1 /* Target-dependent code for SPARC.
3 Copyright (C) 2003-2020 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21 #include "arch-utils.h"
24 #include "dwarf2/frame.h"
26 #include "frame-base.h"
27 #include "frame-unwind.h"
36 #include "target-descriptions.h"
39 #include "sparc-tdep.h"
40 #include "sparc-ravenscar-thread.h"
45 /* This file implements the SPARC 32-bit ABI as defined by the section
46 "Low-Level System Information" of the SPARC Compliance Definition
47 (SCD) 2.4.1, which is the 32-bit System V psABI for SPARC. The SCD
48 lists changes with respect to the original 32-bit psABI as defined
49 in the "System V ABI, SPARC Processor Supplement".
51 Note that if we talk about SunOS, we mean SunOS 4.x, which was
52 BSD-based, which is sometimes (retroactively?) referred to as
53 Solaris 1.x. If we talk about Solaris we mean Solaris 2.x and
54 above (Solaris 7, 8 and 9 are nothing but Solaris 2.7, 2.8 and 2.9
55 suffering from severe version number inflation). Solaris 2.x is
56 also known as SunOS 5.x, since that's what uname(1) says. Solaris
59 /* Please use the sparc32_-prefix for 32-bit specific code, the
60 sparc64_-prefix for 64-bit specific code and the sparc_-prefix for
61 code that can handle both. The 64-bit specific code lives in
62 sparc64-tdep.c; don't add any here. */
64 /* The SPARC Floating-Point Quad-Precision format is similar to
65 big-endian IA-64 Quad-Precision format. */
66 #define floatformats_sparc_quad floatformats_ia64_quad
68 /* The stack pointer is offset from the stack frame by a BIAS of 2047
69 (0x7ff) for 64-bit code. BIAS is likely to be defined on SPARC
70 hosts, so undefine it first. */
74 /* Macros to extract fields from SPARC instructions. */
75 #define X_OP(i) (((i) >> 30) & 0x3)
76 #define X_RD(i) (((i) >> 25) & 0x1f)
77 #define X_A(i) (((i) >> 29) & 1)
78 #define X_COND(i) (((i) >> 25) & 0xf)
79 #define X_OP2(i) (((i) >> 22) & 0x7)
80 #define X_IMM22(i) ((i) & 0x3fffff)
81 #define X_OP3(i) (((i) >> 19) & 0x3f)
82 #define X_RS1(i) (((i) >> 14) & 0x1f)
83 #define X_RS2(i) ((i) & 0x1f)
84 #define X_I(i) (((i) >> 13) & 1)
85 /* Sign extension macros. */
86 #define X_DISP22(i) ((X_IMM22 (i) ^ 0x200000) - 0x200000)
87 #define X_DISP19(i) ((((i) & 0x7ffff) ^ 0x40000) - 0x40000)
88 #define X_DISP10(i) ((((((i) >> 11) && 0x300) | (((i) >> 5) & 0xff)) ^ 0x200) - 0x200)
89 #define X_SIMM13(i) ((((i) & 0x1fff) ^ 0x1000) - 0x1000)
90 /* Macros to identify some instructions. */
91 /* RETURN (RETT in V8) */
92 #define X_RETTURN(i) ((X_OP (i) == 0x2) && (X_OP3 (i) == 0x39))
94 /* Fetch the instruction at PC. Instructions are always big-endian
95 even if the processor operates in little-endian mode. */
98 sparc_fetch_instruction (CORE_ADDR pc
)
104 /* If we can't read the instruction at PC, return zero. */
105 if (target_read_memory (pc
, buf
, sizeof (buf
)))
109 for (i
= 0; i
< sizeof (buf
); i
++)
110 insn
= (insn
<< 8) | buf
[i
];
115 /* Return non-zero if the instruction corresponding to PC is an "unimp"
119 sparc_is_unimp_insn (CORE_ADDR pc
)
121 const unsigned long insn
= sparc_fetch_instruction (pc
);
123 return ((insn
& 0xc1c00000) == 0);
126 /* Return non-zero if the instruction corresponding to PC is an
127 "annulled" branch, i.e. the annul bit is set. */
130 sparc_is_annulled_branch_insn (CORE_ADDR pc
)
132 /* The branch instructions featuring an annul bit can be identified
133 by the following bit patterns:
136 OP2=1: Branch on Integer Condition Codes with Prediction (BPcc).
137 OP2=2: Branch on Integer Condition Codes (Bcc).
138 OP2=5: Branch on FP Condition Codes with Prediction (FBfcc).
139 OP2=6: Branch on FP Condition Codes (FBcc).
141 Branch on Integer Register with Prediction (BPr).
143 This leaves out ILLTRAP (OP2=0), SETHI/NOP (OP2=4) and the V8
144 coprocessor branch instructions (Op2=7). */
146 const unsigned long insn
= sparc_fetch_instruction (pc
);
147 const unsigned op2
= X_OP2 (insn
);
149 if ((X_OP (insn
) == 0)
150 && ((op2
== 1) || (op2
== 2) || (op2
== 5) || (op2
== 6)
151 || ((op2
== 3) && ((insn
& 0x10000000) == 0))))
157 /* OpenBSD/sparc includes StackGhost, which according to the author's
158 website http://stackghost.cerias.purdue.edu "... transparently and
159 automatically protects applications' stack frames; more
160 specifically, it guards the return pointers. The protection
161 mechanisms require no application source or binary modification and
162 imposes only a negligible performance penalty."
164 The same website provides the following description of how
167 "StackGhost interfaces with the kernel trap handler that would
168 normally write out registers to the stack and the handler that
169 would read them back in. By XORing a cookie into the
170 return-address saved in the user stack when it is actually written
171 to the stack, and then XOR it out when the return-address is pulled
172 from the stack, StackGhost can cause attacker corrupted return
173 pointers to behave in a manner the attacker cannot predict.
174 StackGhost can also use several unused bits in the return pointer
175 to detect a smashed return pointer and abort the process."
177 For GDB this means that whenever we're reading %i7 from a stack
178 frame's window save area, we'll have to XOR the cookie.
180 More information on StackGuard can be found on in:
182 Mike Frantzen and Mike Shuey. "StackGhost: Hardware Facilitated
183 Stack Protection." 2001. Published in USENIX Security Symposium
186 /* Fetch StackGhost Per-Process XOR cookie. */
189 sparc_fetch_wcookie (struct gdbarch
*gdbarch
)
191 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
192 struct target_ops
*ops
= current_top_target ();
196 len
= target_read (ops
, TARGET_OBJECT_WCOOKIE
, NULL
, buf
, 0, 8);
200 /* We should have either an 32-bit or an 64-bit cookie. */
201 gdb_assert (len
== 4 || len
== 8);
203 return extract_unsigned_integer (buf
, len
, byte_order
);
207 /* The functions on this page are intended to be used to classify
208 function arguments. */
210 /* Check whether TYPE is "Integral or Pointer". */
213 sparc_integral_or_pointer_p (const struct type
*type
)
215 int len
= TYPE_LENGTH (type
);
217 switch (type
->code ())
223 case TYPE_CODE_RANGE
:
224 /* We have byte, half-word, word and extended-word/doubleword
225 integral types. The doubleword is an extension to the
226 original 32-bit ABI by the SCD 2.4.x. */
227 return (len
== 1 || len
== 2 || len
== 4 || len
== 8);
230 case TYPE_CODE_RVALUE_REF
:
231 /* Allow either 32-bit or 64-bit pointers. */
232 return (len
== 4 || len
== 8);
240 /* Check whether TYPE is "Floating". */
243 sparc_floating_p (const struct type
*type
)
245 switch (type
->code ())
249 int len
= TYPE_LENGTH (type
);
250 return (len
== 4 || len
== 8 || len
== 16);
259 /* Check whether TYPE is "Complex Floating". */
262 sparc_complex_floating_p (const struct type
*type
)
264 switch (type
->code ())
266 case TYPE_CODE_COMPLEX
:
268 int len
= TYPE_LENGTH (type
);
269 return (len
== 8 || len
== 16 || len
== 32);
278 /* Check whether TYPE is "Structure or Union".
