1 /* MIPS-specific support for ELF
2 Copyright (C) 1993-2021 Free Software Foundation, Inc.
4 Most of the information added by Ian Lance Taylor, Cygnus Support,
6 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
7 <mark@codesourcery.com>
8 Traditional MIPS targets support added by Koundinya.K, Dansk Data
9 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
11 This file is part of BFD, the Binary File Descriptor library.
13 This program is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
15 the Free Software Foundation; either version 3 of the License, or
16 (at your option) any later version.
18 This program is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
23 You should have received a copy of the GNU General Public License
24 along with this program; if not, write to the Free Software
25 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
26 MA 02110-1301, USA. */
29 /* This file handles functionality common to the different MIPS ABI's. */
34 #include "libiberty.h"
36 #include "ecoff-bfd.h"
37 #include "elfxx-mips.h"
39 #include "elf-vxworks.h"
42 /* Get the ECOFF swapping routines. */
44 #include "coff/symconst.h"
45 #include "coff/ecoff.h"
46 #include "coff/mips.h"
50 /* Types of TLS GOT entry. */
51 enum mips_got_tls_type
{
58 /* This structure is used to hold information about one GOT entry.
59 There are four types of entry:
61 (1) an absolute address
62 requires: abfd == NULL
65 (2) a SYMBOL + OFFSET address, where SYMBOL is local to an input bfd
66 requires: abfd != NULL, symndx >= 0, tls_type != GOT_TLS_LDM
67 fields: abfd, symndx, d.addend, tls_type
69 (3) a SYMBOL address, where SYMBOL is not local to an input bfd
70 requires: abfd != NULL, symndx == -1
74 requires: abfd != NULL, symndx == 0, tls_type == GOT_TLS_LDM
75 fields: none; there's only one of these per GOT. */
78 /* One input bfd that needs the GOT entry. */
80 /* The index of the symbol, as stored in the relocation r_info, if
81 we have a local symbol; -1 otherwise. */
85 /* If abfd == NULL, an address that must be stored in the got. */
87 /* If abfd != NULL && symndx != -1, the addend of the relocation
88 that should be added to the symbol value. */
90 /* If abfd != NULL && symndx == -1, the hash table entry
91 corresponding to a symbol in the GOT. The symbol's entry
92 is in the local area if h->global_got_area is GGA_NONE,
93 otherwise it is in the global area. */
94 struct mips_elf_link_hash_entry
*h
;
97 /* The TLS type of this GOT entry. An LDM GOT entry will be a local
98 symbol entry with r_symndx == 0. */
99 unsigned char tls_type
;
101 /* True if we have filled in the GOT contents for a TLS entry,
102 and created the associated relocations. */
103 unsigned char tls_initialized
;
105 /* The offset from the beginning of the .got section to the entry
106 corresponding to this symbol+addend. If it's a global symbol
107 whose offset is yet to be decided, it's going to be -1. */
111 /* This structure represents a GOT page reference from an input bfd.
112 Each instance represents a symbol + ADDEND, where the representation
113 of the symbol depends on whether it is local to the input bfd.
114 If it is, then SYMNDX >= 0, and the symbol has index SYMNDX in U.ABFD.
115 Otherwise, SYMNDX < 0 and U.H points to the symbol's hash table entry.
117 Page references with SYMNDX >= 0 always become page references
118 in the output. Page references with SYMNDX < 0 only become page
119 references if the symbol binds locally; in other cases, the page
120 reference decays to a global GOT reference. */
121 struct mips_got_page_ref
126 struct mips_elf_link_hash_entry
*h
;
132 /* This structure describes a range of addends: [MIN_ADDEND, MAX_ADDEND].
133 The structures form a non-overlapping list that is sorted by increasing
135 struct mips_got_page_range
137 struct mips_got_page_range
*next
;
138 bfd_signed_vma min_addend
;
139 bfd_signed_vma max_addend
;
142 /* This structure describes the range of addends that are applied to page
143 relocations against a given section. */
144 struct mips_got_page_entry
146 /* The section that these entries are based on. */
148 /* The ranges for this page entry. */
149 struct mips_got_page_range
*ranges
;
150 /* The maximum number of page entries needed for RANGES. */
154 /* This structure is used to hold .got information when linking. */
158 /* The number of global .got entries. */
159 unsigned int global_gotno
;
160 /* The number of global .got entries that are in the GGA_RELOC_ONLY area. */
161 unsigned int reloc_only_gotno
;
162 /* The number of .got slots used for TLS. */
163 unsigned int tls_gotno
;
164 /* The first unused TLS .got entry. Used only during
165 mips_elf_initialize_tls_index. */
166 unsigned int tls_assigned_gotno
;
167 /* The number of local .got entries, eventually including page entries. */
168 unsigned int local_gotno
;
169 /* The maximum number of page entries needed. */
170 unsigned int page_gotno
;
171 /* The number of relocations needed for the GOT entries. */
173 /* The first unused local .got entry. */
174 unsigned int assigned_low_gotno
;
175 /* The last unused local .got entry. */
176 unsigned int assigned_high_gotno
;
177 /* A hash table holding members of the got. */
178 struct htab
*got_entries
;
179 /* A hash table holding mips_got_page_ref structures. */
180 struct htab
*got_page_refs
;
181 /* A hash table of mips_got_page_entry structures. */
182 struct htab
*got_page_entries
;
183 /* In multi-got links, a pointer to the next got (err, rather, most
184 of the time, it points to the previous got). */
185 struct mips_got_info
*next
;
188 /* Structure passed when merging bfds' gots. */
190 struct mips_elf_got_per_bfd_arg
192 /* The output bfd. */
194 /* The link information. */
195 struct bfd_link_info
*info
;
196 /* A pointer to the primary got, i.e., the one that's going to get
197 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
199 struct mips_got_info
*primary
;
200 /* A non-primary got we're trying to merge with other input bfd's
202 struct mips_got_info
*current
;
203 /* The maximum number of got entries that can be addressed with a
205 unsigned int max_count
;
206 /* The maximum number of page entries needed by each got. */
207 unsigned int max_pages
;
208 /* The total number of global entries which will live in the
209 primary got and be automatically relocated. This includes
210 those not referenced by the primary GOT but included in
212 unsigned int global_count
;
215 /* A structure used to pass information to htab_traverse callbacks
216 when laying out the GOT. */
218 struct mips_elf_traverse_got_arg
220 struct bfd_link_info
*info
;
221 struct mips_got_info
*g
;
225 struct _mips_elf_section_data
227 struct bfd_elf_section_data elf
;
234 #define mips_elf_section_data(sec) \
235 ((struct _mips_elf_section_data *) elf_section_data (sec))
237 #define is_mips_elf(bfd) \
238 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
239 && elf_tdata (bfd) != NULL \
240 && elf_object_id (bfd) == MIPS_ELF_DATA)
242 /* The ABI says that every symbol used by dynamic relocations must have
243 a global GOT entry. Among other things, this provides the dynamic
244 linker with a free, directly-indexed cache. The GOT can therefore
245 contain symbols that are not referenced by GOT relocations themselves
246 (in other words, it may have symbols that are not referenced by things
247 like R_MIPS_GOT16 and R_MIPS_GOT_PAGE).
249 GOT relocations are less likely to overflow if we put the associated
250 GOT entries towards the beginning. We therefore divide the global
251 GOT entries into two areas: "normal" and "reloc-only". Entries in
252 the first area can be used for both dynamic relocations and GP-relative
253 accesses, while those in the "reloc-only" area are for dynamic
256 These GGA_* ("Global GOT Area") values are organised so that lower
257 values are more general than higher values. Also, non-GGA_NONE
258 values are ordered by the position of the area in the GOT. */
260 #define GGA_RELOC_ONLY 1
263 /* Information about a non-PIC interface to a PIC function. There are
264 two ways of creating these interfaces. The first is to add:
267 addiu $25,$25,%lo(func)
269 immediately before a PIC function "func". The second is to add:
273 addiu $25,$25,%lo(func)
275 to a separate trampoline section.
277 Stubs of the first kind go in a new section immediately before the
278 target function. Stubs of the second kind go in a single section
279 pointed to by the hash table's "strampoline" field. */
280 struct mips_elf_la25_stub
{
281 /* The generated section that contains this stub. */
282 asection
*stub_section
;
284 /* The offset of the stub from the start of STUB_SECTION. */
287 /* One symbol for the original function. Its location is available
288 in H->root.root.u.def. */
289 struct mips_elf_link_hash_entry
*h
;
292 /* Macros for populating a mips_elf_la25_stub. */
294 #define LA25_LUI(VAL) (0x3c190000 | (VAL)) /* lui t9,VAL */
295 #define LA25_J(VAL) (0x08000000 | (((VAL) >> 2) & 0x3ffffff)) /* j VAL */
296 #define LA25_BC(VAL) (0xc8000000 | (((VAL) >> 2) & 0x3ffffff)) /* bc VAL */
297 #define LA25_ADDIU(VAL) (0x27390000 | (VAL)) /* addiu t9,t9,VAL */
298 #define LA25_LUI_MICROMIPS(VAL) \
299 (0x41b90000 | (VAL)) /* lui t9,VAL */
300 #define LA25_J_MICROMIPS(VAL) \
301 (0xd4000000 | (((VAL) >> 1) & 0x3ffffff)) /* j VAL */
302 #define LA25_ADDIU_MICROMIPS(VAL) \
303 (0x33390000 | (VAL)) /* addiu t9,t9,VAL */
305 /* This structure is passed to mips_elf_sort_hash_table_f when sorting
306 the dynamic symbols. */
308 struct mips_elf_hash_sort_data
310 /* The symbol in the global GOT with the lowest dynamic symbol table
312 struct elf_link_hash_entry
*low
;
313 /* The least dynamic symbol table index corresponding to a non-TLS
314 symbol with a GOT entry. */
315 bfd_size_type min_got_dynindx
;
316 /* The greatest dynamic symbol table index corresponding to a symbol
317 with a GOT entry that is not referenced (e.g., a dynamic symbol
318 with dynamic relocations pointing to it from non-primary GOTs). */
319 bfd_size_type max_unref_got_dynindx
;
320 /* The greatest dynamic symbol table index corresponding to a local
322 bfd_size_type max_local_dynindx
;
323 /* The greatest dynamic symbol table index corresponding to an external
324 symbol without a GOT entry. */
325 bfd_size_type max_non_got_dynindx
;
326 /* If non-NULL, output BFD for .MIPS.xhash finalization. */
328 /* If non-NULL, pointer to contents of .MIPS.xhash for filling in
329 real final dynindx. */
333 /* We make up to two PLT entries if needed, one for standard MIPS code
334 and one for compressed code, either a MIPS16 or microMIPS one. We
335 keep a separate record of traditional lazy-binding stubs, for easier
340 /* Traditional SVR4 stub offset, or -1 if none. */
343 /* Standard PLT entry offset, or -1 if none. */
346 /* Compressed PLT entry offset, or -1 if none. */
349 /* The corresponding .got.plt index, or -1 if none. */
350 bfd_vma gotplt_index
;
352 /* Whether we need a standard PLT entry. */
353 unsigned int need_mips
: 1;
355 /* Whether we need a compressed PLT entry. */
356 unsigned int need_comp
: 1;
359 /* The MIPS ELF linker needs additional information for each symbol in
360 the global hash table. */
362 struct mips_elf_link_hash_entry
364 struct elf_link_hash_entry root
;
366 /* External symbol information. */
369 /* The la25 stub we have created for ths symbol, if any. */
370 struct mips_elf_la25_stub
*la25_stub
;
372 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
374 unsigned int possibly_dynamic_relocs
;
376 /* If there is a stub that 32 bit functions should use to call this
377 16 bit function, this points to the section containing the stub. */
380 /* If there is a stub that 16 bit functions should use to call this
381 32 bit function, this points to the section containing the stub. */
384 /* This is like the call_stub field, but it is used if the function
385 being called returns a floating point value. */
386 asection
*call_fp_stub
;
388 /* If non-zero, location in .MIPS.xhash to write real final dynindx. */
389 bfd_vma mipsxhash_loc
;
391 /* The highest GGA_* value that satisfies all references to this symbol. */
392 unsigned int global_got_area
: 2;
394 /* True if all GOT relocations against this symbol are for calls. This is
395 a looser condition than no_fn_stub below, because there may be other
396 non-call non-GOT relocations against the symbol. */
397 unsigned int got_only_for_calls
: 1;
399 /* True if one of the relocations described by possibly_dynamic_relocs
400 is against a readonly section. */
401 unsigned int readonly_reloc
: 1;
403 /* True if there is a relocation against this symbol that must be
404 resolved by the static linker (in other words, if the relocation
405 cannot possibly be made dynamic). */
406 unsigned int has_static_relocs
: 1;
408 /* True if we must not create a .MIPS.stubs entry for this symbol.
409 This is set, for example, if there are relocations related to
410 taking the function's address, i.e. any but R_MIPS_CALL*16 ones.
411 See "MIPS ABI Supplement, 3rd Edition", p. 4-20. */
412 unsigned int no_fn_stub
: 1;
414 /* Whether we need the fn_stub; this is true if this symbol appears
415 in any relocs other than a 16 bit call. */
416 unsigned int need_fn_stub
: 1;
418 /* True if this symbol is referenced by branch relocations from
419 any non-PIC input file. This is used to determine whether an
420 la25 stub is required. */
421 unsigned int has_nonpic_branches
: 1;
423 /* Does this symbol need a traditional MIPS lazy-binding stub
424 (as opposed to a PLT entry)? */
425 unsigned int needs_lazy_stub
: 1;
427 /* Does this symbol resolve to a PLT entry? */
428 unsigned int use_plt_entry
: 1;
431 /* MIPS ELF linker hash table. */
433 struct mips_elf_link_hash_table
435 struct elf_link_hash_table root
;
437 /* The number of .rtproc entries. */
438 bfd_size_type procedure_count
;
440 /* The size of the .compact_rel section (if SGI_COMPAT). */
441 bfd_size_type compact_rel_size
;
443 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic entry
444 is set to the address of __rld_obj_head as in IRIX5 and IRIX6. */
445 bfd_boolean use_rld_obj_head
;
447 /* The __rld_map or __rld_obj_head symbol. */
448 struct elf_link_hash_entry
*rld_symbol
;
450 /* This is set if we see any mips16 stub sections. */
451 bfd_boolean mips16_stubs_seen
;
453 /* True if we can generate copy relocs and PLTs. */
454 bfd_boolean use_plts_and_copy_relocs
;
456 /* True if we can only use 32-bit microMIPS instructions. */
459 /* True if we suppress checks for invalid branches between ISA modes. */
460 bfd_boolean ignore_branch_isa
;
462 /* True if we are targetting R6 compact branches. */
463 bfd_boolean compact_branches
;
465 /* True if we already reported the small-data section overflow. */
466 bfd_boolean small_data_overflow_reported
;
468 /* True if we use the special `__gnu_absolute_zero' symbol. */
469 bfd_boolean use_absolute_zero
;
471 /* True if we have been configured for a GNU target. */
472 bfd_boolean gnu_target
;
474 /* Shortcuts to some dynamic sections, or NULL if they are not
479 /* The master GOT information. */
480 struct mips_got_info
*got_info
;
482 /* The global symbol in the GOT with the lowest index in the dynamic
484 struct elf_link_hash_entry
*global_gotsym
;
486 /* The size of the PLT header in bytes. */
487 bfd_vma plt_header_size
;
489 /* The size of a standard PLT entry in bytes. */
490 bfd_vma plt_mips_entry_size
;
492 /* The size of a compressed PLT entry in bytes. */
493 bfd_vma plt_comp_entry_size
;
495 /* The offset of the next standard PLT entry to create. */
496 bfd_vma plt_mips_offset
;
498 /* The offset of the next compressed PLT entry to create. */
499 bfd_vma plt_comp_offset
;
501 /* The index of the next .got.plt entry to create. */
502 bfd_vma plt_got_index
;
504 /* The number of functions that need a lazy-binding stub. */
505 bfd_vma lazy_stub_count
;
507 /* The size of a function stub entry in bytes. */
508 bfd_vma function_stub_size
;
510 /* The number of reserved entries at the beginning of the GOT. */
511 unsigned int reserved_gotno
;
513 /* The section used for mips_elf_la25_stub trampolines.
514 See the comment above that structure for details. */
515 asection
*strampoline
;
517 /* A table of mips_elf_la25_stubs, indexed by (input_section, offset)
521 /* A function FN (NAME, IS, OS) that creates a new input section
522 called NAME and links it to output section OS. If IS is nonnull,
523 the new section should go immediately before it, otherwise it
524 should go at the (current) beginning of OS.
526 The function returns the new section on success, otherwise it
528 asection
*(*add_stub_section
) (const char *, asection
*, asection
*);
530 /* Is the PLT header compressed? */
531 unsigned int plt_header_is_comp
: 1;
534 /* Get the MIPS ELF linker hash table from a link_info structure. */
536 #define mips_elf_hash_table(p) \
537 ((is_elf_hash_table ((p)->hash) \
538 && elf_hash_table_id (elf_hash_table (p)) == MIPS_ELF_DATA) \
539 ? (struct mips_elf_link_hash_table *) (p)->hash : NULL)
541 /* A structure used to communicate with htab_traverse callbacks. */
542 struct mips_htab_traverse_info
544 /* The usual link-wide information. */
545 struct bfd_link_info
*info
;
548 /* Starts off FALSE and is set to TRUE if the link should be aborted. */
552 /* MIPS ELF private object data. */
554 struct mips_elf_obj_tdata
556 /* Generic ELF private object data. */
557 struct elf_obj_tdata root
;
559 /* Input BFD providing Tag_GNU_MIPS_ABI_FP attribute for output. */
562 /* Input BFD providing Tag_GNU_MIPS_ABI_MSA attribute for output. */
565 /* The abiflags for this object. */
566 Elf_Internal_ABIFlags_v0 abiflags
;
567 bfd_boolean abiflags_valid
;
569 /* The GOT requirements of input bfds. */
570 struct mips_got_info
*got
;
572 /* Used by _bfd_mips_elf_find_nearest_line. The structure could be
573 included directly in this one, but there's no point to wasting
574 the memory just for the infrequently called find_nearest_line. */
575 struct mips_elf_find_line
*find_line_info
;
577 /* An array of stub sections indexed by symbol number. */
578 asection
**local_stubs
;
579 asection
**local_call_stubs
;
581 /* The Irix 5 support uses two virtual sections, which represent
582 text/data symbols defined in dynamic objects. */
583 asymbol
*elf_data_symbol
;
584 asymbol
*elf_text_symbol
;
585 asection
*elf_data_section
;
586 asection
*elf_text_section
;
589 /* Get MIPS ELF private object data from BFD's tdata. */
591 #define mips_elf_tdata(bfd) \
592 ((struct mips_elf_obj_tdata *) (bfd)->tdata.any)
594 #define TLS_RELOC_P(r_type) \
595 (r_type == R_MIPS_TLS_DTPMOD32 \
596 || r_type == R_MIPS_TLS_DTPMOD64 \
597 || r_type == R_MIPS_TLS_DTPREL32 \
598 || r_type == R_MIPS_TLS_DTPREL64 \
599 || r_type == R_MIPS_TLS_GD \
600 || r_type == R_MIPS_TLS_LDM \
601 || r_type == R_MIPS_TLS_DTPREL_HI16 \
602 || r_type == R_MIPS_TLS_DTPREL_LO16 \
603 || r_type == R_MIPS_TLS_GOTTPREL \
604 || r_type == R_MIPS_TLS_TPREL32 \
605 || r_type == R_MIPS_TLS_TPREL64 \
606 || r_type == R_MIPS_TLS_TPREL_HI16 \
607 || r_type == R_MIPS_TLS_TPREL_LO16 \
608 || r_type == R_MIPS16_TLS_GD \
609 || r_type == R_MIPS16_TLS_LDM \
610 || r_type == R_MIPS16_TLS_DTPREL_HI16 \
611 || r_type == R_MIPS16_TLS_DTPREL_LO16 \
612 || r_type == R_MIPS16_TLS_GOTTPREL \
613 || r_type == R_MIPS16_TLS_TPREL_HI16 \
614 || r_type == R_MIPS16_TLS_TPREL_LO16 \
615 || r_type == R_MICROMIPS_TLS_GD \
616 || r_type == R_MICROMIPS_TLS_LDM \
617 || r_type == R_MICROMIPS_TLS_DTPREL_HI16 \
618 || r_type == R_MICROMIPS_TLS_DTPREL_LO16 \
619 || r_type == R_MICROMIPS_TLS_GOTTPREL \
620 || r_type == R_MICROMIPS_TLS_TPREL_HI16 \
621 || r_type == R_MICROMIPS_TLS_TPREL_LO16)
623 /* Structure used to pass information to mips_elf_output_extsym. */
628 struct bfd_link_info
*info
;
629 struct ecoff_debug_info
*debug
;
630 const struct ecoff_debug_swap
*swap
;
634 /* The names of the runtime procedure table symbols used on IRIX5. */
636 static const char * const mips_elf_dynsym_rtproc_names
[] =
639 "_procedure_string_table",
640 "_procedure_table_size",
644 /* These structures are used to generate the .compact_rel section on
649 unsigned long id1
; /* Always one? */
650 unsigned long num
; /* Number of compact relocation entries. */
651 unsigned long id2
; /* Always two? */
652 unsigned long offset
; /* The file offset of the first relocation. */
653 unsigned long reserved0
; /* Zero? */
654 unsigned long reserved1
; /* Zero? */
663 bfd_byte reserved0
[4];
664 bfd_byte reserved1
[4];
665 } Elf32_External_compact_rel
;
669 unsigned int ctype
: 1; /* 1: long 0: short format. See below. */
670 unsigned int rtype
: 4; /* Relocation types. See below. */
671 unsigned int dist2to
: 8;
672 unsigned int relvaddr
: 19; /* (VADDR - vaddr of the previous entry)/ 4 */
673 unsigned long konst
; /* KONST field. See below. */
674 unsigned long vaddr
; /* VADDR to be relocated. */
679 unsigned int ctype
: 1; /* 1: long 0: short format. See below. */
680 unsigned int rtype
: 4; /* Relocation types. See below. */
681 unsigned int dist2to
: 8;
682 unsigned int relvaddr
: 19; /* (VADDR - vaddr of the previous entry)/ 4 */
683 unsigned long konst
; /* KONST field. See below. */
691 } Elf32_External_crinfo
;
697 } Elf32_External_crinfo2
;
699 /* These are the constants used to swap the bitfields in a crinfo. */
701 #define CRINFO_CTYPE (0x1U)
702 #define CRINFO_CTYPE_SH (31)
703 #define CRINFO_RTYPE (0xfU)
704 #define CRINFO_RTYPE_SH (27)
705 #define CRINFO_DIST2TO (0xffU)
706 #define CRINFO_DIST2TO_SH (19)
707 #define CRINFO_RELVADDR (0x7ffffU)
708 #define CRINFO_RELVADDR_SH (0)
710 /* A compact relocation info has long (3 words) or short (2 words)
711 formats. A short format doesn't have VADDR field and relvaddr
712 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
713 #define CRF_MIPS_LONG 1
714 #define CRF_MIPS_SHORT 0
716 /* There are 4 types of compact relocation at least. The value KONST
717 has different meaning for each type:
720 CT_MIPS_REL32 Address in data
721 CT_MIPS_WORD Address in word (XXX)
722 CT_MIPS_GPHI_LO GP - vaddr
723 CT_MIPS_JMPAD Address to jump
726 #define CRT_MIPS_REL32 0xa
727 #define CRT_MIPS_WORD 0xb
728 #define CRT_MIPS_GPHI_LO 0xc
729 #define CRT_MIPS_JMPAD 0xd
731 #define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
732 #define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
733 #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
734 #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
736 /* The structure of the runtime procedure descriptor created by the
737 loader for use by the static exception system. */
739 typedef struct runtime_pdr
{
740 bfd_vma adr
; /* Memory address of start of procedure. */
741 long regmask
; /* Save register mask. */
742 long regoffset
; /* Save register offset. */
743 long fregmask
; /* Save floating point register mask. */
744 long fregoffset
; /* Save floating point register offset. */
745 long frameoffset
; /* Frame size. */
746 short framereg
; /* Frame pointer register. */
747 short pcreg
; /* Offset or reg of return pc. */
748 long irpss
; /* Index into the runtime string table. */
750 struct exception_info
*exception_info
;/* Pointer to exception array. */
752 #define cbRPDR sizeof (RPDR)
753 #define rpdNil ((pRPDR) 0)
755 static struct mips_got_entry
*mips_elf_create_local_got_entry
756 (bfd
*, struct bfd_link_info
*, bfd
*, bfd_vma
, unsigned long,
757 struct mips_elf_link_hash_entry
*, int);
758 static bfd_boolean mips_elf_sort_hash_table_f
759 (struct mips_elf_link_hash_entry
*, void *);
760 static bfd_vma mips_elf_high
762 static bfd_boolean mips_elf_create_dynamic_relocation
763 (bfd
*, struct bfd_link_info
*, const Elf_Internal_Rela
*,
764 struct mips_elf_link_hash_entry
*, asection
*, bfd_vma
,
765 bfd_vma
*, asection
*);
766 static bfd_vma mips_elf_adjust_gp
767 (bfd
*, struct mips_got_info
*, bfd
*);
769 /* This will be used when we sort the dynamic relocation records. */
770 static bfd
*reldyn_sorting_bfd
;
772 /* True if ABFD is for CPUs with load interlocking that include
773 non-MIPS1 CPUs and R3900. */
774 #define LOAD_INTERLOCKS_P(abfd) \
775 ( ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) != E_MIPS_ARCH_1) \
776 || ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_3900))
778 /* True if ABFD is for CPUs that are faster if JAL is converted to BAL.
779 This should be safe for all architectures. We enable this predicate
780 for RM9000 for now. */
781 #define JAL_TO_BAL_P(abfd) \
782 ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_9000)
784 /* True if ABFD is for CPUs that are faster if JALR is converted to BAL.
785 This should be safe for all architectures. We enable this predicate for
787 #define JALR_TO_BAL_P(abfd) 1
789 /* True if ABFD is for CPUs that are faster if JR is converted to B.
790 This should be safe for all architectures. We enable this predicate for
792 #define JR_TO_B_P(abfd) 1
794 /* True if ABFD is a PIC object. */
795 #define PIC_OBJECT_P(abfd) \
796 ((elf_elfheader (abfd)->e_flags & EF_MIPS_PIC) != 0)
798 /* Nonzero if ABFD is using the O32 ABI. */
799 #define ABI_O32_P(abfd) \
800 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
802 /* Nonzero if ABFD is using the N32 ABI. */
803 #define ABI_N32_P(abfd) \
804 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
806 /* Nonzero if ABFD is using the N64 ABI. */
807 #define ABI_64_P(abfd) \
808 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
810 /* Nonzero if ABFD is using NewABI conventions. */
811 #define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
813 /* Nonzero if ABFD has microMIPS code. */
814 #define MICROMIPS_P(abfd) \
815 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS) != 0)
817 /* Nonzero if ABFD is MIPS R6. */
818 #define MIPSR6_P(abfd) \
819 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6 \
820 || (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R6)
822 /* The IRIX compatibility level we are striving for. */
823 #define IRIX_COMPAT(abfd) \
824 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
826 /* Whether we are trying to be compatible with IRIX at all. */
827 #define SGI_COMPAT(abfd) \
828 (IRIX_COMPAT (abfd) != ict_none)
830 /* The name of the options section. */
831 #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
832 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
834 /* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
835 Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */
836 #define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
837 (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
839 /* True if NAME is the recognized name of any SHT_MIPS_ABIFLAGS section. */
840 #define MIPS_ELF_ABIFLAGS_SECTION_NAME_P(NAME) \
841 (strcmp (NAME, ".MIPS.abiflags") == 0)
843 /* Whether the section is readonly. */
844 #define MIPS_ELF_READONLY_SECTION(sec) \
845 ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) \
846 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
848 /* The name of the stub section. */
849 #define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
851 /* The size of an external REL relocation. */
852 #define MIPS_ELF_REL_SIZE(abfd) \
853 (get_elf_backend_data (abfd)->s->sizeof_rel)
855 /* The size of an external RELA relocation. */
856 #define MIPS_ELF_RELA_SIZE(abfd) \
857 (get_elf_backend_data (abfd)->s->sizeof_rela)
859 /* The size of an external dynamic table entry. */
860 #define MIPS_ELF_DYN_SIZE(abfd) \
861 (get_elf_backend_data (abfd)->s->sizeof_dyn)
863 /* The size of a GOT entry. */
864 #define MIPS_ELF_GOT_SIZE(abfd) \
865 (get_elf_backend_data (abfd)->s->arch_size / 8)
867 /* The size of the .rld_map section. */
868 #define MIPS_ELF_RLD_MAP_SIZE(abfd) \
869 (get_elf_backend_data (abfd)->s->arch_size / 8)
871 /* The size of a symbol-table entry. */
872 #define MIPS_ELF_SYM_SIZE(abfd) \
873 (get_elf_backend_data (abfd)->s->sizeof_sym)
875 /* The default alignment for sections, as a power of two. */
876 #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
877 (get_elf_backend_data (abfd)->s->log_file_align)
879 /* Get word-sized data. */
880 #define MIPS_ELF_GET_WORD(abfd, ptr) \
881 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
883 /* Put out word-sized data. */
884 #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
886 ? bfd_put_64 (abfd, val, ptr) \
887 : bfd_put_32 (abfd, val, ptr))
889 /* The opcode for word-sized loads (LW or LD). */
890 #define MIPS_ELF_LOAD_WORD(abfd) \
891 (ABI_64_P (abfd) ? 0xdc000000 : 0x8c000000)
893 /* Add a dynamic symbol table-entry. */
894 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
895 _bfd_elf_add_dynamic_entry (info, tag, val)
897 #define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
898 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (abfd, rtype, rela))
900 /* The name of the dynamic relocation section. */
901 #define MIPS_ELF_REL_DYN_NAME(INFO) \
902 (mips_elf_hash_table (INFO)->root.target_os == is_vxworks \
903 ? ".rela.dyn" : ".rel.dyn")
905 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
906 from smaller values. Start with zero, widen, *then* decrement. */
907 #define MINUS_ONE (((bfd_vma)0) - 1)
908 #define MINUS_TWO (((bfd_vma)0) - 2)
910 /* The value to write into got[1] for SVR4 targets, to identify it is
911 a GNU object. The dynamic linker can then use got[1] to store the
913 #define MIPS_ELF_GNU_GOT1_MASK(abfd) \
914 ((bfd_vma) 1 << (ABI_64_P (abfd) ? 63 : 31))
916 /* The offset of $gp from the beginning of the .got section. */
917 #define ELF_MIPS_GP_OFFSET(INFO) \
918 (mips_elf_hash_table (INFO)->root.target_os == is_vxworks \
921 /* The maximum size of the GOT for it to be addressable using 16-bit
923 #define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff)
925 /* Instructions which appear in a stub. */
926 #define STUB_LW(abfd) \
928 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
929 : 0x8f998010)) /* lw t9,0x8010(gp) */
930 #define STUB_MOVE 0x03e07825 /* or t7,ra,zero */
931 #define STUB_LUI(VAL) (0x3c180000 + (VAL)) /* lui t8,VAL */
932 #define STUB_JALR 0x0320f809 /* jalr ra,t9 */
933 #define STUB_JALRC 0xf8190000 /* jalrc ra,t9 */
934 #define STUB_ORI(VAL) (0x37180000 + (VAL)) /* ori t8,t8,VAL */
935 #define STUB_LI16U(VAL) (0x34180000 + (VAL)) /* ori t8,zero,VAL unsigned */
936 #define STUB_LI16S(abfd, VAL) \
938 ? (0x64180000 + (VAL)) /* daddiu t8,zero,VAL sign extended */ \
939 : (0x24180000 + (VAL)))) /* addiu t8,zero,VAL sign extended */
941 /* Likewise for the microMIPS ASE. */
942 #define STUB_LW_MICROMIPS(abfd) \
944 ? 0xdf3c8010 /* ld t9,0x8010(gp) */ \
945 : 0xff3c8010) /* lw t9,0x8010(gp) */
946 #define STUB_MOVE_MICROMIPS 0x0dff /* move t7,ra */
947 #define STUB_MOVE32_MICROMIPS 0x001f7a90 /* or t7,ra,zero */
948 #define STUB_LUI_MICROMIPS(VAL) \
949 (0x41b80000 + (VAL)) /* lui t8,VAL */
950 #define STUB_JALR_MICROMIPS 0x45d9 /* jalr t9 */
951 #define STUB_JALR32_MICROMIPS 0x03f90f3c /* jalr ra,t9 */
952 #define STUB_ORI_MICROMIPS(VAL) \
953 (0x53180000 + (VAL)) /* ori t8,t8,VAL */
954 #define STUB_LI16U_MICROMIPS(VAL) \
955 (0x53000000 + (VAL)) /* ori t8,zero,VAL unsigned */
956 #define STUB_LI16S_MICROMIPS(abfd, VAL) \
958 ? 0x5f000000 + (VAL) /* daddiu t8,zero,VAL sign extended */ \
959 : 0x33000000 + (VAL)) /* addiu t8,zero,VAL sign extended */
961 #define MIPS_FUNCTION_STUB_NORMAL_SIZE 16
962 #define MIPS_FUNCTION_STUB_BIG_SIZE 20
963 #define MICROMIPS_FUNCTION_STUB_NORMAL_SIZE 12
964 #define MICROMIPS_FUNCTION_STUB_BIG_SIZE 16
965 #define MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE 16
966 #define MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE 20
968 /* The name of the dynamic interpreter. This is put in the .interp
971 #define ELF_DYNAMIC_INTERPRETER(abfd) \
972 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
973 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
974 : "/usr/lib/libc.so.1")
977 #define MNAME(bfd,pre,pos) \
978 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
979 #define ELF_R_SYM(bfd, i) \
980 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
981 #define ELF_R_TYPE(bfd, i) \
982 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
983 #define ELF_R_INFO(bfd, s, t) \
984 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
986 #define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
987 #define ELF_R_SYM(bfd, i) \
989 #define ELF_R_TYPE(bfd, i) \
991 #define ELF_R_INFO(bfd, s, t) \
992 (ELF32_R_INFO (s, t))
995 /* The mips16 compiler uses a couple of special sections to handle
996 floating point arguments.
998 Section names that look like .mips16.fn.FNNAME contain stubs that
999 copy floating point arguments from the fp regs to the gp regs and
1000 then jump to FNNAME. If any 32 bit function calls FNNAME, the
1001 call should be redirected to the stub instead. If no 32 bit
1002 function calls FNNAME, the stub should be discarded. We need to
1003 consider any reference to the function, not just a call, because
1004 if the address of the function is taken we will need the stub,
1005 since the address might be passed to a 32 bit function.
1007 Section names that look like .mips16.call.FNNAME contain stubs
1008 that copy floating point arguments from the gp regs to the fp
1009 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
1010 then any 16 bit function that calls FNNAME should be redirected
1011 to the stub instead. If FNNAME is not a 32 bit function, the
1012 stub should be discarded.
1014 .mips16.call.fp.FNNAME sections are similar, but contain stubs
1015 which call FNNAME and then copy the return value from the fp regs
1016 to the gp regs. These stubs store the return value in $18 while
1017 calling FNNAME; any function which might call one of these stubs
1018 must arrange to save $18 around the call. (This case is not
1019 needed for 32 bit functions that call 16 bit functions, because
1020 16 bit functions always return floating point values in both
1023 Note that in all cases FNNAME might be defined statically.
1024 Therefore, FNNAME is not used literally. Instead, the relocation
1025 information will indicate which symbol the section is for.
1027 We record any stubs that we find in the symbol table. */
1029 #define FN_STUB ".mips16.fn."
1030 #define CALL_STUB ".mips16.call."
1031 #define CALL_FP_STUB ".mips16.call.fp."
1033 #define FN_STUB_P(name) CONST_STRNEQ (name, FN_STUB)
1034 #define CALL_STUB_P(name) CONST_STRNEQ (name, CALL_STUB)
1035 #define CALL_FP_STUB_P(name) CONST_STRNEQ (name, CALL_FP_STUB)
1037 /* The format of the first PLT entry in an O32 executable. */
1038 static const bfd_vma mips_o32_exec_plt0_entry
[] =
1040 0x3c1c0000, /* lui $28, %hi(&GOTPLT[0]) */
1041 0x8f990000, /* lw $25, %lo(&GOTPLT[0])($28) */
1042 0x279c0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
1043 0x031cc023, /* subu $24, $24, $28 */
1044 0x03e07825, /* or t7, ra, zero */
1045 0x0018c082, /* srl $24, $24, 2 */
1046 0x0320f809, /* jalr $25 */
1047 0x2718fffe /* subu $24, $24, 2 */
1050 /* The format of the first PLT entry in an O32 executable using compact
1052 static const bfd_vma mipsr6_o32_exec_plt0_entry_compact
[] =
1054 0x3c1c0000, /* lui $28, %hi(&GOTPLT[0]) */
1055 0x8f990000, /* lw $25, %lo(&GOTPLT[0])($28) */
1056 0x279c0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
1057 0x031cc023, /* subu $24, $24, $28 */
1058 0x03e07821, /* move $15, $31 # 32-bit move (addu) */
1059 0x0018c082, /* srl $24, $24, 2 */
1060 0x2718fffe, /* subu $24, $24, 2 */
1061 0xf8190000 /* jalrc $25 */
1064 /* The format of the first PLT entry in an N32 executable. Different
1065 because gp ($28) is not available; we use t2 ($14) instead. */
1066 static const bfd_vma mips_n32_exec_plt0_entry
[] =
1068 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1069 0x8dd90000, /* lw $25, %lo(&GOTPLT[0])($14) */
1070 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1071 0x030ec023, /* subu $24, $24, $14 */
1072 0x03e07825, /* or t7, ra, zero */
1073 0x0018c082, /* srl $24, $24, 2 */
1074 0x0320f809, /* jalr $25 */
1075 0x2718fffe /* subu $24, $24, 2 */
1078 /* The format of the first PLT entry in an N32 executable using compact
1079 jumps. Different because gp ($28) is not available; we use t2 ($14)
1081 static const bfd_vma mipsr6_n32_exec_plt0_entry_compact
[] =
1083 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1084 0x8dd90000, /* lw $25, %lo(&GOTPLT[0])($14) */
1085 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1086 0x030ec023, /* subu $24, $24, $14 */
1087 0x03e07821, /* move $15, $31 # 32-bit move (addu) */
1088 0x0018c082, /* srl $24, $24, 2 */
1089 0x2718fffe, /* subu $24, $24, 2 */
1090 0xf8190000 /* jalrc $25 */
1093 /* The format of the first PLT entry in an N64 executable. Different
1094 from N32 because of the increased size of GOT entries. */
1095 static const bfd_vma mips_n64_exec_plt0_entry
[] =
1097 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1098 0xddd90000, /* ld $25, %lo(&GOTPLT[0])($14) */
1099 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1100 0x030ec023, /* subu $24, $24, $14 */
1101 0x03e07825, /* or t7, ra, zero */
1102 0x0018c0c2, /* srl $24, $24, 3 */
1103 0x0320f809, /* jalr $25 */
1104 0x2718fffe /* subu $24, $24, 2 */
1107 /* The format of the first PLT entry in an N64 executable using compact
1108 jumps. Different from N32 because of the increased size of GOT
1110 static const bfd_vma mipsr6_n64_exec_plt0_entry_compact
[] =
1112 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1113 0xddd90000, /* ld $25, %lo(&GOTPLT[0])($14) */
1114 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1115 0x030ec023, /* subu $24, $24, $14 */
1116 0x03e0782d, /* move $15, $31 # 64-bit move (daddu) */
1117 0x0018c0c2, /* srl $24, $24, 3 */
1118 0x2718fffe, /* subu $24, $24, 2 */
1119 0xf8190000 /* jalrc $25 */
1123 /* The format of the microMIPS first PLT entry in an O32 executable.
1124 We rely on v0 ($2) rather than t8 ($24) to contain the address
1125 of the GOTPLT entry handled, so this stub may only be used when
1126 all the subsequent PLT entries are microMIPS code too.
1128 The trailing NOP is for alignment and correct disassembly only. */
1129 static const bfd_vma micromips_o32_exec_plt0_entry
[] =
1131 0x7980, 0x0000, /* addiupc $3, (&GOTPLT[0]) - . */
1132 0xff23, 0x0000, /* lw $25, 0($3) */
1133 0x0535, /* subu $2, $2, $3 */
1134 0x2525, /* srl $2, $2, 2 */
1135 0x3302, 0xfffe, /* subu $24, $2, 2 */
1136 0x0dff, /* move $15, $31 */
1137 0x45f9, /* jalrs $25 */
1138 0x0f83, /* move $28, $3 */
1142 /* The format of the microMIPS first PLT entry in an O32 executable
1143 in the insn32 mode. */
1144 static const bfd_vma micromips_insn32_o32_exec_plt0_entry
[] =
1146 0x41bc, 0x0000, /* lui $28, %hi(&GOTPLT[0]) */
1147 0xff3c, 0x0000, /* lw $25, %lo(&GOTPLT[0])($28) */
1148 0x339c, 0x0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
1149 0x0398, 0xc1d0, /* subu $24, $24, $28 */
1150 0x001f, 0x7a90, /* or $15, $31, zero */
1151 0x0318, 0x1040, /* srl $24, $24, 2 */
1152 0x03f9, 0x0f3c, /* jalr $25 */
1153 0x3318, 0xfffe /* subu $24, $24, 2 */
1156 /* The format of subsequent standard PLT entries. */
1157 static const bfd_vma mips_exec_plt_entry
[] =
1159 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
1160 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
1161 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
1162 0x03200008 /* jr $25 */
1165 static const bfd_vma mipsr6_exec_plt_entry
[] =
1167 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
1168 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
1169 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
1170 0x03200009 /* jr $25 */
1173 static const bfd_vma mipsr6_exec_plt_entry_compact
[] =
1175 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
1176 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
1177 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
1178 0xd8190000 /* jic $25, 0 */
1181 /* The format of subsequent MIPS16 o32 PLT entries. We use v0 ($2)
1182 and v1 ($3) as temporaries because t8 ($24) and t9 ($25) are not
1183 directly addressable. */
1184 static const bfd_vma mips16_o32_exec_plt_entry
[] =
1186 0xb203, /* lw $2, 12($pc) */
1187 0x9a60, /* lw $3, 0($2) */
1188 0x651a, /* move $24, $2 */
1190 0x653b, /* move $25, $3 */
1192 0x0000, 0x0000 /* .word (.got.plt entry) */
1195 /* The format of subsequent microMIPS o32 PLT entries. We use v0 ($2)
1196 as a temporary because t8 ($24) is not addressable with ADDIUPC. */
1197 static const bfd_vma micromips_o32_exec_plt_entry
[] =
1199 0x7900, 0x0000, /* addiupc $2, (.got.plt entry) - . */
1200 0xff22, 0x0000, /* lw $25, 0($2) */
1201 0x4599, /* jr $25 */
1202 0x0f02 /* move $24, $2 */
1205 /* The format of subsequent microMIPS o32 PLT entries in the insn32 mode. */
1206 static const bfd_vma micromips_insn32_o32_exec_plt_entry
[] =
1208 0x41af, 0x0000, /* lui $15, %hi(.got.plt entry) */
1209 0xff2f, 0x0000, /* lw $25, %lo(.got.plt entry)($15) */
1210 0x0019, 0x0f3c, /* jr $25 */
1211 0x330f, 0x0000 /* addiu $24, $15, %lo(.got.plt entry) */
1214 /* The format of the first PLT entry in a VxWorks executable. */
1215 static const bfd_vma mips_vxworks_exec_plt0_entry
[] =
1217 0x3c190000, /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_) */
1218 0x27390000, /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_) */
1219 0x8f390008, /* lw t9, 8(t9) */
1220 0x00000000, /* nop */
1221 0x03200008, /* jr t9 */
1222 0x00000000 /* nop */
1225 /* The format of subsequent PLT entries. */
1226 static const bfd_vma mips_vxworks_exec_plt_entry
[] =
1228 0x10000000, /* b .PLT_resolver */
1229 0x24180000, /* li t8, <pltindex> */
1230 0x3c190000, /* lui t9, %hi(<.got.plt slot>) */
1231 0x27390000, /* addiu t9, t9, %lo(<.got.plt slot>) */
1232 0x8f390000, /* lw t9, 0(t9) */
1233 0x00000000, /* nop */
1234 0x03200008, /* jr t9 */
1235 0x00000000 /* nop */
1238 /* The format of the first PLT entry in a VxWorks shared object. */
1239 static const bfd_vma mips_vxworks_shared_plt0_entry
[] =
1241 0x8f990008, /* lw t9, 8(gp) */
1242 0x00000000, /* nop */
1243 0x03200008, /* jr t9 */
1244 0x00000000, /* nop */
1245 0x00000000, /* nop */
1246 0x00000000 /* nop */
1249 /* The format of subsequent PLT entries. */
1250 static const bfd_vma mips_vxworks_shared_plt_entry
[] =
1252 0x10000000, /* b .PLT_resolver */
1253 0x24180000 /* li t8, <pltindex> */
1256 /* microMIPS 32-bit opcode helper installer. */
1259 bfd_put_micromips_32 (const bfd
*abfd
, bfd_vma opcode
, bfd_byte
*ptr
)
1261 bfd_put_16 (abfd
, (opcode
>> 16) & 0xffff, ptr
);
1262 bfd_put_16 (abfd
, opcode
& 0xffff, ptr
+ 2);
1265 /* microMIPS 32-bit opcode helper retriever. */
1268 bfd_get_micromips_32 (const bfd
*abfd
, const bfd_byte
*ptr
)
1270 return (bfd_get_16 (abfd
, ptr
) << 16) | bfd_get_16 (abfd
, ptr
+ 2);
1273 /* Look up an entry in a MIPS ELF linker hash table. */
1275 #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
1276 ((struct mips_elf_link_hash_entry *) \
1277 elf_link_hash_lookup (&(table)->root, (string), (create), \
1280 /* Traverse a MIPS ELF linker hash table. */
1282 #define mips_elf_link_hash_traverse(table, func, info) \
1283 (elf_link_hash_traverse \
1285 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
1288 /* Find the base offsets for thread-local storage in this object,
1289 for GD/LD and IE/LE respectively. */
1291 #define TP_OFFSET 0x7000
1292 #define DTP_OFFSET 0x8000
1295 dtprel_base (struct bfd_link_info
*info
)
1297 /* If tls_sec is NULL, we should have signalled an error already. */
1298 if (elf_hash_table (info
)->tls_sec
== NULL
)
1300 return elf_hash_table (info
)->tls_sec
->vma
+ DTP_OFFSET
;
1304 tprel_base (struct bfd_link_info
*info
)
1306 /* If tls_sec is NULL, we should have signalled an error already. */
1307 if (elf_hash_table (info
)->tls_sec
== NULL
)
1309 return elf_hash_table (info
)->tls_sec
->vma
+ TP_OFFSET
;
1312 /* Create an entry in a MIPS ELF linker hash table. */
1314 static struct bfd_hash_entry
*
1315 mips_elf_link_hash_newfunc (struct bfd_hash_entry
*entry
,
1316 struct bfd_hash_table
*table
, const char *string
)
1318 struct mips_elf_link_hash_entry
*ret
=
1319 (struct mips_elf_link_hash_entry
*) entry
;
1321 /* Allocate the structure if it has not already been allocated by a
1324 ret
= bfd_hash_allocate (table
, sizeof (struct mips_elf_link_hash_entry
));
1326 return (struct bfd_hash_entry
*) ret
;
1328 /* Call the allocation method of the superclass. */
1329 ret
= ((struct mips_elf_link_hash_entry
*)
1330 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry
*) ret
,
1334 /* Set local fields. */
1335 memset (&ret
->esym
, 0, sizeof (EXTR
));
1336 /* We use -2 as a marker to indicate that the information has
1337 not been set. -1 means there is no associated ifd. */
1340 ret
->possibly_dynamic_relocs
= 0;
1341 ret
->fn_stub
= NULL
;
1342 ret
->call_stub
= NULL
;
1343 ret
->call_fp_stub
= NULL
;
1344 ret
->mipsxhash_loc
= 0;
1345 ret
->global_got_area
= GGA_NONE
;
1346 ret
->got_only_for_calls
= TRUE
;
1347 ret
->readonly_reloc
= FALSE
;
1348 ret
->has_static_relocs
= FALSE
;
1349 ret
->no_fn_stub
= FALSE
;
1350 ret
->need_fn_stub
= FALSE
;
1351 ret
->has_nonpic_branches
= FALSE
;
1352 ret
->needs_lazy_stub
= FALSE
;
1353 ret
->use_plt_entry
= FALSE
;
1356 return (struct bfd_hash_entry
*) ret
;
1359 /* Allocate MIPS ELF private object data. */
1362 _bfd_mips_elf_mkobject (bfd
*abfd
)
1364 return bfd_elf_allocate_object (abfd
, sizeof (struct mips_elf_obj_tdata
),
1369 _bfd_mips_elf_new_section_hook (bfd
*abfd
, asection
*sec
)
1371 if (!sec
->used_by_bfd
)
1373 struct _mips_elf_section_data
*sdata
;
1374 size_t amt
= sizeof (*sdata
);
1376 sdata
= bfd_zalloc (abfd
, amt
);
1379 sec
->used_by_bfd
= sdata
;
1382 return _bfd_elf_new_section_hook (abfd
, sec
);
1385 /* Read ECOFF debugging information from a .mdebug section into a
1386 ecoff_debug_info structure. */
1389 _bfd_mips_elf_read_ecoff_info (bfd
*abfd
, asection
*section
,
1390 struct ecoff_debug_info
*debug
)
1393 const struct ecoff_debug_swap
*swap
;
1396 swap
= get_elf_backend_data (abfd
)->elf_backend_ecoff_debug_swap
;
1397 memset (debug
, 0, sizeof (*debug
));
1399 ext_hdr
= bfd_malloc (swap
->external_hdr_size
);
1400 if (ext_hdr
== NULL
&& swap
->external_hdr_size
!= 0)
1403 if (! bfd_get_section_contents (abfd
, section
, ext_hdr
, 0,
1404 swap
->external_hdr_size
))
1407 symhdr
= &debug
->symbolic_header
;
1408 (*swap
->swap_hdr_in
) (abfd
, ext_hdr
, symhdr
);
1410 /* The symbolic header contains absolute file offsets and sizes to
1412 #define READ(ptr, offset, count, size, type) \
1416 debug->ptr = NULL; \
1417 if (symhdr->count == 0) \
1419 if (_bfd_mul_overflow (size, symhdr->count, &amt)) \
1421 bfd_set_error (bfd_error_file_too_big); \
1422 goto error_return; \
1424 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0) \
1425 goto error_return; \
1426 debug->ptr = (type) _bfd_malloc_and_read (abfd, amt, amt); \
1427 if (debug->ptr == NULL) \
1428 goto error_return; \
1431 READ (line
, cbLineOffset
, cbLine
, sizeof (unsigned char), unsigned char *);
1432 READ (external_dnr
, cbDnOffset
, idnMax
, swap
->external_dnr_size
, void *);
1433 READ (external_pdr
, cbPdOffset
, ipdMax
, swap
->external_pdr_size
, void *);
1434 READ (external_sym
, cbSymOffset
, isymMax
, swap
->external_sym_size
, void *);
1435 READ (external_opt
, cbOptOffset
, ioptMax
, swap
->external_opt_size
, void *);
1436 READ (external_aux
, cbAuxOffset
, iauxMax
, sizeof (union aux_ext
),
1438 READ (ss
, cbSsOffset
, issMax
, sizeof (char), char *);
1439 READ (ssext
, cbSsExtOffset
, issExtMax
, sizeof (char), char *);
1440 READ (external_fdr
, cbFdOffset
, ifdMax
, swap
->external_fdr_size
, void *);
1441 READ (external_rfd
, cbRfdOffset
, crfd
, swap
->external_rfd_size
, void *);
1442 READ (external_ext
, cbExtOffset
, iextMax
, swap
->external_ext_size
, void *);
1452 free (debug
->external_dnr
);
1453 free (debug
->external_pdr
);
1454 free (debug
->external_sym
);
1455 free (debug
->external_opt
);
1456 free (debug
->external_aux
);
1458 free (debug
->ssext
);
1459 free (debug
->external_fdr
);
1460 free (debug
->external_rfd
);
1461 free (debug
->external_ext
);
1465 /* Swap RPDR (runtime procedure table entry) for output. */
1468 ecoff_swap_rpdr_out (bfd
*abfd
, const RPDR
*in
, struct rpdr_ext
*ex
)
1470 H_PUT_S32 (abfd
, in
->adr
, ex
->p_adr
);
1471 H_PUT_32 (abfd
, in
->regmask
, ex
->p_regmask
);
1472 H_PUT_32 (abfd
, in
->regoffset
, ex
->p_regoffset
);
1473 H_PUT_32 (abfd
, in
->fregmask
, ex
->p_fregmask
);
1474 H_PUT_32 (abfd
, in
->fregoffset
, ex
->p_fregoffset
);
1475 H_PUT_32 (abfd
, in
->frameoffset
, ex
->p_frameoffset
);
1477 H_PUT_16 (abfd
, in
->framereg
, ex
->p_framereg
);
1478 H_PUT_16 (abfd
, in
->pcreg
, ex
->p_pcreg
);
1480 H_PUT_32 (abfd
, in
->irpss
, ex
->p_irpss
);
1483 /* Create a runtime procedure table from the .mdebug section. */
1486 mips_elf_create_procedure_table (void *handle
, bfd
*abfd
,
1487 struct bfd_link_info
*info
, asection
*s
,
1488 struct ecoff_debug_info
*debug
)
1490 const struct ecoff_debug_swap
*swap
;
1491 HDRR
*hdr
= &debug
->symbolic_header
;
1493 struct rpdr_ext
*erp
;
1495 struct pdr_ext
*epdr
;
1496 struct sym_ext
*esym
;
1500 bfd_size_type count
;
1501 unsigned long sindex
;
1505 const char *no_name_func
= _("static procedure (no name)");
1513 swap
= get_elf_backend_data (abfd
)->elf_backend_ecoff_debug_swap
;
1515 sindex
= strlen (no_name_func
) + 1;
1516 count
= hdr
->ipdMax
;
1519 size
= swap
->external_pdr_size
;
1521 epdr
= bfd_malloc (size
* count
);
1525 if (! _bfd_ecoff_get_accumulated_pdr (handle
, (bfd_byte
*) epdr
))
1528 size
= sizeof (RPDR
);
1529 rp
= rpdr
= bfd_malloc (size
* count
);
1533 size
= sizeof (char *);
1534 sv
= bfd_malloc (size
* count
);
1538 count
= hdr
->isymMax
;
1539 size
= swap
->external_sym_size
;
1540 esym
= bfd_malloc (size
* count
);
1544 if (! _bfd_ecoff_get_accumulated_sym (handle
, (bfd_byte
*) esym
))
1547 count
= hdr
->issMax
;
1548 ss
= bfd_malloc (count
);
1551 if (! _bfd_ecoff_get_accumulated_ss (handle
, (bfd_byte
*) ss
))
1554 count
= hdr
->ipdMax
;
1555 for (i
= 0; i
< (unsigned long) count
; i
++, rp
++)
1557 (*swap
->swap_pdr_in
) (abfd
, epdr
+ i
, &pdr
);
1558 (*swap
->swap_sym_in
) (abfd
, &esym
[pdr
.isym
], &sym
);
1559 rp
->adr
= sym
.value
;
1560 rp
->regmask
= pdr
.regmask
;
1561 rp
->regoffset
= pdr
.regoffset
;
1562 rp
->fregmask
= pdr
.fregmask
;
1563 rp
->fregoffset
= pdr
.fregoffset
;
1564 rp
->frameoffset
= pdr
.frameoffset
;
1565 rp
->framereg
= pdr
.framereg
;
1566 rp
->pcreg
= pdr
.pcreg
;
1568 sv
[i
] = ss
+ sym
.iss
;
1569 sindex
+= strlen (sv
[i
]) + 1;
1573 size
= sizeof (struct rpdr_ext
) * (count
+ 2) + sindex
;
1574 size
= BFD_ALIGN (size
, 16);
1575 rtproc
= bfd_alloc (abfd
, size
);
1578 mips_elf_hash_table (info
)->procedure_count
= 0;
1582 mips_elf_hash_table (info
)->procedure_count
= count
+ 2;
1585 memset (erp
, 0, sizeof (struct rpdr_ext
));
1587 str
= (char *) rtproc
+ sizeof (struct rpdr_ext
) * (count
+ 2);
1588 strcpy (str
, no_name_func
);
1589 str
+= strlen (no_name_func
) + 1;
1590 for (i
= 0; i
< count
; i
++)
1592 ecoff_swap_rpdr_out (abfd
, rpdr
+ i
, erp
+ i
);
1593 strcpy (str
, sv
[i
]);
1594 str
+= strlen (sv
[i
]) + 1;
1596 H_PUT_S32 (abfd
, -1, (erp
+ count
)->p_adr
);
1598 /* Set the size and contents of .rtproc section. */
1600 s
->contents
= rtproc
;
1602 /* Skip this section later on (I don't think this currently
1603 matters, but someday it might). */
1604 s
->map_head
.link_order
= NULL
;
1622 /* We're going to create a stub for H. Create a symbol for the stub's
1623 value and size, to help make the disassembly easier to read. */
1626 mips_elf_create_stub_symbol (struct bfd_link_info
*info
,
1627 struct mips_elf_link_hash_entry
*h
,
1628 const char *prefix
, asection
*s
, bfd_vma value
,
1631 bfd_boolean micromips_p
= ELF_ST_IS_MICROMIPS (h
->root
.other
);
1632 struct bfd_link_hash_entry
*bh
;
1633 struct elf_link_hash_entry
*elfh
;
1640 /* Create a new symbol. */
1641 name
= concat (prefix
, h
->root
.root
.root
.string
, NULL
);
1643 res
= _bfd_generic_link_add_one_symbol (info
, s
->owner
, name
,
1644 BSF_LOCAL
, s
, value
, NULL
,
1650 /* Make it a local function. */
1651 elfh
= (struct elf_link_hash_entry
*) bh
;
1652 elfh
->type
= ELF_ST_INFO (STB_LOCAL
, STT_FUNC
);
1654 elfh
->forced_local
= 1;
1656 elfh
->other
= ELF_ST_SET_MICROMIPS (elfh
->other
);
1660 /* We're about to redefine H. Create a symbol to represent H's
1661 current value and size, to help make the disassembly easier
1665 mips_elf_create_shadow_symbol (struct bfd_link_info
*info
,
1666 struct mips_elf_link_hash_entry
*h
,
1669 struct bfd_link_hash_entry
*bh
;
1670 struct elf_link_hash_entry
*elfh
;
1676 /* Read the symbol's value. */
1677 BFD_ASSERT (h
->root
.root
.type
== bfd_link_hash_defined
1678 || h
->root
.root
.type
== bfd_link_hash_defweak
);
1679 s
= h
->root
.root
.u
.def
.section
;
1680 value
= h
->root
.root
.u
.def
.value
;
1682 /* Create a new symbol. */
1683 name
= concat (prefix
, h
->root
.root
.root
.string
, NULL
);
1685 res
= _bfd_generic_link_add_one_symbol (info
, s
->owner
, name
,
1686 BSF_LOCAL
, s
, value
, NULL
,
1692 /* Make it local and copy the other attributes from H. */
1693 elfh
= (struct elf_link_hash_entry
*) bh
;
1694 elfh
->type
= ELF_ST_INFO (STB_LOCAL
, ELF_ST_TYPE (h
->root
.type
));
1695 elfh
->other
= h
->root
.other
;
1696 elfh
->size
= h
->root
.size
;
1697 elfh
->forced_local
= 1;
1701 /* Return TRUE if relocations in SECTION can refer directly to a MIPS16
1702 function rather than to a hard-float stub. */
1705 section_allows_mips16_refs_p (asection
*section
)
1709 name
= bfd_section_name (section
);
1710 return (FN_STUB_P (name
)
1711 || CALL_STUB_P (name
)
1712 || CALL_FP_STUB_P (name
)
1713 || strcmp (name
, ".pdr") == 0);
1716 /* [RELOCS, RELEND) are the relocations against SEC, which is a MIPS16
1717 stub section of some kind. Return the R_SYMNDX of the target
1718 function, or 0 if we can't decide which function that is. */
1720 static unsigned long
1721 mips16_stub_symndx (const struct elf_backend_data
*bed
,
1722 asection
*sec ATTRIBUTE_UNUSED
,
1723 const Elf_Internal_Rela
*relocs
,
1724 const Elf_Internal_Rela
*relend
)
1726 int int_rels_per_ext_rel
= bed
->s
->int_rels_per_ext_rel
;
1727 const Elf_Internal_Rela
*rel
;
1729 /* Trust the first R_MIPS_NONE relocation, if any, but not a subsequent
1730 one in a compound relocation. */
1731 for (rel
= relocs
; rel
< relend
; rel
+= int_rels_per_ext_rel
)
1732 if (ELF_R_TYPE (sec
->owner
, rel
->r_info
) == R_MIPS_NONE
)
1733 return ELF_R_SYM (sec
->owner
, rel
->r_info
);
1735 /* Otherwise trust the first relocation, whatever its kind. This is
1736 the traditional behavior. */
1737 if (relocs
< relend
)
1738 return ELF_R_SYM (sec
->owner
, relocs
->r_info
);
1743 /* Check the mips16 stubs for a particular symbol, and see if we can
1747 mips_elf_check_mips16_stubs (struct bfd_link_info
*info
,
1748 struct mips_elf_link_hash_entry
*h
)
1750 /* Dynamic symbols must use the standard call interface, in case other
1751 objects try to call them. */
1752 if (h
->fn_stub
!= NULL
1753 && h
->root
.dynindx
!= -1)
1755 mips_elf_create_shadow_symbol (info
, h
, ".mips16.");
1756 h
->need_fn_stub
= TRUE
;
1759 if (h
->fn_stub
!= NULL
1760 && ! h
->need_fn_stub
)
1762 /* We don't need the fn_stub; the only references to this symbol
1763 are 16 bit calls. Clobber the size to 0 to prevent it from
1764 being included in the link. */
1765 h
->fn_stub
->size
= 0;
1766 h
->fn_stub
->flags
&= ~SEC_RELOC
;
1767 h
->fn_stub
->reloc_count
= 0;
1768 h
->fn_stub
->flags
|= SEC_EXCLUDE
;
1769 h
->fn_stub
->output_section
= bfd_abs_section_ptr
;
1772 if (h
->call_stub
!= NULL
1773 && ELF_ST_IS_MIPS16 (h
->root
.other
))
1775 /* We don't need the call_stub; this is a 16 bit function, so
1776 calls from other 16 bit functions are OK. Clobber the size
1777 to 0 to prevent it from being included in the link. */
1778 h
->call_stub
->size
= 0;
1779 h
->call_stub
->flags
&= ~SEC_RELOC
;
1780 h
->call_stub
->reloc_count
= 0;
1781 h
->call_stub
->flags
|= SEC_EXCLUDE
;
1782 h
->call_stub
->output_section
= bfd_abs_section_ptr
;
1785 if (h
->call_fp_stub
!= NULL
1786 && ELF_ST_IS_MIPS16 (h
->root
.other
))
1788 /* We don't need the call_stub; this is a 16 bit function, so
1789 calls from other 16 bit functions are OK. Clobber the size
1790 to 0 to prevent it from being included in the link. */
1791 h
->call_fp_stub
->size
= 0;
1792 h
->call_fp_stub
->flags
&= ~SEC_RELOC
;
1793 h
->call_fp_stub
->reloc_count
= 0;
1794 h
->call_fp_stub
->flags
|= SEC_EXCLUDE
;
1795 h
->call_fp_stub
->output_section
= bfd_abs_section_ptr
;
1799 /* Hashtable callbacks for mips_elf_la25_stubs. */
1802 mips_elf_la25_stub_hash (const void *entry_
)
1804 const struct mips_elf_la25_stub
*entry
;
1806 entry
= (struct mips_elf_la25_stub
*) entry_
;
1807 return entry
->h
->root
.root
.u
.def
.section
->id
1808 + entry
->h
->root
.root
.u
.def
.value
;
1812 mips_elf_la25_stub_eq (const void *entry1_
, const void *entry2_
)
1814 const struct mips_elf_la25_stub
*entry1
, *entry2
;
1816 entry1
= (struct mips_elf_la25_stub
*) entry1_
;
1817 entry2
= (struct mips_elf_la25_stub
*) entry2_
;
1818 return ((entry1
->h
->root
.root
.u
.def
.section
1819 == entry2
->h
->root
.root
.u
.def
.section
)
1820 && (entry1
->h
->root
.root
.u
.def
.value
1821 == entry2
->h
->root
.root
.u
.def
.value
));
1824 /* Called by the linker to set up the la25 stub-creation code. FN is
1825 the linker's implementation of add_stub_function. Return true on
1829 _bfd_mips_elf_init_stubs (struct bfd_link_info
*info
,
1830 asection
*(*fn
) (const char *, asection
*,
1833 struct mips_elf_link_hash_table
*htab
;
1835 htab
= mips_elf_hash_table (info
);
1839 htab
->add_stub_section
= fn
;
1840 htab
->la25_stubs
= htab_try_create (1, mips_elf_la25_stub_hash
,
1841 mips_elf_la25_stub_eq
, NULL
);
1842 if (htab
->la25_stubs
== NULL
)
1848 /* Return true if H is a locally-defined PIC function, in the sense
1849 that it or its fn_stub might need $25 to be valid on entry.
1850 Note that MIPS16 functions set up $gp using PC-relative instructions,
1851 so they themselves never need $25 to be valid. Only non-MIPS16
1852 entry points are of interest here. */
1855 mips_elf_local_pic_function_p (struct mips_elf_link_hash_entry
*h
)
1857 return ((h
->root
.root
.type
== bfd_link_hash_defined
1858 || h
->root
.root
.type
== bfd_link_hash_defweak
)
1859 && h
->root
.def_regular
1860 && !bfd_is_abs_section (h
->root
.root
.u
.def
.section
)
1861 && !bfd_is_und_section (h
->root
.root
.u
.def
.section
)
1862 && (!ELF_ST_IS_MIPS16 (h
->root
.other
)
1863 || (h
->fn_stub
&& h
->need_fn_stub
))
1864 && (PIC_OBJECT_P (h
->root
.root
.u
.def
.section
->owner
)
1865 || ELF_ST_IS_MIPS_PIC (h
->root
.other
)));
1868 /* Set *SEC to the input section that contains the target of STUB.
1869 Return the offset of the target from the start of that section. */
1872 mips_elf_get_la25_target (struct mips_elf_la25_stub
*stub
,
1875 if (ELF_ST_IS_MIPS16 (stub
->h
->root
.other
))
1877 BFD_ASSERT (stub
->h
->need_fn_stub
);
1878 *sec
= stub
->h
->fn_stub
;
1883 *sec
= stub
->h
->root
.root
.u
.def
.section
;
1884 return stub
->h
->root
.root
.u
.def
.value
;
1888 /* STUB describes an la25 stub that we have decided to implement
1889 by inserting an LUI/ADDIU pair before the target function.
1890 Create the section and redirect the function symbol to it. */
1893 mips_elf_add_la25_intro (struct mips_elf_la25_stub
*stub
,
1894 struct bfd_link_info
*info
)
1896 struct mips_elf_link_hash_table
*htab
;
1898 asection
*s
, *input_section
;
1901 htab
= mips_elf_hash_table (info
);
1905 /* Create a unique name for the new section. */
1906 name
= bfd_malloc (11 + sizeof (".text.stub."));
1909 sprintf (name
, ".text.stub.%d", (int) htab_elements (htab
->la25_stubs
));
1911 /* Create the section. */
1912 mips_elf_get_la25_target (stub
, &input_section
);
1913 s
= htab
->add_stub_section (name
, input_section
,
1914 input_section
->output_section
);
1918 /* Make sure that any padding goes before the stub. */
1919 align
= input_section
->alignment_power
;
1920 if (!bfd_set_section_alignment (s
, align
))
1923 s
->size
= (1 << align
) - 8;
1925 /* Create a symbol for the stub. */
1926 mips_elf_create_stub_symbol (info
, stub
->h
, ".pic.", s
, s
->size
, 8);
1927 stub
->stub_section
= s
;
1928 stub
->offset
= s
->size
;
1930 /* Allocate room for it. */
1935 /* STUB describes an la25 stub that we have decided to implement
1936 with a separate trampoline. Allocate room for it and redirect
1937 the function symbol to it. */
1940 mips_elf_add_la25_trampoline (struct mips_elf_la25_stub
*stub
,
1941 struct bfd_link_info
*info
)
1943 struct mips_elf_link_hash_table
*htab
;
1946 htab
= mips_elf_hash_table (info
);
1950 /* Create a trampoline section, if we haven't already. */
1951 s
= htab
->strampoline
;
1954 asection
*input_section
= stub
->h
->root
.root
.u
.def
.section
;
1955 s
= htab
->add_stub_section (".text", NULL
,
1956 input_section
->output_section
);
1957 if (s
== NULL
|| !bfd_set_section_alignment (s
, 4))
1959 htab
->strampoline
= s
;
1962 /* Create a symbol for the stub. */
1963 mips_elf_create_stub_symbol (info
, stub
->h
, ".pic.", s
, s
->size
, 16);
1964 stub
->stub_section
= s
;
1965 stub
->offset
= s
->size
;
1967 /* Allocate room for it. */
1972 /* H describes a symbol that needs an la25 stub. Make sure that an
1973 appropriate stub exists and point H at it. */
1976 mips_elf_add_la25_stub (struct bfd_link_info
*info
,
1977 struct mips_elf_link_hash_entry
*h
)
1979 struct mips_elf_link_hash_table
*htab
;
1980 struct mips_elf_la25_stub search
, *stub
;
1981 bfd_boolean use_trampoline_p
;
1986 /* Describe the stub we want. */
1987 search
.stub_section
= NULL
;
1991 /* See if we've already created an equivalent stub. */
1992 htab
= mips_elf_hash_table (info
);
1996 slot
= htab_find_slot (htab
->la25_stubs
, &search
, INSERT
);
2000 stub
= (struct mips_elf_la25_stub
*) *slot
;
2003 /* We can reuse the existing stub. */
2004 h
->la25_stub
= stub
;
2008 /* Create a permanent copy of ENTRY and add it to the hash table. */
2009 stub
= bfd_malloc (sizeof (search
));
2015 /* Prefer to use LUI/ADDIU stubs if the function is at the beginning
2016 of the section and if we would need no more than 2 nops. */
2017 value
= mips_elf_get_la25_target (stub
, &s
);
2018 if (ELF_ST_IS_MICROMIPS (stub
->h
->root
.other
))
2020 use_trampoline_p
= (value
!= 0 || s
->alignment_power
> 4);
2022 h
->la25_stub
= stub
;
2023 return (use_trampoline_p
2024 ? mips_elf_add_la25_trampoline (stub
, info
)
2025 : mips_elf_add_la25_intro (stub
, info
));
2028 /* A mips_elf_link_hash_traverse callback that is called before sizing
2029 sections. DATA points to a mips_htab_traverse_info structure. */
2032 mips_elf_check_symbols (struct mips_elf_link_hash_entry
*h
, void *data
)
2034 struct mips_htab_traverse_info
*hti
;
2036 hti
= (struct mips_htab_traverse_info
*) data
;
2037 if (!bfd_link_relocatable (hti
->info
))
2038 mips_elf_check_mips16_stubs (hti
->info
, h
);
2040 if (mips_elf_local_pic_function_p (h
))
2042 /* PR 12845: If H is in a section that has been garbage
2043 collected it will have its output section set to *ABS*. */
2044 if (bfd_is_abs_section (h
->root
.root
.u
.def
.section
->output_section
))
2047 /* H is a function that might need $25 to be valid on entry.
2048 If we're creating a non-PIC relocatable object, mark H as
2049 being PIC. If we're creating a non-relocatable object with
2050 non-PIC branches and jumps to H, make sure that H has an la25
2052 if (bfd_link_relocatable (hti
->info
))
2054 if (!PIC_OBJECT_P (hti
->output_bfd
))
2055 h
->root
.other
= ELF_ST_SET_MIPS_PIC (h
->root
.other
);
2057 else if (h
->has_nonpic_branches
&& !mips_elf_add_la25_stub (hti
->info
, h
))
2066 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
2067 Most mips16 instructions are 16 bits, but these instructions
2070 The format of these instructions is:
2072 +--------------+--------------------------------+
2073 | JALX | X| Imm 20:16 | Imm 25:21 |
2074 +--------------+--------------------------------+
2076 +-----------------------------------------------+
2078 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
2079 Note that the immediate value in the first word is swapped.
2081 When producing a relocatable object file, R_MIPS16_26 is
2082 handled mostly like R_MIPS_26. In particular, the addend is
2083 stored as a straight 26-bit value in a 32-bit instruction.
2084 (gas makes life simpler for itself by never adjusting a
2085 R_MIPS16_26 reloc to be against a section, so the addend is
2086 always zero). However, the 32 bit instruction is stored as 2
2087 16-bit values, rather than a single 32-bit value. In a
2088 big-endian file, the result is the same; in a little-endian
2089 file, the two 16-bit halves of the 32 bit value are swapped.
2090 This is so that a disassembler can recognize the jal
2093 When doing a final link, R_MIPS16_26 is treated as a 32 bit
2094 instruction stored as two 16-bit values. The addend A is the
2095 contents of the targ26 field. The calculation is the same as
2096 R_MIPS_26. When storing the calculated value, reorder the
2097 immediate value as shown above, and don't forget to store the
2098 value as two 16-bit values.
2100 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
2104 +--------+----------------------+
2108 +--------+----------------------+
2111 +----------+------+-------------+
2115 +----------+--------------------+
2116 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
2117 ((sub1 << 16) | sub2)).
2119 When producing a relocatable object file, the calculation is
2120 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
2121 When producing a fully linked file, the calculation is
2122 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
2123 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
2125 The table below lists the other MIPS16 instruction relocations.
2126 Each one is calculated in the same way as the non-MIPS16 relocation
2127 given on the right, but using the extended MIPS16 layout of 16-bit
2130 R_MIPS16_GPREL R_MIPS_GPREL16
2131 R_MIPS16_GOT16 R_MIPS_GOT16
2132 R_MIPS16_CALL16 R_MIPS_CALL16
2133 R_MIPS16_HI16 R_MIPS_HI16
2134 R_MIPS16_LO16 R_MIPS_LO16
2136 A typical instruction will have a format like this:
2138 +--------------+--------------------------------+
2139 | EXTEND | Imm 10:5 | Imm 15:11 |
2140 +--------------+--------------------------------+
2141 | Major | rx | ry | Imm 4:0 |
2142 +--------------+--------------------------------+
2144 EXTEND is the five bit value 11110. Major is the instruction
2147 All we need to do here is shuffle the bits appropriately.
2148 As above, the two 16-bit halves must be swapped on a
2149 little-endian system.
