \
22680 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
22682 #define CM(m1, m2, op, nops, ops, ae) \
22683 xCM_ (m1, , m2, op, nops, ops, ae), \
22684 xCM_ (m1, eq, m2, op, nops, ops, ae), \
22685 xCM_ (m1, ne, m2, op, nops, ops, ae), \
22686 xCM_ (m1, cs, m2, op, nops, ops, ae), \
22687 xCM_ (m1, hs, m2, op, nops, ops, ae), \
22688 xCM_ (m1, cc, m2, op, nops, ops, ae), \
22689 xCM_ (m1, ul, m2, op, nops, ops, ae), \
22690 xCM_ (m1, lo, m2, op, nops, ops, ae), \
22691 xCM_ (m1, mi, m2, op, nops, ops, ae), \
22692 xCM_ (m1, pl, m2, op, nops, ops, ae), \
22693 xCM_ (m1, vs, m2, op, nops, ops, ae), \
22694 xCM_ (m1, vc, m2, op, nops, ops, ae), \
22695 xCM_ (m1, hi, m2, op, nops, ops, ae), \
22696 xCM_ (m1, ls, m2, op, nops, ops, ae), \
22697 xCM_ (m1, ge, m2, op, nops, ops, ae), \
22698 xCM_ (m1, lt, m2, op, nops, ops, ae), \
22699 xCM_ (m1, gt, m2, op, nops, ops, ae), \
22700 xCM_ (m1, le, m2, op, nops, ops, ae), \
22701 xCM_ (m1, al, m2, op, nops, ops, ae)
22703 #define UE(mnem, op, nops, ops, ae) \
22704 { #mnem, OPS##nops ops, OT_unconditional, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
22706 #define UF(mnem, op, nops, ops, ae) \
22707 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
22709 /* Neon data-processing. ARM versions are unconditional with cond=0xf.
22710 The Thumb and ARM variants are mostly the same (bits 0-23 and 24/28), so we
22711 use the same encoding function for each. */
22712 #define NUF(mnem, op, nops, ops, enc) \
22713 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##op, \
22714 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, 0 }
22716 /* Neon data processing, version which indirects through neon_enc_tab for
22717 the various overloaded versions of opcodes. */
22718 #define nUF(mnem, op, nops, ops, enc) \
22719 { #mnem, OPS##nops ops, OT_unconditionalF, N_MNEM##op, N_MNEM##op, \
22720 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, 0 }
22722 /* Neon insn with conditional suffix for the ARM version, non-overloaded
22724 #define NCE_tag(mnem, op, nops, ops, enc, tag, mve_p) \
22725 { #mnem, OPS##nops ops, tag, 0x##op, 0x##op, ARM_VARIANT, \
22726 THUMB_VARIANT, do_##enc, do_##enc, mve_p }
22728 #define NCE(mnem, op, nops, ops, enc) \
22729 NCE_tag (mnem, op, nops, ops, enc, OT_csuffix, 0)
22731 #define NCEF(mnem, op, nops, ops, enc) \
22732 NCE_tag (mnem, op, nops, ops, enc, OT_csuffixF, 0)
22734 /* Neon insn with conditional suffix for the ARM version, overloaded types. */
22735 #define nCE_tag(mnem, op, nops, ops, enc, tag, mve_p) \
22736 { #mnem, OPS##nops ops, tag, N_MNEM##op, N_MNEM##op, \
22737 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, mve_p }
22739 #define nCE(mnem, op, nops, ops, enc) \
22740 nCE_tag (mnem, op, nops, ops, enc, OT_csuffix, 0)
22742 #define nCEF(mnem, op, nops, ops, enc) \
22743 nCE_tag (mnem, op, nops, ops, enc, OT_csuffixF, 0)
22746 #define mCEF(mnem, op, nops, ops, enc) \
22747 { #mnem, OPS##nops ops, OT_csuffixF, M_MNEM##op, M_MNEM##op, \
22748 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, 1 }
22751 /* nCEF but for MVE predicated instructions. */
22752 #define mnCEF(mnem, op, nops, ops, enc) \
22753 nCE_tag (mnem, op, nops, ops, enc, OT_csuffixF, 1)
22755 /* nCE but for MVE predicated instructions. */
22756 #define mnCE(mnem, op, nops, ops, enc) \
22757 nCE_tag (mnem, op, nops, ops, enc, OT_csuffix, 1)
22759 /* NUF but for potentially MVE predicated instructions. */
22760 #define MNUF(mnem, op, nops, ops, enc) \
22761 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##op, \
22762 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, 1 }
22764 /* nUF but for potentially MVE predicated instructions. */
22765 #define mnUF(mnem, op, nops, ops, enc) \
22766 { #mnem, OPS##nops ops, OT_unconditionalF, N_MNEM##op, N_MNEM##op, \
22767 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, 1 }
22769 /* ToC but for potentially MVE predicated instructions. */
22770 #define mToC(mnem, top, nops, ops, te) \
22771 { mnem, OPS##nops ops, OT_csuffix, 0x0, 0x##top, 0, THUMB_VARIANT, NULL, \
22774 /* NCE but for MVE predicated instructions. */
22775 #define MNCE(mnem, op, nops, ops, enc) \
22776 NCE_tag (mnem, op, nops, ops, enc, OT_csuffix, 1)
22778 /* NCEF but for MVE predicated instructions. */
22779 #define MNCEF(mnem, op, nops, ops, enc) \
22780 NCE_tag (mnem, op, nops, ops, enc, OT_csuffixF, 1)
22783 static const struct asm_opcode insns
[] =
22785 #define ARM_VARIANT & arm_ext_v1 /* Core ARM Instructions. */
22786 #define THUMB_VARIANT & arm_ext_v4t
22787 tCE("and", 0000000, _and
, 3, (RR
, oRR
, SH
), arit
, t_arit3c
),
22788 tC3("ands", 0100000, _ands
, 3, (RR
, oRR
, SH
), arit
, t_arit3c
),
22789 tCE("eor", 0200000, _eor
, 3, (RR
, oRR
, SH
), arit
, t_arit3c
),
22790 tC3("eors", 0300000, _eors
, 3, (RR
, oRR
, SH
), arit
, t_arit3c
),
22791 tCE("sub", 0400000, _sub
, 3, (RR
, oRR
, SH
), arit
, t_add_sub
),
22792 tC3("subs", 0500000, _subs
, 3, (RR
, oRR
, SH
), arit
, t_add_sub
),
22793 tCE("add", 0800000, _add
, 3, (RR
, oRR
, SHG
), arit
, t_add_sub
),
22794 tC3("adds", 0900000, _adds
, 3, (RR
, oRR
, SHG
), arit
, t_add_sub
),
22795 tCE("adc", 0a00000
, _adc
, 3, (RR
, oRR
, SH
), arit
, t_arit3c
),
22796 tC3("adcs", 0b00000, _adcs
, 3, (RR
, oRR
, SH
), arit
, t_arit3c
),
22797 tCE("sbc", 0c00000
, _sbc
, 3, (RR
, oRR
, SH
), arit
, t_arit3
),
22798 tC3("sbcs", 0d00000
, _sbcs
, 3, (RR
, oRR
, SH
), arit
, t_arit3
),
22799 tCE("orr", 1800000, _orr
, 3, (RR
, oRR
, SH
), arit
, t_arit3c
),
22800 tC3("orrs", 1900000, _orrs
, 3, (RR
, oRR
, SH
), arit
, t_arit3c
),
22801 tCE("bic", 1c00000
, _bic
, 3, (RR
, oRR
, SH
), arit
, t_arit3
),
22802 tC3("bics", 1d00000
, _bics
, 3, (RR
, oRR
, SH
), arit
, t_arit3
),
22804 /* The p-variants of tst/cmp/cmn/teq (below) are the pre-V6 mechanism
22805 for setting PSR flag bits. They are obsolete in V6 and do not
22806 have Thumb equivalents. */
22807 tCE("tst", 1100000, _tst
, 2, (RR
, SH
), cmp
, t_mvn_tst
),
22808 tC3w("tsts", 1100000, _tst
, 2, (RR
, SH
), cmp
, t_mvn_tst
),
22809 CL("tstp", 110f000
, 2, (RR
, SH
), cmp
),
22810 tCE("cmp", 1500000, _cmp
, 2, (RR
, SH
), cmp
, t_mov_cmp
),
22811 tC3w("cmps", 1500000, _cmp
, 2, (RR
, SH
), cmp
, t_mov_cmp
),
22812 CL("cmpp", 150f000
, 2, (RR
, SH
), cmp
),
22813 tCE("cmn", 1700000, _cmn
, 2, (RR
, SH
), cmp
, t_mvn_tst
),
22814 tC3w("cmns", 1700000, _cmn
, 2, (RR
, SH
), cmp
, t_mvn_tst
),
22815 CL("cmnp", 170f000
, 2, (RR
, SH
), cmp
),
22817 tCE("mov", 1a00000
, _mov
, 2, (RR
, SH
), mov
, t_mov_cmp
),
22818 tC3("movs", 1b00000
, _movs
, 2, (RR
, SHG
), mov
, t_mov_cmp
),
22819 tCE("mvn", 1e00000
, _mvn
, 2, (RR
, SH
), mov
, t_mvn_tst
),
22820 tC3("mvns", 1f00000
, _mvns
, 2, (RR
, SH
), mov
, t_mvn_tst
),
22822 tCE("ldr", 4100000, _ldr
, 2, (RR
, ADDRGLDR
),ldst
, t_ldst
),
22823 tC3("ldrb", 4500000, _ldrb
, 2, (RRnpc_npcsp
, ADDRGLDR
),ldst
, t_ldst
),
22824 tCE("str", 4000000, _str
, _2
, (MIX_ARM_THUMB_OPERANDS (OP_RR
,
22826 OP_ADDRGLDR
),ldst
, t_ldst
),
22827 tC3("strb", 4400000, _strb
, 2, (RRnpc_npcsp
, ADDRGLDR
),ldst
, t_ldst
),
22829 tCE("stm", 8800000, _stmia
, 2, (RRw
, REGLST
), ldmstm
, t_ldmstm
),
22830 tC3("stmia", 8800000, _stmia
, 2, (RRw
, REGLST
), ldmstm
, t_ldmstm
),
22831 tC3("stmea", 8800000, _stmia
, 2, (RRw
, REGLST
), ldmstm
, t_ldmstm
),
22832 tCE("ldm", 8900000, _ldmia
, 2, (RRw
, REGLST
), ldmstm
, t_ldmstm
),
22833 tC3("ldmia", 8900000, _ldmia
, 2, (RRw
, REGLST
), ldmstm
, t_ldmstm
),
22834 tC3("ldmfd", 8900000, _ldmia
, 2, (RRw
, REGLST
), ldmstm
, t_ldmstm
),
22836 tCE("b", a000000
, _b
, 1, (EXPr
), branch
, t_branch
),
22837 TCE("bl", b000000
, f000f800
, 1, (EXPr
), bl
, t_branch23
),
22840 tCE("adr", 28f0000
, _adr
, 2, (RR
, EXP
), adr
, t_adr
),
22841 C3(adrl
, 28f0000
, 2, (RR
, EXP
), adrl
),
22842 tCE("nop", 1a00000
, _nop
, 1, (oI255c
), nop
, t_nop
),
22843 tCE("udf", 7f000f0
, _udf
, 1, (oIffffb
), bkpt
, t_udf
),
22845 /* Thumb-compatibility pseudo ops. */
22846 tCE("lsl", 1a00000
, _lsl
, 3, (RR
, oRR
, SH
), shift
, t_shift
),
22847 tC3("lsls", 1b00000
, _lsls
, 3, (RR
, oRR
, SH
), shift
, t_shift
),
22848 tCE("lsr", 1a00020
, _lsr
, 3, (RR
, oRR
, SH
), shift
, t_shift
),
22849 tC3("lsrs", 1b00020
, _lsrs
, 3, (RR
, oRR
, SH
), shift
, t_shift
),
22850 tCE("asr", 1a00040
, _asr
, 3, (RR
, oRR
, SH
), shift
, t_shift
),
22851 tC3("asrs", 1b00040
, _asrs
, 3, (RR
, oRR
, SH
), shift
, t_shift
),
22852 tCE("ror", 1a00060
, _ror
, 3, (RR
, oRR
, SH
), shift
, t_shift
),
22853 tC3("rors", 1b00060
, _rors
, 3, (RR
, oRR
, SH
), shift
, t_shift
),
22854 tCE("neg", 2600000, _neg
, 2, (RR
, RR
), rd_rn
, t_neg
),
22855 tC3("negs", 2700000, _negs
, 2, (RR
, RR
), rd_rn
, t_neg
),
22856 tCE("push", 92d0000
, _push
, 1, (REGLST
), push_pop
, t_push_pop
),
22857 tCE("pop", 8bd0000
, _pop
, 1, (REGLST
), push_pop
, t_push_pop
),
22859 /* These may simplify to neg. */
22860 TCE("rsb", 0600000, ebc00000
, 3, (RR
, oRR
, SH
), arit
, t_rsb
),
22861 TC3("rsbs", 0700000, ebd00000
, 3, (RR
, oRR
, SH
), arit
, t_rsb
),
22863 #undef THUMB_VARIANT
22864 #define THUMB_VARIANT & arm_ext_os
22866 TCE("swi", f000000
, df00
, 1, (EXPi
), swi
, t_swi
),
22867 TCE("svc", f000000
, df00
, 1, (EXPi
), swi
, t_swi
),
22869 #undef THUMB_VARIANT
22870 #define THUMB_VARIANT & arm_ext_v6
22872 TCE("cpy", 1a00000
, 4600, 2, (RR
, RR
), rd_rm
, t_cpy
),
22874 /* V1 instructions with no Thumb analogue prior to V6T2. */
22875 #undef THUMB_VARIANT
22876 #define THUMB_VARIANT & arm_ext_v6t2
22878 TCE("teq", 1300000, ea900f00
, 2, (RR
, SH
), cmp
, t_mvn_tst
),
22879 TC3w("teqs", 1300000, ea900f00
, 2, (RR
, SH
), cmp
, t_mvn_tst
),
22880 CL("teqp", 130f000
, 2, (RR
, SH
), cmp
),
22882 TC3("ldrt", 4300000, f8500e00
, 2, (RRnpc_npcsp
, ADDR
),ldstt
, t_ldstt
),
22883 TC3("ldrbt", 4700000, f8100e00
, 2, (RRnpc_npcsp
, ADDR
),ldstt
, t_ldstt
),
22884 TC3("strt", 4200000, f8400e00
, 2, (RR_npcsp
, ADDR
), ldstt
, t_ldstt
),
22885 TC3("strbt", 4600000, f8000e00
, 2, (RRnpc_npcsp
, ADDR
),ldstt
, t_ldstt
),
22887 TC3("stmdb", 9000000, e9000000
, 2, (RRw
, REGLST
), ldmstm
, t_ldmstm
),
22888 TC3("stmfd", 9000000, e9000000
, 2, (RRw
, REGLST
), ldmstm
, t_ldmstm
),
22890 TC3("ldmdb", 9100000, e9100000
, 2, (RRw
, REGLST
), ldmstm
, t_ldmstm
),
22891 TC3("ldmea", 9100000, e9100000
, 2, (RRw
, REGLST
), ldmstm
, t_ldmstm
),
22893 /* V1 instructions with no Thumb analogue at all. */
22894 CE("rsc", 0e00000
, 3, (RR
, oRR
, SH
), arit
),
22895 C3(rscs
, 0f00000
, 3, (RR
, oRR
, SH
), arit
),
22897 C3(stmib
, 9800000, 2, (RRw
, REGLST
), ldmstm
),
22898 C3(stmfa
, 9800000, 2, (RRw
, REGLST
), ldmstm
),
22899 C3(stmda
, 8000000, 2, (RRw
, REGLST
), ldmstm
),
22900 C3(stmed
, 8000000, 2, (RRw
, REGLST
), ldmstm
),
22901 C3(ldmib
, 9900000, 2, (RRw
, REGLST
), ldmstm
),
22902 C3(ldmed
, 9900000, 2, (RRw
, REGLST
), ldmstm
),
22903 C3(ldmda
, 8100000, 2, (RRw
, REGLST
), ldmstm
),
22904 C3(ldmfa
, 8100000, 2, (RRw
, REGLST
), ldmstm
),
22907 #define ARM_VARIANT & arm_ext_v2 /* ARM 2 - multiplies. */
22908 #undef THUMB_VARIANT
22909 #define THUMB_VARIANT & arm_ext_v4t
22911 tCE("mul", 0000090, _mul
, 3, (RRnpc
, RRnpc
, oRR
), mul
, t_mul
),
22912 tC3("muls", 0100090, _muls
, 3, (RRnpc
, RRnpc
, oRR
), mul
, t_mul
),
22914 #undef THUMB_VARIANT
22915 #define THUMB_VARIANT & arm_ext_v6t2
22917 TCE("mla", 0200090, fb000000
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
), mlas
, t_mla
),
22918 C3(mlas
, 0300090, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
), mlas
),
22920 /* Generic coprocessor instructions. */
22921 TCE("cdp", e000000
, ee000000
, 6, (RCP
, I15b
, RCN
, RCN
, RCN
, oI7b
), cdp
, cdp
),
22922 TCE("ldc", c100000
, ec100000
, 3, (RCP
, RCN
, ADDRGLDC
), lstc
, lstc
),
22923 TC3("ldcl", c500000
, ec500000
, 3, (RCP
, RCN
, ADDRGLDC
), lstc
, lstc
),
22924 TCE("stc", c000000
, ec000000
, 3, (RCP
, RCN
, ADDRGLDC
), lstc
, lstc
),
22925 TC3("stcl", c400000
, ec400000
, 3, (RCP
, RCN
, ADDRGLDC
), lstc
, lstc
),
22926 TCE("mcr", e000010
, ee000010
, 6, (RCP
, I7b
, RR
, RCN
, RCN
, oI7b
), co_reg
, co_reg
),
22927 TCE("mrc", e100010
, ee100010
, 6, (RCP
, I7b
, APSR_RR
, RCN
, RCN
, oI7b
), co_reg
, co_reg
),
22930 #define ARM_VARIANT & arm_ext_v2s /* ARM 3 - swp instructions. */
22932 CE("swp", 1000090, 3, (RRnpc
, RRnpc
, RRnpcb
), rd_rm_rn
),
22933 C3(swpb
, 1400090, 3, (RRnpc
, RRnpc
, RRnpcb
), rd_rm_rn
),
22936 #define ARM_VARIANT & arm_ext_v3 /* ARM 6 Status register instructions. */
22937 #undef THUMB_VARIANT
22938 #define THUMB_VARIANT & arm_ext_msr
22940 TCE("mrs", 1000000, f3e08000
, 2, (RRnpc
, rPSR
), mrs
, t_mrs
),
22941 TCE("msr", 120f000
, f3808000
, 2, (wPSR
, RR_EXi
), msr
, t_msr
),
22944 #define ARM_VARIANT & arm_ext_v3m /* ARM 7M long multiplies. */
22945 #undef THUMB_VARIANT
22946 #define THUMB_VARIANT & arm_ext_v6t2
22948 TCE("smull", 0c00090
, fb800000
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
), mull
, t_mull
),
22949 CM("smull","s", 0d00090
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
), mull
),
22950 TCE("umull", 0800090, fba00000
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
), mull
, t_mull
),
22951 CM("umull","s", 0900090, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
), mull
),
22952 TCE("smlal", 0e00090
, fbc00000
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
), mull
, t_mull
),
22953 CM("smlal","s", 0f00090
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
), mull
),
22954 TCE("umlal", 0a00090
, fbe00000
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
), mull
, t_mull
),
22955 CM("umlal","s", 0b00090, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
), mull
),
22958 #define ARM_VARIANT & arm_ext_v4 /* ARM Architecture 4. */
22959 #undef THUMB_VARIANT
22960 #define THUMB_VARIANT & arm_ext_v4t
22962 tC3("ldrh", 01000b0
, _ldrh
, 2, (RRnpc_npcsp
, ADDRGLDRS
), ldstv4
, t_ldst
),
22963 tC3("strh", 00000b0
, _strh
, 2, (RRnpc_npcsp
, ADDRGLDRS
), ldstv4
, t_ldst
),
22964 tC3("ldrsh", 01000f0
, _ldrsh
, 2, (RRnpc_npcsp
, ADDRGLDRS
), ldstv4
, t_ldst
),
22965 tC3("ldrsb", 01000d0
, _ldrsb
, 2, (RRnpc_npcsp
, ADDRGLDRS
), ldstv4
, t_ldst
),
22966 tC3("ldsh", 01000f0
, _ldrsh
, 2, (RRnpc_npcsp
, ADDRGLDRS
), ldstv4
, t_ldst
),
22967 tC3("ldsb", 01000d0
, _ldrsb
, 2, (RRnpc_npcsp
, ADDRGLDRS
), ldstv4
, t_ldst
),
22970 #define ARM_VARIANT & arm_ext_v4t_5
22972 /* ARM Architecture 4T. */
22973 /* Note: bx (and blx) are required on V5, even if the processor does
22974 not support Thumb. */
22975 TCE("bx", 12fff10
, 4700, 1, (RR
), bx
, t_bx
),
22978 #define ARM_VARIANT & arm_ext_v5 /* ARM Architecture 5T. */
22979 #undef THUMB_VARIANT
22980 #define THUMB_VARIANT & arm_ext_v5t
22982 /* Note: blx has 2 variants; the .value coded here is for
22983 BLX(2). Only this variant has conditional execution. */
22984 TCE("blx", 12fff30
, 4780, 1, (RR_EXr
), blx
, t_blx
),
22985 TUE("bkpt", 1200070, be00
, 1, (oIffffb
), bkpt
, t_bkpt
),
22987 #undef THUMB_VARIANT
22988 #define THUMB_VARIANT & arm_ext_v6t2
22990 TCE("clz", 16f0f10
, fab0f080
, 2, (RRnpc
, RRnpc
), rd_rm
, t_clz
),
22991 TUF("ldc2", c100000
, fc100000
, 3, (RCP
, RCN
, ADDRGLDC
), lstc
, lstc
),
22992 TUF("ldc2l", c500000
, fc500000
, 3, (RCP
, RCN
, ADDRGLDC
), lstc
, lstc
),
22993 TUF("stc2", c000000
, fc000000
, 3, (RCP
, RCN
, ADDRGLDC
), lstc
, lstc
),
22994 TUF("stc2l", c400000
, fc400000
, 3, (RCP
, RCN
, ADDRGLDC
), lstc
, lstc
),
22995 TUF("cdp2", e000000
, fe000000
, 6, (RCP
, I15b
, RCN
, RCN
, RCN
, oI7b
), cdp
, cdp
),
22996 TUF("mcr2", e000010
, fe000010
, 6, (RCP
, I7b
, RR
, RCN
, RCN
, oI7b
), co_reg
, co_reg
),
22997 TUF("mrc2", e100010
, fe100010
, 6, (RCP
, I7b
, RR
, RCN
, RCN
, oI7b
), co_reg
, co_reg
),
23000 #define ARM_VARIANT & arm_ext_v5exp /* ARM Architecture 5TExP. */
23001 #undef THUMB_VARIANT
23002 #define THUMB_VARIANT & arm_ext_v5exp
23004 TCE("smlabb", 1000080, fb100000
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
), smla
, t_mla
),
23005 TCE("smlatb", 10000a0
, fb100020
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
), smla
, t_mla
),
23006 TCE("smlabt", 10000c0
, fb100010
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
), smla
, t_mla
),
23007 TCE("smlatt", 10000e0
, fb100030
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
), smla
, t_mla
),
23009 TCE("smlawb", 1200080, fb300000
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
), smla
, t_mla
),
23010 TCE("smlawt", 12000c0
, fb300010
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
), smla
, t_mla
),
23012 TCE("smlalbb", 1400080, fbc00080
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
), smlal
, t_mlal
),
23013 TCE("smlaltb", 14000a0
, fbc000a0
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
), smlal
, t_mlal
),
23014 TCE("smlalbt", 14000c0
, fbc00090
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
), smlal
, t_mlal
),
23015 TCE("smlaltt", 14000e0
, fbc000b0
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
), smlal
, t_mlal
),
23017 TCE("smulbb", 1600080, fb10f000
, 3, (RRnpc
, RRnpc
, RRnpc
), smul
, t_simd
),
23018 TCE("smultb", 16000a0
, fb10f020
, 3, (RRnpc
, RRnpc
, RRnpc
), smul
, t_simd
),
23019 TCE("smulbt", 16000c0
, fb10f010
, 3, (RRnpc
, RRnpc
, RRnpc
), smul
, t_simd
),
23020 TCE("smultt", 16000e0
, fb10f030
, 3, (RRnpc
, RRnpc
, RRnpc
), smul
, t_simd
),
23022 TCE("smulwb", 12000a0
, fb30f000
, 3, (RRnpc
, RRnpc
, RRnpc
), smul
, t_simd
),
23023 TCE("smulwt", 12000e0
, fb30f010
, 3, (RRnpc
, RRnpc
, RRnpc
), smul
, t_simd
),
23025 TCE("qadd", 1000050, fa80f080
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rm_rn
, t_simd2
),
23026 TCE("qdadd", 1400050, fa80f090
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rm_rn
, t_simd2
),
23027 TCE("qsub", 1200050, fa80f0a0
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rm_rn
, t_simd2
),
23028 TCE("qdsub", 1600050, fa80f0b0
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rm_rn
, t_simd2
),
23031 #define ARM_VARIANT & arm_ext_v5e /* ARM Architecture 5TE. */
23032 #undef THUMB_VARIANT
23033 #define THUMB_VARIANT & arm_ext_v6t2
23035 TUF("pld", 450f000
, f810f000
, 1, (ADDR
), pld
, t_pld
),
23036 TC3("ldrd", 00000d0
, e8500000
, 3, (RRnpc_npcsp
, oRRnpc_npcsp
, ADDRGLDRS
),
23038 TC3("strd", 00000f0
, e8400000
, 3, (RRnpc_npcsp
, oRRnpc_npcsp
,
23039 ADDRGLDRS
), ldrd
, t_ldstd
),
23041 TCE("mcrr", c400000
, ec400000
, 5, (RCP
, I15b
, RRnpc
, RRnpc
, RCN
), co_reg2c
, co_reg2c
),
23042 TCE("mrrc", c500000
, ec500000
, 5, (RCP
, I15b
, RRnpc
, RRnpc
, RCN
), co_reg2c
, co_reg2c
),
23045 #define ARM_VARIANT & arm_ext_v5j /* ARM Architecture 5TEJ. */
23047 TCE("bxj", 12fff20
, f3c08f00
, 1, (RR
), bxj
, t_bxj
),
23050 #define ARM_VARIANT & arm_ext_v6 /* ARM V6. */
23051 #undef THUMB_VARIANT
23052 #define THUMB_VARIANT & arm_ext_v6
23054 TUF("cpsie", 1080000, b660
, 2, (CPSF
, oI31b
), cpsi
, t_cpsi
),
23055 TUF("cpsid", 10c0000
, b670
, 2, (CPSF
, oI31b
), cpsi
, t_cpsi
),
23056 tCE("rev", 6bf0f30
, _rev
, 2, (RRnpc
, RRnpc
), rd_rm
, t_rev
),
23057 tCE("rev16", 6bf0fb0
, _rev16
, 2, (RRnpc
, RRnpc
), rd_rm
, t_rev
),
23058 tCE("revsh", 6ff0fb0
, _revsh
, 2, (RRnpc
, RRnpc
), rd_rm
, t_rev
),
23059 tCE("sxth", 6bf0070
, _sxth
, 3, (RRnpc
, RRnpc
, oROR
), sxth
, t_sxth
),
23060 tCE("uxth", 6ff0070
, _uxth
, 3, (RRnpc
, RRnpc
, oROR
), sxth
, t_sxth
),
23061 tCE("sxtb", 6af0070
, _sxtb
, 3, (RRnpc
, RRnpc
, oROR
), sxth
, t_sxth
),
23062 tCE("uxtb", 6ef0070
, _uxtb
, 3, (RRnpc
, RRnpc
, oROR
), sxth
, t_sxth
),
23063 TUF("setend", 1010000, b650
, 1, (ENDI
), setend
, t_setend
),
23065 #undef THUMB_VARIANT
23066 #define THUMB_VARIANT & arm_ext_v6t2_v8m
23068 TCE("ldrex", 1900f9f
, e8500f00
, 2, (RRnpc_npcsp
, ADDR
), ldrex
, t_ldrex
),
23069 TCE("strex", 1800f90
, e8400000
, 3, (RRnpc_npcsp
, RRnpc_npcsp
, ADDR
),
23071 #undef THUMB_VARIANT
23072 #define THUMB_VARIANT & arm_ext_v6t2
23074 TUF("mcrr2", c400000
, fc400000
, 5, (RCP
, I15b
, RRnpc
, RRnpc
, RCN
), co_reg2c
, co_reg2c
),
23075 TUF("mrrc2", c500000
, fc500000
, 5, (RCP
, I15b
, RRnpc
, RRnpc
, RCN
), co_reg2c
, co_reg2c
),
23077 TCE("ssat", 6a00010
, f3000000
, 4, (RRnpc
, I32
, RRnpc
, oSHllar
),ssat
, t_ssat
),
23078 TCE("usat", 6e00010
, f3800000
, 4, (RRnpc
, I31
, RRnpc
, oSHllar
),usat
, t_usat
),
23080 /* ARM V6 not included in V7M. */
23081 #undef THUMB_VARIANT
23082 #define THUMB_VARIANT & arm_ext_v6_notm
23083 TUF("rfeia", 8900a00
, e990c000
, 1, (RRw
), rfe
, rfe
),
23084 TUF("rfe", 8900a00
, e990c000
, 1, (RRw
), rfe
, rfe
),
23085 UF(rfeib
, 9900a00
, 1, (RRw
), rfe
),
23086 UF(rfeda
, 8100a00
, 1, (RRw
), rfe
),
23087 TUF("rfedb", 9100a00
, e810c000
, 1, (RRw
), rfe
, rfe
),
23088 TUF("rfefd", 8900a00
, e990c000
, 1, (RRw
), rfe
, rfe
),
23089 UF(rfefa
, 8100a00
, 1, (RRw
), rfe
),
23090 TUF("rfeea", 9100a00
, e810c000
, 1, (RRw
), rfe
, rfe
),
23091 UF(rfeed
, 9900a00
, 1, (RRw
), rfe
),
23092 TUF("srsia", 8c00500
, e980c000
, 2, (oRRw
, I31w
), srs
, srs
),
23093 TUF("srs", 8c00500
, e980c000
, 2, (oRRw
, I31w
), srs
, srs
),
23094 TUF("srsea", 8c00500
, e980c000
, 2, (oRRw
, I31w
), srs
, srs
),
23095 UF(srsib
, 9c00500
, 2, (oRRw
, I31w
), srs
),
23096 UF(srsfa
, 9c00500
, 2, (oRRw
, I31w
), srs
),
23097 UF(srsda
, 8400500, 2, (oRRw
, I31w
), srs
),
23098 UF(srsed
, 8400500, 2, (oRRw
, I31w
), srs
),
23099 TUF("srsdb", 9400500, e800c000
, 2, (oRRw
, I31w
), srs
, srs
),
23100 TUF("srsfd", 9400500, e800c000
, 2, (oRRw
, I31w
), srs
, srs
),
23101 TUF("cps", 1020000, f3af8100
, 1, (I31b
), imm0
, t_cps
),
23103 /* ARM V6 not included in V7M (eg. integer SIMD). */
23104 #undef THUMB_VARIANT
23105 #define THUMB_VARIANT & arm_ext_v6_dsp
23106 TCE("pkhbt", 6800010, eac00000
, 4, (RRnpc
, RRnpc
, RRnpc
, oSHll
), pkhbt
, t_pkhbt
),
23107 TCE("pkhtb", 6800050, eac00020
, 4, (RRnpc
, RRnpc
, RRnpc
, oSHar
), pkhtb
, t_pkhtb
),
23108 TCE("qadd16", 6200f10
, fa90f010
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
23109 TCE("qadd8", 6200f90
, fa80f010
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
23110 TCE("qasx", 6200f30
, faa0f010
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
23111 /* Old name for QASX. */
23112 TCE("qaddsubx",6200f30
, faa0f010
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
23113 TCE("qsax", 6200f50
, fae0f010
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
23114 /* Old name for QSAX. */
23115 TCE("qsubaddx",6200f50
, fae0f010
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
23116 TCE("qsub16", 6200f70
, fad0f010
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
23117 TCE("qsub8", 6200ff0
, fac0f010
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
23118 TCE("sadd16", 6100f10
, fa90f000
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
23119 TCE("sadd8", 6100f90
, fa80f000
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
23120 TCE("sasx", 6100f30
, faa0f000
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
23121 /* Old name for SASX. */
23122 TCE("saddsubx",6100f30
, faa0f000
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
23123 TCE("shadd16", 6300f10
, fa90f020
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
23124 TCE("shadd8", 6300f90
, fa80f020
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
23125 TCE("shasx", 6300f30
, faa0f020
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
23126 /* Old name for SHASX. */
23127 TCE("shaddsubx", 6300f30
, faa0f020
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
23128 TCE("shsax", 6300f50
, fae0f020
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
23129 /* Old name for SHSAX. */
23130 TCE("shsubaddx", 6300f50
, fae0f020
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
23131 TCE("shsub16", 6300f70
, fad0f020
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
23132 TCE("shsub8", 6300ff0
, fac0f020
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
23133 TCE("ssax", 6100f50
, fae0f000
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
23134 /* Old name for SSAX. */
23135 TCE("ssubaddx",6100f50
, fae0f000
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
23136 TCE("ssub16", 6100f70
, fad0f000
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
23137 TCE("ssub8", 6100ff0
, fac0f000
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
23138 TCE("uadd16", 6500f10
, fa90f040
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
23139 TCE("uadd8", 6500f90
, fa80f040
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
23140 TCE("uasx", 6500f30
, faa0f040
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
23141 /* Old name for UASX. */
23142 TCE("uaddsubx",6500f30
, faa0f040
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
23143 TCE("uhadd16", 6700f10
, fa90f060
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
23144 TCE("uhadd8", 6700f90
, fa80f060
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
23145 TCE("uhasx", 6700f30
, faa0f060
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
23146 /* Old name for UHASX. */
23147 TCE("uhaddsubx", 6700f30
, faa0f060
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
23148 TCE("uhsax", 6700f50
, fae0f060
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
23149 /* Old name for UHSAX. */
23150 TCE("uhsubaddx", 6700f50
, fae0f060
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
23151 TCE("uhsub16", 6700f70
, fad0f060
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
23152 TCE("uhsub8", 6700ff0
, fac0f060
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
23153 TCE("uqadd16", 6600f10
, fa90f050
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
23154 TCE("uqadd8", 6600f90
, fa80f050
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
23155 TCE("uqasx", 6600f30
, faa0f050
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
23156 /* Old name for UQASX. */
23157 TCE("uqaddsubx", 6600f30
, faa0f050
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
23158 TCE("uqsax", 6600f50
, fae0f050
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
23159 /* Old name for UQSAX. */
23160 TCE("uqsubaddx", 6600f50
, fae0f050
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
23161 TCE("uqsub16", 6600f70
, fad0f050
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
23162 TCE("uqsub8", 6600ff0
, fac0f050
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
23163 TCE("usub16", 6500f70
, fad0f040
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
23164 TCE("usax", 6500f50
, fae0f040
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
23165 /* Old name for USAX. */
23166 TCE("usubaddx",6500f50
, fae0f040
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
23167 TCE("usub8", 6500ff0
, fac0f040
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
23168 TCE("sxtah", 6b00070
, fa00f080
, 4, (RRnpc
, RRnpc
, RRnpc
, oROR
), sxtah
, t_sxtah
),
23169 TCE("sxtab16", 6800070, fa20f080
, 4, (RRnpc
, RRnpc
, RRnpc
, oROR
), sxtah
, t_sxtah
),
23170 TCE("sxtab", 6a00070
, fa40f080
, 4, (RRnpc
, RRnpc
, RRnpc
, oROR
), sxtah
, t_sxtah
),
23171 TCE("sxtb16", 68f0070
, fa2ff080
, 3, (RRnpc
, RRnpc
, oROR
), sxth
, t_sxth
),
23172 TCE("uxtah", 6f00070
, fa10f080
, 4, (RRnpc
, RRnpc
, RRnpc
, oROR
), sxtah
, t_sxtah
),
23173 TCE("uxtab16", 6c00070
, fa30f080
, 4, (RRnpc
, RRnpc
, RRnpc
, oROR
), sxtah
, t_sxtah
),
23174 TCE("uxtab", 6e00070
, fa50f080
, 4, (RRnpc
, RRnpc
, RRnpc
, oROR
), sxtah
, t_sxtah
),
23175 TCE("uxtb16", 6cf0070
, fa3ff080
, 3, (RRnpc
, RRnpc
, oROR
), sxth
, t_sxth
),
23176 TCE("sel", 6800fb0
, faa0f080
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
23177 TCE("smlad", 7000010, fb200000
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
),smla
, t_mla
),
23178 TCE("smladx", 7000030, fb200010
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
),smla
, t_mla
),
23179 TCE("smlald", 7400010, fbc000c0
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
),smlal
,t_mlal
),
23180 TCE("smlaldx", 7400030, fbc000d0
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
),smlal
,t_mlal
),
23181 TCE("smlsd", 7000050, fb400000
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
),smla
, t_mla
),
23182 TCE("smlsdx", 7000070, fb400010
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
),smla
, t_mla
),
23183 TCE("smlsld", 7400050, fbd000c0
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
),smlal
,t_mlal
),
23184 TCE("smlsldx", 7400070, fbd000d0
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
),smlal
,t_mlal
),
23185 TCE("smmla", 7500010, fb500000
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
),smla
, t_mla
),
23186 TCE("smmlar", 7500030, fb500010
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
),smla
, t_mla
),
23187 TCE("smmls", 75000d0
, fb600000
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
),smla
, t_mla
),
23188 TCE("smmlsr", 75000f0
, fb600010
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
),smla
, t_mla
),
23189 TCE("smmul", 750f010
, fb50f000
, 3, (RRnpc
, RRnpc
, RRnpc
), smul
, t_simd
),
23190 TCE("smmulr", 750f030
, fb50f010
, 3, (RRnpc
, RRnpc
, RRnpc
), smul
, t_simd
),
23191 TCE("smuad", 700f010
, fb20f000
, 3, (RRnpc
, RRnpc
, RRnpc
), smul
, t_simd
),
23192 TCE("smuadx", 700f030
, fb20f010
, 3, (RRnpc
, RRnpc
, RRnpc
), smul
, t_simd
),
23193 TCE("smusd", 700f050
, fb40f000
, 3, (RRnpc
, RRnpc
, RRnpc
), smul
, t_simd
),
23194 TCE("smusdx", 700f070
, fb40f010
, 3, (RRnpc
, RRnpc
, RRnpc
), smul
, t_simd
),
23195 TCE("ssat16", 6a00f30
, f3200000
, 3, (RRnpc
, I16
, RRnpc
), ssat16
, t_ssat16
),
23196 TCE("umaal", 0400090, fbe00060
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
),smlal
, t_mlal
),
23197 TCE("usad8", 780f010
, fb70f000
, 3, (RRnpc
, RRnpc
, RRnpc
), smul
, t_simd
),
23198 TCE("usada8", 7800010, fb700000
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
),smla
, t_mla
),
23199 TCE("usat16", 6e00f30
, f3a00000
, 3, (RRnpc
, I15
, RRnpc
), usat16
, t_usat16
),
23202 #define ARM_VARIANT & arm_ext_v6k_v6t2
23203 #undef THUMB_VARIANT
23204 #define THUMB_VARIANT & arm_ext_v6k_v6t2
23206 tCE("yield", 320f001
, _yield
, 0, (), noargs
, t_hint
),
23207 tCE("wfe", 320f002
, _wfe
, 0, (), noargs
, t_hint
),
23208 tCE("wfi", 320f003
, _wfi
, 0, (), noargs
, t_hint
),
23209 tCE("sev", 320f004
, _sev
, 0, (), noargs
, t_hint
),
23211 #undef THUMB_VARIANT
23212 #define THUMB_VARIANT & arm_ext_v6_notm
23213 TCE("ldrexd", 1b00f9f
, e8d0007f
, 3, (RRnpc_npcsp
, oRRnpc_npcsp
, RRnpcb
),
23215 TCE("strexd", 1a00f90
, e8c00070
, 4, (RRnpc_npcsp
, RRnpc_npcsp
, oRRnpc_npcsp
,
23216 RRnpcb
), strexd
, t_strexd
),
23218 #undef THUMB_VARIANT
23219 #define THUMB_VARIANT & arm_ext_v6t2_v8m
23220 TCE("ldrexb", 1d00f9f
, e8d00f4f
, 2, (RRnpc_npcsp
,RRnpcb
),
23222 TCE("ldrexh", 1f00f9f
, e8d00f5f
, 2, (RRnpc_npcsp
, RRnpcb
),
23224 TCE("strexb", 1c00f90
, e8c00f40
, 3, (RRnpc_npcsp
, RRnpc_npcsp
, ADDR
),
23226 TCE("strexh", 1e00f90
, e8c00f50
, 3, (RRnpc_npcsp
, RRnpc_npcsp
, ADDR
),
23228 TUF("clrex", 57ff01f
, f3bf8f2f
, 0, (), noargs
, noargs
),
23231 #define ARM_VARIANT & arm_ext_sec
23232 #undef THUMB_VARIANT
23233 #define THUMB_VARIANT & arm_ext_sec
23235 TCE("smc", 1600070, f7f08000
, 1, (EXPi
), smc
, t_smc
),
23238 #define ARM_VARIANT & arm_ext_virt
23239 #undef THUMB_VARIANT
23240 #define THUMB_VARIANT & arm_ext_virt
23242 TCE("hvc", 1400070, f7e08000
, 1, (EXPi
), hvc
, t_hvc
),
23243 TCE("eret", 160006e
, f3de8f00
, 0, (), noargs
, noargs
),
23246 #define ARM_VARIANT & arm_ext_pan
23247 #undef THUMB_VARIANT
23248 #define THUMB_VARIANT & arm_ext_pan
23250 TUF("setpan", 1100000, b610
, 1, (I7
), setpan
, t_setpan
),
23253 #define ARM_VARIANT & arm_ext_v6t2
23254 #undef THUMB_VARIANT
23255 #define THUMB_VARIANT & arm_ext_v6t2
23257 TCE("bfc", 7c0001f
, f36f0000
, 3, (RRnpc
, I31
, I32
), bfc
, t_bfc
),
23258 TCE("bfi", 7c00010
, f3600000
, 4, (RRnpc
, RRnpc_I0
, I31
, I32
), bfi
, t_bfi
),
23259 TCE("sbfx", 7a00050
, f3400000
, 4, (RR
, RR
, I31
, I32
), bfx
, t_bfx
),
23260 TCE("ubfx", 7e00050
, f3c00000
, 4, (RR
, RR
, I31
, I32
), bfx
, t_bfx
),
23262 TCE("mls", 0600090, fb000010
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
), mlas
, t_mla
),
23263 TCE("rbit", 6ff0f30
, fa90f0a0
, 2, (RR
, RR
), rd_rm
, t_rbit
),
23265 TC3("ldrht", 03000b0
, f8300e00
, 2, (RRnpc_npcsp
, ADDR
), ldsttv4
, t_ldstt
),
23266 TC3("ldrsht", 03000f0
, f9300e00
, 2, (RRnpc_npcsp
, ADDR
), ldsttv4
, t_ldstt
),
23267 TC3("ldrsbt", 03000d0
, f9100e00
, 2, (RRnpc_npcsp
, ADDR
), ldsttv4
, t_ldstt
),
23268 TC3("strht", 02000b0
, f8200e00
, 2, (RRnpc_npcsp
, ADDR
), ldsttv4
, t_ldstt
),
23271 #define ARM_VARIANT & arm_ext_v3
23272 #undef THUMB_VARIANT
23273 #define THUMB_VARIANT & arm_ext_v6t2
23275 TUE("csdb", 320f014
, f3af8014
, 0, (), noargs
, t_csdb
),
23276 TUF("ssbb", 57ff040
, f3bf8f40
, 0, (), noargs
, t_csdb
),
23277 TUF("pssbb", 57ff044
, f3bf8f44
, 0, (), noargs
, t_csdb
),
23280 #define ARM_VARIANT & arm_ext_v6t2
23281 #undef THUMB_VARIANT
23282 #define THUMB_VARIANT & arm_ext_v6t2_v8m
23283 TCE("movw", 3000000, f2400000
, 2, (RRnpc
, HALF
), mov16
, t_mov16
),
23284 TCE("movt", 3400000, f2c00000
, 2, (RRnpc
, HALF
), mov16
, t_mov16
),
23286 /* Thumb-only instructions. */
23288 #define ARM_VARIANT NULL
23289 TUE("cbnz", 0, b900
, 2, (RR
, EXP
), 0, t_cbz
),
23290 TUE("cbz", 0, b100
, 2, (RR
, EXP
), 0, t_cbz
),
23292 /* ARM does not really have an IT instruction, so always allow it.