280 In terms of Ada subprogram calls, arrays are treated the same as
281 struct and union types. So this function also returns non-zero
285 sparc_structure_or_union_p (const struct type
*type
)
287 switch (type
->code ())
289 case TYPE_CODE_STRUCT
:
290 case TYPE_CODE_UNION
:
291 case TYPE_CODE_ARRAY
:
300 /* Return true if TYPE is returned by memory, false if returned by
304 sparc_structure_return_p (const struct type
*type
)
306 if (type
->code () == TYPE_CODE_ARRAY
&& type
->is_vector ())
308 /* Float vectors are always returned by memory. */
309 if (sparc_floating_p (check_typedef (TYPE_TARGET_TYPE (type
))))
311 /* Integer vectors are returned by memory if the vector size
312 is greater than 8 bytes long. */
313 return (TYPE_LENGTH (type
) > 8);
316 if (sparc_floating_p (type
))
318 /* Floating point types are passed by register for size 4 and
319 8 bytes, and by memory for size 16 bytes. */
320 return (TYPE_LENGTH (type
) == 16);
323 /* Other than that, only aggregates of all sizes get returned by
325 return sparc_structure_or_union_p (type
);
328 /* Return true if arguments of the given TYPE are passed by
329 memory; false if returned by register. */
332 sparc_arg_by_memory_p (const struct type
*type
)
334 if (type
->code () == TYPE_CODE_ARRAY
&& type
->is_vector ())
336 /* Float vectors are always passed by memory. */
337 if (sparc_floating_p (check_typedef (TYPE_TARGET_TYPE (type
))))
339 /* Integer vectors are passed by memory if the vector size
340 is greater than 8 bytes long. */
341 return (TYPE_LENGTH (type
) > 8);
344 /* Floats are passed by register for size 4 and 8 bytes, and by memory
345 for size 16 bytes. */
346 if (sparc_floating_p (type
))
347 return (TYPE_LENGTH (type
) == 16);
349 /* Complex floats and aggregates of all sizes are passed by memory. */
350 if (sparc_complex_floating_p (type
) || sparc_structure_or_union_p (type
))
353 /* Everything else gets passed by register. */
357 /* Register information. */
358 #define SPARC32_FPU_REGISTERS \
359 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", \
360 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15", \
361 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23", \
362 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31"
363 #define SPARC32_CP0_REGISTERS \
364 "y", "psr", "wim", "tbr", "pc", "npc", "fsr", "csr"
366 static const char * const sparc_core_register_names
[] = {
369 static const char * const sparc32_fpu_register_names
[] = {
370 SPARC32_FPU_REGISTERS
372 static const char * const sparc32_cp0_register_names
[] = {
373 SPARC32_CP0_REGISTERS
376 static const char * const sparc32_register_names
[] =
378 SPARC_CORE_REGISTERS
,
379 SPARC32_FPU_REGISTERS
,
380 SPARC32_CP0_REGISTERS
383 /* Total number of registers. */
384 #define SPARC32_NUM_REGS ARRAY_SIZE (sparc32_register_names)
386 /* We provide the aliases %d0..%d30 for the floating registers as
387 "psuedo" registers. */
389 static const char * const sparc32_pseudo_register_names
[] =
391 "d0", "d2", "d4", "d6", "d8", "d10", "d12", "d14",
392 "d16", "d18", "d20", "d22", "d24", "d26", "d28", "d30"
395 /* Total number of pseudo registers. */
396 #define SPARC32_NUM_PSEUDO_REGS ARRAY_SIZE (sparc32_pseudo_register_names)
398 /* Return the name of pseudo register REGNUM. */
401 sparc32_pseudo_register_name (struct gdbarch
*gdbarch
, int regnum
)
403 regnum
-= gdbarch_num_regs (gdbarch
);
405 if (regnum
< SPARC32_NUM_PSEUDO_REGS
)
406 return sparc32_pseudo_register_names
[regnum
];
408 internal_error (__FILE__
, __LINE__
,
409 _("sparc32_pseudo_register_name: bad register number %d"),
413 /* Return the name of register REGNUM. */
416 sparc32_register_name (struct gdbarch
*gdbarch
, int regnum
)
418 if (tdesc_has_registers (gdbarch_target_desc (gdbarch
)))
419 return tdesc_register_name (gdbarch
, regnum
);
421 if (regnum
>= 0 && regnum
< gdbarch_num_regs (gdbarch
))
422 return sparc32_register_names
[regnum
];
424 return sparc32_pseudo_register_name (gdbarch
, regnum
);
427 /* Construct types for ISA-specific registers. */
430 sparc_psr_type (struct gdbarch
*gdbarch
)
432 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
434 if (!tdep
->sparc_psr_type
)
438 type
= arch_flags_type (gdbarch
, "builtin_type_sparc_psr", 32);
439 append_flags_type_flag (type
, 5, "ET");
440 append_flags_type_flag (type
, 6, "PS");
441 append_flags_type_flag (type
, 7, "S");
442 append_flags_type_flag (type
, 12, "EF");
443 append_flags_type_flag (type
, 13, "EC");
445 tdep
->sparc_psr_type
= type
;
448 return tdep
->sparc_psr_type
;
452 sparc_fsr_type (struct gdbarch
*gdbarch
)
454 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
456 if (!tdep
->sparc_fsr_type
)
460 type
= arch_flags_type (gdbarch
, "builtin_type_sparc_fsr", 32);
461 append_flags_type_flag (type
, 0, "NXA");
462 append_flags_type_flag (type
, 1, "DZA");
463 append_flags_type_flag (type
, 2, "UFA");
464 append_flags_type_flag (type
, 3, "OFA");
465 append_flags_type_flag (type
, 4, "NVA");
466 append_flags_type_flag (type
, 5, "NXC");
467 append_flags_type_flag (type
, 6, "DZC");
468 append_flags_type_flag (type
, 7, "UFC");
469 append_flags_type_flag (type
, 8, "OFC");
470 append_flags_type_flag (type
, 9, "NVC");
471 append_flags_type_flag (type
, 22, "NS");
472 append_flags_type_flag (type
, 23, "NXM");
473 append_flags_type_flag (type
, 24, "DZM");
474 append_flags_type_flag (type
, 25, "UFM");
475 append_flags_type_flag (type
, 26, "OFM");
476 append_flags_type_flag (type
, 27, "NVM");
478 tdep
->sparc_fsr_type
= type
;
481 return tdep
->sparc_fsr_type
;
484 /* Return the GDB type object for the "standard" data type of data in
485 pseudo register REGNUM. */
488 sparc32_pseudo_register_type (struct gdbarch
*gdbarch
, int regnum
)
490 regnum
-= gdbarch_num_regs (gdbarch
);
492 if (regnum
>= SPARC32_D0_REGNUM
&& regnum
<= SPARC32_D30_REGNUM
)
493 return builtin_type (gdbarch
)->builtin_double
;
495 internal_error (__FILE__
, __LINE__
,
496 _("sparc32_pseudo_register_type: bad register number %d"),
500 /* Return the GDB type object for the "standard" data type of data in
504 sparc32_register_type (struct gdbarch
*gdbarch
, int regnum
)
506 if (tdesc_has_registers (gdbarch_target_desc (gdbarch
)))
507 return tdesc_register_type (gdbarch
, regnum
);
509 if (regnum
>= SPARC_F0_REGNUM
&& regnum
<= SPARC_F31_REGNUM
)
510 return builtin_type (gdbarch
)->builtin_float
;
512 if (regnum
== SPARC_SP_REGNUM
|| regnum
== SPARC_FP_REGNUM
)
513 return builtin_type (gdbarch
)->builtin_data_ptr
;
515 if (regnum
== SPARC32_PC_REGNUM
|| regnum
== SPARC32_NPC_REGNUM
)
516 return builtin_type (gdbarch
)->builtin_func_ptr
;
518 if (regnum
== SPARC32_PSR_REGNUM
)
519 return sparc_psr_type (gdbarch
);
521 if (regnum
== SPARC32_FSR_REGNUM
)
522 return sparc_fsr_type (gdbarch
);
524 if (regnum
>= gdbarch_num_regs (gdbarch
))
525 return sparc32_pseudo_register_type (gdbarch
, regnum
);
527 return builtin_type (gdbarch
)->builtin_int32
;
530 static enum register_status
531 sparc32_pseudo_register_read (struct gdbarch
*gdbarch
,
532 readable_regcache
*regcache
,
533 int regnum
, gdb_byte
*buf
)
535 enum register_status status
;
537 regnum
-= gdbarch_num_regs (gdbarch
);
538 gdb_assert (regnum
>= SPARC32_D0_REGNUM
&& regnum
<= SPARC32_D30_REGNUM
);
540 regnum
= SPARC_F0_REGNUM
+ 2 * (regnum
- SPARC32_D0_REGNUM
);
541 status
= regcache
->raw_read (regnum
, buf
);
542 if (status
== REG_VALID
)
543 status
= regcache
->raw_read (regnum
+ 1, buf
+ 4);
548 sparc32_pseudo_register_write (struct gdbarch
*gdbarch
,
549 struct regcache
*regcache
,
550 int regnum
, const gdb_byte
*buf
)
552 regnum
-= gdbarch_num_regs (gdbarch
);
553 gdb_assert (regnum
>= SPARC32_D0_REGNUM
&& regnum
<= SPARC32_D30_REGNUM
);
555 regnum
= SPARC_F0_REGNUM
+ 2 * (regnum
- SPARC32_D0_REGNUM
);
556 regcache
->raw_write (regnum
, buf
);
557 regcache
->raw_write (regnum
+ 1, buf
+ 4);
560 /* Implement the stack_frame_destroyed_p gdbarch method. */
563 sparc_stack_frame_destroyed_p (struct gdbarch
*gdbarch
, CORE_ADDR pc
)
565 /* This function must return true if we are one instruction after an
566 instruction that destroyed the stack frame of the current
567 function. The SPARC instructions used to restore the callers
568 stack frame are RESTORE and RETURN/RETT.
570 Of these RETURN/RETT is a branch instruction and thus we return
571 true if we are in its delay slot.
573 RESTORE is almost always found in the delay slot of a branch
574 instruction that transfers control to the caller, such as JMPL.