2151 Finally R_MIPS16_PC16_S1 corresponds to R_MIPS_PC16, however the
2152 relocatable field is shifted by 1 rather than 2 and the same bit
2153 shuffling is done as with the relocations above. */
2155 static inline bfd_boolean
2156 mips16_reloc_p (int r_type
)
2161 case R_MIPS16_GPREL
:
2162 case R_MIPS16_GOT16
:
2163 case R_MIPS16_CALL16
:
2166 case R_MIPS16_TLS_GD
:
2167 case R_MIPS16_TLS_LDM
:
2168 case R_MIPS16_TLS_DTPREL_HI16
:
2169 case R_MIPS16_TLS_DTPREL_LO16
:
2170 case R_MIPS16_TLS_GOTTPREL
:
2171 case R_MIPS16_TLS_TPREL_HI16
:
2172 case R_MIPS16_TLS_TPREL_LO16
:
2173 case R_MIPS16_PC16_S1
:
2181 /* Check if a microMIPS reloc. */
2183 static inline bfd_boolean
2184 micromips_reloc_p (unsigned int r_type
)
2186 return r_type
>= R_MICROMIPS_min
&& r_type
< R_MICROMIPS_max
;
2189 /* Similar to MIPS16, the two 16-bit halves in microMIPS must be swapped
2190 on a little-endian system. This does not apply to R_MICROMIPS_PC7_S1
2191 and R_MICROMIPS_PC10_S1 relocs that apply to 16-bit instructions. */
2193 static inline bfd_boolean
2194 micromips_reloc_shuffle_p (unsigned int r_type
)
2196 return (micromips_reloc_p (r_type
)
2197 && r_type
!= R_MICROMIPS_PC7_S1
2198 && r_type
!= R_MICROMIPS_PC10_S1
);
2201 static inline bfd_boolean
2202 got16_reloc_p (int r_type
)
2204 return (r_type
== R_MIPS_GOT16
2205 || r_type
== R_MIPS16_GOT16
2206 || r_type
== R_MICROMIPS_GOT16
);
2209 static inline bfd_boolean
2210 call16_reloc_p (int r_type
)
2212 return (r_type
== R_MIPS_CALL16
2213 || r_type
== R_MIPS16_CALL16
2214 || r_type
== R_MICROMIPS_CALL16
);
2217 static inline bfd_boolean
2218 got_disp_reloc_p (unsigned int r_type
)
2220 return r_type
== R_MIPS_GOT_DISP
|| r_type
== R_MICROMIPS_GOT_DISP
;
2223 static inline bfd_boolean
2224 got_page_reloc_p (unsigned int r_type
)
2226 return r_type
== R_MIPS_GOT_PAGE
|| r_type
== R_MICROMIPS_GOT_PAGE
;
2229 static inline bfd_boolean
2230 got_lo16_reloc_p (unsigned int r_type
)
2232 return r_type
== R_MIPS_GOT_LO16
|| r_type
== R_MICROMIPS_GOT_LO16
;
2235 static inline bfd_boolean
2236 call_hi16_reloc_p (unsigned int r_type
)
2238 return r_type
== R_MIPS_CALL_HI16
|| r_type
== R_MICROMIPS_CALL_HI16
;
2241 static inline bfd_boolean
2242 call_lo16_reloc_p (unsigned int r_type
)
2244 return r_type
== R_MIPS_CALL_LO16
|| r_type
== R_MICROMIPS_CALL_LO16
;
2247 static inline bfd_boolean
2248 hi16_reloc_p (int r_type
)
2250 return (r_type
== R_MIPS_HI16
2251 || r_type
== R_MIPS16_HI16
2252 || r_type
== R_MICROMIPS_HI16
2253 || r_type
== R_MIPS_PCHI16
);
2256 static inline bfd_boolean
2257 lo16_reloc_p (int r_type
)
2259 return (r_type
== R_MIPS_LO16
2260 || r_type
== R_MIPS16_LO16
2261 || r_type
== R_MICROMIPS_LO16
2262 || r_type
== R_MIPS_PCLO16
);
2265 static inline bfd_boolean
2266 mips16_call_reloc_p (int r_type
)
2268 return r_type
== R_MIPS16_26
|| r_type
== R_MIPS16_CALL16
;
2271 static inline bfd_boolean
2272 jal_reloc_p (int r_type
)
2274 return (r_type
== R_MIPS_26
2275 || r_type
== R_MIPS16_26
2276 || r_type
== R_MICROMIPS_26_S1
);
2279 static inline bfd_boolean
2280 b_reloc_p (int r_type
)
2282 return (r_type
== R_MIPS_PC26_S2
2283 || r_type
== R_MIPS_PC21_S2
2284 || r_type
== R_MIPS_PC16
2285 || r_type
== R_MIPS_GNU_REL16_S2
2286 || r_type
== R_MIPS16_PC16_S1
2287 || r_type
== R_MICROMIPS_PC16_S1
2288 || r_type
== R_MICROMIPS_PC10_S1
2289 || r_type
== R_MICROMIPS_PC7_S1
);
2292 static inline bfd_boolean
2293 aligned_pcrel_reloc_p (int r_type
)
2295 return (r_type
== R_MIPS_PC18_S3
2296 || r_type
== R_MIPS_PC19_S2
);
2299 static inline bfd_boolean
2300 branch_reloc_p (int r_type
)
2302 return (r_type
== R_MIPS_26
2303 || r_type
== R_MIPS_PC26_S2
2304 || r_type
== R_MIPS_PC21_S2
2305 || r_type
== R_MIPS_PC16
2306 || r_type
== R_MIPS_GNU_REL16_S2
);
2309 static inline bfd_boolean
2310 mips16_branch_reloc_p (int r_type
)
2312 return (r_type
== R_MIPS16_26
2313 || r_type
== R_MIPS16_PC16_S1
);
2316 static inline bfd_boolean
2317 micromips_branch_reloc_p (int r_type
)
2319 return (r_type
== R_MICROMIPS_26_S1
2320 || r_type
== R_MICROMIPS_PC16_S1
2321 || r_type
== R_MICROMIPS_PC10_S1
2322 || r_type
== R_MICROMIPS_PC7_S1
);
2325 static inline bfd_boolean
2326 tls_gd_reloc_p (unsigned int r_type
)
2328 return (r_type
== R_MIPS_TLS_GD
2329 || r_type
== R_MIPS16_TLS_GD
2330 || r_type
== R_MICROMIPS_TLS_GD
);
2333 static inline bfd_boolean
2334 tls_ldm_reloc_p (unsigned int r_type
)
2336 return (r_type
== R_MIPS_TLS_LDM
2337 || r_type
== R_MIPS16_TLS_LDM
2338 || r_type
== R_MICROMIPS_TLS_LDM
);
2341 static inline bfd_boolean
2342 tls_gottprel_reloc_p (unsigned int r_type
)
2344 return (r_type
== R_MIPS_TLS_GOTTPREL
2345 || r_type
== R_MIPS16_TLS_GOTTPREL
2346 || r_type
== R_MICROMIPS_TLS_GOTTPREL
);
2350 _bfd_mips_elf_reloc_unshuffle (bfd
*abfd
, int r_type
,
2351 bfd_boolean jal_shuffle
, bfd_byte
*data
)
2353 bfd_vma first
, second
, val
;
2355 if (!mips16_reloc_p (r_type
) && !micromips_reloc_shuffle_p (r_type
))
2358 /* Pick up the first and second halfwords of the instruction. */
2359 first
= bfd_get_16 (abfd
, data
);
2360 second
= bfd_get_16 (abfd
, data
+ 2);
2361 if (micromips_reloc_p (r_type
) || (r_type
== R_MIPS16_26
&& !jal_shuffle
))
2362 val
= first
<< 16 | second
;
2363 else if (r_type
!= R_MIPS16_26
)
2364 val
= (((first
& 0xf800) << 16) | ((second
& 0xffe0) << 11)
2365 | ((first
& 0x1f) << 11) | (first
& 0x7e0) | (second
& 0x1f));
2367 val
= (((first
& 0xfc00) << 16) | ((first
& 0x3e0) << 11)
2368 | ((first
& 0x1f) << 21) | second
);
2369 bfd_put_32 (abfd
, val
, data
);
2373 _bfd_mips_elf_reloc_shuffle (bfd
*abfd
, int r_type
,
2374 bfd_boolean jal_shuffle
, bfd_byte
*data
)
2376 bfd_vma first
, second
, val
;
2378 if (!mips16_reloc_p (r_type
) && !micromips_reloc_shuffle_p (r_type
))
2381 val
= bfd_get_32 (abfd
, data
);
2382 if (micromips_reloc_p (r_type
) || (r_type
== R_MIPS16_26
&& !jal_shuffle
))
2384 second
= val
& 0xffff;
2387 else if (r_type
!= R_MIPS16_26
)
2389 second
= ((val
>> 11) & 0xffe0) | (val
& 0x1f);
2390 first
= ((val
>> 16) & 0xf800) | ((val
>> 11) & 0x1f) | (val
& 0x7e0);
2394 second
= val
& 0xffff;
2395 first
= ((val
>> 16) & 0xfc00) | ((val
>> 11) & 0x3e0)
2396 | ((val
>> 21) & 0x1f);
2398 bfd_put_16 (abfd
, second
, data
+ 2);
2399 bfd_put_16 (abfd
, first
, data
);
2402 bfd_reloc_status_type
2403 _bfd_mips_elf_gprel16_with_gp (bfd
*abfd
, asymbol
*symbol
,
2404 arelent
*reloc_entry
, asection
*input_section
,
2405 bfd_boolean relocatable
, void *data
, bfd_vma gp
)
2409 bfd_reloc_status_type status
;
2411 if (bfd_is_com_section (symbol
->section
))
2414 relocation
= symbol
->value
;
2416 relocation
+= symbol
->section
->output_section
->vma
;
2417 relocation
+= symbol
->section
->output_offset
;
2419 if (reloc_entry
->address
> bfd_get_section_limit (abfd
, input_section
))
2420 return bfd_reloc_outofrange
;
2422 /* Set val to the offset into the section or symbol. */
2423 val
= reloc_entry
->addend
;
2425 _bfd_mips_elf_sign_extend (val
, 16);
2427 /* Adjust val for the final section location and GP value. If we
2428 are producing relocatable output, we don't want to do this for
2429 an external symbol. */
2431 || (symbol
->flags
& BSF_SECTION_SYM
) != 0)
2432 val
+= relocation
- gp
;
2434 if (reloc_entry
->howto
->partial_inplace
)
2436 status
= _bfd_relocate_contents (reloc_entry
->howto
, abfd
, val
,
2438 + reloc_entry
->address
);
2439 if (status
!= bfd_reloc_ok
)
2443 reloc_entry
->addend
= val
;
2446 reloc_entry
->address
+= input_section
->output_offset
;
2448 return bfd_reloc_ok
;
2451 /* Used to store a REL high-part relocation such as R_MIPS_HI16 or
2452 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
2453 that contains the relocation field and DATA points to the start of
2458 struct mips_hi16
*next
;
2460 asection
*input_section
;
2464 /* FIXME: This should not be a static variable. */
2466 static struct mips_hi16
*mips_hi16_list
;
2468 /* A howto special_function for REL *HI16 relocations. We can only
2469 calculate the correct value once we've seen the partnering
2470 *LO16 relocation, so just save the information for later.
2472 The ABI requires that the *LO16 immediately follow the *HI16.
2473 However, as a GNU extension, we permit an arbitrary number of
2474 *HI16s to be associated with a single *LO16. This significantly
2475 simplies the relocation handling in gcc. */
2477 bfd_reloc_status_type
2478 _bfd_mips_elf_hi16_reloc (bfd
*abfd ATTRIBUTE_UNUSED
, arelent
*reloc_entry
,
2479 asymbol
*symbol ATTRIBUTE_UNUSED
, void *data
,
2480 asection
*input_section
, bfd
*output_bfd
,
2481 char **error_message ATTRIBUTE_UNUSED
)
2483 struct mips_hi16
*n
;
2485 if (reloc_entry
->address
> bfd_get_section_limit (abfd
, input_section
))
2486 return bfd_reloc_outofrange
;
2488 n
= bfd_malloc (sizeof *n
);
2490 return bfd_reloc_outofrange
;
2492 n
->next
= mips_hi16_list
;
2494 n
->input_section
= input_section
;
2495 n
->rel
= *reloc_entry
;
2498 if (output_bfd
!= NULL
)
2499 reloc_entry
->address
+= input_section
->output_offset
;
2501 return bfd_reloc_ok
;
2504 /* A howto special_function for REL R_MIPS*_GOT16 relocations. This is just
2505 like any other 16-bit relocation when applied to global symbols, but is
2506 treated in the same as R_MIPS_HI16 when applied to local symbols. */
2508 bfd_reloc_status_type
2509 _bfd_mips_elf_got16_reloc (bfd
*abfd
, arelent
*reloc_entry
, asymbol
*symbol
,
2510 void *data
, asection
*input_section
,
2511 bfd
*output_bfd
, char **error_message
)
2513 if ((symbol
->flags
& (BSF_GLOBAL
| BSF_WEAK
)) != 0
2514 || bfd_is_und_section (bfd_asymbol_section (symbol
))
2515 || bfd_is_com_section (bfd_asymbol_section (symbol
)))
2516 /* The relocation is against a global symbol. */
2517 return _bfd_mips_elf_generic_reloc (abfd
, reloc_entry
, symbol
, data
,
2518 input_section
, output_bfd
,
2521 return _bfd_mips_elf_hi16_reloc (abfd
, reloc_entry
, symbol
, data
,
2522 input_section
, output_bfd
, error_message
);
2525 /* A howto special_function for REL *LO16 relocations. The *LO16 itself
2526 is a straightforward 16 bit inplace relocation, but we must deal with
2527 any partnering high-part relocations as well. */
2529 bfd_reloc_status_type
2530 _bfd_mips_elf_lo16_reloc (bfd
*abfd
, arelent
*reloc_entry
, asymbol
*symbol
,
2531 void *data
, asection
*input_section
,
2532 bfd
*output_bfd
, char **error_message
)
2535 bfd_byte
*location
= (bfd_byte
*) data
+ reloc_entry
->address
;
2537 if (reloc_entry
->address
> bfd_get_section_limit (abfd
, input_section
))
2538 return bfd_reloc_outofrange
;
2540 _bfd_mips_elf_reloc_unshuffle (abfd
, reloc_entry
->howto
->type
, FALSE
,
2542 vallo
= bfd_get_32 (abfd
, location
);
2543 _bfd_mips_elf_reloc_shuffle (abfd
, reloc_entry
->howto
->type
, FALSE
,
2546 while (mips_hi16_list
!= NULL
)
2548 bfd_reloc_status_type ret
;
2549 struct mips_hi16
*hi
;
2551 hi
= mips_hi16_list
;
2553 /* R_MIPS*_GOT16 relocations are something of a special case. We
2554 want to install the addend in the same way as for a R_MIPS*_HI16
2555 relocation (with a rightshift of 16). However, since GOT16
2556 relocations can also be used with global symbols, their howto
2557 has a rightshift of 0. */
2558 if (hi
->rel
.howto
->type
== R_MIPS_GOT16
)
2559 hi
->rel
.howto
= MIPS_ELF_RTYPE_TO_HOWTO (abfd
, R_MIPS_HI16
, FALSE
);
2560 else if (hi
->rel
.howto
->type
== R_MIPS16_GOT16
)
2561 hi
->rel
.howto
= MIPS_ELF_RTYPE_TO_HOWTO (abfd
, R_MIPS16_HI16
, FALSE
);
2562 else if (hi
->rel
.howto
->type
== R_MICROMIPS_GOT16
)
2563 hi
->rel
.howto
= MIPS_ELF_RTYPE_TO_HOWTO (abfd
, R_MICROMIPS_HI16
, FALSE
);
2565 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
2566 carry or borrow will induce a change of +1 or -1 in the high part. */
2567 hi
->rel
.addend
+= (vallo
+ 0x8000) & 0xffff;
2569 ret
= _bfd_mips_elf_generic_reloc (abfd
, &hi
->rel
, symbol
, hi
->data
,
2570 hi
->input_section
, output_bfd
,
2572 if (ret
!= bfd_reloc_ok
)
2575 mips_hi16_list
= hi
->next
;
2579 return _bfd_mips_elf_generic_reloc (abfd
, reloc_entry
, symbol
, data
,
2580 input_section
, output_bfd
,
2584 /* A generic howto special_function. This calculates and installs the
2585 relocation itself, thus avoiding the oft-discussed problems in
2586 bfd_perform_relocation and bfd_install_relocation. */
2588 bfd_reloc_status_type
2589 _bfd_mips_elf_generic_reloc (bfd
*abfd ATTRIBUTE_UNUSED
, arelent
*reloc_entry
,
2590 asymbol
*symbol
, void *data ATTRIBUTE_UNUSED
,
2591 asection
*input_section
, bfd
*output_bfd
,
2592 char **error_message ATTRIBUTE_UNUSED
)
2595 bfd_reloc_status_type status
;
2596 bfd_boolean relocatable
;
2598 relocatable
= (output_bfd
!= NULL
);
2600 if (reloc_entry
->address
> bfd_get_section_limit (abfd
, input_section
))
2601 return bfd_reloc_outofrange
;
2603 /* Build up the field adjustment in VAL. */
2605 if (!relocatable
|| (symbol
->flags
& BSF_SECTION_SYM
) != 0)
2607 /* Either we're calculating the final field value or we have a
2608 relocation against a section symbol. Add in the section's
2609 offset or address. */
2610 val
+= symbol
->section
->output_section
->vma
;
2611 val
+= symbol
->section
->output_offset
;
2616 /* We're calculating the final field value. Add in the symbol's value
2617 and, if pc-relative, subtract the address of the field itself. */
2618 val
+= symbol
->value
;
2619 if (reloc_entry
->howto
->pc_relative
)
2621 val
-= input_section
->output_section
->vma
;
2622 val
-= input_section
->output_offset
;
2623 val
-= reloc_entry
->address
;
2627 /* VAL is now the final adjustment. If we're keeping this relocation
2628 in the output file, and if the relocation uses a separate addend,
2629 we just need to add VAL to that addend. Otherwise we need to add
2630 VAL to the relocation field itself. */
2631 if (relocatable
&& !reloc_entry
->howto
->partial_inplace
)
2632 reloc_entry
->addend
+= val
;
2635 bfd_byte
*location
= (bfd_byte
*) data
+ reloc_entry
->address
;
2637 /* Add in the separate addend, if any. */
2638 val
+= reloc_entry
->addend
;
2640 /* Add VAL to the relocation field. */
2641 _bfd_mips_elf_reloc_unshuffle (abfd
, reloc_entry
->howto
->type
, FALSE
,
2643 status
= _bfd_relocate_contents (reloc_entry
->howto
, abfd
, val
,
2645 _bfd_mips_elf_reloc_shuffle (abfd
, reloc_entry
->howto
->type
, FALSE
,
2648 if (status
!= bfd_reloc_ok
)
2653 reloc_entry
->address
+= input_section
->output_offset
;
2655 return bfd_reloc_ok
;
2658 /* Swap an entry in a .gptab section. Note that these routines rely
2659 on the equivalence of the two elements of the union. */
2662 bfd_mips_elf32_swap_gptab_in (bfd
*abfd
, const Elf32_External_gptab
*ex
,
2665 in
->gt_entry
.gt_g_value
= H_GET_32 (abfd
, ex
->gt_entry
.gt_g_value
);
2666 in
->gt_entry
.gt_bytes
= H_GET_32 (abfd
, ex
->gt_entry
.gt_bytes
);
2670 bfd_mips_elf32_swap_gptab_out (bfd
*abfd
, const Elf32_gptab
*in
,
2671 Elf32_External_gptab
*ex
)
2673 H_PUT_32 (abfd
, in
->gt_entry
.gt_g_value
, ex
->gt_entry
.gt_g_value
);
2674 H_PUT_32 (abfd
, in
->gt_entry
.gt_bytes
, ex
->gt_entry
.gt_bytes
);
2678 bfd_elf32_swap_compact_rel_out (bfd
*abfd
, const Elf32_compact_rel
*in
,
2679 Elf32_External_compact_rel
*ex
)
2681 H_PUT_32 (abfd
, in
->id1
, ex
->id1
);
2682 H_PUT_32 (abfd
, in
->num
, ex
->num
);
2683 H_PUT_32 (abfd
, in
->id2
, ex
->id2
);
2684 H_PUT_32 (abfd
, in
->offset
, ex
->offset
);
2685 H_PUT_32 (abfd
, in
->reserved0
, ex
->reserved0
);
2686 H_PUT_32 (abfd
, in
->reserved1
, ex
->reserved1
);
2690 bfd_elf32_swap_crinfo_out (bfd
*abfd
, const Elf32_crinfo
*in
,
2691 Elf32_External_crinfo
*ex
)
2695 l
= (((in
->ctype
& CRINFO_CTYPE
) << CRINFO_CTYPE_SH
)
2696 | ((in
->rtype
& CRINFO_RTYPE
) << CRINFO_RTYPE_SH
)
2697 | ((in
->dist2to
& CRINFO_DIST2TO
) << CRINFO_DIST2TO_SH
)
2698 | ((in
->relvaddr
& CRINFO_RELVADDR
) << CRINFO_RELVADDR_SH
));
2699 H_PUT_32 (abfd
, l
, ex
->info
);
2700 H_PUT_32 (abfd
, in
->konst
, ex
->konst
);
2701 H_PUT_32 (abfd
, in
->vaddr
, ex
->vaddr
);
2704 /* A .reginfo section holds a single Elf32_RegInfo structure. These
2705 routines swap this structure in and out. They are used outside of
2706 BFD, so they are globally visible. */
2709 bfd_mips_elf32_swap_reginfo_in (bfd
*abfd
, const Elf32_External_RegInfo
*ex
,
2712 in
->ri_gprmask
= H_GET_32 (abfd
, ex
->ri_gprmask
);
2713 in
->ri_cprmask
[0] = H_GET_32 (abfd
, ex
->ri_cprmask
[0]);
2714 in
->ri_cprmask
[1] = H_GET_32 (abfd
, ex
->ri_cprmask
[1]);
2715 in
->ri_cprmask
[2] = H_GET_32 (abfd
, ex
->ri_cprmask
[2]);
2716 in
->ri_cprmask
[3] = H_GET_32 (abfd
, ex
->ri_cprmask
[3]);
2717 in
->ri_gp_value
= H_GET_32 (abfd
, ex
->ri_gp_value
);
2721 bfd_mips_elf32_swap_reginfo_out (bfd
*abfd
, const Elf32_RegInfo
*in
,
2722 Elf32_External_RegInfo
*ex
)
2724 H_PUT_32 (abfd
, in
->ri_gprmask
, ex
->ri_gprmask
);
2725 H_PUT_32 (abfd
, in
->ri_cprmask
[0], ex
->ri_cprmask
[0]);
2726 H_PUT_32 (abfd
, in
->ri_cprmask
[1], ex
->ri_cprmask
[1]);
2727 H_PUT_32 (abfd
, in
->ri_cprmask
[2], ex
->ri_cprmask
[2]);
2728 H_PUT_32 (abfd
, in
->ri_cprmask
[3], ex
->ri_cprmask
[3]);
2729 H_PUT_32 (abfd
, in
->ri_gp_value
, ex
->ri_gp_value
);
2732 /* In the 64 bit ABI, the .MIPS.options section holds register
2733 information in an Elf64_Reginfo structure. These routines swap
2734 them in and out. They are globally visible because they are used
2735 outside of BFD. These routines are here so that gas can call them
2736 without worrying about whether the 64 bit ABI has been included. */
2739 bfd_mips_elf64_swap_reginfo_in (bfd
*abfd
, const Elf64_External_RegInfo
*ex
,
2740 Elf64_Internal_RegInfo
*in
)
2742 in
->ri_gprmask
= H_GET_32 (abfd
, ex
->ri_gprmask
);
2743 in
->ri_pad
= H_GET_32 (abfd
, ex
->ri_pad
);
2744 in
->ri_cprmask
[0] = H_GET_32 (abfd
, ex
->ri_cprmask
[0]);
2745 in
->ri_cprmask
[1] = H_GET_32 (abfd
, ex
->ri_cprmask
[1]);
2746 in
->ri_cprmask
[2] = H_GET_32 (abfd
, ex
->ri_cprmask
[2]);
2747 in
->ri_cprmask
[3] = H_GET_32 (abfd
, ex
->ri_cprmask
[3]);
2748 in
->ri_gp_value
= H_GET_64 (abfd
, ex
->ri_gp_value
);
2752 bfd_mips_elf64_swap_reginfo_out (bfd
*abfd
, const Elf64_Internal_RegInfo
*in
,
2753 Elf64_External_RegInfo
*ex
)
2755 H_PUT_32 (abfd
, in
->ri_gprmask
, ex
->ri_gprmask
);
2756 H_PUT_32 (abfd
, in
->ri_pad
, ex
->ri_pad
);
2757 H_PUT_32 (abfd
, in
->ri_cprmask
[0], ex
->ri_cprmask
[0]);
2758 H_PUT_32 (abfd
, in
->ri_cprmask
[1], ex
->ri_cprmask
[1]);
2759 H_PUT_32 (abfd
, in
->ri_cprmask
[2], ex
->ri_cprmask
[2]);
2760 H_PUT_32 (abfd
, in
->ri_cprmask
[3], ex
->ri_cprmask
[3]);
2761 H_PUT_64 (abfd
, in
->ri_gp_value
, ex
->ri_gp_value
);
2764 /* Swap in an options header. */
2767 bfd_mips_elf_swap_options_in (bfd
*abfd
, const Elf_External_Options
*ex
,
2768 Elf_Internal_Options
*in
)
2770 in
->kind
= H_GET_8 (abfd
, ex
->kind
);
2771 in
->size
= H_GET_8 (abfd
, ex
->size
);
2772 in
->section
= H_GET_16 (abfd
, ex
->section
);
2773 in
->info
= H_GET_32 (abfd
, ex
->info
);
2776 /* Swap out an options header. */
2779 bfd_mips_elf_swap_options_out (bfd
*abfd
, const Elf_Internal_Options
*in
,
2780 Elf_External_Options
*ex
)
2782 H_PUT_8 (abfd
, in
->kind
, ex
->kind
);
2783 H_PUT_8 (abfd
, in
->size
, ex
->size
);
2784 H_PUT_16 (abfd
, in
->section
, ex
->section
);
2785 H_PUT_32 (abfd
, in
->info
, ex
->info
);
2788 /* Swap in an abiflags structure. */
2791 bfd_mips_elf_swap_abiflags_v0_in (bfd
*abfd
,
2792 const Elf_External_ABIFlags_v0
*ex
,
2793 Elf_Internal_ABIFlags_v0
*in
)
2795 in
->version
= H_GET_16 (abfd
, ex
->version
);
2796 in
->isa_level
= H_GET_8 (abfd
, ex
->isa_level
);
2797 in
->isa_rev
= H_GET_8 (abfd
, ex
->isa_rev
);
2798 in
->gpr_size
= H_GET_8 (abfd
, ex
->gpr_size
);
2799 in
->cpr1_size
= H_GET_8 (abfd
, ex
->cpr1_size
);
2800 in
->cpr2_size
= H_GET_8 (abfd
, ex
->cpr2_size
);
2801 in
->fp_abi
= H_GET_8 (abfd
, ex
->fp_abi
);
2802 in
->isa_ext
= H_GET_32 (abfd
, ex
->isa_ext
);
2803 in
->ases
= H_GET_32 (abfd
, ex
->ases
);
2804 in
->flags1
= H_GET_32 (abfd
, ex
->flags1
);
2805 in
->flags2
= H_GET_32 (abfd
, ex
->flags2
);
2808 /* Swap out an abiflags structure. */
2811 bfd_mips_elf_swap_abiflags_v0_out (bfd
*abfd
,
2812 const Elf_Internal_ABIFlags_v0
*in
,
2813 Elf_External_ABIFlags_v0
*ex
)
2815 H_PUT_16 (abfd
, in
->version
, ex
->version
);
2816 H_PUT_8 (abfd
, in
->isa_level
, ex
->isa_level
);
2817 H_PUT_8 (abfd
, in
->isa_rev
, ex
->isa_rev
);
2818 H_PUT_8 (abfd
, in
->gpr_size
, ex
->gpr_size
);
2819 H_PUT_8 (abfd
, in
->cpr1_size
, ex
->cpr1_size
);
2820 H_PUT_8 (abfd
, in
->cpr2_size
, ex
->cpr2_size
);
2821 H_PUT_8 (abfd
, in
->fp_abi
, ex
->fp_abi
);
2822 H_PUT_32 (abfd
, in
->isa_ext
, ex
->isa_ext
);
2823 H_PUT_32 (abfd
, in
->ases
, ex
->ases
);
2824 H_PUT_32 (abfd
, in
->flags1
, ex
->flags1
);
2825 H_PUT_32 (abfd
, in
->flags2
, ex
->flags2
);
2828 /* This function is called via qsort() to sort the dynamic relocation
2829 entries by increasing r_symndx value. */
2832 sort_dynamic_relocs (const void *arg1
, const void *arg2
)
2834 Elf_Internal_Rela int_reloc1
;
2835 Elf_Internal_Rela int_reloc2
;
2838 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd
, arg1
, &int_reloc1
);
2839 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd
, arg2
, &int_reloc2
);
2841 diff
= ELF32_R_SYM (int_reloc1
.r_info
) - ELF32_R_SYM (int_reloc2
.r_info
);
2845 if (int_reloc1
.r_offset
< int_reloc2
.r_offset
)
2847 if (int_reloc1
.r_offset
> int_reloc2
.r_offset
)
2852 /* Like sort_dynamic_relocs, but used for elf64 relocations. */
2855 sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED
,
2856 const void *arg2 ATTRIBUTE_UNUSED
)
2859 Elf_Internal_Rela int_reloc1
[3];
2860 Elf_Internal_Rela int_reloc2
[3];
2862 (*get_elf_backend_data (reldyn_sorting_bfd
)->s
->swap_reloc_in
)
2863 (reldyn_sorting_bfd
, arg1
, int_reloc1
);
2864 (*get_elf_backend_data (reldyn_sorting_bfd
)->s
->swap_reloc_in
)
2865 (reldyn_sorting_bfd
, arg2
, int_reloc2
);
2867 if (ELF64_R_SYM (int_reloc1
[0].r_info
) < ELF64_R_SYM (int_reloc2
[0].r_info
))
2869 if (ELF64_R_SYM (int_reloc1
[0].r_info
) > ELF64_R_SYM (int_reloc2
[0].r_info
))
2872 if (int_reloc1
[0].r_offset
< int_reloc2
[0].r_offset
)
2874 if (int_reloc1
[0].r_offset
> int_reloc2
[0].r_offset
)
2883 /* This routine is used to write out ECOFF debugging external symbol
2884 information. It is called via mips_elf_link_hash_traverse. The
2885 ECOFF external symbol information must match the ELF external
2886 symbol information. Unfortunately, at this point we don't know
2887 whether a symbol is required by reloc information, so the two
2888 tables may wind up being different. We must sort out the external
2889 symbol information before we can set the final size of the .mdebug
2890 section, and we must set the size of the .mdebug section before we
2891 can relocate any sections, and we can't know which symbols are
2892 required by relocation until we relocate the sections.
2893 Fortunately, it is relatively unlikely that any symbol will be
2894 stripped but required by a reloc. In particular, it can not happen
2895 when generating a final executable. */
2898 mips_elf_output_extsym (struct mips_elf_link_hash_entry
*h
, void *data
)
2900 struct extsym_info
*einfo
= data
;
2902 asection
*sec
, *output_section
;
2904 if (h
->root
.indx
== -2)
2906 else if ((h
->root
.def_dynamic
2907 || h
->root
.ref_dynamic
2908 || h
->root
.type
== bfd_link_hash_new
)
2909 && !h
->root
.def_regular
2910 && !h
->root
.ref_regular
)
2912 else if (einfo
->info
->strip
== strip_all
2913 || (einfo
->info
->strip
== strip_some
2914 && bfd_hash_lookup (einfo
->info
->keep_hash
,
2915 h
->root
.root
.root
.string
,
2916 FALSE
, FALSE
) == NULL
))
2924 if (h
->esym
.ifd
== -2)
2927 h
->esym
.cobol_main
= 0;
2928 h
->esym
.weakext
= 0;
2929 h
->esym
.reserved
= 0;
2930 h
->esym
.ifd
= ifdNil
;
2931 h
->esym
.asym
.value
= 0;
2932 h
->esym
.asym
.st
= stGlobal
;
2934 if (h
->root
.root
.type
== bfd_link_hash_undefined
2935 || h
->root
.root
.type
== bfd_link_hash_undefweak
)
2939 /* Use undefined class. Also, set class and type for some
2941 name
= h
->root
.root
.root
.string
;
2942 if (strcmp (name
, mips_elf_dynsym_rtproc_names
[0]) == 0
2943 || strcmp (name
, mips_elf_dynsym_rtproc_names
[1]) == 0)
2945 h
->esym
.asym
.sc
= scData
;
2946 h
->esym
.asym
.st
= stLabel
;
2947 h
->esym
.asym
.value
= 0;
2949 else if (strcmp (name
, mips_elf_dynsym_rtproc_names
[2]) == 0)
2951 h
->esym
.asym
.sc
= scAbs
;
2952 h
->esym
.asym
.st
= stLabel
;
2953 h
->esym
.asym
.value
=
2954 mips_elf_hash_table (einfo
->info
)->procedure_count
;
2957 h
->esym
.asym
.sc
= scUndefined
;
2959 else if (h
->root
.root
.type
!= bfd_link_hash_defined
2960 && h
->root
.root
.type
!= bfd_link_hash_defweak
)
2961 h
->esym
.asym
.sc
= scAbs
;
2966 sec
= h
->root
.root
.u
.def
.section
;
2967 output_section
= sec
->output_section
;
2969 /* When making a shared library and symbol h is the one from
2970 the another shared library, OUTPUT_SECTION may be null. */
2971 if (output_section
== NULL
)
2972 h
->esym
.asym
.sc
= scUndefined
;
2975 name
= bfd_section_name (output_section
);
2977 if (strcmp (name
, ".text") == 0)
2978 h
->esym
.asym
.sc
= scText
;
2979 else if (strcmp (name
, ".data") == 0)
2980 h
->esym
.asym
.sc
= scData
;
2981 else if (strcmp (name
, ".sdata") == 0)
2982 h
->esym
.asym
.sc
= scSData
;
2983 else if (strcmp (name
, ".rodata") == 0
2984 || strcmp (name
, ".rdata") == 0)
2985 h
->esym
.asym
.sc
= scRData
;
2986 else if (strcmp (name
, ".bss") == 0)
2987 h
->esym
.asym
.sc
= scBss
;
2988 else if (strcmp (name
, ".sbss") == 0)
2989 h
->esym
.asym
.sc
= scSBss
;
2990 else if (strcmp (name
, ".init") == 0)
2991 h
->esym
.asym
.sc
= scInit
;
2992 else if (strcmp (name
, ".fini") == 0)
2993 h
->esym
.asym
.sc
= scFini
;
2995 h
->esym
.asym
.sc
= scAbs
;
2999 h
->esym
.asym
.reserved
= 0;
3000 h
->esym
.asym
.index
= indexNil
;
3003 if (h
->root
.root
.type
== bfd_link_hash_common
)
3004 h
->esym
.asym
.value
= h
->root
.root
.u
.c
.size
;
3005 else if (h
->root
.root
.type
== bfd_link_hash_defined
3006 || h
->root
.root
.type
== bfd_link_hash_defweak
)
3008 if (h
->esym
.asym
.sc
== scCommon
)
3009 h
->esym
.asym
.sc
= scBss
;
3010 else if (h
->esym
.asym
.sc
== scSCommon
)
3011 h
->esym
.asym
.sc
= scSBss
;
3013 sec
= h
->root
.root
.u
.def
.section
;
3014 output_section
= sec
->output_section
;
3015 if (output_section
!= NULL
)
3016 h
->esym
.asym
.value
= (h
->root
.root
.u
.def
.value
3017 + sec
->output_offset
3018 + output_section
->vma
);
3020 h
->esym
.asym
.value
= 0;
3024 struct mips_elf_link_hash_entry
*hd
= h
;
3026 while (hd
->root
.root
.type
== bfd_link_hash_indirect
)
3027 hd
= (struct mips_elf_link_hash_entry
*)h
->root
.root
.u
.i
.link
;
3029 if (hd
->needs_lazy_stub
)
3031 BFD_ASSERT (hd
->root
.plt
.plist
!= NULL
);
3032 BFD_ASSERT (hd
->root
.plt
.plist
->stub_offset
!= MINUS_ONE
);
3033 /* Set type and value for a symbol with a function stub. */
3034 h
->esym
.asym
.st
= stProc
;
3035 sec
= hd
->root
.root
.u
.def
.section
;
3037 h
->esym
.asym
.value
= 0;
3040 output_section
= sec
->output_section
;
3041 if (output_section
!= NULL
)
3042 h
->esym
.asym
.value
= (hd
->root
.plt
.plist
->stub_offset
3043 + sec
->output_offset
3044 + output_section
->vma
);
3046 h
->esym
.asym
.value
= 0;
3051 if (! bfd_ecoff_debug_one_external (einfo
->abfd
, einfo
->debug
, einfo
->swap
,
3052 h
->root
.root
.root
.string
,
3055 einfo
->failed
= TRUE
;
3062 /* A comparison routine used to sort .gptab entries. */
3065 gptab_compare (const void *p1
, const void *p2
)
3067 const Elf32_gptab
*a1
= p1
;
3068 const Elf32_gptab
*a2
= p2
;
3070 return a1
->gt_entry
.gt_g_value
- a2
->gt_entry
.gt_g_value
;
3073 /* Functions to manage the got entry hash table. */
3075 /* Use all 64 bits of a bfd_vma for the computation of a 32-bit
3078 static INLINE hashval_t
3079 mips_elf_hash_bfd_vma (bfd_vma addr
)
3082 return addr
+ (addr
>> 32);
3089 mips_elf_got_entry_hash (const void *entry_
)
3091 const struct mips_got_entry
*entry
= (struct mips_got_entry
*)entry_
;
3093 return (entry
->symndx
3094 + ((entry
->tls_type
== GOT_TLS_LDM
) << 18)
3095 + (entry
->tls_type
== GOT_TLS_LDM
? 0
3096 : !entry
->abfd
? mips_elf_hash_bfd_vma (entry
->d
.address
)
3097 : entry
->symndx
>= 0 ? (entry
->abfd
->id
3098 + mips_elf_hash_bfd_vma (entry
->d
.addend
))
3099 : entry
->d
.h
->root
.root
.root
.hash
));
3103 mips_elf_got_entry_eq (const void *entry1
, const void *entry2
)
3105 const struct mips_got_entry
*e1
= (struct mips_got_entry
*)entry1
;
3106 const struct mips_got_entry
*e2
= (struct mips_got_entry
*)entry2
;
3108 return (e1
->symndx
== e2
->symndx
3109 && e1
->tls_type
== e2
->tls_type
3110 && (e1
->tls_type
== GOT_TLS_LDM
? TRUE
3111 : !e1
->abfd
? !e2
->abfd
&& e1
->d
.address
== e2
->d
.address
3112 : e1
->symndx
>= 0 ? (e1
->abfd
== e2
->abfd
3113 && e1
->d
.addend
== e2
->d
.addend
)
3114 : e2
->abfd
&& e1
->d
.h
== e2
->d
.h
));
3118 mips_got_page_ref_hash (const void *ref_
)
3120 const struct mips_got_page_ref
*ref
;
3122 ref
= (const struct mips_got_page_ref
*) ref_
;
3123 return ((ref
->symndx
>= 0
3124 ? (hashval_t
) (ref
->u
.abfd
->id
+ ref
->symndx
)
3125 : ref
->u
.h
->root
.root
.root
.hash
)
3126 + mips_elf_hash_bfd_vma (ref
->addend
));
3130 mips_got_page_ref_eq (const void *ref1_
, const void *ref2_
)
3132 const struct mips_got_page_ref
*ref1
, *ref2
;
3134 ref1
= (const struct mips_got_page_ref
*) ref1_
;
3135 ref2
= (const struct mips_got_page_ref
*) ref2_
;
3136 return (ref1
->symndx
== ref2
->symndx
3137 && (ref1
->symndx
< 0
3138 ? ref1
->u
.h
== ref2
->u
.h
3139 : ref1
->u
.abfd
== ref2
->u
.abfd
)
3140 && ref1
->addend
== ref2
->addend
);
3144 mips_got_page_entry_hash (const void *entry_
)
3146 const struct mips_got_page_entry
*entry
;
3148 entry
= (const struct mips_got_page_entry
*) entry_
;
3149 return entry
->sec
->id
;
3153 mips_got_page_entry_eq (const void *entry1_
, const void *entry2_
)
3155 const struct mips_got_page_entry
*entry1
, *entry2
;
3157 entry1
= (const struct mips_got_page_entry
*) entry1_
;
3158 entry2
= (const struct mips_got_page_entry
*) entry2_
;
3159 return entry1
->sec
== entry2
->sec
;
3162 /* Create and return a new mips_got_info structure. */
3164 static struct mips_got_info
*
3165 mips_elf_create_got_info (bfd
*abfd
)
3167 struct mips_got_info
*g
;
3169 g
= bfd_zalloc (abfd
, sizeof (struct mips_got_info
));
3173 g
->got_entries
= htab_try_create (1, mips_elf_got_entry_hash
,
3174 mips_elf_got_entry_eq
, NULL
);
3175 if (g
->got_entries
== NULL
)
3178 g
->got_page_refs
= htab_try_create (1, mips_got_page_ref_hash
,
3179 mips_got_page_ref_eq
, NULL
);
3180 if (g
->got_page_refs
== NULL
)
3186 /* Return the GOT info for input bfd ABFD, trying to create a new one if
3187 CREATE_P and if ABFD doesn't already have a GOT. */
3189 static struct mips_got_info
*
3190 mips_elf_bfd_got (bfd
*abfd
, bfd_boolean create_p
)
3192 struct mips_elf_obj_tdata
*tdata
;
3194 if (!is_mips_elf (abfd
))
3197 tdata
= mips_elf_tdata (abfd
);
3198 if (!tdata
->got
&& create_p
)
3199 tdata
->got
= mips_elf_create_got_info (abfd
);
3203 /* Record that ABFD should use output GOT G. */
3206 mips_elf_replace_bfd_got (bfd
*abfd
, struct mips_got_info
*g
)
3208 struct mips_elf_obj_tdata
*tdata
;
3210 BFD_ASSERT (is_mips_elf (abfd
));
3211 tdata
= mips_elf_tdata (abfd
);
3214 /* The GOT structure itself and the hash table entries are
3215 allocated to a bfd, but the hash tables aren't. */
3216 htab_delete (tdata
->got
->got_entries
);
3217 htab_delete (tdata
->got
->got_page_refs
);
3218 if (tdata
->got
->got_page_entries
)
3219 htab_delete (tdata
->got
->got_page_entries
);
3224 /* Return the dynamic relocation section. If it doesn't exist, try to
3225 create a new it if CREATE_P, otherwise return NULL. Also return NULL
3226 if creation fails. */
3229 mips_elf_rel_dyn_section (struct bfd_link_info
*info
, bfd_boolean create_p
)
3235 dname
= MIPS_ELF_REL_DYN_NAME (info
);
3236 dynobj
= elf_hash_table (info
)->dynobj
;
3237 sreloc
= bfd_get_linker_section (dynobj
, dname
);
3238 if (sreloc
== NULL
&& create_p
)
3240 sreloc
= bfd_make_section_anyway_with_flags (dynobj
, dname
,
3245 | SEC_LINKER_CREATED
3248 || !bfd_set_section_alignment (sreloc
,
3249 MIPS_ELF_LOG_FILE_ALIGN (dynobj
)))
3255 /* Return the GOT_TLS_* type required by relocation type R_TYPE. */
3258 mips_elf_reloc_tls_type (unsigned int r_type
)
3260 if (tls_gd_reloc_p (r_type
))
3263 if (tls_ldm_reloc_p (r_type
))
3266 if (tls_gottprel_reloc_p (r_type
))
3269 return GOT_TLS_NONE
;
3272 /* Return the number of GOT slots needed for GOT TLS type TYPE. */
3275 mips_tls_got_entries (unsigned int type
)
3292 /* Count the number of relocations needed for a TLS GOT entry, with
3293 access types from TLS_TYPE, and symbol H (or a local symbol if H
3297 mips_tls_got_relocs (struct bfd_link_info
*info
, unsigned char tls_type
,
3298 struct elf_link_hash_entry
*h
)
3301 bfd_boolean need_relocs
= FALSE
;
3302 bfd_boolean dyn
= elf_hash_table (info
)->dynamic_sections_created
;
3306 && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn
, bfd_link_pic (info
), h
)
3307 && (bfd_link_dll (info
) || !SYMBOL_REFERENCES_LOCAL (info
, h
)))
3310 if ((bfd_link_dll (info
) || indx
!= 0)
3312 || ELF_ST_VISIBILITY (h
->other
) == STV_DEFAULT
3313 || h
->root
.type
!= bfd_link_hash_undefweak
))
3322 return indx
!= 0 ? 2 : 1;
3328 return bfd_link_dll (info
) ? 1 : 0;
3335 /* Add the number of GOT entries and TLS relocations required by ENTRY
3339 mips_elf_count_got_entry (struct bfd_link_info
*info
,
3340 struct mips_got_info
*g
,
3341 struct mips_got_entry
*entry
)
3343 if (entry
->tls_type
)
3345 g
->tls_gotno
+= mips_tls_got_entries (entry
->tls_type
);
3346 g
->relocs
+= mips_tls_got_relocs (info
, entry
->tls_type
,
3348 ? &entry
->d
.h
->root
: NULL
);
3350 else if (entry
->symndx
>= 0 || entry
->d
.h
->global_got_area
== GGA_NONE
)
3351 g
->local_gotno
+= 1;
3353 g
->global_gotno
+= 1;
3356 /* Output a simple dynamic relocation into SRELOC. */
3359 mips_elf_output_dynamic_relocation (bfd
*output_bfd
,
3361 unsigned long reloc_index
,
3366 Elf_Internal_Rela rel
[3];
3368 memset (rel
, 0, sizeof (rel
));
3370 rel
[0].r_info
= ELF_R_INFO (output_bfd
, indx
, r_type
);
3371 rel
[0].r_offset
= rel
[1].r_offset
= rel
[2].r_offset
= offset
;
3373 if (ABI_64_P (output_bfd
))
3375 (*get_elf_backend_data (output_bfd
)->s
->swap_reloc_out
)
3376 (output_bfd
, &rel
[0],
3378 + reloc_index
* sizeof (Elf64_Mips_External_Rel
)));
3381 bfd_elf32_swap_reloc_out
3382 (output_bfd
, &rel
[0],
3384 + reloc_index
* sizeof (Elf32_External_Rel
)));
3387 /* Initialize a set of TLS GOT entries for one symbol. */
3390 mips_elf_initialize_tls_slots (bfd
*abfd
, struct bfd_link_info
*info
,
3391 struct mips_got_entry
*entry
,
3392 struct mips_elf_link_hash_entry
*h
,
3395 bfd_boolean dyn
= elf_hash_table (info
)->dynamic_sections_created
;
3396 struct mips_elf_link_hash_table
*htab
;
3398 asection
*sreloc
, *sgot
;
3399 bfd_vma got_offset
, got_offset2
;
3400 bfd_boolean need_relocs
= FALSE
;
3402 htab
= mips_elf_hash_table (info
);
3406 sgot
= htab
->root
.sgot
;
3410 && h
->root
.dynindx
!= -1
3411 && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn
, bfd_link_pic (info
), &h
->root
)
3412 && (bfd_link_dll (info
) || !SYMBOL_REFERENCES_LOCAL (info
, &h
->root
)))
3413 indx
= h
->root
.dynindx
;
3415 if (entry
->tls_initialized
)
3418 if ((bfd_link_dll (info
) || indx
!= 0)
3420 || ELF_ST_VISIBILITY (h
->root
.other
) == STV_DEFAULT
3421 || h
->root
.type
!= bfd_link_hash_undefweak
))
3424 /* MINUS_ONE means the symbol is not defined in this object. It may not
3425 be defined at all; assume that the value doesn't matter in that
3426 case. Otherwise complain if we would use the value. */
3427 BFD_ASSERT (value
!= MINUS_ONE
|| (indx
!= 0 && need_relocs
)
3428 || h
->root
.root
.type
== bfd_link_hash_undefweak
);
3430 /* Emit necessary relocations. */
3431 sreloc
= mips_elf_rel_dyn_section (info
, FALSE
);
3432 got_offset
= entry
->gotidx
;
3434 switch (entry
->tls_type
)
3437 /* General Dynamic. */
3438 got_offset2
= got_offset
+ MIPS_ELF_GOT_SIZE (abfd
);
3442 mips_elf_output_dynamic_relocation
3443 (abfd
, sreloc
, sreloc
->reloc_count
++, indx
,
3444 ABI_64_P (abfd
) ? R_MIPS_TLS_DTPMOD64
: R_MIPS_TLS_DTPMOD32
,
3445 sgot
->output_offset
+ sgot
->output_section
->vma
+ got_offset
);
3448 mips_elf_output_dynamic_relocation
3449 (abfd
, sreloc
, sreloc
->reloc_count
++, indx
,
3450 ABI_64_P (abfd
) ? R_MIPS_TLS_DTPREL64
: R_MIPS_TLS_DTPREL32
,
3451 sgot
->output_offset
+ sgot
->output_section
->vma
+ got_offset2
);
3453 MIPS_ELF_PUT_WORD (abfd
, value
- dtprel_base (info
),
3454 sgot
->contents
+ got_offset2
);
3458 MIPS_ELF_PUT_WORD (abfd
, 1,
3459 sgot
->contents
+ got_offset
);
3460 MIPS_ELF_PUT_WORD (abfd
, value
- dtprel_base (info
),
3461 sgot
->contents
+ got_offset2
);
3466 /* Initial Exec model. */
3470 MIPS_ELF_PUT_WORD (abfd
, value
- elf_hash_table (info
)->tls_sec
->vma
,
3471 sgot
->contents
+ got_offset
);
3473 MIPS_ELF_PUT_WORD (abfd
, 0,
3474 sgot
->contents
+ got_offset
);
3476 mips_elf_output_dynamic_relocation
3477 (abfd
, sreloc
, sreloc
->reloc_count
++, indx
,
3478 ABI_64_P (abfd
) ? R_MIPS_TLS_TPREL64
: R_MIPS_TLS_TPREL32
,
3479 sgot
->output_offset
+ sgot
->output_section
->vma
+ got_offset
);
3482 MIPS_ELF_PUT_WORD (abfd
, value
- tprel_base (info
),
3483 sgot
->contents
+ got_offset
);
3487 /* The initial offset is zero, and the LD offsets will include the
3488 bias by DTP_OFFSET. */
3489 MIPS_ELF_PUT_WORD (abfd
, 0,
3490 sgot
->contents
+ got_offset
3491 + MIPS_ELF_GOT_SIZE (abfd
));
3493 if (!bfd_link_dll (info
))
3494 MIPS_ELF_PUT_WORD (abfd
, 1,
3495 sgot
->contents
+ got_offset
);
3497 mips_elf_output_dynamic_relocation
3498 (abfd
, sreloc
, sreloc
->reloc_count
++, indx
,
3499 ABI_64_P (abfd
) ? R_MIPS_TLS_DTPMOD64
: R_MIPS_TLS_DTPMOD32
,
3500 sgot
->output_offset
+ sgot
->output_section
->vma
+ got_offset
);
3507 entry
->tls_initialized
= TRUE
;
3510 /* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry
3511 for global symbol H. .got.plt comes before the GOT, so the offset
3512 will be negative. */
3515 mips_elf_gotplt_index (struct bfd_link_info
*info
,
3516 struct elf_link_hash_entry
*h
)
3518 bfd_vma got_address
, got_value
;
3519 struct mips_elf_link_hash_table
*htab
;
3521 htab
= mips_elf_hash_table (info
);
3522 BFD_ASSERT (htab
!= NULL
);
3524 BFD_ASSERT (h
->plt
.plist
!= NULL
);
3525 BFD_ASSERT (h
->plt
.plist
->gotplt_index
!= MINUS_ONE
);
3527 /* Calculate the address of the associated .got.plt entry. */
3528 got_address
= (htab
->root
.sgotplt
->output_section
->vma
3529 + htab
->root
.sgotplt
->output_offset
3530 + (h
->plt
.plist
->gotplt_index
3531 * MIPS_ELF_GOT_SIZE (info
->output_bfd
)));
3533 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
3534 got_value
= (htab
->root
.hgot
->root
.u
.def
.section
->output_section
->vma
3535 + htab
->root
.hgot
->root
.u
.def
.section
->output_offset
3536 + htab
->root
.hgot
->root
.u
.def
.value
);
3538 return got_address
- got_value
;
3541 /* Return the GOT offset for address VALUE. If there is not yet a GOT
3542 entry for this value, create one. If R_SYMNDX refers to a TLS symbol,
3543 create a TLS GOT entry instead. Return -1 if no satisfactory GOT
3544 offset can be found. */
3547 mips_elf_local_got_index (bfd
*abfd
, bfd
*ibfd
, struct bfd_link_info
*info
,
3548 bfd_vma value
, unsigned long r_symndx
,
3549 struct mips_elf_link_hash_entry
*h
, int r_type
)
3551 struct mips_elf_link_hash_table
*htab
;
3552 struct mips_got_entry
*entry
;
3554 htab
= mips_elf_hash_table (info
);
3555 BFD_ASSERT (htab
!= NULL
);
3557 entry
= mips_elf_create_local_got_entry (abfd
, info
, ibfd
, value
,
3558 r_symndx
, h
, r_type
);
3562 if (entry
->tls_type
)
3563 mips_elf_initialize_tls_slots (abfd
, info
, entry
, h
, value
);
3564 return entry
->gotidx
;
3567 /* Return the GOT index of global symbol H in the primary GOT. */
3570 mips_elf_primary_global_got_index (bfd
*obfd
, struct bfd_link_info
*info
,
3571 struct elf_link_hash_entry
*h
)
3573 struct mips_elf_link_hash_table
*htab
;
3574 long global_got_dynindx
;
3575 struct mips_got_info
*g
;
3578 htab
= mips_elf_hash_table (info
);
3579 BFD_ASSERT (htab
!= NULL
);
3581 global_got_dynindx
= 0;
3582 if (htab
->global_gotsym
!= NULL
)
3583 global_got_dynindx
= htab
->global_gotsym
->dynindx
;
3585 /* Once we determine the global GOT entry with the lowest dynamic
3586 symbol table index, we must put all dynamic symbols with greater
3587 indices into the primary GOT. That makes it easy to calculate the
3589 BFD_ASSERT (h
->dynindx
>= global_got_dynindx
);
3590 g
= mips_elf_bfd_got (obfd
, FALSE
);
3591 got_index
= ((h
->dynindx
- global_got_dynindx
+ g
->local_gotno
)
3592 * MIPS_ELF_GOT_SIZE (obfd
));
3593 BFD_ASSERT (got_index
< htab
->root
.sgot
->size
);
3598 /* Return the GOT index for the global symbol indicated by H, which is
3599 referenced by a relocation of type R_TYPE in IBFD. */
3602 mips_elf_global_got_index (bfd
*obfd
, struct bfd_link_info
*info
, bfd
*ibfd
,
3603 struct elf_link_hash_entry
*h
, int r_type
)
3605 struct mips_elf_link_hash_table
*htab
;
3606 struct mips_got_info
*g
;
3607 struct mips_got_entry lookup
, *entry
;
3610 htab
= mips_elf_hash_table (info
);
3611 BFD_ASSERT (htab
!= NULL
);
3613 g
= mips_elf_bfd_got (ibfd
, FALSE
);
3616 lookup
.tls_type
= mips_elf_reloc_tls_type (r_type
);
3617 if (!lookup
.tls_type
&& g
== mips_elf_bfd_got (obfd
, FALSE
))
3618 return mips_elf_primary_global_got_index (obfd
, info
, h
);
3622 lookup
.d
.h
= (struct mips_elf_link_hash_entry
*) h
;
3623 entry
= htab_find (g
->got_entries
, &lookup
);
3626 gotidx
= entry
->gotidx
;
3627 BFD_ASSERT (gotidx
> 0 && gotidx
< htab
->root
.sgot
->size
);
3629 if (lookup
.tls_type
)
3631 bfd_vma value
= MINUS_ONE
;
3633 if ((h
->root
.type
== bfd_link_hash_defined
3634 || h
->root
.type
== bfd_link_hash_defweak
)
3635 && h
->root
.u
.def
.section
->output_section
)
3636 value
= (h
->root
.u
.def
.value
3637 + h
->root
.u
.def
.section
->output_offset
3638 + h
->root
.u
.def
.section
->output_section
->vma
);
3640 mips_elf_initialize_tls_slots (obfd
, info
, entry
, lookup
.d
.h
, value
);
3645 /* Find a GOT page entry that points to within 32KB of VALUE. These
3646 entries are supposed to be placed at small offsets in the GOT, i.e.,
3647 within 32KB of GP. Return the index of the GOT entry, or -1 if no
3648 entry could be created. If OFFSETP is nonnull, use it to return the
3649 offset of the GOT entry from VALUE. */
3652 mips_elf_got_page (bfd
*abfd
, bfd
*ibfd
, struct bfd_link_info
*info
,
3653 bfd_vma value
, bfd_vma
*offsetp
)
3655 bfd_vma page
, got_index
;
3656 struct mips_got_entry
*entry
;
3658 page
= (value
+ 0x8000) & ~(bfd_vma
) 0xffff;
3659 entry
= mips_elf_create_local_got_entry (abfd
, info
, ibfd
, page
, 0,
3660 NULL
, R_MIPS_GOT_PAGE
);
3665 got_index
= entry
->gotidx
;
3668 *offsetp
= value
- entry
->d
.address
;
3673 /* Find a local GOT entry for an R_MIPS*_GOT16 relocation against VALUE.
3674 EXTERNAL is true if the relocation was originally against a global
3675 symbol that binds locally. */
3678 mips_elf_got16_entry (bfd
*abfd
, bfd
*ibfd
, struct bfd_link_info
*info
,
3679 bfd_vma value
, bfd_boolean external
)
3681 struct mips_got_entry
*entry
;
3683 /* GOT16 relocations against local symbols are followed by a LO16
3684 relocation; those against global symbols are not. Thus if the
3685 symbol was originally local, the GOT16 relocation should load the
3686 equivalent of %hi(VALUE), otherwise it should load VALUE itself. */
3688 value
= mips_elf_high (value
) << 16;
3690 /* It doesn't matter whether the original relocation was R_MIPS_GOT16,
3691 R_MIPS16_GOT16, R_MIPS_CALL16, etc. The format of the entry is the
3692 same in all cases. */
3693 entry
= mips_elf_create_local_got_entry (abfd
, info
, ibfd
, value
, 0,
3694 NULL
, R_MIPS_GOT16
);
3696 return entry
->gotidx
;
3701 /* Returns the offset for the entry at the INDEXth position
3705 mips_elf_got_offset_from_index (struct bfd_link_info
*info
, bfd
*output_bfd
,
3706 bfd
*input_bfd
, bfd_vma got_index
)
3708 struct mips_elf_link_hash_table
*htab
;
3712 htab
= mips_elf_hash_table (info
);
3713 BFD_ASSERT (htab
!= NULL
);
3715 sgot
= htab
->root
.sgot
;
3716 gp
= _bfd_get_gp_value (output_bfd
)
3717 + mips_elf_adjust_gp (output_bfd
, htab
->got_info
, input_bfd
);
3719 return sgot
->output_section
->vma
+ sgot
->output_offset
+ got_index
- gp
;
3722 /* Create and return a local GOT entry for VALUE, which was calculated
3723 from a symbol belonging to INPUT_SECTON. Return NULL if it could not
3724 be created. If R_SYMNDX refers to a TLS symbol, create a TLS entry
3727 static struct mips_got_entry
*
3728 mips_elf_create_local_got_entry (bfd
*abfd
, struct bfd_link_info
*info
,
3729 bfd
*ibfd
, bfd_vma value
,
3730 unsigned long r_symndx
,
3731 struct mips_elf_link_hash_entry
*h
,
3734 struct mips_got_entry lookup
, *entry
;
3736 struct mips_got_info
*g
;
3737 struct mips_elf_link_hash_table
*htab
;
3740 htab
= mips_elf_hash_table (info
);
3741 BFD_ASSERT (htab
!= NULL
);
3743 g
= mips_elf_bfd_got (ibfd
, FALSE
);
3746 g
= mips_elf_bfd_got (abfd
, FALSE
);
3747 BFD_ASSERT (g
!= NULL
);
3750 /* This function shouldn't be called for symbols that live in the global
3752 BFD_ASSERT (h
== NULL
|| h
->global_got_area
== GGA_NONE
);
3754 lookup
.tls_type
= mips_elf_reloc_tls_type (r_type
);
3755 if (lookup
.tls_type
)
3758 if (tls_ldm_reloc_p (r_type
))
3761 lookup
.d
.addend
= 0;
3765 lookup
.symndx
= r_symndx
;
3766 lookup
.d
.addend
= 0;
3774 entry
= (struct mips_got_entry
*) htab_find (g
->got_entries
, &lookup
);
3777 gotidx
= entry
->gotidx
;
3778 BFD_ASSERT (gotidx
> 0 && gotidx
< htab
->root
.sgot
->size
);
3785 lookup
.d
.address
= value
;
3786 loc
= htab_find_slot (g
->got_entries
, &lookup
, INSERT
);
3790 entry
= (struct mips_got_entry
*) *loc
;
3794 if (g
->assigned_low_gotno
> g
->assigned_high_gotno
)
3796 /* We didn't allocate enough space in the GOT. */
3798 (_("not enough GOT space for local GOT entries"));
3799 bfd_set_error (bfd_error_bad_value
);
3803 entry
= (struct mips_got_entry
*) bfd_alloc (abfd
, sizeof (*entry
));
3807 if (got16_reloc_p (r_type
)
3808 || call16_reloc_p (r_type
)
3809 || got_page_reloc_p (r_type
)
3810 || got_disp_reloc_p (r_type
))
3811 lookup
.gotidx
= MIPS_ELF_GOT_SIZE (abfd
) * g
->assigned_low_gotno
++;
3813 lookup
.gotidx
= MIPS_ELF_GOT_SIZE (abfd
) * g
->assigned_high_gotno
--;
3818 MIPS_ELF_PUT_WORD (abfd
, value
, htab
->root
.sgot
->contents
+ entry
->gotidx
);
3820 /* These GOT entries need a dynamic relocation on VxWorks. */
3821 if (htab
->root
.target_os
== is_vxworks
)
3823 Elf_Internal_Rela outrel
;
3826 bfd_vma got_address
;
3828 s
= mips_elf_rel_dyn_section (info
, FALSE
);
3829 got_address
= (htab
->root
.sgot
->output_section
->vma
3830 + htab
->root
.sgot
->output_offset
3833 rloc
= s
->contents
+ (s
->reloc_count
++ * sizeof (Elf32_External_Rela
));
3834 outrel
.r_offset
= got_address
;
3835 outrel
.r_info
= ELF32_R_INFO (STN_UNDEF
, R_MIPS_32
);
3836 outrel
.r_addend
= value
;
3837 bfd_elf32_swap_reloca_out (abfd
, &outrel
, rloc
);
3843 /* Return the number of dynamic section symbols required by OUTPUT_BFD.
3844 The number might be exact or a worst-case estimate, depending on how
3845 much information is available to elf_backend_omit_section_dynsym at
3846 the current linking stage. */
3848 static bfd_size_type
3849 count_section_dynsyms (bfd
*output_bfd
, struct bfd_link_info
*info
)
3851 bfd_size_type count
;
3854 if (bfd_link_pic (info
)
3855 || elf_hash_table (info
)->is_relocatable_executable
)
3858 const struct elf_backend_data
*bed
;
3860 bed
= get_elf_backend_data (output_bfd
);
3861 for (p
= output_bfd
->sections
; p
; p
= p
->next
)
3862 if ((p
->flags
& SEC_EXCLUDE
) == 0
3863 && (p
->flags
& SEC_ALLOC
) != 0
3864 && elf_hash_table (info
)->dynamic_relocs
3865 && !(*bed
->elf_backend_omit_section_dynsym
) (output_bfd
, info
, p
))
3871 /* Sort the dynamic symbol table so that symbols that need GOT entries
3872 appear towards the end. */
3875 mips_elf_sort_hash_table (bfd
*abfd
, struct bfd_link_info
*info
)
3877 struct mips_elf_link_hash_table
*htab
;
3878 struct mips_elf_hash_sort_data hsd
;
3879 struct mips_got_info
*g
;
3881 htab
= mips_elf_hash_table (info
);
3882 BFD_ASSERT (htab
!= NULL
);
3884 if (htab
->root
.dynsymcount
== 0)
3892 hsd
.max_unref_got_dynindx
3893 = hsd
.min_got_dynindx
3894 = (htab
->root
.dynsymcount
- g
->reloc_only_gotno
);
3895 /* Add 1 to local symbol indices to account for the mandatory NULL entry
3896 at the head of the table; see `_bfd_elf_link_renumber_dynsyms'. */
3897 hsd
.max_local_dynindx
= count_section_dynsyms (abfd
, info
) + 1;
3898 hsd
.max_non_got_dynindx
= htab
->root
.local_dynsymcount
+ 1;
3899 hsd
.output_bfd
= abfd
;
3900 if (htab
->root
.dynobj
!= NULL
3901 && htab
->root
.dynamic_sections_created
3902 && info
->emit_gnu_hash
)
3904 asection
*s
= bfd_get_linker_section (htab
->root
.dynobj
, ".MIPS.xhash");
3905 BFD_ASSERT (s
!= NULL
);
3906 hsd
.mipsxhash
= s
->contents
;
3907 BFD_ASSERT (hsd
.mipsxhash
!= NULL
);
3910 hsd
.mipsxhash
= NULL
;
3911 mips_elf_link_hash_traverse (htab
, mips_elf_sort_hash_table_f
, &hsd
);
3913 /* There should have been enough room in the symbol table to
3914 accommodate both the GOT and non-GOT symbols. */
3915 BFD_ASSERT (hsd
.max_local_dynindx
<= htab
->root
.local_dynsymcount
+ 1);
3916 BFD_ASSERT (hsd
.max_non_got_dynindx
<= hsd
.min_got_dynindx
);
3917 BFD_ASSERT (hsd
.max_unref_got_dynindx
== htab
->root
.dynsymcount
);
3918 BFD_ASSERT (htab
->root
.dynsymcount
- hsd
.min_got_dynindx
== g
->global_gotno
);
3920 /* Now we know which dynamic symbol has the lowest dynamic symbol
3921 table index in the GOT. */
3922 htab
->global_gotsym
= hsd
.low
;
3927 /* If H needs a GOT entry, assign it the highest available dynamic
3928 index. Otherwise, assign it the lowest available dynamic
3932 mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry
*h
, void *data
)
3934 struct mips_elf_hash_sort_data
*hsd
= data
;
3936 /* Symbols without dynamic symbol table entries aren't interesting
3938 if (h
->root
.dynindx
== -1)
3941 switch (h
->global_got_area
)
3944 if (h
->root
.forced_local
)
3945 h
->root
.dynindx
= hsd
->max_local_dynindx
++;
3947 h
->root
.dynindx
= hsd
->max_non_got_dynindx
++;
3951 h
->root
.dynindx
= --hsd
->min_got_dynindx
;
3952 hsd
->low
= (struct elf_link_hash_entry
*) h
;
3955 case GGA_RELOC_ONLY
:
3956 if (hsd
->max_unref_got_dynindx
== hsd
->min_got_dynindx
)
3957 hsd
->low
= (struct elf_link_hash_entry
*) h
;
3958 h
->root
.dynindx
= hsd
->max_unref_got_dynindx
++;
3962 /* Populate the .MIPS.xhash translation table entry with
3963 the symbol dynindx. */
3964 if (h
->mipsxhash_loc
!= 0 && hsd
->mipsxhash
!= NULL
)
3965 bfd_put_32 (hsd
->output_bfd
, h
->root
.dynindx
,
3966 hsd
->mipsxhash
+ h
->mipsxhash_loc
);
3971 /* Record that input bfd ABFD requires a GOT entry like *LOOKUP
3972 (which is owned by the caller and shouldn't be added to the
3973 hash table directly). */
3976 mips_elf_record_got_entry (struct bfd_link_info
*info
, bfd
*abfd
,
3977 struct mips_got_entry
*lookup
)
3979 struct mips_elf_link_hash_table
*htab
;
3980 struct mips_got_entry
*entry
;
3981 struct mips_got_info
*g
;
3982 void **loc
, **bfd_loc
;
3984 /* Make sure there's a slot for this entry in the master GOT. */
3985 htab
= mips_elf_hash_table (info
);
3987 loc
= htab_find_slot (g
->got_entries
, lookup
, INSERT
);
3991 /* Populate the entry if it isn't already. */
3992 entry
= (struct mips_got_entry
*) *loc
;
3995 entry
= (struct mips_got_entry
*) bfd_alloc (abfd
, sizeof (*entry
));
3999 lookup
->tls_initialized
= FALSE
;
4000 lookup
->gotidx
= -1;
4005 /* Reuse the same GOT entry for the BFD's GOT. */
4006 g
= mips_elf_bfd_got (abfd
, TRUE
);
4010 bfd_loc
= htab_find_slot (g
->got_entries
, lookup
, INSERT
);
4019 /* ABFD has a GOT relocation of type R_TYPE against H. Reserve a GOT
4020 entry for it. FOR_CALL is true if the caller is only interested in
4021 using the GOT entry for calls. */
4024 mips_elf_record_global_got_symbol (struct elf_link_hash_entry
*h
,
4025 bfd
*abfd
, struct bfd_link_info
*info
,
4026 bfd_boolean for_call
, int r_type
)
4028 struct mips_elf_link_hash_table
*htab
;
4029 struct mips_elf_link_hash_entry
*hmips
;
4030 struct mips_got_entry entry
;
4031 unsigned char tls_type
;
4033 htab
= mips_elf_hash_table (info
);
4034 BFD_ASSERT (htab
!= NULL
);
4036 hmips
= (struct mips_elf_link_hash_entry
*) h
;
4038 hmips
->got_only_for_calls
= FALSE
;
4040 /* A global symbol in the GOT must also be in the dynamic symbol
4042 if (h
->dynindx
== -1)
4044 switch (ELF_ST_VISIBILITY (h
->other
))
4048 _bfd_mips_elf_hide_symbol (info
, h
, TRUE
);
4051 if (!bfd_elf_link_record_dynamic_symbol (info
, h
))
4055 tls_type
= mips_elf_reloc_tls_type (r_type
);
4056 if (tls_type
== GOT_TLS_NONE
&& hmips
->global_got_area
> GGA_NORMAL
)
4057 hmips
->global_got_area
= GGA_NORMAL
;
4061 entry
.d
.h
= (struct mips_elf_link_hash_entry
*) h
;
4062 entry
.tls_type
= tls_type
;
4063 return mips_elf_record_got_entry (info
, abfd
, &entry
);
4066 /* ABFD has a GOT relocation of type R_TYPE against symbol SYMNDX + ADDEND,
4067 where SYMNDX is a local symbol. Reserve a GOT entry for it. */
4070 mips_elf_record_local_got_symbol (bfd
*abfd
, long symndx
, bfd_vma addend
,
4071 struct bfd_link_info
*info
, int r_type
)
4073 struct mips_elf_link_hash_table
*htab
;
4074 struct mips_got_info
*g
;
4075 struct mips_got_entry entry
;
4077 htab
= mips_elf_hash_table (info
);
4078 BFD_ASSERT (htab
!= NULL
);
4081 BFD_ASSERT (g
!= NULL
);
4084 entry
.symndx
= symndx
;
4085 entry
.d
.addend
= addend
;
4086 entry
.tls_type
= mips_elf_reloc_tls_type (r_type
);
4087 return mips_elf_record_got_entry (info
, abfd
, &entry
);
4090 /* Record that ABFD has a page relocation against SYMNDX + ADDEND.
