1 /* ELF linking support for BFD.
2 Copyright (C) 1995-2021 Free Software Foundation, Inc.
4 This file is part of BFD, the Binary File Descriptor library.
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
27 #include "safe-ctype.h"
28 #include "libiberty.h"
30 #if BFD_SUPPORTS_PLUGINS
31 #include "plugin-api.h"
42 /* This struct is used to pass information to routines called via
43 elf_link_hash_traverse which must return failure. */
45 struct elf_info_failed
47 struct bfd_link_info
*info
;
51 /* This structure is used to pass information to
52 _bfd_elf_link_find_version_dependencies. */
54 struct elf_find_verdep_info
56 /* General link information. */
57 struct bfd_link_info
*info
;
58 /* The number of dependencies. */
60 /* Whether we had a failure. */
64 static bfd_boolean _bfd_elf_fix_symbol_flags
65 (struct elf_link_hash_entry
*, struct elf_info_failed
*);
68 _bfd_elf_section_for_symbol (struct elf_reloc_cookie
*cookie
,
69 unsigned long r_symndx
,
72 if (r_symndx
>= cookie
->locsymcount
73 || ELF_ST_BIND (cookie
->locsyms
[r_symndx
].st_info
) != STB_LOCAL
)
75 struct elf_link_hash_entry
*h
;
77 h
= cookie
->sym_hashes
[r_symndx
- cookie
->extsymoff
];
79 while (h
->root
.type
== bfd_link_hash_indirect
80 || h
->root
.type
== bfd_link_hash_warning
)
81 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
83 if ((h
->root
.type
== bfd_link_hash_defined
84 || h
->root
.type
== bfd_link_hash_defweak
)
85 && discarded_section (h
->root
.u
.def
.section
))
86 return h
->root
.u
.def
.section
;
92 /* It's not a relocation against a global symbol,
93 but it could be a relocation against a local
94 symbol for a discarded section. */
96 Elf_Internal_Sym
*isym
;
98 /* Need to: get the symbol; get the section. */
99 isym
= &cookie
->locsyms
[r_symndx
];
100 isec
= bfd_section_from_elf_index (cookie
->abfd
, isym
->st_shndx
);
102 && discard
? discarded_section (isec
) : 1)
108 /* Define a symbol in a dynamic linkage section. */
110 struct elf_link_hash_entry
*
111 _bfd_elf_define_linkage_sym (bfd
*abfd
,
112 struct bfd_link_info
*info
,
116 struct elf_link_hash_entry
*h
;
117 struct bfd_link_hash_entry
*bh
;
118 const struct elf_backend_data
*bed
;
120 h
= elf_link_hash_lookup (elf_hash_table (info
), name
, FALSE
, FALSE
, FALSE
);
123 /* Zap symbol defined in an as-needed lib that wasn't linked.
124 This is a symptom of a larger problem: Absolute symbols
125 defined in shared libraries can't be overridden, because we
126 lose the link to the bfd which is via the symbol section. */
127 h
->root
.type
= bfd_link_hash_new
;
133 bed
= get_elf_backend_data (abfd
);
134 if (!_bfd_generic_link_add_one_symbol (info
, abfd
, name
, BSF_GLOBAL
,
135 sec
, 0, NULL
, FALSE
, bed
->collect
,
138 h
= (struct elf_link_hash_entry
*) bh
;
139 BFD_ASSERT (h
!= NULL
);
142 h
->root
.linker_def
= 1;
143 h
->type
= STT_OBJECT
;
144 if (ELF_ST_VISIBILITY (h
->other
) != STV_INTERNAL
)
145 h
->other
= (h
->other
& ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN
;
147 (*bed
->elf_backend_hide_symbol
) (info
, h
, TRUE
);
152 _bfd_elf_create_got_section (bfd
*abfd
, struct bfd_link_info
*info
)
156 struct elf_link_hash_entry
*h
;
157 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
158 struct elf_link_hash_table
*htab
= elf_hash_table (info
);
160 /* This function may be called more than once. */
161 if (htab
->sgot
!= NULL
)
164 flags
= bed
->dynamic_sec_flags
;
166 s
= bfd_make_section_anyway_with_flags (abfd
,
167 (bed
->rela_plts_and_copies_p
168 ? ".rela.got" : ".rel.got"),
169 (bed
->dynamic_sec_flags
172 || !bfd_set_section_alignment (s
, bed
->s
->log_file_align
))
176 s
= bfd_make_section_anyway_with_flags (abfd
, ".got", flags
);
178 || !bfd_set_section_alignment (s
, bed
->s
->log_file_align
))
182 if (bed
->want_got_plt
)
184 s
= bfd_make_section_anyway_with_flags (abfd
, ".got.plt", flags
);
186 || !bfd_set_section_alignment (s
, bed
->s
->log_file_align
))
191 /* The first bit of the global offset table is the header. */
192 s
->size
+= bed
->got_header_size
;
194 if (bed
->want_got_sym
)
196 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
197 (or .got.plt) section. We don't do this in the linker script
198 because we don't want to define the symbol if we are not creating
199 a global offset table. */
200 h
= _bfd_elf_define_linkage_sym (abfd
, info
, s
,
201 "_GLOBAL_OFFSET_TABLE_");
202 elf_hash_table (info
)->hgot
= h
;
210 /* Create a strtab to hold the dynamic symbol names. */
212 _bfd_elf_link_create_dynstrtab (bfd
*abfd
, struct bfd_link_info
*info
)
214 struct elf_link_hash_table
*hash_table
;
216 hash_table
= elf_hash_table (info
);
217 if (hash_table
->dynobj
== NULL
)
219 /* We may not set dynobj, an input file holding linker created
220 dynamic sections to abfd, which may be a dynamic object with
221 its own dynamic sections. We need to find a normal input file
222 to hold linker created sections if possible. */
223 if ((abfd
->flags
& (DYNAMIC
| BFD_PLUGIN
)) != 0)
227 for (ibfd
= info
->input_bfds
; ibfd
; ibfd
= ibfd
->link
.next
)
229 & (DYNAMIC
| BFD_LINKER_CREATED
| BFD_PLUGIN
)) == 0
230 && bfd_get_flavour (ibfd
) == bfd_target_elf_flavour
231 && elf_object_id (ibfd
) == elf_hash_table_id (hash_table
)
232 && !((s
= ibfd
->sections
) != NULL
233 && s
->sec_info_type
== SEC_INFO_TYPE_JUST_SYMS
))
239 hash_table
->dynobj
= abfd
;
242 if (hash_table
->dynstr
== NULL
)
244 hash_table
->dynstr
= _bfd_elf_strtab_init ();
245 if (hash_table
->dynstr
== NULL
)
251 /* Create some sections which will be filled in with dynamic linking
252 information. ABFD is an input file which requires dynamic sections
253 to be created. The dynamic sections take up virtual memory space
254 when the final executable is run, so we need to create them before
255 addresses are assigned to the output sections. We work out the
256 actual contents and size of these sections later. */
259 _bfd_elf_link_create_dynamic_sections (bfd
*abfd
, struct bfd_link_info
*info
)
263 const struct elf_backend_data
*bed
;
264 struct elf_link_hash_entry
*h
;
266 if (! is_elf_hash_table (info
->hash
))
269 if (elf_hash_table (info
)->dynamic_sections_created
)
272 if (!_bfd_elf_link_create_dynstrtab (abfd
, info
))
275 abfd
= elf_hash_table (info
)->dynobj
;
276 bed
= get_elf_backend_data (abfd
);
278 flags
= bed
->dynamic_sec_flags
;
280 /* A dynamically linked executable has a .interp section, but a
281 shared library does not. */
282 if (bfd_link_executable (info
) && !info
->nointerp
)
284 s
= bfd_make_section_anyway_with_flags (abfd
, ".interp",
285 flags
| SEC_READONLY
);
290 /* Create sections to hold version informations. These are removed
291 if they are not needed. */
292 s
= bfd_make_section_anyway_with_flags (abfd
, ".gnu.version_d",
293 flags
| SEC_READONLY
);
295 || !bfd_set_section_alignment (s
, bed
->s
->log_file_align
))
298 s
= bfd_make_section_anyway_with_flags (abfd
, ".gnu.version",
299 flags
| SEC_READONLY
);
301 || !bfd_set_section_alignment (s
, 1))
304 s
= bfd_make_section_anyway_with_flags (abfd
, ".gnu.version_r",
305 flags
| SEC_READONLY
);
307 || !bfd_set_section_alignment (s
, bed
->s
->log_file_align
))
310 s
= bfd_make_section_anyway_with_flags (abfd
, ".dynsym",
311 flags
| SEC_READONLY
);
313 || !bfd_set_section_alignment (s
, bed
->s
->log_file_align
))
315 elf_hash_table (info
)->dynsym
= s
;
317 s
= bfd_make_section_anyway_with_flags (abfd
, ".dynstr",
318 flags
| SEC_READONLY
);
322 s
= bfd_make_section_anyway_with_flags (abfd
, ".dynamic", flags
);
324 || !bfd_set_section_alignment (s
, bed
->s
->log_file_align
))
327 /* The special symbol _DYNAMIC is always set to the start of the
328 .dynamic section. We could set _DYNAMIC in a linker script, but we
329 only want to define it if we are, in fact, creating a .dynamic
330 section. We don't want to define it if there is no .dynamic
331 section, since on some ELF platforms the start up code examines it
332 to decide how to initialize the process. */
333 h
= _bfd_elf_define_linkage_sym (abfd
, info
, s
, "_DYNAMIC");
334 elf_hash_table (info
)->hdynamic
= h
;
340 s
= bfd_make_section_anyway_with_flags (abfd
, ".hash",
341 flags
| SEC_READONLY
);
343 || !bfd_set_section_alignment (s
, bed
->s
->log_file_align
))
345 elf_section_data (s
)->this_hdr
.sh_entsize
= bed
->s
->sizeof_hash_entry
;
348 if (info
->emit_gnu_hash
&& bed
->record_xhash_symbol
== NULL
)
350 s
= bfd_make_section_anyway_with_flags (abfd
, ".gnu.hash",
351 flags
| SEC_READONLY
);
353 || !bfd_set_section_alignment (s
, bed
->s
->log_file_align
))
355 /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section:
356 4 32-bit words followed by variable count of 64-bit words, then
357 variable count of 32-bit words. */
358 if (bed
->s
->arch_size
== 64)
359 elf_section_data (s
)->this_hdr
.sh_entsize
= 0;
361 elf_section_data (s
)->this_hdr
.sh_entsize
= 4;
364 /* Let the backend create the rest of the sections. This lets the
365 backend set the right flags. The backend will normally create
366 the .got and .plt sections. */
367 if (bed
->elf_backend_create_dynamic_sections
== NULL
368 || ! (*bed
->elf_backend_create_dynamic_sections
) (abfd
, info
))
371 elf_hash_table (info
)->dynamic_sections_created
= TRUE
;
376 /* Create dynamic sections when linking against a dynamic object. */
379 _bfd_elf_create_dynamic_sections (bfd
*abfd
, struct bfd_link_info
*info
)
381 flagword flags
, pltflags
;
382 struct elf_link_hash_entry
*h
;
384 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
385 struct elf_link_hash_table
*htab
= elf_hash_table (info
);
387 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
388 .rel[a].bss sections. */
389 flags
= bed
->dynamic_sec_flags
;
392 if (bed
->plt_not_loaded
)
393 /* We do not clear SEC_ALLOC here because we still want the OS to
394 allocate space for the section; it's just that there's nothing
395 to read in from the object file. */
396 pltflags
&= ~ (SEC_CODE
| SEC_LOAD
| SEC_HAS_CONTENTS
);
398 pltflags
|= SEC_ALLOC
| SEC_CODE
| SEC_LOAD
;
399 if (bed
->plt_readonly
)
400 pltflags
|= SEC_READONLY
;
402 s
= bfd_make_section_anyway_with_flags (abfd
, ".plt", pltflags
);
404 || !bfd_set_section_alignment (s
, bed
->plt_alignment
))
408 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
410 if (bed
->want_plt_sym
)
412 h
= _bfd_elf_define_linkage_sym (abfd
, info
, s
,
413 "_PROCEDURE_LINKAGE_TABLE_");
414 elf_hash_table (info
)->hplt
= h
;
419 s
= bfd_make_section_anyway_with_flags (abfd
,
420 (bed
->rela_plts_and_copies_p
421 ? ".rela.plt" : ".rel.plt"),
422 flags
| SEC_READONLY
);
424 || !bfd_set_section_alignment (s
, bed
->s
->log_file_align
))
428 if (! _bfd_elf_create_got_section (abfd
, info
))
431 if (bed
->want_dynbss
)
433 /* The .dynbss section is a place to put symbols which are defined
434 by dynamic objects, are referenced by regular objects, and are
435 not functions. We must allocate space for them in the process
436 image and use a R_*_COPY reloc to tell the dynamic linker to
437 initialize them at run time. The linker script puts the .dynbss
438 section into the .bss section of the final image. */
439 s
= bfd_make_section_anyway_with_flags (abfd
, ".dynbss",
440 SEC_ALLOC
| SEC_LINKER_CREATED
);
445 if (bed
->want_dynrelro
)
447 /* Similarly, but for symbols that were originally in read-only
448 sections. This section doesn't really need to have contents,
449 but make it like other .data.rel.ro sections. */
450 s
= bfd_make_section_anyway_with_flags (abfd
, ".data.rel.ro",
457 /* The .rel[a].bss section holds copy relocs. This section is not
458 normally needed. We need to create it here, though, so that the
459 linker will map it to an output section. We can't just create it
460 only if we need it, because we will not know whether we need it
461 until we have seen all the input files, and the first time the
462 main linker code calls BFD after examining all the input files
463 (size_dynamic_sections) the input sections have already been
464 mapped to the output sections. If the section turns out not to
465 be needed, we can discard it later. We will never need this
466 section when generating a shared object, since they do not use
468 if (bfd_link_executable (info
))
470 s
= bfd_make_section_anyway_with_flags (abfd
,
471 (bed
->rela_plts_and_copies_p
472 ? ".rela.bss" : ".rel.bss"),
473 flags
| SEC_READONLY
);
475 || !bfd_set_section_alignment (s
, bed
->s
->log_file_align
))
479 if (bed
->want_dynrelro
)
481 s
= (bfd_make_section_anyway_with_flags
482 (abfd
, (bed
->rela_plts_and_copies_p
483 ? ".rela.data.rel.ro" : ".rel.data.rel.ro"),
484 flags
| SEC_READONLY
));
486 || !bfd_set_section_alignment (s
, bed
->s
->log_file_align
))
488 htab
->sreldynrelro
= s
;
496 /* Record a new dynamic symbol. We record the dynamic symbols as we
497 read the input files, since we need to have a list of all of them
498 before we can determine the final sizes of the output sections.
499 Note that we may actually call this function even though we are not
500 going to output any dynamic symbols; in some cases we know that a
501 symbol should be in the dynamic symbol table, but only if there is
505 bfd_elf_link_record_dynamic_symbol (struct bfd_link_info
*info
,
506 struct elf_link_hash_entry
*h
)
508 if (h
->dynindx
== -1)
510 struct elf_strtab_hash
*dynstr
;
515 if (h
->root
.type
== bfd_link_hash_defined
516 || h
->root
.type
== bfd_link_hash_defweak
)
518 /* An IR symbol should not be made dynamic. */
519 if (h
->root
.u
.def
.section
!= NULL
520 && h
->root
.u
.def
.section
->owner
!= NULL
521 && (h
->root
.u
.def
.section
->owner
->flags
& BFD_PLUGIN
) != 0)
525 /* XXX: The ABI draft says the linker must turn hidden and
526 internal symbols into STB_LOCAL symbols when producing the
527 DSO. However, if ld.so honors st_other in the dynamic table,
528 this would not be necessary. */
529 switch (ELF_ST_VISIBILITY (h
->other
))
533 if (h
->root
.type
!= bfd_link_hash_undefined
534 && h
->root
.type
!= bfd_link_hash_undefweak
)
537 if (!elf_hash_table (info
)->is_relocatable_executable
)
545 h
->dynindx
= elf_hash_table (info
)->dynsymcount
;
546 ++elf_hash_table (info
)->dynsymcount
;
548 dynstr
= elf_hash_table (info
)->dynstr
;
551 /* Create a strtab to hold the dynamic symbol names. */
552 elf_hash_table (info
)->dynstr
= dynstr
= _bfd_elf_strtab_init ();
557 /* We don't put any version information in the dynamic string
559 name
= h
->root
.root
.string
;
560 p
= strchr (name
, ELF_VER_CHR
);
562 /* We know that the p points into writable memory. In fact,
563 there are only a few symbols that have read-only names, being
564 those like _GLOBAL_OFFSET_TABLE_ that are created specially
565 by the backends. Most symbols will have names pointing into
566 an ELF string table read from a file, or to objalloc memory. */
569 indx
= _bfd_elf_strtab_add (dynstr
, name
, p
!= NULL
);
574 if (indx
== (size_t) -1)
576 h
->dynstr_index
= indx
;
582 /* Mark a symbol dynamic. */
585 bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info
*info
,
586 struct elf_link_hash_entry
*h
,
587 Elf_Internal_Sym
*sym
)
589 struct bfd_elf_dynamic_list
*d
= info
->dynamic_list
;
591 /* It may be called more than once on the same H. */
592 if(h
->dynamic
|| bfd_link_relocatable (info
))
595 if ((info
->dynamic_data
596 && (h
->type
== STT_OBJECT
597 || h
->type
== STT_COMMON
599 && (ELF_ST_TYPE (sym
->st_info
) == STT_OBJECT
600 || ELF_ST_TYPE (sym
->st_info
) == STT_COMMON
))))
603 && (*d
->match
) (&d
->head
, NULL
, h
->root
.root
.string
)))
606 /* NB: If a symbol is made dynamic by --dynamic-list, it has
608 h
->root
.non_ir_ref_dynamic
= 1;
612 /* Record an assignment to a symbol made by a linker script. We need
613 this in case some dynamic object refers to this symbol. */
616 bfd_elf_record_link_assignment (bfd
*output_bfd
,
617 struct bfd_link_info
*info
,
622 struct elf_link_hash_entry
*h
, *hv
;
623 struct elf_link_hash_table
*htab
;
624 const struct elf_backend_data
*bed
;
626 if (!is_elf_hash_table (info
->hash
))
629 htab
= elf_hash_table (info
);
630 h
= elf_link_hash_lookup (htab
, name
, !provide
, TRUE
, FALSE
);
634 if (h
->root
.type
== bfd_link_hash_warning
)
635 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
637 if (h
->versioned
== unknown
)
639 /* Set versioned if symbol version is unknown. */
640 char *version
= strrchr (name
, ELF_VER_CHR
);
643 if (version
> name
&& version
[-1] != ELF_VER_CHR
)
644 h
->versioned
= versioned_hidden
;
646 h
->versioned
= versioned
;
650 /* Symbols defined in a linker script but not referenced anywhere
651 else will have non_elf set. */
654 bfd_elf_link_mark_dynamic_symbol (info
, h
, NULL
);
658 switch (h
->root
.type
)
660 case bfd_link_hash_defined
:
661 case bfd_link_hash_defweak
:
662 case bfd_link_hash_common
:
664 case bfd_link_hash_undefweak
:
665 case bfd_link_hash_undefined
:
666 /* Since we're defining the symbol, don't let it seem to have not
667 been defined. record_dynamic_symbol and size_dynamic_sections
668 may depend on this. */
669 h
->root
.type
= bfd_link_hash_new
;
670 if (h
->root
.u
.undef
.next
!= NULL
|| htab
->root
.undefs_tail
== &h
->root
)
671 bfd_link_repair_undef_list (&htab
->root
);
673 case bfd_link_hash_new
:
675 case bfd_link_hash_indirect
:
676 /* We had a versioned symbol in a dynamic library. We make the
677 the versioned symbol point to this one. */
678 bed
= get_elf_backend_data (output_bfd
);
680 while (hv
->root
.type
== bfd_link_hash_indirect
681 || hv
->root
.type
== bfd_link_hash_warning
)
682 hv
= (struct elf_link_hash_entry
*) hv
->root
.u
.i
.link
;
683 /* We don't need to update h->root.u since linker will set them
685 h
->root
.type
= bfd_link_hash_undefined
;
686 hv
->root
.type
= bfd_link_hash_indirect
;
687 hv
->root
.u
.i
.link
= (struct bfd_link_hash_entry
*) h
;
688 (*bed
->elf_backend_copy_indirect_symbol
) (info
, h
, hv
);
695 /* If this symbol is being provided by the linker script, and it is
696 currently defined by a dynamic object, but not by a regular
697 object, then mark it as undefined so that the generic linker will
698 force the correct value. */
702 h
->root
.type
= bfd_link_hash_undefined
;
704 /* If this symbol is currently defined by a dynamic object, but not
705 by a regular object, then clear out any version information because
706 the symbol will not be associated with the dynamic object any
708 if (h
->def_dynamic
&& !h
->def_regular
)
709 h
->verinfo
.verdef
= NULL
;
711 /* Make sure this symbol is not garbage collected. */
718 bed
= get_elf_backend_data (output_bfd
);
719 if (ELF_ST_VISIBILITY (h
->other
) != STV_INTERNAL
)
720 h
->other
= (h
->other
& ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN
;
721 (*bed
->elf_backend_hide_symbol
) (info
, h
, TRUE
);
724 /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
726 if (!bfd_link_relocatable (info
)
728 && (ELF_ST_VISIBILITY (h
->other
) == STV_HIDDEN
729 || ELF_ST_VISIBILITY (h
->other
) == STV_INTERNAL
))
734 || bfd_link_dll (info
)
735 || elf_hash_table (info
)->is_relocatable_executable
)
739 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
742 /* If this is a weak defined symbol, and we know a corresponding
743 real symbol from the same dynamic object, make sure the real
744 symbol is also made into a dynamic symbol. */
747 struct elf_link_hash_entry
*def
= weakdef (h
);
749 if (def
->dynindx
== -1
750 && !bfd_elf_link_record_dynamic_symbol (info
, def
))
758 /* Record a new local dynamic symbol. Returns 0 on failure, 1 on
759 success, and 2 on a failure caused by attempting to record a symbol
760 in a discarded section, eg. a discarded link-once section symbol. */
763 bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info
*info
,
768 struct elf_link_local_dynamic_entry
*entry
;
769 struct elf_link_hash_table
*eht
;
770 struct elf_strtab_hash
*dynstr
;
773 Elf_External_Sym_Shndx eshndx
;
774 char esym
[sizeof (Elf64_External_Sym
)];
776 if (! is_elf_hash_table (info
->hash
))
779 /* See if the entry exists already. */
780 for (entry
= elf_hash_table (info
)->dynlocal
; entry
; entry
= entry
->next
)
781 if (entry
->input_bfd
== input_bfd
&& entry
->input_indx
== input_indx
)
784 amt
= sizeof (*entry
);
785 entry
= (struct elf_link_local_dynamic_entry
*) bfd_alloc (input_bfd
, amt
);
789 /* Go find the symbol, so that we can find it's name. */
790 if (!bfd_elf_get_elf_syms (input_bfd
, &elf_tdata (input_bfd
)->symtab_hdr
,
791 1, input_indx
, &entry
->isym
, esym
, &eshndx
))
793 bfd_release (input_bfd
, entry
);
797 if (entry
->isym
.st_shndx
!= SHN_UNDEF
798 && entry
->isym
.st_shndx
< SHN_LORESERVE
)
802 s
= bfd_section_from_elf_index (input_bfd
, entry
->isym
.st_shndx
);
803 if (s
== NULL
|| bfd_is_abs_section (s
->output_section
))
805 /* We can still bfd_release here as nothing has done another
806 bfd_alloc. We can't do this later in this function. */
807 bfd_release (input_bfd
, entry
);
812 name
= (bfd_elf_string_from_elf_section
813 (input_bfd
, elf_tdata (input_bfd
)->symtab_hdr
.sh_link
,
814 entry
->isym
.st_name
));
816 dynstr
= elf_hash_table (info
)->dynstr
;
819 /* Create a strtab to hold the dynamic symbol names. */
820 elf_hash_table (info
)->dynstr
= dynstr
= _bfd_elf_strtab_init ();
825 dynstr_index
= _bfd_elf_strtab_add (dynstr
, name
, FALSE
);
826 if (dynstr_index
== (size_t) -1)
828 entry
->isym
.st_name
= dynstr_index
;
830 eht
= elf_hash_table (info
);
832 entry
->next
= eht
->dynlocal
;
833 eht
->dynlocal
= entry
;
834 entry
->input_bfd
= input_bfd
;
835 entry
->input_indx
= input_indx
;
838 /* Whatever binding the symbol had before, it's now local. */
840 = ELF_ST_INFO (STB_LOCAL
, ELF_ST_TYPE (entry
->isym
.st_info
));
842 /* The dynindx will be set at the end of size_dynamic_sections. */
847 /* Return the dynindex of a local dynamic symbol. */
850 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info
*info
,
854 struct elf_link_local_dynamic_entry
*e
;
856 for (e
= elf_hash_table (info
)->dynlocal
; e
; e
= e
->next
)
857 if (e
->input_bfd
== input_bfd
&& e
->input_indx
== input_indx
)
862 /* This function is used to renumber the dynamic symbols, if some of
863 them are removed because they are marked as local. This is called
864 via elf_link_hash_traverse. */
867 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry
*h
,
870 size_t *count
= (size_t *) data
;
875 if (h
->dynindx
!= -1)
876 h
->dynindx
= ++(*count
);
882 /* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
883 STB_LOCAL binding. */
886 elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry
*h
,
889 size_t *count
= (size_t *) data
;
891 if (!h
->forced_local
)
894 if (h
->dynindx
!= -1)
895 h
->dynindx
= ++(*count
);
900 /* Return true if the dynamic symbol for a given section should be
901 omitted when creating a shared library. */
903 _bfd_elf_omit_section_dynsym_default (bfd
*output_bfd ATTRIBUTE_UNUSED
,
904 struct bfd_link_info
*info
,
907 struct elf_link_hash_table
*htab
;
910 switch (elf_section_data (p
)->this_hdr
.sh_type
)
914 /* If sh_type is yet undecided, assume it could be
915 SHT_PROGBITS/SHT_NOBITS. */
917 htab
= elf_hash_table (info
);
918 if (htab
->text_index_section
!= NULL
)
919 return p
!= htab
->text_index_section
&& p
!= htab
->data_index_section
;
921 return (htab
->dynobj
!= NULL
922 && (ip
= bfd_get_linker_section (htab
->dynobj
, p
->name
)) != NULL
923 && ip
->output_section
== p
);
925 /* There shouldn't be section relative relocations
926 against any other section. */
933 _bfd_elf_omit_section_dynsym_all
934 (bfd
*output_bfd ATTRIBUTE_UNUSED
,
935 struct bfd_link_info
*info ATTRIBUTE_UNUSED
,
936 asection
*p ATTRIBUTE_UNUSED
)
941 /* Assign dynsym indices. In a shared library we generate a section
942 symbol for each output section, which come first. Next come symbols
943 which have been forced to local binding. Then all of the back-end
944 allocated local dynamic syms, followed by the rest of the global
945 symbols. If SECTION_SYM_COUNT is NULL, section dynindx is not set.
946 (This prevents the early call before elf_backend_init_index_section
947 and strip_excluded_output_sections setting dynindx for sections
948 that are stripped.) */
951 _bfd_elf_link_renumber_dynsyms (bfd
*output_bfd
,
952 struct bfd_link_info
*info
,
953 unsigned long *section_sym_count
)
955 unsigned long dynsymcount
= 0;
956 bfd_boolean do_sec
= section_sym_count
!= NULL
;
958 if (bfd_link_pic (info
)
959 || elf_hash_table (info
)->is_relocatable_executable
)
961 const struct elf_backend_data
*bed
= get_elf_backend_data (output_bfd
);
963 for (p
= output_bfd
->sections
; p
; p
= p
->next
)
964 if ((p
->flags
& SEC_EXCLUDE
) == 0
965 && (p
->flags
& SEC_ALLOC
) != 0
966 && elf_hash_table (info
)->dynamic_relocs
967 && !(*bed
->elf_backend_omit_section_dynsym
) (output_bfd
, info
, p
))
971 elf_section_data (p
)->dynindx
= dynsymcount
;
974 elf_section_data (p
)->dynindx
= 0;
977 *section_sym_count
= dynsymcount
;
979 elf_link_hash_traverse (elf_hash_table (info
),
980 elf_link_renumber_local_hash_table_dynsyms
,
983 if (elf_hash_table (info
)->dynlocal
)
985 struct elf_link_local_dynamic_entry
*p
;
986 for (p
= elf_hash_table (info
)->dynlocal
; p
; p
= p
->next
)
987 p
->dynindx
= ++dynsymcount
;
989 elf_hash_table (info
)->local_dynsymcount
= dynsymcount
;
991 elf_link_hash_traverse (elf_hash_table (info
),
992 elf_link_renumber_hash_table_dynsyms
,
995 /* There is an unused NULL entry at the head of the table which we
996 must account for in our count even if the table is empty since it
997 is intended for the mandatory DT_SYMTAB tag (.dynsym section) in
1001 elf_hash_table (info
)->dynsymcount
= dynsymcount
;
1005 /* Merge st_other field. */
1008 elf_merge_st_other (bfd
*abfd
, struct elf_link_hash_entry
*h
,
1009 unsigned int st_other
, asection
*sec
,
1010 bfd_boolean definition
, bfd_boolean dynamic
)
1012 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
1014 /* If st_other has a processor-specific meaning, specific
1015 code might be needed here. */
1016 if (bed
->elf_backend_merge_symbol_attribute
)
1017 (*bed
->elf_backend_merge_symbol_attribute
) (h
, st_other
, definition
,
1022 unsigned symvis
= ELF_ST_VISIBILITY (st_other
);
1023 unsigned hvis
= ELF_ST_VISIBILITY (h
->other
);
1025 /* Keep the most constraining visibility. Leave the remainder
1026 of the st_other field to elf_backend_merge_symbol_attribute. */
1027 if (symvis
- 1 < hvis
- 1)
1028 h
->other
= symvis
| (h
->other
& ~ELF_ST_VISIBILITY (-1));
1031 && ELF_ST_VISIBILITY (st_other
) != STV_DEFAULT
1032 && (sec
->flags
& SEC_READONLY
) == 0)
1033 h
->protected_def
= 1;
1036 /* This function is called when we want to merge a new symbol with an
1037 existing symbol. It handles the various cases which arise when we
1038 find a definition in a dynamic object, or when there is already a
1039 definition in a dynamic object. The new symbol is described by
1040 NAME, SYM, PSEC, and PVALUE. We set SYM_HASH to the hash table
1041 entry. We set POLDBFD to the old symbol's BFD. We set POLD_WEAK
1042 if the old symbol was weak. We set POLD_ALIGNMENT to the alignment
1043 of an old common symbol. We set OVERRIDE if the old symbol is
1044 overriding a new definition. We set TYPE_CHANGE_OK if it is OK for
1045 the type to change. We set SIZE_CHANGE_OK if it is OK for the size
1046 to change. By OK to change, we mean that we shouldn't warn if the
1047 type or size does change. */
1050 _bfd_elf_merge_symbol (bfd
*abfd
,
1051 struct bfd_link_info
*info
,
1053 Elf_Internal_Sym
*sym
,
1056 struct elf_link_hash_entry
**sym_hash
,
1058 bfd_boolean
*pold_weak
,
1059 unsigned int *pold_alignment
,
1062 bfd_boolean
*type_change_ok
,
1063 bfd_boolean
*size_change_ok
,
1064 bfd_boolean
*matched
)
1066 asection
*sec
, *oldsec
;
1067 struct elf_link_hash_entry
*h
;
1068 struct elf_link_hash_entry
*hi
;
1069 struct elf_link_hash_entry
*flip
;
1072 bfd_boolean newdyn
, olddyn
, olddef
, newdef
, newdyncommon
, olddyncommon
;
1073 bfd_boolean newweak
, oldweak
, newfunc
, oldfunc
;
1074 const struct elf_backend_data
*bed
;
1076 bfd_boolean default_sym
= *matched
;
1082 bind
= ELF_ST_BIND (sym
->st_info
);
1084 if (! bfd_is_und_section (sec
))
1085 h
= elf_link_hash_lookup (elf_hash_table (info
), name
, TRUE
, FALSE
, FALSE
);
1087 h
= ((struct elf_link_hash_entry
*)
1088 bfd_wrapped_link_hash_lookup (abfd
, info
, name
, TRUE
, FALSE
, FALSE
));
1093 bed
= get_elf_backend_data (abfd
);
1095 /* NEW_VERSION is the symbol version of the new symbol. */
1096 if (h
->versioned
!= unversioned
)
1098 /* Symbol version is unknown or versioned. */
1099 new_version
= strrchr (name
, ELF_VER_CHR
);
1102 if (h
->versioned
== unknown
)
1104 if (new_version
> name
&& new_version
[-1] != ELF_VER_CHR
)
1105 h
->versioned
= versioned_hidden
;
1107 h
->versioned
= versioned
;
1110 if (new_version
[0] == '\0')
1114 h
->versioned
= unversioned
;
1119 /* For merging, we only care about real symbols. But we need to make
1120 sure that indirect symbol dynamic flags are updated. */
1122 while (h
->root
.type
== bfd_link_hash_indirect
1123 || h
->root
.type
== bfd_link_hash_warning
)
1124 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
1128 if (hi
== h
|| h
->root
.type
== bfd_link_hash_new
)
1132 /* OLD_HIDDEN is true if the existing symbol is only visible
1133 to the symbol with the same symbol version. NEW_HIDDEN is
1134 true if the new symbol is only visible to the symbol with
1135 the same symbol version. */
1136 bfd_boolean old_hidden
= h
->versioned
== versioned_hidden
;
1137 bfd_boolean new_hidden
= hi
->versioned
== versioned_hidden
;
1138 if (!old_hidden
&& !new_hidden
)
1139 /* The new symbol matches the existing symbol if both
1144 /* OLD_VERSION is the symbol version of the existing
1148 if (h
->versioned
>= versioned
)
1149 old_version
= strrchr (h
->root
.root
.string
,
1154 /* The new symbol matches the existing symbol if they
1155 have the same symbol version. */
1156 *matched
= (old_version
== new_version
1157 || (old_version
!= NULL
1158 && new_version
!= NULL
1159 && strcmp (old_version
, new_version
) == 0));
1164 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
1169 switch (h
->root
.type
)
1174 case bfd_link_hash_undefined
:
1175 case bfd_link_hash_undefweak
:
1176 oldbfd
= h
->root
.u
.undef
.abfd
;
1179 case bfd_link_hash_defined
:
1180 case bfd_link_hash_defweak
:
1181 oldbfd
= h
->root
.u
.def
.section
->owner
;
1182 oldsec
= h
->root
.u
.def
.section
;
1185 case bfd_link_hash_common
:
1186 oldbfd
= h
->root
.u
.c
.p
->section
->owner
;
1187 oldsec
= h
->root
.u
.c
.p
->section
;
1189 *pold_alignment
= h
->root
.u
.c
.p
->alignment_power
;
1192 if (poldbfd
&& *poldbfd
== NULL
)
1195 /* Differentiate strong and weak symbols. */
1196 newweak
= bind
== STB_WEAK
;
1197 oldweak
= (h
->root
.type
== bfd_link_hash_defweak
1198 || h
->root
.type
== bfd_link_hash_undefweak
);
1200 *pold_weak
= oldweak
;
1202 /* We have to check it for every instance since the first few may be
1203 references and not all compilers emit symbol type for undefined
1205 bfd_elf_link_mark_dynamic_symbol (info
, h
, sym
);
1207 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
1208 respectively, is from a dynamic object. */
1210 newdyn
= (abfd
->flags
& DYNAMIC
) != 0;
1212 /* ref_dynamic_nonweak and dynamic_def flags track actual undefined
1213 syms and defined syms in dynamic libraries respectively.
1214 ref_dynamic on the other hand can be set for a symbol defined in
1215 a dynamic library, and def_dynamic may not be set; When the
1216 definition in a dynamic lib is overridden by a definition in the
1217 executable use of the symbol in the dynamic lib becomes a
1218 reference to the executable symbol. */
1221 if (bfd_is_und_section (sec
))
1223 if (bind
!= STB_WEAK
)
1225 h
->ref_dynamic_nonweak
= 1;
1226 hi
->ref_dynamic_nonweak
= 1;
1231 /* Update the existing symbol only if they match. */
1234 hi
->dynamic_def
= 1;
1238 /* If we just created the symbol, mark it as being an ELF symbol.
1239 Other than that, there is nothing to do--there is no merge issue
1240 with a newly defined symbol--so we just return. */
1242 if (h
->root
.type
== bfd_link_hash_new
)
1248 /* In cases involving weak versioned symbols, we may wind up trying
1249 to merge a symbol with itself. Catch that here, to avoid the
1250 confusion that results if we try to override a symbol with
1251 itself. The additional tests catch cases like
1252 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
1253 dynamic object, which we do want to handle here. */
1255 && (newweak
|| oldweak
)
1256 && ((abfd
->flags
& DYNAMIC
) == 0
1257 || !h
->def_regular
))
1262 olddyn
= (oldbfd
->flags
& DYNAMIC
) != 0;
1263 else if (oldsec
!= NULL
)
1265 /* This handles the special SHN_MIPS_{TEXT,DATA} section
1266 indices used by MIPS ELF. */
1267 olddyn
= (oldsec
->symbol
->flags
& BSF_DYNAMIC
) != 0;
1270 /* Handle a case where plugin_notice won't be called and thus won't
1271 set the non_ir_ref flags on the first pass over symbols. */
1273 && (oldbfd
->flags
& BFD_PLUGIN
) != (abfd
->flags
& BFD_PLUGIN
)
1274 && newdyn
!= olddyn
)
1276 h
->root
.non_ir_ref_dynamic
= TRUE
;
1277 hi
->root
.non_ir_ref_dynamic
= TRUE
;
1280 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
1281 respectively, appear to be a definition rather than reference. */
1283 newdef
= !bfd_is_und_section (sec
) && !bfd_is_com_section (sec
);
1285 olddef
= (h
->root
.type
!= bfd_link_hash_undefined
1286 && h
->root
.type
!= bfd_link_hash_undefweak
1287 && h
->root
.type
!= bfd_link_hash_common
);
1289 /* NEWFUNC and OLDFUNC indicate whether the new or old symbol,
1290 respectively, appear to be a function. */
1292 newfunc
= (ELF_ST_TYPE (sym
->st_info
) != STT_NOTYPE
1293 && bed
->is_function_type (ELF_ST_TYPE (sym
->st_info
)));
1295 oldfunc
= (h
->type
!= STT_NOTYPE
1296 && bed
->is_function_type (h
->type
));
1298 if (!(newfunc
&& oldfunc
)
1299 && ELF_ST_TYPE (sym
->st_info
) != h
->type
1300 && ELF_ST_TYPE (sym
->st_info
) != STT_NOTYPE
1301 && h
->type
!= STT_NOTYPE
1302 && (newdef
|| bfd_is_com_section (sec
))
1303 && (olddef
|| h
->root
.type
== bfd_link_hash_common
))
1305 /* If creating a default indirect symbol ("foo" or "foo@") from
1306 a dynamic versioned definition ("foo@@") skip doing so if
1307 there is an existing regular definition with a different
1308 type. We don't want, for example, a "time" variable in the
1309 executable overriding a "time" function in a shared library. */
1317 /* When adding a symbol from a regular object file after we have
1318 created indirect symbols, undo the indirection and any
1325 (*bed
->elf_backend_hide_symbol
) (info
, h
, TRUE
);
1326 h
->forced_local
= 0;
1330 if (h
->root
.u
.undef
.next
|| info
->hash
->undefs_tail
== &h
->root
)
1332 h
->root
.type
= bfd_link_hash_undefined
;
1333 h
->root
.u
.undef
.abfd
= abfd
;
1337 h
->root
.type
= bfd_link_hash_new
;
1338 h
->root
.u
.undef
.abfd
= NULL
;
1344 /* Check TLS symbols. We don't check undefined symbols introduced
1345 by "ld -u" which have no type (and oldbfd NULL), and we don't
1346 check symbols from plugins because they also have no type. */
1348 && (oldbfd
->flags
& BFD_PLUGIN
) == 0
1349 && (abfd
->flags
& BFD_PLUGIN
) == 0
1350 && ELF_ST_TYPE (sym
->st_info
) != h
->type
1351 && (ELF_ST_TYPE (sym
->st_info
) == STT_TLS
|| h
->type
== STT_TLS
))
1354 bfd_boolean ntdef
, tdef
;
1355 asection
*ntsec
, *tsec
;
1357 if (h
->type
== STT_TLS
)
1378 /* xgettext:c-format */
1379 (_("%s: TLS definition in %pB section %pA "
1380 "mismatches non-TLS definition in %pB section %pA"),
1381 h
->root
.root
.string
, tbfd
, tsec
, ntbfd
, ntsec
);
1382 else if (!tdef
&& !ntdef
)
1384 /* xgettext:c-format */
1385 (_("%s: TLS reference in %pB "
1386 "mismatches non-TLS reference in %pB"),
1387 h
->root
.root
.string
, tbfd
, ntbfd
);
1390 /* xgettext:c-format */
1391 (_("%s: TLS definition in %pB section %pA "
1392 "mismatches non-TLS reference in %pB"),
1393 h
->root
.root
.string
, tbfd
, tsec
, ntbfd
);
1396 /* xgettext:c-format */
1397 (_("%s: TLS reference in %pB "
1398 "mismatches non-TLS definition in %pB section %pA"),
1399 h
->root
.root
.string
, tbfd
, ntbfd
, ntsec
);
1401 bfd_set_error (bfd_error_bad_value
);
1405 /* If the old symbol has non-default visibility, we ignore the new
1406 definition from a dynamic object. */
1408 && ELF_ST_VISIBILITY (h
->other
) != STV_DEFAULT
1409 && !bfd_is_und_section (sec
))
1412 /* Make sure this symbol is dynamic. */
1414 hi
->ref_dynamic
= 1;
1415 /* A protected symbol has external availability. Make sure it is
1416 recorded as dynamic.
1418 FIXME: Should we check type and size for protected symbol? */
1419 if (ELF_ST_VISIBILITY (h
->other
) == STV_PROTECTED
)
1420 return bfd_elf_link_record_dynamic_symbol (info
, h
);
1425 && ELF_ST_VISIBILITY (sym
->st_other
) != STV_DEFAULT
1428 /* If the new symbol with non-default visibility comes from a
1429 relocatable file and the old definition comes from a dynamic
1430 object, we remove the old definition. */
1431 if (hi
->root
.type
== bfd_link_hash_indirect
)
1433 /* Handle the case where the old dynamic definition is
1434 default versioned. We need to copy the symbol info from
1435 the symbol with default version to the normal one if it
1436 was referenced before. */
1439 hi
->root
.type
= h
->root
.type
;
1440 h
->root
.type
= bfd_link_hash_indirect
;
1441 (*bed
->elf_backend_copy_indirect_symbol
) (info
, hi
, h
);
1443 h
->root
.u
.i
.link
= (struct bfd_link_hash_entry
*) hi
;
1444 if (ELF_ST_VISIBILITY (sym
->st_other
) != STV_PROTECTED
)
1446 /* If the new symbol is hidden or internal, completely undo
1447 any dynamic link state. */
1448 (*bed
->elf_backend_hide_symbol
) (info
, h
, TRUE
);
1449 h
->forced_local
= 0;
1456 /* FIXME: Should we check type and size for protected symbol? */
1466 /* If the old symbol was undefined before, then it will still be
1467 on the undefs list. If the new symbol is undefined or
1468 common, we can't make it bfd_link_hash_new here, because new
1469 undefined or common symbols will be added to the undefs list
1470 by _bfd_generic_link_add_one_symbol. Symbols may not be
1471 added twice to the undefs list. Also, if the new symbol is
1472 undefweak then we don't want to lose the strong undef. */
1473 if (h
->root
.u
.undef
.next
|| info
->hash
->undefs_tail
== &h
->root
)
1475 h
->root
.type
= bfd_link_hash_undefined
;
1476 h
->root
.u
.undef
.abfd
= abfd
;
1480 h
->root
.type
= bfd_link_hash_new
;
1481 h
->root
.u
.undef
.abfd
= NULL
;
1484 if (ELF_ST_VISIBILITY (sym
->st_other
) != STV_PROTECTED
)
1486 /* If the new symbol is hidden or internal, completely undo
1487 any dynamic link state. */
1488 (*bed
->elf_backend_hide_symbol
) (info
, h
, TRUE
);
1489 h
->forced_local
= 0;
1495 /* FIXME: Should we check type and size for protected symbol? */
1501 /* If a new weak symbol definition comes from a regular file and the
1502 old symbol comes from a dynamic library, we treat the new one as
1503 strong. Similarly, an old weak symbol definition from a regular
1504 file is treated as strong when the new symbol comes from a dynamic
1505 library. Further, an old weak symbol from a dynamic library is
1506 treated as strong if the new symbol is from a dynamic library.
1507 This reflects the way glibc's ld.so works.
1509 Also allow a weak symbol to override a linker script symbol
1510 defined by an early pass over the script. This is done so the
1511 linker knows the symbol is defined in an object file, for the
1512 DEFINED script function.
1514 Do this before setting *type_change_ok or *size_change_ok so that
1515 we warn properly when dynamic library symbols are overridden. */
1517 if (newdef
&& !newdyn
&& (olddyn
|| h
->root
.ldscript_def
))
1519 if (olddef
&& newdyn
)
1522 /* Allow changes between different types of function symbol. */
1523 if (newfunc
&& oldfunc
)
1524 *type_change_ok
= TRUE
;
1526 /* It's OK to change the type if either the existing symbol or the
1527 new symbol is weak. A type change is also OK if the old symbol
1528 is undefined and the new symbol is defined. */
1533 && h
->root
.type
== bfd_link_hash_undefined
))
1534 *type_change_ok
= TRUE
;
1536 /* It's OK to change the size if either the existing symbol or the
1537 new symbol is weak, or if the old symbol is undefined. */
1540 || h
->root
.type
== bfd_link_hash_undefined
)
1541 *size_change_ok
= TRUE
;
1543 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1544 symbol, respectively, appears to be a common symbol in a dynamic
1545 object. If a symbol appears in an uninitialized section, and is
1546 not weak, and is not a function, then it may be a common symbol
1547 which was resolved when the dynamic object was created. We want
1548 to treat such symbols specially, because they raise special
1549 considerations when setting the symbol size: if the symbol
1550 appears as a common symbol in a regular object, and the size in
1551 the regular object is larger, we must make sure that we use the
1552 larger size. This problematic case can always be avoided in C,
1553 but it must be handled correctly when using Fortran shared
1556 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1557 likewise for OLDDYNCOMMON and OLDDEF.
1559 Note that this test is just a heuristic, and that it is quite
1560 possible to have an uninitialized symbol in a shared object which
1561 is really a definition, rather than a common symbol. This could
1562 lead to some minor confusion when the symbol really is a common
1563 symbol in some regular object. However, I think it will be
1569 && (sec
->flags
& SEC_ALLOC
) != 0
1570 && (sec
->flags
& SEC_LOAD
) == 0
1573 newdyncommon
= TRUE
;
1575 newdyncommon
= FALSE
;
1579 && h
->root
.type
== bfd_link_hash_defined
1581 && (h
->root
.u
.def
.section
->flags
& SEC_ALLOC
) != 0
1582 && (h
->root
.u
.def
.section
->flags
& SEC_LOAD
) == 0
1585 olddyncommon
= TRUE
;
1587 olddyncommon
= FALSE
;
1589 /* We now know everything about the old and new symbols. We ask the
1590 backend to check if we can merge them. */
1591 if (bed
->merge_symbol
!= NULL
)
1593 if (!bed
->merge_symbol (h
, sym
, psec
, newdef
, olddef
, oldbfd
, oldsec
))
1598 /* There are multiple definitions of a normal symbol. Skip the
1599 default symbol as well as definition from an IR object. */
1600 if (olddef
&& !olddyn
&& !oldweak
&& newdef
&& !newdyn
&& !newweak
1601 && !default_sym
&& h
->def_regular
1603 && (oldbfd
->flags
& BFD_PLUGIN
) != 0
1604 && (abfd
->flags
& BFD_PLUGIN
) == 0))
1606 /* Handle a multiple definition. */
1607 (*info
->callbacks
->multiple_definition
) (info
, &h
->root
,
1608 abfd
, sec
, *pvalue
);
1613 /* If both the old and the new symbols look like common symbols in a
1614 dynamic object, set the size of the symbol to the larger of the
1619 && sym
->st_size
!= h
->size
)
1621 /* Since we think we have two common symbols, issue a multiple
1622 common warning if desired. Note that we only warn if the
1623 size is different. If the size is the same, we simply let
1624 the old symbol override the new one as normally happens with
1625 symbols defined in dynamic objects. */
1627 (*info
->callbacks
->multiple_common
) (info
, &h
->root
, abfd
,
1628 bfd_link_hash_common
, sym
->st_size
);
1629 if (sym
->st_size
> h
->size
)
1630 h
->size
= sym
->st_size
;
1632 *size_change_ok
= TRUE
;
1635 /* If we are looking at a dynamic object, and we have found a
1636 definition, we need to see if the symbol was already defined by
1637 some other object. If so, we want to use the existing
1638 definition, and we do not want to report a multiple symbol
1639 definition error; we do this by clobbering *PSEC to be
1640 bfd_und_section_ptr.
1642 We treat a common symbol as a definition if the symbol in the
1643 shared library is a function, since common symbols always
1644 represent variables; this can cause confusion in principle, but
1645 any such confusion would seem to indicate an erroneous program or
1646 shared library. We also permit a common symbol in a regular
1647 object to override a weak symbol in a shared object. */
1652 || (h
->root
.type
== bfd_link_hash_common
1653 && (newweak
|| newfunc
))))
1657 newdyncommon
= FALSE
;
1659 *psec
= sec
= bfd_und_section_ptr
;
1660 *size_change_ok
= TRUE
;
1662 /* If we get here when the old symbol is a common symbol, then
1663 we are explicitly letting it override a weak symbol or
1664 function in a dynamic object, and we don't want to warn about
1665 a type change. If the old symbol is a defined symbol, a type
1666 change warning may still be appropriate. */
1668 if (h
->root
.type
== bfd_link_hash_common
)
1669 *type_change_ok
= TRUE
;
1672 /* Handle the special case of an old common symbol merging with a
1673 new symbol which looks like a common symbol in a shared object.
1674 We change *PSEC and *PVALUE to make the new symbol look like a
1675 common symbol, and let _bfd_generic_link_add_one_symbol do the
1679 && h
->root
.type
== bfd_link_hash_common
)
1683 newdyncommon
= FALSE
;
1684 *pvalue
= sym
->st_size
;
1685 *psec
= sec
= bed
->common_section (oldsec
);
1686 *size_change_ok
= TRUE
;
1689 /* Skip weak definitions of symbols that are already defined. */
1690 if (newdef
&& olddef
&& newweak
)
1692 /* Don't skip new non-IR weak syms. */
1693 if (!(oldbfd
!= NULL
1694 && (oldbfd
->flags
& BFD_PLUGIN
) != 0
1695 && (abfd
->flags
& BFD_PLUGIN
) == 0))
1701 /* Merge st_other. If the symbol already has a dynamic index,
1702 but visibility says it should not be visible, turn it into a
1704 elf_merge_st_other (abfd
, h
, sym
->st_other
, sec
, newdef
, newdyn
);
1705 if (h
->dynindx
!= -1)
1706 switch (ELF_ST_VISIBILITY (h
->other
))
1710 (*bed
->elf_backend_hide_symbol
) (info
, h
, TRUE
);
1715 /* If the old symbol is from a dynamic object, and the new symbol is
1716 a definition which is not from a dynamic object, then the new
1717 symbol overrides the old symbol. Symbols from regular files
1718 always take precedence over symbols from dynamic objects, even if
1719 they are defined after the dynamic object in the link.
1721 As above, we again permit a common symbol in a regular object to
1722 override a definition in a shared object if the shared object
1723 symbol is a function or is weak. */
1728 || (bfd_is_com_section (sec
)
1729 && (oldweak
|| oldfunc
)))
1734 /* Change the hash table entry to undefined, and let
1735 _bfd_generic_link_add_one_symbol do the right thing with the
1738 h
->root
.type
= bfd_link_hash_undefined
;
1739 h
->root
.u
.undef
.abfd
= h
->root
.u
.def
.section
->owner
;
1740 *size_change_ok
= TRUE
;
1743 olddyncommon
= FALSE
;
1745 /* We again permit a type change when a common symbol may be
1746 overriding a function. */
1748 if (bfd_is_com_section (sec
))
1752 /* If a common symbol overrides a function, make sure
1753 that it isn't defined dynamically nor has type
1756 h
->type
= STT_NOTYPE
;
1758 *type_change_ok
= TRUE
;
1761 if (hi
->root
.type
== bfd_link_hash_indirect
)
1764 /* This union may have been set to be non-NULL when this symbol
1765 was seen in a dynamic object. We must force the union to be
1766 NULL, so that it is correct for a regular symbol. */
1767 h
->verinfo
.vertree
= NULL
;
1770 /* Handle the special case of a new common symbol merging with an
1771 old symbol that looks like it might be a common symbol defined in
1772 a shared object. Note that we have already handled the case in
1773 which a new common symbol should simply override the definition
1774 in the shared library. */
1777 && bfd_is_com_section (sec
)
1780 /* It would be best if we could set the hash table entry to a
1781 common symbol, but we don't know what to use for the section
1782 or the alignment. */
1783 (*info
->callbacks
->multiple_common
) (info
, &h
->root
, abfd
,
1784 bfd_link_hash_common
, sym
->st_size
);
1786 /* If the presumed common symbol in the dynamic object is
1787 larger, pretend that the new symbol has its size. */
1789 if (h
->size
> *pvalue
)
1792 /* We need to remember the alignment required by the symbol
1793 in the dynamic object. */
1794 BFD_ASSERT (pold_alignment
);
1795 *pold_alignment
= h
->root
.u
.def
.section
->alignment_power
;
1798 olddyncommon
= FALSE
;
1800 h
->root
.type
= bfd_link_hash_undefined
;
1801 h
->root
.u
.undef
.abfd
= h
->root
.u
.def
.section
->owner
;
1803 *size_change_ok
= TRUE
;
1804 *type_change_ok
= TRUE
;
1806 if (hi
->root
.type
== bfd_link_hash_indirect
)
1809 h
->verinfo
.vertree
= NULL
;
1814 /* Handle the case where we had a versioned symbol in a dynamic
1815 library and now find a definition in a normal object. In this
1816 case, we make the versioned symbol point to the normal one. */
1817 flip
->root
.type
= h
->root
.type
;
1818 flip
->root
.u
.undef
.abfd
= h
->root
.u
.undef
.abfd
;
1819 h
->root
.type
= bfd_link_hash_indirect
;
1820 h
->root
.u
.i
.link
= (struct bfd_link_hash_entry
*) flip
;
1821 (*bed
->elf_backend_copy_indirect_symbol
) (info
, flip
, h
);
1825 flip
->ref_dynamic
= 1;
1832 /* This function is called to create an indirect symbol from the
1833 default for the symbol with the default version if needed. The
1834 symbol is described by H, NAME, SYM, SEC, and VALUE. We
1835 set DYNSYM if the new indirect symbol is dynamic. */
1838 _bfd_elf_add_default_symbol (bfd
*abfd
,
1839 struct bfd_link_info
*info
,
1840 struct elf_link_hash_entry
*h
,
1842 Elf_Internal_Sym
*sym
,
1846 bfd_boolean
*dynsym
)
1848 bfd_boolean type_change_ok
;
1849 bfd_boolean size_change_ok
;
1852 struct elf_link_hash_entry
*hi
;
1853 struct bfd_link_hash_entry
*bh
;
1854 const struct elf_backend_data
*bed
;
1855 bfd_boolean collect
;
1856 bfd_boolean dynamic
;
1859 size_t len
, shortlen
;
1861 bfd_boolean matched
;
1863 if (h
->versioned
== unversioned
|| h
->versioned
== versioned_hidden
)
1866 /* If this symbol has a version, and it is the default version, we
1867 create an indirect symbol from the default name to the fully
1868 decorated name. This will cause external references which do not
1869 specify a version to be bound to this version of the symbol. */
1870 p
= strchr (name
, ELF_VER_CHR
);
1871 if (h
->versioned
== unknown
)
1875 h
->versioned
= unversioned
;
1880 if (p
[1] != ELF_VER_CHR
)
1882 h
->versioned
= versioned_hidden
;
1886 h
->versioned
= versioned
;
1891 /* PR ld/19073: We may see an unversioned definition after the
1897 bed
= get_elf_backend_data (abfd
);
1898 collect
= bed
->collect
;
1899 dynamic
= (abfd
->flags
& DYNAMIC
) != 0;
1901 shortlen
= p
- name
;
1902 shortname
= (char *) bfd_hash_allocate (&info
->hash
->table
, shortlen
+ 1);
1903 if (shortname
== NULL
)
1905 memcpy (shortname
, name
, shortlen
);
1906 shortname
[shortlen
] = '\0';
1908 /* We are going to create a new symbol. Merge it with any existing
1909 symbol with this name. For the purposes of the merge, act as
1910 though we were defining the symbol we just defined, although we
1911 actually going to define an indirect symbol. */
1912 type_change_ok
= FALSE
;
1913 size_change_ok
= FALSE
;
1916 if (!_bfd_elf_merge_symbol (abfd
, info
, shortname
, sym
, &tmp_sec
, &value
,
1917 &hi
, poldbfd
, NULL
, NULL
, &skip
, &override
,
1918 &type_change_ok
, &size_change_ok
, &matched
))
1924 if (hi
->def_regular
|| ELF_COMMON_DEF_P (hi
))
1926 /* If the undecorated symbol will have a version added by a
1927 script different to H, then don't indirect to/from the
1928 undecorated symbol. This isn't ideal because we may not yet
1929 have seen symbol versions, if given by a script on the
1930 command line rather than via --version-script. */
1931 if (hi
->verinfo
.vertree
== NULL
&& info
->version_info
!= NULL
)
1936 = bfd_find_version_for_sym (info
->version_info
,
1937 hi
->root
.root
.string
, &hide
);
1938 if (hi
->verinfo
.vertree
!= NULL
&& hide
)
1940 (*bed
->elf_backend_hide_symbol
) (info
, hi
, TRUE
);
1944 if (hi
->verinfo
.vertree
!= NULL
1945 && strcmp (p
+ 1 + (p
[1] == '@'), hi
->verinfo
.vertree
->name
) != 0)
1951 /* Add the default symbol if not performing a relocatable link. */
1952 if (! bfd_link_relocatable (info
))
1955 if (bh
->type
== bfd_link_hash_defined
1956 && bh
->u
.def
.section
->owner
!= NULL
1957 && (bh
->u
.def
.section
->owner
->flags
& BFD_PLUGIN
) != 0)
1959 /* Mark the previous definition from IR object as
1960 undefined so that the generic linker will override
1962 bh
->type
= bfd_link_hash_undefined
;
1963 bh
->u
.undef
.abfd
= bh
->u
.def
.section
->owner
;
1965 if (! (_bfd_generic_link_add_one_symbol
1966 (info
, abfd
, shortname
, BSF_INDIRECT
,
1967 bfd_ind_section_ptr
,
1968 0, name
, FALSE
, collect
, &bh
)))
1970 hi
= (struct elf_link_hash_entry
*) bh
;
1975 /* In this case the symbol named SHORTNAME is overriding the
1976 indirect symbol we want to add. We were planning on making
1977 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1978 is the name without a version. NAME is the fully versioned
1979 name, and it is the default version.
1981 Overriding means that we already saw a definition for the
1982 symbol SHORTNAME in a regular object, and it is overriding
1983 the symbol defined in the dynamic object.
