Rotate gdb/ChangeLog
[binutils-gdb.git] / gdbserver / mem-break.cc
blob6b7af3a7d337f0b56c46a2c7812bea3cf539e613
1 /* Memory breakpoint operations for the remote server for GDB.
2 Copyright (C) 2002-2020 Free Software Foundation, Inc.
4 Contributed by MontaVista Software.
6 This file is part of GDB.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21 #include "server.h"
22 #include "regcache.h"
23 #include "ax.h"
25 #define MAX_BREAKPOINT_LEN 8
27 /* Helper macro used in loops that append multiple items to a singly-linked
28 list instead of inserting items at the head of the list, as, say, in the
29 breakpoint lists. LISTPP is a pointer to the pointer that is the head of
30 the new list. ITEMP is a pointer to the item to be added to the list.
31 TAILP must be defined to be the same type as ITEMP, and initialized to
32 NULL. */
34 #define APPEND_TO_LIST(listpp, itemp, tailp) \
35 do \
36 { \
37 if ((tailp) == NULL) \
38 *(listpp) = (itemp); \
39 else \
40 (tailp)->next = (itemp); \
41 (tailp) = (itemp); \
42 } \
43 while (0)
45 /* GDB will never try to install multiple breakpoints at the same
46 address. However, we can see GDB requesting to insert a breakpoint
47 at an address is had already inserted one previously in a few
48 situations.
50 - The RSP documentation on Z packets says that to avoid potential
51 problems with duplicate packets, the operations should be
52 implemented in an idempotent way.
54 - A breakpoint is set at ADDR, an address in a shared library.
55 Then the shared library is unloaded. And then another, unrelated,
56 breakpoint at ADDR is set. There is not breakpoint removal request
57 between the first and the second breakpoint.
59 - When GDB wants to update the target-side breakpoint conditions or
60 commands, it re-inserts the breakpoint, with updated
61 conditions/commands associated.
63 Also, we need to keep track of internal breakpoints too, so we do
64 need to be able to install multiple breakpoints at the same address
65 transparently.
67 We keep track of two different, and closely related structures. A
68 raw breakpoint, which manages the low level, close to the metal
69 aspect of a breakpoint. It holds the breakpoint address, and for
70 software breakpoints, a buffer holding a copy of the instructions
71 that would be in memory had not been a breakpoint there (we call
72 that the shadow memory of the breakpoint). We occasionally need to
73 temporarilly uninsert a breakpoint without the client knowing about
74 it (e.g., to step over an internal breakpoint), so we keep an
75 `inserted' state associated with this low level breakpoint
76 structure. There can only be one such object for a given address.
77 Then, we have (a bit higher level) breakpoints. This structure
78 holds a callback to be called whenever a breakpoint is hit, a
79 high-level type, and a link to a low level raw breakpoint. There
80 can be many high-level breakpoints at the same address, and all of
81 them will point to the same raw breakpoint, which is reference
82 counted. */
84 /* The low level, physical, raw breakpoint. */
85 struct raw_breakpoint
87 struct raw_breakpoint *next;
89 /* The low level type of the breakpoint (software breakpoint,
90 watchpoint, etc.) */
91 enum raw_bkpt_type raw_type;
93 /* A reference count. Each high level breakpoint referencing this
94 raw breakpoint accounts for one reference. */
95 int refcount;
97 /* The breakpoint's insertion address. There can only be one raw
98 breakpoint for a given PC. */
99 CORE_ADDR pc;
101 /* The breakpoint's kind. This is target specific. Most
102 architectures only use one specific instruction for breakpoints, while
103 others may use more than one. E.g., on ARM, we need to use different
104 breakpoint instructions on Thumb, Thumb-2, and ARM code. Likewise for
105 hardware breakpoints -- some architectures (including ARM) need to
106 setup debug registers differently depending on mode. */
107 int kind;
109 /* The breakpoint's shadow memory. */
110 unsigned char old_data[MAX_BREAKPOINT_LEN];
112 /* Positive if this breakpoint is currently inserted in the
113 inferior. Negative if it was, but we've detected that it's now
114 gone. Zero if not inserted. */
115 int inserted;
118 /* The type of a breakpoint. */
119 enum bkpt_type
121 /* A GDB breakpoint, requested with a Z0 packet. */
122 gdb_breakpoint_Z0,
124 /* A GDB hardware breakpoint, requested with a Z1 packet. */
125 gdb_breakpoint_Z1,
127 /* A GDB write watchpoint, requested with a Z2 packet. */
128 gdb_breakpoint_Z2,
130 /* A GDB read watchpoint, requested with a Z3 packet. */
131 gdb_breakpoint_Z3,
133 /* A GDB access watchpoint, requested with a Z4 packet. */
134 gdb_breakpoint_Z4,
136 /* A software single-step breakpoint. */
137 single_step_breakpoint,
139 /* Any other breakpoint type that doesn't require specific
140 treatment goes here. E.g., an event breakpoint. */
141 other_breakpoint,
144 struct point_cond_list
146 /* Pointer to the agent expression that is the breakpoint's
147 conditional. */
148 struct agent_expr *cond;
150 /* Pointer to the next condition. */
151 struct point_cond_list *next;
154 struct point_command_list
156 /* Pointer to the agent expression that is the breakpoint's
157 commands. */
158 struct agent_expr *cmd;
160 /* Flag that is true if this command should run even while GDB is
161 disconnected. */
162 int persistence;
164 /* Pointer to the next command. */
165 struct point_command_list *next;
168 /* A high level (in gdbserver's perspective) breakpoint. */
169 struct breakpoint
171 struct breakpoint *next;
173 /* The breakpoint's type. */
174 enum bkpt_type type;
176 /* Link to this breakpoint's raw breakpoint. This is always
177 non-NULL. */
178 struct raw_breakpoint *raw;
181 /* Breakpoint requested by GDB. */
183 struct gdb_breakpoint
185 struct breakpoint base;
187 /* Pointer to the condition list that should be evaluated on
188 the target or NULL if the breakpoint is unconditional or
189 if GDB doesn't want us to evaluate the conditionals on the
190 target's side. */
191 struct point_cond_list *cond_list;
193 /* Point to the list of commands to run when this is hit. */
194 struct point_command_list *command_list;
197 /* Breakpoint used by GDBserver. */
199 struct other_breakpoint
201 struct breakpoint base;
203 /* Function to call when we hit this breakpoint. If it returns 1,
204 the breakpoint shall be deleted; 0 or if this callback is NULL,
205 it will be left inserted. */
206 int (*handler) (CORE_ADDR);
209 /* Breakpoint for single step. */
211 struct single_step_breakpoint
213 struct breakpoint base;
215 /* Thread the reinsert breakpoint belongs to. */
216 ptid_t ptid;
219 /* Return the breakpoint size from its kind. */
221 static int
222 bp_size (struct raw_breakpoint *bp)
224 int size = 0;
226 the_target->sw_breakpoint_from_kind (bp->kind, &size);
227 return size;
230 /* Return the breakpoint opcode from its kind. */
232 static const gdb_byte *
233 bp_opcode (struct raw_breakpoint *bp)
235 int size = 0;
237 return the_target->sw_breakpoint_from_kind (bp->kind, &size);
240 /* See mem-break.h. */
242 enum target_hw_bp_type
243 raw_bkpt_type_to_target_hw_bp_type (enum raw_bkpt_type raw_type)
245 switch (raw_type)
247 case raw_bkpt_type_hw:
248 return hw_execute;
249 case raw_bkpt_type_write_wp:
250 return hw_write;
251 case raw_bkpt_type_read_wp:
252 return hw_read;
253 case raw_bkpt_type_access_wp:
254 return hw_access;
255 default:
256 internal_error (__FILE__, __LINE__,
257 "bad raw breakpoint type %d", (int) raw_type);
261 /* See mem-break.h. */
263 static enum bkpt_type
264 Z_packet_to_bkpt_type (char z_type)
266 gdb_assert ('0' <= z_type && z_type <= '4');
268 return (enum bkpt_type) (gdb_breakpoint_Z0 + (z_type - '0'));
271 /* See mem-break.h. */
273 enum raw_bkpt_type
274 Z_packet_to_raw_bkpt_type (char z_type)
276 switch (z_type)
278 case Z_PACKET_SW_BP:
279 return raw_bkpt_type_sw;
280 case Z_PACKET_HW_BP:
281 return raw_bkpt_type_hw;
282 case Z_PACKET_WRITE_WP:
283 return raw_bkpt_type_write_wp;
284 case Z_PACKET_READ_WP:
285 return raw_bkpt_type_read_wp;
286 case Z_PACKET_ACCESS_WP:
287 return raw_bkpt_type_access_wp;
288 default:
289 gdb_assert_not_reached ("unhandled Z packet type.");
293 /* Return true if breakpoint TYPE is a GDB breakpoint. */
295 static int
296 is_gdb_breakpoint (enum bkpt_type type)
298 return (type == gdb_breakpoint_Z0
299 || type == gdb_breakpoint_Z1
300 || type == gdb_breakpoint_Z2
301 || type == gdb_breakpoint_Z3
302 || type == gdb_breakpoint_Z4);
305 bool
306 any_persistent_commands (process_info *proc)
308 struct breakpoint *bp;
309 struct point_command_list *cl;
311 for (bp = proc->breakpoints; bp != NULL; bp = bp->next)
313 if (is_gdb_breakpoint (bp->type))
315 struct gdb_breakpoint *gdb_bp = (struct gdb_breakpoint *) bp;
317 for (cl = gdb_bp->command_list; cl != NULL; cl = cl->next)
318 if (cl->persistence)
319 return true;
323 return false;
326 /* Find low-level breakpoint of type TYPE at address ADDR that is not
327 insert-disabled. Returns NULL if not found. */
329 static struct raw_breakpoint *
330 find_enabled_raw_code_breakpoint_at (CORE_ADDR addr, enum raw_bkpt_type type)
332 struct process_info *proc = current_process ();
333 struct raw_breakpoint *bp;
335 for (bp = proc->raw_breakpoints; bp != NULL; bp = bp->next)
336 if (bp->pc == addr
337 && bp->raw_type == type
338 && bp->inserted >= 0)
339 return bp;
341 return NULL;
344 /* Find low-level breakpoint of type TYPE at address ADDR. Returns
345 NULL if not found. */
347 static struct raw_breakpoint *
348 find_raw_breakpoint_at (CORE_ADDR addr, enum raw_bkpt_type type, int kind)
350 struct process_info *proc = current_process ();
351 struct raw_breakpoint *bp;
353 for (bp = proc->raw_breakpoints; bp != NULL; bp = bp->next)
354 if (bp->pc == addr && bp->raw_type == type && bp->kind == kind)
355 return bp;
357 return NULL;
360 /* See mem-break.h. */
363 insert_memory_breakpoint (struct raw_breakpoint *bp)
365 unsigned char buf[MAX_BREAKPOINT_LEN];
366 int err;
368 /* Note that there can be fast tracepoint jumps installed in the
369 same memory range, so to get at the original memory, we need to
370 use read_inferior_memory, which masks those out. */
371 err = read_inferior_memory (bp->pc, buf, bp_size (bp));
372 if (err != 0)
374 if (debug_threads)
375 debug_printf ("Failed to read shadow memory of"
376 " breakpoint at 0x%s (%s).\n",
377 paddress (bp->pc), safe_strerror (err));
379 else
381 memcpy (bp->old_data, buf, bp_size (bp));
383 err = the_target->write_memory (bp->pc, bp_opcode (bp),
384 bp_size (bp));
385 if (err != 0)
387 if (debug_threads)
388 debug_printf ("Failed to insert breakpoint at 0x%s (%s).\n",
389 paddress (bp->pc), safe_strerror (err));
392 return err != 0 ? -1 : 0;
395 /* See mem-break.h */
398 remove_memory_breakpoint (struct raw_breakpoint *bp)
400 unsigned char buf[MAX_BREAKPOINT_LEN];
401 int err;
403 /* Since there can be trap breakpoints inserted in the same address
404 range, we use `target_write_memory', which takes care of
405 layering breakpoints on top of fast tracepoints, and on top of
406 the buffer we pass it. This works because the caller has already
407 either unlinked the breakpoint or marked it uninserted. Also
408 note that we need to pass the current shadow contents, because
409 target_write_memory updates any shadow memory with what we pass
410 here, and we want that to be a nop. */
411 memcpy (buf, bp->old_data, bp_size (bp));
412 err = target_write_memory (bp->pc, buf, bp_size (bp));
413 if (err != 0)
415 if (debug_threads)
416 debug_printf ("Failed to uninsert raw breakpoint "
417 "at 0x%s (%s) while deleting it.\n",
418 paddress (bp->pc), safe_strerror (err));
420 return err != 0 ? -1 : 0;
423 /* Set a RAW breakpoint of type TYPE and kind KIND at WHERE. On
424 success, a pointer to the new breakpoint is returned. On failure,
425 returns NULL and writes the error code to *ERR. */
427 static struct raw_breakpoint *
428 set_raw_breakpoint_at (enum raw_bkpt_type type, CORE_ADDR where, int kind,
429 int *err)
431 struct process_info *proc = current_process ();
432 struct raw_breakpoint *bp;
434 if (type == raw_bkpt_type_sw || type == raw_bkpt_type_hw)
436 bp = find_enabled_raw_code_breakpoint_at (where, type);
437 if (bp != NULL && bp->kind != kind)
439 /* A different kind than previously seen. The previous
440 breakpoint must be gone then. */
441 if (debug_threads)
442 debug_printf ("Inconsistent breakpoint kind? Was %d, now %d.\n",
443 bp->kind, kind);
444 bp->inserted = -1;
445 bp = NULL;
448 else
449 bp = find_raw_breakpoint_at (where, type, kind);
451 gdb::unique_xmalloc_ptr<struct raw_breakpoint> bp_holder;
452 if (bp == NULL)
454 bp_holder.reset (XCNEW (struct raw_breakpoint));
455 bp = bp_holder.get ();
456 bp->pc = where;
457 bp->kind = kind;
458 bp->raw_type = type;
461 if (!bp->inserted)
463 *err = the_target->insert_point (bp->raw_type, bp->pc, bp->kind, bp);
464 if (*err != 0)
466 if (debug_threads)
467 debug_printf ("Failed to insert breakpoint at 0x%s (%d).\n",
468 paddress (where), *err);
470 return NULL;
473 bp->inserted = 1;
476 /* If the breakpoint was allocated above, we know we want to keep it
477 now. */
478 bp_holder.release ();
480 /* Link the breakpoint in, if this is the first reference. */
481 if (++bp->refcount == 1)
483 bp->next = proc->raw_breakpoints;
484 proc->raw_breakpoints = bp;
486 return bp;
489 /* Notice that breakpoint traps are always installed on top of fast
490 tracepoint jumps. This is even if the fast tracepoint is installed
491 at a later time compared to when the breakpoint was installed.
492 This means that a stopping breakpoint or tracepoint has higher
493 "priority". In turn, this allows having fast and slow tracepoints
494 (and breakpoints) at the same address behave correctly. */
497 /* A fast tracepoint jump. */
499 struct fast_tracepoint_jump
501 struct fast_tracepoint_jump *next;
503 /* A reference count. GDB can install more than one fast tracepoint
504 at the same address (each with its own action list, for
505 example). */
506 int refcount;
508 /* The fast tracepoint's insertion address. There can only be one
509 of these for a given PC. */
510 CORE_ADDR pc;
512 /* Non-zero if this fast tracepoint jump is currently inserted in
513 the inferior. */
514 int inserted;
516 /* The length of the jump instruction. */
517 int length;
519 /* A poor-man's flexible array member, holding both the jump
520 instruction to insert, and a copy of the instruction that would
521 be in memory had not been a jump there (the shadow memory of the
522 tracepoint jump). */
523 unsigned char insn_and_shadow[0];
526 /* Fast tracepoint FP's jump instruction to insert. */
527 #define fast_tracepoint_jump_insn(fp) \
528 ((fp)->insn_and_shadow + 0)
530 /* The shadow memory of fast tracepoint jump FP. */
531 #define fast_tracepoint_jump_shadow(fp) \
532 ((fp)->insn_and_shadow + (fp)->length)
535 /* Return the fast tracepoint jump set at WHERE. */
537 static struct fast_tracepoint_jump *
538 find_fast_tracepoint_jump_at (CORE_ADDR where)
540 struct process_info *proc = current_process ();
541 struct fast_tracepoint_jump *jp;
543 for (jp = proc->fast_tracepoint_jumps; jp != NULL; jp = jp->next)
544 if (jp->pc == where)
545 return jp;
547 return NULL;
551 fast_tracepoint_jump_here (CORE_ADDR where)
553 struct fast_tracepoint_jump *jp = find_fast_tracepoint_jump_at (where);
555 return (jp != NULL);
559 delete_fast_tracepoint_jump (struct fast_tracepoint_jump *todel)
561 struct fast_tracepoint_jump *bp, **bp_link;
562 int ret;
563 struct process_info *proc = current_process ();
565 bp = proc->fast_tracepoint_jumps;
566 bp_link = &proc->fast_tracepoint_jumps;
568 while (bp)
570 if (bp == todel)
572 if (--bp->refcount == 0)
574 struct fast_tracepoint_jump *prev_bp_link = *bp_link;
575 unsigned char *buf;
577 /* Unlink it. */
578 *bp_link = bp->next;
580 /* Since there can be breakpoints inserted in the same
581 address range, we use `target_write_memory', which
582 takes care of layering breakpoints on top of fast
583 tracepoints, and on top of the buffer we pass it.