4091 H is the symbol's hash table entry, or null if SYMNDX is local
4095 mips_elf_record_got_page_ref (struct bfd_link_info
*info
, bfd
*abfd
,
4096 long symndx
, struct elf_link_hash_entry
*h
,
4097 bfd_signed_vma addend
)
4099 struct mips_elf_link_hash_table
*htab
;
4100 struct mips_got_info
*g1
, *g2
;
4101 struct mips_got_page_ref lookup
, *entry
;
4102 void **loc
, **bfd_loc
;
4104 htab
= mips_elf_hash_table (info
);
4105 BFD_ASSERT (htab
!= NULL
);
4107 g1
= htab
->got_info
;
4108 BFD_ASSERT (g1
!= NULL
);
4113 lookup
.u
.h
= (struct mips_elf_link_hash_entry
*) h
;
4117 lookup
.symndx
= symndx
;
4118 lookup
.u
.abfd
= abfd
;
4120 lookup
.addend
= addend
;
4121 loc
= htab_find_slot (g1
->got_page_refs
, &lookup
, INSERT
);
4125 entry
= (struct mips_got_page_ref
*) *loc
;
4128 entry
= bfd_alloc (abfd
, sizeof (*entry
));
4136 /* Add the same entry to the BFD's GOT. */
4137 g2
= mips_elf_bfd_got (abfd
, TRUE
);
4141 bfd_loc
= htab_find_slot (g2
->got_page_refs
, &lookup
, INSERT
);
4151 /* Add room for N relocations to the .rel(a).dyn section in ABFD. */
4154 mips_elf_allocate_dynamic_relocations (bfd
*abfd
, struct bfd_link_info
*info
,
4158 struct mips_elf_link_hash_table
*htab
;
4160 htab
= mips_elf_hash_table (info
);
4161 BFD_ASSERT (htab
!= NULL
);
4163 s
= mips_elf_rel_dyn_section (info
, FALSE
);
4164 BFD_ASSERT (s
!= NULL
);
4166 if (htab
->root
.target_os
== is_vxworks
)
4167 s
->size
+= n
* MIPS_ELF_RELA_SIZE (abfd
);
4172 /* Make room for a null element. */
4173 s
->size
+= MIPS_ELF_REL_SIZE (abfd
);
4176 s
->size
+= n
* MIPS_ELF_REL_SIZE (abfd
);
4180 /* A htab_traverse callback for GOT entries, with DATA pointing to a
4181 mips_elf_traverse_got_arg structure. Count the number of GOT
4182 entries and TLS relocs. Set DATA->value to true if we need
4183 to resolve indirect or warning symbols and then recreate the GOT. */
4186 mips_elf_check_recreate_got (void **entryp
, void *data
)
4188 struct mips_got_entry
*entry
;
4189 struct mips_elf_traverse_got_arg
*arg
;
4191 entry
= (struct mips_got_entry
*) *entryp
;
4192 arg
= (struct mips_elf_traverse_got_arg
*) data
;
4193 if (entry
->abfd
!= NULL
&& entry
->symndx
== -1)
4195 struct mips_elf_link_hash_entry
*h
;
4198 if (h
->root
.root
.type
== bfd_link_hash_indirect
4199 || h
->root
.root
.type
== bfd_link_hash_warning
)
4205 mips_elf_count_got_entry (arg
->info
, arg
->g
, entry
);
4209 /* A htab_traverse callback for GOT entries, with DATA pointing to a
4210 mips_elf_traverse_got_arg structure. Add all entries to DATA->g,
4211 converting entries for indirect and warning symbols into entries
4212 for the target symbol. Set DATA->g to null on error. */
4215 mips_elf_recreate_got (void **entryp
, void *data
)
4217 struct mips_got_entry new_entry
, *entry
;
4218 struct mips_elf_traverse_got_arg
*arg
;
4221 entry
= (struct mips_got_entry
*) *entryp
;
4222 arg
= (struct mips_elf_traverse_got_arg
*) data
;
4223 if (entry
->abfd
!= NULL
4224 && entry
->symndx
== -1
4225 && (entry
->d
.h
->root
.root
.type
== bfd_link_hash_indirect
4226 || entry
->d
.h
->root
.root
.type
== bfd_link_hash_warning
))
4228 struct mips_elf_link_hash_entry
*h
;
4235 BFD_ASSERT (h
->global_got_area
== GGA_NONE
);
4236 h
= (struct mips_elf_link_hash_entry
*) h
->root
.root
.u
.i
.link
;
4238 while (h
->root
.root
.type
== bfd_link_hash_indirect
4239 || h
->root
.root
.type
== bfd_link_hash_warning
);
4242 slot
= htab_find_slot (arg
->g
->got_entries
, entry
, INSERT
);
4250 if (entry
== &new_entry
)
4252 entry
= bfd_alloc (entry
->abfd
, sizeof (*entry
));
4261 mips_elf_count_got_entry (arg
->info
, arg
->g
, entry
);
4266 /* Return the maximum number of GOT page entries required for RANGE. */
4269 mips_elf_pages_for_range (const struct mips_got_page_range
*range
)
4271 return (range
->max_addend
- range
->min_addend
+ 0x1ffff) >> 16;
4274 /* Record that G requires a page entry that can reach SEC + ADDEND. */
4277 mips_elf_record_got_page_entry (struct mips_elf_traverse_got_arg
*arg
,
4278 asection
*sec
, bfd_signed_vma addend
)
4280 struct mips_got_info
*g
= arg
->g
;
4281 struct mips_got_page_entry lookup
, *entry
;
4282 struct mips_got_page_range
**range_ptr
, *range
;
4283 bfd_vma old_pages
, new_pages
;
4286 /* Find the mips_got_page_entry hash table entry for this section. */
4288 loc
= htab_find_slot (g
->got_page_entries
, &lookup
, INSERT
);
4292 /* Create a mips_got_page_entry if this is the first time we've
4293 seen the section. */
4294 entry
= (struct mips_got_page_entry
*) *loc
;
4297 entry
= bfd_zalloc (arg
->info
->output_bfd
, sizeof (*entry
));
4305 /* Skip over ranges whose maximum extent cannot share a page entry
4307 range_ptr
= &entry
->ranges
;
4308 while (*range_ptr
&& addend
> (*range_ptr
)->max_addend
+ 0xffff)
4309 range_ptr
= &(*range_ptr
)->next
;
4311 /* If we scanned to the end of the list, or found a range whose
4312 minimum extent cannot share a page entry with ADDEND, create
4313 a new singleton range. */
4315 if (!range
|| addend
< range
->min_addend
- 0xffff)
4317 range
= bfd_zalloc (arg
->info
->output_bfd
, sizeof (*range
));
4321 range
->next
= *range_ptr
;
4322 range
->min_addend
= addend
;
4323 range
->max_addend
= addend
;
4331 /* Remember how many pages the old range contributed. */
4332 old_pages
= mips_elf_pages_for_range (range
);
4334 /* Update the ranges. */
4335 if (addend
< range
->min_addend
)
4336 range
->min_addend
= addend
;
4337 else if (addend
> range
->max_addend
)
4339 if (range
->next
&& addend
>= range
->next
->min_addend
- 0xffff)
4341 old_pages
+= mips_elf_pages_for_range (range
->next
);
4342 range
->max_addend
= range
->next
->max_addend
;
4343 range
->next
= range
->next
->next
;
4346 range
->max_addend
= addend
;
4349 /* Record any change in the total estimate. */
4350 new_pages
= mips_elf_pages_for_range (range
);
4351 if (old_pages
!= new_pages
)
4353 entry
->num_pages
+= new_pages
- old_pages
;
4354 g
->page_gotno
+= new_pages
- old_pages
;
4360 /* A htab_traverse callback for which *REFP points to a mips_got_page_ref
4361 and for which DATA points to a mips_elf_traverse_got_arg. Work out
4362 whether the page reference described by *REFP needs a GOT page entry,
4363 and record that entry in DATA->g if so. Set DATA->g to null on failure. */
4366 mips_elf_resolve_got_page_ref (void **refp
, void *data
)
4368 struct mips_got_page_ref
*ref
;
4369 struct mips_elf_traverse_got_arg
*arg
;
4370 struct mips_elf_link_hash_table
*htab
;
4374 ref
= (struct mips_got_page_ref
*) *refp
;
4375 arg
= (struct mips_elf_traverse_got_arg
*) data
;
4376 htab
= mips_elf_hash_table (arg
->info
);
4378 if (ref
->symndx
< 0)
4380 struct mips_elf_link_hash_entry
*h
;
4382 /* Global GOT_PAGEs decay to GOT_DISP and so don't need page entries. */
4384 if (!SYMBOL_REFERENCES_LOCAL (arg
->info
, &h
->root
))
4387 /* Ignore undefined symbols; we'll issue an error later if
4389 if (!((h
->root
.root
.type
== bfd_link_hash_defined
4390 || h
->root
.root
.type
== bfd_link_hash_defweak
)
4391 && h
->root
.root
.u
.def
.section
))
4394 sec
= h
->root
.root
.u
.def
.section
;
4395 addend
= h
->root
.root
.u
.def
.value
+ ref
->addend
;
4399 Elf_Internal_Sym
*isym
;
4401 /* Read in the symbol. */
4402 isym
= bfd_sym_from_r_symndx (&htab
->root
.sym_cache
, ref
->u
.abfd
,
4410 /* Get the associated input section. */
4411 sec
= bfd_section_from_elf_index (ref
->u
.abfd
, isym
->st_shndx
);
4418 /* If this is a mergable section, work out the section and offset
4419 of the merged data. For section symbols, the addend specifies
4420 of the offset _of_ the first byte in the data, otherwise it
4421 specifies the offset _from_ the first byte. */
4422 if (sec
->flags
& SEC_MERGE
)
4426 secinfo
= elf_section_data (sec
)->sec_info
;
4427 if (ELF_ST_TYPE (isym
->st_info
) == STT_SECTION
)
4428 addend
= _bfd_merged_section_offset (ref
->u
.abfd
, &sec
, secinfo
,
4429 isym
->st_value
+ ref
->addend
);
4431 addend
= _bfd_merged_section_offset (ref
->u
.abfd
, &sec
, secinfo
,
4432 isym
->st_value
) + ref
->addend
;
4435 addend
= isym
->st_value
+ ref
->addend
;
4437 if (!mips_elf_record_got_page_entry (arg
, sec
, addend
))
4445 /* If any entries in G->got_entries are for indirect or warning symbols,
4446 replace them with entries for the target symbol. Convert g->got_page_refs
4447 into got_page_entry structures and estimate the number of page entries
4448 that they require. */
4451 mips_elf_resolve_final_got_entries (struct bfd_link_info
*info
,
4452 struct mips_got_info
*g
)
4454 struct mips_elf_traverse_got_arg tga
;
4455 struct mips_got_info oldg
;
4462 htab_traverse (g
->got_entries
, mips_elf_check_recreate_got
, &tga
);
4466 g
->got_entries
= htab_create (htab_size (oldg
.got_entries
),
4467 mips_elf_got_entry_hash
,
4468 mips_elf_got_entry_eq
, NULL
);
4469 if (!g
->got_entries
)
4472 htab_traverse (oldg
.got_entries
, mips_elf_recreate_got
, &tga
);
4476 htab_delete (oldg
.got_entries
);
4479 g
->got_page_entries
= htab_try_create (1, mips_got_page_entry_hash
,
4480 mips_got_page_entry_eq
, NULL
);
4481 if (g
->got_page_entries
== NULL
)
4486 htab_traverse (g
->got_page_refs
, mips_elf_resolve_got_page_ref
, &tga
);
4491 /* Return true if a GOT entry for H should live in the local rather than
4495 mips_use_local_got_p (struct bfd_link_info
*info
,
4496 struct mips_elf_link_hash_entry
*h
)
4498 /* Symbols that aren't in the dynamic symbol table must live in the
4499 local GOT. This includes symbols that are completely undefined
4500 and which therefore don't bind locally. We'll report undefined
4501 symbols later if appropriate. */
4502 if (h
->root
.dynindx
== -1)
4505 /* Absolute symbols, if ever they need a GOT entry, cannot ever go
4506 to the local GOT, as they would be implicitly relocated by the
4507 base address by the dynamic loader. */
4508 if (bfd_is_abs_symbol (&h
->root
.root
))
4511 /* Symbols that bind locally can (and in the case of forced-local
4512 symbols, must) live in the local GOT. */
4513 if (h
->got_only_for_calls
4514 ? SYMBOL_CALLS_LOCAL (info
, &h
->root
)
4515 : SYMBOL_REFERENCES_LOCAL (info
, &h
->root
))
4518 /* If this is an executable that must provide a definition of the symbol,
4519 either though PLTs or copy relocations, then that address should go in
4520 the local rather than global GOT. */
4521 if (bfd_link_executable (info
) && h
->has_static_relocs
)
4527 /* A mips_elf_link_hash_traverse callback for which DATA points to the
4528 link_info structure. Decide whether the hash entry needs an entry in
4529 the global part of the primary GOT, setting global_got_area accordingly.
4530 Count the number of global symbols that are in the primary GOT only
4531 because they have relocations against them (reloc_only_gotno). */
4534 mips_elf_count_got_symbols (struct mips_elf_link_hash_entry
*h
, void *data
)
4536 struct bfd_link_info
*info
;
4537 struct mips_elf_link_hash_table
*htab
;
4538 struct mips_got_info
*g
;
4540 info
= (struct bfd_link_info
*) data
;
4541 htab
= mips_elf_hash_table (info
);
4543 if (h
->global_got_area
!= GGA_NONE
)
4545 /* Make a final decision about whether the symbol belongs in the
4546 local or global GOT. */
4547 if (mips_use_local_got_p (info
, h
))
4548 /* The symbol belongs in the local GOT. We no longer need this
4549 entry if it was only used for relocations; those relocations
4550 will be against the null or section symbol instead of H. */
4551 h
->global_got_area
= GGA_NONE
;
4552 else if (htab
->root
.target_os
== is_vxworks
4553 && h
->got_only_for_calls
4554 && h
->root
.plt
.plist
->mips_offset
!= MINUS_ONE
)
4555 /* On VxWorks, calls can refer directly to the .got.plt entry;
4556 they don't need entries in the regular GOT. .got.plt entries
4557 will be allocated by _bfd_mips_elf_adjust_dynamic_symbol. */
4558 h
->global_got_area
= GGA_NONE
;
4559 else if (h
->global_got_area
== GGA_RELOC_ONLY
)
4561 g
->reloc_only_gotno
++;
4568 /* A htab_traverse callback for GOT entries. Add each one to the GOT
4569 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */
4572 mips_elf_add_got_entry (void **entryp
, void *data
)
4574 struct mips_got_entry
*entry
;
4575 struct mips_elf_traverse_got_arg
*arg
;
4578 entry
= (struct mips_got_entry
*) *entryp
;
4579 arg
= (struct mips_elf_traverse_got_arg
*) data
;
4580 slot
= htab_find_slot (arg
->g
->got_entries
, entry
, INSERT
);
4589 mips_elf_count_got_entry (arg
->info
, arg
->g
, entry
);
4594 /* A htab_traverse callback for GOT page entries. Add each one to the GOT
4595 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */
4598 mips_elf_add_got_page_entry (void **entryp
, void *data
)
4600 struct mips_got_page_entry
*entry
;
4601 struct mips_elf_traverse_got_arg
*arg
;
4604 entry
= (struct mips_got_page_entry
*) *entryp
;
4605 arg
= (struct mips_elf_traverse_got_arg
*) data
;
4606 slot
= htab_find_slot (arg
->g
->got_page_entries
, entry
, INSERT
);
4615 arg
->g
->page_gotno
+= entry
->num_pages
;
4620 /* Consider merging FROM, which is ABFD's GOT, into TO. Return -1 if
4621 this would lead to overflow, 1 if they were merged successfully,
4622 and 0 if a merge failed due to lack of memory. (These values are chosen
4623 so that nonnegative return values can be returned by a htab_traverse
4627 mips_elf_merge_got_with (bfd
*abfd
, struct mips_got_info
*from
,
4628 struct mips_got_info
*to
,
4629 struct mips_elf_got_per_bfd_arg
*arg
)
4631 struct mips_elf_traverse_got_arg tga
;
4632 unsigned int estimate
;
4634 /* Work out how many page entries we would need for the combined GOT. */
4635 estimate
= arg
->max_pages
;
4636 if (estimate
>= from
->page_gotno
+ to
->page_gotno
)
4637 estimate
= from
->page_gotno
+ to
->page_gotno
;
4639 /* And conservatively estimate how many local and TLS entries
4641 estimate
+= from
->local_gotno
+ to
->local_gotno
;
4642 estimate
+= from
->tls_gotno
+ to
->tls_gotno
;
4644 /* If we're merging with the primary got, any TLS relocations will
4645 come after the full set of global entries. Otherwise estimate those
4646 conservatively as well. */
4647 if (to
== arg
->primary
&& from
->tls_gotno
+ to
->tls_gotno
)
4648 estimate
+= arg
->global_count
;
4650 estimate
+= from
->global_gotno
+ to
->global_gotno
;
4652 /* Bail out if the combined GOT might be too big. */
4653 if (estimate
> arg
->max_count
)
4656 /* Transfer the bfd's got information from FROM to TO. */
4657 tga
.info
= arg
->info
;
4659 htab_traverse (from
->got_entries
, mips_elf_add_got_entry
, &tga
);
4663 htab_traverse (from
->got_page_entries
, mips_elf_add_got_page_entry
, &tga
);
4667 mips_elf_replace_bfd_got (abfd
, to
);
4671 /* Attempt to merge GOT G, which belongs to ABFD. Try to use as much
4672 as possible of the primary got, since it doesn't require explicit
4673 dynamic relocations, but don't use bfds that would reference global
4674 symbols out of the addressable range. Failing the primary got,
4675 attempt to merge with the current got, or finish the current got
4676 and then make make the new got current. */
4679 mips_elf_merge_got (bfd
*abfd
, struct mips_got_info
*g
,
4680 struct mips_elf_got_per_bfd_arg
*arg
)
4682 unsigned int estimate
;
4685 if (!mips_elf_resolve_final_got_entries (arg
->info
, g
))
4688 /* Work out the number of page, local and TLS entries. */
4689 estimate
= arg
->max_pages
;
4690 if (estimate
> g
->page_gotno
)
4691 estimate
= g
->page_gotno
;
4692 estimate
+= g
->local_gotno
+ g
->tls_gotno
;
4694 /* We place TLS GOT entries after both locals and globals. The globals
4695 for the primary GOT may overflow the normal GOT size limit, so be
4696 sure not to merge a GOT which requires TLS with the primary GOT in that
4697 case. This doesn't affect non-primary GOTs. */
4698 estimate
+= (g
->tls_gotno
> 0 ? arg
->global_count
: g
->global_gotno
);
4700 if (estimate
<= arg
->max_count
)
4702 /* If we don't have a primary GOT, use it as
4703 a starting point for the primary GOT. */
4710 /* Try merging with the primary GOT. */
4711 result
= mips_elf_merge_got_with (abfd
, g
, arg
->primary
, arg
);
4716 /* If we can merge with the last-created got, do it. */
4719 result
= mips_elf_merge_got_with (abfd
, g
, arg
->current
, arg
);
4724 /* Well, we couldn't merge, so create a new GOT. Don't check if it
4725 fits; if it turns out that it doesn't, we'll get relocation
4726 overflows anyway. */
4727 g
->next
= arg
->current
;
4733 /* ENTRYP is a hash table entry for a mips_got_entry. Set its gotidx
4734 to GOTIDX, duplicating the entry if it has already been assigned
4735 an index in a different GOT. */
4738 mips_elf_set_gotidx (void **entryp
, long gotidx
)
4740 struct mips_got_entry
*entry
;
4742 entry
= (struct mips_got_entry
*) *entryp
;
4743 if (entry
->gotidx
> 0)
4745 struct mips_got_entry
*new_entry
;
4747 new_entry
= bfd_alloc (entry
->abfd
, sizeof (*entry
));
4751 *new_entry
= *entry
;
4752 *entryp
= new_entry
;
4755 entry
->gotidx
= gotidx
;
4759 /* Set the TLS GOT index for the GOT entry in ENTRYP. DATA points to a
4760 mips_elf_traverse_got_arg in which DATA->value is the size of one
4761 GOT entry. Set DATA->g to null on failure. */
4764 mips_elf_initialize_tls_index (void **entryp
, void *data
)
4766 struct mips_got_entry
*entry
;
4767 struct mips_elf_traverse_got_arg
*arg
;
4769 /* We're only interested in TLS symbols. */
4770 entry
= (struct mips_got_entry
*) *entryp
;
4771 if (entry
->tls_type
== GOT_TLS_NONE
)
4774 arg
= (struct mips_elf_traverse_got_arg
*) data
;
4775 if (!mips_elf_set_gotidx (entryp
, arg
->value
* arg
->g
->tls_assigned_gotno
))
4781 /* Account for the entries we've just allocated. */
4782 arg
->g
->tls_assigned_gotno
+= mips_tls_got_entries (entry
->tls_type
);
4786 /* A htab_traverse callback for GOT entries, where DATA points to a
4787 mips_elf_traverse_got_arg. Set the global_got_area of each global
4788 symbol to DATA->value. */
4791 mips_elf_set_global_got_area (void **entryp
, void *data
)
4793 struct mips_got_entry
*entry
;
4794 struct mips_elf_traverse_got_arg
*arg
;
4796 entry
= (struct mips_got_entry
*) *entryp
;
4797 arg
= (struct mips_elf_traverse_got_arg
*) data
;
4798 if (entry
->abfd
!= NULL
4799 && entry
->symndx
== -1
4800 && entry
->d
.h
->global_got_area
!= GGA_NONE
)
4801 entry
->d
.h
->global_got_area
= arg
->value
;
4805 /* A htab_traverse callback for secondary GOT entries, where DATA points
4806 to a mips_elf_traverse_got_arg. Assign GOT indices to global entries
4807 and record the number of relocations they require. DATA->value is
4808 the size of one GOT entry. Set DATA->g to null on failure. */
4811 mips_elf_set_global_gotidx (void **entryp
, void *data
)
4813 struct mips_got_entry
*entry
;
4814 struct mips_elf_traverse_got_arg
*arg
;
4816 entry
= (struct mips_got_entry
*) *entryp
;
4817 arg
= (struct mips_elf_traverse_got_arg
*) data
;
4818 if (entry
->abfd
!= NULL
4819 && entry
->symndx
== -1
4820 && entry
->d
.h
->global_got_area
!= GGA_NONE
)
4822 if (!mips_elf_set_gotidx (entryp
, arg
->value
* arg
->g
->assigned_low_gotno
))
4827 arg
->g
->assigned_low_gotno
+= 1;
4829 if (bfd_link_pic (arg
->info
)
4830 || (elf_hash_table (arg
->info
)->dynamic_sections_created
4831 && entry
->d
.h
->root
.def_dynamic
4832 && !entry
->d
.h
->root
.def_regular
))
4833 arg
->g
->relocs
+= 1;
4839 /* A htab_traverse callback for GOT entries for which DATA is the
4840 bfd_link_info. Forbid any global symbols from having traditional
4841 lazy-binding stubs. */
4844 mips_elf_forbid_lazy_stubs (void **entryp
, void *data
)
4846 struct bfd_link_info
*info
;
4847 struct mips_elf_link_hash_table
*htab
;
4848 struct mips_got_entry
*entry
;
4850 entry
= (struct mips_got_entry
*) *entryp
;
4851 info
= (struct bfd_link_info
*) data
;
4852 htab
= mips_elf_hash_table (info
);
4853 BFD_ASSERT (htab
!= NULL
);
4855 if (entry
->abfd
!= NULL
4856 && entry
->symndx
== -1
4857 && entry
->d
.h
->needs_lazy_stub
)
4859 entry
->d
.h
->needs_lazy_stub
= FALSE
;
4860 htab
->lazy_stub_count
--;
4866 /* Return the offset of an input bfd IBFD's GOT from the beginning of
4869 mips_elf_adjust_gp (bfd
*abfd
, struct mips_got_info
*g
, bfd
*ibfd
)
4874 g
= mips_elf_bfd_got (ibfd
, FALSE
);
4878 BFD_ASSERT (g
->next
);
4882 return (g
->local_gotno
+ g
->global_gotno
+ g
->tls_gotno
)
4883 * MIPS_ELF_GOT_SIZE (abfd
);
4886 /* Turn a single GOT that is too big for 16-bit addressing into
4887 a sequence of GOTs, each one 16-bit addressable. */
4890 mips_elf_multi_got (bfd
*abfd
, struct bfd_link_info
*info
,
4891 asection
*got
, bfd_size_type pages
)
4893 struct mips_elf_link_hash_table
*htab
;
4894 struct mips_elf_got_per_bfd_arg got_per_bfd_arg
;
4895 struct mips_elf_traverse_got_arg tga
;
4896 struct mips_got_info
*g
, *gg
;
4897 unsigned int assign
, needed_relocs
;
4900 dynobj
= elf_hash_table (info
)->dynobj
;
4901 htab
= mips_elf_hash_table (info
);
4902 BFD_ASSERT (htab
!= NULL
);
4906 got_per_bfd_arg
.obfd
= abfd
;
4907 got_per_bfd_arg
.info
= info
;
4908 got_per_bfd_arg
.current
= NULL
;
4909 got_per_bfd_arg
.primary
= NULL
;
4910 got_per_bfd_arg
.max_count
= ((MIPS_ELF_GOT_MAX_SIZE (info
)
4911 / MIPS_ELF_GOT_SIZE (abfd
))
4912 - htab
->reserved_gotno
);
4913 got_per_bfd_arg
.max_pages
= pages
;
4914 /* The number of globals that will be included in the primary GOT.
4915 See the calls to mips_elf_set_global_got_area below for more
4917 got_per_bfd_arg
.global_count
= g
->global_gotno
;
4919 /* Try to merge the GOTs of input bfds together, as long as they
4920 don't seem to exceed the maximum GOT size, choosing one of them
4921 to be the primary GOT. */
4922 for (ibfd
= info
->input_bfds
; ibfd
; ibfd
= ibfd
->link
.next
)
4924 gg
= mips_elf_bfd_got (ibfd
, FALSE
);
4925 if (gg
&& !mips_elf_merge_got (ibfd
, gg
, &got_per_bfd_arg
))
4929 /* If we do not find any suitable primary GOT, create an empty one. */
4930 if (got_per_bfd_arg
.primary
== NULL
)
4931 g
->next
= mips_elf_create_got_info (abfd
);
4933 g
->next
= got_per_bfd_arg
.primary
;
4934 g
->next
->next
= got_per_bfd_arg
.current
;
4936 /* GG is now the master GOT, and G is the primary GOT. */
4940 /* Map the output bfd to the primary got. That's what we're going
4941 to use for bfds that use GOT16 or GOT_PAGE relocations that we
4942 didn't mark in check_relocs, and we want a quick way to find it.
4943 We can't just use gg->next because we're going to reverse the
4945 mips_elf_replace_bfd_got (abfd
, g
);
4947 /* Every symbol that is referenced in a dynamic relocation must be
4948 present in the primary GOT, so arrange for them to appear after
4949 those that are actually referenced. */
4950 gg
->reloc_only_gotno
= gg
->global_gotno
- g
->global_gotno
;
4951 g
->global_gotno
= gg
->global_gotno
;
4954 tga
.value
= GGA_RELOC_ONLY
;
4955 htab_traverse (gg
->got_entries
, mips_elf_set_global_got_area
, &tga
);
4956 tga
.value
= GGA_NORMAL
;
4957 htab_traverse (g
->got_entries
, mips_elf_set_global_got_area
, &tga
);
4959 /* Now go through the GOTs assigning them offset ranges.
4960 [assigned_low_gotno, local_gotno[ will be set to the range of local
4961 entries in each GOT. We can then compute the end of a GOT by
4962 adding local_gotno to global_gotno. We reverse the list and make
4963 it circular since then we'll be able to quickly compute the
4964 beginning of a GOT, by computing the end of its predecessor. To
4965 avoid special cases for the primary GOT, while still preserving
4966 assertions that are valid for both single- and multi-got links,
4967 we arrange for the main got struct to have the right number of
4968 global entries, but set its local_gotno such that the initial
4969 offset of the primary GOT is zero. Remember that the primary GOT
4970 will become the last item in the circular linked list, so it
4971 points back to the master GOT. */
4972 gg
->local_gotno
= -g
->global_gotno
;
4973 gg
->global_gotno
= g
->global_gotno
;
4980 struct mips_got_info
*gn
;
4982 assign
+= htab
->reserved_gotno
;
4983 g
->assigned_low_gotno
= assign
;
4984 g
->local_gotno
+= assign
;
4985 g
->local_gotno
+= (pages
< g
->page_gotno
? pages
: g
->page_gotno
);
4986 g
->assigned_high_gotno
= g
->local_gotno
- 1;
4987 assign
= g
->local_gotno
+ g
->global_gotno
+ g
->tls_gotno
;
4989 /* Take g out of the direct list, and push it onto the reversed
4990 list that gg points to. g->next is guaranteed to be nonnull after
4991 this operation, as required by mips_elf_initialize_tls_index. */
4996 /* Set up any TLS entries. We always place the TLS entries after
4997 all non-TLS entries. */
4998 g
->tls_assigned_gotno
= g
->local_gotno
+ g
->global_gotno
;
5000 tga
.value
= MIPS_ELF_GOT_SIZE (abfd
);
5001 htab_traverse (g
->got_entries
, mips_elf_initialize_tls_index
, &tga
);
5004 BFD_ASSERT (g
->tls_assigned_gotno
== assign
);
5006 /* Move onto the next GOT. It will be a secondary GOT if nonull. */
5009 /* Forbid global symbols in every non-primary GOT from having
5010 lazy-binding stubs. */
5012 htab_traverse (g
->got_entries
, mips_elf_forbid_lazy_stubs
, info
);
5016 got
->size
= assign
* MIPS_ELF_GOT_SIZE (abfd
);
5019 for (g
= gg
->next
; g
&& g
->next
!= gg
; g
= g
->next
)
5021 unsigned int save_assign
;
5023 /* Assign offsets to global GOT entries and count how many
5024 relocations they need. */
5025 save_assign
= g
->assigned_low_gotno
;
5026 g
->assigned_low_gotno
= g
->local_gotno
;
5028 tga
.value
= MIPS_ELF_GOT_SIZE (abfd
);
5030 htab_traverse (g
->got_entries
, mips_elf_set_global_gotidx
, &tga
);
5033 BFD_ASSERT (g
->assigned_low_gotno
== g
->local_gotno
+ g
->global_gotno
);
5034 g
->assigned_low_gotno
= save_assign
;
5036 if (bfd_link_pic (info
))
5038 g
->relocs
+= g
->local_gotno
- g
->assigned_low_gotno
;
5039 BFD_ASSERT (g
->assigned_low_gotno
== g
->next
->local_gotno
5040 + g
->next
->global_gotno
5041 + g
->next
->tls_gotno
5042 + htab
->reserved_gotno
);
5044 needed_relocs
+= g
->relocs
;
5046 needed_relocs
+= g
->relocs
;
5049 mips_elf_allocate_dynamic_relocations (dynobj
, info
,
5056 /* Returns the first relocation of type r_type found, beginning with
5057 RELOCATION. RELEND is one-past-the-end of the relocation table. */
5059 static const Elf_Internal_Rela
*
5060 mips_elf_next_relocation (bfd
*abfd ATTRIBUTE_UNUSED
, unsigned int r_type
,
5061 const Elf_Internal_Rela
*relocation
,
5062 const Elf_Internal_Rela
*relend
)
5064 unsigned long r_symndx
= ELF_R_SYM (abfd
, relocation
->r_info
);
5066 while (relocation
< relend
)
5068 if (ELF_R_TYPE (abfd
, relocation
->r_info
) == r_type
5069 && ELF_R_SYM (abfd
, relocation
->r_info
) == r_symndx
)
5075 /* We didn't find it. */
5079 /* Return whether an input relocation is against a local symbol. */
5082 mips_elf_local_relocation_p (bfd
*input_bfd
,
5083 const Elf_Internal_Rela
*relocation
,
5084 asection
**local_sections
)
5086 unsigned long r_symndx
;
5087 Elf_Internal_Shdr
*symtab_hdr
;
5090 r_symndx
= ELF_R_SYM (input_bfd
, relocation
->r_info
);
5091 symtab_hdr
= &elf_tdata (input_bfd
)->symtab_hdr
;
5092 extsymoff
= (elf_bad_symtab (input_bfd
)) ? 0 : symtab_hdr
->sh_info
;
5094 if (r_symndx
< extsymoff
)
5096 if (elf_bad_symtab (input_bfd
) && local_sections
[r_symndx
] != NULL
)
5102 /* Sign-extend VALUE, which has the indicated number of BITS. */
5105 _bfd_mips_elf_sign_extend (bfd_vma value
, int bits
)
5107 if (value
& ((bfd_vma
) 1 << (bits
- 1)))
5108 /* VALUE is negative. */
5109 value
|= ((bfd_vma
) - 1) << bits
;
5114 /* Return non-zero if the indicated VALUE has overflowed the maximum
5115 range expressible by a signed number with the indicated number of
5119 mips_elf_overflow_p (bfd_vma value
, int bits
)
5121 bfd_signed_vma svalue
= (bfd_signed_vma
) value
;
5123 if (svalue
> (1 << (bits
- 1)) - 1)
5124 /* The value is too big. */
5126 else if (svalue
< -(1 << (bits
- 1)))
5127 /* The value is too small. */
5134 /* Calculate the %high function. */
5137 mips_elf_high (bfd_vma value
)
5139 return ((value
+ (bfd_vma
) 0x8000) >> 16) & 0xffff;
5142 /* Calculate the %higher function. */
5145 mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED
)
5148 return ((value
+ (bfd_vma
) 0x80008000) >> 32) & 0xffff;
5155 /* Calculate the %highest function. */
5158 mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED
)
5161 return ((value
+ (((bfd_vma
) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
5168 /* Create the .compact_rel section. */
5171 mips_elf_create_compact_rel_section
5172 (bfd
*abfd
, struct bfd_link_info
*info ATTRIBUTE_UNUSED
)
5175 register asection
*s
;
5177 if (bfd_get_linker_section (abfd
, ".compact_rel") == NULL
)
5179 flags
= (SEC_HAS_CONTENTS
| SEC_IN_MEMORY
| SEC_LINKER_CREATED
5182 s
= bfd_make_section_anyway_with_flags (abfd
, ".compact_rel", flags
);
5184 || !bfd_set_section_alignment (s
, MIPS_ELF_LOG_FILE_ALIGN (abfd
)))
5187 s
->size
= sizeof (Elf32_External_compact_rel
);
5193 /* Create the .got section to hold the global offset table. */
5196 mips_elf_create_got_section (bfd
*abfd
, struct bfd_link_info
*info
)
5199 register asection
*s
;
5200 struct elf_link_hash_entry
*h
;
5201 struct bfd_link_hash_entry
*bh
;
5202 struct mips_elf_link_hash_table
*htab
;
5204 htab
= mips_elf_hash_table (info
);
5205 BFD_ASSERT (htab
!= NULL
);
5207 /* This function may be called more than once. */
5208 if (htab
->root
.sgot
)
5211 flags
= (SEC_ALLOC
| SEC_LOAD
| SEC_HAS_CONTENTS
| SEC_IN_MEMORY
5212 | SEC_LINKER_CREATED
);
5214 /* We have to use an alignment of 2**4 here because this is hardcoded
5215 in the function stub generation and in the linker script. */
5216 s
= bfd_make_section_anyway_with_flags (abfd
, ".got", flags
);
5218 || !bfd_set_section_alignment (s
, 4))
5220 htab
->root
.sgot
= s
;
5222 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
5223 linker script because we don't want to define the symbol if we
5224 are not creating a global offset table. */
5226 if (! (_bfd_generic_link_add_one_symbol
5227 (info
, abfd
, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL
, s
,
5228 0, NULL
, FALSE
, get_elf_backend_data (abfd
)->collect
, &bh
)))
5231 h
= (struct elf_link_hash_entry
*) bh
;
5234 h
->type
= STT_OBJECT
;
5235 h
->other
= (h
->other
& ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN
;
5236 elf_hash_table (info
)->hgot
= h
;
5238 if (bfd_link_pic (info
)
5239 && ! bfd_elf_link_record_dynamic_symbol (info
, h
))
5242 htab
->got_info
= mips_elf_create_got_info (abfd
);
5243 mips_elf_section_data (s
)->elf
.this_hdr
.sh_flags
5244 |= SHF_ALLOC
| SHF_WRITE
| SHF_MIPS_GPREL
;
5246 /* We also need a .got.plt section when generating PLTs. */
5247 s
= bfd_make_section_anyway_with_flags (abfd
, ".got.plt",
5248 SEC_ALLOC
| SEC_LOAD
5251 | SEC_LINKER_CREATED
);
5254 htab
->root
.sgotplt
= s
;
5259 /* Return true if H refers to the special VxWorks __GOTT_BASE__ or
5260 __GOTT_INDEX__ symbols. These symbols are only special for
5261 shared objects; they are not used in executables. */
5264 is_gott_symbol (struct bfd_link_info
*info
, struct elf_link_hash_entry
*h
)
5266 return (mips_elf_hash_table (info
)->root
.target_os
== is_vxworks
5267 && bfd_link_pic (info
)
5268 && (strcmp (h
->root
.root
.string
, "__GOTT_BASE__") == 0
5269 || strcmp (h
->root
.root
.string
, "__GOTT_INDEX__") == 0));
5272 /* Return TRUE if a relocation of type R_TYPE from INPUT_BFD might
5273 require an la25 stub. See also mips_elf_local_pic_function_p,
5274 which determines whether the destination function ever requires a
5278 mips_elf_relocation_needs_la25_stub (bfd
*input_bfd
, int r_type
,
5279 bfd_boolean target_is_16_bit_code_p
)
5281 /* We specifically ignore branches and jumps from EF_PIC objects,
5282 where the onus is on the compiler or programmer to perform any
5283 necessary initialization of $25. Sometimes such initialization
5284 is unnecessary; for example, -mno-shared functions do not use
5285 the incoming value of $25, and may therefore be called directly. */
5286 if (PIC_OBJECT_P (input_bfd
))
5293 case R_MIPS_PC21_S2
:
5294 case R_MIPS_PC26_S2
:
5295 case R_MICROMIPS_26_S1
:
5296 case R_MICROMIPS_PC7_S1
:
5297 case R_MICROMIPS_PC10_S1
:
5298 case R_MICROMIPS_PC16_S1
:
5299 case R_MICROMIPS_PC23_S2
:
5303 return !target_is_16_bit_code_p
;
5310 /* Obtain the field relocated by RELOCATION. */
5313 mips_elf_obtain_contents (reloc_howto_type
*howto
,
5314 const Elf_Internal_Rela
*relocation
,
5315 bfd
*input_bfd
, bfd_byte
*contents
)
5318 bfd_byte
*location
= contents
+ relocation
->r_offset
;
5319 unsigned int size
= bfd_get_reloc_size (howto
);
5321 /* Obtain the bytes. */
5323 x
= bfd_get (8 * size
, input_bfd
, location
);
5328 /* Store the field relocated by RELOCATION. */
5331 mips_elf_store_contents (reloc_howto_type
*howto
,
5332 const Elf_Internal_Rela
*relocation
,
5333 bfd
*input_bfd
, bfd_byte
*contents
, bfd_vma x
)
5335 bfd_byte
*location
= contents
+ relocation
->r_offset
;
5336 unsigned int size
= bfd_get_reloc_size (howto
);
5338 /* Put the value into the output. */
5340 bfd_put (8 * size
, input_bfd
, x
, location
);
5343 /* Try to patch a load from GOT instruction in CONTENTS pointed to by
5344 RELOCATION described by HOWTO, with a move of 0 to the load target
5345 register, returning TRUE if that is successful and FALSE otherwise.
5346 If DOIT is FALSE, then only determine it patching is possible and
5347 return status without actually changing CONTENTS.
5351 mips_elf_nullify_got_load (bfd
*input_bfd
, bfd_byte
*contents
,
5352 const Elf_Internal_Rela
*relocation
,
5353 reloc_howto_type
*howto
, bfd_boolean doit
)
5355 int r_type
= ELF_R_TYPE (input_bfd
, relocation
->r_info
);
5356 bfd_byte
*location
= contents
+ relocation
->r_offset
;
5357 bfd_boolean nullified
= TRUE
;
5360 _bfd_mips_elf_reloc_unshuffle (input_bfd
, r_type
, FALSE
, location
);
5362 /* Obtain the current value. */
5363 x
= mips_elf_obtain_contents (howto
, relocation
, input_bfd
, contents
);
5365 /* Note that in the unshuffled MIPS16 encoding RX is at bits [21:19]
5366 while RY is at bits [18:16] of the combined 32-bit instruction word. */
5367 if (mips16_reloc_p (r_type
)
5368 && (((x
>> 22) & 0x3ff) == 0x3d3 /* LW */
5369 || ((x
>> 22) & 0x3ff) == 0x3c7)) /* LD */
5370 x
= (0x3cdU
<< 22) | (x
& (7 << 16)) << 3; /* LI */
5371 else if (micromips_reloc_p (r_type
)
5372 && ((x
>> 26) & 0x37) == 0x37) /* LW/LD */
5373 x
= (0xc << 26) | (x
& (0x1f << 21)); /* ADDIU */
5374 else if (((x
>> 26) & 0x3f) == 0x23 /* LW */
5375 || ((x
>> 26) & 0x3f) == 0x37) /* LD */
5376 x
= (0x9 << 26) | (x
& (0x1f << 16)); /* ADDIU */
5380 /* Put the value into the output. */
5381 if (doit
&& nullified
)
5382 mips_elf_store_contents (howto
, relocation
, input_bfd
, contents
, x
);
5384 _bfd_mips_elf_reloc_shuffle (input_bfd
, r_type
, FALSE
, location
);
5389 /* Calculate the value produced by the RELOCATION (which comes from
5390 the INPUT_BFD). The ADDEND is the addend to use for this
5391 RELOCATION; RELOCATION->R_ADDEND is ignored.
5393 The result of the relocation calculation is stored in VALUEP.
5394 On exit, set *CROSS_MODE_JUMP_P to true if the relocation field
5395 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
5397 This function returns bfd_reloc_continue if the caller need take no
5398 further action regarding this relocation, bfd_reloc_notsupported if
5399 something goes dramatically wrong, bfd_reloc_overflow if an
5400 overflow occurs, and bfd_reloc_ok to indicate success. */
5402 static bfd_reloc_status_type
5403 mips_elf_calculate_relocation (bfd
*abfd
, bfd
*input_bfd
,
5404 asection
*input_section
, bfd_byte
*contents
,
5405 struct bfd_link_info
*info
,
5406 const Elf_Internal_Rela
*relocation
,
5407 bfd_vma addend
, reloc_howto_type
*howto
,
5408 Elf_Internal_Sym
*local_syms
,
5409 asection
**local_sections
, bfd_vma
*valuep
,
5411 bfd_boolean
*cross_mode_jump_p
,
5412 bfd_boolean save_addend
)
5414 /* The eventual value we will return. */
5416 /* The address of the symbol against which the relocation is
5419 /* The final GP value to be used for the relocatable, executable, or
5420 shared object file being produced. */
5422 /* The place (section offset or address) of the storage unit being
5425 /* The value of GP used to create the relocatable object. */
5427 /* The offset into the global offset table at which the address of
5428 the relocation entry symbol, adjusted by the addend, resides
5429 during execution. */
5430 bfd_vma g
= MINUS_ONE
;
5431 /* The section in which the symbol referenced by the relocation is
5433 asection
*sec
= NULL
;
5434 struct mips_elf_link_hash_entry
*h
= NULL
;
5435 /* TRUE if the symbol referred to by this relocation is a local
5437 bfd_boolean local_p
, was_local_p
;
5438 /* TRUE if the symbol referred to by this relocation is a section
5440 bfd_boolean section_p
= FALSE
;
5441 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
5442 bfd_boolean gp_disp_p
= FALSE
;
5443 /* TRUE if the symbol referred to by this relocation is
5444 "__gnu_local_gp". */
5445 bfd_boolean gnu_local_gp_p
= FALSE
;
5446 Elf_Internal_Shdr
*symtab_hdr
;
5448 unsigned long r_symndx
;
5450 /* TRUE if overflow occurred during the calculation of the
5451 relocation value. */
5452 bfd_boolean overflowed_p
;
5453 /* TRUE if this relocation refers to a MIPS16 function. */
5454 bfd_boolean target_is_16_bit_code_p
= FALSE
;
5455 bfd_boolean target_is_micromips_code_p
= FALSE
;
5456 struct mips_elf_link_hash_table
*htab
;
5458 bfd_boolean resolved_to_zero
;
5460 dynobj
= elf_hash_table (info
)->dynobj
;
5461 htab
= mips_elf_hash_table (info
);
5462 BFD_ASSERT (htab
!= NULL
);
5464 /* Parse the relocation. */
5465 r_symndx
= ELF_R_SYM (input_bfd
, relocation
->r_info
);
5466 r_type
= ELF_R_TYPE (input_bfd
, relocation
->r_info
);
5467 p
= (input_section
->output_section
->vma
5468 + input_section
->output_offset
5469 + relocation
->r_offset
);
5471 /* Assume that there will be no overflow. */
5472 overflowed_p
= FALSE
;
5474 /* Figure out whether or not the symbol is local, and get the offset
5475 used in the array of hash table entries. */
5476 symtab_hdr
= &elf_tdata (input_bfd
)->symtab_hdr
;
5477 local_p
= mips_elf_local_relocation_p (input_bfd
, relocation
,
5479 was_local_p
= local_p
;
5480 if (! elf_bad_symtab (input_bfd
))
5481 extsymoff
= symtab_hdr
->sh_info
;
5484 /* The symbol table does not follow the rule that local symbols
5485 must come before globals. */
5489 /* Figure out the value of the symbol. */
5492 bfd_boolean micromips_p
= MICROMIPS_P (abfd
);
5493 Elf_Internal_Sym
*sym
;
5495 sym
= local_syms
+ r_symndx
;
5496 sec
= local_sections
[r_symndx
];
5498 section_p
= ELF_ST_TYPE (sym
->st_info
) == STT_SECTION
;
5500 symbol
= sec
->output_section
->vma
+ sec
->output_offset
;
5501 if (!section_p
|| (sec
->flags
& SEC_MERGE
))
5502 symbol
+= sym
->st_value
;
5503 if ((sec
->flags
& SEC_MERGE
) && section_p
)
5505 addend
= _bfd_elf_rel_local_sym (abfd
, sym
, &sec
, addend
);
5507 addend
+= sec
->output_section
->vma
+ sec
->output_offset
;
5510 /* MIPS16/microMIPS text labels should be treated as odd. */
5511 if (ELF_ST_IS_COMPRESSED (sym
->st_other
))
5514 /* Record the name of this symbol, for our caller. */
5515 *namep
= bfd_elf_string_from_elf_section (input_bfd
,
5516 symtab_hdr
->sh_link
,
5518 if (*namep
== NULL
|| **namep
== '\0')
5519 *namep
= bfd_section_name (sec
);
5521 /* For relocations against a section symbol and ones against no
5522 symbol (absolute relocations) infer the ISA mode from the addend. */
5523 if (section_p
|| r_symndx
== STN_UNDEF
)
5525 target_is_16_bit_code_p
= (addend
& 1) && !micromips_p
;
5526 target_is_micromips_code_p
= (addend
& 1) && micromips_p
;
5528 /* For relocations against an absolute symbol infer the ISA mode
5529 from the value of the symbol plus addend. */
5530 else if (bfd_is_abs_section (sec
))
5532 target_is_16_bit_code_p
= ((symbol
+ addend
) & 1) && !micromips_p
;
5533 target_is_micromips_code_p
= ((symbol
+ addend
) & 1) && micromips_p
;
5535 /* Otherwise just use the regular symbol annotation available. */
5538 target_is_16_bit_code_p
= ELF_ST_IS_MIPS16 (sym
->st_other
);
5539 target_is_micromips_code_p
= ELF_ST_IS_MICROMIPS (sym
->st_other
);
5544 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
5546 /* For global symbols we look up the symbol in the hash-table. */
5547 h
= ((struct mips_elf_link_hash_entry
*)
5548 elf_sym_hashes (input_bfd
) [r_symndx
- extsymoff
]);
5549 /* Find the real hash-table entry for this symbol. */
5550 while (h
->root
.root
.type
== bfd_link_hash_indirect
5551 || h
->root
.root
.type
== bfd_link_hash_warning
)
5552 h
= (struct mips_elf_link_hash_entry
*) h
->root
.root
.u
.i
.link
;
5554 /* Record the name of this symbol, for our caller. */
5555 *namep
= h
->root
.root
.root
.string
;
5557 /* See if this is the special _gp_disp symbol. Note that such a
5558 symbol must always be a global symbol. */
5559 if (strcmp (*namep
, "_gp_disp") == 0
5560 && ! NEWABI_P (input_bfd
))
5562 /* Relocations against _gp_disp are permitted only with
5563 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
5564 if (!hi16_reloc_p (r_type
) && !lo16_reloc_p (r_type
))
5565 return bfd_reloc_notsupported
;
5569 /* See if this is the special _gp symbol. Note that such a
5570 symbol must always be a global symbol. */
5571 else if (strcmp (*namep
, "__gnu_local_gp") == 0)
5572 gnu_local_gp_p
= TRUE
;
5575 /* If this symbol is defined, calculate its address. Note that
5576 _gp_disp is a magic symbol, always implicitly defined by the
5577 linker, so it's inappropriate to check to see whether or not
5579 else if ((h
->root
.root
.type
== bfd_link_hash_defined
5580 || h
->root
.root
.type
== bfd_link_hash_defweak
)
5581 && h
->root
.root
.u
.def
.section
)
5583 sec
= h
->root
.root
.u
.def
.section
;
5584 if (sec
->output_section
)
5585 symbol
= (h
->root
.root
.u
.def
.value
5586 + sec
->output_section
->vma
5587 + sec
->output_offset
);
5589 symbol
= h
->root
.root
.u
.def
.value
;
5591 else if (h
->root
.root
.type
== bfd_link_hash_undefweak
)
5592 /* We allow relocations against undefined weak symbols, giving
5593 it the value zero, so that you can undefined weak functions
5594 and check to see if they exist by looking at their
5597 else if (info
->unresolved_syms_in_objects
== RM_IGNORE
5598 && ELF_ST_VISIBILITY (h
->root
.other
) == STV_DEFAULT
)
5600 else if (strcmp (*namep
, SGI_COMPAT (input_bfd
)
5601 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
5603 /* If this is a dynamic link, we should have created a
5604 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
5605 in _bfd_mips_elf_create_dynamic_sections.
5606 Otherwise, we should define the symbol with a value of 0.
5607 FIXME: It should probably get into the symbol table
5609 BFD_ASSERT (! bfd_link_pic (info
));
5610 BFD_ASSERT (bfd_get_section_by_name (abfd
, ".dynamic") == NULL
);
5613 else if (ELF_MIPS_IS_OPTIONAL (h
->root
.other
))
5615 /* This is an optional symbol - an Irix specific extension to the
5616 ELF spec. Ignore it for now.
5617 XXX - FIXME - there is more to the spec for OPTIONAL symbols
5618 than simply ignoring them, but we do not handle this for now.
5619 For information see the "64-bit ELF Object File Specification"
5620 which is available from here:
5621 http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */
5626 bfd_boolean reject_undefined
5627 = (info
->unresolved_syms_in_objects
== RM_DIAGNOSE
5628 && !info
->warn_unresolved_syms
)
5629 || ELF_ST_VISIBILITY (h
->root
.other
) != STV_DEFAULT
;
5631 info
->callbacks
->undefined_symbol
5632 (info
, h
->root
.root
.root
.string
, input_bfd
,
5633 input_section
, relocation
->r_offset
, reject_undefined
);
5635 if (reject_undefined
)
5636 return bfd_reloc_undefined
;
5641 target_is_16_bit_code_p
= ELF_ST_IS_MIPS16 (h
->root
.other
);
5642 target_is_micromips_code_p
= ELF_ST_IS_MICROMIPS (h
->root
.other
);
5645 /* If this is a reference to a 16-bit function with a stub, we need
5646 to redirect the relocation to the stub unless:
5648 (a) the relocation is for a MIPS16 JAL;
5650 (b) the relocation is for a MIPS16 PIC call, and there are no
5651 non-MIPS16 uses of the GOT slot; or
5653 (c) the section allows direct references to MIPS16 functions. */
5654 if (r_type
!= R_MIPS16_26
5655 && !bfd_link_relocatable (info
)
5657 && h
->fn_stub
!= NULL
5658 && (r_type
!= R_MIPS16_CALL16
|| h
->need_fn_stub
))
5660 && mips_elf_tdata (input_bfd
)->local_stubs
!= NULL
5661 && mips_elf_tdata (input_bfd
)->local_stubs
[r_symndx
] != NULL
))
5662 && !section_allows_mips16_refs_p (input_section
))
5664 /* This is a 32- or 64-bit call to a 16-bit function. We should
5665 have already noticed that we were going to need the
5669 sec
= mips_elf_tdata (input_bfd
)->local_stubs
[r_symndx
];
5674 BFD_ASSERT (h
->need_fn_stub
);
5677 /* If a LA25 header for the stub itself exists, point to the
5678 prepended LUI/ADDIU sequence. */
5679 sec
= h
->la25_stub
->stub_section
;
5680 value
= h
->la25_stub
->offset
;
5689 symbol
= sec
->output_section
->vma
+ sec
->output_offset
+ value
;
5690 /* The target is 16-bit, but the stub isn't. */
5691 target_is_16_bit_code_p
= FALSE
;
5693 /* If this is a MIPS16 call with a stub, that is made through the PLT or
5694 to a standard MIPS function, we need to redirect the call to the stub.
5695 Note that we specifically exclude R_MIPS16_CALL16 from this behavior;
5696 indirect calls should use an indirect stub instead. */
5697 else if (r_type
== R_MIPS16_26
&& !bfd_link_relocatable (info
)
5698 && ((h
!= NULL
&& (h
->call_stub
!= NULL
|| h
->call_fp_stub
!= NULL
))
5700 && mips_elf_tdata (input_bfd
)->local_call_stubs
!= NULL
5701 && mips_elf_tdata (input_bfd
)->local_call_stubs
[r_symndx
] != NULL
))
5702 && ((h
!= NULL
&& h
->use_plt_entry
) || !target_is_16_bit_code_p
))
5705 sec
= mips_elf_tdata (input_bfd
)->local_call_stubs
[r_symndx
];
5708 /* If both call_stub and call_fp_stub are defined, we can figure
5709 out which one to use by checking which one appears in the input
5711 if (h
->call_stub
!= NULL
&& h
->call_fp_stub
!= NULL
)
5716 for (o
= input_bfd
->sections
; o
!= NULL
; o
= o
->next
)
5718 if (CALL_FP_STUB_P (bfd_section_name (o
)))
5720 sec
= h
->call_fp_stub
;
5727 else if (h
->call_stub
!= NULL
)
5730 sec
= h
->call_fp_stub
;
5733 BFD_ASSERT (sec
->size
> 0);
5734 symbol
= sec
->output_section
->vma
+ sec
->output_offset
;
5736 /* If this is a direct call to a PIC function, redirect to the
5738 else if (h
!= NULL
&& h
->la25_stub
5739 && mips_elf_relocation_needs_la25_stub (input_bfd
, r_type
,
5740 target_is_16_bit_code_p
))
5742 symbol
= (h
->la25_stub
->stub_section
->output_section
->vma
5743 + h
->la25_stub
->stub_section
->output_offset
5744 + h
->la25_stub
->offset
);
5745 if (ELF_ST_IS_MICROMIPS (h
->root
.other
))
5748 /* For direct MIPS16 and microMIPS calls make sure the compressed PLT
5749 entry is used if a standard PLT entry has also been made. In this
5750 case the symbol will have been set by mips_elf_set_plt_sym_value
5751 to point to the standard PLT entry, so redirect to the compressed
5753 else if ((mips16_branch_reloc_p (r_type
)
5754 || micromips_branch_reloc_p (r_type
))
5755 && !bfd_link_relocatable (info
)
5758 && h
->root
.plt
.plist
->comp_offset
!= MINUS_ONE
5759 && h
->root
.plt
.plist
->mips_offset
!= MINUS_ONE
)
5761 bfd_boolean micromips_p
= MICROMIPS_P (abfd
);
5763 sec
= htab
->root
.splt
;
5764 symbol
= (sec
->output_section
->vma
5765 + sec
->output_offset
5766 + htab
->plt_header_size
5767 + htab
->plt_mips_offset
5768 + h
->root
.plt
.plist
->comp_offset
5771 target_is_16_bit_code_p
= !micromips_p
;
5772 target_is_micromips_code_p
= micromips_p
;
5775 /* Make sure MIPS16 and microMIPS are not used together. */
5776 if ((mips16_branch_reloc_p (r_type
) && target_is_micromips_code_p
)
5777 || (micromips_branch_reloc_p (r_type
) && target_is_16_bit_code_p
))
5780 (_("MIPS16 and microMIPS functions cannot call each other"));
5781 return bfd_reloc_notsupported
;
5784 /* Calls from 16-bit code to 32-bit code and vice versa require the
5785 mode change. However, we can ignore calls to undefined weak symbols,
5786 which should never be executed at runtime. This exception is important
5787 because the assembly writer may have "known" that any definition of the
5788 symbol would be 16-bit code, and that direct jumps were therefore
5790 *cross_mode_jump_p
= (!bfd_link_relocatable (info
)
5791 && !(h
&& h
->root
.root
.type
== bfd_link_hash_undefweak
)
5792 && ((mips16_branch_reloc_p (r_type
)
5793 && !target_is_16_bit_code_p
)
5794 || (micromips_branch_reloc_p (r_type
)
5795 && !target_is_micromips_code_p
)
5796 || ((branch_reloc_p (r_type
)
5797 || r_type
== R_MIPS_JALR
)
5798 && (target_is_16_bit_code_p
5799 || target_is_micromips_code_p
))));
5801 resolved_to_zero
= (h
!= NULL
5802 && UNDEFWEAK_NO_DYNAMIC_RELOC (info
, &h
->root
));
5806 case R_MIPS16_CALL16
:
5807 case R_MIPS16_GOT16
:
5810 case R_MIPS_GOT_PAGE
:
5811 case R_MIPS_GOT_DISP
:
5812 case R_MIPS_GOT_LO16
:
5813 case R_MIPS_CALL_LO16
:
5814 case R_MICROMIPS_CALL16
:
5815 case R_MICROMIPS_GOT16
:
5816 case R_MICROMIPS_GOT_PAGE
:
5817 case R_MICROMIPS_GOT_DISP
:
5818 case R_MICROMIPS_GOT_LO16
:
5819 case R_MICROMIPS_CALL_LO16
:
5820 if (resolved_to_zero
5821 && !bfd_link_relocatable (info
)
5822 && mips_elf_nullify_got_load (input_bfd
, contents
,
5823 relocation
, howto
, TRUE
))
5824 return bfd_reloc_continue
;
5827 case R_MIPS_GOT_HI16
:
5828 case R_MIPS_CALL_HI16
:
5829 case R_MICROMIPS_GOT_HI16
:
5830 case R_MICROMIPS_CALL_HI16
:
5831 if (resolved_to_zero
5832 && htab
->use_absolute_zero
5833 && bfd_link_pic (info
))
5835 /* Redirect to the special `__gnu_absolute_zero' symbol. */
5836 h
= mips_elf_link_hash_lookup (htab
, "__gnu_absolute_zero",
5837 FALSE
, FALSE
, FALSE
);
5838 BFD_ASSERT (h
!= NULL
);
5843 local_p
= (h
== NULL
|| mips_use_local_got_p (info
, h
));
5845 gp0
= _bfd_get_gp_value (input_bfd
);
5846 gp
= _bfd_get_gp_value (abfd
);
5848 gp
+= mips_elf_adjust_gp (abfd
, htab
->got_info
, input_bfd
);
5853 /* Global R_MIPS_GOT_PAGE/R_MICROMIPS_GOT_PAGE relocations are equivalent
5854 to R_MIPS_GOT_DISP/R_MICROMIPS_GOT_DISP. The addend is applied by the
5855 corresponding R_MIPS_GOT_OFST/R_MICROMIPS_GOT_OFST. */
5856 if (got_page_reloc_p (r_type
) && !local_p
)
5858 r_type
= (micromips_reloc_p (r_type
)
5859 ? R_MICROMIPS_GOT_DISP
: R_MIPS_GOT_DISP
);
5863 /* If we haven't already determined the GOT offset, and we're going
5864 to need it, get it now. */
5867 case R_MIPS16_CALL16
:
5868 case R_MIPS16_GOT16
:
5871 case R_MIPS_GOT_DISP
:
5872 case R_MIPS_GOT_HI16
:
5873 case R_MIPS_CALL_HI16
:
5874 case R_MIPS_GOT_LO16
:
5875 case R_MIPS_CALL_LO16
:
5876 case R_MICROMIPS_CALL16
:
5877 case R_MICROMIPS_GOT16
:
5878 case R_MICROMIPS_GOT_DISP
:
5879 case R_MICROMIPS_GOT_HI16
:
5880 case R_MICROMIPS_CALL_HI16
:
5881 case R_MICROMIPS_GOT_LO16
:
5882 case R_MICROMIPS_CALL_LO16
:
5884 case R_MIPS_TLS_GOTTPREL
:
5885 case R_MIPS_TLS_LDM
:
5886 case R_MIPS16_TLS_GD
:
5887 case R_MIPS16_TLS_GOTTPREL
:
5888 case R_MIPS16_TLS_LDM
:
5889 case R_MICROMIPS_TLS_GD
:
5890 case R_MICROMIPS_TLS_GOTTPREL
:
5891 case R_MICROMIPS_TLS_LDM
:
5892 /* Find the index into the GOT where this value is located. */
5893 if (tls_ldm_reloc_p (r_type
))
5895 g
= mips_elf_local_got_index (abfd
, input_bfd
, info
,
5896 0, 0, NULL
, r_type
);
5898 return bfd_reloc_outofrange
;
5902 /* On VxWorks, CALL relocations should refer to the .got.plt
5903 entry, which is initialized to point at the PLT stub. */
5904 if (htab
->root
.target_os
== is_vxworks
5905 && (call_hi16_reloc_p (r_type
)
5906 || call_lo16_reloc_p (r_type
)
5907 || call16_reloc_p (r_type
)))
5909 BFD_ASSERT (addend
== 0);
5910 BFD_ASSERT (h
->root
.needs_plt
);
5911 g
= mips_elf_gotplt_index (info
, &h
->root
);
5915 BFD_ASSERT (addend
== 0);
5916 g
= mips_elf_global_got_index (abfd
, info
, input_bfd
,
5918 if (!TLS_RELOC_P (r_type
)
5919 && !elf_hash_table (info
)->dynamic_sections_created
)
5920 /* This is a static link. We must initialize the GOT entry. */
5921 MIPS_ELF_PUT_WORD (dynobj
, symbol
, htab
->root
.sgot
->contents
+ g
);
5924 else if (htab
->root
.target_os
!= is_vxworks
5925 && (call16_reloc_p (r_type
) || got16_reloc_p (r_type
)))
5926 /* The calculation below does not involve "g". */
5930 g
= mips_elf_local_got_index (abfd
, input_bfd
, info
,
5931 symbol
+ addend
, r_symndx
, h
, r_type
);
5933 return bfd_reloc_outofrange
;
5936 /* Convert GOT indices to actual offsets. */
5937 g
= mips_elf_got_offset_from_index (info
, abfd
, input_bfd
, g
);
5941 /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__
5942 symbols are resolved by the loader. Add them to .rela.dyn. */
5943 if (h
!= NULL
&& is_gott_symbol (info
, &h
->root
))
5945 Elf_Internal_Rela outrel
;
5949 s
= mips_elf_rel_dyn_section (info
, FALSE
);
5950 loc
= s
->contents
+ s
->reloc_count
++ * sizeof (Elf32_External_Rela
);
5952 outrel
.r_offset
= (input_section
->output_section
->vma
5953 + input_section
->output_offset
5954 + relocation
->r_offset
);
5955 outrel
.r_info
= ELF32_R_INFO (h
->root
.dynindx
, r_type
);
5956 outrel
.r_addend
= addend
;
5957 bfd_elf32_swap_reloca_out (abfd
, &outrel
, loc
);
5959 /* If we've written this relocation for a readonly section,
5960 we need to set DF_TEXTREL again, so that we do not delete the
5962 if (MIPS_ELF_READONLY_SECTION (input_section
))
5963 info
->flags
|= DF_TEXTREL
;
5966 return bfd_reloc_ok
;
5969 /* Figure out what kind of relocation is being performed. */
5973 return bfd_reloc_continue
;
5976 if (howto
->partial_inplace
)
5977 addend
= _bfd_mips_elf_sign_extend (addend
, 16);
5978 value
= symbol
+ addend
;
5979 overflowed_p
= mips_elf_overflow_p (value
, 16);
5985 if ((bfd_link_pic (info
)
5986 || (htab
->root
.dynamic_sections_created
5988 && h
->root
.def_dynamic
5989 && !h
->root
.def_regular
5990 && !h
->has_static_relocs
))
5991 && r_symndx
!= STN_UNDEF
5993 || h
->root
.root
.type
!= bfd_link_hash_undefweak
5994 || (ELF_ST_VISIBILITY (h
->root
.other
) == STV_DEFAULT
5995 && !resolved_to_zero
))
5996 && (input_section
->flags
& SEC_ALLOC
) != 0)
5998 /* If we're creating a shared library, then we can't know
5999 where the symbol will end up. So, we create a relocation
6000 record in the output, and leave the job up to the dynamic
6001 linker. We must do the same for executable references to
6002 shared library symbols, unless we've decided to use copy
6003 relocs or PLTs instead. */
6005 if (!mips_elf_create_dynamic_relocation (abfd
,
6013 return bfd_reloc_undefined
;
6017 if (r_type
!= R_MIPS_REL32
)
6018 value
= symbol
+ addend
;
6022 value
&= howto
->dst_mask
;
6026 value
= symbol
+ addend
- p
;
6027 value
&= howto
->dst_mask
;
6031 /* The calculation for R_MIPS16_26 is just the same as for an
6032 R_MIPS_26. It's only the storage of the relocated field into
6033 the output file that's different. That's handled in
6034 mips_elf_perform_relocation. So, we just fall through to the
6035 R_MIPS_26 case here. */
6037 case R_MICROMIPS_26_S1
:
6041 /* Shift is 2, unusually, for microMIPS JALX. */
6042 shift
= (!*cross_mode_jump_p
&& r_type
== R_MICROMIPS_26_S1
) ? 1 : 2;
6044 if (howto
->partial_inplace
&& !section_p
)
6045 value
= _bfd_mips_elf_sign_extend (addend
, 26 + shift
);
6050 /* Make sure the target of a jump is suitably aligned. Bit 0 must
6051 be the correct ISA mode selector except for weak undefined
6053 if ((was_local_p
|| h
->root
.root
.type
!= bfd_link_hash_undefweak
)
6054 && (*cross_mode_jump_p
6055 ? (value
& 3) != (r_type
== R_MIPS_26
)
6056 : (value
& ((1 << shift
) - 1)) != (r_type
!= R_MIPS_26
)))
6057 return bfd_reloc_outofrange
;
6060 if (was_local_p
|| h
->root
.root
.type
!= bfd_link_hash_undefweak
)
6061 overflowed_p
= (value
>> 26) != ((p
+ 4) >> (26 + shift
));
6062 value
&= howto
->dst_mask
;
6066 case R_MIPS_TLS_DTPREL_HI16
:
6067 case R_MIPS16_TLS_DTPREL_HI16
:
6068 case R_MICROMIPS_TLS_DTPREL_HI16
:
6069 value
= (mips_elf_high (addend
+ symbol
- dtprel_base (info
))
6073 case R_MIPS_TLS_DTPREL_LO16
:
6074 case R_MIPS_TLS_DTPREL32
:
6075 case R_MIPS_TLS_DTPREL64
:
6076 case R_MIPS16_TLS_DTPREL_LO16
:
6077 case R_MICROMIPS_TLS_DTPREL_LO16
:
6078 value
= (symbol
+ addend
- dtprel_base (info
)) & howto
->dst_mask
;
6081 case R_MIPS_TLS_TPREL_HI16
:
6082 case R_MIPS16_TLS_TPREL_HI16
:
6083 case R_MICROMIPS_TLS_TPREL_HI16
:
6084 value
= (mips_elf_high (addend
+ symbol
- tprel_base (info
))
6088 case R_MIPS_TLS_TPREL_LO16
:
6089 case R_MIPS_TLS_TPREL32
:
6090 case R_MIPS_TLS_TPREL64
:
6091 case R_MIPS16_TLS_TPREL_LO16
:
6092 case R_MICROMIPS_TLS_TPREL_LO16
:
6093 value
= (symbol
+ addend
- tprel_base (info
)) & howto
->dst_mask
;
6098 case R_MICROMIPS_HI16
:
6101 value
= mips_elf_high (addend
+ symbol
);
6102 value
&= howto
->dst_mask
;
6106 /* For MIPS16 ABI code we generate this sequence
6107 0: li $v0,%hi(_gp_disp)
6108 4: addiupc $v1,%lo(_gp_disp)
6112 So the offsets of hi and lo relocs are the same, but the
6113 base $pc is that used by the ADDIUPC instruction at $t9 + 4.
6114 ADDIUPC clears the low two bits of the instruction address,
6115 so the base is ($t9 + 4) & ~3. */
6116 if (r_type
== R_MIPS16_HI16
)
6117 value
= mips_elf_high (addend
+ gp
- ((p
+ 4) & ~(bfd_vma
) 0x3));
6118 /* The microMIPS .cpload sequence uses the same assembly
6119 instructions as the traditional psABI version, but the
6120 incoming $t9 has the low bit set. */
6121 else if (r_type
== R_MICROMIPS_HI16
)
6122 value
= mips_elf_high (addend
+ gp
- p
- 1);
6124 value
= mips_elf_high (addend
+ gp
- p
);
6130 case R_MICROMIPS_LO16
:
6131 case R_MICROMIPS_HI0_LO16
:
6133 value
= (symbol
+ addend
) & howto
->dst_mask
;
6136 /* See the comment for R_MIPS16_HI16 above for the reason
6137 for this conditional. */
6138 if (r_type
== R_MIPS16_LO16
)
6139 value
= addend
+ gp
- (p
& ~(bfd_vma
) 0x3);
6140 else if (r_type
== R_MICROMIPS_LO16
6141 || r_type
== R_MICROMIPS_HI0_LO16
)
6142 value
= addend
+ gp
- p
+ 3;
6144 value
= addend
+ gp
- p
+ 4;
6145 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
6146 for overflow. But, on, say, IRIX5, relocations against
6147 _gp_disp are normally generated from the .cpload
6148 pseudo-op. It generates code that normally looks like
6151 lui $gp,%hi(_gp_disp)
6152 addiu $gp,$gp,%lo(_gp_disp)
6155 Here $t9 holds the address of the function being called,
6156 as required by the MIPS ELF ABI. The R_MIPS_LO16
6157 relocation can easily overflow in this situation, but the
6158 R_MIPS_HI16 relocation will handle the overflow.
6159 Therefore, we consider this a bug in the MIPS ABI, and do
6160 not check for overflow here. */
6164 case R_MIPS_LITERAL
:
6165 case R_MICROMIPS_LITERAL
:
6166 /* Because we don't merge literal sections, we can handle this
6167 just like R_MIPS_GPREL16. In the long run, we should merge
6168 shared literals, and then we will need to additional work
6173 case R_MIPS16_GPREL
:
6174 /* The R_MIPS16_GPREL performs the same calculation as
6175 R_MIPS_GPREL16, but stores the relocated bits in a different
6176 order. We don't need to do anything special here; the
6177 differences are handled in mips_elf_perform_relocation. */
6178 case R_MIPS_GPREL16
:
6179 case R_MICROMIPS_GPREL7_S2
:
6180 case R_MICROMIPS_GPREL16
:
6181 /* Only sign-extend the addend if it was extracted from the
6182 instruction. If the addend was separate, leave it alone,
6183 otherwise we may lose significant bits. */
6184 if (howto
->partial_inplace
)
6185 addend
= _bfd_mips_elf_sign_extend (addend
, 16);
6186 value
= symbol
+ addend
- gp
;
6187 /* If the symbol was local, any earlier relocatable links will
6188 have adjusted its addend with the gp offset, so compensate
6189 for that now. Don't do it for symbols forced local in this
6190 link, though, since they won't have had the gp offset applied
6194 if (was_local_p
|| h
->root
.root
.type
!= bfd_link_hash_undefweak
)
6195 overflowed_p
= mips_elf_overflow_p (value
, 16);
6198 case R_MIPS16_GOT16
:
6199 case R_MIPS16_CALL16
:
6202 case R_MICROMIPS_GOT16
:
6203 case R_MICROMIPS_CALL16
:
6204 /* VxWorks does not have separate local and global semantics for
6205 R_MIPS*_GOT16; every relocation evaluates to "G". */
6206 if (htab
->root
.target_os
!= is_vxworks
&& local_p
)
6208 value
= mips_elf_got16_entry (abfd
, input_bfd
, info
,
6209 symbol
+ addend
, !was_local_p
);
6210 if (value
== MINUS_ONE
)
6211 return bfd_reloc_outofrange
;
6213 = mips_elf_got_offset_from_index (info
, abfd
, input_bfd
, value
);
6214 overflowed_p
= mips_elf_overflow_p (value
, 16);
6221 case R_MIPS_TLS_GOTTPREL
:
6222 case R_MIPS_TLS_LDM
:
6223 case R_MIPS_GOT_DISP
:
6224 case R_MIPS16_TLS_GD
:
6225 case R_MIPS16_TLS_GOTTPREL
:
6226 case R_MIPS16_TLS_LDM
:
6227 case R_MICROMIPS_TLS_GD
:
6228 case R_MICROMIPS_TLS_GOTTPREL
:
6229 case R_MICROMIPS_TLS_LDM
:
6230 case R_MICROMIPS_GOT_DISP
:
6232 overflowed_p
= mips_elf_overflow_p (value
, 16);
6235 case R_MIPS_GPREL32
:
6236 value
= (addend
+ symbol
+ gp0
- gp
);
6238 value
&= howto
->dst_mask
;
6242 case R_MIPS_GNU_REL16_S2
:
6243 if (howto
->partial_inplace
)
6244 addend
= _bfd_mips_elf_sign_extend (addend
, 18);
6246 /* No need to exclude weak undefined symbols here as they resolve
6247 to 0 and never set `*cross_mode_jump_p', so this alignment check
6248 will never trigger for them. */
6249 if (*cross_mode_jump_p
6250 ? ((symbol
+ addend
) & 3) != 1
6251 : ((symbol
+ addend
) & 3) != 0)
6252 return bfd_reloc_outofrange
;
6254 value
= symbol
+ addend
- p
;
6255 if (was_local_p
|| h
->root
.root
.type
!= bfd_link_hash_undefweak
)
6256 overflowed_p
= mips_elf_overflow_p (value
, 18);
6257 value
>>= howto
->rightshift
;
6258 value
&= howto
->dst_mask
;
6261 case R_MIPS16_PC16_S1
:
6262 if (howto
->partial_inplace
)
6263 addend
= _bfd_mips_elf_sign_extend (addend
, 17);
6265 if ((was_local_p
|| h
->root
.root
.type
!= bfd_link_hash_undefweak
)
6266 && (*cross_mode_jump_p
6267 ? ((symbol
+ addend
) & 3) != 0
6268 : ((symbol
+ addend
) & 1) == 0))
6269 return bfd_reloc_outofrange
;
6271 value
= symbol
+ addend
- p
;
6272 if (was_local_p
|| h
->root
.root
.type
!= bfd_link_hash_undefweak
)
6273 overflowed_p
= mips_elf_overflow_p (value
, 17);
6274 value
>>= howto
->rightshift
;
6275 value
&= howto
->dst_mask
;
6278 case R_MIPS_PC21_S2
:
6279 if (howto
->partial_inplace
)
6280 addend
= _bfd_mips_elf_sign_extend (addend
, 23);
6282 if ((symbol
+ addend
) & 3)
6283 return bfd_reloc_outofrange
;
6285 value
= symbol
+ addend
- p
;
6286 if (was_local_p
|| h
->root
.root
.type
!= bfd_link_hash_undefweak
)
6287 overflowed_p
= mips_elf_overflow_p (value
, 23);
6288 value
>>= howto
->rightshift
;
6289 value
&= howto
->dst_mask
;
6292 case R_MIPS_PC26_S2
:
6293 if (howto
->partial_inplace
)
6294 addend
= _bfd_mips_elf_sign_extend (addend
, 28);
6296 if ((symbol
+ addend
) & 3)
6297 return bfd_reloc_outofrange
;
6299 value
= symbol
+ addend
- p
;
6300 if (was_local_p
|| h
->root
.root
.type
!= bfd_link_hash_undefweak
)
6301 overflowed_p
= mips_elf_overflow_p (value
, 28);
6302 value
>>= howto
->rightshift
;
6303 value
&= howto
->dst_mask
;
6306 case R_MIPS_PC18_S3
:
6307 if (howto
->partial_inplace
)
6308 addend
= _bfd_mips_elf_sign_extend (addend
, 21);
6310 if ((symbol
+ addend
) & 7)
6311 return bfd_reloc_outofrange
;
6313 value
= symbol
+ addend
- ((p
| 7) ^ 7);
6314 if (was_local_p
|| h
->root
.root
.type
!= bfd_link_hash_undefweak
)
6315 overflowed_p
= mips_elf_overflow_p (value
, 21);
6316 value
>>= howto
->rightshift
;
6317 value
&= howto
->dst_mask
;
6320 case R_MIPS_PC19_S2
:
6321 if (howto
->partial_inplace
)
6322 addend
= _bfd_mips_elf_sign_extend (addend
, 21);
6324 if ((symbol
+ addend
) & 3)
6325 return bfd_reloc_outofrange
;
6327 value
= symbol
+ addend
- p
;
6328 if (was_local_p
|| h
->root
.root
.type
!= bfd_link_hash_undefweak
)
6329 overflowed_p
= mips_elf_overflow_p (value
, 21);
6330 value
>>= howto
->rightshift
;
6331 value
&= howto
->dst_mask
;
6335 value
= mips_elf_high (symbol
+ addend
- p
);
6336 value
&= howto
->dst_mask
;
6340 if (howto
->partial_inplace
)
6341 addend
= _bfd_mips_elf_sign_extend (addend
, 16);
6342 value
= symbol
+ addend
- p
;
6343 value
&= howto
->dst_mask
;
6346 case R_MICROMIPS_PC7_S1
:
6347 if (howto
->partial_inplace
)
6348 addend
= _bfd_mips_elf_sign_extend (addend
, 8);
6350 if ((was_local_p
|| h
->root
.root
.type
!= bfd_link_hash_undefweak
)
6351 && (*cross_mode_jump_p
6352 ? ((symbol
+ addend
+ 2) & 3) != 0
6353 : ((symbol
+ addend
+ 2) & 1) == 0))
6354 return bfd_reloc_outofrange
;
6356 value
= symbol
+ addend
- p
;
6357 if (was_local_p
|| h
->root
.root
.type
!= bfd_link_hash_undefweak
)
6358 overflowed_p
= mips_elf_overflow_p (value
, 8);
6359 value
>>= howto
->rightshift
;
6360 value
&= howto
->dst_mask
;
6363 case R_MICROMIPS_PC10_S1
:
6364 if (howto
->partial_inplace
)
6365 addend
= _bfd_mips_elf_sign_extend (addend
, 11);
6367 if ((was_local_p
|| h
->root
.root
.type
!= bfd_link_hash_undefweak
)
6368 && (*cross_mode_jump_p
6369 ? ((symbol
+ addend
+ 2) & 3) != 0
6370 : ((symbol
+ addend
+ 2) & 1) == 0))
6371 return bfd_reloc_outofrange
;
6373 value
= symbol
+ addend
- p
;
6374 if (was_local_p
|| h
->root
.root
.type
!= bfd_link_hash_undefweak
)
6375 overflowed_p
= mips_elf_overflow_p (value
, 11);
6376 value
>>= howto
->rightshift
;
6377 value
&= howto
->dst_mask
;
6380 case R_MICROMIPS_PC16_S1
:
6381 if (howto
->partial_inplace
)
6382 addend
= _bfd_mips_elf_sign_extend (addend
, 17);
6384 if ((was_local_p
|| h
->root
.root
.type
!= bfd_link_hash_undefweak
)
6385 && (*cross_mode_jump_p
6386 ? ((symbol
+ addend
) & 3) != 0
6387 : ((symbol
+ addend
) & 1) == 0))
6388 return bfd_reloc_outofrange
;
6390 value
= symbol
+ addend
- p
;
6391 if (was_local_p
|| h
->root
.root
.type
!= bfd_link_hash_undefweak
)
6392 overflowed_p
= mips_elf_overflow_p (value
, 17);
6393 value
>>= howto
->rightshift
;
6394 value
&= howto
->dst_mask
;
6397 case R_MICROMIPS_PC23_S2
:
6398 if (howto
->partial_inplace
)
6399 addend
= _bfd_mips_elf_sign_extend (addend
, 25);
6400 value
= symbol
+ addend
- ((p
| 3) ^ 3);
6401 if (was_local_p
|| h
->root
.root
.type
!= bfd_link_hash_undefweak
)
6402 overflowed_p
= mips_elf_overflow_p (value
, 25);
6403 value
>>= howto
->rightshift
;
6404 value
&= howto
->dst_mask
;
6407 case R_MIPS_GOT_HI16
:
6408 case R_MIPS_CALL_HI16
:
6409 case R_MICROMIPS_GOT_HI16
:
6410 case R_MICROMIPS_CALL_HI16
:
6411 /* We're allowed to handle these two relocations identically.