575 Thus the next instruction is in the caller frame and we don't
576 need to do anything about it. */
578 unsigned int insn
= sparc_fetch_instruction (pc
- 4);
580 return X_RETTURN (insn
);
585 sparc32_frame_align (struct gdbarch
*gdbarch
, CORE_ADDR address
)
587 /* The ABI requires double-word alignment. */
588 return address
& ~0x7;
592 sparc32_push_dummy_code (struct gdbarch
*gdbarch
, CORE_ADDR sp
,
594 struct value
**args
, int nargs
,
595 struct type
*value_type
,
596 CORE_ADDR
*real_pc
, CORE_ADDR
*bp_addr
,
597 struct regcache
*regcache
)
599 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
604 if (using_struct_return (gdbarch
, NULL
, value_type
))
608 /* This is an UNIMP instruction. */
609 store_unsigned_integer (buf
, 4, byte_order
,
610 TYPE_LENGTH (value_type
) & 0x1fff);
611 write_memory (sp
- 8, buf
, 4);
619 sparc32_store_arguments (struct regcache
*regcache
, int nargs
,
620 struct value
**args
, CORE_ADDR sp
,
621 function_call_return_method return_method
,
622 CORE_ADDR struct_addr
)
624 struct gdbarch
*gdbarch
= regcache
->arch ();
625 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
626 /* Number of words in the "parameter array". */
627 int num_elements
= 0;
631 for (i
= 0; i
< nargs
; i
++)
633 struct type
*type
= value_type (args
[i
]);
634 int len
= TYPE_LENGTH (type
);
636 if (sparc_arg_by_memory_p (type
))
638 /* Structure, Union and Quad-Precision Arguments. */
641 /* Use doubleword alignment for these values. That's always
642 correct, and wasting a few bytes shouldn't be a problem. */
645 write_memory (sp
, value_contents (args
[i
]), len
);
646 args
[i
] = value_from_pointer (lookup_pointer_type (type
), sp
);
649 else if (sparc_floating_p (type
))
651 /* Floating arguments. */
652 gdb_assert (len
== 4 || len
== 8);
653 num_elements
+= (len
/ 4);
657 /* Arguments passed via the General Purpose Registers. */
658 num_elements
+= ((len
+ 3) / 4);
662 /* Always allocate at least six words. */
663 sp
-= std::max (6, num_elements
) * 4;
665 /* The psABI says that "Software convention requires space for the
666 struct/union return value pointer, even if the word is unused." */
669 /* The psABI says that "Although software convention and the
670 operating system require every stack frame to be doubleword
674 for (i
= 0; i
< nargs
; i
++)
676 const bfd_byte
*valbuf
= value_contents (args
[i
]);
677 struct type
*type
= value_type (args
[i
]);
678 int len
= TYPE_LENGTH (type
);
683 memset (buf
, 0, 4 - len
);
684 memcpy (buf
+ 4 - len
, valbuf
, len
);
689 gdb_assert (len
== 4 || len
== 8);
693 int regnum
= SPARC_O0_REGNUM
+ element
;
695 regcache
->cooked_write (regnum
, valbuf
);
696 if (len
> 4 && element
< 5)
697 regcache
->cooked_write (regnum
+ 1, valbuf
+ 4);
700 /* Always store the argument in memory. */
701 write_memory (sp
+ 4 + element
* 4, valbuf
, len
);
705 gdb_assert (element
== num_elements
);
707 if (return_method
== return_method_struct
)
711 store_unsigned_integer (buf
, 4, byte_order
, struct_addr
);
712 write_memory (sp
, buf
, 4);
719 sparc32_push_dummy_call (struct gdbarch
*gdbarch
, struct value
*function
,
720 struct regcache
*regcache
, CORE_ADDR bp_addr
,
721 int nargs
, struct value
**args
, CORE_ADDR sp
,
722 function_call_return_method return_method
,
723 CORE_ADDR struct_addr
)
725 CORE_ADDR call_pc
= (return_method
== return_method_struct
726 ? (bp_addr
- 12) : (bp_addr
- 8));
728 /* Set return address. */
729 regcache_cooked_write_unsigned (regcache
, SPARC_O7_REGNUM
, call_pc
);
731 /* Set up function arguments. */
732 sp
= sparc32_store_arguments (regcache
, nargs
, args
, sp
, return_method
,
735 /* Allocate the 16-word window save area. */
738 /* Stack should be doubleword aligned at this point. */
739 gdb_assert (sp
% 8 == 0);
741 /* Finally, update the stack pointer. */
742 regcache_cooked_write_unsigned (regcache
, SPARC_SP_REGNUM
, sp
);
748 /* Use the program counter to determine the contents and size of a
749 breakpoint instruction. Return a pointer to a string of bytes that
750 encode a breakpoint instruction, store the length of the string in
751 *LEN and optionally adjust *PC to point to the correct memory
752 location for inserting the breakpoint. */
753 constexpr gdb_byte sparc_break_insn
[] = { 0x91, 0xd0, 0x20, 0x01 };
755 typedef BP_MANIPULATION (sparc_break_insn
) sparc_breakpoint
;
758 /* Allocate and initialize a frame cache. */
760 static struct sparc_frame_cache
*
761 sparc_alloc_frame_cache (void)
763 struct sparc_frame_cache
*cache
;
765 cache
= FRAME_OBSTACK_ZALLOC (struct sparc_frame_cache
);
771 /* Frameless until proven otherwise. */
772 cache
->frameless_p
= 1;
773 cache
->frame_offset
= 0;
774 cache
->saved_regs_mask
= 0;
775 cache
->copied_regs_mask
= 0;
776 cache
->struct_return_p
= 0;
781 /* GCC generates several well-known sequences of instructions at the begining
782 of each function prologue when compiling with -fstack-check. If one of
783 such sequences starts at START_PC, then return the address of the
784 instruction immediately past this sequence. Otherwise, return START_PC. */
787 sparc_skip_stack_check (const CORE_ADDR start_pc
)
789 CORE_ADDR pc
= start_pc
;
791 int probing_loop
= 0;
793 /* With GCC, all stack checking sequences begin with the same two
794 instructions, plus an optional one in the case of a probing loop:
796 sethi <some immediate>, %g1
801 sethi <some immediate>, %g1
802 sethi <some immediate>, %g4
807 sethi <some immediate>, %g1
809 sethi <some immediate>, %g4
811 If the optional instruction is found (setting g4), assume that a
812 probing loop will follow. */
814 /* sethi <some immediate>, %g1 */
815 insn
= sparc_fetch_instruction (pc
);
817 if (!(X_OP (insn
) == 0 && X_OP2 (insn
) == 0x4 && X_RD (insn
) == 1))
820 /* optional: sethi <some immediate>, %g4 */
821 insn
= sparc_fetch_instruction (pc
);
823 if (X_OP (insn
) == 0 && X_OP2 (insn
) == 0x4 && X_RD (insn
) == 4)
826 insn
= sparc_fetch_instruction (pc
);
830 /* sub %sp, %g1, %g1 */
831 if (!(X_OP (insn
) == 2 && X_OP3 (insn
) == 0x4 && !X_I(insn
)
832 && X_RD (insn
) == 1 && X_RS1 (insn
) == 14 && X_RS2 (insn
) == 1))
835 insn
= sparc_fetch_instruction (pc
);
838 /* optional: sethi <some immediate>, %g4 */
839 if (X_OP (insn
) == 0 && X_OP2 (insn
) == 0x4 && X_RD (insn
) == 4)
842 insn
= sparc_fetch_instruction (pc
);
846 /* First possible sequence:
847 [first two instructions above]
848 clr [%g1 - some immediate] */
850 /* clr [%g1 - some immediate] */
851 if (X_OP (insn
) == 3 && X_OP3(insn
) == 0x4 && X_I(insn
)
852 && X_RS1 (insn
) == 1 && X_RD (insn
) == 0)
854 /* Valid stack-check sequence, return the new PC. */
858 /* Second possible sequence: A small number of probes.
859 [first two instructions above]
861 add %g1, -<some immediate>, %g1
863 [repeat the two instructions above any (small) number of times]
864 clr [%g1 - some immediate] */
867 else if (X_OP (insn
) == 3 && X_OP3(insn
) == 0x4 && !X_I(insn
)
868 && X_RS1 (insn
) == 1 && X_RD (insn
) == 0)
872 /* add %g1, -<some immediate>, %g1 */
873 insn
= sparc_fetch_instruction (pc
);
875 if (!(X_OP (insn
) == 2 && X_OP3(insn
) == 0 && X_I(insn
)
876 && X_RS1 (insn
) == 1 && X_RD (insn
) == 1))
880 insn
= sparc_fetch_instruction (pc
);
882 if (!(X_OP (insn
) == 3 && X_OP3(insn
) == 0x4 && !X_I(insn
)
883 && X_RD (insn
) == 0 && X_RS1 (insn
) == 1))
887 /* clr [%g1 - some immediate] */
888 if (!(X_OP (insn
) == 3 && X_OP3(insn
) == 0x4 && X_I(insn
)
889 && X_RS1 (insn
) == 1 && X_RD (insn
) == 0))
892 /* We found a valid stack-check sequence, return the new PC. */
896 /* Third sequence: A probing loop.
