1 /* Ada language support routines for GDB, the GNU debugger.
3 Copyright (C) 1992-2015 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
24 #include "gdb_regex.h"
29 #include "expression.h"
30 #include "parser-defs.h"
37 #include "breakpoint.h"
40 #include "gdb_obstack.h"
42 #include "completer.h"
47 #include "dictionary.h"
55 #include "typeprint.h"
59 #include "mi/mi-common.h"
60 #include "arch-utils.h"
61 #include "cli/cli-utils.h"
63 /* Define whether or not the C operator '/' truncates towards zero for
64 differently signed operands (truncation direction is undefined in C).
65 Copied from valarith.c. */
67 #ifndef TRUNCATION_TOWARDS_ZERO
68 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
71 static struct type
*desc_base_type (struct type
*);
73 static struct type
*desc_bounds_type (struct type
*);
75 static struct value
*desc_bounds (struct value
*);
77 static int fat_pntr_bounds_bitpos (struct type
*);
79 static int fat_pntr_bounds_bitsize (struct type
*);
81 static struct type
*desc_data_target_type (struct type
*);
83 static struct value
*desc_data (struct value
*);
85 static int fat_pntr_data_bitpos (struct type
*);
87 static int fat_pntr_data_bitsize (struct type
*);
89 static struct value
*desc_one_bound (struct value
*, int, int);
91 static int desc_bound_bitpos (struct type
*, int, int);
93 static int desc_bound_bitsize (struct type
*, int, int);
95 static struct type
*desc_index_type (struct type
*, int);
97 static int desc_arity (struct type
*);
99 static int ada_type_match (struct type
*, struct type
*, int);
101 static int ada_args_match (struct symbol
*, struct value
**, int);
103 static int full_match (const char *, const char *);
105 static struct value
*make_array_descriptor (struct type
*, struct value
*);
107 static void ada_add_block_symbols (struct obstack
*,
108 const struct block
*, const char *,
109 domain_enum
, struct objfile
*, int);
111 static int is_nonfunction (struct block_symbol
*, int);
113 static void add_defn_to_vec (struct obstack
*, struct symbol
*,
114 const struct block
*);
116 static int num_defns_collected (struct obstack
*);
118 static struct block_symbol
*defns_collected (struct obstack
*, int);
120 static struct value
*resolve_subexp (struct expression
**, int *, int,
123 static void replace_operator_with_call (struct expression
**, int, int, int,
124 struct symbol
*, const struct block
*);
126 static int possible_user_operator_p (enum exp_opcode
, struct value
**);
128 static char *ada_op_name (enum exp_opcode
);
130 static const char *ada_decoded_op_name (enum exp_opcode
);
132 static int numeric_type_p (struct type
*);
134 static int integer_type_p (struct type
*);
136 static int scalar_type_p (struct type
*);
138 static int discrete_type_p (struct type
*);
140 static enum ada_renaming_category
parse_old_style_renaming (struct type
*,
145 static struct symbol
*find_old_style_renaming_symbol (const char *,
146 const struct block
*);
148 static struct type
*ada_lookup_struct_elt_type (struct type
*, char *,
151 static struct value
*evaluate_subexp_type (struct expression
*, int *);
153 static struct type
*ada_find_parallel_type_with_name (struct type
*,
156 static int is_dynamic_field (struct type
*, int);
158 static struct type
*to_fixed_variant_branch_type (struct type
*,
160 CORE_ADDR
, struct value
*);
162 static struct type
*to_fixed_array_type (struct type
*, struct value
*, int);
164 static struct type
*to_fixed_range_type (struct type
*, struct value
*);
166 static struct type
*to_static_fixed_type (struct type
*);
167 static struct type
*static_unwrap_type (struct type
*type
);
169 static struct value
*unwrap_value (struct value
*);
171 static struct type
*constrained_packed_array_type (struct type
*, long *);
173 static struct type
*decode_constrained_packed_array_type (struct type
*);
175 static long decode_packed_array_bitsize (struct type
*);
177 static struct value
*decode_constrained_packed_array (struct value
*);
179 static int ada_is_packed_array_type (struct type
*);
181 static int ada_is_unconstrained_packed_array_type (struct type
*);
183 static struct value
*value_subscript_packed (struct value
*, int,
186 static void move_bits (gdb_byte
*, int, const gdb_byte
*, int, int, int);
188 static struct value
*coerce_unspec_val_to_type (struct value
*,
191 static struct value
*get_var_value (char *, char *);
193 static int lesseq_defined_than (struct symbol
*, struct symbol
*);
195 static int equiv_types (struct type
*, struct type
*);
197 static int is_name_suffix (const char *);
199 static int advance_wild_match (const char **, const char *, int);
201 static int wild_match (const char *, const char *);
203 static struct value
*ada_coerce_ref (struct value
*);
205 static LONGEST
pos_atr (struct value
*);
207 static struct value
*value_pos_atr (struct type
*, struct value
*);
209 static struct value
*value_val_atr (struct type
*, struct value
*);
211 static struct symbol
*standard_lookup (const char *, const struct block
*,
214 static struct value
*ada_search_struct_field (char *, struct value
*, int,
217 static struct value
*ada_value_primitive_field (struct value
*, int, int,
220 static int find_struct_field (const char *, struct type
*, int,
221 struct type
**, int *, int *, int *, int *);
223 static struct value
*ada_to_fixed_value_create (struct type
*, CORE_ADDR
,
226 static int ada_resolve_function (struct block_symbol
*, int,
227 struct value
**, int, const char *,
230 static int ada_is_direct_array_type (struct type
*);
232 static void ada_language_arch_info (struct gdbarch
*,
233 struct language_arch_info
*);
235 static struct value
*ada_index_struct_field (int, struct value
*, int,
238 static struct value
*assign_aggregate (struct value
*, struct value
*,
242 static void aggregate_assign_from_choices (struct value
*, struct value
*,
244 int *, LONGEST
*, int *,
245 int, LONGEST
, LONGEST
);
247 static void aggregate_assign_positional (struct value
*, struct value
*,
249 int *, LONGEST
*, int *, int,
253 static void aggregate_assign_others (struct value
*, struct value
*,
255 int *, LONGEST
*, int, LONGEST
, LONGEST
);
258 static void add_component_interval (LONGEST
, LONGEST
, LONGEST
*, int *, int);
261 static struct value
*ada_evaluate_subexp (struct type
*, struct expression
*,
264 static void ada_forward_operator_length (struct expression
*, int, int *,
267 static struct type
*ada_find_any_type (const char *name
);
270 /* The result of a symbol lookup to be stored in our symbol cache. */
274 /* The name used to perform the lookup. */
276 /* The namespace used during the lookup. */
278 /* The symbol returned by the lookup, or NULL if no matching symbol
281 /* The block where the symbol was found, or NULL if no matching
283 const struct block
*block
;
284 /* A pointer to the next entry with the same hash. */
285 struct cache_entry
*next
;
288 /* The Ada symbol cache, used to store the result of Ada-mode symbol
289 lookups in the course of executing the user's commands.
291 The cache is implemented using a simple, fixed-sized hash.
292 The size is fixed on the grounds that there are not likely to be
293 all that many symbols looked up during any given session, regardless
294 of the size of the symbol table. If we decide to go to a resizable
295 table, let's just use the stuff from libiberty instead. */
297 #define HASH_SIZE 1009
299 struct ada_symbol_cache
301 /* An obstack used to store the entries in our cache. */
302 struct obstack cache_space
;
304 /* The root of the hash table used to implement our symbol cache. */
305 struct cache_entry
*root
[HASH_SIZE
];
308 static void ada_free_symbol_cache (struct ada_symbol_cache
*sym_cache
);
310 /* Maximum-sized dynamic type. */
311 static unsigned int varsize_limit
;
313 /* FIXME: brobecker/2003-09-17: No longer a const because it is
314 returned by a function that does not return a const char *. */
315 static char *ada_completer_word_break_characters
=
317 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
319 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
322 /* The name of the symbol to use to get the name of the main subprogram. */
323 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME
[]
324 = "__gnat_ada_main_program_name";
326 /* Limit on the number of warnings to raise per expression evaluation. */
327 static int warning_limit
= 2;
329 /* Number of warning messages issued; reset to 0 by cleanups after
330 expression evaluation. */
331 static int warnings_issued
= 0;
333 static const char *known_runtime_file_name_patterns
[] = {
334 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
337 static const char *known_auxiliary_function_name_patterns
[] = {
338 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
341 /* Space for allocating results of ada_lookup_symbol_list. */
342 static struct obstack symbol_list_obstack
;
344 /* Maintenance-related settings for this module. */
346 static struct cmd_list_element
*maint_set_ada_cmdlist
;
347 static struct cmd_list_element
*maint_show_ada_cmdlist
;
349 /* Implement the "maintenance set ada" (prefix) command. */
352 maint_set_ada_cmd (char *args
, int from_tty
)
354 help_list (maint_set_ada_cmdlist
, "maintenance set ada ", all_commands
,
358 /* Implement the "maintenance show ada" (prefix) command. */
361 maint_show_ada_cmd (char *args
, int from_tty
)
363 cmd_show_list (maint_show_ada_cmdlist
, from_tty
, "");
366 /* The "maintenance ada set/show ignore-descriptive-type" value. */
368 static int ada_ignore_descriptive_types_p
= 0;
370 /* Inferior-specific data. */
372 /* Per-inferior data for this module. */
374 struct ada_inferior_data
376 /* The ada__tags__type_specific_data type, which is used when decoding
377 tagged types. With older versions of GNAT, this type was directly
378 accessible through a component ("tsd") in the object tag. But this
379 is no longer the case, so we cache it for each inferior. */
380 struct type
*tsd_type
;
382 /* The exception_support_info data. This data is used to determine
383 how to implement support for Ada exception catchpoints in a given
385 const struct exception_support_info
*exception_info
;
388 /* Our key to this module's inferior data. */
389 static const struct inferior_data
*ada_inferior_data
;
391 /* A cleanup routine for our inferior data. */
393 ada_inferior_data_cleanup (struct inferior
*inf
, void *arg
)
395 struct ada_inferior_data
*data
;
397 data
= inferior_data (inf
, ada_inferior_data
);
402 /* Return our inferior data for the given inferior (INF).
404 This function always returns a valid pointer to an allocated
405 ada_inferior_data structure. If INF's inferior data has not
406 been previously set, this functions creates a new one with all
407 fields set to zero, sets INF's inferior to it, and then returns
408 a pointer to that newly allocated ada_inferior_data. */
410 static struct ada_inferior_data
*
411 get_ada_inferior_data (struct inferior
*inf
)
413 struct ada_inferior_data
*data
;
415 data
= inferior_data (inf
, ada_inferior_data
);
418 data
= XCNEW (struct ada_inferior_data
);
419 set_inferior_data (inf
, ada_inferior_data
, data
);
425 /* Perform all necessary cleanups regarding our module's inferior data
426 that is required after the inferior INF just exited. */
429 ada_inferior_exit (struct inferior
*inf
)
431 ada_inferior_data_cleanup (inf
, NULL
);
432 set_inferior_data (inf
, ada_inferior_data
, NULL
);
436 /* program-space-specific data. */
438 /* This module's per-program-space data. */
439 struct ada_pspace_data
441 /* The Ada symbol cache. */
442 struct ada_symbol_cache
*sym_cache
;
445 /* Key to our per-program-space data. */
446 static const struct program_space_data
*ada_pspace_data_handle
;
448 /* Return this module's data for the given program space (PSPACE).
449 If not is found, add a zero'ed one now.
451 This function always returns a valid object. */
453 static struct ada_pspace_data
*
454 get_ada_pspace_data (struct program_space
*pspace
)
456 struct ada_pspace_data
*data
;
458 data
= program_space_data (pspace
, ada_pspace_data_handle
);
461 data
= XCNEW (struct ada_pspace_data
);
462 set_program_space_data (pspace
, ada_pspace_data_handle
, data
);
468 /* The cleanup callback for this module's per-program-space data. */
471 ada_pspace_data_cleanup (struct program_space
*pspace
, void *data
)
473 struct ada_pspace_data
*pspace_data
= data
;
475 if (pspace_data
->sym_cache
!= NULL
)
476 ada_free_symbol_cache (pspace_data
->sym_cache
);
482 /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
483 all typedef layers have been peeled. Otherwise, return TYPE.
485 Normally, we really expect a typedef type to only have 1 typedef layer.
486 In other words, we really expect the target type of a typedef type to be
487 a non-typedef type. This is particularly true for Ada units, because
488 the language does not have a typedef vs not-typedef distinction.
489 In that respect, the Ada compiler has been trying to eliminate as many
490 typedef definitions in the debugging information, since they generally
491 do not bring any extra information (we still use typedef under certain
492 circumstances related mostly to the GNAT encoding).
494 Unfortunately, we have seen situations where the debugging information
495 generated by the compiler leads to such multiple typedef layers. For
496 instance, consider the following example with stabs:
498 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
499 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
501 This is an error in the debugging information which causes type
502 pck__float_array___XUP to be defined twice, and the second time,
503 it is defined as a typedef of a typedef.
505 This is on the fringe of legality as far as debugging information is
506 concerned, and certainly unexpected. But it is easy to handle these
507 situations correctly, so we can afford to be lenient in this case. */
510 ada_typedef_target_type (struct type
*type
)
512 while (TYPE_CODE (type
) == TYPE_CODE_TYPEDEF
)
513 type
= TYPE_TARGET_TYPE (type
);
517 /* Given DECODED_NAME a string holding a symbol name in its
518 decoded form (ie using the Ada dotted notation), returns
519 its unqualified name. */
522 ada_unqualified_name (const char *decoded_name
)
526 /* If the decoded name starts with '<', it means that the encoded
527 name does not follow standard naming conventions, and thus that
528 it is not your typical Ada symbol name. Trying to unqualify it
529 is therefore pointless and possibly erroneous. */
530 if (decoded_name
[0] == '<')
533 result
= strrchr (decoded_name
, '.');
535 result
++; /* Skip the dot... */
537 result
= decoded_name
;
542 /* Return a string starting with '<', followed by STR, and '>'.
543 The result is good until the next call. */
546 add_angle_brackets (const char *str
)
548 static char *result
= NULL
;
551 result
= xstrprintf ("<%s>", str
);
556 ada_get_gdb_completer_word_break_characters (void)
558 return ada_completer_word_break_characters
;
561 /* Print an array element index using the Ada syntax. */
564 ada_print_array_index (struct value
*index_value
, struct ui_file
*stream
,
565 const struct value_print_options
*options
)
567 LA_VALUE_PRINT (index_value
, stream
, options
);
568 fprintf_filtered (stream
, " => ");
571 /* Assuming VECT points to an array of *SIZE objects of size
572 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
573 updating *SIZE as necessary and returning the (new) array. */
576 grow_vect (void *vect
, size_t *size
, size_t min_size
, int element_size
)
578 if (*size
< min_size
)
581 if (*size
< min_size
)
583 vect
= xrealloc (vect
, *size
* element_size
);
588 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
589 suffix of FIELD_NAME beginning "___". */
592 field_name_match (const char *field_name
, const char *target
)
594 int len
= strlen (target
);
597 (strncmp (field_name
, target
, len
) == 0
598 && (field_name
[len
] == '\0'
599 || (startswith (field_name
+ len
, "___")
600 && strcmp (field_name
+ strlen (field_name
) - 6,
605 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
606 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
607 and return its index. This function also handles fields whose name
608 have ___ suffixes because the compiler sometimes alters their name
609 by adding such a suffix to represent fields with certain constraints.
610 If the field could not be found, return a negative number if
611 MAYBE_MISSING is set. Otherwise raise an error. */
614 ada_get_field_index (const struct type
*type
, const char *field_name
,
618 struct type
*struct_type
= check_typedef ((struct type
*) type
);
620 for (fieldno
= 0; fieldno
< TYPE_NFIELDS (struct_type
); fieldno
++)
621 if (field_name_match (TYPE_FIELD_NAME (struct_type
, fieldno
), field_name
))
625 error (_("Unable to find field %s in struct %s. Aborting"),
626 field_name
, TYPE_NAME (struct_type
));
631 /* The length of the prefix of NAME prior to any "___" suffix. */
634 ada_name_prefix_len (const char *name
)
640 const char *p
= strstr (name
, "___");
643 return strlen (name
);
649 /* Return non-zero if SUFFIX is a suffix of STR.
650 Return zero if STR is null. */
653 is_suffix (const char *str
, const char *suffix
)
660 len2
= strlen (suffix
);
661 return (len1
>= len2
&& strcmp (str
+ len1
- len2
, suffix
) == 0);
664 /* The contents of value VAL, treated as a value of type TYPE. The
665 result is an lval in memory if VAL is. */
667 static struct value
*
668 coerce_unspec_val_to_type (struct value
*val
, struct type
*type
)
670 type
= ada_check_typedef (type
);
671 if (value_type (val
) == type
)
675 struct value
*result
;
677 /* Make sure that the object size is not unreasonable before
678 trying to allocate some memory for it. */
679 ada_ensure_varsize_limit (type
);
682 || TYPE_LENGTH (type
) > TYPE_LENGTH (value_type (val
)))
683 result
= allocate_value_lazy (type
);
686 result
= allocate_value (type
);
687 value_contents_copy_raw (result
, 0, val
, 0, TYPE_LENGTH (type
));
689 set_value_component_location (result
, val
);
690 set_value_bitsize (result
, value_bitsize (val
));
691 set_value_bitpos (result
, value_bitpos (val
));
692 set_value_address (result
, value_address (val
));
697 static const gdb_byte
*
698 cond_offset_host (const gdb_byte
*valaddr
, long offset
)
703 return valaddr
+ offset
;
707 cond_offset_target (CORE_ADDR address
, long offset
)
712 return address
+ offset
;
715 /* Issue a warning (as for the definition of warning in utils.c, but
716 with exactly one argument rather than ...), unless the limit on the
717 number of warnings has passed during the evaluation of the current
720 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
721 provided by "complaint". */
722 static void lim_warning (const char *format
, ...) ATTRIBUTE_PRINTF (1, 2);
725 lim_warning (const char *format
, ...)
729 va_start (args
, format
);
730 warnings_issued
+= 1;
731 if (warnings_issued
<= warning_limit
)
732 vwarning (format
, args
);
737 /* Issue an error if the size of an object of type T is unreasonable,
738 i.e. if it would be a bad idea to allocate a value of this type in
742 ada_ensure_varsize_limit (const struct type
*type
)
744 if (TYPE_LENGTH (type
) > varsize_limit
)
745 error (_("object size is larger than varsize-limit"));
748 /* Maximum value of a SIZE-byte signed integer type. */
750 max_of_size (int size
)
752 LONGEST top_bit
= (LONGEST
) 1 << (size
* 8 - 2);
754 return top_bit
| (top_bit
- 1);
757 /* Minimum value of a SIZE-byte signed integer type. */
759 min_of_size (int size
)
761 return -max_of_size (size
) - 1;
764 /* Maximum value of a SIZE-byte unsigned integer type. */
766 umax_of_size (int size
)
768 ULONGEST top_bit
= (ULONGEST
) 1 << (size
* 8 - 1);
770 return top_bit
| (top_bit
- 1);
773 /* Maximum value of integral type T, as a signed quantity. */
775 max_of_type (struct type
*t
)
777 if (TYPE_UNSIGNED (t
))
778 return (LONGEST
) umax_of_size (TYPE_LENGTH (t
));
780 return max_of_size (TYPE_LENGTH (t
));
783 /* Minimum value of integral type T, as a signed quantity. */
785 min_of_type (struct type
*t
)
787 if (TYPE_UNSIGNED (t
))
790 return min_of_size (TYPE_LENGTH (t
));
793 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
795 ada_discrete_type_high_bound (struct type
*type
)
797 type
= resolve_dynamic_type (type
, NULL
, 0);
798 switch (TYPE_CODE (type
))
800 case TYPE_CODE_RANGE
:
801 return TYPE_HIGH_BOUND (type
);
803 return TYPE_FIELD_ENUMVAL (type
, TYPE_NFIELDS (type
) - 1);
808 return max_of_type (type
);
810 error (_("Unexpected type in ada_discrete_type_high_bound."));
814 /* The smallest value in the domain of TYPE, a discrete type, as an integer. */
816 ada_discrete_type_low_bound (struct type
*type
)
818 type
= resolve_dynamic_type (type
, NULL
, 0);
819 switch (TYPE_CODE (type
))
821 case TYPE_CODE_RANGE
:
822 return TYPE_LOW_BOUND (type
);
824 return TYPE_FIELD_ENUMVAL (type
, 0);
829 return min_of_type (type
);
831 error (_("Unexpected type in ada_discrete_type_low_bound."));
835 /* The identity on non-range types. For range types, the underlying
836 non-range scalar type. */
839 get_base_type (struct type
*type
)
841 while (type
!= NULL
&& TYPE_CODE (type
) == TYPE_CODE_RANGE
)
843 if (type
== TYPE_TARGET_TYPE (type
) || TYPE_TARGET_TYPE (type
) == NULL
)
845 type
= TYPE_TARGET_TYPE (type
);
850 /* Return a decoded version of the given VALUE. This means returning
851 a value whose type is obtained by applying all the GNAT-specific
852 encondings, making the resulting type a static but standard description
853 of the initial type. */
856 ada_get_decoded_value (struct value
*value
)
858 struct type
*type
= ada_check_typedef (value_type (value
));
860 if (ada_is_array_descriptor_type (type
)
861 || (ada_is_constrained_packed_array_type (type
)
862 && TYPE_CODE (type
) != TYPE_CODE_PTR
))
864 if (TYPE_CODE (type
) == TYPE_CODE_TYPEDEF
) /* array access type. */
865 value
= ada_coerce_to_simple_array_ptr (value
);
867 value
= ada_coerce_to_simple_array (value
);
870 value
= ada_to_fixed_value (value
);
875 /* Same as ada_get_decoded_value, but with the given TYPE.
876 Because there is no associated actual value for this type,
877 the resulting type might be a best-effort approximation in
878 the case of dynamic types. */
881 ada_get_decoded_type (struct type
*type
)
883 type
= to_static_fixed_type (type
);
884 if (ada_is_constrained_packed_array_type (type
))
885 type
= ada_coerce_to_simple_array_type (type
);
891 /* Language Selection */
893 /* If the main program is in Ada, return language_ada, otherwise return LANG
894 (the main program is in Ada iif the adainit symbol is found). */
897 ada_update_initial_language (enum language lang
)
899 if (lookup_minimal_symbol ("adainit", (const char *) NULL
,
900 (struct objfile
*) NULL
).minsym
!= NULL
)
906 /* If the main procedure is written in Ada, then return its name.
907 The result is good until the next call. Return NULL if the main
908 procedure doesn't appear to be in Ada. */
913 struct bound_minimal_symbol msym
;
914 static char *main_program_name
= NULL
;
916 /* For Ada, the name of the main procedure is stored in a specific
917 string constant, generated by the binder. Look for that symbol,
918 extract its address, and then read that string. If we didn't find
919 that string, then most probably the main procedure is not written
921 msym
= lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME
, NULL
, NULL
);
923 if (msym
.minsym
!= NULL
)
925 CORE_ADDR main_program_name_addr
;
928 main_program_name_addr
= BMSYMBOL_VALUE_ADDRESS (msym
);
929 if (main_program_name_addr
== 0)
930 error (_("Invalid address for Ada main program name."));
932 xfree (main_program_name
);
933 target_read_string (main_program_name_addr
, &main_program_name
,
938 return main_program_name
;
941 /* The main procedure doesn't seem to be in Ada. */
947 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
950 const struct ada_opname_map ada_opname_table
[] = {
951 {"Oadd", "\"+\"", BINOP_ADD
},
952 {"Osubtract", "\"-\"", BINOP_SUB
},
953 {"Omultiply", "\"*\"", BINOP_MUL
},
954 {"Odivide", "\"/\"", BINOP_DIV
},
955 {"Omod", "\"mod\"", BINOP_MOD
},
956 {"Orem", "\"rem\"", BINOP_REM
},
957 {"Oexpon", "\"**\"", BINOP_EXP
},
958 {"Olt", "\"<\"", BINOP_LESS
},
959 {"Ole", "\"<=\"", BINOP_LEQ
},
960 {"Ogt", "\">\"", BINOP_GTR
},
961 {"Oge", "\">=\"", BINOP_GEQ
},
962 {"Oeq", "\"=\"", BINOP_EQUAL
},
963 {"One", "\"/=\"", BINOP_NOTEQUAL
},
964 {"Oand", "\"and\"", BINOP_BITWISE_AND
},
965 {"Oor", "\"or\"", BINOP_BITWISE_IOR
},
966 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR
},
967 {"Oconcat", "\"&\"", BINOP_CONCAT
},
968 {"Oabs", "\"abs\"", UNOP_ABS
},
969 {"Onot", "\"not\"", UNOP_LOGICAL_NOT
},
970 {"Oadd", "\"+\"", UNOP_PLUS
},
971 {"Osubtract", "\"-\"", UNOP_NEG
},
975 /* The "encoded" form of DECODED, according to GNAT conventions.
976 The result is valid until the next call to ada_encode. */
979 ada_encode (const char *decoded
)
981 static char *encoding_buffer
= NULL
;
982 static size_t encoding_buffer_size
= 0;
989 GROW_VECT (encoding_buffer
, encoding_buffer_size
,
990 2 * strlen (decoded
) + 10);
993 for (p
= decoded
; *p
!= '\0'; p
+= 1)
997 encoding_buffer
[k
] = encoding_buffer
[k
+ 1] = '_';
1002 const struct ada_opname_map
*mapping
;
1004 for (mapping
= ada_opname_table
;
1005 mapping
->encoded
!= NULL
1006 && !startswith (p
, mapping
->decoded
); mapping
+= 1)
1008 if (mapping
->encoded
== NULL
)
1009 error (_("invalid Ada operator name: %s"), p
);
1010 strcpy (encoding_buffer
+ k
, mapping
->encoded
);
1011 k
+= strlen (mapping
->encoded
);
1016 encoding_buffer
[k
] = *p
;
1021 encoding_buffer
[k
] = '\0';
1022 return encoding_buffer
;
1025 /* Return NAME folded to lower case, or, if surrounded by single
1026 quotes, unfolded, but with the quotes stripped away. Result good
1030 ada_fold_name (const char *name
)
1032 static char *fold_buffer
= NULL
;
1033 static size_t fold_buffer_size
= 0;
1035 int len
= strlen (name
);
1036 GROW_VECT (fold_buffer
, fold_buffer_size
, len
+ 1);
1038 if (name
[0] == '\'')
1040 strncpy (fold_buffer
, name
+ 1, len
- 2);
1041 fold_buffer
[len
- 2] = '\000';
1047 for (i
= 0; i
<= len
; i
+= 1)
1048 fold_buffer
[i
] = tolower (name
[i
]);
1054 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
1057 is_lower_alphanum (const char c
)
1059 return (isdigit (c
) || (isalpha (c
) && islower (c
)));
1062 /* ENCODED is the linkage name of a symbol and LEN contains its length.
1063 This function saves in LEN the length of that same symbol name but
1064 without either of these suffixes:
1070 These are suffixes introduced by the compiler for entities such as
1071 nested subprogram for instance, in order to avoid name clashes.
1072 They do not serve any purpose for the debugger. */
1075 ada_remove_trailing_digits (const char *encoded
, int *len
)
1077 if (*len
> 1 && isdigit (encoded
[*len
- 1]))
1081 while (i
> 0 && isdigit (encoded
[i
]))
1083 if (i
>= 0 && encoded
[i
] == '.')
1085 else if (i
>= 0 && encoded
[i
] == '$')
1087 else if (i
>= 2 && startswith (encoded
+ i
- 2, "___"))
1089 else if (i
>= 1 && startswith (encoded
+ i
- 1, "__"))
1094 /* Remove the suffix introduced by the compiler for protected object
1098 ada_remove_po_subprogram_suffix (const char *encoded
, int *len
)
1100 /* Remove trailing N. */
1102 /* Protected entry subprograms are broken into two
1103 separate subprograms: The first one is unprotected, and has
1104 a 'N' suffix; the second is the protected version, and has
1105 the 'P' suffix. The second calls the first one after handling
1106 the protection. Since the P subprograms are internally generated,
1107 we leave these names undecoded, giving the user a clue that this
1108 entity is internal. */
1111 && encoded
[*len
- 1] == 'N'
1112 && (isdigit (encoded
[*len
- 2]) || islower (encoded
[*len
- 2])))
1116 /* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
1119 ada_remove_Xbn_suffix (const char *encoded
, int *len
)
1123 while (i
> 0 && (encoded
[i
] == 'b' || encoded
[i
] == 'n'))
1126 if (encoded
[i
] != 'X')
1132 if (isalnum (encoded
[i
-1]))
1136 /* If ENCODED follows the GNAT entity encoding conventions, then return
1137 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1138 replaced by ENCODED.
1140 The resulting string is valid until the next call of ada_decode.
1141 If the string is unchanged by decoding, the original string pointer
1145 ada_decode (const char *encoded
)
1152 static char *decoding_buffer
= NULL
;
1153 static size_t decoding_buffer_size
= 0;
1155 /* The name of the Ada main procedure starts with "_ada_".