1985 When this happens, we actually want to change NAME, the
1986 symbol we just added, to refer to SHORTNAME. This will cause
1987 references to NAME in the shared object to become references
1988 to SHORTNAME in the regular object. This is what we expect
1989 when we override a function in a shared object: that the
1990 references in the shared object will be mapped to the
1991 definition in the regular object. */
1993 while (hi
->root
.type
== bfd_link_hash_indirect
1994 || hi
->root
.type
== bfd_link_hash_warning
)
1995 hi
= (struct elf_link_hash_entry
*) hi
->root
.u
.i
.link
;
1997 h
->root
.type
= bfd_link_hash_indirect
;
1998 h
->root
.u
.i
.link
= (struct bfd_link_hash_entry
*) hi
;
2002 hi
->ref_dynamic
= 1;
2006 if (! bfd_elf_link_record_dynamic_symbol (info
, hi
))
2011 /* Now set HI to H, so that the following code will set the
2012 other fields correctly. */
2016 /* Check if HI is a warning symbol. */
2017 if (hi
->root
.type
== bfd_link_hash_warning
)
2018 hi
= (struct elf_link_hash_entry
*) hi
->root
.u
.i
.link
;
2020 /* If there is a duplicate definition somewhere, then HI may not
2021 point to an indirect symbol. We will have reported an error to
2022 the user in that case. */
2024 if (hi
->root
.type
== bfd_link_hash_indirect
)
2026 struct elf_link_hash_entry
*ht
;
2028 ht
= (struct elf_link_hash_entry
*) hi
->root
.u
.i
.link
;
2029 (*bed
->elf_backend_copy_indirect_symbol
) (info
, ht
, hi
);
2031 /* If we first saw a reference to SHORTNAME with non-default
2032 visibility, merge that visibility to the @@VER symbol. */
2033 elf_merge_st_other (abfd
, ht
, hi
->other
, sec
, TRUE
, dynamic
);
2035 /* A reference to the SHORTNAME symbol from a dynamic library
2036 will be satisfied by the versioned symbol at runtime. In
2037 effect, we have a reference to the versioned symbol. */
2038 ht
->ref_dynamic_nonweak
|= hi
->ref_dynamic_nonweak
;
2039 hi
->dynamic_def
|= ht
->dynamic_def
;
2041 /* See if the new flags lead us to realize that the symbol must
2047 if (! bfd_link_executable (info
)
2054 if (hi
->ref_regular
)
2060 /* We also need to define an indirection from the nondefault version
2064 len
= strlen (name
);
2065 shortname
= (char *) bfd_hash_allocate (&info
->hash
->table
, len
);
2066 if (shortname
== NULL
)
2068 memcpy (shortname
, name
, shortlen
);
2069 memcpy (shortname
+ shortlen
, p
+ 1, len
- shortlen
);
2071 /* Once again, merge with any existing symbol. */
2072 type_change_ok
= FALSE
;
2073 size_change_ok
= FALSE
;
2075 if (!_bfd_elf_merge_symbol (abfd
, info
, shortname
, sym
, &tmp_sec
, &value
,
2076 &hi
, poldbfd
, NULL
, NULL
, &skip
, &override
,
2077 &type_change_ok
, &size_change_ok
, &matched
))
2083 && h
->root
.type
== bfd_link_hash_defweak
2084 && hi
->root
.type
== bfd_link_hash_defined
)
2086 /* We are handling a weak sym@@ver and attempting to define
2087 a weak sym@ver, but _bfd_elf_merge_symbol said to skip the
2088 new weak sym@ver because there is already a strong sym@ver.
2089 However, sym@ver and sym@@ver are really the same symbol.
2090 The existing strong sym@ver ought to override sym@@ver. */
2091 h
->root
.type
= bfd_link_hash_defined
;
2092 h
->root
.u
.def
.section
= hi
->root
.u
.def
.section
;
2093 h
->root
.u
.def
.value
= hi
->root
.u
.def
.value
;
2094 hi
->root
.type
= bfd_link_hash_indirect
;
2095 hi
->root
.u
.i
.link
= &h
->root
;
2102 /* Here SHORTNAME is a versioned name, so we don't expect to see
2103 the type of override we do in the case above unless it is
2104 overridden by a versioned definition. */
2105 if (hi
->root
.type
!= bfd_link_hash_defined
2106 && hi
->root
.type
!= bfd_link_hash_defweak
)
2108 /* xgettext:c-format */
2109 (_("%pB: unexpected redefinition of indirect versioned symbol `%s'"),
2116 if (! (_bfd_generic_link_add_one_symbol
2117 (info
, abfd
, shortname
, BSF_INDIRECT
,
2118 bfd_ind_section_ptr
, 0, name
, FALSE
, collect
, &bh
)))
2120 hi
= (struct elf_link_hash_entry
*) bh
;
2123 /* If there is a duplicate definition somewhere, then HI may not
2124 point to an indirect symbol. We will have reported an error
2125 to the user in that case. */
2126 if (hi
->root
.type
== bfd_link_hash_indirect
)
2128 (*bed
->elf_backend_copy_indirect_symbol
) (info
, h
, hi
);
2129 h
->ref_dynamic_nonweak
|= hi
->ref_dynamic_nonweak
;
2130 hi
->dynamic_def
|= h
->dynamic_def
;
2132 /* If we first saw a reference to @VER symbol with
2133 non-default visibility, merge that visibility to the
2135 elf_merge_st_other (abfd
, h
, hi
->other
, sec
, TRUE
, dynamic
);
2137 /* See if the new flags lead us to realize that the symbol
2143 if (! bfd_link_executable (info
)
2149 if (hi
->ref_regular
)
2158 /* This routine is used to export all defined symbols into the dynamic
2159 symbol table. It is called via elf_link_hash_traverse. */
2162 _bfd_elf_export_symbol (struct elf_link_hash_entry
*h
, void *data
)
2164 struct elf_info_failed
*eif
= (struct elf_info_failed
*) data
;
2166 /* Ignore indirect symbols. These are added by the versioning code. */
2167 if (h
->root
.type
== bfd_link_hash_indirect
)
2170 /* Ignore this if we won't export it. */
2171 if (!eif
->info
->export_dynamic
&& !h
->dynamic
)
2174 if (h
->dynindx
== -1
2175 && (h
->def_regular
|| h
->ref_regular
)
2176 && ! bfd_hide_sym_by_version (eif
->info
->version_info
,
2177 h
->root
.root
.string
))
2179 if (! bfd_elf_link_record_dynamic_symbol (eif
->info
, h
))
2189 /* Look through the symbols which are defined in other shared
2190 libraries and referenced here. Update the list of version
2191 dependencies. This will be put into the .gnu.version_r section.
2192 This function is called via elf_link_hash_traverse. */
2195 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry
*h
,
2198 struct elf_find_verdep_info
*rinfo
= (struct elf_find_verdep_info
*) data
;
2199 Elf_Internal_Verneed
*t
;
2200 Elf_Internal_Vernaux
*a
;
2203 /* We only care about symbols defined in shared objects with version
2208 || h
->verinfo
.verdef
== NULL
2209 || (elf_dyn_lib_class (h
->verinfo
.verdef
->vd_bfd
)
2210 & (DYN_AS_NEEDED
| DYN_DT_NEEDED
| DYN_NO_NEEDED
)))
2213 /* See if we already know about this version. */
2214 for (t
= elf_tdata (rinfo
->info
->output_bfd
)->verref
;
2218 if (t
->vn_bfd
!= h
->verinfo
.verdef
->vd_bfd
)
2221 for (a
= t
->vn_auxptr
; a
!= NULL
; a
= a
->vna_nextptr
)
2222 if (a
->vna_nodename
== h
->verinfo
.verdef
->vd_nodename
)
2228 /* This is a new version. Add it to tree we are building. */
2233 t
= (Elf_Internal_Verneed
*) bfd_zalloc (rinfo
->info
->output_bfd
, amt
);
2236 rinfo
->failed
= TRUE
;
2240 t
->vn_bfd
= h
->verinfo
.verdef
->vd_bfd
;
2241 t
->vn_nextref
= elf_tdata (rinfo
->info
->output_bfd
)->verref
;
2242 elf_tdata (rinfo
->info
->output_bfd
)->verref
= t
;
2246 a
= (Elf_Internal_Vernaux
*) bfd_zalloc (rinfo
->info
->output_bfd
, amt
);
2249 rinfo
->failed
= TRUE
;
2253 /* Note that we are copying a string pointer here, and testing it
2254 above. If bfd_elf_string_from_elf_section is ever changed to
2255 discard the string data when low in memory, this will have to be
2257 a
->vna_nodename
= h
->verinfo
.verdef
->vd_nodename
;
2259 a
->vna_flags
= h
->verinfo
.verdef
->vd_flags
;
2260 a
->vna_nextptr
= t
->vn_auxptr
;
2262 h
->verinfo
.verdef
->vd_exp_refno
= rinfo
->vers
;
2265 a
->vna_other
= h
->verinfo
.verdef
->vd_exp_refno
+ 1;
2272 /* Return TRUE and set *HIDE to TRUE if the versioned symbol is
2273 hidden. Set *T_P to NULL if there is no match. */
2276 _bfd_elf_link_hide_versioned_symbol (struct bfd_link_info
*info
,
2277 struct elf_link_hash_entry
*h
,
2278 const char *version_p
,
2279 struct bfd_elf_version_tree
**t_p
,
2282 struct bfd_elf_version_tree
*t
;
2284 /* Look for the version. If we find it, it is no longer weak. */
2285 for (t
= info
->version_info
; t
!= NULL
; t
= t
->next
)
2287 if (strcmp (t
->name
, version_p
) == 0)
2291 struct bfd_elf_version_expr
*d
;
2293 len
= version_p
- h
->root
.root
.string
;
2294 alc
= (char *) bfd_malloc (len
);
2297 memcpy (alc
, h
->root
.root
.string
, len
- 1);
2298 alc
[len
- 1] = '\0';
2299 if (alc
[len
- 2] == ELF_VER_CHR
)
2300 alc
[len
- 2] = '\0';
2302 h
->verinfo
.vertree
= t
;
2306 if (t
->globals
.list
!= NULL
)
2307 d
= (*t
->match
) (&t
->globals
, NULL
, alc
);
2309 /* See if there is anything to force this symbol to
2311 if (d
== NULL
&& t
->locals
.list
!= NULL
)
2313 d
= (*t
->match
) (&t
->locals
, NULL
, alc
);
2316 && ! info
->export_dynamic
)
2330 /* Return TRUE if the symbol H is hidden by version script. */
2333 _bfd_elf_link_hide_sym_by_version (struct bfd_link_info
*info
,
2334 struct elf_link_hash_entry
*h
)
2337 bfd_boolean hide
= FALSE
;
2338 const struct elf_backend_data
*bed
2339 = get_elf_backend_data (info
->output_bfd
);
2341 /* Version script only hides symbols defined in regular objects. */
2342 if (!h
->def_regular
&& !ELF_COMMON_DEF_P (h
))
2345 p
= strchr (h
->root
.root
.string
, ELF_VER_CHR
);
2346 if (p
!= NULL
&& h
->verinfo
.vertree
== NULL
)
2348 struct bfd_elf_version_tree
*t
;
2351 if (*p
== ELF_VER_CHR
)
2355 && _bfd_elf_link_hide_versioned_symbol (info
, h
, p
, &t
, &hide
)
2359 (*bed
->elf_backend_hide_symbol
) (info
, h
, TRUE
);
2364 /* If we don't have a version for this symbol, see if we can find
2366 if (h
->verinfo
.vertree
== NULL
&& info
->version_info
!= NULL
)
2369 = bfd_find_version_for_sym (info
->version_info
,
2370 h
->root
.root
.string
, &hide
);
2371 if (h
->verinfo
.vertree
!= NULL
&& hide
)
2373 (*bed
->elf_backend_hide_symbol
) (info
, h
, TRUE
);
2381 /* Figure out appropriate versions for all the symbols. We may not
2382 have the version number script until we have read all of the input
2383 files, so until that point we don't know which symbols should be
2384 local. This function is called via elf_link_hash_traverse. */
2387 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry
*h
, void *data
)
2389 struct elf_info_failed
*sinfo
;
2390 struct bfd_link_info
*info
;
2391 const struct elf_backend_data
*bed
;
2392 struct elf_info_failed eif
;
2396 sinfo
= (struct elf_info_failed
*) data
;
2399 /* Fix the symbol flags. */
2402 if (! _bfd_elf_fix_symbol_flags (h
, &eif
))
2405 sinfo
->failed
= TRUE
;
2409 bed
= get_elf_backend_data (info
->output_bfd
);
2411 /* We only need version numbers for symbols defined in regular
2413 if (!h
->def_regular
&& !ELF_COMMON_DEF_P (h
))
2415 /* Hide symbols defined in discarded input sections. */
2416 if ((h
->root
.type
== bfd_link_hash_defined
2417 || h
->root
.type
== bfd_link_hash_defweak
)
2418 && discarded_section (h
->root
.u
.def
.section
))
2419 (*bed
->elf_backend_hide_symbol
) (info
, h
, TRUE
);
2424 p
= strchr (h
->root
.root
.string
, ELF_VER_CHR
);
2425 if (p
!= NULL
&& h
->verinfo
.vertree
== NULL
)
2427 struct bfd_elf_version_tree
*t
;
2430 if (*p
== ELF_VER_CHR
)
2433 /* If there is no version string, we can just return out. */
2437 if (!_bfd_elf_link_hide_versioned_symbol (info
, h
, p
, &t
, &hide
))
2439 sinfo
->failed
= TRUE
;
2444 (*bed
->elf_backend_hide_symbol
) (info
, h
, TRUE
);
2446 /* If we are building an application, we need to create a
2447 version node for this version. */
2448 if (t
== NULL
&& bfd_link_executable (info
))
2450 struct bfd_elf_version_tree
**pp
;
2453 /* If we aren't going to export this symbol, we don't need
2454 to worry about it. */
2455 if (h
->dynindx
== -1)
2458 t
= (struct bfd_elf_version_tree
*) bfd_zalloc (info
->output_bfd
,
2462 sinfo
->failed
= TRUE
;
2467 t
->name_indx
= (unsigned int) -1;
2471 /* Don't count anonymous version tag. */
2472 if (sinfo
->info
->version_info
!= NULL
2473 && sinfo
->info
->version_info
->vernum
== 0)
2475 for (pp
= &sinfo
->info
->version_info
;
2479 t
->vernum
= version_index
;
2483 h
->verinfo
.vertree
= t
;
2487 /* We could not find the version for a symbol when
2488 generating a shared archive. Return an error. */
2490 /* xgettext:c-format */
2491 (_("%pB: version node not found for symbol %s"),
2492 info
->output_bfd
, h
->root
.root
.string
);
2493 bfd_set_error (bfd_error_bad_value
);
2494 sinfo
->failed
= TRUE
;
2499 /* If we don't have a version for this symbol, see if we can find
2502 && h
->verinfo
.vertree
== NULL
2503 && sinfo
->info
->version_info
!= NULL
)
2506 = bfd_find_version_for_sym (sinfo
->info
->version_info
,
2507 h
->root
.root
.string
, &hide
);
2508 if (h
->verinfo
.vertree
!= NULL
&& hide
)
2509 (*bed
->elf_backend_hide_symbol
) (info
, h
, TRUE
);
2515 /* Read and swap the relocs from the section indicated by SHDR. This
2516 may be either a REL or a RELA section. The relocations are
2517 translated into RELA relocations and stored in INTERNAL_RELOCS,
2518 which should have already been allocated to contain enough space.
2519 The EXTERNAL_RELOCS are a buffer where the external form of the
2520 relocations should be stored.
2522 Returns FALSE if something goes wrong. */
2525 elf_link_read_relocs_from_section (bfd
*abfd
,
2527 Elf_Internal_Shdr
*shdr
,
2528 void *external_relocs
,
2529 Elf_Internal_Rela
*internal_relocs
)
2531 const struct elf_backend_data
*bed
;
2532 void (*swap_in
) (bfd
*, const bfd_byte
*, Elf_Internal_Rela
*);
2533 const bfd_byte
*erela
;
2534 const bfd_byte
*erelaend
;
2535 Elf_Internal_Rela
*irela
;
2536 Elf_Internal_Shdr
*symtab_hdr
;
2539 /* Position ourselves at the start of the section. */
2540 if (bfd_seek (abfd
, shdr
->sh_offset
, SEEK_SET
) != 0)
2543 /* Read the relocations. */
2544 if (bfd_bread (external_relocs
, shdr
->sh_size
, abfd
) != shdr
->sh_size
)
2547 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
2548 nsyms
= NUM_SHDR_ENTRIES (symtab_hdr
);
2550 bed
= get_elf_backend_data (abfd
);
2552 /* Convert the external relocations to the internal format. */
2553 if (shdr
->sh_entsize
== bed
->s
->sizeof_rel
)
2554 swap_in
= bed
->s
->swap_reloc_in
;
2555 else if (shdr
->sh_entsize
== bed
->s
->sizeof_rela
)
2556 swap_in
= bed
->s
->swap_reloca_in
;
2559 bfd_set_error (bfd_error_wrong_format
);
2563 erela
= (const bfd_byte
*) external_relocs
;
2564 /* Setting erelaend like this and comparing with <= handles case of
2565 a fuzzed object with sh_size not a multiple of sh_entsize. */
2566 erelaend
= erela
+ shdr
->sh_size
- shdr
->sh_entsize
;
2567 irela
= internal_relocs
;
2568 while (erela
<= erelaend
)
2572 (*swap_in
) (abfd
, erela
, irela
);
2573 r_symndx
= ELF32_R_SYM (irela
->r_info
);
2574 if (bed
->s
->arch_size
== 64)
2578 if ((size_t) r_symndx
>= nsyms
)
2581 /* xgettext:c-format */
2582 (_("%pB: bad reloc symbol index (%#" PRIx64
" >= %#lx)"
2583 " for offset %#" PRIx64
" in section `%pA'"),
2584 abfd
, (uint64_t) r_symndx
, (unsigned long) nsyms
,
2585 (uint64_t) irela
->r_offset
, sec
);
2586 bfd_set_error (bfd_error_bad_value
);
2590 else if (r_symndx
!= STN_UNDEF
)
2593 /* xgettext:c-format */
2594 (_("%pB: non-zero symbol index (%#" PRIx64
")"
2595 " for offset %#" PRIx64
" in section `%pA'"
2596 " when the object file has no symbol table"),
2597 abfd
, (uint64_t) r_symndx
,
2598 (uint64_t) irela
->r_offset
, sec
);
2599 bfd_set_error (bfd_error_bad_value
);
2602 irela
+= bed
->s
->int_rels_per_ext_rel
;
2603 erela
+= shdr
->sh_entsize
;
2609 /* Read and swap the relocs for a section O. They may have been
2610 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2611 not NULL, they are used as buffers to read into. They are known to
2612 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2613 the return value is allocated using either malloc or bfd_alloc,
2614 according to the KEEP_MEMORY argument. If O has two relocation
2615 sections (both REL and RELA relocations), then the REL_HDR
2616 relocations will appear first in INTERNAL_RELOCS, followed by the
2617 RELA_HDR relocations. */
2620 _bfd_elf_link_read_relocs (bfd
*abfd
,
2622 void *external_relocs
,
2623 Elf_Internal_Rela
*internal_relocs
,
2624 bfd_boolean keep_memory
)
2626 void *alloc1
= NULL
;
2627 Elf_Internal_Rela
*alloc2
= NULL
;
2628 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
2629 struct bfd_elf_section_data
*esdo
= elf_section_data (o
);
2630 Elf_Internal_Rela
*internal_rela_relocs
;
2632 if (esdo
->relocs
!= NULL
)
2633 return esdo
->relocs
;
2635 if (o
->reloc_count
== 0)
2638 if (internal_relocs
== NULL
)
2642 size
= (bfd_size_type
) o
->reloc_count
* sizeof (Elf_Internal_Rela
);
2644 internal_relocs
= alloc2
= (Elf_Internal_Rela
*) bfd_alloc (abfd
, size
);
2646 internal_relocs
= alloc2
= (Elf_Internal_Rela
*) bfd_malloc (size
);
2647 if (internal_relocs
== NULL
)
2651 if (external_relocs
== NULL
)
2653 bfd_size_type size
= 0;
2656 size
+= esdo
->rel
.hdr
->sh_size
;
2658 size
+= esdo
->rela
.hdr
->sh_size
;
2660 alloc1
= bfd_malloc (size
);
2663 external_relocs
= alloc1
;
2666 internal_rela_relocs
= internal_relocs
;
2669 if (!elf_link_read_relocs_from_section (abfd
, o
, esdo
->rel
.hdr
,
2673 external_relocs
= (((bfd_byte
*) external_relocs
)
2674 + esdo
->rel
.hdr
->sh_size
);
2675 internal_rela_relocs
+= (NUM_SHDR_ENTRIES (esdo
->rel
.hdr
)
2676 * bed
->s
->int_rels_per_ext_rel
);
2680 && (!elf_link_read_relocs_from_section (abfd
, o
, esdo
->rela
.hdr
,
2682 internal_rela_relocs
)))
2685 /* Cache the results for next time, if we can. */
2687 esdo
->relocs
= internal_relocs
;
2691 /* Don't free alloc2, since if it was allocated we are passing it
2692 back (under the name of internal_relocs). */
2694 return internal_relocs
;
2701 bfd_release (abfd
, alloc2
);
2708 /* Compute the size of, and allocate space for, REL_HDR which is the
2709 section header for a section containing relocations for O. */
2712 _bfd_elf_link_size_reloc_section (bfd
*abfd
,
2713 struct bfd_elf_section_reloc_data
*reldata
)
2715 Elf_Internal_Shdr
*rel_hdr
= reldata
->hdr
;
2717 /* That allows us to calculate the size of the section. */
2718 rel_hdr
->sh_size
= rel_hdr
->sh_entsize
* reldata
->count
;
2720 /* The contents field must last into write_object_contents, so we
2721 allocate it with bfd_alloc rather than malloc. Also since we
2722 cannot be sure that the contents will actually be filled in,
2723 we zero the allocated space. */
2724 rel_hdr
->contents
= (unsigned char *) bfd_zalloc (abfd
, rel_hdr
->sh_size
);
2725 if (rel_hdr
->contents
== NULL
&& rel_hdr
->sh_size
!= 0)
2728 if (reldata
->hashes
== NULL
&& reldata
->count
)
2730 struct elf_link_hash_entry
**p
;
2732 p
= ((struct elf_link_hash_entry
**)
2733 bfd_zmalloc (reldata
->count
* sizeof (*p
)));
2737 reldata
->hashes
= p
;
2743 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
2744 originated from the section given by INPUT_REL_HDR) to the
2748 _bfd_elf_link_output_relocs (bfd
*output_bfd
,
2749 asection
*input_section
,
2750 Elf_Internal_Shdr
*input_rel_hdr
,
2751 Elf_Internal_Rela
*internal_relocs
,
2752 struct elf_link_hash_entry
**rel_hash
2755 Elf_Internal_Rela
*irela
;
2756 Elf_Internal_Rela
*irelaend
;
2758 struct bfd_elf_section_reloc_data
*output_reldata
;
2759 asection
*output_section
;
2760 const struct elf_backend_data
*bed
;
2761 void (*swap_out
) (bfd
*, const Elf_Internal_Rela
*, bfd_byte
*);
2762 struct bfd_elf_section_data
*esdo
;
2764 output_section
= input_section
->output_section
;
2766 bed
= get_elf_backend_data (output_bfd
);
2767 esdo
= elf_section_data (output_section
);
2768 if (esdo
->rel
.hdr
&& esdo
->rel
.hdr
->sh_entsize
== input_rel_hdr
->sh_entsize
)
2770 output_reldata
= &esdo
->rel
;
2771 swap_out
= bed
->s
->swap_reloc_out
;
2773 else if (esdo
->rela
.hdr
2774 && esdo
->rela
.hdr
->sh_entsize
== input_rel_hdr
->sh_entsize
)
2776 output_reldata
= &esdo
->rela
;
2777 swap_out
= bed
->s
->swap_reloca_out
;
2782 /* xgettext:c-format */
2783 (_("%pB: relocation size mismatch in %pB section %pA"),
2784 output_bfd
, input_section
->owner
, input_section
);
2785 bfd_set_error (bfd_error_wrong_format
);
2789 erel
= output_reldata
->hdr
->contents
;
2790 erel
+= output_reldata
->count
* input_rel_hdr
->sh_entsize
;
2791 irela
= internal_relocs
;
2792 irelaend
= irela
+ (NUM_SHDR_ENTRIES (input_rel_hdr
)
2793 * bed
->s
->int_rels_per_ext_rel
);
2794 while (irela
< irelaend
)
2796 (*swap_out
) (output_bfd
, irela
, erel
);
2797 irela
+= bed
->s
->int_rels_per_ext_rel
;
2798 erel
+= input_rel_hdr
->sh_entsize
;
2801 /* Bump the counter, so that we know where to add the next set of
2803 output_reldata
->count
+= NUM_SHDR_ENTRIES (input_rel_hdr
);
2808 /* Make weak undefined symbols in PIE dynamic. */
2811 _bfd_elf_link_hash_fixup_symbol (struct bfd_link_info
*info
,
2812 struct elf_link_hash_entry
*h
)
2814 if (bfd_link_pie (info
)
2816 && h
->root
.type
== bfd_link_hash_undefweak
)
2817 return bfd_elf_link_record_dynamic_symbol (info
, h
);
2822 /* Fix up the flags for a symbol. This handles various cases which
2823 can only be fixed after all the input files are seen. This is
2824 currently called by both adjust_dynamic_symbol and
2825 assign_sym_version, which is unnecessary but perhaps more robust in
2826 the face of future changes. */
2829 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry
*h
,
2830 struct elf_info_failed
*eif
)
2832 const struct elf_backend_data
*bed
;
2834 /* If this symbol was mentioned in a non-ELF file, try to set
2835 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2836 permit a non-ELF file to correctly refer to a symbol defined in
2837 an ELF dynamic object. */
2840 while (h
->root
.type
== bfd_link_hash_indirect
)
2841 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
2843 if (h
->root
.type
!= bfd_link_hash_defined
2844 && h
->root
.type
!= bfd_link_hash_defweak
)
2847 h
->ref_regular_nonweak
= 1;
2851 if (h
->root
.u
.def
.section
->owner
!= NULL
2852 && (bfd_get_flavour (h
->root
.u
.def
.section
->owner
)
2853 == bfd_target_elf_flavour
))
2856 h
->ref_regular_nonweak
= 1;
2862 if (h
->dynindx
== -1
2866 if (! bfd_elf_link_record_dynamic_symbol (eif
->info
, h
))
2875 /* Unfortunately, NON_ELF is only correct if the symbol
2876 was first seen in a non-ELF file. Fortunately, if the symbol
2877 was first seen in an ELF file, we're probably OK unless the
2878 symbol was defined in a non-ELF file. Catch that case here.
2879 FIXME: We're still in trouble if the symbol was first seen in
2880 a dynamic object, and then later in a non-ELF regular object. */
2881 if ((h
->root
.type
== bfd_link_hash_defined
2882 || h
->root
.type
== bfd_link_hash_defweak
)
2884 && (h
->root
.u
.def
.section
->owner
!= NULL
2885 ? (bfd_get_flavour (h
->root
.u
.def
.section
->owner
)
2886 != bfd_target_elf_flavour
)
2887 : (bfd_is_abs_section (h
->root
.u
.def
.section
)
2888 && !h
->def_dynamic
)))
2892 /* Backend specific symbol fixup. */
2893 bed
= get_elf_backend_data (elf_hash_table (eif
->info
)->dynobj
);
2894 if (bed
->elf_backend_fixup_symbol
2895 && !(*bed
->elf_backend_fixup_symbol
) (eif
->info
, h
))
2898 /* If this is a final link, and the symbol was defined as a common
2899 symbol in a regular object file, and there was no definition in
2900 any dynamic object, then the linker will have allocated space for
2901 the symbol in a common section but the DEF_REGULAR
2902 flag will not have been set. */
2903 if (h
->root
.type
== bfd_link_hash_defined
2907 && (h
->root
.u
.def
.section
->owner
->flags
& (DYNAMIC
| BFD_PLUGIN
)) == 0)
2910 /* Symbols defined in discarded sections shouldn't be dynamic. */
2911 if (h
->root
.type
== bfd_link_hash_undefined
&& h
->indx
== -3)
2912 (*bed
->elf_backend_hide_symbol
) (eif
->info
, h
, TRUE
);
2914 /* If a weak undefined symbol has non-default visibility, we also
2915 hide it from the dynamic linker. */
2916 else if (ELF_ST_VISIBILITY (h
->other
) != STV_DEFAULT
2917 && h
->root
.type
== bfd_link_hash_undefweak
)
2918 (*bed
->elf_backend_hide_symbol
) (eif
->info
, h
, TRUE
);
2920 /* A hidden versioned symbol in executable should be forced local if
2921 it is is locally defined, not referenced by shared library and not
2923 else if (bfd_link_executable (eif
->info
)
2924 && h
->versioned
== versioned_hidden
2925 && !eif
->info
->export_dynamic
2929 (*bed
->elf_backend_hide_symbol
) (eif
->info
, h
, TRUE
);
2931 /* If -Bsymbolic was used (which means to bind references to global
2932 symbols to the definition within the shared object), and this
2933 symbol was defined in a regular object, then it actually doesn't
2934 need a PLT entry. Likewise, if the symbol has non-default
2935 visibility. If the symbol has hidden or internal visibility, we
2936 will force it local. */
2937 else if (h
->needs_plt
2938 && bfd_link_pic (eif
->info
)
2939 && is_elf_hash_table (eif
->info
->hash
)
2940 && (SYMBOLIC_BIND (eif
->info
, h
)
2941 || ELF_ST_VISIBILITY (h
->other
) != STV_DEFAULT
)
2944 bfd_boolean force_local
;
2946 force_local
= (ELF_ST_VISIBILITY (h
->other
) == STV_INTERNAL
2947 || ELF_ST_VISIBILITY (h
->other
) == STV_HIDDEN
);
2948 (*bed
->elf_backend_hide_symbol
) (eif
->info
, h
, force_local
);
2951 /* If this is a weak defined symbol in a dynamic object, and we know
2952 the real definition in the dynamic object, copy interesting flags
2953 over to the real definition. */
2954 if (h
->is_weakalias
)
2956 struct elf_link_hash_entry
*def
= weakdef (h
);
2958 /* If the real definition is defined by a regular object file,
2959 don't do anything special. See the longer description in
2960 _bfd_elf_adjust_dynamic_symbol, below. If the def is not
2961 bfd_link_hash_defined as it was when put on the alias list
2962 then it must have originally been a versioned symbol (for
2963 which a non-versioned indirect symbol is created) and later
2964 a definition for the non-versioned symbol is found. In that
2965 case the indirection is flipped with the versioned symbol
2966 becoming an indirect pointing at the non-versioned symbol.
2967 Thus, not an alias any more. */
2968 if (def
->def_regular
2969 || def
->root
.type
!= bfd_link_hash_defined
)
2972 while ((h
= h
->u
.alias
) != def
)
2973 h
->is_weakalias
= 0;
2977 while (h
->root
.type
== bfd_link_hash_indirect
)
2978 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
2979 BFD_ASSERT (h
->root
.type
== bfd_link_hash_defined
2980 || h
->root
.type
== bfd_link_hash_defweak
);
2981 BFD_ASSERT (def
->def_dynamic
);
2982 (*bed
->elf_backend_copy_indirect_symbol
) (eif
->info
, def
, h
);
2989 /* Make the backend pick a good value for a dynamic symbol. This is
2990 called via elf_link_hash_traverse, and also calls itself
2994 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry
*h
, void *data
)
2996 struct elf_info_failed
*eif
= (struct elf_info_failed
*) data
;
2997 struct elf_link_hash_table
*htab
;
2998 const struct elf_backend_data
*bed
;
3000 if (! is_elf_hash_table (eif
->info
->hash
))
3003 /* Ignore indirect symbols. These are added by the versioning code. */
3004 if (h
->root
.type
== bfd_link_hash_indirect
)
3007 /* Fix the symbol flags. */
3008 if (! _bfd_elf_fix_symbol_flags (h
, eif
))
3011 htab
= elf_hash_table (eif
->info
);
3012 bed
= get_elf_backend_data (htab
->dynobj
);
3014 if (h
->root
.type
== bfd_link_hash_undefweak
)
3016 if (eif
->info
->dynamic_undefined_weak
== 0)
3017 (*bed
->elf_backend_hide_symbol
) (eif
->info
, h
, TRUE
);
3018 else if (eif
->info
->dynamic_undefined_weak
> 0
3020 && ELF_ST_VISIBILITY (h
->other
) == STV_DEFAULT
3021 && !bfd_hide_sym_by_version (eif
->info
->version_info
,
3022 h
->root
.root
.string
))
3024 if (!bfd_elf_link_record_dynamic_symbol (eif
->info
, h
))
3032 /* If this symbol does not require a PLT entry, and it is not
3033 defined by a dynamic object, or is not referenced by a regular
3034 object, ignore it. We do have to handle a weak defined symbol,
3035 even if no regular object refers to it, if we decided to add it
3036 to the dynamic symbol table. FIXME: Do we normally need to worry
3037 about symbols which are defined by one dynamic object and
3038 referenced by another one? */
3040 && h
->type
!= STT_GNU_IFUNC
3044 && (!h
->is_weakalias
|| weakdef (h
)->dynindx
== -1))))
3046 h
->plt
= elf_hash_table (eif
->info
)->init_plt_offset
;
3050 /* If we've already adjusted this symbol, don't do it again. This
3051 can happen via a recursive call. */
3052 if (h
->dynamic_adjusted
)
3055 /* Don't look at this symbol again. Note that we must set this
3056 after checking the above conditions, because we may look at a
3057 symbol once, decide not to do anything, and then get called
3058 recursively later after REF_REGULAR is set below. */
3059 h
->dynamic_adjusted
= 1;
3061 /* If this is a weak definition, and we know a real definition, and
3062 the real symbol is not itself defined by a regular object file,
3063 then get a good value for the real definition. We handle the
3064 real symbol first, for the convenience of the backend routine.
3066 Note that there is a confusing case here. If the real definition
3067 is defined by a regular object file, we don't get the real symbol
3068 from the dynamic object, but we do get the weak symbol. If the
3069 processor backend uses a COPY reloc, then if some routine in the
3070 dynamic object changes the real symbol, we will not see that
3071 change in the corresponding weak symbol. This is the way other
3072 ELF linkers work as well, and seems to be a result of the shared
3075 I will clarify this issue. Most SVR4 shared libraries define the
3076 variable _timezone and define timezone as a weak synonym. The
3077 tzset call changes _timezone. If you write
3078 extern int timezone;
3080 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
3081 you might expect that, since timezone is a synonym for _timezone,
3082 the same number will print both times. However, if the processor
3083 backend uses a COPY reloc, then actually timezone will be copied
3084 into your process image, and, since you define _timezone
3085 yourself, _timezone will not. Thus timezone and _timezone will
3086 wind up at different memory locations. The tzset call will set
3087 _timezone, leaving timezone unchanged. */
3089 if (h
->is_weakalias
)
3091 struct elf_link_hash_entry
*def
= weakdef (h
);
3093 /* If we get to this point, there is an implicit reference to
3094 the alias by a regular object file via the weak symbol H. */
3095 def
->ref_regular
= 1;
3097 /* Ensure that the backend adjust_dynamic_symbol function sees
3098 the strong alias before H by recursively calling ourselves. */
3099 if (!_bfd_elf_adjust_dynamic_symbol (def
, eif
))
3103 /* If a symbol has no type and no size and does not require a PLT
3104 entry, then we are probably about to do the wrong thing here: we
3105 are probably going to create a COPY reloc for an empty object.
3106 This case can arise when a shared object is built with assembly
3107 code, and the assembly code fails to set the symbol type. */
3109 && h
->type
== STT_NOTYPE
3112 (_("warning: type and size of dynamic symbol `%s' are not defined"),
3113 h
->root
.root
.string
);
3115 if (! (*bed
->elf_backend_adjust_dynamic_symbol
) (eif
->info
, h
))
3124 /* Adjust the dynamic symbol, H, for copy in the dynamic bss section,
3128 _bfd_elf_adjust_dynamic_copy (struct bfd_link_info
*info
,
3129 struct elf_link_hash_entry
*h
,
3132 unsigned int power_of_two
;
3134 asection
*sec
= h
->root
.u
.def
.section
;
3136 /* The section alignment of the definition is the maximum alignment
3137 requirement of symbols defined in the section. Since we don't
3138 know the symbol alignment requirement, we start with the
3139 maximum alignment and check low bits of the symbol address
3140 for the minimum alignment. */
3141 power_of_two
= bfd_section_alignment (sec
);
3142 mask
= ((bfd_vma
) 1 << power_of_two
) - 1;
3143 while ((h
->root
.u
.def
.value
& mask
) != 0)
3149 if (power_of_two
> bfd_section_alignment (dynbss
))
3151 /* Adjust the section alignment if needed. */
3152 if (!bfd_set_section_alignment (dynbss
, power_of_two
))
3156 /* We make sure that the symbol will be aligned properly. */
3157 dynbss
->size
= BFD_ALIGN (dynbss
->size
, mask
+ 1);
3159 /* Define the symbol as being at this point in DYNBSS. */
3160 h
->root
.u
.def
.section
= dynbss
;
3161 h
->root
.u
.def
.value
= dynbss
->size
;
3163 /* Increment the size of DYNBSS to make room for the symbol. */
3164 dynbss
->size
+= h
->size
;
3166 /* No error if extern_protected_data is true. */
3167 if (h
->protected_def
3168 && (!info
->extern_protected_data
3169 || (info
->extern_protected_data
< 0
3170 && !get_elf_backend_data (dynbss
->owner
)->extern_protected_data
)))
3171 info
->callbacks
->einfo
3172 (_("%P: copy reloc against protected `%pT' is dangerous\n"),
3173 h
->root
.root
.string
);
3178 /* Adjust all external symbols pointing into SEC_MERGE sections
3179 to reflect the object merging within the sections. */
3182 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry
*h
, void *data
)
3186 if ((h
->root
.type
== bfd_link_hash_defined
3187 || h
->root
.type
== bfd_link_hash_defweak
)
3188 && ((sec
= h
->root
.u
.def
.section
)->flags
& SEC_MERGE
)
3189 && sec
->sec_info_type
== SEC_INFO_TYPE_MERGE
)
3191 bfd
*output_bfd
= (bfd
*) data
;
3193 h
->root
.u
.def
.value
=
3194 _bfd_merged_section_offset (output_bfd
,
3195 &h
->root
.u
.def
.section
,
3196 elf_section_data (sec
)->sec_info
,
3197 h
->root
.u
.def
.value
);
3203 /* Returns false if the symbol referred to by H should be considered
3204 to resolve local to the current module, and true if it should be
3205 considered to bind dynamically. */
3208 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry
*h
,
3209 struct bfd_link_info
*info
,
3210 bfd_boolean not_local_protected
)
3212 bfd_boolean binding_stays_local_p
;
3213 const struct elf_backend_data
*bed
;
3214 struct elf_link_hash_table
*hash_table
;
3219 while (h
->root
.type
== bfd_link_hash_indirect
3220 || h
->root
.type
== bfd_link_hash_warning
)
3221 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
3223 /* If it was forced local, then clearly it's not dynamic. */
3224 if (h
->dynindx
== -1)
3226 if (h
->forced_local
)
3229 /* Identify the cases where name binding rules say that a
3230 visible symbol resolves locally. */
3231 binding_stays_local_p
= (bfd_link_executable (info
)
3232 || SYMBOLIC_BIND (info
, h
));
3234 switch (ELF_ST_VISIBILITY (h
->other
))
3241 hash_table
= elf_hash_table (info
);
3242 if (!is_elf_hash_table (hash_table
))
3245 bed
= get_elf_backend_data (hash_table
->dynobj
);
3247 /* Proper resolution for function pointer equality may require
3248 that these symbols perhaps be resolved dynamically, even though
3249 we should be resolving them to the current module. */
3250 if (!not_local_protected
|| !bed
->is_function_type (h
->type
))
3251 binding_stays_local_p
= TRUE
;
3258 /* If it isn't defined locally, then clearly it's dynamic. */
3259 if (!h
->def_regular
&& !ELF_COMMON_DEF_P (h
))
3262 /* Otherwise, the symbol is dynamic if binding rules don't tell
3263 us that it remains local. */
3264 return !binding_stays_local_p
;
3267 /* Return true if the symbol referred to by H should be considered
3268 to resolve local to the current module, and false otherwise. Differs
3269 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
3270 undefined symbols. The two functions are virtually identical except
3271 for the place where dynindx == -1 is tested. If that test is true,
3272 _bfd_elf_dynamic_symbol_p will say the symbol is local, while
3273 _bfd_elf_symbol_refs_local_p will say the symbol is local only for
3275 It might seem that _bfd_elf_dynamic_symbol_p could be rewritten as
3276 !_bfd_elf_symbol_refs_local_p, except that targets differ in their
3277 treatment of undefined weak symbols. For those that do not make
3278 undefined weak symbols dynamic, both functions may return false. */
3281 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry
*h
,
3282 struct bfd_link_info
*info
,
3283 bfd_boolean local_protected
)
3285 const struct elf_backend_data
*bed
;
3286 struct elf_link_hash_table
*hash_table
;
3288 /* If it's a local sym, of course we resolve locally. */
3292 /* STV_HIDDEN or STV_INTERNAL ones must be local. */
3293 if (ELF_ST_VISIBILITY (h
->other
) == STV_HIDDEN
3294 || ELF_ST_VISIBILITY (h
->other
) == STV_INTERNAL
)
3297 /* Forced local symbols resolve locally. */
3298 if (h
->forced_local
)
3301 /* Common symbols that become definitions don't get the DEF_REGULAR
3302 flag set, so test it first, and don't bail out. */
3303 if (ELF_COMMON_DEF_P (h
))
3305 /* If we don't have a definition in a regular file, then we can't
3306 resolve locally. The sym is either undefined or dynamic. */
3307 else if (!h
->def_regular
)
3310 /* Non-dynamic symbols resolve locally. */
3311 if (h
->dynindx
== -1)
3314 /* At this point, we know the symbol is defined and dynamic. In an
3315 executable it must resolve locally, likewise when building symbolic
3316 shared libraries. */
3317 if (bfd_link_executable (info
) || SYMBOLIC_BIND (info
, h
))
3320 /* Now deal with defined dynamic symbols in shared libraries. Ones
3321 with default visibility might not resolve locally. */
3322 if (ELF_ST_VISIBILITY (h
->other
) == STV_DEFAULT
)
3325 hash_table
= elf_hash_table (info
);
3326 if (!is_elf_hash_table (hash_table
))
3329 bed
= get_elf_backend_data (hash_table
->dynobj
);
3331 /* If extern_protected_data is false, STV_PROTECTED non-function
3332 symbols are local. */
3333 if ((!info
->extern_protected_data
3334 || (info
->extern_protected_data
< 0
3335 && !bed
->extern_protected_data
))
3336 && !bed
->is_function_type (h
->type
))
3339 /* Function pointer equality tests may require that STV_PROTECTED
3340 symbols be treated as dynamic symbols. If the address of a
3341 function not defined in an executable is set to that function's
3342 plt entry in the executable, then the address of the function in
3343 a shared library must also be the plt entry in the executable. */
3344 return local_protected
;
3347 /* Caches some TLS segment info, and ensures that the TLS segment vma is
3348 aligned. Returns the first TLS output section. */
3350 struct bfd_section
*
3351 _bfd_elf_tls_setup (bfd
*obfd
, struct bfd_link_info
*info
)
3353 struct bfd_section
*sec
, *tls
;
3354 unsigned int align
= 0;
3356 for (sec
= obfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
3357 if ((sec
->flags
& SEC_THREAD_LOCAL
) != 0)
3361 for (; sec
!= NULL
&& (sec
->flags
& SEC_THREAD_LOCAL
) != 0; sec
= sec
->next
)
3362 if (sec
->alignment_power
> align
)
3363 align
= sec
->alignment_power
;
3365 elf_hash_table (info
)->tls_sec
= tls
;
3367 /* Ensure the alignment of the first section (usually .tdata) is the largest
3368 alignment, so that the tls segment starts aligned. */
3370 tls
->alignment_power
= align
;
3375 /* Return TRUE iff this is a non-common, definition of a non-function symbol. */
3377 is_global_data_symbol_definition (bfd
*abfd ATTRIBUTE_UNUSED
,
3378 Elf_Internal_Sym
*sym
)
3380 const struct elf_backend_data
*bed
;
3382 /* Local symbols do not count, but target specific ones might. */
3383 if (ELF_ST_BIND (sym
->st_info
) != STB_GLOBAL
3384 && ELF_ST_BIND (sym
->st_info
) < STB_LOOS
)
3387 bed
= get_elf_backend_data (abfd
);
3388 /* Function symbols do not count. */
3389 if (bed
->is_function_type (ELF_ST_TYPE (sym
->st_info
)))
3392 /* If the section is undefined, then so is the symbol. */
3393 if (sym
->st_shndx
== SHN_UNDEF
)
3396 /* If the symbol is defined in the common section, then
3397 it is a common definition and so does not count. */
3398 if (bed
->common_definition (sym
))
3401 /* If the symbol is in a target specific section then we
3402 must rely upon the backend to tell us what it is. */
3403 if (sym
->st_shndx
>= SHN_LORESERVE
&& sym
->st_shndx
< SHN_ABS
)
3404 /* FIXME - this function is not coded yet:
3406 return _bfd_is_global_symbol_definition (abfd, sym);
3408 Instead for now assume that the definition is not global,
3409 Even if this is wrong, at least the linker will behave
3410 in the same way that it used to do. */
3416 /* Search the symbol table of the archive element of the archive ABFD
3417 whose archive map contains a mention of SYMDEF, and determine if
3418 the symbol is defined in this element. */
3420 elf_link_is_defined_archive_symbol (bfd
* abfd
, carsym
* symdef
)
3422 Elf_Internal_Shdr
* hdr
;
3426 Elf_Internal_Sym
*isymbuf
;
3427 Elf_Internal_Sym
*isym
;
3428 Elf_Internal_Sym
*isymend
;
3431 abfd
= _bfd_get_elt_at_filepos (abfd
, symdef
->file_offset
);
3435 if (! bfd_check_format (abfd
, bfd_object
))
3438 /* Select the appropriate symbol table. If we don't know if the
3439 object file is an IR object, give linker LTO plugin a chance to
3440 get the correct symbol table. */
3441 if (abfd
->plugin_format
== bfd_plugin_yes
3442 #if BFD_SUPPORTS_PLUGINS
3443 || (abfd
->plugin_format
== bfd_plugin_unknown
3444 && bfd_link_plugin_object_p (abfd
))
3448 /* Use the IR symbol table if the object has been claimed by
3450 abfd
= abfd
->plugin_dummy_bfd
;
3451 hdr
= &elf_tdata (abfd
)->symtab_hdr
;
3453 else if ((abfd
->flags
& DYNAMIC
) == 0 || elf_dynsymtab (abfd
) == 0)
3454 hdr
= &elf_tdata (abfd
)->symtab_hdr
;
3456 hdr
= &elf_tdata (abfd
)->dynsymtab_hdr
;
3458 symcount
= hdr
->sh_size
/ get_elf_backend_data (abfd
)->s
->sizeof_sym
;
3460 /* The sh_info field of the symtab header tells us where the
3461 external symbols start. We don't care about the local symbols. */
3462 if (elf_bad_symtab (abfd
))
3464 extsymcount
= symcount
;
3469 extsymcount
= symcount
- hdr
->sh_info
;
3470 extsymoff
= hdr
->sh_info
;
3473 if (extsymcount
== 0)
3476 /* Read in the symbol table. */
3477 isymbuf
= bfd_elf_get_elf_syms (abfd
, hdr
, extsymcount
, extsymoff
,
3479 if (isymbuf
== NULL
)
3482 /* Scan the symbol table looking for SYMDEF. */
3484 for (isym
= isymbuf
, isymend
= isymbuf
+ extsymcount
; isym
< isymend
; isym
++)
3488 name
= bfd_elf_string_from_elf_section (abfd
, hdr
->sh_link
,
3493 if (strcmp (name
, symdef
->name
) == 0)
3495 result
= is_global_data_symbol_definition (abfd
, isym
);
3505 /* Add an entry to the .dynamic table. */
3508 _bfd_elf_add_dynamic_entry (struct bfd_link_info
*info
,
3512 struct elf_link_hash_table
*hash_table
;
3513 const struct elf_backend_data
*bed
;
3515 bfd_size_type newsize
;
3516 bfd_byte
*newcontents
;
3517 Elf_Internal_Dyn dyn
;
3519 hash_table
= elf_hash_table (info
);
3520 if (! is_elf_hash_table (hash_table
))
3523 if (tag
== DT_RELA
|| tag
== DT_REL
)
3524 hash_table
->dynamic_relocs
= TRUE
;
3526 bed
= get_elf_backend_data (hash_table
->dynobj
);
3527 s
= bfd_get_linker_section (hash_table
->dynobj
, ".dynamic");
3528 BFD_ASSERT (s
!= NULL
);
3530 newsize
= s
->size
+ bed
->s
->sizeof_dyn
;
3531 newcontents
= (bfd_byte
*) bfd_realloc (s
->contents
, newsize
);
3532 if (newcontents
== NULL
)
3536 dyn
.d_un
.d_val
= val
;
3537 bed
->s
->swap_dyn_out (hash_table
->dynobj
, &dyn
, newcontents
+ s
->size
);
3540 s
->contents
= newcontents
;
3545 /* Strip zero-sized dynamic sections. */
3548 _bfd_elf_strip_zero_sized_dynamic_sections (struct bfd_link_info
*info
)
3550 struct elf_link_hash_table
*hash_table
;
3551 const struct elf_backend_data
*bed
;
3552 asection
*s
, *sdynamic
, **pp
;
3553 asection
*rela_dyn
, *rel_dyn
;
3554 Elf_Internal_Dyn dyn
;
3555 bfd_byte
*extdyn
, *next
;
3556 void (*swap_dyn_in
) (bfd
*, const void *, Elf_Internal_Dyn
*);
3557 bfd_boolean strip_zero_sized
;
3558 bfd_boolean strip_zero_sized_plt
;
3560 if (bfd_link_relocatable (info
))
3563 hash_table
= elf_hash_table (info
);
3564 if (!is_elf_hash_table (hash_table
))
3567 if (!hash_table
->dynobj
)
3570 sdynamic
= bfd_get_linker_section (hash_table
->dynobj
, ".dynamic");
3574 bed
= get_elf_backend_data (hash_table
->dynobj
);
3575 swap_dyn_in
= bed
->s
->swap_dyn_in
;
3577 strip_zero_sized
= FALSE
;
3578 strip_zero_sized_plt
= FALSE
;
3580 /* Strip zero-sized dynamic sections. */
3581 rela_dyn
= bfd_get_section_by_name (info
->output_bfd
, ".rela.dyn");
3582 rel_dyn
= bfd_get_section_by_name (info
->output_bfd
, ".rel.dyn");
3583 for (pp
= &info
->output_bfd
->sections
; (s
= *pp
) != NULL
;)
3587 || s
== hash_table
->srelplt
->output_section
3588 || s
== hash_table
->splt
->output_section
))
3591 info
->output_bfd
->section_count
--;
3592 strip_zero_sized
= TRUE
;
3597 else if (s
== hash_table
->splt
->output_section
)
3599 s
= hash_table
->splt
;
3600 strip_zero_sized_plt
= TRUE
;
3603 s
= hash_table
->srelplt
;
3604 s
->flags
|= SEC_EXCLUDE
;
3605 s
->output_section
= bfd_abs_section_ptr
;
3610 if (strip_zero_sized_plt
)
3611 for (extdyn
= sdynamic
->contents
;
3612 extdyn
< sdynamic
->contents
+ sdynamic
->size
;
3615 next
= extdyn
+ bed
->s
->sizeof_dyn
;
3616 swap_dyn_in (hash_table
->dynobj
, extdyn
, &dyn
);
3624 /* Strip DT_PLTRELSZ, DT_JMPREL and DT_PLTREL entries if
3625 the procedure linkage table (the .plt section) has been
3627 memmove (extdyn
, next
,
3628 sdynamic
->size
- (next
- sdynamic
->contents
));
3633 if (strip_zero_sized
)
3635 /* Regenerate program headers. */
3636 elf_seg_map (info
->output_bfd
) = NULL
;
3637 return _bfd_elf_map_sections_to_segments (info
->output_bfd
, info
);
3643 /* Add a DT_NEEDED entry for this dynamic object. Returns -1 on error,
3644 1 if a DT_NEEDED tag already exists, and 0 on success. */
3647 bfd_elf_add_dt_needed_tag (bfd
*abfd
, struct bfd_link_info
*info
)
3649 struct elf_link_hash_table
*hash_table
;
3653 if (!_bfd_elf_link_create_dynstrtab (abfd
, info
))
3656 hash_table
= elf_hash_table (info
);
3657 soname
= elf_dt_name (abfd
);
3658 strindex
= _bfd_elf_strtab_add (hash_table
->dynstr
, soname
, FALSE
);
3659 if (strindex
== (size_t) -1)
3662 if (_bfd_elf_strtab_refcount (hash_table
->dynstr
, strindex
) != 1)
3665 const struct elf_backend_data
*bed
;
3668 bed
= get_elf_backend_data (hash_table
->dynobj
);
3669 sdyn
= bfd_get_linker_section (hash_table
->dynobj
, ".dynamic");
3671 for (extdyn
= sdyn
->contents
;
3672 extdyn
< sdyn
->contents
+ sdyn
->size
;
3673 extdyn
+= bed
->s
->sizeof_dyn
)
3675 Elf_Internal_Dyn dyn
;
3677 bed
->s
->swap_dyn_in (hash_table
->dynobj
, extdyn
, &dyn
);
3678 if (dyn
.d_tag
== DT_NEEDED
3679 && dyn
.d_un
.d_val
== strindex
)
3681 _bfd_elf_strtab_delref (hash_table
->dynstr
, strindex
);
3687 if (!_bfd_elf_link_create_dynamic_sections (hash_table
->dynobj
, info
))
3690 if (!_bfd_elf_add_dynamic_entry (info
, DT_NEEDED
, strindex
))
3696 /* Return true if SONAME is on the needed list between NEEDED and STOP
3697 (or the end of list if STOP is NULL), and needed by a library that
3701 on_needed_list (const char *soname
,
3702 struct bfd_link_needed_list
*needed
,
3703 struct bfd_link_needed_list
*stop
)
3705 struct bfd_link_needed_list
*look
;
3706 for (look
= needed
; look
!= stop
; look
= look
->next
)
3707 if (strcmp (soname
, look
->name
) == 0
3708 && ((elf_dyn_lib_class (look
->by
) & DYN_AS_NEEDED
) == 0
3709 /* If needed by a library that itself is not directly
3710 needed, recursively check whether that library is
3711 indirectly needed. Since we add DT_NEEDED entries to
3712 the end of the list, library dependencies appear after
3713 the library. Therefore search prior to the current
3714 LOOK, preventing possible infinite recursion. */
3715 || on_needed_list (elf_dt_name (look
->by
), needed
, look
)))
3721 /* Sort symbol by value, section, size, and type. */
3723 elf_sort_symbol (const void *arg1
, const void *arg2
)
3725 const struct elf_link_hash_entry
*h1
;
3726 const struct elf_link_hash_entry
*h2
;
3727 bfd_signed_vma vdiff
;
3732 h1
= *(const struct elf_link_hash_entry
**) arg1
;
3733 h2
= *(const struct elf_link_hash_entry
**) arg2
;
3734 vdiff
= h1
->root
.u
.def
.value
- h2
->root
.u
.def
.value
;
3736 return vdiff
> 0 ? 1 : -1;
3738 sdiff
= h1
->root
.u
.def
.section
->id
- h2
->root
.u
.def
.section
->id
;
3742 /* Sort so that sized symbols are selected over zero size symbols. */
3743 vdiff
= h1
->size
- h2
->size
;
3745 return vdiff
> 0 ? 1 : -1;
3747 /* Sort so that STT_OBJECT is selected over STT_NOTYPE. */
3748 if (h1
->type
!= h2
->type
)
3749 return h1
->type
- h2
->type
;
3751 /* If symbols are properly sized and typed, and multiple strong
3752 aliases are not defined in a shared library by the user we
3753 shouldn't get here. Unfortunately linker script symbols like
3754 __bss_start sometimes match a user symbol defined at the start of
3755 .bss without proper size and type. We'd like to preference the
3756 user symbol over reserved system symbols. Sort on leading
3758 n1
= h1
->root
.root
.string
;
3759 n2
= h2
->root
.root
.string
;
3772 /* Final sort on name selects user symbols like '_u' over reserved
3773 system symbols like '_Z' and also will avoid qsort instability. */
3777 /* This function is used to adjust offsets into .dynstr for
3778 dynamic symbols. This is called via elf_link_hash_traverse. */
3781 elf_adjust_dynstr_offsets (struct elf_link_hash_entry
*h
, void *data
)
3783 struct elf_strtab_hash
*dynstr
= (struct elf_strtab_hash
*) data
;
3785 if (h
->dynindx
!= -1)
3786 h
->dynstr_index
= _bfd_elf_strtab_offset (dynstr
, h
->dynstr_index
);
3790 /* Assign string offsets in .dynstr, update all structures referencing
3794 elf_finalize_dynstr (bfd
*output_bfd
, struct bfd_link_info
*info
)
3796 struct elf_link_hash_table
*hash_table
= elf_hash_table (info
);
3797 struct elf_link_local_dynamic_entry
*entry
;
3798 struct elf_strtab_hash
*dynstr
= hash_table
->dynstr
;
3799 bfd
*dynobj
= hash_table
->dynobj
;
3802 const struct elf_backend_data
*bed
;
3805 _bfd_elf_strtab_finalize (dynstr
);
3806 size
= _bfd_elf_strtab_size (dynstr
);
3808 /* Allow the linker to examine the dynsymtab now it's fully populated. */
3810 if (info
->callbacks
->examine_strtab
)
3811 info
->callbacks
->examine_strtab (dynstr
);
3813 bed
= get_elf_backend_data (dynobj
);
3814 sdyn
= bfd_get_linker_section (dynobj
, ".dynamic");
3815 BFD_ASSERT (sdyn
!= NULL
);
3817 /* Update all .dynamic entries referencing .dynstr strings. */
3818 for (extdyn
= sdyn
->contents
;
3819 extdyn
< sdyn
->contents
+ sdyn
->size
;
3820 extdyn
+= bed
->s
->sizeof_dyn
)
3822 Elf_Internal_Dyn dyn
;
3824 bed
->s
->swap_dyn_in (dynobj
, extdyn
, &dyn
);
3828 dyn
.d_un
.d_val
= size
;
3838 dyn
.d_un
.d_val
= _bfd_elf_strtab_offset (dynstr
, dyn
.d_un
.d_val
);
3843 bed
->s
->swap_dyn_out (dynobj
, &dyn
, extdyn
);
3846 /* Now update local dynamic symbols. */
3847 for (entry
= hash_table
->dynlocal
; entry
; entry
= entry
->next
)
3848 entry
->isym
.st_name
= _bfd_elf_strtab_offset (dynstr
,
3849 entry
->isym
.st_name
);
3851 /* And the rest of dynamic symbols. */
3852 elf_link_hash_traverse (hash_table
, elf_adjust_dynstr_offsets
, dynstr
);
3854 /* Adjust version definitions. */
3855 if (elf_tdata (output_bfd
)->cverdefs
)
3860 Elf_Internal_Verdef def
;
3861 Elf_Internal_Verdaux defaux
;
3863 s
= bfd_get_linker_section (dynobj
, ".gnu.version_d");
3867 _bfd_elf_swap_verdef_in (output_bfd
, (Elf_External_Verdef
*) p
,
3869 p
+= sizeof (Elf_External_Verdef
);
3870 if (def
.vd_aux
!= sizeof (Elf_External_Verdef
))
3872 for (i
= 0; i
< def
.vd_cnt
; ++i
)
3874 _bfd_elf_swap_verdaux_in (output_bfd
,
3875 (Elf_External_Verdaux
*) p
, &defaux
);
3876 defaux
.vda_name
= _bfd_elf_strtab_offset (dynstr
,
3878 _bfd_elf_swap_verdaux_out (output_bfd
,
3879 &defaux
, (Elf_External_Verdaux
*) p
);
3880 p
+= sizeof (Elf_External_Verdaux
);
3883 while (def
.vd_next
);
3886 /* Adjust version references. */
3887 if (elf_tdata (output_bfd
)->verref
)
3892 Elf_Internal_Verneed need
;
3893 Elf_Internal_Vernaux needaux
;
3895 s
= bfd_get_linker_section (dynobj
, ".gnu.version_r");
3899 _bfd_elf_swap_verneed_in (output_bfd
, (Elf_External_Verneed
*) p
,
3901 need
.vn_file
= _bfd_elf_strtab_offset (dynstr
, need
.vn_file
);
3902 _bfd_elf_swap_verneed_out (output_bfd
, &need
,
3903 (Elf_External_Verneed
*) p
);
3904 p
+= sizeof (Elf_External_Verneed
);
3905 for (i
= 0; i
< need
.vn_cnt
; ++i
)
3907 _bfd_elf_swap_vernaux_in (output_bfd
,
3908 (Elf_External_Vernaux
*) p
, &needaux
);
3909 needaux
.vna_name
= _bfd_elf_strtab_offset (dynstr
,
3911 _bfd_elf_swap_vernaux_out (output_bfd
,
3913 (Elf_External_Vernaux
*) p
);
3914 p
+= sizeof (Elf_External_Vernaux
);
3917 while (need
.vn_next
);
3923 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3924 The default is to only match when the INPUT and OUTPUT are exactly
3928 _bfd_elf_default_relocs_compatible (const bfd_target
*input
,
3929 const bfd_target
*output
)
3931 return input
== output
;
3934 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3935 This version is used when different targets for the same architecture
3936 are virtually identical. */
3939 _bfd_elf_relocs_compatible (const bfd_target
*input
,
3940 const bfd_target
*output
)
3942 const struct elf_backend_data
*obed
, *ibed
;
3944 if (input
== output
)
3947 ibed
= xvec_get_elf_backend_data (input
);
3948 obed
= xvec_get_elf_backend_data (output
);
3950 if (ibed
->arch
!= obed
->arch
)
3953 /* If both backends are using this function, deem them compatible. */
3954 return ibed
->relocs_compatible
== obed
->relocs_compatible
;
3957 /* Make a special call to the linker "notice" function to tell it that
3958 we are about to handle an as-needed lib, or have finished
3959 processing the lib. */
3962 _bfd_elf_notice_as_needed (bfd
*ibfd
,
3963 struct bfd_link_info
*info
,
3964 enum notice_asneeded_action act
)
3966 return (*info
->callbacks
->notice
) (info
, NULL
, NULL
, ibfd
, NULL
, act
, 0);
3969 /* Check relocations an ELF object file. */
3972 _bfd_elf_link_check_relocs (bfd
*abfd
, struct bfd_link_info
*info
)
3974 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
3975 struct elf_link_hash_table
*htab
= elf_hash_table (info
);
3977 /* If this object is the same format as the output object, and it is
3978 not a shared library, then let the backend look through the
3981 This is required to build global offset table entries and to
3982 arrange for dynamic relocs. It is not required for the
3983 particular common case of linking non PIC code, even when linking
3984 against shared libraries, but unfortunately there is no way of
3985 knowing whether an object file has been compiled PIC or not.