897 [first three instructions above]
901 add %g1, -<some immediate>, %g1
905 And an optional last probe for the remainder:
907 clr [%g4 - some immediate] */
911 /* sub %g1, %g4, %g4 */
912 if (!(X_OP (insn
) == 2 && X_OP3 (insn
) == 0x4 && !X_I(insn
)
913 && X_RD (insn
) == 4 && X_RS1 (insn
) == 1 && X_RS2 (insn
) == 4))
917 insn
= sparc_fetch_instruction (pc
);
919 if (!(X_OP (insn
) == 2 && X_OP3 (insn
) == 0x14 && !X_I(insn
)
920 && X_RD (insn
) == 0 && X_RS1 (insn
) == 1 && X_RS2 (insn
) == 4))
924 insn
= sparc_fetch_instruction (pc
);
926 if (!(X_OP (insn
) == 0 && X_COND (insn
) == 0x1))
929 /* add %g1, -<some immediate>, %g1 */
930 insn
= sparc_fetch_instruction (pc
);
932 if (!(X_OP (insn
) == 2 && X_OP3(insn
) == 0 && X_I(insn
)
933 && X_RS1 (insn
) == 1 && X_RD (insn
) == 1))
937 insn
= sparc_fetch_instruction (pc
);
939 if (!(X_OP (insn
) == 0 && X_COND (insn
) == 0x8))
942 /* clr [%g1] (st %g0, [%g1] or st %g0, [%g1+0]) */
943 insn
= sparc_fetch_instruction (pc
);
945 if (!(X_OP (insn
) == 3 && X_OP3(insn
) == 0x4
946 && X_RD (insn
) == 0 && X_RS1 (insn
) == 1
947 && (!X_I(insn
) || X_SIMM13 (insn
) == 0)))
950 /* We found a valid stack-check sequence, return the new PC. */
952 /* optional: clr [%g4 - some immediate] */
953 insn
= sparc_fetch_instruction (pc
);
955 if (!(X_OP (insn
) == 3 && X_OP3(insn
) == 0x4 && X_I(insn
)
956 && X_RS1 (insn
) == 4 && X_RD (insn
) == 0))
962 /* No stack check code in our prologue, return the start_pc. */
966 /* Record the effect of a SAVE instruction on CACHE. */
969 sparc_record_save_insn (struct sparc_frame_cache
*cache
)
971 /* The frame is set up. */
972 cache
->frameless_p
= 0;
974 /* The frame pointer contains the CFA. */
975 cache
->frame_offset
= 0;
977 /* The `local' and `in' registers are all saved. */
978 cache
->saved_regs_mask
= 0xffff;
980 /* The `out' registers are all renamed. */
981 cache
->copied_regs_mask
= 0xff;
984 /* Do a full analysis of the prologue at PC and update CACHE accordingly.
985 Bail out early if CURRENT_PC is reached. Return the address where
986 the analysis stopped.
988 We handle both the traditional register window model and the single
989 register window (aka flat) model. */
992 sparc_analyze_prologue (struct gdbarch
*gdbarch
, CORE_ADDR pc
,
993 CORE_ADDR current_pc
, struct sparc_frame_cache
*cache
)
995 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
1000 pc
= sparc_skip_stack_check (pc
);
1002 if (current_pc
<= pc
)
1005 /* We have to handle to "Procedure Linkage Table" (PLT) special. On
1006 SPARC the linker usually defines a symbol (typically
1007 _PROCEDURE_LINKAGE_TABLE_) at the start of the .plt section.
1008 This symbol makes us end up here with PC pointing at the start of
1009 the PLT and CURRENT_PC probably pointing at a PLT entry. If we
1010 would do our normal prologue analysis, we would probably conclude
1011 that we've got a frame when in reality we don't, since the
1012 dynamic linker patches up the first PLT with some code that
1013 starts with a SAVE instruction. Patch up PC such that it points
1014 at the start of our PLT entry. */
1015 if (tdep
->plt_entry_size
> 0 && in_plt_section (current_pc
))
1016 pc
= current_pc
- ((current_pc
- pc
) % tdep
->plt_entry_size
);
1018 insn
= sparc_fetch_instruction (pc
);
1020 /* Recognize store insns and record their sources. */
1021 while (X_OP (insn
) == 3
1022 && (X_OP3 (insn
) == 0x4 /* stw */
1023 || X_OP3 (insn
) == 0x7 /* std */
1024 || X_OP3 (insn
) == 0xe) /* stx */
1025 && X_RS1 (insn
) == SPARC_SP_REGNUM
)
1027 int regnum
= X_RD (insn
);
1029 /* Recognize stores into the corresponding stack slots. */
1030 if (regnum
>= SPARC_L0_REGNUM
&& regnum
<= SPARC_I7_REGNUM
1032 && X_SIMM13 (insn
) == (X_OP3 (insn
) == 0xe
1033 ? (regnum
- SPARC_L0_REGNUM
) * 8 + BIAS
1034 : (regnum
- SPARC_L0_REGNUM
) * 4))
1035 || (!X_I (insn
) && regnum
== SPARC_L0_REGNUM
)))
1037 cache
->saved_regs_mask
|= (1 << (regnum
- SPARC_L0_REGNUM
));
1038 if (X_OP3 (insn
) == 0x7)
1039 cache
->saved_regs_mask
|= (1 << (regnum
+ 1 - SPARC_L0_REGNUM
));
1044 insn
= sparc_fetch_instruction (pc
+ offset
);
1047 /* Recognize a SETHI insn and record its destination. */
1048 if (X_OP (insn
) == 0 && X_OP2 (insn
) == 0x04)
1053 insn
= sparc_fetch_instruction (pc
+ offset
);
1056 /* Allow for an arithmetic operation on DEST or %g1. */
1057 if (X_OP (insn
) == 2 && X_I (insn
)
1058 && (X_RD (insn
) == 1 || X_RD (insn
) == dest
))
1062 insn
= sparc_fetch_instruction (pc
+ offset
);
1065 /* Check for the SAVE instruction that sets up the frame. */
1066 if (X_OP (insn
) == 2 && X_OP3 (insn
) == 0x3c)
1068 sparc_record_save_insn (cache
);
1073 /* Check for an arithmetic operation on %sp. */
1074 if (X_OP (insn
) == 2
1075 && (X_OP3 (insn
) == 0 || X_OP3 (insn
) == 0x4)
1076 && X_RS1 (insn
) == SPARC_SP_REGNUM
1077 && X_RD (insn
) == SPARC_SP_REGNUM
)
1081 cache
->frame_offset
= X_SIMM13 (insn
);
1082 if (X_OP3 (insn
) == 0)
1083 cache
->frame_offset
= -cache
->frame_offset
;
1087 insn
= sparc_fetch_instruction (pc
+ offset
);
1089 /* Check for an arithmetic operation that sets up the frame. */
1090 if (X_OP (insn
) == 2
1091 && (X_OP3 (insn
) == 0 || X_OP3 (insn
) == 0x4)
1092 && X_RS1 (insn
) == SPARC_SP_REGNUM
1093 && X_RD (insn
) == SPARC_FP_REGNUM
)
1095 cache
->frameless_p
= 0;
1096 cache
->frame_offset
= 0;
1097 /* We could check that the amount subtracted to %sp above is the
1098 same as the one added here, but this seems superfluous. */
1099 cache
->copied_regs_mask
|= 0x40;
1102 insn
= sparc_fetch_instruction (pc
+ offset
);
1105 /* Check for a move (or) operation that copies the return register. */
1106 if (X_OP (insn
) == 2
1107 && X_OP3 (insn
) == 0x2
1109 && X_RS1 (insn
) == SPARC_G0_REGNUM
1110 && X_RS2 (insn
) == SPARC_O7_REGNUM
1111 && X_RD (insn
) == SPARC_I7_REGNUM
)
1113 cache
->copied_regs_mask
|= 0x80;
1123 /* Return PC of first real instruction of the function starting at
1127 sparc32_skip_prologue (struct gdbarch
*gdbarch
, CORE_ADDR start_pc
)
1129 struct symtab_and_line sal
;
1130 CORE_ADDR func_addr
;
1131 struct sparc_frame_cache cache
;
1133 /* This is the preferred method, find the end of the prologue by
1134 using the debugging information. */
1136 if (find_pc_partial_function (start_pc
, NULL
, &func_addr
, NULL
))
1138 CORE_ADDR post_prologue_pc
1139 = skip_prologue_using_sal (gdbarch
, func_addr
);
1141 if (post_prologue_pc
!= 0)
1142 return std::max (start_pc
, post_prologue_pc
);
1145 start_pc
= sparc_analyze_prologue (gdbarch
, start_pc
, 0xffffffffUL
, &cache
);
1147 /* The psABI says that "Although the first 6 words of arguments
1148 reside in registers, the standard stack frame reserves space for
1149 them.". It also suggests that a function may use that space to
1150 "write incoming arguments 0 to 5" into that space, and that's
1151 indeed what GCC seems to be doing. In that case GCC will
1152 generate debug information that points to the stack slots instead
1153 of the registers, so we should consider the instructions that
1154 write out these incoming arguments onto the stack. */
1158 unsigned long insn
= sparc_fetch_instruction (start_pc