23293 The opcode is copied from Thumb in order to allow warnings in
23294 -mimplicit-it=[never | arm] modes. */
23296 #define ARM_VARIANT & arm_ext_v1
23297 #undef THUMB_VARIANT
23298 #define THUMB_VARIANT & arm_ext_v6t2
23300 TUE("it", bf08
, bf08
, 1, (COND
), it
, t_it
),
23301 TUE("itt", bf0c
, bf0c
, 1, (COND
), it
, t_it
),
23302 TUE("ite", bf04
, bf04
, 1, (COND
), it
, t_it
),
23303 TUE("ittt", bf0e
, bf0e
, 1, (COND
), it
, t_it
),
23304 TUE("itet", bf06
, bf06
, 1, (COND
), it
, t_it
),
23305 TUE("itte", bf0a
, bf0a
, 1, (COND
), it
, t_it
),
23306 TUE("itee", bf02
, bf02
, 1, (COND
), it
, t_it
),
23307 TUE("itttt", bf0f
, bf0f
, 1, (COND
), it
, t_it
),
23308 TUE("itett", bf07
, bf07
, 1, (COND
), it
, t_it
),
23309 TUE("ittet", bf0b
, bf0b
, 1, (COND
), it
, t_it
),
23310 TUE("iteet", bf03
, bf03
, 1, (COND
), it
, t_it
),
23311 TUE("ittte", bf0d
, bf0d
, 1, (COND
), it
, t_it
),
23312 TUE("itete", bf05
, bf05
, 1, (COND
), it
, t_it
),
23313 TUE("ittee", bf09
, bf09
, 1, (COND
), it
, t_it
),
23314 TUE("iteee", bf01
, bf01
, 1, (COND
), it
, t_it
),
23315 /* ARM/Thumb-2 instructions with no Thumb-1 equivalent. */
23316 TC3("rrx", 01a00060
, ea4f0030
, 2, (RR
, RR
), rd_rm
, t_rrx
),
23317 TC3("rrxs", 01b00060
, ea5f0030
, 2, (RR
, RR
), rd_rm
, t_rrx
),
23319 /* Thumb2 only instructions. */
23321 #define ARM_VARIANT NULL
23323 TCE("addw", 0, f2000000
, 3, (RR
, RR
, EXPi
), 0, t_add_sub_w
),
23324 TCE("subw", 0, f2a00000
, 3, (RR
, RR
, EXPi
), 0, t_add_sub_w
),
23325 TCE("orn", 0, ea600000
, 3, (RR
, oRR
, SH
), 0, t_orn
),
23326 TCE("orns", 0, ea700000
, 3, (RR
, oRR
, SH
), 0, t_orn
),
23327 TCE("tbb", 0, e8d0f000
, 1, (TB
), 0, t_tb
),
23328 TCE("tbh", 0, e8d0f010
, 1, (TB
), 0, t_tb
),
23330 /* Hardware division instructions. */
23332 #define ARM_VARIANT & arm_ext_adiv
23333 #undef THUMB_VARIANT
23334 #define THUMB_VARIANT & arm_ext_div
23336 TCE("sdiv", 710f010
, fb90f0f0
, 3, (RR
, oRR
, RR
), div
, t_div
),
23337 TCE("udiv", 730f010
, fbb0f0f0
, 3, (RR
, oRR
, RR
), div
, t_div
),
23339 /* ARM V6M/V7 instructions. */
23341 #define ARM_VARIANT & arm_ext_barrier
23342 #undef THUMB_VARIANT
23343 #define THUMB_VARIANT & arm_ext_barrier
23345 TUF("dmb", 57ff050
, f3bf8f50
, 1, (oBARRIER_I15
), barrier
, barrier
),
23346 TUF("dsb", 57ff040
, f3bf8f40
, 1, (oBARRIER_I15
), barrier
, barrier
),
23347 TUF("isb", 57ff060
, f3bf8f60
, 1, (oBARRIER_I15
), barrier
, barrier
),
23349 /* ARM V7 instructions. */
23351 #define ARM_VARIANT & arm_ext_v7
23352 #undef THUMB_VARIANT
23353 #define THUMB_VARIANT & arm_ext_v7
23355 TUF("pli", 450f000
, f910f000
, 1, (ADDR
), pli
, t_pld
),
23356 TCE("dbg", 320f0f0
, f3af80f0
, 1, (I15
), dbg
, t_dbg
),
23359 #define ARM_VARIANT & arm_ext_mp
23360 #undef THUMB_VARIANT
23361 #define THUMB_VARIANT & arm_ext_mp
23363 TUF("pldw", 410f000
, f830f000
, 1, (ADDR
), pld
, t_pld
),
23365 /* AArchv8 instructions. */
23367 #define ARM_VARIANT & arm_ext_v8
23369 /* Instructions shared between armv8-a and armv8-m. */
23370 #undef THUMB_VARIANT
23371 #define THUMB_VARIANT & arm_ext_atomics
23373 TCE("lda", 1900c9f
, e8d00faf
, 2, (RRnpc
, RRnpcb
), rd_rn
, rd_rn
),
23374 TCE("ldab", 1d00c9f
, e8d00f8f
, 2, (RRnpc
, RRnpcb
), rd_rn
, rd_rn
),
23375 TCE("ldah", 1f00c9f
, e8d00f9f
, 2, (RRnpc
, RRnpcb
), rd_rn
, rd_rn
),
23376 TCE("stl", 180fc90
, e8c00faf
, 2, (RRnpc
, RRnpcb
), rm_rn
, rd_rn
),
23377 TCE("stlb", 1c0fc90
, e8c00f8f
, 2, (RRnpc
, RRnpcb
), rm_rn
, rd_rn
),
23378 TCE("stlh", 1e0fc90
, e8c00f9f
, 2, (RRnpc
, RRnpcb
), rm_rn
, rd_rn
),
23379 TCE("ldaex", 1900e9f
, e8d00fef
, 2, (RRnpc
, RRnpcb
), rd_rn
, rd_rn
),
23380 TCE("ldaexb", 1d00e9f
, e8d00fcf
, 2, (RRnpc
,RRnpcb
), rd_rn
, rd_rn
),
23381 TCE("ldaexh", 1f00e9f
, e8d00fdf
, 2, (RRnpc
, RRnpcb
), rd_rn
, rd_rn
),
23382 TCE("stlex", 1800e90
, e8c00fe0
, 3, (RRnpc
, RRnpc
, RRnpcb
),
23384 TCE("stlexb", 1c00e90
, e8c00fc0
, 3, (RRnpc
, RRnpc
, RRnpcb
),
23386 TCE("stlexh", 1e00e90
, e8c00fd0
, 3, (RRnpc
, RRnpc
, RRnpcb
),
23388 #undef THUMB_VARIANT
23389 #define THUMB_VARIANT & arm_ext_v8
23391 tCE("sevl", 320f005
, _sevl
, 0, (), noargs
, t_hint
),
23392 TCE("ldaexd", 1b00e9f
, e8d000ff
, 3, (RRnpc
, oRRnpc
, RRnpcb
),
23394 TCE("stlexd", 1a00e90
, e8c000f0
, 4, (RRnpc
, RRnpc
, oRRnpc
, RRnpcb
),
23397 /* Defined in V8 but is in undefined encoding space for earlier
23398 architectures. However earlier architectures are required to treat
23399 this instuction as a semihosting trap as well. Hence while not explicitly
23400 defined as such, it is in fact correct to define the instruction for all
23402 #undef THUMB_VARIANT
23403 #define THUMB_VARIANT & arm_ext_v1
23405 #define ARM_VARIANT & arm_ext_v1
23406 TUE("hlt", 1000070, ba80
, 1, (oIffffb
), bkpt
, t_hlt
),
23408 /* ARMv8 T32 only. */
23410 #define ARM_VARIANT NULL
23411 TUF("dcps1", 0, f78f8001
, 0, (), noargs
, noargs
),
23412 TUF("dcps2", 0, f78f8002
, 0, (), noargs
, noargs
),
23413 TUF("dcps3", 0, f78f8003
, 0, (), noargs
, noargs
),
23415 /* FP for ARMv8. */
23417 #define ARM_VARIANT & fpu_vfp_ext_armv8xd
23418 #undef THUMB_VARIANT
23419 #define THUMB_VARIANT & fpu_vfp_ext_armv8xd
23421 nUF(vseleq
, _vseleq
, 3, (RVSD
, RVSD
, RVSD
), vsel
),
23422 nUF(vselvs
, _vselvs
, 3, (RVSD
, RVSD
, RVSD
), vsel
),
23423 nUF(vselge
, _vselge
, 3, (RVSD
, RVSD
, RVSD
), vsel
),
23424 nUF(vselgt
, _vselgt
, 3, (RVSD
, RVSD
, RVSD
), vsel
),
23425 nCE(vrintr
, _vrintr
, 2, (RNSDQ
, oRNSDQ
), vrintr
),
23426 nCE(vrintz
, _vrintr
, 2, (RNSDQ
, oRNSDQ
), vrintz
),
23427 nCE(vrintx
, _vrintr
, 2, (RNSDQ
, oRNSDQ
), vrintx
),
23428 nUF(vrinta
, _vrinta
, 2, (RNSDQ
, oRNSDQ
), vrinta
),
23429 nUF(vrintn
, _vrinta
, 2, (RNSDQ
, oRNSDQ
), vrintn
),
23430 nUF(vrintp
, _vrinta
, 2, (RNSDQ
, oRNSDQ
), vrintp
),
23431 nUF(vrintm
, _vrinta
, 2, (RNSDQ
, oRNSDQ
), vrintm
),
23433 /* Crypto v1 extensions. */
23435 #define ARM_VARIANT & fpu_crypto_ext_armv8
23436 #undef THUMB_VARIANT
23437 #define THUMB_VARIANT & fpu_crypto_ext_armv8
23439 nUF(aese
, _aes
, 2, (RNQ
, RNQ
), aese
),
23440 nUF(aesd
, _aes
, 2, (RNQ
, RNQ
), aesd
),
23441 nUF(aesmc
, _aes
, 2, (RNQ
, RNQ
), aesmc
),
23442 nUF(aesimc
, _aes
, 2, (RNQ
, RNQ
), aesimc
),
23443 nUF(sha1c
, _sha3op
, 3, (RNQ
, RNQ
, RNQ
), sha1c
),
23444 nUF(sha1p
, _sha3op
, 3, (RNQ
, RNQ
, RNQ
), sha1p
),
23445 nUF(sha1m
, _sha3op
, 3, (RNQ
, RNQ
, RNQ
), sha1m
),
23446 nUF(sha1su0
, _sha3op
, 3, (RNQ
, RNQ
, RNQ
), sha1su0
),
23447 nUF(sha256h
, _sha3op
, 3, (RNQ
, RNQ
, RNQ
), sha256h
),
23448 nUF(sha256h2
, _sha3op
, 3, (RNQ
, RNQ
, RNQ
), sha256h2
),
23449 nUF(sha256su1
, _sha3op
, 3, (RNQ
, RNQ
, RNQ
), sha256su1
),
23450 nUF(sha1h
, _sha1h
, 2, (RNQ
, RNQ
), sha1h
),
23451 nUF(sha1su1
, _sha2op
, 2, (RNQ
, RNQ
), sha1su1
),
23452 nUF(sha256su0
, _sha2op
, 2, (RNQ
, RNQ
), sha256su0
),
23455 #define ARM_VARIANT & crc_ext_armv8
23456 #undef THUMB_VARIANT
23457 #define THUMB_VARIANT & crc_ext_armv8
23458 TUEc("crc32b", 1000040, fac0f080
, 3, (RR
, oRR
, RR
), crc32b
),
23459 TUEc("crc32h", 1200040, fac0f090
, 3, (RR
, oRR
, RR
), crc32h
),
23460 TUEc("crc32w", 1400040, fac0f0a0
, 3, (RR
, oRR
, RR
), crc32w
),
23461 TUEc("crc32cb",1000240, fad0f080
, 3, (RR
, oRR
, RR
), crc32cb
),
23462 TUEc("crc32ch",1200240, fad0f090
, 3, (RR
, oRR
, RR
), crc32ch
),
23463 TUEc("crc32cw",1400240, fad0f0a0
, 3, (RR
, oRR
, RR
), crc32cw
),
23465 /* ARMv8.2 RAS extension. */
23467 #define ARM_VARIANT & arm_ext_ras
23468 #undef THUMB_VARIANT
23469 #define THUMB_VARIANT & arm_ext_ras
23470 TUE ("esb", 320f010
, f3af8010
, 0, (), noargs
, noargs
),
23473 #define ARM_VARIANT & arm_ext_v8_3
23474 #undef THUMB_VARIANT
23475 #define THUMB_VARIANT & arm_ext_v8_3
23476 NCE (vjcvt
, eb90bc0
, 2, (RVS
, RVD
), vjcvt
),
23479 #define ARM_VARIANT & fpu_neon_ext_dotprod
23480 #undef THUMB_VARIANT
23481 #define THUMB_VARIANT & fpu_neon_ext_dotprod
23482 NUF (vsdot
, d00
, 3, (RNDQ
, RNDQ
, RNDQ_RNSC
), neon_dotproduct_s
),
23483 NUF (vudot
, d00
, 3, (RNDQ
, RNDQ
, RNDQ_RNSC
), neon_dotproduct_u
),
23486 #define ARM_VARIANT & fpu_fpa_ext_v1 /* Core FPA instruction set (V1). */
23487 #undef THUMB_VARIANT
23488 #define THUMB_VARIANT NULL
23490 cCE("wfs", e200110
, 1, (RR
), rd
),
23491 cCE("rfs", e300110
, 1, (RR
), rd
),
23492 cCE("wfc", e400110
, 1, (RR
), rd
),
23493 cCE("rfc", e500110
, 1, (RR
), rd
),
23495 cCL("ldfs", c100100
, 2, (RF
, ADDRGLDC
), rd_cpaddr
),
23496 cCL("ldfd", c108100
, 2, (RF
, ADDRGLDC
), rd_cpaddr
),
23497 cCL("ldfe", c500100
, 2, (RF
, ADDRGLDC
), rd_cpaddr
),
23498 cCL("ldfp", c508100
, 2, (RF
, ADDRGLDC
), rd_cpaddr
),
23500 cCL("stfs", c000100
, 2, (RF
, ADDRGLDC
), rd_cpaddr
),
23501 cCL("stfd", c008100
, 2, (RF
, ADDRGLDC
), rd_cpaddr
),
23502 cCL("stfe", c400100
, 2, (RF
, ADDRGLDC
), rd_cpaddr
),
23503 cCL("stfp", c408100
, 2, (RF
, ADDRGLDC
), rd_cpaddr
),
23505 cCL("mvfs", e008100
, 2, (RF
, RF_IF
), rd_rm
),
23506 cCL("mvfsp", e008120
, 2, (RF
, RF_IF
), rd_rm
),
23507 cCL("mvfsm", e008140
, 2, (RF
, RF_IF
), rd_rm
),
23508 cCL("mvfsz", e008160
, 2, (RF
, RF_IF
), rd_rm
),
23509 cCL("mvfd", e008180
, 2, (RF
, RF_IF
), rd_rm
),
23510 cCL("mvfdp", e0081a0
, 2, (RF
, RF_IF
), rd_rm
),
23511 cCL("mvfdm", e0081c0
, 2, (RF
, RF_IF
), rd_rm
),
23512 cCL("mvfdz", e0081e0
, 2, (RF
, RF_IF
), rd_rm
),
23513 cCL("mvfe", e088100
, 2, (RF
, RF_IF
), rd_rm
),
23514 cCL("mvfep", e088120
, 2, (RF
, RF_IF
), rd_rm
),
23515 cCL("mvfem", e088140
, 2, (RF
, RF_IF
), rd_rm
),
23516 cCL("mvfez", e088160
, 2, (RF
, RF_IF
), rd_rm
),
23518 cCL("mnfs", e108100
, 2, (RF
, RF_IF
), rd_rm
),
23519 cCL("mnfsp", e108120
, 2, (RF
, RF_IF
), rd_rm
),
23520 cCL("mnfsm", e108140
, 2, (RF
, RF_IF
), rd_rm
),
23521 cCL("mnfsz", e108160
, 2, (RF
, RF_IF
), rd_rm
),
23522 cCL("mnfd", e108180
, 2, (RF
, RF_IF
), rd_rm
),
23523 cCL("mnfdp", e1081a0
, 2, (RF
, RF_IF
), rd_rm
),
23524 cCL("mnfdm", e1081c0
, 2, (RF
, RF_IF
), rd_rm
),
23525 cCL("mnfdz", e1081e0
, 2, (RF
, RF_IF
), rd_rm
),
23526 cCL("mnfe", e188100
, 2, (RF
, RF_IF
), rd_rm
),
23527 cCL("mnfep", e188120
, 2, (RF
, RF_IF
), rd_rm
),
23528 cCL("mnfem", e188140
, 2, (RF
, RF_IF
), rd_rm
),
23529 cCL("mnfez", e188160
, 2, (RF
, RF_IF
), rd_rm
),
23531 cCL("abss", e208100
, 2, (RF
, RF_IF
), rd_rm
),
23532 cCL("abssp", e208120
, 2, (RF
, RF_IF
), rd_rm
),
23533 cCL("abssm", e208140
, 2, (RF
, RF_IF
), rd_rm
),
23534 cCL("abssz", e208160
, 2, (RF
, RF_IF
), rd_rm
),
23535 cCL("absd", e208180
, 2, (RF
, RF_IF
), rd_rm
),
23536 cCL("absdp", e2081a0
, 2, (RF
, RF_IF
), rd_rm
),
23537 cCL("absdm", e2081c0
, 2, (RF
, RF_IF
), rd_rm
),
23538 cCL("absdz", e2081e0
, 2, (RF
, RF_IF
), rd_rm
),
23539 cCL("abse", e288100
, 2, (RF
, RF_IF
), rd_rm
),
23540 cCL("absep", e288120
, 2, (RF
, RF_IF
), rd_rm
),
23541 cCL("absem", e288140
, 2, (RF
, RF_IF
), rd_rm
),
23542 cCL("absez", e288160
, 2, (RF
, RF_IF
), rd_rm
),
23544 cCL("rnds", e308100
, 2, (RF
, RF_IF
), rd_rm
),
23545 cCL("rndsp", e308120
, 2, (RF
, RF_IF
), rd_rm
),
23546 cCL("rndsm", e308140
, 2, (RF
, RF_IF
), rd_rm
),
23547 cCL("rndsz", e308160
, 2, (RF
, RF_IF
), rd_rm
),
23548 cCL("rndd", e308180
, 2, (RF
, RF_IF
), rd_rm
),
23549 cCL("rnddp", e3081a0
, 2, (RF
, RF_IF
), rd_rm
),
23550 cCL("rnddm", e3081c0
, 2, (RF
, RF_IF
), rd_rm
),
23551 cCL("rnddz", e3081e0
, 2, (RF
, RF_IF
), rd_rm
),
23552 cCL("rnde", e388100
, 2, (RF
, RF_IF
), rd_rm
),
23553 cCL("rndep", e388120
, 2, (RF
, RF_IF
), rd_rm
),
23554 cCL("rndem", e388140
, 2, (RF
, RF_IF
), rd_rm
),
23555 cCL("rndez", e388160
, 2, (RF
, RF_IF
), rd_rm
),
23557 cCL("sqts", e408100
, 2, (RF
, RF_IF
), rd_rm
),
23558 cCL("sqtsp", e408120
, 2, (RF
, RF_IF
), rd_rm
),
23559 cCL("sqtsm", e408140
, 2, (RF
, RF_IF
), rd_rm
),
23560 cCL("sqtsz", e408160
, 2, (RF
, RF_IF
), rd_rm
),
23561 cCL("sqtd", e408180
, 2, (RF
, RF_IF
), rd_rm
),
23562 cCL("sqtdp", e4081a0
, 2, (RF
, RF_IF
), rd_rm
),
23563 cCL("sqtdm", e4081c0
, 2, (RF
, RF_IF
), rd_rm
),
23564 cCL("sqtdz", e4081e0
, 2, (RF
, RF_IF
), rd_rm
),
23565 cCL("sqte", e488100
, 2, (RF
, RF_IF
), rd_rm
),
23566 cCL("sqtep", e488120
, 2, (RF
, RF_IF
), rd_rm
),
23567 cCL("sqtem", e488140
, 2, (RF
, RF_IF
), rd_rm
),
23568 cCL("sqtez", e488160
, 2, (RF
, RF_IF
), rd_rm
),
23570 cCL("logs", e508100
, 2, (RF
, RF_IF
), rd_rm
),
23571 cCL("logsp", e508120
, 2, (RF
, RF_IF
), rd_rm
),
23572 cCL("logsm", e508140
, 2, (RF
, RF_IF
), rd_rm
),
23573 cCL("logsz", e508160
, 2, (RF
, RF_IF
), rd_rm
),
23574 cCL("logd", e508180
, 2, (RF
, RF_IF
), rd_rm
),
23575 cCL("logdp", e5081a0
, 2, (RF
, RF_IF
), rd_rm
),
23576 cCL("logdm", e5081c0
, 2, (RF
, RF_IF
), rd_rm
),
23577 cCL("logdz", e5081e0
, 2, (RF
, RF_IF
), rd_rm
),
23578 cCL("loge", e588100
, 2, (RF
, RF_IF
), rd_rm
),
23579 cCL("logep", e588120
, 2, (RF
, RF_IF
), rd_rm
),
23580 cCL("logem", e588140
, 2, (RF
, RF_IF
), rd_rm
),
23581 cCL("logez", e588160
, 2, (RF
, RF_IF
), rd_rm
),
23583 cCL("lgns", e608100
, 2, (RF
, RF_IF
), rd_rm
),
23584 cCL("lgnsp", e608120
, 2, (RF
, RF_IF
), rd_rm
),
23585 cCL("lgnsm", e608140
, 2, (RF
, RF_IF
), rd_rm
),
23586 cCL("lgnsz", e608160
, 2, (RF
, RF_IF
), rd_rm
),
23587 cCL("lgnd", e608180
, 2, (RF
, RF_IF
), rd_rm
),
23588 cCL("lgndp", e6081a0
, 2, (RF
, RF_IF
), rd_rm
),
23589 cCL("lgndm", e6081c0
, 2, (RF
, RF_IF
), rd_rm
),
23590 cCL("lgndz", e6081e0
, 2, (RF
, RF_IF
), rd_rm
),
23591 cCL("lgne", e688100
, 2, (RF
, RF_IF
), rd_rm
),
23592 cCL("lgnep", e688120
, 2, (RF
, RF_IF
), rd_rm
),
23593 cCL("lgnem", e688140
, 2, (RF
, RF_IF
), rd_rm
),
23594 cCL("lgnez", e688160
, 2, (RF
, RF_IF
), rd_rm
),
23596 cCL("exps", e708100
, 2, (RF
, RF_IF
), rd_rm
),
23597 cCL("expsp", e708120
, 2, (RF
, RF_IF
), rd_rm
),
23598 cCL("expsm", e708140
, 2, (RF
, RF_IF
), rd_rm
),
23599 cCL("expsz", e708160
, 2, (RF
, RF_IF
), rd_rm
),
23600 cCL("expd", e708180
, 2, (RF
, RF_IF
), rd_rm
),
23601 cCL("expdp", e7081a0
, 2, (RF
, RF_IF
), rd_rm
),
23602 cCL("expdm", e7081c0
, 2, (RF
, RF_IF
), rd_rm
),
23603 cCL("expdz", e7081e0
, 2, (RF
, RF_IF
), rd_rm
),
23604 cCL("expe", e788100
, 2, (RF
, RF_IF
), rd_rm
),
23605 cCL("expep", e788120
, 2, (RF
, RF_IF
), rd_rm
),
23606 cCL("expem", e788140
, 2, (RF
, RF_IF
), rd_rm
),
23607 cCL("expdz", e788160
, 2, (RF
, RF_IF
), rd_rm
),
23609 cCL("sins", e808100
, 2, (RF
, RF_IF
), rd_rm
),
23610 cCL("sinsp", e808120
, 2, (RF
, RF_IF
), rd_rm
),
23611 cCL("sinsm", e808140
, 2, (RF
, RF_IF
), rd_rm
),
23612 cCL("sinsz", e808160
, 2, (RF
, RF_IF
), rd_rm
),
23613 cCL("sind", e808180
, 2, (RF
, RF_IF
), rd_rm
),
23614 cCL("sindp", e8081a0
, 2, (RF
, RF_IF
), rd_rm
),
23615 cCL("sindm", e8081c0
, 2, (RF
, RF_IF
), rd_rm
),
23616 cCL("sindz", e8081e0
, 2, (RF
, RF_IF
), rd_rm
),
23617 cCL("sine", e888100
, 2, (RF
, RF_IF
), rd_rm
),
23618 cCL("sinep", e888120
, 2, (RF
, RF_IF
), rd_rm
),
23619 cCL("sinem", e888140
, 2, (RF
, RF_IF
), rd_rm
),
23620 cCL("sinez", e888160
, 2, (RF
, RF_IF
), rd_rm
),
23622 cCL("coss", e908100
, 2, (RF
, RF_IF
), rd_rm
),
23623 cCL("cossp", e908120
, 2, (RF
, RF_IF
), rd_rm
),
23624 cCL("cossm", e908140
, 2, (RF
, RF_IF
), rd_rm
),
23625 cCL("cossz", e908160
, 2, (RF
, RF_IF
), rd_rm
),
23626 cCL("cosd", e908180
, 2, (RF
, RF_IF
), rd_rm
),
23627 cCL("cosdp", e9081a0
, 2, (RF
, RF_IF
), rd_rm
),
23628 cCL("cosdm", e9081c0
, 2, (RF
, RF_IF
), rd_rm
),
23629 cCL("cosdz", e9081e0
, 2, (RF
, RF_IF
), rd_rm
),
23630 cCL("cose", e988100
, 2, (RF
, RF_IF
), rd_rm
),
23631 cCL("cosep", e988120
, 2, (RF
, RF_IF
), rd_rm
),
23632 cCL("cosem", e988140
, 2, (RF
, RF_IF
), rd_rm
),
23633 cCL("cosez", e988160
, 2, (RF
, RF_IF
), rd_rm
),
23635 cCL("tans", ea08100
, 2, (RF
, RF_IF
), rd_rm
),
23636 cCL("tansp", ea08120
, 2, (RF
, RF_IF
), rd_rm
),
23637 cCL("tansm", ea08140
, 2, (RF
, RF_IF
), rd_rm
),
23638 cCL("tansz", ea08160
, 2, (RF
, RF_IF
), rd_rm
),
23639 cCL("tand", ea08180
, 2, (RF
, RF_IF
), rd_rm
),
23640 cCL("tandp", ea081a0
, 2, (RF
, RF_IF
), rd_rm
),
23641 cCL("tandm", ea081c0
, 2, (RF
, RF_IF
), rd_rm
),
23642 cCL("tandz", ea081e0
, 2, (RF
, RF_IF
), rd_rm
),
23643 cCL("tane", ea88100
, 2, (RF
, RF_IF
), rd_rm
),
23644 cCL("tanep", ea88120
, 2, (RF
, RF_IF
), rd_rm
),
23645 cCL("tanem", ea88140
, 2, (RF
, RF_IF
), rd_rm
),
23646 cCL("tanez", ea88160
, 2, (RF
, RF_IF
), rd_rm
),
23648 cCL("asns", eb08100
, 2, (RF
, RF_IF
), rd_rm
),
23649 cCL("asnsp", eb08120
, 2, (RF
, RF_IF
), rd_rm
),
23650 cCL("asnsm", eb08140
, 2, (RF
, RF_IF
), rd_rm
),
23651 cCL("asnsz", eb08160
, 2, (RF
, RF_IF
), rd_rm
),
23652 cCL("asnd", eb08180
, 2, (RF
, RF_IF
), rd_rm
),
23653 cCL("asndp", eb081a0
, 2, (RF
, RF_IF
), rd_rm
),
23654 cCL("asndm", eb081c0
, 2, (RF
, RF_IF
), rd_rm
),
23655 cCL("asndz", eb081e0
, 2, (RF
, RF_IF
), rd_rm
),
23656 cCL("asne", eb88100
, 2, (RF
, RF_IF
), rd_rm
),
23657 cCL("asnep", eb88120
, 2, (RF
, RF_IF
), rd_rm
),
23658 cCL("asnem", eb88140
, 2, (RF
, RF_IF
), rd_rm
),
23659 cCL("asnez", eb88160
, 2, (RF
, RF_IF
), rd_rm
),
23661 cCL("acss", ec08100
, 2, (RF
, RF_IF
), rd_rm
),
23662 cCL("acssp", ec08120
, 2, (RF
, RF_IF
), rd_rm
),
23663 cCL("acssm", ec08140
, 2, (RF
, RF_IF
), rd_rm
),
23664 cCL("acssz", ec08160
, 2, (RF
, RF_IF
), rd_rm
),
23665 cCL("acsd", ec08180
, 2, (RF
, RF_IF
), rd_rm
),
23666 cCL("acsdp", ec081a0
, 2, (RF
, RF_IF
), rd_rm
),
23667 cCL("acsdm", ec081c0
, 2, (RF
, RF_IF
), rd_rm
),
23668 cCL("acsdz", ec081e0
, 2, (RF
, RF_IF
), rd_rm
),
23669 cCL("acse", ec88100
, 2, (RF
, RF_IF
), rd_rm
),
23670 cCL("acsep", ec88120
, 2, (RF
, RF_IF
), rd_rm
),
23671 cCL("acsem", ec88140
, 2, (RF
, RF_IF
), rd_rm
),
23672 cCL("acsez", ec88160
, 2, (RF
, RF_IF
), rd_rm
),
23674 cCL("atns", ed08100
, 2, (RF
, RF_IF
), rd_rm
),
23675 cCL("atnsp", ed08120
, 2, (RF
, RF_IF
), rd_rm
),
23676 cCL("atnsm", ed08140
, 2, (RF
, RF_IF
), rd_rm
),
23677 cCL("atnsz", ed08160
, 2, (RF
, RF_IF
), rd_rm
),
23678 cCL("atnd", ed08180
, 2, (RF
, RF_IF
), rd_rm
),
23679 cCL("atndp", ed081a0
, 2, (RF
, RF_IF
), rd_rm
),
23680 cCL("atndm", ed081c0
, 2, (RF
, RF_IF
), rd_rm
),
23681 cCL("atndz", ed081e0
, 2, (RF
, RF_IF
), rd_rm
),
23682 cCL("atne", ed88100
, 2, (RF
, RF_IF
), rd_rm
),
23683 cCL("atnep", ed88120
, 2, (RF
, RF_IF
), rd_rm
),
23684 cCL("atnem", ed88140
, 2, (RF
, RF_IF
), rd_rm
),
23685 cCL("atnez", ed88160
, 2, (RF
, RF_IF
), rd_rm
),
23687 cCL("urds", ee08100
, 2, (RF
, RF_IF
), rd_rm
),
23688 cCL("urdsp", ee08120
, 2, (RF
, RF_IF
), rd_rm
),
23689 cCL("urdsm", ee08140
, 2, (RF
, RF_IF
), rd_rm
),
23690 cCL("urdsz", ee08160
, 2, (RF
, RF_IF
), rd_rm
),
23691 cCL("urdd", ee08180
, 2, (RF
, RF_IF
), rd_rm
),
23692 cCL("urddp", ee081a0
, 2, (RF
, RF_IF
), rd_rm
),
23693 cCL("urddm", ee081c0
, 2, (RF
, RF_IF
), rd_rm
),
23694 cCL("urddz", ee081e0
, 2, (RF
, RF_IF
), rd_rm
),
23695 cCL("urde", ee88100
, 2, (RF
, RF_IF
), rd_rm
),
23696 cCL("urdep", ee88120
, 2, (RF
, RF_IF
), rd_rm
),
23697 cCL("urdem", ee88140
, 2, (RF
, RF_IF
), rd_rm
),
23698 cCL("urdez", ee88160
, 2, (RF
, RF_IF
), rd_rm
),
23700 cCL("nrms", ef08100
, 2, (RF
, RF_IF
), rd_rm
),
23701 cCL("nrmsp", ef08120
, 2, (RF
, RF_IF
), rd_rm
),
23702 cCL("nrmsm", ef08140
, 2, (RF
, RF_IF
), rd_rm
),
23703 cCL("nrmsz", ef08160
, 2, (RF
, RF_IF
), rd_rm
),
23704 cCL("nrmd", ef08180
, 2, (RF
, RF_IF
), rd_rm
),
23705 cCL("nrmdp", ef081a0
, 2, (RF
, RF_IF
), rd_rm
),
23706 cCL("nrmdm", ef081c0
, 2, (RF
, RF_IF
), rd_rm
),
23707 cCL("nrmdz", ef081e0
, 2, (RF
, RF_IF
), rd_rm
),
23708 cCL("nrme", ef88100
, 2, (RF
, RF_IF
), rd_rm
),
23709 cCL("nrmep", ef88120
, 2, (RF
, RF_IF
), rd_rm
),
23710 cCL("nrmem", ef88140
, 2, (RF
, RF_IF
), rd_rm
),
23711 cCL("nrmez", ef88160
, 2, (RF
, RF_IF
), rd_rm
),
23713 cCL("adfs", e000100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23714 cCL("adfsp", e000120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23715 cCL("adfsm", e000140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23716 cCL("adfsz", e000160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23717 cCL("adfd", e000180
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23718 cCL("adfdp", e0001a0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23719 cCL("adfdm", e0001c0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23720 cCL("adfdz", e0001e0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23721 cCL("adfe", e080100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23722 cCL("adfep", e080120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23723 cCL("adfem", e080140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23724 cCL("adfez", e080160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23726 cCL("sufs", e200100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23727 cCL("sufsp", e200120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23728 cCL("sufsm", e200140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23729 cCL("sufsz", e200160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23730 cCL("sufd", e200180
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23731 cCL("sufdp", e2001a0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23732 cCL("sufdm", e2001c0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23733 cCL("sufdz", e2001e0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23734 cCL("sufe", e280100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23735 cCL("sufep", e280120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23736 cCL("sufem", e280140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23737 cCL("sufez", e280160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23739 cCL("rsfs", e300100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23740 cCL("rsfsp", e300120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23741 cCL("rsfsm", e300140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23742 cCL("rsfsz", e300160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23743 cCL("rsfd", e300180
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23744 cCL("rsfdp", e3001a0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23745 cCL("rsfdm", e3001c0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23746 cCL("rsfdz", e3001e0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23747 cCL("rsfe", e380100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23748 cCL("rsfep", e380120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23749 cCL("rsfem", e380140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23750 cCL("rsfez", e380160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23752 cCL("mufs", e100100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23753 cCL("mufsp", e100120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23754 cCL("mufsm", e100140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23755 cCL("mufsz", e100160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23756 cCL("mufd", e100180
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23757 cCL("mufdp", e1001a0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23758 cCL("mufdm", e1001c0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23759 cCL("mufdz", e1001e0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23760 cCL("mufe", e180100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23761 cCL("mufep", e180120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23762 cCL("mufem", e180140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23763 cCL("mufez", e180160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23765 cCL("dvfs", e400100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23766 cCL("dvfsp", e400120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23767 cCL("dvfsm", e400140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23768 cCL("dvfsz", e400160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23769 cCL("dvfd", e400180
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23770 cCL("dvfdp", e4001a0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23771 cCL("dvfdm", e4001c0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23772 cCL("dvfdz", e4001e0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23773 cCL("dvfe", e480100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23774 cCL("dvfep", e480120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23775 cCL("dvfem", e480140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23776 cCL("dvfez", e480160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23778 cCL("rdfs", e500100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23779 cCL("rdfsp", e500120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23780 cCL("rdfsm", e500140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23781 cCL("rdfsz", e500160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23782 cCL("rdfd", e500180
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23783 cCL("rdfdp", e5001a0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23784 cCL("rdfdm", e5001c0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23785 cCL("rdfdz", e5001e0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23786 cCL("rdfe", e580100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23787 cCL("rdfep", e580120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23788 cCL("rdfem", e580140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23789 cCL("rdfez", e580160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23791 cCL("pows", e600100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23792 cCL("powsp", e600120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23793 cCL("powsm", e600140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23794 cCL("powsz", e600160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23795 cCL("powd", e600180
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23796 cCL("powdp", e6001a0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23797 cCL("powdm", e6001c0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23798 cCL("powdz", e6001e0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23799 cCL("powe", e680100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23800 cCL("powep", e680120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23801 cCL("powem", e680140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23802 cCL("powez", e680160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23804 cCL("rpws", e700100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23805 cCL("rpwsp", e700120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23806 cCL("rpwsm", e700140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23807 cCL("rpwsz", e700160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23808 cCL("rpwd", e700180
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23809 cCL("rpwdp", e7001a0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23810 cCL("rpwdm", e7001c0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23811 cCL("rpwdz", e7001e0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23812 cCL("rpwe", e780100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23813 cCL("rpwep", e780120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23814 cCL("rpwem", e780140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23815 cCL("rpwez", e780160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23817 cCL("rmfs", e800100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23818 cCL("rmfsp", e800120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23819 cCL("rmfsm", e800140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23820 cCL("rmfsz", e800160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23821 cCL("rmfd", e800180
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23822 cCL("rmfdp", e8001a0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23823 cCL("rmfdm", e8001c0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23824 cCL("rmfdz", e8001e0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23825 cCL("rmfe", e880100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23826 cCL("rmfep", e880120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23827 cCL("rmfem", e880140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23828 cCL("rmfez", e880160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23830 cCL("fmls", e900100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23831 cCL("fmlsp", e900120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23832 cCL("fmlsm", e900140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23833 cCL("fmlsz", e900160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23834 cCL("fmld", e900180
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23835 cCL("fmldp", e9001a0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23836 cCL("fmldm", e9001c0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23837 cCL("fmldz", e9001e0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23838 cCL("fmle", e980100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23839 cCL("fmlep", e980120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23840 cCL("fmlem", e980140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23841 cCL("fmlez", e980160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23843 cCL("fdvs", ea00100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23844 cCL("fdvsp", ea00120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23845 cCL("fdvsm", ea00140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23846 cCL("fdvsz", ea00160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23847 cCL("fdvd", ea00180
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23848 cCL("fdvdp", ea001a0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23849 cCL("fdvdm", ea001c0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23850 cCL("fdvdz", ea001e0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23851 cCL("fdve", ea80100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23852 cCL("fdvep", ea80120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23853 cCL("fdvem", ea80140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23854 cCL("fdvez", ea80160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23856 cCL("frds", eb00100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23857 cCL("frdsp", eb00120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23858 cCL("frdsm", eb00140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23859 cCL("frdsz", eb00160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23860 cCL("frdd", eb00180
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23861 cCL("frddp", eb001a0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23862 cCL("frddm", eb001c0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23863 cCL("frddz", eb001e0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23864 cCL("frde", eb80100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23865 cCL("frdep", eb80120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23866 cCL("frdem", eb80140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23867 cCL("frdez", eb80160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23869 cCL("pols", ec00100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23870 cCL("polsp", ec00120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23871 cCL("polsm", ec00140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23872 cCL("polsz", ec00160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23873 cCL("pold", ec00180
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23874 cCL("poldp", ec001a0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23875 cCL("poldm", ec001c0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23876 cCL("poldz", ec001e0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23877 cCL("pole", ec80100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23878 cCL("polep", ec80120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23879 cCL("polem", ec80140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23880 cCL("polez", ec80160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23882 cCE("cmf", e90f110
, 2, (RF
, RF_IF
), fpa_cmp
),
23883 C3E("cmfe", ed0f110
, 2, (RF
, RF_IF
), fpa_cmp
),
23884 cCE("cnf", eb0f110
, 2, (RF
, RF_IF
), fpa_cmp
),
23885 C3E("cnfe", ef0f110
, 2, (RF
, RF_IF
), fpa_cmp
),
23887 cCL("flts", e000110
, 2, (RF
, RR
), rn_rd
),
23888 cCL("fltsp", e000130
, 2, (RF
, RR
), rn_rd
),
23889 cCL("fltsm", e000150
, 2, (RF
, RR
), rn_rd
),
23890 cCL("fltsz", e000170
, 2, (RF
, RR
), rn_rd
),
23891 cCL("fltd", e000190
, 2, (RF
, RR
), rn_rd
),
23892 cCL("fltdp", e0001b0
, 2, (RF
, RR
), rn_rd
),
23893 cCL("fltdm", e0001d0
, 2, (RF
, RR
), rn_rd
),
23894 cCL("fltdz", e0001f0
, 2, (RF
, RR
), rn_rd
),
23895 cCL("flte", e080110
, 2, (RF
, RR
), rn_rd
),
23896 cCL("fltep", e080130
, 2, (RF
, RR
), rn_rd
),
23897 cCL("fltem", e080150
, 2, (RF
, RR
), rn_rd
),
23898 cCL("fltez", e080170
, 2, (RF
, RR
), rn_rd
),
23900 /* The implementation of the FIX instruction is broken on some
23901 assemblers, in that it accepts a precision specifier as well as a
23902 rounding specifier, despite the fact that this is meaningless.
23903 To be more compatible, we accept it as well, though of course it
23904 does not set any bits. */
23905 cCE("fix", e100110
, 2, (RR
, RF
), rd_rm
),
23906 cCL("fixp", e100130
, 2, (RR
, RF
), rd_rm
),
23907 cCL("fixm", e100150
, 2, (RR
, RF
), rd_rm
),
23908 cCL("fixz", e100170
, 2, (RR
, RF
), rd_rm
),
23909 cCL("fixsp", e100130
, 2, (RR
, RF
), rd_rm
),
23910 cCL("fixsm", e100150
, 2, (RR
, RF
), rd_rm
),
23911 cCL("fixsz", e100170
, 2, (RR
, RF
), rd_rm
),
23912 cCL("fixdp", e100130
, 2, (RR
, RF
), rd_rm
),
23913 cCL("fixdm", e100150
, 2, (RR
, RF
), rd_rm
),
23914 cCL("fixdz", e100170
, 2, (RR
, RF
), rd_rm
),
23915 cCL("fixep", e100130
, 2, (RR
, RF
), rd_rm
),
23916 cCL("fixem", e100150
, 2, (RR
, RF
), rd_rm
),
23917 cCL("fixez", e100170
, 2, (RR
, RF
), rd_rm
),
23919 /* Instructions that were new with the real FPA, call them V2. */
23921 #define ARM_VARIANT & fpu_fpa_ext_v2
23923 cCE("lfm", c100200
, 3, (RF
, I4b
, ADDR
), fpa_ldmstm
),
23924 cCL("lfmfd", c900200
, 3, (RF
, I4b
, ADDR
), fpa_ldmstm
),
23925 cCL("lfmea", d100200
, 3, (RF
, I4b
, ADDR
), fpa_ldmstm
),
23926 cCE("sfm", c000200
, 3, (RF
, I4b
, ADDR
), fpa_ldmstm
),
23927 cCL("sfmfd", d000200
, 3, (RF
, I4b
, ADDR
), fpa_ldmstm
),
23928 cCL("sfmea", c800200
, 3, (RF
, I4b
, ADDR
), fpa_ldmstm
),
23931 #define ARM_VARIANT & fpu_vfp_ext_v1xd /* VFP V1xD (single precision). */
23933 /* Moves and type conversions. */
23934 cCE("fmstat", ef1fa10
, 0, (), noargs
),
23935 cCE("vmrs", ef00a10
, 2, (APSR_RR
, RVC
), vmrs
),
23936 cCE("vmsr", ee00a10
, 2, (RVC
, RR
), vmsr
),
23937 cCE("fsitos", eb80ac0
, 2, (RVS
, RVS
), vfp_sp_monadic
),
23938 cCE("fuitos", eb80a40
, 2, (RVS
, RVS
), vfp_sp_monadic
),
23939 cCE("ftosis", ebd0a40
, 2, (RVS
, RVS
), vfp_sp_monadic
),
23940 cCE("ftosizs", ebd0ac0
, 2, (RVS
, RVS
), vfp_sp_monadic
),
23941 cCE("ftouis", ebc0a40
, 2, (RVS
, RVS
), vfp_sp_monadic
),
23942 cCE("ftouizs", ebc0ac0
, 2, (RVS
, RVS
), vfp_sp_monadic
),
23943 cCE("fmrx", ef00a10
, 2, (RR
, RVC
), rd_rn
),
23944 cCE("fmxr", ee00a10
, 2, (RVC
, RR
), rn_rd
),
23946 /* Memory operations. */
23947 cCE("flds", d100a00
, 2, (RVS
, ADDRGLDC
), vfp_sp_ldst
),
23948 cCE("fsts", d000a00
, 2, (RVS
, ADDRGLDC
), vfp_sp_ldst
),
23949 cCE("fldmias", c900a00
, 2, (RRnpctw
, VRSLST
), vfp_sp_ldstmia
),
23950 cCE("fldmfds", c900a00
, 2, (RRnpctw
, VRSLST
), vfp_sp_ldstmia
),
23951 cCE("fldmdbs", d300a00
, 2, (RRnpctw
, VRSLST
), vfp_sp_ldstmdb
),
23952 cCE("fldmeas", d300a00
, 2, (RRnpctw
, VRSLST
), vfp_sp_ldstmdb
),
23953 cCE("fldmiax", c900b00
, 2, (RRnpctw
, VRDLST
), vfp_xp_ldstmia
),
23954 cCE("fldmfdx", c900b00
, 2, (RRnpctw
, VRDLST
), vfp_xp_ldstmia
),
23955 cCE("fldmdbx", d300b00
, 2, (RRnpctw
, VRDLST
), vfp_xp_ldstmdb
),
23956 cCE("fldmeax", d300b00
, 2, (RRnpctw
, VRDLST
), vfp_xp_ldstmdb
),
23957 cCE("fstmias", c800a00
, 2, (RRnpctw
, VRSLST
), vfp_sp_ldstmia
),
23958 cCE("fstmeas", c800a00
, 2, (RRnpctw
, VRSLST
), vfp_sp_ldstmia
),
23959 cCE("fstmdbs", d200a00
, 2, (RRnpctw
, VRSLST
), vfp_sp_ldstmdb
),
23960 cCE("fstmfds", d200a00
, 2, (RRnpctw
, VRSLST
), vfp_sp_ldstmdb
),
23961 cCE("fstmiax", c800b00
, 2, (RRnpctw
, VRDLST
), vfp_xp_ldstmia
),
23962 cCE("fstmeax", c800b00
, 2, (RRnpctw
, VRDLST
), vfp_xp_ldstmia
),
23963 cCE("fstmdbx", d200b00
, 2, (RRnpctw
, VRDLST
), vfp_xp_ldstmdb
),
23964 cCE("fstmfdx", d200b00
, 2, (RRnpctw
, VRDLST
), vfp_xp_ldstmdb
),
23966 /* Monadic operations. */
23967 cCE("fabss", eb00ac0
, 2, (RVS
, RVS
), vfp_sp_monadic
),
23968 cCE("fnegs", eb10a40
, 2, (RVS
, RVS
), vfp_sp_monadic
),
23969 cCE("fsqrts", eb10ac0
, 2, (RVS
, RVS
), vfp_sp_monadic
),
23971 /* Dyadic operations. */
23972 cCE("fadds", e300a00
, 3, (RVS
, RVS
, RVS
), vfp_sp_dyadic
),
23973 cCE("fsubs", e300a40
, 3, (RVS
, RVS
, RVS
), vfp_sp_dyadic
),
23974 cCE("fmuls", e200a00
, 3, (RVS
, RVS
, RVS
), vfp_sp_dyadic
),
23975 cCE("fdivs", e800a00
, 3, (RVS
, RVS
, RVS
), vfp_sp_dyadic
),
23976 cCE("fmacs", e000a00
, 3, (RVS
, RVS
, RVS
), vfp_sp_dyadic
),
23977 cCE("fmscs", e100a00
, 3, (RVS
, RVS
, RVS
), vfp_sp_dyadic
),
23978 cCE("fnmuls", e200a40
, 3, (RVS
, RVS
, RVS
), vfp_sp_dyadic
),
23979 cCE("fnmacs", e000a40
, 3, (RVS
, RVS
, RVS
), vfp_sp_dyadic
),
23980 cCE("fnmscs", e100a40
, 3, (RVS
, RVS
, RVS
), vfp_sp_dyadic
),
23983 cCE("fcmps", eb40a40
, 2, (RVS
, RVS
), vfp_sp_monadic
),
23984 cCE("fcmpzs", eb50a40
, 1, (RVS
), vfp_sp_compare_z
),
23985 cCE("fcmpes", eb40ac0
, 2, (RVS
, RVS
), vfp_sp_monadic
),
23986 cCE("fcmpezs", eb50ac0
, 1, (RVS
), vfp_sp_compare_z
),
23988 /* Double precision load/store are still present on single precision
23989 implementations. */
23990 cCE("fldd", d100b00
, 2, (RVD
, ADDRGLDC
), vfp_dp_ldst
),
23991 cCE("fstd", d000b00
, 2, (RVD
, ADDRGLDC
), vfp_dp_ldst
),
23992 cCE("fldmiad", c900b00
, 2, (RRnpctw
, VRDLST
), vfp_dp_ldstmia
),
23993 cCE("fldmfdd", c900b00
, 2, (RRnpctw
, VRDLST
), vfp_dp_ldstmia
),
23994 cCE("fldmdbd", d300b00
, 2, (RRnpctw
, VRDLST
), vfp_dp_ldstmdb
),
23995 cCE("fldmead", d300b00
, 2, (RRnpctw
, VRDLST
), vfp_dp_ldstmdb
),
23996 cCE("fstmiad", c800b00
, 2, (RRnpctw
, VRDLST
), vfp_dp_ldstmia
),
23997 cCE("fstmead", c800b00
, 2, (RRnpctw
, VRDLST
), vfp_dp_ldstmia
),
23998 cCE("fstmdbd", d200b00
, 2, (RRnpctw
, VRDLST
), vfp_dp_ldstmdb
),
23999 cCE("fstmfdd", d200b00
, 2, (RRnpctw
, VRDLST
), vfp_dp_ldstmdb
),
24002 #define ARM_VARIANT & fpu_vfp_ext_v1 /* VFP V1 (Double precision). */
24004 /* Moves and type conversions. */
24005 cCE("fcvtds", eb70ac0
, 2, (RVD
, RVS
), vfp_dp_sp_cvt
),
24006 cCE("fcvtsd", eb70bc0
, 2, (RVS
, RVD
), vfp_sp_dp_cvt
),
24007 cCE("fmdhr", e200b10
, 2, (RVD
, RR
), vfp_dp_rn_rd
),
24008 cCE("fmdlr", e000b10
, 2, (RVD
, RR
), vfp_dp_rn_rd
),
24009 cCE("fmrdh", e300b10
, 2, (RR
, RVD
), vfp_dp_rd_rn
),
24010 cCE("fmrdl", e100b10
, 2, (RR
, RVD
), vfp_dp_rd_rn
),
24011 cCE("fsitod", eb80bc0
, 2, (RVD
, RVS
), vfp_dp_sp_cvt
),
24012 cCE("fuitod", eb80b40
, 2, (RVD
, RVS
), vfp_dp_sp_cvt
),
24013 cCE("ftosid", ebd0b40
, 2, (RVS
, RVD
), vfp_sp_dp_cvt
),
24014 cCE("ftosizd", ebd0bc0
, 2, (RVS
, RVD
), vfp_sp_dp_cvt
),
24015 cCE("ftouid", ebc0b40
, 2, (RVS
, RVD
), vfp_sp_dp_cvt
),
24016 cCE("ftouizd", ebc0bc0
, 2, (RVS
, RVD
), vfp_sp_dp_cvt
),
24018 /* Monadic operations. */
24019 cCE("fabsd", eb00bc0
, 2, (RVD
, RVD
), vfp_dp_rd_rm
),
24020 cCE("fnegd", eb10b40
, 2, (RVD
, RVD
), vfp_dp_rd_rm
),
24021 cCE("fsqrtd", eb10bc0
, 2, (RVD
, RVD
), vfp_dp_rd_rm
),
24023 /* Dyadic operations. */
24024 cCE("faddd", e300b00
, 3, (RVD
, RVD
, RVD
), vfp_dp_rd_rn_rm
),
24025 cCE("fsubd", e300b40
, 3, (RVD
, RVD
, RVD
), vfp_dp_rd_rn_rm
),
24026 cCE("fmuld", e200b00
, 3, (RVD
, RVD
, RVD
), vfp_dp_rd_rn_rm
),
24027 cCE("fdivd", e800b00
, 3, (RVD
, RVD
, RVD
), vfp_dp_rd_rn_rm
),
24028 cCE("fmacd", e000b00
, 3, (RVD
, RVD
, RVD
), vfp_dp_rd_rn_rm
),
24029 cCE("fmscd", e100b00
, 3, (RVD
, RVD
, RVD
), vfp_dp_rd_rn_rm
),
24030 cCE("fnmuld", e200b40
, 3, (RVD
, RVD
, RVD
), vfp_dp_rd_rn_rm
),
24031 cCE("fnmacd", e000b40
, 3, (RVD
, RVD
, RVD
), vfp_dp_rd_rn_rm
),
24032 cCE("fnmscd", e100b40
, 3, (RVD
, RVD
, RVD
), vfp_dp_rd_rn_rm
),
24035 cCE("fcmpd", eb40b40
, 2, (RVD
, RVD
), vfp_dp_rd_rm
),
24036 cCE("fcmpzd", eb50b40
, 1, (RVD
), vfp_dp_rd
),
24037 cCE("fcmped", eb40bc0
, 2, (RVD
, RVD
), vfp_dp_rd_rm
),
24038 cCE("fcmpezd", eb50bc0
, 1, (RVD
), vfp_dp_rd
),
24040 /* Instructions which may belong to either the Neon or VFP instruction sets.
24041 Individual encoder functions perform additional architecture checks. */
24043 #define ARM_VARIANT & fpu_vfp_ext_v1xd
24044 #undef THUMB_VARIANT
24045 #define THUMB_VARIANT & fpu_vfp_ext_v1xd
24047 /* These mnemonics are unique to VFP. */
24048 NCE(vsqrt
, 0, 2, (RVSD
, RVSD
), vfp_nsyn_sqrt
),
24049 NCE(vdiv
, 0, 3, (RVSD
, RVSD
, RVSD
), vfp_nsyn_div
),
24050 nCE(vnmul
, _vnmul
, 3, (RVSD
, RVSD
, RVSD
), vfp_nsyn_nmul
),
24051 nCE(vnmla
, _vnmla
, 3, (RVSD
, RVSD
, RVSD
), vfp_nsyn_nmul
),
24052 nCE(vnmls
, _vnmls
, 3, (RVSD
, RVSD
, RVSD
), vfp_nsyn_nmul
),
24053 NCE(vpush
, 0, 1, (VRSDLST
), vfp_nsyn_push
),
24054 NCE(vpop
, 0, 1, (VRSDLST
), vfp_nsyn_pop
),
24055 NCE(vcvtz
, 0, 2, (RVSD
, RVSD
), vfp_nsyn_cvtz
),
24057 /* Mnemonics shared by Neon and VFP. */
24058 nCEF(vmls
, _vmls
, 3, (RNSDQ
, oRNSDQ
, RNSDQ_RNSC
), neon_mac_maybe_scalar
),
24060 NCE(vldm
, c900b00
, 2, (RRnpctw
, VRSDLST
), neon_ldm_stm
),
24061 NCE(vldmia
, c900b00
, 2, (RRnpctw
, VRSDLST
), neon_ldm_stm
),
24062 NCE(vldmdb
, d100b00
, 2, (RRnpctw
, VRSDLST
), neon_ldm_stm
),
24063 NCE(vstm
, c800b00
, 2, (RRnpctw
, VRSDLST
), neon_ldm_stm
),
24064 NCE(vstmia
, c800b00
, 2, (RRnpctw
, VRSDLST
), neon_ldm_stm
),
24065 NCE(vstmdb
, d000b00
, 2, (RRnpctw
, VRSDLST
), neon_ldm_stm
),
24067 mnCEF(vcvt
, _vcvt
, 3, (RNSDQMQ
, RNSDQMQ
, oI32z
), neon_cvt
),
24068 nCEF(vcvtr
, _vcvt
, 2, (RNSDQ
, RNSDQ
), neon_cvtr
),
24069 MNCEF(vcvtb
, eb20a40
, 3, (RVSDMQ
, RVSDMQ
, oI32b
), neon_cvtb
),
24070 MNCEF(vcvtt
, eb20a40
, 3, (RVSDMQ
, RVSDMQ
, oI32b
), neon_cvtt
),
24073 /* NOTE: All VMOV encoding is special-cased! */
24074 NCE(vmovq
, 0, 1, (VMOV
), neon_mov
),
24076 #undef THUMB_VARIANT
24077 /* Could be either VLDR/VSTR or VLDR/VSTR (system register) which are guarded
24078 by different feature bits. Since we are setting the Thumb guard, we can
24079 require Thumb-1 which makes it a nop guard and set the right feature bit in
24080 do_vldr_vstr (). */
24081 #define THUMB_VARIANT & arm_ext_v4t
24082 NCE(vldr
, d100b00
, 2, (VLDR
, ADDRGLDC
), vldr_vstr
),
24083 NCE(vstr
, d000b00
, 2, (VLDR
, ADDRGLDC
), vldr_vstr
),
24086 #define ARM_VARIANT & arm_ext_fp16
24087 #undef THUMB_VARIANT
24088 #define THUMB_VARIANT & arm_ext_fp16
24089 /* New instructions added from v8.2, allowing the extraction and insertion of
24090 the upper 16 bits of a 32-bit vector register. */
24091 NCE (vmovx
, eb00a40
, 2, (RVS
, RVS
), neon_movhf
),
24092 NCE (vins
, eb00ac0
, 2, (RVS
, RVS
), neon_movhf
),
24094 /* New backported fma/fms instructions optional in v8.2. */
24095 NCE (vfmal
, 810, 3, (RNDQ
, RNSD
, RNSD_RNSC
), neon_vfmal
),
24096 NCE (vfmsl
, 810, 3, (RNDQ
, RNSD
, RNSD_RNSC
), neon_vfmsl
),
24098 #undef THUMB_VARIANT
24099 #define THUMB_VARIANT & fpu_neon_ext_v1
24101 #define ARM_VARIANT & fpu_neon_ext_v1
24103 /* Data processing with three registers of the same length. */
24104 /* integer ops, valid types S8 S16 S32 U8 U16 U32. */
24105 NUF(vaba
, 0000710, 3, (RNDQ
, RNDQ
, RNDQ
), neon_dyadic_i_su
),
24106 NUF(vabaq
, 0000710, 3, (RNQ
, RNQ
, RNQ
), neon_dyadic_i_su
),
24107 NUF(vhaddq
, 0000000, 3, (RNQ
, oRNQ
, RNQ
), neon_dyadic_i_su
),
24108 NUF(vrhaddq
, 0000100, 3, (RNQ
, oRNQ
, RNQ
), neon_dyadic_i_su
),
24109 NUF(vhsubq
, 0000200, 3, (RNQ
, oRNQ
, RNQ
), neon_dyadic_i_su
),
24110 /* integer ops, valid types S8 S16 S32 S64 U8 U16 U32 U64. */
24111 NUF(vqaddq
, 0000010, 3, (RNQ
, oRNQ
, RNQ
), neon_dyadic_i64_su
),
24112 NUF(vqsubq
, 0000210, 3, (RNQ
, oRNQ
, RNQ
), neon_dyadic_i64_su
),
24113 NUF(vrshl
, 0000500, 3, (RNDQ
, oRNDQ
, RNDQ
), neon_rshl
),
24114 NUF(vrshlq
, 0000500, 3, (RNQ
, oRNQ
, RNQ
), neon_rshl
),
24115 NUF(vqrshl
, 0000510, 3, (RNDQ
, oRNDQ
, RNDQ
), neon_rshl
),
24116 NUF(vqrshlq
, 0000510, 3, (RNQ
, oRNQ
, RNQ
), neon_rshl
),
24117 /* If not immediate, fall back to neon_dyadic_i64_su.