3986 Looking through the relocs is not particularly time consuming.
3987 The problem is that we must either (1) keep the relocs in memory,
3988 which causes the linker to require additional runtime memory or
3989 (2) read the relocs twice from the input file, which wastes time.
3990 This would be a good case for using mmap.
3992 I have no idea how to handle linking PIC code into a file of a
3993 different format. It probably can't be done. */
3994 if ((abfd
->flags
& DYNAMIC
) == 0
3995 && is_elf_hash_table (htab
)
3996 && bed
->check_relocs
!= NULL
3997 && elf_object_id (abfd
) == elf_hash_table_id (htab
)
3998 && (*bed
->relocs_compatible
) (abfd
->xvec
, info
->output_bfd
->xvec
))
4002 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
4004 Elf_Internal_Rela
*internal_relocs
;
4007 /* Don't check relocations in excluded sections. Don't do
4008 anything special with non-loaded, non-alloced sections.
4009 In particular, any relocs in such sections should not
4010 affect GOT and PLT reference counting (ie. we don't
4011 allow them to create GOT or PLT entries), there's no
4012 possibility or desire to optimize TLS relocs, and
4013 there's not much point in propagating relocs to shared
4014 libs that the dynamic linker won't relocate. */
4015 if ((o
->flags
& SEC_ALLOC
) == 0
4016 || (o
->flags
& SEC_RELOC
) == 0
4017 || (o
->flags
& SEC_EXCLUDE
) != 0
4018 || o
->reloc_count
== 0
4019 || ((info
->strip
== strip_all
|| info
->strip
== strip_debugger
)
4020 && (o
->flags
& SEC_DEBUGGING
) != 0)
4021 || bfd_is_abs_section (o
->output_section
))
4024 internal_relocs
= _bfd_elf_link_read_relocs (abfd
, o
, NULL
, NULL
,
4026 if (internal_relocs
== NULL
)
4029 ok
= (*bed
->check_relocs
) (abfd
, info
, o
, internal_relocs
);
4031 if (elf_section_data (o
)->relocs
!= internal_relocs
)
4032 free (internal_relocs
);
4042 /* Add symbols from an ELF object file to the linker hash table. */
4045 elf_link_add_object_symbols (bfd
*abfd
, struct bfd_link_info
*info
)
4047 Elf_Internal_Ehdr
*ehdr
;
4048 Elf_Internal_Shdr
*hdr
;
4052 struct elf_link_hash_entry
**sym_hash
;
4053 bfd_boolean dynamic
;
4054 Elf_External_Versym
*extversym
= NULL
;
4055 Elf_External_Versym
*extversym_end
= NULL
;
4056 Elf_External_Versym
*ever
;
4057 struct elf_link_hash_entry
*weaks
;
4058 struct elf_link_hash_entry
**nondeflt_vers
= NULL
;
4059 size_t nondeflt_vers_cnt
= 0;
4060 Elf_Internal_Sym
*isymbuf
= NULL
;
4061 Elf_Internal_Sym
*isym
;
4062 Elf_Internal_Sym
*isymend
;
4063 const struct elf_backend_data
*bed
;
4064 bfd_boolean add_needed
;
4065 struct elf_link_hash_table
*htab
;
4066 void *alloc_mark
= NULL
;
4067 struct bfd_hash_entry
**old_table
= NULL
;
4068 unsigned int old_size
= 0;
4069 unsigned int old_count
= 0;
4070 void *old_tab
= NULL
;
4072 struct bfd_link_hash_entry
*old_undefs
= NULL
;
4073 struct bfd_link_hash_entry
*old_undefs_tail
= NULL
;
4074 void *old_strtab
= NULL
;
4077 bfd_boolean just_syms
;
4079 htab
= elf_hash_table (info
);
4080 bed
= get_elf_backend_data (abfd
);
4082 if ((abfd
->flags
& DYNAMIC
) == 0)
4088 /* You can't use -r against a dynamic object. Also, there's no
4089 hope of using a dynamic object which does not exactly match
4090 the format of the output file. */
4091 if (bfd_link_relocatable (info
)
4092 || !is_elf_hash_table (htab
)
4093 || info
->output_bfd
->xvec
!= abfd
->xvec
)
4095 if (bfd_link_relocatable (info
))
4096 bfd_set_error (bfd_error_invalid_operation
);
4098 bfd_set_error (bfd_error_wrong_format
);
4103 ehdr
= elf_elfheader (abfd
);
4104 if (info
->warn_alternate_em
4105 && bed
->elf_machine_code
!= ehdr
->e_machine
4106 && ((bed
->elf_machine_alt1
!= 0
4107 && ehdr
->e_machine
== bed
->elf_machine_alt1
)
4108 || (bed
->elf_machine_alt2
!= 0
4109 && ehdr
->e_machine
== bed
->elf_machine_alt2
)))
4111 /* xgettext:c-format */
4112 (_("alternate ELF machine code found (%d) in %pB, expecting %d"),
4113 ehdr
->e_machine
, abfd
, bed
->elf_machine_code
);
4115 /* As a GNU extension, any input sections which are named
4116 .gnu.warning.SYMBOL are treated as warning symbols for the given
4117 symbol. This differs from .gnu.warning sections, which generate
4118 warnings when they are included in an output file. */
4119 /* PR 12761: Also generate this warning when building shared libraries. */
4120 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
4124 name
= bfd_section_name (s
);
4125 if (CONST_STRNEQ (name
, ".gnu.warning."))
4130 name
+= sizeof ".gnu.warning." - 1;
4132 /* If this is a shared object, then look up the symbol
4133 in the hash table. If it is there, and it is already
4134 been defined, then we will not be using the entry
4135 from this shared object, so we don't need to warn.
4136 FIXME: If we see the definition in a regular object
4137 later on, we will warn, but we shouldn't. The only
4138 fix is to keep track of what warnings we are supposed
4139 to emit, and then handle them all at the end of the
4143 struct elf_link_hash_entry
*h
;
4145 h
= elf_link_hash_lookup (htab
, name
, FALSE
, FALSE
, TRUE
);
4147 /* FIXME: What about bfd_link_hash_common? */
4149 && (h
->root
.type
== bfd_link_hash_defined
4150 || h
->root
.type
== bfd_link_hash_defweak
))
4155 msg
= (char *) bfd_alloc (abfd
, sz
+ 1);
4159 if (! bfd_get_section_contents (abfd
, s
, msg
, 0, sz
))
4164 if (! (_bfd_generic_link_add_one_symbol
4165 (info
, abfd
, name
, BSF_WARNING
, s
, 0, msg
,
4166 FALSE
, bed
->collect
, NULL
)))
4169 if (bfd_link_executable (info
))
4171 /* Clobber the section size so that the warning does
4172 not get copied into the output file. */
4175 /* Also set SEC_EXCLUDE, so that symbols defined in
4176 the warning section don't get copied to the output. */
4177 s
->flags
|= SEC_EXCLUDE
;
4182 just_syms
= ((s
= abfd
->sections
) != NULL
4183 && s
->sec_info_type
== SEC_INFO_TYPE_JUST_SYMS
);
4188 /* If we are creating a shared library, create all the dynamic
4189 sections immediately. We need to attach them to something,
4190 so we attach them to this BFD, provided it is the right
4191 format and is not from ld --just-symbols. Always create the
4192 dynamic sections for -E/--dynamic-list. FIXME: If there
4193 are no input BFD's of the same format as the output, we can't
4194 make a shared library. */
4196 && (bfd_link_pic (info
)
4197 || (!bfd_link_relocatable (info
)
4199 && (info
->export_dynamic
|| info
->dynamic
)))
4200 && is_elf_hash_table (htab
)
4201 && info
->output_bfd
->xvec
== abfd
->xvec
4202 && !htab
->dynamic_sections_created
)
4204 if (! _bfd_elf_link_create_dynamic_sections (abfd
, info
))
4208 else if (!is_elf_hash_table (htab
))
4212 const char *soname
= NULL
;
4214 struct bfd_link_needed_list
*rpath
= NULL
, *runpath
= NULL
;
4215 const Elf_Internal_Phdr
*phdr
;
4216 struct elf_link_loaded_list
*loaded_lib
;
4218 /* ld --just-symbols and dynamic objects don't mix very well.
4219 ld shouldn't allow it. */
4223 /* If this dynamic lib was specified on the command line with
4224 --as-needed in effect, then we don't want to add a DT_NEEDED
4225 tag unless the lib is actually used. Similary for libs brought
4226 in by another lib's DT_NEEDED. When --no-add-needed is used
4227 on a dynamic lib, we don't want to add a DT_NEEDED entry for
4228 any dynamic library in DT_NEEDED tags in the dynamic lib at
4230 add_needed
= (elf_dyn_lib_class (abfd
)
4231 & (DYN_AS_NEEDED
| DYN_DT_NEEDED
4232 | DYN_NO_NEEDED
)) == 0;
4234 s
= bfd_get_section_by_name (abfd
, ".dynamic");
4239 unsigned int elfsec
;
4240 unsigned long shlink
;
4242 if (!bfd_malloc_and_get_section (abfd
, s
, &dynbuf
))
4249 elfsec
= _bfd_elf_section_from_bfd_section (abfd
, s
);
4250 if (elfsec
== SHN_BAD
)
4251 goto error_free_dyn
;
4252 shlink
= elf_elfsections (abfd
)[elfsec
]->sh_link
;
4254 for (extdyn
= dynbuf
;
4255 extdyn
<= dynbuf
+ s
->size
- bed
->s
->sizeof_dyn
;
4256 extdyn
+= bed
->s
->sizeof_dyn
)
4258 Elf_Internal_Dyn dyn
;
4260 bed
->s
->swap_dyn_in (abfd
, extdyn
, &dyn
);
4261 if (dyn
.d_tag
== DT_SONAME
)
4263 unsigned int tagv
= dyn
.d_un
.d_val
;
4264 soname
= bfd_elf_string_from_elf_section (abfd
, shlink
, tagv
);
4266 goto error_free_dyn
;
4268 if (dyn
.d_tag
== DT_NEEDED
)
4270 struct bfd_link_needed_list
*n
, **pn
;
4272 unsigned int tagv
= dyn
.d_un
.d_val
;
4273 size_t amt
= sizeof (struct bfd_link_needed_list
);
4275 n
= (struct bfd_link_needed_list
*) bfd_alloc (abfd
, amt
);
4276 fnm
= bfd_elf_string_from_elf_section (abfd
, shlink
, tagv
);
4277 if (n
== NULL
|| fnm
== NULL
)
4278 goto error_free_dyn
;
4279 amt
= strlen (fnm
) + 1;
4280 anm
= (char *) bfd_alloc (abfd
, amt
);
4282 goto error_free_dyn
;
4283 memcpy (anm
, fnm
, amt
);
4287 for (pn
= &htab
->needed
; *pn
!= NULL
; pn
= &(*pn
)->next
)
4291 if (dyn
.d_tag
== DT_RUNPATH
)
4293 struct bfd_link_needed_list
*n
, **pn
;
4295 unsigned int tagv
= dyn
.d_un
.d_val
;
4296 size_t amt
= sizeof (struct bfd_link_needed_list
);
4298 n
= (struct bfd_link_needed_list
*) bfd_alloc (abfd
, amt
);
4299 fnm
= bfd_elf_string_from_elf_section (abfd
, shlink
, tagv
);
4300 if (n
== NULL
|| fnm
== NULL
)
4301 goto error_free_dyn
;
4302 amt
= strlen (fnm
) + 1;
4303 anm
= (char *) bfd_alloc (abfd
, amt
);
4305 goto error_free_dyn
;
4306 memcpy (anm
, fnm
, amt
);
4310 for (pn
= & runpath
;
4316 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
4317 if (!runpath
&& dyn
.d_tag
== DT_RPATH
)
4319 struct bfd_link_needed_list
*n
, **pn
;
4321 unsigned int tagv
= dyn
.d_un
.d_val
;
4322 size_t amt
= sizeof (struct bfd_link_needed_list
);
4324 n
= (struct bfd_link_needed_list
*) bfd_alloc (abfd
, amt
);
4325 fnm
= bfd_elf_string_from_elf_section (abfd
, shlink
, tagv
);
4326 if (n
== NULL
|| fnm
== NULL
)
4327 goto error_free_dyn
;
4328 amt
= strlen (fnm
) + 1;
4329 anm
= (char *) bfd_alloc (abfd
, amt
);
4331 goto error_free_dyn
;
4332 memcpy (anm
, fnm
, amt
);
4342 if (dyn
.d_tag
== DT_AUDIT
)
4344 unsigned int tagv
= dyn
.d_un
.d_val
;
4345 audit
= bfd_elf_string_from_elf_section (abfd
, shlink
, tagv
);
4352 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
4353 frees all more recently bfd_alloc'd blocks as well. */
4359 struct bfd_link_needed_list
**pn
;
4360 for (pn
= &htab
->runpath
; *pn
!= NULL
; pn
= &(*pn
)->next
)
4365 /* If we have a PT_GNU_RELRO program header, mark as read-only
4366 all sections contained fully therein. This makes relro
4367 shared library sections appear as they will at run-time. */
4368 phdr
= elf_tdata (abfd
)->phdr
+ elf_elfheader (abfd
)->e_phnum
;
4369 while (phdr
-- > elf_tdata (abfd
)->phdr
)
4370 if (phdr
->p_type
== PT_GNU_RELRO
)
4372 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
4374 unsigned int opb
= bfd_octets_per_byte (abfd
, s
);
4376 if ((s
->flags
& SEC_ALLOC
) != 0
4377 && s
->vma
* opb
>= phdr
->p_vaddr
4378 && s
->vma
* opb
+ s
->size
<= phdr
->p_vaddr
+ phdr
->p_memsz
)
4379 s
->flags
|= SEC_READONLY
;
4384 /* We do not want to include any of the sections in a dynamic
4385 object in the output file. We hack by simply clobbering the
4386 list of sections in the BFD. This could be handled more
4387 cleanly by, say, a new section flag; the existing
4388 SEC_NEVER_LOAD flag is not the one we want, because that one
4389 still implies that the section takes up space in the output
4391 bfd_section_list_clear (abfd
);
4393 /* Find the name to use in a DT_NEEDED entry that refers to this
4394 object. If the object has a DT_SONAME entry, we use it.
4395 Otherwise, if the generic linker stuck something in
4396 elf_dt_name, we use that. Otherwise, we just use the file
4398 if (soname
== NULL
|| *soname
== '\0')
4400 soname
= elf_dt_name (abfd
);
4401 if (soname
== NULL
|| *soname
== '\0')
4402 soname
= bfd_get_filename (abfd
);
4405 /* Save the SONAME because sometimes the linker emulation code
4406 will need to know it. */
4407 elf_dt_name (abfd
) = soname
;
4409 /* If we have already included this dynamic object in the
4410 link, just ignore it. There is no reason to include a
4411 particular dynamic object more than once. */
4412 for (loaded_lib
= htab
->dyn_loaded
;
4414 loaded_lib
= loaded_lib
->next
)
4416 if (strcmp (elf_dt_name (loaded_lib
->abfd
), soname
) == 0)
4420 /* Create dynamic sections for backends that require that be done
4421 before setup_gnu_properties. */
4423 && !_bfd_elf_link_create_dynamic_sections (abfd
, info
))
4426 /* Save the DT_AUDIT entry for the linker emulation code. */
4427 elf_dt_audit (abfd
) = audit
;
4430 /* If this is a dynamic object, we always link against the .dynsym
4431 symbol table, not the .symtab symbol table. The dynamic linker
4432 will only see the .dynsym symbol table, so there is no reason to
4433 look at .symtab for a dynamic object. */
4435 if (! dynamic
|| elf_dynsymtab (abfd
) == 0)
4436 hdr
= &elf_tdata (abfd
)->symtab_hdr
;
4438 hdr
= &elf_tdata (abfd
)->dynsymtab_hdr
;
4440 symcount
= hdr
->sh_size
/ bed
->s
->sizeof_sym
;
4442 /* The sh_info field of the symtab header tells us where the
4443 external symbols start. We don't care about the local symbols at
4445 if (elf_bad_symtab (abfd
))
4447 extsymcount
= symcount
;
4452 extsymcount
= symcount
- hdr
->sh_info
;
4453 extsymoff
= hdr
->sh_info
;
4456 sym_hash
= elf_sym_hashes (abfd
);
4457 if (extsymcount
!= 0)
4459 isymbuf
= bfd_elf_get_elf_syms (abfd
, hdr
, extsymcount
, extsymoff
,
4461 if (isymbuf
== NULL
)
4464 if (sym_hash
== NULL
)
4466 /* We store a pointer to the hash table entry for each
4468 size_t amt
= extsymcount
* sizeof (struct elf_link_hash_entry
*);
4469 sym_hash
= (struct elf_link_hash_entry
**) bfd_zalloc (abfd
, amt
);
4470 if (sym_hash
== NULL
)
4471 goto error_free_sym
;
4472 elf_sym_hashes (abfd
) = sym_hash
;
4478 /* Read in any version definitions. */
4479 if (!_bfd_elf_slurp_version_tables (abfd
,
4480 info
->default_imported_symver
))
4481 goto error_free_sym
;
4483 /* Read in the symbol versions, but don't bother to convert them
4484 to internal format. */
4485 if (elf_dynversym (abfd
) != 0)
4487 Elf_Internal_Shdr
*versymhdr
= &elf_tdata (abfd
)->dynversym_hdr
;
4488 bfd_size_type amt
= versymhdr
->sh_size
;
4490 if (bfd_seek (abfd
, versymhdr
->sh_offset
, SEEK_SET
) != 0)
4491 goto error_free_sym
;
4492 extversym
= (Elf_External_Versym
*)
4493 _bfd_malloc_and_read (abfd
, amt
, amt
);
4494 if (extversym
== NULL
)
4495 goto error_free_sym
;
4496 extversym_end
= extversym
+ amt
/ sizeof (*extversym
);
4500 /* If we are loading an as-needed shared lib, save the symbol table
4501 state before we start adding symbols. If the lib turns out
4502 to be unneeded, restore the state. */
4503 if ((elf_dyn_lib_class (abfd
) & DYN_AS_NEEDED
) != 0)
4508 for (entsize
= 0, i
= 0; i
< htab
->root
.table
.size
; i
++)
4510 struct bfd_hash_entry
*p
;
4511 struct elf_link_hash_entry
*h
;
4513 for (p
= htab
->root
.table
.table
[i
]; p
!= NULL
; p
= p
->next
)
4515 h
= (struct elf_link_hash_entry
*) p
;
4516 entsize
+= htab
->root
.table
.entsize
;
4517 if (h
->root
.type
== bfd_link_hash_warning
)
4519 entsize
+= htab
->root
.table
.entsize
;
4520 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
4522 if (h
->root
.type
== bfd_link_hash_common
)
4523 entsize
+= sizeof (*h
->root
.u
.c
.p
);
4527 tabsize
= htab
->root
.table
.size
* sizeof (struct bfd_hash_entry
*);
4528 old_tab
= bfd_malloc (tabsize
+ entsize
);
4529 if (old_tab
== NULL
)
4530 goto error_free_vers
;
4532 /* Remember the current objalloc pointer, so that all mem for
4533 symbols added can later be reclaimed. */
4534 alloc_mark
= bfd_hash_allocate (&htab
->root
.table
, 1);
4535 if (alloc_mark
== NULL
)
4536 goto error_free_vers
;
4538 /* Make a special call to the linker "notice" function to
4539 tell it that we are about to handle an as-needed lib. */
4540 if (!(*bed
->notice_as_needed
) (abfd
, info
, notice_as_needed
))
4541 goto error_free_vers
;
4543 /* Clone the symbol table. Remember some pointers into the
4544 symbol table, and dynamic symbol count. */
4545 old_ent
= (char *) old_tab
+ tabsize
;
4546 memcpy (old_tab
, htab
->root
.table
.table
, tabsize
);
4547 old_undefs
= htab
->root
.undefs
;
4548 old_undefs_tail
= htab
->root
.undefs_tail
;
4549 old_table
= htab
->root
.table
.table
;
4550 old_size
= htab
->root
.table
.size
;
4551 old_count
= htab
->root
.table
.count
;
4553 if (htab
->dynstr
!= NULL
)
4555 old_strtab
= _bfd_elf_strtab_save (htab
->dynstr
);
4556 if (old_strtab
== NULL
)
4557 goto error_free_vers
;
4560 for (i
= 0; i
< htab
->root
.table
.size
; i
++)
4562 struct bfd_hash_entry
*p
;
4563 struct elf_link_hash_entry
*h
;
4565 for (p
= htab
->root
.table
.table
[i
]; p
!= NULL
; p
= p
->next
)
4567 h
= (struct elf_link_hash_entry
*) p
;
4568 memcpy (old_ent
, h
, htab
->root
.table
.entsize
);
4569 old_ent
= (char *) old_ent
+ htab
->root
.table
.entsize
;
4570 if (h
->root
.type
== bfd_link_hash_warning
)
4572 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
4573 memcpy (old_ent
, h
, htab
->root
.table
.entsize
);
4574 old_ent
= (char *) old_ent
+ htab
->root
.table
.entsize
;
4576 if (h
->root
.type
== bfd_link_hash_common
)
4578 memcpy (old_ent
, h
->root
.u
.c
.p
, sizeof (*h
->root
.u
.c
.p
));
4579 old_ent
= (char *) old_ent
+ sizeof (*h
->root
.u
.c
.p
);
4586 if (extversym
== NULL
)
4588 else if (extversym
+ extsymoff
< extversym_end
)
4589 ever
= extversym
+ extsymoff
;
4592 /* xgettext:c-format */
4593 _bfd_error_handler (_("%pB: invalid version offset %lx (max %lx)"),
4594 abfd
, (long) extsymoff
,
4595 (long) (extversym_end
- extversym
) / sizeof (* extversym
));
4596 bfd_set_error (bfd_error_bad_value
);
4597 goto error_free_vers
;
4600 if (!bfd_link_relocatable (info
)
4601 && abfd
->lto_slim_object
)
4604 (_("%pB: plugin needed to handle lto object"), abfd
);
4607 for (isym
= isymbuf
, isymend
= isymbuf
+ extsymcount
;
4609 isym
++, sym_hash
++, ever
= (ever
!= NULL
? ever
+ 1 : NULL
))
4613 asection
*sec
, *new_sec
;
4616 struct elf_link_hash_entry
*h
;
4617 struct elf_link_hash_entry
*hi
;
4618 bfd_boolean definition
;
4619 bfd_boolean size_change_ok
;
4620 bfd_boolean type_change_ok
;
4621 bfd_boolean new_weak
;
4622 bfd_boolean old_weak
;
4625 bfd_boolean discarded
;
4626 unsigned int old_alignment
;
4627 unsigned int shindex
;
4629 bfd_boolean matched
;
4633 flags
= BSF_NO_FLAGS
;
4635 value
= isym
->st_value
;
4636 common
= bed
->common_definition (isym
);
4637 if (common
&& info
->inhibit_common_definition
)
4639 /* Treat common symbol as undefined for --no-define-common. */
4640 isym
->st_shndx
= SHN_UNDEF
;
4645 bind
= ELF_ST_BIND (isym
->st_info
);
4649 /* This should be impossible, since ELF requires that all
4650 global symbols follow all local symbols, and that sh_info
4651 point to the first global symbol. Unfortunately, Irix 5
4653 if (elf_bad_symtab (abfd
))
4656 /* If we aren't prepared to handle locals within the globals
4657 then we'll likely segfault on a NULL symbol hash if the
4658 symbol is ever referenced in relocations. */
4659 shindex
= elf_elfheader (abfd
)->e_shstrndx
;
4660 name
= bfd_elf_string_from_elf_section (abfd
, shindex
, hdr
->sh_name
);
4661 _bfd_error_handler (_("%pB: %s local symbol at index %lu"
4662 " (>= sh_info of %lu)"),
4663 abfd
, name
, (long) (isym
- isymbuf
+ extsymoff
),
4666 /* Dynamic object relocations are not processed by ld, so
4667 ld won't run into the problem mentioned above. */
4670 bfd_set_error (bfd_error_bad_value
);
4671 goto error_free_vers
;
4674 if (isym
->st_shndx
!= SHN_UNDEF
&& !common
)
4682 case STB_GNU_UNIQUE
:
4683 flags
= BSF_GNU_UNIQUE
;
4687 /* Leave it up to the processor backend. */
4691 if (isym
->st_shndx
== SHN_UNDEF
)
4692 sec
= bfd_und_section_ptr
;
4693 else if (isym
->st_shndx
== SHN_ABS
)
4694 sec
= bfd_abs_section_ptr
;
4695 else if (isym
->st_shndx
== SHN_COMMON
)
4697 sec
= bfd_com_section_ptr
;
4698 /* What ELF calls the size we call the value. What ELF
4699 calls the value we call the alignment. */
4700 value
= isym
->st_size
;
4704 sec
= bfd_section_from_elf_index (abfd
, isym
->st_shndx
);
4706 sec
= bfd_abs_section_ptr
;
4707 else if (discarded_section (sec
))
4709 /* Symbols from discarded section are undefined. We keep
4711 sec
= bfd_und_section_ptr
;
4713 isym
->st_shndx
= SHN_UNDEF
;
4715 else if ((abfd
->flags
& (EXEC_P
| DYNAMIC
)) != 0)
4719 name
= bfd_elf_string_from_elf_section (abfd
, hdr
->sh_link
,
4722 goto error_free_vers
;
4724 if (isym
->st_shndx
== SHN_COMMON
4725 && (abfd
->flags
& BFD_PLUGIN
) != 0)
4727 asection
*xc
= bfd_get_section_by_name (abfd
, "COMMON");
4731 flagword sflags
= (SEC_ALLOC
| SEC_IS_COMMON
| SEC_KEEP
4733 xc
= bfd_make_section_with_flags (abfd
, "COMMON", sflags
);
4735 goto error_free_vers
;
4739 else if (isym
->st_shndx
== SHN_COMMON
4740 && ELF_ST_TYPE (isym
->st_info
) == STT_TLS
4741 && !bfd_link_relocatable (info
))
4743 asection
*tcomm
= bfd_get_section_by_name (abfd
, ".tcommon");
4747 flagword sflags
= (SEC_ALLOC
| SEC_THREAD_LOCAL
| SEC_IS_COMMON
4748 | SEC_LINKER_CREATED
);
4749 tcomm
= bfd_make_section_with_flags (abfd
, ".tcommon", sflags
);
4751 goto error_free_vers
;
4755 else if (bed
->elf_add_symbol_hook
)
4757 if (! (*bed
->elf_add_symbol_hook
) (abfd
, info
, isym
, &name
, &flags
,
4759 goto error_free_vers
;
4761 /* The hook function sets the name to NULL if this symbol
4762 should be skipped for some reason. */
4767 /* Sanity check that all possibilities were handled. */
4771 /* Silently discard TLS symbols from --just-syms. There's
4772 no way to combine a static TLS block with a new TLS block
4773 for this executable. */
4774 if (ELF_ST_TYPE (isym
->st_info
) == STT_TLS
4775 && sec
->sec_info_type
== SEC_INFO_TYPE_JUST_SYMS
)
4778 if (bfd_is_und_section (sec
)
4779 || bfd_is_com_section (sec
))
4784 size_change_ok
= FALSE
;
4785 type_change_ok
= bed
->type_change_ok
;
4792 if (is_elf_hash_table (htab
))
4794 Elf_Internal_Versym iver
;
4795 unsigned int vernum
= 0;
4800 if (info
->default_imported_symver
)
4801 /* Use the default symbol version created earlier. */
4802 iver
.vs_vers
= elf_tdata (abfd
)->cverdefs
;
4806 else if (ever
>= extversym_end
)
4808 /* xgettext:c-format */
4809 _bfd_error_handler (_("%pB: not enough version information"),
4811 bfd_set_error (bfd_error_bad_value
);
4812 goto error_free_vers
;
4815 _bfd_elf_swap_versym_in (abfd
, ever
, &iver
);
4817 vernum
= iver
.vs_vers
& VERSYM_VERSION
;
4819 /* If this is a hidden symbol, or if it is not version
4820 1, we append the version name to the symbol name.
4821 However, we do not modify a non-hidden absolute symbol
4822 if it is not a function, because it might be the version
4823 symbol itself. FIXME: What if it isn't? */
4824 if ((iver
.vs_vers
& VERSYM_HIDDEN
) != 0
4826 && (!bfd_is_abs_section (sec
)
4827 || bed
->is_function_type (ELF_ST_TYPE (isym
->st_info
)))))
4830 size_t namelen
, verlen
, newlen
;
4833 if (isym
->st_shndx
!= SHN_UNDEF
)
4835 if (vernum
> elf_tdata (abfd
)->cverdefs
)
4837 else if (vernum
> 1)
4839 elf_tdata (abfd
)->verdef
[vernum
- 1].vd_nodename
;
4846 /* xgettext:c-format */
4847 (_("%pB: %s: invalid version %u (max %d)"),
4849 elf_tdata (abfd
)->cverdefs
);
4850 bfd_set_error (bfd_error_bad_value
);
4851 goto error_free_vers
;
4856 /* We cannot simply test for the number of
4857 entries in the VERNEED section since the
4858 numbers for the needed versions do not start
4860 Elf_Internal_Verneed
*t
;
4863 for (t
= elf_tdata (abfd
)->verref
;
4867 Elf_Internal_Vernaux
*a
;
4869 for (a
= t
->vn_auxptr
; a
!= NULL
; a
= a
->vna_nextptr
)
4871 if (a
->vna_other
== vernum
)
4873 verstr
= a
->vna_nodename
;
4883 /* xgettext:c-format */
4884 (_("%pB: %s: invalid needed version %d"),
4885 abfd
, name
, vernum
);
4886 bfd_set_error (bfd_error_bad_value
);
4887 goto error_free_vers
;
4891 namelen
= strlen (name
);
4892 verlen
= strlen (verstr
);
4893 newlen
= namelen
+ verlen
+ 2;
4894 if ((iver
.vs_vers
& VERSYM_HIDDEN
) == 0
4895 && isym
->st_shndx
!= SHN_UNDEF
)
4898 newname
= (char *) bfd_hash_allocate (&htab
->root
.table
, newlen
);
4899 if (newname
== NULL
)
4900 goto error_free_vers
;
4901 memcpy (newname
, name
, namelen
);
4902 p
= newname
+ namelen
;
4904 /* If this is a defined non-hidden version symbol,
4905 we add another @ to the name. This indicates the
4906 default version of the symbol. */
4907 if ((iver
.vs_vers
& VERSYM_HIDDEN
) == 0
4908 && isym
->st_shndx
!= SHN_UNDEF
)
4910 memcpy (p
, verstr
, verlen
+ 1);
4915 /* If this symbol has default visibility and the user has
4916 requested we not re-export it, then mark it as hidden. */
4917 if (!bfd_is_und_section (sec
)
4920 && ELF_ST_VISIBILITY (isym
->st_other
) != STV_INTERNAL
)
4921 isym
->st_other
= (STV_HIDDEN
4922 | (isym
->st_other
& ~ELF_ST_VISIBILITY (-1)));
4924 if (!_bfd_elf_merge_symbol (abfd
, info
, name
, isym
, &sec
, &value
,
4925 sym_hash
, &old_bfd
, &old_weak
,
4926 &old_alignment
, &skip
, &override
,
4927 &type_change_ok
, &size_change_ok
,
4929 goto error_free_vers
;
4934 /* Override a definition only if the new symbol matches the
4936 if (override
&& matched
)
4940 while (h
->root
.type
== bfd_link_hash_indirect
4941 || h
->root
.type
== bfd_link_hash_warning
)
4942 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
4944 if (elf_tdata (abfd
)->verdef
!= NULL
4947 h
->verinfo
.verdef
= &elf_tdata (abfd
)->verdef
[vernum
- 1];
4950 if (! (_bfd_generic_link_add_one_symbol
4951 (info
, override
? override
: abfd
, name
, flags
, sec
, value
,
4952 NULL
, FALSE
, bed
->collect
,
4953 (struct bfd_link_hash_entry
**) sym_hash
)))
4954 goto error_free_vers
;
4957 /* We need to make sure that indirect symbol dynamic flags are
4960 while (h
->root
.type
== bfd_link_hash_indirect
4961 || h
->root
.type
== bfd_link_hash_warning
)
4962 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
4964 /* Setting the index to -3 tells elf_link_output_extsym that
4965 this symbol is defined in a discarded section. */
4971 new_weak
= (flags
& BSF_WEAK
) != 0;
4975 && !bed
->is_function_type (ELF_ST_TYPE (isym
->st_info
))
4976 && is_elf_hash_table (htab
)
4977 && h
->u
.alias
== NULL
)
4979 /* Keep a list of all weak defined non function symbols from
4980 a dynamic object, using the alias field. Later in this
4981 function we will set the alias field to the correct
4982 value. We only put non-function symbols from dynamic
4983 objects on this list, because that happens to be the only
4984 time we need to know the normal symbol corresponding to a
4985 weak symbol, and the information is time consuming to
4986 figure out. If the alias field is not already NULL,
4987 then this symbol was already defined by some previous
4988 dynamic object, and we will be using that previous
4989 definition anyhow. */
4995 /* Set the alignment of a common symbol. */
4996 if ((common
|| bfd_is_com_section (sec
))
4997 && h
->root
.type
== bfd_link_hash_common
)
5002 align
= bfd_log2 (isym
->st_value
);
5005 /* The new symbol is a common symbol in a shared object.
5006 We need to get the alignment from the section. */
5007 align
= new_sec
->alignment_power
;
5009 if (align
> old_alignment
)
5010 h
->root
.u
.c
.p
->alignment_power
= align
;
5012 h
->root
.u
.c
.p
->alignment_power
= old_alignment
;
5015 if (is_elf_hash_table (htab
))
5017 /* Set a flag in the hash table entry indicating the type of
5018 reference or definition we just found. A dynamic symbol
5019 is one which is referenced or defined by both a regular
5020 object and a shared object. */
5021 bfd_boolean dynsym
= FALSE
;
5023 /* Plugin symbols aren't normal. Don't set def/ref flags. */
5024 if ((abfd
->flags
& BFD_PLUGIN
) != 0)
5031 if (bind
!= STB_WEAK
)
5032 h
->ref_regular_nonweak
= 1;
5049 hi
->ref_dynamic
= 1;
5054 hi
->def_dynamic
= 1;
5058 /* If an indirect symbol has been forced local, don't
5059 make the real symbol dynamic. */
5060 if (h
!= hi
&& hi
->forced_local
)
5064 if (bfd_link_dll (info
)
5074 && weakdef (h
)->dynindx
!= -1))
5078 /* Check to see if we need to add an indirect symbol for
5079 the default name. */
5081 || (!override
&& h
->root
.type
== bfd_link_hash_common
))
5083 && hi
->versioned
== versioned_hidden
))
5084 if (!_bfd_elf_add_default_symbol (abfd
, info
, h
, name
, isym
,
5085 sec
, value
, &old_bfd
, &dynsym
))
5086 goto error_free_vers
;
5088 /* Check the alignment when a common symbol is involved. This
5089 can change when a common symbol is overridden by a normal
5090 definition or a common symbol is ignored due to the old
5091 normal definition. We need to make sure the maximum
5092 alignment is maintained. */
5093 if ((old_alignment
|| common
)
5094 && h
->root
.type
!= bfd_link_hash_common
)
5096 unsigned int common_align
;
5097 unsigned int normal_align
;
5098 unsigned int symbol_align
;
5102 BFD_ASSERT (h
->root
.type
== bfd_link_hash_defined
5103 || h
->root
.type
== bfd_link_hash_defweak
);
5105 symbol_align
= ffs (h
->root
.u
.def
.value
) - 1;
5106 if (h
->root
.u
.def
.section
->owner
!= NULL
5107 && (h
->root
.u
.def
.section
->owner
->flags
5108 & (DYNAMIC
| BFD_PLUGIN
)) == 0)
5110 normal_align
= h
->root
.u
.def
.section
->alignment_power
;
5111 if (normal_align
> symbol_align
)
5112 normal_align
= symbol_align
;
5115 normal_align
= symbol_align
;
5119 common_align
= old_alignment
;
5120 common_bfd
= old_bfd
;
5125 common_align
= bfd_log2 (isym
->st_value
);
5127 normal_bfd
= old_bfd
;
5130 if (normal_align
< common_align
)
5132 /* PR binutils/2735 */
5133 if (normal_bfd
== NULL
)
5135 /* xgettext:c-format */
5136 (_("warning: alignment %u of common symbol `%s' in %pB is"
5137 " greater than the alignment (%u) of its section %pA"),
5138 1 << common_align
, name
, common_bfd
,
5139 1 << normal_align
, h
->root
.u
.def
.section
);
5142 /* xgettext:c-format */
5143 (_("warning: alignment %u of symbol `%s' in %pB"
5144 " is smaller than %u in %pB"),
5145 1 << normal_align
, name
, normal_bfd
,
5146 1 << common_align
, common_bfd
);
5150 /* Remember the symbol size if it isn't undefined. */
5151 if (isym
->st_size
!= 0
5152 && isym
->st_shndx
!= SHN_UNDEF
5153 && (definition
|| h
->size
== 0))
5156 && h
->size
!= isym
->st_size
5157 && ! size_change_ok
)
5159 /* xgettext:c-format */
5160 (_("warning: size of symbol `%s' changed"
5161 " from %" PRIu64
" in %pB to %" PRIu64
" in %pB"),
5162 name
, (uint64_t) h
->size
, old_bfd
,
5163 (uint64_t) isym
->st_size
, abfd
);
5165 h
->size
= isym
->st_size
;
5168 /* If this is a common symbol, then we always want H->SIZE
5169 to be the size of the common symbol. The code just above
5170 won't fix the size if a common symbol becomes larger. We
5171 don't warn about a size change here, because that is
5172 covered by --warn-common. Allow changes between different
5174 if (h
->root
.type
== bfd_link_hash_common
)
5175 h
->size
= h
->root
.u
.c
.size
;
5177 if (ELF_ST_TYPE (isym
->st_info
) != STT_NOTYPE
5178 && ((definition
&& !new_weak
)
5179 || (old_weak
&& h
->root
.type
== bfd_link_hash_common
)
5180 || h
->type
== STT_NOTYPE
))
5182 unsigned int type
= ELF_ST_TYPE (isym
->st_info
);
5184 /* Turn an IFUNC symbol from a DSO into a normal FUNC
5186 if (type
== STT_GNU_IFUNC
5187 && (abfd
->flags
& DYNAMIC
) != 0)
5190 if (h
->type
!= type
)
5192 if (h
->type
!= STT_NOTYPE
&& ! type_change_ok
)
5193 /* xgettext:c-format */
5195 (_("warning: type of symbol `%s' changed"
5196 " from %d to %d in %pB"),
5197 name
, h
->type
, type
, abfd
);
5203 /* Merge st_other field. */
5204 elf_merge_st_other (abfd
, h
, isym
->st_other
, sec
,
5205 definition
, dynamic
);
5207 /* We don't want to make debug symbol dynamic. */
5209 && (sec
->flags
& SEC_DEBUGGING
)
5210 && !bfd_link_relocatable (info
))
5213 /* Nor should we make plugin symbols dynamic. */
5214 if ((abfd
->flags
& BFD_PLUGIN
) != 0)
5219 h
->target_internal
= isym
->st_target_internal
;
5220 h
->unique_global
= (flags
& BSF_GNU_UNIQUE
) != 0;
5223 if (definition
&& !dynamic
)
5225 char *p
= strchr (name
, ELF_VER_CHR
);
5226 if (p
!= NULL
&& p
[1] != ELF_VER_CHR
)
5228 /* Queue non-default versions so that .symver x, x@FOO
5229 aliases can be checked. */
5232 size_t amt
= ((isymend
- isym
+ 1)
5233 * sizeof (struct elf_link_hash_entry
*));
5235 = (struct elf_link_hash_entry
**) bfd_malloc (amt
);
5237 goto error_free_vers
;
5239 nondeflt_vers
[nondeflt_vers_cnt
++] = h
;
5243 if (dynsym
&& h
->dynindx
== -1)
5245 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
5246 goto error_free_vers
;
5248 && weakdef (h
)->dynindx
== -1)
5250 if (!bfd_elf_link_record_dynamic_symbol (info
, weakdef (h
)))
5251 goto error_free_vers
;
5254 else if (h
->dynindx
!= -1)
5255 /* If the symbol already has a dynamic index, but
5256 visibility says it should not be visible, turn it into
5258 switch (ELF_ST_VISIBILITY (h
->other
))
5262 (*bed
->elf_backend_hide_symbol
) (info
, h
, TRUE
);
5271 && h
->ref_regular_nonweak
)
5273 && (old_bfd
->flags
& BFD_PLUGIN
) != 0
5274 && bind
!= STB_WEAK
)
5275 || (h
->ref_dynamic_nonweak
5276 && (elf_dyn_lib_class (abfd
) & DYN_AS_NEEDED
) != 0
5277 && !on_needed_list (elf_dt_name (abfd
),
5278 htab
->needed
, NULL
))))
5280 const char *soname
= elf_dt_name (abfd
);
5282 info
->callbacks
->minfo ("%!", soname
, old_bfd
,
5283 h
->root
.root
.string
);
5285 /* A symbol from a library loaded via DT_NEEDED of some
5286 other library is referenced by a regular object.
5287 Add a DT_NEEDED entry for it. Issue an error if
5288 --no-add-needed is used and the reference was not
5291 && (elf_dyn_lib_class (abfd
) & DYN_NO_NEEDED
) != 0)
5294 /* xgettext:c-format */
5295 (_("%pB: undefined reference to symbol '%s'"),
5297 bfd_set_error (bfd_error_missing_dso
);
5298 goto error_free_vers
;
5301 elf_dyn_lib_class (abfd
) = (enum dynamic_lib_link_class
)
5302 (elf_dyn_lib_class (abfd
) & ~DYN_AS_NEEDED
);
5304 /* Create dynamic sections for backends that require
5305 that be done before setup_gnu_properties. */
5306 if (!_bfd_elf_link_create_dynamic_sections (abfd
, info
))
5313 if (info
->lto_plugin_active
5314 && !bfd_link_relocatable (info
)
5315 && (abfd
->flags
& BFD_PLUGIN
) == 0
5321 if (bed
->s
->arch_size
== 32)
5326 /* If linker plugin is enabled, set non_ir_ref_regular on symbols
5327 referenced in regular objects so that linker plugin will get
5328 the correct symbol resolution. */
5330 sym_hash
= elf_sym_hashes (abfd
);
5331 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
5333 Elf_Internal_Rela
*internal_relocs
;
5334 Elf_Internal_Rela
*rel
, *relend
;
5336 /* Don't check relocations in excluded sections. */
5337 if ((s
->flags
& SEC_RELOC
) == 0
5338 || s
->reloc_count
== 0
5339 || (s
->flags
& SEC_EXCLUDE
) != 0
5340 || ((info
->strip
== strip_all
5341 || info
->strip
== strip_debugger
)
5342 && (s
->flags
& SEC_DEBUGGING
) != 0))
5345 internal_relocs
= _bfd_elf_link_read_relocs (abfd
, s
, NULL
,
5348 if (internal_relocs
== NULL
)
5349 goto error_free_vers
;
5351 rel
= internal_relocs
;
5352 relend
= rel
+ s
->reloc_count
;
5353 for ( ; rel
< relend
; rel
++)
5355 unsigned long r_symndx
= rel
->r_info
>> r_sym_shift
;
5356 struct elf_link_hash_entry
*h
;
5358 /* Skip local symbols. */
5359 if (r_symndx
< extsymoff
)
5362 h
= sym_hash
[r_symndx
- extsymoff
];
5364 h
->root
.non_ir_ref_regular
= 1;
5367 if (elf_section_data (s
)->relocs
!= internal_relocs
)
5368 free (internal_relocs
);
5377 if ((elf_dyn_lib_class (abfd
) & DYN_AS_NEEDED
) != 0)
5381 /* Restore the symbol table. */
5382 old_ent
= (char *) old_tab
+ tabsize
;
5383 memset (elf_sym_hashes (abfd
), 0,
5384 extsymcount
* sizeof (struct elf_link_hash_entry
*));
5385 htab
->root
.table
.table
= old_table
;
5386 htab
->root
.table
.size
= old_size
;
5387 htab
->root
.table
.count
= old_count
;
5388 memcpy (htab
->root
.table
.table
, old_tab
, tabsize
);
5389 htab
->root
.undefs
= old_undefs
;
5390 htab
->root
.undefs_tail
= old_undefs_tail
;
5391 if (htab
->dynstr
!= NULL
)
5392 _bfd_elf_strtab_restore (htab
->dynstr
, old_strtab
);
5395 for (i
= 0; i
< htab
->root
.table
.size
; i
++)
5397 struct bfd_hash_entry
*p
;
5398 struct elf_link_hash_entry
*h
;
5399 unsigned int non_ir_ref_dynamic
;
5401 for (p
= htab
->root
.table
.table
[i
]; p
!= NULL
; p
= p
->next
)
5403 /* Preserve non_ir_ref_dynamic so that this symbol
5404 will be exported when the dynamic lib becomes needed
5405 in the second pass. */
5406 h
= (struct elf_link_hash_entry
*) p
;
5407 if (h
->root
.type
== bfd_link_hash_warning
)
5408 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
5409 non_ir_ref_dynamic
= h
->root
.non_ir_ref_dynamic
;
5411 h
= (struct elf_link_hash_entry
*) p
;
5412 memcpy (h
, old_ent
, htab
->root
.table
.entsize
);
5413 old_ent
= (char *) old_ent
+ htab
->root
.table
.entsize
;
5414 if (h
->root
.type
== bfd_link_hash_warning
)
5416 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
5417 memcpy (h
, old_ent
, htab
->root
.table
.entsize
);
5418 old_ent
= (char *) old_ent
+ htab
->root
.table
.entsize
;
5420 if (h
->root
.type
== bfd_link_hash_common
)
5422 memcpy (h
->root
.u
.c
.p
, old_ent
, sizeof (*h
->root
.u
.c
.p
));
5423 old_ent
= (char *) old_ent
+ sizeof (*h
->root
.u
.c
.p
);
5425 h
->root
.non_ir_ref_dynamic
= non_ir_ref_dynamic
;
5429 /* Make a special call to the linker "notice" function to
5430 tell it that symbols added for crefs may need to be removed. */
5431 if (!(*bed
->notice_as_needed
) (abfd
, info
, notice_not_needed
))
5432 goto error_free_vers
;
5435 objalloc_free_block ((struct objalloc
*) htab
->root
.table
.memory
,
5437 free (nondeflt_vers
);
5441 if (old_tab
!= NULL
)
5443 if (!(*bed
->notice_as_needed
) (abfd
, info
, notice_needed
))
5444 goto error_free_vers
;
5449 /* Now that all the symbols from this input file are created, if
5450 not performing a relocatable link, handle .symver foo, foo@BAR
5451 such that any relocs against foo become foo@BAR. */
5452 if (!bfd_link_relocatable (info
) && nondeflt_vers
!= NULL
)
5456 for (cnt
= 0; cnt
< nondeflt_vers_cnt
; ++cnt
)
5458 struct elf_link_hash_entry
*h
= nondeflt_vers
[cnt
], *hi
;
5459 char *shortname
, *p
;
5462 p
= strchr (h
->root
.root
.string
, ELF_VER_CHR
);
5464 || (h
->root
.type
!= bfd_link_hash_defined
5465 && h
->root
.type
!= bfd_link_hash_defweak
))
5468 amt
= p
- h
->root
.root
.string
;
5469 shortname
= (char *) bfd_malloc (amt
+ 1);
5471 goto error_free_vers
;
5472 memcpy (shortname
, h
->root
.root
.string
, amt
);
5473 shortname
[amt
] = '\0';
5475 hi
= (struct elf_link_hash_entry
*)
5476 bfd_link_hash_lookup (&htab
->root
, shortname
,
5477 FALSE
, FALSE
, FALSE
);
5479 && hi
->root
.type
== h
->root
.type
5480 && hi
->root
.u
.def
.value
== h
->root
.u
.def
.value
5481 && hi
->root
.u
.def
.section
== h
->root
.u
.def
.section
)
5483 (*bed
->elf_backend_hide_symbol
) (info
, hi
, TRUE
);
5484 hi
->root
.type
= bfd_link_hash_indirect
;
5485 hi
->root
.u
.i
.link
= (struct bfd_link_hash_entry
*) h
;
5486 (*bed
->elf_backend_copy_indirect_symbol
) (info
, h
, hi
);
5487 sym_hash
= elf_sym_hashes (abfd
);
5489 for (symidx
= 0; symidx
< extsymcount
; ++symidx
)
5490 if (sym_hash
[symidx
] == hi
)
5492 sym_hash
[symidx
] = h
;
5498 free (nondeflt_vers
);
5499 nondeflt_vers
= NULL
;
5502 /* Now set the alias field correctly for all the weak defined
5503 symbols we found. The only way to do this is to search all the
5504 symbols. Since we only need the information for non functions in
5505 dynamic objects, that's the only time we actually put anything on
5506 the list WEAKS. We need this information so that if a regular
5507 object refers to a symbol defined weakly in a dynamic object, the
5508 real symbol in the dynamic object is also put in the dynamic
5509 symbols; we also must arrange for both symbols to point to the
5510 same memory location. We could handle the general case of symbol
5511 aliasing, but a general symbol alias can only be generated in
5512 assembler code, handling it correctly would be very time
5513 consuming, and other ELF linkers don't handle general aliasing
5517 struct elf_link_hash_entry
**hpp
;
5518 struct elf_link_hash_entry
**hppend
;
5519 struct elf_link_hash_entry
**sorted_sym_hash
;
5520 struct elf_link_hash_entry
*h
;
5521 size_t sym_count
, amt
;
5523 /* Since we have to search the whole symbol list for each weak
5524 defined symbol, search time for N weak defined symbols will be
5525 O(N^2). Binary search will cut it down to O(NlogN). */
5526 amt
= extsymcount
* sizeof (*sorted_sym_hash
);
5527 sorted_sym_hash
= bfd_malloc (amt
);
5528 if (sorted_sym_hash
== NULL
)
5530 sym_hash
= sorted_sym_hash
;
5531 hpp
= elf_sym_hashes (abfd
);
5532 hppend
= hpp
+ extsymcount
;
5534 for (; hpp
< hppend
; hpp
++)
5538 && h
->root
.type
== bfd_link_hash_defined
5539 && !bed
->is_function_type (h
->type
))
5547 qsort (sorted_sym_hash
, sym_count
, sizeof (*sorted_sym_hash
),
5550 while (weaks
!= NULL
)
5552 struct elf_link_hash_entry
*hlook
;
5555 size_t i
, j
, idx
= 0;
5558 weaks
= hlook
->u
.alias
;
5559 hlook
->u
.alias
= NULL
;
5561 if (hlook
->root
.type
!= bfd_link_hash_defined
5562 && hlook
->root
.type
!= bfd_link_hash_defweak
)
5565 slook
= hlook
->root
.u
.def
.section
;
5566 vlook
= hlook
->root
.u
.def
.value
;
5572 bfd_signed_vma vdiff
;
5574 h
= sorted_sym_hash
[idx
];
5575 vdiff
= vlook
- h
->root
.u
.def
.value
;
5582 int sdiff
= slook
->id
- h
->root
.u
.def
.section
->id
;
5592 /* We didn't find a value/section match. */
5596 /* With multiple aliases, or when the weak symbol is already
5597 strongly defined, we have multiple matching symbols and
5598 the binary search above may land on any of them. Step
5599 one past the matching symbol(s). */
5602 h
= sorted_sym_hash
[idx
];
5603 if (h
->root
.u
.def
.section
!= slook
5604 || h
->root
.u
.def
.value
!= vlook
)
5608 /* Now look back over the aliases. Since we sorted by size
5609 as well as value and section, we'll choose the one with
5610 the largest size. */
5613 h
= sorted_sym_hash
[idx
];
5615 /* Stop if value or section doesn't match. */
5616 if (h
->root
.u
.def
.section
!= slook
5617 || h
->root
.u
.def
.value
!= vlook
)
5619 else if (h
!= hlook
)
5621 struct elf_link_hash_entry
*t
;
5624 hlook
->is_weakalias
= 1;
5626 if (t
->u
.alias
!= NULL
)
5627 while (t
->u
.alias
!= h
)
5631 /* If the weak definition is in the list of dynamic
5632 symbols, make sure the real definition is put
5634 if (hlook
->dynindx
!= -1 && h
->dynindx
== -1)
5636 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
5639 free (sorted_sym_hash
);
5644 /* If the real definition is in the list of dynamic
5645 symbols, make sure the weak definition is put
5646 there as well. If we don't do this, then the
5647 dynamic loader might not merge the entries for the
5648 real definition and the weak definition. */
5649 if (h
->dynindx
!= -1 && hlook
->dynindx
== -1)
5651 if (! bfd_elf_link_record_dynamic_symbol (info
, hlook
))
5652 goto err_free_sym_hash
;
5659 free (sorted_sym_hash
);
5662 if (bed
->check_directives
5663 && !(*bed
->check_directives
) (abfd
, info
))
5666 /* If this is a non-traditional link, try to optimize the handling
5667 of the .stab/.stabstr sections. */
5669 && ! info
->traditional_format
5670 && is_elf_hash_table (htab
)
5671 && (info
->strip
!= strip_all
&& info
->strip
!= strip_debugger
))
5675 stabstr
= bfd_get_section_by_name (abfd
, ".stabstr");
5676 if (stabstr
!= NULL
)
5678 bfd_size_type string_offset
= 0;
5681 for (stab
= abfd
->sections
; stab
; stab
= stab
->next
)
5682 if (CONST_STRNEQ (stab
->name
, ".stab")
5683 && (!stab
->name
[5] ||
5684 (stab
->name
[5] == '.' && ISDIGIT (stab
->name
[6])))
5685 && (stab
->flags
& SEC_MERGE
) == 0
5686 && !bfd_is_abs_section (stab
->output_section
))
5688 struct bfd_elf_section_data
*secdata
;
5690 secdata
= elf_section_data (stab
);
5691 if (! _bfd_link_section_stabs (abfd
, &htab
->stab_info
, stab
,
5692 stabstr
, &secdata
->sec_info
,
5695 if (secdata
->sec_info
)
5696 stab
->sec_info_type
= SEC_INFO_TYPE_STABS
;
5701 if (dynamic
&& add_needed
)
5703 /* Add this bfd to the loaded list. */
5704 struct elf_link_loaded_list
*n
;
5706 n
= (struct elf_link_loaded_list
*) bfd_alloc (abfd
, sizeof (*n
));
5710 n
->next
= htab
->dyn_loaded
;
5711 htab
->dyn_loaded
= n
;
5713 if (dynamic
&& !add_needed
5714 && (elf_dyn_lib_class (abfd
) & DYN_DT_NEEDED
) != 0)
5715 elf_dyn_lib_class (abfd
) |= DYN_NO_NEEDED
;
5722 free (nondeflt_vers
);
5730 /* Return the linker hash table entry of a symbol that might be
5731 satisfied by an archive symbol. Return -1 on error. */
5733 struct elf_link_hash_entry
*
5734 _bfd_elf_archive_symbol_lookup (bfd
*abfd
,
5735 struct bfd_link_info
*info
,
5738 struct elf_link_hash_entry
*h
;
5742 h
= elf_link_hash_lookup (elf_hash_table (info
), name
, FALSE
, FALSE
, TRUE
);
5746 /* If this is a default version (the name contains @@), look up the
5747 symbol again with only one `@' as well as without the version.
5748 The effect is that references to the symbol with and without the
5749 version will be matched by the default symbol in the archive. */
5751 p
= strchr (name
, ELF_VER_CHR
);
5752 if (p
== NULL
|| p
[1] != ELF_VER_CHR
)
5755 /* First check with only one `@'. */
5756 len
= strlen (name
);
5757 copy
= (char *) bfd_alloc (abfd
, len
);
5759 return (struct elf_link_hash_entry
*) -1;
5761 first
= p
- name
+ 1;
5762 memcpy (copy
, name
, first
);
5763 memcpy (copy
+ first
, name
+ first
+ 1, len
- first
);
5765 h
= elf_link_hash_lookup (elf_hash_table (info
), copy
, FALSE
, FALSE
, TRUE
);
5768 /* We also need to check references to the symbol without the
5770 copy
[first
- 1] = '\0';
5771 h
= elf_link_hash_lookup (elf_hash_table (info
), copy
,
5772 FALSE
, FALSE
, TRUE
);
5775 bfd_release (abfd
, copy
);
5779 /* Add symbols from an ELF archive file to the linker hash table. We
5780 don't use _bfd_generic_link_add_archive_symbols because we need to
5781 handle versioned symbols.
