1 /* tc-arm.c -- Assemble for the ARM
2 Copyright (C) 1994-2019 Free Software Foundation, Inc.
3 Contributed by Richard Earnshaw (rwe@pegasus.esprit.ec.org)
4 Modified by David Taylor (dtaylor@armltd.co.uk)
5 Cirrus coprocessor mods by Aldy Hernandez (aldyh@redhat.com)
6 Cirrus coprocessor fixes by Petko Manolov (petkan@nucleusys.com)
7 Cirrus coprocessor fixes by Vladimir Ivanov (vladitx@nucleusys.com)
9 This file is part of GAS, the GNU Assembler.
11 GAS is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3, or (at your option)
16 GAS is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
21 You should have received a copy of the GNU General Public License
22 along with GAS; see the file COPYING. If not, write to the Free
23 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
30 #include "safe-ctype.h"
33 #include "libiberty.h"
34 #include "opcode/arm.h"
38 #include "dw2gencfi.h"
41 #include "dwarf2dbg.h"
44 /* Must be at least the size of the largest unwind opcode (currently two). */
45 #define ARM_OPCODE_CHUNK_SIZE 8
47 /* This structure holds the unwinding state. */
52 symbolS
* table_entry
;
53 symbolS
* personality_routine
;
54 int personality_index
;
55 /* The segment containing the function. */
58 /* Opcodes generated from this function. */
59 unsigned char * opcodes
;
62 /* The number of bytes pushed to the stack. */
64 /* We don't add stack adjustment opcodes immediately so that we can merge
65 multiple adjustments. We can also omit the final adjustment
66 when using a frame pointer. */
67 offsetT pending_offset
;
68 /* These two fields are set by both unwind_movsp and unwind_setfp. They
69 hold the reg+offset to use when restoring sp from a frame pointer. */
72 /* Nonzero if an unwind_setfp directive has been seen. */
74 /* Nonzero if the last opcode restores sp from fp_reg. */
75 unsigned sp_restored
:1;
78 /* Whether --fdpic was given. */
83 /* Results from operand parsing worker functions. */
87 PARSE_OPERAND_SUCCESS
,
89 PARSE_OPERAND_FAIL_NO_BACKTRACK
90 } parse_operand_result
;
99 /* Types of processor to assemble for. */
101 /* The code that was here used to select a default CPU depending on compiler
102 pre-defines which were only present when doing native builds, thus
103 changing gas' default behaviour depending upon the build host.
105 If you have a target that requires a default CPU option then the you
106 should define CPU_DEFAULT here. */
111 # define FPU_DEFAULT FPU_ARCH_FPA
112 # elif defined (TE_NetBSD)
114 # define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, but VFP order. */
116 /* Legacy a.out format. */
117 # define FPU_DEFAULT FPU_ARCH_FPA /* Soft-float, but FPA order. */
119 # elif defined (TE_VXWORKS)
120 # define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, VFP order. */
122 /* For backwards compatibility, default to FPA. */
123 # define FPU_DEFAULT FPU_ARCH_FPA
125 #endif /* ifndef FPU_DEFAULT */
127 #define streq(a, b) (strcmp (a, b) == 0)
129 /* Current set of feature bits available (CPU+FPU). Different from
130 selected_cpu + selected_fpu in case of autodetection since the CPU
131 feature bits are then all set. */
132 static arm_feature_set cpu_variant
;
133 /* Feature bits used in each execution state. Used to set build attribute
134 (in particular Tag_*_ISA_use) in CPU autodetection mode. */
135 static arm_feature_set arm_arch_used
;
136 static arm_feature_set thumb_arch_used
;
138 /* Flags stored in private area of BFD structure. */
139 static int uses_apcs_26
= FALSE
;
140 static int atpcs
= FALSE
;
141 static int support_interwork
= FALSE
;
142 static int uses_apcs_float
= FALSE
;
143 static int pic_code
= FALSE
;
144 static int fix_v4bx
= FALSE
;
145 /* Warn on using deprecated features. */
146 static int warn_on_deprecated
= TRUE
;
148 /* Understand CodeComposer Studio assembly syntax. */
149 bfd_boolean codecomposer_syntax
= FALSE
;
151 /* Variables that we set while parsing command-line options. Once all
152 options have been read we re-process these values to set the real
155 /* CPU and FPU feature bits set for legacy CPU and FPU options (eg. -marm1
156 instead of -mcpu=arm1). */
157 static const arm_feature_set
*legacy_cpu
= NULL
;
158 static const arm_feature_set
*legacy_fpu
= NULL
;
160 /* CPU, extension and FPU feature bits selected by -mcpu. */
161 static const arm_feature_set
*mcpu_cpu_opt
= NULL
;
162 static arm_feature_set
*mcpu_ext_opt
= NULL
;
163 static const arm_feature_set
*mcpu_fpu_opt
= NULL
;
165 /* CPU, extension and FPU feature bits selected by -march. */
166 static const arm_feature_set
*march_cpu_opt
= NULL
;
167 static arm_feature_set
*march_ext_opt
= NULL
;
168 static const arm_feature_set
*march_fpu_opt
= NULL
;
170 /* Feature bits selected by -mfpu. */
171 static const arm_feature_set
*mfpu_opt
= NULL
;
173 /* Constants for known architecture features. */
174 static const arm_feature_set fpu_default
= FPU_DEFAULT
;
175 static const arm_feature_set fpu_arch_vfp_v1 ATTRIBUTE_UNUSED
= FPU_ARCH_VFP_V1
;
176 static const arm_feature_set fpu_arch_vfp_v2
= FPU_ARCH_VFP_V2
;
177 static const arm_feature_set fpu_arch_vfp_v3 ATTRIBUTE_UNUSED
= FPU_ARCH_VFP_V3
;
178 static const arm_feature_set fpu_arch_neon_v1 ATTRIBUTE_UNUSED
= FPU_ARCH_NEON_V1
;
179 static const arm_feature_set fpu_arch_fpa
= FPU_ARCH_FPA
;
180 static const arm_feature_set fpu_any_hard
= FPU_ANY_HARD
;
182 static const arm_feature_set fpu_arch_maverick
= FPU_ARCH_MAVERICK
;
184 static const arm_feature_set fpu_endian_pure
= FPU_ARCH_ENDIAN_PURE
;
187 static const arm_feature_set cpu_default
= CPU_DEFAULT
;
190 static const arm_feature_set arm_ext_v1
= ARM_FEATURE_CORE_LOW (ARM_EXT_V1
);
191 static const arm_feature_set arm_ext_v2
= ARM_FEATURE_CORE_LOW (ARM_EXT_V2
);
192 static const arm_feature_set arm_ext_v2s
= ARM_FEATURE_CORE_LOW (ARM_EXT_V2S
);
193 static const arm_feature_set arm_ext_v3
= ARM_FEATURE_CORE_LOW (ARM_EXT_V3
);
194 static const arm_feature_set arm_ext_v3m
= ARM_FEATURE_CORE_LOW (ARM_EXT_V3M
);
195 static const arm_feature_set arm_ext_v4
= ARM_FEATURE_CORE_LOW (ARM_EXT_V4
);
196 static const arm_feature_set arm_ext_v4t
= ARM_FEATURE_CORE_LOW (ARM_EXT_V4T
);
197 static const arm_feature_set arm_ext_v5
= ARM_FEATURE_CORE_LOW (ARM_EXT_V5
);
198 static const arm_feature_set arm_ext_v4t_5
=
199 ARM_FEATURE_CORE_LOW (ARM_EXT_V4T
| ARM_EXT_V5
);
200 static const arm_feature_set arm_ext_v5t
= ARM_FEATURE_CORE_LOW (ARM_EXT_V5T
);
201 static const arm_feature_set arm_ext_v5e
= ARM_FEATURE_CORE_LOW (ARM_EXT_V5E
);
202 static const arm_feature_set arm_ext_v5exp
= ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP
);
203 static const arm_feature_set arm_ext_v5j
= ARM_FEATURE_CORE_LOW (ARM_EXT_V5J
);
204 static const arm_feature_set arm_ext_v6
= ARM_FEATURE_CORE_LOW (ARM_EXT_V6
);
205 static const arm_feature_set arm_ext_v6k
= ARM_FEATURE_CORE_LOW (ARM_EXT_V6K
);
206 static const arm_feature_set arm_ext_v6t2
= ARM_FEATURE_CORE_LOW (ARM_EXT_V6T2
);
207 /* Only for compatability of hint instructions. */
208 static const arm_feature_set arm_ext_v6k_v6t2
=
209 ARM_FEATURE_CORE_LOW (ARM_EXT_V6K
| ARM_EXT_V6T2
);
210 static const arm_feature_set arm_ext_v6_notm
=
211 ARM_FEATURE_CORE_LOW (ARM_EXT_V6_NOTM
);
212 static const arm_feature_set arm_ext_v6_dsp
=
213 ARM_FEATURE_CORE_LOW (ARM_EXT_V6_DSP
);
214 static const arm_feature_set arm_ext_barrier
=
215 ARM_FEATURE_CORE_LOW (ARM_EXT_BARRIER
);
216 static const arm_feature_set arm_ext_msr
=
217 ARM_FEATURE_CORE_LOW (ARM_EXT_THUMB_MSR
);
218 static const arm_feature_set arm_ext_div
= ARM_FEATURE_CORE_LOW (ARM_EXT_DIV
);
219 static const arm_feature_set arm_ext_v7
= ARM_FEATURE_CORE_LOW (ARM_EXT_V7
);
220 static const arm_feature_set arm_ext_v7a
= ARM_FEATURE_CORE_LOW (ARM_EXT_V7A
);
221 static const arm_feature_set arm_ext_v7r
= ARM_FEATURE_CORE_LOW (ARM_EXT_V7R
);
223 static const arm_feature_set ATTRIBUTE_UNUSED arm_ext_v7m
= ARM_FEATURE_CORE_LOW (ARM_EXT_V7M
);
225 static const arm_feature_set arm_ext_v8
= ARM_FEATURE_CORE_LOW (ARM_EXT_V8
);
226 static const arm_feature_set arm_ext_m
=
227 ARM_FEATURE_CORE (ARM_EXT_V6M
| ARM_EXT_V7M
,
228 ARM_EXT2_V8M
| ARM_EXT2_V8M_MAIN
);
229 static const arm_feature_set arm_ext_mp
= ARM_FEATURE_CORE_LOW (ARM_EXT_MP
);
230 static const arm_feature_set arm_ext_sec
= ARM_FEATURE_CORE_LOW (ARM_EXT_SEC
);
231 static const arm_feature_set arm_ext_os
= ARM_FEATURE_CORE_LOW (ARM_EXT_OS
);
232 static const arm_feature_set arm_ext_adiv
= ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV
);
233 static const arm_feature_set arm_ext_virt
= ARM_FEATURE_CORE_LOW (ARM_EXT_VIRT
);
234 static const arm_feature_set arm_ext_pan
= ARM_FEATURE_CORE_HIGH (ARM_EXT2_PAN
);
235 static const arm_feature_set arm_ext_v8m
= ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8M
);
236 static const arm_feature_set arm_ext_v8m_main
=
237 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8M_MAIN
);
238 static const arm_feature_set arm_ext_v8_1m_main
=
239 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8_1M_MAIN
);
240 /* Instructions in ARMv8-M only found in M profile architectures. */
241 static const arm_feature_set arm_ext_v8m_m_only
=
242 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8M
| ARM_EXT2_V8M_MAIN
);
243 static const arm_feature_set arm_ext_v6t2_v8m
=
244 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V6T2_V8M
);
245 /* Instructions shared between ARMv8-A and ARMv8-M. */
246 static const arm_feature_set arm_ext_atomics
=
247 ARM_FEATURE_CORE_HIGH (ARM_EXT2_ATOMICS
);
249 /* DSP instructions Tag_DSP_extension refers to. */
250 static const arm_feature_set arm_ext_dsp
=
251 ARM_FEATURE_CORE_LOW (ARM_EXT_V5E
| ARM_EXT_V5ExP
| ARM_EXT_V6_DSP
);
253 static const arm_feature_set arm_ext_ras
=
254 ARM_FEATURE_CORE_HIGH (ARM_EXT2_RAS
);
255 /* FP16 instructions. */
256 static const arm_feature_set arm_ext_fp16
=
257 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST
);
258 static const arm_feature_set arm_ext_fp16_fml
=
259 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_FML
);
260 static const arm_feature_set arm_ext_v8_2
=
261 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8_2A
);
262 static const arm_feature_set arm_ext_v8_3
=
263 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8_3A
);
264 static const arm_feature_set arm_ext_sb
=
265 ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB
);
266 static const arm_feature_set arm_ext_predres
=
267 ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES
);
269 static const arm_feature_set arm_arch_any
= ARM_ANY
;
271 static const arm_feature_set fpu_any
= FPU_ANY
;
273 static const arm_feature_set arm_arch_full ATTRIBUTE_UNUSED
= ARM_FEATURE (-1, -1, -1);
274 static const arm_feature_set arm_arch_t2
= ARM_ARCH_THUMB2
;
275 static const arm_feature_set arm_arch_none
= ARM_ARCH_NONE
;
277 static const arm_feature_set arm_cext_iwmmxt2
=
278 ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT2
);
279 static const arm_feature_set arm_cext_iwmmxt
=
280 ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT
);
281 static const arm_feature_set arm_cext_xscale
=
282 ARM_FEATURE_COPROC (ARM_CEXT_XSCALE
);
283 static const arm_feature_set arm_cext_maverick
=
284 ARM_FEATURE_COPROC (ARM_CEXT_MAVERICK
);
285 static const arm_feature_set fpu_fpa_ext_v1
=
286 ARM_FEATURE_COPROC (FPU_FPA_EXT_V1
);
287 static const arm_feature_set fpu_fpa_ext_v2
=
288 ARM_FEATURE_COPROC (FPU_FPA_EXT_V2
);
289 static const arm_feature_set fpu_vfp_ext_v1xd
=
290 ARM_FEATURE_COPROC (FPU_VFP_EXT_V1xD
);
291 static const arm_feature_set fpu_vfp_ext_v1
=
292 ARM_FEATURE_COPROC (FPU_VFP_EXT_V1
);
293 static const arm_feature_set fpu_vfp_ext_v2
=
294 ARM_FEATURE_COPROC (FPU_VFP_EXT_V2
);
295 static const arm_feature_set fpu_vfp_ext_v3xd
=
296 ARM_FEATURE_COPROC (FPU_VFP_EXT_V3xD
);
297 static const arm_feature_set fpu_vfp_ext_v3
=
298 ARM_FEATURE_COPROC (FPU_VFP_EXT_V3
);
299 static const arm_feature_set fpu_vfp_ext_d32
=
300 ARM_FEATURE_COPROC (FPU_VFP_EXT_D32
);
301 static const arm_feature_set fpu_neon_ext_v1
=
302 ARM_FEATURE_COPROC (FPU_NEON_EXT_V1
);
303 static const arm_feature_set fpu_vfp_v3_or_neon_ext
=
304 ARM_FEATURE_COPROC (FPU_NEON_EXT_V1
| FPU_VFP_EXT_V3
);
305 static const arm_feature_set mve_ext
=
306 ARM_FEATURE_COPROC (FPU_MVE
);
307 static const arm_feature_set mve_fp_ext
=
308 ARM_FEATURE_COPROC (FPU_MVE_FP
);
310 static const arm_feature_set fpu_vfp_fp16
=
311 ARM_FEATURE_COPROC (FPU_VFP_EXT_FP16
);
312 static const arm_feature_set fpu_neon_ext_fma
=
313 ARM_FEATURE_COPROC (FPU_NEON_EXT_FMA
);
315 static const arm_feature_set fpu_vfp_ext_fma
=
316 ARM_FEATURE_COPROC (FPU_VFP_EXT_FMA
);
317 static const arm_feature_set fpu_vfp_ext_armv8
=
318 ARM_FEATURE_COPROC (FPU_VFP_EXT_ARMV8
);
319 static const arm_feature_set fpu_vfp_ext_armv8xd
=
320 ARM_FEATURE_COPROC (FPU_VFP_EXT_ARMV8xD
);
321 static const arm_feature_set fpu_neon_ext_armv8
=
322 ARM_FEATURE_COPROC (FPU_NEON_EXT_ARMV8
);
323 static const arm_feature_set fpu_crypto_ext_armv8
=
324 ARM_FEATURE_COPROC (FPU_CRYPTO_EXT_ARMV8
);
325 static const arm_feature_set crc_ext_armv8
=
326 ARM_FEATURE_COPROC (CRC_EXT_ARMV8
);
327 static const arm_feature_set fpu_neon_ext_v8_1
=
328 ARM_FEATURE_COPROC (FPU_NEON_EXT_RDMA
);
329 static const arm_feature_set fpu_neon_ext_dotprod
=
330 ARM_FEATURE_COPROC (FPU_NEON_EXT_DOTPROD
);
332 static int mfloat_abi_opt
= -1;
333 /* Architecture feature bits selected by the last -mcpu/-march or .cpu/.arch
335 static arm_feature_set selected_arch
= ARM_ARCH_NONE
;
336 /* Extension feature bits selected by the last -mcpu/-march or .arch_extension
338 static arm_feature_set selected_ext
= ARM_ARCH_NONE
;
339 /* Feature bits selected by the last -mcpu/-march or by the combination of the
340 last .cpu/.arch directive .arch_extension directives since that
342 static arm_feature_set selected_cpu
= ARM_ARCH_NONE
;
343 /* FPU feature bits selected by the last -mfpu or .fpu directive. */
344 static arm_feature_set selected_fpu
= FPU_NONE
;
345 /* Feature bits selected by the last .object_arch directive. */
346 static arm_feature_set selected_object_arch
= ARM_ARCH_NONE
;
347 /* Must be long enough to hold any of the names in arm_cpus. */
348 static char selected_cpu_name
[20];
350 extern FLONUM_TYPE generic_floating_point_number
;
352 /* Return if no cpu was selected on command-line. */
354 no_cpu_selected (void)
356 return ARM_FEATURE_EQUAL (selected_cpu
, arm_arch_none
);
361 static int meabi_flags
= EABI_DEFAULT
;
363 static int meabi_flags
= EF_ARM_EABI_UNKNOWN
;
366 static int attributes_set_explicitly
[NUM_KNOWN_OBJ_ATTRIBUTES
];
371 return (EF_ARM_EABI_VERSION (meabi_flags
) >= EF_ARM_EABI_VER4
);
376 /* Pre-defined "_GLOBAL_OFFSET_TABLE_" */
377 symbolS
* GOT_symbol
;
380 /* 0: assemble for ARM,
381 1: assemble for Thumb,
382 2: assemble for Thumb even though target CPU does not support thumb
384 static int thumb_mode
= 0;
385 /* A value distinct from the possible values for thumb_mode that we
386 can use to record whether thumb_mode has been copied into the
387 tc_frag_data field of a frag. */
388 #define MODE_RECORDED (1 << 4)
390 /* Specifies the intrinsic IT insn behavior mode. */
391 enum implicit_it_mode
393 IMPLICIT_IT_MODE_NEVER
= 0x00,
394 IMPLICIT_IT_MODE_ARM
= 0x01,
395 IMPLICIT_IT_MODE_THUMB
= 0x02,
396 IMPLICIT_IT_MODE_ALWAYS
= (IMPLICIT_IT_MODE_ARM
| IMPLICIT_IT_MODE_THUMB
)
398 static int implicit_it_mode
= IMPLICIT_IT_MODE_ARM
;
400 /* If unified_syntax is true, we are processing the new unified
401 ARM/Thumb syntax. Important differences from the old ARM mode:
403 - Immediate operands do not require a # prefix.
404 - Conditional affixes always appear at the end of the
405 instruction. (For backward compatibility, those instructions
406 that formerly had them in the middle, continue to accept them
408 - The IT instruction may appear, and if it does is validated
409 against subsequent conditional affixes. It does not generate
412 Important differences from the old Thumb mode:
414 - Immediate operands do not require a # prefix.
415 - Most of the V6T2 instructions are only available in unified mode.
416 - The .N and .W suffixes are recognized and honored (it is an error
417 if they cannot be honored).
418 - All instructions set the flags if and only if they have an 's' affix.
419 - Conditional affixes may be used. They are validated against
420 preceding IT instructions. Unlike ARM mode, you cannot use a
421 conditional affix except in the scope of an IT instruction. */
423 static bfd_boolean unified_syntax
= FALSE
;
425 /* An immediate operand can start with #, and ld*, st*, pld operands
426 can contain [ and ]. We need to tell APP not to elide whitespace
427 before a [, which can appear as the first operand for pld.
428 Likewise, a { can appear as the first operand for push, pop, vld*, etc. */
429 const char arm_symbol_chars
[] = "#[]{}";
444 enum neon_el_type type
;
448 #define NEON_MAX_TYPE_ELS 4
452 struct neon_type_el el
[NEON_MAX_TYPE_ELS
];
456 enum pred_instruction_type
462 IF_INSIDE_IT_LAST_INSN
, /* Either outside or inside;
463 if inside, should be the last one. */
464 NEUTRAL_IT_INSN
, /* This could be either inside or outside,
465 i.e. BKPT and NOP. */
466 IT_INSN
, /* The IT insn has been parsed. */
467 VPT_INSN
, /* The VPT/VPST insn has been parsed. */
468 MVE_OUTSIDE_PRED_INSN
, /* Instruction to indicate a MVE instruction without
469 a predication code. */
470 MVE_UNPREDICABLE_INSN
/* MVE instruction that is non-predicable. */
473 /* The maximum number of operands we need. */
474 #define ARM_IT_MAX_OPERANDS 6
475 #define ARM_IT_MAX_RELOCS 3
480 unsigned long instruction
;
484 /* "uncond_value" is set to the value in place of the conditional field in
485 unconditional versions of the instruction, or -1 if nothing is
488 struct neon_type vectype
;
489 /* This does not indicate an actual NEON instruction, only that
490 the mnemonic accepts neon-style type suffixes. */
492 /* Set to the opcode if the instruction needs relaxation.
493 Zero if the instruction is not relaxed. */
497 bfd_reloc_code_real_type type
;
500 } relocs
[ARM_IT_MAX_RELOCS
];
502 enum pred_instruction_type pred_insn_type
;
508 struct neon_type_el vectype
;
509 unsigned present
: 1; /* Operand present. */
510 unsigned isreg
: 1; /* Operand was a register. */
511 unsigned immisreg
: 2; /* .imm field is a second register.
512 0: imm, 1: gpr, 2: MVE Q-register. */
513 unsigned isscalar
: 2; /* Operand is a (SIMD) scalar:
517 unsigned immisalign
: 1; /* Immediate is an alignment specifier. */
518 unsigned immisfloat
: 1; /* Immediate was parsed as a float. */
519 /* Note: we abuse "regisimm" to mean "is Neon register" in VMOV
520 instructions. This allows us to disambiguate ARM <-> vector insns. */
521 unsigned regisimm
: 1; /* 64-bit immediate, reg forms high 32 bits. */
522 unsigned isvec
: 1; /* Is a single, double or quad VFP/Neon reg. */
523 unsigned isquad
: 1; /* Operand is SIMD quad register. */
524 unsigned issingle
: 1; /* Operand is VFP single-precision register. */
525 unsigned iszr
: 1; /* Operand is ZR register. */
526 unsigned hasreloc
: 1; /* Operand has relocation suffix. */
527 unsigned writeback
: 1; /* Operand has trailing ! */
528 unsigned preind
: 1; /* Preindexed address. */
529 unsigned postind
: 1; /* Postindexed address. */
530 unsigned negative
: 1; /* Index register was negated. */
531 unsigned shifted
: 1; /* Shift applied to operation. */
532 unsigned shift_kind
: 3; /* Shift operation (enum shift_kind). */
533 } operands
[ARM_IT_MAX_OPERANDS
];
536 static struct arm_it inst
;
538 #define NUM_FLOAT_VALS 8
540 const char * fp_const
[] =
542 "0.0", "1.0", "2.0", "3.0", "4.0", "5.0", "0.5", "10.0", 0
545 LITTLENUM_TYPE fp_values
[NUM_FLOAT_VALS
][MAX_LITTLENUMS
];
555 #define CP_T_X 0x00008000
556 #define CP_T_Y 0x00400000
558 #define CONDS_BIT 0x00100000
559 #define LOAD_BIT 0x00100000
561 #define DOUBLE_LOAD_FLAG 0x00000001
565 const char * template_name
;
569 #define COND_ALWAYS 0xE
573 const char * template_name
;
577 struct asm_barrier_opt
579 const char * template_name
;
581 const arm_feature_set arch
;
584 /* The bit that distinguishes CPSR and SPSR. */
585 #define SPSR_BIT (1 << 22)
587 /* The individual PSR flag bits. */
588 #define PSR_c (1 << 16)
589 #define PSR_x (1 << 17)
590 #define PSR_s (1 << 18)
591 #define PSR_f (1 << 19)
596 bfd_reloc_code_real_type reloc
;
601 VFP_REG_Sd
, VFP_REG_Sm
, VFP_REG_Sn
,
602 VFP_REG_Dd
, VFP_REG_Dm
, VFP_REG_Dn
607 VFP_LDSTMIA
, VFP_LDSTMDB
, VFP_LDSTMIAX
, VFP_LDSTMDBX
610 /* Bits for DEFINED field in neon_typed_alias. */
611 #define NTA_HASTYPE 1
612 #define NTA_HASINDEX 2
614 struct neon_typed_alias
616 unsigned char defined
;
618 struct neon_type_el eltype
;
621 /* ARM register categories. This includes coprocessor numbers and various
622 architecture extensions' registers. Each entry should have an error message
623 in reg_expected_msgs below. */
653 /* Structure for a hash table entry for a register.
654 If TYPE is REG_TYPE_VFD or REG_TYPE_NQ, the NEON field can point to extra
655 information which states whether a vector type or index is specified (for a
656 register alias created with .dn or .qn). Otherwise NEON should be NULL. */
662 unsigned char builtin
;
663 struct neon_typed_alias
* neon
;
666 /* Diagnostics used when we don't get a register of the expected type. */
667 const char * const reg_expected_msgs
[] =
669 [REG_TYPE_RN
] = N_("ARM register expected"),
670 [REG_TYPE_CP
] = N_("bad or missing co-processor number"),
671 [REG_TYPE_CN
] = N_("co-processor register expected"),
672 [REG_TYPE_FN
] = N_("FPA register expected"),
673 [REG_TYPE_VFS
] = N_("VFP single precision register expected"),
674 [REG_TYPE_VFD
] = N_("VFP/Neon double precision register expected"),
675 [REG_TYPE_NQ
] = N_("Neon quad precision register expected"),
676 [REG_TYPE_VFSD
] = N_("VFP single or double precision register expected"),
677 [REG_TYPE_NDQ
] = N_("Neon double or quad precision register expected"),
678 [REG_TYPE_NSD
] = N_("Neon single or double precision register expected"),
679 [REG_TYPE_NSDQ
] = N_("VFP single, double or Neon quad precision register"
681 [REG_TYPE_VFC
] = N_("VFP system register expected"),
682 [REG_TYPE_MVF
] = N_("Maverick MVF register expected"),
683 [REG_TYPE_MVD
] = N_("Maverick MVD register expected"),
684 [REG_TYPE_MVFX
] = N_("Maverick MVFX register expected"),
685 [REG_TYPE_MVDX
] = N_("Maverick MVDX register expected"),
686 [REG_TYPE_MVAX
] = N_("Maverick MVAX register expected"),
687 [REG_TYPE_DSPSC
] = N_("Maverick DSPSC register expected"),
688 [REG_TYPE_MMXWR
] = N_("iWMMXt data register expected"),
689 [REG_TYPE_MMXWC
] = N_("iWMMXt control register expected"),
690 [REG_TYPE_MMXWCG
] = N_("iWMMXt scalar register expected"),
691 [REG_TYPE_XSCALE
] = N_("XScale accumulator register expected"),
692 [REG_TYPE_MQ
] = N_("MVE vector register expected"),
693 [REG_TYPE_RNB
] = N_("")
696 /* Some well known registers that we refer to directly elsewhere. */
702 /* ARM instructions take 4bytes in the object file, Thumb instructions
708 /* Basic string to match. */
709 const char * template_name
;
711 /* Parameters to instruction. */
712 unsigned int operands
[8];
714 /* Conditional tag - see opcode_lookup. */
715 unsigned int tag
: 4;
717 /* Basic instruction code. */
720 /* Thumb-format instruction code. */
723 /* Which architecture variant provides this instruction. */
724 const arm_feature_set
* avariant
;
725 const arm_feature_set
* tvariant
;
727 /* Function to call to encode instruction in ARM format. */
728 void (* aencode
) (void);
730 /* Function to call to encode instruction in Thumb format. */
731 void (* tencode
) (void);
733 /* Indicates whether this instruction may be vector predicated. */
734 unsigned int mayBeVecPred
: 1;
737 /* Defines for various bits that we will want to toggle. */
738 #define INST_IMMEDIATE 0x02000000
739 #define OFFSET_REG 0x02000000
740 #define HWOFFSET_IMM 0x00400000
741 #define SHIFT_BY_REG 0x00000010
742 #define PRE_INDEX 0x01000000
743 #define INDEX_UP 0x00800000
744 #define WRITE_BACK 0x00200000
745 #define LDM_TYPE_2_OR_3 0x00400000
746 #define CPSI_MMOD 0x00020000
748 #define LITERAL_MASK 0xf000f000
749 #define OPCODE_MASK 0xfe1fffff
750 #define V4_STR_BIT 0x00000020
751 #define VLDR_VMOV_SAME 0x0040f000
753 #define T2_SUBS_PC_LR 0xf3de8f00
755 #define DATA_OP_SHIFT 21
756 #define SBIT_SHIFT 20
758 #define T2_OPCODE_MASK 0xfe1fffff
759 #define T2_DATA_OP_SHIFT 21
760 #define T2_SBIT_SHIFT 20
762 #define A_COND_MASK 0xf0000000
763 #define A_PUSH_POP_OP_MASK 0x0fff0000
765 /* Opcodes for pushing/poping registers to/from the stack. */
766 #define A1_OPCODE_PUSH 0x092d0000
767 #define A2_OPCODE_PUSH 0x052d0004
768 #define A2_OPCODE_POP 0x049d0004
770 /* Codes to distinguish the arithmetic instructions. */
781 #define OPCODE_CMP 10
782 #define OPCODE_CMN 11
783 #define OPCODE_ORR 12
784 #define OPCODE_MOV 13
785 #define OPCODE_BIC 14
786 #define OPCODE_MVN 15
788 #define T2_OPCODE_AND 0
789 #define T2_OPCODE_BIC 1
790 #define T2_OPCODE_ORR 2
791 #define T2_OPCODE_ORN 3
792 #define T2_OPCODE_EOR 4
793 #define T2_OPCODE_ADD 8
794 #define T2_OPCODE_ADC 10
795 #define T2_OPCODE_SBC 11
796 #define T2_OPCODE_SUB 13
797 #define T2_OPCODE_RSB 14
799 #define T_OPCODE_MUL 0x4340
800 #define T_OPCODE_TST 0x4200
801 #define T_OPCODE_CMN 0x42c0
802 #define T_OPCODE_NEG 0x4240
803 #define T_OPCODE_MVN 0x43c0
805 #define T_OPCODE_ADD_R3 0x1800
806 #define T_OPCODE_SUB_R3 0x1a00
807 #define T_OPCODE_ADD_HI 0x4400
808 #define T_OPCODE_ADD_ST 0xb000
809 #define T_OPCODE_SUB_ST 0xb080
810 #define T_OPCODE_ADD_SP 0xa800
811 #define T_OPCODE_ADD_PC 0xa000
812 #define T_OPCODE_ADD_I8 0x3000
813 #define T_OPCODE_SUB_I8 0x3800
814 #define T_OPCODE_ADD_I3 0x1c00
815 #define T_OPCODE_SUB_I3 0x1e00
817 #define T_OPCODE_ASR_R 0x4100
818 #define T_OPCODE_LSL_R 0x4080
819 #define T_OPCODE_LSR_R 0x40c0
820 #define T_OPCODE_ROR_R 0x41c0
821 #define T_OPCODE_ASR_I 0x1000
822 #define T_OPCODE_LSL_I 0x0000
823 #define T_OPCODE_LSR_I 0x0800
825 #define T_OPCODE_MOV_I8 0x2000
826 #define T_OPCODE_CMP_I8 0x2800
827 #define T_OPCODE_CMP_LR 0x4280
828 #define T_OPCODE_MOV_HR 0x4600
829 #define T_OPCODE_CMP_HR 0x4500
831 #define T_OPCODE_LDR_PC 0x4800
832 #define T_OPCODE_LDR_SP 0x9800
833 #define T_OPCODE_STR_SP 0x9000
834 #define T_OPCODE_LDR_IW 0x6800
835 #define T_OPCODE_STR_IW 0x6000
836 #define T_OPCODE_LDR_IH 0x8800
837 #define T_OPCODE_STR_IH 0x8000
838 #define T_OPCODE_LDR_IB 0x7800
839 #define T_OPCODE_STR_IB 0x7000
840 #define T_OPCODE_LDR_RW 0x5800
841 #define T_OPCODE_STR_RW 0x5000
842 #define T_OPCODE_LDR_RH 0x5a00
843 #define T_OPCODE_STR_RH 0x5200
844 #define T_OPCODE_LDR_RB 0x5c00
845 #define T_OPCODE_STR_RB 0x5400
847 #define T_OPCODE_PUSH 0xb400
848 #define T_OPCODE_POP 0xbc00
850 #define T_OPCODE_BRANCH 0xe000
852 #define THUMB_SIZE 2 /* Size of thumb instruction. */
853 #define THUMB_PP_PC_LR 0x0100
854 #define THUMB_LOAD_BIT 0x0800
855 #define THUMB2_LOAD_BIT 0x00100000
857 #define BAD_SYNTAX _("syntax error")
858 #define BAD_ARGS _("bad arguments to instruction")
859 #define BAD_SP _("r13 not allowed here")
860 #define BAD_PC _("r15 not allowed here")
861 #define BAD_ODD _("Odd register not allowed here")
862 #define BAD_EVEN _("Even register not allowed here")
863 #define BAD_COND _("instruction cannot be conditional")
864 #define BAD_OVERLAP _("registers may not be the same")
865 #define BAD_HIREG _("lo register required")
866 #define BAD_THUMB32 _("instruction not supported in Thumb16 mode")
867 #define BAD_ADDR_MODE _("instruction does not accept this addressing mode")
868 #define BAD_BRANCH _("branch must be last instruction in IT block")
869 #define BAD_BRANCH_OFF _("branch out of range or not a multiple of 2")
870 #define BAD_NOT_IT _("instruction not allowed in IT block")
871 #define BAD_NOT_VPT _("instruction missing MVE vector predication code")
872 #define BAD_FPU _("selected FPU does not support instruction")
873 #define BAD_OUT_IT _("thumb conditional instruction should be in IT block")
874 #define BAD_OUT_VPT \
875 _("vector predicated instruction should be in VPT/VPST block")
876 #define BAD_IT_COND _("incorrect condition in IT block")
877 #define BAD_VPT_COND _("incorrect condition in VPT/VPST block")
878 #define BAD_IT_IT _("IT falling in the range of a previous IT block")
879 #define MISSING_FNSTART _("missing .fnstart before unwinding directive")
880 #define BAD_PC_ADDRESSING \
881 _("cannot use register index with PC-relative addressing")
882 #define BAD_PC_WRITEBACK \
883 _("cannot use writeback with PC-relative addressing")
884 #define BAD_RANGE _("branch out of range")
885 #define BAD_FP16 _("selected processor does not support fp16 instruction")
886 #define UNPRED_REG(R) _("using " R " results in unpredictable behaviour")
887 #define THUMB1_RELOC_ONLY _("relocation valid in thumb1 code only")
888 #define MVE_NOT_IT _("Warning: instruction is UNPREDICTABLE in an IT " \
890 #define MVE_NOT_VPT _("Warning: instruction is UNPREDICTABLE in a VPT " \
892 #define MVE_BAD_PC _("Warning: instruction is UNPREDICTABLE with PC" \
894 #define MVE_BAD_SP _("Warning: instruction is UNPREDICTABLE with SP" \
896 #define BAD_SIMD_TYPE _("bad type in SIMD instruction")
897 #define BAD_MVE_AUTO \
898 _("GAS auto-detection mode and -march=all is deprecated for MVE, please" \
899 " use a valid -march or -mcpu option.")
900 #define BAD_MVE_SRCDEST _("Warning: 32-bit element size and same destination "\
901 "and source operands makes instruction UNPREDICTABLE")
902 #define BAD_EL_TYPE _("bad element type for instruction")
903 #define MVE_BAD_QREG _("MVE vector register Q[0..7] expected")
905 static struct hash_control
* arm_ops_hsh
;
906 static struct hash_control
* arm_cond_hsh
;
907 static struct hash_control
* arm_vcond_hsh
;
908 static struct hash_control
* arm_shift_hsh
;
909 static struct hash_control
* arm_psr_hsh
;
910 static struct hash_control
* arm_v7m_psr_hsh
;
911 static struct hash_control
* arm_reg_hsh
;
912 static struct hash_control
* arm_reloc_hsh
;
913 static struct hash_control
* arm_barrier_opt_hsh
;
915 /* Stuff needed to resolve the label ambiguity
924 symbolS
* last_label_seen
;
925 static int label_is_thumb_function_name
= FALSE
;
927 /* Literal pool structure. Held on a per-section
928 and per-sub-section basis. */
930 #define MAX_LITERAL_POOL_SIZE 1024
931 typedef struct literal_pool
933 expressionS literals
[MAX_LITERAL_POOL_SIZE
];
934 unsigned int next_free_entry
;
940 struct dwarf2_line_info locs
[MAX_LITERAL_POOL_SIZE
];
942 struct literal_pool
* next
;
943 unsigned int alignment
;
946 /* Pointer to a linked list of literal pools. */
947 literal_pool
* list_of_pools
= NULL
;
949 typedef enum asmfunc_states
952 WAITING_ASMFUNC_NAME
,
956 static asmfunc_states asmfunc_state
= OUTSIDE_ASMFUNC
;
959 # define now_pred seg_info (now_seg)->tc_segment_info_data.current_pred
961 static struct current_pred now_pred
;
965 now_pred_compatible (int cond
)
967 return (cond
& ~1) == (now_pred
.cc
& ~1);
971 conditional_insn (void)
973 return inst
.cond
!= COND_ALWAYS
;
976 static int in_pred_block (void);
978 static int handle_pred_state (void);
980 static void force_automatic_it_block_close (void);
982 static void it_fsm_post_encode (void);
984 #define set_pred_insn_type(type) \
987 inst.pred_insn_type = type; \
988 if (handle_pred_state () == FAIL) \
993 #define set_pred_insn_type_nonvoid(type, failret) \
996 inst.pred_insn_type = type; \
997 if (handle_pred_state () == FAIL) \
1002 #define set_pred_insn_type_last() \
1005 if (inst.cond == COND_ALWAYS) \
1006 set_pred_insn_type (IF_INSIDE_IT_LAST_INSN); \
1008 set_pred_insn_type (INSIDE_IT_LAST_INSN); \
1014 /* This array holds the chars that always start a comment. If the
1015 pre-processor is disabled, these aren't very useful. */
1016 char arm_comment_chars
[] = "@";
1018 /* This array holds the chars that only start a comment at the beginning of
1019 a line. If the line seems to have the form '# 123 filename'
1020 .line and .file directives will appear in the pre-processed output. */
1021 /* Note that input_file.c hand checks for '#' at the beginning of the
1022 first line of the input file. This is because the compiler outputs
1023 #NO_APP at the beginning of its output. */
1024 /* Also note that comments like this one will always work. */
1025 const char line_comment_chars
[] = "#";
1027 char arm_line_separator_chars
[] = ";";
1029 /* Chars that can be used to separate mant
1030 from exp in floating point numbers. */
1031 const char EXP_CHARS
[] = "eE";
1033 /* Chars that mean this number is a floating point constant. */
1034 /* As in 0f12.456 */
1035 /* or 0d1.2345e12 */
1037 const char FLT_CHARS
[] = "rRsSfFdDxXeEpP";
1039 /* Prefix characters that indicate the start of an immediate
1041 #define is_immediate_prefix(C) ((C) == '#' || (C) == '$')
1043 /* Separator character handling. */
1045 #define skip_whitespace(str) do { if (*(str) == ' ') ++(str); } while (0)
1048 skip_past_char (char ** str
, char c
)
1050 /* PR gas/14987: Allow for whitespace before the expected character. */
1051 skip_whitespace (*str
);
1062 #define skip_past_comma(str) skip_past_char (str, ',')
1064 /* Arithmetic expressions (possibly involving symbols). */
1066 /* Return TRUE if anything in the expression is a bignum. */
1069 walk_no_bignums (symbolS
* sp
)
1071 if (symbol_get_value_expression (sp
)->X_op
== O_big
)
1074 if (symbol_get_value_expression (sp
)->X_add_symbol
)
1076 return (walk_no_bignums (symbol_get_value_expression (sp
)->X_add_symbol
)
1077 || (symbol_get_value_expression (sp
)->X_op_symbol
1078 && walk_no_bignums (symbol_get_value_expression (sp
)->X_op_symbol
)));
1084 static bfd_boolean in_my_get_expression
= FALSE
;
1086 /* Third argument to my_get_expression. */
1087 #define GE_NO_PREFIX 0
1088 #define GE_IMM_PREFIX 1
1089 #define GE_OPT_PREFIX 2
1090 /* This is a bit of a hack. Use an optional prefix, and also allow big (64-bit)
1091 immediates, as can be used in Neon VMVN and VMOV immediate instructions. */
1092 #define GE_OPT_PREFIX_BIG 3
1095 my_get_expression (expressionS
* ep
, char ** str
, int prefix_mode
)
1099 /* In unified syntax, all prefixes are optional. */
1101 prefix_mode
= (prefix_mode
== GE_OPT_PREFIX_BIG
) ? prefix_mode
1104 switch (prefix_mode
)
1106 case GE_NO_PREFIX
: break;
1108 if (!is_immediate_prefix (**str
))
1110 inst
.error
= _("immediate expression requires a # prefix");
1116 case GE_OPT_PREFIX_BIG
:
1117 if (is_immediate_prefix (**str
))
1124 memset (ep
, 0, sizeof (expressionS
));
1126 save_in
= input_line_pointer
;
1127 input_line_pointer
= *str
;
1128 in_my_get_expression
= TRUE
;
1130 in_my_get_expression
= FALSE
;
1132 if (ep
->X_op
== O_illegal
|| ep
->X_op
== O_absent
)
1134 /* We found a bad or missing expression in md_operand(). */
1135 *str
= input_line_pointer
;
1136 input_line_pointer
= save_in
;
1137 if (inst
.error
== NULL
)
1138 inst
.error
= (ep
->X_op
== O_absent
1139 ? _("missing expression") :_("bad expression"));
1143 /* Get rid of any bignums now, so that we don't generate an error for which
1144 we can't establish a line number later on. Big numbers are never valid
1145 in instructions, which is where this routine is always called. */
1146 if (prefix_mode
!= GE_OPT_PREFIX_BIG
1147 && (ep
->X_op
== O_big
1148 || (ep
->X_add_symbol
1149 && (walk_no_bignums (ep
->X_add_symbol
)
1151 && walk_no_bignums (ep
->X_op_symbol
))))))
1153 inst
.error
= _("invalid constant");
1154 *str
= input_line_pointer
;
1155 input_line_pointer
= save_in
;
1159 *str
= input_line_pointer
;
1160 input_line_pointer
= save_in
;
1164 /* Turn a string in input_line_pointer into a floating point constant
1165 of type TYPE, and store the appropriate bytes in *LITP. The number
1166 of LITTLENUMS emitted is stored in *SIZEP. An error message is
1167 returned, or NULL on OK.
1169 Note that fp constants aren't represent in the normal way on the ARM.
1170 In big endian mode, things are as expected. However, in little endian
1171 mode fp constants are big-endian word-wise, and little-endian byte-wise
1172 within the words. For example, (double) 1.1 in big endian mode is
1173 the byte sequence 3f f1 99 99 99 99 99 9a, and in little endian mode is
1174 the byte sequence 99 99 f1 3f 9a 99 99 99.
1176 ??? The format of 12 byte floats is uncertain according to gcc's arm.h. */
1179 md_atof (int type
, char * litP
, int * sizeP
)
1182 LITTLENUM_TYPE words
[MAX_LITTLENUMS
];
1214 return _("Unrecognized or unsupported floating point constant");
1217 t
= atof_ieee (input_line_pointer
, type
, words
);
1219 input_line_pointer
= t
;
1220 *sizeP
= prec
* sizeof (LITTLENUM_TYPE
);
1222 if (target_big_endian
)
1224 for (i
= 0; i
< prec
; i
++)
1226 md_number_to_chars (litP
, (valueT
) words
[i
], sizeof (LITTLENUM_TYPE
));
1227 litP
+= sizeof (LITTLENUM_TYPE
);
1232 if (ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_endian_pure
))
1233 for (i
= prec
- 1; i
>= 0; i
--)
1235 md_number_to_chars (litP
, (valueT
) words
[i
], sizeof (LITTLENUM_TYPE
));
1236 litP
+= sizeof (LITTLENUM_TYPE
);
1239 /* For a 4 byte float the order of elements in `words' is 1 0.
1240 For an 8 byte float the order is 1 0 3 2. */
1241 for (i
= 0; i
< prec
; i
+= 2)
1243 md_number_to_chars (litP
, (valueT
) words
[i
+ 1],
1244 sizeof (LITTLENUM_TYPE
));
1245 md_number_to_chars (litP
+ sizeof (LITTLENUM_TYPE
),
1246 (valueT
) words
[i
], sizeof (LITTLENUM_TYPE
));
1247 litP
+= 2 * sizeof (LITTLENUM_TYPE
);
1254 /* We handle all bad expressions here, so that we can report the faulty
1255 instruction in the error message. */
1258 md_operand (expressionS
* exp
)
1260 if (in_my_get_expression
)
1261 exp
->X_op
= O_illegal
;
1264 /* Immediate values. */
1267 /* Generic immediate-value read function for use in directives.
1268 Accepts anything that 'expression' can fold to a constant.
1269 *val receives the number. */
1272 immediate_for_directive (int *val
)
1275 exp
.X_op
= O_illegal
;
1277 if (is_immediate_prefix (*input_line_pointer
))
1279 input_line_pointer
++;
1283 if (exp
.X_op
!= O_constant
)
1285 as_bad (_("expected #constant"));
1286 ignore_rest_of_line ();
1289 *val
= exp
.X_add_number
;
1294 /* Register parsing. */
1296 /* Generic register parser. CCP points to what should be the
1297 beginning of a register name. If it is indeed a valid register
1298 name, advance CCP over it and return the reg_entry structure;
1299 otherwise return NULL. Does not issue diagnostics. */
1301 static struct reg_entry
*
1302 arm_reg_parse_multi (char **ccp
)
1306 struct reg_entry
*reg
;
1308 skip_whitespace (start
);
1310 #ifdef REGISTER_PREFIX
1311 if (*start
!= REGISTER_PREFIX
)
1315 #ifdef OPTIONAL_REGISTER_PREFIX
1316 if (*start
== OPTIONAL_REGISTER_PREFIX
)
1321 if (!ISALPHA (*p
) || !is_name_beginner (*p
))
1326 while (ISALPHA (*p
) || ISDIGIT (*p
) || *p
== '_');
1328 reg
= (struct reg_entry
*) hash_find_n (arm_reg_hsh
, start
, p
- start
);
1338 arm_reg_alt_syntax (char **ccp
, char *start
, struct reg_entry
*reg
,
1339 enum arm_reg_type type
)
1341 /* Alternative syntaxes are accepted for a few register classes. */
1348 /* Generic coprocessor register names are allowed for these. */
1349 if (reg
&& reg
->type
== REG_TYPE_CN
)
1354 /* For backward compatibility, a bare number is valid here. */
1356 unsigned long processor
= strtoul (start
, ccp
, 10);
1357 if (*ccp
!= start
&& processor
<= 15)
1362 case REG_TYPE_MMXWC
:
1363 /* WC includes WCG. ??? I'm not sure this is true for all
1364 instructions that take WC registers. */
1365 if (reg
&& reg
->type
== REG_TYPE_MMXWCG
)
1376 /* As arm_reg_parse_multi, but the register must be of type TYPE, and the
1377 return value is the register number or FAIL. */
1380 arm_reg_parse (char **ccp
, enum arm_reg_type type
)
1383 struct reg_entry
*reg
= arm_reg_parse_multi (ccp
);
1386 /* Do not allow a scalar (reg+index) to parse as a register. */
1387 if (reg
&& reg
->neon
&& (reg
->neon
->defined
& NTA_HASINDEX
))
1390 if (reg
&& reg
->type
== type
)
1393 if ((ret
= arm_reg_alt_syntax (ccp
, start
, reg
, type
)) != FAIL
)
1400 /* Parse a Neon type specifier. *STR should point at the leading '.'
1401 character. Does no verification at this stage that the type fits the opcode
1408 Can all be legally parsed by this function.
1410 Fills in neon_type struct pointer with parsed information, and updates STR
1411 to point after the parsed type specifier. Returns SUCCESS if this was a legal
1412 type, FAIL if not. */
1415 parse_neon_type (struct neon_type
*type
, char **str
)
1422 while (type
->elems
< NEON_MAX_TYPE_ELS
)
1424 enum neon_el_type thistype
= NT_untyped
;
1425 unsigned thissize
= -1u;
1432 /* Just a size without an explicit type. */
1436 switch (TOLOWER (*ptr
))
1438 case 'i': thistype
= NT_integer
; break;
1439 case 'f': thistype
= NT_float
; break;
1440 case 'p': thistype
= NT_poly
; break;
1441 case 's': thistype
= NT_signed
; break;
1442 case 'u': thistype
= NT_unsigned
; break;
1444 thistype
= NT_float
;
1449 as_bad (_("unexpected character `%c' in type specifier"), *ptr
);
1455 /* .f is an abbreviation for .f32. */
1456 if (thistype
== NT_float
&& !ISDIGIT (*ptr
))
1461 thissize
= strtoul (ptr
, &ptr
, 10);
1463 if (thissize
!= 8 && thissize
!= 16 && thissize
!= 32
1466 as_bad (_("bad size %d in type specifier"), thissize
);
1474 type
->el
[type
->elems
].type
= thistype
;
1475 type
->el
[type
->elems
].size
= thissize
;
1480 /* Empty/missing type is not a successful parse. */
1481 if (type
->elems
== 0)
1489 /* Errors may be set multiple times during parsing or bit encoding
1490 (particularly in the Neon bits), but usually the earliest error which is set
1491 will be the most meaningful. Avoid overwriting it with later (cascading)
1492 errors by calling this function. */
1495 first_error (const char *err
)
1501 /* Parse a single type, e.g. ".s32", leading period included. */
1503 parse_neon_operand_type (struct neon_type_el
*vectype
, char **ccp
)
1506 struct neon_type optype
;
1510 if (parse_neon_type (&optype
, &str
) == SUCCESS
)
1512 if (optype
.elems
== 1)
1513 *vectype
= optype
.el
[0];
1516 first_error (_("only one type should be specified for operand"));
1522 first_error (_("vector type expected"));
1534 /* Special meanings for indices (which have a range of 0-7), which will fit into
1537 #define NEON_ALL_LANES 15
1538 #define NEON_INTERLEAVE_LANES 14
1540 /* Record a use of the given feature. */
1542 record_feature_use (const arm_feature_set
*feature
)
1545 ARM_MERGE_FEATURE_SETS (thumb_arch_used
, thumb_arch_used
, *feature
);
1547 ARM_MERGE_FEATURE_SETS (arm_arch_used
, arm_arch_used
, *feature
);
1550 /* If the given feature available in the selected CPU, mark it as used.
1551 Returns TRUE iff feature is available. */
1553 mark_feature_used (const arm_feature_set
*feature
)
1556 /* Do not support the use of MVE only instructions when in auto-detection or
1558 if (((feature
== &mve_ext
) || (feature
== &mve_fp_ext
))
1559 && ARM_CPU_IS_ANY (cpu_variant
))
1561 first_error (BAD_MVE_AUTO
);
1564 /* Ensure the option is valid on the current architecture. */
1565 if (!ARM_CPU_HAS_FEATURE (cpu_variant
, *feature
))
1568 /* Add the appropriate architecture feature for the barrier option used.
1570 record_feature_use (feature
);
1575 /* Parse either a register or a scalar, with an optional type. Return the
1576 register number, and optionally fill in the actual type of the register
1577 when multiple alternatives were given (NEON_TYPE_NDQ) in *RTYPE, and
1578 type/index information in *TYPEINFO. */
1581 parse_typed_reg_or_scalar (char **ccp
, enum arm_reg_type type
,
1582 enum arm_reg_type
*rtype
,
1583 struct neon_typed_alias
*typeinfo
)
1586 struct reg_entry
*reg
= arm_reg_parse_multi (&str
);
1587 struct neon_typed_alias atype
;
1588 struct neon_type_el parsetype
;
1592 atype
.eltype
.type
= NT_invtype
;
1593 atype
.eltype
.size
= -1;
1595 /* Try alternate syntax for some types of register. Note these are mutually
1596 exclusive with the Neon syntax extensions. */
1599 int altreg
= arm_reg_alt_syntax (&str
, *ccp
, reg
, type
);
1607 /* Undo polymorphism when a set of register types may be accepted. */
1608 if ((type
== REG_TYPE_NDQ
1609 && (reg
->type
== REG_TYPE_NQ
|| reg
->type
== REG_TYPE_VFD
))
1610 || (type
== REG_TYPE_VFSD
1611 && (reg
->type
== REG_TYPE_VFS
|| reg
->type
== REG_TYPE_VFD
))
1612 || (type
== REG_TYPE_NSDQ
1613 && (reg
->type
== REG_TYPE_VFS
|| reg
->type
== REG_TYPE_VFD
1614 || reg
->type
== REG_TYPE_NQ
))
1615 || (type
== REG_TYPE_NSD
1616 && (reg
->type
== REG_TYPE_VFS
|| reg
->type
== REG_TYPE_VFD
))
1617 || (type
== REG_TYPE_MMXWC
1618 && (reg
->type
== REG_TYPE_MMXWCG
)))
1619 type
= (enum arm_reg_type
) reg
->type
;
1621 if (type
== REG_TYPE_MQ
)
1623 if (!ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
))
1626 if (!reg
|| reg
->type
!= REG_TYPE_NQ
)
1629 if (reg
->number
> 14 && !mark_feature_used (&fpu_vfp_ext_d32
))
1631 first_error (_("expected MVE register [q0..q7]"));
1636 else if (ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
)
1637 && (type
== REG_TYPE_NQ
))
1641 if (type
!= reg
->type
)
1647 if (parse_neon_operand_type (&parsetype
, &str
) == SUCCESS
)
1649 if ((atype
.defined
& NTA_HASTYPE
) != 0)
1651 first_error (_("can't redefine type for operand"));
1654 atype
.defined
|= NTA_HASTYPE
;
1655 atype
.eltype
= parsetype
;
1658 if (skip_past_char (&str
, '[') == SUCCESS
)
1660 if (type
!= REG_TYPE_VFD
1661 && !(type
== REG_TYPE_VFS
1662 && ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v8_2
))
1663 && !(type
== REG_TYPE_NQ
1664 && ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
)))
1666 if (ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
))
1667 first_error (_("only D and Q registers may be indexed"));
1669 first_error (_("only D registers may be indexed"));
1673 if ((atype
.defined
& NTA_HASINDEX
) != 0)
1675 first_error (_("can't change index for operand"));
1679 atype
.defined
|= NTA_HASINDEX
;
1681 if (skip_past_char (&str
, ']') == SUCCESS
)
1682 atype
.index
= NEON_ALL_LANES
;
1687 my_get_expression (&exp
, &str
, GE_NO_PREFIX
);
1689 if (exp
.X_op
!= O_constant
)
1691 first_error (_("constant expression required"));
1695 if (skip_past_char (&str
, ']') == FAIL
)
1698 atype
.index
= exp
.X_add_number
;
1713 /* Like arm_reg_parse, but also allow the following extra features:
1714 - If RTYPE is non-zero, return the (possibly restricted) type of the
1715 register (e.g. Neon double or quad reg when either has been requested).
1716 - If this is a Neon vector type with additional type information, fill
1717 in the struct pointed to by VECTYPE (if non-NULL).
1718 This function will fault on encountering a scalar. */
1721 arm_typed_reg_parse (char **ccp
, enum arm_reg_type type
,
1722 enum arm_reg_type
*rtype
, struct neon_type_el
*vectype
)
1724 struct neon_typed_alias atype
;
1726 int reg
= parse_typed_reg_or_scalar (&str
, type
, rtype
, &atype
);
1731 /* Do not allow regname(... to parse as a register. */
1735 /* Do not allow a scalar (reg+index) to parse as a register. */
1736 if ((atype
.defined
& NTA_HASINDEX
) != 0)
1738 first_error (_("register operand expected, but got scalar"));
1743 *vectype
= atype
.eltype
;
1750 #define NEON_SCALAR_REG(X) ((X) >> 4)
1751 #define NEON_SCALAR_INDEX(X) ((X) & 15)
1753 /* Parse a Neon scalar. Most of the time when we're parsing a scalar, we don't
1754 have enough information to be able to do a good job bounds-checking. So, we
1755 just do easy checks here, and do further checks later. */
1758 parse_scalar (char **ccp
, int elsize
, struct neon_type_el
*type
, enum
1759 arm_reg_type reg_type
)
1763 struct neon_typed_alias atype
;
1766 reg
= parse_typed_reg_or_scalar (&str
, reg_type
, NULL
, &atype
);
1784 if (reg
== FAIL
|| (atype
.defined
& NTA_HASINDEX
) == 0)
1787 if (reg_type
!= REG_TYPE_MQ
&& atype
.index
== NEON_ALL_LANES
)
1789 first_error (_("scalar must have an index"));
1792 else if (atype
.index
>= reg_size
/ elsize
)
1794 first_error (_("scalar index out of range"));
1799 *type
= atype
.eltype
;
1803 return reg
* 16 + atype
.index
;
1806 /* Types of registers in a list. */
1819 /* Parse an ARM register list. Returns the bitmask, or FAIL. */
1822 parse_reg_list (char ** strp
, enum reg_list_els etype
)
1828 gas_assert (etype
== REGLIST_RN
|| etype
== REGLIST_CLRM
);
1830 /* We come back here if we get ranges concatenated by '+' or '|'. */
1833 skip_whitespace (str
);
1846 const char apsr_str
[] = "apsr";
1847 int apsr_str_len
= strlen (apsr_str
);
1849 reg
= arm_reg_parse (&str
, REGLIST_RN
);
1850 if (etype
== REGLIST_CLRM
)
1852 if (reg
== REG_SP
|| reg
== REG_PC
)
1854 else if (reg
== FAIL
1855 && !strncasecmp (str
, apsr_str
, apsr_str_len
)
1856 && !ISALPHA (*(str
+ apsr_str_len
)))
1859 str
+= apsr_str_len
;
1864 first_error (_("r0-r12, lr or APSR expected"));
1868 else /* etype == REGLIST_RN. */
1872 first_error (_(reg_expected_msgs
[REGLIST_RN
]));
1883 first_error (_("bad range in register list"));
1887 for (i
= cur_reg
+ 1; i
< reg
; i
++)
1889 if (range
& (1 << i
))
1891 (_("Warning: duplicated register (r%d) in register list"),
1899 if (range
& (1 << reg
))
1900 as_tsktsk (_("Warning: duplicated register (r%d) in register list"),
1902 else if (reg
<= cur_reg
)
1903 as_tsktsk (_("Warning: register range not in ascending order"));
1908 while (skip_past_comma (&str
) != FAIL
1909 || (in_range
= 1, *str
++ == '-'));
1912 if (skip_past_char (&str
, '}') == FAIL
)
1914 first_error (_("missing `}'"));
1918 else if (etype
== REGLIST_RN
)
1922 if (my_get_expression (&exp
, &str
, GE_NO_PREFIX
))
1925 if (exp
.X_op
== O_constant
)
1927 if (exp
.X_add_number
1928 != (exp
.X_add_number
& 0x0000ffff))
1930 inst
.error
= _("invalid register mask");
1934 if ((range
& exp
.X_add_number
) != 0)
1936 int regno
= range
& exp
.X_add_number
;
1939 regno
= (1 << regno
) - 1;
1941 (_("Warning: duplicated register (r%d) in register list"),
1945 range
|= exp
.X_add_number
;
1949 if (inst
.relocs
[0].type
!= 0)
1951 inst
.error
= _("expression too complex");
1955 memcpy (&inst
.relocs
[0].exp
, &exp
, sizeof (expressionS
));
1956 inst
.relocs
[0].type
= BFD_RELOC_ARM_MULTI
;
1957 inst
.relocs
[0].pc_rel
= 0;
1961 if (*str
== '|' || *str
== '+')
1967 while (another_range
);
1973 /* Parse a VFP register list. If the string is invalid return FAIL.
1974 Otherwise return the number of registers, and set PBASE to the first
1975 register. Parses registers of type ETYPE.
1976 If REGLIST_NEON_D is used, several syntax enhancements are enabled:
1977 - Q registers can be used to specify pairs of D registers
1978 - { } can be omitted from around a singleton register list
1979 FIXME: This is not implemented, as it would require backtracking in
1982 This could be done (the meaning isn't really ambiguous), but doesn't
1983 fit in well with the current parsing framework.
1984 - 32 D registers may be used (also true for VFPv3).
1985 FIXME: Types are ignored in these register lists, which is probably a
1989 parse_vfp_reg_list (char **ccp
, unsigned int *pbase
, enum reg_list_els etype
,
1990 bfd_boolean
*partial_match
)
1995 enum arm_reg_type regtype
= (enum arm_reg_type
) 0;
1999 unsigned long mask
= 0;
2001 bfd_boolean vpr_seen
= FALSE
;
2002 bfd_boolean expect_vpr
=
2003 (etype
== REGLIST_VFP_S_VPR
) || (etype
== REGLIST_VFP_D_VPR
);
2005 if (skip_past_char (&str
, '{') == FAIL
)
2007 inst
.error
= _("expecting {");
2014 case REGLIST_VFP_S_VPR
:
2015 regtype
= REG_TYPE_VFS
;
2020 case REGLIST_VFP_D_VPR
:
2021 regtype
= REG_TYPE_VFD
;
2024 case REGLIST_NEON_D
:
2025 regtype
= REG_TYPE_NDQ
;
2032 if (etype
!= REGLIST_VFP_S
&& etype
!= REGLIST_VFP_S_VPR
)
2034 /* VFPv3 allows 32 D registers, except for the VFPv3-D16 variant. */
2035 if (ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_vfp_ext_d32
))
2039 ARM_MERGE_FEATURE_SETS (thumb_arch_used
, thumb_arch_used
,
2042 ARM_MERGE_FEATURE_SETS (arm_arch_used
, arm_arch_used
,
2049 base_reg
= max_regs
;
2050 *partial_match
= FALSE
;
2054 int setmask
= 1, addregs
= 1;
2055 const char vpr_str
[] = "vpr";
2056 int vpr_str_len
= strlen (vpr_str
);
2058 new_base
= arm_typed_reg_parse (&str
, regtype
, ®type
, NULL
);
2062 if (new_base
== FAIL
2063 && !strncasecmp (str
, vpr_str
, vpr_str_len
)
2064 && !ISALPHA (*(str
+ vpr_str_len
))
2070 base_reg
= 0; /* Canonicalize VPR only on d0 with 0 regs. */
2074 first_error (_("VPR expected last"));
2077 else if (new_base
== FAIL
)
2079 if (regtype
== REG_TYPE_VFS
)
2080 first_error (_("VFP single precision register or VPR "
2082 else /* regtype == REG_TYPE_VFD. */
2083 first_error (_("VFP/Neon double precision register or VPR "
2088 else if (new_base
== FAIL
)
2090 first_error (_(reg_expected_msgs
[regtype
]));
2094 *partial_match
= TRUE
;
2098 if (new_base
>= max_regs
)
2100 first_error (_("register out of range in list"));
2104 /* Note: a value of 2 * n is returned for the register Q<n>. */
2105 if (regtype
== REG_TYPE_NQ
)
2111 if (new_base
< base_reg
)
2112 base_reg
= new_base
;
2114 if (mask
& (setmask
<< new_base
))
2116 first_error (_("invalid register list"));
2120 if ((mask
>> new_base
) != 0 && ! warned
&& !vpr_seen
)
2122 as_tsktsk (_("register list not in ascending order"));
2126 mask
|= setmask
<< new_base
;
2129 if (*str
== '-') /* We have the start of a range expression */
2135 if ((high_range
= arm_typed_reg_parse (&str
, regtype
, NULL
, NULL
))
2138 inst
.error
= gettext (reg_expected_msgs
[regtype
]);
2142 if (high_range
>= max_regs
)
2144 first_error (_("register out of range in list"));
2148 if (regtype
== REG_TYPE_NQ
)
2149 high_range
= high_range
+ 1;
2151 if (high_range
<= new_base
)
2153 inst
.error
= _("register range not in ascending order");
2157 for (new_base
+= addregs
; new_base
<= high_range
; new_base
+= addregs
)
2159 if (mask
& (setmask
<< new_base
))
2161 inst
.error
= _("invalid register list");
2165 mask
|= setmask
<< new_base
;
2170 while (skip_past_comma (&str
) != FAIL
);
2174 /* Sanity check -- should have raised a parse error above. */
2175 if ((!vpr_seen
&& count
== 0) || count
> max_regs
)
2180 if (expect_vpr
&& !vpr_seen
)
2182 first_error (_("VPR expected last"));
2186 /* Final test -- the registers must be consecutive. */
2188 for (i
= 0; i
< count
; i
++)
2190 if ((mask
& (1u << i
)) == 0)
2192 inst
.error
= _("non-contiguous register range");
2202 /* True if two alias types are the same. */
2205 neon_alias_types_same (struct neon_typed_alias
*a
, struct neon_typed_alias
*b
)
2213 if (a
->defined
!= b
->defined
)
2216 if ((a
->defined
& NTA_HASTYPE
) != 0
2217 && (a
->eltype
.type
!= b
->eltype
.type
2218 || a
->eltype
.size
!= b
->eltype
.size
))
2221 if ((a
->defined
& NTA_HASINDEX
) != 0
2222 && (a
->index
!= b
->index
))
2228 /* Parse element/structure lists for Neon VLD<n> and VST<n> instructions.
2229 The base register is put in *PBASE.
2230 The lane (or one of the NEON_*_LANES constants) is placed in bits [3:0] of
2232 The register stride (minus one) is put in bit 4 of the return value.
2233 Bits [6:5] encode the list length (minus one).
2234 The type of the list elements is put in *ELTYPE, if non-NULL. */
2236 #define NEON_LANE(X) ((X) & 0xf)
2237 #define NEON_REG_STRIDE(X) ((((X) >> 4) & 1) + 1)
2238 #define NEON_REGLIST_LENGTH(X) ((((X) >> 5) & 3) + 1)
2241 parse_neon_el_struct_list (char **str
, unsigned *pbase
,
2243 struct neon_type_el
*eltype
)
2250 int leading_brace
= 0;
2251 enum arm_reg_type rtype
= REG_TYPE_NDQ
;
2252 const char *const incr_error
= mve
? _("register stride must be 1") :
2253 _("register stride must be 1 or 2");
2254 const char *const type_error
= _("mismatched element/structure types in list");
2255 struct neon_typed_alias firsttype
;
2256 firsttype
.defined
= 0;
2257 firsttype
.eltype
.type
= NT_invtype
;
2258 firsttype
.eltype
.size
= -1;
2259 firsttype
.index
= -1;
2261 if (skip_past_char (&ptr
, '{') == SUCCESS
)
2266 struct neon_typed_alias atype
;
2268 rtype
= REG_TYPE_MQ
;
2269 int getreg
= parse_typed_reg_or_scalar (&ptr
, rtype
, &rtype
, &atype
);
2273 first_error (_(reg_expected_msgs
[rtype
]));
2280 if (rtype
== REG_TYPE_NQ
)
2286 else if (reg_incr
== -1)
2288 reg_incr
= getreg
- base_reg
;
2289 if (reg_incr
< 1 || reg_incr
> 2)
2291 first_error (_(incr_error
));
2295 else if (getreg
!= base_reg
+ reg_incr
* count
)
2297 first_error (_(incr_error
));
2301 if (! neon_alias_types_same (&atype
, &firsttype
))
2303 first_error (_(type_error
));
2307 /* Handle Dn-Dm or Qn-Qm syntax. Can only be used with non-indexed list
2311 struct neon_typed_alias htype
;
2312 int hireg
, dregs
= (rtype
== REG_TYPE_NQ
) ? 2 : 1;
2314 lane
= NEON_INTERLEAVE_LANES
;
2315 else if (lane
!= NEON_INTERLEAVE_LANES
)
2317 first_error (_(type_error
));
2322 else if (reg_incr
!= 1)
2324 first_error (_("don't use Rn-Rm syntax with non-unit stride"));
2328 hireg
= parse_typed_reg_or_scalar (&ptr
, rtype
, NULL
, &htype
);
2331 first_error (_(reg_expected_msgs
[rtype
]));
2334 if (! neon_alias_types_same (&htype
, &firsttype
))
2336 first_error (_(type_error
));
2339 count
+= hireg
+ dregs
- getreg
;
2343 /* If we're using Q registers, we can't use [] or [n] syntax. */
2344 if (rtype
== REG_TYPE_NQ
)
2350 if ((atype
.defined
& NTA_HASINDEX
) != 0)
2354 else if (lane
!= atype
.index
)
2356 first_error (_(type_error
));
2360 else if (lane
== -1)
2361 lane
= NEON_INTERLEAVE_LANES
;
2362 else if (lane
!= NEON_INTERLEAVE_LANES
)
2364 first_error (_(type_error
));
2369 while ((count
!= 1 || leading_brace
) && skip_past_comma (&ptr
) != FAIL
);
2371 /* No lane set by [x]. We must be interleaving structures. */
2373 lane
= NEON_INTERLEAVE_LANES
;
2376 if (lane
== -1 || base_reg
== -1 || count
< 1 || (!mve
&& count
> 4)
2377 || (count
> 1 && reg_incr
== -1))
2379 first_error (_("error parsing element/structure list"));
2383 if ((count
> 1 || leading_brace
) && skip_past_char (&ptr
, '}') == FAIL
)
2385 first_error (_("expected }"));
2393 *eltype
= firsttype
.eltype
;
2398 return lane
| ((reg_incr
- 1) << 4) | ((count
- 1) << 5);
2401 /* Parse an explicit relocation suffix on an expression. This is
2402 either nothing, or a word in parentheses. Note that if !OBJ_ELF,
2403 arm_reloc_hsh contains no entries, so this function can only
2404 succeed if there is no () after the word. Returns -1 on error,
2405 BFD_RELOC_UNUSED if there wasn't any suffix. */
2408 parse_reloc (char **str
)
2410 struct reloc_entry
*r
;
2414 return BFD_RELOC_UNUSED
;
2419 while (*q
&& *q
!= ')' && *q
!= ',')
2424 if ((r
= (struct reloc_entry
*)
2425 hash_find_n (arm_reloc_hsh
, p
, q
- p
)) == NULL
)
2432 /* Directives: register aliases. */
2434 static struct reg_entry
*
2435 insert_reg_alias (char *str
, unsigned number
, int type
)
2437 struct reg_entry
*new_reg
;
2440 if ((new_reg
= (struct reg_entry
*) hash_find (arm_reg_hsh
, str
)) != 0)
2442 if (new_reg
->builtin
)
2443 as_warn (_("ignoring attempt to redefine built-in register '%s'"), str
);
2445 /* Only warn about a redefinition if it's not defined as the
2447 else if (new_reg
->number
!= number
|| new_reg
->type
!= type
)
2448 as_warn (_("ignoring redefinition of register alias '%s'"), str
);
2453 name
= xstrdup (str
);
2454 new_reg
= XNEW (struct reg_entry
);
2456 new_reg
->name
= name
;
2457 new_reg
->number
= number
;
2458 new_reg
->type
= type
;
2459 new_reg
->builtin
= FALSE
;
2460 new_reg
->neon
= NULL
;
2462 if (hash_insert (arm_reg_hsh
, name
, (void *) new_reg
))
2469 insert_neon_reg_alias (char *str
, int number
, int type
,
2470 struct neon_typed_alias
*atype
)
2472 struct reg_entry
*reg
= insert_reg_alias (str
, number
, type
);
2476 first_error (_("attempt to redefine typed alias"));
2482 reg
->neon
= XNEW (struct neon_typed_alias
);
2483 *reg
->neon
= *atype
;
2487 /* Look for the .req directive. This is of the form:
2489 new_register_name .req existing_register_name
2491 If we find one, or if it looks sufficiently like one that we want to
2492 handle any error here, return TRUE. Otherwise return FALSE. */
2495 create_register_alias (char * newname
, char *p
)
2497 struct reg_entry
*old
;
2498 char *oldname
, *nbuf
;
2501 /* The input scrubber ensures that whitespace after the mnemonic is
2502 collapsed to single spaces. */
2504 if (strncmp (oldname
, " .req ", 6) != 0)
2508 if (*oldname
== '\0')
2511 old
= (struct reg_entry
*) hash_find (arm_reg_hsh
, oldname
);
2514 as_warn (_("unknown register '%s' -- .req ignored"), oldname
);
2518 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2519 the desired alias name, and p points to its end. If not, then
2520 the desired alias name is in the global original_case_string. */
2521 #ifdef TC_CASE_SENSITIVE
2524 newname
= original_case_string
;
2525 nlen
= strlen (newname
);
2528 nbuf
= xmemdup0 (newname
, nlen
);
2530 /* Create aliases under the new name as stated; an all-lowercase
2531 version of the new name; and an all-uppercase version of the new
2533 if (insert_reg_alias (nbuf
, old
->number
, old
->type
) != NULL
)
2535 for (p
= nbuf
; *p
; p
++)
2538 if (strncmp (nbuf
, newname
, nlen
))
2540 /* If this attempt to create an additional alias fails, do not bother
2541 trying to create the all-lower case alias. We will fail and issue
2542 a second, duplicate error message. This situation arises when the
2543 programmer does something like:
2546 The second .req creates the "Foo" alias but then fails to create
2547 the artificial FOO alias because it has already been created by the
2549 if (insert_reg_alias (nbuf
, old
->number
, old
->type
) == NULL
)
2556 for (p
= nbuf
; *p
; p
++)
2559 if (strncmp (nbuf
, newname
, nlen
))
2560 insert_reg_alias (nbuf
, old
->number
, old
->type
);
2567 /* Create a Neon typed/indexed register alias using directives, e.g.:
2572 These typed registers can be used instead of the types specified after the
2573 Neon mnemonic, so long as all operands given have types. Types can also be
2574 specified directly, e.g.:
2575 vadd d0.s32, d1.s32, d2.s32 */
2578 create_neon_reg_alias (char *newname
, char *p
)
2580 enum arm_reg_type basetype
;
2581 struct reg_entry
*basereg
;
2582 struct reg_entry mybasereg
;
2583 struct neon_type ntype
;
2584 struct neon_typed_alias typeinfo
;
2585 char *namebuf
, *nameend ATTRIBUTE_UNUSED
;
2588 typeinfo
.defined
= 0;
2589 typeinfo
.eltype
.type
= NT_invtype
;
2590 typeinfo
.eltype
.size
= -1;
2591 typeinfo
.index
= -1;
2595 if (strncmp (p
, " .dn ", 5) == 0)
2596 basetype
= REG_TYPE_VFD
;
2597 else if (strncmp (p
, " .qn ", 5) == 0)
2598 basetype
= REG_TYPE_NQ
;
2607 basereg
= arm_reg_parse_multi (&p
);
2609 if (basereg
&& basereg
->type
!= basetype
)
2611 as_bad (_("bad type for register"));
2615 if (basereg
== NULL
)
2618 /* Try parsing as an integer. */
2619 my_get_expression (&exp
, &p
, GE_NO_PREFIX
);
2620 if (exp
.X_op
!= O_constant
)
2622 as_bad (_("expression must be constant"));
2625 basereg
= &mybasereg
;
2626 basereg
->number
= (basetype
== REG_TYPE_NQ
) ? exp
.X_add_number
* 2
2632 typeinfo
= *basereg
->neon
;
2634 if (parse_neon_type (&ntype
, &p
) == SUCCESS
)
2636 /* We got a type. */
2637 if (typeinfo
.defined
& NTA_HASTYPE
)
2639 as_bad (_("can't redefine the type of a register alias"));
2643 typeinfo
.defined
|= NTA_HASTYPE
;
2644 if (ntype
.elems
!= 1)
2646 as_bad (_("you must specify a single type only"));
2649 typeinfo
.eltype
= ntype
.el
[0];
2652 if (skip_past_char (&p
, '[') == SUCCESS
)
2655 /* We got a scalar index. */
2657 if (typeinfo
.defined
& NTA_HASINDEX
)
2659 as_bad (_("can't redefine the index of a scalar alias"));
2663 my_get_expression (&exp
, &p
, GE_NO_PREFIX
);
2665 if (exp
.X_op
!= O_constant
)
2667 as_bad (_("scalar index must be constant"));
2671 typeinfo
.defined
|= NTA_HASINDEX
;
2672 typeinfo
.index
= exp
.X_add_number
;
2674 if (skip_past_char (&p
, ']') == FAIL
)
2676 as_bad (_("expecting ]"));
2681 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2682 the desired alias name, and p points to its end. If not, then
2683 the desired alias name is in the global original_case_string. */
2684 #ifdef TC_CASE_SENSITIVE
2685 namelen
= nameend
- newname
;
2687 newname
= original_case_string
;
2688 namelen
= strlen (newname
);
2691 namebuf
= xmemdup0 (newname
, namelen
);
2693 insert_neon_reg_alias (namebuf
, basereg
->number
, basetype
,
2694 typeinfo
.defined
!= 0 ? &typeinfo
: NULL
);
2696 /* Insert name in all uppercase. */
2697 for (p
= namebuf
; *p
; p
++)
2700 if (strncmp (namebuf
, newname
, namelen
))
2701 insert_neon_reg_alias (namebuf
, basereg
->number
, basetype
,
2702 typeinfo
.defined
!= 0 ? &typeinfo
: NULL
);
2704 /* Insert name in all lowercase. */
2705 for (p
= namebuf
; *p
; p
++)
2708 if (strncmp (namebuf
, newname
, namelen
))
2709 insert_neon_reg_alias (namebuf
, basereg
->number
, basetype
,
2710 typeinfo
.defined
!= 0 ? &typeinfo
: NULL
);
2716 /* Should never be called, as .req goes between the alias and the
2717 register name, not at the beginning of the line. */
2720 s_req (int a ATTRIBUTE_UNUSED
)
2722 as_bad (_("invalid syntax for .req directive"));
2726 s_dn (int a ATTRIBUTE_UNUSED
)
2728 as_bad (_("invalid syntax for .dn directive"));
2732 s_qn (int a ATTRIBUTE_UNUSED
)
2734 as_bad (_("invalid syntax for .qn directive"));
2737 /* The .unreq directive deletes an alias which was previously defined
2738 by .req. For example:
2744 s_unreq (int a ATTRIBUTE_UNUSED
)
2749 name
= input_line_pointer
;
2751 while (*input_line_pointer
!= 0
2752 && *input_line_pointer
!= ' '
2753 && *input_line_pointer
!= '\n')
2754 ++input_line_pointer
;
2756 saved_char
= *input_line_pointer
;
2757 *input_line_pointer
= 0;
2760 as_bad (_("invalid syntax for .unreq directive"));
2763 struct reg_entry
*reg
= (struct reg_entry
*) hash_find (arm_reg_hsh
,
2767 as_bad (_("unknown register alias '%s'"), name
);
2768 else if (reg
->builtin
)
2769 as_warn (_("ignoring attempt to use .unreq on fixed register name: '%s'"),
2776 hash_delete (arm_reg_hsh
, name
, FALSE
);
2777 free ((char *) reg
->name
);
2782 /* Also locate the all upper case and all lower case versions.
2783 Do not complain if we cannot find one or the other as it
2784 was probably deleted above. */
2786 nbuf
= strdup (name
);
2787 for (p
= nbuf
; *p
; p
++)
2789 reg
= (struct reg_entry
*) hash_find (arm_reg_hsh
, nbuf
);
2792 hash_delete (arm_reg_hsh
, nbuf
, FALSE
);
2793 free ((char *) reg
->name
);
2799 for (p
= nbuf
; *p
; p
++)
2801 reg
= (struct reg_entry
*) hash_find (arm_reg_hsh
, nbuf
);
2804 hash_delete (arm_reg_hsh
, nbuf
, FALSE
);
2805 free ((char *) reg
->name
);
2815 *input_line_pointer
= saved_char
;
2816 demand_empty_rest_of_line ();
2819 /* Directives: Instruction set selection. */
2822 /* This code is to handle mapping symbols as defined in the ARM ELF spec.
2823 (See "Mapping symbols", section 4.5.5, ARM AAELF version 1.0).
2824 Note that previously, $a and $t has type STT_FUNC (BSF_OBJECT flag),
2825 and $d has type STT_OBJECT (BSF_OBJECT flag). Now all three are untyped. */
2827 /* Create a new mapping symbol for the transition to STATE. */
2830 make_mapping_symbol (enum mstate state
, valueT value
, fragS
*frag
)
2833 const char * symname
;
2840 type
= BSF_NO_FLAGS
;
2844 type
= BSF_NO_FLAGS
;
2848 type
= BSF_NO_FLAGS
;
2854 symbolP
= symbol_new (symname
, now_seg
, value
, frag
);
2855 symbol_get_bfdsym (symbolP
)->flags
|= type
| BSF_LOCAL
;
2860 THUMB_SET_FUNC (symbolP
, 0);
2861 ARM_SET_THUMB (symbolP
, 0);
2862 ARM_SET_INTERWORK (symbolP
, support_interwork
);
2866 THUMB_SET_FUNC (symbolP
, 1);
2867 ARM_SET_THUMB (symbolP
, 1);
2868 ARM_SET_INTERWORK (symbolP
, support_interwork
);
2876 /* Save the mapping symbols for future reference. Also check that
2877 we do not place two mapping symbols at the same offset within a
2878 frag. We'll handle overlap between frags in
2879 check_mapping_symbols.
2881 If .fill or other data filling directive generates zero sized data,
2882 the mapping symbol for the following code will have the same value
2883 as the one generated for the data filling directive. In this case,
2884 we replace the old symbol with the new one at the same address. */
2887 if (frag
->tc_frag_data
.first_map
!= NULL
)
2889 know (S_GET_VALUE (frag
->tc_frag_data
.first_map
) == 0);
2890 symbol_remove (frag
->tc_frag_data
.first_map
, &symbol_rootP
, &symbol_lastP
);
2892 frag
->tc_frag_data
.first_map
= symbolP
;
2894 if (frag
->tc_frag_data
.last_map
!= NULL
)
2896 know (S_GET_VALUE (frag
->tc_frag_data
.last_map
) <= S_GET_VALUE (symbolP
));
2897 if (S_GET_VALUE (frag
->tc_frag_data
.last_map
) == S_GET_VALUE (symbolP
))
2898 symbol_remove (frag
->tc_frag_data
.last_map
, &symbol_rootP
, &symbol_lastP
);
2900 frag
->tc_frag_data
.last_map
= symbolP
;
2903 /* We must sometimes convert a region marked as code to data during
2904 code alignment, if an odd number of bytes have to be padded. The
2905 code mapping symbol is pushed to an aligned address. */
2908 insert_data_mapping_symbol (enum mstate state
,
2909 valueT value
, fragS
*frag
, offsetT bytes
)
2911 /* If there was already a mapping symbol, remove it. */
2912 if (frag
->tc_frag_data
.last_map
!= NULL
2913 && S_GET_VALUE (frag
->tc_frag_data
.last_map
) == frag
->fr_address
+ value
)
2915 symbolS
*symp
= frag
->tc_frag_data
.last_map
;
2919 know (frag
->tc_frag_data
.first_map
== symp
);
2920 frag
->tc_frag_data
.first_map
= NULL
;
2922 frag
->tc_frag_data
.last_map
= NULL
;
2923 symbol_remove (symp
, &symbol_rootP
, &symbol_lastP
);
2926 make_mapping_symbol (MAP_DATA
, value
, frag
);
2927 make_mapping_symbol (state
, value
+ bytes
, frag
);
2930 static void mapping_state_2 (enum mstate state
, int max_chars
);
2932 /* Set the mapping state to STATE. Only call this when about to
2933 emit some STATE bytes to the file. */
2935 #define TRANSITION(from, to) (mapstate == (from) && state == (to))
2937 mapping_state (enum mstate state
)
2939 enum mstate mapstate
= seg_info (now_seg
)->tc_segment_info_data
.mapstate
;
2941 if (mapstate
== state
)
2942 /* The mapping symbol has already been emitted.
2943 There is nothing else to do. */
2946 if (state
== MAP_ARM
|| state
== MAP_THUMB
)
2948 All ARM instructions require 4-byte alignment.
2949 (Almost) all Thumb instructions require 2-byte alignment.
2951 When emitting instructions into any section, mark the section
2954 Some Thumb instructions are alignment-sensitive modulo 4 bytes,
2955 but themselves require 2-byte alignment; this applies to some
2956 PC- relative forms. However, these cases will involve implicit
2957 literal pool generation or an explicit .align >=2, both of
2958 which will cause the section to me marked with sufficient
2959 alignment. Thus, we don't handle those cases here. */
2960 record_alignment (now_seg
, state
== MAP_ARM
? 2 : 1);
2962 if (TRANSITION (MAP_UNDEFINED
, MAP_DATA
))
2963 /* This case will be evaluated later. */
2966 mapping_state_2 (state
, 0);
2969 /* Same as mapping_state, but MAX_CHARS bytes have already been
2970 allocated. Put the mapping symbol that far back. */
2973 mapping_state_2 (enum mstate state
, int max_chars
)
2975 enum mstate mapstate
= seg_info (now_seg
)->tc_segment_info_data
.mapstate
;
2977 if (!SEG_NORMAL (now_seg
))
2980 if (mapstate
== state
)
2981 /* The mapping symbol has already been emitted.
2982 There is nothing else to do. */
2985 if (TRANSITION (MAP_UNDEFINED
, MAP_ARM
)
2986 || TRANSITION (MAP_UNDEFINED
, MAP_THUMB
))
2988 struct frag
* const frag_first
= seg_info (now_seg
)->frchainP
->frch_root
;
2989 const int add_symbol
= (frag_now
!= frag_first
) || (frag_now_fix () > 0);
2992 make_mapping_symbol (MAP_DATA
, (valueT
) 0, frag_first
);
2995 seg_info (now_seg
)->tc_segment_info_data
.mapstate
= state
;
2996 make_mapping_symbol (state
, (valueT
) frag_now_fix () - max_chars
, frag_now
);
3000 #define mapping_state(x) ((void)0)
3001 #define mapping_state_2(x, y) ((void)0)
3004 /* Find the real, Thumb encoded start of a Thumb function. */
3008 find_real_start (symbolS
* symbolP
)
3011 const char * name
= S_GET_NAME (symbolP
);
3012 symbolS
* new_target
;
3014 /* This definition must agree with the one in gcc/config/arm/thumb.c. */
3015 #define STUB_NAME ".real_start_of"
3020 /* The compiler may generate BL instructions to local labels because
3021 it needs to perform a branch to a far away location. These labels
3022 do not have a corresponding ".real_start_of" label. We check
3023 both for S_IS_LOCAL and for a leading dot, to give a way to bypass
3024 the ".real_start_of" convention for nonlocal branches. */
3025 if (S_IS_LOCAL (symbolP
) || name
[0] == '.')
3028 real_start
= concat (STUB_NAME
, name
, NULL
);
3029 new_target
= symbol_find (real_start
);
3032 if (new_target
== NULL
)
3034 as_warn (_("Failed to find real start of function: %s\n"), name
);
3035 new_target
= symbolP
;
3043 opcode_select (int width
)
3050 if (!ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v4t
))
3051 as_bad (_("selected processor does not support THUMB opcodes"));
3054 /* No need to force the alignment, since we will have been
3055 coming from ARM mode, which is word-aligned. */
3056 record_alignment (now_seg
, 1);
3063 if (!ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v1
))
3064 as_bad (_("selected processor does not support ARM opcodes"));
3069 frag_align (2, 0, 0);
3071 record_alignment (now_seg
, 1);
3076 as_bad (_("invalid instruction size selected (%d)"), width
);
3081 s_arm (int ignore ATTRIBUTE_UNUSED
)
3084 demand_empty_rest_of_line ();
3088 s_thumb (int ignore ATTRIBUTE_UNUSED
)
3091 demand_empty_rest_of_line ();
3095 s_code (int unused ATTRIBUTE_UNUSED
)
3099 temp
= get_absolute_expression ();
3104 opcode_select (temp
);
3108 as_bad (_("invalid operand to .code directive (%d) (expecting 16 or 32)"), temp
);
3113 s_force_thumb (int ignore ATTRIBUTE_UNUSED
)
3115 /* If we are not already in thumb mode go into it, EVEN if
3116 the target processor does not support thumb instructions.
3117 This is used by gcc/config/arm/lib1funcs.asm for example
3118 to compile interworking support functions even if the
3119 target processor should not support interworking. */
3123 record_alignment (now_seg
, 1);
3126 demand_empty_rest_of_line ();
3130 s_thumb_func (int ignore ATTRIBUTE_UNUSED
)
3134 /* The following label is the name/address of the start of a Thumb function.
3135 We need to know this for the interworking support. */
3136 label_is_thumb_function_name
= TRUE
;
3139 /* Perform a .set directive, but also mark the alias as
3140 being a thumb function. */
3143 s_thumb_set (int equiv
)
3145 /* XXX the following is a duplicate of the code for s_set() in read.c
3146 We cannot just call that code as we need to get at the symbol that
3153 /* Especial apologies for the random logic:
3154 This just grew, and could be parsed much more simply!
3156 delim
= get_symbol_name (& name
);
3157 end_name
= input_line_pointer
;
3158 (void) restore_line_pointer (delim
);
3160 if (*input_line_pointer
!= ',')
3163 as_bad (_("expected comma after name \"%s\""), name
);
3165 ignore_rest_of_line ();
3169 input_line_pointer
++;
3172 if (name
[0] == '.' && name
[1] == '\0')
3174 /* XXX - this should not happen to .thumb_set. */
3178 if ((symbolP
= symbol_find (name
)) == NULL
3179 && (symbolP
= md_undefined_symbol (name
)) == NULL
)
3182 /* When doing symbol listings, play games with dummy fragments living
3183 outside the normal fragment chain to record the file and line info
3185 if (listing
& LISTING_SYMBOLS
)
3187 extern struct list_info_struct
* listing_tail
;
3188 fragS
* dummy_frag
= (fragS
* ) xmalloc (sizeof (fragS
));
3190 memset (dummy_frag
, 0, sizeof (fragS
));
3191 dummy_frag
->fr_type
= rs_fill
;
3192 dummy_frag
->line
= listing_tail
;
3193 symbolP
= symbol_new (name
, undefined_section
, 0, dummy_frag
);
3194 dummy_frag
->fr_symbol
= symbolP
;
3198 symbolP
= symbol_new (name
, undefined_section
, 0, &zero_address_frag
);
3201 /* "set" symbols are local unless otherwise specified. */
3202 SF_SET_LOCAL (symbolP
);
3203 #endif /* OBJ_COFF */
3204 } /* Make a new symbol. */
3206 symbol_table_insert (symbolP
);
3211 && S_IS_DEFINED (symbolP
)
3212 && S_GET_SEGMENT (symbolP
) != reg_section
)
3213 as_bad (_("symbol `%s' already defined"), S_GET_NAME (symbolP
));
3215 pseudo_set (symbolP
);
3217 demand_empty_rest_of_line ();
3219 /* XXX Now we come to the Thumb specific bit of code. */
3221 THUMB_SET_FUNC (symbolP
, 1);
3222 ARM_SET_THUMB (symbolP
, 1);
3223 #if defined OBJ_ELF || defined OBJ_COFF
3224 ARM_SET_INTERWORK (symbolP
, support_interwork
);
3228 /* Directives: Mode selection. */
3230 /* .syntax [unified|divided] - choose the new unified syntax
3231 (same for Arm and Thumb encoding, modulo slight differences in what
3232 can be represented) or the old divergent syntax for each mode. */
3234 s_syntax (int unused ATTRIBUTE_UNUSED
)
3238 delim
= get_symbol_name (& name
);
3240 if (!strcasecmp (name
, "unified"))
3241 unified_syntax
= TRUE
;
3242 else if (!strcasecmp (name
, "divided"))
3243 unified_syntax
= FALSE
;
3246 as_bad (_("unrecognized syntax mode \"%s\""), name
);
3249 (void) restore_line_pointer (delim
);
3250 demand_empty_rest_of_line ();
3253 /* Directives: sectioning and alignment. */
3256 s_bss (int ignore ATTRIBUTE_UNUSED
)
3258 /* We don't support putting frags in the BSS segment, we fake it by
3259 marking in_bss, then looking at s_skip for clues. */
3260 subseg_set (bss_section
, 0);
3261 demand_empty_rest_of_line ();
3263 #ifdef md_elf_section_change_hook
3264 md_elf_section_change_hook ();
3269 s_even (int ignore ATTRIBUTE_UNUSED
)
3271 /* Never make frag if expect extra pass. */
3273 frag_align (1, 0, 0);
3275 record_alignment (now_seg
, 1);
3277 demand_empty_rest_of_line ();
3280 /* Directives: CodeComposer Studio. */
3282 /* .ref (for CodeComposer Studio syntax only). */
3284 s_ccs_ref (int unused ATTRIBUTE_UNUSED
)
3286 if (codecomposer_syntax
)
3287 ignore_rest_of_line ();
3289 as_bad (_(".ref pseudo-op only available with -mccs flag."));
3292 /* If name is not NULL, then it is used for marking the beginning of a
3293 function, whereas if it is NULL then it means the function end. */
3295 asmfunc_debug (const char * name
)
3297 static const char * last_name
= NULL
;
3301 gas_assert (last_name
== NULL
);
3304 if (debug_type
== DEBUG_STABS
)
3305 stabs_generate_asm_func (name
, name
);
3309 gas_assert (last_name
!= NULL
);
3311 if (debug_type
== DEBUG_STABS
)
3312 stabs_generate_asm_endfunc (last_name
, last_name
);
3319 s_ccs_asmfunc (int unused ATTRIBUTE_UNUSED
)
3321 if (codecomposer_syntax
)
3323 switch (asmfunc_state
)
3325 case OUTSIDE_ASMFUNC
:
3326 asmfunc_state
= WAITING_ASMFUNC_NAME
;
3329 case WAITING_ASMFUNC_NAME
:
3330 as_bad (_(".asmfunc repeated."));
3333 case WAITING_ENDASMFUNC
:
3334 as_bad (_(".asmfunc without function."));
3337 demand_empty_rest_of_line ();
3340 as_bad (_(".asmfunc pseudo-op only available with -mccs flag."));
3344 s_ccs_endasmfunc (int unused ATTRIBUTE_UNUSED
)
3346 if (codecomposer_syntax
)
3348 switch (asmfunc_state
)
3350 case OUTSIDE_ASMFUNC
:
3351 as_bad (_(".endasmfunc without a .asmfunc."));
3354 case WAITING_ASMFUNC_NAME
:
3355 as_bad (_(".endasmfunc without function."));
3358 case WAITING_ENDASMFUNC
:
3359 asmfunc_state
= OUTSIDE_ASMFUNC
;
3360 asmfunc_debug (NULL
);
3363 demand_empty_rest_of_line ();
3366 as_bad (_(".endasmfunc pseudo-op only available with -mccs flag."));
3370 s_ccs_def (int name
)
3372 if (codecomposer_syntax
)
3375 as_bad (_(".def pseudo-op only available with -mccs flag."));
3378 /* Directives: Literal pools. */
3380 static literal_pool
*
3381 find_literal_pool (void)
3383 literal_pool
* pool
;
3385 for (pool
= list_of_pools
; pool
!= NULL
; pool
= pool
->next
)
3387 if (pool
->section
== now_seg
3388 && pool
->sub_section
== now_subseg
)
3395 static literal_pool
*
3396 find_or_make_literal_pool (void)
3398 /* Next literal pool ID number. */
3399 static unsigned int latest_pool_num
= 1;
3400 literal_pool
* pool
;
3402 pool
= find_literal_pool ();
3406 /* Create a new pool. */
3407 pool
= XNEW (literal_pool
);
3411 pool
->next_free_entry
= 0;
3412 pool
->section
= now_seg
;
3413 pool
->sub_section
= now_subseg
;
3414 pool
->next
= list_of_pools
;
3415 pool
->symbol
= NULL
;
3416 pool
->alignment
= 2;
3418 /* Add it to the list. */
3419 list_of_pools
= pool
;
3422 /* New pools, and emptied pools, will have a NULL symbol. */
3423 if (pool
->symbol
== NULL
)
3425 pool
->symbol
= symbol_create (FAKE_LABEL_NAME
, undefined_section
,
3426 (valueT
) 0, &zero_address_frag
);
3427 pool
->id
= latest_pool_num
++;
3434 /* Add the literal in the global 'inst'
3435 structure to the relevant literal pool. */
3438 add_to_lit_pool (unsigned int nbytes
)
3440 #define PADDING_SLOT 0x1
3441 #define LIT_ENTRY_SIZE_MASK 0xFF
3442 literal_pool
* pool
;
3443 unsigned int entry
, pool_size
= 0;
3444 bfd_boolean padding_slot_p
= FALSE
;
3450 imm1
= inst
.operands
[1].imm
;
3451 imm2
= (inst
.operands
[1].regisimm
? inst
.operands
[1].reg
3452 : inst
.relocs
[0].exp
.X_unsigned
? 0
3453 : ((bfd_int64_t
) inst
.operands
[1].imm
) >> 32);
3454 if (target_big_endian
)
3457 imm2
= inst
.operands
[1].imm
;
3461 pool
= find_or_make_literal_pool ();
3463 /* Check if this literal value is already in the pool. */
3464 for (entry
= 0; entry
< pool
->next_free_entry
; entry
++)
3468 if ((pool
->literals
[entry
].X_op
== inst
.relocs
[0].exp
.X_op
)
3469 && (inst
.relocs
[0].exp
.X_op
== O_constant
)
3470 && (pool
->literals
[entry
].X_add_number
3471 == inst
.relocs
[0].exp
.X_add_number
)
3472 && (pool
->literals
[entry
].X_md
== nbytes
)
3473 && (pool
->literals
[entry
].X_unsigned
3474 == inst
.relocs
[0].exp
.X_unsigned
))
3477 if ((pool
->literals
[entry
].X_op
== inst
.relocs
[0].exp
.X_op
)
3478 && (inst
.relocs
[0].exp
.X_op
== O_symbol
)
3479 && (pool
->literals
[entry
].X_add_number
3480 == inst
.relocs
[0].exp
.X_add_number
)
3481 && (pool
->literals
[entry
].X_add_symbol
3482 == inst
.relocs
[0].exp
.X_add_symbol
)
3483 && (pool
->literals
[entry
].X_op_symbol
3484 == inst
.relocs
[0].exp
.X_op_symbol
)
3485 && (pool
->literals
[entry
].X_md
== nbytes
))
3488 else if ((nbytes
== 8)
3489 && !(pool_size
& 0x7)
3490 && ((entry
+ 1) != pool
->next_free_entry
)
3491 && (pool
->literals
[entry
].X_op
== O_constant
)
3492 && (pool
->literals
[entry
].X_add_number
== (offsetT
) imm1
)
3493 && (pool
->literals
[entry
].X_unsigned
3494 == inst
.relocs
[0].exp
.X_unsigned
)
3495 && (pool
->literals
[entry
+ 1].X_op
== O_constant
)
3496 && (pool
->literals
[entry
+ 1].X_add_number
== (offsetT
) imm2
)
3497 && (pool
->literals
[entry
+ 1].X_unsigned
3498 == inst
.relocs
[0].exp
.X_unsigned
))
3501 padding_slot_p
= ((pool
->literals
[entry
].X_md
>> 8) == PADDING_SLOT
);
3502 if (padding_slot_p
&& (nbytes
== 4))
3508 /* Do we need to create a new entry? */
3509 if (entry
== pool
->next_free_entry
)
3511 if (entry
>= MAX_LITERAL_POOL_SIZE
)
3513 inst
.error
= _("literal pool overflow");
3519 /* For 8-byte entries, we align to an 8-byte boundary,
3520 and split it into two 4-byte entries, because on 32-bit
3521 host, 8-byte constants are treated as big num, thus
3522 saved in "generic_bignum" which will be overwritten
3523 by later assignments.
3525 We also need to make sure there is enough space for
3528 We also check to make sure the literal operand is a
3530 if (!(inst
.relocs
[0].exp
.X_op
== O_constant
3531 || inst
.relocs
[0].exp
.X_op
== O_big
))
3533 inst
.error
= _("invalid type for literal pool");
3536 else if (pool_size
& 0x7)
3538 if ((entry
+ 2) >= MAX_LITERAL_POOL_SIZE
)
3540 inst
.error
= _("literal pool overflow");
3544 pool
->literals
[entry
] = inst
.relocs
[0].exp
;
3545 pool
->literals
[entry
].X_op
= O_constant
;
3546 pool
->literals
[entry
].X_add_number
= 0;
3547 pool
->literals
[entry
++].X_md
= (PADDING_SLOT
<< 8) | 4;
3548 pool
->next_free_entry
+= 1;
3551 else if ((entry
+ 1) >= MAX_LITERAL_POOL_SIZE
)
3553 inst
.error
= _("literal pool overflow");
3557 pool
->literals
[entry
] = inst
.relocs
[0].exp
;
3558 pool
->literals
[entry
].X_op
= O_constant
;
3559 pool
->literals
[entry
].X_add_number
= imm1
;
3560 pool
->literals
[entry
].X_unsigned
= inst
.relocs
[0].exp
.X_unsigned
;
3561 pool
->literals
[entry
++].X_md
= 4;
3562 pool
->literals
[entry
] = inst
.relocs
[0].exp
;
3563 pool
->literals
[entry
].X_op
= O_constant
;
3564 pool
->literals
[entry
].X_add_number
= imm2
;
3565 pool
->literals
[entry
].X_unsigned
= inst
.relocs
[0].exp
.X_unsigned
;
3566 pool
->literals
[entry
].X_md
= 4;
3567 pool
->alignment
= 3;
3568 pool
->next_free_entry
+= 1;
3572 pool
->literals
[entry
] = inst
.relocs
[0].exp
;
3573 pool
->literals
[entry
].X_md
= 4;
3577 /* PR ld/12974: Record the location of the first source line to reference
3578 this entry in the literal pool. If it turns out during linking that the
3579 symbol does not exist we will be able to give an accurate line number for
3580 the (first use of the) missing reference. */
3581 if (debug_type
== DEBUG_DWARF2
)
3582 dwarf2_where (pool
->locs
+ entry
);
3584 pool
->next_free_entry
+= 1;
3586 else if (padding_slot_p
)
3588 pool
->literals
[entry
] = inst
.relocs
[0].exp
;
3589 pool
->literals
[entry
].X_md
= nbytes
;
3592 inst
.relocs
[0].exp
.X_op
= O_symbol
;
3593 inst
.relocs
[0].exp
.X_add_number
= pool_size
;
3594 inst
.relocs
[0].exp
.X_add_symbol
= pool
->symbol
;
3600 tc_start_label_without_colon (void)
3602 bfd_boolean ret
= TRUE
;
3604 if (codecomposer_syntax
&& asmfunc_state
== WAITING_ASMFUNC_NAME
)
3606 const char *label
= input_line_pointer
;
3608 while (!is_end_of_line
[(int) label
[-1]])
3613 as_bad (_("Invalid label '%s'"), label
);
3617 asmfunc_debug (label
);
3619 asmfunc_state
= WAITING_ENDASMFUNC
;
3625 /* Can't use symbol_new here, so have to create a symbol and then at
3626 a later date assign it a value. That's what these functions do. */
3629 symbol_locate (symbolS
* symbolP
,
3630 const char * name
, /* It is copied, the caller can modify. */
3631 segT segment
, /* Segment identifier (SEG_<something>). */
3632 valueT valu
, /* Symbol value. */
3633 fragS
* frag
) /* Associated fragment. */
3636 char * preserved_copy_of_name
;
3638 name_length
= strlen (name
) + 1; /* +1 for \0. */
3639 obstack_grow (¬es
, name
, name_length
);
3640 preserved_copy_of_name
= (char *) obstack_finish (¬es
);
3642 #ifdef tc_canonicalize_symbol_name
3643 preserved_copy_of_name
=
3644 tc_canonicalize_symbol_name (preserved_copy_of_name
);
3647 S_SET_NAME (symbolP
, preserved_copy_of_name
);
3649 S_SET_SEGMENT (symbolP
, segment
);
3650 S_SET_VALUE (symbolP
, valu
);
3651 symbol_clear_list_pointers (symbolP
);
3653 symbol_set_frag (symbolP
, frag
);
3655 /* Link to end of symbol chain. */
3657 extern int symbol_table_frozen
;
3659 if (symbol_table_frozen
)
3663 symbol_append (symbolP
, symbol_lastP
, & symbol_rootP
, & symbol_lastP
);
3665 obj_symbol_new_hook (symbolP
);
3667 #ifdef tc_symbol_new_hook
3668 tc_symbol_new_hook (symbolP
);
3672 verify_symbol_chain (symbol_rootP
, symbol_lastP
);
3673 #endif /* DEBUG_SYMS */
3677 s_ltorg (int ignored ATTRIBUTE_UNUSED
)
3680 literal_pool
* pool
;
3683 pool
= find_literal_pool ();
3685 || pool
->symbol
== NULL
3686 || pool
->next_free_entry
== 0)
3689 /* Align pool as you have word accesses.
3690 Only make a frag if we have to. */
3692 frag_align (pool
->alignment
, 0, 0);
3694 record_alignment (now_seg
, 2);
3697 seg_info (now_seg
)->tc_segment_info_data
.mapstate
= MAP_DATA
;
3698 make_mapping_symbol (MAP_DATA
, (valueT
) frag_now_fix (), frag_now
);
3700 sprintf (sym_name
, "$$lit_\002%x", pool
->id
);
3702 symbol_locate (pool
->symbol
, sym_name
, now_seg
,
3703 (valueT
) frag_now_fix (), frag_now
);
3704 symbol_table_insert (pool
->symbol
);
3706 ARM_SET_THUMB (pool
->symbol
, thumb_mode
);
3708 #if defined OBJ_COFF || defined OBJ_ELF
3709 ARM_SET_INTERWORK (pool
->symbol
, support_interwork
);
3712 for (entry
= 0; entry
< pool
->next_free_entry
; entry
++)
3715 if (debug_type
== DEBUG_DWARF2
)
3716 dwarf2_gen_line_info (frag_now_fix (), pool
->locs
+ entry
);
3718 /* First output the expression in the instruction to the pool. */
3719 emit_expr (&(pool
->literals
[entry
]),
3720 pool
->literals
[entry
].X_md
& LIT_ENTRY_SIZE_MASK
);
3723 /* Mark the pool as empty. */
3724 pool
->next_free_entry
= 0;
3725 pool
->symbol
= NULL
;
3729 /* Forward declarations for functions below, in the MD interface
3731 static void fix_new_arm (fragS
*, int, short, expressionS
*, int, int);
3732 static valueT
create_unwind_entry (int);
3733 static void start_unwind_section (const segT
, int);
3734 static void add_unwind_opcode (valueT
, int);
3735 static void flush_pending_unwind (void);
3737 /* Directives: Data. */
3740 s_arm_elf_cons (int nbytes
)
3744 #ifdef md_flush_pending_output
3745 md_flush_pending_output ();
3748 if (is_it_end_of_statement ())
3750 demand_empty_rest_of_line ();
3754 #ifdef md_cons_align
3755 md_cons_align (nbytes
);
3758 mapping_state (MAP_DATA
);
3762 char *base
= input_line_pointer
;
3766 if (exp
.X_op
!= O_symbol
)
3767 emit_expr (&exp
, (unsigned int) nbytes
);
3770 char *before_reloc
= input_line_pointer
;
3771 reloc
= parse_reloc (&input_line_pointer
);
3774 as_bad (_("unrecognized relocation suffix"));
3775 ignore_rest_of_line ();
3778 else if (reloc
== BFD_RELOC_UNUSED
)
3779 emit_expr (&exp
, (unsigned int) nbytes
);
3782 reloc_howto_type
*howto
= (reloc_howto_type
*)
3783 bfd_reloc_type_lookup (stdoutput
,
3784 (bfd_reloc_code_real_type
) reloc
);
3785 int size
= bfd_get_reloc_size (howto
);
3787 if (reloc
== BFD_RELOC_ARM_PLT32
)
3789 as_bad (_("(plt) is only valid on branch targets"));
3790 reloc
= BFD_RELOC_UNUSED
;
3795 as_bad (ngettext ("%s relocations do not fit in %d byte",
3796 "%s relocations do not fit in %d bytes",
3798 howto
->name
, nbytes
);
3801 /* We've parsed an expression stopping at O_symbol.
3802 But there may be more expression left now that we
3803 have parsed the relocation marker. Parse it again.
3804 XXX Surely there is a cleaner way to do this. */
3805 char *p
= input_line_pointer
;
3807 char *save_buf
= XNEWVEC (char, input_line_pointer
- base
);
3809 memcpy (save_buf
, base
, input_line_pointer
- base
);
3810 memmove (base
+ (input_line_pointer
- before_reloc
),
3811 base
, before_reloc
- base
);
3813 input_line_pointer
= base
+ (input_line_pointer
-before_reloc
);
3815 memcpy (base
, save_buf
, p
- base
);
3817 offset
= nbytes
- size
;
3818 p
= frag_more (nbytes
);
3819 memset (p
, 0, nbytes
);
3820 fix_new_exp (frag_now
, p
- frag_now
->fr_literal
+ offset
,
3821 size
, &exp
, 0, (enum bfd_reloc_code_real
) reloc
);
3827 while (*input_line_pointer
++ == ',');
3829 /* Put terminator back into stream. */
3830 input_line_pointer
--;
3831 demand_empty_rest_of_line ();
3834 /* Emit an expression containing a 32-bit thumb instruction.
3835 Implementation based on put_thumb32_insn. */
3838 emit_thumb32_expr (expressionS
* exp
)
3840 expressionS exp_high
= *exp
;
3842 exp_high
.X_add_number
= (unsigned long)exp_high
.X_add_number
>> 16;
3843 emit_expr (& exp_high
, (unsigned int) THUMB_SIZE
);
3844 exp
->X_add_number
&= 0xffff;
3845 emit_expr (exp
, (unsigned int) THUMB_SIZE
);
3848 /* Guess the instruction size based on the opcode. */
3851 thumb_insn_size (int opcode
)
3853 if ((unsigned int) opcode
< 0xe800u
)
3855 else if ((unsigned int) opcode
>= 0xe8000000u
)
3862 emit_insn (expressionS
*exp
, int nbytes
)
3866 if (exp
->X_op
== O_constant
)
3871 size
= thumb_insn_size (exp
->X_add_number
);
3875 if (size
== 2 && (unsigned int)exp
->X_add_number
> 0xffffu
)
3877 as_bad (_(".inst.n operand too big. "\
3878 "Use .inst.w instead"));
3883 if (now_pred
.state
== AUTOMATIC_PRED_BLOCK
)
3884 set_pred_insn_type_nonvoid (OUTSIDE_PRED_INSN
, 0);
3886 set_pred_insn_type_nonvoid (NEUTRAL_IT_INSN
, 0);
3888 if (thumb_mode
&& (size
> THUMB_SIZE
) && !target_big_endian
)
3889 emit_thumb32_expr (exp
);
3891 emit_expr (exp
, (unsigned int) size
);
3893 it_fsm_post_encode ();
3897 as_bad (_("cannot determine Thumb instruction size. " \
3898 "Use .inst.n/.inst.w instead"));
3901 as_bad (_("constant expression required"));
3906 /* Like s_arm_elf_cons but do not use md_cons_align and
3907 set the mapping state to MAP_ARM/MAP_THUMB. */
3910 s_arm_elf_inst (int nbytes
)
3912 if (is_it_end_of_statement ())
3914 demand_empty_rest_of_line ();
3918 /* Calling mapping_state () here will not change ARM/THUMB,
3919 but will ensure not to be in DATA state. */
3922 mapping_state (MAP_THUMB
);
3927 as_bad (_("width suffixes are invalid in ARM mode"));
3928 ignore_rest_of_line ();
3934 mapping_state (MAP_ARM
);
3943 if (! emit_insn (& exp
, nbytes
))
3945 ignore_rest_of_line ();
3949 while (*input_line_pointer
++ == ',');
3951 /* Put terminator back into stream. */
3952 input_line_pointer
--;
3953 demand_empty_rest_of_line ();
3956 /* Parse a .rel31 directive. */
3959 s_arm_rel31 (int ignored ATTRIBUTE_UNUSED
)
3966 if (*input_line_pointer
== '1')
3967 highbit
= 0x80000000;
3968 else if (*input_line_pointer
!= '0')
3969 as_bad (_("expected 0 or 1"));
3971 input_line_pointer
++;
3972 if (*input_line_pointer
!= ',')
3973 as_bad (_("missing comma"));
3974 input_line_pointer
++;
3976 #ifdef md_flush_pending_output
3977 md_flush_pending_output ();
3980 #ifdef md_cons_align
3984 mapping_state (MAP_DATA
);
3989 md_number_to_chars (p
, highbit
, 4);
3990 fix_new_arm (frag_now
, p
- frag_now
->fr_literal
, 4, &exp
, 1,
3991 BFD_RELOC_ARM_PREL31
);
3993 demand_empty_rest_of_line ();
3996 /* Directives: AEABI stack-unwind tables. */
3998 /* Parse an unwind_fnstart directive. Simply records the current location. */
4001 s_arm_unwind_fnstart (int ignored ATTRIBUTE_UNUSED
)
4003 demand_empty_rest_of_line ();
4004 if (unwind
.proc_start
)
4006 as_bad (_("duplicate .fnstart directive"));
4010 /* Mark the start of the function. */
4011 unwind
.proc_start
= expr_build_dot ();
4013 /* Reset the rest of the unwind info. */
4014 unwind
.opcode_count
= 0;
4015 unwind
.table_entry
= NULL
;
4016 unwind
.personality_routine
= NULL
;
4017 unwind
.personality_index
= -1;
4018 unwind
.frame_size
= 0;
4019 unwind
.fp_offset
= 0;
4020 unwind
.fp_reg
= REG_SP
;
4022 unwind
.sp_restored
= 0;
4026 /* Parse a handlerdata directive. Creates the exception handling table entry
4027 for the function. */
4030 s_arm_unwind_handlerdata (int ignored ATTRIBUTE_UNUSED
)
4032 demand_empty_rest_of_line ();
4033 if (!unwind
.proc_start
)
4034 as_bad (MISSING_FNSTART
);
4036 if (unwind
.table_entry
)
4037 as_bad (_("duplicate .handlerdata directive"));
4039 create_unwind_entry (1);
4042 /* Parse an unwind_fnend directive. Generates the index table entry. */
4045 s_arm_unwind_fnend (int ignored ATTRIBUTE_UNUSED
)
4050 unsigned int marked_pr_dependency
;
4052 demand_empty_rest_of_line ();
4054 if (!unwind
.proc_start
)
4056 as_bad (_(".fnend directive without .fnstart"));
4060 /* Add eh table entry. */
4061 if (unwind
.table_entry
== NULL
)
4062 val
= create_unwind_entry (0);
4066 /* Add index table entry. This is two words. */
4067 start_unwind_section (unwind
.saved_seg
, 1);
4068 frag_align (2, 0, 0);
4069 record_alignment (now_seg
, 2);
4071 ptr
= frag_more (8);
4073 where
= frag_now_fix () - 8;
4075 /* Self relative offset of the function start. */
4076 fix_new (frag_now
, where
, 4, unwind
.proc_start
, 0, 1,
4077 BFD_RELOC_ARM_PREL31
);
4079 /* Indicate dependency on EHABI-defined personality routines to the
4080 linker, if it hasn't been done already. */
4081 marked_pr_dependency
4082 = seg_info (now_seg
)->tc_segment_info_data
.marked_pr_dependency
;
4083 if (unwind
.personality_index
>= 0 && unwind
.personality_index
< 3
4084 && !(marked_pr_dependency
& (1 << unwind
.personality_index
)))
4086 static const char *const name
[] =
4088 "__aeabi_unwind_cpp_pr0",
4089 "__aeabi_unwind_cpp_pr1",
4090 "__aeabi_unwind_cpp_pr2"
4092 symbolS
*pr
= symbol_find_or_make (name
[unwind
.personality_index
]);
4093 fix_new (frag_now
, where
, 0, pr
, 0, 1, BFD_RELOC_NONE
);
4094 seg_info (now_seg
)->tc_segment_info_data
.marked_pr_dependency
4095 |= 1 << unwind
.personality_index
;
4099 /* Inline exception table entry. */
4100 md_number_to_chars (ptr
+ 4, val
, 4);
4102 /* Self relative offset of the table entry. */
4103 fix_new (frag_now
, where
+ 4, 4, unwind
.table_entry
, 0, 1,
4104 BFD_RELOC_ARM_PREL31
);
4106 /* Restore the original section. */
4107 subseg_set (unwind
.saved_seg
, unwind
.saved_subseg
);
4109 unwind
.proc_start
= NULL
;
4113 /* Parse an unwind_cantunwind directive. */
4116 s_arm_unwind_cantunwind (int ignored ATTRIBUTE_UNUSED
)
4118 demand_empty_rest_of_line ();
4119 if (!unwind
.proc_start
)
4120 as_bad (MISSING_FNSTART
);
4122 if (unwind
.personality_routine
|| unwind
.personality_index
!= -1)
4123 as_bad (_("personality routine specified for cantunwind frame"));
4125 unwind
.personality_index
= -2;
4129 /* Parse a personalityindex directive. */
4132 s_arm_unwind_personalityindex (int ignored ATTRIBUTE_UNUSED
)
4136 if (!unwind
.proc_start
)
4137 as_bad (MISSING_FNSTART
);
4139 if (unwind
.personality_routine
|| unwind
.personality_index
!= -1)
4140 as_bad (_("duplicate .personalityindex directive"));
4144 if (exp
.X_op
!= O_constant
4145 || exp
.X_add_number
< 0 || exp
.X_add_number
> 15)
4147 as_bad (_("bad personality routine number"));
4148 ignore_rest_of_line ();
4152 unwind
.personality_index
= exp
.X_add_number
;
4154 demand_empty_rest_of_line ();
4158 /* Parse a personality directive. */
4161 s_arm_unwind_personality (int ignored ATTRIBUTE_UNUSED
)
4165 if (!unwind
.proc_start
)
4166 as_bad (MISSING_FNSTART
);
4168 if (unwind
.personality_routine
|| unwind
.personality_index
!= -1)
4169 as_bad (_("duplicate .personality directive"));
4171 c
= get_symbol_name (& name
);
4172 p
= input_line_pointer
;
4174 ++ input_line_pointer
;
4175 unwind
.personality_routine
= symbol_find_or_make (name
);
4177 demand_empty_rest_of_line ();
4181 /* Parse a directive saving core registers. */
4184 s_arm_unwind_save_core (void)
4190 range
= parse_reg_list (&input_line_pointer
, REGLIST_RN
);
4193 as_bad (_("expected register list"));
4194 ignore_rest_of_line ();
4198 demand_empty_rest_of_line ();
4200 /* Turn .unwind_movsp ip followed by .unwind_save {..., ip, ...}
4201 into .unwind_save {..., sp...}. We aren't bothered about the value of
4202 ip because it is clobbered by calls. */
4203 if (unwind
.sp_restored
&& unwind
.fp_reg
== 12
4204 && (range
& 0x3000) == 0x1000)
4206 unwind
.opcode_count
--;
4207 unwind
.sp_restored
= 0;
4208 range
= (range
| 0x2000) & ~0x1000;
4209 unwind
.pending_offset
= 0;
4215 /* See if we can use the short opcodes. These pop a block of up to 8
4216 registers starting with r4, plus maybe r14. */
4217 for (n
= 0; n
< 8; n
++)
4219 /* Break at the first non-saved register. */
4220 if ((range
& (1 << (n
+ 4))) == 0)
4223 /* See if there are any other bits set. */
4224 if (n
== 0 || (range
& (0xfff0 << n
) & 0xbff0) != 0)
4226 /* Use the long form. */
4227 op
= 0x8000 | ((range
>> 4) & 0xfff);
4228 add_unwind_opcode (op
, 2);
4232 /* Use the short form. */
4234 op
= 0xa8; /* Pop r14. */
4236 op
= 0xa0; /* Do not pop r14. */
4238 add_unwind_opcode (op
, 1);
4245 op
= 0xb100 | (range
& 0xf);
4246 add_unwind_opcode (op
, 2);
4249 /* Record the number of bytes pushed. */
4250 for (n
= 0; n
< 16; n
++)
4252 if (range
& (1 << n
))
4253 unwind
.frame_size
+= 4;
4258 /* Parse a directive saving FPA registers. */
4261 s_arm_unwind_save_fpa (int reg
)
4267 /* Get Number of registers to transfer. */
4268 if (skip_past_comma (&input_line_pointer
) != FAIL
)
4271 exp
.X_op
= O_illegal
;
4273 if (exp
.X_op
!= O_constant
)
4275 as_bad (_("expected , <constant>"));
4276 ignore_rest_of_line ();
4280 num_regs
= exp
.X_add_number
;
4282 if (num_regs
< 1 || num_regs
> 4)
4284 as_bad (_("number of registers must be in the range [1:4]"));
4285 ignore_rest_of_line ();
4289 demand_empty_rest_of_line ();
4294 op
= 0xb4 | (num_regs
- 1);
4295 add_unwind_opcode (op
, 1);
4300 op
= 0xc800 | (reg
<< 4) | (num_regs
- 1);
4301 add_unwind_opcode (op
, 2);
4303 unwind
.frame_size
+= num_regs
* 12;
4307 /* Parse a directive saving VFP registers for ARMv6 and above. */
4310 s_arm_unwind_save_vfp_armv6 (void)
4315 int num_vfpv3_regs
= 0;
4316 int num_regs_below_16
;
4317 bfd_boolean partial_match
;
4319 count
= parse_vfp_reg_list (&input_line_pointer
, &start
, REGLIST_VFP_D
,
4323 as_bad (_("expected register list"));
4324 ignore_rest_of_line ();
4328 demand_empty_rest_of_line ();
4330 /* We always generate FSTMD/FLDMD-style unwinding opcodes (rather
4331 than FSTMX/FLDMX-style ones). */
4333 /* Generate opcode for (VFPv3) registers numbered in the range 16 .. 31. */
4335 num_vfpv3_regs
= count
;
4336 else if (start
+ count
> 16)
4337 num_vfpv3_regs
= start
+ count
- 16;
4339 if (num_vfpv3_regs
> 0)
4341 int start_offset
= start
> 16 ? start
- 16 : 0;
4342 op
= 0xc800 | (start_offset
<< 4) | (num_vfpv3_regs
- 1);
4343 add_unwind_opcode (op
, 2);
4346 /* Generate opcode for registers numbered in the range 0 .. 15. */
4347 num_regs_below_16
= num_vfpv3_regs
> 0 ? 16 - (int) start
: count
;
4348 gas_assert (num_regs_below_16
+ num_vfpv3_regs
== count
);
4349 if (num_regs_below_16
> 0)
4351 op
= 0xc900 | (start
<< 4) | (num_regs_below_16
- 1);
4352 add_unwind_opcode (op
, 2);
4355 unwind
.frame_size
+= count
* 8;
4359 /* Parse a directive saving VFP registers for pre-ARMv6. */
4362 s_arm_unwind_save_vfp (void)
4367 bfd_boolean partial_match
;
4369 count
= parse_vfp_reg_list (&input_line_pointer
, ®
, REGLIST_VFP_D
,
4373 as_bad (_("expected register list"));
4374 ignore_rest_of_line ();
4378 demand_empty_rest_of_line ();
4383 op
= 0xb8 | (count
- 1);
4384 add_unwind_opcode (op
, 1);
4389 op
= 0xb300 | (reg
<< 4) | (count
- 1);
4390 add_unwind_opcode (op
, 2);
4392 unwind
.frame_size
+= count
* 8 + 4;
4396 /* Parse a directive saving iWMMXt data registers. */
4399 s_arm_unwind_save_mmxwr (void)
4407 if (*input_line_pointer
== '{')
4408 input_line_pointer
++;
4412 reg
= arm_reg_parse (&input_line_pointer
, REG_TYPE_MMXWR
);
4416 as_bad ("%s", _(reg_expected_msgs
[REG_TYPE_MMXWR
]));
4421 as_tsktsk (_("register list not in ascending order"));
4424 if (*input_line_pointer
== '-')
4426 input_line_pointer
++;
4427 hi_reg
= arm_reg_parse (&input_line_pointer
, REG_TYPE_MMXWR
);
4430 as_bad ("%s", _(reg_expected_msgs
[REG_TYPE_MMXWR
]));
4433 else if (reg
>= hi_reg
)
4435 as_bad (_("bad register range"));
4438 for (; reg
< hi_reg
; reg
++)
4442 while (skip_past_comma (&input_line_pointer
) != FAIL
);
4444 skip_past_char (&input_line_pointer
, '}');
4446 demand_empty_rest_of_line ();
4448 /* Generate any deferred opcodes because we're going to be looking at
4450 flush_pending_unwind ();
4452 for (i
= 0; i
< 16; i
++)
4454 if (mask
& (1 << i
))
4455 unwind
.frame_size
+= 8;
4458 /* Attempt to combine with a previous opcode. We do this because gcc
4459 likes to output separate unwind directives for a single block of
4461 if (unwind
.opcode_count
> 0)
4463 i
= unwind
.opcodes
[unwind
.opcode_count
- 1];
4464 if ((i
& 0xf8) == 0xc0)
4467 /* Only merge if the blocks are contiguous. */
4470 if ((mask
& 0xfe00) == (1 << 9))
4472 mask
|= ((1 << (i
+ 11)) - 1) & 0xfc00;
4473 unwind
.opcode_count
--;
4476 else if (i
== 6 && unwind
.opcode_count
>= 2)
4478 i
= unwind
.opcodes
[unwind
.opcode_count
- 2];
4482 op
= 0xffff << (reg
- 1);
4484 && ((mask
& op
) == (1u << (reg
- 1))))
4486 op
= (1 << (reg
+ i
+ 1)) - 1;
4487 op
&= ~((1 << reg
) - 1);
4489 unwind
.opcode_count
-= 2;
4496 /* We want to generate opcodes in the order the registers have been
4497 saved, ie. descending order. */
4498 for (reg
= 15; reg
>= -1; reg
--)
4500 /* Save registers in blocks. */
4502 || !(mask
& (1 << reg
)))
4504 /* We found an unsaved reg. Generate opcodes to save the
4511 op
= 0xc0 | (hi_reg
- 10);
4512 add_unwind_opcode (op
, 1);
4517 op
= 0xc600 | ((reg
+ 1) << 4) | ((hi_reg
- reg
) - 1);
4518 add_unwind_opcode (op
, 2);
4527 ignore_rest_of_line ();
4531 s_arm_unwind_save_mmxwcg (void)
4538 if (*input_line_pointer
== '{')
4539 input_line_pointer
++;
4541 skip_whitespace (input_line_pointer
);
4545 reg
= arm_reg_parse (&input_line_pointer
, REG_TYPE_MMXWCG
);
4549 as_bad ("%s", _(reg_expected_msgs
[REG_TYPE_MMXWCG
]));
4555 as_tsktsk (_("register list not in ascending order"));
4558 if (*input_line_pointer
== '-')
4560 input_line_pointer
++;
4561 hi_reg
= arm_reg_parse (&input_line_pointer
, REG_TYPE_MMXWCG
);
4564 as_bad ("%s", _(reg_expected_msgs
[REG_TYPE_MMXWCG
]));
4567 else if (reg
>= hi_reg
)
4569 as_bad (_("bad register range"));
4572 for (; reg
< hi_reg
; reg
++)
4576 while (skip_past_comma (&input_line_pointer
) != FAIL
);
4578 skip_past_char (&input_line_pointer
, '}');
4580 demand_empty_rest_of_line ();
4582 /* Generate any deferred opcodes because we're going to be looking at
4584 flush_pending_unwind ();
4586 for (reg
= 0; reg
< 16; reg
++)
4588 if (mask
& (1 << reg
))
4589 unwind
.frame_size
+= 4;
4592 add_unwind_opcode (op
, 2);
4595 ignore_rest_of_line ();
4599 /* Parse an unwind_save directive.
4600 If the argument is non-zero, this is a .vsave directive. */
4603 s_arm_unwind_save (int arch_v6
)
4606 struct reg_entry
*reg
;
4607 bfd_boolean had_brace
= FALSE
;
4609 if (!unwind
.proc_start
)
4610 as_bad (MISSING_FNSTART
);
4612 /* Figure out what sort of save we have. */
4613 peek
= input_line_pointer
;
4621 reg
= arm_reg_parse_multi (&peek
);
4625 as_bad (_("register expected"));
4626 ignore_rest_of_line ();
4635 as_bad (_("FPA .unwind_save does not take a register list"));
4636 ignore_rest_of_line ();
4639 input_line_pointer
= peek
;
4640 s_arm_unwind_save_fpa (reg
->number
);
4644 s_arm_unwind_save_core ();
4649 s_arm_unwind_save_vfp_armv6 ();
4651 s_arm_unwind_save_vfp ();
4654 case REG_TYPE_MMXWR
:
4655 s_arm_unwind_save_mmxwr ();
4658 case REG_TYPE_MMXWCG
:
4659 s_arm_unwind_save_mmxwcg ();
4663 as_bad (_(".unwind_save does not support this kind of register"));
4664 ignore_rest_of_line ();
4669 /* Parse an unwind_movsp directive. */
4672 s_arm_unwind_movsp (int ignored ATTRIBUTE_UNUSED
)
4678 if (!unwind
.proc_start
)
4679 as_bad (MISSING_FNSTART
);
4681 reg
= arm_reg_parse (&input_line_pointer
, REG_TYPE_RN
);
4684 as_bad ("%s", _(reg_expected_msgs
[REG_TYPE_RN
]));
4685 ignore_rest_of_line ();
4689 /* Optional constant. */
4690 if (skip_past_comma (&input_line_pointer
) != FAIL
)
4692 if (immediate_for_directive (&offset
) == FAIL
)
4698 demand_empty_rest_of_line ();
4700 if (reg
== REG_SP
|| reg
== REG_PC
)
4702 as_bad (_("SP and PC not permitted in .unwind_movsp directive"));
4706 if (unwind
.fp_reg
!= REG_SP
)
4707 as_bad (_("unexpected .unwind_movsp directive"));
4709 /* Generate opcode to restore the value. */
4711 add_unwind_opcode (op
, 1);
4713 /* Record the information for later. */
4714 unwind
.fp_reg
= reg
;
4715 unwind
.fp_offset
= unwind
.frame_size
- offset
;
4716 unwind
.sp_restored
= 1;
4719 /* Parse an unwind_pad directive. */
4722 s_arm_unwind_pad (int ignored ATTRIBUTE_UNUSED
)
4726 if (!unwind
.proc_start
)
4727 as_bad (MISSING_FNSTART
);
4729 if (immediate_for_directive (&offset
) == FAIL
)
4734 as_bad (_("stack increment must be multiple of 4"));
4735 ignore_rest_of_line ();
4739 /* Don't generate any opcodes, just record the details for later. */
4740 unwind
.frame_size
+= offset
;
4741 unwind
.pending_offset
+= offset
;
4743 demand_empty_rest_of_line ();
4746 /* Parse an unwind_setfp directive. */
4749 s_arm_unwind_setfp (int ignored ATTRIBUTE_UNUSED
)
4755 if (!unwind
.proc_start
)
4756 as_bad (MISSING_FNSTART
);
4758 fp_reg
= arm_reg_parse (&input_line_pointer
, REG_TYPE_RN
);
4759 if (skip_past_comma (&input_line_pointer
) == FAIL
)
4762 sp_reg
= arm_reg_parse (&input_line_pointer
, REG_TYPE_RN
);
4764 if (fp_reg
== FAIL
|| sp_reg
== FAIL
)
4766 as_bad (_("expected <reg>, <reg>"));
4767 ignore_rest_of_line ();
4771 /* Optional constant. */
4772 if (skip_past_comma (&input_line_pointer
) != FAIL
)
4774 if (immediate_for_directive (&offset
) == FAIL
)
4780 demand_empty_rest_of_line ();
4782 if (sp_reg
!= REG_SP
&& sp_reg
!= unwind
.fp_reg
)
4784 as_bad (_("register must be either sp or set by a previous"
4785 "unwind_movsp directive"));
4789 /* Don't generate any opcodes, just record the information for later. */
4790 unwind
.fp_reg
= fp_reg
;
4792 if (sp_reg
== REG_SP
)
4793 unwind
.fp_offset
= unwind
.frame_size
- offset
;
4795 unwind
.fp_offset
-= offset
;
4798 /* Parse an unwind_raw directive. */
4801 s_arm_unwind_raw (int ignored ATTRIBUTE_UNUSED
)
4804 /* This is an arbitrary limit. */
4805 unsigned char op
[16];
4808 if (!unwind
.proc_start
)
4809 as_bad (MISSING_FNSTART
);
4812 if (exp
.X_op
== O_constant
4813 && skip_past_comma (&input_line_pointer
) != FAIL
)
4815 unwind
.frame_size
+= exp
.X_add_number
;
4819 exp
.X_op
= O_illegal
;
4821 if (exp
.X_op
!= O_constant
)
4823 as_bad (_("expected <offset>, <opcode>"));
4824 ignore_rest_of_line ();
4830 /* Parse the opcode. */
4835 as_bad (_("unwind opcode too long"));
4836 ignore_rest_of_line ();
4838 if (exp
.X_op
!= O_constant
|| exp
.X_add_number
& ~0xff)
4840 as_bad (_("invalid unwind opcode"));
4841 ignore_rest_of_line ();
4844 op
[count
++] = exp
.X_add_number
;
4846 /* Parse the next byte. */
4847 if (skip_past_comma (&input_line_pointer
) == FAIL
)
4853 /* Add the opcode bytes in reverse order. */
4855 add_unwind_opcode (op
[count
], 1);
4857 demand_empty_rest_of_line ();
4861 /* Parse a .eabi_attribute directive. */
4864 s_arm_eabi_attribute (int ignored ATTRIBUTE_UNUSED
)
4866 int tag
= obj_elf_vendor_attribute (OBJ_ATTR_PROC
);
4868 if (tag
>= 0 && tag
< NUM_KNOWN_OBJ_ATTRIBUTES
)
4869 attributes_set_explicitly
[tag
] = 1;
4872 /* Emit a tls fix for the symbol. */
4875 s_arm_tls_descseq (int ignored ATTRIBUTE_UNUSED
)
4879 #ifdef md_flush_pending_output
4880 md_flush_pending_output ();
4883 #ifdef md_cons_align
4887 /* Since we're just labelling the code, there's no need to define a
4890 p
= obstack_next_free (&frchain_now
->frch_obstack
);
4891 fix_new_arm (frag_now
, p
- frag_now
->fr_literal
, 4, &exp
, 0,
4892 thumb_mode
? BFD_RELOC_ARM_THM_TLS_DESCSEQ
4893 : BFD_RELOC_ARM_TLS_DESCSEQ
);
4895 #endif /* OBJ_ELF */
4897 static void s_arm_arch (int);
4898 static void s_arm_object_arch (int);
4899 static void s_arm_cpu (int);
4900 static void s_arm_fpu (int);
4901 static void s_arm_arch_extension (int);
4906 pe_directive_secrel (int dummy ATTRIBUTE_UNUSED
)
4913 if (exp
.X_op
== O_symbol
)
4914 exp
.X_op
= O_secrel
;
4916 emit_expr (&exp
, 4);
4918 while (*input_line_pointer
++ == ',');
4920 input_line_pointer
--;
4921 demand_empty_rest_of_line ();
4925 /* This table describes all the machine specific pseudo-ops the assembler
4926 has to support. The fields are:
4927 pseudo-op name without dot
4928 function to call to execute this pseudo-op
4929 Integer arg to pass to the function. */
4931 const pseudo_typeS md_pseudo_table
[] =
4933 /* Never called because '.req' does not start a line. */
4934 { "req", s_req
, 0 },
4935 /* Following two are likewise never called. */
4938 { "unreq", s_unreq
, 0 },
4939 { "bss", s_bss
, 0 },
4940 { "align", s_align_ptwo
, 2 },
4941 { "arm", s_arm
, 0 },
4942 { "thumb", s_thumb
, 0 },
4943 { "code", s_code
, 0 },
4944 { "force_thumb", s_force_thumb
, 0 },
4945 { "thumb_func", s_thumb_func
, 0 },
4946 { "thumb_set", s_thumb_set
, 0 },
4947 { "even", s_even
, 0 },
4948 { "ltorg", s_ltorg
, 0 },
4949 { "pool", s_ltorg
, 0 },
4950 { "syntax", s_syntax
, 0 },
4951 { "cpu", s_arm_cpu
, 0 },
4952 { "arch", s_arm_arch
, 0 },
4953 { "object_arch", s_arm_object_arch
, 0 },
4954 { "fpu", s_arm_fpu
, 0 },
4955 { "arch_extension", s_arm_arch_extension
, 0 },
4957 { "word", s_arm_elf_cons
, 4 },
4958 { "long", s_arm_elf_cons
, 4 },
4959 { "inst.n", s_arm_elf_inst
, 2 },
4960 { "inst.w", s_arm_elf_inst
, 4 },
4961 { "inst", s_arm_elf_inst
, 0 },
4962 { "rel31", s_arm_rel31
, 0 },
4963 { "fnstart", s_arm_unwind_fnstart
, 0 },
4964 { "fnend", s_arm_unwind_fnend
, 0 },
4965 { "cantunwind", s_arm_unwind_cantunwind
, 0 },
4966 { "personality", s_arm_unwind_personality
, 0 },
4967 { "personalityindex", s_arm_unwind_personalityindex
, 0 },
4968 { "handlerdata", s_arm_unwind_handlerdata
, 0 },
4969 { "save", s_arm_unwind_save
, 0 },
4970 { "vsave", s_arm_unwind_save
, 1 },
4971 { "movsp", s_arm_unwind_movsp
, 0 },
4972 { "pad", s_arm_unwind_pad
, 0 },
4973 { "setfp", s_arm_unwind_setfp
, 0 },
4974 { "unwind_raw", s_arm_unwind_raw
, 0 },
4975 { "eabi_attribute", s_arm_eabi_attribute
, 0 },
4976 { "tlsdescseq", s_arm_tls_descseq
, 0 },
4980 /* These are used for dwarf. */
4984 /* These are used for dwarf2. */
4985 { "file", dwarf2_directive_file
, 0 },
4986 { "loc", dwarf2_directive_loc
, 0 },
4987 { "loc_mark_labels", dwarf2_directive_loc_mark_labels
, 0 },
4989 { "extend", float_cons
, 'x' },
4990 { "ldouble", float_cons
, 'x' },
4991 { "packed", float_cons
, 'p' },
4993 {"secrel32", pe_directive_secrel
, 0},
4996 /* These are for compatibility with CodeComposer Studio. */
4997 {"ref", s_ccs_ref
, 0},
4998 {"def", s_ccs_def
, 0},
4999 {"asmfunc", s_ccs_asmfunc
, 0},
5000 {"endasmfunc", s_ccs_endasmfunc
, 0},
5005 /* Parser functions used exclusively in instruction operands. */
5007 /* Generic immediate-value read function for use in insn parsing.
5008 STR points to the beginning of the immediate (the leading #);
5009 VAL receives the value; if the value is outside [MIN, MAX]
5010 issue an error. PREFIX_OPT is true if the immediate prefix is
5014 parse_immediate (char **str
, int *val
, int min
, int max
,
5015 bfd_boolean prefix_opt
)
5019 my_get_expression (&exp
, str
, prefix_opt
? GE_OPT_PREFIX
: GE_IMM_PREFIX
);
5020 if (exp
.X_op
!= O_constant
)
5022 inst
.error
= _("constant expression required");
5026 if (exp
.X_add_number
< min
|| exp
.X_add_number
> max
)
5028 inst
.error
= _("immediate value out of range");
5032 *val
= exp
.X_add_number
;
5036 /* Less-generic immediate-value read function with the possibility of loading a
5037 big (64-bit) immediate, as required by Neon VMOV, VMVN and logic immediate
5038 instructions. Puts the result directly in inst.operands[i]. */
5041 parse_big_immediate (char **str
, int i
, expressionS
*in_exp
,
5042 bfd_boolean allow_symbol_p
)
5045 expressionS
*exp_p
= in_exp
? in_exp
: &exp
;
5048 my_get_expression (exp_p
, &ptr
, GE_OPT_PREFIX_BIG
);
5050 if (exp_p
->X_op
== O_constant
)
5052 inst
.operands
[i
].imm
= exp_p
->X_add_number
& 0xffffffff;
5053 /* If we're on a 64-bit host, then a 64-bit number can be returned using
5054 O_constant. We have to be careful not to break compilation for
5055 32-bit X_add_number, though. */
5056 if ((exp_p
->X_add_number
& ~(offsetT
)(0xffffffffU
)) != 0)
5058 /* X >> 32 is illegal if sizeof (exp_p->X_add_number) == 4. */
5059 inst
.operands
[i
].reg
= (((exp_p
->X_add_number
>> 16) >> 16)
5061 inst
.operands
[i
].regisimm
= 1;
5064 else if (exp_p
->X_op
== O_big
5065 && LITTLENUM_NUMBER_OF_BITS
* exp_p
->X_add_number
> 32)
5067 unsigned parts
= 32 / LITTLENUM_NUMBER_OF_BITS
, j
, idx
= 0;
5069 /* Bignums have their least significant bits in
5070 generic_bignum[0]. Make sure we put 32 bits in imm and
5071 32 bits in reg, in a (hopefully) portable way. */
5072 gas_assert (parts
!= 0);
5074 /* Make sure that the number is not too big.
5075 PR 11972: Bignums can now be sign-extended to the
5076 size of a .octa so check that the out of range bits
5077 are all zero or all one. */
5078 if (LITTLENUM_NUMBER_OF_BITS
* exp_p
->X_add_number
> 64)
5080 LITTLENUM_TYPE m
= -1;
5082 if (generic_bignum
[parts
* 2] != 0
5083 && generic_bignum
[parts
* 2] != m
)
5086 for (j
= parts
* 2 + 1; j
< (unsigned) exp_p
->X_add_number
; j
++)
5087 if (generic_bignum
[j
] != generic_bignum
[j
-1])
5091 inst
.operands
[i
].imm
= 0;
5092 for (j
= 0; j
< parts
; j
++, idx
++)
5093 inst
.operands
[i
].imm
|= generic_bignum
[idx
]
5094 << (LITTLENUM_NUMBER_OF_BITS
* j
);
5095 inst
.operands
[i
].reg
= 0;
5096 for (j
= 0; j
< parts
; j
++, idx
++)
5097 inst
.operands
[i
].reg
|= generic_bignum
[idx
]
5098 << (LITTLENUM_NUMBER_OF_BITS
* j
);
5099 inst
.operands
[i
].regisimm
= 1;
5101 else if (!(exp_p
->X_op
== O_symbol
&& allow_symbol_p
))
5109 /* Returns the pseudo-register number of an FPA immediate constant,
5110 or FAIL if there isn't a valid constant here. */
5113 parse_fpa_immediate (char ** str
)
5115 LITTLENUM_TYPE words
[MAX_LITTLENUMS
];
5121 /* First try and match exact strings, this is to guarantee
5122 that some formats will work even for cross assembly. */
5124 for (i
= 0; fp_const
[i
]; i
++)
5126 if (strncmp (*str
, fp_const
[i
], strlen (fp_const
[i
])) == 0)
5130 *str
+= strlen (fp_const
[i
]);
5131 if (is_end_of_line
[(unsigned char) **str
])
5137 /* Just because we didn't get a match doesn't mean that the constant
5138 isn't valid, just that it is in a format that we don't
5139 automatically recognize. Try parsing it with the standard
5140 expression routines. */
5142 memset (words
, 0, MAX_LITTLENUMS
* sizeof (LITTLENUM_TYPE
));
5144 /* Look for a raw floating point number. */
5145 if ((save_in
= atof_ieee (*str
, 'x', words
)) != NULL
5146 && is_end_of_line
[(unsigned char) *save_in
])
5148 for (i
= 0; i
< NUM_FLOAT_VALS
; i
++)
5150 for (j
= 0; j
< MAX_LITTLENUMS
; j
++)
5152 if (words
[j
] != fp_values
[i
][j
])
5156 if (j
== MAX_LITTLENUMS
)
5164 /* Try and parse a more complex expression, this will probably fail
5165 unless the code uses a floating point prefix (eg "0f"). */
5166 save_in
= input_line_pointer
;
5167 input_line_pointer
= *str
;
5168 if (expression (&exp
) == absolute_section
5169 && exp
.X_op
== O_big
5170 && exp
.X_add_number
< 0)
5172 /* FIXME: 5 = X_PRECISION, should be #define'd where we can use it.