24118 shl_imm should accept I8 I16 I32 I64,
24119 qshl_imm should accept S8 S16 S32 S64 U8 U16 U32 U64. */
24120 nUF(vshl
, _vshl
, 3, (RNDQ
, oRNDQ
, RNDQ_I63b
), neon_shl_imm
),
24121 nUF(vshlq
, _vshl
, 3, (RNQ
, oRNQ
, RNDQ_I63b
), neon_shl_imm
),
24122 nUF(vqshl
, _vqshl
, 3, (RNDQ
, oRNDQ
, RNDQ_I63b
), neon_qshl_imm
),
24123 nUF(vqshlq
, _vqshl
, 3, (RNQ
, oRNQ
, RNDQ_I63b
), neon_qshl_imm
),
24124 /* Logic ops, types optional & ignored. */
24125 nUF(vandq
, _vand
, 3, (RNQ
, oRNQ
, RNDQ_Ibig
), neon_logic
),
24126 nUF(vbicq
, _vbic
, 3, (RNQ
, oRNQ
, RNDQ_Ibig
), neon_logic
),
24127 nUF(vorrq
, _vorr
, 3, (RNQ
, oRNQ
, RNDQ_Ibig
), neon_logic
),
24128 nUF(vornq
, _vorn
, 3, (RNQ
, oRNQ
, RNDQ_Ibig
), neon_logic
),
24129 nUF(veorq
, _veor
, 3, (RNQ
, oRNQ
, RNQ
), neon_logic
),
24130 /* Bitfield ops, untyped. */
24131 NUF(vbsl
, 1100110, 3, (RNDQ
, RNDQ
, RNDQ
), neon_bitfield
),
24132 NUF(vbslq
, 1100110, 3, (RNQ
, RNQ
, RNQ
), neon_bitfield
),
24133 NUF(vbit
, 1200110, 3, (RNDQ
, RNDQ
, RNDQ
), neon_bitfield
),
24134 NUF(vbitq
, 1200110, 3, (RNQ
, RNQ
, RNQ
), neon_bitfield
),
24135 NUF(vbif
, 1300110, 3, (RNDQ
, RNDQ
, RNDQ
), neon_bitfield
),
24136 NUF(vbifq
, 1300110, 3, (RNQ
, RNQ
, RNQ
), neon_bitfield
),
24137 /* Int and float variants, types S8 S16 S32 U8 U16 U32 F16 F32. */
24138 nUF(vabdq
, _vabd
, 3, (RNQ
, oRNQ
, RNQ
), neon_dyadic_if_su
),
24139 nUF(vmaxq
, _vmax
, 3, (RNQ
, oRNQ
, RNQ
), neon_dyadic_if_su
),
24140 nUF(vminq
, _vmin
, 3, (RNQ
, oRNQ
, RNQ
), neon_dyadic_if_su
),
24141 /* Comparisons. Types S8 S16 S32 U8 U16 U32 F32. Non-immediate versions fall
24142 back to neon_dyadic_if_su. */
24143 nUF(vcge
, _vcge
, 3, (RNDQ
, oRNDQ
, RNDQ_I0
), neon_cmp
),
24144 nUF(vcgeq
, _vcge
, 3, (RNQ
, oRNQ
, RNDQ_I0
), neon_cmp
),
24145 nUF(vcgt
, _vcgt
, 3, (RNDQ
, oRNDQ
, RNDQ_I0
), neon_cmp
),
24146 nUF(vcgtq
, _vcgt
, 3, (RNQ
, oRNQ
, RNDQ_I0
), neon_cmp
),
24147 nUF(vclt
, _vclt
, 3, (RNDQ
, oRNDQ
, RNDQ_I0
), neon_cmp_inv
),
24148 nUF(vcltq
, _vclt
, 3, (RNQ
, oRNQ
, RNDQ_I0
), neon_cmp_inv
),
24149 nUF(vcle
, _vcle
, 3, (RNDQ
, oRNDQ
, RNDQ_I0
), neon_cmp_inv
),
24150 nUF(vcleq
, _vcle
, 3, (RNQ
, oRNQ
, RNDQ_I0
), neon_cmp_inv
),
24151 /* Comparison. Type I8 I16 I32 F32. */
24152 nUF(vceq
, _vceq
, 3, (RNDQ
, oRNDQ
, RNDQ_I0
), neon_ceq
),
24153 nUF(vceqq
, _vceq
, 3, (RNQ
, oRNQ
, RNDQ_I0
), neon_ceq
),
24154 /* As above, D registers only. */
24155 nUF(vpmax
, _vpmax
, 3, (RND
, oRND
, RND
), neon_dyadic_if_su_d
),
24156 nUF(vpmin
, _vpmin
, 3, (RND
, oRND
, RND
), neon_dyadic_if_su_d
),
24157 /* Int and float variants, signedness unimportant. */
24158 nUF(vmlaq
, _vmla
, 3, (RNQ
, oRNQ
, RNDQ_RNSC
), neon_mac_maybe_scalar
),
24159 nUF(vmlsq
, _vmls
, 3, (RNQ
, oRNQ
, RNDQ_RNSC
), neon_mac_maybe_scalar
),
24160 nUF(vpadd
, _vpadd
, 3, (RND
, oRND
, RND
), neon_dyadic_if_i_d
),
24161 /* Add/sub take types I8 I16 I32 I64 F32. */
24162 nUF(vaddq
, _vadd
, 3, (RNQ
, oRNQ
, RNQ
), neon_addsub_if_i
),
24163 nUF(vsubq
, _vsub
, 3, (RNQ
, oRNQ
, RNQ
), neon_addsub_if_i
),
24164 /* vtst takes sizes 8, 16, 32. */
24165 NUF(vtst
, 0000810, 3, (RNDQ
, oRNDQ
, RNDQ
), neon_tst
),
24166 NUF(vtstq
, 0000810, 3, (RNQ
, oRNQ
, RNQ
), neon_tst
),
24167 /* VMUL takes I8 I16 I32 F32 P8. */
24168 nUF(vmulq
, _vmul
, 3, (RNQ
, oRNQ
, RNDQ_RNSC
), neon_mul
),
24169 /* VQD{R}MULH takes S16 S32. */
24170 nUF(vqdmulhq
, _vqdmulh
, 3, (RNQ
, oRNQ
, RNDQ_RNSC
), neon_qdmulh
),
24171 nUF(vqrdmulhq
, _vqrdmulh
, 3, (RNQ
, oRNQ
, RNDQ_RNSC
), neon_qdmulh
),
24172 NUF(vacge
, 0000e10
, 3, (RNDQ
, oRNDQ
, RNDQ
), neon_fcmp_absolute
),
24173 NUF(vacgeq
, 0000e10
, 3, (RNQ
, oRNQ
, RNQ
), neon_fcmp_absolute
),
24174 NUF(vacgt
, 0200e10
, 3, (RNDQ
, oRNDQ
, RNDQ
), neon_fcmp_absolute
),
24175 NUF(vacgtq
, 0200e10
, 3, (RNQ
, oRNQ
, RNQ
), neon_fcmp_absolute
),
24176 NUF(vaclt
, 0200e10
, 3, (RNDQ
, oRNDQ
, RNDQ
), neon_fcmp_absolute_inv
),
24177 NUF(vacltq
, 0200e10
, 3, (RNQ
, oRNQ
, RNQ
), neon_fcmp_absolute_inv
),
24178 NUF(vacle
, 0000e10
, 3, (RNDQ
, oRNDQ
, RNDQ
), neon_fcmp_absolute_inv
),
24179 NUF(vacleq
, 0000e10
, 3, (RNQ
, oRNQ
, RNQ
), neon_fcmp_absolute_inv
),
24180 NUF(vrecps
, 0000f10
, 3, (RNDQ
, oRNDQ
, RNDQ
), neon_step
),
24181 NUF(vrecpsq
, 0000f10
, 3, (RNQ
, oRNQ
, RNQ
), neon_step
),
24182 NUF(vrsqrts
, 0200f10
, 3, (RNDQ
, oRNDQ
, RNDQ
), neon_step
),
24183 NUF(vrsqrtsq
, 0200f10
, 3, (RNQ
, oRNQ
, RNQ
), neon_step
),
24184 /* ARM v8.1 extension. */
24185 nUF (vqrdmlahq
, _vqrdmlah
, 3, (RNQ
, oRNQ
, RNDQ_RNSC
), neon_qrdmlah
),
24186 nUF (vqrdmlsh
, _vqrdmlsh
, 3, (RNDQ
, oRNDQ
, RNDQ_RNSC
), neon_qrdmlah
),
24187 nUF (vqrdmlshq
, _vqrdmlsh
, 3, (RNQ
, oRNQ
, RNDQ_RNSC
), neon_qrdmlah
),
24189 /* Two address, int/float. Types S8 S16 S32 F32. */
24190 NUF(vabsq
, 1b10300
, 2, (RNQ
, RNQ
), neon_abs_neg
),
24191 NUF(vnegq
, 1b10380
, 2, (RNQ
, RNQ
), neon_abs_neg
),
24193 /* Data processing with two registers and a shift amount. */
24194 /* Right shifts, and variants with rounding.
24195 Types accepted S8 S16 S32 S64 U8 U16 U32 U64. */
24196 NUF(vshr
, 0800010, 3, (RNDQ
, oRNDQ
, I64z
), neon_rshift_round_imm
),
24197 NUF(vshrq
, 0800010, 3, (RNQ
, oRNQ
, I64z
), neon_rshift_round_imm
),
24198 NUF(vrshr
, 0800210, 3, (RNDQ
, oRNDQ
, I64z
), neon_rshift_round_imm
),
24199 NUF(vrshrq
, 0800210, 3, (RNQ
, oRNQ
, I64z
), neon_rshift_round_imm
),
24200 NUF(vsra
, 0800110, 3, (RNDQ
, oRNDQ
, I64
), neon_rshift_round_imm
),
24201 NUF(vsraq
, 0800110, 3, (RNQ
, oRNQ
, I64
), neon_rshift_round_imm
),
24202 NUF(vrsra
, 0800310, 3, (RNDQ
, oRNDQ
, I64
), neon_rshift_round_imm
),
24203 NUF(vrsraq
, 0800310, 3, (RNQ
, oRNQ
, I64
), neon_rshift_round_imm
),
24204 /* Shift and insert. Sizes accepted 8 16 32 64. */
24205 NUF(vsli
, 1800510, 3, (RNDQ
, oRNDQ
, I63
), neon_sli
),
24206 NUF(vsliq
, 1800510, 3, (RNQ
, oRNQ
, I63
), neon_sli
),
24207 NUF(vsri
, 1800410, 3, (RNDQ
, oRNDQ
, I64
), neon_sri
),
24208 NUF(vsriq
, 1800410, 3, (RNQ
, oRNQ
, I64
), neon_sri
),
24209 /* QSHL{U} immediate accepts S8 S16 S32 S64 U8 U16 U32 U64. */
24210 NUF(vqshlu
, 1800610, 3, (RNDQ
, oRNDQ
, I63
), neon_qshlu_imm
),
24211 NUF(vqshluq
, 1800610, 3, (RNQ
, oRNQ
, I63
), neon_qshlu_imm
),
24212 /* Right shift immediate, saturating & narrowing, with rounding variants.
24213 Types accepted S16 S32 S64 U16 U32 U64. */
24214 NUF(vqshrn
, 0800910, 3, (RND
, RNQ
, I32z
), neon_rshift_sat_narrow
),
24215 NUF(vqrshrn
, 0800950, 3, (RND
, RNQ
, I32z
), neon_rshift_sat_narrow
),
24216 /* As above, unsigned. Types accepted S16 S32 S64. */
24217 NUF(vqshrun
, 0800810, 3, (RND
, RNQ
, I32z
), neon_rshift_sat_narrow_u
),
24218 NUF(vqrshrun
, 0800850, 3, (RND
, RNQ
, I32z
), neon_rshift_sat_narrow_u
),
24219 /* Right shift narrowing. Types accepted I16 I32 I64. */
24220 NUF(vshrn
, 0800810, 3, (RND
, RNQ
, I32z
), neon_rshift_narrow
),
24221 NUF(vrshrn
, 0800850, 3, (RND
, RNQ
, I32z
), neon_rshift_narrow
),
24222 /* Special case. Types S8 S16 S32 U8 U16 U32. Handles max shift variant. */
24223 nUF(vshll
, _vshll
, 3, (RNQ
, RND
, I32
), neon_shll
),
24224 /* CVT with optional immediate for fixed-point variant. */
24225 nUF(vcvtq
, _vcvt
, 3, (RNQ
, RNQ
, oI32b
), neon_cvt
),
24227 nUF(vmvnq
, _vmvn
, 2, (RNQ
, RNDQ_Ibig
), neon_mvn
),
24229 /* Data processing, three registers of different lengths. */
24230 /* Dyadic, long insns. Types S8 S16 S32 U8 U16 U32. */
24231 NUF(vabal
, 0800500, 3, (RNQ
, RND
, RND
), neon_abal
),
24232 /* If not scalar, fall back to neon_dyadic_long.
24233 Vector types as above, scalar types S16 S32 U16 U32. */
24234 nUF(vmlal
, _vmlal
, 3, (RNQ
, RND
, RND_RNSC
), neon_mac_maybe_scalar_long
),
24235 nUF(vmlsl
, _vmlsl
, 3, (RNQ
, RND
, RND_RNSC
), neon_mac_maybe_scalar_long
),
24236 /* Dyadic, widening insns. Types S8 S16 S32 U8 U16 U32. */
24237 NUF(vaddw
, 0800100, 3, (RNQ
, oRNQ
, RND
), neon_dyadic_wide
),
24238 NUF(vsubw
, 0800300, 3, (RNQ
, oRNQ
, RND
), neon_dyadic_wide
),
24239 /* Dyadic, narrowing insns. Types I16 I32 I64. */
24240 NUF(vaddhn
, 0800400, 3, (RND
, RNQ
, RNQ
), neon_dyadic_narrow
),
24241 NUF(vraddhn
, 1800400, 3, (RND
, RNQ
, RNQ
), neon_dyadic_narrow
),
24242 NUF(vsubhn
, 0800600, 3, (RND
, RNQ
, RNQ
), neon_dyadic_narrow
),
24243 NUF(vrsubhn
, 1800600, 3, (RND
, RNQ
, RNQ
), neon_dyadic_narrow
),
24244 /* Saturating doubling multiplies. Types S16 S32. */
24245 nUF(vqdmlal
, _vqdmlal
, 3, (RNQ
, RND
, RND_RNSC
), neon_mul_sat_scalar_long
),
24246 nUF(vqdmlsl
, _vqdmlsl
, 3, (RNQ
, RND
, RND_RNSC
), neon_mul_sat_scalar_long
),
24247 nUF(vqdmull
, _vqdmull
, 3, (RNQ
, RND
, RND_RNSC
), neon_mul_sat_scalar_long
),
24248 /* VMULL. Vector types S8 S16 S32 U8 U16 U32 P8, scalar types
24249 S16 S32 U16 U32. */
24250 nUF(vmull
, _vmull
, 3, (RNQ
, RND
, RND_RNSC
), neon_vmull
),
24252 /* Extract. Size 8. */
24253 NUF(vext
, 0b00000, 4, (RNDQ
, oRNDQ
, RNDQ
, I15
), neon_ext
),
24254 NUF(vextq
, 0b00000, 4, (RNQ
, oRNQ
, RNQ
, I15
), neon_ext
),
24256 /* Two registers, miscellaneous. */
24257 /* Reverse. Sizes 8 16 32 (must be < size in opcode). */
24258 NUF(vrev64
, 1b00000
, 2, (RNDQ
, RNDQ
), neon_rev
),
24259 NUF(vrev64q
, 1b00000
, 2, (RNQ
, RNQ
), neon_rev
),
24260 NUF(vrev32
, 1b00080
, 2, (RNDQ
, RNDQ
), neon_rev
),
24261 NUF(vrev32q
, 1b00080
, 2, (RNQ
, RNQ
), neon_rev
),
24262 NUF(vrev16
, 1b00100
, 2, (RNDQ
, RNDQ
), neon_rev
),
24263 NUF(vrev16q
, 1b00100
, 2, (RNQ
, RNQ
), neon_rev
),
24264 /* Vector replicate. Sizes 8 16 32. */
24265 nCE(vdupq
, _vdup
, 2, (RNQ
, RR_RNSC
), neon_dup
),
24266 /* VMOVL. Types S8 S16 S32 U8 U16 U32. */
24267 NUF(vmovl
, 0800a10
, 2, (RNQ
, RND
), neon_movl
),
24268 /* VMOVN. Types I16 I32 I64. */
24269 nUF(vmovn
, _vmovn
, 2, (RND
, RNQ
), neon_movn
),
24270 /* VQMOVN. Types S16 S32 S64 U16 U32 U64. */
24271 nUF(vqmovn
, _vqmovn
, 2, (RND
, RNQ
), neon_qmovn
),
24272 /* VQMOVUN. Types S16 S32 S64. */
24273 nUF(vqmovun
, _vqmovun
, 2, (RND
, RNQ
), neon_qmovun
),
24274 /* VZIP / VUZP. Sizes 8 16 32. */
24275 NUF(vzip
, 1b20180
, 2, (RNDQ
, RNDQ
), neon_zip_uzp
),
24276 NUF(vzipq
, 1b20180
, 2, (RNQ
, RNQ
), neon_zip_uzp
),
24277 NUF(vuzp
, 1b20100
, 2, (RNDQ
, RNDQ
), neon_zip_uzp
),
24278 NUF(vuzpq
, 1b20100
, 2, (RNQ
, RNQ
), neon_zip_uzp
),
24279 /* VQABS / VQNEG. Types S8 S16 S32. */
24280 NUF(vqabsq
, 1b00700
, 2, (RNQ
, RNQ
), neon_sat_abs_neg
),
24281 NUF(vqnegq
, 1b00780
, 2, (RNQ
, RNQ
), neon_sat_abs_neg
),
24282 /* Pairwise, lengthening. Types S8 S16 S32 U8 U16 U32. */
24283 NUF(vpadal
, 1b00600
, 2, (RNDQ
, RNDQ
), neon_pair_long
),
24284 NUF(vpadalq
, 1b00600
, 2, (RNQ
, RNQ
), neon_pair_long
),
24285 NUF(vpaddl
, 1b00200
, 2, (RNDQ
, RNDQ
), neon_pair_long
),
24286 NUF(vpaddlq
, 1b00200
, 2, (RNQ
, RNQ
), neon_pair_long
),
24287 /* Reciprocal estimates. Types U32 F16 F32. */
24288 NUF(vrecpe
, 1b30400
, 2, (RNDQ
, RNDQ
), neon_recip_est
),
24289 NUF(vrecpeq
, 1b30400
, 2, (RNQ
, RNQ
), neon_recip_est
),
24290 NUF(vrsqrte
, 1b30480
, 2, (RNDQ
, RNDQ
), neon_recip_est
),
24291 NUF(vrsqrteq
, 1b30480
, 2, (RNQ
, RNQ
), neon_recip_est
),
24292 /* VCLS. Types S8 S16 S32. */
24293 NUF(vclsq
, 1b00400
, 2, (RNQ
, RNQ
), neon_cls
),
24294 /* VCLZ. Types I8 I16 I32. */
24295 NUF(vclzq
, 1b00480
, 2, (RNQ
, RNQ
), neon_clz
),
24296 /* VCNT. Size 8. */
24297 NUF(vcnt
, 1b00500
, 2, (RNDQ
, RNDQ
), neon_cnt
),
24298 NUF(vcntq
, 1b00500
, 2, (RNQ
, RNQ
), neon_cnt
),
24299 /* Two address, untyped. */
24300 NUF(vswp
, 1b20000
, 2, (RNDQ
, RNDQ
), neon_swp
),
24301 NUF(vswpq
, 1b20000
, 2, (RNQ
, RNQ
), neon_swp
),
24302 /* VTRN. Sizes 8 16 32. */
24303 nUF(vtrn
, _vtrn
, 2, (RNDQ
, RNDQ
), neon_trn
),
24304 nUF(vtrnq
, _vtrn
, 2, (RNQ
, RNQ
), neon_trn
),
24306 /* Table lookup. Size 8. */
24307 NUF(vtbl
, 1b00800
, 3, (RND
, NRDLST
, RND
), neon_tbl_tbx
),
24308 NUF(vtbx
, 1b00840
, 3, (RND
, NRDLST
, RND
), neon_tbl_tbx
),
24310 #undef THUMB_VARIANT
24311 #define THUMB_VARIANT & fpu_vfp_v3_or_neon_ext
24313 #define ARM_VARIANT & fpu_vfp_v3_or_neon_ext
24315 /* Neon element/structure load/store. */
24316 nUF(vld1
, _vld1
, 2, (NSTRLST
, ADDR
), neon_ldx_stx
),
24317 nUF(vst1
, _vst1
, 2, (NSTRLST
, ADDR
), neon_ldx_stx
),
24318 nUF(vld2
, _vld2
, 2, (NSTRLST
, ADDR
), neon_ldx_stx
),
24319 nUF(vst2
, _vst2
, 2, (NSTRLST
, ADDR
), neon_ldx_stx
),
24320 nUF(vld3
, _vld3
, 2, (NSTRLST
, ADDR
), neon_ldx_stx
),
24321 nUF(vst3
, _vst3
, 2, (NSTRLST
, ADDR
), neon_ldx_stx
),
24322 nUF(vld4
, _vld4
, 2, (NSTRLST
, ADDR
), neon_ldx_stx
),
24323 nUF(vst4
, _vst4
, 2, (NSTRLST
, ADDR
), neon_ldx_stx
),
24325 #undef THUMB_VARIANT
24326 #define THUMB_VARIANT & fpu_vfp_ext_v3xd
24328 #define ARM_VARIANT & fpu_vfp_ext_v3xd
24329 cCE("fconsts", eb00a00
, 2, (RVS
, I255
), vfp_sp_const
),
24330 cCE("fshtos", eba0a40
, 2, (RVS
, I16z
), vfp_sp_conv_16
),
24331 cCE("fsltos", eba0ac0
, 2, (RVS
, I32
), vfp_sp_conv_32
),
24332 cCE("fuhtos", ebb0a40
, 2, (RVS
, I16z
), vfp_sp_conv_16
),
24333 cCE("fultos", ebb0ac0
, 2, (RVS
, I32
), vfp_sp_conv_32
),
24334 cCE("ftoshs", ebe0a40
, 2, (RVS
, I16z
), vfp_sp_conv_16
),
24335 cCE("ftosls", ebe0ac0
, 2, (RVS
, I32
), vfp_sp_conv_32
),
24336 cCE("ftouhs", ebf0a40
, 2, (RVS
, I16z
), vfp_sp_conv_16
),
24337 cCE("ftouls", ebf0ac0
, 2, (RVS
, I32
), vfp_sp_conv_32
),
24339 #undef THUMB_VARIANT
24340 #define THUMB_VARIANT & fpu_vfp_ext_v3
24342 #define ARM_VARIANT & fpu_vfp_ext_v3
24344 cCE("fconstd", eb00b00
, 2, (RVD
, I255
), vfp_dp_const
),
24345 cCE("fshtod", eba0b40
, 2, (RVD
, I16z
), vfp_dp_conv_16
),
24346 cCE("fsltod", eba0bc0
, 2, (RVD
, I32
), vfp_dp_conv_32
),
24347 cCE("fuhtod", ebb0b40
, 2, (RVD
, I16z
), vfp_dp_conv_16
),
24348 cCE("fultod", ebb0bc0
, 2, (RVD
, I32
), vfp_dp_conv_32
),
24349 cCE("ftoshd", ebe0b40
, 2, (RVD
, I16z
), vfp_dp_conv_16
),
24350 cCE("ftosld", ebe0bc0
, 2, (RVD
, I32
), vfp_dp_conv_32
),
24351 cCE("ftouhd", ebf0b40
, 2, (RVD
, I16z
), vfp_dp_conv_16
),
24352 cCE("ftould", ebf0bc0
, 2, (RVD
, I32
), vfp_dp_conv_32
),
24355 #define ARM_VARIANT & fpu_vfp_ext_fma
24356 #undef THUMB_VARIANT
24357 #define THUMB_VARIANT & fpu_vfp_ext_fma
24358 /* Mnemonics shared by Neon, VFP and MVE. These are included in the
24359 VFP FMA variant; NEON and VFP FMA always includes the NEON
24360 FMA instructions. */
24361 mnCEF(vfma
, _vfma
, 3, (RNSDQMQ
, oRNSDQMQ
, RNSDQMQR
), neon_fmac
),
24362 mnCEF(vfms
, _vfms
, 3, (RNSDQMQ
, oRNSDQMQ
, RNSDQMQ
), neon_fmac
),
24364 /* ffmas/ffmad/ffmss/ffmsd are dummy mnemonics to satisfy gas;
24365 the v form should always be used. */
24366 cCE("ffmas", ea00a00
, 3, (RVS
, RVS
, RVS
), vfp_sp_dyadic
),
24367 cCE("ffnmas", ea00a40
, 3, (RVS
, RVS
, RVS
), vfp_sp_dyadic
),
24368 cCE("ffmad", ea00b00
, 3, (RVD
, RVD
, RVD
), vfp_dp_rd_rn_rm
),
24369 cCE("ffnmad", ea00b40
, 3, (RVD
, RVD
, RVD
), vfp_dp_rd_rn_rm
),
24370 nCE(vfnma
, _vfnma
, 3, (RVSD
, RVSD
, RVSD
), vfp_nsyn_nmul
),
24371 nCE(vfnms
, _vfnms
, 3, (RVSD
, RVSD
, RVSD
), vfp_nsyn_nmul
),
24373 #undef THUMB_VARIANT
24375 #define ARM_VARIANT & arm_cext_xscale /* Intel XScale extensions. */
24377 cCE("mia", e200010
, 3, (RXA
, RRnpc
, RRnpc
), xsc_mia
),
24378 cCE("miaph", e280010
, 3, (RXA
, RRnpc
, RRnpc
), xsc_mia
),
24379 cCE("miabb", e2c0010
, 3, (RXA
, RRnpc
, RRnpc
), xsc_mia
),
24380 cCE("miabt", e2d0010
, 3, (RXA
, RRnpc
, RRnpc
), xsc_mia
),
24381 cCE("miatb", e2e0010
, 3, (RXA
, RRnpc
, RRnpc
), xsc_mia
),
24382 cCE("miatt", e2f0010
, 3, (RXA
, RRnpc
, RRnpc
), xsc_mia
),
24383 cCE("mar", c400000
, 3, (RXA
, RRnpc
, RRnpc
), xsc_mar
),
24384 cCE("mra", c500000
, 3, (RRnpc
, RRnpc
, RXA
), xsc_mra
),
24387 #define ARM_VARIANT & arm_cext_iwmmxt /* Intel Wireless MMX technology. */
24389 cCE("tandcb", e13f130
, 1, (RR
), iwmmxt_tandorc
),
24390 cCE("tandch", e53f130
, 1, (RR
), iwmmxt_tandorc
),
24391 cCE("tandcw", e93f130
, 1, (RR
), iwmmxt_tandorc
),
24392 cCE("tbcstb", e400010
, 2, (RIWR
, RR
), rn_rd
),
24393 cCE("tbcsth", e400050
, 2, (RIWR
, RR
), rn_rd
),
24394 cCE("tbcstw", e400090
, 2, (RIWR
, RR
), rn_rd
),
24395 cCE("textrcb", e130170
, 2, (RR
, I7
), iwmmxt_textrc
),
24396 cCE("textrch", e530170
, 2, (RR
, I7
), iwmmxt_textrc
),
24397 cCE("textrcw", e930170
, 2, (RR
, I7
), iwmmxt_textrc
),
24398 cCE("textrmub",e100070
, 3, (RR
, RIWR
, I7
), iwmmxt_textrm
),
24399 cCE("textrmuh",e500070
, 3, (RR
, RIWR
, I7
), iwmmxt_textrm
),
24400 cCE("textrmuw",e900070
, 3, (RR
, RIWR
, I7
), iwmmxt_textrm
),
24401 cCE("textrmsb",e100078
, 3, (RR
, RIWR
, I7
), iwmmxt_textrm
),
24402 cCE("textrmsh",e500078
, 3, (RR
, RIWR
, I7
), iwmmxt_textrm
),
24403 cCE("textrmsw",e900078
, 3, (RR
, RIWR
, I7
), iwmmxt_textrm
),
24404 cCE("tinsrb", e600010
, 3, (RIWR
, RR
, I7
), iwmmxt_tinsr
),
24405 cCE("tinsrh", e600050
, 3, (RIWR
, RR
, I7
), iwmmxt_tinsr
),
24406 cCE("tinsrw", e600090
, 3, (RIWR
, RR
, I7
), iwmmxt_tinsr
),
24407 cCE("tmcr", e000110
, 2, (RIWC_RIWG
, RR
), rn_rd
),
24408 cCE("tmcrr", c400000
, 3, (RIWR
, RR
, RR
), rm_rd_rn
),
24409 cCE("tmia", e200010
, 3, (RIWR
, RR
, RR
), iwmmxt_tmia
),
24410 cCE("tmiaph", e280010
, 3, (RIWR
, RR
, RR
), iwmmxt_tmia
),
24411 cCE("tmiabb", e2c0010
, 3, (RIWR
, RR
, RR
), iwmmxt_tmia
),
24412 cCE("tmiabt", e2d0010
, 3, (RIWR
, RR
, RR
), iwmmxt_tmia
),
24413 cCE("tmiatb", e2e0010
, 3, (RIWR
, RR
, RR
), iwmmxt_tmia
),
24414 cCE("tmiatt", e2f0010
, 3, (RIWR
, RR
, RR
), iwmmxt_tmia
),
24415 cCE("tmovmskb",e100030
, 2, (RR
, RIWR
), rd_rn
),
24416 cCE("tmovmskh",e500030
, 2, (RR
, RIWR
), rd_rn
),
24417 cCE("tmovmskw",e900030
, 2, (RR
, RIWR
), rd_rn
),
24418 cCE("tmrc", e100110
, 2, (RR
, RIWC_RIWG
), rd_rn
),
24419 cCE("tmrrc", c500000
, 3, (RR
, RR
, RIWR
), rd_rn_rm
),
24420 cCE("torcb", e13f150
, 1, (RR
), iwmmxt_tandorc
),
24421 cCE("torch", e53f150
, 1, (RR
), iwmmxt_tandorc
),
24422 cCE("torcw", e93f150
, 1, (RR
), iwmmxt_tandorc
),
24423 cCE("waccb", e0001c0
, 2, (RIWR
, RIWR
), rd_rn
),
24424 cCE("wacch", e4001c0
, 2, (RIWR
, RIWR
), rd_rn
),
24425 cCE("waccw", e8001c0
, 2, (RIWR
, RIWR
), rd_rn
),
24426 cCE("waddbss", e300180
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24427 cCE("waddb", e000180
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24428 cCE("waddbus", e100180
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24429 cCE("waddhss", e700180
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24430 cCE("waddh", e400180
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24431 cCE("waddhus", e500180
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24432 cCE("waddwss", eb00180
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24433 cCE("waddw", e800180
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24434 cCE("waddwus", e900180
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24435 cCE("waligni", e000020
, 4, (RIWR
, RIWR
, RIWR
, I7
), iwmmxt_waligni
),
24436 cCE("walignr0",e800020
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24437 cCE("walignr1",e900020
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24438 cCE("walignr2",ea00020
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24439 cCE("walignr3",eb00020
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24440 cCE("wand", e200000
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24441 cCE("wandn", e300000
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24442 cCE("wavg2b", e800000
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24443 cCE("wavg2br", e900000
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24444 cCE("wavg2h", ec00000
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24445 cCE("wavg2hr", ed00000
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24446 cCE("wcmpeqb", e000060
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24447 cCE("wcmpeqh", e400060
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24448 cCE("wcmpeqw", e800060
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24449 cCE("wcmpgtub",e100060
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24450 cCE("wcmpgtuh",e500060
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24451 cCE("wcmpgtuw",e900060
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24452 cCE("wcmpgtsb",e300060
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24453 cCE("wcmpgtsh",e700060
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24454 cCE("wcmpgtsw",eb00060
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24455 cCE("wldrb", c100000
, 2, (RIWR
, ADDR
), iwmmxt_wldstbh
),
24456 cCE("wldrh", c500000
, 2, (RIWR
, ADDR
), iwmmxt_wldstbh
),
24457 cCE("wldrw", c100100
, 2, (RIWR_RIWC
, ADDR
), iwmmxt_wldstw
),
24458 cCE("wldrd", c500100
, 2, (RIWR
, ADDR
), iwmmxt_wldstd
),
24459 cCE("wmacs", e600100
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24460 cCE("wmacsz", e700100
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24461 cCE("wmacu", e400100
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24462 cCE("wmacuz", e500100
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24463 cCE("wmadds", ea00100
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24464 cCE("wmaddu", e800100
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24465 cCE("wmaxsb", e200160
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24466 cCE("wmaxsh", e600160
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24467 cCE("wmaxsw", ea00160
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24468 cCE("wmaxub", e000160
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24469 cCE("wmaxuh", e400160
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24470 cCE("wmaxuw", e800160
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24471 cCE("wminsb", e300160
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24472 cCE("wminsh", e700160
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24473 cCE("wminsw", eb00160
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24474 cCE("wminub", e100160
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24475 cCE("wminuh", e500160
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24476 cCE("wminuw", e900160
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24477 cCE("wmov", e000000
, 2, (RIWR
, RIWR
), iwmmxt_wmov
),
24478 cCE("wmulsm", e300100
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24479 cCE("wmulsl", e200100
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24480 cCE("wmulum", e100100
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24481 cCE("wmulul", e000100
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24482 cCE("wor", e000000
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24483 cCE("wpackhss",e700080
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24484 cCE("wpackhus",e500080
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24485 cCE("wpackwss",eb00080
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24486 cCE("wpackwus",e900080
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24487 cCE("wpackdss",ef00080
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24488 cCE("wpackdus",ed00080
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24489 cCE("wrorh", e700040
, 3, (RIWR
, RIWR
, RIWR_I32z
),iwmmxt_wrwrwr_or_imm5
),
24490 cCE("wrorhg", e700148
, 3, (RIWR
, RIWR
, RIWG
), rd_rn_rm
),
24491 cCE("wrorw", eb00040
, 3, (RIWR
, RIWR
, RIWR_I32z
),iwmmxt_wrwrwr_or_imm5
),
24492 cCE("wrorwg", eb00148
, 3, (RIWR
, RIWR
, RIWG
), rd_rn_rm
),
24493 cCE("wrord", ef00040
, 3, (RIWR
, RIWR
, RIWR_I32z
),iwmmxt_wrwrwr_or_imm5
),
24494 cCE("wrordg", ef00148
, 3, (RIWR
, RIWR
, RIWG
), rd_rn_rm
),
24495 cCE("wsadb", e000120
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24496 cCE("wsadbz", e100120
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24497 cCE("wsadh", e400120
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24498 cCE("wsadhz", e500120
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24499 cCE("wshufh", e0001e0
, 3, (RIWR
, RIWR
, I255
), iwmmxt_wshufh
),
24500 cCE("wsllh", e500040
, 3, (RIWR
, RIWR
, RIWR_I32z
),iwmmxt_wrwrwr_or_imm5
),
24501 cCE("wsllhg", e500148
, 3, (RIWR
, RIWR
, RIWG
), rd_rn_rm
),
24502 cCE("wsllw", e900040
, 3, (RIWR
, RIWR
, RIWR_I32z
),iwmmxt_wrwrwr_or_imm5
),
24503 cCE("wsllwg", e900148
, 3, (RIWR
, RIWR
, RIWG
), rd_rn_rm
),
24504 cCE("wslld", ed00040
, 3, (RIWR
, RIWR
, RIWR_I32z
),iwmmxt_wrwrwr_or_imm5
),
24505 cCE("wslldg", ed00148
, 3, (RIWR
, RIWR
, RIWG
), rd_rn_rm
),
24506 cCE("wsrah", e400040
, 3, (RIWR
, RIWR
, RIWR_I32z
),iwmmxt_wrwrwr_or_imm5
),
24507 cCE("wsrahg", e400148
, 3, (RIWR
, RIWR
, RIWG
), rd_rn_rm
),
24508 cCE("wsraw", e800040
, 3, (RIWR
, RIWR
, RIWR_I32z
),iwmmxt_wrwrwr_or_imm5
),
24509 cCE("wsrawg", e800148
, 3, (RIWR
, RIWR
, RIWG
), rd_rn_rm
),
24510 cCE("wsrad", ec00040
, 3, (RIWR
, RIWR
, RIWR_I32z
),iwmmxt_wrwrwr_or_imm5
),
24511 cCE("wsradg", ec00148
, 3, (RIWR
, RIWR
, RIWG
), rd_rn_rm
),
24512 cCE("wsrlh", e600040
, 3, (RIWR
, RIWR
, RIWR_I32z
),iwmmxt_wrwrwr_or_imm5
),
24513 cCE("wsrlhg", e600148
, 3, (RIWR
, RIWR
, RIWG
), rd_rn_rm
),
24514 cCE("wsrlw", ea00040
, 3, (RIWR
, RIWR
, RIWR_I32z
),iwmmxt_wrwrwr_or_imm5
),
24515 cCE("wsrlwg", ea00148
, 3, (RIWR
, RIWR
, RIWG
), rd_rn_rm
),
24516 cCE("wsrld", ee00040
, 3, (RIWR
, RIWR
, RIWR_I32z
),iwmmxt_wrwrwr_or_imm5
),
24517 cCE("wsrldg", ee00148
, 3, (RIWR
, RIWR
, RIWG
), rd_rn_rm
),
24518 cCE("wstrb", c000000
, 2, (RIWR
, ADDR
), iwmmxt_wldstbh
),
24519 cCE("wstrh", c400000
, 2, (RIWR
, ADDR
), iwmmxt_wldstbh
),
24520 cCE("wstrw", c000100
, 2, (RIWR_RIWC
, ADDR
), iwmmxt_wldstw
),
24521 cCE("wstrd", c400100
, 2, (RIWR
, ADDR
), iwmmxt_wldstd
),
24522 cCE("wsubbss", e3001a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24523 cCE("wsubb", e0001a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24524 cCE("wsubbus", e1001a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24525 cCE("wsubhss", e7001a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24526 cCE("wsubh", e4001a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24527 cCE("wsubhus", e5001a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24528 cCE("wsubwss", eb001a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24529 cCE("wsubw", e8001a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24530 cCE("wsubwus", e9001a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24531 cCE("wunpckehub",e0000c0
, 2, (RIWR
, RIWR
), rd_rn
),
24532 cCE("wunpckehuh",e4000c0
, 2, (RIWR
, RIWR
), rd_rn
),
24533 cCE("wunpckehuw",e8000c0
, 2, (RIWR
, RIWR
), rd_rn
),
24534 cCE("wunpckehsb",e2000c0
, 2, (RIWR
, RIWR
), rd_rn
),
24535 cCE("wunpckehsh",e6000c0
, 2, (RIWR
, RIWR
), rd_rn
),
24536 cCE("wunpckehsw",ea000c0
, 2, (RIWR
, RIWR
), rd_rn
),
24537 cCE("wunpckihb", e1000c0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24538 cCE("wunpckihh", e5000c0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24539 cCE("wunpckihw", e9000c0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24540 cCE("wunpckelub",e0000e0
, 2, (RIWR
, RIWR
), rd_rn
),
24541 cCE("wunpckeluh",e4000e0
, 2, (RIWR
, RIWR
), rd_rn
),
24542 cCE("wunpckeluw",e8000e0
, 2, (RIWR
, RIWR
), rd_rn
),
24543 cCE("wunpckelsb",e2000e0
, 2, (RIWR
, RIWR
), rd_rn
),
24544 cCE("wunpckelsh",e6000e0
, 2, (RIWR
, RIWR
), rd_rn
),
24545 cCE("wunpckelsw",ea000e0
, 2, (RIWR
, RIWR
), rd_rn
),
24546 cCE("wunpckilb", e1000e0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24547 cCE("wunpckilh", e5000e0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24548 cCE("wunpckilw", e9000e0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24549 cCE("wxor", e100000
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24550 cCE("wzero", e300000
, 1, (RIWR
), iwmmxt_wzero
),
24553 #define ARM_VARIANT & arm_cext_iwmmxt2 /* Intel Wireless MMX technology, version 2. */
24555 cCE("torvscb", e12f190
, 1, (RR
), iwmmxt_tandorc
),
24556 cCE("torvsch", e52f190
, 1, (RR
), iwmmxt_tandorc
),
24557 cCE("torvscw", e92f190
, 1, (RR
), iwmmxt_tandorc
),
24558 cCE("wabsb", e2001c0
, 2, (RIWR
, RIWR
), rd_rn
),
24559 cCE("wabsh", e6001c0
, 2, (RIWR
, RIWR
), rd_rn
),
24560 cCE("wabsw", ea001c0
, 2, (RIWR
, RIWR
), rd_rn
),
24561 cCE("wabsdiffb", e1001c0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24562 cCE("wabsdiffh", e5001c0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24563 cCE("wabsdiffw", e9001c0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24564 cCE("waddbhusl", e2001a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24565 cCE("waddbhusm", e6001a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24566 cCE("waddhc", e600180
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24567 cCE("waddwc", ea00180
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24568 cCE("waddsubhx", ea001a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24569 cCE("wavg4", e400000
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24570 cCE("wavg4r", e500000
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24571 cCE("wmaddsn", ee00100
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24572 cCE("wmaddsx", eb00100
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24573 cCE("wmaddun", ec00100
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24574 cCE("wmaddux", e900100
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24575 cCE("wmerge", e000080
, 4, (RIWR
, RIWR
, RIWR
, I7
), iwmmxt_wmerge
),
24576 cCE("wmiabb", e0000a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24577 cCE("wmiabt", e1000a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24578 cCE("wmiatb", e2000a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24579 cCE("wmiatt", e3000a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24580 cCE("wmiabbn", e4000a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24581 cCE("wmiabtn", e5000a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24582 cCE("wmiatbn", e6000a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24583 cCE("wmiattn", e7000a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24584 cCE("wmiawbb", e800120
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24585 cCE("wmiawbt", e900120
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24586 cCE("wmiawtb", ea00120
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24587 cCE("wmiawtt", eb00120
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24588 cCE("wmiawbbn", ec00120
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24589 cCE("wmiawbtn", ed00120
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24590 cCE("wmiawtbn", ee00120
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24591 cCE("wmiawttn", ef00120
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24592 cCE("wmulsmr", ef00100
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24593 cCE("wmulumr", ed00100
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24594 cCE("wmulwumr", ec000c0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24595 cCE("wmulwsmr", ee000c0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24596 cCE("wmulwum", ed000c0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24597 cCE("wmulwsm", ef000c0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24598 cCE("wmulwl", eb000c0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24599 cCE("wqmiabb", e8000a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24600 cCE("wqmiabt", e9000a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24601 cCE("wqmiatb", ea000a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24602 cCE("wqmiatt", eb000a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24603 cCE("wqmiabbn", ec000a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24604 cCE("wqmiabtn", ed000a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24605 cCE("wqmiatbn", ee000a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24606 cCE("wqmiattn", ef000a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24607 cCE("wqmulm", e100080
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24608 cCE("wqmulmr", e300080
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24609 cCE("wqmulwm", ec000e0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24610 cCE("wqmulwmr", ee000e0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24611 cCE("wsubaddhx", ed001c0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24614 #define ARM_VARIANT & arm_cext_maverick /* Cirrus Maverick instructions. */
24616 cCE("cfldrs", c100400
, 2, (RMF
, ADDRGLDC
), rd_cpaddr
),
24617 cCE("cfldrd", c500400
, 2, (RMD
, ADDRGLDC
), rd_cpaddr
),
24618 cCE("cfldr32", c100500
, 2, (RMFX
, ADDRGLDC
), rd_cpaddr
),
24619 cCE("cfldr64", c500500
, 2, (RMDX
, ADDRGLDC
), rd_cpaddr
),
24620 cCE("cfstrs", c000400
, 2, (RMF
, ADDRGLDC
), rd_cpaddr
),
24621 cCE("cfstrd", c400400
, 2, (RMD
, ADDRGLDC
), rd_cpaddr
),
24622 cCE("cfstr32", c000500
, 2, (RMFX
, ADDRGLDC
), rd_cpaddr
),
24623 cCE("cfstr64", c400500
, 2, (RMDX
, ADDRGLDC
), rd_cpaddr
),
24624 cCE("cfmvsr", e000450
, 2, (RMF
, RR
), rn_rd
),
24625 cCE("cfmvrs", e100450
, 2, (RR
, RMF
), rd_rn
),
24626 cCE("cfmvdlr", e000410
, 2, (RMD
, RR
), rn_rd
),
24627 cCE("cfmvrdl", e100410
, 2, (RR
, RMD
), rd_rn
),
24628 cCE("cfmvdhr", e000430
, 2, (RMD
, RR
), rn_rd
),
24629 cCE("cfmvrdh", e100430
, 2, (RR
, RMD
), rd_rn
),
24630 cCE("cfmv64lr",e000510
, 2, (RMDX
, RR
), rn_rd
),
24631 cCE("cfmvr64l",e100510
, 2, (RR
, RMDX
), rd_rn
),
24632 cCE("cfmv64hr",e000530
, 2, (RMDX
, RR
), rn_rd
),
24633 cCE("cfmvr64h",e100530
, 2, (RR
, RMDX
), rd_rn
),
24634 cCE("cfmval32",e200440
, 2, (RMAX
, RMFX
), rd_rn
),
24635 cCE("cfmv32al",e100440
, 2, (RMFX
, RMAX
), rd_rn
),
24636 cCE("cfmvam32",e200460
, 2, (RMAX
, RMFX
), rd_rn
),
24637 cCE("cfmv32am",e100460
, 2, (RMFX
, RMAX
), rd_rn
),
24638 cCE("cfmvah32",e200480
, 2, (RMAX
, RMFX
), rd_rn
),
24639 cCE("cfmv32ah",e100480
, 2, (RMFX
, RMAX
), rd_rn
),
24640 cCE("cfmva32", e2004a0
, 2, (RMAX
, RMFX
), rd_rn
),
24641 cCE("cfmv32a", e1004a0
, 2, (RMFX
, RMAX
), rd_rn
),
24642 cCE("cfmva64", e2004c0
, 2, (RMAX
, RMDX
), rd_rn
),
24643 cCE("cfmv64a", e1004c0
, 2, (RMDX
, RMAX
), rd_rn
),
24644 cCE("cfmvsc32",e2004e0
, 2, (RMDS
, RMDX
), mav_dspsc
),
24645 cCE("cfmv32sc",e1004e0
, 2, (RMDX
, RMDS
), rd
),
24646 cCE("cfcpys", e000400
, 2, (RMF
, RMF
), rd_rn
),
24647 cCE("cfcpyd", e000420
, 2, (RMD
, RMD
), rd_rn
),
24648 cCE("cfcvtsd", e000460
, 2, (RMD
, RMF
), rd_rn
),
24649 cCE("cfcvtds", e000440
, 2, (RMF
, RMD
), rd_rn
),
24650 cCE("cfcvt32s",e000480
, 2, (RMF
, RMFX
), rd_rn
),
24651 cCE("cfcvt32d",e0004a0
, 2, (RMD
, RMFX
), rd_rn
),
24652 cCE("cfcvt64s",e0004c0
, 2, (RMF
, RMDX
), rd_rn
),
24653 cCE("cfcvt64d",e0004e0
, 2, (RMD
, RMDX
), rd_rn
),
24654 cCE("cfcvts32",e100580
, 2, (RMFX
, RMF
), rd_rn
),
24655 cCE("cfcvtd32",e1005a0
, 2, (RMFX
, RMD
), rd_rn
),
24656 cCE("cftruncs32",e1005c0
, 2, (RMFX
, RMF
), rd_rn
),
24657 cCE("cftruncd32",e1005e0
, 2, (RMFX
, RMD
), rd_rn
),
24658 cCE("cfrshl32",e000550
, 3, (RMFX
, RMFX
, RR
), mav_triple
),
24659 cCE("cfrshl64",e000570
, 3, (RMDX
, RMDX
, RR
), mav_triple
),
24660 cCE("cfsh32", e000500
, 3, (RMFX
, RMFX
, I63s
), mav_shift
),
24661 cCE("cfsh64", e200500
, 3, (RMDX
, RMDX
, I63s
), mav_shift
),
24662 cCE("cfcmps", e100490
, 3, (RR
, RMF
, RMF
), rd_rn_rm
),
24663 cCE("cfcmpd", e1004b0
, 3, (RR
, RMD
, RMD
), rd_rn_rm
),
24664 cCE("cfcmp32", e100590
, 3, (RR
, RMFX
, RMFX
), rd_rn_rm
),
24665 cCE("cfcmp64", e1005b0
, 3, (RR
, RMDX
, RMDX
), rd_rn_rm
),
24666 cCE("cfabss", e300400
, 2, (RMF
, RMF
), rd_rn
),
24667 cCE("cfabsd", e300420
, 2, (RMD
, RMD
), rd_rn
),
24668 cCE("cfnegs", e300440
, 2, (RMF
, RMF
), rd_rn
),
24669 cCE("cfnegd", e300460
, 2, (RMD
, RMD
), rd_rn
),
24670 cCE("cfadds", e300480
, 3, (RMF
, RMF
, RMF
), rd_rn_rm
),
24671 cCE("cfaddd", e3004a0
, 3, (RMD
, RMD
, RMD
), rd_rn_rm
),
24672 cCE("cfsubs", e3004c0
, 3, (RMF
, RMF
, RMF
), rd_rn_rm
),
24673 cCE("cfsubd", e3004e0
, 3, (RMD
, RMD
, RMD
), rd_rn_rm
),
24674 cCE("cfmuls", e100400
, 3, (RMF
, RMF
, RMF
), rd_rn_rm
),
24675 cCE("cfmuld", e100420
, 3, (RMD
, RMD
, RMD
), rd_rn_rm
),
24676 cCE("cfabs32", e300500
, 2, (RMFX
, RMFX
), rd_rn
),
24677 cCE("cfabs64", e300520
, 2, (RMDX
, RMDX
), rd_rn
),
24678 cCE("cfneg32", e300540
, 2, (RMFX
, RMFX
), rd_rn
),
24679 cCE("cfneg64", e300560
, 2, (RMDX
, RMDX
), rd_rn
),
24680 cCE("cfadd32", e300580
, 3, (RMFX
, RMFX
, RMFX
), rd_rn_rm
),
24681 cCE("cfadd64", e3005a0
, 3, (RMDX
, RMDX
, RMDX
), rd_rn_rm
),
24682 cCE("cfsub32", e3005c0
, 3, (RMFX
, RMFX
, RMFX
), rd_rn_rm
),
24683 cCE("cfsub64", e3005e0
, 3, (RMDX
, RMDX
, RMDX
), rd_rn_rm
),
24684 cCE("cfmul32", e100500
, 3, (RMFX
, RMFX
, RMFX
), rd_rn_rm
),
24685 cCE("cfmul64", e100520
, 3, (RMDX
, RMDX
, RMDX
), rd_rn_rm
),
24686 cCE("cfmac32", e100540
, 3, (RMFX
, RMFX
, RMFX
), rd_rn_rm
),
24687 cCE("cfmsc32", e100560
, 3, (RMFX
, RMFX
, RMFX
), rd_rn_rm
),
24688 cCE("cfmadd32",e000600
, 4, (RMAX
, RMFX
, RMFX
, RMFX
), mav_quad
),
24689 cCE("cfmsub32",e100600
, 4, (RMAX
, RMFX
, RMFX
, RMFX
), mav_quad
),
24690 cCE("cfmadda32", e200600
, 4, (RMAX
, RMAX
, RMFX
, RMFX
), mav_quad
),
24691 cCE("cfmsuba32", e300600
, 4, (RMAX
, RMAX
, RMFX
, RMFX
), mav_quad
),
24693 /* ARMv8.5-A instructions. */
24695 #define ARM_VARIANT & arm_ext_sb
24696 #undef THUMB_VARIANT
24697 #define THUMB_VARIANT & arm_ext_sb
24698 TUF("sb", 57ff070
, f3bf8f70
, 0, (), noargs
, noargs
),
24701 #define ARM_VARIANT & arm_ext_predres
24702 #undef THUMB_VARIANT
24703 #define THUMB_VARIANT & arm_ext_predres
24704 CE("cfprctx", e070f93
, 1, (RRnpc
), rd
),
24705 CE("dvprctx", e070fb3
, 1, (RRnpc
), rd
),
24706 CE("cpprctx", e070ff3
, 1, (RRnpc
), rd
),
24708 /* ARMv8-M instructions. */
24710 #define ARM_VARIANT NULL
24711 #undef THUMB_VARIANT
24712 #define THUMB_VARIANT & arm_ext_v8m
24713 ToU("sg", e97fe97f
, 0, (), noargs
),
24714 ToC("blxns", 4784, 1, (RRnpc
), t_blx
),
24715 ToC("bxns", 4704, 1, (RRnpc
), t_bx
),
24716 ToC("tt", e840f000
, 2, (RRnpc
, RRnpc
), tt
),
24717 ToC("ttt", e840f040
, 2, (RRnpc
, RRnpc
), tt
),
24718 ToC("tta", e840f080
, 2, (RRnpc
, RRnpc
), tt
),
24719 ToC("ttat", e840f0c0
, 2, (RRnpc
, RRnpc
), tt
),
24721 /* FP for ARMv8-M Mainline. Enabled for ARMv8-M Mainline because the
24722 instructions behave as nop if no VFP is present. */
24723 #undef THUMB_VARIANT
24724 #define THUMB_VARIANT & arm_ext_v8m_main
24725 ToC("vlldm", ec300a00
, 1, (RRnpc
), rn
),
24726 ToC("vlstm", ec200a00
, 1, (RRnpc
), rn
),
24728 /* Armv8.1-M Mainline instructions. */
24729 #undef THUMB_VARIANT
24730 #define THUMB_VARIANT & arm_ext_v8_1m_main
24731 toC("bf", _bf
, 2, (EXPs
, EXPs
), t_branch_future