6412 The dynamic linker is allowed to handle the CALL relocations
6413 differently by creating a lazy evaluation stub. */
6415 value
= mips_elf_high (value
);
6416 value
&= howto
->dst_mask
;
6419 case R_MIPS_GOT_LO16
:
6420 case R_MIPS_CALL_LO16
:
6421 case R_MICROMIPS_GOT_LO16
:
6422 case R_MICROMIPS_CALL_LO16
:
6423 value
= g
& howto
->dst_mask
;
6426 case R_MIPS_GOT_PAGE
:
6427 case R_MICROMIPS_GOT_PAGE
:
6428 value
= mips_elf_got_page (abfd
, input_bfd
, info
, symbol
+ addend
, NULL
);
6429 if (value
== MINUS_ONE
)
6430 return bfd_reloc_outofrange
;
6431 value
= mips_elf_got_offset_from_index (info
, abfd
, input_bfd
, value
);
6432 overflowed_p
= mips_elf_overflow_p (value
, 16);
6435 case R_MIPS_GOT_OFST
:
6436 case R_MICROMIPS_GOT_OFST
:
6438 mips_elf_got_page (abfd
, input_bfd
, info
, symbol
+ addend
, &value
);
6441 overflowed_p
= mips_elf_overflow_p (value
, 16);
6445 case R_MICROMIPS_SUB
:
6446 value
= symbol
- addend
;
6447 value
&= howto
->dst_mask
;
6451 case R_MICROMIPS_HIGHER
:
6452 value
= mips_elf_higher (addend
+ symbol
);
6453 value
&= howto
->dst_mask
;
6456 case R_MIPS_HIGHEST
:
6457 case R_MICROMIPS_HIGHEST
:
6458 value
= mips_elf_highest (addend
+ symbol
);
6459 value
&= howto
->dst_mask
;
6462 case R_MIPS_SCN_DISP
:
6463 case R_MICROMIPS_SCN_DISP
:
6464 value
= symbol
+ addend
- sec
->output_offset
;
6465 value
&= howto
->dst_mask
;
6469 case R_MICROMIPS_JALR
:
6470 /* This relocation is only a hint. In some cases, we optimize
6471 it into a bal instruction. But we don't try to optimize
6472 when the symbol does not resolve locally. */
6473 if (h
!= NULL
&& !SYMBOL_CALLS_LOCAL (info
, &h
->root
))
6474 return bfd_reloc_continue
;
6475 /* We can't optimize cross-mode jumps either. */
6476 if (*cross_mode_jump_p
)
6477 return bfd_reloc_continue
;
6478 value
= symbol
+ addend
;
6479 /* Neither we can non-instruction-aligned targets. */
6480 if (r_type
== R_MIPS_JALR
? (value
& 3) != 0 : (value
& 1) == 0)
6481 return bfd_reloc_continue
;
6485 case R_MIPS_GNU_VTINHERIT
:
6486 case R_MIPS_GNU_VTENTRY
:
6487 /* We don't do anything with these at present. */
6488 return bfd_reloc_continue
;
6491 /* An unrecognized relocation type. */
6492 return bfd_reloc_notsupported
;
6495 /* Store the VALUE for our caller. */
6497 return overflowed_p
? bfd_reloc_overflow
: bfd_reloc_ok
;
6500 /* It has been determined that the result of the RELOCATION is the
6501 VALUE. Use HOWTO to place VALUE into the output file at the
6502 appropriate position. The SECTION is the section to which the
6504 CROSS_MODE_JUMP_P is true if the relocation field
6505 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
6507 Returns FALSE if anything goes wrong. */
6510 mips_elf_perform_relocation (struct bfd_link_info
*info
,
6511 reloc_howto_type
*howto
,
6512 const Elf_Internal_Rela
*relocation
,
6513 bfd_vma value
, bfd
*input_bfd
,
6514 asection
*input_section
, bfd_byte
*contents
,
6515 bfd_boolean cross_mode_jump_p
)
6519 int r_type
= ELF_R_TYPE (input_bfd
, relocation
->r_info
);
6521 /* Figure out where the relocation is occurring. */
6522 location
= contents
+ relocation
->r_offset
;
6524 _bfd_mips_elf_reloc_unshuffle (input_bfd
, r_type
, FALSE
, location
);
6526 /* Obtain the current value. */
6527 x
= mips_elf_obtain_contents (howto
, relocation
, input_bfd
, contents
);
6529 /* Clear the field we are setting. */
6530 x
&= ~howto
->dst_mask
;
6532 /* Set the field. */
6533 x
|= (value
& howto
->dst_mask
);
6535 /* Detect incorrect JALX usage. If required, turn JAL or BAL into JALX. */
6536 if (!cross_mode_jump_p
&& jal_reloc_p (r_type
))
6538 bfd_vma opcode
= x
>> 26;
6540 if (r_type
== R_MIPS16_26
? opcode
== 0x7
6541 : r_type
== R_MICROMIPS_26_S1
? opcode
== 0x3c
6544 info
->callbacks
->einfo
6545 (_("%X%H: unsupported JALX to the same ISA mode\n"),
6546 input_bfd
, input_section
, relocation
->r_offset
);
6550 if (cross_mode_jump_p
&& jal_reloc_p (r_type
))
6553 bfd_vma opcode
= x
>> 26;
6554 bfd_vma jalx_opcode
;
6556 /* Check to see if the opcode is already JAL or JALX. */
6557 if (r_type
== R_MIPS16_26
)
6559 ok
= ((opcode
== 0x6) || (opcode
== 0x7));
6562 else if (r_type
== R_MICROMIPS_26_S1
)
6564 ok
= ((opcode
== 0x3d) || (opcode
== 0x3c));
6569 ok
= ((opcode
== 0x3) || (opcode
== 0x1d));
6573 /* If the opcode is not JAL or JALX, there's a problem. We cannot
6574 convert J or JALS to JALX. */
6577 info
->callbacks
->einfo
6578 (_("%X%H: unsupported jump between ISA modes; "
6579 "consider recompiling with interlinking enabled\n"),
6580 input_bfd
, input_section
, relocation
->r_offset
);
6584 /* Make this the JALX opcode. */
6585 x
= (x
& ~(0x3fu
<< 26)) | (jalx_opcode
<< 26);
6587 else if (cross_mode_jump_p
&& b_reloc_p (r_type
))
6589 bfd_boolean ok
= FALSE
;
6590 bfd_vma opcode
= x
>> 16;
6591 bfd_vma jalx_opcode
= 0;
6592 bfd_vma sign_bit
= 0;
6596 if (r_type
== R_MICROMIPS_PC16_S1
)
6598 ok
= opcode
== 0x4060;
6603 else if (r_type
== R_MIPS_PC16
|| r_type
== R_MIPS_GNU_REL16_S2
)
6605 ok
= opcode
== 0x411;
6611 if (ok
&& !bfd_link_pic (info
))
6613 addr
= (input_section
->output_section
->vma
6614 + input_section
->output_offset
6615 + relocation
->r_offset
6618 + (((value
& ((sign_bit
<< 1) - 1)) ^ sign_bit
) - sign_bit
));
6620 if ((addr
>> 28) << 28 != (dest
>> 28) << 28)
6622 info
->callbacks
->einfo
6623 (_("%X%H: cannot convert branch between ISA modes "
6624 "to JALX: relocation out of range\n"),
6625 input_bfd
, input_section
, relocation
->r_offset
);
6629 /* Make this the JALX opcode. */
6630 x
= ((dest
>> 2) & 0x3ffffff) | jalx_opcode
<< 26;
6632 else if (!mips_elf_hash_table (info
)->ignore_branch_isa
)
6634 info
->callbacks
->einfo
6635 (_("%X%H: unsupported branch between ISA modes\n"),
6636 input_bfd
, input_section
, relocation
->r_offset
);
6641 /* Try converting JAL to BAL and J(AL)R to B(AL), if the target is in
6643 if (!bfd_link_relocatable (info
)
6644 && !cross_mode_jump_p
6645 && ((JAL_TO_BAL_P (input_bfd
)
6646 && r_type
== R_MIPS_26
6647 && (x
>> 26) == 0x3) /* jal addr */
6648 || (JALR_TO_BAL_P (input_bfd
)
6649 && r_type
== R_MIPS_JALR
6650 && x
== 0x0320f809) /* jalr t9 */
6651 || (JR_TO_B_P (input_bfd
)
6652 && r_type
== R_MIPS_JALR
6653 && (x
& ~1) == 0x03200008))) /* jr t9 / jalr zero, t9 */
6659 addr
= (input_section
->output_section
->vma
6660 + input_section
->output_offset
6661 + relocation
->r_offset
6663 if (r_type
== R_MIPS_26
)
6664 dest
= (value
<< 2) | ((addr
>> 28) << 28);
6668 if (off
<= 0x1ffff && off
>= -0x20000)
6670 if ((x
& ~1) == 0x03200008) /* jr t9 / jalr zero, t9 */
6671 x
= 0x10000000 | (((bfd_vma
) off
>> 2) & 0xffff); /* b addr */
6673 x
= 0x04110000 | (((bfd_vma
) off
>> 2) & 0xffff); /* bal addr */
6677 /* Put the value into the output. */
6678 mips_elf_store_contents (howto
, relocation
, input_bfd
, contents
, x
);
6680 _bfd_mips_elf_reloc_shuffle (input_bfd
, r_type
, !bfd_link_relocatable (info
),
6686 /* Create a rel.dyn relocation for the dynamic linker to resolve. REL
6687 is the original relocation, which is now being transformed into a
6688 dynamic relocation. The ADDENDP is adjusted if necessary; the
6689 caller should store the result in place of the original addend. */
6692 mips_elf_create_dynamic_relocation (bfd
*output_bfd
,
6693 struct bfd_link_info
*info
,
6694 const Elf_Internal_Rela
*rel
,
6695 struct mips_elf_link_hash_entry
*h
,
6696 asection
*sec
, bfd_vma symbol
,
6697 bfd_vma
*addendp
, asection
*input_section
)
6699 Elf_Internal_Rela outrel
[3];
6704 bfd_boolean defined_p
;
6705 struct mips_elf_link_hash_table
*htab
;
6707 htab
= mips_elf_hash_table (info
);
6708 BFD_ASSERT (htab
!= NULL
);
6710 r_type
= ELF_R_TYPE (output_bfd
, rel
->r_info
);
6711 dynobj
= elf_hash_table (info
)->dynobj
;
6712 sreloc
= mips_elf_rel_dyn_section (info
, FALSE
);
6713 BFD_ASSERT (sreloc
!= NULL
);
6714 BFD_ASSERT (sreloc
->contents
!= NULL
);
6715 BFD_ASSERT (sreloc
->reloc_count
* MIPS_ELF_REL_SIZE (output_bfd
)
6718 outrel
[0].r_offset
=
6719 _bfd_elf_section_offset (output_bfd
, info
, input_section
, rel
[0].r_offset
);
6720 if (ABI_64_P (output_bfd
))
6722 outrel
[1].r_offset
=
6723 _bfd_elf_section_offset (output_bfd
, info
, input_section
, rel
[1].r_offset
);
6724 outrel
[2].r_offset
=
6725 _bfd_elf_section_offset (output_bfd
, info
, input_section
, rel
[2].r_offset
);
6728 if (outrel
[0].r_offset
== MINUS_ONE
)
6729 /* The relocation field has been deleted. */
6732 if (outrel
[0].r_offset
== MINUS_TWO
)
6734 /* The relocation field has been converted into a relative value of
6735 some sort. Functions like _bfd_elf_write_section_eh_frame expect
6736 the field to be fully relocated, so add in the symbol's value. */
6741 /* We must now calculate the dynamic symbol table index to use
6742 in the relocation. */
6743 if (h
!= NULL
&& ! SYMBOL_REFERENCES_LOCAL (info
, &h
->root
))
6745 BFD_ASSERT (htab
->root
.target_os
== is_vxworks
6746 || h
->global_got_area
!= GGA_NONE
);
6747 indx
= h
->root
.dynindx
;
6748 if (SGI_COMPAT (output_bfd
))
6749 defined_p
= h
->root
.def_regular
;
6751 /* ??? glibc's ld.so just adds the final GOT entry to the
6752 relocation field. It therefore treats relocs against
6753 defined symbols in the same way as relocs against
6754 undefined symbols. */
6759 if (sec
!= NULL
&& bfd_is_abs_section (sec
))
6761 else if (sec
== NULL
|| sec
->owner
== NULL
)
6763 bfd_set_error (bfd_error_bad_value
);
6768 indx
= elf_section_data (sec
->output_section
)->dynindx
;
6771 asection
*osec
= htab
->root
.text_index_section
;
6772 indx
= elf_section_data (osec
)->dynindx
;
6778 /* Instead of generating a relocation using the section
6779 symbol, we may as well make it a fully relative
6780 relocation. We want to avoid generating relocations to
6781 local symbols because we used to generate them
6782 incorrectly, without adding the original symbol value,
6783 which is mandated by the ABI for section symbols. In
6784 order to give dynamic loaders and applications time to
6785 phase out the incorrect use, we refrain from emitting
6786 section-relative relocations. It's not like they're
6787 useful, after all. This should be a bit more efficient
6789 /* ??? Although this behavior is compatible with glibc's ld.so,
6790 the ABI says that relocations against STN_UNDEF should have
6791 a symbol value of 0. Irix rld honors this, so relocations
6792 against STN_UNDEF have no effect. */
6793 if (!SGI_COMPAT (output_bfd
))
6798 /* If the relocation was previously an absolute relocation and
6799 this symbol will not be referred to by the relocation, we must
6800 adjust it by the value we give it in the dynamic symbol table.
6801 Otherwise leave the job up to the dynamic linker. */
6802 if (defined_p
&& r_type
!= R_MIPS_REL32
)
6805 if (htab
->root
.target_os
== is_vxworks
)
6806 /* VxWorks uses non-relative relocations for this. */
6807 outrel
[0].r_info
= ELF32_R_INFO (indx
, R_MIPS_32
);
6809 /* The relocation is always an REL32 relocation because we don't
6810 know where the shared library will wind up at load-time. */
6811 outrel
[0].r_info
= ELF_R_INFO (output_bfd
, (unsigned long) indx
,
6814 /* For strict adherence to the ABI specification, we should
6815 generate a R_MIPS_64 relocation record by itself before the
6816 _REL32/_64 record as well, such that the addend is read in as
6817 a 64-bit value (REL32 is a 32-bit relocation, after all).
6818 However, since none of the existing ELF64 MIPS dynamic
6819 loaders seems to care, we don't waste space with these
6820 artificial relocations. If this turns out to not be true,
6821 mips_elf_allocate_dynamic_relocation() should be tweaked so
6822 as to make room for a pair of dynamic relocations per
6823 invocation if ABI_64_P, and here we should generate an
6824 additional relocation record with R_MIPS_64 by itself for a
6825 NULL symbol before this relocation record. */
6826 outrel
[1].r_info
= ELF_R_INFO (output_bfd
, 0,
6827 ABI_64_P (output_bfd
)
6830 outrel
[2].r_info
= ELF_R_INFO (output_bfd
, 0, R_MIPS_NONE
);
6832 /* Adjust the output offset of the relocation to reference the
6833 correct location in the output file. */
6834 outrel
[0].r_offset
+= (input_section
->output_section
->vma
6835 + input_section
->output_offset
);
6836 outrel
[1].r_offset
+= (input_section
->output_section
->vma
6837 + input_section
->output_offset
);
6838 outrel
[2].r_offset
+= (input_section
->output_section
->vma
6839 + input_section
->output_offset
);
6841 /* Put the relocation back out. We have to use the special
6842 relocation outputter in the 64-bit case since the 64-bit
6843 relocation format is non-standard. */
6844 if (ABI_64_P (output_bfd
))
6846 (*get_elf_backend_data (output_bfd
)->s
->swap_reloc_out
)
6847 (output_bfd
, &outrel
[0],
6849 + sreloc
->reloc_count
* sizeof (Elf64_Mips_External_Rel
)));
6851 else if (htab
->root
.target_os
== is_vxworks
)
6853 /* VxWorks uses RELA rather than REL dynamic relocations. */
6854 outrel
[0].r_addend
= *addendp
;
6855 bfd_elf32_swap_reloca_out
6856 (output_bfd
, &outrel
[0],
6858 + sreloc
->reloc_count
* sizeof (Elf32_External_Rela
)));
6861 bfd_elf32_swap_reloc_out
6862 (output_bfd
, &outrel
[0],
6863 (sreloc
->contents
+ sreloc
->reloc_count
* sizeof (Elf32_External_Rel
)));
6865 /* We've now added another relocation. */
6866 ++sreloc
->reloc_count
;
6868 /* Make sure the output section is writable. The dynamic linker
6869 will be writing to it. */
6870 elf_section_data (input_section
->output_section
)->this_hdr
.sh_flags
6873 /* On IRIX5, make an entry of compact relocation info. */
6874 if (IRIX_COMPAT (output_bfd
) == ict_irix5
)
6876 asection
*scpt
= bfd_get_linker_section (dynobj
, ".compact_rel");
6881 Elf32_crinfo cptrel
;
6883 mips_elf_set_cr_format (cptrel
, CRF_MIPS_LONG
);
6884 cptrel
.vaddr
= (rel
->r_offset
6885 + input_section
->output_section
->vma
6886 + input_section
->output_offset
);
6887 if (r_type
== R_MIPS_REL32
)
6888 mips_elf_set_cr_type (cptrel
, CRT_MIPS_REL32
);
6890 mips_elf_set_cr_type (cptrel
, CRT_MIPS_WORD
);
6891 mips_elf_set_cr_dist2to (cptrel
, 0);
6892 cptrel
.konst
= *addendp
;
6894 cr
= (scpt
->contents
6895 + sizeof (Elf32_External_compact_rel
));
6896 mips_elf_set_cr_relvaddr (cptrel
, 0);
6897 bfd_elf32_swap_crinfo_out (output_bfd
, &cptrel
,
6898 ((Elf32_External_crinfo
*) cr
6899 + scpt
->reloc_count
));
6900 ++scpt
->reloc_count
;
6904 /* If we've written this relocation for a readonly section,
6905 we need to set DF_TEXTREL again, so that we do not delete the
6907 if (MIPS_ELF_READONLY_SECTION (input_section
))
6908 info
->flags
|= DF_TEXTREL
;
6913 /* Return the MACH for a MIPS e_flags value. */
6916 _bfd_elf_mips_mach (flagword flags
)
6918 switch (flags
& EF_MIPS_MACH
)
6920 case E_MIPS_MACH_3900
:
6921 return bfd_mach_mips3900
;
6923 case E_MIPS_MACH_4010
:
6924 return bfd_mach_mips4010
;
6926 case E_MIPS_MACH_4100
:
6927 return bfd_mach_mips4100
;
6929 case E_MIPS_MACH_4111
:
6930 return bfd_mach_mips4111
;
6932 case E_MIPS_MACH_4120
:
6933 return bfd_mach_mips4120
;
6935 case E_MIPS_MACH_4650
:
6936 return bfd_mach_mips4650
;
6938 case E_MIPS_MACH_5400
:
6939 return bfd_mach_mips5400
;
6941 case E_MIPS_MACH_5500
:
6942 return bfd_mach_mips5500
;
6944 case E_MIPS_MACH_5900
:
6945 return bfd_mach_mips5900
;
6947 case E_MIPS_MACH_9000
:
6948 return bfd_mach_mips9000
;
6950 case E_MIPS_MACH_SB1
:
6951 return bfd_mach_mips_sb1
;
6953 case E_MIPS_MACH_LS2E
:
6954 return bfd_mach_mips_loongson_2e
;
6956 case E_MIPS_MACH_LS2F
:
6957 return bfd_mach_mips_loongson_2f
;
6959 case E_MIPS_MACH_GS464
:
6960 return bfd_mach_mips_gs464
;
6962 case E_MIPS_MACH_GS464E
:
6963 return bfd_mach_mips_gs464e
;
6965 case E_MIPS_MACH_GS264E
:
6966 return bfd_mach_mips_gs264e
;
6968 case E_MIPS_MACH_OCTEON3
:
6969 return bfd_mach_mips_octeon3
;
6971 case E_MIPS_MACH_OCTEON2
:
6972 return bfd_mach_mips_octeon2
;
6974 case E_MIPS_MACH_OCTEON
:
6975 return bfd_mach_mips_octeon
;
6977 case E_MIPS_MACH_XLR
:
6978 return bfd_mach_mips_xlr
;
6980 case E_MIPS_MACH_IAMR2
:
6981 return bfd_mach_mips_interaptiv_mr2
;
6984 switch (flags
& EF_MIPS_ARCH
)
6988 return bfd_mach_mips3000
;
6991 return bfd_mach_mips6000
;
6994 return bfd_mach_mips4000
;
6997 return bfd_mach_mips8000
;
7000 return bfd_mach_mips5
;
7002 case E_MIPS_ARCH_32
:
7003 return bfd_mach_mipsisa32
;
7005 case E_MIPS_ARCH_64
:
7006 return bfd_mach_mipsisa64
;
7008 case E_MIPS_ARCH_32R2
:
7009 return bfd_mach_mipsisa32r2
;
7011 case E_MIPS_ARCH_64R2
:
7012 return bfd_mach_mipsisa64r2
;
7014 case E_MIPS_ARCH_32R6
:
7015 return bfd_mach_mipsisa32r6
;
7017 case E_MIPS_ARCH_64R6
:
7018 return bfd_mach_mipsisa64r6
;
7025 /* Return printable name for ABI. */
7027 static INLINE
char *
7028 elf_mips_abi_name (bfd
*abfd
)
7032 flags
= elf_elfheader (abfd
)->e_flags
;
7033 switch (flags
& EF_MIPS_ABI
)
7036 if (ABI_N32_P (abfd
))
7038 else if (ABI_64_P (abfd
))
7042 case E_MIPS_ABI_O32
:
7044 case E_MIPS_ABI_O64
:
7046 case E_MIPS_ABI_EABI32
:
7048 case E_MIPS_ABI_EABI64
:
7051 return "unknown abi";
7055 /* MIPS ELF uses two common sections. One is the usual one, and the
7056 other is for small objects. All the small objects are kept
7057 together, and then referenced via the gp pointer, which yields
7058 faster assembler code. This is what we use for the small common
7059 section. This approach is copied from ecoff.c. */
7060 static asection mips_elf_scom_section
;
7061 static const asymbol mips_elf_scom_symbol
=
7062 GLOBAL_SYM_INIT (".scommon", &mips_elf_scom_section
);
7063 static asection mips_elf_scom_section
=
7064 BFD_FAKE_SECTION (mips_elf_scom_section
, &mips_elf_scom_symbol
,
7065 ".scommon", 0, SEC_IS_COMMON
| SEC_SMALL_DATA
);
7067 /* MIPS ELF also uses an acommon section, which represents an
7068 allocated common symbol which may be overridden by a
7069 definition in a shared library. */
7070 static asection mips_elf_acom_section
;
7071 static const asymbol mips_elf_acom_symbol
=
7072 GLOBAL_SYM_INIT (".acommon", &mips_elf_acom_section
);
7073 static asection mips_elf_acom_section
=
7074 BFD_FAKE_SECTION (mips_elf_acom_section
, &mips_elf_acom_symbol
,
7075 ".acommon", 0, SEC_ALLOC
);
7077 /* This is used for both the 32-bit and the 64-bit ABI. */
7080 _bfd_mips_elf_symbol_processing (bfd
*abfd
, asymbol
*asym
)
7082 elf_symbol_type
*elfsym
;
7084 /* Handle the special MIPS section numbers that a symbol may use. */
7085 elfsym
= (elf_symbol_type
*) asym
;
7086 switch (elfsym
->internal_elf_sym
.st_shndx
)
7088 case SHN_MIPS_ACOMMON
:
7089 /* This section is used in a dynamically linked executable file.
7090 It is an allocated common section. The dynamic linker can
7091 either resolve these symbols to something in a shared
7092 library, or it can just leave them here. For our purposes,
7093 we can consider these symbols to be in a new section. */
7094 asym
->section
= &mips_elf_acom_section
;
7098 /* Common symbols less than the GP size are automatically
7099 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
7100 if (asym
->value
> elf_gp_size (abfd
)
7101 || ELF_ST_TYPE (elfsym
->internal_elf_sym
.st_info
) == STT_TLS
7102 || IRIX_COMPAT (abfd
) == ict_irix6
)
7105 case SHN_MIPS_SCOMMON
:
7106 asym
->section
= &mips_elf_scom_section
;
7107 asym
->value
= elfsym
->internal_elf_sym
.st_size
;
7110 case SHN_MIPS_SUNDEFINED
:
7111 asym
->section
= bfd_und_section_ptr
;
7116 asection
*section
= bfd_get_section_by_name (abfd
, ".text");
7118 if (section
!= NULL
)
7120 asym
->section
= section
;
7121 /* MIPS_TEXT is a bit special, the address is not an offset
7122 to the base of the .text section. So subtract the section
7123 base address to make it an offset. */
7124 asym
->value
-= section
->vma
;
7131 asection
*section
= bfd_get_section_by_name (abfd
, ".data");
7133 if (section
!= NULL
)
7135 asym
->section
= section
;
7136 /* MIPS_DATA is a bit special, the address is not an offset
7137 to the base of the .data section. So subtract the section
7138 base address to make it an offset. */
7139 asym
->value
-= section
->vma
;
7145 /* If this is an odd-valued function symbol, assume it's a MIPS16
7146 or microMIPS one. */
7147 if (ELF_ST_TYPE (elfsym
->internal_elf_sym
.st_info
) == STT_FUNC
7148 && (asym
->value
& 1) != 0)
7151 if (MICROMIPS_P (abfd
))
7152 elfsym
->internal_elf_sym
.st_other
7153 = ELF_ST_SET_MICROMIPS (elfsym
->internal_elf_sym
.st_other
);
7155 elfsym
->internal_elf_sym
.st_other
7156 = ELF_ST_SET_MIPS16 (elfsym
->internal_elf_sym
.st_other
);
7160 /* Implement elf_backend_eh_frame_address_size. This differs from
7161 the default in the way it handles EABI64.
7163 EABI64 was originally specified as an LP64 ABI, and that is what
7164 -mabi=eabi normally gives on a 64-bit target. However, gcc has
7165 historically accepted the combination of -mabi=eabi and -mlong32,
7166 and this ILP32 variation has become semi-official over time.
7167 Both forms use elf32 and have pointer-sized FDE addresses.
7169 If an EABI object was generated by GCC 4.0 or above, it will have
7170 an empty .gcc_compiled_longXX section, where XX is the size of longs
7171 in bits. Unfortunately, ILP32 objects generated by earlier compilers
7172 have no special marking to distinguish them from LP64 objects.
7174 We don't want users of the official LP64 ABI to be punished for the
7175 existence of the ILP32 variant, but at the same time, we don't want
7176 to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
7177 We therefore take the following approach:
7179 - If ABFD contains a .gcc_compiled_longXX section, use it to
7180 determine the pointer size.
7182 - Otherwise check the type of the first relocation. Assume that
7183 the LP64 ABI is being used if the relocation is of type R_MIPS_64.
7187 The second check is enough to detect LP64 objects generated by pre-4.0
7188 compilers because, in the kind of output generated by those compilers,
7189 the first relocation will be associated with either a CIE personality
7190 routine or an FDE start address. Furthermore, the compilers never
7191 used a special (non-pointer) encoding for this ABI.
7193 Checking the relocation type should also be safe because there is no
7194 reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never
7198 _bfd_mips_elf_eh_frame_address_size (bfd
*abfd
, const asection
*sec
)
7200 if (elf_elfheader (abfd
)->e_ident
[EI_CLASS
] == ELFCLASS64
)
7202 if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ABI
) == E_MIPS_ABI_EABI64
)
7204 bfd_boolean long32_p
, long64_p
;
7206 long32_p
= bfd_get_section_by_name (abfd
, ".gcc_compiled_long32") != 0;
7207 long64_p
= bfd_get_section_by_name (abfd
, ".gcc_compiled_long64") != 0;
7208 if (long32_p
&& long64_p
)
7215 if (sec
->reloc_count
> 0
7216 && elf_section_data (sec
)->relocs
!= NULL
7217 && (ELF32_R_TYPE (elf_section_data (sec
)->relocs
[0].r_info
)
7226 /* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
7227 relocations against two unnamed section symbols to resolve to the
7228 same address. For example, if we have code like:
7230 lw $4,%got_disp(.data)($gp)
7231 lw $25,%got_disp(.text)($gp)
7234 then the linker will resolve both relocations to .data and the program
7235 will jump there rather than to .text.
7237 We can work around this problem by giving names to local section symbols.
7238 This is also what the MIPSpro tools do. */
7241 _bfd_mips_elf_name_local_section_symbols (bfd
*abfd
)
7243 return elf_elfheader (abfd
)->e_type
== ET_REL
&& SGI_COMPAT (abfd
);
7246 /* Work over a section just before writing it out. This routine is
7247 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
7248 sections that need the SHF_MIPS_GPREL flag by name; there has to be
7252 _bfd_mips_elf_section_processing (bfd
*abfd
, Elf_Internal_Shdr
*hdr
)
7254 if (hdr
->sh_type
== SHT_MIPS_REGINFO
7255 && hdr
->sh_size
> 0)
7259 BFD_ASSERT (hdr
->contents
== NULL
);
7261 if (hdr
->sh_size
!= sizeof (Elf32_External_RegInfo
))
7264 (_("%pB: incorrect `.reginfo' section size; "
7265 "expected %" PRIu64
", got %" PRIu64
),
7266 abfd
, (uint64_t) sizeof (Elf32_External_RegInfo
),
7267 (uint64_t) hdr
->sh_size
);
7268 bfd_set_error (bfd_error_bad_value
);
7273 hdr
->sh_offset
+ sizeof (Elf32_External_RegInfo
) - 4,
7276 H_PUT_32 (abfd
, elf_gp (abfd
), buf
);
7277 if (bfd_bwrite (buf
, 4, abfd
) != 4)
7281 if (hdr
->sh_type
== SHT_MIPS_OPTIONS
7282 && hdr
->bfd_section
!= NULL
7283 && mips_elf_section_data (hdr
->bfd_section
) != NULL
7284 && mips_elf_section_data (hdr
->bfd_section
)->u
.tdata
!= NULL
)
7286 bfd_byte
*contents
, *l
, *lend
;
7288 /* We stored the section contents in the tdata field in the
7289 set_section_contents routine. We save the section contents
7290 so that we don't have to read them again.
7291 At this point we know that elf_gp is set, so we can look
7292 through the section contents to see if there is an
7293 ODK_REGINFO structure. */
7295 contents
= mips_elf_section_data (hdr
->bfd_section
)->u
.tdata
;
7297 lend
= contents
+ hdr
->sh_size
;
7298 while (l
+ sizeof (Elf_External_Options
) <= lend
)
7300 Elf_Internal_Options intopt
;
7302 bfd_mips_elf_swap_options_in (abfd
, (Elf_External_Options
*) l
,
7304 if (intopt
.size
< sizeof (Elf_External_Options
))
7307 /* xgettext:c-format */
7308 (_("%pB: warning: bad `%s' option size %u smaller than"
7310 abfd
, MIPS_ELF_OPTIONS_SECTION_NAME (abfd
), intopt
.size
);
7313 if (ABI_64_P (abfd
) && intopt
.kind
== ODK_REGINFO
)
7320 + sizeof (Elf_External_Options
)
7321 + (sizeof (Elf64_External_RegInfo
) - 8)),
7324 H_PUT_64 (abfd
, elf_gp (abfd
), buf
);
7325 if (bfd_bwrite (buf
, 8, abfd
) != 8)
7328 else if (intopt
.kind
== ODK_REGINFO
)
7335 + sizeof (Elf_External_Options
)
7336 + (sizeof (Elf32_External_RegInfo
) - 4)),
7339 H_PUT_32 (abfd
, elf_gp (abfd
), buf
);
7340 if (bfd_bwrite (buf
, 4, abfd
) != 4)
7347 if (hdr
->bfd_section
!= NULL
)
7349 const char *name
= bfd_section_name (hdr
->bfd_section
);
7351 /* .sbss is not handled specially here because the GNU/Linux
7352 prelinker can convert .sbss from NOBITS to PROGBITS and
7353 changing it back to NOBITS breaks the binary. The entry in
7354 _bfd_mips_elf_special_sections will ensure the correct flags
7355 are set on .sbss if BFD creates it without reading it from an
7356 input file, and without special handling here the flags set
7357 on it in an input file will be followed. */
7358 if (strcmp (name
, ".sdata") == 0
7359 || strcmp (name
, ".lit8") == 0
7360 || strcmp (name
, ".lit4") == 0)
7361 hdr
->sh_flags
|= SHF_ALLOC
| SHF_WRITE
| SHF_MIPS_GPREL
;
7362 else if (strcmp (name
, ".srdata") == 0)
7363 hdr
->sh_flags
|= SHF_ALLOC
| SHF_MIPS_GPREL
;
7364 else if (strcmp (name
, ".compact_rel") == 0)
7366 else if (strcmp (name
, ".rtproc") == 0)
7368 if (hdr
->sh_addralign
!= 0 && hdr
->sh_entsize
== 0)
7370 unsigned int adjust
;
7372 adjust
= hdr
->sh_size
% hdr
->sh_addralign
;
7374 hdr
->sh_size
+= hdr
->sh_addralign
- adjust
;
7382 /* Handle a MIPS specific section when reading an object file. This
7383 is called when elfcode.h finds a section with an unknown type.
7384 This routine supports both the 32-bit and 64-bit ELF ABI. */
7387 _bfd_mips_elf_section_from_shdr (bfd
*abfd
,
7388 Elf_Internal_Shdr
*hdr
,
7394 /* There ought to be a place to keep ELF backend specific flags, but
7395 at the moment there isn't one. We just keep track of the
7396 sections by their name, instead. Fortunately, the ABI gives
7397 suggested names for all the MIPS specific sections, so we will
7398 probably get away with this. */
7399 switch (hdr
->sh_type
)
7401 case SHT_MIPS_LIBLIST
:
7402 if (strcmp (name
, ".liblist") != 0)
7406 if (strcmp (name
, ".msym") != 0)
7409 case SHT_MIPS_CONFLICT
:
7410 if (strcmp (name
, ".conflict") != 0)
7413 case SHT_MIPS_GPTAB
:
7414 if (! CONST_STRNEQ (name
, ".gptab."))
7417 case SHT_MIPS_UCODE
:
7418 if (strcmp (name
, ".ucode") != 0)
7421 case SHT_MIPS_DEBUG
:
7422 if (strcmp (name
, ".mdebug") != 0)
7424 flags
= SEC_DEBUGGING
;
7426 case SHT_MIPS_REGINFO
:
7427 if (strcmp (name
, ".reginfo") != 0
7428 || hdr
->sh_size
!= sizeof (Elf32_External_RegInfo
))
7430 flags
= (SEC_LINK_ONCE
| SEC_LINK_DUPLICATES_SAME_SIZE
);
7432 case SHT_MIPS_IFACE
:
7433 if (strcmp (name
, ".MIPS.interfaces") != 0)
7436 case SHT_MIPS_CONTENT
:
7437 if (! CONST_STRNEQ (name
, ".MIPS.content"))
7440 case SHT_MIPS_OPTIONS
:
7441 if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name
))
7444 case SHT_MIPS_ABIFLAGS
:
7445 if (!MIPS_ELF_ABIFLAGS_SECTION_NAME_P (name
))
7447 flags
= (SEC_LINK_ONCE
| SEC_LINK_DUPLICATES_SAME_SIZE
);
7449 case SHT_MIPS_DWARF
:
7450 if (! CONST_STRNEQ (name
, ".debug_")
7451 && ! CONST_STRNEQ (name
, ".zdebug_"))
7454 case SHT_MIPS_SYMBOL_LIB
:
7455 if (strcmp (name
, ".MIPS.symlib") != 0)
7458 case SHT_MIPS_EVENTS
:
7459 if (! CONST_STRNEQ (name
, ".MIPS.events")
7460 && ! CONST_STRNEQ (name
, ".MIPS.post_rel"))
7463 case SHT_MIPS_XHASH
:
7464 if (strcmp (name
, ".MIPS.xhash") != 0)
7470 if (! _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
))
7473 if (hdr
->sh_flags
& SHF_MIPS_GPREL
)
7474 flags
|= SEC_SMALL_DATA
;
7478 if (!bfd_set_section_flags (hdr
->bfd_section
,
7479 (bfd_section_flags (hdr
->bfd_section
)
7484 if (hdr
->sh_type
== SHT_MIPS_ABIFLAGS
)
7486 Elf_External_ABIFlags_v0 ext
;
7488 if (! bfd_get_section_contents (abfd
, hdr
->bfd_section
,
7489 &ext
, 0, sizeof ext
))
7491 bfd_mips_elf_swap_abiflags_v0_in (abfd
, &ext
,
7492 &mips_elf_tdata (abfd
)->abiflags
);
7493 if (mips_elf_tdata (abfd
)->abiflags
.version
!= 0)
7495 mips_elf_tdata (abfd
)->abiflags_valid
= TRUE
;
7498 /* FIXME: We should record sh_info for a .gptab section. */
7500 /* For a .reginfo section, set the gp value in the tdata information
7501 from the contents of this section. We need the gp value while
7502 processing relocs, so we just get it now. The .reginfo section
7503 is not used in the 64-bit MIPS ELF ABI. */
7504 if (hdr
->sh_type
== SHT_MIPS_REGINFO
)
7506 Elf32_External_RegInfo ext
;
7509 if (! bfd_get_section_contents (abfd
, hdr
->bfd_section
,
7510 &ext
, 0, sizeof ext
))
7512 bfd_mips_elf32_swap_reginfo_in (abfd
, &ext
, &s
);
7513 elf_gp (abfd
) = s
.ri_gp_value
;
7516 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
7517 set the gp value based on what we find. We may see both
7518 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
7519 they should agree. */
7520 if (hdr
->sh_type
== SHT_MIPS_OPTIONS
)
7522 bfd_byte
*contents
, *l
, *lend
;
7524 contents
= bfd_malloc (hdr
->sh_size
);
7525 if (contents
== NULL
)
7527 if (! bfd_get_section_contents (abfd
, hdr
->bfd_section
, contents
,
7534 lend
= contents
+ hdr
->sh_size
;
7535 while (l
+ sizeof (Elf_External_Options
) <= lend
)
7537 Elf_Internal_Options intopt
;
7539 bfd_mips_elf_swap_options_in (abfd
, (Elf_External_Options
*) l
,
7541 if (intopt
.size
< sizeof (Elf_External_Options
))
7544 /* xgettext:c-format */
7545 (_("%pB: warning: bad `%s' option size %u smaller than"
7547 abfd
, MIPS_ELF_OPTIONS_SECTION_NAME (abfd
), intopt
.size
);
7550 if (ABI_64_P (abfd
) && intopt
.kind
== ODK_REGINFO
)
7552 Elf64_Internal_RegInfo intreg
;
7554 bfd_mips_elf64_swap_reginfo_in
7556 ((Elf64_External_RegInfo
*)
7557 (l
+ sizeof (Elf_External_Options
))),
7559 elf_gp (abfd
) = intreg
.ri_gp_value
;
7561 else if (intopt
.kind
== ODK_REGINFO
)
7563 Elf32_RegInfo intreg
;
7565 bfd_mips_elf32_swap_reginfo_in
7567 ((Elf32_External_RegInfo
*)
7568 (l
+ sizeof (Elf_External_Options
))),
7570 elf_gp (abfd
) = intreg
.ri_gp_value
;
7580 /* Set the correct type for a MIPS ELF section. We do this by the
7581 section name, which is a hack, but ought to work. This routine is
7582 used by both the 32-bit and the 64-bit ABI. */
7585 _bfd_mips_elf_fake_sections (bfd
*abfd
, Elf_Internal_Shdr
*hdr
, asection
*sec
)
7587 const char *name
= bfd_section_name (sec
);
7589 if (strcmp (name
, ".liblist") == 0)
7591 hdr
->sh_type
= SHT_MIPS_LIBLIST
;
7592 hdr
->sh_info
= sec
->size
/ sizeof (Elf32_Lib
);
7593 /* The sh_link field is set in final_write_processing. */
7595 else if (strcmp (name
, ".conflict") == 0)
7596 hdr
->sh_type
= SHT_MIPS_CONFLICT
;
7597 else if (CONST_STRNEQ (name
, ".gptab."))
7599 hdr
->sh_type
= SHT_MIPS_GPTAB
;
7600 hdr
->sh_entsize
= sizeof (Elf32_External_gptab
);
7601 /* The sh_info field is set in final_write_processing. */
7603 else if (strcmp (name
, ".ucode") == 0)
7604 hdr
->sh_type
= SHT_MIPS_UCODE
;
7605 else if (strcmp (name
, ".mdebug") == 0)
7607 hdr
->sh_type
= SHT_MIPS_DEBUG
;
7608 /* In a shared object on IRIX 5.3, the .mdebug section has an
7609 entsize of 0. FIXME: Does this matter? */
7610 if (SGI_COMPAT (abfd
) && (abfd
->flags
& DYNAMIC
) != 0)
7611 hdr
->sh_entsize
= 0;
7613 hdr
->sh_entsize
= 1;
7615 else if (strcmp (name
, ".reginfo") == 0)
7617 hdr
->sh_type
= SHT_MIPS_REGINFO
;
7618 /* In a shared object on IRIX 5.3, the .reginfo section has an
7619 entsize of 0x18. FIXME: Does this matter? */
7620 if (SGI_COMPAT (abfd
))
7622 if ((abfd
->flags
& DYNAMIC
) != 0)
7623 hdr
->sh_entsize
= sizeof (Elf32_External_RegInfo
);
7625 hdr
->sh_entsize
= 1;
7628 hdr
->sh_entsize
= sizeof (Elf32_External_RegInfo
);
7630 else if (SGI_COMPAT (abfd
)
7631 && (strcmp (name
, ".hash") == 0
7632 || strcmp (name
, ".dynamic") == 0
7633 || strcmp (name
, ".dynstr") == 0))
7635 if (SGI_COMPAT (abfd
))
7636 hdr
->sh_entsize
= 0;
7638 /* This isn't how the IRIX6 linker behaves. */
7639 hdr
->sh_info
= SIZEOF_MIPS_DYNSYM_SECNAMES
;
7642 else if (strcmp (name
, ".got") == 0
7643 || strcmp (name
, ".srdata") == 0
7644 || strcmp (name
, ".sdata") == 0
7645 || strcmp (name
, ".sbss") == 0
7646 || strcmp (name
, ".lit4") == 0
7647 || strcmp (name
, ".lit8") == 0)
7648 hdr
->sh_flags
|= SHF_MIPS_GPREL
;
7649 else if (strcmp (name
, ".MIPS.interfaces") == 0)
7651 hdr
->sh_type
= SHT_MIPS_IFACE
;
7652 hdr
->sh_flags
|= SHF_MIPS_NOSTRIP
;
7654 else if (CONST_STRNEQ (name
, ".MIPS.content"))
7656 hdr
->sh_type
= SHT_MIPS_CONTENT
;
7657 hdr
->sh_flags
|= SHF_MIPS_NOSTRIP
;
7658 /* The sh_info field is set in final_write_processing. */
7660 else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name
))
7662 hdr
->sh_type
= SHT_MIPS_OPTIONS
;
7663 hdr
->sh_entsize
= 1;
7664 hdr
->sh_flags
|= SHF_MIPS_NOSTRIP
;
7666 else if (CONST_STRNEQ (name
, ".MIPS.abiflags"))
7668 hdr
->sh_type
= SHT_MIPS_ABIFLAGS
;
7669 hdr
->sh_entsize
= sizeof (Elf_External_ABIFlags_v0
);
7671 else if (CONST_STRNEQ (name
, ".debug_")
7672 || CONST_STRNEQ (name
, ".zdebug_"))
7674 hdr
->sh_type
= SHT_MIPS_DWARF
;
7676 /* Irix facilities such as libexc expect a single .debug_frame
7677 per executable, the system ones have NOSTRIP set and the linker
7678 doesn't merge sections with different flags so ... */
7679 if (SGI_COMPAT (abfd
) && CONST_STRNEQ (name
, ".debug_frame"))
7680 hdr
->sh_flags
|= SHF_MIPS_NOSTRIP
;
7682 else if (strcmp (name
, ".MIPS.symlib") == 0)
7684 hdr
->sh_type
= SHT_MIPS_SYMBOL_LIB
;
7685 /* The sh_link and sh_info fields are set in
7686 final_write_processing. */
7688 else if (CONST_STRNEQ (name
, ".MIPS.events")
7689 || CONST_STRNEQ (name
, ".MIPS.post_rel"))
7691 hdr
->sh_type
= SHT_MIPS_EVENTS
;
7692 hdr
->sh_flags
|= SHF_MIPS_NOSTRIP
;
7693 /* The sh_link field is set in final_write_processing. */
7695 else if (strcmp (name
, ".msym") == 0)
7697 hdr
->sh_type
= SHT_MIPS_MSYM
;
7698 hdr
->sh_flags
|= SHF_ALLOC
;
7699 hdr
->sh_entsize
= 8;
7701 else if (strcmp (name
, ".MIPS.xhash") == 0)
7703 hdr
->sh_type
= SHT_MIPS_XHASH
;
7704 hdr
->sh_flags
|= SHF_ALLOC
;
7705 hdr
->sh_entsize
= get_elf_backend_data(abfd
)->s
->arch_size
== 64 ? 0 : 4;
7708 /* The generic elf_fake_sections will set up REL_HDR using the default
7709 kind of relocations. We used to set up a second header for the
7710 non-default kind of relocations here, but only NewABI would use
7711 these, and the IRIX ld doesn't like resulting empty RELA sections.
7712 Thus we create those header only on demand now. */
7717 /* Given a BFD section, try to locate the corresponding ELF section
7718 index. This is used by both the 32-bit and the 64-bit ABI.
7719 Actually, it's not clear to me that the 64-bit ABI supports these,
7720 but for non-PIC objects we will certainly want support for at least
7721 the .scommon section. */
7724 _bfd_mips_elf_section_from_bfd_section (bfd
*abfd ATTRIBUTE_UNUSED
,
7725 asection
*sec
, int *retval
)
7727 if (strcmp (bfd_section_name (sec
), ".scommon") == 0)
7729 *retval
= SHN_MIPS_SCOMMON
;
7732 if (strcmp (bfd_section_name (sec
), ".acommon") == 0)
7734 *retval
= SHN_MIPS_ACOMMON
;
7740 /* Hook called by the linker routine which adds symbols from an object
7741 file. We must handle the special MIPS section numbers here. */
7744 _bfd_mips_elf_add_symbol_hook (bfd
*abfd
, struct bfd_link_info
*info
,
7745 Elf_Internal_Sym
*sym
, const char **namep
,
7746 flagword
*flagsp ATTRIBUTE_UNUSED
,
7747 asection
**secp
, bfd_vma
*valp
)
7749 if (SGI_COMPAT (abfd
)
7750 && (abfd
->flags
& DYNAMIC
) != 0
7751 && strcmp (*namep
, "_rld_new_interface") == 0)
7753 /* Skip IRIX5 rld entry name. */
7758 /* Shared objects may have a dynamic symbol '_gp_disp' defined as
7759 a SECTION *ABS*. This causes ld to think it can resolve _gp_disp
7760 by setting a DT_NEEDED for the shared object. Since _gp_disp is
7761 a magic symbol resolved by the linker, we ignore this bogus definition
7762 of _gp_disp. New ABI objects do not suffer from this problem so this
7763 is not done for them. */
7765 && (sym
->st_shndx
== SHN_ABS
)
7766 && (strcmp (*namep
, "_gp_disp") == 0))
7772 switch (sym
->st_shndx
)
7775 /* Common symbols less than the GP size are automatically
7776 treated as SHN_MIPS_SCOMMON symbols. */
7777 if (sym
->st_size
> elf_gp_size (abfd
)
7778 || ELF_ST_TYPE (sym
->st_info
) == STT_TLS
7779 || IRIX_COMPAT (abfd
) == ict_irix6
)
7782 case SHN_MIPS_SCOMMON
:
7783 *secp
= bfd_make_section_old_way (abfd
, ".scommon");
7784 (*secp
)->flags
|= SEC_IS_COMMON
| SEC_SMALL_DATA
;
7785 *valp
= sym
->st_size
;
7789 /* This section is used in a shared object. */
7790 if (mips_elf_tdata (abfd
)->elf_text_section
== NULL
)
7792 asymbol
*elf_text_symbol
;
7793 asection
*elf_text_section
;
7794 size_t amt
= sizeof (asection
);
7796 elf_text_section
= bfd_zalloc (abfd
, amt
);
7797 if (elf_text_section
== NULL
)
7800 amt
= sizeof (asymbol
);
7801 elf_text_symbol
= bfd_zalloc (abfd
, amt
);
7802 if (elf_text_symbol
== NULL
)
7805 /* Initialize the section. */
7807 mips_elf_tdata (abfd
)->elf_text_section
= elf_text_section
;
7808 mips_elf_tdata (abfd
)->elf_text_symbol
= elf_text_symbol
;
7810 elf_text_section
->symbol
= elf_text_symbol
;
7811 elf_text_section
->symbol_ptr_ptr
= &mips_elf_tdata (abfd
)->elf_text_symbol
;
7813 elf_text_section
->name
= ".text";
7814 elf_text_section
->flags
= SEC_NO_FLAGS
;
7815 elf_text_section
->output_section
= NULL
;
7816 elf_text_section
->owner
= abfd
;
7817 elf_text_symbol
->name
= ".text";
7818 elf_text_symbol
->flags
= BSF_SECTION_SYM
| BSF_DYNAMIC
;
7819 elf_text_symbol
->section
= elf_text_section
;
7821 /* This code used to do *secp = bfd_und_section_ptr if
7822 bfd_link_pic (info). I don't know why, and that doesn't make sense,
7823 so I took it out. */
7824 *secp
= mips_elf_tdata (abfd
)->elf_text_section
;
7827 case SHN_MIPS_ACOMMON
:
7828 /* Fall through. XXX Can we treat this as allocated data? */
7830 /* This section is used in a shared object. */
7831 if (mips_elf_tdata (abfd
)->elf_data_section
== NULL
)
7833 asymbol
*elf_data_symbol
;
7834 asection
*elf_data_section
;
7835 size_t amt
= sizeof (asection
);
7837 elf_data_section
= bfd_zalloc (abfd
, amt
);
7838 if (elf_data_section
== NULL
)
7841 amt
= sizeof (asymbol
);
7842 elf_data_symbol
= bfd_zalloc (abfd
, amt
);
7843 if (elf_data_symbol
== NULL
)
7846 /* Initialize the section. */
7848 mips_elf_tdata (abfd
)->elf_data_section
= elf_data_section
;
7849 mips_elf_tdata (abfd
)->elf_data_symbol
= elf_data_symbol
;
7851 elf_data_section
->symbol
= elf_data_symbol
;
7852 elf_data_section
->symbol_ptr_ptr
= &mips_elf_tdata (abfd
)->elf_data_symbol
;
7854 elf_data_section
->name
= ".data";
7855 elf_data_section
->flags
= SEC_NO_FLAGS
;
7856 elf_data_section
->output_section
= NULL
;
7857 elf_data_section
->owner
= abfd
;
7858 elf_data_symbol
->name
= ".data";
7859 elf_data_symbol
->flags
= BSF_SECTION_SYM
| BSF_DYNAMIC
;
7860 elf_data_symbol
->section
= elf_data_section
;
7862 /* This code used to do *secp = bfd_und_section_ptr if
7863 bfd_link_pic (info). I don't know why, and that doesn't make sense,
7864 so I took it out. */
7865 *secp
= mips_elf_tdata (abfd
)->elf_data_section
;
7868 case SHN_MIPS_SUNDEFINED
:
7869 *secp
= bfd_und_section_ptr
;
7873 if (SGI_COMPAT (abfd
)
7874 && ! bfd_link_pic (info
)
7875 && info
->output_bfd
->xvec
== abfd
->xvec
7876 && strcmp (*namep
, "__rld_obj_head") == 0)
7878 struct elf_link_hash_entry
*h
;
7879 struct bfd_link_hash_entry
*bh
;
7881 /* Mark __rld_obj_head as dynamic. */
7883 if (! (_bfd_generic_link_add_one_symbol
7884 (info
, abfd
, *namep
, BSF_GLOBAL
, *secp
, *valp
, NULL
, FALSE
,
7885 get_elf_backend_data (abfd
)->collect
, &bh
)))
7888 h
= (struct elf_link_hash_entry
*) bh
;
7891 h
->type
= STT_OBJECT
;
7893 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
7896 mips_elf_hash_table (info
)->use_rld_obj_head
= TRUE
;
7897 mips_elf_hash_table (info
)->rld_symbol
= h
;
7900 /* If this is a mips16 text symbol, add 1 to the value to make it
7901 odd. This will cause something like .word SYM to come up with
7902 the right value when it is loaded into the PC. */
7903 if (ELF_ST_IS_COMPRESSED (sym
->st_other
))
7909 /* This hook function is called before the linker writes out a global
7910 symbol. We mark symbols as small common if appropriate. This is
7911 also where we undo the increment of the value for a mips16 symbol. */
7914 _bfd_mips_elf_link_output_symbol_hook
7915 (struct bfd_link_info
*info ATTRIBUTE_UNUSED
,
7916 const char *name ATTRIBUTE_UNUSED
, Elf_Internal_Sym
*sym
,
7917 asection
*input_sec
, struct elf_link_hash_entry
*h ATTRIBUTE_UNUSED
)
7919 /* If we see a common symbol, which implies a relocatable link, then
7920 if a symbol was small common in an input file, mark it as small
7921 common in the output file. */
7922 if (sym
->st_shndx
== SHN_COMMON
7923 && strcmp (input_sec
->name
, ".scommon") == 0)
7924 sym
->st_shndx
= SHN_MIPS_SCOMMON
;
7926 if (ELF_ST_IS_COMPRESSED (sym
->st_other
))
7927 sym
->st_value
&= ~1;
7932 /* Functions for the dynamic linker. */
7934 /* Create dynamic sections when linking against a dynamic object. */
7937 _bfd_mips_elf_create_dynamic_sections (bfd
*abfd
, struct bfd_link_info
*info
)
7939 struct elf_link_hash_entry
*h
;
7940 struct bfd_link_hash_entry
*bh
;
7942 register asection
*s
;
7943 const char * const *namep
;
7944 struct mips_elf_link_hash_table
*htab
;
7946 htab
= mips_elf_hash_table (info
);
7947 BFD_ASSERT (htab
!= NULL
);
7949 flags
= (SEC_ALLOC
| SEC_LOAD
| SEC_HAS_CONTENTS
| SEC_IN_MEMORY
7950 | SEC_LINKER_CREATED
| SEC_READONLY
);
7952 /* The psABI requires a read-only .dynamic section, but the VxWorks
7954 if (htab
->root
.target_os
!= is_vxworks
)
7956 s
= bfd_get_linker_section (abfd
, ".dynamic");
7959 if (!bfd_set_section_flags (s
, flags
))
7964 /* We need to create .got section. */
7965 if (!mips_elf_create_got_section (abfd
, info
))
7968 if (! mips_elf_rel_dyn_section (info
, TRUE
))
7971 /* Create .stub section. */
7972 s
= bfd_make_section_anyway_with_flags (abfd
,
7973 MIPS_ELF_STUB_SECTION_NAME (abfd
),
7976 || !bfd_set_section_alignment (s
, MIPS_ELF_LOG_FILE_ALIGN (abfd
)))
7980 if (!mips_elf_hash_table (info
)->use_rld_obj_head
7981 && bfd_link_executable (info
)
7982 && bfd_get_linker_section (abfd
, ".rld_map") == NULL
)
7984 s
= bfd_make_section_anyway_with_flags (abfd
, ".rld_map",
7985 flags
&~ (flagword
) SEC_READONLY
);
7987 || !bfd_set_section_alignment (s
, MIPS_ELF_LOG_FILE_ALIGN (abfd
)))
7991 /* Create .MIPS.xhash section. */
7992 if (info
->emit_gnu_hash
)
7993 s
= bfd_make_section_anyway_with_flags (abfd
, ".MIPS.xhash",
7994 flags
| SEC_READONLY
);
7996 /* On IRIX5, we adjust add some additional symbols and change the
7997 alignments of several sections. There is no ABI documentation
7998 indicating that this is necessary on IRIX6, nor any evidence that
7999 the linker takes such action. */
8000 if (IRIX_COMPAT (abfd
) == ict_irix5
)
8002 for (namep
= mips_elf_dynsym_rtproc_names
; *namep
!= NULL
; namep
++)
8005 if (! (_bfd_generic_link_add_one_symbol
8006 (info
, abfd
, *namep
, BSF_GLOBAL
, bfd_und_section_ptr
, 0,
8007 NULL
, FALSE
, get_elf_backend_data (abfd
)->collect
, &bh
)))
8010 h
= (struct elf_link_hash_entry
*) bh
;
8014 h
->type
= STT_SECTION
;
8016 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
8020 /* We need to create a .compact_rel section. */
8021 if (SGI_COMPAT (abfd
))
8023 if (!mips_elf_create_compact_rel_section (abfd
, info
))
8027 /* Change alignments of some sections. */
8028 s
= bfd_get_linker_section (abfd
, ".hash");
8030 bfd_set_section_alignment (s
, MIPS_ELF_LOG_FILE_ALIGN (abfd
));
8032 s
= bfd_get_linker_section (abfd
, ".dynsym");
8034 bfd_set_section_alignment (s
, MIPS_ELF_LOG_FILE_ALIGN (abfd
));
8036 s
= bfd_get_linker_section (abfd
, ".dynstr");
8038 bfd_set_section_alignment (s
, MIPS_ELF_LOG_FILE_ALIGN (abfd
));
8041 s
= bfd_get_section_by_name (abfd
, ".reginfo");
8043 bfd_set_section_alignment (s
, MIPS_ELF_LOG_FILE_ALIGN (abfd
));
8045 s
= bfd_get_linker_section (abfd
, ".dynamic");
8047 bfd_set_section_alignment (s
, MIPS_ELF_LOG_FILE_ALIGN (abfd
));
8050 if (bfd_link_executable (info
))
8054 name
= SGI_COMPAT (abfd
) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
8056 if (!(_bfd_generic_link_add_one_symbol
8057 (info
, abfd
, name
, BSF_GLOBAL
, bfd_abs_section_ptr
, 0,
8058 NULL
, FALSE
, get_elf_backend_data (abfd
)->collect
, &bh
)))
8061 h
= (struct elf_link_hash_entry
*) bh
;
8064 h
->type
= STT_SECTION
;
8066 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
8069 if (! mips_elf_hash_table (info
)->use_rld_obj_head
)
8071 /* __rld_map is a four byte word located in the .data section
8072 and is filled in by the rtld to contain a pointer to
8073 the _r_debug structure. Its symbol value will be set in
8074 _bfd_mips_elf_finish_dynamic_symbol. */
8075 s
= bfd_get_linker_section (abfd
, ".rld_map");
8076 BFD_ASSERT (s
!= NULL
);
8078 name
= SGI_COMPAT (abfd
) ? "__rld_map" : "__RLD_MAP";
8080 if (!(_bfd_generic_link_add_one_symbol
8081 (info
, abfd
, name
, BSF_GLOBAL
, s
, 0, NULL
, FALSE
,
8082 get_elf_backend_data (abfd
)->collect
, &bh
)))
8085 h
= (struct elf_link_hash_entry
*) bh
;
8088 h
->type
= STT_OBJECT
;
8090 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
8092 mips_elf_hash_table (info
)->rld_symbol
= h
;
8096 /* Create the .plt, .rel(a).plt, .dynbss and .rel(a).bss sections.
8097 Also, on VxWorks, create the _PROCEDURE_LINKAGE_TABLE_ symbol. */
8098 if (!_bfd_elf_create_dynamic_sections (abfd
, info
))
8101 /* Do the usual VxWorks handling. */
8102 if (htab
->root
.target_os
== is_vxworks
8103 && !elf_vxworks_create_dynamic_sections (abfd
, info
, &htab
->srelplt2
))
8109 /* Return true if relocation REL against section SEC is a REL rather than
8110 RELA relocation. RELOCS is the first relocation in the section and
8111 ABFD is the bfd that contains SEC. */
8114 mips_elf_rel_relocation_p (bfd
*abfd
, asection
*sec
,
8115 const Elf_Internal_Rela
*relocs
,
8116 const Elf_Internal_Rela
*rel
)
8118 Elf_Internal_Shdr
*rel_hdr
;
8119 const struct elf_backend_data
*bed
;
8121 /* To determine which flavor of relocation this is, we depend on the
8122 fact that the INPUT_SECTION's REL_HDR is read before RELA_HDR. */
8123 rel_hdr
= elf_section_data (sec
)->rel
.hdr
;
8124 if (rel_hdr
== NULL
)
8126 bed
= get_elf_backend_data (abfd
);
8127 return ((size_t) (rel
- relocs
)
8128 < NUM_SHDR_ENTRIES (rel_hdr
) * bed
->s
->int_rels_per_ext_rel
);
8131 /* Read the addend for REL relocation REL, which belongs to bfd ABFD.
8132 HOWTO is the relocation's howto and CONTENTS points to the contents
8133 of the section that REL is against. */
8136 mips_elf_read_rel_addend (bfd
*abfd
, const Elf_Internal_Rela
*rel
,
8137 reloc_howto_type
*howto
, bfd_byte
*contents
)
8140 unsigned int r_type
;
8144 r_type
= ELF_R_TYPE (abfd
, rel
->r_info
);
8145 location
= contents
+ rel
->r_offset
;
8147 /* Get the addend, which is stored in the input file. */
8148 _bfd_mips_elf_reloc_unshuffle (abfd
, r_type
, FALSE
, location
);
8149 bytes
= mips_elf_obtain_contents (howto
, rel
, abfd
, contents
);
8150 _bfd_mips_elf_reloc_shuffle (abfd
, r_type
, FALSE
, location
);
8152 addend
= bytes
& howto
->src_mask
;
8154 /* Shift is 2, unusually, for microMIPS JALX. Adjust the addend
8156 if (r_type
== R_MICROMIPS_26_S1
&& (bytes
>> 26) == 0x3c)
8162 /* REL is a relocation in ABFD that needs a partnering LO16 relocation
8163 and *ADDEND is the addend for REL itself. Look for the LO16 relocation
8164 and update *ADDEND with the final addend. Return true on success
8165 or false if the LO16 could not be found. RELEND is the exclusive
8166 upper bound on the relocations for REL's section. */
8169 mips_elf_add_lo16_rel_addend (bfd
*abfd
,
8170 const Elf_Internal_Rela
*rel
,
8171 const Elf_Internal_Rela
*relend
,
8172 bfd_byte
*contents
, bfd_vma
*addend
)
8174 unsigned int r_type
, lo16_type
;
8175 const Elf_Internal_Rela
*lo16_relocation
;
8176 reloc_howto_type
*lo16_howto
;
8179 r_type
= ELF_R_TYPE (abfd
, rel
->r_info
);
8180 if (mips16_reloc_p (r_type
))
8181 lo16_type
= R_MIPS16_LO16
;
8182 else if (micromips_reloc_p (r_type
))
8183 lo16_type
= R_MICROMIPS_LO16
;
8184 else if (r_type
== R_MIPS_PCHI16
)
8185 lo16_type
= R_MIPS_PCLO16
;
8187 lo16_type
= R_MIPS_LO16
;
8189 /* The combined value is the sum of the HI16 addend, left-shifted by
8190 sixteen bits, and the LO16 addend, sign extended. (Usually, the
8191 code does a `lui' of the HI16 value, and then an `addiu' of the
8194 Scan ahead to find a matching LO16 relocation.
8196 According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must
8197 be immediately following. However, for the IRIX6 ABI, the next
8198 relocation may be a composed relocation consisting of several
8199 relocations for the same address. In that case, the R_MIPS_LO16
8200 relocation may occur as one of these. We permit a similar
8201 extension in general, as that is useful for GCC.
8203 In some cases GCC dead code elimination removes the LO16 but keeps
8204 the corresponding HI16. This is strictly speaking a violation of
8205 the ABI but not immediately harmful. */
8206 lo16_relocation
= mips_elf_next_relocation (abfd
, lo16_type
, rel
, relend
);
8207 if (lo16_relocation
== NULL
)
8210 /* Obtain the addend kept there. */
8211 lo16_howto
= MIPS_ELF_RTYPE_TO_HOWTO (abfd
, lo16_type
, FALSE
);
8212 l
= mips_elf_read_rel_addend (abfd
, lo16_relocation
, lo16_howto
, contents
);
8214 l
<<= lo16_howto
->rightshift
;
8215 l
= _bfd_mips_elf_sign_extend (l
, 16);
8222 /* Try to read the contents of section SEC in bfd ABFD. Return true and
8223 store the contents in *CONTENTS on success. Assume that *CONTENTS
8224 already holds the contents if it is nonull on entry. */
8227 mips_elf_get_section_contents (bfd
*abfd
, asection
*sec
, bfd_byte
**contents
)
8232 /* Get cached copy if it exists. */
8233 if (elf_section_data (sec
)->this_hdr
.contents
!= NULL
)
8235 *contents
= elf_section_data (sec
)->this_hdr
.contents
;
8239 return bfd_malloc_and_get_section (abfd
, sec
, contents
);
8242 /* Make a new PLT record to keep internal data. */
8244 static struct plt_entry
*
8245 mips_elf_make_plt_record (bfd
*abfd
)
8247 struct plt_entry
*entry
;
8249 entry
= bfd_zalloc (abfd
, sizeof (*entry
));
8253 entry
->stub_offset
= MINUS_ONE
;
8254 entry
->mips_offset
= MINUS_ONE
;
8255 entry
->comp_offset
= MINUS_ONE
;
8256 entry
->gotplt_index
= MINUS_ONE
;
8260 /* Define the special `__gnu_absolute_zero' symbol. We only need this
8261 for PIC code, as otherwise there is no load-time relocation involved
8262 and local GOT entries whose value is zero at static link time will
8263 retain their value at load time. */
8266 mips_elf_define_absolute_zero (bfd
*abfd
, struct bfd_link_info
*info
,
8267 struct mips_elf_link_hash_table
*htab
,
8268 unsigned int r_type
)
8272 struct elf_link_hash_entry
*eh
;
8273 struct bfd_link_hash_entry
*bh
;
8277 BFD_ASSERT (!htab
->use_absolute_zero
);
8278 BFD_ASSERT (bfd_link_pic (info
));
8281 if (!_bfd_generic_link_add_one_symbol (info
, abfd
, "__gnu_absolute_zero",
8282 BSF_GLOBAL
, bfd_abs_section_ptr
, 0,
8283 NULL
, FALSE
, FALSE
, &hzero
.bh
))
8286 BFD_ASSERT (hzero
.bh
!= NULL
);
8288 hzero
.eh
->type
= STT_NOTYPE
;
8289 hzero
.eh
->other
= STV_PROTECTED
;
8290 hzero
.eh
->def_regular
= 1;
8291 hzero
.eh
->non_elf
= 0;
8293 if (!mips_elf_record_global_got_symbol (hzero
.eh
, abfd
, info
, TRUE
, r_type
))
8296 htab
->use_absolute_zero
= TRUE
;
8301 /* Look through the relocs for a section during the first phase, and
8302 allocate space in the global offset table and record the need for
8303 standard MIPS and compressed procedure linkage table entries. */
8306 _bfd_mips_elf_check_relocs (bfd
*abfd
, struct bfd_link_info
*info
,
8307 asection
*sec
, const Elf_Internal_Rela
*relocs
)
8311 Elf_Internal_Shdr
*symtab_hdr
;
8312 struct elf_link_hash_entry
**sym_hashes
;
8314 const Elf_Internal_Rela
*rel
;
8315 const Elf_Internal_Rela
*rel_end
;
8317 const struct elf_backend_data
*bed
;
8318 struct mips_elf_link_hash_table
*htab
;
8321 reloc_howto_type
*howto
;
8323 if (bfd_link_relocatable (info
))
8326 htab
= mips_elf_hash_table (info
);
8327 BFD_ASSERT (htab
!= NULL
);
8329 dynobj
= elf_hash_table (info
)->dynobj
;
8330 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
8331 sym_hashes
= elf_sym_hashes (abfd
);
8332 extsymoff
= (elf_bad_symtab (abfd
)) ? 0 : symtab_hdr
->sh_info
;
8334 bed
= get_elf_backend_data (abfd
);
8335 rel_end
= relocs
+ sec
->reloc_count
;
8337 /* Check for the mips16 stub sections. */
8339 name
= bfd_section_name (sec
);
8340 if (FN_STUB_P (name
))
8342 unsigned long r_symndx
;
8344 /* Look at the relocation information to figure out which symbol
8347 r_symndx
= mips16_stub_symndx (bed
, sec
, relocs
, rel_end
);
8351 /* xgettext:c-format */
8352 (_("%pB: warning: cannot determine the target function for"
8353 " stub section `%s'"),
8355 bfd_set_error (bfd_error_bad_value
);
8359 if (r_symndx
< extsymoff
8360 || sym_hashes
[r_symndx
- extsymoff
] == NULL
)
8364 /* This stub is for a local symbol. This stub will only be
8365 needed if there is some relocation in this BFD, other
8366 than a 16 bit function call, which refers to this symbol. */
8367 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
8369 Elf_Internal_Rela
*sec_relocs
;
8370 const Elf_Internal_Rela
*r
, *rend
;
8372 /* We can ignore stub sections when looking for relocs. */
8373 if ((o
->flags
& SEC_RELOC
) == 0
8374 || o
->reloc_count
== 0
8375 || section_allows_mips16_refs_p (o
))
8379 = _bfd_elf_link_read_relocs (abfd
, o
, NULL
, NULL
,
8381 if (sec_relocs
== NULL
)
8384 rend
= sec_relocs
+ o
->reloc_count
;
8385 for (r
= sec_relocs
; r
< rend
; r
++)
8386 if (ELF_R_SYM (abfd
, r
->r_info
) == r_symndx
8387 && !mips16_call_reloc_p (ELF_R_TYPE (abfd
, r
->r_info
)))
8390 if (elf_section_data (o
)->relocs
!= sec_relocs
)
8399 /* There is no non-call reloc for this stub, so we do
8400 not need it. Since this function is called before
8401 the linker maps input sections to output sections, we
8402 can easily discard it by setting the SEC_EXCLUDE
8404 sec
->flags
|= SEC_EXCLUDE
;
8408 /* Record this stub in an array of local symbol stubs for
8410 if (mips_elf_tdata (abfd
)->local_stubs
== NULL
)
8412 unsigned long symcount
;
8416 if (elf_bad_symtab (abfd
))
8417 symcount
= NUM_SHDR_ENTRIES (symtab_hdr
);
8419 symcount
= symtab_hdr
->sh_info
;
8420 amt
= symcount
* sizeof (asection
*);
8421 n
= bfd_zalloc (abfd
, amt
);
8424 mips_elf_tdata (abfd
)->local_stubs
= n
;
8427 sec
->flags
|= SEC_KEEP
;
8428 mips_elf_tdata (abfd
)->local_stubs
[r_symndx
] = sec
;
8430 /* We don't need to set mips16_stubs_seen in this case.