);
1160 /* Recognize instructions that store incoming arguments into the
1161 corresponding stack slots. */
1162 if (X_OP (insn
) == 3 && (X_OP3 (insn
) & 0x3c) == 0x04
1163 && X_I (insn
) && X_RS1 (insn
) == SPARC_FP_REGNUM
)
1165 int regnum
= X_RD (insn
);
1167 /* Case of arguments still in %o[0..5]. */
1168 if (regnum
>= SPARC_O0_REGNUM
&& regnum
<= SPARC_O5_REGNUM
1169 && !(cache
.copied_regs_mask
& (1 << (regnum
- SPARC_O0_REGNUM
)))
1170 && X_SIMM13 (insn
) == 68 + (regnum
- SPARC_O0_REGNUM
) * 4)
1176 /* Case of arguments copied into %i[0..5]. */
1177 if (regnum
>= SPARC_I0_REGNUM
&& regnum
<= SPARC_I5_REGNUM
1178 && (cache
.copied_regs_mask
& (1 << (regnum
- SPARC_I0_REGNUM
)))
1179 && X_SIMM13 (insn
) == 68 + (regnum
- SPARC_I0_REGNUM
) * 4)
1192 /* Normal frames. */
1194 struct sparc_frame_cache
*
1195 sparc_frame_cache (struct frame_info
*this_frame
, void **this_cache
)
1197 struct sparc_frame_cache
*cache
;
1200 return (struct sparc_frame_cache
*) *this_cache
;
1202 cache
= sparc_alloc_frame_cache ();
1203 *this_cache
= cache
;
1205 cache
->pc
= get_frame_func (this_frame
);
1207 sparc_analyze_prologue (get_frame_arch (this_frame
), cache
->pc
,
1208 get_frame_pc (this_frame
), cache
);
1210 if (cache
->frameless_p
)
1212 /* This function is frameless, so %fp (%i6) holds the frame
1213 pointer for our calling frame. Use %sp (%o6) as this frame's
1216 get_frame_register_unsigned (this_frame
, SPARC_SP_REGNUM
);
1220 /* For normal frames, %fp (%i6) holds the frame pointer, the
1221 base address for the current stack frame. */
1223 get_frame_register_unsigned (this_frame
, SPARC_FP_REGNUM
);
1226 cache
->base
+= cache
->frame_offset
;
1228 if (cache
->base
& 1)
1229 cache
->base
+= BIAS
;
1235 sparc32_struct_return_from_sym (struct symbol
*sym
)
1237 struct type
*type
= check_typedef (SYMBOL_TYPE (sym
));
1238 enum type_code code
= type
->code ();
1240 if (code
== TYPE_CODE_FUNC
|| code
== TYPE_CODE_METHOD
)
1242 type
= check_typedef (TYPE_TARGET_TYPE (type
));
1243 if (sparc_structure_or_union_p (type
)
1244 || (sparc_floating_p (type
) && TYPE_LENGTH (type
) == 16))
1251 struct sparc_frame_cache
*
1252 sparc32_frame_cache (struct frame_info
*this_frame
, void **this_cache
)
1254 struct sparc_frame_cache
*cache
;
1258 return (struct sparc_frame_cache
*) *this_cache
;
1260 cache
= sparc_frame_cache (this_frame
, this_cache
);
1262 sym
= find_pc_function (cache
->pc
);
1265 cache
->struct_return_p
= sparc32_struct_return_from_sym (sym
);
1269 /* There is no debugging information for this function to
1270 help us determine whether this function returns a struct
1271 or not. So we rely on another heuristic which is to check
1272 the instruction at the return address and see if this is
1273 an "unimp" instruction. If it is, then it is a struct-return
1277 (cache
->copied_regs_mask
& 0x80) ? SPARC_I7_REGNUM
: SPARC_O7_REGNUM
;
1279 pc
= get_frame_register_unsigned (this_frame
, regnum
) + 8;
1280 if (sparc_is_unimp_insn (pc
))
1281 cache
->struct_return_p
= 1;
1288 sparc32_frame_this_id (struct frame_info
*this_frame
, void **this_cache
,
1289 struct frame_id
*this_id
)
1291 struct sparc_frame_cache
*cache
=
1292 sparc32_frame_cache (this_frame
, this_cache
);
1294 /* This marks the outermost frame. */
1295 if (cache
->base
== 0)
1298 (*this_id
) = frame_id_build (cache
->base
, cache
->pc
);
1301 static struct value
*
1302 sparc32_frame_prev_register (struct frame_info
*this_frame
,
1303 void **this_cache
, int regnum
)
1305 struct gdbarch
*gdbarch
= get_frame_arch (this_frame
);
1306 struct sparc_frame_cache
*cache
=
1307 sparc32_frame_cache (this_frame
, this_cache
);
1309 if (regnum
== SPARC32_PC_REGNUM
|| regnum
== SPARC32_NPC_REGNUM
)
1311 CORE_ADDR pc
= (regnum
== SPARC32_NPC_REGNUM
) ? 4 : 0;
1313 /* If this functions has a Structure, Union or Quad-Precision
1314 return value, we have to skip the UNIMP instruction that encodes
1315 the size of the structure. */
1316 if (cache
->struct_return_p
)
1320 (cache
->copied_regs_mask
& 0x80) ? SPARC_I7_REGNUM
: SPARC_O7_REGNUM
;
1321 pc
+= get_frame_register_unsigned (this_frame
, regnum
) + 8;
1322 return frame_unwind_got_constant (this_frame
, regnum
, pc
);
1325 /* Handle StackGhost. */
1327 ULONGEST wcookie
= sparc_fetch_wcookie (gdbarch
);
1329 if (wcookie
!= 0 && !cache
->frameless_p
&& regnum
== SPARC_I7_REGNUM
)
1331 CORE_ADDR addr
= cache
->base
+ (regnum
- SPARC_L0_REGNUM
) * 4;
1334 /* Read the value in from memory. */
1335 i7
= get_frame_memory_unsigned (this_frame
, addr
, 4);
1336 return frame_unwind_got_constant (this_frame
, regnum
, i7
^ wcookie
);
1340 /* The previous frame's `local' and `in' registers may have been saved
1341 in the register save area. */
1342 if (regnum
>= SPARC_L0_REGNUM
&& regnum
<= SPARC_I7_REGNUM
1343 && (cache
->saved_regs_mask
& (1 << (regnum
- SPARC_L0_REGNUM
))))
1345 CORE_ADDR addr
= cache
->base
+ (regnum
- SPARC_L0_REGNUM
) * 4;
1347 return frame_unwind_got_memory (this_frame
, regnum
, addr
);
1350 /* The previous frame's `out' registers may be accessible as the current
1351 frame's `in' registers. */
1352 if (regnum
>= SPARC_O0_REGNUM
&& regnum
<= SPARC_O7_REGNUM
1353 && (cache
->copied_regs_mask
& (1 << (regnum
- SPARC_O0_REGNUM
))))
1354 regnum
+= (SPARC_I0_REGNUM
- SPARC_O0_REGNUM
);
1356 return frame_unwind_got_register (this_frame
, regnum
, regnum
);
1359 static const struct frame_unwind sparc32_frame_unwind
=
1362 default_frame_unwind_stop_reason
,
1363 sparc32_frame_this_id
,
1364 sparc32_frame_prev_register
,
1366 default_frame_sniffer
1371 sparc32_frame_base_address (struct frame_info
*this_frame
, void **this_cache
)
1373 struct sparc_frame_cache
*cache
=
1374 sparc32_frame_cache (this_frame
, this_cache
);
1379 static const struct frame_base sparc32_frame_base
=
1381 &sparc32_frame_unwind
,
1382 sparc32_frame_base_address
,
1383 sparc32_frame_base_address
,
1384 sparc32_frame_base_address
1387 static struct frame_id
1388 sparc_dummy_id (struct gdbarch
*gdbarch
, struct frame_info
*this_frame
)
1392 sp
= get_frame_register_unsigned (this_frame
, SPARC_SP_REGNUM
);
1395 return frame_id_build (sp
, get_frame_pc (this_frame
));
1399 /* Extract a function return value of TYPE from REGCACHE, and copy
1400 that into VALBUF. */
1403 sparc32_extract_return_value (struct type
*type
, struct regcache
*regcache
,
1406 int len
= TYPE_LENGTH (type
);
1409 gdb_assert (!sparc_structure_return_p (type
));
1411 if (sparc_floating_p (type
) || sparc_complex_floating_p (type
)
1412 || type
->code () == TYPE_CODE_ARRAY
)
1414 /* Floating return values. */
1415 regcache
->cooked_read (SPARC_F0_REGNUM
, buf
);
1417 regcache
->cooked_read (SPARC_F1_REGNUM
, buf
+ 4);
1420 regcache
->cooked_read (SPARC_F2_REGNUM
, buf
+ 8);
1421 regcache
->cooked_read (SPARC_F3_REGNUM
, buf
+ 12);
1425 regcache
->cooked_read (SPARC_F4_REGNUM
, buf
+ 16);
1426 regcache
->cooked_read (SPARC_F5_REGNUM
, buf
+ 20);
1427 regcache
->cooked_read (SPARC_F6_REGNUM
, buf
+ 24);
1428 regcache
->cooked_read (SPARC_F7_REGNUM
, buf
+ 28);
1430 memcpy (valbuf
, buf
, len
);
1434 /* Integral and pointer return values. */