),
24732 toU("bfcsel", _bfcsel
, 4, (EXPs
, EXPs
, EXPs
, COND
), t_branch_future
),
24733 toC("bfx", _bfx
, 2, (EXPs
, RRnpcsp
), t_branch_future
),
24734 toC("bfl", _bfl
, 2, (EXPs
, EXPs
), t_branch_future
),
24735 toC("bflx", _bflx
, 2, (EXPs
, RRnpcsp
), t_branch_future
),
24737 toU("dls", _dls
, 2, (LR
, RRnpcsp
), t_loloop
),
24738 toU("wls", _wls
, 3, (LR
, RRnpcsp
, EXP
), t_loloop
),
24739 toU("le", _le
, 2, (oLR
, EXP
), t_loloop
),
24741 ToC("clrm", e89f0000
, 1, (CLRMLST
), t_clrm
),
24742 ToC("vscclrm", ec9f0a00
, 1, (VRSDVLST
), t_vscclrm
),
24744 #undef THUMB_VARIANT
24745 #define THUMB_VARIANT & mve_ext
24747 ToC("vpt", ee410f00
, 3, (COND
, RMQ
, RMQRZ
), mve_vpt
),
24748 ToC("vptt", ee018f00
, 3, (COND
, RMQ
, RMQRZ
), mve_vpt
),
24749 ToC("vpte", ee418f00
, 3, (COND
, RMQ
, RMQRZ
), mve_vpt
),
24750 ToC("vpttt", ee014f00
, 3, (COND
, RMQ
, RMQRZ
), mve_vpt
),
24751 ToC("vptte", ee01cf00
, 3, (COND
, RMQ
, RMQRZ
), mve_vpt
),
24752 ToC("vptet", ee41cf00
, 3, (COND
, RMQ
, RMQRZ
), mve_vpt
),
24753 ToC("vptee", ee414f00
, 3, (COND
, RMQ
, RMQRZ
), mve_vpt
),
24754 ToC("vptttt", ee012f00
, 3, (COND
, RMQ
, RMQRZ
), mve_vpt
),
24755 ToC("vpttte", ee016f00
, 3, (COND
, RMQ
, RMQRZ
), mve_vpt
),
24756 ToC("vpttet", ee01ef00
, 3, (COND
, RMQ
, RMQRZ
), mve_vpt
),
24757 ToC("vpttee", ee01af00
, 3, (COND
, RMQ
, RMQRZ
), mve_vpt
),
24758 ToC("vptett", ee41af00
, 3, (COND
, RMQ
, RMQRZ
), mve_vpt
),
24759 ToC("vptete", ee41ef00
, 3, (COND
, RMQ
, RMQRZ
), mve_vpt
),
24760 ToC("vpteet", ee416f00
, 3, (COND
, RMQ
, RMQRZ
), mve_vpt
),
24761 ToC("vpteee", ee412f00
, 3, (COND
, RMQ
, RMQRZ
), mve_vpt
),
24763 ToC("vpst", fe710f4d
, 0, (), mve_vpt
),
24764 ToC("vpstt", fe318f4d
, 0, (), mve_vpt
),
24765 ToC("vpste", fe718f4d
, 0, (), mve_vpt
),
24766 ToC("vpsttt", fe314f4d
, 0, (), mve_vpt
),
24767 ToC("vpstte", fe31cf4d
, 0, (), mve_vpt
),
24768 ToC("vpstet", fe71cf4d
, 0, (), mve_vpt
),
24769 ToC("vpstee", fe714f4d
, 0, (), mve_vpt
),
24770 ToC("vpstttt", fe312f4d
, 0, (), mve_vpt
),
24771 ToC("vpsttte", fe316f4d
, 0, (), mve_vpt
),
24772 ToC("vpsttet", fe31ef4d
, 0, (), mve_vpt
),
24773 ToC("vpsttee", fe31af4d
, 0, (), mve_vpt
),
24774 ToC("vpstett", fe71af4d
, 0, (), mve_vpt
),
24775 ToC("vpstete", fe71ef4d
, 0, (), mve_vpt
),
24776 ToC("vpsteet", fe716f4d
, 0, (), mve_vpt
),
24777 ToC("vpsteee", fe712f4d
, 0, (), mve_vpt
),
24779 /* MVE and MVE FP only. */
24780 mToC("vhcadd", ee000f00
, 4, (RMQ
, RMQ
, RMQ
, EXPi
), mve_vhcadd
),
24781 mCEF(vadc
, _vadc
, 3, (RMQ
, RMQ
, RMQ
), mve_vadc
),
24782 mCEF(vadci
, _vadci
, 3, (RMQ
, RMQ
, RMQ
), mve_vadc
),
24783 mToC("vsbc", fe300f00
, 3, (RMQ
, RMQ
, RMQ
), mve_vsbc
),
24784 mToC("vsbci", fe301f00
, 3, (RMQ
, RMQ
, RMQ
), mve_vsbc
),
24785 mCEF(vmullb
, _vmullb
, 3, (RMQ
, RMQ
, RMQ
), mve_vmull
),
24786 mCEF(vabav
, _vabav
, 3, (RRnpcsp
, RMQ
, RMQ
), mve_vabav
),
24787 mCEF(vmladav
, _vmladav
, 3, (RRe
, RMQ
, RMQ
), mve_vmladav
),
24788 mCEF(vmladava
, _vmladava
, 3, (RRe
, RMQ
, RMQ
), mve_vmladav
),
24789 mCEF(vmladavx
, _vmladavx
, 3, (RRe
, RMQ
, RMQ
), mve_vmladav
),
24790 mCEF(vmladavax
, _vmladavax
, 3, (RRe
, RMQ
, RMQ
), mve_vmladav
),
24791 mCEF(vmlav
, _vmladav
, 3, (RRe
, RMQ
, RMQ
), mve_vmladav
),
24792 mCEF(vmlava
, _vmladava
, 3, (RRe
, RMQ
, RMQ
), mve_vmladav
),
24793 mCEF(vmlsdav
, _vmlsdav
, 3, (RRe
, RMQ
, RMQ
), mve_vmladav
),
24794 mCEF(vmlsdava
, _vmlsdava
, 3, (RRe
, RMQ
, RMQ
), mve_vmladav
),
24795 mCEF(vmlsdavx
, _vmlsdavx
, 3, (RRe
, RMQ
, RMQ
), mve_vmladav
),
24796 mCEF(vmlsdavax
, _vmlsdavax
, 3, (RRe
, RMQ
, RMQ
), mve_vmladav
),
24798 mCEF(vst20
, _vst20
, 2, (MSTRLST2
, ADDRMVE
), mve_vst_vld
),
24799 mCEF(vst21
, _vst21
, 2, (MSTRLST2
, ADDRMVE
), mve_vst_vld
),
24800 mCEF(vst40
, _vst40
, 2, (MSTRLST4
, ADDRMVE
), mve_vst_vld
),
24801 mCEF(vst41
, _vst41
, 2, (MSTRLST4
, ADDRMVE
), mve_vst_vld
),
24802 mCEF(vst42
, _vst42
, 2, (MSTRLST4
, ADDRMVE
), mve_vst_vld
),
24803 mCEF(vst43
, _vst43
, 2, (MSTRLST4
, ADDRMVE
), mve_vst_vld
),
24804 mCEF(vld20
, _vld20
, 2, (MSTRLST2
, ADDRMVE
), mve_vst_vld
),
24805 mCEF(vld21
, _vld21
, 2, (MSTRLST2
, ADDRMVE
), mve_vst_vld
),
24806 mCEF(vld40
, _vld40
, 2, (MSTRLST4
, ADDRMVE
), mve_vst_vld
),
24807 mCEF(vld41
, _vld41
, 2, (MSTRLST4
, ADDRMVE
), mve_vst_vld
),
24808 mCEF(vld42
, _vld42
, 2, (MSTRLST4
, ADDRMVE
), mve_vst_vld
),
24809 mCEF(vld43
, _vld43
, 2, (MSTRLST4
, ADDRMVE
), mve_vst_vld
),
24810 mCEF(vstrb
, _vstrb
, 2, (RMQ
, ADDRMVE
), mve_vstr_vldr
),
24811 mCEF(vstrh
, _vstrh
, 2, (RMQ
, ADDRMVE
), mve_vstr_vldr
),
24812 mCEF(vstrw
, _vstrw
, 2, (RMQ
, ADDRMVE
), mve_vstr_vldr
),
24813 mCEF(vstrd
, _vstrd
, 2, (RMQ
, ADDRMVE
), mve_vstr_vldr
),
24814 mCEF(vldrb
, _vldrb
, 2, (RMQ
, ADDRMVE
), mve_vstr_vldr
),
24815 mCEF(vldrh
, _vldrh
, 2, (RMQ
, ADDRMVE
), mve_vstr_vldr
),
24816 mCEF(vldrw
, _vldrw
, 2, (RMQ
, ADDRMVE
), mve_vstr_vldr
),
24817 mCEF(vldrd
, _vldrd
, 2, (RMQ
, ADDRMVE
), mve_vstr_vldr
),
24819 mCEF(vmovnt
, _vmovnt
, 2, (RMQ
, RMQ
), mve_movn
),
24820 mCEF(vmovnb
, _vmovnb
, 2, (RMQ
, RMQ
), mve_movn
),
24821 mCEF(vbrsr
, _vbrsr
, 3, (RMQ
, RMQ
, RR
), mve_vbrsr
),
24822 mCEF(vaddlv
, _vaddlv
, 3, (RRe
, RRo
, RMQ
), mve_vaddlv
),
24823 mCEF(vaddlva
, _vaddlva
, 3, (RRe
, RRo
, RMQ
), mve_vaddlv
),
24824 mCEF(vaddv
, _vaddv
, 2, (RRe
, RMQ
), mve_vaddv
),
24825 mCEF(vaddva
, _vaddva
, 2, (RRe
, RMQ
), mve_vaddv
),
24826 mCEF(vddup
, _vddup
, 3, (RMQ
, RRe
, EXPi
), mve_viddup
),
24827 mCEF(vdwdup
, _vdwdup
, 4, (RMQ
, RRe
, RR
, EXPi
), mve_viddup
),
24828 mCEF(vidup
, _vidup
, 3, (RMQ
, RRe
, EXPi
), mve_viddup
),
24829 mCEF(viwdup
, _viwdup
, 4, (RMQ
, RRe
, RR
, EXPi
), mve_viddup
),
24830 mToC("vmaxa", ee330e81
, 2, (RMQ
, RMQ
), mve_vmaxa_vmina
),
24831 mToC("vmina", ee331e81
, 2, (RMQ
, RMQ
), mve_vmaxa_vmina
),
24832 mCEF(vmaxv
, _vmaxv
, 2, (RR
, RMQ
), mve_vmaxv
),
24833 mCEF(vmaxav
, _vmaxav
, 2, (RR
, RMQ
), mve_vmaxv
),
24834 mCEF(vminv
, _vminv
, 2, (RR
, RMQ
), mve_vmaxv
),
24835 mCEF(vminav
, _vminav
, 2, (RR
, RMQ
), mve_vmaxv
),
24837 mCEF(vmlaldav
, _vmlaldav
, 4, (RRe
, RRo
, RMQ
, RMQ
), mve_vmlaldav
),
24838 mCEF(vmlaldava
, _vmlaldava
, 4, (RRe
, RRo
, RMQ
, RMQ
), mve_vmlaldav
),
24839 mCEF(vmlaldavx
, _vmlaldavx
, 4, (RRe
, RRo
, RMQ
, RMQ
), mve_vmlaldav
),
24840 mCEF(vmlaldavax
, _vmlaldavax
, 4, (RRe
, RRo
, RMQ
, RMQ
), mve_vmlaldav
),
24841 mCEF(vmlalv
, _vmlaldav
, 4, (RRe
, RRo
, RMQ
, RMQ
), mve_vmlaldav
),
24842 mCEF(vmlalva
, _vmlaldava
, 4, (RRe
, RRo
, RMQ
, RMQ
), mve_vmlaldav
),
24843 mCEF(vmlsldav
, _vmlsldav
, 4, (RRe
, RRo
, RMQ
, RMQ
), mve_vmlaldav
),
24844 mCEF(vmlsldava
, _vmlsldava
, 4, (RRe
, RRo
, RMQ
, RMQ
), mve_vmlaldav
),
24845 mCEF(vmlsldavx
, _vmlsldavx
, 4, (RRe
, RRo
, RMQ
, RMQ
), mve_vmlaldav
),
24846 mCEF(vmlsldavax
, _vmlsldavax
, 4, (RRe
, RRo
, RMQ
, RMQ
), mve_vmlaldav
),
24847 mToC("vrmlaldavh", ee800f00
, 4, (RRe
, RR
, RMQ
, RMQ
), mve_vrmlaldavh
),
24848 mToC("vrmlaldavha",ee800f20
, 4, (RRe
, RR
, RMQ
, RMQ
), mve_vrmlaldavh
),
24849 mCEF(vrmlaldavhx
, _vrmlaldavhx
, 4, (RRe
, RR
, RMQ
, RMQ
), mve_vrmlaldavh
),
24850 mCEF(vrmlaldavhax
, _vrmlaldavhax
, 4, (RRe
, RR
, RMQ
, RMQ
), mve_vrmlaldavh
),
24851 mToC("vrmlalvh", ee800f00
, 4, (RRe
, RR
, RMQ
, RMQ
), mve_vrmlaldavh
),
24852 mToC("vrmlalvha", ee800f20
, 4, (RRe
, RR
, RMQ
, RMQ
), mve_vrmlaldavh
),
24853 mCEF(vrmlsldavh
, _vrmlsldavh
, 4, (RRe
, RR
, RMQ
, RMQ
), mve_vrmlaldavh
),
24854 mCEF(vrmlsldavha
, _vrmlsldavha
, 4, (RRe
, RR
, RMQ
, RMQ
), mve_vrmlaldavh
),
24855 mCEF(vrmlsldavhx
, _vrmlsldavhx
, 4, (RRe
, RR
, RMQ
, RMQ
), mve_vrmlaldavh
),
24856 mCEF(vrmlsldavhax
, _vrmlsldavhax
, 4, (RRe
, RR
, RMQ
, RMQ
), mve_vrmlaldavh
),
24858 mToC("vmlas", ee011e40
, 3, (RMQ
, RMQ
, RR
), mve_vmlas
),
24859 mToC("vmulh", ee010e01
, 3, (RMQ
, RMQ
, RMQ
), mve_vmulh
),
24860 mToC("vrmulh", ee011e01
, 3, (RMQ
, RMQ
, RMQ
), mve_vmulh
),
24861 mToC("vpnot", fe310f4d
, 0, (), mve_vpnot
),
24862 mToC("vpsel", fe310f01
, 3, (RMQ
, RMQ
, RMQ
), mve_vpsel
),
24864 mToC("vqdmladh", ee000e00
, 3, (RMQ
, RMQ
, RMQ
), mve_vqdmladh
),
24865 mToC("vqdmladhx", ee001e00
, 3, (RMQ
, RMQ
, RMQ
), mve_vqdmladh
),
24866 mToC("vqrdmladh", ee000e01
, 3, (RMQ
, RMQ
, RMQ
), mve_vqdmladh
),
24867 mToC("vqrdmladhx",ee001e01
, 3, (RMQ
, RMQ
, RMQ
), mve_vqdmladh
),
24868 mToC("vqdmlsdh", fe000e00
, 3, (RMQ
, RMQ
, RMQ
), mve_vqdmladh
),
24869 mToC("vqdmlsdhx", fe001e00
, 3, (RMQ
, RMQ
, RMQ
), mve_vqdmladh
),
24870 mToC("vqrdmlsdh", fe000e01
, 3, (RMQ
, RMQ
, RMQ
), mve_vqdmladh
),
24871 mToC("vqrdmlsdhx",fe001e01
, 3, (RMQ
, RMQ
, RMQ
), mve_vqdmladh
),
24872 mToC("vqdmlah", ee000e60
, 3, (RMQ
, RMQ
, RR
), mve_vqdmlah
),
24873 mToC("vqdmlash", ee001e60
, 3, (RMQ
, RMQ
, RR
), mve_vqdmlah
),
24874 mToC("vqrdmlash", ee001e40
, 3, (RMQ
, RMQ
, RR
), mve_vqdmlah
),
24875 mToC("vqdmullt", ee301f00
, 3, (RMQ
, RMQ
, RMQRR
), mve_vqdmull
),
24876 mToC("vqdmullb", ee300f00
, 3, (RMQ
, RMQ
, RMQRR
), mve_vqdmull
),
24878 #undef THUMB_VARIANT
24879 #define THUMB_VARIANT & mve_fp_ext
24880 mToC("vcmul", ee300e00
, 4, (RMQ
, RMQ
, RMQ
, EXPi
), mve_vcmul
),
24881 mToC("vfmas", ee311e40
, 3, (RMQ
, RMQ
, RR
), mve_vfmas
),
24882 mToC("vmaxnma", ee3f0e81
, 2, (RMQ
, RMQ
), mve_vmaxnma_vminnma
),
24883 mToC("vminnma", ee3f1e81
, 2, (RMQ
, RMQ
), mve_vmaxnma_vminnma
),
24884 mToC("vmaxnmv", eeee0f00
, 2, (RR
, RMQ
), mve_vmaxnmv
),
24885 mToC("vmaxnmav",eeec0f00
, 2, (RR
, RMQ
), mve_vmaxnmv
),
24886 mToC("vminnmv", eeee0f80
, 2, (RR
, RMQ
), mve_vmaxnmv
),
24887 mToC("vminnmav",eeec0f80
, 2, (RR
, RMQ
), mve_vmaxnmv
),
24890 #define ARM_VARIANT & fpu_vfp_ext_v1
24891 #undef THUMB_VARIANT
24892 #define THUMB_VARIANT & arm_ext_v6t2
24893 mnCEF(vmla
, _vmla
, 3, (RNSDQMQ
, oRNSDQMQ
, RNSDQ_RNSC_MQ_RR
), neon_mac_maybe_scalar
),
24894 mnCEF(vmul
, _vmul
, 3, (RNSDQMQ
, oRNSDQMQ
, RNSDQ_RNSC_MQ_RR
), neon_mul
),
24896 mcCE(fcpyd
, eb00b40
, 2, (RVD
, RVD
), vfp_dp_rd_rm
),
24899 #define ARM_VARIANT & fpu_vfp_ext_v1xd
24901 MNCE(vmov
, 0, 1, (VMOV
), neon_mov
),
24902 mcCE(fmrs
, e100a10
, 2, (RR
, RVS
), vfp_reg_from_sp
),
24903 mcCE(fmsr
, e000a10
, 2, (RVS
, RR
), vfp_sp_from_reg
),
24904 mcCE(fcpys
, eb00a40
, 2, (RVS
, RVS
), vfp_sp_monadic
),
24906 mCEF(vmullt
, _vmullt
, 3, (RNSDQMQ
, oRNSDQMQ
, RNSDQ_RNSC_MQ
), mve_vmull
),
24907 mnCEF(vadd
, _vadd
, 3, (RNSDQMQ
, oRNSDQMQ
, RNSDQMQR
), neon_addsub_if_i
),
24908 mnCEF(vsub
, _vsub
, 3, (RNSDQMQ
, oRNSDQMQ
, RNSDQMQR
), neon_addsub_if_i
),
24910 MNCEF(vabs
, 1b10300
, 2, (RNSDQMQ
, RNSDQMQ
), neon_abs_neg
),
24911 MNCEF(vneg
, 1b10380
, 2, (RNSDQMQ
, RNSDQMQ
), neon_abs_neg
),
24913 mCEF(vmovlt
, _vmovlt
, 1, (VMOV
), mve_movl
),
24914 mCEF(vmovlb
, _vmovlb
, 1, (VMOV
), mve_movl
),
24916 mnCE(vcmp
, _vcmp
, 3, (RVSD_COND
, RSVDMQ_FI0
, oRMQRZ
), vfp_nsyn_cmp
),
24917 mnCE(vcmpe
, _vcmpe
, 3, (RVSD_COND
, RSVDMQ_FI0
, oRMQRZ
), vfp_nsyn_cmp
),
24920 #define ARM_VARIANT & fpu_vfp_ext_v2
24922 mcCE(fmsrr
, c400a10
, 3, (VRSLST
, RR
, RR
), vfp_sp2_from_reg2
),
24923 mcCE(fmrrs
, c500a10
, 3, (RR
, RR
, VRSLST
), vfp_reg2_from_sp2
),
24924 mcCE(fmdrr
, c400b10
, 3, (RVD
, RR
, RR
), vfp_dp_rm_rd_rn
),
24925 mcCE(fmrrd
, c500b10
, 3, (RR
, RR
, RVD
), vfp_dp_rd_rn_rm
),
24928 #define ARM_VARIANT & fpu_vfp_ext_armv8xd
24929 mnUF(vcvta
, _vcvta
, 2, (RNSDQMQ
, oRNSDQMQ
), neon_cvta
),
24930 mnUF(vcvtp
, _vcvta
, 2, (RNSDQMQ
, oRNSDQMQ
), neon_cvtp
),
24931 mnUF(vcvtn
, _vcvta
, 3, (RNSDQMQ
, oRNSDQMQ
, oI32z
), neon_cvtn
),
24932 mnUF(vcvtm
, _vcvta
, 2, (RNSDQMQ
, oRNSDQMQ
), neon_cvtm
),
24933 mnUF(vmaxnm
, _vmaxnm
, 3, (RNSDQMQ
, oRNSDQMQ
, RNSDQMQ
), vmaxnm
),
24934 mnUF(vminnm
, _vminnm
, 3, (RNSDQMQ
, oRNSDQMQ
, RNSDQMQ
), vmaxnm
),
24937 #define ARM_VARIANT & fpu_neon_ext_v1
24938 mnUF(vabd
, _vabd
, 3, (RNDQMQ
, oRNDQMQ
, RNDQMQ
), neon_dyadic_if_su
),
24939 mnUF(vabdl
, _vabdl
, 3, (RNQMQ
, RNDMQ
, RNDMQ
), neon_dyadic_long
),
24940 mnUF(vaddl
, _vaddl
, 3, (RNQMQ
, RNDMQ
, RNDMQR
), neon_dyadic_long
),
24941 mnUF(vsubl
, _vsubl
, 3, (RNQMQ
, RNDMQ
, RNDMQR
), neon_dyadic_long
),
24942 mnUF(vand
, _vand
, 3, (RNDQMQ
, oRNDQMQ
, RNDQMQ_Ibig
), neon_logic
),
24943 mnUF(vbic
, _vbic
, 3, (RNDQMQ
, oRNDQMQ
, RNDQMQ_Ibig
), neon_logic
),
24944 mnUF(vorr
, _vorr
, 3, (RNDQMQ
, oRNDQMQ
, RNDQMQ_Ibig
), neon_logic
),
24945 mnUF(vorn
, _vorn
, 3, (RNDQMQ
, oRNDQMQ
, RNDQMQ_Ibig
), neon_logic
),
24946 mnUF(veor
, _veor
, 3, (RNDQMQ
, oRNDQMQ
, RNDQMQ
), neon_logic
),
24947 MNUF(vcls
, 1b00400
, 2, (RNDQMQ
, RNDQMQ
), neon_cls
),
24948 MNUF(vclz
, 1b00480
, 2, (RNDQMQ
, RNDQMQ
), neon_clz
),
24949 mnCE(vdup
, _vdup
, 2, (RNDQMQ
, RR_RNSC
), neon_dup
),
24950 MNUF(vhadd
, 00000000, 3, (RNDQMQ
, oRNDQMQ
, RNDQMQR
), neon_dyadic_i_su
),
24951 MNUF(vrhadd
, 00000100, 3, (RNDQMQ
, oRNDQMQ
, RNDQMQ
), neon_dyadic_i_su
),
24952 MNUF(vhsub
, 00000200, 3, (RNDQMQ
, oRNDQMQ
, RNDQMQR
), neon_dyadic_i_su
),
24953 mnUF(vmin
, _vmin
, 3, (RNDQMQ
, oRNDQMQ
, RNDQMQ
), neon_dyadic_if_su
),
24954 mnUF(vmax
, _vmax
, 3, (RNDQMQ
, oRNDQMQ
, RNDQMQ
), neon_dyadic_if_su
),
24955 MNUF(vqadd
, 0000010, 3, (RNDQMQ
, oRNDQMQ
, RNDQMQR
), neon_dyadic_i64_su
),
24956 MNUF(vqsub
, 0000210, 3, (RNDQMQ
, oRNDQMQ
, RNDQMQR
), neon_dyadic_i64_su
),
24957 mnUF(vmvn
, _vmvn
, 2, (RNDQMQ
, RNDQMQ_Ibig
), neon_mvn
),
24958 MNUF(vqabs
, 1b00700
, 2, (RNDQMQ
, RNDQMQ
), neon_sat_abs_neg
),
24959 MNUF(vqneg
, 1b00780
, 2, (RNDQMQ
, RNDQMQ
), neon_sat_abs_neg
),
24960 mnUF(vqrdmlah
, _vqrdmlah
,3, (RNDQMQ
, oRNDQMQ
, RNDQ_RNSC_RR
), neon_qrdmlah
),
24961 mnUF(vqdmulh
, _vqdmulh
, 3, (RNDQMQ
, oRNDQMQ
, RNDQMQ_RNSC_RR
), neon_qdmulh
),
24962 mnUF(vqrdmulh
, _vqrdmulh
,3, (RNDQMQ
, oRNDQMQ
, RNDQMQ_RNSC_RR
), neon_qdmulh
),
24965 #define ARM_VARIANT & arm_ext_v8_3
24966 #undef THUMB_VARIANT
24967 #define THUMB_VARIANT & arm_ext_v6t2_v8m
24968 MNUF (vcadd
, 0, 4, (RNDQMQ
, RNDQMQ
, RNDQMQ
, EXPi
), vcadd
),
24969 MNUF (vcmla
, 0, 4, (RNDQMQ
, RNDQMQ
, RNDQMQ_RNSC
, EXPi
), vcmla
),
24972 #undef THUMB_VARIANT
25004 /* MD interface: bits in the object file. */
25006 /* Turn an integer of n bytes (in val) into a stream of bytes appropriate
25007 for use in the a.out file, and stores them in the array pointed to by buf.
25008 This knows about the endian-ness of the target machine and does
25009 THE RIGHT THING, whatever it is. Possible values for n are 1 (byte)
25010 2 (short) and 4 (long) Floating numbers are put out as a series of
25011 LITTLENUMS (shorts, here at least). */
25014 md_number_to_chars (char * buf
, valueT val
, int n
)
25016 if (target_big_endian
)
25017 number_to_chars_bigendian (buf
, val
, n
);
25019 number_to_chars_littleendian (buf
, val
, n
);
25023 md_chars_to_number (char * buf
, int n
)
25026 unsigned char * where
= (unsigned char *) buf
;
25028 if (target_big_endian
)
25033 result
|= (*where
++ & 255);
25041 result
|= (where
[n
] & 255);
25048 /* MD interface: Sections. */
25050 /* Calculate the maximum variable size (i.e., excluding fr_fix)
25051 that an rs_machine_dependent frag may reach. */
25054 arm_frag_max_var (fragS
*fragp
)
25056 /* We only use rs_machine_dependent for variable-size Thumb instructions,
25057 which are either THUMB_SIZE (2) or INSN_SIZE (4).
25059 Note that we generate relaxable instructions even for cases that don't
25060 really need it, like an immediate that's a trivial constant. So we're
25061 overestimating the instruction size for some of those cases. Rather
25062 than putting more intelligence here, it would probably be better to
25063 avoid generating a relaxation frag in the first place when it can be
25064 determined up front that a short instruction will suffice. */
25066 gas_assert (fragp
->fr_type
== rs_machine_dependent
);
25070 /* Estimate the size of a frag before relaxing. Assume everything fits in
25074 md_estimate_size_before_relax (fragS
* fragp
,
25075 segT segtype ATTRIBUTE_UNUSED
)
25081 /* Convert a machine dependent frag. */
25084 md_convert_frag (bfd
*abfd
, segT asec ATTRIBUTE_UNUSED
, fragS
*fragp
)
25086 unsigned long insn
;
25087 unsigned long old_op
;
25095 buf
= fragp
->fr_literal
+ fragp
->fr_fix
;
25097 old_op
= bfd_get_16(abfd
, buf
);
25098 if (fragp
->fr_symbol
)
25100 exp
.X_op
= O_symbol
;
25101 exp
.X_add_symbol
= fragp
->fr_symbol
;
25105 exp
.X_op
= O_constant
;
25107 exp
.X_add_number
= fragp
->fr_offset
;
25108 opcode
= fragp
->fr_subtype
;
25111 case T_MNEM_ldr_pc
:
25112 case T_MNEM_ldr_pc2
:
25113 case T_MNEM_ldr_sp
:
25114 case T_MNEM_str_sp
:
25121 if (fragp
->fr_var
== 4)
25123 insn
= THUMB_OP32 (opcode
);
25124 if ((old_op
>> 12) == 4 || (old_op
>> 12) == 9)
25126 insn
|= (old_op
& 0x700) << 4;
25130 insn
|= (old_op
& 7) << 12;
25131 insn
|= (old_op
& 0x38) << 13;
25133 insn
|= 0x00000c00;
25134 put_thumb32_insn (buf
, insn
);
25135 reloc_type
= BFD_RELOC_ARM_T32_OFFSET_IMM
;
25139 reloc_type
= BFD_RELOC_ARM_THUMB_OFFSET
;
25141 pc_rel
= (opcode
== T_MNEM_ldr_pc2
);
25144 if (fragp
->fr_var
== 4)
25146 insn
= THUMB_OP32 (opcode
);
25147 insn
|= (old_op
& 0xf0) << 4;
25148 put_thumb32_insn (buf
, insn
);
25149 reloc_type
= BFD_RELOC_ARM_T32_ADD_PC12
;
25153 reloc_type
= BFD_RELOC_ARM_THUMB_ADD
;
25154 exp
.X_add_number
-= 4;
25162 if (fragp
->fr_var
== 4)
25164 int r0off
= (opcode
== T_MNEM_mov
25165 || opcode
== T_MNEM_movs
) ? 0 : 8;
25166 insn
= THUMB_OP32 (opcode
);
25167 insn
= (insn
& 0xe1ffffff) | 0x10000000;
25168 insn
|= (old_op
& 0x700) << r0off
;
25169 put_thumb32_insn (buf
, insn
);
25170 reloc_type
= BFD_RELOC_ARM_T32_IMMEDIATE
;
25174 reloc_type
= BFD_RELOC_ARM_THUMB_IMM
;
25179 if (fragp
->fr_var
== 4)
25181 insn
= THUMB_OP32(opcode
);
25182 put_thumb32_insn (buf
, insn
);
25183 reloc_type
= BFD_RELOC_THUMB_PCREL_BRANCH25
;
25186 reloc_type
= BFD_RELOC_THUMB_PCREL_BRANCH12
;
25190 if (fragp
->fr_var
== 4)
25192 insn
= THUMB_OP32(opcode
);
25193 insn
|= (old_op
& 0xf00) << 14;
25194 put_thumb32_insn (buf
, insn
);
25195 reloc_type
= BFD_RELOC_THUMB_PCREL_BRANCH20
;
25198 reloc_type
= BFD_RELOC_THUMB_PCREL_BRANCH9
;
25201 case T_MNEM_add_sp
:
25202 case T_MNEM_add_pc
:
25203 case T_MNEM_inc_sp
:
25204 case T_MNEM_dec_sp
:
25205 if (fragp
->fr_var
== 4)
25207 /* ??? Choose between add and addw. */
25208 insn
= THUMB_OP32 (opcode
);
25209 insn
|= (old_op
& 0xf0) << 4;
25210 put_thumb32_insn (buf
, insn
);
25211 if (opcode
== T_MNEM_add_pc
)
25212 reloc_type
= BFD_RELOC_ARM_T32_IMM12
;
25214 reloc_type
= BFD_RELOC_ARM_T32_ADD_IMM
;
25217 reloc_type
= BFD_RELOC_ARM_THUMB_ADD
;
25225 if (fragp
->fr_var
== 4)
25227 insn
= THUMB_OP32 (opcode
);
25228 insn
|= (old_op
& 0xf0) << 4;
25229 insn
|= (old_op
& 0xf) << 16;
25230 put_thumb32_insn (buf
, insn
);
25231 if (insn
& (1 << 20))
25232 reloc_type
= BFD_RELOC_ARM_T32_ADD_IMM
;
25234 reloc_type
= BFD_RELOC_ARM_T32_IMMEDIATE
;
25237 reloc_type
= BFD_RELOC_ARM_THUMB_ADD
;
25243 fixp
= fix_new_exp (fragp
, fragp
->fr_fix
, fragp
->fr_var
, &exp
, pc_rel
,
25244 (enum bfd_reloc_code_real
) reloc_type
);
25245 fixp
->fx_file
= fragp
->fr_file
;
25246 fixp
->fx_line
= fragp
->fr_line
;
25247 fragp
->fr_fix
+= fragp
->fr_var
;
25249 /* Set whether we use thumb-2 ISA based on final relaxation results. */
25250 if (thumb_mode
&& fragp
->fr_var
== 4 && no_cpu_selected ()
25251 && !ARM_CPU_HAS_FEATURE (thumb_arch_used
, arm_arch_t2
))
25252 ARM_MERGE_FEATURE_SETS (arm_arch_used
, thumb_arch_used
, arm_ext_v6t2
);
25255 /* Return the size of a relaxable immediate operand instruction.
25256 SHIFT and SIZE specify the form of the allowable immediate. */
25258 relax_immediate (fragS
*fragp
, int size
, int shift
)
25264 /* ??? Should be able to do better than this. */
25265 if (fragp
->fr_symbol
)
25268 low
= (1 << shift
) - 1;
25269 mask
= (1 << (shift
+ size
)) - (1 << shift
);
25270 offset
= fragp
->fr_offset
;
25271 /* Force misaligned offsets to 32-bit variant. */
25274 if (offset
& ~mask
)
25279 /* Get the address of a symbol during relaxation. */
25281 relaxed_symbol_addr (fragS
*fragp
, long stretch
)
25287 sym
= fragp
->fr_symbol
;
25288 sym_frag
= symbol_get_frag (sym
);
25289 know (S_GET_SEGMENT (sym
) != absolute_section
25290 || sym_frag
== &zero_address_frag
);
25291 addr
= S_GET_VALUE (sym
) + fragp
->fr_offset
;
25293 /* If frag has yet to be reached on this pass, assume it will
25294 move by STRETCH just as we did. If this is not so, it will
25295 be because some frag between grows, and that will force
25299 && sym_frag
->relax_marker
!= fragp
->relax_marker
)
25303 /* Adjust stretch for any alignment frag. Note that if have
25304 been expanding the earlier code, the symbol may be
25305 defined in what appears to be an earlier frag. FIXME:
25306 This doesn't handle the fr_subtype field, which specifies
25307 a maximum number of bytes to skip when doing an
25309 for (f
= fragp
; f
!= NULL
&& f
!= sym_frag
; f
= f
->fr_next
)
25311 if (f
->fr_type
== rs_align
|| f
->fr_type
== rs_align_code
)
25314 stretch
= - ((- stretch
)
25315 & ~ ((1 << (int) f
->fr_offset
) - 1));
25317 stretch
&= ~ ((1 << (int) f
->fr_offset
) - 1);
25329 /* Return the size of a relaxable adr pseudo-instruction or PC-relative
25332 relax_adr (fragS
*fragp
, asection
*sec
, long stretch
)
25337 /* Assume worst case for symbols not known to be in the same section. */
25338 if (fragp
->fr_symbol
== NULL
25339 || !S_IS_DEFINED (fragp
->fr_symbol
)
25340 || sec
!= S_GET_SEGMENT (fragp
->fr_symbol
)
25341 || S_IS_WEAK (fragp
->fr_symbol
))
25344 val
= relaxed_symbol_addr (fragp
, stretch
);
25345 addr
= fragp
->fr_address
+ fragp
->fr_fix
;
25346 addr
= (addr
+ 4) & ~3;
25347 /* Force misaligned targets to 32-bit variant. */
25351 if (val
< 0 || val
> 1020)
25356 /* Return the size of a relaxable add/sub immediate instruction. */
25358 relax_addsub (fragS
*fragp
, asection
*sec
)
25363 buf
= fragp
->fr_literal
+ fragp
->fr_fix
;
25364 op
= bfd_get_16(sec
->owner
, buf
);
25365 if ((op
& 0xf) == ((op
>> 4) & 0xf))
25366 return relax_immediate (fragp
, 8, 0);
25368 return relax_immediate (fragp
, 3, 0);
25371 /* Return TRUE iff the definition of symbol S could be pre-empted
25372 (overridden) at link or load time. */
25374 symbol_preemptible (symbolS
*s
)
25376 /* Weak symbols can always be pre-empted. */
25380 /* Non-global symbols cannot be pre-empted. */
25381 if (! S_IS_EXTERNAL (s
))
25385 /* In ELF, a global symbol can be marked protected, or private. In that
25386 case it can't be pre-empted (other definitions in the same link unit
25387 would violate the ODR). */
25388 if (ELF_ST_VISIBILITY (S_GET_OTHER (s
)) > STV_DEFAULT
)
25392 /* Other global symbols might be pre-empted. */
25396 /* Return the size of a relaxable branch instruction. BITS is the
25397 size of the offset field in the narrow instruction. */
25400 relax_branch (fragS
*fragp
, asection
*sec
, int bits
, long stretch
)
25406 /* Assume worst case for symbols not known to be in the same section. */
25407 if (!S_IS_DEFINED (fragp
->fr_symbol
)
25408 || sec
!= S_GET_SEGMENT (fragp
->fr_symbol
)
25409 || S_IS_WEAK (fragp
->fr_symbol
))
25413 /* A branch to a function in ARM state will require interworking. */
25414 if (S_IS_DEFINED (fragp
->fr_symbol
)
25415 && ARM_IS_FUNC (fragp
->fr_symbol
))
25419 if (symbol_preemptible (fragp
->fr_symbol
))
25422 val
= relaxed_symbol_addr (fragp
, stretch
);
25423 addr
= fragp
->fr_address
+ fragp
->fr_fix
+ 4;
25426 /* Offset is a signed value *2 */
25428 if (val
>= limit
|| val
< -limit
)
25434 /* Relax a machine dependent frag. This returns the amount by which
25435 the current size of the frag should change. */
25438 arm_relax_frag (asection
*sec
, fragS
*fragp
, long stretch
)
25443 oldsize
= fragp
->fr_var
;
25444 switch (fragp
->fr_subtype
)
25446 case T_MNEM_ldr_pc2
:
25447 newsize
= relax_adr (fragp
, sec
, stretch
);
25449 case T_MNEM_ldr_pc
:
25450 case T_MNEM_ldr_sp
:
25451 case T_MNEM_str_sp
:
25452 newsize
= relax_immediate (fragp
, 8, 2);
25456 newsize
= relax_immediate (fragp
, 5, 2);
25460 newsize
= relax_immediate (fragp
, 5, 1);
25464 newsize
= relax_immediate (fragp
, 5, 0);
25467 newsize
= relax_adr (fragp
, sec
, stretch
);
25473 newsize
= relax_immediate (fragp
, 8, 0);
25476 newsize
= relax_branch (fragp
, sec
, 11, stretch
);
25479 newsize
= relax_branch (fragp
, sec
, 8, stretch
);
25481 case T_MNEM_add_sp
:
25482 case T_MNEM_add_pc
:
25483 newsize
= relax_immediate (fragp
, 8, 2);
25485 case T_MNEM_inc_sp
:
25486 case T_MNEM_dec_sp
:
25487 newsize
= relax_immediate (fragp
, 7, 2);
25493 newsize
= relax_addsub (fragp
, sec
);
25499 fragp
->fr_var
= newsize
;
25500 /* Freeze wide instructions that are at or before the same location as
25501 in the previous pass. This avoids infinite loops.
25502 Don't freeze them unconditionally because targets may be artificially
25503 misaligned by the expansion of preceding frags. */
25504 if (stretch
<= 0 && newsize
> 2)
25506 md_convert_frag (sec
->owner
, sec
, fragp
);
25510 return newsize
- oldsize
;
25513 /* Round up a section size to the appropriate boundary. */
25516 md_section_align (segT segment ATTRIBUTE_UNUSED
,
25522 /* This is called from HANDLE_ALIGN in write.c. Fill in the contents
25523 of an rs_align_code fragment. */
25526 arm_handle_align (fragS
* fragP
)
25528 static unsigned char const arm_noop
[2][2][4] =
25531 {0x00, 0x00, 0xa0, 0xe1}, /* LE */
25532 {0xe1, 0xa0, 0x00, 0x00}, /* BE */
25535 {0x00, 0xf0, 0x20, 0xe3}, /* LE */
25536 {0xe3, 0x20, 0xf0, 0x00}, /* BE */
25539 static unsigned char const thumb_noop
[2][2][2] =
25542 {0xc0, 0x46}, /* LE */
25543 {0x46, 0xc0}, /* BE */
25546 {0x00, 0xbf}, /* LE */
25547 {0xbf, 0x00} /* BE */
25550 static unsigned char const wide_thumb_noop
[2][4] =
25551 { /* Wide Thumb-2 */
25552 {0xaf, 0xf3, 0x00, 0x80}, /* LE */
25553 {0xf3, 0xaf, 0x80, 0x00}, /* BE */
25556 unsigned bytes
, fix
, noop_size
;
25558 const unsigned char * noop
;
25559 const unsigned char *narrow_noop
= NULL
;
25564 if (fragP
->fr_type
!= rs_align_code
)
25567 bytes
= fragP
->fr_next
->fr_address
- fragP
->fr_address
- fragP
->fr_fix
;
25568 p
= fragP
->fr_literal
+ fragP
->fr_fix
;
25571 if (bytes
> MAX_MEM_FOR_RS_ALIGN_CODE
)
25572 bytes
&= MAX_MEM_FOR_RS_ALIGN_CODE
;
25574 gas_assert ((fragP
->tc_frag_data
.thumb_mode
& MODE_RECORDED
) != 0);
25576 if (fragP
->tc_frag_data
.thumb_mode
& (~ MODE_RECORDED
))
25578 if (ARM_CPU_HAS_FEATURE (selected_cpu_name
[0]
25579 ? selected_cpu
: arm_arch_none
, arm_ext_v6t2
))
25581 narrow_noop
= thumb_noop
[1][target_big_endian
];
25582 noop
= wide_thumb_noop
[target_big_endian
];
25585 noop
= thumb_noop
[0][target_big_endian
];
25593 noop
= arm_noop
[ARM_CPU_HAS_FEATURE (selected_cpu_name
[0]
25594 ? selected_cpu
: arm_arch_none
,
25596 [target_big_endian
];
25603 fragP
->fr_var
= noop_size
;
25605 if (bytes
& (noop_size
- 1))
25607 fix
= bytes
& (noop_size
- 1);
25609 insert_data_mapping_symbol (state
, fragP
->fr_fix
, fragP
, fix
);
25611 memset (p
, 0, fix
);
25618 if (bytes
& noop_size
)
25620 /* Insert a narrow noop. */
25621 memcpy (p
, narrow_noop
, noop_size
);
25623 bytes
-= noop_size
;
25627 /* Use wide noops for the remainder */
25631 while (bytes
>= noop_size
)
25633 memcpy (p
, noop
, noop_size
);
25635 bytes
-= noop_size
;
25639 fragP
->fr_fix
+= fix
;
25642 /* Called from md_do_align. Used to create an alignment
25643 frag in a code section. */
25646 arm_frag_align_code (int n
, int max
)
25650 /* We assume that there will never be a requirement
25651 to support alignments greater than MAX_MEM_FOR_RS_ALIGN_CODE bytes. */
25652 if (max
> MAX_MEM_FOR_RS_ALIGN_CODE
)
25657 _("alignments greater than %d bytes not supported in .text sections."),
25658 MAX_MEM_FOR_RS_ALIGN_CODE
+ 1);
25659 as_fatal ("%s", err_msg
);
25662 p
= frag_var (rs_align_code
,
25663 MAX_MEM_FOR_RS_ALIGN_CODE
,
25665 (relax_substateT
) max
,
25672 /* Perform target specific initialisation of a frag.
25673 Note - despite the name this initialisation is not done when the frag
25674 is created, but only when its type is assigned. A frag can be created
25675 and used a long time before its type is set, so beware of assuming that
25676 this initialisation is performed first. */
25680 arm_init_frag (fragS
* fragP
, int max_chars ATTRIBUTE_UNUSED
)
25682 /* Record whether this frag is in an ARM or a THUMB area. */
25683 fragP
->tc_frag_data
.thumb_mode
= thumb_mode
| MODE_RECORDED
;
25686 #else /* OBJ_ELF is defined. */
25688 arm_init_frag (fragS
* fragP
, int max_chars
)
25690 bfd_boolean frag_thumb_mode
;
25692 /* If the current ARM vs THUMB mode has not already
25693 been recorded into this frag then do so now. */
25694 if ((fragP
->tc_frag_data
.thumb_mode
& MODE_RECORDED
) == 0)
25695 fragP
->tc_frag_data
.thumb_mode
= thumb_mode
| MODE_RECORDED
;
25697 /* PR 21809: Do not set a mapping state for debug sections
25698 - it just confuses other tools. */
25699 if (bfd_get_section_flags (NULL
, now_seg
) & SEC_DEBUGGING
)
25702 frag_thumb_mode
= fragP
->tc_frag_data
.thumb_mode
^ MODE_RECORDED
;
25704 /* Record a mapping symbol for alignment frags. We will delete this
25705 later if the alignment ends up empty. */
25706 switch (fragP
->fr_type
)
25709 case rs_align_test
:
25711 mapping_state_2 (MAP_DATA
, max_chars
);
25713 case rs_align_code
:
25714 mapping_state_2 (frag_thumb_mode
? MAP_THUMB
: MAP_ARM
, max_chars
);
25721 /* When we change sections we need to issue a new mapping symbol. */
25724 arm_elf_change_section (void)
25726 /* Link an unlinked unwind index table section to the .text section. */
25727 if (elf_section_type (now_seg
) == SHT_ARM_EXIDX
25728 && elf_linked_to_section (now_seg
) == NULL
)
25729 elf_linked_to_section (now_seg
) = text_section
;
25733 arm_elf_section_type (const char * str
, size_t len
)
25735 if (len
== 5 && strncmp (str
, "exidx", 5) == 0)
25736 return SHT_ARM_EXIDX
;
25741 /* Code to deal with unwinding tables. */
25743 static void add_unwind_adjustsp (offsetT
);
25745 /* Generate any deferred unwind frame offset. */
25748 flush_pending_unwind (void)
25752 offset
= unwind
.pending_offset
;
25753 unwind
.pending_offset
= 0;
25755 add_unwind_adjustsp (offset
);
25758 /* Add an opcode to this list for this function. Two-byte opcodes should
25759 be passed as op[0] << 8 | op[1]. The list of opcodes is built in reverse
25763 add_unwind_opcode (valueT op
, int length
)
25765 /* Add any deferred stack adjustment. */
25766 if (unwind
.pending_offset
)
25767 flush_pending_unwind ();
25769 unwind
.sp_restored
= 0;
25771 if (unwind
.opcode_count
+ length
> unwind
.opcode_alloc
)
25773 unwind
.opcode_alloc
+= ARM_OPCODE_CHUNK_SIZE
;
25774 if (unwind
.opcodes
)
25775 unwind
.opcodes
= XRESIZEVEC (unsigned char, unwind
.opcodes
,
25776 unwind
.opcode_alloc
);
25778 unwind
.opcodes
= XNEWVEC (unsigned char, unwind
.opcode_alloc
);
25783 unwind
.opcodes
[unwind
.opcode_count
] = op
& 0xff;
25785 unwind
.opcode_count
++;
25789 /* Add unwind opcodes to adjust the stack pointer. */
25792 add_unwind_adjustsp (offsetT offset
)
25796 if (offset
> 0x200)
25798 /* We need at most 5 bytes to hold a 32-bit value in a uleb128. */
25803 /* Long form: 0xb2, uleb128. */
25804 /* This might not fit in a word so add the individual bytes,
25805 remembering the list is built in reverse order. */
25806 o
= (valueT
) ((offset
- 0x204) >> 2);
25808 add_unwind_opcode (0, 1);
25810 /* Calculate the uleb128 encoding of the offset. */
25814 bytes
[n
] = o
& 0x7f;
25820 /* Add the insn. */
25822 add_unwind_opcode (bytes
[n
- 1], 1);
25823 add_unwind_opcode (0xb2, 1);
25825 else if (offset
> 0x100)
25827 /* Two short opcodes. */
25828 add_unwind_opcode (0x3f, 1);
25829 op
= (offset
- 0x104) >> 2;
25830 add_unwind_opcode (op
, 1);
25832 else if (offset
> 0)
25834 /* Short opcode. */
25835 op
= (offset
- 4) >> 2;
25836 add_unwind_opcode (op
, 1);
25838 else if (offset
< 0)
25841 while (offset
> 0x100)
25843 add_unwind_opcode (0x7f, 1);
25846 op
= ((offset
- 4) >> 2) | 0x40;
25847 add_unwind_opcode (op
, 1);
25851 /* Finish the list of unwind opcodes for this function. */
25854 finish_unwind_opcodes (void)
25858 if (unwind
.fp_used
)
25860 /* Adjust sp as necessary. */
25861 unwind
.pending_offset
+= unwind
.fp_offset
- unwind
.frame_size
;
25862 flush_pending_unwind ();
25864 /* After restoring sp from the frame pointer. */
25865 op
= 0x90 | unwind
.fp_reg
;
25866 add_unwind_opcode (op
, 1);
25869 flush_pending_unwind ();
25873 /* Start an exception table entry. If idx is nonzero this is an index table
25877 start_unwind_section (const segT text_seg
, int idx
)
25879 const char * text_name
;
25880 const char * prefix
;
25881 const char * prefix_once
;
25882 const char * group_name
;
25890 prefix
= ELF_STRING_ARM_unwind
;
25891 prefix_once
= ELF_STRING_ARM_unwind_once
;
25892 type
= SHT_ARM_EXIDX
;
25896 prefix
= ELF_STRING_ARM_unwind_info
;
25897 prefix_once
= ELF_STRING_ARM_unwind_info_once
;
25898 type
= SHT_PROGBITS
;
25901 text_name
= segment_name (text_seg
);
25902 if (streq (text_name
, ".text"))
25905 if (strncmp (text_name
, ".gnu.linkonce.t.",
25906 strlen (".gnu.linkonce.t.")) == 0)
25908 prefix
= prefix_once
;
25909 text_name
+= strlen (".gnu.linkonce.t.");
25912 sec_name
= concat (prefix
, text_name
, (char *) NULL
);
25918 /* Handle COMDAT group. */
25919 if (prefix
!= prefix_once
&& (text_seg
->flags
& SEC_LINK_ONCE
) != 0)
25921 group_name
= elf_group_name (text_seg
);
25922 if (group_name
== NULL
)
25924 as_bad (_("Group section `%s' has no group signature"),
25925 segment_name (text_seg
));
25926 ignore_rest_of_line ();
25929 flags
|= SHF_GROUP
;
25933 obj_elf_change_section (sec_name
, type
, 0, flags
, 0, group_name
,
25936 /* Set the section link for index tables. */
25938 elf_linked_to_section (now_seg
) = text_seg
;
25942 /* Start an unwind table entry. HAVE_DATA is nonzero if we have additional
25943 personality routine data. Returns zero, or the index table value for
25944 an inline entry. */
25947 create_unwind_entry (int have_data
)
25952 /* The current word of data. */
25954 /* The number of bytes left in this word. */
25957 finish_unwind_opcodes ();
25959 /* Remember the current text section. */
25960 unwind
.saved_seg
= now_seg
;
25961 unwind
.saved_subseg
= now_subseg
;
25963 start_unwind_section (now_seg
, 0);
25965 if (unwind
.personality_routine
== NULL
)
25967 if (unwind
.personality_index
== -2)
25970 as_bad (_("handlerdata in cantunwind frame"));
25971 return 1; /* EXIDX_CANTUNWIND. */
25974 /* Use a default personality routine if none is specified. */
25975 if (unwind
.personality_index
== -1)
25977 if (unwind
.opcode_count
> 3)
25978 unwind
.personality_index
= 1;
25980 unwind
.personality_index
= 0;
25983 /* Space for the personality routine entry. */
25984 if (unwind
.personality_index
== 0)
25986 if (unwind
.opcode_count
> 3)
25987 as_bad (_("too many unwind opcodes for personality routine 0"));
25991 /* All the data is inline in the index table. */
25994 while (unwind
.opcode_count
> 0)
25996 unwind
.opcode_count
--;
25997 data
= (data
<< 8) | unwind
.opcodes
[unwind
.opcode_count
];
26001 /* Pad with "finish" opcodes. */
26003 data
= (data
<< 8) | 0xb0;
26010 /* We get two opcodes "free" in the first word. */
26011 size
= unwind
.opcode_count
- 2;
26015 /* PR 16765: Missing or misplaced unwind directives can trigger this. */
26016 if (unwind
.personality_index
!= -1)
26018 as_bad (_("attempt to recreate an unwind entry"));
26022 /* An extra byte is required for the opcode count. */
26023 size
= unwind
.opcode_count
+ 1;
26026 size
= (size
+ 3) >> 2;
26028 as_bad (_("too many unwind opcodes"));
26030 frag_align (2, 0, 0);
26031 record_alignment (now_seg
, 2);
26032 unwind
.table_entry
= expr_build_dot ();
26034 /* Allocate the table entry. */
26035 ptr
= frag_more ((size
<< 2) + 4);
26036 /* PR 13449: Zero the table entries in case some of them are not used. */
26037 memset (ptr
, 0, (size
<< 2) + 4);
26038 where
= frag_now_fix () - ((size
<< 2) + 4);
26040 switch (unwind
.personality_index
)
26043 /* ??? Should this be a PLT generating relocation? */
26044 /* Custom personality routine. */
26045 fix_new (frag_now
, where
, 4, unwind
.personality_routine
, 0, 1,
26046 BFD_RELOC_ARM_PREL31
);
26051 /* Set the first byte to the number of additional words. */
26052 data
= size
> 0 ? size
- 1 : 0;
26056 /* ABI defined personality routines. */
26058 /* Three opcodes bytes are packed into the first word. */
26065 /* The size and first two opcode bytes go in the first word. */
26066 data
= ((0x80 + unwind
.personality_index
) << 8) | size
;
26071 /* Should never happen. */
26075 /* Pack the opcodes into words (MSB first), reversing the list at the same
26077 while (unwind
.opcode_count
> 0)
26081 md_number_to_chars (ptr
, data
, 4);
26086 unwind
.opcode_count
--;
26088 data
= (data
<< 8) | unwind
.opcodes
[unwind
.opcode_count
];
26091 /* Finish off the last word. */
26094 /* Pad with "finish" opcodes. */
26096 data
= (data
<< 8) | 0xb0;
26098 md_number_to_chars (ptr
, data
, 4);
26103 /* Add an empty descriptor if there is no user-specified data. */
26104 ptr
= frag_more (4);
26105 md_number_to_chars (ptr
, 0, 4);
26112 /* Initialize the DWARF-2 unwind information for this procedure. */
26115 tc_arm_frame_initial_instructions (void)
26117 cfi_add_CFA_def_cfa (REG_SP
, 0);
26119 #endif /* OBJ_ELF */
26121 /* Convert REGNAME to a DWARF-2 register number. */
26124 tc_arm_regname_to_dw2regnum (char *regname
)
26126 int reg
= arm_reg_parse (®name
, REG_TYPE_RN
);
26130 /* PR 16694: Allow VFP registers as well. */
26131 reg
= arm_reg_parse (®name
, REG_TYPE_VFS
);
26135 reg
= arm_reg_parse (®name
, REG_TYPE_VFD
);
26144 tc_pe_dwarf2_emit_offset (symbolS
*symbol
, unsigned int size
)
26148 exp
.X_op
= O_secrel
;
26149 exp
.X_add_symbol
= symbol
;
26150 exp
.X_add_number
= 0;
26151 emit_expr (&exp
, size
);
26155 /* MD interface: Symbol and relocation handling. */
26157 /* Return the address within the segment that a PC-relative fixup is
26158 relative to. For ARM, PC-relative fixups applied to instructions
26159 are generally relative to the location of the fixup plus 8 bytes.
26160 Thumb branches are offset by 4, and Thumb loads relative to PC
26161 require special handling. */
26164 md_pcrel_from_section (fixS
* fixP
, segT seg
)
26166 offsetT base
= fixP
->fx_where
+ fixP
->fx_frag
->fr_address
;
26168 /* If this is pc-relative and we are going to emit a relocation
26169 then we just want to put out any pipeline compensation that the linker
26170 will need. Otherwise we want to use the calculated base.