8431 That flag is used to see whether we need to look through
8432 the global symbol table for stubs. We don't need to set
8433 it here, because we just have a local stub. */
8437 struct mips_elf_link_hash_entry
*h
;
8439 h
= ((struct mips_elf_link_hash_entry
*)
8440 sym_hashes
[r_symndx
- extsymoff
]);
8442 while (h
->root
.root
.type
== bfd_link_hash_indirect
8443 || h
->root
.root
.type
== bfd_link_hash_warning
)
8444 h
= (struct mips_elf_link_hash_entry
*) h
->root
.root
.u
.i
.link
;
8446 /* H is the symbol this stub is for. */
8448 /* If we already have an appropriate stub for this function, we
8449 don't need another one, so we can discard this one. Since
8450 this function is called before the linker maps input sections
8451 to output sections, we can easily discard it by setting the
8452 SEC_EXCLUDE flag. */
8453 if (h
->fn_stub
!= NULL
)
8455 sec
->flags
|= SEC_EXCLUDE
;
8459 sec
->flags
|= SEC_KEEP
;
8461 mips_elf_hash_table (info
)->mips16_stubs_seen
= TRUE
;
8464 else if (CALL_STUB_P (name
) || CALL_FP_STUB_P (name
))
8466 unsigned long r_symndx
;
8467 struct mips_elf_link_hash_entry
*h
;
8470 /* Look at the relocation information to figure out which symbol
8473 r_symndx
= mips16_stub_symndx (bed
, sec
, relocs
, rel_end
);
8477 /* xgettext:c-format */
8478 (_("%pB: warning: cannot determine the target function for"
8479 " stub section `%s'"),
8481 bfd_set_error (bfd_error_bad_value
);
8485 if (r_symndx
< extsymoff
8486 || sym_hashes
[r_symndx
- extsymoff
] == NULL
)
8490 /* This stub is for a local symbol. This stub will only be
8491 needed if there is some relocation (R_MIPS16_26) in this BFD
8492 that refers to this symbol. */
8493 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
8495 Elf_Internal_Rela
*sec_relocs
;
8496 const Elf_Internal_Rela
*r
, *rend
;
8498 /* We can ignore stub sections when looking for relocs. */
8499 if ((o
->flags
& SEC_RELOC
) == 0
8500 || o
->reloc_count
== 0
8501 || section_allows_mips16_refs_p (o
))
8505 = _bfd_elf_link_read_relocs (abfd
, o
, NULL
, NULL
,
8507 if (sec_relocs
== NULL
)
8510 rend
= sec_relocs
+ o
->reloc_count
;
8511 for (r
= sec_relocs
; r
< rend
; r
++)
8512 if (ELF_R_SYM (abfd
, r
->r_info
) == r_symndx
8513 && ELF_R_TYPE (abfd
, r
->r_info
) == R_MIPS16_26
)
8516 if (elf_section_data (o
)->relocs
!= sec_relocs
)
8525 /* There is no non-call reloc for this stub, so we do
8526 not need it. Since this function is called before
8527 the linker maps input sections to output sections, we
8528 can easily discard it by setting the SEC_EXCLUDE
8530 sec
->flags
|= SEC_EXCLUDE
;
8534 /* Record this stub in an array of local symbol call_stubs for
8536 if (mips_elf_tdata (abfd
)->local_call_stubs
== NULL
)
8538 unsigned long symcount
;
8542 if (elf_bad_symtab (abfd
))
8543 symcount
= NUM_SHDR_ENTRIES (symtab_hdr
);
8545 symcount
= symtab_hdr
->sh_info
;
8546 amt
= symcount
* sizeof (asection
*);
8547 n
= bfd_zalloc (abfd
, amt
);
8550 mips_elf_tdata (abfd
)->local_call_stubs
= n
;
8553 sec
->flags
|= SEC_KEEP
;
8554 mips_elf_tdata (abfd
)->local_call_stubs
[r_symndx
] = sec
;
8556 /* We don't need to set mips16_stubs_seen in this case.
8557 That flag is used to see whether we need to look through
8558 the global symbol table for stubs. We don't need to set
8559 it here, because we just have a local stub. */
8563 h
= ((struct mips_elf_link_hash_entry
*)
8564 sym_hashes
[r_symndx
- extsymoff
]);
8566 /* H is the symbol this stub is for. */
8568 if (CALL_FP_STUB_P (name
))
8569 loc
= &h
->call_fp_stub
;
8571 loc
= &h
->call_stub
;
8573 /* If we already have an appropriate stub for this function, we
8574 don't need another one, so we can discard this one. Since
8575 this function is called before the linker maps input sections
8576 to output sections, we can easily discard it by setting the
8577 SEC_EXCLUDE flag. */
8580 sec
->flags
|= SEC_EXCLUDE
;
8584 sec
->flags
|= SEC_KEEP
;
8586 mips_elf_hash_table (info
)->mips16_stubs_seen
= TRUE
;
8592 for (rel
= relocs
; rel
< rel_end
; ++rel
)
8594 unsigned long r_symndx
;
8595 unsigned int r_type
;
8596 struct elf_link_hash_entry
*h
;
8597 bfd_boolean can_make_dynamic_p
;
8598 bfd_boolean call_reloc_p
;
8599 bfd_boolean constrain_symbol_p
;
8601 r_symndx
= ELF_R_SYM (abfd
, rel
->r_info
);
8602 r_type
= ELF_R_TYPE (abfd
, rel
->r_info
);
8604 if (r_symndx
< extsymoff
)
8606 else if (r_symndx
>= extsymoff
+ NUM_SHDR_ENTRIES (symtab_hdr
))
8609 /* xgettext:c-format */
8610 (_("%pB: malformed reloc detected for section %s"),
8612 bfd_set_error (bfd_error_bad_value
);
8617 h
= sym_hashes
[r_symndx
- extsymoff
];
8620 while (h
->root
.type
== bfd_link_hash_indirect
8621 || h
->root
.type
== bfd_link_hash_warning
)
8622 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
8626 /* Set CAN_MAKE_DYNAMIC_P to true if we can convert this
8627 relocation into a dynamic one. */
8628 can_make_dynamic_p
= FALSE
;
8630 /* Set CALL_RELOC_P to true if the relocation is for a call,
8631 and if pointer equality therefore doesn't matter. */
8632 call_reloc_p
= FALSE
;
8634 /* Set CONSTRAIN_SYMBOL_P if we need to take the relocation
8635 into account when deciding how to define the symbol. */
8636 constrain_symbol_p
= TRUE
;
8641 case R_MIPS_CALL_HI16
:
8642 case R_MIPS_CALL_LO16
:
8643 case R_MIPS16_CALL16
:
8644 case R_MICROMIPS_CALL16
:
8645 case R_MICROMIPS_CALL_HI16
:
8646 case R_MICROMIPS_CALL_LO16
:
8647 call_reloc_p
= TRUE
;
8651 case R_MIPS_GOT_LO16
:
8652 case R_MIPS_GOT_PAGE
:
8653 case R_MIPS_GOT_DISP
:
8654 case R_MIPS16_GOT16
:
8655 case R_MICROMIPS_GOT16
:
8656 case R_MICROMIPS_GOT_LO16
:
8657 case R_MICROMIPS_GOT_PAGE
:
8658 case R_MICROMIPS_GOT_DISP
:
8659 /* If we have a symbol that will resolve to zero at static link
8660 time and it is used by a GOT relocation applied to code we
8661 cannot relax to an immediate zero load, then we will be using
8662 the special `__gnu_absolute_zero' symbol whose value is zero
8663 at dynamic load time. We ignore HI16-type GOT relocations at
8664 this stage, because their handling will depend entirely on
8665 the corresponding LO16-type GOT relocation. */
8666 if (!call_hi16_reloc_p (r_type
)
8668 && bfd_link_pic (info
)
8669 && !htab
->use_absolute_zero
8670 && UNDEFWEAK_NO_DYNAMIC_RELOC (info
, h
))
8672 bfd_boolean rel_reloc
;
8674 if (!mips_elf_get_section_contents (abfd
, sec
, &contents
))
8677 rel_reloc
= mips_elf_rel_relocation_p (abfd
, sec
, relocs
, rel
);
8678 howto
= MIPS_ELF_RTYPE_TO_HOWTO (abfd
, r_type
, !rel_reloc
);
8680 if (!mips_elf_nullify_got_load (abfd
, contents
, rel
, howto
,
8682 if (!mips_elf_define_absolute_zero (abfd
, info
, htab
, r_type
))
8687 case R_MIPS_GOT_HI16
:
8688 case R_MIPS_GOT_OFST
:
8689 case R_MIPS_TLS_GOTTPREL
:
8691 case R_MIPS_TLS_LDM
:
8692 case R_MIPS16_TLS_GOTTPREL
:
8693 case R_MIPS16_TLS_GD
:
8694 case R_MIPS16_TLS_LDM
:
8695 case R_MICROMIPS_GOT_HI16
:
8696 case R_MICROMIPS_GOT_OFST
:
8697 case R_MICROMIPS_TLS_GOTTPREL
:
8698 case R_MICROMIPS_TLS_GD
:
8699 case R_MICROMIPS_TLS_LDM
:
8701 elf_hash_table (info
)->dynobj
= dynobj
= abfd
;
8702 if (!mips_elf_create_got_section (dynobj
, info
))
8704 if (htab
->root
.target_os
== is_vxworks
8705 && !bfd_link_pic (info
))
8708 /* xgettext:c-format */
8709 (_("%pB: GOT reloc at %#" PRIx64
" not expected in executables"),
8710 abfd
, (uint64_t) rel
->r_offset
);
8711 bfd_set_error (bfd_error_bad_value
);
8714 can_make_dynamic_p
= TRUE
;
8719 case R_MICROMIPS_JALR
:
8720 /* These relocations have empty fields and are purely there to
8721 provide link information. The symbol value doesn't matter. */
8722 constrain_symbol_p
= FALSE
;
8725 case R_MIPS_GPREL16
:
8726 case R_MIPS_GPREL32
:
8727 case R_MIPS16_GPREL
:
8728 case R_MICROMIPS_GPREL16
:
8729 /* GP-relative relocations always resolve to a definition in a
8730 regular input file, ignoring the one-definition rule. This is
8731 important for the GP setup sequence in NewABI code, which
8732 always resolves to a local function even if other relocations
8733 against the symbol wouldn't. */
8734 constrain_symbol_p
= FALSE
;
8740 /* In VxWorks executables, references to external symbols
8741 must be handled using copy relocs or PLT entries; it is not
8742 possible to convert this relocation into a dynamic one.
8744 For executables that use PLTs and copy-relocs, we have a
8745 choice between converting the relocation into a dynamic
8746 one or using copy relocations or PLT entries. It is
8747 usually better to do the former, unless the relocation is
8748 against a read-only section. */
8749 if ((bfd_link_pic (info
)
8751 && htab
->root
.target_os
!= is_vxworks
8752 && strcmp (h
->root
.root
.string
, "__gnu_local_gp") != 0
8753 && !(!info
->nocopyreloc
8754 && !PIC_OBJECT_P (abfd
)
8755 && MIPS_ELF_READONLY_SECTION (sec
))))
8756 && (sec
->flags
& SEC_ALLOC
) != 0)
8758 can_make_dynamic_p
= TRUE
;
8760 elf_hash_table (info
)->dynobj
= dynobj
= abfd
;
8766 case R_MIPS_PC21_S2
:
8767 case R_MIPS_PC26_S2
:
8769 case R_MIPS16_PC16_S1
:
8770 case R_MICROMIPS_26_S1
:
8771 case R_MICROMIPS_PC7_S1
:
8772 case R_MICROMIPS_PC10_S1
:
8773 case R_MICROMIPS_PC16_S1
:
8774 case R_MICROMIPS_PC23_S2
:
8775 call_reloc_p
= TRUE
;
8781 if (constrain_symbol_p
)
8783 if (!can_make_dynamic_p
)
8784 ((struct mips_elf_link_hash_entry
*) h
)->has_static_relocs
= 1;
8787 h
->pointer_equality_needed
= 1;
8789 /* We must not create a stub for a symbol that has
8790 relocations related to taking the function's address.
8791 This doesn't apply to VxWorks, where CALL relocs refer
8792 to a .got.plt entry instead of a normal .got entry. */
8793 if (htab
->root
.target_os
!= is_vxworks
8794 && (!can_make_dynamic_p
|| !call_reloc_p
))
8795 ((struct mips_elf_link_hash_entry
*) h
)->no_fn_stub
= TRUE
;
8798 /* Relocations against the special VxWorks __GOTT_BASE__ and
8799 __GOTT_INDEX__ symbols must be left to the loader. Allocate
8800 room for them in .rela.dyn. */
8801 if (is_gott_symbol (info
, h
))
8805 sreloc
= mips_elf_rel_dyn_section (info
, TRUE
);
8809 mips_elf_allocate_dynamic_relocations (dynobj
, info
, 1);
8810 if (MIPS_ELF_READONLY_SECTION (sec
))
8811 /* We tell the dynamic linker that there are
8812 relocations against the text segment. */
8813 info
->flags
|= DF_TEXTREL
;
8816 else if (call_lo16_reloc_p (r_type
)
8817 || got_lo16_reloc_p (r_type
)
8818 || got_disp_reloc_p (r_type
)
8819 || (got16_reloc_p (r_type
)
8820 && htab
->root
.target_os
== is_vxworks
))
8822 /* We may need a local GOT entry for this relocation. We
8823 don't count R_MIPS_GOT_PAGE because we can estimate the
8824 maximum number of pages needed by looking at the size of
8825 the segment. Similar comments apply to R_MIPS*_GOT16 and
8826 R_MIPS*_CALL16, except on VxWorks, where GOT relocations
8827 always evaluate to "G". We don't count R_MIPS_GOT_HI16, or
8828 R_MIPS_CALL_HI16 because these are always followed by an
8829 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
8830 if (!mips_elf_record_local_got_symbol (abfd
, r_symndx
,
8831 rel
->r_addend
, info
, r_type
))
8836 && mips_elf_relocation_needs_la25_stub (abfd
, r_type
,
8837 ELF_ST_IS_MIPS16 (h
->other
)))
8838 ((struct mips_elf_link_hash_entry
*) h
)->has_nonpic_branches
= TRUE
;
8843 case R_MIPS16_CALL16
:
8844 case R_MICROMIPS_CALL16
:
8848 /* xgettext:c-format */
8849 (_("%pB: CALL16 reloc at %#" PRIx64
" not against global symbol"),
8850 abfd
, (uint64_t) rel
->r_offset
);
8851 bfd_set_error (bfd_error_bad_value
);
8856 case R_MIPS_CALL_HI16
:
8857 case R_MIPS_CALL_LO16
:
8858 case R_MICROMIPS_CALL_HI16
:
8859 case R_MICROMIPS_CALL_LO16
:
8862 /* Make sure there is room in the regular GOT to hold the
8863 function's address. We may eliminate it in favour of
8864 a .got.plt entry later; see mips_elf_count_got_symbols. */
8865 if (!mips_elf_record_global_got_symbol (h
, abfd
, info
, TRUE
,
8869 /* We need a stub, not a plt entry for the undefined
8870 function. But we record it as if it needs plt. See
8871 _bfd_elf_adjust_dynamic_symbol. */
8877 case R_MIPS_GOT_PAGE
:
8878 case R_MICROMIPS_GOT_PAGE
:
8879 case R_MIPS16_GOT16
:
8881 case R_MIPS_GOT_HI16
:
8882 case R_MIPS_GOT_LO16
:
8883 case R_MICROMIPS_GOT16
:
8884 case R_MICROMIPS_GOT_HI16
:
8885 case R_MICROMIPS_GOT_LO16
:
8886 if (!h
|| got_page_reloc_p (r_type
))
8888 /* This relocation needs (or may need, if h != NULL) a
8889 page entry in the GOT. For R_MIPS_GOT_PAGE we do not
8890 know for sure until we know whether the symbol is
8892 if (mips_elf_rel_relocation_p (abfd
, sec
, relocs
, rel
))
8894 if (!mips_elf_get_section_contents (abfd
, sec
, &contents
))
8896 howto
= MIPS_ELF_RTYPE_TO_HOWTO (abfd
, r_type
, FALSE
);
8897 addend
= mips_elf_read_rel_addend (abfd
, rel
,
8899 if (got16_reloc_p (r_type
))
8900 mips_elf_add_lo16_rel_addend (abfd
, rel
, rel_end
,
8903 addend
<<= howto
->rightshift
;
8906 addend
= rel
->r_addend
;
8907 if (!mips_elf_record_got_page_ref (info
, abfd
, r_symndx
,
8913 struct mips_elf_link_hash_entry
*hmips
=
8914 (struct mips_elf_link_hash_entry
*) h
;
8916 /* This symbol is definitely not overridable. */
8917 if (hmips
->root
.def_regular
8918 && ! (bfd_link_pic (info
) && ! info
->symbolic
8919 && ! hmips
->root
.forced_local
))
8923 /* If this is a global, overridable symbol, GOT_PAGE will
8924 decay to GOT_DISP, so we'll need a GOT entry for it. */
8927 case R_MIPS_GOT_DISP
:
8928 case R_MICROMIPS_GOT_DISP
:
8929 if (h
&& !mips_elf_record_global_got_symbol (h
, abfd
, info
,
8934 case R_MIPS_TLS_GOTTPREL
:
8935 case R_MIPS16_TLS_GOTTPREL
:
8936 case R_MICROMIPS_TLS_GOTTPREL
:
8937 if (bfd_link_pic (info
))
8938 info
->flags
|= DF_STATIC_TLS
;
8941 case R_MIPS_TLS_LDM
:
8942 case R_MIPS16_TLS_LDM
:
8943 case R_MICROMIPS_TLS_LDM
:
8944 if (tls_ldm_reloc_p (r_type
))
8946 r_symndx
= STN_UNDEF
;
8952 case R_MIPS16_TLS_GD
:
8953 case R_MICROMIPS_TLS_GD
:
8954 /* This symbol requires a global offset table entry, or two
8955 for TLS GD relocations. */
8958 if (!mips_elf_record_global_got_symbol (h
, abfd
, info
,
8964 if (!mips_elf_record_local_got_symbol (abfd
, r_symndx
,
8974 /* In VxWorks executables, references to external symbols
8975 are handled using copy relocs or PLT stubs, so there's
8976 no need to add a .rela.dyn entry for this relocation. */
8977 if (can_make_dynamic_p
)
8981 sreloc
= mips_elf_rel_dyn_section (info
, TRUE
);
8985 if (bfd_link_pic (info
) && h
== NULL
)
8987 /* When creating a shared object, we must copy these
8988 reloc types into the output file as R_MIPS_REL32
8989 relocs. Make room for this reloc in .rel(a).dyn. */
8990 mips_elf_allocate_dynamic_relocations (dynobj
, info
, 1);
8991 if (MIPS_ELF_READONLY_SECTION (sec
))
8992 /* We tell the dynamic linker that there are
8993 relocations against the text segment. */
8994 info
->flags
|= DF_TEXTREL
;
8998 struct mips_elf_link_hash_entry
*hmips
;
9000 /* For a shared object, we must copy this relocation
9001 unless the symbol turns out to be undefined and
9002 weak with non-default visibility, in which case
9003 it will be left as zero.
9005 We could elide R_MIPS_REL32 for locally binding symbols
9006 in shared libraries, but do not yet do so.
9008 For an executable, we only need to copy this
9009 reloc if the symbol is defined in a dynamic
9011 hmips
= (struct mips_elf_link_hash_entry
*) h
;
9012 ++hmips
->possibly_dynamic_relocs
;
9013 if (MIPS_ELF_READONLY_SECTION (sec
))
9014 /* We need it to tell the dynamic linker if there
9015 are relocations against the text segment. */
9016 hmips
->readonly_reloc
= TRUE
;
9020 if (SGI_COMPAT (abfd
))
9021 mips_elf_hash_table (info
)->compact_rel_size
+=
9022 sizeof (Elf32_External_crinfo
);
9026 case R_MIPS_GPREL16
:
9027 case R_MIPS_LITERAL
:
9028 case R_MIPS_GPREL32
:
9029 case R_MICROMIPS_26_S1
:
9030 case R_MICROMIPS_GPREL16
:
9031 case R_MICROMIPS_LITERAL
:
9032 case R_MICROMIPS_GPREL7_S2
:
9033 if (SGI_COMPAT (abfd
))
9034 mips_elf_hash_table (info
)->compact_rel_size
+=
9035 sizeof (Elf32_External_crinfo
);
9038 /* This relocation describes the C++ object vtable hierarchy.
9039 Reconstruct it for later use during GC. */
9040 case R_MIPS_GNU_VTINHERIT
:
9041 if (!bfd_elf_gc_record_vtinherit (abfd
, sec
, h
, rel
->r_offset
))
9045 /* This relocation describes which C++ vtable entries are actually
9046 used. Record for later use during GC. */
9047 case R_MIPS_GNU_VTENTRY
:
9048 if (!bfd_elf_gc_record_vtentry (abfd
, sec
, h
, rel
->r_offset
))
9056 /* Record the need for a PLT entry. At this point we don't know
9057 yet if we are going to create a PLT in the first place, but
9058 we only record whether the relocation requires a standard MIPS
9059 or a compressed code entry anyway. If we don't make a PLT after
9060 all, then we'll just ignore these arrangements. Likewise if
9061 a PLT entry is not created because the symbol is satisfied
9064 && (branch_reloc_p (r_type
)
9065 || mips16_branch_reloc_p (r_type
)
9066 || micromips_branch_reloc_p (r_type
))
9067 && !SYMBOL_CALLS_LOCAL (info
, h
))
9069 if (h
->plt
.plist
== NULL
)
9070 h
->plt
.plist
= mips_elf_make_plt_record (abfd
);
9071 if (h
->plt
.plist
== NULL
)
9074 if (branch_reloc_p (r_type
))
9075 h
->plt
.plist
->need_mips
= TRUE
;
9077 h
->plt
.plist
->need_comp
= TRUE
;
9080 /* See if this reloc would need to refer to a MIPS16 hard-float stub,
9081 if there is one. We only need to handle global symbols here;
9082 we decide whether to keep or delete stubs for local symbols
9083 when processing the stub's relocations. */
9085 && !mips16_call_reloc_p (r_type
)
9086 && !section_allows_mips16_refs_p (sec
))
9088 struct mips_elf_link_hash_entry
*mh
;
9090 mh
= (struct mips_elf_link_hash_entry
*) h
;
9091 mh
->need_fn_stub
= TRUE
;
9094 /* Refuse some position-dependent relocations when creating a
9095 shared library. Do not refuse R_MIPS_32 / R_MIPS_64; they're
9096 not PIC, but we can create dynamic relocations and the result
9097 will be fine. Also do not refuse R_MIPS_LO16, which can be
9098 combined with R_MIPS_GOT16. */
9099 if (bfd_link_pic (info
))
9103 case R_MIPS_TLS_TPREL_HI16
:
9104 case R_MIPS16_TLS_TPREL_HI16
:
9105 case R_MICROMIPS_TLS_TPREL_HI16
:
9106 case R_MIPS_TLS_TPREL_LO16
:
9107 case R_MIPS16_TLS_TPREL_LO16
:
9108 case R_MICROMIPS_TLS_TPREL_LO16
:
9109 /* These are okay in PIE, but not in a shared library. */
9110 if (bfd_link_executable (info
))
9118 case R_MIPS_HIGHEST
:
9119 case R_MICROMIPS_HI16
:
9120 case R_MICROMIPS_HIGHER
:
9121 case R_MICROMIPS_HIGHEST
:
9122 /* Don't refuse a high part relocation if it's against
9123 no symbol (e.g. part of a compound relocation). */
9124 if (r_symndx
== STN_UNDEF
)
9127 /* Likewise an absolute symbol. */
9128 if (h
!= NULL
&& bfd_is_abs_symbol (&h
->root
))
9131 /* R_MIPS_HI16 against _gp_disp is used for $gp setup,
9132 and has a special meaning. */
9133 if (!NEWABI_P (abfd
) && h
!= NULL
9134 && strcmp (h
->root
.root
.string
, "_gp_disp") == 0)
9137 /* Likewise __GOTT_BASE__ and __GOTT_INDEX__ on VxWorks. */
9138 if (is_gott_symbol (info
, h
))
9145 case R_MICROMIPS_26_S1
:
9146 howto
= MIPS_ELF_RTYPE_TO_HOWTO (abfd
, r_type
, NEWABI_P (abfd
));
9147 /* An error for unsupported relocations is raised as part
9148 of the above search, so we can skip the following. */
9150 info
->callbacks
->einfo
9151 /* xgettext:c-format */
9152 (_("%X%H: relocation %s against `%s' cannot be used"
9153 " when making a shared object; recompile with -fPIC\n"),
9154 abfd
, sec
, rel
->r_offset
, howto
->name
,
9155 (h
) ? h
->root
.root
.string
: "a local symbol");
9166 /* Allocate space for global sym dynamic relocs. */
9169 allocate_dynrelocs (struct elf_link_hash_entry
*h
, void *inf
)
9171 struct bfd_link_info
*info
= inf
;
9173 struct mips_elf_link_hash_entry
*hmips
;
9174 struct mips_elf_link_hash_table
*htab
;
9176 htab
= mips_elf_hash_table (info
);
9177 BFD_ASSERT (htab
!= NULL
);
9179 dynobj
= elf_hash_table (info
)->dynobj
;
9180 hmips
= (struct mips_elf_link_hash_entry
*) h
;
9182 /* VxWorks executables are handled elsewhere; we only need to
9183 allocate relocations in shared objects. */
9184 if (htab
->root
.target_os
== is_vxworks
&& !bfd_link_pic (info
))
9187 /* Ignore indirect symbols. All relocations against such symbols
9188 will be redirected to the target symbol. */
9189 if (h
->root
.type
== bfd_link_hash_indirect
)
9192 /* If this symbol is defined in a dynamic object, or we are creating
9193 a shared library, we will need to copy any R_MIPS_32 or
9194 R_MIPS_REL32 relocs against it into the output file. */
9195 if (! bfd_link_relocatable (info
)
9196 && hmips
->possibly_dynamic_relocs
!= 0
9197 && (h
->root
.type
== bfd_link_hash_defweak
9198 || (!h
->def_regular
&& !ELF_COMMON_DEF_P (h
))
9199 || bfd_link_pic (info
)))
9201 bfd_boolean do_copy
= TRUE
;
9203 if (h
->root
.type
== bfd_link_hash_undefweak
)
9205 /* Do not copy relocations for undefined weak symbols that
9206 we are not going to export. */
9207 if (UNDEFWEAK_NO_DYNAMIC_RELOC (info
, h
))
9210 /* Make sure undefined weak symbols are output as a dynamic
9212 else if (h
->dynindx
== -1 && !h
->forced_local
)
9214 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
9221 /* Even though we don't directly need a GOT entry for this symbol,
9222 the SVR4 psABI requires it to have a dynamic symbol table
9223 index greater that DT_MIPS_GOTSYM if there are dynamic
9224 relocations against it.
9226 VxWorks does not enforce the same mapping between the GOT
9227 and the symbol table, so the same requirement does not
9229 if (htab
->root
.target_os
!= is_vxworks
)
9231 if (hmips
->global_got_area
> GGA_RELOC_ONLY
)
9232 hmips
->global_got_area
= GGA_RELOC_ONLY
;
9233 hmips
->got_only_for_calls
= FALSE
;
9236 mips_elf_allocate_dynamic_relocations
9237 (dynobj
, info
, hmips
->possibly_dynamic_relocs
);
9238 if (hmips
->readonly_reloc
)
9239 /* We tell the dynamic linker that there are relocations
9240 against the text segment. */
9241 info
->flags
|= DF_TEXTREL
;
9248 /* Adjust a symbol defined by a dynamic object and referenced by a
9249 regular object. The current definition is in some section of the
9250 dynamic object, but we're not including those sections. We have to
9251 change the definition to something the rest of the link can
9255 _bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info
*info
,
9256 struct elf_link_hash_entry
*h
)
9259 struct mips_elf_link_hash_entry
*hmips
;
9260 struct mips_elf_link_hash_table
*htab
;
9263 htab
= mips_elf_hash_table (info
);
9264 BFD_ASSERT (htab
!= NULL
);
9266 dynobj
= elf_hash_table (info
)->dynobj
;
9267 hmips
= (struct mips_elf_link_hash_entry
*) h
;
9269 /* Make sure we know what is going on here. */
9272 && ! h
->is_weakalias
9273 && (! h
->def_dynamic
9275 || h
->def_regular
)))
9277 if (h
->type
== STT_GNU_IFUNC
)
9278 _bfd_error_handler (_("IFUNC symbol %s in dynamic symbol table - IFUNCS are not supported"),
9279 h
->root
.root
.string
);
9281 _bfd_error_handler (_("non-dynamic symbol %s in dynamic symbol table"),
9282 h
->root
.root
.string
);
9286 hmips
= (struct mips_elf_link_hash_entry
*) h
;
9288 /* If there are call relocations against an externally-defined symbol,
9289 see whether we can create a MIPS lazy-binding stub for it. We can
9290 only do this if all references to the function are through call
9291 relocations, and in that case, the traditional lazy-binding stubs
9292 are much more efficient than PLT entries.
9294 Traditional stubs are only available on SVR4 psABI-based systems;
9295 VxWorks always uses PLTs instead. */
9296 if (htab
->root
.target_os
!= is_vxworks
9298 && !hmips
->no_fn_stub
)
9300 if (! elf_hash_table (info
)->dynamic_sections_created
)
9303 /* If this symbol is not defined in a regular file, then set
9304 the symbol to the stub location. This is required to make
9305 function pointers compare as equal between the normal
9306 executable and the shared library. */
9308 && !bfd_is_abs_section (htab
->sstubs
->output_section
))
9310 hmips
->needs_lazy_stub
= TRUE
;
9311 htab
->lazy_stub_count
++;
9315 /* As above, VxWorks requires PLT entries for externally-defined
9316 functions that are only accessed through call relocations.
9318 Both VxWorks and non-VxWorks targets also need PLT entries if there
9319 are static-only relocations against an externally-defined function.
9320 This can technically occur for shared libraries if there are
9321 branches to the symbol, although it is unlikely that this will be
9322 used in practice due to the short ranges involved. It can occur
9323 for any relative or absolute relocation in executables; in that
9324 case, the PLT entry becomes the function's canonical address. */
9325 else if (((h
->needs_plt
&& !hmips
->no_fn_stub
)
9326 || (h
->type
== STT_FUNC
&& hmips
->has_static_relocs
))
9327 && htab
->use_plts_and_copy_relocs
9328 && !SYMBOL_CALLS_LOCAL (info
, h
)
9329 && !(ELF_ST_VISIBILITY (h
->other
) != STV_DEFAULT
9330 && h
->root
.type
== bfd_link_hash_undefweak
))
9332 bfd_boolean micromips_p
= MICROMIPS_P (info
->output_bfd
);
9333 bfd_boolean newabi_p
= NEWABI_P (info
->output_bfd
);
9335 /* If this is the first symbol to need a PLT entry, then make some
9336 basic setup. Also work out PLT entry sizes. We'll need them
9337 for PLT offset calculations. */
9338 if (htab
->plt_mips_offset
+ htab
->plt_comp_offset
== 0)
9340 BFD_ASSERT (htab
->root
.sgotplt
->size
== 0);
9341 BFD_ASSERT (htab
->plt_got_index
== 0);
9343 /* If we're using the PLT additions to the psABI, each PLT
9344 entry is 16 bytes and the PLT0 entry is 32 bytes.
9345 Encourage better cache usage by aligning. We do this
9346 lazily to avoid pessimizing traditional objects. */
9347 if (htab
->root
.target_os
!= is_vxworks
9348 && !bfd_set_section_alignment (htab
->root
.splt
, 5))
9351 /* Make sure that .got.plt is word-aligned. We do this lazily
9352 for the same reason as above. */
9353 if (!bfd_set_section_alignment (htab
->root
.sgotplt
,
9354 MIPS_ELF_LOG_FILE_ALIGN (dynobj
)))
9357 /* On non-VxWorks targets, the first two entries in .got.plt
9359 if (htab
->root
.target_os
!= is_vxworks
)
9361 += (get_elf_backend_data (dynobj
)->got_header_size
9362 / MIPS_ELF_GOT_SIZE (dynobj
));
9364 /* On VxWorks, also allocate room for the header's
9365 .rela.plt.unloaded entries. */
9366 if (htab
->root
.target_os
== is_vxworks
9367 && !bfd_link_pic (info
))
9368 htab
->srelplt2
->size
+= 2 * sizeof (Elf32_External_Rela
);
9370 /* Now work out the sizes of individual PLT entries. */
9371 if (htab
->root
.target_os
== is_vxworks
9372 && bfd_link_pic (info
))
9373 htab
->plt_mips_entry_size
9374 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry
);
9375 else if (htab
->root
.target_os
== is_vxworks
)
9376 htab
->plt_mips_entry_size
9377 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry
);
9379 htab
->plt_mips_entry_size
9380 = 4 * ARRAY_SIZE (mips_exec_plt_entry
);
9381 else if (!micromips_p
)
9383 htab
->plt_mips_entry_size
9384 = 4 * ARRAY_SIZE (mips_exec_plt_entry
);
9385 htab
->plt_comp_entry_size
9386 = 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry
);
9388 else if (htab
->insn32
)
9390 htab
->plt_mips_entry_size
9391 = 4 * ARRAY_SIZE (mips_exec_plt_entry
);
9392 htab
->plt_comp_entry_size
9393 = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry
);
9397 htab
->plt_mips_entry_size
9398 = 4 * ARRAY_SIZE (mips_exec_plt_entry
);
9399 htab
->plt_comp_entry_size
9400 = 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry
);
9404 if (h
->plt
.plist
== NULL
)
9405 h
->plt
.plist
= mips_elf_make_plt_record (dynobj
);
9406 if (h
->plt
.plist
== NULL
)
9409 /* There are no defined MIPS16 or microMIPS PLT entries for VxWorks,
9410 n32 or n64, so always use a standard entry there.
9412 If the symbol has a MIPS16 call stub and gets a PLT entry, then
9413 all MIPS16 calls will go via that stub, and there is no benefit
9414 to having a MIPS16 entry. And in the case of call_stub a
9415 standard entry actually has to be used as the stub ends with a J
9418 || htab
->root
.target_os
== is_vxworks
9420 || hmips
->call_fp_stub
)
9422 h
->plt
.plist
->need_mips
= TRUE
;
9423 h
->plt
.plist
->need_comp
= FALSE
;
9426 /* Otherwise, if there are no direct calls to the function, we
9427 have a free choice of whether to use standard or compressed
9428 entries. Prefer microMIPS entries if the object is known to
9429 contain microMIPS code, so that it becomes possible to create
9430 pure microMIPS binaries. Prefer standard entries otherwise,
9431 because MIPS16 ones are no smaller and are usually slower. */
9432 if (!h
->plt
.plist
->need_mips
&& !h
->plt
.plist
->need_comp
)
9435 h
->plt
.plist
->need_comp
= TRUE
;
9437 h
->plt
.plist
->need_mips
= TRUE
;
9440 if (h
->plt
.plist
->need_mips
)
9442 h
->plt
.plist
->mips_offset
= htab
->plt_mips_offset
;
9443 htab
->plt_mips_offset
+= htab
->plt_mips_entry_size
;
9445 if (h
->plt
.plist
->need_comp
)
9447 h
->plt
.plist
->comp_offset
= htab
->plt_comp_offset
;
9448 htab
->plt_comp_offset
+= htab
->plt_comp_entry_size
;
9451 /* Reserve the corresponding .got.plt entry now too. */
9452 h
->plt
.plist
->gotplt_index
= htab
->plt_got_index
++;
9454 /* If the output file has no definition of the symbol, set the
9455 symbol's value to the address of the stub. */
9456 if (!bfd_link_pic (info
) && !h
->def_regular
)
9457 hmips
->use_plt_entry
= TRUE
;
9459 /* Make room for the R_MIPS_JUMP_SLOT relocation. */
9460 htab
->root
.srelplt
->size
+= (htab
->root
.target_os
== is_vxworks
9461 ? MIPS_ELF_RELA_SIZE (dynobj
)
9462 : MIPS_ELF_REL_SIZE (dynobj
));
9464 /* Make room for the .rela.plt.unloaded relocations. */
9465 if (htab
->root
.target_os
== is_vxworks
&& !bfd_link_pic (info
))
9466 htab
->srelplt2
->size
+= 3 * sizeof (Elf32_External_Rela
);
9468 /* All relocations against this symbol that could have been made
9469 dynamic will now refer to the PLT entry instead. */
9470 hmips
->possibly_dynamic_relocs
= 0;
9475 /* If this is a weak symbol, and there is a real definition, the
9476 processor independent code will have arranged for us to see the
9477 real definition first, and we can just use the same value. */
9478 if (h
->is_weakalias
)
9480 struct elf_link_hash_entry
*def
= weakdef (h
);
9481 BFD_ASSERT (def
->root
.type
== bfd_link_hash_defined
);
9482 h
->root
.u
.def
.section
= def
->root
.u
.def
.section
;
9483 h
->root
.u
.def
.value
= def
->root
.u
.def
.value
;
9487 /* Otherwise, there is nothing further to do for symbols defined
9488 in regular objects. */
9492 /* There's also nothing more to do if we'll convert all relocations
9493 against this symbol into dynamic relocations. */
9494 if (!hmips
->has_static_relocs
)
9497 /* We're now relying on copy relocations. Complain if we have
9498 some that we can't convert. */
9499 if (!htab
->use_plts_and_copy_relocs
|| bfd_link_pic (info
))
9501 _bfd_error_handler (_("non-dynamic relocations refer to "
9502 "dynamic symbol %s"),
9503 h
->root
.root
.string
);
9504 bfd_set_error (bfd_error_bad_value
);
9508 /* We must allocate the symbol in our .dynbss section, which will
9509 become part of the .bss section of the executable. There will be
9510 an entry for this symbol in the .dynsym section. The dynamic
9511 object will contain position independent code, so all references
9512 from the dynamic object to this symbol will go through the global
9513 offset table. The dynamic linker will use the .dynsym entry to
9514 determine the address it must put in the global offset table, so
9515 both the dynamic object and the regular object will refer to the
9516 same memory location for the variable. */
9518 if ((h
->root
.u
.def
.section
->flags
& SEC_READONLY
) != 0)
9520 s
= htab
->root
.sdynrelro
;
9521 srel
= htab
->root
.sreldynrelro
;
9525 s
= htab
->root
.sdynbss
;
9526 srel
= htab
->root
.srelbss
;
9528 if ((h
->root
.u
.def
.section
->flags
& SEC_ALLOC
) != 0)
9530 if (htab
->root
.target_os
== is_vxworks
)
9531 srel
->size
+= sizeof (Elf32_External_Rela
);
9533 mips_elf_allocate_dynamic_relocations (dynobj
, info
, 1);
9537 /* All relocations against this symbol that could have been made
9538 dynamic will now refer to the local copy instead. */
9539 hmips
->possibly_dynamic_relocs
= 0;
9541 return _bfd_elf_adjust_dynamic_copy (info
, h
, s
);
9544 /* This function is called after all the input files have been read,
9545 and the input sections have been assigned to output sections. We
9546 check for any mips16 stub sections that we can discard. */
9549 _bfd_mips_elf_always_size_sections (bfd
*output_bfd
,
9550 struct bfd_link_info
*info
)
9553 struct mips_elf_link_hash_table
*htab
;
9554 struct mips_htab_traverse_info hti
;
9556 htab
= mips_elf_hash_table (info
);
9557 BFD_ASSERT (htab
!= NULL
);
9559 /* The .reginfo section has a fixed size. */
9560 sect
= bfd_get_section_by_name (output_bfd
, ".reginfo");
9563 bfd_set_section_size (sect
, sizeof (Elf32_External_RegInfo
));
9564 sect
->flags
|= SEC_FIXED_SIZE
| SEC_HAS_CONTENTS
;
9567 /* The .MIPS.abiflags section has a fixed size. */
9568 sect
= bfd_get_section_by_name (output_bfd
, ".MIPS.abiflags");
9571 bfd_set_section_size (sect
, sizeof (Elf_External_ABIFlags_v0
));
9572 sect
->flags
|= SEC_FIXED_SIZE
| SEC_HAS_CONTENTS
;
9576 hti
.output_bfd
= output_bfd
;
9578 mips_elf_link_hash_traverse (mips_elf_hash_table (info
),
9579 mips_elf_check_symbols
, &hti
);
9586 /* If the link uses a GOT, lay it out and work out its size. */
9589 mips_elf_lay_out_got (bfd
*output_bfd
, struct bfd_link_info
*info
)
9593 struct mips_got_info
*g
;
9594 bfd_size_type loadable_size
= 0;
9595 bfd_size_type page_gotno
;
9597 struct mips_elf_traverse_got_arg tga
;
9598 struct mips_elf_link_hash_table
*htab
;
9600 htab
= mips_elf_hash_table (info
);
9601 BFD_ASSERT (htab
!= NULL
);
9603 s
= htab
->root
.sgot
;
9607 dynobj
= elf_hash_table (info
)->dynobj
;
9610 /* Allocate room for the reserved entries. VxWorks always reserves
9611 3 entries; other objects only reserve 2 entries. */
9612 BFD_ASSERT (g
->assigned_low_gotno
== 0);
9613 if (htab
->root
.target_os
== is_vxworks
)
9614 htab
->reserved_gotno
= 3;
9616 htab
->reserved_gotno
= 2;
9617 g
->local_gotno
+= htab
->reserved_gotno
;
9618 g
->assigned_low_gotno
= htab
->reserved_gotno
;
9620 /* Decide which symbols need to go in the global part of the GOT and
9621 count the number of reloc-only GOT symbols. */
9622 mips_elf_link_hash_traverse (htab
, mips_elf_count_got_symbols
, info
);
9624 if (!mips_elf_resolve_final_got_entries (info
, g
))
9627 /* Calculate the total loadable size of the output. That
9628 will give us the maximum number of GOT_PAGE entries
9630 for (ibfd
= info
->input_bfds
; ibfd
; ibfd
= ibfd
->link
.next
)
9632 asection
*subsection
;
9634 for (subsection
= ibfd
->sections
;
9636 subsection
= subsection
->next
)
9638 if ((subsection
->flags
& SEC_ALLOC
) == 0)
9640 loadable_size
+= ((subsection
->size
+ 0xf)
9641 &~ (bfd_size_type
) 0xf);
9645 if (htab
->root
.target_os
== is_vxworks
)
9646 /* There's no need to allocate page entries for VxWorks; R_MIPS*_GOT16
9647 relocations against local symbols evaluate to "G", and the EABI does
9648 not include R_MIPS_GOT_PAGE. */
9651 /* Assume there are two loadable segments consisting of contiguous
9652 sections. Is 5 enough? */
9653 page_gotno
= (loadable_size
>> 16) + 5;
9655 /* Choose the smaller of the two page estimates; both are intended to be
9657 if (page_gotno
> g
->page_gotno
)
9658 page_gotno
= g
->page_gotno
;
9660 g
->local_gotno
+= page_gotno
;
9661 g
->assigned_high_gotno
= g
->local_gotno
- 1;
9663 s
->size
+= g
->local_gotno
* MIPS_ELF_GOT_SIZE (output_bfd
);
9664 s
->size
+= g
->global_gotno
* MIPS_ELF_GOT_SIZE (output_bfd
);
9665 s
->size
+= g
->tls_gotno
* MIPS_ELF_GOT_SIZE (output_bfd
);
9667 /* VxWorks does not support multiple GOTs. It initializes $gp to
9668 __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the
9670 if (htab
->root
.target_os
!= is_vxworks
9671 && s
->size
> MIPS_ELF_GOT_MAX_SIZE (info
))
9673 if (!mips_elf_multi_got (output_bfd
, info
, s
, page_gotno
))
9678 /* Record that all bfds use G. This also has the effect of freeing
9679 the per-bfd GOTs, which we no longer need. */
9680 for (ibfd
= info
->input_bfds
; ibfd
; ibfd
= ibfd
->link
.next
)
9681 if (mips_elf_bfd_got (ibfd
, FALSE
))
9682 mips_elf_replace_bfd_got (ibfd
, g
);
9683 mips_elf_replace_bfd_got (output_bfd
, g
);
9685 /* Set up TLS entries. */
9686 g
->tls_assigned_gotno
= g
->global_gotno
+ g
->local_gotno
;
9689 tga
.value
= MIPS_ELF_GOT_SIZE (output_bfd
);
9690 htab_traverse (g
->got_entries
, mips_elf_initialize_tls_index
, &tga
);
9693 BFD_ASSERT (g
->tls_assigned_gotno
9694 == g
->global_gotno
+ g
->local_gotno
+ g
->tls_gotno
);
9696 /* Each VxWorks GOT entry needs an explicit relocation. */
9697 if (htab
->root
.target_os
== is_vxworks
&& bfd_link_pic (info
))
9698 g
->relocs
+= g
->global_gotno
+ g
->local_gotno
- htab
->reserved_gotno
;
9700 /* Allocate room for the TLS relocations. */
9702 mips_elf_allocate_dynamic_relocations (dynobj
, info
, g
->relocs
);
9708 /* Estimate the size of the .MIPS.stubs section. */
9711 mips_elf_estimate_stub_size (bfd
*output_bfd
, struct bfd_link_info
*info
)
9713 struct mips_elf_link_hash_table
*htab
;
9714 bfd_size_type dynsymcount
;
9716 htab
= mips_elf_hash_table (info
);
9717 BFD_ASSERT (htab
!= NULL
);
9719 if (htab
->lazy_stub_count
== 0)
9722 /* IRIX rld assumes that a function stub isn't at the end of the .text
9723 section, so add a dummy entry to the end. */
9724 htab
->lazy_stub_count
++;
9726 /* Get a worst-case estimate of the number of dynamic symbols needed.
9727 At this point, dynsymcount does not account for section symbols
9728 and count_section_dynsyms may overestimate the number that will
9730 dynsymcount
= (elf_hash_table (info
)->dynsymcount
9731 + count_section_dynsyms (output_bfd
, info
));
9733 /* Determine the size of one stub entry. There's no disadvantage
9734 from using microMIPS code here, so for the sake of pure-microMIPS
9735 binaries we prefer it whenever there's any microMIPS code in
9736 output produced at all. This has a benefit of stubs being
9737 shorter by 4 bytes each too, unless in the insn32 mode. */
9738 if (!MICROMIPS_P (output_bfd
))
9739 htab
->function_stub_size
= (dynsymcount
> 0x10000
9740 ? MIPS_FUNCTION_STUB_BIG_SIZE
9741 : MIPS_FUNCTION_STUB_NORMAL_SIZE
);
9742 else if (htab
->insn32
)
9743 htab
->function_stub_size
= (dynsymcount
> 0x10000
9744 ? MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE
9745 : MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE
);
9747 htab
->function_stub_size
= (dynsymcount
> 0x10000
9748 ? MICROMIPS_FUNCTION_STUB_BIG_SIZE
9749 : MICROMIPS_FUNCTION_STUB_NORMAL_SIZE
);
9751 htab
->sstubs
->size
= htab
->lazy_stub_count
* htab
->function_stub_size
;
9754 /* A mips_elf_link_hash_traverse callback for which DATA points to a
9755 mips_htab_traverse_info. If H needs a traditional MIPS lazy-binding
9756 stub, allocate an entry in the stubs section. */
9759 mips_elf_allocate_lazy_stub (struct mips_elf_link_hash_entry
*h
, void *data
)
9761 struct mips_htab_traverse_info
*hti
= data
;
9762 struct mips_elf_link_hash_table
*htab
;
9763 struct bfd_link_info
*info
;
9767 output_bfd
= hti
->output_bfd
;
9768 htab
= mips_elf_hash_table (info
);
9769 BFD_ASSERT (htab
!= NULL
);
9771 if (h
->needs_lazy_stub
)
9773 bfd_boolean micromips_p
= MICROMIPS_P (output_bfd
);
9774 unsigned int other
= micromips_p
? STO_MICROMIPS
: 0;
9775 bfd_vma isa_bit
= micromips_p
;
9777 BFD_ASSERT (htab
->root
.dynobj
!= NULL
);
9778 if (h
->root
.plt
.plist
== NULL
)
9779 h
->root
.plt
.plist
= mips_elf_make_plt_record (htab
->sstubs
->owner
);
9780 if (h
->root
.plt
.plist
== NULL
)
9785 h
->root
.root
.u
.def
.section
= htab
->sstubs
;
9786 h
->root
.root
.u
.def
.value
= htab
->sstubs
->size
+ isa_bit
;
9787 h
->root
.plt
.plist
->stub_offset
= htab
->sstubs
->size
;
9788 h
->root
.other
= other
;
9789 htab
->sstubs
->size
+= htab
->function_stub_size
;
9794 /* Allocate offsets in the stubs section to each symbol that needs one.
9795 Set the final size of the .MIPS.stub section. */
9798 mips_elf_lay_out_lazy_stubs (struct bfd_link_info
*info
)
9800 bfd
*output_bfd
= info
->output_bfd
;
9801 bfd_boolean micromips_p
= MICROMIPS_P (output_bfd
);
9802 unsigned int other
= micromips_p
? STO_MICROMIPS
: 0;
9803 bfd_vma isa_bit
= micromips_p
;
9804 struct mips_elf_link_hash_table
*htab
;
9805 struct mips_htab_traverse_info hti
;
9806 struct elf_link_hash_entry
*h
;
9809 htab
= mips_elf_hash_table (info
);
9810 BFD_ASSERT (htab
!= NULL
);
9812 if (htab
->lazy_stub_count
== 0)
9815 htab
->sstubs
->size
= 0;
9817 hti
.output_bfd
= output_bfd
;
9819 mips_elf_link_hash_traverse (htab
, mips_elf_allocate_lazy_stub
, &hti
);
9822 htab
->sstubs
->size
+= htab
->function_stub_size
;
9823 BFD_ASSERT (htab
->sstubs
->size
9824 == htab
->lazy_stub_count
* htab
->function_stub_size
);
9826 dynobj
= elf_hash_table (info
)->dynobj
;
9827 BFD_ASSERT (dynobj
!= NULL
);
9828 h
= _bfd_elf_define_linkage_sym (dynobj
, info
, htab
->sstubs
, "_MIPS_STUBS_");
9831 h
->root
.u
.def
.value
= isa_bit
;
9838 /* A mips_elf_link_hash_traverse callback for which DATA points to a
9839 bfd_link_info. If H uses the address of a PLT entry as the value
9840 of the symbol, then set the entry in the symbol table now. Prefer
9841 a standard MIPS PLT entry. */
9844 mips_elf_set_plt_sym_value (struct mips_elf_link_hash_entry
*h
, void *data
)
9846 struct bfd_link_info
*info
= data
;
9847 bfd_boolean micromips_p
= MICROMIPS_P (info
->output_bfd
);
9848 struct mips_elf_link_hash_table
*htab
;
9853 htab
= mips_elf_hash_table (info
);
9854 BFD_ASSERT (htab
!= NULL
);
9856 if (h
->use_plt_entry
)
9858 BFD_ASSERT (h
->root
.plt
.plist
!= NULL
);
9859 BFD_ASSERT (h
->root
.plt
.plist
->mips_offset
!= MINUS_ONE
9860 || h
->root
.plt
.plist
->comp_offset
!= MINUS_ONE
);
9862 val
= htab
->plt_header_size
;
9863 if (h
->root
.plt
.plist
->mips_offset
!= MINUS_ONE
)
9866 val
+= h
->root
.plt
.plist
->mips_offset
;
9872 val
+= htab
->plt_mips_offset
+ h
->root
.plt
.plist
->comp_offset
;
9873 other
= micromips_p
? STO_MICROMIPS
: STO_MIPS16
;
9876 /* For VxWorks, point at the PLT load stub rather than the lazy
9877 resolution stub; this stub will become the canonical function
9879 if (htab
->root
.target_os
== is_vxworks
)
9882 h
->root
.root
.u
.def
.section
= htab
->root
.splt
;
9883 h
->root
.root
.u
.def
.value
= val
;
9884 h
->root
.other
= other
;
9890 /* Set the sizes of the dynamic sections. */
9893 _bfd_mips_elf_size_dynamic_sections (bfd
*output_bfd
,
9894 struct bfd_link_info
*info
)
9897 asection
*s
, *sreldyn
;
9898 bfd_boolean reltext
;
9899 struct mips_elf_link_hash_table
*htab
;
9901 htab
= mips_elf_hash_table (info
);
9902 BFD_ASSERT (htab
!= NULL
);
9903 dynobj
= elf_hash_table (info
)->dynobj
;
9904 BFD_ASSERT (dynobj
!= NULL
);
9906 if (elf_hash_table (info
)->dynamic_sections_created
)
9908 /* Set the contents of the .interp section to the interpreter. */
9909 if (bfd_link_executable (info
) && !info
->nointerp
)
9911 s
= bfd_get_linker_section (dynobj
, ".interp");
9912 BFD_ASSERT (s
!= NULL
);
9914 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd
)) + 1;
9916 = (bfd_byte
*) ELF_DYNAMIC_INTERPRETER (output_bfd
);
9919 /* Figure out the size of the PLT header if we know that we
9920 are using it. For the sake of cache alignment always use
9921 a standard header whenever any standard entries are present
9922 even if microMIPS entries are present as well. This also
9923 lets the microMIPS header rely on the value of $v0 only set
9924 by microMIPS entries, for a small size reduction.
9926 Set symbol table entry values for symbols that use the
9927 address of their PLT entry now that we can calculate it.
9929 Also create the _PROCEDURE_LINKAGE_TABLE_ symbol if we
9930 haven't already in _bfd_elf_create_dynamic_sections. */
9931 if (htab
->root
.splt
&& htab
->plt_mips_offset
+ htab
->plt_comp_offset
!= 0)
9933 bfd_boolean micromips_p
= (MICROMIPS_P (output_bfd
)
9934 && !htab
->plt_mips_offset
);
9935 unsigned int other
= micromips_p
? STO_MICROMIPS
: 0;
9936 bfd_vma isa_bit
= micromips_p
;
9937 struct elf_link_hash_entry
*h
;
9940 BFD_ASSERT (htab
->use_plts_and_copy_relocs
);
9941 BFD_ASSERT (htab
->root
.sgotplt
->size
== 0);
9942 BFD_ASSERT (htab
->root
.splt
->size
== 0);
9944 if (htab
->root
.target_os
== is_vxworks
&& bfd_link_pic (info
))
9945 size
= 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry
);
9946 else if (htab
->root
.target_os
== is_vxworks
)
9947 size
= 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry
);
9948 else if (ABI_64_P (output_bfd
))
9949 size
= 4 * ARRAY_SIZE (mips_n64_exec_plt0_entry
);
9950 else if (ABI_N32_P (output_bfd
))
9951 size
= 4 * ARRAY_SIZE (mips_n32_exec_plt0_entry
);
9952 else if (!micromips_p
)
9953 size
= 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry
);
9954 else if (htab
->insn32
)
9955 size
= 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry
);
9957 size
= 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry
);
9959 htab
->plt_header_is_comp
= micromips_p
;
9960 htab
->plt_header_size
= size
;
9961 htab
->root
.splt
->size
= (size
9962 + htab
->plt_mips_offset
9963 + htab
->plt_comp_offset
);
9964 htab
->root
.sgotplt
->size
= (htab
->plt_got_index
9965 * MIPS_ELF_GOT_SIZE (dynobj
));
9967 mips_elf_link_hash_traverse (htab
, mips_elf_set_plt_sym_value
, info
);
9969 if (htab
->root
.hplt
== NULL
)
9971 h
= _bfd_elf_define_linkage_sym (dynobj
, info
, htab
->root
.splt
,
9972 "_PROCEDURE_LINKAGE_TABLE_");
9973 htab
->root
.hplt
= h
;
9978 h
= htab
->root
.hplt
;
9979 h
->root
.u
.def
.value
= isa_bit
;
9985 /* Allocate space for global sym dynamic relocs. */
9986 elf_link_hash_traverse (&htab
->root
, allocate_dynrelocs
, info
);
9988 mips_elf_estimate_stub_size (output_bfd
, info
);
9990 if (!mips_elf_lay_out_got (output_bfd
, info
))
9993 mips_elf_lay_out_lazy_stubs (info
);
9995 /* The check_relocs and adjust_dynamic_symbol entry points have
9996 determined the sizes of the various dynamic sections. Allocate
9999 for (s
= dynobj
->sections
; s
!= NULL
; s
= s
->next
)
10003 /* It's OK to base decisions on the section name, because none
10004 of the dynobj section names depend upon the input files. */
10005 name
= bfd_section_name (s
);
10007 if ((s
->flags
& SEC_LINKER_CREATED
) == 0)
10010 if (CONST_STRNEQ (name
, ".rel"))
10014 const char *outname
;
10017 /* If this relocation section applies to a read only
10018 section, then we probably need a DT_TEXTREL entry.
10019 If the relocation section is .rel(a).dyn, we always
10020 assert a DT_TEXTREL entry rather than testing whether
10021 there exists a relocation to a read only section or
10023 outname
= bfd_section_name (s
->output_section
);
10024 target
= bfd_get_section_by_name (output_bfd
, outname
+ 4);
10025 if ((target
!= NULL
10026 && (target
->flags
& SEC_READONLY
) != 0
10027 && (target
->flags
& SEC_ALLOC
) != 0)
10028 || strcmp (outname
, MIPS_ELF_REL_DYN_NAME (info
)) == 0)
10031 /* We use the reloc_count field as a counter if we need
10032 to copy relocs into the output file. */
10033 if (strcmp (name
, MIPS_ELF_REL_DYN_NAME (info
)) != 0)
10034 s
->reloc_count
= 0;
10036 /* If combreloc is enabled, elf_link_sort_relocs() will
10037 sort relocations, but in a different way than we do,
10038 and before we're done creating relocations. Also, it
10039 will move them around between input sections'
10040 relocation's contents, so our sorting would be
10041 broken, so don't let it run. */
10042 info
->combreloc
= 0;
10045 else if (bfd_link_executable (info
)
10046 && ! mips_elf_hash_table (info
)->use_rld_obj_head
10047 && CONST_STRNEQ (name
, ".rld_map"))
10049 /* We add a room for __rld_map. It will be filled in by the
10050 rtld to contain a pointer to the _r_debug structure. */
10051 s
->size
+= MIPS_ELF_RLD_MAP_SIZE (output_bfd
);
10053 else if (SGI_COMPAT (output_bfd
)
10054 && CONST_STRNEQ (name
, ".compact_rel"))
10055 s
->size
+= mips_elf_hash_table (info
)->compact_rel_size
;
10056 else if (s
== htab
->root
.splt
)
10058 /* If the last PLT entry has a branch delay slot, allocate
10059 room for an extra nop to fill the delay slot. This is
10060 for CPUs without load interlocking. */
10061 if (! LOAD_INTERLOCKS_P (output_bfd
)
10062 && htab
->root
.target_os
!= is_vxworks
10066 else if (! CONST_STRNEQ (name
, ".init")
10067 && s
!= htab
->root
.sgot
10068 && s
!= htab
->root
.sgotplt
10069 && s
!= htab
->sstubs
10070 && s
!= htab
->root
.sdynbss
10071 && s
!= htab
->root
.sdynrelro
)
10073 /* It's not one of our sections, so don't allocate space. */
10079 s
->flags
|= SEC_EXCLUDE
;
10083 if ((s
->flags
& SEC_HAS_CONTENTS
) == 0)
10086 /* Allocate memory for the section contents. */
10087 s
->contents
= bfd_zalloc (dynobj
, s
->size
);
10088 if (s
->contents
== NULL
)
10090 bfd_set_error (bfd_error_no_memory
);
10095 if (elf_hash_table (info
)->dynamic_sections_created
)
10097 /* Add some entries to the .dynamic section. We fill in the
10098 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
10099 must add the entries now so that we get the correct size for
10100 the .dynamic section. */
10102 /* SGI object has the equivalence of DT_DEBUG in the
10103 DT_MIPS_RLD_MAP entry. This must come first because glibc
10104 only fills in DT_MIPS_RLD_MAP (not DT_DEBUG) and some tools
10105 may only look at the first one they see. */
10106 if (!bfd_link_pic (info
)
10107 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_RLD_MAP
, 0))
10110 if (bfd_link_executable (info
)
10111 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_RLD_MAP_REL
, 0))
10114 /* The DT_DEBUG entry may be filled in by the dynamic linker and
10115 used by the debugger. */
10116 if (bfd_link_executable (info
)
10117 && !SGI_COMPAT (output_bfd
)
10118 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_DEBUG
, 0))
10122 && (SGI_COMPAT (output_bfd
)
10123 || htab
->root
.target_os
== is_vxworks
))
10124 info
->flags
|= DF_TEXTREL
;
10126 if ((info
->flags
& DF_TEXTREL
) != 0)
10128 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_TEXTREL
, 0))
10131 /* Clear the DF_TEXTREL flag. It will be set again if we
10132 write out an actual text relocation; we may not, because
10133 at this point we do not know whether e.g. any .eh_frame
10134 absolute relocations have been converted to PC-relative. */
10135 info
->flags
&= ~DF_TEXTREL
;
10138 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_PLTGOT
, 0))
10141 sreldyn
= mips_elf_rel_dyn_section (info
, FALSE
);
10142 if (htab
->root
.target_os
== is_vxworks
)
10144 /* VxWorks uses .rela.dyn instead of .rel.dyn. It does not
10145 use any of the DT_MIPS_* tags. */
10146 if (sreldyn
&& sreldyn
->size
> 0)
10148 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_RELA
, 0))
10151 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_RELASZ
, 0))
10154 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_RELAENT
, 0))
10160 if (sreldyn
&& sreldyn
->size
> 0
10161 && !bfd_is_abs_section (sreldyn
->output_section
))
10163 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_REL
, 0))
10166 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_RELSZ
, 0))
10169 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_RELENT
, 0))
10173 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_RLD_VERSION
, 0))
10176 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_FLAGS
, 0))
10179 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_BASE_ADDRESS
, 0))
10182 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_LOCAL_GOTNO
, 0))
10185 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_SYMTABNO
, 0))
10188 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_UNREFEXTNO
, 0))
10191 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_GOTSYM
, 0))
10194 if (info
->emit_gnu_hash
10195 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_XHASH
, 0))
10198 if (IRIX_COMPAT (dynobj
) == ict_irix5
10199 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_HIPAGENO
, 0))
10202 if (IRIX_COMPAT (dynobj
) == ict_irix6
10203 && (bfd_get_section_by_name
10204 (output_bfd
, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj
)))
10205 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_OPTIONS
, 0))
10208 if (htab
->root
.splt
->size
> 0)
10210 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_PLTREL
, 0))
10213 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_JMPREL
, 0))
10216 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_PLTRELSZ
, 0))
10219 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_PLTGOT
, 0))
10222 if (htab
->root
.target_os
== is_vxworks
10223 && !elf_vxworks_add_dynamic_entries (output_bfd
, info
))
10230 /* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD.
10231 Adjust its R_ADDEND field so that it is correct for the output file.
10232 LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols
10233 and sections respectively; both use symbol indexes. */
10236 mips_elf_adjust_addend (bfd
*output_bfd
, struct bfd_link_info
*info
,
10237 bfd
*input_bfd
, Elf_Internal_Sym
*local_syms
,
10238 asection
**local_sections
, Elf_Internal_Rela
*rel
)
10240 unsigned int r_type
, r_symndx
;
10241 Elf_Internal_Sym
*sym
;
10244 if (mips_elf_local_relocation_p (input_bfd
, rel
, local_sections
))
10246 r_type
= ELF_R_TYPE (output_bfd
, rel
->r_info
);
10247 if (gprel16_reloc_p (r_type
)
10248 || r_type
== R_MIPS_GPREL32
10249 || literal_reloc_p (r_type
))
10251 rel
->r_addend
+= _bfd_get_gp_value (input_bfd
);
10252 rel
->r_addend
-= _bfd_get_gp_value (output_bfd
);
10255 r_symndx
= ELF_R_SYM (output_bfd
, rel
->r_info
);
10256 sym
= local_syms
+ r_symndx
;
10258 /* Adjust REL's addend to account for section merging. */
10259 if (!bfd_link_relocatable (info
))
10261 sec
= local_sections
[r_symndx
];
10262 _bfd_elf_rela_local_sym (output_bfd
, sym
, &sec
, rel
);
10265 /* This would normally be done by the rela_normal code in elflink.c. */
10266 if (ELF_ST_TYPE (sym
->st_info
) == STT_SECTION
)
10267 rel
->r_addend
+= local_sections
[r_symndx
]->output_offset
;
10271 /* Handle relocations against symbols from removed linkonce sections,
10272 or sections discarded by a linker script. We use this wrapper around
10273 RELOC_AGAINST_DISCARDED_SECTION to handle triplets of compound relocs
10274 on 64-bit ELF targets. In this case for any relocation handled, which
10275 always be the first in a triplet, the remaining two have to be processed
10276 together with the first, even if they are R_MIPS_NONE. It is the symbol
10277 index referred by the first reloc that applies to all the three and the
10278 remaining two never refer to an object symbol. And it is the final
10279 relocation (the last non-null one) that determines the output field of
10280 the whole relocation so retrieve the corresponding howto structure for
10281 the relocatable field to be cleared by RELOC_AGAINST_DISCARDED_SECTION.