5783 Fortunately, ELF archive handling is simpler than that done by
5784 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
5785 oddities. In ELF, if we find a symbol in the archive map, and the
5786 symbol is currently undefined, we know that we must pull in that
5789 Unfortunately, we do have to make multiple passes over the symbol
5790 table until nothing further is resolved. */
5793 elf_link_add_archive_symbols (bfd
*abfd
, struct bfd_link_info
*info
)
5796 unsigned char *included
= NULL
;
5800 const struct elf_backend_data
*bed
;
5801 struct elf_link_hash_entry
* (*archive_symbol_lookup
)
5802 (bfd
*, struct bfd_link_info
*, const char *);
5804 if (! bfd_has_map (abfd
))
5806 /* An empty archive is a special case. */
5807 if (bfd_openr_next_archived_file (abfd
, NULL
) == NULL
)
5809 bfd_set_error (bfd_error_no_armap
);
5813 /* Keep track of all symbols we know to be already defined, and all
5814 files we know to be already included. This is to speed up the
5815 second and subsequent passes. */
5816 c
= bfd_ardata (abfd
)->symdef_count
;
5819 amt
= c
* sizeof (*included
);
5820 included
= (unsigned char *) bfd_zmalloc (amt
);
5821 if (included
== NULL
)
5824 symdefs
= bfd_ardata (abfd
)->symdefs
;
5825 bed
= get_elf_backend_data (abfd
);
5826 archive_symbol_lookup
= bed
->elf_backend_archive_symbol_lookup
;
5839 symdefend
= symdef
+ c
;
5840 for (i
= 0; symdef
< symdefend
; symdef
++, i
++)
5842 struct elf_link_hash_entry
*h
;
5844 struct bfd_link_hash_entry
*undefs_tail
;
5849 if (symdef
->file_offset
== last
)
5855 h
= archive_symbol_lookup (abfd
, info
, symdef
->name
);
5856 if (h
== (struct elf_link_hash_entry
*) -1)
5862 if (h
->root
.type
== bfd_link_hash_undefined
)
5864 /* If the archive element has already been loaded then one
5865 of the symbols defined by that element might have been
5866 made undefined due to being in a discarded section. */
5870 else if (h
->root
.type
== bfd_link_hash_common
)
5872 /* We currently have a common symbol. The archive map contains
5873 a reference to this symbol, so we may want to include it. We
5874 only want to include it however, if this archive element
5875 contains a definition of the symbol, not just another common
5878 Unfortunately some archivers (including GNU ar) will put
5879 declarations of common symbols into their archive maps, as
5880 well as real definitions, so we cannot just go by the archive
5881 map alone. Instead we must read in the element's symbol
5882 table and check that to see what kind of symbol definition
5884 if (! elf_link_is_defined_archive_symbol (abfd
, symdef
))
5889 if (h
->root
.type
!= bfd_link_hash_undefweak
)
5890 /* Symbol must be defined. Don't check it again. */
5895 /* We need to include this archive member. */
5896 element
= _bfd_get_elt_at_filepos (abfd
, symdef
->file_offset
);
5897 if (element
== NULL
)
5900 if (! bfd_check_format (element
, bfd_object
))
5903 undefs_tail
= info
->hash
->undefs_tail
;
5905 if (!(*info
->callbacks
5906 ->add_archive_element
) (info
, element
, symdef
->name
, &element
))
5908 if (!bfd_link_add_symbols (element
, info
))
5911 /* If there are any new undefined symbols, we need to make
5912 another pass through the archive in order to see whether
5913 they can be defined. FIXME: This isn't perfect, because
5914 common symbols wind up on undefs_tail and because an
5915 undefined symbol which is defined later on in this pass
5916 does not require another pass. This isn't a bug, but it
5917 does make the code less efficient than it could be. */
5918 if (undefs_tail
!= info
->hash
->undefs_tail
)
5921 /* Look backward to mark all symbols from this object file
5922 which we have already seen in this pass. */
5926 included
[mark
] = TRUE
;
5931 while (symdefs
[mark
].file_offset
== symdef
->file_offset
);
5933 /* We mark subsequent symbols from this object file as we go
5934 on through the loop. */
5935 last
= symdef
->file_offset
;
5948 /* Given an ELF BFD, add symbols to the global hash table as
5952 bfd_elf_link_add_symbols (bfd
*abfd
, struct bfd_link_info
*info
)
5954 switch (bfd_get_format (abfd
))
5957 return elf_link_add_object_symbols (abfd
, info
);
5959 return elf_link_add_archive_symbols (abfd
, info
);
5961 bfd_set_error (bfd_error_wrong_format
);
5966 struct hash_codes_info
5968 unsigned long *hashcodes
;
5972 /* This function will be called though elf_link_hash_traverse to store
5973 all hash value of the exported symbols in an array. */
5976 elf_collect_hash_codes (struct elf_link_hash_entry
*h
, void *data
)
5978 struct hash_codes_info
*inf
= (struct hash_codes_info
*) data
;
5983 /* Ignore indirect symbols. These are added by the versioning code. */
5984 if (h
->dynindx
== -1)
5987 name
= h
->root
.root
.string
;
5988 if (h
->versioned
>= versioned
)
5990 char *p
= strchr (name
, ELF_VER_CHR
);
5993 alc
= (char *) bfd_malloc (p
- name
+ 1);
5999 memcpy (alc
, name
, p
- name
);
6000 alc
[p
- name
] = '\0';
6005 /* Compute the hash value. */
6006 ha
= bfd_elf_hash (name
);
6008 /* Store the found hash value in the array given as the argument. */
6009 *(inf
->hashcodes
)++ = ha
;
6011 /* And store it in the struct so that we can put it in the hash table
6013 h
->u
.elf_hash_value
= ha
;
6019 struct collect_gnu_hash_codes
6022 const struct elf_backend_data
*bed
;
6023 unsigned long int nsyms
;
6024 unsigned long int maskbits
;
6025 unsigned long int *hashcodes
;
6026 unsigned long int *hashval
;
6027 unsigned long int *indx
;
6028 unsigned long int *counts
;
6032 long int min_dynindx
;
6033 unsigned long int bucketcount
;
6034 unsigned long int symindx
;
6035 long int local_indx
;
6036 long int shift1
, shift2
;
6037 unsigned long int mask
;
6041 /* This function will be called though elf_link_hash_traverse to store
6042 all hash value of the exported symbols in an array. */
6045 elf_collect_gnu_hash_codes (struct elf_link_hash_entry
*h
, void *data
)
6047 struct collect_gnu_hash_codes
*s
= (struct collect_gnu_hash_codes
*) data
;
6052 /* Ignore indirect symbols. These are added by the versioning code. */
6053 if (h
->dynindx
== -1)
6056 /* Ignore also local symbols and undefined symbols. */
6057 if (! (*s
->bed
->elf_hash_symbol
) (h
))
6060 name
= h
->root
.root
.string
;
6061 if (h
->versioned
>= versioned
)
6063 char *p
= strchr (name
, ELF_VER_CHR
);
6066 alc
= (char *) bfd_malloc (p
- name
+ 1);
6072 memcpy (alc
, name
, p
- name
);
6073 alc
[p
- name
] = '\0';
6078 /* Compute the hash value. */
6079 ha
= bfd_elf_gnu_hash (name
);
6081 /* Store the found hash value in the array for compute_bucket_count,
6082 and also for .dynsym reordering purposes. */
6083 s
->hashcodes
[s
->nsyms
] = ha
;
6084 s
->hashval
[h
->dynindx
] = ha
;
6086 if (s
->min_dynindx
< 0 || s
->min_dynindx
> h
->dynindx
)
6087 s
->min_dynindx
= h
->dynindx
;
6093 /* This function will be called though elf_link_hash_traverse to do
6094 final dynamic symbol renumbering in case of .gnu.hash.
6095 If using .MIPS.xhash, invoke record_xhash_symbol to add symbol index
6096 to the translation table. */
6099 elf_gnu_hash_process_symidx (struct elf_link_hash_entry
*h
, void *data
)
6101 struct collect_gnu_hash_codes
*s
= (struct collect_gnu_hash_codes
*) data
;
6102 unsigned long int bucket
;
6103 unsigned long int val
;
6105 /* Ignore indirect symbols. */
6106 if (h
->dynindx
== -1)
6109 /* Ignore also local symbols and undefined symbols. */
6110 if (! (*s
->bed
->elf_hash_symbol
) (h
))
6112 if (h
->dynindx
>= s
->min_dynindx
)
6114 if (s
->bed
->record_xhash_symbol
!= NULL
)
6116 (*s
->bed
->record_xhash_symbol
) (h
, 0);
6120 h
->dynindx
= s
->local_indx
++;
6125 bucket
= s
->hashval
[h
->dynindx
] % s
->bucketcount
;
6126 val
= (s
->hashval
[h
->dynindx
] >> s
->shift1
)
6127 & ((s
->maskbits
>> s
->shift1
) - 1);
6128 s
->bitmask
[val
] |= ((bfd_vma
) 1) << (s
->hashval
[h
->dynindx
] & s
->mask
);
6130 |= ((bfd_vma
) 1) << ((s
->hashval
[h
->dynindx
] >> s
->shift2
) & s
->mask
);
6131 val
= s
->hashval
[h
->dynindx
] & ~(unsigned long int) 1;
6132 if (s
->counts
[bucket
] == 1)
6133 /* Last element terminates the chain. */
6135 bfd_put_32 (s
->output_bfd
, val
,
6136 s
->contents
+ (s
->indx
[bucket
] - s
->symindx
) * 4);
6137 --s
->counts
[bucket
];
6138 if (s
->bed
->record_xhash_symbol
!= NULL
)
6140 bfd_vma xlat_loc
= s
->xlat
+ (s
->indx
[bucket
]++ - s
->symindx
) * 4;
6142 (*s
->bed
->record_xhash_symbol
) (h
, xlat_loc
);
6145 h
->dynindx
= s
->indx
[bucket
]++;
6149 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
6152 _bfd_elf_hash_symbol (struct elf_link_hash_entry
*h
)
6154 return !(h
->forced_local
6155 || h
->root
.type
== bfd_link_hash_undefined
6156 || h
->root
.type
== bfd_link_hash_undefweak
6157 || ((h
->root
.type
== bfd_link_hash_defined
6158 || h
->root
.type
== bfd_link_hash_defweak
)
6159 && h
->root
.u
.def
.section
->output_section
== NULL
));
6162 /* Array used to determine the number of hash table buckets to use
6163 based on the number of symbols there are. If there are fewer than
6164 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
6165 fewer than 37 we use 17 buckets, and so forth. We never use more
6166 than 32771 buckets. */
6168 static const size_t elf_buckets
[] =
6170 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
6174 /* Compute bucket count for hashing table. We do not use a static set
6175 of possible tables sizes anymore. Instead we determine for all
6176 possible reasonable sizes of the table the outcome (i.e., the
6177 number of collisions etc) and choose the best solution. The
6178 weighting functions are not too simple to allow the table to grow
6179 without bounds. Instead one of the weighting factors is the size.
6180 Therefore the result is always a good payoff between few collisions
6181 (= short chain lengths) and table size. */
6183 compute_bucket_count (struct bfd_link_info
*info ATTRIBUTE_UNUSED
,
6184 unsigned long int *hashcodes ATTRIBUTE_UNUSED
,
6185 unsigned long int nsyms
,
6188 size_t best_size
= 0;
6189 unsigned long int i
;
6191 /* We have a problem here. The following code to optimize the table
6192 size requires an integer type with more the 32 bits. If
6193 BFD_HOST_U_64_BIT is set we know about such a type. */
6194 #ifdef BFD_HOST_U_64_BIT
6199 BFD_HOST_U_64_BIT best_chlen
= ~((BFD_HOST_U_64_BIT
) 0);
6200 bfd
*dynobj
= elf_hash_table (info
)->dynobj
;
6201 size_t dynsymcount
= elf_hash_table (info
)->dynsymcount
;
6202 const struct elf_backend_data
*bed
= get_elf_backend_data (dynobj
);
6203 unsigned long int *counts
;
6205 unsigned int no_improvement_count
= 0;
6207 /* Possible optimization parameters: if we have NSYMS symbols we say
6208 that the hashing table must at least have NSYMS/4 and at most
6210 minsize
= nsyms
/ 4;
6213 best_size
= maxsize
= nsyms
* 2;
6218 if ((best_size
& 31) == 0)
6222 /* Create array where we count the collisions in. We must use bfd_malloc
6223 since the size could be large. */
6225 amt
*= sizeof (unsigned long int);
6226 counts
= (unsigned long int *) bfd_malloc (amt
);
6230 /* Compute the "optimal" size for the hash table. The criteria is a
6231 minimal chain length. The minor criteria is (of course) the size
6233 for (i
= minsize
; i
< maxsize
; ++i
)
6235 /* Walk through the array of hashcodes and count the collisions. */
6236 BFD_HOST_U_64_BIT max
;
6237 unsigned long int j
;
6238 unsigned long int fact
;
6240 if (gnu_hash
&& (i
& 31) == 0)
6243 memset (counts
, '\0', i
* sizeof (unsigned long int));
6245 /* Determine how often each hash bucket is used. */
6246 for (j
= 0; j
< nsyms
; ++j
)
6247 ++counts
[hashcodes
[j
] % i
];
6249 /* For the weight function we need some information about the
6250 pagesize on the target. This is information need not be 100%
6251 accurate. Since this information is not available (so far) we
6252 define it here to a reasonable default value. If it is crucial
6253 to have a better value some day simply define this value. */
6254 # ifndef BFD_TARGET_PAGESIZE
6255 # define BFD_TARGET_PAGESIZE (4096)
6258 /* We in any case need 2 + DYNSYMCOUNT entries for the size values
6260 max
= (2 + dynsymcount
) * bed
->s
->sizeof_hash_entry
;
6263 /* Variant 1: optimize for short chains. We add the squares
6264 of all the chain lengths (which favors many small chain
6265 over a few long chains). */
6266 for (j
= 0; j
< i
; ++j
)
6267 max
+= counts
[j
] * counts
[j
];
6269 /* This adds penalties for the overall size of the table. */
6270 fact
= i
/ (BFD_TARGET_PAGESIZE
/ bed
->s
->sizeof_hash_entry
) + 1;
6273 /* Variant 2: Optimize a lot more for small table. Here we
6274 also add squares of the size but we also add penalties for
6275 empty slots (the +1 term). */
6276 for (j
= 0; j
< i
; ++j
)
6277 max
+= (1 + counts
[j
]) * (1 + counts
[j
]);
6279 /* The overall size of the table is considered, but not as
6280 strong as in variant 1, where it is squared. */
6281 fact
= i
/ (BFD_TARGET_PAGESIZE
/ bed
->s
->sizeof_hash_entry
) + 1;
6285 /* Compare with current best results. */
6286 if (max
< best_chlen
)
6290 no_improvement_count
= 0;
6292 /* PR 11843: Avoid futile long searches for the best bucket size
6293 when there are a large number of symbols. */
6294 else if (++no_improvement_count
== 100)
6301 #endif /* defined (BFD_HOST_U_64_BIT) */
6303 /* This is the fallback solution if no 64bit type is available or if we
6304 are not supposed to spend much time on optimizations. We select the
6305 bucket count using a fixed set of numbers. */
6306 for (i
= 0; elf_buckets
[i
] != 0; i
++)
6308 best_size
= elf_buckets
[i
];
6309 if (nsyms
< elf_buckets
[i
+ 1])
6312 if (gnu_hash
&& best_size
< 2)
6319 /* Size any SHT_GROUP section for ld -r. */
6322 _bfd_elf_size_group_sections (struct bfd_link_info
*info
)
6327 for (ibfd
= info
->input_bfds
; ibfd
!= NULL
; ibfd
= ibfd
->link
.next
)
6328 if (bfd_get_flavour (ibfd
) == bfd_target_elf_flavour
6329 && (s
= ibfd
->sections
) != NULL
6330 && s
->sec_info_type
!= SEC_INFO_TYPE_JUST_SYMS
6331 && !_bfd_elf_fixup_group_sections (ibfd
, bfd_abs_section_ptr
))
6336 /* Set a default stack segment size. The value in INFO wins. If it
6337 is unset, LEGACY_SYMBOL's value is used, and if that symbol is
6338 undefined it is initialized. */
6341 bfd_elf_stack_segment_size (bfd
*output_bfd
,
6342 struct bfd_link_info
*info
,
6343 const char *legacy_symbol
,
6344 bfd_vma default_size
)
6346 struct elf_link_hash_entry
*h
= NULL
;
6348 /* Look for legacy symbol. */
6350 h
= elf_link_hash_lookup (elf_hash_table (info
), legacy_symbol
,
6351 FALSE
, FALSE
, FALSE
);
6352 if (h
&& (h
->root
.type
== bfd_link_hash_defined
6353 || h
->root
.type
== bfd_link_hash_defweak
)
6355 && (h
->type
== STT_NOTYPE
|| h
->type
== STT_OBJECT
))
6357 /* The symbol has no type if specified on the command line. */
6358 h
->type
= STT_OBJECT
;
6359 if (info
->stacksize
)
6360 /* xgettext:c-format */
6361 _bfd_error_handler (_("%pB: stack size specified and %s set"),
6362 output_bfd
, legacy_symbol
);
6363 else if (h
->root
.u
.def
.section
!= bfd_abs_section_ptr
)
6364 /* xgettext:c-format */
6365 _bfd_error_handler (_("%pB: %s not absolute"),
6366 output_bfd
, legacy_symbol
);
6368 info
->stacksize
= h
->root
.u
.def
.value
;
6371 if (!info
->stacksize
)
6372 /* If the user didn't set a size, or explicitly inhibit the
6373 size, set it now. */
6374 info
->stacksize
= default_size
;
6376 /* Provide the legacy symbol, if it is referenced. */
6377 if (h
&& (h
->root
.type
== bfd_link_hash_undefined
6378 || h
->root
.type
== bfd_link_hash_undefweak
))
6380 struct bfd_link_hash_entry
*bh
= NULL
;
6382 if (!(_bfd_generic_link_add_one_symbol
6383 (info
, output_bfd
, legacy_symbol
,
6384 BSF_GLOBAL
, bfd_abs_section_ptr
,
6385 info
->stacksize
>= 0 ? info
->stacksize
: 0,
6386 NULL
, FALSE
, get_elf_backend_data (output_bfd
)->collect
, &bh
)))
6389 h
= (struct elf_link_hash_entry
*) bh
;
6391 h
->type
= STT_OBJECT
;
6397 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
6399 struct elf_gc_sweep_symbol_info
6401 struct bfd_link_info
*info
;
6402 void (*hide_symbol
) (struct bfd_link_info
*, struct elf_link_hash_entry
*,
6407 elf_gc_sweep_symbol (struct elf_link_hash_entry
*h
, void *data
)
6410 && (((h
->root
.type
== bfd_link_hash_defined
6411 || h
->root
.type
== bfd_link_hash_defweak
)
6412 && !((h
->def_regular
|| ELF_COMMON_DEF_P (h
))
6413 && h
->root
.u
.def
.section
->gc_mark
))
6414 || h
->root
.type
== bfd_link_hash_undefined
6415 || h
->root
.type
== bfd_link_hash_undefweak
))
6417 struct elf_gc_sweep_symbol_info
*inf
;
6419 inf
= (struct elf_gc_sweep_symbol_info
*) data
;
6420 (*inf
->hide_symbol
) (inf
->info
, h
, TRUE
);
6423 h
->ref_regular_nonweak
= 0;
6429 /* Set up the sizes and contents of the ELF dynamic sections. This is
6430 called by the ELF linker emulation before_allocation routine. We
6431 must set the sizes of the sections before the linker sets the
6432 addresses of the various sections. */
6435 bfd_elf_size_dynamic_sections (bfd
*output_bfd
,
6438 const char *filter_shlib
,
6440 const char *depaudit
,
6441 const char * const *auxiliary_filters
,
6442 struct bfd_link_info
*info
,
6443 asection
**sinterpptr
)
6446 const struct elf_backend_data
*bed
;
6450 if (!is_elf_hash_table (info
->hash
))
6453 dynobj
= elf_hash_table (info
)->dynobj
;
6455 if (dynobj
!= NULL
&& elf_hash_table (info
)->dynamic_sections_created
)
6457 struct bfd_elf_version_tree
*verdefs
;
6458 struct elf_info_failed asvinfo
;
6459 struct bfd_elf_version_tree
*t
;
6460 struct bfd_elf_version_expr
*d
;
6464 /* If we are supposed to export all symbols into the dynamic symbol
6465 table (this is not the normal case), then do so. */
6466 if (info
->export_dynamic
6467 || (bfd_link_executable (info
) && info
->dynamic
))
6469 struct elf_info_failed eif
;
6473 elf_link_hash_traverse (elf_hash_table (info
),
6474 _bfd_elf_export_symbol
,
6482 soname_indx
= _bfd_elf_strtab_add (elf_hash_table (info
)->dynstr
,
6484 if (soname_indx
== (size_t) -1
6485 || !_bfd_elf_add_dynamic_entry (info
, DT_SONAME
, soname_indx
))
6489 soname_indx
= (size_t) -1;
6491 /* Make all global versions with definition. */
6492 for (t
= info
->version_info
; t
!= NULL
; t
= t
->next
)
6493 for (d
= t
->globals
.list
; d
!= NULL
; d
= d
->next
)
6494 if (!d
->symver
&& d
->literal
)
6496 const char *verstr
, *name
;
6497 size_t namelen
, verlen
, newlen
;
6498 char *newname
, *p
, leading_char
;
6499 struct elf_link_hash_entry
*newh
;
6501 leading_char
= bfd_get_symbol_leading_char (output_bfd
);
6503 namelen
= strlen (name
) + (leading_char
!= '\0');
6505 verlen
= strlen (verstr
);
6506 newlen
= namelen
+ verlen
+ 3;
6508 newname
= (char *) bfd_malloc (newlen
);
6509 if (newname
== NULL
)
6511 newname
[0] = leading_char
;
6512 memcpy (newname
+ (leading_char
!= '\0'), name
, namelen
);
6514 /* Check the hidden versioned definition. */
6515 p
= newname
+ namelen
;
6517 memcpy (p
, verstr
, verlen
+ 1);
6518 newh
= elf_link_hash_lookup (elf_hash_table (info
),
6519 newname
, FALSE
, FALSE
,
6522 || (newh
->root
.type
!= bfd_link_hash_defined
6523 && newh
->root
.type
!= bfd_link_hash_defweak
))
6525 /* Check the default versioned definition. */
6527 memcpy (p
, verstr
, verlen
+ 1);
6528 newh
= elf_link_hash_lookup (elf_hash_table (info
),
6529 newname
, FALSE
, FALSE
,
6534 /* Mark this version if there is a definition and it is
6535 not defined in a shared object. */
6537 && !newh
->def_dynamic
6538 && (newh
->root
.type
== bfd_link_hash_defined
6539 || newh
->root
.type
== bfd_link_hash_defweak
))
6543 /* Attach all the symbols to their version information. */
6544 asvinfo
.info
= info
;
6545 asvinfo
.failed
= FALSE
;
6547 elf_link_hash_traverse (elf_hash_table (info
),
6548 _bfd_elf_link_assign_sym_version
,
6553 if (!info
->allow_undefined_version
)
6555 /* Check if all global versions have a definition. */
6556 bfd_boolean all_defined
= TRUE
;
6557 for (t
= info
->version_info
; t
!= NULL
; t
= t
->next
)
6558 for (d
= t
->globals
.list
; d
!= NULL
; d
= d
->next
)
6559 if (d
->literal
&& !d
->symver
&& !d
->script
)
6562 (_("%s: undefined version: %s"),
6563 d
->pattern
, t
->name
);
6564 all_defined
= FALSE
;
6569 bfd_set_error (bfd_error_bad_value
);
6574 /* Set up the version definition section. */
6575 s
= bfd_get_linker_section (dynobj
, ".gnu.version_d");
6576 BFD_ASSERT (s
!= NULL
);
6578 /* We may have created additional version definitions if we are
6579 just linking a regular application. */
6580 verdefs
= info
->version_info
;
6582 /* Skip anonymous version tag. */
6583 if (verdefs
!= NULL
&& verdefs
->vernum
== 0)
6584 verdefs
= verdefs
->next
;
6586 if (verdefs
== NULL
&& !info
->create_default_symver
)
6587 s
->flags
|= SEC_EXCLUDE
;
6593 Elf_Internal_Verdef def
;
6594 Elf_Internal_Verdaux defaux
;
6595 struct bfd_link_hash_entry
*bh
;
6596 struct elf_link_hash_entry
*h
;
6602 /* Make space for the base version. */
6603 size
+= sizeof (Elf_External_Verdef
);
6604 size
+= sizeof (Elf_External_Verdaux
);
6607 /* Make space for the default version. */
6608 if (info
->create_default_symver
)
6610 size
+= sizeof (Elf_External_Verdef
);
6614 for (t
= verdefs
; t
!= NULL
; t
= t
->next
)
6616 struct bfd_elf_version_deps
*n
;
6618 /* Don't emit base version twice. */
6622 size
+= sizeof (Elf_External_Verdef
);
6623 size
+= sizeof (Elf_External_Verdaux
);
6626 for (n
= t
->deps
; n
!= NULL
; n
= n
->next
)
6627 size
+= sizeof (Elf_External_Verdaux
);
6631 s
->contents
= (unsigned char *) bfd_alloc (output_bfd
, s
->size
);
6632 if (s
->contents
== NULL
&& s
->size
!= 0)
6635 /* Fill in the version definition section. */
6639 def
.vd_version
= VER_DEF_CURRENT
;
6640 def
.vd_flags
= VER_FLG_BASE
;
6643 if (info
->create_default_symver
)
6645 def
.vd_aux
= 2 * sizeof (Elf_External_Verdef
);
6646 def
.vd_next
= sizeof (Elf_External_Verdef
);
6650 def
.vd_aux
= sizeof (Elf_External_Verdef
);
6651 def
.vd_next
= (sizeof (Elf_External_Verdef
)
6652 + sizeof (Elf_External_Verdaux
));
6655 if (soname_indx
!= (size_t) -1)
6657 _bfd_elf_strtab_addref (elf_hash_table (info
)->dynstr
,
6659 def
.vd_hash
= bfd_elf_hash (soname
);
6660 defaux
.vda_name
= soname_indx
;
6667 name
= lbasename (bfd_get_filename (output_bfd
));
6668 def
.vd_hash
= bfd_elf_hash (name
);
6669 indx
= _bfd_elf_strtab_add (elf_hash_table (info
)->dynstr
,
6671 if (indx
== (size_t) -1)
6673 defaux
.vda_name
= indx
;
6675 defaux
.vda_next
= 0;
6677 _bfd_elf_swap_verdef_out (output_bfd
, &def
,
6678 (Elf_External_Verdef
*) p
);
6679 p
+= sizeof (Elf_External_Verdef
);
6680 if (info
->create_default_symver
)
6682 /* Add a symbol representing this version. */
6684 if (! (_bfd_generic_link_add_one_symbol
6685 (info
, dynobj
, name
, BSF_GLOBAL
, bfd_abs_section_ptr
,
6687 get_elf_backend_data (dynobj
)->collect
, &bh
)))
6689 h
= (struct elf_link_hash_entry
*) bh
;
6692 h
->type
= STT_OBJECT
;
6693 h
->verinfo
.vertree
= NULL
;
6695 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
6698 /* Create a duplicate of the base version with the same
6699 aux block, but different flags. */
6702 def
.vd_aux
= sizeof (Elf_External_Verdef
);
6704 def
.vd_next
= (sizeof (Elf_External_Verdef
)
6705 + sizeof (Elf_External_Verdaux
));
6708 _bfd_elf_swap_verdef_out (output_bfd
, &def
,
6709 (Elf_External_Verdef
*) p
);
6710 p
+= sizeof (Elf_External_Verdef
);
6712 _bfd_elf_swap_verdaux_out (output_bfd
, &defaux
,
6713 (Elf_External_Verdaux
*) p
);
6714 p
+= sizeof (Elf_External_Verdaux
);
6716 for (t
= verdefs
; t
!= NULL
; t
= t
->next
)
6719 struct bfd_elf_version_deps
*n
;
6721 /* Don't emit the base version twice. */
6726 for (n
= t
->deps
; n
!= NULL
; n
= n
->next
)
6729 /* Add a symbol representing this version. */
6731 if (! (_bfd_generic_link_add_one_symbol
6732 (info
, dynobj
, t
->name
, BSF_GLOBAL
, bfd_abs_section_ptr
,
6734 get_elf_backend_data (dynobj
)->collect
, &bh
)))
6736 h
= (struct elf_link_hash_entry
*) bh
;
6739 h
->type
= STT_OBJECT
;
6740 h
->verinfo
.vertree
= t
;
6742 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
6745 def
.vd_version
= VER_DEF_CURRENT
;
6747 if (t
->globals
.list
== NULL
6748 && t
->locals
.list
== NULL
6750 def
.vd_flags
|= VER_FLG_WEAK
;
6751 def
.vd_ndx
= t
->vernum
+ (info
->create_default_symver
? 2 : 1);
6752 def
.vd_cnt
= cdeps
+ 1;
6753 def
.vd_hash
= bfd_elf_hash (t
->name
);
6754 def
.vd_aux
= sizeof (Elf_External_Verdef
);
6757 /* If a basever node is next, it *must* be the last node in
6758 the chain, otherwise Verdef construction breaks. */
6759 if (t
->next
!= NULL
&& t
->next
->vernum
== 0)
6760 BFD_ASSERT (t
->next
->next
== NULL
);
6762 if (t
->next
!= NULL
&& t
->next
->vernum
!= 0)
6763 def
.vd_next
= (sizeof (Elf_External_Verdef
)
6764 + (cdeps
+ 1) * sizeof (Elf_External_Verdaux
));
6766 _bfd_elf_swap_verdef_out (output_bfd
, &def
,
6767 (Elf_External_Verdef
*) p
);
6768 p
+= sizeof (Elf_External_Verdef
);
6770 defaux
.vda_name
= h
->dynstr_index
;
6771 _bfd_elf_strtab_addref (elf_hash_table (info
)->dynstr
,
6773 defaux
.vda_next
= 0;
6774 if (t
->deps
!= NULL
)
6775 defaux
.vda_next
= sizeof (Elf_External_Verdaux
);
6776 t
->name_indx
= defaux
.vda_name
;
6778 _bfd_elf_swap_verdaux_out (output_bfd
, &defaux
,
6779 (Elf_External_Verdaux
*) p
);
6780 p
+= sizeof (Elf_External_Verdaux
);
6782 for (n
= t
->deps
; n
!= NULL
; n
= n
->next
)
6784 if (n
->version_needed
== NULL
)
6786 /* This can happen if there was an error in the
6788 defaux
.vda_name
= 0;
6792 defaux
.vda_name
= n
->version_needed
->name_indx
;
6793 _bfd_elf_strtab_addref (elf_hash_table (info
)->dynstr
,
6796 if (n
->next
== NULL
)
6797 defaux
.vda_next
= 0;
6799 defaux
.vda_next
= sizeof (Elf_External_Verdaux
);
6801 _bfd_elf_swap_verdaux_out (output_bfd
, &defaux
,
6802 (Elf_External_Verdaux
*) p
);
6803 p
+= sizeof (Elf_External_Verdaux
);
6807 elf_tdata (output_bfd
)->cverdefs
= cdefs
;
6811 bed
= get_elf_backend_data (output_bfd
);
6813 if (info
->gc_sections
&& bed
->can_gc_sections
)
6815 struct elf_gc_sweep_symbol_info sweep_info
;
6817 /* Remove the symbols that were in the swept sections from the
6818 dynamic symbol table. */
6819 sweep_info
.info
= info
;
6820 sweep_info
.hide_symbol
= bed
->elf_backend_hide_symbol
;
6821 elf_link_hash_traverse (elf_hash_table (info
), elf_gc_sweep_symbol
,
6825 if (dynobj
!= NULL
&& elf_hash_table (info
)->dynamic_sections_created
)
6828 struct elf_find_verdep_info sinfo
;
6830 /* Work out the size of the version reference section. */
6832 s
= bfd_get_linker_section (dynobj
, ".gnu.version_r");
6833 BFD_ASSERT (s
!= NULL
);
6836 sinfo
.vers
= elf_tdata (output_bfd
)->cverdefs
;
6837 if (sinfo
.vers
== 0)
6839 sinfo
.failed
= FALSE
;
6841 elf_link_hash_traverse (elf_hash_table (info
),
6842 _bfd_elf_link_find_version_dependencies
,
6847 if (elf_tdata (output_bfd
)->verref
== NULL
)
6848 s
->flags
|= SEC_EXCLUDE
;
6851 Elf_Internal_Verneed
*vn
;
6856 /* Build the version dependency section. */
6859 for (vn
= elf_tdata (output_bfd
)->verref
;
6861 vn
= vn
->vn_nextref
)
6863 Elf_Internal_Vernaux
*a
;
6865 size
+= sizeof (Elf_External_Verneed
);
6867 for (a
= vn
->vn_auxptr
; a
!= NULL
; a
= a
->vna_nextptr
)
6868 size
+= sizeof (Elf_External_Vernaux
);
6872 s
->contents
= (unsigned char *) bfd_alloc (output_bfd
, s
->size
);
6873 if (s
->contents
== NULL
)
6877 for (vn
= elf_tdata (output_bfd
)->verref
;
6879 vn
= vn
->vn_nextref
)
6882 Elf_Internal_Vernaux
*a
;
6886 for (a
= vn
->vn_auxptr
; a
!= NULL
; a
= a
->vna_nextptr
)
6889 vn
->vn_version
= VER_NEED_CURRENT
;
6891 indx
= _bfd_elf_strtab_add (elf_hash_table (info
)->dynstr
,
6892 elf_dt_name (vn
->vn_bfd
) != NULL
6893 ? elf_dt_name (vn
->vn_bfd
)
6894 : lbasename (bfd_get_filename
6897 if (indx
== (size_t) -1)
6900 vn
->vn_aux
= sizeof (Elf_External_Verneed
);
6901 if (vn
->vn_nextref
== NULL
)
6904 vn
->vn_next
= (sizeof (Elf_External_Verneed
)
6905 + caux
* sizeof (Elf_External_Vernaux
));
6907 _bfd_elf_swap_verneed_out (output_bfd
, vn
,
6908 (Elf_External_Verneed
*) p
);
6909 p
+= sizeof (Elf_External_Verneed
);
6911 for (a
= vn
->vn_auxptr
; a
!= NULL
; a
= a
->vna_nextptr
)
6913 a
->vna_hash
= bfd_elf_hash (a
->vna_nodename
);
6914 indx
= _bfd_elf_strtab_add (elf_hash_table (info
)->dynstr
,
6915 a
->vna_nodename
, FALSE
);
6916 if (indx
== (size_t) -1)
6919 if (a
->vna_nextptr
== NULL
)
6922 a
->vna_next
= sizeof (Elf_External_Vernaux
);
6924 _bfd_elf_swap_vernaux_out (output_bfd
, a
,
6925 (Elf_External_Vernaux
*) p
);
6926 p
+= sizeof (Elf_External_Vernaux
);
6930 elf_tdata (output_bfd
)->cverrefs
= crefs
;
6934 /* Any syms created from now on start with -1 in
6935 got.refcount/offset and plt.refcount/offset. */
6936 elf_hash_table (info
)->init_got_refcount
6937 = elf_hash_table (info
)->init_got_offset
;
6938 elf_hash_table (info
)->init_plt_refcount
6939 = elf_hash_table (info
)->init_plt_offset
;
6941 if (bfd_link_relocatable (info
)
6942 && !_bfd_elf_size_group_sections (info
))
6945 /* The backend may have to create some sections regardless of whether
6946 we're dynamic or not. */
6947 if (bed
->elf_backend_always_size_sections
6948 && ! (*bed
->elf_backend_always_size_sections
) (output_bfd
, info
))
6951 /* Determine any GNU_STACK segment requirements, after the backend
6952 has had a chance to set a default segment size. */
6953 if (info
->execstack
)
6954 elf_stack_flags (output_bfd
) = PF_R
| PF_W
| PF_X
;
6955 else if (info
->noexecstack
)
6956 elf_stack_flags (output_bfd
) = PF_R
| PF_W
;
6960 asection
*notesec
= NULL
;
6963 for (inputobj
= info
->input_bfds
;
6965 inputobj
= inputobj
->link
.next
)
6970 & (DYNAMIC
| EXEC_P
| BFD_PLUGIN
| BFD_LINKER_CREATED
))
6972 s
= inputobj
->sections
;
6973 if (s
== NULL
|| s
->sec_info_type
== SEC_INFO_TYPE_JUST_SYMS
)
6976 s
= bfd_get_section_by_name (inputobj
, ".note.GNU-stack");
6979 if (s
->flags
& SEC_CODE
)
6983 else if (bed
->default_execstack
)
6986 if (notesec
|| info
->stacksize
> 0)
6987 elf_stack_flags (output_bfd
) = PF_R
| PF_W
| exec
;
6988 if (notesec
&& exec
&& bfd_link_relocatable (info
)
6989 && notesec
->output_section
!= bfd_abs_section_ptr
)
6990 notesec
->output_section
->flags
|= SEC_CODE
;
6993 if (dynobj
!= NULL
&& elf_hash_table (info
)->dynamic_sections_created
)
6995 struct elf_info_failed eif
;
6996 struct elf_link_hash_entry
*h
;
7000 *sinterpptr
= bfd_get_linker_section (dynobj
, ".interp");
7001 BFD_ASSERT (*sinterpptr
!= NULL
|| !bfd_link_executable (info
) || info
->nointerp
);
7005 if (!_bfd_elf_add_dynamic_entry (info
, DT_SYMBOLIC
, 0))
7007 info
->flags
|= DF_SYMBOLIC
;
7015 indx
= _bfd_elf_strtab_add (elf_hash_table (info
)->dynstr
, rpath
,
7017 if (indx
== (size_t) -1)
7020 tag
= info
->new_dtags
? DT_RUNPATH
: DT_RPATH
;
7021 if (!_bfd_elf_add_dynamic_entry (info
, tag
, indx
))
7025 if (filter_shlib
!= NULL
)
7029 indx
= _bfd_elf_strtab_add (elf_hash_table (info
)->dynstr
,
7030 filter_shlib
, TRUE
);
7031 if (indx
== (size_t) -1
7032 || !_bfd_elf_add_dynamic_entry (info
, DT_FILTER
, indx
))
7036 if (auxiliary_filters
!= NULL
)
7038 const char * const *p
;
7040 for (p
= auxiliary_filters
; *p
!= NULL
; p
++)
7044 indx
= _bfd_elf_strtab_add (elf_hash_table (info
)->dynstr
,
7046 if (indx
== (size_t) -1
7047 || !_bfd_elf_add_dynamic_entry (info
, DT_AUXILIARY
, indx
))
7056 indx
= _bfd_elf_strtab_add (elf_hash_table (info
)->dynstr
, audit
,
7058 if (indx
== (size_t) -1
7059 || !_bfd_elf_add_dynamic_entry (info
, DT_AUDIT
, indx
))
7063 if (depaudit
!= NULL
)
7067 indx
= _bfd_elf_strtab_add (elf_hash_table (info
)->dynstr
, depaudit
,
7069 if (indx
== (size_t) -1
7070 || !_bfd_elf_add_dynamic_entry (info
, DT_DEPAUDIT
, indx
))
7077 /* Find all symbols which were defined in a dynamic object and make
7078 the backend pick a reasonable value for them. */
7079 elf_link_hash_traverse (elf_hash_table (info
),
7080 _bfd_elf_adjust_dynamic_symbol
,
7085 /* Add some entries to the .dynamic section. We fill in some of the
7086 values later, in bfd_elf_final_link, but we must add the entries
7087 now so that we know the final size of the .dynamic section. */
7089 /* If there are initialization and/or finalization functions to
7090 call then add the corresponding DT_INIT/DT_FINI entries. */
7091 h
= (info
->init_function
7092 ? elf_link_hash_lookup (elf_hash_table (info
),
7093 info
->init_function
, FALSE
,
7100 if (!_bfd_elf_add_dynamic_entry (info
, DT_INIT
, 0))
7103 h
= (info
->fini_function
7104 ? elf_link_hash_lookup (elf_hash_table (info
),
7105 info
->fini_function
, FALSE
,
7112 if (!_bfd_elf_add_dynamic_entry (info
, DT_FINI
, 0))
7116 s
= bfd_get_section_by_name (output_bfd
, ".preinit_array");
7117 if (s
!= NULL
&& s
->linker_has_input
)
7119 /* DT_PREINIT_ARRAY is not allowed in shared library. */
7120 if (! bfd_link_executable (info
))
7125 for (sub
= info
->input_bfds
; sub
!= NULL
; sub
= sub
->link
.next
)
7126 if (bfd_get_flavour (sub
) == bfd_target_elf_flavour
7127 && (o
= sub
->sections
) != NULL
7128 && o
->sec_info_type
!= SEC_INFO_TYPE_JUST_SYMS
)
7129 for (o
= sub
->sections
; o
!= NULL
; o
= o
->next
)
7130 if (elf_section_data (o
)->this_hdr
.sh_type
7131 == SHT_PREINIT_ARRAY
)
7134 (_("%pB: .preinit_array section is not allowed in DSO"),
7139 bfd_set_error (bfd_error_nonrepresentable_section
);
7143 if (!_bfd_elf_add_dynamic_entry (info
, DT_PREINIT_ARRAY
, 0)
7144 || !_bfd_elf_add_dynamic_entry (info
, DT_PREINIT_ARRAYSZ
, 0))
7147 s
= bfd_get_section_by_name (output_bfd
, ".init_array");
7148 if (s
!= NULL
&& s
->linker_has_input
)
7150 if (!_bfd_elf_add_dynamic_entry (info
, DT_INIT_ARRAY
, 0)
7151 || !_bfd_elf_add_dynamic_entry (info
, DT_INIT_ARRAYSZ
, 0))
7154 s
= bfd_get_section_by_name (output_bfd
, ".fini_array");
7155 if (s
!= NULL
&& s
->linker_has_input
)
7157 if (!_bfd_elf_add_dynamic_entry (info
, DT_FINI_ARRAY
, 0)
7158 || !_bfd_elf_add_dynamic_entry (info
, DT_FINI_ARRAYSZ
, 0))
7162 dynstr
= bfd_get_linker_section (dynobj
, ".dynstr");
7163 /* If .dynstr is excluded from the link, we don't want any of
7164 these tags. Strictly, we should be checking each section
7165 individually; This quick check covers for the case where
7166 someone does a /DISCARD/ : { *(*) }. */
7167 if (dynstr
!= NULL
&& dynstr
->output_section
!= bfd_abs_section_ptr
)
7169 bfd_size_type strsize
;
7171 strsize
= _bfd_elf_strtab_size (elf_hash_table (info
)->dynstr
);
7172 if ((info
->emit_hash
7173 && !_bfd_elf_add_dynamic_entry (info
, DT_HASH
, 0))
7174 || (info
->emit_gnu_hash
7175 && (bed
->record_xhash_symbol
== NULL
7176 && !_bfd_elf_add_dynamic_entry (info
, DT_GNU_HASH
, 0)))
7177 || !_bfd_elf_add_dynamic_entry (info
, DT_STRTAB
, 0)
7178 || !_bfd_elf_add_dynamic_entry (info
, DT_SYMTAB
, 0)
7179 || !_bfd_elf_add_dynamic_entry (info
, DT_STRSZ
, strsize
)
7180 || !_bfd_elf_add_dynamic_entry (info
, DT_SYMENT
,
7182 || (info
->gnu_flags_1
7183 && !_bfd_elf_add_dynamic_entry (info
, DT_GNU_FLAGS_1
,
7184 info
->gnu_flags_1
)))
7189 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info
))
7192 /* The backend must work out the sizes of all the other dynamic
7195 && bed
->elf_backend_size_dynamic_sections
!= NULL
7196 && ! (*bed
->elf_backend_size_dynamic_sections
) (output_bfd
, info
))
7199 if (dynobj
!= NULL
&& elf_hash_table (info
)->dynamic_sections_created
)
7201 if (elf_tdata (output_bfd
)->cverdefs
)
7203 unsigned int crefs
= elf_tdata (output_bfd
)->cverdefs
;
7205 if (!_bfd_elf_add_dynamic_entry (info
, DT_VERDEF
, 0)
7206 || !_bfd_elf_add_dynamic_entry (info
, DT_VERDEFNUM
, crefs
))
7210 if ((info
->new_dtags
&& info
->flags
) || (info
->flags
& DF_STATIC_TLS
))
7212 if (!_bfd_elf_add_dynamic_entry (info
, DT_FLAGS
, info
->flags
))
7215 else if (info
->flags
& DF_BIND_NOW
)
7217 if (!_bfd_elf_add_dynamic_entry (info
, DT_BIND_NOW
, 0))
7223 if (bfd_link_executable (info
))
7224 info
->flags_1
&= ~ (DF_1_INITFIRST
7227 if (!_bfd_elf_add_dynamic_entry (info
, DT_FLAGS_1
, info
->flags_1
))
7231 if (elf_tdata (output_bfd
)->cverrefs
)
7233 unsigned int crefs
= elf_tdata (output_bfd
)->cverrefs
;
7235 if (!_bfd_elf_add_dynamic_entry (info
, DT_VERNEED
, 0)
7236 || !_bfd_elf_add_dynamic_entry (info
, DT_VERNEEDNUM
, crefs
))
7240 if ((elf_tdata (output_bfd
)->cverrefs
== 0
7241 && elf_tdata (output_bfd
)->cverdefs
== 0)
7242 || _bfd_elf_link_renumber_dynsyms (output_bfd
, info
, NULL
) <= 1)
7246 s
= bfd_get_linker_section (dynobj
, ".gnu.version");
7247 s
->flags
|= SEC_EXCLUDE
;
7253 /* Find the first non-excluded output section. We'll use its
7254 section symbol for some emitted relocs. */
7256 _bfd_elf_init_1_index_section (bfd
*output_bfd
, struct bfd_link_info
*info
)
7259 asection
*found
= NULL
;
7261 for (s
= output_bfd
->sections
; s
!= NULL
; s
= s
->next
)
7262 if ((s
->flags
& (SEC_EXCLUDE
| SEC_ALLOC
)) == SEC_ALLOC
7263 && !_bfd_elf_omit_section_dynsym_default (output_bfd
, info
, s
))
7266 if ((s
->flags
& SEC_THREAD_LOCAL
) == 0)
7269 elf_hash_table (info
)->text_index_section
= found
;
7272 /* Find two non-excluded output sections, one for code, one for data.
7273 We'll use their section symbols for some emitted relocs. */
7275 _bfd_elf_init_2_index_sections (bfd
*output_bfd
, struct bfd_link_info
*info
)
7278 asection
*found
= NULL
;
7280 /* Data first, since setting text_index_section changes
7281 _bfd_elf_omit_section_dynsym_default. */
7282 for (s
= output_bfd
->sections
; s
!= NULL
; s
= s
->next
)
7283 if ((s
->flags
& (SEC_EXCLUDE
| SEC_ALLOC
)) == SEC_ALLOC
7284 && !(s
->flags
& SEC_READONLY
)
7285 && !_bfd_elf_omit_section_dynsym_default (output_bfd
, info
, s
))
7288 if ((s
->flags
& SEC_THREAD_LOCAL
) == 0)
7291 elf_hash_table (info
)->data_index_section
= found
;
7293 for (s
= output_bfd
->sections
; s
!= NULL
; s
= s
->next
)
7294 if ((s
->flags
& (SEC_EXCLUDE
| SEC_ALLOC
)) == SEC_ALLOC
7295 && (s
->flags
& SEC_READONLY
)
7296 && !_bfd_elf_omit_section_dynsym_default (output_bfd
, info
, s
))
7301 elf_hash_table (info
)->text_index_section
= found
;
7304 #define GNU_HASH_SECTION_NAME(bed) \
7305 (bed)->record_xhash_symbol != NULL ? ".MIPS.xhash" : ".gnu.hash"
7308 bfd_elf_size_dynsym_hash_dynstr (bfd
*output_bfd
, struct bfd_link_info
*info
)
7310 const struct elf_backend_data
*bed
;
7311 unsigned long section_sym_count
;
7312 bfd_size_type dynsymcount
= 0;
7314 if (!is_elf_hash_table (info
->hash
))
7317 bed
= get_elf_backend_data (output_bfd
);
7318 (*bed
->elf_backend_init_index_section
) (output_bfd
, info
);
7320 /* Assign dynsym indices. In a shared library we generate a section
7321 symbol for each output section, which come first. Next come all
7322 of the back-end allocated local dynamic syms, followed by the rest
7323 of the global symbols.
7325 This is usually not needed for static binaries, however backends
7326 can request to always do it, e.g. the MIPS backend uses dynamic
7327 symbol counts to lay out GOT, which will be produced in the
7328 presence of GOT relocations even in static binaries (holding fixed
7329 data in that case, to satisfy those relocations). */
7331 if (elf_hash_table (info
)->dynamic_sections_created
7332 || bed
->always_renumber_dynsyms
)
7333 dynsymcount
= _bfd_elf_link_renumber_dynsyms (output_bfd
, info
,
7334 §ion_sym_count
);
7336 if (elf_hash_table (info
)->dynamic_sections_created
)
7340 unsigned int dtagcount
;
7342 dynobj
= elf_hash_table (info
)->dynobj
;
7344 /* Work out the size of the symbol version section. */
7345 s
= bfd_get_linker_section (dynobj
, ".gnu.version");
7346 BFD_ASSERT (s
!= NULL
);
7347 if ((s
->flags
& SEC_EXCLUDE
) == 0)
7349 s
->size
= dynsymcount
* sizeof (Elf_External_Versym
);
7350 s
->contents
= (unsigned char *) bfd_zalloc (output_bfd
, s
->size
);
7351 if (s
->contents
== NULL
)
7354 if (!_bfd_elf_add_dynamic_entry (info
, DT_VERSYM
, 0))
7358 /* Set the size of the .dynsym and .hash sections. We counted
7359 the number of dynamic symbols in elf_link_add_object_symbols.
7360 We will build the contents of .dynsym and .hash when we build
7361 the final symbol table, because until then we do not know the
7362 correct value to give the symbols. We built the .dynstr
7363 section as we went along in elf_link_add_object_symbols. */
7364 s
= elf_hash_table (info
)->dynsym
;
7365 BFD_ASSERT (s
!= NULL
);
7366 s
->size
= dynsymcount
* bed
->s
->sizeof_sym
;
7368 s
->contents
= (unsigned char *) bfd_alloc (output_bfd
, s
->size
);
7369 if (s
->contents
== NULL
)
7372 /* The first entry in .dynsym is a dummy symbol. Clear all the
7373 section syms, in case we don't output them all. */
7374 ++section_sym_count
;
7375 memset (s
->contents
, 0, section_sym_count
* bed
->s
->sizeof_sym
);
7377 elf_hash_table (info
)->bucketcount
= 0;
7379 /* Compute the size of the hashing table. As a side effect this
7380 computes the hash values for all the names we export. */
7381 if (info
->emit_hash
)
7383 unsigned long int *hashcodes
;
7384 struct hash_codes_info hashinf
;
7386 unsigned long int nsyms
;
7388 size_t hash_entry_size
;
7390 /* Compute the hash values for all exported symbols. At the same
7391 time store the values in an array so that we could use them for
7393 amt
= dynsymcount
* sizeof (unsigned long int);
7394 hashcodes
= (unsigned long int *) bfd_malloc (amt
);
7395 if (hashcodes
== NULL
)
7397 hashinf
.hashcodes
= hashcodes
;
7398 hashinf
.error
= FALSE
;
7400 /* Put all hash values in HASHCODES. */
7401 elf_link_hash_traverse (elf_hash_table (info
),
7402 elf_collect_hash_codes
, &hashinf
);
7409 nsyms
= hashinf
.hashcodes
- hashcodes
;
7411 = compute_bucket_count (info
, hashcodes
, nsyms
, 0);
7414 if (bucketcount
== 0 && nsyms
> 0)
7417 elf_hash_table (info
)->bucketcount
= bucketcount
;
7419 s
= bfd_get_linker_section (dynobj
, ".hash");
7420 BFD_ASSERT (s
!= NULL
);
7421 hash_entry_size
= elf_section_data (s
)->this_hdr
.sh_entsize
;
7422 s
->size
= ((2 + bucketcount
+ dynsymcount
) * hash_entry_size
);
7423 s
->contents
= (unsigned char *) bfd_zalloc (output_bfd
, s
->size
);
7424 if (s
->contents
== NULL
)
7427 bfd_put (8 * hash_entry_size
, output_bfd
, bucketcount
, s
->contents
);
7428 bfd_put (8 * hash_entry_size
, output_bfd
, dynsymcount
,
7429 s
->contents
+ hash_entry_size
);
7432 if (info
->emit_gnu_hash
)
7435 unsigned char *contents
;
7436 struct collect_gnu_hash_codes cinfo
;
7440 memset (&cinfo
, 0, sizeof (cinfo
));
7442 /* Compute the hash values for all exported symbols. At the same
7443 time store the values in an array so that we could use them for
7445 amt
= dynsymcount
* 2 * sizeof (unsigned long int);
7446 cinfo
.hashcodes
= (long unsigned int *) bfd_malloc (amt
);
7447 if (cinfo
.hashcodes
== NULL
)
7450 cinfo
.hashval
= cinfo
.hashcodes
+ dynsymcount
;
7451 cinfo
.min_dynindx
= -1;
7452 cinfo
.output_bfd
= output_bfd
;
7455 /* Put all hash values in HASHCODES. */
7456 elf_link_hash_traverse (elf_hash_table (info
),
7457 elf_collect_gnu_hash_codes
, &cinfo
);
7460 free (cinfo
.hashcodes
);
7465 = compute_bucket_count (info
, cinfo
.hashcodes
, cinfo
.nsyms
, 1);
7467 if (bucketcount
== 0)
7469 free (cinfo
.hashcodes
);
7473 s
= bfd_get_linker_section (dynobj
, GNU_HASH_SECTION_NAME (bed
));
7474 BFD_ASSERT (s
!= NULL
);
7476 if (cinfo
.nsyms
== 0)
7478 /* Empty .gnu.hash or .MIPS.xhash section is special. */
7479 BFD_ASSERT (cinfo
.min_dynindx
== -1);
7480 free (cinfo
.hashcodes
);
7481 s
->size
= 5 * 4 + bed
->s
->arch_size
/ 8;
7482 contents
= (unsigned char *) bfd_zalloc (output_bfd
, s
->size
);
7483 if (contents
== NULL
)
7485 s
->contents
= contents
;
7486 /* 1 empty bucket. */
7487 bfd_put_32 (output_bfd
, 1, contents
);
7488 /* SYMIDX above the special symbol 0. */
7489 bfd_put_32 (output_bfd
, 1, contents
+ 4);
7490 /* Just one word for bitmask. */
7491 bfd_put_32 (output_bfd
, 1, contents
+ 8);
7492 /* Only hash fn bloom filter. */
7493 bfd_put_32 (output_bfd
, 0, contents
+ 12);
7494 /* No hashes are valid - empty bitmask. */
7495 bfd_put (bed
->s
->arch_size
, output_bfd
, 0, contents
+ 16);
7496 /* No hashes in the only bucket. */
7497 bfd_put_32 (output_bfd
, 0,
7498 contents
+ 16 + bed
->s
->arch_size
/ 8);
7502 unsigned long int maskwords
, maskbitslog2
, x
;
7503 BFD_ASSERT (cinfo
.min_dynindx
!= -1);
7507 while ((x
>>= 1) != 0)
7509 if (maskbitslog2
< 3)
7511 else if ((1 << (maskbitslog2
- 2)) & cinfo
.nsyms
)
7512 maskbitslog2
= maskbitslog2
+ 3;
7514 maskbitslog2
= maskbitslog2
+ 2;
7515 if (bed
->s
->arch_size
== 64)
7517 if (maskbitslog2
== 5)
7523 cinfo
.mask
= (1 << cinfo
.shift1
) - 1;
7524 cinfo
.shift2
= maskbitslog2
;
7525 cinfo
.maskbits
= 1 << maskbitslog2
;
7526 maskwords
= 1 << (maskbitslog2
- cinfo
.shift1
);
7527 amt
= bucketcount
* sizeof (unsigned long int) * 2;
7528 amt
+= maskwords
* sizeof (bfd_vma
);
7529 cinfo
.bitmask
= (bfd_vma
*) bfd_malloc (amt
);
7530 if (cinfo
.bitmask
== NULL
)
7532 free (cinfo
.hashcodes
);
7536 cinfo
.counts
= (long unsigned int *) (cinfo
.bitmask
+ maskwords
);
7537 cinfo
.indx
= cinfo
.counts
+ bucketcount
;
7538 cinfo
.symindx
= dynsymcount
- cinfo
.nsyms
;
7539 memset (cinfo
.bitmask
, 0, maskwords
* sizeof (bfd_vma
));
7541 /* Determine how often each hash bucket is used. */
7542 memset (cinfo
.counts
, 0, bucketcount
* sizeof (cinfo
.counts
[0]));
7543 for (i
= 0; i
< cinfo
.nsyms
; ++i
)
7544 ++cinfo
.counts
[cinfo
.hashcodes
[i
] % bucketcount
];
7546 for (i
= 0, cnt
= cinfo
.symindx
; i
< bucketcount
; ++i
)
7547 if (cinfo
.counts
[i
] != 0)
7549 cinfo
.indx
[i
] = cnt
;
7550 cnt
+= cinfo
.counts
[i
];
7552 BFD_ASSERT (cnt
== dynsymcount
);
7553 cinfo
.bucketcount
= bucketcount
;
7554 cinfo
.local_indx
= cinfo
.min_dynindx
;
7556 s
->size
= (4 + bucketcount
+ cinfo
.nsyms
) * 4;
7557 s
->size
+= cinfo
.maskbits
/ 8;
7558 if (bed
->record_xhash_symbol
!= NULL
)
7559 s
->size
+= cinfo
.nsyms
* 4;
7560 contents
= (unsigned char *) bfd_zalloc (output_bfd
, s
->size
);
7561 if (contents
== NULL
)
7563 free (cinfo
.bitmask
);
7564 free (cinfo
.hashcodes
);
7568 s
->contents
= contents
;
7569 bfd_put_32 (output_bfd
, bucketcount
, contents
);
7570 bfd_put_32 (output_bfd
, cinfo
.symindx
, contents
+ 4);
7571 bfd_put_32 (output_bfd
, maskwords
, contents
+ 8);
7572 bfd_put_32 (output_bfd
, cinfo
.shift2
, contents
+ 12);
7573 contents
+= 16 + cinfo
.maskbits
/ 8;
7575 for (i
= 0; i
< bucketcount
; ++i
)
7577 if (cinfo
.counts
[i
] == 0)
7578 bfd_put_32 (output_bfd
, 0, contents
);
7580 bfd_put_32 (output_bfd
, cinfo
.indx
[i
], contents
);
7584 cinfo
.contents
= contents
;
7586 cinfo
.xlat
= contents
+ cinfo
.nsyms
* 4 - s
->contents
;
7587 /* Renumber dynamic symbols, if populating .gnu.hash section.
7588 If using .MIPS.xhash, populate the translation table. */
7589 elf_link_hash_traverse (elf_hash_table (info
),
7590 elf_gnu_hash_process_symidx
, &cinfo
);
7592 contents
= s
->contents
+ 16;
7593 for (i
= 0; i
< maskwords
; ++i
)
7595 bfd_put (bed
->s
->arch_size
, output_bfd
, cinfo
.bitmask
[i
],
7597 contents
+= bed
->s
->arch_size
/ 8;
7600 free (cinfo
.bitmask
);
7601 free (cinfo
.hashcodes
);
7605 s
= bfd_get_linker_section (dynobj
, ".dynstr");
7606 BFD_ASSERT (s
!= NULL
);
7608 elf_finalize_dynstr (output_bfd
, info
);
7610 s
->size
= _bfd_elf_strtab_size (elf_hash_table (info
)->dynstr
);
7612 for (dtagcount
= 0; dtagcount
<= info
->spare_dynamic_tags
; ++dtagcount
)
7613 if (!_bfd_elf_add_dynamic_entry (info
, DT_NULL
, 0))
7620 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
7623 merge_sections_remove_hook (bfd
*abfd ATTRIBUTE_UNUSED
,
7626 BFD_ASSERT (sec
->sec_info_type
== SEC_INFO_TYPE_MERGE
);
7627 sec
->sec_info_type
= SEC_INFO_TYPE_NONE
;
7630 /* Finish SHF_MERGE section merging. */
7633 _bfd_elf_merge_sections (bfd
*obfd
, struct bfd_link_info
*info
)
7638 if (!is_elf_hash_table (info
->hash
))
7641 for (ibfd
= info
->input_bfds
; ibfd
!= NULL
; ibfd
= ibfd
->link
.next
)
7642 if ((ibfd
->flags
& DYNAMIC
) == 0
7643 && bfd_get_flavour (ibfd
) == bfd_target_elf_flavour
7644 && (elf_elfheader (ibfd
)->e_ident
[EI_CLASS
]
7645 == get_elf_backend_data (obfd
)->s
->elfclass
))
7646 for (sec
= ibfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
7647 if ((sec
->flags
& SEC_MERGE
) != 0
7648 && !bfd_is_abs_section (sec
->output_section
))
7650 struct bfd_elf_section_data
*secdata
;
7652 secdata
= elf_section_data (sec
);
7653 if (! _bfd_add_merge_section (obfd
,
7654 &elf_hash_table (info
)->merge_info
,
7655 sec
, &secdata
->sec_info
))
7657 else if (secdata
->sec_info
)
7658 sec
->sec_info_type
= SEC_INFO_TYPE_MERGE
;
7661 if (elf_hash_table (info
)->merge_info
!= NULL
)
7662 _bfd_merge_sections (obfd
, info
, elf_hash_table (info
)->merge_info
,
7663 merge_sections_remove_hook
);
7667 /* Create an entry in an ELF linker hash table. */
7669 struct bfd_hash_entry
*
7670 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry
*entry
,
7671 struct bfd_hash_table
*table
,
7674 /* Allocate the structure if it has not already been allocated by a
7678 entry
= (struct bfd_hash_entry
*)
7679 bfd_hash_allocate (table
, sizeof (struct elf_link_hash_entry
));
7684 /* Call the allocation method of the superclass. */
7685 entry
= _bfd_link_hash_newfunc (entry
, table
, string
);
7688 struct elf_link_hash_entry
*ret
= (struct elf_link_hash_entry
*) entry
;
7689 struct elf_link_hash_table
*htab
= (struct elf_link_hash_table
*) table
;
7691 /* Set local fields. */
7694 ret
->got
= htab
->init_got_refcount
;
7695 ret
->plt
= htab
->init_plt_refcount
;
7696 memset (&ret
->size
, 0, (sizeof (struct elf_link_hash_entry
)
7697 - offsetof (struct elf_link_hash_entry
, size
)));
7698 /* Assume that we have been called by a non-ELF symbol reader.
7699 This flag is then reset by the code which reads an ELF input
7700 file. This ensures that a symbol created by a non-ELF symbol
7701 reader will have the flag set correctly. */
7708 /* Copy data from an indirect symbol to its direct symbol, hiding the
7709 old indirect symbol. Also used for copying flags to a weakdef. */
7712 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info
*info
,
7713 struct elf_link_hash_entry
*dir
,
7714 struct elf_link_hash_entry
*ind
)
7716 struct elf_link_hash_table
*htab
;
7718 if (ind
->dyn_relocs
!= NULL
)
7720 if (dir
->dyn_relocs
!= NULL
)
7722 struct elf_dyn_relocs
**pp
;
7723 struct elf_dyn_relocs
*p
;
7725 /* Add reloc counts against the indirect sym to the direct sym
7726 list. Merge any entries against the same section. */
7727 for (pp
= &ind
->dyn_relocs
; (p
= *pp
) != NULL
; )
7729 struct elf_dyn_relocs
*q
;
7731 for (q
= dir
->dyn_relocs
; q
!= NULL
; q
= q
->next
)
7732 if (q
->sec
== p
->sec
)
7734 q
->pc_count
+= p
->pc_count
;
7735 q
->count
+= p
->count
;
7742 *pp
= dir
->dyn_relocs
;
7745 dir
->dyn_relocs
= ind
->dyn_relocs
;
7746 ind
->dyn_relocs
= NULL
;
7749 /* Copy down any references that we may have already seen to the
7750 symbol which just became indirect. */
7752 if (dir
->versioned
!= versioned_hidden
)
7753 dir
->ref_dynamic
|= ind
->ref_dynamic
;
7754 dir
->ref_regular
|= ind
->ref_regular
;
7755 dir
->ref_regular_nonweak
|= ind
->ref_regular_nonweak
;
7756 dir
->non_got_ref
|= ind
->non_got_ref
;
7757 dir
->needs_plt
|= ind
->needs_plt
;
7758 dir
->pointer_equality_needed
|= ind
->pointer_equality_needed
;
7760 if (ind
->root
.type
!= bfd_link_hash_indirect
)
7763 /* Copy over the global and procedure linkage table refcount entries.