26171 For WinCE we skip the bias for externals as well, since this
26172 is how the MS ARM-CE assembler behaves and we want to be compatible. */
26174 && ((fixP
->fx_addsy
&& S_GET_SEGMENT (fixP
->fx_addsy
) != seg
)
26175 || (arm_force_relocation (fixP
)
26177 && !S_IS_EXTERNAL (fixP
->fx_addsy
)
26183 switch (fixP
->fx_r_type
)
26185 /* PC relative addressing on the Thumb is slightly odd as the
26186 bottom two bits of the PC are forced to zero for the
26187 calculation. This happens *after* application of the
26188 pipeline offset. However, Thumb adrl already adjusts for
26189 this, so we need not do it again. */
26190 case BFD_RELOC_ARM_THUMB_ADD
:
26193 case BFD_RELOC_ARM_THUMB_OFFSET
:
26194 case BFD_RELOC_ARM_T32_OFFSET_IMM
:
26195 case BFD_RELOC_ARM_T32_ADD_PC12
:
26196 case BFD_RELOC_ARM_T32_CP_OFF_IMM
:
26197 return (base
+ 4) & ~3;
26199 /* Thumb branches are simply offset by +4. */
26200 case BFD_RELOC_THUMB_PCREL_BRANCH5
:
26201 case BFD_RELOC_THUMB_PCREL_BRANCH7
:
26202 case BFD_RELOC_THUMB_PCREL_BRANCH9
:
26203 case BFD_RELOC_THUMB_PCREL_BRANCH12
:
26204 case BFD_RELOC_THUMB_PCREL_BRANCH20
:
26205 case BFD_RELOC_THUMB_PCREL_BRANCH25
:
26206 case BFD_RELOC_THUMB_PCREL_BFCSEL
:
26207 case BFD_RELOC_ARM_THUMB_BF17
:
26208 case BFD_RELOC_ARM_THUMB_BF19
:
26209 case BFD_RELOC_ARM_THUMB_BF13
:
26210 case BFD_RELOC_ARM_THUMB_LOOP12
:
26213 case BFD_RELOC_THUMB_PCREL_BRANCH23
:
26215 && (S_GET_SEGMENT (fixP
->fx_addsy
) == seg
)
26216 && !S_FORCE_RELOC (fixP
->fx_addsy
, TRUE
)
26217 && ARM_IS_FUNC (fixP
->fx_addsy
)
26218 && ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_v5t
))
26219 base
= fixP
->fx_where
+ fixP
->fx_frag
->fr_address
;
26222 /* BLX is like branches above, but forces the low two bits of PC to
26224 case BFD_RELOC_THUMB_PCREL_BLX
:
26226 && (S_GET_SEGMENT (fixP
->fx_addsy
) == seg
)
26227 && !S_FORCE_RELOC (fixP
->fx_addsy
, TRUE
)
26228 && THUMB_IS_FUNC (fixP
->fx_addsy
)
26229 && ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_v5t
))
26230 base
= fixP
->fx_where
+ fixP
->fx_frag
->fr_address
;
26231 return (base
+ 4) & ~3;
26233 /* ARM mode branches are offset by +8. However, the Windows CE
26234 loader expects the relocation not to take this into account. */
26235 case BFD_RELOC_ARM_PCREL_BLX
:
26237 && (S_GET_SEGMENT (fixP
->fx_addsy
) == seg
)
26238 && !S_FORCE_RELOC (fixP
->fx_addsy
, TRUE
)
26239 && ARM_IS_FUNC (fixP
->fx_addsy
)
26240 && ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_v5t
))
26241 base
= fixP
->fx_where
+ fixP
->fx_frag
->fr_address
;
26244 case BFD_RELOC_ARM_PCREL_CALL
:
26246 && (S_GET_SEGMENT (fixP
->fx_addsy
) == seg
)
26247 && !S_FORCE_RELOC (fixP
->fx_addsy
, TRUE
)
26248 && THUMB_IS_FUNC (fixP
->fx_addsy
)
26249 && ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_v5t
))
26250 base
= fixP
->fx_where
+ fixP
->fx_frag
->fr_address
;
26253 case BFD_RELOC_ARM_PCREL_BRANCH
:
26254 case BFD_RELOC_ARM_PCREL_JUMP
:
26255 case BFD_RELOC_ARM_PLT32
:
26257 /* When handling fixups immediately, because we have already
26258 discovered the value of a symbol, or the address of the frag involved
26259 we must account for the offset by +8, as the OS loader will never see the reloc.
26260 see fixup_segment() in write.c
26261 The S_IS_EXTERNAL test handles the case of global symbols.
26262 Those need the calculated base, not just the pipe compensation the linker will need. */
26264 && fixP
->fx_addsy
!= NULL
26265 && (S_GET_SEGMENT (fixP
->fx_addsy
) == seg
)
26266 && (S_IS_EXTERNAL (fixP
->fx_addsy
) || !arm_force_relocation (fixP
)))
26274 /* ARM mode loads relative to PC are also offset by +8. Unlike
26275 branches, the Windows CE loader *does* expect the relocation
26276 to take this into account. */
26277 case BFD_RELOC_ARM_OFFSET_IMM
:
26278 case BFD_RELOC_ARM_OFFSET_IMM8
:
26279 case BFD_RELOC_ARM_HWLITERAL
:
26280 case BFD_RELOC_ARM_LITERAL
:
26281 case BFD_RELOC_ARM_CP_OFF_IMM
:
26285 /* Other PC-relative relocations are un-offset. */
26291 static bfd_boolean flag_warn_syms
= TRUE
;
26294 arm_tc_equal_in_insn (int c ATTRIBUTE_UNUSED
, char * name
)
26296 /* PR 18347 - Warn if the user attempts to create a symbol with the same
26297 name as an ARM instruction. Whilst strictly speaking it is allowed, it
26298 does mean that the resulting code might be very confusing to the reader.
26299 Also this warning can be triggered if the user omits an operand before
26300 an immediate address, eg:
26304 GAS treats this as an assignment of the value of the symbol foo to a
26305 symbol LDR, and so (without this code) it will not issue any kind of
26306 warning or error message.
26308 Note - ARM instructions are case-insensitive but the strings in the hash
26309 table are all stored in lower case, so we must first ensure that name is
26311 if (flag_warn_syms
&& arm_ops_hsh
)
26313 char * nbuf
= strdup (name
);
26316 for (p
= nbuf
; *p
; p
++)
26318 if (hash_find (arm_ops_hsh
, nbuf
) != NULL
)
26320 static struct hash_control
* already_warned
= NULL
;
26322 if (already_warned
== NULL
)
26323 already_warned
= hash_new ();
26324 /* Only warn about the symbol once. To keep the code
26325 simple we let hash_insert do the lookup for us. */
26326 if (hash_insert (already_warned
, nbuf
, NULL
) == NULL
)
26327 as_warn (_("[-mwarn-syms]: Assignment makes a symbol match an ARM instruction: %s"), name
);
26336 /* Under ELF we need to default _GLOBAL_OFFSET_TABLE.
26337 Otherwise we have no need to default values of symbols. */
26340 md_undefined_symbol (char * name ATTRIBUTE_UNUSED
)
26343 if (name
[0] == '_' && name
[1] == 'G'
26344 && streq (name
, GLOBAL_OFFSET_TABLE_NAME
))
26348 if (symbol_find (name
))
26349 as_bad (_("GOT already in the symbol table"));
26351 GOT_symbol
= symbol_new (name
, undefined_section
,
26352 (valueT
) 0, & zero_address_frag
);
26362 /* Subroutine of md_apply_fix. Check to see if an immediate can be
26363 computed as two separate immediate values, added together. We
26364 already know that this value cannot be computed by just one ARM
26367 static unsigned int
26368 validate_immediate_twopart (unsigned int val
,
26369 unsigned int * highpart
)
26374 for (i
= 0; i
< 32; i
+= 2)
26375 if (((a
= rotate_left (val
, i
)) & 0xff) != 0)
26381 * highpart
= (a
>> 8) | ((i
+ 24) << 7);
26383 else if (a
& 0xff0000)
26385 if (a
& 0xff000000)
26387 * highpart
= (a
>> 16) | ((i
+ 16) << 7);
26391 gas_assert (a
& 0xff000000);
26392 * highpart
= (a
>> 24) | ((i
+ 8) << 7);
26395 return (a
& 0xff) | (i
<< 7);
26402 validate_offset_imm (unsigned int val
, int hwse
)
26404 if ((hwse
&& val
> 255) || val
> 4095)
26409 /* Subroutine of md_apply_fix. Do those data_ops which can take a
26410 negative immediate constant by altering the instruction. A bit of
26415 by inverting the second operand, and
26418 by negating the second operand. */
26421 negate_data_op (unsigned long * instruction
,
26422 unsigned long value
)
26425 unsigned long negated
, inverted
;
26427 negated
= encode_arm_immediate (-value
);
26428 inverted
= encode_arm_immediate (~value
);
26430 op
= (*instruction
>> DATA_OP_SHIFT
) & 0xf;
26433 /* First negates. */
26434 case OPCODE_SUB
: /* ADD <-> SUB */
26435 new_inst
= OPCODE_ADD
;
26440 new_inst
= OPCODE_SUB
;
26444 case OPCODE_CMP
: /* CMP <-> CMN */
26445 new_inst
= OPCODE_CMN
;
26450 new_inst
= OPCODE_CMP
;
26454 /* Now Inverted ops. */
26455 case OPCODE_MOV
: /* MOV <-> MVN */
26456 new_inst
= OPCODE_MVN
;
26461 new_inst
= OPCODE_MOV
;
26465 case OPCODE_AND
: /* AND <-> BIC */
26466 new_inst
= OPCODE_BIC
;
26471 new_inst
= OPCODE_AND
;
26475 case OPCODE_ADC
: /* ADC <-> SBC */
26476 new_inst
= OPCODE_SBC
;
26481 new_inst
= OPCODE_ADC
;
26485 /* We cannot do anything. */
26490 if (value
== (unsigned) FAIL
)
26493 *instruction
&= OPCODE_MASK
;
26494 *instruction
|= new_inst
<< DATA_OP_SHIFT
;
26498 /* Like negate_data_op, but for Thumb-2. */
26500 static unsigned int
26501 thumb32_negate_data_op (offsetT
*instruction
, unsigned int value
)
26505 unsigned int negated
, inverted
;
26507 negated
= encode_thumb32_immediate (-value
);
26508 inverted
= encode_thumb32_immediate (~value
);
26510 rd
= (*instruction
>> 8) & 0xf;
26511 op
= (*instruction
>> T2_DATA_OP_SHIFT
) & 0xf;
26514 /* ADD <-> SUB. Includes CMP <-> CMN. */
26515 case T2_OPCODE_SUB
:
26516 new_inst
= T2_OPCODE_ADD
;
26520 case T2_OPCODE_ADD
:
26521 new_inst
= T2_OPCODE_SUB
;
26525 /* ORR <-> ORN. Includes MOV <-> MVN. */
26526 case T2_OPCODE_ORR
:
26527 new_inst
= T2_OPCODE_ORN
;
26531 case T2_OPCODE_ORN
:
26532 new_inst
= T2_OPCODE_ORR
;
26536 /* AND <-> BIC. TST has no inverted equivalent. */
26537 case T2_OPCODE_AND
:
26538 new_inst
= T2_OPCODE_BIC
;
26545 case T2_OPCODE_BIC
:
26546 new_inst
= T2_OPCODE_AND
;
26551 case T2_OPCODE_ADC
:
26552 new_inst
= T2_OPCODE_SBC
;
26556 case T2_OPCODE_SBC
:
26557 new_inst
= T2_OPCODE_ADC
;
26561 /* We cannot do anything. */
26566 if (value
== (unsigned int)FAIL
)
26569 *instruction
&= T2_OPCODE_MASK
;
26570 *instruction
|= new_inst
<< T2_DATA_OP_SHIFT
;
26574 /* Read a 32-bit thumb instruction from buf. */
26576 static unsigned long
26577 get_thumb32_insn (char * buf
)
26579 unsigned long insn
;
26580 insn
= md_chars_to_number (buf
, THUMB_SIZE
) << 16;
26581 insn
|= md_chars_to_number (buf
+ THUMB_SIZE
, THUMB_SIZE
);
26586 /* We usually want to set the low bit on the address of thumb function
26587 symbols. In particular .word foo - . should have the low bit set.
26588 Generic code tries to fold the difference of two symbols to
26589 a constant. Prevent this and force a relocation when the first symbols
26590 is a thumb function. */
26593 arm_optimize_expr (expressionS
*l
, operatorT op
, expressionS
*r
)
26595 if (op
== O_subtract
26596 && l
->X_op
== O_symbol
26597 && r
->X_op
== O_symbol
26598 && THUMB_IS_FUNC (l
->X_add_symbol
))
26600 l
->X_op
= O_subtract
;
26601 l
->X_op_symbol
= r
->X_add_symbol
;
26602 l
->X_add_number
-= r
->X_add_number
;
26606 /* Process as normal. */
26610 /* Encode Thumb2 unconditional branches and calls. The encoding
26611 for the 2 are identical for the immediate values. */
26614 encode_thumb2_b_bl_offset (char * buf
, offsetT value
)
26616 #define T2I1I2MASK ((1 << 13) | (1 << 11))
26619 addressT S
, I1
, I2
, lo
, hi
;
26621 S
= (value
>> 24) & 0x01;
26622 I1
= (value
>> 23) & 0x01;
26623 I2
= (value
>> 22) & 0x01;
26624 hi
= (value
>> 12) & 0x3ff;
26625 lo
= (value
>> 1) & 0x7ff;
26626 newval
= md_chars_to_number (buf
, THUMB_SIZE
);
26627 newval2
= md_chars_to_number (buf
+ THUMB_SIZE
, THUMB_SIZE
);
26628 newval
|= (S
<< 10) | hi
;
26629 newval2
&= ~T2I1I2MASK
;
26630 newval2
|= (((I1
^ S
) << 13) | ((I2
^ S
) << 11) | lo
) ^ T2I1I2MASK
;
26631 md_number_to_chars (buf
, newval
, THUMB_SIZE
);
26632 md_number_to_chars (buf
+ THUMB_SIZE
, newval2
, THUMB_SIZE
);
26636 md_apply_fix (fixS
* fixP
,
26640 offsetT value
= * valP
;
26642 unsigned int newimm
;
26643 unsigned long temp
;
26645 char * buf
= fixP
->fx_where
+ fixP
->fx_frag
->fr_literal
;
26647 gas_assert (fixP
->fx_r_type
<= BFD_RELOC_UNUSED
);
26649 /* Note whether this will delete the relocation. */
26651 if (fixP
->fx_addsy
== 0 && !fixP
->fx_pcrel
)
26654 /* On a 64-bit host, silently truncate 'value' to 32 bits for
26655 consistency with the behaviour on 32-bit hosts. Remember value
26657 value
&= 0xffffffff;
26658 value
^= 0x80000000;
26659 value
-= 0x80000000;
26662 fixP
->fx_addnumber
= value
;
26664 /* Same treatment for fixP->fx_offset. */
26665 fixP
->fx_offset
&= 0xffffffff;
26666 fixP
->fx_offset
^= 0x80000000;
26667 fixP
->fx_offset
-= 0x80000000;
26669 switch (fixP
->fx_r_type
)
26671 case BFD_RELOC_NONE
:
26672 /* This will need to go in the object file. */
26676 case BFD_RELOC_ARM_IMMEDIATE
:
26677 /* We claim that this fixup has been processed here,
26678 even if in fact we generate an error because we do
26679 not have a reloc for it, so tc_gen_reloc will reject it. */
26682 if (fixP
->fx_addsy
)
26684 const char *msg
= 0;
26686 if (! S_IS_DEFINED (fixP
->fx_addsy
))
26687 msg
= _("undefined symbol %s used as an immediate value");
26688 else if (S_GET_SEGMENT (fixP
->fx_addsy
) != seg
)
26689 msg
= _("symbol %s is in a different section");
26690 else if (S_IS_WEAK (fixP
->fx_addsy
))
26691 msg
= _("symbol %s is weak and may be overridden later");
26695 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
26696 msg
, S_GET_NAME (fixP
->fx_addsy
));
26701 temp
= md_chars_to_number (buf
, INSN_SIZE
);
26703 /* If the offset is negative, we should use encoding A2 for ADR. */
26704 if ((temp
& 0xfff0000) == 0x28f0000 && value
< 0)
26705 newimm
= negate_data_op (&temp
, value
);
26708 newimm
= encode_arm_immediate (value
);
26710 /* If the instruction will fail, see if we can fix things up by
26711 changing the opcode. */
26712 if (newimm
== (unsigned int) FAIL
)
26713 newimm
= negate_data_op (&temp
, value
);
26714 /* MOV accepts both ARM modified immediate (A1 encoding) and
26715 UINT16 (A2 encoding) when possible, MOVW only accepts UINT16.
26716 When disassembling, MOV is preferred when there is no encoding
26718 if (newimm
== (unsigned int) FAIL
26719 && ((temp
>> DATA_OP_SHIFT
) & 0xf) == OPCODE_MOV
26720 && ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v6t2
)
26721 && !((temp
>> SBIT_SHIFT
) & 0x1)
26722 && value
>= 0 && value
<= 0xffff)
26724 /* Clear bits[23:20] to change encoding from A1 to A2. */
26725 temp
&= 0xff0fffff;
26726 /* Encoding high 4bits imm. Code below will encode the remaining
26728 temp
|= (value
& 0x0000f000) << 4;
26729 newimm
= value
& 0x00000fff;
26733 if (newimm
== (unsigned int) FAIL
)
26735 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
26736 _("invalid constant (%lx) after fixup"),
26737 (unsigned long) value
);
26741 newimm
|= (temp
& 0xfffff000);
26742 md_number_to_chars (buf
, (valueT
) newimm
, INSN_SIZE
);
26745 case BFD_RELOC_ARM_ADRL_IMMEDIATE
:
26747 unsigned int highpart
= 0;
26748 unsigned int newinsn
= 0xe1a00000; /* nop. */
26750 if (fixP
->fx_addsy
)
26752 const char *msg
= 0;
26754 if (! S_IS_DEFINED (fixP
->fx_addsy
))
26755 msg
= _("undefined symbol %s used as an immediate value");
26756 else if (S_GET_SEGMENT (fixP
->fx_addsy
) != seg
)
26757 msg
= _("symbol %s is in a different section");
26758 else if (S_IS_WEAK (fixP
->fx_addsy
))
26759 msg
= _("symbol %s is weak and may be overridden later");
26763 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
26764 msg
, S_GET_NAME (fixP
->fx_addsy
));
26769 newimm
= encode_arm_immediate (value
);
26770 temp
= md_chars_to_number (buf
, INSN_SIZE
);
26772 /* If the instruction will fail, see if we can fix things up by
26773 changing the opcode. */
26774 if (newimm
== (unsigned int) FAIL
26775 && (newimm
= negate_data_op (& temp
, value
)) == (unsigned int) FAIL
)
26777 /* No ? OK - try using two ADD instructions to generate
26779 newimm
= validate_immediate_twopart (value
, & highpart
);
26781 /* Yes - then make sure that the second instruction is
26783 if (newimm
!= (unsigned int) FAIL
)
26785 /* Still No ? Try using a negated value. */
26786 else if ((newimm
= validate_immediate_twopart (- value
, & highpart
)) != (unsigned int) FAIL
)
26787 temp
= newinsn
= (temp
& OPCODE_MASK
) | OPCODE_SUB
<< DATA_OP_SHIFT
;
26788 /* Otherwise - give up. */
26791 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
26792 _("unable to compute ADRL instructions for PC offset of 0x%lx"),
26797 /* Replace the first operand in the 2nd instruction (which
26798 is the PC) with the destination register. We have
26799 already added in the PC in the first instruction and we
26800 do not want to do it again. */
26801 newinsn
&= ~ 0xf0000;
26802 newinsn
|= ((newinsn
& 0x0f000) << 4);
26805 newimm
|= (temp
& 0xfffff000);
26806 md_number_to_chars (buf
, (valueT
) newimm
, INSN_SIZE
);
26808 highpart
|= (newinsn
& 0xfffff000);
26809 md_number_to_chars (buf
+ INSN_SIZE
, (valueT
) highpart
, INSN_SIZE
);
26813 case BFD_RELOC_ARM_OFFSET_IMM
:
26814 if (!fixP
->fx_done
&& seg
->use_rela_p
)
26816 /* Fall through. */
26818 case BFD_RELOC_ARM_LITERAL
:
26824 if (validate_offset_imm (value
, 0) == FAIL
)
26826 if (fixP
->fx_r_type
== BFD_RELOC_ARM_LITERAL
)
26827 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
26828 _("invalid literal constant: pool needs to be closer"));
26830 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
26831 _("bad immediate value for offset (%ld)"),
26836 newval
= md_chars_to_number (buf
, INSN_SIZE
);
26838 newval
&= 0xfffff000;
26841 newval
&= 0xff7ff000;
26842 newval
|= value
| (sign
? INDEX_UP
: 0);
26844 md_number_to_chars (buf
, newval
, INSN_SIZE
);
26847 case BFD_RELOC_ARM_OFFSET_IMM8
:
26848 case BFD_RELOC_ARM_HWLITERAL
:
26854 if (validate_offset_imm (value
, 1) == FAIL
)
26856 if (fixP
->fx_r_type
== BFD_RELOC_ARM_HWLITERAL
)
26857 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
26858 _("invalid literal constant: pool needs to be closer"));
26860 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
26861 _("bad immediate value for 8-bit offset (%ld)"),
26866 newval
= md_chars_to_number (buf
, INSN_SIZE
);
26868 newval
&= 0xfffff0f0;
26871 newval
&= 0xff7ff0f0;
26872 newval
|= ((value
>> 4) << 8) | (value
& 0xf) | (sign
? INDEX_UP
: 0);
26874 md_number_to_chars (buf
, newval
, INSN_SIZE
);
26877 case BFD_RELOC_ARM_T32_OFFSET_U8
:
26878 if (value
< 0 || value
> 1020 || value
% 4 != 0)
26879 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
26880 _("bad immediate value for offset (%ld)"), (long) value
);
26883 newval
= md_chars_to_number (buf
+2, THUMB_SIZE
);
26885 md_number_to_chars (buf
+2, newval
, THUMB_SIZE
);
26888 case BFD_RELOC_ARM_T32_OFFSET_IMM
:
26889 /* This is a complicated relocation used for all varieties of Thumb32
26890 load/store instruction with immediate offset:
26892 1110 100P u1WL NNNN XXXX YYYY iiii iiii - +/-(U) pre/post(P) 8-bit,
26893 *4, optional writeback(W)
26894 (doubleword load/store)
26896 1111 100S uTTL 1111 XXXX iiii iiii iiii - +/-(U) 12-bit PC-rel
26897 1111 100S 0TTL NNNN XXXX 1Pu1 iiii iiii - +/-(U) pre/post(P) 8-bit
26898 1111 100S 0TTL NNNN XXXX 1110 iiii iiii - positive 8-bit (T instruction)
26899 1111 100S 1TTL NNNN XXXX iiii iiii iiii - positive 12-bit
26900 1111 100S 0TTL NNNN XXXX 1100 iiii iiii - negative 8-bit
26902 Uppercase letters indicate bits that are already encoded at
26903 this point. Lowercase letters are our problem. For the
26904 second block of instructions, the secondary opcode nybble
26905 (bits 8..11) is present, and bit 23 is zero, even if this is
26906 a PC-relative operation. */
26907 newval
= md_chars_to_number (buf
, THUMB_SIZE
);
26909 newval
|= md_chars_to_number (buf
+THUMB_SIZE
, THUMB_SIZE
);
26911 if ((newval
& 0xf0000000) == 0xe0000000)
26913 /* Doubleword load/store: 8-bit offset, scaled by 4. */
26915 newval
|= (1 << 23);
26918 if (value
% 4 != 0)
26920 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
26921 _("offset not a multiple of 4"));
26927 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
26928 _("offset out of range"));
26933 else if ((newval
& 0x000f0000) == 0x000f0000)
26935 /* PC-relative, 12-bit offset. */
26937 newval
|= (1 << 23);
26942 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
26943 _("offset out of range"));
26948 else if ((newval
& 0x00000100) == 0x00000100)
26950 /* Writeback: 8-bit, +/- offset. */
26952 newval
|= (1 << 9);
26957 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
26958 _("offset out of range"));
26963 else if ((newval
& 0x00000f00) == 0x00000e00)
26965 /* T-instruction: positive 8-bit offset. */
26966 if (value
< 0 || value
> 0xff)
26968 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
26969 _("offset out of range"));
26977 /* Positive 12-bit or negative 8-bit offset. */
26981 newval
|= (1 << 23);
26991 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
26992 _("offset out of range"));
26999 md_number_to_chars (buf
, (newval
>> 16) & 0xffff, THUMB_SIZE
);
27000 md_number_to_chars (buf
+ THUMB_SIZE
, newval
& 0xffff, THUMB_SIZE
);
27003 case BFD_RELOC_ARM_SHIFT_IMM
:
27004 newval
= md_chars_to_number (buf
, INSN_SIZE
);
27005 if (((unsigned long) value
) > 32
27007 && (((newval
& 0x60) == 0) || (newval
& 0x60) == 0x60)))
27009 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
27010 _("shift expression is too large"));
27015 /* Shifts of zero must be done as lsl. */
27017 else if (value
== 32)
27019 newval
&= 0xfffff07f;
27020 newval
|= (value
& 0x1f) << 7;
27021 md_number_to_chars (buf
, newval
, INSN_SIZE
);
27024 case BFD_RELOC_ARM_T32_IMMEDIATE
:
27025 case BFD_RELOC_ARM_T32_ADD_IMM
:
27026 case BFD_RELOC_ARM_T32_IMM12
:
27027 case BFD_RELOC_ARM_T32_ADD_PC12
:
27028 /* We claim that this fixup has been processed here,
27029 even if in fact we generate an error because we do
27030 not have a reloc for it, so tc_gen_reloc will reject it. */
27034 && ! S_IS_DEFINED (fixP
->fx_addsy
))
27036 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
27037 _("undefined symbol %s used as an immediate value"),
27038 S_GET_NAME (fixP
->fx_addsy
));
27042 newval
= md_chars_to_number (buf
, THUMB_SIZE
);
27044 newval
|= md_chars_to_number (buf
+2, THUMB_SIZE
);
27047 if ((fixP
->fx_r_type
== BFD_RELOC_ARM_T32_IMMEDIATE
27048 /* ARMv8-M Baseline MOV will reach here, but it doesn't support
27049 Thumb2 modified immediate encoding (T2). */
27050 && ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v6t2
))
27051 || fixP
->fx_r_type
== BFD_RELOC_ARM_T32_ADD_IMM
)
27053 newimm
= encode_thumb32_immediate (value
);
27054 if (newimm
== (unsigned int) FAIL
)
27055 newimm
= thumb32_negate_data_op (&newval
, value
);
27057 if (newimm
== (unsigned int) FAIL
)
27059 if (fixP
->fx_r_type
!= BFD_RELOC_ARM_T32_IMMEDIATE
)
27061 /* Turn add/sum into addw/subw. */
27062 if (fixP
->fx_r_type
== BFD_RELOC_ARM_T32_ADD_IMM
)
27063 newval
= (newval
& 0xfeffffff) | 0x02000000;
27064 /* No flat 12-bit imm encoding for addsw/subsw. */
27065 if ((newval
& 0x00100000) == 0)
27067 /* 12 bit immediate for addw/subw. */
27071 newval
^= 0x00a00000;
27074 newimm
= (unsigned int) FAIL
;
27081 /* MOV accepts both Thumb2 modified immediate (T2 encoding) and
27082 UINT16 (T3 encoding), MOVW only accepts UINT16. When
27083 disassembling, MOV is preferred when there is no encoding
27085 if (((newval
>> T2_DATA_OP_SHIFT
) & 0xf) == T2_OPCODE_ORR
27086 /* NOTE: MOV uses the ORR opcode in Thumb 2 mode
27087 but with the Rn field [19:16] set to 1111. */
27088 && (((newval
>> 16) & 0xf) == 0xf)
27089 && ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v6t2_v8m
)
27090 && !((newval
>> T2_SBIT_SHIFT
) & 0x1)
27091 && value
>= 0 && value
<= 0xffff)
27093 /* Toggle bit[25] to change encoding from T2 to T3. */
27095 /* Clear bits[19:16]. */
27096 newval
&= 0xfff0ffff;
27097 /* Encoding high 4bits imm. Code below will encode the
27098 remaining low 12bits. */
27099 newval
|= (value
& 0x0000f000) << 4;
27100 newimm
= value
& 0x00000fff;
27105 if (newimm
== (unsigned int)FAIL
)
27107 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
27108 _("invalid constant (%lx) after fixup"),
27109 (unsigned long) value
);
27113 newval
|= (newimm
& 0x800) << 15;
27114 newval
|= (newimm
& 0x700) << 4;
27115 newval
|= (newimm
& 0x0ff);
27117 md_number_to_chars (buf
, (valueT
) ((newval
>> 16) & 0xffff), THUMB_SIZE
);
27118 md_number_to_chars (buf
+2, (valueT
) (newval
& 0xffff), THUMB_SIZE
);
27121 case BFD_RELOC_ARM_SMC
:
27122 if (((unsigned long) value
) > 0xffff)
27123 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
27124 _("invalid smc expression"));
27125 newval
= md_chars_to_number (buf
, INSN_SIZE
);
27126 newval
|= (value
& 0xf) | ((value
& 0xfff0) << 4);
27127 md_number_to_chars (buf
, newval
, INSN_SIZE
);
27130 case BFD_RELOC_ARM_HVC
:
27131 if (((unsigned long) value
) > 0xffff)
27132 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
27133 _("invalid hvc expression"));
27134 newval
= md_chars_to_number (buf
, INSN_SIZE
);
27135 newval
|= (value
& 0xf) | ((value
& 0xfff0) << 4);
27136 md_number_to_chars (buf
, newval
, INSN_SIZE
);
27139 case BFD_RELOC_ARM_SWI
:
27140 if (fixP
->tc_fix_data
!= 0)
27142 if (((unsigned long) value
) > 0xff)
27143 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
27144 _("invalid swi expression"));
27145 newval
= md_chars_to_number (buf
, THUMB_SIZE
);
27147 md_number_to_chars (buf
, newval
, THUMB_SIZE
);
27151 if (((unsigned long) value
) > 0x00ffffff)
27152 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
27153 _("invalid swi expression"));
27154 newval
= md_chars_to_number (buf
, INSN_SIZE
);
27156 md_number_to_chars (buf
, newval
, INSN_SIZE
);
27160 case BFD_RELOC_ARM_MULTI
:
27161 if (((unsigned long) value
) > 0xffff)
27162 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
27163 _("invalid expression in load/store multiple"));
27164 newval
= value
| md_chars_to_number (buf
, INSN_SIZE
);
27165 md_number_to_chars (buf
, newval
, INSN_SIZE
);
27169 case BFD_RELOC_ARM_PCREL_CALL
:
27171 if (ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_v5t
)
27173 && !S_FORCE_RELOC (fixP
->fx_addsy
, TRUE
)
27174 && (S_GET_SEGMENT (fixP
->fx_addsy
) == seg
)
27175 && THUMB_IS_FUNC (fixP
->fx_addsy
))
27176 /* Flip the bl to blx. This is a simple flip
27177 bit here because we generate PCREL_CALL for
27178 unconditional bls. */
27180 newval
= md_chars_to_number (buf
, INSN_SIZE
);
27181 newval
= newval
| 0x10000000;
27182 md_number_to_chars (buf
, newval
, INSN_SIZE
);
27188 goto arm_branch_common
;
27190 case BFD_RELOC_ARM_PCREL_JUMP
:
27191 if (ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_v5t
)
27193 && !S_FORCE_RELOC (fixP
->fx_addsy
, TRUE
)
27194 && (S_GET_SEGMENT (fixP
->fx_addsy
) == seg
)
27195 && THUMB_IS_FUNC (fixP
->fx_addsy
))
27197 /* This would map to a bl<cond>, b<cond>,
27198 b<always> to a Thumb function. We
27199 need to force a relocation for this particular
27201 newval
= md_chars_to_number (buf
, INSN_SIZE
);
27204 /* Fall through. */
27206 case BFD_RELOC_ARM_PLT32
:
27208 case BFD_RELOC_ARM_PCREL_BRANCH
:
27210 goto arm_branch_common
;
27212 case BFD_RELOC_ARM_PCREL_BLX
:
27215 if (ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_v5t
)
27217 && !S_FORCE_RELOC (fixP
->fx_addsy
, TRUE
)
27218 && (S_GET_SEGMENT (fixP
->fx_addsy
) == seg
)
27219 && ARM_IS_FUNC (fixP
->fx_addsy
))
27221 /* Flip the blx to a bl and warn. */
27222 const char *name
= S_GET_NAME (fixP
->fx_addsy
);
27223 newval
= 0xeb000000;
27224 as_warn_where (fixP
->fx_file
, fixP
->fx_line
,
27225 _("blx to '%s' an ARM ISA state function changed to bl"),
27227 md_number_to_chars (buf
, newval
, INSN_SIZE
);
27233 if (EF_ARM_EABI_VERSION (meabi_flags
) >= EF_ARM_EABI_VER4
)
27234 fixP
->fx_r_type
= BFD_RELOC_ARM_PCREL_CALL
;
27238 /* We are going to store value (shifted right by two) in the
27239 instruction, in a 24 bit, signed field. Bits 26 through 32 either
27240 all clear or all set and bit 0 must be clear. For B/BL bit 1 must
27243 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
27244 _("misaligned branch destination"));
27245 if ((value
& (offsetT
)0xfe000000) != (offsetT
)0
27246 && (value
& (offsetT
)0xfe000000) != (offsetT
)0xfe000000)
27247 as_bad_where (fixP
->fx_file
, fixP
->fx_line
, BAD_RANGE
);
27249 if (fixP
->fx_done
|| !seg
->use_rela_p
)
27251 newval
= md_chars_to_number (buf
, INSN_SIZE
);
27252 newval
|= (value
>> 2) & 0x00ffffff;
27253 /* Set the H bit on BLX instructions. */
27257 newval
|= 0x01000000;
27259 newval
&= ~0x01000000;
27261 md_number_to_chars (buf
, newval
, INSN_SIZE
);
27265 case BFD_RELOC_THUMB_PCREL_BRANCH7
: /* CBZ */
27266 /* CBZ can only branch forward. */
27268 /* Attempts to use CBZ to branch to the next instruction
27269 (which, strictly speaking, are prohibited) will be turned into
27272 FIXME: It may be better to remove the instruction completely and
27273 perform relaxation. */
27276 newval
= md_chars_to_number (buf
, THUMB_SIZE
);
27277 newval
= 0xbf00; /* NOP encoding T1 */
27278 md_number_to_chars (buf
, newval
, THUMB_SIZE
);
27283 as_bad_where (fixP
->fx_file
, fixP
->fx_line
, BAD_RANGE
);
27285 if (fixP
->fx_done
|| !seg
->use_rela_p
)
27287 newval
= md_chars_to_number (buf
, THUMB_SIZE
);
27288 newval
|= ((value
& 0x3e) << 2) | ((value
& 0x40) << 3);
27289 md_number_to_chars (buf
, newval
, THUMB_SIZE
);
27294 case BFD_RELOC_THUMB_PCREL_BRANCH9
: /* Conditional branch. */
27295 if ((value
& ~0xff) && ((value
& ~0xff) != ~0xff))
27296 as_bad_where (fixP
->fx_file
, fixP
->fx_line
, BAD_RANGE
);
27298 if (fixP
->fx_done
|| !seg
->use_rela_p
)
27300 newval
= md_chars_to_number (buf
, THUMB_SIZE
);
27301 newval
|= (value
& 0x1ff) >> 1;
27302 md_number_to_chars (buf
, newval
, THUMB_SIZE
);
27306 case BFD_RELOC_THUMB_PCREL_BRANCH12
: /* Unconditional branch. */
27307 if ((value
& ~0x7ff) && ((value
& ~0x7ff) != ~0x7ff))
27308 as_bad_where (fixP
->fx_file
, fixP
->fx_line
, BAD_RANGE
);
27310 if (fixP
->fx_done
|| !seg
->use_rela_p
)
27312 newval
= md_chars_to_number (buf
, THUMB_SIZE
);
27313 newval
|= (value
& 0xfff) >> 1;
27314 md_number_to_chars (buf
, newval
, THUMB_SIZE
);
27318 case BFD_RELOC_THUMB_PCREL_BRANCH20
:
27320 && (S_GET_SEGMENT (fixP
->fx_addsy
) == seg
)
27321 && !S_FORCE_RELOC (fixP
->fx_addsy
, TRUE
)
27322 && ARM_IS_FUNC (fixP
->fx_addsy
)
27323 && ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_v5t
))
27325 /* Force a relocation for a branch 20 bits wide. */
27328 if ((value
& ~0x1fffff) && ((value
& ~0x0fffff) != ~0x0fffff))
27329 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
27330 _("conditional branch out of range"));
27332 if (fixP
->fx_done
|| !seg
->use_rela_p
)
27335 addressT S
, J1
, J2
, lo
, hi
;
27337 S
= (value
& 0x00100000) >> 20;
27338 J2
= (value
& 0x00080000) >> 19;
27339 J1
= (value
& 0x00040000) >> 18;
27340 hi
= (value
& 0x0003f000) >> 12;
27341 lo
= (value
& 0x00000ffe) >> 1;
27343 newval
= md_chars_to_number (buf
, THUMB_SIZE
);
27344 newval2
= md_chars_to_number (buf
+ THUMB_SIZE
, THUMB_SIZE
);
27345 newval
|= (S
<< 10) | hi
;
27346 newval2
|= (J1
<< 13) | (J2
<< 11) | lo
;
27347 md_number_to_chars (buf
, newval
, THUMB_SIZE
);
27348 md_number_to_chars (buf
+ THUMB_SIZE
, newval2
, THUMB_SIZE
);
27352 case BFD_RELOC_THUMB_PCREL_BLX
:
27353 /* If there is a blx from a thumb state function to
27354 another thumb function flip this to a bl and warn
27358 && !S_FORCE_RELOC (fixP
->fx_addsy
, TRUE
)
27359 && (S_GET_SEGMENT (fixP
->fx_addsy
) == seg
)
27360 && THUMB_IS_FUNC (fixP
->fx_addsy
))
27362 const char *name
= S_GET_NAME (fixP
->fx_addsy
);
27363 as_warn_where (fixP
->fx_file
, fixP
->fx_line
,
27364 _("blx to Thumb func '%s' from Thumb ISA state changed to bl"),
27366 newval
= md_chars_to_number (buf
+ THUMB_SIZE
, THUMB_SIZE
);
27367 newval
= newval
| 0x1000;
27368 md_number_to_chars (buf
+THUMB_SIZE
, newval
, THUMB_SIZE
);
27369 fixP
->fx_r_type
= BFD_RELOC_THUMB_PCREL_BRANCH23
;
27374 goto thumb_bl_common
;
27376 case BFD_RELOC_THUMB_PCREL_BRANCH23
:
27377 /* A bl from Thumb state ISA to an internal ARM state function
27378 is converted to a blx. */
27380 && (S_GET_SEGMENT (fixP
->fx_addsy
) == seg
)
27381 && !S_FORCE_RELOC (fixP
->fx_addsy
, TRUE
)
27382 && ARM_IS_FUNC (fixP
->fx_addsy
)
27383 && ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_v5t
))
27385 newval
= md_chars_to_number (buf
+ THUMB_SIZE
, THUMB_SIZE
);
27386 newval
= newval
& ~0x1000;
27387 md_number_to_chars (buf
+THUMB_SIZE
, newval
, THUMB_SIZE
);
27388 fixP
->fx_r_type
= BFD_RELOC_THUMB_PCREL_BLX
;
27394 if (fixP
->fx_r_type
== BFD_RELOC_THUMB_PCREL_BLX
)
27395 /* For a BLX instruction, make sure that the relocation is rounded up
27396 to a word boundary. This follows the semantics of the instruction
27397 which specifies that bit 1 of the target address will come from bit
27398 1 of the base address. */
27399 value
= (value
+ 3) & ~ 3;
27402 if (EF_ARM_EABI_VERSION (meabi_flags
) >= EF_ARM_EABI_VER4
27403 && fixP
->fx_r_type
== BFD_RELOC_THUMB_PCREL_BLX
)
27404 fixP
->fx_r_type
= BFD_RELOC_THUMB_PCREL_BRANCH23
;
27407 if ((value
& ~0x3fffff) && ((value
& ~0x3fffff) != ~0x3fffff))
27409 if (!(ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v6t2
)))
27410 as_bad_where (fixP
->fx_file
, fixP
->fx_line
, BAD_RANGE
);
27411 else if ((value
& ~0x1ffffff)
27412 && ((value
& ~0x1ffffff) != ~0x1ffffff))
27413 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
27414 _("Thumb2 branch out of range"));
27417 if (fixP
->fx_done
|| !seg
->use_rela_p
)
27418 encode_thumb2_b_bl_offset (buf
, value
);
27422 case BFD_RELOC_THUMB_PCREL_BRANCH25
:
27423 if ((value
& ~0x0ffffff) && ((value
& ~0x0ffffff) != ~0x0ffffff))
27424 as_bad_where (fixP
->fx_file
, fixP
->fx_line
, BAD_RANGE
);
27426 if (fixP
->fx_done
|| !seg
->use_rela_p
)
27427 encode_thumb2_b_bl_offset (buf
, value
);
27432 if (fixP
->fx_done
|| !seg
->use_rela_p
)
27437 if (fixP
->fx_done
|| !seg
->use_rela_p
)
27438 md_number_to_chars (buf
, value
, 2);
27442 case BFD_RELOC_ARM_TLS_CALL
:
27443 case BFD_RELOC_ARM_THM_TLS_CALL
:
27444 case BFD_RELOC_ARM_TLS_DESCSEQ
:
27445 case BFD_RELOC_ARM_THM_TLS_DESCSEQ
:
27446 case BFD_RELOC_ARM_TLS_GOTDESC
:
27447 case BFD_RELOC_ARM_TLS_GD32
:
27448 case BFD_RELOC_ARM_TLS_LE32
:
27449 case BFD_RELOC_ARM_TLS_IE32
:
27450 case BFD_RELOC_ARM_TLS_LDM32
:
27451 case BFD_RELOC_ARM_TLS_LDO32
:
27452 S_SET_THREAD_LOCAL (fixP
->fx_addsy
);
27455 /* Same handling as above, but with the arm_fdpic guard. */
27456 case BFD_RELOC_ARM_TLS_GD32_FDPIC
:
27457 case BFD_RELOC_ARM_TLS_IE32_FDPIC
:
27458 case BFD_RELOC_ARM_TLS_LDM32_FDPIC
:
27461 S_SET_THREAD_LOCAL (fixP
->fx_addsy
);
27465 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
27466 _("Relocation supported only in FDPIC mode"));
27470 case BFD_RELOC_ARM_GOT32
:
27471 case BFD_RELOC_ARM_GOTOFF
:
27474 case BFD_RELOC_ARM_GOT_PREL
:
27475 if (fixP
->fx_done
|| !seg
->use_rela_p
)
27476 md_number_to_chars (buf
, value
, 4);
27479 case BFD_RELOC_ARM_TARGET2
:
27480 /* TARGET2 is not partial-inplace, so we need to write the
27481 addend here for REL targets, because it won't be written out
27482 during reloc processing later. */
27483 if (fixP
->fx_done
|| !seg
->use_rela_p
)
27484 md_number_to_chars (buf
, fixP
->fx_offset
, 4);
27487 /* Relocations for FDPIC. */
27488 case BFD_RELOC_ARM_GOTFUNCDESC
:
27489 case BFD_RELOC_ARM_GOTOFFFUNCDESC
:
27490 case BFD_RELOC_ARM_FUNCDESC
:
27493 if (fixP
->fx_done
|| !seg
->use_rela_p
)
27494 md_number_to_chars (buf
, 0, 4);
27498 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
27499 _("Relocation supported only in FDPIC mode"));
27504 case BFD_RELOC_RVA
:
27506 case BFD_RELOC_ARM_TARGET1
:
27507 case BFD_RELOC_ARM_ROSEGREL32
:
27508 case BFD_RELOC_ARM_SBREL32
:
27509 case BFD_RELOC_32_PCREL
:
27511 case BFD_RELOC_32_SECREL
:
27513 if (fixP
->fx_done
|| !seg
->use_rela_p
)
27515 /* For WinCE we only do this for pcrel fixups. */
27516 if (fixP
->fx_done
|| fixP
->fx_pcrel
)
27518 md_number_to_chars (buf
, value
, 4);
27522 case BFD_RELOC_ARM_PREL31
:
27523 if (fixP
->fx_done
|| !seg
->use_rela_p
)
27525 newval
= md_chars_to_number (buf
, 4) & 0x80000000;
27526 if ((value
^ (value
>> 1)) & 0x40000000)
27528 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
27529 _("rel31 relocation overflow"));
27531 newval
|= value
& 0x7fffffff;
27532 md_number_to_chars (buf
, newval
, 4);
27537 case BFD_RELOC_ARM_CP_OFF_IMM
:
27538 case BFD_RELOC_ARM_T32_CP_OFF_IMM
:
27539 case BFD_RELOC_ARM_T32_VLDR_VSTR_OFF_IMM
:
27540 if (fixP
->fx_r_type
== BFD_RELOC_ARM_CP_OFF_IMM
)
27541 newval
= md_chars_to_number (buf
, INSN_SIZE
);
27543 newval
= get_thumb32_insn (buf
);
27544 if ((newval
& 0x0f200f00) == 0x0d000900)
27546 /* This is a fp16 vstr/vldr. The immediate offset in the mnemonic
27547 has permitted values that are multiples of 2, in the range 0
27549 if (value
< -510 || value
> 510 || (value
& 1))
27550 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
27551 _("co-processor offset out of range"));
27553 else if ((newval
& 0xfe001f80) == 0xec000f80)
27555 if (value
< -511 || value
> 512 || (value
& 3))
27556 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
27557 _("co-processor offset out of range"));
27559 else if (value
< -1023 || value
> 1023 || (value
& 3))
27560 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
27561 _("co-processor offset out of range"));
27566 if (fixP
->fx_r_type
== BFD_RELOC_ARM_CP_OFF_IMM
27567 || fixP
->fx_r_type
== BFD_RELOC_ARM_CP_OFF_IMM_S2
)
27568 newval
= md_chars_to_number (buf
, INSN_SIZE
);
27570 newval
= get_thumb32_insn (buf
);
27573 if (fixP
->fx_r_type
== BFD_RELOC_ARM_T32_VLDR_VSTR_OFF_IMM
)
27574 newval
&= 0xffffff80;
27576 newval
&= 0xffffff00;
27580 if (fixP
->fx_r_type
== BFD_RELOC_ARM_T32_VLDR_VSTR_OFF_IMM
)
27581 newval
&= 0xff7fff80;
27583 newval
&= 0xff7fff00;
27584 if ((newval
& 0x0f200f00) == 0x0d000900)
27586 /* This is a fp16 vstr/vldr.
27588 It requires the immediate offset in the instruction is shifted
27589 left by 1 to be a half-word offset.
27591 Here, left shift by 1 first, and later right shift by 2
27592 should get the right offset. */
27595 newval
|= (value
>> 2) | (sign
? INDEX_UP
: 0);
27597 if (fixP
->fx_r_type
== BFD_RELOC_ARM_CP_OFF_IMM
27598 || fixP
->fx_r_type
== BFD_RELOC_ARM_CP_OFF_IMM_S2
)
27599 md_number_to_chars (buf
, newval
, INSN_SIZE
);
27601 put_thumb32_insn (buf
, newval
);
27604 case BFD_RELOC_ARM_CP_OFF_IMM_S2
:
27605 case BFD_RELOC_ARM_T32_CP_OFF_IMM_S2
:
27606 if (value
< -255 || value
> 255)
27607 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
27608 _("co-processor offset out of range"));
27610 goto cp_off_common
;
27612 case BFD_RELOC_ARM_THUMB_OFFSET
:
27613 newval
= md_chars_to_number (buf
, THUMB_SIZE
);
27614 /* Exactly what ranges, and where the offset is inserted depends
27615 on the type of instruction, we can establish this from the
27617 switch (newval
>> 12)
27619 case 4: /* PC load. */
27620 /* Thumb PC loads are somewhat odd, bit 1 of the PC is
27621 forced to zero for these loads; md_pcrel_from has already
27622 compensated for this. */
27624 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
27625 _("invalid offset, target not word aligned (0x%08lX)"),
27626 (((unsigned long) fixP
->fx_frag
->fr_address
27627 + (unsigned long) fixP
->fx_where
) & ~3)
27628 + (unsigned long) value
);
27630 if (value
& ~0x3fc)
27631 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
27632 _("invalid offset, value too big (0x%08lX)"),
27635 newval
|= value
>> 2;
27638 case 9: /* SP load/store. */
27639 if (value
& ~0x3fc)
27640 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
27641 _("invalid offset, value too big (0x%08lX)"),
27643 newval
|= value
>> 2;
27646 case 6: /* Word load/store. */
27648 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
27649 _("invalid offset, value too big (0x%08lX)"),
27651 newval
|= value
<< 4; /* 6 - 2. */
27654 case 7: /* Byte load/store. */
27656 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
27657 _("invalid offset, value too big (0x%08lX)"),
27659 newval
|= value
<< 6;
27662 case 8: /* Halfword load/store. */
27664 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
27665 _("invalid offset, value too big (0x%08lX)"),
27667 newval
|= value
<< 5; /* 6 - 1. */
27671 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
27672 "Unable to process relocation for thumb opcode: %lx",
27673 (unsigned long) newval
);
27676 md_number_to_chars (buf
, newval
, THUMB_SIZE
);
27679 case BFD_RELOC_ARM_THUMB_ADD
:
27680 /* This is a complicated relocation, since we use it for all of
27681 the following immediate relocations:
27685 9bit ADD/SUB SP word-aligned
27686 10bit ADD PC/SP word-aligned
27688 The type of instruction being processed is encoded in the
27695 newval
= md_chars_to_number (buf
, THUMB_SIZE
);
27697 int rd
= (newval
>> 4) & 0xf;
27698 int rs
= newval
& 0xf;
27699 int subtract
= !!(newval
& 0x8000);
27701 /* Check for HI regs, only very restricted cases allowed:
27702 Adjusting SP, and using PC or SP to get an address. */
27703 if ((rd
> 7 && (rd
!= REG_SP
|| rs
!= REG_SP
))
27704 || (rs
> 7 && rs
!= REG_SP
&& rs
!= REG_PC
))
27705 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
27706 _("invalid Hi register with immediate"));
27708 /* If value is negative, choose the opposite instruction. */
27712 subtract
= !subtract
;
27714 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
27715 _("immediate value out of range"));
27720 if (value
& ~0x1fc)
27721 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
27722 _("invalid immediate for stack address calculation"));
27723 newval
= subtract
? T_OPCODE_SUB_ST
: T_OPCODE_ADD_ST
;
27724 newval
|= value
>> 2;
27726 else if (rs
== REG_PC
|| rs
== REG_SP
)
27728 /* PR gas/18541. If the addition is for a defined symbol
27729 within range of an ADR instruction then accept it. */
27732 && fixP
->fx_addsy
!= NULL
)
27736 if (! S_IS_DEFINED (fixP
->fx_addsy
)
27737 || S_GET_SEGMENT (fixP
->fx_addsy
) != seg
27738 || S_IS_WEAK (fixP
->fx_addsy
))
27740 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
27741 _("address calculation needs a strongly defined nearby symbol"));
27745 offsetT v
= fixP
->fx_where
+ fixP
->fx_frag
->fr_address
;
27747 /* Round up to the next 4-byte boundary. */
27752 v
= S_GET_VALUE (fixP
->fx_addsy
) - v
;
27756 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
27757 _("symbol too far away"));
27767 if (subtract
|| value
& ~0x3fc)
27768 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
27769 _("invalid immediate for address calculation (value = 0x%08lX)"),
27770 (unsigned long) (subtract
? - value
: value
));
27771 newval
= (rs
== REG_PC
? T_OPCODE_ADD_PC
: T_OPCODE_ADD_SP
);
27773 newval
|= value
>> 2;
27778 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
27779 _("immediate value out of range"));
27780 newval
= subtract
? T_OPCODE_SUB_I8
: T_OPCODE_ADD_I8
;
27781 newval
|= (rd
<< 8) | value
;
27786 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
27787 _("immediate value out of range"));
27788 newval
= subtract
? T_OPCODE_SUB_I3
: T_OPCODE_ADD_I3
;
27789 newval
|= rd
| (rs
<< 3) | (value
<< 6);
27792 md_number_to_chars (buf
, newval
, THUMB_SIZE
);
27795 case BFD_RELOC_ARM_THUMB_IMM
:
27796 newval
= md_chars_to_number (buf
, THUMB_SIZE
);
27797 if (value
< 0 || value
> 255)
27798 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
27799 _("invalid immediate: %ld is out of range"),
27802 md_number_to_chars (buf
, newval
, THUMB_SIZE
);
27805 case BFD_RELOC_ARM_THUMB_SHIFT
:
27806 /* 5bit shift value (0..32). LSL cannot take 32. */
27807 newval
= md_chars_to_number (buf
, THUMB_SIZE
) & 0xf83f;
27808 temp
= newval
& 0xf800;
27809 if (value
< 0 || value
> 32 || (value
== 32 && temp
== T_OPCODE_LSL_I
))
27810 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
27811 _("invalid shift value: %ld"), (long) value
);
27812 /* Shifts of zero must be encoded as LSL. */
27814 newval
= (newval
& 0x003f) | T_OPCODE_LSL_I
;
27815 /* Shifts of 32 are encoded as zero. */
27816 else if (value
== 32)
27818 newval
|= value
<< 6;
27819 md_number_to_chars (buf
, newval
, THUMB_SIZE
);
27822 case BFD_RELOC_VTABLE_INHERIT
:
27823 case BFD_RELOC_VTABLE_ENTRY
:
27827 case BFD_RELOC_ARM_MOVW
:
27828 case BFD_RELOC_ARM_MOVT
:
27829 case BFD_RELOC_ARM_THUMB_MOVW
:
27830 case BFD_RELOC_ARM_THUMB_MOVT
:
27831 if (fixP
->fx_done
|| !seg
->use_rela_p
)
27833 /* REL format relocations are limited to a 16-bit addend. */
27834 if (!fixP
->fx_done
)
27836 if (value
< -0x8000 || value
> 0x7fff)
27837 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
27838 _("offset out of range"));
27840 else if (fixP
->fx_r_type
== BFD_RELOC_ARM_MOVT
27841 || fixP
->fx_r_type
== BFD_RELOC_ARM_THUMB_MOVT
)
27846 if (fixP
->fx_r_type
== BFD_RELOC_ARM_THUMB_MOVW
27847 || fixP
->fx_r_type
== BFD_RELOC_ARM_THUMB_MOVT
)
27849 newval
= get_thumb32_insn (buf
);
27850 newval
&= 0xfbf08f00;
27851 newval
|= (value
& 0xf000) << 4;
27852 newval
|= (value
& 0x0800) << 15;
27853 newval
|= (value
& 0x0700) << 4;
27854 newval
|= (value
& 0x00ff);
27855 put_thumb32_insn (buf
, newval
);
27859 newval
= md_chars_to_number (buf
, 4);
27860 newval
&= 0xfff0f000;
27861 newval
|= value
& 0x0fff;
27862 newval
|= (value
& 0xf000) << 4;
27863 md_number_to_chars (buf
, newval
, 4);
27868 case BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
:
27869 case BFD_RELOC_ARM_THUMB_ALU_ABS_G1_NC
:
27870 case BFD_RELOC_ARM_THUMB_ALU_ABS_G2_NC
:
27871 case BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC
:
27872 gas_assert (!fixP
->fx_done
);
27875 bfd_boolean is_mov
;
27876 bfd_vma encoded_addend
= value
;
27878 /* Check that addend can be encoded in instruction. */
27879 if (!seg
->use_rela_p
&& (value
< 0 || value
> 255))
27880 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
27881 _("the offset 0x%08lX is not representable"),
27882 (unsigned long) encoded_addend
);
27884 /* Extract the instruction. */
27885 insn
= md_chars_to_number (buf
, THUMB_SIZE
);
27886 is_mov
= (insn
& 0xf800) == 0x2000;
27891 if (!seg
->use_rela_p
)
27892 insn
|= encoded_addend
;
27898 /* Extract the instruction. */
27899 /* Encoding is the following
27904 /* The following conditions must be true :
27909 rd
= (insn
>> 4) & 0xf;
27911 if ((insn
& 0x8000) || (rd
!= rs
) || rd
> 7)
27912 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
27913 _("Unable to process relocation for thumb opcode: %lx"),
27914 (unsigned long) insn
);
27916 /* Encode as ADD immediate8 thumb 1 code. */
27917 insn
= 0x3000 | (rd
<< 8);
27919 /* Place the encoded addend into the first 8 bits of the
27921 if (!seg
->use_rela_p
)
27922 insn
|= encoded_addend
;
27925 /* Update the instruction. */
27926 md_number_to_chars (buf
, insn
, THUMB_SIZE
);
27930 case BFD_RELOC_ARM_ALU_PC_G0_NC
:
27931 case BFD_RELOC_ARM_ALU_PC_G0
:
27932 case BFD_RELOC_ARM_ALU_PC_G1_NC
:
27933 case BFD_RELOC_ARM_ALU_PC_G1
:
27934 case BFD_RELOC_ARM_ALU_PC_G2
:
27935 case BFD_RELOC_ARM_ALU_SB_G0_NC
:
27936 case BFD_RELOC_ARM_ALU_SB_G0
:
27937 case BFD_RELOC_ARM_ALU_SB_G1_NC
:
27938 case BFD_RELOC_ARM_ALU_SB_G1
:
27939 case BFD_RELOC_ARM_ALU_SB_G2
:
27940 gas_assert (!fixP
->fx_done
);
27941 if (!seg
->use_rela_p
)
27944 bfd_vma encoded_addend
;
27945 bfd_vma addend_abs
= llabs (value
);
27947 /* Check that the absolute value of the addend can be
27948 expressed as an 8-bit constant plus a rotation. */
27949 encoded_addend
= encode_arm_immediate (addend_abs
);
27950 if (encoded_addend
== (unsigned int) FAIL
)
27951 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
27952 _("the offset 0x%08lX is not representable"),
27953 (unsigned long) addend_abs
);
27955 /* Extract the instruction. */
27956 insn
= md_chars_to_number (buf
, INSN_SIZE
);
27958 /* If the addend is positive, use an ADD instruction.