1435 gdb_assert (sparc_integral_or_pointer_p (type
));
1437 regcache
->cooked_read (SPARC_O0_REGNUM
, buf
);
1440 regcache
->cooked_read (SPARC_O1_REGNUM
, buf
+ 4);
1441 gdb_assert (len
== 8);
1442 memcpy (valbuf
, buf
, 8);
1446 /* Just stripping off any unused bytes should preserve the
1447 signed-ness just fine. */
1448 memcpy (valbuf
, buf
+ 4 - len
, len
);
1453 /* Store the function return value of type TYPE from VALBUF into
1457 sparc32_store_return_value (struct type
*type
, struct regcache
*regcache
,
1458 const gdb_byte
*valbuf
)
1460 int len
= TYPE_LENGTH (type
);
1463 gdb_assert (!sparc_structure_return_p (type
));
1465 if (sparc_floating_p (type
) || sparc_complex_floating_p (type
))
1467 /* Floating return values. */
1468 memcpy (buf
, valbuf
, len
);
1469 regcache
->cooked_write (SPARC_F0_REGNUM
, buf
);
1471 regcache
->cooked_write (SPARC_F1_REGNUM
, buf
+ 4);
1474 regcache
->cooked_write (SPARC_F2_REGNUM
, buf
+ 8);
1475 regcache
->cooked_write (SPARC_F3_REGNUM
, buf
+ 12);
1479 regcache
->cooked_write (SPARC_F4_REGNUM
, buf
+ 16);
1480 regcache
->cooked_write (SPARC_F5_REGNUM
, buf
+ 20);
1481 regcache
->cooked_write (SPARC_F6_REGNUM
, buf
+ 24);
1482 regcache
->cooked_write (SPARC_F7_REGNUM
, buf
+ 28);
1487 /* Integral and pointer return values. */
1488 gdb_assert (sparc_integral_or_pointer_p (type
));
1492 gdb_assert (len
== 8);
1493 memcpy (buf
, valbuf
, 8);
1494 regcache
->cooked_write (SPARC_O1_REGNUM
, buf
+ 4);
1498 /* ??? Do we need to do any sign-extension here? */
1499 memcpy (buf
+ 4 - len
, valbuf
, len
);
1501 regcache
->cooked_write (SPARC_O0_REGNUM
, buf
);
1505 static enum return_value_convention
1506 sparc32_return_value (struct gdbarch
*gdbarch
, struct value
*function
,
1507 struct type
*type
, struct regcache
*regcache
,
1508 gdb_byte
*readbuf
, const gdb_byte
*writebuf
)
1510 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
1512 /* The psABI says that "...every stack frame reserves the word at
1513 %fp+64. If a function returns a structure, union, or
1514 quad-precision value, this word should hold the address of the
1515 object into which the return value should be copied." This
1516 guarantees that we can always find the return value, not just
1517 before the function returns. */
1519 if (sparc_structure_return_p (type
))
1526 regcache_cooked_read_unsigned (regcache
, SPARC_SP_REGNUM
, &sp
);
1527 addr
= read_memory_unsigned_integer (sp
+ 64, 4, byte_order
);
1528 read_memory (addr
, readbuf
, TYPE_LENGTH (type
));
1532 regcache_cooked_read_unsigned (regcache
, SPARC_SP_REGNUM
, &sp
);
1533 addr
= read_memory_unsigned_integer (sp
+ 64, 4, byte_order
);
1534 write_memory (addr
, writebuf
, TYPE_LENGTH (type
));
1537 return RETURN_VALUE_ABI_PRESERVES_ADDRESS
;
1541 sparc32_extract_return_value (type
, regcache
, readbuf
);
1543 sparc32_store_return_value (type
, regcache
, writebuf
);
1545 return RETURN_VALUE_REGISTER_CONVENTION
;
1549 sparc32_stabs_argument_has_addr (struct gdbarch
*gdbarch
, struct type
*type
)
1551 return (sparc_structure_or_union_p (type
)
1552 || (sparc_floating_p (type
) && TYPE_LENGTH (type
) == 16)
1553 || sparc_complex_floating_p (type
));
1557 sparc32_dwarf2_struct_return_p (struct frame_info
*this_frame
)
1559 CORE_ADDR pc
= get_frame_address_in_block (this_frame
);
1560 struct symbol
*sym
= find_pc_function (pc
);
1563 return sparc32_struct_return_from_sym (sym
);
1568 sparc32_dwarf2_frame_init_reg (struct gdbarch
*gdbarch
, int regnum
,
1569 struct dwarf2_frame_state_reg
*reg
,
1570 struct frame_info
*this_frame
)
1576 case SPARC_G0_REGNUM
:
1577 /* Since %g0 is always zero, there is no point in saving it, and
1578 people will be inclined omit it from the CFI. Make sure we
1579 don't warn about that. */
1580 reg
->how
= DWARF2_FRAME_REG_SAME_VALUE
;
1582 case SPARC_SP_REGNUM
:
1583 reg
->how
= DWARF2_FRAME_REG_CFA
;
1585 case SPARC32_PC_REGNUM
:
1586 case SPARC32_NPC_REGNUM
:
1587 reg
->how
= DWARF2_FRAME_REG_RA_OFFSET
;
1589 if (sparc32_dwarf2_struct_return_p (this_frame
))
1591 if (regnum
== SPARC32_NPC_REGNUM
)
1593 reg
->loc
.offset
= off
;
1598 /* Implement the execute_dwarf_cfa_vendor_op method. */
1601 sparc_execute_dwarf_cfa_vendor_op (struct gdbarch
*gdbarch
, gdb_byte op
,
1602 struct dwarf2_frame_state
*fs
)
1604 /* Only DW_CFA_GNU_window_save is expected on SPARC. */
1605 if (op
!= DW_CFA_GNU_window_save
)
1609 int size
= register_size (gdbarch
, 0);
1611 fs
->regs
.alloc_regs (32);
1612 for (reg
= 8; reg
< 16; reg
++)
1614 fs
->regs
.reg
[reg
].how
= DWARF2_FRAME_REG_SAVED_REG
;
1615 fs
->regs
.reg
[reg
].loc
.reg
= reg
+ 16;
1617 for (reg
= 16; reg
< 32; reg
++)
1619 fs
->regs
.reg
[reg
].how
= DWARF2_FRAME_REG_SAVED_OFFSET
;
1620 fs
->regs
.reg
[reg
].loc
.offset
= (reg
- 16) * size
;
1627 /* The SPARC Architecture doesn't have hardware single-step support,
1628 and most operating systems don't implement it either, so we provide
1629 software single-step mechanism. */
1632 sparc_analyze_control_transfer (struct regcache
*regcache
,
1633 CORE_ADDR pc
, CORE_ADDR
*npc
)
1635 unsigned long insn
= sparc_fetch_instruction (pc
);
1636 int conditional_p
= X_COND (insn
) & 0x7;
1637 int branch_p
= 0, fused_p
= 0;
1638 long offset
= 0; /* Must be signed for sign-extend. */
1640 if (X_OP (insn
) == 0 && X_OP2 (insn
) == 3)
1642 if ((insn
& 0x10000000) == 0)
1644 /* Branch on Integer Register with Prediction (BPr). */
1650 /* Compare and Branch */
1653 offset
= 4 * X_DISP10 (insn
);
1656 else if (X_OP (insn
) == 0 && X_OP2 (insn
) == 6)
1658 /* Branch on Floating-Point Condition Codes (FBfcc). */
1660 offset
= 4 * X_DISP22 (insn
);
1662 else if (X_OP (insn
) == 0 && X_OP2 (insn
) == 5)
1664 /* Branch on Floating-Point Condition Codes with Prediction
1667 offset
= 4 * X_DISP19 (insn
);
1669 else if (X_OP (insn
) == 0 && X_OP2 (insn
) == 2)
1671 /* Branch on Integer Condition Codes (Bicc). */
1673 offset
= 4 * X_DISP22 (insn
);
1675 else if (X_OP (insn
) == 0 && X_OP2 (insn
) == 1)
1677 /* Branch on Integer Condition Codes with Prediction (BPcc). */
1679 offset
= 4 * X_DISP19 (insn
);
1681 else if (X_OP (insn
) == 2 && X_OP3 (insn
) == 0x3a)
1683 struct frame_info
*frame
= get_current_frame ();
1685 /* Trap instruction (TRAP). */
1686 return gdbarch_tdep (regcache
->arch ())->step_trap (frame
,
1690 /* FIXME: Handle DONE and RETRY instructions. */
1696 /* Fused compare-and-branch instructions are non-delayed,
1697 and do not have an annulling capability. So we need to
1698 always set a breakpoint on both the NPC and the branch
1700 gdb_assert (offset
!= 0);
1703 else if (conditional_p
)
1705 /* For conditional branches, return nPC + 4 iff the annul
1707 return (X_A (insn
) ? *npc
+ 4 : 0);
1711 /* For unconditional branches, return the target if its
1712 specified condition is "always" and return nPC + 4 if the
1713 condition is "never". If the annul bit is 1, set *NPC to
1715 if (X_COND (insn
) == 0x0)
1716 pc
= *npc
, offset
= 4;
1728 sparc_step_trap (struct frame_info
*frame
, unsigned long insn
)
1733 static std::vector
<CORE_ADDR
>
1734 sparc_software_single_step (struct regcache
*regcache
)
1736 struct gdbarch
*arch