7764 These may have been already set up by a check_relocs routine. */
7765 htab
= elf_hash_table (info
);
7766 if (ind
->got
.refcount
> htab
->init_got_refcount
.refcount
)
7768 if (dir
->got
.refcount
< 0)
7769 dir
->got
.refcount
= 0;
7770 dir
->got
.refcount
+= ind
->got
.refcount
;
7771 ind
->got
.refcount
= htab
->init_got_refcount
.refcount
;
7774 if (ind
->plt
.refcount
> htab
->init_plt_refcount
.refcount
)
7776 if (dir
->plt
.refcount
< 0)
7777 dir
->plt
.refcount
= 0;
7778 dir
->plt
.refcount
+= ind
->plt
.refcount
;
7779 ind
->plt
.refcount
= htab
->init_plt_refcount
.refcount
;
7782 if (ind
->dynindx
!= -1)
7784 if (dir
->dynindx
!= -1)
7785 _bfd_elf_strtab_delref (htab
->dynstr
, dir
->dynstr_index
);
7786 dir
->dynindx
= ind
->dynindx
;
7787 dir
->dynstr_index
= ind
->dynstr_index
;
7789 ind
->dynstr_index
= 0;
7794 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info
*info
,
7795 struct elf_link_hash_entry
*h
,
7796 bfd_boolean force_local
)
7798 /* STT_GNU_IFUNC symbol must go through PLT. */
7799 if (h
->type
!= STT_GNU_IFUNC
)
7801 h
->plt
= elf_hash_table (info
)->init_plt_offset
;
7806 h
->forced_local
= 1;
7807 if (h
->dynindx
!= -1)
7809 _bfd_elf_strtab_delref (elf_hash_table (info
)->dynstr
,
7812 h
->dynstr_index
= 0;
7817 /* Hide a symbol. */
7820 _bfd_elf_link_hide_symbol (bfd
*output_bfd
,
7821 struct bfd_link_info
*info
,
7822 struct bfd_link_hash_entry
*h
)
7824 if (is_elf_hash_table (info
->hash
))
7826 const struct elf_backend_data
*bed
7827 = get_elf_backend_data (output_bfd
);
7828 struct elf_link_hash_entry
*eh
7829 = (struct elf_link_hash_entry
*) h
;
7830 bed
->elf_backend_hide_symbol (info
, eh
, TRUE
);
7831 eh
->def_dynamic
= 0;
7832 eh
->ref_dynamic
= 0;
7833 eh
->dynamic_def
= 0;
7837 /* Initialize an ELF linker hash table. *TABLE has been zeroed by our
7841 _bfd_elf_link_hash_table_init
7842 (struct elf_link_hash_table
*table
,
7844 struct bfd_hash_entry
*(*newfunc
) (struct bfd_hash_entry
*,
7845 struct bfd_hash_table
*,
7847 unsigned int entsize
,
7848 enum elf_target_id target_id
)
7851 int can_refcount
= get_elf_backend_data (abfd
)->can_refcount
;
7853 table
->init_got_refcount
.refcount
= can_refcount
- 1;
7854 table
->init_plt_refcount
.refcount
= can_refcount
- 1;
7855 table
->init_got_offset
.offset
= -(bfd_vma
) 1;
7856 table
->init_plt_offset
.offset
= -(bfd_vma
) 1;
7857 /* The first dynamic symbol is a dummy. */
7858 table
->dynsymcount
= 1;
7860 ret
= _bfd_link_hash_table_init (&table
->root
, abfd
, newfunc
, entsize
);
7862 table
->root
.type
= bfd_link_elf_hash_table
;
7863 table
->hash_table_id
= target_id
;
7864 table
->target_os
= get_elf_backend_data (abfd
)->target_os
;
7869 /* Create an ELF linker hash table. */
7871 struct bfd_link_hash_table
*
7872 _bfd_elf_link_hash_table_create (bfd
*abfd
)
7874 struct elf_link_hash_table
*ret
;
7875 size_t amt
= sizeof (struct elf_link_hash_table
);
7877 ret
= (struct elf_link_hash_table
*) bfd_zmalloc (amt
);
7881 if (! _bfd_elf_link_hash_table_init (ret
, abfd
, _bfd_elf_link_hash_newfunc
,
7882 sizeof (struct elf_link_hash_entry
),
7888 ret
->root
.hash_table_free
= _bfd_elf_link_hash_table_free
;
7893 /* Destroy an ELF linker hash table. */
7896 _bfd_elf_link_hash_table_free (bfd
*obfd
)
7898 struct elf_link_hash_table
*htab
;
7900 htab
= (struct elf_link_hash_table
*) obfd
->link
.hash
;
7901 if (htab
->dynstr
!= NULL
)
7902 _bfd_elf_strtab_free (htab
->dynstr
);
7903 _bfd_merge_sections_free (htab
->merge_info
);
7904 _bfd_generic_link_hash_table_free (obfd
);
7907 /* This is a hook for the ELF emulation code in the generic linker to
7908 tell the backend linker what file name to use for the DT_NEEDED
7909 entry for a dynamic object. */
7912 bfd_elf_set_dt_needed_name (bfd
*abfd
, const char *name
)
7914 if (bfd_get_flavour (abfd
) == bfd_target_elf_flavour
7915 && bfd_get_format (abfd
) == bfd_object
)
7916 elf_dt_name (abfd
) = name
;
7920 bfd_elf_get_dyn_lib_class (bfd
*abfd
)
7923 if (bfd_get_flavour (abfd
) == bfd_target_elf_flavour
7924 && bfd_get_format (abfd
) == bfd_object
)
7925 lib_class
= elf_dyn_lib_class (abfd
);
7932 bfd_elf_set_dyn_lib_class (bfd
*abfd
, enum dynamic_lib_link_class lib_class
)
7934 if (bfd_get_flavour (abfd
) == bfd_target_elf_flavour
7935 && bfd_get_format (abfd
) == bfd_object
)
7936 elf_dyn_lib_class (abfd
) = lib_class
;
7939 /* Get the list of DT_NEEDED entries for a link. This is a hook for
7940 the linker ELF emulation code. */
7942 struct bfd_link_needed_list
*
7943 bfd_elf_get_needed_list (bfd
*abfd ATTRIBUTE_UNUSED
,
7944 struct bfd_link_info
*info
)
7946 if (! is_elf_hash_table (info
->hash
))
7948 return elf_hash_table (info
)->needed
;
7951 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
7952 hook for the linker ELF emulation code. */
7954 struct bfd_link_needed_list
*
7955 bfd_elf_get_runpath_list (bfd
*abfd ATTRIBUTE_UNUSED
,
7956 struct bfd_link_info
*info
)
7958 if (! is_elf_hash_table (info
->hash
))
7960 return elf_hash_table (info
)->runpath
;
7963 /* Get the name actually used for a dynamic object for a link. This
7964 is the SONAME entry if there is one. Otherwise, it is the string
7965 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
7968 bfd_elf_get_dt_soname (bfd
*abfd
)
7970 if (bfd_get_flavour (abfd
) == bfd_target_elf_flavour
7971 && bfd_get_format (abfd
) == bfd_object
)
7972 return elf_dt_name (abfd
);
7976 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
7977 the ELF linker emulation code. */
7980 bfd_elf_get_bfd_needed_list (bfd
*abfd
,
7981 struct bfd_link_needed_list
**pneeded
)
7984 bfd_byte
*dynbuf
= NULL
;
7985 unsigned int elfsec
;
7986 unsigned long shlink
;
7987 bfd_byte
*extdyn
, *extdynend
;
7989 void (*swap_dyn_in
) (bfd
*, const void *, Elf_Internal_Dyn
*);
7993 if (bfd_get_flavour (abfd
) != bfd_target_elf_flavour
7994 || bfd_get_format (abfd
) != bfd_object
)
7997 s
= bfd_get_section_by_name (abfd
, ".dynamic");
7998 if (s
== NULL
|| s
->size
== 0)
8001 if (!bfd_malloc_and_get_section (abfd
, s
, &dynbuf
))
8004 elfsec
= _bfd_elf_section_from_bfd_section (abfd
, s
);
8005 if (elfsec
== SHN_BAD
)
8008 shlink
= elf_elfsections (abfd
)[elfsec
]->sh_link
;
8010 extdynsize
= get_elf_backend_data (abfd
)->s
->sizeof_dyn
;
8011 swap_dyn_in
= get_elf_backend_data (abfd
)->s
->swap_dyn_in
;
8014 extdynend
= extdyn
+ s
->size
;
8015 for (; extdyn
< extdynend
; extdyn
+= extdynsize
)
8017 Elf_Internal_Dyn dyn
;
8019 (*swap_dyn_in
) (abfd
, extdyn
, &dyn
);
8021 if (dyn
.d_tag
== DT_NULL
)
8024 if (dyn
.d_tag
== DT_NEEDED
)
8027 struct bfd_link_needed_list
*l
;
8028 unsigned int tagv
= dyn
.d_un
.d_val
;
8031 string
= bfd_elf_string_from_elf_section (abfd
, shlink
, tagv
);
8036 l
= (struct bfd_link_needed_list
*) bfd_alloc (abfd
, amt
);
8056 struct elf_symbuf_symbol
8058 unsigned long st_name
; /* Symbol name, index in string tbl */
8059 unsigned char st_info
; /* Type and binding attributes */
8060 unsigned char st_other
; /* Visibilty, and target specific */
8063 struct elf_symbuf_head
8065 struct elf_symbuf_symbol
*ssym
;
8067 unsigned int st_shndx
;
8074 Elf_Internal_Sym
*isym
;
8075 struct elf_symbuf_symbol
*ssym
;
8081 /* Sort references to symbols by ascending section number. */
8084 elf_sort_elf_symbol (const void *arg1
, const void *arg2
)
8086 const Elf_Internal_Sym
*s1
= *(const Elf_Internal_Sym
**) arg1
;
8087 const Elf_Internal_Sym
*s2
= *(const Elf_Internal_Sym
**) arg2
;
8089 if (s1
->st_shndx
!= s2
->st_shndx
)
8090 return s1
->st_shndx
> s2
->st_shndx
? 1 : -1;
8091 /* Final sort by the address of the sym in the symbuf ensures
8094 return s1
> s2
? 1 : -1;
8099 elf_sym_name_compare (const void *arg1
, const void *arg2
)
8101 const struct elf_symbol
*s1
= (const struct elf_symbol
*) arg1
;
8102 const struct elf_symbol
*s2
= (const struct elf_symbol
*) arg2
;
8103 int ret
= strcmp (s1
->name
, s2
->name
);
8106 if (s1
->u
.p
!= s2
->u
.p
)
8107 return s1
->u
.p
> s2
->u
.p
? 1 : -1;
8111 static struct elf_symbuf_head
*
8112 elf_create_symbuf (size_t symcount
, Elf_Internal_Sym
*isymbuf
)
8114 Elf_Internal_Sym
**ind
, **indbufend
, **indbuf
;
8115 struct elf_symbuf_symbol
*ssym
;
8116 struct elf_symbuf_head
*ssymbuf
, *ssymhead
;
8117 size_t i
, shndx_count
, total_size
, amt
;
8119 amt
= symcount
* sizeof (*indbuf
);
8120 indbuf
= (Elf_Internal_Sym
**) bfd_malloc (amt
);
8124 for (ind
= indbuf
, i
= 0; i
< symcount
; i
++)
8125 if (isymbuf
[i
].st_shndx
!= SHN_UNDEF
)
8126 *ind
++ = &isymbuf
[i
];
8129 qsort (indbuf
, indbufend
- indbuf
, sizeof (Elf_Internal_Sym
*),
8130 elf_sort_elf_symbol
);
8133 if (indbufend
> indbuf
)
8134 for (ind
= indbuf
, shndx_count
++; ind
< indbufend
- 1; ind
++)
8135 if (ind
[0]->st_shndx
!= ind
[1]->st_shndx
)
8138 total_size
= ((shndx_count
+ 1) * sizeof (*ssymbuf
)
8139 + (indbufend
- indbuf
) * sizeof (*ssym
));
8140 ssymbuf
= (struct elf_symbuf_head
*) bfd_malloc (total_size
);
8141 if (ssymbuf
== NULL
)
8147 ssym
= (struct elf_symbuf_symbol
*) (ssymbuf
+ shndx_count
+ 1);
8148 ssymbuf
->ssym
= NULL
;
8149 ssymbuf
->count
= shndx_count
;
8150 ssymbuf
->st_shndx
= 0;
8151 for (ssymhead
= ssymbuf
, ind
= indbuf
; ind
< indbufend
; ssym
++, ind
++)
8153 if (ind
== indbuf
|| ssymhead
->st_shndx
!= (*ind
)->st_shndx
)
8156 ssymhead
->ssym
= ssym
;
8157 ssymhead
->count
= 0;
8158 ssymhead
->st_shndx
= (*ind
)->st_shndx
;
8160 ssym
->st_name
= (*ind
)->st_name
;
8161 ssym
->st_info
= (*ind
)->st_info
;
8162 ssym
->st_other
= (*ind
)->st_other
;
8165 BFD_ASSERT ((size_t) (ssymhead
- ssymbuf
) == shndx_count
8166 && (((bfd_hostptr_t
) ssym
- (bfd_hostptr_t
) ssymbuf
)
8173 /* Check if 2 sections define the same set of local and global
8177 bfd_elf_match_symbols_in_sections (asection
*sec1
, asection
*sec2
,
8178 struct bfd_link_info
*info
)
8181 const struct elf_backend_data
*bed1
, *bed2
;
8182 Elf_Internal_Shdr
*hdr1
, *hdr2
;
8183 size_t symcount1
, symcount2
;
8184 Elf_Internal_Sym
*isymbuf1
, *isymbuf2
;
8185 struct elf_symbuf_head
*ssymbuf1
, *ssymbuf2
;
8186 Elf_Internal_Sym
*isym
, *isymend
;
8187 struct elf_symbol
*symtable1
= NULL
, *symtable2
= NULL
;
8188 size_t count1
, count2
, i
;
8189 unsigned int shndx1
, shndx2
;
8195 /* Both sections have to be in ELF. */
8196 if (bfd_get_flavour (bfd1
) != bfd_target_elf_flavour
8197 || bfd_get_flavour (bfd2
) != bfd_target_elf_flavour
)
8200 if (elf_section_type (sec1
) != elf_section_type (sec2
))
8203 shndx1
= _bfd_elf_section_from_bfd_section (bfd1
, sec1
);
8204 shndx2
= _bfd_elf_section_from_bfd_section (bfd2
, sec2
);
8205 if (shndx1
== SHN_BAD
|| shndx2
== SHN_BAD
)
8208 bed1
= get_elf_backend_data (bfd1
);
8209 bed2
= get_elf_backend_data (bfd2
);
8210 hdr1
= &elf_tdata (bfd1
)->symtab_hdr
;
8211 symcount1
= hdr1
->sh_size
/ bed1
->s
->sizeof_sym
;
8212 hdr2
= &elf_tdata (bfd2
)->symtab_hdr
;
8213 symcount2
= hdr2
->sh_size
/ bed2
->s
->sizeof_sym
;
8215 if (symcount1
== 0 || symcount2
== 0)
8221 ssymbuf1
= (struct elf_symbuf_head
*) elf_tdata (bfd1
)->symbuf
;
8222 ssymbuf2
= (struct elf_symbuf_head
*) elf_tdata (bfd2
)->symbuf
;
8224 if (ssymbuf1
== NULL
)
8226 isymbuf1
= bfd_elf_get_elf_syms (bfd1
, hdr1
, symcount1
, 0,
8228 if (isymbuf1
== NULL
)
8231 if (info
!= NULL
&& !info
->reduce_memory_overheads
)
8233 ssymbuf1
= elf_create_symbuf (symcount1
, isymbuf1
);
8234 elf_tdata (bfd1
)->symbuf
= ssymbuf1
;
8238 if (ssymbuf1
== NULL
|| ssymbuf2
== NULL
)
8240 isymbuf2
= bfd_elf_get_elf_syms (bfd2
, hdr2
, symcount2
, 0,
8242 if (isymbuf2
== NULL
)
8245 if (ssymbuf1
!= NULL
&& info
!= NULL
&& !info
->reduce_memory_overheads
)
8247 ssymbuf2
= elf_create_symbuf (symcount2
, isymbuf2
);
8248 elf_tdata (bfd2
)->symbuf
= ssymbuf2
;
8252 if (ssymbuf1
!= NULL
&& ssymbuf2
!= NULL
)
8254 /* Optimized faster version. */
8256 struct elf_symbol
*symp
;
8257 struct elf_symbuf_symbol
*ssym
, *ssymend
;
8260 hi
= ssymbuf1
->count
;
8265 mid
= (lo
+ hi
) / 2;
8266 if (shndx1
< ssymbuf1
[mid
].st_shndx
)
8268 else if (shndx1
> ssymbuf1
[mid
].st_shndx
)
8272 count1
= ssymbuf1
[mid
].count
;
8279 hi
= ssymbuf2
->count
;
8284 mid
= (lo
+ hi
) / 2;
8285 if (shndx2
< ssymbuf2
[mid
].st_shndx
)
8287 else if (shndx2
> ssymbuf2
[mid
].st_shndx
)
8291 count2
= ssymbuf2
[mid
].count
;
8297 if (count1
== 0 || count2
== 0 || count1
!= count2
)
8301 = (struct elf_symbol
*) bfd_malloc (count1
* sizeof (*symtable1
));
8303 = (struct elf_symbol
*) bfd_malloc (count2
* sizeof (*symtable2
));
8304 if (symtable1
== NULL
|| symtable2
== NULL
)
8308 for (ssym
= ssymbuf1
->ssym
, ssymend
= ssym
+ count1
;
8309 ssym
< ssymend
; ssym
++, symp
++)
8311 symp
->u
.ssym
= ssym
;
8312 symp
->name
= bfd_elf_string_from_elf_section (bfd1
,
8318 for (ssym
= ssymbuf2
->ssym
, ssymend
= ssym
+ count2
;
8319 ssym
< ssymend
; ssym
++, symp
++)
8321 symp
->u
.ssym
= ssym
;
8322 symp
->name
= bfd_elf_string_from_elf_section (bfd2
,
8327 /* Sort symbol by name. */
8328 qsort (symtable1
, count1
, sizeof (struct elf_symbol
),
8329 elf_sym_name_compare
);
8330 qsort (symtable2
, count1
, sizeof (struct elf_symbol
),
8331 elf_sym_name_compare
);
8333 for (i
= 0; i
< count1
; i
++)
8334 /* Two symbols must have the same binding, type and name. */
8335 if (symtable1
[i
].u
.ssym
->st_info
!= symtable2
[i
].u
.ssym
->st_info
8336 || symtable1
[i
].u
.ssym
->st_other
!= symtable2
[i
].u
.ssym
->st_other
8337 || strcmp (symtable1
[i
].name
, symtable2
[i
].name
) != 0)
8344 symtable1
= (struct elf_symbol
*)
8345 bfd_malloc (symcount1
* sizeof (struct elf_symbol
));
8346 symtable2
= (struct elf_symbol
*)
8347 bfd_malloc (symcount2
* sizeof (struct elf_symbol
));
8348 if (symtable1
== NULL
|| symtable2
== NULL
)
8351 /* Count definitions in the section. */
8353 for (isym
= isymbuf1
, isymend
= isym
+ symcount1
; isym
< isymend
; isym
++)
8354 if (isym
->st_shndx
== shndx1
)
8355 symtable1
[count1
++].u
.isym
= isym
;
8358 for (isym
= isymbuf2
, isymend
= isym
+ symcount2
; isym
< isymend
; isym
++)
8359 if (isym
->st_shndx
== shndx2
)
8360 symtable2
[count2
++].u
.isym
= isym
;
8362 if (count1
== 0 || count2
== 0 || count1
!= count2
)
8365 for (i
= 0; i
< count1
; i
++)
8367 = bfd_elf_string_from_elf_section (bfd1
, hdr1
->sh_link
,
8368 symtable1
[i
].u
.isym
->st_name
);
8370 for (i
= 0; i
< count2
; i
++)
8372 = bfd_elf_string_from_elf_section (bfd2
, hdr2
->sh_link
,
8373 symtable2
[i
].u
.isym
->st_name
);
8375 /* Sort symbol by name. */
8376 qsort (symtable1
, count1
, sizeof (struct elf_symbol
),
8377 elf_sym_name_compare
);
8378 qsort (symtable2
, count1
, sizeof (struct elf_symbol
),
8379 elf_sym_name_compare
);
8381 for (i
= 0; i
< count1
; i
++)
8382 /* Two symbols must have the same binding, type and name. */
8383 if (symtable1
[i
].u
.isym
->st_info
!= symtable2
[i
].u
.isym
->st_info
8384 || symtable1
[i
].u
.isym
->st_other
!= symtable2
[i
].u
.isym
->st_other
8385 || strcmp (symtable1
[i
].name
, symtable2
[i
].name
) != 0)
8399 /* Return TRUE if 2 section types are compatible. */
8402 _bfd_elf_match_sections_by_type (bfd
*abfd
, const asection
*asec
,
8403 bfd
*bbfd
, const asection
*bsec
)
8407 || abfd
->xvec
->flavour
!= bfd_target_elf_flavour
8408 || bbfd
->xvec
->flavour
!= bfd_target_elf_flavour
)
8411 return elf_section_type (asec
) == elf_section_type (bsec
);
8414 /* Final phase of ELF linker. */
8416 /* A structure we use to avoid passing large numbers of arguments. */
8418 struct elf_final_link_info
8420 /* General link information. */
8421 struct bfd_link_info
*info
;
8424 /* Symbol string table. */
8425 struct elf_strtab_hash
*symstrtab
;
8426 /* .hash section. */
8428 /* symbol version section (.gnu.version). */
8429 asection
*symver_sec
;
8430 /* Buffer large enough to hold contents of any section. */
8432 /* Buffer large enough to hold external relocs of any section. */
8433 void *external_relocs
;
8434 /* Buffer large enough to hold internal relocs of any section. */
8435 Elf_Internal_Rela
*internal_relocs
;
8436 /* Buffer large enough to hold external local symbols of any input
8438 bfd_byte
*external_syms
;
8439 /* And a buffer for symbol section indices. */
8440 Elf_External_Sym_Shndx
*locsym_shndx
;
8441 /* Buffer large enough to hold internal local symbols of any input
8443 Elf_Internal_Sym
*internal_syms
;
8444 /* Array large enough to hold a symbol index for each local symbol
8445 of any input BFD. */
8447 /* Array large enough to hold a section pointer for each local
8448 symbol of any input BFD. */
8449 asection
**sections
;
8450 /* Buffer for SHT_SYMTAB_SHNDX section. */
8451 Elf_External_Sym_Shndx
*symshndxbuf
;
8452 /* Number of STT_FILE syms seen. */
8453 size_t filesym_count
;
8454 /* Local symbol hash table. */
8455 struct bfd_hash_table local_hash_table
;
8458 struct local_hash_entry
8460 /* Base hash table entry structure. */
8461 struct bfd_hash_entry root
;
8462 /* Size of the local symbol name. */
8464 /* Number of the duplicated local symbol names. */
8468 /* Create an entry in the local symbol hash table. */
8470 static struct bfd_hash_entry
*
8471 local_hash_newfunc (struct bfd_hash_entry
*entry
,
8472 struct bfd_hash_table
*table
,
8476 /* Allocate the structure if it has not already been allocated by a
8480 entry
= bfd_hash_allocate (table
,
8481 sizeof (struct local_hash_entry
));
8486 /* Call the allocation method of the superclass. */
8487 entry
= bfd_hash_newfunc (entry
, table
, string
);
8490 ((struct local_hash_entry
*) entry
)->count
= 0;
8491 ((struct local_hash_entry
*) entry
)->size
= 0;
8497 /* This struct is used to pass information to elf_link_output_extsym. */
8499 struct elf_outext_info
8502 bfd_boolean localsyms
;
8503 bfd_boolean file_sym_done
;
8504 struct elf_final_link_info
*flinfo
;
8508 /* Support for evaluating a complex relocation.
8510 Complex relocations are generalized, self-describing relocations. The
8511 implementation of them consists of two parts: complex symbols, and the
8512 relocations themselves.
8514 The relocations use a reserved elf-wide relocation type code (R_RELC
8515 external / BFD_RELOC_RELC internal) and an encoding of relocation field
8516 information (start bit, end bit, word width, etc) into the addend. This
8517 information is extracted from CGEN-generated operand tables within gas.
8519 Complex symbols are mangled symbols (STT_RELC external / BSF_RELC
8520 internal) representing prefix-notation expressions, including but not
8521 limited to those sorts of expressions normally encoded as addends in the
8522 addend field. The symbol mangling format is:
8525 | <unary-operator> ':' <node>
8526 | <binary-operator> ':' <node> ':' <node>
8529 <literal> := 's' <digits=N> ':' <N character symbol name>
8530 | 'S' <digits=N> ':' <N character section name>
8534 <binary-operator> := as in C
8535 <unary-operator> := as in C, plus "0-" for unambiguous negation. */
8538 set_symbol_value (bfd
*bfd_with_globals
,
8539 Elf_Internal_Sym
*isymbuf
,
8544 struct elf_link_hash_entry
**sym_hashes
;
8545 struct elf_link_hash_entry
*h
;
8546 size_t extsymoff
= locsymcount
;
8548 if (symidx
< locsymcount
)
8550 Elf_Internal_Sym
*sym
;
8552 sym
= isymbuf
+ symidx
;
8553 if (ELF_ST_BIND (sym
->st_info
) == STB_LOCAL
)
8555 /* It is a local symbol: move it to the
8556 "absolute" section and give it a value. */
8557 sym
->st_shndx
= SHN_ABS
;
8558 sym
->st_value
= val
;
8561 BFD_ASSERT (elf_bad_symtab (bfd_with_globals
));
8565 /* It is a global symbol: set its link type
8566 to "defined" and give it a value. */
8568 sym_hashes
= elf_sym_hashes (bfd_with_globals
);
8569 h
= sym_hashes
[symidx
- extsymoff
];
8570 while (h
->root
.type
== bfd_link_hash_indirect
8571 || h
->root
.type
== bfd_link_hash_warning
)
8572 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
8573 h
->root
.type
= bfd_link_hash_defined
;
8574 h
->root
.u
.def
.value
= val
;
8575 h
->root
.u
.def
.section
= bfd_abs_section_ptr
;
8579 resolve_symbol (const char *name
,
8581 struct elf_final_link_info
*flinfo
,
8583 Elf_Internal_Sym
*isymbuf
,
8586 Elf_Internal_Sym
*sym
;
8587 struct bfd_link_hash_entry
*global_entry
;
8588 const char *candidate
= NULL
;
8589 Elf_Internal_Shdr
*symtab_hdr
;
8592 symtab_hdr
= & elf_tdata (input_bfd
)->symtab_hdr
;
8594 for (i
= 0; i
< locsymcount
; ++ i
)
8598 if (ELF_ST_BIND (sym
->st_info
) != STB_LOCAL
)
8601 candidate
= bfd_elf_string_from_elf_section (input_bfd
,
8602 symtab_hdr
->sh_link
,
8605 printf ("Comparing string: '%s' vs. '%s' = 0x%lx\n",
8606 name
, candidate
, (unsigned long) sym
->st_value
);
8608 if (candidate
&& strcmp (candidate
, name
) == 0)
8610 asection
*sec
= flinfo
->sections
[i
];
8612 *result
= _bfd_elf_rel_local_sym (input_bfd
, sym
, &sec
, 0);
8613 *result
+= sec
->output_offset
+ sec
->output_section
->vma
;
8615 printf ("Found symbol with value %8.8lx\n",
8616 (unsigned long) *result
);
8622 /* Hmm, haven't found it yet. perhaps it is a global. */
8623 global_entry
= bfd_link_hash_lookup (flinfo
->info
->hash
, name
,
8624 FALSE
, FALSE
, TRUE
);
8628 if (global_entry
->type
== bfd_link_hash_defined
8629 || global_entry
->type
== bfd_link_hash_defweak
)
8631 *result
= (global_entry
->u
.def
.value
8632 + global_entry
->u
.def
.section
->output_section
->vma
8633 + global_entry
->u
.def
.section
->output_offset
);
8635 printf ("Found GLOBAL symbol '%s' with value %8.8lx\n",
8636 global_entry
->root
.string
, (unsigned long) *result
);
8644 /* Looks up NAME in SECTIONS. If found sets RESULT to NAME's address (in
8645 bytes) and returns TRUE, otherwise returns FALSE. Accepts pseudo-section
8646 names like "foo.end" which is the end address of section "foo". */
8649 resolve_section (const char *name
,
8657 for (curr
= sections
; curr
; curr
= curr
->next
)
8658 if (strcmp (curr
->name
, name
) == 0)
8660 *result
= curr
->vma
;
8664 /* Hmm. still haven't found it. try pseudo-section names. */
8665 /* FIXME: This could be coded more efficiently... */
8666 for (curr
= sections
; curr
; curr
= curr
->next
)
8668 len
= strlen (curr
->name
);
8669 if (len
> strlen (name
))
8672 if (strncmp (curr
->name
, name
, len
) == 0)
8674 if (strncmp (".end", name
+ len
, 4) == 0)
8676 *result
= (curr
->vma
8677 + curr
->size
/ bfd_octets_per_byte (abfd
, curr
));
8681 /* Insert more pseudo-section names here, if you like. */
8689 undefined_reference (const char *reftype
, const char *name
)
8691 /* xgettext:c-format */
8692 _bfd_error_handler (_("undefined %s reference in complex symbol: %s"),
8694 bfd_set_error (bfd_error_bad_value
);
8698 eval_symbol (bfd_vma
*result
,
8701 struct elf_final_link_info
*flinfo
,
8703 Elf_Internal_Sym
*isymbuf
,
8712 const char *sym
= *symp
;
8714 bfd_boolean symbol_is_section
= FALSE
;
8719 if (len
< 1 || len
> sizeof (symbuf
))
8721 bfd_set_error (bfd_error_invalid_operation
);
8734 *result
= strtoul (sym
, (char **) symp
, 16);
8738 symbol_is_section
= TRUE
;
8742 symlen
= strtol (sym
, (char **) symp
, 10);
8743 sym
= *symp
+ 1; /* Skip the trailing ':'. */
8745 if (symend
< sym
|| symlen
+ 1 > sizeof (symbuf
))
8747 bfd_set_error (bfd_error_invalid_operation
);
8751 memcpy (symbuf
, sym
, symlen
);
8752 symbuf
[symlen
] = '\0';
8753 *symp
= sym
+ symlen
;
8755 /* Is it always possible, with complex symbols, that gas "mis-guessed"
8756 the symbol as a section, or vice-versa. so we're pretty liberal in our
8757 interpretation here; section means "try section first", not "must be a
8758 section", and likewise with symbol. */
8760 if (symbol_is_section
)
8762 if (!resolve_section (symbuf
, flinfo
->output_bfd
->sections
, result
, input_bfd
)
8763 && !resolve_symbol (symbuf
, input_bfd
, flinfo
, result
,
8764 isymbuf
, locsymcount
))
8766 undefined_reference ("section", symbuf
);
8772 if (!resolve_symbol (symbuf
, input_bfd
, flinfo
, result
,
8773 isymbuf
, locsymcount
)
8774 && !resolve_section (symbuf
, flinfo
->output_bfd
->sections
,
8777 undefined_reference ("symbol", symbuf
);
8784 /* All that remains are operators. */
8786 #define UNARY_OP(op) \
8787 if (strncmp (sym, #op, strlen (#op)) == 0) \
8789 sym += strlen (#op); \
8793 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
8794 isymbuf, locsymcount, signed_p)) \
8797 *result = op ((bfd_signed_vma) a); \
8803 #define BINARY_OP_HEAD(op) \
8804 if (strncmp (sym, #op, strlen (#op)) == 0) \
8806 sym += strlen (#op); \
8810 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
8811 isymbuf, locsymcount, signed_p)) \
8814 if (!eval_symbol (&b, symp, input_bfd, flinfo, dot, \
8815 isymbuf, locsymcount, signed_p)) \
8817 #define BINARY_OP_TAIL(op) \
8819 *result = ((bfd_signed_vma) a) op ((bfd_signed_vma) b); \
8824 #define BINARY_OP(op) BINARY_OP_HEAD(op) BINARY_OP_TAIL(op)
8828 BINARY_OP_HEAD (<<);
8829 if (b
>= sizeof (a
) * CHAR_BIT
)
8835 BINARY_OP_TAIL (<<);
8836 BINARY_OP_HEAD (>>);
8837 if (b
>= sizeof (a
) * CHAR_BIT
)
8839 *result
= signed_p
&& (bfd_signed_vma
) a
< 0 ? -1 : 0;
8842 BINARY_OP_TAIL (>>);
8855 _bfd_error_handler (_("division by zero"));
8856 bfd_set_error (bfd_error_bad_value
);
8863 _bfd_error_handler (_("division by zero"));
8864 bfd_set_error (bfd_error_bad_value
);
8877 _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym
);
8878 bfd_set_error (bfd_error_invalid_operation
);
8884 put_value (bfd_vma size
,
8885 unsigned long chunksz
,
8890 location
+= (size
- chunksz
);
8892 for (; size
; size
-= chunksz
, location
-= chunksz
)
8897 bfd_put_8 (input_bfd
, x
, location
);
8901 bfd_put_16 (input_bfd
, x
, location
);
8905 bfd_put_32 (input_bfd
, x
, location
);
8906 /* Computed this way because x >>= 32 is undefined if x is a 32-bit value. */
8912 bfd_put_64 (input_bfd
, x
, location
);
8913 /* Computed this way because x >>= 64 is undefined if x is a 64-bit value. */
8926 get_value (bfd_vma size
,
8927 unsigned long chunksz
,
8934 /* Sanity checks. */
8935 BFD_ASSERT (chunksz
<= sizeof (x
)
8938 && (size
% chunksz
) == 0
8939 && input_bfd
!= NULL
8940 && location
!= NULL
);
8942 if (chunksz
== sizeof (x
))
8944 BFD_ASSERT (size
== chunksz
);
8946 /* Make sure that we do not perform an undefined shift operation.
8947 We know that size == chunksz so there will only be one iteration
8948 of the loop below. */
8952 shift
= 8 * chunksz
;
8954 for (; size
; size
-= chunksz
, location
+= chunksz
)
8959 x
= (x
<< shift
) | bfd_get_8 (input_bfd
, location
);
8962 x
= (x
<< shift
) | bfd_get_16 (input_bfd
, location
);
8965 x
= (x
<< shift
) | bfd_get_32 (input_bfd
, location
);
8969 x
= (x
<< shift
) | bfd_get_64 (input_bfd
, location
);
8980 decode_complex_addend (unsigned long *start
, /* in bits */
8981 unsigned long *oplen
, /* in bits */
8982 unsigned long *len
, /* in bits */
8983 unsigned long *wordsz
, /* in bytes */
8984 unsigned long *chunksz
, /* in bytes */
8985 unsigned long *lsb0_p
,
8986 unsigned long *signed_p
,
8987 unsigned long *trunc_p
,
8988 unsigned long encoded
)
8990 * start
= encoded
& 0x3F;
8991 * len
= (encoded
>> 6) & 0x3F;
8992 * oplen
= (encoded
>> 12) & 0x3F;
8993 * wordsz
= (encoded
>> 18) & 0xF;
8994 * chunksz
= (encoded
>> 22) & 0xF;
8995 * lsb0_p
= (encoded
>> 27) & 1;
8996 * signed_p
= (encoded
>> 28) & 1;
8997 * trunc_p
= (encoded
>> 29) & 1;
9000 bfd_reloc_status_type
9001 bfd_elf_perform_complex_relocation (bfd
*input_bfd
,
9002 asection
*input_section
,
9004 Elf_Internal_Rela
*rel
,
9007 bfd_vma shift
, x
, mask
;
9008 unsigned long start
, oplen
, len
, wordsz
, chunksz
, lsb0_p
, signed_p
, trunc_p
;
9009 bfd_reloc_status_type r
;
9010 bfd_size_type octets
;
9012 /* Perform this reloc, since it is complex.
9013 (this is not to say that it necessarily refers to a complex
9014 symbol; merely that it is a self-describing CGEN based reloc.
9015 i.e. the addend has the complete reloc information (bit start, end,
9016 word size, etc) encoded within it.). */
9018 decode_complex_addend (&start
, &oplen
, &len
, &wordsz
,
9019 &chunksz
, &lsb0_p
, &signed_p
,
9020 &trunc_p
, rel
->r_addend
);
9022 mask
= (((1L << (len
- 1)) - 1) << 1) | 1;
9025 shift
= (start
+ 1) - len
;
9027 shift
= (8 * wordsz
) - (start
+ len
);
9029 octets
= rel
->r_offset
* bfd_octets_per_byte (input_bfd
, input_section
);
9030 x
= get_value (wordsz
, chunksz
, input_bfd
, contents
+ octets
);
9033 printf ("Doing complex reloc: "
9034 "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, "
9035 "chunksz %ld, start %ld, len %ld, oplen %ld\n"
9036 " dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n",
9037 lsb0_p
, signed_p
, trunc_p
, wordsz
, chunksz
, start
, len
,
9038 oplen
, (unsigned long) x
, (unsigned long) mask
,
9039 (unsigned long) relocation
);
9044 /* Now do an overflow check. */
9045 r
= bfd_check_overflow ((signed_p
9046 ? complain_overflow_signed
9047 : complain_overflow_unsigned
),
9048 len
, 0, (8 * wordsz
),
9052 x
= (x
& ~(mask
<< shift
)) | ((relocation
& mask
) << shift
);
9055 printf (" relocation: %8.8lx\n"
9056 " shifted mask: %8.8lx\n"
9057 " shifted/masked reloc: %8.8lx\n"
9058 " result: %8.8lx\n",
9059 (unsigned long) relocation
, (unsigned long) (mask
<< shift
),
9060 (unsigned long) ((relocation
& mask
) << shift
), (unsigned long) x
);
9062 put_value (wordsz
, chunksz
, input_bfd
, x
, contents
+ octets
);
9066 /* Functions to read r_offset from external (target order) reloc
9067 entry. Faster than bfd_getl32 et al, because we let the compiler
9068 know the value is aligned. */
9071 ext32l_r_offset (const void *p
)
9078 const union aligned32
*a
9079 = (const union aligned32
*) &((const Elf32_External_Rel
*) p
)->r_offset
;
9081 uint32_t aval
= ( (uint32_t) a
->c
[0]
9082 | (uint32_t) a
->c
[1] << 8
9083 | (uint32_t) a
->c
[2] << 16
9084 | (uint32_t) a
->c
[3] << 24);
9089 ext32b_r_offset (const void *p
)
9096 const union aligned32
*a
9097 = (const union aligned32
*) &((const Elf32_External_Rel
*) p
)->r_offset
;
9099 uint32_t aval
= ( (uint32_t) a
->c
[0] << 24
9100 | (uint32_t) a
->c
[1] << 16
9101 | (uint32_t) a
->c
[2] << 8
9102 | (uint32_t) a
->c
[3]);
9106 #ifdef BFD_HOST_64_BIT
9108 ext64l_r_offset (const void *p
)
9115 const union aligned64
*a
9116 = (const union aligned64
*) &((const Elf64_External_Rel
*) p
)->r_offset
;
9118 uint64_t aval
= ( (uint64_t) a
->c
[0]
9119 | (uint64_t) a
->c
[1] << 8
9120 | (uint64_t) a
->c
[2] << 16
9121 | (uint64_t) a
->c
[3] << 24
9122 | (uint64_t) a
->c
[4] << 32
9123 | (uint64_t) a
->c
[5] << 40
9124 | (uint64_t) a
->c
[6] << 48
9125 | (uint64_t) a
->c
[7] << 56);
9130 ext64b_r_offset (const void *p
)
9137 const union aligned64
*a
9138 = (const union aligned64
*) &((const Elf64_External_Rel
*) p
)->r_offset
;
9140 uint64_t aval
= ( (uint64_t) a
->c
[0] << 56
9141 | (uint64_t) a
->c
[1] << 48
9142 | (uint64_t) a
->c
[2] << 40
9143 | (uint64_t) a
->c
[3] << 32
9144 | (uint64_t) a
->c
[4] << 24
9145 | (uint64_t) a
->c
[5] << 16
9146 | (uint64_t) a
->c
[6] << 8
9147 | (uint64_t) a
->c
[7]);
9152 /* When performing a relocatable link, the input relocations are
9153 preserved. But, if they reference global symbols, the indices
9154 referenced must be updated. Update all the relocations found in
9158 elf_link_adjust_relocs (bfd
*abfd
,
9160 struct bfd_elf_section_reloc_data
*reldata
,
9162 struct bfd_link_info
*info
)
9165 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
9167 void (*swap_in
) (bfd
*, const bfd_byte
*, Elf_Internal_Rela
*);
9168 void (*swap_out
) (bfd
*, const Elf_Internal_Rela
*, bfd_byte
*);
9169 bfd_vma r_type_mask
;
9171 unsigned int count
= reldata
->count
;
9172 struct elf_link_hash_entry
**rel_hash
= reldata
->hashes
;
9174 if (reldata
->hdr
->sh_entsize
== bed
->s
->sizeof_rel
)
9176 swap_in
= bed
->s
->swap_reloc_in
;
9177 swap_out
= bed
->s
->swap_reloc_out
;
9179 else if (reldata
->hdr
->sh_entsize
== bed
->s
->sizeof_rela
)
9181 swap_in
= bed
->s
->swap_reloca_in
;
9182 swap_out
= bed
->s
->swap_reloca_out
;
9187 if (bed
->s
->int_rels_per_ext_rel
> MAX_INT_RELS_PER_EXT_REL
)
9190 if (bed
->s
->arch_size
== 32)
9197 r_type_mask
= 0xffffffff;
9201 erela
= reldata
->hdr
->contents
;
9202 for (i
= 0; i
< count
; i
++, rel_hash
++, erela
+= reldata
->hdr
->sh_entsize
)
9204 Elf_Internal_Rela irela
[MAX_INT_RELS_PER_EXT_REL
];
9207 if (*rel_hash
== NULL
)
9210 if ((*rel_hash
)->indx
== -2
9211 && info
->gc_sections
9212 && ! info
->gc_keep_exported
)
9214 /* PR 21524: Let the user know if a symbol was removed by garbage collection. */
9215 _bfd_error_handler (_("%pB:%pA: error: relocation references symbol %s which was removed by garbage collection"),
9217 (*rel_hash
)->root
.root
.string
);
9218 _bfd_error_handler (_("%pB:%pA: error: try relinking with --gc-keep-exported enabled"),
9220 bfd_set_error (bfd_error_invalid_operation
);
9223 BFD_ASSERT ((*rel_hash
)->indx
>= 0);
9225 (*swap_in
) (abfd
, erela
, irela
);
9226 for (j
= 0; j
< bed
->s
->int_rels_per_ext_rel
; j
++)
9227 irela
[j
].r_info
= ((bfd_vma
) (*rel_hash
)->indx
<< r_sym_shift
9228 | (irela
[j
].r_info
& r_type_mask
));
9229 (*swap_out
) (abfd
, irela
, erela
);
9232 if (bed
->elf_backend_update_relocs
)
9233 (*bed
->elf_backend_update_relocs
) (sec
, reldata
);
9235 if (sort
&& count
!= 0)
9237 bfd_vma (*ext_r_off
) (const void *);
9240 bfd_byte
*base
, *end
, *p
, *loc
;
9241 bfd_byte
*buf
= NULL
;
9243 if (bed
->s
->arch_size
== 32)
9245 if (abfd
->xvec
->header_byteorder
== BFD_ENDIAN_LITTLE
)
9246 ext_r_off
= ext32l_r_offset
;
9247 else if (abfd
->xvec
->header_byteorder
== BFD_ENDIAN_BIG
)
9248 ext_r_off
= ext32b_r_offset
;
9254 #ifdef BFD_HOST_64_BIT
9255 if (abfd
->xvec
->header_byteorder
== BFD_ENDIAN_LITTLE
)
9256 ext_r_off
= ext64l_r_offset
;
9257 else if (abfd
->xvec
->header_byteorder
== BFD_ENDIAN_BIG
)
9258 ext_r_off
= ext64b_r_offset
;
9264 /* Must use a stable sort here. A modified insertion sort,
9265 since the relocs are mostly sorted already. */
9266 elt_size
= reldata
->hdr
->sh_entsize
;
9267 base
= reldata
->hdr
->contents
;
9268 end
= base
+ count
* elt_size
;
9269 if (elt_size
> sizeof (Elf64_External_Rela
))
9272 /* Ensure the first element is lowest. This acts as a sentinel,
9273 speeding the main loop below. */
9274 r_off
= (*ext_r_off
) (base
);
9275 for (p
= loc
= base
; (p
+= elt_size
) < end
; )
9277 bfd_vma r_off2
= (*ext_r_off
) (p
);
9286 /* Don't just swap *base and *loc as that changes the order
9287 of the original base[0] and base[1] if they happen to
9288 have the same r_offset. */
9289 bfd_byte onebuf
[sizeof (Elf64_External_Rela
)];
9290 memcpy (onebuf
, loc
, elt_size
);
9291 memmove (base
+ elt_size
, base
, loc
- base
);
9292 memcpy (base
, onebuf
, elt_size
);
9295 for (p
= base
+ elt_size
; (p
+= elt_size
) < end
; )
9297 /* base to p is sorted, *p is next to insert. */
9298 r_off
= (*ext_r_off
) (p
);
9299 /* Search the sorted region for location to insert. */
9301 while (r_off
< (*ext_r_off
) (loc
))
9306 /* Chances are there is a run of relocs to insert here,
9307 from one of more input files. Files are not always
9308 linked in order due to the way elf_link_input_bfd is
9309 called. See pr17666. */
9310 size_t sortlen
= p
- loc
;
9311 bfd_vma r_off2
= (*ext_r_off
) (loc
);
9312 size_t runlen
= elt_size
;
9313 size_t buf_size
= 96 * 1024;
9314 while (p
+ runlen
< end
9315 && (sortlen
<= buf_size
9316 || runlen
+ elt_size
<= buf_size
)
9317 && r_off2
> (*ext_r_off
) (p
+ runlen
))
9321 buf
= bfd_malloc (buf_size
);
9325 if (runlen
< sortlen
)
9327 memcpy (buf
, p
, runlen
);
9328 memmove (loc
+ runlen
, loc
, sortlen
);
9329 memcpy (loc
, buf
, runlen
);
9333 memcpy (buf
, loc
, sortlen
);
9334 memmove (loc
, p
, runlen
);
9335 memcpy (loc
+ runlen
, buf
, sortlen
);
9337 p
+= runlen
- elt_size
;
9340 /* Hashes are no longer valid. */
9341 free (reldata
->hashes
);
9342 reldata
->hashes
= NULL
;
9348 struct elf_link_sort_rela
9354 enum elf_reloc_type_class type
;
9355 /* We use this as an array of size int_rels_per_ext_rel. */
9356 Elf_Internal_Rela rela
[1];
9359 /* qsort stability here and for cmp2 is only an issue if multiple
9360 dynamic relocations are emitted at the same address. But targets
9361 that apply a series of dynamic relocations each operating on the
9362 result of the prior relocation can't use -z combreloc as
9363 implemented anyway. Such schemes tend to be broken by sorting on
9364 symbol index. That leaves dynamic NONE relocs as the only other
9365 case where ld might emit multiple relocs at the same address, and
9366 those are only emitted due to target bugs. */
9369 elf_link_sort_cmp1 (const void *A
, const void *B
)
9371 const struct elf_link_sort_rela
*a
= (const struct elf_link_sort_rela
*) A
;
9372 const struct elf_link_sort_rela
*b
= (const struct elf_link_sort_rela
*) B
;
9373 int relativea
, relativeb
;
9375 relativea
= a
->type
== reloc_class_relative
;
9376 relativeb
= b
->type
== reloc_class_relative
;
9378 if (relativea
< relativeb
)
9380 if (relativea
> relativeb
)
9382 if ((a
->rela
->r_info
& a
->u
.sym_mask
) < (b
->rela
->r_info
& b
->u
.sym_mask
))
9384 if ((a
->rela
->r_info
& a
->u
.sym_mask
) > (b
->rela
->r_info
& b
->u
.sym_mask
))
9386 if (a
->rela
->r_offset
< b
->rela
->r_offset
)
9388 if (a
->rela
->r_offset
> b
->rela
->r_offset
)
9394 elf_link_sort_cmp2 (const void *A
, const void *B
)
9396 const struct elf_link_sort_rela
*a
= (const struct elf_link_sort_rela
*) A
;
9397 const struct elf_link_sort_rela
*b
= (const struct elf_link_sort_rela
*) B
;
9399 if (a
->type
< b
->type
)
9401 if (a
->type
> b
->type
)
9403 if (a
->u
.offset
< b
->u
.offset
)
9405 if (a
->u
.offset
> b
->u
.offset
)
9407 if (a
->rela
->r_offset
< b
->rela
->r_offset
)
9409 if (a
->rela
->r_offset
> b
->rela
->r_offset
)
9415 elf_link_sort_relocs (bfd
*abfd
, struct bfd_link_info
*info
, asection
**psec
)
9417 asection
*dynamic_relocs
;
9420 bfd_size_type count
, size
;
9421 size_t i
, ret
, sort_elt
, ext_size
;
9422 bfd_byte
*sort
, *s_non_relative
, *p
;
9423 struct elf_link_sort_rela
*sq
;
9424 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
9425 int i2e
= bed
->s
->int_rels_per_ext_rel
;
9426 unsigned int opb
= bfd_octets_per_byte (abfd
, NULL
);
9427 void (*swap_in
) (bfd
*, const bfd_byte
*, Elf_Internal_Rela
*);
9428 void (*swap_out
) (bfd
*, const Elf_Internal_Rela
*, bfd_byte
*);
9429 struct bfd_link_order
*lo
;
9431 bfd_boolean use_rela
;
9433 /* Find a dynamic reloc section. */
9434 rela_dyn
= bfd_get_section_by_name (abfd
, ".rela.dyn");
9435 rel_dyn
= bfd_get_section_by_name (abfd
, ".rel.dyn");
9436 if (rela_dyn
!= NULL
&& rela_dyn
->size
> 0
9437 && rel_dyn
!= NULL
&& rel_dyn
->size
> 0)
9439 bfd_boolean use_rela_initialised
= FALSE
;
9441 /* This is just here to stop gcc from complaining.
9442 Its initialization checking code is not perfect. */
9445 /* Both sections are present. Examine the sizes
9446 of the indirect sections to help us choose. */
9447 for (lo
= rela_dyn
->map_head
.link_order
; lo
!= NULL
; lo
= lo
->next
)
9448 if (lo
->type
== bfd_indirect_link_order
)
9450 asection
*o
= lo
->u
.indirect
.section
;
9452 if ((o
->size
% bed
->s
->sizeof_rela
) == 0)
9454 if ((o
->size
% bed
->s
->sizeof_rel
) == 0)
9455 /* Section size is divisible by both rel and rela sizes.
9456 It is of no help to us. */
9460 /* Section size is only divisible by rela. */
9461 if (use_rela_initialised
&& !use_rela
)
9463 _bfd_error_handler (_("%pB: unable to sort relocs - "
9464 "they are in more than one size"),
9466 bfd_set_error (bfd_error_invalid_operation
);
9472 use_rela_initialised
= TRUE
;
9476 else if ((o
->size
% bed
->s
->sizeof_rel
) == 0)
9478 /* Section size is only divisible by rel. */
9479 if (use_rela_initialised
&& use_rela
)
9481 _bfd_error_handler (_("%pB: unable to sort relocs - "
9482 "they are in more than one size"),
9484 bfd_set_error (bfd_error_invalid_operation
);
9490 use_rela_initialised
= TRUE
;
9495 /* The section size is not divisible by either -
9496 something is wrong. */
9497 _bfd_error_handler (_("%pB: unable to sort relocs - "
9498 "they are of an unknown size"), abfd
);
9499 bfd_set_error (bfd_error_invalid_operation
);
9504 for (lo
= rel_dyn
->map_head
.link_order
; lo
!= NULL
; lo
= lo
->next
)
9505 if (lo
->type
== bfd_indirect_link_order
)
9507 asection
*o
= lo
->u
.indirect
.section
;
9509 if ((o
->size
% bed
->s
->sizeof_rela
) == 0)
9511 if ((o
->size
% bed
->s
->sizeof_rel
) == 0)
9512 /* Section size is divisible by both rel and rela sizes.
9513 It is of no help to us. */
9517 /* Section size is only divisible by rela. */
9518 if (use_rela_initialised
&& !use_rela
)
9520 _bfd_error_handler (_("%pB: unable to sort relocs - "
9521 "they are in more than one size"),
9523 bfd_set_error (bfd_error_invalid_operation
);
9529 use_rela_initialised
= TRUE
;
9533 else if ((o
->size
% bed
->s
->sizeof_rel
) == 0)
9535 /* Section size is only divisible by rel. */
9536 if (use_rela_initialised
&& use_rela
)
9538 _bfd_error_handler (_("%pB: unable to sort relocs - "
9539 "they are in more than one size"),
9541 bfd_set_error (bfd_error_invalid_operation
);
9547 use_rela_initialised
= TRUE
;
9552 /* The section size is not divisible by either -
9553 something is wrong. */
9554 _bfd_error_handler (_("%pB: unable to sort relocs - "
9555 "they are of an unknown size"), abfd
);
9556 bfd_set_error (bfd_error_invalid_operation
);
9561 if (! use_rela_initialised
)
9565 else if (rela_dyn
!= NULL
&& rela_dyn
->size
> 0)
9567 else if (rel_dyn
!= NULL
&& rel_dyn
->size
> 0)
9574 dynamic_relocs
= rela_dyn
;
9575 ext_size
= bed
->s
->sizeof_rela
;
9576 swap_in
= bed
->s
->swap_reloca_in
;
9577 swap_out
= bed
->s
->swap_reloca_out
;
9581 dynamic_relocs
= rel_dyn
;
9582 ext_size
= bed
->s
->sizeof_rel
;
9583 swap_in
= bed
->s
->swap_reloc_in
;
9584 swap_out
= bed
->s
->swap_reloc_out
;
9588 for (lo
= dynamic_relocs
->map_head
.link_order
; lo
!= NULL
; lo
= lo
->next
)
9589 if (lo
->type
== bfd_indirect_link_order
)
9590 size
+= lo
->u
.indirect
.section
->size
;
9592 if (size
!= dynamic_relocs
->size
)
9595 sort_elt
= (sizeof (struct elf_link_sort_rela
)
9596 + (i2e
- 1) * sizeof (Elf_Internal_Rela
));
9598 count
= dynamic_relocs
->size
/ ext_size
;
9601 sort
= (bfd_byte
*) bfd_zmalloc (sort_elt
* count
);
9605 (*info
->callbacks
->warning
)
9606 (info
, _("not enough memory to sort relocations"), 0, abfd
, 0, 0);
9610 if (bed
->s
->arch_size
== 32)
9611 r_sym_mask
= ~(bfd_vma
) 0xff;
9613 r_sym_mask
= ~(bfd_vma
) 0xffffffff;
9615 for (lo
= dynamic_relocs
->map_head
.link_order
; lo
!= NULL
; lo
= lo
->next
)
9616 if (lo
->type
== bfd_indirect_link_order
)
9618 bfd_byte
*erel
, *erelend
;
9619 asection
*o
= lo
->u
.indirect
.section
;
9621 if (o
->contents
== NULL
&& o
->size
!= 0)
9623 /* This is a reloc section that is being handled as a normal
9624 section. See bfd_section_from_shdr. We can't combine
9625 relocs in this case. */
9630 erelend
= o
->contents
+ o
->size
;
9631 p
= sort
+ o
->output_offset
* opb
/ ext_size
* sort_elt
;
9633 while (erel
< erelend
)
9635 struct elf_link_sort_rela
*s
= (struct elf_link_sort_rela
*) p
;
9637 (*swap_in
) (abfd
, erel
, s
->rela
);
9638 s
->type
= (*bed
->elf_backend_reloc_type_class
) (info
, o
, s
->rela
);
9639 s
->u
.sym_mask
= r_sym_mask
;
9645 qsort (sort
, count
, sort_elt
, elf_link_sort_cmp1
);
9647 for (i
= 0, p
= sort
; i
< count
; i
++, p
+= sort_elt
)
9649 struct elf_link_sort_rela
*s
= (struct elf_link_sort_rela
*) p
;
9650 if (s
->type
!= reloc_class_relative
)
9656 sq
= (struct elf_link_sort_rela
*) s_non_relative
;
9657 for (; i
< count
; i
++, p
+= sort_elt
)
9659 struct elf_link_sort_rela
*sp
= (struct elf_link_sort_rela
*) p
;
9660 if (((sp
->rela
->r_info
^ sq
->rela
->r_info
) & r_sym_mask
) != 0)
9662 sp
->u
.offset
= sq
->rela
->r_offset
;
9665 qsort (s_non_relative
, count
- ret
, sort_elt
, elf_link_sort_cmp2
);
9667 struct elf_link_hash_table
*htab
= elf_hash_table (info
);
9668 if (htab
->srelplt
&& htab
->srelplt
->output_section
== dynamic_relocs
)
9670 /* We have plt relocs in .rela.dyn. */
9671 sq
= (struct elf_link_sort_rela
*) sort
;
9672 for (i
= 0; i
< count
; i
++)
9673 if (sq
[count
- i
- 1].type
!= reloc_class_plt
)
9675 if (i
!= 0 && htab
->srelplt
->size
== i
* ext_size
)
9677 struct bfd_link_order
**plo
;
9678 /* Put srelplt link_order last. This is so the output_offset
9679 set in the next loop is correct for DT_JMPREL. */
9680 for (plo
= &dynamic_relocs
->map_head
.link_order
; *plo
!= NULL
; )
9681 if ((*plo
)->type
== bfd_indirect_link_order
9682 && (*plo
)->u
.indirect
.section
== htab
->srelplt
)
9688 plo
= &(*plo
)->next
;
9691 dynamic_relocs
->map_tail
.link_order
= lo
;
9696 for (lo
= dynamic_relocs
->map_head
.link_order
; lo
!= NULL
; lo
= lo
->next
)
9697 if (lo
->type
== bfd_indirect_link_order
)
9699 bfd_byte
*erel
, *erelend
;
9700 asection
*o
= lo
->u
.indirect
.section
;
9703 erelend
= o
->contents
+ o
->size
;
9704 o
->output_offset
= (p
- sort
) / sort_elt
* ext_size
/ opb
;
9705 while (erel
< erelend
)
9707 struct elf_link_sort_rela
*s
= (struct elf_link_sort_rela
*) p
;
9708 (*swap_out
) (abfd
, s
->rela
, erel
);
9715 *psec
= dynamic_relocs
;
9719 /* Add a symbol to the output symbol string table. */
9722 elf_link_output_symstrtab (struct elf_final_link_info
*flinfo
,
9724 Elf_Internal_Sym
*elfsym
,
9725 asection
*input_sec
,
9726 struct elf_link_hash_entry
*h
)
9728 int (*output_symbol_hook
)
9729 (struct bfd_link_info
*, const char *, Elf_Internal_Sym
*, asection
*,
9730 struct elf_link_hash_entry
*);
9731 struct elf_link_hash_table
*hash_table
;
9732 const struct elf_backend_data
*bed
;
9733 bfd_size_type strtabsize
;
9735 BFD_ASSERT (elf_onesymtab (flinfo
->output_bfd
));
9737 bed
= get_elf_backend_data (flinfo
->output_bfd
);
9738 output_symbol_hook
= bed
->elf_backend_link_output_symbol_hook
;
9739 if (output_symbol_hook
!= NULL
)
9741 int ret
= (*output_symbol_hook
) (flinfo
->info
, name
, elfsym
, input_sec
, h
);
9746 if (ELF_ST_TYPE (elfsym
->st_info
) == STT_GNU_IFUNC
)
9747 elf_tdata (flinfo
->output_bfd
)->has_gnu_osabi
|= elf_gnu_osabi_ifunc
;
9748 if (ELF_ST_BIND (elfsym
->st_info
) == STB_GNU_UNIQUE
)
9749 elf_tdata (flinfo
->output_bfd
)->has_gnu_osabi
|= elf_gnu_osabi_unique
;
9753 || (input_sec
->flags
& SEC_EXCLUDE
))
9754 elfsym
->st_name
= (unsigned long) -1;
9757 /* Call _bfd_elf_strtab_offset after _bfd_elf_strtab_finalize
9758 to get the final offset for st_name. */
9759 char *versioned_name
= (char *) name
;
9762 if (h
->versioned
== versioned
&& h
->def_dynamic
)
9764 /* Keep only one '@' for versioned symbols defined in
9766 char *version
= strrchr (name
, ELF_VER_CHR
);
9767 char *base_end
= strchr (name
, ELF_VER_CHR
);
9768 if (version
!= base_end
)
9771 size_t len
= strlen (name
);
9772 versioned_name
= bfd_alloc (flinfo
->output_bfd
, len
);
9773 if (versioned_name
== NULL
)
9775 base_len
= base_end
- name
;
9776 memcpy (versioned_name
, name
, base_len
);
9777 memcpy (versioned_name
+ base_len
, version
,
9782 else if (flinfo
->info
->unique_symbol
9783 && ELF_ST_BIND (elfsym
->st_info
) == STB_LOCAL
)
9785 struct local_hash_entry
*lh
;
9786 switch (ELF_ST_TYPE (elfsym
->st_info
))
9792 lh
= (struct local_hash_entry
*) bfd_hash_lookup
9793 (&flinfo
->local_hash_table
, name
, TRUE
, FALSE
);
9798 /* Append ".COUNT" to duplicated local symbols. */
9800 size_t base_len
= lh
->size
;
9802 sprintf (buf
, "%lx", lh
->count
);
9805 base_len
= strlen (name
);
9806 lh
->size
= base_len
;
9808 count_len
= strlen (buf
);
9809 versioned_name
= bfd_alloc (flinfo
->output_bfd
,
9810 base_len
+ count_len
+ 2);
9811 if (versioned_name
== NULL
)
9813 memcpy (versioned_name
, name
, base_len
);
9814 versioned_name
[base_len
] = '.';
9815 memcpy (versioned_name
+ base_len
+ 1, buf
,
9823 = (unsigned long) _bfd_elf_strtab_add (flinfo
->symstrtab
,
9824 versioned_name
, FALSE
);
9825 if (elfsym
->st_name
== (unsigned long) -1)
9829 hash_table
= elf_hash_table (flinfo
->info
);
9830 strtabsize
= hash_table
->strtabsize
;
9831 if (strtabsize
<= hash_table
->strtabcount
)
9833 strtabsize
+= strtabsize
;
9834 hash_table
->strtabsize
= strtabsize
;
9835 strtabsize
*= sizeof (*hash_table
->strtab
);
9837 = (struct elf_sym_strtab
*) bfd_realloc (hash_table
->strtab
,
9839 if (hash_table
->strtab
== NULL
)
9842 hash_table
->strtab
[hash_table
->strtabcount
].sym
= *elfsym
;
9843 hash_table
->strtab
[hash_table
->strtabcount
].dest_index
9844 = hash_table
->strtabcount
;
9845 hash_table
->strtab
[hash_table
->strtabcount
].destshndx_index
9846 = flinfo
->symshndxbuf
? bfd_get_symcount (flinfo
->output_bfd
) : 0;
9848 flinfo
->output_bfd
->symcount
+= 1;
9849 hash_table
->strtabcount
+= 1;
9854 /* Swap symbols out to the symbol table and flush the output symbols to
9858 elf_link_swap_symbols_out (struct elf_final_link_info
*flinfo
)
9860 struct elf_link_hash_table
*hash_table
= elf_hash_table (flinfo
->info
);
9863 const struct elf_backend_data
*bed
;
9865 Elf_Internal_Shdr
*hdr
;
9869 if (!hash_table
->strtabcount
)
9872 BFD_ASSERT (elf_onesymtab (flinfo
->output_bfd
));
9874 bed
= get_elf_backend_data (flinfo
->output_bfd
);
9876 amt
= bed
->s
->sizeof_sym
* hash_table
->strtabcount
;
9877 symbuf
= (bfd_byte
*) bfd_malloc (amt
);
9881 if (flinfo
->symshndxbuf
)
9883 amt
= sizeof (Elf_External_Sym_Shndx
);
9884 amt
*= bfd_get_symcount (flinfo
->output_bfd
);
9885 flinfo
->symshndxbuf
= (Elf_External_Sym_Shndx
*) bfd_zmalloc (amt
);
9886 if (flinfo
->symshndxbuf
== NULL
)
9893 /* Now swap out the symbols. */
9894 for (i
= 0; i
< hash_table
->strtabcount
; i
++)
9896 struct elf_sym_strtab
*elfsym
= &hash_table
->strtab
[i
];
9897 if (elfsym
->sym
.st_name
== (unsigned long) -1)
9898 elfsym
->sym
.st_name
= 0;
9901 = (unsigned long) _bfd_elf_strtab_offset (flinfo
->symstrtab
,
9902 elfsym
->sym
.st_name
);
9904 /* Inform the linker of the addition of this symbol. */
9906 if (flinfo
->info
->callbacks
->ctf_new_symbol
)
9907 flinfo
->info
->callbacks
->ctf_new_symbol (elfsym
->dest_index
,
9910 bed
->s
->swap_symbol_out (flinfo
->output_bfd
, &elfsym
->sym
,
9911 ((bfd_byte
*) symbuf
9912 + (elfsym
->dest_index
9913 * bed
->s
->sizeof_sym
)),
9914 (flinfo
->symshndxbuf
9915 + elfsym
->destshndx_index
));
9918 hdr
= &elf_tdata (flinfo
->output_bfd
)->symtab_hdr
;
9919 pos
= hdr
->sh_offset
+ hdr
->sh_size
;
9920 amt
= hash_table
->strtabcount
* bed
->s
->sizeof_sym
;
9921 if (bfd_seek (flinfo
->output_bfd
, pos
, SEEK_SET
) == 0
9922 && bfd_bwrite (symbuf
, amt
, flinfo
->output_bfd
) == amt
)
9924 hdr
->sh_size
+= amt
;
9932 free (hash_table
->strtab
);
9933 hash_table
->strtab
= NULL
;
9938 /* Return TRUE if the dynamic symbol SYM in ABFD is supported. */
9941 check_dynsym (bfd
*abfd
, Elf_Internal_Sym
*sym
)
9943 if (sym
->st_shndx
>= (SHN_LORESERVE
& 0xffff)
9944 && sym
->st_shndx
< SHN_LORESERVE
)
9946 /* The gABI doesn't support dynamic symbols in output sections
9949 /* xgettext:c-format */
9950 (_("%pB: too many sections: %d (>= %d)"),
9951 abfd
, bfd_count_sections (abfd
), SHN_LORESERVE
& 0xffff);
9952 bfd_set_error (bfd_error_nonrepresentable_section
);
9958 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
9959 allowing an unsatisfied unversioned symbol in the DSO to match a
9960 versioned symbol that would normally require an explicit version.