27959 Otherwise use a SUB. Take care not to destroy the S bit. */
27960 insn
&= 0xff1fffff;
27966 /* Place the encoded addend into the first 12 bits of the
27968 insn
&= 0xfffff000;
27969 insn
|= encoded_addend
;
27971 /* Update the instruction. */
27972 md_number_to_chars (buf
, insn
, INSN_SIZE
);
27976 case BFD_RELOC_ARM_LDR_PC_G0
:
27977 case BFD_RELOC_ARM_LDR_PC_G1
:
27978 case BFD_RELOC_ARM_LDR_PC_G2
:
27979 case BFD_RELOC_ARM_LDR_SB_G0
:
27980 case BFD_RELOC_ARM_LDR_SB_G1
:
27981 case BFD_RELOC_ARM_LDR_SB_G2
:
27982 gas_assert (!fixP
->fx_done
);
27983 if (!seg
->use_rela_p
)
27986 bfd_vma addend_abs
= llabs (value
);
27988 /* Check that the absolute value of the addend can be
27989 encoded in 12 bits. */
27990 if (addend_abs
>= 0x1000)
27991 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
27992 _("bad offset 0x%08lX (only 12 bits available for the magnitude)"),
27993 (unsigned long) addend_abs
);
27995 /* Extract the instruction. */
27996 insn
= md_chars_to_number (buf
, INSN_SIZE
);
27998 /* If the addend is negative, clear bit 23 of the instruction.
27999 Otherwise set it. */
28001 insn
&= ~(1 << 23);
28005 /* Place the absolute value of the addend into the first 12 bits
28006 of the instruction. */
28007 insn
&= 0xfffff000;
28008 insn
|= addend_abs
;
28010 /* Update the instruction. */
28011 md_number_to_chars (buf
, insn
, INSN_SIZE
);
28015 case BFD_RELOC_ARM_LDRS_PC_G0
:
28016 case BFD_RELOC_ARM_LDRS_PC_G1
:
28017 case BFD_RELOC_ARM_LDRS_PC_G2
:
28018 case BFD_RELOC_ARM_LDRS_SB_G0
:
28019 case BFD_RELOC_ARM_LDRS_SB_G1
:
28020 case BFD_RELOC_ARM_LDRS_SB_G2
:
28021 gas_assert (!fixP
->fx_done
);
28022 if (!seg
->use_rela_p
)
28025 bfd_vma addend_abs
= llabs (value
);
28027 /* Check that the absolute value of the addend can be
28028 encoded in 8 bits. */
28029 if (addend_abs
>= 0x100)
28030 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
28031 _("bad offset 0x%08lX (only 8 bits available for the magnitude)"),
28032 (unsigned long) addend_abs
);
28034 /* Extract the instruction. */
28035 insn
= md_chars_to_number (buf
, INSN_SIZE
);
28037 /* If the addend is negative, clear bit 23 of the instruction.
28038 Otherwise set it. */
28040 insn
&= ~(1 << 23);
28044 /* Place the first four bits of the absolute value of the addend
28045 into the first 4 bits of the instruction, and the remaining
28046 four into bits 8 .. 11. */
28047 insn
&= 0xfffff0f0;
28048 insn
|= (addend_abs
& 0xf) | ((addend_abs
& 0xf0) << 4);
28050 /* Update the instruction. */
28051 md_number_to_chars (buf
, insn
, INSN_SIZE
);
28055 case BFD_RELOC_ARM_LDC_PC_G0
:
28056 case BFD_RELOC_ARM_LDC_PC_G1
:
28057 case BFD_RELOC_ARM_LDC_PC_G2
:
28058 case BFD_RELOC_ARM_LDC_SB_G0
:
28059 case BFD_RELOC_ARM_LDC_SB_G1
:
28060 case BFD_RELOC_ARM_LDC_SB_G2
:
28061 gas_assert (!fixP
->fx_done
);
28062 if (!seg
->use_rela_p
)
28065 bfd_vma addend_abs
= llabs (value
);
28067 /* Check that the absolute value of the addend is a multiple of
28068 four and, when divided by four, fits in 8 bits. */
28069 if (addend_abs
& 0x3)
28070 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
28071 _("bad offset 0x%08lX (must be word-aligned)"),
28072 (unsigned long) addend_abs
);
28074 if ((addend_abs
>> 2) > 0xff)
28075 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
28076 _("bad offset 0x%08lX (must be an 8-bit number of words)"),
28077 (unsigned long) addend_abs
);
28079 /* Extract the instruction. */
28080 insn
= md_chars_to_number (buf
, INSN_SIZE
);
28082 /* If the addend is negative, clear bit 23 of the instruction.
28083 Otherwise set it. */
28085 insn
&= ~(1 << 23);
28089 /* Place the addend (divided by four) into the first eight
28090 bits of the instruction. */
28091 insn
&= 0xfffffff0;
28092 insn
|= addend_abs
>> 2;
28094 /* Update the instruction. */
28095 md_number_to_chars (buf
, insn
, INSN_SIZE
);
28099 case BFD_RELOC_THUMB_PCREL_BRANCH5
:
28101 && (S_GET_SEGMENT (fixP
->fx_addsy
) == seg
)
28102 && !S_FORCE_RELOC (fixP
->fx_addsy
, TRUE
)
28103 && ARM_IS_FUNC (fixP
->fx_addsy
)
28104 && ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_v8_1m_main
))
28106 /* Force a relocation for a branch 5 bits wide. */
28109 if (v8_1_branch_value_check (value
, 5, FALSE
) == FAIL
)
28110 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
28113 if (fixP
->fx_done
|| !seg
->use_rela_p
)
28115 addressT boff
= value
>> 1;
28117 newval
= md_chars_to_number (buf
, THUMB_SIZE
);
28118 newval
|= (boff
<< 7);
28119 md_number_to_chars (buf
, newval
, THUMB_SIZE
);
28123 case BFD_RELOC_THUMB_PCREL_BFCSEL
:
28125 && (S_GET_SEGMENT (fixP
->fx_addsy
) == seg
)
28126 && !S_FORCE_RELOC (fixP
->fx_addsy
, TRUE
)
28127 && ARM_IS_FUNC (fixP
->fx_addsy
)
28128 && ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_v8_1m_main
))
28132 if ((value
& ~0x7f) && ((value
& ~0x3f) != ~0x3f))
28133 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
28134 _("branch out of range"));
28136 if (fixP
->fx_done
|| !seg
->use_rela_p
)
28138 newval
= md_chars_to_number (buf
, THUMB_SIZE
);
28140 addressT boff
= ((newval
& 0x0780) >> 7) << 1;
28141 addressT diff
= value
- boff
;
28145 newval
|= 1 << 1; /* T bit. */
28147 else if (diff
!= 2)
28149 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
28150 _("out of range label-relative fixup value"));
28152 md_number_to_chars (buf
, newval
, THUMB_SIZE
);
28156 case BFD_RELOC_ARM_THUMB_BF17
:
28158 && (S_GET_SEGMENT (fixP
->fx_addsy
) == seg
)
28159 && !S_FORCE_RELOC (fixP
->fx_addsy
, TRUE
)
28160 && ARM_IS_FUNC (fixP
->fx_addsy
)
28161 && ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_v8_1m_main
))
28163 /* Force a relocation for a branch 17 bits wide. */
28167 if (v8_1_branch_value_check (value
, 17, TRUE
) == FAIL
)
28168 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
28171 if (fixP
->fx_done
|| !seg
->use_rela_p
)
28174 addressT immA
, immB
, immC
;
28176 immA
= (value
& 0x0001f000) >> 12;
28177 immB
= (value
& 0x00000ffc) >> 2;
28178 immC
= (value
& 0x00000002) >> 1;
28180 newval
= md_chars_to_number (buf
, THUMB_SIZE
);
28181 newval2
= md_chars_to_number (buf
+ THUMB_SIZE
, THUMB_SIZE
);
28183 newval2
|= (immC
<< 11) | (immB
<< 1);
28184 md_number_to_chars (buf
, newval
, THUMB_SIZE
);
28185 md_number_to_chars (buf
+ THUMB_SIZE
, newval2
, THUMB_SIZE
);
28189 case BFD_RELOC_ARM_THUMB_BF19
:
28191 && (S_GET_SEGMENT (fixP
->fx_addsy
) == seg
)
28192 && !S_FORCE_RELOC (fixP
->fx_addsy
, TRUE
)
28193 && ARM_IS_FUNC (fixP
->fx_addsy
)
28194 && ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_v8_1m_main
))
28196 /* Force a relocation for a branch 19 bits wide. */
28200 if (v8_1_branch_value_check (value
, 19, TRUE
) == FAIL
)
28201 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
28204 if (fixP
->fx_done
|| !seg
->use_rela_p
)
28207 addressT immA
, immB
, immC
;
28209 immA
= (value
& 0x0007f000) >> 12;
28210 immB
= (value
& 0x00000ffc) >> 2;
28211 immC
= (value
& 0x00000002) >> 1;
28213 newval
= md_chars_to_number (buf
, THUMB_SIZE
);
28214 newval2
= md_chars_to_number (buf
+ THUMB_SIZE
, THUMB_SIZE
);
28216 newval2
|= (immC
<< 11) | (immB
<< 1);
28217 md_number_to_chars (buf
, newval
, THUMB_SIZE
);
28218 md_number_to_chars (buf
+ THUMB_SIZE
, newval2
, THUMB_SIZE
);
28222 case BFD_RELOC_ARM_THUMB_BF13
:
28224 && (S_GET_SEGMENT (fixP
->fx_addsy
) == seg
)
28225 && !S_FORCE_RELOC (fixP
->fx_addsy
, TRUE
)
28226 && ARM_IS_FUNC (fixP
->fx_addsy
)
28227 && ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_v8_1m_main
))
28229 /* Force a relocation for a branch 13 bits wide. */
28233 if (v8_1_branch_value_check (value
, 13, TRUE
) == FAIL
)
28234 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
28237 if (fixP
->fx_done
|| !seg
->use_rela_p
)
28240 addressT immA
, immB
, immC
;
28242 immA
= (value
& 0x00001000) >> 12;
28243 immB
= (value
& 0x00000ffc) >> 2;
28244 immC
= (value
& 0x00000002) >> 1;
28246 newval
= md_chars_to_number (buf
, THUMB_SIZE
);
28247 newval2
= md_chars_to_number (buf
+ THUMB_SIZE
, THUMB_SIZE
);
28249 newval2
|= (immC
<< 11) | (immB
<< 1);
28250 md_number_to_chars (buf
, newval
, THUMB_SIZE
);
28251 md_number_to_chars (buf
+ THUMB_SIZE
, newval2
, THUMB_SIZE
);
28255 case BFD_RELOC_ARM_THUMB_LOOP12
:
28257 && (S_GET_SEGMENT (fixP
->fx_addsy
) == seg
)
28258 && !S_FORCE_RELOC (fixP
->fx_addsy
, TRUE
)
28259 && ARM_IS_FUNC (fixP
->fx_addsy
)
28260 && ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_v8_1m_main
))
28262 /* Force a relocation for a branch 12 bits wide. */
28266 bfd_vma insn
= get_thumb32_insn (buf
);
28267 /* le lr, <label> or le <label> */
28268 if (((insn
& 0xffffffff) == 0xf00fc001)
28269 || ((insn
& 0xffffffff) == 0xf02fc001))
28272 if (v8_1_branch_value_check (value
, 12, FALSE
) == FAIL
)
28273 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
28275 if (fixP
->fx_done
|| !seg
->use_rela_p
)
28277 addressT imml
, immh
;
28279 immh
= (value
& 0x00000ffc) >> 2;
28280 imml
= (value
& 0x00000002) >> 1;
28282 newval
= md_chars_to_number (buf
+ THUMB_SIZE
, THUMB_SIZE
);
28283 newval
|= (imml
<< 11) | (immh
<< 1);
28284 md_number_to_chars (buf
+ THUMB_SIZE
, newval
, THUMB_SIZE
);
28288 case BFD_RELOC_ARM_V4BX
:
28289 /* This will need to go in the object file. */
28293 case BFD_RELOC_UNUSED
:
28295 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
28296 _("bad relocation fixup type (%d)"), fixP
->fx_r_type
);
28300 /* Translate internal representation of relocation info to BFD target
28304 tc_gen_reloc (asection
*section
, fixS
*fixp
)
28307 bfd_reloc_code_real_type code
;
28309 reloc
= XNEW (arelent
);
28311 reloc
->sym_ptr_ptr
= XNEW (asymbol
*);
28312 *reloc
->sym_ptr_ptr
= symbol_get_bfdsym (fixp
->fx_addsy
);
28313 reloc
->address
= fixp
->fx_frag
->fr_address
+ fixp
->fx_where
;
28315 if (fixp
->fx_pcrel
)
28317 if (section
->use_rela_p
)
28318 fixp
->fx_offset
-= md_pcrel_from_section (fixp
, section
);
28320 fixp
->fx_offset
= reloc
->address
;
28322 reloc
->addend
= fixp
->fx_offset
;
28324 switch (fixp
->fx_r_type
)
28327 if (fixp
->fx_pcrel
)
28329 code
= BFD_RELOC_8_PCREL
;
28332 /* Fall through. */
28335 if (fixp
->fx_pcrel
)
28337 code
= BFD_RELOC_16_PCREL
;
28340 /* Fall through. */
28343 if (fixp
->fx_pcrel
)
28345 code
= BFD_RELOC_32_PCREL
;
28348 /* Fall through. */
28350 case BFD_RELOC_ARM_MOVW
:
28351 if (fixp
->fx_pcrel
)
28353 code
= BFD_RELOC_ARM_MOVW_PCREL
;
28356 /* Fall through. */
28358 case BFD_RELOC_ARM_MOVT
:
28359 if (fixp
->fx_pcrel
)
28361 code
= BFD_RELOC_ARM_MOVT_PCREL
;
28364 /* Fall through. */
28366 case BFD_RELOC_ARM_THUMB_MOVW
:
28367 if (fixp
->fx_pcrel
)
28369 code
= BFD_RELOC_ARM_THUMB_MOVW_PCREL
;
28372 /* Fall through. */
28374 case BFD_RELOC_ARM_THUMB_MOVT
:
28375 if (fixp
->fx_pcrel
)
28377 code
= BFD_RELOC_ARM_THUMB_MOVT_PCREL
;
28380 /* Fall through. */
28382 case BFD_RELOC_NONE
:
28383 case BFD_RELOC_ARM_PCREL_BRANCH
:
28384 case BFD_RELOC_ARM_PCREL_BLX
:
28385 case BFD_RELOC_RVA
:
28386 case BFD_RELOC_THUMB_PCREL_BRANCH7
:
28387 case BFD_RELOC_THUMB_PCREL_BRANCH9
:
28388 case BFD_RELOC_THUMB_PCREL_BRANCH12
:
28389 case BFD_RELOC_THUMB_PCREL_BRANCH20
:
28390 case BFD_RELOC_THUMB_PCREL_BRANCH23
:
28391 case BFD_RELOC_THUMB_PCREL_BRANCH25
:
28392 case BFD_RELOC_VTABLE_ENTRY
:
28393 case BFD_RELOC_VTABLE_INHERIT
:
28395 case BFD_RELOC_32_SECREL
:
28397 code
= fixp
->fx_r_type
;
28400 case BFD_RELOC_THUMB_PCREL_BLX
:
28402 if (EF_ARM_EABI_VERSION (meabi_flags
) >= EF_ARM_EABI_VER4
)
28403 code
= BFD_RELOC_THUMB_PCREL_BRANCH23
;
28406 code
= BFD_RELOC_THUMB_PCREL_BLX
;
28409 case BFD_RELOC_ARM_LITERAL
:
28410 case BFD_RELOC_ARM_HWLITERAL
:
28411 /* If this is called then the a literal has
28412 been referenced across a section boundary. */
28413 as_bad_where (fixp
->fx_file
, fixp
->fx_line
,
28414 _("literal referenced across section boundary"));
28418 case BFD_RELOC_ARM_TLS_CALL
:
28419 case BFD_RELOC_ARM_THM_TLS_CALL
:
28420 case BFD_RELOC_ARM_TLS_DESCSEQ
:
28421 case BFD_RELOC_ARM_THM_TLS_DESCSEQ
:
28422 case BFD_RELOC_ARM_GOT32
:
28423 case BFD_RELOC_ARM_GOTOFF
:
28424 case BFD_RELOC_ARM_GOT_PREL
:
28425 case BFD_RELOC_ARM_PLT32
:
28426 case BFD_RELOC_ARM_TARGET1
:
28427 case BFD_RELOC_ARM_ROSEGREL32
:
28428 case BFD_RELOC_ARM_SBREL32
:
28429 case BFD_RELOC_ARM_PREL31
:
28430 case BFD_RELOC_ARM_TARGET2
:
28431 case BFD_RELOC_ARM_TLS_LDO32
:
28432 case BFD_RELOC_ARM_PCREL_CALL
:
28433 case BFD_RELOC_ARM_PCREL_JUMP
:
28434 case BFD_RELOC_ARM_ALU_PC_G0_NC
:
28435 case BFD_RELOC_ARM_ALU_PC_G0
:
28436 case BFD_RELOC_ARM_ALU_PC_G1_NC
:
28437 case BFD_RELOC_ARM_ALU_PC_G1
:
28438 case BFD_RELOC_ARM_ALU_PC_G2
:
28439 case BFD_RELOC_ARM_LDR_PC_G0
:
28440 case BFD_RELOC_ARM_LDR_PC_G1
:
28441 case BFD_RELOC_ARM_LDR_PC_G2
:
28442 case BFD_RELOC_ARM_LDRS_PC_G0
:
28443 case BFD_RELOC_ARM_LDRS_PC_G1
:
28444 case BFD_RELOC_ARM_LDRS_PC_G2
:
28445 case BFD_RELOC_ARM_LDC_PC_G0
:
28446 case BFD_RELOC_ARM_LDC_PC_G1
:
28447 case BFD_RELOC_ARM_LDC_PC_G2
:
28448 case BFD_RELOC_ARM_ALU_SB_G0_NC
:
28449 case BFD_RELOC_ARM_ALU_SB_G0
:
28450 case BFD_RELOC_ARM_ALU_SB_G1_NC
:
28451 case BFD_RELOC_ARM_ALU_SB_G1
:
28452 case BFD_RELOC_ARM_ALU_SB_G2
:
28453 case BFD_RELOC_ARM_LDR_SB_G0
:
28454 case BFD_RELOC_ARM_LDR_SB_G1
:
28455 case BFD_RELOC_ARM_LDR_SB_G2
:
28456 case BFD_RELOC_ARM_LDRS_SB_G0
:
28457 case BFD_RELOC_ARM_LDRS_SB_G1
:
28458 case BFD_RELOC_ARM_LDRS_SB_G2
:
28459 case BFD_RELOC_ARM_LDC_SB_G0
:
28460 case BFD_RELOC_ARM_LDC_SB_G1
:
28461 case BFD_RELOC_ARM_LDC_SB_G2
:
28462 case BFD_RELOC_ARM_V4BX
:
28463 case BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
:
28464 case BFD_RELOC_ARM_THUMB_ALU_ABS_G1_NC
:
28465 case BFD_RELOC_ARM_THUMB_ALU_ABS_G2_NC
:
28466 case BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC
:
28467 case BFD_RELOC_ARM_GOTFUNCDESC
:
28468 case BFD_RELOC_ARM_GOTOFFFUNCDESC
:
28469 case BFD_RELOC_ARM_FUNCDESC
:
28470 case BFD_RELOC_ARM_THUMB_BF17
:
28471 case BFD_RELOC_ARM_THUMB_BF19
:
28472 case BFD_RELOC_ARM_THUMB_BF13
:
28473 code
= fixp
->fx_r_type
;
28476 case BFD_RELOC_ARM_TLS_GOTDESC
:
28477 case BFD_RELOC_ARM_TLS_GD32
:
28478 case BFD_RELOC_ARM_TLS_GD32_FDPIC
:
28479 case BFD_RELOC_ARM_TLS_LE32
:
28480 case BFD_RELOC_ARM_TLS_IE32
:
28481 case BFD_RELOC_ARM_TLS_IE32_FDPIC
:
28482 case BFD_RELOC_ARM_TLS_LDM32
:
28483 case BFD_RELOC_ARM_TLS_LDM32_FDPIC
:
28484 /* BFD will include the symbol's address in the addend.
28485 But we don't want that, so subtract it out again here. */
28486 if (!S_IS_COMMON (fixp
->fx_addsy
))
28487 reloc
->addend
-= (*reloc
->sym_ptr_ptr
)->value
;
28488 code
= fixp
->fx_r_type
;
28492 case BFD_RELOC_ARM_IMMEDIATE
:
28493 as_bad_where (fixp
->fx_file
, fixp
->fx_line
,
28494 _("internal relocation (type: IMMEDIATE) not fixed up"));
28497 case BFD_RELOC_ARM_ADRL_IMMEDIATE
:
28498 as_bad_where (fixp
->fx_file
, fixp
->fx_line
,
28499 _("ADRL used for a symbol not defined in the same file"));
28502 case BFD_RELOC_THUMB_PCREL_BRANCH5
:
28503 case BFD_RELOC_THUMB_PCREL_BFCSEL
:
28504 case BFD_RELOC_ARM_THUMB_LOOP12
:
28505 as_bad_where (fixp
->fx_file
, fixp
->fx_line
,
28506 _("%s used for a symbol not defined in the same file"),
28507 bfd_get_reloc_code_name (fixp
->fx_r_type
));
28510 case BFD_RELOC_ARM_OFFSET_IMM
:
28511 if (section
->use_rela_p
)
28513 code
= fixp
->fx_r_type
;
28517 if (fixp
->fx_addsy
!= NULL
28518 && !S_IS_DEFINED (fixp
->fx_addsy
)
28519 && S_IS_LOCAL (fixp
->fx_addsy
))
28521 as_bad_where (fixp
->fx_file
, fixp
->fx_line
,
28522 _("undefined local label `%s'"),
28523 S_GET_NAME (fixp
->fx_addsy
));
28527 as_bad_where (fixp
->fx_file
, fixp
->fx_line
,
28528 _("internal_relocation (type: OFFSET_IMM) not fixed up"));
28535 switch (fixp
->fx_r_type
)
28537 case BFD_RELOC_NONE
: type
= "NONE"; break;
28538 case BFD_RELOC_ARM_OFFSET_IMM8
: type
= "OFFSET_IMM8"; break;
28539 case BFD_RELOC_ARM_SHIFT_IMM
: type
= "SHIFT_IMM"; break;
28540 case BFD_RELOC_ARM_SMC
: type
= "SMC"; break;
28541 case BFD_RELOC_ARM_SWI
: type
= "SWI"; break;
28542 case BFD_RELOC_ARM_MULTI
: type
= "MULTI"; break;
28543 case BFD_RELOC_ARM_CP_OFF_IMM
: type
= "CP_OFF_IMM"; break;
28544 case BFD_RELOC_ARM_T32_OFFSET_IMM
: type
= "T32_OFFSET_IMM"; break;
28545 case BFD_RELOC_ARM_T32_CP_OFF_IMM
: type
= "T32_CP_OFF_IMM"; break;
28546 case BFD_RELOC_ARM_THUMB_ADD
: type
= "THUMB_ADD"; break;
28547 case BFD_RELOC_ARM_THUMB_SHIFT
: type
= "THUMB_SHIFT"; break;
28548 case BFD_RELOC_ARM_THUMB_IMM
: type
= "THUMB_IMM"; break;
28549 case BFD_RELOC_ARM_THUMB_OFFSET
: type
= "THUMB_OFFSET"; break;
28550 default: type
= _("<unknown>"); break;
28552 as_bad_where (fixp
->fx_file
, fixp
->fx_line
,
28553 _("cannot represent %s relocation in this object file format"),
28560 if ((code
== BFD_RELOC_32_PCREL
|| code
== BFD_RELOC_32
)
28562 && fixp
->fx_addsy
== GOT_symbol
)
28564 code
= BFD_RELOC_ARM_GOTPC
;
28565 reloc
->addend
= fixp
->fx_offset
= reloc
->address
;
28569 reloc
->howto
= bfd_reloc_type_lookup (stdoutput
, code
);
28571 if (reloc
->howto
== NULL
)
28573 as_bad_where (fixp
->fx_file
, fixp
->fx_line
,
28574 _("cannot represent %s relocation in this object file format"),
28575 bfd_get_reloc_code_name (code
));
28579 /* HACK: Since arm ELF uses Rel instead of Rela, encode the
28580 vtable entry to be used in the relocation's section offset. */
28581 if (fixp
->fx_r_type
== BFD_RELOC_VTABLE_ENTRY
)
28582 reloc
->address
= fixp
->fx_offset
;
28587 /* This fix_new is called by cons via TC_CONS_FIX_NEW. */
28590 cons_fix_new_arm (fragS
* frag
,
28594 bfd_reloc_code_real_type reloc
)
28599 FIXME: @@ Should look at CPU word size. */
28603 reloc
= BFD_RELOC_8
;
28606 reloc
= BFD_RELOC_16
;
28610 reloc
= BFD_RELOC_32
;
28613 reloc
= BFD_RELOC_64
;
28618 if (exp
->X_op
== O_secrel
)
28620 exp
->X_op
= O_symbol
;
28621 reloc
= BFD_RELOC_32_SECREL
;
28625 fix_new_exp (frag
, where
, size
, exp
, pcrel
, reloc
);
28628 #if defined (OBJ_COFF)
28630 arm_validate_fix (fixS
* fixP
)
28632 /* If the destination of the branch is a defined symbol which does not have
28633 the THUMB_FUNC attribute, then we must be calling a function which has
28634 the (interfacearm) attribute. We look for the Thumb entry point to that
28635 function and change the branch to refer to that function instead. */
28636 if (fixP
->fx_r_type
== BFD_RELOC_THUMB_PCREL_BRANCH23
28637 && fixP
->fx_addsy
!= NULL
28638 && S_IS_DEFINED (fixP
->fx_addsy
)
28639 && ! THUMB_IS_FUNC (fixP
->fx_addsy
))
28641 fixP
->fx_addsy
= find_real_start (fixP
->fx_addsy
);
28648 arm_force_relocation (struct fix
* fixp
)
28650 #if defined (OBJ_COFF) && defined (TE_PE)
28651 if (fixp
->fx_r_type
== BFD_RELOC_RVA
)
28655 /* In case we have a call or a branch to a function in ARM ISA mode from
28656 a thumb function or vice-versa force the relocation. These relocations
28657 are cleared off for some cores that might have blx and simple transformations
28661 switch (fixp
->fx_r_type
)
28663 case BFD_RELOC_ARM_PCREL_JUMP
:
28664 case BFD_RELOC_ARM_PCREL_CALL
:
28665 case BFD_RELOC_THUMB_PCREL_BLX
:
28666 if (THUMB_IS_FUNC (fixp
->fx_addsy
))
28670 case BFD_RELOC_ARM_PCREL_BLX
:
28671 case BFD_RELOC_THUMB_PCREL_BRANCH25
:
28672 case BFD_RELOC_THUMB_PCREL_BRANCH20
:
28673 case BFD_RELOC_THUMB_PCREL_BRANCH23
:
28674 if (ARM_IS_FUNC (fixp
->fx_addsy
))
28683 /* Resolve these relocations even if the symbol is extern or weak.
28684 Technically this is probably wrong due to symbol preemption.
28685 In practice these relocations do not have enough range to be useful
28686 at dynamic link time, and some code (e.g. in the Linux kernel)
28687 expects these references to be resolved. */
28688 if (fixp
->fx_r_type
== BFD_RELOC_ARM_IMMEDIATE
28689 || fixp
->fx_r_type
== BFD_RELOC_ARM_OFFSET_IMM
28690 || fixp
->fx_r_type
== BFD_RELOC_ARM_OFFSET_IMM8
28691 || fixp
->fx_r_type
== BFD_RELOC_ARM_ADRL_IMMEDIATE
28692 || fixp
->fx_r_type
== BFD_RELOC_ARM_CP_OFF_IMM
28693 || fixp
->fx_r_type
== BFD_RELOC_ARM_CP_OFF_IMM_S2
28694 || fixp
->fx_r_type
== BFD_RELOC_ARM_THUMB_OFFSET
28695 || fixp
->fx_r_type
== BFD_RELOC_ARM_T32_ADD_IMM
28696 || fixp
->fx_r_type
== BFD_RELOC_ARM_T32_IMMEDIATE
28697 || fixp
->fx_r_type
== BFD_RELOC_ARM_T32_IMM12
28698 || fixp
->fx_r_type
== BFD_RELOC_ARM_T32_OFFSET_IMM
28699 || fixp
->fx_r_type
== BFD_RELOC_ARM_T32_ADD_PC12
28700 || fixp
->fx_r_type
== BFD_RELOC_ARM_T32_CP_OFF_IMM
28701 || fixp
->fx_r_type
== BFD_RELOC_ARM_T32_CP_OFF_IMM_S2
)
28704 /* Always leave these relocations for the linker. */
28705 if ((fixp
->fx_r_type
>= BFD_RELOC_ARM_ALU_PC_G0_NC
28706 && fixp
->fx_r_type
<= BFD_RELOC_ARM_LDC_SB_G2
)
28707 || fixp
->fx_r_type
== BFD_RELOC_ARM_LDR_PC_G0
)
28710 /* Always generate relocations against function symbols. */
28711 if (fixp
->fx_r_type
== BFD_RELOC_32
28713 && (symbol_get_bfdsym (fixp
->fx_addsy
)->flags
& BSF_FUNCTION
))
28716 return generic_force_reloc (fixp
);
28719 #if defined (OBJ_ELF) || defined (OBJ_COFF)
28720 /* Relocations against function names must be left unadjusted,
28721 so that the linker can use this information to generate interworking
28722 stubs. The MIPS version of this function
28723 also prevents relocations that are mips-16 specific, but I do not
28724 know why it does this.
28727 There is one other problem that ought to be addressed here, but
28728 which currently is not: Taking the address of a label (rather
28729 than a function) and then later jumping to that address. Such
28730 addresses also ought to have their bottom bit set (assuming that
28731 they reside in Thumb code), but at the moment they will not. */
28734 arm_fix_adjustable (fixS
* fixP
)
28736 if (fixP
->fx_addsy
== NULL
)
28739 /* Preserve relocations against symbols with function type. */
28740 if (symbol_get_bfdsym (fixP
->fx_addsy
)->flags
& BSF_FUNCTION
)
28743 if (THUMB_IS_FUNC (fixP
->fx_addsy
)
28744 && fixP
->fx_subsy
== NULL
)
28747 /* We need the symbol name for the VTABLE entries. */
28748 if ( fixP
->fx_r_type
== BFD_RELOC_VTABLE_INHERIT
28749 || fixP
->fx_r_type
== BFD_RELOC_VTABLE_ENTRY
)
28752 /* Don't allow symbols to be discarded on GOT related relocs. */
28753 if (fixP
->fx_r_type
== BFD_RELOC_ARM_PLT32
28754 || fixP
->fx_r_type
== BFD_RELOC_ARM_GOT32
28755 || fixP
->fx_r_type
== BFD_RELOC_ARM_GOTOFF
28756 || fixP
->fx_r_type
== BFD_RELOC_ARM_TLS_GD32
28757 || fixP
->fx_r_type
== BFD_RELOC_ARM_TLS_GD32_FDPIC
28758 || fixP
->fx_r_type
== BFD_RELOC_ARM_TLS_LE32
28759 || fixP
->fx_r_type
== BFD_RELOC_ARM_TLS_IE32
28760 || fixP
->fx_r_type
== BFD_RELOC_ARM_TLS_IE32_FDPIC
28761 || fixP
->fx_r_type
== BFD_RELOC_ARM_TLS_LDM32
28762 || fixP
->fx_r_type
== BFD_RELOC_ARM_TLS_LDM32_FDPIC
28763 || fixP
->fx_r_type
== BFD_RELOC_ARM_TLS_LDO32
28764 || fixP
->fx_r_type
== BFD_RELOC_ARM_TLS_GOTDESC
28765 || fixP
->fx_r_type
== BFD_RELOC_ARM_TLS_CALL
28766 || fixP
->fx_r_type
== BFD_RELOC_ARM_THM_TLS_CALL
28767 || fixP
->fx_r_type
== BFD_RELOC_ARM_TLS_DESCSEQ
28768 || fixP
->fx_r_type
== BFD_RELOC_ARM_THM_TLS_DESCSEQ
28769 || fixP
->fx_r_type
== BFD_RELOC_ARM_TARGET2
)
28772 /* Similarly for group relocations. */
28773 if ((fixP
->fx_r_type
>= BFD_RELOC_ARM_ALU_PC_G0_NC
28774 && fixP
->fx_r_type
<= BFD_RELOC_ARM_LDC_SB_G2
)
28775 || fixP
->fx_r_type
== BFD_RELOC_ARM_LDR_PC_G0
)
28778 /* MOVW/MOVT REL relocations have limited offsets, so keep the symbols. */
28779 if (fixP
->fx_r_type
== BFD_RELOC_ARM_MOVW
28780 || fixP
->fx_r_type
== BFD_RELOC_ARM_MOVT
28781 || fixP
->fx_r_type
== BFD_RELOC_ARM_MOVW_PCREL
28782 || fixP
->fx_r_type
== BFD_RELOC_ARM_MOVT_PCREL
28783 || fixP
->fx_r_type
== BFD_RELOC_ARM_THUMB_MOVW
28784 || fixP
->fx_r_type
== BFD_RELOC_ARM_THUMB_MOVT
28785 || fixP
->fx_r_type
== BFD_RELOC_ARM_THUMB_MOVW_PCREL
28786 || fixP
->fx_r_type
== BFD_RELOC_ARM_THUMB_MOVT_PCREL
)
28789 /* BFD_RELOC_ARM_THUMB_ALU_ABS_Gx_NC relocations have VERY limited
28790 offsets, so keep these symbols. */
28791 if (fixP
->fx_r_type
>= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
28792 && fixP
->fx_r_type
<= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC
)
28797 #endif /* defined (OBJ_ELF) || defined (OBJ_COFF) */
28801 elf32_arm_target_format (void)
28804 return (target_big_endian
28805 ? "elf32-bigarm-symbian"
28806 : "elf32-littlearm-symbian");
28807 #elif defined (TE_VXWORKS)
28808 return (target_big_endian
28809 ? "elf32-bigarm-vxworks"
28810 : "elf32-littlearm-vxworks");
28811 #elif defined (TE_NACL)
28812 return (target_big_endian
28813 ? "elf32-bigarm-nacl"
28814 : "elf32-littlearm-nacl");
28818 if (target_big_endian
)
28819 return "elf32-bigarm-fdpic";
28821 return "elf32-littlearm-fdpic";
28825 if (target_big_endian
)
28826 return "elf32-bigarm";
28828 return "elf32-littlearm";
28834 armelf_frob_symbol (symbolS
* symp
,
28837 elf_frob_symbol (symp
, puntp
);
28841 /* MD interface: Finalization. */
28846 literal_pool
* pool
;
28848 /* Ensure that all the predication blocks are properly closed. */
28849 check_pred_blocks_finished ();
28851 for (pool
= list_of_pools
; pool
; pool
= pool
->next
)
28853 /* Put it at the end of the relevant section. */
28854 subseg_set (pool
->section
, pool
->sub_section
);
28856 arm_elf_change_section ();
28863 /* Remove any excess mapping symbols generated for alignment frags in
28864 SEC. We may have created a mapping symbol before a zero byte
28865 alignment; remove it if there's a mapping symbol after the
28868 check_mapping_symbols (bfd
*abfd ATTRIBUTE_UNUSED
, asection
*sec
,
28869 void *dummy ATTRIBUTE_UNUSED
)
28871 segment_info_type
*seginfo
= seg_info (sec
);
28874 if (seginfo
== NULL
|| seginfo
->frchainP
== NULL
)
28877 for (fragp
= seginfo
->frchainP
->frch_root
;
28879 fragp
= fragp
->fr_next
)
28881 symbolS
*sym
= fragp
->tc_frag_data
.last_map
;
28882 fragS
*next
= fragp
->fr_next
;
28884 /* Variable-sized frags have been converted to fixed size by
28885 this point. But if this was variable-sized to start with,
28886 there will be a fixed-size frag after it. So don't handle
28888 if (sym
== NULL
|| next
== NULL
)
28891 if (S_GET_VALUE (sym
) < next
->fr_address
)
28892 /* Not at the end of this frag. */
28894 know (S_GET_VALUE (sym
) == next
->fr_address
);
28898 if (next
->tc_frag_data
.first_map
!= NULL
)
28900 /* Next frag starts with a mapping symbol. Discard this
28902 symbol_remove (sym
, &symbol_rootP
, &symbol_lastP
);
28906 if (next
->fr_next
== NULL
)
28908 /* This mapping symbol is at the end of the section. Discard
28910 know (next
->fr_fix
== 0 && next
->fr_var
== 0);
28911 symbol_remove (sym
, &symbol_rootP
, &symbol_lastP
);
28915 /* As long as we have empty frags without any mapping symbols,
28917 /* If the next frag is non-empty and does not start with a
28918 mapping symbol, then this mapping symbol is required. */
28919 if (next
->fr_address
!= next
->fr_next
->fr_address
)
28922 next
= next
->fr_next
;
28924 while (next
!= NULL
);
28929 /* Adjust the symbol table. This marks Thumb symbols as distinct from
28933 arm_adjust_symtab (void)
28938 for (sym
= symbol_rootP
; sym
!= NULL
; sym
= symbol_next (sym
))
28940 if (ARM_IS_THUMB (sym
))
28942 if (THUMB_IS_FUNC (sym
))
28944 /* Mark the symbol as a Thumb function. */
28945 if ( S_GET_STORAGE_CLASS (sym
) == C_STAT
28946 || S_GET_STORAGE_CLASS (sym
) == C_LABEL
) /* This can happen! */
28947 S_SET_STORAGE_CLASS (sym
, C_THUMBSTATFUNC
);
28949 else if (S_GET_STORAGE_CLASS (sym
) == C_EXT
)
28950 S_SET_STORAGE_CLASS (sym
, C_THUMBEXTFUNC
);
28952 as_bad (_("%s: unexpected function type: %d"),
28953 S_GET_NAME (sym
), S_GET_STORAGE_CLASS (sym
));
28955 else switch (S_GET_STORAGE_CLASS (sym
))
28958 S_SET_STORAGE_CLASS (sym
, C_THUMBEXT
);
28961 S_SET_STORAGE_CLASS (sym
, C_THUMBSTAT
);
28964 S_SET_STORAGE_CLASS (sym
, C_THUMBLABEL
);
28972 if (ARM_IS_INTERWORK (sym
))
28973 coffsymbol (symbol_get_bfdsym (sym
))->native
->u
.syment
.n_flags
= 0xFF;
28980 for (sym
= symbol_rootP
; sym
!= NULL
; sym
= symbol_next (sym
))
28982 if (ARM_IS_THUMB (sym
))
28984 elf_symbol_type
* elf_sym
;
28986 elf_sym
= elf_symbol (symbol_get_bfdsym (sym
));
28987 bind
= ELF_ST_BIND (elf_sym
->internal_elf_sym
.st_info
);
28989 if (! bfd_is_arm_special_symbol_name (elf_sym
->symbol
.name
,
28990 BFD_ARM_SPECIAL_SYM_TYPE_ANY
))
28992 /* If it's a .thumb_func, declare it as so,
28993 otherwise tag label as .code 16. */
28994 if (THUMB_IS_FUNC (sym
))
28995 ARM_SET_SYM_BRANCH_TYPE (elf_sym
->internal_elf_sym
.st_target_internal
,
28996 ST_BRANCH_TO_THUMB
);
28997 else if (EF_ARM_EABI_VERSION (meabi_flags
) < EF_ARM_EABI_VER4
)
28998 elf_sym
->internal_elf_sym
.st_info
=
28999 ELF_ST_INFO (bind
, STT_ARM_16BIT
);
29004 /* Remove any overlapping mapping symbols generated by alignment frags. */
29005 bfd_map_over_sections (stdoutput
, check_mapping_symbols
, (char *) 0);
29006 /* Now do generic ELF adjustments. */
29007 elf_adjust_symtab ();
29011 /* MD interface: Initialization. */
29014 set_constant_flonums (void)
29018 for (i
= 0; i
< NUM_FLOAT_VALS
; i
++)
29019 if (atof_ieee ((char *) fp_const
[i
], 'x', fp_values
[i
]) == NULL
)
29023 /* Auto-select Thumb mode if it's the only available instruction set for the
29024 given architecture. */
29027 autoselect_thumb_from_cpu_variant (void)
29029 if (!ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v1
))
29030 opcode_select (16);
29039 if ( (arm_ops_hsh
= hash_new ()) == NULL
29040 || (arm_cond_hsh
= hash_new ()) == NULL
29041 || (arm_vcond_hsh
= hash_new ()) == NULL
29042 || (arm_shift_hsh
= hash_new ()) == NULL
29043 || (arm_psr_hsh
= hash_new ()) == NULL
29044 || (arm_v7m_psr_hsh
= hash_new ()) == NULL
29045 || (arm_reg_hsh
= hash_new ()) == NULL
29046 || (arm_reloc_hsh
= hash_new ()) == NULL
29047 || (arm_barrier_opt_hsh
= hash_new ()) == NULL
)
29048 as_fatal (_("virtual memory exhausted"));
29050 for (i
= 0; i
< sizeof (insns
) / sizeof (struct asm_opcode
); i
++)
29051 hash_insert (arm_ops_hsh
, insns
[i
].template_name
, (void *) (insns
+ i
));
29052 for (i
= 0; i
< sizeof (conds
) / sizeof (struct asm_cond
); i
++)
29053 hash_insert (arm_cond_hsh
, conds
[i
].template_name
, (void *) (conds
+ i
));
29054 for (i
= 0; i
< sizeof (vconds
) / sizeof (struct asm_cond
); i
++)
29055 hash_insert (arm_vcond_hsh
, vconds
[i
].template_name
, (void *) (vconds
+ i
));
29056 for (i
= 0; i
< sizeof (shift_names
) / sizeof (struct asm_shift_name
); i
++)
29057 hash_insert (arm_shift_hsh
, shift_names
[i
].name
, (void *) (shift_names
+ i
));
29058 for (i
= 0; i
< sizeof (psrs
) / sizeof (struct asm_psr
); i
++)
29059 hash_insert (arm_psr_hsh
, psrs
[i
].template_name
, (void *) (psrs
+ i
));
29060 for (i
= 0; i
< sizeof (v7m_psrs
) / sizeof (struct asm_psr
); i
++)
29061 hash_insert (arm_v7m_psr_hsh
, v7m_psrs
[i
].template_name
,
29062 (void *) (v7m_psrs
+ i
));
29063 for (i
= 0; i
< sizeof (reg_names
) / sizeof (struct reg_entry
); i
++)
29064 hash_insert (arm_reg_hsh
, reg_names
[i
].name
, (void *) (reg_names
+ i
));
29066 i
< sizeof (barrier_opt_names
) / sizeof (struct asm_barrier_opt
);
29068 hash_insert (arm_barrier_opt_hsh
, barrier_opt_names
[i
].template_name
,
29069 (void *) (barrier_opt_names
+ i
));
29071 for (i
= 0; i
< ARRAY_SIZE (reloc_names
); i
++)
29073 struct reloc_entry
* entry
= reloc_names
+ i
;
29075 if (arm_is_eabi() && entry
->reloc
== BFD_RELOC_ARM_PLT32
)
29076 /* This makes encode_branch() use the EABI versions of this relocation. */
29077 entry
->reloc
= BFD_RELOC_UNUSED
;
29079 hash_insert (arm_reloc_hsh
, entry
->name
, (void *) entry
);
29083 set_constant_flonums ();
29085 /* Set the cpu variant based on the command-line options. We prefer
29086 -mcpu= over -march= if both are set (as for GCC); and we prefer
29087 -mfpu= over any other way of setting the floating point unit.
29088 Use of legacy options with new options are faulted. */
29091 if (mcpu_cpu_opt
|| march_cpu_opt
)
29092 as_bad (_("use of old and new-style options to set CPU type"));
29094 selected_arch
= *legacy_cpu
;
29096 else if (mcpu_cpu_opt
)
29098 selected_arch
= *mcpu_cpu_opt
;
29099 selected_ext
= *mcpu_ext_opt
;
29101 else if (march_cpu_opt
)
29103 selected_arch
= *march_cpu_opt
;
29104 selected_ext
= *march_ext_opt
;
29106 ARM_MERGE_FEATURE_SETS (selected_cpu
, selected_arch
, selected_ext
);
29111 as_bad (_("use of old and new-style options to set FPU type"));
29113 selected_fpu
= *legacy_fpu
;
29116 selected_fpu
= *mfpu_opt
;
29119 #if !(defined (EABI_DEFAULT) || defined (TE_LINUX) \
29120 || defined (TE_NetBSD) || defined (TE_VXWORKS))
29121 /* Some environments specify a default FPU. If they don't, infer it
29122 from the processor. */
29124 selected_fpu
= *mcpu_fpu_opt
;
29125 else if (march_fpu_opt
)
29126 selected_fpu
= *march_fpu_opt
;
29128 selected_fpu
= fpu_default
;
29132 if (ARM_FEATURE_ZERO (selected_fpu
))
29134 if (!no_cpu_selected ())
29135 selected_fpu
= fpu_default
;
29137 selected_fpu
= fpu_arch_fpa
;
29141 if (ARM_FEATURE_ZERO (selected_arch
))
29143 selected_arch
= cpu_default
;
29144 selected_cpu
= selected_arch
;
29146 ARM_MERGE_FEATURE_SETS (cpu_variant
, selected_cpu
, selected_fpu
);
29148 /* Autodection of feature mode: allow all features in cpu_variant but leave
29149 selected_cpu unset. It will be set in aeabi_set_public_attributes ()
29150 after all instruction have been processed and we can decide what CPU
29151 should be selected. */
29152 if (ARM_FEATURE_ZERO (selected_arch
))
29153 ARM_MERGE_FEATURE_SETS (cpu_variant
, arm_arch_any
, selected_fpu
);
29155 ARM_MERGE_FEATURE_SETS (cpu_variant
, selected_cpu
, selected_fpu
);
29158 autoselect_thumb_from_cpu_variant ();
29160 arm_arch_used
= thumb_arch_used
= arm_arch_none
;
29162 #if defined OBJ_COFF || defined OBJ_ELF
29164 unsigned int flags
= 0;
29166 #if defined OBJ_ELF
29167 flags
= meabi_flags
;
29169 switch (meabi_flags
)
29171 case EF_ARM_EABI_UNKNOWN
:
29173 /* Set the flags in the private structure. */
29174 if (uses_apcs_26
) flags
|= F_APCS26
;
29175 if (support_interwork
) flags
|= F_INTERWORK
;
29176 if (uses_apcs_float
) flags
|= F_APCS_FLOAT
;
29177 if (pic_code
) flags
|= F_PIC
;
29178 if (!ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_any_hard
))
29179 flags
|= F_SOFT_FLOAT
;
29181 switch (mfloat_abi_opt
)
29183 case ARM_FLOAT_ABI_SOFT
:
29184 case ARM_FLOAT_ABI_SOFTFP
:
29185 flags
|= F_SOFT_FLOAT
;
29188 case ARM_FLOAT_ABI_HARD
:
29189 if (flags
& F_SOFT_FLOAT
)
29190 as_bad (_("hard-float conflicts with specified fpu"));
29194 /* Using pure-endian doubles (even if soft-float). */
29195 if (ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_endian_pure
))
29196 flags
|= F_VFP_FLOAT
;
29198 #if defined OBJ_ELF
29199 if (ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_arch_maverick
))
29200 flags
|= EF_ARM_MAVERICK_FLOAT
;
29203 case EF_ARM_EABI_VER4
:
29204 case EF_ARM_EABI_VER5
:
29205 /* No additional flags to set. */
29212 bfd_set_private_flags (stdoutput
, flags
);
29214 /* We have run out flags in the COFF header to encode the
29215 status of ATPCS support, so instead we create a dummy,
29216 empty, debug section called .arm.atpcs. */
29221 sec
= bfd_make_section (stdoutput
, ".arm.atpcs");
29225 bfd_set_section_flags
29226 (stdoutput
, sec
, SEC_READONLY
| SEC_DEBUGGING
/* | SEC_HAS_CONTENTS */);
29227 bfd_set_section_size (stdoutput
, sec
, 0);
29228 bfd_set_section_contents (stdoutput
, sec
, NULL
, 0, 0);
29234 /* Record the CPU type as well. */
29235 if (ARM_CPU_HAS_FEATURE (cpu_variant
, arm_cext_iwmmxt2
))
29236 mach
= bfd_mach_arm_iWMMXt2
;
29237 else if (ARM_CPU_HAS_FEATURE (cpu_variant
, arm_cext_iwmmxt
))
29238 mach
= bfd_mach_arm_iWMMXt
;
29239 else if (ARM_CPU_HAS_FEATURE (cpu_variant
, arm_cext_xscale
))
29240 mach
= bfd_mach_arm_XScale
;
29241 else if (ARM_CPU_HAS_FEATURE (cpu_variant
, arm_cext_maverick
))
29242 mach
= bfd_mach_arm_ep9312
;
29243 else if (ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v5e
))
29244 mach
= bfd_mach_arm_5TE
;
29245 else if (ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v5
))
29247 if (ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v4t
))
29248 mach
= bfd_mach_arm_5T
;
29250 mach
= bfd_mach_arm_5
;
29252 else if (ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v4
))
29254 if (ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v4t
))
29255 mach
= bfd_mach_arm_4T
;
29257 mach
= bfd_mach_arm_4
;
29259 else if (ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v3m
))
29260 mach
= bfd_mach_arm_3M
;
29261 else if (ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v3
))
29262 mach
= bfd_mach_arm_3
;
29263 else if (ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v2s
))
29264 mach
= bfd_mach_arm_2a
;
29265 else if (ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v2
))
29266 mach
= bfd_mach_arm_2
;
29268 mach
= bfd_mach_arm_unknown
;
29270 bfd_set_arch_mach (stdoutput
, TARGET_ARCH
, mach
);
29273 /* Command line processing. */
29276 Invocation line includes a switch not recognized by the base assembler.
29277 See if it's a processor-specific option.
29279 This routine is somewhat complicated by the need for backwards
29280 compatibility (since older releases of gcc can't be changed).
29281 The new options try to make the interface as compatible as
29284 New options (supported) are:
29286 -mcpu=<cpu name> Assemble for selected processor
29287 -march=<architecture name> Assemble for selected architecture
29288 -mfpu=<fpu architecture> Assemble for selected FPU.
29289 -EB/-mbig-endian Big-endian
29290 -EL/-mlittle-endian Little-endian
29291 -k Generate PIC code
29292 -mthumb Start in Thumb mode
29293 -mthumb-interwork Code supports ARM/Thumb interworking
29295 -m[no-]warn-deprecated Warn about deprecated features
29296 -m[no-]warn-syms Warn when symbols match instructions
29298 For now we will also provide support for:
29300 -mapcs-32 32-bit Program counter
29301 -mapcs-26 26-bit Program counter
29302 -macps-float Floats passed in FP registers
29303 -mapcs-reentrant Reentrant code
29305 (sometime these will probably be replaced with -mapcs=<list of options>
29306 and -matpcs=<list of options>)
29308 The remaining options are only supported for back-wards compatibility.
29309 Cpu variants, the arm part is optional:
29310 -m[arm]1 Currently not supported.