= regcache
->arch ();
1737 struct gdbarch_tdep
*tdep
= gdbarch_tdep (arch
);
1738 CORE_ADDR npc
, nnpc
;
1740 CORE_ADDR pc
, orig_npc
;
1741 std::vector
<CORE_ADDR
> next_pcs
;
1743 pc
= regcache_raw_get_unsigned (regcache
, tdep
->pc_regnum
);
1744 orig_npc
= npc
= regcache_raw_get_unsigned (regcache
, tdep
->npc_regnum
);
1746 /* Analyze the instruction at PC. */
1747 nnpc
= sparc_analyze_control_transfer (regcache
, pc
, &npc
);
1749 next_pcs
.push_back (npc
);
1752 next_pcs
.push_back (nnpc
);
1754 /* Assert that we have set at least one breakpoint, and that
1755 they're not set at the same spot - unless we're going
1756 from here straight to NULL, i.e. a call or jump to 0. */
1757 gdb_assert (npc
!= 0 || nnpc
!= 0 || orig_npc
== 0);
1758 gdb_assert (nnpc
!= npc
|| orig_npc
== 0);
1764 sparc_write_pc (struct regcache
*regcache
, CORE_ADDR pc
)
1766 struct gdbarch_tdep
*tdep
= gdbarch_tdep (regcache
->arch ());
1768 regcache_cooked_write_unsigned (regcache
, tdep
->pc_regnum
, pc
);
1769 regcache_cooked_write_unsigned (regcache
, tdep
->npc_regnum
, pc
+ 4);
1773 /* Iterate over core file register note sections. */
1776 sparc_iterate_over_regset_sections (struct gdbarch
*gdbarch
,
1777 iterate_over_regset_sections_cb
*cb
,
1779 const struct regcache
*regcache
)
1781 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
1783 cb (".reg", tdep
->sizeof_gregset
, tdep
->sizeof_gregset
, tdep
->gregset
, NULL
,
1785 cb (".reg2", tdep
->sizeof_fpregset
, tdep
->sizeof_fpregset
, tdep
->fpregset
,
1791 validate_tdesc_registers (const struct target_desc
*tdesc
,
1792 struct tdesc_arch_data
*tdesc_data
,
1793 const char *feature_name
,
1794 const char * const register_names
[],
1795 unsigned int registers_num
,
1796 unsigned int reg_start
)
1799 const struct tdesc_feature
*feature
;
1801 feature
= tdesc_find_feature (tdesc
, feature_name
);
1802 if (feature
== NULL
)
1805 for (unsigned int i
= 0; i
< registers_num
; i
++)
1806 valid_p
&= tdesc_numbered_register (feature
, tdesc_data
,
1813 static struct gdbarch
*
1814 sparc32_gdbarch_init (struct gdbarch_info info
, struct gdbarch_list
*arches
)
1816 struct gdbarch_tdep
*tdep
;
1817 const struct target_desc
*tdesc
= info
.target_desc
;
1818 struct gdbarch
*gdbarch
;
1821 /* If there is already a candidate, use it. */
1822 arches
= gdbarch_list_lookup_by_info (arches
, &info
);
1824 return arches
->gdbarch
;
1826 /* Allocate space for the new architecture. */
1827 tdep
= XCNEW (struct gdbarch_tdep
);
1828 gdbarch
= gdbarch_alloc (&info
, tdep
);
1830 tdep
->pc_regnum
= SPARC32_PC_REGNUM
;
1831 tdep
->npc_regnum
= SPARC32_NPC_REGNUM
;
1832 tdep
->step_trap
= sparc_step_trap
;
1833 tdep
->fpu_register_names
= sparc32_fpu_register_names
;
1834 tdep
->fpu_registers_num
= ARRAY_SIZE (sparc32_fpu_register_names
);
1835 tdep
->cp0_register_names
= sparc32_cp0_register_names
;
1836 tdep
->cp0_registers_num
= ARRAY_SIZE (sparc32_cp0_register_names
);
1838 set_gdbarch_long_double_bit (gdbarch
, 128);
1839 set_gdbarch_long_double_format (gdbarch
, floatformats_sparc_quad
);
1841 set_gdbarch_wchar_bit (gdbarch
, 16);
1842 set_gdbarch_wchar_signed (gdbarch
, 1);
1844 set_gdbarch_num_regs (gdbarch
, SPARC32_NUM_REGS
);
1845 set_gdbarch_register_name (gdbarch
, sparc32_register_name
);
1846 set_gdbarch_register_type (gdbarch
, sparc32_register_type
);
1847 set_gdbarch_num_pseudo_regs (gdbarch
, SPARC32_NUM_PSEUDO_REGS
);
1848 set_tdesc_pseudo_register_name (gdbarch
, sparc32_pseudo_register_name
);
1849 set_tdesc_pseudo_register_type (gdbarch
, sparc32_pseudo_register_type
);
1850 set_gdbarch_pseudo_register_read (gdbarch
, sparc32_pseudo_register_read
);
1851 set_gdbarch_pseudo_register_write (gdbarch
, sparc32_pseudo_register_write
);
1853 /* Register numbers of various important registers. */
1854 set_gdbarch_sp_regnum (gdbarch
, SPARC_SP_REGNUM
); /* %sp */
1855 set_gdbarch_pc_regnum (gdbarch
, SPARC32_PC_REGNUM
); /* %pc */
1856 set_gdbarch_fp0_regnum (gdbarch
, SPARC_F0_REGNUM
); /* %f0 */
1858 /* Call dummy code. */
1859 set_gdbarch_frame_align (gdbarch
, sparc32_frame_align
);
1860 set_gdbarch_call_dummy_location (gdbarch
, ON_STACK
);
1861 set_gdbarch_push_dummy_code (gdbarch
, sparc32_push_dummy_code
);
1862 set_gdbarch_push_dummy_call (gdbarch
, sparc32_push_dummy_call
);
1864 set_gdbarch_return_value (gdbarch
, sparc32_return_value
);
1865 set_gdbarch_stabs_argument_has_addr
1866 (gdbarch
, sparc32_stabs_argument_has_addr
);
1868 set_gdbarch_skip_prologue (gdbarch
, sparc32_skip_prologue
);
1870 /* Stack grows downward. */
1871 set_gdbarch_inner_than (gdbarch
, core_addr_lessthan
);
1873 set_gdbarch_breakpoint_kind_from_pc (gdbarch
,
1874 sparc_breakpoint::kind_from_pc
);
1875 set_gdbarch_sw_breakpoint_from_kind (gdbarch
,
1876 sparc_breakpoint::bp_from_kind
);
1878 set_gdbarch_frame_args_skip (gdbarch
, 8);
1880 set_gdbarch_software_single_step (gdbarch
, sparc_software_single_step
);
1881 set_gdbarch_write_pc (gdbarch
, sparc_write_pc
);
1883 set_gdbarch_dummy_id (gdbarch
, sparc_dummy_id
);
1885 frame_base_set_default (gdbarch
, &sparc32_frame_base
);
1887 /* Hook in the DWARF CFI frame unwinder. */
1888 dwarf2_frame_set_init_reg (gdbarch
, sparc32_dwarf2_frame_init_reg
);
1889 /* Register DWARF vendor CFI handler. */
1890 set_gdbarch_execute_dwarf_cfa_vendor_op (gdbarch
,
1891 sparc_execute_dwarf_cfa_vendor_op
);
1892 /* FIXME: kettenis/20050423: Don't enable the unwinder until the
1893 StackGhost issues have been resolved. */
1895 /* Hook in ABI-specific overrides, if they have been registered. */
1896 gdbarch_init_osabi (info
, gdbarch
);
1898 frame_unwind_append_unwinder (gdbarch
, &sparc32_frame_unwind
);
1900 if (tdesc_has_registers (tdesc
))
1902 tdesc_arch_data_up tdesc_data
= tdesc_data_alloc ();
1904 /* Validate that the descriptor provides the mandatory registers
1905 and allocate their numbers. */
1906 valid_p
&= validate_tdesc_registers (tdesc
, tdesc_data
.get (),
1907 "org.gnu.gdb.sparc.cpu",
1908 sparc_core_register_names
,
1909 ARRAY_SIZE (sparc_core_register_names
),
1911 valid_p
&= validate_tdesc_registers (tdesc
, tdesc_data
.get (),
1912 "org.gnu.gdb.sparc.fpu",
1913 tdep
->fpu_register_names
,
1914 tdep
->fpu_registers_num
,
1916 valid_p
&= validate_tdesc_registers (tdesc
, tdesc_data
.get (),
1917 "org.gnu.gdb.sparc.cp0",
1918 tdep
->cp0_register_names
,
1919 tdep
->cp0_registers_num
,
1921 + tdep
->fpu_registers_num
);
1925 /* Target description may have changed. */
1926 info
.tdesc_data
= tdesc_data
.get ();
1927 tdesc_use_registers (gdbarch
, tdesc
, std::move (tdesc_data
));
1930 /* If we have register sets, enable the generic core file support. */
1932 set_gdbarch_iterate_over_regset_sections
1933 (gdbarch
, sparc_iterate_over_regset_sections
);
1935 register_sparc_ravenscar_ops (gdbarch
);
1940 /* Helper functions for dealing with register windows. */
1943 sparc_supply_rwindow (struct regcache
*regcache
, CORE_ADDR sp
, int regnum
)
1945 struct gdbarch
*gdbarch
= regcache
->arch ();
1946 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
1953 /* Registers are 64-bit. */
1956 for (i
= SPARC_L0_REGNUM
; i
<= SPARC_I7_REGNUM