9961 We also handle the case that a DSO references a hidden symbol
9962 which may be satisfied by a versioned symbol in another DSO. */
9965 elf_link_check_versioned_symbol (struct bfd_link_info
*info
,
9966 const struct elf_backend_data
*bed
,
9967 struct elf_link_hash_entry
*h
)
9970 struct elf_link_loaded_list
*loaded
;
9972 if (!is_elf_hash_table (info
->hash
))
9975 /* Check indirect symbol. */
9976 while (h
->root
.type
== bfd_link_hash_indirect
)
9977 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
9979 switch (h
->root
.type
)
9985 case bfd_link_hash_undefined
:
9986 case bfd_link_hash_undefweak
:
9987 abfd
= h
->root
.u
.undef
.abfd
;
9989 || (abfd
->flags
& DYNAMIC
) == 0
9990 || (elf_dyn_lib_class (abfd
) & DYN_DT_NEEDED
) == 0)
9994 case bfd_link_hash_defined
:
9995 case bfd_link_hash_defweak
:
9996 abfd
= h
->root
.u
.def
.section
->owner
;
9999 case bfd_link_hash_common
:
10000 abfd
= h
->root
.u
.c
.p
->section
->owner
;
10003 BFD_ASSERT (abfd
!= NULL
);
10005 for (loaded
= elf_hash_table (info
)->dyn_loaded
;
10007 loaded
= loaded
->next
)
10010 Elf_Internal_Shdr
*hdr
;
10012 size_t extsymcount
;
10014 Elf_Internal_Shdr
*versymhdr
;
10015 Elf_Internal_Sym
*isym
;
10016 Elf_Internal_Sym
*isymend
;
10017 Elf_Internal_Sym
*isymbuf
;
10018 Elf_External_Versym
*ever
;
10019 Elf_External_Versym
*extversym
;
10021 input
= loaded
->abfd
;
10023 /* We check each DSO for a possible hidden versioned definition. */
10025 || elf_dynversym (input
) == 0)
10028 hdr
= &elf_tdata (input
)->dynsymtab_hdr
;
10030 symcount
= hdr
->sh_size
/ bed
->s
->sizeof_sym
;
10031 if (elf_bad_symtab (input
))
10033 extsymcount
= symcount
;
10038 extsymcount
= symcount
- hdr
->sh_info
;
10039 extsymoff
= hdr
->sh_info
;
10042 if (extsymcount
== 0)
10045 isymbuf
= bfd_elf_get_elf_syms (input
, hdr
, extsymcount
, extsymoff
,
10047 if (isymbuf
== NULL
)
10050 /* Read in any version definitions. */
10051 versymhdr
= &elf_tdata (input
)->dynversym_hdr
;
10052 if (bfd_seek (input
, versymhdr
->sh_offset
, SEEK_SET
) != 0
10053 || (extversym
= (Elf_External_Versym
*)
10054 _bfd_malloc_and_read (input
, versymhdr
->sh_size
,
10055 versymhdr
->sh_size
)) == NULL
)
10061 ever
= extversym
+ extsymoff
;
10062 isymend
= isymbuf
+ extsymcount
;
10063 for (isym
= isymbuf
; isym
< isymend
; isym
++, ever
++)
10066 Elf_Internal_Versym iver
;
10067 unsigned short version_index
;
10069 if (ELF_ST_BIND (isym
->st_info
) == STB_LOCAL
10070 || isym
->st_shndx
== SHN_UNDEF
)
10073 name
= bfd_elf_string_from_elf_section (input
,
10076 if (strcmp (name
, h
->root
.root
.string
) != 0)
10079 _bfd_elf_swap_versym_in (input
, ever
, &iver
);
10081 if ((iver
.vs_vers
& VERSYM_HIDDEN
) == 0
10082 && !(h
->def_regular
10083 && h
->forced_local
))
10085 /* If we have a non-hidden versioned sym, then it should
10086 have provided a definition for the undefined sym unless
10087 it is defined in a non-shared object and forced local.
10092 version_index
= iver
.vs_vers
& VERSYM_VERSION
;
10093 if (version_index
== 1 || version_index
== 2)
10095 /* This is the base or first version. We can use it. */
10109 /* Convert ELF common symbol TYPE. */
10112 elf_link_convert_common_type (struct bfd_link_info
*info
, int type
)
10114 /* Commom symbol can only appear in relocatable link. */
10115 if (!bfd_link_relocatable (info
))
10117 switch (info
->elf_stt_common
)
10121 case elf_stt_common
:
10124 case no_elf_stt_common
:
10131 /* Add an external symbol to the symbol table. This is called from
10132 the hash table traversal routine. When generating a shared object,
10133 we go through the symbol table twice. The first time we output
10134 anything that might have been forced to local scope in a version
10135 script. The second time we output the symbols that are still
10139 elf_link_output_extsym (struct bfd_hash_entry
*bh
, void *data
)
10141 struct elf_link_hash_entry
*h
= (struct elf_link_hash_entry
*) bh
;
10142 struct elf_outext_info
*eoinfo
= (struct elf_outext_info
*) data
;
10143 struct elf_final_link_info
*flinfo
= eoinfo
->flinfo
;
10145 Elf_Internal_Sym sym
;
10146 asection
*input_sec
;
10147 const struct elf_backend_data
*bed
;
10152 if (h
->root
.type
== bfd_link_hash_warning
)
10154 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
10155 if (h
->root
.type
== bfd_link_hash_new
)
10159 /* Decide whether to output this symbol in this pass. */
10160 if (eoinfo
->localsyms
)
10162 if (!h
->forced_local
)
10167 if (h
->forced_local
)
10171 bed
= get_elf_backend_data (flinfo
->output_bfd
);
10173 if (h
->root
.type
== bfd_link_hash_undefined
)
10175 /* If we have an undefined symbol reference here then it must have
10176 come from a shared library that is being linked in. (Undefined
10177 references in regular files have already been handled unless
10178 they are in unreferenced sections which are removed by garbage
10180 bfd_boolean ignore_undef
= FALSE
;
10182 /* Some symbols may be special in that the fact that they're
10183 undefined can be safely ignored - let backend determine that. */
10184 if (bed
->elf_backend_ignore_undef_symbol
)
10185 ignore_undef
= bed
->elf_backend_ignore_undef_symbol (h
);
10187 /* If we are reporting errors for this situation then do so now. */
10189 && h
->ref_dynamic_nonweak
10190 && (!h
->ref_regular
|| flinfo
->info
->gc_sections
)
10191 && !elf_link_check_versioned_symbol (flinfo
->info
, bed
, h
)
10192 && flinfo
->info
->unresolved_syms_in_shared_libs
!= RM_IGNORE
)
10194 flinfo
->info
->callbacks
->undefined_symbol
10195 (flinfo
->info
, h
->root
.root
.string
,
10196 h
->ref_regular
? NULL
: h
->root
.u
.undef
.abfd
, NULL
, 0,
10197 flinfo
->info
->unresolved_syms_in_shared_libs
== RM_DIAGNOSE
10198 && !flinfo
->info
->warn_unresolved_syms
);
10201 /* Strip a global symbol defined in a discarded section. */
10206 /* We should also warn if a forced local symbol is referenced from
10207 shared libraries. */
10208 if (bfd_link_executable (flinfo
->info
)
10213 && h
->ref_dynamic_nonweak
10214 && !elf_link_check_versioned_symbol (flinfo
->info
, bed
, h
))
10218 struct elf_link_hash_entry
*hi
= h
;
10220 /* Check indirect symbol. */
10221 while (hi
->root
.type
== bfd_link_hash_indirect
)
10222 hi
= (struct elf_link_hash_entry
*) hi
->root
.u
.i
.link
;
10224 if (ELF_ST_VISIBILITY (h
->other
) == STV_INTERNAL
)
10225 /* xgettext:c-format */
10226 msg
= _("%pB: internal symbol `%s' in %pB is referenced by DSO");
10227 else if (ELF_ST_VISIBILITY (h
->other
) == STV_HIDDEN
)
10228 /* xgettext:c-format */
10229 msg
= _("%pB: hidden symbol `%s' in %pB is referenced by DSO");
10231 /* xgettext:c-format */
10232 msg
= _("%pB: local symbol `%s' in %pB is referenced by DSO");
10233 def_bfd
= flinfo
->output_bfd
;
10234 if (hi
->root
.u
.def
.section
!= bfd_abs_section_ptr
)
10235 def_bfd
= hi
->root
.u
.def
.section
->owner
;
10236 _bfd_error_handler (msg
, flinfo
->output_bfd
,
10237 h
->root
.root
.string
, def_bfd
);
10238 bfd_set_error (bfd_error_bad_value
);
10239 eoinfo
->failed
= TRUE
;
10243 /* We don't want to output symbols that have never been mentioned by
10244 a regular file, or that we have been told to strip. However, if
10245 h->indx is set to -2, the symbol is used by a reloc and we must
10250 else if ((h
->def_dynamic
10252 || h
->root
.type
== bfd_link_hash_new
)
10254 && !h
->ref_regular
)
10256 else if (flinfo
->info
->strip
== strip_all
)
10258 else if (flinfo
->info
->strip
== strip_some
10259 && bfd_hash_lookup (flinfo
->info
->keep_hash
,
10260 h
->root
.root
.string
, FALSE
, FALSE
) == NULL
)
10262 else if ((h
->root
.type
== bfd_link_hash_defined
10263 || h
->root
.type
== bfd_link_hash_defweak
)
10264 && ((flinfo
->info
->strip_discarded
10265 && discarded_section (h
->root
.u
.def
.section
))
10266 || ((h
->root
.u
.def
.section
->flags
& SEC_LINKER_CREATED
) == 0
10267 && h
->root
.u
.def
.section
->owner
!= NULL
10268 && (h
->root
.u
.def
.section
->owner
->flags
& BFD_PLUGIN
) != 0)))
10270 else if ((h
->root
.type
== bfd_link_hash_undefined
10271 || h
->root
.type
== bfd_link_hash_undefweak
)
10272 && h
->root
.u
.undef
.abfd
!= NULL
10273 && (h
->root
.u
.undef
.abfd
->flags
& BFD_PLUGIN
) != 0)
10278 /* If we're stripping it, and it's not a dynamic symbol, there's
10279 nothing else to do. However, if it is a forced local symbol or
10280 an ifunc symbol we need to give the backend finish_dynamic_symbol
10281 function a chance to make it dynamic. */
10283 && h
->dynindx
== -1
10284 && type
!= STT_GNU_IFUNC
10285 && !h
->forced_local
)
10289 sym
.st_size
= h
->size
;
10290 sym
.st_other
= h
->other
;
10291 switch (h
->root
.type
)
10294 case bfd_link_hash_new
:
10295 case bfd_link_hash_warning
:
10299 case bfd_link_hash_undefined
:
10300 case bfd_link_hash_undefweak
:
10301 input_sec
= bfd_und_section_ptr
;
10302 sym
.st_shndx
= SHN_UNDEF
;
10305 case bfd_link_hash_defined
:
10306 case bfd_link_hash_defweak
:
10308 input_sec
= h
->root
.u
.def
.section
;
10309 if (input_sec
->output_section
!= NULL
)
10312 _bfd_elf_section_from_bfd_section (flinfo
->output_bfd
,
10313 input_sec
->output_section
);
10314 if (sym
.st_shndx
== SHN_BAD
)
10317 /* xgettext:c-format */
10318 (_("%pB: could not find output section %pA for input section %pA"),
10319 flinfo
->output_bfd
, input_sec
->output_section
, input_sec
);
10320 bfd_set_error (bfd_error_nonrepresentable_section
);
10321 eoinfo
->failed
= TRUE
;
10325 /* ELF symbols in relocatable files are section relative,
10326 but in nonrelocatable files they are virtual
10328 sym
.st_value
= h
->root
.u
.def
.value
+ input_sec
->output_offset
;
10329 if (!bfd_link_relocatable (flinfo
->info
))
10331 sym
.st_value
+= input_sec
->output_section
->vma
;
10332 if (h
->type
== STT_TLS
)
10334 asection
*tls_sec
= elf_hash_table (flinfo
->info
)->tls_sec
;
10335 if (tls_sec
!= NULL
)
10336 sym
.st_value
-= tls_sec
->vma
;
10342 BFD_ASSERT (input_sec
->owner
== NULL
10343 || (input_sec
->owner
->flags
& DYNAMIC
) != 0);
10344 sym
.st_shndx
= SHN_UNDEF
;
10345 input_sec
= bfd_und_section_ptr
;
10350 case bfd_link_hash_common
:
10351 input_sec
= h
->root
.u
.c
.p
->section
;
10352 sym
.st_shndx
= bed
->common_section_index (input_sec
);
10353 sym
.st_value
= 1 << h
->root
.u
.c
.p
->alignment_power
;
10356 case bfd_link_hash_indirect
:
10357 /* These symbols are created by symbol versioning. They point
10358 to the decorated version of the name. For example, if the
10359 symbol foo@@GNU_1.2 is the default, which should be used when
10360 foo is used with no version, then we add an indirect symbol
10361 foo which points to foo@@GNU_1.2. We ignore these symbols,
10362 since the indirected symbol is already in the hash table. */
10366 if (type
== STT_COMMON
|| type
== STT_OBJECT
)
10367 switch (h
->root
.type
)
10369 case bfd_link_hash_common
:
10370 type
= elf_link_convert_common_type (flinfo
->info
, type
);
10372 case bfd_link_hash_defined
:
10373 case bfd_link_hash_defweak
:
10374 if (bed
->common_definition (&sym
))
10375 type
= elf_link_convert_common_type (flinfo
->info
, type
);
10379 case bfd_link_hash_undefined
:
10380 case bfd_link_hash_undefweak
:
10386 if (h
->forced_local
)
10388 sym
.st_info
= ELF_ST_INFO (STB_LOCAL
, type
);
10389 /* Turn off visibility on local symbol. */
10390 sym
.st_other
&= ~ELF_ST_VISIBILITY (-1);
10392 /* Set STB_GNU_UNIQUE only if symbol is defined in regular object. */
10393 else if (h
->unique_global
&& h
->def_regular
)
10394 sym
.st_info
= ELF_ST_INFO (STB_GNU_UNIQUE
, type
);
10395 else if (h
->root
.type
== bfd_link_hash_undefweak
10396 || h
->root
.type
== bfd_link_hash_defweak
)
10397 sym
.st_info
= ELF_ST_INFO (STB_WEAK
, type
);
10399 sym
.st_info
= ELF_ST_INFO (STB_GLOBAL
, type
);
10400 sym
.st_target_internal
= h
->target_internal
;
10402 /* Give the processor backend a chance to tweak the symbol value,
10403 and also to finish up anything that needs to be done for this
10404 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
10405 forced local syms when non-shared is due to a historical quirk.
10406 STT_GNU_IFUNC symbol must go through PLT. */
10407 if ((h
->type
== STT_GNU_IFUNC
10409 && !bfd_link_relocatable (flinfo
->info
))
10410 || ((h
->dynindx
!= -1
10411 || h
->forced_local
)
10412 && ((bfd_link_pic (flinfo
->info
)
10413 && (ELF_ST_VISIBILITY (h
->other
) == STV_DEFAULT
10414 || h
->root
.type
!= bfd_link_hash_undefweak
))
10415 || !h
->forced_local
)
10416 && elf_hash_table (flinfo
->info
)->dynamic_sections_created
))
10418 if (! ((*bed
->elf_backend_finish_dynamic_symbol
)
10419 (flinfo
->output_bfd
, flinfo
->info
, h
, &sym
)))
10421 eoinfo
->failed
= TRUE
;
10426 /* If we are marking the symbol as undefined, and there are no
10427 non-weak references to this symbol from a regular object, then
10428 mark the symbol as weak undefined; if there are non-weak
10429 references, mark the symbol as strong. We can't do this earlier,
10430 because it might not be marked as undefined until the
10431 finish_dynamic_symbol routine gets through with it. */
10432 if (sym
.st_shndx
== SHN_UNDEF
10434 && (ELF_ST_BIND (sym
.st_info
) == STB_GLOBAL
10435 || ELF_ST_BIND (sym
.st_info
) == STB_WEAK
))
10438 type
= ELF_ST_TYPE (sym
.st_info
);
10440 /* Turn an undefined IFUNC symbol into a normal FUNC symbol. */
10441 if (type
== STT_GNU_IFUNC
)
10444 if (h
->ref_regular_nonweak
)
10445 bindtype
= STB_GLOBAL
;
10447 bindtype
= STB_WEAK
;
10448 sym
.st_info
= ELF_ST_INFO (bindtype
, type
);
10451 /* If this is a symbol defined in a dynamic library, don't use the
10452 symbol size from the dynamic library. Relinking an executable
10453 against a new library may introduce gratuitous changes in the
10454 executable's symbols if we keep the size. */
10455 if (sym
.st_shndx
== SHN_UNDEF
10460 /* If a non-weak symbol with non-default visibility is not defined
10461 locally, it is a fatal error. */
10462 if (!bfd_link_relocatable (flinfo
->info
)
10463 && ELF_ST_VISIBILITY (sym
.st_other
) != STV_DEFAULT
10464 && ELF_ST_BIND (sym
.st_info
) != STB_WEAK
10465 && h
->root
.type
== bfd_link_hash_undefined
10466 && !h
->def_regular
)
10470 if (ELF_ST_VISIBILITY (sym
.st_other
) == STV_PROTECTED
)
10471 /* xgettext:c-format */
10472 msg
= _("%pB: protected symbol `%s' isn't defined");
10473 else if (ELF_ST_VISIBILITY (sym
.st_other
) == STV_INTERNAL
)
10474 /* xgettext:c-format */
10475 msg
= _("%pB: internal symbol `%s' isn't defined");
10477 /* xgettext:c-format */
10478 msg
= _("%pB: hidden symbol `%s' isn't defined");
10479 _bfd_error_handler (msg
, flinfo
->output_bfd
, h
->root
.root
.string
);
10480 bfd_set_error (bfd_error_bad_value
);
10481 eoinfo
->failed
= TRUE
;
10485 /* If this symbol should be put in the .dynsym section, then put it
10486 there now. We already know the symbol index. We also fill in
10487 the entry in the .hash section. */
10488 if (h
->dynindx
!= -1
10489 && elf_hash_table (flinfo
->info
)->dynamic_sections_created
10490 && elf_hash_table (flinfo
->info
)->dynsym
!= NULL
10491 && !discarded_section (elf_hash_table (flinfo
->info
)->dynsym
))
10495 /* Since there is no version information in the dynamic string,
10496 if there is no version info in symbol version section, we will
10497 have a run-time problem if not linking executable, referenced
10498 by shared library, or not bound locally. */
10499 if (h
->verinfo
.verdef
== NULL
10500 && (!bfd_link_executable (flinfo
->info
)
10502 || !h
->def_regular
))
10504 char *p
= strrchr (h
->root
.root
.string
, ELF_VER_CHR
);
10506 if (p
&& p
[1] != '\0')
10509 /* xgettext:c-format */
10510 (_("%pB: no symbol version section for versioned symbol `%s'"),
10511 flinfo
->output_bfd
, h
->root
.root
.string
);
10512 eoinfo
->failed
= TRUE
;
10517 sym
.st_name
= h
->dynstr_index
;
10518 esym
= (elf_hash_table (flinfo
->info
)->dynsym
->contents
10519 + h
->dynindx
* bed
->s
->sizeof_sym
);
10520 if (!check_dynsym (flinfo
->output_bfd
, &sym
))
10522 eoinfo
->failed
= TRUE
;
10526 /* Inform the linker of the addition of this symbol. */
10528 if (flinfo
->info
->callbacks
->ctf_new_dynsym
)
10529 flinfo
->info
->callbacks
->ctf_new_dynsym (h
->dynindx
, &sym
);
10531 bed
->s
->swap_symbol_out (flinfo
->output_bfd
, &sym
, esym
, 0);
10533 if (flinfo
->hash_sec
!= NULL
)
10535 size_t hash_entry_size
;
10536 bfd_byte
*bucketpos
;
10538 size_t bucketcount
;
10541 bucketcount
= elf_hash_table (flinfo
->info
)->bucketcount
;
10542 bucket
= h
->u
.elf_hash_value
% bucketcount
;
10545 = elf_section_data (flinfo
->hash_sec
)->this_hdr
.sh_entsize
;
10546 bucketpos
= ((bfd_byte
*) flinfo
->hash_sec
->contents
10547 + (bucket
+ 2) * hash_entry_size
);
10548 chain
= bfd_get (8 * hash_entry_size
, flinfo
->output_bfd
, bucketpos
);
10549 bfd_put (8 * hash_entry_size
, flinfo
->output_bfd
, h
->dynindx
,
10551 bfd_put (8 * hash_entry_size
, flinfo
->output_bfd
, chain
,
10552 ((bfd_byte
*) flinfo
->hash_sec
->contents
10553 + (bucketcount
+ 2 + h
->dynindx
) * hash_entry_size
));
10556 if (flinfo
->symver_sec
!= NULL
&& flinfo
->symver_sec
->contents
!= NULL
)
10558 Elf_Internal_Versym iversym
;
10559 Elf_External_Versym
*eversym
;
10561 if (!h
->def_regular
&& !ELF_COMMON_DEF_P (h
))
10563 if (h
->verinfo
.verdef
== NULL
10564 || (elf_dyn_lib_class (h
->verinfo
.verdef
->vd_bfd
)
10565 & (DYN_AS_NEEDED
| DYN_DT_NEEDED
| DYN_NO_NEEDED
)))
10566 iversym
.vs_vers
= 0;
10568 iversym
.vs_vers
= h
->verinfo
.verdef
->vd_exp_refno
+ 1;
10572 if (h
->verinfo
.vertree
== NULL
)
10573 iversym
.vs_vers
= 1;
10575 iversym
.vs_vers
= h
->verinfo
.vertree
->vernum
+ 1;
10576 if (flinfo
->info
->create_default_symver
)
10580 /* Turn on VERSYM_HIDDEN only if the hidden versioned symbol is
10581 defined locally. */
10582 if (h
->versioned
== versioned_hidden
&& h
->def_regular
)
10583 iversym
.vs_vers
|= VERSYM_HIDDEN
;
10585 eversym
= (Elf_External_Versym
*) flinfo
->symver_sec
->contents
;
10586 eversym
+= h
->dynindx
;
10587 _bfd_elf_swap_versym_out (flinfo
->output_bfd
, &iversym
, eversym
);
10591 /* If the symbol is undefined, and we didn't output it to .dynsym,
10592 strip it from .symtab too. Obviously we can't do this for
10593 relocatable output or when needed for --emit-relocs. */
10594 else if (input_sec
== bfd_und_section_ptr
10596 /* PR 22319 Do not strip global undefined symbols marked as being needed. */
10597 && (h
->mark
!= 1 || ELF_ST_BIND (sym
.st_info
) != STB_GLOBAL
)
10598 && !bfd_link_relocatable (flinfo
->info
))
10601 /* Also strip others that we couldn't earlier due to dynamic symbol
10605 if ((input_sec
->flags
& SEC_EXCLUDE
) != 0)
10608 /* Output a FILE symbol so that following locals are not associated
10609 with the wrong input file. We need one for forced local symbols
10610 if we've seen more than one FILE symbol or when we have exactly
10611 one FILE symbol but global symbols are present in a file other
10612 than the one with the FILE symbol. We also need one if linker
10613 defined symbols are present. In practice these conditions are
10614 always met, so just emit the FILE symbol unconditionally. */
10615 if (eoinfo
->localsyms
10616 && !eoinfo
->file_sym_done
10617 && eoinfo
->flinfo
->filesym_count
!= 0)
10619 Elf_Internal_Sym fsym
;
10621 memset (&fsym
, 0, sizeof (fsym
));
10622 fsym
.st_info
= ELF_ST_INFO (STB_LOCAL
, STT_FILE
);
10623 fsym
.st_shndx
= SHN_ABS
;
10624 if (!elf_link_output_symstrtab (eoinfo
->flinfo
, NULL
, &fsym
,
10625 bfd_und_section_ptr
, NULL
))
10628 eoinfo
->file_sym_done
= TRUE
;
10631 indx
= bfd_get_symcount (flinfo
->output_bfd
);
10632 ret
= elf_link_output_symstrtab (flinfo
, h
->root
.root
.string
, &sym
,
10636 eoinfo
->failed
= TRUE
;
10641 else if (h
->indx
== -2)
10647 /* Return TRUE if special handling is done for relocs in SEC against
10648 symbols defined in discarded sections. */
10651 elf_section_ignore_discarded_relocs (asection
*sec
)
10653 const struct elf_backend_data
*bed
;
10655 switch (sec
->sec_info_type
)
10657 case SEC_INFO_TYPE_STABS
:
10658 case SEC_INFO_TYPE_EH_FRAME
:
10659 case SEC_INFO_TYPE_EH_FRAME_ENTRY
:
10665 bed
= get_elf_backend_data (sec
->owner
);
10666 if (bed
->elf_backend_ignore_discarded_relocs
!= NULL
10667 && (*bed
->elf_backend_ignore_discarded_relocs
) (sec
))
10673 /* Return a mask saying how ld should treat relocations in SEC against
10674 symbols defined in discarded sections. If this function returns
10675 COMPLAIN set, ld will issue a warning message. If this function
10676 returns PRETEND set, and the discarded section was link-once and the
10677 same size as the kept link-once section, ld will pretend that the
10678 symbol was actually defined in the kept section. Otherwise ld will
10679 zero the reloc (at least that is the intent, but some cooperation by
10680 the target dependent code is needed, particularly for REL targets). */
10683 _bfd_elf_default_action_discarded (asection
*sec
)
10685 if (sec
->flags
& SEC_DEBUGGING
)
10688 if (strcmp (".eh_frame", sec
->name
) == 0)
10691 if (strcmp (".gcc_except_table", sec
->name
) == 0)
10694 return COMPLAIN
| PRETEND
;
10697 /* Find a match between a section and a member of a section group. */
10700 match_group_member (asection
*sec
, asection
*group
,
10701 struct bfd_link_info
*info
)
10703 asection
*first
= elf_next_in_group (group
);
10704 asection
*s
= first
;
10708 if (bfd_elf_match_symbols_in_sections (s
, sec
, info
))
10711 s
= elf_next_in_group (s
);
10719 /* Check if the kept section of a discarded section SEC can be used
10720 to replace it. Return the replacement if it is OK. Otherwise return
10724 _bfd_elf_check_kept_section (asection
*sec
, struct bfd_link_info
*info
)
10728 kept
= sec
->kept_section
;
10731 if ((kept
->flags
& SEC_GROUP
) != 0)
10732 kept
= match_group_member (sec
, kept
, info
);
10735 if ((sec
->rawsize
!= 0 ? sec
->rawsize
: sec
->size
)
10736 != (kept
->rawsize
!= 0 ? kept
->rawsize
: kept
->size
))
10740 /* Get the real kept section. */
10742 for (next
= kept
->kept_section
;
10744 next
= next
->kept_section
)
10748 sec
->kept_section
= kept
;
10753 /* Link an input file into the linker output file. This function
10754 handles all the sections and relocations of the input file at once.
10755 This is so that we only have to read the local symbols once, and
10756 don't have to keep them in memory. */
10759 elf_link_input_bfd (struct elf_final_link_info
*flinfo
, bfd
*input_bfd
)
10761 int (*relocate_section
)
10762 (bfd
*, struct bfd_link_info
*, bfd
*, asection
*, bfd_byte
*,
10763 Elf_Internal_Rela
*, Elf_Internal_Sym
*, asection
**);
10765 Elf_Internal_Shdr
*symtab_hdr
;
10766 size_t locsymcount
;
10768 Elf_Internal_Sym
*isymbuf
;
10769 Elf_Internal_Sym
*isym
;
10770 Elf_Internal_Sym
*isymend
;
10772 asection
**ppsection
;
10774 const struct elf_backend_data
*bed
;
10775 struct elf_link_hash_entry
**sym_hashes
;
10776 bfd_size_type address_size
;
10777 bfd_vma r_type_mask
;
10779 bfd_boolean have_file_sym
= FALSE
;
10781 output_bfd
= flinfo
->output_bfd
;
10782 bed
= get_elf_backend_data (output_bfd
);
10783 relocate_section
= bed
->elf_backend_relocate_section
;
10785 /* If this is a dynamic object, we don't want to do anything here:
10786 we don't want the local symbols, and we don't want the section
10788 if ((input_bfd
->flags
& DYNAMIC
) != 0)
10791 symtab_hdr
= &elf_tdata (input_bfd
)->symtab_hdr
;
10792 if (elf_bad_symtab (input_bfd
))
10794 locsymcount
= symtab_hdr
->sh_size
/ bed
->s
->sizeof_sym
;
10799 locsymcount
= symtab_hdr
->sh_info
;
10800 extsymoff
= symtab_hdr
->sh_info
;
10803 /* Enable GNU OSABI features in the output BFD that are used in the input
10805 if (bed
->elf_osabi
== ELFOSABI_NONE
10806 || bed
->elf_osabi
== ELFOSABI_GNU
10807 || bed
->elf_osabi
== ELFOSABI_FREEBSD
)
10808 elf_tdata (output_bfd
)->has_gnu_osabi
10809 |= (elf_tdata (input_bfd
)->has_gnu_osabi
10810 & (bfd_link_relocatable (flinfo
->info
)
10811 ? -1 : ~elf_gnu_osabi_retain
));
10813 /* Read the local symbols. */
10814 isymbuf
= (Elf_Internal_Sym
*) symtab_hdr
->contents
;
10815 if (isymbuf
== NULL
&& locsymcount
!= 0)
10817 isymbuf
= bfd_elf_get_elf_syms (input_bfd
, symtab_hdr
, locsymcount
, 0,
10818 flinfo
->internal_syms
,
10819 flinfo
->external_syms
,
10820 flinfo
->locsym_shndx
);
10821 if (isymbuf
== NULL
)
10825 /* Find local symbol sections and adjust values of symbols in
10826 SEC_MERGE sections. Write out those local symbols we know are
10827 going into the output file. */
10828 isymend
= isymbuf
+ locsymcount
;
10829 for (isym
= isymbuf
, pindex
= flinfo
->indices
, ppsection
= flinfo
->sections
;
10831 isym
++, pindex
++, ppsection
++)
10835 Elf_Internal_Sym osym
;
10841 if (elf_bad_symtab (input_bfd
))
10843 if (ELF_ST_BIND (isym
->st_info
) != STB_LOCAL
)
10850 if (isym
->st_shndx
== SHN_UNDEF
)
10851 isec
= bfd_und_section_ptr
;
10852 else if (isym
->st_shndx
== SHN_ABS
)
10853 isec
= bfd_abs_section_ptr
;
10854 else if (isym
->st_shndx
== SHN_COMMON
)
10855 isec
= bfd_com_section_ptr
;
10858 isec
= bfd_section_from_elf_index (input_bfd
, isym
->st_shndx
);
10861 /* Don't attempt to output symbols with st_shnx in the
10862 reserved range other than SHN_ABS and SHN_COMMON. */
10863 isec
= bfd_und_section_ptr
;
10865 else if (isec
->sec_info_type
== SEC_INFO_TYPE_MERGE
10866 && ELF_ST_TYPE (isym
->st_info
) != STT_SECTION
)
10868 _bfd_merged_section_offset (output_bfd
, &isec
,
10869 elf_section_data (isec
)->sec_info
,
10875 /* Don't output the first, undefined, symbol. In fact, don't
10876 output any undefined local symbol. */
10877 if (isec
== bfd_und_section_ptr
)
10880 if (ELF_ST_TYPE (isym
->st_info
) == STT_SECTION
)
10882 /* We never output section symbols. Instead, we use the
10883 section symbol of the corresponding section in the output
10888 /* If we are stripping all symbols, we don't want to output this
10890 if (flinfo
->info
->strip
== strip_all
)
10893 /* If we are discarding all local symbols, we don't want to
10894 output this one. If we are generating a relocatable output
10895 file, then some of the local symbols may be required by
10896 relocs; we output them below as we discover that they are
10898 if (flinfo
->info
->discard
== discard_all
)
10901 /* If this symbol is defined in a section which we are
10902 discarding, we don't need to keep it. */
10903 if (isym
->st_shndx
!= SHN_UNDEF
10904 && isym
->st_shndx
< SHN_LORESERVE
10905 && isec
->output_section
== NULL
10906 && flinfo
->info
->non_contiguous_regions
10907 && flinfo
->info
->non_contiguous_regions_warnings
)
10909 _bfd_error_handler (_("warning: --enable-non-contiguous-regions "
10910 "discards section `%s' from '%s'\n"),
10911 isec
->name
, bfd_get_filename (isec
->owner
));
10915 if (isym
->st_shndx
!= SHN_UNDEF
10916 && isym
->st_shndx
< SHN_LORESERVE
10917 && bfd_section_removed_from_list (output_bfd
,
10918 isec
->output_section
))
10921 /* Get the name of the symbol. */
10922 name
= bfd_elf_string_from_elf_section (input_bfd
, symtab_hdr
->sh_link
,
10927 /* See if we are discarding symbols with this name. */
10928 if ((flinfo
->info
->strip
== strip_some
10929 && (bfd_hash_lookup (flinfo
->info
->keep_hash
, name
, FALSE
, FALSE
)
10931 || (((flinfo
->info
->discard
== discard_sec_merge
10932 && (isec
->flags
& SEC_MERGE
)
10933 && !bfd_link_relocatable (flinfo
->info
))
10934 || flinfo
->info
->discard
== discard_l
)
10935 && bfd_is_local_label_name (input_bfd
, name
)))
10938 if (ELF_ST_TYPE (isym
->st_info
) == STT_FILE
)
10940 if (input_bfd
->lto_output
)
10941 /* -flto puts a temp file name here. This means builds
10942 are not reproducible. Discard the symbol. */
10944 have_file_sym
= TRUE
;
10945 flinfo
->filesym_count
+= 1;
10947 if (!have_file_sym
)
10949 /* In the absence of debug info, bfd_find_nearest_line uses
10950 FILE symbols to determine the source file for local
10951 function symbols. Provide a FILE symbol here if input
10952 files lack such, so that their symbols won't be
10953 associated with a previous input file. It's not the
10954 source file, but the best we can do. */
10955 have_file_sym
= TRUE
;
10956 flinfo
->filesym_count
+= 1;
10957 memset (&osym
, 0, sizeof (osym
));
10958 osym
.st_info
= ELF_ST_INFO (STB_LOCAL
, STT_FILE
);
10959 osym
.st_shndx
= SHN_ABS
;
10960 if (!elf_link_output_symstrtab (flinfo
,
10961 (input_bfd
->lto_output
? NULL
10962 : bfd_get_filename (input_bfd
)),
10963 &osym
, bfd_abs_section_ptr
,
10970 /* Adjust the section index for the output file. */
10971 osym
.st_shndx
= _bfd_elf_section_from_bfd_section (output_bfd
,
10972 isec
->output_section
);
10973 if (osym
.st_shndx
== SHN_BAD
)
10976 /* ELF symbols in relocatable files are section relative, but
10977 in executable files they are virtual addresses. Note that
10978 this code assumes that all ELF sections have an associated
10979 BFD section with a reasonable value for output_offset; below
10980 we assume that they also have a reasonable value for
10981 output_section. Any special sections must be set up to meet
10982 these requirements. */
10983 osym
.st_value
+= isec
->output_offset
;
10984 if (!bfd_link_relocatable (flinfo
->info
))
10986 osym
.st_value
+= isec
->output_section
->vma
;
10987 if (ELF_ST_TYPE (osym
.st_info
) == STT_TLS
)
10989 /* STT_TLS symbols are relative to PT_TLS segment base. */
10990 if (elf_hash_table (flinfo
->info
)->tls_sec
!= NULL
)
10991 osym
.st_value
-= elf_hash_table (flinfo
->info
)->tls_sec
->vma
;
10993 osym
.st_info
= ELF_ST_INFO (ELF_ST_BIND (osym
.st_info
),
10998 indx
= bfd_get_symcount (output_bfd
);
10999 ret
= elf_link_output_symstrtab (flinfo
, name
, &osym
, isec
, NULL
);
11006 if (bed
->s
->arch_size
== 32)
11008 r_type_mask
= 0xff;
11014 r_type_mask
= 0xffffffff;
11019 /* Relocate the contents of each section. */
11020 sym_hashes
= elf_sym_hashes (input_bfd
);
11021 for (o
= input_bfd
->sections
; o
!= NULL
; o
= o
->next
)
11023 bfd_byte
*contents
;
11025 if (! o
->linker_mark
)
11027 /* This section was omitted from the link. */
11031 if (!flinfo
->info
->resolve_section_groups
11032 && (o
->flags
& (SEC_LINKER_CREATED
| SEC_GROUP
)) == SEC_GROUP
)
11034 /* Deal with the group signature symbol. */
11035 struct bfd_elf_section_data
*sec_data
= elf_section_data (o
);
11036 unsigned long symndx
= sec_data
->this_hdr
.sh_info
;
11037 asection
*osec
= o
->output_section
;
11039 BFD_ASSERT (bfd_link_relocatable (flinfo
->info
));
11040 if (symndx
>= locsymcount
11041 || (elf_bad_symtab (input_bfd
)
11042 && flinfo
->sections
[symndx
] == NULL
))
11044 struct elf_link_hash_entry
*h
= sym_hashes
[symndx
- extsymoff
];
11045 while (h
->root
.type
== bfd_link_hash_indirect
11046 || h
->root
.type
== bfd_link_hash_warning
)
11047 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
11048 /* Arrange for symbol to be output. */
11050 elf_section_data (osec
)->this_hdr
.sh_info
= -2;
11052 else if (ELF_ST_TYPE (isymbuf
[symndx
].st_info
) == STT_SECTION
)
11054 /* We'll use the output section target_index. */
11055 asection
*sec
= flinfo
->sections
[symndx
]->output_section
;
11056 elf_section_data (osec
)->this_hdr
.sh_info
= sec
->target_index
;
11060 if (flinfo
->indices
[symndx
] == -1)
11062 /* Otherwise output the local symbol now. */
11063 Elf_Internal_Sym sym
= isymbuf
[symndx
];
11064 asection
*sec
= flinfo
->sections
[symndx
]->output_section
;
11069 name
= bfd_elf_string_from_elf_section (input_bfd
,
11070 symtab_hdr
->sh_link
,
11075 sym
.st_shndx
= _bfd_elf_section_from_bfd_section (output_bfd
,
11077 if (sym
.st_shndx
== SHN_BAD
)
11080 sym
.st_value
+= o
->output_offset
;
11082 indx
= bfd_get_symcount (output_bfd
);
11083 ret
= elf_link_output_symstrtab (flinfo
, name
, &sym
, o
,
11088 flinfo
->indices
[symndx
] = indx
;
11092 elf_section_data (osec
)->this_hdr
.sh_info
11093 = flinfo
->indices
[symndx
];
11097 if ((o
->flags
& SEC_HAS_CONTENTS
) == 0
11098 || (o
->size
== 0 && (o
->flags
& SEC_RELOC
) == 0))
11101 if ((o
->flags
& SEC_LINKER_CREATED
) != 0)
11103 /* Section was created by _bfd_elf_link_create_dynamic_sections
11108 /* Get the contents of the section. They have been cached by a
11109 relaxation routine. Note that o is a section in an input
11110 file, so the contents field will not have been set by any of
11111 the routines which work on output files. */
11112 if (elf_section_data (o
)->this_hdr
.contents
!= NULL
)
11114 contents
= elf_section_data (o
)->this_hdr
.contents
;
11115 if (bed
->caches_rawsize
11117 && o
->rawsize
< o
->size
)
11119 memcpy (flinfo
->contents
, contents
, o
->rawsize
);
11120 contents
= flinfo
->contents
;
11125 contents
= flinfo
->contents
;
11126 if (! bfd_get_full_section_contents (input_bfd
, o
, &contents
))
11130 if ((o
->flags
& SEC_RELOC
) != 0)
11132 Elf_Internal_Rela
*internal_relocs
;
11133 Elf_Internal_Rela
*rel
, *relend
;
11134 int action_discarded
;
11137 /* Get the swapped relocs. */
11139 = _bfd_elf_link_read_relocs (input_bfd
, o
, flinfo
->external_relocs
,
11140 flinfo
->internal_relocs
, FALSE
);
11141 if (internal_relocs
== NULL
11142 && o
->reloc_count
> 0)
11145 /* We need to reverse-copy input .ctors/.dtors sections if
11146 they are placed in .init_array/.finit_array for output. */
11147 if (o
->size
> address_size
11148 && ((strncmp (o
->name
, ".ctors", 6) == 0
11149 && strcmp (o
->output_section
->name
,
11150 ".init_array") == 0)
11151 || (strncmp (o
->name
, ".dtors", 6) == 0
11152 && strcmp (o
->output_section
->name
,
11153 ".fini_array") == 0))
11154 && (o
->name
[6] == 0 || o
->name
[6] == '.'))
11156 if (o
->size
* bed
->s
->int_rels_per_ext_rel
11157 != o
->reloc_count
* address_size
)
11160 /* xgettext:c-format */
11161 (_("error: %pB: size of section %pA is not "
11162 "multiple of address size"),
11164 bfd_set_error (bfd_error_bad_value
);
11167 o
->flags
|= SEC_ELF_REVERSE_COPY
;
11170 action_discarded
= -1;
11171 if (!elf_section_ignore_discarded_relocs (o
))
11172 action_discarded
= (*bed
->action_discarded
) (o
);
11174 /* Run through the relocs evaluating complex reloc symbols and
11175 looking for relocs against symbols from discarded sections
11176 or section symbols from removed link-once sections.
11177 Complain about relocs against discarded sections. Zero
11178 relocs against removed link-once sections. */
11180 rel
= internal_relocs
;
11181 relend
= rel
+ o
->reloc_count
;
11182 for ( ; rel
< relend
; rel
++)
11184 unsigned long r_symndx
= rel
->r_info
>> r_sym_shift
;
11185 unsigned int s_type
;
11186 asection
**ps
, *sec
;
11187 struct elf_link_hash_entry
*h
= NULL
;
11188 const char *sym_name
;
11190 if (r_symndx
== STN_UNDEF
)
11193 if (r_symndx
>= locsymcount
11194 || (elf_bad_symtab (input_bfd
)
11195 && flinfo
->sections
[r_symndx
] == NULL
))
11197 h
= sym_hashes
[r_symndx
- extsymoff
];
11199 /* Badly formatted input files can contain relocs that
11200 reference non-existant symbols. Check here so that
11201 we do not seg fault. */
11205 /* xgettext:c-format */
11206 (_("error: %pB contains a reloc (%#" PRIx64
") for section %pA "
11207 "that references a non-existent global symbol"),
11208 input_bfd
, (uint64_t) rel
->r_info
, o
);
11209 bfd_set_error (bfd_error_bad_value
);
11213 while (h
->root
.type
== bfd_link_hash_indirect
11214 || h
->root
.type
== bfd_link_hash_warning
)
11215 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
11219 /* If a plugin symbol is referenced from a non-IR file,
11220 mark the symbol as undefined. Note that the
11221 linker may attach linker created dynamic sections
11222 to the plugin bfd. Symbols defined in linker
11223 created sections are not plugin symbols. */
11224 if ((h
->root
.non_ir_ref_regular
11225 || h
->root
.non_ir_ref_dynamic
)
11226 && (h
->root
.type
== bfd_link_hash_defined
11227 || h
->root
.type
== bfd_link_hash_defweak
)
11228 && (h
->root
.u
.def
.section
->flags
11229 & SEC_LINKER_CREATED
) == 0
11230 && h
->root
.u
.def
.section
->owner
!= NULL
11231 && (h
->root
.u
.def
.section
->owner
->flags
11232 & BFD_PLUGIN
) != 0)
11234 h
->root
.type
= bfd_link_hash_undefined
;
11235 h
->root
.u
.undef
.abfd
= h
->root
.u
.def
.section
->owner
;
11239 if (h
->root
.type
== bfd_link_hash_defined
11240 || h
->root
.type
== bfd_link_hash_defweak
)
11241 ps
= &h
->root
.u
.def
.section
;
11243 sym_name
= h
->root
.root
.string
;
11247 Elf_Internal_Sym
*sym
= isymbuf
+ r_symndx
;
11249 s_type
= ELF_ST_TYPE (sym
->st_info
);
11250 ps
= &flinfo
->sections
[r_symndx
];
11251 sym_name
= bfd_elf_sym_name (input_bfd
, symtab_hdr
,
11255 if ((s_type
== STT_RELC
|| s_type
== STT_SRELC
)
11256 && !bfd_link_relocatable (flinfo
->info
))
11259 bfd_vma dot
= (rel
->r_offset
11260 + o
->output_offset
+ o
->output_section
->vma
);
11262 printf ("Encountered a complex symbol!");
11263 printf (" (input_bfd %s, section %s, reloc %ld\n",
11264 bfd_get_filename (input_bfd
), o
->name
,
11265 (long) (rel
- internal_relocs
));
11266 printf (" symbol: idx %8.8lx, name %s\n",
11267 r_symndx
, sym_name
);
11268 printf (" reloc : info %8.8lx, addr %8.8lx\n",
11269 (unsigned long) rel
->r_info
,
11270 (unsigned long) rel
->r_offset
);
11272 if (!eval_symbol (&val
, &sym_name
, input_bfd
, flinfo
, dot
,
11273 isymbuf
, locsymcount
, s_type
== STT_SRELC
))
11276 /* Symbol evaluated OK. Update to absolute value. */
11277 set_symbol_value (input_bfd
, isymbuf
, locsymcount
,
11282 if (action_discarded
!= -1 && ps
!= NULL
)
11284 /* Complain if the definition comes from a
11285 discarded section. */
11286 if ((sec
= *ps
) != NULL
&& discarded_section (sec
))
11288 BFD_ASSERT (r_symndx
!= STN_UNDEF
);
11289 if (action_discarded
& COMPLAIN
)
11290 (*flinfo
->info
->callbacks
->einfo
)
11291 /* xgettext:c-format */
11292 (_("%X`%s' referenced in section `%pA' of %pB: "
11293 "defined in discarded section `%pA' of %pB\n"),
11294 sym_name
, o
, input_bfd
, sec
, sec
->owner
);
11296 /* Try to do the best we can to support buggy old
11297 versions of gcc. Pretend that the symbol is
11298 really defined in the kept linkonce section.
11299 FIXME: This is quite broken. Modifying the
11300 symbol here means we will be changing all later
11301 uses of the symbol, not just in this section. */
11302 if (action_discarded
& PRETEND
)
11306 kept
= _bfd_elf_check_kept_section (sec
,
11318 /* Relocate the section by invoking a back end routine.
11320 The back end routine is responsible for adjusting the
11321 section contents as necessary, and (if using Rela relocs
11322 and generating a relocatable output file) adjusting the
11323 reloc addend as necessary.
11325 The back end routine does not have to worry about setting
11326 the reloc address or the reloc symbol index.
11328 The back end routine is given a pointer to the swapped in
11329 internal symbols, and can access the hash table entries
11330 for the external symbols via elf_sym_hashes (input_bfd).
11332 When generating relocatable output, the back end routine
11333 must handle STB_LOCAL/STT_SECTION symbols specially. The
11334 output symbol is going to be a section symbol
11335 corresponding to the output section, which will require
11336 the addend to be adjusted. */
11338 ret
= (*relocate_section
) (output_bfd
, flinfo
->info
,
11339 input_bfd
, o
, contents
,
11347 || bfd_link_relocatable (flinfo
->info
)
11348 || flinfo
->info
->emitrelocations
)
11350 Elf_Internal_Rela
*irela
;
11351 Elf_Internal_Rela
*irelaend
, *irelamid
;
11352 bfd_vma last_offset
;
11353 struct elf_link_hash_entry
**rel_hash
;
11354 struct elf_link_hash_entry
**rel_hash_list
, **rela_hash_list
;
11355 Elf_Internal_Shdr
*input_rel_hdr
, *input_rela_hdr
;
11356 unsigned int next_erel
;
11357 bfd_boolean rela_normal
;
11358 struct bfd_elf_section_data
*esdi
, *esdo
;
11360 esdi
= elf_section_data (o
);
11361 esdo
= elf_section_data (o
->output_section
);
11362 rela_normal
= FALSE
;
11364 /* Adjust the reloc addresses and symbol indices. */
11366 irela
= internal_relocs
;
11367 irelaend
= irela
+ o
->reloc_count
;
11368 rel_hash
= esdo
->rel
.hashes
+ esdo
->rel
.count
;
11369 /* We start processing the REL relocs, if any. When we reach
11370 IRELAMID in the loop, we switch to the RELA relocs. */
11372 if (esdi
->rel
.hdr
!= NULL
)
11373 irelamid
+= (NUM_SHDR_ENTRIES (esdi
->rel
.hdr
)
11374 * bed
->s
->int_rels_per_ext_rel
);
11375 rel_hash_list
= rel_hash
;
11376 rela_hash_list
= NULL
;
11377 last_offset
= o
->output_offset
;
11378 if (!bfd_link_relocatable (flinfo
->info
))
11379 last_offset
+= o
->output_section
->vma
;
11380 for (next_erel
= 0; irela
< irelaend
; irela
++, next_erel
++)
11382 unsigned long r_symndx
;
11384 Elf_Internal_Sym sym
;
11386 if (next_erel
== bed
->s
->int_rels_per_ext_rel
)
11392 if (irela
== irelamid
)
11394 rel_hash
= esdo
->rela
.hashes
+ esdo
->rela
.count
;
11395 rela_hash_list
= rel_hash
;
11396 rela_normal
= bed
->rela_normal
;
11399 irela
->r_offset
= _bfd_elf_section_offset (output_bfd
,
11402 if (irela
->r_offset
>= (bfd_vma
) -2)
11404 /* This is a reloc for a deleted entry or somesuch.