29311 -m[arm]2, -m[arm]250 Arm 2 and Arm 250 processor
29312 -m[arm]3 Arm 3 processor
29313 -m[arm]6[xx], Arm 6 processors
29314 -m[arm]7[xx][t][[d]m] Arm 7 processors
29315 -m[arm]8[10] Arm 8 processors
29316 -m[arm]9[20][tdmi] Arm 9 processors
29317 -mstrongarm[110[0]] StrongARM processors
29318 -mxscale XScale processors
29319 -m[arm]v[2345[t[e]]] Arm architectures
29320 -mall All (except the ARM1)
29322 -mfpa10, -mfpa11 FPA10 and 11 co-processor instructions
29323 -mfpe-old (No float load/store multiples)
29324 -mvfpxd VFP Single precision
29326 -mno-fpu Disable all floating point instructions
29328 The following CPU names are recognized:
29329 arm1, arm2, arm250, arm3, arm6, arm600, arm610, arm620,
29330 arm7, arm7m, arm7d, arm7dm, arm7di, arm7dmi, arm70, arm700,
29331 arm700i, arm710 arm710t, arm720, arm720t, arm740t, arm710c,
29332 arm7100, arm7500, arm7500fe, arm7tdmi, arm8, arm810, arm9,
29333 arm920, arm920t, arm940t, arm946, arm966, arm9tdmi, arm9e,
29334 arm10t arm10e, arm1020t, arm1020e, arm10200e,
29335 strongarm, strongarm110, strongarm1100, strongarm1110, xscale.
29339 const char * md_shortopts
= "m:k";
29341 #ifdef ARM_BI_ENDIAN
29342 #define OPTION_EB (OPTION_MD_BASE + 0)
29343 #define OPTION_EL (OPTION_MD_BASE + 1)
29345 #if TARGET_BYTES_BIG_ENDIAN
29346 #define OPTION_EB (OPTION_MD_BASE + 0)
29348 #define OPTION_EL (OPTION_MD_BASE + 1)
29351 #define OPTION_FIX_V4BX (OPTION_MD_BASE + 2)
29352 #define OPTION_FDPIC (OPTION_MD_BASE + 3)
29354 struct option md_longopts
[] =
29357 {"EB", no_argument
, NULL
, OPTION_EB
},
29360 {"EL", no_argument
, NULL
, OPTION_EL
},
29362 {"fix-v4bx", no_argument
, NULL
, OPTION_FIX_V4BX
},
29364 {"fdpic", no_argument
, NULL
, OPTION_FDPIC
},
29366 {NULL
, no_argument
, NULL
, 0}
29369 size_t md_longopts_size
= sizeof (md_longopts
);
29371 struct arm_option_table
29373 const char * option
; /* Option name to match. */
29374 const char * help
; /* Help information. */
29375 int * var
; /* Variable to change. */
29376 int value
; /* What to change it to. */
29377 const char * deprecated
; /* If non-null, print this message. */
29380 struct arm_option_table arm_opts
[] =
29382 {"k", N_("generate PIC code"), &pic_code
, 1, NULL
},
29383 {"mthumb", N_("assemble Thumb code"), &thumb_mode
, 1, NULL
},
29384 {"mthumb-interwork", N_("support ARM/Thumb interworking"),
29385 &support_interwork
, 1, NULL
},
29386 {"mapcs-32", N_("code uses 32-bit program counter"), &uses_apcs_26
, 0, NULL
},
29387 {"mapcs-26", N_("code uses 26-bit program counter"), &uses_apcs_26
, 1, NULL
},
29388 {"mapcs-float", N_("floating point args are in fp regs"), &uses_apcs_float
,
29390 {"mapcs-reentrant", N_("re-entrant code"), &pic_code
, 1, NULL
},
29391 {"matpcs", N_("code is ATPCS conformant"), &atpcs
, 1, NULL
},
29392 {"mbig-endian", N_("assemble for big-endian"), &target_big_endian
, 1, NULL
},
29393 {"mlittle-endian", N_("assemble for little-endian"), &target_big_endian
, 0,
29396 /* These are recognized by the assembler, but have no affect on code. */
29397 {"mapcs-frame", N_("use frame pointer"), NULL
, 0, NULL
},
29398 {"mapcs-stack-check", N_("use stack size checking"), NULL
, 0, NULL
},
29400 {"mwarn-deprecated", NULL
, &warn_on_deprecated
, 1, NULL
},
29401 {"mno-warn-deprecated", N_("do not warn on use of deprecated feature"),
29402 &warn_on_deprecated
, 0, NULL
},
29403 {"mwarn-syms", N_("warn about symbols that match instruction names [default]"), (int *) (& flag_warn_syms
), TRUE
, NULL
},
29404 {"mno-warn-syms", N_("disable warnings about symobls that match instructions"), (int *) (& flag_warn_syms
), FALSE
, NULL
},
29405 {NULL
, NULL
, NULL
, 0, NULL
}
29408 struct arm_legacy_option_table
29410 const char * option
; /* Option name to match. */
29411 const arm_feature_set
** var
; /* Variable to change. */
29412 const arm_feature_set value
; /* What to change it to. */
29413 const char * deprecated
; /* If non-null, print this message. */
29416 const struct arm_legacy_option_table arm_legacy_opts
[] =
29418 /* DON'T add any new processors to this list -- we want the whole list
29419 to go away... Add them to the processors table instead. */
29420 {"marm1", &legacy_cpu
, ARM_ARCH_V1
, N_("use -mcpu=arm1")},
29421 {"m1", &legacy_cpu
, ARM_ARCH_V1
, N_("use -mcpu=arm1")},
29422 {"marm2", &legacy_cpu
, ARM_ARCH_V2
, N_("use -mcpu=arm2")},
29423 {"m2", &legacy_cpu
, ARM_ARCH_V2
, N_("use -mcpu=arm2")},
29424 {"marm250", &legacy_cpu
, ARM_ARCH_V2S
, N_("use -mcpu=arm250")},
29425 {"m250", &legacy_cpu
, ARM_ARCH_V2S
, N_("use -mcpu=arm250")},
29426 {"marm3", &legacy_cpu
, ARM_ARCH_V2S
, N_("use -mcpu=arm3")},
29427 {"m3", &legacy_cpu
, ARM_ARCH_V2S
, N_("use -mcpu=arm3")},
29428 {"marm6", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm6")},
29429 {"m6", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm6")},
29430 {"marm600", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm600")},
29431 {"m600", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm600")},
29432 {"marm610", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm610")},
29433 {"m610", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm610")},
29434 {"marm620", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm620")},
29435 {"m620", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm620")},
29436 {"marm7", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm7")},
29437 {"m7", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm7")},
29438 {"marm70", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm70")},
29439 {"m70", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm70")},
29440 {"marm700", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm700")},
29441 {"m700", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm700")},
29442 {"marm700i", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm700i")},
29443 {"m700i", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm700i")},
29444 {"marm710", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm710")},
29445 {"m710", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm710")},
29446 {"marm710c", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm710c")},
29447 {"m710c", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm710c")},
29448 {"marm720", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm720")},
29449 {"m720", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm720")},
29450 {"marm7d", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm7d")},
29451 {"m7d", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm7d")},
29452 {"marm7di", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm7di")},
29453 {"m7di", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm7di")},
29454 {"marm7m", &legacy_cpu
, ARM_ARCH_V3M
, N_("use -mcpu=arm7m")},
29455 {"m7m", &legacy_cpu
, ARM_ARCH_V3M
, N_("use -mcpu=arm7m")},
29456 {"marm7dm", &legacy_cpu
, ARM_ARCH_V3M
, N_("use -mcpu=arm7dm")},
29457 {"m7dm", &legacy_cpu
, ARM_ARCH_V3M
, N_("use -mcpu=arm7dm")},
29458 {"marm7dmi", &legacy_cpu
, ARM_ARCH_V3M
, N_("use -mcpu=arm7dmi")},
29459 {"m7dmi", &legacy_cpu
, ARM_ARCH_V3M
, N_("use -mcpu=arm7dmi")},
29460 {"marm7100", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm7100")},
29461 {"m7100", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm7100")},
29462 {"marm7500", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm7500")},
29463 {"m7500", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm7500")},
29464 {"marm7500fe", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm7500fe")},
29465 {"m7500fe", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm7500fe")},
29466 {"marm7t", &legacy_cpu
, ARM_ARCH_V4T
, N_("use -mcpu=arm7tdmi")},
29467 {"m7t", &legacy_cpu
, ARM_ARCH_V4T
, N_("use -mcpu=arm7tdmi")},
29468 {"marm7tdmi", &legacy_cpu
, ARM_ARCH_V4T
, N_("use -mcpu=arm7tdmi")},
29469 {"m7tdmi", &legacy_cpu
, ARM_ARCH_V4T
, N_("use -mcpu=arm7tdmi")},
29470 {"marm710t", &legacy_cpu
, ARM_ARCH_V4T
, N_("use -mcpu=arm710t")},
29471 {"m710t", &legacy_cpu
, ARM_ARCH_V4T
, N_("use -mcpu=arm710t")},
29472 {"marm720t", &legacy_cpu
, ARM_ARCH_V4T
, N_("use -mcpu=arm720t")},
29473 {"m720t", &legacy_cpu
, ARM_ARCH_V4T
, N_("use -mcpu=arm720t")},
29474 {"marm740t", &legacy_cpu
, ARM_ARCH_V4T
, N_("use -mcpu=arm740t")},
29475 {"m740t", &legacy_cpu
, ARM_ARCH_V4T
, N_("use -mcpu=arm740t")},
29476 {"marm8", &legacy_cpu
, ARM_ARCH_V4
, N_("use -mcpu=arm8")},
29477 {"m8", &legacy_cpu
, ARM_ARCH_V4
, N_("use -mcpu=arm8")},
29478 {"marm810", &legacy_cpu
, ARM_ARCH_V4
, N_("use -mcpu=arm810")},
29479 {"m810", &legacy_cpu
, ARM_ARCH_V4
, N_("use -mcpu=arm810")},
29480 {"marm9", &legacy_cpu
, ARM_ARCH_V4T
, N_("use -mcpu=arm9")},
29481 {"m9", &legacy_cpu
, ARM_ARCH_V4T
, N_("use -mcpu=arm9")},
29482 {"marm9tdmi", &legacy_cpu
, ARM_ARCH_V4T
, N_("use -mcpu=arm9tdmi")},
29483 {"m9tdmi", &legacy_cpu
, ARM_ARCH_V4T
, N_("use -mcpu=arm9tdmi")},
29484 {"marm920", &legacy_cpu
, ARM_ARCH_V4T
, N_("use -mcpu=arm920")},
29485 {"m920", &legacy_cpu
, ARM_ARCH_V4T
, N_("use -mcpu=arm920")},
29486 {"marm940", &legacy_cpu
, ARM_ARCH_V4T
, N_("use -mcpu=arm940")},
29487 {"m940", &legacy_cpu
, ARM_ARCH_V4T
, N_("use -mcpu=arm940")},
29488 {"mstrongarm", &legacy_cpu
, ARM_ARCH_V4
, N_("use -mcpu=strongarm")},
29489 {"mstrongarm110", &legacy_cpu
, ARM_ARCH_V4
,
29490 N_("use -mcpu=strongarm110")},
29491 {"mstrongarm1100", &legacy_cpu
, ARM_ARCH_V4
,
29492 N_("use -mcpu=strongarm1100")},
29493 {"mstrongarm1110", &legacy_cpu
, ARM_ARCH_V4
,
29494 N_("use -mcpu=strongarm1110")},
29495 {"mxscale", &legacy_cpu
, ARM_ARCH_XSCALE
, N_("use -mcpu=xscale")},
29496 {"miwmmxt", &legacy_cpu
, ARM_ARCH_IWMMXT
, N_("use -mcpu=iwmmxt")},
29497 {"mall", &legacy_cpu
, ARM_ANY
, N_("use -mcpu=all")},
29499 /* Architecture variants -- don't add any more to this list either. */
29500 {"mv2", &legacy_cpu
, ARM_ARCH_V2
, N_("use -march=armv2")},
29501 {"marmv2", &legacy_cpu
, ARM_ARCH_V2
, N_("use -march=armv2")},
29502 {"mv2a", &legacy_cpu
, ARM_ARCH_V2S
, N_("use -march=armv2a")},
29503 {"marmv2a", &legacy_cpu
, ARM_ARCH_V2S
, N_("use -march=armv2a")},
29504 {"mv3", &legacy_cpu
, ARM_ARCH_V3
, N_("use -march=armv3")},
29505 {"marmv3", &legacy_cpu
, ARM_ARCH_V3
, N_("use -march=armv3")},
29506 {"mv3m", &legacy_cpu
, ARM_ARCH_V3M
, N_("use -march=armv3m")},
29507 {"marmv3m", &legacy_cpu
, ARM_ARCH_V3M
, N_("use -march=armv3m")},
29508 {"mv4", &legacy_cpu
, ARM_ARCH_V4
, N_("use -march=armv4")},
29509 {"marmv4", &legacy_cpu
, ARM_ARCH_V4
, N_("use -march=armv4")},
29510 {"mv4t", &legacy_cpu
, ARM_ARCH_V4T
, N_("use -march=armv4t")},
29511 {"marmv4t", &legacy_cpu
, ARM_ARCH_V4T
, N_("use -march=armv4t")},
29512 {"mv5", &legacy_cpu
, ARM_ARCH_V5
, N_("use -march=armv5")},
29513 {"marmv5", &legacy_cpu
, ARM_ARCH_V5
, N_("use -march=armv5")},
29514 {"mv5t", &legacy_cpu
, ARM_ARCH_V5T
, N_("use -march=armv5t")},
29515 {"marmv5t", &legacy_cpu
, ARM_ARCH_V5T
, N_("use -march=armv5t")},
29516 {"mv5e", &legacy_cpu
, ARM_ARCH_V5TE
, N_("use -march=armv5te")},
29517 {"marmv5e", &legacy_cpu
, ARM_ARCH_V5TE
, N_("use -march=armv5te")},
29519 /* Floating point variants -- don't add any more to this list either. */
29520 {"mfpe-old", &legacy_fpu
, FPU_ARCH_FPE
, N_("use -mfpu=fpe")},
29521 {"mfpa10", &legacy_fpu
, FPU_ARCH_FPA
, N_("use -mfpu=fpa10")},
29522 {"mfpa11", &legacy_fpu
, FPU_ARCH_FPA
, N_("use -mfpu=fpa11")},
29523 {"mno-fpu", &legacy_fpu
, ARM_ARCH_NONE
,
29524 N_("use either -mfpu=softfpa or -mfpu=softvfp")},
29526 {NULL
, NULL
, ARM_ARCH_NONE
, NULL
}
29529 struct arm_cpu_option_table
29533 const arm_feature_set value
;
29534 const arm_feature_set ext
;
29535 /* For some CPUs we assume an FPU unless the user explicitly sets
29537 const arm_feature_set default_fpu
;
29538 /* The canonical name of the CPU, or NULL to use NAME converted to upper
29540 const char * canonical_name
;
29543 /* This list should, at a minimum, contain all the cpu names
29544 recognized by GCC. */
29545 #define ARM_CPU_OPT(N, CN, V, E, DF) { N, sizeof (N) - 1, V, E, DF, CN }
29547 static const struct arm_cpu_option_table arm_cpus
[] =
29549 ARM_CPU_OPT ("all", NULL
, ARM_ANY
,
29552 ARM_CPU_OPT ("arm1", NULL
, ARM_ARCH_V1
,
29555 ARM_CPU_OPT ("arm2", NULL
, ARM_ARCH_V2
,
29558 ARM_CPU_OPT ("arm250", NULL
, ARM_ARCH_V2S
,
29561 ARM_CPU_OPT ("arm3", NULL
, ARM_ARCH_V2S
,
29564 ARM_CPU_OPT ("arm6", NULL
, ARM_ARCH_V3
,
29567 ARM_CPU_OPT ("arm60", NULL
, ARM_ARCH_V3
,
29570 ARM_CPU_OPT ("arm600", NULL
, ARM_ARCH_V3
,
29573 ARM_CPU_OPT ("arm610", NULL
, ARM_ARCH_V3
,
29576 ARM_CPU_OPT ("arm620", NULL
, ARM_ARCH_V3
,
29579 ARM_CPU_OPT ("arm7", NULL
, ARM_ARCH_V3
,
29582 ARM_CPU_OPT ("arm7m", NULL
, ARM_ARCH_V3M
,
29585 ARM_CPU_OPT ("arm7d", NULL
, ARM_ARCH_V3
,
29588 ARM_CPU_OPT ("arm7dm", NULL
, ARM_ARCH_V3M
,
29591 ARM_CPU_OPT ("arm7di", NULL
, ARM_ARCH_V3
,
29594 ARM_CPU_OPT ("arm7dmi", NULL
, ARM_ARCH_V3M
,
29597 ARM_CPU_OPT ("arm70", NULL
, ARM_ARCH_V3
,
29600 ARM_CPU_OPT ("arm700", NULL
, ARM_ARCH_V3
,
29603 ARM_CPU_OPT ("arm700i", NULL
, ARM_ARCH_V3
,
29606 ARM_CPU_OPT ("arm710", NULL
, ARM_ARCH_V3
,
29609 ARM_CPU_OPT ("arm710t", NULL
, ARM_ARCH_V4T
,
29612 ARM_CPU_OPT ("arm720", NULL
, ARM_ARCH_V3
,
29615 ARM_CPU_OPT ("arm720t", NULL
, ARM_ARCH_V4T
,
29618 ARM_CPU_OPT ("arm740t", NULL
, ARM_ARCH_V4T
,
29621 ARM_CPU_OPT ("arm710c", NULL
, ARM_ARCH_V3
,
29624 ARM_CPU_OPT ("arm7100", NULL
, ARM_ARCH_V3
,
29627 ARM_CPU_OPT ("arm7500", NULL
, ARM_ARCH_V3
,
29630 ARM_CPU_OPT ("arm7500fe", NULL
, ARM_ARCH_V3
,
29633 ARM_CPU_OPT ("arm7t", NULL
, ARM_ARCH_V4T
,
29636 ARM_CPU_OPT ("arm7tdmi", NULL
, ARM_ARCH_V4T
,
29639 ARM_CPU_OPT ("arm7tdmi-s", NULL
, ARM_ARCH_V4T
,
29642 ARM_CPU_OPT ("arm8", NULL
, ARM_ARCH_V4
,
29645 ARM_CPU_OPT ("arm810", NULL
, ARM_ARCH_V4
,
29648 ARM_CPU_OPT ("strongarm", NULL
, ARM_ARCH_V4
,
29651 ARM_CPU_OPT ("strongarm1", NULL
, ARM_ARCH_V4
,
29654 ARM_CPU_OPT ("strongarm110", NULL
, ARM_ARCH_V4
,
29657 ARM_CPU_OPT ("strongarm1100", NULL
, ARM_ARCH_V4
,
29660 ARM_CPU_OPT ("strongarm1110", NULL
, ARM_ARCH_V4
,
29663 ARM_CPU_OPT ("arm9", NULL
, ARM_ARCH_V4T
,
29666 ARM_CPU_OPT ("arm920", "ARM920T", ARM_ARCH_V4T
,
29669 ARM_CPU_OPT ("arm920t", NULL
, ARM_ARCH_V4T
,
29672 ARM_CPU_OPT ("arm922t", NULL
, ARM_ARCH_V4T
,
29675 ARM_CPU_OPT ("arm940t", NULL
, ARM_ARCH_V4T
,
29678 ARM_CPU_OPT ("arm9tdmi", NULL
, ARM_ARCH_V4T
,
29681 ARM_CPU_OPT ("fa526", NULL
, ARM_ARCH_V4
,
29684 ARM_CPU_OPT ("fa626", NULL
, ARM_ARCH_V4
,
29688 /* For V5 or later processors we default to using VFP; but the user
29689 should really set the FPU type explicitly. */
29690 ARM_CPU_OPT ("arm9e-r0", NULL
, ARM_ARCH_V5TExP
,
29693 ARM_CPU_OPT ("arm9e", NULL
, ARM_ARCH_V5TE
,
29696 ARM_CPU_OPT ("arm926ej", "ARM926EJ-S", ARM_ARCH_V5TEJ
,
29699 ARM_CPU_OPT ("arm926ejs", "ARM926EJ-S", ARM_ARCH_V5TEJ
,
29702 ARM_CPU_OPT ("arm926ej-s", NULL
, ARM_ARCH_V5TEJ
,
29705 ARM_CPU_OPT ("arm946e-r0", NULL
, ARM_ARCH_V5TExP
,
29708 ARM_CPU_OPT ("arm946e", "ARM946E-S", ARM_ARCH_V5TE
,
29711 ARM_CPU_OPT ("arm946e-s", NULL
, ARM_ARCH_V5TE
,
29714 ARM_CPU_OPT ("arm966e-r0", NULL
, ARM_ARCH_V5TExP
,
29717 ARM_CPU_OPT ("arm966e", "ARM966E-S", ARM_ARCH_V5TE
,
29720 ARM_CPU_OPT ("arm966e-s", NULL
, ARM_ARCH_V5TE
,
29723 ARM_CPU_OPT ("arm968e-s", NULL
, ARM_ARCH_V5TE
,
29726 ARM_CPU_OPT ("arm10t", NULL
, ARM_ARCH_V5T
,
29729 ARM_CPU_OPT ("arm10tdmi", NULL
, ARM_ARCH_V5T
,
29732 ARM_CPU_OPT ("arm10e", NULL
, ARM_ARCH_V5TE
,
29735 ARM_CPU_OPT ("arm1020", "ARM1020E", ARM_ARCH_V5TE
,
29738 ARM_CPU_OPT ("arm1020t", NULL
, ARM_ARCH_V5T
,
29741 ARM_CPU_OPT ("arm1020e", NULL
, ARM_ARCH_V5TE
,
29744 ARM_CPU_OPT ("arm1022e", NULL
, ARM_ARCH_V5TE
,
29747 ARM_CPU_OPT ("arm1026ejs", "ARM1026EJ-S", ARM_ARCH_V5TEJ
,
29750 ARM_CPU_OPT ("arm1026ej-s", NULL
, ARM_ARCH_V5TEJ
,
29753 ARM_CPU_OPT ("fa606te", NULL
, ARM_ARCH_V5TE
,
29756 ARM_CPU_OPT ("fa616te", NULL
, ARM_ARCH_V5TE
,
29759 ARM_CPU_OPT ("fa626te", NULL
, ARM_ARCH_V5TE
,
29762 ARM_CPU_OPT ("fmp626", NULL
, ARM_ARCH_V5TE
,
29765 ARM_CPU_OPT ("fa726te", NULL
, ARM_ARCH_V5TE
,
29768 ARM_CPU_OPT ("arm1136js", "ARM1136J-S", ARM_ARCH_V6
,
29771 ARM_CPU_OPT ("arm1136j-s", NULL
, ARM_ARCH_V6
,
29774 ARM_CPU_OPT ("arm1136jfs", "ARM1136JF-S", ARM_ARCH_V6
,
29777 ARM_CPU_OPT ("arm1136jf-s", NULL
, ARM_ARCH_V6
,
29780 ARM_CPU_OPT ("mpcore", "MPCore", ARM_ARCH_V6K
,
29783 ARM_CPU_OPT ("mpcorenovfp", "MPCore", ARM_ARCH_V6K
,
29786 ARM_CPU_OPT ("arm1156t2-s", NULL
, ARM_ARCH_V6T2
,
29789 ARM_CPU_OPT ("arm1156t2f-s", NULL
, ARM_ARCH_V6T2
,
29792 ARM_CPU_OPT ("arm1176jz-s", NULL
, ARM_ARCH_V6KZ
,
29795 ARM_CPU_OPT ("arm1176jzf-s", NULL
, ARM_ARCH_V6KZ
,
29798 ARM_CPU_OPT ("cortex-a5", "Cortex-A5", ARM_ARCH_V7A
,
29799 ARM_FEATURE_CORE_LOW (ARM_EXT_MP
| ARM_EXT_SEC
),
29801 ARM_CPU_OPT ("cortex-a7", "Cortex-A7", ARM_ARCH_V7VE
,
29803 FPU_ARCH_NEON_VFP_V4
),
29804 ARM_CPU_OPT ("cortex-a8", "Cortex-A8", ARM_ARCH_V7A
,
29805 ARM_FEATURE_CORE_LOW (ARM_EXT_SEC
),
29806 ARM_FEATURE_COPROC (FPU_VFP_V3
| FPU_NEON_EXT_V1
)),
29807 ARM_CPU_OPT ("cortex-a9", "Cortex-A9", ARM_ARCH_V7A
,
29808 ARM_FEATURE_CORE_LOW (ARM_EXT_MP
| ARM_EXT_SEC
),
29809 ARM_FEATURE_COPROC (FPU_VFP_V3
| FPU_NEON_EXT_V1
)),
29810 ARM_CPU_OPT ("cortex-a12", "Cortex-A12", ARM_ARCH_V7VE
,
29812 FPU_ARCH_NEON_VFP_V4
),
29813 ARM_CPU_OPT ("cortex-a15", "Cortex-A15", ARM_ARCH_V7VE
,
29815 FPU_ARCH_NEON_VFP_V4
),
29816 ARM_CPU_OPT ("cortex-a17", "Cortex-A17", ARM_ARCH_V7VE
,
29818 FPU_ARCH_NEON_VFP_V4
),
29819 ARM_CPU_OPT ("cortex-a32", "Cortex-A32", ARM_ARCH_V8A
,
29820 ARM_FEATURE_COPROC (CRC_EXT_ARMV8
),
29821 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8
),
29822 ARM_CPU_OPT ("cortex-a35", "Cortex-A35", ARM_ARCH_V8A
,
29823 ARM_FEATURE_COPROC (CRC_EXT_ARMV8
),
29824 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8
),
29825 ARM_CPU_OPT ("cortex-a53", "Cortex-A53", ARM_ARCH_V8A
,
29826 ARM_FEATURE_COPROC (CRC_EXT_ARMV8
),
29827 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8
),
29828 ARM_CPU_OPT ("cortex-a55", "Cortex-A55", ARM_ARCH_V8_2A
,
29829 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST
),
29830 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD
),
29831 ARM_CPU_OPT ("cortex-a57", "Cortex-A57", ARM_ARCH_V8A
,
29832 ARM_FEATURE_COPROC (CRC_EXT_ARMV8
),
29833 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8
),
29834 ARM_CPU_OPT ("cortex-a72", "Cortex-A72", ARM_ARCH_V8A
,
29835 ARM_FEATURE_COPROC (CRC_EXT_ARMV8
),
29836 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8
),
29837 ARM_CPU_OPT ("cortex-a73", "Cortex-A73", ARM_ARCH_V8A
,
29838 ARM_FEATURE_COPROC (CRC_EXT_ARMV8
),
29839 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8
),
29840 ARM_CPU_OPT ("cortex-a75", "Cortex-A75", ARM_ARCH_V8_2A
,
29841 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST
),
29842 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD
),
29843 ARM_CPU_OPT ("cortex-a76", "Cortex-A76", ARM_ARCH_V8_2A
,
29844 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST
),
29845 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD
),
29846 ARM_CPU_OPT ("ares", "Ares", ARM_ARCH_V8_2A
,
29847 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST
),
29848 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD
),
29849 ARM_CPU_OPT ("cortex-r4", "Cortex-R4", ARM_ARCH_V7R
,
29852 ARM_CPU_OPT ("cortex-r4f", "Cortex-R4F", ARM_ARCH_V7R
,
29854 FPU_ARCH_VFP_V3D16
),
29855 ARM_CPU_OPT ("cortex-r5", "Cortex-R5", ARM_ARCH_V7R
,
29856 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV
),
29858 ARM_CPU_OPT ("cortex-r7", "Cortex-R7", ARM_ARCH_V7R
,
29859 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV
),
29860 FPU_ARCH_VFP_V3D16
),
29861 ARM_CPU_OPT ("cortex-r8", "Cortex-R8", ARM_ARCH_V7R
,
29862 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV
),
29863 FPU_ARCH_VFP_V3D16
),
29864 ARM_CPU_OPT ("cortex-r52", "Cortex-R52", ARM_ARCH_V8R
,
29865 ARM_FEATURE_COPROC (CRC_EXT_ARMV8
),
29866 FPU_ARCH_NEON_VFP_ARMV8
),
29867 ARM_CPU_OPT ("cortex-m33", "Cortex-M33", ARM_ARCH_V8M_MAIN
,
29868 ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP
| ARM_EXT_V6_DSP
),
29870 ARM_CPU_OPT ("cortex-m23", "Cortex-M23", ARM_ARCH_V8M_BASE
,
29873 ARM_CPU_OPT ("cortex-m7", "Cortex-M7", ARM_ARCH_V7EM
,
29876 ARM_CPU_OPT ("cortex-m4", "Cortex-M4", ARM_ARCH_V7EM
,
29879 ARM_CPU_OPT ("cortex-m3", "Cortex-M3", ARM_ARCH_V7M
,
29882 ARM_CPU_OPT ("cortex-m1", "Cortex-M1", ARM_ARCH_V6SM
,
29885 ARM_CPU_OPT ("cortex-m0", "Cortex-M0", ARM_ARCH_V6SM
,
29888 ARM_CPU_OPT ("cortex-m0plus", "Cortex-M0+", ARM_ARCH_V6SM
,
29891 ARM_CPU_OPT ("exynos-m1", "Samsung Exynos M1", ARM_ARCH_V8A
,
29892 ARM_FEATURE_COPROC (CRC_EXT_ARMV8
),
29893 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8
),
29894 ARM_CPU_OPT ("neoverse-n1", "Neoverse N1", ARM_ARCH_V8_2A
,
29895 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST
),
29896 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD
),
29897 /* ??? XSCALE is really an architecture. */
29898 ARM_CPU_OPT ("xscale", NULL
, ARM_ARCH_XSCALE
,
29902 /* ??? iwmmxt is not a processor. */
29903 ARM_CPU_OPT ("iwmmxt", NULL
, ARM_ARCH_IWMMXT
,
29906 ARM_CPU_OPT ("iwmmxt2", NULL
, ARM_ARCH_IWMMXT2
,
29909 ARM_CPU_OPT ("i80200", NULL
, ARM_ARCH_XSCALE
,
29914 ARM_CPU_OPT ("ep9312", "ARM920T",
29915 ARM_FEATURE_LOW (ARM_AEXT_V4T
, ARM_CEXT_MAVERICK
),
29916 ARM_ARCH_NONE
, FPU_ARCH_MAVERICK
),
29918 /* Marvell processors. */
29919 ARM_CPU_OPT ("marvell-pj4", NULL
, ARM_ARCH_V7A
,
29920 ARM_FEATURE_CORE_LOW (ARM_EXT_MP
| ARM_EXT_SEC
),
29921 FPU_ARCH_VFP_V3D16
),
29922 ARM_CPU_OPT ("marvell-whitney", NULL
, ARM_ARCH_V7A
,
29923 ARM_FEATURE_CORE_LOW (ARM_EXT_MP
| ARM_EXT_SEC
),
29924 FPU_ARCH_NEON_VFP_V4
),
29926 /* APM X-Gene family. */
29927 ARM_CPU_OPT ("xgene1", "APM X-Gene 1", ARM_ARCH_V8A
,
29929 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8
),
29930 ARM_CPU_OPT ("xgene2", "APM X-Gene 2", ARM_ARCH_V8A
,
29931 ARM_FEATURE_COPROC (CRC_EXT_ARMV8
),
29932 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8
),
29934 { NULL
, 0, ARM_ARCH_NONE
, ARM_ARCH_NONE
, ARM_ARCH_NONE
, NULL
}
29938 struct arm_ext_table
29942 const arm_feature_set merge
;
29943 const arm_feature_set clear
;
29946 struct arm_arch_option_table
29950 const arm_feature_set value
;
29951 const arm_feature_set default_fpu
;
29952 const struct arm_ext_table
* ext_table
;
29955 /* Used to add support for +E and +noE extension. */
29956 #define ARM_EXT(E, M, C) { E, sizeof (E) - 1, M, C }
29957 /* Used to add support for a +E extension. */
29958 #define ARM_ADD(E, M) { E, sizeof(E) - 1, M, ARM_ARCH_NONE }
29959 /* Used to add support for a +noE extension. */
29960 #define ARM_REMOVE(E, C) { E, sizeof(E) -1, ARM_ARCH_NONE, C }
29962 #define ALL_FP ARM_FEATURE (0, ARM_EXT2_FP16_INST | ARM_EXT2_FP16_FML, \
29963 ~0 & ~FPU_ENDIAN_PURE)
29965 static const struct arm_ext_table armv5te_ext_table
[] =
29967 ARM_EXT ("fp", FPU_ARCH_VFP_V2
, ALL_FP
),
29968 { NULL
, 0, ARM_ARCH_NONE
, ARM_ARCH_NONE
}
29971 static const struct arm_ext_table armv7_ext_table
[] =
29973 ARM_EXT ("fp", FPU_ARCH_VFP_V3D16
, ALL_FP
),
29974 { NULL
, 0, ARM_ARCH_NONE
, ARM_ARCH_NONE
}
29977 static const struct arm_ext_table armv7ve_ext_table
[] =
29979 ARM_EXT ("fp", FPU_ARCH_VFP_V4D16
, ALL_FP
),
29980 ARM_ADD ("vfpv3-d16", FPU_ARCH_VFP_V3D16
),
29981 ARM_ADD ("vfpv3", FPU_ARCH_VFP_V3
),
29982 ARM_ADD ("vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16
),
29983 ARM_ADD ("vfpv3-fp16", FPU_ARCH_VFP_V3_FP16
),
29984 ARM_ADD ("vfpv4-d16", FPU_ARCH_VFP_V4D16
), /* Alias for +fp. */
29985 ARM_ADD ("vfpv4", FPU_ARCH_VFP_V4
),
29987 ARM_EXT ("simd", FPU_ARCH_NEON_VFP_V4
,
29988 ARM_FEATURE_COPROC (FPU_NEON_EXT_V1
| FPU_NEON_EXT_FMA
)),
29990 /* Aliases for +simd. */
29991 ARM_ADD ("neon-vfpv4", FPU_ARCH_NEON_VFP_V4
),
29993 ARM_ADD ("neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1
),
29994 ARM_ADD ("neon-vfpv3", FPU_ARCH_VFP_V3_PLUS_NEON_V1
),
29995 ARM_ADD ("neon-fp16", FPU_ARCH_NEON_FP16
),
29997 { NULL
, 0, ARM_ARCH_NONE
, ARM_ARCH_NONE
}
30000 static const struct arm_ext_table armv7a_ext_table
[] =
30002 ARM_EXT ("fp", FPU_ARCH_VFP_V3D16
, ALL_FP
),
30003 ARM_ADD ("vfpv3-d16", FPU_ARCH_VFP_V3D16
), /* Alias for +fp. */
30004 ARM_ADD ("vfpv3", FPU_ARCH_VFP_V3
),
30005 ARM_ADD ("vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16
),
30006 ARM_ADD ("vfpv3-fp16", FPU_ARCH_VFP_V3_FP16
),
30007 ARM_ADD ("vfpv4-d16", FPU_ARCH_VFP_V4D16
),
30008 ARM_ADD ("vfpv4", FPU_ARCH_VFP_V4
),
30010 ARM_EXT ("simd", FPU_ARCH_VFP_V3_PLUS_NEON_V1
,
30011 ARM_FEATURE_COPROC (FPU_NEON_EXT_V1
| FPU_NEON_EXT_FMA
)),
30013 /* Aliases for +simd. */
30014 ARM_ADD ("neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1
),
30015 ARM_ADD ("neon-vfpv3", FPU_ARCH_VFP_V3_PLUS_NEON_V1
),
30017 ARM_ADD ("neon-fp16", FPU_ARCH_NEON_FP16
),
30018 ARM_ADD ("neon-vfpv4", FPU_ARCH_NEON_VFP_V4
),
30020 ARM_ADD ("mp", ARM_FEATURE_CORE_LOW (ARM_EXT_MP
)),
30021 ARM_ADD ("sec", ARM_FEATURE_CORE_LOW (ARM_EXT_SEC
)),
30022 { NULL
, 0, ARM_ARCH_NONE
, ARM_ARCH_NONE
}
30025 static const struct arm_ext_table armv7r_ext_table
[] =
30027 ARM_ADD ("fp.sp", FPU_ARCH_VFP_V3xD
),
30028 ARM_ADD ("vfpv3xd", FPU_ARCH_VFP_V3xD
), /* Alias for +fp.sp. */
30029 ARM_EXT ("fp", FPU_ARCH_VFP_V3D16
, ALL_FP
),
30030 ARM_ADD ("vfpv3-d16", FPU_ARCH_VFP_V3D16
), /* Alias for +fp. */
30031 ARM_ADD ("vfpv3xd-fp16", FPU_ARCH_VFP_V3xD_FP16
),
30032 ARM_ADD ("vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16
),
30033 ARM_EXT ("idiv", ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV
| ARM_EXT_DIV
),
30034 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV
| ARM_EXT_DIV
)),
30035 { NULL
, 0, ARM_ARCH_NONE
, ARM_ARCH_NONE
}
30038 static const struct arm_ext_table armv7em_ext_table
[] =
30040 ARM_EXT ("fp", FPU_ARCH_VFP_V4_SP_D16
, ALL_FP
),
30041 /* Alias for +fp, used to be known as fpv4-sp-d16. */
30042 ARM_ADD ("vfpv4-sp-d16", FPU_ARCH_VFP_V4_SP_D16
),
30043 ARM_ADD ("fpv5", FPU_ARCH_VFP_V5_SP_D16
),
30044 ARM_ADD ("fp.dp", FPU_ARCH_VFP_V5D16
),
30045 ARM_ADD ("fpv5-d16", FPU_ARCH_VFP_V5D16
),
30046 { NULL
, 0, ARM_ARCH_NONE
, ARM_ARCH_NONE
}
30049 static const struct arm_ext_table armv8a_ext_table
[] =
30051 ARM_ADD ("crc", ARCH_CRC_ARMV8
),
30052 ARM_ADD ("simd", FPU_ARCH_NEON_VFP_ARMV8
),
30053 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8
,
30054 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8
)),
30056 /* Armv8-a does not allow an FP implementation without SIMD, so the user
30057 should use the +simd option to turn on FP. */
30058 ARM_REMOVE ("fp", ALL_FP
),
30059 ARM_ADD ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB
)),
30060 ARM_ADD ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES
)),
30061 { NULL
, 0, ARM_ARCH_NONE
, ARM_ARCH_NONE
}
30065 static const struct arm_ext_table armv81a_ext_table
[] =
30067 ARM_ADD ("simd", FPU_ARCH_NEON_VFP_ARMV8_1
),
30068 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_1
,
30069 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8
)),
30071 /* Armv8-a does not allow an FP implementation without SIMD, so the user
30072 should use the +simd option to turn on FP. */
30073 ARM_REMOVE ("fp", ALL_FP
),
30074 ARM_ADD ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB
)),
30075 ARM_ADD ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES
)),
30076 { NULL
, 0, ARM_ARCH_NONE
, ARM_ARCH_NONE
}
30079 static const struct arm_ext_table armv82a_ext_table
[] =
30081 ARM_ADD ("simd", FPU_ARCH_NEON_VFP_ARMV8_1
),
30082 ARM_ADD ("fp16", FPU_ARCH_NEON_VFP_ARMV8_2_FP16
),
30083 ARM_ADD ("fp16fml", FPU_ARCH_NEON_VFP_ARMV8_2_FP16FML
),
30084 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_1
,
30085 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8
)),
30086 ARM_ADD ("dotprod", FPU_ARCH_DOTPROD_NEON_VFP_ARMV8
),
30088 /* Armv8-a does not allow an FP implementation without SIMD, so the user
30089 should use the +simd option to turn on FP. */
30090 ARM_REMOVE ("fp", ALL_FP
),
30091 ARM_ADD ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB
)),
30092 ARM_ADD ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES
)),
30093 { NULL
, 0, ARM_ARCH_NONE
, ARM_ARCH_NONE
}
30096 static const struct arm_ext_table armv84a_ext_table
[] =
30098 ARM_ADD ("simd", FPU_ARCH_DOTPROD_NEON_VFP_ARMV8
),
30099 ARM_ADD ("fp16", FPU_ARCH_NEON_VFP_ARMV8_4_FP16FML
),
30100 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_4
,
30101 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8
)),
30103 /* Armv8-a does not allow an FP implementation without SIMD, so the user
30104 should use the +simd option to turn on FP. */
30105 ARM_REMOVE ("fp", ALL_FP
),
30106 ARM_ADD ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB
)),
30107 ARM_ADD ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES
)),
30108 { NULL
, 0, ARM_ARCH_NONE
, ARM_ARCH_NONE
}
30111 static const struct arm_ext_table armv85a_ext_table
[] =
30113 ARM_ADD ("simd", FPU_ARCH_DOTPROD_NEON_VFP_ARMV8
),
30114 ARM_ADD ("fp16", FPU_ARCH_NEON_VFP_ARMV8_4_FP16FML
),
30115 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_4
,
30116 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8
)),
30118 /* Armv8-a does not allow an FP implementation without SIMD, so the user
30119 should use the +simd option to turn on FP. */
30120 ARM_REMOVE ("fp", ALL_FP
),
30121 { NULL
, 0, ARM_ARCH_NONE
, ARM_ARCH_NONE
}
30124 static const struct arm_ext_table armv8m_main_ext_table
[] =
30126 ARM_EXT ("dsp", ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP
| ARM_EXT_V6_DSP
),
30127 ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP
| ARM_EXT_V6_DSP
)),
30128 ARM_EXT ("fp", FPU_ARCH_VFP_V5_SP_D16
, ALL_FP
),
30129 ARM_ADD ("fp.dp", FPU_ARCH_VFP_V5D16
),
30130 { NULL
, 0, ARM_ARCH_NONE
, ARM_ARCH_NONE
}
30133 static const struct arm_ext_table armv8_1m_main_ext_table
[] =
30135 ARM_EXT ("dsp", ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP
| ARM_EXT_V6_DSP
),
30136 ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP
| ARM_EXT_V6_DSP
)),
30138 ARM_FEATURE (0, ARM_EXT2_FP16_INST
,
30139 FPU_VFP_V5_SP_D16
| FPU_VFP_EXT_FP16
| FPU_VFP_EXT_FMA
),
30142 ARM_FEATURE (0, ARM_EXT2_FP16_INST
,
30143 FPU_VFP_V5D16
| FPU_VFP_EXT_FP16
| FPU_VFP_EXT_FMA
)),
30144 ARM_EXT ("mve", ARM_FEATURE_COPROC (FPU_MVE
),
30145 ARM_FEATURE_COPROC (FPU_MVE
| FPU_MVE_FP
)),
30147 ARM_FEATURE (0, ARM_EXT2_FP16_INST
,
30148 FPU_MVE
| FPU_MVE_FP
| FPU_VFP_V5_SP_D16
|
30149 FPU_VFP_EXT_FP16
| FPU_VFP_EXT_FMA
)),
30150 { NULL
, 0, ARM_ARCH_NONE
, ARM_ARCH_NONE
}
30153 static const struct arm_ext_table armv8r_ext_table
[] =
30155 ARM_ADD ("crc", ARCH_CRC_ARMV8
),
30156 ARM_ADD ("simd", FPU_ARCH_NEON_VFP_ARMV8
),
30157 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8
,
30158 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8
)),
30159 ARM_REMOVE ("fp", ALL_FP
),
30160 ARM_ADD ("fp.sp", FPU_ARCH_VFP_V5_SP_D16
),
30161 { NULL
, 0, ARM_ARCH_NONE
, ARM_ARCH_NONE
}
30164 /* This list should, at a minimum, contain all the architecture names
30165 recognized by GCC. */
30166 #define ARM_ARCH_OPT(N, V, DF) { N, sizeof (N) - 1, V, DF, NULL }
30167 #define ARM_ARCH_OPT2(N, V, DF, ext) \
30168 { N, sizeof (N) - 1, V, DF, ext##_ext_table }
30170 static const struct arm_arch_option_table arm_archs
[] =
30172 ARM_ARCH_OPT ("all", ARM_ANY
, FPU_ARCH_FPA
),
30173 ARM_ARCH_OPT ("armv1", ARM_ARCH_V1
, FPU_ARCH_FPA
),
30174 ARM_ARCH_OPT ("armv2", ARM_ARCH_V2
, FPU_ARCH_FPA
),
30175 ARM_ARCH_OPT ("armv2a", ARM_ARCH_V2S
, FPU_ARCH_FPA
),
30176 ARM_ARCH_OPT ("armv2s", ARM_ARCH_V2S
, FPU_ARCH_FPA
),
30177 ARM_ARCH_OPT ("armv3", ARM_ARCH_V3
, FPU_ARCH_FPA
),
30178 ARM_ARCH_OPT ("armv3m", ARM_ARCH_V3M
, FPU_ARCH_FPA
),
30179 ARM_ARCH_OPT ("armv4", ARM_ARCH_V4
, FPU_ARCH_FPA
),
30180 ARM_ARCH_OPT ("armv4xm", ARM_ARCH_V4xM
, FPU_ARCH_FPA
),
30181 ARM_ARCH_OPT ("armv4t", ARM_ARCH_V4T
, FPU_ARCH_FPA
),
30182 ARM_ARCH_OPT ("armv4txm", ARM_ARCH_V4TxM
, FPU_ARCH_FPA
),
30183 ARM_ARCH_OPT ("armv5", ARM_ARCH_V5
, FPU_ARCH_VFP
),
30184 ARM_ARCH_OPT ("armv5t", ARM_ARCH_V5T
, FPU_ARCH_VFP
),
30185 ARM_ARCH_OPT ("armv5txm", ARM_ARCH_V5TxM
, FPU_ARCH_VFP
),
30186 ARM_ARCH_OPT2 ("armv5te", ARM_ARCH_V5TE
, FPU_ARCH_VFP
, armv5te
),
30187 ARM_ARCH_OPT2 ("armv5texp", ARM_ARCH_V5TExP
, FPU_ARCH_VFP
, armv5te
),
30188 ARM_ARCH_OPT2 ("armv5tej", ARM_ARCH_V5TEJ
, FPU_ARCH_VFP
, armv5te
),
30189 ARM_ARCH_OPT2 ("armv6", ARM_ARCH_V6
, FPU_ARCH_VFP
, armv5te
),
30190 ARM_ARCH_OPT2 ("armv6j", ARM_ARCH_V6
, FPU_ARCH_VFP
, armv5te
),
30191 ARM_ARCH_OPT2 ("armv6k", ARM_ARCH_V6K
, FPU_ARCH_VFP
, armv5te
),
30192 ARM_ARCH_OPT2 ("armv6z", ARM_ARCH_V6Z
, FPU_ARCH_VFP
, armv5te
),
30193 /* The official spelling of this variant is ARMv6KZ, the name "armv6zk" is
30194 kept to preserve existing behaviour. */
30195 ARM_ARCH_OPT2 ("armv6kz", ARM_ARCH_V6KZ
, FPU_ARCH_VFP
, armv5te
),
30196 ARM_ARCH_OPT2 ("armv6zk", ARM_ARCH_V6KZ
, FPU_ARCH_VFP
, armv5te
),
30197 ARM_ARCH_OPT2 ("armv6t2", ARM_ARCH_V6T2
, FPU_ARCH_VFP
, armv5te
),
30198 ARM_ARCH_OPT2 ("armv6kt2", ARM_ARCH_V6KT2
, FPU_ARCH_VFP
, armv5te
),
30199 ARM_ARCH_OPT2 ("armv6zt2", ARM_ARCH_V6ZT2
, FPU_ARCH_VFP
, armv5te
),
30200 /* The official spelling of this variant is ARMv6KZ, the name "armv6zkt2" is
30201 kept to preserve existing behaviour. */
30202 ARM_ARCH_OPT2 ("armv6kzt2", ARM_ARCH_V6KZT2
, FPU_ARCH_VFP
, armv5te
),
30203 ARM_ARCH_OPT2 ("armv6zkt2", ARM_ARCH_V6KZT2
, FPU_ARCH_VFP
, armv5te
),
30204 ARM_ARCH_OPT ("armv6-m", ARM_ARCH_V6M
, FPU_ARCH_VFP
),
30205 ARM_ARCH_OPT ("armv6s-m", ARM_ARCH_V6SM
, FPU_ARCH_VFP
),
30206 ARM_ARCH_OPT2 ("armv7", ARM_ARCH_V7
, FPU_ARCH_VFP
, armv7
),
30207 /* The official spelling of the ARMv7 profile variants is the dashed form.