5174 #define X_PRECISION 5
5175 #define E_PRECISION 15L
5176 if (gen_to_words (words
, X_PRECISION
, E_PRECISION
) == 0)
5178 for (i
= 0; i
< NUM_FLOAT_VALS
; i
++)
5180 for (j
= 0; j
< MAX_LITTLENUMS
; j
++)
5182 if (words
[j
] != fp_values
[i
][j
])
5186 if (j
== MAX_LITTLENUMS
)
5188 *str
= input_line_pointer
;
5189 input_line_pointer
= save_in
;
5196 *str
= input_line_pointer
;
5197 input_line_pointer
= save_in
;
5198 inst
.error
= _("invalid FPA immediate expression");
5202 /* Returns 1 if a number has "quarter-precision" float format
5203 0baBbbbbbc defgh000 00000000 00000000. */
5206 is_quarter_float (unsigned imm
)
5208 int bs
= (imm
& 0x20000000) ? 0x3e000000 : 0x40000000;
5209 return (imm
& 0x7ffff) == 0 && ((imm
& 0x7e000000) ^ bs
) == 0;
5213 /* Detect the presence of a floating point or integer zero constant,
5217 parse_ifimm_zero (char **in
)
5221 if (!is_immediate_prefix (**in
))
5223 /* In unified syntax, all prefixes are optional. */
5224 if (!unified_syntax
)
5230 /* Accept #0x0 as a synonym for #0. */
5231 if (strncmp (*in
, "0x", 2) == 0)
5234 if (parse_immediate (in
, &val
, 0, 0, TRUE
) == FAIL
)
5239 error_code
= atof_generic (in
, ".", EXP_CHARS
,
5240 &generic_floating_point_number
);
5243 && generic_floating_point_number
.sign
== '+'
5244 && (generic_floating_point_number
.low
5245 > generic_floating_point_number
.leader
))
5251 /* Parse an 8-bit "quarter-precision" floating point number of the form:
5252 0baBbbbbbc defgh000 00000000 00000000.
5253 The zero and minus-zero cases need special handling, since they can't be
5254 encoded in the "quarter-precision" float format, but can nonetheless be
5255 loaded as integer constants. */
5258 parse_qfloat_immediate (char **ccp
, int *immed
)
5262 LITTLENUM_TYPE words
[MAX_LITTLENUMS
];
5263 int found_fpchar
= 0;
5265 skip_past_char (&str
, '#');
5267 /* We must not accidentally parse an integer as a floating-point number. Make
5268 sure that the value we parse is not an integer by checking for special
5269 characters '.' or 'e'.
5270 FIXME: This is a horrible hack, but doing better is tricky because type
5271 information isn't in a very usable state at parse time. */
5273 skip_whitespace (fpnum
);
5275 if (strncmp (fpnum
, "0x", 2) == 0)
5279 for (; *fpnum
!= '\0' && *fpnum
!= ' ' && *fpnum
!= '\n'; fpnum
++)
5280 if (*fpnum
== '.' || *fpnum
== 'e' || *fpnum
== 'E')
5290 if ((str
= atof_ieee (str
, 's', words
)) != NULL
)
5292 unsigned fpword
= 0;
5295 /* Our FP word must be 32 bits (single-precision FP). */
5296 for (i
= 0; i
< 32 / LITTLENUM_NUMBER_OF_BITS
; i
++)
5298 fpword
<<= LITTLENUM_NUMBER_OF_BITS
;
5302 if (is_quarter_float (fpword
) || (fpword
& 0x7fffffff) == 0)
5315 /* Shift operands. */
5318 SHIFT_LSL
, SHIFT_LSR
, SHIFT_ASR
, SHIFT_ROR
, SHIFT_RRX
, SHIFT_UXTW
5321 struct asm_shift_name
5324 enum shift_kind kind
;
5327 /* Third argument to parse_shift. */
5328 enum parse_shift_mode
5330 NO_SHIFT_RESTRICT
, /* Any kind of shift is accepted. */
5331 SHIFT_IMMEDIATE
, /* Shift operand must be an immediate. */
5332 SHIFT_LSL_OR_ASR_IMMEDIATE
, /* Shift must be LSL or ASR immediate. */
5333 SHIFT_ASR_IMMEDIATE
, /* Shift must be ASR immediate. */
5334 SHIFT_LSL_IMMEDIATE
, /* Shift must be LSL immediate. */
5335 SHIFT_UXTW_IMMEDIATE
/* Shift must be UXTW immediate. */
5338 /* Parse a <shift> specifier on an ARM data processing instruction.
5339 This has three forms:
5341 (LSL|LSR|ASL|ASR|ROR) Rs
5342 (LSL|LSR|ASL|ASR|ROR) #imm
5345 Note that ASL is assimilated to LSL in the instruction encoding, and
5346 RRX to ROR #0 (which cannot be written as such). */
5349 parse_shift (char **str
, int i
, enum parse_shift_mode mode
)
5351 const struct asm_shift_name
*shift_name
;
5352 enum shift_kind shift
;
5357 for (p
= *str
; ISALPHA (*p
); p
++)
5362 inst
.error
= _("shift expression expected");
5366 shift_name
= (const struct asm_shift_name
*) hash_find_n (arm_shift_hsh
, *str
,
5369 if (shift_name
== NULL
)
5371 inst
.error
= _("shift expression expected");
5375 shift
= shift_name
->kind
;
5379 case NO_SHIFT_RESTRICT
:
5380 case SHIFT_IMMEDIATE
:
5381 if (shift
== SHIFT_UXTW
)
5383 inst
.error
= _("'UXTW' not allowed here");
5388 case SHIFT_LSL_OR_ASR_IMMEDIATE
:
5389 if (shift
!= SHIFT_LSL
&& shift
!= SHIFT_ASR
)
5391 inst
.error
= _("'LSL' or 'ASR' required");
5396 case SHIFT_LSL_IMMEDIATE
:
5397 if (shift
!= SHIFT_LSL
)
5399 inst
.error
= _("'LSL' required");
5404 case SHIFT_ASR_IMMEDIATE
:
5405 if (shift
!= SHIFT_ASR
)
5407 inst
.error
= _("'ASR' required");
5411 case SHIFT_UXTW_IMMEDIATE
:
5412 if (shift
!= SHIFT_UXTW
)
5414 inst
.error
= _("'UXTW' required");
5422 if (shift
!= SHIFT_RRX
)
5424 /* Whitespace can appear here if the next thing is a bare digit. */
5425 skip_whitespace (p
);
5427 if (mode
== NO_SHIFT_RESTRICT
5428 && (reg
= arm_reg_parse (&p
, REG_TYPE_RN
)) != FAIL
)
5430 inst
.operands
[i
].imm
= reg
;
5431 inst
.operands
[i
].immisreg
= 1;
5433 else if (my_get_expression (&inst
.relocs
[0].exp
, &p
, GE_IMM_PREFIX
))
5436 inst
.operands
[i
].shift_kind
= shift
;
5437 inst
.operands
[i
].shifted
= 1;
5442 /* Parse a <shifter_operand> for an ARM data processing instruction:
5445 #<immediate>, <rotate>
5449 where <shift> is defined by parse_shift above, and <rotate> is a
5450 multiple of 2 between 0 and 30. Validation of immediate operands
5451 is deferred to md_apply_fix. */
5454 parse_shifter_operand (char **str
, int i
)
5459 if ((value
= arm_reg_parse (str
, REG_TYPE_RN
)) != FAIL
)
5461 inst
.operands
[i
].reg
= value
;
5462 inst
.operands
[i
].isreg
= 1;
5464 /* parse_shift will override this if appropriate */
5465 inst
.relocs
[0].exp
.X_op
= O_constant
;
5466 inst
.relocs
[0].exp
.X_add_number
= 0;
5468 if (skip_past_comma (str
) == FAIL
)
5471 /* Shift operation on register. */
5472 return parse_shift (str
, i
, NO_SHIFT_RESTRICT
);
5475 if (my_get_expression (&inst
.relocs
[0].exp
, str
, GE_IMM_PREFIX
))
5478 if (skip_past_comma (str
) == SUCCESS
)
5480 /* #x, y -- ie explicit rotation by Y. */
5481 if (my_get_expression (&exp
, str
, GE_NO_PREFIX
))
5484 if (exp
.X_op
!= O_constant
|| inst
.relocs
[0].exp
.X_op
!= O_constant
)
5486 inst
.error
= _("constant expression expected");
5490 value
= exp
.X_add_number
;
5491 if (value
< 0 || value
> 30 || value
% 2 != 0)
5493 inst
.error
= _("invalid rotation");
5496 if (inst
.relocs
[0].exp
.X_add_number
< 0
5497 || inst
.relocs
[0].exp
.X_add_number
> 255)
5499 inst
.error
= _("invalid constant");
5503 /* Encode as specified. */
5504 inst
.operands
[i
].imm
= inst
.relocs
[0].exp
.X_add_number
| value
<< 7;
5508 inst
.relocs
[0].type
= BFD_RELOC_ARM_IMMEDIATE
;
5509 inst
.relocs
[0].pc_rel
= 0;
5513 /* Group relocation information. Each entry in the table contains the
5514 textual name of the relocation as may appear in assembler source
5515 and must end with a colon.
5516 Along with this textual name are the relocation codes to be used if
5517 the corresponding instruction is an ALU instruction (ADD or SUB only),
5518 an LDR, an LDRS, or an LDC. */
5520 struct group_reloc_table_entry
5531 /* Varieties of non-ALU group relocation. */
5539 static struct group_reloc_table_entry group_reloc_table
[] =
5540 { /* Program counter relative: */
5542 BFD_RELOC_ARM_ALU_PC_G0_NC
, /* ALU */
5547 BFD_RELOC_ARM_ALU_PC_G0
, /* ALU */
5548 BFD_RELOC_ARM_LDR_PC_G0
, /* LDR */
5549 BFD_RELOC_ARM_LDRS_PC_G0
, /* LDRS */
5550 BFD_RELOC_ARM_LDC_PC_G0
}, /* LDC */
5552 BFD_RELOC_ARM_ALU_PC_G1_NC
, /* ALU */
5557 BFD_RELOC_ARM_ALU_PC_G1
, /* ALU */
5558 BFD_RELOC_ARM_LDR_PC_G1
, /* LDR */
5559 BFD_RELOC_ARM_LDRS_PC_G1
, /* LDRS */
5560 BFD_RELOC_ARM_LDC_PC_G1
}, /* LDC */
5562 BFD_RELOC_ARM_ALU_PC_G2
, /* ALU */
5563 BFD_RELOC_ARM_LDR_PC_G2
, /* LDR */
5564 BFD_RELOC_ARM_LDRS_PC_G2
, /* LDRS */
5565 BFD_RELOC_ARM_LDC_PC_G2
}, /* LDC */
5566 /* Section base relative */
5568 BFD_RELOC_ARM_ALU_SB_G0_NC
, /* ALU */
5573 BFD_RELOC_ARM_ALU_SB_G0
, /* ALU */
5574 BFD_RELOC_ARM_LDR_SB_G0
, /* LDR */
5575 BFD_RELOC_ARM_LDRS_SB_G0
, /* LDRS */
5576 BFD_RELOC_ARM_LDC_SB_G0
}, /* LDC */
5578 BFD_RELOC_ARM_ALU_SB_G1_NC
, /* ALU */
5583 BFD_RELOC_ARM_ALU_SB_G1
, /* ALU */
5584 BFD_RELOC_ARM_LDR_SB_G1
, /* LDR */
5585 BFD_RELOC_ARM_LDRS_SB_G1
, /* LDRS */
5586 BFD_RELOC_ARM_LDC_SB_G1
}, /* LDC */
5588 BFD_RELOC_ARM_ALU_SB_G2
, /* ALU */
5589 BFD_RELOC_ARM_LDR_SB_G2
, /* LDR */
5590 BFD_RELOC_ARM_LDRS_SB_G2
, /* LDRS */
5591 BFD_RELOC_ARM_LDC_SB_G2
}, /* LDC */
5592 /* Absolute thumb alu relocations. */
5594 BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
,/* ALU. */
5599 BFD_RELOC_ARM_THUMB_ALU_ABS_G1_NC
,/* ALU. */
5604 BFD_RELOC_ARM_THUMB_ALU_ABS_G2_NC
,/* ALU. */
5609 BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC
,/* ALU. */
5614 /* Given the address of a pointer pointing to the textual name of a group
5615 relocation as may appear in assembler source, attempt to find its details
5616 in group_reloc_table. The pointer will be updated to the character after
5617 the trailing colon. On failure, FAIL will be returned; SUCCESS
5618 otherwise. On success, *entry will be updated to point at the relevant
5619 group_reloc_table entry. */
5622 find_group_reloc_table_entry (char **str
, struct group_reloc_table_entry
**out
)
5625 for (i
= 0; i
< ARRAY_SIZE (group_reloc_table
); i
++)
5627 int length
= strlen (group_reloc_table
[i
].name
);
5629 if (strncasecmp (group_reloc_table
[i
].name
, *str
, length
) == 0
5630 && (*str
)[length
] == ':')
5632 *out
= &group_reloc_table
[i
];
5633 *str
+= (length
+ 1);
5641 /* Parse a <shifter_operand> for an ARM data processing instruction
5642 (as for parse_shifter_operand) where group relocations are allowed:
5645 #<immediate>, <rotate>
5646 #:<group_reloc>:<expression>
5650 where <group_reloc> is one of the strings defined in group_reloc_table.
5651 The hashes are optional.
5653 Everything else is as for parse_shifter_operand. */
5655 static parse_operand_result
5656 parse_shifter_operand_group_reloc (char **str
, int i
)
5658 /* Determine if we have the sequence of characters #: or just :
5659 coming next. If we do, then we check for a group relocation.
5660 If we don't, punt the whole lot to parse_shifter_operand. */
5662 if (((*str
)[0] == '#' && (*str
)[1] == ':')
5663 || (*str
)[0] == ':')
5665 struct group_reloc_table_entry
*entry
;
5667 if ((*str
)[0] == '#')
5672 /* Try to parse a group relocation. Anything else is an error. */
5673 if (find_group_reloc_table_entry (str
, &entry
) == FAIL
)
5675 inst
.error
= _("unknown group relocation");
5676 return PARSE_OPERAND_FAIL_NO_BACKTRACK
;
5679 /* We now have the group relocation table entry corresponding to
5680 the name in the assembler source. Next, we parse the expression. */
5681 if (my_get_expression (&inst
.relocs
[0].exp
, str
, GE_NO_PREFIX
))
5682 return PARSE_OPERAND_FAIL_NO_BACKTRACK
;
5684 /* Record the relocation type (always the ALU variant here). */
5685 inst
.relocs
[0].type
= (bfd_reloc_code_real_type
) entry
->alu_code
;
5686 gas_assert (inst
.relocs
[0].type
!= 0);
5688 return PARSE_OPERAND_SUCCESS
;
5691 return parse_shifter_operand (str
, i
) == SUCCESS
5692 ? PARSE_OPERAND_SUCCESS
: PARSE_OPERAND_FAIL
;
5694 /* Never reached. */
5697 /* Parse a Neon alignment expression. Information is written to
5698 inst.operands[i]. We assume the initial ':' has been skipped.
5700 align .imm = align << 8, .immisalign=1, .preind=0 */
5701 static parse_operand_result
5702 parse_neon_alignment (char **str
, int i
)
5707 my_get_expression (&exp
, &p
, GE_NO_PREFIX
);
5709 if (exp
.X_op
!= O_constant
)
5711 inst
.error
= _("alignment must be constant");
5712 return PARSE_OPERAND_FAIL
;
5715 inst
.operands
[i
].imm
= exp
.X_add_number
<< 8;
5716 inst
.operands
[i
].immisalign
= 1;
5717 /* Alignments are not pre-indexes. */
5718 inst
.operands
[i
].preind
= 0;
5721 return PARSE_OPERAND_SUCCESS
;
5724 /* Parse all forms of an ARM address expression. Information is written
5725 to inst.operands[i] and/or inst.relocs[0].
5727 Preindexed addressing (.preind=1):
5729 [Rn, #offset] .reg=Rn .relocs[0].exp=offset
5730 [Rn, +/-Rm] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5731 [Rn, +/-Rm, shift] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5732 .shift_kind=shift .relocs[0].exp=shift_imm
5734 These three may have a trailing ! which causes .writeback to be set also.
5736 Postindexed addressing (.postind=1, .writeback=1):
5738 [Rn], #offset .reg=Rn .relocs[0].exp=offset
5739 [Rn], +/-Rm .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5740 [Rn], +/-Rm, shift .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5741 .shift_kind=shift .relocs[0].exp=shift_imm
5743 Unindexed addressing (.preind=0, .postind=0):
5745 [Rn], {option} .reg=Rn .imm=option .immisreg=0
5749 [Rn]{!} shorthand for [Rn,#0]{!}
5750 =immediate .isreg=0 .relocs[0].exp=immediate
5751 label .reg=PC .relocs[0].pc_rel=1 .relocs[0].exp=label
5753 It is the caller's responsibility to check for addressing modes not
5754 supported by the instruction, and to set inst.relocs[0].type. */
5756 static parse_operand_result
5757 parse_address_main (char **str
, int i
, int group_relocations
,
5758 group_reloc_type group_type
)
5763 if (skip_past_char (&p
, '[') == FAIL
)
5765 if (skip_past_char (&p
, '=') == FAIL
)
5767 /* Bare address - translate to PC-relative offset. */
5768 inst
.relocs
[0].pc_rel
= 1;
5769 inst
.operands
[i
].reg
= REG_PC
;
5770 inst
.operands
[i
].isreg
= 1;
5771 inst
.operands
[i
].preind
= 1;
5773 if (my_get_expression (&inst
.relocs
[0].exp
, &p
, GE_OPT_PREFIX_BIG
))
5774 return PARSE_OPERAND_FAIL
;
5776 else if (parse_big_immediate (&p
, i
, &inst
.relocs
[0].exp
,
5777 /*allow_symbol_p=*/TRUE
))
5778 return PARSE_OPERAND_FAIL
;
5781 return PARSE_OPERAND_SUCCESS
;
5784 /* PR gas/14887: Allow for whitespace after the opening bracket. */
5785 skip_whitespace (p
);
5787 if (group_type
== GROUP_MVE
)
5789 enum arm_reg_type rtype
= REG_TYPE_MQ
;
5790 struct neon_type_el et
;
5791 if ((reg
= arm_typed_reg_parse (&p
, rtype
, &rtype
, &et
)) != FAIL
)
5793 inst
.operands
[i
].isquad
= 1;
5795 else if ((reg
= arm_reg_parse (&p
, REG_TYPE_RN
)) == FAIL
)
5797 inst
.error
= BAD_ADDR_MODE
;
5798 return PARSE_OPERAND_FAIL
;
5801 else if ((reg
= arm_reg_parse (&p
, REG_TYPE_RN
)) == FAIL
)
5803 if (group_type
== GROUP_MVE
)
5804 inst
.error
= BAD_ADDR_MODE
;
5806 inst
.error
= _(reg_expected_msgs
[REG_TYPE_RN
]);
5807 return PARSE_OPERAND_FAIL
;
5809 inst
.operands
[i
].reg
= reg
;
5810 inst
.operands
[i
].isreg
= 1;
5812 if (skip_past_comma (&p
) == SUCCESS
)
5814 inst
.operands
[i
].preind
= 1;
5817 else if (*p
== '-') p
++, inst
.operands
[i
].negative
= 1;
5819 enum arm_reg_type rtype
= REG_TYPE_MQ
;
5820 struct neon_type_el et
;
5821 if (group_type
== GROUP_MVE
5822 && (reg
= arm_typed_reg_parse (&p
, rtype
, &rtype
, &et
)) != FAIL
)
5824 inst
.operands
[i
].immisreg
= 2;
5825 inst
.operands
[i
].imm
= reg
;
5827 if (skip_past_comma (&p
) == SUCCESS
)
5829 if (parse_shift (&p
, i
, SHIFT_UXTW_IMMEDIATE
) == SUCCESS
)
5831 inst
.operands
[i
].imm
|= inst
.relocs
[0].exp
.X_add_number
<< 5;
5832 inst
.relocs
[0].exp
.X_add_number
= 0;
5835 return PARSE_OPERAND_FAIL
;
5838 else if ((reg
= arm_reg_parse (&p
, REG_TYPE_RN
)) != FAIL
)
5840 inst
.operands
[i
].imm
= reg
;
5841 inst
.operands
[i
].immisreg
= 1;
5843 if (skip_past_comma (&p
) == SUCCESS
)
5844 if (parse_shift (&p
, i
, SHIFT_IMMEDIATE
) == FAIL
)
5845 return PARSE_OPERAND_FAIL
;
5847 else if (skip_past_char (&p
, ':') == SUCCESS
)
5849 /* FIXME: '@' should be used here, but it's filtered out by generic
5850 code before we get to see it here. This may be subject to
5852 parse_operand_result result
= parse_neon_alignment (&p
, i
);
5854 if (result
!= PARSE_OPERAND_SUCCESS
)
5859 if (inst
.operands
[i
].negative
)
5861 inst
.operands
[i
].negative
= 0;
5865 if (group_relocations
5866 && ((*p
== '#' && *(p
+ 1) == ':') || *p
== ':'))
5868 struct group_reloc_table_entry
*entry
;
5870 /* Skip over the #: or : sequence. */
5876 /* Try to parse a group relocation. Anything else is an
5878 if (find_group_reloc_table_entry (&p
, &entry
) == FAIL
)
5880 inst
.error
= _("unknown group relocation");
5881 return PARSE_OPERAND_FAIL_NO_BACKTRACK
;
5884 /* We now have the group relocation table entry corresponding to
5885 the name in the assembler source. Next, we parse the
5887 if (my_get_expression (&inst
.relocs
[0].exp
, &p
, GE_NO_PREFIX
))
5888 return PARSE_OPERAND_FAIL_NO_BACKTRACK
;
5890 /* Record the relocation type. */
5895 = (bfd_reloc_code_real_type
) entry
->ldr_code
;
5900 = (bfd_reloc_code_real_type
) entry
->ldrs_code
;
5905 = (bfd_reloc_code_real_type
) entry
->ldc_code
;
5912 if (inst
.relocs
[0].type
== 0)
5914 inst
.error
= _("this group relocation is not allowed on this instruction");
5915 return PARSE_OPERAND_FAIL_NO_BACKTRACK
;
5922 if (my_get_expression (&inst
.relocs
[0].exp
, &p
, GE_IMM_PREFIX
))
5923 return PARSE_OPERAND_FAIL
;
5924 /* If the offset is 0, find out if it's a +0 or -0. */
5925 if (inst
.relocs
[0].exp
.X_op
== O_constant
5926 && inst
.relocs
[0].exp
.X_add_number
== 0)
5928 skip_whitespace (q
);
5932 skip_whitespace (q
);
5935 inst
.operands
[i
].negative
= 1;
5940 else if (skip_past_char (&p
, ':') == SUCCESS
)
5942 /* FIXME: '@' should be used here, but it's filtered out by generic code
5943 before we get to see it here. This may be subject to change. */
5944 parse_operand_result result
= parse_neon_alignment (&p
, i
);
5946 if (result
!= PARSE_OPERAND_SUCCESS
)
5950 if (skip_past_char (&p
, ']') == FAIL
)
5952 inst
.error
= _("']' expected");
5953 return PARSE_OPERAND_FAIL
;
5956 if (skip_past_char (&p
, '!') == SUCCESS
)
5957 inst
.operands
[i
].writeback
= 1;
5959 else if (skip_past_comma (&p
) == SUCCESS
)
5961 if (skip_past_char (&p
, '{') == SUCCESS
)
5963 /* [Rn], {expr} - unindexed, with option */
5964 if (parse_immediate (&p
, &inst
.operands
[i
].imm
,
5965 0, 255, TRUE
) == FAIL
)
5966 return PARSE_OPERAND_FAIL
;
5968 if (skip_past_char (&p
, '}') == FAIL
)
5970 inst
.error
= _("'}' expected at end of 'option' field");
5971 return PARSE_OPERAND_FAIL
;
5973 if (inst
.operands
[i
].preind
)
5975 inst
.error
= _("cannot combine index with option");
5976 return PARSE_OPERAND_FAIL
;
5979 return PARSE_OPERAND_SUCCESS
;
5983 inst
.operands
[i
].postind
= 1;
5984 inst
.operands
[i
].writeback
= 1;
5986 if (inst
.operands
[i
].preind
)
5988 inst
.error
= _("cannot combine pre- and post-indexing");
5989 return PARSE_OPERAND_FAIL
;
5993 else if (*p
== '-') p
++, inst
.operands
[i
].negative
= 1;
5995 enum arm_reg_type rtype
= REG_TYPE_MQ
;
5996 struct neon_type_el et
;
5997 if (group_type
== GROUP_MVE
5998 && (reg
= arm_typed_reg_parse (&p
, rtype
, &rtype
, &et
)) != FAIL
)
6000 inst
.operands
[i
].immisreg
= 2;
6001 inst
.operands
[i
].imm
= reg
;
6003 else if ((reg
= arm_reg_parse (&p
, REG_TYPE_RN
)) != FAIL
)
6005 /* We might be using the immediate for alignment already. If we
6006 are, OR the register number into the low-order bits. */
6007 if (inst
.operands
[i
].immisalign
)
6008 inst
.operands
[i
].imm
|= reg
;
6010 inst
.operands
[i
].imm
= reg
;
6011 inst
.operands
[i
].immisreg
= 1;
6013 if (skip_past_comma (&p
) == SUCCESS
)
6014 if (parse_shift (&p
, i
, SHIFT_IMMEDIATE
) == FAIL
)
6015 return PARSE_OPERAND_FAIL
;
6021 if (inst
.operands
[i
].negative
)
6023 inst
.operands
[i
].negative
= 0;
6026 if (my_get_expression (&inst
.relocs
[0].exp
, &p
, GE_IMM_PREFIX
))
6027 return PARSE_OPERAND_FAIL
;
6028 /* If the offset is 0, find out if it's a +0 or -0. */
6029 if (inst
.relocs
[0].exp
.X_op
== O_constant
6030 && inst
.relocs
[0].exp
.X_add_number
== 0)
6032 skip_whitespace (q
);
6036 skip_whitespace (q
);
6039 inst
.operands
[i
].negative
= 1;
6045 /* If at this point neither .preind nor .postind is set, we have a
6046 bare [Rn]{!}, which is shorthand for [Rn,#0]{!}. */
6047 if (inst
.operands
[i
].preind
== 0 && inst
.operands
[i
].postind
== 0)
6049 inst
.operands
[i
].preind
= 1;
6050 inst
.relocs
[0].exp
.X_op
= O_constant
;
6051 inst
.relocs
[0].exp
.X_add_number
= 0;
6054 return PARSE_OPERAND_SUCCESS
;
6058 parse_address (char **str
, int i
)
6060 return parse_address_main (str
, i
, 0, GROUP_LDR
) == PARSE_OPERAND_SUCCESS
6064 static parse_operand_result
6065 parse_address_group_reloc (char **str
, int i
, group_reloc_type type
)
6067 return parse_address_main (str
, i
, 1, type
);
6070 /* Parse an operand for a MOVW or MOVT instruction. */
6072 parse_half (char **str
)
6077 skip_past_char (&p
, '#');
6078 if (strncasecmp (p
, ":lower16:", 9) == 0)
6079 inst
.relocs
[0].type
= BFD_RELOC_ARM_MOVW
;
6080 else if (strncasecmp (p
, ":upper16:", 9) == 0)
6081 inst
.relocs
[0].type
= BFD_RELOC_ARM_MOVT
;
6083 if (inst
.relocs
[0].type
!= BFD_RELOC_UNUSED
)
6086 skip_whitespace (p
);
6089 if (my_get_expression (&inst
.relocs
[0].exp
, &p
, GE_NO_PREFIX
))
6092 if (inst
.relocs
[0].type
== BFD_RELOC_UNUSED
)
6094 if (inst
.relocs
[0].exp
.X_op
!= O_constant
)
6096 inst
.error
= _("constant expression expected");
6099 if (inst
.relocs
[0].exp
.X_add_number
< 0
6100 || inst
.relocs
[0].exp
.X_add_number
> 0xffff)
6102 inst
.error
= _("immediate value out of range");
6110 /* Miscellaneous. */
6112 /* Parse a PSR flag operand. The value returned is FAIL on syntax error,
6113 or a bitmask suitable to be or-ed into the ARM msr instruction. */
6115 parse_psr (char **str
, bfd_boolean lhs
)
6118 unsigned long psr_field
;
6119 const struct asm_psr
*psr
;
6121 bfd_boolean is_apsr
= FALSE
;
6122 bfd_boolean m_profile
= ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_m
);
6124 /* PR gas/12698: If the user has specified -march=all then m_profile will
6125 be TRUE, but we want to ignore it in this case as we are building for any
6126 CPU type, including non-m variants. */
6127 if (ARM_FEATURE_CORE_EQUAL (selected_cpu
, arm_arch_any
))
6130 /* CPSR's and SPSR's can now be lowercase. This is just a convenience
6131 feature for ease of use and backwards compatibility. */
6133 if (strncasecmp (p
, "SPSR", 4) == 0)
6136 goto unsupported_psr
;
6138 psr_field
= SPSR_BIT
;
6140 else if (strncasecmp (p
, "CPSR", 4) == 0)
6143 goto unsupported_psr
;
6147 else if (strncasecmp (p
, "APSR", 4) == 0)
6149 /* APSR[_<bits>] can be used as a synonym for CPSR[_<flags>] on ARMv7-A
6150 and ARMv7-R architecture CPUs. */
6159 while (ISALNUM (*p
) || *p
== '_');
6161 if (strncasecmp (start
, "iapsr", 5) == 0
6162 || strncasecmp (start
, "eapsr", 5) == 0
6163 || strncasecmp (start
, "xpsr", 4) == 0
6164 || strncasecmp (start
, "psr", 3) == 0)
6165 p
= start
+ strcspn (start
, "rR") + 1;
6167 psr
= (const struct asm_psr
*) hash_find_n (arm_v7m_psr_hsh
, start
,
6173 /* If APSR is being written, a bitfield may be specified. Note that
6174 APSR itself is handled above. */
6175 if (psr
->field
<= 3)
6177 psr_field
= psr
->field
;
6183 /* M-profile MSR instructions have the mask field set to "10", except
6184 *PSR variants which modify APSR, which may use a different mask (and
6185 have been handled already). Do that by setting the PSR_f field
6187 return psr
->field
| (lhs
? PSR_f
: 0);
6190 goto unsupported_psr
;
6196 /* A suffix follows. */
6202 while (ISALNUM (*p
) || *p
== '_');
6206 /* APSR uses a notation for bits, rather than fields. */
6207 unsigned int nzcvq_bits
= 0;
6208 unsigned int g_bit
= 0;
6211 for (bit
= start
; bit
!= p
; bit
++)
6213 switch (TOLOWER (*bit
))
6216 nzcvq_bits
|= (nzcvq_bits
& 0x01) ? 0x20 : 0x01;
6220 nzcvq_bits
|= (nzcvq_bits
& 0x02) ? 0x20 : 0x02;
6224 nzcvq_bits
|= (nzcvq_bits
& 0x04) ? 0x20 : 0x04;
6228 nzcvq_bits
|= (nzcvq_bits
& 0x08) ? 0x20 : 0x08;
6232 nzcvq_bits
|= (nzcvq_bits
& 0x10) ? 0x20 : 0x10;
6236 g_bit
|= (g_bit
& 0x1) ? 0x2 : 0x1;
6240 inst
.error
= _("unexpected bit specified after APSR");
6245 if (nzcvq_bits
== 0x1f)
6250 if (!ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_v6_dsp
))
6252 inst
.error
= _("selected processor does not "
6253 "support DSP extension");
6260 if ((nzcvq_bits
& 0x20) != 0
6261 || (nzcvq_bits
!= 0x1f && nzcvq_bits
!= 0)
6262 || (g_bit
& 0x2) != 0)
6264 inst
.error
= _("bad bitmask specified after APSR");
6270 psr
= (const struct asm_psr
*) hash_find_n (arm_psr_hsh
, start
,
6275 psr_field
|= psr
->field
;
6281 goto error
; /* Garbage after "[CS]PSR". */
6283 /* Unadorned APSR is equivalent to APSR_nzcvq/CPSR_f (for writes). This
6284 is deprecated, but allow it anyway. */
6288 as_tsktsk (_("writing to APSR without specifying a bitmask is "
6291 else if (!m_profile
)
6292 /* These bits are never right for M-profile devices: don't set them
6293 (only code paths which read/write APSR reach here). */
6294 psr_field
|= (PSR_c
| PSR_f
);
6300 inst
.error
= _("selected processor does not support requested special "
6301 "purpose register");
6305 inst
.error
= _("flag for {c}psr instruction expected");
6310 parse_sys_vldr_vstr (char **str
)
6319 {"FPSCR", 0x1, 0x0},
6320 {"FPSCR_nzcvqc", 0x2, 0x0},
6323 {"FPCXTNS", 0x6, 0x1},
6324 {"FPCXTS", 0x7, 0x1}
6326 char *op_end
= strchr (*str
, ',');
6327 size_t op_strlen
= op_end
- *str
;
6329 for (i
= 0; i
< sizeof (sysregs
) / sizeof (sysregs
[0]); i
++)
6331 if (!strncmp (*str
, sysregs
[i
].name
, op_strlen
))
6333 val
= sysregs
[i
].regl
| (sysregs
[i
].regh
<< 3);
6342 /* Parse the flags argument to CPSI[ED]. Returns FAIL on error, or a
6343 value suitable for splatting into the AIF field of the instruction. */
6346 parse_cps_flags (char **str
)
6355 case '\0': case ',':
6358 case 'a': case 'A': saw_a_flag
= 1; val
|= 0x4; break;
6359 case 'i': case 'I': saw_a_flag
= 1; val
|= 0x2; break;
6360 case 'f': case 'F': saw_a_flag
= 1; val
|= 0x1; break;
6363 inst
.error
= _("unrecognized CPS flag");
6368 if (saw_a_flag
== 0)
6370 inst
.error
= _("missing CPS flags");
6378 /* Parse an endian specifier ("BE" or "LE", case insensitive);
6379 returns 0 for big-endian, 1 for little-endian, FAIL for an error. */
6382 parse_endian_specifier (char **str
)
6387 if (strncasecmp (s
, "BE", 2))
6389 else if (strncasecmp (s
, "LE", 2))
6393 inst
.error
= _("valid endian specifiers are be or le");
6397 if (ISALNUM (s
[2]) || s
[2] == '_')
6399 inst
.error
= _("valid endian specifiers are be or le");
6404 return little_endian
;
6407 /* Parse a rotation specifier: ROR #0, #8, #16, #24. *val receives a
6408 value suitable for poking into the rotate field of an sxt or sxta
6409 instruction, or FAIL on error. */
6412 parse_ror (char **str
)
6417 if (strncasecmp (s
, "ROR", 3) == 0)
6421 inst
.error
= _("missing rotation field after comma");
6425 if (parse_immediate (&s
, &rot
, 0, 24, FALSE
) == FAIL
)
6430 case 0: *str
= s
; return 0x0;
6431 case 8: *str
= s
; return 0x1;
6432 case 16: *str
= s
; return 0x2;
6433 case 24: *str
= s
; return 0x3;
6436 inst
.error
= _("rotation can only be 0, 8, 16, or 24");
6441 /* Parse a conditional code (from conds[] below). The value returned is in the
6442 range 0 .. 14, or FAIL. */
6444 parse_cond (char **str
)
6447 const struct asm_cond
*c
;
6449 /* Condition codes are always 2 characters, so matching up to
6450 3 characters is sufficient. */
6455 while (ISALPHA (*q
) && n
< 3)
6457 cond
[n
] = TOLOWER (*q
);
6462 c
= (const struct asm_cond
*) hash_find_n (arm_cond_hsh
, cond
, n
);
6465 inst
.error
= _("condition required");
6473 /* Parse an option for a barrier instruction. Returns the encoding for the
6476 parse_barrier (char **str
)
6479 const struct asm_barrier_opt
*o
;
6482 while (ISALPHA (*q
))
6485 o
= (const struct asm_barrier_opt
*) hash_find_n (arm_barrier_opt_hsh
, p
,
6490 if (!mark_feature_used (&o
->arch
))
6497 /* Parse the operands of a table branch instruction. Similar to a memory
6500 parse_tb (char **str
)
6505 if (skip_past_char (&p
, '[') == FAIL
)
6507 inst
.error
= _("'[' expected");
6511 if ((reg
= arm_reg_parse (&p
, REG_TYPE_RN
)) == FAIL
)
6513 inst
.error
= _(reg_expected_msgs
[REG_TYPE_RN
]);
6516 inst
.operands
[0].reg
= reg
;
6518 if (skip_past_comma (&p
) == FAIL
)
6520 inst
.error
= _("',' expected");
6524 if ((reg
= arm_reg_parse (&p
, REG_TYPE_RN
)) == FAIL
)
6526 inst
.error
= _(reg_expected_msgs
[REG_TYPE_RN
]);
6529 inst
.operands
[0].imm
= reg
;
6531 if (skip_past_comma (&p
) == SUCCESS
)
6533 if (parse_shift (&p
, 0, SHIFT_LSL_IMMEDIATE
) == FAIL
)
6535 if (inst
.relocs
[0].exp
.X_add_number
!= 1)
6537 inst
.error
= _("invalid shift");
6540 inst
.operands
[0].shifted
= 1;
6543 if (skip_past_char (&p
, ']') == FAIL
)
6545 inst
.error
= _("']' expected");
6552 /* Parse the operands of a Neon VMOV instruction. See do_neon_mov for more
6553 information on the types the operands can take and how they are encoded.
6554 Up to four operands may be read; this function handles setting the
6555 ".present" field for each read operand itself.
6556 Updates STR and WHICH_OPERAND if parsing is successful and returns SUCCESS,
6557 else returns FAIL. */
6560 parse_neon_mov (char **str
, int *which_operand
)
6562 int i
= *which_operand
, val
;
6563 enum arm_reg_type rtype
;
6565 struct neon_type_el optype
;
6567 if ((val
= parse_scalar (&ptr
, 8, &optype
, REG_TYPE_MQ
)) != FAIL
)
6569 /* Cases 17 or 19. */
6570 inst
.operands
[i
].reg
= val
;
6571 inst
.operands
[i
].isvec
= 1;
6572 inst
.operands
[i
].isscalar
= 2;
6573 inst
.operands
[i
].vectype
= optype
;
6574 inst
.operands
[i
++].present
= 1;
6576 if (skip_past_comma (&ptr
) == FAIL
)
6579 if ((val
= arm_reg_parse (&ptr
, REG_TYPE_RN
)) != FAIL
)
6581 /* Case 17: VMOV<c>.<dt> <Qd[idx]>, <Rt> */
6582 inst
.operands
[i
].reg
= val
;
6583 inst
.operands
[i
].isreg
= 1;
6584 inst
.operands
[i
].present
= 1;
6586 else if ((val
= parse_scalar (&ptr
, 8, &optype
, REG_TYPE_MQ
)) != FAIL
)
6588 /* Case 19: VMOV<c> <Qd[idx]>, <Qd[idx2]>, <Rt>, <Rt2> */
6589 inst
.operands
[i
].reg
= val
;
6590 inst
.operands
[i
].isvec
= 1;
6591 inst
.operands
[i
].isscalar
= 2;
6592 inst
.operands
[i
].vectype
= optype
;
6593 inst
.operands
[i
++].present
= 1;
6595 if (skip_past_comma (&ptr
) == FAIL
)
6598 if ((val
= arm_reg_parse (&ptr
, REG_TYPE_RN
)) == FAIL
)
6601 inst
.operands
[i
].reg
= val
;
6602 inst
.operands
[i
].isreg
= 1;
6603 inst
.operands
[i
++].present
= 1;
6605 if (skip_past_comma (&ptr
) == FAIL
)
6608 if ((val
= arm_reg_parse (&ptr
, REG_TYPE_RN
)) == FAIL
)
6611 inst
.operands
[i
].reg
= val
;
6612 inst
.operands
[i
].isreg
= 1;
6613 inst
.operands
[i
].present
= 1;
6617 first_error (_("expected ARM or MVE vector register"));
6621 else if ((val
= parse_scalar (&ptr
, 8, &optype
, REG_TYPE_VFD
)) != FAIL
)
6623 /* Case 4: VMOV<c><q>.<size> <Dn[x]>, <Rd>. */
6624 inst
.operands
[i
].reg
= val
;
6625 inst
.operands
[i
].isscalar
= 1;
6626 inst
.operands
[i
].vectype
= optype
;
6627 inst
.operands
[i
++].present
= 1;
6629 if (skip_past_comma (&ptr
) == FAIL
)
6632 if ((val
= arm_reg_parse (&ptr
, REG_TYPE_RN
)) == FAIL
)
6635 inst
.operands
[i
].reg
= val
;
6636 inst
.operands
[i
].isreg
= 1;
6637 inst
.operands
[i
].present
= 1;
6639 else if (((val
= arm_typed_reg_parse (&ptr
, REG_TYPE_NSDQ
, &rtype
, &optype
))
6641 || ((val
= arm_typed_reg_parse (&ptr
, REG_TYPE_MQ
, &rtype
, &optype
))
6644 /* Cases 0, 1, 2, 3, 5 (D only). */
6645 if (skip_past_comma (&ptr
) == FAIL
)
6648 inst
.operands
[i
].reg
= val
;
6649 inst
.operands
[i
].isreg
= 1;
6650 inst
.operands
[i
].isquad
= (rtype
== REG_TYPE_NQ
);
6651 inst
.operands
[i
].issingle
= (rtype
== REG_TYPE_VFS
);
6652 inst
.operands
[i
].isvec
= 1;
6653 inst
.operands
[i
].vectype
= optype
;
6654 inst
.operands
[i
++].present
= 1;
6656 if ((val
= arm_reg_parse (&ptr
, REG_TYPE_RN
)) != FAIL
)
6658 /* Case 5: VMOV<c><q> <Dm>, <Rd>, <Rn>.
6659 Case 13: VMOV <Sd>, <Rm> */
6660 inst
.operands
[i
].reg
= val
;
6661 inst
.operands
[i
].isreg
= 1;
6662 inst
.operands
[i
].present
= 1;
6664 if (rtype
== REG_TYPE_NQ
)
6666 first_error (_("can't use Neon quad register here"));
6669 else if (rtype
!= REG_TYPE_VFS
)
6672 if (skip_past_comma (&ptr
) == FAIL
)
6674 if ((val
= arm_reg_parse (&ptr
, REG_TYPE_RN
)) == FAIL
)
6676 inst
.operands
[i
].reg
= val
;
6677 inst
.operands
[i
].isreg
= 1;
6678 inst
.operands
[i
].present
= 1;
6681 else if ((val
= arm_typed_reg_parse (&ptr
, REG_TYPE_NSDQ
, &rtype
,
6684 /* Case 0: VMOV<c><q> <Qd>, <Qm>
6685 Case 1: VMOV<c><q> <Dd>, <Dm>
6686 Case 8: VMOV.F32 <Sd>, <Sm>
6687 Case 15: VMOV <Sd>, <Se>, <Rn>, <Rm> */
6689 inst
.operands
[i
].reg
= val
;
6690 inst
.operands
[i
].isreg
= 1;
6691 inst
.operands
[i
].isquad
= (rtype
== REG_TYPE_NQ
);
6692 inst
.operands
[i
].issingle
= (rtype
== REG_TYPE_VFS
);
6693 inst
.operands
[i
].isvec
= 1;
6694 inst
.operands
[i
].vectype
= optype
;
6695 inst
.operands
[i
].present
= 1;
6697 if (skip_past_comma (&ptr
) == SUCCESS
)
6702 if ((val
= arm_reg_parse (&ptr
, REG_TYPE_RN
)) == FAIL
)
6705 inst
.operands
[i
].reg
= val
;
6706 inst
.operands
[i
].isreg
= 1;
6707 inst
.operands
[i
++].present
= 1;
6709 if (skip_past_comma (&ptr
) == FAIL
)
6712 if ((val
= arm_reg_parse (&ptr
, REG_TYPE_RN
)) == FAIL
)
6715 inst
.operands
[i
].reg
= val
;
6716 inst
.operands
[i
].isreg
= 1;
6717 inst
.operands
[i
].present
= 1;
6720 else if (parse_qfloat_immediate (&ptr
, &inst
.operands
[i
].imm
) == SUCCESS
)
6721 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<float-imm>
6722 Case 3: VMOV<c><q>.<dt> <Dd>, #<float-imm>
6723 Case 10: VMOV.F32 <Sd>, #<imm>
6724 Case 11: VMOV.F64 <Dd>, #<imm> */
6725 inst
.operands
[i
].immisfloat
= 1;
6726 else if (parse_big_immediate (&ptr
, i
, NULL
, /*allow_symbol_p=*/FALSE
)
6728 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<imm>
6729 Case 3: VMOV<c><q>.<dt> <Dd>, #<imm> */
6733 first_error (_("expected <Rm> or <Dm> or <Qm> operand"));
6737 else if ((val
= arm_reg_parse (&ptr
, REG_TYPE_RN
)) != FAIL
)
6739 /* Cases 6, 7, 16, 18. */
6740 inst
.operands
[i
].reg
= val
;
6741 inst
.operands
[i
].isreg
= 1;
6742 inst
.operands
[i
++].present
= 1;
6744 if (skip_past_comma (&ptr
) == FAIL
)
6747 if ((val
= parse_scalar (&ptr
, 8, &optype
, REG_TYPE_MQ
)) != FAIL
)
6749 /* Case 18: VMOV<c>.<dt> <Rt>, <Qn[idx]> */
6750 inst
.operands
[i
].reg
= val
;
6751 inst
.operands
[i
].isscalar
= 2;
6752 inst
.operands
[i
].present
= 1;
6753 inst
.operands
[i
].vectype
= optype
;
6755 else if ((val
= parse_scalar (&ptr
, 8, &optype
, REG_TYPE_VFD
)) != FAIL
)
6757 /* Case 6: VMOV<c><q>.<dt> <Rd>, <Dn[x]> */
6758 inst
.operands
[i
].reg
= val
;
6759 inst
.operands
[i
].isscalar
= 1;
6760 inst
.operands
[i
].present
= 1;
6761 inst
.operands
[i
].vectype
= optype
;
6763 else if ((val
= arm_reg_parse (&ptr
, REG_TYPE_RN
)) != FAIL
)
6765 inst
.operands
[i
].reg
= val
;
6766 inst
.operands
[i
].isreg
= 1;
6767 inst
.operands
[i
++].present
= 1;
6769 if (skip_past_comma (&ptr
) == FAIL
)
6772 if ((val
= arm_typed_reg_parse (&ptr
, REG_TYPE_VFSD
, &rtype
, &optype
))
6775 /* Case 7: VMOV<c><q> <Rd>, <Rn>, <Dm> */
6777 inst
.operands
[i
].reg
= val
;
6778 inst
.operands
[i
].isreg
= 1;
6779 inst
.operands
[i
].isvec
= 1;
6780 inst
.operands
[i
].issingle
= (rtype
== REG_TYPE_VFS
);
6781 inst
.operands
[i
].vectype
= optype
;
6782 inst
.operands
[i
].present
= 1;
6784 if (rtype
== REG_TYPE_VFS
)
6788 if (skip_past_comma (&ptr
) == FAIL
)
6790 if ((val
= arm_typed_reg_parse (&ptr
, REG_TYPE_VFS
, NULL
,
6793 first_error (_(reg_expected_msgs
[REG_TYPE_VFS
]));
6796 inst
.operands
[i
].reg
= val
;
6797 inst
.operands
[i
].isreg
= 1;
6798 inst
.operands
[i
].isvec
= 1;
6799 inst
.operands
[i
].issingle
= 1;
6800 inst
.operands
[i
].vectype
= optype
;
6801 inst
.operands
[i
].present
= 1;
6806 if ((val
= parse_scalar (&ptr
, 8, &optype
, REG_TYPE_MQ
))
6809 /* Case 16: VMOV<c> <Rt>, <Rt2>, <Qd[idx]>, <Qd[idx2]> */
6810 inst
.operands
[i
].reg
= val
;
6811 inst
.operands
[i
].isvec
= 1;
6812 inst
.operands
[i
].isscalar
= 2;
6813 inst
.operands
[i
].vectype
= optype
;
6814 inst
.operands
[i
++].present
= 1;
6816 if (skip_past_comma (&ptr
) == FAIL
)
6819 if ((val
= parse_scalar (&ptr
, 8, &optype
, REG_TYPE_MQ
))
6822 first_error (_(reg_expected_msgs
[REG_TYPE_MQ
]));
6825 inst
.operands
[i
].reg
= val
;
6826 inst
.operands
[i
].isvec
= 1;
6827 inst
.operands
[i
].isscalar
= 2;
6828 inst
.operands
[i
].vectype
= optype
;
6829 inst
.operands
[i
].present
= 1;
6833 first_error (_("VFP single, double or MVE vector register"
6839 else if ((val
= arm_typed_reg_parse (&ptr
, REG_TYPE_VFS
, NULL
, &optype
))
6843 inst
.operands
[i
].reg
= val
;
6844 inst
.operands
[i
].isreg
= 1;
6845 inst
.operands
[i
].isvec
= 1;
6846 inst
.operands
[i
].issingle
= 1;
6847 inst
.operands
[i
].vectype
= optype
;
6848 inst
.operands
[i
].present
= 1;
6853 first_error (_("parse error"));
6857 /* Successfully parsed the operands. Update args. */
6863 first_error (_("expected comma"));
6867 first_error (_(reg_expected_msgs
[REG_TYPE_RN
]));
6871 /* Use this macro when the operand constraints are different
6872 for ARM and THUMB (e.g. ldrd). */
6873 #define MIX_ARM_THUMB_OPERANDS(arm_operand, thumb_operand) \
6874 ((arm_operand) | ((thumb_operand) << 16))
6876 /* Matcher codes for parse_operands. */
6877 enum operand_parse_code
6879 OP_stop
, /* end of line */
6881 OP_RR
, /* ARM register */
6882 OP_RRnpc
, /* ARM register, not r15 */
6883 OP_RRnpcsp
, /* ARM register, neither r15 nor r13 (a.k.a. 'BadReg') */
6884 OP_RRnpcb
, /* ARM register, not r15, in square brackets */
6885 OP_RRnpctw
, /* ARM register, not r15 in Thumb-state or with writeback,
6886 optional trailing ! */
6887 OP_RRw
, /* ARM register, not r15, optional trailing ! */
6888 OP_RCP
, /* Coprocessor number */
6889 OP_RCN
, /* Coprocessor register */
6890 OP_RF
, /* FPA register */
6891 OP_RVS
, /* VFP single precision register */
6892 OP_RVD
, /* VFP double precision register (0..15) */
6893 OP_RND
, /* Neon double precision register (0..31) */
6894 OP_RNDMQ
, /* Neon double precision (0..31) or MVE vector register. */
6895 OP_RNDMQR
, /* Neon double precision (0..31), MVE vector or ARM register.
6897 OP_RNQ
, /* Neon quad precision register */
6898 OP_RNQMQ
, /* Neon quad or MVE vector register. */
6899 OP_RVSD
, /* VFP single or double precision register */
6900 OP_RVSD_COND
, /* VFP single, double precision register or condition code. */
6901 OP_RVSDMQ
, /* VFP single, double precision or MVE vector register. */
6902 OP_RNSD
, /* Neon single or double precision register */
6903 OP_RNDQ
, /* Neon double or quad precision register */
6904 OP_RNDQMQ
, /* Neon double, quad or MVE vector register. */
6905 OP_RNDQMQR
, /* Neon double, quad, MVE vector or ARM register. */
6906 OP_RNSDQ
, /* Neon single, double or quad precision register */
6907 OP_RNSC
, /* Neon scalar D[X] */
6908 OP_RVC
, /* VFP control register */
6909 OP_RMF
, /* Maverick F register */
6910 OP_RMD
, /* Maverick D register */
6911 OP_RMFX
, /* Maverick FX register */
6912 OP_RMDX
, /* Maverick DX register */
6913 OP_RMAX
, /* Maverick AX register */
6914 OP_RMDS
, /* Maverick DSPSC register */
6915 OP_RIWR
, /* iWMMXt wR register */
6916 OP_RIWC
, /* iWMMXt wC register */
6917 OP_RIWG
, /* iWMMXt wCG register */
6918 OP_RXA
, /* XScale accumulator register */
6920 OP_RNSDQMQ
, /* Neon single, double or quad register or MVE vector register
6922 OP_RNSDQMQR
, /* Neon single, double or quad register, MVE vector register or
6924 OP_RMQ
, /* MVE vector register. */
6925 OP_RMQRZ
, /* MVE vector or ARM register including ZR. */
6927 /* New operands for Armv8.1-M Mainline. */
6928 OP_LR
, /* ARM LR register */
6929 OP_RRe
, /* ARM register, only even numbered. */
6930 OP_RRo
, /* ARM register, only odd numbered, not r13 or r15. */
6931 OP_RRnpcsp_I32
, /* ARM register (no BadReg) or literal 1 .. 32 */
6933 OP_REGLST
, /* ARM register list */
6934 OP_CLRMLST
, /* CLRM register list */
6935 OP_VRSLST
, /* VFP single-precision register list */
6936 OP_VRDLST
, /* VFP double-precision register list */
6937 OP_VRSDLST
, /* VFP single or double-precision register list (& quad) */
6938 OP_NRDLST
, /* Neon double-precision register list (d0-d31, qN aliases) */
6939 OP_NSTRLST
, /* Neon element/structure list */
6940 OP_VRSDVLST
, /* VFP single or double-precision register list and VPR */
6941 OP_MSTRLST2
, /* MVE vector list with two elements. */
6942 OP_MSTRLST4
, /* MVE vector list with four elements. */
6944 OP_RNDQ_I0
, /* Neon D or Q reg, or immediate zero. */
6945 OP_RVSD_I0
, /* VFP S or D reg, or immediate zero. */
6946 OP_RSVD_FI0
, /* VFP S or D reg, or floating point immediate zero. */
6947 OP_RSVDMQ_FI0
, /* VFP S, D, MVE vector register or floating point immediate
6949 OP_RR_RNSC
, /* ARM reg or Neon scalar. */
6950 OP_RNSD_RNSC
, /* Neon S or D reg, or Neon scalar. */
6951 OP_RNSDQ_RNSC
, /* Vector S, D or Q reg, or Neon scalar. */
6952 OP_RNSDQ_RNSC_MQ
, /* Vector S, D or Q reg, Neon scalar or MVE vector register.
6954 OP_RNSDQ_RNSC_MQ_RR
, /* Vector S, D or Q reg, or MVE vector reg , or Neon
6955 scalar, or ARM register. */
6956 OP_RNDQ_RNSC
, /* Neon D or Q reg, or Neon scalar. */
6957 OP_RNDQ_RNSC_RR
, /* Neon D or Q reg, Neon scalar, or ARM register. */
6958 OP_RNDQMQ_RNSC_RR
, /* Neon D or Q reg, Neon scalar, MVE vector or ARM
6960 OP_RNDQMQ_RNSC
, /* Neon D, Q or MVE vector reg, or Neon scalar. */
6961 OP_RND_RNSC
, /* Neon D reg, or Neon scalar. */
6962 OP_VMOV
, /* Neon VMOV operands. */
6963 OP_RNDQ_Ibig
, /* Neon D or Q reg, or big immediate for logic and VMVN. */
6964 /* Neon D, Q or MVE vector register, or big immediate for logic and VMVN. */
6966 OP_RNDQ_I63b
, /* Neon D or Q reg, or immediate for shift. */
6967 OP_RIWR_I32z
, /* iWMMXt wR register, or immediate 0 .. 32 for iWMMXt2. */
6968 OP_VLDR
, /* VLDR operand. */
6970 OP_I0
, /* immediate zero */
6971 OP_I7
, /* immediate value 0 .. 7 */
6972 OP_I15
, /* 0 .. 15 */
6973 OP_I16
, /* 1 .. 16 */
6974 OP_I16z
, /* 0 .. 16 */
6975 OP_I31
, /* 0 .. 31 */
6976 OP_I31w
, /* 0 .. 31, optional trailing ! */
6977 OP_I32
, /* 1 .. 32 */
6978 OP_I32z
, /* 0 .. 32 */
6979 OP_I63
, /* 0 .. 63 */
6980 OP_I63s
, /* -64 .. 63 */
6981 OP_I64
, /* 1 .. 64 */
6982 OP_I64z
, /* 0 .. 64 */
6983 OP_I255
, /* 0 .. 255 */
6985 OP_I4b
, /* immediate, prefix optional, 1 .. 4 */
6986 OP_I7b
, /* 0 .. 7 */
6987 OP_I15b
, /* 0 .. 15 */
6988 OP_I31b
, /* 0 .. 31 */
6990 OP_SH
, /* shifter operand */
6991 OP_SHG
, /* shifter operand with possible group relocation */
6992 OP_ADDR
, /* Memory address expression (any mode) */
6993 OP_ADDRMVE
, /* Memory address expression for MVE's VSTR/VLDR. */
6994 OP_ADDRGLDR
, /* Mem addr expr (any mode) with possible LDR group reloc */
6995 OP_ADDRGLDRS
, /* Mem addr expr (any mode) with possible LDRS group reloc */
6996 OP_ADDRGLDC
, /* Mem addr expr (any mode) with possible LDC group reloc */
6997 OP_EXP
, /* arbitrary expression */
6998 OP_EXPi
, /* same, with optional immediate prefix */
6999 OP_EXPr
, /* same, with optional relocation suffix */
7000 OP_EXPs
, /* same, with optional non-first operand relocation suffix */
7001 OP_HALF
, /* 0 .. 65535 or low/high reloc. */
7002 OP_IROT1
, /* VCADD rotate immediate: 90, 270. */
7003 OP_IROT2
, /* VCMLA rotate immediate: 0, 90, 180, 270. */
7005 OP_CPSF
, /* CPS flags */
7006 OP_ENDI
, /* Endianness specifier */
7007 OP_wPSR
, /* CPSR/SPSR/APSR mask for msr (writing). */
7008 OP_rPSR
, /* CPSR/SPSR/APSR mask for msr (reading). */
7009 OP_COND
, /* conditional code */
7010 OP_TB
, /* Table branch. */
7012 OP_APSR_RR
, /* ARM register or "APSR_nzcv". */
7014 OP_RRnpc_I0
, /* ARM register or literal 0 */
7015 OP_RR_EXr
, /* ARM register or expression with opt. reloc stuff. */
7016 OP_RR_EXi
, /* ARM register or expression with imm prefix */
7017 OP_RF_IF
, /* FPA register or immediate */
7018 OP_RIWR_RIWC
, /* iWMMXt R or C reg */
7019 OP_RIWC_RIWG
, /* iWMMXt wC or wCG reg */
7021 /* Optional operands. */
7022 OP_oI7b
, /* immediate, prefix optional, 0 .. 7 */
7023 OP_oI31b
, /* 0 .. 31 */
7024 OP_oI32b
, /* 1 .. 32 */
7025 OP_oI32z
, /* 0 .. 32 */
7026 OP_oIffffb
, /* 0 .. 65535 */
7027 OP_oI255c
, /* curly-brace enclosed, 0 .. 255 */
7029 OP_oRR
, /* ARM register */
7030 OP_oLR
, /* ARM LR register */
7031 OP_oRRnpc
, /* ARM register, not the PC */
7032 OP_oRRnpcsp
, /* ARM register, neither the PC nor the SP (a.k.a. BadReg) */
7033 OP_oRRw
, /* ARM register, not r15, optional trailing ! */
7034 OP_oRND
, /* Optional Neon double precision register */
7035 OP_oRNQ
, /* Optional Neon quad precision register */
7036 OP_oRNDQMQ
, /* Optional Neon double, quad or MVE vector register. */
7037 OP_oRNDQ
, /* Optional Neon double or quad precision register */
7038 OP_oRNSDQ
, /* Optional single, double or quad precision vector register */
7039 OP_oRNSDQMQ
, /* Optional single, double or quad register or MVE vector
7041 OP_oSHll
, /* LSL immediate */
7042 OP_oSHar
, /* ASR immediate */
7043 OP_oSHllar
, /* LSL or ASR immediate */
7044 OP_oROR
, /* ROR 0/8/16/24 */
7045 OP_oBARRIER_I15
, /* Option argument for a barrier instruction. */
7047 OP_oRMQRZ
, /* optional MVE vector or ARM register including ZR. */
7049 /* Some pre-defined mixed (ARM/THUMB) operands. */
7050 OP_RR_npcsp
= MIX_ARM_THUMB_OPERANDS (OP_RR
, OP_RRnpcsp
),
7051 OP_RRnpc_npcsp
= MIX_ARM_THUMB_OPERANDS (OP_RRnpc
, OP_RRnpcsp
),
7052 OP_oRRnpc_npcsp
= MIX_ARM_THUMB_OPERANDS (OP_oRRnpc
, OP_oRRnpcsp
),
7054 OP_FIRST_OPTIONAL
= OP_oI7b
7057 /* Generic instruction operand parser. This does no encoding and no
7058 semantic validation; it merely squirrels values away in the inst
7059 structure. Returns SUCCESS or FAIL depending on whether the
7060 specified grammar matched. */
7062 parse_operands (char *str
, const unsigned int *pattern
, bfd_boolean thumb
)
7064 unsigned const int *upat
= pattern
;
7065 char *backtrack_pos
= 0;
7066 const char *backtrack_error
= 0;
7067 int i
, val
= 0, backtrack_index
= 0;
7068 enum arm_reg_type rtype
;
7069 parse_operand_result result
;
7070 unsigned int op_parse_code
;
7071 bfd_boolean partial_match
;
7073 #define po_char_or_fail(chr) \
7076 if (skip_past_char (&str, chr) == FAIL) \
7081 #define po_reg_or_fail(regtype) \
7084 val = arm_typed_reg_parse (& str, regtype, & rtype, \
7085 & inst.operands[i].vectype); \
7088 first_error (_(reg_expected_msgs[regtype])); \
7091 inst.operands[i].reg = val; \
7092 inst.operands[i].isreg = 1; \
7093 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
7094 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
7095 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
7096 || rtype == REG_TYPE_VFD \
7097 || rtype == REG_TYPE_NQ); \
7098 inst.operands[i].iszr = (rtype == REG_TYPE_ZR); \
7102 #define po_reg_or_goto(regtype, label) \
7105 val = arm_typed_reg_parse (& str, regtype, & rtype, \
7106 & inst.operands[i].vectype); \
7110 inst.operands[i].reg = val; \
7111 inst.operands[i].isreg = 1; \
7112 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
7113 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
7114 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
7115 || rtype == REG_TYPE_VFD \
7116 || rtype == REG_TYPE_NQ); \
7117 inst.operands[i].iszr = (rtype == REG_TYPE_ZR); \
7121 #define po_imm_or_fail(min, max, popt) \
7124 if (parse_immediate (&str, &val, min, max, popt) == FAIL) \
7126 inst.operands[i].imm = val; \
7130 #define po_scalar_or_goto(elsz, label, reg_type) \
7133 val = parse_scalar (& str, elsz, & inst.operands[i].vectype, \
7137 inst.operands[i].reg = val; \
7138 inst.operands[i].isscalar = 1; \
7142 #define po_misc_or_fail(expr) \
7150 #define po_misc_or_fail_no_backtrack(expr) \
7154 if (result == PARSE_OPERAND_FAIL_NO_BACKTRACK) \
7155 backtrack_pos = 0; \
7156 if (result != PARSE_OPERAND_SUCCESS) \
7161 #define po_barrier_or_imm(str) \
7164 val = parse_barrier (&str); \
7165 if (val == FAIL && ! ISALPHA (*str)) \
7168 /* ISB can only take SY as an option. */ \
7169 || ((inst.instruction & 0xf0) == 0x60 \
7172 inst.error = _("invalid barrier type"); \
7173 backtrack_pos = 0; \
7179 skip_whitespace (str
);
7181 for (i
= 0; upat
[i
] != OP_stop
; i
++)
7183 op_parse_code
= upat
[i
];
7184 if (op_parse_code
>= 1<<16)
7185 op_parse_code
= thumb
? (op_parse_code
>> 16)
7186 : (op_parse_code
& ((1<<16)-1));
7188 if (op_parse_code
>= OP_FIRST_OPTIONAL
)
7190 /* Remember where we are in case we need to backtrack. */
7191 backtrack_pos
= str
;
7192 backtrack_error
= inst
.error
;
7193 backtrack_index
= i
;
7196 if (i
> 0 && (i
> 1 || inst
.operands
[0].present
))
7197 po_char_or_fail (',');
7199 switch (op_parse_code
)
7211 case OP_RR
: po_reg_or_fail (REG_TYPE_RN
); break;
7212 case OP_RCP
: po_reg_or_fail (REG_TYPE_CP
); break;
7213 case OP_RCN
: po_reg_or_fail (REG_TYPE_CN
); break;
7214 case OP_RF
: po_reg_or_fail (REG_TYPE_FN
); break;
7215 case OP_RVS
: po_reg_or_fail (REG_TYPE_VFS
); break;
7216 case OP_RVD
: po_reg_or_fail (REG_TYPE_VFD
); break;
7219 po_reg_or_goto (REG_TYPE_RN
, try_rndmq
);
7223 po_reg_or_goto (REG_TYPE_MQ
, try_rnd
);
7226 case OP_RND
: po_reg_or_fail (REG_TYPE_VFD
); break;
7228 po_reg_or_goto (REG_TYPE_VFC
, coproc_reg
);
7230 /* Also accept generic coprocessor regs for unknown registers. */
7232 po_reg_or_fail (REG_TYPE_CN
);
7234 case OP_RMF
: po_reg_or_fail (REG_TYPE_MVF
); break;
7235 case OP_RMD
: po_reg_or_fail (REG_TYPE_MVD
); break;
7236 case OP_RMFX
: po_reg_or_fail (REG_TYPE_MVFX
); break;
7237 case OP_RMDX
: po_reg_or_fail (REG_TYPE_MVDX
); break;
7238 case OP_RMAX
: po_reg_or_fail (REG_TYPE_MVAX
); break;
7239 case OP_RMDS
: po_reg_or_fail (REG_TYPE_DSPSC
); break;
7240 case OP_RIWR
: po_reg_or_fail (REG_TYPE_MMXWR
); break;
7241 case OP_RIWC
: po_reg_or_fail (REG_TYPE_MMXWC
); break;
7242 case OP_RIWG
: po_reg_or_fail (REG_TYPE_MMXWCG
); break;
7243 case OP_RXA
: po_reg_or_fail (REG_TYPE_XSCALE
); break;
7246 po_reg_or_goto (REG_TYPE_MQ
, try_nq
);
7249 case OP_RNQ
: po_reg_or_fail (REG_TYPE_NQ
); break;
7250 case OP_RNSD
: po_reg_or_fail (REG_TYPE_NSD
); break;
7252 po_reg_or_goto (REG_TYPE_RN
, try_rndqmq
);
7257 po_reg_or_goto (REG_TYPE_MQ
, try_rndq
);
7261 case OP_RNDQ
: po_reg_or_fail (REG_TYPE_NDQ
); break;
7263 po_reg_or_goto (REG_TYPE_MQ
, try_rvsd
);
7266 case OP_RVSD
: po_reg_or_fail (REG_TYPE_VFSD
); break;
7268 po_reg_or_goto (REG_TYPE_VFSD
, try_cond
);
7271 case OP_RNSDQ
: po_reg_or_fail (REG_TYPE_NSDQ
); break;
7273 po_reg_or_goto (REG_TYPE_RN
, try_mq
);
7278 po_reg_or_goto (REG_TYPE_MQ
, try_nsdq2
);
7281 po_reg_or_fail (REG_TYPE_NSDQ
);
7285 po_reg_or_fail (REG_TYPE_MQ
);
7287 /* Neon scalar. Using an element size of 8 means that some invalid
7288 scalars are accepted here, so deal with those in later code. */
7289 case OP_RNSC
: po_scalar_or_goto (8, failure
, REG_TYPE_VFD
); break;
7293 po_reg_or_goto (REG_TYPE_NDQ
, try_imm0
);
7296 po_imm_or_fail (0, 0, TRUE
);
7301 po_reg_or_goto (REG_TYPE_VFSD
, try_imm0
);
7305 po_reg_or_goto (REG_TYPE_MQ
, try_rsvd_fi0
);
7310 po_reg_or_goto (REG_TYPE_VFSD
, try_ifimm0
);
7313 if (parse_ifimm_zero (&str
))
7314 inst
.operands
[i
].imm
= 0;
7318 = _("only floating point zero is allowed as immediate value");
7326 po_scalar_or_goto (8, try_rr
, REG_TYPE_VFD
);
7329 po_reg_or_fail (REG_TYPE_RN
);
7333 case OP_RNSDQ_RNSC_MQ_RR
:
7334 po_reg_or_goto (REG_TYPE_RN
, try_rnsdq_rnsc_mq
);
7337 case OP_RNSDQ_RNSC_MQ
:
7338 po_reg_or_goto (REG_TYPE_MQ
, try_rnsdq_rnsc
);
7343 po_scalar_or_goto (8, try_nsdq
, REG_TYPE_VFD
);
7347 po_reg_or_fail (REG_TYPE_NSDQ
);
7354 po_scalar_or_goto (8, try_s_scalar
, REG_TYPE_VFD
);
7357 po_scalar_or_goto (4, try_nsd
, REG_TYPE_VFS
);
7360 po_reg_or_fail (REG_TYPE_NSD
);
7364 case OP_RNDQMQ_RNSC_RR
:
7365 po_reg_or_goto (REG_TYPE_MQ
, try_rndq_rnsc_rr
);
7368 case OP_RNDQ_RNSC_RR
:
7369 po_reg_or_goto (REG_TYPE_RN
, try_rndq_rnsc
);
7371 case OP_RNDQMQ_RNSC
:
7372 po_reg_or_goto (REG_TYPE_MQ
, try_rndq_rnsc
);
7377 po_scalar_or_goto (8, try_ndq
, REG_TYPE_VFD
);
7380 po_reg_or_fail (REG_TYPE_NDQ
);
7386 po_scalar_or_goto (8, try_vfd
, REG_TYPE_VFD
);
7389 po_reg_or_fail (REG_TYPE_VFD
);
7394 /* WARNING: parse_neon_mov can move the operand counter, i. If we're
7395 not careful then bad things might happen. */
7396 po_misc_or_fail (parse_neon_mov (&str
, &i
) == FAIL
);
7399 case OP_RNDQMQ_Ibig
:
7400 po_reg_or_goto (REG_TYPE_MQ
, try_rndq_ibig
);
7405 po_reg_or_goto (REG_TYPE_NDQ
, try_immbig
);
7408 /* There's a possibility of getting a 64-bit immediate here, so
7409 we need special handling. */
7410 if (parse_big_immediate (&str
, i
, NULL
, /*allow_symbol_p=*/FALSE
)
7413 inst
.error
= _("immediate value is out of range");
7421 po_reg_or_goto (REG_TYPE_NDQ
, try_shimm
);
7424 po_imm_or_fail (0, 63, TRUE
);
7429 po_char_or_fail ('[');
7430 po_reg_or_fail (REG_TYPE_RN
);
7431 po_char_or_fail (']');
7437 po_reg_or_fail (REG_TYPE_RN
);
7438 if (skip_past_char (&str
, '!') == SUCCESS
)
7439 inst
.operands
[i
].writeback
= 1;
7443 case OP_I7
: po_imm_or_fail ( 0, 7, FALSE
); break;
7444 case OP_I15
: po_imm_or_fail ( 0, 15, FALSE
); break;
7445 case OP_I16
: po_imm_or_fail ( 1, 16, FALSE
); break;
7446 case OP_I16z
: po_imm_or_fail ( 0, 16, FALSE
); break;
7447 case OP_I31
: po_imm_or_fail ( 0, 31, FALSE
); break;
7448 case OP_I32
: po_imm_or_fail ( 1, 32, FALSE
); break;
7449 case OP_I32z
: po_imm_or_fail ( 0, 32, FALSE
); break;
7450 case OP_I63s
: po_imm_or_fail (-64, 63, FALSE
); break;
7451 case OP_I63
: po_imm_or_fail ( 0, 63, FALSE
); break;
7452 case OP_I64
: po_imm_or_fail ( 1, 64, FALSE
); break;
7453 case OP_I64z
: po_imm_or_fail ( 0, 64, FALSE
); break;
7454 case OP_I255
: po_imm_or_fail ( 0, 255, FALSE
); break;
7456 case OP_I4b
: po_imm_or_fail ( 1, 4, TRUE
); break;
7458 case OP_I7b
: po_imm_or_fail ( 0, 7, TRUE
); break;
7459 case OP_I15b
: po_imm_or_fail ( 0, 15, TRUE
); break;
7461 case OP_I31b
: po_imm_or_fail ( 0, 31, TRUE
); break;
7462 case OP_oI32b
: po_imm_or_fail ( 1, 32, TRUE
); break;
7463 case OP_oI32z
: po_imm_or_fail ( 0, 32, TRUE
); break;
7464 case OP_oIffffb
: po_imm_or_fail ( 0, 0xffff, TRUE
); break;
7466 /* Immediate variants */
7468 po_char_or_fail ('{');
7469 po_imm_or_fail (0, 255, TRUE
);
7470 po_char_or_fail ('}');
7474 /* The expression parser chokes on a trailing !, so we have
7475 to find it first and zap it. */
7478 while (*s
&& *s
!= ',')
7483 inst
.operands
[i
].writeback
= 1;
7485 po_imm_or_fail (0, 31, TRUE
);
7493 po_misc_or_fail (my_get_expression (&inst
.relocs
[0].exp
, &str
,
7498 po_misc_or_fail (my_get_expression (&inst
.relocs
[0].exp
, &str
,
7503 po_misc_or_fail (my_get_expression (&inst
.relocs
[0].exp
, &str
,
7505 if (inst
.relocs
[0].exp
.X_op
== O_symbol
)
7507 val
= parse_reloc (&str
);
7510 inst
.error
= _("unrecognized relocation suffix");
7513 else if (val
!= BFD_RELOC_UNUSED
)
7515 inst
.operands
[i
].imm
= val
;
7516 inst
.operands
[i
].hasreloc
= 1;
7522 po_misc_or_fail (my_get_expression (&inst
.relocs
[i
].exp
, &str
,
7524 if (inst
.relocs
[i
].exp
.X_op
== O_symbol
)
7526 inst
.operands
[i
].hasreloc
= 1;
7528 else if (inst
.relocs
[i
].exp
.X_op
== O_constant
)
7530 inst
.operands
[i
].imm
= inst
.relocs
[i
].exp
.X_add_number
;
7531 inst
.operands
[i
].hasreloc
= 0;
7535 /* Operand for MOVW or MOVT. */
7537 po_misc_or_fail (parse_half (&str
));
7540 /* Register or expression. */
7541 case OP_RR_EXr
: po_reg_or_goto (REG_TYPE_RN
, EXPr
); break;
7542 case OP_RR_EXi
: po_reg_or_goto (REG_TYPE_RN
, EXPi
); break;
7544 /* Register or immediate. */
7545 case OP_RRnpc_I0
: po_reg_or_goto (REG_TYPE_RN
, I0
); break;
7546 I0
: po_imm_or_fail (0, 0, FALSE
); break;
7548 case OP_RF_IF
: po_reg_or_goto (REG_TYPE_FN
, IF
); break;
7550 if (!is_immediate_prefix (*str
))
7553 val
= parse_fpa_immediate (&str
);
7556 /* FPA immediates are encoded as registers 8-15.
7557 parse_fpa_immediate has already applied the offset. */
7558 inst
.operands
[i
].reg
= val
;
7559 inst
.operands
[i
].isreg
= 1;
7562 case OP_RIWR_I32z
: po_reg_or_goto (REG_TYPE_MMXWR
, I32z
); break;
7563 I32z
: po_imm_or_fail (0, 32, FALSE
); break;
7565 /* Two kinds of register. */
7568 struct reg_entry
*rege
= arm_reg_parse_multi (&str
);
7570 || (rege
->type
!= REG_TYPE_MMXWR
7571 && rege
->type
!= REG_TYPE_MMXWC
7572 && rege
->type
!= REG_TYPE_MMXWCG
))
7574 inst
.error
= _("iWMMXt data or control register expected");
7577 inst
.operands
[i
].reg
= rege
->number
;
7578 inst
.operands
[i
].isreg
= (rege
->type
== REG_TYPE_MMXWR
);
7584 struct reg_entry
*rege
= arm_reg_parse_multi (&str
);
7586 || (rege
->type
!= REG_TYPE_MMXWC
7587 && rege
->type
!= REG_TYPE_MMXWCG
))
7589 inst
.error
= _("iWMMXt control register expected");
7592 inst
.operands
[i
].reg
= rege
->number
;
7593 inst
.operands
[i
].isreg
= 1;
7598 case OP_CPSF
: val
= parse_cps_flags (&str
); break;
7599 case OP_ENDI
: val
= parse_endian_specifier (&str
); break;
7600 case OP_oROR
: val
= parse_ror (&str
); break;
7602 case OP_COND
: val
= parse_cond (&str
); break;
7603 case OP_oBARRIER_I15
:
7604 po_barrier_or_imm (str
); break;
7606 if (parse_immediate (&str
, &val
, 0, 15, TRUE
) == FAIL
)
7612 po_reg_or_goto (REG_TYPE_RNB
, try_psr
);
7613 if (!ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_virt
))
7615 inst
.error
= _("Banked registers are not available with this "
7621 val
= parse_psr (&str
, op_parse_code
== OP_wPSR
);
7625 po_reg_or_goto (REG_TYPE_VFSD
, try_sysreg
);
7628 val
= parse_sys_vldr_vstr (&str
);
7632 po_reg_or_goto (REG_TYPE_RN
, try_apsr
);
7635 /* Parse "APSR_nvzc" operand (for FMSTAT-equivalent MRS
7637 if (strncasecmp (str
, "APSR_", 5) == 0)
7644 case 'c': found
= (found
& 1) ? 16 : found
| 1; break;
7645 case 'n': found
= (found
& 2) ? 16 : found
| 2; break;
7646 case 'z': found
= (found
& 4) ? 16 : found
| 4; break;
7647 case 'v': found
= (found
& 8) ? 16 : found
| 8; break;
7648 default: found
= 16;
7652 inst
.operands
[i
].isvec
= 1;
7653 /* APSR_nzcv is encoded in instructions as if it were the REG_PC. */
7654 inst
.operands
[i
].reg
= REG_PC
;
7661 po_misc_or_fail (parse_tb (&str
));
7664 /* Register lists. */
7666 val
= parse_reg_list (&str
, REGLIST_RN
);
7669 inst
.operands
[i
].writeback
= 1;
7675 val
= parse_reg_list (&str
, REGLIST_CLRM
);
7679 val
= parse_vfp_reg_list (&str
, &inst
.operands
[i
].reg
, REGLIST_VFP_S
,
7684 val
= parse_vfp_reg_list (&str
, &inst
.operands
[i
].reg
, REGLIST_VFP_D
,
7689 /* Allow Q registers too. */
7690 val
= parse_vfp_reg_list (&str
, &inst
.operands
[i
].reg
,
7691 REGLIST_NEON_D
, &partial_match
);
7695 val
= parse_vfp_reg_list (&str
, &inst
.operands
[i
].reg
,
7696 REGLIST_VFP_S
, &partial_match
);
7697 inst
.operands
[i
].issingle
= 1;
7702 val
= parse_vfp_reg_list (&str
, &inst
.operands
[i
].reg
,
7703 REGLIST_VFP_D_VPR
, &partial_match
);
7704 if (val
== FAIL
&& !partial_match
)
7707 val
= parse_vfp_reg_list (&str
, &inst
.operands
[i
].reg
,
7708 REGLIST_VFP_S_VPR
, &partial_match
);
7709 inst
.operands
[i
].issingle
= 1;
7714 val
= parse_vfp_reg_list (&str
, &inst
.operands
[i
].reg
,
7715 REGLIST_NEON_D
, &partial_match
);
7720 val
= parse_neon_el_struct_list (&str
, &inst
.operands
[i
].reg
,
7721 1, &inst
.operands
[i
].vectype
);
7722 if (val
!= (((op_parse_code
== OP_MSTRLST2
) ? 3 : 7) << 5 | 0xe))
7726 val
= parse_neon_el_struct_list (&str
, &inst
.operands
[i
].reg
,
7727 0, &inst
.operands
[i
].vectype
);
7730 /* Addressing modes */
7732 po_misc_or_fail (parse_address_group_reloc (&str
, i
, GROUP_MVE
));
7736 po_misc_or_fail (parse_address (&str
, i
));
7740 po_misc_or_fail_no_backtrack (
7741 parse_address_group_reloc (&str
, i
, GROUP_LDR
));
7745 po_misc_or_fail_no_backtrack (
7746 parse_address_group_reloc (&str
, i
, GROUP_LDRS
));
7750 po_misc_or_fail_no_backtrack (
7751 parse_address_group_reloc (&str
, i
, GROUP_LDC
));
7755 po_misc_or_fail (parse_shifter_operand (&str
, i
));
7759 po_misc_or_fail_no_backtrack (
7760 parse_shifter_operand_group_reloc (&str
, i
));
7764 po_misc_or_fail (parse_shift (&str
, i
, SHIFT_LSL_IMMEDIATE
));
7768 po_misc_or_fail (parse_shift (&str
, i
, SHIFT_ASR_IMMEDIATE
));
7772 po_misc_or_fail (parse_shift (&str
, i
, SHIFT_LSL_OR_ASR_IMMEDIATE
));
7777 po_reg_or_goto (REG_TYPE_MQ
, try_rr_zr
);
7780 po_reg_or_goto (REG_TYPE_RN
, ZR
);
7783 po_reg_or_fail (REG_TYPE_ZR
);
7787 as_fatal (_("unhandled operand code %d"), op_parse_code
);
7790 /* Various value-based sanity checks and shared operations. We
7791 do not signal immediate failures for the register constraints;
7792 this allows a syntax error to take precedence. */
7793 switch (op_parse_code
)
7801 if (inst
.operands
[i
].isreg
&& inst
.operands
[i
].reg
== REG_PC
)
7802 inst
.error
= BAD_PC
;
7807 if (inst
.operands
[i
].isreg
)
7809 if (inst
.operands
[i
].reg
== REG_PC
)
7810 inst
.error
= BAD_PC
;
7811 else if (inst
.operands
[i
].reg
== REG_SP
7812 /* The restriction on Rd/Rt/Rt2 on Thumb mode has been
7813 relaxed since ARMv8-A. */
7814 && !ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v8
))
7817 inst
.error
= BAD_SP
;
7823 if (inst
.operands
[i
].isreg
7824 && inst
.operands
[i
].reg
== REG_PC
7825 && (inst
.operands
[i
].writeback
|| thumb
))
7826 inst
.error
= BAD_PC
;
7831 if (inst
.operands
[i
].isreg
)
7841 case OP_oBARRIER_I15
:
7854 inst
.operands
[i
].imm
= val
;
7859 if (inst
.operands
[i
].reg
!= REG_LR
)
7860 inst
.error
= _("operand must be LR register");
7865 if (!inst
.operands
[i
].iszr
&& inst
.operands
[i
].reg
== REG_PC
)
7866 inst
.error
= BAD_PC
;
7870 if (inst
.operands
[i
].isreg
7871 && (inst
.operands
[i
].reg
& 0x00000001) != 0)
7872 inst
.error
= BAD_ODD
;
7876 if (inst
.operands
[i
].isreg
)
7878 if ((inst
.operands
[i
].reg
& 0x00000001) != 1)
7879 inst
.error
= BAD_EVEN
;
7880 else if (inst
.operands
[i
].reg
== REG_SP
)
7881 as_tsktsk (MVE_BAD_SP
);
7882 else if (inst
.operands
[i
].reg
== REG_PC
)
7883 inst
.error
= BAD_PC
;
7891 /* If we get here, this operand was successfully parsed. */
7892 inst
.operands
[i
].present
= 1;
7896 inst
.error
= BAD_ARGS
;
7901 /* The parse routine should already have set inst.error, but set a
7902 default here just in case. */
7904 inst
.error
= BAD_SYNTAX
;
7908 /* Do not backtrack over a trailing optional argument that
7909 absorbed some text. We will only fail again, with the
7910 'garbage following instruction' error message, which is
7911 probably less helpful than the current one. */
7912 if (backtrack_index
== i
&& backtrack_pos
!= str
7913 && upat
[i
+1] == OP_stop
)
7916 inst
.error
= BAD_SYNTAX
;
7920 /* Try again, skipping the optional argument at backtrack_pos. */
7921 str
= backtrack_pos
;
7922 inst
.error
= backtrack_error
;
7923 inst
.operands
[backtrack_index
].present
= 0;
7924 i
= backtrack_index
;
7928 /* Check that we have parsed all the arguments. */
7929 if (*str
!= '\0' && !inst
.error
)
7930 inst
.error
= _("garbage following instruction");
7932 return inst
.error
? FAIL
: SUCCESS
;
7935 #undef po_char_or_fail
7936 #undef po_reg_or_fail
7937 #undef po_reg_or_goto
7938 #undef po_imm_or_fail
7939 #undef po_scalar_or_fail
7940 #undef po_barrier_or_imm
7942 /* Shorthand macro for instruction encoding functions issuing errors. */
7943 #define constraint(expr, err) \
7954 /* Reject "bad registers" for Thumb-2 instructions. Many Thumb-2
7955 instructions are unpredictable if these registers are used. This
7956 is the BadReg predicate in ARM's Thumb-2 documentation.
7958 Before ARMv8-A, REG_PC and REG_SP were not allowed in quite a few
7959 places, while the restriction on REG_SP was relaxed since ARMv8-A. */
7960 #define reject_bad_reg(reg) \
7962 if (reg == REG_PC) \
7964 inst.error = BAD_PC; \
7967 else if (reg == REG_SP \
7968 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8)) \
7970 inst.error = BAD_SP; \
7975 /* If REG is R13 (the stack pointer), warn that its use is
7977 #define warn_deprecated_sp(reg) \
7979 if (warn_on_deprecated && reg == REG_SP) \
7980 as_tsktsk (_("use of r13 is deprecated")); \
7983 /* Functions for operand encoding. ARM, then Thumb. */
7985 #define rotate_left(v, n) (v << (n & 31) | v >> ((32 - n) & 31))
7987 /* If the current inst is scalar ARMv8.2 fp16 instruction, do special encoding.
7989 The only binary encoding difference is the Coprocessor number. Coprocessor
7990 9 is used for half-precision calculations or conversions. The format of the
7991 instruction is the same as the equivalent Coprocessor 10 instruction that
7992 exists for Single-Precision operation. */
7995 do_scalar_fp16_v82_encode (void)
7997 if (inst
.cond
< COND_ALWAYS
)
7998 as_warn (_("ARMv8.2 scalar fp16 instruction cannot be conditional,"
7999 " the behaviour is UNPREDICTABLE"));
8000 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_fp16
),
8003 inst
.instruction
= (inst
.instruction
& 0xfffff0ff) | 0x900;
8004 mark_feature_used (&arm_ext_fp16
);
8007 /* If VAL can be encoded in the immediate field of an ARM instruction,
8008 return the encoded form. Otherwise, return FAIL. */
8011 encode_arm_immediate (unsigned int val
)
8018 for (i
= 2; i
< 32; i
+= 2)
8019 if ((a
= rotate_left (val
, i
)) <= 0xff)
8020 return a
| (i
<< 7); /* 12-bit pack: [shift-cnt,const]. */
8025 /* If VAL can be encoded in the immediate field of a Thumb32 instruction,
8026 return the encoded form. Otherwise, return FAIL. */
8028 encode_thumb32_immediate (unsigned int val
)
8035 for (i
= 1; i
<= 24; i
++)
8038 if ((val
& ~(0xff << i
)) == 0)
8039 return ((val
>> i
) & 0x7f) | ((32 - i
) << 7);
8043 if (val
== ((a
<< 16) | a
))
8045 if (val
== ((a
<< 24) | (a
<< 16) | (a
<< 8) | a
))
8049 if (val
== ((a
<< 16) | a
))
8050 return 0x200 | (a
>> 8);
8054 /* Encode a VFP SP or DP register number into inst.instruction. */
8057 encode_arm_vfp_reg (int reg
, enum vfp_reg_pos pos
)
8059 if ((pos
== VFP_REG_Dd
|| pos
== VFP_REG_Dn
|| pos
== VFP_REG_Dm
)
8062 if (ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_vfp_ext_d32
))
8065 ARM_MERGE_FEATURE_SETS (thumb_arch_used
, thumb_arch_used
,
8068 ARM_MERGE_FEATURE_SETS (arm_arch_used
, arm_arch_used
,
8073 first_error (_("D register out of range for selected VFP version"));
8081 inst
.instruction
|= ((reg
>> 1) << 12) | ((reg
& 1) << 22);
8085 inst
.instruction
|= ((reg
>> 1) << 16) | ((reg
& 1) << 7);
8089 inst
.instruction
|= ((reg
>> 1) << 0) | ((reg
& 1) << 5);
8093 inst
.instruction
|= ((reg
& 15) << 12) | ((reg
>> 4) << 22);
8097 inst
.instruction
|= ((reg
& 15) << 16) | ((reg
>> 4) << 7);
8101 inst
.instruction
|= (reg
& 15) | ((reg
>> 4) << 5);
8109 /* Encode a <shift> in an ARM-format instruction. The immediate,
8110 if any, is handled by md_apply_fix. */
8112 encode_arm_shift (int i
)
8114 /* register-shifted register. */
8115 if (inst
.operands
[i
].immisreg
)
8118 for (op_index
= 0; op_index
<= i
; ++op_index
)
8120 /* Check the operand only when it's presented. In pre-UAL syntax,
8121 if the destination register is the same as the first operand, two
8122 register form of the instruction can be used. */
8123 if (inst
.operands
[op_index
].present
&& inst
.operands
[op_index
].isreg
8124 && inst
.operands
[op_index
].reg
== REG_PC
)
8125 as_warn (UNPRED_REG ("r15"));
8128 if (inst
.operands
[i
].imm
== REG_PC
)
8129 as_warn (UNPRED_REG ("r15"));
8132 if (inst
.operands
[i
].shift_kind
== SHIFT_RRX
)
8133 inst
.instruction
|= SHIFT_ROR
<< 5;
8136 inst
.instruction
|= inst
.operands
[i
].shift_kind
<< 5;
8137 if (inst
.operands
[i
].immisreg
)
8139 inst
.instruction
|= SHIFT_BY_REG
;
8140 inst
.instruction
|= inst
.operands
[i
].imm
<< 8;
8143 inst
.relocs
[0].type
= BFD_RELOC_ARM_SHIFT_IMM
;
8148 encode_arm_shifter_operand (int i
)
8150 if (inst
.operands
[i
].isreg
)
8152 inst
.instruction
|= inst
.operands
[i
].reg
;
8153 encode_arm_shift (i
);
8157 inst
.instruction
|= INST_IMMEDIATE
;
8158 if (inst
.relocs
[0].type
!= BFD_RELOC_ARM_IMMEDIATE
)
8159 inst
.instruction
|= inst
.operands
[i
].imm
;
8163 /* Subroutine of encode_arm_addr_mode_2 and encode_arm_addr_mode_3. */
8165 encode_arm_addr_mode_common (int i
, bfd_boolean is_t
)
8168 Generate an error if the operand is not a register. */
8169 constraint (!inst
.operands
[i
].isreg
,
8170 _("Instruction does not support =N addresses"));
8172 inst
.instruction
|= inst
.operands
[i
].reg
<< 16;
8174 if (inst
.operands
[i
].preind
)
8178 inst
.error
= _("instruction does not accept preindexed addressing");
8181 inst
.instruction
|= PRE_INDEX
;
8182 if (inst
.operands
[i
].writeback
)
8183 inst
.instruction
|= WRITE_BACK
;
8186 else if (inst
.operands
[i
].postind
)
8188 gas_assert (inst
.operands
[i
].writeback
);
8190 inst
.instruction
|= WRITE_BACK
;
8192 else /* unindexed - only for coprocessor */
8194 inst
.error
= _("instruction does not accept unindexed addressing");
8198 if (((inst
.instruction
& WRITE_BACK
) || !(inst
.instruction
& PRE_INDEX
))
8199 && (((inst
.instruction
& 0x000f0000) >> 16)
8200 == ((inst
.instruction
& 0x0000f000) >> 12)))
8201 as_warn ((inst
.instruction
& LOAD_BIT
)
8202 ? _("destination register same as write-back base")
8203 : _("source register same as write-back base"));
8206 /* inst.operands[i] was set up by parse_address. Encode it into an
8207 ARM-format mode 2 load or store instruction. If is_t is true,
8208 reject forms that cannot be used with a T instruction (i.e. not
8211 encode_arm_addr_mode_2 (int i
, bfd_boolean is_t
)
8213 const bfd_boolean is_pc
= (inst
.operands
[i
].reg
== REG_PC
);
8215 encode_arm_addr_mode_common (i
, is_t
);
8217 if (inst
.operands
[i
].immisreg
)
8219 constraint ((inst
.operands
[i
].imm
== REG_PC
8220 || (is_pc
&& inst
.operands
[i
].writeback
)),
8222 inst
.instruction
|= INST_IMMEDIATE
; /* yes, this is backwards */
8223 inst
.instruction
|= inst
.operands
[i
].imm
;
8224 if (!inst
.operands
[i
].negative
)
8225 inst
.instruction
|= INDEX_UP
;
8226 if (inst
.operands
[i
].shifted
)
8228 if (inst
.operands
[i
].shift_kind
== SHIFT_RRX
)
8229 inst
.instruction
|= SHIFT_ROR
<< 5;
8232 inst
.instruction
|= inst
.operands
[i
].shift_kind
<< 5;
8233 inst
.relocs
[0].type
= BFD_RELOC_ARM_SHIFT_IMM
;
8237 else /* immediate offset in inst.relocs[0] */
8239 if (is_pc
&& !inst
.relocs
[0].pc_rel
)
8241 const bfd_boolean is_load
= ((inst
.instruction
& LOAD_BIT
) != 0);
8243 /* If is_t is TRUE, it's called from do_ldstt. ldrt/strt
8244 cannot use PC in addressing.
8245 PC cannot be used in writeback addressing, either. */
8246 constraint ((is_t
|| inst
.operands
[i
].writeback
),
8249 /* Use of PC in str is deprecated for ARMv7. */
8250 if (warn_on_deprecated
8252 && ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_v7
))
8253 as_tsktsk (_("use of PC in this instruction is deprecated"));
8256 if (inst
.relocs
[0].type
== BFD_RELOC_UNUSED
)
8258 /* Prefer + for zero encoded value. */
8259 if (!inst
.operands
[i
].negative
)
8260 inst
.instruction
|= INDEX_UP
;
8261 inst
.relocs
[0].type
= BFD_RELOC_ARM_OFFSET_IMM
;
8266 /* inst.operands[i] was set up by parse_address. Encode it into an
8267 ARM-format mode 3 load or store instruction. Reject forms that
8268 cannot be used with such instructions. If is_t is true, reject
8269 forms that cannot be used with a T instruction (i.e. not
8272 encode_arm_addr_mode_3 (int i
, bfd_boolean is_t
)
8274 if (inst
.operands
[i
].immisreg
&& inst
.operands
[i
].shifted
)
8276 inst
.error
= _("instruction does not accept scaled register index");
8280 encode_arm_addr_mode_common (i
, is_t
);
8282 if (inst
.operands
[i
].immisreg
)
8284 constraint ((inst
.operands
[i
].imm
== REG_PC
8285 || (is_t
&& inst
.operands
[i
].reg
== REG_PC
)),
8287 constraint (inst
.operands
[i
].reg
== REG_PC
&& inst
.operands
[i
].writeback
,
8289 inst
.instruction
|= inst
.operands
[i
].imm
;
8290 if (!inst
.operands
[i
].negative
)
8291 inst
.instruction
|= INDEX_UP
;
8293 else /* immediate offset in inst.relocs[0] */
8295 constraint ((inst
.operands
[i
].reg
== REG_PC
&& !inst
.relocs
[0].pc_rel
8296 && inst
.operands
[i
].writeback
),
8298 inst
.instruction
|= HWOFFSET_IMM
;
8299 if (inst
.relocs
[0].type
== BFD_RELOC_UNUSED
)
8301 /* Prefer + for zero encoded value. */
8302 if (!inst
.operands
[i
].negative
)
8303 inst
.instruction
|= INDEX_UP
;
8305 inst
.relocs
[0].type
= BFD_RELOC_ARM_OFFSET_IMM8
;
8310 /* Write immediate bits [7:0] to the following locations:
8312 |28/24|23 19|18 16|15 4|3 0|
8313 | a |x x x x x|b c d|x x x x x x x x x x x x|e f g h|
8315 This function is used by VMOV/VMVN/VORR/VBIC. */
8318 neon_write_immbits (unsigned immbits
)
8320 inst
.instruction
|= immbits
& 0xf;
8321 inst
.instruction
|= ((immbits
>> 4) & 0x7) << 16;
8322 inst
.instruction
|= ((immbits
>> 7) & 0x1) << (thumb_mode
? 28 : 24);
8325 /* Invert low-order SIZE bits of XHI:XLO. */
8328 neon_invert_size (unsigned *xlo
, unsigned *xhi
, int size
)
8330 unsigned immlo
= xlo
? *xlo
: 0;
8331 unsigned immhi
= xhi
? *xhi
: 0;
8336 immlo
= (~immlo
) & 0xff;
8340 immlo
= (~immlo
) & 0xffff;
8344 immhi
= (~immhi
) & 0xffffffff;
8348 immlo
= (~immlo
) & 0xffffffff;
8362 /* True if IMM has form 0bAAAAAAAABBBBBBBBCCCCCCCCDDDDDDDD for bits
8366 neon_bits_same_in_bytes (unsigned imm
)
8368 return ((imm
& 0x000000ff) == 0 || (imm
& 0x000000ff) == 0x000000ff)
8369 && ((imm
& 0x0000ff00) == 0 || (imm
& 0x0000ff00) == 0x0000ff00)
8370 && ((imm
& 0x00ff0000) == 0 || (imm
& 0x00ff0000) == 0x00ff0000)
8371 && ((imm
& 0xff000000) == 0 || (imm
& 0xff000000) == 0xff000000);
8374 /* For immediate of above form, return 0bABCD. */
8377 neon_squash_bits (unsigned imm
)
8379 return (imm
& 0x01) | ((imm
& 0x0100) >> 7) | ((imm
& 0x010000) >> 14)
8380 | ((imm
& 0x01000000) >> 21);
8383 /* Compress quarter-float representation to 0b...000 abcdefgh. */
8386 neon_qfloat_bits (unsigned imm
)
8388 return ((imm
>> 19) & 0x7f) | ((imm
>> 24) & 0x80);
8391 /* Returns CMODE. IMMBITS [7:0] is set to bits suitable for inserting into
8392 the instruction. *OP is passed as the initial value of the op field, and
8393 may be set to a different value depending on the constant (i.e.
8394 "MOV I64, 0bAAAAAAAABBBB..." which uses OP = 1 despite being MOV not
8395 MVN). If the immediate looks like a repeated pattern then also
8396 try smaller element sizes. */
8399 neon_cmode_for_move_imm (unsigned immlo
, unsigned immhi
, int float_p
,
8400 unsigned *immbits
, int *op
, int size
,
8401 enum neon_el_type type
)
8403 /* Only permit float immediates (including 0.0/-0.0) if the operand type is
8405 if (type
== NT_float
&& !float_p
)
8408 if (type
== NT_float
&& is_quarter_float (immlo
) && immhi
== 0)
8410 if (size
!= 32 || *op
== 1)
8412 *immbits
= neon_qfloat_bits (immlo
);
8418 if (neon_bits_same_in_bytes (immhi
)
8419 && neon_bits_same_in_bytes (immlo
))
8423 *immbits
= (neon_squash_bits (immhi
) << 4)
8424 | neon_squash_bits (immlo
);
8435 if (immlo
== (immlo
& 0x000000ff))
8440 else if (immlo
== (immlo
& 0x0000ff00))
8442 *immbits
= immlo
>> 8;
8445 else if (immlo
== (immlo
& 0x00ff0000))
8447 *immbits
= immlo
>> 16;
8450 else if (immlo
== (immlo
& 0xff000000))
8452 *immbits
= immlo
>> 24;
8455 else if (immlo
== ((immlo
& 0x0000ff00) | 0x000000ff))
8457 *immbits
= (immlo
>> 8) & 0xff;
8460 else if (immlo
== ((immlo
& 0x00ff0000) | 0x0000ffff))
8462 *immbits
= (immlo
>> 16) & 0xff;
8466 if ((immlo
& 0xffff) != (immlo
>> 16))
8473 if (immlo
== (immlo
& 0x000000ff))
8478 else if (immlo
== (immlo
& 0x0000ff00))
8480 *immbits
= immlo
>> 8;
8484 if ((immlo
& 0xff) != (immlo
>> 8))
8489 if (immlo
== (immlo
& 0x000000ff))
8491 /* Don't allow MVN with 8-bit immediate. */
8501 #if defined BFD_HOST_64_BIT
8502 /* Returns TRUE if double precision value V may be cast
8503 to single precision without loss of accuracy. */
8506 is_double_a_single (bfd_int64_t v
)
8508 int exp
= (int)((v
>> 52) & 0x7FF);
8509 bfd_int64_t mantissa
= (v
& (bfd_int64_t
)0xFFFFFFFFFFFFFULL
);
8511 return (exp
== 0 || exp
== 0x7FF
8512 || (exp
>= 1023 - 126 && exp
<= 1023 + 127))
8513 && (mantissa
& 0x1FFFFFFFl
) == 0;
8516 /* Returns a double precision value casted to single precision
8517 (ignoring the least significant bits in exponent and mantissa). */
8520 double_to_single (bfd_int64_t v
)
8522 int sign
= (int) ((v
>> 63) & 1l);
8523 int exp
= (int) ((v
>> 52) & 0x7FF);
8524 bfd_int64_t mantissa
= (v
& (bfd_int64_t
)0xFFFFFFFFFFFFFULL
);
8530 exp
= exp
- 1023 + 127;
8539 /* No denormalized numbers. */
8545 return (sign
<< 31) | (exp
<< 23) | mantissa
;
8547 #endif /* BFD_HOST_64_BIT */
8556 static void do_vfp_nsyn_opcode (const char *);
8558 /* inst.relocs[0].exp describes an "=expr" load pseudo-operation.
8559 Determine whether it can be performed with a move instruction; if
8560 it can, convert inst.instruction to that move instruction and
8561 return TRUE; if it can't, convert inst.instruction to a literal-pool
8562 load and return FALSE. If this is not a valid thing to do in the
8563 current context, set inst.error and return TRUE.
8565 inst.operands[i] describes the destination register. */
8568 move_or_literal_pool (int i
, enum lit_type t
, bfd_boolean mode_3
)
8571 bfd_boolean thumb_p
= (t
== CONST_THUMB
);
8572 bfd_boolean arm_p
= (t
== CONST_ARM
);
8575 tbit
= (inst
.instruction
> 0xffff) ? THUMB2_LOAD_BIT
: THUMB_LOAD_BIT
;
8579 if ((inst
.instruction
& tbit
) == 0)
8581 inst
.error
= _("invalid pseudo operation");
8585 if (inst
.relocs
[0].exp
.X_op
!= O_constant
8586 && inst
.relocs
[0].exp
.X_op
!= O_symbol
8587 && inst
.relocs
[0].exp
.X_op
!= O_big
)
8589 inst
.error
= _("constant expression expected");
8593 if (inst
.relocs
[0].exp
.X_op
== O_constant
8594 || inst
.relocs
[0].exp
.X_op
== O_big
)
8596 #if defined BFD_HOST_64_BIT
8601 if (inst
.relocs
[0].exp
.X_op
== O_big
)
8603 LITTLENUM_TYPE w
[X_PRECISION
];
8606 if (inst
.relocs
[0].exp
.X_add_number
== -1)
8608 gen_to_words (w
, X_PRECISION
, E_PRECISION
);
8610 /* FIXME: Should we check words w[2..5] ? */
8615 #if defined BFD_HOST_64_BIT
8617 ((((((((bfd_int64_t
) l
[3] & LITTLENUM_MASK
)
8618 << LITTLENUM_NUMBER_OF_BITS
)
8619 | ((bfd_int64_t
) l
[2] & LITTLENUM_MASK
))
8620 << LITTLENUM_NUMBER_OF_BITS
)
8621 | ((bfd_int64_t
) l
[1] & LITTLENUM_MASK
))
8622 << LITTLENUM_NUMBER_OF_BITS
)
8623 | ((bfd_int64_t
) l
[0] & LITTLENUM_MASK
));
8625 v
= ((l
[1] & LITTLENUM_MASK
) << LITTLENUM_NUMBER_OF_BITS
)
8626 | (l
[0] & LITTLENUM_MASK
);
8630 v
= inst
.relocs
[0].exp
.X_add_number
;
8632 if (!inst
.operands
[i
].issingle
)
8636 /* LDR should not use lead in a flag-setting instruction being
8637 chosen so we do not check whether movs can be used. */
8639 if ((ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v6t2
)
8640 || ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v6t2_v8m
))
8641 && inst
.operands
[i
].reg
!= 13
8642 && inst
.operands
[i
].reg
!= 15)
8644 /* Check if on thumb2 it can be done with a mov.w, mvn or
8645 movw instruction. */
8646 unsigned int newimm
;
8647 bfd_boolean isNegated
;
8649 newimm
= encode_thumb32_immediate (v
);
8650 if (newimm
!= (unsigned int) FAIL
)
8654 newimm
= encode_thumb32_immediate (~v
);
8655 if (newimm
!= (unsigned int) FAIL
)
8659 /* The number can be loaded with a mov.w or mvn
8661 if (newimm
!= (unsigned int) FAIL
8662 && ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v6t2
))
8664 inst
.instruction
= (0xf04f0000 /* MOV.W. */
8665 | (inst
.operands
[i
].reg
<< 8));
8666 /* Change to MOVN. */
8667 inst
.instruction
|= (isNegated
? 0x200000 : 0);
8668 inst
.instruction
|= (newimm
& 0x800) << 15;
8669 inst
.instruction
|= (newimm
& 0x700) << 4;
8670 inst
.instruction
|= (newimm
& 0x0ff);
8673 /* The number can be loaded with a movw instruction. */
8674 else if ((v
& ~0xFFFF) == 0
8675 && ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v6t2_v8m
))
8677 int imm
= v
& 0xFFFF;
8679 inst
.instruction
= 0xf2400000; /* MOVW. */
8680 inst
.instruction
|= (inst
.operands
[i
].reg
<< 8);
8681 inst
.instruction
|= (imm
& 0xf000) << 4;
8682 inst
.instruction
|= (imm
& 0x0800) << 15;
8683 inst
.instruction
|= (imm
& 0x0700) << 4;
8684 inst
.instruction
|= (imm
& 0x00ff);
8691 int value
= encode_arm_immediate (v
);
8695 /* This can be done with a mov instruction. */
8696 inst
.instruction
&= LITERAL_MASK
;
8697 inst
.instruction
|= INST_IMMEDIATE
| (OPCODE_MOV
<< DATA_OP_SHIFT
);
8698 inst
.instruction
|= value
& 0xfff;
8702 value
= encode_arm_immediate (~ v
);
8705 /* This can be done with a mvn instruction. */
8706 inst
.instruction
&= LITERAL_MASK
;
8707 inst
.instruction
|= INST_IMMEDIATE
| (OPCODE_MVN
<< DATA_OP_SHIFT
);
8708 inst
.instruction
|= value
& 0xfff;
8712 else if (t
== CONST_VEC
&& ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_neon_ext_v1
))
8715 unsigned immbits
= 0;
8716 unsigned immlo
= inst
.operands
[1].imm
;
8717 unsigned immhi
= inst
.operands
[1].regisimm
8718 ? inst
.operands
[1].reg
8719 : inst
.relocs
[0].exp
.X_unsigned
8721 : ((bfd_int64_t
)((int) immlo
)) >> 32;
8722 int cmode
= neon_cmode_for_move_imm (immlo
, immhi
, FALSE
, &immbits
,
8723 &op
, 64, NT_invtype
);
8727 neon_invert_size (&immlo
, &immhi
, 64);
8729 cmode
= neon_cmode_for_move_imm (immlo
, immhi
, FALSE
, &immbits
,
8730 &op
, 64, NT_invtype
);
8735 inst
.instruction
= (inst
.instruction
& VLDR_VMOV_SAME
)
8741 /* Fill other bits in vmov encoding for both thumb and arm. */
8743 inst
.instruction
|= (0x7U
<< 29) | (0xF << 24);
8745 inst
.instruction
|= (0xFU
<< 28) | (0x1 << 25);
8746 neon_write_immbits (immbits
);
8754 /* Check if vldr Rx, =constant could be optimized to vmov Rx, #constant. */
8755 if (inst
.operands
[i
].issingle
8756 && is_quarter_float (inst
.operands
[1].imm
)
8757 && ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_vfp_ext_v3xd
))
8759 inst
.operands
[1].imm
=
8760 neon_qfloat_bits (v
);
8761 do_vfp_nsyn_opcode ("fconsts");
8765 /* If our host does not support a 64-bit type then we cannot perform
8766 the following optimization. This mean that there will be a
8767 discrepancy between the output produced by an assembler built for
8768 a 32-bit-only host and the output produced from a 64-bit host, but
8769 this cannot be helped. */
8770 #if defined BFD_HOST_64_BIT
8771 else if (!inst
.operands
[1].issingle
8772 && ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_vfp_ext_v3
))
8774 if (is_double_a_single (v
)
8775 && is_quarter_float (double_to_single (v
)))
8777 inst
.operands
[1].imm
=
8778 neon_qfloat_bits (double_to_single (v
));
8779 do_vfp_nsyn_opcode ("fconstd");
8787 if (add_to_lit_pool ((!inst
.operands
[i
].isvec
8788 || inst
.operands
[i
].issingle
) ? 4 : 8) == FAIL
)
8791 inst
.operands
[1].reg
= REG_PC
;
8792 inst
.operands
[1].isreg
= 1;
8793 inst
.operands
[1].preind
= 1;
8794 inst
.relocs
[0].pc_rel
= 1;
8795 inst
.relocs
[0].type
= (thumb_p
8796 ? BFD_RELOC_ARM_THUMB_OFFSET
8798 ? BFD_RELOC_ARM_HWLITERAL
8799 : BFD_RELOC_ARM_LITERAL
));
8803 /* inst.operands[i] was set up by parse_address. Encode it into an
8804 ARM-format instruction. Reject all forms which cannot be encoded
8805 into a coprocessor load/store instruction. If wb_ok is false,
8806 reject use of writeback; if unind_ok is false, reject use of
8807 unindexed addressing. If reloc_override is not 0, use it instead
8808 of BFD_ARM_CP_OFF_IMM, unless the initial relocation is a group one
8809 (in which case it is preserved). */
8812 encode_arm_cp_address (int i
, int wb_ok
, int unind_ok
, int reloc_override
)
8814 if (!inst
.operands
[i
].isreg
)
8817 if (! inst
.operands
[0].isvec
)
8819 inst
.error
= _("invalid co-processor operand");
8822 if (move_or_literal_pool (0, CONST_VEC
, /*mode_3=*/FALSE
))
8826 inst
.instruction
|= inst
.operands
[i
].reg
<< 16;
8828 gas_assert (!(inst
.operands
[i
].preind
&& inst
.operands
[i
].postind
));
8830 if (!inst
.operands
[i
].preind
&& !inst
.operands
[i
].postind
) /* unindexed */
8832 gas_assert (!inst
.operands
[i
].writeback
);
8835 inst
.error
= _("instruction does not support unindexed addressing");
8838 inst
.instruction
|= inst
.operands
[i
].imm
;
8839 inst
.instruction
|= INDEX_UP
;
8843 if (inst
.operands
[i
].preind
)
8844 inst
.instruction
|= PRE_INDEX
;
8846 if (inst
.operands
[i
].writeback
)
8848 if (inst
.operands
[i
].reg
== REG_PC
)
8850 inst
.error
= _("pc may not be used with write-back");
8855 inst
.error
= _("instruction does not support writeback");
8858 inst
.instruction
|= WRITE_BACK
;
8862 inst
.relocs
[0].type
= (bfd_reloc_code_real_type
) reloc_override
;
8863 else if ((inst
.relocs
[0].type
< BFD_RELOC_ARM_ALU_PC_G0_NC
8864 || inst
.relocs
[0].type
> BFD_RELOC_ARM_LDC_SB_G2
)
8865 && inst
.relocs
[0].type
!= BFD_RELOC_ARM_LDR_PC_G0
)
8868 inst
.relocs
[0].type
= BFD_RELOC_ARM_T32_CP_OFF_IMM
;
8870 inst
.relocs
[0].type
= BFD_RELOC_ARM_CP_OFF_IMM
;
8873 /* Prefer + for zero encoded value. */
8874 if (!inst
.operands
[i
].negative
)
8875 inst
.instruction
|= INDEX_UP
;
8880 /* Functions for instruction encoding, sorted by sub-architecture.
8881 First some generics; their names are taken from the conventional
8882 bit positions for register arguments in ARM format instructions. */
8892 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
8898 inst
.instruction
|= inst
.operands
[0].reg
<< 16;
8904 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
8905 inst
.instruction
|= inst
.operands
[1].reg
;
8911 inst
.instruction
|= inst
.operands
[0].reg
;
8912 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
8918 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
8919 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
8925 inst
.instruction
|= inst
.operands
[0].reg
<< 16;
8926 inst
.instruction
|= inst
.operands
[1].reg
<< 12;
8932 inst
.instruction
|= inst
.operands
[0].reg
<< 8;
8933 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
8937 check_obsolete (const arm_feature_set
*feature
, const char *msg
)
8939 if (ARM_CPU_IS_ANY (cpu_variant
))
8941 as_tsktsk ("%s", msg
);
8944 else if (ARM_CPU_HAS_FEATURE (cpu_variant
, *feature
))
8956 unsigned Rn
= inst
.operands
[2].reg
;
8957 /* Enforce restrictions on SWP instruction. */
8958 if ((inst
.instruction
& 0x0fbfffff) == 0x01000090)
8960 constraint (Rn
== inst
.operands
[0].reg
|| Rn
== inst
.operands
[1].reg
,
8961 _("Rn must not overlap other operands"));
8963 /* SWP{b} is obsolete for ARMv8-A, and deprecated for ARMv6* and ARMv7.
8965 if (!check_obsolete (&arm_ext_v8
,
8966 _("swp{b} use is obsoleted for ARMv8 and later"))
8967 && warn_on_deprecated
8968 && ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v6
))
8969 as_tsktsk (_("swp{b} use is deprecated for ARMv6 and ARMv7"));
8972 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
8973 inst
.instruction
|= inst
.operands
[1].reg
;
8974 inst
.instruction
|= Rn
<< 16;
8980 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
8981 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
8982 inst
.instruction
|= inst
.operands
[2].reg
;
8988 constraint ((inst
.operands
[2].reg
== REG_PC
), BAD_PC
);
8989 constraint (((inst
.relocs
[0].exp
.X_op
!= O_constant
8990 && inst
.relocs
[0].exp
.X_op
!= O_illegal
)
8991 || inst
.relocs
[0].exp
.X_add_number
!= 0),
8993 inst
.instruction
|= inst
.operands
[0].reg
;
8994 inst
.instruction
|= inst
.operands
[1].reg
<< 12;
8995 inst
.instruction
|= inst
.operands
[2].reg
<< 16;
9001 inst
.instruction
|= inst
.operands
[0].imm
;
9007 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
9008 encode_arm_cp_address (1, TRUE
, TRUE
, 0);
9011 /* ARM instructions, in alphabetical order by function name (except
9012 that wrapper functions appear immediately after the function they
9015 /* This is a pseudo-op of the form "adr rd, label" to be converted
9016 into a relative address of the form "add rd, pc, #label-.-8". */
9021 inst
.instruction
|= (inst
.operands
[0].reg
<< 12); /* Rd */
9023 /* Frag hacking will turn this into a sub instruction if the offset turns
9024 out to be negative. */
9025 inst
.relocs
[0].type
= BFD_RELOC_ARM_IMMEDIATE
;
9026 inst
.relocs
[0].pc_rel
= 1;
9027 inst
.relocs
[0].exp
.X_add_number
-= 8;
9029 if (support_interwork
9030 && inst
.relocs
[0].exp
.X_op
== O_symbol
9031 && inst
.relocs
[0].exp
.X_add_symbol
!= NULL
9032 && S_IS_DEFINED (inst
.relocs
[0].exp
.X_add_symbol
)
9033 && THUMB_IS_FUNC (inst
.relocs
[0].exp
.X_add_symbol
))
9034 inst
.relocs
[0].exp
.X_add_number
|= 1;
9037 /* This is a pseudo-op of the form "adrl rd, label" to be converted
9038 into a relative address of the form:
9039 add rd, pc, #low(label-.-8)"
9040 add rd, rd, #high(label-.-8)" */
9045 inst
.instruction
|= (inst
.operands
[0].reg
<< 12); /* Rd */
9047 /* Frag hacking will turn this into a sub instruction if the offset turns
9048 out to be negative. */
9049 inst
.relocs
[0].type
= BFD_RELOC_ARM_ADRL_IMMEDIATE
;
9050 inst
.relocs
[0].pc_rel
= 1;
9051 inst
.size
= INSN_SIZE
* 2;
9052 inst
.relocs
[0].exp
.X_add_number
-= 8;
9054 if (support_interwork
9055 && inst
.relocs
[0].exp
.X_op
== O_symbol
9056 && inst
.relocs
[0].exp
.X_add_symbol
!= NULL
9057 && S_IS_DEFINED (inst
.relocs
[0].exp
.X_add_symbol
)
9058 && THUMB_IS_FUNC (inst
.relocs
[0].exp
.X_add_symbol
))
9059 inst
.relocs
[0].exp
.X_add_number
|= 1;
9065 constraint (inst
.relocs
[0].type
>= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
9066 && inst
.relocs
[0].type
<= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC
,
9068 if (!inst
.operands
[1].present
)
9069 inst
.operands
[1].reg
= inst
.operands
[0].reg
;
9070 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
9071 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
9072 encode_arm_shifter_operand (2);
9078 if (inst
.operands
[0].present
)
9079 inst
.instruction
|= inst
.operands
[0].imm
;
9081 inst
.instruction
|= 0xf;
9087 unsigned int msb
= inst
.operands
[1].imm
+ inst
.operands
[2].imm
;
9088 constraint (msb
> 32, _("bit-field extends past end of register"));
9089 /* The instruction encoding stores the LSB and MSB,
9090 not the LSB and width. */
9091 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
9092 inst
.instruction
|= inst
.operands
[1].imm
<< 7;
9093 inst
.instruction
|= (msb
- 1) << 16;
9101 /* #0 in second position is alternative syntax for bfc, which is
9102 the same instruction but with REG_PC in the Rm field. */
9103 if (!inst
.operands
[1].isreg
)
9104 inst
.operands
[1].reg
= REG_PC
;
9106 msb
= inst
.operands
[2].imm
+ inst
.operands
[3].imm
;
9107 constraint (msb
> 32, _("bit-field extends past end of register"));
9108 /* The instruction encoding stores the LSB and MSB,
9109 not the LSB and width. */
9110 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
9111 inst
.instruction
|= inst
.operands
[1].reg
;
9112 inst
.instruction
|= inst
.operands
[2].imm
<< 7;
9113 inst
.instruction
|= (msb
- 1) << 16;
9119 constraint (inst
.operands
[2].imm
+ inst
.operands
[3].imm
> 32,
9120 _("bit-field extends past end of register"));
9121 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
9122 inst
.instruction
|= inst
.operands
[1].reg
;
9123 inst
.instruction
|= inst
.operands
[2].imm
<< 7;
9124 inst
.instruction
|= (inst
.operands
[3].imm
- 1) << 16;
9127 /* ARM V5 breakpoint instruction (argument parse)
9128 BKPT <16 bit unsigned immediate>
9129 Instruction is not conditional.
9130 The bit pattern given in insns[] has the COND_ALWAYS condition,
9131 and it is an error if the caller tried to override that. */
9136 /* Top 12 of 16 bits to bits 19:8. */
9137 inst
.instruction
|= (inst
.operands
[0].imm
& 0xfff0) << 4;
9139 /* Bottom 4 of 16 bits to bits 3:0. */
9140 inst
.instruction
|= inst
.operands
[0].imm
& 0xf;
9144 encode_branch (int default_reloc
)
9146 if (inst
.operands
[0].hasreloc
)
9148 constraint (inst
.operands
[0].imm
!= BFD_RELOC_ARM_PLT32
9149 && inst
.operands
[0].imm
!= BFD_RELOC_ARM_TLS_CALL
,
9150 _("the only valid suffixes here are '(plt)' and '(tlscall)'"));
9151 inst
.relocs
[0].type
= inst
.operands
[0].imm
== BFD_RELOC_ARM_PLT32
9152 ? BFD_RELOC_ARM_PLT32
9153 : thumb_mode
? BFD_RELOC_ARM_THM_TLS_CALL
: BFD_RELOC_ARM_TLS_CALL
;
9156 inst
.relocs
[0].type
= (bfd_reloc_code_real_type
) default_reloc
;
9157 inst
.relocs
[0].pc_rel
= 1;
9164 if (EF_ARM_EABI_VERSION (meabi_flags
) >= EF_ARM_EABI_VER4
)
9165 encode_branch (BFD_RELOC_ARM_PCREL_JUMP
);
9168 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH
);
9175 if (EF_ARM_EABI_VERSION (meabi_flags
) >= EF_ARM_EABI_VER4
)
9177 if (inst
.cond
== COND_ALWAYS
)
9178 encode_branch (BFD_RELOC_ARM_PCREL_CALL
);
9180 encode_branch (BFD_RELOC_ARM_PCREL_JUMP
);
9184 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH
);
9187 /* ARM V5 branch-link-exchange instruction (argument parse)
9188 BLX <target_addr> ie BLX(1)
9189 BLX{<condition>} <Rm> ie BLX(2)
9190 Unfortunately, there are two different opcodes for this mnemonic.
9191 So, the insns[].value is not used, and the code here zaps values
9192 into inst.instruction.
9193 Also, the <target_addr> can be 25 bits, hence has its own reloc. */
9198 if (inst
.operands
[0].isreg
)
9200 /* Arg is a register; the opcode provided by insns[] is correct.
9201 It is not illegal to do "blx pc", just useless. */
9202 if (inst
.operands
[0].reg
== REG_PC
)
9203 as_tsktsk (_("use of r15 in blx in ARM mode is not really useful"));
9205 inst
.instruction
|= inst
.operands
[0].reg
;
9209 /* Arg is an address; this instruction cannot be executed
9210 conditionally, and the opcode must be adjusted.
9211 We retain the BFD_RELOC_ARM_PCREL_BLX till the very end
9212 where we generate out a BFD_RELOC_ARM_PCREL_CALL instead. */
9213 constraint (inst
.cond
!= COND_ALWAYS
, BAD_COND
);
9214 inst
.instruction
= 0xfa000000;
9215 encode_branch (BFD_RELOC_ARM_PCREL_BLX
);
9222 bfd_boolean want_reloc
;
9224 if (inst
.operands
[0].reg
== REG_PC
)
9225 as_tsktsk (_("use of r15 in bx in ARM mode is not really useful"));
9227 inst
.instruction
|= inst
.operands
[0].reg
;
9228 /* Output R_ARM_V4BX relocations if is an EABI object that looks like
9229 it is for ARMv4t or earlier. */
9230 want_reloc
= !ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_v5
);
9231 if (!ARM_FEATURE_ZERO (selected_object_arch
)
9232 && !ARM_CPU_HAS_FEATURE (selected_object_arch
, arm_ext_v5
))
9236 if (EF_ARM_EABI_VERSION (meabi_flags
) < EF_ARM_EABI_VER4
)
9241 inst
.relocs
[0].type
= BFD_RELOC_ARM_V4BX
;
9245 /* ARM v5TEJ. Jump to Jazelle code. */
9250 if (inst
.operands
[0].reg
== REG_PC
)
9251 as_tsktsk (_("use of r15 in bxj is not really useful"));
9253 inst
.instruction
|= inst
.operands
[0].reg
;
9256 /* Co-processor data operation:
9257 CDP{cond} <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>}
9258 CDP2 <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>} */
9262 inst
.instruction
|= inst
.operands
[0].reg
<< 8;
9263 inst
.instruction
|= inst
.operands
[1].imm
<< 20;
9264 inst
.instruction
|= inst
.operands
[2].reg
<< 12;
9265 inst
.instruction
|= inst
.operands
[3].reg
<< 16;
9266 inst
.instruction
|= inst
.operands
[4].reg
;
9267 inst
.instruction
|= inst
.operands
[5].imm
<< 5;
9273 inst
.instruction
|= inst
.operands
[0].reg
<< 16;
9274 encode_arm_shifter_operand (1);
9277 /* Transfer between coprocessor and ARM registers.
9278 MRC{cond} <coproc>, <opcode_1>, <Rd>, <CRn>, <CRm>{, <opcode_2>}
9283 No special properties. */
9285 struct deprecated_coproc_regs_s
9292 arm_feature_set deprecated
;
9293 arm_feature_set obsoleted
;
9294 const char *dep_msg
;
9295 const char *obs_msg
;
9298 #define DEPR_ACCESS_V8 \
9299 N_("This coprocessor register access is deprecated in ARMv8")
9301 /* Table of all deprecated coprocessor registers. */
9302 static struct deprecated_coproc_regs_s deprecated_coproc_regs
[] =
9304 {15, 0, 7, 10, 5, /* CP15DMB. */
9305 ARM_FEATURE_CORE_LOW (ARM_EXT_V8
), ARM_ARCH_NONE
,
9306 DEPR_ACCESS_V8
, NULL
},
9307 {15, 0, 7, 10, 4, /* CP15DSB. */
9308 ARM_FEATURE_CORE_LOW (ARM_EXT_V8
), ARM_ARCH_NONE
,
9309 DEPR_ACCESS_V8
, NULL
},
9310 {15, 0, 7, 5, 4, /* CP15ISB. */
9311 ARM_FEATURE_CORE_LOW (ARM_EXT_V8
), ARM_ARCH_NONE
,
9312 DEPR_ACCESS_V8
, NULL
},
9313 {14, 6, 1, 0, 0, /* TEEHBR. */
9314 ARM_FEATURE_CORE_LOW (ARM_EXT_V8
), ARM_ARCH_NONE
,
9315 DEPR_ACCESS_V8
, NULL
},
9316 {14, 6, 0, 0, 0, /* TEECR. */
9317 ARM_FEATURE_CORE_LOW (ARM_EXT_V8
), ARM_ARCH_NONE
,
9318 DEPR_ACCESS_V8
, NULL
},
9321 #undef DEPR_ACCESS_V8
9323 static const size_t deprecated_coproc_reg_count
=
9324 sizeof (deprecated_coproc_regs
) / sizeof (deprecated_coproc_regs
[0]);
9332 Rd
= inst
.operands
[2].reg
;
9335 if (inst
.instruction
== 0xee000010
9336 || inst
.instruction
== 0xfe000010)
9338 reject_bad_reg (Rd
);
9339 else if (!ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v8
))
9341 constraint (Rd
== REG_SP
, BAD_SP
);
9346 if (inst
.instruction
== 0xe000010)
9347 constraint (Rd
== REG_PC
, BAD_PC
);
9350 for (i
= 0; i
< deprecated_coproc_reg_count
; ++i
)
9352 const struct deprecated_coproc_regs_s
*r
=
9353 deprecated_coproc_regs
+ i
;
9355 if (inst
.operands
[0].reg
== r
->cp
9356 && inst
.operands
[1].imm
== r
->opc1
9357 && inst
.operands
[3].reg
== r
->crn
9358 && inst
.operands
[4].reg
== r
->crm
9359 && inst
.operands
[5].imm
== r
->opc2
)
9361 if (! ARM_CPU_IS_ANY (cpu_variant
)
9362 && warn_on_deprecated
9363 && ARM_CPU_HAS_FEATURE (cpu_variant
, r
->deprecated
))
9364 as_tsktsk ("%s", r
->dep_msg
);
9368 inst
.instruction
|= inst
.operands
[0].reg
<< 8;
9369 inst
.instruction
|= inst
.operands
[1].imm
<< 21;
9370 inst
.instruction
|= Rd
<< 12;
9371 inst
.instruction
|= inst
.operands
[3].reg
<< 16;
9372 inst
.instruction
|= inst
.operands
[4].reg
;
9373 inst
.instruction
|= inst
.operands
[5].imm
<< 5;
9376 /* Transfer between coprocessor register and pair of ARM registers.
9377 MCRR{cond} <coproc>, <opcode>, <Rd>, <Rn>, <CRm>.
9382 Two XScale instructions are special cases of these:
9384 MAR{cond} acc0, <RdLo>, <RdHi> == MCRR{cond} p0, #0, <RdLo>, <RdHi>, c0
9385 MRA{cond} acc0, <RdLo>, <RdHi> == MRRC{cond} p0, #0, <RdLo>, <RdHi>, c0
9387 Result unpredictable if Rd or Rn is R15. */
9394 Rd
= inst
.operands
[2].reg
;
9395 Rn
= inst
.operands
[3].reg
;
9399 reject_bad_reg (Rd
);
9400 reject_bad_reg (Rn
);
9404 constraint (Rd
== REG_PC
, BAD_PC
);
9405 constraint (Rn
== REG_PC
, BAD_PC
);
9408 /* Only check the MRRC{2} variants. */
9409 if ((inst
.instruction
& 0x0FF00000) == 0x0C500000)
9411 /* If Rd == Rn, error that the operation is
9412 unpredictable (example MRRC p3,#1,r1,r1,c4). */
9413 constraint (Rd
== Rn
, BAD_OVERLAP
);
9416 inst
.instruction
|= inst
.operands
[0].reg
<< 8;
9417 inst
.instruction
|= inst
.operands
[1].imm
<< 4;
9418 inst
.instruction
|= Rd
<< 12;
9419 inst
.instruction
|= Rn
<< 16;
9420 inst
.instruction
|= inst
.operands
[4].reg
;
9426 inst
.instruction
|= inst
.operands
[0].imm
<< 6;
9427 if (inst
.operands
[1].present
)
9429 inst
.instruction
|= CPSI_MMOD
;
9430 inst
.instruction
|= inst
.operands
[1].imm
;
9437 inst
.instruction
|= inst
.operands
[0].imm
;
9443 unsigned Rd
, Rn
, Rm
;
9445 Rd
= inst
.operands
[0].reg
;
9446 Rn
= (inst
.operands
[1].present
9447 ? inst
.operands
[1].reg
: Rd
);
9448 Rm
= inst
.operands
[2].reg
;
9450 constraint ((Rd
== REG_PC
), BAD_PC
);
9451 constraint ((Rn
== REG_PC
), BAD_PC
);
9452 constraint ((Rm
== REG_PC
), BAD_PC
);
9454 inst
.instruction
|= Rd
<< 16;
9455 inst
.instruction
|= Rn
<< 0;
9456 inst
.instruction
|= Rm
<< 8;
9462 /* There is no IT instruction in ARM mode. We
9463 process it to do the validation as if in
9464 thumb mode, just in case the code gets
9465 assembled for thumb using the unified syntax. */
9470 set_pred_insn_type (IT_INSN
);
9471 now_pred
.mask
= (inst
.instruction
& 0xf) | 0x10;
9472 now_pred
.cc
= inst
.operands
[0].imm
;
9476 /* If there is only one register in the register list,
9477 then return its register number. Otherwise return -1. */
9479 only_one_reg_in_list (int range
)
9481 int i
= ffs (range
) - 1;
9482 return (i
> 15 || range
!= (1 << i
)) ? -1 : i
;
9486 encode_ldmstm(int from_push_pop_mnem
)
9488 int base_reg
= inst
.operands
[0].reg
;
9489 int range
= inst
.operands
[1].imm
;
9492 inst
.instruction
|= base_reg
<< 16;
9493 inst
.instruction
|= range
;
9495 if (inst
.operands
[1].writeback
)
9496 inst
.instruction
|= LDM_TYPE_2_OR_3
;
9498 if (inst
.operands
[0].writeback
)
9500 inst
.instruction
|= WRITE_BACK
;
9501 /* Check for unpredictable uses of writeback. */
9502 if (inst
.instruction
& LOAD_BIT
)
9504 /* Not allowed in LDM type 2. */
9505 if ((inst
.instruction
& LDM_TYPE_2_OR_3
)
9506 && ((range
& (1 << REG_PC
)) == 0))
9507 as_warn (_("writeback of base register is UNPREDICTABLE"));
9508 /* Only allowed if base reg not in list for other types. */
9509 else if (range
& (1 << base_reg
))
9510 as_warn (_("writeback of base register when in register list is UNPREDICTABLE"));
9514 /* Not allowed for type 2. */
9515 if (inst
.instruction
& LDM_TYPE_2_OR_3
)
9516 as_warn (_("writeback of base register is UNPREDICTABLE"));
9517 /* Only allowed if base reg not in list, or first in list. */
9518 else if ((range
& (1 << base_reg
))
9519 && (range
& ((1 << base_reg
) - 1)))
9520 as_warn (_("if writeback register is in list, it must be the lowest reg in the list"));
9524 /* If PUSH/POP has only one register, then use the A2 encoding. */
9525 one_reg
= only_one_reg_in_list (range
);
9526 if (from_push_pop_mnem
&& one_reg
>= 0)
9528 int is_push
= (inst
.instruction
& A_PUSH_POP_OP_MASK
) == A1_OPCODE_PUSH
;
9530 if (is_push
&& one_reg
== 13 /* SP */)
9531 /* PR 22483: The A2 encoding cannot be used when
9532 pushing the stack pointer as this is UNPREDICTABLE. */
9535 inst
.instruction
&= A_COND_MASK
;
9536 inst
.instruction
|= is_push
? A2_OPCODE_PUSH
: A2_OPCODE_POP
;
9537 inst
.instruction
|= one_reg
<< 12;
9544 encode_ldmstm (/*from_push_pop_mnem=*/FALSE
);
9547 /* ARMv5TE load-consecutive (argument parse)
9556 constraint (inst
.operands
[0].reg
% 2 != 0,
9557 _("first transfer register must be even"));
9558 constraint (inst
.operands
[1].present
9559 && inst
.operands
[1].reg
!= inst
.operands
[0].reg
+ 1,
9560 _("can only transfer two consecutive registers"));
9561 constraint (inst
.operands
[0].reg
== REG_LR
, _("r14 not allowed here"));
9562 constraint (!inst
.operands
[2].isreg
, _("'[' expected"));
9564 if (!inst
.operands
[1].present
)
9565 inst
.operands
[1].reg
= inst
.operands
[0].reg
+ 1;
9567 /* encode_arm_addr_mode_3 will diagnose overlap between the base
9568 register and the first register written; we have to diagnose
9569 overlap between the base and the second register written here. */
9571 if (inst
.operands
[2].reg
== inst
.operands
[1].reg
9572 && (inst
.operands
[2].writeback
|| inst
.operands
[2].postind
))
9573 as_warn (_("base register written back, and overlaps "
9574 "second transfer register"));
9576 if (!(inst
.instruction
& V4_STR_BIT
))
9578 /* For an index-register load, the index register must not overlap the
9579 destination (even if not write-back). */
9580 if (inst
.operands
[2].immisreg
9581 && ((unsigned) inst
.operands
[2].imm
== inst
.operands
[0].reg
9582 || (unsigned) inst
.operands
[2].imm
== inst
.operands
[1].reg
))
9583 as_warn (_("index register overlaps transfer register"));
9585 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
9586 encode_arm_addr_mode_3 (2, /*is_t=*/FALSE
);
9592 constraint (!inst
.operands
[1].isreg
|| !inst
.operands
[1].preind
9593 || inst
.operands
[1].postind
|| inst
.operands
[1].writeback
9594 || inst
.operands
[1].immisreg
|| inst
.operands
[1].shifted
9595 || inst
.operands
[1].negative
9596 /* This can arise if the programmer has written
9598 or if they have mistakenly used a register name as the last
9601 It is very difficult to distinguish between these two cases
9602 because "rX" might actually be a label. ie the register
9603 name has been occluded by a symbol of the same name. So we
9604 just generate a general 'bad addressing mode' type error
9605 message and leave it up to the programmer to discover the
9606 true cause and fix their mistake. */
9607 || (inst
.operands
[1].reg
== REG_PC
),
9610 constraint (inst
.relocs
[0].exp
.X_op
!= O_constant
9611 || inst
.relocs
[0].exp
.X_add_number
!= 0,
9612 _("offset must be zero in ARM encoding"));
9614 constraint ((inst
.operands
[1].reg
== REG_PC
), BAD_PC
);
9616 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
9617 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
9618 inst
.relocs
[0].type
= BFD_RELOC_UNUSED
;
9624 constraint (inst
.operands
[0].reg
% 2 != 0,
9625 _("even register required"));
9626 constraint (inst
.operands
[1].present
9627 && inst
.operands
[1].reg
!= inst
.operands
[0].reg
+ 1,
9628 _("can only load two consecutive registers"));
9629 /* If op 1 were present and equal to PC, this function wouldn't
9630 have been called in the first place. */
9631 constraint (inst
.operands
[0].reg
== REG_LR
, _("r14 not allowed here"));
9633 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
9634 inst
.instruction
|= inst
.operands
[2].reg
<< 16;
9637 /* In both ARM and thumb state 'ldr pc, #imm' with an immediate
9638 which is not a multiple of four is UNPREDICTABLE. */
9640 check_ldr_r15_aligned (void)
9642 constraint (!(inst
.operands
[1].immisreg
)
9643 && (inst
.operands
[0].reg
== REG_PC
9644 && inst
.operands
[1].reg
== REG_PC
9645 && (inst
.relocs
[0].exp
.X_add_number
& 0x3)),
9646 _("ldr to register 15 must be 4-byte aligned"));
9652 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
9653 if (!inst
.operands
[1].isreg
)
9654 if (move_or_literal_pool (0, CONST_ARM
, /*mode_3=*/FALSE
))
9656 encode_arm_addr_mode_2 (1, /*is_t=*/FALSE
);
9657 check_ldr_r15_aligned ();
9663 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
9665 if (inst
.operands
[1].preind
)
9667 constraint (inst
.relocs
[0].exp
.X_op
!= O_constant
9668 || inst
.relocs
[0].exp
.X_add_number
!= 0,
9669 _("this instruction requires a post-indexed address"));
9671 inst
.operands
[1].preind
= 0;
9672 inst
.operands
[1].postind
= 1;
9673 inst
.operands
[1].writeback
= 1;
9675 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
9676 encode_arm_addr_mode_2 (1, /*is_t=*/TRUE
);
9679 /* Halfword and signed-byte load/store operations. */
9684 constraint (inst
.operands
[0].reg
== REG_PC
, BAD_PC
);
9685 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
9686 if (!inst
.operands
[1].isreg
)
9687 if (move_or_literal_pool (0, CONST_ARM
, /*mode_3=*/TRUE
))
9689 encode_arm_addr_mode_3 (1, /*is_t=*/FALSE
);
9695 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
9697 if (inst
.operands
[1].preind
)
9699 constraint (inst
.relocs
[0].exp
.X_op
!= O_constant
9700 || inst
.relocs
[0].exp
.X_add_number
!= 0,
9701 _("this instruction requires a post-indexed address"));
9703 inst
.operands
[1].preind
= 0;
9704 inst
.operands
[1].postind
= 1;
9705 inst
.operands
[1].writeback
= 1;
9707 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
9708 encode_arm_addr_mode_3 (1, /*is_t=*/TRUE
);
9711 /* Co-processor register load/store.
9712 Format: <LDC|STC>{cond}[L] CP#,CRd,<address> */
9716 inst
.instruction
|= inst
.operands
[0].reg
<< 8;
9717 inst
.instruction
|= inst
.operands
[1].reg
<< 12;
9718 encode_arm_cp_address (2, TRUE
, TRUE
, 0);
9724 /* This restriction does not apply to mls (nor to mla in v6 or later). */
9725 if (inst
.operands
[0].reg
== inst
.operands
[1].reg
9726 && !ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_v6
)
9727 && !(inst
.instruction
& 0x00400000))
9728 as_tsktsk (_("Rd and Rm should be different in mla"));
9730 inst
.instruction
|= inst
.operands
[0].reg
<< 16;
9731 inst
.instruction
|= inst
.operands
[1].reg
;
9732 inst
.instruction
|= inst
.operands
[2].reg
<< 8;
9733 inst
.instruction
|= inst
.operands
[3].reg
<< 12;
9739 constraint (inst
.relocs
[0].type
>= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
9740 && inst
.relocs
[0].type
<= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC
,
9742 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
9743 encode_arm_shifter_operand (1);
9746 /* ARM V6T2 16-bit immediate register load: MOV[WT]{cond} Rd, #<imm16>. */
9753 top
= (inst
.instruction
& 0x00400000) != 0;
9754 constraint (top
&& inst
.relocs
[0].type
== BFD_RELOC_ARM_MOVW
,
9755 _(":lower16: not allowed in this instruction"));
9756 constraint (!top
&& inst
.relocs
[0].type
== BFD_RELOC_ARM_MOVT
,
9757 _(":upper16: not allowed in this instruction"));
9758 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
9759 if (inst
.relocs
[0].type
== BFD_RELOC_UNUSED
)
9761 imm
= inst
.relocs
[0].exp
.X_add_number
;
9762 /* The value is in two pieces: 0:11, 16:19. */
9763 inst
.instruction
|= (imm
& 0x00000fff);
9764 inst
.instruction
|= (imm
& 0x0000f000) << 4;
9769 do_vfp_nsyn_mrs (void)
9771 if (inst
.operands
[0].isvec
)
9773 if (inst
.operands
[1].reg
!= 1)
9774 first_error (_("operand 1 must be FPSCR"));
9775 memset (&inst
.operands
[0], '\0', sizeof (inst
.operands
[0]));
9776 memset (&inst
.operands
[1], '\0', sizeof (inst
.operands
[1]));
9777 do_vfp_nsyn_opcode ("fmstat");
9779 else if (inst
.operands
[1].isvec
)
9780 do_vfp_nsyn_opcode ("fmrx");
9788 do_vfp_nsyn_msr (void)
9790 if (inst
.operands
[0].isvec
)
9791 do_vfp_nsyn_opcode ("fmxr");
9801 unsigned Rt
= inst
.operands
[0].reg
;
9803 if (thumb_mode
&& Rt
== REG_SP
)
9805 inst
.error
= BAD_SP
;
9809 /* MVFR2 is only valid at ARMv8-A. */
9810 if (inst
.operands
[1].reg
== 5)
9811 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_vfp_ext_armv8
),
9814 /* APSR_ sets isvec. All other refs to PC are illegal. */
9815 if (!inst
.operands
[0].isvec
&& Rt
== REG_PC
)
9817 inst
.error
= BAD_PC
;
9821 /* If we get through parsing the register name, we just insert the number
9822 generated into the instruction without further validation. */
9823 inst
.instruction
|= (inst
.operands
[1].reg
<< 16);
9824 inst
.instruction
|= (Rt
<< 12);
9830 unsigned Rt
= inst
.operands
[1].reg
;
9833 reject_bad_reg (Rt
);
9834 else if (Rt
== REG_PC
)
9836 inst
.error
= BAD_PC
;
9840 /* MVFR2 is only valid for ARMv8-A. */
9841 if (inst
.operands
[0].reg
== 5)
9842 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_vfp_ext_armv8
),
9845 /* If we get through parsing the register name, we just insert the number
9846 generated into the instruction without further validation. */
9847 inst
.instruction
|= (inst
.operands
[0].reg
<< 16);
9848 inst
.instruction
|= (Rt
<< 12);
9856 if (do_vfp_nsyn_mrs () == SUCCESS
)
9859 constraint (inst
.operands
[0].reg
== REG_PC
, BAD_PC
);
9860 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
9862 if (inst
.operands
[1].isreg
)
9864 br
= inst
.operands
[1].reg
;
9865 if (((br
& 0x200) == 0) && ((br
& 0xf0000) != 0xf0000))
9866 as_bad (_("bad register for mrs"));
9870 /* mrs only accepts CPSR/SPSR/CPSR_all/SPSR_all. */
9871 constraint ((inst
.operands
[1].imm
& (PSR_c
|PSR_x
|PSR_s
|PSR_f
))
9873 _("'APSR', 'CPSR' or 'SPSR' expected"));
9874 br
= (15<<16) | (inst
.operands
[1].imm
& SPSR_BIT
);
9877 inst
.instruction
|= br
;
9880 /* Two possible forms:
9881 "{C|S}PSR_<field>, Rm",
9882 "{C|S}PSR_f, #expression". */
9887 if (do_vfp_nsyn_msr () == SUCCESS
)
9890 inst
.instruction
|= inst
.operands
[0].imm
;
9891 if (inst
.operands
[1].isreg
)
9892 inst
.instruction
|= inst
.operands
[1].reg
;
9895 inst
.instruction
|= INST_IMMEDIATE
;
9896 inst
.relocs
[0].type
= BFD_RELOC_ARM_IMMEDIATE
;
9897 inst
.relocs
[0].pc_rel
= 0;
9904 constraint (inst
.operands
[2].reg
== REG_PC
, BAD_PC
);
9906 if (!inst
.operands
[2].present
)
9907 inst
.operands
[2].reg
= inst
.operands
[0].reg
;
9908 inst
.instruction
|= inst
.operands
[0].reg
<< 16;
9909 inst
.instruction
|= inst
.operands
[1].reg
;
9910 inst
.instruction
|= inst
.operands
[2].reg
<< 8;
9912 if (inst
.operands
[0].reg
== inst
.operands
[1].reg
9913 && !ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_v6
))
9914 as_tsktsk (_("Rd and Rm should be different in mul"));
9917 /* Long Multiply Parser
9918 UMULL RdLo, RdHi, Rm, Rs
9919 SMULL RdLo, RdHi, Rm, Rs
9920 UMLAL RdLo, RdHi, Rm, Rs
9921 SMLAL RdLo, RdHi, Rm, Rs. */
9926 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
9927 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
9928 inst
.instruction
|= inst
.operands
[2].reg
;
9929 inst
.instruction
|= inst
.operands
[3].reg
<< 8;
9931 /* rdhi and rdlo must be different. */
9932 if (inst
.operands
[0].reg
== inst
.operands
[1].reg
)
9933 as_tsktsk (_("rdhi and rdlo must be different"));
9935 /* rdhi, rdlo and rm must all be different before armv6. */
9936 if ((inst
.operands
[0].reg
== inst
.operands
[2].reg
9937 || inst
.operands
[1].reg
== inst
.operands
[2].reg
)
9938 && !ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_v6
))
9939 as_tsktsk (_("rdhi, rdlo and rm must all be different"));
9945 if (inst
.operands
[0].present
9946 || ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_v6k
))
9948 /* Architectural NOP hints are CPSR sets with no bits selected. */
9949 inst
.instruction
&= 0xf0000000;
9950 inst
.instruction
|= 0x0320f000;
9951 if (inst
.operands
[0].present
)
9952 inst
.instruction
|= inst
.operands
[0].imm
;
9956 /* ARM V6 Pack Halfword Bottom Top instruction (argument parse).