584 This works because we've already unlinked the fast
585 tracepoint jump above. Also note that we need to
586 pass the current shadow contents, because
587 target_write_memory updates any shadow memory with
588 what we pass here, and we want that to be a nop. */
589 buf = (unsigned char *) alloca (bp->length);
590 memcpy (buf, fast_tracepoint_jump_shadow (bp), bp->length);
591 ret = target_write_memory (bp->pc, buf, bp->length);
592 if (ret != 0)
594 /* Something went wrong, relink the jump. */
595 *bp_link = prev_bp_link;
597 if (debug_threads)
598 debug_printf ("Failed to uninsert fast tracepoint jump "
599 "at 0x%s (%s) while deleting it.\n",
600 paddress (bp->pc), safe_strerror (ret));
601 return ret;
604 free (bp);
607 return 0;
609 else
611 bp_link = &bp->next;
612 bp = *bp_link;
616 warning ("Could not find fast tracepoint jump in list.");
617 return ENOENT;
620 void
621 inc_ref_fast_tracepoint_jump (struct fast_tracepoint_jump *jp)
623 jp->refcount++;
626 struct fast_tracepoint_jump *
627 set_fast_tracepoint_jump (CORE_ADDR where,
628 unsigned char *insn, ULONGEST length)
630 struct process_info *proc = current_process ();
631 struct fast_tracepoint_jump *jp;
632 int err;
633 unsigned char *buf;
635 /* We refcount fast tracepoint jumps. Check if we already know
636 about a jump at this address. */
637 jp = find_fast_tracepoint_jump_at (where);
638 if (jp != NULL)
640 jp->refcount++;
641 return jp;
644 /* We don't, so create a new object. Double the length, because the
645 flexible array member holds both the jump insn, and the
646 shadow. */
647 jp = (struct fast_tracepoint_jump *) xcalloc (1, sizeof (*jp) + (length * 2));
648 jp->pc = where;
649 jp->length = length;
650 memcpy (fast_tracepoint_jump_insn (jp), insn, length);
651 jp->refcount = 1;
652 buf = (unsigned char *) alloca (length);
654 /* Note that there can be trap breakpoints inserted in the same
655 address range. To access the original memory contents, we use
656 `read_inferior_memory', which masks out breakpoints. */
657 err = read_inferior_memory (where, buf, length);
658 if (err != 0)
660 if (debug_threads)
661 debug_printf ("Failed to read shadow memory of"
662 " fast tracepoint at 0x%s (%s).\n",
663 paddress (where), safe_strerror (err));
664 free (jp);
665 return NULL;
667 memcpy (fast_tracepoint_jump_shadow (jp), buf, length);
669 /* Link the jump in. */
670 jp->inserted = 1;
671 jp->next = proc->fast_tracepoint_jumps;
672 proc->fast_tracepoint_jumps = jp;
674 /* Since there can be trap breakpoints inserted in the same address
675 range, we use use `target_write_memory', which takes care of
676 layering breakpoints on top of fast tracepoints, on top of the
677 buffer we pass it. This works because we've already linked in
678 the fast tracepoint jump above. Also note that we need to pass
679 the current shadow contents, because target_write_memory
680 updates any shadow memory with what we pass here, and we want
681 that to be a nop. */
682 err = target_write_memory (where, buf, length);
683 if (err != 0)
685 if (debug_threads)
686 debug_printf ("Failed to insert fast tracepoint jump at 0x%s (%s).\n",
687 paddress (where), safe_strerror (err));
689 /* Unlink it. */
690 proc->fast_tracepoint_jumps = jp->next;
691 free (jp);
693 return NULL;
696 return jp;
699 void
700 uninsert_fast_tracepoint_jumps_at (CORE_ADDR pc)
702 struct fast_tracepoint_jump *jp;
703 int err;
705 jp = find_fast_tracepoint_jump_at (pc);
706 if (jp == NULL)
708 /* This can happen when we remove all breakpoints while handling
709 a step-over. */
710 if (debug_threads)
711 debug_printf ("Could not find fast tracepoint jump at 0x%s "
712 "in list (uninserting).\n",
713 paddress (pc));
714 return;
717 if (jp->inserted)
719 unsigned char *buf;
721 jp->inserted = 0;
723 /* Since there can be trap breakpoints inserted in the same
724 address range, we use use `target_write_memory', which
725 takes care of layering breakpoints on top of fast
726 tracepoints, and on top of the buffer we pass it. This works
727 because we've already marked the fast tracepoint fast
728 tracepoint jump uninserted above. Also note that we need to
729 pass the current shadow contents, because
730 target_write_memory updates any shadow memory with what we
731 pass here, and we want that to be a nop. */
732 buf = (unsigned char *) alloca (jp->length);
733 memcpy (buf, fast_tracepoint_jump_shadow (jp), jp->length);
734 err = target_write_memory (jp->pc, buf, jp->length);
735 if (err != 0)
737 jp->inserted = 1;
739 if (debug_threads)
740 debug_printf ("Failed to uninsert fast tracepoint jump at"
741 " 0x%s (%s).\n",
742 paddress (pc), safe_strerror (err));
747 void
748 reinsert_fast_tracepoint_jumps_at (CORE_ADDR where)
750 struct fast_tracepoint_jump *jp;
751 int err;
752 unsigned char *buf;
754 jp = find_fast_tracepoint_jump_at (where);
755 if (jp == NULL)
757 /* This can happen when we remove breakpoints when a tracepoint
758 hit causes a tracing stop, while handling a step-over. */
759 if (debug_threads)
760 debug_printf ("Could not find fast tracepoint jump at 0x%s "
761 "in list (reinserting).\n",
762 paddress (where));
763 return;
766 if (jp->inserted)
767 error ("Jump already inserted at reinsert time.");
769 jp->inserted = 1;
771 /* Since there can be trap breakpoints inserted in the same address
772 range, we use `target_write_memory', which takes care of
773 layering breakpoints on top of fast tracepoints, and on top of
774 the buffer we pass it. This works because we've already marked
775 the fast tracepoint jump inserted above. Also note that we need
776 to pass the current shadow contents, because
777 target_write_memory updates any shadow memory with what we pass
778 here, and we want that to be a nop. */
779 buf = (unsigned char *) alloca (jp->length);
780 memcpy (buf, fast_tracepoint_jump_shadow (jp), jp->length);
781 err = target_write_memory (where, buf, jp->length);
782 if (err != 0)
784 jp->inserted = 0;
786 if (debug_threads)
787 debug_printf ("Failed to reinsert fast tracepoint jump at"
788 " 0x%s (%s).\n",
789 paddress (where), safe_strerror (err));
793 /* Set a high-level breakpoint of type TYPE, with low level type
794 RAW_TYPE and kind KIND, at WHERE. On success, a pointer to the new
795 breakpoint is returned. On failure, returns NULL and writes the
796 error code to *ERR. HANDLER is called when the breakpoint is hit.