11405 Turn it into an R_*_NONE reloc, at the same
11406 offset as the last reloc. elf_eh_frame.c and
11407 bfd_elf_discard_info rely on reloc offsets
11409 irela
->r_offset
= last_offset
;
11411 irela
->r_addend
= 0;
11415 irela
->r_offset
+= o
->output_offset
;
11417 /* Relocs in an executable have to be virtual addresses. */
11418 if (!bfd_link_relocatable (flinfo
->info
))
11419 irela
->r_offset
+= o
->output_section
->vma
;
11421 last_offset
= irela
->r_offset
;
11423 r_symndx
= irela
->r_info
>> r_sym_shift
;
11424 if (r_symndx
== STN_UNDEF
)
11427 if (r_symndx
>= locsymcount
11428 || (elf_bad_symtab (input_bfd
)
11429 && flinfo
->sections
[r_symndx
] == NULL
))
11431 struct elf_link_hash_entry
*rh
;
11432 unsigned long indx
;
11434 /* This is a reloc against a global symbol. We
11435 have not yet output all the local symbols, so
11436 we do not know the symbol index of any global
11437 symbol. We set the rel_hash entry for this
11438 reloc to point to the global hash table entry
11439 for this symbol. The symbol index is then
11440 set at the end of bfd_elf_final_link. */
11441 indx
= r_symndx
- extsymoff
;
11442 rh
= elf_sym_hashes (input_bfd
)[indx
];
11443 while (rh
->root
.type
== bfd_link_hash_indirect
11444 || rh
->root
.type
== bfd_link_hash_warning
)
11445 rh
= (struct elf_link_hash_entry
*) rh
->root
.u
.i
.link
;
11447 /* Setting the index to -2 tells
11448 elf_link_output_extsym that this symbol is
11449 used by a reloc. */
11450 BFD_ASSERT (rh
->indx
< 0);
11457 /* This is a reloc against a local symbol. */
11460 sym
= isymbuf
[r_symndx
];
11461 sec
= flinfo
->sections
[r_symndx
];
11462 if (ELF_ST_TYPE (sym
.st_info
) == STT_SECTION
)
11464 /* I suppose the backend ought to fill in the
11465 section of any STT_SECTION symbol against a
11466 processor specific section. */
11467 r_symndx
= STN_UNDEF
;
11468 if (bfd_is_abs_section (sec
))
11470 else if (sec
== NULL
|| sec
->owner
== NULL
)
11472 bfd_set_error (bfd_error_bad_value
);
11477 asection
*osec
= sec
->output_section
;
11479 /* If we have discarded a section, the output
11480 section will be the absolute section. In
11481 case of discarded SEC_MERGE sections, use
11482 the kept section. relocate_section should
11483 have already handled discarded linkonce
11485 if (bfd_is_abs_section (osec
)
11486 && sec
->kept_section
!= NULL
11487 && sec
->kept_section
->output_section
!= NULL
)
11489 osec
= sec
->kept_section
->output_section
;
11490 irela
->r_addend
-= osec
->vma
;
11493 if (!bfd_is_abs_section (osec
))
11495 r_symndx
= osec
->target_index
;
11496 if (r_symndx
== STN_UNDEF
)
11498 irela
->r_addend
+= osec
->vma
;
11499 osec
= _bfd_nearby_section (output_bfd
, osec
,
11501 irela
->r_addend
-= osec
->vma
;
11502 r_symndx
= osec
->target_index
;
11507 /* Adjust the addend according to where the
11508 section winds up in the output section. */
11510 irela
->r_addend
+= sec
->output_offset
;
11514 if (flinfo
->indices
[r_symndx
] == -1)
11516 unsigned long shlink
;
11521 if (flinfo
->info
->strip
== strip_all
)
11523 /* You can't do ld -r -s. */
11524 bfd_set_error (bfd_error_invalid_operation
);
11528 /* This symbol was skipped earlier, but
11529 since it is needed by a reloc, we
11530 must output it now. */
11531 shlink
= symtab_hdr
->sh_link
;
11532 name
= (bfd_elf_string_from_elf_section
11533 (input_bfd
, shlink
, sym
.st_name
));
11537 osec
= sec
->output_section
;
11539 _bfd_elf_section_from_bfd_section (output_bfd
,
11541 if (sym
.st_shndx
== SHN_BAD
)
11544 sym
.st_value
+= sec
->output_offset
;
11545 if (!bfd_link_relocatable (flinfo
->info
))
11547 sym
.st_value
+= osec
->vma
;
11548 if (ELF_ST_TYPE (sym
.st_info
) == STT_TLS
)
11550 struct elf_link_hash_table
*htab
11551 = elf_hash_table (flinfo
->info
);
11553 /* STT_TLS symbols are relative to PT_TLS
11555 if (htab
->tls_sec
!= NULL
)
11556 sym
.st_value
-= htab
->tls_sec
->vma
;
11559 = ELF_ST_INFO (ELF_ST_BIND (sym
.st_info
),
11564 indx
= bfd_get_symcount (output_bfd
);
11565 ret
= elf_link_output_symstrtab (flinfo
, name
,
11571 flinfo
->indices
[r_symndx
] = indx
;
11576 r_symndx
= flinfo
->indices
[r_symndx
];
11579 irela
->r_info
= ((bfd_vma
) r_symndx
<< r_sym_shift
11580 | (irela
->r_info
& r_type_mask
));
11583 /* Swap out the relocs. */
11584 input_rel_hdr
= esdi
->rel
.hdr
;
11585 if (input_rel_hdr
&& input_rel_hdr
->sh_size
!= 0)
11587 if (!bed
->elf_backend_emit_relocs (output_bfd
, o
,
11592 internal_relocs
+= (NUM_SHDR_ENTRIES (input_rel_hdr
)
11593 * bed
->s
->int_rels_per_ext_rel
);
11594 rel_hash_list
+= NUM_SHDR_ENTRIES (input_rel_hdr
);
11597 input_rela_hdr
= esdi
->rela
.hdr
;
11598 if (input_rela_hdr
&& input_rela_hdr
->sh_size
!= 0)
11600 if (!bed
->elf_backend_emit_relocs (output_bfd
, o
,
11609 /* Write out the modified section contents. */
11610 if (bed
->elf_backend_write_section
11611 && (*bed
->elf_backend_write_section
) (output_bfd
, flinfo
->info
, o
,
11614 /* Section written out. */
11616 else switch (o
->sec_info_type
)
11618 case SEC_INFO_TYPE_STABS
:
11619 if (! (_bfd_write_section_stabs
11621 &elf_hash_table (flinfo
->info
)->stab_info
,
11622 o
, &elf_section_data (o
)->sec_info
, contents
)))
11625 case SEC_INFO_TYPE_MERGE
:
11626 if (! _bfd_write_merged_section (output_bfd
, o
,
11627 elf_section_data (o
)->sec_info
))
11630 case SEC_INFO_TYPE_EH_FRAME
:
11632 if (! _bfd_elf_write_section_eh_frame (output_bfd
, flinfo
->info
,
11637 case SEC_INFO_TYPE_EH_FRAME_ENTRY
:
11639 if (! _bfd_elf_write_section_eh_frame_entry (output_bfd
,
11647 if (! (o
->flags
& SEC_EXCLUDE
))
11649 file_ptr offset
= (file_ptr
) o
->output_offset
;
11650 bfd_size_type todo
= o
->size
;
11652 offset
*= bfd_octets_per_byte (output_bfd
, o
);
11654 if ((o
->flags
& SEC_ELF_REVERSE_COPY
))
11656 /* Reverse-copy input section to output. */
11659 todo
-= address_size
;
11660 if (! bfd_set_section_contents (output_bfd
,
11668 offset
+= address_size
;
11672 else if (! bfd_set_section_contents (output_bfd
,
11686 /* Generate a reloc when linking an ELF file. This is a reloc
11687 requested by the linker, and does not come from any input file. This
11688 is used to build constructor and destructor tables when linking
11692 elf_reloc_link_order (bfd
*output_bfd
,
11693 struct bfd_link_info
*info
,
11694 asection
*output_section
,
11695 struct bfd_link_order
*link_order
)
11697 reloc_howto_type
*howto
;
11701 struct bfd_elf_section_reloc_data
*reldata
;
11702 struct elf_link_hash_entry
**rel_hash_ptr
;
11703 Elf_Internal_Shdr
*rel_hdr
;
11704 const struct elf_backend_data
*bed
= get_elf_backend_data (output_bfd
);
11705 Elf_Internal_Rela irel
[MAX_INT_RELS_PER_EXT_REL
];
11708 struct bfd_elf_section_data
*esdo
= elf_section_data (output_section
);
11710 howto
= bfd_reloc_type_lookup (output_bfd
, link_order
->u
.reloc
.p
->reloc
);
11713 bfd_set_error (bfd_error_bad_value
);
11717 addend
= link_order
->u
.reloc
.p
->addend
;
11720 reldata
= &esdo
->rel
;
11721 else if (esdo
->rela
.hdr
)
11722 reldata
= &esdo
->rela
;
11729 /* Figure out the symbol index. */
11730 rel_hash_ptr
= reldata
->hashes
+ reldata
->count
;
11731 if (link_order
->type
== bfd_section_reloc_link_order
)
11733 indx
= link_order
->u
.reloc
.p
->u
.section
->target_index
;
11734 BFD_ASSERT (indx
!= 0);
11735 *rel_hash_ptr
= NULL
;
11739 struct elf_link_hash_entry
*h
;
11741 /* Treat a reloc against a defined symbol as though it were
11742 actually against the section. */
11743 h
= ((struct elf_link_hash_entry
*)
11744 bfd_wrapped_link_hash_lookup (output_bfd
, info
,
11745 link_order
->u
.reloc
.p
->u
.name
,
11746 FALSE
, FALSE
, TRUE
));
11748 && (h
->root
.type
== bfd_link_hash_defined
11749 || h
->root
.type
== bfd_link_hash_defweak
))
11753 section
= h
->root
.u
.def
.section
;
11754 indx
= section
->output_section
->target_index
;
11755 *rel_hash_ptr
= NULL
;
11756 /* It seems that we ought to add the symbol value to the
11757 addend here, but in practice it has already been added
11758 because it was passed to constructor_callback. */
11759 addend
+= section
->output_section
->vma
+ section
->output_offset
;
11761 else if (h
!= NULL
)
11763 /* Setting the index to -2 tells elf_link_output_extsym that
11764 this symbol is used by a reloc. */
11771 (*info
->callbacks
->unattached_reloc
)
11772 (info
, link_order
->u
.reloc
.p
->u
.name
, NULL
, NULL
, 0);
11777 /* If this is an inplace reloc, we must write the addend into the
11779 if (howto
->partial_inplace
&& addend
!= 0)
11781 bfd_size_type size
;
11782 bfd_reloc_status_type rstat
;
11785 const char *sym_name
;
11786 bfd_size_type octets
;
11788 size
= (bfd_size_type
) bfd_get_reloc_size (howto
);
11789 buf
= (bfd_byte
*) bfd_zmalloc (size
);
11790 if (buf
== NULL
&& size
!= 0)
11792 rstat
= _bfd_relocate_contents (howto
, output_bfd
, addend
, buf
);
11799 case bfd_reloc_outofrange
:
11802 case bfd_reloc_overflow
:
11803 if (link_order
->type
== bfd_section_reloc_link_order
)
11804 sym_name
= bfd_section_name (link_order
->u
.reloc
.p
->u
.section
);
11806 sym_name
= link_order
->u
.reloc
.p
->u
.name
;
11807 (*info
->callbacks
->reloc_overflow
) (info
, NULL
, sym_name
,
11808 howto
->name
, addend
, NULL
, NULL
,
11813 octets
= link_order
->offset
* bfd_octets_per_byte (output_bfd
,
11815 ok
= bfd_set_section_contents (output_bfd
, output_section
, buf
,
11822 /* The address of a reloc is relative to the section in a
11823 relocatable file, and is a virtual address in an executable
11825 offset
= link_order
->offset
;
11826 if (! bfd_link_relocatable (info
))
11827 offset
+= output_section
->vma
;
11829 for (i
= 0; i
< bed
->s
->int_rels_per_ext_rel
; i
++)
11831 irel
[i
].r_offset
= offset
;
11832 irel
[i
].r_info
= 0;
11833 irel
[i
].r_addend
= 0;
11835 if (bed
->s
->arch_size
== 32)
11836 irel
[0].r_info
= ELF32_R_INFO (indx
, howto
->type
);
11838 irel
[0].r_info
= ELF64_R_INFO (indx
, howto
->type
);
11840 rel_hdr
= reldata
->hdr
;
11841 erel
= rel_hdr
->contents
;
11842 if (rel_hdr
->sh_type
== SHT_REL
)
11844 erel
+= reldata
->count
* bed
->s
->sizeof_rel
;
11845 (*bed
->s
->swap_reloc_out
) (output_bfd
, irel
, erel
);
11849 irel
[0].r_addend
= addend
;
11850 erel
+= reldata
->count
* bed
->s
->sizeof_rela
;
11851 (*bed
->s
->swap_reloca_out
) (output_bfd
, irel
, erel
);
11860 /* Compare two sections based on the locations of the sections they are
11861 linked to. Used by elf_fixup_link_order. */
11864 compare_link_order (const void *a
, const void *b
)
11866 const struct bfd_link_order
*alo
= *(const struct bfd_link_order
**) a
;
11867 const struct bfd_link_order
*blo
= *(const struct bfd_link_order
**) b
;
11868 asection
*asec
= elf_linked_to_section (alo
->u
.indirect
.section
);
11869 asection
*bsec
= elf_linked_to_section (blo
->u
.indirect
.section
);
11870 bfd_vma apos
= asec
->output_section
->lma
+ asec
->output_offset
;
11871 bfd_vma bpos
= bsec
->output_section
->lma
+ bsec
->output_offset
;
11878 /* The only way we should get matching LMAs is when the first of two
11879 sections has zero size. */
11880 if (asec
->size
< bsec
->size
)
11882 if (asec
->size
> bsec
->size
)
11885 /* If they are both zero size then they almost certainly have the same
11886 VMA and thus are not ordered with respect to each other. Test VMA
11887 anyway, and fall back to id to make the result reproducible across
11888 qsort implementations. */
11889 apos
= asec
->output_section
->vma
+ asec
->output_offset
;
11890 bpos
= bsec
->output_section
->vma
+ bsec
->output_offset
;
11896 return asec
->id
- bsec
->id
;
11900 /* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same
11901 order as their linked sections. Returns false if this could not be done
11902 because an output section includes both ordered and unordered
11903 sections. Ideally we'd do this in the linker proper. */
11906 elf_fixup_link_order (bfd
*abfd
, asection
*o
)
11908 size_t seen_linkorder
;
11911 struct bfd_link_order
*p
;
11913 struct bfd_link_order
**sections
;
11914 asection
*other_sec
, *linkorder_sec
;
11915 bfd_vma offset
; /* Octets. */
11918 linkorder_sec
= NULL
;
11920 seen_linkorder
= 0;
11921 for (p
= o
->map_head
.link_order
; p
!= NULL
; p
= p
->next
)
11923 if (p
->type
== bfd_indirect_link_order
)
11925 asection
*s
= p
->u
.indirect
.section
;
11927 if ((s
->flags
& SEC_LINKER_CREATED
) == 0
11928 && bfd_get_flavour (sub
) == bfd_target_elf_flavour
11929 && elf_section_data (s
) != NULL
11930 && elf_linked_to_section (s
) != NULL
)
11944 if (seen_other
&& seen_linkorder
)
11946 if (other_sec
&& linkorder_sec
)
11948 /* xgettext:c-format */
11949 (_("%pA has both ordered [`%pA' in %pB] "
11950 "and unordered [`%pA' in %pB] sections"),
11951 o
, linkorder_sec
, linkorder_sec
->owner
,
11952 other_sec
, other_sec
->owner
);
11955 (_("%pA has both ordered and unordered sections"), o
);
11956 bfd_set_error (bfd_error_bad_value
);
11961 if (!seen_linkorder
)
11964 sections
= bfd_malloc (seen_linkorder
* sizeof (*sections
));
11965 if (sections
== NULL
)
11968 seen_linkorder
= 0;
11969 for (p
= o
->map_head
.link_order
; p
!= NULL
; p
= p
->next
)
11970 sections
[seen_linkorder
++] = p
;
11972 /* Sort the input sections in the order of their linked section. */
11973 qsort (sections
, seen_linkorder
, sizeof (*sections
), compare_link_order
);
11975 /* Change the offsets of the sections. */
11977 for (n
= 0; n
< seen_linkorder
; n
++)
11980 asection
*s
= sections
[n
]->u
.indirect
.section
;
11981 unsigned int opb
= bfd_octets_per_byte (abfd
, s
);
11983 mask
= ~(bfd_vma
) 0 << s
->alignment_power
* opb
;
11984 offset
= (offset
+ ~mask
) & mask
;
11985 sections
[n
]->offset
= s
->output_offset
= offset
/ opb
;
11986 offset
+= sections
[n
]->size
;
11993 /* Generate an import library in INFO->implib_bfd from symbols in ABFD.
11994 Returns TRUE upon success, FALSE otherwise. */
11997 elf_output_implib (bfd
*abfd
, struct bfd_link_info
*info
)
11999 bfd_boolean ret
= FALSE
;
12001 const struct elf_backend_data
*bed
;
12003 enum bfd_architecture arch
;
12005 asymbol
**sympp
= NULL
;
12009 elf_symbol_type
*osymbuf
;
12012 implib_bfd
= info
->out_implib_bfd
;
12013 bed
= get_elf_backend_data (abfd
);
12015 if (!bfd_set_format (implib_bfd
, bfd_object
))
12018 /* Use flag from executable but make it a relocatable object. */
12019 flags
= bfd_get_file_flags (abfd
);
12020 flags
&= ~HAS_RELOC
;
12021 if (!bfd_set_start_address (implib_bfd
, 0)
12022 || !bfd_set_file_flags (implib_bfd
, flags
& ~EXEC_P
))
12025 /* Copy architecture of output file to import library file. */
12026 arch
= bfd_get_arch (abfd
);
12027 mach
= bfd_get_mach (abfd
);
12028 if (!bfd_set_arch_mach (implib_bfd
, arch
, mach
)
12029 && (abfd
->target_defaulted
12030 || bfd_get_arch (abfd
) != bfd_get_arch (implib_bfd
)))
12033 /* Get symbol table size. */
12034 symsize
= bfd_get_symtab_upper_bound (abfd
);
12038 /* Read in the symbol table. */
12039 sympp
= (asymbol
**) bfd_malloc (symsize
);
12043 symcount
= bfd_canonicalize_symtab (abfd
, sympp
);
12047 /* Allow the BFD backend to copy any private header data it
12048 understands from the output BFD to the import library BFD. */
12049 if (! bfd_copy_private_header_data (abfd
, implib_bfd
))
12052 /* Filter symbols to appear in the import library. */
12053 if (bed
->elf_backend_filter_implib_symbols
)
12054 symcount
= bed
->elf_backend_filter_implib_symbols (abfd
, info
, sympp
,
12057 symcount
= _bfd_elf_filter_global_symbols (abfd
, info
, sympp
, symcount
);
12060 bfd_set_error (bfd_error_no_symbols
);
12061 _bfd_error_handler (_("%pB: no symbol found for import library"),
12067 /* Make symbols absolute. */
12068 amt
= symcount
* sizeof (*osymbuf
);
12069 osymbuf
= (elf_symbol_type
*) bfd_alloc (implib_bfd
, amt
);
12070 if (osymbuf
== NULL
)
12073 for (src_count
= 0; src_count
< symcount
; src_count
++)
12075 memcpy (&osymbuf
[src_count
], (elf_symbol_type
*) sympp
[src_count
],
12076 sizeof (*osymbuf
));
12077 osymbuf
[src_count
].symbol
.section
= bfd_abs_section_ptr
;
12078 osymbuf
[src_count
].internal_elf_sym
.st_shndx
= SHN_ABS
;
12079 osymbuf
[src_count
].symbol
.value
+= sympp
[src_count
]->section
->vma
;
12080 osymbuf
[src_count
].internal_elf_sym
.st_value
=
12081 osymbuf
[src_count
].symbol
.value
;
12082 sympp
[src_count
] = &osymbuf
[src_count
].symbol
;
12085 bfd_set_symtab (implib_bfd
, sympp
, symcount
);
12087 /* Allow the BFD backend to copy any private data it understands
12088 from the output BFD to the import library BFD. This is done last
12089 to permit the routine to look at the filtered symbol table. */
12090 if (! bfd_copy_private_bfd_data (abfd
, implib_bfd
))
12093 if (!bfd_close (implib_bfd
))
12104 elf_final_link_free (bfd
*obfd
, struct elf_final_link_info
*flinfo
)
12108 if (flinfo
->symstrtab
!= NULL
)
12109 _bfd_elf_strtab_free (flinfo
->symstrtab
);
12110 free (flinfo
->contents
);
12111 free (flinfo
->external_relocs
);
12112 free (flinfo
->internal_relocs
);
12113 free (flinfo
->external_syms
);
12114 free (flinfo
->locsym_shndx
);
12115 free (flinfo
->internal_syms
);
12116 free (flinfo
->indices
);
12117 free (flinfo
->sections
);
12118 if (flinfo
->symshndxbuf
!= (Elf_External_Sym_Shndx
*) -1)
12119 free (flinfo
->symshndxbuf
);
12120 for (o
= obfd
->sections
; o
!= NULL
; o
= o
->next
)
12122 struct bfd_elf_section_data
*esdo
= elf_section_data (o
);
12123 free (esdo
->rel
.hashes
);
12124 free (esdo
->rela
.hashes
);
12128 /* Do the final step of an ELF link. */
12131 bfd_elf_final_link (bfd
*abfd
, struct bfd_link_info
*info
)
12133 bfd_boolean dynamic
;
12134 bfd_boolean emit_relocs
;
12136 struct elf_final_link_info flinfo
;
12138 struct bfd_link_order
*p
;
12140 bfd_size_type max_contents_size
;
12141 bfd_size_type max_external_reloc_size
;
12142 bfd_size_type max_internal_reloc_count
;
12143 bfd_size_type max_sym_count
;
12144 bfd_size_type max_sym_shndx_count
;
12145 Elf_Internal_Sym elfsym
;
12147 Elf_Internal_Shdr
*symtab_hdr
;
12148 Elf_Internal_Shdr
*symtab_shndx_hdr
;
12149 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
12150 struct elf_outext_info eoinfo
;
12151 bfd_boolean merged
;
12152 size_t relativecount
= 0;
12153 asection
*reldyn
= 0;
12155 asection
*attr_section
= NULL
;
12156 bfd_vma attr_size
= 0;
12157 const char *std_attrs_section
;
12158 struct elf_link_hash_table
*htab
= elf_hash_table (info
);
12159 bfd_boolean sections_removed
;
12162 if (!is_elf_hash_table (htab
))
12165 if (bfd_link_pic (info
))
12166 abfd
->flags
|= DYNAMIC
;
12168 dynamic
= htab
->dynamic_sections_created
;
12169 dynobj
= htab
->dynobj
;
12171 emit_relocs
= (bfd_link_relocatable (info
)
12172 || info
->emitrelocations
);
12174 memset (&flinfo
, 0, sizeof (flinfo
));
12175 flinfo
.info
= info
;
12176 flinfo
.output_bfd
= abfd
;
12177 flinfo
.symstrtab
= _bfd_elf_strtab_init ();
12178 if (flinfo
.symstrtab
== NULL
)
12183 flinfo
.hash_sec
= NULL
;
12184 flinfo
.symver_sec
= NULL
;
12188 flinfo
.hash_sec
= bfd_get_linker_section (dynobj
, ".hash");
12189 /* Note that dynsym_sec can be NULL (on VMS). */
12190 flinfo
.symver_sec
= bfd_get_linker_section (dynobj
, ".gnu.version");
12191 /* Note that it is OK if symver_sec is NULL. */
12194 if (info
->unique_symbol
12195 && !bfd_hash_table_init (&flinfo
.local_hash_table
,
12196 local_hash_newfunc
,
12197 sizeof (struct local_hash_entry
)))
12200 /* The object attributes have been merged. Remove the input
12201 sections from the link, and set the contents of the output
12203 sections_removed
= FALSE
;
12204 std_attrs_section
= get_elf_backend_data (abfd
)->obj_attrs_section
;
12205 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
12207 bfd_boolean remove_section
= FALSE
;
12209 if ((std_attrs_section
&& strcmp (o
->name
, std_attrs_section
) == 0)
12210 || strcmp (o
->name
, ".gnu.attributes") == 0)
12212 for (p
= o
->map_head
.link_order
; p
!= NULL
; p
= p
->next
)
12214 asection
*input_section
;
12216 if (p
->type
!= bfd_indirect_link_order
)
12218 input_section
= p
->u
.indirect
.section
;
12219 /* Hack: reset the SEC_HAS_CONTENTS flag so that
12220 elf_link_input_bfd ignores this section. */
12221 input_section
->flags
&= ~SEC_HAS_CONTENTS
;
12224 attr_size
= bfd_elf_obj_attr_size (abfd
);
12225 bfd_set_section_size (o
, attr_size
);
12226 /* Skip this section later on. */
12227 o
->map_head
.link_order
= NULL
;
12231 remove_section
= TRUE
;
12233 else if ((o
->flags
& SEC_GROUP
) != 0 && o
->size
== 0)
12235 /* Remove empty group section from linker output. */
12236 remove_section
= TRUE
;
12238 if (remove_section
)
12240 o
->flags
|= SEC_EXCLUDE
;
12241 bfd_section_list_remove (abfd
, o
);
12242 abfd
->section_count
--;
12243 sections_removed
= TRUE
;
12246 if (sections_removed
)
12247 _bfd_fix_excluded_sec_syms (abfd
, info
);
12249 /* Count up the number of relocations we will output for each output
12250 section, so that we know the sizes of the reloc sections. We
12251 also figure out some maximum sizes. */
12252 max_contents_size
= 0;
12253 max_external_reloc_size
= 0;
12254 max_internal_reloc_count
= 0;
12256 max_sym_shndx_count
= 0;
12258 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
12260 struct bfd_elf_section_data
*esdo
= elf_section_data (o
);
12261 o
->reloc_count
= 0;
12263 for (p
= o
->map_head
.link_order
; p
!= NULL
; p
= p
->next
)
12265 unsigned int reloc_count
= 0;
12266 unsigned int additional_reloc_count
= 0;
12267 struct bfd_elf_section_data
*esdi
= NULL
;
12269 if (p
->type
== bfd_section_reloc_link_order
12270 || p
->type
== bfd_symbol_reloc_link_order
)
12272 else if (p
->type
== bfd_indirect_link_order
)
12276 sec
= p
->u
.indirect
.section
;
12278 /* Mark all sections which are to be included in the
12279 link. This will normally be every section. We need
12280 to do this so that we can identify any sections which
12281 the linker has decided to not include. */
12282 sec
->linker_mark
= TRUE
;
12284 if (sec
->flags
& SEC_MERGE
)
12287 if (sec
->rawsize
> max_contents_size
)
12288 max_contents_size
= sec
->rawsize
;
12289 if (sec
->size
> max_contents_size
)
12290 max_contents_size
= sec
->size
;
12292 if (bfd_get_flavour (sec
->owner
) == bfd_target_elf_flavour
12293 && (sec
->owner
->flags
& DYNAMIC
) == 0)
12297 /* We are interested in just local symbols, not all
12299 if (elf_bad_symtab (sec
->owner
))
12300 sym_count
= (elf_tdata (sec
->owner
)->symtab_hdr
.sh_size
12301 / bed
->s
->sizeof_sym
);
12303 sym_count
= elf_tdata (sec
->owner
)->symtab_hdr
.sh_info
;
12305 if (sym_count
> max_sym_count
)
12306 max_sym_count
= sym_count
;
12308 if (sym_count
> max_sym_shndx_count
12309 && elf_symtab_shndx_list (sec
->owner
) != NULL
)
12310 max_sym_shndx_count
= sym_count
;
12312 if (esdo
->this_hdr
.sh_type
== SHT_REL
12313 || esdo
->this_hdr
.sh_type
== SHT_RELA
)
12314 /* Some backends use reloc_count in relocation sections
12315 to count particular types of relocs. Of course,
12316 reloc sections themselves can't have relocations. */
12318 else if (emit_relocs
)
12320 reloc_count
= sec
->reloc_count
;
12321 if (bed
->elf_backend_count_additional_relocs
)
12324 c
= (*bed
->elf_backend_count_additional_relocs
) (sec
);
12325 additional_reloc_count
+= c
;
12328 else if (bed
->elf_backend_count_relocs
)
12329 reloc_count
= (*bed
->elf_backend_count_relocs
) (info
, sec
);
12331 esdi
= elf_section_data (sec
);
12333 if ((sec
->flags
& SEC_RELOC
) != 0)
12335 size_t ext_size
= 0;
12337 if (esdi
->rel
.hdr
!= NULL
)
12338 ext_size
= esdi
->rel
.hdr
->sh_size
;
12339 if (esdi
->rela
.hdr
!= NULL
)
12340 ext_size
+= esdi
->rela
.hdr
->sh_size
;
12342 if (ext_size
> max_external_reloc_size
)
12343 max_external_reloc_size
= ext_size
;
12344 if (sec
->reloc_count
> max_internal_reloc_count
)
12345 max_internal_reloc_count
= sec
->reloc_count
;
12350 if (reloc_count
== 0)
12353 reloc_count
+= additional_reloc_count
;
12354 o
->reloc_count
+= reloc_count
;
12356 if (p
->type
== bfd_indirect_link_order
&& emit_relocs
)
12360 esdo
->rel
.count
+= NUM_SHDR_ENTRIES (esdi
->rel
.hdr
);
12361 esdo
->rel
.count
+= additional_reloc_count
;
12363 if (esdi
->rela
.hdr
)
12365 esdo
->rela
.count
+= NUM_SHDR_ENTRIES (esdi
->rela
.hdr
);
12366 esdo
->rela
.count
+= additional_reloc_count
;
12372 esdo
->rela
.count
+= reloc_count
;
12374 esdo
->rel
.count
+= reloc_count
;
12378 if (o
->reloc_count
> 0)
12379 o
->flags
|= SEC_RELOC
;
12382 /* Explicitly clear the SEC_RELOC flag. The linker tends to
12383 set it (this is probably a bug) and if it is set
12384 assign_section_numbers will create a reloc section. */
12385 o
->flags
&=~ SEC_RELOC
;
12388 /* If the SEC_ALLOC flag is not set, force the section VMA to
12389 zero. This is done in elf_fake_sections as well, but forcing
12390 the VMA to 0 here will ensure that relocs against these
12391 sections are handled correctly. */
12392 if ((o
->flags
& SEC_ALLOC
) == 0
12393 && ! o
->user_set_vma
)
12397 if (! bfd_link_relocatable (info
) && merged
)
12398 elf_link_hash_traverse (htab
, _bfd_elf_link_sec_merge_syms
, abfd
);
12400 /* Figure out the file positions for everything but the symbol table
12401 and the relocs. We set symcount to force assign_section_numbers
12402 to create a symbol table. */
12403 abfd
->symcount
= info
->strip
!= strip_all
|| emit_relocs
;
12404 BFD_ASSERT (! abfd
->output_has_begun
);
12405 if (! _bfd_elf_compute_section_file_positions (abfd
, info
))
12408 /* Set sizes, and assign file positions for reloc sections. */
12409 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
12411 struct bfd_elf_section_data
*esdo
= elf_section_data (o
);
12412 if ((o
->flags
& SEC_RELOC
) != 0)
12415 && !(_bfd_elf_link_size_reloc_section (abfd
, &esdo
->rel
)))
12419 && !(_bfd_elf_link_size_reloc_section (abfd
, &esdo
->rela
)))
12423 /* _bfd_elf_compute_section_file_positions makes temporary use
12424 of target_index. Reset it. */
12425 o
->target_index
= 0;
12427 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
12428 to count upwards while actually outputting the relocations. */
12429 esdo
->rel
.count
= 0;
12430 esdo
->rela
.count
= 0;
12432 if ((esdo
->this_hdr
.sh_offset
== (file_ptr
) -1)
12433 && !bfd_section_is_ctf (o
))
12435 /* Cache the section contents so that they can be compressed
12436 later. Use bfd_malloc since it will be freed by
12437 bfd_compress_section_contents. */
12438 unsigned char *contents
= esdo
->this_hdr
.contents
;
12439 if ((o
->flags
& SEC_ELF_COMPRESS
) == 0 || contents
!= NULL
)
12442 = (unsigned char *) bfd_malloc (esdo
->this_hdr
.sh_size
);
12443 if (contents
== NULL
)
12445 esdo
->this_hdr
.contents
= contents
;
12449 /* We have now assigned file positions for all the sections except .symtab,
12450 .strtab, and non-loaded reloc and compressed debugging sections. We start
12451 the .symtab section at the current file position, and write directly to it.
12452 We build the .strtab section in memory. */
12453 abfd
->symcount
= 0;
12454 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
12455 /* sh_name is set in prep_headers. */
12456 symtab_hdr
->sh_type
= SHT_SYMTAB
;
12457 /* sh_flags, sh_addr and sh_size all start off zero. */
12458 symtab_hdr
->sh_entsize
= bed
->s
->sizeof_sym
;
12459 /* sh_link is set in assign_section_numbers. */
12460 /* sh_info is set below. */
12461 /* sh_offset is set just below. */
12462 symtab_hdr
->sh_addralign
= (bfd_vma
) 1 << bed
->s
->log_file_align
;
12464 if (max_sym_count
< 20)
12465 max_sym_count
= 20;
12466 htab
->strtabsize
= max_sym_count
;
12467 amt
= max_sym_count
* sizeof (struct elf_sym_strtab
);
12468 htab
->strtab
= (struct elf_sym_strtab
*) bfd_malloc (amt
);
12469 if (htab
->strtab
== NULL
)
12471 /* The real buffer will be allocated in elf_link_swap_symbols_out. */
12473 = (elf_numsections (abfd
) > (SHN_LORESERVE
& 0xFFFF)
12474 ? (Elf_External_Sym_Shndx
*) -1 : NULL
);
12476 if (info
->strip
!= strip_all
|| emit_relocs
)
12478 bfd_boolean name_local_sections
;
12481 file_ptr off
= elf_next_file_pos (abfd
);
12483 _bfd_elf_assign_file_position_for_section (symtab_hdr
, off
, TRUE
);
12485 /* Note that at this point elf_next_file_pos (abfd) is
12486 incorrect. We do not yet know the size of the .symtab section.
12487 We correct next_file_pos below, after we do know the size. */
12489 /* Start writing out the symbol table. The first symbol is always a
12491 elfsym
.st_value
= 0;
12492 elfsym
.st_size
= 0;
12493 elfsym
.st_info
= 0;
12494 elfsym
.st_other
= 0;
12495 elfsym
.st_shndx
= SHN_UNDEF
;
12496 elfsym
.st_target_internal
= 0;
12497 if (elf_link_output_symstrtab (&flinfo
, NULL
, &elfsym
,
12498 bfd_und_section_ptr
, NULL
) != 1)
12501 /* Output a symbol for each section. We output these even if we are
12502 discarding local symbols, since they are used for relocs. These
12503 symbols usually have no names. We store the index of each one in
12504 the index field of the section, so that we can find it again when
12505 outputting relocs. */
12507 name_local_sections
12508 = (bed
->elf_backend_name_local_section_symbols
12509 && bed
->elf_backend_name_local_section_symbols (abfd
));
12512 elfsym
.st_size
= 0;
12513 elfsym
.st_info
= ELF_ST_INFO (STB_LOCAL
, STT_SECTION
);
12514 elfsym
.st_other
= 0;
12515 elfsym
.st_value
= 0;
12516 elfsym
.st_target_internal
= 0;
12517 for (i
= 1; i
< elf_numsections (abfd
); i
++)
12519 o
= bfd_section_from_elf_index (abfd
, i
);
12522 o
->target_index
= bfd_get_symcount (abfd
);
12523 elfsym
.st_shndx
= i
;
12524 if (!bfd_link_relocatable (info
))
12525 elfsym
.st_value
= o
->vma
;
12526 if (name_local_sections
)
12528 if (elf_link_output_symstrtab (&flinfo
, name
, &elfsym
, o
,
12535 /* On some targets like Irix 5 the symbol split between local and global
12536 ones recorded in the sh_info field needs to be done between section
12537 and all other symbols. */
12538 if (bed
->elf_backend_elfsym_local_is_section
12539 && bed
->elf_backend_elfsym_local_is_section (abfd
))
12540 symtab_hdr
->sh_info
= bfd_get_symcount (abfd
);
12542 /* Allocate some memory to hold information read in from the input
12544 if (max_contents_size
!= 0)
12546 flinfo
.contents
= (bfd_byte
*) bfd_malloc (max_contents_size
);
12547 if (flinfo
.contents
== NULL
)
12551 if (max_external_reloc_size
!= 0)
12553 flinfo
.external_relocs
= bfd_malloc (max_external_reloc_size
);
12554 if (flinfo
.external_relocs
== NULL
)
12558 if (max_internal_reloc_count
!= 0)
12560 amt
= max_internal_reloc_count
* sizeof (Elf_Internal_Rela
);
12561 flinfo
.internal_relocs
= (Elf_Internal_Rela
*) bfd_malloc (amt
);
12562 if (flinfo
.internal_relocs
== NULL
)
12566 if (max_sym_count
!= 0)
12568 amt
= max_sym_count
* bed
->s
->sizeof_sym
;
12569 flinfo
.external_syms
= (bfd_byte
*) bfd_malloc (amt
);
12570 if (flinfo
.external_syms
== NULL
)
12573 amt
= max_sym_count
* sizeof (Elf_Internal_Sym
);
12574 flinfo
.internal_syms
= (Elf_Internal_Sym
*) bfd_malloc (amt
);
12575 if (flinfo
.internal_syms
== NULL
)
12578 amt
= max_sym_count
* sizeof (long);
12579 flinfo
.indices
= (long int *) bfd_malloc (amt
);
12580 if (flinfo
.indices
== NULL
)
12583 amt
= max_sym_count
* sizeof (asection
*);
12584 flinfo
.sections
= (asection
**) bfd_malloc (amt
);
12585 if (flinfo
.sections
== NULL
)
12589 if (max_sym_shndx_count
!= 0)
12591 amt
= max_sym_shndx_count
* sizeof (Elf_External_Sym_Shndx
);
12592 flinfo
.locsym_shndx
= (Elf_External_Sym_Shndx
*) bfd_malloc (amt
);
12593 if (flinfo
.locsym_shndx
== NULL
)
12599 bfd_vma base
, end
= 0; /* Both bytes. */
12602 for (sec
= htab
->tls_sec
;
12603 sec
&& (sec
->flags
& SEC_THREAD_LOCAL
);
12606 bfd_size_type size
= sec
->size
;
12607 unsigned int opb
= bfd_octets_per_byte (abfd
, sec
);
12610 && (sec
->flags
& SEC_HAS_CONTENTS
) == 0)
12612 struct bfd_link_order
*ord
= sec
->map_tail
.link_order
;
12615 size
= ord
->offset
* opb
+ ord
->size
;
12617 end
= sec
->vma
+ size
/ opb
;
12619 base
= htab
->tls_sec
->vma
;
12620 /* Only align end of TLS section if static TLS doesn't have special
12621 alignment requirements. */
12622 if (bed
->static_tls_alignment
== 1)
12623 end
= align_power (end
, htab
->tls_sec
->alignment_power
);
12624 htab
->tls_size
= end
- base
;
12627 /* Reorder SHF_LINK_ORDER sections. */
12628 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
12630 if (!elf_fixup_link_order (abfd
, o
))
12634 if (!_bfd_elf_fixup_eh_frame_hdr (info
))
12637 /* Since ELF permits relocations to be against local symbols, we
12638 must have the local symbols available when we do the relocations.
12639 Since we would rather only read the local symbols once, and we
12640 would rather not keep them in memory, we handle all the
12641 relocations for a single input file at the same time.
12643 Unfortunately, there is no way to know the total number of local
12644 symbols until we have seen all of them, and the local symbol
12645 indices precede the global symbol indices. This means that when
12646 we are generating relocatable output, and we see a reloc against
12647 a global symbol, we can not know the symbol index until we have
12648 finished examining all the local symbols to see which ones we are
12649 going to output. To deal with this, we keep the relocations in
12650 memory, and don't output them until the end of the link. This is
12651 an unfortunate waste of memory, but I don't see a good way around
12652 it. Fortunately, it only happens when performing a relocatable
12653 link, which is not the common case. FIXME: If keep_memory is set
12654 we could write the relocs out and then read them again; I don't
12655 know how bad the memory loss will be. */
12657 for (sub
= info
->input_bfds
; sub
!= NULL
; sub
= sub
->link
.next
)
12658 sub
->output_has_begun
= FALSE
;
12659 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
12661 for (p
= o
->map_head
.link_order
; p
!= NULL
; p
= p
->next
)
12663 if (p
->type
== bfd_indirect_link_order
12664 && (bfd_get_flavour ((sub
= p
->u
.indirect
.section
->owner
))
12665 == bfd_target_elf_flavour
)
12666 && elf_elfheader (sub
)->e_ident
[EI_CLASS
] == bed
->s
->elfclass
)
12668 if (! sub
->output_has_begun
)
12670 if (! elf_link_input_bfd (&flinfo
, sub
))
12672 sub
->output_has_begun
= TRUE
;
12675 else if (p
->type
== bfd_section_reloc_link_order
12676 || p
->type
== bfd_symbol_reloc_link_order
)
12678 if (! elf_reloc_link_order (abfd
, info
, o
, p
))
12683 if (! _bfd_default_link_order (abfd
, info
, o
, p
))
12685 if (p
->type
== bfd_indirect_link_order
12686 && (bfd_get_flavour (sub
)
12687 == bfd_target_elf_flavour
)
12688 && (elf_elfheader (sub
)->e_ident
[EI_CLASS
]
12689 != bed
->s
->elfclass
))
12691 const char *iclass
, *oclass
;
12693 switch (bed
->s
->elfclass
)
12695 case ELFCLASS64
: oclass
= "ELFCLASS64"; break;
12696 case ELFCLASS32
: oclass
= "ELFCLASS32"; break;
12697 case ELFCLASSNONE
: oclass
= "ELFCLASSNONE"; break;
12701 switch (elf_elfheader (sub
)->e_ident
[EI_CLASS
])
12703 case ELFCLASS64
: iclass
= "ELFCLASS64"; break;
12704 case ELFCLASS32
: iclass
= "ELFCLASS32"; break;
12705 case ELFCLASSNONE
: iclass
= "ELFCLASSNONE"; break;
12709 bfd_set_error (bfd_error_wrong_format
);
12711 /* xgettext:c-format */
12712 (_("%pB: file class %s incompatible with %s"),
12713 sub
, iclass
, oclass
);
12722 /* Free symbol buffer if needed. */
12723 if (!info
->reduce_memory_overheads
)
12725 for (sub
= info
->input_bfds
; sub
!= NULL
; sub
= sub
->link
.next
)
12726 if (bfd_get_flavour (sub
) == bfd_target_elf_flavour
)
12728 free (elf_tdata (sub
)->symbuf
);
12729 elf_tdata (sub
)->symbuf
= NULL
;
12735 /* Output any global symbols that got converted to local in a
12736 version script or due to symbol visibility. We do this in a
12737 separate step since ELF requires all local symbols to appear
12738 prior to any global symbols. FIXME: We should only do this if
12739 some global symbols were, in fact, converted to become local.
12740 FIXME: Will this work correctly with the Irix 5 linker? */
12741 eoinfo
.failed
= FALSE
;
12742 eoinfo
.flinfo
= &flinfo
;
12743 eoinfo
.localsyms
= TRUE
;
12744 eoinfo
.file_sym_done
= FALSE
;
12745 bfd_hash_traverse (&info
->hash
->table
, elf_link_output_extsym
, &eoinfo
);
12749 goto return_local_hash_table
;
12752 /* If backend needs to output some local symbols not present in the hash
12753 table, do it now. */
12754 if (bed
->elf_backend_output_arch_local_syms
12755 && (info
->strip
!= strip_all
|| emit_relocs
))
12757 typedef int (*out_sym_func
)
12758 (void *, const char *, Elf_Internal_Sym
*, asection
*,
12759 struct elf_link_hash_entry
*);
12761 if (! ((*bed
->elf_backend_output_arch_local_syms
)
12762 (abfd
, info
, &flinfo
,
12763 (out_sym_func
) elf_link_output_symstrtab
)))
12766 goto return_local_hash_table
;
12770 /* That wrote out all the local symbols. Finish up the symbol table
12771 with the global symbols. Even if we want to strip everything we
12772 can, we still need to deal with those global symbols that got
12773 converted to local in a version script. */
12775 /* The sh_info field records the index of the first non local symbol. */
12776 if (!symtab_hdr
->sh_info
)
12777 symtab_hdr
->sh_info
= bfd_get_symcount (abfd
);
12780 && htab
->dynsym
!= NULL
12781 && htab
->dynsym
->output_section
!= bfd_abs_section_ptr
)
12783 Elf_Internal_Sym sym
;
12784 bfd_byte
*dynsym
= htab
->dynsym
->contents
;
12786 o
= htab
->dynsym
->output_section
;
12787 elf_section_data (o
)->this_hdr
.sh_info
= htab
->local_dynsymcount
+ 1;
12789 /* Write out the section symbols for the output sections. */
12790 if (bfd_link_pic (info
)
12791 || htab
->is_relocatable_executable
)
12797 sym
.st_info
= ELF_ST_INFO (STB_LOCAL
, STT_SECTION
);
12799 sym
.st_target_internal
= 0;
12801 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
12807 dynindx
= elf_section_data (s
)->dynindx
;
12810 indx
= elf_section_data (s
)->this_idx
;
12811 BFD_ASSERT (indx
> 0);
12812 sym
.st_shndx
= indx
;
12813 if (! check_dynsym (abfd
, &sym
))
12816 goto return_local_hash_table
;
12818 sym
.st_value
= s
->vma
;
12819 dest
= dynsym
+ dynindx
* bed
->s
->sizeof_sym
;
12821 /* Inform the linker of the addition of this symbol. */
12823 if (info
->callbacks
->ctf_new_dynsym
)
12824 info
->callbacks
->ctf_new_dynsym (dynindx
, &sym
);
12826 bed
->s
->swap_symbol_out (abfd
, &sym
, dest
, 0);
12830 /* Write out the local dynsyms. */
12831 if (htab
->dynlocal
)
12833 struct elf_link_local_dynamic_entry
*e
;
12834 for (e
= htab
->dynlocal
; e
; e
= e
->next
)
12839 /* Copy the internal symbol and turn off visibility.
12840 Note that we saved a word of storage and overwrote
12841 the original st_name with the dynstr_index. */
12843 sym
.st_other
&= ~ELF_ST_VISIBILITY (-1);
12844 sym
.st_shndx
= SHN_UNDEF
;
12846 s
= bfd_section_from_elf_index (e
->input_bfd
,
12849 && s
->output_section
!= NULL
12850 && elf_section_data (s
->output_section
) != NULL
)
12853 elf_section_data (s
->output_section
)->this_idx
;
12854 if (! check_dynsym (abfd
, &sym
))
12857 goto return_local_hash_table
;
12859 sym
.st_value
= (s
->output_section
->vma
12861 + e
->isym
.st_value
);
12864 /* Inform the linker of the addition of this symbol. */
12866 if (info
->callbacks
->ctf_new_dynsym
)
12867 info
->callbacks
->ctf_new_dynsym (e
->dynindx
, &sym
);
12869 dest
= dynsym
+ e
->dynindx
* bed
->s
->sizeof_sym
;
12870 bed
->s
->swap_symbol_out (abfd
, &sym
, dest
, 0);
12875 /* We get the global symbols from the hash table. */
12876 eoinfo
.failed
= FALSE
;
12877 eoinfo
.localsyms
= FALSE
;
12878 eoinfo
.flinfo
= &flinfo
;
12879 bfd_hash_traverse (&info
->hash
->table
, elf_link_output_extsym
, &eoinfo
);
12883 goto return_local_hash_table
;
12886 /* If backend needs to output some symbols not present in the hash
12887 table, do it now. */
12888 if (bed
->elf_backend_output_arch_syms
12889 && (info
->strip
!= strip_all
|| emit_relocs
))
12891 typedef int (*out_sym_func
)
12892 (void *, const char *, Elf_Internal_Sym
*, asection
*,
12893 struct elf_link_hash_entry
*);
12895 if (! ((*bed
->elf_backend_output_arch_syms
)
12896 (abfd
, info
, &flinfo
,
12897 (out_sym_func
) elf_link_output_symstrtab
)))
12900 goto return_local_hash_table
;
12904 /* Finalize the .strtab section. */
12905 _bfd_elf_strtab_finalize (flinfo
.symstrtab
);
12907 /* Swap out the .strtab section. */
12908 if (!elf_link_swap_symbols_out (&flinfo
))
12911 goto return_local_hash_table
;
12914 /* Now we know the size of the symtab section. */
12915 if (bfd_get_symcount (abfd
) > 0)
12917 /* Finish up and write out the symbol string table (.strtab)
12919 Elf_Internal_Shdr
*symstrtab_hdr
= NULL
;
12920 file_ptr off
= symtab_hdr
->sh_offset
+ symtab_hdr
->sh_size
;
12922 if (elf_symtab_shndx_list (abfd
))
12924 symtab_shndx_hdr
= & elf_symtab_shndx_list (abfd
)->hdr
;
12926 if (symtab_shndx_hdr
!= NULL
&& symtab_shndx_hdr
->sh_name
!= 0)
12928 symtab_shndx_hdr
->sh_type
= SHT_SYMTAB_SHNDX
;
12929 symtab_shndx_hdr
->sh_entsize
= sizeof (Elf_External_Sym_Shndx
);
12930 symtab_shndx_hdr
->sh_addralign
= sizeof (Elf_External_Sym_Shndx
);
12931 amt
= bfd_get_symcount (abfd
) * sizeof (Elf_External_Sym_Shndx
);
12932 symtab_shndx_hdr
->sh_size
= amt
;
12934 off
= _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr
,
12937 if (bfd_seek (abfd
, symtab_shndx_hdr
->sh_offset
, SEEK_SET
) != 0
12938 || (bfd_bwrite (flinfo
.symshndxbuf
, amt
, abfd
) != amt
))
12941 goto return_local_hash_table
;
12946 symstrtab_hdr
= &elf_tdata (abfd
)->strtab_hdr
;
12947 /* sh_name was set in prep_headers. */
12948 symstrtab_hdr
->sh_type
= SHT_STRTAB
;
12949 symstrtab_hdr
->sh_flags
= bed
->elf_strtab_flags
;
12950 symstrtab_hdr
->sh_addr
= 0;
12951 symstrtab_hdr
->sh_size
= _bfd_elf_strtab_size (flinfo
.symstrtab
);
12952 symstrtab_hdr
->sh_entsize
= 0;
12953 symstrtab_hdr
->sh_link
= 0;
12954 symstrtab_hdr
->sh_info
= 0;
12955 /* sh_offset is set just below. */
12956 symstrtab_hdr
->sh_addralign
= 1;
12958 off
= _bfd_elf_assign_file_position_for_section (symstrtab_hdr
,
12960 elf_next_file_pos (abfd
) = off
;
12962 if (bfd_seek (abfd
, symstrtab_hdr
->sh_offset
, SEEK_SET
) != 0
12963 || ! _bfd_elf_strtab_emit (abfd
, flinfo
.symstrtab
))
12966 goto return_local_hash_table
;
12970 if (info
->out_implib_bfd
&& !elf_output_implib (abfd
, info
))
12972 _bfd_error_handler (_("%pB: failed to generate import library"),
12973 info
->out_implib_bfd
);
12975 goto return_local_hash_table
;
12978 /* Adjust the relocs to have the correct symbol indices. */
12979 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
12981 struct bfd_elf_section_data
*esdo
= elf_section_data (o
);
12984 if ((o
->flags
& SEC_RELOC
) == 0)
12987 sort
= bed
->sort_relocs_p
== NULL
|| (*bed
->sort_relocs_p
) (o
);
12988 if (esdo
->rel
.hdr
!= NULL
12989 && !elf_link_adjust_relocs (abfd
, o
, &esdo
->rel
, sort
, info
))
12992 goto return_local_hash_table
;
12994 if (esdo
->rela
.hdr
!= NULL
12995 && !elf_link_adjust_relocs (abfd
, o
, &esdo
->rela
, sort
, info
))
12998 goto return_local_hash_table
;
13001 /* Set the reloc_count field to 0 to prevent write_relocs from
13002 trying to swap the relocs out itself. */
13003 o
->reloc_count
= 0;
13006 if (dynamic
&& info
->combreloc
&& dynobj
!= NULL
)
13007 relativecount
= elf_link_sort_relocs (abfd
, info
, &reldyn
);
13009 /* If we are linking against a dynamic object, or generating a
13010 shared library, finish up the dynamic linking information. */
13013 bfd_byte
*dyncon
, *dynconend
;
13015 /* Fix up .dynamic entries. */
13016 o
= bfd_get_linker_section (dynobj
, ".dynamic");
13017 BFD_ASSERT (o
!= NULL
);
13019 dyncon
= o
->contents
;
13020 dynconend
= o
->contents
+ o
->size
;
13021 for (; dyncon
< dynconend
; dyncon
+= bed
->s
->sizeof_dyn
)
13023 Elf_Internal_Dyn dyn
;
13026 bfd_size_type sh_size
;
13029 bed
->s
->swap_dyn_in (dynobj
, dyncon
, &dyn
);
13036 if (relativecount
> 0 && dyncon
+ bed
->s
->sizeof_dyn
< dynconend
)
13038 switch (elf_section_data (reldyn
)->this_hdr
.sh_type
)
13040 case SHT_REL
: dyn
.d_tag
= DT_RELCOUNT
; break;
13041 case SHT_RELA
: dyn
.d_tag
= DT_RELACOUNT
; break;
13044 dyn
.d_un
.d_val
= relativecount
;
13051 name
= info
->init_function
;
13054 name
= info
->fini_function
;
13057 struct elf_link_hash_entry
*h
;
13059 h
= elf_link_hash_lookup (htab
, name
, FALSE
, FALSE
, TRUE
);
13061 && (h
->root
.type
== bfd_link_hash_defined
13062 || h
->root
.type
== bfd_link_hash_defweak
))
13064 dyn
.d_un
.d_ptr
= h
->root
.u
.def
.value
;
13065 o
= h
->root
.u
.def
.section
;
13066 if (o
->output_section
!= NULL
)
13067 dyn
.d_un
.d_ptr
+= (o
->output_section
->vma
13068 + o
->output_offset
);
13071 /* The symbol is imported from another shared
13072 library and does not apply to this one. */
13073 dyn
.d_un
.d_ptr
= 0;
13080 case DT_PREINIT_ARRAYSZ
:
13081 name
= ".preinit_array";
13083 case DT_INIT_ARRAYSZ
:
13084 name
= ".init_array";
13086 case DT_FINI_ARRAYSZ
:
13087 name
= ".fini_array";
13089 o
= bfd_get_section_by_name (abfd
, name
);
13093 (_("could not find section %s"), name
);
13098 (_("warning: %s section has zero size"), name
);
13099 dyn
.d_un
.d_val
= o
->size
;
13102 case DT_PREINIT_ARRAY
:
13103 name
= ".preinit_array";
13105 case DT_INIT_ARRAY
:
13106 name
= ".init_array";
13108 case DT_FINI_ARRAY
:
13109 name
= ".fini_array";
13111 o
= bfd_get_section_by_name (abfd
, name
);
13118 name
= ".gnu.hash";
13127 name
= ".gnu.version_d";
13130 name
= ".gnu.version_r";
13133 name
= ".gnu.version";
13135 o
= bfd_get_linker_section (dynobj
, name
);
13137 if (o
== NULL
|| bfd_is_abs_section (o
->output_section
))
13140 (_("could not find section %s"), name
);
13143 if (elf_section_data (o
->output_section
)->this_hdr
.sh_type
== SHT_NOTE
)
13146 (_("warning: section '%s' is being made into a note"), name
);
13147 bfd_set_error (bfd_error_nonrepresentable_section
);
13150 dyn
.d_un
.d_ptr
= o
->output_section
->vma
+ o
->output_offset
;
13157 if (dyn
.d_tag
== DT_REL
|| dyn
.d_tag
== DT_RELSZ
)
13163 for (i
= 1; i
< elf_numsections (abfd
); i
++)
13165 Elf_Internal_Shdr
*hdr
;
13167 hdr
= elf_elfsections (abfd
)[i
];
13168 if (hdr
->sh_type
== type
13169 && (hdr
->sh_flags
& SHF_ALLOC
) != 0)
13171 sh_size
+= hdr
->sh_size
;
13173 || sh_addr
> hdr
->sh_addr
)
13174 sh_addr
= hdr
->sh_addr
;
13178 if (bed
->dtrel_excludes_plt
&& htab
->srelplt
!= NULL
)
13180 unsigned int opb
= bfd_octets_per_byte (abfd
, o
);
13182 /* Don't count procedure linkage table relocs in the
13183 overall reloc count. */
13184 sh_size
-= htab
->srelplt
->size
;
13186 /* If the size is zero, make the address zero too.