9957 PKHBT {<cond>} <Rd>, <Rn>, <Rm> {, LSL #<shift_imm>}
9958 Condition defaults to COND_ALWAYS.
9959 Error if Rd, Rn or Rm are R15. */
9964 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
9965 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
9966 inst
.instruction
|= inst
.operands
[2].reg
;
9967 if (inst
.operands
[3].present
)
9968 encode_arm_shift (3);
9971 /* ARM V6 PKHTB (Argument Parse). */
9976 if (!inst
.operands
[3].present
)
9978 /* If the shift specifier is omitted, turn the instruction
9979 into pkhbt rd, rm, rn. */
9980 inst
.instruction
&= 0xfff00010;
9981 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
9982 inst
.instruction
|= inst
.operands
[1].reg
;
9983 inst
.instruction
|= inst
.operands
[2].reg
<< 16;
9987 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
9988 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
9989 inst
.instruction
|= inst
.operands
[2].reg
;
9990 encode_arm_shift (3);
9994 /* ARMv5TE: Preload-Cache
9995 MP Extensions: Preload for write
9999 Syntactically, like LDR with B=1, W=0, L=1. */
10004 constraint (!inst
.operands
[0].isreg
,
10005 _("'[' expected after PLD mnemonic"));
10006 constraint (inst
.operands
[0].postind
,
10007 _("post-indexed expression used in preload instruction"));
10008 constraint (inst
.operands
[0].writeback
,
10009 _("writeback used in preload instruction"));
10010 constraint (!inst
.operands
[0].preind
,
10011 _("unindexed addressing used in preload instruction"));
10012 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE
);
10015 /* ARMv7: PLI <addr_mode> */
10019 constraint (!inst
.operands
[0].isreg
,
10020 _("'[' expected after PLI mnemonic"));
10021 constraint (inst
.operands
[0].postind
,
10022 _("post-indexed expression used in preload instruction"));
10023 constraint (inst
.operands
[0].writeback
,
10024 _("writeback used in preload instruction"));
10025 constraint (!inst
.operands
[0].preind
,
10026 _("unindexed addressing used in preload instruction"));
10027 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE
);
10028 inst
.instruction
&= ~PRE_INDEX
;
10034 constraint (inst
.operands
[0].writeback
,
10035 _("push/pop do not support {reglist}^"));
10036 inst
.operands
[1] = inst
.operands
[0];
10037 memset (&inst
.operands
[0], 0, sizeof inst
.operands
[0]);
10038 inst
.operands
[0].isreg
= 1;
10039 inst
.operands
[0].writeback
= 1;
10040 inst
.operands
[0].reg
= REG_SP
;
10041 encode_ldmstm (/*from_push_pop_mnem=*/TRUE
);
10044 /* ARM V6 RFE (Return from Exception) loads the PC and CPSR from the
10045 word at the specified address and the following word
10047 Unconditionally executed.
10048 Error if Rn is R15. */
10053 inst
.instruction
|= inst
.operands
[0].reg
<< 16;
10054 if (inst
.operands
[0].writeback
)
10055 inst
.instruction
|= WRITE_BACK
;
10058 /* ARM V6 ssat (argument parse). */
10063 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
10064 inst
.instruction
|= (inst
.operands
[1].imm
- 1) << 16;
10065 inst
.instruction
|= inst
.operands
[2].reg
;
10067 if (inst
.operands
[3].present
)
10068 encode_arm_shift (3);
10071 /* ARM V6 usat (argument parse). */
10076 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
10077 inst
.instruction
|= inst
.operands
[1].imm
<< 16;
10078 inst
.instruction
|= inst
.operands
[2].reg
;
10080 if (inst
.operands
[3].present
)
10081 encode_arm_shift (3);
10084 /* ARM V6 ssat16 (argument parse). */
10089 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
10090 inst
.instruction
|= ((inst
.operands
[1].imm
- 1) << 16);
10091 inst
.instruction
|= inst
.operands
[2].reg
;
10097 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
10098 inst
.instruction
|= inst
.operands
[1].imm
<< 16;
10099 inst
.instruction
|= inst
.operands
[2].reg
;
10102 /* ARM V6 SETEND (argument parse). Sets the E bit in the CPSR while
10103 preserving the other bits.
10105 setend <endian_specifier>, where <endian_specifier> is either
10111 if (warn_on_deprecated
10112 && ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v8
))
10113 as_tsktsk (_("setend use is deprecated for ARMv8"));
10115 if (inst
.operands
[0].imm
)
10116 inst
.instruction
|= 0x200;
10122 unsigned int Rm
= (inst
.operands
[1].present
10123 ? inst
.operands
[1].reg
10124 : inst
.operands
[0].reg
);
10126 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
10127 inst
.instruction
|= Rm
;
10128 if (inst
.operands
[2].isreg
) /* Rd, {Rm,} Rs */
10130 inst
.instruction
|= inst
.operands
[2].reg
<< 8;
10131 inst
.instruction
|= SHIFT_BY_REG
;
10132 /* PR 12854: Error on extraneous shifts. */
10133 constraint (inst
.operands
[2].shifted
,
10134 _("extraneous shift as part of operand to shift insn"));
10137 inst
.relocs
[0].type
= BFD_RELOC_ARM_SHIFT_IMM
;
10143 inst
.relocs
[0].type
= BFD_RELOC_ARM_SMC
;
10144 inst
.relocs
[0].pc_rel
= 0;
10150 inst
.relocs
[0].type
= BFD_RELOC_ARM_HVC
;
10151 inst
.relocs
[0].pc_rel
= 0;
10157 inst
.relocs
[0].type
= BFD_RELOC_ARM_SWI
;
10158 inst
.relocs
[0].pc_rel
= 0;
10164 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_pan
),
10165 _("selected processor does not support SETPAN instruction"));
10167 inst
.instruction
|= ((inst
.operands
[0].imm
& 1) << 9);
10173 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_pan
),
10174 _("selected processor does not support SETPAN instruction"));
10176 inst
.instruction
|= (inst
.operands
[0].imm
<< 3);
10179 /* ARM V5E (El Segundo) signed-multiply-accumulate (argument parse)
10180 SMLAxy{cond} Rd,Rm,Rs,Rn
10181 SMLAWy{cond} Rd,Rm,Rs,Rn
10182 Error if any register is R15. */
10187 inst
.instruction
|= inst
.operands
[0].reg
<< 16;
10188 inst
.instruction
|= inst
.operands
[1].reg
;
10189 inst
.instruction
|= inst
.operands
[2].reg
<< 8;
10190 inst
.instruction
|= inst
.operands
[3].reg
<< 12;
10193 /* ARM V5E (El Segundo) signed-multiply-accumulate-long (argument parse)
10194 SMLALxy{cond} Rdlo,Rdhi,Rm,Rs
10195 Error if any register is R15.
10196 Warning if Rdlo == Rdhi. */
10201 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
10202 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
10203 inst
.instruction
|= inst
.operands
[2].reg
;
10204 inst
.instruction
|= inst
.operands
[3].reg
<< 8;
10206 if (inst
.operands
[0].reg
== inst
.operands
[1].reg
)
10207 as_tsktsk (_("rdhi and rdlo must be different"));
10210 /* ARM V5E (El Segundo) signed-multiply (argument parse)
10211 SMULxy{cond} Rd,Rm,Rs
10212 Error if any register is R15. */
10217 inst
.instruction
|= inst
.operands
[0].reg
<< 16;
10218 inst
.instruction
|= inst
.operands
[1].reg
;
10219 inst
.instruction
|= inst
.operands
[2].reg
<< 8;
10222 /* ARM V6 srs (argument parse). The variable fields in the encoding are
10223 the same for both ARM and Thumb-2. */
10230 if (inst
.operands
[0].present
)
10232 reg
= inst
.operands
[0].reg
;
10233 constraint (reg
!= REG_SP
, _("SRS base register must be r13"));
10238 inst
.instruction
|= reg
<< 16;
10239 inst
.instruction
|= inst
.operands
[1].imm
;
10240 if (inst
.operands
[0].writeback
|| inst
.operands
[1].writeback
)
10241 inst
.instruction
|= WRITE_BACK
;
10244 /* ARM V6 strex (argument parse). */
10249 constraint (!inst
.operands
[2].isreg
|| !inst
.operands
[2].preind
10250 || inst
.operands
[2].postind
|| inst
.operands
[2].writeback
10251 || inst
.operands
[2].immisreg
|| inst
.operands
[2].shifted
10252 || inst
.operands
[2].negative
10253 /* See comment in do_ldrex(). */
10254 || (inst
.operands
[2].reg
== REG_PC
),
10257 constraint (inst
.operands
[0].reg
== inst
.operands
[1].reg
10258 || inst
.operands
[0].reg
== inst
.operands
[2].reg
, BAD_OVERLAP
);
10260 constraint (inst
.relocs
[0].exp
.X_op
!= O_constant
10261 || inst
.relocs
[0].exp
.X_add_number
!= 0,
10262 _("offset must be zero in ARM encoding"));
10264 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
10265 inst
.instruction
|= inst
.operands
[1].reg
;
10266 inst
.instruction
|= inst
.operands
[2].reg
<< 16;
10267 inst
.relocs
[0].type
= BFD_RELOC_UNUSED
;
10271 do_t_strexbh (void)
10273 constraint (!inst
.operands
[2].isreg
|| !inst
.operands
[2].preind
10274 || inst
.operands
[2].postind
|| inst
.operands
[2].writeback
10275 || inst
.operands
[2].immisreg
|| inst
.operands
[2].shifted
10276 || inst
.operands
[2].negative
,
10279 constraint (inst
.operands
[0].reg
== inst
.operands
[1].reg
10280 || inst
.operands
[0].reg
== inst
.operands
[2].reg
, BAD_OVERLAP
);
10288 constraint (inst
.operands
[1].reg
% 2 != 0,
10289 _("even register required"));
10290 constraint (inst
.operands
[2].present
10291 && inst
.operands
[2].reg
!= inst
.operands
[1].reg
+ 1,
10292 _("can only store two consecutive registers"));
10293 /* If op 2 were present and equal to PC, this function wouldn't
10294 have been called in the first place. */
10295 constraint (inst
.operands
[1].reg
== REG_LR
, _("r14 not allowed here"));
10297 constraint (inst
.operands
[0].reg
== inst
.operands
[1].reg
10298 || inst
.operands
[0].reg
== inst
.operands
[1].reg
+ 1
10299 || inst
.operands
[0].reg
== inst
.operands
[3].reg
,
10302 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
10303 inst
.instruction
|= inst
.operands
[1].reg
;
10304 inst
.instruction
|= inst
.operands
[3].reg
<< 16;
10311 constraint (inst
.operands
[0].reg
== inst
.operands
[1].reg
10312 || inst
.operands
[0].reg
== inst
.operands
[2].reg
, BAD_OVERLAP
);
10320 constraint (inst
.operands
[0].reg
== inst
.operands
[1].reg
10321 || inst
.operands
[0].reg
== inst
.operands
[2].reg
, BAD_OVERLAP
);
10326 /* ARM V6 SXTAH extracts a 16-bit value from a register, sign
10327 extends it to 32-bits, and adds the result to a value in another
10328 register. You can specify a rotation by 0, 8, 16, or 24 bits
10329 before extracting the 16-bit value.
10330 SXTAH{<cond>} <Rd>, <Rn>, <Rm>{, <rotation>}
10331 Condition defaults to COND_ALWAYS.
10332 Error if any register uses R15. */
10337 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
10338 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
10339 inst
.instruction
|= inst
.operands
[2].reg
;
10340 inst
.instruction
|= inst
.operands
[3].imm
<< 10;
10345 SXTH {<cond>} <Rd>, <Rm>{, <rotation>}
10346 Condition defaults to COND_ALWAYS.
10347 Error if any register uses R15. */
10352 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
10353 inst
.instruction
|= inst
.operands
[1].reg
;
10354 inst
.instruction
|= inst
.operands
[2].imm
<< 10;
10357 /* VFP instructions. In a logical order: SP variant first, monad
10358 before dyad, arithmetic then move then load/store. */
10361 do_vfp_sp_monadic (void)
10363 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_vfp_ext_v1xd
)
10364 && !ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
),
10367 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Sd
);
10368 encode_arm_vfp_reg (inst
.operands
[1].reg
, VFP_REG_Sm
);
10372 do_vfp_sp_dyadic (void)
10374 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Sd
);
10375 encode_arm_vfp_reg (inst
.operands
[1].reg
, VFP_REG_Sn
);
10376 encode_arm_vfp_reg (inst
.operands
[2].reg
, VFP_REG_Sm
);
10380 do_vfp_sp_compare_z (void)
10382 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Sd
);
10386 do_vfp_dp_sp_cvt (void)
10388 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Dd
);
10389 encode_arm_vfp_reg (inst
.operands
[1].reg
, VFP_REG_Sm
);
10393 do_vfp_sp_dp_cvt (void)
10395 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Sd
);
10396 encode_arm_vfp_reg (inst
.operands
[1].reg
, VFP_REG_Dm
);
10400 do_vfp_reg_from_sp (void)
10402 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_vfp_ext_v1xd
)
10403 && !ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
),
10406 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
10407 encode_arm_vfp_reg (inst
.operands
[1].reg
, VFP_REG_Sn
);
10411 do_vfp_reg2_from_sp2 (void)
10413 constraint (inst
.operands
[2].imm
!= 2,
10414 _("only two consecutive VFP SP registers allowed here"));
10415 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
10416 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
10417 encode_arm_vfp_reg (inst
.operands
[2].reg
, VFP_REG_Sm
);
10421 do_vfp_sp_from_reg (void)
10423 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_vfp_ext_v1xd
)
10424 && !ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
),
10427 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Sn
);
10428 inst
.instruction
|= inst
.operands
[1].reg
<< 12;
10432 do_vfp_sp2_from_reg2 (void)
10434 constraint (inst
.operands
[0].imm
!= 2,
10435 _("only two consecutive VFP SP registers allowed here"));
10436 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Sm
);
10437 inst
.instruction
|= inst
.operands
[1].reg
<< 12;
10438 inst
.instruction
|= inst
.operands
[2].reg
<< 16;
10442 do_vfp_sp_ldst (void)
10444 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Sd
);
10445 encode_arm_cp_address (1, FALSE
, TRUE
, 0);
10449 do_vfp_dp_ldst (void)
10451 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Dd
);
10452 encode_arm_cp_address (1, FALSE
, TRUE
, 0);
10457 vfp_sp_ldstm (enum vfp_ldstm_type ldstm_type
)
10459 if (inst
.operands
[0].writeback
)
10460 inst
.instruction
|= WRITE_BACK
;
10462 constraint (ldstm_type
!= VFP_LDSTMIA
,
10463 _("this addressing mode requires base-register writeback"));
10464 inst
.instruction
|= inst
.operands
[0].reg
<< 16;
10465 encode_arm_vfp_reg (inst
.operands
[1].reg
, VFP_REG_Sd
);
10466 inst
.instruction
|= inst
.operands
[1].imm
;
10470 vfp_dp_ldstm (enum vfp_ldstm_type ldstm_type
)
10474 if (inst
.operands
[0].writeback
)
10475 inst
.instruction
|= WRITE_BACK
;
10477 constraint (ldstm_type
!= VFP_LDSTMIA
&& ldstm_type
!= VFP_LDSTMIAX
,
10478 _("this addressing mode requires base-register writeback"));
10480 inst
.instruction
|= inst
.operands
[0].reg
<< 16;
10481 encode_arm_vfp_reg (inst
.operands
[1].reg
, VFP_REG_Dd
);
10483 count
= inst
.operands
[1].imm
<< 1;
10484 if (ldstm_type
== VFP_LDSTMIAX
|| ldstm_type
== VFP_LDSTMDBX
)
10487 inst
.instruction
|= count
;
10491 do_vfp_sp_ldstmia (void)
10493 vfp_sp_ldstm (VFP_LDSTMIA
);
10497 do_vfp_sp_ldstmdb (void)
10499 vfp_sp_ldstm (VFP_LDSTMDB
);
10503 do_vfp_dp_ldstmia (void)
10505 vfp_dp_ldstm (VFP_LDSTMIA
);
10509 do_vfp_dp_ldstmdb (void)
10511 vfp_dp_ldstm (VFP_LDSTMDB
);
10515 do_vfp_xp_ldstmia (void)
10517 vfp_dp_ldstm (VFP_LDSTMIAX
);
10521 do_vfp_xp_ldstmdb (void)
10523 vfp_dp_ldstm (VFP_LDSTMDBX
);
10527 do_vfp_dp_rd_rm (void)
10529 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_vfp_ext_v1
)
10530 && !ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
),
10533 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Dd
);
10534 encode_arm_vfp_reg (inst
.operands
[1].reg
, VFP_REG_Dm
);
10538 do_vfp_dp_rn_rd (void)
10540 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Dn
);
10541 encode_arm_vfp_reg (inst
.operands
[1].reg
, VFP_REG_Dd
);
10545 do_vfp_dp_rd_rn (void)
10547 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Dd
);
10548 encode_arm_vfp_reg (inst
.operands
[1].reg
, VFP_REG_Dn
);
10552 do_vfp_dp_rd_rn_rm (void)
10554 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_vfp_ext_v2
)
10555 && !ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
),
10558 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Dd
);
10559 encode_arm_vfp_reg (inst
.operands
[1].reg
, VFP_REG_Dn
);
10560 encode_arm_vfp_reg (inst
.operands
[2].reg
, VFP_REG_Dm
);
10564 do_vfp_dp_rd (void)
10566 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Dd
);
10570 do_vfp_dp_rm_rd_rn (void)
10572 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_vfp_ext_v2
)
10573 && !ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
),
10576 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Dm
);
10577 encode_arm_vfp_reg (inst
.operands
[1].reg
, VFP_REG_Dd
);
10578 encode_arm_vfp_reg (inst
.operands
[2].reg
, VFP_REG_Dn
);
10581 /* VFPv3 instructions. */
10583 do_vfp_sp_const (void)
10585 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Sd
);
10586 inst
.instruction
|= (inst
.operands
[1].imm
& 0xf0) << 12;
10587 inst
.instruction
|= (inst
.operands
[1].imm
& 0x0f);
10591 do_vfp_dp_const (void)
10593 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Dd
);
10594 inst
.instruction
|= (inst
.operands
[1].imm
& 0xf0) << 12;
10595 inst
.instruction
|= (inst
.operands
[1].imm
& 0x0f);
10599 vfp_conv (int srcsize
)
10601 int immbits
= srcsize
- inst
.operands
[1].imm
;
10603 if (srcsize
== 16 && !(immbits
>= 0 && immbits
<= srcsize
))
10605 /* If srcsize is 16, inst.operands[1].imm must be in the range 0-16.
10606 i.e. immbits must be in range 0 - 16. */
10607 inst
.error
= _("immediate value out of range, expected range [0, 16]");
10610 else if (srcsize
== 32 && !(immbits
>= 0 && immbits
< srcsize
))
10612 /* If srcsize is 32, inst.operands[1].imm must be in the range 1-32.
10613 i.e. immbits must be in range 0 - 31. */
10614 inst
.error
= _("immediate value out of range, expected range [1, 32]");
10618 inst
.instruction
|= (immbits
& 1) << 5;
10619 inst
.instruction
|= (immbits
>> 1);
10623 do_vfp_sp_conv_16 (void)
10625 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Sd
);
10630 do_vfp_dp_conv_16 (void)
10632 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Dd
);
10637 do_vfp_sp_conv_32 (void)
10639 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Sd
);
10644 do_vfp_dp_conv_32 (void)
10646 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Dd
);
10650 /* FPA instructions. Also in a logical order. */
10655 inst
.instruction
|= inst
.operands
[0].reg
<< 16;
10656 inst
.instruction
|= inst
.operands
[1].reg
;
10660 do_fpa_ldmstm (void)
10662 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
10663 switch (inst
.operands
[1].imm
)
10665 case 1: inst
.instruction
|= CP_T_X
; break;
10666 case 2: inst
.instruction
|= CP_T_Y
; break;
10667 case 3: inst
.instruction
|= CP_T_Y
| CP_T_X
; break;
10672 if (inst
.instruction
& (PRE_INDEX
| INDEX_UP
))
10674 /* The instruction specified "ea" or "fd", so we can only accept
10675 [Rn]{!}. The instruction does not really support stacking or
10676 unstacking, so we have to emulate these by setting appropriate
10677 bits and offsets. */
10678 constraint (inst
.relocs
[0].exp
.X_op
!= O_constant
10679 || inst
.relocs
[0].exp
.X_add_number
!= 0,
10680 _("this instruction does not support indexing"));
10682 if ((inst
.instruction
& PRE_INDEX
) || inst
.operands
[2].writeback
)
10683 inst
.relocs
[0].exp
.X_add_number
= 12 * inst
.operands
[1].imm
;
10685 if (!(inst
.instruction
& INDEX_UP
))
10686 inst
.relocs
[0].exp
.X_add_number
= -inst
.relocs
[0].exp
.X_add_number
;
10688 if (!(inst
.instruction
& PRE_INDEX
) && inst
.operands
[2].writeback
)
10690 inst
.operands
[2].preind
= 0;
10691 inst
.operands
[2].postind
= 1;
10695 encode_arm_cp_address (2, TRUE
, TRUE
, 0);
10698 /* iWMMXt instructions: strictly in alphabetical order. */
10701 do_iwmmxt_tandorc (void)
10703 constraint (inst
.operands
[0].reg
!= REG_PC
, _("only r15 allowed here"));
10707 do_iwmmxt_textrc (void)
10709 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
10710 inst
.instruction
|= inst
.operands
[1].imm
;
10714 do_iwmmxt_textrm (void)
10716 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
10717 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
10718 inst
.instruction
|= inst
.operands
[2].imm
;
10722 do_iwmmxt_tinsr (void)
10724 inst
.instruction
|= inst
.operands
[0].reg
<< 16;
10725 inst
.instruction
|= inst
.operands
[1].reg
<< 12;
10726 inst
.instruction
|= inst
.operands
[2].imm
;
10730 do_iwmmxt_tmia (void)
10732 inst
.instruction
|= inst
.operands
[0].reg
<< 5;
10733 inst
.instruction
|= inst
.operands
[1].reg
;
10734 inst
.instruction
|= inst
.operands
[2].reg
<< 12;
10738 do_iwmmxt_waligni (void)
10740 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
10741 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
10742 inst
.instruction
|= inst
.operands
[2].reg
;
10743 inst
.instruction
|= inst
.operands
[3].imm
<< 20;
10747 do_iwmmxt_wmerge (void)
10749 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
10750 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
10751 inst
.instruction
|= inst
.operands
[2].reg
;
10752 inst
.instruction
|= inst
.operands
[3].imm
<< 21;
10756 do_iwmmxt_wmov (void)
10758 /* WMOV rD, rN is an alias for WOR rD, rN, rN. */
10759 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
10760 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
10761 inst
.instruction
|= inst
.operands
[1].reg
;
10765 do_iwmmxt_wldstbh (void)
10768 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
10770 reloc
= BFD_RELOC_ARM_T32_CP_OFF_IMM_S2
;
10772 reloc
= BFD_RELOC_ARM_CP_OFF_IMM_S2
;
10773 encode_arm_cp_address (1, TRUE
, FALSE
, reloc
);
10777 do_iwmmxt_wldstw (void)
10779 /* RIWR_RIWC clears .isreg for a control register. */
10780 if (!inst
.operands
[0].isreg
)
10782 constraint (inst
.cond
!= COND_ALWAYS
, BAD_COND
);
10783 inst
.instruction
|= 0xf0000000;
10786 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
10787 encode_arm_cp_address (1, TRUE
, TRUE
, 0);
10791 do_iwmmxt_wldstd (void)
10793 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
10794 if (ARM_CPU_HAS_FEATURE (cpu_variant
, arm_cext_iwmmxt2
)
10795 && inst
.operands
[1].immisreg
)
10797 inst
.instruction
&= ~0x1a000ff;
10798 inst
.instruction
|= (0xfU
<< 28);
10799 if (inst
.operands
[1].preind
)
10800 inst
.instruction
|= PRE_INDEX
;
10801 if (!inst
.operands
[1].negative
)
10802 inst
.instruction
|= INDEX_UP
;
10803 if (inst
.operands
[1].writeback
)
10804 inst
.instruction
|= WRITE_BACK
;
10805 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
10806 inst
.instruction
|= inst
.relocs
[0].exp
.X_add_number
<< 4;
10807 inst
.instruction
|= inst
.operands
[1].imm
;
10810 encode_arm_cp_address (1, TRUE
, FALSE
, 0);
10814 do_iwmmxt_wshufh (void)
10816 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
10817 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
10818 inst
.instruction
|= ((inst
.operands
[2].imm
& 0xf0) << 16);
10819 inst
.instruction
|= (inst
.operands
[2].imm
& 0x0f);
10823 do_iwmmxt_wzero (void)
10825 /* WZERO reg is an alias for WANDN reg, reg, reg. */
10826 inst
.instruction
|= inst
.operands
[0].reg
;
10827 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
10828 inst
.instruction
|= inst
.operands
[0].reg
<< 16;
10832 do_iwmmxt_wrwrwr_or_imm5 (void)
10834 if (inst
.operands
[2].isreg
)
10837 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, arm_cext_iwmmxt2
),
10838 _("immediate operand requires iWMMXt2"));
10840 if (inst
.operands
[2].imm
== 0)
10842 switch ((inst
.instruction
>> 20) & 0xf)
10848 /* w...h wrd, wrn, #0 -> wrorh wrd, wrn, #16. */
10849 inst
.operands
[2].imm
= 16;
10850 inst
.instruction
= (inst
.instruction
& 0xff0fffff) | (0x7 << 20);
10856 /* w...w wrd, wrn, #0 -> wrorw wrd, wrn, #32. */
10857 inst
.operands
[2].imm
= 32;
10858 inst
.instruction
= (inst
.instruction
& 0xff0fffff) | (0xb << 20);
10865 /* w...d wrd, wrn, #0 -> wor wrd, wrn, wrn. */
10867 wrn
= (inst
.instruction
>> 16) & 0xf;
10868 inst
.instruction
&= 0xff0fff0f;
10869 inst
.instruction
|= wrn
;
10870 /* Bail out here; the instruction is now assembled. */
10875 /* Map 32 -> 0, etc. */
10876 inst
.operands
[2].imm
&= 0x1f;
10877 inst
.instruction
|= (0xfU
<< 28) | ((inst
.operands
[2].imm
& 0x10) << 4) | (inst
.operands
[2].imm
& 0xf);
10881 /* Cirrus Maverick instructions. Simple 2-, 3-, and 4-register
10882 operations first, then control, shift, and load/store. */
10884 /* Insns like "foo X,Y,Z". */
10887 do_mav_triple (void)
10889 inst
.instruction
|= inst
.operands
[0].reg
<< 16;
10890 inst
.instruction
|= inst
.operands
[1].reg
;
10891 inst
.instruction
|= inst
.operands
[2].reg
<< 12;
10894 /* Insns like "foo W,X,Y,Z".
10895 where W=MVAX[0:3] and X,Y,Z=MVFX[0:15]. */
10900 inst
.instruction
|= inst
.operands
[0].reg
<< 5;
10901 inst
.instruction
|= inst
.operands
[1].reg
<< 12;
10902 inst
.instruction
|= inst
.operands
[2].reg
<< 16;
10903 inst
.instruction
|= inst
.operands
[3].reg
;
10906 /* cfmvsc32<cond> DSPSC,MVDX[15:0]. */
10908 do_mav_dspsc (void)
10910 inst
.instruction
|= inst
.operands
[1].reg
<< 12;
10913 /* Maverick shift immediate instructions.
10914 cfsh32<cond> MVFX[15:0],MVFX[15:0],Shift[6:0].
10915 cfsh64<cond> MVDX[15:0],MVDX[15:0],Shift[6:0]. */
10918 do_mav_shift (void)
10920 int imm
= inst
.operands
[2].imm
;
10922 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
10923 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
10925 /* Bits 0-3 of the insn should have bits 0-3 of the immediate.
10926 Bits 5-7 of the insn should have bits 4-6 of the immediate.
10927 Bit 4 should be 0. */
10928 imm
= (imm
& 0xf) | ((imm
& 0x70) << 1);
10930 inst
.instruction
|= imm
;
10933 /* XScale instructions. Also sorted arithmetic before move. */
10935 /* Xscale multiply-accumulate (argument parse)
10938 MIAxycc acc0,Rm,Rs. */
10943 inst
.instruction
|= inst
.operands
[1].reg
;
10944 inst
.instruction
|= inst
.operands
[2].reg
<< 12;
10947 /* Xscale move-accumulator-register (argument parse)
10949 MARcc acc0,RdLo,RdHi. */
10954 inst
.instruction
|= inst
.operands
[1].reg
<< 12;
10955 inst
.instruction
|= inst
.operands
[2].reg
<< 16;
10958 /* Xscale move-register-accumulator (argument parse)
10960 MRAcc RdLo,RdHi,acc0. */
10965 constraint (inst
.operands
[0].reg
== inst
.operands
[1].reg
, BAD_OVERLAP
);
10966 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
10967 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
10970 /* Encoding functions relevant only to Thumb. */
10972 /* inst.operands[i] is a shifted-register operand; encode
10973 it into inst.instruction in the format used by Thumb32. */
10976 encode_thumb32_shifted_operand (int i
)
10978 unsigned int value
= inst
.relocs
[0].exp
.X_add_number
;
10979 unsigned int shift
= inst
.operands
[i
].shift_kind
;
10981 constraint (inst
.operands
[i
].immisreg
,
10982 _("shift by register not allowed in thumb mode"));
10983 inst
.instruction
|= inst
.operands
[i
].reg
;
10984 if (shift
== SHIFT_RRX
)
10985 inst
.instruction
|= SHIFT_ROR
<< 4;
10988 constraint (inst
.relocs
[0].exp
.X_op
!= O_constant
,
10989 _("expression too complex"));
10991 constraint (value
> 32
10992 || (value
== 32 && (shift
== SHIFT_LSL
10993 || shift
== SHIFT_ROR
)),
10994 _("shift expression is too large"));
10998 else if (value
== 32)
11001 inst
.instruction
|= shift
<< 4;
11002 inst
.instruction
|= (value
& 0x1c) << 10;
11003 inst
.instruction
|= (value
& 0x03) << 6;
11008 /* inst.operands[i] was set up by parse_address. Encode it into a
11009 Thumb32 format load or store instruction. Reject forms that cannot
11010 be used with such instructions. If is_t is true, reject forms that
11011 cannot be used with a T instruction; if is_d is true, reject forms
11012 that cannot be used with a D instruction. If it is a store insn,
11013 reject PC in Rn. */
11016 encode_thumb32_addr_mode (int i
, bfd_boolean is_t
, bfd_boolean is_d
)
11018 const bfd_boolean is_pc
= (inst
.operands
[i
].reg
== REG_PC
);
11020 constraint (!inst
.operands
[i
].isreg
,
11021 _("Instruction does not support =N addresses"));
11023 inst
.instruction
|= inst
.operands
[i
].reg
<< 16;
11024 if (inst
.operands
[i
].immisreg
)
11026 constraint (is_pc
, BAD_PC_ADDRESSING
);
11027 constraint (is_t
|| is_d
, _("cannot use register index with this instruction"));
11028 constraint (inst
.operands
[i
].negative
,
11029 _("Thumb does not support negative register indexing"));
11030 constraint (inst
.operands
[i
].postind
,
11031 _("Thumb does not support register post-indexing"));
11032 constraint (inst
.operands
[i
].writeback
,
11033 _("Thumb does not support register indexing with writeback"));
11034 constraint (inst
.operands
[i
].shifted
&& inst
.operands
[i
].shift_kind
!= SHIFT_LSL
,
11035 _("Thumb supports only LSL in shifted register indexing"));
11037 inst
.instruction
|= inst
.operands
[i
].imm
;
11038 if (inst
.operands
[i
].shifted
)
11040 constraint (inst
.relocs
[0].exp
.X_op
!= O_constant
,
11041 _("expression too complex"));
11042 constraint (inst
.relocs
[0].exp
.X_add_number
< 0
11043 || inst
.relocs
[0].exp
.X_add_number
> 3,
11044 _("shift out of range"));
11045 inst
.instruction
|= inst
.relocs
[0].exp
.X_add_number
<< 4;
11047 inst
.relocs
[0].type
= BFD_RELOC_UNUSED
;
11049 else if (inst
.operands
[i
].preind
)
11051 constraint (is_pc
&& inst
.operands
[i
].writeback
, BAD_PC_WRITEBACK
);
11052 constraint (is_t
&& inst
.operands
[i
].writeback
,
11053 _("cannot use writeback with this instruction"));
11054 constraint (is_pc
&& ((inst
.instruction
& THUMB2_LOAD_BIT
) == 0),
11055 BAD_PC_ADDRESSING
);
11059 inst
.instruction
|= 0x01000000;
11060 if (inst
.operands
[i
].writeback
)
11061 inst
.instruction
|= 0x00200000;
11065 inst
.instruction
|= 0x00000c00;
11066 if (inst
.operands
[i
].writeback
)
11067 inst
.instruction
|= 0x00000100;
11069 inst
.relocs
[0].type
= BFD_RELOC_ARM_T32_OFFSET_IMM
;
11071 else if (inst
.operands
[i
].postind
)
11073 gas_assert (inst
.operands
[i
].writeback
);
11074 constraint (is_pc
, _("cannot use post-indexing with PC-relative addressing"));
11075 constraint (is_t
, _("cannot use post-indexing with this instruction"));
11078 inst
.instruction
|= 0x00200000;
11080 inst
.instruction
|= 0x00000900;
11081 inst
.relocs
[0].type
= BFD_RELOC_ARM_T32_OFFSET_IMM
;
11083 else /* unindexed - only for coprocessor */
11084 inst
.error
= _("instruction does not accept unindexed addressing");
11087 /* Table of Thumb instructions which exist in both 16- and 32-bit
11088 encodings (the latter only in post-V6T2 cores). The index is the
11089 value used in the insns table below. When there is more than one
11090 possible 16-bit encoding for the instruction, this table always
11092 Also contains several pseudo-instructions used during relaxation. */
11093 #define T16_32_TAB \
11094 X(_adc, 4140, eb400000), \
11095 X(_adcs, 4140, eb500000), \
11096 X(_add, 1c00, eb000000), \
11097 X(_adds, 1c00, eb100000), \
11098 X(_addi, 0000, f1000000), \
11099 X(_addis, 0000, f1100000), \
11100 X(_add_pc,000f, f20f0000), \
11101 X(_add_sp,000d, f10d0000), \
11102 X(_adr, 000f, f20f0000), \
11103 X(_and, 4000, ea000000), \
11104 X(_ands, 4000, ea100000), \
11105 X(_asr, 1000, fa40f000), \
11106 X(_asrs, 1000, fa50f000), \
11107 X(_b, e000, f000b000), \
11108 X(_bcond, d000, f0008000), \
11109 X(_bf, 0000, f040e001), \
11110 X(_bfcsel,0000, f000e001), \
11111 X(_bfx, 0000, f060e001), \
11112 X(_bfl, 0000, f000c001), \
11113 X(_bflx, 0000, f070e001), \
11114 X(_bic, 4380, ea200000), \
11115 X(_bics, 4380, ea300000), \
11116 X(_cmn, 42c0, eb100f00), \
11117 X(_cmp, 2800, ebb00f00), \
11118 X(_cpsie, b660, f3af8400), \
11119 X(_cpsid, b670, f3af8600), \
11120 X(_cpy, 4600, ea4f0000), \
11121 X(_dec_sp,80dd, f1ad0d00), \
11122 X(_dls, 0000, f040e001), \
11123 X(_eor, 4040, ea800000), \
11124 X(_eors, 4040, ea900000), \
11125 X(_inc_sp,00dd, f10d0d00), \
11126 X(_ldmia, c800, e8900000), \
11127 X(_ldr, 6800, f8500000), \
11128 X(_ldrb, 7800, f8100000), \
11129 X(_ldrh, 8800, f8300000), \
11130 X(_ldrsb, 5600, f9100000), \
11131 X(_ldrsh, 5e00, f9300000), \
11132 X(_ldr_pc,4800, f85f0000), \
11133 X(_ldr_pc2,4800, f85f0000), \
11134 X(_ldr_sp,9800, f85d0000), \
11135 X(_le, 0000, f00fc001), \
11136 X(_lsl, 0000, fa00f000), \
11137 X(_lsls, 0000, fa10f000), \
11138 X(_lsr, 0800, fa20f000), \
11139 X(_lsrs, 0800, fa30f000), \
11140 X(_mov, 2000, ea4f0000), \
11141 X(_movs, 2000, ea5f0000), \
11142 X(_mul, 4340, fb00f000), \
11143 X(_muls, 4340, ffffffff), /* no 32b muls */ \
11144 X(_mvn, 43c0, ea6f0000), \
11145 X(_mvns, 43c0, ea7f0000), \
11146 X(_neg, 4240, f1c00000), /* rsb #0 */ \
11147 X(_negs, 4240, f1d00000), /* rsbs #0 */ \
11148 X(_orr, 4300, ea400000), \
11149 X(_orrs, 4300, ea500000), \
11150 X(_pop, bc00, e8bd0000), /* ldmia sp!,... */ \
11151 X(_push, b400, e92d0000), /* stmdb sp!,... */ \
11152 X(_rev, ba00, fa90f080), \
11153 X(_rev16, ba40, fa90f090), \
11154 X(_revsh, bac0, fa90f0b0), \
11155 X(_ror, 41c0, fa60f000), \
11156 X(_rors, 41c0, fa70f000), \
11157 X(_sbc, 4180, eb600000), \
11158 X(_sbcs, 4180, eb700000), \
11159 X(_stmia, c000, e8800000), \
11160 X(_str, 6000, f8400000), \
11161 X(_strb, 7000, f8000000), \
11162 X(_strh, 8000, f8200000), \
11163 X(_str_sp,9000, f84d0000), \
11164 X(_sub, 1e00, eba00000), \
11165 X(_subs, 1e00, ebb00000), \
11166 X(_subi, 8000, f1a00000), \
11167 X(_subis, 8000, f1b00000), \
11168 X(_sxtb, b240, fa4ff080), \
11169 X(_sxth, b200, fa0ff080), \
11170 X(_tst, 4200, ea100f00), \
11171 X(_uxtb, b2c0, fa5ff080), \
11172 X(_uxth, b280, fa1ff080), \
11173 X(_nop, bf00, f3af8000), \
11174 X(_yield, bf10, f3af8001), \
11175 X(_wfe, bf20, f3af8002), \
11176 X(_wfi, bf30, f3af8003), \
11177 X(_wls, 0000, f040c001), \
11178 X(_sev, bf40, f3af8004), \
11179 X(_sevl, bf50, f3af8005), \
11180 X(_udf, de00, f7f0a000)
11182 /* To catch errors in encoding functions, the codes are all offset by
11183 0xF800, putting them in one of the 32-bit prefix ranges, ergo undefined
11184 as 16-bit instructions. */
11185 #define X(a,b,c) T_MNEM##a
11186 enum t16_32_codes
{ T16_32_OFFSET
= 0xF7FF, T16_32_TAB
};
11189 #define X(a,b,c) 0x##b
11190 static const unsigned short thumb_op16
[] = { T16_32_TAB
};
11191 #define THUMB_OP16(n) (thumb_op16[(n) - (T16_32_OFFSET + 1)])
11194 #define X(a,b,c) 0x##c
11195 static const unsigned int thumb_op32
[] = { T16_32_TAB
};
11196 #define THUMB_OP32(n) (thumb_op32[(n) - (T16_32_OFFSET + 1)])
11197 #define THUMB_SETS_FLAGS(n) (THUMB_OP32 (n) & 0x00100000)
11201 /* Thumb instruction encoders, in alphabetical order. */
11203 /* ADDW or SUBW. */
11206 do_t_add_sub_w (void)
11210 Rd
= inst
.operands
[0].reg
;
11211 Rn
= inst
.operands
[1].reg
;
11213 /* If Rn is REG_PC, this is ADR; if Rn is REG_SP, then this
11214 is the SP-{plus,minus}-immediate form of the instruction. */
11216 constraint (Rd
== REG_PC
, BAD_PC
);
11218 reject_bad_reg (Rd
);
11220 inst
.instruction
|= (Rn
<< 16) | (Rd
<< 8);
11221 inst
.relocs
[0].type
= BFD_RELOC_ARM_T32_IMM12
;
11224 /* Parse an add or subtract instruction. We get here with inst.instruction
11225 equaling any of THUMB_OPCODE_add, adds, sub, or subs. */
11228 do_t_add_sub (void)
11232 Rd
= inst
.operands
[0].reg
;
11233 Rs
= (inst
.operands
[1].present
11234 ? inst
.operands
[1].reg
/* Rd, Rs, foo */
11235 : inst
.operands
[0].reg
); /* Rd, foo -> Rd, Rd, foo */
11238 set_pred_insn_type_last ();
11240 if (unified_syntax
)
11243 bfd_boolean narrow
;
11246 flags
= (inst
.instruction
== T_MNEM_adds
11247 || inst
.instruction
== T_MNEM_subs
);
11249 narrow
= !in_pred_block ();
11251 narrow
= in_pred_block ();
11252 if (!inst
.operands
[2].isreg
)
11256 if (!ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v8
))
11257 constraint (Rd
== REG_SP
&& Rs
!= REG_SP
, BAD_SP
);
11259 add
= (inst
.instruction
== T_MNEM_add
11260 || inst
.instruction
== T_MNEM_adds
);
11262 if (inst
.size_req
!= 4)
11264 /* Attempt to use a narrow opcode, with relaxation if
11266 if (Rd
== REG_SP
&& Rs
== REG_SP
&& !flags
)
11267 opcode
= add
? T_MNEM_inc_sp
: T_MNEM_dec_sp
;
11268 else if (Rd
<= 7 && Rs
== REG_SP
&& add
&& !flags
)
11269 opcode
= T_MNEM_add_sp
;
11270 else if (Rd
<= 7 && Rs
== REG_PC
&& add
&& !flags
)
11271 opcode
= T_MNEM_add_pc
;
11272 else if (Rd
<= 7 && Rs
<= 7 && narrow
)
11275 opcode
= add
? T_MNEM_addis
: T_MNEM_subis
;
11277 opcode
= add
? T_MNEM_addi
: T_MNEM_subi
;
11281 inst
.instruction
= THUMB_OP16(opcode
);
11282 inst
.instruction
|= (Rd
<< 4) | Rs
;
11283 if (inst
.relocs
[0].type
< BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
11284 || (inst
.relocs
[0].type
11285 > BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC
))
11287 if (inst
.size_req
== 2)
11288 inst
.relocs
[0].type
= BFD_RELOC_ARM_THUMB_ADD
;
11290 inst
.relax
= opcode
;
11294 constraint (inst
.size_req
== 2, BAD_HIREG
);
11296 if (inst
.size_req
== 4
11297 || (inst
.size_req
!= 2 && !opcode
))
11299 constraint ((inst
.relocs
[0].type
11300 >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
)
11301 && (inst
.relocs
[0].type
11302 <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC
) ,
11303 THUMB1_RELOC_ONLY
);
11306 constraint (add
, BAD_PC
);
11307 constraint (Rs
!= REG_LR
|| inst
.instruction
!= T_MNEM_subs
,
11308 _("only SUBS PC, LR, #const allowed"));
11309 constraint (inst
.relocs
[0].exp
.X_op
!= O_constant
,
11310 _("expression too complex"));
11311 constraint (inst
.relocs
[0].exp
.X_add_number
< 0
11312 || inst
.relocs
[0].exp
.X_add_number
> 0xff,
11313 _("immediate value out of range"));
11314 inst
.instruction
= T2_SUBS_PC_LR
11315 | inst
.relocs
[0].exp
.X_add_number
;
11316 inst
.relocs
[0].type
= BFD_RELOC_UNUSED
;
11319 else if (Rs
== REG_PC
)
11321 /* Always use addw/subw. */
11322 inst
.instruction
= add
? 0xf20f0000 : 0xf2af0000;
11323 inst
.relocs
[0].type
= BFD_RELOC_ARM_T32_IMM12
;
11327 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
11328 inst
.instruction
= (inst
.instruction
& 0xe1ffffff)
11331 inst
.relocs
[0].type
= BFD_RELOC_ARM_T32_IMMEDIATE
;
11333 inst
.relocs
[0].type
= BFD_RELOC_ARM_T32_ADD_IMM
;
11335 inst
.instruction
|= Rd
<< 8;
11336 inst
.instruction
|= Rs
<< 16;
11341 unsigned int value
= inst
.relocs
[0].exp
.X_add_number
;
11342 unsigned int shift
= inst
.operands
[2].shift_kind
;
11344 Rn
= inst
.operands
[2].reg
;
11345 /* See if we can do this with a 16-bit instruction. */
11346 if (!inst
.operands
[2].shifted
&& inst
.size_req
!= 4)
11348 if (Rd
> 7 || Rs
> 7 || Rn
> 7)
11353 inst
.instruction
= ((inst
.instruction
== T_MNEM_adds
11354 || inst
.instruction
== T_MNEM_add
)
11356 : T_OPCODE_SUB_R3
);
11357 inst
.instruction
|= Rd
| (Rs
<< 3) | (Rn
<< 6);
11361 if (inst
.instruction
== T_MNEM_add
&& (Rd
== Rs
|| Rd
== Rn
))
11363 /* Thumb-1 cores (except v6-M) require at least one high
11364 register in a narrow non flag setting add. */
11365 if (Rd
> 7 || Rn
> 7
11366 || ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_v6t2
)
11367 || ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_msr
))
11374 inst
.instruction
= T_OPCODE_ADD_HI
;
11375 inst
.instruction
|= (Rd
& 8) << 4;
11376 inst
.instruction
|= (Rd
& 7);
11377 inst
.instruction
|= Rn
<< 3;
11383 constraint (Rd
== REG_PC
, BAD_PC
);
11384 if (!ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v8
))
11385 constraint (Rd
== REG_SP
&& Rs
!= REG_SP
, BAD_SP
);
11386 constraint (Rs
== REG_PC
, BAD_PC
);
11387 reject_bad_reg (Rn
);
11389 /* If we get here, it can't be done in 16 bits. */
11390 constraint (inst
.operands
[2].shifted
&& inst
.operands
[2].immisreg
,
11391 _("shift must be constant"));
11392 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
11393 inst
.instruction
|= Rd
<< 8;
11394 inst
.instruction
|= Rs
<< 16;
11395 constraint (Rd
== REG_SP
&& Rs
== REG_SP
&& value
> 3,
11396 _("shift value over 3 not allowed in thumb mode"));
11397 constraint (Rd
== REG_SP
&& Rs
== REG_SP
&& shift
!= SHIFT_LSL
,
11398 _("only LSL shift allowed in thumb mode"));
11399 encode_thumb32_shifted_operand (2);
11404 constraint (inst
.instruction
== T_MNEM_adds
11405 || inst
.instruction
== T_MNEM_subs
,
11408 if (!inst
.operands
[2].isreg
) /* Rd, Rs, #imm */
11410 constraint ((Rd
> 7 && (Rd
!= REG_SP
|| Rs
!= REG_SP
))
11411 || (Rs
> 7 && Rs
!= REG_SP
&& Rs
!= REG_PC
),
11414 inst
.instruction
= (inst
.instruction
== T_MNEM_add
11415 ? 0x0000 : 0x8000);
11416 inst
.instruction
|= (Rd
<< 4) | Rs
;
11417 inst
.relocs
[0].type
= BFD_RELOC_ARM_THUMB_ADD
;
11421 Rn
= inst
.operands
[2].reg
;
11422 constraint (inst
.operands
[2].shifted
, _("unshifted register required"));
11424 /* We now have Rd, Rs, and Rn set to registers. */
11425 if (Rd
> 7 || Rs
> 7 || Rn
> 7)
11427 /* Can't do this for SUB. */
11428 constraint (inst
.instruction
== T_MNEM_sub
, BAD_HIREG
);
11429 inst
.instruction
= T_OPCODE_ADD_HI
;
11430 inst
.instruction
|= (Rd
& 8) << 4;
11431 inst
.instruction
|= (Rd
& 7);
11433 inst
.instruction
|= Rn
<< 3;
11435 inst
.instruction
|= Rs
<< 3;
11437 constraint (1, _("dest must overlap one source register"));
11441 inst
.instruction
= (inst
.instruction
== T_MNEM_add
11442 ? T_OPCODE_ADD_R3
: T_OPCODE_SUB_R3
);
11443 inst
.instruction
|= Rd
| (Rs
<< 3) | (Rn
<< 6);
11453 Rd
= inst
.operands
[0].reg
;
11454 reject_bad_reg (Rd
);
11456 if (unified_syntax
&& inst
.size_req
== 0 && Rd
<= 7)
11458 /* Defer to section relaxation. */
11459 inst
.relax
= inst
.instruction
;
11460 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
11461 inst
.instruction
|= Rd
<< 4;
11463 else if (unified_syntax
&& inst
.size_req
!= 2)
11465 /* Generate a 32-bit opcode. */
11466 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
11467 inst
.instruction
|= Rd
<< 8;
11468 inst
.relocs
[0].type
= BFD_RELOC_ARM_T32_ADD_PC12
;
11469 inst
.relocs
[0].pc_rel
= 1;
11473 /* Generate a 16-bit opcode. */
11474 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
11475 inst
.relocs
[0].type
= BFD_RELOC_ARM_THUMB_ADD
;
11476 inst
.relocs
[0].exp
.X_add_number
-= 4; /* PC relative adjust. */
11477 inst
.relocs
[0].pc_rel
= 1;
11478 inst
.instruction
|= Rd
<< 4;
11481 if (inst
.relocs
[0].exp
.X_op
== O_symbol
11482 && inst
.relocs
[0].exp
.X_add_symbol
!= NULL
11483 && S_IS_DEFINED (inst
.relocs
[0].exp
.X_add_symbol
)
11484 && THUMB_IS_FUNC (inst
.relocs
[0].exp
.X_add_symbol
))
11485 inst
.relocs
[0].exp
.X_add_number
+= 1;
11488 /* Arithmetic instructions for which there is just one 16-bit
11489 instruction encoding, and it allows only two low registers.
11490 For maximal compatibility with ARM syntax, we allow three register
11491 operands even when Thumb-32 instructions are not available, as long
11492 as the first two are identical. For instance, both "sbc r0,r1" and
11493 "sbc r0,r0,r1" are allowed. */
11499 Rd
= inst
.operands
[0].reg
;
11500 Rs
= (inst
.operands
[1].present
11501 ? inst
.operands
[1].reg
/* Rd, Rs, foo */
11502 : inst
.operands
[0].reg
); /* Rd, foo -> Rd, Rd, foo */
11503 Rn
= inst
.operands
[2].reg
;
11505 reject_bad_reg (Rd
);
11506 reject_bad_reg (Rs
);
11507 if (inst
.operands
[2].isreg
)
11508 reject_bad_reg (Rn
);
11510 if (unified_syntax
)
11512 if (!inst
.operands
[2].isreg
)
11514 /* For an immediate, we always generate a 32-bit opcode;
11515 section relaxation will shrink it later if possible. */
11516 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
11517 inst
.instruction
= (inst
.instruction
& 0xe1ffffff) | 0x10000000;
11518 inst
.instruction
|= Rd
<< 8;
11519 inst
.instruction
|= Rs
<< 16;
11520 inst
.relocs
[0].type
= BFD_RELOC_ARM_T32_IMMEDIATE
;
11524 bfd_boolean narrow
;
11526 /* See if we can do this with a 16-bit instruction. */
11527 if (THUMB_SETS_FLAGS (inst
.instruction
))
11528 narrow
= !in_pred_block ();
11530 narrow
= in_pred_block ();
11532 if (Rd
> 7 || Rn
> 7 || Rs
> 7)
11534 if (inst
.operands
[2].shifted
)
11536 if (inst
.size_req
== 4)
11542 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
11543 inst
.instruction
|= Rd
;
11544 inst
.instruction
|= Rn
<< 3;
11548 /* If we get here, it can't be done in 16 bits. */
11549 constraint (inst
.operands
[2].shifted
11550 && inst
.operands
[2].immisreg
,
11551 _("shift must be constant"));
11552 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
11553 inst
.instruction
|= Rd
<< 8;
11554 inst
.instruction
|= Rs
<< 16;
11555 encode_thumb32_shifted_operand (2);
11560 /* On its face this is a lie - the instruction does set the
11561 flags. However, the only supported mnemonic in this mode
11562 says it doesn't. */
11563 constraint (THUMB_SETS_FLAGS (inst
.instruction
), BAD_THUMB32
);
11565 constraint (!inst
.operands
[2].isreg
|| inst
.operands
[2].shifted
,
11566 _("unshifted register required"));
11567 constraint (Rd
> 7 || Rs
> 7 || Rn
> 7, BAD_HIREG
);
11568 constraint (Rd
!= Rs
,
11569 _("dest and source1 must be the same register"));
11571 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
11572 inst
.instruction
|= Rd
;
11573 inst
.instruction
|= Rn
<< 3;
11577 /* Similarly, but for instructions where the arithmetic operation is
11578 commutative, so we can allow either of them to be different from
11579 the destination operand in a 16-bit instruction. For instance, all
11580 three of "adc r0,r1", "adc r0,r0,r1", and "adc r0,r1,r0" are
11587 Rd
= inst
.operands
[0].reg
;
11588 Rs
= (inst
.operands
[1].present
11589 ? inst
.operands
[1].reg
/* Rd, Rs, foo */
11590 : inst
.operands
[0].reg
); /* Rd, foo -> Rd, Rd, foo */
11591 Rn
= inst
.operands
[2].reg
;
11593 reject_bad_reg (Rd
);
11594 reject_bad_reg (Rs
);
11595 if (inst
.operands
[2].isreg
)
11596 reject_bad_reg (Rn
);
11598 if (unified_syntax
)
11600 if (!inst
.operands
[2].isreg
)
11602 /* For an immediate, we always generate a 32-bit opcode;
11603 section relaxation will shrink it later if possible. */
11604 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
11605 inst
.instruction
= (inst
.instruction
& 0xe1ffffff) | 0x10000000;
11606 inst
.instruction
|= Rd
<< 8;
11607 inst
.instruction
|= Rs
<< 16;
11608 inst
.relocs
[0].type
= BFD_RELOC_ARM_T32_IMMEDIATE
;
11612 bfd_boolean narrow
;
11614 /* See if we can do this with a 16-bit instruction. */
11615 if (THUMB_SETS_FLAGS (inst
.instruction
))
11616 narrow
= !in_pred_block ();
11618 narrow
= in_pred_block ();
11620 if (Rd
> 7 || Rn
> 7 || Rs
> 7)
11622 if (inst
.operands
[2].shifted
)
11624 if (inst
.size_req
== 4)
11631 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
11632 inst
.instruction
|= Rd
;
11633 inst
.instruction
|= Rn
<< 3;
11638 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
11639 inst
.instruction
|= Rd
;
11640 inst
.instruction
|= Rs
<< 3;
11645 /* If we get here, it can't be done in 16 bits. */
11646 constraint (inst
.operands
[2].shifted
11647 && inst
.operands
[2].immisreg
,
11648 _("shift must be constant"));
11649 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
11650 inst
.instruction
|= Rd
<< 8;
11651 inst
.instruction
|= Rs
<< 16;
11652 encode_thumb32_shifted_operand (2);
11657 /* On its face this is a lie - the instruction does set the
11658 flags. However, the only supported mnemonic in this mode
11659 says it doesn't. */
11660 constraint (THUMB_SETS_FLAGS (inst
.instruction
), BAD_THUMB32
);
11662 constraint (!inst
.operands
[2].isreg
|| inst
.operands
[2].shifted
,
11663 _("unshifted register required"));
11664 constraint (Rd
> 7 || Rs
> 7 || Rn
> 7, BAD_HIREG
);
11666 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
11667 inst
.instruction
|= Rd
;
11670 inst
.instruction
|= Rn
<< 3;
11672 inst
.instruction
|= Rs
<< 3;
11674 constraint (1, _("dest must overlap one source register"));
11682 unsigned int msb
= inst
.operands
[1].imm
+ inst
.operands
[2].imm
;
11683 constraint (msb
> 32, _("bit-field extends past end of register"));
11684 /* The instruction encoding stores the LSB and MSB,
11685 not the LSB and width. */
11686 Rd
= inst
.operands
[0].reg
;
11687 reject_bad_reg (Rd
);
11688 inst
.instruction
|= Rd
<< 8;
11689 inst
.instruction
|= (inst
.operands
[1].imm
& 0x1c) << 10;
11690 inst
.instruction
|= (inst
.operands
[1].imm
& 0x03) << 6;
11691 inst
.instruction
|= msb
- 1;
11700 Rd
= inst
.operands
[0].reg
;
11701 reject_bad_reg (Rd
);
11703 /* #0 in second position is alternative syntax for bfc, which is
11704 the same instruction but with REG_PC in the Rm field. */
11705 if (!inst
.operands
[1].isreg
)
11709 Rn
= inst
.operands
[1].reg
;
11710 reject_bad_reg (Rn
);
11713 msb
= inst
.operands
[2].imm
+ inst
.operands
[3].imm
;
11714 constraint (msb
> 32, _("bit-field extends past end of register"));
11715 /* The instruction encoding stores the LSB and MSB,
11716 not the LSB and width. */
11717 inst
.instruction
|= Rd
<< 8;
11718 inst
.instruction
|= Rn
<< 16;
11719 inst
.instruction
|= (inst
.operands
[2].imm
& 0x1c) << 10;
11720 inst
.instruction
|= (inst
.operands
[2].imm
& 0x03) << 6;
11721 inst
.instruction
|= msb
- 1;
11729 Rd
= inst
.operands
[0].reg
;
11730 Rn
= inst
.operands
[1].reg
;
11732 reject_bad_reg (Rd
);
11733 reject_bad_reg (Rn
);
11735 constraint (inst
.operands
[2].imm
+ inst
.operands
[3].imm
> 32,
11736 _("bit-field extends past end of register"));
11737 inst
.instruction
|= Rd
<< 8;
11738 inst
.instruction
|= Rn
<< 16;
11739 inst
.instruction
|= (inst
.operands
[2].imm
& 0x1c) << 10;
11740 inst
.instruction
|= (inst
.operands
[2].imm
& 0x03) << 6;
11741 inst
.instruction
|= inst
.operands
[3].imm
- 1;
11744 /* ARM V5 Thumb BLX (argument parse)
11745 BLX <target_addr> which is BLX(1)
11746 BLX <Rm> which is BLX(2)
11747 Unfortunately, there are two different opcodes for this mnemonic.
11748 So, the insns[].value is not used, and the code here zaps values
11749 into inst.instruction.
11751 ??? How to take advantage of the additional two bits of displacement
11752 available in Thumb32 mode? Need new relocation? */
11757 set_pred_insn_type_last ();
11759 if (inst
.operands
[0].isreg
)
11761 constraint (inst
.operands
[0].reg
== REG_PC
, BAD_PC
);
11762 /* We have a register, so this is BLX(2). */
11763 inst
.instruction
|= inst
.operands
[0].reg
<< 3;
11767 /* No register. This must be BLX(1). */
11768 inst
.instruction
= 0xf000e800;
11769 encode_branch (BFD_RELOC_THUMB_PCREL_BLX
);
11778 bfd_reloc_code_real_type reloc
;
11781 set_pred_insn_type (IF_INSIDE_IT_LAST_INSN
);
11783 if (in_pred_block ())
11785 /* Conditional branches inside IT blocks are encoded as unconditional
11787 cond
= COND_ALWAYS
;
11792 if (cond
!= COND_ALWAYS
)
11793 opcode
= T_MNEM_bcond
;
11795 opcode
= inst
.instruction
;
11798 && (inst
.size_req
== 4
11799 || (inst
.size_req
!= 2
11800 && (inst
.operands
[0].hasreloc
11801 || inst
.relocs
[0].exp
.X_op
== O_constant
))))
11803 inst
.instruction
= THUMB_OP32(opcode
);
11804 if (cond
== COND_ALWAYS
)
11805 reloc
= BFD_RELOC_THUMB_PCREL_BRANCH25
;
11808 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v6t2
),
11809 _("selected architecture does not support "
11810 "wide conditional branch instruction"));
11812 gas_assert (cond
!= 0xF);
11813 inst
.instruction
|= cond
<< 22;
11814 reloc
= BFD_RELOC_THUMB_PCREL_BRANCH20
;
11819 inst
.instruction
= THUMB_OP16(opcode
);
11820 if (cond
== COND_ALWAYS
)
11821 reloc
= BFD_RELOC_THUMB_PCREL_BRANCH12
;
11824 inst
.instruction
|= cond
<< 8;
11825 reloc
= BFD_RELOC_THUMB_PCREL_BRANCH9
;
11827 /* Allow section relaxation. */
11828 if (unified_syntax
&& inst
.size_req
!= 2)
11829 inst
.relax
= opcode
;
11831 inst
.relocs
[0].type
= reloc
;
11832 inst
.relocs
[0].pc_rel
= 1;
11835 /* Actually do the work for Thumb state bkpt and hlt. The only difference
11836 between the two is the maximum immediate allowed - which is passed in
11839 do_t_bkpt_hlt1 (int range
)
11841 constraint (inst
.cond
!= COND_ALWAYS
,
11842 _("instruction is always unconditional"));
11843 if (inst
.operands
[0].present
)
11845 constraint (inst
.operands
[0].imm
> range
,
11846 _("immediate value out of range"));
11847 inst
.instruction
|= inst
.operands
[0].imm
;
11850 set_pred_insn_type (NEUTRAL_IT_INSN
);
11856 do_t_bkpt_hlt1 (63);
11862 do_t_bkpt_hlt1 (255);
11866 do_t_branch23 (void)
11868 set_pred_insn_type_last ();
11869 encode_branch (BFD_RELOC_THUMB_PCREL_BRANCH23
);
11871 /* md_apply_fix blows up with 'bl foo(PLT)' where foo is defined in
11872 this file. We used to simply ignore the PLT reloc type here --
11873 the branch encoding is now needed to deal with TLSCALL relocs.
11874 So if we see a PLT reloc now, put it back to how it used to be to
11875 keep the preexisting behaviour. */
11876 if (inst
.relocs
[0].type
== BFD_RELOC_ARM_PLT32
)
11877 inst
.relocs
[0].type
= BFD_RELOC_THUMB_PCREL_BRANCH23
;
11879 #if defined(OBJ_COFF)
11880 /* If the destination of the branch is a defined symbol which does not have
11881 the THUMB_FUNC attribute, then we must be calling a function which has
11882 the (interfacearm) attribute. We look for the Thumb entry point to that
11883 function and change the branch to refer to that function instead. */
11884 if ( inst
.relocs
[0].exp
.X_op
== O_symbol
11885 && inst
.relocs
[0].exp
.X_add_symbol
!= NULL
11886 && S_IS_DEFINED (inst
.relocs
[0].exp
.X_add_symbol
)
11887 && ! THUMB_IS_FUNC (inst
.relocs
[0].exp
.X_add_symbol
))
11888 inst
.relocs
[0].exp
.X_add_symbol
11889 = find_real_start (inst
.relocs
[0].exp
.X_add_symbol
);
11896 set_pred_insn_type_last ();
11897 inst
.instruction
|= inst
.operands
[0].reg
<< 3;
11898 /* ??? FIXME: Should add a hacky reloc here if reg is REG_PC. The reloc
11899 should cause the alignment to be checked once it is known. This is
11900 because BX PC only works if the instruction is word aligned. */
11908 set_pred_insn_type_last ();
11909 Rm
= inst
.operands
[0].reg
;
11910 reject_bad_reg (Rm
);
11911 inst
.instruction
|= Rm
<< 16;
11920 Rd
= inst
.operands
[0].reg
;
11921 Rm
= inst
.operands
[1].reg
;
11923 reject_bad_reg (Rd
);
11924 reject_bad_reg (Rm
);
11926 inst
.instruction
|= Rd
<< 8;
11927 inst
.instruction
|= Rm
<< 16;
11928 inst
.instruction
|= Rm
;
11934 set_pred_insn_type (OUTSIDE_PRED_INSN
);
11940 set_pred_insn_type (OUTSIDE_PRED_INSN
);
11941 inst
.instruction
|= inst
.operands
[0].imm
;
11947 set_pred_insn_type (OUTSIDE_PRED_INSN
);
11949 && (inst
.operands
[1].present
|| inst
.size_req
== 4)
11950 && ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v6_notm
))
11952 unsigned int imod
= (inst
.instruction
& 0x0030) >> 4;
11953 inst
.instruction
= 0xf3af8000;
11954 inst
.instruction
|= imod
<< 9;
11955 inst
.instruction
|= inst
.operands
[0].imm
<< 5;
11956 if (inst
.operands
[1].present
)
11957 inst
.instruction
|= 0x100 | inst
.operands
[1].imm
;
11961 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v1
)
11962 && (inst
.operands
[0].imm
& 4),
11963 _("selected processor does not support 'A' form "
11964 "of this instruction"));
11965 constraint (inst
.operands
[1].present
|| inst
.size_req
== 4,
11966 _("Thumb does not support the 2-argument "
11967 "form of this instruction"));
11968 inst
.instruction
|= inst
.operands
[0].imm
;
11972 /* THUMB CPY instruction (argument parse). */
11977 if (inst
.size_req
== 4)
11979 inst
.instruction
= THUMB_OP32 (T_MNEM_mov
);
11980 inst
.instruction
|= inst
.operands
[0].reg
<< 8;
11981 inst
.instruction
|= inst
.operands
[1].reg
;
11985 inst
.instruction
|= (inst
.operands
[0].reg
& 0x8) << 4;
11986 inst
.instruction
|= (inst
.operands
[0].reg
& 0x7);
11987 inst
.instruction
|= inst
.operands
[1].reg
<< 3;
11994 set_pred_insn_type (OUTSIDE_PRED_INSN
);
11995 constraint (inst
.operands
[0].reg
> 7, BAD_HIREG
);
11996 inst
.instruction
|= inst
.operands
[0].reg
;
11997 inst
.relocs
[0].pc_rel
= 1;
11998 inst
.relocs
[0].type
= BFD_RELOC_THUMB_PCREL_BRANCH7
;
12004 inst
.instruction
|= inst
.operands
[0].imm
;
12010 unsigned Rd
, Rn
, Rm
;
12012 Rd
= inst
.operands
[0].reg
;
12013 Rn
= (inst
.operands
[1].present
12014 ? inst
.operands
[1].reg
: Rd
);
12015 Rm
= inst
.operands
[2].reg
;
12017 reject_bad_reg (Rd
);
12018 reject_bad_reg (Rn
);
12019 reject_bad_reg (Rm
);
12021 inst
.instruction
|= Rd
<< 8;
12022 inst
.instruction
|= Rn
<< 16;
12023 inst
.instruction
|= Rm
;
12029 if (unified_syntax
&& inst
.size_req
== 4)
12030 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
12032 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
12038 unsigned int cond
= inst
.operands
[0].imm
;
12040 set_pred_insn_type (IT_INSN
);
12041 now_pred
.mask
= (inst
.instruction
& 0xf) | 0x10;
12042 now_pred
.cc
= cond
;
12043 now_pred
.warn_deprecated
= FALSE
;
12044 now_pred
.type
= SCALAR_PRED
;
12046 /* If the condition is a negative condition, invert the mask. */
12047 if ((cond
& 0x1) == 0x0)
12049 unsigned int mask
= inst
.instruction
& 0x000f;
12051 if ((mask
& 0x7) == 0)
12053 /* No conversion needed. */
12054 now_pred
.block_length
= 1;
12056 else if ((mask
& 0x3) == 0)
12059 now_pred
.block_length
= 2;
12061 else if ((mask
& 0x1) == 0)
12064 now_pred
.block_length
= 3;
12069 now_pred
.block_length
= 4;
12072 inst
.instruction
&= 0xfff0;
12073 inst
.instruction
|= mask
;
12076 inst
.instruction
|= cond
<< 4;
12079 /* Helper function used for both push/pop and ldm/stm. */
12081 encode_thumb2_multi (bfd_boolean do_io
, int base
, unsigned mask
,
12082 bfd_boolean writeback
)
12084 bfd_boolean load
, store
;
12086 gas_assert (base
!= -1 || !do_io
);
12087 load
= do_io
&& ((inst
.instruction
& (1 << 20)) != 0);
12088 store
= do_io
&& !load
;
12090 if (mask
& (1 << 13))
12091 inst
.error
= _("SP not allowed in register list");
12093 if (do_io
&& (mask
& (1 << base
)) != 0
12095 inst
.error
= _("having the base register in the register list when "
12096 "using write back is UNPREDICTABLE");
12100 if (mask
& (1 << 15))
12102 if (mask
& (1 << 14))
12103 inst
.error
= _("LR and PC should not both be in register list");
12105 set_pred_insn_type_last ();
12110 if (mask
& (1 << 15))
12111 inst
.error
= _("PC not allowed in register list");
12114 if (do_io
&& ((mask
& (mask
- 1)) == 0))
12116 /* Single register transfers implemented as str/ldr. */
12119 if (inst
.instruction
& (1 << 23))
12120 inst
.instruction
= 0x00000b04; /* ia! -> [base], #4 */
12122 inst
.instruction
= 0x00000d04; /* db! -> [base, #-4]! */
12126 if (inst
.instruction
& (1 << 23))
12127 inst
.instruction
= 0x00800000; /* ia -> [base] */
12129 inst
.instruction
= 0x00000c04; /* db -> [base, #-4] */
12132 inst
.instruction
|= 0xf8400000;
12134 inst
.instruction
|= 0x00100000;
12136 mask
= ffs (mask
) - 1;
12139 else if (writeback
)
12140 inst
.instruction
|= WRITE_BACK
;
12142 inst
.instruction
|= mask
;
12144 inst
.instruction
|= base
<< 16;
12150 /* This really doesn't seem worth it. */
12151 constraint (inst
.relocs
[0].type
!= BFD_RELOC_UNUSED
,
12152 _("expression too complex"));
12153 constraint (inst
.operands
[1].writeback
,
12154 _("Thumb load/store multiple does not support {reglist}^"));
12156 if (unified_syntax
)
12158 bfd_boolean narrow
;
12162 /* See if we can use a 16-bit instruction. */
12163 if (inst
.instruction
< 0xffff /* not ldmdb/stmdb */
12164 && inst
.size_req
!= 4
12165 && !(inst
.operands
[1].imm
& ~0xff))
12167 mask
= 1 << inst
.operands
[0].reg
;
12169 if (inst
.operands
[0].reg
<= 7)
12171 if (inst
.instruction
== T_MNEM_stmia
12172 ? inst
.operands
[0].writeback
12173 : (inst
.operands
[0].writeback
12174 == !(inst
.operands
[1].imm
& mask
)))
12176 if (inst
.instruction
== T_MNEM_stmia
12177 && (inst
.operands
[1].imm
& mask
)
12178 && (inst
.operands
[1].imm
& (mask
- 1)))
12179 as_warn (_("value stored for r%d is UNKNOWN"),
12180 inst
.operands
[0].reg
);
12182 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
12183 inst
.instruction
|= inst
.operands
[0].reg
<< 8;
12184 inst
.instruction
|= inst
.operands
[1].imm
;
12187 else if ((inst
.operands
[1].imm
& (inst
.operands
[1].imm
-1)) == 0)
12189 /* This means 1 register in reg list one of 3 situations:
12190 1. Instruction is stmia, but without writeback.
12191 2. lmdia without writeback, but with Rn not in
12193 3. ldmia with writeback, but with Rn in reglist.
12194 Case 3 is UNPREDICTABLE behaviour, so we handle
12195 case 1 and 2 which can be converted into a 16-bit
12196 str or ldr. The SP cases are handled below. */
12197 unsigned long opcode
;
12198 /* First, record an error for Case 3. */
12199 if (inst
.operands
[1].imm
& mask
12200 && inst
.operands
[0].writeback
)
12202 _("having the base register in the register list when "
12203 "using write back is UNPREDICTABLE");
12205 opcode
= (inst
.instruction
== T_MNEM_stmia
? T_MNEM_str
12207 inst
.instruction
= THUMB_OP16 (opcode
);
12208 inst
.instruction
|= inst
.operands
[0].reg
<< 3;
12209 inst
.instruction
|= (ffs (inst
.operands
[1].imm
)-1);
12213 else if (inst
.operands
[0] .reg
== REG_SP
)
12215 if (inst
.operands
[0].writeback
)
12218 THUMB_OP16 (inst
.instruction
== T_MNEM_stmia
12219 ? T_MNEM_push
: T_MNEM_pop
);
12220 inst
.instruction
|= inst
.operands
[1].imm
;
12223 else if ((inst
.operands
[1].imm
& (inst
.operands
[1].imm
-1)) == 0)
12226 THUMB_OP16 (inst
.instruction
== T_MNEM_stmia
12227 ? T_MNEM_str_sp
: T_MNEM_ldr_sp
);
12228 inst
.instruction
|= ((ffs (inst
.operands
[1].imm
)-1) << 8);
12236 if (inst
.instruction
< 0xffff)
12237 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
12239 encode_thumb2_multi (TRUE
/* do_io */, inst
.operands
[0].reg
,
12240 inst
.operands
[1].imm
,
12241 inst
.operands
[0].writeback
);
12246 constraint (inst
.operands
[0].reg
> 7
12247 || (inst
.operands
[1].imm
& ~0xff), BAD_HIREG
);
12248 constraint (inst
.instruction
!= T_MNEM_ldmia
12249 && inst
.instruction
!= T_MNEM_stmia
,
12250 _("Thumb-2 instruction only valid in unified syntax"));
12251 if (inst
.instruction
== T_MNEM_stmia
)
12253 if (!inst
.operands
[0].writeback
)
12254 as_warn (_("this instruction will write back the base register"));
12255 if ((inst
.operands
[1].imm
& (1 << inst
.operands
[0].reg
))
12256 && (inst
.operands
[1].imm
& ((1 << inst
.operands
[0].reg
) - 1)))
12257 as_warn (_("value stored for r%d is UNKNOWN"),
12258 inst
.operands
[0].reg
);
12262 if (!inst
.operands
[0].writeback
12263 && !(inst
.operands
[1].imm
& (1 << inst
.operands
[0].reg
)))
12264 as_warn (_("this instruction will write back the base register"));
12265 else if (inst
.operands
[0].writeback
12266 && (inst
.operands
[1].imm
& (1 << inst
.operands
[0].reg
)))
12267 as_warn (_("this instruction will not write back the base register"));
12270 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
12271 inst
.instruction
|= inst
.operands
[0].reg
<< 8;
12272 inst
.instruction
|= inst
.operands
[1].imm
;
12279 constraint (!inst
.operands
[1].isreg
|| !inst
.operands
[1].preind
12280 || inst
.operands
[1].postind
|| inst
.operands
[1].writeback
12281 || inst
.operands
[1].immisreg
|| inst
.operands
[1].shifted
12282 || inst
.operands
[1].negative
,
12285 constraint ((inst
.operands
[1].reg
== REG_PC
), BAD_PC
);
12287 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
12288 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
12289 inst
.relocs
[0].type
= BFD_RELOC_ARM_T32_OFFSET_U8
;
12295 if (!inst
.operands
[1].present
)
12297 constraint (inst
.operands
[0].reg
== REG_LR
,
12298 _("r14 not allowed as first register "
12299 "when second register is omitted"));
12300 inst
.operands
[1].reg
= inst
.operands
[0].reg
+ 1;
12302 constraint (inst
.operands
[0].reg
== inst
.operands
[1].reg
,
12305 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
12306 inst
.instruction
|= inst
.operands
[1].reg
<< 8;
12307 inst
.instruction
|= inst
.operands
[2].reg
<< 16;
12313 unsigned long opcode
;
12316 if (inst
.operands
[0].isreg
12317 && !inst
.operands
[0].preind
12318 && inst
.operands
[0].reg
== REG_PC
)
12319 set_pred_insn_type_last ();
12321 opcode
= inst
.instruction
;
12322 if (unified_syntax
)
12324 if (!inst
.operands
[1].isreg
)
12326 if (opcode
<= 0xffff)
12327 inst
.instruction
= THUMB_OP32 (opcode
);
12328 if (move_or_literal_pool (0, CONST_THUMB
, /*mode_3=*/FALSE
))
12331 if (inst
.operands
[1].isreg
12332 && !inst
.operands
[1].writeback
12333 && !inst
.operands
[1].shifted
&& !inst
.operands
[1].postind
12334 && !inst
.operands
[1].negative
&& inst
.operands
[0].reg
<= 7
12335 && opcode
<= 0xffff
12336 && inst
.size_req
!= 4)
12338 /* Insn may have a 16-bit form. */
12339 Rn
= inst
.operands
[1].reg
;
12340 if (inst
.operands
[1].immisreg
)
12342 inst
.instruction
= THUMB_OP16 (opcode
);
12344 if (Rn
<= 7 && inst
.operands
[1].imm
<= 7)
12346 else if (opcode
!= T_MNEM_ldr
&& opcode
!= T_MNEM_str
)
12347 reject_bad_reg (inst
.operands
[1].imm
);
12349 else if ((Rn
<= 7 && opcode
!= T_MNEM_ldrsh
12350 && opcode
!= T_MNEM_ldrsb
)
12351 || ((Rn
== REG_PC
|| Rn
== REG_SP
) && opcode
== T_MNEM_ldr
)
12352 || (Rn
== REG_SP
&& opcode
== T_MNEM_str
))
12359 if (inst
.relocs
[0].pc_rel
)
12360 opcode
= T_MNEM_ldr_pc2
;
12362 opcode
= T_MNEM_ldr_pc
;
12366 if (opcode
== T_MNEM_ldr
)
12367 opcode
= T_MNEM_ldr_sp
;
12369 opcode
= T_MNEM_str_sp
;
12371 inst
.instruction
= inst
.operands
[0].reg
<< 8;
12375 inst
.instruction
= inst
.operands
[0].reg
;
12376 inst
.instruction
|= inst
.operands
[1].reg
<< 3;
12378 inst
.instruction
|= THUMB_OP16 (opcode
);
12379 if (inst
.size_req
== 2)
12380 inst
.relocs
[0].type
= BFD_RELOC_ARM_THUMB_OFFSET
;
12382 inst
.relax
= opcode
;
12386 /* Definitely a 32-bit variant. */
12388 /* Warning for Erratum 752419. */
12389 if (opcode
== T_MNEM_ldr
12390 && inst
.operands
[0].reg
== REG_SP
12391 && inst
.operands
[1].writeback
== 1
12392 && !inst
.operands
[1].immisreg
)
12394 if (no_cpu_selected ()
12395 || (ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v7
)
12396 && !ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v7a
)
12397 && !ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v7r
)))
12398 as_warn (_("This instruction may be unpredictable "
12399 "if executed on M-profile cores "
12400 "with interrupts enabled."));
12403 /* Do some validations regarding addressing modes. */
12404 if (inst
.operands
[1].immisreg
)
12405 reject_bad_reg (inst
.operands
[1].imm
);
12407 constraint (inst
.operands
[1].writeback
== 1
12408 && inst
.operands
[0].reg
== inst
.operands
[1].reg
,
12411 inst
.instruction
= THUMB_OP32 (opcode
);
12412 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
12413 encode_thumb32_addr_mode (1, /*is_t=*/FALSE
, /*is_d=*/FALSE
);
12414 check_ldr_r15_aligned ();
12418 constraint (inst
.operands
[0].reg
> 7, BAD_HIREG
);
12420 if (inst
.instruction
== T_MNEM_ldrsh
|| inst
.instruction
== T_MNEM_ldrsb
)
12422 /* Only [Rn,Rm] is acceptable. */
12423 constraint (inst
.operands
[1].reg
> 7 || inst
.operands
[1].imm
> 7, BAD_HIREG
);
12424 constraint (!inst
.operands
[1].isreg
|| !inst
.operands
[1].immisreg
12425 || inst
.operands
[1].postind
|| inst
.operands
[1].shifted
12426 || inst
.operands
[1].negative
,
12427 _("Thumb does not support this addressing mode"));
12428 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
12432 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
12433 if (!inst
.operands
[1].isreg
)
12434 if (move_or_literal_pool (0, CONST_THUMB
, /*mode_3=*/FALSE
))
12437 constraint (!inst
.operands
[1].preind
12438 || inst
.operands
[1].shifted
12439 || inst
.operands
[1].writeback
,
12440 _("Thumb does not support this addressing mode"));
12441 if (inst
.operands
[1].reg
== REG_PC
|| inst
.operands
[1].reg
== REG_SP
)
12443 constraint (inst
.instruction
& 0x0600,
12444 _("byte or halfword not valid for base register"));
12445 constraint (inst
.operands
[1].reg
== REG_PC
12446 && !(inst
.instruction
& THUMB_LOAD_BIT
),
12447 _("r15 based store not allowed"));
12448 constraint (inst
.operands
[1].immisreg
,
12449 _("invalid base register for register offset"));
12451 if (inst
.operands
[1].reg
== REG_PC
)
12452 inst
.instruction
= T_OPCODE_LDR_PC
;
12453 else if (inst
.instruction
& THUMB_LOAD_BIT
)
12454 inst
.instruction
= T_OPCODE_LDR_SP
;
12456 inst
.instruction
= T_OPCODE_STR_SP
;
12458 inst
.instruction
|= inst
.operands
[0].reg
<< 8;
12459 inst
.relocs
[0].type
= BFD_RELOC_ARM_THUMB_OFFSET
;
12463 constraint (inst
.operands
[1].reg
> 7, BAD_HIREG
);
12464 if (!inst
.operands
[1].immisreg
)
12466 /* Immediate offset. */
12467 inst
.instruction
|= inst
.operands
[0].reg
;
12468 inst
.instruction
|= inst
.operands
[1].reg
<< 3;
12469 inst
.relocs
[0].type
= BFD_RELOC_ARM_THUMB_OFFSET
;
12473 /* Register offset. */
12474 constraint (inst
.operands
[1].imm
> 7, BAD_HIREG
);
12475 constraint (inst
.operands
[1].negative
,
12476 _("Thumb does not support this addressing mode"));
12479 switch (inst
.instruction
)
12481 case T_OPCODE_STR_IW
: inst
.instruction
= T_OPCODE_STR_RW
; break;
12482 case T_OPCODE_STR_IH
: inst
.instruction
= T_OPCODE_STR_RH
; break;
12483 case T_OPCODE_STR_IB
: inst
.instruction
= T_OPCODE_STR_RB
; break;
12484 case T_OPCODE_LDR_IW
: inst
.instruction
= T_OPCODE_LDR_RW
; break;
12485 case T_OPCODE_LDR_IH
: inst
.instruction
= T_OPCODE_LDR_RH
; break;
12486 case T_OPCODE_LDR_IB
: inst
.instruction
= T_OPCODE_LDR_RB
; break;
12487 case 0x5600 /* ldrsb */:
12488 case 0x5e00 /* ldrsh */: break;
12492 inst
.instruction
|= inst
.operands
[0].reg
;
12493 inst
.instruction
|= inst
.operands
[1].reg
<< 3;
12494 inst
.instruction
|= inst
.operands
[1].imm
<< 6;
12500 if (!inst
.operands
[1].present
)
12502 inst
.operands
[1].reg
= inst
.operands
[0].reg
+ 1;
12503 constraint (inst
.operands
[0].reg
== REG_LR
,
12504 _("r14 not allowed here"));
12505 constraint (inst
.operands
[0].reg
== REG_R12
,
12506 _("r12 not allowed here"));
12509 if (inst
.operands
[2].writeback
12510 && (inst
.operands
[0].reg
== inst
.operands
[2].reg
12511 || inst
.operands
[1].reg
== inst
.operands
[2].reg
))
12512 as_warn (_("base register written back, and overlaps "
12513 "one of transfer registers"));
12515 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
12516 inst
.instruction
|= inst
.operands
[1].reg
<< 8;
12517 encode_thumb32_addr_mode (2, /*is_t=*/FALSE
, /*is_d=*/TRUE
);
12523 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
12524 encode_thumb32_addr_mode (1, /*is_t=*/TRUE
, /*is_d=*/FALSE
);
12530 unsigned Rd
, Rn
, Rm
, Ra
;
12532 Rd
= inst
.operands
[0].reg
;
12533 Rn
= inst
.operands
[1].reg
;
12534 Rm
= inst
.operands
[2].reg
;
12535 Ra
= inst
.operands
[3].reg
;
12537 reject_bad_reg (Rd
);
12538 reject_bad_reg (Rn
);
12539 reject_bad_reg (Rm
);
12540 reject_bad_reg (Ra
);
12542 inst
.instruction
|= Rd
<< 8;
12543 inst
.instruction
|= Rn
<< 16;
12544 inst
.instruction
|= Rm
;
12545 inst
.instruction
|= Ra
<< 12;
12551 unsigned RdLo
, RdHi
, Rn
, Rm
;
12553 RdLo
= inst
.operands
[0].reg
;
12554 RdHi
= inst
.operands
[1].reg
;
12555 Rn
= inst
.operands
[2].reg
;
12556 Rm
= inst
.operands
[3].reg
;
12558 reject_bad_reg (RdLo
);
12559 reject_bad_reg (RdHi
);
12560 reject_bad_reg (Rn
);
12561 reject_bad_reg (Rm
);
12563 inst
.instruction
|= RdLo
<< 12;
12564 inst
.instruction
|= RdHi
<< 8;
12565 inst
.instruction
|= Rn
<< 16;
12566 inst
.instruction
|= Rm
;
12570 do_t_mov_cmp (void)
12574 Rn
= inst
.operands
[0].reg
;
12575 Rm
= inst
.operands
[1].reg
;
12578 set_pred_insn_type_last ();
12580 if (unified_syntax
)
12582 int r0off
= (inst
.instruction
== T_MNEM_mov
12583 || inst
.instruction
== T_MNEM_movs
) ? 8 : 16;
12584 unsigned long opcode
;
12585 bfd_boolean narrow
;
12586 bfd_boolean low_regs
;
12588 low_regs
= (Rn
<= 7 && Rm
<= 7);
12589 opcode
= inst
.instruction
;
12590 if (in_pred_block ())
12591 narrow
= opcode
!= T_MNEM_movs
;
12593 narrow
= opcode
!= T_MNEM_movs
|| low_regs
;
12594 if (inst
.size_req
== 4
12595 || inst
.operands
[1].shifted
)
12598 /* MOVS PC, LR is encoded as SUBS PC, LR, #0. */
12599 if (opcode
== T_MNEM_movs
&& inst
.operands
[1].isreg
12600 && !inst
.operands
[1].shifted
12604 inst
.instruction
= T2_SUBS_PC_LR
;
12608 if (opcode
== T_MNEM_cmp
)
12610 constraint (Rn
== REG_PC
, BAD_PC
);
12613 /* In the Thumb-2 ISA, use of R13 as Rm is deprecated,
12615 warn_deprecated_sp (Rm
);
12616 /* R15 was documented as a valid choice for Rm in ARMv6,
12617 but as UNPREDICTABLE in ARMv7. ARM's proprietary
12618 tools reject R15, so we do too. */
12619 constraint (Rm
== REG_PC
, BAD_PC
);
12622 reject_bad_reg (Rm
);
12624 else if (opcode
== T_MNEM_mov
12625 || opcode
== T_MNEM_movs
)
12627 if (inst
.operands
[1].isreg
)
12629 if (opcode
== T_MNEM_movs
)
12631 reject_bad_reg (Rn
);
12632 reject_bad_reg (Rm
);
12636 /* This is mov.n. */
12637 if ((Rn
== REG_SP
|| Rn
== REG_PC
)
12638 && (Rm
== REG_SP
|| Rm
== REG_PC
))
12640 as_tsktsk (_("Use of r%u as a source register is "
12641 "deprecated when r%u is the destination "
12642 "register."), Rm
, Rn
);
12647 /* This is mov.w. */
12648 constraint (Rn
== REG_PC
, BAD_PC
);
12649 constraint (Rm
== REG_PC
, BAD_PC
);
12650 if (!ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v8
))
12651 constraint (Rn
== REG_SP
&& Rm
== REG_SP
, BAD_SP
);
12655 reject_bad_reg (Rn
);
12658 if (!inst
.operands
[1].isreg
)
12660 /* Immediate operand. */
12661 if (!in_pred_block () && opcode
== T_MNEM_mov
)
12663 if (low_regs
&& narrow
)
12665 inst
.instruction
= THUMB_OP16 (opcode
);
12666 inst
.instruction
|= Rn
<< 8;
12667 if (inst
.relocs
[0].type
< BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
12668 || inst
.relocs
[0].type
> BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC
)
12670 if (inst
.size_req
== 2)
12671 inst
.relocs
[0].type
= BFD_RELOC_ARM_THUMB_IMM
;
12673 inst
.relax
= opcode
;
12678 constraint ((inst
.relocs
[0].type
12679 >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
)
12680 && (inst
.relocs
[0].type
12681 <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC
) ,
12682 THUMB1_RELOC_ONLY
);
12684 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
12685 inst
.instruction
= (inst
.instruction
& 0xe1ffffff) | 0x10000000;
12686 inst
.instruction
|= Rn
<< r0off
;
12687 inst
.relocs
[0].type
= BFD_RELOC_ARM_T32_IMMEDIATE
;
12690 else if (inst
.operands
[1].shifted
&& inst
.operands
[1].immisreg
12691 && (inst
.instruction
== T_MNEM_mov
12692 || inst
.instruction
== T_MNEM_movs
))
12694 /* Register shifts are encoded as separate shift instructions. */
12695 bfd_boolean flags
= (inst
.instruction
== T_MNEM_movs
);
12697 if (in_pred_block ())
12702 if (inst
.size_req
== 4)
12705 if (!low_regs
|| inst
.operands
[1].imm
> 7)
12711 switch (inst
.operands
[1].shift_kind
)
12714 opcode
= narrow
? T_OPCODE_LSL_R
: THUMB_OP32 (T_MNEM_lsl
);
12717 opcode
= narrow
? T_OPCODE_ASR_R
: THUMB_OP32 (T_MNEM_asr
);
12720 opcode
= narrow
? T_OPCODE_LSR_R
: THUMB_OP32 (T_MNEM_lsr
);
12723 opcode
= narrow
? T_OPCODE_ROR_R
: THUMB_OP32 (T_MNEM_ror
);
12729 inst
.instruction
= opcode
;
12732 inst
.instruction
|= Rn
;
12733 inst
.instruction
|= inst
.operands
[1].imm
<< 3;
12738 inst
.instruction
|= CONDS_BIT
;
12740 inst
.instruction
|= Rn
<< 8;
12741 inst
.instruction
|= Rm
<< 16;
12742 inst
.instruction
|= inst
.operands
[1].imm
;
12747 /* Some mov with immediate shift have narrow variants.
12748 Register shifts are handled above. */
12749 if (low_regs
&& inst
.operands
[1].shifted
12750 && (inst
.instruction
== T_MNEM_mov
12751 || inst
.instruction
== T_MNEM_movs
))
12753 if (in_pred_block ())
12754 narrow
= (inst
.instruction
== T_MNEM_mov
);
12756 narrow
= (inst
.instruction
== T_MNEM_movs
);
12761 switch (inst
.operands
[1].shift_kind
)
12763 case SHIFT_LSL
: inst
.instruction
= T_OPCODE_LSL_I
; break;
12764 case SHIFT_LSR
: inst
.instruction
= T_OPCODE_LSR_I
; break;
12765 case SHIFT_ASR
: inst
.instruction
= T_OPCODE_ASR_I
; break;
12766 default: narrow
= FALSE
; break;
12772 inst
.instruction
|= Rn
;
12773 inst
.instruction
|= Rm
<< 3;
12774 inst
.relocs
[0].type
= BFD_RELOC_ARM_THUMB_SHIFT
;
12778 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
12779 inst
.instruction
|= Rn
<< r0off
;
12780 encode_thumb32_shifted_operand (1);
12784 switch (inst
.instruction
)
12787 /* In v4t or v5t a move of two lowregs produces unpredictable
12788 results. Don't allow this. */
12791 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v6
),
12792 "MOV Rd, Rs with two low registers is not "
12793 "permitted on this architecture");
12794 ARM_MERGE_FEATURE_SETS (thumb_arch_used
, thumb_arch_used
,
12798 inst
.instruction
= T_OPCODE_MOV_HR
;
12799 inst
.instruction
|= (Rn
& 0x8) << 4;
12800 inst
.instruction
|= (Rn
& 0x7);
12801 inst
.instruction
|= Rm
<< 3;
12805 /* We know we have low registers at this point.
12806 Generate LSLS Rd, Rs, #0. */
12807 inst
.instruction
= T_OPCODE_LSL_I
;
12808 inst
.instruction
|= Rn
;
12809 inst
.instruction
|= Rm
<< 3;
12815 inst
.instruction
= T_OPCODE_CMP_LR
;
12816 inst
.instruction
|= Rn
;
12817 inst
.instruction
|= Rm
<< 3;
12821 inst
.instruction
= T_OPCODE_CMP_HR
;
12822 inst
.instruction
|= (Rn
& 0x8) << 4;
12823 inst
.instruction
|= (Rn
& 0x7);
12824 inst
.instruction
|= Rm
<< 3;
12831 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
12833 /* PR 10443: Do not silently ignore shifted operands. */
12834 constraint (inst
.operands
[1].shifted
,
12835 _("shifts in CMP/MOV instructions are only supported in unified syntax"));
12837 if (inst
.operands
[1].isreg
)
12839 if (Rn
< 8 && Rm
< 8)
12841 /* A move of two lowregs is encoded as ADD Rd, Rs, #0
12842 since a MOV instruction produces unpredictable results. */
12843 if (inst
.instruction
== T_OPCODE_MOV_I8
)
12844 inst
.instruction
= T_OPCODE_ADD_I3
;
12846 inst
.instruction
= T_OPCODE_CMP_LR
;
12848 inst
.instruction
|= Rn
;
12849 inst
.instruction
|= Rm
<< 3;
12853 if (inst
.instruction
== T_OPCODE_MOV_I8
)
12854 inst
.instruction
= T_OPCODE_MOV_HR
;
12856 inst
.instruction
= T_OPCODE_CMP_HR
;
12862 constraint (Rn
> 7,
12863 _("only lo regs allowed with immediate"));
12864 inst
.instruction
|= Rn
<< 8;
12865 inst
.relocs
[0].type
= BFD_RELOC_ARM_THUMB_IMM
;
12876 top
= (inst
.instruction
& 0x00800000) != 0;
12877 if (inst
.relocs
[0].type
== BFD_RELOC_ARM_MOVW
)
12879 constraint (top
, _(":lower16: not allowed in this instruction"));
12880 inst
.relocs
[0].type
= BFD_RELOC_ARM_THUMB_MOVW
;
12882 else if (inst
.relocs
[0].type
== BFD_RELOC_ARM_MOVT
)
12884 constraint (!top
, _(":upper16: not allowed in this instruction"));
12885 inst
.relocs
[0].type
= BFD_RELOC_ARM_THUMB_MOVT
;
12888 Rd
= inst
.operands
[0].reg
;
12889 reject_bad_reg (Rd
);
12891 inst
.instruction
|= Rd
<< 8;
12892 if (inst
.relocs
[0].type
== BFD_RELOC_UNUSED
)
12894 imm
= inst
.relocs
[0].exp
.X_add_number
;
12895 inst
.instruction
|= (imm
& 0xf000) << 4;
12896 inst
.instruction
|= (imm
& 0x0800) << 15;
12897 inst
.instruction
|= (imm
& 0x0700) << 4;
12898 inst
.instruction
|= (imm
& 0x00ff);
12903 do_t_mvn_tst (void)
12907 Rn
= inst
.operands
[0].reg
;
12908 Rm
= inst
.operands
[1].reg
;
12910 if (inst
.instruction
== T_MNEM_cmp
12911 || inst
.instruction
== T_MNEM_cmn
)
12912 constraint (Rn
== REG_PC
, BAD_PC
);
12914 reject_bad_reg (Rn
);
12915 reject_bad_reg (Rm
);
12917 if (unified_syntax
)
12919 int r0off
= (inst
.instruction
== T_MNEM_mvn
12920 || inst
.instruction
== T_MNEM_mvns
) ? 8 : 16;
12921 bfd_boolean narrow
;
12923 if (inst
.size_req
== 4
12924 || inst
.instruction
> 0xffff
12925 || inst
.operands
[1].shifted
12926 || Rn
> 7 || Rm
> 7)
12928 else if (inst
.instruction
== T_MNEM_cmn
12929 || inst
.instruction
== T_MNEM_tst
)
12931 else if (THUMB_SETS_FLAGS (inst
.instruction
))
12932 narrow
= !in_pred_block ();
12934 narrow
= in_pred_block ();
12936 if (!inst
.operands
[1].isreg
)
12938 /* For an immediate, we always generate a 32-bit opcode;
12939 section relaxation will shrink it later if possible. */
12940 if (inst
.instruction
< 0xffff)
12941 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
12942 inst
.instruction
= (inst
.instruction
& 0xe1ffffff) | 0x10000000;
12943 inst
.instruction
|= Rn
<< r0off
;
12944 inst
.relocs
[0].type
= BFD_RELOC_ARM_T32_IMMEDIATE
;
12948 /* See if we can do this with a 16-bit instruction. */
12951 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
12952 inst
.instruction
|= Rn
;
12953 inst
.instruction
|= Rm
<< 3;
12957 constraint (inst
.operands
[1].shifted
12958 && inst
.operands
[1].immisreg
,
12959 _("shift must be constant"));
12960 if (inst
.instruction
< 0xffff)
12961 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
12962 inst
.instruction
|= Rn
<< r0off
;
12963 encode_thumb32_shifted_operand (1);
12969 constraint (inst
.instruction
> 0xffff
12970 || inst
.instruction
== T_MNEM_mvns
, BAD_THUMB32
);
12971 constraint (!inst
.operands
[1].isreg
|| inst
.operands
[1].shifted
,
12972 _("unshifted register required"));
12973 constraint (Rn
> 7 || Rm
> 7,
12976 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
12977 inst
.instruction
|= Rn
;
12978 inst
.instruction
|= Rm
<< 3;
12987 if (do_vfp_nsyn_mrs () == SUCCESS
)
12990 Rd
= inst
.operands
[0].reg
;
12991 reject_bad_reg (Rd
);
12992 inst
.instruction
|= Rd
<< 8;
12994 if (inst
.operands
[1].isreg
)
12996 unsigned br
= inst
.operands
[1].reg
;
12997 if (((br
& 0x200) == 0) && ((br
& 0xf000) != 0xf000))
12998 as_bad (_("bad register for mrs"));
13000 inst
.instruction
|= br
& (0xf << 16);
13001 inst
.instruction
|= (br
& 0x300) >> 4;
13002 inst
.instruction
|= (br
& SPSR_BIT
) >> 2;
13006 int flags
= inst
.operands
[1].imm
& (PSR_c
|PSR_x
|PSR_s
|PSR_f
|SPSR_BIT
);
13008 if (ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_m
))
13010 /* PR gas/12698: The constraint is only applied for m_profile.
13011 If the user has specified -march=all, we want to ignore it as
13012 we are building for any CPU type, including non-m variants. */
13013 bfd_boolean m_profile
=
13014 !ARM_FEATURE_CORE_EQUAL (selected_cpu
, arm_arch_any
);
13015 constraint ((flags
!= 0) && m_profile
, _("selected processor does "
13016 "not support requested special purpose register"));
13019 /* mrs only accepts APSR/CPSR/SPSR/CPSR_all/SPSR_all (for non-M profile
13021 constraint ((flags
& ~SPSR_BIT
) != (PSR_c
|PSR_f
),
13022 _("'APSR', 'CPSR' or 'SPSR' expected"));
13024 inst
.instruction
|= (flags
& SPSR_BIT
) >> 2;
13025 inst
.instruction
|= inst
.operands
[1].imm
& 0xff;
13026 inst
.instruction
|= 0xf0000;
13036 if (do_vfp_nsyn_msr () == SUCCESS
)
13039 constraint (!inst
.operands
[1].isreg
,
13040 _("Thumb encoding does not support an immediate here"));
13042 if (inst
.operands
[0].isreg
)
13043 flags
= (int)(inst
.operands
[0].reg
);
13045 flags
= inst
.operands
[0].imm
;
13047 if (ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_m
))
13049 int bits
= inst
.operands
[0].imm
& (PSR_c
|PSR_x
|PSR_s
|PSR_f
|SPSR_BIT
);
13051 /* PR gas/12698: The constraint is only applied for m_profile.
13052 If the user has specified -march=all, we want to ignore it as
13053 we are building for any CPU type, including non-m variants. */
13054 bfd_boolean m_profile
=
13055 !ARM_FEATURE_CORE_EQUAL (selected_cpu
, arm_arch_any
);
13056 constraint (((ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_v6_dsp
)
13057 && (bits
& ~(PSR_s
| PSR_f
)) != 0)
13058 || (!ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_v6_dsp
)
13059 && bits
!= PSR_f
)) && m_profile
,
13060 _("selected processor does not support requested special "
13061 "purpose register"));
13064 constraint ((flags
& 0xff) != 0, _("selected processor does not support "
13065 "requested special purpose register"));
13067 Rn
= inst
.operands
[1].reg
;
13068 reject_bad_reg (Rn
);
13070 inst
.instruction
|= (flags
& SPSR_BIT
) >> 2;
13071 inst
.instruction
|= (flags
& 0xf0000) >> 8;
13072 inst
.instruction
|= (flags
& 0x300) >> 4;
13073 inst
.instruction
|= (flags
& 0xff);
13074 inst
.instruction
|= Rn
<< 16;
13080 bfd_boolean narrow
;
13081 unsigned Rd
, Rn
, Rm
;
13083 if (!inst
.operands
[2].present
)
13084 inst
.operands
[2].reg
= inst
.operands
[0].reg
;
13086 Rd
= inst
.operands
[0].reg
;
13087 Rn
= inst
.operands
[1].reg
;
13088 Rm
= inst
.operands
[2].reg
;
13090 if (unified_syntax
)
13092 if (inst
.size_req
== 4
13098 else if (inst
.instruction
== T_MNEM_muls
)
13099 narrow
= !in_pred_block ();
13101 narrow
= in_pred_block ();
13105 constraint (inst
.instruction
== T_MNEM_muls
, BAD_THUMB32
);
13106 constraint (Rn
> 7 || Rm
> 7,
13113 /* 16-bit MULS/Conditional MUL. */
13114 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
13115 inst
.instruction
|= Rd
;
13118 inst
.instruction
|= Rm
<< 3;
13120 inst
.instruction
|= Rn
<< 3;
13122 constraint (1, _("dest must overlap one source register"));
13126 constraint (inst
.instruction
!= T_MNEM_mul
,
13127 _("Thumb-2 MUL must not set flags"));
13129 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
13130 inst
.instruction
|= Rd
<< 8;
13131 inst
.instruction
|= Rn
<< 16;
13132 inst
.instruction
|= Rm
<< 0;
13134 reject_bad_reg (Rd
);
13135 reject_bad_reg (Rn
);
13136 reject_bad_reg (Rm
);
13143 unsigned RdLo
, RdHi
, Rn
, Rm
;
13145 RdLo
= inst
.operands
[0].reg
;
13146 RdHi
= inst
.operands
[1].reg
;
13147 Rn
= inst
.operands
[2].reg
;
13148 Rm
= inst
.operands
[3].reg
;
13150 reject_bad_reg (RdLo
);
13151 reject_bad_reg (RdHi
);
13152 reject_bad_reg (Rn
);
13153 reject_bad_reg (Rm
);
13155 inst
.instruction
|= RdLo
<< 12;
13156 inst
.instruction
|= RdHi
<< 8;
13157 inst
.instruction
|= Rn
<< 16;
13158 inst
.instruction
|= Rm
;
13161 as_tsktsk (_("rdhi and rdlo must be different"));
13167 set_pred_insn_type (NEUTRAL_IT_INSN
);
13169 if (unified_syntax
)
13171 if (inst
.size_req
== 4 || inst
.operands
[0].imm
> 15)
13173 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
13174 inst
.instruction
|= inst
.operands
[0].imm
;
13178 /* PR9722: Check for Thumb2 availability before
13179 generating a thumb2 nop instruction. */
13180 if (ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_v6t2
))
13182 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
13183 inst
.instruction
|= inst
.operands
[0].imm
<< 4;
13186 inst
.instruction
= 0x46c0;
13191 constraint (inst
.operands
[0].present
,
13192 _("Thumb does not support NOP with hints"));
13193 inst
.instruction
= 0x46c0;
13200 if (unified_syntax
)
13202 bfd_boolean narrow
;
13204 if (THUMB_SETS_FLAGS (inst
.instruction
))
13205 narrow
= !in_pred_block ();
13207 narrow
= in_pred_block ();
13208 if (inst
.operands
[0].reg
> 7 || inst
.operands
[1].reg
> 7)
13210 if (inst
.size_req
== 4)
13215 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
13216 inst
.instruction
|= inst
.operands
[0].reg
<< 8;
13217 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
13221 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
13222 inst
.instruction
|= inst
.operands
[0].reg
;
13223 inst
.instruction
|= inst
.operands
[1].reg
<< 3;
13228 constraint (inst
.operands
[0].reg
> 7 || inst
.operands
[1].reg
> 7,
13230 constraint (THUMB_SETS_FLAGS (inst
.instruction
), BAD_THUMB32
);
13232 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
13233 inst
.instruction
|= inst
.operands
[0].reg
;
13234 inst
.instruction
|= inst
.operands
[1].reg
<< 3;
13243 Rd
= inst
.operands
[0].reg
;
13244 Rn
= inst
.operands
[1].present
? inst
.operands
[1].reg
: Rd
;
13246 reject_bad_reg (Rd
);
13247 /* Rn == REG_SP is unpredictable; Rn == REG_PC is MVN. */
13248 reject_bad_reg (Rn
);
13250 inst
.instruction
|= Rd
<< 8;
13251 inst
.instruction
|= Rn
<< 16;
13253 if (!inst
.operands
[2].isreg
)
13255 inst
.instruction
= (inst
.instruction
& 0xe1ffffff) | 0x10000000;
13256 inst
.relocs
[0].type
= BFD_RELOC_ARM_T32_IMMEDIATE
;
13262 Rm
= inst
.operands
[2].reg
;
13263 reject_bad_reg (Rm
);
13265 constraint (inst
.operands
[2].shifted
13266 && inst
.operands
[2].immisreg
,
13267 _("shift must be constant"));
13268 encode_thumb32_shifted_operand (2);
13275 unsigned Rd
, Rn
, Rm
;
13277 Rd
= inst
.operands
[0].reg
;
13278 Rn
= inst
.operands
[1].reg
;
13279 Rm
= inst
.operands
[2].reg
;
13281 reject_bad_reg (Rd
);
13282 reject_bad_reg (Rn
);
13283 reject_bad_reg (Rm
);
13285 inst
.instruction
|= Rd
<< 8;
13286 inst
.instruction
|= Rn
<< 16;
13287 inst
.instruction
|= Rm
;
13288 if (inst
.operands
[3].present
)
13290 unsigned int val
= inst
.relocs
[0].exp
.X_add_number
;
13291 constraint (inst
.relocs
[0].exp
.X_op
!= O_constant
,
13292 _("expression too complex"));
13293 inst
.instruction
|= (val
& 0x1c) << 10;
13294 inst
.instruction
|= (val
& 0x03) << 6;
13301 if (!inst
.operands
[3].present
)
13305 inst
.instruction
&= ~0x00000020;
13307 /* PR 10168. Swap the Rm and Rn registers. */
13308 Rtmp
= inst
.operands
[1].reg
;
13309 inst
.operands
[1].reg
= inst
.operands
[2].reg
;
13310 inst
.operands
[2].reg
= Rtmp
;
13318 if (inst
.operands
[0].immisreg
)
13319 reject_bad_reg (inst
.operands
[0].imm
);
13321 encode_thumb32_addr_mode (0, /*is_t=*/FALSE
, /*is_d=*/FALSE
);
13325 do_t_push_pop (void)
13329 constraint (inst
.operands
[0].writeback
,
13330 _("push/pop do not support {reglist}^"));
13331 constraint (inst
.relocs
[0].type
!= BFD_RELOC_UNUSED
,
13332 _("expression too complex"));
13334 mask
= inst
.operands
[0].imm
;
13335 if (inst
.size_req
!= 4 && (mask
& ~0xff) == 0)
13336 inst
.instruction
= THUMB_OP16 (inst
.instruction
) | mask
;
13337 else if (inst
.size_req
!= 4
13338 && (mask
& ~0xff) == (1U << (inst
.instruction
== T_MNEM_push
13339 ? REG_LR
: REG_PC
)))
13341 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
13342 inst
.instruction
|= THUMB_PP_PC_LR
;
13343 inst
.instruction
|= mask
& 0xff;
13345 else if (unified_syntax
)
13347 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
13348 encode_thumb2_multi (TRUE
/* do_io */, 13, mask
, TRUE
);
13352 inst
.error
= _("invalid register list to push/pop instruction");
13360 if (unified_syntax
)
13361 encode_thumb2_multi (FALSE
/* do_io */, -1, inst
.operands
[0].imm
, FALSE
);
13364 inst
.error
= _("invalid register list to push/pop instruction");
13370 do_t_vscclrm (void)
13372 if (inst
.operands
[0].issingle
)
13374 inst
.instruction
|= (inst
.operands
[0].reg
& 0x1) << 22;
13375 inst
.instruction
|= (inst
.operands
[0].reg
& 0x1e) << 11;
13376 inst
.instruction
|= inst
.operands
[0].imm
;
13380 inst
.instruction
|= (inst
.operands
[0].reg
& 0x10) << 18;
13381 inst
.instruction
|= (inst
.operands
[0].reg
& 0xf) << 12;
13382 inst
.instruction
|= 1 << 8;
13383 inst
.instruction
|= inst
.operands
[0].imm
<< 1;
13392 Rd
= inst
.operands
[0].reg
;
13393 Rm
= inst
.operands
[1].reg
;
13395 reject_bad_reg (Rd
);
13396 reject_bad_reg (Rm
);
13398 inst
.instruction
|= Rd
<< 8;
13399 inst
.instruction
|= Rm
<< 16;
13400 inst
.instruction
|= Rm
;
13408 Rd
= inst
.operands
[0].reg
;
13409 Rm
= inst
.operands
[1].reg
;
13411 reject_bad_reg (Rd
);
13412 reject_bad_reg (Rm
);
13414 if (Rd
<= 7 && Rm
<= 7
13415 && inst
.size_req
!= 4)
13417 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
13418 inst
.instruction
|= Rd
;
13419 inst
.instruction
|= Rm
<< 3;
13421 else if (unified_syntax
)
13423 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
13424 inst
.instruction
|= Rd
<< 8;
13425 inst
.instruction
|= Rm
<< 16;
13426 inst
.instruction
|= Rm
;
13429 inst
.error
= BAD_HIREG
;
13437 Rd
= inst
.operands
[0].reg
;
13438 Rm
= inst
.operands
[1].reg
;
13440 reject_bad_reg (Rd
);
13441 reject_bad_reg (Rm
);
13443 inst
.instruction
|= Rd
<< 8;
13444 inst
.instruction
|= Rm
;
13452 Rd
= inst
.operands
[0].reg
;
13453 Rs
= (inst
.operands
[1].present
13454 ? inst
.operands
[1].reg
/* Rd, Rs, foo */
13455 : inst
.operands
[0].reg
); /* Rd, foo -> Rd, Rd, foo */
13457 reject_bad_reg (Rd
);
13458 reject_bad_reg (Rs
);
13459 if (inst
.operands
[2].isreg
)
13460 reject_bad_reg (inst
.operands
[2].reg
);
13462 inst
.instruction
|= Rd
<< 8;
13463 inst
.instruction
|= Rs
<< 16;
13464 if (!inst
.operands
[2].isreg
)
13466 bfd_boolean narrow
;
13468 if ((inst
.instruction
& 0x00100000) != 0)
13469 narrow
= !in_pred_block ();
13471 narrow
= in_pred_block ();
13473 if (Rd
> 7 || Rs
> 7)
13476 if (inst
.size_req
== 4 || !unified_syntax
)
13479 if (inst
.relocs
[0].exp
.X_op
!= O_constant
13480 || inst
.relocs
[0].exp
.X_add_number
!= 0)
13483 /* Turn rsb #0 into 16-bit neg. We should probably do this via
13484 relaxation, but it doesn't seem worth the hassle. */
13487 inst
.relocs
[0].type
= BFD_RELOC_UNUSED
;
13488 inst
.instruction
= THUMB_OP16 (T_MNEM_negs
);
13489 inst
.instruction
|= Rs
<< 3;
13490 inst
.instruction
|= Rd
;
13494 inst
.instruction
= (inst
.instruction
& 0xe1ffffff) | 0x10000000;
13495 inst
.relocs
[0].type
= BFD_RELOC_ARM_T32_IMMEDIATE
;
13499 encode_thumb32_shifted_operand (2);
13505 if (warn_on_deprecated
13506 && ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v8
))
13507 as_tsktsk (_("setend use is deprecated for ARMv8"));
13509 set_pred_insn_type (OUTSIDE_PRED_INSN
);
13510 if (inst
.operands
[0].imm
)
13511 inst
.instruction
|= 0x8;
13517 if (!inst
.operands
[1].present
)
13518 inst
.operands
[1].reg
= inst
.operands
[0].reg
;
13520 if (unified_syntax
)
13522 bfd_boolean narrow
;
13525 switch (inst
.instruction
)
13528 case T_MNEM_asrs
: shift_kind
= SHIFT_ASR
; break;
13530 case T_MNEM_lsls
: shift_kind
= SHIFT_LSL
; break;
13532 case T_MNEM_lsrs
: shift_kind
= SHIFT_LSR
; break;
13534 case T_MNEM_rors
: shift_kind
= SHIFT_ROR
; break;
13538 if (THUMB_SETS_FLAGS (inst
.instruction
))
13539 narrow
= !in_pred_block ();
13541 narrow
= in_pred_block ();
13542 if (inst
.operands
[0].reg
> 7 || inst
.operands
[1].reg
> 7)
13544 if (!inst
.operands
[2].isreg
&& shift_kind
== SHIFT_ROR
)
13546 if (inst
.operands
[2].isreg
13547 && (inst
.operands
[1].reg
!= inst
.operands
[0].reg
13548 || inst
.operands
[2].reg
> 7))
13550 if (inst
.size_req
== 4)
13553 reject_bad_reg (inst
.operands
[0].reg
);
13554 reject_bad_reg (inst
.operands
[1].reg
);
13558 if (inst
.operands
[2].isreg
)
13560 reject_bad_reg (inst
.operands
[2].reg
);
13561 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
13562 inst
.instruction
|= inst
.operands
[0].reg
<< 8;
13563 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
13564 inst
.instruction
|= inst
.operands
[2].reg
;
13566 /* PR 12854: Error on extraneous shifts. */
13567 constraint (inst
.operands
[2].shifted
,
13568 _("extraneous shift as part of operand to shift insn"));
13572 inst
.operands
[1].shifted
= 1;
13573 inst
.operands
[1].shift_kind
= shift_kind
;
13574 inst
.instruction
= THUMB_OP32 (THUMB_SETS_FLAGS (inst
.instruction
)
13575 ? T_MNEM_movs
: T_MNEM_mov
);
13576 inst
.instruction
|= inst
.operands
[0].reg
<< 8;
13577 encode_thumb32_shifted_operand (1);
13578 /* Prevent the incorrect generation of an ARM_IMMEDIATE fixup. */
13579 inst
.relocs
[0].type
= BFD_RELOC_UNUSED
;
13584 if (inst
.operands
[2].isreg
)
13586 switch (shift_kind
)
13588 case SHIFT_ASR
: inst
.instruction
= T_OPCODE_ASR_R
; break;
13589 case SHIFT_LSL
: inst
.instruction
= T_OPCODE_LSL_R
; break;
13590 case SHIFT_LSR
: inst
.instruction
= T_OPCODE_LSR_R
; break;
13591 case SHIFT_ROR
: inst
.instruction
= T_OPCODE_ROR_R
; break;
13595 inst
.instruction
|= inst
.operands
[0].reg
;
13596 inst
.instruction
|= inst
.operands
[2].reg
<< 3;
13598 /* PR 12854: Error on extraneous shifts. */
13599 constraint (inst
.operands
[2].shifted
,
13600 _("extraneous shift as part of operand to shift insn"));
13604 switch (shift_kind
)
13606 case SHIFT_ASR
: inst
.instruction
= T_OPCODE_ASR_I
; break;
13607 case SHIFT_LSL
: inst
.instruction
= T_OPCODE_LSL_I
; break;
13608 case SHIFT_LSR
: inst
.instruction
= T_OPCODE_LSR_I
; break;
13611 inst
.relocs
[0].type
= BFD_RELOC_ARM_THUMB_SHIFT
;
13612 inst
.instruction
|= inst
.operands
[0].reg
;
13613 inst
.instruction
|= inst
.operands
[1].reg
<< 3;
13619 constraint (inst
.operands
[0].reg
> 7
13620 || inst
.operands
[1].reg
> 7, BAD_HIREG
);
13621 constraint (THUMB_SETS_FLAGS (inst
.instruction
), BAD_THUMB32
);
13623 if (inst
.operands
[2].isreg
) /* Rd, {Rs,} Rn */
13625 constraint (inst
.operands
[2].reg
> 7, BAD_HIREG
);
13626 constraint (inst
.operands
[0].reg
!= inst
.operands
[1].reg
,
13627 _("source1 and dest must be same register"));
13629 switch (inst
.instruction
)
13631 case T_MNEM_asr
: inst
.instruction
= T_OPCODE_ASR_R
; break;
13632 case T_MNEM_lsl
: inst
.instruction
= T_OPCODE_LSL_R
; break;
13633 case T_MNEM_lsr
: inst
.instruction
= T_OPCODE_LSR_R
; break;
13634 case T_MNEM_ror
: inst
.instruction
= T_OPCODE_ROR_R
; break;
13638 inst
.instruction
|= inst
.operands
[0].reg
;
13639 inst
.instruction
|= inst
.operands
[2].reg
<< 3;
13641 /* PR 12854: Error on extraneous shifts. */
13642 constraint (inst
.operands
[2].shifted
,
13643 _("extraneous shift as part of operand to shift insn"));
13647 switch (inst
.instruction
)
13649 case T_MNEM_asr
: inst
.instruction
= T_OPCODE_ASR_I
; break;
13650 case T_MNEM_lsl
: inst
.instruction
= T_OPCODE_LSL_I
; break;
13651 case T_MNEM_lsr
: inst
.instruction
= T_OPCODE_LSR_I
; break;
13652 case T_MNEM_ror
: inst
.error
= _("ror #imm not supported"); return;
13655 inst
.relocs
[0].type
= BFD_RELOC_ARM_THUMB_SHIFT
;
13656 inst
.instruction
|= inst
.operands
[0].reg
;
13657 inst
.instruction
|= inst
.operands
[1].reg
<< 3;
13665 unsigned Rd
, Rn
, Rm
;
13667 Rd
= inst
.operands
[0].reg
;
13668 Rn
= inst
.operands
[1].reg
;
13669 Rm
= inst
.operands
[2].reg
;
13671 reject_bad_reg (Rd
);
13672 reject_bad_reg (Rn
);
13673 reject_bad_reg (Rm
);
13675 inst
.instruction
|= Rd
<< 8;
13676 inst
.instruction
|= Rn
<< 16;
13677 inst
.instruction
|= Rm
;
13683 unsigned Rd
, Rn
, Rm
;
13685 Rd
= inst
.operands
[0].reg
;
13686 Rm
= inst
.operands
[1].reg
;
13687 Rn
= inst
.operands
[2].reg
;
13689 reject_bad_reg (Rd
);
13690 reject_bad_reg (Rn
);
13691 reject_bad_reg (Rm
);
13693 inst
.instruction
|= Rd
<< 8;
13694 inst
.instruction
|= Rn
<< 16;
13695 inst
.instruction
|= Rm
;
13701 unsigned int value
= inst
.relocs
[0].exp
.X_add_number
;
13702 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v7a
),
13703 _("SMC is not permitted on this architecture"));
13704 constraint (inst
.relocs
[0].exp
.X_op
!= O_constant
,
13705 _("expression too complex"));
13706 inst
.relocs
[0].type
= BFD_RELOC_UNUSED
;
13707 inst
.instruction
|= (value
& 0xf000) >> 12;
13708 inst
.instruction
|= (value
& 0x0ff0);
13709 inst
.instruction
|= (value
& 0x000f) << 16;
13710 /* PR gas/15623: SMC instructions must be last in an IT block. */
13711 set_pred_insn_type_last ();
13717 unsigned int value
= inst
.relocs
[0].exp
.X_add_number
;
13719 inst
.relocs
[0].type
= BFD_RELOC_UNUSED
;
13720 inst
.instruction
|= (value
& 0x0fff);
13721 inst
.instruction
|= (value
& 0xf000) << 4;
13725 do_t_ssat_usat (int bias
)
13729 Rd
= inst
.operands
[0].reg
;
13730 Rn
= inst
.operands
[2].reg
;
13732 reject_bad_reg (Rd
);
13733 reject_bad_reg (Rn
);
13735 inst
.instruction
|= Rd
<< 8;
13736 inst
.instruction
|= inst
.operands
[1].imm
- bias
;
13737 inst
.instruction
|= Rn
<< 16;
13739 if (inst
.operands
[3].present
)
13741 offsetT shift_amount
= inst
.relocs
[0].exp
.X_add_number
;
13743 inst
.relocs
[0].type
= BFD_RELOC_UNUSED
;
13745 constraint (inst
.relocs
[0].exp
.X_op
!= O_constant
,
13746 _("expression too complex"));
13748 if (shift_amount
!= 0)
13750 constraint (shift_amount
> 31,
13751 _("shift expression is too large"));
13753 if (inst
.operands
[3].shift_kind
== SHIFT_ASR
)
13754 inst
.instruction
|= 0x00200000; /* sh bit. */
13756 inst
.instruction
|= (shift_amount
& 0x1c) << 10;
13757 inst
.instruction
|= (shift_amount
& 0x03) << 6;
13765 do_t_ssat_usat (1);
13773 Rd
= inst
.operands
[0].reg
;
13774 Rn
= inst
.operands
[2].reg
;
13776 reject_bad_reg (Rd
);
13777 reject_bad_reg (Rn
);
13779 inst
.instruction
|= Rd
<< 8;
13780 inst
.instruction
|= inst
.operands
[1].imm
- 1;
13781 inst
.instruction
|= Rn
<< 16;
13787 constraint (!inst
.operands
[2].isreg
|| !inst
.operands
[2].preind
13788 || inst
.operands
[2].postind
|| inst
.operands
[2].writeback
13789 || inst
.operands
[2].immisreg
|| inst
.operands
[2].shifted
13790 || inst
.operands
[2].negative
,
13793 constraint (inst
.operands
[2].reg
== REG_PC
, BAD_PC
);
13795 inst
.instruction
|= inst
.operands
[0].reg
<< 8;
13796 inst
.instruction
|= inst
.operands
[1].reg
<< 12;
13797 inst
.instruction
|= inst
.operands
[2].reg
<< 16;
13798 inst
.relocs
[0].type
= BFD_RELOC_ARM_T32_OFFSET_U8
;
13804 if (!inst
.operands
[2].present
)
13805 inst
.operands
[2].reg
= inst
.operands
[1].reg
+ 1;
13807 constraint (inst
.operands
[0].reg
== inst
.operands
[1].reg
13808 || inst
.operands
[0].reg
== inst
.operands
[2].reg
13809 || inst
.operands
[0].reg
== inst
.operands
[3].reg
,
13812 inst
.instruction
|= inst
.operands
[0].reg
;
13813 inst
.instruction
|= inst
.operands
[1].reg
<< 12;
13814 inst
.instruction
|= inst
.operands
[2].reg
<< 8;
13815 inst
.instruction
|= inst
.operands
[3].reg
<< 16;
13821 unsigned Rd
, Rn
, Rm
;
13823 Rd
= inst
.operands
[0].reg
;
13824 Rn
= inst
.operands
[1].reg
;
13825 Rm
= inst
.operands
[2].reg
;
13827 reject_bad_reg (Rd
);
13828 reject_bad_reg (Rn
);
13829 reject_bad_reg (Rm
);
13831 inst
.instruction
|= Rd
<< 8;
13832 inst
.instruction
|= Rn
<< 16;
13833 inst
.instruction
|= Rm
;
13834 inst
.instruction
|= inst
.operands
[3].imm
<< 4;
13842 Rd
= inst
.operands
[0].reg
;
13843 Rm
= inst
.operands
[1].reg
;
13845 reject_bad_reg (Rd
);
13846 reject_bad_reg (Rm
);
13848 if (inst
.instruction
<= 0xffff
13849 && inst
.size_req
!= 4
13850 && Rd
<= 7 && Rm
<= 7
13851 && (!inst
.operands
[2].present
|| inst
.operands
[2].imm
== 0))
13853 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
13854 inst
.instruction
|= Rd
;
13855 inst
.instruction
|= Rm
<< 3;
13857 else if (unified_syntax
)
13859 if (inst
.instruction
<= 0xffff)
13860 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
13861 inst
.instruction
|= Rd
<< 8;
13862 inst
.instruction
|= Rm
;
13863 inst
.instruction
|= inst
.operands
[2].imm
<< 4;
13867 constraint (inst
.operands
[2].present
&& inst
.operands
[2].imm
!= 0,
13868 _("Thumb encoding does not support rotation"));
13869 constraint (1, BAD_HIREG
);
13876 inst
.relocs
[0].type
= BFD_RELOC_ARM_SWI
;
13885 half
= (inst
.instruction
& 0x10) != 0;
13886 set_pred_insn_type_last ();
13887 constraint (inst
.operands
[0].immisreg
,
13888 _("instruction requires register index"));
13890 Rn
= inst
.operands
[0].reg
;
13891 Rm
= inst
.operands
[0].imm
;
13893 if (!ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v8
))
13894 constraint (Rn
== REG_SP
, BAD_SP
);
13895 reject_bad_reg (Rm
);
13897 constraint (!half
&& inst
.operands
[0].shifted
,
13898 _("instruction does not allow shifted index"));
13899 inst
.instruction
|= (Rn
<< 16) | Rm
;
13905 if (!inst
.operands
[0].present
)
13906 inst
.operands
[0].imm
= 0;
13908 if ((unsigned int) inst
.operands
[0].imm
> 255 || inst
.size_req
== 4)
13910 constraint (inst
.size_req
== 2,
13911 _("immediate value out of range"));
13912 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
13913 inst
.instruction
|= (inst
.operands
[0].imm
& 0xf000u
) << 4;
13914 inst
.instruction
|= (inst
.operands
[0].imm
& 0x0fffu
) << 0;
13918 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
13919 inst
.instruction
|= inst
.operands
[0].imm
;
13922 set_pred_insn_type (NEUTRAL_IT_INSN
);
13929 do_t_ssat_usat (0);
13937 Rd
= inst
.operands
[0].reg
;
13938 Rn
= inst
.operands
[2].reg
;
13940 reject_bad_reg (Rd
);
13941 reject_bad_reg (Rn
);
13943 inst
.instruction
|= Rd
<< 8;
13944 inst
.instruction
|= inst
.operands
[1].imm
;
13945 inst
.instruction
|= Rn
<< 16;
13948 /* Checking the range of the branch offset (VAL) with NBITS bits
13949 and IS_SIGNED signedness. Also checks the LSB to be 0. */
13951 v8_1_branch_value_check (int val
, int nbits
, int is_signed
)
13953 gas_assert (nbits
> 0 && nbits
<= 32);
13956 int cmp
= (1 << (nbits
- 1));
13957 if ((val
< -cmp
) || (val
>= cmp
) || (val
& 0x01))
13962 if ((val
<= 0) || (val
>= (1 << nbits
)) || (val
& 0x1))
13968 /* For branches in Armv8.1-M Mainline. */
13970 do_t_branch_future (void)
13972 unsigned long insn
= inst
.instruction
;
13974 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
13975 if (inst
.operands
[0].hasreloc
== 0)
13977 if (v8_1_branch_value_check (inst
.operands
[0].imm
, 5, FALSE
) == FAIL
)
13978 as_bad (BAD_BRANCH_OFF
);
13980 inst
.instruction
|= ((inst
.operands
[0].imm
& 0x1f) >> 1) << 23;
13984 inst
.relocs
[0].type
= BFD_RELOC_THUMB_PCREL_BRANCH5
;
13985 inst
.relocs
[0].pc_rel
= 1;
13991 if (inst
.operands
[1].hasreloc
== 0)
13993 int val
= inst
.operands
[1].imm
;
13994 if (v8_1_branch_value_check (inst
.operands
[1].imm
, 17, TRUE
) == FAIL
)
13995 as_bad (BAD_BRANCH_OFF
);
13997 int immA
= (val
& 0x0001f000) >> 12;
13998 int immB
= (val
& 0x00000ffc) >> 2;
13999 int immC
= (val
& 0x00000002) >> 1;
14000 inst
.instruction
|= (immA
<< 16) | (immB
<< 1) | (immC
<< 11);
14004 inst
.relocs
[1].type
= BFD_RELOC_ARM_THUMB_BF17
;
14005 inst
.relocs
[1].pc_rel
= 1;
14010 if (inst
.operands
[1].hasreloc
== 0)
14012 int val
= inst
.operands
[1].imm
;
14013 if (v8_1_branch_value_check (inst
.operands
[1].imm
, 19, TRUE
) == FAIL
)
14014 as_bad (BAD_BRANCH_OFF
);
14016 int immA
= (val
& 0x0007f000) >> 12;
14017 int immB
= (val
& 0x00000ffc) >> 2;
14018 int immC
= (val
& 0x00000002) >> 1;
14019 inst
.instruction
|= (immA
<< 16) | (immB
<< 1) | (immC
<< 11);
14023 inst
.relocs
[1].type
= BFD_RELOC_ARM_THUMB_BF19
;
14024 inst
.relocs
[1].pc_rel
= 1;
14028 case T_MNEM_bfcsel
:
14030 if (inst
.operands
[1].hasreloc
== 0)
14032 int val
= inst
.operands
[1].imm
;
14033 int immA
= (val
& 0x00001000) >> 12;
14034 int immB
= (val
& 0x00000ffc) >> 2;
14035 int immC
= (val
& 0x00000002) >> 1;
14036 inst
.instruction
|= (immA
<< 16) | (immB
<< 1) | (immC
<< 11);
14040 inst
.relocs
[1].type
= BFD_RELOC_ARM_THUMB_BF13
;
14041 inst
.relocs
[1].pc_rel
= 1;
14045 if (inst
.operands
[2].hasreloc
== 0)
14047 constraint ((inst
.operands
[0].hasreloc
!= 0), BAD_ARGS
);
14048 int val2
= inst
.operands
[2].imm
;
14049 int val0
= inst
.operands
[0].imm
& 0x1f;
14050 int diff
= val2
- val0
;
14052 inst
.instruction
|= 1 << 17; /* T bit. */
14053 else if (diff
!= 2)
14054 as_bad (_("out of range label-relative fixup value"));
14058 constraint ((inst
.operands
[0].hasreloc
== 0), BAD_ARGS
);
14059 inst
.relocs
[2].type
= BFD_RELOC_THUMB_PCREL_BFCSEL
;
14060 inst
.relocs
[2].pc_rel
= 1;
14064 constraint (inst
.cond
!= COND_ALWAYS
, BAD_COND
);
14065 inst
.instruction
|= (inst
.operands
[3].imm
& 0xf) << 18;
14070 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
14077 /* Helper function for do_t_loloop to handle relocations. */
14079 v8_1_loop_reloc (int is_le
)
14081 if (inst
.relocs
[0].exp
.X_op
== O_constant
)
14083 int value
= inst
.relocs
[0].exp
.X_add_number
;
14084 value
= (is_le
) ? -value
: value
;
14086 if (v8_1_branch_value_check (value
, 12, FALSE
) == FAIL
)
14087 as_bad (BAD_BRANCH_OFF
);
14091 immh
= (value
& 0x00000ffc) >> 2;
14092 imml
= (value
& 0x00000002) >> 1;
14094 inst
.instruction
|= (imml
<< 11) | (immh
<< 1);
14098 inst
.relocs
[0].type
= BFD_RELOC_ARM_THUMB_LOOP12
;
14099 inst
.relocs
[0].pc_rel
= 1;
14103 /* To handle the Scalar Low Overhead Loop instructions
14104 in Armv8.1-M Mainline. */
14108 unsigned long insn
= inst
.instruction
;
14110 set_pred_insn_type (OUTSIDE_PRED_INSN
);
14111 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
14117 if (!inst
.operands
[0].present
)
14118 inst
.instruction
|= 1 << 21;
14120 v8_1_loop_reloc (TRUE
);
14124 v8_1_loop_reloc (FALSE
);
14125 /* Fall through. */
14127 constraint (inst
.operands
[1].isreg
!= 1, BAD_ARGS
);
14128 inst
.instruction
|= (inst
.operands
[1].reg
<< 16);
14135 /* MVE instruction encoder helpers. */
14136 #define M_MNEM_vabav 0xee800f01
14137 #define M_MNEM_vmladav 0xeef00e00
14138 #define M_MNEM_vmladava 0xeef00e20
14139 #define M_MNEM_vmladavx 0xeef01e00
14140 #define M_MNEM_vmladavax 0xeef01e20
14141 #define M_MNEM_vmlsdav 0xeef00e01
14142 #define M_MNEM_vmlsdava 0xeef00e21
14143 #define M_MNEM_vmlsdavx 0xeef01e01
14144 #define M_MNEM_vmlsdavax 0xeef01e21
14145 #define M_MNEM_vmullt 0xee011e00
14146 #define M_MNEM_vmullb 0xee010e00
14147 #define M_MNEM_vst20 0xfc801e00
14148 #define M_MNEM_vst21 0xfc801e20
14149 #define M_MNEM_vst40 0xfc801e01
14150 #define M_MNEM_vst41 0xfc801e21
14151 #define M_MNEM_vst42 0xfc801e41
14152 #define M_MNEM_vst43 0xfc801e61
14153 #define M_MNEM_vld20 0xfc901e00
14154 #define M_MNEM_vld21 0xfc901e20
14155 #define M_MNEM_vld40 0xfc901e01
14156 #define M_MNEM_vld41 0xfc901e21
14157 #define M_MNEM_vld42 0xfc901e41
14158 #define M_MNEM_vld43 0xfc901e61
14159 #define M_MNEM_vstrb 0xec000e00
14160 #define M_MNEM_vstrh 0xec000e10
14161 #define M_MNEM_vstrw 0xec000e40
14162 #define M_MNEM_vstrd 0xec000e50
14163 #define M_MNEM_vldrb 0xec100e00
14164 #define M_MNEM_vldrh 0xec100e10
14165 #define M_MNEM_vldrw 0xec100e40
14166 #define M_MNEM_vldrd 0xec100e50
14167 #define M_MNEM_vmovlt 0xeea01f40
14168 #define M_MNEM_vmovlb 0xeea00f40
14169 #define M_MNEM_vmovnt 0xfe311e81
14170 #define M_MNEM_vmovnb 0xfe310e81
14171 #define M_MNEM_vadc 0xee300f00
14172 #define M_MNEM_vadci 0xee301f00
14173 #define M_MNEM_vbrsr 0xfe011e60
14174 #define M_MNEM_vaddlv 0xee890f00
14175 #define M_MNEM_vaddlva 0xee890f20
14176 #define M_MNEM_vaddv 0xeef10f00
14177 #define M_MNEM_vaddva 0xeef10f20
14178 #define M_MNEM_vddup 0xee011f6e
14179 #define M_MNEM_vdwdup 0xee011f60
14180 #define M_MNEM_vidup 0xee010f6e
14181 #define M_MNEM_viwdup 0xee010f60
14182 #define M_MNEM_vmaxv 0xeee20f00
14183 #define M_MNEM_vmaxav 0xeee00f00
14184 #define M_MNEM_vminv 0xeee20f80
14185 #define M_MNEM_vminav 0xeee00f80
14186 #define M_MNEM_vmlaldav 0xee800e00
14187 #define M_MNEM_vmlaldava 0xee800e20
14188 #define M_MNEM_vmlaldavx 0xee801e00
14189 #define M_MNEM_vmlaldavax 0xee801e20
14190 #define M_MNEM_vmlsldav 0xee800e01
14191 #define M_MNEM_vmlsldava 0xee800e21
14192 #define M_MNEM_vmlsldavx 0xee801e01
14193 #define M_MNEM_vmlsldavax 0xee801e21
14194 #define M_MNEM_vrmlaldavhx 0xee801f00
14195 #define M_MNEM_vrmlaldavhax 0xee801f20
14196 #define M_MNEM_vrmlsldavh 0xfe800e01
14197 #define M_MNEM_vrmlsldavha 0xfe800e21
14198 #define M_MNEM_vrmlsldavhx 0xfe801e01
14199 #define M_MNEM_vrmlsldavhax 0xfe801e21
14201 /* Neon instruction encoder helpers. */
14203 /* Encodings for the different types for various Neon opcodes. */
14205 /* An "invalid" code for the following tables. */
14208 struct neon_tab_entry
14211 unsigned float_or_poly
;
14212 unsigned scalar_or_imm
;
14215 /* Map overloaded Neon opcodes to their respective encodings. */
14216 #define NEON_ENC_TAB \
14217 X(vabd, 0x0000700, 0x1200d00, N_INV), \
14218 X(vabdl, 0x0800700, N_INV, N_INV), \
14219 X(vmax, 0x0000600, 0x0000f00, N_INV), \
14220 X(vmin, 0x0000610, 0x0200f00, N_INV), \
14221 X(vpadd, 0x0000b10, 0x1000d00, N_INV), \
14222 X(vpmax, 0x0000a00, 0x1000f00, N_INV), \
14223 X(vpmin, 0x0000a10, 0x1200f00, N_INV), \
14224 X(vadd, 0x0000800, 0x0000d00, N_INV), \
14225 X(vaddl, 0x0800000, N_INV, N_INV), \
14226 X(vsub, 0x1000800, 0x0200d00, N_INV), \
14227 X(vsubl, 0x0800200, N_INV, N_INV), \
14228 X(vceq, 0x1000810, 0x0000e00, 0x1b10100), \
14229 X(vcge, 0x0000310, 0x1000e00, 0x1b10080), \
14230 X(vcgt, 0x0000300, 0x1200e00, 0x1b10000), \
14231 /* Register variants of the following two instructions are encoded as
14232 vcge / vcgt with the operands reversed. */ \
14233 X(vclt, 0x0000300, 0x1200e00, 0x1b10200), \
14234 X(vcle, 0x0000310, 0x1000e00, 0x1b10180), \
14235 X(vfma, N_INV, 0x0000c10, N_INV), \
14236 X(vfms, N_INV, 0x0200c10, N_INV), \
14237 X(vmla, 0x0000900, 0x0000d10, 0x0800040), \
14238 X(vmls, 0x1000900, 0x0200d10, 0x0800440), \
14239 X(vmul, 0x0000910, 0x1000d10, 0x0800840), \
14240 X(vmull, 0x0800c00, 0x0800e00, 0x0800a40), /* polynomial not float. */ \
14241 X(vmlal, 0x0800800, N_INV, 0x0800240), \
14242 X(vmlsl, 0x0800a00, N_INV, 0x0800640), \
14243 X(vqdmlal, 0x0800900, N_INV, 0x0800340), \
14244 X(vqdmlsl, 0x0800b00, N_INV, 0x0800740), \
14245 X(vqdmull, 0x0800d00, N_INV, 0x0800b40), \
14246 X(vqdmulh, 0x0000b00, N_INV, 0x0800c40), \
14247 X(vqrdmulh, 0x1000b00, N_INV, 0x0800d40), \
14248 X(vqrdmlah, 0x3000b10, N_INV, 0x0800e40), \
14249 X(vqrdmlsh, 0x3000c10, N_INV, 0x0800f40), \
14250 X(vshl, 0x0000400, N_INV, 0x0800510), \
14251 X(vqshl, 0x0000410, N_INV, 0x0800710), \
14252 X(vand, 0x0000110, N_INV, 0x0800030), \
14253 X(vbic, 0x0100110, N_INV, 0x0800030), \
14254 X(veor, 0x1000110, N_INV, N_INV), \
14255 X(vorn, 0x0300110, N_INV, 0x0800010), \
14256 X(vorr, 0x0200110, N_INV, 0x0800010), \
14257 X(vmvn, 0x1b00580, N_INV, 0x0800030), \
14258 X(vshll, 0x1b20300, N_INV, 0x0800a10), /* max shift, immediate. */ \
14259 X(vcvt, 0x1b30600, N_INV, 0x0800e10), /* integer, fixed-point. */ \
14260 X(vdup, 0xe800b10, N_INV, 0x1b00c00), /* arm, scalar. */ \
14261 X(vld1, 0x0200000, 0x0a00000, 0x0a00c00), /* interlv, lane, dup. */ \
14262 X(vst1, 0x0000000, 0x0800000, N_INV), \
14263 X(vld2, 0x0200100, 0x0a00100, 0x0a00d00), \
14264 X(vst2, 0x0000100, 0x0800100, N_INV), \
14265 X(vld3, 0x0200200, 0x0a00200, 0x0a00e00), \
14266 X(vst3, 0x0000200, 0x0800200, N_INV), \
14267 X(vld4, 0x0200300, 0x0a00300, 0x0a00f00), \
14268 X(vst4, 0x0000300, 0x0800300, N_INV), \
14269 X(vmovn, 0x1b20200, N_INV, N_INV), \
14270 X(vtrn, 0x1b20080, N_INV, N_INV), \
14271 X(vqmovn, 0x1b20200, N_INV, N_INV), \
14272 X(vqmovun, 0x1b20240, N_INV, N_INV), \
14273 X(vnmul, 0xe200a40, 0xe200b40, N_INV), \
14274 X(vnmla, 0xe100a40, 0xe100b40, N_INV), \
14275 X(vnmls, 0xe100a00, 0xe100b00, N_INV), \
14276 X(vfnma, 0xe900a40, 0xe900b40, N_INV), \
14277 X(vfnms, 0xe900a00, 0xe900b00, N_INV), \
14278 X(vcmp, 0xeb40a40, 0xeb40b40, N_INV), \
14279 X(vcmpz, 0xeb50a40, 0xeb50b40, N_INV), \
14280 X(vcmpe, 0xeb40ac0, 0xeb40bc0, N_INV), \
14281 X(vcmpez, 0xeb50ac0, 0xeb50bc0, N_INV), \
14282 X(vseleq, 0xe000a00, N_INV, N_INV), \
14283 X(vselvs, 0xe100a00, N_INV, N_INV), \
14284 X(vselge, 0xe200a00, N_INV, N_INV), \
14285 X(vselgt, 0xe300a00, N_INV, N_INV), \
14286 X(vmaxnm, 0xe800a00, 0x3000f10, N_INV), \
14287 X(vminnm, 0xe800a40, 0x3200f10, N_INV), \
14288 X(vcvta, 0xebc0a40, 0x3bb0000, N_INV), \
14289 X(vrintr, 0xeb60a40, 0x3ba0400, N_INV), \
14290 X(vrinta, 0xeb80a40, 0x3ba0400, N_INV), \
14291 X(aes, 0x3b00300, N_INV, N_INV), \
14292 X(sha3op, 0x2000c00, N_INV, N_INV), \
14293 X(sha1h, 0x3b902c0, N_INV, N_INV), \
14294 X(sha2op, 0x3ba0380, N_INV, N_INV)
14298 #define X(OPC,I,F,S) N_MNEM_##OPC
14303 static const struct neon_tab_entry neon_enc_tab
[] =
14305 #define X(OPC,I,F,S) { (I), (F), (S) }
14310 /* Do not use these macros; instead, use NEON_ENCODE defined below. */
14311 #define NEON_ENC_INTEGER_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
14312 #define NEON_ENC_ARMREG_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
14313 #define NEON_ENC_POLY_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
14314 #define NEON_ENC_FLOAT_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
14315 #define NEON_ENC_SCALAR_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
14316 #define NEON_ENC_IMMED_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
14317 #define NEON_ENC_INTERLV_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
14318 #define NEON_ENC_LANE_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
14319 #define NEON_ENC_DUP_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
14320 #define NEON_ENC_SINGLE_(X) \
14321 ((neon_enc_tab[(X) & 0x0fffffff].integer) | ((X) & 0xf0000000))
14322 #define NEON_ENC_DOUBLE_(X) \
14323 ((neon_enc_tab[(X) & 0x0fffffff].float_or_poly) | ((X) & 0xf0000000))
14324 #define NEON_ENC_FPV8_(X) \
14325 ((neon_enc_tab[(X) & 0x0fffffff].integer) | ((X) & 0xf000000))
14327 #define NEON_ENCODE(type, inst) \
14330 inst.instruction = NEON_ENC_##type##_ (inst.instruction); \
14331 inst.is_neon = 1; \
14335 #define check_neon_suffixes \
14338 if (!inst.error && inst.vectype.elems > 0 && !inst.is_neon) \
14340 as_bad (_("invalid neon suffix for non neon instruction")); \
14346 /* Define shapes for instruction operands. The following mnemonic characters
14347 are used in this table:
14349 F - VFP S<n> register
14350 D - Neon D<n> register
14351 Q - Neon Q<n> register
14355 L - D<n> register list
14357 This table is used to generate various data:
14358 - enumerations of the form NS_DDR to be used as arguments to
14360 - a table classifying shapes into single, double, quad, mixed.