; i
++)
1958 if (regnum
== i
|| regnum
== -1)
1960 target_read_memory (sp
+ ((i
- SPARC_L0_REGNUM
) * 8), buf
, 8);
1962 /* Handle StackGhost. */
1963 if (i
== SPARC_I7_REGNUM
)
1965 ULONGEST wcookie
= sparc_fetch_wcookie (gdbarch
);
1968 i7
= extract_unsigned_integer (buf
+ offset
, 8, byte_order
);
1969 store_unsigned_integer (buf
+ offset
, 8, byte_order
,
1973 regcache
->raw_supply (i
, buf
);
1979 /* Registers are 32-bit. Toss any sign-extension of the stack
1983 /* Clear out the top half of the temporary buffer, and put the
1984 register value in the bottom half if we're in 64-bit mode. */
1985 if (gdbarch_ptr_bit (regcache
->arch ()) == 64)
1991 for (i
= SPARC_L0_REGNUM
; i
<= SPARC_I7_REGNUM
; i
++)
1993 if (regnum
== i
|| regnum
== -1)
1995 target_read_memory (sp
+ ((i
- SPARC_L0_REGNUM
) * 4),
1998 /* Handle StackGhost. */
1999 if (i
== SPARC_I7_REGNUM
)
2001 ULONGEST wcookie
= sparc_fetch_wcookie (gdbarch
);
2004 i7
= extract_unsigned_integer (buf
+ offset
, 4, byte_order
);
2005 store_unsigned_integer (buf
+ offset
, 4, byte_order
,
2009 regcache
->raw_supply (i
, buf
);
2016 sparc_collect_rwindow (const struct regcache
*regcache
,
2017 CORE_ADDR sp
, int regnum
)
2019 struct gdbarch
*gdbarch
= regcache
->arch ();
2020 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
2027 /* Registers are 64-bit. */
2030 for (i
= SPARC_L0_REGNUM
; i
<= SPARC_I7_REGNUM
; i
++)
2032 if (regnum
== -1 || regnum
== SPARC_SP_REGNUM
|| regnum
== i
)
2034 regcache
->raw_collect (i
, buf
);
2036 /* Handle StackGhost. */
2037 if (i
== SPARC_I7_REGNUM
)
2039 ULONGEST wcookie
= sparc_fetch_wcookie (gdbarch
);
2042 i7
= extract_unsigned_integer (buf
+ offset
, 8, byte_order
);
2043 store_unsigned_integer (buf
, 8, byte_order
, i7
^ wcookie
);
2046 target_write_memory (sp
+ ((i
- SPARC_L0_REGNUM
) * 8), buf
, 8);
2052 /* Registers are 32-bit. Toss any sign-extension of the stack
2056 /* Only use the bottom half if we're in 64-bit mode. */
2057 if (gdbarch_ptr_bit (regcache
->arch ()) == 64)
2060 for (i
= SPARC_L0_REGNUM
; i
<= SPARC_I7_REGNUM
; i
++)
2062 if (regnum
== -1 || regnum
== SPARC_SP_REGNUM
|| regnum
== i
)
2064 regcache
->raw_collect (i
, buf
);
2066 /* Handle StackGhost. */
2067 if (i
== SPARC_I7_REGNUM
)
2069 ULONGEST wcookie
= sparc_fetch_wcookie (gdbarch
);
2072 i7
= extract_unsigned_integer (buf
+ offset
, 4, byte_order
);
2073 store_unsigned_integer (buf
+ offset
, 4, byte_order
,
2077 target_write_memory (sp
+ ((i
- SPARC_L0_REGNUM
) * 4),
2084 /* Helper functions for dealing with register sets. */
2087 sparc32_supply_gregset (const struct sparc_gregmap
*gregmap
,
2088 struct regcache
*regcache
,
2089 int regnum
, const void *gregs
)
2091 const gdb_byte
*regs
= (const gdb_byte
*) gregs
;
2092 gdb_byte zero
[4] = { 0 };
2095 if (regnum
== SPARC32_PSR_REGNUM
|| regnum
== -1)
2096 regcache
->raw_supply (SPARC32_PSR_REGNUM
, regs
+ gregmap
->r_psr_offset
);
2098 if (regnum
== SPARC32_PC_REGNUM
|| regnum
== -1)
2099 regcache
->raw_supply (SPARC32_PC_REGNUM
, regs
+ gregmap
->r_pc_offset
);
2101 if (regnum
== SPARC32_NPC_REGNUM
|| regnum
== -1)
2102 regcache
->raw_supply (SPARC32_NPC_REGNUM
, regs
+ gregmap
->r_npc_offset
);
2104 if (regnum
== SPARC32_Y_REGNUM
|| regnum
== -1)
2105 regcache
->raw_supply (SPARC32_Y_REGNUM
, regs
+ gregmap
->r_y_offset
);
2107 if (regnum
== SPARC_G0_REGNUM
|| regnum
== -1)
2108 regcache
->raw_supply (SPARC_G0_REGNUM
, &zero
);
2110 if ((regnum
>= SPARC_G1_REGNUM
&& regnum
<= SPARC_O7_REGNUM
) || regnum
== -1)
2112 int offset
= gregmap
->r_g1_offset
;
2114 for (i
= SPARC_G1_REGNUM
; i
<= SPARC_O7_REGNUM
; i
++)
2116 if (regnum
== i
|| regnum
== -1)
2117 regcache
->raw_supply (i
, regs
+ offset
);
2122 if ((regnum
>= SPARC_L0_REGNUM
&& regnum
<= SPARC_I7_REGNUM
) || regnum
== -1)
2124 /* Not all of the register set variants include Locals and
2125 Inputs. For those that don't, we read them off the stack. */
2126 if (gregmap
->r_l0_offset
== -1)
2130 regcache_cooked_read_unsigned (regcache
, SPARC_SP_REGNUM
, &sp
);
2131 sparc_supply_rwindow (regcache
, sp
, regnum
);
2135 int offset
= gregmap
->r_l0_offset
;
2137 for (i
= SPARC_L0_REGNUM
; i
<= SPARC_I7_REGNUM
; i
++)
2139 if (regnum
== i
|| regnum
== -1)
2140 regcache
->raw_supply (i
, regs
+ offset
);
2148 sparc32_collect_gregset (const struct sparc_gregmap
*gregmap
,
2149 const struct regcache
*regcache
,
2150 int regnum
, void *gregs
)
2152 gdb_byte
*regs
= (gdb_byte
*) gregs
;
2155 if (regnum
== SPARC32_PSR_REGNUM
|| regnum
== -1)
2156 regcache
->raw_collect (SPARC32_PSR_REGNUM
, regs
+ gregmap
->r_psr_offset
);
2158 if (regnum
== SPARC32_PC_REGNUM
|| regnum
== -1)
2159 regcache
->raw_collect (SPARC32_PC_REGNUM
, regs
+ gregmap
->r_pc_offset
);
2161 if (regnum
== SPARC32_NPC_REGNUM
|| regnum
== -1)
2162 regcache
->raw_collect (SPARC32_NPC_REGNUM
, regs
+ gregmap
->r_npc_offset
);
2164 if (regnum
== SPARC32_Y_REGNUM
|| regnum
== -1)
2165 regcache
->raw_collect (SPARC32_Y_REGNUM
, regs
+ gregmap
->r_y_offset
);
2167 if ((regnum
>= SPARC_G1_REGNUM
&& regnum
<= SPARC_O7_REGNUM
) || regnum
== -1)
2169 int offset
= gregmap
->r_g1_offset
;
2171 /* %g0 is always zero. */
2172 for (i
= SPARC_G1_REGNUM
; i
<= SPARC_O7_REGNUM
; i
++)
2174 if (regnum
== i
|| regnum
== -1)
2175 regcache
->raw_collect (i
, regs
+ offset
);
2180 if ((regnum
>= SPARC_L0_REGNUM
&& regnum
<= SPARC_I7_REGNUM
) || regnum
== -1)
2182 /* Not all of the register set variants include Locals and
2183 Inputs. For those that don't, we read them off the stack. */
2184 if (gregmap
->r_l0_offset
!= -1)
2186 int offset
= gregmap
->r_l0_offset
;
2188 for (i
= SPARC_L0_REGNUM
; i
<= SPARC_I7_REGNUM
; i
++)
2190 if (regnum
== i
|| regnum
== -1)
2191 regcache
->raw_collect (i
, regs
+ offset
);
2199 sparc32_supply_fpregset (const struct sparc_fpregmap
*fpregmap
,
2200 struct regcache
*regcache
,
2201 int regnum
, const void *fpregs
)
2203 const gdb_byte
*regs
= (const gdb_byte
*) fpregs
;
2206 for (i
= 0; i
< 32; i
++)
2208 if (regnum
== (SPARC_F0_REGNUM
+ i
) || regnum
== -1)
2209 regcache
->raw_supply (SPARC_F0_REGNUM
+ i
,
2210 regs
+ fpregmap
->r_f0_offset
+ (i
* 4));
2213 if (regnum
== SPARC32_FSR_REGNUM
|| regnum
== -1)
2214 regcache
->raw_supply (SPARC32_FSR_REGNUM
, regs
+ fpregmap
->r_fsr_offset
);
2218 sparc32_collect_fpregset (const struct sparc_fpregmap
*fpregmap
,
2219 const struct regcache
*regcache
,
2220 int regnum
, void *fpregs
)
2222 gdb_byte
*regs
= (gdb_byte
*) fpregs
;
2225 for (i
= 0; i
< 32; i
++)
2227 if (regnum
== (SPARC_F0_REGNUM
+ i
) || regnum
== -1)
2228 regcache
->raw_collect (SPARC_F0_REGNUM
+ i
,
2229 regs
+ fpregmap
->r_f0_offset
+ (i
* 4));
2232 if (regnum
== SPARC32_FSR_REGNUM
|| regnum
== -1)
2233 regcache
->raw_collect (SPARC32_FSR_REGNUM
,
2234 regs
+ fpregmap
->r_fsr_offset
);
2240 /* From <machine/reg.h>. */
2241 const struct sparc_gregmap sparc32_sunos4_gregmap
=
2253 const struct sparc_fpregmap sparc32_sunos4_fpregmap
=
2259 const struct sparc_fpregmap sparc32_bsd_fpregmap
=
2265 void _initialize_sparc_tdep ();
2267 _initialize_sparc_tdep ()
2269 register_gdbarch_init (bfd_arch_sparc
, sparc32_gdbarch_init
);