1156 This prefix is not part of the decoded name, so skip this part
1157 if we see this prefix. */
1158 if (startswith (encoded
, "_ada_"))
1161 /* If the name starts with '_', then it is not a properly encoded
1162 name, so do not attempt to decode it. Similarly, if the name
1163 starts with '<', the name should not be decoded. */
1164 if (encoded
[0] == '_' || encoded
[0] == '<')
1167 len0
= strlen (encoded
);
1169 ada_remove_trailing_digits (encoded
, &len0
);
1170 ada_remove_po_subprogram_suffix (encoded
, &len0
);
1172 /* Remove the ___X.* suffix if present. Do not forget to verify that
1173 the suffix is located before the current "end" of ENCODED. We want
1174 to avoid re-matching parts of ENCODED that have previously been
1175 marked as discarded (by decrementing LEN0). */
1176 p
= strstr (encoded
, "___");
1177 if (p
!= NULL
&& p
- encoded
< len0
- 3)
1185 /* Remove any trailing TKB suffix. It tells us that this symbol
1186 is for the body of a task, but that information does not actually
1187 appear in the decoded name. */
1189 if (len0
> 3 && startswith (encoded
+ len0
- 3, "TKB"))
1192 /* Remove any trailing TB suffix. The TB suffix is slightly different
1193 from the TKB suffix because it is used for non-anonymous task
1196 if (len0
> 2 && startswith (encoded
+ len0
- 2, "TB"))
1199 /* Remove trailing "B" suffixes. */
1200 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1202 if (len0
> 1 && startswith (encoded
+ len0
- 1, "B"))
1205 /* Make decoded big enough for possible expansion by operator name. */
1207 GROW_VECT (decoding_buffer
, decoding_buffer_size
, 2 * len0
+ 1);
1208 decoded
= decoding_buffer
;
1210 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1212 if (len0
> 1 && isdigit (encoded
[len0
- 1]))
1215 while ((i
>= 0 && isdigit (encoded
[i
]))
1216 || (i
>= 1 && encoded
[i
] == '_' && isdigit (encoded
[i
- 1])))
1218 if (i
> 1 && encoded
[i
] == '_' && encoded
[i
- 1] == '_')
1220 else if (encoded
[i
] == '$')
1224 /* The first few characters that are not alphabetic are not part
1225 of any encoding we use, so we can copy them over verbatim. */
1227 for (i
= 0, j
= 0; i
< len0
&& !isalpha (encoded
[i
]); i
+= 1, j
+= 1)
1228 decoded
[j
] = encoded
[i
];
1233 /* Is this a symbol function? */
1234 if (at_start_name
&& encoded
[i
] == 'O')
1238 for (k
= 0; ada_opname_table
[k
].encoded
!= NULL
; k
+= 1)
1240 int op_len
= strlen (ada_opname_table
[k
].encoded
);
1241 if ((strncmp (ada_opname_table
[k
].encoded
+ 1, encoded
+ i
+ 1,
1243 && !isalnum (encoded
[i
+ op_len
]))
1245 strcpy (decoded
+ j
, ada_opname_table
[k
].decoded
);
1248 j
+= strlen (ada_opname_table
[k
].decoded
);
1252 if (ada_opname_table
[k
].encoded
!= NULL
)
1257 /* Replace "TK__" with "__", which will eventually be translated
1258 into "." (just below). */
1260 if (i
< len0
- 4 && startswith (encoded
+ i
, "TK__"))
1263 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1264 be translated into "." (just below). These are internal names
1265 generated for anonymous blocks inside which our symbol is nested. */
1267 if (len0
- i
> 5 && encoded
[i
] == '_' && encoded
[i
+1] == '_'
1268 && encoded
[i
+2] == 'B' && encoded
[i
+3] == '_'
1269 && isdigit (encoded
[i
+4]))
1273 while (k
< len0
&& isdigit (encoded
[k
]))
1274 k
++; /* Skip any extra digit. */
1276 /* Double-check that the "__B_{DIGITS}+" sequence we found
1277 is indeed followed by "__". */
1278 if (len0
- k
> 2 && encoded
[k
] == '_' && encoded
[k
+1] == '_')
1282 /* Remove _E{DIGITS}+[sb] */
1284 /* Just as for protected object subprograms, there are 2 categories
1285 of subprograms created by the compiler for each entry. The first
1286 one implements the actual entry code, and has a suffix following
1287 the convention above; the second one implements the barrier and
1288 uses the same convention as above, except that the 'E' is replaced
1291 Just as above, we do not decode the name of barrier functions
1292 to give the user a clue that the code he is debugging has been
1293 internally generated. */
1295 if (len0
- i
> 3 && encoded
[i
] == '_' && encoded
[i
+1] == 'E'
1296 && isdigit (encoded
[i
+2]))
1300 while (k
< len0
&& isdigit (encoded
[k
]))
1304 && (encoded
[k
] == 'b' || encoded
[k
] == 's'))
1307 /* Just as an extra precaution, make sure that if this
1308 suffix is followed by anything else, it is a '_'.
1309 Otherwise, we matched this sequence by accident. */
1311 || (k
< len0
&& encoded
[k
] == '_'))
1316 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1317 the GNAT front-end in protected object subprograms. */
1320 && encoded
[i
] == 'N' && encoded
[i
+1] == '_' && encoded
[i
+2] == '_')
1322 /* Backtrack a bit up until we reach either the begining of
1323 the encoded name, or "__". Make sure that we only find
1324 digits or lowercase characters. */
1325 const char *ptr
= encoded
+ i
- 1;
1327 while (ptr
>= encoded
&& is_lower_alphanum (ptr
[0]))
1330 || (ptr
> encoded
&& ptr
[0] == '_' && ptr
[-1] == '_'))
1334 if (encoded
[i
] == 'X' && i
!= 0 && isalnum (encoded
[i
- 1]))
1336 /* This is a X[bn]* sequence not separated from the previous
1337 part of the name with a non-alpha-numeric character (in other
1338 words, immediately following an alpha-numeric character), then
1339 verify that it is placed at the end of the encoded name. If
1340 not, then the encoding is not valid and we should abort the
1341 decoding. Otherwise, just skip it, it is used in body-nested
1345 while (i
< len0
&& (encoded
[i
] == 'b' || encoded
[i
] == 'n'));
1349 else if (i
< len0
- 2 && encoded
[i
] == '_' && encoded
[i
+ 1] == '_')
1351 /* Replace '__' by '.'. */
1359 /* It's a character part of the decoded name, so just copy it
1361 decoded
[j
] = encoded
[i
];
1366 decoded
[j
] = '\000';
1368 /* Decoded names should never contain any uppercase character.
1369 Double-check this, and abort the decoding if we find one. */
1371 for (i
= 0; decoded
[i
] != '\0'; i
+= 1)
1372 if (isupper (decoded
[i
]) || decoded
[i
] == ' ')
1375 if (strcmp (decoded
, encoded
) == 0)
1381 GROW_VECT (decoding_buffer
, decoding_buffer_size
, strlen (encoded
) + 3);
1382 decoded
= decoding_buffer
;
1383 if (encoded
[0] == '<')
1384 strcpy (decoded
, encoded
);
1386 xsnprintf (decoded
, decoding_buffer_size
, "<%s>", encoded
);
1391 /* Table for keeping permanent unique copies of decoded names. Once
1392 allocated, names in this table are never released. While this is a
1393 storage leak, it should not be significant unless there are massive
1394 changes in the set of decoded names in successive versions of a
1395 symbol table loaded during a single session. */
1396 static struct htab
*decoded_names_store
;
1398 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1399 in the language-specific part of GSYMBOL, if it has not been
1400 previously computed. Tries to save the decoded name in the same
1401 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1402 in any case, the decoded symbol has a lifetime at least that of
1404 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1405 const, but nevertheless modified to a semantically equivalent form
1406 when a decoded name is cached in it. */
1409 ada_decode_symbol (const struct general_symbol_info
*arg
)
1411 struct general_symbol_info
*gsymbol
= (struct general_symbol_info
*) arg
;
1412 const char **resultp
=
1413 &gsymbol
->language_specific
.mangled_lang
.demangled_name
;
1415 if (!gsymbol
->ada_mangled
)
1417 const char *decoded
= ada_decode (gsymbol
->name
);
1418 struct obstack
*obstack
= gsymbol
->language_specific
.obstack
;
1420 gsymbol
->ada_mangled
= 1;
1422 if (obstack
!= NULL
)
1423 *resultp
= obstack_copy0 (obstack
, decoded
, strlen (decoded
));
1426 /* Sometimes, we can't find a corresponding objfile, in
1427 which case, we put the result on the heap. Since we only
1428 decode when needed, we hope this usually does not cause a
1429 significant memory leak (FIXME). */
1431 char **slot
= (char **) htab_find_slot (decoded_names_store
,
1435 *slot
= xstrdup (decoded
);
1444 ada_la_decode (const char *encoded
, int options
)
1446 return xstrdup (ada_decode (encoded
));
1449 /* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
1450 suffixes that encode debugging information or leading _ada_ on
1451 SYM_NAME (see is_name_suffix commentary for the debugging
1452 information that is ignored). If WILD, then NAME need only match a
1453 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1454 either argument is NULL. */
1457 match_name (const char *sym_name
, const char *name
, int wild
)
1459 if (sym_name
== NULL
|| name
== NULL
)
1462 return wild_match (sym_name
, name
) == 0;
1465 int len_name
= strlen (name
);
1467 return (strncmp (sym_name
, name
, len_name
) == 0
1468 && is_name_suffix (sym_name
+ len_name
))
1469 || (startswith (sym_name
, "_ada_")
1470 && strncmp (sym_name
+ 5, name
, len_name
) == 0
1471 && is_name_suffix (sym_name
+ len_name
+ 5));
1478 /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1479 generated by the GNAT compiler to describe the index type used
1480 for each dimension of an array, check whether it follows the latest
1481 known encoding. If not, fix it up to conform to the latest encoding.
1482 Otherwise, do nothing. This function also does nothing if
1483 INDEX_DESC_TYPE is NULL.
1485 The GNAT encoding used to describle the array index type evolved a bit.
1486 Initially, the information would be provided through the name of each
1487 field of the structure type only, while the type of these fields was
1488 described as unspecified and irrelevant. The debugger was then expected
1489 to perform a global type lookup using the name of that field in order
1490 to get access to the full index type description. Because these global
1491 lookups can be very expensive, the encoding was later enhanced to make
1492 the global lookup unnecessary by defining the field type as being
1493 the full index type description.
1495 The purpose of this routine is to allow us to support older versions
1496 of the compiler by detecting the use of the older encoding, and by
1497 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1498 we essentially replace each field's meaningless type by the associated
1502 ada_fixup_array_indexes_type (struct type
*index_desc_type
)
1506 if (index_desc_type
== NULL
)
1508 gdb_assert (TYPE_NFIELDS (index_desc_type
) > 0);
1510 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1511 to check one field only, no need to check them all). If not, return
1514 If our INDEX_DESC_TYPE was generated using the older encoding,
1515 the field type should be a meaningless integer type whose name
1516 is not equal to the field name. */
1517 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type
, 0)) != NULL
1518 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type
, 0)),
1519 TYPE_FIELD_NAME (index_desc_type
, 0)) == 0)
1522 /* Fixup each field of INDEX_DESC_TYPE. */
1523 for (i
= 0; i
< TYPE_NFIELDS (index_desc_type
); i
++)
1525 const char *name
= TYPE_FIELD_NAME (index_desc_type
, i
);
1526 struct type
*raw_type
= ada_check_typedef (ada_find_any_type (name
));
1529 TYPE_FIELD_TYPE (index_desc_type
, i
) = raw_type
;
1533 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1535 static char *bound_name
[] = {
1536 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1537 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1540 /* Maximum number of array dimensions we are prepared to handle. */
1542 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1545 /* The desc_* routines return primitive portions of array descriptors
1548 /* The descriptor or array type, if any, indicated by TYPE; removes
1549 level of indirection, if needed. */
1551 static struct type
*
1552 desc_base_type (struct type
*type
)
1556 type
= ada_check_typedef (type
);
1557 if (TYPE_CODE (type
) == TYPE_CODE_TYPEDEF
)
1558 type
= ada_typedef_target_type (type
);
1561 && (TYPE_CODE (type
) == TYPE_CODE_PTR
1562 || TYPE_CODE (type
) == TYPE_CODE_REF
))
1563 return ada_check_typedef (TYPE_TARGET_TYPE (type
));
1568 /* True iff TYPE indicates a "thin" array pointer type. */
1571 is_thin_pntr (struct type
*type
)
1574 is_suffix (ada_type_name (desc_base_type (type
)), "___XUT")
1575 || is_suffix (ada_type_name (desc_base_type (type
)), "___XUT___XVE");
1578 /* The descriptor type for thin pointer type TYPE. */
1580 static struct type
*
1581 thin_descriptor_type (struct type
*type
)
1583 struct type
*base_type
= desc_base_type (type
);
1585 if (base_type
== NULL
)
1587 if (is_suffix (ada_type_name (base_type
), "___XVE"))
1591 struct type
*alt_type
= ada_find_parallel_type (base_type
, "___XVE");
1593 if (alt_type
== NULL
)
1600 /* A pointer to the array data for thin-pointer value VAL. */
1602 static struct value
*
1603 thin_data_pntr (struct value
*val
)
1605 struct type
*type
= ada_check_typedef (value_type (val
));
1606 struct type
*data_type
= desc_data_target_type (thin_descriptor_type (type
));
1608 data_type
= lookup_pointer_type (data_type
);
1610 if (TYPE_CODE (type
) == TYPE_CODE_PTR
)
1611 return value_cast (data_type
, value_copy (val
));
1613 return value_from_longest (data_type
, value_address (val
));
1616 /* True iff TYPE indicates a "thick" array pointer type. */
1619 is_thick_pntr (struct type
*type
)
1621 type
= desc_base_type (type
);
1622 return (type
!= NULL
&& TYPE_CODE (type
) == TYPE_CODE_STRUCT
1623 && lookup_struct_elt_type (type
, "P_BOUNDS", 1) != NULL
);
1626 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1627 pointer to one, the type of its bounds data; otherwise, NULL. */
1629 static struct type
*
1630 desc_bounds_type (struct type
*type
)
1634 type
= desc_base_type (type
);
1638 else if (is_thin_pntr (type
))
1640 type
= thin_descriptor_type (type
);
1643 r
= lookup_struct_elt_type (type
, "BOUNDS", 1);
1645 return ada_check_typedef (r
);
1647 else if (TYPE_CODE (type
) == TYPE_CODE_STRUCT
)
1649 r
= lookup_struct_elt_type (type
, "P_BOUNDS", 1);
1651 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r
)));
1656 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1657 one, a pointer to its bounds data. Otherwise NULL. */
1659 static struct value
*
1660 desc_bounds (struct value
*arr
)
1662 struct type
*type
= ada_check_typedef (value_type (arr
));
1664 if (is_thin_pntr (type
))
1666 struct type
*bounds_type
=
1667 desc_bounds_type (thin_descriptor_type (type
));
1670 if (bounds_type
== NULL
)
1671 error (_("Bad GNAT array descriptor"));
1673 /* NOTE: The following calculation is not really kosher, but
1674 since desc_type is an XVE-encoded type (and shouldn't be),
1675 the correct calculation is a real pain. FIXME (and fix GCC). */
1676 if (TYPE_CODE (type
) == TYPE_CODE_PTR
)
1677 addr
= value_as_long (arr
);
1679 addr
= value_address (arr
);
1682 value_from_longest (lookup_pointer_type (bounds_type
),
1683 addr
- TYPE_LENGTH (bounds_type
));
1686 else if (is_thick_pntr (type
))
1688 struct value
*p_bounds
= value_struct_elt (&arr
, NULL
, "P_BOUNDS", NULL
,
1689 _("Bad GNAT array descriptor"));
1690 struct type
*p_bounds_type
= value_type (p_bounds
);
1693 && TYPE_CODE (p_bounds_type
) == TYPE_CODE_PTR
)
1695 struct type
*target_type
= TYPE_TARGET_TYPE (p_bounds_type
);
1697 if (TYPE_STUB (target_type
))
1698 p_bounds
= value_cast (lookup_pointer_type
1699 (ada_check_typedef (target_type
)),
1703 error (_("Bad GNAT array descriptor"));
1711 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1712 position of the field containing the address of the bounds data. */
1715 fat_pntr_bounds_bitpos (struct type
*type
)
1717 return TYPE_FIELD_BITPOS (desc_base_type (type
), 1);
1720 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1721 size of the field containing the address of the bounds data. */
1724 fat_pntr_bounds_bitsize (struct type
*type
)
1726 type
= desc_base_type (type
);
1728 if (TYPE_FIELD_BITSIZE (type
, 1) > 0)
1729 return TYPE_FIELD_BITSIZE (type
, 1);
1731 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type
, 1)));
1734 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1735 pointer to one, the type of its array data (a array-with-no-bounds type);
1736 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1739 static struct type
*
1740 desc_data_target_type (struct type
*type
)
1742 type
= desc_base_type (type
);
1744 /* NOTE: The following is bogus; see comment in desc_bounds. */
1745 if (is_thin_pntr (type
))
1746 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type
), 1));
1747 else if (is_thick_pntr (type
))
1749 struct type
*data_type
= lookup_struct_elt_type (type
, "P_ARRAY", 1);
1752 && TYPE_CODE (ada_check_typedef (data_type
)) == TYPE_CODE_PTR
)
1753 return ada_check_typedef (TYPE_TARGET_TYPE (data_type
));
1759 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1762 static struct value
*
1763 desc_data (struct value
*arr
)
1765 struct type
*type
= value_type (arr
);
1767 if (is_thin_pntr (type
))
1768 return thin_data_pntr (arr
);
1769 else if (is_thick_pntr (type
))
1770 return value_struct_elt (&arr
, NULL
, "P_ARRAY", NULL
,
1771 _("Bad GNAT array descriptor"));
1777 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1778 position of the field containing the address of the data. */
1781 fat_pntr_data_bitpos (struct type
*type
)
1783 return TYPE_FIELD_BITPOS (desc_base_type (type
), 0);
1786 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1787 size of the field containing the address of the data. */
1790 fat_pntr_data_bitsize (struct type
*type
)
1792 type
= desc_base_type (type
);
1794 if (TYPE_FIELD_BITSIZE (type
, 0) > 0)
1795 return TYPE_FIELD_BITSIZE (type
, 0);
1797 return TARGET_CHAR_BIT
* TYPE_LENGTH (TYPE_FIELD_TYPE (type
, 0));
1800 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1801 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1802 bound, if WHICH is 1. The first bound is I=1. */
1804 static struct value
*
1805 desc_one_bound (struct value
*bounds
, int i
, int which
)
1807 return value_struct_elt (&bounds
, NULL
, bound_name
[2 * i
+ which
- 2], NULL
,
1808 _("Bad GNAT array descriptor bounds"));
1811 /* If BOUNDS is an array-bounds structure type, return the bit position
1812 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1813 bound, if WHICH is 1. The first bound is I=1. */
1816 desc_bound_bitpos (struct type
*type
, int i
, int which
)
1818 return TYPE_FIELD_BITPOS (desc_base_type (type
), 2 * i
+ which
- 2);
1821 /* If BOUNDS is an array-bounds structure type, return the bit field size
1822 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1823 bound, if WHICH is 1. The first bound is I=1. */
1826 desc_bound_bitsize (struct type
*type
, int i
, int which
)
1828 type
= desc_base_type (type
);
1830 if (TYPE_FIELD_BITSIZE (type
, 2 * i
+ which
- 2) > 0)
1831 return TYPE_FIELD_BITSIZE (type
, 2 * i
+ which
- 2);
1833 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type
, 2 * i
+ which
- 2));
1836 /* If TYPE is the type of an array-bounds structure, the type of its
1837 Ith bound (numbering from 1). Otherwise, NULL. */
1839 static struct type
*
1840 desc_index_type (struct type
*type
, int i
)
1842 type
= desc_base_type (type
);
1844 if (TYPE_CODE (type
) == TYPE_CODE_STRUCT
)
1845 return lookup_struct_elt_type (type
, bound_name
[2 * i
- 2], 1);
1850 /* The number of index positions in the array-bounds type TYPE.
1851 Return 0 if TYPE is NULL. */
1854 desc_arity (struct type
*type
)
1856 type
= desc_base_type (type
);
1859 return TYPE_NFIELDS (type
) / 2;
1863 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1864 an array descriptor type (representing an unconstrained array
1868 ada_is_direct_array_type (struct type
*type
)
1872 type
= ada_check_typedef (type
);
1873 return (TYPE_CODE (type
) == TYPE_CODE_ARRAY
1874 || ada_is_array_descriptor_type (type
));
1877 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1881 ada_is_array_type (struct type
*type
)
1884 && (TYPE_CODE (type
) == TYPE_CODE_PTR
1885 || TYPE_CODE (type
) == TYPE_CODE_REF
))
1886 type
= TYPE_TARGET_TYPE (type
);
1887 return ada_is_direct_array_type (type
);
1890 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1893 ada_is_simple_array_type (struct type
*type
)
1897 type
= ada_check_typedef (type
);
1898 return (TYPE_CODE (type
) == TYPE_CODE_ARRAY
1899 || (TYPE_CODE (type
) == TYPE_CODE_PTR
1900 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type
)))
1901 == TYPE_CODE_ARRAY
));
1904 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1907 ada_is_array_descriptor_type (struct type
*type
)
1909 struct type
*data_type
= desc_data_target_type (type
);
1913 type
= ada_check_typedef (type
);
1914 return (data_type
!= NULL
1915 && TYPE_CODE (data_type
) == TYPE_CODE_ARRAY
1916 && desc_arity (desc_bounds_type (type
)) > 0);
1919 /* Non-zero iff type is a partially mal-formed GNAT array
1920 descriptor. FIXME: This is to compensate for some problems with
1921 debugging output from GNAT. Re-examine periodically to see if it
1925 ada_is_bogus_array_descriptor (struct type
*type
)
1929 && TYPE_CODE (type
) == TYPE_CODE_STRUCT
1930 && (lookup_struct_elt_type (type
, "P_BOUNDS", 1) != NULL
1931 || lookup_struct_elt_type (type
, "P_ARRAY", 1) != NULL
)
1932 && !ada_is_array_descriptor_type (type
);
1936 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1937 (fat pointer) returns the type of the array data described---specifically,
1938 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1939 in from the descriptor; otherwise, they are left unspecified. If
1940 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1941 returns NULL. The result is simply the type of ARR if ARR is not
1944 ada_type_of_array (struct value
*arr
, int bounds
)
1946 if (ada_is_constrained_packed_array_type (value_type (arr
)))
1947 return decode_constrained_packed_array_type (value_type (arr
));
1949 if (!ada_is_array_descriptor_type (value_type (arr
)))
1950 return value_type (arr
);
1954 struct type
*array_type
=
1955 ada_check_typedef (desc_data_target_type (value_type (arr
)));
1957 if (ada_is_unconstrained_packed_array_type (value_type (arr
)))
1958 TYPE_FIELD_BITSIZE (array_type
, 0) =
1959 decode_packed_array_bitsize (value_type (arr
));
1965 struct type
*elt_type
;
1967 struct value
*descriptor
;
1969 elt_type
= ada_array_element_type (value_type (arr
), -1);
1970 arity
= ada_array_arity (value_type (arr
));
1972 if (elt_type
== NULL
|| arity
== 0)
1973 return ada_check_typedef (value_type (arr
));
1975 descriptor
= desc_bounds (arr
);
1976 if (value_as_long (descriptor
) == 0)
1980 struct type
*range_type
= alloc_type_copy (value_type (arr
));
1981 struct type
*array_type
= alloc_type_copy (value_type (arr
));
1982 struct value
*low
= desc_one_bound (descriptor
, arity
, 0);
1983 struct value
*high
= desc_one_bound (descriptor
, arity
, 1);
1986 create_static_range_type (range_type
, value_type (low
),
1987 longest_to_int (value_as_long (low
)),
1988 longest_to_int (value_as_long (high
)));
1989 elt_type
= create_array_type (array_type
, elt_type
, range_type
);
1991 if (ada_is_unconstrained_packed_array_type (value_type (arr
)))
1993 /* We need to store the element packed bitsize, as well as
1994 recompute the array size, because it was previously
1995 computed based on the unpacked element size. */
1996 LONGEST lo
= value_as_long (low
);
1997 LONGEST hi
= value_as_long (high
);
1999 TYPE_FIELD_BITSIZE (elt_type
, 0) =
2000 decode_packed_array_bitsize (value_type (arr
));
2001 /* If the array has no element, then the size is already
2002 zero, and does not need to be recomputed. */
2006 (hi
- lo
+ 1) * TYPE_FIELD_BITSIZE (elt_type
, 0);
2008 TYPE_LENGTH (array_type
) = (array_bitsize
+ 7) / 8;
2013 return lookup_pointer_type (elt_type
);
2017 /* If ARR does not represent an array, returns ARR unchanged.
2018 Otherwise, returns either a standard GDB array with bounds set
2019 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
2020 GDB array. Returns NULL if ARR is a null fat pointer. */
2023 ada_coerce_to_simple_array_ptr (struct value
*arr
)
2025 if (ada_is_array_descriptor_type (value_type (arr
)))
2027 struct type
*arrType
= ada_type_of_array (arr
, 1);
2029 if (arrType
== NULL
)
2031 return value_cast (arrType
, value_copy (desc_data (arr
)));
2033 else if (ada_is_constrained_packed_array_type (value_type (arr
)))
2034 return decode_constrained_packed_array (arr
);
2039 /* If ARR does not represent an array, returns ARR unchanged.
2040 Otherwise, returns a standard GDB array describing ARR (which may
2041 be ARR itself if it already is in the proper form). */
2044 ada_coerce_to_simple_array (struct value
*arr
)
2046 if (ada_is_array_descriptor_type (value_type (arr
)))
2048 struct value
*arrVal
= ada_coerce_to_simple_array_ptr (arr
);
2051 error (_("Bounds unavailable for null array pointer."));
2052 ada_ensure_varsize_limit (TYPE_TARGET_TYPE (value_type (arrVal
)));
2053 return value_ind (arrVal
);
2055 else if (ada_is_constrained_packed_array_type (value_type (arr
)))
2056 return decode_constrained_packed_array (arr
);
2061 /* If TYPE represents a GNAT array type, return it translated to an
2062 ordinary GDB array type (possibly with BITSIZE fields indicating
2063 packing). For other types, is the identity. */
2066 ada_coerce_to_simple_array_type (struct type
*type
)
2068 if (ada_is_constrained_packed_array_type (type
))
2069 return decode_constrained_packed_array_type (type
);
2071 if (ada_is_array_descriptor_type (type
))
2072 return ada_check_typedef (desc_data_target_type (type
));
2077 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
2080 ada_is_packed_array_type (struct type
*type
)
2084 type
= desc_base_type (type
);
2085 type
= ada_check_typedef (type
);
2087 ada_type_name (type
) != NULL
2088 && strstr (ada_type_name (type
), "___XP") != NULL
;
2091 /* Non-zero iff TYPE represents a standard GNAT constrained
2092 packed-array type. */
2095 ada_is_constrained_packed_array_type (struct type
*type
)
2097 return ada_is_packed_array_type (type
)
2098 && !ada_is_array_descriptor_type (type
);
2101 /* Non-zero iff TYPE represents an array descriptor for a
2102 unconstrained packed-array type. */
2105 ada_is_unconstrained_packed_array_type (struct type
*type
)
2107 return ada_is_packed_array_type (type
)
2108 && ada_is_array_descriptor_type (type
);
2111 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
2112 return the size of its elements in bits. */
2115 decode_packed_array_bitsize (struct type
*type
)
2117 const char *raw_name
;
2121 /* Access to arrays implemented as fat pointers are encoded as a typedef
2122 of the fat pointer type. We need the name of the fat pointer type
2123 to do the decoding, so strip the typedef layer. */
2124 if (TYPE_CODE (type
) == TYPE_CODE_TYPEDEF
)
2125 type
= ada_typedef_target_type (type
);
2127 raw_name
= ada_type_name (ada_check_typedef (type
));
2129 raw_name
= ada_type_name (desc_base_type (type
));
2134 tail
= strstr (raw_name
, "___XP");
2135 gdb_assert (tail
!= NULL
);
2137 if (sscanf (tail
+ sizeof ("___XP") - 1, "%ld", &bits
) != 1)
2140 (_("could not understand bit size information on packed array"));
2147 /* Given that TYPE is a standard GDB array type with all bounds filled
2148 in, and that the element size of its ultimate scalar constituents
2149 (that is, either its elements, or, if it is an array of arrays, its
2150 elements' elements, etc.) is *ELT_BITS, return an identical type,
2151 but with the bit sizes of its elements (and those of any
2152 constituent arrays) recorded in the BITSIZE components of its
2153 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2156 Note that, for arrays whose index type has an XA encoding where
2157 a bound references a record discriminant, getting that discriminant,
2158 and therefore the actual value of that bound, is not possible
2159 because none of the given parameters gives us access to the record.