14361 - a table used to drive neon_select_shape. */
14363 #define NEON_SHAPE_DEF \
14364 X(4, (R, R, Q, Q), QUAD), \
14365 X(4, (Q, R, R, I), QUAD), \
14366 X(4, (R, R, S, S), QUAD), \
14367 X(4, (S, S, R, R), QUAD), \
14368 X(3, (Q, R, I), QUAD), \
14369 X(3, (I, Q, Q), QUAD), \
14370 X(3, (I, Q, R), QUAD), \
14371 X(3, (R, Q, Q), QUAD), \
14372 X(3, (D, D, D), DOUBLE), \
14373 X(3, (Q, Q, Q), QUAD), \
14374 X(3, (D, D, I), DOUBLE), \
14375 X(3, (Q, Q, I), QUAD), \
14376 X(3, (D, D, S), DOUBLE), \
14377 X(3, (Q, Q, S), QUAD), \
14378 X(3, (Q, Q, R), QUAD), \
14379 X(3, (R, R, Q), QUAD), \
14380 X(2, (R, Q), QUAD), \
14381 X(2, (D, D), DOUBLE), \
14382 X(2, (Q, Q), QUAD), \
14383 X(2, (D, S), DOUBLE), \
14384 X(2, (Q, S), QUAD), \
14385 X(2, (D, R), DOUBLE), \
14386 X(2, (Q, R), QUAD), \
14387 X(2, (D, I), DOUBLE), \
14388 X(2, (Q, I), QUAD), \
14389 X(3, (D, L, D), DOUBLE), \
14390 X(2, (D, Q), MIXED), \
14391 X(2, (Q, D), MIXED), \
14392 X(3, (D, Q, I), MIXED), \
14393 X(3, (Q, D, I), MIXED), \
14394 X(3, (Q, D, D), MIXED), \
14395 X(3, (D, Q, Q), MIXED), \
14396 X(3, (Q, Q, D), MIXED), \
14397 X(3, (Q, D, S), MIXED), \
14398 X(3, (D, Q, S), MIXED), \
14399 X(4, (D, D, D, I), DOUBLE), \
14400 X(4, (Q, Q, Q, I), QUAD), \
14401 X(4, (D, D, S, I), DOUBLE), \
14402 X(4, (Q, Q, S, I), QUAD), \
14403 X(2, (F, F), SINGLE), \
14404 X(3, (F, F, F), SINGLE), \
14405 X(2, (F, I), SINGLE), \
14406 X(2, (F, D), MIXED), \
14407 X(2, (D, F), MIXED), \
14408 X(3, (F, F, I), MIXED), \
14409 X(4, (R, R, F, F), SINGLE), \
14410 X(4, (F, F, R, R), SINGLE), \
14411 X(3, (D, R, R), DOUBLE), \
14412 X(3, (R, R, D), DOUBLE), \
14413 X(2, (S, R), SINGLE), \
14414 X(2, (R, S), SINGLE), \
14415 X(2, (F, R), SINGLE), \
14416 X(2, (R, F), SINGLE), \
14417 /* Half float shape supported so far. */\
14418 X (2, (H, D), MIXED), \
14419 X (2, (D, H), MIXED), \
14420 X (2, (H, F), MIXED), \
14421 X (2, (F, H), MIXED), \
14422 X (2, (H, H), HALF), \
14423 X (2, (H, R), HALF), \
14424 X (2, (R, H), HALF), \
14425 X (2, (H, I), HALF), \
14426 X (3, (H, H, H), HALF), \
14427 X (3, (H, F, I), MIXED), \
14428 X (3, (F, H, I), MIXED), \
14429 X (3, (D, H, H), MIXED), \
14430 X (3, (D, H, S), MIXED)
14432 #define S2(A,B) NS_##A##B
14433 #define S3(A,B,C) NS_##A##B##C
14434 #define S4(A,B,C,D) NS_##A##B##C##D
14436 #define X(N, L, C) S##N L
14449 enum neon_shape_class
14458 #define X(N, L, C) SC_##C
14460 static enum neon_shape_class neon_shape_class
[] =
14479 /* Register widths of above. */
14480 static unsigned neon_shape_el_size
[] =
14492 struct neon_shape_info
14495 enum neon_shape_el el
[NEON_MAX_TYPE_ELS
];
14498 #define S2(A,B) { SE_##A, SE_##B }
14499 #define S3(A,B,C) { SE_##A, SE_##B, SE_##C }
14500 #define S4(A,B,C,D) { SE_##A, SE_##B, SE_##C, SE_##D }
14502 #define X(N, L, C) { N, S##N L }
14504 static struct neon_shape_info neon_shape_tab
[] =
14514 /* Bit masks used in type checking given instructions.
14515 'N_EQK' means the type must be the same as (or based on in some way) the key
14516 type, which itself is marked with the 'N_KEY' bit. If the 'N_EQK' bit is
14517 set, various other bits can be set as well in order to modify the meaning of
14518 the type constraint. */
14520 enum neon_type_mask
14544 N_KEY
= 0x1000000, /* Key element (main type specifier). */
14545 N_EQK
= 0x2000000, /* Given operand has the same type & size as the key. */
14546 N_VFP
= 0x4000000, /* VFP mode: operand size must match register width. */
14547 N_UNT
= 0x8000000, /* Must be explicitly untyped. */
14548 N_DBL
= 0x0000001, /* If N_EQK, this operand is twice the size. */
14549 N_HLF
= 0x0000002, /* If N_EQK, this operand is half the size. */
14550 N_SGN
= 0x0000004, /* If N_EQK, this operand is forced to be signed. */
14551 N_UNS
= 0x0000008, /* If N_EQK, this operand is forced to be unsigned. */
14552 N_INT
= 0x0000010, /* If N_EQK, this operand is forced to be integer. */
14553 N_FLT
= 0x0000020, /* If N_EQK, this operand is forced to be float. */
14554 N_SIZ
= 0x0000040, /* If N_EQK, this operand is forced to be size-only. */
14556 N_MAX_NONSPECIAL
= N_P64
14559 #define N_ALLMODS (N_DBL | N_HLF | N_SGN | N_UNS | N_INT | N_FLT | N_SIZ)
14561 #define N_SU_ALL (N_S8 | N_S16 | N_S32 | N_S64 | N_U8 | N_U16 | N_U32 | N_U64)
14562 #define N_SU_32 (N_S8 | N_S16 | N_S32 | N_U8 | N_U16 | N_U32)
14563 #define N_SU_16_64 (N_S16 | N_S32 | N_S64 | N_U16 | N_U32 | N_U64)
14564 #define N_S_32 (N_S8 | N_S16 | N_S32)
14565 #define N_F_16_32 (N_F16 | N_F32)
14566 #define N_SUF_32 (N_SU_32 | N_F_16_32)
14567 #define N_I_ALL (N_I8 | N_I16 | N_I32 | N_I64)
14568 #define N_IF_32 (N_I8 | N_I16 | N_I32 | N_F16 | N_F32)
14569 #define N_F_ALL (N_F16 | N_F32 | N_F64)
14570 #define N_I_MVE (N_I8 | N_I16 | N_I32)
14571 #define N_F_MVE (N_F16 | N_F32)
14572 #define N_SU_MVE (N_S8 | N_S16 | N_S32 | N_U8 | N_U16 | N_U32)
14574 /* Pass this as the first type argument to neon_check_type to ignore types
14576 #define N_IGNORE_TYPE (N_KEY | N_EQK)
14578 /* Select a "shape" for the current instruction (describing register types or
14579 sizes) from a list of alternatives. Return NS_NULL if the current instruction
14580 doesn't fit. For non-polymorphic shapes, checking is usually done as a
14581 function of operand parsing, so this function doesn't need to be called.
14582 Shapes should be listed in order of decreasing length. */
14584 static enum neon_shape
14585 neon_select_shape (enum neon_shape shape
, ...)
14588 enum neon_shape first_shape
= shape
;
14590 /* Fix missing optional operands. FIXME: we don't know at this point how
14591 many arguments we should have, so this makes the assumption that we have
14592 > 1. This is true of all current Neon opcodes, I think, but may not be
14593 true in the future. */
14594 if (!inst
.operands
[1].present
)
14595 inst
.operands
[1] = inst
.operands
[0];
14597 va_start (ap
, shape
);
14599 for (; shape
!= NS_NULL
; shape
= (enum neon_shape
) va_arg (ap
, int))
14604 for (j
= 0; j
< neon_shape_tab
[shape
].els
; j
++)
14606 if (!inst
.operands
[j
].present
)
14612 switch (neon_shape_tab
[shape
].el
[j
])
14614 /* If a .f16, .16, .u16, .s16 type specifier is given over
14615 a VFP single precision register operand, it's essentially
14616 means only half of the register is used.
14618 If the type specifier is given after the mnemonics, the
14619 information is stored in inst.vectype. If the type specifier
14620 is given after register operand, the information is stored
14621 in inst.operands[].vectype.
14623 When there is only one type specifier, and all the register
14624 operands are the same type of hardware register, the type
14625 specifier applies to all register operands.
14627 If no type specifier is given, the shape is inferred from
14628 operand information.
14631 vadd.f16 s0, s1, s2: NS_HHH
14632 vabs.f16 s0, s1: NS_HH
14633 vmov.f16 s0, r1: NS_HR
14634 vmov.f16 r0, s1: NS_RH
14635 vcvt.f16 r0, s1: NS_RH
14636 vcvt.f16.s32 s2, s2, #29: NS_HFI
14637 vcvt.f16.s32 s2, s2: NS_HF
14640 if (!(inst
.operands
[j
].isreg
14641 && inst
.operands
[j
].isvec
14642 && inst
.operands
[j
].issingle
14643 && !inst
.operands
[j
].isquad
14644 && ((inst
.vectype
.elems
== 1
14645 && inst
.vectype
.el
[0].size
== 16)
14646 || (inst
.vectype
.elems
> 1
14647 && inst
.vectype
.el
[j
].size
== 16)
14648 || (inst
.vectype
.elems
== 0
14649 && inst
.operands
[j
].vectype
.type
!= NT_invtype
14650 && inst
.operands
[j
].vectype
.size
== 16))))
14655 if (!(inst
.operands
[j
].isreg
14656 && inst
.operands
[j
].isvec
14657 && inst
.operands
[j
].issingle
14658 && !inst
.operands
[j
].isquad
14659 && ((inst
.vectype
.elems
== 1 && inst
.vectype
.el
[0].size
== 32)
14660 || (inst
.vectype
.elems
> 1 && inst
.vectype
.el
[j
].size
== 32)
14661 || (inst
.vectype
.elems
== 0
14662 && (inst
.operands
[j
].vectype
.size
== 32
14663 || inst
.operands
[j
].vectype
.type
== NT_invtype
)))))
14668 if (!(inst
.operands
[j
].isreg
14669 && inst
.operands
[j
].isvec
14670 && !inst
.operands
[j
].isquad
14671 && !inst
.operands
[j
].issingle
))
14676 if (!(inst
.operands
[j
].isreg
14677 && !inst
.operands
[j
].isvec
))
14682 if (!(inst
.operands
[j
].isreg
14683 && inst
.operands
[j
].isvec
14684 && inst
.operands
[j
].isquad
14685 && !inst
.operands
[j
].issingle
))
14690 if (!(!inst
.operands
[j
].isreg
14691 && !inst
.operands
[j
].isscalar
))
14696 if (!(!inst
.operands
[j
].isreg
14697 && inst
.operands
[j
].isscalar
))
14707 if (matches
&& (j
>= ARM_IT_MAX_OPERANDS
|| !inst
.operands
[j
].present
))
14708 /* We've matched all the entries in the shape table, and we don't
14709 have any left over operands which have not been matched. */
14715 if (shape
== NS_NULL
&& first_shape
!= NS_NULL
)
14716 first_error (_("invalid instruction shape"));
14721 /* True if SHAPE is predominantly a quadword operation (most of the time, this
14722 means the Q bit should be set). */
14725 neon_quad (enum neon_shape shape
)
14727 return neon_shape_class
[shape
] == SC_QUAD
;
14731 neon_modify_type_size (unsigned typebits
, enum neon_el_type
*g_type
,
14734 /* Allow modification to be made to types which are constrained to be
14735 based on the key element, based on bits set alongside N_EQK. */
14736 if ((typebits
& N_EQK
) != 0)
14738 if ((typebits
& N_HLF
) != 0)
14740 else if ((typebits
& N_DBL
) != 0)
14742 if ((typebits
& N_SGN
) != 0)
14743 *g_type
= NT_signed
;
14744 else if ((typebits
& N_UNS
) != 0)
14745 *g_type
= NT_unsigned
;
14746 else if ((typebits
& N_INT
) != 0)
14747 *g_type
= NT_integer
;
14748 else if ((typebits
& N_FLT
) != 0)
14749 *g_type
= NT_float
;
14750 else if ((typebits
& N_SIZ
) != 0)
14751 *g_type
= NT_untyped
;
14755 /* Return operand OPNO promoted by bits set in THISARG. KEY should be the "key"
14756 operand type, i.e. the single type specified in a Neon instruction when it
14757 is the only one given. */
14759 static struct neon_type_el
14760 neon_type_promote (struct neon_type_el
*key
, unsigned thisarg
)
14762 struct neon_type_el dest
= *key
;
14764 gas_assert ((thisarg
& N_EQK
) != 0);
14766 neon_modify_type_size (thisarg
, &dest
.type
, &dest
.size
);
14771 /* Convert Neon type and size into compact bitmask representation. */
14773 static enum neon_type_mask
14774 type_chk_of_el_type (enum neon_el_type type
, unsigned size
)
14781 case 8: return N_8
;
14782 case 16: return N_16
;
14783 case 32: return N_32
;
14784 case 64: return N_64
;
14792 case 8: return N_I8
;
14793 case 16: return N_I16
;
14794 case 32: return N_I32
;
14795 case 64: return N_I64
;
14803 case 16: return N_F16
;
14804 case 32: return N_F32
;
14805 case 64: return N_F64
;
14813 case 8: return N_P8
;
14814 case 16: return N_P16
;
14815 case 64: return N_P64
;
14823 case 8: return N_S8
;
14824 case 16: return N_S16
;
14825 case 32: return N_S32
;
14826 case 64: return N_S64
;
14834 case 8: return N_U8
;
14835 case 16: return N_U16
;
14836 case 32: return N_U32
;
14837 case 64: return N_U64
;
14848 /* Convert compact Neon bitmask type representation to a type and size. Only
14849 handles the case where a single bit is set in the mask. */
14852 el_type_of_type_chk (enum neon_el_type
*type
, unsigned *size
,
14853 enum neon_type_mask mask
)
14855 if ((mask
& N_EQK
) != 0)
14858 if ((mask
& (N_S8
| N_U8
| N_I8
| N_8
| N_P8
)) != 0)
14860 else if ((mask
& (N_S16
| N_U16
| N_I16
| N_16
| N_F16
| N_P16
)) != 0)
14862 else if ((mask
& (N_S32
| N_U32
| N_I32
| N_32
| N_F32
)) != 0)
14864 else if ((mask
& (N_S64
| N_U64
| N_I64
| N_64
| N_F64
| N_P64
)) != 0)
14869 if ((mask
& (N_S8
| N_S16
| N_S32
| N_S64
)) != 0)
14871 else if ((mask
& (N_U8
| N_U16
| N_U32
| N_U64
)) != 0)
14872 *type
= NT_unsigned
;
14873 else if ((mask
& (N_I8
| N_I16
| N_I32
| N_I64
)) != 0)
14874 *type
= NT_integer
;
14875 else if ((mask
& (N_8
| N_16
| N_32
| N_64
)) != 0)
14876 *type
= NT_untyped
;
14877 else if ((mask
& (N_P8
| N_P16
| N_P64
)) != 0)
14879 else if ((mask
& (N_F_ALL
)) != 0)
14887 /* Modify a bitmask of allowed types. This is only needed for type
14891 modify_types_allowed (unsigned allowed
, unsigned mods
)
14894 enum neon_el_type type
;
14900 for (i
= 1; i
<= N_MAX_NONSPECIAL
; i
<<= 1)
14902 if (el_type_of_type_chk (&type
, &size
,
14903 (enum neon_type_mask
) (allowed
& i
)) == SUCCESS
)
14905 neon_modify_type_size (mods
, &type
, &size
);
14906 destmask
|= type_chk_of_el_type (type
, size
);
14913 /* Check type and return type classification.
14914 The manual states (paraphrase): If one datatype is given, it indicates the
14916 - the second operand, if there is one
14917 - the operand, if there is no second operand
14918 - the result, if there are no operands.
14919 This isn't quite good enough though, so we use a concept of a "key" datatype
14920 which is set on a per-instruction basis, which is the one which matters when
14921 only one data type is written.
14922 Note: this function has side-effects (e.g. filling in missing operands). All
14923 Neon instructions should call it before performing bit encoding. */
14925 static struct neon_type_el
14926 neon_check_type (unsigned els
, enum neon_shape ns
, ...)
14929 unsigned i
, pass
, key_el
= 0;
14930 unsigned types
[NEON_MAX_TYPE_ELS
];
14931 enum neon_el_type k_type
= NT_invtype
;
14932 unsigned k_size
= -1u;
14933 struct neon_type_el badtype
= {NT_invtype
, -1};
14934 unsigned key_allowed
= 0;
14936 /* Optional registers in Neon instructions are always (not) in operand 1.
14937 Fill in the missing operand here, if it was omitted. */
14938 if (els
> 1 && !inst
.operands
[1].present
)
14939 inst
.operands
[1] = inst
.operands
[0];
14941 /* Suck up all the varargs. */
14943 for (i
= 0; i
< els
; i
++)
14945 unsigned thisarg
= va_arg (ap
, unsigned);
14946 if (thisarg
== N_IGNORE_TYPE
)
14951 types
[i
] = thisarg
;
14952 if ((thisarg
& N_KEY
) != 0)
14957 if (inst
.vectype
.elems
> 0)
14958 for (i
= 0; i
< els
; i
++)
14959 if (inst
.operands
[i
].vectype
.type
!= NT_invtype
)
14961 first_error (_("types specified in both the mnemonic and operands"));
14965 /* Duplicate inst.vectype elements here as necessary.
14966 FIXME: No idea if this is exactly the same as the ARM assembler,
14967 particularly when an insn takes one register and one non-register
14969 if (inst
.vectype
.elems
== 1 && els
> 1)
14972 inst
.vectype
.elems
= els
;
14973 inst
.vectype
.el
[key_el
] = inst
.vectype
.el
[0];
14974 for (j
= 0; j
< els
; j
++)
14976 inst
.vectype
.el
[j
] = neon_type_promote (&inst
.vectype
.el
[key_el
],
14979 else if (inst
.vectype
.elems
== 0 && els
> 0)
14982 /* No types were given after the mnemonic, so look for types specified
14983 after each operand. We allow some flexibility here; as long as the
14984 "key" operand has a type, we can infer the others. */
14985 for (j
= 0; j
< els
; j
++)
14986 if (inst
.operands
[j
].vectype
.type
!= NT_invtype
)
14987 inst
.vectype
.el
[j
] = inst
.operands
[j
].vectype
;
14989 if (inst
.operands
[key_el
].vectype
.type
!= NT_invtype
)
14991 for (j
= 0; j
< els
; j
++)
14992 if (inst
.operands
[j
].vectype
.type
== NT_invtype
)
14993 inst
.vectype
.el
[j
] = neon_type_promote (&inst
.vectype
.el
[key_el
],
14998 first_error (_("operand types can't be inferred"));
15002 else if (inst
.vectype
.elems
!= els
)
15004 first_error (_("type specifier has the wrong number of parts"));
15008 for (pass
= 0; pass
< 2; pass
++)
15010 for (i
= 0; i
< els
; i
++)
15012 unsigned thisarg
= types
[i
];
15013 unsigned types_allowed
= ((thisarg
& N_EQK
) != 0 && pass
!= 0)
15014 ? modify_types_allowed (key_allowed
, thisarg
) : thisarg
;
15015 enum neon_el_type g_type
= inst
.vectype
.el
[i
].type
;
15016 unsigned g_size
= inst
.vectype
.el
[i
].size
;
15018 /* Decay more-specific signed & unsigned types to sign-insensitive
15019 integer types if sign-specific variants are unavailable. */
15020 if ((g_type
== NT_signed
|| g_type
== NT_unsigned
)
15021 && (types_allowed
& N_SU_ALL
) == 0)
15022 g_type
= NT_integer
;
15024 /* If only untyped args are allowed, decay any more specific types to
15025 them. Some instructions only care about signs for some element
15026 sizes, so handle that properly. */
15027 if (((types_allowed
& N_UNT
) == 0)
15028 && ((g_size
== 8 && (types_allowed
& N_8
) != 0)
15029 || (g_size
== 16 && (types_allowed
& N_16
) != 0)
15030 || (g_size
== 32 && (types_allowed
& N_32
) != 0)
15031 || (g_size
== 64 && (types_allowed
& N_64
) != 0)))
15032 g_type
= NT_untyped
;
15036 if ((thisarg
& N_KEY
) != 0)
15040 key_allowed
= thisarg
& ~N_KEY
;
15042 /* Check architecture constraint on FP16 extension. */
15044 && k_type
== NT_float
15045 && ! ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_fp16
))
15047 inst
.error
= _(BAD_FP16
);
15054 if ((thisarg
& N_VFP
) != 0)
15056 enum neon_shape_el regshape
;
15057 unsigned regwidth
, match
;
15059 /* PR 11136: Catch the case where we are passed a shape of NS_NULL. */
15062 first_error (_("invalid instruction shape"));
15065 regshape
= neon_shape_tab
[ns
].el
[i
];
15066 regwidth
= neon_shape_el_size
[regshape
];
15068 /* In VFP mode, operands must match register widths. If we
15069 have a key operand, use its width, else use the width of
15070 the current operand. */
15076 /* FP16 will use a single precision register. */
15077 if (regwidth
== 32 && match
== 16)
15079 if (ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_fp16
))
15083 inst
.error
= _(BAD_FP16
);
15088 if (regwidth
!= match
)
15090 first_error (_("operand size must match register width"));
15095 if ((thisarg
& N_EQK
) == 0)
15097 unsigned given_type
= type_chk_of_el_type (g_type
, g_size
);
15099 if ((given_type
& types_allowed
) == 0)
15101 first_error (BAD_SIMD_TYPE
);
15107 enum neon_el_type mod_k_type
= k_type
;
15108 unsigned mod_k_size
= k_size
;
15109 neon_modify_type_size (thisarg
, &mod_k_type
, &mod_k_size
);
15110 if (g_type
!= mod_k_type
|| g_size
!= mod_k_size
)
15112 first_error (_("inconsistent types in Neon instruction"));
15120 return inst
.vectype
.el
[key_el
];
15123 /* Neon-style VFP instruction forwarding. */
15125 /* Thumb VFP instructions have 0xE in the condition field. */
15128 do_vfp_cond_or_thumb (void)
15133 inst
.instruction
|= 0xe0000000;
15135 inst
.instruction
|= inst
.cond
<< 28;
15138 /* Look up and encode a simple mnemonic, for use as a helper function for the
15139 Neon-style VFP syntax. This avoids duplication of bits of the insns table,
15140 etc. It is assumed that operand parsing has already been done, and that the
15141 operands are in the form expected by the given opcode (this isn't necessarily
15142 the same as the form in which they were parsed, hence some massaging must
15143 take place before this function is called).
15144 Checks current arch version against that in the looked-up opcode. */
15147 do_vfp_nsyn_opcode (const char *opname
)
15149 const struct asm_opcode
*opcode
;
15151 opcode
= (const struct asm_opcode
*) hash_find (arm_ops_hsh
, opname
);
15156 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
,
15157 thumb_mode
? *opcode
->tvariant
: *opcode
->avariant
),
15164 inst
.instruction
= opcode
->tvalue
;
15165 opcode
->tencode ();
15169 inst
.instruction
= (inst
.cond
<< 28) | opcode
->avalue
;
15170 opcode
->aencode ();
15175 do_vfp_nsyn_add_sub (enum neon_shape rs
)
15177 int is_add
= (inst
.instruction
& 0x0fffffff) == N_MNEM_vadd
;
15179 if (rs
== NS_FFF
|| rs
== NS_HHH
)
15182 do_vfp_nsyn_opcode ("fadds");
15184 do_vfp_nsyn_opcode ("fsubs");
15186 /* ARMv8.2 fp16 instruction. */
15188 do_scalar_fp16_v82_encode ();
15193 do_vfp_nsyn_opcode ("faddd");
15195 do_vfp_nsyn_opcode ("fsubd");
15199 /* Check operand types to see if this is a VFP instruction, and if so call
15203 try_vfp_nsyn (int args
, void (*pfn
) (enum neon_shape
))
15205 enum neon_shape rs
;
15206 struct neon_type_el et
;
15211 rs
= neon_select_shape (NS_HH
, NS_FF
, NS_DD
, NS_NULL
);
15212 et
= neon_check_type (2, rs
, N_EQK
| N_VFP
, N_F_ALL
| N_KEY
| N_VFP
);
15216 rs
= neon_select_shape (NS_HHH
, NS_FFF
, NS_DDD
, NS_NULL
);
15217 et
= neon_check_type (3, rs
, N_EQK
| N_VFP
, N_EQK
| N_VFP
,
15218 N_F_ALL
| N_KEY
| N_VFP
);
15225 if (et
.type
!= NT_invtype
)
15236 do_vfp_nsyn_mla_mls (enum neon_shape rs
)
15238 int is_mla
= (inst
.instruction
& 0x0fffffff) == N_MNEM_vmla
;
15240 if (rs
== NS_FFF
|| rs
== NS_HHH
)
15243 do_vfp_nsyn_opcode ("fmacs");
15245 do_vfp_nsyn_opcode ("fnmacs");
15247 /* ARMv8.2 fp16 instruction. */
15249 do_scalar_fp16_v82_encode ();
15254 do_vfp_nsyn_opcode ("fmacd");
15256 do_vfp_nsyn_opcode ("fnmacd");
15261 do_vfp_nsyn_fma_fms (enum neon_shape rs
)
15263 int is_fma
= (inst
.instruction
& 0x0fffffff) == N_MNEM_vfma
;
15265 if (rs
== NS_FFF
|| rs
== NS_HHH
)
15268 do_vfp_nsyn_opcode ("ffmas");
15270 do_vfp_nsyn_opcode ("ffnmas");
15272 /* ARMv8.2 fp16 instruction. */
15274 do_scalar_fp16_v82_encode ();
15279 do_vfp_nsyn_opcode ("ffmad");
15281 do_vfp_nsyn_opcode ("ffnmad");
15286 do_vfp_nsyn_mul (enum neon_shape rs
)
15288 if (rs
== NS_FFF
|| rs
== NS_HHH
)
15290 do_vfp_nsyn_opcode ("fmuls");
15292 /* ARMv8.2 fp16 instruction. */
15294 do_scalar_fp16_v82_encode ();
15297 do_vfp_nsyn_opcode ("fmuld");
15301 do_vfp_nsyn_abs_neg (enum neon_shape rs
)
15303 int is_neg
= (inst
.instruction
& 0x80) != 0;
15304 neon_check_type (2, rs
, N_EQK
| N_VFP
, N_F_ALL
| N_VFP
| N_KEY
);
15306 if (rs
== NS_FF
|| rs
== NS_HH
)
15309 do_vfp_nsyn_opcode ("fnegs");
15311 do_vfp_nsyn_opcode ("fabss");
15313 /* ARMv8.2 fp16 instruction. */
15315 do_scalar_fp16_v82_encode ();
15320 do_vfp_nsyn_opcode ("fnegd");
15322 do_vfp_nsyn_opcode ("fabsd");
15326 /* Encode single-precision (only!) VFP fldm/fstm instructions. Double precision
15327 insns belong to Neon, and are handled elsewhere. */
15330 do_vfp_nsyn_ldm_stm (int is_dbmode
)
15332 int is_ldm
= (inst
.instruction
& (1 << 20)) != 0;
15336 do_vfp_nsyn_opcode ("fldmdbs");
15338 do_vfp_nsyn_opcode ("fldmias");
15343 do_vfp_nsyn_opcode ("fstmdbs");
15345 do_vfp_nsyn_opcode ("fstmias");
15350 do_vfp_nsyn_sqrt (void)
15352 enum neon_shape rs
= neon_select_shape (NS_HH
, NS_FF
, NS_DD
, NS_NULL
);
15353 neon_check_type (2, rs
, N_EQK
| N_VFP
, N_F_ALL
| N_KEY
| N_VFP
);
15355 if (rs
== NS_FF
|| rs
== NS_HH
)
15357 do_vfp_nsyn_opcode ("fsqrts");
15359 /* ARMv8.2 fp16 instruction. */
15361 do_scalar_fp16_v82_encode ();
15364 do_vfp_nsyn_opcode ("fsqrtd");
15368 do_vfp_nsyn_div (void)
15370 enum neon_shape rs
= neon_select_shape (NS_HHH
, NS_FFF
, NS_DDD
, NS_NULL
);
15371 neon_check_type (3, rs
, N_EQK
| N_VFP
, N_EQK
| N_VFP
,
15372 N_F_ALL
| N_KEY
| N_VFP
);
15374 if (rs
== NS_FFF
|| rs
== NS_HHH
)
15376 do_vfp_nsyn_opcode ("fdivs");
15378 /* ARMv8.2 fp16 instruction. */
15380 do_scalar_fp16_v82_encode ();
15383 do_vfp_nsyn_opcode ("fdivd");
15387 do_vfp_nsyn_nmul (void)
15389 enum neon_shape rs
= neon_select_shape (NS_HHH
, NS_FFF
, NS_DDD
, NS_NULL
);
15390 neon_check_type (3, rs
, N_EQK
| N_VFP
, N_EQK
| N_VFP
,
15391 N_F_ALL
| N_KEY
| N_VFP
);
15393 if (rs
== NS_FFF
|| rs
== NS_HHH
)
15395 NEON_ENCODE (SINGLE
, inst
);
15396 do_vfp_sp_dyadic ();
15398 /* ARMv8.2 fp16 instruction. */
15400 do_scalar_fp16_v82_encode ();
15404 NEON_ENCODE (DOUBLE
, inst
);
15405 do_vfp_dp_rd_rn_rm ();
15407 do_vfp_cond_or_thumb ();
15411 /* Turn a size (8, 16, 32, 64) into the respective bit number minus 3
15415 neon_logbits (unsigned x
)
15417 return ffs (x
) - 4;
15420 #define LOW4(R) ((R) & 0xf)
15421 #define HI1(R) (((R) >> 4) & 1)
15424 mve_get_vcmp_vpt_cond (struct neon_type_el et
)
15429 first_error (BAD_EL_TYPE
);
15432 switch (inst
.operands
[0].imm
)
15435 first_error (_("invalid condition"));
15457 /* only accept eq and ne. */
15458 if (inst
.operands
[0].imm
> 1)
15460 first_error (_("invalid condition"));
15463 return inst
.operands
[0].imm
;
15465 if (inst
.operands
[0].imm
== 0x2)
15467 else if (inst
.operands
[0].imm
== 0x8)
15471 first_error (_("invalid condition"));
15475 switch (inst
.operands
[0].imm
)
15478 first_error (_("invalid condition"));
15494 /* Should be unreachable. */
15501 /* We are dealing with a vector predicated block. */
15502 if (inst
.operands
[0].present
)
15504 enum neon_shape rs
= neon_select_shape (NS_IQQ
, NS_IQR
, NS_NULL
);
15505 struct neon_type_el et
15506 = neon_check_type (3, rs
, N_EQK
, N_KEY
| N_F_MVE
| N_I_MVE
| N_SU_32
,
15509 unsigned fcond
= mve_get_vcmp_vpt_cond (et
);
15511 constraint (inst
.operands
[1].reg
> 14, MVE_BAD_QREG
);
15513 if (et
.type
== NT_invtype
)
15516 if (et
.type
== NT_float
)
15518 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, mve_fp_ext
),
15520 constraint (et
.size
!= 16 && et
.size
!= 32, BAD_EL_TYPE
);
15521 inst
.instruction
|= (et
.size
== 16) << 28;
15522 inst
.instruction
|= 0x3 << 20;
15526 constraint (et
.size
!= 8 && et
.size
!= 16 && et
.size
!= 32,
15528 inst
.instruction
|= 1 << 28;
15529 inst
.instruction
|= neon_logbits (et
.size
) << 20;
15532 if (inst
.operands
[2].isquad
)
15534 inst
.instruction
|= HI1 (inst
.operands
[2].reg
) << 5;
15535 inst
.instruction
|= LOW4 (inst
.operands
[2].reg
);
15536 inst
.instruction
|= (fcond
& 0x2) >> 1;
15540 if (inst
.operands
[2].reg
== REG_SP
)
15541 as_tsktsk (MVE_BAD_SP
);
15542 inst
.instruction
|= 1 << 6;
15543 inst
.instruction
|= (fcond
& 0x2) << 4;
15544 inst
.instruction
|= inst
.operands
[2].reg
;
15546 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
) << 16;
15547 inst
.instruction
|= (fcond
& 0x4) << 10;
15548 inst
.instruction
|= (fcond
& 0x1) << 7;
15551 set_pred_insn_type (VPT_INSN
);
15553 now_pred
.mask
= ((inst
.instruction
& 0x00400000) >> 19)
15554 | ((inst
.instruction
& 0xe000) >> 13);
15555 now_pred
.warn_deprecated
= FALSE
;
15556 now_pred
.type
= VECTOR_PRED
;
15563 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
), BAD_FPU
);
15564 if (!inst
.operands
[1].isreg
|| !inst
.operands
[1].isquad
)
15565 first_error (_(reg_expected_msgs
[REG_TYPE_MQ
]));
15566 if (!inst
.operands
[2].present
)
15567 first_error (_("MVE vector or ARM register expected"));
15568 constraint (inst
.operands
[1].reg
> 14, MVE_BAD_QREG
);
15570 /* Deal with 'else' conditional MVE's vcmp, it will be parsed as vcmpe. */
15571 if ((inst
.instruction
& 0xffffffff) == N_MNEM_vcmpe
15572 && inst
.operands
[1].isquad
)
15574 inst
.instruction
= N_MNEM_vcmp
;
15578 if (inst
.cond
> COND_ALWAYS
)
15579 inst
.pred_insn_type
= INSIDE_VPT_INSN
;
15581 inst
.pred_insn_type
= MVE_OUTSIDE_PRED_INSN
;
15583 enum neon_shape rs
= neon_select_shape (NS_IQQ
, NS_IQR
, NS_NULL
);
15584 struct neon_type_el et
15585 = neon_check_type (3, rs
, N_EQK
, N_KEY
| N_F_MVE
| N_I_MVE
| N_SU_32
,
15588 constraint (rs
== NS_IQR
&& inst
.operands
[2].reg
== REG_PC
15589 && !inst
.operands
[2].iszr
, BAD_PC
);
15591 unsigned fcond
= mve_get_vcmp_vpt_cond (et
);
15593 inst
.instruction
= 0xee010f00;
15594 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
) << 16;
15595 inst
.instruction
|= (fcond
& 0x4) << 10;
15596 inst
.instruction
|= (fcond
& 0x1) << 7;
15597 if (et
.type
== NT_float
)
15599 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, mve_fp_ext
),
15601 inst
.instruction
|= (et
.size
== 16) << 28;
15602 inst
.instruction
|= 0x3 << 20;
15606 inst
.instruction
|= 1 << 28;
15607 inst
.instruction
|= neon_logbits (et
.size
) << 20;
15609 if (inst
.operands
[2].isquad
)
15611 inst
.instruction
|= HI1 (inst
.operands
[2].reg
) << 5;
15612 inst
.instruction
|= (fcond
& 0x2) >> 1;
15613 inst
.instruction
|= LOW4 (inst
.operands
[2].reg
);
15617 if (inst
.operands
[2].reg
== REG_SP
)
15618 as_tsktsk (MVE_BAD_SP
);
15619 inst
.instruction
|= 1 << 6;
15620 inst
.instruction
|= (fcond
& 0x2) << 4;
15621 inst
.instruction
|= inst
.operands
[2].reg
;
15629 do_mve_vmaxa_vmina (void)
15631 if (inst
.cond
> COND_ALWAYS
)
15632 inst
.pred_insn_type
= INSIDE_VPT_INSN
;
15634 inst
.pred_insn_type
= MVE_OUTSIDE_PRED_INSN
;
15636 enum neon_shape rs
= neon_select_shape (NS_QQ
, NS_NULL
);
15637 struct neon_type_el et
15638 = neon_check_type (2, rs
, N_EQK
, N_KEY
| N_S8
| N_S16
| N_S32
);
15640 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
15641 inst
.instruction
|= neon_logbits (et
.size
) << 18;
15642 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
15643 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 5;
15644 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
);
15649 do_mve_vfmas (void)
15651 enum neon_shape rs
= neon_select_shape (NS_QQR
, NS_NULL
);
15652 struct neon_type_el et
15653 = neon_check_type (3, rs
, N_F_MVE
| N_KEY
, N_EQK
, N_EQK
);
15655 if (inst
.cond
> COND_ALWAYS
)
15656 inst
.pred_insn_type
= INSIDE_VPT_INSN
;
15658 inst
.pred_insn_type
= MVE_OUTSIDE_PRED_INSN
;
15660 if (inst
.operands
[2].reg
== REG_SP
)
15661 as_tsktsk (MVE_BAD_SP
);
15662 else if (inst
.operands
[2].reg
== REG_PC
)
15663 as_tsktsk (MVE_BAD_PC
);
15665 inst
.instruction
|= (et
.size
== 16) << 28;
15666 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
15667 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
) << 16;
15668 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
15669 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 7;
15670 inst
.instruction
|= inst
.operands
[2].reg
;
15675 do_mve_viddup (void)
15677 if (inst
.cond
> COND_ALWAYS
)
15678 inst
.pred_insn_type
= INSIDE_VPT_INSN
;
15680 inst
.pred_insn_type
= MVE_OUTSIDE_PRED_INSN
;
15682 unsigned imm
= inst
.relocs
[0].exp
.X_add_number
;
15683 constraint (imm
!= 1 && imm
!= 2 && imm
!= 4 && imm
!= 8,
15684 _("immediate must be either 1, 2, 4 or 8"));
15686 enum neon_shape rs
;
15687 struct neon_type_el et
;
15689 if (inst
.instruction
== M_MNEM_vddup
|| inst
.instruction
== M_MNEM_vidup
)
15691 rs
= neon_select_shape (NS_QRI
, NS_NULL
);
15692 et
= neon_check_type (2, rs
, N_KEY
| N_U8
| N_U16
| N_U32
, N_EQK
);
15697 constraint ((inst
.operands
[2].reg
% 2) != 1, BAD_EVEN
);
15698 if (inst
.operands
[2].reg
== REG_SP
)
15699 as_tsktsk (MVE_BAD_SP
);
15700 else if (inst
.operands
[2].reg
== REG_PC
)
15701 first_error (BAD_PC
);
15703 rs
= neon_select_shape (NS_QRRI
, NS_NULL
);
15704 et
= neon_check_type (3, rs
, N_KEY
| N_U8
| N_U16
| N_U32
, N_EQK
, N_EQK
);
15705 Rm
= inst
.operands
[2].reg
>> 1;
15707 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
15708 inst
.instruction
|= neon_logbits (et
.size
) << 20;
15709 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
15710 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
15711 inst
.instruction
|= (imm
> 2) << 7;
15712 inst
.instruction
|= Rm
<< 1;
15713 inst
.instruction
|= (imm
== 2 || imm
== 8);
15718 do_mve_vmlas (void)
15720 enum neon_shape rs
= neon_select_shape (NS_QQR
, NS_NULL
);
15721 struct neon_type_el et
15722 = neon_check_type (3, rs
, N_EQK
, N_EQK
, N_SU_MVE
| N_KEY
);
15724 if (inst
.operands
[2].reg
== REG_PC
)
15725 as_tsktsk (MVE_BAD_PC
);
15726 else if (inst
.operands
[2].reg
== REG_SP
)
15727 as_tsktsk (MVE_BAD_SP
);
15729 if (inst
.cond
> COND_ALWAYS
)
15730 inst
.pred_insn_type
= INSIDE_VPT_INSN
;
15732 inst
.pred_insn_type
= MVE_OUTSIDE_PRED_INSN
;
15734 inst
.instruction
|= (et
.type
== NT_unsigned
) << 28;
15735 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
15736 inst
.instruction
|= neon_logbits (et
.size
) << 20;
15737 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
) << 16;
15738 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
15739 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 7;
15740 inst
.instruction
|= inst
.operands
[2].reg
;
15745 do_mve_vpsel (void)
15747 neon_select_shape (NS_QQQ
, NS_NULL
);
15749 if (inst
.cond
> COND_ALWAYS
)
15750 inst
.pred_insn_type
= INSIDE_VPT_INSN
;
15752 inst
.pred_insn_type
= MVE_OUTSIDE_PRED_INSN
;
15754 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
15755 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
) << 16;
15756 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
15757 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 7;
15758 inst
.instruction
|= HI1 (inst
.operands
[2].reg
) << 5;
15759 inst
.instruction
|= LOW4 (inst
.operands
[2].reg
);
15764 do_mve_vpnot (void)
15766 if (inst
.cond
> COND_ALWAYS
)
15767 inst
.pred_insn_type
= INSIDE_VPT_INSN
;
15769 inst
.pred_insn_type
= MVE_OUTSIDE_PRED_INSN
;
15773 do_mve_vmaxnma_vminnma (void)
15775 enum neon_shape rs
= neon_select_shape (NS_QQ
, NS_NULL
);
15776 struct neon_type_el et
15777 = neon_check_type (2, rs
, N_EQK
, N_F_MVE
| N_KEY
);
15779 if (inst
.cond
> COND_ALWAYS
)
15780 inst
.pred_insn_type
= INSIDE_VPT_INSN
;
15782 inst
.pred_insn_type
= MVE_OUTSIDE_PRED_INSN
;
15784 inst
.instruction
|= (et
.size
== 16) << 28;
15785 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
15786 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
15787 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 5;
15788 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
);
15793 do_mve_vcmul (void)
15795 enum neon_shape rs
= neon_select_shape (NS_QQQI
, NS_NULL
);
15796 struct neon_type_el et
15797 = neon_check_type (3, rs
, N_EQK
, N_EQK
, N_F_MVE
| N_KEY
);
15799 if (inst
.cond
> COND_ALWAYS
)
15800 inst
.pred_insn_type
= INSIDE_VPT_INSN
;
15802 inst
.pred_insn_type
= MVE_OUTSIDE_PRED_INSN
;
15804 unsigned rot
= inst
.relocs
[0].exp
.X_add_number
;
15805 constraint (rot
!= 0 && rot
!= 90 && rot
!= 180 && rot
!= 270,
15806 _("immediate out of range"));
15808 if (et
.size
== 32 && (inst
.operands
[0].reg
== inst
.operands
[1].reg
15809 || inst
.operands
[0].reg
== inst
.operands
[2].reg
))
15810 as_tsktsk (BAD_MVE_SRCDEST
);
15812 inst
.instruction
|= (et
.size
== 32) << 28;
15813 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
15814 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
) << 16;
15815 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
15816 inst
.instruction
|= (rot
> 90) << 12;
15817 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 7;
15818 inst
.instruction
|= HI1 (inst
.operands
[2].reg
) << 5;
15819 inst
.instruction
|= LOW4 (inst
.operands
[2].reg
);
15820 inst
.instruction
|= (rot
== 90 || rot
== 270);
15825 do_vfp_nsyn_cmp (void)
15827 enum neon_shape rs
;
15828 if (!inst
.operands
[0].isreg
)
15835 constraint (inst
.operands
[2].present
, BAD_SYNTAX
);
15836 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_vfp_ext_v1xd
),
15840 if (inst
.operands
[1].isreg
)
15842 rs
= neon_select_shape (NS_HH
, NS_FF
, NS_DD
, NS_NULL
);
15843 neon_check_type (2, rs
, N_EQK
| N_VFP
, N_F_ALL
| N_KEY
| N_VFP
);
15845 if (rs
== NS_FF
|| rs
== NS_HH
)
15847 NEON_ENCODE (SINGLE
, inst
);
15848 do_vfp_sp_monadic ();
15852 NEON_ENCODE (DOUBLE
, inst
);
15853 do_vfp_dp_rd_rm ();
15858 rs
= neon_select_shape (NS_HI
, NS_FI
, NS_DI
, NS_NULL
);
15859 neon_check_type (2, rs
, N_F_ALL
| N_KEY
| N_VFP
, N_EQK
);
15861 switch (inst
.instruction
& 0x0fffffff)
15864 inst
.instruction
+= N_MNEM_vcmpz
- N_MNEM_vcmp
;
15867 inst
.instruction
+= N_MNEM_vcmpez
- N_MNEM_vcmpe
;
15873 if (rs
== NS_FI
|| rs
== NS_HI
)
15875 NEON_ENCODE (SINGLE
, inst
);
15876 do_vfp_sp_compare_z ();
15880 NEON_ENCODE (DOUBLE
, inst
);
15884 do_vfp_cond_or_thumb ();
15886 /* ARMv8.2 fp16 instruction. */
15887 if (rs
== NS_HI
|| rs
== NS_HH
)
15888 do_scalar_fp16_v82_encode ();
15892 nsyn_insert_sp (void)
15894 inst
.operands
[1] = inst
.operands
[0];
15895 memset (&inst
.operands
[0], '\0', sizeof (inst
.operands
[0]));
15896 inst
.operands
[0].reg
= REG_SP
;
15897 inst
.operands
[0].isreg
= 1;
15898 inst
.operands
[0].writeback
= 1;
15899 inst
.operands
[0].present
= 1;
15903 do_vfp_nsyn_push (void)
15907 constraint (inst
.operands
[1].imm
< 1 || inst
.operands
[1].imm
> 16,
15908 _("register list must contain at least 1 and at most 16 "
15911 if (inst
.operands
[1].issingle
)
15912 do_vfp_nsyn_opcode ("fstmdbs");
15914 do_vfp_nsyn_opcode ("fstmdbd");
15918 do_vfp_nsyn_pop (void)
15922 constraint (inst
.operands
[1].imm
< 1 || inst
.operands
[1].imm
> 16,
15923 _("register list must contain at least 1 and at most 16 "
15926 if (inst
.operands
[1].issingle
)
15927 do_vfp_nsyn_opcode ("fldmias");
15929 do_vfp_nsyn_opcode ("fldmiad");
15932 /* Fix up Neon data-processing instructions, ORing in the correct bits for
15933 ARM mode or Thumb mode and moving the encoded bit 24 to bit 28. */
15936 neon_dp_fixup (struct arm_it
* insn
)
15938 unsigned int i
= insn
->instruction
;
15943 /* The U bit is at bit 24 by default. Move to bit 28 in Thumb mode. */
15954 insn
->instruction
= i
;
15958 mve_encode_qqr (int size
, int U
, int fp
)
15960 if (inst
.operands
[2].reg
== REG_SP
)
15961 as_tsktsk (MVE_BAD_SP
);
15962 else if (inst
.operands
[2].reg
== REG_PC
)
15963 as_tsktsk (MVE_BAD_PC
);
15968 if (((unsigned)inst
.instruction
) == 0xd00)
15969 inst
.instruction
= 0xee300f40;
15971 else if (((unsigned)inst
.instruction
) == 0x200d00)
15972 inst
.instruction
= 0xee301f40;
15974 else if (((unsigned)inst
.instruction
) == 0x1000d10)
15975 inst
.instruction
= 0xee310e60;
15977 /* Setting size which is 1 for F16 and 0 for F32. */
15978 inst
.instruction
|= (size
== 16) << 28;
15983 if (((unsigned)inst
.instruction
) == 0x800)
15984 inst
.instruction
= 0xee010f40;
15986 else if (((unsigned)inst
.instruction
) == 0x1000800)
15987 inst
.instruction
= 0xee011f40;
15989 else if (((unsigned)inst
.instruction
) == 0)
15990 inst
.instruction
= 0xee000f40;
15992 else if (((unsigned)inst
.instruction
) == 0x200)
15993 inst
.instruction
= 0xee001f40;
15995 else if (((unsigned)inst
.instruction
) == 0x900)
15996 inst
.instruction
= 0xee010e40;
15998 else if (((unsigned)inst
.instruction
) == 0x910)
15999 inst
.instruction
= 0xee011e60;
16001 else if (((unsigned)inst
.instruction
) == 0x10)
16002 inst
.instruction
= 0xee000f60;
16004 else if (((unsigned)inst
.instruction
) == 0x210)
16005 inst
.instruction
= 0xee001f60;
16007 else if (((unsigned)inst
.instruction
) == 0x3000b10)
16008 inst
.instruction
= 0xee000e40;
16010 else if (((unsigned)inst
.instruction
) == 0x0000b00)
16011 inst
.instruction
= 0xee010e60;
16013 else if (((unsigned)inst
.instruction
) == 0x1000b00)
16014 inst
.instruction
= 0xfe010e60;
16017 inst
.instruction
|= U
<< 28;
16019 /* Setting bits for size. */
16020 inst
.instruction
|= neon_logbits (size
) << 20;
16022 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
16023 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
16024 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
) << 16;
16025 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 7;
16026 inst
.instruction
|= inst
.operands
[2].reg
;
16031 mve_encode_rqq (unsigned bit28
, unsigned size
)
16033 inst
.instruction
|= bit28
<< 28;
16034 inst
.instruction
|= neon_logbits (size
) << 20;
16035 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
) << 16;
16036 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
16037 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 7;
16038 inst
.instruction
|= HI1 (inst
.operands
[2].reg
) << 5;
16039 inst
.instruction
|= LOW4 (inst
.operands
[2].reg
);
16044 mve_encode_qqq (int ubit
, int size
)
16047 inst
.instruction
|= (ubit
!= 0) << 28;
16048 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
16049 inst
.instruction
|= neon_logbits (size
) << 20;
16050 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
) << 16;
16051 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
16052 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 7;
16053 inst
.instruction
|= HI1 (inst
.operands
[2].reg
) << 5;
16054 inst
.instruction
|= LOW4 (inst
.operands
[2].reg
);
16060 mve_encode_rq (unsigned bit28
, unsigned size
)
16062 inst
.instruction
|= bit28
<< 28;
16063 inst
.instruction
|= neon_logbits (size
) << 18;
16064 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
16065 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
);
16070 mve_encode_rrqq (unsigned U
, unsigned size
)
16072 constraint (inst
.operands
[3].reg
> 14, MVE_BAD_QREG
);
16074 inst
.instruction
|= U
<< 28;
16075 inst
.instruction
|= (inst
.operands
[1].reg
>> 1) << 20;
16076 inst
.instruction
|= LOW4 (inst
.operands
[2].reg
) << 16;
16077 inst
.instruction
|= (size
== 32) << 16;
16078 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
16079 inst
.instruction
|= HI1 (inst
.operands
[2].reg
) << 7;
16080 inst
.instruction
|= inst
.operands
[3].reg
;
16084 /* Encode insns with bit pattern:
16086 |28/24|23|22 |21 20|19 16|15 12|11 8|7|6|5|4|3 0|
16087 | U |x |D |size | Rn | Rd |x x x x|N|Q|M|x| Rm |
16089 SIZE is passed in bits. -1 means size field isn't changed, in case it has a
16090 different meaning for some instruction. */
16093 neon_three_same (int isquad
, int ubit
, int size
)
16095 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
16096 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
16097 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
) << 16;
16098 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 7;
16099 inst
.instruction
|= LOW4 (inst
.operands
[2].reg
);
16100 inst
.instruction
|= HI1 (inst
.operands
[2].reg
) << 5;
16101 inst
.instruction
|= (isquad
!= 0) << 6;
16102 inst
.instruction
|= (ubit
!= 0) << 24;
16104 inst
.instruction
|= neon_logbits (size
) << 20;
16106 neon_dp_fixup (&inst
);
16109 /* Encode instructions of the form:
16111 |28/24|23|22|21 20|19 18|17 16|15 12|11 7|6|5|4|3 0|
16112 | U |x |D |x x |size |x x | Rd |x x x x x|Q|M|x| Rm |
16114 Don't write size if SIZE == -1. */
16117 neon_two_same (int qbit
, int ubit
, int size
)
16119 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
16120 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
16121 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
);
16122 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 5;
16123 inst
.instruction
|= (qbit
!= 0) << 6;
16124 inst
.instruction
|= (ubit
!= 0) << 24;
16127 inst
.instruction
|= neon_logbits (size
) << 18;
16129 neon_dp_fixup (&inst
);
16132 enum vfp_or_neon_is_neon_bits
16135 NEON_CHECK_ARCH
= 2,
16136 NEON_CHECK_ARCH8
= 4
16139 /* Call this function if an instruction which may have belonged to the VFP or
16140 Neon instruction sets, but turned out to be a Neon instruction (due to the
16141 operand types involved, etc.). We have to check and/or fix-up a couple of
16144 - Make sure the user hasn't attempted to make a Neon instruction
16146 - Alter the value in the condition code field if necessary.
16147 - Make sure that the arch supports Neon instructions.
16149 Which of these operations take place depends on bits from enum
16150 vfp_or_neon_is_neon_bits.
16152 WARNING: This function has side effects! If NEON_CHECK_CC is used and the
16153 current instruction's condition is COND_ALWAYS, the condition field is
16154 changed to inst.uncond_value. This is necessary because instructions shared
16155 between VFP and Neon may be conditional for the VFP variants only, and the
16156 unconditional Neon version must have, e.g., 0xF in the condition field. */
16159 vfp_or_neon_is_neon (unsigned check
)
16161 /* Conditions are always legal in Thumb mode (IT blocks). */
16162 if (!thumb_mode
&& (check
& NEON_CHECK_CC
))
16164 if (inst
.cond
!= COND_ALWAYS
)
16166 first_error (_(BAD_COND
));
16169 if (inst
.uncond_value
!= -1)
16170 inst
.instruction
|= inst
.uncond_value
<< 28;
16174 if (((check
& NEON_CHECK_ARCH
) && !mark_feature_used (&fpu_neon_ext_v1
))
16175 || ((check
& NEON_CHECK_ARCH8
)
16176 && !mark_feature_used (&fpu_neon_ext_armv8
)))
16178 first_error (_(BAD_FPU
));
16186 check_simd_pred_availability (int fp
, unsigned check
)
16188 if (inst
.cond
> COND_ALWAYS
)
16190 if (!ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
))
16192 inst
.error
= BAD_FPU
;
16195 inst
.pred_insn_type
= INSIDE_VPT_INSN
;
16197 else if (inst
.cond
< COND_ALWAYS
)
16199 if (ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
))
16200 inst
.pred_insn_type
= MVE_OUTSIDE_PRED_INSN
;
16201 else if (vfp_or_neon_is_neon (check
) == FAIL
)
16206 if (!ARM_CPU_HAS_FEATURE (cpu_variant
, fp
? mve_fp_ext
: mve_ext
)
16207 && vfp_or_neon_is_neon (check
) == FAIL
)
16210 if (ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
))
16211 inst
.pred_insn_type
= MVE_OUTSIDE_PRED_INSN
;
16216 /* Neon instruction encoders, in approximate order of appearance. */
16219 do_neon_dyadic_i_su (void)
16221 if (check_simd_pred_availability (0, NEON_CHECK_ARCH
| NEON_CHECK_CC
))
16224 enum neon_shape rs
;
16225 struct neon_type_el et
;
16226 if (ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
))
16227 rs
= neon_select_shape (NS_QQQ
, NS_QQR
, NS_NULL
);
16229 rs
= neon_select_shape (NS_DDD
, NS_QQQ
, NS_NULL
);
16231 et
= neon_check_type (3, rs
, N_EQK
, N_EQK
, N_SU_32
| N_KEY
);
16235 neon_three_same (neon_quad (rs
), et
.type
== NT_unsigned
, et
.size
);
16237 mve_encode_qqr (et
.size
, et
.type
== NT_unsigned
, 0);
16241 do_neon_dyadic_i64_su (void)
16243 if (check_simd_pred_availability (0, NEON_CHECK_CC
| NEON_CHECK_ARCH
))
16245 enum neon_shape rs
;
16246 struct neon_type_el et
;
16247 if (ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
))
16249 rs
= neon_select_shape (NS_QQR
, NS_QQQ
, NS_NULL
);
16250 et
= neon_check_type (3, rs
, N_EQK
, N_EQK
, N_SU_MVE
| N_KEY
);
16254 rs
= neon_select_shape (NS_DDD
, NS_QQQ
, NS_NULL
);
16255 et
= neon_check_type (3, rs
, N_EQK
, N_EQK
, N_SU_ALL
| N_KEY
);
16258 mve_encode_qqr (et
.size
, et
.type
== NT_unsigned
, 0);
16260 neon_three_same (neon_quad (rs
), et
.type
== NT_unsigned
, et
.size
);
16264 neon_imm_shift (int write_ubit
, int uval
, int isquad
, struct neon_type_el et
,
16267 unsigned size
= et
.size
>> 3;
16268 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
16269 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
16270 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
);
16271 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 5;
16272 inst
.instruction
|= (isquad
!= 0) << 6;
16273 inst
.instruction
|= immbits
<< 16;
16274 inst
.instruction
|= (size
>> 3) << 7;
16275 inst
.instruction
|= (size
& 0x7) << 19;
16277 inst
.instruction
|= (uval
!= 0) << 24;
16279 neon_dp_fixup (&inst
);
16283 do_neon_shl_imm (void)
16285 if (!inst
.operands
[2].isreg
)
16287 enum neon_shape rs
= neon_select_shape (NS_DDI
, NS_QQI
, NS_NULL
);
16288 struct neon_type_el et
= neon_check_type (2, rs
, N_EQK
, N_KEY
| N_I_ALL
);
16289 int imm
= inst
.operands
[2].imm
;
16291 constraint (imm
< 0 || (unsigned)imm
>= et
.size
,
16292 _("immediate out of range for shift"));
16293 NEON_ENCODE (IMMED
, inst
);
16294 neon_imm_shift (FALSE
, 0, neon_quad (rs
), et
, imm
);
16298 enum neon_shape rs
= neon_select_shape (NS_DDD
, NS_QQQ
, NS_NULL
);
16299 struct neon_type_el et
= neon_check_type (3, rs
,
16300 N_EQK
, N_SU_ALL
| N_KEY
, N_EQK
| N_SGN
);
16303 /* VSHL/VQSHL 3-register variants have syntax such as:
16305 whereas other 3-register operations encoded by neon_three_same have
16308 (i.e. with Dn & Dm reversed). Swap operands[1].reg and operands[2].reg
16310 tmp
= inst
.operands
[2].reg
;
16311 inst
.operands
[2].reg
= inst
.operands
[1].reg
;
16312 inst
.operands
[1].reg
= tmp
;
16313 NEON_ENCODE (INTEGER
, inst
);
16314 neon_three_same (neon_quad (rs
), et
.type
== NT_unsigned
, et
.size
);
16319 do_neon_qshl_imm (void)
16321 if (!inst
.operands
[2].isreg
)
16323 enum neon_shape rs
= neon_select_shape (NS_DDI
, NS_QQI
, NS_NULL
);
16324 struct neon_type_el et
= neon_check_type (2, rs
, N_EQK
, N_SU_ALL
| N_KEY
);
16325 int imm
= inst
.operands
[2].imm
;
16327 constraint (imm
< 0 || (unsigned)imm
>= et
.size
,
16328 _("immediate out of range for shift"));
16329 NEON_ENCODE (IMMED
, inst
);
16330 neon_imm_shift (TRUE
, et
.type
== NT_unsigned
, neon_quad (rs
), et
, imm
);
16334 enum neon_shape rs
= neon_select_shape (NS_DDD
, NS_QQQ
, NS_NULL
);
16335 struct neon_type_el et
= neon_check_type (3, rs
,
16336 N_EQK
, N_SU_ALL
| N_KEY
, N_EQK
| N_SGN
);
16339 /* See note in do_neon_shl_imm. */
16340 tmp
= inst
.operands
[2].reg
;
16341 inst
.operands
[2].reg
= inst
.operands
[1].reg
;
16342 inst
.operands
[1].reg
= tmp
;
16343 NEON_ENCODE (INTEGER
, inst
);
16344 neon_three_same (neon_quad (rs
), et
.type
== NT_unsigned
, et
.size
);
16349 do_neon_rshl (void)
16351 enum neon_shape rs
= neon_select_shape (NS_DDD
, NS_QQQ
, NS_NULL
);
16352 struct neon_type_el et
= neon_check_type (3, rs
,
16353 N_EQK
, N_EQK
, N_SU_ALL
| N_KEY
);
16356 tmp
= inst
.operands
[2].reg
;
16357 inst
.operands
[2].reg
= inst
.operands
[1].reg
;
16358 inst
.operands
[1].reg
= tmp
;
16359 neon_three_same (neon_quad (rs
), et
.type
== NT_unsigned
, et
.size
);
16363 neon_cmode_for_logic_imm (unsigned immediate
, unsigned *immbits
, int size
)
16365 /* Handle .I8 pseudo-instructions. */
16368 /* Unfortunately, this will make everything apart from zero out-of-range.
16369 FIXME is this the intended semantics? There doesn't seem much point in
16370 accepting .I8 if so. */
16371 immediate
|= immediate
<< 8;
16377 if (immediate
== (immediate
& 0x000000ff))
16379 *immbits
= immediate
;
16382 else if (immediate
== (immediate
& 0x0000ff00))
16384 *immbits
= immediate
>> 8;
16387 else if (immediate
== (immediate
& 0x00ff0000))
16389 *immbits
= immediate
>> 16;
16392 else if (immediate
== (immediate
& 0xff000000))
16394 *immbits
= immediate
>> 24;
16397 if ((immediate
& 0xffff) != (immediate
>> 16))
16398 goto bad_immediate
;
16399 immediate
&= 0xffff;
16402 if (immediate
== (immediate
& 0x000000ff))
16404 *immbits
= immediate
;
16407 else if (immediate
== (immediate
& 0x0000ff00))
16409 *immbits
= immediate
>> 8;
16414 first_error (_("immediate value out of range"));
16419 do_neon_logic (void)
16421 if (inst
.operands
[2].present
&& inst
.operands
[2].isreg
)
16423 enum neon_shape rs
= neon_select_shape (NS_DDD
, NS_QQQ
, NS_NULL
);
16425 && check_simd_pred_availability (0, NEON_CHECK_ARCH
| NEON_CHECK_CC
)
16428 else if (rs
!= NS_QQQ
16429 && !ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_neon_ext_v1
))
16430 first_error (BAD_FPU
);
16432 neon_check_type (3, rs
, N_IGNORE_TYPE
);
16433 /* U bit and size field were set as part of the bitmask. */
16434 NEON_ENCODE (INTEGER
, inst
);
16435 neon_three_same (neon_quad (rs
), 0, -1);
16439 const int three_ops_form
= (inst
.operands
[2].present
16440 && !inst
.operands
[2].isreg
);
16441 const int immoperand
= (three_ops_form
? 2 : 1);
16442 enum neon_shape rs
= (three_ops_form
16443 ? neon_select_shape (NS_DDI
, NS_QQI
, NS_NULL
)
16444 : neon_select_shape (NS_DI
, NS_QI
, NS_NULL
));
16445 /* Because neon_select_shape makes the second operand a copy of the first
16446 if the second operand is not present. */
16448 && check_simd_pred_availability (0, NEON_CHECK_ARCH
| NEON_CHECK_CC
)
16451 else if (rs
!= NS_QQI
16452 && !ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_neon_ext_v1
))
16453 first_error (BAD_FPU
);
16455 struct neon_type_el et
;
16456 if (ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
))
16457 et
= neon_check_type (2, rs
, N_I32
| N_I16
| N_KEY
, N_EQK
);
16459 et
= neon_check_type (2, rs
, N_I8
| N_I16
| N_I32
| N_I64
| N_F32
16462 if (et
.type
== NT_invtype
)
16464 enum neon_opc opcode
= (enum neon_opc
) inst
.instruction
& 0x0fffffff;
16469 if (three_ops_form
)
16470 constraint (inst
.operands
[0].reg
!= inst
.operands
[1].reg
,
16471 _("first and second operands shall be the same register"));
16473 NEON_ENCODE (IMMED
, inst
);
16475 immbits
= inst
.operands
[immoperand
].imm
;
16478 /* .i64 is a pseudo-op, so the immediate must be a repeating
16480 if (immbits
!= (inst
.operands
[immoperand
].regisimm
?
16481 inst
.operands
[immoperand
].reg
: 0))
16483 /* Set immbits to an invalid constant. */
16484 immbits
= 0xdeadbeef;
16491 cmode
= neon_cmode_for_logic_imm (immbits
, &immbits
, et
.size
);
16495 cmode
= neon_cmode_for_logic_imm (immbits
, &immbits
, et
.size
);
16499 /* Pseudo-instruction for VBIC. */
16500 neon_invert_size (&immbits
, 0, et
.size
);
16501 cmode
= neon_cmode_for_logic_imm (immbits
, &immbits
, et
.size
);
16505 /* Pseudo-instruction for VORR. */
16506 neon_invert_size (&immbits
, 0, et
.size
);
16507 cmode
= neon_cmode_for_logic_imm (immbits
, &immbits
, et
.size
);
16517 inst
.instruction
|= neon_quad (rs
) << 6;
16518 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
16519 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
16520 inst
.instruction
|= cmode
<< 8;
16521 neon_write_immbits (immbits
);
16523 neon_dp_fixup (&inst
);
16528 do_neon_bitfield (void)
16530 enum neon_shape rs
= neon_select_shape (NS_DDD
, NS_QQQ
, NS_NULL
);
16531 neon_check_type (3, rs
, N_IGNORE_TYPE
);
16532 neon_three_same (neon_quad (rs
), 0, -1);
16536 neon_dyadic_misc (enum neon_el_type ubit_meaning
, unsigned types
,
16539 enum neon_shape rs
= neon_select_shape (NS_DDD
, NS_QQQ
, NS_QQR
, NS_NULL
);
16540 struct neon_type_el et
= neon_check_type (3, rs
, N_EQK
| destbits
, N_EQK
,
16542 if (et
.type
== NT_float
)
16544 NEON_ENCODE (FLOAT
, inst
);
16546 mve_encode_qqr (et
.size
, 0, 1);
16548 neon_three_same (neon_quad (rs
), 0, et
.size
== 16 ? (int) et
.size
: -1);
16552 NEON_ENCODE (INTEGER
, inst
);
16554 mve_encode_qqr (et
.size
, et
.type
== ubit_meaning
, 0);
16556 neon_three_same (neon_quad (rs
), et
.type
== ubit_meaning
, et
.size
);
16562 do_neon_dyadic_if_su_d (void)
16564 /* This version only allow D registers, but that constraint is enforced during
16565 operand parsing so we don't need to do anything extra here. */
16566 neon_dyadic_misc (NT_unsigned
, N_SUF_32
, 0);
16570 do_neon_dyadic_if_i_d (void)
16572 /* The "untyped" case can't happen. Do this to stop the "U" bit being
16573 affected if we specify unsigned args. */
16574 neon_dyadic_misc (NT_untyped
, N_IF_32
, 0);
16578 do_mve_vstr_vldr_QI (int size
, int elsize
, int load
)
16580 constraint (size
< 32, BAD_ADDR_MODE
);
16581 constraint (size
!= elsize
, BAD_EL_TYPE
);
16582 constraint (inst
.operands
[1].immisreg
, BAD_ADDR_MODE
);
16583 constraint (!inst
.operands
[1].preind
, BAD_ADDR_MODE
);
16584 constraint (load
&& inst
.operands
[0].reg
== inst
.operands
[1].reg
,
16585 _("destination register and offset register may not be the"
16588 int imm
= inst
.relocs
[0].exp
.X_add_number
;
16595 constraint ((imm
% (size
/ 8) != 0)
16596 || imm
> (0x7f << neon_logbits (size
)),
16597 (size
== 32) ? _("immediate must be a multiple of 4 in the"
16598 " range of +/-[0,508]")
16599 : _("immediate must be a multiple of 8 in the"
16600 " range of +/-[0,1016]"));
16601 inst
.instruction
|= 0x11 << 24;
16602 inst
.instruction
|= add
<< 23;
16603 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
16604 inst
.instruction
|= inst
.operands
[1].writeback
<< 21;
16605 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
) << 16;
16606 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
16607 inst
.instruction
|= 1 << 12;
16608 inst
.instruction
|= (size
== 64) << 8;
16609 inst
.instruction
&= 0xffffff00;
16610 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 7;
16611 inst
.instruction
|= imm
>> neon_logbits (size
);
16615 do_mve_vstr_vldr_RQ (int size
, int elsize
, int load
)
16617 unsigned os
= inst
.operands
[1].imm
>> 5;
16618 constraint (os
!= 0 && size
== 8,
16619 _("can not shift offsets when accessing less than half-word"));
16620 constraint (os
&& os
!= neon_logbits (size
),
16621 _("shift immediate must be 1, 2 or 3 for half-word, word"
16622 " or double-word accesses respectively"));
16623 if (inst
.operands
[1].reg
== REG_PC
)
16624 as_tsktsk (MVE_BAD_PC
);
16629 constraint (elsize
>= 64, BAD_EL_TYPE
);
16632 constraint (elsize
< 16 || elsize
>= 64, BAD_EL_TYPE
);
16636 constraint (elsize
!= size
, BAD_EL_TYPE
);
16641 constraint (inst
.operands
[1].writeback
|| !inst
.operands
[1].preind
,
16645 constraint (inst
.operands
[0].reg
== (inst
.operands
[1].imm
& 0x1f),
16646 _("destination register and offset register may not be"
16648 constraint (size
== elsize
&& inst
.vectype
.el
[0].type
!= NT_unsigned
,
16650 constraint (inst
.vectype
.el
[0].type
!= NT_unsigned
16651 && inst
.vectype
.el
[0].type
!= NT_signed
, BAD_EL_TYPE
);
16652 inst
.instruction
|= (inst
.vectype
.el
[0].type
== NT_unsigned
) << 28;
16656 constraint (inst
.vectype
.el
[0].type
!= NT_untyped
, BAD_EL_TYPE
);
16659 inst
.instruction
|= 1 << 23;
16660 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
16661 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
16662 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
16663 inst
.instruction
|= neon_logbits (elsize
) << 7;
16664 inst
.instruction
|= HI1 (inst
.operands
[1].imm
) << 5;
16665 inst
.instruction
|= LOW4 (inst
.operands
[1].imm
);
16666 inst
.instruction
|= !!os
;
16670 do_mve_vstr_vldr_RI (int size
, int elsize
, int load
)
16672 enum neon_el_type type
= inst
.vectype
.el
[0].type
;
16674 constraint (size
>= 64, BAD_ADDR_MODE
);
16678 constraint (elsize
< 16 || elsize
>= 64, BAD_EL_TYPE
);
16681 constraint (elsize
!= size
, BAD_EL_TYPE
);
16688 constraint (elsize
!= size
&& type
!= NT_unsigned
16689 && type
!= NT_signed
, BAD_EL_TYPE
);
16693 constraint (elsize
!= size
&& type
!= NT_untyped
, BAD_EL_TYPE
);
16696 int imm
= inst
.relocs
[0].exp
.X_add_number
;
16704 if ((imm
% (size
/ 8) != 0) || imm
> (0x7f << neon_logbits (size
)))
16709 constraint (1, _("immediate must be in the range of +/-[0,127]"));
16712 constraint (1, _("immediate must be a multiple of 2 in the"
16713 " range of +/-[0,254]"));
16716 constraint (1, _("immediate must be a multiple of 4 in the"
16717 " range of +/-[0,508]"));
16722 if (size
!= elsize
)
16724 constraint (inst
.operands
[1].reg
> 7, BAD_HIREG
);
16725 constraint (inst
.operands
[0].reg
> 14,
16726 _("MVE vector register in the range [Q0..Q7] expected"));
16727 inst
.instruction
|= (load
&& type
== NT_unsigned
) << 28;
16728 inst
.instruction
|= (size
== 16) << 19;
16729 inst
.instruction
|= neon_logbits (elsize
) << 7;
16733 if (inst
.operands
[1].reg
== REG_PC
)
16734 as_tsktsk (MVE_BAD_PC
);
16735 else if (inst
.operands
[1].reg
== REG_SP
&& inst
.operands
[1].writeback
)
16736 as_tsktsk (MVE_BAD_SP
);
16737 inst
.instruction
|= 1 << 12;
16738 inst
.instruction
|= neon_logbits (size
) << 7;
16740 inst
.instruction
|= inst
.operands
[1].preind
<< 24;
16741 inst
.instruction
|= add
<< 23;
16742 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
16743 inst
.instruction
|= inst
.operands
[1].writeback
<< 21;
16744 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
16745 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
16746 inst
.instruction
&= 0xffffff80;
16747 inst
.instruction
|= imm
>> neon_logbits (size
);
16752 do_mve_vstr_vldr (void)
16757 if (inst
.cond
> COND_ALWAYS
)
16758 inst
.pred_insn_type
= INSIDE_VPT_INSN
;
16760 inst
.pred_insn_type
= MVE_OUTSIDE_PRED_INSN
;
16762 switch (inst
.instruction
)
16769 /* fall through. */
16775 /* fall through. */
16781 /* fall through. */
16787 /* fall through. */
16792 unsigned elsize
= inst
.vectype
.el
[0].size
;
16794 if (inst
.operands
[1].isquad
)
16796 /* We are dealing with [Q, imm]{!} cases. */
16797 do_mve_vstr_vldr_QI (size
, elsize
, load
);
16801 if (inst
.operands
[1].immisreg
== 2)
16803 /* We are dealing with [R, Q, {UXTW #os}] cases. */
16804 do_mve_vstr_vldr_RQ (size
, elsize
, load
);
16806 else if (!inst
.operands
[1].immisreg
)
16808 /* We are dealing with [R, Imm]{!}/[R], Imm cases. */
16809 do_mve_vstr_vldr_RI (size
, elsize
, load
);
16812 constraint (1, BAD_ADDR_MODE
);
16819 do_mve_vst_vld (void)
16821 if (!ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
))
16824 constraint (!inst
.operands
[1].preind
|| inst
.relocs
[0].exp
.X_add_symbol
!= 0
16825 || inst
.relocs
[0].exp
.X_add_number
!= 0
16826 || inst
.operands
[1].immisreg
!= 0,
16828 constraint (inst
.vectype
.el
[0].size
> 32, BAD_EL_TYPE
);
16829 if (inst
.operands
[1].reg
== REG_PC
)
16830 as_tsktsk (MVE_BAD_PC
);
16831 else if (inst
.operands
[1].reg
== REG_SP
&& inst
.operands
[1].writeback
)
16832 as_tsktsk (MVE_BAD_SP
);
16835 /* These instructions are one of the "exceptions" mentioned in
16836 handle_pred_state. They are MVE instructions that are not VPT compatible
16837 and do not accept a VPT code, thus appending such a code is a syntax
16839 if (inst
.cond
> COND_ALWAYS
)
16840 first_error (BAD_SYNTAX
);
16841 /* If we append a scalar condition code we can set this to
16842 MVE_OUTSIDE_PRED_INSN as it will also lead to a syntax error. */
16843 else if (inst
.cond
< COND_ALWAYS
)
16844 inst
.pred_insn_type
= MVE_OUTSIDE_PRED_INSN
;
16846 inst
.pred_insn_type
= MVE_UNPREDICABLE_INSN
;
16848 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
16849 inst
.instruction
|= inst
.operands
[1].writeback
<< 21;
16850 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
16851 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
16852 inst
.instruction
|= neon_logbits (inst
.vectype
.el
[0].size
) << 7;
16857 do_mve_vaddlv (void)
16859 enum neon_shape rs
= neon_select_shape (NS_RRQ
, NS_NULL
);
16860 struct neon_type_el et
16861 = neon_check_type (3, rs
, N_EQK
, N_EQK
, N_S32
| N_U32
| N_KEY
);
16863 if (et
.type
== NT_invtype
)
16864 first_error (BAD_EL_TYPE
);
16866 if (inst
.cond
> COND_ALWAYS
)
16867 inst
.pred_insn_type
= INSIDE_VPT_INSN
;
16869 inst
.pred_insn_type
= MVE_OUTSIDE_PRED_INSN
;
16871 constraint (inst
.operands
[1].reg
> 14, MVE_BAD_QREG
);
16873 inst
.instruction
|= (et
.type
== NT_unsigned
) << 28;
16874 inst
.instruction
|= inst
.operands
[1].reg
<< 19;
16875 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
16876 inst
.instruction
|= inst
.operands
[2].reg
;
16881 do_neon_dyadic_if_su (void)
16883 enum neon_shape rs
= neon_select_shape (NS_DDD
, NS_QQQ
, NS_QQR
, NS_NULL
);
16884 struct neon_type_el et
= neon_check_type (3, rs
, N_EQK
, N_EQK
,
16887 constraint ((inst
.instruction
== ((unsigned) N_MNEM_vmax
)
16888 || inst
.instruction
== ((unsigned) N_MNEM_vmin
))
16889 && et
.type
== NT_float
16890 && !ARM_CPU_HAS_FEATURE (cpu_variant
,fpu_neon_ext_v1
), BAD_FPU
);
16892 if (check_simd_pred_availability (et
.type
== NT_float
,
16893 NEON_CHECK_ARCH
| NEON_CHECK_CC
))
16896 neon_dyadic_misc (NT_unsigned
, N_SUF_32
, 0);
16900 do_neon_addsub_if_i (void)
16902 if (ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_vfp_ext_v1xd
)
16903 && try_vfp_nsyn (3, do_vfp_nsyn_add_sub
) == SUCCESS
)
16906 enum neon_shape rs
= neon_select_shape (NS_DDD
, NS_QQQ
, NS_QQR
, NS_NULL
);
16907 struct neon_type_el et
= neon_check_type (3, rs
, N_EQK
,
16908 N_EQK
, N_IF_32
| N_I64
| N_KEY
);
16910 constraint (rs
== NS_QQR
&& et
.size
== 64, BAD_FPU
);
16911 /* If we are parsing Q registers and the element types match MVE, which NEON
16912 also supports, then we must check whether this is an instruction that can
16913 be used by both MVE/NEON. This distinction can be made based on whether
16914 they are predicated or not. */
16915 if ((rs
== NS_QQQ
|| rs
== NS_QQR
) && et
.size
!= 64)
16917 if (check_simd_pred_availability (et
.type
== NT_float
,
16918 NEON_CHECK_ARCH
| NEON_CHECK_CC
))
16923 /* If they are either in a D register or are using an unsupported. */
16925 && vfp_or_neon_is_neon (NEON_CHECK_CC
| NEON_CHECK_ARCH
) == FAIL
)
16929 /* The "untyped" case can't happen. Do this to stop the "U" bit being
16930 affected if we specify unsigned args. */
16931 neon_dyadic_misc (NT_untyped
, N_IF_32
| N_I64
, 0);
16934 /* Swaps operands 1 and 2. If operand 1 (optional arg) was omitted, we want the
16936 V<op> A,B (A is operand 0, B is operand 2)
16941 so handle that case specially. */
16944 neon_exchange_operands (void)
16946 if (inst
.operands
[1].present
)
16948 void *scratch
= xmalloc (sizeof (inst
.operands
[0]));
16950 /* Swap operands[1] and operands[2]. */
16951 memcpy (scratch
, &inst
.operands
[1], sizeof (inst
.operands
[0]));
16952 inst
.operands
[1] = inst
.operands
[2];
16953 memcpy (&inst
.operands
[2], scratch
, sizeof (inst
.operands
[0]));
16958 inst
.operands
[1] = inst
.operands
[2];
16959 inst
.operands
[2] = inst
.operands
[0];
16964 neon_compare (unsigned regtypes
, unsigned immtypes
, int invert
)
16966 if (inst
.operands
[2].isreg
)
16969 neon_exchange_operands ();
16970 neon_dyadic_misc (NT_unsigned
, regtypes
, N_SIZ
);
16974 enum neon_shape rs
= neon_select_shape (NS_DDI
, NS_QQI
, NS_NULL
);
16975 struct neon_type_el et
= neon_check_type (2, rs
,
16976 N_EQK
| N_SIZ
, immtypes
| N_KEY
);
16978 NEON_ENCODE (IMMED
, inst
);
16979 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
16980 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
16981 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
);
16982 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 5;
16983 inst
.instruction
|= neon_quad (rs
) << 6;
16984 inst
.instruction
|= (et
.type
== NT_float
) << 10;
16985 inst
.instruction
|= neon_logbits (et
.size
) << 18;
16987 neon_dp_fixup (&inst
);
16994 neon_compare (N_SUF_32
, N_S_32
| N_F_16_32
, FALSE
);
16998 do_neon_cmp_inv (void)
17000 neon_compare (N_SUF_32
, N_S_32
| N_F_16_32
, TRUE
);
17006 neon_compare (N_IF_32
, N_IF_32
, FALSE
);
17009 /* For multiply instructions, we have the possibility of 16-bit or 32-bit
17010 scalars, which are encoded in 5 bits, M : Rm.
17011 For 16-bit scalars, the register is encoded in Rm[2:0] and the index in
17012 M:Rm[3], and for 32-bit scalars, the register is encoded in Rm[3:0] and the
17015 Dot Product instructions are similar to multiply instructions except elsize
17016 should always be 32.
17018 This function translates SCALAR, which is GAS's internal encoding of indexed
17019 scalar register, to raw encoding. There is also register and index range
17020 check based on ELSIZE. */
17023 neon_scalar_for_mul (unsigned scalar
, unsigned elsize
)
17025 unsigned regno
= NEON_SCALAR_REG (scalar
);
17026 unsigned elno
= NEON_SCALAR_INDEX (scalar
);
17031 if (regno
> 7 || elno
> 3)
17033 return regno
| (elno
<< 3);
17036 if (regno
> 15 || elno
> 1)
17038 return regno
| (elno
<< 4);
17042 first_error (_("scalar out of range for multiply instruction"));
17048 /* Encode multiply / multiply-accumulate scalar instructions. */
17051 neon_mul_mac (struct neon_type_el et
, int ubit
)
17055 /* Give a more helpful error message if we have an invalid type. */
17056 if (et
.type
== NT_invtype
)
17059 scalar
= neon_scalar_for_mul (inst
.operands
[2].reg
, et
.size
);
17060 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
17061 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
17062 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
) << 16;
17063 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 7;
17064 inst
.instruction
|= LOW4 (scalar
);
17065 inst
.instruction
|= HI1 (scalar
) << 5;
17066 inst
.instruction
|= (et
.type
== NT_float
) << 8;
17067 inst
.instruction
|= neon_logbits (et
.size
) << 20;
17068 inst
.instruction
|= (ubit
!= 0) << 24;
17070 neon_dp_fixup (&inst
);
17074 do_neon_mac_maybe_scalar (void)
17076 if (try_vfp_nsyn (3, do_vfp_nsyn_mla_mls
) == SUCCESS
)
17079 if (check_simd_pred_availability (0, NEON_CHECK_CC
| NEON_CHECK_ARCH
))
17082 if (inst
.operands
[2].isscalar
)
17084 constraint (ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
), BAD_FPU
);
17085 enum neon_shape rs
= neon_select_shape (NS_DDS
, NS_QQS
, NS_NULL
);
17086 struct neon_type_el et
= neon_check_type (3, rs
,
17087 N_EQK
, N_EQK
, N_I16
| N_I32
| N_F_16_32
| N_KEY
);
17088 NEON_ENCODE (SCALAR
, inst
);
17089 neon_mul_mac (et
, neon_quad (rs
));
17091 else if (!inst
.operands
[2].isvec
)
17093 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
), BAD_FPU
);
17095 enum neon_shape rs
= neon_select_shape (NS_QQR
, NS_NULL
);
17096 neon_check_type (3, rs
, N_EQK
, N_EQK
, N_SU_MVE
| N_KEY
);
17098 neon_dyadic_misc (NT_unsigned
, N_SU_MVE
, 0);
17102 constraint (ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
), BAD_FPU
);
17103 /* The "untyped" case can't happen. Do this to stop the "U" bit being
17104 affected if we specify unsigned args. */
17105 neon_dyadic_misc (NT_untyped
, N_IF_32
, 0);
17110 do_neon_fmac (void)
17112 if (ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_vfp_ext_fma
)
17113 && try_vfp_nsyn (3, do_vfp_nsyn_fma_fms
) == SUCCESS
)
17116 if (check_simd_pred_availability (1, NEON_CHECK_CC
| NEON_CHECK_ARCH
))
17119 if (ARM_CPU_HAS_FEATURE (cpu_variant
, mve_fp_ext
))
17121 enum neon_shape rs
= neon_select_shape (NS_QQQ
, NS_QQR
, NS_NULL
);
17122 struct neon_type_el et
= neon_check_type (3, rs
, N_F_MVE
| N_KEY
, N_EQK
,
17127 if (inst
.operands
[2].reg
== REG_SP
)
17128 as_tsktsk (MVE_BAD_SP
);
17129 else if (inst
.operands
[2].reg
== REG_PC
)
17130 as_tsktsk (MVE_BAD_PC
);
17132 inst
.instruction
= 0xee310e40;
17133 inst
.instruction
|= (et
.size
== 16) << 28;
17134 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
17135 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
) << 16;
17136 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
17137 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 6;
17138 inst
.instruction
|= inst
.operands
[2].reg
;
17145 constraint (!inst
.operands
[2].isvec
, BAD_FPU
);
17148 neon_dyadic_misc (NT_untyped
, N_IF_32
, 0);
17154 enum neon_shape rs
= neon_select_shape (NS_DDD
, NS_QQQ
, NS_NULL
);
17155 struct neon_type_el et
= neon_check_type (3, rs
,
17156 N_EQK
, N_EQK
, N_8
| N_16
| N_32
| N_KEY
);
17157 neon_three_same (neon_quad (rs
), 0, et
.size
);
17160 /* VMUL with 3 registers allows the P8 type. The scalar version supports the
17161 same types as the MAC equivalents. The polynomial type for this instruction
17162 is encoded the same as the integer type. */
17167 if (try_vfp_nsyn (3, do_vfp_nsyn_mul
) == SUCCESS
)
17170 if (check_simd_pred_availability (0, NEON_CHECK_CC
| NEON_CHECK_ARCH
))
17173 if (inst
.operands
[2].isscalar
)
17175 constraint (ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
), BAD_FPU
);
17176 do_neon_mac_maybe_scalar ();
17180 if (ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
))
17182 enum neon_shape rs
= neon_select_shape (NS_QQR
, NS_QQQ
, NS_NULL
);
17183 struct neon_type_el et
17184 = neon_check_type (3, rs
, N_EQK
, N_EQK
, N_I_MVE
| N_F_MVE
| N_KEY
);
17185 if (et
.type
== NT_float
)
17186 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, mve_fp_ext
),
17189 neon_dyadic_misc (NT_float
, N_I_MVE
| N_F_MVE
, 0);
17193 constraint (!inst
.operands
[2].isvec
, BAD_FPU
);
17194 neon_dyadic_misc (NT_poly
,
17195 N_I8
| N_I16
| N_I32
| N_F16
| N_F32
| N_P8
, 0);
17201 do_neon_qdmulh (void)
17203 if (check_simd_pred_availability (0, NEON_CHECK_ARCH
| NEON_CHECK_CC
))
17206 if (inst
.operands
[2].isscalar
)
17208 constraint (ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
), BAD_FPU
);
17209 enum neon_shape rs
= neon_select_shape (NS_DDS
, NS_QQS
, NS_NULL
);
17210 struct neon_type_el et
= neon_check_type (3, rs
,
17211 N_EQK
, N_EQK
, N_S16
| N_S32
| N_KEY
);
17212 NEON_ENCODE (SCALAR
, inst
);
17213 neon_mul_mac (et
, neon_quad (rs
));
17217 enum neon_shape rs
;
17218 struct neon_type_el et
;
17219 if (ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
))
17221 rs
= neon_select_shape (NS_QQR
, NS_QQQ
, NS_NULL
);
17222 et
= neon_check_type (3, rs
,
17223 N_EQK
, N_EQK
, N_S8
| N_S16
| N_S32
| N_KEY
);
17227 rs
= neon_select_shape (NS_DDD
, NS_QQQ
, NS_NULL
);
17228 et
= neon_check_type (3, rs
,
17229 N_EQK
, N_EQK
, N_S16
| N_S32
| N_KEY
);
17232 NEON_ENCODE (INTEGER
, inst
);
17234 mve_encode_qqr (et
.size
, 0, 0);
17236 /* The U bit (rounding) comes from bit mask. */
17237 neon_three_same (neon_quad (rs
), 0, et
.size
);
17242 do_mve_vaddv (void)
17244 enum neon_shape rs
= neon_select_shape (NS_RQ
, NS_NULL
);
17245 struct neon_type_el et
17246 = neon_check_type (2, rs
, N_EQK
, N_SU_32
| N_KEY
);
17248 if (et
.type
== NT_invtype
)
17249 first_error (BAD_EL_TYPE
);
17251 if (inst
.cond
> COND_ALWAYS
)
17252 inst
.pred_insn_type
= INSIDE_VPT_INSN
;
17254 inst
.pred_insn_type
= MVE_OUTSIDE_PRED_INSN
;
17256 constraint (inst
.operands
[1].reg
> 14, MVE_BAD_QREG
);
17258 mve_encode_rq (et
.type
== NT_unsigned
, et
.size
);
17262 do_mve_vhcadd (void)
17264 enum neon_shape rs
= neon_select_shape (NS_QQQI
, NS_NULL
);
17265 struct neon_type_el et
17266 = neon_check_type (3, rs
, N_EQK
, N_EQK
, N_S8
| N_S16
| N_S32
| N_KEY
);
17268 if (inst
.cond
> COND_ALWAYS
)
17269 inst
.pred_insn_type
= INSIDE_VPT_INSN
;
17271 inst
.pred_insn_type
= MVE_OUTSIDE_PRED_INSN
;
17273 unsigned rot
= inst
.relocs
[0].exp
.X_add_number
;
17274 constraint (rot
!= 90 && rot
!= 270, _("immediate out of range"));
17276 if (et
.size
== 32 && inst
.operands
[0].reg
== inst
.operands
[2].reg
)
17277 as_tsktsk (_("Warning: 32-bit element size and same first and third "
17278 "operand makes instruction UNPREDICTABLE"));
17280 mve_encode_qqq (0, et
.size
);
17281 inst
.instruction
|= (rot
== 270) << 12;
17288 enum neon_shape rs
= neon_select_shape (NS_QQQ
, NS_NULL
);
17289 struct neon_type_el et
17290 = neon_check_type (3, rs
, N_KEY
| N_I32
, N_EQK
, N_EQK
);
17292 if (et
.type
== NT_invtype
)
17293 first_error (BAD_EL_TYPE
);
17295 if (inst
.cond
> COND_ALWAYS
)
17296 inst
.pred_insn_type
= INSIDE_VPT_INSN
;
17298 inst
.pred_insn_type
= MVE_OUTSIDE_PRED_INSN
;
17300 mve_encode_qqq (0, 64);
17304 do_mve_vbrsr (void)
17306 enum neon_shape rs
= neon_select_shape (NS_QQR
, NS_NULL
);
17307 struct neon_type_el et
17308 = neon_check_type (3, rs
, N_EQK
, N_EQK
, N_8
| N_16
| N_32
| N_KEY
);
17310 if (inst
.cond
> COND_ALWAYS
)
17311 inst
.pred_insn_type
= INSIDE_VPT_INSN
;
17313 inst
.pred_insn_type
= MVE_OUTSIDE_PRED_INSN
;
17315 mve_encode_qqr (et
.size
, 0, 0);
17321 neon_check_type (3, NS_QQQ
, N_EQK
, N_EQK
, N_I32
| N_KEY
);
17323 if (inst
.cond
> COND_ALWAYS
)
17324 inst
.pred_insn_type
= INSIDE_VPT_INSN
;
17326 inst
.pred_insn_type
= MVE_OUTSIDE_PRED_INSN
;
17328 mve_encode_qqq (1, 64);
17332 do_mve_vmulh (void)
17334 enum neon_shape rs
= neon_select_shape (NS_QQQ
, NS_NULL
);
17335 struct neon_type_el et
17336 = neon_check_type (3, rs
, N_EQK
, N_EQK
, N_SU_MVE
| N_KEY
);
17338 if (inst
.cond
> COND_ALWAYS
)
17339 inst
.pred_insn_type
= INSIDE_VPT_INSN
;
17341 inst
.pred_insn_type
= MVE_OUTSIDE_PRED_INSN
;
17343 mve_encode_qqq (et
.type
== NT_unsigned
, et
.size
);
17347 do_mve_vqdmlah (void)
17349 enum neon_shape rs
= neon_select_shape (NS_QQR
, NS_NULL
);
17350 struct neon_type_el et
17351 = neon_check_type (3, rs
, N_EQK
, N_EQK
, N_SU_MVE
| N_KEY
);
17353 if (inst
.cond
> COND_ALWAYS
)
17354 inst
.pred_insn_type
= INSIDE_VPT_INSN
;
17356 inst
.pred_insn_type
= MVE_OUTSIDE_PRED_INSN
;
17358 mve_encode_qqr (et
.size
, et
.type
== NT_unsigned
, 0);
17362 do_mve_vqdmladh (void)
17364 enum neon_shape rs
= neon_select_shape (NS_QQQ
, NS_NULL
);
17365 struct neon_type_el et
17366 = neon_check_type (3, rs
, N_EQK
, N_EQK
, N_S8
| N_S16
| N_S32
| N_KEY
);
17368 if (inst
.cond
> COND_ALWAYS
)
17369 inst
.pred_insn_type
= INSIDE_VPT_INSN
;
17371 inst
.pred_insn_type
= MVE_OUTSIDE_PRED_INSN
;
17374 && (inst
.operands
[0].reg
== inst
.operands
[1].reg
17375 || inst
.operands
[0].reg
== inst
.operands
[2].reg
))
17376 as_tsktsk (BAD_MVE_SRCDEST
);
17378 mve_encode_qqq (0, et
.size
);
17383 do_mve_vmull (void)
17386 enum neon_shape rs
= neon_select_shape (NS_HHH
, NS_FFF
, NS_DDD
, NS_DDS
,
17387 NS_QQS
, NS_QQQ
, NS_QQR
, NS_NULL
);
17388 if (!ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
)
17389 && inst
.cond
== COND_ALWAYS
17390 && ((unsigned)inst
.instruction
) == M_MNEM_vmullt
)
17395 struct neon_type_el et
= neon_check_type (3, rs
, N_EQK
, N_EQK
,
17396 N_SUF_32
| N_F64
| N_P8
17397 | N_P16
| N_I_MVE
| N_KEY
);
17398 if (((et
.type
== NT_poly
) && et
.size
== 8
17399 && ARM_CPU_IS_ANY (cpu_variant
))
17400 || (et
.type
== NT_integer
) || (et
.type
== NT_float
))
17407 constraint (rs
!= NS_QQQ
, BAD_FPU
);
17408 struct neon_type_el et
= neon_check_type (3, rs
, N_EQK
, N_EQK
,
17409 N_SU_32
| N_P8
| N_P16
| N_KEY
);
17411 /* We are dealing with MVE's vmullt. */
17413 && (inst
.operands
[0].reg
== inst
.operands
[1].reg
17414 || inst
.operands
[0].reg
== inst
.operands
[2].reg
))
17415 as_tsktsk (BAD_MVE_SRCDEST
);
17417 if (inst
.cond
> COND_ALWAYS
)
17418 inst
.pred_insn_type
= INSIDE_VPT_INSN
;
17420 inst
.pred_insn_type
= MVE_OUTSIDE_PRED_INSN
;
17422 if (et
.type
== NT_poly
)
17423 mve_encode_qqq (neon_logbits (et
.size
), 64);
17425 mve_encode_qqq (et
.type
== NT_unsigned
, et
.size
);
17430 inst
.instruction
= N_MNEM_vmul
;
17433 inst
.pred_insn_type
= INSIDE_IT_INSN
;
17438 do_mve_vabav (void)
17440 enum neon_shape rs
= neon_select_shape (NS_RQQ
, NS_NULL
);
17445 if (!ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
))
17448 struct neon_type_el et
= neon_check_type (2, NS_NULL
, N_EQK
, N_KEY
| N_S8
17449 | N_S16
| N_S32
| N_U8
| N_U16
17452 if (inst
.cond
> COND_ALWAYS
)
17453 inst
.pred_insn_type
= INSIDE_VPT_INSN
;
17455 inst
.pred_insn_type
= MVE_OUTSIDE_PRED_INSN
;
17457 mve_encode_rqq (et
.type
== NT_unsigned
, et
.size
);
17461 do_mve_vmladav (void)
17463 enum neon_shape rs
= neon_select_shape (NS_RQQ
, NS_NULL
);
17464 struct neon_type_el et
= neon_check_type (3, rs
,
17465 N_EQK
, N_EQK
, N_SU_MVE
| N_KEY
);
17467 if (et
.type
== NT_unsigned
17468 && (inst
.instruction
== M_MNEM_vmladavx
17469 || inst
.instruction
== M_MNEM_vmladavax
17470 || inst
.instruction
== M_MNEM_vmlsdav
17471 || inst
.instruction
== M_MNEM_vmlsdava
17472 || inst
.instruction
== M_MNEM_vmlsdavx
17473 || inst
.instruction
== M_MNEM_vmlsdavax
))
17474 first_error (BAD_SIMD_TYPE
);
17476 constraint (inst
.operands
[2].reg
> 14,
17477 _("MVE vector register in the range [Q0..Q7] expected"));
17479 if (inst
.cond
> COND_ALWAYS
)
17480 inst
.pred_insn_type
= INSIDE_VPT_INSN
;
17482 inst
.pred_insn_type
= MVE_OUTSIDE_PRED_INSN
;
17484 if (inst
.instruction
== M_MNEM_vmlsdav
17485 || inst
.instruction
== M_MNEM_vmlsdava
17486 || inst
.instruction
== M_MNEM_vmlsdavx
17487 || inst
.instruction
== M_MNEM_vmlsdavax
)
17488 inst
.instruction
|= (et
.size
== 8) << 28;
17490 inst
.instruction
|= (et
.size
== 8) << 8;
17492 mve_encode_rqq (et
.type
== NT_unsigned
, 64);
17493 inst
.instruction
|= (et
.size
== 32) << 16;
17497 do_mve_vmlaldav (void)
17499 enum neon_shape rs
= neon_select_shape (NS_RRQQ
, NS_NULL
);
17500 struct neon_type_el et
17501 = neon_check_type (4, rs
, N_EQK
, N_EQK
, N_EQK
,
17502 N_S16
| N_S32
| N_U16
| N_U32
| N_KEY
);
17504 if (et
.type
== NT_unsigned
17505 && (inst
.instruction
== M_MNEM_vmlsldav
17506 || inst
.instruction
== M_MNEM_vmlsldava
17507 || inst
.instruction
== M_MNEM_vmlsldavx
17508 || inst
.instruction
== M_MNEM_vmlsldavax
))
17509 first_error (BAD_SIMD_TYPE
);
17511 if (inst
.cond
> COND_ALWAYS
)
17512 inst
.pred_insn_type
= INSIDE_VPT_INSN
;
17514 inst
.pred_insn_type
= MVE_OUTSIDE_PRED_INSN
;
17516 mve_encode_rrqq (et
.type
== NT_unsigned
, et
.size
);
17520 do_mve_vrmlaldavh (void)
17522 struct neon_type_el et
;
17523 if (inst
.instruction
== M_MNEM_vrmlsldavh
17524 || inst
.instruction
== M_MNEM_vrmlsldavha
17525 || inst
.instruction
== M_MNEM_vrmlsldavhx
17526 || inst
.instruction
== M_MNEM_vrmlsldavhax
)
17528 et
= neon_check_type (4, NS_RRQQ
, N_EQK
, N_EQK
, N_EQK
, N_S32
| N_KEY
);
17529 if (inst
.operands
[1].reg
== REG_SP
)
17530 as_tsktsk (MVE_BAD_SP
);
17534 if (inst
.instruction
== M_MNEM_vrmlaldavhx
17535 || inst
.instruction
== M_MNEM_vrmlaldavhax
)
17536 et
= neon_check_type (4, NS_RRQQ
, N_EQK
, N_EQK
, N_EQK
, N_S32
| N_KEY
);
17538 et
= neon_check_type (4, NS_RRQQ
, N_EQK
, N_EQK
, N_EQK
,
17539 N_U32
| N_S32
| N_KEY
);
17540 /* vrmlaldavh's encoding with SP as the second, odd, GPR operand may alias
17541 with vmax/min instructions, making the use of SP in assembly really
17542 nonsensical, so instead of issuing a warning like we do for other uses
17543 of SP for the odd register operand we error out. */
17544 constraint (inst
.operands
[1].reg
== REG_SP
, BAD_SP
);
17547 /* Make sure we still check the second operand is an odd one and that PC is
17548 disallowed. This because we are parsing for any GPR operand, to be able
17549 to distinguish between giving a warning or an error for SP as described
17551 constraint ((inst
.operands
[1].reg
% 2) != 1, BAD_EVEN
);
17552 constraint (inst
.operands
[1].reg
== REG_PC
, BAD_PC
);
17554 if (inst
.cond
> COND_ALWAYS
)
17555 inst
.pred_insn_type
= INSIDE_VPT_INSN
;
17557 inst
.pred_insn_type
= MVE_OUTSIDE_PRED_INSN
;
17559 mve_encode_rrqq (et
.type
== NT_unsigned
, 0);
17564 do_mve_vmaxnmv (void)
17566 enum neon_shape rs
= neon_select_shape (NS_RQ
, NS_NULL
);
17567 struct neon_type_el et
17568 = neon_check_type (2, rs
, N_EQK
, N_F_MVE
| N_KEY
);
17570 if (inst
.cond
> COND_ALWAYS
)
17571 inst
.pred_insn_type
= INSIDE_VPT_INSN
;
17573 inst
.pred_insn_type
= MVE_OUTSIDE_PRED_INSN
;
17575 if (inst
.operands
[0].reg
== REG_SP
)
17576 as_tsktsk (MVE_BAD_SP
);
17577 else if (inst
.operands
[0].reg
== REG_PC
)
17578 as_tsktsk (MVE_BAD_PC
);
17580 mve_encode_rq (et
.size
== 16, 64);
17584 do_mve_vmaxv (void)
17586 enum neon_shape rs
= neon_select_shape (NS_RQ
, NS_NULL
);
17587 struct neon_type_el et
;
17589 if (inst
.instruction
== M_MNEM_vmaxv
|| inst
.instruction
== M_MNEM_vminv
)
17590 et
= neon_check_type (2, rs
, N_EQK
, N_SU_MVE
| N_KEY
);
17592 et
= neon_check_type (2, rs
, N_EQK
, N_S8
| N_S16
| N_S32
| N_KEY
);
17594 if (inst
.cond
> COND_ALWAYS
)
17595 inst
.pred_insn_type
= INSIDE_VPT_INSN
;
17597 inst
.pred_insn_type
= MVE_OUTSIDE_PRED_INSN
;
17599 if (inst
.operands
[0].reg
== REG_SP
)
17600 as_tsktsk (MVE_BAD_SP
);
17601 else if (inst
.operands
[0].reg
== REG_PC
)
17602 as_tsktsk (MVE_BAD_PC
);
17604 mve_encode_rq (et
.type
== NT_unsigned
, et
.size
);
17609 do_neon_qrdmlah (void)
17611 if (check_simd_pred_availability (0, NEON_CHECK_ARCH
| NEON_CHECK_CC
))
17613 if (!ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
))
17615 /* Check we're on the correct architecture. */
17616 if (!mark_feature_used (&fpu_neon_ext_armv8
))
17618 = _("instruction form not available on this architecture.");
17619 else if (!mark_feature_used (&fpu_neon_ext_v8_1
))
17621 as_warn (_("this instruction implies use of ARMv8.1 AdvSIMD."));
17622 record_feature_use (&fpu_neon_ext_v8_1
);
17624 if (inst
.operands
[2].isscalar
)
17626 enum neon_shape rs
= neon_select_shape (NS_DDS
, NS_QQS
, NS_NULL
);
17627 struct neon_type_el et
= neon_check_type (3, rs
,
17628 N_EQK
, N_EQK
, N_S16
| N_S32
| N_KEY
);
17629 NEON_ENCODE (SCALAR
, inst
);
17630 neon_mul_mac (et
, neon_quad (rs
));
17634 enum neon_shape rs
= neon_select_shape (NS_DDD
, NS_QQQ
, NS_NULL
);
17635 struct neon_type_el et
= neon_check_type (3, rs
,
17636 N_EQK
, N_EQK
, N_S16
| N_S32
| N_KEY
);
17637 NEON_ENCODE (INTEGER
, inst
);
17638 /* The U bit (rounding) comes from bit mask. */
17639 neon_three_same (neon_quad (rs
), 0, et
.size
);
17644 enum neon_shape rs
= neon_select_shape (NS_QQR
, NS_NULL
);
17645 struct neon_type_el et
17646 = neon_check_type (3, rs
, N_EQK
, N_EQK
, N_SU_MVE
| N_KEY
);
17648 NEON_ENCODE (INTEGER
, inst
);
17649 mve_encode_qqr (et
.size
, et
.type
== NT_unsigned
, 0);
17654 do_neon_fcmp_absolute (void)
17656 enum neon_shape rs
= neon_select_shape (NS_DDD
, NS_QQQ
, NS_NULL
);
17657 struct neon_type_el et
= neon_check_type (3, rs
, N_EQK
, N_EQK
,
17658 N_F_16_32
| N_KEY
);
17659 /* Size field comes from bit mask. */
17660 neon_three_same (neon_quad (rs
), 1, et
.size
== 16 ? (int) et
.size
: -1);
17664 do_neon_fcmp_absolute_inv (void)
17666 neon_exchange_operands ();
17667 do_neon_fcmp_absolute ();
17671 do_neon_step (void)
17673 enum neon_shape rs
= neon_select_shape (NS_DDD
, NS_QQQ
, NS_NULL
);
17674 struct neon_type_el et
= neon_check_type (3, rs
, N_EQK
, N_EQK
,
17675 N_F_16_32
| N_KEY
);
17676 neon_three_same (neon_quad (rs
), 0, et
.size
== 16 ? (int) et
.size
: -1);
17680 do_neon_abs_neg (void)
17682 enum neon_shape rs
;
17683 struct neon_type_el et
;
17685 if (try_vfp_nsyn (2, do_vfp_nsyn_abs_neg
) == SUCCESS
)
17688 rs
= neon_select_shape (NS_DD
, NS_QQ
, NS_NULL
);
17689 et
= neon_check_type (2, rs
, N_EQK
, N_S_32
| N_F_16_32
| N_KEY
);
17691 if (check_simd_pred_availability (et
.type
== NT_float
,
17692 NEON_CHECK_ARCH
| NEON_CHECK_CC
))
17695 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
17696 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
17697 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
);
17698 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 5;
17699 inst
.instruction
|= neon_quad (rs
) << 6;
17700 inst
.instruction
|= (et
.type
== NT_float
) << 10;
17701 inst
.instruction
|= neon_logbits (et
.size
) << 18;
17703 neon_dp_fixup (&inst
);
17709 enum neon_shape rs
= neon_select_shape (NS_DDI
, NS_QQI
, NS_NULL
);
17710 struct neon_type_el et
= neon_check_type (2, rs
,
17711 N_EQK
, N_8
| N_16
| N_32
| N_64
| N_KEY
);
17712 int imm
= inst
.operands
[2].imm
;
17713 constraint (imm
< 0 || (unsigned)imm
>= et
.size
,
17714 _("immediate out of range for insert"));
17715 neon_imm_shift (FALSE
, 0, neon_quad (rs
), et
, imm
);
17721 enum neon_shape rs
= neon_select_shape (NS_DDI
, NS_QQI
, NS_NULL
);
17722 struct neon_type_el et
= neon_check_type (2, rs
,
17723 N_EQK
, N_8
| N_16
| N_32
| N_64
| N_KEY
);
17724 int imm
= inst
.operands
[2].imm
;
17725 constraint (imm
< 1 || (unsigned)imm
> et
.size
,
17726 _("immediate out of range for insert"));
17727 neon_imm_shift (FALSE
, 0, neon_quad (rs
), et
, et
.size
- imm
);
17731 do_neon_qshlu_imm (void)
17733 enum neon_shape rs
= neon_select_shape (NS_DDI
, NS_QQI
, NS_NULL
);
17734 struct neon_type_el et
= neon_check_type (2, rs
,
17735 N_EQK
| N_UNS
, N_S8
| N_S16
| N_S32
| N_S64
| N_KEY
);
17736 int imm
= inst
.operands
[2].imm
;
17737 constraint (imm
< 0 || (unsigned)imm
>= et
.size
,
17738 _("immediate out of range for shift"));
17739 /* Only encodes the 'U present' variant of the instruction.
17740 In this case, signed types have OP (bit 8) set to 0.
17741 Unsigned types have OP set to 1. */
17742 inst
.instruction
|= (et
.type
== NT_unsigned
) << 8;
17743 /* The rest of the bits are the same as other immediate shifts. */
17744 neon_imm_shift (FALSE
, 0, neon_quad (rs
), et
, imm
);
17748 do_neon_qmovn (void)
17750 struct neon_type_el et
= neon_check_type (2, NS_DQ
,
17751 N_EQK
| N_HLF
, N_SU_16_64
| N_KEY
);
17752 /* Saturating move where operands can be signed or unsigned, and the
17753 destination has the same signedness. */
17754 NEON_ENCODE (INTEGER
, inst
);
17755 if (et
.type
== NT_unsigned
)
17756 inst
.instruction
|= 0xc0;
17758 inst
.instruction
|= 0x80;
17759 neon_two_same (0, 1, et
.size
/ 2);
17763 do_neon_qmovun (void)
17765 struct neon_type_el et
= neon_check_type (2, NS_DQ
,
17766 N_EQK
| N_HLF
| N_UNS
, N_S16
| N_S32
| N_S64
| N_KEY
);
17767 /* Saturating move with unsigned results. Operands must be signed. */
17768 NEON_ENCODE (INTEGER
, inst
);
17769 neon_two_same (0, 1, et
.size
/ 2);
17773 do_neon_rshift_sat_narrow (void)
17775 /* FIXME: Types for narrowing. If operands are signed, results can be signed
17776 or unsigned. If operands are unsigned, results must also be unsigned. */
17777 struct neon_type_el et
= neon_check_type (2, NS_DQI
,
17778 N_EQK
| N_HLF
, N_SU_16_64
| N_KEY
);
17779 int imm
= inst
.operands
[2].imm
;
17780 /* This gets the bounds check, size encoding and immediate bits calculation
17784 /* VQ{R}SHRN.I<size> <Dd>, <Qm>, #0 is a synonym for
17785 VQMOVN.I<size> <Dd>, <Qm>. */
17788 inst
.operands
[2].present
= 0;
17789 inst
.instruction
= N_MNEM_vqmovn
;
17794 constraint (imm
< 1 || (unsigned)imm
> et
.size
,
17795 _("immediate out of range"));
17796 neon_imm_shift (TRUE
, et
.type
== NT_unsigned
, 0, et
, et
.size
- imm
);
17800 do_neon_rshift_sat_narrow_u (void)
17802 /* FIXME: Types for narrowing. If operands are signed, results can be signed
17803 or unsigned. If operands are unsigned, results must also be unsigned. */
17804 struct neon_type_el et
= neon_check_type (2, NS_DQI
,
17805 N_EQK
| N_HLF
| N_UNS
, N_S16
| N_S32
| N_S64
| N_KEY
);
17806 int imm
= inst
.operands
[2].imm
;
17807 /* This gets the bounds check, size encoding and immediate bits calculation
17811 /* VQSHRUN.I<size> <Dd>, <Qm>, #0 is a synonym for
17812 VQMOVUN.I<size> <Dd>, <Qm>. */
17815 inst
.operands
[2].present
= 0;
17816 inst
.instruction
= N_MNEM_vqmovun
;
17821 constraint (imm
< 1 || (unsigned)imm
> et
.size
,
17822 _("immediate out of range"));
17823 /* FIXME: The manual is kind of unclear about what value U should have in
17824 VQ{R}SHRUN instructions, but U=0, op=0 definitely encodes VRSHR, so it
17826 neon_imm_shift (TRUE
, 1, 0, et
, et
.size
- imm
);
17830 do_neon_movn (void)
17832 struct neon_type_el et
= neon_check_type (2, NS_DQ
,
17833 N_EQK
| N_HLF
, N_I16
| N_I32
| N_I64
| N_KEY
);
17834 NEON_ENCODE (INTEGER
, inst
);
17835 neon_two_same (0, 1, et
.size
/ 2);
17839 do_neon_rshift_narrow (void)
17841 struct neon_type_el et
= neon_check_type (2, NS_DQI
,
17842 N_EQK
| N_HLF
, N_I16
| N_I32
| N_I64
| N_KEY
);
17843 int imm
= inst
.operands
[2].imm
;
17844 /* This gets the bounds check, size encoding and immediate bits calculation
17848 /* If immediate is zero then we are a pseudo-instruction for
17849 VMOVN.I<size> <Dd>, <Qm> */
17852 inst
.operands
[2].present
= 0;
17853 inst
.instruction
= N_MNEM_vmovn
;
17858 constraint (imm
< 1 || (unsigned)imm
> et
.size
,
17859 _("immediate out of range for narrowing operation"));
17860 neon_imm_shift (FALSE
, 0, 0, et
, et
.size
- imm
);
17864 do_neon_shll (void)
17866 /* FIXME: Type checking when lengthening. */
17867 struct neon_type_el et
= neon_check_type (2, NS_QDI
,
17868 N_EQK
| N_DBL
, N_I8
| N_I16
| N_I32
| N_KEY
);
17869 unsigned imm
= inst
.operands
[2].imm
;
17871 if (imm
== et
.size
)
17873 /* Maximum shift variant. */
17874 NEON_ENCODE (INTEGER
, inst
);
17875 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
17876 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
17877 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
);
17878 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 5;
17879 inst
.instruction
|= neon_logbits (et
.size
) << 18;
17881 neon_dp_fixup (&inst
);
17885 /* A more-specific type check for non-max versions. */
17886 et
= neon_check_type (2, NS_QDI
,
17887 N_EQK
| N_DBL
, N_SU_32
| N_KEY
);
17888 NEON_ENCODE (IMMED
, inst
);
17889 neon_imm_shift (TRUE
, et
.type
== NT_unsigned
, 0, et
, imm
);
17893 /* Check the various types for the VCVT instruction, and return which version
17894 the current instruction is. */
17896 #define CVT_FLAVOUR_VAR \
17897 CVT_VAR (s32_f32, N_S32, N_F32, whole_reg, "ftosls", "ftosis", "ftosizs") \
17898 CVT_VAR (u32_f32, N_U32, N_F32, whole_reg, "ftouls", "ftouis", "ftouizs") \
17899 CVT_VAR (f32_s32, N_F32, N_S32, whole_reg, "fsltos", "fsitos", NULL) \
17900 CVT_VAR (f32_u32, N_F32, N_U32, whole_reg, "fultos", "fuitos", NULL) \
17901 /* Half-precision conversions. */ \
17902 CVT_VAR (s16_f16, N_S16, N_F16 | N_KEY, whole_reg, NULL, NULL, NULL) \
17903 CVT_VAR (u16_f16, N_U16, N_F16 | N_KEY, whole_reg, NULL, NULL, NULL) \
17904 CVT_VAR (f16_s16, N_F16 | N_KEY, N_S16, whole_reg, NULL, NULL, NULL) \
17905 CVT_VAR (f16_u16, N_F16 | N_KEY, N_U16, whole_reg, NULL, NULL, NULL) \
17906 CVT_VAR (f32_f16, N_F32, N_F16, whole_reg, NULL, NULL, NULL) \
17907 CVT_VAR (f16_f32, N_F16, N_F32, whole_reg, NULL, NULL, NULL) \
17908 /* New VCVT instructions introduced by ARMv8.2 fp16 extension. \
17909 Compared with single/double precision variants, only the co-processor \
17910 field is different, so the encoding flow is reused here. */ \
17911 CVT_VAR (f16_s32, N_F16 | N_KEY, N_S32, N_VFP, "fsltos", "fsitos", NULL) \
17912 CVT_VAR (f16_u32, N_F16 | N_KEY, N_U32, N_VFP, "fultos", "fuitos", NULL) \
17913 CVT_VAR (u32_f16, N_U32, N_F16 | N_KEY, N_VFP, "ftouls", "ftouis", "ftouizs")\
17914 CVT_VAR (s32_f16, N_S32, N_F16 | N_KEY, N_VFP, "ftosls", "ftosis", "ftosizs")\
17915 /* VFP instructions. */ \
17916 CVT_VAR (f32_f64, N_F32, N_F64, N_VFP, NULL, "fcvtsd", NULL) \
17917 CVT_VAR (f64_f32, N_F64, N_F32, N_VFP, NULL, "fcvtds", NULL) \
17918 CVT_VAR (s32_f64, N_S32, N_F64 | key, N_VFP, "ftosld", "ftosid", "ftosizd") \
17919 CVT_VAR (u32_f64, N_U32, N_F64 | key, N_VFP, "ftould", "ftouid", "ftouizd") \
17920 CVT_VAR (f64_s32, N_F64 | key, N_S32, N_VFP, "fsltod", "fsitod", NULL) \
17921 CVT_VAR (f64_u32, N_F64 | key, N_U32, N_VFP, "fultod", "fuitod", NULL) \
17922 /* VFP instructions with bitshift. */ \
17923 CVT_VAR (f32_s16, N_F32 | key, N_S16, N_VFP, "fshtos", NULL, NULL) \
17924 CVT_VAR (f32_u16, N_F32 | key, N_U16, N_VFP, "fuhtos", NULL, NULL) \
17925 CVT_VAR (f64_s16, N_F64 | key, N_S16, N_VFP, "fshtod", NULL, NULL) \
17926 CVT_VAR (f64_u16, N_F64 | key, N_U16, N_VFP, "fuhtod", NULL, NULL) \
17927 CVT_VAR (s16_f32, N_S16, N_F32 | key, N_VFP, "ftoshs", NULL, NULL) \
17928 CVT_VAR (u16_f32, N_U16, N_F32 | key, N_VFP, "ftouhs", NULL, NULL) \
17929 CVT_VAR (s16_f64, N_S16, N_F64 | key, N_VFP, "ftoshd", NULL, NULL) \
17930 CVT_VAR (u16_f64, N_U16, N_F64 | key, N_VFP, "ftouhd", NULL, NULL)
17932 #define CVT_VAR(C, X, Y, R, BSN, CN, ZN) \
17933 neon_cvt_flavour_##C,
17935 /* The different types of conversions we can do. */
17936 enum neon_cvt_flavour
17939 neon_cvt_flavour_invalid
,
17940 neon_cvt_flavour_first_fp
= neon_cvt_flavour_f32_f64
17945 static enum neon_cvt_flavour
17946 get_neon_cvt_flavour (enum neon_shape rs
)
17948 #define CVT_VAR(C,X,Y,R,BSN,CN,ZN) \
17949 et = neon_check_type (2, rs, (R) | (X), (R) | (Y)); \
17950 if (et.type != NT_invtype) \
17952 inst.error = NULL; \
17953 return (neon_cvt_flavour_##C); \
17956 struct neon_type_el et
;
17957 unsigned whole_reg
= (rs
== NS_FFI
|| rs
== NS_FD
|| rs
== NS_DF
17958 || rs
== NS_FF
) ? N_VFP
: 0;
17959 /* The instruction versions which take an immediate take one register
17960 argument, which is extended to the width of the full register. Thus the
17961 "source" and "destination" registers must have the same width. Hack that
17962 here by making the size equal to the key (wider, in this case) operand. */
17963 unsigned key
= (rs
== NS_QQI
|| rs
== NS_DDI
|| rs
== NS_FFI
) ? N_KEY
: 0;
17967 return neon_cvt_flavour_invalid
;
17982 /* Neon-syntax VFP conversions. */
17985 do_vfp_nsyn_cvt (enum neon_shape rs
, enum neon_cvt_flavour flavour
)
17987 const char *opname
= 0;
17989 if (rs
== NS_DDI
|| rs
== NS_QQI
|| rs
== NS_FFI
17990 || rs
== NS_FHI
|| rs
== NS_HFI
)
17992 /* Conversions with immediate bitshift. */
17993 const char *enc
[] =
17995 #define CVT_VAR(C,A,B,R,BSN,CN,ZN) BSN,
18001 if (flavour
< (int) ARRAY_SIZE (enc
))
18003 opname
= enc
[flavour
];
18004 constraint (inst
.operands
[0].reg
!= inst
.operands
[1].reg
,
18005 _("operands 0 and 1 must be the same register"));
18006 inst
.operands
[1] = inst
.operands
[2];
18007 memset (&inst
.operands
[2], '\0', sizeof (inst
.operands
[2]));
18012 /* Conversions without bitshift. */
18013 const char *enc
[] =
18015 #define CVT_VAR(C,A,B,R,BSN,CN,ZN) CN,
18021 if (flavour
< (int) ARRAY_SIZE (enc
))
18022 opname
= enc
[flavour
];
18026 do_vfp_nsyn_opcode (opname
);
18028 /* ARMv8.2 fp16 VCVT instruction. */
18029 if (flavour
== neon_cvt_flavour_s32_f16
18030 || flavour
== neon_cvt_flavour_u32_f16
18031 || flavour
== neon_cvt_flavour_f16_u32
18032 || flavour
== neon_cvt_flavour_f16_s32
)
18033 do_scalar_fp16_v82_encode ();
18037 do_vfp_nsyn_cvtz (void)
18039 enum neon_shape rs
= neon_select_shape (NS_FH
, NS_FF
, NS_FD
, NS_NULL
);
18040 enum neon_cvt_flavour flavour
= get_neon_cvt_flavour (rs
);
18041 const char *enc
[] =
18043 #define CVT_VAR(C,A,B,R,BSN,CN,ZN) ZN,
18049 if (flavour
< (int) ARRAY_SIZE (enc
) && enc
[flavour
])
18050 do_vfp_nsyn_opcode (enc
[flavour
]);
18054 do_vfp_nsyn_cvt_fpv8 (enum neon_cvt_flavour flavour
,
18055 enum neon_cvt_mode mode
)
18060 /* Targets like FPv5-SP-D16 don't support FP v8 instructions with
18061 D register operands. */
18062 if (flavour
== neon_cvt_flavour_s32_f64
18063 || flavour
== neon_cvt_flavour_u32_f64
)
18064 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_vfp_ext_armv8
),
18067 if (flavour
== neon_cvt_flavour_s32_f16
18068 || flavour
== neon_cvt_flavour_u32_f16
)
18069 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_fp16
),
18072 set_pred_insn_type (OUTSIDE_PRED_INSN
);
18076 case neon_cvt_flavour_s32_f64
:
18080 case neon_cvt_flavour_s32_f32
:
18084 case neon_cvt_flavour_s32_f16
:
18088 case neon_cvt_flavour_u32_f64
:
18092 case neon_cvt_flavour_u32_f32
:
18096 case neon_cvt_flavour_u32_f16
:
18101 first_error (_("invalid instruction shape"));
18107 case neon_cvt_mode_a
: rm
= 0; break;
18108 case neon_cvt_mode_n
: rm
= 1; break;
18109 case neon_cvt_mode_p
: rm
= 2; break;
18110 case neon_cvt_mode_m
: rm
= 3; break;
18111 default: first_error (_("invalid rounding mode")); return;
18114 NEON_ENCODE (FPV8
, inst
);
18115 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Sd
);
18116 encode_arm_vfp_reg (inst
.operands
[1].reg
, sz
== 1 ? VFP_REG_Dm
: VFP_REG_Sm
);
18117 inst
.instruction
|= sz
<< 8;
18119 /* ARMv8.2 fp16 VCVT instruction. */
18120 if (flavour
== neon_cvt_flavour_s32_f16
18121 ||flavour
== neon_cvt_flavour_u32_f16
)
18122 do_scalar_fp16_v82_encode ();
18123 inst
.instruction
|= op
<< 7;
18124 inst
.instruction
|= rm
<< 16;
18125 inst
.instruction
|= 0xf0000000;
18126 inst
.is_neon
= TRUE
;
18130 do_neon_cvt_1 (enum neon_cvt_mode mode
)
18132 enum neon_shape rs
= neon_select_shape (NS_DDI
, NS_QQI
, NS_FFI
, NS_DD
, NS_QQ
,
18133 NS_FD
, NS_DF
, NS_FF
, NS_QD
, NS_DQ
,
18134 NS_FH
, NS_HF
, NS_FHI
, NS_HFI
,
18136 enum neon_cvt_flavour flavour
= get_neon_cvt_flavour (rs
);
18138 if (flavour
== neon_cvt_flavour_invalid
)
18141 /* PR11109: Handle round-to-zero for VCVT conversions. */
18142 if (mode
== neon_cvt_mode_z
18143 && ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_arch_vfp_v2
)
18144 && (flavour
== neon_cvt_flavour_s16_f16
18145 || flavour
== neon_cvt_flavour_u16_f16
18146 || flavour
== neon_cvt_flavour_s32_f32
18147 || flavour
== neon_cvt_flavour_u32_f32
18148 || flavour
== neon_cvt_flavour_s32_f64
18149 || flavour
== neon_cvt_flavour_u32_f64
)
18150 && (rs
== NS_FD
|| rs
== NS_FF
))
18152 do_vfp_nsyn_cvtz ();
18156 /* ARMv8.2 fp16 VCVT conversions. */
18157 if (mode
== neon_cvt_mode_z
18158 && ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_fp16
)
18159 && (flavour
== neon_cvt_flavour_s32_f16
18160 || flavour
== neon_cvt_flavour_u32_f16
)
18163 do_vfp_nsyn_cvtz ();
18164 do_scalar_fp16_v82_encode ();
18168 /* VFP rather than Neon conversions. */
18169 if (flavour
>= neon_cvt_flavour_first_fp
)
18171 if (mode
== neon_cvt_mode_x
|| mode
== neon_cvt_mode_z
)
18172 do_vfp_nsyn_cvt (rs
, flavour
);
18174 do_vfp_nsyn_cvt_fpv8 (flavour
, mode
);
18182 if (mode
== neon_cvt_mode_z
18183 && (flavour
== neon_cvt_flavour_f16_s16
18184 || flavour
== neon_cvt_flavour_f16_u16
18185 || flavour
== neon_cvt_flavour_s16_f16
18186 || flavour
== neon_cvt_flavour_u16_f16
18187 || flavour
== neon_cvt_flavour_f32_u32
18188 || flavour
== neon_cvt_flavour_f32_s32
18189 || flavour
== neon_cvt_flavour_s32_f32
18190 || flavour
== neon_cvt_flavour_u32_f32
))
18192 if (check_simd_pred_availability (1, NEON_CHECK_CC
| NEON_CHECK_ARCH
))
18195 else if (mode
== neon_cvt_mode_n
)
18197 /* We are dealing with vcvt with the 'ne' condition. */
18199 inst
.instruction
= N_MNEM_vcvt
;
18200 do_neon_cvt_1 (neon_cvt_mode_z
);
18203 /* fall through. */
18207 unsigned enctab
[] = {0x0000100, 0x1000100, 0x0, 0x1000000,
18208 0x0000100, 0x1000100, 0x0, 0x1000000};
18210 if ((rs
!= NS_QQI
|| !ARM_CPU_HAS_FEATURE (cpu_variant
, mve_fp_ext
))
18211 && vfp_or_neon_is_neon (NEON_CHECK_CC
| NEON_CHECK_ARCH
) == FAIL
)
18214 if (ARM_CPU_HAS_FEATURE (cpu_variant
, mve_fp_ext
))
18216 constraint (inst
.operands
[2].present
&& inst
.operands
[2].imm
== 0,
18217 _("immediate value out of range"));
18220 case neon_cvt_flavour_f16_s16
:
18221 case neon_cvt_flavour_f16_u16
:
18222 case neon_cvt_flavour_s16_f16
:
18223 case neon_cvt_flavour_u16_f16
:
18224 constraint (inst
.operands
[2].imm
> 16,
18225 _("immediate value out of range"));
18227 case neon_cvt_flavour_f32_u32
:
18228 case neon_cvt_flavour_f32_s32
:
18229 case neon_cvt_flavour_s32_f32
:
18230 case neon_cvt_flavour_u32_f32
:
18231 constraint (inst
.operands
[2].imm
> 32,
18232 _("immediate value out of range"));
18235 inst
.error
= BAD_FPU
;
18240 /* Fixed-point conversion with #0 immediate is encoded as an
18241 integer conversion. */
18242 if (inst
.operands
[2].present
&& inst
.operands
[2].imm
== 0)
18244 NEON_ENCODE (IMMED
, inst
);
18245 if (flavour
!= neon_cvt_flavour_invalid
)
18246 inst
.instruction
|= enctab
[flavour
];
18247 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
18248 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
18249 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
);
18250 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 5;
18251 inst
.instruction
|= neon_quad (rs
) << 6;
18252 inst
.instruction
|= 1 << 21;
18253 if (flavour
< neon_cvt_flavour_s16_f16
)
18255 inst
.instruction
|= 1 << 21;
18256 immbits
= 32 - inst
.operands
[2].imm
;
18257 inst
.instruction
|= immbits
<< 16;
18261 inst
.instruction
|= 3 << 20;
18262 immbits
= 16 - inst
.operands
[2].imm
;
18263 inst
.instruction
|= immbits
<< 16;
18264 inst
.instruction
&= ~(1 << 9);
18267 neon_dp_fixup (&inst
);
18272 if ((mode
== neon_cvt_mode_a
|| mode
== neon_cvt_mode_n
18273 || mode
== neon_cvt_mode_m
|| mode
== neon_cvt_mode_p
)
18274 && (flavour
== neon_cvt_flavour_s16_f16
18275 || flavour
== neon_cvt_flavour_u16_f16
18276 || flavour
== neon_cvt_flavour_s32_f32
18277 || flavour
== neon_cvt_flavour_u32_f32
))
18279 if (check_simd_pred_availability (1,
18280 NEON_CHECK_CC
| NEON_CHECK_ARCH8
))
18283 else if (mode
== neon_cvt_mode_z
18284 && (flavour
== neon_cvt_flavour_f16_s16
18285 || flavour
== neon_cvt_flavour_f16_u16
18286 || flavour
== neon_cvt_flavour_s16_f16
18287 || flavour
== neon_cvt_flavour_u16_f16
18288 || flavour
== neon_cvt_flavour_f32_u32
18289 || flavour
== neon_cvt_flavour_f32_s32
18290 || flavour
== neon_cvt_flavour_s32_f32
18291 || flavour
== neon_cvt_flavour_u32_f32
))
18293 if (check_simd_pred_availability (1,
18294 NEON_CHECK_CC
| NEON_CHECK_ARCH
))
18297 /* fall through. */
18299 if (mode
!= neon_cvt_mode_x
&& mode
!= neon_cvt_mode_z
)
18302 NEON_ENCODE (FLOAT
, inst
);
18303 if (check_simd_pred_availability (1,
18304 NEON_CHECK_CC
| NEON_CHECK_ARCH8
))
18307 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
18308 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
18309 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
);
18310 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 5;
18311 inst
.instruction
|= neon_quad (rs
) << 6;
18312 inst
.instruction
|= (flavour
== neon_cvt_flavour_u16_f16
18313 || flavour
== neon_cvt_flavour_u32_f32
) << 7;
18314 inst
.instruction
|= mode
<< 8;
18315 if (flavour
== neon_cvt_flavour_u16_f16
18316 || flavour
== neon_cvt_flavour_s16_f16
)
18317 /* Mask off the original size bits and reencode them. */
18318 inst
.instruction
= ((inst
.instruction
& 0xfff3ffff) | (1 << 18));
18321 inst
.instruction
|= 0xfc000000;
18323 inst
.instruction
|= 0xf0000000;
18329 unsigned enctab
[] = { 0x100, 0x180, 0x0, 0x080,
18330 0x100, 0x180, 0x0, 0x080};
18332 NEON_ENCODE (INTEGER
, inst
);
18334 if (!ARM_CPU_HAS_FEATURE (cpu_variant
, mve_fp_ext
))
18336 if (vfp_or_neon_is_neon (NEON_CHECK_CC
| NEON_CHECK_ARCH
) == FAIL
)
18340 if (flavour
!= neon_cvt_flavour_invalid
)
18341 inst
.instruction
|= enctab
[flavour
];
18343 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
18344 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
18345 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
);
18346 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 5;
18347 inst
.instruction
|= neon_quad (rs
) << 6;
18348 if (flavour
>= neon_cvt_flavour_s16_f16
18349 && flavour
<= neon_cvt_flavour_f16_u16
)
18350 /* Half precision. */
18351 inst
.instruction
|= 1 << 18;
18353 inst
.instruction
|= 2 << 18;
18355 neon_dp_fixup (&inst
);
18360 /* Half-precision conversions for Advanced SIMD -- neon. */
18363 if (vfp_or_neon_is_neon (NEON_CHECK_CC
| NEON_CHECK_ARCH
) == FAIL
)
18367 && (inst
.vectype
.el
[0].size
!= 16 || inst
.vectype
.el
[1].size
!= 32))
18369 as_bad (_("operand size must match register width"));
18374 && ((inst
.vectype
.el
[0].size
!= 32 || inst
.vectype
.el
[1].size
!= 16)))
18376 as_bad (_("operand size must match register width"));
18381 inst
.instruction
= 0x3b60600;
18383 inst
.instruction
= 0x3b60700;
18385 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
18386 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
18387 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
);
18388 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 5;
18389 neon_dp_fixup (&inst
);
18393 /* Some VFP conversions go here (s32 <-> f32, u32 <-> f32). */
18394 if (mode
== neon_cvt_mode_x
|| mode
== neon_cvt_mode_z
)
18395 do_vfp_nsyn_cvt (rs
, flavour
);
18397 do_vfp_nsyn_cvt_fpv8 (flavour
, mode
);
18402 do_neon_cvtr (void)
18404 do_neon_cvt_1 (neon_cvt_mode_x
);
18410 do_neon_cvt_1 (neon_cvt_mode_z
);
18414 do_neon_cvta (void)
18416 do_neon_cvt_1 (neon_cvt_mode_a
);
18420 do_neon_cvtn (void)
18422 do_neon_cvt_1 (neon_cvt_mode_n
);
18426 do_neon_cvtp (void)
18428 do_neon_cvt_1 (neon_cvt_mode_p
);
18432 do_neon_cvtm (void)
18434 do_neon_cvt_1 (neon_cvt_mode_m
);
18438 do_neon_cvttb_2 (bfd_boolean t
, bfd_boolean to
, bfd_boolean is_double
)
18441 mark_feature_used (&fpu_vfp_ext_armv8
);
18443 encode_arm_vfp_reg (inst
.operands
[0].reg
,
18444 (is_double
&& !to
) ? VFP_REG_Dd
: VFP_REG_Sd
);
18445 encode_arm_vfp_reg (inst
.operands
[1].reg
,
18446 (is_double
&& to
) ? VFP_REG_Dm
: VFP_REG_Sm
);
18447 inst
.instruction
|= to
? 0x10000 : 0;
18448 inst
.instruction
|= t
? 0x80 : 0;
18449 inst
.instruction
|= is_double
? 0x100 : 0;
18450 do_vfp_cond_or_thumb ();
18454 do_neon_cvttb_1 (bfd_boolean t
)
18456 enum neon_shape rs
= neon_select_shape (NS_HF
, NS_HD
, NS_FH
, NS_FF
, NS_FD
,
18457 NS_DF
, NS_DH
, NS_QQ
, NS_QQI
, NS_NULL
);
18461 else if (rs
== NS_QQ
|| rs
== NS_QQI
)
18463 int single_to_half
= 0;
18464 if (check_simd_pred_availability (1, NEON_CHECK_ARCH
))
18467 enum neon_cvt_flavour flavour
= get_neon_cvt_flavour (rs
);
18469 if (ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
)
18470 && (flavour
== neon_cvt_flavour_u16_f16
18471 || flavour
== neon_cvt_flavour_s16_f16
18472 || flavour
== neon_cvt_flavour_f16_s16
18473 || flavour
== neon_cvt_flavour_f16_u16
18474 || flavour
== neon_cvt_flavour_u32_f32
18475 || flavour
== neon_cvt_flavour_s32_f32
18476 || flavour
== neon_cvt_flavour_f32_s32
18477 || flavour
== neon_cvt_flavour_f32_u32
))
18480 inst
.instruction
= N_MNEM_vcvt
;
18481 set_pred_insn_type (INSIDE_VPT_INSN
);
18482 do_neon_cvt_1 (neon_cvt_mode_z
);
18485 else if (rs
== NS_QQ
&& flavour
== neon_cvt_flavour_f32_f16
)
18486 single_to_half
= 1;
18487 else if (rs
== NS_QQ
&& flavour
!= neon_cvt_flavour_f16_f32
)
18489 first_error (BAD_FPU
);
18493 inst
.instruction
= 0xee3f0e01;
18494 inst
.instruction
|= single_to_half
<< 28;
18495 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
18496 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 13;
18497 inst
.instruction
|= t
<< 12;
18498 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 5;
18499 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
) << 1;
18502 else if (neon_check_type (2, rs
, N_F16
, N_F32
| N_VFP
).type
!= NT_invtype
)
18505 do_neon_cvttb_2 (t
, /*to=*/TRUE
, /*is_double=*/FALSE
);
18507 else if (neon_check_type (2, rs
, N_F32
| N_VFP
, N_F16
).type
!= NT_invtype
)
18510 do_neon_cvttb_2 (t
, /*to=*/FALSE
, /*is_double=*/FALSE
);
18512 else if (neon_check_type (2, rs
, N_F16
, N_F64
| N_VFP
).type
!= NT_invtype
)
18514 /* The VCVTB and VCVTT instructions with D-register operands
18515 don't work for SP only targets. */
18516 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_vfp_ext_armv8
),
18520 do_neon_cvttb_2 (t
, /*to=*/TRUE
, /*is_double=*/TRUE
);
18522 else if (neon_check_type (2, rs
, N_F64
| N_VFP
, N_F16
).type
!= NT_invtype
)
18524 /* The VCVTB and VCVTT instructions with D-register operands
18525 don't work for SP only targets. */
18526 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_vfp_ext_armv8
),
18530 do_neon_cvttb_2 (t
, /*to=*/FALSE
, /*is_double=*/TRUE
);
18537 do_neon_cvtb (void)
18539 do_neon_cvttb_1 (FALSE
);
18544 do_neon_cvtt (void)
18546 do_neon_cvttb_1 (TRUE
);
18550 neon_move_immediate (void)
18552 enum neon_shape rs
= neon_select_shape (NS_DI
, NS_QI
, NS_NULL
);
18553 struct neon_type_el et
= neon_check_type (2, rs
,
18554 N_I8
| N_I16
| N_I32
| N_I64
| N_F32
| N_KEY
, N_EQK
);
18555 unsigned immlo
, immhi
= 0, immbits
;
18556 int op
, cmode
, float_p
;
18558 constraint (et
.type
== NT_invtype
,
18559 _("operand size must be specified for immediate VMOV"));
18561 /* We start out as an MVN instruction if OP = 1, MOV otherwise. */
18562 op
= (inst
.instruction
& (1 << 5)) != 0;
18564 immlo
= inst
.operands
[1].imm
;
18565 if (inst
.operands
[1].regisimm
)
18566 immhi
= inst
.operands
[1].reg
;
18568 constraint (et
.size
< 32 && (immlo
& ~((1 << et
.size
) - 1)) != 0,
18569 _("immediate has bits set outside the operand size"));
18571 float_p
= inst
.operands
[1].immisfloat
;
18573 if ((cmode
= neon_cmode_for_move_imm (immlo
, immhi
, float_p
, &immbits
, &op
,
18574 et
.size
, et
.type
)) == FAIL
)
18576 /* Invert relevant bits only. */
18577 neon_invert_size (&immlo
, &immhi
, et
.size
);
18578 /* Flip from VMOV/VMVN to VMVN/VMOV. Some immediate types are unavailable
18579 with one or the other; those cases are caught by
18580 neon_cmode_for_move_imm. */
18582 if ((cmode
= neon_cmode_for_move_imm (immlo
, immhi
, float_p
, &immbits
,
18583 &op
, et
.size
, et
.type
)) == FAIL
)
18585 first_error (_("immediate out of range"));
18590 inst
.instruction
&= ~(1 << 5);
18591 inst
.instruction
|= op
<< 5;
18593 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
18594 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
18595 inst
.instruction
|= neon_quad (rs
) << 6;
18596 inst
.instruction
|= cmode
<< 8;
18598 neon_write_immbits (immbits
);
18604 if (check_simd_pred_availability (0, NEON_CHECK_CC
| NEON_CHECK_ARCH
))
18607 if (inst
.operands
[1].isreg
)
18609 enum neon_shape rs
;
18610 if (ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
))
18611 rs
= neon_select_shape (NS_QQ
, NS_NULL
);
18613 rs
= neon_select_shape (NS_DD
, NS_QQ
, NS_NULL
);
18615 NEON_ENCODE (INTEGER
, inst
);
18616 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
18617 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
18618 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
);
18619 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 5;
18620 inst
.instruction
|= neon_quad (rs
) << 6;
18624 NEON_ENCODE (IMMED
, inst
);
18625 neon_move_immediate ();
18628 neon_dp_fixup (&inst
);
18630 if (ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
))
18632 constraint (!inst
.operands
[1].isreg
&& !inst
.operands
[0].isquad
, BAD_FPU
);
18633 constraint ((inst
.instruction
& 0xd00) == 0xd00,
18634 _("immediate value out of range"));
18638 /* Encode instructions of form:
18640 |28/24|23|22|21 20|19 16|15 12|11 8|7|6|5|4|3 0|
18641 | U |x |D |size | Rn | Rd |x x x x|N|x|M|x| Rm | */
18644 neon_mixed_length (struct neon_type_el et
, unsigned size
)
18646 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
18647 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
18648 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
) << 16;
18649 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 7;
18650 inst
.instruction
|= LOW4 (inst
.operands
[2].reg
);
18651 inst
.instruction
|= HI1 (inst
.operands
[2].reg
) << 5;
18652 inst
.instruction
|= (et
.type
== NT_unsigned
) << 24;
18653 inst
.instruction
|= neon_logbits (size
) << 20;
18655 neon_dp_fixup (&inst
);
18659 do_neon_dyadic_long (void)
18661 enum neon_shape rs
= neon_select_shape (NS_QDD
, NS_QQQ
, NS_QQR
, NS_NULL
);
18664 if (vfp_or_neon_is_neon (NEON_CHECK_ARCH
| NEON_CHECK_CC
) == FAIL
)
18667 NEON_ENCODE (INTEGER
, inst
);
18668 /* FIXME: Type checking for lengthening op. */
18669 struct neon_type_el et
= neon_check_type (3, NS_QDD
,
18670 N_EQK
| N_DBL
, N_EQK
, N_SU_32
| N_KEY
);
18671 neon_mixed_length (et
, et
.size
);
18673 else if (ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
)
18674 && (inst
.cond
== 0xf || inst
.cond
== 0x10))
18676 /* If parsing for MVE, vaddl/vsubl/vabdl{e,t} can only be vadd/vsub/vabd
18677 in an IT block with le/lt conditions. */
18679 if (inst
.cond
== 0xf)
18681 else if (inst
.cond
== 0x10)
18684 inst
.pred_insn_type
= INSIDE_IT_INSN
;
18686 if (inst
.instruction
== N_MNEM_vaddl
)
18688 inst
.instruction
= N_MNEM_vadd
;
18689 do_neon_addsub_if_i ();
18691 else if (inst
.instruction
== N_MNEM_vsubl
)
18693 inst
.instruction
= N_MNEM_vsub
;
18694 do_neon_addsub_if_i ();
18696 else if (inst
.instruction
== N_MNEM_vabdl
)
18698 inst
.instruction
= N_MNEM_vabd
;
18699 do_neon_dyadic_if_su ();
18703 first_error (BAD_FPU
);
18707 do_neon_abal (void)
18709 struct neon_type_el et
= neon_check_type (3, NS_QDD
,
18710 N_EQK
| N_INT
| N_DBL
, N_EQK
, N_SU_32
| N_KEY
);
18711 neon_mixed_length (et
, et
.size
);
18715 neon_mac_reg_scalar_long (unsigned regtypes
, unsigned scalartypes
)
18717 if (inst
.operands
[2].isscalar
)
18719 struct neon_type_el et
= neon_check_type (3, NS_QDS
,
18720 N_EQK
| N_DBL
, N_EQK
, regtypes
| N_KEY
);
18721 NEON_ENCODE (SCALAR
, inst
);
18722 neon_mul_mac (et
, et
.type
== NT_unsigned
);
18726 struct neon_type_el et
= neon_check_type (3, NS_QDD
,
18727 N_EQK
| N_DBL
, N_EQK
, scalartypes
| N_KEY
);
18728 NEON_ENCODE (INTEGER
, inst
);
18729 neon_mixed_length (et
, et
.size
);
18734 do_neon_mac_maybe_scalar_long (void)
18736 neon_mac_reg_scalar_long (N_S16
| N_S32
| N_U16
| N_U32
, N_SU_32
);
18739 /* Like neon_scalar_for_mul, this function generate Rm encoding from GAS's
18740 internal SCALAR. QUAD_P is 1 if it's for Q format, otherwise it's 0. */
18743 neon_scalar_for_fmac_fp16_long (unsigned scalar
, unsigned quad_p
)
18745 unsigned regno
= NEON_SCALAR_REG (scalar
);
18746 unsigned elno
= NEON_SCALAR_INDEX (scalar
);
18750 if (regno
> 7 || elno
> 3)
18753 return ((regno
& 0x7)
18754 | ((elno
& 0x1) << 3)
18755 | (((elno
>> 1) & 0x1) << 5));
18759 if (regno
> 15 || elno
> 1)
18762 return (((regno
& 0x1) << 5)
18763 | ((regno
>> 1) & 0x7)
18764 | ((elno
& 0x1) << 3));
18768 first_error (_("scalar out of range for multiply instruction"));
18773 do_neon_fmac_maybe_scalar_long (int subtype
)
18775 enum neon_shape rs
;
18777 /* NOTE: vfmal/vfmsl use slightly different NEON three-same encoding. 'size"
18778 field (bits[21:20]) has different meaning. For scalar index variant, it's
18779 used to differentiate add and subtract, otherwise it's with fixed value
18783 if (inst
.cond
!= COND_ALWAYS
)
18784 as_warn (_("vfmal/vfmsl with FP16 type cannot be conditional, the "
18785 "behaviour is UNPREDICTABLE"));
18787 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_fp16_fml
),
18790 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_neon_ext_armv8
),
18793 /* vfmal/vfmsl are in three-same D/Q register format or the third operand can
18794 be a scalar index register. */
18795 if (inst
.operands
[2].isscalar
)
18797 high8
= 0xfe000000;
18800 rs
= neon_select_shape (NS_DHS
, NS_QDS
, NS_NULL
);
18804 high8
= 0xfc000000;
18807 inst
.instruction
|= (0x1 << 23);
18808 rs
= neon_select_shape (NS_DHH
, NS_QDD
, NS_NULL
);
18811 neon_check_type (3, rs
, N_EQK
, N_EQK
, N_KEY
| N_F16
);
18813 /* "opcode" from template has included "ubit", so simply pass 0 here. Also,
18814 the "S" bit in size field has been reused to differentiate vfmal and vfmsl,
18815 so we simply pass -1 as size. */
18816 unsigned quad_p
= (rs
== NS_QDD
|| rs
== NS_QDS
);
18817 neon_three_same (quad_p
, 0, size
);
18819 /* Undo neon_dp_fixup. Redo the high eight bits. */
18820 inst
.instruction
&= 0x00ffffff;
18821 inst
.instruction
|= high8
;
18823 #define LOW1(R) ((R) & 0x1)
18824 #define HI4(R) (((R) >> 1) & 0xf)
18825 /* Unlike usually NEON three-same, encoding for Vn and Vm will depend on
18826 whether the instruction is in Q form and whether Vm is a scalar indexed
18828 if (inst
.operands
[2].isscalar
)
18831 = neon_scalar_for_fmac_fp16_long (inst
.operands
[2].reg
, quad_p
);
18832 inst
.instruction
&= 0xffffffd0;
18833 inst
.instruction
|= rm
;
18837 /* Redo Rn as well. */
18838 inst
.instruction
&= 0xfff0ff7f;
18839 inst
.instruction
|= HI4 (inst
.operands
[1].reg
) << 16;
18840 inst
.instruction
|= LOW1 (inst
.operands
[1].reg
) << 7;
18845 /* Redo Rn and Rm. */
18846 inst
.instruction
&= 0xfff0ff50;
18847 inst
.instruction
|= HI4 (inst
.operands
[1].reg
) << 16;
18848 inst
.instruction
|= LOW1 (inst
.operands
[1].reg
) << 7;
18849 inst
.instruction
|= HI4 (inst
.operands
[2].reg
);
18850 inst
.instruction
|= LOW1 (inst
.operands
[2].reg
) << 5;
18855 do_neon_vfmal (void)
18857 return do_neon_fmac_maybe_scalar_long (0);
18861 do_neon_vfmsl (void)
18863 return do_neon_fmac_maybe_scalar_long (1);
18867 do_neon_dyadic_wide (void)
18869 struct neon_type_el et
= neon_check_type (3, NS_QQD
,
18870 N_EQK
| N_DBL
, N_EQK
| N_DBL
, N_SU_32
| N_KEY
);
18871 neon_mixed_length (et
, et
.size
);
18875 do_neon_dyadic_narrow (void)
18877 struct neon_type_el et
= neon_check_type (3, NS_QDD
,
18878 N_EQK
| N_DBL
, N_EQK
, N_I16
| N_I32
| N_I64
| N_KEY
);
18879 /* Operand sign is unimportant, and the U bit is part of the opcode,
18880 so force the operand type to integer. */
18881 et
.type
= NT_integer
;
18882 neon_mixed_length (et
, et
.size
/ 2);
18886 do_neon_mul_sat_scalar_long (void)
18888 neon_mac_reg_scalar_long (N_S16
| N_S32
, N_S16
| N_S32
);
18892 do_neon_vmull (void)
18894 if (inst
.operands
[2].isscalar
)
18895 do_neon_mac_maybe_scalar_long ();
18898 struct neon_type_el et
= neon_check_type (3, NS_QDD
,
18899 N_EQK
| N_DBL
, N_EQK
, N_SU_32
| N_P8
| N_P64
| N_KEY
);
18901 if (et
.type
== NT_poly
)
18902 NEON_ENCODE (POLY
, inst
);
18904 NEON_ENCODE (INTEGER
, inst
);
18906 /* For polynomial encoding the U bit must be zero, and the size must
18907 be 8 (encoded as 0b00) or, on ARMv8 or later 64 (encoded, non
18908 obviously, as 0b10). */
18911 /* Check we're on the correct architecture. */
18912 if (!mark_feature_used (&fpu_crypto_ext_armv8
))
18914 _("Instruction form not available on this architecture.");
18919 neon_mixed_length (et
, et
.size
);
18926 enum neon_shape rs
= neon_select_shape (NS_DDDI
, NS_QQQI
, NS_NULL
);
18927 struct neon_type_el et
= neon_check_type (3, rs
,
18928 N_EQK
, N_EQK
, N_8
| N_16
| N_32
| N_64
| N_KEY
);
18929 unsigned imm
= (inst
.operands
[3].imm
* et
.size
) / 8;
18931 constraint (imm
>= (unsigned) (neon_quad (rs
) ? 16 : 8),
18932 _("shift out of range"));
18933 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
18934 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
18935 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
) << 16;
18936 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 7;
18937 inst
.instruction
|= LOW4 (inst
.operands
[2].reg
);
18938 inst
.instruction
|= HI1 (inst
.operands
[2].reg
) << 5;
18939 inst
.instruction
|= neon_quad (rs
) << 6;
18940 inst
.instruction
|= imm
<< 8;
18942 neon_dp_fixup (&inst
);
18948 enum neon_shape rs
= neon_select_shape (NS_DD
, NS_QQ
, NS_NULL
);
18949 struct neon_type_el et
= neon_check_type (2, rs
,
18950 N_EQK
, N_8
| N_16
| N_32
| N_KEY
);
18951 unsigned op
= (inst
.instruction
>> 7) & 3;
18952 /* N (width of reversed regions) is encoded as part of the bitmask. We
18953 extract it here to check the elements to be reversed are smaller.