10283 Note that RELOC_AGAINST_DISCARDED_SECTION is a macro that uses "continue"
10284 and therefore requires to be pasted in a loop. It also defines a block
10285 and does not protect any of its arguments, hence the extra brackets. */
10288 mips_reloc_against_discarded_section (bfd
*output_bfd
,
10289 struct bfd_link_info
*info
,
10290 bfd
*input_bfd
, asection
*input_section
,
10291 Elf_Internal_Rela
**rel
,
10292 const Elf_Internal_Rela
**relend
,
10293 bfd_boolean rel_reloc
,
10294 reloc_howto_type
*howto
,
10295 bfd_byte
*contents
)
10297 const struct elf_backend_data
*bed
= get_elf_backend_data (output_bfd
);
10298 int count
= bed
->s
->int_rels_per_ext_rel
;
10299 unsigned int r_type
;
10302 for (i
= count
- 1; i
> 0; i
--)
10304 r_type
= ELF_R_TYPE (output_bfd
, (*rel
)[i
].r_info
);
10305 if (r_type
!= R_MIPS_NONE
)
10307 howto
= MIPS_ELF_RTYPE_TO_HOWTO (input_bfd
, r_type
, !rel_reloc
);
10313 RELOC_AGAINST_DISCARDED_SECTION (info
, input_bfd
, input_section
,
10314 (*rel
), count
, (*relend
),
10315 howto
, i
, contents
);
10320 /* Relocate a MIPS ELF section. */
10323 _bfd_mips_elf_relocate_section (bfd
*output_bfd
, struct bfd_link_info
*info
,
10324 bfd
*input_bfd
, asection
*input_section
,
10325 bfd_byte
*contents
, Elf_Internal_Rela
*relocs
,
10326 Elf_Internal_Sym
*local_syms
,
10327 asection
**local_sections
)
10329 Elf_Internal_Rela
*rel
;
10330 const Elf_Internal_Rela
*relend
;
10331 bfd_vma addend
= 0;
10332 bfd_boolean use_saved_addend_p
= FALSE
;
10334 relend
= relocs
+ input_section
->reloc_count
;
10335 for (rel
= relocs
; rel
< relend
; ++rel
)
10339 reloc_howto_type
*howto
;
10340 bfd_boolean cross_mode_jump_p
= FALSE
;
10341 /* TRUE if the relocation is a RELA relocation, rather than a
10343 bfd_boolean rela_relocation_p
= TRUE
;
10344 unsigned int r_type
= ELF_R_TYPE (output_bfd
, rel
->r_info
);
10346 unsigned long r_symndx
;
10348 Elf_Internal_Shdr
*symtab_hdr
;
10349 struct elf_link_hash_entry
*h
;
10350 bfd_boolean rel_reloc
;
10352 rel_reloc
= (NEWABI_P (input_bfd
)
10353 && mips_elf_rel_relocation_p (input_bfd
, input_section
,
10355 /* Find the relocation howto for this relocation. */
10356 howto
= MIPS_ELF_RTYPE_TO_HOWTO (input_bfd
, r_type
, !rel_reloc
);
10358 r_symndx
= ELF_R_SYM (input_bfd
, rel
->r_info
);
10359 symtab_hdr
= &elf_tdata (input_bfd
)->symtab_hdr
;
10360 if (mips_elf_local_relocation_p (input_bfd
, rel
, local_sections
))
10362 sec
= local_sections
[r_symndx
];
10367 unsigned long extsymoff
;
10370 if (!elf_bad_symtab (input_bfd
))
10371 extsymoff
= symtab_hdr
->sh_info
;
10372 h
= elf_sym_hashes (input_bfd
) [r_symndx
- extsymoff
];
10373 while (h
->root
.type
== bfd_link_hash_indirect
10374 || h
->root
.type
== bfd_link_hash_warning
)
10375 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
10378 if (h
->root
.type
== bfd_link_hash_defined
10379 || h
->root
.type
== bfd_link_hash_defweak
)
10380 sec
= h
->root
.u
.def
.section
;
10383 if (sec
!= NULL
&& discarded_section (sec
))
10385 mips_reloc_against_discarded_section (output_bfd
, info
, input_bfd
,
10386 input_section
, &rel
, &relend
,
10387 rel_reloc
, howto
, contents
);
10391 if (r_type
== R_MIPS_64
&& ! NEWABI_P (input_bfd
))
10393 /* Some 32-bit code uses R_MIPS_64. In particular, people use
10394 64-bit code, but make sure all their addresses are in the
10395 lowermost or uppermost 32-bit section of the 64-bit address
10396 space. Thus, when they use an R_MIPS_64 they mean what is
10397 usually meant by R_MIPS_32, with the exception that the
10398 stored value is sign-extended to 64 bits. */
10399 howto
= MIPS_ELF_RTYPE_TO_HOWTO (input_bfd
, R_MIPS_32
, FALSE
);
10401 /* On big-endian systems, we need to lie about the position
10403 if (bfd_big_endian (input_bfd
))
10404 rel
->r_offset
+= 4;
10407 if (!use_saved_addend_p
)
10409 /* If these relocations were originally of the REL variety,
10410 we must pull the addend out of the field that will be
10411 relocated. Otherwise, we simply use the contents of the
10412 RELA relocation. */
10413 if (mips_elf_rel_relocation_p (input_bfd
, input_section
,
10416 rela_relocation_p
= FALSE
;
10417 addend
= mips_elf_read_rel_addend (input_bfd
, rel
,
10419 if (hi16_reloc_p (r_type
)
10420 || (got16_reloc_p (r_type
)
10421 && mips_elf_local_relocation_p (input_bfd
, rel
,
10424 if (!mips_elf_add_lo16_rel_addend (input_bfd
, rel
, relend
,
10425 contents
, &addend
))
10428 name
= h
->root
.root
.string
;
10430 name
= bfd_elf_sym_name (input_bfd
, symtab_hdr
,
10431 local_syms
+ r_symndx
,
10434 /* xgettext:c-format */
10435 (_("%pB: can't find matching LO16 reloc against `%s'"
10436 " for %s at %#" PRIx64
" in section `%pA'"),
10438 howto
->name
, (uint64_t) rel
->r_offset
, input_section
);
10442 addend
<<= howto
->rightshift
;
10445 addend
= rel
->r_addend
;
10446 mips_elf_adjust_addend (output_bfd
, info
, input_bfd
,
10447 local_syms
, local_sections
, rel
);
10450 if (bfd_link_relocatable (info
))
10452 if (r_type
== R_MIPS_64
&& ! NEWABI_P (output_bfd
)
10453 && bfd_big_endian (input_bfd
))
10454 rel
->r_offset
-= 4;
10456 if (!rela_relocation_p
&& rel
->r_addend
)
10458 addend
+= rel
->r_addend
;
10459 if (hi16_reloc_p (r_type
) || got16_reloc_p (r_type
))
10460 addend
= mips_elf_high (addend
);
10461 else if (r_type
== R_MIPS_HIGHER
)
10462 addend
= mips_elf_higher (addend
);
10463 else if (r_type
== R_MIPS_HIGHEST
)
10464 addend
= mips_elf_highest (addend
);
10466 addend
>>= howto
->rightshift
;
10468 /* We use the source mask, rather than the destination
10469 mask because the place to which we are writing will be
10470 source of the addend in the final link. */
10471 addend
&= howto
->src_mask
;
10473 if (r_type
== R_MIPS_64
&& ! NEWABI_P (output_bfd
))
10474 /* See the comment above about using R_MIPS_64 in the 32-bit
10475 ABI. Here, we need to update the addend. It would be
10476 possible to get away with just using the R_MIPS_32 reloc
10477 but for endianness. */
10483 if (addend
& ((bfd_vma
) 1 << 31))
10485 sign_bits
= ((bfd_vma
) 1 << 32) - 1;
10492 /* If we don't know that we have a 64-bit type,
10493 do two separate stores. */
10494 if (bfd_big_endian (input_bfd
))
10496 /* Store the sign-bits (which are most significant)
10498 low_bits
= sign_bits
;
10499 high_bits
= addend
;
10504 high_bits
= sign_bits
;
10506 bfd_put_32 (input_bfd
, low_bits
,
10507 contents
+ rel
->r_offset
);
10508 bfd_put_32 (input_bfd
, high_bits
,
10509 contents
+ rel
->r_offset
+ 4);
10513 if (! mips_elf_perform_relocation (info
, howto
, rel
, addend
,
10514 input_bfd
, input_section
,
10519 /* Go on to the next relocation. */
10523 /* In the N32 and 64-bit ABIs there may be multiple consecutive
10524 relocations for the same offset. In that case we are
10525 supposed to treat the output of each relocation as the addend
10527 if (rel
+ 1 < relend
10528 && rel
->r_offset
== rel
[1].r_offset
10529 && ELF_R_TYPE (input_bfd
, rel
[1].r_info
) != R_MIPS_NONE
)
10530 use_saved_addend_p
= TRUE
;
10532 use_saved_addend_p
= FALSE
;
10534 /* Figure out what value we are supposed to relocate. */
10535 switch (mips_elf_calculate_relocation (output_bfd
, input_bfd
,
10536 input_section
, contents
,
10537 info
, rel
, addend
, howto
,
10538 local_syms
, local_sections
,
10539 &value
, &name
, &cross_mode_jump_p
,
10540 use_saved_addend_p
))
10542 case bfd_reloc_continue
:
10543 /* There's nothing to do. */
10546 case bfd_reloc_undefined
:
10547 /* mips_elf_calculate_relocation already called the
10548 undefined_symbol callback. There's no real point in
10549 trying to perform the relocation at this point, so we
10550 just skip ahead to the next relocation. */
10553 case bfd_reloc_notsupported
:
10554 msg
= _("internal error: unsupported relocation error");
10555 info
->callbacks
->warning
10556 (info
, msg
, name
, input_bfd
, input_section
, rel
->r_offset
);
10559 case bfd_reloc_overflow
:
10560 if (use_saved_addend_p
)
10561 /* Ignore overflow until we reach the last relocation for
10562 a given location. */
10566 struct mips_elf_link_hash_table
*htab
;
10568 htab
= mips_elf_hash_table (info
);
10569 BFD_ASSERT (htab
!= NULL
);
10570 BFD_ASSERT (name
!= NULL
);
10571 if (!htab
->small_data_overflow_reported
10572 && (gprel16_reloc_p (howto
->type
)
10573 || literal_reloc_p (howto
->type
)))
10575 msg
= _("small-data section exceeds 64KB;"
10576 " lower small-data size limit (see option -G)");
10578 htab
->small_data_overflow_reported
= TRUE
;
10579 (*info
->callbacks
->einfo
) ("%P: %s\n", msg
);
10581 (*info
->callbacks
->reloc_overflow
)
10582 (info
, NULL
, name
, howto
->name
, (bfd_vma
) 0,
10583 input_bfd
, input_section
, rel
->r_offset
);
10590 case bfd_reloc_outofrange
:
10592 if (jal_reloc_p (howto
->type
))
10593 msg
= (cross_mode_jump_p
10594 ? _("cannot convert a jump to JALX "
10595 "for a non-word-aligned address")
10596 : (howto
->type
== R_MIPS16_26
10597 ? _("jump to a non-word-aligned address")
10598 : _("jump to a non-instruction-aligned address")));
10599 else if (b_reloc_p (howto
->type
))
10600 msg
= (cross_mode_jump_p
10601 ? _("cannot convert a branch to JALX "
10602 "for a non-word-aligned address")
10603 : _("branch to a non-instruction-aligned address"));
10604 else if (aligned_pcrel_reloc_p (howto
->type
))
10605 msg
= _("PC-relative load from unaligned address");
10608 info
->callbacks
->einfo
10609 ("%X%H: %s\n", input_bfd
, input_section
, rel
->r_offset
, msg
);
10612 /* Fall through. */
10619 /* If we've got another relocation for the address, keep going
10620 until we reach the last one. */
10621 if (use_saved_addend_p
)
10627 if (r_type
== R_MIPS_64
&& ! NEWABI_P (output_bfd
))
10628 /* See the comment above about using R_MIPS_64 in the 32-bit
10629 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
10630 that calculated the right value. Now, however, we
10631 sign-extend the 32-bit result to 64-bits, and store it as a
10632 64-bit value. We are especially generous here in that we
10633 go to extreme lengths to support this usage on systems with
10634 only a 32-bit VMA. */
10640 if (value
& ((bfd_vma
) 1 << 31))
10642 sign_bits
= ((bfd_vma
) 1 << 32) - 1;
10649 /* If we don't know that we have a 64-bit type,
10650 do two separate stores. */
10651 if (bfd_big_endian (input_bfd
))
10653 /* Undo what we did above. */
10654 rel
->r_offset
-= 4;
10655 /* Store the sign-bits (which are most significant)
10657 low_bits
= sign_bits
;
10663 high_bits
= sign_bits
;
10665 bfd_put_32 (input_bfd
, low_bits
,
10666 contents
+ rel
->r_offset
);
10667 bfd_put_32 (input_bfd
, high_bits
,
10668 contents
+ rel
->r_offset
+ 4);
10672 /* Actually perform the relocation. */
10673 if (! mips_elf_perform_relocation (info
, howto
, rel
, value
,
10674 input_bfd
, input_section
,
10675 contents
, cross_mode_jump_p
))
10682 /* A function that iterates over each entry in la25_stubs and fills
10683 in the code for each one. DATA points to a mips_htab_traverse_info. */
10686 mips_elf_create_la25_stub (void **slot
, void *data
)
10688 struct mips_htab_traverse_info
*hti
;
10689 struct mips_elf_link_hash_table
*htab
;
10690 struct mips_elf_la25_stub
*stub
;
10693 bfd_vma offset
, target
, target_high
, target_low
;
10695 bfd_signed_vma pcrel_offset
= 0;
10697 stub
= (struct mips_elf_la25_stub
*) *slot
;
10698 hti
= (struct mips_htab_traverse_info
*) data
;
10699 htab
= mips_elf_hash_table (hti
->info
);
10700 BFD_ASSERT (htab
!= NULL
);
10702 /* Create the section contents, if we haven't already. */
10703 s
= stub
->stub_section
;
10707 loc
= bfd_malloc (s
->size
);
10716 /* Work out where in the section this stub should go. */
10717 offset
= stub
->offset
;
10719 /* We add 8 here to account for the LUI/ADDIU instructions
10720 before the branch instruction. This cannot be moved down to
10721 where pcrel_offset is calculated as 's' is updated in
10722 mips_elf_get_la25_target. */
10723 branch_pc
= s
->output_section
->vma
+ s
->output_offset
+ offset
+ 8;
10725 /* Work out the target address. */
10726 target
= mips_elf_get_la25_target (stub
, &s
);
10727 target
+= s
->output_section
->vma
+ s
->output_offset
;
10729 target_high
= ((target
+ 0x8000) >> 16) & 0xffff;
10730 target_low
= (target
& 0xffff);
10732 /* Calculate the PC of the compact branch instruction (for the case where
10733 compact branches are used for either microMIPSR6 or MIPSR6 with
10734 compact branches. Add 4-bytes to account for BC using the PC of the
10735 next instruction as the base. */
10736 pcrel_offset
= target
- (branch_pc
+ 4);
10738 if (stub
->stub_section
!= htab
->strampoline
)
10740 /* This is a simple LUI/ADDIU stub. Zero out the beginning
10741 of the section and write the two instructions at the end. */
10742 memset (loc
, 0, offset
);
10744 if (ELF_ST_IS_MICROMIPS (stub
->h
->root
.other
))
10746 bfd_put_micromips_32 (hti
->output_bfd
,
10747 LA25_LUI_MICROMIPS (target_high
),
10749 bfd_put_micromips_32 (hti
->output_bfd
,
10750 LA25_ADDIU_MICROMIPS (target_low
),
10755 bfd_put_32 (hti
->output_bfd
, LA25_LUI (target_high
), loc
);
10756 bfd_put_32 (hti
->output_bfd
, LA25_ADDIU (target_low
), loc
+ 4);
10761 /* This is trampoline. */
10763 if (ELF_ST_IS_MICROMIPS (stub
->h
->root
.other
))
10765 bfd_put_micromips_32 (hti
->output_bfd
,
10766 LA25_LUI_MICROMIPS (target_high
), loc
);
10767 bfd_put_micromips_32 (hti
->output_bfd
,
10768 LA25_J_MICROMIPS (target
), loc
+ 4);
10769 bfd_put_micromips_32 (hti
->output_bfd
,
10770 LA25_ADDIU_MICROMIPS (target_low
), loc
+ 8);
10771 bfd_put_32 (hti
->output_bfd
, 0, loc
+ 12);
10775 bfd_put_32 (hti
->output_bfd
, LA25_LUI (target_high
), loc
);
10776 if (MIPSR6_P (hti
->output_bfd
) && htab
->compact_branches
)
10778 bfd_put_32 (hti
->output_bfd
, LA25_ADDIU (target_low
), loc
+ 4);
10779 bfd_put_32 (hti
->output_bfd
, LA25_BC (pcrel_offset
), loc
+ 8);
10783 bfd_put_32 (hti
->output_bfd
, LA25_J (target
), loc
+ 4);
10784 bfd_put_32 (hti
->output_bfd
, LA25_ADDIU (target_low
), loc
+ 8);
10786 bfd_put_32 (hti
->output_bfd
, 0, loc
+ 12);
10792 /* If NAME is one of the special IRIX6 symbols defined by the linker,
10793 adjust it appropriately now. */
10796 mips_elf_irix6_finish_dynamic_symbol (bfd
*abfd ATTRIBUTE_UNUSED
,
10797 const char *name
, Elf_Internal_Sym
*sym
)
10799 /* The linker script takes care of providing names and values for
10800 these, but we must place them into the right sections. */
10801 static const char* const text_section_symbols
[] = {
10804 "__dso_displacement",
10806 "__program_header_table",
10810 static const char* const data_section_symbols
[] = {
10818 const char* const *p
;
10821 for (i
= 0; i
< 2; ++i
)
10822 for (p
= (i
== 0) ? text_section_symbols
: data_section_symbols
;
10825 if (strcmp (*p
, name
) == 0)
10827 /* All of these symbols are given type STT_SECTION by the
10829 sym
->st_info
= ELF_ST_INFO (STB_GLOBAL
, STT_SECTION
);
10830 sym
->st_other
= STO_PROTECTED
;
10832 /* The IRIX linker puts these symbols in special sections. */
10834 sym
->st_shndx
= SHN_MIPS_TEXT
;
10836 sym
->st_shndx
= SHN_MIPS_DATA
;
10842 /* Finish up dynamic symbol handling. We set the contents of various
10843 dynamic sections here. */
10846 _bfd_mips_elf_finish_dynamic_symbol (bfd
*output_bfd
,
10847 struct bfd_link_info
*info
,
10848 struct elf_link_hash_entry
*h
,
10849 Elf_Internal_Sym
*sym
)
10853 struct mips_got_info
*g
, *gg
;
10856 struct mips_elf_link_hash_table
*htab
;
10857 struct mips_elf_link_hash_entry
*hmips
;
10859 htab
= mips_elf_hash_table (info
);
10860 BFD_ASSERT (htab
!= NULL
);
10861 dynobj
= elf_hash_table (info
)->dynobj
;
10862 hmips
= (struct mips_elf_link_hash_entry
*) h
;
10864 BFD_ASSERT (htab
->root
.target_os
!= is_vxworks
);
10866 if (h
->plt
.plist
!= NULL
10867 && (h
->plt
.plist
->mips_offset
!= MINUS_ONE
10868 || h
->plt
.plist
->comp_offset
!= MINUS_ONE
))
10870 /* We've decided to create a PLT entry for this symbol. */
10872 bfd_vma header_address
, got_address
;
10873 bfd_vma got_address_high
, got_address_low
, load
;
10877 got_index
= h
->plt
.plist
->gotplt_index
;
10879 BFD_ASSERT (htab
->use_plts_and_copy_relocs
);
10880 BFD_ASSERT (h
->dynindx
!= -1);
10881 BFD_ASSERT (htab
->root
.splt
!= NULL
);
10882 BFD_ASSERT (got_index
!= MINUS_ONE
);
10883 BFD_ASSERT (!h
->def_regular
);
10885 /* Calculate the address of the PLT header. */
10886 isa_bit
= htab
->plt_header_is_comp
;
10887 header_address
= (htab
->root
.splt
->output_section
->vma
10888 + htab
->root
.splt
->output_offset
+ isa_bit
);
10890 /* Calculate the address of the .got.plt entry. */
10891 got_address
= (htab
->root
.sgotplt
->output_section
->vma
10892 + htab
->root
.sgotplt
->output_offset
10893 + got_index
* MIPS_ELF_GOT_SIZE (dynobj
));
10895 got_address_high
= ((got_address
+ 0x8000) >> 16) & 0xffff;
10896 got_address_low
= got_address
& 0xffff;
10898 /* The PLT sequence is not safe for N64 if .got.plt entry's address
10899 cannot be loaded in two instructions. */
10900 if (ABI_64_P (output_bfd
)
10901 && ((got_address
+ 0x80008000) & ~(bfd_vma
) 0xffffffff) != 0)
10904 /* xgettext:c-format */
10905 (_("%pB: `%pA' entry VMA of %#" PRIx64
" outside the 32-bit range "
10906 "supported; consider using `-Ttext-segment=...'"),
10908 htab
->root
.sgotplt
->output_section
,
10909 (int64_t) got_address
);
10910 bfd_set_error (bfd_error_no_error
);
10914 /* Initially point the .got.plt entry at the PLT header. */
10915 loc
= (htab
->root
.sgotplt
->contents
10916 + got_index
* MIPS_ELF_GOT_SIZE (dynobj
));
10917 if (ABI_64_P (output_bfd
))
10918 bfd_put_64 (output_bfd
, header_address
, loc
);
10920 bfd_put_32 (output_bfd
, header_address
, loc
);
10922 /* Now handle the PLT itself. First the standard entry (the order
10923 does not matter, we just have to pick one). */
10924 if (h
->plt
.plist
->mips_offset
!= MINUS_ONE
)
10926 const bfd_vma
*plt_entry
;
10927 bfd_vma plt_offset
;
10929 plt_offset
= htab
->plt_header_size
+ h
->plt
.plist
->mips_offset
;
10931 BFD_ASSERT (plt_offset
<= htab
->root
.splt
->size
);
10933 /* Find out where the .plt entry should go. */
10934 loc
= htab
->root
.splt
->contents
+ plt_offset
;
10936 /* Pick the load opcode. */
10937 load
= MIPS_ELF_LOAD_WORD (output_bfd
);
10939 /* Fill in the PLT entry itself. */
10941 if (MIPSR6_P (output_bfd
))
10942 plt_entry
= htab
->compact_branches
? mipsr6_exec_plt_entry_compact
10943 : mipsr6_exec_plt_entry
;
10945 plt_entry
= mips_exec_plt_entry
;
10946 bfd_put_32 (output_bfd
, plt_entry
[0] | got_address_high
, loc
);
10947 bfd_put_32 (output_bfd
, plt_entry
[1] | got_address_low
| load
,
10950 if (! LOAD_INTERLOCKS_P (output_bfd
)
10951 || (MIPSR6_P (output_bfd
) && htab
->compact_branches
))
10953 bfd_put_32 (output_bfd
, plt_entry
[2] | got_address_low
, loc
+ 8);
10954 bfd_put_32 (output_bfd
, plt_entry
[3], loc
+ 12);
10958 bfd_put_32 (output_bfd
, plt_entry
[3], loc
+ 8);
10959 bfd_put_32 (output_bfd
, plt_entry
[2] | got_address_low
,
10964 /* Now the compressed entry. They come after any standard ones. */
10965 if (h
->plt
.plist
->comp_offset
!= MINUS_ONE
)
10967 bfd_vma plt_offset
;
10969 plt_offset
= (htab
->plt_header_size
+ htab
->plt_mips_offset
10970 + h
->plt
.plist
->comp_offset
);
10972 BFD_ASSERT (plt_offset
<= htab
->root
.splt
->size
);
10974 /* Find out where the .plt entry should go. */
10975 loc
= htab
->root
.splt
->contents
+ plt_offset
;
10977 /* Fill in the PLT entry itself. */
10978 if (!MICROMIPS_P (output_bfd
))
10980 const bfd_vma
*plt_entry
= mips16_o32_exec_plt_entry
;
10982 bfd_put_16 (output_bfd
, plt_entry
[0], loc
);
10983 bfd_put_16 (output_bfd
, plt_entry
[1], loc
+ 2);
10984 bfd_put_16 (output_bfd
, plt_entry
[2], loc
+ 4);
10985 bfd_put_16 (output_bfd
, plt_entry
[3], loc
+ 6);
10986 bfd_put_16 (output_bfd
, plt_entry
[4], loc
+ 8);
10987 bfd_put_16 (output_bfd
, plt_entry
[5], loc
+ 10);
10988 bfd_put_32 (output_bfd
, got_address
, loc
+ 12);
10990 else if (htab
->insn32
)
10992 const bfd_vma
*plt_entry
= micromips_insn32_o32_exec_plt_entry
;
10994 bfd_put_16 (output_bfd
, plt_entry
[0], loc
);
10995 bfd_put_16 (output_bfd
, got_address_high
, loc
+ 2);
10996 bfd_put_16 (output_bfd
, plt_entry
[2], loc
+ 4);
10997 bfd_put_16 (output_bfd
, got_address_low
, loc
+ 6);
10998 bfd_put_16 (output_bfd
, plt_entry
[4], loc
+ 8);
10999 bfd_put_16 (output_bfd
, plt_entry
[5], loc
+ 10);
11000 bfd_put_16 (output_bfd
, plt_entry
[6], loc
+ 12);
11001 bfd_put_16 (output_bfd
, got_address_low
, loc
+ 14);
11005 const bfd_vma
*plt_entry
= micromips_o32_exec_plt_entry
;
11006 bfd_signed_vma gotpc_offset
;
11007 bfd_vma loc_address
;
11009 BFD_ASSERT (got_address
% 4 == 0);
11011 loc_address
= (htab
->root
.splt
->output_section
->vma
11012 + htab
->root
.splt
->output_offset
+ plt_offset
);
11013 gotpc_offset
= got_address
- ((loc_address
| 3) ^ 3);
11015 /* ADDIUPC has a span of +/-16MB, check we're in range. */
11016 if (gotpc_offset
+ 0x1000000 >= 0x2000000)
11019 /* xgettext:c-format */
11020 (_("%pB: `%pA' offset of %" PRId64
" from `%pA' "
11021 "beyond the range of ADDIUPC"),
11023 htab
->root
.sgotplt
->output_section
,
11024 (int64_t) gotpc_offset
,
11025 htab
->root
.splt
->output_section
);
11026 bfd_set_error (bfd_error_no_error
);
11029 bfd_put_16 (output_bfd
,
11030 plt_entry
[0] | ((gotpc_offset
>> 18) & 0x7f), loc
);
11031 bfd_put_16 (output_bfd
, (gotpc_offset
>> 2) & 0xffff, loc
+ 2);
11032 bfd_put_16 (output_bfd
, plt_entry
[2], loc
+ 4);
11033 bfd_put_16 (output_bfd
, plt_entry
[3], loc
+ 6);
11034 bfd_put_16 (output_bfd
, plt_entry
[4], loc
+ 8);
11035 bfd_put_16 (output_bfd
, plt_entry
[5], loc
+ 10);
11039 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
11040 mips_elf_output_dynamic_relocation (output_bfd
, htab
->root
.srelplt
,
11041 got_index
- 2, h
->dynindx
,
11042 R_MIPS_JUMP_SLOT
, got_address
);
11044 /* We distinguish between PLT entries and lazy-binding stubs by
11045 giving the former an st_other value of STO_MIPS_PLT. Set the
11046 flag and leave the value if there are any relocations in the
11047 binary where pointer equality matters. */
11048 sym
->st_shndx
= SHN_UNDEF
;
11049 if (h
->pointer_equality_needed
)
11050 sym
->st_other
= ELF_ST_SET_MIPS_PLT (sym
->st_other
);
11058 if (h
->plt
.plist
!= NULL
&& h
->plt
.plist
->stub_offset
!= MINUS_ONE
)
11060 /* We've decided to create a lazy-binding stub. */
11061 bfd_boolean micromips_p
= MICROMIPS_P (output_bfd
);
11062 unsigned int other
= micromips_p
? STO_MICROMIPS
: 0;
11063 bfd_vma stub_size
= htab
->function_stub_size
;
11064 bfd_byte stub
[MIPS_FUNCTION_STUB_BIG_SIZE
];
11065 bfd_vma isa_bit
= micromips_p
;
11066 bfd_vma stub_big_size
;
11069 stub_big_size
= MIPS_FUNCTION_STUB_BIG_SIZE
;
11070 else if (htab
->insn32
)
11071 stub_big_size
= MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE
;
11073 stub_big_size
= MICROMIPS_FUNCTION_STUB_BIG_SIZE
;
11075 /* This symbol has a stub. Set it up. */
11077 BFD_ASSERT (h
->dynindx
!= -1);
11079 BFD_ASSERT (stub_size
== stub_big_size
|| h
->dynindx
<= 0xffff);
11081 /* Values up to 2^31 - 1 are allowed. Larger values would cause
11082 sign extension at runtime in the stub, resulting in a negative
11084 if (h
->dynindx
& ~0x7fffffff)
11087 /* Fill the stub. */
11091 bfd_put_micromips_32 (output_bfd
, STUB_LW_MICROMIPS (output_bfd
),
11096 bfd_put_micromips_32 (output_bfd
,
11097 STUB_MOVE32_MICROMIPS
, stub
+ idx
);
11102 bfd_put_16 (output_bfd
, STUB_MOVE_MICROMIPS
, stub
+ idx
);
11105 if (stub_size
== stub_big_size
)
11107 long dynindx_hi
= (h
->dynindx
>> 16) & 0x7fff;
11109 bfd_put_micromips_32 (output_bfd
,
11110 STUB_LUI_MICROMIPS (dynindx_hi
),
11116 bfd_put_micromips_32 (output_bfd
, STUB_JALR32_MICROMIPS
,
11122 bfd_put_16 (output_bfd
, STUB_JALR_MICROMIPS
, stub
+ idx
);
11126 /* If a large stub is not required and sign extension is not a
11127 problem, then use legacy code in the stub. */
11128 if (stub_size
== stub_big_size
)
11129 bfd_put_micromips_32 (output_bfd
,
11130 STUB_ORI_MICROMIPS (h
->dynindx
& 0xffff),
11132 else if (h
->dynindx
& ~0x7fff)
11133 bfd_put_micromips_32 (output_bfd
,
11134 STUB_LI16U_MICROMIPS (h
->dynindx
& 0xffff),
11137 bfd_put_micromips_32 (output_bfd
,
11138 STUB_LI16S_MICROMIPS (output_bfd
,
11145 bfd_put_32 (output_bfd
, STUB_LW (output_bfd
), stub
+ idx
);
11147 bfd_put_32 (output_bfd
, STUB_MOVE
, stub
+ idx
);
11149 if (stub_size
== stub_big_size
)
11151 bfd_put_32 (output_bfd
, STUB_LUI ((h
->dynindx
>> 16) & 0x7fff),
11156 if (!(MIPSR6_P (output_bfd
) && htab
->compact_branches
))
11158 bfd_put_32 (output_bfd
, STUB_JALR
, stub
+ idx
);
11162 /* If a large stub is not required and sign extension is not a
11163 problem, then use legacy code in the stub. */
11164 if (stub_size
== stub_big_size
)
11165 bfd_put_32 (output_bfd
, STUB_ORI (h
->dynindx
& 0xffff),
11167 else if (h
->dynindx
& ~0x7fff)
11168 bfd_put_32 (output_bfd
, STUB_LI16U (h
->dynindx
& 0xffff),
11171 bfd_put_32 (output_bfd
, STUB_LI16S (output_bfd
, h
->dynindx
),
11175 if (MIPSR6_P (output_bfd
) && htab
->compact_branches
)
11176 bfd_put_32 (output_bfd
, STUB_JALRC
, stub
+ idx
);
11179 BFD_ASSERT (h
->plt
.plist
->stub_offset
<= htab
->sstubs
->size
);
11180 memcpy (htab
->sstubs
->contents
+ h
->plt
.plist
->stub_offset
,
11183 /* Mark the symbol as undefined. stub_offset != -1 occurs
11184 only for the referenced symbol. */
11185 sym
->st_shndx
= SHN_UNDEF
;
11187 /* The run-time linker uses the st_value field of the symbol
11188 to reset the global offset table entry for this external
11189 to its stub address when unlinking a shared object. */
11190 sym
->st_value
= (htab
->sstubs
->output_section
->vma
11191 + htab
->sstubs
->output_offset
11192 + h
->plt
.plist
->stub_offset
11194 sym
->st_other
= other
;
11197 /* If we have a MIPS16 function with a stub, the dynamic symbol must
11198 refer to the stub, since only the stub uses the standard calling
11200 if (h
->dynindx
!= -1 && hmips
->fn_stub
!= NULL
)
11202 BFD_ASSERT (hmips
->need_fn_stub
);
11203 sym
->st_value
= (hmips
->fn_stub
->output_section
->vma
11204 + hmips
->fn_stub
->output_offset
);
11205 sym
->st_size
= hmips
->fn_stub
->size
;
11206 sym
->st_other
= ELF_ST_VISIBILITY (sym
->st_other
);
11209 BFD_ASSERT (h
->dynindx
!= -1
11210 || h
->forced_local
);
11212 sgot
= htab
->root
.sgot
;
11213 g
= htab
->got_info
;
11214 BFD_ASSERT (g
!= NULL
);
11216 /* Run through the global symbol table, creating GOT entries for all
11217 the symbols that need them. */
11218 if (hmips
->global_got_area
!= GGA_NONE
)
11223 value
= sym
->st_value
;
11224 offset
= mips_elf_primary_global_got_index (output_bfd
, info
, h
);
11225 MIPS_ELF_PUT_WORD (output_bfd
, value
, sgot
->contents
+ offset
);
11228 if (hmips
->global_got_area
!= GGA_NONE
&& g
->next
)
11230 struct mips_got_entry e
, *p
;
11236 e
.abfd
= output_bfd
;
11239 e
.tls_type
= GOT_TLS_NONE
;
11241 for (g
= g
->next
; g
->next
!= gg
; g
= g
->next
)
11244 && (p
= (struct mips_got_entry
*) htab_find (g
->got_entries
,
11247 offset
= p
->gotidx
;
11248 BFD_ASSERT (offset
> 0 && offset
< htab
->root
.sgot
->size
);
11249 if (bfd_link_pic (info
)
11250 || (elf_hash_table (info
)->dynamic_sections_created
11252 && p
->d
.h
->root
.def_dynamic
11253 && !p
->d
.h
->root
.def_regular
))
11255 /* Create an R_MIPS_REL32 relocation for this entry. Due to
11256 the various compatibility problems, it's easier to mock
11257 up an R_MIPS_32 or R_MIPS_64 relocation and leave
11258 mips_elf_create_dynamic_relocation to calculate the
11259 appropriate addend. */
11260 Elf_Internal_Rela rel
[3];
11262 memset (rel
, 0, sizeof (rel
));
11263 if (ABI_64_P (output_bfd
))
11264 rel
[0].r_info
= ELF_R_INFO (output_bfd
, 0, R_MIPS_64
);
11266 rel
[0].r_info
= ELF_R_INFO (output_bfd
, 0, R_MIPS_32
);
11267 rel
[0].r_offset
= rel
[1].r_offset
= rel
[2].r_offset
= offset
;
11270 if (! (mips_elf_create_dynamic_relocation
11271 (output_bfd
, info
, rel
,
11272 e
.d
.h
, NULL
, sym
->st_value
, &entry
, sgot
)))
11276 entry
= sym
->st_value
;
11277 MIPS_ELF_PUT_WORD (output_bfd
, entry
, sgot
->contents
+ offset
);
11282 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
11283 name
= h
->root
.root
.string
;
11284 if (h
== elf_hash_table (info
)->hdynamic
11285 || h
== elf_hash_table (info
)->hgot
)
11286 sym
->st_shndx
= SHN_ABS
;
11287 else if (strcmp (name
, "_DYNAMIC_LINK") == 0
11288 || strcmp (name
, "_DYNAMIC_LINKING") == 0)
11290 sym
->st_shndx
= SHN_ABS
;
11291 sym
->st_info
= ELF_ST_INFO (STB_GLOBAL
, STT_SECTION
);
11294 else if (SGI_COMPAT (output_bfd
))
11296 if (strcmp (name
, mips_elf_dynsym_rtproc_names
[0]) == 0
11297 || strcmp (name
, mips_elf_dynsym_rtproc_names
[1]) == 0)
11299 sym
->st_info
= ELF_ST_INFO (STB_GLOBAL
, STT_SECTION
);
11300 sym
->st_other
= STO_PROTECTED
;
11302 sym
->st_shndx
= SHN_MIPS_DATA
;
11304 else if (strcmp (name
, mips_elf_dynsym_rtproc_names
[2]) == 0)
11306 sym
->st_info
= ELF_ST_INFO (STB_GLOBAL
, STT_SECTION
);
11307 sym
->st_other
= STO_PROTECTED
;
11308 sym
->st_value
= mips_elf_hash_table (info
)->procedure_count
;
11309 sym
->st_shndx
= SHN_ABS
;
11311 else if (sym
->st_shndx
!= SHN_UNDEF
&& sym
->st_shndx
!= SHN_ABS
)
11313 if (h
->type
== STT_FUNC
)
11314 sym
->st_shndx
= SHN_MIPS_TEXT
;
11315 else if (h
->type
== STT_OBJECT
)
11316 sym
->st_shndx
= SHN_MIPS_DATA
;
11320 /* Emit a copy reloc, if needed. */
11326 BFD_ASSERT (h
->dynindx
!= -1);
11327 BFD_ASSERT (htab
->use_plts_and_copy_relocs
);
11329 s
= mips_elf_rel_dyn_section (info
, FALSE
);
11330 symval
= (h
->root
.u
.def
.section
->output_section
->vma
11331 + h
->root
.u
.def
.section
->output_offset
11332 + h
->root
.u
.def
.value
);
11333 mips_elf_output_dynamic_relocation (output_bfd
, s
, s
->reloc_count
++,
11334 h
->dynindx
, R_MIPS_COPY
, symval
);
11337 /* Handle the IRIX6-specific symbols. */
11338 if (IRIX_COMPAT (output_bfd
) == ict_irix6
)
11339 mips_elf_irix6_finish_dynamic_symbol (output_bfd
, name
, sym
);
11341 /* Keep dynamic compressed symbols odd. This allows the dynamic linker
11342 to treat compressed symbols like any other. */
11343 if (ELF_ST_IS_MIPS16 (sym
->st_other
))
11345 BFD_ASSERT (sym
->st_value
& 1);
11346 sym
->st_other
-= STO_MIPS16
;
11348 else if (ELF_ST_IS_MICROMIPS (sym
->st_other
))
11350 BFD_ASSERT (sym
->st_value
& 1);
11351 sym
->st_other
-= STO_MICROMIPS
;
11357 /* Likewise, for VxWorks. */
11360 _bfd_mips_vxworks_finish_dynamic_symbol (bfd
*output_bfd
,
11361 struct bfd_link_info
*info
,
11362 struct elf_link_hash_entry
*h
,
11363 Elf_Internal_Sym
*sym
)
11367 struct mips_got_info
*g
;
11368 struct mips_elf_link_hash_table
*htab
;
11369 struct mips_elf_link_hash_entry
*hmips
;
11371 htab
= mips_elf_hash_table (info
);
11372 BFD_ASSERT (htab
!= NULL
);
11373 dynobj
= elf_hash_table (info
)->dynobj
;
11374 hmips
= (struct mips_elf_link_hash_entry
*) h
;
11376 if (h
->plt
.plist
!= NULL
&& h
->plt
.plist
->mips_offset
!= MINUS_ONE
)
11379 bfd_vma plt_address
, got_address
, got_offset
, branch_offset
;
11380 Elf_Internal_Rela rel
;
11381 static const bfd_vma
*plt_entry
;
11382 bfd_vma gotplt_index
;
11383 bfd_vma plt_offset
;
11385 plt_offset
= htab
->plt_header_size
+ h
->plt
.plist
->mips_offset
;
11386 gotplt_index
= h
->plt
.plist
->gotplt_index
;
11388 BFD_ASSERT (h
->dynindx
!= -1);
11389 BFD_ASSERT (htab
->root
.splt
!= NULL
);
11390 BFD_ASSERT (gotplt_index
!= MINUS_ONE
);
11391 BFD_ASSERT (plt_offset
<= htab
->root
.splt
->size
);
11393 /* Calculate the address of the .plt entry. */
11394 plt_address
= (htab
->root
.splt
->output_section
->vma
11395 + htab
->root
.splt
->output_offset
11398 /* Calculate the address of the .got.plt entry. */
11399 got_address
= (htab
->root
.sgotplt
->output_section
->vma
11400 + htab
->root
.sgotplt
->output_offset
11401 + gotplt_index
* MIPS_ELF_GOT_SIZE (output_bfd
));
11403 /* Calculate the offset of the .got.plt entry from
11404 _GLOBAL_OFFSET_TABLE_. */
11405 got_offset
= mips_elf_gotplt_index (info
, h
);
11407 /* Calculate the offset for the branch at the start of the PLT
11408 entry. The branch jumps to the beginning of .plt. */
11409 branch_offset
= -(plt_offset
/ 4 + 1) & 0xffff;
11411 /* Fill in the initial value of the .got.plt entry. */
11412 bfd_put_32 (output_bfd
, plt_address
,
11413 (htab
->root
.sgotplt
->contents
11414 + gotplt_index
* MIPS_ELF_GOT_SIZE (output_bfd
)));
11416 /* Find out where the .plt entry should go. */
11417 loc
= htab
->root
.splt
->contents
+ plt_offset
;
11419 if (bfd_link_pic (info
))
11421 plt_entry
= mips_vxworks_shared_plt_entry
;
11422 bfd_put_32 (output_bfd
, plt_entry
[0] | branch_offset
, loc
);
11423 bfd_put_32 (output_bfd
, plt_entry
[1] | gotplt_index
, loc
+ 4);
11427 bfd_vma got_address_high
, got_address_low
;
11429 plt_entry
= mips_vxworks_exec_plt_entry
;
11430 got_address_high
= ((got_address
+ 0x8000) >> 16) & 0xffff;
11431 got_address_low
= got_address
& 0xffff;
11433 bfd_put_32 (output_bfd
, plt_entry
[0] | branch_offset
, loc
);
11434 bfd_put_32 (output_bfd
, plt_entry
[1] | gotplt_index
, loc
+ 4);
11435 bfd_put_32 (output_bfd
, plt_entry
[2] | got_address_high
, loc
+ 8);
11436 bfd_put_32 (output_bfd
, plt_entry
[3] | got_address_low
, loc
+ 12);
11437 bfd_put_32 (output_bfd
, plt_entry
[4], loc
+ 16);
11438 bfd_put_32 (output_bfd
, plt_entry
[5], loc
+ 20);
11439 bfd_put_32 (output_bfd
, plt_entry
[6], loc
+ 24);
11440 bfd_put_32 (output_bfd
, plt_entry
[7], loc
+ 28);
11442 loc
= (htab
->srelplt2
->contents
11443 + (gotplt_index
* 3 + 2) * sizeof (Elf32_External_Rela
));
11445 /* Emit a relocation for the .got.plt entry. */
11446 rel
.r_offset
= got_address
;
11447 rel
.r_info
= ELF32_R_INFO (htab
->root
.hplt
->indx
, R_MIPS_32
);
11448 rel
.r_addend
= plt_offset
;
11449 bfd_elf32_swap_reloca_out (output_bfd
, &rel
, loc
);
11451 /* Emit a relocation for the lui of %hi(<.got.plt slot>). */
11452 loc
+= sizeof (Elf32_External_Rela
);
11453 rel
.r_offset
= plt_address
+ 8;
11454 rel
.r_info
= ELF32_R_INFO (htab
->root
.hgot
->indx
, R_MIPS_HI16
);
11455 rel
.r_addend
= got_offset
;
11456 bfd_elf32_swap_reloca_out (output_bfd
, &rel
, loc
);
11458 /* Emit a relocation for the addiu of %lo(<.got.plt slot>). */
11459 loc
+= sizeof (Elf32_External_Rela
);
11461 rel
.r_info
= ELF32_R_INFO (htab
->root
.hgot
->indx
, R_MIPS_LO16
);
11462 bfd_elf32_swap_reloca_out (output_bfd
, &rel
, loc
);
11465 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
11466 loc
= (htab
->root
.srelplt
->contents
11467 + gotplt_index
* sizeof (Elf32_External_Rela
));
11468 rel
.r_offset
= got_address
;
11469 rel
.r_info
= ELF32_R_INFO (h
->dynindx
, R_MIPS_JUMP_SLOT
);
11471 bfd_elf32_swap_reloca_out (output_bfd
, &rel
, loc
);
11473 if (!h
->def_regular
)
11474 sym
->st_shndx
= SHN_UNDEF
;
11477 BFD_ASSERT (h
->dynindx
!= -1 || h
->forced_local
);
11479 sgot
= htab
->root
.sgot
;
11480 g
= htab
->got_info
;
11481 BFD_ASSERT (g
!= NULL
);
11483 /* See if this symbol has an entry in the GOT. */
11484 if (hmips
->global_got_area
!= GGA_NONE
)
11487 Elf_Internal_Rela outrel
;
11491 /* Install the symbol value in the GOT. */
11492 offset
= mips_elf_primary_global_got_index (output_bfd
, info
, h
);
11493 MIPS_ELF_PUT_WORD (output_bfd
, sym
->st_value
, sgot
->contents
+ offset
);
11495 /* Add a dynamic relocation for it. */
11496 s
= mips_elf_rel_dyn_section (info
, FALSE
);
11497 loc
= s
->contents
+ (s
->reloc_count
++ * sizeof (Elf32_External_Rela
));
11498 outrel
.r_offset
= (sgot
->output_section
->vma
11499 + sgot
->output_offset
11501 outrel
.r_info
= ELF32_R_INFO (h
->dynindx
, R_MIPS_32
);
11502 outrel
.r_addend
= 0;
11503 bfd_elf32_swap_reloca_out (dynobj
, &outrel
, loc
);
11506 /* Emit a copy reloc, if needed. */
11509 Elf_Internal_Rela rel
;
11513 BFD_ASSERT (h
->dynindx
!= -1);
11515 rel
.r_offset
= (h
->root
.u
.def
.section
->output_section
->vma
11516 + h
->root
.u
.def
.section
->output_offset
11517 + h
->root
.u
.def
.value
);
11518 rel
.r_info
= ELF32_R_INFO (h
->dynindx
, R_MIPS_COPY
);
11520 if (h
->root
.u
.def
.section
== htab
->root
.sdynrelro
)
11521 srel
= htab
->root
.sreldynrelro
;
11523 srel
= htab
->root
.srelbss
;
11524 loc
= srel
->contents
+ srel
->reloc_count
* sizeof (Elf32_External_Rela
);
11525 bfd_elf32_swap_reloca_out (output_bfd
, &rel
, loc
);
11526 ++srel
->reloc_count
;
11529 /* If this is a mips16/microMIPS symbol, force the value to be even. */
11530 if (ELF_ST_IS_COMPRESSED (sym
->st_other
))
11531 sym
->st_value
&= ~1;
11536 /* Write out a plt0 entry to the beginning of .plt. */
11539 mips_finish_exec_plt (bfd
*output_bfd
, struct bfd_link_info
*info
)
11542 bfd_vma gotplt_value
, gotplt_value_high
, gotplt_value_low
;
11543 static const bfd_vma
*plt_entry
;
11544 struct mips_elf_link_hash_table
*htab
;
11546 htab
= mips_elf_hash_table (info
);
11547 BFD_ASSERT (htab
!= NULL
);
11549 if (ABI_64_P (output_bfd
))
11550 plt_entry
= (htab
->compact_branches
11551 ? mipsr6_n64_exec_plt0_entry_compact
11552 : mips_n64_exec_plt0_entry
);
11553 else if (ABI_N32_P (output_bfd
))
11554 plt_entry
= (htab
->compact_branches
11555 ? mipsr6_n32_exec_plt0_entry_compact
11556 : mips_n32_exec_plt0_entry
);
11557 else if (!htab
->plt_header_is_comp
)
11558 plt_entry
= (htab
->compact_branches
11559 ? mipsr6_o32_exec_plt0_entry_compact
11560 : mips_o32_exec_plt0_entry
);
11561 else if (htab
->insn32
)
11562 plt_entry
= micromips_insn32_o32_exec_plt0_entry
;
11564 plt_entry
= micromips_o32_exec_plt0_entry
;
11566 /* Calculate the value of .got.plt. */
11567 gotplt_value
= (htab
->root
.sgotplt
->output_section
->vma
11568 + htab
->root
.sgotplt
->output_offset
);
11569 gotplt_value_high
= ((gotplt_value
+ 0x8000) >> 16) & 0xffff;
11570 gotplt_value_low
= gotplt_value
& 0xffff;
11572 /* The PLT sequence is not safe for N64 if .got.plt's address can
11573 not be loaded in two instructions. */
11574 if (ABI_64_P (output_bfd
)
11575 && ((gotplt_value
+ 0x80008000) & ~(bfd_vma
) 0xffffffff) != 0)
11578 /* xgettext:c-format */
11579 (_("%pB: `%pA' start VMA of %#" PRIx64
" outside the 32-bit range "
11580 "supported; consider using `-Ttext-segment=...'"),
11582 htab
->root
.sgotplt
->output_section
,
11583 (int64_t) gotplt_value
);
11584 bfd_set_error (bfd_error_no_error
);
11588 /* Install the PLT header. */
11589 loc
= htab
->root
.splt
->contents
;
11590 if (plt_entry
== micromips_o32_exec_plt0_entry
)
11592 bfd_vma gotpc_offset
;
11593 bfd_vma loc_address
;
11596 BFD_ASSERT (gotplt_value
% 4 == 0);
11598 loc_address
= (htab
->root
.splt
->output_section
->vma
11599 + htab
->root
.splt
->output_offset
);
11600 gotpc_offset
= gotplt_value
- ((loc_address
| 3) ^ 3);
11602 /* ADDIUPC has a span of +/-16MB, check we're in range. */
11603 if (gotpc_offset
+ 0x1000000 >= 0x2000000)
11606 /* xgettext:c-format */
11607 (_("%pB: `%pA' offset of %" PRId64
" from `%pA' "
11608 "beyond the range of ADDIUPC"),
11610 htab
->root
.sgotplt
->output_section
,
11611 (int64_t) gotpc_offset
,
11612 htab
->root
.splt
->output_section
);
11613 bfd_set_error (bfd_error_no_error
);
11616 bfd_put_16 (output_bfd
,
11617 plt_entry
[0] | ((gotpc_offset
>> 18) & 0x7f), loc
);
11618 bfd_put_16 (output_bfd
, (gotpc_offset
>> 2) & 0xffff, loc
+ 2);
11619 for (i
= 2; i
< ARRAY_SIZE (micromips_o32_exec_plt0_entry
); i
++)
11620 bfd_put_16 (output_bfd
, plt_entry
[i
], loc
+ (i
* 2));
11622 else if (plt_entry
== micromips_insn32_o32_exec_plt0_entry
)
11626 bfd_put_16 (output_bfd
, plt_entry
[0], loc
);
11627 bfd_put_16 (output_bfd
, gotplt_value_high
, loc
+ 2);
11628 bfd_put_16 (output_bfd
, plt_entry
[2], loc
+ 4);
11629 bfd_put_16 (output_bfd
, gotplt_value_low
, loc
+ 6);
11630 bfd_put_16 (output_bfd
, plt_entry
[4], loc
+ 8);
11631 bfd_put_16 (output_bfd
, gotplt_value_low
, loc
+ 10);
11632 for (i
= 6; i
< ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry
); i
++)
11633 bfd_put_16 (output_bfd
, plt_entry
[i
], loc
+ (i
* 2));
11637 bfd_put_32 (output_bfd
, plt_entry
[0] | gotplt_value_high
, loc
);
11638 bfd_put_32 (output_bfd
, plt_entry
[1] | gotplt_value_low
, loc
+ 4);
11639 bfd_put_32 (output_bfd
, plt_entry
[2] | gotplt_value_low
, loc
+ 8);
11640 bfd_put_32 (output_bfd
, plt_entry
[3], loc
+ 12);
11641 bfd_put_32 (output_bfd
, plt_entry
[4], loc
+ 16);
11642 bfd_put_32 (output_bfd
, plt_entry
[5], loc
+ 20);
11643 bfd_put_32 (output_bfd
, plt_entry
[6], loc
+ 24);
11644 bfd_put_32 (output_bfd
, plt_entry
[7], loc
+ 28);
11650 /* Install the PLT header for a VxWorks executable and finalize the
11651 contents of .rela.plt.unloaded. */
11654 mips_vxworks_finish_exec_plt (bfd
*output_bfd
, struct bfd_link_info
*info
)
11656 Elf_Internal_Rela rela
;
11658 bfd_vma got_value
, got_value_high
, got_value_low
, plt_address
;
11659 static const bfd_vma
*plt_entry
;
11660 struct mips_elf_link_hash_table
*htab
;
11662 htab
= mips_elf_hash_table (info
);
11663 BFD_ASSERT (htab
!= NULL
);
11665 plt_entry
= mips_vxworks_exec_plt0_entry
;
11667 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
11668 got_value
= (htab
->root
.hgot
->root
.u
.def
.section
->output_section
->vma
11669 + htab
->root
.hgot
->root
.u
.def
.section
->output_offset
11670 + htab
->root
.hgot
->root
.u
.def
.value
);
11672 got_value_high
= ((got_value
+ 0x8000) >> 16) & 0xffff;
11673 got_value_low
= got_value
& 0xffff;
11675 /* Calculate the address of the PLT header. */
11676 plt_address
= (htab
->root
.splt
->output_section
->vma
11677 + htab
->root
.splt
->output_offset
);
11679 /* Install the PLT header. */
11680 loc
= htab
->root
.splt
->contents
;
11681 bfd_put_32 (output_bfd
, plt_entry
[0] | got_value_high
, loc
);
11682 bfd_put_32 (output_bfd
, plt_entry
[1] | got_value_low
, loc
+ 4);
11683 bfd_put_32 (output_bfd
, plt_entry
[2], loc
+ 8);
11684 bfd_put_32 (output_bfd
, plt_entry
[3], loc
+ 12);
11685 bfd_put_32 (output_bfd
, plt_entry
[4], loc
+ 16);
11686 bfd_put_32 (output_bfd
, plt_entry
[5], loc
+ 20);
11688 /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_). */
11689 loc
= htab
->srelplt2
->contents
;
11690 rela
.r_offset
= plt_address
;
11691 rela
.r_info
= ELF32_R_INFO (htab
->root
.hgot
->indx
, R_MIPS_HI16
);
11693 bfd_elf32_swap_reloca_out (output_bfd
, &rela
, loc
);
11694 loc
+= sizeof (Elf32_External_Rela
);
11696 /* Output the relocation for the following addiu of
11697 %lo(_GLOBAL_OFFSET_TABLE_). */
11698 rela
.r_offset
+= 4;
11699 rela
.r_info
= ELF32_R_INFO (htab
->root
.hgot
->indx
, R_MIPS_LO16
);
11700 bfd_elf32_swap_reloca_out (output_bfd
, &rela
, loc
);
11701 loc
+= sizeof (Elf32_External_Rela
);
11703 /* Fix up the remaining relocations. They may have the wrong
11704 symbol index for _G_O_T_ or _P_L_T_ depending on the order
11705 in which symbols were output. */
11706 while (loc
< htab
->srelplt2
->contents
+ htab
->srelplt2
->size
)
11708 Elf_Internal_Rela rel
;
11710 bfd_elf32_swap_reloca_in (output_bfd
, loc
, &rel
);
11711 rel
.r_info
= ELF32_R_INFO (htab
->root
.hplt
->indx
, R_MIPS_32
);
11712 bfd_elf32_swap_reloca_out (output_bfd
, &rel
, loc
);
11713 loc
+= sizeof (Elf32_External_Rela
);
11715 bfd_elf32_swap_reloca_in (output_bfd
, loc
, &rel
);
11716 rel
.r_info
= ELF32_R_INFO (htab
->root
.hgot
->indx
, R_MIPS_HI16
);
11717 bfd_elf32_swap_reloca_out (output_bfd
, &rel
, loc
);
11718 loc
+= sizeof (Elf32_External_Rela
);
11720 bfd_elf32_swap_reloca_in (output_bfd
, loc
, &rel
);
11721 rel
.r_info
= ELF32_R_INFO (htab
->root
.hgot
->indx
, R_MIPS_LO16
);
11722 bfd_elf32_swap_reloca_out (output_bfd
, &rel
, loc
);
11723 loc
+= sizeof (Elf32_External_Rela
);
11727 /* Install the PLT header for a VxWorks shared library. */
11730 mips_vxworks_finish_shared_plt (bfd
*output_bfd
, struct bfd_link_info
*info
)
11733 struct mips_elf_link_hash_table
*htab
;
11735 htab
= mips_elf_hash_table (info
);
11736 BFD_ASSERT (htab
!= NULL
);
11738 /* We just need to copy the entry byte-by-byte. */
11739 for (i
= 0; i
< ARRAY_SIZE (mips_vxworks_shared_plt0_entry
); i
++)
11740 bfd_put_32 (output_bfd
, mips_vxworks_shared_plt0_entry
[i
],
11741 htab
->root
.splt
->contents
+ i
* 4);
11744 /* Finish up the dynamic sections. */
11747 _bfd_mips_elf_finish_dynamic_sections (bfd
*output_bfd
,
11748 struct bfd_link_info
*info
)
11753 struct mips_got_info
*gg
, *g
;
11754 struct mips_elf_link_hash_table
*htab
;
11756 htab
= mips_elf_hash_table (info
);
11757 BFD_ASSERT (htab
!= NULL
);
11759 dynobj
= elf_hash_table (info
)->dynobj
;
11761 sdyn
= bfd_get_linker_section (dynobj
, ".dynamic");
11763 sgot
= htab
->root
.sgot
;
11764 gg
= htab
->got_info
;
11766 if (elf_hash_table (info
)->dynamic_sections_created
)
11769 int dyn_to_skip
= 0, dyn_skipped
= 0;
11771 BFD_ASSERT (sdyn
!= NULL
);
11772 BFD_ASSERT (gg
!= NULL
);
11774 g
= mips_elf_bfd_got (output_bfd
, FALSE
);
11775 BFD_ASSERT (g
!= NULL
);
11777 for (b
= sdyn
->contents
;
11778 b
< sdyn
->contents
+ sdyn
->size
;
11779 b
+= MIPS_ELF_DYN_SIZE (dynobj
))
11781 Elf_Internal_Dyn dyn
;
11785 bfd_boolean swap_out_p
;
11787 /* Read in the current dynamic entry. */
11788 (*get_elf_backend_data (dynobj
)->s
->swap_dyn_in
) (dynobj
, b
, &dyn
);
11790 /* Assume that we're going to modify it and write it out. */
11796 dyn
.d_un
.d_val
= MIPS_ELF_REL_SIZE (dynobj
);
11800 BFD_ASSERT (htab
->root
.target_os
== is_vxworks
);
11801 dyn
.d_un
.d_val
= MIPS_ELF_RELA_SIZE (dynobj
);
11805 /* Rewrite DT_STRSZ. */
11807 _bfd_elf_strtab_size (elf_hash_table (info
)->dynstr
);
11811 s
= htab
->root
.sgot
;
11812 dyn
.d_un
.d_ptr
= s
->output_section
->vma
+ s
->output_offset
;
11815 case DT_MIPS_PLTGOT
:
11816 s
= htab
->root
.sgotplt
;
11817 dyn
.d_un
.d_ptr
= s
->output_section
->vma
+ s
->output_offset
;
11820 case DT_MIPS_RLD_VERSION
:
11821 dyn
.d_un
.d_val
= 1; /* XXX */
11824 case DT_MIPS_FLAGS
:
11825 dyn
.d_un
.d_val
= RHF_NOTPOT
; /* XXX */
11828 case DT_MIPS_TIME_STAMP
:
11832 dyn
.d_un
.d_val
= t
;
11836 case DT_MIPS_ICHECKSUM
:
11838 swap_out_p
= FALSE
;
11841 case DT_MIPS_IVERSION
:
11843 swap_out_p
= FALSE
;
11846 case DT_MIPS_BASE_ADDRESS
:
11847 s
= output_bfd
->sections
;
11848 BFD_ASSERT (s
!= NULL
);
11849 dyn
.d_un
.d_ptr
= s
->vma
& ~(bfd_vma
) 0xffff;
11852 case DT_MIPS_LOCAL_GOTNO
:
11853 dyn
.d_un
.d_val
= g
->local_gotno
;
11856 case DT_MIPS_UNREFEXTNO
:
11857 /* The index into the dynamic symbol table which is the
11858 entry of the first external symbol that is not
11859 referenced within the same object. */
11860 dyn
.d_un
.d_val
= bfd_count_sections (output_bfd
) + 1;
11863 case DT_MIPS_GOTSYM
:
11864 if (htab
->global_gotsym
)
11866 dyn
.d_un
.d_val
= htab
->global_gotsym
->dynindx
;
11869 /* In case if we don't have global got symbols we default
11870 to setting DT_MIPS_GOTSYM to the same value as
11871 DT_MIPS_SYMTABNO. */
11872 /* Fall through. */
11874 case DT_MIPS_SYMTABNO
:
11876 elemsize
= MIPS_ELF_SYM_SIZE (output_bfd
);
11877 s
= bfd_get_linker_section (dynobj
, name
);
11880 dyn
.d_un
.d_val
= s
->size
/ elemsize
;
11882 dyn
.d_un
.d_val
= 0;
11885 case DT_MIPS_HIPAGENO
:
11886 dyn
.d_un
.d_val
= g
->local_gotno
- htab
->reserved_gotno
;
11889 case DT_MIPS_RLD_MAP
:
11891 struct elf_link_hash_entry
*h
;
11892 h
= mips_elf_hash_table (info
)->rld_symbol
;
11895 dyn_to_skip
= MIPS_ELF_DYN_SIZE (dynobj
);
11896 swap_out_p
= FALSE
;
11899 s
= h
->root
.u
.def
.section
;
11901 /* The MIPS_RLD_MAP tag stores the absolute address of the
11903 dyn
.d_un
.d_ptr
= (s
->output_section
->vma
+ s
->output_offset
11904 + h
->root
.u
.def
.value
);
11908 case DT_MIPS_RLD_MAP_REL
:
11910 struct elf_link_hash_entry
*h
;
11911 bfd_vma dt_addr
, rld_addr
;
11912 h
= mips_elf_hash_table (info
)->rld_symbol
;
11915 dyn_to_skip
= MIPS_ELF_DYN_SIZE (dynobj
);
11916 swap_out_p
= FALSE
;
11919 s
= h
->root
.u
.def
.section
;
11921 /* The MIPS_RLD_MAP_REL tag stores the offset to the debug
11922 pointer, relative to the address of the tag. */
11923 dt_addr
= (sdyn
->output_section
->vma
+ sdyn
->output_offset
11924 + (b
- sdyn
->contents
));
11925 rld_addr
= (s
->output_section
->vma
+ s
->output_offset
11926 + h
->root
.u
.def
.value
);
11927 dyn
.d_un
.d_ptr
= rld_addr
- dt_addr
;
11931 case DT_MIPS_OPTIONS
:
11932 s
= (bfd_get_section_by_name
11933 (output_bfd
, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd
)));
11934 dyn
.d_un
.d_ptr
= s
->vma
;
11938 BFD_ASSERT (htab
->use_plts_and_copy_relocs
);
11939 if (htab
->root
.target_os
== is_vxworks
)
11940 dyn
.d_un
.d_val
= DT_RELA
;
11942 dyn
.d_un
.d_val
= DT_REL
;
11946 BFD_ASSERT (htab
->use_plts_and_copy_relocs
);
11947 dyn
.d_un
.d_val
= htab
->root
.srelplt
->size
;
11951 BFD_ASSERT (htab
->use_plts_and_copy_relocs
);
11952 dyn
.d_un
.d_ptr
= (htab
->root
.srelplt
->output_section
->vma
11953 + htab
->root
.srelplt
->output_offset
);
11957 /* If we didn't need any text relocations after all, delete
11958 the dynamic tag. */
11959 if (!(info
->flags
& DF_TEXTREL
))
11961 dyn_to_skip
= MIPS_ELF_DYN_SIZE (dynobj
);
11962 swap_out_p
= FALSE
;
11967 /* If we didn't need any text relocations after all, clear
11968 DF_TEXTREL from DT_FLAGS. */
11969 if (!(info
->flags
& DF_TEXTREL
))
11970 dyn
.d_un
.d_val
&= ~DF_TEXTREL
;
11972 swap_out_p
= FALSE
;
11975 case DT_MIPS_XHASH
:
11976 name
= ".MIPS.xhash";
11977 s
= bfd_get_linker_section (dynobj
, name
);
11978 dyn
.d_un
.d_ptr
= s
->output_section
->vma
+ s
->output_offset
;
11982 swap_out_p
= FALSE
;
11983 if (htab
->root
.target_os
== is_vxworks
11984 && elf_vxworks_finish_dynamic_entry (output_bfd
, &dyn
))
11989 if (swap_out_p
|| dyn_skipped
)
11990 (*get_elf_backend_data (dynobj
)->s
->swap_dyn_out
)
11991 (dynobj
, &dyn
, b
- dyn_skipped
);
11995 dyn_skipped
+= dyn_to_skip
;
12000 /* Wipe out any trailing entries if we shifted down a dynamic tag. */
12001 if (dyn_skipped
> 0)
12002 memset (b
- dyn_skipped
, 0, dyn_skipped
);
12005 if (sgot
!= NULL
&& sgot
->size
> 0
12006 && !bfd_is_abs_section (sgot
->output_section
))
12008 if (htab
->root
.target_os
== is_vxworks
)
12010 /* The first entry of the global offset table points to the
12011 ".dynamic" section. The second is initialized by the
12012 loader and contains the shared library identifier.
12013 The third is also initialized by the loader and points
12014 to the lazy resolution stub. */
12015 MIPS_ELF_PUT_WORD (output_bfd
,
12016 sdyn
->output_offset
+ sdyn
->output_section
->vma
,
12018 MIPS_ELF_PUT_WORD (output_bfd
, 0,
12019 sgot
->contents
+ MIPS_ELF_GOT_SIZE (output_bfd
));
12020 MIPS_ELF_PUT_WORD (output_bfd
, 0,
12022 + 2 * MIPS_ELF_GOT_SIZE (output_bfd
));
12026 /* The first entry of the global offset table will be filled at
12027 runtime. The second entry will be used by some runtime loaders.
12028 This isn't the case of IRIX rld. */
12029 MIPS_ELF_PUT_WORD (output_bfd
, (bfd_vma
) 0, sgot
->contents
);
12030 MIPS_ELF_PUT_WORD (output_bfd
, MIPS_ELF_GNU_GOT1_MASK (output_bfd
),
12031 sgot
->contents
+ MIPS_ELF_GOT_SIZE (output_bfd
));
12034 elf_section_data (sgot
->output_section
)->this_hdr
.sh_entsize
12035 = MIPS_ELF_GOT_SIZE (output_bfd
);
12038 /* Generate dynamic relocations for the non-primary gots. */
12039 if (gg
!= NULL
&& gg
->next
)
12041 Elf_Internal_Rela rel
[3];
12042 bfd_vma addend
= 0;
12044 memset (rel
, 0, sizeof (rel
));
12045 rel
[0].r_info
= ELF_R_INFO (output_bfd
, 0, R_MIPS_REL32
);
12047 for (g
= gg
->next
; g
->next
!= gg
; g
= g
->next
)
12049 bfd_vma got_index
= g
->next
->local_gotno
+ g
->next
->global_gotno
12050 + g
->next
->tls_gotno
;
12052 MIPS_ELF_PUT_WORD (output_bfd
, 0, sgot
->contents
12053 + got_index
++ * MIPS_ELF_GOT_SIZE (output_bfd
));
12054 MIPS_ELF_PUT_WORD (output_bfd
, MIPS_ELF_GNU_GOT1_MASK (output_bfd
),
12056 + got_index
++ * MIPS_ELF_GOT_SIZE (output_bfd
));
12058 if (! bfd_link_pic (info
))
12061 for (; got_index
< g
->local_gotno
; got_index
++)
12063 if (got_index
>= g
->assigned_low_gotno
12064 && got_index
<= g
->assigned_high_gotno
)
12067 rel
[0].r_offset
= rel
[1].r_offset
= rel
[2].r_offset
12068 = got_index
* MIPS_ELF_GOT_SIZE (output_bfd
);
12069 if (!(mips_elf_create_dynamic_relocation
12070 (output_bfd
, info
, rel
, NULL
,
12071 bfd_abs_section_ptr
,
12072 0, &addend
, sgot
)))
12074 BFD_ASSERT (addend
== 0);
12079 /* The generation of dynamic relocations for the non-primary gots
12080 adds more dynamic relocations. We cannot count them until
12083 if (elf_hash_table (info
)->dynamic_sections_created
)
12086 bfd_boolean swap_out_p
;
12088 BFD_ASSERT (sdyn
!= NULL
);
12090 for (b
= sdyn
->contents
;
12091 b
< sdyn
->contents
+ sdyn
->size
;
12092 b
+= MIPS_ELF_DYN_SIZE (dynobj
))
12094 Elf_Internal_Dyn dyn
;
12097 /* Read in the current dynamic entry. */
12098 (*get_elf_backend_data (dynobj
)->s
->swap_dyn_in
) (dynobj
, b
, &dyn
);
12100 /* Assume that we're going to modify it and write it out. */
12106 /* Reduce DT_RELSZ to account for any relocations we
12107 decided not to make. This is for the n64 irix rld,
12108 which doesn't seem to apply any relocations if there
12109 are trailing null entries. */
12110 s
= mips_elf_rel_dyn_section (info
, FALSE
);
12111 dyn
.d_un
.d_val
= (s
->reloc_count
12112 * (ABI_64_P (output_bfd
)
12113 ? sizeof (Elf64_Mips_External_Rel
)
12114 : sizeof (Elf32_External_Rel
)));
12115 /* Adjust the section size too. Tools like the prelinker
12116 can reasonably expect the values to the same. */
12117 BFD_ASSERT (!bfd_is_abs_section (s
->output_section
));
12118 elf_section_data (s
->output_section
)->this_hdr
.sh_size
12123 swap_out_p
= FALSE
;
12128 (*get_elf_backend_data (dynobj
)->s
->swap_dyn_out
)
12135 Elf32_compact_rel cpt
;
12137 if (SGI_COMPAT (output_bfd
))
12139 /* Write .compact_rel section out. */
12140 s
= bfd_get_linker_section (dynobj
, ".compact_rel");
12144 cpt
.num
= s
->reloc_count
;
12146 cpt
.offset
= (s
->output_section
->filepos
12147 + sizeof (Elf32_External_compact_rel
));
12150 bfd_elf32_swap_compact_rel_out (output_bfd
, &cpt
,
12151 ((Elf32_External_compact_rel
*)
12154 /* Clean up a dummy stub function entry in .text. */
12155 if (htab
->sstubs
!= NULL
12156 && htab
->sstubs
->contents
!= NULL
)
12158 file_ptr dummy_offset
;
12160 BFD_ASSERT (htab
->sstubs
->size
>= htab
->function_stub_size
);
12161 dummy_offset
= htab
->sstubs
->size
- htab
->function_stub_size
;
12162 memset (htab
->sstubs
->contents
+ dummy_offset
, 0,
12163 htab
->function_stub_size
);
12168 /* The psABI says that the dynamic relocations must be sorted in
12169 increasing order of r_symndx. The VxWorks EABI doesn't require
12170 this, and because the code below handles REL rather than RELA
12171 relocations, using it for VxWorks would be outright harmful. */
12172 if (htab
->root
.target_os
!= is_vxworks
)
12174 s
= mips_elf_rel_dyn_section (info
, FALSE
);
12176 && s
->size
> (bfd_vma
)2 * MIPS_ELF_REL_SIZE (output_bfd
))
12178 reldyn_sorting_bfd
= output_bfd
;
12180 if (ABI_64_P (output_bfd
))
12181 qsort ((Elf64_External_Rel
*) s
->contents
+ 1,
12182 s
->reloc_count
- 1, sizeof (Elf64_Mips_External_Rel
),
12183 sort_dynamic_relocs_64
);
12185 qsort ((Elf32_External_Rel
*) s
->contents
+ 1,
12186 s
->reloc_count
- 1, sizeof (Elf32_External_Rel
),
12187 sort_dynamic_relocs
);
12192 if (htab
->root
.splt
&& htab
->root
.splt
->size
> 0)
12194 if (htab
->root
.target_os
== is_vxworks
)
12196 if (bfd_link_pic (info
))
12197 mips_vxworks_finish_shared_plt (output_bfd
, info
);
12199 mips_vxworks_finish_exec_plt (output_bfd
, info
);
12203 BFD_ASSERT (!bfd_link_pic (info
));
12204 if (!mips_finish_exec_plt (output_bfd
, info
))
12212 /* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
12215 mips_set_isa_flags (bfd
*abfd
)
12219 switch (bfd_get_mach (abfd
))
12222 if (ABI_N32_P (abfd
) || ABI_64_P (abfd
))
12223 val
= E_MIPS_ARCH_3
;
12225 val
= E_MIPS_ARCH_1
;
12228 case bfd_mach_mips3000
:
12229 val
= E_MIPS_ARCH_1
;
12232 case bfd_mach_mips3900
:
12233 val
= E_MIPS_ARCH_1
| E_MIPS_MACH_3900
;
12236 case bfd_mach_mips6000
:
12237 val
= E_MIPS_ARCH_2
;
12240 case bfd_mach_mips4010
:
12241 val
= E_MIPS_ARCH_2
| E_MIPS_MACH_4010
;
12244 case bfd_mach_mips4000
:
12245 case bfd_mach_mips4300
:
12246 case bfd_mach_mips4400
:
12247 case bfd_mach_mips4600
:
12248 val
= E_MIPS_ARCH_3
;
12251 case bfd_mach_mips4100
:
12252 val
= E_MIPS_ARCH_3
| E_MIPS_MACH_4100
;
12255 case bfd_mach_mips4111
:
12256 val
= E_MIPS_ARCH_3
| E_MIPS_MACH_4111
;
12259 case bfd_mach_mips4120
:
12260 val
= E_MIPS_ARCH_3
| E_MIPS_MACH_4120
;
12263 case bfd_mach_mips4650
:
12264 val
= E_MIPS_ARCH_3
| E_MIPS_MACH_4650
;
12267 case bfd_mach_mips5400
:
12268 val
= E_MIPS_ARCH_4
| E_MIPS_MACH_5400
;
12271 case bfd_mach_mips5500
:
12272 val
= E_MIPS_ARCH_4
| E_MIPS_MACH_5500
;
12275 case bfd_mach_mips5900
:
12276 val
= E_MIPS_ARCH_3
| E_MIPS_MACH_5900
;
12279 case bfd_mach_mips9000
:
12280 val
= E_MIPS_ARCH_4
| E_MIPS_MACH_9000
;
12283 case bfd_mach_mips5000
:
12284 case bfd_mach_mips7000
:
12285 case bfd_mach_mips8000
:
12286 case bfd_mach_mips10000
:
12287 case bfd_mach_mips12000
:
12288 case bfd_mach_mips14000
:
12289 case bfd_mach_mips16000
:
12290 val
= E_MIPS_ARCH_4
;
12293 case bfd_mach_mips5
:
12294 val
= E_MIPS_ARCH_5
;
12297 case bfd_mach_mips_loongson_2e
:
12298 val
= E_MIPS_ARCH_3
| E_MIPS_MACH_LS2E
;
12301 case bfd_mach_mips_loongson_2f
:
12302 val
= E_MIPS_ARCH_3
| E_MIPS_MACH_LS2F
;
12305 case bfd_mach_mips_sb1
:
12306 val
= E_MIPS_ARCH_64
| E_MIPS_MACH_SB1
;
12309 case bfd_mach_mips_gs464
:
12310 val
= E_MIPS_ARCH_64R2
| E_MIPS_MACH_GS464
;
12313 case bfd_mach_mips_gs464e
:
12314 val
= E_MIPS_ARCH_64R2
| E_MIPS_MACH_GS464E
;
12317 case bfd_mach_mips_gs264e
:
12318 val
= E_MIPS_ARCH_64R2
| E_MIPS_MACH_GS264E
;
12321 case bfd_mach_mips_octeon
:
12322 case bfd_mach_mips_octeonp
:
12323 val
= E_MIPS_ARCH_64R2
| E_MIPS_MACH_OCTEON
;
12326 case bfd_mach_mips_octeon3
:
12327 val
= E_MIPS_ARCH_64R2
| E_MIPS_MACH_OCTEON3
;
12330 case bfd_mach_mips_xlr
:
12331 val
= E_MIPS_ARCH_64
| E_MIPS_MACH_XLR
;
12334 case bfd_mach_mips_octeon2
:
12335 val
= E_MIPS_ARCH_64R2
| E_MIPS_MACH_OCTEON2
;
12338 case bfd_mach_mipsisa32
:
12339 val
= E_MIPS_ARCH_32
;
12342 case bfd_mach_mipsisa64
:
12343 val
= E_MIPS_ARCH_64
;
12346 case bfd_mach_mipsisa32r2
:
12347 case bfd_mach_mipsisa32r3
:
12348 case bfd_mach_mipsisa32r5
:
12349 val
= E_MIPS_ARCH_32R2
;
12352 case bfd_mach_mips_interaptiv_mr2
:
12353 val
= E_MIPS_ARCH_32R2
| E_MIPS_MACH_IAMR2
;
12356 case bfd_mach_mipsisa64r2
:
12357 case bfd_mach_mipsisa64r3
:
12358 case bfd_mach_mipsisa64r5
:
12359 val
= E_MIPS_ARCH_64R2
;
12362 case bfd_mach_mipsisa32r6
:
12363 val
= E_MIPS_ARCH_32R6
;
12366 case bfd_mach_mipsisa64r6
:
12367 val
= E_MIPS_ARCH_64R6
;
12370 elf_elfheader (abfd
)->e_flags
&= ~(EF_MIPS_ARCH
| EF_MIPS_MACH
);
12371 elf_elfheader (abfd
)->e_flags
|= val
;
12376 /* Whether to sort relocs output by ld -r or ld --emit-relocs, by r_offset.
12377 Don't do so for code sections. We want to keep ordering of HI16/LO16
12378 as is. On the other hand, elf-eh-frame.c processing requires .eh_frame
12379 relocs to be sorted. */
12382 _bfd_mips_elf_sort_relocs_p (asection
*sec
)
12384 return (sec
->flags
& SEC_CODE
) == 0;
12388 /* The final processing done just before writing out a MIPS ELF object
12389 file. This gets the MIPS architecture right based on the machine
12390 number. This is used by both the 32-bit and the 64-bit ABI. */
12393 _bfd_mips_final_write_processing (bfd
*abfd
)
12396 Elf_Internal_Shdr
**hdrpp
;
12400 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
12401 is nonzero. This is for compatibility with old objects, which used
12402 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
12403 if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_MACH
) == 0)
12404 mips_set_isa_flags (abfd
);
12406 /* Set the sh_info field for .gptab sections and other appropriate
12407 info for each special section. */
12408 for (i
= 1, hdrpp
= elf_elfsections (abfd
) + 1;
12409 i
< elf_numsections (abfd
);
12412 switch ((*hdrpp
)->sh_type
)
12414 case SHT_MIPS_MSYM
:
12415 case SHT_MIPS_LIBLIST
:
12416 sec
= bfd_get_section_by_name (abfd
, ".dynstr");
12418 (*hdrpp
)->sh_link
= elf_section_data (sec
)->this_idx
;
12421 case SHT_MIPS_GPTAB
:
12422 BFD_ASSERT ((*hdrpp
)->bfd_section
!= NULL
);
12423 name
= bfd_section_name ((*hdrpp
)->bfd_section
);
12424 BFD_ASSERT (name
!= NULL
12425 && CONST_STRNEQ (name
, ".gptab."));
12426 sec
= bfd_get_section_by_name (abfd
, name
+ sizeof ".gptab" - 1);
12427 BFD_ASSERT (sec
!= NULL
);
12428 (*hdrpp
)->sh_info
= elf_section_data (sec
)->this_idx
;
12431 case SHT_MIPS_CONTENT
:
12432 BFD_ASSERT ((*hdrpp
)->bfd_section
!= NULL
);
12433 name
= bfd_section_name ((*hdrpp
)->bfd_section
);
12434 BFD_ASSERT (name
!= NULL
12435 && CONST_STRNEQ (name
, ".MIPS.content"));
12436 sec
= bfd_get_section_by_name (abfd
,
12437 name
+ sizeof ".MIPS.content" - 1);
12438 BFD_ASSERT (sec
!= NULL
);
12439 (*hdrpp
)->sh_link
= elf_section_data (sec
)->this_idx
;
12442 case SHT_MIPS_SYMBOL_LIB
:
12443 sec
= bfd_get_section_by_name (abfd
, ".dynsym");
12445 (*hdrpp
)->sh_link
= elf_section_data (sec
)->this_idx
;
12446 sec
= bfd_get_section_by_name (abfd
, ".liblist");
12448 (*hdrpp
)->sh_info
= elf_section_data (sec
)->this_idx
;
12451 case SHT_MIPS_EVENTS
:
12452 BFD_ASSERT ((*hdrpp
)->bfd_section
!= NULL
);
12453 name
= bfd_section_name ((*hdrpp
)->bfd_section
);
12454 BFD_ASSERT (name
!= NULL
);
12455 if (CONST_STRNEQ (name
, ".MIPS.events"))
12456 sec
= bfd_get_section_by_name (abfd
,
12457 name
+ sizeof ".MIPS.events" - 1);
12460 BFD_ASSERT (CONST_STRNEQ (name
, ".MIPS.post_rel"));
12461 sec
= bfd_get_section_by_name (abfd
,
12463 + sizeof ".MIPS.post_rel" - 1));
12465 BFD_ASSERT (sec
!= NULL
);
12466 (*hdrpp
)->sh_link
= elf_section_data (sec
)->this_idx
;
12469 case SHT_MIPS_XHASH
:
12470 sec
= bfd_get_section_by_name (abfd
, ".dynsym");
12472 (*hdrpp
)->sh_link
= elf_section_data (sec
)->this_idx
;
12478 _bfd_mips_elf_final_write_processing (bfd
*abfd
)
12480 _bfd_mips_final_write_processing (abfd
);
12481 return _bfd_elf_final_write_processing (abfd
);
12484 /* When creating an IRIX5 executable, we need REGINFO and RTPROC
12488 _bfd_mips_elf_additional_program_headers (bfd
*abfd
,
12489 struct bfd_link_info
*info ATTRIBUTE_UNUSED
)
12494 /* See if we need a PT_MIPS_REGINFO segment. */
12495 s
= bfd_get_section_by_name (abfd
, ".reginfo");
12496 if (s
&& (s
->flags
& SEC_LOAD
))
12499 /* See if we need a PT_MIPS_ABIFLAGS segment. */
12500 if (bfd_get_section_by_name (abfd
, ".MIPS.abiflags"))
12503 /* See if we need a PT_MIPS_OPTIONS segment. */
12504 if (IRIX_COMPAT (abfd
) == ict_irix6
12505 && bfd_get_section_by_name (abfd
,
12506 MIPS_ELF_OPTIONS_SECTION_NAME (abfd
)))
12509 /* See if we need a PT_MIPS_RTPROC segment. */
12510 if (IRIX_COMPAT (abfd
) == ict_irix5
12511 && bfd_get_section_by_name (abfd
, ".dynamic")
12512 && bfd_get_section_by_name (abfd
, ".mdebug"))
12515 /* Allocate a PT_NULL header in dynamic objects. See
12516 _bfd_mips_elf_modify_segment_map for details. */
12517 if (!SGI_COMPAT (abfd
)
12518 && bfd_get_section_by_name (abfd
, ".dynamic"))
12524 /* Modify the segment map for an IRIX5 executable. */
12527 _bfd_mips_elf_modify_segment_map (bfd
*abfd
,
12528 struct bfd_link_info
*info
)
12531 struct elf_segment_map
*m
, **pm
;
12534 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
12536 s
= bfd_get_section_by_name (abfd
, ".reginfo");
12537 if (s
!= NULL
&& (s
->flags
& SEC_LOAD
) != 0)
12539 for (m
= elf_seg_map (abfd
); m
!= NULL
; m
= m
->next
)
12540 if (m
->p_type
== PT_MIPS_REGINFO
)
12545 m
= bfd_zalloc (abfd
, amt
);
12549 m
->p_type
= PT_MIPS_REGINFO
;
12551 m
->sections
[0] = s
;
12553 /* We want to put it after the PHDR and INTERP segments. */
12554 pm
= &elf_seg_map (abfd
);
12556 && ((*pm
)->p_type
== PT_PHDR
12557 || (*pm
)->p_type
== PT_INTERP
))
12565 /* If there is a .MIPS.abiflags section, we need a PT_MIPS_ABIFLAGS
12567 s
= bfd_get_section_by_name (abfd
, ".MIPS.abiflags");
12568 if (s
!= NULL
&& (s
->flags
& SEC_LOAD
) != 0)
12570 for (m
= elf_seg_map (abfd
); m
!= NULL
; m
= m
->next
)
12571 if (m
->p_type
== PT_MIPS_ABIFLAGS
)
12576 m
= bfd_zalloc (abfd
, amt
);
12580 m
->p_type
= PT_MIPS_ABIFLAGS
;
12582 m
->sections
[0] = s
;
12584 /* We want to put it after the PHDR and INTERP segments. */
12585 pm
= &elf_seg_map (abfd
);
12587 && ((*pm
)->p_type
== PT_PHDR
12588 || (*pm
)->p_type
== PT_INTERP
))
12596 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
12597 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
12598 PT_MIPS_OPTIONS segment immediately following the program header
12600 if (NEWABI_P (abfd
)
12601 /* On non-IRIX6 new abi, we'll have already created a segment
12602 for this section, so don't create another. I'm not sure this
12603 is not also the case for IRIX 6, but I can't test it right
12605 && IRIX_COMPAT (abfd
) == ict_irix6
)
12607 for (s
= abfd
->sections
; s
; s
= s
->next
)
12608 if (elf_section_data (s
)->this_hdr
.sh_type
== SHT_MIPS_OPTIONS
)
12613 struct elf_segment_map
*options_segment
;
12615 pm
= &elf_seg_map (abfd
);
12617 && ((*pm
)->p_type
== PT_PHDR
12618 || (*pm
)->p_type
== PT_INTERP
))
12621 if (*pm
== NULL
|| (*pm
)->p_type
!= PT_MIPS_OPTIONS
)
12623 amt
= sizeof (struct elf_segment_map
);
12624 options_segment
= bfd_zalloc (abfd
, amt
);
12625 options_segment
->next
= *pm
;
12626 options_segment
->p_type
= PT_MIPS_OPTIONS
;
12627 options_segment
->p_flags
= PF_R
;
12628 options_segment
->p_flags_valid
= TRUE
;
12629 options_segment
->count
= 1;
12630 options_segment
->sections
[0] = s
;
12631 *pm
= options_segment
;
12637 if (IRIX_COMPAT (abfd
) == ict_irix5
)
12639 /* If there are .dynamic and .mdebug sections, we make a room
12640 for the RTPROC header. FIXME: Rewrite without section names. */
12641 if (bfd_get_section_by_name (abfd
, ".interp") == NULL
12642 && bfd_get_section_by_name (abfd
, ".dynamic") != NULL
12643 && bfd_get_section_by_name (abfd
, ".mdebug") != NULL
)
12645 for (m
= elf_seg_map (abfd
); m
!= NULL
; m
= m
->next
)
12646 if (m
->p_type
== PT_MIPS_RTPROC
)
12651 m
= bfd_zalloc (abfd
, amt
);
12655 m
->p_type
= PT_MIPS_RTPROC
;
12657 s
= bfd_get_section_by_name (abfd
, ".rtproc");
12662 m
->p_flags_valid
= 1;
12667 m
->sections
[0] = s
;
12670 /* We want to put it after the DYNAMIC segment. */
12671 pm
= &elf_seg_map (abfd
);
12672 while (*pm
!= NULL
&& (*pm
)->p_type
!= PT_DYNAMIC
)
12682 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
12683 .dynstr, .dynsym, and .hash sections, and everything in
12685 for (pm
= &elf_seg_map (abfd
); *pm
!= NULL
;
12687 if ((*pm
)->p_type
== PT_DYNAMIC
)
12690 /* GNU/Linux binaries do not need the extended PT_DYNAMIC section.