2160 This function assumes that it is OK in the context where it is being
2161 used to return an array whose bounds are still dynamic and where
2162 the length is arbitrary. */
2164 static struct type
*
2165 constrained_packed_array_type (struct type
*type
, long *elt_bits
)
2167 struct type
*new_elt_type
;
2168 struct type
*new_type
;
2169 struct type
*index_type_desc
;
2170 struct type
*index_type
;
2171 LONGEST low_bound
, high_bound
;
2173 type
= ada_check_typedef (type
);
2174 if (TYPE_CODE (type
) != TYPE_CODE_ARRAY
)
2177 index_type_desc
= ada_find_parallel_type (type
, "___XA");
2178 if (index_type_desc
)
2179 index_type
= to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc
, 0),
2182 index_type
= TYPE_INDEX_TYPE (type
);
2184 new_type
= alloc_type_copy (type
);
2186 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type
)),
2188 create_array_type (new_type
, new_elt_type
, index_type
);
2189 TYPE_FIELD_BITSIZE (new_type
, 0) = *elt_bits
;
2190 TYPE_NAME (new_type
) = ada_type_name (type
);
2192 if ((TYPE_CODE (check_typedef (index_type
)) == TYPE_CODE_RANGE
2193 && is_dynamic_type (check_typedef (index_type
)))
2194 || get_discrete_bounds (index_type
, &low_bound
, &high_bound
) < 0)
2195 low_bound
= high_bound
= 0;
2196 if (high_bound
< low_bound
)
2197 *elt_bits
= TYPE_LENGTH (new_type
) = 0;
2200 *elt_bits
*= (high_bound
- low_bound
+ 1);
2201 TYPE_LENGTH (new_type
) =
2202 (*elt_bits
+ HOST_CHAR_BIT
- 1) / HOST_CHAR_BIT
;
2205 TYPE_FIXED_INSTANCE (new_type
) = 1;
2209 /* The array type encoded by TYPE, where
2210 ada_is_constrained_packed_array_type (TYPE). */
2212 static struct type
*
2213 decode_constrained_packed_array_type (struct type
*type
)
2215 const char *raw_name
= ada_type_name (ada_check_typedef (type
));
2218 struct type
*shadow_type
;
2222 raw_name
= ada_type_name (desc_base_type (type
));
2227 name
= (char *) alloca (strlen (raw_name
) + 1);
2228 tail
= strstr (raw_name
, "___XP");
2229 type
= desc_base_type (type
);
2231 memcpy (name
, raw_name
, tail
- raw_name
);
2232 name
[tail
- raw_name
] = '\000';
2234 shadow_type
= ada_find_parallel_type_with_name (type
, name
);
2236 if (shadow_type
== NULL
)
2238 lim_warning (_("could not find bounds information on packed array"));
2241 shadow_type
= check_typedef (shadow_type
);
2243 if (TYPE_CODE (shadow_type
) != TYPE_CODE_ARRAY
)
2245 lim_warning (_("could not understand bounds "
2246 "information on packed array"));
2250 bits
= decode_packed_array_bitsize (type
);
2251 return constrained_packed_array_type (shadow_type
, &bits
);
2254 /* Given that ARR is a struct value *indicating a GNAT constrained packed
2255 array, returns a simple array that denotes that array. Its type is a
2256 standard GDB array type except that the BITSIZEs of the array
2257 target types are set to the number of bits in each element, and the
2258 type length is set appropriately. */
2260 static struct value
*
2261 decode_constrained_packed_array (struct value
*arr
)
2265 /* If our value is a pointer, then dereference it. Likewise if
2266 the value is a reference. Make sure that this operation does not
2267 cause the target type to be fixed, as this would indirectly cause
2268 this array to be decoded. The rest of the routine assumes that
2269 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2270 and "value_ind" routines to perform the dereferencing, as opposed
2271 to using "ada_coerce_ref" or "ada_value_ind". */
2272 arr
= coerce_ref (arr
);
2273 if (TYPE_CODE (ada_check_typedef (value_type (arr
))) == TYPE_CODE_PTR
)
2274 arr
= value_ind (arr
);
2276 type
= decode_constrained_packed_array_type (value_type (arr
));
2279 error (_("can't unpack array"));
2283 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr
)))
2284 && ada_is_modular_type (value_type (arr
)))
2286 /* This is a (right-justified) modular type representing a packed
2287 array with no wrapper. In order to interpret the value through
2288 the (left-justified) packed array type we just built, we must
2289 first left-justify it. */
2290 int bit_size
, bit_pos
;
2293 mod
= ada_modulus (value_type (arr
)) - 1;
2300 bit_pos
= HOST_CHAR_BIT
* TYPE_LENGTH (value_type (arr
)) - bit_size
;
2301 arr
= ada_value_primitive_packed_val (arr
, NULL
,
2302 bit_pos
/ HOST_CHAR_BIT
,
2303 bit_pos
% HOST_CHAR_BIT
,
2308 return coerce_unspec_val_to_type (arr
, type
);
2312 /* The value of the element of packed array ARR at the ARITY indices
2313 given in IND. ARR must be a simple array. */
2315 static struct value
*
2316 value_subscript_packed (struct value
*arr
, int arity
, struct value
**ind
)
2319 int bits
, elt_off
, bit_off
;
2320 long elt_total_bit_offset
;
2321 struct type
*elt_type
;
2325 elt_total_bit_offset
= 0;
2326 elt_type
= ada_check_typedef (value_type (arr
));
2327 for (i
= 0; i
< arity
; i
+= 1)
2329 if (TYPE_CODE (elt_type
) != TYPE_CODE_ARRAY
2330 || TYPE_FIELD_BITSIZE (elt_type
, 0) == 0)
2332 (_("attempt to do packed indexing of "
2333 "something other than a packed array"));
2336 struct type
*range_type
= TYPE_INDEX_TYPE (elt_type
);
2337 LONGEST lowerbound
, upperbound
;
2340 if (get_discrete_bounds (range_type
, &lowerbound
, &upperbound
) < 0)
2342 lim_warning (_("don't know bounds of array"));
2343 lowerbound
= upperbound
= 0;
2346 idx
= pos_atr (ind
[i
]);
2347 if (idx
< lowerbound
|| idx
> upperbound
)
2348 lim_warning (_("packed array index %ld out of bounds"),
2350 bits
= TYPE_FIELD_BITSIZE (elt_type
, 0);
2351 elt_total_bit_offset
+= (idx
- lowerbound
) * bits
;
2352 elt_type
= ada_check_typedef (TYPE_TARGET_TYPE (elt_type
));
2355 elt_off
= elt_total_bit_offset
/ HOST_CHAR_BIT
;
2356 bit_off
= elt_total_bit_offset
% HOST_CHAR_BIT
;
2358 v
= ada_value_primitive_packed_val (arr
, NULL
, elt_off
, bit_off
,
2363 /* Non-zero iff TYPE includes negative integer values. */
2366 has_negatives (struct type
*type
)
2368 switch (TYPE_CODE (type
))
2373 return !TYPE_UNSIGNED (type
);
2374 case TYPE_CODE_RANGE
:
2375 return TYPE_LOW_BOUND (type
) < 0;
2380 /* Create a new value of type TYPE from the contents of OBJ starting
2381 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2382 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2383 assigning through the result will set the field fetched from.
2384 VALADDR is ignored unless OBJ is NULL, in which case,
2385 VALADDR+OFFSET must address the start of storage containing the
2386 packed value. The value returned in this case is never an lval.
2387 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2390 ada_value_primitive_packed_val (struct value
*obj
, const gdb_byte
*valaddr
,
2391 long offset
, int bit_offset
, int bit_size
,
2395 int src
, /* Index into the source area */
2396 targ
, /* Index into the target area */
2397 srcBitsLeft
, /* Number of source bits left to move */
2398 nsrc
, ntarg
, /* Number of source and target bytes */
2399 unusedLS
, /* Number of bits in next significant
2400 byte of source that are unused */
2401 accumSize
; /* Number of meaningful bits in accum */
2402 unsigned char *bytes
; /* First byte containing data to unpack */
2403 unsigned char *unpacked
;
2404 unsigned long accum
; /* Staging area for bits being transferred */
2406 int len
= (bit_size
+ bit_offset
+ HOST_CHAR_BIT
- 1) / 8;
2407 /* Transmit bytes from least to most significant; delta is the direction
2408 the indices move. */
2409 int delta
= gdbarch_bits_big_endian (get_type_arch (type
)) ? -1 : 1;
2411 type
= ada_check_typedef (type
);
2415 v
= allocate_value (type
);
2416 bytes
= (unsigned char *) (valaddr
+ offset
);
2418 else if (VALUE_LVAL (obj
) == lval_memory
&& value_lazy (obj
))
2420 v
= value_at (type
, value_address (obj
) + offset
);
2421 type
= value_type (v
);
2422 if (TYPE_LENGTH (type
) * HOST_CHAR_BIT
< bit_size
)
2424 /* This can happen in the case of an array of dynamic objects,
2425 where the size of each element changes from element to element.
2426 In that case, we're initially given the array stride, but
2427 after resolving the element type, we find that its size is
2428 less than this stride. In that case, adjust bit_size to
2429 match TYPE's length, and recompute LEN accordingly. */
2430 bit_size
= TYPE_LENGTH (type
) * HOST_CHAR_BIT
;
2431 len
= TYPE_LENGTH (type
) + (bit_offset
+ HOST_CHAR_BIT
- 1) / 8;
2433 bytes
= (unsigned char *) alloca (len
);
2434 read_memory (value_address (v
), bytes
, len
);
2438 v
= allocate_value (type
);
2439 bytes
= (unsigned char *) value_contents (obj
) + offset
;
2444 long new_offset
= offset
;
2446 set_value_component_location (v
, obj
);
2447 set_value_bitpos (v
, bit_offset
+ value_bitpos (obj
));
2448 set_value_bitsize (v
, bit_size
);
2449 if (value_bitpos (v
) >= HOST_CHAR_BIT
)
2452 set_value_bitpos (v
, value_bitpos (v
) - HOST_CHAR_BIT
);
2454 set_value_offset (v
, new_offset
);
2456 /* Also set the parent value. This is needed when trying to
2457 assign a new value (in inferior memory). */
2458 set_value_parent (v
, obj
);
2461 set_value_bitsize (v
, bit_size
);
2462 unpacked
= (unsigned char *) value_contents (v
);
2464 srcBitsLeft
= bit_size
;
2466 ntarg
= TYPE_LENGTH (type
);
2470 memset (unpacked
, 0, TYPE_LENGTH (type
));
2473 else if (gdbarch_bits_big_endian (get_type_arch (type
)))
2476 if (has_negatives (type
)
2477 && ((bytes
[0] << bit_offset
) & (1 << (HOST_CHAR_BIT
- 1))))
2481 (HOST_CHAR_BIT
- (bit_size
+ bit_offset
) % HOST_CHAR_BIT
)
2484 switch (TYPE_CODE (type
))
2486 case TYPE_CODE_ARRAY
:
2487 case TYPE_CODE_UNION
:
2488 case TYPE_CODE_STRUCT
:
2489 /* Non-scalar values must be aligned at a byte boundary... */
2491 (HOST_CHAR_BIT
- bit_size
% HOST_CHAR_BIT
) % HOST_CHAR_BIT
;
2492 /* ... And are placed at the beginning (most-significant) bytes
2494 targ
= (bit_size
+ HOST_CHAR_BIT
- 1) / HOST_CHAR_BIT
- 1;
2499 targ
= TYPE_LENGTH (type
) - 1;
2505 int sign_bit_offset
= (bit_size
+ bit_offset
- 1) % 8;
2508 unusedLS
= bit_offset
;
2511 if (has_negatives (type
) && (bytes
[len
- 1] & (1 << sign_bit_offset
)))
2518 /* Mask for removing bits of the next source byte that are not
2519 part of the value. */
2520 unsigned int unusedMSMask
=
2521 (1 << (srcBitsLeft
>= HOST_CHAR_BIT
? HOST_CHAR_BIT
: srcBitsLeft
)) -
2523 /* Sign-extend bits for this byte. */
2524 unsigned int signMask
= sign
& ~unusedMSMask
;
2527 (((bytes
[src
] >> unusedLS
) & unusedMSMask
) | signMask
) << accumSize
;
2528 accumSize
+= HOST_CHAR_BIT
- unusedLS
;
2529 if (accumSize
>= HOST_CHAR_BIT
)
2531 unpacked
[targ
] = accum
& ~(~0L << HOST_CHAR_BIT
);
2532 accumSize
-= HOST_CHAR_BIT
;
2533 accum
>>= HOST_CHAR_BIT
;
2537 srcBitsLeft
-= HOST_CHAR_BIT
- unusedLS
;
2544 accum
|= sign
<< accumSize
;
2545 unpacked
[targ
] = accum
& ~(~0L << HOST_CHAR_BIT
);
2546 accumSize
-= HOST_CHAR_BIT
;
2549 accum
>>= HOST_CHAR_BIT
;
2554 if (is_dynamic_type (value_type (v
)))
2555 v
= value_from_contents_and_address (value_type (v
), value_contents (v
),
2560 /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2561 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
2564 move_bits (gdb_byte
*target
, int targ_offset
, const gdb_byte
*source
,
2565 int src_offset
, int n
, int bits_big_endian_p
)
2567 unsigned int accum
, mask
;
2568 int accum_bits
, chunk_size
;
2570 target
+= targ_offset
/ HOST_CHAR_BIT
;
2571 targ_offset
%= HOST_CHAR_BIT
;
2572 source
+= src_offset
/ HOST_CHAR_BIT
;
2573 src_offset
%= HOST_CHAR_BIT
;
2574 if (bits_big_endian_p
)
2576 accum
= (unsigned char) *source
;
2578 accum_bits
= HOST_CHAR_BIT
- src_offset
;
2584 accum
= (accum
<< HOST_CHAR_BIT
) + (unsigned char) *source
;
2585 accum_bits
+= HOST_CHAR_BIT
;
2587 chunk_size
= HOST_CHAR_BIT
- targ_offset
;
2590 unused_right
= HOST_CHAR_BIT
- (chunk_size
+ targ_offset
);
2591 mask
= ((1 << chunk_size
) - 1) << unused_right
;
2594 | ((accum
>> (accum_bits
- chunk_size
- unused_right
)) & mask
);
2596 accum_bits
-= chunk_size
;
2603 accum
= (unsigned char) *source
>> src_offset
;
2605 accum_bits
= HOST_CHAR_BIT
- src_offset
;
2609 accum
= accum
+ ((unsigned char) *source
<< accum_bits
);
2610 accum_bits
+= HOST_CHAR_BIT
;
2612 chunk_size
= HOST_CHAR_BIT
- targ_offset
;
2615 mask
= ((1 << chunk_size
) - 1) << targ_offset
;
2616 *target
= (*target
& ~mask
) | ((accum
<< targ_offset
) & mask
);
2618 accum_bits
-= chunk_size
;
2619 accum
>>= chunk_size
;
2626 /* Store the contents of FROMVAL into the location of TOVAL.
2627 Return a new value with the location of TOVAL and contents of
2628 FROMVAL. Handles assignment into packed fields that have
2629 floating-point or non-scalar types. */
2631 static struct value
*
2632 ada_value_assign (struct value
*toval
, struct value
*fromval
)
2634 struct type
*type
= value_type (toval
);
2635 int bits
= value_bitsize (toval
);
2637 toval
= ada_coerce_ref (toval
);
2638 fromval
= ada_coerce_ref (fromval
);
2640 if (ada_is_direct_array_type (value_type (toval
)))
2641 toval
= ada_coerce_to_simple_array (toval
);
2642 if (ada_is_direct_array_type (value_type (fromval
)))
2643 fromval
= ada_coerce_to_simple_array (fromval
);
2645 if (!deprecated_value_modifiable (toval
))
2646 error (_("Left operand of assignment is not a modifiable lvalue."));
2648 if (VALUE_LVAL (toval
) == lval_memory
2650 && (TYPE_CODE (type
) == TYPE_CODE_FLT
2651 || TYPE_CODE (type
) == TYPE_CODE_STRUCT
))
2653 int len
= (value_bitpos (toval
)
2654 + bits
+ HOST_CHAR_BIT
- 1) / HOST_CHAR_BIT
;
2656 gdb_byte
*buffer
= alloca (len
);
2658 CORE_ADDR to_addr
= value_address (toval
);
2660 if (TYPE_CODE (type
) == TYPE_CODE_FLT
)
2661 fromval
= value_cast (type
, fromval
);
2663 read_memory (to_addr
, buffer
, len
);
2664 from_size
= value_bitsize (fromval
);
2666 from_size
= TYPE_LENGTH (value_type (fromval
)) * TARGET_CHAR_BIT
;
2667 if (gdbarch_bits_big_endian (get_type_arch (type
)))
2668 move_bits (buffer
, value_bitpos (toval
),
2669 value_contents (fromval
), from_size
- bits
, bits
, 1);
2671 move_bits (buffer
, value_bitpos (toval
),
2672 value_contents (fromval
), 0, bits
, 0);
2673 write_memory_with_notification (to_addr
, buffer
, len
);
2675 val
= value_copy (toval
);
2676 memcpy (value_contents_raw (val
), value_contents (fromval
),
2677 TYPE_LENGTH (type
));
2678 deprecated_set_value_type (val
, type
);
2683 return value_assign (toval
, fromval
);
2687 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2688 CONTAINER, assign the contents of VAL to COMPONENTS's place in
2689 CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2690 COMPONENT, and not the inferior's memory. The current contents
2691 of COMPONENT are ignored.
2693 Although not part of the initial design, this function also works
2694 when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER
2695 had a null address, and COMPONENT had an address which is equal to
2696 its offset inside CONTAINER. */
2699 value_assign_to_component (struct value
*container
, struct value
*component
,
2702 LONGEST offset_in_container
=
2703 (LONGEST
) (value_address (component
) - value_address (container
));
2704 int bit_offset_in_container
=
2705 value_bitpos (component
) - value_bitpos (container
);
2708 val
= value_cast (value_type (component
), val
);
2710 if (value_bitsize (component
) == 0)
2711 bits
= TARGET_CHAR_BIT
* TYPE_LENGTH (value_type (component
));
2713 bits
= value_bitsize (component
);
2715 if (gdbarch_bits_big_endian (get_type_arch (value_type (container
))))
2716 move_bits (value_contents_writeable (container
) + offset_in_container
,
2717 value_bitpos (container
) + bit_offset_in_container
,
2718 value_contents (val
),
2719 TYPE_LENGTH (value_type (component
)) * TARGET_CHAR_BIT
- bits
,
2722 move_bits (value_contents_writeable (container
) + offset_in_container
,
2723 value_bitpos (container
) + bit_offset_in_container
,
2724 value_contents (val
), 0, bits
, 0);
2727 /* The value of the element of array ARR at the ARITY indices given in IND.
2728 ARR may be either a simple array, GNAT array descriptor, or pointer
2732 ada_value_subscript (struct value
*arr
, int arity
, struct value
**ind
)
2736 struct type
*elt_type
;
2738 elt
= ada_coerce_to_simple_array (arr
);
2740 elt_type
= ada_check_typedef (value_type (elt
));
2741 if (TYPE_CODE (elt_type
) == TYPE_CODE_ARRAY
2742 && TYPE_FIELD_BITSIZE (elt_type
, 0) > 0)
2743 return value_subscript_packed (elt
, arity
, ind
);
2745 for (k
= 0; k
< arity
; k
+= 1)
2747 if (TYPE_CODE (elt_type
) != TYPE_CODE_ARRAY
)
2748 error (_("too many subscripts (%d expected)"), k
);
2749 elt
= value_subscript (elt
, pos_atr (ind
[k
]));
2754 /* Assuming ARR is a pointer to a GDB array, the value of the element
2755 of *ARR at the ARITY indices given in IND.
2756 Does not read the entire array into memory. */
2758 static struct value
*
2759 ada_value_ptr_subscript (struct value
*arr
, int arity
, struct value
**ind
)
2763 = check_typedef (value_enclosing_type (ada_value_ind (arr
)));
2765 for (k
= 0; k
< arity
; k
+= 1)
2768 struct value
*lwb_value
;
2770 if (TYPE_CODE (type
) != TYPE_CODE_ARRAY
)
2771 error (_("too many subscripts (%d expected)"), k
);
2772 arr
= value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type
)),
2774 get_discrete_bounds (TYPE_INDEX_TYPE (type
), &lwb
, &upb
);
2775 lwb_value
= value_from_longest (value_type(ind
[k
]), lwb
);
2776 arr
= value_ptradd (arr
, pos_atr (ind
[k
]) - pos_atr (lwb_value
));
2777 type
= TYPE_TARGET_TYPE (type
);
2780 return value_ind (arr
);
2783 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2784 actual type of ARRAY_PTR is ignored), returns the Ada slice of
2785 HIGH'Pos-LOW'Pos+1 elements starting at index LOW. The lower bound of
2786 this array is LOW, as per Ada rules. */
2787 static struct value
*
2788 ada_value_slice_from_ptr (struct value
*array_ptr
, struct type
*type
,
2791 struct type
*type0
= ada_check_typedef (type
);
2792 struct type
*base_index_type
= TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0
));
2793 struct type
*index_type
2794 = create_static_range_type (NULL
, base_index_type
, low
, high
);
2795 struct type
*slice_type
=
2796 create_array_type (NULL
, TYPE_TARGET_TYPE (type0
), index_type
);
2797 int base_low
= ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0
));
2798 LONGEST base_low_pos
, low_pos
;
2801 if (!discrete_position (base_index_type
, low
, &low_pos
)
2802 || !discrete_position (base_index_type
, base_low
, &base_low_pos
))
2804 warning (_("unable to get positions in slice, use bounds instead"));
2806 base_low_pos
= base_low
;
2809 base
= value_as_address (array_ptr
)
2810 + ((low_pos
- base_low_pos
)
2811 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0
)));
2812 return value_at_lazy (slice_type
, base
);
2816 static struct value
*
2817 ada_value_slice (struct value
*array
, int low
, int high
)
2819 struct type
*type
= ada_check_typedef (value_type (array
));
2820 struct type
*base_index_type
= TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type
));
2821 struct type
*index_type
2822 = create_static_range_type (NULL
, TYPE_INDEX_TYPE (type
), low
, high
);
2823 struct type
*slice_type
=
2824 create_array_type (NULL
, TYPE_TARGET_TYPE (type
), index_type
);
2825 LONGEST low_pos
, high_pos
;
2827 if (!discrete_position (base_index_type
, low
, &low_pos
)
2828 || !discrete_position (base_index_type
, high
, &high_pos
))
2830 warning (_("unable to get positions in slice, use bounds instead"));
2835 return value_cast (slice_type
,
2836 value_slice (array
, low
, high_pos
- low_pos
+ 1));
2839 /* If type is a record type in the form of a standard GNAT array
2840 descriptor, returns the number of dimensions for type. If arr is a
2841 simple array, returns the number of "array of"s that prefix its
2842 type designation. Otherwise, returns 0. */
2845 ada_array_arity (struct type
*type
)
2852 type
= desc_base_type (type
);
2855 if (TYPE_CODE (type
) == TYPE_CODE_STRUCT
)
2856 return desc_arity (desc_bounds_type (type
));
2858 while (TYPE_CODE (type
) == TYPE_CODE_ARRAY
)
2861 type
= ada_check_typedef (TYPE_TARGET_TYPE (type
));
2867 /* If TYPE is a record type in the form of a standard GNAT array
2868 descriptor or a simple array type, returns the element type for
2869 TYPE after indexing by NINDICES indices, or by all indices if
2870 NINDICES is -1. Otherwise, returns NULL. */
2873 ada_array_element_type (struct type
*type
, int nindices
)
2875 type
= desc_base_type (type
);
2877 if (TYPE_CODE (type
) == TYPE_CODE_STRUCT
)
2880 struct type
*p_array_type
;
2882 p_array_type
= desc_data_target_type (type
);
2884 k
= ada_array_arity (type
);
2888 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2889 if (nindices
>= 0 && k
> nindices
)
2891 while (k
> 0 && p_array_type
!= NULL
)
2893 p_array_type
= ada_check_typedef (TYPE_TARGET_TYPE (p_array_type
));
2896 return p_array_type
;
2898 else if (TYPE_CODE (type
) == TYPE_CODE_ARRAY
)
2900 while (nindices
!= 0 && TYPE_CODE (type
) == TYPE_CODE_ARRAY
)
2902 type
= TYPE_TARGET_TYPE (type
);
2911 /* The type of nth index in arrays of given type (n numbering from 1).
2912 Does not examine memory. Throws an error if N is invalid or TYPE
2913 is not an array type. NAME is the name of the Ada attribute being
2914 evaluated ('range, 'first, 'last, or 'length); it is used in building
2915 the error message. */
2917 static struct type
*
2918 ada_index_type (struct type
*type
, int n
, const char *name
)
2920 struct type
*result_type
;
2922 type
= desc_base_type (type
);
2924 if (n
< 0 || n
> ada_array_arity (type
))
2925 error (_("invalid dimension number to '%s"), name
);
2927 if (ada_is_simple_array_type (type
))
2931 for (i
= 1; i
< n
; i
+= 1)
2932 type
= TYPE_TARGET_TYPE (type
);
2933 result_type
= TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type
));
2934 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2935 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2936 perhaps stabsread.c would make more sense. */
2937 if (result_type
&& TYPE_CODE (result_type
) == TYPE_CODE_UNDEF
)
2942 result_type
= desc_index_type (desc_bounds_type (type
), n
);
2943 if (result_type
== NULL
)
2944 error (_("attempt to take bound of something that is not an array"));
2950 /* Given that arr is an array type, returns the lower bound of the
2951 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2952 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2953 array-descriptor type. It works for other arrays with bounds supplied
2954 by run-time quantities other than discriminants. */
2957 ada_array_bound_from_type (struct type
*arr_type
, int n
, int which
)
2959 struct type
*type
, *index_type_desc
, *index_type
;
2962 gdb_assert (which
== 0 || which
== 1);
2964 if (ada_is_constrained_packed_array_type (arr_type
))
2965 arr_type
= decode_constrained_packed_array_type (arr_type
);
2967 if (arr_type
== NULL
|| !ada_is_simple_array_type (arr_type
))
2968 return (LONGEST
) - which
;
2970 if (TYPE_CODE (arr_type
) == TYPE_CODE_PTR
)
2971 type
= TYPE_TARGET_TYPE (arr_type
);
2975 if (TYPE_FIXED_INSTANCE (type
))
2977 /* The array has already been fixed, so we do not need to
2978 check the parallel ___XA type again. That encoding has
2979 already been applied, so ignore it now. */
2980 index_type_desc
= NULL
;
2984 index_type_desc
= ada_find_parallel_type (type
, "___XA");
2985 ada_fixup_array_indexes_type (index_type_desc
);
2988 if (index_type_desc
!= NULL
)
2989 index_type
= to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc
, n
- 1),
2993 struct type
*elt_type
= check_typedef (type
);
2995 for (i
= 1; i
< n
; i
++)
2996 elt_type
= check_typedef (TYPE_TARGET_TYPE (elt_type
));
2998 index_type
= TYPE_INDEX_TYPE (elt_type
);
3002 (LONGEST
) (which
== 0
3003 ? ada_discrete_type_low_bound (index_type
)
3004 : ada_discrete_type_high_bound (index_type
));
3007 /* Given that arr is an array value, returns the lower bound of the
3008 nth index (numbering from 1) if WHICH is 0, and the upper bound if
3009 WHICH is 1. This routine will also work for arrays with bounds
3010 supplied by run-time quantities other than discriminants. */
3013 ada_array_bound (struct value
*arr
, int n
, int which
)
3015 struct type
*arr_type
;
3017 if (TYPE_CODE (check_typedef (value_type (arr
))) == TYPE_CODE_PTR
)
3018 arr
= value_ind (arr
);
3019 arr_type
= value_enclosing_type (arr
);
3021 if (ada_is_constrained_packed_array_type (arr_type
))
3022 return ada_array_bound (decode_constrained_packed_array (arr
), n
, which
);
3023 else if (ada_is_simple_array_type (arr_type
))
3024 return ada_array_bound_from_type (arr_type
, n
, which
);
3026 return value_as_long (desc_one_bound (desc_bounds (arr
), n
, which
));
3029 /* Given that arr is an array value, returns the length of the
3030 nth index. This routine will also work for arrays with bounds
3031 supplied by run-time quantities other than discriminants.