18954 Otherwise we'd get a reserved instruction. */
18955 unsigned elsize
= (op
== 2) ? 16 : (op
== 1) ? 32 : (op
== 0) ? 64 : 0;
18956 gas_assert (elsize
!= 0);
18957 constraint (et
.size
>= elsize
,
18958 _("elements must be smaller than reversal region"));
18959 neon_two_same (neon_quad (rs
), 1, et
.size
);
18965 if (inst
.operands
[1].isscalar
)
18967 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_neon_ext_v1
),
18969 enum neon_shape rs
= neon_select_shape (NS_DS
, NS_QS
, NS_NULL
);
18970 struct neon_type_el et
= neon_check_type (2, rs
,
18971 N_EQK
, N_8
| N_16
| N_32
| N_KEY
);
18972 unsigned sizebits
= et
.size
>> 3;
18973 unsigned dm
= NEON_SCALAR_REG (inst
.operands
[1].reg
);
18974 int logsize
= neon_logbits (et
.size
);
18975 unsigned x
= NEON_SCALAR_INDEX (inst
.operands
[1].reg
) << logsize
;
18977 if (vfp_or_neon_is_neon (NEON_CHECK_CC
) == FAIL
)
18980 NEON_ENCODE (SCALAR
, inst
);
18981 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
18982 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
18983 inst
.instruction
|= LOW4 (dm
);
18984 inst
.instruction
|= HI1 (dm
) << 5;
18985 inst
.instruction
|= neon_quad (rs
) << 6;
18986 inst
.instruction
|= x
<< 17;
18987 inst
.instruction
|= sizebits
<< 16;
18989 neon_dp_fixup (&inst
);
18993 enum neon_shape rs
= neon_select_shape (NS_DR
, NS_QR
, NS_NULL
);
18994 struct neon_type_el et
= neon_check_type (2, rs
,
18995 N_8
| N_16
| N_32
| N_KEY
, N_EQK
);
18998 if (check_simd_pred_availability (0, NEON_CHECK_ARCH
))
19002 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_neon_ext_v1
),
19005 if (ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
))
19007 if (inst
.operands
[1].reg
== REG_SP
)
19008 as_tsktsk (MVE_BAD_SP
);
19009 else if (inst
.operands
[1].reg
== REG_PC
)
19010 as_tsktsk (MVE_BAD_PC
);
19013 /* Duplicate ARM register to lanes of vector. */
19014 NEON_ENCODE (ARMREG
, inst
);
19017 case 8: inst
.instruction
|= 0x400000; break;
19018 case 16: inst
.instruction
|= 0x000020; break;
19019 case 32: inst
.instruction
|= 0x000000; break;
19022 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
) << 12;
19023 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 16;
19024 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 7;
19025 inst
.instruction
|= neon_quad (rs
) << 21;
19026 /* The encoding for this instruction is identical for the ARM and Thumb
19027 variants, except for the condition field. */
19028 do_vfp_cond_or_thumb ();
19033 do_mve_mov (int toQ
)
19035 if (!ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
))
19037 if (inst
.cond
> COND_ALWAYS
)
19038 inst
.pred_insn_type
= MVE_UNPREDICABLE_INSN
;
19040 unsigned Rt
= 0, Rt2
= 1, Q0
= 2, Q1
= 3;
19049 constraint (inst
.operands
[Q0
].reg
!= inst
.operands
[Q1
].reg
+ 2,
19050 _("Index one must be [2,3] and index two must be two less than"
19052 constraint (inst
.operands
[Rt
].reg
== inst
.operands
[Rt2
].reg
,
19053 _("General purpose registers may not be the same"));
19054 constraint (inst
.operands
[Rt
].reg
== REG_SP
19055 || inst
.operands
[Rt2
].reg
== REG_SP
,
19057 constraint (inst
.operands
[Rt
].reg
== REG_PC
19058 || inst
.operands
[Rt2
].reg
== REG_PC
,
19061 inst
.instruction
= 0xec000f00;
19062 inst
.instruction
|= HI1 (inst
.operands
[Q1
].reg
/ 32) << 23;
19063 inst
.instruction
|= !!toQ
<< 20;
19064 inst
.instruction
|= inst
.operands
[Rt2
].reg
<< 16;
19065 inst
.instruction
|= LOW4 (inst
.operands
[Q1
].reg
/ 32) << 13;
19066 inst
.instruction
|= (inst
.operands
[Q1
].reg
% 4) << 4;
19067 inst
.instruction
|= inst
.operands
[Rt
].reg
;
19073 if (!ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
))
19076 if (inst
.cond
> COND_ALWAYS
)
19077 inst
.pred_insn_type
= INSIDE_VPT_INSN
;
19079 inst
.pred_insn_type
= MVE_OUTSIDE_PRED_INSN
;
19081 struct neon_type_el et
= neon_check_type (2, NS_QQ
, N_EQK
, N_I16
| N_I32
19084 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
19085 inst
.instruction
|= (neon_logbits (et
.size
) - 1) << 18;
19086 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
19087 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 5;
19088 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
);
19093 /* VMOV has particularly many variations. It can be one of:
19094 0. VMOV<c><q> <Qd>, <Qm>
19095 1. VMOV<c><q> <Dd>, <Dm>
19096 (Register operations, which are VORR with Rm = Rn.)
19097 2. VMOV<c><q>.<dt> <Qd>, #<imm>
19098 3. VMOV<c><q>.<dt> <Dd>, #<imm>
19100 4. VMOV<c><q>.<size> <Dn[x]>, <Rd>
19101 (ARM register to scalar.)
19102 5. VMOV<c><q> <Dm>, <Rd>, <Rn>
19103 (Two ARM registers to vector.)
19104 6. VMOV<c><q>.<dt> <Rd>, <Dn[x]>
19105 (Scalar to ARM register.)
19106 7. VMOV<c><q> <Rd>, <Rn>, <Dm>
19107 (Vector to two ARM registers.)
19108 8. VMOV.F32 <Sd>, <Sm>
19109 9. VMOV.F64 <Dd>, <Dm>
19110 (VFP register moves.)
19111 10. VMOV.F32 <Sd>, #imm
19112 11. VMOV.F64 <Dd>, #imm
19113 (VFP float immediate load.)
19114 12. VMOV <Rd>, <Sm>
19115 (VFP single to ARM reg.)
19116 13. VMOV <Sd>, <Rm>
19117 (ARM reg to VFP single.)
19118 14. VMOV <Rd>, <Re>, <Sn>, <Sm>
19119 (Two ARM regs to two VFP singles.)
19120 15. VMOV <Sd>, <Se>, <Rn>, <Rm>
19121 (Two VFP singles to two ARM regs.)
19122 16. VMOV<c> <Rt>, <Rt2>, <Qd[idx]>, <Qd[idx2]>
19123 17. VMOV<c> <Qd[idx]>, <Qd[idx2]>, <Rt>, <Rt2>
19124 18. VMOV<c>.<dt> <Rt>, <Qn[idx]>
19125 19. VMOV<c>.<dt> <Qd[idx]>, <Rt>
19127 These cases can be disambiguated using neon_select_shape, except cases 1/9
19128 and 3/11 which depend on the operand type too.
19130 All the encoded bits are hardcoded by this function.
19132 Cases 4, 6 may be used with VFPv1 and above (only 32-bit transfers!).
19133 Cases 5, 7 may be used with VFPv2 and above.
19135 FIXME: Some of the checking may be a bit sloppy (in a couple of cases you
19136 can specify a type where it doesn't make sense to, and is ignored). */
19141 enum neon_shape rs
= neon_select_shape (NS_RRSS
, NS_SSRR
, NS_RRFF
, NS_FFRR
,
19142 NS_DRR
, NS_RRD
, NS_QQ
, NS_DD
, NS_QI
,
19143 NS_DI
, NS_SR
, NS_RS
, NS_FF
, NS_FI
,
19144 NS_RF
, NS_FR
, NS_HR
, NS_RH
, NS_HI
,
19146 struct neon_type_el et
;
19147 const char *ldconst
= 0;
19151 case NS_DD
: /* case 1/9. */
19152 et
= neon_check_type (2, rs
, N_EQK
, N_F64
| N_KEY
);
19153 /* It is not an error here if no type is given. */
19155 if (et
.type
== NT_float
&& et
.size
== 64)
19157 do_vfp_nsyn_opcode ("fcpyd");
19160 /* fall through. */
19162 case NS_QQ
: /* case 0/1. */
19164 if (check_simd_pred_availability (0, NEON_CHECK_CC
| NEON_CHECK_ARCH
))
19166 /* The architecture manual I have doesn't explicitly state which
19167 value the U bit should have for register->register moves, but
19168 the equivalent VORR instruction has U = 0, so do that. */
19169 inst
.instruction
= 0x0200110;
19170 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
19171 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
19172 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
);
19173 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 5;
19174 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
) << 16;
19175 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 7;
19176 inst
.instruction
|= neon_quad (rs
) << 6;
19178 neon_dp_fixup (&inst
);
19182 case NS_DI
: /* case 3/11. */
19183 et
= neon_check_type (2, rs
, N_EQK
, N_F64
| N_KEY
);
19185 if (et
.type
== NT_float
&& et
.size
== 64)
19187 /* case 11 (fconstd). */
19188 ldconst
= "fconstd";
19189 goto encode_fconstd
;
19191 /* fall through. */
19193 case NS_QI
: /* case 2/3. */
19194 if (check_simd_pred_availability (0, NEON_CHECK_CC
| NEON_CHECK_ARCH
))
19196 inst
.instruction
= 0x0800010;
19197 neon_move_immediate ();
19198 neon_dp_fixup (&inst
);
19201 case NS_SR
: /* case 4. */
19203 unsigned bcdebits
= 0;
19205 unsigned dn
= NEON_SCALAR_REG (inst
.operands
[0].reg
);
19206 unsigned x
= NEON_SCALAR_INDEX (inst
.operands
[0].reg
);
19208 /* .<size> is optional here, defaulting to .32. */
19209 if (inst
.vectype
.elems
== 0
19210 && inst
.operands
[0].vectype
.type
== NT_invtype
19211 && inst
.operands
[1].vectype
.type
== NT_invtype
)
19213 inst
.vectype
.el
[0].type
= NT_untyped
;
19214 inst
.vectype
.el
[0].size
= 32;
19215 inst
.vectype
.elems
= 1;
19218 et
= neon_check_type (2, NS_NULL
, N_8
| N_16
| N_32
| N_KEY
, N_EQK
);
19219 logsize
= neon_logbits (et
.size
);
19223 if (!ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
)
19224 && vfp_or_neon_is_neon (NEON_CHECK_ARCH
) == FAIL
)
19229 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_vfp_ext_v1
)
19230 && !ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
),
19234 if (ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
))
19236 if (inst
.operands
[1].reg
== REG_SP
)
19237 as_tsktsk (MVE_BAD_SP
);
19238 else if (inst
.operands
[1].reg
== REG_PC
)
19239 as_tsktsk (MVE_BAD_PC
);
19241 unsigned size
= inst
.operands
[0].isscalar
== 1 ? 64 : 128;
19243 constraint (et
.type
== NT_invtype
, _("bad type for scalar"));
19244 constraint (x
>= size
/ et
.size
, _("scalar index out of range"));
19249 case 8: bcdebits
= 0x8; break;
19250 case 16: bcdebits
= 0x1; break;
19251 case 32: bcdebits
= 0x0; break;
19255 bcdebits
|= (x
& ((1 << (3-logsize
)) - 1)) << logsize
;
19257 inst
.instruction
= 0xe000b10;
19258 do_vfp_cond_or_thumb ();
19259 inst
.instruction
|= LOW4 (dn
) << 16;
19260 inst
.instruction
|= HI1 (dn
) << 7;
19261 inst
.instruction
|= inst
.operands
[1].reg
<< 12;
19262 inst
.instruction
|= (bcdebits
& 3) << 5;
19263 inst
.instruction
|= ((bcdebits
>> 2) & 3) << 21;
19264 inst
.instruction
|= (x
>> (3-logsize
)) << 16;
19268 case NS_DRR
: /* case 5 (fmdrr). */
19269 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_vfp_ext_v2
)
19270 && !ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
),
19273 inst
.instruction
= 0xc400b10;
19274 do_vfp_cond_or_thumb ();
19275 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
);
19276 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 5;
19277 inst
.instruction
|= inst
.operands
[1].reg
<< 12;
19278 inst
.instruction
|= inst
.operands
[2].reg
<< 16;
19281 case NS_RS
: /* case 6. */
19284 unsigned dn
= NEON_SCALAR_REG (inst
.operands
[1].reg
);
19285 unsigned x
= NEON_SCALAR_INDEX (inst
.operands
[1].reg
);
19286 unsigned abcdebits
= 0;
19288 /* .<dt> is optional here, defaulting to .32. */
19289 if (inst
.vectype
.elems
== 0
19290 && inst
.operands
[0].vectype
.type
== NT_invtype
19291 && inst
.operands
[1].vectype
.type
== NT_invtype
)
19293 inst
.vectype
.el
[0].type
= NT_untyped
;
19294 inst
.vectype
.el
[0].size
= 32;
19295 inst
.vectype
.elems
= 1;
19298 et
= neon_check_type (2, NS_NULL
,
19299 N_EQK
, N_S8
| N_S16
| N_U8
| N_U16
| N_32
| N_KEY
);
19300 logsize
= neon_logbits (et
.size
);
19304 if (!ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
)
19305 && vfp_or_neon_is_neon (NEON_CHECK_CC
19306 | NEON_CHECK_ARCH
) == FAIL
)
19311 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_vfp_ext_v1
)
19312 && !ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
),
19316 if (ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
))
19318 if (inst
.operands
[0].reg
== REG_SP
)
19319 as_tsktsk (MVE_BAD_SP
);
19320 else if (inst
.operands
[0].reg
== REG_PC
)
19321 as_tsktsk (MVE_BAD_PC
);
19324 unsigned size
= inst
.operands
[1].isscalar
== 1 ? 64 : 128;
19326 constraint (et
.type
== NT_invtype
, _("bad type for scalar"));
19327 constraint (x
>= size
/ et
.size
, _("scalar index out of range"));
19331 case 8: abcdebits
= (et
.type
== NT_signed
) ? 0x08 : 0x18; break;
19332 case 16: abcdebits
= (et
.type
== NT_signed
) ? 0x01 : 0x11; break;
19333 case 32: abcdebits
= 0x00; break;
19337 abcdebits
|= (x
& ((1 << (3-logsize
)) - 1)) << logsize
;
19338 inst
.instruction
= 0xe100b10;
19339 do_vfp_cond_or_thumb ();
19340 inst
.instruction
|= LOW4 (dn
) << 16;
19341 inst
.instruction
|= HI1 (dn
) << 7;
19342 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
19343 inst
.instruction
|= (abcdebits
& 3) << 5;
19344 inst
.instruction
|= (abcdebits
>> 2) << 21;
19345 inst
.instruction
|= (x
>> (3-logsize
)) << 16;
19349 case NS_RRD
: /* case 7 (fmrrd). */
19350 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_vfp_ext_v2
)
19351 && !ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
),
19354 inst
.instruction
= 0xc500b10;
19355 do_vfp_cond_or_thumb ();
19356 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
19357 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
19358 inst
.instruction
|= LOW4 (inst
.operands
[2].reg
);
19359 inst
.instruction
|= HI1 (inst
.operands
[2].reg
) << 5;
19362 case NS_FF
: /* case 8 (fcpys). */
19363 do_vfp_nsyn_opcode ("fcpys");
19367 case NS_FI
: /* case 10 (fconsts). */
19368 ldconst
= "fconsts";
19370 if (!inst
.operands
[1].immisfloat
)
19373 /* Immediate has to fit in 8 bits so float is enough. */
19374 float imm
= (float) inst
.operands
[1].imm
;
19375 memcpy (&new_imm
, &imm
, sizeof (float));
19376 /* But the assembly may have been written to provide an integer
19377 bit pattern that equates to a float, so check that the
19378 conversion has worked. */
19379 if (is_quarter_float (new_imm
))
19381 if (is_quarter_float (inst
.operands
[1].imm
))
19382 as_warn (_("immediate constant is valid both as a bit-pattern and a floating point value (using the fp value)"));
19384 inst
.operands
[1].imm
= new_imm
;
19385 inst
.operands
[1].immisfloat
= 1;
19389 if (is_quarter_float (inst
.operands
[1].imm
))
19391 inst
.operands
[1].imm
= neon_qfloat_bits (inst
.operands
[1].imm
);
19392 do_vfp_nsyn_opcode (ldconst
);
19394 /* ARMv8.2 fp16 vmov.f16 instruction. */
19396 do_scalar_fp16_v82_encode ();
19399 first_error (_("immediate out of range"));
19403 case NS_RF
: /* case 12 (fmrs). */
19404 do_vfp_nsyn_opcode ("fmrs");
19405 /* ARMv8.2 fp16 vmov.f16 instruction. */
19407 do_scalar_fp16_v82_encode ();
19411 case NS_FR
: /* case 13 (fmsr). */
19412 do_vfp_nsyn_opcode ("fmsr");
19413 /* ARMv8.2 fp16 vmov.f16 instruction. */
19415 do_scalar_fp16_v82_encode ();
19425 /* The encoders for the fmrrs and fmsrr instructions expect three operands
19426 (one of which is a list), but we have parsed four. Do some fiddling to
19427 make the operands what do_vfp_reg2_from_sp2 and do_vfp_sp2_from_reg2
19429 case NS_RRFF
: /* case 14 (fmrrs). */
19430 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_vfp_ext_v2
)
19431 && !ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
),
19433 constraint (inst
.operands
[3].reg
!= inst
.operands
[2].reg
+ 1,
19434 _("VFP registers must be adjacent"));
19435 inst
.operands
[2].imm
= 2;
19436 memset (&inst
.operands
[3], '\0', sizeof (inst
.operands
[3]));
19437 do_vfp_nsyn_opcode ("fmrrs");
19440 case NS_FFRR
: /* case 15 (fmsrr). */
19441 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_vfp_ext_v2
)
19442 && !ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
),
19444 constraint (inst
.operands
[1].reg
!= inst
.operands
[0].reg
+ 1,
19445 _("VFP registers must be adjacent"));
19446 inst
.operands
[1] = inst
.operands
[2];
19447 inst
.operands
[2] = inst
.operands
[3];
19448 inst
.operands
[0].imm
= 2;
19449 memset (&inst
.operands
[3], '\0', sizeof (inst
.operands
[3]));
19450 do_vfp_nsyn_opcode ("fmsrr");
19454 /* neon_select_shape has determined that the instruction
19455 shape is wrong and has already set the error message. */
19466 if (!(inst
.operands
[0].present
&& inst
.operands
[0].isquad
19467 && inst
.operands
[1].present
&& inst
.operands
[1].isquad
19468 && !inst
.operands
[2].present
))
19470 inst
.instruction
= 0;
19473 set_pred_insn_type (INSIDE_IT_INSN
);
19478 if (!ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
))
19481 if (inst
.cond
!= COND_ALWAYS
)
19482 inst
.pred_insn_type
= INSIDE_VPT_INSN
;
19484 struct neon_type_el et
= neon_check_type (2, NS_QQ
, N_EQK
, N_S8
| N_U8
19485 | N_S16
| N_U16
| N_KEY
);
19487 inst
.instruction
|= (et
.type
== NT_unsigned
) << 28;
19488 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
19489 inst
.instruction
|= (neon_logbits (et
.size
) + 1) << 19;
19490 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
19491 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 5;
19492 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
);
19497 do_neon_rshift_round_imm (void)
19499 enum neon_shape rs
= neon_select_shape (NS_DDI
, NS_QQI
, NS_NULL
);
19500 struct neon_type_el et
= neon_check_type (2, rs
, N_EQK
, N_SU_ALL
| N_KEY
);
19501 int imm
= inst
.operands
[2].imm
;
19503 /* imm == 0 case is encoded as VMOV for V{R}SHR. */
19506 inst
.operands
[2].present
= 0;
19511 constraint (imm
< 1 || (unsigned)imm
> et
.size
,
19512 _("immediate out of range for shift"));
19513 neon_imm_shift (TRUE
, et
.type
== NT_unsigned
, neon_quad (rs
), et
,
19518 do_neon_movhf (void)
19520 enum neon_shape rs
= neon_select_shape (NS_HH
, NS_NULL
);
19521 constraint (rs
!= NS_HH
, _("invalid suffix"));
19523 if (inst
.cond
!= COND_ALWAYS
)
19527 as_warn (_("ARMv8.2 scalar fp16 instruction cannot be conditional,"
19528 " the behaviour is UNPREDICTABLE"));
19532 inst
.error
= BAD_COND
;
19537 do_vfp_sp_monadic ();
19540 inst
.instruction
|= 0xf0000000;
19544 do_neon_movl (void)
19546 struct neon_type_el et
= neon_check_type (2, NS_QD
,
19547 N_EQK
| N_DBL
, N_SU_32
| N_KEY
);
19548 unsigned sizebits
= et
.size
>> 3;
19549 inst
.instruction
|= sizebits
<< 19;
19550 neon_two_same (0, et
.type
== NT_unsigned
, -1);
19556 enum neon_shape rs
= neon_select_shape (NS_DD
, NS_QQ
, NS_NULL
);
19557 struct neon_type_el et
= neon_check_type (2, rs
,
19558 N_EQK
, N_8
| N_16
| N_32
| N_KEY
);
19559 NEON_ENCODE (INTEGER
, inst
);
19560 neon_two_same (neon_quad (rs
), 1, et
.size
);
19564 do_neon_zip_uzp (void)
19566 enum neon_shape rs
= neon_select_shape (NS_DD
, NS_QQ
, NS_NULL
);
19567 struct neon_type_el et
= neon_check_type (2, rs
,
19568 N_EQK
, N_8
| N_16
| N_32
| N_KEY
);
19569 if (rs
== NS_DD
&& et
.size
== 32)
19571 /* Special case: encode as VTRN.32 <Dd>, <Dm>. */
19572 inst
.instruction
= N_MNEM_vtrn
;
19576 neon_two_same (neon_quad (rs
), 1, et
.size
);
19580 do_neon_sat_abs_neg (void)
19582 if (check_simd_pred_availability (0, NEON_CHECK_CC
| NEON_CHECK_ARCH
))
19585 enum neon_shape rs
;
19586 if (ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
))
19587 rs
= neon_select_shape (NS_QQ
, NS_NULL
);
19589 rs
= neon_select_shape (NS_DD
, NS_QQ
, NS_NULL
);
19590 struct neon_type_el et
= neon_check_type (2, rs
,
19591 N_EQK
, N_S8
| N_S16
| N_S32
| N_KEY
);
19592 neon_two_same (neon_quad (rs
), 1, et
.size
);
19596 do_neon_pair_long (void)
19598 enum neon_shape rs
= neon_select_shape (NS_DD
, NS_QQ
, NS_NULL
);
19599 struct neon_type_el et
= neon_check_type (2, rs
, N_EQK
, N_SU_32
| N_KEY
);
19600 /* Unsigned is encoded in OP field (bit 7) for these instruction. */
19601 inst
.instruction
|= (et
.type
== NT_unsigned
) << 7;
19602 neon_two_same (neon_quad (rs
), 1, et
.size
);
19606 do_neon_recip_est (void)
19608 enum neon_shape rs
= neon_select_shape (NS_DD
, NS_QQ
, NS_NULL
);
19609 struct neon_type_el et
= neon_check_type (2, rs
,
19610 N_EQK
| N_FLT
, N_F_16_32
| N_U32
| N_KEY
);
19611 inst
.instruction
|= (et
.type
== NT_float
) << 8;
19612 neon_two_same (neon_quad (rs
), 1, et
.size
);
19618 if (check_simd_pred_availability (0, NEON_CHECK_ARCH
| NEON_CHECK_CC
))
19621 enum neon_shape rs
;
19622 if (ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
))
19623 rs
= neon_select_shape (NS_QQ
, NS_NULL
);
19625 rs
= neon_select_shape (NS_DD
, NS_QQ
, NS_NULL
);
19627 struct neon_type_el et
= neon_check_type (2, rs
,
19628 N_EQK
, N_S8
| N_S16
| N_S32
| N_KEY
);
19629 neon_two_same (neon_quad (rs
), 1, et
.size
);
19635 if (check_simd_pred_availability (0, NEON_CHECK_ARCH
| NEON_CHECK_CC
))
19638 enum neon_shape rs
;
19639 if (ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
))
19640 rs
= neon_select_shape (NS_QQ
, NS_NULL
);
19642 rs
= neon_select_shape (NS_DD
, NS_QQ
, NS_NULL
);
19644 struct neon_type_el et
= neon_check_type (2, rs
,
19645 N_EQK
, N_I8
| N_I16
| N_I32
| N_KEY
);
19646 neon_two_same (neon_quad (rs
), 1, et
.size
);
19652 enum neon_shape rs
= neon_select_shape (NS_DD
, NS_QQ
, NS_NULL
);
19653 struct neon_type_el et
= neon_check_type (2, rs
,
19654 N_EQK
| N_INT
, N_8
| N_KEY
);
19655 neon_two_same (neon_quad (rs
), 1, et
.size
);
19661 enum neon_shape rs
= neon_select_shape (NS_DD
, NS_QQ
, NS_NULL
);
19662 neon_two_same (neon_quad (rs
), 1, -1);
19666 do_neon_tbl_tbx (void)
19668 unsigned listlenbits
;
19669 neon_check_type (3, NS_DLD
, N_EQK
, N_EQK
, N_8
| N_KEY
);
19671 if (inst
.operands
[1].imm
< 1 || inst
.operands
[1].imm
> 4)
19673 first_error (_("bad list length for table lookup"));
19677 listlenbits
= inst
.operands
[1].imm
- 1;
19678 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
19679 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
19680 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
) << 16;
19681 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 7;
19682 inst
.instruction
|= LOW4 (inst
.operands
[2].reg
);
19683 inst
.instruction
|= HI1 (inst
.operands
[2].reg
) << 5;
19684 inst
.instruction
|= listlenbits
<< 8;
19686 neon_dp_fixup (&inst
);
19690 do_neon_ldm_stm (void)
19692 /* P, U and L bits are part of bitmask. */
19693 int is_dbmode
= (inst
.instruction
& (1 << 24)) != 0;
19694 unsigned offsetbits
= inst
.operands
[1].imm
* 2;
19696 if (inst
.operands
[1].issingle
)
19698 do_vfp_nsyn_ldm_stm (is_dbmode
);
19702 constraint (is_dbmode
&& !inst
.operands
[0].writeback
,
19703 _("writeback (!) must be used for VLDMDB and VSTMDB"));
19705 constraint (inst
.operands
[1].imm
< 1 || inst
.operands
[1].imm
> 16,
19706 _("register list must contain at least 1 and at most 16 "
19709 inst
.instruction
|= inst
.operands
[0].reg
<< 16;
19710 inst
.instruction
|= inst
.operands
[0].writeback
<< 21;
19711 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
) << 12;
19712 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 22;
19714 inst
.instruction
|= offsetbits
;
19716 do_vfp_cond_or_thumb ();
19720 do_neon_ldr_str (void)
19722 int is_ldr
= (inst
.instruction
& (1 << 20)) != 0;
19724 /* Use of PC in vstr in ARM mode is deprecated in ARMv7.
19725 And is UNPREDICTABLE in thumb mode. */
19727 && inst
.operands
[1].reg
== REG_PC
19728 && (ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_v7
) || thumb_mode
))
19731 inst
.error
= _("Use of PC here is UNPREDICTABLE");
19732 else if (warn_on_deprecated
)
19733 as_tsktsk (_("Use of PC here is deprecated"));
19736 if (inst
.operands
[0].issingle
)
19739 do_vfp_nsyn_opcode ("flds");
19741 do_vfp_nsyn_opcode ("fsts");
19743 /* ARMv8.2 vldr.16/vstr.16 instruction. */
19744 if (inst
.vectype
.el
[0].size
== 16)
19745 do_scalar_fp16_v82_encode ();
19750 do_vfp_nsyn_opcode ("fldd");
19752 do_vfp_nsyn_opcode ("fstd");
19757 do_t_vldr_vstr_sysreg (void)
19759 int fp_vldr_bitno
= 20, sysreg_vldr_bitno
= 20;
19760 bfd_boolean is_vldr
= ((inst
.instruction
& (1 << fp_vldr_bitno
)) != 0);
19762 /* Use of PC is UNPREDICTABLE. */
19763 if (inst
.operands
[1].reg
== REG_PC
)
19764 inst
.error
= _("Use of PC here is UNPREDICTABLE");
19766 if (inst
.operands
[1].immisreg
)
19767 inst
.error
= _("instruction does not accept register index");
19769 if (!inst
.operands
[1].isreg
)
19770 inst
.error
= _("instruction does not accept PC-relative addressing");
19772 if (abs (inst
.operands
[1].imm
) >= (1 << 7))
19773 inst
.error
= _("immediate value out of range");
19775 inst
.instruction
= 0xec000f80;
19777 inst
.instruction
|= 1 << sysreg_vldr_bitno
;
19778 encode_arm_cp_address (1, TRUE
, FALSE
, BFD_RELOC_ARM_T32_VLDR_VSTR_OFF_IMM
);
19779 inst
.instruction
|= (inst
.operands
[0].imm
& 0x7) << 13;
19780 inst
.instruction
|= (inst
.operands
[0].imm
& 0x8) << 19;
19784 do_vldr_vstr (void)
19786 bfd_boolean sysreg_op
= !inst
.operands
[0].isreg
;
19788 /* VLDR/VSTR (System Register). */
19791 if (!mark_feature_used (&arm_ext_v8_1m_main
))
19792 as_bad (_("Instruction not permitted on this architecture"));
19794 do_t_vldr_vstr_sysreg ();
19799 if (!mark_feature_used (&fpu_vfp_ext_v1xd
))
19800 as_bad (_("Instruction not permitted on this architecture"));
19801 do_neon_ldr_str ();
19805 /* "interleave" version also handles non-interleaving register VLD1/VST1
19809 do_neon_ld_st_interleave (void)
19811 struct neon_type_el et
= neon_check_type (1, NS_NULL
,
19812 N_8
| N_16
| N_32
| N_64
);
19813 unsigned alignbits
= 0;
19815 /* The bits in this table go:
19816 0: register stride of one (0) or two (1)
19817 1,2: register list length, minus one (1, 2, 3, 4).
19818 3,4: <n> in instruction type, minus one (VLD<n> / VST<n>).
19819 We use -1 for invalid entries. */
19820 const int typetable
[] =
19822 0x7, -1, 0xa, -1, 0x6, -1, 0x2, -1, /* VLD1 / VST1. */
19823 -1, -1, 0x8, 0x9, -1, -1, 0x3, -1, /* VLD2 / VST2. */
19824 -1, -1, -1, -1, 0x4, 0x5, -1, -1, /* VLD3 / VST3. */
19825 -1, -1, -1, -1, -1, -1, 0x0, 0x1 /* VLD4 / VST4. */
19829 if (et
.type
== NT_invtype
)
19832 if (inst
.operands
[1].immisalign
)
19833 switch (inst
.operands
[1].imm
>> 8)
19835 case 64: alignbits
= 1; break;
19837 if (NEON_REGLIST_LENGTH (inst
.operands
[0].imm
) != 2
19838 && NEON_REGLIST_LENGTH (inst
.operands
[0].imm
) != 4)
19839 goto bad_alignment
;
19843 if (NEON_REGLIST_LENGTH (inst
.operands
[0].imm
) != 4)
19844 goto bad_alignment
;
19849 first_error (_("bad alignment"));
19853 inst
.instruction
|= alignbits
<< 4;
19854 inst
.instruction
|= neon_logbits (et
.size
) << 6;
19856 /* Bits [4:6] of the immediate in a list specifier encode register stride
19857 (minus 1) in bit 4, and list length in bits [5:6]. We put the <n> of
19858 VLD<n>/VST<n> in bits [9:8] of the initial bitmask. Suck it out here, look
19859 up the right value for "type" in a table based on this value and the given
19860 list style, then stick it back. */
19861 idx
= ((inst
.operands
[0].imm
>> 4) & 7)
19862 | (((inst
.instruction
>> 8) & 3) << 3);
19864 typebits
= typetable
[idx
];
19866 constraint (typebits
== -1, _("bad list type for instruction"));
19867 constraint (((inst
.instruction
>> 8) & 3) && et
.size
== 64,
19870 inst
.instruction
&= ~0xf00;
19871 inst
.instruction
|= typebits
<< 8;
19874 /* Check alignment is valid for do_neon_ld_st_lane and do_neon_ld_dup.
19875 *DO_ALIGN is set to 1 if the relevant alignment bit should be set, 0
19876 otherwise. The variable arguments are a list of pairs of legal (size, align)
19877 values, terminated with -1. */
19880 neon_alignment_bit (int size
, int align
, int *do_alignment
, ...)
19883 int result
= FAIL
, thissize
, thisalign
;
19885 if (!inst
.operands
[1].immisalign
)
19891 va_start (ap
, do_alignment
);
19895 thissize
= va_arg (ap
, int);
19896 if (thissize
== -1)
19898 thisalign
= va_arg (ap
, int);
19900 if (size
== thissize
&& align
== thisalign
)
19903 while (result
!= SUCCESS
);
19907 if (result
== SUCCESS
)
19910 first_error (_("unsupported alignment for instruction"));
19916 do_neon_ld_st_lane (void)
19918 struct neon_type_el et
= neon_check_type (1, NS_NULL
, N_8
| N_16
| N_32
);
19919 int align_good
, do_alignment
= 0;
19920 int logsize
= neon_logbits (et
.size
);
19921 int align
= inst
.operands
[1].imm
>> 8;
19922 int n
= (inst
.instruction
>> 8) & 3;
19923 int max_el
= 64 / et
.size
;
19925 if (et
.type
== NT_invtype
)
19928 constraint (NEON_REGLIST_LENGTH (inst
.operands
[0].imm
) != n
+ 1,
19929 _("bad list length"));
19930 constraint (NEON_LANE (inst
.operands
[0].imm
) >= max_el
,
19931 _("scalar index out of range"));
19932 constraint (n
!= 0 && NEON_REG_STRIDE (inst
.operands
[0].imm
) == 2
19934 _("stride of 2 unavailable when element size is 8"));
19938 case 0: /* VLD1 / VST1. */
19939 align_good
= neon_alignment_bit (et
.size
, align
, &do_alignment
, 16, 16,
19941 if (align_good
== FAIL
)
19945 unsigned alignbits
= 0;
19948 case 16: alignbits
= 0x1; break;
19949 case 32: alignbits
= 0x3; break;
19952 inst
.instruction
|= alignbits
<< 4;
19956 case 1: /* VLD2 / VST2. */
19957 align_good
= neon_alignment_bit (et
.size
, align
, &do_alignment
, 8, 16,
19958 16, 32, 32, 64, -1);
19959 if (align_good
== FAIL
)
19962 inst
.instruction
|= 1 << 4;
19965 case 2: /* VLD3 / VST3. */
19966 constraint (inst
.operands
[1].immisalign
,
19967 _("can't use alignment with this instruction"));
19970 case 3: /* VLD4 / VST4. */
19971 align_good
= neon_alignment_bit (et
.size
, align
, &do_alignment
, 8, 32,
19972 16, 64, 32, 64, 32, 128, -1);
19973 if (align_good
== FAIL
)
19977 unsigned alignbits
= 0;
19980 case 8: alignbits
= 0x1; break;
19981 case 16: alignbits
= 0x1; break;
19982 case 32: alignbits
= (align
== 64) ? 0x1 : 0x2; break;
19985 inst
.instruction
|= alignbits
<< 4;
19992 /* Reg stride of 2 is encoded in bit 5 when size==16, bit 6 when size==32. */
19993 if (n
!= 0 && NEON_REG_STRIDE (inst
.operands
[0].imm
) == 2)
19994 inst
.instruction
|= 1 << (4 + logsize
);
19996 inst
.instruction
|= NEON_LANE (inst
.operands
[0].imm
) << (logsize
+ 5);
19997 inst
.instruction
|= logsize
<< 10;
20000 /* Encode single n-element structure to all lanes VLD<n> instructions. */
20003 do_neon_ld_dup (void)
20005 struct neon_type_el et
= neon_check_type (1, NS_NULL
, N_8
| N_16
| N_32
);
20006 int align_good
, do_alignment
= 0;
20008 if (et
.type
== NT_invtype
)
20011 switch ((inst
.instruction
>> 8) & 3)
20013 case 0: /* VLD1. */
20014 gas_assert (NEON_REG_STRIDE (inst
.operands
[0].imm
) != 2);
20015 align_good
= neon_alignment_bit (et
.size
, inst
.operands
[1].imm
>> 8,
20016 &do_alignment
, 16, 16, 32, 32, -1);
20017 if (align_good
== FAIL
)
20019 switch (NEON_REGLIST_LENGTH (inst
.operands
[0].imm
))
20022 case 2: inst
.instruction
|= 1 << 5; break;
20023 default: first_error (_("bad list length")); return;
20025 inst
.instruction
|= neon_logbits (et
.size
) << 6;
20028 case 1: /* VLD2. */
20029 align_good
= neon_alignment_bit (et
.size
, inst
.operands
[1].imm
>> 8,
20030 &do_alignment
, 8, 16, 16, 32, 32, 64,
20032 if (align_good
== FAIL
)
20034 constraint (NEON_REGLIST_LENGTH (inst
.operands
[0].imm
) != 2,
20035 _("bad list length"));
20036 if (NEON_REG_STRIDE (inst
.operands
[0].imm
) == 2)
20037 inst
.instruction
|= 1 << 5;
20038 inst
.instruction
|= neon_logbits (et
.size
) << 6;
20041 case 2: /* VLD3. */
20042 constraint (inst
.operands
[1].immisalign
,
20043 _("can't use alignment with this instruction"));
20044 constraint (NEON_REGLIST_LENGTH (inst
.operands
[0].imm
) != 3,
20045 _("bad list length"));
20046 if (NEON_REG_STRIDE (inst
.operands
[0].imm
) == 2)
20047 inst
.instruction
|= 1 << 5;
20048 inst
.instruction
|= neon_logbits (et
.size
) << 6;
20051 case 3: /* VLD4. */
20053 int align
= inst
.operands
[1].imm
>> 8;
20054 align_good
= neon_alignment_bit (et
.size
, align
, &do_alignment
, 8, 32,
20055 16, 64, 32, 64, 32, 128, -1);
20056 if (align_good
== FAIL
)
20058 constraint (NEON_REGLIST_LENGTH (inst
.operands
[0].imm
) != 4,
20059 _("bad list length"));
20060 if (NEON_REG_STRIDE (inst
.operands
[0].imm
) == 2)
20061 inst
.instruction
|= 1 << 5;
20062 if (et
.size
== 32 && align
== 128)
20063 inst
.instruction
|= 0x3 << 6;
20065 inst
.instruction
|= neon_logbits (et
.size
) << 6;
20072 inst
.instruction
|= do_alignment
<< 4;
20075 /* Disambiguate VLD<n> and VST<n> instructions, and fill in common bits (those
20076 apart from bits [11:4]. */
20079 do_neon_ldx_stx (void)
20081 if (inst
.operands
[1].isreg
)
20082 constraint (inst
.operands
[1].reg
== REG_PC
, BAD_PC
);
20084 switch (NEON_LANE (inst
.operands
[0].imm
))
20086 case NEON_INTERLEAVE_LANES
:
20087 NEON_ENCODE (INTERLV
, inst
);
20088 do_neon_ld_st_interleave ();
20091 case NEON_ALL_LANES
:
20092 NEON_ENCODE (DUP
, inst
);
20093 if (inst
.instruction
== N_INV
)
20095 first_error ("only loads support such operands");
20102 NEON_ENCODE (LANE
, inst
);
20103 do_neon_ld_st_lane ();
20106 /* L bit comes from bit mask. */
20107 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
20108 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
20109 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
20111 if (inst
.operands
[1].postind
)
20113 int postreg
= inst
.operands
[1].imm
& 0xf;
20114 constraint (!inst
.operands
[1].immisreg
,
20115 _("post-index must be a register"));
20116 constraint (postreg
== 0xd || postreg
== 0xf,
20117 _("bad register for post-index"));
20118 inst
.instruction
|= postreg
;
20122 constraint (inst
.operands
[1].immisreg
, BAD_ADDR_MODE
);
20123 constraint (inst
.relocs
[0].exp
.X_op
!= O_constant
20124 || inst
.relocs
[0].exp
.X_add_number
!= 0,
20127 if (inst
.operands
[1].writeback
)
20129 inst
.instruction
|= 0xd;
20132 inst
.instruction
|= 0xf;
20136 inst
.instruction
|= 0xf9000000;
20138 inst
.instruction
|= 0xf4000000;
20143 do_vfp_nsyn_fpv8 (enum neon_shape rs
)
20145 /* Targets like FPv5-SP-D16 don't support FP v8 instructions with
20146 D register operands. */
20147 if (neon_shape_class
[rs
] == SC_DOUBLE
)
20148 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_vfp_ext_armv8
),
20151 NEON_ENCODE (FPV8
, inst
);
20153 if (rs
== NS_FFF
|| rs
== NS_HHH
)
20155 do_vfp_sp_dyadic ();
20157 /* ARMv8.2 fp16 instruction. */
20159 do_scalar_fp16_v82_encode ();
20162 do_vfp_dp_rd_rn_rm ();
20165 inst
.instruction
|= 0x100;
20167 inst
.instruction
|= 0xf0000000;
20173 set_pred_insn_type (OUTSIDE_PRED_INSN
);
20175 if (try_vfp_nsyn (3, do_vfp_nsyn_fpv8
) != SUCCESS
)
20176 first_error (_("invalid instruction shape"));
20182 if (!ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
))
20183 set_pred_insn_type (OUTSIDE_PRED_INSN
);
20185 if (try_vfp_nsyn (3, do_vfp_nsyn_fpv8
) == SUCCESS
)
20188 if (check_simd_pred_availability (1, NEON_CHECK_CC
| NEON_CHECK_ARCH8
))
20191 neon_dyadic_misc (NT_untyped
, N_F_16_32
, 0);
20195 do_vrint_1 (enum neon_cvt_mode mode
)
20197 enum neon_shape rs
= neon_select_shape (NS_HH
, NS_FF
, NS_DD
, NS_QQ
, NS_NULL
);
20198 struct neon_type_el et
;
20203 /* Targets like FPv5-SP-D16 don't support FP v8 instructions with
20204 D register operands. */
20205 if (neon_shape_class
[rs
] == SC_DOUBLE
)
20206 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_vfp_ext_armv8
),
20209 et
= neon_check_type (2, rs
, N_EQK
| N_VFP
, N_F_ALL
| N_KEY
20211 if (et
.type
!= NT_invtype
)
20213 /* VFP encodings. */
20214 if (mode
== neon_cvt_mode_a
|| mode
== neon_cvt_mode_n
20215 || mode
== neon_cvt_mode_p
|| mode
== neon_cvt_mode_m
)
20216 set_pred_insn_type (OUTSIDE_PRED_INSN
);
20218 NEON_ENCODE (FPV8
, inst
);
20219 if (rs
== NS_FF
|| rs
== NS_HH
)
20220 do_vfp_sp_monadic ();
20222 do_vfp_dp_rd_rm ();
20226 case neon_cvt_mode_r
: inst
.instruction
|= 0x00000000; break;
20227 case neon_cvt_mode_z
: inst
.instruction
|= 0x00000080; break;
20228 case neon_cvt_mode_x
: inst
.instruction
|= 0x00010000; break;
20229 case neon_cvt_mode_a
: inst
.instruction
|= 0xf0000000; break;
20230 case neon_cvt_mode_n
: inst
.instruction
|= 0xf0010000; break;
20231 case neon_cvt_mode_p
: inst
.instruction
|= 0xf0020000; break;
20232 case neon_cvt_mode_m
: inst
.instruction
|= 0xf0030000; break;
20236 inst
.instruction
|= (rs
== NS_DD
) << 8;
20237 do_vfp_cond_or_thumb ();
20239 /* ARMv8.2 fp16 vrint instruction. */
20241 do_scalar_fp16_v82_encode ();
20245 /* Neon encodings (or something broken...). */
20247 et
= neon_check_type (2, rs
, N_EQK
, N_F_16_32
| N_KEY
);
20249 if (et
.type
== NT_invtype
)
20252 set_pred_insn_type (OUTSIDE_PRED_INSN
);
20253 NEON_ENCODE (FLOAT
, inst
);
20255 if (vfp_or_neon_is_neon (NEON_CHECK_CC
| NEON_CHECK_ARCH8
) == FAIL
)
20258 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
20259 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
20260 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
);
20261 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 5;
20262 inst
.instruction
|= neon_quad (rs
) << 6;
20263 /* Mask off the original size bits and reencode them. */
20264 inst
.instruction
= ((inst
.instruction
& 0xfff3ffff)
20265 | neon_logbits (et
.size
) << 18);
20269 case neon_cvt_mode_z
: inst
.instruction
|= 3 << 7; break;
20270 case neon_cvt_mode_x
: inst
.instruction
|= 1 << 7; break;
20271 case neon_cvt_mode_a
: inst
.instruction
|= 2 << 7; break;
20272 case neon_cvt_mode_n
: inst
.instruction
|= 0 << 7; break;
20273 case neon_cvt_mode_p
: inst
.instruction
|= 7 << 7; break;
20274 case neon_cvt_mode_m
: inst
.instruction
|= 5 << 7; break;
20275 case neon_cvt_mode_r
: inst
.error
= _("invalid rounding mode"); break;
20280 inst
.instruction
|= 0xfc000000;
20282 inst
.instruction
|= 0xf0000000;
20289 do_vrint_1 (neon_cvt_mode_x
);
20295 do_vrint_1 (neon_cvt_mode_z
);
20301 do_vrint_1 (neon_cvt_mode_r
);
20307 do_vrint_1 (neon_cvt_mode_a
);
20313 do_vrint_1 (neon_cvt_mode_n
);
20319 do_vrint_1 (neon_cvt_mode_p
);
20325 do_vrint_1 (neon_cvt_mode_m
);
20329 neon_scalar_for_vcmla (unsigned opnd
, unsigned elsize
)
20331 unsigned regno
= NEON_SCALAR_REG (opnd
);
20332 unsigned elno
= NEON_SCALAR_INDEX (opnd
);
20334 if (elsize
== 16 && elno
< 2 && regno
< 16)
20335 return regno
| (elno
<< 4);
20336 else if (elsize
== 32 && elno
== 0)
20339 first_error (_("scalar out of range"));
20346 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, mve_fp_ext
)
20347 && (!ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_neon_ext_armv8
)
20348 || !mark_feature_used (&arm_ext_v8_3
)), (BAD_FPU
));
20349 constraint (inst
.relocs
[0].exp
.X_op
!= O_constant
,
20350 _("expression too complex"));
20351 unsigned rot
= inst
.relocs
[0].exp
.X_add_number
;
20352 constraint (rot
!= 0 && rot
!= 90 && rot
!= 180 && rot
!= 270,
20353 _("immediate out of range"));
20356 if (check_simd_pred_availability (1, NEON_CHECK_ARCH8
| NEON_CHECK_CC
))
20359 if (inst
.operands
[2].isscalar
)
20361 if (ARM_CPU_HAS_FEATURE (cpu_variant
, mve_fp_ext
))
20362 first_error (_("invalid instruction shape"));
20363 enum neon_shape rs
= neon_select_shape (NS_DDSI
, NS_QQSI
, NS_NULL
);
20364 unsigned size
= neon_check_type (3, rs
, N_EQK
, N_EQK
,
20365 N_KEY
| N_F16
| N_F32
).size
;
20366 unsigned m
= neon_scalar_for_vcmla (inst
.operands
[2].reg
, size
);
20368 inst
.instruction
= 0xfe000800;
20369 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
20370 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
20371 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
) << 16;
20372 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 7;
20373 inst
.instruction
|= LOW4 (m
);
20374 inst
.instruction
|= HI1 (m
) << 5;
20375 inst
.instruction
|= neon_quad (rs
) << 6;
20376 inst
.instruction
|= rot
<< 20;
20377 inst
.instruction
|= (size
== 32) << 23;
20381 enum neon_shape rs
;
20382 if (ARM_CPU_HAS_FEATURE (cpu_variant
, mve_fp_ext
))
20383 rs
= neon_select_shape (NS_QQQI
, NS_NULL
);
20385 rs
= neon_select_shape (NS_DDDI
, NS_QQQI
, NS_NULL
);
20387 unsigned size
= neon_check_type (3, rs
, N_EQK
, N_EQK
,
20388 N_KEY
| N_F16
| N_F32
).size
;
20389 if (ARM_CPU_HAS_FEATURE (cpu_variant
, mve_fp_ext
) && size
== 32
20390 && (inst
.operands
[0].reg
== inst
.operands
[1].reg
20391 || inst
.operands
[0].reg
== inst
.operands
[2].reg
))
20392 as_tsktsk (BAD_MVE_SRCDEST
);
20394 neon_three_same (neon_quad (rs
), 0, -1);
20395 inst
.instruction
&= 0x00ffffff; /* Undo neon_dp_fixup. */
20396 inst
.instruction
|= 0xfc200800;
20397 inst
.instruction
|= rot
<< 23;
20398 inst
.instruction
|= (size
== 32) << 20;
20405 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
)
20406 && (!ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_neon_ext_armv8
)
20407 || !mark_feature_used (&arm_ext_v8_3
)), (BAD_FPU
));
20408 constraint (inst
.relocs
[0].exp
.X_op
!= O_constant
,
20409 _("expression too complex"));
20411 unsigned rot
= inst
.relocs
[0].exp
.X_add_number
;
20412 constraint (rot
!= 90 && rot
!= 270, _("immediate out of range"));
20413 enum neon_shape rs
;
20414 struct neon_type_el et
;
20415 if (!ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
))
20417 rs
= neon_select_shape (NS_DDDI
, NS_QQQI
, NS_NULL
);
20418 et
= neon_check_type (3, rs
, N_EQK
, N_EQK
, N_KEY
| N_F16
| N_F32
);
20422 rs
= neon_select_shape (NS_QQQI
, NS_NULL
);
20423 et
= neon_check_type (3, rs
, N_EQK
, N_EQK
, N_KEY
| N_F16
| N_F32
| N_I8
20425 if (et
.size
== 32 && inst
.operands
[0].reg
== inst
.operands
[2].reg
)
20426 as_tsktsk (_("Warning: 32-bit element size and same first and third "
20427 "operand makes instruction UNPREDICTABLE"));
20430 if (et
.type
== NT_invtype
)
20433 if (check_simd_pred_availability (et
.type
== NT_float
, NEON_CHECK_ARCH8
20437 if (et
.type
== NT_float
)
20439 neon_three_same (neon_quad (rs
), 0, -1);
20440 inst
.instruction
&= 0x00ffffff; /* Undo neon_dp_fixup. */
20441 inst
.instruction
|= 0xfc800800;
20442 inst
.instruction
|= (rot
== 270) << 24;
20443 inst
.instruction
|= (et
.size
== 32) << 20;
20447 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
), BAD_FPU
);
20448 inst
.instruction
= 0xfe000f00;
20449 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
20450 inst
.instruction
|= neon_logbits (et
.size
) << 20;
20451 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
) << 16;
20452 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
20453 inst
.instruction
|= (rot
== 270) << 12;
20454 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 7;
20455 inst
.instruction
|= HI1 (inst
.operands
[2].reg
) << 5;
20456 inst
.instruction
|= LOW4 (inst
.operands
[2].reg
);
20461 /* Dot Product instructions encoding support. */
20464 do_neon_dotproduct (int unsigned_p
)
20466 enum neon_shape rs
;
20467 unsigned scalar_oprd2
= 0;
20470 if (inst
.cond
!= COND_ALWAYS
)
20471 as_warn (_("Dot Product instructions cannot be conditional, the behaviour "
20472 "is UNPREDICTABLE"));
20474 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_neon_ext_armv8
),
20477 /* Dot Product instructions are in three-same D/Q register format or the third
20478 operand can be a scalar index register. */
20479 if (inst
.operands
[2].isscalar
)
20481 scalar_oprd2
= neon_scalar_for_mul (inst
.operands
[2].reg
, 32);
20482 high8
= 0xfe000000;
20483 rs
= neon_select_shape (NS_DDS
, NS_QQS
, NS_NULL
);
20487 high8
= 0xfc000000;
20488 rs
= neon_select_shape (NS_DDD
, NS_QQQ
, NS_NULL
);
20492 neon_check_type (3, rs
, N_EQK
, N_EQK
, N_KEY
| N_U8
);
20494 neon_check_type (3, rs
, N_EQK
, N_EQK
, N_KEY
| N_S8
);
20496 /* The "U" bit in traditional Three Same encoding is fixed to 0 for Dot
20497 Product instruction, so we pass 0 as the "ubit" parameter. And the
20498 "Size" field are fixed to 0x2, so we pass 32 as the "size" parameter. */
20499 neon_three_same (neon_quad (rs
), 0, 32);
20501 /* Undo neon_dp_fixup. Dot Product instructions are using a slightly
20502 different NEON three-same encoding. */
20503 inst
.instruction
&= 0x00ffffff;
20504 inst
.instruction
|= high8
;
20505 /* Encode 'U' bit which indicates signedness. */
20506 inst
.instruction
|= (unsigned_p
? 1 : 0) << 4;
20507 /* Re-encode operand2 if it's indexed scalar operand. What has been encoded
20508 from inst.operand[2].reg in neon_three_same is GAS's internal encoding, not
20509 the instruction encoding. */
20510 if (inst
.operands
[2].isscalar
)
20512 inst
.instruction
&= 0xffffffd0;
20513 inst
.instruction
|= LOW4 (scalar_oprd2
);
20514 inst
.instruction
|= HI1 (scalar_oprd2
) << 5;
20518 /* Dot Product instructions for signed integer. */
20521 do_neon_dotproduct_s (void)
20523 return do_neon_dotproduct (0);
20526 /* Dot Product instructions for unsigned integer. */
20529 do_neon_dotproduct_u (void)
20531 return do_neon_dotproduct (1);
20534 /* Crypto v1 instructions. */
20536 do_crypto_2op_1 (unsigned elttype
, int op
)
20538 set_pred_insn_type (OUTSIDE_PRED_INSN
);
20540 if (neon_check_type (2, NS_QQ
, N_EQK
| N_UNT
, elttype
| N_UNT
| N_KEY
).type
20546 NEON_ENCODE (INTEGER
, inst
);
20547 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
20548 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
20549 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
);
20550 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 5;
20552 inst
.instruction
|= op
<< 6;
20555 inst
.instruction
|= 0xfc000000;
20557 inst
.instruction
|= 0xf0000000;
20561 do_crypto_3op_1 (int u
, int op
)
20563 set_pred_insn_type (OUTSIDE_PRED_INSN
);
20565 if (neon_check_type (3, NS_QQQ
, N_EQK
| N_UNT
, N_EQK
| N_UNT
,
20566 N_32
| N_UNT
| N_KEY
).type
== NT_invtype
)
20571 NEON_ENCODE (INTEGER
, inst
);
20572 neon_three_same (1, u
, 8 << op
);
20578 do_crypto_2op_1 (N_8
, 0);
20584 do_crypto_2op_1 (N_8
, 1);
20590 do_crypto_2op_1 (N_8
, 2);
20596 do_crypto_2op_1 (N_8
, 3);
20602 do_crypto_3op_1 (0, 0);
20608 do_crypto_3op_1 (0, 1);
20614 do_crypto_3op_1 (0, 2);
20620 do_crypto_3op_1 (0, 3);
20626 do_crypto_3op_1 (1, 0);
20632 do_crypto_3op_1 (1, 1);
20636 do_sha256su1 (void)
20638 do_crypto_3op_1 (1, 2);
20644 do_crypto_2op_1 (N_32
, -1);
20650 do_crypto_2op_1 (N_32
, 0);
20654 do_sha256su0 (void)
20656 do_crypto_2op_1 (N_32
, 1);
20660 do_crc32_1 (unsigned int poly
, unsigned int sz
)
20662 unsigned int Rd
= inst
.operands
[0].reg
;
20663 unsigned int Rn
= inst
.operands
[1].reg
;
20664 unsigned int Rm
= inst
.operands
[2].reg
;
20666 set_pred_insn_type (OUTSIDE_PRED_INSN
);
20667 inst
.instruction
|= LOW4 (Rd
) << (thumb_mode
? 8 : 12);
20668 inst
.instruction
|= LOW4 (Rn
) << 16;
20669 inst
.instruction
|= LOW4 (Rm
);
20670 inst
.instruction
|= sz
<< (thumb_mode
? 4 : 21);
20671 inst
.instruction
|= poly
<< (thumb_mode
? 20 : 9);
20673 if (Rd
== REG_PC
|| Rn
== REG_PC
|| Rm
== REG_PC
)
20674 as_warn (UNPRED_REG ("r15"));
20716 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_vfp_ext_armv8
),
20718 neon_check_type (2, NS_FD
, N_S32
, N_F64
);
20719 do_vfp_sp_dp_cvt ();
20720 do_vfp_cond_or_thumb ();
20724 /* Overall per-instruction processing. */
20726 /* We need to be able to fix up arbitrary expressions in some statements.
20727 This is so that we can handle symbols that are an arbitrary distance from
20728 the pc. The most common cases are of the form ((+/-sym -/+ . - 8) & mask),
20729 which returns part of an address in a form which will be valid for
20730 a data instruction. We do this by pushing the expression into a symbol
20731 in the expr_section, and creating a fix for that. */
20734 fix_new_arm (fragS
* frag
,
20748 /* Create an absolute valued symbol, so we have something to
20749 refer to in the object file. Unfortunately for us, gas's
20750 generic expression parsing will already have folded out
20751 any use of .set foo/.type foo %function that may have
20752 been used to set type information of the target location,
20753 that's being specified symbolically. We have to presume
20754 the user knows what they are doing. */
20758 sprintf (name
, "*ABS*0x%lx", (unsigned long)exp
->X_add_number
);
20760 symbol
= symbol_find_or_make (name
);
20761 S_SET_SEGMENT (symbol
, absolute_section
);
20762 symbol_set_frag (symbol
, &zero_address_frag
);
20763 S_SET_VALUE (symbol
, exp
->X_add_number
);
20764 exp
->X_op
= O_symbol
;
20765 exp
->X_add_symbol
= symbol
;
20766 exp
->X_add_number
= 0;
20772 new_fix
= fix_new_exp (frag
, where
, size
, exp
, pc_rel
,
20773 (enum bfd_reloc_code_real
) reloc
);
20777 new_fix
= (fixS
*) fix_new (frag
, where
, size
, make_expr_symbol (exp
), 0,
20778 pc_rel
, (enum bfd_reloc_code_real
) reloc
);
20782 /* Mark whether the fix is to a THUMB instruction, or an ARM
20784 new_fix
->tc_fix_data
= thumb_mode
;
20787 /* Create a frg for an instruction requiring relaxation. */
20789 output_relax_insn (void)
20795 /* The size of the instruction is unknown, so tie the debug info to the
20796 start of the instruction. */
20797 dwarf2_emit_insn (0);
20799 switch (inst
.relocs
[0].exp
.X_op
)
20802 sym
= inst
.relocs
[0].exp
.X_add_symbol
;
20803 offset
= inst
.relocs
[0].exp
.X_add_number
;
20807 offset
= inst
.relocs
[0].exp
.X_add_number
;
20810 sym
= make_expr_symbol (&inst
.relocs
[0].exp
);
20814 to
= frag_var (rs_machine_dependent
, INSN_SIZE
, THUMB_SIZE
,
20815 inst
.relax
, sym
, offset
, NULL
/*offset, opcode*/);
20816 md_number_to_chars (to
, inst
.instruction
, THUMB_SIZE
);
20819 /* Write a 32-bit thumb instruction to buf. */
20821 put_thumb32_insn (char * buf
, unsigned long insn
)
20823 md_number_to_chars (buf
, insn
>> 16, THUMB_SIZE
);
20824 md_number_to_chars (buf
+ THUMB_SIZE
, insn
, THUMB_SIZE
);
20828 output_inst (const char * str
)
20834 as_bad ("%s -- `%s'", inst
.error
, str
);
20839 output_relax_insn ();
20842 if (inst
.size
== 0)
20845 to
= frag_more (inst
.size
);
20846 /* PR 9814: Record the thumb mode into the current frag so that we know
20847 what type of NOP padding to use, if necessary. We override any previous
20848 setting so that if the mode has changed then the NOPS that we use will
20849 match the encoding of the last instruction in the frag. */
20850 frag_now
->tc_frag_data
.thumb_mode
= thumb_mode
| MODE_RECORDED
;
20852 if (thumb_mode
&& (inst
.size
> THUMB_SIZE
))
20854 gas_assert (inst
.size
== (2 * THUMB_SIZE
));
20855 put_thumb32_insn (to
, inst
.instruction
);
20857 else if (inst
.size
> INSN_SIZE
)
20859 gas_assert (inst
.size
== (2 * INSN_SIZE
));
20860 md_number_to_chars (to
, inst
.instruction
, INSN_SIZE
);
20861 md_number_to_chars (to
+ INSN_SIZE
, inst
.instruction
, INSN_SIZE
);
20864 md_number_to_chars (to
, inst
.instruction
, inst
.size
);
20867 for (r
= 0; r
< ARM_IT_MAX_RELOCS
; r
++)
20869 if (inst
.relocs
[r
].type
!= BFD_RELOC_UNUSED
)
20870 fix_new_arm (frag_now
, to
- frag_now
->fr_literal
,
20871 inst
.size
, & inst
.relocs
[r
].exp
, inst
.relocs
[r
].pc_rel
,
20872 inst
.relocs
[r
].type
);
20875 dwarf2_emit_insn (inst
.size
);
20879 output_it_inst (int cond
, int mask
, char * to
)
20881 unsigned long instruction
= 0xbf00;
20884 instruction
|= mask
;
20885 instruction
|= cond
<< 4;
20889 to
= frag_more (2);
20891 dwarf2_emit_insn (2);
20895 md_number_to_chars (to
, instruction
, 2);
20900 /* Tag values used in struct asm_opcode's tag field. */
20903 OT_unconditional
, /* Instruction cannot be conditionalized.
20904 The ARM condition field is still 0xE. */
20905 OT_unconditionalF
, /* Instruction cannot be conditionalized
20906 and carries 0xF in its ARM condition field. */
20907 OT_csuffix
, /* Instruction takes a conditional suffix. */
20908 OT_csuffixF
, /* Some forms of the instruction take a scalar
20909 conditional suffix, others place 0xF where the
20910 condition field would be, others take a vector
20911 conditional suffix. */
20912 OT_cinfix3
, /* Instruction takes a conditional infix,
20913 beginning at character index 3. (In
20914 unified mode, it becomes a suffix.) */
20915 OT_cinfix3_deprecated
, /* The same as OT_cinfix3. This is used for
20916 tsts, cmps, cmns, and teqs. */
20917 OT_cinfix3_legacy
, /* Legacy instruction takes a conditional infix at
20918 character index 3, even in unified mode. Used for
20919 legacy instructions where suffix and infix forms
20920 may be ambiguous. */
20921 OT_csuf_or_in3
, /* Instruction takes either a conditional
20922 suffix or an infix at character index 3. */
20923 OT_odd_infix_unc
, /* This is the unconditional variant of an
20924 instruction that takes a conditional infix
20925 at an unusual position. In unified mode,
20926 this variant will accept a suffix. */
20927 OT_odd_infix_0
/* Values greater than or equal to OT_odd_infix_0
20928 are the conditional variants of instructions that
20929 take conditional infixes in unusual positions.
20930 The infix appears at character index
20931 (tag - OT_odd_infix_0). These are not accepted
20932 in unified mode. */
20935 /* Subroutine of md_assemble, responsible for looking up the primary
20936 opcode from the mnemonic the user wrote. STR points to the
20937 beginning of the mnemonic.
20939 This is not simply a hash table lookup, because of conditional
20940 variants. Most instructions have conditional variants, which are
20941 expressed with a _conditional affix_ to the mnemonic. If we were
20942 to encode each conditional variant as a literal string in the opcode
20943 table, it would have approximately 20,000 entries.
20945 Most mnemonics take this affix as a suffix, and in unified syntax,
20946 'most' is upgraded to 'all'. However, in the divided syntax, some
20947 instructions take the affix as an infix, notably the s-variants of
20948 the arithmetic instructions. Of those instructions, all but six
20949 have the infix appear after the third character of the mnemonic.
20951 Accordingly, the algorithm for looking up primary opcodes given
20954 1. Look up the identifier in the opcode table.
20955 If we find a match, go to step U.
20957 2. Look up the last two characters of the identifier in the
20958 conditions table. If we find a match, look up the first N-2
20959 characters of the identifier in the opcode table. If we
20960 find a match, go to step CE.
20962 3. Look up the fourth and fifth characters of the identifier in
20963 the conditions table. If we find a match, extract those
20964 characters from the identifier, and look up the remaining
20965 characters in the opcode table. If we find a match, go
20970 U. Examine the tag field of the opcode structure, in case this is
20971 one of the six instructions with its conditional infix in an
20972 unusual place. If it is, the tag tells us where to find the
20973 infix; look it up in the conditions table and set inst.cond
20974 accordingly. Otherwise, this is an unconditional instruction.
20975 Again set inst.cond accordingly. Return the opcode structure.
20977 CE. Examine the tag field to make sure this is an instruction that
20978 should receive a conditional suffix. If it is not, fail.
20979 Otherwise, set inst.cond from the suffix we already looked up,
20980 and return the opcode structure.
20982 CM. Examine the tag field to make sure this is an instruction that
20983 should receive a conditional infix after the third character.
20984 If it is not, fail. Otherwise, undo the edits to the current
20985 line of input and proceed as for case CE. */
20987 static const struct asm_opcode
*
20988 opcode_lookup (char **str
)
20992 const struct asm_opcode
*opcode
;
20993 const struct asm_cond
*cond
;
20996 /* Scan up to the end of the mnemonic, which must end in white space,
20997 '.' (in unified mode, or for Neon/VFP instructions), or end of string. */
20998 for (base
= end
= *str
; *end
!= '\0'; end
++)
20999 if (*end
== ' ' || *end
== '.')
21005 /* Handle a possible width suffix and/or Neon type suffix. */
21010 /* The .w and .n suffixes are only valid if the unified syntax is in
21012 if (unified_syntax
&& end
[1] == 'w')
21014 else if (unified_syntax
&& end
[1] == 'n')
21019 inst
.vectype
.elems
= 0;
21021 *str
= end
+ offset
;
21023 if (end
[offset
] == '.')
21025 /* See if we have a Neon type suffix (possible in either unified or
21026 non-unified ARM syntax mode). */
21027 if (parse_neon_type (&inst
.vectype
, str
) == FAIL
)
21030 else if (end
[offset
] != '\0' && end
[offset
] != ' ')
21036 /* Look for unaffixed or special-case affixed mnemonic. */
21037 opcode
= (const struct asm_opcode
*) hash_find_n (arm_ops_hsh
, base
,
21042 if (opcode
->tag
< OT_odd_infix_0
)
21044 inst
.cond
= COND_ALWAYS
;
21048 if (warn_on_deprecated
&& unified_syntax
)
21049 as_tsktsk (_("conditional infixes are deprecated in unified syntax"));
21050 affix
= base
+ (opcode
->tag
- OT_odd_infix_0
);
21051 cond
= (const struct asm_cond
*) hash_find_n (arm_cond_hsh
, affix
, 2);
21054 inst
.cond
= cond
->value
;
21057 if (ARM_CPU_HAS_FEATURE (cpu_variant
, mve_ext
))
21059 /* Cannot have a conditional suffix on a mnemonic of less than a character.
21061 if (end
- base
< 2)
21064 cond
= (const struct asm_cond
*) hash_find_n (arm_vcond_hsh
, affix
, 1);
21065 opcode
= (const struct asm_opcode
*) hash_find_n (arm_ops_hsh
, base
,
21067 /* If this opcode can not be vector predicated then don't accept it with a
21068 vector predication code. */
21069 if (opcode
&& !opcode
->mayBeVecPred
)
21072 if (!opcode
|| !cond
)
21074 /* Cannot have a conditional suffix on a mnemonic of less than two
21076 if (end
- base
< 3)
21079 /* Look for suffixed mnemonic. */
21081 cond
= (const struct asm_cond
*) hash_find_n (arm_cond_hsh
, affix
, 2);
21082 opcode
= (const struct asm_opcode
*) hash_find_n (arm_ops_hsh
, base
,
21086 if (opcode
&& cond
)
21089 switch (opcode
->tag
)
21091 case OT_cinfix3_legacy
:
21092 /* Ignore conditional suffixes matched on infix only mnemonics. */
21096 case OT_cinfix3_deprecated
:
21097 case OT_odd_infix_unc
:
21098 if (!unified_syntax
)
21100 /* Fall through. */
21104 case OT_csuf_or_in3
:
21105 inst
.cond
= cond
->value
;
21108 case OT_unconditional
:
21109 case OT_unconditionalF
:
21111 inst
.cond
= cond
->value
;
21114 /* Delayed diagnostic. */
21115 inst
.error
= BAD_COND
;
21116 inst
.cond
= COND_ALWAYS
;
21125 /* Cannot have a usual-position infix on a mnemonic of less than
21126 six characters (five would be a suffix). */
21127 if (end
- base
< 6)
21130 /* Look for infixed mnemonic in the usual position. */
21132 cond
= (const struct asm_cond
*) hash_find_n (arm_cond_hsh
, affix
, 2);
21136 memcpy (save
, affix
, 2);
21137 memmove (affix
, affix
+ 2, (end
- affix
) - 2);
21138 opcode
= (const struct asm_opcode
*) hash_find_n (arm_ops_hsh
, base
,
21140 memmove (affix
+ 2, affix
, (end
- affix
) - 2);
21141 memcpy (affix
, save
, 2);
21144 && (opcode
->tag
== OT_cinfix3
21145 || opcode
->tag
== OT_cinfix3_deprecated
21146 || opcode
->tag
== OT_csuf_or_in3
21147 || opcode
->tag
== OT_cinfix3_legacy
))
21150 if (warn_on_deprecated
&& unified_syntax
21151 && (opcode
->tag
== OT_cinfix3
21152 || opcode
->tag
== OT_cinfix3_deprecated
))
21153 as_tsktsk (_("conditional infixes are deprecated in unified syntax"));
21155 inst
.cond
= cond
->value
;
21162 /* This function generates an initial IT instruction, leaving its block
21163 virtually open for the new instructions. Eventually,
21164 the mask will be updated by now_pred_add_mask () each time
21165 a new instruction needs to be included in the IT block.
21166 Finally, the block is closed with close_automatic_it_block ().
21167 The block closure can be requested either from md_assemble (),
21168 a tencode (), or due to a label hook. */
21171 new_automatic_it_block (int cond
)
21173 now_pred
.state
= AUTOMATIC_PRED_BLOCK
;
21174 now_pred
.mask
= 0x18;
21175 now_pred
.cc
= cond
;
21176 now_pred
.block_length
= 1;
21177 mapping_state (MAP_THUMB
);
21178 now_pred
.insn
= output_it_inst (cond
, now_pred
.mask
, NULL
);
21179 now_pred
.warn_deprecated
= FALSE
;
21180 now_pred
.insn_cond
= TRUE
;
21183 /* Close an automatic IT block.
21184 See comments in new_automatic_it_block (). */
21187 close_automatic_it_block (void)
21189 now_pred
.mask
= 0x10;
21190 now_pred
.block_length
= 0;
21193 /* Update the mask of the current automatically-generated IT
21194 instruction. See comments in new_automatic_it_block (). */
21197 now_pred_add_mask (int cond
)
21199 #define CLEAR_BIT(value, nbit) ((value) & ~(1 << (nbit)))
21200 #define SET_BIT_VALUE(value, bitvalue, nbit) (CLEAR_BIT (value, nbit) \
21201 | ((bitvalue) << (nbit)))
21202 const int resulting_bit
= (cond
& 1);
21204 now_pred
.mask
&= 0xf;
21205 now_pred
.mask
= SET_BIT_VALUE (now_pred
.mask
,
21207 (5 - now_pred
.block_length
));
21208 now_pred
.mask
= SET_BIT_VALUE (now_pred
.mask
,
21210 ((5 - now_pred
.block_length
) - 1));
21211 output_it_inst (now_pred
.cc
, now_pred
.mask
, now_pred
.insn
);
21214 #undef SET_BIT_VALUE
21217 /* The IT blocks handling machinery is accessed through the these functions:
21218 it_fsm_pre_encode () from md_assemble ()
21219 set_pred_insn_type () optional, from the tencode functions
21220 set_pred_insn_type_last () ditto
21221 in_pred_block () ditto
21222 it_fsm_post_encode () from md_assemble ()
21223 force_automatic_it_block_close () from label handling functions
21226 1) md_assemble () calls it_fsm_pre_encode () before calling tencode (),
21227 initializing the IT insn type with a generic initial value depending
21228 on the inst.condition.
21229 2) During the tencode function, two things may happen:
21230 a) The tencode function overrides the IT insn type by
21231 calling either set_pred_insn_type (type) or
21232 set_pred_insn_type_last ().
21233 b) The tencode function queries the IT block state by
21234 calling in_pred_block () (i.e. to determine narrow/not narrow mode).
21236 Both set_pred_insn_type and in_pred_block run the internal FSM state
21237 handling function (handle_pred_state), because: a) setting the IT insn
21238 type may incur in an invalid state (exiting the function),
21239 and b) querying the state requires the FSM to be updated.
21240 Specifically we want to avoid creating an IT block for conditional
21241 branches, so it_fsm_pre_encode is actually a guess and we can't
21242 determine whether an IT block is required until the tencode () routine
21243 has decided what type of instruction this actually it.
21244 Because of this, if set_pred_insn_type and in_pred_block have to be
21245 used, set_pred_insn_type has to be called first.
21247 set_pred_insn_type_last () is a wrapper of set_pred_insn_type (type),
21248 that determines the insn IT type depending on the inst.cond code.
21249 When a tencode () routine encodes an instruction that can be
21250 either outside an IT block, or, in the case of being inside, has to be
21251 the last one, set_pred_insn_type_last () will determine the proper
21252 IT instruction type based on the inst.cond code. Otherwise,
21253 set_pred_insn_type can be called for overriding that logic or
21254 for covering other cases.
21256 Calling handle_pred_state () may not transition the IT block state to
21257 OUTSIDE_PRED_BLOCK immediately, since the (current) state could be
21258 still queried. Instead, if the FSM determines that the state should
21259 be transitioned to OUTSIDE_PRED_BLOCK, a flag is marked to be closed
21260 after the tencode () function: that's what it_fsm_post_encode () does.
21262 Since in_pred_block () calls the state handling function to get an
21263 updated state, an error may occur (due to invalid insns combination).
21264 In that case, inst.error is set.
21265 Therefore, inst.error has to be checked after the execution of
21266 the tencode () routine.
21268 3) Back in md_assemble(), it_fsm_post_encode () is called to commit
21269 any pending state change (if any) that didn't take place in
21270 handle_pred_state () as explained above. */
21273 it_fsm_pre_encode (void)
21275 if (inst
.cond
!= COND_ALWAYS
)
21276 inst
.pred_insn_type
= INSIDE_IT_INSN
;
21278 inst
.pred_insn_type
= OUTSIDE_PRED_INSN
;
21280 now_pred
.state_handled
= 0;
21283 /* IT state FSM handling function. */
21284 /* MVE instructions and non-MVE instructions are handled differently because of
21285 the introduction of VPT blocks.
21286 Specifications say that any non-MVE instruction inside a VPT block is
21287 UNPREDICTABLE, with the exception of the BKPT instruction. Whereas most MVE
21288 instructions are deemed to be UNPREDICTABLE if inside an IT block. For the
21289 few exceptions we have MVE_UNPREDICABLE_INSN.
21290 The error messages provided depending on the different combinations possible
21291 are described in the cases below:
21292 For 'most' MVE instructions:
21293 1) In an IT block, with an IT code: syntax error
21294 2) In an IT block, with a VPT code: error: must be in a VPT block
21295 3) In an IT block, with no code: warning: UNPREDICTABLE
21296 4) In a VPT block, with an IT code: syntax error
21297 5) In a VPT block, with a VPT code: OK!
21298 6) In a VPT block, with no code: error: missing code
21299 7) Outside a pred block, with an IT code: error: syntax error
21300 8) Outside a pred block, with a VPT code: error: should be in a VPT block
21301 9) Outside a pred block, with no code: OK!
21302 For non-MVE instructions:
21303 10) In an IT block, with an IT code: OK!
21304 11) In an IT block, with a VPT code: syntax error
21305 12) In an IT block, with no code: error: missing code
21306 13) In a VPT block, with an IT code: error: should be in an IT block
21307 14) In a VPT block, with a VPT code: syntax error
21308 15) In a VPT block, with no code: UNPREDICTABLE
21309 16) Outside a pred block, with an IT code: error: should be in an IT block
21310 17) Outside a pred block, with a VPT code: syntax error
21311 18) Outside a pred block, with no code: OK!
21316 handle_pred_state (void)
21318 now_pred
.state_handled
= 1;
21319 now_pred
.insn_cond
= FALSE
;
21321 switch (now_pred
.state
)
21323 case OUTSIDE_PRED_BLOCK
:
21324 switch (inst
.pred_insn_type
)
21326 case MVE_UNPREDICABLE_INSN
:
21327 case MVE_OUTSIDE_PRED_INSN
:
21328 if (inst
.cond
< COND_ALWAYS
)
21330 /* Case 7: Outside a pred block, with an IT code: error: syntax
21332 inst
.error
= BAD_SYNTAX
;
21335 /* Case 9: Outside a pred block, with no code: OK! */
21337 case OUTSIDE_PRED_INSN
:
21338 if (inst
.cond
> COND_ALWAYS
)
21340 /* Case 17: Outside a pred block, with a VPT code: syntax error.
21342 inst
.error
= BAD_SYNTAX
;
21345 /* Case 18: Outside a pred block, with no code: OK! */
21348 case INSIDE_VPT_INSN
:
21349 /* Case 8: Outside a pred block, with a VPT code: error: should be in
21351 inst
.error
= BAD_OUT_VPT
;
21354 case INSIDE_IT_INSN
:
21355 case INSIDE_IT_LAST_INSN
:
21356 if (inst
.cond
< COND_ALWAYS
)
21358 /* Case 16: Outside a pred block, with an IT code: error: should
21359 be in an IT block. */
21360 if (thumb_mode
== 0)
21363 && !(implicit_it_mode
& IMPLICIT_IT_MODE_ARM
))
21364 as_tsktsk (_("Warning: conditional outside an IT block"\
21369 if ((implicit_it_mode
& IMPLICIT_IT_MODE_THUMB
)
21370 && ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v6t2
))
21372 /* Automatically generate the IT instruction. */
21373 new_automatic_it_block (inst
.cond
);
21374 if (inst
.pred_insn_type
== INSIDE_IT_LAST_INSN
)
21375 close_automatic_it_block ();
21379 inst
.error
= BAD_OUT_IT
;
21385 else if (inst
.cond
> COND_ALWAYS
)
21387 /* Case 17: Outside a pred block, with a VPT code: syntax error.
21389 inst
.error
= BAD_SYNTAX
;
21394 case IF_INSIDE_IT_LAST_INSN
:
21395 case NEUTRAL_IT_INSN
:
21399 if (inst
.cond
!= COND_ALWAYS
)
21400 first_error (BAD_SYNTAX
);
21401 now_pred
.state
= MANUAL_PRED_BLOCK
;
21402 now_pred
.block_length
= 0;
21403 now_pred
.type
= VECTOR_PRED
;
21407 now_pred
.state
= MANUAL_PRED_BLOCK
;
21408 now_pred
.block_length
= 0;
21409 now_pred
.type
= SCALAR_PRED
;
21414 case AUTOMATIC_PRED_BLOCK
:
21415 /* Three things may happen now:
21416 a) We should increment current it block size;
21417 b) We should close current it block (closing insn or 4 insns);
21418 c) We should close current it block and start a new one (due
21419 to incompatible conditions or
21420 4 insns-length block reached). */
21422 switch (inst
.pred_insn_type
)
21424 case INSIDE_VPT_INSN
:
21426 case MVE_UNPREDICABLE_INSN
:
21427 case MVE_OUTSIDE_PRED_INSN
:
21429 case OUTSIDE_PRED_INSN
:
21430 /* The closure of the block shall happen immediately,
21431 so any in_pred_block () call reports the block as closed. */
21432 force_automatic_it_block_close ();
21435 case INSIDE_IT_INSN
:
21436 case INSIDE_IT_LAST_INSN
:
21437 case IF_INSIDE_IT_LAST_INSN
:
21438 now_pred
.block_length
++;
21440 if (now_pred
.block_length
> 4
21441 || !now_pred_compatible (inst
.cond
))
21443 force_automatic_it_block_close ();
21444 if (inst
.pred_insn_type
!= IF_INSIDE_IT_LAST_INSN
)
21445 new_automatic_it_block (inst
.cond
);
21449 now_pred
.insn_cond
= TRUE
;
21450 now_pred_add_mask (inst
.cond
);
21453 if (now_pred
.state
== AUTOMATIC_PRED_BLOCK
21454 && (inst
.pred_insn_type
== INSIDE_IT_LAST_INSN
21455 || inst
.pred_insn_type
== IF_INSIDE_IT_LAST_INSN
))
21456 close_automatic_it_block ();
21459 case NEUTRAL_IT_INSN
:
21460 now_pred
.block_length
++;
21461 now_pred
.insn_cond
= TRUE
;
21463 if (now_pred
.block_length
> 4)
21464 force_automatic_it_block_close ();
21466 now_pred_add_mask (now_pred
.cc
& 1);
21470 close_automatic_it_block ();
21471 now_pred
.state
= MANUAL_PRED_BLOCK
;
21476 case MANUAL_PRED_BLOCK
:
21479 if (now_pred
.type
== SCALAR_PRED
)
21481 /* Check conditional suffixes. */
21482 cond
= now_pred
.cc
^ ((now_pred
.mask
>> 4) & 1) ^ 1;
21483 now_pred
.mask
<<= 1;
21484 now_pred
.mask
&= 0x1f;
21485 is_last
= (now_pred
.mask
== 0x10);
21489 now_pred
.cc
^= (now_pred
.mask
>> 4);
21490 cond
= now_pred
.cc
+ 0xf;
21491 now_pred
.mask
<<= 1;
21492 now_pred
.mask
&= 0x1f;
21493 is_last
= now_pred
.mask
== 0x10;
21495 now_pred
.insn_cond
= TRUE
;
21497 switch (inst
.pred_insn_type
)
21499 case OUTSIDE_PRED_INSN
:
21500 if (now_pred
.type
== SCALAR_PRED
)
21502 if (inst
.cond
== COND_ALWAYS
)
21504 /* Case 12: In an IT block, with no code: error: missing
21506 inst
.error
= BAD_NOT_IT
;
21509 else if (inst
.cond
> COND_ALWAYS
)
21511 /* Case 11: In an IT block, with a VPT code: syntax error.
21513 inst
.error
= BAD_SYNTAX
;
21516 else if (thumb_mode
)
21518 /* This is for some special cases where a non-MVE
21519 instruction is not allowed in an IT block, such as cbz,
21520 but are put into one with a condition code.
21521 You could argue this should be a syntax error, but we
21522 gave the 'not allowed in IT block' diagnostic in the
21523 past so we will keep doing so. */
21524 inst
.error
= BAD_NOT_IT
;
21531 /* Case 15: In a VPT block, with no code: UNPREDICTABLE. */
21532 as_tsktsk (MVE_NOT_VPT
);
21535 case MVE_OUTSIDE_PRED_INSN
:
21536 if (now_pred
.type
== SCALAR_PRED
)
21538 if (inst
.cond
== COND_ALWAYS
)
21540 /* Case 3: In an IT block, with no code: warning:
21542 as_tsktsk (MVE_NOT_IT
);
21545 else if (inst
.cond
< COND_ALWAYS
)
21547 /* Case 1: In an IT block, with an IT code: syntax error.
21549 inst
.error
= BAD_SYNTAX
;
21557 if (inst
.cond
< COND_ALWAYS
)
21559 /* Case 4: In a VPT block, with an IT code: syntax error.
21561 inst
.error
= BAD_SYNTAX
;
21564 else if (inst
.cond
== COND_ALWAYS
)
21566 /* Case 6: In a VPT block, with no code: error: missing
21568 inst
.error
= BAD_NOT_VPT
;
21576 case MVE_UNPREDICABLE_INSN
:
21577 as_tsktsk (now_pred
.type
== SCALAR_PRED
? MVE_NOT_IT
: MVE_NOT_VPT
);
21579 case INSIDE_IT_INSN
:
21580 if (inst
.cond
> COND_ALWAYS
)
21582 /* Case 11: In an IT block, with a VPT code: syntax error. */
21583 /* Case 14: In a VPT block, with a VPT code: syntax error. */
21584 inst
.error
= BAD_SYNTAX
;
21587 else if (now_pred
.type
== SCALAR_PRED
)
21589 /* Case 10: In an IT block, with an IT code: OK! */
21590 if (cond
!= inst
.cond
)
21592 inst
.error
= now_pred
.type
== SCALAR_PRED
? BAD_IT_COND
:
21599 /* Case 13: In a VPT block, with an IT code: error: should be
21601 inst
.error
= BAD_OUT_IT
;
21606 case INSIDE_VPT_INSN
:
21607 if (now_pred
.type
== SCALAR_PRED
)
21609 /* Case 2: In an IT block, with a VPT code: error: must be in a
21611 inst
.error
= BAD_OUT_VPT
;
21614 /* Case 5: In a VPT block, with a VPT code: OK! */
21615 else if (cond
!= inst
.cond
)
21617 inst
.error
= BAD_VPT_COND
;
21621 case INSIDE_IT_LAST_INSN
:
21622 case IF_INSIDE_IT_LAST_INSN
:
21623 if (now_pred
.type
== VECTOR_PRED
|| inst
.cond
> COND_ALWAYS
)
21625 /* Case 4: In a VPT block, with an IT code: syntax error. */
21626 /* Case 11: In an IT block, with a VPT code: syntax error. */
21627 inst
.error
= BAD_SYNTAX
;
21630 else if (cond
!= inst
.cond
)
21632 inst
.error
= BAD_IT_COND
;
21637 inst
.error
= BAD_BRANCH
;
21642 case NEUTRAL_IT_INSN
:
21643 /* The BKPT instruction is unconditional even in a IT or VPT
21648 if (now_pred
.type
== SCALAR_PRED
)
21650 inst
.error
= BAD_IT_IT
;
21653 /* fall through. */
21655 if (inst
.cond
== COND_ALWAYS
)
21657 /* Executing a VPT/VPST instruction inside an IT block or a
21658 VPT/VPST/IT instruction inside a VPT block is UNPREDICTABLE.
21660 if (now_pred
.type
== SCALAR_PRED
)
21661 as_tsktsk (MVE_NOT_IT
);
21663 as_tsktsk (MVE_NOT_VPT
);
21668 /* VPT/VPST do not accept condition codes. */
21669 inst
.error
= BAD_SYNTAX
;
21680 struct depr_insn_mask
21682 unsigned long pattern
;
21683 unsigned long mask
;
21684 const char* description
;
21687 /* List of 16-bit instruction patterns deprecated in an IT block in
21689 static const struct depr_insn_mask depr_it_insns
[] = {
21690 { 0xc000, 0xc000, N_("Short branches, Undefined, SVC, LDM/STM") },
21691 { 0xb000, 0xb000, N_("Miscellaneous 16-bit instructions") },
21692 { 0xa000, 0xb800, N_("ADR") },
21693 { 0x4800, 0xf800, N_("Literal loads") },
21694 { 0x4478, 0xf478, N_("Hi-register ADD, MOV, CMP, BX, BLX using pc") },
21695 { 0x4487, 0xfc87, N_("Hi-register ADD, MOV, CMP using pc") },
21696 /* NOTE: 0x00dd is not the real encoding, instead, it is the 'tvalue'
21697 field in asm_opcode. 'tvalue' is used at the stage this check happen. */
21698 { 0x00dd, 0x7fff, N_("ADD/SUB sp, sp #imm") },
21703 it_fsm_post_encode (void)
21707 if (!now_pred
.state_handled
)
21708 handle_pred_state ();
21710 if (now_pred
.insn_cond
21711 && !now_pred
.warn_deprecated
21712 && warn_on_deprecated
21713 && ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v8
)
21714 && !ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_m
))
21716 if (inst
.instruction
>= 0x10000)
21718 as_tsktsk (_("IT blocks containing 32-bit Thumb instructions are "
21719 "performance deprecated in ARMv8-A and ARMv8-R"));
21720 now_pred
.warn_deprecated
= TRUE
;
21724 const struct depr_insn_mask
*p
= depr_it_insns
;
21726 while (p
->mask
!= 0)
21728 if ((inst
.instruction
& p
->mask
) == p
->pattern
)
21730 as_tsktsk (_("IT blocks containing 16-bit Thumb "
21731 "instructions of the following class are "
21732 "performance deprecated in ARMv8-A and "
21733 "ARMv8-R: %s"), p
->description
);
21734 now_pred
.warn_deprecated
= TRUE
;
21742 if (now_pred
.block_length
> 1)
21744 as_tsktsk (_("IT blocks containing more than one conditional "
21745 "instruction are performance deprecated in ARMv8-A and "
21747 now_pred
.warn_deprecated
= TRUE
;
21751 is_last
= (now_pred
.mask
== 0x10);
21754 now_pred
.state
= OUTSIDE_PRED_BLOCK
;
21760 force_automatic_it_block_close (void)
21762 if (now_pred
.state
== AUTOMATIC_PRED_BLOCK
)
21764 close_automatic_it_block ();
21765 now_pred
.state
= OUTSIDE_PRED_BLOCK
;
21771 in_pred_block (void)
21773 if (!now_pred
.state_handled
)
21774 handle_pred_state ();
21776 return now_pred
.state
!= OUTSIDE_PRED_BLOCK
;
21779 /* Whether OPCODE only has T32 encoding. Since this function is only used by
21780 t32_insn_ok, OPCODE enabled by v6t2 extension bit do not need to be listed
21781 here, hence the "known" in the function name. */
21784 known_t32_only_insn (const struct asm_opcode
*opcode
)
21786 /* Original Thumb-1 wide instruction. */
21787 if (opcode
->tencode
== do_t_blx
21788 || opcode
->tencode
== do_t_branch23
21789 || ARM_CPU_HAS_FEATURE (*opcode
->tvariant
, arm_ext_msr
)
21790 || ARM_CPU_HAS_FEATURE (*opcode
->tvariant
, arm_ext_barrier
))
21793 /* Wide-only instruction added to ARMv8-M Baseline. */
21794 if (ARM_CPU_HAS_FEATURE (*opcode
->tvariant
, arm_ext_v8m_m_only
)
21795 || ARM_CPU_HAS_FEATURE (*opcode
->tvariant
, arm_ext_atomics
)
21796 || ARM_CPU_HAS_FEATURE (*opcode
->tvariant
, arm_ext_v6t2_v8m
)
21797 || ARM_CPU_HAS_FEATURE (*opcode
->tvariant
, arm_ext_div
))
21803 /* Whether wide instruction variant can be used if available for a valid OPCODE
21807 t32_insn_ok (arm_feature_set arch
, const struct asm_opcode
*opcode
)
21809 if (known_t32_only_insn (opcode
))
21812 /* Instruction with narrow and wide encoding added to ARMv8-M. Availability
21813 of variant T3 of B.W is checked in do_t_branch. */
21814 if (ARM_CPU_HAS_FEATURE (arch
, arm_ext_v8m
)
21815 && opcode
->tencode
== do_t_branch
)
21818 /* MOV accepts T1/T3 encodings under Baseline, T3 encoding is 32bit. */
21819 if (ARM_CPU_HAS_FEATURE (arch
, arm_ext_v8m
)
21820 && opcode
->tencode
== do_t_mov_cmp
21821 /* Make sure CMP instruction is not affected. */
21822 && opcode
->aencode
== do_mov
)
21825 /* Wide instruction variants of all instructions with narrow *and* wide
21826 variants become available with ARMv6t2. Other opcodes are either
21827 narrow-only or wide-only and are thus available if OPCODE is valid. */
21828 if (ARM_CPU_HAS_FEATURE (arch
, arm_ext_v6t2
))
21831 /* OPCODE with narrow only instruction variant or wide variant not
21837 md_assemble (char *str
)
21840 const struct asm_opcode
* opcode
;
21842 /* Align the previous label if needed. */
21843 if (last_label_seen
!= NULL
)
21845 symbol_set_frag (last_label_seen
, frag_now
);
21846 S_SET_VALUE (last_label_seen
, (valueT
) frag_now_fix ());
21847 S_SET_SEGMENT (last_label_seen
, now_seg
);
21850 memset (&inst
, '\0', sizeof (inst
));
21852 for (r
= 0; r
< ARM_IT_MAX_RELOCS
; r
++)
21853 inst
.relocs
[r
].type
= BFD_RELOC_UNUSED
;
21855 opcode
= opcode_lookup (&p
);
21858 /* It wasn't an instruction, but it might be a register alias of
21859 the form alias .req reg, or a Neon .dn/.qn directive. */
21860 if (! create_register_alias (str
, p
)
21861 && ! create_neon_reg_alias (str
, p
))
21862 as_bad (_("bad instruction `%s'"), str
);
21867 if (warn_on_deprecated
&& opcode
->tag
== OT_cinfix3_deprecated
)
21868 as_tsktsk (_("s suffix on comparison instruction is deprecated"));
21870 /* The value which unconditional instructions should have in place of the
21871 condition field. */
21872 inst
.uncond_value
= (opcode
->tag
== OT_csuffixF
) ? 0xf : -1;
21876 arm_feature_set variant
;
21878 variant
= cpu_variant
;
21879 /* Only allow coprocessor instructions on Thumb-2 capable devices. */
21880 if (!ARM_CPU_HAS_FEATURE (variant
, arm_arch_t2
))
21881 ARM_CLEAR_FEATURE (variant
, variant
, fpu_any_hard
);
21882 /* Check that this instruction is supported for this CPU. */
21883 if (!opcode
->tvariant
21884 || (thumb_mode
== 1
21885 && !ARM_CPU_HAS_FEATURE (variant
, *opcode
->tvariant
)))
21887 if (opcode
->tencode
== do_t_swi
)
21888 as_bad (_("SVC is not permitted on this architecture"));
21890 as_bad (_("selected processor does not support `%s' in Thumb mode"), str
);
21893 if (inst
.cond
!= COND_ALWAYS
&& !unified_syntax
21894 && opcode
->tencode
!= do_t_branch
)
21896 as_bad (_("Thumb does not support conditional execution"));
21900 /* Two things are addressed here:
21901 1) Implicit require narrow instructions on Thumb-1.
21902 This avoids relaxation accidentally introducing Thumb-2
21904 2) Reject wide instructions in non Thumb-2 cores.
21906 Only instructions with narrow and wide variants need to be handled
21907 but selecting all non wide-only instructions is easier. */
21908 if (!ARM_CPU_HAS_FEATURE (variant
, arm_ext_v6t2
)
21909 && !t32_insn_ok (variant
, opcode
))
21911 if (inst
.size_req
== 0)
21913 else if (inst
.size_req
== 4)
21915 if (ARM_CPU_HAS_FEATURE (variant
, arm_ext_v8m
))
21916 as_bad (_("selected processor does not support 32bit wide "
21917 "variant of instruction `%s'"), str
);
21919 as_bad (_("selected processor does not support `%s' in "
21920 "Thumb-2 mode"), str
);
21925 inst
.instruction
= opcode
->tvalue
;
21927 if (!parse_operands (p
, opcode
->operands
, /*thumb=*/TRUE
))
21929 /* Prepare the pred_insn_type for those encodings that don't set
21931 it_fsm_pre_encode ();
21933 opcode
->tencode ();
21935 it_fsm_post_encode ();
21938 if (!(inst
.error
|| inst
.relax
))
21940 gas_assert (inst
.instruction
< 0xe800 || inst
.instruction
> 0xffff);
21941 inst
.size
= (inst
.instruction
> 0xffff ? 4 : 2);
21942 if (inst
.size_req
&& inst
.size_req
!= inst
.size
)
21944 as_bad (_("cannot honor width suffix -- `%s'"), str
);
21949 /* Something has gone badly wrong if we try to relax a fixed size
21951 gas_assert (inst
.size_req
== 0 || !inst
.relax
);
21953 ARM_MERGE_FEATURE_SETS (thumb_arch_used
, thumb_arch_used
,
21954 *opcode
->tvariant
);
21955 /* Many Thumb-2 instructions also have Thumb-1 variants, so explicitly
21956 set those bits when Thumb-2 32-bit instructions are seen. The impact
21957 of relaxable instructions will be considered later after we finish all
21959 if (ARM_FEATURE_CORE_EQUAL (cpu_variant
, arm_arch_any
))
21960 variant
= arm_arch_none
;
21962 variant
= cpu_variant
;
21963 if (inst
.size
== 4 && !t32_insn_ok (variant
, opcode
))
21964 ARM_MERGE_FEATURE_SETS (thumb_arch_used
, thumb_arch_used
,
21967 check_neon_suffixes
;
21971 mapping_state (MAP_THUMB
);
21974 else if (ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v1
))
21978 /* bx is allowed on v5 cores, and sometimes on v4 cores. */
21979 is_bx
= (opcode
->aencode
== do_bx
);
21981 /* Check that this instruction is supported for this CPU. */
21982 if (!(is_bx
&& fix_v4bx
)
21983 && !(opcode
->avariant
&&
21984 ARM_CPU_HAS_FEATURE (cpu_variant
, *opcode
->avariant
)))
21986 as_bad (_("selected processor does not support `%s' in ARM mode"), str
);
21991 as_bad (_("width suffixes are invalid in ARM mode -- `%s'"), str
);
21995 inst
.instruction
= opcode
->avalue
;
21996 if (opcode
->tag
== OT_unconditionalF
)
21997 inst
.instruction
|= 0xFU
<< 28;
21999 inst
.instruction
|= inst
.cond
<< 28;
22000 inst
.size
= INSN_SIZE
;
22001 if (!parse_operands (p
, opcode
->operands
, /*thumb=*/FALSE
))
22003 it_fsm_pre_encode ();
22004 opcode
->aencode ();
22005 it_fsm_post_encode ();
22007 /* Arm mode bx is marked as both v4T and v5 because it's still required
22008 on a hypothetical non-thumb v5 core. */
22010 ARM_MERGE_FEATURE_SETS (arm_arch_used
, arm_arch_used
, arm_ext_v4t
);
22012 ARM_MERGE_FEATURE_SETS (arm_arch_used
, arm_arch_used
,
22013 *opcode
->avariant
);
22015 check_neon_suffixes
;
22019 mapping_state (MAP_ARM
);
22024 as_bad (_("attempt to use an ARM instruction on a Thumb-only processor "
22032 check_pred_blocks_finished (void)
22037 for (sect
= stdoutput
->sections
; sect
!= NULL
; sect
= sect
->next
)
22038 if (seg_info (sect
)->tc_segment_info_data
.current_pred
.state
22039 == MANUAL_PRED_BLOCK
)
22041 if (now_pred
.type
== SCALAR_PRED
)
22042 as_warn (_("section '%s' finished with an open IT block."),
22045 as_warn (_("section '%s' finished with an open VPT/VPST block."),
22049 if (now_pred
.state
== MANUAL_PRED_BLOCK
)
22051 if (now_pred
.type
== SCALAR_PRED
)
22052 as_warn (_("file finished with an open IT block."));
22054 as_warn (_("file finished with an open VPT/VPST block."));
22059 /* Various frobbings of labels and their addresses. */
22062 arm_start_line_hook (void)
22064 last_label_seen
= NULL
;
22068 arm_frob_label (symbolS
* sym
)
22070 last_label_seen
= sym
;
22072 ARM_SET_THUMB (sym
, thumb_mode
);
22074 #if defined OBJ_COFF || defined OBJ_ELF
22075 ARM_SET_INTERWORK (sym
, support_interwork
);
22078 force_automatic_it_block_close ();
22080 /* Note - do not allow local symbols (.Lxxx) to be labelled
22081 as Thumb functions. This is because these labels, whilst
22082 they exist inside Thumb code, are not the entry points for
22083 possible ARM->Thumb calls. Also, these labels can be used
22084 as part of a computed goto or switch statement. eg gcc
22085 can generate code that looks like this:
22087 ldr r2, [pc, .Laaa]
22097 The first instruction loads the address of the jump table.
22098 The second instruction converts a table index into a byte offset.
22099 The third instruction gets the jump address out of the table.
22100 The fourth instruction performs the jump.
22102 If the address stored at .Laaa is that of a symbol which has the
22103 Thumb_Func bit set, then the linker will arrange for this address
22104 to have the bottom bit set, which in turn would mean that the
22105 address computation performed by the third instruction would end
22106 up with the bottom bit set. Since the ARM is capable of unaligned
22107 word loads, the instruction would then load the incorrect address
22108 out of the jump table, and chaos would ensue. */
22109 if (label_is_thumb_function_name
22110 && (S_GET_NAME (sym
)[0] != '.' || S_GET_NAME (sym
)[1] != 'L')
22111 && (bfd_get_section_flags (stdoutput
, now_seg
) & SEC_CODE
) != 0)
22113 /* When the address of a Thumb function is taken the bottom
22114 bit of that address should be set. This will allow
22115 interworking between Arm and Thumb functions to work
22118 THUMB_SET_FUNC (sym
, 1);
22120 label_is_thumb_function_name
= FALSE
;
22123 dwarf2_emit_label (sym
);
22127 arm_data_in_code (void)
22129 if (thumb_mode
&& ! strncmp (input_line_pointer
+ 1, "data:", 5))
22131 *input_line_pointer
= '/';
22132 input_line_pointer
+= 5;
22133 *input_line_pointer
= 0;
22141 arm_canonicalize_symbol_name (char * name
)
22145 if (thumb_mode
&& (len
= strlen (name
)) > 5
22146 && streq (name
+ len
- 5, "/data"))
22147 *(name
+ len
- 5) = 0;
22152 /* Table of all register names defined by default. The user can
22153 define additional names with .req. Note that all register names
22154 should appear in both upper and lowercase variants. Some registers
22155 also have mixed-case names. */
22157 #define REGDEF(s,n,t) { #s, n, REG_TYPE_##t, TRUE, 0 }
22158 #define REGNUM(p,n,t) REGDEF(p##n, n, t)
22159 #define REGNUM2(p,n,t) REGDEF(p##n, 2 * n, t)
22160 #define REGSET(p,t) \
22161 REGNUM(p, 0,t), REGNUM(p, 1,t), REGNUM(p, 2,t), REGNUM(p, 3,t), \
22162 REGNUM(p, 4,t), REGNUM(p, 5,t), REGNUM(p, 6,t), REGNUM(p, 7,t), \
22163 REGNUM(p, 8,t), REGNUM(p, 9,t), REGNUM(p,10,t), REGNUM(p,11,t), \
22164 REGNUM(p,12,t), REGNUM(p,13,t), REGNUM(p,14,t), REGNUM(p,15,t)
22165 #define REGSETH(p,t) \
22166 REGNUM(p,16,t), REGNUM(p,17,t), REGNUM(p,18,t), REGNUM(p,19,t), \
22167 REGNUM(p,20,t), REGNUM(p,21,t), REGNUM(p,22,t), REGNUM(p,23,t), \
22168 REGNUM(p,24,t), REGNUM(p,25,t), REGNUM(p,26,t), REGNUM(p,27,t), \
22169 REGNUM(p,28,t), REGNUM(p,29,t), REGNUM(p,30,t), REGNUM(p,31,t)
22170 #define REGSET2(p,t) \
22171 REGNUM2(p, 0,t), REGNUM2(p, 1,t), REGNUM2(p, 2,t), REGNUM2(p, 3,t), \
22172 REGNUM2(p, 4,t), REGNUM2(p, 5,t), REGNUM2(p, 6,t), REGNUM2(p, 7,t), \
22173 REGNUM2(p, 8,t), REGNUM2(p, 9,t), REGNUM2(p,10,t), REGNUM2(p,11,t), \
22174 REGNUM2(p,12,t), REGNUM2(p,13,t), REGNUM2(p,14,t), REGNUM2(p,15,t)
22175 #define SPLRBANK(base,bank,t) \
22176 REGDEF(lr_##bank, 768|((base+0)<<16), t), \
22177 REGDEF(sp_##bank, 768|((base+1)<<16), t), \
22178 REGDEF(spsr_##bank, 768|(base<<16)|SPSR_BIT, t), \
22179 REGDEF(LR_##bank, 768|((base+0)<<16), t), \
22180 REGDEF(SP_##bank, 768|((base+1)<<16), t), \
22181 REGDEF(SPSR_##bank, 768|(base<<16)|SPSR_BIT, t)
22183 static const struct reg_entry reg_names
[] =
22185 /* ARM integer registers. */
22186 REGSET(r
, RN
), REGSET(R
, RN
),
22188 /* ATPCS synonyms. */
22189 REGDEF(a1
,0,RN
), REGDEF(a2
,1,RN
), REGDEF(a3
, 2,RN
), REGDEF(a4
, 3,RN
),
22190 REGDEF(v1
,4,RN
), REGDEF(v2
,5,RN
), REGDEF(v3
, 6,RN
), REGDEF(v4
, 7,RN
),
22191 REGDEF(v5
,8,RN
), REGDEF(v6
,9,RN
), REGDEF(v7
,10,RN
), REGDEF(v8
,11,RN
),
22193 REGDEF(A1
,0,RN
), REGDEF(A2
,1,RN
), REGDEF(A3
, 2,RN
), REGDEF(A4
, 3,RN
),
22194 REGDEF(V1
,4,RN
), REGDEF(V2
,5,RN
), REGDEF(V3
, 6,RN
), REGDEF(V4
, 7,RN
),
22195 REGDEF(V5
,8,RN
), REGDEF(V6
,9,RN
), REGDEF(V7
,10,RN
), REGDEF(V8
,11,RN
),
22197 /* Well-known aliases. */
22198 REGDEF(wr
, 7,RN
), REGDEF(sb
, 9,RN
), REGDEF(sl
,10,RN
), REGDEF(fp
,11,RN
),
22199 REGDEF(ip
,12,RN
), REGDEF(sp
,13,RN
), REGDEF(lr
,14,RN
), REGDEF(pc
,15,RN
),
22201 REGDEF(WR
, 7,RN
), REGDEF(SB
, 9,RN
), REGDEF(SL
,10,RN
), REGDEF(FP
,11,RN
),
22202 REGDEF(IP
,12,RN
), REGDEF(SP
,13,RN
), REGDEF(LR
,14,RN
), REGDEF(PC
,15,RN
),
22204 /* Defining the new Zero register from ARMv8.1-M. */
22208 /* Coprocessor numbers. */
22209 REGSET(p
, CP
), REGSET(P
, CP
),
22211 /* Coprocessor register numbers. The "cr" variants are for backward
22213 REGSET(c
, CN
), REGSET(C
, CN
),
22214 REGSET(cr
, CN
), REGSET(CR
, CN
),
22216 /* ARM banked registers. */
22217 REGDEF(R8_usr
,512|(0<<16),RNB
), REGDEF(r8_usr
,512|(0<<16),RNB
),
22218 REGDEF(R9_usr
,512|(1<<16),RNB
), REGDEF(r9_usr
,512|(1<<16),RNB
),
22219 REGDEF(R10_usr
,512|(2<<16),RNB
), REGDEF(r10_usr
,512|(2<<16),RNB
),
22220 REGDEF(R11_usr
,512|(3<<16),RNB
), REGDEF(r11_usr
,512|(3<<16),RNB
),
22221 REGDEF(R12_usr
,512|(4<<16),RNB
), REGDEF(r12_usr
,512|(4<<16),RNB
),
22222 REGDEF(SP_usr
,512|(5<<16),RNB
), REGDEF(sp_usr
,512|(5<<16),RNB
),
22223 REGDEF(LR_usr
,512|(6<<16),RNB
), REGDEF(lr_usr
,512|(6<<16),RNB
),
22225 REGDEF(R8_fiq
,512|(8<<16),RNB
), REGDEF(r8_fiq
,512|(8<<16),RNB
),
22226 REGDEF(R9_fiq
,512|(9<<16),RNB
), REGDEF(r9_fiq
,512|(9<<16),RNB
),
22227 REGDEF(R10_fiq
,512|(10<<16),RNB
), REGDEF(r10_fiq
,512|(10<<16),RNB
),
22228 REGDEF(R11_fiq
,512|(11<<16),RNB
), REGDEF(r11_fiq
,512|(11<<16),RNB
),
22229 REGDEF(R12_fiq
,512|(12<<16),RNB
), REGDEF(r12_fiq
,512|(12<<16),RNB
),
22230 REGDEF(SP_fiq
,512|(13<<16),RNB
), REGDEF(sp_fiq
,512|(13<<16),RNB
),
22231 REGDEF(LR_fiq
,512|(14<<16),RNB
), REGDEF(lr_fiq
,512|(14<<16),RNB
),
22232 REGDEF(SPSR_fiq
,512|(14<<16)|SPSR_BIT
,RNB
), REGDEF(spsr_fiq
,512|(14<<16)|SPSR_BIT
,RNB
),
22234 SPLRBANK(0,IRQ
,RNB
), SPLRBANK(0,irq
,RNB
),
22235 SPLRBANK(2,SVC
,RNB
), SPLRBANK(2,svc
,RNB
),
22236 SPLRBANK(4,ABT
,RNB
), SPLRBANK(4,abt
,RNB
),
22237 SPLRBANK(6,UND
,RNB
), SPLRBANK(6,und
,RNB
),
22238 SPLRBANK(12,MON
,RNB
), SPLRBANK(12,mon
,RNB
),
22239 REGDEF(elr_hyp
,768|(14<<16),RNB
), REGDEF(ELR_hyp
,768|(14<<16),RNB
),
22240 REGDEF(sp_hyp
,768|(15<<16),RNB
), REGDEF(SP_hyp
,768|(15<<16),RNB
),
22241 REGDEF(spsr_hyp
,768|(14<<16)|SPSR_BIT
,RNB
),
22242 REGDEF(SPSR_hyp
,768|(14<<16)|SPSR_BIT
,RNB
),
22244 /* FPA registers. */
22245 REGNUM(f
,0,FN
), REGNUM(f
,1,FN
), REGNUM(f
,2,FN
), REGNUM(f
,3,FN
),
22246 REGNUM(f
,4,FN
), REGNUM(f
,5,FN
), REGNUM(f
,6,FN
), REGNUM(f
,7, FN
),
22248 REGNUM(F
,0,FN
), REGNUM(F
,1,FN
), REGNUM(F
,2,FN
), REGNUM(F
,3,FN
),
22249 REGNUM(F
,4,FN
), REGNUM(F
,5,FN
), REGNUM(F
,6,FN
), REGNUM(F
,7, FN
),
22251 /* VFP SP registers. */
22252 REGSET(s
,VFS
), REGSET(S
,VFS
),
22253 REGSETH(s
,VFS
), REGSETH(S
,VFS
),
22255 /* VFP DP Registers. */
22256 REGSET(d
,VFD
), REGSET(D
,VFD
),
22257 /* Extra Neon DP registers. */
22258 REGSETH(d
,VFD
), REGSETH(D
,VFD
),
22260 /* Neon QP registers. */
22261 REGSET2(q
,NQ
), REGSET2(Q
,NQ
),
22263 /* VFP control registers. */
22264 REGDEF(fpsid
,0,VFC
), REGDEF(fpscr
,1,VFC
), REGDEF(fpexc
,8,VFC
),
22265 REGDEF(FPSID
,0,VFC
), REGDEF(FPSCR
,1,VFC
), REGDEF(FPEXC
,8,VFC
),
22266 REGDEF(fpinst
,9,VFC
), REGDEF(fpinst2
,10,VFC
),
22267 REGDEF(FPINST
,9,VFC
), REGDEF(FPINST2
,10,VFC
),
22268 REGDEF(mvfr0
,7,VFC
), REGDEF(mvfr1
,6,VFC
),
22269 REGDEF(MVFR0
,7,VFC
), REGDEF(MVFR1
,6,VFC
),
22270 REGDEF(mvfr2
,5,VFC
), REGDEF(MVFR2
,5,VFC
),
22272 /* Maverick DSP coprocessor registers. */
22273 REGSET(mvf
,MVF
), REGSET(mvd
,MVD
), REGSET(mvfx
,MVFX
), REGSET(mvdx
,MVDX
),
22274 REGSET(MVF
,MVF
), REGSET(MVD
,MVD
), REGSET(MVFX
,MVFX
), REGSET(MVDX
,MVDX
),
22276 REGNUM(mvax
,0,MVAX
), REGNUM(mvax
,1,MVAX
),
22277 REGNUM(mvax
,2,MVAX
), REGNUM(mvax
,3,MVAX
),
22278 REGDEF(dspsc
,0,DSPSC
),
22280 REGNUM(MVAX
,0,MVAX
), REGNUM(MVAX
,1,MVAX
),
22281 REGNUM(MVAX
,2,MVAX
), REGNUM(MVAX
,3,MVAX
),
22282 REGDEF(DSPSC
,0,DSPSC
),
22284 /* iWMMXt data registers - p0, c0-15. */
22285 REGSET(wr
,MMXWR
), REGSET(wR
,MMXWR
), REGSET(WR
, MMXWR
),
22287 /* iWMMXt control registers - p1, c0-3. */
22288 REGDEF(wcid
, 0,MMXWC
), REGDEF(wCID
, 0,MMXWC
), REGDEF(WCID
, 0,MMXWC
),
22289 REGDEF(wcon
, 1,MMXWC
), REGDEF(wCon
, 1,MMXWC
), REGDEF(WCON
, 1,MMXWC
),
22290 REGDEF(wcssf
, 2,MMXWC
), REGDEF(wCSSF
, 2,MMXWC
), REGDEF(WCSSF
, 2,MMXWC
),
22291 REGDEF(wcasf
, 3,MMXWC
), REGDEF(wCASF
, 3,MMXWC
), REGDEF(WCASF
, 3,MMXWC
),
22293 /* iWMMXt scalar (constant/offset) registers - p1, c8-11. */
22294 REGDEF(wcgr0
, 8,MMXWCG
), REGDEF(wCGR0
, 8,MMXWCG
), REGDEF(WCGR0
, 8,MMXWCG
),
22295 REGDEF(wcgr1
, 9,MMXWCG
), REGDEF(wCGR1
, 9,MMXWCG
), REGDEF(WCGR1
, 9,MMXWCG
),
22296 REGDEF(wcgr2
,10,MMXWCG
), REGDEF(wCGR2
,10,MMXWCG
), REGDEF(WCGR2
,10,MMXWCG
),
22297 REGDEF(wcgr3
,11,MMXWCG
), REGDEF(wCGR3
,11,MMXWCG
), REGDEF(WCGR3
,11,MMXWCG
),
22299 /* XScale accumulator registers. */
22300 REGNUM(acc
,0,XSCALE
), REGNUM(ACC
,0,XSCALE
),
22306 /* Table of all PSR suffixes. Bare "CPSR" and "SPSR" are handled
22307 within psr_required_here. */
22308 static const struct asm_psr psrs
[] =
22310 /* Backward compatibility notation. Note that "all" is no longer
22311 truly all possible PSR bits. */
22312 {"all", PSR_c
| PSR_f
},
22316 /* Individual flags. */
22322 /* Combinations of flags. */
22323 {"fs", PSR_f
| PSR_s
},
22324 {"fx", PSR_f
| PSR_x
},
22325 {"fc", PSR_f
| PSR_c
},
22326 {"sf", PSR_s
| PSR_f
},
22327 {"sx", PSR_s
| PSR_x
},
22328 {"sc", PSR_s
| PSR_c
},
22329 {"xf", PSR_x
| PSR_f
},
22330 {"xs", PSR_x
| PSR_s
},
22331 {"xc", PSR_x
| PSR_c
},
22332 {"cf", PSR_c
| PSR_f
},
22333 {"cs", PSR_c
| PSR_s
},
22334 {"cx", PSR_c
| PSR_x
},
22335 {"fsx", PSR_f
| PSR_s
| PSR_x
},
22336 {"fsc", PSR_f
| PSR_s
| PSR_c
},
22337 {"fxs", PSR_f
| PSR_x
| PSR_s
},
22338 {"fxc", PSR_f
| PSR_x
| PSR_c
},
22339 {"fcs", PSR_f
| PSR_c
| PSR_s
},
22340 {"fcx", PSR_f
| PSR_c
| PSR_x
},
22341 {"sfx", PSR_s
| PSR_f
| PSR_x
},
22342 {"sfc", PSR_s
| PSR_f
| PSR_c
},
22343 {"sxf", PSR_s
| PSR_x
| PSR_f
},
22344 {"sxc", PSR_s
| PSR_x
| PSR_c
},
22345 {"scf", PSR_s
| PSR_c
| PSR_f
},
22346 {"scx", PSR_s
| PSR_c
| PSR_x
},
22347 {"xfs", PSR_x
| PSR_f
| PSR_s
},
22348 {"xfc", PSR_x
| PSR_f
| PSR_c
},
22349 {"xsf", PSR_x
| PSR_s
| PSR_f
},
22350 {"xsc", PSR_x
| PSR_s
| PSR_c
},
22351 {"xcf", PSR_x
| PSR_c
| PSR_f
},
22352 {"xcs", PSR_x
| PSR_c
| PSR_s
},
22353 {"cfs", PSR_c
| PSR_f
| PSR_s
},
22354 {"cfx", PSR_c
| PSR_f
| PSR_x
},
22355 {"csf", PSR_c
| PSR_s
| PSR_f
},
22356 {"csx", PSR_c
| PSR_s
| PSR_x
},
22357 {"cxf", PSR_c
| PSR_x
| PSR_f
},
22358 {"cxs", PSR_c
| PSR_x
| PSR_s
},
22359 {"fsxc", PSR_f
| PSR_s
| PSR_x
| PSR_c
},
22360 {"fscx", PSR_f
| PSR_s
| PSR_c
| PSR_x
},
22361 {"fxsc", PSR_f
| PSR_x
| PSR_s
| PSR_c
},
22362 {"fxcs", PSR_f
| PSR_x
| PSR_c
| PSR_s
},
22363 {"fcsx", PSR_f
| PSR_c
| PSR_s
| PSR_x
},
22364 {"fcxs", PSR_f
| PSR_c
| PSR_x
| PSR_s
},
22365 {"sfxc", PSR_s
| PSR_f
| PSR_x
| PSR_c
},
22366 {"sfcx", PSR_s
| PSR_f
| PSR_c
| PSR_x
},
22367 {"sxfc", PSR_s
| PSR_x
| PSR_f
| PSR_c
},
22368 {"sxcf", PSR_s
| PSR_x
| PSR_c
| PSR_f
},
22369 {"scfx", PSR_s
| PSR_c
| PSR_f
| PSR_x
},
22370 {"scxf", PSR_s
| PSR_c
| PSR_x
| PSR_f
},
22371 {"xfsc", PSR_x
| PSR_f
| PSR_s
| PSR_c
},
22372 {"xfcs", PSR_x
| PSR_f
| PSR_c
| PSR_s
},
22373 {"xsfc", PSR_x
| PSR_s
| PSR_f
| PSR_c
},
22374 {"xscf", PSR_x
| PSR_s
| PSR_c
| PSR_f
},
22375 {"xcfs", PSR_x
| PSR_c
| PSR_f
| PSR_s
},
22376 {"xcsf", PSR_x
| PSR_c
| PSR_s
| PSR_f
},
22377 {"cfsx", PSR_c
| PSR_f
| PSR_s
| PSR_x
},
22378 {"cfxs", PSR_c
| PSR_f
| PSR_x
| PSR_s
},
22379 {"csfx", PSR_c
| PSR_s
| PSR_f
| PSR_x
},
22380 {"csxf", PSR_c
| PSR_s
| PSR_x
| PSR_f
},
22381 {"cxfs", PSR_c
| PSR_x
| PSR_f
| PSR_s
},
22382 {"cxsf", PSR_c
| PSR_x
| PSR_s
| PSR_f
},
22385 /* Table of V7M psr names. */
22386 static const struct asm_psr v7m_psrs
[] =
22388 {"apsr", 0x0 }, {"APSR", 0x0 },
22389 {"iapsr", 0x1 }, {"IAPSR", 0x1 },
22390 {"eapsr", 0x2 }, {"EAPSR", 0x2 },
22391 {"psr", 0x3 }, {"PSR", 0x3 },
22392 {"xpsr", 0x3 }, {"XPSR", 0x3 }, {"xPSR", 3 },
22393 {"ipsr", 0x5 }, {"IPSR", 0x5 },
22394 {"epsr", 0x6 }, {"EPSR", 0x6 },
22395 {"iepsr", 0x7 }, {"IEPSR", 0x7 },
22396 {"msp", 0x8 }, {"MSP", 0x8 },
22397 {"psp", 0x9 }, {"PSP", 0x9 },
22398 {"msplim", 0xa }, {"MSPLIM", 0xa },
22399 {"psplim", 0xb }, {"PSPLIM", 0xb },
22400 {"primask", 0x10}, {"PRIMASK", 0x10},
22401 {"basepri", 0x11}, {"BASEPRI", 0x11},
22402 {"basepri_max", 0x12}, {"BASEPRI_MAX", 0x12},
22403 {"faultmask", 0x13}, {"FAULTMASK", 0x13},
22404 {"control", 0x14}, {"CONTROL", 0x14},
22405 {"msp_ns", 0x88}, {"MSP_NS", 0x88},
22406 {"psp_ns", 0x89}, {"PSP_NS", 0x89},
22407 {"msplim_ns", 0x8a}, {"MSPLIM_NS", 0x8a},
22408 {"psplim_ns", 0x8b}, {"PSPLIM_NS", 0x8b},
22409 {"primask_ns", 0x90}, {"PRIMASK_NS", 0x90},
22410 {"basepri_ns", 0x91}, {"BASEPRI_NS", 0x91},
22411 {"faultmask_ns", 0x93}, {"FAULTMASK_NS", 0x93},
22412 {"control_ns", 0x94}, {"CONTROL_NS", 0x94},
22413 {"sp_ns", 0x98}, {"SP_NS", 0x98 }
22416 /* Table of all shift-in-operand names. */
22417 static const struct asm_shift_name shift_names
[] =
22419 { "asl", SHIFT_LSL
}, { "ASL", SHIFT_LSL
},
22420 { "lsl", SHIFT_LSL
}, { "LSL", SHIFT_LSL
},
22421 { "lsr", SHIFT_LSR
}, { "LSR", SHIFT_LSR
},
22422 { "asr", SHIFT_ASR
}, { "ASR", SHIFT_ASR
},
22423 { "ror", SHIFT_ROR
}, { "ROR", SHIFT_ROR
},
22424 { "rrx", SHIFT_RRX
}, { "RRX", SHIFT_RRX
},
22425 { "uxtw", SHIFT_UXTW
}, { "UXTW", SHIFT_UXTW
}
22428 /* Table of all explicit relocation names. */
22430 static struct reloc_entry reloc_names
[] =
22432 { "got", BFD_RELOC_ARM_GOT32
}, { "GOT", BFD_RELOC_ARM_GOT32
},
22433 { "gotoff", BFD_RELOC_ARM_GOTOFF
}, { "GOTOFF", BFD_RELOC_ARM_GOTOFF
},
22434 { "plt", BFD_RELOC_ARM_PLT32
}, { "PLT", BFD_RELOC_ARM_PLT32
},
22435 { "target1", BFD_RELOC_ARM_TARGET1
}, { "TARGET1", BFD_RELOC_ARM_TARGET1
},
22436 { "target2", BFD_RELOC_ARM_TARGET2
}, { "TARGET2", BFD_RELOC_ARM_TARGET2
},
22437 { "sbrel", BFD_RELOC_ARM_SBREL32
}, { "SBREL", BFD_RELOC_ARM_SBREL32
},
22438 { "tlsgd", BFD_RELOC_ARM_TLS_GD32
}, { "TLSGD", BFD_RELOC_ARM_TLS_GD32
},
22439 { "tlsldm", BFD_RELOC_ARM_TLS_LDM32
}, { "TLSLDM", BFD_RELOC_ARM_TLS_LDM32
},
22440 { "tlsldo", BFD_RELOC_ARM_TLS_LDO32
}, { "TLSLDO", BFD_RELOC_ARM_TLS_LDO32
},
22441 { "gottpoff",BFD_RELOC_ARM_TLS_IE32
}, { "GOTTPOFF",BFD_RELOC_ARM_TLS_IE32
},
22442 { "tpoff", BFD_RELOC_ARM_TLS_LE32
}, { "TPOFF", BFD_RELOC_ARM_TLS_LE32
},
22443 { "got_prel", BFD_RELOC_ARM_GOT_PREL
}, { "GOT_PREL", BFD_RELOC_ARM_GOT_PREL
},
22444 { "tlsdesc", BFD_RELOC_ARM_TLS_GOTDESC
},
22445 { "TLSDESC", BFD_RELOC_ARM_TLS_GOTDESC
},
22446 { "tlscall", BFD_RELOC_ARM_TLS_CALL
},
22447 { "TLSCALL", BFD_RELOC_ARM_TLS_CALL
},
22448 { "tlsdescseq", BFD_RELOC_ARM_TLS_DESCSEQ
},
22449 { "TLSDESCSEQ", BFD_RELOC_ARM_TLS_DESCSEQ
},
22450 { "gotfuncdesc", BFD_RELOC_ARM_GOTFUNCDESC
},
22451 { "GOTFUNCDESC", BFD_RELOC_ARM_GOTFUNCDESC
},
22452 { "gotofffuncdesc", BFD_RELOC_ARM_GOTOFFFUNCDESC
},
22453 { "GOTOFFFUNCDESC", BFD_RELOC_ARM_GOTOFFFUNCDESC
},
22454 { "funcdesc", BFD_RELOC_ARM_FUNCDESC
},
22455 { "FUNCDESC", BFD_RELOC_ARM_FUNCDESC
},
22456 { "tlsgd_fdpic", BFD_RELOC_ARM_TLS_GD32_FDPIC
}, { "TLSGD_FDPIC", BFD_RELOC_ARM_TLS_GD32_FDPIC
},
22457 { "tlsldm_fdpic", BFD_RELOC_ARM_TLS_LDM32_FDPIC
}, { "TLSLDM_FDPIC", BFD_RELOC_ARM_TLS_LDM32_FDPIC
},
22458 { "gottpoff_fdpic", BFD_RELOC_ARM_TLS_IE32_FDPIC
}, { "GOTTPOFF_FDIC", BFD_RELOC_ARM_TLS_IE32_FDPIC
},
22462 /* Table of all conditional affixes. */
22463 static const struct asm_cond conds
[] =
22467 {"cs", 0x2}, {"hs", 0x2},
22468 {"cc", 0x3}, {"ul", 0x3}, {"lo", 0x3},
22481 static const struct asm_cond vconds
[] =
22487 #define UL_BARRIER(L,U,CODE,FEAT) \
22488 { L, CODE, ARM_FEATURE_CORE_LOW (FEAT) }, \
22489 { U, CODE, ARM_FEATURE_CORE_LOW (FEAT) }
22491 static struct asm_barrier_opt barrier_opt_names
[] =
22493 UL_BARRIER ("sy", "SY", 0xf, ARM_EXT_BARRIER
),
22494 UL_BARRIER ("st", "ST", 0xe, ARM_EXT_BARRIER
),
22495 UL_BARRIER ("ld", "LD", 0xd, ARM_EXT_V8
),
22496 UL_BARRIER ("ish", "ISH", 0xb, ARM_EXT_BARRIER
),
22497 UL_BARRIER ("sh", "SH", 0xb, ARM_EXT_BARRIER
),
22498 UL_BARRIER ("ishst", "ISHST", 0xa, ARM_EXT_BARRIER
),
22499 UL_BARRIER ("shst", "SHST", 0xa, ARM_EXT_BARRIER
),
22500 UL_BARRIER ("ishld", "ISHLD", 0x9, ARM_EXT_V8
),
22501 UL_BARRIER ("un", "UN", 0x7, ARM_EXT_BARRIER
),
22502 UL_BARRIER ("nsh", "NSH", 0x7, ARM_EXT_BARRIER
),
22503 UL_BARRIER ("unst", "UNST", 0x6, ARM_EXT_BARRIER
),
22504 UL_BARRIER ("nshst", "NSHST", 0x6, ARM_EXT_BARRIER
),
22505 UL_BARRIER ("nshld", "NSHLD", 0x5, ARM_EXT_V8
),
22506 UL_BARRIER ("osh", "OSH", 0x3, ARM_EXT_BARRIER
),
22507 UL_BARRIER ("oshst", "OSHST", 0x2, ARM_EXT_BARRIER
),
22508 UL_BARRIER ("oshld", "OSHLD", 0x1, ARM_EXT_V8
)
22513 /* Table of ARM-format instructions. */
22515 /* Macros for gluing together operand strings. N.B. In all cases
22516 other than OPS0, the trailing OP_stop comes from default
22517 zero-initialization of the unspecified elements of the array. */
22518 #define OPS0() { OP_stop, }
22519 #define OPS1(a) { OP_##a, }
22520 #define OPS2(a,b) { OP_##a,OP_##b, }
22521 #define OPS3(a,b,c) { OP_##a,OP_##b,OP_##c, }
22522 #define OPS4(a,b,c,d) { OP_##a,OP_##b,OP_##c,OP_##d, }
22523 #define OPS5(a,b,c,d,e) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e, }
22524 #define OPS6(a,b,c,d,e,f) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e,OP_##f, }
22526 /* These macros are similar to the OPSn, but do not prepend the OP_ prefix.
22527 This is useful when mixing operands for ARM and THUMB, i.e. using the
22528 MIX_ARM_THUMB_OPERANDS macro.
22529 In order to use these macros, prefix the number of operands with _
22531 #define OPS_1(a) { a, }
22532 #define OPS_2(a,b) { a,b, }
22533 #define OPS_3(a,b,c) { a,b,c, }
22534 #define OPS_4(a,b,c,d) { a,b,c,d, }
22535 #define OPS_5(a,b,c,d,e) { a,b,c,d,e, }
22536 #define OPS_6(a,b,c,d,e,f) { a,b,c,d,e,f, }
22538 /* These macros abstract out the exact format of the mnemonic table and
22539 save some repeated characters. */
22541 /* The normal sort of mnemonic; has a Thumb variant; takes a conditional suffix. */
22542 #define TxCE(mnem, op, top, nops, ops, ae, te) \
22543 { mnem, OPS##nops ops, OT_csuffix, 0x##op, top, ARM_VARIANT, \
22544 THUMB_VARIANT, do_##ae, do_##te, 0 }
22546 /* Two variants of the above - TCE for a numeric Thumb opcode, tCE for
22547 a T_MNEM_xyz enumerator. */
22548 #define TCE(mnem, aop, top, nops, ops, ae, te) \
22549 TxCE (mnem, aop, 0x##top, nops, ops, ae, te)
22550 #define tCE(mnem, aop, top, nops, ops, ae, te) \
22551 TxCE (mnem, aop, T_MNEM##top, nops, ops, ae, te)
22553 /* Second most common sort of mnemonic: has a Thumb variant, takes a conditional
22554 infix after the third character. */
22555 #define TxC3(mnem, op, top, nops, ops, ae, te) \
22556 { mnem, OPS##nops ops, OT_cinfix3, 0x##op, top, ARM_VARIANT, \
22557 THUMB_VARIANT, do_##ae, do_##te, 0 }
22558 #define TxC3w(mnem, op, top, nops, ops, ae, te) \
22559 { mnem, OPS##nops ops, OT_cinfix3_deprecated, 0x##op, top, ARM_VARIANT, \
22560 THUMB_VARIANT, do_##ae, do_##te, 0 }
22561 #define TC3(mnem, aop, top, nops, ops, ae, te) \
22562 TxC3 (mnem, aop, 0x##top, nops, ops, ae, te)
22563 #define TC3w(mnem, aop, top, nops, ops, ae, te) \
22564 TxC3w (mnem, aop, 0x##top, nops, ops, ae, te)
22565 #define tC3(mnem, aop, top, nops, ops, ae, te) \
22566 TxC3 (mnem, aop, T_MNEM##top, nops, ops, ae, te)
22567 #define tC3w(mnem, aop, top, nops, ops, ae, te) \
22568 TxC3w (mnem, aop, T_MNEM##top, nops, ops, ae, te)
22570 /* Mnemonic that cannot be conditionalized. The ARM condition-code
22571 field is still 0xE. Many of the Thumb variants can be executed
22572 conditionally, so this is checked separately. */
22573 #define TUE(mnem, op, top, nops, ops, ae, te) \
22574 { mnem, OPS##nops ops, OT_unconditional, 0x##op, 0x##top, ARM_VARIANT, \
22575 THUMB_VARIANT, do_##ae, do_##te, 0 }
22577 /* Same as TUE but the encoding function for ARM and Thumb modes is the same.