797 HANDLER should return 1 if the breakpoint should be deleted, 0
798 otherwise. */
800 static struct breakpoint *
801 set_breakpoint (enum bkpt_type type, enum raw_bkpt_type raw_type,
802 CORE_ADDR where, int kind,
803 int (*handler) (CORE_ADDR), int *err)
805 struct process_info *proc = current_process ();
806 struct breakpoint *bp;
807 struct raw_breakpoint *raw;
809 raw = set_raw_breakpoint_at (raw_type, where, kind, err);
811 if (raw == NULL)
813 /* warn? */
814 return NULL;
817 if (is_gdb_breakpoint (type))
819 struct gdb_breakpoint *gdb_bp = XCNEW (struct gdb_breakpoint);
821 bp = (struct breakpoint *) gdb_bp;
822 gdb_assert (handler == NULL);
824 else if (type == other_breakpoint)
826 struct other_breakpoint *other_bp = XCNEW (struct other_breakpoint);
828 other_bp->handler = handler;
829 bp = (struct breakpoint *) other_bp;
831 else if (type == single_step_breakpoint)
833 struct single_step_breakpoint *ss_bp
834 = XCNEW (struct single_step_breakpoint);
836 bp = (struct breakpoint *) ss_bp;
838 else
839 gdb_assert_not_reached ("unhandled breakpoint type");
841 bp->type = type;
842 bp->raw = raw;
844 bp->next = proc->breakpoints;
845 proc->breakpoints = bp;
847 return bp;
850 /* Set breakpoint of TYPE on address WHERE with handler HANDLER. */
852 static struct breakpoint *
853 set_breakpoint_type_at (enum bkpt_type type, CORE_ADDR where,
854 int (*handler) (CORE_ADDR))
856 int err_ignored;
857 CORE_ADDR placed_address = where;
858 int breakpoint_kind = target_breakpoint_kind_from_pc (&placed_address);
860 return set_breakpoint (type, raw_bkpt_type_sw,
861 placed_address, breakpoint_kind, handler,
862 &err_ignored);
865 /* See mem-break.h */
867 struct breakpoint *
868 set_breakpoint_at (CORE_ADDR where, int (*handler) (CORE_ADDR))
870 return set_breakpoint_type_at (other_breakpoint, where, handler);
874 static int
875 delete_raw_breakpoint (struct process_info *proc, struct raw_breakpoint *todel)
877 struct raw_breakpoint *bp, **bp_link;
878 int ret;
880 bp = proc->raw_breakpoints;
881 bp_link = &proc->raw_breakpoints;
883 while (bp)
885 if (bp == todel)
887 if (bp->inserted > 0)
889 struct raw_breakpoint *prev_bp_link = *bp_link;
891 *bp_link = bp->next;
893 ret = the_target->remove_point (bp->raw_type, bp->pc,
894 bp->kind, bp);
895 if (ret != 0)
897 /* Something went wrong, relink the breakpoint. */
898 *bp_link = prev_bp_link;
900 if (debug_threads)
901 debug_printf ("Failed to uninsert raw breakpoint "
902 "at 0x%s while deleting it.\n",
903 paddress (bp->pc));
904 return ret;
907 else
908 *bp_link = bp->next;
910 free (bp);
911 return 0;
913 else
915 bp_link = &bp->next;
916 bp = *bp_link;
920 warning ("Could not find raw breakpoint in list.");
921 return ENOENT;
924 static int
925 release_breakpoint (struct process_info *proc, struct breakpoint *bp)
927 int newrefcount;
928 int ret;
930 newrefcount = bp->raw->refcount - 1;
931 if (newrefcount == 0)
933 ret = delete_raw_breakpoint (proc, bp->raw);
934 if (ret != 0)
935 return ret;
937 else
938 bp->raw->refcount = newrefcount;
940 free (bp);
942 return 0;
945 static int
946 delete_breakpoint_1 (struct process_info *proc, struct breakpoint *todel)
948 struct breakpoint *bp, **bp_link;
949 int err;
951 bp = proc->breakpoints;
952 bp_link = &proc->breakpoints;
954 while (bp)
956 if (bp == todel)
958 *bp_link = bp->next;
960 err = release_breakpoint (proc, bp);
961 if (err != 0)
962 return err;
964 bp = *bp_link;
965 return 0;
967 else
969 bp_link = &bp->next;
970 bp = *bp_link;
974 warning ("Could not find breakpoint in list.");
975 return ENOENT;
979 delete_breakpoint (struct breakpoint *todel)
981 struct process_info *proc = current_process ();
982 return delete_breakpoint_1 (proc, todel);
985 /* Locate a GDB breakpoint of type Z_TYPE and kind KIND placed at
986 address ADDR and return a pointer to its structure. If KIND is -1,
987 the breakpoint's kind is ignored. */
989 static struct gdb_breakpoint *
990 find_gdb_breakpoint (char z_type, CORE_ADDR addr, int kind)
992 struct process_info *proc = current_process ();
993 struct breakpoint *bp;
994 enum bkpt_type type = Z_packet_to_bkpt_type (z_type);
996 for (bp = proc->breakpoints; bp != NULL; bp = bp->next)
997 if (bp->type == type && bp->raw->pc == addr
998 && (kind == -1 || bp->raw->kind == kind))
999 return (struct gdb_breakpoint *) bp;
1001 return NULL;
1004 static int
1005 z_type_supported (char z_type)
1007 return (z_type >= '0' && z_type <= '4'
1008 && the_target->supports_z_point_type (z_type));
1011 /* Create a new GDB breakpoint of type Z_TYPE at ADDR with kind KIND.
1012 Returns a pointer to the newly created breakpoint on success. On
1013 failure returns NULL and sets *ERR to either -1 for error, or 1 if
1014 Z_TYPE breakpoints are not supported on this target. */
1016 static struct gdb_breakpoint *
1017 set_gdb_breakpoint_1 (char z_type, CORE_ADDR addr, int kind, int *err)
1019 struct gdb_breakpoint *bp;
1020 enum bkpt_type type;
1021 enum raw_bkpt_type raw_type;
1023 /* If we see GDB inserting a second code breakpoint at the same
1024 address, then either: GDB is updating the breakpoint's conditions
1025 or commands; or, the first breakpoint must have disappeared due
1026 to a shared library unload. On targets where the shared
1027 libraries are handled by userspace, like SVR4, for example,
1028 GDBserver can't tell if a library was loaded or unloaded. Since
1029 we refcount raw breakpoints, we must be careful to make sure GDB
1030 breakpoints never contribute more than one reference. if we
1031 didn't do this, in case the previous breakpoint is gone due to a
1032 shared library unload, we'd just increase the refcount of the
1033 previous breakpoint at this address, but the trap was not planted
1034 in the inferior anymore, thus the breakpoint would never be hit.
1035 Note this must be careful to not create a window where
1036 breakpoints are removed from the target, for non-stop, in case
1037 the target can poke at memory while the program is running. */
1038 if (z_type == Z_PACKET_SW_BP
1039 || z_type == Z_PACKET_HW_BP)
1041 bp = find_gdb_breakpoint (z_type, addr, -1);
1043 if (bp != NULL)
1045 if (bp->base.raw->kind != kind)
1047 /* A different kind than previously seen. The previous
1048 breakpoint must be gone then. */
1049 bp->base.raw->inserted = -1;
1050 delete_breakpoint ((struct breakpoint *) bp);
1051 bp = NULL;
1053 else if (z_type == Z_PACKET_SW_BP)
1055 /* Check if the breakpoint is actually gone from the
1056 target, due to an solib unload, for example. Might
1057 as well validate _all_ breakpoints. */
1058 validate_breakpoints ();
1060 /* Breakpoints that don't pass validation are
1061 deleted. */
1062 bp = find_gdb_breakpoint (z_type, addr, -1);
1066 else
1068 /* Data breakpoints for the same address but different kind are
1069 expected. GDB doesn't merge these. The backend gets to do
1070 that if it wants/can. */
1071 bp = find_gdb_breakpoint (z_type, addr, kind);
1074 if (bp != NULL)
1076 /* We already know about this breakpoint, there's nothing else
1077 to do - GDB's reference is already accounted for. Note that
1078 whether the breakpoint inserted is left as is - we may be