3032 Does not work for arrays indexed by enumeration types with representation
3033 clauses at the moment. */
3036 ada_array_length (struct value
*arr
, int n
)
3038 struct type
*arr_type
, *index_type
;
3041 if (TYPE_CODE (check_typedef (value_type (arr
))) == TYPE_CODE_PTR
)
3042 arr
= value_ind (arr
);
3043 arr_type
= value_enclosing_type (arr
);
3045 if (ada_is_constrained_packed_array_type (arr_type
))
3046 return ada_array_length (decode_constrained_packed_array (arr
), n
);
3048 if (ada_is_simple_array_type (arr_type
))
3050 low
= ada_array_bound_from_type (arr_type
, n
, 0);
3051 high
= ada_array_bound_from_type (arr_type
, n
, 1);
3055 low
= value_as_long (desc_one_bound (desc_bounds (arr
), n
, 0));
3056 high
= value_as_long (desc_one_bound (desc_bounds (arr
), n
, 1));
3059 arr_type
= check_typedef (arr_type
);
3060 index_type
= TYPE_INDEX_TYPE (arr_type
);
3061 if (index_type
!= NULL
)
3063 struct type
*base_type
;
3064 if (TYPE_CODE (index_type
) == TYPE_CODE_RANGE
)
3065 base_type
= TYPE_TARGET_TYPE (index_type
);
3067 base_type
= index_type
;
3069 low
= pos_atr (value_from_longest (base_type
, low
));
3070 high
= pos_atr (value_from_longest (base_type
, high
));
3072 return high
- low
+ 1;
3075 /* An empty array whose type is that of ARR_TYPE (an array type),
3076 with bounds LOW to LOW-1. */
3078 static struct value
*
3079 empty_array (struct type
*arr_type
, int low
)
3081 struct type
*arr_type0
= ada_check_typedef (arr_type
);
3082 struct type
*index_type
3083 = create_static_range_type
3084 (NULL
, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0
)), low
, low
- 1);
3085 struct type
*elt_type
= ada_array_element_type (arr_type0
, 1);
3087 return allocate_value (create_array_type (NULL
, elt_type
, index_type
));
3091 /* Name resolution */
3093 /* The "decoded" name for the user-definable Ada operator corresponding
3097 ada_decoded_op_name (enum exp_opcode op
)
3101 for (i
= 0; ada_opname_table
[i
].encoded
!= NULL
; i
+= 1)
3103 if (ada_opname_table
[i
].op
== op
)
3104 return ada_opname_table
[i
].decoded
;
3106 error (_("Could not find operator name for opcode"));
3110 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
3111 references (marked by OP_VAR_VALUE nodes in which the symbol has an
3112 undefined namespace) and converts operators that are
3113 user-defined into appropriate function calls. If CONTEXT_TYPE is
3114 non-null, it provides a preferred result type [at the moment, only
3115 type void has any effect---causing procedures to be preferred over
3116 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
3117 return type is preferred. May change (expand) *EXP. */
3120 resolve (struct expression
**expp
, int void_context_p
)
3122 struct type
*context_type
= NULL
;
3126 context_type
= builtin_type ((*expp
)->gdbarch
)->builtin_void
;
3128 resolve_subexp (expp
, &pc
, 1, context_type
);
3131 /* Resolve the operator of the subexpression beginning at
3132 position *POS of *EXPP. "Resolving" consists of replacing
3133 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
3134 with their resolutions, replacing built-in operators with
3135 function calls to user-defined operators, where appropriate, and,
3136 when DEPROCEDURE_P is non-zero, converting function-valued variables
3137 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
3138 are as in ada_resolve, above. */
3140 static struct value
*
3141 resolve_subexp (struct expression
**expp
, int *pos
, int deprocedure_p
,
3142 struct type
*context_type
)
3146 struct expression
*exp
; /* Convenience: == *expp. */
3147 enum exp_opcode op
= (*expp
)->elts
[pc
].opcode
;
3148 struct value
**argvec
; /* Vector of operand types (alloca'ed). */
3149 int nargs
; /* Number of operands. */
3156 /* Pass one: resolve operands, saving their types and updating *pos,
3161 if (exp
->elts
[pc
+ 3].opcode
== OP_VAR_VALUE
3162 && SYMBOL_DOMAIN (exp
->elts
[pc
+ 5].symbol
) == UNDEF_DOMAIN
)
3167 resolve_subexp (expp
, pos
, 0, NULL
);
3169 nargs
= longest_to_int (exp
->elts
[pc
+ 1].longconst
);
3174 resolve_subexp (expp
, pos
, 0, NULL
);
3179 resolve_subexp (expp
, pos
, 1, check_typedef (exp
->elts
[pc
+ 1].type
));
3182 case OP_ATR_MODULUS
:
3192 case TERNOP_IN_RANGE
:
3193 case BINOP_IN_BOUNDS
:
3199 case OP_DISCRETE_RANGE
:
3201 ada_forward_operator_length (exp
, pc
, &oplen
, &nargs
);
3210 arg1
= resolve_subexp (expp
, pos
, 0, NULL
);
3212 resolve_subexp (expp
, pos
, 1, NULL
);
3214 resolve_subexp (expp
, pos
, 1, value_type (arg1
));
3231 case BINOP_LOGICAL_AND
:
3232 case BINOP_LOGICAL_OR
:
3233 case BINOP_BITWISE_AND
:
3234 case BINOP_BITWISE_IOR
:
3235 case BINOP_BITWISE_XOR
:
3238 case BINOP_NOTEQUAL
:
3245 case BINOP_SUBSCRIPT
:
3253 case UNOP_LOGICAL_NOT
:
3269 case OP_INTERNALVAR
:
3279 *pos
+= 4 + BYTES_TO_EXP_ELEM (exp
->elts
[pc
+ 1].longconst
+ 1);
3282 case STRUCTOP_STRUCT
:
3283 *pos
+= 4 + BYTES_TO_EXP_ELEM (exp
->elts
[pc
+ 1].longconst
+ 1);
3296 error (_("Unexpected operator during name resolution"));
3299 argvec
= (struct value
* *) alloca (sizeof (struct value
*) * (nargs
+ 1));
3300 for (i
= 0; i
< nargs
; i
+= 1)
3301 argvec
[i
] = resolve_subexp (expp
, pos
, 1, NULL
);
3305 /* Pass two: perform any resolution on principal operator. */
3312 if (SYMBOL_DOMAIN (exp
->elts
[pc
+ 2].symbol
) == UNDEF_DOMAIN
)
3314 struct block_symbol
*candidates
;
3318 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3319 (exp
->elts
[pc
+ 2].symbol
),
3320 exp
->elts
[pc
+ 1].block
, VAR_DOMAIN
,
3323 if (n_candidates
> 1)
3325 /* Types tend to get re-introduced locally, so if there
3326 are any local symbols that are not types, first filter
3329 for (j
= 0; j
< n_candidates
; j
+= 1)
3330 switch (SYMBOL_CLASS (candidates
[j
].symbol
))
3335 case LOC_REGPARM_ADDR
:
3343 if (j
< n_candidates
)
3346 while (j
< n_candidates
)
3348 if (SYMBOL_CLASS (candidates
[j
].symbol
) == LOC_TYPEDEF
)
3350 candidates
[j
] = candidates
[n_candidates
- 1];
3359 if (n_candidates
== 0)
3360 error (_("No definition found for %s"),
3361 SYMBOL_PRINT_NAME (exp
->elts
[pc
+ 2].symbol
));
3362 else if (n_candidates
== 1)
3364 else if (deprocedure_p
3365 && !is_nonfunction (candidates
, n_candidates
))
3367 i
= ada_resolve_function
3368 (candidates
, n_candidates
, NULL
, 0,
3369 SYMBOL_LINKAGE_NAME (exp
->elts
[pc
+ 2].symbol
),
3372 error (_("Could not find a match for %s"),
3373 SYMBOL_PRINT_NAME (exp
->elts
[pc
+ 2].symbol
));
3377 printf_filtered (_("Multiple matches for %s\n"),
3378 SYMBOL_PRINT_NAME (exp
->elts
[pc
+ 2].symbol
));
3379 user_select_syms (candidates
, n_candidates
, 1);
3383 exp
->elts
[pc
+ 1].block
= candidates
[i
].block
;
3384 exp
->elts
[pc
+ 2].symbol
= candidates
[i
].symbol
;
3385 if (innermost_block
== NULL
3386 || contained_in (candidates
[i
].block
, innermost_block
))
3387 innermost_block
= candidates
[i
].block
;
3391 && (TYPE_CODE (SYMBOL_TYPE (exp
->elts
[pc
+ 2].symbol
))
3394 replace_operator_with_call (expp
, pc
, 0, 0,
3395 exp
->elts
[pc
+ 2].symbol
,
3396 exp
->elts
[pc
+ 1].block
);
3403 if (exp
->elts
[pc
+ 3].opcode
== OP_VAR_VALUE
3404 && SYMBOL_DOMAIN (exp
->elts
[pc
+ 5].symbol
) == UNDEF_DOMAIN
)
3406 struct block_symbol
*candidates
;
3410 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3411 (exp
->elts
[pc
+ 5].symbol
),
3412 exp
->elts
[pc
+ 4].block
, VAR_DOMAIN
,
3414 if (n_candidates
== 1)
3418 i
= ada_resolve_function
3419 (candidates
, n_candidates
,
3421 SYMBOL_LINKAGE_NAME (exp
->elts
[pc
+ 5].symbol
),
3424 error (_("Could not find a match for %s"),
3425 SYMBOL_PRINT_NAME (exp
->elts
[pc
+ 5].symbol
));
3428 exp
->elts
[pc
+ 4].block
= candidates
[i
].block
;
3429 exp
->elts
[pc
+ 5].symbol
= candidates
[i
].symbol
;
3430 if (innermost_block
== NULL
3431 || contained_in (candidates
[i
].block
, innermost_block
))
3432 innermost_block
= candidates
[i
].block
;
3443 case BINOP_BITWISE_AND
:
3444 case BINOP_BITWISE_IOR
:
3445 case BINOP_BITWISE_XOR
:
3447 case BINOP_NOTEQUAL
:
3455 case UNOP_LOGICAL_NOT
:
3457 if (possible_user_operator_p (op
, argvec
))
3459 struct block_symbol
*candidates
;
3463 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op
)),
3464 (struct block
*) NULL
, VAR_DOMAIN
,
3466 i
= ada_resolve_function (candidates
, n_candidates
, argvec
, nargs
,
3467 ada_decoded_op_name (op
), NULL
);
3471 replace_operator_with_call (expp
, pc
, nargs
, 1,
3472 candidates
[i
].symbol
,
3473 candidates
[i
].block
);
3484 return evaluate_subexp_type (exp
, pos
);
3487 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3488 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3490 /* The term "match" here is rather loose. The match is heuristic and
3494 ada_type_match (struct type
*ftype
, struct type
*atype
, int may_deref
)
3496 ftype
= ada_check_typedef (ftype
);
3497 atype
= ada_check_typedef (atype
);
3499 if (TYPE_CODE (ftype
) == TYPE_CODE_REF
)
3500 ftype
= TYPE_TARGET_TYPE (ftype
);
3501 if (TYPE_CODE (atype
) == TYPE_CODE_REF
)
3502 atype
= TYPE_TARGET_TYPE (atype
);
3504 switch (TYPE_CODE (ftype
))
3507 return TYPE_CODE (ftype
) == TYPE_CODE (atype
);
3509 if (TYPE_CODE (atype
) == TYPE_CODE_PTR
)
3510 return ada_type_match (TYPE_TARGET_TYPE (ftype
),
3511 TYPE_TARGET_TYPE (atype
), 0);
3514 && ada_type_match (TYPE_TARGET_TYPE (ftype
), atype
, 0));
3516 case TYPE_CODE_ENUM
:
3517 case TYPE_CODE_RANGE
:
3518 switch (TYPE_CODE (atype
))
3521 case TYPE_CODE_ENUM
:
3522 case TYPE_CODE_RANGE
:
3528 case TYPE_CODE_ARRAY
:
3529 return (TYPE_CODE (atype
) == TYPE_CODE_ARRAY
3530 || ada_is_array_descriptor_type (atype
));
3532 case TYPE_CODE_STRUCT
:
3533 if (ada_is_array_descriptor_type (ftype
))
3534 return (TYPE_CODE (atype
) == TYPE_CODE_ARRAY
3535 || ada_is_array_descriptor_type (atype
));
3537 return (TYPE_CODE (atype
) == TYPE_CODE_STRUCT
3538 && !ada_is_array_descriptor_type (atype
));
3540 case TYPE_CODE_UNION
:
3542 return (TYPE_CODE (atype
) == TYPE_CODE (ftype
));
3546 /* Return non-zero if the formals of FUNC "sufficiently match" the
3547 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3548 may also be an enumeral, in which case it is treated as a 0-
3549 argument function. */
3552 ada_args_match (struct symbol
*func
, struct value
**actuals
, int n_actuals
)
3555 struct type
*func_type
= SYMBOL_TYPE (func
);
3557 if (SYMBOL_CLASS (func
) == LOC_CONST
3558 && TYPE_CODE (func_type
) == TYPE_CODE_ENUM
)
3559 return (n_actuals
== 0);
3560 else if (func_type
== NULL
|| TYPE_CODE (func_type
) != TYPE_CODE_FUNC
)
3563 if (TYPE_NFIELDS (func_type
) != n_actuals
)
3566 for (i
= 0; i
< n_actuals
; i
+= 1)
3568 if (actuals
[i
] == NULL
)
3572 struct type
*ftype
= ada_check_typedef (TYPE_FIELD_TYPE (func_type
,
3574 struct type
*atype
= ada_check_typedef (value_type (actuals
[i
]));
3576 if (!ada_type_match (ftype
, atype
, 1))
3583 /* False iff function type FUNC_TYPE definitely does not produce a value
3584 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3585 FUNC_TYPE is not a valid function type with a non-null return type
3586 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3589 return_match (struct type
*func_type
, struct type
*context_type
)
3591 struct type
*return_type
;
3593 if (func_type
== NULL
)
3596 if (TYPE_CODE (func_type
) == TYPE_CODE_FUNC
)
3597 return_type
= get_base_type (TYPE_TARGET_TYPE (func_type
));
3599 return_type
= get_base_type (func_type
);
3600 if (return_type
== NULL
)
3603 context_type
= get_base_type (context_type
);
3605 if (TYPE_CODE (return_type
) == TYPE_CODE_ENUM
)
3606 return context_type
== NULL
|| return_type
== context_type
;
3607 else if (context_type
== NULL
)
3608 return TYPE_CODE (return_type
) != TYPE_CODE_VOID
;
3610 return TYPE_CODE (return_type
) == TYPE_CODE (context_type
);
3614 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3615 function (if any) that matches the types of the NARGS arguments in
3616 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3617 that returns that type, then eliminate matches that don't. If
3618 CONTEXT_TYPE is void and there is at least one match that does not
3619 return void, eliminate all matches that do.
3621 Asks the user if there is more than one match remaining. Returns -1
3622 if there is no such symbol or none is selected. NAME is used
3623 solely for messages. May re-arrange and modify SYMS in
3624 the process; the index returned is for the modified vector. */
3627 ada_resolve_function (struct block_symbol syms
[],
3628 int nsyms
, struct value
**args
, int nargs
,
3629 const char *name
, struct type
*context_type
)
3633 int m
; /* Number of hits */
3636 /* In the first pass of the loop, we only accept functions matching
3637 context_type. If none are found, we add a second pass of the loop
3638 where every function is accepted. */
3639 for (fallback
= 0; m
== 0 && fallback
< 2; fallback
++)
3641 for (k
= 0; k
< nsyms
; k
+= 1)
3643 struct type
*type
= ada_check_typedef (SYMBOL_TYPE (syms
[k
].symbol
));
3645 if (ada_args_match (syms
[k
].symbol
, args
, nargs
)
3646 && (fallback
|| return_match (type
, context_type
)))
3658 printf_filtered (_("Multiple matches for %s\n"), name
);
3659 user_select_syms (syms
, m
, 1);
3665 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3666 in a listing of choices during disambiguation (see sort_choices, below).
3667 The idea is that overloadings of a subprogram name from the
3668 same package should sort in their source order. We settle for ordering
3669 such symbols by their trailing number (__N or $N). */
3672 encoded_ordered_before (const char *N0
, const char *N1
)
3676 else if (N0
== NULL
)
3682 for (k0
= strlen (N0
) - 1; k0
> 0 && isdigit (N0
[k0
]); k0
-= 1)
3684 for (k1
= strlen (N1
) - 1; k1
> 0 && isdigit (N1
[k1
]); k1
-= 1)
3686 if ((N0
[k0
] == '_' || N0
[k0
] == '$') && N0
[k0
+ 1] != '\000'
3687 && (N1
[k1
] == '_' || N1
[k1
] == '$') && N1
[k1
+ 1] != '\000')
3692 while (N0
[n0
] == '_' && n0
> 0 && N0
[n0
- 1] == '_')
3695 while (N1
[n1
] == '_' && n1
> 0 && N1
[n1
- 1] == '_')
3697 if (n0
== n1
&& strncmp (N0
, N1
, n0
) == 0)
3698 return (atoi (N0
+ k0
+ 1) < atoi (N1
+ k1
+ 1));
3700 return (strcmp (N0
, N1
) < 0);
3704 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3708 sort_choices (struct block_symbol syms
[], int nsyms
)
3712 for (i
= 1; i
< nsyms
; i
+= 1)
3714 struct block_symbol sym
= syms
[i
];
3717 for (j
= i
- 1; j
>= 0; j
-= 1)
3719 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms
[j
].symbol
),
3720 SYMBOL_LINKAGE_NAME (sym
.symbol
)))
3722 syms
[j
+ 1] = syms
[j
];
3728 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3729 by asking the user (if necessary), returning the number selected,
3730 and setting the first elements of SYMS items. Error if no symbols
3733 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3734 to be re-integrated one of these days. */
3737 user_select_syms (struct block_symbol
*syms
, int nsyms
, int max_results
)
3740 int *chosen
= (int *) alloca (sizeof (int) * nsyms
);
3742 int first_choice
= (max_results
== 1) ? 1 : 2;
3743 const char *select_mode
= multiple_symbols_select_mode ();
3745 if (max_results
< 1)
3746 error (_("Request to select 0 symbols!"));
3750 if (select_mode
== multiple_symbols_cancel
)
3752 canceled because the command is ambiguous\n\
3753 See set/show multiple-symbol."));
3755 /* If select_mode is "all", then return all possible symbols.
3756 Only do that if more than one symbol can be selected, of course.
3757 Otherwise, display the menu as usual. */
3758 if (select_mode
== multiple_symbols_all
&& max_results
> 1)
3761 printf_unfiltered (_("[0] cancel\n"));
3762 if (max_results
> 1)
3763 printf_unfiltered (_("[1] all\n"));
3765 sort_choices (syms
, nsyms
);
3767 for (i
= 0; i
< nsyms
; i
+= 1)
3769 if (syms
[i
].symbol
== NULL
)
3772 if (SYMBOL_CLASS (syms
[i
].symbol
) == LOC_BLOCK
)
3774 struct symtab_and_line sal
=
3775 find_function_start_sal (syms
[i
].symbol
, 1);
3777 if (sal
.symtab
== NULL
)
3778 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3780 SYMBOL_PRINT_NAME (syms
[i
].symbol
),
3783 printf_unfiltered (_("[%d] %s at %s:%d\n"), i
+ first_choice
,
3784 SYMBOL_PRINT_NAME (syms
[i
].symbol
),
3785 symtab_to_filename_for_display (sal
.symtab
),
3792 (SYMBOL_CLASS (syms
[i
].symbol
) == LOC_CONST
3793 && SYMBOL_TYPE (syms
[i
].symbol
) != NULL
3794 && TYPE_CODE (SYMBOL_TYPE (syms
[i
].symbol
)) == TYPE_CODE_ENUM
);
3795 struct symtab
*symtab
= NULL
;
3797 if (SYMBOL_OBJFILE_OWNED (syms
[i
].symbol
))
3798 symtab
= symbol_symtab (syms
[i
].symbol
);
3800 if (SYMBOL_LINE (syms
[i
].symbol
) != 0 && symtab
!= NULL
)
3801 printf_unfiltered (_("[%d] %s at %s:%d\n"),
3803 SYMBOL_PRINT_NAME (syms
[i
].symbol
),
3804 symtab_to_filename_for_display (symtab
),
3805 SYMBOL_LINE (syms
[i
].symbol
));
3806 else if (is_enumeral
3807 && TYPE_NAME (SYMBOL_TYPE (syms
[i
].symbol
)) != NULL
)
3809 printf_unfiltered (("[%d] "), i
+ first_choice
);
3810 ada_print_type (SYMBOL_TYPE (syms
[i
].symbol
), NULL
,
3811 gdb_stdout
, -1, 0, &type_print_raw_options
);
3812 printf_unfiltered (_("'(%s) (enumeral)\n"),
3813 SYMBOL_PRINT_NAME (syms
[i
].symbol
));
3815 else if (symtab
!= NULL
)
3816 printf_unfiltered (is_enumeral
3817 ? _("[%d] %s in %s (enumeral)\n")
3818 : _("[%d] %s at %s:?\n"),
3820 SYMBOL_PRINT_NAME (syms
[i
].symbol
),
3821 symtab_to_filename_for_display (symtab
));
3823 printf_unfiltered (is_enumeral
3824 ? _("[%d] %s (enumeral)\n")
3825 : _("[%d] %s at ?\n"),
3827 SYMBOL_PRINT_NAME (syms
[i
].symbol
));
3831 n_chosen
= get_selections (chosen
, nsyms
, max_results
, max_results
> 1,
3834 for (i
= 0; i
< n_chosen
; i
+= 1)
3835 syms
[i
] = syms
[chosen
[i
]];
3840 /* Read and validate a set of numeric choices from the user in the
3841 range 0 .. N_CHOICES-1. Place the results in increasing
3842 order in CHOICES[0 .. N-1], and return N.
3844 The user types choices as a sequence of numbers on one line
3845 separated by blanks, encoding them as follows:
3847 + A choice of 0 means to cancel the selection, throwing an error.
3848 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3849 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3851 The user is not allowed to choose more than MAX_RESULTS values.
3853 ANNOTATION_SUFFIX, if present, is used to annotate the input
3854 prompts (for use with the -f switch). */
3857 get_selections (int *choices
, int n_choices
, int max_results
,
3858 int is_all_choice
, char *annotation_suffix
)
3863 int first_choice
= is_all_choice
? 2 : 1;
3865 prompt
= getenv ("PS2");
3869 args
= command_line_input (prompt
, 0, annotation_suffix
);
3872 error_no_arg (_("one or more choice numbers"));
3876 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3877 order, as given in args. Choices are validated. */
3883 args
= skip_spaces (args
);
3884 if (*args
== '\0' && n_chosen
== 0)
3885 error_no_arg (_("one or more choice numbers"));
3886 else if (*args
== '\0')
3889 choice
= strtol (args
, &args2
, 10);
3890 if (args
== args2
|| choice
< 0
3891 || choice
> n_choices
+ first_choice
- 1)
3892 error (_("Argument must be choice number"));
3896 error (_("cancelled"));
3898 if (choice
< first_choice
)
3900 n_chosen
= n_choices
;
3901 for (j
= 0; j
< n_choices
; j
+= 1)
3905 choice
-= first_choice
;
3907 for (j
= n_chosen
- 1; j
>= 0 && choice
< choices
[j
]; j
-= 1)
3911 if (j
< 0 || choice
!= choices
[j
])
3915 for (k
= n_chosen
- 1; k
> j
; k
-= 1)
3916 choices
[k
+ 1] = choices
[k
];
3917 choices
[j
+ 1] = choice
;
3922 if (n_chosen
> max_results
)
3923 error (_("Select no more than %d of the above"), max_results
);
3928 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
3929 on the function identified by SYM and BLOCK, and taking NARGS
3930 arguments. Update *EXPP as needed to hold more space. */
3933 replace_operator_with_call (struct expression
**expp
, int pc
, int nargs
,
3934 int oplen
, struct symbol
*sym
,
3935 const struct block
*block
)
3937 /* A new expression, with 6 more elements (3 for funcall, 4 for function
3938 symbol, -oplen for operator being replaced). */
3939 struct expression
*newexp
= (struct expression
*)
3940 xzalloc (sizeof (struct expression
)
3941 + EXP_ELEM_TO_BYTES ((*expp
)->nelts
+ 7 - oplen
));
3942 struct expression
*exp
= *expp
;
3944 newexp
->nelts
= exp
->nelts
+ 7 - oplen
;
3945 newexp
->language_defn
= exp
->language_defn
;
3946 newexp
->gdbarch
= exp
->gdbarch
;
3947 memcpy (newexp
->elts
, exp
->elts
, EXP_ELEM_TO_BYTES (pc
));
3948 memcpy (newexp
->elts
+ pc
+ 7, exp
->elts
+ pc
+ oplen
,
3949 EXP_ELEM_TO_BYTES (exp
->nelts
- pc
- oplen
));
3951 newexp
->elts
[pc
].opcode
= newexp
->elts
[pc
+ 2].opcode
= OP_FUNCALL
;
3952 newexp
->elts
[pc
+ 1].longconst
= (LONGEST
) nargs
;
3954 newexp
->elts
[pc
+ 3].opcode
= newexp
->elts
[pc
+ 6].opcode
= OP_VAR_VALUE
;
3955 newexp
->elts
[pc
+ 4].block
= block
;
3956 newexp
->elts
[pc
+ 5].symbol
= sym
;
3962 /* Type-class predicates */
3964 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3968 numeric_type_p (struct type
*type
)
3974 switch (TYPE_CODE (type
))
3979 case TYPE_CODE_RANGE
:
3980 return (type
== TYPE_TARGET_TYPE (type
)
3981 || numeric_type_p (TYPE_TARGET_TYPE (type
)));
3988 /* True iff TYPE is integral (an INT or RANGE of INTs). */
3991 integer_type_p (struct type
*type
)
3997 switch (TYPE_CODE (type
))
4001 case TYPE_CODE_RANGE
:
4002 return (type
== TYPE_TARGET_TYPE (type
)
4003 || integer_type_p (TYPE_TARGET_TYPE (type
)));
4010 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
4013 scalar_type_p (struct type
*type
)
4019 switch (TYPE_CODE (type
))
4022 case TYPE_CODE_RANGE
:
4023 case TYPE_CODE_ENUM
:
4032 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
4035 discrete_type_p (struct type
*type
)
4041 switch (TYPE_CODE (type
))
4044 case TYPE_CODE_RANGE
:
4045 case TYPE_CODE_ENUM
:
4046 case TYPE_CODE_BOOL
:
4054 /* Returns non-zero if OP with operands in the vector ARGS could be
4055 a user-defined function. Errs on the side of pre-defined operators
4056 (i.e., result 0). */
4059 possible_user_operator_p (enum exp_opcode op
, struct value
*args
[])
4061 struct type
*type0
=
4062 (args
[0] == NULL
) ? NULL
: ada_check_typedef (value_type (args
[0]));
4063 struct type
*type1
=
4064 (args
[1] == NULL
) ? NULL
: ada_check_typedef (value_type (args
[1]));
4078 return (!(numeric_type_p (type0
) && numeric_type_p (type1
)));
4082 case BINOP_BITWISE_AND
:
4083 case BINOP_BITWISE_IOR
:
4084 case BINOP_BITWISE_XOR
:
4085 return (!(integer_type_p (type0
) && integer_type_p (type1
)));
4088 case BINOP_NOTEQUAL
:
4093 return (!(scalar_type_p (type0
) && scalar_type_p (type1
)));
4096 return !ada_is_array_type (type0
) || !ada_is_array_type (type1
);
4099 return (!(numeric_type_p (type0
) && integer_type_p (type1
)));
4103 case UNOP_LOGICAL_NOT
:
4105 return (!numeric_type_p (type0
));
4114 1. In the following, we assume that a renaming type's name may
4115 have an ___XD suffix. It would be nice if this went away at some
4117 2. We handle both the (old) purely type-based representation of
4118 renamings and the (new) variable-based encoding. At some point,
4119 it is devoutly to be hoped that the former goes away
4120 (FIXME: hilfinger-2007-07-09).
4121 3. Subprogram renamings are not implemented, although the XRS
4122 suffix is recognized (FIXME: hilfinger-2007-07-09). */
4124 /* If SYM encodes a renaming,
4126 <renaming> renames <renamed entity>,
4128 sets *LEN to the length of the renamed entity's name,
4129 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4130 the string describing the subcomponent selected from the renamed
4131 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
4132 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4133 are undefined). Otherwise, returns a value indicating the category
4134 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4135 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4136 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
4137 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4138 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4139 may be NULL, in which case they are not assigned.
4141 [Currently, however, GCC does not generate subprogram renamings.] */
4143 enum ada_renaming_category
4144 ada_parse_renaming (struct symbol
*sym
,
4145 const char **renamed_entity
, int *len
,
4146 const char **renaming_expr
)
4148 enum ada_renaming_category kind
;
4153 return ADA_NOT_RENAMING
;
4154 switch (SYMBOL_CLASS (sym
))
4157 return ADA_NOT_RENAMING
;
4159 return parse_old_style_renaming (SYMBOL_TYPE (sym
),
4160 renamed_entity
, len
, renaming_expr
);
4164 case LOC_OPTIMIZED_OUT
:
4165 info
= strstr (SYMBOL_LINKAGE_NAME (sym
), "___XR");
4167 return ADA_NOT_RENAMING
;
4171 kind
= ADA_OBJECT_RENAMING
;
4175 kind
= ADA_EXCEPTION_RENAMING
;
4179 kind
= ADA_PACKAGE_RENAMING
;
4183 kind
= ADA_SUBPROGRAM_RENAMING
;
4187 return ADA_NOT_RENAMING
;
4191 if (renamed_entity
!= NULL
)
4192 *renamed_entity
= info
;
4193 suffix
= strstr (info
, "___XE");
4194 if (suffix
== NULL
|| suffix
== info
)
4195 return ADA_NOT_RENAMING
;
4197 *len
= strlen (info
) - strlen (suffix
);
4199 if (renaming_expr
!= NULL
)
4200 *renaming_expr
= suffix
;
4204 /* Assuming TYPE encodes a renaming according to the old encoding in
4205 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
4206 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
4207 ADA_NOT_RENAMING otherwise. */
4208 static enum ada_renaming_category
4209 parse_old_style_renaming (struct type
*type
,
4210 const char **renamed_entity
, int *len
,
4211 const char **renaming_expr
)
4213 enum ada_renaming_category kind
;
4218 if (type
== NULL
|| TYPE_CODE (type
) != TYPE_CODE_ENUM
4219 || TYPE_NFIELDS (type
) != 1)
4220 return ADA_NOT_RENAMING
;
4222 name
= type_name_no_tag (type
);
4224 return ADA_NOT_RENAMING
;
4226 name
= strstr (name
, "___XR");
4228 return ADA_NOT_RENAMING
;
4233 kind
= ADA_OBJECT_RENAMING
;
4236 kind
= ADA_EXCEPTION_RENAMING
;
4239 kind
= ADA_PACKAGE_RENAMING
;
4242 kind
= ADA_SUBPROGRAM_RENAMING
;
4245 return ADA_NOT_RENAMING
;
4248 info
= TYPE_FIELD_NAME (type
, 0);
4250 return ADA_NOT_RENAMING
;
4251 if (renamed_entity
!= NULL
)
4252 *renamed_entity
= info
;
4253 suffix
= strstr (info
, "___XE");
4254 if (renaming_expr
!= NULL
)
4255 *renaming_expr
= suffix
+ 5;
4256 if (suffix
== NULL
|| suffix
== info
)
4257 return ADA_NOT_RENAMING
;
4259 *len
= suffix
- info
;
4263 /* Compute the value of the given RENAMING_SYM, which is expected to
4264 be a symbol encoding a renaming expression. BLOCK is the block
4265 used to evaluate the renaming. */
4267 static struct value
*
4268 ada_read_renaming_var_value (struct symbol
*renaming_sym
,
4269 const struct block
*block
)
4271 const char *sym_name
;
4272 struct expression
*expr
;
4273 struct value
*value
;
4274 struct cleanup
*old_chain
= NULL
;
4276 sym_name
= SYMBOL_LINKAGE_NAME (renaming_sym
);
4277 expr
= parse_exp_1 (&sym_name
, 0, block
, 0);
4278 old_chain
= make_cleanup (free_current_contents
, &expr
);
4279 value
= evaluate_expression (expr
);
4281 do_cleanups (old_chain
);
4286 /* Evaluation: Function Calls */
4288 /* Return an lvalue containing the value VAL. This is the identity on
4289 lvalues, and otherwise has the side-effect of allocating memory
4290 in the inferior where a copy of the value contents is copied. */
4292 static struct value
*
4293 ensure_lval (struct value
*val
)
4295 if (VALUE_LVAL (val
) == not_lval
4296 || VALUE_LVAL (val
) == lval_internalvar
)
4298 int len
= TYPE_LENGTH (ada_check_typedef (value_type (val
)));
4299 const CORE_ADDR addr
=
4300 value_as_long (value_allocate_space_in_inferior (len
));
4302 set_value_address (val
, addr
);
4303 VALUE_LVAL (val
) = lval_memory
;
4304 write_memory (addr
, value_contents (val
), len
);
4310 /* Return the value ACTUAL, converted to be an appropriate value for a
4311 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4312 allocating any necessary descriptors (fat pointers), or copies of
4313 values not residing in memory, updating it as needed. */
4316 ada_convert_actual (struct value
*actual
, struct type
*formal_type0
)
4318 struct type
*actual_type
= ada_check_typedef (value_type (actual
));
4319 struct type
*formal_type
= ada_check_typedef (formal_type0
);
4320 struct type
*formal_target
=
4321 TYPE_CODE (formal_type
) == TYPE_CODE_PTR
4322 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type
)) : formal_type
;
4323 struct type
*actual_target
=
4324 TYPE_CODE (actual_type
) == TYPE_CODE_PTR
4325 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type
)) : actual_type
;
4327 if (ada_is_array_descriptor_type (formal_target
)
4328 && TYPE_CODE (actual_target
) == TYPE_CODE_ARRAY
)
4329 return make_array_descriptor (formal_type
, actual
);
4330 else if (TYPE_CODE (formal_type
) == TYPE_CODE_PTR
4331 || TYPE_CODE (formal_type
) == TYPE_CODE_REF
)
4333 struct value
*result
;
4335 if (TYPE_CODE (formal_target
) == TYPE_CODE_ARRAY
4336 && ada_is_array_descriptor_type (actual_target
))
4337 result
= desc_data (actual
);
4338 else if (TYPE_CODE (actual_type
) != TYPE_CODE_PTR
)
4340 if (VALUE_LVAL (actual
) != lval_memory
)
4344 actual_type
= ada_check_typedef (value_type (actual
));
4345 val
= allocate_value (actual_type
);
4346 memcpy ((char *) value_contents_raw (val
),
4347 (char *) value_contents (actual
),
4348 TYPE_LENGTH (actual_type
));
4349 actual
= ensure_lval (val
);
4351 result
= value_addr (actual
);
4355 return value_cast_pointers (formal_type
, result
, 0);
4357 else if (TYPE_CODE (actual_type
) == TYPE_CODE_PTR
)
4358 return ada_value_ind (actual
);
4359 else if (ada_is_aligner_type (formal_type
))
4361 /* We need to turn this parameter into an aligner type
4363 struct value
*aligner
= allocate_value (formal_type
);
4364 struct value
*component
= ada_value_struct_elt (aligner
, "F", 0);
4366 value_assign_to_component (aligner
, component
, actual
);
4373 /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4374 type TYPE. This is usually an inefficient no-op except on some targets
4375 (such as AVR) where the representation of a pointer and an address
4379 value_pointer (struct value
*value
, struct type
*type
)
4381 struct gdbarch
*gdbarch
= get_type_arch (type
);
4382 unsigned len
= TYPE_LENGTH (type
);
4383 gdb_byte
*buf
= alloca (len
);
4386 addr
= value_address (value
);
4387 gdbarch_address_to_pointer (gdbarch
, type
, buf
, addr
);
4388 addr
= extract_unsigned_integer (buf
, len
, gdbarch_byte_order (gdbarch
));
4393 /* Push a descriptor of type TYPE for array value ARR on the stack at
4394 *SP, updating *SP to reflect the new descriptor. Return either
4395 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4396 to-descriptor type rather than a descriptor type), a struct value *
4397 representing a pointer to this descriptor. */
4399 static struct value
*
4400 make_array_descriptor (struct type
*type
, struct value
*arr
)
4402 struct type
*bounds_type
= desc_bounds_type (type
);
4403 struct type
*desc_type
= desc_base_type (type
);
4404 struct value
*descriptor
= allocate_value (desc_type
);
4405 struct value
*bounds
= allocate_value (bounds_type
);
4408 for (i
= ada_array_arity (ada_check_typedef (value_type (arr
)));
4411 modify_field (value_type (bounds
), value_contents_writeable (bounds
),
4412 ada_array_bound (arr
, i
, 0),
4413 desc_bound_bitpos (bounds_type
, i
, 0),
4414 desc_bound_bitsize (bounds_type
, i
, 0));
4415 modify_field (value_type (bounds
), value_contents_writeable (bounds
),
4416 ada_array_bound (arr
, i
, 1),
4417 desc_bound_bitpos (bounds_type
, i
, 1),
4418 desc_bound_bitsize (bounds_type
, i
, 1));
4421 bounds
= ensure_lval (bounds
);
4423 modify_field (value_type (descriptor
),
4424 value_contents_writeable (descriptor
),
4425 value_pointer (ensure_lval (arr
),
4426 TYPE_FIELD_TYPE (desc_type
, 0)),
4427 fat_pntr_data_bitpos (desc_type
),
4428 fat_pntr_data_bitsize (desc_type
));
4430 modify_field (value_type (descriptor
),
4431 value_contents_writeable (descriptor
),
4432 value_pointer (bounds
,
4433 TYPE_FIELD_TYPE (desc_type
, 1)),
4434 fat_pntr_bounds_bitpos (desc_type
),
4435 fat_pntr_bounds_bitsize (desc_type
));
4437 descriptor
= ensure_lval (descriptor
);
4439 if (TYPE_CODE (type
) == TYPE_CODE_PTR
)
4440 return value_addr (descriptor
);
4445 /* Symbol Cache Module */
4447 /* Performance measurements made as of 2010-01-15 indicate that
4448 this cache does bring some noticeable improvements. Depending
4449 on the type of entity being printed, the cache can make it as much
4450 as an order of magnitude faster than without it.