22578 Used by mnemonics that have very minimal differences in the encoding for
22579 ARM and Thumb variants and can be handled in a common function. */
22580 #define TUEc(mnem, op, top, nops, ops, en) \
22581 { mnem, OPS##nops ops, OT_unconditional, 0x##op, 0x##top, ARM_VARIANT, \
22582 THUMB_VARIANT, do_##en, do_##en, 0 }
22584 /* Mnemonic that cannot be conditionalized, and bears 0xF in its ARM
22585 condition code field. */
22586 #define TUF(mnem, op, top, nops, ops, ae, te) \
22587 { mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##top, ARM_VARIANT, \
22588 THUMB_VARIANT, do_##ae, do_##te, 0 }
22590 /* ARM-only variants of all the above. */
22591 #define CE(mnem, op, nops, ops, ae) \
22592 { mnem, OPS##nops ops, OT_csuffix, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
22594 #define C3(mnem, op, nops, ops, ae) \
22595 { #mnem, OPS##nops ops, OT_cinfix3, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
22597 /* Thumb-only variants of TCE and TUE. */
22598 #define ToC(mnem, top, nops, ops, te) \
22599 { mnem, OPS##nops ops, OT_csuffix, 0x0, 0x##top, 0, THUMB_VARIANT, NULL, \
22602 #define ToU(mnem, top, nops, ops, te) \
22603 { mnem, OPS##nops ops, OT_unconditional, 0x0, 0x##top, 0, THUMB_VARIANT, \
22606 /* T_MNEM_xyz enumerator variants of ToC. */
22607 #define toC(mnem, top, nops, ops, te) \
22608 { mnem, OPS##nops ops, OT_csuffix, 0x0, T_MNEM##top, 0, THUMB_VARIANT, NULL, \
22611 /* T_MNEM_xyz enumerator variants of ToU. */
22612 #define toU(mnem, top, nops, ops, te) \
22613 { mnem, OPS##nops ops, OT_unconditional, 0x0, T_MNEM##top, 0, THUMB_VARIANT, \
22616 /* Legacy mnemonics that always have conditional infix after the third
22618 #define CL(mnem, op, nops, ops, ae) \
22619 { mnem, OPS##nops ops, OT_cinfix3_legacy, \
22620 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
22622 /* Coprocessor instructions. Isomorphic between Arm and Thumb-2. */
22623 #define cCE(mnem, op, nops, ops, ae) \
22624 { mnem, OPS##nops ops, OT_csuffix, 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae, 0 }
22626 /* mov instructions that are shared between coprocessor and MVE. */
22627 #define mcCE(mnem, op, nops, ops, ae) \
22628 { #mnem, OPS##nops ops, OT_csuffix, 0x##op, 0xe##op, ARM_VARIANT, THUMB_VARIANT, do_##ae, do_##ae, 0 }
22630 /* Legacy coprocessor instructions where conditional infix and conditional
22631 suffix are ambiguous. For consistency this includes all FPA instructions,
22632 not just the potentially ambiguous ones. */
22633 #define cCL(mnem, op, nops, ops, ae) \
22634 { mnem, OPS##nops ops, OT_cinfix3_legacy, \
22635 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae, 0 }
22637 /* Coprocessor, takes either a suffix or a position-3 infix
22638 (for an FPA corner case). */
22639 #define C3E(mnem, op, nops, ops, ae) \
22640 { mnem, OPS##nops ops, OT_csuf_or_in3, \
22641 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae, 0 }
22643 #define xCM_(m1, m2, m3, op, nops, ops, ae) \
22644 { m1 #m2 m3, OPS##nops ops, \
22645 sizeof (#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof (m1) - 1, \
22646 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
22648 #define CM(m1, m2, op, nops, ops, ae) \
22649 xCM_ (m1, , m2, op, nops, ops, ae), \
22650 xCM_ (m1, eq, m2, op, nops, ops, ae), \
22651 xCM_ (m1, ne, m2, op, nops, ops, ae), \
22652 xCM_ (m1, cs, m2, op, nops, ops, ae), \
22653 xCM_ (m1, hs, m2, op, nops, ops, ae), \
22654 xCM_ (m1, cc, m2, op, nops, ops, ae), \
22655 xCM_ (m1, ul, m2, op, nops, ops, ae), \
22656 xCM_ (m1, lo, m2, op, nops, ops, ae), \
22657 xCM_ (m1, mi, m2, op, nops, ops, ae), \
22658 xCM_ (m1, pl, m2, op, nops, ops, ae), \
22659 xCM_ (m1, vs, m2, op, nops, ops, ae), \
22660 xCM_ (m1, vc, m2, op, nops, ops, ae), \
22661 xCM_ (m1, hi, m2, op, nops, ops, ae), \
22662 xCM_ (m1, ls, m2, op, nops, ops, ae), \
22663 xCM_ (m1, ge, m2, op, nops, ops, ae), \
22664 xCM_ (m1, lt, m2, op, nops, ops, ae), \
22665 xCM_ (m1, gt, m2, op, nops, ops, ae), \
22666 xCM_ (m1, le, m2, op, nops, ops, ae), \
22667 xCM_ (m1, al, m2, op, nops, ops, ae)
22669 #define UE(mnem, op, nops, ops, ae) \
22670 { #mnem, OPS##nops ops, OT_unconditional, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
22672 #define UF(mnem, op, nops, ops, ae) \
22673 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
22675 /* Neon data-processing. ARM versions are unconditional with cond=0xf.
22676 The Thumb and ARM variants are mostly the same (bits 0-23 and 24/28), so we
22677 use the same encoding function for each. */
22678 #define NUF(mnem, op, nops, ops, enc) \
22679 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##op, \
22680 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, 0 }
22682 /* Neon data processing, version which indirects through neon_enc_tab for
22683 the various overloaded versions of opcodes. */
22684 #define nUF(mnem, op, nops, ops, enc) \
22685 { #mnem, OPS##nops ops, OT_unconditionalF, N_MNEM##op, N_MNEM##op, \
22686 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, 0 }
22688 /* Neon insn with conditional suffix for the ARM version, non-overloaded
22690 #define NCE_tag(mnem, op, nops, ops, enc, tag, mve_p) \
22691 { #mnem, OPS##nops ops, tag, 0x##op, 0x##op, ARM_VARIANT, \
22692 THUMB_VARIANT, do_##enc, do_##enc, mve_p }
22694 #define NCE(mnem, op, nops, ops, enc) \
22695 NCE_tag (mnem, op, nops, ops, enc, OT_csuffix, 0)
22697 #define NCEF(mnem, op, nops, ops, enc) \
22698 NCE_tag (mnem, op, nops, ops, enc, OT_csuffixF, 0)
22700 /* Neon insn with conditional suffix for the ARM version, overloaded types. */
22701 #define nCE_tag(mnem, op, nops, ops, enc, tag, mve_p) \
22702 { #mnem, OPS##nops ops, tag, N_MNEM##op, N_MNEM##op, \
22703 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, mve_p }
22705 #define nCE(mnem, op, nops, ops, enc) \
22706 nCE_tag (mnem, op, nops, ops, enc, OT_csuffix, 0)
22708 #define nCEF(mnem, op, nops, ops, enc) \
22709 nCE_tag (mnem, op, nops, ops, enc, OT_csuffixF, 0)
22712 #define mCEF(mnem, op, nops, ops, enc) \
22713 { #mnem, OPS##nops ops, OT_csuffixF, M_MNEM##op, M_MNEM##op, \
22714 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, 1 }
22717 /* nCEF but for MVE predicated instructions. */
22718 #define mnCEF(mnem, op, nops, ops, enc) \
22719 nCE_tag (mnem, op, nops, ops, enc, OT_csuffixF, 1)
22721 /* nCE but for MVE predicated instructions. */
22722 #define mnCE(mnem, op, nops, ops, enc) \
22723 nCE_tag (mnem, op, nops, ops, enc, OT_csuffix, 1)
22725 /* NUF but for potentially MVE predicated instructions. */
22726 #define MNUF(mnem, op, nops, ops, enc) \
22727 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##op, \
22728 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, 1 }
22730 /* nUF but for potentially MVE predicated instructions. */
22731 #define mnUF(mnem, op, nops, ops, enc) \
22732 { #mnem, OPS##nops ops, OT_unconditionalF, N_MNEM##op, N_MNEM##op, \
22733 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, 1 }
22735 /* ToC but for potentially MVE predicated instructions. */
22736 #define mToC(mnem, top, nops, ops, te) \
22737 { mnem, OPS##nops ops, OT_csuffix, 0x0, 0x##top, 0, THUMB_VARIANT, NULL, \
22740 /* NCE but for MVE predicated instructions. */
22741 #define MNCE(mnem, op, nops, ops, enc) \
22742 NCE_tag (mnem, op, nops, ops, enc, OT_csuffix, 1)
22744 /* NCEF but for MVE predicated instructions. */
22745 #define MNCEF(mnem, op, nops, ops, enc) \
22746 NCE_tag (mnem, op, nops, ops, enc, OT_csuffixF, 1)
22749 static const struct asm_opcode insns
[] =
22751 #define ARM_VARIANT & arm_ext_v1 /* Core ARM Instructions. */
22752 #define THUMB_VARIANT & arm_ext_v4t
22753 tCE("and", 0000000, _and
, 3, (RR
, oRR
, SH
), arit
, t_arit3c
),
22754 tC3("ands", 0100000, _ands
, 3, (RR
, oRR
, SH
), arit
, t_arit3c
),
22755 tCE("eor", 0200000, _eor
, 3, (RR
, oRR
, SH
), arit
, t_arit3c
),
22756 tC3("eors", 0300000, _eors
, 3, (RR
, oRR
, SH
), arit
, t_arit3c
),
22757 tCE("sub", 0400000, _sub
, 3, (RR
, oRR
, SH
), arit
, t_add_sub
),
22758 tC3("subs", 0500000, _subs
, 3, (RR
, oRR
, SH
), arit
, t_add_sub
),
22759 tCE("add", 0800000, _add
, 3, (RR
, oRR
, SHG
), arit
, t_add_sub
),
22760 tC3("adds", 0900000, _adds
, 3, (RR
, oRR
, SHG
), arit
, t_add_sub
),
22761 tCE("adc", 0a00000
, _adc
, 3, (RR
, oRR
, SH
), arit
, t_arit3c
),
22762 tC3("adcs", 0b00000, _adcs
, 3, (RR
, oRR
, SH
), arit
, t_arit3c
),
22763 tCE("sbc", 0c00000
, _sbc
, 3, (RR
, oRR
, SH
), arit
, t_arit3
),
22764 tC3("sbcs", 0d00000
, _sbcs
, 3, (RR
, oRR
, SH
), arit
, t_arit3
),
22765 tCE("orr", 1800000, _orr
, 3, (RR
, oRR
, SH
), arit
, t_arit3c
),
22766 tC3("orrs", 1900000, _orrs
, 3, (RR
, oRR
, SH
), arit
, t_arit3c
),
22767 tCE("bic", 1c00000
, _bic
, 3, (RR
, oRR
, SH
), arit
, t_arit3
),
22768 tC3("bics", 1d00000
, _bics
, 3, (RR
, oRR
, SH
), arit
, t_arit3
),
22770 /* The p-variants of tst/cmp/cmn/teq (below) are the pre-V6 mechanism
22771 for setting PSR flag bits. They are obsolete in V6 and do not
22772 have Thumb equivalents. */
22773 tCE("tst", 1100000, _tst
, 2, (RR
, SH
), cmp
, t_mvn_tst
),
22774 tC3w("tsts", 1100000, _tst
, 2, (RR
, SH
), cmp
, t_mvn_tst
),
22775 CL("tstp", 110f000
, 2, (RR
, SH
), cmp
),
22776 tCE("cmp", 1500000, _cmp
, 2, (RR
, SH
), cmp
, t_mov_cmp
),
22777 tC3w("cmps", 1500000, _cmp
, 2, (RR
, SH
), cmp
, t_mov_cmp
),
22778 CL("cmpp", 150f000
, 2, (RR
, SH
), cmp
),
22779 tCE("cmn", 1700000, _cmn
, 2, (RR
, SH
), cmp
, t_mvn_tst
),
22780 tC3w("cmns", 1700000, _cmn
, 2, (RR
, SH
), cmp
, t_mvn_tst
),
22781 CL("cmnp", 170f000
, 2, (RR
, SH
), cmp
),
22783 tCE("mov", 1a00000
, _mov
, 2, (RR
, SH
), mov
, t_mov_cmp
),
22784 tC3("movs", 1b00000
, _movs
, 2, (RR
, SHG
), mov
, t_mov_cmp
),
22785 tCE("mvn", 1e00000
, _mvn
, 2, (RR
, SH
), mov
, t_mvn_tst
),
22786 tC3("mvns", 1f00000
, _mvns
, 2, (RR
, SH
), mov
, t_mvn_tst
),
22788 tCE("ldr", 4100000, _ldr
, 2, (RR
, ADDRGLDR
),ldst
, t_ldst
),
22789 tC3("ldrb", 4500000, _ldrb
, 2, (RRnpc_npcsp
, ADDRGLDR
),ldst
, t_ldst
),
22790 tCE("str", 4000000, _str
, _2
, (MIX_ARM_THUMB_OPERANDS (OP_RR
,
22792 OP_ADDRGLDR
),ldst
, t_ldst
),
22793 tC3("strb", 4400000, _strb
, 2, (RRnpc_npcsp
, ADDRGLDR
),ldst
, t_ldst
),
22795 tCE("stm", 8800000, _stmia
, 2, (RRw
, REGLST
), ldmstm
, t_ldmstm
),
22796 tC3("stmia", 8800000, _stmia
, 2, (RRw
, REGLST
), ldmstm
, t_ldmstm
),
22797 tC3("stmea", 8800000, _stmia
, 2, (RRw
, REGLST
), ldmstm
, t_ldmstm
),
22798 tCE("ldm", 8900000, _ldmia
, 2, (RRw
, REGLST
), ldmstm
, t_ldmstm
),
22799 tC3("ldmia", 8900000, _ldmia
, 2, (RRw
, REGLST
), ldmstm
, t_ldmstm
),
22800 tC3("ldmfd", 8900000, _ldmia
, 2, (RRw
, REGLST
), ldmstm
, t_ldmstm
),
22802 tCE("b", a000000
, _b
, 1, (EXPr
), branch
, t_branch
),
22803 TCE("bl", b000000
, f000f800
, 1, (EXPr
), bl
, t_branch23
),
22806 tCE("adr", 28f0000
, _adr
, 2, (RR
, EXP
), adr
, t_adr
),
22807 C3(adrl
, 28f0000
, 2, (RR
, EXP
), adrl
),
22808 tCE("nop", 1a00000
, _nop
, 1, (oI255c
), nop
, t_nop
),
22809 tCE("udf", 7f000f0
, _udf
, 1, (oIffffb
), bkpt
, t_udf
),
22811 /* Thumb-compatibility pseudo ops. */
22812 tCE("lsl", 1a00000
, _lsl
, 3, (RR
, oRR
, SH
), shift
, t_shift
),
22813 tC3("lsls", 1b00000
, _lsls
, 3, (RR
, oRR
, SH
), shift
, t_shift
),
22814 tCE("lsr", 1a00020
, _lsr
, 3, (RR
, oRR
, SH
), shift
, t_shift
),
22815 tC3("lsrs", 1b00020
, _lsrs
, 3, (RR
, oRR
, SH
), shift
, t_shift
),
22816 tCE("asr", 1a00040
, _asr
, 3, (RR
, oRR
, SH
), shift
, t_shift
),
22817 tC3("asrs", 1b00040
, _asrs
, 3, (RR
, oRR
, SH
), shift
, t_shift
),
22818 tCE("ror", 1a00060
, _ror
, 3, (RR
, oRR
, SH
), shift
, t_shift
),
22819 tC3("rors", 1b00060
, _rors
, 3, (RR
, oRR
, SH
), shift
, t_shift
),
22820 tCE("neg", 2600000, _neg
, 2, (RR
, RR
), rd_rn
, t_neg
),
22821 tC3("negs", 2700000, _negs
, 2, (RR
, RR
), rd_rn
, t_neg
),
22822 tCE("push", 92d0000
, _push
, 1, (REGLST
), push_pop
, t_push_pop
),
22823 tCE("pop", 8bd0000
, _pop
, 1, (REGLST
), push_pop
, t_push_pop
),
22825 /* These may simplify to neg. */
22826 TCE("rsb", 0600000, ebc00000
, 3, (RR
, oRR
, SH
), arit
, t_rsb
),
22827 TC3("rsbs", 0700000, ebd00000
, 3, (RR
, oRR
, SH
), arit
, t_rsb
),
22829 #undef THUMB_VARIANT
22830 #define THUMB_VARIANT & arm_ext_os
22832 TCE("swi", f000000
, df00
, 1, (EXPi
), swi
, t_swi
),
22833 TCE("svc", f000000
, df00
, 1, (EXPi
), swi
, t_swi
),
22835 #undef THUMB_VARIANT
22836 #define THUMB_VARIANT & arm_ext_v6
22838 TCE("cpy", 1a00000
, 4600, 2, (RR
, RR
), rd_rm
, t_cpy
),
22840 /* V1 instructions with no Thumb analogue prior to V6T2. */
22841 #undef THUMB_VARIANT
22842 #define THUMB_VARIANT & arm_ext_v6t2
22844 TCE("teq", 1300000, ea900f00
, 2, (RR
, SH
), cmp
, t_mvn_tst
),
22845 TC3w("teqs", 1300000, ea900f00
, 2, (RR
, SH
), cmp
, t_mvn_tst
),
22846 CL("teqp", 130f000
, 2, (RR
, SH
), cmp
),
22848 TC3("ldrt", 4300000, f8500e00
, 2, (RRnpc_npcsp
, ADDR
),ldstt
, t_ldstt
),
22849 TC3("ldrbt", 4700000, f8100e00
, 2, (RRnpc_npcsp
, ADDR
),ldstt
, t_ldstt
),
22850 TC3("strt", 4200000, f8400e00
, 2, (RR_npcsp
, ADDR
), ldstt
, t_ldstt
),
22851 TC3("strbt", 4600000, f8000e00
, 2, (RRnpc_npcsp
, ADDR
),ldstt
, t_ldstt
),
22853 TC3("stmdb", 9000000, e9000000
, 2, (RRw
, REGLST
), ldmstm
, t_ldmstm
),
22854 TC3("stmfd", 9000000, e9000000
, 2, (RRw
, REGLST
), ldmstm
, t_ldmstm
),
22856 TC3("ldmdb", 9100000, e9100000
, 2, (RRw
, REGLST
), ldmstm
, t_ldmstm
),
22857 TC3("ldmea", 9100000, e9100000
, 2, (RRw
, REGLST
), ldmstm
, t_ldmstm
),
22859 /* V1 instructions with no Thumb analogue at all. */
22860 CE("rsc", 0e00000
, 3, (RR
, oRR
, SH
), arit
),
22861 C3(rscs
, 0f00000
, 3, (RR
, oRR
, SH
), arit
),
22863 C3(stmib
, 9800000, 2, (RRw
, REGLST
), ldmstm
),
22864 C3(stmfa
, 9800000, 2, (RRw
, REGLST
), ldmstm
),
22865 C3(stmda
, 8000000, 2, (RRw
, REGLST
), ldmstm
),
22866 C3(stmed
, 8000000, 2, (RRw
, REGLST
), ldmstm
),
22867 C3(ldmib
, 9900000, 2, (RRw
, REGLST
), ldmstm
),
22868 C3(ldmed
, 9900000, 2, (RRw
, REGLST
), ldmstm
),
22869 C3(ldmda
, 8100000, 2, (RRw
, REGLST
), ldmstm
),
22870 C3(ldmfa
, 8100000, 2, (RRw
, REGLST
), ldmstm
),
22873 #define ARM_VARIANT & arm_ext_v2 /* ARM 2 - multiplies. */
22874 #undef THUMB_VARIANT
22875 #define THUMB_VARIANT & arm_ext_v4t
22877 tCE("mul", 0000090, _mul
, 3, (RRnpc
, RRnpc
, oRR
), mul
, t_mul
),
22878 tC3("muls", 0100090, _muls
, 3, (RRnpc
, RRnpc
, oRR
), mul
, t_mul
),
22880 #undef THUMB_VARIANT
22881 #define THUMB_VARIANT & arm_ext_v6t2
22883 TCE("mla", 0200090, fb000000
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
), mlas
, t_mla
),
22884 C3(mlas
, 0300090, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
), mlas
),
22886 /* Generic coprocessor instructions. */
22887 TCE("cdp", e000000
, ee000000
, 6, (RCP
, I15b
, RCN
, RCN
, RCN
, oI7b
), cdp
, cdp
),
22888 TCE("ldc", c100000
, ec100000
, 3, (RCP
, RCN
, ADDRGLDC
), lstc
, lstc
),
22889 TC3("ldcl", c500000
, ec500000
, 3, (RCP
, RCN
, ADDRGLDC
), lstc
, lstc
),
22890 TCE("stc", c000000
, ec000000
, 3, (RCP
, RCN
, ADDRGLDC
), lstc
, lstc
),
22891 TC3("stcl", c400000
, ec400000
, 3, (RCP
, RCN
, ADDRGLDC
), lstc
, lstc
),
22892 TCE("mcr", e000010
, ee000010
, 6, (RCP
, I7b
, RR
, RCN
, RCN
, oI7b
), co_reg
, co_reg
),
22893 TCE("mrc", e100010
, ee100010
, 6, (RCP
, I7b
, APSR_RR
, RCN
, RCN
, oI7b
), co_reg
, co_reg
),
22896 #define ARM_VARIANT & arm_ext_v2s /* ARM 3 - swp instructions. */
22898 CE("swp", 1000090, 3, (RRnpc
, RRnpc
, RRnpcb
), rd_rm_rn
),
22899 C3(swpb
, 1400090, 3, (RRnpc
, RRnpc
, RRnpcb
), rd_rm_rn
),
22902 #define ARM_VARIANT & arm_ext_v3 /* ARM 6 Status register instructions. */
22903 #undef THUMB_VARIANT
22904 #define THUMB_VARIANT & arm_ext_msr
22906 TCE("mrs", 1000000, f3e08000
, 2, (RRnpc
, rPSR
), mrs
, t_mrs
),
22907 TCE("msr", 120f000
, f3808000
, 2, (wPSR
, RR_EXi
), msr
, t_msr
),
22910 #define ARM_VARIANT & arm_ext_v3m /* ARM 7M long multiplies. */
22911 #undef THUMB_VARIANT
22912 #define THUMB_VARIANT & arm_ext_v6t2
22914 TCE("smull", 0c00090
, fb800000
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
), mull
, t_mull
),
22915 CM("smull","s", 0d00090
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
), mull
),
22916 TCE("umull", 0800090, fba00000
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
), mull
, t_mull
),
22917 CM("umull","s", 0900090, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
), mull
),
22918 TCE("smlal", 0e00090
, fbc00000
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
), mull
, t_mull
),
22919 CM("smlal","s", 0f00090
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
), mull
),
22920 TCE("umlal", 0a00090
, fbe00000
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
), mull
, t_mull
),
22921 CM("umlal","s", 0b00090, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
), mull
),
22924 #define ARM_VARIANT & arm_ext_v4 /* ARM Architecture 4. */
22925 #undef THUMB_VARIANT
22926 #define THUMB_VARIANT & arm_ext_v4t
22928 tC3("ldrh", 01000b0
, _ldrh
, 2, (RRnpc_npcsp
, ADDRGLDRS
), ldstv4
, t_ldst
),
22929 tC3("strh", 00000b0
, _strh
, 2, (RRnpc_npcsp
, ADDRGLDRS
), ldstv4
, t_ldst
),
22930 tC3("ldrsh", 01000f0
, _ldrsh
, 2, (RRnpc_npcsp
, ADDRGLDRS
), ldstv4
, t_ldst
),
22931 tC3("ldrsb", 01000d0
, _ldrsb
, 2, (RRnpc_npcsp
, ADDRGLDRS
), ldstv4
, t_ldst
),
22932 tC3("ldsh", 01000f0
, _ldrsh
, 2, (RRnpc_npcsp
, ADDRGLDRS
), ldstv4
, t_ldst
),
22933 tC3("ldsb", 01000d0
, _ldrsb
, 2, (RRnpc_npcsp
, ADDRGLDRS
), ldstv4
, t_ldst
),
22936 #define ARM_VARIANT & arm_ext_v4t_5
22938 /* ARM Architecture 4T. */
22939 /* Note: bx (and blx) are required on V5, even if the processor does
22940 not support Thumb. */
22941 TCE("bx", 12fff10
, 4700, 1, (RR
), bx
, t_bx
),
22944 #define ARM_VARIANT & arm_ext_v5 /* ARM Architecture 5T. */
22945 #undef THUMB_VARIANT
22946 #define THUMB_VARIANT & arm_ext_v5t
22948 /* Note: blx has 2 variants; the .value coded here is for
22949 BLX(2). Only this variant has conditional execution. */
22950 TCE("blx", 12fff30
, 4780, 1, (RR_EXr
), blx
, t_blx
),
22951 TUE("bkpt", 1200070, be00
, 1, (oIffffb
), bkpt
, t_bkpt
),
22953 #undef THUMB_VARIANT
22954 #define THUMB_VARIANT & arm_ext_v6t2
22956 TCE("clz", 16f0f10
, fab0f080
, 2, (RRnpc
, RRnpc
), rd_rm
, t_clz
),
22957 TUF("ldc2", c100000
, fc100000
, 3, (RCP
, RCN
, ADDRGLDC
), lstc
, lstc
),
22958 TUF("ldc2l", c500000
, fc500000
, 3, (RCP
, RCN
, ADDRGLDC
), lstc
, lstc
),
22959 TUF("stc2", c000000
, fc000000
, 3, (RCP
, RCN
, ADDRGLDC
), lstc
, lstc
),
22960 TUF("stc2l", c400000
, fc400000
, 3, (RCP
, RCN
, ADDRGLDC
), lstc
, lstc
),
22961 TUF("cdp2", e000000
, fe000000
, 6, (RCP
, I15b
, RCN
, RCN
, RCN
, oI7b
), cdp
, cdp
),
22962 TUF("mcr2", e000010
, fe000010
, 6, (RCP
, I7b
, RR
, RCN
, RCN
, oI7b
), co_reg
, co_reg
),
22963 TUF("mrc2", e100010
, fe100010
, 6, (RCP
, I7b
, RR
, RCN
, RCN
, oI7b
), co_reg
, co_reg
),
22966 #define ARM_VARIANT & arm_ext_v5exp /* ARM Architecture 5TExP. */
22967 #undef THUMB_VARIANT
22968 #define THUMB_VARIANT & arm_ext_v5exp
22970 TCE("smlabb", 1000080, fb100000
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
), smla
, t_mla
),
22971 TCE("smlatb", 10000a0
, fb100020
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
), smla
, t_mla
),
22972 TCE("smlabt", 10000c0
, fb100010
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
), smla
, t_mla
),
22973 TCE("smlatt", 10000e0
, fb100030
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
), smla
, t_mla
),
22975 TCE("smlawb", 1200080, fb300000
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
), smla
, t_mla
),
22976 TCE("smlawt", 12000c0
, fb300010
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
), smla
, t_mla
),
22978 TCE("smlalbb", 1400080, fbc00080
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
), smlal
, t_mlal
),
22979 TCE("smlaltb", 14000a0
, fbc000a0
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
), smlal
, t_mlal
),
22980 TCE("smlalbt", 14000c0
, fbc00090
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
), smlal
, t_mlal
),
22981 TCE("smlaltt", 14000e0
, fbc000b0
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
), smlal
, t_mlal
),
22983 TCE("smulbb", 1600080, fb10f000
, 3, (RRnpc
, RRnpc
, RRnpc
), smul
, t_simd
),
22984 TCE("smultb", 16000a0
, fb10f020
, 3, (RRnpc
, RRnpc
, RRnpc
), smul
, t_simd
),
22985 TCE("smulbt", 16000c0
, fb10f010
, 3, (RRnpc
, RRnpc
, RRnpc
), smul
, t_simd
),
22986 TCE("smultt", 16000e0
, fb10f030
, 3, (RRnpc
, RRnpc
, RRnpc
), smul
, t_simd
),
22988 TCE("smulwb", 12000a0
, fb30f000
, 3, (RRnpc
, RRnpc
, RRnpc
), smul
, t_simd
),
22989 TCE("smulwt", 12000e0
, fb30f010
, 3, (RRnpc
, RRnpc
, RRnpc
), smul
, t_simd
),
22991 TCE("qadd", 1000050, fa80f080
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rm_rn
, t_simd2
),
22992 TCE("qdadd", 1400050, fa80f090
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rm_rn
, t_simd2
),
22993 TCE("qsub", 1200050, fa80f0a0
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rm_rn
, t_simd2
),
22994 TCE("qdsub", 1600050, fa80f0b0
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rm_rn
, t_simd2
),
22997 #define ARM_VARIANT & arm_ext_v5e /* ARM Architecture 5TE. */
22998 #undef THUMB_VARIANT
22999 #define THUMB_VARIANT & arm_ext_v6t2
23001 TUF("pld", 450f000
, f810f000
, 1, (ADDR
), pld
, t_pld
),
23002 TC3("ldrd", 00000d0
, e8500000
, 3, (RRnpc_npcsp
, oRRnpc_npcsp
, ADDRGLDRS
),
23004 TC3("strd", 00000f0
, e8400000
, 3, (RRnpc_npcsp
, oRRnpc_npcsp
,
23005 ADDRGLDRS
), ldrd
, t_ldstd
),
23007 TCE("mcrr", c400000
, ec400000
, 5, (RCP
, I15b
, RRnpc
, RRnpc
, RCN
), co_reg2c
, co_reg2c
),
23008 TCE("mrrc", c500000
, ec500000
, 5, (RCP
, I15b
, RRnpc
, RRnpc
, RCN
), co_reg2c
, co_reg2c
),
23011 #define ARM_VARIANT & arm_ext_v5j /* ARM Architecture 5TEJ. */
23013 TCE("bxj", 12fff20
, f3c08f00
, 1, (RR
), bxj
, t_bxj
),
23016 #define ARM_VARIANT & arm_ext_v6 /* ARM V6. */
23017 #undef THUMB_VARIANT
23018 #define THUMB_VARIANT & arm_ext_v6
23020 TUF("cpsie", 1080000, b660
, 2, (CPSF
, oI31b
), cpsi
, t_cpsi
),
23021 TUF("cpsid", 10c0000
, b670
, 2, (CPSF
, oI31b
), cpsi
, t_cpsi
),
23022 tCE("rev", 6bf0f30
, _rev
, 2, (RRnpc
, RRnpc
), rd_rm
, t_rev
),
23023 tCE("rev16", 6bf0fb0
, _rev16
, 2, (RRnpc
, RRnpc
), rd_rm
, t_rev
),
23024 tCE("revsh", 6ff0fb0
, _revsh
, 2, (RRnpc
, RRnpc
), rd_rm
, t_rev
),
23025 tCE("sxth", 6bf0070
, _sxth
, 3, (RRnpc
, RRnpc
, oROR
), sxth
, t_sxth
),
23026 tCE("uxth", 6ff0070
, _uxth
, 3, (RRnpc
, RRnpc
, oROR
), sxth
, t_sxth
),
23027 tCE("sxtb", 6af0070
, _sxtb
, 3, (RRnpc
, RRnpc
, oROR
), sxth
, t_sxth
),
23028 tCE("uxtb", 6ef0070
, _uxtb
, 3, (RRnpc
, RRnpc
, oROR
), sxth
, t_sxth
),
23029 TUF("setend", 1010000, b650
, 1, (ENDI
), setend
, t_setend
),
23031 #undef THUMB_VARIANT
23032 #define THUMB_VARIANT & arm_ext_v6t2_v8m
23034 TCE("ldrex", 1900f9f
, e8500f00
, 2, (RRnpc_npcsp
, ADDR
), ldrex
, t_ldrex
),
23035 TCE("strex", 1800f90
, e8400000
, 3, (RRnpc_npcsp
, RRnpc_npcsp
, ADDR
),
23037 #undef THUMB_VARIANT
23038 #define THUMB_VARIANT & arm_ext_v6t2
23040 TUF("mcrr2", c400000
, fc400000
, 5, (RCP
, I15b
, RRnpc
, RRnpc
, RCN
), co_reg2c
, co_reg2c
),
23041 TUF("mrrc2", c500000
, fc500000
, 5, (RCP
, I15b
, RRnpc
, RRnpc
, RCN
), co_reg2c
, co_reg2c
),
23043 TCE("ssat", 6a00010
, f3000000
, 4, (RRnpc
, I32
, RRnpc
, oSHllar
),ssat
, t_ssat
),
23044 TCE("usat", 6e00010
, f3800000
, 4, (RRnpc
, I31
, RRnpc
, oSHllar
),usat
, t_usat
),
23046 /* ARM V6 not included in V7M. */
23047 #undef THUMB_VARIANT
23048 #define THUMB_VARIANT & arm_ext_v6_notm
23049 TUF("rfeia", 8900a00
, e990c000
, 1, (RRw
), rfe
, rfe
),
23050 TUF("rfe", 8900a00
, e990c000
, 1, (RRw
), rfe
, rfe
),
23051 UF(rfeib
, 9900a00
, 1, (RRw
), rfe
),
23052 UF(rfeda
, 8100a00
, 1, (RRw
), rfe
),
23053 TUF("rfedb", 9100a00
, e810c000
, 1, (RRw
), rfe
, rfe
),
23054 TUF("rfefd", 8900a00
, e990c000
, 1, (RRw
), rfe
, rfe
),
23055 UF(rfefa
, 8100a00
, 1, (RRw
), rfe
),
23056 TUF("rfeea", 9100a00
, e810c000
, 1, (RRw
), rfe
, rfe
),
23057 UF(rfeed
, 9900a00
, 1, (RRw
), rfe
),
23058 TUF("srsia", 8c00500
, e980c000
, 2, (oRRw
, I31w
), srs
, srs
),
23059 TUF("srs", 8c00500
, e980c000
, 2, (oRRw
, I31w
), srs
, srs
),
23060 TUF("srsea", 8c00500
, e980c000
, 2, (oRRw
, I31w
), srs
, srs
),
23061 UF(srsib
, 9c00500
, 2, (oRRw
, I31w
), srs
),
23062 UF(srsfa
, 9c00500
, 2, (oRRw
, I31w
), srs
),
23063 UF(srsda
, 8400500, 2, (oRRw
, I31w
), srs
),
23064 UF(srsed
, 8400500, 2, (oRRw
, I31w
), srs
),
23065 TUF("srsdb", 9400500, e800c000
, 2, (oRRw
, I31w
), srs
, srs
),
23066 TUF("srsfd", 9400500, e800c000
, 2, (oRRw
, I31w
), srs
, srs
),
23067 TUF("cps", 1020000, f3af8100
, 1, (I31b
), imm0
, t_cps
),
23069 /* ARM V6 not included in V7M (eg. integer SIMD). */
23070 #undef THUMB_VARIANT
23071 #define THUMB_VARIANT & arm_ext_v6_dsp
23072 TCE("pkhbt", 6800010, eac00000
, 4, (RRnpc
, RRnpc
, RRnpc
, oSHll
), pkhbt
, t_pkhbt
),
23073 TCE("pkhtb", 6800050, eac00020
, 4, (RRnpc
, RRnpc
, RRnpc
, oSHar
), pkhtb
, t_pkhtb
),
23074 TCE("qadd16", 6200f10
, fa90f010
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
23075 TCE("qadd8", 6200f90
, fa80f010
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
23076 TCE("qasx", 6200f30
, faa0f010
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
23077 /* Old name for QASX. */
23078 TCE("qaddsubx",6200f30
, faa0f010
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
23079 TCE("qsax", 6200f50
, fae0f010
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
23080 /* Old name for QSAX. */
23081 TCE("qsubaddx",6200f50
, fae0f010
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
23082 TCE("qsub16", 6200f70
, fad0f010
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
23083 TCE("qsub8", 6200ff0
, fac0f010
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
23084 TCE("sadd16", 6100f10
, fa90f000
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
23085 TCE("sadd8", 6100f90
, fa80f000
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
23086 TCE("sasx", 6100f30
, faa0f000
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
23087 /* Old name for SASX. */
23088 TCE("saddsubx",6100f30
, faa0f000
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
23089 TCE("shadd16", 6300f10
, fa90f020
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
23090 TCE("shadd8", 6300f90
, fa80f020
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
23091 TCE("shasx", 6300f30
, faa0f020
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
23092 /* Old name for SHASX. */
23093 TCE("shaddsubx", 6300f30
, faa0f020
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
23094 TCE("shsax", 6300f50
, fae0f020
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
23095 /* Old name for SHSAX. */
23096 TCE("shsubaddx", 6300f50
, fae0f020
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
23097 TCE("shsub16", 6300f70
, fad0f020
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
23098 TCE("shsub8", 6300ff0
, fac0f020
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
23099 TCE("ssax", 6100f50
, fae0f000
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
23100 /* Old name for SSAX. */
23101 TCE("ssubaddx",6100f50
, fae0f000
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
23102 TCE("ssub16", 6100f70
, fad0f000
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
23103 TCE("ssub8", 6100ff0
, fac0f000
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
23104 TCE("uadd16", 6500f10
, fa90f040
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
23105 TCE("uadd8", 6500f90
, fa80f040
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
23106 TCE("uasx", 6500f30
, faa0f040
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
23107 /* Old name for UASX. */
23108 TCE("uaddsubx",6500f30
, faa0f040
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
23109 TCE("uhadd16", 6700f10
, fa90f060
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
23110 TCE("uhadd8", 6700f90
, fa80f060
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
23111 TCE("uhasx", 6700f30
, faa0f060
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
23112 /* Old name for UHASX. */
23113 TCE("uhaddsubx", 6700f30
, faa0f060
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
23114 TCE("uhsax", 6700f50
, fae0f060
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
23115 /* Old name for UHSAX. */
23116 TCE("uhsubaddx", 6700f50
, fae0f060
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
23117 TCE("uhsub16", 6700f70
, fad0f060
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
23118 TCE("uhsub8", 6700ff0
, fac0f060
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
23119 TCE("uqadd16", 6600f10
, fa90f050
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
23120 TCE("uqadd8", 6600f90
, fa80f050
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
23121 TCE("uqasx", 6600f30
, faa0f050
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
23122 /* Old name for UQASX. */
23123 TCE("uqaddsubx", 6600f30
, faa0f050
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
23124 TCE("uqsax", 6600f50
, fae0f050
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
23125 /* Old name for UQSAX. */
23126 TCE("uqsubaddx", 6600f50
, fae0f050
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
23127 TCE("uqsub16", 6600f70
, fad0f050
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
23128 TCE("uqsub8", 6600ff0
, fac0f050
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
23129 TCE("usub16", 6500f70
, fad0f040
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
23130 TCE("usax", 6500f50
, fae0f040
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
23131 /* Old name for USAX. */
23132 TCE("usubaddx",6500f50
, fae0f040
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
23133 TCE("usub8", 6500ff0
, fac0f040
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
23134 TCE("sxtah", 6b00070
, fa00f080
, 4, (RRnpc
, RRnpc
, RRnpc
, oROR
), sxtah
, t_sxtah
),
23135 TCE("sxtab16", 6800070, fa20f080
, 4, (RRnpc
, RRnpc
, RRnpc
, oROR
), sxtah
, t_sxtah
),
23136 TCE("sxtab", 6a00070
, fa40f080
, 4, (RRnpc
, RRnpc
, RRnpc
, oROR
), sxtah
, t_sxtah
),
23137 TCE("sxtb16", 68f0070
, fa2ff080
, 3, (RRnpc
, RRnpc
, oROR
), sxth
, t_sxth
),
23138 TCE("uxtah", 6f00070
, fa10f080
, 4, (RRnpc
, RRnpc
, RRnpc
, oROR
), sxtah
, t_sxtah
),
23139 TCE("uxtab16", 6c00070
, fa30f080
, 4, (RRnpc
, RRnpc
, RRnpc
, oROR
), sxtah
, t_sxtah
),
23140 TCE("uxtab", 6e00070
, fa50f080
, 4, (RRnpc
, RRnpc
, RRnpc
, oROR
), sxtah
, t_sxtah
),
23141 TCE("uxtb16", 6cf0070
, fa3ff080
, 3, (RRnpc
, RRnpc
, oROR
), sxth
, t_sxth
),
23142 TCE("sel", 6800fb0
, faa0f080
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
23143 TCE("smlad", 7000010, fb200000
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
),smla
, t_mla
),
23144 TCE("smladx", 7000030, fb200010
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
),smla
, t_mla
),
23145 TCE("smlald", 7400010, fbc000c0
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
),smlal
,t_mlal
),
23146 TCE("smlaldx", 7400030, fbc000d0
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
),smlal
,t_mlal
),
23147 TCE("smlsd", 7000050, fb400000
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
),smla
, t_mla
),
23148 TCE("smlsdx", 7000070, fb400010
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
),smla
, t_mla
),
23149 TCE("smlsld", 7400050, fbd000c0
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
),smlal
,t_mlal
),
23150 TCE("smlsldx", 7400070, fbd000d0
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
),smlal
,t_mlal
),
23151 TCE("smmla", 7500010, fb500000
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
),smla
, t_mla
),
23152 TCE("smmlar", 7500030, fb500010
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
),smla
, t_mla
),
23153 TCE("smmls", 75000d0
, fb600000
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
),smla
, t_mla
),
23154 TCE("smmlsr", 75000f0
, fb600010
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
),smla
, t_mla
),
23155 TCE("smmul", 750f010
, fb50f000
, 3, (RRnpc
, RRnpc
, RRnpc
), smul
, t_simd
),
23156 TCE("smmulr", 750f030
, fb50f010
, 3, (RRnpc
, RRnpc
, RRnpc
), smul
, t_simd
),
23157 TCE("smuad", 700f010
, fb20f000
, 3, (RRnpc
, RRnpc
, RRnpc
), smul
, t_simd
),
23158 TCE("smuadx", 700f030
, fb20f010
, 3, (RRnpc
, RRnpc
, RRnpc
), smul
, t_simd
),
23159 TCE("smusd", 700f050
, fb40f000
, 3, (RRnpc
, RRnpc
, RRnpc
), smul
, t_simd
),
23160 TCE("smusdx", 700f070
, fb40f010
, 3, (RRnpc
, RRnpc
, RRnpc
), smul
, t_simd
),
23161 TCE("ssat16", 6a00f30
, f3200000
, 3, (RRnpc
, I16
, RRnpc
), ssat16
, t_ssat16
),
23162 TCE("umaal", 0400090, fbe00060
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
),smlal
, t_mlal
),
23163 TCE("usad8", 780f010
, fb70f000
, 3, (RRnpc
, RRnpc
, RRnpc
), smul
, t_simd
),
23164 TCE("usada8", 7800010, fb700000
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
),smla
, t_mla
),
23165 TCE("usat16", 6e00f30
, f3a00000
, 3, (RRnpc
, I15
, RRnpc
), usat16
, t_usat16
),
23168 #define ARM_VARIANT & arm_ext_v6k_v6t2
23169 #undef THUMB_VARIANT
23170 #define THUMB_VARIANT & arm_ext_v6k_v6t2
23172 tCE("yield", 320f001
, _yield
, 0, (), noargs
, t_hint
),
23173 tCE("wfe", 320f002
, _wfe
, 0, (), noargs
, t_hint
),
23174 tCE("wfi", 320f003
, _wfi
, 0, (), noargs
, t_hint
),
23175 tCE("sev", 320f004
, _sev
, 0, (), noargs
, t_hint
),
23177 #undef THUMB_VARIANT
23178 #define THUMB_VARIANT & arm_ext_v6_notm
23179 TCE("ldrexd", 1b00f9f
, e8d0007f
, 3, (RRnpc_npcsp
, oRRnpc_npcsp
, RRnpcb
),
23181 TCE("strexd", 1a00f90
, e8c00070
, 4, (RRnpc_npcsp
, RRnpc_npcsp
, oRRnpc_npcsp
,
23182 RRnpcb
), strexd
, t_strexd
),
23184 #undef THUMB_VARIANT
23185 #define THUMB_VARIANT & arm_ext_v6t2_v8m
23186 TCE("ldrexb", 1d00f9f
, e8d00f4f
, 2, (RRnpc_npcsp
,RRnpcb
),
23188 TCE("ldrexh", 1f00f9f
, e8d00f5f
, 2, (RRnpc_npcsp
, RRnpcb
),
23190 TCE("strexb", 1c00f90
, e8c00f40
, 3, (RRnpc_npcsp
, RRnpc_npcsp
, ADDR
),
23192 TCE("strexh", 1e00f90
, e8c00f50
, 3, (RRnpc_npcsp
, RRnpc_npcsp
, ADDR
),
23194 TUF("clrex", 57ff01f
, f3bf8f2f
, 0, (), noargs
, noargs
),
23197 #define ARM_VARIANT & arm_ext_sec
23198 #undef THUMB_VARIANT
23199 #define THUMB_VARIANT & arm_ext_sec
23201 TCE("smc", 1600070, f7f08000
, 1, (EXPi
), smc
, t_smc
),
23204 #define ARM_VARIANT & arm_ext_virt
23205 #undef THUMB_VARIANT
23206 #define THUMB_VARIANT & arm_ext_virt
23208 TCE("hvc", 1400070, f7e08000
, 1, (EXPi
), hvc
, t_hvc
),
23209 TCE("eret", 160006e
, f3de8f00
, 0, (), noargs
, noargs
),
23212 #define ARM_VARIANT & arm_ext_pan
23213 #undef THUMB_VARIANT
23214 #define THUMB_VARIANT & arm_ext_pan
23216 TUF("setpan", 1100000, b610
, 1, (I7
), setpan
, t_setpan
),
23219 #define ARM_VARIANT & arm_ext_v6t2
23220 #undef THUMB_VARIANT
23221 #define THUMB_VARIANT & arm_ext_v6t2
23223 TCE("bfc", 7c0001f
, f36f0000
, 3, (RRnpc
, I31
, I32
), bfc
, t_bfc
),
23224 TCE("bfi", 7c00010
, f3600000
, 4, (RRnpc
, RRnpc_I0
, I31
, I32
), bfi
, t_bfi
),
23225 TCE("sbfx", 7a00050
, f3400000
, 4, (RR
, RR
, I31
, I32
), bfx
, t_bfx
),
23226 TCE("ubfx", 7e00050
, f3c00000
, 4, (RR
, RR
, I31
, I32
), bfx
, t_bfx
),
23228 TCE("mls", 0600090, fb000010
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
), mlas
, t_mla
),
23229 TCE("rbit", 6ff0f30
, fa90f0a0
, 2, (RR
, RR
), rd_rm
, t_rbit
),
23231 TC3("ldrht", 03000b0
, f8300e00
, 2, (RRnpc_npcsp
, ADDR
), ldsttv4
, t_ldstt
),
23232 TC3("ldrsht", 03000f0
, f9300e00
, 2, (RRnpc_npcsp
, ADDR
), ldsttv4
, t_ldstt
),
23233 TC3("ldrsbt", 03000d0
, f9100e00
, 2, (RRnpc_npcsp
, ADDR
), ldsttv4
, t_ldstt
),
23234 TC3("strht", 02000b0
, f8200e00
, 2, (RRnpc_npcsp
, ADDR
), ldsttv4
, t_ldstt
),
23237 #define ARM_VARIANT & arm_ext_v3
23238 #undef THUMB_VARIANT
23239 #define THUMB_VARIANT & arm_ext_v6t2
23241 TUE("csdb", 320f014
, f3af8014
, 0, (), noargs
, t_csdb
),
23242 TUF("ssbb", 57ff040
, f3bf8f40
, 0, (), noargs
, t_csdb
),
23243 TUF("pssbb", 57ff044
, f3bf8f44
, 0, (), noargs
, t_csdb
),
23246 #define ARM_VARIANT & arm_ext_v6t2
23247 #undef THUMB_VARIANT
23248 #define THUMB_VARIANT & arm_ext_v6t2_v8m
23249 TCE("movw", 3000000, f2400000
, 2, (RRnpc
, HALF
), mov16
, t_mov16
),
23250 TCE("movt", 3400000, f2c00000
, 2, (RRnpc
, HALF
), mov16
, t_mov16
),
23252 /* Thumb-only instructions. */
23254 #define ARM_VARIANT NULL
23255 TUE("cbnz", 0, b900
, 2, (RR
, EXP
), 0, t_cbz
),
23256 TUE("cbz", 0, b100
, 2, (RR
, EXP
), 0, t_cbz
),
23258 /* ARM does not really have an IT instruction, so always allow it.
23259 The opcode is copied from Thumb in order to allow warnings in
23260 -mimplicit-it=[never | arm] modes. */
23262 #define ARM_VARIANT & arm_ext_v1
23263 #undef THUMB_VARIANT
23264 #define THUMB_VARIANT & arm_ext_v6t2
23266 TUE("it", bf08
, bf08
, 1, (COND
), it
, t_it
),
23267 TUE("itt", bf0c
, bf0c
, 1, (COND
), it
, t_it
),
23268 TUE("ite", bf04
, bf04
, 1, (COND
), it
, t_it
),
23269 TUE("ittt", bf0e
, bf0e
, 1, (COND
), it
, t_it
),
23270 TUE("itet", bf06
, bf06
, 1, (COND
), it
, t_it
),
23271 TUE("itte", bf0a
, bf0a
, 1, (COND
), it
, t_it
),
23272 TUE("itee", bf02
, bf02
, 1, (COND
), it
, t_it
),
23273 TUE("itttt", bf0f
, bf0f
, 1, (COND
), it
, t_it
),
23274 TUE("itett", bf07
, bf07
, 1, (COND
), it
, t_it
),
23275 TUE("ittet", bf0b
, bf0b
, 1, (COND
), it
, t_it
),
23276 TUE("iteet", bf03
, bf03
, 1, (COND
), it
, t_it
),
23277 TUE("ittte", bf0d
, bf0d
, 1, (COND
), it
, t_it
),
23278 TUE("itete", bf05
, bf05
, 1, (COND
), it
, t_it
),
23279 TUE("ittee", bf09
, bf09
, 1, (COND
), it
, t_it
),
23280 TUE("iteee", bf01
, bf01
, 1, (COND
), it
, t_it
),
23281 /* ARM/Thumb-2 instructions with no Thumb-1 equivalent. */
23282 TC3("rrx", 01a00060
, ea4f0030
, 2, (RR
, RR
), rd_rm
, t_rrx
),
23283 TC3("rrxs", 01b00060
, ea5f0030
, 2, (RR
, RR
), rd_rm
, t_rrx
),
23285 /* Thumb2 only instructions. */
23287 #define ARM_VARIANT NULL
23289 TCE("addw", 0, f2000000
, 3, (RR
, RR
, EXPi
), 0, t_add_sub_w
),
23290 TCE("subw", 0, f2a00000
, 3, (RR
, RR
, EXPi
), 0, t_add_sub_w
),
23291 TCE("orn", 0, ea600000
, 3, (RR
, oRR
, SH
), 0, t_orn
),
23292 TCE("orns", 0, ea700000
, 3, (RR
, oRR
, SH
), 0, t_orn
),
23293 TCE("tbb", 0, e8d0f000
, 1, (TB
), 0, t_tb
),
23294 TCE("tbh", 0, e8d0f010
, 1, (TB
), 0, t_tb
),
23296 /* Hardware division instructions. */
23298 #define ARM_VARIANT & arm_ext_adiv
23299 #undef THUMB_VARIANT
23300 #define THUMB_VARIANT & arm_ext_div
23302 TCE("sdiv", 710f010
, fb90f0f0
, 3, (RR
, oRR
, RR
), div
, t_div
),
23303 TCE("udiv", 730f010
, fbb0f0f0
, 3, (RR
, oRR
, RR
), div
, t_div
),
23305 /* ARM V6M/V7 instructions. */
23307 #define ARM_VARIANT & arm_ext_barrier
23308 #undef THUMB_VARIANT
23309 #define THUMB_VARIANT & arm_ext_barrier
23311 TUF("dmb", 57ff050
, f3bf8f50
, 1, (oBARRIER_I15
), barrier
, barrier
),
23312 TUF("dsb", 57ff040
, f3bf8f40
, 1, (oBARRIER_I15
), barrier
, barrier
),
23313 TUF("isb", 57ff060
, f3bf8f60
, 1, (oBARRIER_I15
), barrier
, barrier
),
23315 /* ARM V7 instructions. */
23317 #define ARM_VARIANT & arm_ext_v7
23318 #undef THUMB_VARIANT
23319 #define THUMB_VARIANT & arm_ext_v7
23321 TUF("pli", 450f000
, f910f000
, 1, (ADDR
), pli
, t_pld
),
23322 TCE("dbg", 320f0f0
, f3af80f0
, 1, (I15
), dbg
, t_dbg
),
23325 #define ARM_VARIANT & arm_ext_mp
23326 #undef THUMB_VARIANT
23327 #define THUMB_VARIANT & arm_ext_mp
23329 TUF("pldw", 410f000
, f830f000
, 1, (ADDR
), pld
, t_pld
),
23331 /* AArchv8 instructions. */
23333 #define ARM_VARIANT & arm_ext_v8
23335 /* Instructions shared between armv8-a and armv8-m. */
23336 #undef THUMB_VARIANT
23337 #define THUMB_VARIANT & arm_ext_atomics
23339 TCE("lda", 1900c9f
, e8d00faf
, 2, (RRnpc
, RRnpcb
), rd_rn
, rd_rn
),
23340 TCE("ldab", 1d00c9f
, e8d00f8f
, 2, (RRnpc
, RRnpcb
), rd_rn
, rd_rn
),
23341 TCE("ldah", 1f00c9f
, e8d00f9f
, 2, (RRnpc
, RRnpcb
), rd_rn
, rd_rn
),
23342 TCE("stl", 180fc90
, e8c00faf
, 2, (RRnpc
, RRnpcb
), rm_rn
, rd_rn
),
23343 TCE("stlb", 1c0fc90
, e8c00f8f
, 2, (RRnpc
, RRnpcb
), rm_rn
, rd_rn
),
23344 TCE("stlh", 1e0fc90
, e8c00f9f
, 2, (RRnpc
, RRnpcb
), rm_rn
, rd_rn
),
23345 TCE("ldaex", 1900e9f
, e8d00fef
, 2, (RRnpc
, RRnpcb
), rd_rn
, rd_rn
),
23346 TCE("ldaexb", 1d00e9f
, e8d00fcf
, 2, (RRnpc
,RRnpcb
), rd_rn
, rd_rn
),
23347 TCE("ldaexh", 1f00e9f
, e8d00fdf
, 2, (RRnpc
, RRnpcb
), rd_rn
, rd_rn
),
23348 TCE("stlex", 1800e90
, e8c00fe0
, 3, (RRnpc
, RRnpc
, RRnpcb
),
23350 TCE("stlexb", 1c00e90
, e8c00fc0
, 3, (RRnpc
, RRnpc
, RRnpcb
),
23352 TCE("stlexh", 1e00e90
, e8c00fd0
, 3, (RRnpc
, RRnpc
, RRnpcb
),
23354 #undef THUMB_VARIANT
23355 #define THUMB_VARIANT & arm_ext_v8
23357 tCE("sevl", 320f005
, _sevl
, 0, (), noargs
, t_hint
),
23358 TCE("ldaexd", 1b00e9f
, e8d000ff
, 3, (RRnpc
, oRRnpc
, RRnpcb
),
23360 TCE("stlexd", 1a00e90
, e8c000f0
, 4, (RRnpc
, RRnpc
, oRRnpc
, RRnpcb
),
23363 /* Defined in V8 but is in undefined encoding space for earlier
23364 architectures. However earlier architectures are required to treat
23365 this instuction as a semihosting trap as well. Hence while not explicitly
23366 defined as such, it is in fact correct to define the instruction for all
23368 #undef THUMB_VARIANT
23369 #define THUMB_VARIANT & arm_ext_v1
23371 #define ARM_VARIANT & arm_ext_v1
23372 TUE("hlt", 1000070, ba80
, 1, (oIffffb
), bkpt
, t_hlt
),
23374 /* ARMv8 T32 only. */
23376 #define ARM_VARIANT NULL
23377 TUF("dcps1", 0, f78f8001
, 0, (), noargs
, noargs
),
23378 TUF("dcps2", 0, f78f8002
, 0, (), noargs
, noargs
),
23379 TUF("dcps3", 0, f78f8003
, 0, (), noargs
, noargs
),
23381 /* FP for ARMv8. */
23383 #define ARM_VARIANT & fpu_vfp_ext_armv8xd
23384 #undef THUMB_VARIANT
23385 #define THUMB_VARIANT & fpu_vfp_ext_armv8xd
23387 nUF(vseleq
, _vseleq
, 3, (RVSD
, RVSD
, RVSD
), vsel
),
23388 nUF(vselvs
, _vselvs
, 3, (RVSD
, RVSD
, RVSD
), vsel
),
23389 nUF(vselge
, _vselge
, 3, (RVSD
, RVSD
, RVSD
), vsel
),
23390 nUF(vselgt
, _vselgt
, 3, (RVSD
, RVSD
, RVSD
), vsel
),
23391 nCE(vrintr
, _vrintr
, 2, (RNSDQ
, oRNSDQ
), vrintr
),
23392 nCE(vrintz
, _vrintr
, 2, (RNSDQ
, oRNSDQ
), vrintz
),
23393 nCE(vrintx
, _vrintr
, 2, (RNSDQ
, oRNSDQ
), vrintx
),
23394 nUF(vrinta
, _vrinta
, 2, (RNSDQ
, oRNSDQ
), vrinta
),
23395 nUF(vrintn
, _vrinta
, 2, (RNSDQ
, oRNSDQ
), vrintn
),
23396 nUF(vrintp
, _vrinta
, 2, (RNSDQ
, oRNSDQ
), vrintp
),
23397 nUF(vrintm
, _vrinta
, 2, (RNSDQ
, oRNSDQ
), vrintm
),
23399 /* Crypto v1 extensions. */
23401 #define ARM_VARIANT & fpu_crypto_ext_armv8
23402 #undef THUMB_VARIANT
23403 #define THUMB_VARIANT & fpu_crypto_ext_armv8
23405 nUF(aese
, _aes
, 2, (RNQ
, RNQ
), aese
),
23406 nUF(aesd
, _aes
, 2, (RNQ
, RNQ
), aesd
),
23407 nUF(aesmc
, _aes
, 2, (RNQ
, RNQ
), aesmc
),
23408 nUF(aesimc
, _aes
, 2, (RNQ
, RNQ
), aesimc
),
23409 nUF(sha1c
, _sha3op
, 3, (RNQ
, RNQ
, RNQ
), sha1c
),
23410 nUF(sha1p
, _sha3op
, 3, (RNQ
, RNQ
, RNQ
), sha1p
),
23411 nUF(sha1m
, _sha3op
, 3, (RNQ
, RNQ
, RNQ
), sha1m
),
23412 nUF(sha1su0
, _sha3op
, 3, (RNQ
, RNQ
, RNQ
), sha1su0
),
23413 nUF(sha256h
, _sha3op
, 3, (RNQ
, RNQ
, RNQ
), sha256h
),
23414 nUF(sha256h2
, _sha3op
, 3, (RNQ
, RNQ
, RNQ
), sha256h2
),
23415 nUF(sha256su1
, _sha3op
, 3, (RNQ
, RNQ
, RNQ
), sha256su1
),
23416 nUF(sha1h
, _sha1h
, 2, (RNQ
, RNQ
), sha1h
),
23417 nUF(sha1su1
, _sha2op
, 2, (RNQ
, RNQ
), sha1su1
),
23418 nUF(sha256su0
, _sha2op
, 2, (RNQ
, RNQ
), sha256su0
),
23421 #define ARM_VARIANT & crc_ext_armv8
23422 #undef THUMB_VARIANT
23423 #define THUMB_VARIANT & crc_ext_armv8
23424 TUEc("crc32b", 1000040, fac0f080
, 3, (RR
, oRR
, RR
), crc32b
),
23425 TUEc("crc32h", 1200040, fac0f090
, 3, (RR
, oRR
, RR
), crc32h
),
23426 TUEc("crc32w", 1400040, fac0f0a0
, 3, (RR
, oRR
, RR
), crc32w
),
23427 TUEc("crc32cb",1000240, fad0f080
, 3, (RR
, oRR
, RR
), crc32cb
),
23428 TUEc("crc32ch",1200240, fad0f090
, 3, (RR
, oRR
, RR
), crc32ch
),
23429 TUEc("crc32cw",1400240, fad0f0a0
, 3, (RR
, oRR
, RR
), crc32cw
),
23431 /* ARMv8.2 RAS extension. */
23433 #define ARM_VARIANT & arm_ext_ras
23434 #undef THUMB_VARIANT
23435 #define THUMB_VARIANT & arm_ext_ras
23436 TUE ("esb", 320f010
, f3af8010
, 0, (), noargs
, noargs
),
23439 #define ARM_VARIANT & arm_ext_v8_3
23440 #undef THUMB_VARIANT
23441 #define THUMB_VARIANT & arm_ext_v8_3
23442 NCE (vjcvt
, eb90bc0
, 2, (RVS
, RVD
), vjcvt
),
23445 #define ARM_VARIANT & fpu_neon_ext_dotprod
23446 #undef THUMB_VARIANT
23447 #define THUMB_VARIANT & fpu_neon_ext_dotprod
23448 NUF (vsdot
, d00
, 3, (RNDQ
, RNDQ
, RNDQ_RNSC
), neon_dotproduct_s
),
23449 NUF (vudot
, d00
, 3, (RNDQ
, RNDQ
, RNDQ_RNSC
), neon_dotproduct_u
),
23452 #define ARM_VARIANT & fpu_fpa_ext_v1 /* Core FPA instruction set (V1). */
23453 #undef THUMB_VARIANT
23454 #define THUMB_VARIANT NULL
23456 cCE("wfs", e200110
, 1, (RR
), rd
),
23457 cCE("rfs", e300110
, 1, (RR
), rd
),
23458 cCE("wfc", e400110
, 1, (RR
), rd
),
23459 cCE("rfc", e500110
, 1, (RR
), rd
),
23461 cCL("ldfs", c100100
, 2, (RF
, ADDRGLDC
), rd_cpaddr
),
23462 cCL("ldfd", c108100
, 2, (RF
, ADDRGLDC
), rd_cpaddr
),
23463 cCL("ldfe", c500100
, 2, (RF
, ADDRGLDC
), rd_cpaddr
),
23464 cCL("ldfp", c508100
, 2, (RF
, ADDRGLDC
), rd_cpaddr
),
23466 cCL("stfs", c000100
, 2, (RF
, ADDRGLDC
), rd_cpaddr
),
23467 cCL("stfd", c008100
, 2, (RF
, ADDRGLDC
), rd_cpaddr
),
23468 cCL("stfe", c400100
, 2, (RF
, ADDRGLDC
), rd_cpaddr
),
23469 cCL("stfp", c408100
, 2, (RF
, ADDRGLDC
), rd_cpaddr
),
23471 cCL("mvfs", e008100
, 2, (RF
, RF_IF
), rd_rm
),
23472 cCL("mvfsp", e008120
, 2, (RF
, RF_IF
), rd_rm
),
23473 cCL("mvfsm", e008140
, 2, (RF
, RF_IF
), rd_rm
),
23474 cCL("mvfsz", e008160
, 2, (RF
, RF_IF
), rd_rm
),
23475 cCL("mvfd", e008180
, 2, (RF
, RF_IF
), rd_rm
),
23476 cCL("mvfdp", e0081a0
, 2, (RF
, RF_IF
), rd_rm
),
23477 cCL("mvfdm", e0081c0
, 2, (RF
, RF_IF
), rd_rm
),
23478 cCL("mvfdz", e0081e0
, 2, (RF
, RF_IF
), rd_rm
),
23479 cCL("mvfe", e088100
, 2, (RF
, RF_IF
), rd_rm
),
23480 cCL("mvfep", e088120
, 2, (RF
, RF_IF
), rd_rm
),
23481 cCL("mvfem", e088140
, 2, (RF
, RF_IF
), rd_rm
),
23482 cCL("mvfez", e088160
, 2, (RF
, RF_IF
), rd_rm
),
23484 cCL("mnfs", e108100
, 2, (RF
, RF_IF
), rd_rm
),
23485 cCL("mnfsp", e108120
, 2, (RF
, RF_IF
), rd_rm
),
23486 cCL("mnfsm", e108140
, 2, (RF
, RF_IF
), rd_rm
),
23487 cCL("mnfsz", e108160
, 2, (RF
, RF_IF
), rd_rm
),
23488 cCL("mnfd", e108180
, 2, (RF
, RF_IF
), rd_rm
),
23489 cCL("mnfdp", e1081a0
, 2, (RF
, RF_IF
), rd_rm
),
23490 cCL("mnfdm", e1081c0
, 2, (RF
, RF_IF
), rd_rm
),
23491 cCL("mnfdz", e1081e0
, 2, (RF
, RF_IF
), rd_rm
),
23492 cCL("mnfe", e188100
, 2, (RF
, RF_IF
), rd_rm
),
23493 cCL("mnfep", e188120
, 2, (RF
, RF_IF
), rd_rm
),
23494 cCL("mnfem", e188140
, 2, (RF
, RF_IF
), rd_rm
),
23495 cCL("mnfez", e188160
, 2, (RF
, RF_IF
), rd_rm
),
23497 cCL("abss", e208100
, 2, (RF
, RF_IF
), rd_rm
),
23498 cCL("abssp", e208120
, 2, (RF
, RF_IF
), rd_rm
),
23499 cCL("abssm", e208140
, 2, (RF
, RF_IF
), rd_rm
),
23500 cCL("abssz", e208160
, 2, (RF
, RF_IF
), rd_rm
),
23501 cCL("absd", e208180
, 2, (RF
, RF_IF
), rd_rm
),
23502 cCL("absdp", e2081a0
, 2, (RF
, RF_IF
), rd_rm
),
23503 cCL("absdm", e2081c0
, 2, (RF
, RF_IF
), rd_rm
),
23504 cCL("absdz", e2081e0
, 2, (RF
, RF_IF
), rd_rm
),
23505 cCL("abse", e288100
, 2, (RF
, RF_IF
), rd_rm
),
23506 cCL("absep", e288120
, 2, (RF
, RF_IF
), rd_rm
),
23507 cCL("absem", e288140
, 2, (RF
, RF_IF
), rd_rm
),
23508 cCL("absez", e288160
, 2, (RF
, RF_IF
), rd_rm
),
23510 cCL("rnds", e308100
, 2, (RF
, RF_IF
), rd_rm
),
23511 cCL("rndsp", e308120
, 2, (RF
, RF_IF
), rd_rm
),
23512 cCL("rndsm", e308140
, 2, (RF
, RF_IF
), rd_rm
),
23513 cCL("rndsz", e308160
, 2, (RF
, RF_IF
), rd_rm
),
23514 cCL("rndd", e308180
, 2, (RF
, RF_IF
), rd_rm
),
23515 cCL("rnddp", e3081a0
, 2, (RF
, RF_IF
), rd_rm
),
23516 cCL("rnddm", e3081c0
, 2, (RF
, RF_IF
), rd_rm
),
23517 cCL("rnddz", e3081e0
, 2, (RF
, RF_IF
), rd_rm
),
23518 cCL("rnde", e388100
, 2, (RF
, RF_IF
), rd_rm
),
23519 cCL("rndep", e388120
, 2, (RF
, RF_IF
), rd_rm
),
23520 cCL("rndem", e388140
, 2, (RF
, RF_IF
), rd_rm
),
23521 cCL("rndez", e388160
, 2, (RF
, RF_IF
), rd_rm
),
23523 cCL("sqts", e408100
, 2, (RF
, RF_IF
), rd_rm
),
23524 cCL("sqtsp", e408120
, 2, (RF
, RF_IF
), rd_rm
),
23525 cCL("sqtsm", e408140
, 2, (RF
, RF_IF
), rd_rm
),
23526 cCL("sqtsz", e408160
, 2, (RF
, RF_IF
), rd_rm
),
23527 cCL("sqtd", e408180
, 2, (RF
, RF_IF
), rd_rm
),
23528 cCL("sqtdp", e4081a0
, 2, (RF
, RF_IF
), rd_rm
),
23529 cCL("sqtdm", e4081c0
, 2, (RF
, RF_IF
), rd_rm
),
23530 cCL("sqtdz", e4081e0
, 2, (RF
, RF_IF
), rd_rm
),
23531 cCL("sqte", e488100
, 2, (RF
, RF_IF
), rd_rm
),
23532 cCL("sqtep", e488120
, 2, (RF
, RF_IF
), rd_rm
),
23533 cCL("sqtem", e488140
, 2, (RF
, RF_IF
), rd_rm
),
23534 cCL("sqtez", e488160
, 2, (RF
, RF_IF
), rd_rm
),
23536 cCL("logs", e508100
, 2, (RF
, RF_IF
), rd_rm
),
23537 cCL("logsp", e508120
, 2, (RF
, RF_IF
), rd_rm
),
23538 cCL("logsm", e508140
, 2, (RF
, RF_IF
), rd_rm
),
23539 cCL("logsz", e508160
, 2, (RF
, RF_IF
), rd_rm
),
23540 cCL("logd", e508180
, 2, (RF
, RF_IF
), rd_rm
),
23541 cCL("logdp", e5081a0
, 2, (RF
, RF_IF
), rd_rm
),
23542 cCL("logdm", e5081c0
, 2, (RF
, RF_IF
), rd_rm
),
23543 cCL("logdz", e5081e0
, 2, (RF
, RF_IF
), rd_rm
),
23544 cCL("loge", e588100
, 2, (RF
, RF_IF
), rd_rm
),
23545 cCL("logep", e588120
, 2, (RF
, RF_IF
), rd_rm
),
23546 cCL("logem", e588140
, 2, (RF
, RF_IF
), rd_rm
),
23547 cCL("logez", e588160
, 2, (RF
, RF_IF
), rd_rm
),
23549 cCL("lgns", e608100
, 2, (RF
, RF_IF
), rd_rm
),
23550 cCL("lgnsp", e608120
, 2, (RF
, RF_IF
), rd_rm
),
23551 cCL("lgnsm", e608140
, 2, (RF
, RF_IF
), rd_rm
),
23552 cCL("lgnsz", e608160
, 2, (RF
, RF_IF
), rd_rm
),
23553 cCL("lgnd", e608180
, 2, (RF
, RF_IF
), rd_rm
),
23554 cCL("lgndp", e6081a0
, 2, (RF
, RF_IF
), rd_rm
),
23555 cCL("lgndm", e6081c0
, 2, (RF
, RF_IF
), rd_rm
),
23556 cCL("lgndz", e6081e0
, 2, (RF
, RF_IF
), rd_rm
),
23557 cCL("lgne", e688100
, 2, (RF
, RF_IF
), rd_rm
),
23558 cCL("lgnep", e688120
, 2, (RF
, RF_IF
), rd_rm
),
23559 cCL("lgnem", e688140
, 2, (RF
, RF_IF
), rd_rm
),
23560 cCL("lgnez", e688160
, 2, (RF
, RF_IF
), rd_rm
),
23562 cCL("exps", e708100
, 2, (RF
, RF_IF
), rd_rm
),
23563 cCL("expsp", e708120
, 2, (RF
, RF_IF
), rd_rm
),
23564 cCL("expsm", e708140
, 2, (RF
, RF_IF
), rd_rm
),
23565 cCL("expsz", e708160
, 2, (RF
, RF_IF
), rd_rm
),
23566 cCL("expd", e708180
, 2, (RF
, RF_IF
), rd_rm
),
23567 cCL("expdp", e7081a0
, 2, (RF
, RF_IF
), rd_rm
),
23568 cCL("expdm", e7081c0
, 2, (RF
, RF_IF
), rd_rm
),
23569 cCL("expdz", e7081e0
, 2, (RF
, RF_IF
), rd_rm
),
23570 cCL("expe", e788100
, 2, (RF
, RF_IF
), rd_rm
),
23571 cCL("expep", e788120
, 2, (RF
, RF_IF
), rd_rm
),
23572 cCL("expem", e788140
, 2, (RF
, RF_IF
), rd_rm
),
23573 cCL("expdz", e788160
, 2, (RF
, RF_IF
), rd_rm
),
23575 cCL("sins", e808100
, 2, (RF
, RF_IF
), rd_rm
),
23576 cCL("sinsp", e808120
, 2, (RF
, RF_IF
), rd_rm
),
23577 cCL("sinsm", e808140
, 2, (RF
, RF_IF
), rd_rm
),
23578 cCL("sinsz", e808160
, 2, (RF
, RF_IF
), rd_rm
),
23579 cCL("sind", e808180
, 2, (RF
, RF_IF
), rd_rm
),
23580 cCL("sindp", e8081a0
, 2, (RF
, RF_IF
), rd_rm
),
23581 cCL("sindm", e8081c0
, 2, (RF
, RF_IF
), rd_rm
),
23582 cCL("sindz", e8081e0
, 2, (RF
, RF_IF
), rd_rm
),
23583 cCL("sine", e888100
, 2, (RF
, RF_IF
), rd_rm
),
23584 cCL("sinep", e888120
, 2, (RF
, RF_IF
), rd_rm
),
23585 cCL("sinem", e888140
, 2, (RF
, RF_IF
), rd_rm
),
23586 cCL("sinez", e888160
, 2, (RF
, RF_IF
), rd_rm
),
23588 cCL("coss", e908100
, 2, (RF
, RF_IF
), rd_rm
),
23589 cCL("cossp", e908120
, 2, (RF
, RF_IF
), rd_rm
),
23590 cCL("cossm", e908140
, 2, (RF
, RF_IF
), rd_rm
),
23591 cCL("cossz", e908160
, 2, (RF
, RF_IF
), rd_rm
),
23592 cCL("cosd", e908180
, 2, (RF
, RF_IF
), rd_rm
),
23593 cCL("cosdp", e9081a0
, 2, (RF
, RF_IF
), rd_rm
),
23594 cCL("cosdm", e9081c0
, 2, (RF
, RF_IF
), rd_rm
),
23595 cCL("cosdz", e9081e0
, 2, (RF
, RF_IF
), rd_rm
),
23596 cCL("cose", e988100
, 2, (RF
, RF_IF
), rd_rm
),
23597 cCL("cosep", e988120
, 2, (RF
, RF_IF
), rd_rm
),
23598 cCL("cosem", e988140
, 2, (RF
, RF_IF
), rd_rm
),
23599 cCL("cosez", e988160
, 2, (RF
, RF_IF
), rd_rm
),
23601 cCL("tans", ea08100
, 2, (RF
, RF_IF
), rd_rm
),
23602 cCL("tansp", ea08120
, 2, (RF
, RF_IF
), rd_rm
),
23603 cCL("tansm", ea08140
, 2, (RF
, RF_IF
), rd_rm
),
23604 cCL("tansz", ea08160
, 2, (RF
, RF_IF
), rd_rm
),
23605 cCL("tand", ea08180
, 2, (RF
, RF_IF
), rd_rm
),
23606 cCL("tandp", ea081a0
, 2, (RF
, RF_IF
), rd_rm
),
23607 cCL("tandm", ea081c0
, 2, (RF
, RF_IF
), rd_rm
),
23608 cCL("tandz", ea081e0
, 2, (RF
, RF_IF
), rd_rm
),
23609 cCL("tane", ea88100
, 2, (RF
, RF_IF
), rd_rm
),
23610 cCL("tanep", ea88120
, 2, (RF
, RF_IF
), rd_rm
),
23611 cCL("tanem", ea88140
, 2, (RF
, RF_IF
), rd_rm
),
23612 cCL("tanez", ea88160
, 2, (RF
, RF_IF
), rd_rm
),
23614 cCL("asns", eb08100
, 2, (RF
, RF_IF
), rd_rm
),
23615 cCL("asnsp", eb08120
, 2, (RF
, RF_IF
), rd_rm
),
23616 cCL("asnsm", eb08140
, 2, (RF
, RF_IF
), rd_rm
),
23617 cCL("asnsz", eb08160
, 2, (RF
, RF_IF
), rd_rm
),
23618 cCL("asnd", eb08180
, 2, (RF
, RF_IF
), rd_rm
),
23619 cCL("asndp", eb081a0
, 2, (RF
, RF_IF
), rd_rm
),
23620 cCL("asndm", eb081c0
, 2, (RF
, RF_IF
), rd_rm
),
23621 cCL("asndz", eb081e0
, 2, (RF
, RF_IF
), rd_rm
),
23622 cCL("asne", eb88100
, 2, (RF
, RF_IF
), rd_rm
),
23623 cCL("asnep", eb88120
, 2, (RF
, RF_IF
), rd_rm
),
23624 cCL("asnem", eb88140
, 2, (RF
, RF_IF
), rd_rm
),
23625 cCL("asnez", eb88160
, 2, (RF
, RF_IF
), rd_rm
),
23627 cCL("acss", ec08100
, 2, (RF
, RF_IF
), rd_rm
),
23628 cCL("acssp", ec08120
, 2, (RF
, RF_IF
), rd_rm
),
23629 cCL("acssm", ec08140
, 2, (RF
, RF_IF
), rd_rm
),
23630 cCL("acssz", ec08160
, 2, (RF
, RF_IF
), rd_rm
),
23631 cCL("acsd", ec08180
, 2, (RF
, RF_IF
), rd_rm
),
23632 cCL("acsdp", ec081a0
, 2, (RF
, RF_IF
), rd_rm
),
23633 cCL("acsdm", ec081c0
, 2, (RF
, RF_IF
), rd_rm
),
23634 cCL("acsdz", ec081e0
, 2, (RF
, RF_IF
), rd_rm
),
23635 cCL("acse", ec88100
, 2, (RF
, RF_IF
), rd_rm
),
23636 cCL("acsep", ec88120
, 2, (RF
, RF_IF
), rd_rm
),
23637 cCL("acsem", ec88140
, 2, (RF
, RF_IF
), rd_rm
),
23638 cCL("acsez", ec88160
, 2, (RF
, RF_IF
), rd_rm
),
23640 cCL("atns", ed08100
, 2, (RF
, RF_IF
), rd_rm
),
23641 cCL("atnsp", ed08120
, 2, (RF
, RF_IF
), rd_rm
),
23642 cCL("atnsm", ed08140
, 2, (RF
, RF_IF
), rd_rm
),
23643 cCL("atnsz", ed08160
, 2, (RF
, RF_IF
), rd_rm
),
23644 cCL("atnd", ed08180
, 2, (RF
, RF_IF
), rd_rm
),
23645 cCL("atndp", ed081a0
, 2, (RF
, RF_IF
), rd_rm
),
23646 cCL("atndm", ed081c0
, 2, (RF
, RF_IF
), rd_rm
),
23647 cCL("atndz", ed081e0
, 2, (RF
, RF_IF
), rd_rm
),
23648 cCL("atne", ed88100
, 2, (RF
, RF_IF
), rd_rm
),
23649 cCL("atnep", ed88120
, 2, (RF
, RF_IF
), rd_rm
),
23650 cCL("atnem", ed88140
, 2, (RF
, RF_IF
), rd_rm
),
23651 cCL("atnez", ed88160
, 2, (RF
, RF_IF
), rd_rm
),
23653 cCL("urds", ee08100
, 2, (RF
, RF_IF
), rd_rm
),
23654 cCL("urdsp", ee08120
, 2, (RF
, RF_IF
), rd_rm
),
23655 cCL("urdsm", ee08140
, 2, (RF
, RF_IF
), rd_rm
),
23656 cCL("urdsz", ee08160
, 2, (RF
, RF_IF
), rd_rm
),
23657 cCL("urdd", ee08180
, 2, (RF
, RF_IF
), rd_rm
),
23658 cCL("urddp", ee081a0
, 2, (RF
, RF_IF
), rd_rm
),
23659 cCL("urddm", ee081c0
, 2, (RF
, RF_IF
), rd_rm
),
23660 cCL("urddz", ee081e0
, 2, (RF
, RF_IF
), rd_rm
),
23661 cCL("urde", ee88100
, 2, (RF
, RF_IF
), rd_rm
),
23662 cCL("urdep", ee88120
, 2, (RF
, RF_IF
), rd_rm
),
23663 cCL("urdem", ee88140
, 2, (RF
, RF_IF
), rd_rm
),
23664 cCL("urdez", ee88160
, 2, (RF
, RF_IF
), rd_rm
),
23666 cCL("nrms", ef08100
, 2, (RF
, RF_IF
), rd_rm
),
23667 cCL("nrmsp", ef08120
, 2, (RF
, RF_IF
), rd_rm
),
23668 cCL("nrmsm", ef08140
, 2, (RF
, RF_IF
), rd_rm
),
23669 cCL("nrmsz", ef08160
, 2, (RF
, RF_IF
), rd_rm
),
23670 cCL("nrmd", ef08180
, 2, (RF
, RF_IF
), rd_rm
),
23671 cCL("nrmdp", ef081a0
, 2, (RF
, RF_IF
), rd_rm
),
23672 cCL("nrmdm", ef081c0
, 2, (RF
, RF_IF
), rd_rm
),
23673 cCL("nrmdz", ef081e0
, 2, (RF
, RF_IF
), rd_rm
),
23674 cCL("nrme", ef88100
, 2, (RF
, RF_IF
), rd_rm
),
23675 cCL("nrmep", ef88120
, 2, (RF
, RF_IF
), rd_rm
),
23676 cCL("nrmem", ef88140
, 2, (RF
, RF_IF
), rd_rm
),
23677 cCL("nrmez", ef88160
, 2, (RF
, RF_IF
), rd_rm
),
23679 cCL("adfs", e000100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23680 cCL("adfsp", e000120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23681 cCL("adfsm", e000140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23682 cCL("adfsz", e000160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23683 cCL("adfd", e000180
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23684 cCL("adfdp", e0001a0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23685 cCL("adfdm", e0001c0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23686 cCL("adfdz", e0001e0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23687 cCL("adfe", e080100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23688 cCL("adfep", e080120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23689 cCL("adfem", e080140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23690 cCL("adfez", e080160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23692 cCL("sufs", e200100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23693 cCL("sufsp", e200120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23694 cCL("sufsm", e200140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23695 cCL("sufsz", e200160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23696 cCL("sufd", e200180
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23697 cCL("sufdp", e2001a0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23698 cCL("sufdm", e2001c0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23699 cCL("sufdz", e2001e0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23700 cCL("sufe", e280100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23701 cCL("sufep", e280120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23702 cCL("sufem", e280140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23703 cCL("sufez", e280160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23705 cCL("rsfs", e300100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23706 cCL("rsfsp", e300120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23707 cCL("rsfsm", e300140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23708 cCL("rsfsz", e300160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23709 cCL("rsfd", e300180
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23710 cCL("rsfdp", e3001a0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23711 cCL("rsfdm", e3001c0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23712 cCL("rsfdz", e3001e0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23713 cCL("rsfe", e380100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23714 cCL("rsfep", e380120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23715 cCL("rsfem", e380140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23716 cCL("rsfez", e380160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23718 cCL("mufs", e100100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23719 cCL("mufsp", e100120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23720 cCL("mufsm", e100140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23721 cCL("mufsz", e100160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23722 cCL("mufd", e100180
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23723 cCL("mufdp", e1001a0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23724 cCL("mufdm", e1001c0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23725 cCL("mufdz", e1001e0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23726 cCL("mufe", e180100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23727 cCL("mufep", e180120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23728 cCL("mufem", e180140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23729 cCL("mufez", e180160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23731 cCL("dvfs", e400100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23732 cCL("dvfsp", e400120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23733 cCL("dvfsm", e400140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23734 cCL("dvfsz", e400160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23735 cCL("dvfd", e400180
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23736 cCL("dvfdp", e4001a0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23737 cCL("dvfdm", e4001c0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23738 cCL("dvfdz", e4001e0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23739 cCL("dvfe", e480100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23740 cCL("dvfep", e480120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23741 cCL("dvfem", e480140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23742 cCL("dvfez", e480160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23744 cCL("rdfs", e500100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23745 cCL("rdfsp", e500120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23746 cCL("rdfsm", e500140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23747 cCL("rdfsz", e500160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23748 cCL("rdfd", e500180
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23749 cCL("rdfdp", e5001a0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23750 cCL("rdfdm", e5001c0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23751 cCL("rdfdz", e5001e0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23752 cCL("rdfe", e580100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23753 cCL("rdfep", e580120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23754 cCL("rdfem", e580140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23755 cCL("rdfez", e580160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23757 cCL("pows", e600100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23758 cCL("powsp", e600120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23759 cCL("powsm", e600140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23760 cCL("powsz", e600160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23761 cCL("powd", e600180
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23762 cCL("powdp", e6001a0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23763 cCL("powdm", e6001c0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23764 cCL("powdz", e6001e0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23765 cCL("powe", e680100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23766 cCL("powep", e680120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23767 cCL("powem", e680140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23768 cCL("powez", e680160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23770 cCL("rpws", e700100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23771 cCL("rpwsp", e700120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23772 cCL("rpwsm", e700140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23773 cCL("rpwsz", e700160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23774 cCL("rpwd", e700180
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23775 cCL("rpwdp", e7001a0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23776 cCL("rpwdm", e7001c0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23777 cCL("rpwdz", e7001e0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23778 cCL("rpwe", e780100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23779 cCL("rpwep", e780120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23780 cCL("rpwem", e780140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23781 cCL("rpwez", e780160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23783 cCL("rmfs", e800100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23784 cCL("rmfsp", e800120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23785 cCL("rmfsm", e800140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23786 cCL("rmfsz", e800160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23787 cCL("rmfd", e800180
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23788 cCL("rmfdp", e8001a0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23789 cCL("rmfdm", e8001c0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23790 cCL("rmfdz", e8001e0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23791 cCL("rmfe", e880100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23792 cCL("rmfep", e880120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23793 cCL("rmfem", e880140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23794 cCL("rmfez", e880160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23796 cCL("fmls", e900100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23797 cCL("fmlsp", e900120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23798 cCL("fmlsm", e900140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23799 cCL("fmlsz", e900160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23800 cCL("fmld", e900180
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23801 cCL("fmldp", e9001a0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23802 cCL("fmldm", e9001c0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23803 cCL("fmldz", e9001e0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23804 cCL("fmle", e980100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23805 cCL("fmlep", e980120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23806 cCL("fmlem", e980140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23807 cCL("fmlez", e980160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23809 cCL("fdvs", ea00100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23810 cCL("fdvsp", ea00120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23811 cCL("fdvsm", ea00140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23812 cCL("fdvsz", ea00160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23813 cCL("fdvd", ea00180
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23814 cCL("fdvdp", ea001a0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23815 cCL("fdvdm", ea001c0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23816 cCL("fdvdz", ea001e0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23817 cCL("fdve", ea80100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23818 cCL("fdvep", ea80120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23819 cCL("fdvem", ea80140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23820 cCL("fdvez", ea80160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23822 cCL("frds", eb00100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23823 cCL("frdsp", eb00120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23824 cCL("frdsm", eb00140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23825 cCL("frdsz", eb00160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23826 cCL("frdd", eb00180
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23827 cCL("frddp", eb001a0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23828 cCL("frddm", eb001c0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23829 cCL("frddz", eb001e0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23830 cCL("frde", eb80100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23831 cCL("frdep", eb80120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23832 cCL("frdem", eb80140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23833 cCL("frdez", eb80160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23835 cCL("pols", ec00100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23836 cCL("polsp", ec00120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23837 cCL("polsm", ec00140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23838 cCL("polsz", ec00160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23839 cCL("pold", ec00180
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23840 cCL("poldp", ec001a0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23841 cCL("poldm", ec001c0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23842 cCL("poldz", ec001e0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23843 cCL("pole", ec80100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23844 cCL("polep", ec80120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23845 cCL("polem", ec80140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23846 cCL("polez", ec80160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
23848 cCE("cmf", e90f110
, 2, (RF
, RF_IF
), fpa_cmp
),
23849 C3E("cmfe", ed0f110
, 2, (RF
, RF_IF
), fpa_cmp
),
23850 cCE("cnf", eb0f110
, 2, (RF
, RF_IF
), fpa_cmp
),
23851 C3E("cnfe", ef0f110
, 2, (RF
, RF_IF
), fpa_cmp
),
23853 cCL("flts", e000110
, 2, (RF
, RR
), rn_rd
),
23854 cCL("fltsp", e000130
, 2, (RF
, RR
), rn_rd
),
23855 cCL("fltsm", e000150
, 2, (RF
, RR
), rn_rd
),
23856 cCL("fltsz", e000170
, 2, (RF
, RR
), rn_rd
),
23857 cCL("fltd", e000190
, 2, (RF
, RR
), rn_rd
),
23858 cCL("fltdp", e0001b0
, 2, (RF
, RR
), rn_rd
),
23859 cCL("fltdm", e0001d0
, 2, (RF
, RR
), rn_rd
),
23860 cCL("fltdz", e0001f0
, 2, (RF
, RR
), rn_rd
),
23861 cCL("flte", e080110
, 2, (RF
, RR
), rn_rd
),
23862 cCL("fltep", e080130
, 2, (RF
, RR
), rn_rd
),
23863 cCL("fltem", e080150
, 2, (RF
, RR
), rn_rd
),
23864 cCL("fltez", e080170
, 2, (RF
, RR
), rn_rd
),
23866 /* The implementation of the FIX instruction is broken on some
23867 assemblers, in that it accepts a precision specifier as well as a
23868 rounding specifier, despite the fact that this is meaningless.
23869 To be more compatible, we accept it as well, though of course it
23870 does not set any bits. */
23871 cCE("fix", e100110
, 2, (RR
, RF
), rd_rm
),
23872 cCL("fixp", e100130
, 2, (RR
, RF
), rd_rm
),
23873 cCL("fixm", e100150
, 2, (RR
, RF
), rd_rm
),
23874 cCL("fixz", e100170
, 2, (RR
, RF
), rd_rm
),
23875 cCL("fixsp", e100130
, 2, (RR
, RF
), rd_rm
),
23876 cCL("fixsm", e100150
, 2, (RR
, RF
), rd_rm
),
23877 cCL("fixsz", e100170
, 2, (RR
, RF
), rd_rm
),
23878 cCL("fixdp", e100130
, 2, (RR
, RF
), rd_rm
),
23879 cCL("fixdm", e100150
, 2, (RR
, RF
), rd_rm
),
23880 cCL("fixdz", e100170
, 2, (RR
, RF
), rd_rm
),
23881 cCL("fixep", e100130
, 2, (RR
, RF
), rd_rm
),
23882 cCL("fixem", e100150
, 2, (RR
, RF
), rd_rm
),
23883 cCL("fixez", e100170
, 2, (RR
, RF
), rd_rm
),
23885 /* Instructions that were new with the real FPA, call them V2. */
23887 #define ARM_VARIANT & fpu_fpa_ext_v2
23889 cCE("lfm", c100200
, 3, (RF
, I4b
, ADDR
), fpa_ldmstm
),
23890 cCL("lfmfd", c900200
, 3, (RF
, I4b
, ADDR
), fpa_ldmstm
),
23891 cCL("lfmea", d100200
, 3, (RF
, I4b
, ADDR
), fpa_ldmstm
),
23892 cCE("sfm", c000200
, 3, (RF
, I4b
, ADDR
), fpa_ldmstm
),
23893 cCL("sfmfd", d000200
, 3, (RF
, I4b
, ADDR
), fpa_ldmstm
),
23894 cCL("sfmea", c800200
, 3, (RF
, I4b
, ADDR
), fpa_ldmstm
),
23897 #define ARM_VARIANT & fpu_vfp_ext_v1xd /* VFP V1xD (single precision). */
23899 /* Moves and type conversions. */
23900 cCE("fmstat", ef1fa10
, 0, (), noargs
),
23901 cCE("vmrs", ef00a10
, 2, (APSR_RR
, RVC
), vmrs
),
23902 cCE("vmsr", ee00a10
, 2, (RVC
, RR
), vmsr
),
23903 cCE("fsitos", eb80ac0
, 2, (RVS
, RVS
), vfp_sp_monadic
),
23904 cCE("fuitos", eb80a40
, 2, (RVS
, RVS
), vfp_sp_monadic
),
23905 cCE("ftosis", ebd0a40
, 2, (RVS
, RVS
), vfp_sp_monadic
),
23906 cCE("ftosizs", ebd0ac0
, 2, (RVS
, RVS
), vfp_sp_monadic
),
23907 cCE("ftouis", ebc0a40
, 2, (RVS
, RVS
), vfp_sp_monadic
),
23908 cCE("ftouizs", ebc0ac0
, 2, (RVS
, RVS
), vfp_sp_monadic
),
23909 cCE("fmrx", ef00a10
, 2, (RR
, RVC
), rd_rn
),
23910 cCE("fmxr", ee00a10
, 2, (RVC
, RR
), rn_rd
),
23912 /* Memory operations. */
23913 cCE("flds", d100a00
, 2, (RVS
, ADDRGLDC
), vfp_sp_ldst
),
23914 cCE("fsts", d000a00
, 2, (RVS
, ADDRGLDC
), vfp_sp_ldst
),
23915 cCE("fldmias", c900a00
, 2, (RRnpctw
, VRSLST
), vfp_sp_ldstmia
),
23916 cCE("fldmfds", c900a00
, 2, (RRnpctw
, VRSLST
), vfp_sp_ldstmia
),
23917 cCE("fldmdbs", d300a00
, 2, (RRnpctw
, VRSLST
), vfp_sp_ldstmdb
),
23918 cCE("fldmeas", d300a00
, 2, (RRnpctw
, VRSLST
), vfp_sp_ldstmdb
),
23919 cCE("fldmiax", c900b00
, 2, (RRnpctw
, VRDLST
), vfp_xp_ldstmia
),
23920 cCE("fldmfdx", c900b00
, 2, (RRnpctw
, VRDLST
), vfp_xp_ldstmia
),
23921 cCE("fldmdbx", d300b00
, 2, (RRnpctw
, VRDLST
), vfp_xp_ldstmdb
),
23922 cCE("fldmeax", d300b00
, 2, (RRnpctw
, VRDLST
), vfp_xp_ldstmdb
),
23923 cCE("fstmias", c800a00
, 2, (RRnpctw
, VRSLST
), vfp_sp_ldstmia
),
23924 cCE("fstmeas", c800a00
, 2, (RRnpctw
, VRSLST
), vfp_sp_ldstmia
),
23925 cCE("fstmdbs", d200a00
, 2, (RRnpctw
, VRSLST
), vfp_sp_ldstmdb
),
23926 cCE("fstmfds", d200a00
, 2, (RRnpctw
, VRSLST
), vfp_sp_ldstmdb
),
23927 cCE("fstmiax", c800b00
, 2, (RRnpctw
, VRDLST
), vfp_xp_ldstmia
),
23928 cCE("fstmeax", c800b00
, 2, (RRnpctw
, VRDLST
), vfp_xp_ldstmia
),
23929 cCE("fstmdbx", d200b00
, 2, (RRnpctw
, VRDLST
), vfp_xp_ldstmdb
),
23930 cCE("fstmfdx", d200b00
, 2, (RRnpctw
, VRDLST
), vfp_xp_ldstmdb
),
23932 /* Monadic operations. */
23933 cCE("fabss", eb00ac0
, 2, (RVS
, RVS
), vfp_sp_monadic
),
23934 cCE("fnegs", eb10a40
, 2, (RVS
, RVS
), vfp_sp_monadic
),
23935 cCE("fsqrts", eb10ac0
, 2, (RVS
, RVS
), vfp_sp_monadic
),
23937 /* Dyadic operations. */
23938 cCE("fadds", e300a00
, 3, (RVS
, RVS
, RVS
), vfp_sp_dyadic
),
23939 cCE("fsubs", e300a40
, 3, (RVS
, RVS
, RVS
), vfp_sp_dyadic
),
23940 cCE("fmuls", e200a00
, 3, (RVS
, RVS
, RVS
), vfp_sp_dyadic
),
23941 cCE("fdivs", e800a00
, 3, (RVS
, RVS
, RVS
), vfp_sp_dyadic
),
23942 cCE("fmacs", e000a00
, 3, (RVS
, RVS
, RVS
), vfp_sp_dyadic
),
23943 cCE("fmscs", e100a00
, 3, (RVS
, RVS
, RVS
), vfp_sp_dyadic
),
23944 cCE("fnmuls", e200a40
, 3, (RVS
, RVS
, RVS
), vfp_sp_dyadic
),
23945 cCE("fnmacs", e000a40
, 3, (RVS
, RVS
, RVS
), vfp_sp_dyadic
),
23946 cCE("fnmscs", e100a40
, 3, (RVS
, RVS
, RVS
), vfp_sp_dyadic
),
23949 cCE("fcmps", eb40a40
, 2, (RVS
, RVS
), vfp_sp_monadic
),
23950 cCE("fcmpzs", eb50a40
, 1, (RVS
), vfp_sp_compare_z
),
23951 cCE("fcmpes", eb40ac0
, 2, (RVS
, RVS
), vfp_sp_monadic
),
23952 cCE("fcmpezs", eb50ac0
, 1, (RVS
), vfp_sp_compare_z
),
23954 /* Double precision load/store are still present on single precision
23955 implementations. */
23956 cCE("fldd", d100b00
, 2, (RVD
, ADDRGLDC
), vfp_dp_ldst
),
23957 cCE("fstd", d000b00
, 2, (RVD
, ADDRGLDC
), vfp_dp_ldst
),
23958 cCE("fldmiad", c900b00
, 2, (RRnpctw
, VRDLST
), vfp_dp_ldstmia
),
23959 cCE("fldmfdd", c900b00
, 2, (RRnpctw
, VRDLST
), vfp_dp_ldstmia
),
23960 cCE("fldmdbd", d300b00
, 2, (RRnpctw
, VRDLST
), vfp_dp_ldstmdb
),
23961 cCE("fldmead", d300b00
, 2, (RRnpctw
, VRDLST
), vfp_dp_ldstmdb
),
23962 cCE("fstmiad", c800b00
, 2, (RRnpctw
, VRDLST
), vfp_dp_ldstmia
),
23963 cCE("fstmead", c800b00
, 2, (RRnpctw
, VRDLST
), vfp_dp_ldstmia
),
23964 cCE("fstmdbd", d200b00
, 2, (RRnpctw
, VRDLST
), vfp_dp_ldstmdb
),
23965 cCE("fstmfdd", d200b00
, 2, (RRnpctw
, VRDLST
), vfp_dp_ldstmdb
),
23968 #define ARM_VARIANT & fpu_vfp_ext_v1 /* VFP V1 (Double precision). */
23970 /* Moves and type conversions. */
23971 cCE("fcvtds", eb70ac0
, 2, (RVD
, RVS
), vfp_dp_sp_cvt
),
23972 cCE("fcvtsd", eb70bc0
, 2, (RVS
, RVD
), vfp_sp_dp_cvt
),
23973 cCE("fmdhr", e200b10
, 2, (RVD
, RR
), vfp_dp_rn_rd
),
23974 cCE("fmdlr", e000b10
, 2, (RVD
, RR
), vfp_dp_rn_rd
),
23975 cCE("fmrdh", e300b10
, 2, (RR
, RVD
), vfp_dp_rd_rn
),
23976 cCE("fmrdl", e100b10
, 2, (RR
, RVD
), vfp_dp_rd_rn
),
23977 cCE("fsitod", eb80bc0
, 2, (RVD
, RVS
), vfp_dp_sp_cvt
),
23978 cCE("fuitod", eb80b40
, 2, (RVD
, RVS
), vfp_dp_sp_cvt
),
23979 cCE("ftosid", ebd0b40
, 2, (RVS
, RVD
), vfp_sp_dp_cvt
),
23980 cCE("ftosizd", ebd0bc0
, 2, (RVS
, RVD
), vfp_sp_dp_cvt
),
23981 cCE("ftouid", ebc0b40
, 2, (RVS
, RVD
), vfp_sp_dp_cvt
),
23982 cCE("ftouizd", ebc0bc0
, 2, (RVS
, RVD
), vfp_sp_dp_cvt
),
23984 /* Monadic operations. */
23985 cCE("fabsd", eb00bc0
, 2, (RVD
, RVD
), vfp_dp_rd_rm
),
23986 cCE("fnegd", eb10b40
, 2, (RVD
, RVD
), vfp_dp_rd_rm
),
23987 cCE("fsqrtd", eb10bc0
, 2, (RVD
, RVD
), vfp_dp_rd_rm
),
23989 /* Dyadic operations. */
23990 cCE("faddd", e300b00
, 3, (RVD
, RVD
, RVD
), vfp_dp_rd_rn_rm
),
23991 cCE("fsubd", e300b40
, 3, (RVD
, RVD
, RVD
), vfp_dp_rd_rn_rm
),
23992 cCE("fmuld", e200b00
, 3, (RVD
, RVD
, RVD
), vfp_dp_rd_rn_rm
),
23993 cCE("fdivd", e800b00
, 3, (RVD
, RVD
, RVD
), vfp_dp_rd_rn_rm
),
23994 cCE("fmacd", e000b00
, 3, (RVD
, RVD
, RVD
), vfp_dp_rd_rn_rm
),
23995 cCE("fmscd", e100b00
, 3, (RVD
, RVD
, RVD
), vfp_dp_rd_rn_rm
),
23996 cCE("fnmuld", e200b40
, 3, (RVD
, RVD
, RVD
), vfp_dp_rd_rn_rm
),
23997 cCE("fnmacd", e000b40
, 3, (RVD
, RVD
, RVD
), vfp_dp_rd_rn_rm
),
23998 cCE("fnmscd", e100b40
, 3, (RVD
, RVD
, RVD
), vfp_dp_rd_rn_rm
),
24001 cCE("fcmpd", eb40b40
, 2, (RVD
, RVD
), vfp_dp_rd_rm
),
24002 cCE("fcmpzd", eb50b40
, 1, (RVD
), vfp_dp_rd
),
24003 cCE("fcmped", eb40bc0
, 2, (RVD
, RVD
), vfp_dp_rd_rm
),
24004 cCE("fcmpezd", eb50bc0
, 1, (RVD
), vfp_dp_rd
),
24006 /* Instructions which may belong to either the Neon or VFP instruction sets.
24007 Individual encoder functions perform additional architecture checks. */
24009 #define ARM_VARIANT & fpu_vfp_ext_v1xd
24010 #undef THUMB_VARIANT
24011 #define THUMB_VARIANT & fpu_vfp_ext_v1xd
24013 /* These mnemonics are unique to VFP. */
24014 NCE(vsqrt
, 0, 2, (RVSD
, RVSD
), vfp_nsyn_sqrt
),
24015 NCE(vdiv
, 0, 3, (RVSD
, RVSD
, RVSD
), vfp_nsyn_div
),
24016 nCE(vnmul
, _vnmul
, 3, (RVSD
, RVSD
, RVSD
), vfp_nsyn_nmul
),
24017 nCE(vnmla
, _vnmla
, 3, (RVSD
, RVSD
, RVSD
), vfp_nsyn_nmul
),
24018 nCE(vnmls
, _vnmls
, 3, (RVSD
, RVSD
, RVSD
), vfp_nsyn_nmul
),
24019 NCE(vpush
, 0, 1, (VRSDLST
), vfp_nsyn_push
),
24020 NCE(vpop
, 0, 1, (VRSDLST
), vfp_nsyn_pop
),
24021 NCE(vcvtz
, 0, 2, (RVSD
, RVSD
), vfp_nsyn_cvtz
),
24023 /* Mnemonics shared by Neon and VFP. */
24024 nCEF(vmls
, _vmls
, 3, (RNSDQ
, oRNSDQ
, RNSDQ_RNSC
), neon_mac_maybe_scalar
),
24026 NCE(vldm
, c900b00
, 2, (RRnpctw
, VRSDLST
), neon_ldm_stm
),
24027 NCE(vldmia
, c900b00
, 2, (RRnpctw
, VRSDLST
), neon_ldm_stm
),
24028 NCE(vldmdb
, d100b00
, 2, (RRnpctw
, VRSDLST
), neon_ldm_stm
),
24029 NCE(vstm
, c800b00
, 2, (RRnpctw
, VRSDLST
), neon_ldm_stm
),
24030 NCE(vstmia
, c800b00
, 2, (RRnpctw
, VRSDLST
), neon_ldm_stm
),
24031 NCE(vstmdb
, d000b00
, 2, (RRnpctw
, VRSDLST
), neon_ldm_stm
),
24033 mnCEF(vcvt
, _vcvt
, 3, (RNSDQMQ
, RNSDQMQ
, oI32z
), neon_cvt
),
24034 nCEF(vcvtr
, _vcvt
, 2, (RNSDQ
, RNSDQ
), neon_cvtr
),
24035 MNCEF(vcvtb
, eb20a40
, 3, (RVSDMQ
, RVSDMQ
, oI32b
), neon_cvtb
),
24036 MNCEF(vcvtt
, eb20a40
, 3, (RVSDMQ
, RVSDMQ
, oI32b
), neon_cvtt
),
24039 /* NOTE: All VMOV encoding is special-cased! */
24040 NCE(vmovq
, 0, 1, (VMOV
), neon_mov
),
24042 #undef THUMB_VARIANT
24043 /* Could be either VLDR/VSTR or VLDR/VSTR (system register) which are guarded
24044 by different feature bits. Since we are setting the Thumb guard, we can
24045 require Thumb-1 which makes it a nop guard and set the right feature bit in
24046 do_vldr_vstr (). */
24047 #define THUMB_VARIANT & arm_ext_v4t
24048 NCE(vldr
, d100b00
, 2, (VLDR
, ADDRGLDC
), vldr_vstr
),
24049 NCE(vstr
, d000b00
, 2, (VLDR
, ADDRGLDC
), vldr_vstr
),
24052 #define ARM_VARIANT & arm_ext_fp16
24053 #undef THUMB_VARIANT
24054 #define THUMB_VARIANT & arm_ext_fp16
24055 /* New instructions added from v8.2, allowing the extraction and insertion of
24056 the upper 16 bits of a 32-bit vector register. */
24057 NCE (vmovx
, eb00a40
, 2, (RVS
, RVS
), neon_movhf
),
24058 NCE (vins
, eb00ac0
, 2, (RVS
, RVS
), neon_movhf
),
24060 /* New backported fma/fms instructions optional in v8.2. */
24061 NCE (vfmal
, 810, 3, (RNDQ
, RNSD
, RNSD_RNSC
), neon_vfmal
),
24062 NCE (vfmsl
, 810, 3, (RNDQ
, RNSD
, RNSD_RNSC
), neon_vfmsl
),
24064 #undef THUMB_VARIANT
24065 #define THUMB_VARIANT & fpu_neon_ext_v1
24067 #define ARM_VARIANT & fpu_neon_ext_v1
24069 /* Data processing with three registers of the same length. */
24070 /* integer ops, valid types S8 S16 S32 U8 U16 U32. */
24071 NUF(vaba
, 0000710, 3, (RNDQ
, RNDQ
, RNDQ
), neon_dyadic_i_su
),
24072 NUF(vabaq
, 0000710, 3, (RNQ
, RNQ
, RNQ
), neon_dyadic_i_su
),
24073 NUF(vhaddq
, 0000000, 3, (RNQ
, oRNQ
, RNQ
), neon_dyadic_i_su
),
24074 NUF(vrhaddq
, 0000100, 3, (RNQ
, oRNQ
, RNQ
), neon_dyadic_i_su
),
24075 NUF(vhsubq
, 0000200, 3, (RNQ
, oRNQ
, RNQ
), neon_dyadic_i_su
),
24076 /* integer ops, valid types S8 S16 S32 S64 U8 U16 U32 U64. */
24077 NUF(vqaddq
, 0000010, 3, (RNQ
, oRNQ
, RNQ
), neon_dyadic_i64_su
),
24078 NUF(vqsubq
, 0000210, 3, (RNQ
, oRNQ
, RNQ
), neon_dyadic_i64_su
),
24079 NUF(vrshl
, 0000500, 3, (RNDQ
, oRNDQ
, RNDQ
), neon_rshl
),
24080 NUF(vrshlq
, 0000500, 3, (RNQ
, oRNQ
, RNQ
), neon_rshl
),
24081 NUF(vqrshl
, 0000510, 3, (RNDQ
, oRNDQ
, RNDQ
), neon_rshl
),
24082 NUF(vqrshlq
, 0000510, 3, (RNQ
, oRNQ
, RNQ
), neon_rshl
),
24083 /* If not immediate, fall back to neon_dyadic_i64_su.
24084 shl_imm should accept I8 I16 I32 I64,
24085 qshl_imm should accept S8 S16 S32 S64 U8 U16 U32 U64. */
24086 nUF(vshl
, _vshl
, 3, (RNDQ
, oRNDQ
, RNDQ_I63b
), neon_shl_imm
),
24087 nUF(vshlq
, _vshl
, 3, (RNQ
, oRNQ
, RNDQ_I63b
), neon_shl_imm
),
24088 nUF(vqshl
, _vqshl
, 3, (RNDQ
, oRNDQ
, RNDQ_I63b
), neon_qshl_imm
),
24089 nUF(vqshlq
, _vqshl
, 3, (RNQ
, oRNQ
, RNDQ_I63b
), neon_qshl_imm
),
24090 /* Logic ops, types optional & ignored. */
24091 nUF(vandq
, _vand
, 3, (RNQ
, oRNQ
, RNDQ_Ibig
), neon_logic
),
24092 nUF(vbicq
, _vbic
, 3, (RNQ
, oRNQ
, RNDQ_Ibig
), neon_logic
),
24093 nUF(vorrq
, _vorr
, 3, (RNQ
, oRNQ
, RNDQ_Ibig
), neon_logic
),
24094 nUF(vornq
, _vorn
, 3, (RNQ
, oRNQ
, RNDQ_Ibig
), neon_logic
),
24095 nUF(veorq
, _veor
, 3, (RNQ
, oRNQ
, RNQ
), neon_logic
),
24096 /* Bitfield ops, untyped. */
24097 NUF(vbsl
, 1100110, 3, (RNDQ
, RNDQ
, RNDQ
), neon_bitfield
),
24098 NUF(vbslq
, 1100110, 3, (RNQ
, RNQ
, RNQ
), neon_bitfield
),
24099 NUF(vbit
, 1200110, 3, (RNDQ
, RNDQ
, RNDQ
), neon_bitfield
),
24100 NUF(vbitq
, 1200110, 3, (RNQ
, RNQ
, RNQ
), neon_bitfield
),
24101 NUF(vbif
, 1300110, 3, (RNDQ
, RNDQ
, RNDQ
), neon_bitfield
),
24102 NUF(vbifq
, 1300110, 3, (RNQ
, RNQ
, RNQ
), neon_bitfield
),
24103 /* Int and float variants, types S8 S16 S32 U8 U16 U32 F16 F32. */
24104 nUF(vabdq
, _vabd
, 3, (RNQ
, oRNQ
, RNQ
), neon_dyadic_if_su
),
24105 nUF(vmaxq
, _vmax
, 3, (RNQ
, oRNQ
, RNQ
), neon_dyadic_if_su
),
24106 nUF(vminq
, _vmin
, 3, (RNQ
, oRNQ
, RNQ
), neon_dyadic_if_su
),
24107 /* Comparisons. Types S8 S16 S32 U8 U16 U32 F32. Non-immediate versions fall
24108 back to neon_dyadic_if_su. */
24109 nUF(vcge
, _vcge
, 3, (RNDQ
, oRNDQ
, RNDQ_I0
), neon_cmp
),
24110 nUF(vcgeq
, _vcge
, 3, (RNQ
, oRNQ
, RNDQ_I0
), neon_cmp
),
24111 nUF(vcgt
, _vcgt
, 3, (RNDQ
, oRNDQ
, RNDQ_I0
), neon_cmp
),
24112 nUF(vcgtq
, _vcgt
, 3, (RNQ
, oRNQ
, RNDQ_I0
), neon_cmp
),
24113 nUF(vclt
, _vclt
, 3, (RNDQ
, oRNDQ
, RNDQ_I0
), neon_cmp_inv
),
24114 nUF(vcltq
, _vclt
, 3, (RNQ
, oRNQ
, RNDQ_I0
), neon_cmp_inv
),
24115 nUF(vcle
, _vcle
, 3, (RNDQ
, oRNDQ
, RNDQ_I0
), neon_cmp_inv
),
24116 nUF(vcleq
, _vcle
, 3, (RNQ
, oRNQ
, RNDQ_I0
), neon_cmp_inv
),
24117 /* Comparison. Type I8 I16 I32 F32. */
24118 nUF(vceq
, _vceq
, 3, (RNDQ
, oRNDQ
, RNDQ_I0
), neon_ceq
),
24119 nUF(vceqq
, _vceq
, 3, (RNQ
, oRNQ
, RNDQ_I0
), neon_ceq
),
24120 /* As above, D registers only. */
24121 nUF(vpmax
, _vpmax
, 3, (RND
, oRND
, RND
), neon_dyadic_if_su_d
),
24122 nUF(vpmin
, _vpmin
, 3, (RND
, oRND
, RND
), neon_dyadic_if_su_d
),
24123 /* Int and float variants, signedness unimportant. */
24124 nUF(vmlaq
, _vmla
, 3, (RNQ
, oRNQ
, RNDQ_RNSC
), neon_mac_maybe_scalar
),
24125 nUF(vmlsq
, _vmls
, 3, (RNQ
, oRNQ
, RNDQ_RNSC
), neon_mac_maybe_scalar
),
24126 nUF(vpadd
, _vpadd
, 3, (RND
, oRND
, RND
), neon_dyadic_if_i_d
),
24127 /* Add/sub take types I8 I16 I32 I64 F32. */
24128 nUF(vaddq
, _vadd
, 3, (RNQ
, oRNQ
, RNQ
), neon_addsub_if_i
),
24129 nUF(vsubq
, _vsub
, 3, (RNQ
, oRNQ
, RNQ
), neon_addsub_if_i
),
24130 /* vtst takes sizes 8, 16, 32. */
24131 NUF(vtst
, 0000810, 3, (RNDQ
, oRNDQ
, RNDQ
), neon_tst
),
24132 NUF(vtstq
, 0000810, 3, (RNQ
, oRNQ
, RNQ
), neon_tst
),
24133 /* VMUL takes I8 I16 I32 F32 P8. */
24134 nUF(vmulq
, _vmul
, 3, (RNQ
, oRNQ
, RNDQ_RNSC
), neon_mul
),
24135 /* VQD{R}MULH takes S16 S32. */
24136 nUF(vqdmulhq
, _vqdmulh
, 3, (RNQ
, oRNQ
, RNDQ_RNSC
), neon_qdmulh
),
24137 nUF(vqrdmulhq
, _vqrdmulh
, 3, (RNQ
, oRNQ
, RNDQ_RNSC
), neon_qdmulh
),
24138 NUF(vacge
, 0000e10
, 3, (RNDQ
, oRNDQ
, RNDQ
), neon_fcmp_absolute
),
24139 NUF(vacgeq
, 0000e10
, 3, (RNQ
, oRNQ
, RNQ
), neon_fcmp_absolute
),
24140 NUF(vacgt
, 0200e10
, 3, (RNDQ
, oRNDQ
, RNDQ
), neon_fcmp_absolute
),
24141 NUF(vacgtq
, 0200e10
, 3, (RNQ
, oRNQ
, RNQ
), neon_fcmp_absolute
),
24142 NUF(vaclt
, 0200e10
, 3, (RNDQ
, oRNDQ
, RNDQ
), neon_fcmp_absolute_inv
),
24143 NUF(vacltq
, 0200e10
, 3, (RNQ
, oRNQ
, RNQ
), neon_fcmp_absolute_inv
),
24144 NUF(vacle
, 0000e10
, 3, (RNDQ
, oRNDQ
, RNDQ
), neon_fcmp_absolute_inv
),
24145 NUF(vacleq
, 0000e10
, 3, (RNQ
, oRNQ
, RNQ
), neon_fcmp_absolute_inv
),
24146 NUF(vrecps
, 0000f10
, 3, (RNDQ
, oRNDQ
, RNDQ
), neon_step
),
24147 NUF(vrecpsq
, 0000f10
, 3, (RNQ
, oRNQ
, RNQ
), neon_step
),
24148 NUF(vrsqrts
, 0200f10
, 3, (RNDQ
, oRNDQ
, RNDQ
), neon_step
),
24149 NUF(vrsqrtsq
, 0200f10
, 3, (RNQ
, oRNQ
, RNQ
), neon_step
),
24150 /* ARM v8.1 extension. */
24151 nUF (vqrdmlahq
, _vqrdmlah
, 3, (RNQ
, oRNQ
, RNDQ_RNSC
), neon_qrdmlah
),
24152 nUF (vqrdmlsh
, _vqrdmlsh
, 3, (RNDQ
, oRNDQ
, RNDQ_RNSC
), neon_qrdmlah
),
24153 nUF (vqrdmlshq
, _vqrdmlsh
, 3, (RNQ
, oRNQ
, RNDQ_RNSC
), neon_qrdmlah
),
24155 /* Two address, int/float. Types S8 S16 S32 F32. */
24156 NUF(vabsq
, 1b10300
, 2, (RNQ
, RNQ
), neon_abs_neg
),
24157 NUF(vnegq
, 1b10380
, 2, (RNQ
, RNQ
), neon_abs_neg
),
24159 /* Data processing with two registers and a shift amount. */
24160 /* Right shifts, and variants with rounding.
24161 Types accepted S8 S16 S32 S64 U8 U16 U32 U64. */
24162 NUF(vshr
, 0800010, 3, (RNDQ
, oRNDQ
, I64z
), neon_rshift_round_imm
),
24163 NUF(vshrq
, 0800010, 3, (RNQ
, oRNQ
, I64z
), neon_rshift_round_imm
),
24164 NUF(vrshr
, 0800210, 3, (RNDQ
, oRNDQ
, I64z
), neon_rshift_round_imm
),
24165 NUF(vrshrq
, 0800210, 3, (RNQ
, oRNQ
, I64z
), neon_rshift_round_imm
),
24166 NUF(vsra
, 0800110, 3, (RNDQ
, oRNDQ
, I64
), neon_rshift_round_imm
),
24167 NUF(vsraq
, 0800110, 3, (RNQ
, oRNQ
, I64
), neon_rshift_round_imm
),
24168 NUF(vrsra
, 0800310, 3, (RNDQ
, oRNDQ
, I64
), neon_rshift_round_imm
),
24169 NUF(vrsraq
, 0800310, 3, (RNQ
, oRNQ
, I64
), neon_rshift_round_imm
),
24170 /* Shift and insert. Sizes accepted 8 16 32 64. */
24171 NUF(vsli
, 1800510, 3, (RNDQ
, oRNDQ
, I63
), neon_sli
),
24172 NUF(vsliq
, 1800510, 3, (RNQ
, oRNQ
, I63
), neon_sli
),
24173 NUF(vsri
, 1800410, 3, (RNDQ
, oRNDQ
, I64
), neon_sri
),
24174 NUF(vsriq
, 1800410, 3, (RNQ
, oRNQ
, I64
), neon_sri
),
24175 /* QSHL{U} immediate accepts S8 S16 S32 S64 U8 U16 U32 U64. */
24176 NUF(vqshlu
, 1800610, 3, (RNDQ
, oRNDQ
, I63
), neon_qshlu_imm
),
24177 NUF(vqshluq
, 1800610, 3, (RNQ
, oRNQ
, I63
), neon_qshlu_imm
),
24178 /* Right shift immediate, saturating & narrowing, with rounding variants.
24179 Types accepted S16 S32 S64 U16 U32 U64. */
24180 NUF(vqshrn
, 0800910, 3, (RND
, RNQ
, I32z
), neon_rshift_sat_narrow
),
24181 NUF(vqrshrn
, 0800950, 3, (RND
, RNQ
, I32z
), neon_rshift_sat_narrow
),
24182 /* As above, unsigned. Types accepted S16 S32 S64. */
24183 NUF(vqshrun
, 0800810, 3, (RND
, RNQ
, I32z
), neon_rshift_sat_narrow_u
),
24184 NUF(vqrshrun
, 0800850, 3, (RND
, RNQ
, I32z
), neon_rshift_sat_narrow_u
),
24185 /* Right shift narrowing. Types accepted I16 I32 I64. */
24186 NUF(vshrn
, 0800810, 3, (RND
, RNQ
, I32z
), neon_rshift_narrow
),
24187 NUF(vrshrn
, 0800850, 3, (RND
, RNQ
, I32z
), neon_rshift_narrow
),
24188 /* Special case. Types S8 S16 S32 U8 U16 U32. Handles max shift variant. */
24189 nUF(vshll
, _vshll
, 3, (RNQ
, RND
, I32
), neon_shll
),
24190 /* CVT with optional immediate for fixed-point variant. */
24191 nUF(vcvtq
, _vcvt
, 3, (RNQ
, RNQ
, oI32b
), neon_cvt
),
24193 nUF(vmvnq
, _vmvn
, 2, (RNQ
, RNDQ_Ibig
), neon_mvn
),
24195 /* Data processing, three registers of different lengths. */
24196 /* Dyadic, long insns. Types S8 S16 S32 U8 U16 U32. */
24197 NUF(vabal
, 0800500, 3, (RNQ
, RND
, RND
), neon_abal
),
24198 /* If not scalar, fall back to neon_dyadic_long.