1079 stepping over it, for example, in which case we don't want to
1080 force-reinsert it. */
1081 return bp;
1084 raw_type = Z_packet_to_raw_bkpt_type (z_type);
1085 type = Z_packet_to_bkpt_type (z_type);
1086 return (struct gdb_breakpoint *) set_breakpoint (type, raw_type, addr,
1087 kind, NULL, err);
1090 static int
1091 check_gdb_bp_preconditions (char z_type, int *err)
1093 /* As software/memory breakpoints work by poking at memory, we need
1094 to prepare to access memory. If that operation fails, we need to
1095 return error. Seeing an error, if this is the first breakpoint
1096 of that type that GDB tries to insert, GDB would then assume the
1097 breakpoint type is supported, but it may actually not be. So we
1098 need to check whether the type is supported at all before
1099 preparing to access memory. */
1100 if (!z_type_supported (z_type))
1102 *err = 1;
1103 return 0;
1106 return 1;
1109 /* See mem-break.h. This is a wrapper for set_gdb_breakpoint_1 that
1110 knows to prepare to access memory for Z0 breakpoints. */
1112 struct gdb_breakpoint *
1113 set_gdb_breakpoint (char z_type, CORE_ADDR addr, int kind, int *err)
1115 struct gdb_breakpoint *bp;
1117 if (!check_gdb_bp_preconditions (z_type, err))
1118 return NULL;
1120 /* If inserting a software/memory breakpoint, need to prepare to
1121 access memory. */
1122 if (z_type == Z_PACKET_SW_BP)
1124 if (prepare_to_access_memory () != 0)
1126 *err = -1;
1127 return NULL;
1131 bp = set_gdb_breakpoint_1 (z_type, addr, kind, err);
1133 if (z_type == Z_PACKET_SW_BP)
1134 done_accessing_memory ();
1136 return bp;
1139 /* Delete a GDB breakpoint of type Z_TYPE and kind KIND previously
1140 inserted at ADDR with set_gdb_breakpoint_at. Returns 0 on success,
1141 -1 on error, and 1 if Z_TYPE breakpoints are not supported on this
1142 target. */
1144 static int
1145 delete_gdb_breakpoint_1 (char z_type, CORE_ADDR addr, int kind)
1147 struct gdb_breakpoint *bp;
1148 int err;
1150 bp = find_gdb_breakpoint (z_type, addr, kind);
1151 if (bp == NULL)
1152 return -1;
1154 /* Before deleting the breakpoint, make sure to free its condition
1155 and command lists. */
1156 clear_breakpoint_conditions_and_commands (bp);
1157 err = delete_breakpoint ((struct breakpoint *) bp);
1158 if (err != 0)
1159 return -1;
1161 return 0;
1164 /* See mem-break.h. This is a wrapper for delete_gdb_breakpoint that
1165 knows to prepare to access memory for Z0 breakpoints. */
1168 delete_gdb_breakpoint (char z_type, CORE_ADDR addr, int kind)
1170 int ret;
1172 if (!check_gdb_bp_preconditions (z_type, &ret))
1173 return ret;
1175 /* If inserting a software/memory breakpoint, need to prepare to
1176 access memory. */
1177 if (z_type == Z_PACKET_SW_BP)
1179 int err;
1181 err = prepare_to_access_memory ();
1182 if (err != 0)
1183 return -1;
1186 ret = delete_gdb_breakpoint_1 (z_type, addr, kind);
1188 if (z_type == Z_PACKET_SW_BP)
1189 done_accessing_memory ();
1191 return ret;
1194 /* Clear all conditions associated with a breakpoint. */
1196 static void
1197 clear_breakpoint_conditions (struct gdb_breakpoint *bp)
1199 struct point_cond_list *cond;
1201 if (bp->cond_list == NULL)
1202 return;
1204 cond = bp->cond_list;
1206 while (cond != NULL)
1208 struct point_cond_list *cond_next;
1210 cond_next = cond->next;
1211 gdb_free_agent_expr (cond->cond);
1212 free (cond);
1213 cond = cond_next;
1216 bp->cond_list = NULL;
1219 /* Clear all commands associated with a breakpoint. */
1221 static void
1222 clear_breakpoint_commands (struct gdb_breakpoint *bp)
1224 struct point_command_list *cmd;
1226 if (bp->command_list == NULL)
1227 return;
1229 cmd = bp->command_list;
1231 while (cmd != NULL)
1233 struct point_command_list *cmd_next;
1235 cmd_next = cmd->next;
1236 gdb_free_agent_expr (cmd->cmd);
1237 free (cmd);
1238 cmd = cmd_next;
1241 bp->command_list = NULL;
1244 void
1245 clear_breakpoint_conditions_and_commands (struct gdb_breakpoint *bp)
1247 clear_breakpoint_conditions (bp);
1248 clear_breakpoint_commands (bp);
1251 /* Add condition CONDITION to GDBserver's breakpoint BP. */
1253 static void
1254 add_condition_to_breakpoint (struct gdb_breakpoint *bp,
1255 struct agent_expr *condition)
1257 struct point_cond_list *new_cond;
1259 /* Create new condition. */
1260 new_cond = XCNEW (struct point_cond_list);
1261 new_cond->cond = condition;
1263 /* Add condition to the list. */
1264 new_cond->next = bp->cond_list;
1265 bp->cond_list = new_cond;
1268 /* Add a target-side condition CONDITION to a breakpoint. */
1271 add_breakpoint_condition (struct gdb_breakpoint *bp, const char **condition)
1273 const char *actparm = *condition;
1274 struct agent_expr *cond;
1276 if (condition == NULL)
1277 return 1;
1279 if (bp == NULL)
1280 return 0;
1282 cond = gdb_parse_agent_expr (&actparm);
1284 if (cond == NULL)
1286 warning ("Condition evaluation failed. Assuming unconditional.");
1287 return 0;
1290 add_condition_to_breakpoint (bp, cond);
1292 *condition = actparm;
1294 return 1;
1297 /* Evaluate condition (if any) at breakpoint BP. Return 1 if
1298 true and 0 otherwise. */
1300 static int
1301 gdb_condition_true_at_breakpoint_z_type (char z_type, CORE_ADDR addr)
1303 /* Fetch registers for the current inferior. */
1304 struct gdb_breakpoint *bp = find_gdb_breakpoint (z_type, addr, -1);
1305 ULONGEST value = 0;
1306 struct point_cond_list *cl;
1307 int err = 0;
1308 struct eval_agent_expr_context ctx;
1310 if (bp == NULL)
1311 return 0;
1313 /* Check if the breakpoint is unconditional. If it is,
1314 the condition always evaluates to TRUE. */
1315 if (bp->cond_list == NULL)
1316 return 1;
1318 ctx.regcache = get_thread_regcache (current_thread, 1);
1319 ctx.tframe = NULL;
1320 ctx.tpoint = NULL;
1322 /* Evaluate each condition in the breakpoint's list of conditions.
1323 Return true if any of the conditions evaluates to TRUE.
1325 If we failed to evaluate the expression, TRUE is returned. This
1326 forces GDB to reevaluate the conditions. */
1327 for (cl = bp->cond_list;
1328 cl && !value && !err; cl = cl->next)
1330 /* Evaluate the condition. */
1331 err = gdb_eval_agent_expr (&ctx, cl->cond, &value);
1334 if (err)
1335 return 1;
1337 return (value != 0);
1341 gdb_condition_true_at_breakpoint (CORE_ADDR where)
1343 /* Only check code (software or hardware) breakpoints. */
1344 return (gdb_condition_true_at_breakpoint_z_type (Z_PACKET_SW_BP, where)
1345 || gdb_condition_true_at_breakpoint_z_type (Z_PACKET_HW_BP, where));
1348 /* Add commands COMMANDS to GDBserver's breakpoint BP. */
1350 static void
1351 add_commands_to_breakpoint (struct gdb_breakpoint *bp,
1352 struct agent_expr *commands, int persist)
1354 struct point_command_list *new_cmd;
1356 /* Create new command. */
1357 new_cmd = XCNEW (struct point_command_list);
1358 new_cmd->cmd = commands;
1359 new_cmd->persistence = persist;
1361 /* Add commands to the list. */
1362 new_cmd->next = bp->command_list;
1363 bp->command_list = new_cmd;
1366 /* Add a target-side command COMMAND to the breakpoint at ADDR. */
1369 add_breakpoint_commands (struct gdb_breakpoint *bp, const char **command,
1370 int persist)
1372 const char *actparm = *command;