4452 The descriptive type DWARF extension has significantly reduced
4453 the need for this cache, at least when DWARF is being used. However,
4454 even in this case, some expensive name-based symbol searches are still
4455 sometimes necessary - to find an XVZ variable, mostly. */
4457 /* Initialize the contents of SYM_CACHE. */
4460 ada_init_symbol_cache (struct ada_symbol_cache
*sym_cache
)
4462 obstack_init (&sym_cache
->cache_space
);
4463 memset (sym_cache
->root
, '\000', sizeof (sym_cache
->root
));
4466 /* Free the memory used by SYM_CACHE. */
4469 ada_free_symbol_cache (struct ada_symbol_cache
*sym_cache
)
4471 obstack_free (&sym_cache
->cache_space
, NULL
);
4475 /* Return the symbol cache associated to the given program space PSPACE.
4476 If not allocated for this PSPACE yet, allocate and initialize one. */
4478 static struct ada_symbol_cache
*
4479 ada_get_symbol_cache (struct program_space
*pspace
)
4481 struct ada_pspace_data
*pspace_data
= get_ada_pspace_data (pspace
);
4483 if (pspace_data
->sym_cache
== NULL
)
4485 pspace_data
->sym_cache
= XCNEW (struct ada_symbol_cache
);
4486 ada_init_symbol_cache (pspace_data
->sym_cache
);
4489 return pspace_data
->sym_cache
;
4492 /* Clear all entries from the symbol cache. */
4495 ada_clear_symbol_cache (void)
4497 struct ada_symbol_cache
*sym_cache
4498 = ada_get_symbol_cache (current_program_space
);
4500 obstack_free (&sym_cache
->cache_space
, NULL
);
4501 ada_init_symbol_cache (sym_cache
);
4504 /* Search our cache for an entry matching NAME and DOMAIN.
4505 Return it if found, or NULL otherwise. */
4507 static struct cache_entry
**
4508 find_entry (const char *name
, domain_enum domain
)
4510 struct ada_symbol_cache
*sym_cache
4511 = ada_get_symbol_cache (current_program_space
);
4512 int h
= msymbol_hash (name
) % HASH_SIZE
;
4513 struct cache_entry
**e
;
4515 for (e
= &sym_cache
->root
[h
]; *e
!= NULL
; e
= &(*e
)->next
)
4517 if (domain
== (*e
)->domain
&& strcmp (name
, (*e
)->name
) == 0)
4523 /* Search the symbol cache for an entry matching NAME and DOMAIN.
4524 Return 1 if found, 0 otherwise.
4526 If an entry was found and SYM is not NULL, set *SYM to the entry's
4527 SYM. Same principle for BLOCK if not NULL. */
4530 lookup_cached_symbol (const char *name
, domain_enum domain
,
4531 struct symbol
**sym
, const struct block
**block
)
4533 struct cache_entry
**e
= find_entry (name
, domain
);
4540 *block
= (*e
)->block
;
4544 /* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
4545 in domain DOMAIN, save this result in our symbol cache. */
4548 cache_symbol (const char *name
, domain_enum domain
, struct symbol
*sym
,
4549 const struct block
*block
)
4551 struct ada_symbol_cache
*sym_cache
4552 = ada_get_symbol_cache (current_program_space
);
4555 struct cache_entry
*e
;
4557 /* Symbols for builtin types don't have a block.
4558 For now don't cache such symbols. */
4559 if (sym
!= NULL
&& !SYMBOL_OBJFILE_OWNED (sym
))
4562 /* If the symbol is a local symbol, then do not cache it, as a search
4563 for that symbol depends on the context. To determine whether
4564 the symbol is local or not, we check the block where we found it
4565 against the global and static blocks of its associated symtab. */
4567 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym
)),
4568 GLOBAL_BLOCK
) != block
4569 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym
)),
4570 STATIC_BLOCK
) != block
)
4573 h
= msymbol_hash (name
) % HASH_SIZE
;
4574 e
= (struct cache_entry
*) obstack_alloc (&sym_cache
->cache_space
,
4576 e
->next
= sym_cache
->root
[h
];
4577 sym_cache
->root
[h
] = e
;
4578 e
->name
= copy
= obstack_alloc (&sym_cache
->cache_space
, strlen (name
) + 1);
4579 strcpy (copy
, name
);
4587 /* Return nonzero if wild matching should be used when searching for
4588 all symbols matching LOOKUP_NAME.
4590 LOOKUP_NAME is expected to be a symbol name after transformation
4591 for Ada lookups (see ada_name_for_lookup). */
4594 should_use_wild_match (const char *lookup_name
)
4596 return (strstr (lookup_name
, "__") == NULL
);
4599 /* Return the result of a standard (literal, C-like) lookup of NAME in
4600 given DOMAIN, visible from lexical block BLOCK. */
4602 static struct symbol
*
4603 standard_lookup (const char *name
, const struct block
*block
,
4606 /* Initialize it just to avoid a GCC false warning. */
4607 struct block_symbol sym
= {NULL
, NULL
};
4609 if (lookup_cached_symbol (name
, domain
, &sym
.symbol
, NULL
))
4611 sym
= lookup_symbol_in_language (name
, block
, domain
, language_c
, 0);
4612 cache_symbol (name
, domain
, sym
.symbol
, sym
.block
);
4617 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4618 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4619 since they contend in overloading in the same way. */
4621 is_nonfunction (struct block_symbol syms
[], int n
)
4625 for (i
= 0; i
< n
; i
+= 1)
4626 if (TYPE_CODE (SYMBOL_TYPE (syms
[i
].symbol
)) != TYPE_CODE_FUNC
4627 && (TYPE_CODE (SYMBOL_TYPE (syms
[i
].symbol
)) != TYPE_CODE_ENUM
4628 || SYMBOL_CLASS (syms
[i
].symbol
) != LOC_CONST
))
4634 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4635 struct types. Otherwise, they may not. */
4638 equiv_types (struct type
*type0
, struct type
*type1
)
4642 if (type0
== NULL
|| type1
== NULL
4643 || TYPE_CODE (type0
) != TYPE_CODE (type1
))
4645 if ((TYPE_CODE (type0
) == TYPE_CODE_STRUCT
4646 || TYPE_CODE (type0
) == TYPE_CODE_ENUM
)
4647 && ada_type_name (type0
) != NULL
&& ada_type_name (type1
) != NULL
4648 && strcmp (ada_type_name (type0
), ada_type_name (type1
)) == 0)
4654 /* True iff SYM0 represents the same entity as SYM1, or one that is
4655 no more defined than that of SYM1. */
4658 lesseq_defined_than (struct symbol
*sym0
, struct symbol
*sym1
)
4662 if (SYMBOL_DOMAIN (sym0
) != SYMBOL_DOMAIN (sym1
)
4663 || SYMBOL_CLASS (sym0
) != SYMBOL_CLASS (sym1
))
4666 switch (SYMBOL_CLASS (sym0
))
4672 struct type
*type0
= SYMBOL_TYPE (sym0
);
4673 struct type
*type1
= SYMBOL_TYPE (sym1
);
4674 const char *name0
= SYMBOL_LINKAGE_NAME (sym0
);
4675 const char *name1
= SYMBOL_LINKAGE_NAME (sym1
);
4676 int len0
= strlen (name0
);
4679 TYPE_CODE (type0
) == TYPE_CODE (type1
)
4680 && (equiv_types (type0
, type1
)
4681 || (len0
< strlen (name1
) && strncmp (name0
, name1
, len0
) == 0
4682 && startswith (name1
+ len0
, "___XV")));
4685 return SYMBOL_VALUE (sym0
) == SYMBOL_VALUE (sym1
)
4686 && equiv_types (SYMBOL_TYPE (sym0
), SYMBOL_TYPE (sym1
));
4692 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct block_symbol
4693 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4696 add_defn_to_vec (struct obstack
*obstackp
,
4698 const struct block
*block
)
4701 struct block_symbol
*prevDefns
= defns_collected (obstackp
, 0);
4703 /* Do not try to complete stub types, as the debugger is probably
4704 already scanning all symbols matching a certain name at the
4705 time when this function is called. Trying to replace the stub
4706 type by its associated full type will cause us to restart a scan
4707 which may lead to an infinite recursion. Instead, the client
4708 collecting the matching symbols will end up collecting several
4709 matches, with at least one of them complete. It can then filter
4710 out the stub ones if needed. */
4712 for (i
= num_defns_collected (obstackp
) - 1; i
>= 0; i
-= 1)
4714 if (lesseq_defined_than (sym
, prevDefns
[i
].symbol
))
4716 else if (lesseq_defined_than (prevDefns
[i
].symbol
, sym
))
4718 prevDefns
[i
].symbol
= sym
;
4719 prevDefns
[i
].block
= block
;
4725 struct block_symbol info
;
4729 obstack_grow (obstackp
, &info
, sizeof (struct block_symbol
));
4733 /* Number of block_symbol structures currently collected in current vector in
4737 num_defns_collected (struct obstack
*obstackp
)
4739 return obstack_object_size (obstackp
) / sizeof (struct block_symbol
);
4742 /* Vector of block_symbol structures currently collected in current vector in
4743 OBSTACKP. If FINISH, close off the vector and return its final address. */
4745 static struct block_symbol
*
4746 defns_collected (struct obstack
*obstackp
, int finish
)
4749 return obstack_finish (obstackp
);
4751 return (struct block_symbol
*) obstack_base (obstackp
);
4754 /* Return a bound minimal symbol matching NAME according to Ada
4755 decoding rules. Returns an invalid symbol if there is no such
4756 minimal symbol. Names prefixed with "standard__" are handled
4757 specially: "standard__" is first stripped off, and only static and
4758 global symbols are searched. */
4760 struct bound_minimal_symbol
4761 ada_lookup_simple_minsym (const char *name
)
4763 struct bound_minimal_symbol result
;
4764 struct objfile
*objfile
;
4765 struct minimal_symbol
*msymbol
;
4766 const int wild_match_p
= should_use_wild_match (name
);
4768 memset (&result
, 0, sizeof (result
));
4770 /* Special case: If the user specifies a symbol name inside package
4771 Standard, do a non-wild matching of the symbol name without
4772 the "standard__" prefix. This was primarily introduced in order
4773 to allow the user to specifically access the standard exceptions
4774 using, for instance, Standard.Constraint_Error when Constraint_Error
4775 is ambiguous (due to the user defining its own Constraint_Error
4776 entity inside its program). */
4777 if (startswith (name
, "standard__"))
4778 name
+= sizeof ("standard__") - 1;
4780 ALL_MSYMBOLS (objfile
, msymbol
)
4782 if (match_name (MSYMBOL_LINKAGE_NAME (msymbol
), name
, wild_match_p
)
4783 && MSYMBOL_TYPE (msymbol
) != mst_solib_trampoline
)
4785 result
.minsym
= msymbol
;
4786 result
.objfile
= objfile
;
4794 /* For all subprograms that statically enclose the subprogram of the
4795 selected frame, add symbols matching identifier NAME in DOMAIN
4796 and their blocks to the list of data in OBSTACKP, as for
4797 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4798 with a wildcard prefix. */
4801 add_symbols_from_enclosing_procs (struct obstack
*obstackp
,
4802 const char *name
, domain_enum domain
,
4807 /* True if TYPE is definitely an artificial type supplied to a symbol
4808 for which no debugging information was given in the symbol file. */
4811 is_nondebugging_type (struct type
*type
)
4813 const char *name
= ada_type_name (type
);
4815 return (name
!= NULL
&& strcmp (name
, "<variable, no debug info>") == 0);
4818 /* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4819 that are deemed "identical" for practical purposes.
4821 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4822 types and that their number of enumerals is identical (in other
4823 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
4826 ada_identical_enum_types_p (struct type
*type1
, struct type
*type2
)
4830 /* The heuristic we use here is fairly conservative. We consider
4831 that 2 enumerate types are identical if they have the same
4832 number of enumerals and that all enumerals have the same
4833 underlying value and name. */
4835 /* All enums in the type should have an identical underlying value. */
4836 for (i
= 0; i
< TYPE_NFIELDS (type1
); i
++)
4837 if (TYPE_FIELD_ENUMVAL (type1
, i
) != TYPE_FIELD_ENUMVAL (type2
, i
))
4840 /* All enumerals should also have the same name (modulo any numerical
4842 for (i
= 0; i
< TYPE_NFIELDS (type1
); i
++)
4844 const char *name_1
= TYPE_FIELD_NAME (type1
, i
);
4845 const char *name_2
= TYPE_FIELD_NAME (type2
, i
);
4846 int len_1
= strlen (name_1
);
4847 int len_2
= strlen (name_2
);
4849 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1
, i
), &len_1
);
4850 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2
, i
), &len_2
);
4852 || strncmp (TYPE_FIELD_NAME (type1
, i
),
4853 TYPE_FIELD_NAME (type2
, i
),
4861 /* Return nonzero if all the symbols in SYMS are all enumeral symbols
4862 that are deemed "identical" for practical purposes. Sometimes,
4863 enumerals are not strictly identical, but their types are so similar
4864 that they can be considered identical.
4866 For instance, consider the following code:
4868 type Color is (Black, Red, Green, Blue, White);
4869 type RGB_Color is new Color range Red .. Blue;
4871 Type RGB_Color is a subrange of an implicit type which is a copy
4872 of type Color. If we call that implicit type RGB_ColorB ("B" is
4873 for "Base Type"), then type RGB_ColorB is a copy of type Color.
4874 As a result, when an expression references any of the enumeral
4875 by name (Eg. "print green"), the expression is technically
4876 ambiguous and the user should be asked to disambiguate. But
4877 doing so would only hinder the user, since it wouldn't matter
4878 what choice he makes, the outcome would always be the same.
4879 So, for practical purposes, we consider them as the same. */
4882 symbols_are_identical_enums (struct block_symbol
*syms
, int nsyms
)
4886 /* Before performing a thorough comparison check of each type,
4887 we perform a series of inexpensive checks. We expect that these
4888 checks will quickly fail in the vast majority of cases, and thus
4889 help prevent the unnecessary use of a more expensive comparison.
4890 Said comparison also expects us to make some of these checks
4891 (see ada_identical_enum_types_p). */
4893 /* Quick check: All symbols should have an enum type. */
4894 for (i
= 0; i
< nsyms
; i
++)
4895 if (TYPE_CODE (SYMBOL_TYPE (syms
[i
].symbol
)) != TYPE_CODE_ENUM
)
4898 /* Quick check: They should all have the same value. */
4899 for (i
= 1; i
< nsyms
; i
++)
4900 if (SYMBOL_VALUE (syms
[i
].symbol
) != SYMBOL_VALUE (syms
[0].symbol
))
4903 /* Quick check: They should all have the same number of enumerals. */
4904 for (i
= 1; i
< nsyms
; i
++)
4905 if (TYPE_NFIELDS (SYMBOL_TYPE (syms
[i
].symbol
))
4906 != TYPE_NFIELDS (SYMBOL_TYPE (syms
[0].symbol
)))
4909 /* All the sanity checks passed, so we might have a set of
4910 identical enumeration types. Perform a more complete
4911 comparison of the type of each symbol. */
4912 for (i
= 1; i
< nsyms
; i
++)
4913 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms
[i
].symbol
),
4914 SYMBOL_TYPE (syms
[0].symbol
)))
4920 /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4921 duplicate other symbols in the list (The only case I know of where
4922 this happens is when object files containing stabs-in-ecoff are
4923 linked with files containing ordinary ecoff debugging symbols (or no
4924 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4925 Returns the number of items in the modified list. */
4928 remove_extra_symbols (struct block_symbol
*syms
, int nsyms
)
4932 /* We should never be called with less than 2 symbols, as there
4933 cannot be any extra symbol in that case. But it's easy to
4934 handle, since we have nothing to do in that case. */
4943 /* If two symbols have the same name and one of them is a stub type,
4944 the get rid of the stub. */
4946 if (TYPE_STUB (SYMBOL_TYPE (syms
[i
].symbol
))
4947 && SYMBOL_LINKAGE_NAME (syms
[i
].symbol
) != NULL
)
4949 for (j
= 0; j
< nsyms
; j
++)
4952 && !TYPE_STUB (SYMBOL_TYPE (syms
[j
].symbol
))
4953 && SYMBOL_LINKAGE_NAME (syms
[j
].symbol
) != NULL
4954 && strcmp (SYMBOL_LINKAGE_NAME (syms
[i
].symbol
),
4955 SYMBOL_LINKAGE_NAME (syms
[j
].symbol
)) == 0)
4960 /* Two symbols with the same name, same class and same address
4961 should be identical. */
4963 else if (SYMBOL_LINKAGE_NAME (syms
[i
].symbol
) != NULL
4964 && SYMBOL_CLASS (syms
[i
].symbol
) == LOC_STATIC
4965 && is_nondebugging_type (SYMBOL_TYPE (syms
[i
].symbol
)))
4967 for (j
= 0; j
< nsyms
; j
+= 1)
4970 && SYMBOL_LINKAGE_NAME (syms
[j
].symbol
) != NULL
4971 && strcmp (SYMBOL_LINKAGE_NAME (syms
[i
].symbol
),
4972 SYMBOL_LINKAGE_NAME (syms
[j
].symbol
)) == 0
4973 && SYMBOL_CLASS (syms
[i
].symbol
)
4974 == SYMBOL_CLASS (syms
[j
].symbol
)
4975 && SYMBOL_VALUE_ADDRESS (syms
[i
].symbol
)
4976 == SYMBOL_VALUE_ADDRESS (syms
[j
].symbol
))
4983 for (j
= i
+ 1; j
< nsyms
; j
+= 1)
4984 syms
[j
- 1] = syms
[j
];
4991 /* If all the remaining symbols are identical enumerals, then
4992 just keep the first one and discard the rest.
4994 Unlike what we did previously, we do not discard any entry
4995 unless they are ALL identical. This is because the symbol
4996 comparison is not a strict comparison, but rather a practical
4997 comparison. If all symbols are considered identical, then
4998 we can just go ahead and use the first one and discard the rest.
4999 But if we cannot reduce the list to a single element, we have
5000 to ask the user to disambiguate anyways. And if we have to
5001 present a multiple-choice menu, it's less confusing if the list
5002 isn't missing some choices that were identical and yet distinct. */
5003 if (symbols_are_identical_enums (syms
, nsyms
))
5009 /* Given a type that corresponds to a renaming entity, use the type name
5010 to extract the scope (package name or function name, fully qualified,
5011 and following the GNAT encoding convention) where this renaming has been
5012 defined. The string returned needs to be deallocated after use. */
5015 xget_renaming_scope (struct type
*renaming_type
)
5017 /* The renaming types adhere to the following convention:
5018 <scope>__<rename>___<XR extension>.
5019 So, to extract the scope, we search for the "___XR" extension,
5020 and then backtrack until we find the first "__". */
5022 const char *name
= type_name_no_tag (renaming_type
);
5023 char *suffix
= strstr (name
, "___XR");
5028 /* Now, backtrack a bit until we find the first "__". Start looking
5029 at suffix - 3, as the <rename> part is at least one character long. */
5031 for (last
= suffix
- 3; last
> name
; last
--)
5032 if (last
[0] == '_' && last
[1] == '_')
5035 /* Make a copy of scope and return it. */
5037 scope_len
= last
- name
;
5038 scope
= (char *) xmalloc ((scope_len
+ 1) * sizeof (char));
5040 strncpy (scope
, name
, scope_len
);
5041 scope
[scope_len
] = '\0';
5046 /* Return nonzero if NAME corresponds to a package name. */
5049 is_package_name (const char *name
)
5051 /* Here, We take advantage of the fact that no symbols are generated
5052 for packages, while symbols are generated for each function.
5053 So the condition for NAME represent a package becomes equivalent
5054 to NAME not existing in our list of symbols. There is only one
5055 small complication with library-level functions (see below). */
5059 /* If it is a function that has not been defined at library level,
5060 then we should be able to look it up in the symbols. */
5061 if (standard_lookup (name
, NULL
, VAR_DOMAIN
) != NULL
)
5064 /* Library-level function names start with "_ada_". See if function
5065 "_ada_" followed by NAME can be found. */
5067 /* Do a quick check that NAME does not contain "__", since library-level
5068 functions names cannot contain "__" in them. */
5069 if (strstr (name
, "__") != NULL
)
5072 fun_name
= xstrprintf ("_ada_%s", name
);
5074 return (standard_lookup (fun_name
, NULL
, VAR_DOMAIN
) == NULL
);
5077 /* Return nonzero if SYM corresponds to a renaming entity that is
5078 not visible from FUNCTION_NAME. */
5081 old_renaming_is_invisible (const struct symbol
*sym
, const char *function_name
)
5084 struct cleanup
*old_chain
;
5086 if (SYMBOL_CLASS (sym
) != LOC_TYPEDEF
)
5089 scope
= xget_renaming_scope (SYMBOL_TYPE (sym
));
5090 old_chain
= make_cleanup (xfree
, scope
);
5092 /* If the rename has been defined in a package, then it is visible. */
5093 if (is_package_name (scope
))
5095 do_cleanups (old_chain
);
5099 /* Check that the rename is in the current function scope by checking
5100 that its name starts with SCOPE. */
5102 /* If the function name starts with "_ada_", it means that it is
5103 a library-level function. Strip this prefix before doing the
5104 comparison, as the encoding for the renaming does not contain
5106 if (startswith (function_name
, "_ada_"))
5110 int is_invisible
= !startswith (function_name
, scope
);
5112 do_cleanups (old_chain
);
5113 return is_invisible
;
5117 /* Remove entries from SYMS that corresponds to a renaming entity that
5118 is not visible from the function associated with CURRENT_BLOCK or
5119 that is superfluous due to the presence of more specific renaming
5120 information. Places surviving symbols in the initial entries of
5121 SYMS and returns the number of surviving symbols.
5124 First, in cases where an object renaming is implemented as a
5125 reference variable, GNAT may produce both the actual reference
5126 variable and the renaming encoding. In this case, we discard the
5129 Second, GNAT emits a type following a specified encoding for each renaming
5130 entity. Unfortunately, STABS currently does not support the definition
5131 of types that are local to a given lexical block, so all renamings types
5132 are emitted at library level. As a consequence, if an application
5133 contains two renaming entities using the same name, and a user tries to
5134 print the value of one of these entities, the result of the ada symbol
5135 lookup will also contain the wrong renaming type.
5137 This function partially covers for this limitation by attempting to
5138 remove from the SYMS list renaming symbols that should be visible
5139 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
5140 method with the current information available. The implementation
5141 below has a couple of limitations (FIXME: brobecker-2003-05-12):
5143 - When the user tries to print a rename in a function while there
5144 is another rename entity defined in a package: Normally, the
5145 rename in the function has precedence over the rename in the
5146 package, so the latter should be removed from the list. This is
5147 currently not the case.
5149 - This function will incorrectly remove valid renames if
5150 the CURRENT_BLOCK corresponds to a function which symbol name
5151 has been changed by an "Export" pragma. As a consequence,
5152 the user will be unable to print such rename entities. */
5155 remove_irrelevant_renamings (struct block_symbol
*syms
,
5156 int nsyms
, const struct block
*current_block
)
5158 struct symbol
*current_function
;
5159 const char *current_function_name
;
5161 int is_new_style_renaming
;
5163 /* If there is both a renaming foo___XR... encoded as a variable and
5164 a simple variable foo in the same block, discard the latter.
5165 First, zero out such symbols, then compress. */
5166 is_new_style_renaming
= 0;
5167 for (i
= 0; i
< nsyms
; i
+= 1)
5169 struct symbol
*sym
= syms
[i
].symbol
;
5170 const struct block
*block
= syms
[i
].block
;
5174 if (sym
== NULL
|| SYMBOL_CLASS (sym
) == LOC_TYPEDEF
)
5176 name
= SYMBOL_LINKAGE_NAME (sym
);
5177 suffix
= strstr (name
, "___XR");
5181 int name_len
= suffix
- name
;
5184 is_new_style_renaming
= 1;
5185 for (j
= 0; j
< nsyms
; j
+= 1)
5186 if (i
!= j
&& syms
[j
].symbol
!= NULL
5187 && strncmp (name
, SYMBOL_LINKAGE_NAME (syms
[j
].symbol
),
5189 && block
== syms
[j
].block
)
5190 syms
[j
].symbol
= NULL
;
5193 if (is_new_style_renaming
)
5197 for (j
= k
= 0; j
< nsyms
; j
+= 1)
5198 if (syms
[j
].symbol
!= NULL
)
5206 /* Extract the function name associated to CURRENT_BLOCK.
5207 Abort if unable to do so. */
5209 if (current_block
== NULL
)
5212 current_function
= block_linkage_function (current_block
);
5213 if (current_function
== NULL
)
5216 current_function_name
= SYMBOL_LINKAGE_NAME (current_function
);
5217 if (current_function_name
== NULL
)
5220 /* Check each of the symbols, and remove it from the list if it is
5221 a type corresponding to a renaming that is out of the scope of
5222 the current block. */
5227 if (ada_parse_renaming (syms
[i
].symbol
, NULL
, NULL
, NULL
)
5228 == ADA_OBJECT_RENAMING
5229 && old_renaming_is_invisible (syms
[i
].symbol
, current_function_name
))
5233 for (j
= i
+ 1; j
< nsyms
; j
+= 1)
5234 syms
[j
- 1] = syms
[j
];
5244 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
5245 whose name and domain match NAME and DOMAIN respectively.
5246 If no match was found, then extend the search to "enclosing"
5247 routines (in other words, if we're inside a nested function,
5248 search the symbols defined inside the enclosing functions).
5249 If WILD_MATCH_P is nonzero, perform the naming matching in
5250 "wild" mode (see function "wild_match" for more info).