30208 Accept the non-dashed form for compatibility with old toolchains. */
30209 ARM_ARCH_OPT2 ("armv7a", ARM_ARCH_V7A
, FPU_ARCH_VFP
, armv7a
),
30210 ARM_ARCH_OPT2 ("armv7ve", ARM_ARCH_V7VE
, FPU_ARCH_VFP
, armv7ve
),
30211 ARM_ARCH_OPT2 ("armv7r", ARM_ARCH_V7R
, FPU_ARCH_VFP
, armv7r
),
30212 ARM_ARCH_OPT ("armv7m", ARM_ARCH_V7M
, FPU_ARCH_VFP
),
30213 ARM_ARCH_OPT2 ("armv7-a", ARM_ARCH_V7A
, FPU_ARCH_VFP
, armv7a
),
30214 ARM_ARCH_OPT2 ("armv7-r", ARM_ARCH_V7R
, FPU_ARCH_VFP
, armv7r
),
30215 ARM_ARCH_OPT ("armv7-m", ARM_ARCH_V7M
, FPU_ARCH_VFP
),
30216 ARM_ARCH_OPT2 ("armv7e-m", ARM_ARCH_V7EM
, FPU_ARCH_VFP
, armv7em
),
30217 ARM_ARCH_OPT ("armv8-m.base", ARM_ARCH_V8M_BASE
, FPU_ARCH_VFP
),
30218 ARM_ARCH_OPT2 ("armv8-m.main", ARM_ARCH_V8M_MAIN
, FPU_ARCH_VFP
,
30220 ARM_ARCH_OPT2 ("armv8.1-m.main", ARM_ARCH_V8_1M_MAIN
, FPU_ARCH_VFP
,
30222 ARM_ARCH_OPT2 ("armv8-a", ARM_ARCH_V8A
, FPU_ARCH_VFP
, armv8a
),
30223 ARM_ARCH_OPT2 ("armv8.1-a", ARM_ARCH_V8_1A
, FPU_ARCH_VFP
, armv81a
),
30224 ARM_ARCH_OPT2 ("armv8.2-a", ARM_ARCH_V8_2A
, FPU_ARCH_VFP
, armv82a
),
30225 ARM_ARCH_OPT2 ("armv8.3-a", ARM_ARCH_V8_3A
, FPU_ARCH_VFP
, armv82a
),
30226 ARM_ARCH_OPT2 ("armv8-r", ARM_ARCH_V8R
, FPU_ARCH_VFP
, armv8r
),
30227 ARM_ARCH_OPT2 ("armv8.4-a", ARM_ARCH_V8_4A
, FPU_ARCH_VFP
, armv84a
),
30228 ARM_ARCH_OPT2 ("armv8.5-a", ARM_ARCH_V8_5A
, FPU_ARCH_VFP
, armv85a
),
30229 ARM_ARCH_OPT ("xscale", ARM_ARCH_XSCALE
, FPU_ARCH_VFP
),
30230 ARM_ARCH_OPT ("iwmmxt", ARM_ARCH_IWMMXT
, FPU_ARCH_VFP
),
30231 ARM_ARCH_OPT ("iwmmxt2", ARM_ARCH_IWMMXT2
, FPU_ARCH_VFP
),
30232 { NULL
, 0, ARM_ARCH_NONE
, ARM_ARCH_NONE
, NULL
}
30234 #undef ARM_ARCH_OPT
30236 /* ISA extensions in the co-processor and main instruction set space. */
30238 struct arm_option_extension_value_table
30242 const arm_feature_set merge_value
;
30243 const arm_feature_set clear_value
;
30244 /* List of architectures for which an extension is available. ARM_ARCH_NONE
30245 indicates that an extension is available for all architectures while
30246 ARM_ANY marks an empty entry. */
30247 const arm_feature_set allowed_archs
[2];
30250 /* The following table must be in alphabetical order with a NULL last entry. */
30252 #define ARM_EXT_OPT(N, M, C, AA) { N, sizeof (N) - 1, M, C, { AA, ARM_ANY } }
30253 #define ARM_EXT_OPT2(N, M, C, AA1, AA2) { N, sizeof (N) - 1, M, C, {AA1, AA2} }
30255 /* DEPRECATED: Refrain from using this table to add any new extensions, instead
30256 use the context sensitive approach using arm_ext_table's. */
30257 static const struct arm_option_extension_value_table arm_extensions
[] =
30259 ARM_EXT_OPT ("crc", ARCH_CRC_ARMV8
, ARM_FEATURE_COPROC (CRC_EXT_ARMV8
),
30260 ARM_FEATURE_CORE_LOW (ARM_EXT_V8
)),
30261 ARM_EXT_OPT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8
,
30262 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8
),
30263 ARM_FEATURE_CORE_LOW (ARM_EXT_V8
)),
30264 ARM_EXT_OPT ("dotprod", FPU_ARCH_DOTPROD_NEON_VFP_ARMV8
,
30265 ARM_FEATURE_COPROC (FPU_NEON_EXT_DOTPROD
),
30267 ARM_EXT_OPT ("dsp", ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP
| ARM_EXT_V6_DSP
),
30268 ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP
| ARM_EXT_V6_DSP
),
30269 ARM_FEATURE_CORE (ARM_EXT_V7M
, ARM_EXT2_V8M
)),
30270 ARM_EXT_OPT ("fp", FPU_ARCH_VFP_ARMV8
, ARM_FEATURE_COPROC (FPU_VFP_ARMV8
),
30271 ARM_FEATURE_CORE_LOW (ARM_EXT_V8
)),
30272 ARM_EXT_OPT ("fp16", ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST
),
30273 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST
),
30275 ARM_EXT_OPT ("fp16fml", ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST
30276 | ARM_EXT2_FP16_FML
),
30277 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST
30278 | ARM_EXT2_FP16_FML
),
30280 ARM_EXT_OPT2 ("idiv", ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV
| ARM_EXT_DIV
),
30281 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV
| ARM_EXT_DIV
),
30282 ARM_FEATURE_CORE_LOW (ARM_EXT_V7A
),
30283 ARM_FEATURE_CORE_LOW (ARM_EXT_V7R
)),
30284 /* Duplicate entry for the purpose of allowing ARMv7 to match in presence of
30285 Thumb divide instruction. Due to this having the same name as the
30286 previous entry, this will be ignored when doing command-line parsing and
30287 only considered by build attribute selection code. */
30288 ARM_EXT_OPT ("idiv", ARM_FEATURE_CORE_LOW (ARM_EXT_DIV
),
30289 ARM_FEATURE_CORE_LOW (ARM_EXT_DIV
),
30290 ARM_FEATURE_CORE_LOW (ARM_EXT_V7
)),
30291 ARM_EXT_OPT ("iwmmxt",ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT
),
30292 ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT
), ARM_ARCH_NONE
),
30293 ARM_EXT_OPT ("iwmmxt2", ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT2
),
30294 ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT2
), ARM_ARCH_NONE
),
30295 ARM_EXT_OPT ("maverick", ARM_FEATURE_COPROC (ARM_CEXT_MAVERICK
),
30296 ARM_FEATURE_COPROC (ARM_CEXT_MAVERICK
), ARM_ARCH_NONE
),
30297 ARM_EXT_OPT2 ("mp", ARM_FEATURE_CORE_LOW (ARM_EXT_MP
),
30298 ARM_FEATURE_CORE_LOW (ARM_EXT_MP
),
30299 ARM_FEATURE_CORE_LOW (ARM_EXT_V7A
),
30300 ARM_FEATURE_CORE_LOW (ARM_EXT_V7R
)),
30301 ARM_EXT_OPT ("os", ARM_FEATURE_CORE_LOW (ARM_EXT_OS
),
30302 ARM_FEATURE_CORE_LOW (ARM_EXT_OS
),
30303 ARM_FEATURE_CORE_LOW (ARM_EXT_V6M
)),
30304 ARM_EXT_OPT ("pan", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PAN
),
30305 ARM_FEATURE (ARM_EXT_V8
, ARM_EXT2_PAN
, 0),
30306 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8A
)),
30307 ARM_EXT_OPT ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES
),
30308 ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES
),
30310 ARM_EXT_OPT ("ras", ARM_FEATURE_CORE_HIGH (ARM_EXT2_RAS
),
30311 ARM_FEATURE (ARM_EXT_V8
, ARM_EXT2_RAS
, 0),
30312 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8A
)),
30313 ARM_EXT_OPT ("rdma", FPU_ARCH_NEON_VFP_ARMV8_1
,
30314 ARM_FEATURE_COPROC (FPU_NEON_ARMV8
| FPU_NEON_EXT_RDMA
),
30315 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8A
)),
30316 ARM_EXT_OPT ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB
),
30317 ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB
),
30319 ARM_EXT_OPT2 ("sec", ARM_FEATURE_CORE_LOW (ARM_EXT_SEC
),
30320 ARM_FEATURE_CORE_LOW (ARM_EXT_SEC
),
30321 ARM_FEATURE_CORE_LOW (ARM_EXT_V6K
),
30322 ARM_FEATURE_CORE_LOW (ARM_EXT_V7A
)),
30323 ARM_EXT_OPT ("simd", FPU_ARCH_NEON_VFP_ARMV8
,
30324 ARM_FEATURE_COPROC (FPU_NEON_ARMV8
),
30325 ARM_FEATURE_CORE_LOW (ARM_EXT_V8
)),
30326 ARM_EXT_OPT ("virt", ARM_FEATURE_CORE_LOW (ARM_EXT_VIRT
| ARM_EXT_ADIV
30328 ARM_FEATURE_CORE_LOW (ARM_EXT_VIRT
),
30329 ARM_FEATURE_CORE_LOW (ARM_EXT_V7A
)),
30330 ARM_EXT_OPT ("xscale",ARM_FEATURE_COPROC (ARM_CEXT_XSCALE
),
30331 ARM_FEATURE_COPROC (ARM_CEXT_XSCALE
), ARM_ARCH_NONE
),
30332 { NULL
, 0, ARM_ARCH_NONE
, ARM_ARCH_NONE
, { ARM_ARCH_NONE
, ARM_ARCH_NONE
} }
30336 /* ISA floating-point and Advanced SIMD extensions. */
30337 struct arm_option_fpu_value_table
30340 const arm_feature_set value
;
30343 /* This list should, at a minimum, contain all the fpu names
30344 recognized by GCC. */
30345 static const struct arm_option_fpu_value_table arm_fpus
[] =
30347 {"softfpa", FPU_NONE
},
30348 {"fpe", FPU_ARCH_FPE
},
30349 {"fpe2", FPU_ARCH_FPE
},
30350 {"fpe3", FPU_ARCH_FPA
}, /* Third release supports LFM/SFM. */
30351 {"fpa", FPU_ARCH_FPA
},
30352 {"fpa10", FPU_ARCH_FPA
},
30353 {"fpa11", FPU_ARCH_FPA
},
30354 {"arm7500fe", FPU_ARCH_FPA
},
30355 {"softvfp", FPU_ARCH_VFP
},
30356 {"softvfp+vfp", FPU_ARCH_VFP_V2
},
30357 {"vfp", FPU_ARCH_VFP_V2
},
30358 {"vfp9", FPU_ARCH_VFP_V2
},
30359 {"vfp3", FPU_ARCH_VFP_V3
}, /* Undocumented, use vfpv3. */
30360 {"vfp10", FPU_ARCH_VFP_V2
},
30361 {"vfp10-r0", FPU_ARCH_VFP_V1
},
30362 {"vfpxd", FPU_ARCH_VFP_V1xD
},
30363 {"vfpv2", FPU_ARCH_VFP_V2
},
30364 {"vfpv3", FPU_ARCH_VFP_V3
},
30365 {"vfpv3-fp16", FPU_ARCH_VFP_V3_FP16
},
30366 {"vfpv3-d16", FPU_ARCH_VFP_V3D16
},
30367 {"vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16
},
30368 {"vfpv3xd", FPU_ARCH_VFP_V3xD
},
30369 {"vfpv3xd-fp16", FPU_ARCH_VFP_V3xD_FP16
},
30370 {"arm1020t", FPU_ARCH_VFP_V1
},
30371 {"arm1020e", FPU_ARCH_VFP_V2
},
30372 {"arm1136jfs", FPU_ARCH_VFP_V2
}, /* Undocumented, use arm1136jf-s. */
30373 {"arm1136jf-s", FPU_ARCH_VFP_V2
},
30374 {"maverick", FPU_ARCH_MAVERICK
},
30375 {"neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1
},
30376 {"neon-vfpv3", FPU_ARCH_VFP_V3_PLUS_NEON_V1
},
30377 {"neon-fp16", FPU_ARCH_NEON_FP16
},
30378 {"vfpv4", FPU_ARCH_VFP_V4
},
30379 {"vfpv4-d16", FPU_ARCH_VFP_V4D16
},
30380 {"fpv4-sp-d16", FPU_ARCH_VFP_V4_SP_D16
},
30381 {"fpv5-d16", FPU_ARCH_VFP_V5D16
},
30382 {"fpv5-sp-d16", FPU_ARCH_VFP_V5_SP_D16
},
30383 {"neon-vfpv4", FPU_ARCH_NEON_VFP_V4
},
30384 {"fp-armv8", FPU_ARCH_VFP_ARMV8
},
30385 {"neon-fp-armv8", FPU_ARCH_NEON_VFP_ARMV8
},
30386 {"crypto-neon-fp-armv8",
30387 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8
},
30388 {"neon-fp-armv8.1", FPU_ARCH_NEON_VFP_ARMV8_1
},
30389 {"crypto-neon-fp-armv8.1",
30390 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_1
},
30391 {NULL
, ARM_ARCH_NONE
}
30394 struct arm_option_value_table
30400 static const struct arm_option_value_table arm_float_abis
[] =
30402 {"hard", ARM_FLOAT_ABI_HARD
},
30403 {"softfp", ARM_FLOAT_ABI_SOFTFP
},
30404 {"soft", ARM_FLOAT_ABI_SOFT
},
30409 /* We only know how to output GNU and ver 4/5 (AAELF) formats. */
30410 static const struct arm_option_value_table arm_eabis
[] =
30412 {"gnu", EF_ARM_EABI_UNKNOWN
},
30413 {"4", EF_ARM_EABI_VER4
},
30414 {"5", EF_ARM_EABI_VER5
},
30419 struct arm_long_option_table
30421 const char * option
; /* Substring to match. */
30422 const char * help
; /* Help information. */
30423 int (* func
) (const char * subopt
); /* Function to decode sub-option. */
30424 const char * deprecated
; /* If non-null, print this message. */
30428 arm_parse_extension (const char *str
, const arm_feature_set
*opt_set
,
30429 arm_feature_set
*ext_set
,
30430 const struct arm_ext_table
*ext_table
)
30432 /* We insist on extensions being specified in alphabetical order, and with
30433 extensions being added before being removed. We achieve this by having
30434 the global ARM_EXTENSIONS table in alphabetical order, and using the
30435 ADDING_VALUE variable to indicate whether we are adding an extension (1)
30436 or removing it (0) and only allowing it to change in the order
30438 const struct arm_option_extension_value_table
* opt
= NULL
;
30439 const arm_feature_set arm_any
= ARM_ANY
;
30440 int adding_value
= -1;
30442 while (str
!= NULL
&& *str
!= 0)
30449 as_bad (_("invalid architectural extension"));
30454 ext
= strchr (str
, '+');
30459 len
= strlen (str
);
30461 if (len
>= 2 && strncmp (str
, "no", 2) == 0)
30463 if (adding_value
!= 0)
30466 opt
= arm_extensions
;
30474 if (adding_value
== -1)
30477 opt
= arm_extensions
;
30479 else if (adding_value
!= 1)
30481 as_bad (_("must specify extensions to add before specifying "
30482 "those to remove"));
30489 as_bad (_("missing architectural extension"));
30493 gas_assert (adding_value
!= -1);
30494 gas_assert (opt
!= NULL
);
30496 if (ext_table
!= NULL
)
30498 const struct arm_ext_table
* ext_opt
= ext_table
;
30499 bfd_boolean found
= FALSE
;
30500 for (; ext_opt
->name
!= NULL
; ext_opt
++)
30501 if (ext_opt
->name_len
== len
30502 && strncmp (ext_opt
->name
, str
, len
) == 0)
30506 if (ARM_FEATURE_ZERO (ext_opt
->merge
))
30507 /* TODO: Option not supported. When we remove the
30508 legacy table this case should error out. */
30511 ARM_MERGE_FEATURE_SETS (*ext_set
, *ext_set
, ext_opt
->merge
);
30515 if (ARM_FEATURE_ZERO (ext_opt
->clear
))
30516 /* TODO: Option not supported. When we remove the
30517 legacy table this case should error out. */
30519 ARM_CLEAR_FEATURE (*ext_set
, *ext_set
, ext_opt
->clear
);
30531 /* Scan over the options table trying to find an exact match. */
30532 for (; opt
->name
!= NULL
; opt
++)
30533 if (opt
->name_len
== len
&& strncmp (opt
->name
, str
, len
) == 0)
30535 int i
, nb_allowed_archs
=
30536 sizeof (opt
->allowed_archs
) / sizeof (opt
->allowed_archs
[0]);
30537 /* Check we can apply the extension to this architecture. */
30538 for (i
= 0; i
< nb_allowed_archs
; i
++)
30541 if (ARM_FEATURE_EQUAL (opt
->allowed_archs
[i
], arm_any
))
30543 if (ARM_FSET_CPU_SUBSET (opt
->allowed_archs
[i
], *opt_set
))
30546 if (i
== nb_allowed_archs
)
30548 as_bad (_("extension does not apply to the base architecture"));
30552 /* Add or remove the extension. */
30554 ARM_MERGE_FEATURE_SETS (*ext_set
, *ext_set
, opt
->merge_value
);
30556 ARM_CLEAR_FEATURE (*ext_set
, *ext_set
, opt
->clear_value
);
30558 /* Allowing Thumb division instructions for ARMv7 in autodetection
30559 rely on this break so that duplicate extensions (extensions
30560 with the same name as a previous extension in the list) are not
30561 considered for command-line parsing. */
30565 if (opt
->name
== NULL
)
30567 /* Did we fail to find an extension because it wasn't specified in
30568 alphabetical order, or because it does not exist? */
30570 for (opt
= arm_extensions
; opt
->name
!= NULL
; opt
++)
30571 if (opt
->name_len
== len
&& strncmp (opt
->name
, str
, len
) == 0)
30574 if (opt
->name
== NULL
)
30575 as_bad (_("unknown architectural extension `%s'"), str
);
30577 as_bad (_("architectural extensions must be specified in "
30578 "alphabetical order"));
30584 /* We should skip the extension we've just matched the next time
30596 arm_parse_cpu (const char *str
)
30598 const struct arm_cpu_option_table
*opt
;
30599 const char *ext
= strchr (str
, '+');
30605 len
= strlen (str
);
30609 as_bad (_("missing cpu name `%s'"), str
);
30613 for (opt
= arm_cpus
; opt
->name
!= NULL
; opt
++)
30614 if (opt
->name_len
== len
&& strncmp (opt
->name
, str
, len
) == 0)
30616 mcpu_cpu_opt
= &opt
->value
;
30617 if (mcpu_ext_opt
== NULL
)
30618 mcpu_ext_opt
= XNEW (arm_feature_set
);
30619 *mcpu_ext_opt
= opt
->ext
;
30620 mcpu_fpu_opt
= &opt
->default_fpu
;
30621 if (opt
->canonical_name
)
30623 gas_assert (sizeof selected_cpu_name
> strlen (opt
->canonical_name
));
30624 strcpy (selected_cpu_name
, opt
->canonical_name
);
30630 if (len
>= sizeof selected_cpu_name
)
30631 len
= (sizeof selected_cpu_name
) - 1;
30633 for (i
= 0; i
< len
; i
++)
30634 selected_cpu_name
[i
] = TOUPPER (opt
->name
[i
]);
30635 selected_cpu_name
[i
] = 0;
30639 return arm_parse_extension (ext
, mcpu_cpu_opt
, mcpu_ext_opt
, NULL
);
30644 as_bad (_("unknown cpu `%s'"), str
);
30649 arm_parse_arch (const char *str
)
30651 const struct arm_arch_option_table
*opt
;
30652 const char *ext
= strchr (str
, '+');
30658 len
= strlen (str
);
30662 as_bad (_("missing architecture name `%s'"), str
);
30666 for (opt
= arm_archs
; opt
->name
!= NULL
; opt
++)
30667 if (opt
->name_len
== len
&& strncmp (opt
->name
, str
, len
) == 0)
30669 march_cpu_opt
= &opt
->value
;
30670 if (march_ext_opt
== NULL
)
30671 march_ext_opt
= XNEW (arm_feature_set
);
30672 *march_ext_opt
= arm_arch_none
;
30673 march_fpu_opt
= &opt
->default_fpu
;
30674 strcpy (selected_cpu_name
, opt
->name
);
30677 return arm_parse_extension (ext
, march_cpu_opt
, march_ext_opt
,
30683 as_bad (_("unknown architecture `%s'\n"), str
);
30688 arm_parse_fpu (const char * str
)
30690 const struct arm_option_fpu_value_table
* opt
;
30692 for (opt
= arm_fpus
; opt
->name
!= NULL
; opt
++)
30693 if (streq (opt
->name
, str
))
30695 mfpu_opt
= &opt
->value
;
30699 as_bad (_("unknown floating point format `%s'\n"), str
);
30704 arm_parse_float_abi (const char * str
)
30706 const struct arm_option_value_table
* opt
;
30708 for (opt
= arm_float_abis
; opt
->name
!= NULL
; opt
++)
30709 if (streq (opt
->name
, str
))
30711 mfloat_abi_opt
= opt
->value
;
30715 as_bad (_("unknown floating point abi `%s'\n"), str
);
30721 arm_parse_eabi (const char * str
)
30723 const struct arm_option_value_table
*opt
;
30725 for (opt
= arm_eabis
; opt
->name
!= NULL
; opt
++)
30726 if (streq (opt
->name
, str
))
30728 meabi_flags
= opt
->value
;
30731 as_bad (_("unknown EABI `%s'\n"), str
);
30737 arm_parse_it_mode (const char * str
)
30739 bfd_boolean ret
= TRUE
;
30741 if (streq ("arm", str
))
30742 implicit_it_mode
= IMPLICIT_IT_MODE_ARM
;
30743 else if (streq ("thumb", str
))
30744 implicit_it_mode
= IMPLICIT_IT_MODE_THUMB
;
30745 else if (streq ("always", str
))
30746 implicit_it_mode
= IMPLICIT_IT_MODE_ALWAYS
;
30747 else if (streq ("never", str
))
30748 implicit_it_mode
= IMPLICIT_IT_MODE_NEVER
;
30751 as_bad (_("unknown implicit IT mode `%s', should be "\
30752 "arm, thumb, always, or never."), str
);
30760 arm_ccs_mode (const char * unused ATTRIBUTE_UNUSED
)
30762 codecomposer_syntax
= TRUE
;
30763 arm_comment_chars
[0] = ';';
30764 arm_line_separator_chars
[0] = 0;
30768 struct arm_long_option_table arm_long_opts
[] =
30770 {"mcpu=", N_("<cpu name>\t assemble for CPU <cpu name>"),
30771 arm_parse_cpu
, NULL
},
30772 {"march=", N_("<arch name>\t assemble for architecture <arch name>"),
30773 arm_parse_arch
, NULL
},
30774 {"mfpu=", N_("<fpu name>\t assemble for FPU architecture <fpu name>"),
30775 arm_parse_fpu
, NULL
},
30776 {"mfloat-abi=", N_("<abi>\t assemble for floating point ABI <abi>"),
30777 arm_parse_float_abi
, NULL
},
30779 {"meabi=", N_("<ver>\t\t assemble for eabi version <ver>"),
30780 arm_parse_eabi
, NULL
},
30782 {"mimplicit-it=", N_("<mode>\t controls implicit insertion of IT instructions"),
30783 arm_parse_it_mode
, NULL
},
30784 {"mccs", N_("\t\t\t TI CodeComposer Studio syntax compatibility mode"),
30785 arm_ccs_mode
, NULL
},
30786 {NULL
, NULL
, 0, NULL
}
30790 md_parse_option (int c
, const char * arg
)
30792 struct arm_option_table
*opt
;
30793 const struct arm_legacy_option_table
*fopt
;
30794 struct arm_long_option_table
*lopt
;
30800 target_big_endian
= 1;
30806 target_big_endian
= 0;
30810 case OPTION_FIX_V4BX
:
30818 #endif /* OBJ_ELF */
30821 /* Listing option. Just ignore these, we don't support additional
30826 for (opt
= arm_opts
; opt
->option
!= NULL
; opt
++)
30828 if (c
== opt
->option
[0]
30829 && ((arg
== NULL
&& opt
->option
[1] == 0)
30830 || streq (arg
, opt
->option
+ 1)))
30832 /* If the option is deprecated, tell the user. */
30833 if (warn_on_deprecated
&& opt
->deprecated
!= NULL
)
30834 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c
,
30835 arg
? arg
: "", _(opt
->deprecated
));
30837 if (opt
->var
!= NULL
)
30838 *opt
->var
= opt
->value
;
30844 for (fopt
= arm_legacy_opts
; fopt
->option
!= NULL
; fopt
++)
30846 if (c
== fopt
->option
[0]
30847 && ((arg
== NULL
&& fopt
->option
[1] == 0)
30848 || streq (arg
, fopt
->option
+ 1)))
30850 /* If the option is deprecated, tell the user. */
30851 if (warn_on_deprecated
&& fopt
->deprecated
!= NULL
)
30852 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c
,
30853 arg
? arg
: "", _(fopt
->deprecated
));
30855 if (fopt
->var
!= NULL
)
30856 *fopt
->var
= &fopt
->value
;
30862 for (lopt
= arm_long_opts
; lopt
->option
!= NULL
; lopt
++)
30864 /* These options are expected to have an argument. */
30865 if (c
== lopt
->option
[0]
30867 && strncmp (arg
, lopt
->option
+ 1,
30868 strlen (lopt
->option
+ 1)) == 0)
30870 /* If the option is deprecated, tell the user. */
30871 if (warn_on_deprecated
&& lopt
->deprecated
!= NULL
)
30872 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c
, arg
,
30873 _(lopt
->deprecated
));
30875 /* Call the sup-option parser. */
30876 return lopt
->func (arg
+ strlen (lopt
->option
) - 1);
30887 md_show_usage (FILE * fp
)
30889 struct arm_option_table
*opt
;
30890 struct arm_long_option_table
*lopt
;
30892 fprintf (fp
, _(" ARM-specific assembler options:\n"));
30894 for (opt
= arm_opts
; opt
->option
!= NULL
; opt
++)
30895 if (opt
->help
!= NULL
)
30896 fprintf (fp
, " -%-23s%s\n", opt
->option
, _(opt
->help
));
30898 for (lopt
= arm_long_opts
; lopt
->option
!= NULL
; lopt
++)
30899 if (lopt
->help
!= NULL
)
30900 fprintf (fp
, " -%s%s\n", lopt
->option
, _(lopt
->help
));
30904 -EB assemble code for a big-endian cpu\n"));
30909 -EL assemble code for a little-endian cpu\n"));
30913 --fix-v4bx Allow BX in ARMv4 code\n"));
30917 --fdpic generate an FDPIC object file\n"));
30918 #endif /* OBJ_ELF */
30926 arm_feature_set flags
;
30927 } cpu_arch_ver_table
;
30929 /* Mapping from CPU features to EABI CPU arch values. Table must be sorted
30930 chronologically for architectures, with an exception for ARMv6-M and
30931 ARMv6S-M due to legacy reasons. No new architecture should have a
30932 special case. This allows for build attribute selection results to be
30933 stable when new architectures are added. */
30934 static const cpu_arch_ver_table cpu_arch_ver
[] =
30936 {TAG_CPU_ARCH_PRE_V4
, ARM_ARCH_V1
},
30937 {TAG_CPU_ARCH_PRE_V4
, ARM_ARCH_V2
},
30938 {TAG_CPU_ARCH_PRE_V4
, ARM_ARCH_V2S
},
30939 {TAG_CPU_ARCH_PRE_V4
, ARM_ARCH_V3
},
30940 {TAG_CPU_ARCH_PRE_V4
, ARM_ARCH_V3M
},
30941 {TAG_CPU_ARCH_V4
, ARM_ARCH_V4xM
},
30942 {TAG_CPU_ARCH_V4
, ARM_ARCH_V4
},
30943 {TAG_CPU_ARCH_V4T
, ARM_ARCH_V4TxM
},
30944 {TAG_CPU_ARCH_V4T
, ARM_ARCH_V4T
},
30945 {TAG_CPU_ARCH_V5T
, ARM_ARCH_V5xM
},
30946 {TAG_CPU_ARCH_V5T
, ARM_ARCH_V5
},
30947 {TAG_CPU_ARCH_V5T
, ARM_ARCH_V5TxM
},
30948 {TAG_CPU_ARCH_V5T
, ARM_ARCH_V5T
},
30949 {TAG_CPU_ARCH_V5TE
, ARM_ARCH_V5TExP
},
30950 {TAG_CPU_ARCH_V5TE
, ARM_ARCH_V5TE
},
30951 {TAG_CPU_ARCH_V5TEJ
, ARM_ARCH_V5TEJ
},
30952 {TAG_CPU_ARCH_V6
, ARM_ARCH_V6
},
30953 {TAG_CPU_ARCH_V6KZ
, ARM_ARCH_V6Z
},
30954 {TAG_CPU_ARCH_V6KZ
, ARM_ARCH_V6KZ
},
30955 {TAG_CPU_ARCH_V6K
, ARM_ARCH_V6K
},
30956 {TAG_CPU_ARCH_V6T2
, ARM_ARCH_V6T2
},
30957 {TAG_CPU_ARCH_V6T2
, ARM_ARCH_V6KT2
},
30958 {TAG_CPU_ARCH_V6T2
, ARM_ARCH_V6ZT2
},
30959 {TAG_CPU_ARCH_V6T2
, ARM_ARCH_V6KZT2
},
30961 /* When assembling a file with only ARMv6-M or ARMv6S-M instruction, GNU as
30962 always selected build attributes to match those of ARMv6-M
30963 (resp. ARMv6S-M). However, due to these architectures being a strict
30964 subset of ARMv7-M in terms of instructions available, ARMv7-M attributes
30965 would be selected when fully respecting chronology of architectures.
30966 It is thus necessary to make a special case of ARMv6-M and ARMv6S-M and
30967 move them before ARMv7 architectures. */
30968 {TAG_CPU_ARCH_V6_M
, ARM_ARCH_V6M
},
30969 {TAG_CPU_ARCH_V6S_M
, ARM_ARCH_V6SM
},
30971 {TAG_CPU_ARCH_V7
, ARM_ARCH_V7
},
30972 {TAG_CPU_ARCH_V7
, ARM_ARCH_V7A
},
30973 {TAG_CPU_ARCH_V7
, ARM_ARCH_V7R
},
30974 {TAG_CPU_ARCH_V7
, ARM_ARCH_V7M
},
30975 {TAG_CPU_ARCH_V7
, ARM_ARCH_V7VE
},
30976 {TAG_CPU_ARCH_V7E_M
, ARM_ARCH_V7EM
},
30977 {TAG_CPU_ARCH_V8
, ARM_ARCH_V8A
},
30978 {TAG_CPU_ARCH_V8
, ARM_ARCH_V8_1A
},
30979 {TAG_CPU_ARCH_V8
, ARM_ARCH_V8_2A
},
30980 {TAG_CPU_ARCH_V8
, ARM_ARCH_V8_3A
},
30981 {TAG_CPU_ARCH_V8M_BASE
, ARM_ARCH_V8M_BASE
},
30982 {TAG_CPU_ARCH_V8M_MAIN
, ARM_ARCH_V8M_MAIN
},
30983 {TAG_CPU_ARCH_V8R
, ARM_ARCH_V8R
},
30984 {TAG_CPU_ARCH_V8
, ARM_ARCH_V8_4A
},
30985 {TAG_CPU_ARCH_V8
, ARM_ARCH_V8_5A
},
30986 {TAG_CPU_ARCH_V8_1M_MAIN
, ARM_ARCH_V8_1M_MAIN
},
30987 {-1, ARM_ARCH_NONE
}
30990 /* Set an attribute if it has not already been set by the user. */
30993 aeabi_set_attribute_int (int tag
, int value
)
30996 || tag
>= NUM_KNOWN_OBJ_ATTRIBUTES
30997 || !attributes_set_explicitly
[tag
])
30998 bfd_elf_add_proc_attr_int (stdoutput
, tag
, value
);
31002 aeabi_set_attribute_string (int tag
, const char *value
)
31005 || tag
>= NUM_KNOWN_OBJ_ATTRIBUTES
31006 || !attributes_set_explicitly
[tag
])
31007 bfd_elf_add_proc_attr_string (stdoutput
, tag
, value
);
31010 /* Return whether features in the *NEEDED feature set are available via
31011 extensions for the architecture whose feature set is *ARCH_FSET. */
31014 have_ext_for_needed_feat_p (const arm_feature_set
*arch_fset
,
31015 const arm_feature_set
*needed
)
31017 int i
, nb_allowed_archs
;
31018 arm_feature_set ext_fset
;
31019 const struct arm_option_extension_value_table
*opt
;
31021 ext_fset
= arm_arch_none
;
31022 for (opt
= arm_extensions
; opt
->name
!= NULL
; opt
++)
31024 /* Extension does not provide any feature we need. */
31025 if (!ARM_CPU_HAS_FEATURE (*needed
, opt
->merge_value
))
31029 sizeof (opt
->allowed_archs
) / sizeof (opt
->allowed_archs
[0]);
31030 for (i
= 0; i
< nb_allowed_archs
; i
++)
31033 if (ARM_FEATURE_EQUAL (opt
->allowed_archs
[i
], arm_arch_any
))
31036 /* Extension is available, add it. */
31037 if (ARM_FSET_CPU_SUBSET (opt
->allowed_archs
[i
], *arch_fset
))
31038 ARM_MERGE_FEATURE_SETS (ext_fset
, ext_fset
, opt
->merge_value
);
31042 /* Can we enable all features in *needed? */
31043 return ARM_FSET_CPU_SUBSET (*needed
, ext_fset
);
31046 /* Select value for Tag_CPU_arch and Tag_CPU_arch_profile build attributes for
31047 a given architecture feature set *ARCH_EXT_FSET including extension feature
31048 set *EXT_FSET. Selection logic used depend on EXACT_MATCH:
31049 - if true, check for an exact match of the architecture modulo extensions;
31050 - otherwise, select build attribute value of the first superset
31051 architecture released so that results remains stable when new architectures
31053 For -march/-mcpu=all the build attribute value of the most featureful
31054 architecture is returned. Tag_CPU_arch_profile result is returned in
31058 get_aeabi_cpu_arch_from_fset (const arm_feature_set
*arch_ext_fset
,
31059 const arm_feature_set
*ext_fset
,
31060 char *profile
, int exact_match
)
31062 arm_feature_set arch_fset
;
31063 const cpu_arch_ver_table
*p_ver
, *p_ver_ret
= NULL
;
31065 /* Select most featureful architecture with all its extensions if building
31066 for -march=all as the feature sets used to set build attributes. */
31067 if (ARM_FEATURE_EQUAL (*arch_ext_fset
, arm_arch_any
))
31069 /* Force revisiting of decision for each new architecture. */
31070 gas_assert (MAX_TAG_CPU_ARCH
<= TAG_CPU_ARCH_V8_1M_MAIN
);
31072 return TAG_CPU_ARCH_V8
;
31075 ARM_CLEAR_FEATURE (arch_fset
, *arch_ext_fset
, *ext_fset
);
31077 for (p_ver
= cpu_arch_ver
; p_ver
->val
!= -1; p_ver
++)
31079 arm_feature_set known_arch_fset
;
31081 ARM_CLEAR_FEATURE (known_arch_fset
, p_ver
->flags
, fpu_any
);
31084 /* Base architecture match user-specified architecture and
31085 extensions, eg. ARMv6S-M matching -march=armv6-m+os. */
31086 if (ARM_FEATURE_EQUAL (*arch_ext_fset
, known_arch_fset
))
31091 /* Base architecture match user-specified architecture only
31092 (eg. ARMv6-M in the same case as above). Record it in case we
31093 find a match with above condition. */
31094 else if (p_ver_ret
== NULL
31095 && ARM_FEATURE_EQUAL (arch_fset
, known_arch_fset
))
31101 /* Architecture has all features wanted. */
31102 if (ARM_FSET_CPU_SUBSET (arch_fset
, known_arch_fset
))
31104 arm_feature_set added_fset
;
31106 /* Compute features added by this architecture over the one
31107 recorded in p_ver_ret. */
31108 if (p_ver_ret
!= NULL
)
31109 ARM_CLEAR_FEATURE (added_fset
, known_arch_fset
,
31111 /* First architecture that match incl. with extensions, or the
31112 only difference in features over the recorded match is
31113 features that were optional and are now mandatory. */
31114 if (p_ver_ret
== NULL
31115 || ARM_FSET_CPU_SUBSET (added_fset
, arch_fset
))
31121 else if (p_ver_ret
== NULL
)
31123 arm_feature_set needed_ext_fset
;
31125 ARM_CLEAR_FEATURE (needed_ext_fset
, arch_fset
, known_arch_fset
);
31127 /* Architecture has all features needed when using some
31128 extensions. Record it and continue searching in case there
31129 exist an architecture providing all needed features without
31130 the need for extensions (eg. ARMv6S-M Vs ARMv6-M with
31132 if (have_ext_for_needed_feat_p (&known_arch_fset
,
31139 if (p_ver_ret
== NULL
)
31143 /* Tag_CPU_arch_profile. */
31144 if (ARM_CPU_HAS_FEATURE (p_ver_ret
->flags
, arm_ext_v7a
)
31145 || ARM_CPU_HAS_FEATURE (p_ver_ret
->flags
, arm_ext_v8
)
31146 || (ARM_CPU_HAS_FEATURE (p_ver_ret
->flags
, arm_ext_atomics
)
31147 && !ARM_CPU_HAS_FEATURE (p_ver_ret
->flags
, arm_ext_v8m_m_only
)))
31149 else if (ARM_CPU_HAS_FEATURE (p_ver_ret
->flags
, arm_ext_v7r
))
31151 else if (ARM_CPU_HAS_FEATURE (p_ver_ret
->flags
, arm_ext_m
))
31155 return p_ver_ret
->val
;
31158 /* Set the public EABI object attributes. */
31161 aeabi_set_public_attributes (void)
31163 char profile
= '\0';
31166 int fp16_optional
= 0;
31167 int skip_exact_match
= 0;
31168 arm_feature_set flags
, flags_arch
, flags_ext
;
31170 /* Autodetection mode, choose the architecture based the instructions
31172 if (no_cpu_selected ())
31174 ARM_MERGE_FEATURE_SETS (flags
, arm_arch_used
, thumb_arch_used
);
31176 if (ARM_CPU_HAS_FEATURE (arm_arch_used
, arm_arch_any
))
31177 ARM_MERGE_FEATURE_SETS (flags
, flags
, arm_ext_v1
);
31179 if (ARM_CPU_HAS_FEATURE (thumb_arch_used
, arm_arch_any
))
31180 ARM_MERGE_FEATURE_SETS (flags
, flags
, arm_ext_v4t
);
31182 /* Code run during relaxation relies on selected_cpu being set. */
31183 ARM_CLEAR_FEATURE (flags_arch
, flags
, fpu_any
);
31184 flags_ext
= arm_arch_none
;
31185 ARM_CLEAR_FEATURE (selected_arch
, flags_arch
, flags_ext
);
31186 selected_ext
= flags_ext
;
31187 selected_cpu
= flags
;
31189 /* Otherwise, choose the architecture based on the capabilities of the
31193 ARM_MERGE_FEATURE_SETS (flags_arch
, selected_arch
, selected_ext
);
31194 ARM_CLEAR_FEATURE (flags_arch
, flags_arch
, fpu_any
);
31195 flags_ext
= selected_ext
;
31196 flags
= selected_cpu
;
31198 ARM_MERGE_FEATURE_SETS (flags
, flags
, selected_fpu
);
31200 /* Allow the user to override the reported architecture. */
31201 if (!ARM_FEATURE_ZERO (selected_object_arch
))
31203 ARM_CLEAR_FEATURE (flags_arch
, selected_object_arch
, fpu_any
);
31204 flags_ext
= arm_arch_none
;
31207 skip_exact_match
= ARM_FEATURE_EQUAL (selected_cpu
, arm_arch_any
);
31209 /* When this function is run again after relaxation has happened there is no
31210 way to determine whether an architecture or CPU was specified by the user:
31211 - selected_cpu is set above for relaxation to work;
31212 - march_cpu_opt is not set if only -mcpu or .cpu is used;
31213 - mcpu_cpu_opt is set to arm_arch_any for autodetection.
31214 Therefore, if not in -march=all case we first try an exact match and fall
31215 back to autodetection. */
31216 if (!skip_exact_match
)
31217 arch
= get_aeabi_cpu_arch_from_fset (&flags_arch
, &flags_ext
, &profile
, 1);
31219 arch
= get_aeabi_cpu_arch_from_fset (&flags_arch
, &flags_ext
, &profile
, 0);
31221 as_bad (_("no architecture contains all the instructions used\n"));
31223 /* Tag_CPU_name. */
31224 if (selected_cpu_name
[0])
31228 q
= selected_cpu_name
;
31229 if (strncmp (q
, "armv", 4) == 0)
31234 for (i
= 0; q
[i
]; i
++)
31235 q
[i
] = TOUPPER (q
[i
]);
31237 aeabi_set_attribute_string (Tag_CPU_name
, q
);
31240 /* Tag_CPU_arch. */
31241 aeabi_set_attribute_int (Tag_CPU_arch
, arch
);
31243 /* Tag_CPU_arch_profile. */
31244 if (profile
!= '\0')
31245 aeabi_set_attribute_int (Tag_CPU_arch_profile
, profile
);
31247 /* Tag_DSP_extension. */
31248 if (ARM_CPU_HAS_FEATURE (selected_ext
, arm_ext_dsp
))
31249 aeabi_set_attribute_int (Tag_DSP_extension
, 1);
31251 ARM_CLEAR_FEATURE (flags_arch
, flags
, fpu_any
);
31252 /* Tag_ARM_ISA_use. */
31253 if (ARM_CPU_HAS_FEATURE (flags
, arm_ext_v1
)
31254 || ARM_FEATURE_ZERO (flags_arch
))
31255 aeabi_set_attribute_int (Tag_ARM_ISA_use
, 1);
31257 /* Tag_THUMB_ISA_use. */
31258 if (ARM_CPU_HAS_FEATURE (flags
, arm_ext_v4t
)
31259 || ARM_FEATURE_ZERO (flags_arch
))
31263 if (!ARM_CPU_HAS_FEATURE (flags
, arm_ext_v8
)
31264 && ARM_CPU_HAS_FEATURE (flags
, arm_ext_v8m_m_only
))
31266 else if (ARM_CPU_HAS_FEATURE (flags
, arm_arch_t2
))
31270 aeabi_set_attribute_int (Tag_THUMB_ISA_use
, thumb_isa_use
);
31273 /* Tag_VFP_arch. */
31274 if (ARM_CPU_HAS_FEATURE (flags
, fpu_vfp_ext_armv8xd
))
31275 aeabi_set_attribute_int (Tag_VFP_arch
,
31276 ARM_CPU_HAS_FEATURE (flags
, fpu_vfp_ext_d32
)
31278 else if (ARM_CPU_HAS_FEATURE (flags
, fpu_vfp_ext_fma
))
31279 aeabi_set_attribute_int (Tag_VFP_arch
,
31280 ARM_CPU_HAS_FEATURE (flags
, fpu_vfp_ext_d32
)
31282 else if (ARM_CPU_HAS_FEATURE (flags
, fpu_vfp_ext_d32
))
31285 aeabi_set_attribute_int (Tag_VFP_arch
, 3);
31287 else if (ARM_CPU_HAS_FEATURE (flags
, fpu_vfp_ext_v3xd
))
31289 aeabi_set_attribute_int (Tag_VFP_arch
, 4);
31292 else if (ARM_CPU_HAS_FEATURE (flags
, fpu_vfp_ext_v2
))
31293 aeabi_set_attribute_int (Tag_VFP_arch
, 2);
31294 else if (ARM_CPU_HAS_FEATURE (flags
, fpu_vfp_ext_v1
)
31295 || ARM_CPU_HAS_FEATURE (flags
, fpu_vfp_ext_v1xd
))
31296 aeabi_set_attribute_int (Tag_VFP_arch
, 1);
31298 /* Tag_ABI_HardFP_use. */
31299 if (ARM_CPU_HAS_FEATURE (flags
, fpu_vfp_ext_v1xd
)
31300 && !ARM_CPU_HAS_FEATURE (flags
, fpu_vfp_ext_v1
))
31301 aeabi_set_attribute_int (Tag_ABI_HardFP_use
, 1);
31303 /* Tag_WMMX_arch. */
31304 if (ARM_CPU_HAS_FEATURE (flags
, arm_cext_iwmmxt2
))
31305 aeabi_set_attribute_int (Tag_WMMX_arch
, 2);
31306 else if (ARM_CPU_HAS_FEATURE (flags
, arm_cext_iwmmxt
))
31307 aeabi_set_attribute_int (Tag_WMMX_arch
, 1);
31309 /* Tag_Advanced_SIMD_arch (formerly Tag_NEON_arch). */
31310 if (ARM_CPU_HAS_FEATURE (flags
, fpu_neon_ext_v8_1
))
31311 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch
, 4);
31312 else if (ARM_CPU_HAS_FEATURE (flags
, fpu_neon_ext_armv8
))
31313 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch
, 3);
31314 else if (ARM_CPU_HAS_FEATURE (flags
, fpu_neon_ext_v1
))
31316 if (ARM_CPU_HAS_FEATURE (flags
, fpu_neon_ext_fma
))
31318 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch
, 2);
31322 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch
, 1);
31327 if (ARM_CPU_HAS_FEATURE (flags
, mve_fp_ext
))
31328 aeabi_set_attribute_int (Tag_MVE_arch
, 2);
31329 else if (ARM_CPU_HAS_FEATURE (flags
, mve_ext
))
31330 aeabi_set_attribute_int (Tag_MVE_arch
, 1);
31332 /* Tag_VFP_HP_extension (formerly Tag_NEON_FP16_arch). */
31333 if (ARM_CPU_HAS_FEATURE (flags
, fpu_vfp_fp16
) && fp16_optional
)
31334 aeabi_set_attribute_int (Tag_VFP_HP_extension
, 1);
31338 We set Tag_DIV_use to two when integer divide instructions have been used
31339 in ARM state, or when Thumb integer divide instructions have been used,
31340 but we have no architecture profile set, nor have we any ARM instructions.
31342 For ARMv8-A and ARMv8-M we set the tag to 0 as integer divide is implied
31343 by the base architecture.
31345 For new architectures we will have to check these tests. */
31346 gas_assert (arch
<= TAG_CPU_ARCH_V8_1M_MAIN
);
31347 if (ARM_CPU_HAS_FEATURE (flags
, arm_ext_v8
)
31348 || ARM_CPU_HAS_FEATURE (flags
, arm_ext_v8m
))
31349 aeabi_set_attribute_int (Tag_DIV_use
, 0);
31350 else if (ARM_CPU_HAS_FEATURE (flags
, arm_ext_adiv
)
31351 || (profile
== '\0'
31352 && ARM_CPU_HAS_FEATURE (flags
, arm_ext_div
)
31353 && !ARM_CPU_HAS_FEATURE (arm_arch_used
, arm_arch_any
)))
31354 aeabi_set_attribute_int (Tag_DIV_use
, 2);
31356 /* Tag_MP_extension_use. */
31357 if (ARM_CPU_HAS_FEATURE (flags
, arm_ext_mp
))
31358 aeabi_set_attribute_int (Tag_MPextension_use
, 1);
31360 /* Tag Virtualization_use. */
31361 if (ARM_CPU_HAS_FEATURE (flags
, arm_ext_sec
))
31363 if (ARM_CPU_HAS_FEATURE (flags
, arm_ext_virt
))
31366 aeabi_set_attribute_int (Tag_Virtualization_use
, virt_sec
);
31369 /* Post relaxation hook. Recompute ARM attributes now that relaxation is
31370 finished and free extension feature bits which will not be used anymore. */
31373 arm_md_post_relax (void)
31375 aeabi_set_public_attributes ();
31376 XDELETE (mcpu_ext_opt
);
31377 mcpu_ext_opt
= NULL
;
31378 XDELETE (march_ext_opt
);
31379 march_ext_opt
= NULL
;
31382 /* Add the default contents for the .ARM.attributes section. */
31387 if (EF_ARM_EABI_VERSION (meabi_flags
) < EF_ARM_EABI_VER4
)
31390 aeabi_set_public_attributes ();
31392 #endif /* OBJ_ELF */
31394 /* Parse a .cpu directive. */
31397 s_arm_cpu (int ignored ATTRIBUTE_UNUSED
)
31399 const struct arm_cpu_option_table
*opt
;
31403 name
= input_line_pointer
;
31404 while (*input_line_pointer
&& !ISSPACE (*input_line_pointer
))
31405 input_line_pointer
++;
31406 saved_char
= *input_line_pointer
;
31407 *input_line_pointer
= 0;
31409 /* Skip the first "all" entry. */
31410 for (opt
= arm_cpus
+ 1; opt
->name
!= NULL
; opt
++)
31411 if (streq (opt
->name
, name
))
31413 selected_arch
= opt
->value
;
31414 selected_ext
= opt
->ext
;
31415 ARM_MERGE_FEATURE_SETS (selected_cpu
, selected_arch
, selected_ext
);
31416 if (opt
->canonical_name
)
31417 strcpy (selected_cpu_name
, opt
->canonical_name
);
31421 for (i
= 0; opt
->name
[i
]; i
++)
31422 selected_cpu_name
[i
] = TOUPPER (opt
->name
[i
]);
31424 selected_cpu_name
[i
] = 0;
31426 ARM_MERGE_FEATURE_SETS (cpu_variant
, selected_cpu
, selected_fpu
);
31428 *input_line_pointer
= saved_char
;
31429 demand_empty_rest_of_line ();
31432 as_bad (_("unknown cpu `%s'"), name
);
31433 *input_line_pointer
= saved_char
;
31434 ignore_rest_of_line ();
31437 /* Parse a .arch directive. */
31440 s_arm_arch (int ignored ATTRIBUTE_UNUSED
)
31442 const struct arm_arch_option_table
*opt
;
31446 name
= input_line_pointer
;
31447 while (*input_line_pointer
&& !ISSPACE (*input_line_pointer
))
31448 input_line_pointer
++;
31449 saved_char
= *input_line_pointer
;
31450 *input_line_pointer
= 0;
31452 /* Skip the first "all" entry. */
31453 for (opt
= arm_archs
+ 1; opt
->name
!= NULL
; opt
++)
31454 if (streq (opt
->name
, name
))
31456 selected_arch
= opt
->value
;
31457 selected_ext
= arm_arch_none
;
31458 selected_cpu
= selected_arch
;
31459 strcpy (selected_cpu_name
, opt
->name
);
31460 ARM_MERGE_FEATURE_SETS (cpu_variant
, selected_cpu
, selected_fpu
);
31461 *input_line_pointer
= saved_char
;
31462 demand_empty_rest_of_line ();
31466 as_bad (_("unknown architecture `%s'\n"), name
);
31467 *input_line_pointer
= saved_char
;
31468 ignore_rest_of_line ();
31471 /* Parse a .object_arch directive. */
31474 s_arm_object_arch (int ignored ATTRIBUTE_UNUSED
)
31476 const struct arm_arch_option_table
*opt
;
31480 name
= input_line_pointer
;
31481 while (*input_line_pointer
&& !ISSPACE (*input_line_pointer
))
31482 input_line_pointer
++;
31483 saved_char
= *input_line_pointer
;
31484 *input_line_pointer
= 0;
31486 /* Skip the first "all" entry. */
31487 for (opt
= arm_archs
+ 1; opt
->name
!= NULL
; opt
++)
31488 if (streq (opt
->name
, name
))
31490 selected_object_arch
= opt
->value
;
31491 *input_line_pointer
= saved_char
;
31492 demand_empty_rest_of_line ();
31496 as_bad (_("unknown architecture `%s'\n"), name
);
31497 *input_line_pointer
= saved_char
;
31498 ignore_rest_of_line ();
31501 /* Parse a .arch_extension directive. */
31504 s_arm_arch_extension (int ignored ATTRIBUTE_UNUSED
)
31506 const struct arm_option_extension_value_table
*opt
;
31509 int adding_value
= 1;
31511 name
= input_line_pointer
;
31512 while (*input_line_pointer
&& !ISSPACE (*input_line_pointer
))
31513 input_line_pointer
++;
31514 saved_char
= *input_line_pointer
;
31515 *input_line_pointer
= 0;
31517 if (strlen (name
) >= 2
31518 && strncmp (name
, "no", 2) == 0)
31524 for (opt
= arm_extensions
; opt
->name
!= NULL
; opt
++)
31525 if (streq (opt
->name
, name
))
31527 int i
, nb_allowed_archs
=
31528 sizeof (opt
->allowed_archs
) / sizeof (opt
->allowed_archs
[i
]);
31529 for (i
= 0; i
< nb_allowed_archs
; i
++)
31532 if (ARM_CPU_IS_ANY (opt
->allowed_archs
[i
]))
31534 if (ARM_FSET_CPU_SUBSET (opt
->allowed_archs
[i
], selected_arch
))
31538 if (i
== nb_allowed_archs
)
31540 as_bad (_("architectural extension `%s' is not allowed for the "
31541 "current base architecture"), name
);
31546 ARM_MERGE_FEATURE_SETS (selected_ext
, selected_ext
,
31549 ARM_CLEAR_FEATURE (selected_ext
, selected_ext
, opt
->clear_value
);
31551 ARM_MERGE_FEATURE_SETS (selected_cpu
, selected_arch
, selected_ext
);
31552 ARM_MERGE_FEATURE_SETS (cpu_variant
, selected_cpu
, selected_fpu
);
31553 *input_line_pointer
= saved_char
;
31554 demand_empty_rest_of_line ();
31555 /* Allowing Thumb division instructions for ARMv7 in autodetection rely
31556 on this return so that duplicate extensions (extensions with the
31557 same name as a previous extension in the list) are not considered
31558 for command-line parsing. */
31562 if (opt
->name
== NULL
)
31563 as_bad (_("unknown architecture extension `%s'\n"), name
);
31565 *input_line_pointer
= saved_char
;
31566 ignore_rest_of_line ();
31569 /* Parse a .fpu directive. */
31572 s_arm_fpu (int ignored ATTRIBUTE_UNUSED
)
31574 const struct arm_option_fpu_value_table
*opt
;
31578 name
= input_line_pointer
;
31579 while (*input_line_pointer
&& !ISSPACE (*input_line_pointer
))
31580 input_line_pointer
++;
31581 saved_char
= *input_line_pointer
;
31582 *input_line_pointer
= 0;
31584 for (opt
= arm_fpus
; opt
->name
!= NULL
; opt
++)
31585 if (streq (opt
->name
, name
))
31587 selected_fpu
= opt
->value
;
31588 #ifndef CPU_DEFAULT
31589 if (no_cpu_selected ())
31590 ARM_MERGE_FEATURE_SETS (cpu_variant
, arm_arch_any
, selected_fpu
);
31593 ARM_MERGE_FEATURE_SETS (cpu_variant
, selected_cpu
, selected_fpu
);
31594 *input_line_pointer
= saved_char
;
31595 demand_empty_rest_of_line ();
31599 as_bad (_("unknown floating point format `%s'\n"), name
);
31600 *input_line_pointer
= saved_char
;
31601 ignore_rest_of_line ();
31604 /* Copy symbol information. */
31607 arm_copy_symbol_attributes (symbolS
*dest
, symbolS
*src
)
31609 ARM_GET_FLAG (dest
) = ARM_GET_FLAG (src
);
31613 /* Given a symbolic attribute NAME, return the proper integer value.
31614 Returns -1 if the attribute is not known. */
31617 arm_convert_symbolic_attribute (const char *name
)
31619 static const struct
31624 attribute_table
[] =
31626 /* When you modify this table you should
31627 also modify the list in doc/c-arm.texi. */
31628 #define T(tag) {#tag, tag}
31629 T (Tag_CPU_raw_name
),
31632 T (Tag_CPU_arch_profile
),
31633 T (Tag_ARM_ISA_use
),
31634 T (Tag_THUMB_ISA_use
),
31638 T (Tag_Advanced_SIMD_arch
),
31639 T (Tag_PCS_config
),
31640 T (Tag_ABI_PCS_R9_use
),
31641 T (Tag_ABI_PCS_RW_data
),
31642 T (Tag_ABI_PCS_RO_data
),
31643 T (Tag_ABI_PCS_GOT_use
),
31644 T (Tag_ABI_PCS_wchar_t
),
31645 T (Tag_ABI_FP_rounding
),
31646 T (Tag_ABI_FP_denormal
),
31647 T (Tag_ABI_FP_exceptions
),
31648 T (Tag_ABI_FP_user_exceptions
),
31649 T (Tag_ABI_FP_number_model
),
31650 T (Tag_ABI_align_needed
),
31651 T (Tag_ABI_align8_needed
),
31652 T (Tag_ABI_align_preserved
),
31653 T (Tag_ABI_align8_preserved
),
31654 T (Tag_ABI_enum_size
),
31655 T (Tag_ABI_HardFP_use
),
31656 T (Tag_ABI_VFP_args
),
31657 T (Tag_ABI_WMMX_args
),
31658 T (Tag_ABI_optimization_goals
),
31659 T (Tag_ABI_FP_optimization_goals
),
31660 T (Tag_compatibility
),
31661 T (Tag_CPU_unaligned_access
),
31662 T (Tag_FP_HP_extension
),
31663 T (Tag_VFP_HP_extension
),
31664 T (Tag_ABI_FP_16bit_format
),
31665 T (Tag_MPextension_use
),
31667 T (Tag_nodefaults
),
31668 T (Tag_also_compatible_with
),
31669 T (Tag_conformance
),
31671 T (Tag_Virtualization_use
),
31672 T (Tag_DSP_extension
),
31674 /* We deliberately do not include Tag_MPextension_use_legacy. */
31682 for (i
= 0; i
< ARRAY_SIZE (attribute_table
); i
++)
31683 if (streq (name
, attribute_table
[i
].name
))
31684 return attribute_table
[i
].tag
;
31689 /* Apply sym value for relocations only in the case that they are for
31690 local symbols in the same segment as the fixup and you have the
31691 respective architectural feature for blx and simple switches. */
31694 arm_apply_sym_value (struct fix
* fixP
, segT this_seg
)
31697 && ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_v5t
)
31698 /* PR 17444: If the local symbol is in a different section then a reloc
31699 will always be generated for it, so applying the symbol value now
31700 will result in a double offset being stored in the relocation. */
31701 && (S_GET_SEGMENT (fixP
->fx_addsy
) == this_seg
)
31702 && !S_FORCE_RELOC (fixP
->fx_addsy
, TRUE
))
31704 switch (fixP
->fx_r_type
)
31706 case BFD_RELOC_ARM_PCREL_BLX
:
31707 case BFD_RELOC_THUMB_PCREL_BRANCH23
:
31708 if (ARM_IS_FUNC (fixP
->fx_addsy
))
31712 case BFD_RELOC_ARM_PCREL_CALL
:
31713 case BFD_RELOC_THUMB_PCREL_BLX
:
31714 if (THUMB_IS_FUNC (fixP
->fx_addsy
))
31725 #endif /* OBJ_ELF */