1373 struct agent_expr *cmd;
1375 if (command == NULL)
1376 return 1;
1378 if (bp == NULL)
1379 return 0;
1381 cmd = gdb_parse_agent_expr (&actparm);
1383 if (cmd == NULL)
1385 warning ("Command evaluation failed. Disabling.");
1386 return 0;
1389 add_commands_to_breakpoint (bp, cmd, persist);
1391 *command = actparm;
1393 return 1;
1396 /* Return true if there are no commands to run at this location,
1397 which likely means we want to report back to GDB. */
1399 static int
1400 gdb_no_commands_at_breakpoint_z_type (char z_type, CORE_ADDR addr)
1402 struct gdb_breakpoint *bp = find_gdb_breakpoint (z_type, addr, -1);
1404 if (bp == NULL)
1405 return 1;
1407 if (debug_threads)
1408 debug_printf ("at 0x%s, type Z%c, bp command_list is 0x%s\n",
1409 paddress (addr), z_type,
1410 phex_nz ((uintptr_t) bp->command_list, 0));
1411 return (bp->command_list == NULL);
1414 /* Return true if there are no commands to run at this location,
1415 which likely means we want to report back to GDB. */
1418 gdb_no_commands_at_breakpoint (CORE_ADDR where)
1420 /* Only check code (software or hardware) breakpoints. */
1421 return (gdb_no_commands_at_breakpoint_z_type (Z_PACKET_SW_BP, where)
1422 && gdb_no_commands_at_breakpoint_z_type (Z_PACKET_HW_BP, where));
1425 /* Run a breakpoint's commands. Returns 0 if there was a problem
1426 running any command, 1 otherwise. */
1428 static int
1429 run_breakpoint_commands_z_type (char z_type, CORE_ADDR addr)
1431 /* Fetch registers for the current inferior. */
1432 struct gdb_breakpoint *bp = find_gdb_breakpoint (z_type, addr, -1);
1433 ULONGEST value = 0;
1434 struct point_command_list *cl;
1435 int err = 0;
1436 struct eval_agent_expr_context ctx;
1438 if (bp == NULL)
1439 return 1;
1441 ctx.regcache = get_thread_regcache (current_thread, 1);
1442 ctx.tframe = NULL;
1443 ctx.tpoint = NULL;
1445 for (cl = bp->command_list;
1446 cl && !value && !err; cl = cl->next)
1448 /* Run the command. */
1449 err = gdb_eval_agent_expr (&ctx, cl->cmd, &value);
1451 /* If one command has a problem, stop digging the hole deeper. */
1452 if (err)
1453 return 0;
1456 return 1;
1459 void
1460 run_breakpoint_commands (CORE_ADDR where)
1462 /* Only check code (software or hardware) breakpoints. If one
1463 command has a problem, stop digging the hole deeper. */
1464 if (run_breakpoint_commands_z_type (Z_PACKET_SW_BP, where))
1465 run_breakpoint_commands_z_type (Z_PACKET_HW_BP, where);
1468 /* See mem-break.h. */
1471 gdb_breakpoint_here (CORE_ADDR where)
1473 /* Only check code (software or hardware) breakpoints. */
1474 return (find_gdb_breakpoint (Z_PACKET_SW_BP, where, -1) != NULL
1475 || find_gdb_breakpoint (Z_PACKET_HW_BP, where, -1) != NULL);
1478 void
1479 set_single_step_breakpoint (CORE_ADDR stop_at, ptid_t ptid)
1481 struct single_step_breakpoint *bp;
1483 gdb_assert (current_ptid.pid () == ptid.pid ());
1485 bp = (struct single_step_breakpoint *) set_breakpoint_type_at (single_step_breakpoint,
1486 stop_at, NULL);
1487 bp->ptid = ptid;
1490 void
1491 delete_single_step_breakpoints (struct thread_info *thread)
1493 struct process_info *proc = get_thread_process (thread);
1494 struct breakpoint *bp, **bp_link;
1496 bp = proc->breakpoints;
1497 bp_link = &proc->breakpoints;
1499 while (bp)
1501 if (bp->type == single_step_breakpoint
1502 && ((struct single_step_breakpoint *) bp)->ptid == ptid_of (thread))
1504 struct thread_info *saved_thread = current_thread;
1506 current_thread = thread;
1507 *bp_link = bp->next;
1508 release_breakpoint (proc, bp);
1509 bp = *bp_link;
1510 current_thread = saved_thread;
1512 else
1514 bp_link = &bp->next;
1515 bp = *bp_link;
1520 static void
1521 uninsert_raw_breakpoint (struct raw_breakpoint *bp)
1523 if (bp->inserted < 0)
1525 if (debug_threads)
1526 debug_printf ("Breakpoint at %s is marked insert-disabled.\n",
1527 paddress (bp->pc));
1529 else if (bp->inserted > 0)
1531 int err;
1533 bp->inserted = 0;
1535 err = the_target->remove_point (bp->raw_type, bp->pc, bp->kind, bp);
1536 if (err != 0)
1538 bp->inserted = 1;
1540 if (debug_threads)
1541 debug_printf ("Failed to uninsert raw breakpoint at 0x%s.\n",
1542 paddress (bp->pc));
1547 void
1548 uninsert_breakpoints_at (CORE_ADDR pc)
1550 struct process_info *proc = current_process ();
1551 struct raw_breakpoint *bp;
1552 int found = 0;
1554 for (bp = proc->raw_breakpoints; bp != NULL; bp = bp->next)
1555 if ((bp->raw_type == raw_bkpt_type_sw
1556 || bp->raw_type == raw_bkpt_type_hw)
1557 && bp->pc == pc)
1559 found = 1;
1561 if (bp->inserted)
1562 uninsert_raw_breakpoint (bp);
1565 if (!found)
1567 /* This can happen when we remove all breakpoints while handling
1568 a step-over. */
1569 if (debug_threads)
1570 debug_printf ("Could not find breakpoint at 0x%s "
1571 "in list (uninserting).\n",
1572 paddress (pc));
1576 void
1577 uninsert_all_breakpoints (void)
1579 struct process_info *proc = current_process ();
1580 struct raw_breakpoint *bp;
1582 for (bp = proc->raw_breakpoints; bp != NULL; bp = bp->next)
1583 if ((bp->raw_type == raw_bkpt_type_sw
1584 || bp->raw_type == raw_bkpt_type_hw)
1585 && bp->inserted)
1586 uninsert_raw_breakpoint (bp);
1589 void
1590 uninsert_single_step_breakpoints (struct thread_info *thread)
1592 struct process_info *proc = get_thread_process (thread);
1593 struct breakpoint *bp;
1595 for (bp = proc->breakpoints; bp != NULL; bp = bp->next)
1597 if (bp->type == single_step_breakpoint
1598 && ((struct single_step_breakpoint *) bp)->ptid == ptid_of (thread))
1600 gdb_assert (bp->raw->inserted > 0);
1602 /* Only uninsert the raw breakpoint if it only belongs to a
1603 reinsert breakpoint. */
1604 if (bp->raw->refcount == 1)
1606 struct thread_info *saved_thread = current_thread;
1608 current_thread = thread;
1609 uninsert_raw_breakpoint (bp->raw);
1610 current_thread = saved_thread;
1616 static void
1617 reinsert_raw_breakpoint (struct raw_breakpoint *bp)
1619 int err;
1621 if (bp->inserted)
1622 return;
1624 err = the_target->insert_point (bp->raw_type, bp->pc, bp->kind, bp);
1625 if (err == 0)
1626 bp->inserted = 1;
1627 else if (debug_threads)
1628 debug_printf ("Failed to reinsert breakpoint at 0x%s (%d).\n",
1629 paddress (bp->pc), err);
1632 void
1633 reinsert_breakpoints_at (CORE_ADDR pc)
1635 struct process_info *proc = current_process ();
1636 struct raw_breakpoint *bp;
1637 int found = 0;
1639 for (bp = proc->raw_breakpoints; bp != NULL; bp = bp->next)
1640 if ((bp->raw_type == raw_bkpt_type_sw
1641 || bp->raw_type == raw_bkpt_type_hw)
1642 && bp->pc == pc)
1644 found = 1;
1646 reinsert_raw_breakpoint (bp);
1649 if (!found)
1651 /* This can happen when we remove all breakpoints while handling
1652 a step-over. */
1653 if (debug_threads)
1654 debug_printf ("Could not find raw breakpoint at 0x%s "
1655 "in list (reinserting).\n",
1656 paddress (pc));
1661 has_single_step_breakpoints (struct thread_info *thread)
1663 struct process_info *proc = get_thread_process (thread);
1664 struct breakpoint *bp, **bp_link;
1666 bp = proc->breakpoints;
1667 bp_link = &proc->breakpoints;
1669 while (bp)
1671 if (bp->type == single_step_breakpoint