5252 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
5255 ada_add_local_symbols (struct obstack
*obstackp
, const char *name
,
5256 const struct block
*block
, domain_enum domain
,
5259 int block_depth
= 0;
5261 while (block
!= NULL
)
5264 ada_add_block_symbols (obstackp
, block
, name
, domain
, NULL
,
5267 /* If we found a non-function match, assume that's the one. */
5268 if (is_nonfunction (defns_collected (obstackp
, 0),
5269 num_defns_collected (obstackp
)))
5272 block
= BLOCK_SUPERBLOCK (block
);
5275 /* If no luck so far, try to find NAME as a local symbol in some lexically
5276 enclosing subprogram. */
5277 if (num_defns_collected (obstackp
) == 0 && block_depth
> 2)
5278 add_symbols_from_enclosing_procs (obstackp
, name
, domain
, wild_match_p
);
5281 /* An object of this type is used as the user_data argument when
5282 calling the map_matching_symbols method. */
5286 struct objfile
*objfile
;
5287 struct obstack
*obstackp
;
5288 struct symbol
*arg_sym
;
5292 /* A callback for add_matching_symbols that adds SYM, found in BLOCK,
5293 to a list of symbols. DATA0 is a pointer to a struct match_data *
5294 containing the obstack that collects the symbol list, the file that SYM
5295 must come from, a flag indicating whether a non-argument symbol has
5296 been found in the current block, and the last argument symbol
5297 passed in SYM within the current block (if any). When SYM is null,
5298 marking the end of a block, the argument symbol is added if no
5299 other has been found. */
5302 aux_add_nonlocal_symbols (struct block
*block
, struct symbol
*sym
, void *data0
)
5304 struct match_data
*data
= (struct match_data
*) data0
;
5308 if (!data
->found_sym
&& data
->arg_sym
!= NULL
)
5309 add_defn_to_vec (data
->obstackp
,
5310 fixup_symbol_section (data
->arg_sym
, data
->objfile
),
5312 data
->found_sym
= 0;
5313 data
->arg_sym
= NULL
;
5317 if (SYMBOL_CLASS (sym
) == LOC_UNRESOLVED
)
5319 else if (SYMBOL_IS_ARGUMENT (sym
))
5320 data
->arg_sym
= sym
;
5323 data
->found_sym
= 1;
5324 add_defn_to_vec (data
->obstackp
,
5325 fixup_symbol_section (sym
, data
->objfile
),
5332 /* Implements compare_names, but only applying the comparision using
5333 the given CASING. */
5336 compare_names_with_case (const char *string1
, const char *string2
,
5337 enum case_sensitivity casing
)
5339 while (*string1
!= '\0' && *string2
!= '\0')
5343 if (isspace (*string1
) || isspace (*string2
))
5344 return strcmp_iw_ordered (string1
, string2
);
5346 if (casing
== case_sensitive_off
)
5348 c1
= tolower (*string1
);
5349 c2
= tolower (*string2
);
5366 return strcmp_iw_ordered (string1
, string2
);
5368 if (*string2
== '\0')
5370 if (is_name_suffix (string1
))
5377 if (*string2
== '(')
5378 return strcmp_iw_ordered (string1
, string2
);
5381 if (casing
== case_sensitive_off
)
5382 return tolower (*string1
) - tolower (*string2
);
5384 return *string1
- *string2
;
5389 /* Compare STRING1 to STRING2, with results as for strcmp.
5390 Compatible with strcmp_iw_ordered in that...
5392 strcmp_iw_ordered (STRING1, STRING2) <= 0
5396 compare_names (STRING1, STRING2) <= 0
5398 (they may differ as to what symbols compare equal). */
5401 compare_names (const char *string1
, const char *string2
)
5405 /* Similar to what strcmp_iw_ordered does, we need to perform
5406 a case-insensitive comparison first, and only resort to
5407 a second, case-sensitive, comparison if the first one was
5408 not sufficient to differentiate the two strings. */
5410 result
= compare_names_with_case (string1
, string2
, case_sensitive_off
);
5412 result
= compare_names_with_case (string1
, string2
, case_sensitive_on
);
5417 /* Add to OBSTACKP all non-local symbols whose name and domain match
5418 NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK
5419 symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */
5422 add_nonlocal_symbols (struct obstack
*obstackp
, const char *name
,
5423 domain_enum domain
, int global
,
5426 struct objfile
*objfile
;
5427 struct match_data data
;
5429 memset (&data
, 0, sizeof data
);
5430 data
.obstackp
= obstackp
;
5432 ALL_OBJFILES (objfile
)
5434 data
.objfile
= objfile
;
5437 objfile
->sf
->qf
->map_matching_symbols (objfile
, name
, domain
, global
,
5438 aux_add_nonlocal_symbols
, &data
,
5441 objfile
->sf
->qf
->map_matching_symbols (objfile
, name
, domain
, global
,
5442 aux_add_nonlocal_symbols
, &data
,
5443 full_match
, compare_names
);
5446 if (num_defns_collected (obstackp
) == 0 && global
&& !is_wild_match
)
5448 ALL_OBJFILES (objfile
)
5450 char *name1
= alloca (strlen (name
) + sizeof ("_ada_"));
5451 strcpy (name1
, "_ada_");
5452 strcpy (name1
+ sizeof ("_ada_") - 1, name
);
5453 data
.objfile
= objfile
;
5454 objfile
->sf
->qf
->map_matching_symbols (objfile
, name1
, domain
,
5456 aux_add_nonlocal_symbols
,
5458 full_match
, compare_names
);
5463 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and, if full_search is
5464 non-zero, enclosing scope and in global scopes, returning the number of
5466 Sets *RESULTS to point to a vector of (SYM,BLOCK) tuples,
5467 indicating the symbols found and the blocks and symbol tables (if
5468 any) in which they were found. This vector is transient---good only to
5469 the next call of ada_lookup_symbol_list.
5471 When full_search is non-zero, any non-function/non-enumeral
5472 symbol match within the nest of blocks whose innermost member is BLOCK0,
5473 is the one match returned (no other matches in that or
5474 enclosing blocks is returned). If there are any matches in or
5475 surrounding BLOCK0, then these alone are returned.
5477 Names prefixed with "standard__" are handled specially: "standard__"
5478 is first stripped off, and only static and global symbols are searched. */
5481 ada_lookup_symbol_list_worker (const char *name0
, const struct block
*block0
,
5483 struct block_symbol
**results
,
5487 const struct block
*block
;
5489 const int wild_match_p
= should_use_wild_match (name0
);
5490 int syms_from_global_search
= 0;
5493 obstack_free (&symbol_list_obstack
, NULL
);
5494 obstack_init (&symbol_list_obstack
);
5496 /* Search specified block and its superiors. */
5501 /* Special case: If the user specifies a symbol name inside package
5502 Standard, do a non-wild matching of the symbol name without
5503 the "standard__" prefix. This was primarily introduced in order
5504 to allow the user to specifically access the standard exceptions
5505 using, for instance, Standard.Constraint_Error when Constraint_Error
5506 is ambiguous (due to the user defining its own Constraint_Error
5507 entity inside its program). */
5508 if (startswith (name0
, "standard__"))
5511 name
= name0
+ sizeof ("standard__") - 1;
5514 /* Check the non-global symbols. If we have ANY match, then we're done. */
5520 ada_add_local_symbols (&symbol_list_obstack
, name
, block
,
5521 domain
, wild_match_p
);
5525 /* In the !full_search case we're are being called by
5526 ada_iterate_over_symbols, and we don't want to search
5528 ada_add_block_symbols (&symbol_list_obstack
, block
, name
,
5529 domain
, NULL
, wild_match_p
);
5531 if (num_defns_collected (&symbol_list_obstack
) > 0 || !full_search
)
5535 /* No non-global symbols found. Check our cache to see if we have
5536 already performed this search before. If we have, then return
5539 if (lookup_cached_symbol (name0
, domain
, &sym
, &block
))
5542 add_defn_to_vec (&symbol_list_obstack
, sym
, block
);
5546 syms_from_global_search
= 1;
5548 /* Search symbols from all global blocks. */
5550 add_nonlocal_symbols (&symbol_list_obstack
, name
, domain
, 1,
5553 /* Now add symbols from all per-file blocks if we've gotten no hits
5554 (not strictly correct, but perhaps better than an error). */
5556 if (num_defns_collected (&symbol_list_obstack
) == 0)
5557 add_nonlocal_symbols (&symbol_list_obstack
, name
, domain
, 0,
5561 ndefns
= num_defns_collected (&symbol_list_obstack
);
5562 *results
= defns_collected (&symbol_list_obstack
, 1);
5564 ndefns
= remove_extra_symbols (*results
, ndefns
);
5566 if (ndefns
== 0 && full_search
&& syms_from_global_search
)
5567 cache_symbol (name0
, domain
, NULL
, NULL
);
5569 if (ndefns
== 1 && full_search
&& syms_from_global_search
)
5570 cache_symbol (name0
, domain
, (*results
)[0].symbol
, (*results
)[0].block
);
5572 ndefns
= remove_irrelevant_renamings (*results
, ndefns
, block0
);
5577 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing scope and
5578 in global scopes, returning the number of matches, and setting *RESULTS
5579 to a vector of (SYM,BLOCK) tuples.
5580 See ada_lookup_symbol_list_worker for further details. */
5583 ada_lookup_symbol_list (const char *name0
, const struct block
*block0
,
5584 domain_enum domain
, struct block_symbol
**results
)
5586 return ada_lookup_symbol_list_worker (name0
, block0
, domain
, results
, 1);
5589 /* Implementation of the la_iterate_over_symbols method. */
5592 ada_iterate_over_symbols (const struct block
*block
,
5593 const char *name
, domain_enum domain
,
5594 symbol_found_callback_ftype
*callback
,
5598 struct block_symbol
*results
;
5600 ndefs
= ada_lookup_symbol_list_worker (name
, block
, domain
, &results
, 0);
5601 for (i
= 0; i
< ndefs
; ++i
)
5603 if (! (*callback
) (results
[i
].symbol
, data
))
5608 /* If NAME is the name of an entity, return a string that should
5609 be used to look that entity up in Ada units. This string should
5610 be deallocated after use using xfree.
5612 NAME can have any form that the "break" or "print" commands might
5613 recognize. In other words, it does not have to be the "natural"
5614 name, or the "encoded" name. */
5617 ada_name_for_lookup (const char *name
)
5620 int nlen
= strlen (name
);
5622 if (name
[0] == '<' && name
[nlen
- 1] == '>')
5624 canon
= xmalloc (nlen
- 1);
5625 memcpy (canon
, name
+ 1, nlen
- 2);
5626 canon
[nlen
- 2] = '\0';
5629 canon
= xstrdup (ada_encode (ada_fold_name (name
)));
5633 /* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5634 to 1, but choosing the first symbol found if there are multiple
5637 The result is stored in *INFO, which must be non-NULL.
5638 If no match is found, INFO->SYM is set to NULL. */
5641 ada_lookup_encoded_symbol (const char *name
, const struct block
*block
,
5643 struct block_symbol
*info
)
5645 struct block_symbol
*candidates
;
5648 gdb_assert (info
!= NULL
);
5649 memset (info
, 0, sizeof (struct block_symbol
));
5651 n_candidates
= ada_lookup_symbol_list (name
, block
, domain
, &candidates
);
5652 if (n_candidates
== 0)
5655 *info
= candidates
[0];
5656 info
->symbol
= fixup_symbol_section (info
->symbol
, NULL
);
5659 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5660 scope and in global scopes, or NULL if none. NAME is folded and
5661 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
5662 choosing the first symbol if there are multiple choices.
5663 If IS_A_FIELD_OF_THIS is not NULL, it is set to zero. */
5666 ada_lookup_symbol (const char *name
, const struct block
*block0
,
5667 domain_enum domain
, int *is_a_field_of_this
)
5669 struct block_symbol info
;
5671 if (is_a_field_of_this
!= NULL
)
5672 *is_a_field_of_this
= 0;
5674 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name
)),
5675 block0
, domain
, &info
);
5679 static struct block_symbol
5680 ada_lookup_symbol_nonlocal (const struct language_defn
*langdef
,
5682 const struct block
*block
,
5683 const domain_enum domain
)
5685 struct block_symbol sym
;
5687 sym
= ada_lookup_symbol (name
, block_static_block (block
), domain
, NULL
);
5688 if (sym
.symbol
!= NULL
)
5691 /* If we haven't found a match at this point, try the primitive
5692 types. In other languages, this search is performed before
5693 searching for global symbols in order to short-circuit that
5694 global-symbol search if it happens that the name corresponds
5695 to a primitive type. But we cannot do the same in Ada, because
5696 it is perfectly legitimate for a program to declare a type which
5697 has the same name as a standard type. If looking up a type in
5698 that situation, we have traditionally ignored the primitive type
5699 in favor of user-defined types. This is why, unlike most other
5700 languages, we search the primitive types this late and only after
5701 having searched the global symbols without success. */
5703 if (domain
== VAR_DOMAIN
)
5705 struct gdbarch
*gdbarch
;
5708 gdbarch
= target_gdbarch ();
5710 gdbarch
= block_gdbarch (block
);
5711 sym
.symbol
= language_lookup_primitive_type_as_symbol (langdef
, gdbarch
, name
);
5712 if (sym
.symbol
!= NULL
)
5716 return (struct block_symbol
) {NULL
, NULL
};
5720 /* True iff STR is a possible encoded suffix of a normal Ada name
5721 that is to be ignored for matching purposes. Suffixes of parallel
5722 names (e.g., XVE) are not included here. Currently, the possible suffixes
5723 are given by any of the regular expressions:
5725 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5726 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
5727 TKB [subprogram suffix for task bodies]
5728 _E[0-9]+[bs]$ [protected object entry suffixes]
5729 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
5731 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5732 match is performed. This sequence is used to differentiate homonyms,
5733 is an optional part of a valid name suffix. */
5736 is_name_suffix (const char *str
)
5739 const char *matching
;
5740 const int len
= strlen (str
);
5742 /* Skip optional leading __[0-9]+. */
5744 if (len
> 3 && str
[0] == '_' && str
[1] == '_' && isdigit (str
[2]))
5747 while (isdigit (str
[0]))
5753 if (str
[0] == '.' || str
[0] == '$')
5756 while (isdigit (matching
[0]))
5758 if (matching
[0] == '\0')
5764 if (len
> 3 && str
[0] == '_' && str
[1] == '_' && str
[2] == '_')
5767 while (isdigit (matching
[0]))
5769 if (matching
[0] == '\0')
5773 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5775 if (strcmp (str
, "TKB") == 0)
5779 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
5780 with a N at the end. Unfortunately, the compiler uses the same
5781 convention for other internal types it creates. So treating
5782 all entity names that end with an "N" as a name suffix causes
5783 some regressions. For instance, consider the case of an enumerated
5784 type. To support the 'Image attribute, it creates an array whose
5786 Having a single character like this as a suffix carrying some
5787 information is a bit risky. Perhaps we should change the encoding
5788 to be something like "_N" instead. In the meantime, do not do
5789 the following check. */
5790 /* Protected Object Subprograms */
5791 if (len
== 1 && str
[0] == 'N')
5796 if (len
> 3 && str
[0] == '_' && str
[1] == 'E' && isdigit (str
[2]))
5799 while (isdigit (matching
[0]))
5801 if ((matching
[0] == 'b' || matching
[0] == 's')
5802 && matching
[1] == '\0')
5806 /* ??? We should not modify STR directly, as we are doing below. This
5807 is fine in this case, but may become problematic later if we find
5808 that this alternative did not work, and want to try matching
5809 another one from the begining of STR. Since we modified it, we
5810 won't be able to find the begining of the string anymore! */
5814 while (str
[0] != '_' && str
[0] != '\0')
5816 if (str
[0] != 'n' && str
[0] != 'b')
5822 if (str
[0] == '\000')
5827 if (str
[1] != '_' || str
[2] == '\000')
5831 if (strcmp (str
+ 3, "JM") == 0)
5833 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5834 the LJM suffix in favor of the JM one. But we will
5835 still accept LJM as a valid suffix for a reasonable
5836 amount of time, just to allow ourselves to debug programs
5837 compiled using an older version of GNAT. */
5838 if (strcmp (str
+ 3, "LJM") == 0)
5842 if (str
[4] == 'F' || str
[4] == 'D' || str
[4] == 'B'
5843 || str
[4] == 'U' || str
[4] == 'P')
5845 if (str
[4] == 'R' && str
[5] != 'T')
5849 if (!isdigit (str
[2]))
5851 for (k
= 3; str
[k
] != '\0'; k
+= 1)
5852 if (!isdigit (str
[k
]) && str
[k
] != '_')
5856 if (str
[0] == '$' && isdigit (str
[1]))
5858 for (k
= 2; str
[k
] != '\0'; k
+= 1)
5859 if (!isdigit (str
[k
]) && str
[k
] != '_')
5866 /* Return non-zero if the string starting at NAME and ending before
5867 NAME_END contains no capital letters. */
5870 is_valid_name_for_wild_match (const char *name0
)
5872 const char *decoded_name
= ada_decode (name0
);
5875 /* If the decoded name starts with an angle bracket, it means that
5876 NAME0 does not follow the GNAT encoding format. It should then
5877 not be allowed as a possible wild match. */
5878 if (decoded_name
[0] == '<')
5881 for (i
=0; decoded_name
[i
] != '\0'; i
++)
5882 if (isalpha (decoded_name
[i
]) && !islower (decoded_name
[i
]))
5888 /* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
5889 that could start a simple name. Assumes that *NAMEP points into
5890 the string beginning at NAME0. */
5893 advance_wild_match (const char **namep
, const char *name0
, int target0
)
5895 const char *name
= *namep
;
5905 if ((t1
>= 'a' && t1
<= 'z') || (t1
>= '0' && t1
<= '9'))
5908 if (name
== name0
+ 5 && startswith (name0
, "_ada"))
5913 else if (t1
== '_' && ((name
[2] >= 'a' && name
[2] <= 'z')
5914 || name
[2] == target0
))
5922 else if ((t0
>= 'a' && t0
<= 'z') || (t0
>= '0' && t0
<= '9'))
5932 /* Return 0 iff NAME encodes a name of the form prefix.PATN. Ignores any
5933 informational suffixes of NAME (i.e., for which is_name_suffix is
5934 true). Assumes that PATN is a lower-cased Ada simple name. */
5937 wild_match (const char *name
, const char *patn
)
5940 const char *name0
= name
;
5944 const char *match
= name
;
5948 for (name
+= 1, p
= patn
+ 1; *p
!= '\0'; name
+= 1, p
+= 1)
5951 if (*p
== '\0' && is_name_suffix (name
))
5952 return match
!= name0
&& !is_valid_name_for_wild_match (name0
);
5954 if (name
[-1] == '_')
5957 if (!advance_wild_match (&name
, name0
, *patn
))
5962 /* Returns 0 iff symbol name SYM_NAME matches SEARCH_NAME, apart from
5963 informational suffix. */
5966 full_match (const char *sym_name
, const char *search_name
)
5968 return !match_name (sym_name
, search_name
, 0);
5972 /* Add symbols from BLOCK matching identifier NAME in DOMAIN to
5973 vector *defn_symbols, updating the list of symbols in OBSTACKP
5974 (if necessary). If WILD, treat as NAME with a wildcard prefix.
5975 OBJFILE is the section containing BLOCK. */
5978 ada_add_block_symbols (struct obstack
*obstackp
,
5979 const struct block
*block
, const char *name
,
5980 domain_enum domain
, struct objfile
*objfile
,
5983 struct block_iterator iter
;
5984 int name_len
= strlen (name
);
5985 /* A matching argument symbol, if any. */
5986 struct symbol
*arg_sym
;
5987 /* Set true when we find a matching non-argument symbol. */
5995 for (sym
= block_iter_match_first (block
, name
, wild_match
, &iter
);
5996 sym
!= NULL
; sym
= block_iter_match_next (name
, wild_match
, &iter
))
5998 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym
),
5999 SYMBOL_DOMAIN (sym
), domain
)
6000 && wild_match (SYMBOL_LINKAGE_NAME (sym
), name
) == 0)
6002 if (SYMBOL_CLASS (sym
) == LOC_UNRESOLVED
)
6004 else if (SYMBOL_IS_ARGUMENT (sym
))
6009 add_defn_to_vec (obstackp
,
6010 fixup_symbol_section (sym
, objfile
),
6018 for (sym
= block_iter_match_first (block
, name
, full_match
, &iter
);
6019 sym
!= NULL
; sym
= block_iter_match_next (name
, full_match
, &iter
))
6021 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym
),
6022 SYMBOL_DOMAIN (sym
), domain
))
6024 if (SYMBOL_CLASS (sym
) != LOC_UNRESOLVED
)
6026 if (SYMBOL_IS_ARGUMENT (sym
))
6031 add_defn_to_vec (obstackp
,
6032 fixup_symbol_section (sym
, objfile
),
6040 if (!found_sym
&& arg_sym
!= NULL
)
6042 add_defn_to_vec (obstackp
,
6043 fixup_symbol_section (arg_sym
, objfile
),
6052 ALL_BLOCK_SYMBOLS (block
, iter
, sym
)
6054 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym
),
6055 SYMBOL_DOMAIN (sym
), domain
))
6059 cmp
= (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym
)[0];
6062 cmp
= !startswith (SYMBOL_LINKAGE_NAME (sym
), "_ada_");
6064 cmp
= strncmp (name
, SYMBOL_LINKAGE_NAME (sym
) + 5,
6069 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym
) + name_len
+ 5))
6071 if (SYMBOL_CLASS (sym
) != LOC_UNRESOLVED
)
6073 if (SYMBOL_IS_ARGUMENT (sym
))
6078 add_defn_to_vec (obstackp
,
6079 fixup_symbol_section (sym
, objfile
),
6087 /* NOTE: This really shouldn't be needed for _ada_ symbols.
6088 They aren't parameters, right? */
6089 if (!found_sym
&& arg_sym
!= NULL
)
6091 add_defn_to_vec (obstackp
,
6092 fixup_symbol_section (arg_sym
, objfile
),
6099 /* Symbol Completion */
6101 /* If SYM_NAME is a completion candidate for TEXT, return this symbol
6102 name in a form that's appropriate for the completion. The result
6103 does not need to be deallocated, but is only good until the next call.
6105 TEXT_LEN is equal to the length of TEXT.
6106 Perform a wild match if WILD_MATCH_P is set.
6107 ENCODED_P should be set if TEXT represents the start of a symbol name
6108 in its encoded form. */
6111 symbol_completion_match (const char *sym_name
,
6112 const char *text
, int text_len
,
6113 int wild_match_p
, int encoded_p
)
6115 const int verbatim_match
= (text
[0] == '<');
6120 /* Strip the leading angle bracket. */
6125 /* First, test against the fully qualified name of the symbol. */
6127 if (strncmp (sym_name
, text
, text_len
) == 0)
6130 if (match
&& !encoded_p
)
6132 /* One needed check before declaring a positive match is to verify
6133 that iff we are doing a verbatim match, the decoded version
6134 of the symbol name starts with '<'. Otherwise, this symbol name
6135 is not a suitable completion. */
6136 const char *sym_name_copy
= sym_name
;
6137 int has_angle_bracket
;
6139 sym_name
= ada_decode (sym_name
);
6140 has_angle_bracket
= (sym_name
[0] == '<');
6141 match
= (has_angle_bracket
== verbatim_match
);
6142 sym_name
= sym_name_copy
;
6145 if (match
&& !verbatim_match
)
6147 /* When doing non-verbatim match, another check that needs to
6148 be done is to verify that the potentially matching symbol name
6149 does not include capital letters, because the ada-mode would
6150 not be able to understand these symbol names without the
6151 angle bracket notation. */
6154 for (tmp
= sym_name
; *tmp
!= '\0' && !isupper (*tmp
); tmp
++);
6159 /* Second: Try wild matching... */
6161 if (!match
&& wild_match_p
)
6163 /* Since we are doing wild matching, this means that TEXT
6164 may represent an unqualified symbol name. We therefore must
6165 also compare TEXT against the unqualified name of the symbol. */
6166 sym_name
= ada_unqualified_name (ada_decode (sym_name
));
6168 if (strncmp (sym_name
, text
, text_len
) == 0)
6172 /* Finally: If we found a mach, prepare the result to return. */
6178 sym_name
= add_angle_brackets (sym_name
);
6181 sym_name
= ada_decode (sym_name
);
6186 /* A companion function to ada_make_symbol_completion_list().
6187 Check if SYM_NAME represents a symbol which name would be suitable
6188 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
6189 it is appended at the end of the given string vector SV.
6191 ORIG_TEXT is the string original string from the user command
6192 that needs to be completed. WORD is the entire command on which
6193 completion should be performed. These two parameters are used to
6194 determine which part of the symbol name should be added to the
6196 if WILD_MATCH_P is set, then wild matching is performed.
6197 ENCODED_P should be set if TEXT represents a symbol name in its
6198 encoded formed (in which case the completion should also be
6202 symbol_completion_add (VEC(char_ptr
) **sv
,
6203 const char *sym_name
,
6204 const char *text
, int text_len
,
6205 const char *orig_text
, const char *word
,
6206 int wild_match_p
, int encoded_p
)
6208 const char *match
= symbol_completion_match (sym_name
, text
, text_len
,
6209 wild_match_p
, encoded_p
);
6215 /* We found a match, so add the appropriate completion to the given
6218 if (word
== orig_text
)
6220 completion
= xmalloc (strlen (match
) + 5);
6221 strcpy (completion
, match
);
6223 else if (word
> orig_text
)
6225 /* Return some portion of sym_name. */
6226 completion
= xmalloc (strlen (match
) + 5);
6227 strcpy (completion
, match
+ (word
- orig_text
));
6231 /* Return some of ORIG_TEXT plus sym_name. */
6232 completion
= xmalloc (strlen (match
) + (orig_text
- word
) + 5);
6233 strncpy (completion
, word
, orig_text
- word
);
6234 completion
[orig_text
- word
] = '\0';
6235 strcat (completion
, match
);
6238 VEC_safe_push (char_ptr
, *sv
, completion
);
6241 /* An object of this type is passed as the user_data argument to the
6242 expand_symtabs_matching method. */
6243 struct add_partial_datum
6245 VEC(char_ptr
) **completions
;
6254 /* A callback for expand_symtabs_matching. */
6257 ada_complete_symbol_matcher (const char *name
, void *user_data
)
6259 struct add_partial_datum
*data
= user_data
;
6261 return symbol_completion_match (name
, data
->text
, data
->text_len
,
6262 data
->wild_match
, data
->encoded
) != NULL
;
6265 /* Return a list of possible symbol names completing TEXT0. WORD is
6266 the entire command on which completion is made. */
6268 static VEC (char_ptr
) *
6269 ada_make_symbol_completion_list (const char *text0
, const char *word
,
6270 enum type_code code
)
6276 VEC(char_ptr
) *completions
= VEC_alloc (char_ptr
, 128);
6278 struct compunit_symtab
*s
;
6279 struct minimal_symbol
*msymbol
;
6280 struct objfile
*objfile
;
6281 const struct block
*b
, *surrounding_static_block
= 0;
6283 struct block_iterator iter
;
6284 struct cleanup
*old_chain
= make_cleanup (null_cleanup
, NULL
);
6286 gdb_assert (code
== TYPE_CODE_UNDEF
);
6288 if (text0
[0] == '<')
6290 text
= xstrdup (text0
);
6291 make_cleanup (xfree
, text
);
6292 text_len
= strlen (text
);
6298 text
= xstrdup (ada_encode (text0
));
6299 make_cleanup (xfree
, text
);
6300 text_len
= strlen (text
);
6301 for (i
= 0; i
< text_len
; i
++)
6302 text
[i
] = tolower (text
[i
]);
6304 encoded_p
= (strstr (text0
, "__") != NULL
);
6305 /* If the name contains a ".", then the user is entering a fully
6306 qualified entity name, and the match must not be done in wild
6307 mode. Similarly, if the user wants to complete what looks like
6308 an encoded name, the match must not be done in wild mode. */
6309 wild_match_p
= (strchr (text0
, '.') == NULL
&& !encoded_p
);
6312 /* First, look at the partial symtab symbols. */
6314 struct add_partial_datum data
;
6316 data
.completions
= &completions
;
6318 data
.text_len
= text_len
;
6321 data
.wild_match
= wild_match_p
;
6322 data
.encoded
= encoded_p
;
6323 expand_symtabs_matching (NULL
, ada_complete_symbol_matcher
, NULL
,
6327 /* At this point scan through the misc symbol vectors and add each
6328 symbol you find to the list. Eventually we want to ignore
6329 anything that isn't a text symbol (everything else will be
6330 handled by the psymtab code above). */
6332 ALL_MSYMBOLS (objfile
, msymbol
)
6335 symbol_completion_add (&completions
, MSYMBOL_LINKAGE_NAME (msymbol
),
6336 text
, text_len
, text0
, word
, wild_match_p
,
6340 /* Search upwards from currently selected frame (so that we can
6341 complete on local vars. */
6343 for (b
= get_selected_block (0); b
!= NULL
; b
= BLOCK_SUPERBLOCK (b
))
6345 if (!BLOCK_SUPERBLOCK (b
))
6346 surrounding_static_block
= b
; /* For elmin of dups */
6348 ALL_BLOCK_SYMBOLS (b
, iter
, sym
)
6350 symbol_completion_add (&completions
, SYMBOL_LINKAGE_NAME (sym
),
6351 text
, text_len
, text0
, word
,
6352 wild_match_p
, encoded_p
);
6356 /* Go through the symtabs and check the externs and statics for
6357 symbols which match. */
6359 ALL_COMPUNITS (objfile
, s
)
6362 b
= BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s
), GLOBAL_BLOCK
);
6363 ALL_BLOCK_SYMBOLS (b
, iter
, sym
)
6365 symbol_completion_add (&completions
, SYMBOL_LINKAGE_NAME (sym
),
6366 text
, text_len
, text0
, word
,
6367 wild_match_p
, encoded_p
);
6371 ALL_COMPUNITS (objfile
, s
)
6374 b
= BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s
), STATIC_BLOCK
);
6375 /* Don't do this block twice. */
6376 if (b
== surrounding_static_block
)
6378 ALL_BLOCK_SYMBOLS (b
, iter
, sym
)
6380 symbol_completion_add (&completions
, SYMBOL_LINKAGE_NAME (sym
),
6381 text
, text_len
, text0
, word
,
6382 wild_match_p
, encoded_p
);
6386 do_cleanups (old_chain
);
6392 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6393 for tagged types. */
6396 ada_is_dispatch_table_ptr_type (struct type
*type
)
6400 if (TYPE_CODE (type
) != TYPE_CODE_PTR
)
6403 name
= TYPE_NAME (TYPE_TARGET_TYPE (type
));
6407 return (strcmp (name
, "ada__tags__dispatch_table") == 0);
6410 /* Return non-zero if TYPE is an interface tag. */
6413 ada_is_interface_tag (struct type
*type
)
6415 const char *name
= TYPE_NAME (type
);
6420 return (strcmp (name
, "ada__tags__interface_tag") == 0);
6423 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
6424 to be invisible to users. */
6427 ada_is_ignored_field (struct type
*type
, int field_num
)
6429 if (field_num
< 0 || field_num
> TYPE_NFIELDS (type
))
6432 /* Check the name of that field. */
6434 const char *name
= TYPE_FIELD_NAME (type
, field_num
);
6436 /* Anonymous field names should not be printed.