12691 glibc's dynamic linker has traditionally derived the number of
12692 tags from the p_filesz field, and sometimes allocates stack
12693 arrays of that size. An overly-big PT_DYNAMIC segment can
12694 be actively harmful in such cases. Making PT_DYNAMIC contain
12695 other sections can also make life hard for the prelinker,
12696 which might move one of the other sections to a different
12697 PT_LOAD segment. */
12698 if (SGI_COMPAT (abfd
)
12701 && strcmp (m
->sections
[0]->name
, ".dynamic") == 0)
12703 static const char *sec_names
[] =
12705 ".dynamic", ".dynstr", ".dynsym", ".hash"
12709 struct elf_segment_map
*n
;
12711 low
= ~(bfd_vma
) 0;
12713 for (i
= 0; i
< sizeof sec_names
/ sizeof sec_names
[0]; i
++)
12715 s
= bfd_get_section_by_name (abfd
, sec_names
[i
]);
12716 if (s
!= NULL
&& (s
->flags
& SEC_LOAD
) != 0)
12723 if (high
< s
->vma
+ sz
)
12724 high
= s
->vma
+ sz
;
12729 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
12730 if ((s
->flags
& SEC_LOAD
) != 0
12732 && s
->vma
+ s
->size
<= high
)
12735 amt
= sizeof *n
- sizeof (asection
*) + c
* sizeof (asection
*);
12736 n
= bfd_zalloc (abfd
, amt
);
12743 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
12745 if ((s
->flags
& SEC_LOAD
) != 0
12747 && s
->vma
+ s
->size
<= high
)
12749 n
->sections
[i
] = s
;
12758 /* Allocate a spare program header in dynamic objects so that tools
12759 like the prelinker can add an extra PT_LOAD entry.
12761 If the prelinker needs to make room for a new PT_LOAD entry, its
12762 standard procedure is to move the first (read-only) sections into
12763 the new (writable) segment. However, the MIPS ABI requires
12764 .dynamic to be in a read-only segment, and the section will often
12765 start within sizeof (ElfNN_Phdr) bytes of the last program header.
12767 Although the prelinker could in principle move .dynamic to a
12768 writable segment, it seems better to allocate a spare program
12769 header instead, and avoid the need to move any sections.
12770 There is a long tradition of allocating spare dynamic tags,
12771 so allocating a spare program header seems like a natural
12774 If INFO is NULL, we may be copying an already prelinked binary
12775 with objcopy or strip, so do not add this header. */
12777 && !SGI_COMPAT (abfd
)
12778 && bfd_get_section_by_name (abfd
, ".dynamic"))
12780 for (pm
= &elf_seg_map (abfd
); *pm
!= NULL
; pm
= &(*pm
)->next
)
12781 if ((*pm
)->p_type
== PT_NULL
)
12785 m
= bfd_zalloc (abfd
, sizeof (*m
));
12789 m
->p_type
= PT_NULL
;
12797 /* Return the section that should be marked against GC for a given
12801 _bfd_mips_elf_gc_mark_hook (asection
*sec
,
12802 struct bfd_link_info
*info
,
12803 Elf_Internal_Rela
*rel
,
12804 struct elf_link_hash_entry
*h
,
12805 Elf_Internal_Sym
*sym
)
12807 /* ??? Do mips16 stub sections need to be handled special? */
12810 switch (ELF_R_TYPE (sec
->owner
, rel
->r_info
))
12812 case R_MIPS_GNU_VTINHERIT
:
12813 case R_MIPS_GNU_VTENTRY
:
12817 return _bfd_elf_gc_mark_hook (sec
, info
, rel
, h
, sym
);
12820 /* Prevent .MIPS.abiflags from being discarded with --gc-sections. */
12823 _bfd_mips_elf_gc_mark_extra_sections (struct bfd_link_info
*info
,
12824 elf_gc_mark_hook_fn gc_mark_hook
)
12828 _bfd_elf_gc_mark_extra_sections (info
, gc_mark_hook
);
12830 for (sub
= info
->input_bfds
; sub
!= NULL
; sub
= sub
->link
.next
)
12834 if (! is_mips_elf (sub
))
12837 for (o
= sub
->sections
; o
!= NULL
; o
= o
->next
)
12839 && MIPS_ELF_ABIFLAGS_SECTION_NAME_P (bfd_section_name (o
)))
12841 if (!_bfd_elf_gc_mark (info
, o
, gc_mark_hook
))
12849 /* Copy data from a MIPS ELF indirect symbol to its direct symbol,
12850 hiding the old indirect symbol. Process additional relocation
12851 information. Also called for weakdefs, in which case we just let
12852 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
12855 _bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info
*info
,
12856 struct elf_link_hash_entry
*dir
,
12857 struct elf_link_hash_entry
*ind
)
12859 struct mips_elf_link_hash_entry
*dirmips
, *indmips
;
12861 _bfd_elf_link_hash_copy_indirect (info
, dir
, ind
);
12863 dirmips
= (struct mips_elf_link_hash_entry
*) dir
;
12864 indmips
= (struct mips_elf_link_hash_entry
*) ind
;
12865 /* Any absolute non-dynamic relocations against an indirect or weak
12866 definition will be against the target symbol. */
12867 if (indmips
->has_static_relocs
)
12868 dirmips
->has_static_relocs
= TRUE
;
12870 if (ind
->root
.type
!= bfd_link_hash_indirect
)
12873 dirmips
->possibly_dynamic_relocs
+= indmips
->possibly_dynamic_relocs
;
12874 if (indmips
->readonly_reloc
)
12875 dirmips
->readonly_reloc
= TRUE
;
12876 if (indmips
->no_fn_stub
)
12877 dirmips
->no_fn_stub
= TRUE
;
12878 if (indmips
->fn_stub
)
12880 dirmips
->fn_stub
= indmips
->fn_stub
;
12881 indmips
->fn_stub
= NULL
;
12883 if (indmips
->need_fn_stub
)
12885 dirmips
->need_fn_stub
= TRUE
;
12886 indmips
->need_fn_stub
= FALSE
;
12888 if (indmips
->call_stub
)
12890 dirmips
->call_stub
= indmips
->call_stub
;
12891 indmips
->call_stub
= NULL
;
12893 if (indmips
->call_fp_stub
)
12895 dirmips
->call_fp_stub
= indmips
->call_fp_stub
;
12896 indmips
->call_fp_stub
= NULL
;
12898 if (indmips
->global_got_area
< dirmips
->global_got_area
)
12899 dirmips
->global_got_area
= indmips
->global_got_area
;
12900 if (indmips
->global_got_area
< GGA_NONE
)
12901 indmips
->global_got_area
= GGA_NONE
;
12902 if (indmips
->has_nonpic_branches
)
12903 dirmips
->has_nonpic_branches
= TRUE
;
12906 /* Take care of the special `__gnu_absolute_zero' symbol and ignore attempts
12907 to hide it. It has to remain global (it will also be protected) so as to
12908 be assigned a global GOT entry, which will then remain unchanged at load
12912 _bfd_mips_elf_hide_symbol (struct bfd_link_info
*info
,
12913 struct elf_link_hash_entry
*entry
,
12914 bfd_boolean force_local
)
12916 struct mips_elf_link_hash_table
*htab
;
12918 htab
= mips_elf_hash_table (info
);
12919 BFD_ASSERT (htab
!= NULL
);
12920 if (htab
->use_absolute_zero
12921 && strcmp (entry
->root
.root
.string
, "__gnu_absolute_zero") == 0)
12924 _bfd_elf_link_hash_hide_symbol (info
, entry
, force_local
);
12927 #define PDR_SIZE 32
12930 _bfd_mips_elf_discard_info (bfd
*abfd
, struct elf_reloc_cookie
*cookie
,
12931 struct bfd_link_info
*info
)
12934 bfd_boolean ret
= FALSE
;
12935 unsigned char *tdata
;
12938 o
= bfd_get_section_by_name (abfd
, ".pdr");
12943 if (o
->size
% PDR_SIZE
!= 0)
12945 if (o
->output_section
!= NULL
12946 && bfd_is_abs_section (o
->output_section
))
12949 tdata
= bfd_zmalloc (o
->size
/ PDR_SIZE
);
12953 cookie
->rels
= _bfd_elf_link_read_relocs (abfd
, o
, NULL
, NULL
,
12954 info
->keep_memory
);
12961 cookie
->rel
= cookie
->rels
;
12962 cookie
->relend
= cookie
->rels
+ o
->reloc_count
;
12964 for (i
= 0, skip
= 0; i
< o
->size
/ PDR_SIZE
; i
++)
12966 if (bfd_elf_reloc_symbol_deleted_p (i
* PDR_SIZE
, cookie
))
12975 mips_elf_section_data (o
)->u
.tdata
= tdata
;
12976 if (o
->rawsize
== 0)
12977 o
->rawsize
= o
->size
;
12978 o
->size
-= skip
* PDR_SIZE
;
12984 if (! info
->keep_memory
)
12985 free (cookie
->rels
);
12991 _bfd_mips_elf_ignore_discarded_relocs (asection
*sec
)
12993 if (strcmp (sec
->name
, ".pdr") == 0)
12999 _bfd_mips_elf_write_section (bfd
*output_bfd
,
13000 struct bfd_link_info
*link_info ATTRIBUTE_UNUSED
,
13001 asection
*sec
, bfd_byte
*contents
)
13003 bfd_byte
*to
, *from
, *end
;
13006 if (strcmp (sec
->name
, ".pdr") != 0)
13009 if (mips_elf_section_data (sec
)->u
.tdata
== NULL
)
13013 end
= contents
+ sec
->size
;
13014 for (from
= contents
, i
= 0;
13016 from
+= PDR_SIZE
, i
++)
13018 if ((mips_elf_section_data (sec
)->u
.tdata
)[i
] == 1)
13021 memcpy (to
, from
, PDR_SIZE
);
13024 bfd_set_section_contents (output_bfd
, sec
->output_section
, contents
,
13025 sec
->output_offset
, sec
->size
);
13029 /* microMIPS code retains local labels for linker relaxation. Omit them
13030 from output by default for clarity. */
13033 _bfd_mips_elf_is_target_special_symbol (bfd
*abfd
, asymbol
*sym
)
13035 return _bfd_elf_is_local_label_name (abfd
, sym
->name
);
13038 /* MIPS ELF uses a special find_nearest_line routine in order the
13039 handle the ECOFF debugging information. */
13041 struct mips_elf_find_line
13043 struct ecoff_debug_info d
;
13044 struct ecoff_find_line i
;
13048 _bfd_mips_elf_find_nearest_line (bfd
*abfd
, asymbol
**symbols
,
13049 asection
*section
, bfd_vma offset
,
13050 const char **filename_ptr
,
13051 const char **functionname_ptr
,
13052 unsigned int *line_ptr
,
13053 unsigned int *discriminator_ptr
)
13057 if (_bfd_dwarf2_find_nearest_line (abfd
, symbols
, NULL
, section
, offset
,
13058 filename_ptr
, functionname_ptr
,
13059 line_ptr
, discriminator_ptr
,
13060 dwarf_debug_sections
,
13061 &elf_tdata (abfd
)->dwarf2_find_line_info
)
13065 if (_bfd_dwarf1_find_nearest_line (abfd
, symbols
, section
, offset
,
13066 filename_ptr
, functionname_ptr
,
13069 if (!*functionname_ptr
)
13070 _bfd_elf_find_function (abfd
, symbols
, section
, offset
,
13071 *filename_ptr
? NULL
: filename_ptr
,
13076 msec
= bfd_get_section_by_name (abfd
, ".mdebug");
13079 flagword origflags
;
13080 struct mips_elf_find_line
*fi
;
13081 const struct ecoff_debug_swap
* const swap
=
13082 get_elf_backend_data (abfd
)->elf_backend_ecoff_debug_swap
;
13084 /* If we are called during a link, mips_elf_final_link may have
13085 cleared the SEC_HAS_CONTENTS field. We force it back on here
13086 if appropriate (which it normally will be). */
13087 origflags
= msec
->flags
;
13088 if (elf_section_data (msec
)->this_hdr
.sh_type
!= SHT_NOBITS
)
13089 msec
->flags
|= SEC_HAS_CONTENTS
;
13091 fi
= mips_elf_tdata (abfd
)->find_line_info
;
13094 bfd_size_type external_fdr_size
;
13097 struct fdr
*fdr_ptr
;
13098 bfd_size_type amt
= sizeof (struct mips_elf_find_line
);
13100 fi
= bfd_zalloc (abfd
, amt
);
13103 msec
->flags
= origflags
;
13107 if (! _bfd_mips_elf_read_ecoff_info (abfd
, msec
, &fi
->d
))
13109 msec
->flags
= origflags
;
13113 /* Swap in the FDR information. */
13114 amt
= fi
->d
.symbolic_header
.ifdMax
* sizeof (struct fdr
);
13115 fi
->d
.fdr
= bfd_alloc (abfd
, amt
);
13116 if (fi
->d
.fdr
== NULL
)
13118 msec
->flags
= origflags
;
13121 external_fdr_size
= swap
->external_fdr_size
;
13122 fdr_ptr
= fi
->d
.fdr
;
13123 fraw_src
= (char *) fi
->d
.external_fdr
;
13124 fraw_end
= (fraw_src
13125 + fi
->d
.symbolic_header
.ifdMax
* external_fdr_size
);
13126 for (; fraw_src
< fraw_end
; fraw_src
+= external_fdr_size
, fdr_ptr
++)
13127 (*swap
->swap_fdr_in
) (abfd
, fraw_src
, fdr_ptr
);
13129 mips_elf_tdata (abfd
)->find_line_info
= fi
;
13131 /* Note that we don't bother to ever free this information.
13132 find_nearest_line is either called all the time, as in
13133 objdump -l, so the information should be saved, or it is
13134 rarely called, as in ld error messages, so the memory
13135 wasted is unimportant. Still, it would probably be a
13136 good idea for free_cached_info to throw it away. */
13139 if (_bfd_ecoff_locate_line (abfd
, section
, offset
, &fi
->d
, swap
,
13140 &fi
->i
, filename_ptr
, functionname_ptr
,
13143 msec
->flags
= origflags
;
13147 msec
->flags
= origflags
;
13150 /* Fall back on the generic ELF find_nearest_line routine. */
13152 return _bfd_elf_find_nearest_line (abfd
, symbols
, section
, offset
,
13153 filename_ptr
, functionname_ptr
,
13154 line_ptr
, discriminator_ptr
);
13158 _bfd_mips_elf_find_inliner_info (bfd
*abfd
,
13159 const char **filename_ptr
,
13160 const char **functionname_ptr
,
13161 unsigned int *line_ptr
)
13164 found
= _bfd_dwarf2_find_inliner_info (abfd
, filename_ptr
,
13165 functionname_ptr
, line_ptr
,
13166 & elf_tdata (abfd
)->dwarf2_find_line_info
);
13171 /* When are writing out the .options or .MIPS.options section,
13172 remember the bytes we are writing out, so that we can install the
13173 GP value in the section_processing routine. */
13176 _bfd_mips_elf_set_section_contents (bfd
*abfd
, sec_ptr section
,
13177 const void *location
,
13178 file_ptr offset
, bfd_size_type count
)
13180 if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section
->name
))
13184 if (elf_section_data (section
) == NULL
)
13186 size_t amt
= sizeof (struct bfd_elf_section_data
);
13187 section
->used_by_bfd
= bfd_zalloc (abfd
, amt
);
13188 if (elf_section_data (section
) == NULL
)
13191 c
= mips_elf_section_data (section
)->u
.tdata
;
13194 c
= bfd_zalloc (abfd
, section
->size
);
13197 mips_elf_section_data (section
)->u
.tdata
= c
;
13200 memcpy (c
+ offset
, location
, count
);
13203 return _bfd_elf_set_section_contents (abfd
, section
, location
, offset
,
13207 /* This is almost identical to bfd_generic_get_... except that some
13208 MIPS relocations need to be handled specially. Sigh. */
13211 _bfd_elf_mips_get_relocated_section_contents
13213 struct bfd_link_info
*link_info
,
13214 struct bfd_link_order
*link_order
,
13216 bfd_boolean relocatable
,
13219 /* Get enough memory to hold the stuff */
13220 bfd
*input_bfd
= link_order
->u
.indirect
.section
->owner
;
13221 asection
*input_section
= link_order
->u
.indirect
.section
;
13224 long reloc_size
= bfd_get_reloc_upper_bound (input_bfd
, input_section
);
13225 arelent
**reloc_vector
= NULL
;
13228 if (reloc_size
< 0)
13231 reloc_vector
= bfd_malloc (reloc_size
);
13232 if (reloc_vector
== NULL
&& reloc_size
!= 0)
13235 /* read in the section */
13236 sz
= input_section
->rawsize
? input_section
->rawsize
: input_section
->size
;
13237 if (!bfd_get_section_contents (input_bfd
, input_section
, data
, 0, sz
))
13240 reloc_count
= bfd_canonicalize_reloc (input_bfd
,
13244 if (reloc_count
< 0)
13247 if (reloc_count
> 0)
13252 bfd_vma gp
= 0x12345678; /* initialize just to shut gcc up */
13255 struct bfd_hash_entry
*h
;
13256 struct bfd_link_hash_entry
*lh
;
13257 /* Skip all this stuff if we aren't mixing formats. */
13258 if (abfd
&& input_bfd
13259 && abfd
->xvec
== input_bfd
->xvec
)
13263 h
= bfd_hash_lookup (&link_info
->hash
->table
, "_gp", FALSE
, FALSE
);
13264 lh
= (struct bfd_link_hash_entry
*) h
;
13271 case bfd_link_hash_undefined
:
13272 case bfd_link_hash_undefweak
:
13273 case bfd_link_hash_common
:
13276 case bfd_link_hash_defined
:
13277 case bfd_link_hash_defweak
:
13279 gp
= lh
->u
.def
.value
;
13281 case bfd_link_hash_indirect
:
13282 case bfd_link_hash_warning
:
13284 /* @@FIXME ignoring warning for now */
13286 case bfd_link_hash_new
:
13295 for (parent
= reloc_vector
; *parent
!= NULL
; parent
++)
13297 char *error_message
= NULL
;
13298 bfd_reloc_status_type r
;
13300 /* Specific to MIPS: Deal with relocation types that require
13301 knowing the gp of the output bfd. */
13302 asymbol
*sym
= *(*parent
)->sym_ptr_ptr
;
13304 /* If we've managed to find the gp and have a special
13305 function for the relocation then go ahead, else default
13306 to the generic handling. */
13308 && (*parent
)->howto
->special_function
13309 == _bfd_mips_elf32_gprel16_reloc
)
13310 r
= _bfd_mips_elf_gprel16_with_gp (input_bfd
, sym
, *parent
,
13311 input_section
, relocatable
,
13314 r
= bfd_perform_relocation (input_bfd
, *parent
, data
,
13316 relocatable
? abfd
: NULL
,
13321 asection
*os
= input_section
->output_section
;
13323 /* A partial link, so keep the relocs */
13324 os
->orelocation
[os
->reloc_count
] = *parent
;
13328 if (r
!= bfd_reloc_ok
)
13332 case bfd_reloc_undefined
:
13333 (*link_info
->callbacks
->undefined_symbol
)
13334 (link_info
, bfd_asymbol_name (*(*parent
)->sym_ptr_ptr
),
13335 input_bfd
, input_section
, (*parent
)->address
, TRUE
);
13337 case bfd_reloc_dangerous
:
13338 BFD_ASSERT (error_message
!= NULL
);
13339 (*link_info
->callbacks
->reloc_dangerous
)
13340 (link_info
, error_message
,
13341 input_bfd
, input_section
, (*parent
)->address
);
13343 case bfd_reloc_overflow
:
13344 (*link_info
->callbacks
->reloc_overflow
)
13346 bfd_asymbol_name (*(*parent
)->sym_ptr_ptr
),
13347 (*parent
)->howto
->name
, (*parent
)->addend
,
13348 input_bfd
, input_section
, (*parent
)->address
);
13350 case bfd_reloc_outofrange
:
13359 free (reloc_vector
);
13363 free (reloc_vector
);
13368 mips_elf_relax_delete_bytes (bfd
*abfd
,
13369 asection
*sec
, bfd_vma addr
, int count
)
13371 Elf_Internal_Shdr
*symtab_hdr
;
13372 unsigned int sec_shndx
;
13373 bfd_byte
*contents
;
13374 Elf_Internal_Rela
*irel
, *irelend
;
13375 Elf_Internal_Sym
*isym
;
13376 Elf_Internal_Sym
*isymend
;
13377 struct elf_link_hash_entry
**sym_hashes
;
13378 struct elf_link_hash_entry
**end_hashes
;
13379 struct elf_link_hash_entry
**start_hashes
;
13380 unsigned int symcount
;
13382 sec_shndx
= _bfd_elf_section_from_bfd_section (abfd
, sec
);
13383 contents
= elf_section_data (sec
)->this_hdr
.contents
;
13385 irel
= elf_section_data (sec
)->relocs
;
13386 irelend
= irel
+ sec
->reloc_count
;
13388 /* Actually delete the bytes. */
13389 memmove (contents
+ addr
, contents
+ addr
+ count
,
13390 (size_t) (sec
->size
- addr
- count
));
13391 sec
->size
-= count
;
13393 /* Adjust all the relocs. */
13394 for (irel
= elf_section_data (sec
)->relocs
; irel
< irelend
; irel
++)
13396 /* Get the new reloc address. */
13397 if (irel
->r_offset
> addr
)
13398 irel
->r_offset
-= count
;
13401 BFD_ASSERT (addr
% 2 == 0);
13402 BFD_ASSERT (count
% 2 == 0);
13404 /* Adjust the local symbols defined in this section. */
13405 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
13406 isym
= (Elf_Internal_Sym
*) symtab_hdr
->contents
;
13407 for (isymend
= isym
+ symtab_hdr
->sh_info
; isym
< isymend
; isym
++)
13408 if (isym
->st_shndx
== sec_shndx
&& isym
->st_value
> addr
)
13409 isym
->st_value
-= count
;
13411 /* Now adjust the global symbols defined in this section. */
13412 symcount
= (symtab_hdr
->sh_size
/ sizeof (Elf32_External_Sym
)
13413 - symtab_hdr
->sh_info
);
13414 sym_hashes
= start_hashes
= elf_sym_hashes (abfd
);
13415 end_hashes
= sym_hashes
+ symcount
;
13417 for (; sym_hashes
< end_hashes
; sym_hashes
++)
13419 struct elf_link_hash_entry
*sym_hash
= *sym_hashes
;
13421 if ((sym_hash
->root
.type
== bfd_link_hash_defined
13422 || sym_hash
->root
.type
== bfd_link_hash_defweak
)
13423 && sym_hash
->root
.u
.def
.section
== sec
)
13425 bfd_vma value
= sym_hash
->root
.u
.def
.value
;
13427 if (ELF_ST_IS_MICROMIPS (sym_hash
->other
))
13428 value
&= MINUS_TWO
;
13430 sym_hash
->root
.u
.def
.value
-= count
;
13438 /* Opcodes needed for microMIPS relaxation as found in
13439 opcodes/micromips-opc.c. */
13441 struct opcode_descriptor
{
13442 unsigned long match
;
13443 unsigned long mask
;
13446 /* The $ra register aka $31. */
13450 /* 32-bit instruction format register fields. */
13452 #define OP32_SREG(opcode) (((opcode) >> 16) & 0x1f)
13453 #define OP32_TREG(opcode) (((opcode) >> 21) & 0x1f)
13455 /* Check if a 5-bit register index can be abbreviated to 3 bits. */
13457 #define OP16_VALID_REG(r) \
13458 ((2 <= (r) && (r) <= 7) || (16 <= (r) && (r) <= 17))
13461 /* 32-bit and 16-bit branches. */
13463 static const struct opcode_descriptor b_insns_32
[] = {
13464 { /* "b", "p", */ 0x40400000, 0xffff0000 }, /* bgez 0 */
13465 { /* "b", "p", */ 0x94000000, 0xffff0000 }, /* beq 0, 0 */
13466 { 0, 0 } /* End marker for find_match(). */
13469 static const struct opcode_descriptor bc_insn_32
=
13470 { /* "bc(1|2)(ft)", "N,p", */ 0x42800000, 0xfec30000 };
13472 static const struct opcode_descriptor bz_insn_32
=
13473 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 };
13475 static const struct opcode_descriptor bzal_insn_32
=
13476 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 };
13478 static const struct opcode_descriptor beq_insn_32
=
13479 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 };
13481 static const struct opcode_descriptor b_insn_16
=
13482 { /* "b", "mD", */ 0xcc00, 0xfc00 };
13484 static const struct opcode_descriptor bz_insn_16
=
13485 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 };
13488 /* 32-bit and 16-bit branch EQ and NE zero. */
13490 /* NOTE: All opcode tables have BEQ/BNE in the same order: first the
13491 eq and second the ne. This convention is used when replacing a
13492 32-bit BEQ/BNE with the 16-bit version. */
13494 #define BZC32_REG_FIELD(r) (((r) & 0x1f) << 16)
13496 static const struct opcode_descriptor bz_rs_insns_32
[] = {
13497 { /* "beqz", "s,p", */ 0x94000000, 0xffe00000 },
13498 { /* "bnez", "s,p", */ 0xb4000000, 0xffe00000 },
13499 { 0, 0 } /* End marker for find_match(). */
13502 static const struct opcode_descriptor bz_rt_insns_32
[] = {
13503 { /* "beqz", "t,p", */ 0x94000000, 0xfc01f000 },
13504 { /* "bnez", "t,p", */ 0xb4000000, 0xfc01f000 },
13505 { 0, 0 } /* End marker for find_match(). */
13508 static const struct opcode_descriptor bzc_insns_32
[] = {
13509 { /* "beqzc", "s,p", */ 0x40e00000, 0xffe00000 },
13510 { /* "bnezc", "s,p", */ 0x40a00000, 0xffe00000 },
13511 { 0, 0 } /* End marker for find_match(). */
13514 static const struct opcode_descriptor bz_insns_16
[] = {
13515 { /* "beqz", "md,mE", */ 0x8c00, 0xfc00 },
13516 { /* "bnez", "md,mE", */ 0xac00, 0xfc00 },
13517 { 0, 0 } /* End marker for find_match(). */
13520 /* Switch between a 5-bit register index and its 3-bit shorthand. */
13522 #define BZ16_REG(opcode) ((((((opcode) >> 7) & 7) + 0x1e) & 0xf) + 2)
13523 #define BZ16_REG_FIELD(r) (((r) & 7) << 7)
13526 /* 32-bit instructions with a delay slot. */
13528 static const struct opcode_descriptor jal_insn_32_bd16
=
13529 { /* "jals", "a", */ 0x74000000, 0xfc000000 };
13531 static const struct opcode_descriptor jal_insn_32_bd32
=
13532 { /* "jal", "a", */ 0xf4000000, 0xfc000000 };
13534 static const struct opcode_descriptor jal_x_insn_32_bd32
=
13535 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 };
13537 static const struct opcode_descriptor j_insn_32
=
13538 { /* "j", "a", */ 0xd4000000, 0xfc000000 };
13540 static const struct opcode_descriptor jalr_insn_32
=
13541 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff };
13543 /* This table can be compacted, because no opcode replacement is made. */
13545 static const struct opcode_descriptor ds_insns_32_bd16
[] = {
13546 { /* "jals", "a", */ 0x74000000, 0xfc000000 },
13548 { /* "jalrs[.hb]", "t,s", */ 0x00004f3c, 0xfc00efff },
13549 { /* "b(ge|lt)zals", "s,p", */ 0x42200000, 0xffa00000 },
13551 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 },
13552 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 },
13553 { /* "j", "a", */ 0xd4000000, 0xfc000000 },
13554 { 0, 0 } /* End marker for find_match(). */
13557 /* This table can be compacted, because no opcode replacement is made. */
13559 static const struct opcode_descriptor ds_insns_32_bd32
[] = {
13560 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 },
13562 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff },
13563 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 },
13564 { 0, 0 } /* End marker for find_match(). */
13568 /* 16-bit instructions with a delay slot. */
13570 static const struct opcode_descriptor jalr_insn_16_bd16
=
13571 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 };
13573 static const struct opcode_descriptor jalr_insn_16_bd32
=
13574 { /* "jalr", "my,mj", */ 0x45c0, 0xffe0 };
13576 static const struct opcode_descriptor jr_insn_16
=
13577 { /* "jr", "mj", */ 0x4580, 0xffe0 };
13579 #define JR16_REG(opcode) ((opcode) & 0x1f)
13581 /* This table can be compacted, because no opcode replacement is made. */
13583 static const struct opcode_descriptor ds_insns_16_bd16
[] = {
13584 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 },
13586 { /* "b", "mD", */ 0xcc00, 0xfc00 },
13587 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 },
13588 { /* "jr", "mj", */ 0x4580, 0xffe0 },
13589 { 0, 0 } /* End marker for find_match(). */
13593 /* LUI instruction. */
13595 static const struct opcode_descriptor lui_insn
=
13596 { /* "lui", "s,u", */ 0x41a00000, 0xffe00000 };
13599 /* ADDIU instruction. */
13601 static const struct opcode_descriptor addiu_insn
=
13602 { /* "addiu", "t,r,j", */ 0x30000000, 0xfc000000 };
13604 static const struct opcode_descriptor addiupc_insn
=
13605 { /* "addiu", "mb,$pc,mQ", */ 0x78000000, 0xfc000000 };
13607 #define ADDIUPC_REG_FIELD(r) \
13608 (((2 <= (r) && (r) <= 7) ? (r) : ((r) - 16)) << 23)
13611 /* Relaxable instructions in a JAL delay slot: MOVE. */
13613 /* The 16-bit move has rd in 9:5 and rs in 4:0. The 32-bit moves
13614 (ADDU, OR) have rd in 15:11 and rs in 10:16. */
13615 #define MOVE32_RD(opcode) (((opcode) >> 11) & 0x1f)
13616 #define MOVE32_RS(opcode) (((opcode) >> 16) & 0x1f)
13618 #define MOVE16_RD_FIELD(r) (((r) & 0x1f) << 5)
13619 #define MOVE16_RS_FIELD(r) (((r) & 0x1f) )
13621 static const struct opcode_descriptor move_insns_32
[] = {
13622 { /* "move", "d,s", */ 0x00000290, 0xffe007ff }, /* or d,s,$0 */
13623 { /* "move", "d,s", */ 0x00000150, 0xffe007ff }, /* addu d,s,$0 */
13624 { 0, 0 } /* End marker for find_match(). */
13627 static const struct opcode_descriptor move_insn_16
=
13628 { /* "move", "mp,mj", */ 0x0c00, 0xfc00 };
13631 /* NOP instructions. */
13633 static const struct opcode_descriptor nop_insn_32
=
13634 { /* "nop", "", */ 0x00000000, 0xffffffff };
13636 static const struct opcode_descriptor nop_insn_16
=
13637 { /* "nop", "", */ 0x0c00, 0xffff };
13640 /* Instruction match support. */
13642 #define MATCH(opcode, insn) ((opcode & insn.mask) == insn.match)
13645 find_match (unsigned long opcode
, const struct opcode_descriptor insn
[])
13647 unsigned long indx
;
13649 for (indx
= 0; insn
[indx
].mask
!= 0; indx
++)
13650 if (MATCH (opcode
, insn
[indx
]))
13657 /* Branch and delay slot decoding support. */
13659 /* If PTR points to what *might* be a 16-bit branch or jump, then
13660 return the minimum length of its delay slot, otherwise return 0.
13661 Non-zero results are not definitive as we might be checking against
13662 the second half of another instruction. */
13665 check_br16_dslot (bfd
*abfd
, bfd_byte
*ptr
)
13667 unsigned long opcode
;
13670 opcode
= bfd_get_16 (abfd
, ptr
);
13671 if (MATCH (opcode
, jalr_insn_16_bd32
) != 0)
13672 /* 16-bit branch/jump with a 32-bit delay slot. */
13674 else if (MATCH (opcode
, jalr_insn_16_bd16
) != 0
13675 || find_match (opcode
, ds_insns_16_bd16
) >= 0)
13676 /* 16-bit branch/jump with a 16-bit delay slot. */
13679 /* No delay slot. */
13685 /* If PTR points to what *might* be a 32-bit branch or jump, then
13686 return the minimum length of its delay slot, otherwise return 0.
13687 Non-zero results are not definitive as we might be checking against
13688 the second half of another instruction. */
13691 check_br32_dslot (bfd
*abfd
, bfd_byte
*ptr
)
13693 unsigned long opcode
;
13696 opcode
= bfd_get_micromips_32 (abfd
, ptr
);
13697 if (find_match (opcode
, ds_insns_32_bd32
) >= 0)
13698 /* 32-bit branch/jump with a 32-bit delay slot. */
13700 else if (find_match (opcode
, ds_insns_32_bd16
) >= 0)
13701 /* 32-bit branch/jump with a 16-bit delay slot. */
13704 /* No delay slot. */
13710 /* If PTR points to a 16-bit branch or jump with a 32-bit delay slot
13711 that doesn't fiddle with REG, then return TRUE, otherwise FALSE. */
13714 check_br16 (bfd
*abfd
, bfd_byte
*ptr
, unsigned long reg
)
13716 unsigned long opcode
;
13718 opcode
= bfd_get_16 (abfd
, ptr
);
13719 if (MATCH (opcode
, b_insn_16
)
13721 || (MATCH (opcode
, jr_insn_16
) && reg
!= JR16_REG (opcode
))
13723 || (MATCH (opcode
, bz_insn_16
) && reg
!= BZ16_REG (opcode
))
13724 /* BEQZ16, BNEZ16 */
13725 || (MATCH (opcode
, jalr_insn_16_bd32
)
13727 && reg
!= JR16_REG (opcode
) && reg
!= RA
))
13733 /* If PTR points to a 32-bit branch or jump that doesn't fiddle with REG,
13734 then return TRUE, otherwise FALSE. */
13737 check_br32 (bfd
*abfd
, bfd_byte
*ptr
, unsigned long reg
)
13739 unsigned long opcode
;
13741 opcode
= bfd_get_micromips_32 (abfd
, ptr
);
13742 if (MATCH (opcode
, j_insn_32
)
13744 || MATCH (opcode
, bc_insn_32
)
13745 /* BC1F, BC1T, BC2F, BC2T */
13746 || (MATCH (opcode
, jal_x_insn_32_bd32
) && reg
!= RA
)
13748 || (MATCH (opcode
, bz_insn_32
) && reg
!= OP32_SREG (opcode
))
13749 /* BGEZ, BGTZ, BLEZ, BLTZ */
13750 || (MATCH (opcode
, bzal_insn_32
)
13751 /* BGEZAL, BLTZAL */
13752 && reg
!= OP32_SREG (opcode
) && reg
!= RA
)
13753 || ((MATCH (opcode
, jalr_insn_32
) || MATCH (opcode
, beq_insn_32
))
13754 /* JALR, JALR.HB, BEQ, BNE */
13755 && reg
!= OP32_SREG (opcode
) && reg
!= OP32_TREG (opcode
)))
13761 /* If the instruction encoding at PTR and relocations [INTERNAL_RELOCS,
13762 IRELEND) at OFFSET indicate that there must be a compact branch there,
13763 then return TRUE, otherwise FALSE. */
13766 check_relocated_bzc (bfd
*abfd
, const bfd_byte
*ptr
, bfd_vma offset
,
13767 const Elf_Internal_Rela
*internal_relocs
,
13768 const Elf_Internal_Rela
*irelend
)
13770 const Elf_Internal_Rela
*irel
;
13771 unsigned long opcode
;
13773 opcode
= bfd_get_micromips_32 (abfd
, ptr
);
13774 if (find_match (opcode
, bzc_insns_32
) < 0)
13777 for (irel
= internal_relocs
; irel
< irelend
; irel
++)
13778 if (irel
->r_offset
== offset
13779 && ELF32_R_TYPE (irel
->r_info
) == R_MICROMIPS_PC16_S1
)
13785 /* Bitsize checking. */
13786 #define IS_BITSIZE(val, N) \
13787 (((((val) & ((1ULL << (N)) - 1)) ^ (1ULL << ((N) - 1))) \
13788 - (1ULL << ((N) - 1))) == (val))
13792 _bfd_mips_elf_relax_section (bfd
*abfd
, asection
*sec
,
13793 struct bfd_link_info
*link_info
,
13794 bfd_boolean
*again
)
13796 bfd_boolean insn32
= mips_elf_hash_table (link_info
)->insn32
;
13797 Elf_Internal_Shdr
*symtab_hdr
;
13798 Elf_Internal_Rela
*internal_relocs
;
13799 Elf_Internal_Rela
*irel
, *irelend
;
13800 bfd_byte
*contents
= NULL
;
13801 Elf_Internal_Sym
*isymbuf
= NULL
;
13803 /* Assume nothing changes. */
13806 /* We don't have to do anything for a relocatable link, if
13807 this section does not have relocs, or if this is not a
13810 if (bfd_link_relocatable (link_info
)
13811 || (sec
->flags
& SEC_RELOC
) == 0
13812 || sec
->reloc_count
== 0
13813 || (sec
->flags
& SEC_CODE
) == 0)
13816 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
13818 /* Get a copy of the native relocations. */
13819 internal_relocs
= (_bfd_elf_link_read_relocs
13820 (abfd
, sec
, NULL
, (Elf_Internal_Rela
*) NULL
,
13821 link_info
->keep_memory
));
13822 if (internal_relocs
== NULL
)
13825 /* Walk through them looking for relaxing opportunities. */
13826 irelend
= internal_relocs
+ sec
->reloc_count
;
13827 for (irel
= internal_relocs
; irel
< irelend
; irel
++)
13829 unsigned long r_symndx
= ELF32_R_SYM (irel
->r_info
);
13830 unsigned int r_type
= ELF32_R_TYPE (irel
->r_info
);
13831 bfd_boolean target_is_micromips_code_p
;
13832 unsigned long opcode
;
13838 /* The number of bytes to delete for relaxation and from where
13839 to delete these bytes starting at irel->r_offset. */
13843 /* If this isn't something that can be relaxed, then ignore
13845 if (r_type
!= R_MICROMIPS_HI16
13846 && r_type
!= R_MICROMIPS_PC16_S1
13847 && r_type
!= R_MICROMIPS_26_S1
)
13850 /* Get the section contents if we haven't done so already. */
13851 if (contents
== NULL
)
13853 /* Get cached copy if it exists. */
13854 if (elf_section_data (sec
)->this_hdr
.contents
!= NULL
)
13855 contents
= elf_section_data (sec
)->this_hdr
.contents
;
13856 /* Go get them off disk. */
13857 else if (!bfd_malloc_and_get_section (abfd
, sec
, &contents
))
13860 ptr
= contents
+ irel
->r_offset
;
13862 /* Read this BFD's local symbols if we haven't done so already. */
13863 if (isymbuf
== NULL
&& symtab_hdr
->sh_info
!= 0)
13865 isymbuf
= (Elf_Internal_Sym
*) symtab_hdr
->contents
;
13866 if (isymbuf
== NULL
)
13867 isymbuf
= bfd_elf_get_elf_syms (abfd
, symtab_hdr
,
13868 symtab_hdr
->sh_info
, 0,
13870 if (isymbuf
== NULL
)
13874 /* Get the value of the symbol referred to by the reloc. */
13875 if (r_symndx
< symtab_hdr
->sh_info
)
13877 /* A local symbol. */
13878 Elf_Internal_Sym
*isym
;
13881 isym
= isymbuf
+ r_symndx
;
13882 if (isym
->st_shndx
== SHN_UNDEF
)
13883 sym_sec
= bfd_und_section_ptr
;
13884 else if (isym
->st_shndx
== SHN_ABS
)
13885 sym_sec
= bfd_abs_section_ptr
;
13886 else if (isym
->st_shndx
== SHN_COMMON
)
13887 sym_sec
= bfd_com_section_ptr
;
13889 sym_sec
= bfd_section_from_elf_index (abfd
, isym
->st_shndx
);
13890 symval
= (isym
->st_value
13891 + sym_sec
->output_section
->vma
13892 + sym_sec
->output_offset
);
13893 target_is_micromips_code_p
= ELF_ST_IS_MICROMIPS (isym
->st_other
);
13897 unsigned long indx
;
13898 struct elf_link_hash_entry
*h
;
13900 /* An external symbol. */
13901 indx
= r_symndx
- symtab_hdr
->sh_info
;
13902 h
= elf_sym_hashes (abfd
)[indx
];
13903 BFD_ASSERT (h
!= NULL
);
13905 if (h
->root
.type
!= bfd_link_hash_defined
13906 && h
->root
.type
!= bfd_link_hash_defweak
)
13907 /* This appears to be a reference to an undefined
13908 symbol. Just ignore it -- it will be caught by the
13909 regular reloc processing. */
13912 symval
= (h
->root
.u
.def
.value
13913 + h
->root
.u
.def
.section
->output_section
->vma
13914 + h
->root
.u
.def
.section
->output_offset
);
13915 target_is_micromips_code_p
= (!h
->needs_plt
13916 && ELF_ST_IS_MICROMIPS (h
->other
));
13920 /* For simplicity of coding, we are going to modify the
13921 section contents, the section relocs, and the BFD symbol
13922 table. We must tell the rest of the code not to free up this
13923 information. It would be possible to instead create a table
13924 of changes which have to be made, as is done in coff-mips.c;
13925 that would be more work, but would require less memory when
13926 the linker is run. */
13928 /* Only 32-bit instructions relaxed. */
13929 if (irel
->r_offset
+ 4 > sec
->size
)
13932 opcode
= bfd_get_micromips_32 (abfd
, ptr
);
13934 /* This is the pc-relative distance from the instruction the
13935 relocation is applied to, to the symbol referred. */
13937 - (sec
->output_section
->vma
+ sec
->output_offset
)
13940 /* R_MICROMIPS_HI16 / LUI relaxation to nil, performing relaxation
13941 of corresponding R_MICROMIPS_LO16 to R_MICROMIPS_HI0_LO16 or
13942 R_MICROMIPS_PC23_S2. The R_MICROMIPS_PC23_S2 condition is
13944 (symval % 4 == 0 && IS_BITSIZE (pcrval, 25))
13946 where pcrval has first to be adjusted to apply against the LO16
13947 location (we make the adjustment later on, when we have figured
13948 out the offset). */
13949 if (r_type
== R_MICROMIPS_HI16
&& MATCH (opcode
, lui_insn
))
13951 bfd_boolean bzc
= FALSE
;
13952 unsigned long nextopc
;
13956 /* Give up if the previous reloc was a HI16 against this symbol
13958 if (irel
> internal_relocs
13959 && ELF32_R_TYPE (irel
[-1].r_info
) == R_MICROMIPS_HI16
13960 && ELF32_R_SYM (irel
[-1].r_info
) == r_symndx
)
13963 /* Or if the next reloc is not a LO16 against this symbol. */
13964 if (irel
+ 1 >= irelend
13965 || ELF32_R_TYPE (irel
[1].r_info
) != R_MICROMIPS_LO16
13966 || ELF32_R_SYM (irel
[1].r_info
) != r_symndx
)
13969 /* Or if the second next reloc is a LO16 against this symbol too. */
13970 if (irel
+ 2 >= irelend
13971 && ELF32_R_TYPE (irel
[2].r_info
) == R_MICROMIPS_LO16
13972 && ELF32_R_SYM (irel
[2].r_info
) == r_symndx
)
13975 /* See if the LUI instruction *might* be in a branch delay slot.
13976 We check whether what looks like a 16-bit branch or jump is
13977 actually an immediate argument to a compact branch, and let
13978 it through if so. */
13979 if (irel
->r_offset
>= 2
13980 && check_br16_dslot (abfd
, ptr
- 2)
13981 && !(irel
->r_offset
>= 4
13982 && (bzc
= check_relocated_bzc (abfd
,
13983 ptr
- 4, irel
->r_offset
- 4,
13984 internal_relocs
, irelend
))))
13986 if (irel
->r_offset
>= 4
13988 && check_br32_dslot (abfd
, ptr
- 4))
13991 reg
= OP32_SREG (opcode
);
13993 /* We only relax adjacent instructions or ones separated with
13994 a branch or jump that has a delay slot. The branch or jump
13995 must not fiddle with the register used to hold the address.
13996 Subtract 4 for the LUI itself. */
13997 offset
= irel
[1].r_offset
- irel
[0].r_offset
;
13998 switch (offset
- 4)
14003 if (check_br16 (abfd
, ptr
+ 4, reg
))
14007 if (check_br32 (abfd
, ptr
+ 4, reg
))
14014 nextopc
= bfd_get_micromips_32 (abfd
, contents
+ irel
[1].r_offset
);
14016 /* Give up unless the same register is used with both
14018 if (OP32_SREG (nextopc
) != reg
)
14021 /* Now adjust pcrval, subtracting the offset to the LO16 reloc
14022 and rounding up to take masking of the two LSBs into account. */
14023 pcrval
= ((pcrval
- offset
+ 3) | 3) ^ 3;
14025 /* R_MICROMIPS_LO16 relaxation to R_MICROMIPS_HI0_LO16. */
14026 if (IS_BITSIZE (symval
, 16))
14028 /* Fix the relocation's type. */
14029 irel
[1].r_info
= ELF32_R_INFO (r_symndx
, R_MICROMIPS_HI0_LO16
);
14031 /* Instructions using R_MICROMIPS_LO16 have the base or
14032 source register in bits 20:16. This register becomes $0
14033 (zero) as the result of the R_MICROMIPS_HI16 being 0. */
14034 nextopc
&= ~0x001f0000;
14035 bfd_put_16 (abfd
, (nextopc
>> 16) & 0xffff,
14036 contents
+ irel
[1].r_offset
);
14039 /* R_MICROMIPS_LO16 / ADDIU relaxation to R_MICROMIPS_PC23_S2.
14040 We add 4 to take LUI deletion into account while checking
14041 the PC-relative distance. */
14042 else if (symval
% 4 == 0
14043 && IS_BITSIZE (pcrval
+ 4, 25)
14044 && MATCH (nextopc
, addiu_insn
)
14045 && OP32_TREG (nextopc
) == OP32_SREG (nextopc
)
14046 && OP16_VALID_REG (OP32_TREG (nextopc
)))
14048 /* Fix the relocation's type. */
14049 irel
[1].r_info
= ELF32_R_INFO (r_symndx
, R_MICROMIPS_PC23_S2
);
14051 /* Replace ADDIU with the ADDIUPC version. */
14052 nextopc
= (addiupc_insn
.match
14053 | ADDIUPC_REG_FIELD (OP32_TREG (nextopc
)));
14055 bfd_put_micromips_32 (abfd
, nextopc
,
14056 contents
+ irel
[1].r_offset
);
14059 /* Can't do anything, give up, sigh... */
14063 /* Fix the relocation's type. */
14064 irel
->r_info
= ELF32_R_INFO (r_symndx
, R_MIPS_NONE
);
14066 /* Delete the LUI instruction: 4 bytes at irel->r_offset. */
14071 /* Compact branch relaxation -- due to the multitude of macros
14072 employed by the compiler/assembler, compact branches are not
14073 always generated. Obviously, this can/will be fixed elsewhere,
14074 but there is no drawback in double checking it here. */
14075 else if (r_type
== R_MICROMIPS_PC16_S1
14076 && irel
->r_offset
+ 5 < sec
->size
14077 && ((fndopc
= find_match (opcode
, bz_rs_insns_32
)) >= 0
14078 || (fndopc
= find_match (opcode
, bz_rt_insns_32
)) >= 0)
14080 && (delcnt
= MATCH (bfd_get_16 (abfd
, ptr
+ 4),
14081 nop_insn_16
) ? 2 : 0))
14082 || (irel
->r_offset
+ 7 < sec
->size
14083 && (delcnt
= MATCH (bfd_get_micromips_32 (abfd
,
14085 nop_insn_32
) ? 4 : 0))))
14089 reg
= OP32_SREG (opcode
) ? OP32_SREG (opcode
) : OP32_TREG (opcode
);
14091 /* Replace BEQZ/BNEZ with the compact version. */
14092 opcode
= (bzc_insns_32
[fndopc
].match
14093 | BZC32_REG_FIELD (reg
)
14094 | (opcode
& 0xffff)); /* Addend value. */
14096 bfd_put_micromips_32 (abfd
, opcode
, ptr
);
14098 /* Delete the delay slot NOP: two or four bytes from
14099 irel->offset + 4; delcnt has already been set above. */
14103 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC10_S1. We need
14104 to check the distance from the next instruction, so subtract 2. */
14106 && r_type
== R_MICROMIPS_PC16_S1
14107 && IS_BITSIZE (pcrval
- 2, 11)
14108 && find_match (opcode
, b_insns_32
) >= 0)
14110 /* Fix the relocation's type. */
14111 irel
->r_info
= ELF32_R_INFO (r_symndx
, R_MICROMIPS_PC10_S1
);
14113 /* Replace the 32-bit opcode with a 16-bit opcode. */
14116 | (opcode
& 0x3ff)), /* Addend value. */
14119 /* Delete 2 bytes from irel->r_offset + 2. */
14124 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC7_S1. We need
14125 to check the distance from the next instruction, so subtract 2. */
14127 && r_type
== R_MICROMIPS_PC16_S1
14128 && IS_BITSIZE (pcrval
- 2, 8)
14129 && (((fndopc
= find_match (opcode
, bz_rs_insns_32
)) >= 0
14130 && OP16_VALID_REG (OP32_SREG (opcode
)))
14131 || ((fndopc
= find_match (opcode
, bz_rt_insns_32
)) >= 0
14132 && OP16_VALID_REG (OP32_TREG (opcode
)))))
14136 reg
= OP32_SREG (opcode
) ? OP32_SREG (opcode
) : OP32_TREG (opcode
);
14138 /* Fix the relocation's type. */
14139 irel
->r_info
= ELF32_R_INFO (r_symndx
, R_MICROMIPS_PC7_S1
);
14141 /* Replace the 32-bit opcode with a 16-bit opcode. */
14143 (bz_insns_16
[fndopc
].match
14144 | BZ16_REG_FIELD (reg
)
14145 | (opcode
& 0x7f)), /* Addend value. */
14148 /* Delete 2 bytes from irel->r_offset + 2. */
14153 /* R_MICROMIPS_26_S1 -- JAL to JALS relaxation for microMIPS targets. */
14155 && r_type
== R_MICROMIPS_26_S1
14156 && target_is_micromips_code_p
14157 && irel
->r_offset
+ 7 < sec
->size
14158 && MATCH (opcode
, jal_insn_32_bd32
))
14160 unsigned long n32opc
;
14161 bfd_boolean relaxed
= FALSE
;
14163 n32opc
= bfd_get_micromips_32 (abfd
, ptr
+ 4);
14165 if (MATCH (n32opc
, nop_insn_32
))
14167 /* Replace delay slot 32-bit NOP with a 16-bit NOP. */
14168 bfd_put_16 (abfd
, nop_insn_16
.match
, ptr
+ 4);
14172 else if (find_match (n32opc
, move_insns_32
) >= 0)
14174 /* Replace delay slot 32-bit MOVE with 16-bit MOVE. */
14176 (move_insn_16
.match
14177 | MOVE16_RD_FIELD (MOVE32_RD (n32opc
))
14178 | MOVE16_RS_FIELD (MOVE32_RS (n32opc
))),
14183 /* Other 32-bit instructions relaxable to 16-bit
14184 instructions will be handled here later. */
14188 /* JAL with 32-bit delay slot that is changed to a JALS
14189 with 16-bit delay slot. */
14190 bfd_put_micromips_32 (abfd
, jal_insn_32_bd16
.match
, ptr
);
14192 /* Delete 2 bytes from irel->r_offset + 6. */
14200 /* Note that we've changed the relocs, section contents, etc. */
14201 elf_section_data (sec
)->relocs
= internal_relocs
;
14202 elf_section_data (sec
)->this_hdr
.contents
= contents
;
14203 symtab_hdr
->contents
= (unsigned char *) isymbuf
;
14205 /* Delete bytes depending on the delcnt and deloff. */
14206 if (!mips_elf_relax_delete_bytes (abfd
, sec
,
14207 irel
->r_offset
+ deloff
, delcnt
))
14210 /* That will change things, so we should relax again.
14211 Note that this is not required, and it may be slow. */
14216 if (isymbuf
!= NULL
14217 && symtab_hdr
->contents
!= (unsigned char *) isymbuf
)
14219 if (! link_info
->keep_memory
)
14223 /* Cache the symbols for elf_link_input_bfd. */
14224 symtab_hdr
->contents
= (unsigned char *) isymbuf
;
14228 if (contents
!= NULL
14229 && elf_section_data (sec
)->this_hdr
.contents
!= contents
)
14231 if (! link_info
->keep_memory
)
14235 /* Cache the section contents for elf_link_input_bfd. */
14236 elf_section_data (sec
)->this_hdr
.contents
= contents
;
14240 if (elf_section_data (sec
)->relocs
!= internal_relocs
)
14241 free (internal_relocs
);
14246 if (symtab_hdr
->contents
!= (unsigned char *) isymbuf
)
14248 if (elf_section_data (sec
)->this_hdr
.contents
!= contents
)
14250 if (elf_section_data (sec
)->relocs
!= internal_relocs
)
14251 free (internal_relocs
);
14256 /* Create a MIPS ELF linker hash table. */
14258 struct bfd_link_hash_table
*
14259 _bfd_mips_elf_link_hash_table_create (bfd
*abfd
)
14261 struct mips_elf_link_hash_table
*ret
;
14262 size_t amt
= sizeof (struct mips_elf_link_hash_table
);
14264 ret
= bfd_zmalloc (amt
);
14268 if (!_bfd_elf_link_hash_table_init (&ret
->root
, abfd
,
14269 mips_elf_link_hash_newfunc
,
14270 sizeof (struct mips_elf_link_hash_entry
),
14276 ret
->root
.init_plt_refcount
.plist
= NULL
;
14277 ret
->root
.init_plt_offset
.plist
= NULL
;
14279 return &ret
->root
.root
;
14282 /* Likewise, but indicate that the target is VxWorks. */
14284 struct bfd_link_hash_table
*
14285 _bfd_mips_vxworks_link_hash_table_create (bfd
*abfd
)
14287 struct bfd_link_hash_table
*ret
;
14289 ret
= _bfd_mips_elf_link_hash_table_create (abfd
);
14292 struct mips_elf_link_hash_table
*htab
;
14294 htab
= (struct mips_elf_link_hash_table
*) ret
;
14295 htab
->use_plts_and_copy_relocs
= TRUE
;
14300 /* A function that the linker calls if we are allowed to use PLTs
14301 and copy relocs. */
14304 _bfd_mips_elf_use_plts_and_copy_relocs (struct bfd_link_info
*info
)
14306 mips_elf_hash_table (info
)->use_plts_and_copy_relocs
= TRUE
;
14309 /* A function that the linker calls to select between all or only
14310 32-bit microMIPS instructions, and between making or ignoring
14311 branch relocation checks for invalid transitions between ISA modes.
14312 Also record whether we have been configured for a GNU target. */
14315 _bfd_mips_elf_linker_flags (struct bfd_link_info
*info
, bfd_boolean insn32
,
14316 bfd_boolean ignore_branch_isa
,
14317 bfd_boolean gnu_target
)
14319 mips_elf_hash_table (info
)->insn32
= insn32
;
14320 mips_elf_hash_table (info
)->ignore_branch_isa
= ignore_branch_isa
;
14321 mips_elf_hash_table (info
)->gnu_target
= gnu_target
;
14324 /* A function that the linker calls to enable use of compact branches in
14325 linker generated code for MIPSR6. */
14328 _bfd_mips_elf_compact_branches (struct bfd_link_info
*info
, bfd_boolean on
)
14330 mips_elf_hash_table (info
)->compact_branches
= on
;
14334 /* Structure for saying that BFD machine EXTENSION extends BASE. */
14336 struct mips_mach_extension
14338 unsigned long extension
, base
;
14342 /* An array describing how BFD machines relate to one another. The entries
14343 are ordered topologically with MIPS I extensions listed last. */
14345 static const struct mips_mach_extension mips_mach_extensions
[] =
14347 /* MIPS64r2 extensions. */
14348 { bfd_mach_mips_octeon3
, bfd_mach_mips_octeon2
},
14349 { bfd_mach_mips_octeon2
, bfd_mach_mips_octeonp
},
14350 { bfd_mach_mips_octeonp
, bfd_mach_mips_octeon
},
14351 { bfd_mach_mips_octeon
, bfd_mach_mipsisa64r2
},
14352 { bfd_mach_mips_gs264e
, bfd_mach_mips_gs464e
},
14353 { bfd_mach_mips_gs464e
, bfd_mach_mips_gs464
},
14354 { bfd_mach_mips_gs464
, bfd_mach_mipsisa64r2
},
14356 /* MIPS64 extensions. */
14357 { bfd_mach_mipsisa64r2
, bfd_mach_mipsisa64
},
14358 { bfd_mach_mips_sb1
, bfd_mach_mipsisa64
},
14359 { bfd_mach_mips_xlr
, bfd_mach_mipsisa64
},
14361 /* MIPS V extensions. */
14362 { bfd_mach_mipsisa64
, bfd_mach_mips5
},
14364 /* R10000 extensions. */
14365 { bfd_mach_mips12000
, bfd_mach_mips10000
},
14366 { bfd_mach_mips14000
, bfd_mach_mips10000
},
14367 { bfd_mach_mips16000
, bfd_mach_mips10000
},
14369 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
14370 vr5400 ISA, but doesn't include the multimedia stuff. It seems
14371 better to allow vr5400 and vr5500 code to be merged anyway, since
14372 many libraries will just use the core ISA. Perhaps we could add
14373 some sort of ASE flag if this ever proves a problem. */
14374 { bfd_mach_mips5500
, bfd_mach_mips5400
},
14375 { bfd_mach_mips5400
, bfd_mach_mips5000
},
14377 /* MIPS IV extensions. */
14378 { bfd_mach_mips5
, bfd_mach_mips8000
},
14379 { bfd_mach_mips10000
, bfd_mach_mips8000
},
14380 { bfd_mach_mips5000
, bfd_mach_mips8000
},
14381 { bfd_mach_mips7000
, bfd_mach_mips8000
},
14382 { bfd_mach_mips9000
, bfd_mach_mips8000
},
14384 /* VR4100 extensions. */
14385 { bfd_mach_mips4120
, bfd_mach_mips4100
},
14386 { bfd_mach_mips4111
, bfd_mach_mips4100
},
14388 /* MIPS III extensions. */
14389 { bfd_mach_mips_loongson_2e
, bfd_mach_mips4000
},
14390 { bfd_mach_mips_loongson_2f
, bfd_mach_mips4000
},
14391 { bfd_mach_mips8000
, bfd_mach_mips4000
},
14392 { bfd_mach_mips4650
, bfd_mach_mips4000
},
14393 { bfd_mach_mips4600
, bfd_mach_mips4000
},
14394 { bfd_mach_mips4400
, bfd_mach_mips4000
},
14395 { bfd_mach_mips4300
, bfd_mach_mips4000
},
14396 { bfd_mach_mips4100
, bfd_mach_mips4000
},
14397 { bfd_mach_mips5900
, bfd_mach_mips4000
},
14399 /* MIPS32r3 extensions. */
14400 { bfd_mach_mips_interaptiv_mr2
, bfd_mach_mipsisa32r3
},
14402 /* MIPS32r2 extensions. */
14403 { bfd_mach_mipsisa32r3
, bfd_mach_mipsisa32r2
},
14405 /* MIPS32 extensions. */
14406 { bfd_mach_mipsisa32r2
, bfd_mach_mipsisa32
},
14408 /* MIPS II extensions. */
14409 { bfd_mach_mips4000
, bfd_mach_mips6000
},
14410 { bfd_mach_mipsisa32
, bfd_mach_mips6000
},
14411 { bfd_mach_mips4010
, bfd_mach_mips6000
},
14413 /* MIPS I extensions. */
14414 { bfd_mach_mips6000
, bfd_mach_mips3000
},
14415 { bfd_mach_mips3900
, bfd_mach_mips3000
}
14418 /* Return true if bfd machine EXTENSION is an extension of machine BASE. */
14421 mips_mach_extends_p (unsigned long base
, unsigned long extension
)
14425 if (extension
== base
)
14428 if (base
== bfd_mach_mipsisa32
14429 && mips_mach_extends_p (bfd_mach_mipsisa64
, extension
))
14432 if (base
== bfd_mach_mipsisa32r2
14433 && mips_mach_extends_p (bfd_mach_mipsisa64r2
, extension
))
14436 for (i
= 0; i
< ARRAY_SIZE (mips_mach_extensions
); i
++)
14437 if (extension
== mips_mach_extensions
[i
].extension
)
14439 extension
= mips_mach_extensions
[i
].base
;
14440 if (extension
== base
)
14447 /* Return the BFD mach for each .MIPS.abiflags ISA Extension. */
14449 static unsigned long
14450 bfd_mips_isa_ext_mach (unsigned int isa_ext
)
14454 case AFL_EXT_3900
: return bfd_mach_mips3900
;
14455 case AFL_EXT_4010
: return bfd_mach_mips4010
;
14456 case AFL_EXT_4100
: return bfd_mach_mips4100
;
14457 case AFL_EXT_4111
: return bfd_mach_mips4111
;
14458 case AFL_EXT_4120
: return bfd_mach_mips4120
;
14459 case AFL_EXT_4650
: return bfd_mach_mips4650
;
14460 case AFL_EXT_5400
: return bfd_mach_mips5400
;
14461 case AFL_EXT_5500
: return bfd_mach_mips5500
;
14462 case AFL_EXT_5900
: return bfd_mach_mips5900
;
14463 case AFL_EXT_10000
: return bfd_mach_mips10000
;
14464 case AFL_EXT_LOONGSON_2E
: return bfd_mach_mips_loongson_2e
;
14465 case AFL_EXT_LOONGSON_2F
: return bfd_mach_mips_loongson_2f
;
14466 case AFL_EXT_SB1
: return bfd_mach_mips_sb1
;
14467 case AFL_EXT_OCTEON
: return bfd_mach_mips_octeon
;
14468 case AFL_EXT_OCTEONP
: return bfd_mach_mips_octeonp
;
14469 case AFL_EXT_OCTEON2
: return bfd_mach_mips_octeon2
;
14470 case AFL_EXT_XLR
: return bfd_mach_mips_xlr
;
14471 default: return bfd_mach_mips3000
;
14475 /* Return the .MIPS.abiflags value representing each ISA Extension. */
14478 bfd_mips_isa_ext (bfd
*abfd
)
14480 switch (bfd_get_mach (abfd
))
14482 case bfd_mach_mips3900
: return AFL_EXT_3900
;
14483 case bfd_mach_mips4010
: return AFL_EXT_4010
;
14484 case bfd_mach_mips4100
: return AFL_EXT_4100
;
14485 case bfd_mach_mips4111
: return AFL_EXT_4111
;
14486 case bfd_mach_mips4120
: return AFL_EXT_4120
;
14487 case bfd_mach_mips4650
: return AFL_EXT_4650
;
14488 case bfd_mach_mips5400
: return AFL_EXT_5400
;
14489 case bfd_mach_mips5500
: return AFL_EXT_5500
;
14490 case bfd_mach_mips5900
: return AFL_EXT_5900
;
14491 case bfd_mach_mips10000
: return AFL_EXT_10000
;
14492 case bfd_mach_mips_loongson_2e
: return AFL_EXT_LOONGSON_2E
;
14493 case bfd_mach_mips_loongson_2f
: return AFL_EXT_LOONGSON_2F
;
14494 case bfd_mach_mips_sb1
: return AFL_EXT_SB1
;
14495 case bfd_mach_mips_octeon
: return AFL_EXT_OCTEON
;
14496 case bfd_mach_mips_octeonp
: return AFL_EXT_OCTEONP
;
14497 case bfd_mach_mips_octeon3
: return AFL_EXT_OCTEON3
;
14498 case bfd_mach_mips_octeon2
: return AFL_EXT_OCTEON2
;
14499 case bfd_mach_mips_xlr
: return AFL_EXT_XLR
;
14500 case bfd_mach_mips_interaptiv_mr2
:
14501 return AFL_EXT_INTERAPTIV_MR2
;
14506 /* Encode ISA level and revision as a single value. */
14507 #define LEVEL_REV(LEV,REV) ((LEV) << 3 | (REV))
14509 /* Decode a single value into level and revision. */
14510 #define ISA_LEVEL(LEVREV) ((LEVREV) >> 3)
14511 #define ISA_REV(LEVREV) ((LEVREV) & 0x7)
14513 /* Update the isa_level, isa_rev, isa_ext fields of abiflags. */
14516 update_mips_abiflags_isa (bfd
*abfd
, Elf_Internal_ABIFlags_v0
*abiflags
)
14519 switch (elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH
)
14521 case E_MIPS_ARCH_1
: new_isa
= LEVEL_REV (1, 0); break;
14522 case E_MIPS_ARCH_2
: new_isa
= LEVEL_REV (2, 0); break;
14523 case E_MIPS_ARCH_3
: new_isa
= LEVEL_REV (3, 0); break;
14524 case E_MIPS_ARCH_4
: new_isa
= LEVEL_REV (4, 0); break;
14525 case E_MIPS_ARCH_5
: new_isa
= LEVEL_REV (5, 0); break;
14526 case E_MIPS_ARCH_32
: new_isa
= LEVEL_REV (32, 1); break;
14527 case E_MIPS_ARCH_32R2
: new_isa
= LEVEL_REV (32, 2); break;
14528 case E_MIPS_ARCH_32R6
: new_isa
= LEVEL_REV (32, 6); break;
14529 case E_MIPS_ARCH_64
: new_isa
= LEVEL_REV (64, 1); break;
14530 case E_MIPS_ARCH_64R2
: new_isa
= LEVEL_REV (64, 2); break;
14531 case E_MIPS_ARCH_64R6
: new_isa
= LEVEL_REV (64, 6); break;
14534 /* xgettext:c-format */
14535 (_("%pB: unknown architecture %s"),
14536 abfd
, bfd_printable_name (abfd
));
14539 if (new_isa
> LEVEL_REV (abiflags
->isa_level
, abiflags
->isa_rev
))
14541 abiflags
->isa_level
= ISA_LEVEL (new_isa
);
14542 abiflags
->isa_rev
= ISA_REV (new_isa
);
14545 /* Update the isa_ext if ABFD describes a further extension. */
14546 if (mips_mach_extends_p (bfd_mips_isa_ext_mach (abiflags
->isa_ext
),
14547 bfd_get_mach (abfd
)))
14548 abiflags
->isa_ext
= bfd_mips_isa_ext (abfd
);
14551 /* Return true if the given ELF header flags describe a 32-bit binary. */
14554 mips_32bit_flags_p (flagword flags
)
14556 return ((flags
& EF_MIPS_32BITMODE
) != 0
14557 || (flags
& EF_MIPS_ABI
) == E_MIPS_ABI_O32
14558 || (flags
& EF_MIPS_ABI
) == E_MIPS_ABI_EABI32
14559 || (flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_1
14560 || (flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_2
14561 || (flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_32
14562 || (flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_32R2
14563 || (flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_32R6
);
14566 /* Infer the content of the ABI flags based on the elf header. */
14569 infer_mips_abiflags (bfd
*abfd
, Elf_Internal_ABIFlags_v0
* abiflags
)
14571 obj_attribute
*in_attr
;
14573 memset (abiflags
, 0, sizeof (Elf_Internal_ABIFlags_v0
));
14574 update_mips_abiflags_isa (abfd
, abiflags
);
14576 if (mips_32bit_flags_p (elf_elfheader (abfd
)->e_flags
))
14577 abiflags
->gpr_size
= AFL_REG_32
;
14579 abiflags
->gpr_size
= AFL_REG_64
;
14581 abiflags
->cpr1_size
= AFL_REG_NONE
;
14583 in_attr
= elf_known_obj_attributes (abfd
)[OBJ_ATTR_GNU
];
14584 abiflags
->fp_abi
= in_attr
[Tag_GNU_MIPS_ABI_FP
].i
;
14586 if (abiflags
->fp_abi
== Val_GNU_MIPS_ABI_FP_SINGLE
14587 || abiflags
->fp_abi
== Val_GNU_MIPS_ABI_FP_XX
14588 || (abiflags
->fp_abi
== Val_GNU_MIPS_ABI_FP_DOUBLE
14589 && abiflags
->gpr_size
== AFL_REG_32
))
14590 abiflags
->cpr1_size
= AFL_REG_32
;
14591 else if (abiflags
->fp_abi
== Val_GNU_MIPS_ABI_FP_DOUBLE
14592 || abiflags
->fp_abi
== Val_GNU_MIPS_ABI_FP_64
14593 || abiflags
->fp_abi
== Val_GNU_MIPS_ABI_FP_64A
)
14594 abiflags
->cpr1_size
= AFL_REG_64
;
14596 abiflags
->cpr2_size
= AFL_REG_NONE
;
14598 if (elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH_ASE_MDMX
)
14599 abiflags
->ases
|= AFL_ASE_MDMX
;
14600 if (elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH_ASE_M16
)
14601 abiflags
->ases
|= AFL_ASE_MIPS16
;
14602 if (elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH_ASE_MICROMIPS
)
14603 abiflags
->ases
|= AFL_ASE_MICROMIPS
;
14605 if (abiflags
->fp_abi
!= Val_GNU_MIPS_ABI_FP_ANY
14606 && abiflags
->fp_abi
!= Val_GNU_MIPS_ABI_FP_SOFT
14607 && abiflags
->fp_abi
!= Val_GNU_MIPS_ABI_FP_64A
14608 && abiflags
->isa_level
>= 32
14609 && abiflags
->ases
!= AFL_ASE_LOONGSON_EXT
)
14610 abiflags
->flags1
|= AFL_FLAGS1_ODDSPREG
;
14613 /* We need to use a special link routine to handle the .reginfo and
14614 the .mdebug sections. We need to merge all instances of these
14615 sections together, not write them all out sequentially. */
14618 _bfd_mips_elf_final_link (bfd
*abfd
, struct bfd_link_info
*info
)
14621 struct bfd_link_order
*p
;
14622 asection
*reginfo_sec
, *mdebug_sec
, *gptab_data_sec
, *gptab_bss_sec
;
14623 asection
*rtproc_sec
, *abiflags_sec
;
14624 Elf32_RegInfo reginfo
;
14625 struct ecoff_debug_info debug
;
14626 struct mips_htab_traverse_info hti
;
14627 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
14628 const struct ecoff_debug_swap
*swap
= bed
->elf_backend_ecoff_debug_swap
;
14629 HDRR
*symhdr
= &debug
.symbolic_header
;
14630 void *mdebug_handle
= NULL
;
14635 struct mips_elf_link_hash_table
*htab
;
14637 static const char * const secname
[] =
14639 ".text", ".init", ".fini", ".data",
14640 ".rodata", ".sdata", ".sbss", ".bss"
14642 static const int sc
[] =
14644 scText
, scInit
, scFini
, scData
,
14645 scRData
, scSData
, scSBss
, scBss
14648 htab
= mips_elf_hash_table (info
);
14649 BFD_ASSERT (htab
!= NULL
);
14651 /* Sort the dynamic symbols so that those with GOT entries come after
14653 if (!mips_elf_sort_hash_table (abfd
, info
))
14656 /* Create any scheduled LA25 stubs. */
14658 hti
.output_bfd
= abfd
;
14660 htab_traverse (htab
->la25_stubs
, mips_elf_create_la25_stub
, &hti
);
14664 /* Get a value for the GP register. */
14665 if (elf_gp (abfd
) == 0)
14667 struct bfd_link_hash_entry
*h
;
14669 h
= bfd_link_hash_lookup (info
->hash
, "_gp", FALSE
, FALSE
, TRUE
);
14670 if (h
!= NULL
&& h
->type
== bfd_link_hash_defined
)
14671 elf_gp (abfd
) = (h
->u
.def
.value
14672 + h
->u
.def
.section
->output_section
->vma
14673 + h
->u
.def
.section
->output_offset
);
14674 else if (htab
->root
.target_os
== is_vxworks
14675 && (h
= bfd_link_hash_lookup (info
->hash
,
14676 "_GLOBAL_OFFSET_TABLE_",
14677 FALSE
, FALSE
, TRUE
))
14678 && h
->type
== bfd_link_hash_defined
)
14679 elf_gp (abfd
) = (h
->u
.def
.section
->output_section
->vma
14680 + h
->u
.def
.section
->output_offset
14682 else if (bfd_link_relocatable (info
))
14684 bfd_vma lo
= MINUS_ONE
;
14686 /* Find the GP-relative section with the lowest offset. */
14687 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
14689 && (elf_section_data (o
)->this_hdr
.sh_flags
& SHF_MIPS_GPREL
))
14692 /* And calculate GP relative to that. */
14693 elf_gp (abfd
) = lo
+ ELF_MIPS_GP_OFFSET (info
);
14697 /* If the relocate_section function needs to do a reloc
14698 involving the GP value, it should make a reloc_dangerous
14699 callback to warn that GP is not defined. */
14703 /* Go through the sections and collect the .reginfo and .mdebug
14705 abiflags_sec
= NULL
;
14706 reginfo_sec
= NULL
;
14708 gptab_data_sec
= NULL
;
14709 gptab_bss_sec
= NULL
;
14710 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
14712 if (strcmp (o
->name
, ".MIPS.abiflags") == 0)
14714 /* We have found the .MIPS.abiflags section in the output file.
14715 Look through all the link_orders comprising it and remove them.
14716 The data is merged in _bfd_mips_elf_merge_private_bfd_data. */
14717 for (p
= o
->map_head
.link_order
; p
!= NULL
; p
= p
->next
)
14719 asection
*input_section
;
14721 if (p
->type
!= bfd_indirect_link_order
)
14723 if (p
->type
== bfd_data_link_order
)
14728 input_section
= p
->u
.indirect
.section
;
14730 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14731 elf_link_input_bfd ignores this section. */
14732 input_section
->flags
&= ~SEC_HAS_CONTENTS
;
14735 /* Size has been set in _bfd_mips_elf_always_size_sections. */
14736 BFD_ASSERT(o
->size
== sizeof (Elf_External_ABIFlags_v0
));
14738 /* Skip this section later on (I don't think this currently
14739 matters, but someday it might). */
14740 o
->map_head
.link_order
= NULL
;
14745 if (strcmp (o
->name
, ".reginfo") == 0)
14747 memset (®info
, 0, sizeof reginfo
);
14749 /* We have found the .reginfo section in the output file.