13187 This is to avoid a glibc bug. If the backend
13188 emits DT_RELA/DT_RELASZ even when DT_RELASZ is
13189 zero, then we'll put DT_RELA at the end of
13190 DT_JMPREL. glibc will interpret the end of
13191 DT_RELA matching the end of DT_JMPREL as the
13192 case where DT_RELA includes DT_JMPREL, and for
13193 LD_BIND_NOW will decide that processing DT_RELA
13194 will process the PLT relocs too. Net result:
13195 No PLT relocs applied. */
13198 /* If .rela.plt is the first .rela section, exclude
13199 it from DT_RELA. */
13200 else if (sh_addr
== (htab
->srelplt
->output_section
->vma
13201 + htab
->srelplt
->output_offset
) * opb
)
13202 sh_addr
+= htab
->srelplt
->size
;
13205 if (dyn
.d_tag
== DT_RELSZ
|| dyn
.d_tag
== DT_RELASZ
)
13206 dyn
.d_un
.d_val
= sh_size
;
13208 dyn
.d_un
.d_ptr
= sh_addr
;
13211 bed
->s
->swap_dyn_out (dynobj
, &dyn
, dyncon
);
13215 /* If we have created any dynamic sections, then output them. */
13216 if (dynobj
!= NULL
)
13218 if (! (*bed
->elf_backend_finish_dynamic_sections
) (abfd
, info
))
13221 /* Check for DT_TEXTREL (late, in case the backend removes it). */
13222 if (bfd_link_textrel_check (info
)
13223 && (o
= bfd_get_linker_section (dynobj
, ".dynamic")) != NULL
)
13225 bfd_byte
*dyncon
, *dynconend
;
13227 dyncon
= o
->contents
;
13228 dynconend
= o
->contents
+ o
->size
;
13229 for (; dyncon
< dynconend
; dyncon
+= bed
->s
->sizeof_dyn
)
13231 Elf_Internal_Dyn dyn
;
13233 bed
->s
->swap_dyn_in (dynobj
, dyncon
, &dyn
);
13235 if (dyn
.d_tag
== DT_TEXTREL
)
13237 if (info
->textrel_check
== textrel_check_error
)
13238 info
->callbacks
->einfo
13239 (_("%P%X: read-only segment has dynamic relocations\n"));
13240 else if (bfd_link_dll (info
))
13241 info
->callbacks
->einfo
13242 (_("%P: warning: creating DT_TEXTREL in a shared object\n"));
13244 info
->callbacks
->einfo
13245 (_("%P: warning: creating DT_TEXTREL in a PIE\n"));
13251 for (o
= dynobj
->sections
; o
!= NULL
; o
= o
->next
)
13253 if ((o
->flags
& SEC_HAS_CONTENTS
) == 0
13255 || o
->output_section
== bfd_abs_section_ptr
)
13257 if ((o
->flags
& SEC_LINKER_CREATED
) == 0)
13259 /* At this point, we are only interested in sections
13260 created by _bfd_elf_link_create_dynamic_sections. */
13263 if (htab
->stab_info
.stabstr
== o
)
13265 if (htab
->eh_info
.hdr_sec
== o
)
13267 if (strcmp (o
->name
, ".dynstr") != 0)
13269 bfd_size_type octets
= ((file_ptr
) o
->output_offset
13270 * bfd_octets_per_byte (abfd
, o
));
13271 if (!bfd_set_section_contents (abfd
, o
->output_section
,
13272 o
->contents
, octets
, o
->size
))
13277 /* The contents of the .dynstr section are actually in a
13281 off
= elf_section_data (o
->output_section
)->this_hdr
.sh_offset
;
13282 if (bfd_seek (abfd
, off
, SEEK_SET
) != 0
13283 || !_bfd_elf_strtab_emit (abfd
, htab
->dynstr
))
13289 if (!info
->resolve_section_groups
)
13291 bfd_boolean failed
= FALSE
;
13293 BFD_ASSERT (bfd_link_relocatable (info
));
13294 bfd_map_over_sections (abfd
, bfd_elf_set_group_contents
, &failed
);
13299 /* If we have optimized stabs strings, output them. */
13300 if (htab
->stab_info
.stabstr
!= NULL
)
13302 if (!_bfd_write_stab_strings (abfd
, &htab
->stab_info
))
13306 if (! _bfd_elf_write_section_eh_frame_hdr (abfd
, info
))
13309 if (info
->callbacks
->emit_ctf
)
13310 info
->callbacks
->emit_ctf ();
13312 elf_final_link_free (abfd
, &flinfo
);
13316 bfd_byte
*contents
= (bfd_byte
*) bfd_malloc (attr_size
);
13317 if (contents
== NULL
)
13319 /* Bail out and fail. */
13321 goto return_local_hash_table
;
13323 bfd_elf_set_obj_attr_contents (abfd
, contents
, attr_size
);
13324 bfd_set_section_contents (abfd
, attr_section
, contents
, 0, attr_size
);
13328 return_local_hash_table
:
13329 if (info
->unique_symbol
)
13330 bfd_hash_table_free (&flinfo
.local_hash_table
);
13334 elf_final_link_free (abfd
, &flinfo
);
13336 goto return_local_hash_table
;
13339 /* Initialize COOKIE for input bfd ABFD. */
13342 init_reloc_cookie (struct elf_reloc_cookie
*cookie
,
13343 struct bfd_link_info
*info
, bfd
*abfd
)
13345 Elf_Internal_Shdr
*symtab_hdr
;
13346 const struct elf_backend_data
*bed
;
13348 bed
= get_elf_backend_data (abfd
);
13349 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
13351 cookie
->abfd
= abfd
;
13352 cookie
->sym_hashes
= elf_sym_hashes (abfd
);
13353 cookie
->bad_symtab
= elf_bad_symtab (abfd
);
13354 if (cookie
->bad_symtab
)
13356 cookie
->locsymcount
= symtab_hdr
->sh_size
/ bed
->s
->sizeof_sym
;
13357 cookie
->extsymoff
= 0;
13361 cookie
->locsymcount
= symtab_hdr
->sh_info
;
13362 cookie
->extsymoff
= symtab_hdr
->sh_info
;
13365 if (bed
->s
->arch_size
== 32)
13366 cookie
->r_sym_shift
= 8;
13368 cookie
->r_sym_shift
= 32;
13370 cookie
->locsyms
= (Elf_Internal_Sym
*) symtab_hdr
->contents
;
13371 if (cookie
->locsyms
== NULL
&& cookie
->locsymcount
!= 0)
13373 cookie
->locsyms
= bfd_elf_get_elf_syms (abfd
, symtab_hdr
,
13374 cookie
->locsymcount
, 0,
13376 if (cookie
->locsyms
== NULL
)
13378 info
->callbacks
->einfo (_("%P%X: can not read symbols: %E\n"));
13381 if (info
->keep_memory
)
13382 symtab_hdr
->contents
= (bfd_byte
*) cookie
->locsyms
;
13387 /* Free the memory allocated by init_reloc_cookie, if appropriate. */
13390 fini_reloc_cookie (struct elf_reloc_cookie
*cookie
, bfd
*abfd
)
13392 Elf_Internal_Shdr
*symtab_hdr
;
13394 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
13395 if (symtab_hdr
->contents
!= (unsigned char *) cookie
->locsyms
)
13396 free (cookie
->locsyms
);
13399 /* Initialize the relocation information in COOKIE for input section SEC
13400 of input bfd ABFD. */
13403 init_reloc_cookie_rels (struct elf_reloc_cookie
*cookie
,
13404 struct bfd_link_info
*info
, bfd
*abfd
,
13407 if (sec
->reloc_count
== 0)
13409 cookie
->rels
= NULL
;
13410 cookie
->relend
= NULL
;
13414 cookie
->rels
= _bfd_elf_link_read_relocs (abfd
, sec
, NULL
, NULL
,
13415 info
->keep_memory
);
13416 if (cookie
->rels
== NULL
)
13418 cookie
->rel
= cookie
->rels
;
13419 cookie
->relend
= cookie
->rels
+ sec
->reloc_count
;
13421 cookie
->rel
= cookie
->rels
;
13425 /* Free the memory allocated by init_reloc_cookie_rels,
13429 fini_reloc_cookie_rels (struct elf_reloc_cookie
*cookie
,
13432 if (elf_section_data (sec
)->relocs
!= cookie
->rels
)
13433 free (cookie
->rels
);
13436 /* Initialize the whole of COOKIE for input section SEC. */
13439 init_reloc_cookie_for_section (struct elf_reloc_cookie
*cookie
,
13440 struct bfd_link_info
*info
,
13443 if (!init_reloc_cookie (cookie
, info
, sec
->owner
))
13445 if (!init_reloc_cookie_rels (cookie
, info
, sec
->owner
, sec
))
13450 fini_reloc_cookie (cookie
, sec
->owner
);
13455 /* Free the memory allocated by init_reloc_cookie_for_section,
13459 fini_reloc_cookie_for_section (struct elf_reloc_cookie
*cookie
,
13462 fini_reloc_cookie_rels (cookie
, sec
);
13463 fini_reloc_cookie (cookie
, sec
->owner
);
13466 /* Garbage collect unused sections. */
13468 /* Default gc_mark_hook. */
13471 _bfd_elf_gc_mark_hook (asection
*sec
,
13472 struct bfd_link_info
*info ATTRIBUTE_UNUSED
,
13473 Elf_Internal_Rela
*rel ATTRIBUTE_UNUSED
,
13474 struct elf_link_hash_entry
*h
,
13475 Elf_Internal_Sym
*sym
)
13479 switch (h
->root
.type
)
13481 case bfd_link_hash_defined
:
13482 case bfd_link_hash_defweak
:
13483 return h
->root
.u
.def
.section
;
13485 case bfd_link_hash_common
:
13486 return h
->root
.u
.c
.p
->section
;
13493 return bfd_section_from_elf_index (sec
->owner
, sym
->st_shndx
);
13498 /* Return the debug definition section. */
13501 elf_gc_mark_debug_section (asection
*sec ATTRIBUTE_UNUSED
,
13502 struct bfd_link_info
*info ATTRIBUTE_UNUSED
,
13503 Elf_Internal_Rela
*rel ATTRIBUTE_UNUSED
,
13504 struct elf_link_hash_entry
*h
,
13505 Elf_Internal_Sym
*sym
)
13509 /* Return the global debug definition section. */
13510 if ((h
->root
.type
== bfd_link_hash_defined
13511 || h
->root
.type
== bfd_link_hash_defweak
)
13512 && (h
->root
.u
.def
.section
->flags
& SEC_DEBUGGING
) != 0)
13513 return h
->root
.u
.def
.section
;
13517 /* Return the local debug definition section. */
13518 asection
*isec
= bfd_section_from_elf_index (sec
->owner
,
13520 if ((isec
->flags
& SEC_DEBUGGING
) != 0)
13527 /* COOKIE->rel describes a relocation against section SEC, which is
13528 a section we've decided to keep. Return the section that contains
13529 the relocation symbol, or NULL if no section contains it. */
13532 _bfd_elf_gc_mark_rsec (struct bfd_link_info
*info
, asection
*sec
,
13533 elf_gc_mark_hook_fn gc_mark_hook
,
13534 struct elf_reloc_cookie
*cookie
,
13535 bfd_boolean
*start_stop
)
13537 unsigned long r_symndx
;
13538 struct elf_link_hash_entry
*h
, *hw
;
13540 r_symndx
= cookie
->rel
->r_info
>> cookie
->r_sym_shift
;
13541 if (r_symndx
== STN_UNDEF
)
13544 if (r_symndx
>= cookie
->locsymcount
13545 || ELF_ST_BIND (cookie
->locsyms
[r_symndx
].st_info
) != STB_LOCAL
)
13547 h
= cookie
->sym_hashes
[r_symndx
- cookie
->extsymoff
];
13550 info
->callbacks
->einfo (_("%F%P: corrupt input: %pB\n"),
13554 while (h
->root
.type
== bfd_link_hash_indirect
13555 || h
->root
.type
== bfd_link_hash_warning
)
13556 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
13558 /* Keep all aliases of the symbol too. If an object symbol
13559 needs to be copied into .dynbss then all of its aliases
13560 should be present as dynamic symbols, not just the one used
13561 on the copy relocation. */
13563 while (hw
->is_weakalias
)
13569 if (start_stop
!= NULL
)
13571 /* To work around a glibc bug, mark XXX input sections
13572 when there is a reference to __start_XXX or __stop_XXX
13576 asection
*s
= h
->u2
.start_stop_section
;
13577 *start_stop
= !s
->gc_mark
;
13582 return (*gc_mark_hook
) (sec
, info
, cookie
->rel
, h
, NULL
);
13585 return (*gc_mark_hook
) (sec
, info
, cookie
->rel
, NULL
,
13586 &cookie
->locsyms
[r_symndx
]);
13589 /* COOKIE->rel describes a relocation against section SEC, which is
13590 a section we've decided to keep. Mark the section that contains
13591 the relocation symbol. */
13594 _bfd_elf_gc_mark_reloc (struct bfd_link_info
*info
,
13596 elf_gc_mark_hook_fn gc_mark_hook
,
13597 struct elf_reloc_cookie
*cookie
)
13600 bfd_boolean start_stop
= FALSE
;
13602 rsec
= _bfd_elf_gc_mark_rsec (info
, sec
, gc_mark_hook
, cookie
, &start_stop
);
13603 while (rsec
!= NULL
)
13605 if (!rsec
->gc_mark
)
13607 if (bfd_get_flavour (rsec
->owner
) != bfd_target_elf_flavour
13608 || (rsec
->owner
->flags
& DYNAMIC
) != 0)
13610 else if (!_bfd_elf_gc_mark (info
, rsec
, gc_mark_hook
))
13615 rsec
= bfd_get_next_section_by_name (rsec
->owner
, rsec
);
13620 /* The mark phase of garbage collection. For a given section, mark
13621 it and any sections in this section's group, and all the sections
13622 which define symbols to which it refers. */
13625 _bfd_elf_gc_mark (struct bfd_link_info
*info
,
13627 elf_gc_mark_hook_fn gc_mark_hook
)
13630 asection
*group_sec
, *eh_frame
;
13634 /* Mark all the sections in the group. */
13635 group_sec
= elf_section_data (sec
)->next_in_group
;
13636 if (group_sec
&& !group_sec
->gc_mark
)
13637 if (!_bfd_elf_gc_mark (info
, group_sec
, gc_mark_hook
))
13640 /* Look through the section relocs. */
13642 eh_frame
= elf_eh_frame_section (sec
->owner
);
13643 if ((sec
->flags
& SEC_RELOC
) != 0
13644 && sec
->reloc_count
> 0
13645 && sec
!= eh_frame
)
13647 struct elf_reloc_cookie cookie
;
13649 if (!init_reloc_cookie_for_section (&cookie
, info
, sec
))
13653 for (; cookie
.rel
< cookie
.relend
; cookie
.rel
++)
13654 if (!_bfd_elf_gc_mark_reloc (info
, sec
, gc_mark_hook
, &cookie
))
13659 fini_reloc_cookie_for_section (&cookie
, sec
);
13663 if (ret
&& eh_frame
&& elf_fde_list (sec
))
13665 struct elf_reloc_cookie cookie
;
13667 if (!init_reloc_cookie_for_section (&cookie
, info
, eh_frame
))
13671 if (!_bfd_elf_gc_mark_fdes (info
, sec
, eh_frame
,
13672 gc_mark_hook
, &cookie
))
13674 fini_reloc_cookie_for_section (&cookie
, eh_frame
);
13678 eh_frame
= elf_section_eh_frame_entry (sec
);
13679 if (ret
&& eh_frame
&& !eh_frame
->gc_mark
)
13680 if (!_bfd_elf_gc_mark (info
, eh_frame
, gc_mark_hook
))
13686 /* Scan and mark sections in a special or debug section group. */
13689 _bfd_elf_gc_mark_debug_special_section_group (asection
*grp
)
13691 /* Point to first section of section group. */
13693 /* Used to iterate the section group. */
13696 bfd_boolean is_special_grp
= TRUE
;
13697 bfd_boolean is_debug_grp
= TRUE
;
13699 /* First scan to see if group contains any section other than debug
13700 and special section. */
13701 ssec
= msec
= elf_next_in_group (grp
);
13704 if ((msec
->flags
& SEC_DEBUGGING
) == 0)
13705 is_debug_grp
= FALSE
;
13707 if ((msec
->flags
& (SEC_ALLOC
| SEC_LOAD
| SEC_RELOC
)) != 0)
13708 is_special_grp
= FALSE
;
13710 msec
= elf_next_in_group (msec
);
13712 while (msec
!= ssec
);
13714 /* If this is a pure debug section group or pure special section group,
13715 keep all sections in this group. */
13716 if (is_debug_grp
|| is_special_grp
)
13721 msec
= elf_next_in_group (msec
);
13723 while (msec
!= ssec
);
13727 /* Keep debug and special sections. */
13730 _bfd_elf_gc_mark_extra_sections (struct bfd_link_info
*info
,
13731 elf_gc_mark_hook_fn mark_hook
)
13735 for (ibfd
= info
->input_bfds
; ibfd
!= NULL
; ibfd
= ibfd
->link
.next
)
13738 bfd_boolean some_kept
;
13739 bfd_boolean debug_frag_seen
;
13740 bfd_boolean has_kept_debug_info
;
13742 if (bfd_get_flavour (ibfd
) != bfd_target_elf_flavour
)
13744 isec
= ibfd
->sections
;
13745 if (isec
== NULL
|| isec
->sec_info_type
== SEC_INFO_TYPE_JUST_SYMS
)
13748 /* Ensure all linker created sections are kept,
13749 see if any other section is already marked,
13750 and note if we have any fragmented debug sections. */
13751 debug_frag_seen
= some_kept
= has_kept_debug_info
= FALSE
;
13752 for (isec
= ibfd
->sections
; isec
!= NULL
; isec
= isec
->next
)
13754 if ((isec
->flags
& SEC_LINKER_CREATED
) != 0)
13756 else if (isec
->gc_mark
13757 && (isec
->flags
& SEC_ALLOC
) != 0
13758 && elf_section_type (isec
) != SHT_NOTE
)
13762 /* Since all sections, except for backend specific ones,
13763 have been garbage collected, call mark_hook on this
13764 section if any of its linked-to sections is marked. */
13765 asection
*linked_to_sec
= elf_linked_to_section (isec
);
13766 for (; linked_to_sec
!= NULL
;
13767 linked_to_sec
= elf_linked_to_section (linked_to_sec
))
13768 if (linked_to_sec
->gc_mark
)
13770 if (!_bfd_elf_gc_mark (info
, isec
, mark_hook
))
13776 if (!debug_frag_seen
13777 && (isec
->flags
& SEC_DEBUGGING
)
13778 && CONST_STRNEQ (isec
->name
, ".debug_line."))
13779 debug_frag_seen
= TRUE
;
13780 else if (strcmp (bfd_section_name (isec
),
13781 "__patchable_function_entries") == 0
13782 && elf_linked_to_section (isec
) == NULL
)
13783 info
->callbacks
->einfo (_("%F%P: %pB(%pA): error: "
13784 "need linked-to section "
13785 "for --gc-sections\n"),
13786 isec
->owner
, isec
);
13789 /* If no non-note alloc section in this file will be kept, then
13790 we can toss out the debug and special sections. */
13794 /* Keep debug and special sections like .comment when they are
13795 not part of a group. Also keep section groups that contain
13796 just debug sections or special sections. NB: Sections with
13797 linked-to section has been handled above. */
13798 for (isec
= ibfd
->sections
; isec
!= NULL
; isec
= isec
->next
)
13800 if ((isec
->flags
& SEC_GROUP
) != 0)
13801 _bfd_elf_gc_mark_debug_special_section_group (isec
);
13802 else if (((isec
->flags
& SEC_DEBUGGING
) != 0
13803 || (isec
->flags
& (SEC_ALLOC
| SEC_LOAD
| SEC_RELOC
)) == 0)
13804 && elf_next_in_group (isec
) == NULL
13805 && elf_linked_to_section (isec
) == NULL
)
13807 if (isec
->gc_mark
&& (isec
->flags
& SEC_DEBUGGING
) != 0)
13808 has_kept_debug_info
= TRUE
;
13811 /* Look for CODE sections which are going to be discarded,
13812 and find and discard any fragmented debug sections which
13813 are associated with that code section. */
13814 if (debug_frag_seen
)
13815 for (isec
= ibfd
->sections
; isec
!= NULL
; isec
= isec
->next
)
13816 if ((isec
->flags
& SEC_CODE
) != 0
13817 && isec
->gc_mark
== 0)
13822 ilen
= strlen (isec
->name
);
13824 /* Association is determined by the name of the debug
13825 section containing the name of the code section as
13826 a suffix. For example .debug_line.text.foo is a
13827 debug section associated with .text.foo. */
13828 for (dsec
= ibfd
->sections
; dsec
!= NULL
; dsec
= dsec
->next
)
13832 if (dsec
->gc_mark
== 0
13833 || (dsec
->flags
& SEC_DEBUGGING
) == 0)
13836 dlen
= strlen (dsec
->name
);
13839 && strncmp (dsec
->name
+ (dlen
- ilen
),
13840 isec
->name
, ilen
) == 0)
13845 /* Mark debug sections referenced by kept debug sections. */
13846 if (has_kept_debug_info
)
13847 for (isec
= ibfd
->sections
; isec
!= NULL
; isec
= isec
->next
)
13849 && (isec
->flags
& SEC_DEBUGGING
) != 0)
13850 if (!_bfd_elf_gc_mark (info
, isec
,
13851 elf_gc_mark_debug_section
))
13858 elf_gc_sweep (bfd
*abfd
, struct bfd_link_info
*info
)
13861 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
13863 for (sub
= info
->input_bfds
; sub
!= NULL
; sub
= sub
->link
.next
)
13867 if (bfd_get_flavour (sub
) != bfd_target_elf_flavour
13868 || elf_object_id (sub
) != elf_hash_table_id (elf_hash_table (info
))
13869 || !(*bed
->relocs_compatible
) (sub
->xvec
, abfd
->xvec
))
13872 if (o
== NULL
|| o
->sec_info_type
== SEC_INFO_TYPE_JUST_SYMS
)
13875 for (o
= sub
->sections
; o
!= NULL
; o
= o
->next
)
13877 /* When any section in a section group is kept, we keep all
13878 sections in the section group. If the first member of
13879 the section group is excluded, we will also exclude the
13881 if (o
->flags
& SEC_GROUP
)
13883 asection
*first
= elf_next_in_group (o
);
13884 o
->gc_mark
= first
->gc_mark
;
13890 /* Skip sweeping sections already excluded. */
13891 if (o
->flags
& SEC_EXCLUDE
)
13894 /* Since this is early in the link process, it is simple
13895 to remove a section from the output. */
13896 o
->flags
|= SEC_EXCLUDE
;
13898 if (info
->print_gc_sections
&& o
->size
!= 0)
13899 /* xgettext:c-format */
13900 _bfd_error_handler (_("removing unused section '%pA' in file '%pB'"),
13908 /* Propagate collected vtable information. This is called through
13909 elf_link_hash_traverse. */
13912 elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry
*h
, void *okp
)
13914 /* Those that are not vtables. */
13916 || h
->u2
.vtable
== NULL
13917 || h
->u2
.vtable
->parent
== NULL
)
13920 /* Those vtables that do not have parents, we cannot merge. */
13921 if (h
->u2
.vtable
->parent
== (struct elf_link_hash_entry
*) -1)
13924 /* If we've already been done, exit. */
13925 if (h
->u2
.vtable
->used
&& h
->u2
.vtable
->used
[-1])
13928 /* Make sure the parent's table is up to date. */
13929 elf_gc_propagate_vtable_entries_used (h
->u2
.vtable
->parent
, okp
);
13931 if (h
->u2
.vtable
->used
== NULL
)
13933 /* None of this table's entries were referenced. Re-use the
13935 h
->u2
.vtable
->used
= h
->u2
.vtable
->parent
->u2
.vtable
->used
;
13936 h
->u2
.vtable
->size
= h
->u2
.vtable
->parent
->u2
.vtable
->size
;
13941 bfd_boolean
*cu
, *pu
;
13943 /* Or the parent's entries into ours. */
13944 cu
= h
->u2
.vtable
->used
;
13946 pu
= h
->u2
.vtable
->parent
->u2
.vtable
->used
;
13949 const struct elf_backend_data
*bed
;
13950 unsigned int log_file_align
;
13952 bed
= get_elf_backend_data (h
->root
.u
.def
.section
->owner
);
13953 log_file_align
= bed
->s
->log_file_align
;
13954 n
= h
->u2
.vtable
->parent
->u2
.vtable
->size
>> log_file_align
;
13969 elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry
*h
, void *okp
)
13972 bfd_vma hstart
, hend
;
13973 Elf_Internal_Rela
*relstart
, *relend
, *rel
;
13974 const struct elf_backend_data
*bed
;
13975 unsigned int log_file_align
;
13977 /* Take care of both those symbols that do not describe vtables as
13978 well as those that are not loaded. */
13980 || h
->u2
.vtable
== NULL
13981 || h
->u2
.vtable
->parent
== NULL
)
13984 BFD_ASSERT (h
->root
.type
== bfd_link_hash_defined
13985 || h
->root
.type
== bfd_link_hash_defweak
);
13987 sec
= h
->root
.u
.def
.section
;
13988 hstart
= h
->root
.u
.def
.value
;
13989 hend
= hstart
+ h
->size
;
13991 relstart
= _bfd_elf_link_read_relocs (sec
->owner
, sec
, NULL
, NULL
, TRUE
);
13993 return *(bfd_boolean
*) okp
= FALSE
;
13994 bed
= get_elf_backend_data (sec
->owner
);
13995 log_file_align
= bed
->s
->log_file_align
;
13997 relend
= relstart
+ sec
->reloc_count
;
13999 for (rel
= relstart
; rel
< relend
; ++rel
)
14000 if (rel
->r_offset
>= hstart
&& rel
->r_offset
< hend
)
14002 /* If the entry is in use, do nothing. */
14003 if (h
->u2
.vtable
->used
14004 && (rel
->r_offset
- hstart
) < h
->u2
.vtable
->size
)
14006 bfd_vma entry
= (rel
->r_offset
- hstart
) >> log_file_align
;
14007 if (h
->u2
.vtable
->used
[entry
])
14010 /* Otherwise, kill it. */
14011 rel
->r_offset
= rel
->r_info
= rel
->r_addend
= 0;
14017 /* Mark sections containing dynamically referenced symbols. When
14018 building shared libraries, we must assume that any visible symbol is
14022 bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry
*h
, void *inf
)
14024 struct bfd_link_info
*info
= (struct bfd_link_info
*) inf
;
14025 struct bfd_elf_dynamic_list
*d
= info
->dynamic_list
;
14027 if ((h
->root
.type
== bfd_link_hash_defined
14028 || h
->root
.type
== bfd_link_hash_defweak
)
14029 && ((h
->ref_dynamic
&& !h
->forced_local
)
14030 || ((h
->def_regular
|| ELF_COMMON_DEF_P (h
))
14031 && ELF_ST_VISIBILITY (h
->other
) != STV_INTERNAL
14032 && ELF_ST_VISIBILITY (h
->other
) != STV_HIDDEN
14033 && (!bfd_link_executable (info
)
14034 || info
->gc_keep_exported
14035 || info
->export_dynamic
14038 && (*d
->match
) (&d
->head
, NULL
, h
->root
.root
.string
)))
14039 && (h
->versioned
>= versioned
14040 || !bfd_hide_sym_by_version (info
->version_info
,
14041 h
->root
.root
.string
)))))
14042 h
->root
.u
.def
.section
->flags
|= SEC_KEEP
;
14047 /* Keep all sections containing symbols undefined on the command-line,
14048 and the section containing the entry symbol. */
14051 _bfd_elf_gc_keep (struct bfd_link_info
*info
)
14053 struct bfd_sym_chain
*sym
;
14055 for (sym
= info
->gc_sym_list
; sym
!= NULL
; sym
= sym
->next
)
14057 struct elf_link_hash_entry
*h
;
14059 h
= elf_link_hash_lookup (elf_hash_table (info
), sym
->name
,
14060 FALSE
, FALSE
, FALSE
);
14063 && (h
->root
.type
== bfd_link_hash_defined
14064 || h
->root
.type
== bfd_link_hash_defweak
)
14065 && !bfd_is_const_section (h
->root
.u
.def
.section
))
14066 h
->root
.u
.def
.section
->flags
|= SEC_KEEP
;
14071 bfd_elf_parse_eh_frame_entries (bfd
*abfd ATTRIBUTE_UNUSED
,
14072 struct bfd_link_info
*info
)
14074 bfd
*ibfd
= info
->input_bfds
;
14076 for (ibfd
= info
->input_bfds
; ibfd
!= NULL
; ibfd
= ibfd
->link
.next
)
14079 struct elf_reloc_cookie cookie
;
14081 if (bfd_get_flavour (ibfd
) != bfd_target_elf_flavour
)
14083 sec
= ibfd
->sections
;
14084 if (sec
== NULL
|| sec
->sec_info_type
== SEC_INFO_TYPE_JUST_SYMS
)
14087 if (!init_reloc_cookie (&cookie
, info
, ibfd
))
14090 for (sec
= ibfd
->sections
; sec
; sec
= sec
->next
)
14092 if (CONST_STRNEQ (bfd_section_name (sec
), ".eh_frame_entry")
14093 && init_reloc_cookie_rels (&cookie
, info
, ibfd
, sec
))
14095 _bfd_elf_parse_eh_frame_entry (info
, sec
, &cookie
);
14096 fini_reloc_cookie_rels (&cookie
, sec
);
14103 /* Do mark and sweep of unused sections. */
14106 bfd_elf_gc_sections (bfd
*abfd
, struct bfd_link_info
*info
)
14108 bfd_boolean ok
= TRUE
;
14110 elf_gc_mark_hook_fn gc_mark_hook
;
14111 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
14112 struct elf_link_hash_table
*htab
;
14114 if (!bed
->can_gc_sections
14115 || !is_elf_hash_table (info
->hash
))
14117 _bfd_error_handler(_("warning: gc-sections option ignored"));
14121 bed
->gc_keep (info
);
14122 htab
= elf_hash_table (info
);
14124 /* Try to parse each bfd's .eh_frame section. Point elf_eh_frame_section
14125 at the .eh_frame section if we can mark the FDEs individually. */
14126 for (sub
= info
->input_bfds
;
14127 info
->eh_frame_hdr_type
!= COMPACT_EH_HDR
&& sub
!= NULL
;
14128 sub
= sub
->link
.next
)
14131 struct elf_reloc_cookie cookie
;
14133 sec
= sub
->sections
;
14134 if (sec
== NULL
|| sec
->sec_info_type
== SEC_INFO_TYPE_JUST_SYMS
)
14136 sec
= bfd_get_section_by_name (sub
, ".eh_frame");
14137 while (sec
&& init_reloc_cookie_for_section (&cookie
, info
, sec
))
14139 _bfd_elf_parse_eh_frame (sub
, info
, sec
, &cookie
);
14140 if (elf_section_data (sec
)->sec_info
14141 && (sec
->flags
& SEC_LINKER_CREATED
) == 0)
14142 elf_eh_frame_section (sub
) = sec
;
14143 fini_reloc_cookie_for_section (&cookie
, sec
);
14144 sec
= bfd_get_next_section_by_name (NULL
, sec
);
14148 /* Apply transitive closure to the vtable entry usage info. */
14149 elf_link_hash_traverse (htab
, elf_gc_propagate_vtable_entries_used
, &ok
);
14153 /* Kill the vtable relocations that were not used. */
14154 elf_link_hash_traverse (htab
, elf_gc_smash_unused_vtentry_relocs
, &ok
);
14158 /* Mark dynamically referenced symbols. */
14159 if (htab
->dynamic_sections_created
|| info
->gc_keep_exported
)
14160 elf_link_hash_traverse (htab
, bed
->gc_mark_dynamic_ref
, info
);
14162 /* Grovel through relocs to find out who stays ... */
14163 gc_mark_hook
= bed
->gc_mark_hook
;
14164 for (sub
= info
->input_bfds
; sub
!= NULL
; sub
= sub
->link
.next
)
14168 if (bfd_get_flavour (sub
) != bfd_target_elf_flavour
14169 || elf_object_id (sub
) != elf_hash_table_id (htab
)
14170 || !(*bed
->relocs_compatible
) (sub
->xvec
, abfd
->xvec
))
14174 if (o
== NULL
|| o
->sec_info_type
== SEC_INFO_TYPE_JUST_SYMS
)
14177 /* Start at sections marked with SEC_KEEP (ref _bfd_elf_gc_keep).
14178 Also treat note sections as a root, if the section is not part
14179 of a group. We must keep all PREINIT_ARRAY, INIT_ARRAY as
14180 well as FINI_ARRAY sections for ld -r. */
14181 for (o
= sub
->sections
; o
!= NULL
; o
= o
->next
)
14183 && (o
->flags
& SEC_EXCLUDE
) == 0
14184 && ((o
->flags
& SEC_KEEP
) != 0
14185 || (bfd_link_relocatable (info
)
14186 && ((elf_section_data (o
)->this_hdr
.sh_type
14187 == SHT_PREINIT_ARRAY
)
14188 || (elf_section_data (o
)->this_hdr
.sh_type
14190 || (elf_section_data (o
)->this_hdr
.sh_type
14191 == SHT_FINI_ARRAY
)))
14192 || (elf_section_data (o
)->this_hdr
.sh_type
== SHT_NOTE
14193 && elf_next_in_group (o
) == NULL
14194 && elf_linked_to_section (o
) == NULL
)
14195 || ((elf_tdata (sub
)->has_gnu_osabi
& elf_gnu_osabi_retain
)
14196 && (elf_section_flags (o
) & SHF_GNU_RETAIN
))))
14198 if (!_bfd_elf_gc_mark (info
, o
, gc_mark_hook
))
14203 /* Allow the backend to mark additional target specific sections. */
14204 bed
->gc_mark_extra_sections (info
, gc_mark_hook
);
14206 /* ... and mark SEC_EXCLUDE for those that go. */
14207 return elf_gc_sweep (abfd
, info
);
14210 /* Called from check_relocs to record the existence of a VTINHERIT reloc. */
14213 bfd_elf_gc_record_vtinherit (bfd
*abfd
,
14215 struct elf_link_hash_entry
*h
,
14218 struct elf_link_hash_entry
**sym_hashes
, **sym_hashes_end
;
14219 struct elf_link_hash_entry
**search
, *child
;
14220 size_t extsymcount
;
14221 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
14223 /* The sh_info field of the symtab header tells us where the
14224 external symbols start. We don't care about the local symbols at
14226 extsymcount
= elf_tdata (abfd
)->symtab_hdr
.sh_size
/ bed
->s
->sizeof_sym
;
14227 if (!elf_bad_symtab (abfd
))
14228 extsymcount
-= elf_tdata (abfd
)->symtab_hdr
.sh_info
;
14230 sym_hashes
= elf_sym_hashes (abfd
);
14231 sym_hashes_end
= sym_hashes
+ extsymcount
;
14233 /* Hunt down the child symbol, which is in this section at the same
14234 offset as the relocation. */
14235 for (search
= sym_hashes
; search
!= sym_hashes_end
; ++search
)
14237 if ((child
= *search
) != NULL
14238 && (child
->root
.type
== bfd_link_hash_defined
14239 || child
->root
.type
== bfd_link_hash_defweak
)
14240 && child
->root
.u
.def
.section
== sec
14241 && child
->root
.u
.def
.value
== offset
)
14245 /* xgettext:c-format */
14246 _bfd_error_handler (_("%pB: %pA+%#" PRIx64
": no symbol found for INHERIT"),
14247 abfd
, sec
, (uint64_t) offset
);
14248 bfd_set_error (bfd_error_invalid_operation
);
14252 if (!child
->u2
.vtable
)
14254 child
->u2
.vtable
= ((struct elf_link_virtual_table_entry
*)
14255 bfd_zalloc (abfd
, sizeof (*child
->u2
.vtable
)));
14256 if (!child
->u2
.vtable
)
14261 /* This *should* only be the absolute section. It could potentially
14262 be that someone has defined a non-global vtable though, which
14263 would be bad. It isn't worth paging in the local symbols to be
14264 sure though; that case should simply be handled by the assembler. */
14266 child
->u2
.vtable
->parent
= (struct elf_link_hash_entry
*) -1;
14269 child
->u2
.vtable
->parent
= h
;
14274 /* Called from check_relocs to record the existence of a VTENTRY reloc. */
14277 bfd_elf_gc_record_vtentry (bfd
*abfd
, asection
*sec
,
14278 struct elf_link_hash_entry
*h
,
14281 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
14282 unsigned int log_file_align
= bed
->s
->log_file_align
;
14286 /* xgettext:c-format */
14287 _bfd_error_handler (_("%pB: section '%pA': corrupt VTENTRY entry"),
14289 bfd_set_error (bfd_error_bad_value
);
14295 h
->u2
.vtable
= ((struct elf_link_virtual_table_entry
*)
14296 bfd_zalloc (abfd
, sizeof (*h
->u2
.vtable
)));
14301 if (addend
>= h
->u2
.vtable
->size
)
14303 size_t size
, bytes
, file_align
;
14304 bfd_boolean
*ptr
= h
->u2
.vtable
->used
;
14306 /* While the symbol is undefined, we have to be prepared to handle
14308 file_align
= 1 << log_file_align
;
14309 if (h
->root
.type
== bfd_link_hash_undefined
)
14310 size
= addend
+ file_align
;
14314 if (addend
>= size
)
14316 /* Oops! We've got a reference past the defined end of
14317 the table. This is probably a bug -- shall we warn? */
14318 size
= addend
+ file_align
;
14321 size
= (size
+ file_align
- 1) & -file_align
;
14323 /* Allocate one extra entry for use as a "done" flag for the
14324 consolidation pass. */
14325 bytes
= ((size
>> log_file_align
) + 1) * sizeof (bfd_boolean
);
14329 ptr
= (bfd_boolean
*) bfd_realloc (ptr
- 1, bytes
);
14335 oldbytes
= (((h
->u2
.vtable
->size
>> log_file_align
) + 1)
14336 * sizeof (bfd_boolean
));
14337 memset (((char *) ptr
) + oldbytes
, 0, bytes
- oldbytes
);
14341 ptr
= (bfd_boolean
*) bfd_zmalloc (bytes
);
14346 /* And arrange for that done flag to be at index -1. */
14347 h
->u2
.vtable
->used
= ptr
+ 1;
14348 h
->u2
.vtable
->size
= size
;
14351 h
->u2
.vtable
->used
[addend
>> log_file_align
] = TRUE
;
14356 /* Map an ELF section header flag to its corresponding string. */
14360 flagword flag_value
;
14361 } elf_flags_to_name_table
;
14363 static const elf_flags_to_name_table elf_flags_to_names
[] =
14365 { "SHF_WRITE", SHF_WRITE
},
14366 { "SHF_ALLOC", SHF_ALLOC
},
14367 { "SHF_EXECINSTR", SHF_EXECINSTR
},
14368 { "SHF_MERGE", SHF_MERGE
},
14369 { "SHF_STRINGS", SHF_STRINGS
},
14370 { "SHF_INFO_LINK", SHF_INFO_LINK
},
14371 { "SHF_LINK_ORDER", SHF_LINK_ORDER
},
14372 { "SHF_OS_NONCONFORMING", SHF_OS_NONCONFORMING
},
14373 { "SHF_GROUP", SHF_GROUP
},
14374 { "SHF_TLS", SHF_TLS
},
14375 { "SHF_MASKOS", SHF_MASKOS
},
14376 { "SHF_EXCLUDE", SHF_EXCLUDE
},
14379 /* Returns TRUE if the section is to be included, otherwise FALSE. */
14381 bfd_elf_lookup_section_flags (struct bfd_link_info
*info
,
14382 struct flag_info
*flaginfo
,
14385 const bfd_vma sh_flags
= elf_section_flags (section
);
14387 if (!flaginfo
->flags_initialized
)
14389 bfd
*obfd
= info
->output_bfd
;
14390 const struct elf_backend_data
*bed
= get_elf_backend_data (obfd
);
14391 struct flag_info_list
*tf
= flaginfo
->flag_list
;
14393 int without_hex
= 0;
14395 for (tf
= flaginfo
->flag_list
; tf
!= NULL
; tf
= tf
->next
)
14398 flagword (*lookup
) (char *);
14400 lookup
= bed
->elf_backend_lookup_section_flags_hook
;
14401 if (lookup
!= NULL
)
14403 flagword hexval
= (*lookup
) ((char *) tf
->name
);
14407 if (tf
->with
== with_flags
)
14408 with_hex
|= hexval
;
14409 else if (tf
->with
== without_flags
)
14410 without_hex
|= hexval
;
14415 for (i
= 0; i
< ARRAY_SIZE (elf_flags_to_names
); ++i
)
14417 if (strcmp (tf
->name
, elf_flags_to_names
[i
].flag_name
) == 0)
14419 if (tf
->with
== with_flags
)
14420 with_hex
|= elf_flags_to_names
[i
].flag_value
;
14421 else if (tf
->with
== without_flags
)
14422 without_hex
|= elf_flags_to_names
[i
].flag_value
;
14429 info
->callbacks
->einfo
14430 (_("unrecognized INPUT_SECTION_FLAG %s\n"), tf
->name
);
14434 flaginfo
->flags_initialized
= TRUE
;
14435 flaginfo
->only_with_flags
|= with_hex
;
14436 flaginfo
->not_with_flags
|= without_hex
;
14439 if ((flaginfo
->only_with_flags
& sh_flags
) != flaginfo
->only_with_flags
)
14442 if ((flaginfo
->not_with_flags
& sh_flags
) != 0)
14448 struct alloc_got_off_arg
{
14450 struct bfd_link_info
*info
;
14453 /* We need a special top-level link routine to convert got reference counts
14454 to real got offsets. */
14457 elf_gc_allocate_got_offsets (struct elf_link_hash_entry
*h
, void *arg
)
14459 struct alloc_got_off_arg
*gofarg
= (struct alloc_got_off_arg
*) arg
;
14460 bfd
*obfd
= gofarg
->info
->output_bfd
;
14461 const struct elf_backend_data
*bed
= get_elf_backend_data (obfd
);
14463 if (h
->got
.refcount
> 0)
14465 h
->got
.offset
= gofarg
->gotoff
;
14466 gofarg
->gotoff
+= bed
->got_elt_size (obfd
, gofarg
->info
, h
, NULL
, 0);
14469 h
->got
.offset
= (bfd_vma
) -1;
14474 /* And an accompanying bit to work out final got entry offsets once
14475 we're done. Should be called from final_link. */
14478 bfd_elf_gc_common_finalize_got_offsets (bfd
*abfd
,
14479 struct bfd_link_info
*info
)
14482 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
14484 struct alloc_got_off_arg gofarg
;
14486 BFD_ASSERT (abfd
== info
->output_bfd
);
14488 if (! is_elf_hash_table (info
->hash
))
14491 /* The GOT offset is relative to the .got section, but the GOT header is
14492 put into the .got.plt section, if the backend uses it. */
14493 if (bed
->want_got_plt
)
14496 gotoff
= bed
->got_header_size
;
14498 /* Do the local .got entries first. */
14499 for (i
= info
->input_bfds
; i
; i
= i
->link
.next
)
14501 bfd_signed_vma
*local_got
;
14502 size_t j
, locsymcount
;
14503 Elf_Internal_Shdr
*symtab_hdr
;
14505 if (bfd_get_flavour (i
) != bfd_target_elf_flavour
)
14508 local_got
= elf_local_got_refcounts (i
);
14512 symtab_hdr
= &elf_tdata (i
)->symtab_hdr
;
14513 if (elf_bad_symtab (i
))
14514 locsymcount
= symtab_hdr
->sh_size
/ bed
->s
->sizeof_sym
;
14516 locsymcount
= symtab_hdr
->sh_info
;
14518 for (j
= 0; j
< locsymcount
; ++j
)
14520 if (local_got
[j
] > 0)
14522 local_got
[j
] = gotoff
;
14523 gotoff
+= bed
->got_elt_size (abfd
, info
, NULL
, i
, j
);
14526 local_got
[j
] = (bfd_vma
) -1;
14530 /* Then the global .got entries. .plt refcounts are handled by
14531 adjust_dynamic_symbol */
14532 gofarg
.gotoff
= gotoff
;
14533 gofarg
.info
= info
;
14534 elf_link_hash_traverse (elf_hash_table (info
),
14535 elf_gc_allocate_got_offsets
,
14540 /* Many folk need no more in the way of final link than this, once
14541 got entry reference counting is enabled. */
14544 bfd_elf_gc_common_final_link (bfd
*abfd
, struct bfd_link_info
*info
)
14546 if (!bfd_elf_gc_common_finalize_got_offsets (abfd
, info
))
14549 /* Invoke the regular ELF backend linker to do all the work. */
14550 return bfd_elf_final_link (abfd
, info
);
14554 bfd_elf_reloc_symbol_deleted_p (bfd_vma offset
, void *cookie
)
14556 struct elf_reloc_cookie
*rcookie
= (struct elf_reloc_cookie
*) cookie
;
14558 if (rcookie
->bad_symtab
)
14559 rcookie
->rel
= rcookie
->rels
;
14561 for (; rcookie
->rel
< rcookie
->relend
; rcookie
->rel
++)
14563 unsigned long r_symndx
;
14565 if (! rcookie
->bad_symtab
)
14566 if (rcookie
->rel
->r_offset
> offset
)
14568 if (rcookie
->rel
->r_offset
!= offset
)
14571 r_symndx
= rcookie
->rel
->r_info
>> rcookie
->r_sym_shift
;
14572 if (r_symndx
== STN_UNDEF
)
14575 if (r_symndx
>= rcookie
->locsymcount
14576 || ELF_ST_BIND (rcookie
->locsyms
[r_symndx
].st_info
) != STB_LOCAL
)
14578 struct elf_link_hash_entry
*h
;
14580 h
= rcookie
->sym_hashes
[r_symndx
- rcookie
->extsymoff
];
14582 while (h
->root
.type
== bfd_link_hash_indirect
14583 || h
->root
.type
== bfd_link_hash_warning
)
14584 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
14586 if ((h
->root
.type
== bfd_link_hash_defined
14587 || h
->root
.type
== bfd_link_hash_defweak
)
14588 && (h
->root
.u
.def
.section
->owner
!= rcookie
->abfd
14589 || h
->root
.u
.def
.section
->kept_section
!= NULL
14590 || discarded_section (h
->root
.u
.def
.section
)))
14595 /* It's not a relocation against a global symbol,
14596 but it could be a relocation against a local
14597 symbol for a discarded section. */
14599 Elf_Internal_Sym
*isym
;
14601 /* Need to: get the symbol; get the section. */
14602 isym
= &rcookie
->locsyms
[r_symndx
];
14603 isec
= bfd_section_from_elf_index (rcookie
->abfd
, isym
->st_shndx
);
14605 && (isec
->kept_section
!= NULL
14606 || discarded_section (isec
)))
14614 /* Discard unneeded references to discarded sections.
14615 Returns -1 on error, 1 if any section's size was changed, 0 if
14616 nothing changed. This function assumes that the relocations are in
14617 sorted order, which is true for all known assemblers. */
14620 bfd_elf_discard_info (bfd
*output_bfd
, struct bfd_link_info
*info
)
14622 struct elf_reloc_cookie cookie
;
14627 if (info
->traditional_format
14628 || !is_elf_hash_table (info
->hash
))
14631 o
= bfd_get_section_by_name (output_bfd
, ".stab");
14636 for (i
= o
->map_head
.s
; i
!= NULL
; i
= i
->map_head
.s
)
14639 || i
->reloc_count
== 0
14640 || i
->sec_info_type
!= SEC_INFO_TYPE_STABS
)
14644 if (bfd_get_flavour (abfd
) != bfd_target_elf_flavour
)
14647 if (!init_reloc_cookie_for_section (&cookie
, info
, i
))
14650 if (_bfd_discard_section_stabs (abfd
, i
,
14651 elf_section_data (i
)->sec_info
,
14652 bfd_elf_reloc_symbol_deleted_p
,
14656 fini_reloc_cookie_for_section (&cookie
, i
);
14661 if (info
->eh_frame_hdr_type
!= COMPACT_EH_HDR
)
14662 o
= bfd_get_section_by_name (output_bfd
, ".eh_frame");
14666 int eh_changed
= 0;
14667 unsigned int eh_alignment
; /* Octets. */
14669 for (i
= o
->map_head
.s
; i
!= NULL
; i
= i
->map_head
.s
)
14675 if (bfd_get_flavour (abfd
) != bfd_target_elf_flavour
)
14678 if (!init_reloc_cookie_for_section (&cookie
, info
, i
))
14681 _bfd_elf_parse_eh_frame (abfd
, info
, i
, &cookie
);
14682 if (_bfd_elf_discard_section_eh_frame (abfd
, info
, i
,
14683 bfd_elf_reloc_symbol_deleted_p
,
14687 if (i
->size
!= i
->rawsize
)
14691 fini_reloc_cookie_for_section (&cookie
, i
);
14694 eh_alignment
= ((1 << o
->alignment_power
)
14695 * bfd_octets_per_byte (output_bfd
, o
));
14696 /* Skip over zero terminator, and prevent empty sections from
14697 adding alignment padding at the end. */
14698 for (i
= o
->map_tail
.s
; i
!= NULL
; i
= i
->map_tail
.s
)
14700 i
->flags
|= SEC_EXCLUDE
;
14701 else if (i
->size
> 4)
14703 /* The last non-empty eh_frame section doesn't need padding. */
14706 /* Any prior sections must pad the last FDE out to the output
14707 section alignment. Otherwise we might have zero padding
14708 between sections, which would be seen as a terminator. */
14709 for (; i
!= NULL
; i
= i
->map_tail
.s
)
14711 /* All but the last zero terminator should have been removed. */
14716 = (i
->size
+ eh_alignment
- 1) & -eh_alignment
;
14717 if (i
->size
!= size
)
14725 elf_link_hash_traverse (elf_hash_table (info
),
14726 _bfd_elf_adjust_eh_frame_global_symbol
, NULL
);
14729 for (abfd
= info
->input_bfds
; abfd
!= NULL
; abfd
= abfd
->link
.next
)
14731 const struct elf_backend_data
*bed
;
14734 if (bfd_get_flavour (abfd
) != bfd_target_elf_flavour
)
14736 s
= abfd
->sections
;
14737 if (s
== NULL
|| s
->sec_info_type
== SEC_INFO_TYPE_JUST_SYMS
)
14740 bed
= get_elf_backend_data (abfd
);
14742 if (bed
->elf_backend_discard_info
!= NULL
)
14744 if (!init_reloc_cookie (&cookie
, info
, abfd
))
14747 if ((*bed
->elf_backend_discard_info
) (abfd
, &cookie
, info
))
14750 fini_reloc_cookie (&cookie
, abfd
);
14754 if (info
->eh_frame_hdr_type
== COMPACT_EH_HDR
)
14755 _bfd_elf_end_eh_frame_parsing (info
);
14757 if (info
->eh_frame_hdr_type
14758 && !bfd_link_relocatable (info
)
14759 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd
, info
))
14766 _bfd_elf_section_already_linked (bfd
*abfd
,
14768 struct bfd_link_info
*info
)
14771 const char *name
, *key
;
14772 struct bfd_section_already_linked
*l
;
14773 struct bfd_section_already_linked_hash_entry
*already_linked_list
;
14775 if (sec
->output_section
== bfd_abs_section_ptr
)
14778 flags
= sec
->flags
;
14780 /* Return if it isn't a linkonce section. A comdat group section
14781 also has SEC_LINK_ONCE set. */
14782 if ((flags
& SEC_LINK_ONCE
) == 0)
14785 /* Don't put group member sections on our list of already linked
14786 sections. They are handled as a group via their group section. */
14787 if (elf_sec_group (sec
) != NULL
)
14790 /* For a SHT_GROUP section, use the group signature as the key. */
14792 if ((flags
& SEC_GROUP
) != 0
14793 && elf_next_in_group (sec
) != NULL
14794 && elf_group_name (elf_next_in_group (sec
)) != NULL
)
14795 key
= elf_group_name (elf_next_in_group (sec
));
14798 /* Otherwise we should have a .gnu.linkonce.<type>.<key> section. */
14799 if (CONST_STRNEQ (name
, ".gnu.linkonce.")
14800 && (key
= strchr (name
+ sizeof (".gnu.linkonce.") - 1, '.')) != NULL
)
14803 /* Must be a user linkonce section that doesn't follow gcc's
14804 naming convention. In this case we won't be matching
14805 single member groups. */
14809 already_linked_list
= bfd_section_already_linked_table_lookup (key
);
14811 for (l
= already_linked_list
->entry
; l
!= NULL
; l
= l
->next
)
14813 /* We may have 2 different types of sections on the list: group
14814 sections with a signature of <key> (<key> is some string),
14815 and linkonce sections named .gnu.linkonce.<type>.<key>.
14816 Match like sections. LTO plugin sections are an exception.
14817 They are always named .gnu.linkonce.t.<key> and match either
14818 type of section. */
14819 if (((flags
& SEC_GROUP
) == (l
->sec
->flags
& SEC_GROUP
)
14820 && ((flags
& SEC_GROUP
) != 0
14821 || strcmp (name
, l
->sec
->name
) == 0))
14822 || (l
->sec
->owner
->flags
& BFD_PLUGIN
) != 0
14823 || (sec
->owner
->flags
& BFD_PLUGIN
) != 0)
14825 /* The section has already been linked. See if we should
14826 issue a warning. */
14827 if (!_bfd_handle_already_linked (sec
, l
, info
))
14830 if (flags
& SEC_GROUP
)
14832 asection
*first
= elf_next_in_group (sec
);
14833 asection
*s
= first
;
14837 s
->output_section
= bfd_abs_section_ptr
;
14838 /* Record which group discards it. */
14839 s
->kept_section
= l
->sec
;
14840 s
= elf_next_in_group (s
);
14841 /* These lists are circular. */
14851 /* A single member comdat group section may be discarded by a
14852 linkonce section and vice versa. */
14853 if ((flags
& SEC_GROUP
) != 0)
14855 asection
*first
= elf_next_in_group (sec
);
14857 if (first
!= NULL
&& elf_next_in_group (first
) == first
)
14858 /* Check this single member group against linkonce sections. */
14859 for (l
= already_linked_list
->entry
; l
!= NULL
; l
= l
->next
)
14860 if ((l
->sec
->flags
& SEC_GROUP
) == 0
14861 && bfd_elf_match_symbols_in_sections (l
->sec
, first
, info
))
14863 first
->output_section
= bfd_abs_section_ptr
;
14864 first
->kept_section
= l
->sec
;
14865 sec
->output_section
= bfd_abs_section_ptr
;
14870 /* Check this linkonce section against single member groups. */
14871 for (l
= already_linked_list
->entry
; l
!= NULL
; l
= l
->next
)
14872 if (l
->sec
->flags
& SEC_GROUP
)
14874 asection
*first
= elf_next_in_group (l
->sec
);
14877 && elf_next_in_group (first
) == first
14878 && bfd_elf_match_symbols_in_sections (first
, sec
, info
))
14880 sec
->output_section
= bfd_abs_section_ptr
;
14881 sec
->kept_section
= first
;
14886 /* Do not complain on unresolved relocations in `.gnu.linkonce.r.F'
14887 referencing its discarded `.gnu.linkonce.t.F' counterpart - g++-3.4
14888 specific as g++-4.x is using COMDAT groups (without the `.gnu.linkonce'
14889 prefix) instead. `.gnu.linkonce.r.*' were the `.rodata' part of its
14890 matching `.gnu.linkonce.t.*'. If `.gnu.linkonce.r.F' is not discarded
14891 but its `.gnu.linkonce.t.F' is discarded means we chose one-only
14892 `.gnu.linkonce.t.F' section from a different bfd not requiring any
14893 `.gnu.linkonce.r.F'. Thus `.gnu.linkonce.r.F' should be discarded.
14894 The reverse order cannot happen as there is never a bfd with only the
14895 `.gnu.linkonce.r.F' section. The order of sections in a bfd does not
14896 matter as here were are looking only for cross-bfd sections. */
14898 if ((flags
& SEC_GROUP
) == 0 && CONST_STRNEQ (name
, ".gnu.linkonce.r."))
14899 for (l
= already_linked_list
->entry
; l
!= NULL
; l
= l
->next
)
14900 if ((l
->sec
->flags
& SEC_GROUP
) == 0
14901 && CONST_STRNEQ (l
->sec
->name
, ".gnu.linkonce.t."))
14903 if (abfd
!= l
->sec
->owner
)
14904 sec
->output_section
= bfd_abs_section_ptr
;
14908 /* This is the first section with this name. Record it. */
14909 if (!bfd_section_already_linked_table_insert (already_linked_list
, sec
))
14910 info
->callbacks
->einfo (_("%F%P: already_linked_table: %E\n"));
14911 return sec
->output_section
== bfd_abs_section_ptr
;
14915 _bfd_elf_common_definition (Elf_Internal_Sym
*sym
)
14917 return sym
->st_shndx
== SHN_COMMON
;
14921 _bfd_elf_common_section_index (asection
*sec ATTRIBUTE_UNUSED
)
14927 _bfd_elf_common_section (asection
*sec ATTRIBUTE_UNUSED
)
14929 return bfd_com_section_ptr
;
14933 _bfd_elf_default_got_elt_size (bfd
*abfd
,
14934 struct bfd_link_info
*info ATTRIBUTE_UNUSED
,
14935 struct elf_link_hash_entry
*h ATTRIBUTE_UNUSED
,
14936 bfd
*ibfd ATTRIBUTE_UNUSED
,
14937 unsigned long symndx ATTRIBUTE_UNUSED
)
14939 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
14940 return bed
->s
->arch_size
/ 8;
14943 /* Routines to support the creation of dynamic relocs. */
14945 /* Returns the name of the dynamic reloc section associated with SEC. */
14947 static const char *
14948 get_dynamic_reloc_section_name (bfd
* abfd
,
14950 bfd_boolean is_rela
)
14953 const char *old_name
= bfd_section_name (sec
);
14954 const char *prefix
= is_rela
? ".rela" : ".rel";
14956 if (old_name
== NULL
)
14959 name
= bfd_alloc (abfd
, strlen (prefix
) + strlen (old_name
) + 1);
14960 sprintf (name
, "%s%s", prefix
, old_name
);
14965 /* Returns the dynamic reloc section associated with SEC.
14966 If necessary compute the name of the dynamic reloc section based
14967 on SEC's name (looked up in ABFD's string table) and the setting
14971 _bfd_elf_get_dynamic_reloc_section (bfd
* abfd
,
14973 bfd_boolean is_rela
)
14975 asection
* reloc_sec
= elf_section_data (sec
)->sreloc
;
14977 if (reloc_sec
== NULL
)
14979 const char * name
= get_dynamic_reloc_section_name (abfd
, sec
, is_rela
);
14983 reloc_sec
= bfd_get_linker_section (abfd
, name
);
14985 if (reloc_sec
!= NULL
)
14986 elf_section_data (sec
)->sreloc
= reloc_sec
;
14993 /* Returns the dynamic reloc section associated with SEC. If the
14994 section does not exist it is created and attached to the DYNOBJ
14995 bfd and stored in the SRELOC field of SEC's elf_section_data
14998 ALIGNMENT is the alignment for the newly created section and
14999 IS_RELA defines whether the name should be .rela.<SEC's name>
15000 or .rel.<SEC's name>. The section name is looked up in the
15001 string table associated with ABFD. */
15004 _bfd_elf_make_dynamic_reloc_section (asection
*sec
,
15006 unsigned int alignment
,
15008 bfd_boolean is_rela
)
15010 asection
* reloc_sec
= elf_section_data (sec
)->sreloc
;
15012 if (reloc_sec
== NULL
)
15014 const char * name
= get_dynamic_reloc_section_name (abfd
, sec
, is_rela
);
15019 reloc_sec
= bfd_get_linker_section (dynobj
, name
);
15021 if (reloc_sec
== NULL
)
15023 flagword flags
= (SEC_HAS_CONTENTS
| SEC_READONLY
15024 | SEC_IN_MEMORY
| SEC_LINKER_CREATED
);
15025 if ((sec
->flags
& SEC_ALLOC
) != 0)
15026 flags
|= SEC_ALLOC
| SEC_LOAD
;
15028 reloc_sec
= bfd_make_section_anyway_with_flags (dynobj
, name
, flags
);
15029 if (reloc_sec
!= NULL
)
15031 /* _bfd_elf_get_sec_type_attr chooses a section type by
15032 name. Override as it may be wrong, eg. for a user
15033 section named "auto" we'll get ".relauto" which is
15034 seen to be a .rela section. */
15035 elf_section_type (reloc_sec
) = is_rela
? SHT_RELA
: SHT_REL
;
15036 if (!bfd_set_section_alignment (reloc_sec
, alignment
))
15041 elf_section_data (sec
)->sreloc
= reloc_sec
;
15047 /* Copy the ELF symbol type and other attributes for a linker script
15048 assignment from HSRC to HDEST. Generally this should be treated as
15049 if we found a strong non-dynamic definition for HDEST (except that
15050 ld ignores multiple definition errors). */
15052 _bfd_elf_copy_link_hash_symbol_type (bfd
*abfd
,
15053 struct bfd_link_hash_entry
*hdest
,
15054 struct bfd_link_hash_entry
*hsrc
)
15056 struct elf_link_hash_entry
*ehdest
= (struct elf_link_hash_entry
*) hdest
;
15057 struct elf_link_hash_entry
*ehsrc
= (struct elf_link_hash_entry
*) hsrc
;
15058 Elf_Internal_Sym isym
;
15060 ehdest
->type
= ehsrc
->type
;
15061 ehdest
->target_internal
= ehsrc
->target_internal
;
15063 isym
.st_other
= ehsrc
->other
;
15064 elf_merge_st_other (abfd
, ehdest
, isym
.st_other
, NULL
, TRUE
, FALSE
);
15067 /* Append a RELA relocation REL to section S in BFD. */
15070 elf_append_rela (bfd
*abfd
, asection
*s
, Elf_Internal_Rela
*rel
)
15072 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
15073 bfd_byte
*loc
= s
->contents
+ (s
->reloc_count
++ * bed
->s
->sizeof_rela
);
15074 BFD_ASSERT (loc
+ bed
->s
->sizeof_rela
<= s
->contents
+ s
->size
);
15075 bed
->s
->swap_reloca_out (abfd
, rel
, loc
);
15078 /* Append a REL relocation REL to section S in BFD. */
15081 elf_append_rel (bfd
*abfd
, asection
*s
, Elf_Internal_Rela
*rel
)
15083 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
15084 bfd_byte
*loc
= s
->contents
+ (s
->reloc_count
++ * bed
->s
->sizeof_rel
);
15085 BFD_ASSERT (loc
+ bed
->s
->sizeof_rel
<= s
->contents
+ s
->size
);
15086 bed
->s
->swap_reloc_out (abfd
, rel
, loc
);
15089 /* Define __start, __stop, .startof. or .sizeof. symbol. */
15091 struct bfd_link_hash_entry
*
15092 bfd_elf_define_start_stop (struct bfd_link_info
*info
,
15093 const char *symbol
, asection
*sec
)
15095 struct elf_link_hash_entry
*h
;
15097 h
= elf_link_hash_lookup (elf_hash_table (info
), symbol
,
15098 FALSE
, FALSE
, TRUE
);
15099 /* NB: Common symbols will be turned into definition later. */
15101 && (h
->root
.type
== bfd_link_hash_undefined
15102 || h
->root
.type
== bfd_link_hash_undefweak
15103 || ((h
->ref_regular
|| h
->def_dynamic
)
15105 && h
->root
.type
!= bfd_link_hash_common
)))
15107 bfd_boolean was_dynamic
= h
->ref_dynamic
|| h
->def_dynamic
;
15108 h
->verinfo
.verdef
= NULL
;
15109 h
->root
.type
= bfd_link_hash_defined
;
15110 h
->root
.u
.def
.section
= sec
;
15111 h
->root
.u
.def
.value
= 0;
15112 h
->def_regular
= 1;
15113 h
->def_dynamic
= 0;
15115 h
->u2
.start_stop_section
= sec
;
15116 if (symbol
[0] == '.')
15118 /* .startof. and .sizeof. symbols are local. */
15119 const struct elf_backend_data
*bed
;
15120 bed
= get_elf_backend_data (info
->output_bfd
);
15121 (*bed
->elf_backend_hide_symbol
) (info
, h
, TRUE
);
15125 if (ELF_ST_VISIBILITY (h
->other
) == STV_DEFAULT
)
15126 h
->other
= ((h
->other
& ~ELF_ST_VISIBILITY (-1))
15127 | info
->start_stop_visibility
);
15129 bfd_elf_link_record_dynamic_symbol (info
, h
);
15136 /* Find dynamic relocs for H that apply to read-only sections. */
15139 _bfd_elf_readonly_dynrelocs (struct elf_link_hash_entry
*h
)
15141 struct elf_dyn_relocs
*p
;
15143 for (p
= h
->dyn_relocs
; p
!= NULL
; p
= p
->next
)
15145 asection
*s
= p
->sec
->output_section
;
15147 if (s
!= NULL
&& (s
->flags
& SEC_READONLY
) != 0)
15153 /* Set DF_TEXTREL if we find any dynamic relocs that apply to
15154 read-only sections. */
15157 _bfd_elf_maybe_set_textrel (struct elf_link_hash_entry
*h
, void *inf
)
15161 if (h
->root
.type
== bfd_link_hash_indirect
)
15164 sec
= _bfd_elf_readonly_dynrelocs (h
);
15167 struct bfd_link_info
*info
= (struct bfd_link_info
*) inf
;
15169 info
->flags
|= DF_TEXTREL
;
15170 /* xgettext:c-format */
15171 info
->callbacks
->minfo (_("%pB: dynamic relocation against `%pT' "
15172 "in read-only section `%pA'\n"),
15173 sec
->owner
, h
->root
.root
.string
, sec
);
15175 if (bfd_link_textrel_check (info
))
15176 /* xgettext:c-format */
15177 info
->callbacks
->einfo (_("%P: %pB: warning: relocation against `%s' "
15178 "in read-only section `%pA'\n"),
15179 sec
->owner
, h
->root
.root
.string
, sec
);
15181 /* Not an error, just cut short the traversal. */
15187 /* Add dynamic tags. */
15190 _bfd_elf_add_dynamic_tags (bfd
*output_bfd
, struct bfd_link_info
*info
,
15191 bfd_boolean need_dynamic_reloc
)
15193 struct elf_link_hash_table
*htab
= elf_hash_table (info
);
15195 if (htab
->dynamic_sections_created
)
15197 /* Add some entries to the .dynamic section. We fill in the
15198 values later, in finish_dynamic_sections, but we must add
15199 the entries now so that we get the correct size for the
15200 .dynamic section. The DT_DEBUG entry is filled in by the
15201 dynamic linker and used by the debugger. */
15202 #define add_dynamic_entry(TAG, VAL) \
15203 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
15205 const struct elf_backend_data
*bed
15206 = get_elf_backend_data (output_bfd
);
15208 if (bfd_link_executable (info
))
15210 if (!add_dynamic_entry (DT_DEBUG
, 0))
15214 if (htab
->dt_pltgot_required
|| htab
->splt
->size
!= 0)
15216 /* DT_PLTGOT is used by prelink even if there is no PLT
15218 if (!add_dynamic_entry (DT_PLTGOT
, 0))
15222 if (htab
->dt_jmprel_required
|| htab
->srelplt
->size
!= 0)
15224 if (!add_dynamic_entry (DT_PLTRELSZ
, 0)
15225 || !add_dynamic_entry (DT_PLTREL
,
15226 (bed
->rela_plts_and_copies_p
15227 ? DT_RELA
: DT_REL
))
15228 || !add_dynamic_entry (DT_JMPREL
, 0))
15232 if (htab
->tlsdesc_plt
15233 && (!add_dynamic_entry (DT_TLSDESC_PLT
, 0)
15234 || !add_dynamic_entry (DT_TLSDESC_GOT
, 0)))
15237 if (need_dynamic_reloc
)
15239 if (bed
->rela_plts_and_copies_p
)
15241 if (!add_dynamic_entry (DT_RELA
, 0)
15242 || !add_dynamic_entry (DT_RELASZ
, 0)
15243 || !add_dynamic_entry (DT_RELAENT
,
15244 bed
->s
->sizeof_rela
))
15249 if (!add_dynamic_entry (DT_REL
, 0)
15250 || !add_dynamic_entry (DT_RELSZ
, 0)
15251 || !add_dynamic_entry (DT_RELENT
,
15252 bed
->s
->sizeof_rel
))
15256 /* If any dynamic relocs apply to a read-only section,
15257 then we need a DT_TEXTREL entry. */
15258 if ((info
->flags
& DF_TEXTREL
) == 0)
15259 elf_link_hash_traverse (htab
, _bfd_elf_maybe_set_textrel
,
15262 if ((info
->flags
& DF_TEXTREL
) != 0)
15264 if (htab
->ifunc_resolvers
)
15265 info
->callbacks
->einfo
15266 (_("%P: warning: GNU indirect functions with DT_TEXTREL "
15267 "may result in a segfault at runtime; recompile with %s\n"),
15268 bfd_link_dll (info
) ? "-fPIC" : "-fPIE");
15270 if (!add_dynamic_entry (DT_TEXTREL
, 0))
15275 #undef add_dynamic_entry