6437 brobecker/2007-02-20: I don't think this can actually happen
6438 but we don't want to print the value of annonymous fields anyway. */
6442 /* Normally, fields whose name start with an underscore ("_")
6443 are fields that have been internally generated by the compiler,
6444 and thus should not be printed. The "_parent" field is special,
6445 however: This is a field internally generated by the compiler
6446 for tagged types, and it contains the components inherited from
6447 the parent type. This field should not be printed as is, but
6448 should not be ignored either. */
6449 if (name
[0] == '_' && !startswith (name
, "_parent"))
6453 /* If this is the dispatch table of a tagged type or an interface tag,
6455 if (ada_is_tagged_type (type
, 1)
6456 && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type
, field_num
))
6457 || ada_is_interface_tag (TYPE_FIELD_TYPE (type
, field_num
))))
6460 /* Not a special field, so it should not be ignored. */
6464 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
6465 pointer or reference type whose ultimate target has a tag field. */
6468 ada_is_tagged_type (struct type
*type
, int refok
)
6470 return (ada_lookup_struct_elt_type (type
, "_tag", refok
, 1, NULL
) != NULL
);
6473 /* True iff TYPE represents the type of X'Tag */
6476 ada_is_tag_type (struct type
*type
)
6478 type
= ada_check_typedef (type
);
6480 if (type
== NULL
|| TYPE_CODE (type
) != TYPE_CODE_PTR
)
6484 const char *name
= ada_type_name (TYPE_TARGET_TYPE (type
));
6486 return (name
!= NULL
6487 && strcmp (name
, "ada__tags__dispatch_table") == 0);
6491 /* The type of the tag on VAL. */
6494 ada_tag_type (struct value
*val
)
6496 return ada_lookup_struct_elt_type (value_type (val
), "_tag", 1, 0, NULL
);
6499 /* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6500 retired at Ada 05). */
6503 is_ada95_tag (struct value
*tag
)
6505 return ada_value_struct_elt (tag
, "tsd", 1) != NULL
;
6508 /* The value of the tag on VAL. */
6511 ada_value_tag (struct value
*val
)
6513 return ada_value_struct_elt (val
, "_tag", 0);
6516 /* The value of the tag on the object of type TYPE whose contents are
6517 saved at VALADDR, if it is non-null, or is at memory address
6520 static struct value
*
6521 value_tag_from_contents_and_address (struct type
*type
,
6522 const gdb_byte
*valaddr
,
6525 int tag_byte_offset
;
6526 struct type
*tag_type
;
6528 if (find_struct_field ("_tag", type
, 0, &tag_type
, &tag_byte_offset
,
6531 const gdb_byte
*valaddr1
= ((valaddr
== NULL
)
6533 : valaddr
+ tag_byte_offset
);
6534 CORE_ADDR address1
= (address
== 0) ? 0 : address
+ tag_byte_offset
;
6536 return value_from_contents_and_address (tag_type
, valaddr1
, address1
);
6541 static struct type
*
6542 type_from_tag (struct value
*tag
)
6544 const char *type_name
= ada_tag_name (tag
);
6546 if (type_name
!= NULL
)
6547 return ada_find_any_type (ada_encode (type_name
));
6551 /* Given a value OBJ of a tagged type, return a value of this
6552 type at the base address of the object. The base address, as
6553 defined in Ada.Tags, it is the address of the primary tag of
6554 the object, and therefore where the field values of its full
6555 view can be fetched. */
6558 ada_tag_value_at_base_address (struct value
*obj
)
6561 LONGEST offset_to_top
= 0;
6562 struct type
*ptr_type
, *obj_type
;
6564 CORE_ADDR base_address
;
6566 obj_type
= value_type (obj
);
6568 /* It is the responsability of the caller to deref pointers. */
6570 if (TYPE_CODE (obj_type
) == TYPE_CODE_PTR
6571 || TYPE_CODE (obj_type
) == TYPE_CODE_REF
)
6574 tag
= ada_value_tag (obj
);
6578 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6580 if (is_ada95_tag (tag
))
6583 ptr_type
= builtin_type (target_gdbarch ())->builtin_data_ptr
;
6584 ptr_type
= lookup_pointer_type (ptr_type
);
6585 val
= value_cast (ptr_type
, tag
);
6589 /* It is perfectly possible that an exception be raised while
6590 trying to determine the base address, just like for the tag;
6591 see ada_tag_name for more details. We do not print the error
6592 message for the same reason. */
6596 offset_to_top
= value_as_long (value_ind (value_ptradd (val
, -2)));
6599 CATCH (e
, RETURN_MASK_ERROR
)
6605 /* If offset is null, nothing to do. */
6607 if (offset_to_top
== 0)
6610 /* -1 is a special case in Ada.Tags; however, what should be done
6611 is not quite clear from the documentation. So do nothing for
6614 if (offset_to_top
== -1)
6617 base_address
= value_address (obj
) - offset_to_top
;
6618 tag
= value_tag_from_contents_and_address (obj_type
, NULL
, base_address
);
6620 /* Make sure that we have a proper tag at the new address.
6621 Otherwise, offset_to_top is bogus (which can happen when
6622 the object is not initialized yet). */
6627 obj_type
= type_from_tag (tag
);
6632 return value_from_contents_and_address (obj_type
, NULL
, base_address
);
6635 /* Return the "ada__tags__type_specific_data" type. */
6637 static struct type
*
6638 ada_get_tsd_type (struct inferior
*inf
)
6640 struct ada_inferior_data
*data
= get_ada_inferior_data (inf
);
6642 if (data
->tsd_type
== 0)
6643 data
->tsd_type
= ada_find_any_type ("ada__tags__type_specific_data");
6644 return data
->tsd_type
;
6647 /* Return the TSD (type-specific data) associated to the given TAG.
6648 TAG is assumed to be the tag of a tagged-type entity.
6650 May return NULL if we are unable to get the TSD. */
6652 static struct value
*
6653 ada_get_tsd_from_tag (struct value
*tag
)
6658 /* First option: The TSD is simply stored as a field of our TAG.
6659 Only older versions of GNAT would use this format, but we have
6660 to test it first, because there are no visible markers for
6661 the current approach except the absence of that field. */
6663 val
= ada_value_struct_elt (tag
, "tsd", 1);
6667 /* Try the second representation for the dispatch table (in which
6668 there is no explicit 'tsd' field in the referent of the tag pointer,
6669 and instead the tsd pointer is stored just before the dispatch
6672 type
= ada_get_tsd_type (current_inferior());
6675 type
= lookup_pointer_type (lookup_pointer_type (type
));
6676 val
= value_cast (type
, tag
);
6679 return value_ind (value_ptradd (val
, -1));
6682 /* Given the TSD of a tag (type-specific data), return a string
6683 containing the name of the associated type.
6685 The returned value is good until the next call. May return NULL
6686 if we are unable to determine the tag name. */
6689 ada_tag_name_from_tsd (struct value
*tsd
)
6691 static char name
[1024];
6695 val
= ada_value_struct_elt (tsd
, "expanded_name", 1);
6698 read_memory_string (value_as_address (val
), name
, sizeof (name
) - 1);
6699 for (p
= name
; *p
!= '\0'; p
+= 1)
6705 /* The type name of the dynamic type denoted by the 'tag value TAG, as
6708 Return NULL if the TAG is not an Ada tag, or if we were unable to
6709 determine the name of that tag. The result is good until the next
6713 ada_tag_name (struct value
*tag
)
6717 if (!ada_is_tag_type (value_type (tag
)))
6720 /* It is perfectly possible that an exception be raised while trying
6721 to determine the TAG's name, even under normal circumstances:
6722 The associated variable may be uninitialized or corrupted, for
6723 instance. We do not let any exception propagate past this point.
6724 instead we return NULL.
6726 We also do not print the error message either (which often is very
6727 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6728 the caller print a more meaningful message if necessary. */
6731 struct value
*tsd
= ada_get_tsd_from_tag (tag
);
6734 name
= ada_tag_name_from_tsd (tsd
);
6736 CATCH (e
, RETURN_MASK_ERROR
)
6744 /* The parent type of TYPE, or NULL if none. */
6747 ada_parent_type (struct type
*type
)
6751 type
= ada_check_typedef (type
);
6753 if (type
== NULL
|| TYPE_CODE (type
) != TYPE_CODE_STRUCT
)
6756 for (i
= 0; i
< TYPE_NFIELDS (type
); i
+= 1)
6757 if (ada_is_parent_field (type
, i
))
6759 struct type
*parent_type
= TYPE_FIELD_TYPE (type
, i
);
6761 /* If the _parent field is a pointer, then dereference it. */
6762 if (TYPE_CODE (parent_type
) == TYPE_CODE_PTR
)
6763 parent_type
= TYPE_TARGET_TYPE (parent_type
);
6764 /* If there is a parallel XVS type, get the actual base type. */
6765 parent_type
= ada_get_base_type (parent_type
);
6767 return ada_check_typedef (parent_type
);
6773 /* True iff field number FIELD_NUM of structure type TYPE contains the
6774 parent-type (inherited) fields of a derived type. Assumes TYPE is
6775 a structure type with at least FIELD_NUM+1 fields. */
6778 ada_is_parent_field (struct type
*type
, int field_num
)
6780 const char *name
= TYPE_FIELD_NAME (ada_check_typedef (type
), field_num
);
6782 return (name
!= NULL
6783 && (startswith (name
, "PARENT")
6784 || startswith (name
, "_parent")));
6787 /* True iff field number FIELD_NUM of structure type TYPE is a
6788 transparent wrapper field (which should be silently traversed when doing
6789 field selection and flattened when printing). Assumes TYPE is a
6790 structure type with at least FIELD_NUM+1 fields. Such fields are always
6794 ada_is_wrapper_field (struct type
*type
, int field_num
)
6796 const char *name
= TYPE_FIELD_NAME (type
, field_num
);
6798 return (name
!= NULL
6799 && (startswith (name
, "PARENT")
6800 || strcmp (name
, "REP") == 0
6801 || startswith (name
, "_parent")
6802 || name
[0] == 'S' || name
[0] == 'R' || name
[0] == 'O'));
6805 /* True iff field number FIELD_NUM of structure or union type TYPE
6806 is a variant wrapper. Assumes TYPE is a structure type with at least
6807 FIELD_NUM+1 fields. */
6810 ada_is_variant_part (struct type
*type
, int field_num
)
6812 struct type
*field_type
= TYPE_FIELD_TYPE (type
, field_num
);
6814 return (TYPE_CODE (field_type
) == TYPE_CODE_UNION
6815 || (is_dynamic_field (type
, field_num
)
6816 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type
))
6817 == TYPE_CODE_UNION
)));
6820 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
6821 whose discriminants are contained in the record type OUTER_TYPE,
6822 returns the type of the controlling discriminant for the variant.
6823 May return NULL if the type could not be found. */
6826 ada_variant_discrim_type (struct type
*var_type
, struct type
*outer_type
)
6828 char *name
= ada_variant_discrim_name (var_type
);
6830 return ada_lookup_struct_elt_type (outer_type
, name
, 1, 1, NULL
);
6833 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
6834 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
6835 represents a 'when others' clause; otherwise 0. */
6838 ada_is_others_clause (struct type
*type
, int field_num
)
6840 const char *name
= TYPE_FIELD_NAME (type
, field_num
);
6842 return (name
!= NULL
&& name
[0] == 'O');
6845 /* Assuming that TYPE0 is the type of the variant part of a record,
6846 returns the name of the discriminant controlling the variant.
6847 The value is valid until the next call to ada_variant_discrim_name. */
6850 ada_variant_discrim_name (struct type
*type0
)
6852 static char *result
= NULL
;
6853 static size_t result_len
= 0;
6856 const char *discrim_end
;
6857 const char *discrim_start
;
6859 if (TYPE_CODE (type0
) == TYPE_CODE_PTR
)
6860 type
= TYPE_TARGET_TYPE (type0
);
6864 name
= ada_type_name (type
);
6866 if (name
== NULL
|| name
[0] == '\000')
6869 for (discrim_end
= name
+ strlen (name
) - 6; discrim_end
!= name
;
6872 if (startswith (discrim_end
, "___XVN"))
6875 if (discrim_end
== name
)
6878 for (discrim_start
= discrim_end
; discrim_start
!= name
+ 3;
6881 if (discrim_start
== name
+ 1)
6883 if ((discrim_start
> name
+ 3
6884 && startswith (discrim_start
- 3, "___"))
6885 || discrim_start
[-1] == '.')
6889 GROW_VECT (result
, result_len
, discrim_end
- discrim_start
+ 1);
6890 strncpy (result
, discrim_start
, discrim_end
- discrim_start
);
6891 result
[discrim_end
- discrim_start
] = '\0';
6895 /* Scan STR for a subtype-encoded number, beginning at position K.
6896 Put the position of the character just past the number scanned in
6897 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
6898 Return 1 if there was a valid number at the given position, and 0
6899 otherwise. A "subtype-encoded" number consists of the absolute value
6900 in decimal, followed by the letter 'm' to indicate a negative number.
6901 Assumes 0m does not occur. */
6904 ada_scan_number (const char str
[], int k
, LONGEST
* R
, int *new_k
)
6908 if (!isdigit (str
[k
]))
6911 /* Do it the hard way so as not to make any assumption about
6912 the relationship of unsigned long (%lu scan format code) and
6915 while (isdigit (str
[k
]))
6917 RU
= RU
* 10 + (str
[k
] - '0');
6924 *R
= (-(LONGEST
) (RU
- 1)) - 1;
6930 /* NOTE on the above: Technically, C does not say what the results of
6931 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
6932 number representable as a LONGEST (although either would probably work
6933 in most implementations). When RU>0, the locution in the then branch
6934 above is always equivalent to the negative of RU. */
6941 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
6942 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
6943 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
6946 ada_in_variant (LONGEST val
, struct type
*type
, int field_num
)
6948 const char *name
= TYPE_FIELD_NAME (type
, field_num
);
6962 if (!ada_scan_number (name
, p
+ 1, &W
, &p
))
6972 if (!ada_scan_number (name
, p
+ 1, &L
, &p
)
6973 || name
[p
] != 'T' || !ada_scan_number (name
, p
+ 1, &U
, &p
))
6975 if (val
>= L
&& val
<= U
)
6987 /* FIXME: Lots of redundancy below. Try to consolidate. */
6989 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
6990 ARG_TYPE, extract and return the value of one of its (non-static)
6991 fields. FIELDNO says which field. Differs from value_primitive_field
6992 only in that it can handle packed values of arbitrary type. */
6994 static struct value
*
6995 ada_value_primitive_field (struct value
*arg1
, int offset
, int fieldno
,
6996 struct type
*arg_type
)
7000 arg_type
= ada_check_typedef (arg_type
);
7001 type
= TYPE_FIELD_TYPE (arg_type
, fieldno
);
7003 /* Handle packed fields. */
7005 if (TYPE_FIELD_BITSIZE (arg_type
, fieldno
) != 0)
7007 int bit_pos
= TYPE_FIELD_BITPOS (arg_type
, fieldno
);
7008 int bit_size
= TYPE_FIELD_BITSIZE (arg_type
, fieldno
);
7010 return ada_value_primitive_packed_val (arg1
, value_contents (arg1
),
7011 offset
+ bit_pos
/ 8,
7012 bit_pos
% 8, bit_size
, type
);
7015 return value_primitive_field (arg1
, offset
, fieldno
, arg_type
);
7018 /* Find field with name NAME in object of type TYPE. If found,
7019 set the following for each argument that is non-null:
7020 - *FIELD_TYPE_P to the field's type;
7021 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
7022 an object of that type;
7023 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
7024 - *BIT_SIZE_P to its size in bits if the field is packed, and
7026 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
7027 fields up to but not including the desired field, or by the total
7028 number of fields if not found. A NULL value of NAME never
7029 matches; the function just counts visible fields in this case.
7031 Returns 1 if found, 0 otherwise. */
7034 find_struct_field (const char *name
, struct type
*type
, int offset
,
7035 struct type
**field_type_p
,
7036 int *byte_offset_p
, int *bit_offset_p
, int *bit_size_p
,
7041 type
= ada_check_typedef (type
);
7043 if (field_type_p
!= NULL
)
7044 *field_type_p
= NULL
;
7045 if (byte_offset_p
!= NULL
)
7047 if (bit_offset_p
!= NULL
)
7049 if (bit_size_p
!= NULL
)
7052 for (i
= 0; i
< TYPE_NFIELDS (type
); i
+= 1)
7054 int bit_pos
= TYPE_FIELD_BITPOS (type
, i
);
7055 int fld_offset
= offset
+ bit_pos
/ 8;
7056 const char *t_field_name
= TYPE_FIELD_NAME (type
, i
);
7058 if (t_field_name
== NULL
)
7061 else if (name
!= NULL
&& field_name_match (t_field_name
, name
))
7063 int bit_size
= TYPE_FIELD_BITSIZE (type
, i
);
7065 if (field_type_p
!= NULL
)
7066 *field_type_p
= TYPE_FIELD_TYPE (type
, i
);
7067 if (byte_offset_p
!= NULL
)
7068 *byte_offset_p
= fld_offset
;
7069 if (bit_offset_p
!= NULL
)
7070 *bit_offset_p
= bit_pos
% 8;
7071 if (bit_size_p
!= NULL
)
7072 *bit_size_p
= bit_size
;
7075 else if (ada_is_wrapper_field (type
, i
))
7077 if (find_struct_field (name
, TYPE_FIELD_TYPE (type
, i
), fld_offset
,
7078 field_type_p
, byte_offset_p
, bit_offset_p
,
7079 bit_size_p
, index_p
))
7082 else if (ada_is_variant_part (type
, i
))
7084 /* PNH: Wait. Do we ever execute this section, or is ARG always of
7087 struct type
*field_type
7088 = ada_check_typedef (TYPE_FIELD_TYPE (type
, i
));
7090 for (j
= 0; j
< TYPE_NFIELDS (field_type
); j
+= 1)
7092 if (find_struct_field (name
, TYPE_FIELD_TYPE (field_type
, j
),
7094 + TYPE_FIELD_BITPOS (field_type
, j
) / 8,
7095 field_type_p
, byte_offset_p
,
7096 bit_offset_p
, bit_size_p
, index_p
))
7100 else if (index_p
!= NULL
)
7106 /* Number of user-visible fields in record type TYPE. */
7109 num_visible_fields (struct type
*type
)
7114 find_struct_field (NULL
, type
, 0, NULL
, NULL
, NULL
, NULL
, &n
);
7118 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
7119 and search in it assuming it has (class) type TYPE.
7120 If found, return value, else return NULL.
7122 Searches recursively through wrapper fields (e.g., '_parent'). */
7124 static struct value
*
7125 ada_search_struct_field (char *name
, struct value
*arg
, int offset
,
7130 type
= ada_check_typedef (type
);
7131 for (i
= 0; i
< TYPE_NFIELDS (type
); i
+= 1)
7133 const char *t_field_name
= TYPE_FIELD_NAME (type
, i
);
7135 if (t_field_name
== NULL
)
7138 else if (field_name_match (t_field_name
, name
))
7139 return ada_value_primitive_field (arg
, offset
, i
, type
);
7141 else if (ada_is_wrapper_field (type
, i
))
7143 struct value
*v
= /* Do not let indent join lines here. */
7144 ada_search_struct_field (name
, arg
,
7145 offset
+ TYPE_FIELD_BITPOS (type
, i
) / 8,
7146 TYPE_FIELD_TYPE (type
, i
));
7152 else if (ada_is_variant_part (type
, i
))
7154 /* PNH: Do we ever get here? See find_struct_field. */
7156 struct type
*field_type
= ada_check_typedef (TYPE_FIELD_TYPE (type
,
7158 int var_offset
= offset
+ TYPE_FIELD_BITPOS (type
, i
) / 8;
7160 for (j
= 0; j
< TYPE_NFIELDS (field_type
); j
+= 1)
7162 struct value
*v
= ada_search_struct_field
/* Force line
7165 var_offset
+ TYPE_FIELD_BITPOS (field_type
, j
) / 8,
7166 TYPE_FIELD_TYPE (field_type
, j
));
7176 static struct value
*ada_index_struct_field_1 (int *, struct value
*,
7177 int, struct type
*);
7180 /* Return field #INDEX in ARG, where the index is that returned by
7181 * find_struct_field through its INDEX_P argument. Adjust the address
7182 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
7183 * If found, return value, else return NULL. */
7185 static struct value
*
7186 ada_index_struct_field (int index
, struct value
*arg
, int offset
,
7189 return ada_index_struct_field_1 (&index
, arg
, offset
, type
);
7193 /* Auxiliary function for ada_index_struct_field. Like
7194 * ada_index_struct_field, but takes index from *INDEX_P and modifies
7197 static struct value
*
7198 ada_index_struct_field_1 (int *index_p
, struct value
*arg
, int offset
,
7202 type
= ada_check_typedef (type
);
7204 for (i
= 0; i
< TYPE_NFIELDS (type
); i
+= 1)
7206 if (TYPE_FIELD_NAME (type
, i
) == NULL
)
7208 else if (ada_is_wrapper_field (type
, i
))
7210 struct value
*v
= /* Do not let indent join lines here. */
7211 ada_index_struct_field_1 (index_p
, arg
,
7212 offset
+ TYPE_FIELD_BITPOS (type
, i
) / 8,
7213 TYPE_FIELD_TYPE (type
, i
));
7219 else if (ada_is_variant_part (type
, i
))
7221 /* PNH: Do we ever get here? See ada_search_struct_field,
7222 find_struct_field. */
7223 error (_("Cannot assign this kind of variant record"));
7225 else if (*index_p
== 0)
7226 return ada_value_primitive_field (arg
, offset
, i
, type
);
7233 /* Given ARG, a value of type (pointer or reference to a)*
7234 structure/union, extract the component named NAME from the ultimate
7235 target structure/union and return it as a value with its
7238 The routine searches for NAME among all members of the structure itself
7239 and (recursively) among all members of any wrapper members
7242 If NO_ERR, then simply return NULL in case of error, rather than
7246 ada_value_struct_elt (struct value
*arg
, char *name
, int no_err
)
7248 struct type
*t
, *t1
;
7252 t1
= t
= ada_check_typedef (value_type (arg
));
7253 if (TYPE_CODE (t
) == TYPE_CODE_REF
)
7255 t1
= TYPE_TARGET_TYPE (t
);
7258 t1
= ada_check_typedef (t1
);
7259 if (TYPE_CODE (t1
) == TYPE_CODE_PTR
)
7261 arg
= coerce_ref (arg
);
7266 while (TYPE_CODE (t
) == TYPE_CODE_PTR
)
7268 t1
= TYPE_TARGET_TYPE (t
);
7271 t1
= ada_check_typedef (t1
);
7272 if (TYPE_CODE (t1
) == TYPE_CODE_PTR
)
7274 arg
= value_ind (arg
);
7281 if (TYPE_CODE (t1
) != TYPE_CODE_STRUCT
&& TYPE_CODE (t1
) != TYPE_CODE_UNION
)
7285 v
= ada_search_struct_field (name
, arg
, 0, t
);
7288 int bit_offset
, bit_size
, byte_offset
;
7289 struct type
*field_type
;
7292 if (TYPE_CODE (t
) == TYPE_CODE_PTR
)
7293 address
= value_address (ada_value_ind (arg
));
7295 address
= value_address (ada_coerce_ref (arg
));
7297 t1
= ada_to_fixed_type (ada_get_base_type (t1
), NULL
, address
, NULL
, 1);
7298 if (find_struct_field (name
, t1
, 0,
7299 &field_type
, &byte_offset
, &bit_offset
,
7304 if (TYPE_CODE (t
) == TYPE_CODE_REF
)
7305 arg
= ada_coerce_ref (arg
);
7307 arg
= ada_value_ind (arg
);
7308 v
= ada_value_primitive_packed_val (arg
, NULL
, byte_offset
,
7309 bit_offset
, bit_size
,
7313 v
= value_at_lazy (field_type
, address
+ byte_offset
);
7317 if (v
!= NULL
|| no_err
)
7320 error (_("There is no member named %s."), name
);
7326 error (_("Attempt to extract a component of "
7327 "a value that is not a record."));
7330 /* Given a type TYPE, look up the type of the component of type named NAME.
7331 If DISPP is non-null, add its byte displacement from the beginning of a
7332 structure (pointed to by a value) of type TYPE to *DISPP (does not
7333 work for packed fields).
7335 Matches any field whose name has NAME as a prefix, possibly
7338 TYPE can be either a struct or union. If REFOK, TYPE may also
7339 be a (pointer or reference)+ to a struct or union, and the
7340 ultimate target type will be searched.
7342 Looks recursively into variant clauses and parent types.
7344 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7345 TYPE is not a type of the right kind. */
7347 static struct type
*
7348 ada_lookup_struct_elt_type (struct type
*type
, char *name
, int refok
,
7349 int noerr
, int *dispp
)
7356 if (refok
&& type
!= NULL
)
7359 type
= ada_check_typedef (type
);
7360 if (TYPE_CODE (type
) != TYPE_CODE_PTR
7361 && TYPE_CODE (type
) != TYPE_CODE_REF
)
7363 type
= TYPE_TARGET_TYPE (type
);
7367 || (TYPE_CODE (type
) != TYPE_CODE_STRUCT
7368 && TYPE_CODE (type
) != TYPE_CODE_UNION
))
7374 target_terminal_ours ();
7375 gdb_flush (gdb_stdout
);
7377 error (_("Type (null) is not a structure or union type"));
7380 /* XXX: type_sprint */
7381 fprintf_unfiltered (gdb_stderr
, _("Type "));
7382 type_print (type
, "", gdb_stderr
, -1);
7383 error (_(" is not a structure or union type"));
7388 type
= to_static_fixed_type (type
);
7390 for (i
= 0; i
< TYPE_NFIELDS (type
); i
+= 1)
7392 const char *t_field_name
= TYPE_FIELD_NAME (type
, i
);
7396 if (t_field_name
== NULL
)
7399 else if (field_name_match (t_field_name
, name
))
7402 *dispp
+= TYPE_FIELD_BITPOS (type
, i
) / 8;
7403 return TYPE_FIELD_TYPE (type
, i
);
7406 else if (ada_is_wrapper_field (type
, i
))
7409 t
= ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type
, i
), name
,
7414 *dispp
+= disp
+ TYPE_FIELD_BITPOS (type
, i
) / 8;
7419 else if (ada_is_variant_part (type
, i
))
7422 struct type
*field_type
= ada_check_typedef (TYPE_FIELD_TYPE (type
,
7425 for (j
= TYPE_NFIELDS (field_type
) - 1; j
>= 0; j
-= 1)
7427 /* FIXME pnh 2008/01/26: We check for a field that is
7428 NOT wrapped in a struct, since the compiler sometimes
7429 generates these for unchecked variant types. Revisit
7430 if the compiler changes this practice. */
7431 const char *v_field_name
= TYPE_FIELD_NAME (field_type
, j
);
7433 if (v_field_name
!= NULL
7434 && field_name_match (v_field_name
, name
))
7435 t
= TYPE_FIELD_TYPE (field_type
, j
);
7437 t
= ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type
,
7444 *dispp
+= disp
+ TYPE_FIELD_BITPOS (type
, i
) / 8;
7455 target_terminal_ours ();
7456 gdb_flush (gdb_stdout
);
7459 /* XXX: type_sprint */
7460 fprintf_unfiltered (gdb_stderr
, _("Type "));
7461 type_print (type
, "", gdb_stderr
, -1);
7462 error (_(" has no component named <null>"));
7466 /* XXX: type_sprint */
7467 fprintf_unfiltered (gdb_stderr
, _("Type "));
7468 type_print (type
, "", gdb_stderr
, -1);
7469 error (_(" has no component named %s"), name
);
7476 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7477 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7478 represents an unchecked union (that is, the variant part of a
7479 record that is named in an Unchecked_Union pragma). */
7482 is_unchecked_variant (struct type
*var_type
, struct type
*outer_type
)
7484 char *discrim_name
= ada_variant_discrim_name (var_type
);
7486 return (ada_lookup_struct_elt_type (outer_type
, discrim_name
, 0, 1, NULL
)
7491 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7492 within a value of type OUTER_TYPE that is stored in GDB at
7493 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
7494 numbering from 0) is applicable. Returns -1 if none are. */
7497 ada_which_variant_applies (struct type
*var_type
, struct type
*outer_type
,
7498 const gdb_byte
*outer_valaddr
)
7502 char *discrim_name
= ada_variant_discrim_name (var_type
);
7503 struct value
*outer
;
7504 struct value
*discrim
;
7505 LONGEST discrim_val
;
7507 /* Using plain value_from_contents_and_address here causes problems
7508 because we will end up trying to resolve a type that is currently
7509 being constructed. */
7510 outer
= value_from_contents_and_address_unresolved (outer_type
,
7512 discrim
= ada_value_struct_elt (outer
, discrim_name
, 1);
7513 if (discrim
== NULL
)
7515 discrim_val
= value_as_long (discrim
);
7518 for (i
= 0; i
< TYPE_NFIELDS (var_type
); i
+= 1)
7520 if (ada_is_others_clause (var_type
, i
))
7522 else if (ada_in_variant (discrim_val
, var_type
, i
))
7526 return others_clause
;
7531 /* Dynamic-Sized Records */
7533 /* Strategy: The type ostensibly attached to a value with dynamic size
7534 (i.e., a size that is not statically recorded in the debugging
7535 data) does not accurately reflect the size or layout of the value.
7536 Our strategy is to convert these values to values with accurate,
7537 conventional types that are constructed on the fly. */
7539 /* There is a subtle and tricky problem here. In general, we cannot
7540 determine the size of dynamic records without its data. However,
7541 the 'struct value' data structure, which GDB uses to represent
7542 quantities in the inferior process (the target), requires the size
7543 of the type at the time of its allocation in order to reserve space
7544 for GDB's internal copy of the data. That's why the
7545 'to_fixed_xxx_type' routines take (target) addresses as parameters,
7546 rather than struct value*s.