24199 Vector types as above, scalar types S16 S32 U16 U32. */
24200 nUF(vmlal
, _vmlal
, 3, (RNQ
, RND
, RND_RNSC
), neon_mac_maybe_scalar_long
),
24201 nUF(vmlsl
, _vmlsl
, 3, (RNQ
, RND
, RND_RNSC
), neon_mac_maybe_scalar_long
),
24202 /* Dyadic, widening insns. Types S8 S16 S32 U8 U16 U32. */
24203 NUF(vaddw
, 0800100, 3, (RNQ
, oRNQ
, RND
), neon_dyadic_wide
),
24204 NUF(vsubw
, 0800300, 3, (RNQ
, oRNQ
, RND
), neon_dyadic_wide
),
24205 /* Dyadic, narrowing insns. Types I16 I32 I64. */
24206 NUF(vaddhn
, 0800400, 3, (RND
, RNQ
, RNQ
), neon_dyadic_narrow
),
24207 NUF(vraddhn
, 1800400, 3, (RND
, RNQ
, RNQ
), neon_dyadic_narrow
),
24208 NUF(vsubhn
, 0800600, 3, (RND
, RNQ
, RNQ
), neon_dyadic_narrow
),
24209 NUF(vrsubhn
, 1800600, 3, (RND
, RNQ
, RNQ
), neon_dyadic_narrow
),
24210 /* Saturating doubling multiplies. Types S16 S32. */
24211 nUF(vqdmlal
, _vqdmlal
, 3, (RNQ
, RND
, RND_RNSC
), neon_mul_sat_scalar_long
),
24212 nUF(vqdmlsl
, _vqdmlsl
, 3, (RNQ
, RND
, RND_RNSC
), neon_mul_sat_scalar_long
),
24213 nUF(vqdmull
, _vqdmull
, 3, (RNQ
, RND
, RND_RNSC
), neon_mul_sat_scalar_long
),
24214 /* VMULL. Vector types S8 S16 S32 U8 U16 U32 P8, scalar types
24215 S16 S32 U16 U32. */
24216 nUF(vmull
, _vmull
, 3, (RNQ
, RND
, RND_RNSC
), neon_vmull
),
24218 /* Extract. Size 8. */
24219 NUF(vext
, 0b00000, 4, (RNDQ
, oRNDQ
, RNDQ
, I15
), neon_ext
),
24220 NUF(vextq
, 0b00000, 4, (RNQ
, oRNQ
, RNQ
, I15
), neon_ext
),
24222 /* Two registers, miscellaneous. */
24223 /* Reverse. Sizes 8 16 32 (must be < size in opcode). */
24224 NUF(vrev64
, 1b00000
, 2, (RNDQ
, RNDQ
), neon_rev
),
24225 NUF(vrev64q
, 1b00000
, 2, (RNQ
, RNQ
), neon_rev
),
24226 NUF(vrev32
, 1b00080
, 2, (RNDQ
, RNDQ
), neon_rev
),
24227 NUF(vrev32q
, 1b00080
, 2, (RNQ
, RNQ
), neon_rev
),
24228 NUF(vrev16
, 1b00100
, 2, (RNDQ
, RNDQ
), neon_rev
),
24229 NUF(vrev16q
, 1b00100
, 2, (RNQ
, RNQ
), neon_rev
),
24230 /* Vector replicate. Sizes 8 16 32. */
24231 nCE(vdupq
, _vdup
, 2, (RNQ
, RR_RNSC
), neon_dup
),
24232 /* VMOVL. Types S8 S16 S32 U8 U16 U32. */
24233 NUF(vmovl
, 0800a10
, 2, (RNQ
, RND
), neon_movl
),
24234 /* VMOVN. Types I16 I32 I64. */
24235 nUF(vmovn
, _vmovn
, 2, (RND
, RNQ
), neon_movn
),
24236 /* VQMOVN. Types S16 S32 S64 U16 U32 U64. */
24237 nUF(vqmovn
, _vqmovn
, 2, (RND
, RNQ
), neon_qmovn
),
24238 /* VQMOVUN. Types S16 S32 S64. */
24239 nUF(vqmovun
, _vqmovun
, 2, (RND
, RNQ
), neon_qmovun
),
24240 /* VZIP / VUZP. Sizes 8 16 32. */
24241 NUF(vzip
, 1b20180
, 2, (RNDQ
, RNDQ
), neon_zip_uzp
),
24242 NUF(vzipq
, 1b20180
, 2, (RNQ
, RNQ
), neon_zip_uzp
),
24243 NUF(vuzp
, 1b20100
, 2, (RNDQ
, RNDQ
), neon_zip_uzp
),
24244 NUF(vuzpq
, 1b20100
, 2, (RNQ
, RNQ
), neon_zip_uzp
),
24245 /* VQABS / VQNEG. Types S8 S16 S32. */
24246 NUF(vqabsq
, 1b00700
, 2, (RNQ
, RNQ
), neon_sat_abs_neg
),
24247 NUF(vqnegq
, 1b00780
, 2, (RNQ
, RNQ
), neon_sat_abs_neg
),
24248 /* Pairwise, lengthening. Types S8 S16 S32 U8 U16 U32. */
24249 NUF(vpadal
, 1b00600
, 2, (RNDQ
, RNDQ
), neon_pair_long
),
24250 NUF(vpadalq
, 1b00600
, 2, (RNQ
, RNQ
), neon_pair_long
),
24251 NUF(vpaddl
, 1b00200
, 2, (RNDQ
, RNDQ
), neon_pair_long
),
24252 NUF(vpaddlq
, 1b00200
, 2, (RNQ
, RNQ
), neon_pair_long
),
24253 /* Reciprocal estimates. Types U32 F16 F32. */
24254 NUF(vrecpe
, 1b30400
, 2, (RNDQ
, RNDQ
), neon_recip_est
),
24255 NUF(vrecpeq
, 1b30400
, 2, (RNQ
, RNQ
), neon_recip_est
),
24256 NUF(vrsqrte
, 1b30480
, 2, (RNDQ
, RNDQ
), neon_recip_est
),
24257 NUF(vrsqrteq
, 1b30480
, 2, (RNQ
, RNQ
), neon_recip_est
),
24258 /* VCLS. Types S8 S16 S32. */
24259 NUF(vclsq
, 1b00400
, 2, (RNQ
, RNQ
), neon_cls
),
24260 /* VCLZ. Types I8 I16 I32. */
24261 NUF(vclzq
, 1b00480
, 2, (RNQ
, RNQ
), neon_clz
),
24262 /* VCNT. Size 8. */
24263 NUF(vcnt
, 1b00500
, 2, (RNDQ
, RNDQ
), neon_cnt
),
24264 NUF(vcntq
, 1b00500
, 2, (RNQ
, RNQ
), neon_cnt
),
24265 /* Two address, untyped. */
24266 NUF(vswp
, 1b20000
, 2, (RNDQ
, RNDQ
), neon_swp
),
24267 NUF(vswpq
, 1b20000
, 2, (RNQ
, RNQ
), neon_swp
),
24268 /* VTRN. Sizes 8 16 32. */
24269 nUF(vtrn
, _vtrn
, 2, (RNDQ
, RNDQ
), neon_trn
),
24270 nUF(vtrnq
, _vtrn
, 2, (RNQ
, RNQ
), neon_trn
),
24272 /* Table lookup. Size 8. */
24273 NUF(vtbl
, 1b00800
, 3, (RND
, NRDLST
, RND
), neon_tbl_tbx
),
24274 NUF(vtbx
, 1b00840
, 3, (RND
, NRDLST
, RND
), neon_tbl_tbx
),
24276 #undef THUMB_VARIANT
24277 #define THUMB_VARIANT & fpu_vfp_v3_or_neon_ext
24279 #define ARM_VARIANT & fpu_vfp_v3_or_neon_ext
24281 /* Neon element/structure load/store. */
24282 nUF(vld1
, _vld1
, 2, (NSTRLST
, ADDR
), neon_ldx_stx
),
24283 nUF(vst1
, _vst1
, 2, (NSTRLST
, ADDR
), neon_ldx_stx
),
24284 nUF(vld2
, _vld2
, 2, (NSTRLST
, ADDR
), neon_ldx_stx
),
24285 nUF(vst2
, _vst2
, 2, (NSTRLST
, ADDR
), neon_ldx_stx
),
24286 nUF(vld3
, _vld3
, 2, (NSTRLST
, ADDR
), neon_ldx_stx
),
24287 nUF(vst3
, _vst3
, 2, (NSTRLST
, ADDR
), neon_ldx_stx
),
24288 nUF(vld4
, _vld4
, 2, (NSTRLST
, ADDR
), neon_ldx_stx
),
24289 nUF(vst4
, _vst4
, 2, (NSTRLST
, ADDR
), neon_ldx_stx
),
24291 #undef THUMB_VARIANT
24292 #define THUMB_VARIANT & fpu_vfp_ext_v3xd
24294 #define ARM_VARIANT & fpu_vfp_ext_v3xd
24295 cCE("fconsts", eb00a00
, 2, (RVS
, I255
), vfp_sp_const
),
24296 cCE("fshtos", eba0a40
, 2, (RVS
, I16z
), vfp_sp_conv_16
),
24297 cCE("fsltos", eba0ac0
, 2, (RVS
, I32
), vfp_sp_conv_32
),
24298 cCE("fuhtos", ebb0a40
, 2, (RVS
, I16z
), vfp_sp_conv_16
),
24299 cCE("fultos", ebb0ac0
, 2, (RVS
, I32
), vfp_sp_conv_32
),
24300 cCE("ftoshs", ebe0a40
, 2, (RVS
, I16z
), vfp_sp_conv_16
),
24301 cCE("ftosls", ebe0ac0
, 2, (RVS
, I32
), vfp_sp_conv_32
),
24302 cCE("ftouhs", ebf0a40
, 2, (RVS
, I16z
), vfp_sp_conv_16
),
24303 cCE("ftouls", ebf0ac0
, 2, (RVS
, I32
), vfp_sp_conv_32
),
24305 #undef THUMB_VARIANT
24306 #define THUMB_VARIANT & fpu_vfp_ext_v3
24308 #define ARM_VARIANT & fpu_vfp_ext_v3
24310 cCE("fconstd", eb00b00
, 2, (RVD
, I255
), vfp_dp_const
),
24311 cCE("fshtod", eba0b40
, 2, (RVD
, I16z
), vfp_dp_conv_16
),
24312 cCE("fsltod", eba0bc0
, 2, (RVD
, I32
), vfp_dp_conv_32
),
24313 cCE("fuhtod", ebb0b40
, 2, (RVD
, I16z
), vfp_dp_conv_16
),
24314 cCE("fultod", ebb0bc0
, 2, (RVD
, I32
), vfp_dp_conv_32
),
24315 cCE("ftoshd", ebe0b40
, 2, (RVD
, I16z
), vfp_dp_conv_16
),
24316 cCE("ftosld", ebe0bc0
, 2, (RVD
, I32
), vfp_dp_conv_32
),
24317 cCE("ftouhd", ebf0b40
, 2, (RVD
, I16z
), vfp_dp_conv_16
),
24318 cCE("ftould", ebf0bc0
, 2, (RVD
, I32
), vfp_dp_conv_32
),
24321 #define ARM_VARIANT & fpu_vfp_ext_fma
24322 #undef THUMB_VARIANT
24323 #define THUMB_VARIANT & fpu_vfp_ext_fma
24324 /* Mnemonics shared by Neon, VFP and MVE. These are included in the
24325 VFP FMA variant; NEON and VFP FMA always includes the NEON
24326 FMA instructions. */
24327 mnCEF(vfma
, _vfma
, 3, (RNSDQMQ
, oRNSDQMQ
, RNSDQMQR
), neon_fmac
),
24328 mnCEF(vfms
, _vfms
, 3, (RNSDQMQ
, oRNSDQMQ
, RNSDQMQ
), neon_fmac
),
24330 /* ffmas/ffmad/ffmss/ffmsd are dummy mnemonics to satisfy gas;
24331 the v form should always be used. */
24332 cCE("ffmas", ea00a00
, 3, (RVS
, RVS
, RVS
), vfp_sp_dyadic
),
24333 cCE("ffnmas", ea00a40
, 3, (RVS
, RVS
, RVS
), vfp_sp_dyadic
),
24334 cCE("ffmad", ea00b00
, 3, (RVD
, RVD
, RVD
), vfp_dp_rd_rn_rm
),
24335 cCE("ffnmad", ea00b40
, 3, (RVD
, RVD
, RVD
), vfp_dp_rd_rn_rm
),
24336 nCE(vfnma
, _vfnma
, 3, (RVSD
, RVSD
, RVSD
), vfp_nsyn_nmul
),
24337 nCE(vfnms
, _vfnms
, 3, (RVSD
, RVSD
, RVSD
), vfp_nsyn_nmul
),
24339 #undef THUMB_VARIANT
24341 #define ARM_VARIANT & arm_cext_xscale /* Intel XScale extensions. */
24343 cCE("mia", e200010
, 3, (RXA
, RRnpc
, RRnpc
), xsc_mia
),
24344 cCE("miaph", e280010
, 3, (RXA
, RRnpc
, RRnpc
), xsc_mia
),
24345 cCE("miabb", e2c0010
, 3, (RXA
, RRnpc
, RRnpc
), xsc_mia
),
24346 cCE("miabt", e2d0010
, 3, (RXA
, RRnpc
, RRnpc
), xsc_mia
),
24347 cCE("miatb", e2e0010
, 3, (RXA
, RRnpc
, RRnpc
), xsc_mia
),
24348 cCE("miatt", e2f0010
, 3, (RXA
, RRnpc
, RRnpc
), xsc_mia
),
24349 cCE("mar", c400000
, 3, (RXA
, RRnpc
, RRnpc
), xsc_mar
),
24350 cCE("mra", c500000
, 3, (RRnpc
, RRnpc
, RXA
), xsc_mra
),
24353 #define ARM_VARIANT & arm_cext_iwmmxt /* Intel Wireless MMX technology. */
24355 cCE("tandcb", e13f130
, 1, (RR
), iwmmxt_tandorc
),
24356 cCE("tandch", e53f130
, 1, (RR
), iwmmxt_tandorc
),
24357 cCE("tandcw", e93f130
, 1, (RR
), iwmmxt_tandorc
),
24358 cCE("tbcstb", e400010
, 2, (RIWR
, RR
), rn_rd
),
24359 cCE("tbcsth", e400050
, 2, (RIWR
, RR
), rn_rd
),
24360 cCE("tbcstw", e400090
, 2, (RIWR
, RR
), rn_rd
),
24361 cCE("textrcb", e130170
, 2, (RR
, I7
), iwmmxt_textrc
),
24362 cCE("textrch", e530170
, 2, (RR
, I7
), iwmmxt_textrc
),
24363 cCE("textrcw", e930170
, 2, (RR
, I7
), iwmmxt_textrc
),
24364 cCE("textrmub",e100070
, 3, (RR
, RIWR
, I7
), iwmmxt_textrm
),
24365 cCE("textrmuh",e500070
, 3, (RR
, RIWR
, I7
), iwmmxt_textrm
),
24366 cCE("textrmuw",e900070
, 3, (RR
, RIWR
, I7
), iwmmxt_textrm
),
24367 cCE("textrmsb",e100078
, 3, (RR
, RIWR
, I7
), iwmmxt_textrm
),
24368 cCE("textrmsh",e500078
, 3, (RR
, RIWR
, I7
), iwmmxt_textrm
),
24369 cCE("textrmsw",e900078
, 3, (RR
, RIWR
, I7
), iwmmxt_textrm
),
24370 cCE("tinsrb", e600010
, 3, (RIWR
, RR
, I7
), iwmmxt_tinsr
),
24371 cCE("tinsrh", e600050
, 3, (RIWR
, RR
, I7
), iwmmxt_tinsr
),
24372 cCE("tinsrw", e600090
, 3, (RIWR
, RR
, I7
), iwmmxt_tinsr
),
24373 cCE("tmcr", e000110
, 2, (RIWC_RIWG
, RR
), rn_rd
),
24374 cCE("tmcrr", c400000
, 3, (RIWR
, RR
, RR
), rm_rd_rn
),
24375 cCE("tmia", e200010
, 3, (RIWR
, RR
, RR
), iwmmxt_tmia
),
24376 cCE("tmiaph", e280010
, 3, (RIWR
, RR
, RR
), iwmmxt_tmia
),
24377 cCE("tmiabb", e2c0010
, 3, (RIWR
, RR
, RR
), iwmmxt_tmia
),
24378 cCE("tmiabt", e2d0010
, 3, (RIWR
, RR
, RR
), iwmmxt_tmia
),
24379 cCE("tmiatb", e2e0010
, 3, (RIWR
, RR
, RR
), iwmmxt_tmia
),
24380 cCE("tmiatt", e2f0010
, 3, (RIWR
, RR
, RR
), iwmmxt_tmia
),
24381 cCE("tmovmskb",e100030
, 2, (RR
, RIWR
), rd_rn
),
24382 cCE("tmovmskh",e500030
, 2, (RR
, RIWR
), rd_rn
),
24383 cCE("tmovmskw",e900030
, 2, (RR
, RIWR
), rd_rn
),
24384 cCE("tmrc", e100110
, 2, (RR
, RIWC_RIWG
), rd_rn
),
24385 cCE("tmrrc", c500000
, 3, (RR
, RR
, RIWR
), rd_rn_rm
),
24386 cCE("torcb", e13f150
, 1, (RR
), iwmmxt_tandorc
),
24387 cCE("torch", e53f150
, 1, (RR
), iwmmxt_tandorc
),
24388 cCE("torcw", e93f150
, 1, (RR
), iwmmxt_tandorc
),
24389 cCE("waccb", e0001c0
, 2, (RIWR
, RIWR
), rd_rn
),
24390 cCE("wacch", e4001c0
, 2, (RIWR
, RIWR
), rd_rn
),
24391 cCE("waccw", e8001c0
, 2, (RIWR
, RIWR
), rd_rn
),
24392 cCE("waddbss", e300180
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24393 cCE("waddb", e000180
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24394 cCE("waddbus", e100180
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24395 cCE("waddhss", e700180
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24396 cCE("waddh", e400180
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24397 cCE("waddhus", e500180
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24398 cCE("waddwss", eb00180
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24399 cCE("waddw", e800180
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24400 cCE("waddwus", e900180
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24401 cCE("waligni", e000020
, 4, (RIWR
, RIWR
, RIWR
, I7
), iwmmxt_waligni
),
24402 cCE("walignr0",e800020
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24403 cCE("walignr1",e900020
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24404 cCE("walignr2",ea00020
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24405 cCE("walignr3",eb00020
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24406 cCE("wand", e200000
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24407 cCE("wandn", e300000
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24408 cCE("wavg2b", e800000
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24409 cCE("wavg2br", e900000
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24410 cCE("wavg2h", ec00000
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24411 cCE("wavg2hr", ed00000
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24412 cCE("wcmpeqb", e000060
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24413 cCE("wcmpeqh", e400060
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24414 cCE("wcmpeqw", e800060
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24415 cCE("wcmpgtub",e100060
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24416 cCE("wcmpgtuh",e500060
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24417 cCE("wcmpgtuw",e900060
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24418 cCE("wcmpgtsb",e300060
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24419 cCE("wcmpgtsh",e700060
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24420 cCE("wcmpgtsw",eb00060
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24421 cCE("wldrb", c100000
, 2, (RIWR
, ADDR
), iwmmxt_wldstbh
),
24422 cCE("wldrh", c500000
, 2, (RIWR
, ADDR
), iwmmxt_wldstbh
),
24423 cCE("wldrw", c100100
, 2, (RIWR_RIWC
, ADDR
), iwmmxt_wldstw
),
24424 cCE("wldrd", c500100
, 2, (RIWR
, ADDR
), iwmmxt_wldstd
),
24425 cCE("wmacs", e600100
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24426 cCE("wmacsz", e700100
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24427 cCE("wmacu", e400100
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24428 cCE("wmacuz", e500100
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24429 cCE("wmadds", ea00100
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24430 cCE("wmaddu", e800100
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24431 cCE("wmaxsb", e200160
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24432 cCE("wmaxsh", e600160
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24433 cCE("wmaxsw", ea00160
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24434 cCE("wmaxub", e000160
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24435 cCE("wmaxuh", e400160
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24436 cCE("wmaxuw", e800160
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24437 cCE("wminsb", e300160
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24438 cCE("wminsh", e700160
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24439 cCE("wminsw", eb00160
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24440 cCE("wminub", e100160
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24441 cCE("wminuh", e500160
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24442 cCE("wminuw", e900160
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24443 cCE("wmov", e000000
, 2, (RIWR
, RIWR
), iwmmxt_wmov
),
24444 cCE("wmulsm", e300100
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24445 cCE("wmulsl", e200100
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24446 cCE("wmulum", e100100
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24447 cCE("wmulul", e000100
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24448 cCE("wor", e000000
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24449 cCE("wpackhss",e700080
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24450 cCE("wpackhus",e500080
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24451 cCE("wpackwss",eb00080
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24452 cCE("wpackwus",e900080
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24453 cCE("wpackdss",ef00080
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24454 cCE("wpackdus",ed00080
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24455 cCE("wrorh", e700040
, 3, (RIWR
, RIWR
, RIWR_I32z
),iwmmxt_wrwrwr_or_imm5
),
24456 cCE("wrorhg", e700148
, 3, (RIWR
, RIWR
, RIWG
), rd_rn_rm
),
24457 cCE("wrorw", eb00040
, 3, (RIWR
, RIWR
, RIWR_I32z
),iwmmxt_wrwrwr_or_imm5
),
24458 cCE("wrorwg", eb00148
, 3, (RIWR
, RIWR
, RIWG
), rd_rn_rm
),
24459 cCE("wrord", ef00040
, 3, (RIWR
, RIWR
, RIWR_I32z
),iwmmxt_wrwrwr_or_imm5
),
24460 cCE("wrordg", ef00148
, 3, (RIWR
, RIWR
, RIWG
), rd_rn_rm
),
24461 cCE("wsadb", e000120
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24462 cCE("wsadbz", e100120
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24463 cCE("wsadh", e400120
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24464 cCE("wsadhz", e500120
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24465 cCE("wshufh", e0001e0
, 3, (RIWR
, RIWR
, I255
), iwmmxt_wshufh
),
24466 cCE("wsllh", e500040
, 3, (RIWR
, RIWR
, RIWR_I32z
),iwmmxt_wrwrwr_or_imm5
),
24467 cCE("wsllhg", e500148
, 3, (RIWR
, RIWR
, RIWG
), rd_rn_rm
),
24468 cCE("wsllw", e900040
, 3, (RIWR
, RIWR
, RIWR_I32z
),iwmmxt_wrwrwr_or_imm5
),
24469 cCE("wsllwg", e900148
, 3, (RIWR
, RIWR
, RIWG
), rd_rn_rm
),
24470 cCE("wslld", ed00040
, 3, (RIWR
, RIWR
, RIWR_I32z
),iwmmxt_wrwrwr_or_imm5
),
24471 cCE("wslldg", ed00148
, 3, (RIWR
, RIWR
, RIWG
), rd_rn_rm
),
24472 cCE("wsrah", e400040
, 3, (RIWR
, RIWR
, RIWR_I32z
),iwmmxt_wrwrwr_or_imm5
),
24473 cCE("wsrahg", e400148
, 3, (RIWR
, RIWR
, RIWG
), rd_rn_rm
),
24474 cCE("wsraw", e800040
, 3, (RIWR
, RIWR
, RIWR_I32z
),iwmmxt_wrwrwr_or_imm5
),
24475 cCE("wsrawg", e800148
, 3, (RIWR
, RIWR
, RIWG
), rd_rn_rm
),
24476 cCE("wsrad", ec00040
, 3, (RIWR
, RIWR
, RIWR_I32z
),iwmmxt_wrwrwr_or_imm5
),
24477 cCE("wsradg", ec00148
, 3, (RIWR
, RIWR
, RIWG
), rd_rn_rm
),
24478 cCE("wsrlh", e600040
, 3, (RIWR
, RIWR
, RIWR_I32z
),iwmmxt_wrwrwr_or_imm5
),
24479 cCE("wsrlhg", e600148
, 3, (RIWR
, RIWR
, RIWG
), rd_rn_rm
),
24480 cCE("wsrlw", ea00040
, 3, (RIWR
, RIWR
, RIWR_I32z
),iwmmxt_wrwrwr_or_imm5
),
24481 cCE("wsrlwg", ea00148
, 3, (RIWR
, RIWR
, RIWG
), rd_rn_rm
),
24482 cCE("wsrld", ee00040
, 3, (RIWR
, RIWR
, RIWR_I32z
),iwmmxt_wrwrwr_or_imm5
),
24483 cCE("wsrldg", ee00148
, 3, (RIWR
, RIWR
, RIWG
), rd_rn_rm
),
24484 cCE("wstrb", c000000
, 2, (RIWR
, ADDR
), iwmmxt_wldstbh
),
24485 cCE("wstrh", c400000
, 2, (RIWR
, ADDR
), iwmmxt_wldstbh
),
24486 cCE("wstrw", c000100
, 2, (RIWR_RIWC
, ADDR
), iwmmxt_wldstw
),
24487 cCE("wstrd", c400100
, 2, (RIWR
, ADDR
), iwmmxt_wldstd
),
24488 cCE("wsubbss", e3001a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24489 cCE("wsubb", e0001a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24490 cCE("wsubbus", e1001a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24491 cCE("wsubhss", e7001a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24492 cCE("wsubh", e4001a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24493 cCE("wsubhus", e5001a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24494 cCE("wsubwss", eb001a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24495 cCE("wsubw", e8001a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24496 cCE("wsubwus", e9001a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24497 cCE("wunpckehub",e0000c0
, 2, (RIWR
, RIWR
), rd_rn
),
24498 cCE("wunpckehuh",e4000c0
, 2, (RIWR
, RIWR
), rd_rn
),
24499 cCE("wunpckehuw",e8000c0
, 2, (RIWR
, RIWR
), rd_rn
),
24500 cCE("wunpckehsb",e2000c0
, 2, (RIWR
, RIWR
), rd_rn
),
24501 cCE("wunpckehsh",e6000c0
, 2, (RIWR
, RIWR
), rd_rn
),
24502 cCE("wunpckehsw",ea000c0
, 2, (RIWR
, RIWR
), rd_rn
),
24503 cCE("wunpckihb", e1000c0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24504 cCE("wunpckihh", e5000c0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24505 cCE("wunpckihw", e9000c0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24506 cCE("wunpckelub",e0000e0
, 2, (RIWR
, RIWR
), rd_rn
),
24507 cCE("wunpckeluh",e4000e0
, 2, (RIWR
, RIWR
), rd_rn
),
24508 cCE("wunpckeluw",e8000e0
, 2, (RIWR
, RIWR
), rd_rn
),
24509 cCE("wunpckelsb",e2000e0
, 2, (RIWR
, RIWR
), rd_rn
),
24510 cCE("wunpckelsh",e6000e0
, 2, (RIWR
, RIWR
), rd_rn
),
24511 cCE("wunpckelsw",ea000e0
, 2, (RIWR
, RIWR
), rd_rn
),
24512 cCE("wunpckilb", e1000e0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24513 cCE("wunpckilh", e5000e0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24514 cCE("wunpckilw", e9000e0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24515 cCE("wxor", e100000
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24516 cCE("wzero", e300000
, 1, (RIWR
), iwmmxt_wzero
),
24519 #define ARM_VARIANT & arm_cext_iwmmxt2 /* Intel Wireless MMX technology, version 2. */
24521 cCE("torvscb", e12f190
, 1, (RR
), iwmmxt_tandorc
),
24522 cCE("torvsch", e52f190
, 1, (RR
), iwmmxt_tandorc
),
24523 cCE("torvscw", e92f190
, 1, (RR
), iwmmxt_tandorc
),
24524 cCE("wabsb", e2001c0
, 2, (RIWR
, RIWR
), rd_rn
),
24525 cCE("wabsh", e6001c0
, 2, (RIWR
, RIWR
), rd_rn
),
24526 cCE("wabsw", ea001c0
, 2, (RIWR
, RIWR
), rd_rn
),
24527 cCE("wabsdiffb", e1001c0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24528 cCE("wabsdiffh", e5001c0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24529 cCE("wabsdiffw", e9001c0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24530 cCE("waddbhusl", e2001a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24531 cCE("waddbhusm", e6001a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24532 cCE("waddhc", e600180
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24533 cCE("waddwc", ea00180
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24534 cCE("waddsubhx", ea001a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24535 cCE("wavg4", e400000
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24536 cCE("wavg4r", e500000
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24537 cCE("wmaddsn", ee00100
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24538 cCE("wmaddsx", eb00100
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24539 cCE("wmaddun", ec00100
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24540 cCE("wmaddux", e900100
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24541 cCE("wmerge", e000080
, 4, (RIWR
, RIWR
, RIWR
, I7
), iwmmxt_wmerge
),
24542 cCE("wmiabb", e0000a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24543 cCE("wmiabt", e1000a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24544 cCE("wmiatb", e2000a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24545 cCE("wmiatt", e3000a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24546 cCE("wmiabbn", e4000a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24547 cCE("wmiabtn", e5000a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24548 cCE("wmiatbn", e6000a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24549 cCE("wmiattn", e7000a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24550 cCE("wmiawbb", e800120
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24551 cCE("wmiawbt", e900120
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24552 cCE("wmiawtb", ea00120
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24553 cCE("wmiawtt", eb00120
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24554 cCE("wmiawbbn", ec00120
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24555 cCE("wmiawbtn", ed00120
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24556 cCE("wmiawtbn", ee00120
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24557 cCE("wmiawttn", ef00120
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24558 cCE("wmulsmr", ef00100
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24559 cCE("wmulumr", ed00100
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24560 cCE("wmulwumr", ec000c0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24561 cCE("wmulwsmr", ee000c0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24562 cCE("wmulwum", ed000c0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24563 cCE("wmulwsm", ef000c0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24564 cCE("wmulwl", eb000c0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24565 cCE("wqmiabb", e8000a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24566 cCE("wqmiabt", e9000a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24567 cCE("wqmiatb", ea000a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24568 cCE("wqmiatt", eb000a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24569 cCE("wqmiabbn", ec000a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24570 cCE("wqmiabtn", ed000a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24571 cCE("wqmiatbn", ee000a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24572 cCE("wqmiattn", ef000a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24573 cCE("wqmulm", e100080
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24574 cCE("wqmulmr", e300080
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24575 cCE("wqmulwm", ec000e0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24576 cCE("wqmulwmr", ee000e0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24577 cCE("wsubaddhx", ed001c0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
24580 #define ARM_VARIANT & arm_cext_maverick /* Cirrus Maverick instructions. */
24582 cCE("cfldrs", c100400
, 2, (RMF
, ADDRGLDC
), rd_cpaddr
),
24583 cCE("cfldrd", c500400
, 2, (RMD
, ADDRGLDC
), rd_cpaddr
),
24584 cCE("cfldr32", c100500
, 2, (RMFX
, ADDRGLDC
), rd_cpaddr
),
24585 cCE("cfldr64", c500500
, 2, (RMDX
, ADDRGLDC
), rd_cpaddr
),
24586 cCE("cfstrs", c000400
, 2, (RMF
, ADDRGLDC
), rd_cpaddr
),
24587 cCE("cfstrd", c400400
, 2, (RMD
, ADDRGLDC
), rd_cpaddr
),
24588 cCE("cfstr32", c000500
, 2, (RMFX
, ADDRGLDC
), rd_cpaddr
),
24589 cCE("cfstr64", c400500
, 2, (RMDX
, ADDRGLDC
), rd_cpaddr
),
24590 cCE("cfmvsr", e000450
, 2, (RMF
, RR
), rn_rd
),
24591 cCE("cfmvrs", e100450
, 2, (RR
, RMF
), rd_rn
),
24592 cCE("cfmvdlr", e000410
, 2, (RMD
, RR
), rn_rd
),
24593 cCE("cfmvrdl", e100410
, 2, (RR
, RMD
), rd_rn
),
24594 cCE("cfmvdhr", e000430
, 2, (RMD
, RR
), rn_rd
),
24595 cCE("cfmvrdh", e100430
, 2, (RR
, RMD
), rd_rn
),
24596 cCE("cfmv64lr",e000510
, 2, (RMDX
, RR
), rn_rd
),
24597 cCE("cfmvr64l",e100510
, 2, (RR
, RMDX
), rd_rn
),
24598 cCE("cfmv64hr",e000530
, 2, (RMDX
, RR
), rn_rd
),
24599 cCE("cfmvr64h",e100530
, 2, (RR
, RMDX
), rd_rn
),
24600 cCE("cfmval32",e200440
, 2, (RMAX
, RMFX
), rd_rn
),
24601 cCE("cfmv32al",e100440
, 2, (RMFX
, RMAX
), rd_rn
),
24602 cCE("cfmvam32",e200460
, 2, (RMAX
, RMFX
), rd_rn
),
24603 cCE("cfmv32am",e100460
, 2, (RMFX
, RMAX
), rd_rn
),
24604 cCE("cfmvah32",e200480
, 2, (RMAX
, RMFX
), rd_rn
),
24605 cCE("cfmv32ah",e100480
, 2, (RMFX
, RMAX
), rd_rn
),
24606 cCE("cfmva32", e2004a0
, 2, (RMAX
, RMFX
), rd_rn
),
24607 cCE("cfmv32a", e1004a0
, 2, (RMFX
, RMAX
), rd_rn
),
24608 cCE("cfmva64", e2004c0
, 2, (RMAX
, RMDX
), rd_rn
),
24609 cCE("cfmv64a", e1004c0
, 2, (RMDX
, RMAX
), rd_rn
),
24610 cCE("cfmvsc32",e2004e0
, 2, (RMDS
, RMDX
), mav_dspsc
),
24611 cCE("cfmv32sc",e1004e0
, 2, (RMDX
, RMDS
), rd
),
24612 cCE("cfcpys", e000400
, 2, (RMF
, RMF
), rd_rn
),
24613 cCE("cfcpyd", e000420
, 2, (RMD
, RMD
), rd_rn
),
24614 cCE("cfcvtsd", e000460
, 2, (RMD
, RMF
), rd_rn
),
24615 cCE("cfcvtds", e000440
, 2, (RMF
, RMD
), rd_rn
),
24616 cCE("cfcvt32s",e000480
, 2, (RMF
, RMFX
), rd_rn
),
24617 cCE("cfcvt32d",e0004a0
, 2, (RMD
, RMFX
), rd_rn
),
24618 cCE("cfcvt64s",e0004c0
, 2, (RMF
, RMDX
), rd_rn
),
24619 cCE("cfcvt64d",e0004e0
, 2, (RMD
, RMDX
), rd_rn
),
24620 cCE("cfcvts32",e100580
, 2, (RMFX
, RMF
), rd_rn
),
24621 cCE("cfcvtd32",e1005a0
, 2, (RMFX
, RMD
), rd_rn
),
24622 cCE("cftruncs32",e1005c0
, 2, (RMFX
, RMF
), rd_rn
),
24623 cCE("cftruncd32",e1005e0
, 2, (RMFX
, RMD
), rd_rn
),
24624 cCE("cfrshl32",e000550
, 3, (RMFX
, RMFX
, RR
), mav_triple
),
24625 cCE("cfrshl64",e000570
, 3, (RMDX
, RMDX
, RR
), mav_triple
),
24626 cCE("cfsh32", e000500
, 3, (RMFX
, RMFX
, I63s
), mav_shift
),
24627 cCE("cfsh64", e200500
, 3, (RMDX
, RMDX
, I63s
), mav_shift
),
24628 cCE("cfcmps", e100490
, 3, (RR
, RMF
, RMF
), rd_rn_rm
),
24629 cCE("cfcmpd", e1004b0
, 3, (RR
, RMD
, RMD
), rd_rn_rm
),
24630 cCE("cfcmp32", e100590
, 3, (RR
, RMFX
, RMFX
), rd_rn_rm
),
24631 cCE("cfcmp64", e1005b0
, 3, (RR
, RMDX
, RMDX
), rd_rn_rm
),
24632 cCE("cfabss", e300400
, 2, (RMF
, RMF
), rd_rn
),
24633 cCE("cfabsd", e300420
, 2, (RMD
, RMD
), rd_rn
),
24634 cCE("cfnegs", e300440
, 2, (RMF
, RMF
), rd_rn
),
24635 cCE("cfnegd", e300460
, 2, (RMD
, RMD
), rd_rn
),
24636 cCE("cfadds", e300480
, 3, (RMF
, RMF
, RMF
), rd_rn_rm
),
24637 cCE("cfaddd", e3004a0
, 3, (RMD
, RMD
, RMD
), rd_rn_rm
),
24638 cCE("cfsubs", e3004c0
, 3, (RMF
, RMF
, RMF
), rd_rn_rm
),
24639 cCE("cfsubd", e3004e0
, 3, (RMD
, RMD
, RMD
), rd_rn_rm
),
24640 cCE("cfmuls", e100400
, 3, (RMF
, RMF
, RMF
), rd_rn_rm
),
24641 cCE("cfmuld", e100420
, 3, (RMD
, RMD
, RMD
), rd_rn_rm
),
24642 cCE("cfabs32", e300500
, 2, (RMFX
, RMFX
), rd_rn
),
24643 cCE("cfabs64", e300520
, 2, (RMDX
, RMDX
), rd_rn
),
24644 cCE("cfneg32", e300540
, 2, (RMFX
, RMFX
), rd_rn
),
24645 cCE("cfneg64", e300560
, 2, (RMDX
, RMDX
), rd_rn
),
24646 cCE("cfadd32", e300580
, 3, (RMFX
, RMFX
, RMFX
), rd_rn_rm
),
24647 cCE("cfadd64", e3005a0
, 3, (RMDX
, RMDX
, RMDX
), rd_rn_rm
),
24648 cCE("cfsub32", e3005c0
, 3, (RMFX
, RMFX
, RMFX
), rd_rn_rm
),
24649 cCE("cfsub64", e3005e0
, 3, (RMDX
, RMDX
, RMDX
), rd_rn_rm
),
24650 cCE("cfmul32", e100500
, 3, (RMFX
, RMFX
, RMFX
), rd_rn_rm
),
24651 cCE("cfmul64", e100520
, 3, (RMDX
, RMDX
, RMDX
), rd_rn_rm
),
24652 cCE("cfmac32", e100540
, 3, (RMFX
, RMFX
, RMFX
), rd_rn_rm
),
24653 cCE("cfmsc32", e100560
, 3, (RMFX
, RMFX
, RMFX
), rd_rn_rm
),
24654 cCE("cfmadd32",e000600
, 4, (RMAX
, RMFX
, RMFX
, RMFX
), mav_quad
),
24655 cCE("cfmsub32",e100600
, 4, (RMAX
, RMFX
, RMFX
, RMFX
), mav_quad
),
24656 cCE("cfmadda32", e200600
, 4, (RMAX
, RMAX
, RMFX
, RMFX
), mav_quad
),
24657 cCE("cfmsuba32", e300600
, 4, (RMAX
, RMAX
, RMFX
, RMFX
), mav_quad
),
24659 /* ARMv8.5-A instructions. */
24661 #define ARM_VARIANT & arm_ext_sb
24662 #undef THUMB_VARIANT
24663 #define THUMB_VARIANT & arm_ext_sb
24664 TUF("sb", 57ff070
, f3bf8f70
, 0, (), noargs
, noargs
),
24667 #define ARM_VARIANT & arm_ext_predres
24668 #undef THUMB_VARIANT
24669 #define THUMB_VARIANT & arm_ext_predres
24670 CE("cfprctx", e070f93
, 1, (RRnpc
), rd
),
24671 CE("dvprctx", e070fb3
, 1, (RRnpc
), rd
),
24672 CE("cpprctx", e070ff3
, 1, (RRnpc
), rd
),
24674 /* ARMv8-M instructions. */
24676 #define ARM_VARIANT NULL
24677 #undef THUMB_VARIANT
24678 #define THUMB_VARIANT & arm_ext_v8m
24679 ToU("sg", e97fe97f
, 0, (), noargs
),
24680 ToC("blxns", 4784, 1, (RRnpc
), t_blx
),
24681 ToC("bxns", 4704, 1, (RRnpc
), t_bx
),
24682 ToC("tt", e840f000
, 2, (RRnpc
, RRnpc
), tt
),
24683 ToC("ttt", e840f040
, 2, (RRnpc
, RRnpc
), tt
),
24684 ToC("tta", e840f080
, 2, (RRnpc
, RRnpc
), tt
),
24685 ToC("ttat", e840f0c0
, 2, (RRnpc
, RRnpc
), tt
),
24687 /* FP for ARMv8-M Mainline. Enabled for ARMv8-M Mainline because the
24688 instructions behave as nop if no VFP is present. */
24689 #undef THUMB_VARIANT
24690 #define THUMB_VARIANT & arm_ext_v8m_main
24691 ToC("vlldm", ec300a00
, 1, (RRnpc
), rn
),
24692 ToC("vlstm", ec200a00
, 1, (RRnpc
), rn
),
24694 /* Armv8.1-M Mainline instructions. */
24695 #undef THUMB_VARIANT
24696 #define THUMB_VARIANT & arm_ext_v8_1m_main
24697 toC("bf", _bf
, 2, (EXPs
, EXPs
), t_branch_future
),
24698 toU("bfcsel", _bfcsel
, 4, (EXPs
, EXPs
, EXPs
, COND
), t_branch_future
),
24699 toC("bfx", _bfx
, 2, (EXPs
, RRnpcsp
), t_branch_future
),
24700 toC("bfl", _bfl
, 2, (EXPs
, EXPs
), t_branch_future
),
24701 toC("bflx", _bflx
, 2, (EXPs
, RRnpcsp
), t_branch_future
),
24703 toU("dls", _dls
, 2, (LR
, RRnpcsp
), t_loloop
),
24704 toU("wls", _wls
, 3, (LR
, RRnpcsp
, EXP
), t_loloop
),
24705 toU("le", _le
, 2, (oLR
, EXP
), t_loloop
),
24707 ToC("clrm", e89f0000
, 1, (CLRMLST
), t_clrm
),
24708 ToC("vscclrm", ec9f0a00
, 1, (VRSDVLST
), t_vscclrm
),
24710 #undef THUMB_VARIANT
24711 #define THUMB_VARIANT & mve_ext
24713 ToC("vpt", ee410f00
, 3, (COND
, RMQ
, RMQRZ
), mve_vpt
),
24714 ToC("vptt", ee018f00
, 3, (COND
, RMQ
, RMQRZ
), mve_vpt
),
24715 ToC("vpte", ee418f00
, 3, (COND
, RMQ
, RMQRZ
), mve_vpt
),
24716 ToC("vpttt", ee014f00
, 3, (COND
, RMQ
, RMQRZ
), mve_vpt
),
24717 ToC("vptte", ee01cf00
, 3, (COND
, RMQ
, RMQRZ
), mve_vpt
),
24718 ToC("vptet", ee41cf00
, 3, (COND
, RMQ
, RMQRZ
), mve_vpt
),
24719 ToC("vptee", ee414f00
, 3, (COND
, RMQ
, RMQRZ
), mve_vpt
),
24720 ToC("vptttt", ee012f00
, 3, (COND
, RMQ
, RMQRZ
), mve_vpt
),
24721 ToC("vpttte", ee016f00
, 3, (COND
, RMQ
, RMQRZ
), mve_vpt
),
24722 ToC("vpttet", ee01ef00
, 3, (COND
, RMQ
, RMQRZ
), mve_vpt
),
24723 ToC("vpttee", ee01af00
, 3, (COND
, RMQ
, RMQRZ
), mve_vpt
),
24724 ToC("vptett", ee41af00
, 3, (COND
, RMQ
, RMQRZ
), mve_vpt
),
24725 ToC("vptete", ee41ef00
, 3, (COND
, RMQ
, RMQRZ
), mve_vpt
),
24726 ToC("vpteet", ee416f00
, 3, (COND
, RMQ
, RMQRZ
), mve_vpt
),
24727 ToC("vpteee", ee412f00
, 3, (COND
, RMQ
, RMQRZ
), mve_vpt
),
24729 ToC("vpst", fe710f4d
, 0, (), mve_vpt
),
24730 ToC("vpstt", fe318f4d
, 0, (), mve_vpt
),
24731 ToC("vpste", fe718f4d
, 0, (), mve_vpt
),
24732 ToC("vpsttt", fe314f4d
, 0, (), mve_vpt
),
24733 ToC("vpstte", fe31cf4d
, 0, (), mve_vpt
),
24734 ToC("vpstet", fe71cf4d
, 0, (), mve_vpt
),
24735 ToC("vpstee", fe714f4d
, 0, (), mve_vpt
),
24736 ToC("vpstttt", fe312f4d
, 0, (), mve_vpt
),
24737 ToC("vpsttte", fe316f4d
, 0, (), mve_vpt
),
24738 ToC("vpsttet", fe31ef4d
, 0, (), mve_vpt
),
24739 ToC("vpsttee", fe31af4d
, 0, (), mve_vpt
),
24740 ToC("vpstett", fe71af4d
, 0, (), mve_vpt
),
24741 ToC("vpstete", fe71ef4d
, 0, (), mve_vpt
),
24742 ToC("vpsteet", fe716f4d
, 0, (), mve_vpt
),
24743 ToC("vpsteee", fe712f4d
, 0, (), mve_vpt
),
24745 /* MVE and MVE FP only. */
24746 mToC("vhcadd", ee000f00
, 4, (RMQ
, RMQ
, RMQ
, EXPi
), mve_vhcadd
),
24747 mCEF(vadc
, _vadc
, 3, (RMQ
, RMQ
, RMQ
), mve_vadc
),
24748 mCEF(vadci
, _vadci
, 3, (RMQ
, RMQ
, RMQ
), mve_vadc
),
24749 mToC("vsbc", fe300f00
, 3, (RMQ
, RMQ
, RMQ
), mve_vsbc
),
24750 mToC("vsbci", fe301f00
, 3, (RMQ
, RMQ
, RMQ
), mve_vsbc
),
24751 mCEF(vmullb
, _vmullb
, 3, (RMQ
, RMQ
, RMQ
), mve_vmull
),
24752 mCEF(vabav
, _vabav
, 3, (RRnpcsp
, RMQ
, RMQ
), mve_vabav
),
24753 mCEF(vmladav
, _vmladav
, 3, (RRe
, RMQ
, RMQ
), mve_vmladav
),
24754 mCEF(vmladava
, _vmladava
, 3, (RRe
, RMQ
, RMQ
), mve_vmladav
),
24755 mCEF(vmladavx
, _vmladavx
, 3, (RRe
, RMQ
, RMQ
), mve_vmladav
),
24756 mCEF(vmladavax
, _vmladavax
, 3, (RRe
, RMQ
, RMQ
), mve_vmladav
),
24757 mCEF(vmlav
, _vmladav
, 3, (RRe
, RMQ
, RMQ
), mve_vmladav
),
24758 mCEF(vmlava
, _vmladava
, 3, (RRe
, RMQ
, RMQ
), mve_vmladav
),
24759 mCEF(vmlsdav
, _vmlsdav
, 3, (RRe
, RMQ
, RMQ
), mve_vmladav
),
24760 mCEF(vmlsdava
, _vmlsdava
, 3, (RRe
, RMQ
, RMQ
), mve_vmladav
),
24761 mCEF(vmlsdavx
, _vmlsdavx
, 3, (RRe
, RMQ
, RMQ
), mve_vmladav
),
24762 mCEF(vmlsdavax
, _vmlsdavax
, 3, (RRe
, RMQ
, RMQ
), mve_vmladav
),
24764 mCEF(vst20
, _vst20
, 2, (MSTRLST2
, ADDRMVE
), mve_vst_vld
),
24765 mCEF(vst21
, _vst21
, 2, (MSTRLST2
, ADDRMVE
), mve_vst_vld
),
24766 mCEF(vst40
, _vst40
, 2, (MSTRLST4
, ADDRMVE
), mve_vst_vld
),
24767 mCEF(vst41
, _vst41
, 2, (MSTRLST4
, ADDRMVE
), mve_vst_vld
),
24768 mCEF(vst42
, _vst42
, 2, (MSTRLST4
, ADDRMVE
), mve_vst_vld
),
24769 mCEF(vst43
, _vst43
, 2, (MSTRLST4
, ADDRMVE
), mve_vst_vld
),
24770 mCEF(vld20
, _vld20
, 2, (MSTRLST2
, ADDRMVE
), mve_vst_vld
),
24771 mCEF(vld21
, _vld21
, 2, (MSTRLST2
, ADDRMVE
), mve_vst_vld
),
24772 mCEF(vld40
, _vld40
, 2, (MSTRLST4
, ADDRMVE
), mve_vst_vld
),
24773 mCEF(vld41
, _vld41
, 2, (MSTRLST4
, ADDRMVE
), mve_vst_vld
),
24774 mCEF(vld42
, _vld42
, 2, (MSTRLST4
, ADDRMVE
), mve_vst_vld
),
24775 mCEF(vld43
, _vld43
, 2, (MSTRLST4
, ADDRMVE
), mve_vst_vld
),
24776 mCEF(vstrb
, _vstrb
, 2, (RMQ
, ADDRMVE
), mve_vstr_vldr
),
24777 mCEF(vstrh
, _vstrh
, 2, (RMQ
, ADDRMVE
), mve_vstr_vldr
),
24778 mCEF(vstrw
, _vstrw
, 2, (RMQ
, ADDRMVE
), mve_vstr_vldr
),
24779 mCEF(vstrd
, _vstrd
, 2, (RMQ
, ADDRMVE
), mve_vstr_vldr
),
24780 mCEF(vldrb
, _vldrb
, 2, (RMQ
, ADDRMVE
), mve_vstr_vldr
),
24781 mCEF(vldrh
, _vldrh
, 2, (RMQ
, ADDRMVE
), mve_vstr_vldr
),
24782 mCEF(vldrw
, _vldrw
, 2, (RMQ
, ADDRMVE
), mve_vstr_vldr
),
24783 mCEF(vldrd
, _vldrd
, 2, (RMQ
, ADDRMVE
), mve_vstr_vldr
),
24785 mCEF(vmovnt
, _vmovnt
, 2, (RMQ
, RMQ
), mve_movn
),
24786 mCEF(vmovnb
, _vmovnb
, 2, (RMQ
, RMQ
), mve_movn
),
24787 mCEF(vbrsr
, _vbrsr
, 3, (RMQ
, RMQ
, RR
), mve_vbrsr
),
24788 mCEF(vaddlv
, _vaddlv
, 3, (RRe
, RRo
, RMQ
), mve_vaddlv
),
24789 mCEF(vaddlva
, _vaddlva
, 3, (RRe
, RRo
, RMQ
), mve_vaddlv
),
24790 mCEF(vaddv
, _vaddv
, 2, (RRe
, RMQ
), mve_vaddv
),
24791 mCEF(vaddva
, _vaddva
, 2, (RRe
, RMQ
), mve_vaddv
),
24792 mCEF(vddup
, _vddup
, 3, (RMQ
, RRe
, EXPi
), mve_viddup
),
24793 mCEF(vdwdup
, _vdwdup
, 4, (RMQ
, RRe
, RR
, EXPi
), mve_viddup
),
24794 mCEF(vidup
, _vidup
, 3, (RMQ
, RRe
, EXPi
), mve_viddup
),
24795 mCEF(viwdup
, _viwdup
, 4, (RMQ
, RRe
, RR
, EXPi
), mve_viddup
),
24796 mToC("vmaxa", ee330e81
, 2, (RMQ
, RMQ
), mve_vmaxa_vmina
),
24797 mToC("vmina", ee331e81
, 2, (RMQ
, RMQ
), mve_vmaxa_vmina
),
24798 mCEF(vmaxv
, _vmaxv
, 2, (RR
, RMQ
), mve_vmaxv
),
24799 mCEF(vmaxav
, _vmaxav
, 2, (RR
, RMQ
), mve_vmaxv
),
24800 mCEF(vminv
, _vminv
, 2, (RR
, RMQ
), mve_vmaxv
),
24801 mCEF(vminav
, _vminav
, 2, (RR
, RMQ
), mve_vmaxv
),
24803 mCEF(vmlaldav
, _vmlaldav
, 4, (RRe
, RRo
, RMQ
, RMQ
), mve_vmlaldav
),
24804 mCEF(vmlaldava
, _vmlaldava
, 4, (RRe
, RRo
, RMQ
, RMQ
), mve_vmlaldav
),
24805 mCEF(vmlaldavx
, _vmlaldavx
, 4, (RRe
, RRo
, RMQ
, RMQ
), mve_vmlaldav
),
24806 mCEF(vmlaldavax
, _vmlaldavax
, 4, (RRe
, RRo
, RMQ
, RMQ
), mve_vmlaldav
),
24807 mCEF(vmlalv
, _vmlaldav
, 4, (RRe
, RRo
, RMQ
, RMQ
), mve_vmlaldav
),
24808 mCEF(vmlalva
, _vmlaldava
, 4, (RRe
, RRo
, RMQ
, RMQ
), mve_vmlaldav
),
24809 mCEF(vmlsldav
, _vmlsldav
, 4, (RRe
, RRo
, RMQ
, RMQ
), mve_vmlaldav
),
24810 mCEF(vmlsldava
, _vmlsldava
, 4, (RRe
, RRo
, RMQ
, RMQ
), mve_vmlaldav
),
24811 mCEF(vmlsldavx
, _vmlsldavx
, 4, (RRe
, RRo
, RMQ
, RMQ
), mve_vmlaldav
),
24812 mCEF(vmlsldavax
, _vmlsldavax
, 4, (RRe
, RRo
, RMQ
, RMQ
), mve_vmlaldav
),
24813 mToC("vrmlaldavh", ee800f00
, 4, (RRe
, RR
, RMQ
, RMQ
), mve_vrmlaldavh
),
24814 mToC("vrmlaldavha",ee800f20
, 4, (RRe
, RR
, RMQ
, RMQ
), mve_vrmlaldavh
),
24815 mCEF(vrmlaldavhx
, _vrmlaldavhx
, 4, (RRe
, RR
, RMQ
, RMQ
), mve_vrmlaldavh
),
24816 mCEF(vrmlaldavhax
, _vrmlaldavhax
, 4, (RRe
, RR
, RMQ
, RMQ
), mve_vrmlaldavh
),
24817 mToC("vrmlalvh", ee800f00
, 4, (RRe
, RR
, RMQ
, RMQ
), mve_vrmlaldavh
),
24818 mToC("vrmlalvha", ee800f20
, 4, (RRe
, RR
, RMQ
, RMQ
), mve_vrmlaldavh
),
24819 mCEF(vrmlsldavh
, _vrmlsldavh
, 4, (RRe
, RR
, RMQ
, RMQ
), mve_vrmlaldavh
),
24820 mCEF(vrmlsldavha
, _vrmlsldavha
, 4, (RRe
, RR
, RMQ
, RMQ
), mve_vrmlaldavh
),
24821 mCEF(vrmlsldavhx
, _vrmlsldavhx
, 4, (RRe
, RR
, RMQ
, RMQ
), mve_vrmlaldavh
),
24822 mCEF(vrmlsldavhax
, _vrmlsldavhax
, 4, (RRe
, RR
, RMQ
, RMQ
), mve_vrmlaldavh
),
24824 mToC("vmlas", ee011e40
, 3, (RMQ
, RMQ
, RR
), mve_vmlas
),
24825 mToC("vmulh", ee010e01
, 3, (RMQ
, RMQ
, RMQ
), mve_vmulh
),
24826 mToC("vrmulh", ee011e01
, 3, (RMQ
, RMQ
, RMQ
), mve_vmulh
),
24827 mToC("vpnot", fe310f4d
, 0, (), mve_vpnot
),
24828 mToC("vpsel", fe310f01
, 3, (RMQ
, RMQ
, RMQ
), mve_vpsel
),
24830 mToC("vqdmladh", ee000e00
, 3, (RMQ
, RMQ
, RMQ
), mve_vqdmladh
),
24831 mToC("vqdmladhx", ee001e00
, 3, (RMQ
, RMQ
, RMQ
), mve_vqdmladh
),
24832 mToC("vqrdmladh", ee000e01
, 3, (RMQ
, RMQ
, RMQ
), mve_vqdmladh
),
24833 mToC("vqrdmladhx",ee001e01
, 3, (RMQ
, RMQ
, RMQ
), mve_vqdmladh
),
24834 mToC("vqdmlsdh", fe000e00
, 3, (RMQ
, RMQ
, RMQ
), mve_vqdmladh
),
24835 mToC("vqdmlsdhx", fe001e00
, 3, (RMQ
, RMQ
, RMQ
), mve_vqdmladh
),
24836 mToC("vqrdmlsdh", fe000e01
, 3, (RMQ
, RMQ
, RMQ
), mve_vqdmladh
),
24837 mToC("vqrdmlsdhx",fe001e01
, 3, (RMQ
, RMQ
, RMQ
), mve_vqdmladh
),
24838 mToC("vqdmlah", ee000e60
, 3, (RMQ
, RMQ
, RR
), mve_vqdmlah
),
24839 mToC("vqdmlash", ee001e60
, 3, (RMQ
, RMQ
, RR
), mve_vqdmlah
),
24840 mToC("vqrdmlash", ee001e40
, 3, (RMQ
, RMQ
, RR
), mve_vqdmlah
),
24842 #undef THUMB_VARIANT
24843 #define THUMB_VARIANT & mve_fp_ext
24844 mToC("vcmul", ee300e00
, 4, (RMQ
, RMQ
, RMQ
, EXPi
), mve_vcmul
),
24845 mToC("vfmas", ee311e40
, 3, (RMQ
, RMQ
, RR
), mve_vfmas
),
24846 mToC("vmaxnma", ee3f0e81
, 2, (RMQ
, RMQ
), mve_vmaxnma_vminnma
),
24847 mToC("vminnma", ee3f1e81
, 2, (RMQ
, RMQ
), mve_vmaxnma_vminnma
),
24848 mToC("vmaxnmv", eeee0f00
, 2, (RR
, RMQ
), mve_vmaxnmv
),
24849 mToC("vmaxnmav",eeec0f00
, 2, (RR
, RMQ
), mve_vmaxnmv
),
24850 mToC("vminnmv", eeee0f80
, 2, (RR
, RMQ
), mve_vmaxnmv
),
24851 mToC("vminnmav",eeec0f80
, 2, (RR
, RMQ
), mve_vmaxnmv
),
24854 #define ARM_VARIANT & fpu_vfp_ext_v1
24855 #undef THUMB_VARIANT
24856 #define THUMB_VARIANT & arm_ext_v6t2
24857 mnCEF(vmla
, _vmla
, 3, (RNSDQMQ
, oRNSDQMQ
, RNSDQ_RNSC_MQ_RR
), neon_mac_maybe_scalar
),
24858 mnCEF(vmul
, _vmul
, 3, (RNSDQMQ
, oRNSDQMQ
, RNSDQ_RNSC_MQ_RR
), neon_mul
),
24860 mcCE(fcpyd
, eb00b40
, 2, (RVD
, RVD
), vfp_dp_rd_rm
),
24863 #define ARM_VARIANT & fpu_vfp_ext_v1xd
24865 MNCE(vmov
, 0, 1, (VMOV
), neon_mov
),
24866 mcCE(fmrs
, e100a10
, 2, (RR
, RVS
), vfp_reg_from_sp
),
24867 mcCE(fmsr
, e000a10
, 2, (RVS
, RR
), vfp_sp_from_reg
),
24868 mcCE(fcpys
, eb00a40
, 2, (RVS
, RVS
), vfp_sp_monadic
),
24870 mCEF(vmullt
, _vmullt
, 3, (RNSDQMQ
, oRNSDQMQ
, RNSDQ_RNSC_MQ
), mve_vmull
),
24871 mnCEF(vadd
, _vadd
, 3, (RNSDQMQ
, oRNSDQMQ
, RNSDQMQR
), neon_addsub_if_i
),
24872 mnCEF(vsub
, _vsub
, 3, (RNSDQMQ
, oRNSDQMQ
, RNSDQMQR
), neon_addsub_if_i
),
24874 MNCEF(vabs
, 1b10300
, 2, (RNSDQMQ
, RNSDQMQ
), neon_abs_neg
),
24875 MNCEF(vneg
, 1b10380
, 2, (RNSDQMQ
, RNSDQMQ
), neon_abs_neg
),
24877 mCEF(vmovlt
, _vmovlt
, 1, (VMOV
), mve_movl
),
24878 mCEF(vmovlb
, _vmovlb
, 1, (VMOV
), mve_movl
),
24880 mnCE(vcmp
, _vcmp
, 3, (RVSD_COND
, RSVDMQ_FI0
, oRMQRZ
), vfp_nsyn_cmp
),
24881 mnCE(vcmpe
, _vcmpe
, 3, (RVSD_COND
, RSVDMQ_FI0
, oRMQRZ
), vfp_nsyn_cmp
),
24884 #define ARM_VARIANT & fpu_vfp_ext_v2
24886 mcCE(fmsrr
, c400a10
, 3, (VRSLST
, RR
, RR
), vfp_sp2_from_reg2
),
24887 mcCE(fmrrs
, c500a10
, 3, (RR
, RR
, VRSLST
), vfp_reg2_from_sp2
),
24888 mcCE(fmdrr
, c400b10
, 3, (RVD
, RR
, RR
), vfp_dp_rm_rd_rn
),
24889 mcCE(fmrrd
, c500b10
, 3, (RR
, RR
, RVD
), vfp_dp_rd_rn_rm
),
24892 #define ARM_VARIANT & fpu_vfp_ext_armv8xd
24893 mnUF(vcvta
, _vcvta
, 2, (RNSDQMQ
, oRNSDQMQ
), neon_cvta
),
24894 mnUF(vcvtp
, _vcvta
, 2, (RNSDQMQ
, oRNSDQMQ
), neon_cvtp
),
24895 mnUF(vcvtn
, _vcvta
, 3, (RNSDQMQ
, oRNSDQMQ
, oI32z
), neon_cvtn
),
24896 mnUF(vcvtm
, _vcvta
, 2, (RNSDQMQ
, oRNSDQMQ
), neon_cvtm
),
24897 mnUF(vmaxnm
, _vmaxnm
, 3, (RNSDQMQ
, oRNSDQMQ
, RNSDQMQ
), vmaxnm
),
24898 mnUF(vminnm
, _vminnm
, 3, (RNSDQMQ
, oRNSDQMQ
, RNSDQMQ
), vmaxnm
),
24901 #define ARM_VARIANT & fpu_neon_ext_v1
24902 mnUF(vabd
, _vabd
, 3, (RNDQMQ
, oRNDQMQ
, RNDQMQ
), neon_dyadic_if_su
),
24903 mnUF(vabdl
, _vabdl
, 3, (RNQMQ
, RNDMQ
, RNDMQ
), neon_dyadic_long
),
24904 mnUF(vaddl
, _vaddl
, 3, (RNQMQ
, RNDMQ
, RNDMQR
), neon_dyadic_long
),
24905 mnUF(vsubl
, _vsubl
, 3, (RNQMQ
, RNDMQ
, RNDMQR
), neon_dyadic_long
),
24906 mnUF(vand
, _vand
, 3, (RNDQMQ
, oRNDQMQ
, RNDQMQ_Ibig
), neon_logic
),
24907 mnUF(vbic
, _vbic
, 3, (RNDQMQ
, oRNDQMQ
, RNDQMQ_Ibig
), neon_logic
),
24908 mnUF(vorr
, _vorr
, 3, (RNDQMQ
, oRNDQMQ
, RNDQMQ_Ibig
), neon_logic
),
24909 mnUF(vorn
, _vorn
, 3, (RNDQMQ
, oRNDQMQ
, RNDQMQ_Ibig
), neon_logic
),
24910 mnUF(veor
, _veor
, 3, (RNDQMQ
, oRNDQMQ
, RNDQMQ
), neon_logic
),
24911 MNUF(vcls
, 1b00400
, 2, (RNDQMQ
, RNDQMQ
), neon_cls
),
24912 MNUF(vclz
, 1b00480
, 2, (RNDQMQ
, RNDQMQ
), neon_clz
),
24913 mnCE(vdup
, _vdup
, 2, (RNDQMQ
, RR_RNSC
), neon_dup
),
24914 MNUF(vhadd
, 00000000, 3, (RNDQMQ
, oRNDQMQ
, RNDQMQR
), neon_dyadic_i_su
),
24915 MNUF(vrhadd
, 00000100, 3, (RNDQMQ
, oRNDQMQ
, RNDQMQ
), neon_dyadic_i_su
),
24916 MNUF(vhsub
, 00000200, 3, (RNDQMQ
, oRNDQMQ
, RNDQMQR
), neon_dyadic_i_su
),
24917 mnUF(vmin
, _vmin
, 3, (RNDQMQ
, oRNDQMQ
, RNDQMQ
), neon_dyadic_if_su
),
24918 mnUF(vmax
, _vmax
, 3, (RNDQMQ
, oRNDQMQ
, RNDQMQ
), neon_dyadic_if_su
),
24919 MNUF(vqadd
, 0000010, 3, (RNDQMQ
, oRNDQMQ
, RNDQMQR
), neon_dyadic_i64_su
),
24920 MNUF(vqsub
, 0000210, 3, (RNDQMQ
, oRNDQMQ
, RNDQMQR
), neon_dyadic_i64_su
),
24921 mnUF(vmvn
, _vmvn
, 2, (RNDQMQ
, RNDQMQ_Ibig
), neon_mvn
),
24922 MNUF(vqabs
, 1b00700
, 2, (RNDQMQ
, RNDQMQ
), neon_sat_abs_neg
),
24923 MNUF(vqneg
, 1b00780
, 2, (RNDQMQ
, RNDQMQ
), neon_sat_abs_neg
),
24924 mnUF(vqrdmlah
, _vqrdmlah
,3, (RNDQMQ
, oRNDQMQ
, RNDQ_RNSC_RR
), neon_qrdmlah
),
24925 mnUF(vqdmulh
, _vqdmulh
, 3, (RNDQMQ
, oRNDQMQ
, RNDQMQ_RNSC_RR
), neon_qdmulh
),
24926 mnUF(vqrdmulh
, _vqrdmulh
,3, (RNDQMQ
, oRNDQMQ
, RNDQMQ_RNSC_RR
), neon_qdmulh
),
24929 #define ARM_VARIANT & arm_ext_v8_3
24930 #undef THUMB_VARIANT
24931 #define THUMB_VARIANT & arm_ext_v6t2_v8m
24932 MNUF (vcadd
, 0, 4, (RNDQMQ
, RNDQMQ
, RNDQMQ
, EXPi
), vcadd
),
24933 MNUF (vcmla
, 0, 4, (RNDQMQ
, RNDQMQ
, RNDQMQ_RNSC
, EXPi
), vcmla
),
24936 #undef THUMB_VARIANT
24968 /* MD interface: bits in the object file. */
24970 /* Turn an integer of n bytes (in val) into a stream of bytes appropriate
24971 for use in the a.out file, and stores them in the array pointed to by buf.
24972 This knows about the endian-ness of the target machine and does
24973 THE RIGHT THING, whatever it is. Possible values for n are 1 (byte)
24974 2 (short) and 4 (long) Floating numbers are put out as a series of
24975 LITTLENUMS (shorts, here at least). */
24978 md_number_to_chars (char * buf
, valueT val
, int n
)
24980 if (target_big_endian
)
24981 number_to_chars_bigendian (buf
, val
, n
);
24983 number_to_chars_littleendian (buf
, val
, n
);
24987 md_chars_to_number (char * buf
, int n
)
24990 unsigned char * where
= (unsigned char *) buf
;
24992 if (target_big_endian
)
24997 result
|= (*where
++ & 255);
25005 result
|= (where
[n
] & 255);
25012 /* MD interface: Sections. */
25014 /* Calculate the maximum variable size (i.e., excluding fr_fix)
25015 that an rs_machine_dependent frag may reach. */
25018 arm_frag_max_var (fragS
*fragp
)
25020 /* We only use rs_machine_dependent for variable-size Thumb instructions,
25021 which are either THUMB_SIZE (2) or INSN_SIZE (4).
25023 Note that we generate relaxable instructions even for cases that don't
25024 really need it, like an immediate that's a trivial constant. So we're
25025 overestimating the instruction size for some of those cases. Rather
25026 than putting more intelligence here, it would probably be better to
25027 avoid generating a relaxation frag in the first place when it can be
25028 determined up front that a short instruction will suffice. */
25030 gas_assert (fragp
->fr_type
== rs_machine_dependent
);
25034 /* Estimate the size of a frag before relaxing. Assume everything fits in
25038 md_estimate_size_before_relax (fragS
* fragp
,
25039 segT segtype ATTRIBUTE_UNUSED
)
25045 /* Convert a machine dependent frag. */
25048 md_convert_frag (bfd
*abfd
, segT asec ATTRIBUTE_UNUSED
, fragS
*fragp
)
25050 unsigned long insn
;
25051 unsigned long old_op
;
25059 buf
= fragp
->fr_literal
+ fragp
->fr_fix
;
25061 old_op
= bfd_get_16(abfd
, buf
);
25062 if (fragp
->fr_symbol
)
25064 exp
.X_op
= O_symbol
;
25065 exp
.X_add_symbol
= fragp
->fr_symbol
;
25069 exp
.X_op
= O_constant
;
25071 exp
.X_add_number
= fragp
->fr_offset
;
25072 opcode
= fragp
->fr_subtype
;
25075 case T_MNEM_ldr_pc
:
25076 case T_MNEM_ldr_pc2
:
25077 case T_MNEM_ldr_sp
:
25078 case T_MNEM_str_sp
:
25085 if (fragp
->fr_var
== 4)
25087 insn
= THUMB_OP32 (opcode
);
25088 if ((old_op
>> 12) == 4 || (old_op
>> 12) == 9)
25090 insn
|= (old_op
& 0x700) << 4;
25094 insn
|= (old_op
& 7) << 12;
25095 insn
|= (old_op
& 0x38) << 13;
25097 insn
|= 0x00000c00;
25098 put_thumb32_insn (buf
, insn
);
25099 reloc_type
= BFD_RELOC_ARM_T32_OFFSET_IMM
;
25103 reloc_type
= BFD_RELOC_ARM_THUMB_OFFSET
;
25105 pc_rel
= (opcode
== T_MNEM_ldr_pc2
);
25108 if (fragp
->fr_var
== 4)
25110 insn
= THUMB_OP32 (opcode
);
25111 insn
|= (old_op
& 0xf0) << 4;
25112 put_thumb32_insn (buf
, insn
);
25113 reloc_type
= BFD_RELOC_ARM_T32_ADD_PC12
;
25117 reloc_type
= BFD_RELOC_ARM_THUMB_ADD
;
25118 exp
.X_add_number
-= 4;
25126 if (fragp
->fr_var
== 4)
25128 int r0off
= (opcode
== T_MNEM_mov
25129 || opcode
== T_MNEM_movs
) ? 0 : 8;
25130 insn
= THUMB_OP32 (opcode
);
25131 insn
= (insn
& 0xe1ffffff) | 0x10000000;
25132 insn
|= (old_op
& 0x700) << r0off
;
25133 put_thumb32_insn (buf
, insn
);
25134 reloc_type
= BFD_RELOC_ARM_T32_IMMEDIATE
;
25138 reloc_type
= BFD_RELOC_ARM_THUMB_IMM
;
25143 if (fragp
->fr_var
== 4)
25145 insn
= THUMB_OP32(opcode
);
25146 put_thumb32_insn (buf
, insn
);
25147 reloc_type
= BFD_RELOC_THUMB_PCREL_BRANCH25
;
25150 reloc_type
= BFD_RELOC_THUMB_PCREL_BRANCH12
;
25154 if (fragp
->fr_var
== 4)
25156 insn
= THUMB_OP32(opcode
);
25157 insn
|= (old_op
& 0xf00) << 14;
25158 put_thumb32_insn (buf
, insn
);
25159 reloc_type
= BFD_RELOC_THUMB_PCREL_BRANCH20
;
25162 reloc_type
= BFD_RELOC_THUMB_PCREL_BRANCH9
;
25165 case T_MNEM_add_sp
:
25166 case T_MNEM_add_pc
:
25167 case T_MNEM_inc_sp
:
25168 case T_MNEM_dec_sp
:
25169 if (fragp
->fr_var
== 4)
25171 /* ??? Choose between add and addw. */
25172 insn
= THUMB_OP32 (opcode
);
25173 insn
|= (old_op
& 0xf0) << 4;
25174 put_thumb32_insn (buf
, insn
);
25175 if (opcode
== T_MNEM_add_pc
)
25176 reloc_type
= BFD_RELOC_ARM_T32_IMM12
;
25178 reloc_type
= BFD_RELOC_ARM_T32_ADD_IMM
;
25181 reloc_type
= BFD_RELOC_ARM_THUMB_ADD
;
25189 if (fragp
->fr_var
== 4)
25191 insn
= THUMB_OP32 (opcode
);
25192 insn
|= (old_op
& 0xf0) << 4;
25193 insn
|= (old_op
& 0xf) << 16;
25194 put_thumb32_insn (buf
, insn
);
25195 if (insn
& (1 << 20))
25196 reloc_type
= BFD_RELOC_ARM_T32_ADD_IMM
;
25198 reloc_type
= BFD_RELOC_ARM_T32_IMMEDIATE
;
25201 reloc_type
= BFD_RELOC_ARM_THUMB_ADD
;
25207 fixp
= fix_new_exp (fragp
, fragp
->fr_fix
, fragp
->fr_var
, &exp
, pc_rel
,
25208 (enum bfd_reloc_code_real
) reloc_type
);
25209 fixp
->fx_file
= fragp
->fr_file
;
25210 fixp
->fx_line
= fragp
->fr_line
;
25211 fragp
->fr_fix
+= fragp
->fr_var
;
25213 /* Set whether we use thumb-2 ISA based on final relaxation results. */
25214 if (thumb_mode
&& fragp
->fr_var
== 4 && no_cpu_selected ()
25215 && !ARM_CPU_HAS_FEATURE (thumb_arch_used
, arm_arch_t2
))
25216 ARM_MERGE_FEATURE_SETS (arm_arch_used
, thumb_arch_used
, arm_ext_v6t2
);
25219 /* Return the size of a relaxable immediate operand instruction.
25220 SHIFT and SIZE specify the form of the allowable immediate. */
25222 relax_immediate (fragS
*fragp
, int size
, int shift
)
25228 /* ??? Should be able to do better than this. */
25229 if (fragp
->fr_symbol
)
25232 low
= (1 << shift
) - 1;
25233 mask
= (1 << (shift
+ size
)) - (1 << shift
);
25234 offset
= fragp
->fr_offset
;
25235 /* Force misaligned offsets to 32-bit variant. */
25238 if (offset
& ~mask
)
25243 /* Get the address of a symbol during relaxation. */
25245 relaxed_symbol_addr (fragS
*fragp
, long stretch
)
25251 sym
= fragp
->fr_symbol
;
25252 sym_frag
= symbol_get_frag (sym
);
25253 know (S_GET_SEGMENT (sym
) != absolute_section
25254 || sym_frag
== &zero_address_frag
);
25255 addr
= S_GET_VALUE (sym
) + fragp
->fr_offset
;
25257 /* If frag has yet to be reached on this pass, assume it will
25258 move by STRETCH just as we did. If this is not so, it will
25259 be because some frag between grows, and that will force
25263 && sym_frag
->relax_marker
!= fragp
->relax_marker
)
25267 /* Adjust stretch for any alignment frag. Note that if have
25268 been expanding the earlier code, the symbol may be
25269 defined in what appears to be an earlier frag. FIXME:
25270 This doesn't handle the fr_subtype field, which specifies
25271 a maximum number of bytes to skip when doing an
25273 for (f
= fragp
; f
!= NULL
&& f
!= sym_frag
; f
= f
->fr_next
)
25275 if (f
->fr_type
== rs_align
|| f
->fr_type
== rs_align_code
)
25278 stretch
= - ((- stretch
)
25279 & ~ ((1 << (int) f
->fr_offset
) - 1));
25281 stretch
&= ~ ((1 << (int) f
->fr_offset
) - 1);
25293 /* Return the size of a relaxable adr pseudo-instruction or PC-relative
25296 relax_adr (fragS
*fragp
, asection
*sec
, long stretch
)
25301 /* Assume worst case for symbols not known to be in the same section. */
25302 if (fragp
->fr_symbol
== NULL
25303 || !S_IS_DEFINED (fragp
->fr_symbol
)
25304 || sec
!= S_GET_SEGMENT (fragp
->fr_symbol
)
25305 || S_IS_WEAK (fragp
->fr_symbol
))
25308 val
= relaxed_symbol_addr (fragp
, stretch
);
25309 addr
= fragp
->fr_address
+ fragp
->fr_fix
;
25310 addr
= (addr
+ 4) & ~3;
25311 /* Force misaligned targets to 32-bit variant. */
25315 if (val
< 0 || val
> 1020)
25320 /* Return the size of a relaxable add/sub immediate instruction. */
25322 relax_addsub (fragS
*fragp
, asection
*sec
)
25327 buf
= fragp
->fr_literal
+ fragp
->fr_fix
;
25328 op
= bfd_get_16(sec
->owner
, buf
);
25329 if ((op
& 0xf) == ((op
>> 4) & 0xf))
25330 return relax_immediate (fragp
, 8, 0);
25332 return relax_immediate (fragp
, 3, 0);
25335 /* Return TRUE iff the definition of symbol S could be pre-empted
25336 (overridden) at link or load time. */
25338 symbol_preemptible (symbolS
*s
)
25340 /* Weak symbols can always be pre-empted. */
25344 /* Non-global symbols cannot be pre-empted. */
25345 if (! S_IS_EXTERNAL (s
))
25349 /* In ELF, a global symbol can be marked protected, or private. In that
25350 case it can't be pre-empted (other definitions in the same link unit
25351 would violate the ODR). */
25352 if (ELF_ST_VISIBILITY (S_GET_OTHER (s
)) > STV_DEFAULT
)
25356 /* Other global symbols might be pre-empted. */
25360 /* Return the size of a relaxable branch instruction. BITS is the
25361 size of the offset field in the narrow instruction. */
25364 relax_branch (fragS
*fragp
, asection
*sec
, int bits
, long stretch
)
25370 /* Assume worst case for symbols not known to be in the same section. */
25371 if (!S_IS_DEFINED (fragp
->fr_symbol
)
25372 || sec
!= S_GET_SEGMENT (fragp
->fr_symbol
)
25373 || S_IS_WEAK (fragp
->fr_symbol
))
25377 /* A branch to a function in ARM state will require interworking. */
25378 if (S_IS_DEFINED (fragp
->fr_symbol
)
25379 && ARM_IS_FUNC (fragp
->fr_symbol
))
25383 if (symbol_preemptible (fragp
->fr_symbol
))
25386 val
= relaxed_symbol_addr (fragp
, stretch
);
25387 addr
= fragp
->fr_address
+ fragp
->fr_fix
+ 4;
25390 /* Offset is a signed value *2 */
25392 if (val
>= limit
|| val
< -limit
)
25398 /* Relax a machine dependent frag. This returns the amount by which
25399 the current size of the frag should change. */
25402 arm_relax_frag (asection
*sec
, fragS
*fragp
, long stretch
)
25407 oldsize
= fragp
->fr_var
;
25408 switch (fragp
->fr_subtype
)
25410 case T_MNEM_ldr_pc2
:
25411 newsize
= relax_adr (fragp
, sec
, stretch
);
25413 case T_MNEM_ldr_pc
:
25414 case T_MNEM_ldr_sp
:
25415 case T_MNEM_str_sp
:
25416 newsize
= relax_immediate (fragp
, 8, 2);
25420 newsize
= relax_immediate (fragp
, 5, 2);
25424 newsize
= relax_immediate (fragp
, 5, 1);
25428 newsize
= relax_immediate (fragp
, 5, 0);
25431 newsize
= relax_adr (fragp
, sec
, stretch
);
25437 newsize
= relax_immediate (fragp
, 8, 0);
25440 newsize
= relax_branch (fragp
, sec
, 11, stretch
);
25443 newsize
= relax_branch (fragp
, sec
, 8, stretch
);
25445 case T_MNEM_add_sp
:
25446 case T_MNEM_add_pc
:
25447 newsize
= relax_immediate (fragp
, 8, 2);
25449 case T_MNEM_inc_sp
:
25450 case T_MNEM_dec_sp
:
25451 newsize
= relax_immediate (fragp
, 7, 2);
25457 newsize
= relax_addsub (fragp
, sec
);
25463 fragp
->fr_var
= newsize
;
25464 /* Freeze wide instructions that are at or before the same location as
25465 in the previous pass. This avoids infinite loops.
25466 Don't freeze them unconditionally because targets may be artificially
25467 misaligned by the expansion of preceding frags. */
25468 if (stretch
<= 0 && newsize
> 2)
25470 md_convert_frag (sec
->owner
, sec
, fragp
);
25474 return newsize
- oldsize
;
25477 /* Round up a section size to the appropriate boundary. */
25480 md_section_align (segT segment ATTRIBUTE_UNUSED
,
25486 /* This is called from HANDLE_ALIGN in write.c. Fill in the contents
25487 of an rs_align_code fragment. */
25490 arm_handle_align (fragS
* fragP
)
25492 static unsigned char const arm_noop
[2][2][4] =
25495 {0x00, 0x00, 0xa0, 0xe1}, /* LE */
25496 {0xe1, 0xa0, 0x00, 0x00}, /* BE */
25499 {0x00, 0xf0, 0x20, 0xe3}, /* LE */
25500 {0xe3, 0x20, 0xf0, 0x00}, /* BE */
25503 static unsigned char const thumb_noop
[2][2][2] =
25506 {0xc0, 0x46}, /* LE */
25507 {0x46, 0xc0}, /* BE */
25510 {0x00, 0xbf}, /* LE */
25511 {0xbf, 0x00} /* BE */
25514 static unsigned char const wide_thumb_noop
[2][4] =
25515 { /* Wide Thumb-2 */
25516 {0xaf, 0xf3, 0x00, 0x80}, /* LE */
25517 {0xf3, 0xaf, 0x80, 0x00}, /* BE */
25520 unsigned bytes
, fix
, noop_size
;
25522 const unsigned char * noop
;
25523 const unsigned char *narrow_noop
= NULL
;
25528 if (fragP
->fr_type
!= rs_align_code
)
25531 bytes
= fragP
->fr_next
->fr_address
- fragP
->fr_address
- fragP
->fr_fix
;
25532 p
= fragP
->fr_literal
+ fragP
->fr_fix
;
25535 if (bytes
> MAX_MEM_FOR_RS_ALIGN_CODE
)
25536 bytes
&= MAX_MEM_FOR_RS_ALIGN_CODE
;
25538 gas_assert ((fragP
->tc_frag_data
.thumb_mode
& MODE_RECORDED
) != 0);
25540 if (fragP
->tc_frag_data
.thumb_mode
& (~ MODE_RECORDED
))
25542 if (ARM_CPU_HAS_FEATURE (selected_cpu_name
[0]
25543 ? selected_cpu
: arm_arch_none
, arm_ext_v6t2
))
25545 narrow_noop
= thumb_noop
[1][target_big_endian
];
25546 noop
= wide_thumb_noop
[target_big_endian
];
25549 noop
= thumb_noop
[0][target_big_endian
];
25557 noop
= arm_noop
[ARM_CPU_HAS_FEATURE (selected_cpu_name
[0]
25558 ? selected_cpu
: arm_arch_none
,
25560 [target_big_endian
];
25567 fragP
->fr_var
= noop_size
;
25569 if (bytes
& (noop_size
- 1))
25571 fix
= bytes
& (noop_size
- 1);
25573 insert_data_mapping_symbol (state
, fragP
->fr_fix
, fragP
, fix
);
25575 memset (p
, 0, fix
);
25582 if (bytes
& noop_size
)
25584 /* Insert a narrow noop. */
25585 memcpy (p
, narrow_noop
, noop_size
);
25587 bytes
-= noop_size
;
25591 /* Use wide noops for the remainder */
25595 while (bytes
>= noop_size
)
25597 memcpy (p
, noop
, noop_size
);
25599 bytes
-= noop_size
;
25603 fragP
->fr_fix
+= fix
;
25606 /* Called from md_do_align. Used to create an alignment
25607 frag in a code section. */
25610 arm_frag_align_code (int n
, int max
)
25614 /* We assume that there will never be a requirement
25615 to support alignments greater than MAX_MEM_FOR_RS_ALIGN_CODE bytes. */
25616 if (max
> MAX_MEM_FOR_RS_ALIGN_CODE
)
25621 _("alignments greater than %d bytes not supported in .text sections."),
25622 MAX_MEM_FOR_RS_ALIGN_CODE
+ 1);
25623 as_fatal ("%s", err_msg
);
25626 p
= frag_var (rs_align_code
,
25627 MAX_MEM_FOR_RS_ALIGN_CODE
,
25629 (relax_substateT
) max
,
25636 /* Perform target specific initialisation of a frag.
25637 Note - despite the name this initialisation is not done when the frag
25638 is created, but only when its type is assigned. A frag can be created
25639 and used a long time before its type is set, so beware of assuming that
25640 this initialisation is performed first. */
25644 arm_init_frag (fragS
* fragP
, int max_chars ATTRIBUTE_UNUSED
)
25646 /* Record whether this frag is in an ARM or a THUMB area. */
25647 fragP
->tc_frag_data
.thumb_mode
= thumb_mode
| MODE_RECORDED
;
25650 #else /* OBJ_ELF is defined. */
25652 arm_init_frag (fragS
* fragP
, int max_chars
)
25654 bfd_boolean frag_thumb_mode
;
25656 /* If the current ARM vs THUMB mode has not already
25657 been recorded into this frag then do so now. */
25658 if ((fragP
->tc_frag_data
.thumb_mode
& MODE_RECORDED
) == 0)
25659 fragP
->tc_frag_data
.thumb_mode
= thumb_mode
| MODE_RECORDED
;
25661 /* PR 21809: Do not set a mapping state for debug sections
25662 - it just confuses other tools. */
25663 if (bfd_get_section_flags (NULL
, now_seg
) & SEC_DEBUGGING
)
25666 frag_thumb_mode
= fragP
->tc_frag_data
.thumb_mode
^ MODE_RECORDED
;
25668 /* Record a mapping symbol for alignment frags. We will delete this
25669 later if the alignment ends up empty. */
25670 switch (fragP
->fr_type
)
25673 case rs_align_test
:
25675 mapping_state_2 (MAP_DATA
, max_chars
);
25677 case rs_align_code
:
25678 mapping_state_2 (frag_thumb_mode
? MAP_THUMB
: MAP_ARM
, max_chars
);
25685 /* When we change sections we need to issue a new mapping symbol. */
25688 arm_elf_change_section (void)
25690 /* Link an unlinked unwind index table section to the .text section. */
25691 if (elf_section_type (now_seg
) == SHT_ARM_EXIDX
25692 && elf_linked_to_section (now_seg
) == NULL
)
25693 elf_linked_to_section (now_seg
) = text_section
;
25697 arm_elf_section_type (const char * str
, size_t len
)
25699 if (len
== 5 && strncmp (str
, "exidx", 5) == 0)
25700 return SHT_ARM_EXIDX
;
25705 /* Code to deal with unwinding tables. */
25707 static void add_unwind_adjustsp (offsetT
);
25709 /* Generate any deferred unwind frame offset. */
25712 flush_pending_unwind (void)
25716 offset
= unwind
.pending_offset
;
25717 unwind
.pending_offset
= 0;
25719 add_unwind_adjustsp (offset
);
25722 /* Add an opcode to this list for this function. Two-byte opcodes should
25723 be passed as op[0] << 8 | op[1]. The list of opcodes is built in reverse
25727 add_unwind_opcode (valueT op
, int length
)
25729 /* Add any deferred stack adjustment. */
25730 if (unwind
.pending_offset
)
25731 flush_pending_unwind ();
25733 unwind
.sp_restored
= 0;
25735 if (unwind
.opcode_count
+ length
> unwind
.opcode_alloc
)
25737 unwind
.opcode_alloc
+= ARM_OPCODE_CHUNK_SIZE
;
25738 if (unwind
.opcodes
)
25739 unwind
.opcodes
= XRESIZEVEC (unsigned char, unwind
.opcodes
,
25740 unwind
.opcode_alloc
);
25742 unwind
.opcodes
= XNEWVEC (unsigned char, unwind
.opcode_alloc
);
25747 unwind
.opcodes
[unwind
.opcode_count
] = op
& 0xff;
25749 unwind
.opcode_count
++;
25753 /* Add unwind opcodes to adjust the stack pointer. */
25756 add_unwind_adjustsp (offsetT offset
)
25760 if (offset
> 0x200)
25762 /* We need at most 5 bytes to hold a 32-bit value in a uleb128. */
25767 /* Long form: 0xb2, uleb128. */
25768 /* This might not fit in a word so add the individual bytes,
25769 remembering the list is built in reverse order. */
25770 o
= (valueT
) ((offset
- 0x204) >> 2);
25772 add_unwind_opcode (0, 1);
25774 /* Calculate the uleb128 encoding of the offset. */
25778 bytes
[n
] = o
& 0x7f;
25784 /* Add the insn. */
25786 add_unwind_opcode (bytes
[n
- 1], 1);
25787 add_unwind_opcode (0xb2, 1);
25789 else if (offset
> 0x100)
25791 /* Two short opcodes. */
25792 add_unwind_opcode (0x3f, 1);
25793 op
= (offset
- 0x104) >> 2;
25794 add_unwind_opcode (op
, 1);
25796 else if (offset
> 0)
25798 /* Short opcode. */
25799 op
= (offset
- 4) >> 2;
25800 add_unwind_opcode (op
, 1);
25802 else if (offset
< 0)
25805 while (offset
> 0x100)
25807 add_unwind_opcode (0x7f, 1);
25810 op
= ((offset
- 4) >> 2) | 0x40;
25811 add_unwind_opcode (op
, 1);
25815 /* Finish the list of unwind opcodes for this function. */
25818 finish_unwind_opcodes (void)
25822 if (unwind
.fp_used
)
25824 /* Adjust sp as necessary. */
25825 unwind
.pending_offset
+= unwind
.fp_offset
- unwind
.frame_size
;
25826 flush_pending_unwind ();
25828 /* After restoring sp from the frame pointer. */
25829 op
= 0x90 | unwind
.fp_reg
;
25830 add_unwind_opcode (op
, 1);
25833 flush_pending_unwind ();
25837 /* Start an exception table entry. If idx is nonzero this is an index table
25841 start_unwind_section (const segT text_seg
, int idx
)
25843 const char * text_name
;
25844 const char * prefix
;
25845 const char * prefix_once
;
25846 const char * group_name
;
25854 prefix
= ELF_STRING_ARM_unwind
;
25855 prefix_once
= ELF_STRING_ARM_unwind_once
;
25856 type
= SHT_ARM_EXIDX
;
25860 prefix
= ELF_STRING_ARM_unwind_info
;
25861 prefix_once
= ELF_STRING_ARM_unwind_info_once
;
25862 type
= SHT_PROGBITS
;
25865 text_name
= segment_name (text_seg
);
25866 if (streq (text_name
, ".text"))
25869 if (strncmp (text_name
, ".gnu.linkonce.t.",
25870 strlen (".gnu.linkonce.t.")) == 0)
25872 prefix
= prefix_once
;
25873 text_name
+= strlen (".gnu.linkonce.t.");
25876 sec_name
= concat (prefix
, text_name
, (char *) NULL
);
25882 /* Handle COMDAT group. */
25883 if (prefix
!= prefix_once
&& (text_seg
->flags
& SEC_LINK_ONCE
) != 0)
25885 group_name
= elf_group_name (text_seg
);
25886 if (group_name
== NULL
)
25888 as_bad (_("Group section `%s' has no group signature"),
25889 segment_name (text_seg
));
25890 ignore_rest_of_line ();
25893 flags
|= SHF_GROUP
;
25897 obj_elf_change_section (sec_name
, type
, 0, flags
, 0, group_name
,
25900 /* Set the section link for index tables. */
25902 elf_linked_to_section (now_seg
) = text_seg
;
25906 /* Start an unwind table entry. HAVE_DATA is nonzero if we have additional
25907 personality routine data. Returns zero, or the index table value for
25908 an inline entry. */
25911 create_unwind_entry (int have_data
)
25916 /* The current word of data. */
25918 /* The number of bytes left in this word. */
25921 finish_unwind_opcodes ();
25923 /* Remember the current text section. */
25924 unwind
.saved_seg
= now_seg
;
25925 unwind
.saved_subseg
= now_subseg
;
25927 start_unwind_section (now_seg
, 0);
25929 if (unwind
.personality_routine
== NULL
)
25931 if (unwind
.personality_index
== -2)
25934 as_bad (_("handlerdata in cantunwind frame"));
25935 return 1; /* EXIDX_CANTUNWIND. */
25938 /* Use a default personality routine if none is specified. */
25939 if (unwind
.personality_index
== -1)
25941 if (unwind
.opcode_count
> 3)
25942 unwind
.personality_index
= 1;
25944 unwind
.personality_index
= 0;
25947 /* Space for the personality routine entry. */
25948 if (unwind
.personality_index
== 0)
25950 if (unwind
.opcode_count
> 3)
25951 as_bad (_("too many unwind opcodes for personality routine 0"));
25955 /* All the data is inline in the index table. */
25958 while (unwind
.opcode_count
> 0)
25960 unwind
.opcode_count
--;
25961 data
= (data
<< 8) | unwind
.opcodes
[unwind
.opcode_count
];
25965 /* Pad with "finish" opcodes. */
25967 data
= (data
<< 8) | 0xb0;
25974 /* We get two opcodes "free" in the first word. */
25975 size
= unwind
.opcode_count
- 2;
25979 /* PR 16765: Missing or misplaced unwind directives can trigger this. */
25980 if (unwind
.personality_index
!= -1)
25982 as_bad (_("attempt to recreate an unwind entry"));
25986 /* An extra byte is required for the opcode count. */
25987 size
= unwind
.opcode_count
+ 1;
25990 size
= (size
+ 3) >> 2;
25992 as_bad (_("too many unwind opcodes"));
25994 frag_align (2, 0, 0);
25995 record_alignment (now_seg
, 2);
25996 unwind
.table_entry
= expr_build_dot ();
25998 /* Allocate the table entry. */
25999 ptr
= frag_more ((size
<< 2) + 4);
26000 /* PR 13449: Zero the table entries in case some of them are not used. */
26001 memset (ptr
, 0, (size
<< 2) + 4);
26002 where
= frag_now_fix () - ((size
<< 2) + 4);
26004 switch (unwind
.personality_index
)
26007 /* ??? Should this be a PLT generating relocation? */
26008 /* Custom personality routine. */
26009 fix_new (frag_now
, where
, 4, unwind
.personality_routine
, 0, 1,
26010 BFD_RELOC_ARM_PREL31
);
26015 /* Set the first byte to the number of additional words. */
26016 data
= size
> 0 ? size
- 1 : 0;
26020 /* ABI defined personality routines. */
26022 /* Three opcodes bytes are packed into the first word. */
26029 /* The size and first two opcode bytes go in the first word. */
26030 data
= ((0x80 + unwind
.personality_index
) << 8) | size
;
26035 /* Should never happen. */
26039 /* Pack the opcodes into words (MSB first), reversing the list at the same
26041 while (unwind
.opcode_count
> 0)
26045 md_number_to_chars (ptr
, data
, 4);
26050 unwind
.opcode_count
--;
26052 data
= (data
<< 8) | unwind
.opcodes
[unwind
.opcode_count
];
26055 /* Finish off the last word. */
26058 /* Pad with "finish" opcodes. */
26060 data
= (data
<< 8) | 0xb0;
26062 md_number_to_chars (ptr
, data
, 4);
26067 /* Add an empty descriptor if there is no user-specified data. */
26068 ptr
= frag_more (4);
26069 md_number_to_chars (ptr
, 0, 4);
26076 /* Initialize the DWARF-2 unwind information for this procedure. */
26079 tc_arm_frame_initial_instructions (void)
26081 cfi_add_CFA_def_cfa (REG_SP
, 0);
26083 #endif /* OBJ_ELF */
26085 /* Convert REGNAME to a DWARF-2 register number. */
26088 tc_arm_regname_to_dw2regnum (char *regname
)
26090 int reg
= arm_reg_parse (®name
, REG_TYPE_RN
);
26094 /* PR 16694: Allow VFP registers as well. */
26095 reg
= arm_reg_parse (®name
, REG_TYPE_VFS
);
26099 reg
= arm_reg_parse (®name
, REG_TYPE_VFD
);
26108 tc_pe_dwarf2_emit_offset (symbolS
*symbol
, unsigned int size
)
26112 exp
.X_op
= O_secrel
;
26113 exp
.X_add_symbol
= symbol
;
26114 exp
.X_add_number
= 0;
26115 emit_expr (&exp
, size
);
26119 /* MD interface: Symbol and relocation handling. */
26121 /* Return the address within the segment that a PC-relative fixup is
26122 relative to. For ARM, PC-relative fixups applied to instructions
26123 are generally relative to the location of the fixup plus 8 bytes.
26124 Thumb branches are offset by 4, and Thumb loads relative to PC
26125 require special handling. */
26128 md_pcrel_from_section (fixS
* fixP
, segT seg
)
26130 offsetT base
= fixP
->fx_where
+ fixP
->fx_frag
->fr_address
;
26132 /* If this is pc-relative and we are going to emit a relocation
26133 then we just want to put out any pipeline compensation that the linker
26134 will need. Otherwise we want to use the calculated base.
26135 For WinCE we skip the bias for externals as well, since this
26136 is how the MS ARM-CE assembler behaves and we want to be compatible. */
26138 && ((fixP
->fx_addsy
&& S_GET_SEGMENT (fixP
->fx_addsy
) != seg
)
26139 || (arm_force_relocation (fixP
)
26141 && !S_IS_EXTERNAL (fixP
->fx_addsy
)
26147 switch (fixP
->fx_r_type
)
26149 /* PC relative addressing on the Thumb is slightly odd as the
26150 bottom two bits of the PC are forced to zero for the
26151 calculation. This happens *after* application of the
26152 pipeline offset. However, Thumb adrl already adjusts for
26153 this, so we need not do it again. */
26154 case BFD_RELOC_ARM_THUMB_ADD
:
26157 case BFD_RELOC_ARM_THUMB_OFFSET
:
26158 case BFD_RELOC_ARM_T32_OFFSET_IMM
:
26159 case BFD_RELOC_ARM_T32_ADD_PC12
:
26160 case BFD_RELOC_ARM_T32_CP_OFF_IMM
:
26161 return (base
+ 4) & ~3;
26163 /* Thumb branches are simply offset by +4. */
26164 case BFD_RELOC_THUMB_PCREL_BRANCH5
:
26165 case BFD_RELOC_THUMB_PCREL_BRANCH7
:
26166 case BFD_RELOC_THUMB_PCREL_BRANCH9
:
26167 case BFD_RELOC_THUMB_PCREL_BRANCH12
:
26168 case BFD_RELOC_THUMB_PCREL_BRANCH20
:
26169 case BFD_RELOC_THUMB_PCREL_BRANCH25
:
26170 case BFD_RELOC_THUMB_PCREL_BFCSEL
:
26171 case BFD_RELOC_ARM_THUMB_BF17
:
26172 case BFD_RELOC_ARM_THUMB_BF19
:
26173 case BFD_RELOC_ARM_THUMB_BF13
:
26174 case BFD_RELOC_ARM_THUMB_LOOP12
:
26177 case BFD_RELOC_THUMB_PCREL_BRANCH23
:
26179 && (S_GET_SEGMENT (fixP
->fx_addsy
) == seg
)
26180 && !S_FORCE_RELOC (fixP
->fx_addsy
, TRUE
)
26181 && ARM_IS_FUNC (fixP
->fx_addsy
)
26182 && ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_v5t
))
26183 base
= fixP
->fx_where
+ fixP
->fx_frag
->fr_address
;
26186 /* BLX is like branches above, but forces the low two bits of PC to
26188 case BFD_RELOC_THUMB_PCREL_BLX
:
26190 && (S_GET_SEGMENT (fixP
->fx_addsy
) == seg
)
26191 && !S_FORCE_RELOC (fixP
->fx_addsy
, TRUE
)
26192 && THUMB_IS_FUNC (fixP
->fx_addsy
)
26193 && ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_v5t
))
26194 base
= fixP
->fx_where
+ fixP
->fx_frag
->fr_address
;
26195 return (base
+ 4) & ~3;
26197 /* ARM mode branches are offset by +8. However, the Windows CE
26198 loader expects the relocation not to take this into account. */
26199 case BFD_RELOC_ARM_PCREL_BLX
:
26201 && (S_GET_SEGMENT (fixP
->fx_addsy
) == seg
)
26202 && !S_FORCE_RELOC (fixP
->fx_addsy
, TRUE
)
26203 && ARM_IS_FUNC (fixP
->fx_addsy
)
26204 && ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_v5t
))
26205 base
= fixP
->fx_where
+ fixP
->fx_frag
->fr_address
;
26208 case BFD_RELOC_ARM_PCREL_CALL
:
26210 && (S_GET_SEGMENT (fixP
->fx_addsy
) == seg
)
26211 && !S_FORCE_RELOC (fixP
->fx_addsy
, TRUE
)
26212 && THUMB_IS_FUNC (fixP
->fx_addsy
)
26213 && ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_v5t
))
26214 base
= fixP
->fx_where
+ fixP
->fx_frag
->fr_address
;
26217 case BFD_RELOC_ARM_PCREL_BRANCH
:
26218 case BFD_RELOC_ARM_PCREL_JUMP
:
26219 case BFD_RELOC_ARM_PLT32
:
26221 /* When handling fixups immediately, because we have already
26222 discovered the value of a symbol, or the address of the frag involved
26223 we must account for the offset by +8, as the OS loader will never see the reloc.
26224 see fixup_segment() in write.c
26225 The S_IS_EXTERNAL test handles the case of global symbols.
26226 Those need the calculated base, not just the pipe compensation the linker will need. */
26228 && fixP
->fx_addsy
!= NULL
26229 && (S_GET_SEGMENT (fixP
->fx_addsy
) == seg
)
26230 && (S_IS_EXTERNAL (fixP
->fx_addsy
) || !arm_force_relocation (fixP
)))
26238 /* ARM mode loads relative to PC are also offset by +8. Unlike
26239 branches, the Windows CE loader *does* expect the relocation
26240 to take this into account. */
26241 case BFD_RELOC_ARM_OFFSET_IMM
:
26242 case BFD_RELOC_ARM_OFFSET_IMM8
:
26243 case BFD_RELOC_ARM_HWLITERAL
:
26244 case BFD_RELOC_ARM_LITERAL
:
26245 case BFD_RELOC_ARM_CP_OFF_IMM
:
26249 /* Other PC-relative relocations are un-offset. */
26255 static bfd_boolean flag_warn_syms
= TRUE
;
26258 arm_tc_equal_in_insn (int c ATTRIBUTE_UNUSED
, char * name
)
26260 /* PR 18347 - Warn if the user attempts to create a symbol with the same
26261 name as an ARM instruction. Whilst strictly speaking it is allowed, it
26262 does mean that the resulting code might be very confusing to the reader.
26263 Also this warning can be triggered if the user omits an operand before
26264 an immediate address, eg:
26268 GAS treats this as an assignment of the value of the symbol foo to a
26269 symbol LDR, and so (without this code) it will not issue any kind of
26270 warning or error message.
26272 Note - ARM instructions are case-insensitive but the strings in the hash
26273 table are all stored in lower case, so we must first ensure that name is
26275 if (flag_warn_syms
&& arm_ops_hsh
)
26277 char * nbuf
= strdup (name
);
26280 for (p
= nbuf
; *p
; p
++)
26282 if (hash_find (arm_ops_hsh
, nbuf
) != NULL
)
26284 static struct hash_control
* already_warned
= NULL
;
26286 if (already_warned
== NULL
)
26287 already_warned
= hash_new ();
26288 /* Only warn about the symbol once. To keep the code
26289 simple we let hash_insert do the lookup for us. */
26290 if (hash_insert (already_warned
, nbuf
, NULL
) == NULL
)
26291 as_warn (_("[-mwarn-syms]: Assignment makes a symbol match an ARM instruction: %s"), name
);
26300 /* Under ELF we need to default _GLOBAL_OFFSET_TABLE.
26301 Otherwise we have no need to default values of symbols. */
26304 md_undefined_symbol (char * name ATTRIBUTE_UNUSED
)
26307 if (name
[0] == '_' && name
[1] == 'G'
26308 && streq (name
, GLOBAL_OFFSET_TABLE_NAME
))
26312 if (symbol_find (name
))
26313 as_bad (_("GOT already in the symbol table"));
26315 GOT_symbol
= symbol_new (name
, undefined_section
,
26316 (valueT
) 0, & zero_address_frag
);
26326 /* Subroutine of md_apply_fix. Check to see if an immediate can be
26327 computed as two separate immediate values, added together. We
26328 already know that this value cannot be computed by just one ARM
26331 static unsigned int
26332 validate_immediate_twopart (unsigned int val
,
26333 unsigned int * highpart
)
26338 for (i
= 0; i
< 32; i
+= 2)
26339 if (((a
= rotate_left (val
, i
)) & 0xff) != 0)
26345 * highpart
= (a
>> 8) | ((i
+ 24) << 7);
26347 else if (a
& 0xff0000)
26349 if (a
& 0xff000000)
26351 * highpart
= (a
>> 16) | ((i
+ 16) << 7);
26355 gas_assert (a
& 0xff000000);
26356 * highpart
= (a
>> 24) | ((i
+ 8) << 7);
26359 return (a
& 0xff) | (i
<< 7);
26366 validate_offset_imm (unsigned int val
, int hwse
)
26368 if ((hwse
&& val
> 255) || val
> 4095)
26373 /* Subroutine of md_apply_fix. Do those data_ops which can take a
26374 negative immediate constant by altering the instruction. A bit of
26379 by inverting the second operand, and
26382 by negating the second operand. */
26385 negate_data_op (unsigned long * instruction
,
26386 unsigned long value
)
26389 unsigned long negated
, inverted
;
26391 negated
= encode_arm_immediate (-value
);
26392 inverted
= encode_arm_immediate (~value
);
26394 op
= (*instruction
>> DATA_OP_SHIFT
) & 0xf;
26397 /* First negates. */
26398 case OPCODE_SUB
: /* ADD <-> SUB */
26399 new_inst
= OPCODE_ADD
;
26404 new_inst
= OPCODE_SUB
;
26408 case OPCODE_CMP
: /* CMP <-> CMN */
26409 new_inst
= OPCODE_CMN
;
26414 new_inst
= OPCODE_CMP
;
26418 /* Now Inverted ops. */
26419 case OPCODE_MOV
: /* MOV <-> MVN */
26420 new_inst
= OPCODE_MVN
;
26425 new_inst
= OPCODE_MOV
;
26429 case OPCODE_AND
: /* AND <-> BIC */
26430 new_inst
= OPCODE_BIC
;
26435 new_inst
= OPCODE_AND
;
26439 case OPCODE_ADC
: /* ADC <-> SBC */
26440 new_inst
= OPCODE_SBC
;
26445 new_inst
= OPCODE_ADC
;
26449 /* We cannot do anything. */
26454 if (value
== (unsigned) FAIL
)
26457 *instruction
&= OPCODE_MASK
;
26458 *instruction
|= new_inst
<< DATA_OP_SHIFT
;
26462 /* Like negate_data_op, but for Thumb-2. */
26464 static unsigned int
26465 thumb32_negate_data_op (offsetT
*instruction
, unsigned int value
)
26469 unsigned int negated
, inverted
;
26471 negated
= encode_thumb32_immediate (-value
);
26472 inverted
= encode_thumb32_immediate (~value
);
26474 rd
= (*instruction
>> 8) & 0xf;
26475 op
= (*instruction
>> T2_DATA_OP_SHIFT
) & 0xf;
26478 /* ADD <-> SUB. Includes CMP <-> CMN. */
26479 case T2_OPCODE_SUB
:
26480 new_inst
= T2_OPCODE_ADD
;
26484 case T2_OPCODE_ADD
:
26485 new_inst
= T2_OPCODE_SUB
;
26489 /* ORR <-> ORN. Includes MOV <-> MVN. */
26490 case T2_OPCODE_ORR
:
26491 new_inst
= T2_OPCODE_ORN
;
26495 case T2_OPCODE_ORN
:
26496 new_inst
= T2_OPCODE_ORR
;
26500 /* AND <-> BIC. TST has no inverted equivalent. */
26501 case T2_OPCODE_AND
:
26502 new_inst
= T2_OPCODE_BIC
;
26509 case T2_OPCODE_BIC
:
26510 new_inst
= T2_OPCODE_AND
;
26515 case T2_OPCODE_ADC
:
26516 new_inst
= T2_OPCODE_SBC
;
26520 case T2_OPCODE_SBC
:
26521 new_inst
= T2_OPCODE_ADC
;
26525 /* We cannot do anything. */
26530 if (value
== (unsigned int)FAIL
)
26533 *instruction
&= T2_OPCODE_MASK
;
26534 *instruction
|= new_inst
<< T2_DATA_OP_SHIFT
;
26538 /* Read a 32-bit thumb instruction from buf. */
26540 static unsigned long
26541 get_thumb32_insn (char * buf
)
26543 unsigned long insn
;
26544 insn
= md_chars_to_number (buf
, THUMB_SIZE
) << 16;
26545 insn
|= md_chars_to_number (buf
+ THUMB_SIZE
, THUMB_SIZE
);
26550 /* We usually want to set the low bit on the address of thumb function
26551 symbols. In particular .word foo - . should have the low bit set.
26552 Generic code tries to fold the difference of two symbols to
26553 a constant. Prevent this and force a relocation when the first symbols
26554 is a thumb function. */
26557 arm_optimize_expr (expressionS
*l
, operatorT op
, expressionS
*r
)
26559 if (op
== O_subtract
26560 && l
->X_op
== O_symbol
26561 && r
->X_op
== O_symbol
26562 && THUMB_IS_FUNC (l
->X_add_symbol
))
26564 l
->X_op
= O_subtract
;
26565 l
->X_op_symbol
= r
->X_add_symbol
;
26566 l
->X_add_number
-= r
->X_add_number
;
26570 /* Process as normal. */
26574 /* Encode Thumb2 unconditional branches and calls. The encoding
26575 for the 2 are identical for the immediate values. */
26578 encode_thumb2_b_bl_offset (char * buf
, offsetT value
)
26580 #define T2I1I2MASK ((1 << 13) | (1 << 11))
26583 addressT S
, I1
, I2
, lo
, hi
;
26585 S
= (value
>> 24) & 0x01;
26586 I1
= (value
>> 23) & 0x01;
26587 I2
= (value
>> 22) & 0x01;
26588 hi
= (value
>> 12) & 0x3ff;
26589 lo
= (value
>> 1) & 0x7ff;
26590 newval
= md_chars_to_number (buf
, THUMB_SIZE
);
26591 newval2
= md_chars_to_number (buf
+ THUMB_SIZE
, THUMB_SIZE
);
26592 newval
|= (S
<< 10) | hi
;
26593 newval2
&= ~T2I1I2MASK
;
26594 newval2
|= (((I1
^ S
) << 13) | ((I2
^ S
) << 11) | lo
) ^ T2I1I2MASK
;
26595 md_number_to_chars (buf
, newval
, THUMB_SIZE
);
26596 md_number_to_chars (buf
+ THUMB_SIZE
, newval2
, THUMB_SIZE
);
26600 md_apply_fix (fixS
* fixP
,
26604 offsetT value
= * valP
;
26606 unsigned int newimm
;
26607 unsigned long temp
;
26609 char * buf
= fixP
->fx_where
+ fixP
->fx_frag
->fr_literal
;
26611 gas_assert (fixP
->fx_r_type
<= BFD_RELOC_UNUSED
);
26613 /* Note whether this will delete the relocation. */
26615 if (fixP
->fx_addsy
== 0 && !fixP
->fx_pcrel
)
26618 /* On a 64-bit host, silently truncate 'value' to 32 bits for
26619 consistency with the behaviour on 32-bit hosts. Remember value
26621 value
&= 0xffffffff;
26622 value
^= 0x80000000;
26623 value
-= 0x80000000;
26626 fixP
->fx_addnumber
= value
;
26628 /* Same treatment for fixP->fx_offset. */
26629 fixP
->fx_offset
&= 0xffffffff;
26630 fixP
->fx_offset
^= 0x80000000;
26631 fixP
->fx_offset
-= 0x80000000;
26633 switch (fixP
->fx_r_type
)
26635 case BFD_RELOC_NONE
:
26636 /* This will need to go in the object file. */
26640 case BFD_RELOC_ARM_IMMEDIATE
:
26641 /* We claim that this fixup has been processed here,
26642 even if in fact we generate an error because we do
26643 not have a reloc for it, so tc_gen_reloc will reject it. */
26646 if (fixP
->fx_addsy
)
26648 const char *msg
= 0;
26650 if (! S_IS_DEFINED (fixP
->fx_addsy
))
26651 msg
= _("undefined symbol %s used as an immediate value");
26652 else if (S_GET_SEGMENT (fixP
->fx_addsy
) != seg
)
26653 msg
= _("symbol %s is in a different section");
26654 else if (S_IS_WEAK (fixP
->fx_addsy
))
26655 msg
= _("symbol %s is weak and may be overridden later");
26659 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
26660 msg
, S_GET_NAME (fixP
->fx_addsy
));
26665 temp
= md_chars_to_number (buf
, INSN_SIZE
);
26667 /* If the offset is negative, we should use encoding A2 for ADR. */
26668 if ((temp
& 0xfff0000) == 0x28f0000 && value
< 0)
26669 newimm
= negate_data_op (&temp
, value
);
26672 newimm
= encode_arm_immediate (value
);
26674 /* If the instruction will fail, see if we can fix things up by
26675 changing the opcode. */
26676 if (newimm
== (unsigned int) FAIL
)
26677 newimm
= negate_data_op (&temp
, value
);
26678 /* MOV accepts both ARM modified immediate (A1 encoding) and
26679 UINT16 (A2 encoding) when possible, MOVW only accepts UINT16.
26680 When disassembling, MOV is preferred when there is no encoding
26682 if (newimm
== (unsigned int) FAIL
26683 && ((temp
>> DATA_OP_SHIFT
) & 0xf) == OPCODE_MOV
26684 && ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v6t2
)
26685 && !((temp
>> SBIT_SHIFT
) & 0x1)
26686 && value
>= 0 && value
<= 0xffff)
26688 /* Clear bits[23:20] to change encoding from A1 to A2. */
26689 temp
&= 0xff0fffff;
26690 /* Encoding high 4bits imm. Code below will encode the remaining
26692 temp
|= (value
& 0x0000f000) << 4;
26693 newimm
= value
& 0x00000fff;
26697 if (newimm
== (unsigned int) FAIL
)
26699 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
26700 _("invalid constant (%lx) after fixup"),
26701 (unsigned long) value
);
26705 newimm
|= (temp
& 0xfffff000);
26706 md_number_to_chars (buf
, (valueT
) newimm
, INSN_SIZE
);
26709 case BFD_RELOC_ARM_ADRL_IMMEDIATE
:
26711 unsigned int highpart
= 0;
26712 unsigned int newinsn
= 0xe1a00000; /* nop. */
26714 if (fixP
->fx_addsy
)
26716 const char *msg
= 0;
26718 if (! S_IS_DEFINED (fixP
->fx_addsy
))
26719 msg
= _("undefined symbol %s used as an immediate value");
26720 else if (S_GET_SEGMENT (fixP
->fx_addsy
) != seg
)
26721 msg
= _("symbol %s is in a different section");
26722 else if (S_IS_WEAK (fixP
->fx_addsy
))
26723 msg
= _("symbol %s is weak and may be overridden later");
26727 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
26728 msg
, S_GET_NAME (fixP
->fx_addsy
));
26733 newimm
= encode_arm_immediate (value
);
26734 temp
= md_chars_to_number (buf
, INSN_SIZE
);
26736 /* If the instruction will fail, see if we can fix things up by
26737 changing the opcode. */
26738 if (newimm
== (unsigned int) FAIL
26739 && (newimm
= negate_data_op (& temp
, value
)) == (unsigned int) FAIL
)
26741 /* No ? OK - try using two ADD instructions to generate
26743 newimm
= validate_immediate_twopart (value
, & highpart
);
26745 /* Yes - then make sure that the second instruction is
26747 if (newimm
!= (unsigned int) FAIL
)
26749 /* Still No ? Try using a negated value. */
26750 else if ((newimm
= validate_immediate_twopart (- value
, & highpart
)) != (unsigned int) FAIL
)
26751 temp
= newinsn
= (temp
& OPCODE_MASK
) | OPCODE_SUB
<< DATA_OP_SHIFT
;
26752 /* Otherwise - give up. */
26755 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
26756 _("unable to compute ADRL instructions for PC offset of 0x%lx"),
26761 /* Replace the first operand in the 2nd instruction (which
26762 is the PC) with the destination register. We have
26763 already added in the PC in the first instruction and we
26764 do not want to do it again. */
26765 newinsn
&= ~ 0xf0000;
26766 newinsn
|= ((newinsn
& 0x0f000) << 4);
26769 newimm
|= (temp
& 0xfffff000);
26770 md_number_to_chars (buf
, (valueT
) newimm
, INSN_SIZE
);
26772 highpart
|= (newinsn
& 0xfffff000);
26773 md_number_to_chars (buf
+ INSN_SIZE
, (valueT
) highpart
, INSN_SIZE
);
26777 case BFD_RELOC_ARM_OFFSET_IMM
:
26778 if (!fixP
->fx_done
&& seg
->use_rela_p
)
26780 /* Fall through. */
26782 case BFD_RELOC_ARM_LITERAL
:
26788 if (validate_offset_imm (value
, 0) == FAIL
)
26790 if (fixP
->fx_r_type
== BFD_RELOC_ARM_LITERAL
)
26791 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
26792 _("invalid literal constant: pool needs to be closer"));
26794 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
26795 _("bad immediate value for offset (%ld)"),
26800 newval
= md_chars_to_number (buf
, INSN_SIZE
);
26802 newval
&= 0xfffff000;
26805 newval
&= 0xff7ff000;
26806 newval
|= value
| (sign
? INDEX_UP
: 0);
26808 md_number_to_chars (buf
, newval
, INSN_SIZE
);
26811 case BFD_RELOC_ARM_OFFSET_IMM8
:
26812 case BFD_RELOC_ARM_HWLITERAL
:
26818 if (validate_offset_imm (value
, 1) == FAIL
)
26820 if (fixP
->fx_r_type
== BFD_RELOC_ARM_HWLITERAL
)
26821 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
26822 _("invalid literal constant: pool needs to be closer"));
26824 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
26825 _("bad immediate value for 8-bit offset (%ld)"),
26830 newval
= md_chars_to_number (buf
, INSN_SIZE
);
26832 newval
&= 0xfffff0f0;
26835 newval
&= 0xff7ff0f0;
26836 newval
|= ((value
>> 4) << 8) | (value
& 0xf) | (sign
? INDEX_UP
: 0);
26838 md_number_to_chars (buf
, newval
, INSN_SIZE
);
26841 case BFD_RELOC_ARM_T32_OFFSET_U8
:
26842 if (value
< 0 || value
> 1020 || value
% 4 != 0)
26843 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
26844 _("bad immediate value for offset (%ld)"), (long) value
);
26847 newval
= md_chars_to_number (buf
+2, THUMB_SIZE
);
26849 md_number_to_chars (buf
+2, newval
, THUMB_SIZE
);
26852 case BFD_RELOC_ARM_T32_OFFSET_IMM
:
26853 /* This is a complicated relocation used for all varieties of Thumb32
26854 load/store instruction with immediate offset:
26856 1110 100P u1WL NNNN XXXX YYYY iiii iiii - +/-(U) pre/post(P) 8-bit,
26857 *4, optional writeback(W)
26858 (doubleword load/store)
26860 1111 100S uTTL 1111 XXXX iiii iiii iiii - +/-(U) 12-bit PC-rel
26861 1111 100S 0TTL NNNN XXXX 1Pu1 iiii iiii - +/-(U) pre/post(P) 8-bit
26862 1111 100S 0TTL NNNN XXXX 1110 iiii iiii - positive 8-bit (T instruction)
26863 1111 100S 1TTL NNNN XXXX iiii iiii iiii - positive 12-bit
26864 1111 100S 0TTL NNNN XXXX 1100 iiii iiii - negative 8-bit
26866 Uppercase letters indicate bits that are already encoded at
26867 this point. Lowercase letters are our problem. For the
26868 second block of instructions, the secondary opcode nybble
26869 (bits 8..11) is present, and bit 23 is zero, even if this is
26870 a PC-relative operation. */
26871 newval
= md_chars_to_number (buf
, THUMB_SIZE
);
26873 newval
|= md_chars_to_number (buf
+THUMB_SIZE
, THUMB_SIZE
);
26875 if ((newval
& 0xf0000000) == 0xe0000000)
26877 /* Doubleword load/store: 8-bit offset, scaled by 4. */
26879 newval
|= (1 << 23);
26882 if (value
% 4 != 0)
26884 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
26885 _("offset not a multiple of 4"));
26891 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
26892 _("offset out of range"));
26897 else if ((newval
& 0x000f0000) == 0x000f0000)
26899 /* PC-relative, 12-bit offset. */
26901 newval
|= (1 << 23);
26906 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
26907 _("offset out of range"));
26912 else if ((newval
& 0x00000100) == 0x00000100)
26914 /* Writeback: 8-bit, +/- offset. */
26916 newval
|= (1 << 9);
26921 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
26922 _("offset out of range"));
26927 else if ((newval
& 0x00000f00) == 0x00000e00)
26929 /* T-instruction: positive 8-bit offset. */
26930 if (value
< 0 || value
> 0xff)
26932 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
26933 _("offset out of range"));
26941 /* Positive 12-bit or negative 8-bit offset. */
26945 newval
|= (1 << 23);
26955 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
26956 _("offset out of range"));
26963 md_number_to_chars (buf
, (newval
>> 16) & 0xffff, THUMB_SIZE
);
26964 md_number_to_chars (buf
+ THUMB_SIZE
, newval
& 0xffff, THUMB_SIZE
);
26967 case BFD_RELOC_ARM_SHIFT_IMM
:
26968 newval
= md_chars_to_number (buf
, INSN_SIZE
);
26969 if (((unsigned long) value
) > 32
26971 && (((newval
& 0x60) == 0) || (newval
& 0x60) == 0x60)))
26973 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
26974 _("shift expression is too large"));
26979 /* Shifts of zero must be done as lsl. */
26981 else if (value
== 32)
26983 newval
&= 0xfffff07f;
26984 newval
|= (value
& 0x1f) << 7;
26985 md_number_to_chars (buf
, newval
, INSN_SIZE
);
26988 case BFD_RELOC_ARM_T32_IMMEDIATE
:
26989 case BFD_RELOC_ARM_T32_ADD_IMM
:
26990 case BFD_RELOC_ARM_T32_IMM12
:
26991 case BFD_RELOC_ARM_T32_ADD_PC12
:
26992 /* We claim that this fixup has been processed here,
26993 even if in fact we generate an error because we do
26994 not have a reloc for it, so tc_gen_reloc will reject it. */
26998 && ! S_IS_DEFINED (fixP
->fx_addsy
))
27000 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
27001 _("undefined symbol %s used as an immediate value"),
27002 S_GET_NAME (fixP
->fx_addsy
));
27006 newval
= md_chars_to_number (buf
, THUMB_SIZE
);
27008 newval
|= md_chars_to_number (buf
+2, THUMB_SIZE
);
27011 if ((fixP
->fx_r_type
== BFD_RELOC_ARM_T32_IMMEDIATE
27012 /* ARMv8-M Baseline MOV will reach here, but it doesn't support
27013 Thumb2 modified immediate encoding (T2). */
27014 && ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v6t2
))
27015 || fixP
->fx_r_type
== BFD_RELOC_ARM_T32_ADD_IMM
)
27017 newimm
= encode_thumb32_immediate (value
);
27018 if (newimm
== (unsigned int) FAIL
)
27019 newimm
= thumb32_negate_data_op (&newval
, value
);
27021 if (newimm
== (unsigned int) FAIL
)
27023 if (fixP
->fx_r_type
!= BFD_RELOC_ARM_T32_IMMEDIATE
)
27025 /* Turn add/sum into addw/subw. */
27026 if (fixP
->fx_r_type
== BFD_RELOC_ARM_T32_ADD_IMM
)
27027 newval
= (newval
& 0xfeffffff) | 0x02000000;
27028 /* No flat 12-bit imm encoding for addsw/subsw. */
27029 if ((newval
& 0x00100000) == 0)
27031 /* 12 bit immediate for addw/subw. */
27035 newval
^= 0x00a00000;
27038 newimm
= (unsigned int) FAIL
;
27045 /* MOV accepts both Thumb2 modified immediate (T2 encoding) and
27046 UINT16 (T3 encoding), MOVW only accepts UINT16. When
27047 disassembling, MOV is preferred when there is no encoding
27049 if (((newval
>> T2_DATA_OP_SHIFT
) & 0xf) == T2_OPCODE_ORR
27050 /* NOTE: MOV uses the ORR opcode in Thumb 2 mode
27051 but with the Rn field [19:16] set to 1111. */
27052 && (((newval
>> 16) & 0xf) == 0xf)
27053 && ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v6t2_v8m
)
27054 && !((newval
>> T2_SBIT_SHIFT
) & 0x1)
27055 && value
>= 0 && value
<= 0xffff)
27057 /* Toggle bit[25] to change encoding from T2 to T3. */
27059 /* Clear bits[19:16]. */
27060 newval
&= 0xfff0ffff;
27061 /* Encoding high 4bits imm. Code below will encode the
27062 remaining low 12bits. */
27063 newval
|= (value
& 0x0000f000) << 4;
27064 newimm
= value
& 0x00000fff;
27069 if (newimm
== (unsigned int)FAIL
)
27071 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
27072 _("invalid constant (%lx) after fixup"),
27073 (unsigned long) value
);
27077 newval
|= (newimm
& 0x800) << 15;
27078 newval
|= (newimm
& 0x700) << 4;
27079 newval
|= (newimm
& 0x0ff);
27081 md_number_to_chars (buf
, (valueT
) ((newval
>> 16) & 0xffff), THUMB_SIZE
);
27082 md_number_to_chars (buf
+2, (valueT
) (newval
& 0xffff), THUMB_SIZE
);
27085 case BFD_RELOC_ARM_SMC
:
27086 if (((unsigned long) value
) > 0xffff)
27087 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
27088 _("invalid smc expression"));
27089 newval
= md_chars_to_number (buf
, INSN_SIZE
);
27090 newval
|= (value
& 0xf) | ((value
& 0xfff0) << 4);
27091 md_number_to_chars (buf
, newval
, INSN_SIZE
);
27094 case BFD_RELOC_ARM_HVC
:
27095 if (((unsigned long) value
) > 0xffff)
27096 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
27097 _("invalid hvc expression"));
27098 newval
= md_chars_to_number (buf
, INSN_SIZE
);
27099 newval
|= (value
& 0xf) | ((value
& 0xfff0) << 4);
27100 md_number_to_chars (buf
, newval
, INSN_SIZE
);
27103 case BFD_RELOC_ARM_SWI
:
27104 if (fixP
->tc_fix_data
!= 0)
27106 if (((unsigned long) value
) > 0xff)
27107 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
27108 _("invalid swi expression"));
27109 newval
= md_chars_to_number (buf
, THUMB_SIZE
);
27111 md_number_to_chars (buf
, newval
, THUMB_SIZE
);
27115 if (((unsigned long) value
) > 0x00ffffff)
27116 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
27117 _("invalid swi expression"));
27118 newval
= md_chars_to_number (buf
, INSN_SIZE
);
27120 md_number_to_chars (buf
, newval
, INSN_SIZE
);
27124 case BFD_RELOC_ARM_MULTI
:
27125 if (((unsigned long) value
) > 0xffff)
27126 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
27127 _("invalid expression in load/store multiple"));
27128 newval
= value
| md_chars_to_number (buf
, INSN_SIZE
);
27129 md_number_to_chars (buf
, newval
, INSN_SIZE
);
27133 case BFD_RELOC_ARM_PCREL_CALL
:
27135 if (ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_v5t
)
27137 && !S_FORCE_RELOC (fixP
->fx_addsy
, TRUE
)
27138 && (S_GET_SEGMENT (fixP
->fx_addsy
) == seg
)
27139 && THUMB_IS_FUNC (fixP
->fx_addsy
))
27140 /* Flip the bl to blx. This is a simple flip
27141 bit here because we generate PCREL_CALL for
27142 unconditional bls. */
27144 newval
= md_chars_to_number (buf
, INSN_SIZE
);
27145 newval
= newval
| 0x10000000;
27146 md_number_to_chars (buf
, newval
, INSN_SIZE
);
27152 goto arm_branch_common
;
27154 case BFD_RELOC_ARM_PCREL_JUMP
:
27155 if (ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_v5t
)
27157 && !S_FORCE_RELOC (fixP
->fx_addsy
, TRUE
)
27158 && (S_GET_SEGMENT (fixP
->fx_addsy
) == seg
)
27159 && THUMB_IS_FUNC (fixP
->fx_addsy
))
27161 /* This would map to a bl<cond>, b<cond>,
27162 b<always> to a Thumb function. We
27163 need to force a relocation for this particular
27165 newval
= md_chars_to_number (buf
, INSN_SIZE
);
27168 /* Fall through. */
27170 case BFD_RELOC_ARM_PLT32
:
27172 case BFD_RELOC_ARM_PCREL_BRANCH
:
27174 goto arm_branch_common
;
27176 case BFD_RELOC_ARM_PCREL_BLX
:
27179 if (ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_v5t
)
27181 && !S_FORCE_RELOC (fixP
->fx_addsy
, TRUE
)
27182 && (S_GET_SEGMENT (fixP
->fx_addsy
) == seg
)
27183 && ARM_IS_FUNC (fixP
->fx_addsy
))
27185 /* Flip the blx to a bl and warn. */
27186 const char *name
= S_GET_NAME (fixP
->fx_addsy
);
27187 newval
= 0xeb000000;
27188 as_warn_where (fixP
->fx_file
, fixP
->fx_line
,
27189 _("blx to '%s' an ARM ISA state function changed to bl"),
27191 md_number_to_chars (buf
, newval
, INSN_SIZE
);
27197 if (EF_ARM_EABI_VERSION (meabi_flags
) >= EF_ARM_EABI_VER4
)
27198 fixP
->fx_r_type
= BFD_RELOC_ARM_PCREL_CALL
;
27202 /* We are going to store value (shifted right by two) in the
27203 instruction, in a 24 bit, signed field. Bits 26 through 32 either
27204 all clear or all set and bit 0 must be clear. For B/BL bit 1 must
27207 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
27208 _("misaligned branch destination"));
27209 if ((value
& (offsetT
)0xfe000000) != (offsetT
)0
27210 && (value
& (offsetT
)0xfe000000) != (offsetT
)0xfe000000)
27211 as_bad_where (fixP
->fx_file
, fixP
->fx_line
, BAD_RANGE
);
27213 if (fixP
->fx_done
|| !seg
->use_rela_p
)
27215 newval
= md_chars_to_number (buf
, INSN_SIZE
);
27216 newval
|= (value
>> 2) & 0x00ffffff;
27217 /* Set the H bit on BLX instructions. */
27221 newval
|= 0x01000000;
27223 newval
&= ~0x01000000;
27225 md_number_to_chars (buf
, newval
, INSN_SIZE
);
27229 case BFD_RELOC_THUMB_PCREL_BRANCH7
: /* CBZ */
27230 /* CBZ can only branch forward. */
27232 /* Attempts to use CBZ to branch to the next instruction
27233 (which, strictly speaking, are prohibited) will be turned into
27236 FIXME: It may be better to remove the instruction completely and
27237 perform relaxation. */
27240 newval
= md_chars_to_number (buf
, THUMB_SIZE
);
27241 newval
= 0xbf00; /* NOP encoding T1 */
27242 md_number_to_chars (buf
, newval
, THUMB_SIZE
);
27247 as_bad_where (fixP
->fx_file
, fixP
->fx_line
, BAD_RANGE
);
27249 if (fixP
->fx_done
|| !seg
->use_rela_p
)
27251 newval
= md_chars_to_number (buf
, THUMB_SIZE
);
27252 newval
|= ((value
& 0x3e) << 2) | ((value
& 0x40) << 3);
27253 md_number_to_chars (buf
, newval
, THUMB_SIZE
);
27258 case BFD_RELOC_THUMB_PCREL_BRANCH9
: /* Conditional branch. */
27259 if ((value
& ~0xff) && ((value
& ~0xff) != ~0xff))
27260 as_bad_where (fixP
->fx_file
, fixP
->fx_line
, BAD_RANGE
);
27262 if (fixP
->fx_done
|| !seg
->use_rela_p
)
27264 newval
= md_chars_to_number (buf
, THUMB_SIZE
);
27265 newval
|= (value
& 0x1ff) >> 1;
27266 md_number_to_chars (buf
, newval
, THUMB_SIZE
);
27270 case BFD_RELOC_THUMB_PCREL_BRANCH12
: /* Unconditional branch. */
27271 if ((value
& ~0x7ff) && ((value
& ~0x7ff) != ~0x7ff))
27272 as_bad_where (fixP
->fx_file
, fixP
->fx_line
, BAD_RANGE
);
27274 if (fixP
->fx_done
|| !seg
->use_rela_p
)
27276 newval
= md_chars_to_number (buf
, THUMB_SIZE
);
27277 newval
|= (value
& 0xfff) >> 1;
27278 md_number_to_chars (buf
, newval
, THUMB_SIZE
);
27282 case BFD_RELOC_THUMB_PCREL_BRANCH20
:
27284 && (S_GET_SEGMENT (fixP
->fx_addsy
) == seg
)
27285 && !S_FORCE_RELOC (fixP
->fx_addsy
, TRUE
)
27286 && ARM_IS_FUNC (fixP
->fx_addsy
)
27287 && ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_v5t
))
27289 /* Force a relocation for a branch 20 bits wide. */
27292 if ((value
& ~0x1fffff) && ((value
& ~0x0fffff) != ~0x0fffff))
27293 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
27294 _("conditional branch out of range"));
27296 if (fixP
->fx_done
|| !seg
->use_rela_p
)
27299 addressT S
, J1
, J2
, lo
, hi
;
27301 S
= (value
& 0x00100000) >> 20;
27302 J2
= (value
& 0x00080000) >> 19;
27303 J1
= (value
& 0x00040000) >> 18;
27304 hi
= (value
& 0x0003f000) >> 12;
27305 lo
= (value
& 0x00000ffe) >> 1;
27307 newval
= md_chars_to_number (buf
, THUMB_SIZE
);
27308 newval2
= md_chars_to_number (buf
+ THUMB_SIZE
, THUMB_SIZE
);
27309 newval
|= (S
<< 10) | hi
;
27310 newval2
|= (J1
<< 13) | (J2
<< 11) | lo
;
27311 md_number_to_chars (buf
, newval
, THUMB_SIZE
);
27312 md_number_to_chars (buf
+ THUMB_SIZE
, newval2
, THUMB_SIZE
);
27316 case BFD_RELOC_THUMB_PCREL_BLX
:
27317 /* If there is a blx from a thumb state function to
27318 another thumb function flip this to a bl and warn
27322 && !S_FORCE_RELOC (fixP
->fx_addsy
, TRUE
)
27323 && (S_GET_SEGMENT (fixP
->fx_addsy
) == seg
)
27324 && THUMB_IS_FUNC (fixP
->fx_addsy
))
27326 const char *name
= S_GET_NAME (fixP
->fx_addsy
);
27327 as_warn_where (fixP
->fx_file
, fixP
->fx_line
,
27328 _("blx to Thumb func '%s' from Thumb ISA state changed to bl"),
27330 newval
= md_chars_to_number (buf
+ THUMB_SIZE
, THUMB_SIZE
);
27331 newval
= newval
| 0x1000;
27332 md_number_to_chars (buf
+THUMB_SIZE
, newval
, THUMB_SIZE
);
27333 fixP
->fx_r_type
= BFD_RELOC_THUMB_PCREL_BRANCH23
;
27338 goto thumb_bl_common
;
27340 case BFD_RELOC_THUMB_PCREL_BRANCH23
:
27341 /* A bl from Thumb state ISA to an internal ARM state function
27342 is converted to a blx. */
27344 && (S_GET_SEGMENT (fixP
->fx_addsy
) == seg
)
27345 && !S_FORCE_RELOC (fixP
->fx_addsy
, TRUE
)
27346 && ARM_IS_FUNC (fixP
->fx_addsy
)
27347 && ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_v5t
))
27349 newval
= md_chars_to_number (buf
+ THUMB_SIZE
, THUMB_SIZE
);
27350 newval
= newval
& ~0x1000;
27351 md_number_to_chars (buf
+THUMB_SIZE
, newval
, THUMB_SIZE
);
27352 fixP
->fx_r_type
= BFD_RELOC_THUMB_PCREL_BLX
;
27358 if (fixP
->fx_r_type
== BFD_RELOC_THUMB_PCREL_BLX
)
27359 /* For a BLX instruction, make sure that the relocation is rounded up
27360 to a word boundary. This follows the semantics of the instruction
27361 which specifies that bit 1 of the target address will come from bit
27362 1 of the base address. */
27363 value
= (value
+ 3) & ~ 3;
27366 if (EF_ARM_EABI_VERSION (meabi_flags
) >= EF_ARM_EABI_VER4
27367 && fixP
->fx_r_type
== BFD_RELOC_THUMB_PCREL_BLX
)
27368 fixP
->fx_r_type
= BFD_RELOC_THUMB_PCREL_BRANCH23
;
27371 if ((value
& ~0x3fffff) && ((value
& ~0x3fffff) != ~0x3fffff))
27373 if (!(ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v6t2
)))
27374 as_bad_where (fixP
->fx_file
, fixP
->fx_line
, BAD_RANGE
);
27375 else if ((value
& ~0x1ffffff)
27376 && ((value
& ~0x1ffffff) != ~0x1ffffff))
27377 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
27378 _("Thumb2 branch out of range"));
27381 if (fixP
->fx_done
|| !seg
->use_rela_p
)
27382 encode_thumb2_b_bl_offset (buf
, value
);
27386 case BFD_RELOC_THUMB_PCREL_BRANCH25
:
27387 if ((value
& ~0x0ffffff) && ((value
& ~0x0ffffff) != ~0x0ffffff))
27388 as_bad_where (fixP
->fx_file
, fixP
->fx_line
, BAD_RANGE
);
27390 if (fixP
->fx_done
|| !seg
->use_rela_p
)
27391 encode_thumb2_b_bl_offset (buf
, value
);
27396 if (fixP
->fx_done
|| !seg
->use_rela_p
)
27401 if (fixP
->fx_done
|| !seg
->use_rela_p
)
27402 md_number_to_chars (buf
, value
, 2);
27406 case BFD_RELOC_ARM_TLS_CALL
:
27407 case BFD_RELOC_ARM_THM_TLS_CALL
:
27408 case BFD_RELOC_ARM_TLS_DESCSEQ
:
27409 case BFD_RELOC_ARM_THM_TLS_DESCSEQ
:
27410 case BFD_RELOC_ARM_TLS_GOTDESC
:
27411 case BFD_RELOC_ARM_TLS_GD32
:
27412 case BFD_RELOC_ARM_TLS_LE32
:
27413 case BFD_RELOC_ARM_TLS_IE32
:
27414 case BFD_RELOC_ARM_TLS_LDM32
:
27415 case BFD_RELOC_ARM_TLS_LDO32
:
27416 S_SET_THREAD_LOCAL (fixP
->fx_addsy
);
27419 /* Same handling as above, but with the arm_fdpic guard. */
27420 case BFD_RELOC_ARM_TLS_GD32_FDPIC
:
27421 case BFD_RELOC_ARM_TLS_IE32_FDPIC
:
27422 case BFD_RELOC_ARM_TLS_LDM32_FDPIC
:
27425 S_SET_THREAD_LOCAL (fixP
->fx_addsy
);
27429 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
27430 _("Relocation supported only in FDPIC mode"));
27434 case BFD_RELOC_ARM_GOT32
:
27435 case BFD_RELOC_ARM_GOTOFF
:
27438 case BFD_RELOC_ARM_GOT_PREL
:
27439 if (fixP
->fx_done
|| !seg
->use_rela_p
)
27440 md_number_to_chars (buf
, value
, 4);
27443 case BFD_RELOC_ARM_TARGET2
:
27444 /* TARGET2 is not partial-inplace, so we need to write the
27445 addend here for REL targets, because it won't be written out
27446 during reloc processing later. */
27447 if (fixP
->fx_done
|| !seg
->use_rela_p
)
27448 md_number_to_chars (buf
, fixP
->fx_offset
, 4);
27451 /* Relocations for FDPIC. */
27452 case BFD_RELOC_ARM_GOTFUNCDESC
:
27453 case BFD_RELOC_ARM_GOTOFFFUNCDESC
:
27454 case BFD_RELOC_ARM_FUNCDESC
:
27457 if (fixP
->fx_done
|| !seg
->use_rela_p
)
27458 md_number_to_chars (buf
, 0, 4);
27462 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
27463 _("Relocation supported only in FDPIC mode"));
27468 case BFD_RELOC_RVA
:
27470 case BFD_RELOC_ARM_TARGET1
:
27471 case BFD_RELOC_ARM_ROSEGREL32
:
27472 case BFD_RELOC_ARM_SBREL32
:
27473 case BFD_RELOC_32_PCREL
:
27475 case BFD_RELOC_32_SECREL
:
27477 if (fixP
->fx_done
|| !seg
->use_rela_p
)
27479 /* For WinCE we only do this for pcrel fixups. */
27480 if (fixP
->fx_done
|| fixP
->fx_pcrel
)
27482 md_number_to_chars (buf
, value
, 4);
27486 case BFD_RELOC_ARM_PREL31
:
27487 if (fixP
->fx_done
|| !seg
->use_rela_p
)
27489 newval
= md_chars_to_number (buf
, 4) & 0x80000000;
27490 if ((value
^ (value
>> 1)) & 0x40000000)
27492 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
27493 _("rel31 relocation overflow"));
27495 newval
|= value
& 0x7fffffff;
27496 md_number_to_chars (buf
, newval
, 4);
27501 case BFD_RELOC_ARM_CP_OFF_IMM
:
27502 case BFD_RELOC_ARM_T32_CP_OFF_IMM
:
27503 case BFD_RELOC_ARM_T32_VLDR_VSTR_OFF_IMM
:
27504 if (fixP
->fx_r_type
== BFD_RELOC_ARM_CP_OFF_IMM
)
27505 newval
= md_chars_to_number (buf
, INSN_SIZE
);
27507 newval
= get_thumb32_insn (buf
);
27508 if ((newval
& 0x0f200f00) == 0x0d000900)
27510 /* This is a fp16 vstr/vldr. The immediate offset in the mnemonic
27511 has permitted values that are multiples of 2, in the range 0
27513 if (value
< -510 || value
> 510 || (value
& 1))
27514 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
27515 _("co-processor offset out of range"));
27517 else if ((newval
& 0xfe001f80) == 0xec000f80)
27519 if (value
< -511 || value
> 512 || (value
& 3))
27520 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
27521 _("co-processor offset out of range"));
27523 else if (value
< -1023 || value
> 1023 || (value
& 3))
27524 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
27525 _("co-processor offset out of range"));
27530 if (fixP
->fx_r_type
== BFD_RELOC_ARM_CP_OFF_IMM
27531 || fixP
->fx_r_type
== BFD_RELOC_ARM_CP_OFF_IMM_S2
)
27532 newval
= md_chars_to_number (buf
, INSN_SIZE
);
27534 newval
= get_thumb32_insn (buf
);
27537 if (fixP
->fx_r_type
== BFD_RELOC_ARM_T32_VLDR_VSTR_OFF_IMM
)
27538 newval
&= 0xffffff80;
27540 newval
&= 0xffffff00;
27544 if (fixP
->fx_r_type
== BFD_RELOC_ARM_T32_VLDR_VSTR_OFF_IMM
)
27545 newval
&= 0xff7fff80;
27547 newval
&= 0xff7fff00;
27548 if ((newval
& 0x0f200f00) == 0x0d000900)
27550 /* This is a fp16 vstr/vldr.
27552 It requires the immediate offset in the instruction is shifted
27553 left by 1 to be a half-word offset.
27555 Here, left shift by 1 first, and later right shift by 2
27556 should get the right offset. */
27559 newval
|= (value
>> 2) | (sign
? INDEX_UP
: 0);
27561 if (fixP
->fx_r_type
== BFD_RELOC_ARM_CP_OFF_IMM
27562 || fixP
->fx_r_type
== BFD_RELOC_ARM_CP_OFF_IMM_S2
)
27563 md_number_to_chars (buf
, newval
, INSN_SIZE
);
27565 put_thumb32_insn (buf
, newval
);
27568 case BFD_RELOC_ARM_CP_OFF_IMM_S2
:
27569 case BFD_RELOC_ARM_T32_CP_OFF_IMM_S2
:
27570 if (value
< -255 || value
> 255)
27571 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
27572 _("co-processor offset out of range"));
27574 goto cp_off_common
;
27576 case BFD_RELOC_ARM_THUMB_OFFSET
:
27577 newval
= md_chars_to_number (buf
, THUMB_SIZE
);
27578 /* Exactly what ranges, and where the offset is inserted depends
27579 on the type of instruction, we can establish this from the
27581 switch (newval
>> 12)
27583 case 4: /* PC load. */
27584 /* Thumb PC loads are somewhat odd, bit 1 of the PC is
27585 forced to zero for these loads; md_pcrel_from has already
27586 compensated for this. */
27588 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
27589 _("invalid offset, target not word aligned (0x%08lX)"),
27590 (((unsigned long) fixP
->fx_frag
->fr_address
27591 + (unsigned long) fixP
->fx_where
) & ~3)
27592 + (unsigned long) value
);
27594 if (value
& ~0x3fc)
27595 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
27596 _("invalid offset, value too big (0x%08lX)"),
27599 newval
|= value
>> 2;
27602 case 9: /* SP load/store. */
27603 if (value
& ~0x3fc)
27604 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
27605 _("invalid offset, value too big (0x%08lX)"),
27607 newval
|= value
>> 2;
27610 case 6: /* Word load/store. */
27612 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
27613 _("invalid offset, value too big (0x%08lX)"),
27615 newval
|= value
<< 4; /* 6 - 2. */
27618 case 7: /* Byte load/store. */
27620 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
27621 _("invalid offset, value too big (0x%08lX)"),
27623 newval
|= value
<< 6;
27626 case 8: /* Halfword load/store. */
27628 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
27629 _("invalid offset, value too big (0x%08lX)"),
27631 newval
|= value
<< 5; /* 6 - 1. */
27635 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
27636 "Unable to process relocation for thumb opcode: %lx",
27637 (unsigned long) newval
);
27640 md_number_to_chars (buf
, newval
, THUMB_SIZE
);
27643 case BFD_RELOC_ARM_THUMB_ADD
:
27644 /* This is a complicated relocation, since we use it for all of
27645 the following immediate relocations:
27649 9bit ADD/SUB SP word-aligned
27650 10bit ADD PC/SP word-aligned
27652 The type of instruction being processed is encoded in the
27659 newval
= md_chars_to_number (buf
, THUMB_SIZE
);
27661 int rd
= (newval
>> 4) & 0xf;
27662 int rs
= newval
& 0xf;
27663 int subtract
= !!(newval
& 0x8000);
27665 /* Check for HI regs, only very restricted cases allowed:
27666 Adjusting SP, and using PC or SP to get an address. */
27667 if ((rd
> 7 && (rd
!= REG_SP
|| rs
!= REG_SP
))
27668 || (rs
> 7 && rs
!= REG_SP
&& rs
!= REG_PC
))
27669 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
27670 _("invalid Hi register with immediate"));
27672 /* If value is negative, choose the opposite instruction. */
27676 subtract
= !subtract
;
27678 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
27679 _("immediate value out of range"));
27684 if (value
& ~0x1fc)
27685 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
27686 _("invalid immediate for stack address calculation"));
27687 newval
= subtract
? T_OPCODE_SUB_ST
: T_OPCODE_ADD_ST
;
27688 newval
|= value
>> 2;
27690 else if (rs
== REG_PC
|| rs
== REG_SP
)
27692 /* PR gas/18541. If the addition is for a defined symbol
27693 within range of an ADR instruction then accept it. */
27696 && fixP
->fx_addsy
!= NULL
)
27700 if (! S_IS_DEFINED (fixP
->fx_addsy
)
27701 || S_GET_SEGMENT (fixP
->fx_addsy
) != seg
27702 || S_IS_WEAK (fixP
->fx_addsy
))
27704 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
27705 _("address calculation needs a strongly defined nearby symbol"));
27709 offsetT v
= fixP
->fx_where
+ fixP
->fx_frag
->fr_address
;
27711 /* Round up to the next 4-byte boundary. */
27716 v
= S_GET_VALUE (fixP
->fx_addsy
) - v
;
27720 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
27721 _("symbol too far away"));
27731 if (subtract
|| value
& ~0x3fc)
27732 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
27733 _("invalid immediate for address calculation (value = 0x%08lX)"),
27734 (unsigned long) (subtract
? - value
: value
));
27735 newval
= (rs
== REG_PC
? T_OPCODE_ADD_PC
: T_OPCODE_ADD_SP
);
27737 newval
|= value
>> 2;
27742 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
27743 _("immediate value out of range"));
27744 newval
= subtract
? T_OPCODE_SUB_I8
: T_OPCODE_ADD_I8
;
27745 newval
|= (rd
<< 8) | value
;
27750 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
27751 _("immediate value out of range"));
27752 newval
= subtract
? T_OPCODE_SUB_I3
: T_OPCODE_ADD_I3
;
27753 newval
|= rd
| (rs
<< 3) | (value
<< 6);
27756 md_number_to_chars (buf
, newval
, THUMB_SIZE
);
27759 case BFD_RELOC_ARM_THUMB_IMM
:
27760 newval
= md_chars_to_number (buf
, THUMB_SIZE
);
27761 if (value
< 0 || value
> 255)
27762 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
27763 _("invalid immediate: %ld is out of range"),
27766 md_number_to_chars (buf
, newval
, THUMB_SIZE
);
27769 case BFD_RELOC_ARM_THUMB_SHIFT
:
27770 /* 5bit shift value (0..32). LSL cannot take 32. */
27771 newval
= md_chars_to_number (buf
, THUMB_SIZE
) & 0xf83f;
27772 temp
= newval
& 0xf800;
27773 if (value
< 0 || value
> 32 || (value
== 32 && temp
== T_OPCODE_LSL_I
))
27774 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
27775 _("invalid shift value: %ld"), (long) value
);
27776 /* Shifts of zero must be encoded as LSL. */
27778 newval
= (newval
& 0x003f) | T_OPCODE_LSL_I
;
27779 /* Shifts of 32 are encoded as zero. */
27780 else if (value
== 32)
27782 newval
|= value
<< 6;
27783 md_number_to_chars (buf
, newval
, THUMB_SIZE
);
27786 case BFD_RELOC_VTABLE_INHERIT
:
27787 case BFD_RELOC_VTABLE_ENTRY
:
27791 case BFD_RELOC_ARM_MOVW
:
27792 case BFD_RELOC_ARM_MOVT
:
27793 case BFD_RELOC_ARM_THUMB_MOVW
:
27794 case BFD_RELOC_ARM_THUMB_MOVT
:
27795 if (fixP
->fx_done
|| !seg
->use_rela_p
)
27797 /* REL format relocations are limited to a 16-bit addend. */
27798 if (!fixP
->fx_done
)
27800 if (value
< -0x8000 || value
> 0x7fff)
27801 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
27802 _("offset out of range"));
27804 else if (fixP
->fx_r_type
== BFD_RELOC_ARM_MOVT
27805 || fixP
->fx_r_type
== BFD_RELOC_ARM_THUMB_MOVT
)
27810 if (fixP
->fx_r_type
== BFD_RELOC_ARM_THUMB_MOVW
27811 || fixP
->fx_r_type
== BFD_RELOC_ARM_THUMB_MOVT
)
27813 newval
= get_thumb32_insn (buf
);
27814 newval
&= 0xfbf08f00;
27815 newval
|= (value
& 0xf000) << 4;
27816 newval
|= (value
& 0x0800) << 15;
27817 newval
|= (value
& 0x0700) << 4;
27818 newval
|= (value
& 0x00ff);
27819 put_thumb32_insn (buf
, newval
);
27823 newval
= md_chars_to_number (buf
, 4);
27824 newval
&= 0xfff0f000;
27825 newval
|= value
& 0x0fff;
27826 newval
|= (value
& 0xf000) << 4;
27827 md_number_to_chars (buf
, newval
, 4);
27832 case BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
:
27833 case BFD_RELOC_ARM_THUMB_ALU_ABS_G1_NC
:
27834 case BFD_RELOC_ARM_THUMB_ALU_ABS_G2_NC
:
27835 case BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC
:
27836 gas_assert (!fixP
->fx_done
);
27839 bfd_boolean is_mov
;
27840 bfd_vma encoded_addend
= value
;
27842 /* Check that addend can be encoded in instruction. */
27843 if (!seg
->use_rela_p
&& (value
< 0 || value
> 255))
27844 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
27845 _("the offset 0x%08lX is not representable"),
27846 (unsigned long) encoded_addend
);
27848 /* Extract the instruction. */
27849 insn
= md_chars_to_number (buf
, THUMB_SIZE
);
27850 is_mov
= (insn
& 0xf800) == 0x2000;
27855 if (!seg
->use_rela_p
)
27856 insn
|= encoded_addend
;
27862 /* Extract the instruction. */
27863 /* Encoding is the following
27868 /* The following conditions must be true :
27873 rd
= (insn
>> 4) & 0xf;
27875 if ((insn
& 0x8000) || (rd
!= rs
) || rd
> 7)
27876 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
27877 _("Unable to process relocation for thumb opcode: %lx"),
27878 (unsigned long) insn
);
27880 /* Encode as ADD immediate8 thumb 1 code. */
27881 insn
= 0x3000 | (rd
<< 8);
27883 /* Place the encoded addend into the first 8 bits of the
27885 if (!seg
->use_rela_p
)
27886 insn
|= encoded_addend
;
27889 /* Update the instruction. */
27890 md_number_to_chars (buf
, insn
, THUMB_SIZE
);
27894 case BFD_RELOC_ARM_ALU_PC_G0_NC
:
27895 case BFD_RELOC_ARM_ALU_PC_G0
:
27896 case BFD_RELOC_ARM_ALU_PC_G1_NC
:
27897 case BFD_RELOC_ARM_ALU_PC_G1
:
27898 case BFD_RELOC_ARM_ALU_PC_G2
:
27899 case BFD_RELOC_ARM_ALU_SB_G0_NC
:
27900 case BFD_RELOC_ARM_ALU_SB_G0
:
27901 case BFD_RELOC_ARM_ALU_SB_G1_NC
:
27902 case BFD_RELOC_ARM_ALU_SB_G1
:
27903 case BFD_RELOC_ARM_ALU_SB_G2
:
27904 gas_assert (!fixP
->fx_done
);
27905 if (!seg
->use_rela_p
)
27908 bfd_vma encoded_addend
;
27909 bfd_vma addend_abs
= llabs (value
);
27911 /* Check that the absolute value of the addend can be
27912 expressed as an 8-bit constant plus a rotation. */
27913 encoded_addend
= encode_arm_immediate (addend_abs
);
27914 if (encoded_addend
== (unsigned int) FAIL
)
27915 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
27916 _("the offset 0x%08lX is not representable"),
27917 (unsigned long) addend_abs
);
27919 /* Extract the instruction. */
27920 insn
= md_chars_to_number (buf
, INSN_SIZE
);
27922 /* If the addend is positive, use an ADD instruction.
27923 Otherwise use a SUB. Take care not to destroy the S bit. */
27924 insn
&= 0xff1fffff;
27930 /* Place the encoded addend into the first 12 bits of the
27932 insn
&= 0xfffff000;
27933 insn
|= encoded_addend
;
27935 /* Update the instruction. */
27936 md_number_to_chars (buf
, insn
, INSN_SIZE
);
27940 case BFD_RELOC_ARM_LDR_PC_G0
:
27941 case BFD_RELOC_ARM_LDR_PC_G1
:
27942 case BFD_RELOC_ARM_LDR_PC_G2
:
27943 case BFD_RELOC_ARM_LDR_SB_G0
:
27944 case BFD_RELOC_ARM_LDR_SB_G1
:
27945 case BFD_RELOC_ARM_LDR_SB_G2
:
27946 gas_assert (!fixP
->fx_done
);
27947 if (!seg
->use_rela_p
)
27950 bfd_vma addend_abs
= llabs (value
);
27952 /* Check that the absolute value of the addend can be
27953 encoded in 12 bits. */
27954 if (addend_abs
>= 0x1000)
27955 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
27956 _("bad offset 0x%08lX (only 12 bits available for the magnitude)"),
27957 (unsigned long) addend_abs
);
27959 /* Extract the instruction. */
27960 insn
= md_chars_to_number (buf
, INSN_SIZE
);
27962 /* If the addend is negative, clear bit 23 of the instruction.
27963 Otherwise set it. */
27965 insn
&= ~(1 << 23);
27969 /* Place the absolute value of the addend into the first 12 bits
27970 of the instruction. */
27971 insn
&= 0xfffff000;
27972 insn
|= addend_abs
;
27974 /* Update the instruction. */
27975 md_number_to_chars (buf
, insn
, INSN_SIZE
);
27979 case BFD_RELOC_ARM_LDRS_PC_G0
:
27980 case BFD_RELOC_ARM_LDRS_PC_G1
:
27981 case BFD_RELOC_ARM_LDRS_PC_G2
:
27982 case BFD_RELOC_ARM_LDRS_SB_G0
:
27983 case BFD_RELOC_ARM_LDRS_SB_G1
:
27984 case BFD_RELOC_ARM_LDRS_SB_G2
:
27985 gas_assert (!fixP
->fx_done
);
27986 if (!seg
->use_rela_p
)
27989 bfd_vma addend_abs
= llabs (value
);
27991 /* Check that the absolute value of the addend can be
27992 encoded in 8 bits. */
27993 if (addend_abs
>= 0x100)
27994 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
27995 _("bad offset 0x%08lX (only 8 bits available for the magnitude)"),
27996 (unsigned long) addend_abs
);
27998 /* Extract the instruction. */
27999 insn
= md_chars_to_number (buf
, INSN_SIZE
);
28001 /* If the addend is negative, clear bit 23 of the instruction.
28002 Otherwise set it. */
28004 insn
&= ~(1 << 23);
28008 /* Place the first four bits of the absolute value of the addend
28009 into the first 4 bits of the instruction, and the remaining
28010 four into bits 8 .. 11. */
28011 insn
&= 0xfffff0f0;
28012 insn
|= (addend_abs
& 0xf) | ((addend_abs
& 0xf0) << 4);
28014 /* Update the instruction. */
28015 md_number_to_chars (buf
, insn
, INSN_SIZE
);
28019 case BFD_RELOC_ARM_LDC_PC_G0
:
28020 case BFD_RELOC_ARM_LDC_PC_G1
:
28021 case BFD_RELOC_ARM_LDC_PC_G2
:
28022 case BFD_RELOC_ARM_LDC_SB_G0
:
28023 case BFD_RELOC_ARM_LDC_SB_G1
:
28024 case BFD_RELOC_ARM_LDC_SB_G2
:
28025 gas_assert (!fixP
->fx_done
);
28026 if (!seg
->use_rela_p
)
28029 bfd_vma addend_abs
= llabs (value
);
28031 /* Check that the absolute value of the addend is a multiple of
28032 four and, when divided by four, fits in 8 bits. */
28033 if (addend_abs
& 0x3)
28034 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
28035 _("bad offset 0x%08lX (must be word-aligned)"),
28036 (unsigned long) addend_abs
);
28038 if ((addend_abs
>> 2) > 0xff)
28039 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
28040 _("bad offset 0x%08lX (must be an 8-bit number of words)"),
28041 (unsigned long) addend_abs
);
28043 /* Extract the instruction. */
28044 insn
= md_chars_to_number (buf
, INSN_SIZE
);
28046 /* If the addend is negative, clear bit 23 of the instruction.
28047 Otherwise set it. */
28049 insn
&= ~(1 << 23);
28053 /* Place the addend (divided by four) into the first eight
28054 bits of the instruction. */
28055 insn
&= 0xfffffff0;
28056 insn
|= addend_abs
>> 2;
28058 /* Update the instruction. */
28059 md_number_to_chars (buf
, insn
, INSN_SIZE
);
28063 case BFD_RELOC_THUMB_PCREL_BRANCH5
:
28065 && (S_GET_SEGMENT (fixP
->fx_addsy
) == seg
)
28066 && !S_FORCE_RELOC (fixP
->fx_addsy
, TRUE
)
28067 && ARM_IS_FUNC (fixP
->fx_addsy
)
28068 && ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_v8_1m_main
))
28070 /* Force a relocation for a branch 5 bits wide. */
28073 if (v8_1_branch_value_check (value
, 5, FALSE
) == FAIL
)
28074 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
28077 if (fixP
->fx_done
|| !seg
->use_rela_p
)
28079 addressT boff
= value
>> 1;
28081 newval
= md_chars_to_number (buf
, THUMB_SIZE
);
28082 newval
|= (boff
<< 7);
28083 md_number_to_chars (buf
, newval
, THUMB_SIZE
);
28087 case BFD_RELOC_THUMB_PCREL_BFCSEL
:
28089 && (S_GET_SEGMENT (fixP
->fx_addsy
) == seg
)
28090 && !S_FORCE_RELOC (fixP
->fx_addsy
, TRUE
)
28091 && ARM_IS_FUNC (fixP
->fx_addsy
)
28092 && ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_v8_1m_main
))
28096 if ((value
& ~0x7f) && ((value
& ~0x3f) != ~0x3f))
28097 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
28098 _("branch out of range"));
28100 if (fixP
->fx_done
|| !seg
->use_rela_p
)
28102 newval
= md_chars_to_number (buf
, THUMB_SIZE
);
28104 addressT boff
= ((newval
& 0x0780) >> 7) << 1;
28105 addressT diff
= value
- boff
;
28109 newval
|= 1 << 1; /* T bit. */
28111 else if (diff
!= 2)
28113 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
28114 _("out of range label-relative fixup value"));
28116 md_number_to_chars (buf
, newval
, THUMB_SIZE
);
28120 case BFD_RELOC_ARM_THUMB_BF17
:
28122 && (S_GET_SEGMENT (fixP
->fx_addsy
) == seg
)
28123 && !S_FORCE_RELOC (fixP
->fx_addsy
, TRUE
)
28124 && ARM_IS_FUNC (fixP
->fx_addsy
)
28125 && ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_v8_1m_main
))
28127 /* Force a relocation for a branch 17 bits wide. */
28131 if (v8_1_branch_value_check (value
, 17, TRUE
) == FAIL
)
28132 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
28135 if (fixP
->fx_done
|| !seg
->use_rela_p
)
28138 addressT immA
, immB
, immC
;
28140 immA
= (value
& 0x0001f000) >> 12;
28141 immB
= (value
& 0x00000ffc) >> 2;
28142 immC
= (value
& 0x00000002) >> 1;
28144 newval
= md_chars_to_number (buf
, THUMB_SIZE
);
28145 newval2
= md_chars_to_number (buf
+ THUMB_SIZE
, THUMB_SIZE
);
28147 newval2
|= (immC
<< 11) | (immB
<< 1);
28148 md_number_to_chars (buf
, newval
, THUMB_SIZE
);
28149 md_number_to_chars (buf
+ THUMB_SIZE
, newval2
, THUMB_SIZE
);
28153 case BFD_RELOC_ARM_THUMB_BF19
:
28155 && (S_GET_SEGMENT (fixP
->fx_addsy
) == seg
)
28156 && !S_FORCE_RELOC (fixP
->fx_addsy
, TRUE
)
28157 && ARM_IS_FUNC (fixP
->fx_addsy
)
28158 && ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_v8_1m_main
))
28160 /* Force a relocation for a branch 19 bits wide. */
28164 if (v8_1_branch_value_check (value
, 19, TRUE
) == FAIL
)
28165 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
28168 if (fixP
->fx_done
|| !seg
->use_rela_p
)
28171 addressT immA
, immB
, immC
;
28173 immA
= (value
& 0x0007f000) >> 12;
28174 immB
= (value
& 0x00000ffc) >> 2;
28175 immC
= (value
& 0x00000002) >> 1;
28177 newval
= md_chars_to_number (buf
, THUMB_SIZE
);
28178 newval2
= md_chars_to_number (buf
+ THUMB_SIZE
, THUMB_SIZE
);
28180 newval2
|= (immC
<< 11) | (immB
<< 1);
28181 md_number_to_chars (buf
, newval
, THUMB_SIZE
);
28182 md_number_to_chars (buf
+ THUMB_SIZE
, newval2
, THUMB_SIZE
);
28186 case BFD_RELOC_ARM_THUMB_BF13
:
28188 && (S_GET_SEGMENT (fixP
->fx_addsy
) == seg
)
28189 && !S_FORCE_RELOC (fixP
->fx_addsy
, TRUE
)
28190 && ARM_IS_FUNC (fixP
->fx_addsy
)
28191 && ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_v8_1m_main
))
28193 /* Force a relocation for a branch 13 bits wide. */
28197 if (v8_1_branch_value_check (value
, 13, TRUE
) == FAIL
)
28198 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
28201 if (fixP
->fx_done
|| !seg
->use_rela_p
)
28204 addressT immA
, immB
, immC
;
28206 immA
= (value
& 0x00001000) >> 12;
28207 immB
= (value
& 0x00000ffc) >> 2;
28208 immC
= (value
& 0x00000002) >> 1;
28210 newval
= md_chars_to_number (buf
, THUMB_SIZE
);
28211 newval2
= md_chars_to_number (buf
+ THUMB_SIZE
, THUMB_SIZE
);
28213 newval2
|= (immC
<< 11) | (immB
<< 1);
28214 md_number_to_chars (buf
, newval
, THUMB_SIZE
);
28215 md_number_to_chars (buf
+ THUMB_SIZE
, newval2
, THUMB_SIZE
);
28219 case BFD_RELOC_ARM_THUMB_LOOP12
:
28221 && (S_GET_SEGMENT (fixP
->fx_addsy
) == seg
)
28222 && !S_FORCE_RELOC (fixP
->fx_addsy
, TRUE
)
28223 && ARM_IS_FUNC (fixP
->fx_addsy
)
28224 && ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_v8_1m_main
))
28226 /* Force a relocation for a branch 12 bits wide. */
28230 bfd_vma insn
= get_thumb32_insn (buf
);
28231 /* le lr, <label> or le <label> */
28232 if (((insn
& 0xffffffff) == 0xf00fc001)
28233 || ((insn
& 0xffffffff) == 0xf02fc001))
28236 if (v8_1_branch_value_check (value
, 12, FALSE
) == FAIL
)
28237 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
28239 if (fixP
->fx_done
|| !seg
->use_rela_p
)
28241 addressT imml
, immh
;
28243 immh
= (value
& 0x00000ffc) >> 2;
28244 imml
= (value
& 0x00000002) >> 1;
28246 newval
= md_chars_to_number (buf
+ THUMB_SIZE
, THUMB_SIZE
);
28247 newval
|= (imml
<< 11) | (immh
<< 1);
28248 md_number_to_chars (buf
+ THUMB_SIZE
, newval
, THUMB_SIZE
);
28252 case BFD_RELOC_ARM_V4BX
:
28253 /* This will need to go in the object file. */
28257 case BFD_RELOC_UNUSED
:
28259 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
28260 _("bad relocation fixup type (%d)"), fixP
->fx_r_type
);
28264 /* Translate internal representation of relocation info to BFD target
28268 tc_gen_reloc (asection
*section
, fixS
*fixp
)
28271 bfd_reloc_code_real_type code
;
28273 reloc
= XNEW (arelent
);
28275 reloc
->sym_ptr_ptr
= XNEW (asymbol
*);
28276 *reloc
->sym_ptr_ptr
= symbol_get_bfdsym (fixp
->fx_addsy
);
28277 reloc
->address
= fixp
->fx_frag
->fr_address
+ fixp
->fx_where
;
28279 if (fixp
->fx_pcrel
)
28281 if (section
->use_rela_p
)
28282 fixp
->fx_offset
-= md_pcrel_from_section (fixp
, section
);
28284 fixp
->fx_offset
= reloc
->address
;
28286 reloc
->addend
= fixp
->fx_offset
;
28288 switch (fixp
->fx_r_type
)
28291 if (fixp
->fx_pcrel
)
28293 code
= BFD_RELOC_8_PCREL
;
28296 /* Fall through. */
28299 if (fixp
->fx_pcrel
)
28301 code
= BFD_RELOC_16_PCREL
;
28304 /* Fall through. */
28307 if (fixp
->fx_pcrel
)
28309 code
= BFD_RELOC_32_PCREL
;
28312 /* Fall through. */
28314 case BFD_RELOC_ARM_MOVW
:
28315 if (fixp
->fx_pcrel
)
28317 code
= BFD_RELOC_ARM_MOVW_PCREL
;
28320 /* Fall through. */
28322 case BFD_RELOC_ARM_MOVT
:
28323 if (fixp
->fx_pcrel
)
28325 code
= BFD_RELOC_ARM_MOVT_PCREL
;
28328 /* Fall through. */
28330 case BFD_RELOC_ARM_THUMB_MOVW
:
28331 if (fixp
->fx_pcrel
)
28333 code
= BFD_RELOC_ARM_THUMB_MOVW_PCREL
;
28336 /* Fall through. */
28338 case BFD_RELOC_ARM_THUMB_MOVT
:
28339 if (fixp
->fx_pcrel
)
28341 code
= BFD_RELOC_ARM_THUMB_MOVT_PCREL
;
28344 /* Fall through. */
28346 case BFD_RELOC_NONE
:
28347 case BFD_RELOC_ARM_PCREL_BRANCH
:
28348 case BFD_RELOC_ARM_PCREL_BLX
:
28349 case BFD_RELOC_RVA
:
28350 case BFD_RELOC_THUMB_PCREL_BRANCH7
:
28351 case BFD_RELOC_THUMB_PCREL_BRANCH9
:
28352 case BFD_RELOC_THUMB_PCREL_BRANCH12
:
28353 case BFD_RELOC_THUMB_PCREL_BRANCH20
:
28354 case BFD_RELOC_THUMB_PCREL_BRANCH23
:
28355 case BFD_RELOC_THUMB_PCREL_BRANCH25
:
28356 case BFD_RELOC_VTABLE_ENTRY
:
28357 case BFD_RELOC_VTABLE_INHERIT
:
28359 case BFD_RELOC_32_SECREL
:
28361 code
= fixp
->fx_r_type
;
28364 case BFD_RELOC_THUMB_PCREL_BLX
:
28366 if (EF_ARM_EABI_VERSION (meabi_flags
) >= EF_ARM_EABI_VER4
)
28367 code
= BFD_RELOC_THUMB_PCREL_BRANCH23
;
28370 code
= BFD_RELOC_THUMB_PCREL_BLX
;
28373 case BFD_RELOC_ARM_LITERAL
:
28374 case BFD_RELOC_ARM_HWLITERAL
:
28375 /* If this is called then the a literal has
28376 been referenced across a section boundary. */
28377 as_bad_where (fixp
->fx_file
, fixp
->fx_line
,
28378 _("literal referenced across section boundary"));
28382 case BFD_RELOC_ARM_TLS_CALL
:
28383 case BFD_RELOC_ARM_THM_TLS_CALL
:
28384 case BFD_RELOC_ARM_TLS_DESCSEQ
:
28385 case BFD_RELOC_ARM_THM_TLS_DESCSEQ
:
28386 case BFD_RELOC_ARM_GOT32
:
28387 case BFD_RELOC_ARM_GOTOFF
:
28388 case BFD_RELOC_ARM_GOT_PREL
:
28389 case BFD_RELOC_ARM_PLT32
:
28390 case BFD_RELOC_ARM_TARGET1
:
28391 case BFD_RELOC_ARM_ROSEGREL32
:
28392 case BFD_RELOC_ARM_SBREL32
:
28393 case BFD_RELOC_ARM_PREL31
:
28394 case BFD_RELOC_ARM_TARGET2
:
28395 case BFD_RELOC_ARM_TLS_LDO32
:
28396 case BFD_RELOC_ARM_PCREL_CALL
:
28397 case BFD_RELOC_ARM_PCREL_JUMP
:
28398 case BFD_RELOC_ARM_ALU_PC_G0_NC
:
28399 case BFD_RELOC_ARM_ALU_PC_G0
:
28400 case BFD_RELOC_ARM_ALU_PC_G1_NC
:
28401 case BFD_RELOC_ARM_ALU_PC_G1
:
28402 case BFD_RELOC_ARM_ALU_PC_G2
:
28403 case BFD_RELOC_ARM_LDR_PC_G0
:
28404 case BFD_RELOC_ARM_LDR_PC_G1
:
28405 case BFD_RELOC_ARM_LDR_PC_G2
:
28406 case BFD_RELOC_ARM_LDRS_PC_G0
:
28407 case BFD_RELOC_ARM_LDRS_PC_G1
:
28408 case BFD_RELOC_ARM_LDRS_PC_G2
:
28409 case BFD_RELOC_ARM_LDC_PC_G0
:
28410 case BFD_RELOC_ARM_LDC_PC_G1
:
28411 case BFD_RELOC_ARM_LDC_PC_G2
:
28412 case BFD_RELOC_ARM_ALU_SB_G0_NC
:
28413 case BFD_RELOC_ARM_ALU_SB_G0
:
28414 case BFD_RELOC_ARM_ALU_SB_G1_NC
:
28415 case BFD_RELOC_ARM_ALU_SB_G1
:
28416 case BFD_RELOC_ARM_ALU_SB_G2
:
28417 case BFD_RELOC_ARM_LDR_SB_G0
:
28418 case BFD_RELOC_ARM_LDR_SB_G1
:
28419 case BFD_RELOC_ARM_LDR_SB_G2
:
28420 case BFD_RELOC_ARM_LDRS_SB_G0
:
28421 case BFD_RELOC_ARM_LDRS_SB_G1
:
28422 case BFD_RELOC_ARM_LDRS_SB_G2
:
28423 case BFD_RELOC_ARM_LDC_SB_G0
:
28424 case BFD_RELOC_ARM_LDC_SB_G1
:
28425 case BFD_RELOC_ARM_LDC_SB_G2
:
28426 case BFD_RELOC_ARM_V4BX
:
28427 case BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
:
28428 case BFD_RELOC_ARM_THUMB_ALU_ABS_G1_NC
:
28429 case BFD_RELOC_ARM_THUMB_ALU_ABS_G2_NC
:
28430 case BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC
:
28431 case BFD_RELOC_ARM_GOTFUNCDESC
:
28432 case BFD_RELOC_ARM_GOTOFFFUNCDESC
:
28433 case BFD_RELOC_ARM_FUNCDESC
:
28434 case BFD_RELOC_ARM_THUMB_BF17
:
28435 case BFD_RELOC_ARM_THUMB_BF19
:
28436 case BFD_RELOC_ARM_THUMB_BF13
:
28437 code
= fixp
->fx_r_type
;
28440 case BFD_RELOC_ARM_TLS_GOTDESC
:
28441 case BFD_RELOC_ARM_TLS_GD32
:
28442 case BFD_RELOC_ARM_TLS_GD32_FDPIC
:
28443 case BFD_RELOC_ARM_TLS_LE32
:
28444 case BFD_RELOC_ARM_TLS_IE32
:
28445 case BFD_RELOC_ARM_TLS_IE32_FDPIC
:
28446 case BFD_RELOC_ARM_TLS_LDM32
:
28447 case BFD_RELOC_ARM_TLS_LDM32_FDPIC
:
28448 /* BFD will include the symbol's address in the addend.