1672 && ((struct single_step_breakpoint *) bp)->ptid == ptid_of (thread))
1673 return 1;
1674 else
1676 bp_link = &bp->next;
1677 bp = *bp_link;
1681 return 0;
1684 void
1685 reinsert_all_breakpoints (void)
1687 struct process_info *proc = current_process ();
1688 struct raw_breakpoint *bp;
1690 for (bp = proc->raw_breakpoints; bp != NULL; bp = bp->next)
1691 if ((bp->raw_type == raw_bkpt_type_sw
1692 || bp->raw_type == raw_bkpt_type_hw)
1693 && !bp->inserted)
1694 reinsert_raw_breakpoint (bp);
1697 void
1698 reinsert_single_step_breakpoints (struct thread_info *thread)
1700 struct process_info *proc = get_thread_process (thread);
1701 struct breakpoint *bp;
1703 for (bp = proc->breakpoints; bp != NULL; bp = bp->next)
1705 if (bp->type == single_step_breakpoint
1706 && ((struct single_step_breakpoint *) bp)->ptid == ptid_of (thread))
1708 gdb_assert (bp->raw->inserted > 0);
1710 if (bp->raw->refcount == 1)
1712 struct thread_info *saved_thread = current_thread;
1714 current_thread = thread;
1715 reinsert_raw_breakpoint (bp->raw);
1716 current_thread = saved_thread;
1722 void
1723 check_breakpoints (CORE_ADDR stop_pc)
1725 struct process_info *proc = current_process ();
1726 struct breakpoint *bp, **bp_link;
1728 bp = proc->breakpoints;
1729 bp_link = &proc->breakpoints;
1731 while (bp)
1733 struct raw_breakpoint *raw = bp->raw;
1735 if ((raw->raw_type == raw_bkpt_type_sw
1736 || raw->raw_type == raw_bkpt_type_hw)
1737 && raw->pc == stop_pc)
1739 if (!raw->inserted)
1741 warning ("Hit a removed breakpoint?");
1742 return;
1745 if (bp->type == other_breakpoint)
1747 struct other_breakpoint *other_bp
1748 = (struct other_breakpoint *) bp;
1750 if (other_bp->handler != NULL && (*other_bp->handler) (stop_pc))
1752 *bp_link = bp->next;
1754 release_breakpoint (proc, bp);
1756 bp = *bp_link;
1757 continue;
1762 bp_link = &bp->next;
1763 bp = *bp_link;
1768 breakpoint_here (CORE_ADDR addr)
1770 struct process_info *proc = current_process ();
1771 struct raw_breakpoint *bp;
1773 for (bp = proc->raw_breakpoints; bp != NULL; bp = bp->next)
1774 if ((bp->raw_type == raw_bkpt_type_sw
1775 || bp->raw_type == raw_bkpt_type_hw)
1776 && bp->pc == addr)
1777 return 1;
1779 return 0;
1783 breakpoint_inserted_here (CORE_ADDR addr)
1785 struct process_info *proc = current_process ();
1786 struct raw_breakpoint *bp;
1788 for (bp = proc->raw_breakpoints; bp != NULL; bp = bp->next)
1789 if ((bp->raw_type == raw_bkpt_type_sw
1790 || bp->raw_type == raw_bkpt_type_hw)
1791 && bp->pc == addr
1792 && bp->inserted)
1793 return 1;
1795 return 0;
1798 /* See mem-break.h. */
1801 software_breakpoint_inserted_here (CORE_ADDR addr)
1803 struct process_info *proc = current_process ();
1804 struct raw_breakpoint *bp;
1806 for (bp = proc->raw_breakpoints; bp != NULL; bp = bp->next)
1807 if (bp->raw_type == raw_bkpt_type_sw
1808 && bp->pc == addr
1809 && bp->inserted)
1810 return 1;
1812 return 0;
1815 /* See mem-break.h. */
1818 hardware_breakpoint_inserted_here (CORE_ADDR addr)
1820 struct process_info *proc = current_process ();
1821 struct raw_breakpoint *bp;
1823 for (bp = proc->raw_breakpoints; bp != NULL; bp = bp->next)
1824 if (bp->raw_type == raw_bkpt_type_hw
1825 && bp->pc == addr
1826 && bp->inserted)
1827 return 1;
1829 return 0;
1832 /* See mem-break.h. */
1835 single_step_breakpoint_inserted_here (CORE_ADDR addr)
1837 struct process_info *proc = current_process ();
1838 struct breakpoint *bp;
1840 for (bp = proc->breakpoints; bp != NULL; bp = bp->next)
1841 if (bp->type == single_step_breakpoint
1842 && bp->raw->pc == addr
1843 && bp->raw->inserted)
1844 return 1;
1846 return 0;
1849 static int
1850 validate_inserted_breakpoint (struct raw_breakpoint *bp)
1852 unsigned char *buf;
1853 int err;
1855 gdb_assert (bp->inserted);
1856 gdb_assert (bp->raw_type == raw_bkpt_type_sw);
1858 buf = (unsigned char *) alloca (bp_size (bp));
1859 err = the_target->read_memory (bp->pc, buf, bp_size (bp));
1860 if (err || memcmp (buf, bp_opcode (bp), bp_size (bp)) != 0)
1862 /* Tag it as gone. */
1863 bp->inserted = -1;
1864 return 0;
1867 return 1;
1870 static void
1871 delete_disabled_breakpoints (void)
1873 struct process_info *proc = current_process ();
1874 struct breakpoint *bp, *next;
1876 for (bp = proc->breakpoints; bp != NULL; bp = next)
1878 next = bp->next;
1879 if (bp->raw->inserted < 0)
1881 /* If single_step_breakpoints become disabled, that means the
1882 manipulations (insertion and removal) of them are wrong. */
1883 gdb_assert (bp->type != single_step_breakpoint);
1884 delete_breakpoint_1 (proc, bp);
1889 /* Check if breakpoints we inserted still appear to be inserted. They
1890 may disappear due to a shared library unload, and worse, a new
1891 shared library may be reloaded at the same address as the
1892 previously unloaded one. If that happens, we should make sure that
1893 the shadow memory of the old breakpoints isn't used when reading or
1894 writing memory. */
1896 void
1897 validate_breakpoints (void)
1899 struct process_info *proc = current_process ();
1900 struct breakpoint *bp;
1902 for (bp = proc->breakpoints; bp != NULL; bp = bp->next)
1904 struct raw_breakpoint *raw = bp->raw;
1906 if (raw->raw_type == raw_bkpt_type_sw && raw->inserted > 0)
1907 validate_inserted_breakpoint (raw);
1910 delete_disabled_breakpoints ();
1913 void
1914 check_mem_read (CORE_ADDR mem_addr, unsigned char *buf, int mem_len)
1916 struct process_info *proc = current_process ();
1917 struct raw_breakpoint *bp = proc->raw_breakpoints;
1918 struct fast_tracepoint_jump *jp = proc->fast_tracepoint_jumps;
1919 CORE_ADDR mem_end = mem_addr + mem_len;
1920 int disabled_one = 0;
1922 for (; jp != NULL; jp = jp->next)
1924 CORE_ADDR bp_end = jp->pc + jp->length;
1925 CORE_ADDR start, end;
1926 int copy_offset, copy_len, buf_offset;
1928 gdb_assert (fast_tracepoint_jump_shadow (jp) >= buf + mem_len
1929 || buf >= fast_tracepoint_jump_shadow (jp) + (jp)->length);
1931 if (mem_addr >= bp_end)
1932 continue;
1933 if (jp->pc >= mem_end)
1934 continue;
1936 start = jp->pc;
1937 if (mem_addr > start)
1938 start = mem_addr;
1940 end = bp_end;
1941 if (end > mem_end)
1942 end = mem_end;
1944 copy_len = end - start;
1945 copy_offset = start - jp->pc;
1946 buf_offset = start - mem_addr;
1948 if (jp->inserted)
1949 memcpy (buf + buf_offset,
1950 fast_tracepoint_jump_shadow (jp) + copy_offset,
1951 copy_len);
1954 for (; bp != NULL; bp = bp->next)
1956 CORE_ADDR bp_end = bp->pc + bp_size (bp);
1957 CORE_ADDR start, end;
1958 int copy_offset, copy_len, buf_offset;
1960 if (bp->raw_type != raw_bkpt_type_sw)
1961 continue;
1963 gdb_assert (bp->old_data >= buf + mem_len
1964 || buf >= &bp->old_data[sizeof (bp->old_data)]);
1966 if (mem_addr >= bp_end)
1967 continue;
1968 if (bp->pc >= mem_end)
1969 continue;
1971 start = bp->pc;
1972 if (mem_addr > start)
1973 start = mem_addr;
1975 end = bp_end;
1976 if (end > mem_end)
1977 end = mem_end;
1979 copy_len = end - start;
1980 copy_offset = start - bp->pc;
1981 buf_offset = start - mem_addr;
1983 if (bp->inserted > 0)
1985 if (validate_inserted_breakpoint (bp))
1986 memcpy (buf + buf_offset, bp->old_data + copy_offset, copy_len);
1987 else
1988 disabled_one = 1;