14750 Look through all the link_orders comprising it and merge
14751 the information together. */
14752 for (p
= o
->map_head
.link_order
; p
!= NULL
; p
= p
->next
)
14754 asection
*input_section
;
14756 Elf32_External_RegInfo ext
;
14760 if (p
->type
!= bfd_indirect_link_order
)
14762 if (p
->type
== bfd_data_link_order
)
14767 input_section
= p
->u
.indirect
.section
;
14768 input_bfd
= input_section
->owner
;
14770 sz
= (input_section
->size
< sizeof (ext
)
14771 ? input_section
->size
: sizeof (ext
));
14772 memset (&ext
, 0, sizeof (ext
));
14773 if (! bfd_get_section_contents (input_bfd
, input_section
,
14777 bfd_mips_elf32_swap_reginfo_in (input_bfd
, &ext
, &sub
);
14779 reginfo
.ri_gprmask
|= sub
.ri_gprmask
;
14780 reginfo
.ri_cprmask
[0] |= sub
.ri_cprmask
[0];
14781 reginfo
.ri_cprmask
[1] |= sub
.ri_cprmask
[1];
14782 reginfo
.ri_cprmask
[2] |= sub
.ri_cprmask
[2];
14783 reginfo
.ri_cprmask
[3] |= sub
.ri_cprmask
[3];
14785 /* ri_gp_value is set by the function
14786 `_bfd_mips_elf_section_processing' when the section is
14787 finally written out. */
14789 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14790 elf_link_input_bfd ignores this section. */
14791 input_section
->flags
&= ~SEC_HAS_CONTENTS
;
14794 /* Size has been set in _bfd_mips_elf_always_size_sections. */
14795 BFD_ASSERT(o
->size
== sizeof (Elf32_External_RegInfo
));
14797 /* Skip this section later on (I don't think this currently
14798 matters, but someday it might). */
14799 o
->map_head
.link_order
= NULL
;
14804 if (strcmp (o
->name
, ".mdebug") == 0)
14806 struct extsym_info einfo
;
14809 /* We have found the .mdebug section in the output file.
14810 Look through all the link_orders comprising it and merge
14811 the information together. */
14812 symhdr
->magic
= swap
->sym_magic
;
14813 /* FIXME: What should the version stamp be? */
14814 symhdr
->vstamp
= 0;
14815 symhdr
->ilineMax
= 0;
14816 symhdr
->cbLine
= 0;
14817 symhdr
->idnMax
= 0;
14818 symhdr
->ipdMax
= 0;
14819 symhdr
->isymMax
= 0;
14820 symhdr
->ioptMax
= 0;
14821 symhdr
->iauxMax
= 0;
14822 symhdr
->issMax
= 0;
14823 symhdr
->issExtMax
= 0;
14824 symhdr
->ifdMax
= 0;
14826 symhdr
->iextMax
= 0;
14828 /* We accumulate the debugging information itself in the
14829 debug_info structure. */
14831 debug
.external_dnr
= NULL
;
14832 debug
.external_pdr
= NULL
;
14833 debug
.external_sym
= NULL
;
14834 debug
.external_opt
= NULL
;
14835 debug
.external_aux
= NULL
;
14837 debug
.ssext
= debug
.ssext_end
= NULL
;
14838 debug
.external_fdr
= NULL
;
14839 debug
.external_rfd
= NULL
;
14840 debug
.external_ext
= debug
.external_ext_end
= NULL
;
14842 mdebug_handle
= bfd_ecoff_debug_init (abfd
, &debug
, swap
, info
);
14843 if (mdebug_handle
== NULL
)
14847 esym
.cobol_main
= 0;
14851 esym
.asym
.iss
= issNil
;
14852 esym
.asym
.st
= stLocal
;
14853 esym
.asym
.reserved
= 0;
14854 esym
.asym
.index
= indexNil
;
14856 for (i
= 0; i
< sizeof (secname
) / sizeof (secname
[0]); i
++)
14858 esym
.asym
.sc
= sc
[i
];
14859 s
= bfd_get_section_by_name (abfd
, secname
[i
]);
14862 esym
.asym
.value
= s
->vma
;
14863 last
= s
->vma
+ s
->size
;
14866 esym
.asym
.value
= last
;
14867 if (!bfd_ecoff_debug_one_external (abfd
, &debug
, swap
,
14868 secname
[i
], &esym
))
14872 for (p
= o
->map_head
.link_order
; p
!= NULL
; p
= p
->next
)
14874 asection
*input_section
;
14876 const struct ecoff_debug_swap
*input_swap
;
14877 struct ecoff_debug_info input_debug
;
14881 if (p
->type
!= bfd_indirect_link_order
)
14883 if (p
->type
== bfd_data_link_order
)
14888 input_section
= p
->u
.indirect
.section
;
14889 input_bfd
= input_section
->owner
;
14891 if (!is_mips_elf (input_bfd
))
14893 /* I don't know what a non MIPS ELF bfd would be
14894 doing with a .mdebug section, but I don't really
14895 want to deal with it. */
14899 input_swap
= (get_elf_backend_data (input_bfd
)
14900 ->elf_backend_ecoff_debug_swap
);
14902 BFD_ASSERT (p
->size
== input_section
->size
);
14904 /* The ECOFF linking code expects that we have already
14905 read in the debugging information and set up an
14906 ecoff_debug_info structure, so we do that now. */
14907 if (! _bfd_mips_elf_read_ecoff_info (input_bfd
, input_section
,
14911 if (! (bfd_ecoff_debug_accumulate
14912 (mdebug_handle
, abfd
, &debug
, swap
, input_bfd
,
14913 &input_debug
, input_swap
, info
)))
14916 /* Loop through the external symbols. For each one with
14917 interesting information, try to find the symbol in
14918 the linker global hash table and save the information
14919 for the output external symbols. */
14920 eraw_src
= input_debug
.external_ext
;
14921 eraw_end
= (eraw_src
14922 + (input_debug
.symbolic_header
.iextMax
14923 * input_swap
->external_ext_size
));
14925 eraw_src
< eraw_end
;
14926 eraw_src
+= input_swap
->external_ext_size
)
14930 struct mips_elf_link_hash_entry
*h
;
14932 (*input_swap
->swap_ext_in
) (input_bfd
, eraw_src
, &ext
);
14933 if (ext
.asym
.sc
== scNil
14934 || ext
.asym
.sc
== scUndefined
14935 || ext
.asym
.sc
== scSUndefined
)
14938 name
= input_debug
.ssext
+ ext
.asym
.iss
;
14939 h
= mips_elf_link_hash_lookup (mips_elf_hash_table (info
),
14940 name
, FALSE
, FALSE
, TRUE
);
14941 if (h
== NULL
|| h
->esym
.ifd
!= -2)
14946 BFD_ASSERT (ext
.ifd
14947 < input_debug
.symbolic_header
.ifdMax
);
14948 ext
.ifd
= input_debug
.ifdmap
[ext
.ifd
];
14954 /* Free up the information we just read. */
14955 free (input_debug
.line
);
14956 free (input_debug
.external_dnr
);
14957 free (input_debug
.external_pdr
);
14958 free (input_debug
.external_sym
);
14959 free (input_debug
.external_opt
);
14960 free (input_debug
.external_aux
);
14961 free (input_debug
.ss
);
14962 free (input_debug
.ssext
);
14963 free (input_debug
.external_fdr
);
14964 free (input_debug
.external_rfd
);
14965 free (input_debug
.external_ext
);
14967 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14968 elf_link_input_bfd ignores this section. */
14969 input_section
->flags
&= ~SEC_HAS_CONTENTS
;
14972 if (SGI_COMPAT (abfd
) && bfd_link_pic (info
))
14974 /* Create .rtproc section. */
14975 rtproc_sec
= bfd_get_linker_section (abfd
, ".rtproc");
14976 if (rtproc_sec
== NULL
)
14978 flagword flags
= (SEC_HAS_CONTENTS
| SEC_IN_MEMORY
14979 | SEC_LINKER_CREATED
| SEC_READONLY
);
14981 rtproc_sec
= bfd_make_section_anyway_with_flags (abfd
,
14984 if (rtproc_sec
== NULL
14985 || !bfd_set_section_alignment (rtproc_sec
, 4))
14989 if (! mips_elf_create_procedure_table (mdebug_handle
, abfd
,
14995 /* Build the external symbol information. */
14998 einfo
.debug
= &debug
;
15000 einfo
.failed
= FALSE
;
15001 mips_elf_link_hash_traverse (mips_elf_hash_table (info
),
15002 mips_elf_output_extsym
, &einfo
);
15006 /* Set the size of the .mdebug section. */
15007 o
->size
= bfd_ecoff_debug_size (abfd
, &debug
, swap
);
15009 /* Skip this section later on (I don't think this currently
15010 matters, but someday it might). */
15011 o
->map_head
.link_order
= NULL
;
15016 if (CONST_STRNEQ (o
->name
, ".gptab."))
15018 const char *subname
;
15021 Elf32_External_gptab
*ext_tab
;
15024 /* The .gptab.sdata and .gptab.sbss sections hold
15025 information describing how the small data area would
15026 change depending upon the -G switch. These sections
15027 not used in executables files. */
15028 if (! bfd_link_relocatable (info
))
15030 for (p
= o
->map_head
.link_order
; p
!= NULL
; p
= p
->next
)
15032 asection
*input_section
;
15034 if (p
->type
!= bfd_indirect_link_order
)
15036 if (p
->type
== bfd_data_link_order
)
15041 input_section
= p
->u
.indirect
.section
;
15043 /* Hack: reset the SEC_HAS_CONTENTS flag so that
15044 elf_link_input_bfd ignores this section. */
15045 input_section
->flags
&= ~SEC_HAS_CONTENTS
;
15048 /* Skip this section later on (I don't think this
15049 currently matters, but someday it might). */
15050 o
->map_head
.link_order
= NULL
;
15052 /* Really remove the section. */
15053 bfd_section_list_remove (abfd
, o
);
15054 --abfd
->section_count
;
15059 /* There is one gptab for initialized data, and one for
15060 uninitialized data. */
15061 if (strcmp (o
->name
, ".gptab.sdata") == 0)
15062 gptab_data_sec
= o
;
15063 else if (strcmp (o
->name
, ".gptab.sbss") == 0)
15068 /* xgettext:c-format */
15069 (_("%pB: illegal section name `%pA'"), abfd
, o
);
15070 bfd_set_error (bfd_error_nonrepresentable_section
);
15074 /* The linker script always combines .gptab.data and
15075 .gptab.sdata into .gptab.sdata, and likewise for
15076 .gptab.bss and .gptab.sbss. It is possible that there is
15077 no .sdata or .sbss section in the output file, in which
15078 case we must change the name of the output section. */
15079 subname
= o
->name
+ sizeof ".gptab" - 1;
15080 if (bfd_get_section_by_name (abfd
, subname
) == NULL
)
15082 if (o
== gptab_data_sec
)
15083 o
->name
= ".gptab.data";
15085 o
->name
= ".gptab.bss";
15086 subname
= o
->name
+ sizeof ".gptab" - 1;
15087 BFD_ASSERT (bfd_get_section_by_name (abfd
, subname
) != NULL
);
15090 /* Set up the first entry. */
15092 amt
= c
* sizeof (Elf32_gptab
);
15093 tab
= bfd_malloc (amt
);
15096 tab
[0].gt_header
.gt_current_g_value
= elf_gp_size (abfd
);
15097 tab
[0].gt_header
.gt_unused
= 0;
15099 /* Combine the input sections. */
15100 for (p
= o
->map_head
.link_order
; p
!= NULL
; p
= p
->next
)
15102 asection
*input_section
;
15104 bfd_size_type size
;
15105 unsigned long last
;
15106 bfd_size_type gpentry
;
15108 if (p
->type
!= bfd_indirect_link_order
)
15110 if (p
->type
== bfd_data_link_order
)
15115 input_section
= p
->u
.indirect
.section
;
15116 input_bfd
= input_section
->owner
;
15118 /* Combine the gptab entries for this input section one
15119 by one. We know that the input gptab entries are
15120 sorted by ascending -G value. */
15121 size
= input_section
->size
;
15123 for (gpentry
= sizeof (Elf32_External_gptab
);
15125 gpentry
+= sizeof (Elf32_External_gptab
))
15127 Elf32_External_gptab ext_gptab
;
15128 Elf32_gptab int_gptab
;
15134 if (! (bfd_get_section_contents
15135 (input_bfd
, input_section
, &ext_gptab
, gpentry
,
15136 sizeof (Elf32_External_gptab
))))
15142 bfd_mips_elf32_swap_gptab_in (input_bfd
, &ext_gptab
,
15144 val
= int_gptab
.gt_entry
.gt_g_value
;
15145 add
= int_gptab
.gt_entry
.gt_bytes
- last
;
15148 for (look
= 1; look
< c
; look
++)
15150 if (tab
[look
].gt_entry
.gt_g_value
>= val
)
15151 tab
[look
].gt_entry
.gt_bytes
+= add
;
15153 if (tab
[look
].gt_entry
.gt_g_value
== val
)
15159 Elf32_gptab
*new_tab
;
15162 /* We need a new table entry. */
15163 amt
= (bfd_size_type
) (c
+ 1) * sizeof (Elf32_gptab
);
15164 new_tab
= bfd_realloc (tab
, amt
);
15165 if (new_tab
== NULL
)
15171 tab
[c
].gt_entry
.gt_g_value
= val
;
15172 tab
[c
].gt_entry
.gt_bytes
= add
;
15174 /* Merge in the size for the next smallest -G
15175 value, since that will be implied by this new
15178 for (look
= 1; look
< c
; look
++)
15180 if (tab
[look
].gt_entry
.gt_g_value
< val
15182 || (tab
[look
].gt_entry
.gt_g_value
15183 > tab
[max
].gt_entry
.gt_g_value
)))
15187 tab
[c
].gt_entry
.gt_bytes
+=
15188 tab
[max
].gt_entry
.gt_bytes
;
15193 last
= int_gptab
.gt_entry
.gt_bytes
;
15196 /* Hack: reset the SEC_HAS_CONTENTS flag so that
15197 elf_link_input_bfd ignores this section. */
15198 input_section
->flags
&= ~SEC_HAS_CONTENTS
;
15201 /* The table must be sorted by -G value. */
15203 qsort (tab
+ 1, c
- 1, sizeof (tab
[0]), gptab_compare
);
15205 /* Swap out the table. */
15206 amt
= (bfd_size_type
) c
* sizeof (Elf32_External_gptab
);
15207 ext_tab
= bfd_alloc (abfd
, amt
);
15208 if (ext_tab
== NULL
)
15214 for (j
= 0; j
< c
; j
++)
15215 bfd_mips_elf32_swap_gptab_out (abfd
, tab
+ j
, ext_tab
+ j
);
15218 o
->size
= c
* sizeof (Elf32_External_gptab
);
15219 o
->contents
= (bfd_byte
*) ext_tab
;
15221 /* Skip this section later on (I don't think this currently
15222 matters, but someday it might). */
15223 o
->map_head
.link_order
= NULL
;
15227 /* Invoke the regular ELF backend linker to do all the work. */
15228 if (!bfd_elf_final_link (abfd
, info
))
15231 /* Now write out the computed sections. */
15233 if (abiflags_sec
!= NULL
)
15235 Elf_External_ABIFlags_v0 ext
;
15236 Elf_Internal_ABIFlags_v0
*abiflags
;
15238 abiflags
= &mips_elf_tdata (abfd
)->abiflags
;
15240 /* Set up the abiflags if no valid input sections were found. */
15241 if (!mips_elf_tdata (abfd
)->abiflags_valid
)
15243 infer_mips_abiflags (abfd
, abiflags
);
15244 mips_elf_tdata (abfd
)->abiflags_valid
= TRUE
;
15246 bfd_mips_elf_swap_abiflags_v0_out (abfd
, abiflags
, &ext
);
15247 if (! bfd_set_section_contents (abfd
, abiflags_sec
, &ext
, 0, sizeof ext
))
15251 if (reginfo_sec
!= NULL
)
15253 Elf32_External_RegInfo ext
;
15255 bfd_mips_elf32_swap_reginfo_out (abfd
, ®info
, &ext
);
15256 if (! bfd_set_section_contents (abfd
, reginfo_sec
, &ext
, 0, sizeof ext
))
15260 if (mdebug_sec
!= NULL
)
15262 BFD_ASSERT (abfd
->output_has_begun
);
15263 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle
, abfd
, &debug
,
15265 mdebug_sec
->filepos
))
15268 bfd_ecoff_debug_free (mdebug_handle
, abfd
, &debug
, swap
, info
);
15271 if (gptab_data_sec
!= NULL
)
15273 if (! bfd_set_section_contents (abfd
, gptab_data_sec
,
15274 gptab_data_sec
->contents
,
15275 0, gptab_data_sec
->size
))
15279 if (gptab_bss_sec
!= NULL
)
15281 if (! bfd_set_section_contents (abfd
, gptab_bss_sec
,
15282 gptab_bss_sec
->contents
,
15283 0, gptab_bss_sec
->size
))
15287 if (SGI_COMPAT (abfd
))
15289 rtproc_sec
= bfd_get_section_by_name (abfd
, ".rtproc");
15290 if (rtproc_sec
!= NULL
)
15292 if (! bfd_set_section_contents (abfd
, rtproc_sec
,
15293 rtproc_sec
->contents
,
15294 0, rtproc_sec
->size
))
15302 /* Merge object file header flags from IBFD into OBFD. Raise an error
15303 if there are conflicting settings. */
15306 mips_elf_merge_obj_e_flags (bfd
*ibfd
, struct bfd_link_info
*info
)
15308 bfd
*obfd
= info
->output_bfd
;
15309 struct mips_elf_obj_tdata
*out_tdata
= mips_elf_tdata (obfd
);
15310 flagword old_flags
;
15311 flagword new_flags
;
15314 new_flags
= elf_elfheader (ibfd
)->e_flags
;
15315 elf_elfheader (obfd
)->e_flags
|= new_flags
& EF_MIPS_NOREORDER
;
15316 old_flags
= elf_elfheader (obfd
)->e_flags
;
15318 /* Check flag compatibility. */
15320 new_flags
&= ~EF_MIPS_NOREORDER
;
15321 old_flags
&= ~EF_MIPS_NOREORDER
;
15323 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
15324 doesn't seem to matter. */
15325 new_flags
&= ~EF_MIPS_XGOT
;
15326 old_flags
&= ~EF_MIPS_XGOT
;
15328 /* MIPSpro generates ucode info in n64 objects. Again, we should
15329 just be able to ignore this. */
15330 new_flags
&= ~EF_MIPS_UCODE
;
15331 old_flags
&= ~EF_MIPS_UCODE
;
15333 /* DSOs should only be linked with CPIC code. */
15334 if ((ibfd
->flags
& DYNAMIC
) != 0)
15335 new_flags
|= EF_MIPS_PIC
| EF_MIPS_CPIC
;
15337 if (new_flags
== old_flags
)
15342 if (((new_flags
& (EF_MIPS_PIC
| EF_MIPS_CPIC
)) != 0)
15343 != ((old_flags
& (EF_MIPS_PIC
| EF_MIPS_CPIC
)) != 0))
15346 (_("%pB: warning: linking abicalls files with non-abicalls files"),
15351 if (new_flags
& (EF_MIPS_PIC
| EF_MIPS_CPIC
))
15352 elf_elfheader (obfd
)->e_flags
|= EF_MIPS_CPIC
;
15353 if (! (new_flags
& EF_MIPS_PIC
))
15354 elf_elfheader (obfd
)->e_flags
&= ~EF_MIPS_PIC
;
15356 new_flags
&= ~ (EF_MIPS_PIC
| EF_MIPS_CPIC
);
15357 old_flags
&= ~ (EF_MIPS_PIC
| EF_MIPS_CPIC
);
15359 /* Compare the ISAs. */
15360 if (mips_32bit_flags_p (old_flags
) != mips_32bit_flags_p (new_flags
))
15363 (_("%pB: linking 32-bit code with 64-bit code"),
15367 else if (!mips_mach_extends_p (bfd_get_mach (ibfd
), bfd_get_mach (obfd
)))
15369 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
15370 if (mips_mach_extends_p (bfd_get_mach (obfd
), bfd_get_mach (ibfd
)))
15372 /* Copy the architecture info from IBFD to OBFD. Also copy
15373 the 32-bit flag (if set) so that we continue to recognise
15374 OBFD as a 32-bit binary. */
15375 bfd_set_arch_info (obfd
, bfd_get_arch_info (ibfd
));
15376 elf_elfheader (obfd
)->e_flags
&= ~(EF_MIPS_ARCH
| EF_MIPS_MACH
);
15377 elf_elfheader (obfd
)->e_flags
15378 |= new_flags
& (EF_MIPS_ARCH
| EF_MIPS_MACH
| EF_MIPS_32BITMODE
);
15380 /* Update the ABI flags isa_level, isa_rev, isa_ext fields. */
15381 update_mips_abiflags_isa (obfd
, &out_tdata
->abiflags
);
15383 /* Copy across the ABI flags if OBFD doesn't use them
15384 and if that was what caused us to treat IBFD as 32-bit. */
15385 if ((old_flags
& EF_MIPS_ABI
) == 0
15386 && mips_32bit_flags_p (new_flags
)
15387 && !mips_32bit_flags_p (new_flags
& ~EF_MIPS_ABI
))
15388 elf_elfheader (obfd
)->e_flags
|= new_flags
& EF_MIPS_ABI
;
15392 /* The ISAs aren't compatible. */
15394 /* xgettext:c-format */
15395 (_("%pB: linking %s module with previous %s modules"),
15397 bfd_printable_name (ibfd
),
15398 bfd_printable_name (obfd
));
15403 new_flags
&= ~(EF_MIPS_ARCH
| EF_MIPS_MACH
| EF_MIPS_32BITMODE
);
15404 old_flags
&= ~(EF_MIPS_ARCH
| EF_MIPS_MACH
| EF_MIPS_32BITMODE
);
15406 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
15407 does set EI_CLASS differently from any 32-bit ABI. */
15408 if ((new_flags
& EF_MIPS_ABI
) != (old_flags
& EF_MIPS_ABI
)
15409 || (elf_elfheader (ibfd
)->e_ident
[EI_CLASS
]
15410 != elf_elfheader (obfd
)->e_ident
[EI_CLASS
]))
15412 /* Only error if both are set (to different values). */
15413 if (((new_flags
& EF_MIPS_ABI
) && (old_flags
& EF_MIPS_ABI
))
15414 || (elf_elfheader (ibfd
)->e_ident
[EI_CLASS
]
15415 != elf_elfheader (obfd
)->e_ident
[EI_CLASS
]))
15418 /* xgettext:c-format */
15419 (_("%pB: ABI mismatch: linking %s module with previous %s modules"),
15421 elf_mips_abi_name (ibfd
),
15422 elf_mips_abi_name (obfd
));
15425 new_flags
&= ~EF_MIPS_ABI
;
15426 old_flags
&= ~EF_MIPS_ABI
;
15429 /* Compare ASEs. Forbid linking MIPS16 and microMIPS ASE modules together
15430 and allow arbitrary mixing of the remaining ASEs (retain the union). */
15431 if ((new_flags
& EF_MIPS_ARCH_ASE
) != (old_flags
& EF_MIPS_ARCH_ASE
))
15433 int old_micro
= old_flags
& EF_MIPS_ARCH_ASE_MICROMIPS
;
15434 int new_micro
= new_flags
& EF_MIPS_ARCH_ASE_MICROMIPS
;
15435 int old_m16
= old_flags
& EF_MIPS_ARCH_ASE_M16
;
15436 int new_m16
= new_flags
& EF_MIPS_ARCH_ASE_M16
;
15437 int micro_mis
= old_m16
&& new_micro
;
15438 int m16_mis
= old_micro
&& new_m16
;
15440 if (m16_mis
|| micro_mis
)
15443 /* xgettext:c-format */
15444 (_("%pB: ASE mismatch: linking %s module with previous %s modules"),
15446 m16_mis
? "MIPS16" : "microMIPS",
15447 m16_mis
? "microMIPS" : "MIPS16");
15451 elf_elfheader (obfd
)->e_flags
|= new_flags
& EF_MIPS_ARCH_ASE
;
15453 new_flags
&= ~ EF_MIPS_ARCH_ASE
;
15454 old_flags
&= ~ EF_MIPS_ARCH_ASE
;
15457 /* Compare NaN encodings. */
15458 if ((new_flags
& EF_MIPS_NAN2008
) != (old_flags
& EF_MIPS_NAN2008
))
15460 /* xgettext:c-format */
15461 _bfd_error_handler (_("%pB: linking %s module with previous %s modules"),
15463 (new_flags
& EF_MIPS_NAN2008
15464 ? "-mnan=2008" : "-mnan=legacy"),
15465 (old_flags
& EF_MIPS_NAN2008
15466 ? "-mnan=2008" : "-mnan=legacy"));
15468 new_flags
&= ~EF_MIPS_NAN2008
;
15469 old_flags
&= ~EF_MIPS_NAN2008
;
15472 /* Compare FP64 state. */
15473 if ((new_flags
& EF_MIPS_FP64
) != (old_flags
& EF_MIPS_FP64
))
15475 /* xgettext:c-format */
15476 _bfd_error_handler (_("%pB: linking %s module with previous %s modules"),
15478 (new_flags
& EF_MIPS_FP64
15479 ? "-mfp64" : "-mfp32"),
15480 (old_flags
& EF_MIPS_FP64
15481 ? "-mfp64" : "-mfp32"));
15483 new_flags
&= ~EF_MIPS_FP64
;
15484 old_flags
&= ~EF_MIPS_FP64
;
15487 /* Warn about any other mismatches */
15488 if (new_flags
!= old_flags
)
15490 /* xgettext:c-format */
15492 (_("%pB: uses different e_flags (%#x) fields than previous modules "
15494 ibfd
, new_flags
, old_flags
);
15501 /* Merge object attributes from IBFD into OBFD. Raise an error if
15502 there are conflicting attributes. */
15504 mips_elf_merge_obj_attributes (bfd
*ibfd
, struct bfd_link_info
*info
)
15506 bfd
*obfd
= info
->output_bfd
;
15507 obj_attribute
*in_attr
;
15508 obj_attribute
*out_attr
;
15512 abi_fp_bfd
= mips_elf_tdata (obfd
)->abi_fp_bfd
;
15513 in_attr
= elf_known_obj_attributes (ibfd
)[OBJ_ATTR_GNU
];
15514 if (!abi_fp_bfd
&& in_attr
[Tag_GNU_MIPS_ABI_FP
].i
!= Val_GNU_MIPS_ABI_FP_ANY
)
15515 mips_elf_tdata (obfd
)->abi_fp_bfd
= ibfd
;
15517 abi_msa_bfd
= mips_elf_tdata (obfd
)->abi_msa_bfd
;
15519 && in_attr
[Tag_GNU_MIPS_ABI_MSA
].i
!= Val_GNU_MIPS_ABI_MSA_ANY
)
15520 mips_elf_tdata (obfd
)->abi_msa_bfd
= ibfd
;
15522 if (!elf_known_obj_attributes_proc (obfd
)[0].i
)
15524 /* This is the first object. Copy the attributes. */
15525 _bfd_elf_copy_obj_attributes (ibfd
, obfd
);
15527 /* Use the Tag_null value to indicate the attributes have been
15529 elf_known_obj_attributes_proc (obfd
)[0].i
= 1;
15534 /* Check for conflicting Tag_GNU_MIPS_ABI_FP attributes and merge
15535 non-conflicting ones. */
15536 out_attr
= elf_known_obj_attributes (obfd
)[OBJ_ATTR_GNU
];
15537 if (in_attr
[Tag_GNU_MIPS_ABI_FP
].i
!= out_attr
[Tag_GNU_MIPS_ABI_FP
].i
)
15541 out_fp
= out_attr
[Tag_GNU_MIPS_ABI_FP
].i
;
15542 in_fp
= in_attr
[Tag_GNU_MIPS_ABI_FP
].i
;
15543 out_attr
[Tag_GNU_MIPS_ABI_FP
].type
= 1;
15544 if (out_fp
== Val_GNU_MIPS_ABI_FP_ANY
)
15545 out_attr
[Tag_GNU_MIPS_ABI_FP
].i
= in_fp
;
15546 else if (out_fp
== Val_GNU_MIPS_ABI_FP_XX
15547 && (in_fp
== Val_GNU_MIPS_ABI_FP_DOUBLE
15548 || in_fp
== Val_GNU_MIPS_ABI_FP_64
15549 || in_fp
== Val_GNU_MIPS_ABI_FP_64A
))
15551 mips_elf_tdata (obfd
)->abi_fp_bfd
= ibfd
;
15552 out_attr
[Tag_GNU_MIPS_ABI_FP
].i
= in_attr
[Tag_GNU_MIPS_ABI_FP
].i
;
15554 else if (in_fp
== Val_GNU_MIPS_ABI_FP_XX
15555 && (out_fp
== Val_GNU_MIPS_ABI_FP_DOUBLE
15556 || out_fp
== Val_GNU_MIPS_ABI_FP_64
15557 || out_fp
== Val_GNU_MIPS_ABI_FP_64A
))
15558 /* Keep the current setting. */;
15559 else if (out_fp
== Val_GNU_MIPS_ABI_FP_64A
15560 && in_fp
== Val_GNU_MIPS_ABI_FP_64
)
15562 mips_elf_tdata (obfd
)->abi_fp_bfd
= ibfd
;
15563 out_attr
[Tag_GNU_MIPS_ABI_FP
].i
= in_attr
[Tag_GNU_MIPS_ABI_FP
].i
;
15565 else if (in_fp
== Val_GNU_MIPS_ABI_FP_64A
15566 && out_fp
== Val_GNU_MIPS_ABI_FP_64
)
15567 /* Keep the current setting. */;
15568 else if (in_fp
!= Val_GNU_MIPS_ABI_FP_ANY
)
15570 const char *out_string
, *in_string
;
15572 out_string
= _bfd_mips_fp_abi_string (out_fp
);
15573 in_string
= _bfd_mips_fp_abi_string (in_fp
);
15574 /* First warn about cases involving unrecognised ABIs. */
15575 if (!out_string
&& !in_string
)
15576 /* xgettext:c-format */
15578 (_("warning: %pB uses unknown floating point ABI %d "
15579 "(set by %pB), %pB uses unknown floating point ABI %d"),
15580 obfd
, out_fp
, abi_fp_bfd
, ibfd
, in_fp
);
15581 else if (!out_string
)
15583 /* xgettext:c-format */
15584 (_("warning: %pB uses unknown floating point ABI %d "
15585 "(set by %pB), %pB uses %s"),
15586 obfd
, out_fp
, abi_fp_bfd
, ibfd
, in_string
);
15587 else if (!in_string
)
15589 /* xgettext:c-format */
15590 (_("warning: %pB uses %s (set by %pB), "
15591 "%pB uses unknown floating point ABI %d"),
15592 obfd
, out_string
, abi_fp_bfd
, ibfd
, in_fp
);
15595 /* If one of the bfds is soft-float, the other must be
15596 hard-float. The exact choice of hard-float ABI isn't
15597 really relevant to the error message. */
15598 if (in_fp
== Val_GNU_MIPS_ABI_FP_SOFT
)
15599 out_string
= "-mhard-float";
15600 else if (out_fp
== Val_GNU_MIPS_ABI_FP_SOFT
)
15601 in_string
= "-mhard-float";
15603 /* xgettext:c-format */
15604 (_("warning: %pB uses %s (set by %pB), %pB uses %s"),
15605 obfd
, out_string
, abi_fp_bfd
, ibfd
, in_string
);
15610 /* Check for conflicting Tag_GNU_MIPS_ABI_MSA attributes and merge
15611 non-conflicting ones. */
15612 if (in_attr
[Tag_GNU_MIPS_ABI_MSA
].i
!= out_attr
[Tag_GNU_MIPS_ABI_MSA
].i
)
15614 out_attr
[Tag_GNU_MIPS_ABI_MSA
].type
= 1;
15615 if (out_attr
[Tag_GNU_MIPS_ABI_MSA
].i
== Val_GNU_MIPS_ABI_MSA_ANY
)
15616 out_attr
[Tag_GNU_MIPS_ABI_MSA
].i
= in_attr
[Tag_GNU_MIPS_ABI_MSA
].i
;
15617 else if (in_attr
[Tag_GNU_MIPS_ABI_MSA
].i
!= Val_GNU_MIPS_ABI_MSA_ANY
)
15618 switch (out_attr
[Tag_GNU_MIPS_ABI_MSA
].i
)
15620 case Val_GNU_MIPS_ABI_MSA_128
:
15622 /* xgettext:c-format */
15623 (_("warning: %pB uses %s (set by %pB), "
15624 "%pB uses unknown MSA ABI %d"),
15625 obfd
, "-mmsa", abi_msa_bfd
,
15626 ibfd
, in_attr
[Tag_GNU_MIPS_ABI_MSA
].i
);
15630 switch (in_attr
[Tag_GNU_MIPS_ABI_MSA
].i
)
15632 case Val_GNU_MIPS_ABI_MSA_128
:
15634 /* xgettext:c-format */
15635 (_("warning: %pB uses unknown MSA ABI %d "
15636 "(set by %pB), %pB uses %s"),
15637 obfd
, out_attr
[Tag_GNU_MIPS_ABI_MSA
].i
,
15638 abi_msa_bfd
, ibfd
, "-mmsa");
15643 /* xgettext:c-format */
15644 (_("warning: %pB uses unknown MSA ABI %d "
15645 "(set by %pB), %pB uses unknown MSA ABI %d"),
15646 obfd
, out_attr
[Tag_GNU_MIPS_ABI_MSA
].i
,
15647 abi_msa_bfd
, ibfd
, in_attr
[Tag_GNU_MIPS_ABI_MSA
].i
);
15653 /* Merge Tag_compatibility attributes and any common GNU ones. */
15654 return _bfd_elf_merge_object_attributes (ibfd
, info
);
15657 /* Merge object ABI flags from IBFD into OBFD. Raise an error if
15658 there are conflicting settings. */
15661 mips_elf_merge_obj_abiflags (bfd
*ibfd
, bfd
*obfd
)
15663 obj_attribute
*out_attr
= elf_known_obj_attributes (obfd
)[OBJ_ATTR_GNU
];
15664 struct mips_elf_obj_tdata
*out_tdata
= mips_elf_tdata (obfd
);
15665 struct mips_elf_obj_tdata
*in_tdata
= mips_elf_tdata (ibfd
);
15667 /* Update the output abiflags fp_abi using the computed fp_abi. */
15668 out_tdata
->abiflags
.fp_abi
= out_attr
[Tag_GNU_MIPS_ABI_FP
].i
;
15670 #define max(a, b) ((a) > (b) ? (a) : (b))
15671 /* Merge abiflags. */
15672 out_tdata
->abiflags
.isa_level
= max (out_tdata
->abiflags
.isa_level
,
15673 in_tdata
->abiflags
.isa_level
);
15674 out_tdata
->abiflags
.isa_rev
= max (out_tdata
->abiflags
.isa_rev
,
15675 in_tdata
->abiflags
.isa_rev
);
15676 out_tdata
->abiflags
.gpr_size
= max (out_tdata
->abiflags
.gpr_size
,
15677 in_tdata
->abiflags
.gpr_size
);
15678 out_tdata
->abiflags
.cpr1_size
= max (out_tdata
->abiflags
.cpr1_size
,
15679 in_tdata
->abiflags
.cpr1_size
);
15680 out_tdata
->abiflags
.cpr2_size
= max (out_tdata
->abiflags
.cpr2_size
,
15681 in_tdata
->abiflags
.cpr2_size
);
15683 out_tdata
->abiflags
.ases
|= in_tdata
->abiflags
.ases
;
15684 out_tdata
->abiflags
.flags1
|= in_tdata
->abiflags
.flags1
;
15689 /* Merge backend specific data from an object file to the output
15690 object file when linking. */
15693 _bfd_mips_elf_merge_private_bfd_data (bfd
*ibfd
, struct bfd_link_info
*info
)
15695 bfd
*obfd
= info
->output_bfd
;
15696 struct mips_elf_obj_tdata
*out_tdata
;
15697 struct mips_elf_obj_tdata
*in_tdata
;
15698 bfd_boolean null_input_bfd
= TRUE
;
15702 /* Check if we have the same endianness. */
15703 if (! _bfd_generic_verify_endian_match (ibfd
, info
))
15706 (_("%pB: endianness incompatible with that of the selected emulation"),
15711 if (!is_mips_elf (ibfd
) || !is_mips_elf (obfd
))
15714 in_tdata
= mips_elf_tdata (ibfd
);
15715 out_tdata
= mips_elf_tdata (obfd
);
15717 if (strcmp (bfd_get_target (ibfd
), bfd_get_target (obfd
)) != 0)
15720 (_("%pB: ABI is incompatible with that of the selected emulation"),
15725 /* Check to see if the input BFD actually contains any sections. If not,
15726 then it has no attributes, and its flags may not have been initialized
15727 either, but it cannot actually cause any incompatibility. */
15728 /* FIXME: This excludes any input shared library from consideration. */
15729 for (sec
= ibfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
15731 /* Ignore synthetic sections and empty .text, .data and .bss sections
15732 which are automatically generated by gas. Also ignore fake
15733 (s)common sections, since merely defining a common symbol does
15734 not affect compatibility. */
15735 if ((sec
->flags
& SEC_IS_COMMON
) == 0
15736 && strcmp (sec
->name
, ".reginfo")
15737 && strcmp (sec
->name
, ".mdebug")
15739 || (strcmp (sec
->name
, ".text")
15740 && strcmp (sec
->name
, ".data")
15741 && strcmp (sec
->name
, ".bss"))))
15743 null_input_bfd
= FALSE
;
15747 if (null_input_bfd
)
15750 /* Populate abiflags using existing information. */
15751 if (in_tdata
->abiflags_valid
)
15753 obj_attribute
*in_attr
= elf_known_obj_attributes (ibfd
)[OBJ_ATTR_GNU
];
15754 Elf_Internal_ABIFlags_v0 in_abiflags
;
15755 Elf_Internal_ABIFlags_v0 abiflags
;
15757 /* Set up the FP ABI attribute from the abiflags if it is not already
15759 if (in_attr
[Tag_GNU_MIPS_ABI_FP
].i
== Val_GNU_MIPS_ABI_FP_ANY
)
15760 in_attr
[Tag_GNU_MIPS_ABI_FP
].i
= in_tdata
->abiflags
.fp_abi
;
15762 infer_mips_abiflags (ibfd
, &abiflags
);
15763 in_abiflags
= in_tdata
->abiflags
;
15765 /* It is not possible to infer the correct ISA revision
15766 for R3 or R5 so drop down to R2 for the checks. */
15767 if (in_abiflags
.isa_rev
== 3 || in_abiflags
.isa_rev
== 5)
15768 in_abiflags
.isa_rev
= 2;
15770 if (LEVEL_REV (in_abiflags
.isa_level
, in_abiflags
.isa_rev
)
15771 < LEVEL_REV (abiflags
.isa_level
, abiflags
.isa_rev
))
15773 (_("%pB: warning: inconsistent ISA between e_flags and "
15774 ".MIPS.abiflags"), ibfd
);
15775 if (abiflags
.fp_abi
!= Val_GNU_MIPS_ABI_FP_ANY
15776 && in_abiflags
.fp_abi
!= abiflags
.fp_abi
)
15778 (_("%pB: warning: inconsistent FP ABI between .gnu.attributes and "
15779 ".MIPS.abiflags"), ibfd
);
15780 if ((in_abiflags
.ases
& abiflags
.ases
) != abiflags
.ases
)
15782 (_("%pB: warning: inconsistent ASEs between e_flags and "
15783 ".MIPS.abiflags"), ibfd
);
15784 /* The isa_ext is allowed to be an extension of what can be inferred
15786 if (!mips_mach_extends_p (bfd_mips_isa_ext_mach (abiflags
.isa_ext
),
15787 bfd_mips_isa_ext_mach (in_abiflags
.isa_ext
)))
15789 (_("%pB: warning: inconsistent ISA extensions between e_flags and "
15790 ".MIPS.abiflags"), ibfd
);
15791 if (in_abiflags
.flags2
!= 0)
15793 (_("%pB: warning: unexpected flag in the flags2 field of "
15794 ".MIPS.abiflags (0x%lx)"), ibfd
,
15795 in_abiflags
.flags2
);
15799 infer_mips_abiflags (ibfd
, &in_tdata
->abiflags
);
15800 in_tdata
->abiflags_valid
= TRUE
;
15803 if (!out_tdata
->abiflags_valid
)
15805 /* Copy input abiflags if output abiflags are not already valid. */
15806 out_tdata
->abiflags
= in_tdata
->abiflags
;
15807 out_tdata
->abiflags_valid
= TRUE
;
15810 if (! elf_flags_init (obfd
))
15812 elf_flags_init (obfd
) = TRUE
;
15813 elf_elfheader (obfd
)->e_flags
= elf_elfheader (ibfd
)->e_flags
;
15814 elf_elfheader (obfd
)->e_ident
[EI_CLASS
]
15815 = elf_elfheader (ibfd
)->e_ident
[EI_CLASS
];
15817 if (bfd_get_arch (obfd
) == bfd_get_arch (ibfd
)
15818 && (bfd_get_arch_info (obfd
)->the_default
15819 || mips_mach_extends_p (bfd_get_mach (obfd
),
15820 bfd_get_mach (ibfd
))))
15822 if (! bfd_set_arch_mach (obfd
, bfd_get_arch (ibfd
),
15823 bfd_get_mach (ibfd
)))
15826 /* Update the ABI flags isa_level, isa_rev and isa_ext fields. */
15827 update_mips_abiflags_isa (obfd
, &out_tdata
->abiflags
);
15833 ok
= mips_elf_merge_obj_e_flags (ibfd
, info
);
15835 ok
= mips_elf_merge_obj_attributes (ibfd
, info
) && ok
;
15837 ok
= mips_elf_merge_obj_abiflags (ibfd
, obfd
) && ok
;
15841 bfd_set_error (bfd_error_bad_value
);
15848 /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
15851 _bfd_mips_elf_set_private_flags (bfd
*abfd
, flagword flags
)
15853 BFD_ASSERT (!elf_flags_init (abfd
)
15854 || elf_elfheader (abfd
)->e_flags
== flags
);
15856 elf_elfheader (abfd
)->e_flags
= flags
;
15857 elf_flags_init (abfd
) = TRUE
;
15862 _bfd_mips_elf_get_target_dtag (bfd_vma dtag
)
15866 default: return "";
15867 case DT_MIPS_RLD_VERSION
:
15868 return "MIPS_RLD_VERSION";
15869 case DT_MIPS_TIME_STAMP
:
15870 return "MIPS_TIME_STAMP";
15871 case DT_MIPS_ICHECKSUM
:
15872 return "MIPS_ICHECKSUM";
15873 case DT_MIPS_IVERSION
:
15874 return "MIPS_IVERSION";
15875 case DT_MIPS_FLAGS
:
15876 return "MIPS_FLAGS";
15877 case DT_MIPS_BASE_ADDRESS
:
15878 return "MIPS_BASE_ADDRESS";
15880 return "MIPS_MSYM";
15881 case DT_MIPS_CONFLICT
:
15882 return "MIPS_CONFLICT";
15883 case DT_MIPS_LIBLIST
:
15884 return "MIPS_LIBLIST";
15885 case DT_MIPS_LOCAL_GOTNO
:
15886 return "MIPS_LOCAL_GOTNO";
15887 case DT_MIPS_CONFLICTNO
:
15888 return "MIPS_CONFLICTNO";
15889 case DT_MIPS_LIBLISTNO
:
15890 return "MIPS_LIBLISTNO";
15891 case DT_MIPS_SYMTABNO
:
15892 return "MIPS_SYMTABNO";
15893 case DT_MIPS_UNREFEXTNO
:
15894 return "MIPS_UNREFEXTNO";
15895 case DT_MIPS_GOTSYM
:
15896 return "MIPS_GOTSYM";
15897 case DT_MIPS_HIPAGENO
:
15898 return "MIPS_HIPAGENO";
15899 case DT_MIPS_RLD_MAP
:
15900 return "MIPS_RLD_MAP";
15901 case DT_MIPS_RLD_MAP_REL
:
15902 return "MIPS_RLD_MAP_REL";
15903 case DT_MIPS_DELTA_CLASS
:
15904 return "MIPS_DELTA_CLASS";
15905 case DT_MIPS_DELTA_CLASS_NO
:
15906 return "MIPS_DELTA_CLASS_NO";
15907 case DT_MIPS_DELTA_INSTANCE
:
15908 return "MIPS_DELTA_INSTANCE";
15909 case DT_MIPS_DELTA_INSTANCE_NO
:
15910 return "MIPS_DELTA_INSTANCE_NO";
15911 case DT_MIPS_DELTA_RELOC
:
15912 return "MIPS_DELTA_RELOC";
15913 case DT_MIPS_DELTA_RELOC_NO
:
15914 return "MIPS_DELTA_RELOC_NO";
15915 case DT_MIPS_DELTA_SYM
:
15916 return "MIPS_DELTA_SYM";
15917 case DT_MIPS_DELTA_SYM_NO
:
15918 return "MIPS_DELTA_SYM_NO";
15919 case DT_MIPS_DELTA_CLASSSYM
:
15920 return "MIPS_DELTA_CLASSSYM";
15921 case DT_MIPS_DELTA_CLASSSYM_NO
:
15922 return "MIPS_DELTA_CLASSSYM_NO";
15923 case DT_MIPS_CXX_FLAGS
:
15924 return "MIPS_CXX_FLAGS";
15925 case DT_MIPS_PIXIE_INIT
:
15926 return "MIPS_PIXIE_INIT";
15927 case DT_MIPS_SYMBOL_LIB
:
15928 return "MIPS_SYMBOL_LIB";
15929 case DT_MIPS_LOCALPAGE_GOTIDX
:
15930 return "MIPS_LOCALPAGE_GOTIDX";
15931 case DT_MIPS_LOCAL_GOTIDX
:
15932 return "MIPS_LOCAL_GOTIDX";
15933 case DT_MIPS_HIDDEN_GOTIDX
:
15934 return "MIPS_HIDDEN_GOTIDX";
15935 case DT_MIPS_PROTECTED_GOTIDX
:
15936 return "MIPS_PROTECTED_GOT_IDX";
15937 case DT_MIPS_OPTIONS
:
15938 return "MIPS_OPTIONS";
15939 case DT_MIPS_INTERFACE
:
15940 return "MIPS_INTERFACE";
15941 case DT_MIPS_DYNSTR_ALIGN
:
15942 return "DT_MIPS_DYNSTR_ALIGN";
15943 case DT_MIPS_INTERFACE_SIZE
:
15944 return "DT_MIPS_INTERFACE_SIZE";
15945 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR
:
15946 return "DT_MIPS_RLD_TEXT_RESOLVE_ADDR";
15947 case DT_MIPS_PERF_SUFFIX
:
15948 return "DT_MIPS_PERF_SUFFIX";
15949 case DT_MIPS_COMPACT_SIZE
:
15950 return "DT_MIPS_COMPACT_SIZE";
15951 case DT_MIPS_GP_VALUE
:
15952 return "DT_MIPS_GP_VALUE";
15953 case DT_MIPS_AUX_DYNAMIC
:
15954 return "DT_MIPS_AUX_DYNAMIC";
15955 case DT_MIPS_PLTGOT
:
15956 return "DT_MIPS_PLTGOT";
15957 case DT_MIPS_RWPLT
:
15958 return "DT_MIPS_RWPLT";
15959 case DT_MIPS_XHASH
:
15960 return "DT_MIPS_XHASH";
15964 /* Return the meaning of Tag_GNU_MIPS_ABI_FP value FP, or null if
15968 _bfd_mips_fp_abi_string (int fp
)
15972 /* These strings aren't translated because they're simply
15974 case Val_GNU_MIPS_ABI_FP_DOUBLE
:
15975 return "-mdouble-float";
15977 case Val_GNU_MIPS_ABI_FP_SINGLE
:
15978 return "-msingle-float";
15980 case Val_GNU_MIPS_ABI_FP_SOFT
:
15981 return "-msoft-float";
15983 case Val_GNU_MIPS_ABI_FP_OLD_64
:
15984 return _("-mips32r2 -mfp64 (12 callee-saved)");
15986 case Val_GNU_MIPS_ABI_FP_XX
:
15989 case Val_GNU_MIPS_ABI_FP_64
:
15990 return "-mgp32 -mfp64";
15992 case Val_GNU_MIPS_ABI_FP_64A
:
15993 return "-mgp32 -mfp64 -mno-odd-spreg";
16001 print_mips_ases (FILE *file
, unsigned int mask
)
16003 if (mask
& AFL_ASE_DSP
)
16004 fputs ("\n\tDSP ASE", file
);
16005 if (mask
& AFL_ASE_DSPR2
)
16006 fputs ("\n\tDSP R2 ASE", file
);
16007 if (mask
& AFL_ASE_DSPR3
)
16008 fputs ("\n\tDSP R3 ASE", file
);
16009 if (mask
& AFL_ASE_EVA
)
16010 fputs ("\n\tEnhanced VA Scheme", file
);
16011 if (mask
& AFL_ASE_MCU
)
16012 fputs ("\n\tMCU (MicroController) ASE", file
);
16013 if (mask
& AFL_ASE_MDMX
)
16014 fputs ("\n\tMDMX ASE", file
);
16015 if (mask
& AFL_ASE_MIPS3D
)
16016 fputs ("\n\tMIPS-3D ASE", file
);
16017 if (mask
& AFL_ASE_MT
)
16018 fputs ("\n\tMT ASE", file
);
16019 if (mask
& AFL_ASE_SMARTMIPS
)
16020 fputs ("\n\tSmartMIPS ASE", file
);
16021 if (mask
& AFL_ASE_VIRT
)
16022 fputs ("\n\tVZ ASE", file
);
16023 if (mask
& AFL_ASE_MSA
)
16024 fputs ("\n\tMSA ASE", file
);
16025 if (mask
& AFL_ASE_MIPS16
)
16026 fputs ("\n\tMIPS16 ASE", file
);
16027 if (mask
& AFL_ASE_MICROMIPS
)
16028 fputs ("\n\tMICROMIPS ASE", file
);
16029 if (mask
& AFL_ASE_XPA
)
16030 fputs ("\n\tXPA ASE", file
);
16031 if (mask
& AFL_ASE_MIPS16E2
)
16032 fputs ("\n\tMIPS16e2 ASE", file
);
16033 if (mask
& AFL_ASE_CRC
)
16034 fputs ("\n\tCRC ASE", file
);
16035 if (mask
& AFL_ASE_GINV
)
16036 fputs ("\n\tGINV ASE", file
);
16037 if (mask
& AFL_ASE_LOONGSON_MMI
)
16038 fputs ("\n\tLoongson MMI ASE", file
);
16039 if (mask
& AFL_ASE_LOONGSON_CAM
)
16040 fputs ("\n\tLoongson CAM ASE", file
);
16041 if (mask
& AFL_ASE_LOONGSON_EXT
)
16042 fputs ("\n\tLoongson EXT ASE", file
);
16043 if (mask
& AFL_ASE_LOONGSON_EXT2
)
16044 fputs ("\n\tLoongson EXT2 ASE", file
);
16046 fprintf (file
, "\n\t%s", _("None"));
16047 else if ((mask
& ~AFL_ASE_MASK
) != 0)
16048 fprintf (stdout
, "\n\t%s (%x)", _("Unknown"), mask
& ~AFL_ASE_MASK
);
16052 print_mips_isa_ext (FILE *file
, unsigned int isa_ext
)
16057 fputs (_("None"), file
);
16060 fputs ("RMI XLR", file
);
16062 case AFL_EXT_OCTEON3
:
16063 fputs ("Cavium Networks Octeon3", file
);
16065 case AFL_EXT_OCTEON2
:
16066 fputs ("Cavium Networks Octeon2", file
);
16068 case AFL_EXT_OCTEONP
:
16069 fputs ("Cavium Networks OcteonP", file
);
16071 case AFL_EXT_OCTEON
:
16072 fputs ("Cavium Networks Octeon", file
);
16075 fputs ("Toshiba R5900", file
);
16078 fputs ("MIPS R4650", file
);
16081 fputs ("LSI R4010", file
);
16084 fputs ("NEC VR4100", file
);
16087 fputs ("Toshiba R3900", file
);
16089 case AFL_EXT_10000
:
16090 fputs ("MIPS R10000", file
);
16093 fputs ("Broadcom SB-1", file
);
16096 fputs ("NEC VR4111/VR4181", file
);
16099 fputs ("NEC VR4120", file
);
16102 fputs ("NEC VR5400", file
);
16105 fputs ("NEC VR5500", file
);
16107 case AFL_EXT_LOONGSON_2E
:
16108 fputs ("ST Microelectronics Loongson 2E", file
);
16110 case AFL_EXT_LOONGSON_2F
:
16111 fputs ("ST Microelectronics Loongson 2F", file
);
16113 case AFL_EXT_INTERAPTIV_MR2
:
16114 fputs ("Imagination interAptiv MR2", file
);
16117 fprintf (file
, "%s (%d)", _("Unknown"), isa_ext
);
16123 print_mips_fp_abi_value (FILE *file
, int val
)
16127 case Val_GNU_MIPS_ABI_FP_ANY
:
16128 fprintf (file
, _("Hard or soft float\n"));
16130 case Val_GNU_MIPS_ABI_FP_DOUBLE
:
16131 fprintf (file
, _("Hard float (double precision)\n"));
16133 case Val_GNU_MIPS_ABI_FP_SINGLE
:
16134 fprintf (file
, _("Hard float (single precision)\n"));
16136 case Val_GNU_MIPS_ABI_FP_SOFT
:
16137 fprintf (file
, _("Soft float\n"));
16139 case Val_GNU_MIPS_ABI_FP_OLD_64
:
16140 fprintf (file
, _("Hard float (MIPS32r2 64-bit FPU 12 callee-saved)\n"));
16142 case Val_GNU_MIPS_ABI_FP_XX
:
16143 fprintf (file
, _("Hard float (32-bit CPU, Any FPU)\n"));
16145 case Val_GNU_MIPS_ABI_FP_64
:
16146 fprintf (file
, _("Hard float (32-bit CPU, 64-bit FPU)\n"));
16148 case Val_GNU_MIPS_ABI_FP_64A
:
16149 fprintf (file
, _("Hard float compat (32-bit CPU, 64-bit FPU)\n"));
16152 fprintf (file
, "??? (%d)\n", val
);
16158 get_mips_reg_size (int reg_size
)
16160 return (reg_size
== AFL_REG_NONE
) ? 0
16161 : (reg_size
== AFL_REG_32
) ? 32
16162 : (reg_size
== AFL_REG_64
) ? 64
16163 : (reg_size
== AFL_REG_128
) ? 128
16168 _bfd_mips_elf_print_private_bfd_data (bfd
*abfd
, void *ptr
)
16172 BFD_ASSERT (abfd
!= NULL
&& ptr
!= NULL
);
16174 /* Print normal ELF private data. */
16175 _bfd_elf_print_private_bfd_data (abfd
, ptr
);
16177 /* xgettext:c-format */
16178 fprintf (file
, _("private flags = %lx:"), elf_elfheader (abfd
)->e_flags
);
16180 if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ABI
) == E_MIPS_ABI_O32
)
16181 fprintf (file
, _(" [abi=O32]"));
16182 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ABI
) == E_MIPS_ABI_O64
)
16183 fprintf (file
, _(" [abi=O64]"));
16184 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ABI
) == E_MIPS_ABI_EABI32
)
16185 fprintf (file
, _(" [abi=EABI32]"));
16186 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ABI
) == E_MIPS_ABI_EABI64
)
16187 fprintf (file
, _(" [abi=EABI64]"));
16188 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ABI
))
16189 fprintf (file
, _(" [abi unknown]"));
16190 else if (ABI_N32_P (abfd
))
16191 fprintf (file
, _(" [abi=N32]"));
16192 else if (ABI_64_P (abfd
))
16193 fprintf (file
, _(" [abi=64]"));
16195 fprintf (file
, _(" [no abi set]"));
16197 if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_1
)
16198 fprintf (file
, " [mips1]");
16199 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_2
)
16200 fprintf (file
, " [mips2]");
16201 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_3
)
16202 fprintf (file
, " [mips3]");
16203 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_4
)
16204 fprintf (file
, " [mips4]");
16205 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_5
)
16206 fprintf (file
, " [mips5]");
16207 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_32
)
16208 fprintf (file
, " [mips32]");
16209 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_64
)
16210 fprintf (file
, " [mips64]");
16211 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_32R2
)
16212 fprintf (file
, " [mips32r2]");
16213 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_64R2
)
16214 fprintf (file
, " [mips64r2]");
16215 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_32R6
)
16216 fprintf (file
, " [mips32r6]");
16217 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_64R6
)
16218 fprintf (file
, " [mips64r6]");
16220 fprintf (file
, _(" [unknown ISA]"));
16222 if (elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH_ASE_MDMX
)
16223 fprintf (file
, " [mdmx]");
16225 if (elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH_ASE_M16
)
16226 fprintf (file
, " [mips16]");
16228 if (elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH_ASE_MICROMIPS
)
16229 fprintf (file
, " [micromips]");
16231 if (elf_elfheader (abfd
)->e_flags
& EF_MIPS_NAN2008
)
16232 fprintf (file
, " [nan2008]");
16234 if (elf_elfheader (abfd
)->e_flags
& EF_MIPS_FP64
)
16235 fprintf (file
, " [old fp64]");
16237 if (elf_elfheader (abfd
)->e_flags
& EF_MIPS_32BITMODE
)
16238 fprintf (file
, " [32bitmode]");
16240 fprintf (file
, _(" [not 32bitmode]"));
16242 if (elf_elfheader (abfd
)->e_flags
& EF_MIPS_NOREORDER
)
16243 fprintf (file
, " [noreorder]");
16245 if (elf_elfheader (abfd
)->e_flags
& EF_MIPS_PIC
)
16246 fprintf (file
, " [PIC]");
16248 if (elf_elfheader (abfd
)->e_flags
& EF_MIPS_CPIC
)
16249 fprintf (file
, " [CPIC]");
16251 if (elf_elfheader (abfd
)->e_flags
& EF_MIPS_XGOT
)
16252 fprintf (file
, " [XGOT]");
16254 if (elf_elfheader (abfd
)->e_flags
& EF_MIPS_UCODE
)
16255 fprintf (file
, " [UCODE]");
16257 fputc ('\n', file
);
16259 if (mips_elf_tdata (abfd
)->abiflags_valid
)
16261 Elf_Internal_ABIFlags_v0
*abiflags
= &mips_elf_tdata (abfd
)->abiflags
;
16262 fprintf (file
, "\nMIPS ABI Flags Version: %d\n", abiflags
->version
);
16263 fprintf (file
, "\nISA: MIPS%d", abiflags
->isa_level
);
16264 if (abiflags
->isa_rev
> 1)
16265 fprintf (file
, "r%d", abiflags
->isa_rev
);
16266 fprintf (file
, "\nGPR size: %d",
16267 get_mips_reg_size (abiflags
->gpr_size
));
16268 fprintf (file
, "\nCPR1 size: %d",
16269 get_mips_reg_size (abiflags
->cpr1_size
));
16270 fprintf (file
, "\nCPR2 size: %d",
16271 get_mips_reg_size (abiflags
->cpr2_size
));
16272 fputs ("\nFP ABI: ", file
);
16273 print_mips_fp_abi_value (file
, abiflags
->fp_abi
);
16274 fputs ("ISA Extension: ", file
);
16275 print_mips_isa_ext (file
, abiflags
->isa_ext
);
16276 fputs ("\nASEs:", file
);
16277 print_mips_ases (file
, abiflags
->ases
);
16278 fprintf (file
, "\nFLAGS 1: %8.8lx", abiflags
->flags1
);
16279 fprintf (file
, "\nFLAGS 2: %8.8lx", abiflags
->flags2
);
16280 fputc ('\n', file
);
16286 const struct bfd_elf_special_section _bfd_mips_elf_special_sections
[] =
16288 { STRING_COMMA_LEN (".lit4"), 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_WRITE
+ SHF_MIPS_GPREL
},
16289 { STRING_COMMA_LEN (".lit8"), 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_WRITE
+ SHF_MIPS_GPREL
},
16290 { STRING_COMMA_LEN (".mdebug"), 0, SHT_MIPS_DEBUG
, 0 },
16291 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS
, SHF_ALLOC
+ SHF_WRITE
+ SHF_MIPS_GPREL
},
16292 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS
, SHF_ALLOC
+ SHF_WRITE
+ SHF_MIPS_GPREL
},
16293 { STRING_COMMA_LEN (".ucode"), 0, SHT_MIPS_UCODE
, 0 },
16294 { STRING_COMMA_LEN (".MIPS.xhash"), 0, SHT_MIPS_XHASH
, SHF_ALLOC
},
16295 { NULL
, 0, 0, 0, 0 }
16298 /* Merge non visibility st_other attributes. Ensure that the
16299 STO_OPTIONAL flag is copied into h->other, even if this is not a
16300 definiton of the symbol. */
16302 _bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry
*h
,
16303 unsigned int st_other
,
16304 bfd_boolean definition
,
16305 bfd_boolean dynamic ATTRIBUTE_UNUSED
)
16307 if ((st_other
& ~ELF_ST_VISIBILITY (-1)) != 0)
16309 unsigned char other
;
16311 other
= (definition
? st_other
: h
->other
);
16312 other
&= ~ELF_ST_VISIBILITY (-1);
16313 h
->other
= other
| ELF_ST_VISIBILITY (h
->other
);
16317 && ELF_MIPS_IS_OPTIONAL (st_other
))
16318 h
->other
|= STO_OPTIONAL
;
16321 /* Decide whether an undefined symbol is special and can be ignored.
16322 This is the case for OPTIONAL symbols on IRIX. */
16324 _bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry
*h
)
16326 return ELF_MIPS_IS_OPTIONAL (h
->other
) ? TRUE
: FALSE
;
16330 _bfd_mips_elf_common_definition (Elf_Internal_Sym
*sym
)
16332 return (sym
->st_shndx
== SHN_COMMON
16333 || sym
->st_shndx
== SHN_MIPS_ACOMMON
16334 || sym
->st_shndx
== SHN_MIPS_SCOMMON
);
16337 /* Return address for Ith PLT stub in section PLT, for relocation REL
16338 or (bfd_vma) -1 if it should not be included. */
16341 _bfd_mips_elf_plt_sym_val (bfd_vma i
, const asection
*plt
,
16342 const arelent
*rel ATTRIBUTE_UNUSED
)
16345 + 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry
)
16346 + i
* 4 * ARRAY_SIZE (mips_exec_plt_entry
));
16349 /* Build a table of synthetic symbols to represent the PLT. As with MIPS16
16350 and microMIPS PLT slots we may have a many-to-one mapping between .plt
16351 and .got.plt and also the slots may be of a different size each we walk
16352 the PLT manually fetching instructions and matching them against known
16353 patterns. To make things easier standard MIPS slots, if any, always come
16354 first. As we don't create proper ELF symbols we use the UDATA.I member
16355 of ASYMBOL to carry ISA annotation. The encoding used is the same as
16356 with the ST_OTHER member of the ELF symbol. */
16359 _bfd_mips_elf_get_synthetic_symtab (bfd
*abfd
,
16360 long symcount ATTRIBUTE_UNUSED
,
16361 asymbol
**syms ATTRIBUTE_UNUSED
,
16362 long dynsymcount
, asymbol
**dynsyms
,
16365 static const char pltname
[] = "_PROCEDURE_LINKAGE_TABLE_";
16366 static const char microsuffix
[] = "@micromipsplt";
16367 static const char m16suffix
[] = "@mips16plt";
16368 static const char mipssuffix
[] = "@plt";
16370 bfd_boolean (*slurp_relocs
) (bfd
*, asection
*, asymbol
**, bfd_boolean
);
16371 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
16372 bfd_boolean micromips_p
= MICROMIPS_P (abfd
);
16373 Elf_Internal_Shdr
*hdr
;
16374 bfd_byte
*plt_data
;
16375 bfd_vma plt_offset
;
16376 unsigned int other
;
16377 bfd_vma entry_size
;
16396 if ((abfd
->flags
& (DYNAMIC
| EXEC_P
)) == 0 || dynsymcount
<= 0)
16399 relplt
= bfd_get_section_by_name (abfd
, ".rel.plt");
16400 if (relplt
== NULL
)
16403 hdr
= &elf_section_data (relplt
)->this_hdr
;
16404 if (hdr
->sh_link
!= elf_dynsymtab (abfd
) || hdr
->sh_type
!= SHT_REL
)
16407 plt
= bfd_get_section_by_name (abfd
, ".plt");
16411 slurp_relocs
= get_elf_backend_data (abfd
)->s
->slurp_reloc_table
;
16412 if (!(*slurp_relocs
) (abfd
, relplt
, dynsyms
, TRUE
))
16414 p
= relplt
->relocation
;
16416 /* Calculating the exact amount of space required for symbols would
16417 require two passes over the PLT, so just pessimise assuming two
16418 PLT slots per relocation. */
16419 count
= relplt
->size
/ hdr
->sh_entsize
;
16420 counti
= count
* bed
->s
->int_rels_per_ext_rel
;
16421 size
= 2 * count
* sizeof (asymbol
);
16422 size
+= count
* (sizeof (mipssuffix
) +
16423 (micromips_p
? sizeof (microsuffix
) : sizeof (m16suffix
)));
16424 for (pi
= 0; pi
< counti
; pi
+= bed
->s
->int_rels_per_ext_rel
)
16425 size
+= 2 * strlen ((*p
[pi
].sym_ptr_ptr
)->name
);
16427 /* Add the size of "_PROCEDURE_LINKAGE_TABLE_" too. */
16428 size
+= sizeof (asymbol
) + sizeof (pltname
);
16430 if (!bfd_malloc_and_get_section (abfd
, plt
, &plt_data
))
16433 if (plt
->size
< 16)
16436 s
= *ret
= bfd_malloc (size
);
16439 send
= s
+ 2 * count
+ 1;
16441 names
= (char *) send
;
16442 nend
= (char *) s
+ size
;
16445 opcode
= bfd_get_micromips_32 (abfd
, plt_data
+ 12);
16446 if (opcode
== 0x3302fffe)
16450 plt0_size
= 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry
);
16451 other
= STO_MICROMIPS
;
16453 else if (opcode
== 0x0398c1d0)
16457 plt0_size
= 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry
);
16458 other
= STO_MICROMIPS
;
16462 plt0_size
= 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry
);
16467 s
->flags
= BSF_SYNTHETIC
| BSF_FUNCTION
| BSF_LOCAL
;
16471 s
->udata
.i
= other
;
16472 memcpy (names
, pltname
, sizeof (pltname
));
16473 names
+= sizeof (pltname
);
16477 for (plt_offset
= plt0_size
;
16478 plt_offset
+ 8 <= plt
->size
&& s
< send
;
16479 plt_offset
+= entry_size
)
16481 bfd_vma gotplt_addr
;
16482 const char *suffix
;
16487 opcode
= bfd_get_micromips_32 (abfd
, plt_data
+ plt_offset
+ 4);
16489 /* Check if the second word matches the expected MIPS16 instruction. */
16490 if (opcode
== 0x651aeb00)
16494 /* Truncated table??? */
16495 if (plt_offset
+ 16 > plt
->size
)
16497 gotplt_addr
= bfd_get_32 (abfd
, plt_data
+ plt_offset
+ 12);
16498 entry_size
= 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry
);
16499 suffixlen
= sizeof (m16suffix
);
16500 suffix
= m16suffix
;
16501 other
= STO_MIPS16
;
16503 /* Likewise the expected microMIPS instruction (no insn32 mode). */
16504 else if (opcode
== 0xff220000)
16508 gotplt_hi
= bfd_get_16 (abfd
, plt_data
+ plt_offset
) & 0x7f;
16509 gotplt_lo
= bfd_get_16 (abfd
, plt_data
+ plt_offset
+ 2) & 0xffff;
16510 gotplt_hi
= ((gotplt_hi
^ 0x40) - 0x40) << 18;
16512 gotplt_addr
= gotplt_hi
+ gotplt_lo
;
16513 gotplt_addr
+= ((plt
->vma
+ plt_offset
) | 3) ^ 3;
16514 entry_size
= 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry
);
16515 suffixlen
= sizeof (microsuffix
);
16516 suffix
= microsuffix
;
16517 other
= STO_MICROMIPS
;
16519 /* Likewise the expected microMIPS instruction (insn32 mode). */
16520 else if ((opcode
& 0xffff0000) == 0xff2f0000)
16522 gotplt_hi
= bfd_get_16 (abfd
, plt_data
+ plt_offset
+ 2) & 0xffff;
16523 gotplt_lo
= bfd_get_16 (abfd
, plt_data
+ plt_offset
+ 6) & 0xffff;
16524 gotplt_hi
= ((gotplt_hi
^ 0x8000) - 0x8000) << 16;
16525 gotplt_lo
= (gotplt_lo
^ 0x8000) - 0x8000;
16526 gotplt_addr
= gotplt_hi
+ gotplt_lo
;
16527 entry_size
= 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry
);
16528 suffixlen
= sizeof (microsuffix
);
16529 suffix
= microsuffix
;
16530 other
= STO_MICROMIPS
;
16532 /* Otherwise assume standard MIPS code. */
16535 gotplt_hi
= bfd_get_32 (abfd
, plt_data
+ plt_offset
) & 0xffff;
16536 gotplt_lo
= bfd_get_32 (abfd
, plt_data
+ plt_offset
+ 4) & 0xffff;
16537 gotplt_hi
= ((gotplt_hi
^ 0x8000) - 0x8000) << 16;
16538 gotplt_lo
= (gotplt_lo
^ 0x8000) - 0x8000;
16539 gotplt_addr
= gotplt_hi
+ gotplt_lo
;
16540 entry_size
= 4 * ARRAY_SIZE (mips_exec_plt_entry
);
16541 suffixlen
= sizeof (mipssuffix
);
16542 suffix
= mipssuffix
;
16545 /* Truncated table??? */
16546 if (plt_offset
+ entry_size
> plt
->size
)
16550 i
< count
&& p
[pi
].address
!= gotplt_addr
;
16551 i
++, pi
= (pi
+ bed
->s
->int_rels_per_ext_rel
) % counti
);
16558 *s
= **p
[pi
].sym_ptr_ptr
;
16559 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
16560 we are defining a symbol, ensure one of them is set. */
16561 if ((s
->flags
& BSF_LOCAL
) == 0)
16562 s
->flags
|= BSF_GLOBAL
;
16563 s
->flags
|= BSF_SYNTHETIC
;
16565 s
->value
= plt_offset
;
16567 s
->udata
.i
= other
;
16569 len
= strlen ((*p
[pi
].sym_ptr_ptr
)->name
);
16570 namelen
= len
+ suffixlen
;
16571 if (names
+ namelen
> nend
)
16574 memcpy (names
, (*p
[pi
].sym_ptr_ptr
)->name
, len
);
16576 memcpy (names
, suffix
, suffixlen
);
16577 names
+= suffixlen
;
16580 pi
= (pi
+ bed
->s
->int_rels_per_ext_rel
) % counti
;
16589 /* Return the ABI flags associated with ABFD if available. */
16591 Elf_Internal_ABIFlags_v0
*
16592 bfd_mips_elf_get_abiflags (bfd
*abfd
)
16594 struct mips_elf_obj_tdata
*tdata
= mips_elf_tdata (abfd
);
16596 return tdata
->abiflags_valid
? &tdata
->abiflags
: NULL
;
16599 /* MIPS libc ABI versions, used with the EI_ABIVERSION ELF file header
16600 field. Taken from `libc-abis.h' generated at GNU libc build time.
16601 Using a MIPS_ prefix as other libc targets use different values. */
16604 MIPS_LIBC_ABI_DEFAULT
= 0,
16605 MIPS_LIBC_ABI_MIPS_PLT
,
16606 MIPS_LIBC_ABI_UNIQUE
,
16607 MIPS_LIBC_ABI_MIPS_O32_FP64
,
16608 MIPS_LIBC_ABI_ABSOLUTE
,
16609 MIPS_LIBC_ABI_XHASH
,
16614 _bfd_mips_init_file_header (bfd
*abfd
, struct bfd_link_info
*link_info
)
16616 struct mips_elf_link_hash_table
*htab
= NULL
;
16617 Elf_Internal_Ehdr
*i_ehdrp
;
16619 if (!_bfd_elf_init_file_header (abfd
, link_info
))
16622 i_ehdrp
= elf_elfheader (abfd
);
16625 htab
= mips_elf_hash_table (link_info
);
16626 BFD_ASSERT (htab
!= NULL
);
16630 && htab
->use_plts_and_copy_relocs
16631 && htab
->root
.target_os
!= is_vxworks
)
16632 i_ehdrp
->e_ident
[EI_ABIVERSION
] = MIPS_LIBC_ABI_MIPS_PLT
;
16634 if (mips_elf_tdata (abfd
)->abiflags
.fp_abi
== Val_GNU_MIPS_ABI_FP_64
16635 || mips_elf_tdata (abfd
)->abiflags
.fp_abi
== Val_GNU_MIPS_ABI_FP_64A
)
16636 i_ehdrp
->e_ident
[EI_ABIVERSION
] = MIPS_LIBC_ABI_MIPS_O32_FP64
;
16638 /* Mark that we need support for absolute symbols in the dynamic loader. */
16639 if (htab
!= NULL
&& htab
->use_absolute_zero
&& htab
->gnu_target
)
16640 i_ehdrp
->e_ident
[EI_ABIVERSION
] = MIPS_LIBC_ABI_ABSOLUTE
;
16642 /* Mark that we need support for .MIPS.xhash in the dynamic linker,
16643 if it is the only hash section that will be created. */
16644 if (link_info
&& link_info
->emit_gnu_hash
&& !link_info
->emit_hash
)
16645 i_ehdrp
->e_ident
[EI_ABIVERSION
] = MIPS_LIBC_ABI_XHASH
;
16650 _bfd_mips_elf_compact_eh_encoding
16651 (struct bfd_link_info
*link_info ATTRIBUTE_UNUSED
)
16653 return DW_EH_PE_pcrel
| DW_EH_PE_sdata4
;
16656 /* Return the opcode for can't unwind. */
16659 _bfd_mips_elf_cant_unwind_opcode
16660 (struct bfd_link_info
*link_info ATTRIBUTE_UNUSED
)
16662 return COMPACT_EH_CANT_UNWIND_OPCODE
;
16665 /* Record a position XLAT_LOC in the xlat translation table, associated with
16666 the hash entry H. The entry in the translation table will later be
16667 populated with the real symbol dynindx. */
16670 _bfd_mips_elf_record_xhash_symbol (struct elf_link_hash_entry
*h
,
16673 struct mips_elf_link_hash_entry
*hmips
;
16675 hmips
= (struct mips_elf_link_hash_entry
*) h
;
16676 hmips
->mipsxhash_loc
= xlat_loc
;