28449 But we don't want that, so subtract it out again here. */
28450 if (!S_IS_COMMON (fixp
->fx_addsy
))
28451 reloc
->addend
-= (*reloc
->sym_ptr_ptr
)->value
;
28452 code
= fixp
->fx_r_type
;
28456 case BFD_RELOC_ARM_IMMEDIATE
:
28457 as_bad_where (fixp
->fx_file
, fixp
->fx_line
,
28458 _("internal relocation (type: IMMEDIATE) not fixed up"));
28461 case BFD_RELOC_ARM_ADRL_IMMEDIATE
:
28462 as_bad_where (fixp
->fx_file
, fixp
->fx_line
,
28463 _("ADRL used for a symbol not defined in the same file"));
28466 case BFD_RELOC_THUMB_PCREL_BRANCH5
:
28467 case BFD_RELOC_THUMB_PCREL_BFCSEL
:
28468 case BFD_RELOC_ARM_THUMB_LOOP12
:
28469 as_bad_where (fixp
->fx_file
, fixp
->fx_line
,
28470 _("%s used for a symbol not defined in the same file"),
28471 bfd_get_reloc_code_name (fixp
->fx_r_type
));
28474 case BFD_RELOC_ARM_OFFSET_IMM
:
28475 if (section
->use_rela_p
)
28477 code
= fixp
->fx_r_type
;
28481 if (fixp
->fx_addsy
!= NULL
28482 && !S_IS_DEFINED (fixp
->fx_addsy
)
28483 && S_IS_LOCAL (fixp
->fx_addsy
))
28485 as_bad_where (fixp
->fx_file
, fixp
->fx_line
,
28486 _("undefined local label `%s'"),
28487 S_GET_NAME (fixp
->fx_addsy
));
28491 as_bad_where (fixp
->fx_file
, fixp
->fx_line
,
28492 _("internal_relocation (type: OFFSET_IMM) not fixed up"));
28499 switch (fixp
->fx_r_type
)
28501 case BFD_RELOC_NONE
: type
= "NONE"; break;
28502 case BFD_RELOC_ARM_OFFSET_IMM8
: type
= "OFFSET_IMM8"; break;
28503 case BFD_RELOC_ARM_SHIFT_IMM
: type
= "SHIFT_IMM"; break;
28504 case BFD_RELOC_ARM_SMC
: type
= "SMC"; break;
28505 case BFD_RELOC_ARM_SWI
: type
= "SWI"; break;
28506 case BFD_RELOC_ARM_MULTI
: type
= "MULTI"; break;
28507 case BFD_RELOC_ARM_CP_OFF_IMM
: type
= "CP_OFF_IMM"; break;
28508 case BFD_RELOC_ARM_T32_OFFSET_IMM
: type
= "T32_OFFSET_IMM"; break;
28509 case BFD_RELOC_ARM_T32_CP_OFF_IMM
: type
= "T32_CP_OFF_IMM"; break;
28510 case BFD_RELOC_ARM_THUMB_ADD
: type
= "THUMB_ADD"; break;
28511 case BFD_RELOC_ARM_THUMB_SHIFT
: type
= "THUMB_SHIFT"; break;
28512 case BFD_RELOC_ARM_THUMB_IMM
: type
= "THUMB_IMM"; break;
28513 case BFD_RELOC_ARM_THUMB_OFFSET
: type
= "THUMB_OFFSET"; break;
28514 default: type
= _("<unknown>"); break;
28516 as_bad_where (fixp
->fx_file
, fixp
->fx_line
,
28517 _("cannot represent %s relocation in this object file format"),
28524 if ((code
== BFD_RELOC_32_PCREL
|| code
== BFD_RELOC_32
)
28526 && fixp
->fx_addsy
== GOT_symbol
)
28528 code
= BFD_RELOC_ARM_GOTPC
;
28529 reloc
->addend
= fixp
->fx_offset
= reloc
->address
;
28533 reloc
->howto
= bfd_reloc_type_lookup (stdoutput
, code
);
28535 if (reloc
->howto
== NULL
)
28537 as_bad_where (fixp
->fx_file
, fixp
->fx_line
,
28538 _("cannot represent %s relocation in this object file format"),
28539 bfd_get_reloc_code_name (code
));
28543 /* HACK: Since arm ELF uses Rel instead of Rela, encode the
28544 vtable entry to be used in the relocation's section offset. */
28545 if (fixp
->fx_r_type
== BFD_RELOC_VTABLE_ENTRY
)
28546 reloc
->address
= fixp
->fx_offset
;
28551 /* This fix_new is called by cons via TC_CONS_FIX_NEW. */
28554 cons_fix_new_arm (fragS
* frag
,
28558 bfd_reloc_code_real_type reloc
)
28563 FIXME: @@ Should look at CPU word size. */
28567 reloc
= BFD_RELOC_8
;
28570 reloc
= BFD_RELOC_16
;
28574 reloc
= BFD_RELOC_32
;
28577 reloc
= BFD_RELOC_64
;
28582 if (exp
->X_op
== O_secrel
)
28584 exp
->X_op
= O_symbol
;
28585 reloc
= BFD_RELOC_32_SECREL
;
28589 fix_new_exp (frag
, where
, size
, exp
, pcrel
, reloc
);
28592 #if defined (OBJ_COFF)
28594 arm_validate_fix (fixS
* fixP
)
28596 /* If the destination of the branch is a defined symbol which does not have
28597 the THUMB_FUNC attribute, then we must be calling a function which has
28598 the (interfacearm) attribute. We look for the Thumb entry point to that
28599 function and change the branch to refer to that function instead. */
28600 if (fixP
->fx_r_type
== BFD_RELOC_THUMB_PCREL_BRANCH23
28601 && fixP
->fx_addsy
!= NULL
28602 && S_IS_DEFINED (fixP
->fx_addsy
)
28603 && ! THUMB_IS_FUNC (fixP
->fx_addsy
))
28605 fixP
->fx_addsy
= find_real_start (fixP
->fx_addsy
);
28612 arm_force_relocation (struct fix
* fixp
)
28614 #if defined (OBJ_COFF) && defined (TE_PE)
28615 if (fixp
->fx_r_type
== BFD_RELOC_RVA
)
28619 /* In case we have a call or a branch to a function in ARM ISA mode from
28620 a thumb function or vice-versa force the relocation. These relocations
28621 are cleared off for some cores that might have blx and simple transformations
28625 switch (fixp
->fx_r_type
)
28627 case BFD_RELOC_ARM_PCREL_JUMP
:
28628 case BFD_RELOC_ARM_PCREL_CALL
:
28629 case BFD_RELOC_THUMB_PCREL_BLX
:
28630 if (THUMB_IS_FUNC (fixp
->fx_addsy
))
28634 case BFD_RELOC_ARM_PCREL_BLX
:
28635 case BFD_RELOC_THUMB_PCREL_BRANCH25
:
28636 case BFD_RELOC_THUMB_PCREL_BRANCH20
:
28637 case BFD_RELOC_THUMB_PCREL_BRANCH23
:
28638 if (ARM_IS_FUNC (fixp
->fx_addsy
))
28647 /* Resolve these relocations even if the symbol is extern or weak.
28648 Technically this is probably wrong due to symbol preemption.
28649 In practice these relocations do not have enough range to be useful
28650 at dynamic link time, and some code (e.g. in the Linux kernel)
28651 expects these references to be resolved. */
28652 if (fixp
->fx_r_type
== BFD_RELOC_ARM_IMMEDIATE
28653 || fixp
->fx_r_type
== BFD_RELOC_ARM_OFFSET_IMM
28654 || fixp
->fx_r_type
== BFD_RELOC_ARM_OFFSET_IMM8
28655 || fixp
->fx_r_type
== BFD_RELOC_ARM_ADRL_IMMEDIATE
28656 || fixp
->fx_r_type
== BFD_RELOC_ARM_CP_OFF_IMM
28657 || fixp
->fx_r_type
== BFD_RELOC_ARM_CP_OFF_IMM_S2
28658 || fixp
->fx_r_type
== BFD_RELOC_ARM_THUMB_OFFSET
28659 || fixp
->fx_r_type
== BFD_RELOC_ARM_T32_ADD_IMM
28660 || fixp
->fx_r_type
== BFD_RELOC_ARM_T32_IMMEDIATE
28661 || fixp
->fx_r_type
== BFD_RELOC_ARM_T32_IMM12
28662 || fixp
->fx_r_type
== BFD_RELOC_ARM_T32_OFFSET_IMM
28663 || fixp
->fx_r_type
== BFD_RELOC_ARM_T32_ADD_PC12
28664 || fixp
->fx_r_type
== BFD_RELOC_ARM_T32_CP_OFF_IMM
28665 || fixp
->fx_r_type
== BFD_RELOC_ARM_T32_CP_OFF_IMM_S2
)
28668 /* Always leave these relocations for the linker. */
28669 if ((fixp
->fx_r_type
>= BFD_RELOC_ARM_ALU_PC_G0_NC
28670 && fixp
->fx_r_type
<= BFD_RELOC_ARM_LDC_SB_G2
)
28671 || fixp
->fx_r_type
== BFD_RELOC_ARM_LDR_PC_G0
)
28674 /* Always generate relocations against function symbols. */
28675 if (fixp
->fx_r_type
== BFD_RELOC_32
28677 && (symbol_get_bfdsym (fixp
->fx_addsy
)->flags
& BSF_FUNCTION
))
28680 return generic_force_reloc (fixp
);
28683 #if defined (OBJ_ELF) || defined (OBJ_COFF)
28684 /* Relocations against function names must be left unadjusted,
28685 so that the linker can use this information to generate interworking
28686 stubs. The MIPS version of this function
28687 also prevents relocations that are mips-16 specific, but I do not
28688 know why it does this.
28691 There is one other problem that ought to be addressed here, but
28692 which currently is not: Taking the address of a label (rather
28693 than a function) and then later jumping to that address. Such
28694 addresses also ought to have their bottom bit set (assuming that
28695 they reside in Thumb code), but at the moment they will not. */
28698 arm_fix_adjustable (fixS
* fixP
)
28700 if (fixP
->fx_addsy
== NULL
)
28703 /* Preserve relocations against symbols with function type. */
28704 if (symbol_get_bfdsym (fixP
->fx_addsy
)->flags
& BSF_FUNCTION
)
28707 if (THUMB_IS_FUNC (fixP
->fx_addsy
)
28708 && fixP
->fx_subsy
== NULL
)
28711 /* We need the symbol name for the VTABLE entries. */
28712 if ( fixP
->fx_r_type
== BFD_RELOC_VTABLE_INHERIT
28713 || fixP
->fx_r_type
== BFD_RELOC_VTABLE_ENTRY
)
28716 /* Don't allow symbols to be discarded on GOT related relocs. */
28717 if (fixP
->fx_r_type
== BFD_RELOC_ARM_PLT32
28718 || fixP
->fx_r_type
== BFD_RELOC_ARM_GOT32
28719 || fixP
->fx_r_type
== BFD_RELOC_ARM_GOTOFF
28720 || fixP
->fx_r_type
== BFD_RELOC_ARM_TLS_GD32
28721 || fixP
->fx_r_type
== BFD_RELOC_ARM_TLS_GD32_FDPIC
28722 || fixP
->fx_r_type
== BFD_RELOC_ARM_TLS_LE32
28723 || fixP
->fx_r_type
== BFD_RELOC_ARM_TLS_IE32
28724 || fixP
->fx_r_type
== BFD_RELOC_ARM_TLS_IE32_FDPIC
28725 || fixP
->fx_r_type
== BFD_RELOC_ARM_TLS_LDM32
28726 || fixP
->fx_r_type
== BFD_RELOC_ARM_TLS_LDM32_FDPIC
28727 || fixP
->fx_r_type
== BFD_RELOC_ARM_TLS_LDO32
28728 || fixP
->fx_r_type
== BFD_RELOC_ARM_TLS_GOTDESC
28729 || fixP
->fx_r_type
== BFD_RELOC_ARM_TLS_CALL
28730 || fixP
->fx_r_type
== BFD_RELOC_ARM_THM_TLS_CALL
28731 || fixP
->fx_r_type
== BFD_RELOC_ARM_TLS_DESCSEQ
28732 || fixP
->fx_r_type
== BFD_RELOC_ARM_THM_TLS_DESCSEQ
28733 || fixP
->fx_r_type
== BFD_RELOC_ARM_TARGET2
)
28736 /* Similarly for group relocations. */
28737 if ((fixP
->fx_r_type
>= BFD_RELOC_ARM_ALU_PC_G0_NC
28738 && fixP
->fx_r_type
<= BFD_RELOC_ARM_LDC_SB_G2
)
28739 || fixP
->fx_r_type
== BFD_RELOC_ARM_LDR_PC_G0
)
28742 /* MOVW/MOVT REL relocations have limited offsets, so keep the symbols. */
28743 if (fixP
->fx_r_type
== BFD_RELOC_ARM_MOVW
28744 || fixP
->fx_r_type
== BFD_RELOC_ARM_MOVT
28745 || fixP
->fx_r_type
== BFD_RELOC_ARM_MOVW_PCREL
28746 || fixP
->fx_r_type
== BFD_RELOC_ARM_MOVT_PCREL
28747 || fixP
->fx_r_type
== BFD_RELOC_ARM_THUMB_MOVW
28748 || fixP
->fx_r_type
== BFD_RELOC_ARM_THUMB_MOVT
28749 || fixP
->fx_r_type
== BFD_RELOC_ARM_THUMB_MOVW_PCREL
28750 || fixP
->fx_r_type
== BFD_RELOC_ARM_THUMB_MOVT_PCREL
)
28753 /* BFD_RELOC_ARM_THUMB_ALU_ABS_Gx_NC relocations have VERY limited
28754 offsets, so keep these symbols. */
28755 if (fixP
->fx_r_type
>= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
28756 && fixP
->fx_r_type
<= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC
)
28761 #endif /* defined (OBJ_ELF) || defined (OBJ_COFF) */
28765 elf32_arm_target_format (void)
28768 return (target_big_endian
28769 ? "elf32-bigarm-symbian"
28770 : "elf32-littlearm-symbian");
28771 #elif defined (TE_VXWORKS)
28772 return (target_big_endian
28773 ? "elf32-bigarm-vxworks"
28774 : "elf32-littlearm-vxworks");
28775 #elif defined (TE_NACL)
28776 return (target_big_endian
28777 ? "elf32-bigarm-nacl"
28778 : "elf32-littlearm-nacl");
28782 if (target_big_endian
)
28783 return "elf32-bigarm-fdpic";
28785 return "elf32-littlearm-fdpic";
28789 if (target_big_endian
)
28790 return "elf32-bigarm";
28792 return "elf32-littlearm";
28798 armelf_frob_symbol (symbolS
* symp
,
28801 elf_frob_symbol (symp
, puntp
);
28805 /* MD interface: Finalization. */
28810 literal_pool
* pool
;
28812 /* Ensure that all the predication blocks are properly closed. */
28813 check_pred_blocks_finished ();
28815 for (pool
= list_of_pools
; pool
; pool
= pool
->next
)
28817 /* Put it at the end of the relevant section. */
28818 subseg_set (pool
->section
, pool
->sub_section
);
28820 arm_elf_change_section ();
28827 /* Remove any excess mapping symbols generated for alignment frags in
28828 SEC. We may have created a mapping symbol before a zero byte
28829 alignment; remove it if there's a mapping symbol after the
28832 check_mapping_symbols (bfd
*abfd ATTRIBUTE_UNUSED
, asection
*sec
,
28833 void *dummy ATTRIBUTE_UNUSED
)
28835 segment_info_type
*seginfo
= seg_info (sec
);
28838 if (seginfo
== NULL
|| seginfo
->frchainP
== NULL
)
28841 for (fragp
= seginfo
->frchainP
->frch_root
;
28843 fragp
= fragp
->fr_next
)
28845 symbolS
*sym
= fragp
->tc_frag_data
.last_map
;
28846 fragS
*next
= fragp
->fr_next
;
28848 /* Variable-sized frags have been converted to fixed size by
28849 this point. But if this was variable-sized to start with,
28850 there will be a fixed-size frag after it. So don't handle
28852 if (sym
== NULL
|| next
== NULL
)
28855 if (S_GET_VALUE (sym
) < next
->fr_address
)
28856 /* Not at the end of this frag. */
28858 know (S_GET_VALUE (sym
) == next
->fr_address
);
28862 if (next
->tc_frag_data
.first_map
!= NULL
)
28864 /* Next frag starts with a mapping symbol. Discard this
28866 symbol_remove (sym
, &symbol_rootP
, &symbol_lastP
);
28870 if (next
->fr_next
== NULL
)
28872 /* This mapping symbol is at the end of the section. Discard
28874 know (next
->fr_fix
== 0 && next
->fr_var
== 0);
28875 symbol_remove (sym
, &symbol_rootP
, &symbol_lastP
);
28879 /* As long as we have empty frags without any mapping symbols,
28881 /* If the next frag is non-empty and does not start with a
28882 mapping symbol, then this mapping symbol is required. */
28883 if (next
->fr_address
!= next
->fr_next
->fr_address
)
28886 next
= next
->fr_next
;
28888 while (next
!= NULL
);
28893 /* Adjust the symbol table. This marks Thumb symbols as distinct from
28897 arm_adjust_symtab (void)
28902 for (sym
= symbol_rootP
; sym
!= NULL
; sym
= symbol_next (sym
))
28904 if (ARM_IS_THUMB (sym
))
28906 if (THUMB_IS_FUNC (sym
))
28908 /* Mark the symbol as a Thumb function. */
28909 if ( S_GET_STORAGE_CLASS (sym
) == C_STAT
28910 || S_GET_STORAGE_CLASS (sym
) == C_LABEL
) /* This can happen! */
28911 S_SET_STORAGE_CLASS (sym
, C_THUMBSTATFUNC
);
28913 else if (S_GET_STORAGE_CLASS (sym
) == C_EXT
)
28914 S_SET_STORAGE_CLASS (sym
, C_THUMBEXTFUNC
);
28916 as_bad (_("%s: unexpected function type: %d"),
28917 S_GET_NAME (sym
), S_GET_STORAGE_CLASS (sym
));
28919 else switch (S_GET_STORAGE_CLASS (sym
))
28922 S_SET_STORAGE_CLASS (sym
, C_THUMBEXT
);
28925 S_SET_STORAGE_CLASS (sym
, C_THUMBSTAT
);
28928 S_SET_STORAGE_CLASS (sym
, C_THUMBLABEL
);
28936 if (ARM_IS_INTERWORK (sym
))
28937 coffsymbol (symbol_get_bfdsym (sym
))->native
->u
.syment
.n_flags
= 0xFF;
28944 for (sym
= symbol_rootP
; sym
!= NULL
; sym
= symbol_next (sym
))
28946 if (ARM_IS_THUMB (sym
))
28948 elf_symbol_type
* elf_sym
;
28950 elf_sym
= elf_symbol (symbol_get_bfdsym (sym
));
28951 bind
= ELF_ST_BIND (elf_sym
->internal_elf_sym
.st_info
);
28953 if (! bfd_is_arm_special_symbol_name (elf_sym
->symbol
.name
,
28954 BFD_ARM_SPECIAL_SYM_TYPE_ANY
))
28956 /* If it's a .thumb_func, declare it as so,
28957 otherwise tag label as .code 16. */
28958 if (THUMB_IS_FUNC (sym
))
28959 ARM_SET_SYM_BRANCH_TYPE (elf_sym
->internal_elf_sym
.st_target_internal
,
28960 ST_BRANCH_TO_THUMB
);
28961 else if (EF_ARM_EABI_VERSION (meabi_flags
) < EF_ARM_EABI_VER4
)
28962 elf_sym
->internal_elf_sym
.st_info
=
28963 ELF_ST_INFO (bind
, STT_ARM_16BIT
);
28968 /* Remove any overlapping mapping symbols generated by alignment frags. */
28969 bfd_map_over_sections (stdoutput
, check_mapping_symbols
, (char *) 0);
28970 /* Now do generic ELF adjustments. */
28971 elf_adjust_symtab ();
28975 /* MD interface: Initialization. */
28978 set_constant_flonums (void)
28982 for (i
= 0; i
< NUM_FLOAT_VALS
; i
++)
28983 if (atof_ieee ((char *) fp_const
[i
], 'x', fp_values
[i
]) == NULL
)
28987 /* Auto-select Thumb mode if it's the only available instruction set for the
28988 given architecture. */
28991 autoselect_thumb_from_cpu_variant (void)
28993 if (!ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v1
))
28994 opcode_select (16);
29003 if ( (arm_ops_hsh
= hash_new ()) == NULL
29004 || (arm_cond_hsh
= hash_new ()) == NULL
29005 || (arm_vcond_hsh
= hash_new ()) == NULL
29006 || (arm_shift_hsh
= hash_new ()) == NULL
29007 || (arm_psr_hsh
= hash_new ()) == NULL
29008 || (arm_v7m_psr_hsh
= hash_new ()) == NULL
29009 || (arm_reg_hsh
= hash_new ()) == NULL
29010 || (arm_reloc_hsh
= hash_new ()) == NULL
29011 || (arm_barrier_opt_hsh
= hash_new ()) == NULL
)
29012 as_fatal (_("virtual memory exhausted"));
29014 for (i
= 0; i
< sizeof (insns
) / sizeof (struct asm_opcode
); i
++)
29015 hash_insert (arm_ops_hsh
, insns
[i
].template_name
, (void *) (insns
+ i
));
29016 for (i
= 0; i
< sizeof (conds
) / sizeof (struct asm_cond
); i
++)
29017 hash_insert (arm_cond_hsh
, conds
[i
].template_name
, (void *) (conds
+ i
));
29018 for (i
= 0; i
< sizeof (vconds
) / sizeof (struct asm_cond
); i
++)
29019 hash_insert (arm_vcond_hsh
, vconds
[i
].template_name
, (void *) (vconds
+ i
));
29020 for (i
= 0; i
< sizeof (shift_names
) / sizeof (struct asm_shift_name
); i
++)
29021 hash_insert (arm_shift_hsh
, shift_names
[i
].name
, (void *) (shift_names
+ i
));
29022 for (i
= 0; i
< sizeof (psrs
) / sizeof (struct asm_psr
); i
++)
29023 hash_insert (arm_psr_hsh
, psrs
[i
].template_name
, (void *) (psrs
+ i
));
29024 for (i
= 0; i
< sizeof (v7m_psrs
) / sizeof (struct asm_psr
); i
++)
29025 hash_insert (arm_v7m_psr_hsh
, v7m_psrs
[i
].template_name
,
29026 (void *) (v7m_psrs
+ i
));
29027 for (i
= 0; i
< sizeof (reg_names
) / sizeof (struct reg_entry
); i
++)
29028 hash_insert (arm_reg_hsh
, reg_names
[i
].name
, (void *) (reg_names
+ i
));
29030 i
< sizeof (barrier_opt_names
) / sizeof (struct asm_barrier_opt
);
29032 hash_insert (arm_barrier_opt_hsh
, barrier_opt_names
[i
].template_name
,
29033 (void *) (barrier_opt_names
+ i
));
29035 for (i
= 0; i
< ARRAY_SIZE (reloc_names
); i
++)
29037 struct reloc_entry
* entry
= reloc_names
+ i
;
29039 if (arm_is_eabi() && entry
->reloc
== BFD_RELOC_ARM_PLT32
)
29040 /* This makes encode_branch() use the EABI versions of this relocation. */
29041 entry
->reloc
= BFD_RELOC_UNUSED
;
29043 hash_insert (arm_reloc_hsh
, entry
->name
, (void *) entry
);
29047 set_constant_flonums ();
29049 /* Set the cpu variant based on the command-line options. We prefer
29050 -mcpu= over -march= if both are set (as for GCC); and we prefer
29051 -mfpu= over any other way of setting the floating point unit.
29052 Use of legacy options with new options are faulted. */
29055 if (mcpu_cpu_opt
|| march_cpu_opt
)
29056 as_bad (_("use of old and new-style options to set CPU type"));
29058 selected_arch
= *legacy_cpu
;
29060 else if (mcpu_cpu_opt
)
29062 selected_arch
= *mcpu_cpu_opt
;
29063 selected_ext
= *mcpu_ext_opt
;
29065 else if (march_cpu_opt
)
29067 selected_arch
= *march_cpu_opt
;
29068 selected_ext
= *march_ext_opt
;
29070 ARM_MERGE_FEATURE_SETS (selected_cpu
, selected_arch
, selected_ext
);
29075 as_bad (_("use of old and new-style options to set FPU type"));
29077 selected_fpu
= *legacy_fpu
;
29080 selected_fpu
= *mfpu_opt
;
29083 #if !(defined (EABI_DEFAULT) || defined (TE_LINUX) \
29084 || defined (TE_NetBSD) || defined (TE_VXWORKS))
29085 /* Some environments specify a default FPU. If they don't, infer it
29086 from the processor. */
29088 selected_fpu
= *mcpu_fpu_opt
;
29089 else if (march_fpu_opt
)
29090 selected_fpu
= *march_fpu_opt
;
29092 selected_fpu
= fpu_default
;
29096 if (ARM_FEATURE_ZERO (selected_fpu
))
29098 if (!no_cpu_selected ())
29099 selected_fpu
= fpu_default
;
29101 selected_fpu
= fpu_arch_fpa
;
29105 if (ARM_FEATURE_ZERO (selected_arch
))
29107 selected_arch
= cpu_default
;
29108 selected_cpu
= selected_arch
;
29110 ARM_MERGE_FEATURE_SETS (cpu_variant
, selected_cpu
, selected_fpu
);
29112 /* Autodection of feature mode: allow all features in cpu_variant but leave
29113 selected_cpu unset. It will be set in aeabi_set_public_attributes ()
29114 after all instruction have been processed and we can decide what CPU
29115 should be selected. */
29116 if (ARM_FEATURE_ZERO (selected_arch
))
29117 ARM_MERGE_FEATURE_SETS (cpu_variant
, arm_arch_any
, selected_fpu
);
29119 ARM_MERGE_FEATURE_SETS (cpu_variant
, selected_cpu
, selected_fpu
);
29122 autoselect_thumb_from_cpu_variant ();
29124 arm_arch_used
= thumb_arch_used
= arm_arch_none
;
29126 #if defined OBJ_COFF || defined OBJ_ELF
29128 unsigned int flags
= 0;
29130 #if defined OBJ_ELF
29131 flags
= meabi_flags
;
29133 switch (meabi_flags
)
29135 case EF_ARM_EABI_UNKNOWN
:
29137 /* Set the flags in the private structure. */
29138 if (uses_apcs_26
) flags
|= F_APCS26
;
29139 if (support_interwork
) flags
|= F_INTERWORK
;
29140 if (uses_apcs_float
) flags
|= F_APCS_FLOAT
;
29141 if (pic_code
) flags
|= F_PIC
;
29142 if (!ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_any_hard
))
29143 flags
|= F_SOFT_FLOAT
;
29145 switch (mfloat_abi_opt
)
29147 case ARM_FLOAT_ABI_SOFT
:
29148 case ARM_FLOAT_ABI_SOFTFP
:
29149 flags
|= F_SOFT_FLOAT
;
29152 case ARM_FLOAT_ABI_HARD
:
29153 if (flags
& F_SOFT_FLOAT
)
29154 as_bad (_("hard-float conflicts with specified fpu"));
29158 /* Using pure-endian doubles (even if soft-float). */
29159 if (ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_endian_pure
))
29160 flags
|= F_VFP_FLOAT
;
29162 #if defined OBJ_ELF
29163 if (ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_arch_maverick
))
29164 flags
|= EF_ARM_MAVERICK_FLOAT
;
29167 case EF_ARM_EABI_VER4
:
29168 case EF_ARM_EABI_VER5
:
29169 /* No additional flags to set. */
29176 bfd_set_private_flags (stdoutput
, flags
);
29178 /* We have run out flags in the COFF header to encode the
29179 status of ATPCS support, so instead we create a dummy,
29180 empty, debug section called .arm.atpcs. */
29185 sec
= bfd_make_section (stdoutput
, ".arm.atpcs");
29189 bfd_set_section_flags
29190 (stdoutput
, sec
, SEC_READONLY
| SEC_DEBUGGING
/* | SEC_HAS_CONTENTS */);
29191 bfd_set_section_size (stdoutput
, sec
, 0);
29192 bfd_set_section_contents (stdoutput
, sec
, NULL
, 0, 0);
29198 /* Record the CPU type as well. */
29199 if (ARM_CPU_HAS_FEATURE (cpu_variant
, arm_cext_iwmmxt2
))
29200 mach
= bfd_mach_arm_iWMMXt2
;
29201 else if (ARM_CPU_HAS_FEATURE (cpu_variant
, arm_cext_iwmmxt
))
29202 mach
= bfd_mach_arm_iWMMXt
;
29203 else if (ARM_CPU_HAS_FEATURE (cpu_variant
, arm_cext_xscale
))
29204 mach
= bfd_mach_arm_XScale
;
29205 else if (ARM_CPU_HAS_FEATURE (cpu_variant
, arm_cext_maverick
))
29206 mach
= bfd_mach_arm_ep9312
;
29207 else if (ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v5e
))
29208 mach
= bfd_mach_arm_5TE
;
29209 else if (ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v5
))
29211 if (ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v4t
))
29212 mach
= bfd_mach_arm_5T
;
29214 mach
= bfd_mach_arm_5
;
29216 else if (ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v4
))
29218 if (ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v4t
))
29219 mach
= bfd_mach_arm_4T
;
29221 mach
= bfd_mach_arm_4
;
29223 else if (ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v3m
))
29224 mach
= bfd_mach_arm_3M
;
29225 else if (ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v3
))
29226 mach
= bfd_mach_arm_3
;
29227 else if (ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v2s
))
29228 mach
= bfd_mach_arm_2a
;
29229 else if (ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v2
))
29230 mach
= bfd_mach_arm_2
;
29232 mach
= bfd_mach_arm_unknown
;
29234 bfd_set_arch_mach (stdoutput
, TARGET_ARCH
, mach
);
29237 /* Command line processing. */
29240 Invocation line includes a switch not recognized by the base assembler.
29241 See if it's a processor-specific option.
29243 This routine is somewhat complicated by the need for backwards
29244 compatibility (since older releases of gcc can't be changed).
29245 The new options try to make the interface as compatible as
29248 New options (supported) are:
29250 -mcpu=<cpu name> Assemble for selected processor
29251 -march=<architecture name> Assemble for selected architecture
29252 -mfpu=<fpu architecture> Assemble for selected FPU.
29253 -EB/-mbig-endian Big-endian
29254 -EL/-mlittle-endian Little-endian
29255 -k Generate PIC code
29256 -mthumb Start in Thumb mode
29257 -mthumb-interwork Code supports ARM/Thumb interworking
29259 -m[no-]warn-deprecated Warn about deprecated features
29260 -m[no-]warn-syms Warn when symbols match instructions
29262 For now we will also provide support for:
29264 -mapcs-32 32-bit Program counter
29265 -mapcs-26 26-bit Program counter
29266 -macps-float Floats passed in FP registers
29267 -mapcs-reentrant Reentrant code
29269 (sometime these will probably be replaced with -mapcs=<list of options>
29270 and -matpcs=<list of options>)
29272 The remaining options are only supported for back-wards compatibility.
29273 Cpu variants, the arm part is optional:
29274 -m[arm]1 Currently not supported.
29275 -m[arm]2, -m[arm]250 Arm 2 and Arm 250 processor
29276 -m[arm]3 Arm 3 processor
29277 -m[arm]6[xx], Arm 6 processors
29278 -m[arm]7[xx][t][[d]m] Arm 7 processors
29279 -m[arm]8[10] Arm 8 processors
29280 -m[arm]9[20][tdmi] Arm 9 processors
29281 -mstrongarm[110[0]] StrongARM processors
29282 -mxscale XScale processors
29283 -m[arm]v[2345[t[e]]] Arm architectures
29284 -mall All (except the ARM1)
29286 -mfpa10, -mfpa11 FPA10 and 11 co-processor instructions
29287 -mfpe-old (No float load/store multiples)
29288 -mvfpxd VFP Single precision
29290 -mno-fpu Disable all floating point instructions
29292 The following CPU names are recognized:
29293 arm1, arm2, arm250, arm3, arm6, arm600, arm610, arm620,
29294 arm7, arm7m, arm7d, arm7dm, arm7di, arm7dmi, arm70, arm700,
29295 arm700i, arm710 arm710t, arm720, arm720t, arm740t, arm710c,
29296 arm7100, arm7500, arm7500fe, arm7tdmi, arm8, arm810, arm9,
29297 arm920, arm920t, arm940t, arm946, arm966, arm9tdmi, arm9e,
29298 arm10t arm10e, arm1020t, arm1020e, arm10200e,
29299 strongarm, strongarm110, strongarm1100, strongarm1110, xscale.
29303 const char * md_shortopts
= "m:k";
29305 #ifdef ARM_BI_ENDIAN
29306 #define OPTION_EB (OPTION_MD_BASE + 0)
29307 #define OPTION_EL (OPTION_MD_BASE + 1)
29309 #if TARGET_BYTES_BIG_ENDIAN
29310 #define OPTION_EB (OPTION_MD_BASE + 0)
29312 #define OPTION_EL (OPTION_MD_BASE + 1)
29315 #define OPTION_FIX_V4BX (OPTION_MD_BASE + 2)
29316 #define OPTION_FDPIC (OPTION_MD_BASE + 3)
29318 struct option md_longopts
[] =
29321 {"EB", no_argument
, NULL
, OPTION_EB
},
29324 {"EL", no_argument
, NULL
, OPTION_EL
},
29326 {"fix-v4bx", no_argument
, NULL
, OPTION_FIX_V4BX
},
29328 {"fdpic", no_argument
, NULL
, OPTION_FDPIC
},
29330 {NULL
, no_argument
, NULL
, 0}
29333 size_t md_longopts_size
= sizeof (md_longopts
);
29335 struct arm_option_table
29337 const char * option
; /* Option name to match. */
29338 const char * help
; /* Help information. */
29339 int * var
; /* Variable to change. */
29340 int value
; /* What to change it to. */
29341 const char * deprecated
; /* If non-null, print this message. */
29344 struct arm_option_table arm_opts
[] =
29346 {"k", N_("generate PIC code"), &pic_code
, 1, NULL
},
29347 {"mthumb", N_("assemble Thumb code"), &thumb_mode
, 1, NULL
},
29348 {"mthumb-interwork", N_("support ARM/Thumb interworking"),
29349 &support_interwork
, 1, NULL
},
29350 {"mapcs-32", N_("code uses 32-bit program counter"), &uses_apcs_26
, 0, NULL
},
29351 {"mapcs-26", N_("code uses 26-bit program counter"), &uses_apcs_26
, 1, NULL
},
29352 {"mapcs-float", N_("floating point args are in fp regs"), &uses_apcs_float
,
29354 {"mapcs-reentrant", N_("re-entrant code"), &pic_code
, 1, NULL
},
29355 {"matpcs", N_("code is ATPCS conformant"), &atpcs
, 1, NULL
},
29356 {"mbig-endian", N_("assemble for big-endian"), &target_big_endian
, 1, NULL
},
29357 {"mlittle-endian", N_("assemble for little-endian"), &target_big_endian
, 0,
29360 /* These are recognized by the assembler, but have no affect on code. */
29361 {"mapcs-frame", N_("use frame pointer"), NULL
, 0, NULL
},
29362 {"mapcs-stack-check", N_("use stack size checking"), NULL
, 0, NULL
},
29364 {"mwarn-deprecated", NULL
, &warn_on_deprecated
, 1, NULL
},
29365 {"mno-warn-deprecated", N_("do not warn on use of deprecated feature"),
29366 &warn_on_deprecated
, 0, NULL
},
29367 {"mwarn-syms", N_("warn about symbols that match instruction names [default]"), (int *) (& flag_warn_syms
), TRUE
, NULL
},
29368 {"mno-warn-syms", N_("disable warnings about symobls that match instructions"), (int *) (& flag_warn_syms
), FALSE
, NULL
},
29369 {NULL
, NULL
, NULL
, 0, NULL
}
29372 struct arm_legacy_option_table
29374 const char * option
; /* Option name to match. */
29375 const arm_feature_set
** var
; /* Variable to change. */
29376 const arm_feature_set value
; /* What to change it to. */
29377 const char * deprecated
; /* If non-null, print this message. */
29380 const struct arm_legacy_option_table arm_legacy_opts
[] =
29382 /* DON'T add any new processors to this list -- we want the whole list
29383 to go away... Add them to the processors table instead. */
29384 {"marm1", &legacy_cpu
, ARM_ARCH_V1
, N_("use -mcpu=arm1")},
29385 {"m1", &legacy_cpu
, ARM_ARCH_V1
, N_("use -mcpu=arm1")},
29386 {"marm2", &legacy_cpu
, ARM_ARCH_V2
, N_("use -mcpu=arm2")},
29387 {"m2", &legacy_cpu
, ARM_ARCH_V2
, N_("use -mcpu=arm2")},
29388 {"marm250", &legacy_cpu
, ARM_ARCH_V2S
, N_("use -mcpu=arm250")},
29389 {"m250", &legacy_cpu
, ARM_ARCH_V2S
, N_("use -mcpu=arm250")},
29390 {"marm3", &legacy_cpu
, ARM_ARCH_V2S
, N_("use -mcpu=arm3")},
29391 {"m3", &legacy_cpu
, ARM_ARCH_V2S
, N_("use -mcpu=arm3")},
29392 {"marm6", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm6")},
29393 {"m6", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm6")},
29394 {"marm600", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm600")},
29395 {"m600", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm600")},
29396 {"marm610", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm610")},
29397 {"m610", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm610")},
29398 {"marm620", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm620")},
29399 {"m620", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm620")},
29400 {"marm7", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm7")},
29401 {"m7", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm7")},
29402 {"marm70", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm70")},
29403 {"m70", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm70")},
29404 {"marm700", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm700")},
29405 {"m700", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm700")},
29406 {"marm700i", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm700i")},
29407 {"m700i", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm700i")},
29408 {"marm710", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm710")},
29409 {"m710", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm710")},
29410 {"marm710c", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm710c")},
29411 {"m710c", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm710c")},
29412 {"marm720", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm720")},
29413 {"m720", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm720")},
29414 {"marm7d", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm7d")},
29415 {"m7d", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm7d")},
29416 {"marm7di", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm7di")},
29417 {"m7di", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm7di")},
29418 {"marm7m", &legacy_cpu
, ARM_ARCH_V3M
, N_("use -mcpu=arm7m")},
29419 {"m7m", &legacy_cpu
, ARM_ARCH_V3M
, N_("use -mcpu=arm7m")},
29420 {"marm7dm", &legacy_cpu
, ARM_ARCH_V3M
, N_("use -mcpu=arm7dm")},
29421 {"m7dm", &legacy_cpu
, ARM_ARCH_V3M
, N_("use -mcpu=arm7dm")},
29422 {"marm7dmi", &legacy_cpu
, ARM_ARCH_V3M
, N_("use -mcpu=arm7dmi")},
29423 {"m7dmi", &legacy_cpu
, ARM_ARCH_V3M
, N_("use -mcpu=arm7dmi")},
29424 {"marm7100", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm7100")},
29425 {"m7100", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm7100")},
29426 {"marm7500", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm7500")},
29427 {"m7500", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm7500")},
29428 {"marm7500fe", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm7500fe")},
29429 {"m7500fe", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm7500fe")},
29430 {"marm7t", &legacy_cpu
, ARM_ARCH_V4T
, N_("use -mcpu=arm7tdmi")},
29431 {"m7t", &legacy_cpu
, ARM_ARCH_V4T
, N_("use -mcpu=arm7tdmi")},
29432 {"marm7tdmi", &legacy_cpu
, ARM_ARCH_V4T
, N_("use -mcpu=arm7tdmi")},
29433 {"m7tdmi", &legacy_cpu
, ARM_ARCH_V4T
, N_("use -mcpu=arm7tdmi")},
29434 {"marm710t", &legacy_cpu
, ARM_ARCH_V4T
, N_("use -mcpu=arm710t")},
29435 {"m710t", &legacy_cpu
, ARM_ARCH_V4T
, N_("use -mcpu=arm710t")},
29436 {"marm720t", &legacy_cpu
, ARM_ARCH_V4T
, N_("use -mcpu=arm720t")},
29437 {"m720t", &legacy_cpu
, ARM_ARCH_V4T
, N_("use -mcpu=arm720t")},
29438 {"marm740t", &legacy_cpu
, ARM_ARCH_V4T
, N_("use -mcpu=arm740t")},
29439 {"m740t", &legacy_cpu
, ARM_ARCH_V4T
, N_("use -mcpu=arm740t")},
29440 {"marm8", &legacy_cpu
, ARM_ARCH_V4
, N_("use -mcpu=arm8")},
29441 {"m8", &legacy_cpu
, ARM_ARCH_V4
, N_("use -mcpu=arm8")},
29442 {"marm810", &legacy_cpu
, ARM_ARCH_V4
, N_("use -mcpu=arm810")},
29443 {"m810", &legacy_cpu
, ARM_ARCH_V4
, N_("use -mcpu=arm810")},
29444 {"marm9", &legacy_cpu
, ARM_ARCH_V4T
, N_("use -mcpu=arm9")},
29445 {"m9", &legacy_cpu
, ARM_ARCH_V4T
, N_("use -mcpu=arm9")},
29446 {"marm9tdmi", &legacy_cpu
, ARM_ARCH_V4T
, N_("use -mcpu=arm9tdmi")},
29447 {"m9tdmi", &legacy_cpu
, ARM_ARCH_V4T
, N_("use -mcpu=arm9tdmi")},
29448 {"marm920", &legacy_cpu
, ARM_ARCH_V4T
, N_("use -mcpu=arm920")},
29449 {"m920", &legacy_cpu
, ARM_ARCH_V4T
, N_("use -mcpu=arm920")},
29450 {"marm940", &legacy_cpu
, ARM_ARCH_V4T
, N_("use -mcpu=arm940")},
29451 {"m940", &legacy_cpu
, ARM_ARCH_V4T
, N_("use -mcpu=arm940")},
29452 {"mstrongarm", &legacy_cpu
, ARM_ARCH_V4
, N_("use -mcpu=strongarm")},
29453 {"mstrongarm110", &legacy_cpu
, ARM_ARCH_V4
,
29454 N_("use -mcpu=strongarm110")},
29455 {"mstrongarm1100", &legacy_cpu
, ARM_ARCH_V4
,
29456 N_("use -mcpu=strongarm1100")},
29457 {"mstrongarm1110", &legacy_cpu
, ARM_ARCH_V4
,
29458 N_("use -mcpu=strongarm1110")},
29459 {"mxscale", &legacy_cpu
, ARM_ARCH_XSCALE
, N_("use -mcpu=xscale")},
29460 {"miwmmxt", &legacy_cpu
, ARM_ARCH_IWMMXT
, N_("use -mcpu=iwmmxt")},
29461 {"mall", &legacy_cpu
, ARM_ANY
, N_("use -mcpu=all")},
29463 /* Architecture variants -- don't add any more to this list either. */
29464 {"mv2", &legacy_cpu
, ARM_ARCH_V2
, N_("use -march=armv2")},
29465 {"marmv2", &legacy_cpu
, ARM_ARCH_V2
, N_("use -march=armv2")},
29466 {"mv2a", &legacy_cpu
, ARM_ARCH_V2S
, N_("use -march=armv2a")},
29467 {"marmv2a", &legacy_cpu
, ARM_ARCH_V2S
, N_("use -march=armv2a")},
29468 {"mv3", &legacy_cpu
, ARM_ARCH_V3
, N_("use -march=armv3")},
29469 {"marmv3", &legacy_cpu
, ARM_ARCH_V3
, N_("use -march=armv3")},
29470 {"mv3m", &legacy_cpu
, ARM_ARCH_V3M
, N_("use -march=armv3m")},
29471 {"marmv3m", &legacy_cpu
, ARM_ARCH_V3M
, N_("use -march=armv3m")},
29472 {"mv4", &legacy_cpu
, ARM_ARCH_V4
, N_("use -march=armv4")},
29473 {"marmv4", &legacy_cpu
, ARM_ARCH_V4
, N_("use -march=armv4")},
29474 {"mv4t", &legacy_cpu
, ARM_ARCH_V4T
, N_("use -march=armv4t")},
29475 {"marmv4t", &legacy_cpu
, ARM_ARCH_V4T
, N_("use -march=armv4t")},
29476 {"mv5", &legacy_cpu
, ARM_ARCH_V5
, N_("use -march=armv5")},
29477 {"marmv5", &legacy_cpu
, ARM_ARCH_V5
, N_("use -march=armv5")},
29478 {"mv5t", &legacy_cpu
, ARM_ARCH_V5T
, N_("use -march=armv5t")},
29479 {"marmv5t", &legacy_cpu
, ARM_ARCH_V5T
, N_("use -march=armv5t")},
29480 {"mv5e", &legacy_cpu
, ARM_ARCH_V5TE
, N_("use -march=armv5te")},
29481 {"marmv5e", &legacy_cpu
, ARM_ARCH_V5TE
, N_("use -march=armv5te")},
29483 /* Floating point variants -- don't add any more to this list either. */
29484 {"mfpe-old", &legacy_fpu
, FPU_ARCH_FPE
, N_("use -mfpu=fpe")},
29485 {"mfpa10", &legacy_fpu
, FPU_ARCH_FPA
, N_("use -mfpu=fpa10")},
29486 {"mfpa11", &legacy_fpu
, FPU_ARCH_FPA
, N_("use -mfpu=fpa11")},
29487 {"mno-fpu", &legacy_fpu
, ARM_ARCH_NONE
,
29488 N_("use either -mfpu=softfpa or -mfpu=softvfp")},
29490 {NULL
, NULL
, ARM_ARCH_NONE
, NULL
}
29493 struct arm_cpu_option_table
29497 const arm_feature_set value
;
29498 const arm_feature_set ext
;
29499 /* For some CPUs we assume an FPU unless the user explicitly sets
29501 const arm_feature_set default_fpu
;
29502 /* The canonical name of the CPU, or NULL to use NAME converted to upper
29504 const char * canonical_name
;
29507 /* This list should, at a minimum, contain all the cpu names
29508 recognized by GCC. */
29509 #define ARM_CPU_OPT(N, CN, V, E, DF) { N, sizeof (N) - 1, V, E, DF, CN }
29511 static const struct arm_cpu_option_table arm_cpus
[] =
29513 ARM_CPU_OPT ("all", NULL
, ARM_ANY
,
29516 ARM_CPU_OPT ("arm1", NULL
, ARM_ARCH_V1
,
29519 ARM_CPU_OPT ("arm2", NULL
, ARM_ARCH_V2
,
29522 ARM_CPU_OPT ("arm250", NULL
, ARM_ARCH_V2S
,
29525 ARM_CPU_OPT ("arm3", NULL
, ARM_ARCH_V2S
,
29528 ARM_CPU_OPT ("arm6", NULL
, ARM_ARCH_V3
,
29531 ARM_CPU_OPT ("arm60", NULL
, ARM_ARCH_V3
,
29534 ARM_CPU_OPT ("arm600", NULL
, ARM_ARCH_V3
,
29537 ARM_CPU_OPT ("arm610", NULL
, ARM_ARCH_V3
,
29540 ARM_CPU_OPT ("arm620", NULL
, ARM_ARCH_V3
,
29543 ARM_CPU_OPT ("arm7", NULL
, ARM_ARCH_V3
,
29546 ARM_CPU_OPT ("arm7m", NULL
, ARM_ARCH_V3M
,
29549 ARM_CPU_OPT ("arm7d", NULL
, ARM_ARCH_V3
,
29552 ARM_CPU_OPT ("arm7dm", NULL
, ARM_ARCH_V3M
,
29555 ARM_CPU_OPT ("arm7di", NULL
, ARM_ARCH_V3
,
29558 ARM_CPU_OPT ("arm7dmi", NULL
, ARM_ARCH_V3M
,
29561 ARM_CPU_OPT ("arm70", NULL
, ARM_ARCH_V3
,
29564 ARM_CPU_OPT ("arm700", NULL
, ARM_ARCH_V3
,
29567 ARM_CPU_OPT ("arm700i", NULL
, ARM_ARCH_V3
,
29570 ARM_CPU_OPT ("arm710", NULL
, ARM_ARCH_V3
,
29573 ARM_CPU_OPT ("arm710t", NULL
, ARM_ARCH_V4T
,
29576 ARM_CPU_OPT ("arm720", NULL
, ARM_ARCH_V3
,
29579 ARM_CPU_OPT ("arm720t", NULL
, ARM_ARCH_V4T
,
29582 ARM_CPU_OPT ("arm740t", NULL
, ARM_ARCH_V4T
,
29585 ARM_CPU_OPT ("arm710c", NULL
, ARM_ARCH_V3
,
29588 ARM_CPU_OPT ("arm7100", NULL
, ARM_ARCH_V3
,
29591 ARM_CPU_OPT ("arm7500", NULL
, ARM_ARCH_V3
,
29594 ARM_CPU_OPT ("arm7500fe", NULL
, ARM_ARCH_V3
,
29597 ARM_CPU_OPT ("arm7t", NULL
, ARM_ARCH_V4T
,
29600 ARM_CPU_OPT ("arm7tdmi", NULL
, ARM_ARCH_V4T
,
29603 ARM_CPU_OPT ("arm7tdmi-s", NULL
, ARM_ARCH_V4T
,
29606 ARM_CPU_OPT ("arm8", NULL
, ARM_ARCH_V4
,
29609 ARM_CPU_OPT ("arm810", NULL
, ARM_ARCH_V4
,
29612 ARM_CPU_OPT ("strongarm", NULL
, ARM_ARCH_V4
,
29615 ARM_CPU_OPT ("strongarm1", NULL
, ARM_ARCH_V4
,
29618 ARM_CPU_OPT ("strongarm110", NULL
, ARM_ARCH_V4
,
29621 ARM_CPU_OPT ("strongarm1100", NULL
, ARM_ARCH_V4
,
29624 ARM_CPU_OPT ("strongarm1110", NULL
, ARM_ARCH_V4
,
29627 ARM_CPU_OPT ("arm9", NULL
, ARM_ARCH_V4T
,
29630 ARM_CPU_OPT ("arm920", "ARM920T", ARM_ARCH_V4T
,
29633 ARM_CPU_OPT ("arm920t", NULL
, ARM_ARCH_V4T
,
29636 ARM_CPU_OPT ("arm922t", NULL
, ARM_ARCH_V4T
,
29639 ARM_CPU_OPT ("arm940t", NULL
, ARM_ARCH_V4T
,
29642 ARM_CPU_OPT ("arm9tdmi", NULL
, ARM_ARCH_V4T
,
29645 ARM_CPU_OPT ("fa526", NULL
, ARM_ARCH_V4
,
29648 ARM_CPU_OPT ("fa626", NULL
, ARM_ARCH_V4
,
29652 /* For V5 or later processors we default to using VFP; but the user
29653 should really set the FPU type explicitly. */
29654 ARM_CPU_OPT ("arm9e-r0", NULL
, ARM_ARCH_V5TExP
,
29657 ARM_CPU_OPT ("arm9e", NULL
, ARM_ARCH_V5TE
,
29660 ARM_CPU_OPT ("arm926ej", "ARM926EJ-S", ARM_ARCH_V5TEJ
,
29663 ARM_CPU_OPT ("arm926ejs", "ARM926EJ-S", ARM_ARCH_V5TEJ
,
29666 ARM_CPU_OPT ("arm926ej-s", NULL
, ARM_ARCH_V5TEJ
,
29669 ARM_CPU_OPT ("arm946e-r0", NULL
, ARM_ARCH_V5TExP
,
29672 ARM_CPU_OPT ("arm946e", "ARM946E-S", ARM_ARCH_V5TE
,
29675 ARM_CPU_OPT ("arm946e-s", NULL
, ARM_ARCH_V5TE
,
29678 ARM_CPU_OPT ("arm966e-r0", NULL
, ARM_ARCH_V5TExP
,
29681 ARM_CPU_OPT ("arm966e", "ARM966E-S", ARM_ARCH_V5TE
,
29684 ARM_CPU_OPT ("arm966e-s", NULL
, ARM_ARCH_V5TE
,
29687 ARM_CPU_OPT ("arm968e-s", NULL
, ARM_ARCH_V5TE
,
29690 ARM_CPU_OPT ("arm10t", NULL
, ARM_ARCH_V5T
,
29693 ARM_CPU_OPT ("arm10tdmi", NULL
, ARM_ARCH_V5T
,
29696 ARM_CPU_OPT ("arm10e", NULL
, ARM_ARCH_V5TE
,
29699 ARM_CPU_OPT ("arm1020", "ARM1020E", ARM_ARCH_V5TE
,
29702 ARM_CPU_OPT ("arm1020t", NULL
, ARM_ARCH_V5T
,
29705 ARM_CPU_OPT ("arm1020e", NULL
, ARM_ARCH_V5TE
,
29708 ARM_CPU_OPT ("arm1022e", NULL
, ARM_ARCH_V5TE
,
29711 ARM_CPU_OPT ("arm1026ejs", "ARM1026EJ-S", ARM_ARCH_V5TEJ
,
29714 ARM_CPU_OPT ("arm1026ej-s", NULL
, ARM_ARCH_V5TEJ
,
29717 ARM_CPU_OPT ("fa606te", NULL
, ARM_ARCH_V5TE
,
29720 ARM_CPU_OPT ("fa616te", NULL
, ARM_ARCH_V5TE
,
29723 ARM_CPU_OPT ("fa626te", NULL
, ARM_ARCH_V5TE
,
29726 ARM_CPU_OPT ("fmp626", NULL
, ARM_ARCH_V5TE
,
29729 ARM_CPU_OPT ("fa726te", NULL
, ARM_ARCH_V5TE
,
29732 ARM_CPU_OPT ("arm1136js", "ARM1136J-S", ARM_ARCH_V6
,
29735 ARM_CPU_OPT ("arm1136j-s", NULL
, ARM_ARCH_V6
,
29738 ARM_CPU_OPT ("arm1136jfs", "ARM1136JF-S", ARM_ARCH_V6
,
29741 ARM_CPU_OPT ("arm1136jf-s", NULL
, ARM_ARCH_V6
,
29744 ARM_CPU_OPT ("mpcore", "MPCore", ARM_ARCH_V6K
,
29747 ARM_CPU_OPT ("mpcorenovfp", "MPCore", ARM_ARCH_V6K
,
29750 ARM_CPU_OPT ("arm1156t2-s", NULL
, ARM_ARCH_V6T2
,
29753 ARM_CPU_OPT ("arm1156t2f-s", NULL
, ARM_ARCH_V6T2
,
29756 ARM_CPU_OPT ("arm1176jz-s", NULL
, ARM_ARCH_V6KZ
,
29759 ARM_CPU_OPT ("arm1176jzf-s", NULL
, ARM_ARCH_V6KZ
,
29762 ARM_CPU_OPT ("cortex-a5", "Cortex-A5", ARM_ARCH_V7A
,
29763 ARM_FEATURE_CORE_LOW (ARM_EXT_MP
| ARM_EXT_SEC
),
29765 ARM_CPU_OPT ("cortex-a7", "Cortex-A7", ARM_ARCH_V7VE
,
29767 FPU_ARCH_NEON_VFP_V4
),
29768 ARM_CPU_OPT ("cortex-a8", "Cortex-A8", ARM_ARCH_V7A
,
29769 ARM_FEATURE_CORE_LOW (ARM_EXT_SEC
),
29770 ARM_FEATURE_COPROC (FPU_VFP_V3
| FPU_NEON_EXT_V1
)),
29771 ARM_CPU_OPT ("cortex-a9", "Cortex-A9", ARM_ARCH_V7A
,
29772 ARM_FEATURE_CORE_LOW (ARM_EXT_MP
| ARM_EXT_SEC
),
29773 ARM_FEATURE_COPROC (FPU_VFP_V3
| FPU_NEON_EXT_V1
)),
29774 ARM_CPU_OPT ("cortex-a12", "Cortex-A12", ARM_ARCH_V7VE
,
29776 FPU_ARCH_NEON_VFP_V4
),
29777 ARM_CPU_OPT ("cortex-a15", "Cortex-A15", ARM_ARCH_V7VE
,
29779 FPU_ARCH_NEON_VFP_V4
),
29780 ARM_CPU_OPT ("cortex-a17", "Cortex-A17", ARM_ARCH_V7VE
,
29782 FPU_ARCH_NEON_VFP_V4
),
29783 ARM_CPU_OPT ("cortex-a32", "Cortex-A32", ARM_ARCH_V8A
,
29784 ARM_FEATURE_COPROC (CRC_EXT_ARMV8
),
29785 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8
),
29786 ARM_CPU_OPT ("cortex-a35", "Cortex-A35", ARM_ARCH_V8A
,
29787 ARM_FEATURE_COPROC (CRC_EXT_ARMV8
),
29788 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8
),
29789 ARM_CPU_OPT ("cortex-a53", "Cortex-A53", ARM_ARCH_V8A
,
29790 ARM_FEATURE_COPROC (CRC_EXT_ARMV8
),
29791 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8
),
29792 ARM_CPU_OPT ("cortex-a55", "Cortex-A55", ARM_ARCH_V8_2A
,
29793 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST
),
29794 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD
),
29795 ARM_CPU_OPT ("cortex-a57", "Cortex-A57", ARM_ARCH_V8A
,
29796 ARM_FEATURE_COPROC (CRC_EXT_ARMV8
),
29797 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8
),
29798 ARM_CPU_OPT ("cortex-a72", "Cortex-A72", ARM_ARCH_V8A
,
29799 ARM_FEATURE_COPROC (CRC_EXT_ARMV8
),
29800 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8
),
29801 ARM_CPU_OPT ("cortex-a73", "Cortex-A73", ARM_ARCH_V8A
,
29802 ARM_FEATURE_COPROC (CRC_EXT_ARMV8
),
29803 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8
),
29804 ARM_CPU_OPT ("cortex-a75", "Cortex-A75", ARM_ARCH_V8_2A
,
29805 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST
),
29806 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD
),
29807 ARM_CPU_OPT ("cortex-a76", "Cortex-A76", ARM_ARCH_V8_2A
,
29808 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST
),
29809 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD
),
29810 ARM_CPU_OPT ("ares", "Ares", ARM_ARCH_V8_2A
,
29811 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST
),
29812 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD
),
29813 ARM_CPU_OPT ("cortex-r4", "Cortex-R4", ARM_ARCH_V7R
,
29816 ARM_CPU_OPT ("cortex-r4f", "Cortex-R4F", ARM_ARCH_V7R
,
29818 FPU_ARCH_VFP_V3D16
),
29819 ARM_CPU_OPT ("cortex-r5", "Cortex-R5", ARM_ARCH_V7R
,
29820 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV
),
29822 ARM_CPU_OPT ("cortex-r7", "Cortex-R7", ARM_ARCH_V7R
,
29823 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV
),
29824 FPU_ARCH_VFP_V3D16
),
29825 ARM_CPU_OPT ("cortex-r8", "Cortex-R8", ARM_ARCH_V7R
,
29826 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV
),
29827 FPU_ARCH_VFP_V3D16
),
29828 ARM_CPU_OPT ("cortex-r52", "Cortex-R52", ARM_ARCH_V8R
,
29829 ARM_FEATURE_COPROC (CRC_EXT_ARMV8
),
29830 FPU_ARCH_NEON_VFP_ARMV8
),
29831 ARM_CPU_OPT ("cortex-m33", "Cortex-M33", ARM_ARCH_V8M_MAIN
,
29832 ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP
| ARM_EXT_V6_DSP
),
29834 ARM_CPU_OPT ("cortex-m23", "Cortex-M23", ARM_ARCH_V8M_BASE
,
29837 ARM_CPU_OPT ("cortex-m7", "Cortex-M7", ARM_ARCH_V7EM
,
29840 ARM_CPU_OPT ("cortex-m4", "Cortex-M4", ARM_ARCH_V7EM
,
29843 ARM_CPU_OPT ("cortex-m3", "Cortex-M3", ARM_ARCH_V7M
,
29846 ARM_CPU_OPT ("cortex-m1", "Cortex-M1", ARM_ARCH_V6SM
,
29849 ARM_CPU_OPT ("cortex-m0", "Cortex-M0", ARM_ARCH_V6SM
,
29852 ARM_CPU_OPT ("cortex-m0plus", "Cortex-M0+", ARM_ARCH_V6SM
,
29855 ARM_CPU_OPT ("exynos-m1", "Samsung Exynos M1", ARM_ARCH_V8A
,
29856 ARM_FEATURE_COPROC (CRC_EXT_ARMV8
),
29857 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8
),
29858 ARM_CPU_OPT ("neoverse-n1", "Neoverse N1", ARM_ARCH_V8_2A
,
29859 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST
),
29860 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD
),
29861 /* ??? XSCALE is really an architecture. */
29862 ARM_CPU_OPT ("xscale", NULL
, ARM_ARCH_XSCALE
,
29866 /* ??? iwmmxt is not a processor. */
29867 ARM_CPU_OPT ("iwmmxt", NULL
, ARM_ARCH_IWMMXT
,
29870 ARM_CPU_OPT ("iwmmxt2", NULL
, ARM_ARCH_IWMMXT2
,
29873 ARM_CPU_OPT ("i80200", NULL
, ARM_ARCH_XSCALE
,
29878 ARM_CPU_OPT ("ep9312", "ARM920T",
29879 ARM_FEATURE_LOW (ARM_AEXT_V4T
, ARM_CEXT_MAVERICK
),
29880 ARM_ARCH_NONE
, FPU_ARCH_MAVERICK
),
29882 /* Marvell processors. */
29883 ARM_CPU_OPT ("marvell-pj4", NULL
, ARM_ARCH_V7A
,
29884 ARM_FEATURE_CORE_LOW (ARM_EXT_MP
| ARM_EXT_SEC
),
29885 FPU_ARCH_VFP_V3D16
),
29886 ARM_CPU_OPT ("marvell-whitney", NULL
, ARM_ARCH_V7A
,
29887 ARM_FEATURE_CORE_LOW (ARM_EXT_MP
| ARM_EXT_SEC
),
29888 FPU_ARCH_NEON_VFP_V4
),
29890 /* APM X-Gene family. */
29891 ARM_CPU_OPT ("xgene1", "APM X-Gene 1", ARM_ARCH_V8A
,
29893 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8
),
29894 ARM_CPU_OPT ("xgene2", "APM X-Gene 2", ARM_ARCH_V8A
,
29895 ARM_FEATURE_COPROC (CRC_EXT_ARMV8
),
29896 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8
),
29898 { NULL
, 0, ARM_ARCH_NONE
, ARM_ARCH_NONE
, ARM_ARCH_NONE
, NULL
}
29902 struct arm_ext_table
29906 const arm_feature_set merge
;
29907 const arm_feature_set clear
;
29910 struct arm_arch_option_table
29914 const arm_feature_set value
;
29915 const arm_feature_set default_fpu
;
29916 const struct arm_ext_table
* ext_table
;
29919 /* Used to add support for +E and +noE extension. */
29920 #define ARM_EXT(E, M, C) { E, sizeof (E) - 1, M, C }
29921 /* Used to add support for a +E extension. */
29922 #define ARM_ADD(E, M) { E, sizeof(E) - 1, M, ARM_ARCH_NONE }
29923 /* Used to add support for a +noE extension. */
29924 #define ARM_REMOVE(E, C) { E, sizeof(E) -1, ARM_ARCH_NONE, C }
29926 #define ALL_FP ARM_FEATURE (0, ARM_EXT2_FP16_INST | ARM_EXT2_FP16_FML, \
29927 ~0 & ~FPU_ENDIAN_PURE)
29929 static const struct arm_ext_table armv5te_ext_table
[] =
29931 ARM_EXT ("fp", FPU_ARCH_VFP_V2
, ALL_FP
),
29932 { NULL
, 0, ARM_ARCH_NONE
, ARM_ARCH_NONE
}
29935 static const struct arm_ext_table armv7_ext_table
[] =
29937 ARM_EXT ("fp", FPU_ARCH_VFP_V3D16
, ALL_FP
),
29938 { NULL
, 0, ARM_ARCH_NONE
, ARM_ARCH_NONE
}
29941 static const struct arm_ext_table armv7ve_ext_table
[] =
29943 ARM_EXT ("fp", FPU_ARCH_VFP_V4D16
, ALL_FP
),
29944 ARM_ADD ("vfpv3-d16", FPU_ARCH_VFP_V3D16
),
29945 ARM_ADD ("vfpv3", FPU_ARCH_VFP_V3
),
29946 ARM_ADD ("vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16
),
29947 ARM_ADD ("vfpv3-fp16", FPU_ARCH_VFP_V3_FP16
),
29948 ARM_ADD ("vfpv4-d16", FPU_ARCH_VFP_V4D16
), /* Alias for +fp. */
29949 ARM_ADD ("vfpv4", FPU_ARCH_VFP_V4
),
29951 ARM_EXT ("simd", FPU_ARCH_NEON_VFP_V4
,
29952 ARM_FEATURE_COPROC (FPU_NEON_EXT_V1
| FPU_NEON_EXT_FMA
)),
29954 /* Aliases for +simd. */
29955 ARM_ADD ("neon-vfpv4", FPU_ARCH_NEON_VFP_V4
),
29957 ARM_ADD ("neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1
),
29958 ARM_ADD ("neon-vfpv3", FPU_ARCH_VFP_V3_PLUS_NEON_V1
),
29959 ARM_ADD ("neon-fp16", FPU_ARCH_NEON_FP16
),
29961 { NULL
, 0, ARM_ARCH_NONE
, ARM_ARCH_NONE
}
29964 static const struct arm_ext_table armv7a_ext_table
[] =
29966 ARM_EXT ("fp", FPU_ARCH_VFP_V3D16
, ALL_FP
),
29967 ARM_ADD ("vfpv3-d16", FPU_ARCH_VFP_V3D16
), /* Alias for +fp. */
29968 ARM_ADD ("vfpv3", FPU_ARCH_VFP_V3
),
29969 ARM_ADD ("vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16
),
29970 ARM_ADD ("vfpv3-fp16", FPU_ARCH_VFP_V3_FP16
),
29971 ARM_ADD ("vfpv4-d16", FPU_ARCH_VFP_V4D16
),
29972 ARM_ADD ("vfpv4", FPU_ARCH_VFP_V4
),
29974 ARM_EXT ("simd", FPU_ARCH_VFP_V3_PLUS_NEON_V1
,
29975 ARM_FEATURE_COPROC (FPU_NEON_EXT_V1
| FPU_NEON_EXT_FMA
)),
29977 /* Aliases for +simd. */
29978 ARM_ADD ("neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1
),
29979 ARM_ADD ("neon-vfpv3", FPU_ARCH_VFP_V3_PLUS_NEON_V1
),
29981 ARM_ADD ("neon-fp16", FPU_ARCH_NEON_FP16
),
29982 ARM_ADD ("neon-vfpv4", FPU_ARCH_NEON_VFP_V4
),
29984 ARM_ADD ("mp", ARM_FEATURE_CORE_LOW (ARM_EXT_MP
)),
29985 ARM_ADD ("sec", ARM_FEATURE_CORE_LOW (ARM_EXT_SEC
)),
29986 { NULL
, 0, ARM_ARCH_NONE
, ARM_ARCH_NONE
}
29989 static const struct arm_ext_table armv7r_ext_table
[] =
29991 ARM_ADD ("fp.sp", FPU_ARCH_VFP_V3xD
),
29992 ARM_ADD ("vfpv3xd", FPU_ARCH_VFP_V3xD
), /* Alias for +fp.sp. */
29993 ARM_EXT ("fp", FPU_ARCH_VFP_V3D16
, ALL_FP
),
29994 ARM_ADD ("vfpv3-d16", FPU_ARCH_VFP_V3D16
), /* Alias for +fp. */
29995 ARM_ADD ("vfpv3xd-fp16", FPU_ARCH_VFP_V3xD_FP16
),
29996 ARM_ADD ("vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16
),
29997 ARM_EXT ("idiv", ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV
| ARM_EXT_DIV
),
29998 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV
| ARM_EXT_DIV
)),
29999 { NULL
, 0, ARM_ARCH_NONE
, ARM_ARCH_NONE
}
30002 static const struct arm_ext_table armv7em_ext_table
[] =
30004 ARM_EXT ("fp", FPU_ARCH_VFP_V4_SP_D16
, ALL_FP
),
30005 /* Alias for +fp, used to be known as fpv4-sp-d16. */
30006 ARM_ADD ("vfpv4-sp-d16", FPU_ARCH_VFP_V4_SP_D16
),
30007 ARM_ADD ("fpv5", FPU_ARCH_VFP_V5_SP_D16
),
30008 ARM_ADD ("fp.dp", FPU_ARCH_VFP_V5D16
),
30009 ARM_ADD ("fpv5-d16", FPU_ARCH_VFP_V5D16
),
30010 { NULL
, 0, ARM_ARCH_NONE
, ARM_ARCH_NONE
}
30013 static const struct arm_ext_table armv8a_ext_table
[] =
30015 ARM_ADD ("crc", ARCH_CRC_ARMV8
),
30016 ARM_ADD ("simd", FPU_ARCH_NEON_VFP_ARMV8
),
30017 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8
,
30018 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8
)),
30020 /* Armv8-a does not allow an FP implementation without SIMD, so the user
30021 should use the +simd option to turn on FP. */
30022 ARM_REMOVE ("fp", ALL_FP
),
30023 ARM_ADD ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB
)),
30024 ARM_ADD ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES
)),
30025 { NULL
, 0, ARM_ARCH_NONE
, ARM_ARCH_NONE
}
30029 static const struct arm_ext_table armv81a_ext_table
[] =
30031 ARM_ADD ("simd", FPU_ARCH_NEON_VFP_ARMV8_1
),
30032 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_1
,
30033 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8
)),
30035 /* Armv8-a does not allow an FP implementation without SIMD, so the user
30036 should use the +simd option to turn on FP. */
30037 ARM_REMOVE ("fp", ALL_FP
),
30038 ARM_ADD ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB
)),
30039 ARM_ADD ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES
)),
30040 { NULL
, 0, ARM_ARCH_NONE
, ARM_ARCH_NONE
}
30043 static const struct arm_ext_table armv82a_ext_table
[] =
30045 ARM_ADD ("simd", FPU_ARCH_NEON_VFP_ARMV8_1
),
30046 ARM_ADD ("fp16", FPU_ARCH_NEON_VFP_ARMV8_2_FP16
),
30047 ARM_ADD ("fp16fml", FPU_ARCH_NEON_VFP_ARMV8_2_FP16FML
),
30048 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_1
,
30049 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8
)),
30050 ARM_ADD ("dotprod", FPU_ARCH_DOTPROD_NEON_VFP_ARMV8
),
30052 /* Armv8-a does not allow an FP implementation without SIMD, so the user
30053 should use the +simd option to turn on FP. */
30054 ARM_REMOVE ("fp", ALL_FP
),
30055 ARM_ADD ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB
)),
30056 ARM_ADD ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES
)),
30057 { NULL
, 0, ARM_ARCH_NONE
, ARM_ARCH_NONE
}
30060 static const struct arm_ext_table armv84a_ext_table
[] =
30062 ARM_ADD ("simd", FPU_ARCH_DOTPROD_NEON_VFP_ARMV8
),
30063 ARM_ADD ("fp16", FPU_ARCH_NEON_VFP_ARMV8_4_FP16FML
),
30064 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_4
,
30065 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8
)),
30067 /* Armv8-a does not allow an FP implementation without SIMD, so the user
30068 should use the +simd option to turn on FP. */
30069 ARM_REMOVE ("fp", ALL_FP
),
30070 ARM_ADD ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB
)),
30071 ARM_ADD ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES
)),
30072 { NULL
, 0, ARM_ARCH_NONE
, ARM_ARCH_NONE
}
30075 static const struct arm_ext_table armv85a_ext_table
[] =
30077 ARM_ADD ("simd", FPU_ARCH_DOTPROD_NEON_VFP_ARMV8
),
30078 ARM_ADD ("fp16", FPU_ARCH_NEON_VFP_ARMV8_4_FP16FML
),
30079 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_4
,
30080 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8
)),
30082 /* Armv8-a does not allow an FP implementation without SIMD, so the user
30083 should use the +simd option to turn on FP. */
30084 ARM_REMOVE ("fp", ALL_FP
),
30085 { NULL
, 0, ARM_ARCH_NONE
, ARM_ARCH_NONE
}
30088 static const struct arm_ext_table armv8m_main_ext_table
[] =
30090 ARM_EXT ("dsp", ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP
| ARM_EXT_V6_DSP
),
30091 ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP
| ARM_EXT_V6_DSP
)),
30092 ARM_EXT ("fp", FPU_ARCH_VFP_V5_SP_D16
, ALL_FP
),
30093 ARM_ADD ("fp.dp", FPU_ARCH_VFP_V5D16
),
30094 { NULL
, 0, ARM_ARCH_NONE
, ARM_ARCH_NONE
}
30097 static const struct arm_ext_table armv8_1m_main_ext_table
[] =
30099 ARM_EXT ("dsp", ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP
| ARM_EXT_V6_DSP
),
30100 ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP
| ARM_EXT_V6_DSP
)),
30102 ARM_FEATURE (0, ARM_EXT2_FP16_INST
,
30103 FPU_VFP_V5_SP_D16
| FPU_VFP_EXT_FP16
| FPU_VFP_EXT_FMA
),
30106 ARM_FEATURE (0, ARM_EXT2_FP16_INST
,
30107 FPU_VFP_V5D16
| FPU_VFP_EXT_FP16
| FPU_VFP_EXT_FMA
)),
30108 ARM_EXT ("mve", ARM_FEATURE_COPROC (FPU_MVE
),
30109 ARM_FEATURE_COPROC (FPU_MVE
| FPU_MVE_FP
)),
30111 ARM_FEATURE (0, ARM_EXT2_FP16_INST
,
30112 FPU_MVE
| FPU_MVE_FP
| FPU_VFP_V5_SP_D16
|
30113 FPU_VFP_EXT_FP16
| FPU_VFP_EXT_FMA
)),
30114 { NULL
, 0, ARM_ARCH_NONE
, ARM_ARCH_NONE
}
30117 static const struct arm_ext_table armv8r_ext_table
[] =
30119 ARM_ADD ("crc", ARCH_CRC_ARMV8
),
30120 ARM_ADD ("simd", FPU_ARCH_NEON_VFP_ARMV8
),
30121 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8
,
30122 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8
)),
30123 ARM_REMOVE ("fp", ALL_FP
),
30124 ARM_ADD ("fp.sp", FPU_ARCH_VFP_V5_SP_D16
),
30125 { NULL
, 0, ARM_ARCH_NONE
, ARM_ARCH_NONE
}
30128 /* This list should, at a minimum, contain all the architecture names
30129 recognized by GCC. */
30130 #define ARM_ARCH_OPT(N, V, DF) { N, sizeof (N) - 1, V, DF, NULL }
30131 #define ARM_ARCH_OPT2(N, V, DF, ext) \
30132 { N, sizeof (N) - 1, V, DF, ext##_ext_table }
30134 static const struct arm_arch_option_table arm_archs
[] =
30136 ARM_ARCH_OPT ("all", ARM_ANY
, FPU_ARCH_FPA
),
30137 ARM_ARCH_OPT ("armv1", ARM_ARCH_V1
, FPU_ARCH_FPA
),
30138 ARM_ARCH_OPT ("armv2", ARM_ARCH_V2
, FPU_ARCH_FPA
),
30139 ARM_ARCH_OPT ("armv2a", ARM_ARCH_V2S
, FPU_ARCH_FPA
),
30140 ARM_ARCH_OPT ("armv2s", ARM_ARCH_V2S
, FPU_ARCH_FPA
),
30141 ARM_ARCH_OPT ("armv3", ARM_ARCH_V3
, FPU_ARCH_FPA
),
30142 ARM_ARCH_OPT ("armv3m", ARM_ARCH_V3M
, FPU_ARCH_FPA
),
30143 ARM_ARCH_OPT ("armv4", ARM_ARCH_V4
, FPU_ARCH_FPA
),
30144 ARM_ARCH_OPT ("armv4xm", ARM_ARCH_V4xM
, FPU_ARCH_FPA
),
30145 ARM_ARCH_OPT ("armv4t", ARM_ARCH_V4T
, FPU_ARCH_FPA
),
30146 ARM_ARCH_OPT ("armv4txm", ARM_ARCH_V4TxM
, FPU_ARCH_FPA
),
30147 ARM_ARCH_OPT ("armv5", ARM_ARCH_V5
, FPU_ARCH_VFP
),
30148 ARM_ARCH_OPT ("armv5t", ARM_ARCH_V5T
, FPU_ARCH_VFP
),
30149 ARM_ARCH_OPT ("armv5txm", ARM_ARCH_V5TxM
, FPU_ARCH_VFP
),
30150 ARM_ARCH_OPT2 ("armv5te", ARM_ARCH_V5TE
, FPU_ARCH_VFP
, armv5te
),
30151 ARM_ARCH_OPT2 ("armv5texp", ARM_ARCH_V5TExP
, FPU_ARCH_VFP
, armv5te
),
30152 ARM_ARCH_OPT2 ("armv5tej", ARM_ARCH_V5TEJ
, FPU_ARCH_VFP
, armv5te
),
30153 ARM_ARCH_OPT2 ("armv6", ARM_ARCH_V6
, FPU_ARCH_VFP
, armv5te
),
30154 ARM_ARCH_OPT2 ("armv6j", ARM_ARCH_V6
, FPU_ARCH_VFP
, armv5te
),
30155 ARM_ARCH_OPT2 ("armv6k", ARM_ARCH_V6K
, FPU_ARCH_VFP
, armv5te
),
30156 ARM_ARCH_OPT2 ("armv6z", ARM_ARCH_V6Z
, FPU_ARCH_VFP
, armv5te
),
30157 /* The official spelling of this variant is ARMv6KZ, the name "armv6zk" is
30158 kept to preserve existing behaviour. */
30159 ARM_ARCH_OPT2 ("armv6kz", ARM_ARCH_V6KZ
, FPU_ARCH_VFP
, armv5te
),
30160 ARM_ARCH_OPT2 ("armv6zk", ARM_ARCH_V6KZ
, FPU_ARCH_VFP
, armv5te
),
30161 ARM_ARCH_OPT2 ("armv6t2", ARM_ARCH_V6T2
, FPU_ARCH_VFP
, armv5te
),
30162 ARM_ARCH_OPT2 ("armv6kt2", ARM_ARCH_V6KT2
, FPU_ARCH_VFP
, armv5te
),
30163 ARM_ARCH_OPT2 ("armv6zt2", ARM_ARCH_V6ZT2
, FPU_ARCH_VFP
, armv5te
),
30164 /* The official spelling of this variant is ARMv6KZ, the name "armv6zkt2" is
30165 kept to preserve existing behaviour. */
30166 ARM_ARCH_OPT2 ("armv6kzt2", ARM_ARCH_V6KZT2
, FPU_ARCH_VFP
, armv5te
),
30167 ARM_ARCH_OPT2 ("armv6zkt2", ARM_ARCH_V6KZT2
, FPU_ARCH_VFP
, armv5te
),
30168 ARM_ARCH_OPT ("armv6-m", ARM_ARCH_V6M
, FPU_ARCH_VFP
),
30169 ARM_ARCH_OPT ("armv6s-m", ARM_ARCH_V6SM
, FPU_ARCH_VFP
),
30170 ARM_ARCH_OPT2 ("armv7", ARM_ARCH_V7
, FPU_ARCH_VFP
, armv7
),
30171 /* The official spelling of the ARMv7 profile variants is the dashed form.
30172 Accept the non-dashed form for compatibility with old toolchains. */
30173 ARM_ARCH_OPT2 ("armv7a", ARM_ARCH_V7A
, FPU_ARCH_VFP
, armv7a
),
30174 ARM_ARCH_OPT2 ("armv7ve", ARM_ARCH_V7VE
, FPU_ARCH_VFP
, armv7ve
),
30175 ARM_ARCH_OPT2 ("armv7r", ARM_ARCH_V7R
, FPU_ARCH_VFP
, armv7r
),
30176 ARM_ARCH_OPT ("armv7m", ARM_ARCH_V7M
, FPU_ARCH_VFP
),
30177 ARM_ARCH_OPT2 ("armv7-a", ARM_ARCH_V7A
, FPU_ARCH_VFP
, armv7a
),
30178 ARM_ARCH_OPT2 ("armv7-r", ARM_ARCH_V7R
, FPU_ARCH_VFP
, armv7r
),
30179 ARM_ARCH_OPT ("armv7-m", ARM_ARCH_V7M
, FPU_ARCH_VFP
),
30180 ARM_ARCH_OPT2 ("armv7e-m", ARM_ARCH_V7EM
, FPU_ARCH_VFP
, armv7em
),
30181 ARM_ARCH_OPT ("armv8-m.base", ARM_ARCH_V8M_BASE
, FPU_ARCH_VFP
),
30182 ARM_ARCH_OPT2 ("armv8-m.main", ARM_ARCH_V8M_MAIN
, FPU_ARCH_VFP
,
30184 ARM_ARCH_OPT2 ("armv8.1-m.main", ARM_ARCH_V8_1M_MAIN
, FPU_ARCH_VFP
,
30186 ARM_ARCH_OPT2 ("armv8-a", ARM_ARCH_V8A
, FPU_ARCH_VFP
, armv8a
),
30187 ARM_ARCH_OPT2 ("armv8.1-a", ARM_ARCH_V8_1A
, FPU_ARCH_VFP
, armv81a
),
30188 ARM_ARCH_OPT2 ("armv8.2-a", ARM_ARCH_V8_2A
, FPU_ARCH_VFP
, armv82a
),
30189 ARM_ARCH_OPT2 ("armv8.3-a", ARM_ARCH_V8_3A
, FPU_ARCH_VFP
, armv82a
),
30190 ARM_ARCH_OPT2 ("armv8-r", ARM_ARCH_V8R
, FPU_ARCH_VFP
, armv8r
),
30191 ARM_ARCH_OPT2 ("armv8.4-a", ARM_ARCH_V8_4A
, FPU_ARCH_VFP
, armv84a
),
30192 ARM_ARCH_OPT2 ("armv8.5-a", ARM_ARCH_V8_5A
, FPU_ARCH_VFP
, armv85a
),
30193 ARM_ARCH_OPT ("xscale", ARM_ARCH_XSCALE
, FPU_ARCH_VFP
),
30194 ARM_ARCH_OPT ("iwmmxt", ARM_ARCH_IWMMXT
, FPU_ARCH_VFP
),
30195 ARM_ARCH_OPT ("iwmmxt2", ARM_ARCH_IWMMXT2
, FPU_ARCH_VFP
),
30196 { NULL
, 0, ARM_ARCH_NONE
, ARM_ARCH_NONE
, NULL
}
30198 #undef ARM_ARCH_OPT
30200 /* ISA extensions in the co-processor and main instruction set space. */
30202 struct arm_option_extension_value_table
30206 const arm_feature_set merge_value
;
30207 const arm_feature_set clear_value
;
30208 /* List of architectures for which an extension is available. ARM_ARCH_NONE
30209 indicates that an extension is available for all architectures while
30210 ARM_ANY marks an empty entry. */
30211 const arm_feature_set allowed_archs
[2];
30214 /* The following table must be in alphabetical order with a NULL last entry. */
30216 #define ARM_EXT_OPT(N, M, C, AA) { N, sizeof (N) - 1, M, C, { AA, ARM_ANY } }
30217 #define ARM_EXT_OPT2(N, M, C, AA1, AA2) { N, sizeof (N) - 1, M, C, {AA1, AA2} }
30219 /* DEPRECATED: Refrain from using this table to add any new extensions, instead
30220 use the context sensitive approach using arm_ext_table's. */
30221 static const struct arm_option_extension_value_table arm_extensions
[] =
30223 ARM_EXT_OPT ("crc", ARCH_CRC_ARMV8
, ARM_FEATURE_COPROC (CRC_EXT_ARMV8
),
30224 ARM_FEATURE_CORE_LOW (ARM_EXT_V8
)),
30225 ARM_EXT_OPT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8
,
30226 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8
),
30227 ARM_FEATURE_CORE_LOW (ARM_EXT_V8
)),
30228 ARM_EXT_OPT ("dotprod", FPU_ARCH_DOTPROD_NEON_VFP_ARMV8
,
30229 ARM_FEATURE_COPROC (FPU_NEON_EXT_DOTPROD
),
30231 ARM_EXT_OPT ("dsp", ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP
| ARM_EXT_V6_DSP
),
30232 ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP
| ARM_EXT_V6_DSP
),
30233 ARM_FEATURE_CORE (ARM_EXT_V7M
, ARM_EXT2_V8M
)),
30234 ARM_EXT_OPT ("fp", FPU_ARCH_VFP_ARMV8
, ARM_FEATURE_COPROC (FPU_VFP_ARMV8
),
30235 ARM_FEATURE_CORE_LOW (ARM_EXT_V8
)),
30236 ARM_EXT_OPT ("fp16", ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST
),
30237 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST
),
30239 ARM_EXT_OPT ("fp16fml", ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST
30240 | ARM_EXT2_FP16_FML
),
30241 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST
30242 | ARM_EXT2_FP16_FML
),
30244 ARM_EXT_OPT2 ("idiv", ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV
| ARM_EXT_DIV
),
30245 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV
| ARM_EXT_DIV
),
30246 ARM_FEATURE_CORE_LOW (ARM_EXT_V7A
),
30247 ARM_FEATURE_CORE_LOW (ARM_EXT_V7R
)),
30248 /* Duplicate entry for the purpose of allowing ARMv7 to match in presence of
30249 Thumb divide instruction. Due to this having the same name as the
30250 previous entry, this will be ignored when doing command-line parsing and
30251 only considered by build attribute selection code. */
30252 ARM_EXT_OPT ("idiv", ARM_FEATURE_CORE_LOW (ARM_EXT_DIV
),
30253 ARM_FEATURE_CORE_LOW (ARM_EXT_DIV
),
30254 ARM_FEATURE_CORE_LOW (ARM_EXT_V7
)),
30255 ARM_EXT_OPT ("iwmmxt",ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT
),
30256 ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT
), ARM_ARCH_NONE
),
30257 ARM_EXT_OPT ("iwmmxt2", ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT2
),
30258 ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT2
), ARM_ARCH_NONE
),
30259 ARM_EXT_OPT ("maverick", ARM_FEATURE_COPROC (ARM_CEXT_MAVERICK
),
30260 ARM_FEATURE_COPROC (ARM_CEXT_MAVERICK
), ARM_ARCH_NONE
),
30261 ARM_EXT_OPT2 ("mp", ARM_FEATURE_CORE_LOW (ARM_EXT_MP
),
30262 ARM_FEATURE_CORE_LOW (ARM_EXT_MP
),
30263 ARM_FEATURE_CORE_LOW (ARM_EXT_V7A
),
30264 ARM_FEATURE_CORE_LOW (ARM_EXT_V7R
)),
30265 ARM_EXT_OPT ("os", ARM_FEATURE_CORE_LOW (ARM_EXT_OS
),
30266 ARM_FEATURE_CORE_LOW (ARM_EXT_OS
),
30267 ARM_FEATURE_CORE_LOW (ARM_EXT_V6M
)),
30268 ARM_EXT_OPT ("pan", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PAN
),
30269 ARM_FEATURE (ARM_EXT_V8
, ARM_EXT2_PAN
, 0),
30270 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8A
)),
30271 ARM_EXT_OPT ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES
),
30272 ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES
),
30274 ARM_EXT_OPT ("ras", ARM_FEATURE_CORE_HIGH (ARM_EXT2_RAS
),
30275 ARM_FEATURE (ARM_EXT_V8
, ARM_EXT2_RAS
, 0),
30276 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8A
)),
30277 ARM_EXT_OPT ("rdma", FPU_ARCH_NEON_VFP_ARMV8_1
,
30278 ARM_FEATURE_COPROC (FPU_NEON_ARMV8
| FPU_NEON_EXT_RDMA
),
30279 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8A
)),
30280 ARM_EXT_OPT ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB
),
30281 ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB
),
30283 ARM_EXT_OPT2 ("sec", ARM_FEATURE_CORE_LOW (ARM_EXT_SEC
),
30284 ARM_FEATURE_CORE_LOW (ARM_EXT_SEC
),
30285 ARM_FEATURE_CORE_LOW (ARM_EXT_V6K
),
30286 ARM_FEATURE_CORE_LOW (ARM_EXT_V7A
)),
30287 ARM_EXT_OPT ("simd", FPU_ARCH_NEON_VFP_ARMV8
,
30288 ARM_FEATURE_COPROC (FPU_NEON_ARMV8
),
30289 ARM_FEATURE_CORE_LOW (ARM_EXT_V8
)),
30290 ARM_EXT_OPT ("virt", ARM_FEATURE_CORE_LOW (ARM_EXT_VIRT
| ARM_EXT_ADIV
30292 ARM_FEATURE_CORE_LOW (ARM_EXT_VIRT
),
30293 ARM_FEATURE_CORE_LOW (ARM_EXT_V7A
)),
30294 ARM_EXT_OPT ("xscale",ARM_FEATURE_COPROC (ARM_CEXT_XSCALE
),
30295 ARM_FEATURE_COPROC (ARM_CEXT_XSCALE
), ARM_ARCH_NONE
),
30296 { NULL
, 0, ARM_ARCH_NONE
, ARM_ARCH_NONE
, { ARM_ARCH_NONE
, ARM_ARCH_NONE
} }
30300 /* ISA floating-point and Advanced SIMD extensions. */
30301 struct arm_option_fpu_value_table
30304 const arm_feature_set value
;
30307 /* This list should, at a minimum, contain all the fpu names
30308 recognized by GCC. */
30309 static const struct arm_option_fpu_value_table arm_fpus
[] =
30311 {"softfpa", FPU_NONE
},
30312 {"fpe", FPU_ARCH_FPE
},
30313 {"fpe2", FPU_ARCH_FPE
},
30314 {"fpe3", FPU_ARCH_FPA
}, /* Third release supports LFM/SFM. */
30315 {"fpa", FPU_ARCH_FPA
},
30316 {"fpa10", FPU_ARCH_FPA
},
30317 {"fpa11", FPU_ARCH_FPA
},
30318 {"arm7500fe", FPU_ARCH_FPA
},
30319 {"softvfp", FPU_ARCH_VFP
},
30320 {"softvfp+vfp", FPU_ARCH_VFP_V2
},
30321 {"vfp", FPU_ARCH_VFP_V2
},
30322 {"vfp9", FPU_ARCH_VFP_V2
},
30323 {"vfp3", FPU_ARCH_VFP_V3
}, /* Undocumented, use vfpv3. */
30324 {"vfp10", FPU_ARCH_VFP_V2
},
30325 {"vfp10-r0", FPU_ARCH_VFP_V1
},
30326 {"vfpxd", FPU_ARCH_VFP_V1xD
},
30327 {"vfpv2", FPU_ARCH_VFP_V2
},
30328 {"vfpv3", FPU_ARCH_VFP_V3
},
30329 {"vfpv3-fp16", FPU_ARCH_VFP_V3_FP16
},
30330 {"vfpv3-d16", FPU_ARCH_VFP_V3D16
},
30331 {"vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16
},
30332 {"vfpv3xd", FPU_ARCH_VFP_V3xD
},
30333 {"vfpv3xd-fp16", FPU_ARCH_VFP_V3xD_FP16
},
30334 {"arm1020t", FPU_ARCH_VFP_V1
},
30335 {"arm1020e", FPU_ARCH_VFP_V2
},
30336 {"arm1136jfs", FPU_ARCH_VFP_V2
}, /* Undocumented, use arm1136jf-s. */
30337 {"arm1136jf-s", FPU_ARCH_VFP_V2
},
30338 {"maverick", FPU_ARCH_MAVERICK
},
30339 {"neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1
},
30340 {"neon-vfpv3", FPU_ARCH_VFP_V3_PLUS_NEON_V1
},
30341 {"neon-fp16", FPU_ARCH_NEON_FP16
},
30342 {"vfpv4", FPU_ARCH_VFP_V4
},
30343 {"vfpv4-d16", FPU_ARCH_VFP_V4D16
},
30344 {"fpv4-sp-d16", FPU_ARCH_VFP_V4_SP_D16
},
30345 {"fpv5-d16", FPU_ARCH_VFP_V5D16
},
30346 {"fpv5-sp-d16", FPU_ARCH_VFP_V5_SP_D16
},
30347 {"neon-vfpv4", FPU_ARCH_NEON_VFP_V4
},
30348 {"fp-armv8", FPU_ARCH_VFP_ARMV8
},
30349 {"neon-fp-armv8", FPU_ARCH_NEON_VFP_ARMV8
},
30350 {"crypto-neon-fp-armv8",
30351 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8
},
30352 {"neon-fp-armv8.1", FPU_ARCH_NEON_VFP_ARMV8_1
},
30353 {"crypto-neon-fp-armv8.1",
30354 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_1
},
30355 {NULL
, ARM_ARCH_NONE
}
30358 struct arm_option_value_table
30364 static const struct arm_option_value_table arm_float_abis
[] =
30366 {"hard", ARM_FLOAT_ABI_HARD
},
30367 {"softfp", ARM_FLOAT_ABI_SOFTFP
},
30368 {"soft", ARM_FLOAT_ABI_SOFT
},
30373 /* We only know how to output GNU and ver 4/5 (AAELF) formats. */
30374 static const struct arm_option_value_table arm_eabis
[] =
30376 {"gnu", EF_ARM_EABI_UNKNOWN
},
30377 {"4", EF_ARM_EABI_VER4
},
30378 {"5", EF_ARM_EABI_VER5
},
30383 struct arm_long_option_table
30385 const char * option
; /* Substring to match. */
30386 const char * help
; /* Help information. */
30387 int (* func
) (const char * subopt
); /* Function to decode sub-option. */
30388 const char * deprecated
; /* If non-null, print this message. */
30392 arm_parse_extension (const char *str
, const arm_feature_set
*opt_set
,
30393 arm_feature_set
*ext_set
,
30394 const struct arm_ext_table
*ext_table
)
30396 /* We insist on extensions being specified in alphabetical order, and with
30397 extensions being added before being removed. We achieve this by having
30398 the global ARM_EXTENSIONS table in alphabetical order, and using the
30399 ADDING_VALUE variable to indicate whether we are adding an extension (1)
30400 or removing it (0) and only allowing it to change in the order
30402 const struct arm_option_extension_value_table
* opt
= NULL
;
30403 const arm_feature_set arm_any
= ARM_ANY
;
30404 int adding_value
= -1;
30406 while (str
!= NULL
&& *str
!= 0)
30413 as_bad (_("invalid architectural extension"));
30418 ext
= strchr (str
, '+');
30423 len
= strlen (str
);
30425 if (len
>= 2 && strncmp (str
, "no", 2) == 0)
30427 if (adding_value
!= 0)
30430 opt
= arm_extensions
;
30438 if (adding_value
== -1)
30441 opt
= arm_extensions
;
30443 else if (adding_value
!= 1)
30445 as_bad (_("must specify extensions to add before specifying "
30446 "those to remove"));
30453 as_bad (_("missing architectural extension"));
30457 gas_assert (adding_value
!= -1);
30458 gas_assert (opt
!= NULL
);
30460 if (ext_table
!= NULL
)
30462 const struct arm_ext_table
* ext_opt
= ext_table
;
30463 bfd_boolean found
= FALSE
;
30464 for (; ext_opt
->name
!= NULL
; ext_opt
++)
30465 if (ext_opt
->name_len
== len
30466 && strncmp (ext_opt
->name
, str
, len
) == 0)
30470 if (ARM_FEATURE_ZERO (ext_opt
->merge
))
30471 /* TODO: Option not supported. When we remove the
30472 legacy table this case should error out. */
30475 ARM_MERGE_FEATURE_SETS (*ext_set
, *ext_set
, ext_opt
->merge
);
30479 if (ARM_FEATURE_ZERO (ext_opt
->clear
))
30480 /* TODO: Option not supported. When we remove the
30481 legacy table this case should error out. */
30483 ARM_CLEAR_FEATURE (*ext_set
, *ext_set
, ext_opt
->clear
);
30495 /* Scan over the options table trying to find an exact match. */
30496 for (; opt
->name
!= NULL
; opt
++)
30497 if (opt
->name_len
== len
&& strncmp (opt
->name
, str
, len
) == 0)
30499 int i
, nb_allowed_archs
=
30500 sizeof (opt
->allowed_archs
) / sizeof (opt
->allowed_archs
[0]);
30501 /* Check we can apply the extension to this architecture. */
30502 for (i
= 0; i
< nb_allowed_archs
; i
++)
30505 if (ARM_FEATURE_EQUAL (opt
->allowed_archs
[i
], arm_any
))
30507 if (ARM_FSET_CPU_SUBSET (opt
->allowed_archs
[i
], *opt_set
))
30510 if (i
== nb_allowed_archs
)
30512 as_bad (_("extension does not apply to the base architecture"));
30516 /* Add or remove the extension. */
30518 ARM_MERGE_FEATURE_SETS (*ext_set
, *ext_set
, opt
->merge_value
);
30520 ARM_CLEAR_FEATURE (*ext_set
, *ext_set
, opt
->clear_value
);
30522 /* Allowing Thumb division instructions for ARMv7 in autodetection
30523 rely on this break so that duplicate extensions (extensions
30524 with the same name as a previous extension in the list) are not
30525 considered for command-line parsing. */
30529 if (opt
->name
== NULL
)
30531 /* Did we fail to find an extension because it wasn't specified in
30532 alphabetical order, or because it does not exist? */
30534 for (opt
= arm_extensions
; opt
->name
!= NULL
; opt
++)
30535 if (opt
->name_len
== len
&& strncmp (opt
->name
, str
, len
) == 0)
30538 if (opt
->name
== NULL
)
30539 as_bad (_("unknown architectural extension `%s'"), str
);
30541 as_bad (_("architectural extensions must be specified in "
30542 "alphabetical order"));
30548 /* We should skip the extension we've just matched the next time
30560 arm_parse_cpu (const char *str
)
30562 const struct arm_cpu_option_table
*opt
;
30563 const char *ext
= strchr (str
, '+');
30569 len
= strlen (str
);
30573 as_bad (_("missing cpu name `%s'"), str
);
30577 for (opt
= arm_cpus
; opt
->name
!= NULL
; opt
++)
30578 if (opt
->name_len
== len
&& strncmp (opt
->name
, str
, len
) == 0)
30580 mcpu_cpu_opt
= &opt
->value
;
30581 if (mcpu_ext_opt
== NULL
)
30582 mcpu_ext_opt
= XNEW (arm_feature_set
);
30583 *mcpu_ext_opt
= opt
->ext
;
30584 mcpu_fpu_opt
= &opt
->default_fpu
;
30585 if (opt
->canonical_name
)
30587 gas_assert (sizeof selected_cpu_name
> strlen (opt
->canonical_name
));
30588 strcpy (selected_cpu_name
, opt
->canonical_name
);
30594 if (len
>= sizeof selected_cpu_name
)
30595 len
= (sizeof selected_cpu_name
) - 1;
30597 for (i
= 0; i
< len
; i
++)
30598 selected_cpu_name
[i
] = TOUPPER (opt
->name
[i
]);
30599 selected_cpu_name
[i
] = 0;
30603 return arm_parse_extension (ext
, mcpu_cpu_opt
, mcpu_ext_opt
, NULL
);
30608 as_bad (_("unknown cpu `%s'"), str
);
30613 arm_parse_arch (const char *str
)
30615 const struct arm_arch_option_table
*opt
;
30616 const char *ext
= strchr (str
, '+');
30622 len
= strlen (str
);
30626 as_bad (_("missing architecture name `%s'"), str
);
30630 for (opt
= arm_archs
; opt
->name
!= NULL
; opt
++)
30631 if (opt
->name_len
== len
&& strncmp (opt
->name
, str
, len
) == 0)
30633 march_cpu_opt
= &opt
->value
;
30634 if (march_ext_opt
== NULL
)
30635 march_ext_opt
= XNEW (arm_feature_set
);
30636 *march_ext_opt
= arm_arch_none
;
30637 march_fpu_opt
= &opt
->default_fpu
;
30638 strcpy (selected_cpu_name
, opt
->name
);
30641 return arm_parse_extension (ext
, march_cpu_opt
, march_ext_opt
,
30647 as_bad (_("unknown architecture `%s'\n"), str
);
30652 arm_parse_fpu (const char * str
)
30654 const struct arm_option_fpu_value_table
* opt
;
30656 for (opt
= arm_fpus
; opt
->name
!= NULL
; opt
++)
30657 if (streq (opt
->name
, str
))
30659 mfpu_opt
= &opt
->value
;
30663 as_bad (_("unknown floating point format `%s'\n"), str
);
30668 arm_parse_float_abi (const char * str
)
30670 const struct arm_option_value_table
* opt
;
30672 for (opt
= arm_float_abis
; opt
->name
!= NULL
; opt
++)
30673 if (streq (opt
->name
, str
))
30675 mfloat_abi_opt
= opt
->value
;
30679 as_bad (_("unknown floating point abi `%s'\n"), str
);
30685 arm_parse_eabi (const char * str
)
30687 const struct arm_option_value_table
*opt
;
30689 for (opt
= arm_eabis
; opt
->name
!= NULL
; opt
++)
30690 if (streq (opt
->name
, str
))
30692 meabi_flags
= opt
->value
;
30695 as_bad (_("unknown EABI `%s'\n"), str
);
30701 arm_parse_it_mode (const char * str
)
30703 bfd_boolean ret
= TRUE
;
30705 if (streq ("arm", str
))
30706 implicit_it_mode
= IMPLICIT_IT_MODE_ARM
;
30707 else if (streq ("thumb", str
))
30708 implicit_it_mode
= IMPLICIT_IT_MODE_THUMB
;
30709 else if (streq ("always", str
))
30710 implicit_it_mode
= IMPLICIT_IT_MODE_ALWAYS
;
30711 else if (streq ("never", str
))
30712 implicit_it_mode
= IMPLICIT_IT_MODE_NEVER
;
30715 as_bad (_("unknown implicit IT mode `%s', should be "\
30716 "arm, thumb, always, or never."), str
);
30724 arm_ccs_mode (const char * unused ATTRIBUTE_UNUSED
)
30726 codecomposer_syntax
= TRUE
;
30727 arm_comment_chars
[0] = ';';
30728 arm_line_separator_chars
[0] = 0;
30732 struct arm_long_option_table arm_long_opts
[] =
30734 {"mcpu=", N_("<cpu name>\t assemble for CPU <cpu name>"),
30735 arm_parse_cpu
, NULL
},
30736 {"march=", N_("<arch name>\t assemble for architecture <arch name>"),
30737 arm_parse_arch
, NULL
},
30738 {"mfpu=", N_("<fpu name>\t assemble for FPU architecture <fpu name>"),
30739 arm_parse_fpu
, NULL
},
30740 {"mfloat-abi=", N_("<abi>\t assemble for floating point ABI <abi>"),
30741 arm_parse_float_abi
, NULL
},
30743 {"meabi=", N_("<ver>\t\t assemble for eabi version <ver>"),
30744 arm_parse_eabi
, NULL
},
30746 {"mimplicit-it=", N_("<mode>\t controls implicit insertion of IT instructions"),
30747 arm_parse_it_mode
, NULL
},
30748 {"mccs", N_("\t\t\t TI CodeComposer Studio syntax compatibility mode"),
30749 arm_ccs_mode
, NULL
},
30750 {NULL
, NULL
, 0, NULL
}
30754 md_parse_option (int c
, const char * arg
)
30756 struct arm_option_table
*opt
;
30757 const struct arm_legacy_option_table
*fopt
;
30758 struct arm_long_option_table
*lopt
;
30764 target_big_endian
= 1;
30770 target_big_endian
= 0;
30774 case OPTION_FIX_V4BX
:
30782 #endif /* OBJ_ELF */
30785 /* Listing option. Just ignore these, we don't support additional
30790 for (opt
= arm_opts
; opt
->option
!= NULL
; opt
++)
30792 if (c
== opt
->option
[0]
30793 && ((arg
== NULL
&& opt
->option
[1] == 0)
30794 || streq (arg
, opt
->option
+ 1)))
30796 /* If the option is deprecated, tell the user. */
30797 if (warn_on_deprecated
&& opt
->deprecated
!= NULL
)
30798 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c
,
30799 arg
? arg
: "", _(opt
->deprecated
));
30801 if (opt
->var
!= NULL
)
30802 *opt
->var
= opt
->value
;
30808 for (fopt
= arm_legacy_opts
; fopt
->option
!= NULL
; fopt
++)
30810 if (c
== fopt
->option
[0]
30811 && ((arg
== NULL
&& fopt
->option
[1] == 0)
30812 || streq (arg
, fopt
->option
+ 1)))
30814 /* If the option is deprecated, tell the user. */
30815 if (warn_on_deprecated
&& fopt
->deprecated
!= NULL
)
30816 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c
,
30817 arg
? arg
: "", _(fopt
->deprecated
));
30819 if (fopt
->var
!= NULL
)
30820 *fopt
->var
= &fopt
->value
;
30826 for (lopt
= arm_long_opts
; lopt
->option
!= NULL
; lopt
++)
30828 /* These options are expected to have an argument. */
30829 if (c
== lopt
->option
[0]
30831 && strncmp (arg
, lopt
->option
+ 1,
30832 strlen (lopt
->option
+ 1)) == 0)
30834 /* If the option is deprecated, tell the user. */
30835 if (warn_on_deprecated
&& lopt
->deprecated
!= NULL
)
30836 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c
, arg
,
30837 _(lopt
->deprecated
));
30839 /* Call the sup-option parser. */
30840 return lopt
->func (arg
+ strlen (lopt
->option
) - 1);
30851 md_show_usage (FILE * fp
)
30853 struct arm_option_table
*opt
;
30854 struct arm_long_option_table
*lopt
;
30856 fprintf (fp
, _(" ARM-specific assembler options:\n"));
30858 for (opt
= arm_opts
; opt
->option
!= NULL
; opt
++)
30859 if (opt
->help
!= NULL
)
30860 fprintf (fp
, " -%-23s%s\n", opt
->option
, _(opt
->help
));
30862 for (lopt
= arm_long_opts
; lopt
->option
!= NULL
; lopt
++)
30863 if (lopt
->help
!= NULL
)
30864 fprintf (fp
, " -%s%s\n", lopt
->option
, _(lopt
->help
));
30868 -EB assemble code for a big-endian cpu\n"));
30873 -EL assemble code for a little-endian cpu\n"));
30877 --fix-v4bx Allow BX in ARMv4 code\n"));
30881 --fdpic generate an FDPIC object file\n"));
30882 #endif /* OBJ_ELF */
30890 arm_feature_set flags
;
30891 } cpu_arch_ver_table
;
30893 /* Mapping from CPU features to EABI CPU arch values. Table must be sorted
30894 chronologically for architectures, with an exception for ARMv6-M and
30895 ARMv6S-M due to legacy reasons. No new architecture should have a
30896 special case. This allows for build attribute selection results to be
30897 stable when new architectures are added. */
30898 static const cpu_arch_ver_table cpu_arch_ver
[] =
30900 {TAG_CPU_ARCH_PRE_V4
, ARM_ARCH_V1
},
30901 {TAG_CPU_ARCH_PRE_V4
, ARM_ARCH_V2
},
30902 {TAG_CPU_ARCH_PRE_V4
, ARM_ARCH_V2S
},
30903 {TAG_CPU_ARCH_PRE_V4
, ARM_ARCH_V3
},
30904 {TAG_CPU_ARCH_PRE_V4
, ARM_ARCH_V3M
},
30905 {TAG_CPU_ARCH_V4
, ARM_ARCH_V4xM
},
30906 {TAG_CPU_ARCH_V4
, ARM_ARCH_V4
},
30907 {TAG_CPU_ARCH_V4T
, ARM_ARCH_V4TxM
},
30908 {TAG_CPU_ARCH_V4T
, ARM_ARCH_V4T
},
30909 {TAG_CPU_ARCH_V5T
, ARM_ARCH_V5xM
},
30910 {TAG_CPU_ARCH_V5T
, ARM_ARCH_V5
},
30911 {TAG_CPU_ARCH_V5T
, ARM_ARCH_V5TxM
},
30912 {TAG_CPU_ARCH_V5T
, ARM_ARCH_V5T
},
30913 {TAG_CPU_ARCH_V5TE
, ARM_ARCH_V5TExP
},
30914 {TAG_CPU_ARCH_V5TE
, ARM_ARCH_V5TE
},
30915 {TAG_CPU_ARCH_V5TEJ
, ARM_ARCH_V5TEJ
},
30916 {TAG_CPU_ARCH_V6
, ARM_ARCH_V6
},
30917 {TAG_CPU_ARCH_V6KZ
, ARM_ARCH_V6Z
},
30918 {TAG_CPU_ARCH_V6KZ
, ARM_ARCH_V6KZ
},
30919 {TAG_CPU_ARCH_V6K
, ARM_ARCH_V6K
},
30920 {TAG_CPU_ARCH_V6T2
, ARM_ARCH_V6T2
},
30921 {TAG_CPU_ARCH_V6T2
, ARM_ARCH_V6KT2
},
30922 {TAG_CPU_ARCH_V6T2
, ARM_ARCH_V6ZT2
},
30923 {TAG_CPU_ARCH_V6T2
, ARM_ARCH_V6KZT2
},
30925 /* When assembling a file with only ARMv6-M or ARMv6S-M instruction, GNU as
30926 always selected build attributes to match those of ARMv6-M
30927 (resp. ARMv6S-M). However, due to these architectures being a strict
30928 subset of ARMv7-M in terms of instructions available, ARMv7-M attributes
30929 would be selected when fully respecting chronology of architectures.
30930 It is thus necessary to make a special case of ARMv6-M and ARMv6S-M and
30931 move them before ARMv7 architectures. */
30932 {TAG_CPU_ARCH_V6_M
, ARM_ARCH_V6M
},
30933 {TAG_CPU_ARCH_V6S_M
, ARM_ARCH_V6SM
},
30935 {TAG_CPU_ARCH_V7
, ARM_ARCH_V7
},
30936 {TAG_CPU_ARCH_V7
, ARM_ARCH_V7A
},
30937 {TAG_CPU_ARCH_V7
, ARM_ARCH_V7R
},
30938 {TAG_CPU_ARCH_V7
, ARM_ARCH_V7M
},
30939 {TAG_CPU_ARCH_V7
, ARM_ARCH_V7VE
},
30940 {TAG_CPU_ARCH_V7E_M
, ARM_ARCH_V7EM
},
30941 {TAG_CPU_ARCH_V8
, ARM_ARCH_V8A
},
30942 {TAG_CPU_ARCH_V8
, ARM_ARCH_V8_1A
},
30943 {TAG_CPU_ARCH_V8
, ARM_ARCH_V8_2A
},
30944 {TAG_CPU_ARCH_V8
, ARM_ARCH_V8_3A
},
30945 {TAG_CPU_ARCH_V8M_BASE
, ARM_ARCH_V8M_BASE
},
30946 {TAG_CPU_ARCH_V8M_MAIN
, ARM_ARCH_V8M_MAIN
},
30947 {TAG_CPU_ARCH_V8R
, ARM_ARCH_V8R
},
30948 {TAG_CPU_ARCH_V8
, ARM_ARCH_V8_4A
},
30949 {TAG_CPU_ARCH_V8
, ARM_ARCH_V8_5A
},
30950 {TAG_CPU_ARCH_V8_1M_MAIN
, ARM_ARCH_V8_1M_MAIN
},
30951 {-1, ARM_ARCH_NONE
}
30954 /* Set an attribute if it has not already been set by the user. */
30957 aeabi_set_attribute_int (int tag
, int value
)
30960 || tag
>= NUM_KNOWN_OBJ_ATTRIBUTES
30961 || !attributes_set_explicitly
[tag
])
30962 bfd_elf_add_proc_attr_int (stdoutput
, tag
, value
);
30966 aeabi_set_attribute_string (int tag
, const char *value
)
30969 || tag
>= NUM_KNOWN_OBJ_ATTRIBUTES
30970 || !attributes_set_explicitly
[tag
])
30971 bfd_elf_add_proc_attr_string (stdoutput
, tag
, value
);
30974 /* Return whether features in the *NEEDED feature set are available via
30975 extensions for the architecture whose feature set is *ARCH_FSET. */
30978 have_ext_for_needed_feat_p (const arm_feature_set
*arch_fset
,
30979 const arm_feature_set
*needed
)
30981 int i
, nb_allowed_archs
;
30982 arm_feature_set ext_fset
;
30983 const struct arm_option_extension_value_table
*opt
;
30985 ext_fset
= arm_arch_none
;
30986 for (opt
= arm_extensions
; opt
->name
!= NULL
; opt
++)
30988 /* Extension does not provide any feature we need. */
30989 if (!ARM_CPU_HAS_FEATURE (*needed
, opt
->merge_value
))
30993 sizeof (opt
->allowed_archs
) / sizeof (opt
->allowed_archs
[0]);
30994 for (i
= 0; i
< nb_allowed_archs
; i
++)
30997 if (ARM_FEATURE_EQUAL (opt
->allowed_archs
[i
], arm_arch_any
))
31000 /* Extension is available, add it. */
31001 if (ARM_FSET_CPU_SUBSET (opt
->allowed_archs
[i
], *arch_fset
))
31002 ARM_MERGE_FEATURE_SETS (ext_fset
, ext_fset
, opt
->merge_value
);
31006 /* Can we enable all features in *needed? */
31007 return ARM_FSET_CPU_SUBSET (*needed
, ext_fset
);
31010 /* Select value for Tag_CPU_arch and Tag_CPU_arch_profile build attributes for
31011 a given architecture feature set *ARCH_EXT_FSET including extension feature
31012 set *EXT_FSET. Selection logic used depend on EXACT_MATCH:
31013 - if true, check for an exact match of the architecture modulo extensions;
31014 - otherwise, select build attribute value of the first superset
31015 architecture released so that results remains stable when new architectures
31017 For -march/-mcpu=all the build attribute value of the most featureful
31018 architecture is returned. Tag_CPU_arch_profile result is returned in
31022 get_aeabi_cpu_arch_from_fset (const arm_feature_set
*arch_ext_fset
,
31023 const arm_feature_set
*ext_fset
,
31024 char *profile
, int exact_match
)
31026 arm_feature_set arch_fset
;
31027 const cpu_arch_ver_table
*p_ver
, *p_ver_ret
= NULL
;
31029 /* Select most featureful architecture with all its extensions if building
31030 for -march=all as the feature sets used to set build attributes. */
31031 if (ARM_FEATURE_EQUAL (*arch_ext_fset
, arm_arch_any
))
31033 /* Force revisiting of decision for each new architecture. */
31034 gas_assert (MAX_TAG_CPU_ARCH
<= TAG_CPU_ARCH_V8_1M_MAIN
);
31036 return TAG_CPU_ARCH_V8
;
31039 ARM_CLEAR_FEATURE (arch_fset
, *arch_ext_fset
, *ext_fset
);
31041 for (p_ver
= cpu_arch_ver
; p_ver
->val
!= -1; p_ver
++)
31043 arm_feature_set known_arch_fset
;
31045 ARM_CLEAR_FEATURE (known_arch_fset
, p_ver
->flags
, fpu_any
);
31048 /* Base architecture match user-specified architecture and
31049 extensions, eg. ARMv6S-M matching -march=armv6-m+os. */
31050 if (ARM_FEATURE_EQUAL (*arch_ext_fset
, known_arch_fset
))
31055 /* Base architecture match user-specified architecture only
31056 (eg. ARMv6-M in the same case as above). Record it in case we
31057 find a match with above condition. */
31058 else if (p_ver_ret
== NULL
31059 && ARM_FEATURE_EQUAL (arch_fset
, known_arch_fset
))
31065 /* Architecture has all features wanted. */
31066 if (ARM_FSET_CPU_SUBSET (arch_fset
, known_arch_fset
))
31068 arm_feature_set added_fset
;
31070 /* Compute features added by this architecture over the one
31071 recorded in p_ver_ret. */
31072 if (p_ver_ret
!= NULL
)
31073 ARM_CLEAR_FEATURE (added_fset
, known_arch_fset
,
31075 /* First architecture that match incl. with extensions, or the
31076 only difference in features over the recorded match is
31077 features that were optional and are now mandatory. */
31078 if (p_ver_ret
== NULL
31079 || ARM_FSET_CPU_SUBSET (added_fset
, arch_fset
))
31085 else if (p_ver_ret
== NULL
)
31087 arm_feature_set needed_ext_fset
;
31089 ARM_CLEAR_FEATURE (needed_ext_fset
, arch_fset
, known_arch_fset
);
31091 /* Architecture has all features needed when using some
31092 extensions. Record it and continue searching in case there
31093 exist an architecture providing all needed features without
31094 the need for extensions (eg. ARMv6S-M Vs ARMv6-M with
31096 if (have_ext_for_needed_feat_p (&known_arch_fset
,
31103 if (p_ver_ret
== NULL
)
31107 /* Tag_CPU_arch_profile. */
31108 if (ARM_CPU_HAS_FEATURE (p_ver_ret
->flags
, arm_ext_v7a
)
31109 || ARM_CPU_HAS_FEATURE (p_ver_ret
->flags
, arm_ext_v8
)
31110 || (ARM_CPU_HAS_FEATURE (p_ver_ret
->flags
, arm_ext_atomics
)
31111 && !ARM_CPU_HAS_FEATURE (p_ver_ret
->flags
, arm_ext_v8m_m_only
)))
31113 else if (ARM_CPU_HAS_FEATURE (p_ver_ret
->flags
, arm_ext_v7r
))
31115 else if (ARM_CPU_HAS_FEATURE (p_ver_ret
->flags
, arm_ext_m
))
31119 return p_ver_ret
->val
;
31122 /* Set the public EABI object attributes. */
31125 aeabi_set_public_attributes (void)
31127 char profile
= '\0';
31130 int fp16_optional
= 0;
31131 int skip_exact_match
= 0;
31132 arm_feature_set flags
, flags_arch
, flags_ext
;
31134 /* Autodetection mode, choose the architecture based the instructions
31136 if (no_cpu_selected ())
31138 ARM_MERGE_FEATURE_SETS (flags
, arm_arch_used
, thumb_arch_used
);
31140 if (ARM_CPU_HAS_FEATURE (arm_arch_used
, arm_arch_any
))
31141 ARM_MERGE_FEATURE_SETS (flags
, flags
, arm_ext_v1
);
31143 if (ARM_CPU_HAS_FEATURE (thumb_arch_used
, arm_arch_any
))
31144 ARM_MERGE_FEATURE_SETS (flags
, flags
, arm_ext_v4t
);
31146 /* Code run during relaxation relies on selected_cpu being set. */
31147 ARM_CLEAR_FEATURE (flags_arch
, flags
, fpu_any
);
31148 flags_ext
= arm_arch_none
;
31149 ARM_CLEAR_FEATURE (selected_arch
, flags_arch
, flags_ext
);
31150 selected_ext
= flags_ext
;
31151 selected_cpu
= flags
;
31153 /* Otherwise, choose the architecture based on the capabilities of the
31157 ARM_MERGE_FEATURE_SETS (flags_arch
, selected_arch
, selected_ext
);
31158 ARM_CLEAR_FEATURE (flags_arch
, flags_arch
, fpu_any
);
31159 flags_ext
= selected_ext
;
31160 flags
= selected_cpu
;
31162 ARM_MERGE_FEATURE_SETS (flags
, flags
, selected_fpu
);
31164 /* Allow the user to override the reported architecture. */
31165 if (!ARM_FEATURE_ZERO (selected_object_arch
))
31167 ARM_CLEAR_FEATURE (flags_arch
, selected_object_arch
, fpu_any
);
31168 flags_ext
= arm_arch_none
;
31171 skip_exact_match
= ARM_FEATURE_EQUAL (selected_cpu
, arm_arch_any
);
31173 /* When this function is run again after relaxation has happened there is no
31174 way to determine whether an architecture or CPU was specified by the user:
31175 - selected_cpu is set above for relaxation to work;
31176 - march_cpu_opt is not set if only -mcpu or .cpu is used;
31177 - mcpu_cpu_opt is set to arm_arch_any for autodetection.
31178 Therefore, if not in -march=all case we first try an exact match and fall
31179 back to autodetection. */
31180 if (!skip_exact_match
)
31181 arch
= get_aeabi_cpu_arch_from_fset (&flags_arch
, &flags_ext
, &profile
, 1);
31183 arch
= get_aeabi_cpu_arch_from_fset (&flags_arch
, &flags_ext
, &profile
, 0);
31185 as_bad (_("no architecture contains all the instructions used\n"));
31187 /* Tag_CPU_name. */
31188 if (selected_cpu_name
[0])
31192 q
= selected_cpu_name
;
31193 if (strncmp (q
, "armv", 4) == 0)
31198 for (i
= 0; q
[i
]; i
++)
31199 q
[i
] = TOUPPER (q
[i
]);
31201 aeabi_set_attribute_string (Tag_CPU_name
, q
);
31204 /* Tag_CPU_arch. */
31205 aeabi_set_attribute_int (Tag_CPU_arch
, arch
);
31207 /* Tag_CPU_arch_profile. */
31208 if (profile
!= '\0')
31209 aeabi_set_attribute_int (Tag_CPU_arch_profile
, profile
);
31211 /* Tag_DSP_extension. */
31212 if (ARM_CPU_HAS_FEATURE (selected_ext
, arm_ext_dsp
))
31213 aeabi_set_attribute_int (Tag_DSP_extension
, 1);
31215 ARM_CLEAR_FEATURE (flags_arch
, flags
, fpu_any
);
31216 /* Tag_ARM_ISA_use. */
31217 if (ARM_CPU_HAS_FEATURE (flags
, arm_ext_v1
)
31218 || ARM_FEATURE_ZERO (flags_arch
))
31219 aeabi_set_attribute_int (Tag_ARM_ISA_use
, 1);
31221 /* Tag_THUMB_ISA_use. */
31222 if (ARM_CPU_HAS_FEATURE (flags
, arm_ext_v4t
)
31223 || ARM_FEATURE_ZERO (flags_arch
))
31227 if (!ARM_CPU_HAS_FEATURE (flags
, arm_ext_v8
)
31228 && ARM_CPU_HAS_FEATURE (flags
, arm_ext_v8m_m_only
))
31230 else if (ARM_CPU_HAS_FEATURE (flags
, arm_arch_t2
))
31234 aeabi_set_attribute_int (Tag_THUMB_ISA_use
, thumb_isa_use
);
31237 /* Tag_VFP_arch. */
31238 if (ARM_CPU_HAS_FEATURE (flags
, fpu_vfp_ext_armv8xd
))
31239 aeabi_set_attribute_int (Tag_VFP_arch
,
31240 ARM_CPU_HAS_FEATURE (flags
, fpu_vfp_ext_d32
)
31242 else if (ARM_CPU_HAS_FEATURE (flags
, fpu_vfp_ext_fma
))
31243 aeabi_set_attribute_int (Tag_VFP_arch
,
31244 ARM_CPU_HAS_FEATURE (flags
, fpu_vfp_ext_d32
)
31246 else if (ARM_CPU_HAS_FEATURE (flags
, fpu_vfp_ext_d32
))
31249 aeabi_set_attribute_int (Tag_VFP_arch
, 3);
31251 else if (ARM_CPU_HAS_FEATURE (flags
, fpu_vfp_ext_v3xd
))
31253 aeabi_set_attribute_int (Tag_VFP_arch
, 4);
31256 else if (ARM_CPU_HAS_FEATURE (flags
, fpu_vfp_ext_v2
))
31257 aeabi_set_attribute_int (Tag_VFP_arch
, 2);
31258 else if (ARM_CPU_HAS_FEATURE (flags
, fpu_vfp_ext_v1
)
31259 || ARM_CPU_HAS_FEATURE (flags
, fpu_vfp_ext_v1xd
))
31260 aeabi_set_attribute_int (Tag_VFP_arch
, 1);
31262 /* Tag_ABI_HardFP_use. */
31263 if (ARM_CPU_HAS_FEATURE (flags
, fpu_vfp_ext_v1xd
)
31264 && !ARM_CPU_HAS_FEATURE (flags
, fpu_vfp_ext_v1
))
31265 aeabi_set_attribute_int (Tag_ABI_HardFP_use
, 1);
31267 /* Tag_WMMX_arch. */
31268 if (ARM_CPU_HAS_FEATURE (flags
, arm_cext_iwmmxt2
))
31269 aeabi_set_attribute_int (Tag_WMMX_arch
, 2);
31270 else if (ARM_CPU_HAS_FEATURE (flags
, arm_cext_iwmmxt
))
31271 aeabi_set_attribute_int (Tag_WMMX_arch
, 1);
31273 /* Tag_Advanced_SIMD_arch (formerly Tag_NEON_arch). */
31274 if (ARM_CPU_HAS_FEATURE (flags
, fpu_neon_ext_v8_1
))
31275 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch
, 4);
31276 else if (ARM_CPU_HAS_FEATURE (flags
, fpu_neon_ext_armv8
))
31277 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch
, 3);
31278 else if (ARM_CPU_HAS_FEATURE (flags
, fpu_neon_ext_v1
))
31280 if (ARM_CPU_HAS_FEATURE (flags
, fpu_neon_ext_fma
))
31282 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch
, 2);
31286 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch
, 1);
31291 if (ARM_CPU_HAS_FEATURE (flags
, mve_fp_ext
))
31292 aeabi_set_attribute_int (Tag_MVE_arch
, 2);
31293 else if (ARM_CPU_HAS_FEATURE (flags
, mve_ext
))
31294 aeabi_set_attribute_int (Tag_MVE_arch
, 1);
31296 /* Tag_VFP_HP_extension (formerly Tag_NEON_FP16_arch). */
31297 if (ARM_CPU_HAS_FEATURE (flags
, fpu_vfp_fp16
) && fp16_optional
)
31298 aeabi_set_attribute_int (Tag_VFP_HP_extension
, 1);
31302 We set Tag_DIV_use to two when integer divide instructions have been used
31303 in ARM state, or when Thumb integer divide instructions have been used,
31304 but we have no architecture profile set, nor have we any ARM instructions.
31306 For ARMv8-A and ARMv8-M we set the tag to 0 as integer divide is implied
31307 by the base architecture.
31309 For new architectures we will have to check these tests. */
31310 gas_assert (arch
<= TAG_CPU_ARCH_V8_1M_MAIN
);
31311 if (ARM_CPU_HAS_FEATURE (flags
, arm_ext_v8
)
31312 || ARM_CPU_HAS_FEATURE (flags
, arm_ext_v8m
))
31313 aeabi_set_attribute_int (Tag_DIV_use
, 0);
31314 else if (ARM_CPU_HAS_FEATURE (flags
, arm_ext_adiv
)
31315 || (profile
== '\0'
31316 && ARM_CPU_HAS_FEATURE (flags
, arm_ext_div
)
31317 && !ARM_CPU_HAS_FEATURE (arm_arch_used
, arm_arch_any
)))
31318 aeabi_set_attribute_int (Tag_DIV_use
, 2);
31320 /* Tag_MP_extension_use. */
31321 if (ARM_CPU_HAS_FEATURE (flags
, arm_ext_mp
))
31322 aeabi_set_attribute_int (Tag_MPextension_use
, 1);
31324 /* Tag Virtualization_use. */
31325 if (ARM_CPU_HAS_FEATURE (flags
, arm_ext_sec
))
31327 if (ARM_CPU_HAS_FEATURE (flags
, arm_ext_virt
))
31330 aeabi_set_attribute_int (Tag_Virtualization_use
, virt_sec
);
31333 /* Post relaxation hook. Recompute ARM attributes now that relaxation is
31334 finished and free extension feature bits which will not be used anymore. */
31337 arm_md_post_relax (void)
31339 aeabi_set_public_attributes ();
31340 XDELETE (mcpu_ext_opt
);
31341 mcpu_ext_opt
= NULL
;
31342 XDELETE (march_ext_opt
);
31343 march_ext_opt
= NULL
;
31346 /* Add the default contents for the .ARM.attributes section. */
31351 if (EF_ARM_EABI_VERSION (meabi_flags
) < EF_ARM_EABI_VER4
)
31354 aeabi_set_public_attributes ();
31356 #endif /* OBJ_ELF */
31358 /* Parse a .cpu directive. */
31361 s_arm_cpu (int ignored ATTRIBUTE_UNUSED
)
31363 const struct arm_cpu_option_table
*opt
;
31367 name
= input_line_pointer
;
31368 while (*input_line_pointer
&& !ISSPACE (*input_line_pointer
))
31369 input_line_pointer
++;
31370 saved_char
= *input_line_pointer
;
31371 *input_line_pointer
= 0;
31373 /* Skip the first "all" entry. */
31374 for (opt
= arm_cpus
+ 1; opt
->name
!= NULL
; opt
++)
31375 if (streq (opt
->name
, name
))
31377 selected_arch
= opt
->value
;
31378 selected_ext
= opt
->ext
;
31379 ARM_MERGE_FEATURE_SETS (selected_cpu
, selected_arch
, selected_ext
);
31380 if (opt
->canonical_name
)
31381 strcpy (selected_cpu_name
, opt
->canonical_name
);
31385 for (i
= 0; opt
->name
[i
]; i
++)
31386 selected_cpu_name
[i
] = TOUPPER (opt
->name
[i
]);
31388 selected_cpu_name
[i
] = 0;
31390 ARM_MERGE_FEATURE_SETS (cpu_variant
, selected_cpu
, selected_fpu
);
31392 *input_line_pointer
= saved_char
;
31393 demand_empty_rest_of_line ();
31396 as_bad (_("unknown cpu `%s'"), name
);
31397 *input_line_pointer
= saved_char
;
31398 ignore_rest_of_line ();
31401 /* Parse a .arch directive. */
31404 s_arm_arch (int ignored ATTRIBUTE_UNUSED
)
31406 const struct arm_arch_option_table
*opt
;
31410 name
= input_line_pointer
;
31411 while (*input_line_pointer
&& !ISSPACE (*input_line_pointer
))
31412 input_line_pointer
++;
31413 saved_char
= *input_line_pointer
;
31414 *input_line_pointer
= 0;
31416 /* Skip the first "all" entry. */
31417 for (opt
= arm_archs
+ 1; opt
->name
!= NULL
; opt
++)
31418 if (streq (opt
->name
, name
))
31420 selected_arch
= opt
->value
;
31421 selected_ext
= arm_arch_none
;
31422 selected_cpu
= selected_arch
;
31423 strcpy (selected_cpu_name
, opt
->name
);
31424 ARM_MERGE_FEATURE_SETS (cpu_variant
, selected_cpu
, selected_fpu
);
31425 *input_line_pointer
= saved_char
;
31426 demand_empty_rest_of_line ();
31430 as_bad (_("unknown architecture `%s'\n"), name
);
31431 *input_line_pointer
= saved_char
;
31432 ignore_rest_of_line ();
31435 /* Parse a .object_arch directive. */
31438 s_arm_object_arch (int ignored ATTRIBUTE_UNUSED
)
31440 const struct arm_arch_option_table
*opt
;
31444 name
= input_line_pointer
;
31445 while (*input_line_pointer
&& !ISSPACE (*input_line_pointer
))
31446 input_line_pointer
++;
31447 saved_char
= *input_line_pointer
;
31448 *input_line_pointer
= 0;
31450 /* Skip the first "all" entry. */
31451 for (opt
= arm_archs
+ 1; opt
->name
!= NULL
; opt
++)
31452 if (streq (opt
->name
, name
))
31454 selected_object_arch
= opt
->value
;
31455 *input_line_pointer
= saved_char
;
31456 demand_empty_rest_of_line ();
31460 as_bad (_("unknown architecture `%s'\n"), name
);
31461 *input_line_pointer
= saved_char
;
31462 ignore_rest_of_line ();
31465 /* Parse a .arch_extension directive. */
31468 s_arm_arch_extension (int ignored ATTRIBUTE_UNUSED
)
31470 const struct arm_option_extension_value_table
*opt
;
31473 int adding_value
= 1;
31475 name
= input_line_pointer
;
31476 while (*input_line_pointer
&& !ISSPACE (*input_line_pointer
))
31477 input_line_pointer
++;
31478 saved_char
= *input_line_pointer
;
31479 *input_line_pointer
= 0;
31481 if (strlen (name
) >= 2
31482 && strncmp (name
, "no", 2) == 0)
31488 for (opt
= arm_extensions
; opt
->name
!= NULL
; opt
++)
31489 if (streq (opt
->name
, name
))
31491 int i
, nb_allowed_archs
=
31492 sizeof (opt
->allowed_archs
) / sizeof (opt
->allowed_archs
[i
]);
31493 for (i
= 0; i
< nb_allowed_archs
; i
++)
31496 if (ARM_CPU_IS_ANY (opt
->allowed_archs
[i
]))
31498 if (ARM_FSET_CPU_SUBSET (opt
->allowed_archs
[i
], selected_arch
))
31502 if (i
== nb_allowed_archs
)
31504 as_bad (_("architectural extension `%s' is not allowed for the "
31505 "current base architecture"), name
);
31510 ARM_MERGE_FEATURE_SETS (selected_ext
, selected_ext
,
31513 ARM_CLEAR_FEATURE (selected_ext
, selected_ext
, opt
->clear_value
);
31515 ARM_MERGE_FEATURE_SETS (selected_cpu
, selected_arch
, selected_ext
);
31516 ARM_MERGE_FEATURE_SETS (cpu_variant
, selected_cpu
, selected_fpu
);
31517 *input_line_pointer
= saved_char
;
31518 demand_empty_rest_of_line ();
31519 /* Allowing Thumb division instructions for ARMv7 in autodetection rely
31520 on this return so that duplicate extensions (extensions with the
31521 same name as a previous extension in the list) are not considered
31522 for command-line parsing. */
31526 if (opt
->name
== NULL
)
31527 as_bad (_("unknown architecture extension `%s'\n"), name
);
31529 *input_line_pointer
= saved_char
;
31530 ignore_rest_of_line ();
31533 /* Parse a .fpu directive. */
31536 s_arm_fpu (int ignored ATTRIBUTE_UNUSED
)
31538 const struct arm_option_fpu_value_table
*opt
;
31542 name
= input_line_pointer
;
31543 while (*input_line_pointer
&& !ISSPACE (*input_line_pointer
))
31544 input_line_pointer
++;
31545 saved_char
= *input_line_pointer
;
31546 *input_line_pointer
= 0;
31548 for (opt
= arm_fpus
; opt
->name
!= NULL
; opt
++)
31549 if (streq (opt
->name
, name
))
31551 selected_fpu
= opt
->value
;
31552 #ifndef CPU_DEFAULT
31553 if (no_cpu_selected ())
31554 ARM_MERGE_FEATURE_SETS (cpu_variant
, arm_arch_any
, selected_fpu
);
31557 ARM_MERGE_FEATURE_SETS (cpu_variant
, selected_cpu
, selected_fpu
);
31558 *input_line_pointer
= saved_char
;
31559 demand_empty_rest_of_line ();
31563 as_bad (_("unknown floating point format `%s'\n"), name
);
31564 *input_line_pointer
= saved_char
;
31565 ignore_rest_of_line ();
31568 /* Copy symbol information. */
31571 arm_copy_symbol_attributes (symbolS
*dest
, symbolS
*src
)
31573 ARM_GET_FLAG (dest
) = ARM_GET_FLAG (src
);
31577 /* Given a symbolic attribute NAME, return the proper integer value.
31578 Returns -1 if the attribute is not known. */
31581 arm_convert_symbolic_attribute (const char *name
)
31583 static const struct
31588 attribute_table
[] =
31590 /* When you modify this table you should
31591 also modify the list in doc/c-arm.texi. */
31592 #define T(tag) {#tag, tag}
31593 T (Tag_CPU_raw_name
),
31596 T (Tag_CPU_arch_profile
),
31597 T (Tag_ARM_ISA_use
),
31598 T (Tag_THUMB_ISA_use
),
31602 T (Tag_Advanced_SIMD_arch
),
31603 T (Tag_PCS_config
),
31604 T (Tag_ABI_PCS_R9_use
),
31605 T (Tag_ABI_PCS_RW_data
),
31606 T (Tag_ABI_PCS_RO_data
),
31607 T (Tag_ABI_PCS_GOT_use
),
31608 T (Tag_ABI_PCS_wchar_t
),
31609 T (Tag_ABI_FP_rounding
),
31610 T (Tag_ABI_FP_denormal
),
31611 T (Tag_ABI_FP_exceptions
),
31612 T (Tag_ABI_FP_user_exceptions
),
31613 T (Tag_ABI_FP_number_model
),
31614 T (Tag_ABI_align_needed
),
31615 T (Tag_ABI_align8_needed
),
31616 T (Tag_ABI_align_preserved
),
31617 T (Tag_ABI_align8_preserved
),
31618 T (Tag_ABI_enum_size
),
31619 T (Tag_ABI_HardFP_use
),
31620 T (Tag_ABI_VFP_args
),
31621 T (Tag_ABI_WMMX_args
),
31622 T (Tag_ABI_optimization_goals
),
31623 T (Tag_ABI_FP_optimization_goals
),
31624 T (Tag_compatibility
),
31625 T (Tag_CPU_unaligned_access
),
31626 T (Tag_FP_HP_extension
),
31627 T (Tag_VFP_HP_extension
),
31628 T (Tag_ABI_FP_16bit_format
),
31629 T (Tag_MPextension_use
),
31631 T (Tag_nodefaults
),
31632 T (Tag_also_compatible_with
),
31633 T (Tag_conformance
),
31635 T (Tag_Virtualization_use
),
31636 T (Tag_DSP_extension
),
31638 /* We deliberately do not include Tag_MPextension_use_legacy. */
31646 for (i
= 0; i
< ARRAY_SIZE (attribute_table
); i
++)
31647 if (streq (name
, attribute_table
[i
].name
))
31648 return attribute_table
[i
].tag
;
31653 /* Apply sym value for relocations only in the case that they are for
31654 local symbols in the same segment as the fixup and you have the
31655 respective architectural feature for blx and simple switches. */
31658 arm_apply_sym_value (struct fix
* fixP
, segT this_seg
)
31661 && ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_v5t
)
31662 /* PR 17444: If the local symbol is in a different section then a reloc
31663 will always be generated for it, so applying the symbol value now
31664 will result in a double offset being stored in the relocation. */
31665 && (S_GET_SEGMENT (fixP
->fx_addsy
) == this_seg
)
31666 && !S_FORCE_RELOC (fixP
->fx_addsy
, TRUE
))
31668 switch (fixP
->fx_r_type
)
31670 case BFD_RELOC_ARM_PCREL_BLX
:
31671 case BFD_RELOC_THUMB_PCREL_BRANCH23
:
31672 if (ARM_IS_FUNC (fixP
->fx_addsy
))
31676 case BFD_RELOC_ARM_PCREL_CALL
:
31677 case BFD_RELOC_THUMB_PCREL_BLX
:
31678 if (THUMB_IS_FUNC (fixP
->fx_addsy
))
31689 #endif /* OBJ_ELF */