1992 if (disabled_one)
1993 delete_disabled_breakpoints ();
1996 void
1997 check_mem_write (CORE_ADDR mem_addr, unsigned char *buf,
1998 const unsigned char *myaddr, int mem_len)
2000 struct process_info *proc = current_process ();
2001 struct raw_breakpoint *bp = proc->raw_breakpoints;
2002 struct fast_tracepoint_jump *jp = proc->fast_tracepoint_jumps;
2003 CORE_ADDR mem_end = mem_addr + mem_len;
2004 int disabled_one = 0;
2006 /* First fast tracepoint jumps, then breakpoint traps on top. */
2008 for (; jp != NULL; jp = jp->next)
2010 CORE_ADDR jp_end = jp->pc + jp->length;
2011 CORE_ADDR start, end;
2012 int copy_offset, copy_len, buf_offset;
2014 gdb_assert (fast_tracepoint_jump_shadow (jp) >= myaddr + mem_len
2015 || myaddr >= fast_tracepoint_jump_shadow (jp) + (jp)->length);
2016 gdb_assert (fast_tracepoint_jump_insn (jp) >= buf + mem_len
2017 || buf >= fast_tracepoint_jump_insn (jp) + (jp)->length);
2019 if (mem_addr >= jp_end)
2020 continue;
2021 if (jp->pc >= mem_end)
2022 continue;
2024 start = jp->pc;
2025 if (mem_addr > start)
2026 start = mem_addr;
2028 end = jp_end;
2029 if (end > mem_end)
2030 end = mem_end;
2032 copy_len = end - start;
2033 copy_offset = start - jp->pc;
2034 buf_offset = start - mem_addr;
2036 memcpy (fast_tracepoint_jump_shadow (jp) + copy_offset,
2037 myaddr + buf_offset, copy_len);
2038 if (jp->inserted)
2039 memcpy (buf + buf_offset,
2040 fast_tracepoint_jump_insn (jp) + copy_offset, copy_len);
2043 for (; bp != NULL; bp = bp->next)
2045 CORE_ADDR bp_end = bp->pc + bp_size (bp);
2046 CORE_ADDR start, end;
2047 int copy_offset, copy_len, buf_offset;
2049 if (bp->raw_type != raw_bkpt_type_sw)
2050 continue;
2052 gdb_assert (bp->old_data >= myaddr + mem_len
2053 || myaddr >= &bp->old_data[sizeof (bp->old_data)]);
2055 if (mem_addr >= bp_end)
2056 continue;
2057 if (bp->pc >= mem_end)
2058 continue;
2060 start = bp->pc;
2061 if (mem_addr > start)
2062 start = mem_addr;
2064 end = bp_end;
2065 if (end > mem_end)
2066 end = mem_end;
2068 copy_len = end - start;
2069 copy_offset = start - bp->pc;
2070 buf_offset = start - mem_addr;
2072 memcpy (bp->old_data + copy_offset, myaddr + buf_offset, copy_len);
2073 if (bp->inserted > 0)
2075 if (validate_inserted_breakpoint (bp))
2076 memcpy (buf + buf_offset, bp_opcode (bp) + copy_offset, copy_len);
2077 else
2078 disabled_one = 1;
2082 if (disabled_one)
2083 delete_disabled_breakpoints ();
2086 /* Delete all breakpoints, and un-insert them from the inferior. */
2088 void
2089 delete_all_breakpoints (void)
2091 struct process_info *proc = current_process ();
2093 while (proc->breakpoints)
2094 delete_breakpoint_1 (proc, proc->breakpoints);
2097 /* Clear the "inserted" flag in all breakpoints. */
2099 void
2100 mark_breakpoints_out (struct process_info *proc)
2102 struct raw_breakpoint *raw_bp;
2104 for (raw_bp = proc->raw_breakpoints; raw_bp != NULL; raw_bp = raw_bp->next)
2105 raw_bp->inserted = 0;
2108 /* Release all breakpoints, but do not try to un-insert them from the
2109 inferior. */
2111 void
2112 free_all_breakpoints (struct process_info *proc)
2114 mark_breakpoints_out (proc);
2116 /* Note: use PROC explicitly instead of deferring to
2117 delete_all_breakpoints --- CURRENT_INFERIOR may already have been
2118 released when we get here. There should be no call to
2119 current_process from here on. */
2120 while (proc->breakpoints)
2121 delete_breakpoint_1 (proc, proc->breakpoints);
2124 /* Clone an agent expression. */
2126 static struct agent_expr *
2127 clone_agent_expr (const struct agent_expr *src_ax)
2129 struct agent_expr *ax;
2131 ax = XCNEW (struct agent_expr);
2132 ax->length = src_ax->length;
2133 ax->bytes = (unsigned char *) xcalloc (ax->length, 1);
2134 memcpy (ax->bytes, src_ax->bytes, ax->length);
2135 return ax;
2138 /* Deep-copy the contents of one breakpoint to another. */
2140 static struct breakpoint *
2141 clone_one_breakpoint (const struct breakpoint *src, ptid_t ptid)
2143 struct breakpoint *dest;
2144 struct raw_breakpoint *dest_raw;
2146 /* Clone the raw breakpoint. */
2147 dest_raw = XCNEW (struct raw_breakpoint);
2148 dest_raw->raw_type = src->raw->raw_type;
2149 dest_raw->refcount = src->raw->refcount;
2150 dest_raw->pc = src->raw->pc;
2151 dest_raw->kind = src->raw->kind;
2152 memcpy (dest_raw->old_data, src->raw->old_data, MAX_BREAKPOINT_LEN);
2153 dest_raw->inserted = src->raw->inserted;
2155 /* Clone the high-level breakpoint. */
2156 if (is_gdb_breakpoint (src->type))
2158 struct gdb_breakpoint *gdb_dest = XCNEW (struct gdb_breakpoint);
2159 struct point_cond_list *current_cond;
2160 struct point_cond_list *new_cond;
2161 struct point_cond_list *cond_tail = NULL;
2162 struct point_command_list *current_cmd;
2163 struct point_command_list *new_cmd;
2164 struct point_command_list *cmd_tail = NULL;
2166 /* Clone the condition list. */
2167 for (current_cond = ((struct gdb_breakpoint *) src)->cond_list;
2168 current_cond != NULL;
2169 current_cond = current_cond->next)
2171 new_cond = XCNEW (struct point_cond_list);
2172 new_cond->cond = clone_agent_expr (current_cond->cond);
2173 APPEND_TO_LIST (&gdb_dest->cond_list, new_cond, cond_tail);
2176 /* Clone the command list. */
2177 for (current_cmd = ((struct gdb_breakpoint *) src)->command_list;
2178 current_cmd != NULL;
2179 current_cmd = current_cmd->next)
2181 new_cmd = XCNEW (struct point_command_list);
2182 new_cmd->cmd = clone_agent_expr (current_cmd->cmd);
2183 new_cmd->persistence = current_cmd->persistence;
2184 APPEND_TO_LIST (&gdb_dest->command_list, new_cmd, cmd_tail);
2187 dest = (struct breakpoint *) gdb_dest;
2189 else if (src->type == other_breakpoint)
2191 struct other_breakpoint *other_dest = XCNEW (struct other_breakpoint);
2193 other_dest->handler = ((struct other_breakpoint *) src)->handler;
2194 dest = (struct breakpoint *) other_dest;
2196 else if (src->type == single_step_breakpoint)
2198 struct single_step_breakpoint *ss_dest
2199 = XCNEW (struct single_step_breakpoint);
2201 dest = (struct breakpoint *) ss_dest;
2202 /* Since single-step breakpoint is thread specific, don't copy
2203 thread id from SRC, use ID instead. */
2204 ss_dest->ptid = ptid;
2206 else
2207 gdb_assert_not_reached ("unhandled breakpoint type");
2209 dest->type = src->type;
2210 dest->raw = dest_raw;
2212 return dest;
2215 /* See mem-break.h. */
2217 void
2218 clone_all_breakpoints (struct thread_info *child_thread,
2219 const struct thread_info *parent_thread)
2221 const struct breakpoint *bp;
2222 struct breakpoint *new_bkpt;
2223 struct breakpoint *bkpt_tail = NULL;
2224 struct raw_breakpoint *raw_bkpt_tail = NULL;
2225 struct process_info *child_proc = get_thread_process (child_thread);
2226 struct process_info *parent_proc = get_thread_process (parent_thread);
2227 struct breakpoint **new_list = &child_proc->breakpoints;
2228 struct raw_breakpoint **new_raw_list = &child_proc->raw_breakpoints;
2230 for (bp = parent_proc->breakpoints; bp != NULL; bp = bp->next)
2232 new_bkpt = clone_one_breakpoint (bp, ptid_of (child_thread));
2233 APPEND_TO_LIST (new_list, new_bkpt, bkpt_tail);
2234 APPEND_TO_LIST (new_raw_list, new_bkpt->raw, raw_bkpt_tail);