7548 However, GDB's internal history variables ($1, $2, etc.) are
7549 struct value*s containing internal copies of the data that are not, in
7550 general, the same as the data at their corresponding addresses in
7551 the target. Fortunately, the types we give to these values are all
7552 conventional, fixed-size types (as per the strategy described
7553 above), so that we don't usually have to perform the
7554 'to_fixed_xxx_type' conversions to look at their values.
7555 Unfortunately, there is one exception: if one of the internal
7556 history variables is an array whose elements are unconstrained
7557 records, then we will need to create distinct fixed types for each
7558 element selected. */
7560 /* The upshot of all of this is that many routines take a (type, host
7561 address, target address) triple as arguments to represent a value.
7562 The host address, if non-null, is supposed to contain an internal
7563 copy of the relevant data; otherwise, the program is to consult the
7564 target at the target address. */
7566 /* Assuming that VAL0 represents a pointer value, the result of
7567 dereferencing it. Differs from value_ind in its treatment of
7568 dynamic-sized types. */
7571 ada_value_ind (struct value
*val0
)
7573 struct value
*val
= value_ind (val0
);
7575 if (ada_is_tagged_type (value_type (val
), 0))
7576 val
= ada_tag_value_at_base_address (val
);
7578 return ada_to_fixed_value (val
);
7581 /* The value resulting from dereferencing any "reference to"
7582 qualifiers on VAL0. */
7584 static struct value
*
7585 ada_coerce_ref (struct value
*val0
)
7587 if (TYPE_CODE (value_type (val0
)) == TYPE_CODE_REF
)
7589 struct value
*val
= val0
;
7591 val
= coerce_ref (val
);
7593 if (ada_is_tagged_type (value_type (val
), 0))
7594 val
= ada_tag_value_at_base_address (val
);
7596 return ada_to_fixed_value (val
);
7602 /* Return OFF rounded upward if necessary to a multiple of
7603 ALIGNMENT (a power of 2). */
7606 align_value (unsigned int off
, unsigned int alignment
)
7608 return (off
+ alignment
- 1) & ~(alignment
- 1);
7611 /* Return the bit alignment required for field #F of template type TYPE. */
7614 field_alignment (struct type
*type
, int f
)
7616 const char *name
= TYPE_FIELD_NAME (type
, f
);
7620 /* The field name should never be null, unless the debugging information
7621 is somehow malformed. In this case, we assume the field does not
7622 require any alignment. */
7626 len
= strlen (name
);
7628 if (!isdigit (name
[len
- 1]))
7631 if (isdigit (name
[len
- 2]))
7632 align_offset
= len
- 2;
7634 align_offset
= len
- 1;
7636 if (align_offset
< 7 || !startswith (name
+ align_offset
- 6, "___XV"))
7637 return TARGET_CHAR_BIT
;
7639 return atoi (name
+ align_offset
) * TARGET_CHAR_BIT
;
7642 /* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
7644 static struct symbol
*
7645 ada_find_any_type_symbol (const char *name
)
7649 sym
= standard_lookup (name
, get_selected_block (NULL
), VAR_DOMAIN
);
7650 if (sym
!= NULL
&& SYMBOL_CLASS (sym
) == LOC_TYPEDEF
)
7653 sym
= standard_lookup (name
, NULL
, STRUCT_DOMAIN
);
7657 /* Find a type named NAME. Ignores ambiguity. This routine will look
7658 solely for types defined by debug info, it will not search the GDB
7661 static struct type
*
7662 ada_find_any_type (const char *name
)
7664 struct symbol
*sym
= ada_find_any_type_symbol (name
);
7667 return SYMBOL_TYPE (sym
);
7672 /* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7673 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7674 symbol, in which case it is returned. Otherwise, this looks for
7675 symbols whose name is that of NAME_SYM suffixed with "___XR".
7676 Return symbol if found, and NULL otherwise. */
7679 ada_find_renaming_symbol (struct symbol
*name_sym
, const struct block
*block
)
7681 const char *name
= SYMBOL_LINKAGE_NAME (name_sym
);
7684 if (strstr (name
, "___XR") != NULL
)
7687 sym
= find_old_style_renaming_symbol (name
, block
);
7692 /* Not right yet. FIXME pnh 7/20/2007. */
7693 sym
= ada_find_any_type_symbol (name
);
7694 if (sym
!= NULL
&& strstr (SYMBOL_LINKAGE_NAME (sym
), "___XR") != NULL
)
7700 static struct symbol
*
7701 find_old_style_renaming_symbol (const char *name
, const struct block
*block
)
7703 const struct symbol
*function_sym
= block_linkage_function (block
);
7706 if (function_sym
!= NULL
)
7708 /* If the symbol is defined inside a function, NAME is not fully
7709 qualified. This means we need to prepend the function name
7710 as well as adding the ``___XR'' suffix to build the name of
7711 the associated renaming symbol. */
7712 const char *function_name
= SYMBOL_LINKAGE_NAME (function_sym
);
7713 /* Function names sometimes contain suffixes used
7714 for instance to qualify nested subprograms. When building
7715 the XR type name, we need to make sure that this suffix is
7716 not included. So do not include any suffix in the function
7717 name length below. */
7718 int function_name_len
= ada_name_prefix_len (function_name
);
7719 const int rename_len
= function_name_len
+ 2 /* "__" */
7720 + strlen (name
) + 6 /* "___XR\0" */ ;
7722 /* Strip the suffix if necessary. */
7723 ada_remove_trailing_digits (function_name
, &function_name_len
);
7724 ada_remove_po_subprogram_suffix (function_name
, &function_name_len
);
7725 ada_remove_Xbn_suffix (function_name
, &function_name_len
);
7727 /* Library-level functions are a special case, as GNAT adds
7728 a ``_ada_'' prefix to the function name to avoid namespace
7729 pollution. However, the renaming symbols themselves do not
7730 have this prefix, so we need to skip this prefix if present. */
7731 if (function_name_len
> 5 /* "_ada_" */
7732 && strstr (function_name
, "_ada_") == function_name
)
7735 function_name_len
-= 5;
7738 rename
= (char *) alloca (rename_len
* sizeof (char));
7739 strncpy (rename
, function_name
, function_name_len
);
7740 xsnprintf (rename
+ function_name_len
, rename_len
- function_name_len
,
7745 const int rename_len
= strlen (name
) + 6;
7747 rename
= (char *) alloca (rename_len
* sizeof (char));
7748 xsnprintf (rename
, rename_len
* sizeof (char), "%s___XR", name
);
7751 return ada_find_any_type_symbol (rename
);
7754 /* Because of GNAT encoding conventions, several GDB symbols may match a
7755 given type name. If the type denoted by TYPE0 is to be preferred to
7756 that of TYPE1 for purposes of type printing, return non-zero;
7757 otherwise return 0. */
7760 ada_prefer_type (struct type
*type0
, struct type
*type1
)
7764 else if (type0
== NULL
)
7766 else if (TYPE_CODE (type1
) == TYPE_CODE_VOID
)
7768 else if (TYPE_CODE (type0
) == TYPE_CODE_VOID
)
7770 else if (TYPE_NAME (type1
) == NULL
&& TYPE_NAME (type0
) != NULL
)
7772 else if (ada_is_constrained_packed_array_type (type0
))
7774 else if (ada_is_array_descriptor_type (type0
)
7775 && !ada_is_array_descriptor_type (type1
))
7779 const char *type0_name
= type_name_no_tag (type0
);
7780 const char *type1_name
= type_name_no_tag (type1
);
7782 if (type0_name
!= NULL
&& strstr (type0_name
, "___XR") != NULL
7783 && (type1_name
== NULL
|| strstr (type1_name
, "___XR") == NULL
))
7789 /* The name of TYPE, which is either its TYPE_NAME, or, if that is
7790 null, its TYPE_TAG_NAME. Null if TYPE is null. */
7793 ada_type_name (struct type
*type
)
7797 else if (TYPE_NAME (type
) != NULL
)
7798 return TYPE_NAME (type
);
7800 return TYPE_TAG_NAME (type
);
7803 /* Search the list of "descriptive" types associated to TYPE for a type
7804 whose name is NAME. */
7806 static struct type
*
7807 find_parallel_type_by_descriptive_type (struct type
*type
, const char *name
)
7809 struct type
*result
, *tmp
;
7811 if (ada_ignore_descriptive_types_p
)
7814 /* If there no descriptive-type info, then there is no parallel type
7816 if (!HAVE_GNAT_AUX_INFO (type
))
7819 result
= TYPE_DESCRIPTIVE_TYPE (type
);
7820 while (result
!= NULL
)
7822 const char *result_name
= ada_type_name (result
);
7824 if (result_name
== NULL
)
7826 warning (_("unexpected null name on descriptive type"));
7830 /* If the names match, stop. */
7831 if (strcmp (result_name
, name
) == 0)
7834 /* Otherwise, look at the next item on the list, if any. */
7835 if (HAVE_GNAT_AUX_INFO (result
))
7836 tmp
= TYPE_DESCRIPTIVE_TYPE (result
);
7840 /* If not found either, try after having resolved the typedef. */
7845 result
= check_typedef (result
);
7846 if (HAVE_GNAT_AUX_INFO (result
))
7847 result
= TYPE_DESCRIPTIVE_TYPE (result
);
7853 /* If we didn't find a match, see whether this is a packed array. With
7854 older compilers, the descriptive type information is either absent or
7855 irrelevant when it comes to packed arrays so the above lookup fails.
7856 Fall back to using a parallel lookup by name in this case. */
7857 if (result
== NULL
&& ada_is_constrained_packed_array_type (type
))
7858 return ada_find_any_type (name
);
7863 /* Find a parallel type to TYPE with the specified NAME, using the
7864 descriptive type taken from the debugging information, if available,
7865 and otherwise using the (slower) name-based method. */
7867 static struct type
*
7868 ada_find_parallel_type_with_name (struct type
*type
, const char *name
)
7870 struct type
*result
= NULL
;
7872 if (HAVE_GNAT_AUX_INFO (type
))
7873 result
= find_parallel_type_by_descriptive_type (type
, name
);
7875 result
= ada_find_any_type (name
);
7880 /* Same as above, but specify the name of the parallel type by appending
7881 SUFFIX to the name of TYPE. */
7884 ada_find_parallel_type (struct type
*type
, const char *suffix
)
7887 const char *type_name
= ada_type_name (type
);
7890 if (type_name
== NULL
)
7893 len
= strlen (type_name
);
7895 name
= (char *) alloca (len
+ strlen (suffix
) + 1);
7897 strcpy (name
, type_name
);
7898 strcpy (name
+ len
, suffix
);
7900 return ada_find_parallel_type_with_name (type
, name
);
7903 /* If TYPE is a variable-size record type, return the corresponding template
7904 type describing its fields. Otherwise, return NULL. */
7906 static struct type
*
7907 dynamic_template_type (struct type
*type
)
7909 type
= ada_check_typedef (type
);
7911 if (type
== NULL
|| TYPE_CODE (type
) != TYPE_CODE_STRUCT
7912 || ada_type_name (type
) == NULL
)
7916 int len
= strlen (ada_type_name (type
));
7918 if (len
> 6 && strcmp (ada_type_name (type
) + len
- 6, "___XVE") == 0)
7921 return ada_find_parallel_type (type
, "___XVE");
7925 /* Assuming that TEMPL_TYPE is a union or struct type, returns
7926 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
7929 is_dynamic_field (struct type
*templ_type
, int field_num
)
7931 const char *name
= TYPE_FIELD_NAME (templ_type
, field_num
);
7934 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type
, field_num
)) == TYPE_CODE_PTR
7935 && strstr (name
, "___XVL") != NULL
;
7938 /* The index of the variant field of TYPE, or -1 if TYPE does not
7939 represent a variant record type. */
7942 variant_field_index (struct type
*type
)
7946 if (type
== NULL
|| TYPE_CODE (type
) != TYPE_CODE_STRUCT
)
7949 for (f
= 0; f
< TYPE_NFIELDS (type
); f
+= 1)
7951 if (ada_is_variant_part (type
, f
))
7957 /* A record type with no fields. */
7959 static struct type
*
7960 empty_record (struct type
*templ
)
7962 struct type
*type
= alloc_type_copy (templ
);
7964 TYPE_CODE (type
) = TYPE_CODE_STRUCT
;
7965 TYPE_NFIELDS (type
) = 0;
7966 TYPE_FIELDS (type
) = NULL
;
7967 INIT_CPLUS_SPECIFIC (type
);
7968 TYPE_NAME (type
) = "<empty>";
7969 TYPE_TAG_NAME (type
) = NULL
;
7970 TYPE_LENGTH (type
) = 0;
7974 /* An ordinary record type (with fixed-length fields) that describes
7975 the value of type TYPE at VALADDR or ADDRESS (see comments at
7976 the beginning of this section) VAL according to GNAT conventions.
7977 DVAL0 should describe the (portion of a) record that contains any
7978 necessary discriminants. It should be NULL if value_type (VAL) is
7979 an outer-level type (i.e., as opposed to a branch of a variant.) A
7980 variant field (unless unchecked) is replaced by a particular branch
7983 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
7984 length are not statically known are discarded. As a consequence,
7985 VALADDR, ADDRESS and DVAL0 are ignored.
7987 NOTE: Limitations: For now, we assume that dynamic fields and
7988 variants occupy whole numbers of bytes. However, they need not be
7992 ada_template_to_fixed_record_type_1 (struct type
*type
,
7993 const gdb_byte
*valaddr
,
7994 CORE_ADDR address
, struct value
*dval0
,
7995 int keep_dynamic_fields
)
7997 struct value
*mark
= value_mark ();
8000 int nfields
, bit_len
;
8006 /* Compute the number of fields in this record type that are going
8007 to be processed: unless keep_dynamic_fields, this includes only
8008 fields whose position and length are static will be processed. */
8009 if (keep_dynamic_fields
)
8010 nfields
= TYPE_NFIELDS (type
);
8014 while (nfields
< TYPE_NFIELDS (type
)
8015 && !ada_is_variant_part (type
, nfields
)
8016 && !is_dynamic_field (type
, nfields
))
8020 rtype
= alloc_type_copy (type
);
8021 TYPE_CODE (rtype
) = TYPE_CODE_STRUCT
;
8022 INIT_CPLUS_SPECIFIC (rtype
);
8023 TYPE_NFIELDS (rtype
) = nfields
;
8024 TYPE_FIELDS (rtype
) = (struct field
*)
8025 TYPE_ALLOC (rtype
, nfields
* sizeof (struct field
));
8026 memset (TYPE_FIELDS (rtype
), 0, sizeof (struct field
) * nfields
);
8027 TYPE_NAME (rtype
) = ada_type_name (type
);
8028 TYPE_TAG_NAME (rtype
) = NULL
;
8029 TYPE_FIXED_INSTANCE (rtype
) = 1;
8035 for (f
= 0; f
< nfields
; f
+= 1)
8037 off
= align_value (off
, field_alignment (type
, f
))
8038 + TYPE_FIELD_BITPOS (type
, f
);
8039 SET_FIELD_BITPOS (TYPE_FIELD (rtype
, f
), off
);
8040 TYPE_FIELD_BITSIZE (rtype
, f
) = 0;
8042 if (ada_is_variant_part (type
, f
))
8047 else if (is_dynamic_field (type
, f
))
8049 const gdb_byte
*field_valaddr
= valaddr
;
8050 CORE_ADDR field_address
= address
;
8051 struct type
*field_type
=
8052 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type
, f
));
8056 /* rtype's length is computed based on the run-time
8057 value of discriminants. If the discriminants are not
8058 initialized, the type size may be completely bogus and
8059 GDB may fail to allocate a value for it. So check the
8060 size first before creating the value. */
8061 ada_ensure_varsize_limit (rtype
);
8062 /* Using plain value_from_contents_and_address here
8063 causes problems because we will end up trying to
8064 resolve a type that is currently being
8066 dval
= value_from_contents_and_address_unresolved (rtype
,
8069 rtype
= value_type (dval
);
8074 /* If the type referenced by this field is an aligner type, we need
8075 to unwrap that aligner type, because its size might not be set.
8076 Keeping the aligner type would cause us to compute the wrong
8077 size for this field, impacting the offset of the all the fields
8078 that follow this one. */
8079 if (ada_is_aligner_type (field_type
))
8081 long field_offset
= TYPE_FIELD_BITPOS (field_type
, f
);
8083 field_valaddr
= cond_offset_host (field_valaddr
, field_offset
);
8084 field_address
= cond_offset_target (field_address
, field_offset
);
8085 field_type
= ada_aligned_type (field_type
);
8088 field_valaddr
= cond_offset_host (field_valaddr
,
8089 off
/ TARGET_CHAR_BIT
);
8090 field_address
= cond_offset_target (field_address
,
8091 off
/ TARGET_CHAR_BIT
);
8093 /* Get the fixed type of the field. Note that, in this case,
8094 we do not want to get the real type out of the tag: if
8095 the current field is the parent part of a tagged record,
8096 we will get the tag of the object. Clearly wrong: the real
8097 type of the parent is not the real type of the child. We
8098 would end up in an infinite loop. */
8099 field_type
= ada_get_base_type (field_type
);
8100 field_type
= ada_to_fixed_type (field_type
, field_valaddr
,
8101 field_address
, dval
, 0);
8102 /* If the field size is already larger than the maximum
8103 object size, then the record itself will necessarily
8104 be larger than the maximum object size. We need to make
8105 this check now, because the size might be so ridiculously
8106 large (due to an uninitialized variable in the inferior)
8107 that it would cause an overflow when adding it to the
8109 ada_ensure_varsize_limit (field_type
);
8111 TYPE_FIELD_TYPE (rtype
, f
) = field_type
;
8112 TYPE_FIELD_NAME (rtype
, f
) = TYPE_FIELD_NAME (type
, f
);
8113 /* The multiplication can potentially overflow. But because
8114 the field length has been size-checked just above, and
8115 assuming that the maximum size is a reasonable value,
8116 an overflow should not happen in practice. So rather than
8117 adding overflow recovery code to this already complex code,
8118 we just assume that it's not going to happen. */
8120 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype
, f
)) * TARGET_CHAR_BIT
;
8124 /* Note: If this field's type is a typedef, it is important
8125 to preserve the typedef layer.
8127 Otherwise, we might be transforming a typedef to a fat
8128 pointer (encoding a pointer to an unconstrained array),
8129 into a basic fat pointer (encoding an unconstrained
8130 array). As both types are implemented using the same
8131 structure, the typedef is the only clue which allows us
8132 to distinguish between the two options. Stripping it
8133 would prevent us from printing this field appropriately. */
8134 TYPE_FIELD_TYPE (rtype
, f
) = TYPE_FIELD_TYPE (type
, f
);
8135 TYPE_FIELD_NAME (rtype
, f
) = TYPE_FIELD_NAME (type
, f
);
8136 if (TYPE_FIELD_BITSIZE (type
, f
) > 0)
8138 TYPE_FIELD_BITSIZE (rtype
, f
) = TYPE_FIELD_BITSIZE (type
, f
);
8141 struct type
*field_type
= TYPE_FIELD_TYPE (type
, f
);
8143 /* We need to be careful of typedefs when computing
8144 the length of our field. If this is a typedef,
8145 get the length of the target type, not the length
8147 if (TYPE_CODE (field_type
) == TYPE_CODE_TYPEDEF
)
8148 field_type
= ada_typedef_target_type (field_type
);
8151 TYPE_LENGTH (ada_check_typedef (field_type
)) * TARGET_CHAR_BIT
;
8154 if (off
+ fld_bit_len
> bit_len
)
8155 bit_len
= off
+ fld_bit_len
;
8157 TYPE_LENGTH (rtype
) =
8158 align_value (bit_len
, TARGET_CHAR_BIT
) / TARGET_CHAR_BIT
;
8161 /* We handle the variant part, if any, at the end because of certain
8162 odd cases in which it is re-ordered so as NOT to be the last field of
8163 the record. This can happen in the presence of representation
8165 if (variant_field
>= 0)
8167 struct type
*branch_type
;
8169 off
= TYPE_FIELD_BITPOS (rtype
, variant_field
);
8173 /* Using plain value_from_contents_and_address here causes
8174 problems because we will end up trying to resolve a type
8175 that is currently being constructed. */
8176 dval
= value_from_contents_and_address_unresolved (rtype
, valaddr
,
8178 rtype
= value_type (dval
);
8184 to_fixed_variant_branch_type
8185 (TYPE_FIELD_TYPE (type
, variant_field
),
8186 cond_offset_host (valaddr
, off
/ TARGET_CHAR_BIT
),
8187 cond_offset_target (address
, off
/ TARGET_CHAR_BIT
), dval
);
8188 if (branch_type
== NULL
)
8190 for (f
= variant_field
+ 1; f
< TYPE_NFIELDS (rtype
); f
+= 1)
8191 TYPE_FIELDS (rtype
)[f
- 1] = TYPE_FIELDS (rtype
)[f
];
8192 TYPE_NFIELDS (rtype
) -= 1;
8196 TYPE_FIELD_TYPE (rtype
, variant_field
) = branch_type
;
8197 TYPE_FIELD_NAME (rtype
, variant_field
) = "S";
8199 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype
, variant_field
)) *
8201 if (off
+ fld_bit_len
> bit_len
)
8202 bit_len
= off
+ fld_bit_len
;
8203 TYPE_LENGTH (rtype
) =
8204 align_value (bit_len
, TARGET_CHAR_BIT
) / TARGET_CHAR_BIT
;
8208 /* According to exp_dbug.ads, the size of TYPE for variable-size records
8209 should contain the alignment of that record, which should be a strictly
8210 positive value. If null or negative, then something is wrong, most
8211 probably in the debug info. In that case, we don't round up the size
8212 of the resulting type. If this record is not part of another structure,
8213 the current RTYPE length might be good enough for our purposes. */
8214 if (TYPE_LENGTH (type
) <= 0)
8216 if (TYPE_NAME (rtype
))
8217 warning (_("Invalid type size for `%s' detected: %d."),
8218 TYPE_NAME (rtype
), TYPE_LENGTH (type
));
8220 warning (_("Invalid type size for <unnamed> detected: %d."),
8221 TYPE_LENGTH (type
));
8225 TYPE_LENGTH (rtype
) = align_value (TYPE_LENGTH (rtype
),
8226 TYPE_LENGTH (type
));
8229 value_free_to_mark (mark
);
8230 if (TYPE_LENGTH (rtype
) > varsize_limit
)
8231 error (_("record type with dynamic size is larger than varsize-limit"));
8235 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8238 static struct type
*
8239 template_to_fixed_record_type (struct type
*type
, const gdb_byte
*valaddr
,
8240 CORE_ADDR address
, struct value
*dval0
)
8242 return ada_template_to_fixed_record_type_1 (type
, valaddr
,
8246 /* An ordinary record type in which ___XVL-convention fields and
8247 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8248 static approximations, containing all possible fields. Uses
8249 no runtime values. Useless for use in values, but that's OK,
8250 since the results are used only for type determinations. Works on both
8251 structs and unions. Representation note: to save space, we memorize
8252 the result of this function in the TYPE_TARGET_TYPE of the
8255 static struct type
*
8256 template_to_static_fixed_type (struct type
*type0
)
8262 /* No need no do anything if the input type is already fixed. */
8263 if (TYPE_FIXED_INSTANCE (type0
))
8266 /* Likewise if we already have computed the static approximation. */
8267 if (TYPE_TARGET_TYPE (type0
) != NULL
)
8268 return TYPE_TARGET_TYPE (type0
);
8270 /* Don't clone TYPE0 until we are sure we are going to need a copy. */
8272 nfields
= TYPE_NFIELDS (type0
);
8274 /* Whether or not we cloned TYPE0, cache the result so that we don't do
8275 recompute all over next time. */
8276 TYPE_TARGET_TYPE (type0
) = type
;
8278 for (f
= 0; f
< nfields
; f
+= 1)
8280 struct type
*field_type
= TYPE_FIELD_TYPE (type0
, f
);
8281 struct type
*new_type
;
8283 if (is_dynamic_field (type0
, f
))
8285 field_type
= ada_check_typedef (field_type
);
8286 new_type
= to_static_fixed_type (TYPE_TARGET_TYPE (field_type
));
8289 new_type
= static_unwrap_type (field_type
);
8291 if (new_type
!= field_type
)
8293 /* Clone TYPE0 only the first time we get a new field type. */
8296 TYPE_TARGET_TYPE (type0
) = type
= alloc_type_copy (type0
);
8297 TYPE_CODE (type
) = TYPE_CODE (type0
);
8298 INIT_CPLUS_SPECIFIC (type
);
8299 TYPE_NFIELDS (type
) = nfields
;
8300 TYPE_FIELDS (type
) = (struct field
*)
8301 TYPE_ALLOC (type
, nfields
* sizeof (struct field
));
8302 memcpy (TYPE_FIELDS (type
), TYPE_FIELDS (type0
),
8303 sizeof (struct field
) * nfields
);
8304 TYPE_NAME (type
) = ada_type_name (type0
);
8305 TYPE_TAG_NAME (type
) = NULL
;
8306 TYPE_FIXED_INSTANCE (type
) = 1;
8307 TYPE_LENGTH (type
) = 0;
8309 TYPE_FIELD_TYPE (type
, f
) = new_type
;
8310 TYPE_FIELD_NAME (type
, f
) = TYPE_FIELD_NAME (type0
, f
);
8317 /* Given an object of type TYPE whose contents are at VALADDR and
8318 whose address in memory is ADDRESS, returns a revision of TYPE,
8319 which should be a non-dynamic-sized record, in which the variant
8320 part, if any, is replaced with the appropriate branch. Looks
8321 for discriminant values in DVAL0, which can be NULL if the record
8322 contains the necessary discriminant values. */
8324 static struct type
*
8325 to_record_with_fixed_variant_part (struct type
*type
, const gdb_byte
*valaddr
,
8326 CORE_ADDR address
, struct value
*dval0
)
8328 struct value
*mark
= value_mark ();
8331 struct type
*branch_type
;
8332 int nfields
= TYPE_NFIELDS (type
);
8333 int variant_field
= variant_field_index (type
);
8335 if (variant_field
== -1)
8340 dval
= value_from_contents_and_address (type
, valaddr
, address
);
8341 type
= value_type (dval
);
8346 rtype
= alloc_type_copy (type
);
8347 TYPE_CODE (rtype
) = TYPE_CODE_STRUCT
;
8348 INIT_CPLUS_SPECIFIC (rtype
);
8349 TYPE_NFIELDS (rtype
) = nfields
;
8350 TYPE_FIELDS (rtype
) =
8351 (struct field
*) TYPE_ALLOC (rtype
, nfields
* sizeof (struct field
));
8352 memcpy (TYPE_FIELDS (rtype
), TYPE_FIELDS (type
),
8353 sizeof (struct field
) * nfields
);
8354 TYPE_NAME (rtype
) = ada_type_name (type
);
8355 TYPE_TAG_NAME (rtype
) = NULL
;
8356 TYPE_FIXED_INSTANCE (rtype
) = 1;
8357 TYPE_LENGTH (rtype
) = TYPE_LENGTH (type
);
8359 branch_type
= to_fixed_variant_branch_type
8360 (TYPE_FIELD_TYPE (type
, variant_field
),
8361 cond_offset_host (valaddr
,
8362 TYPE_FIELD_BITPOS (type
, variant_field
)
8364 cond_offset_target (address
,
8365 TYPE_FIELD_BITPOS (type
, variant_field
)
8366 / TARGET_CHAR_BIT
), dval
);
8367 if (branch_type
== NULL
)
8371 for (f
= variant_field
+ 1; f
< nfields
; f
+= 1)
8372 TYPE_FIELDS (rtype
)[f
- 1] = TYPE_FIELDS (rtype
)[f
];
8373 TYPE_NFIELDS (rtype
) -= 1;
8377 TYPE_FIELD_TYPE (rtype
, variant_field
) = branch_type
;
8378 TYPE_FIELD_NAME (rtype
, variant_field
) = "S";
8379 TYPE_FIELD_BITSIZE (rtype
, variant_field
) = 0;
8380 TYPE_LENGTH (rtype
) += TYPE_LENGTH (branch_type
);
8382 TYPE_LENGTH (rtype
) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type
, variant_field
));
8384 value_free_to_mark (mark
);
8388 /* An ordinary record type (with fixed-length fields) that describes
8389 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8390 beginning of this section]. Any necessary discriminants' values
8391 should be in DVAL, a record value; it may be NULL if the object
8392 at ADDR itself contains any necessary discriminant values.
8393 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8394 values from the record are needed. Except in the case that DVAL,
8395 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8396 unchecked) is replaced by a particular branch of the variant.
8398 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8399 is questionable and may be removed. It can arise during the
8400 processing of an unconstrained-array-of-record type where all the
8401 variant branches have exactly the same size. This is because in
8402 such cases, the compiler does not bother to use the XVS convention
8403 when encoding the record. I am currently dubious of this
8404 shortcut and suspect the compiler should be altered. FIXME. */
8406 static struct type
*
8407 to_fixed_record_type (struct type
*type0
, const gdb_byte
*valaddr
,
8408 CORE_ADDR address
, struct value
*dval
)
8410 struct type
*templ_type
;
8412 if (TYPE_FIXED_INSTANCE (type0
))
8415 templ_type
= dynamic_template_type (type0
);
8417 if (templ_type
!= NULL
)
8418 return template_to_fixed_record_type (templ_type
, valaddr
, address
, dval
);
8419 else if (variant_field_index (type0
) >= 0)
8421 if (dval
== NULL
&& valaddr
== NULL
&& address
== 0)
8423 return to_record_with_fixed_variant_part (type0
, valaddr
, address
,
8428 TYPE_FIXED_INSTANCE (type0
) = 1;
8434 /* An ordinary record type (with fixed-length fields) that describes
8435 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8436 union type. Any necessary discriminants' values should be in DVAL,
8437 a record value. That is, this routine selects the appropriate
8438 branch of the union at ADDR according to the discriminant value
8439 indicated in the union's type name. Returns VAR_TYPE0 itself if
8440 it represents a variant subject to a pragma Unchecked_Union. */
8442 static struct type
*
8443 to_fixed_variant_branch_type (struct type
*var_type0
, const gdb_byte
*valaddr
,
8444 CORE_ADDR address
, struct value
*dval
)
8447 struct type
*templ_type
;
8448 struct type
*var_type
;
8450 if (TYPE_CODE (var_type0
) == TYPE_CODE_PTR
)
8451 var_type
= TYPE_TARGET_TYPE (var_type0
);
8453 var_type
= var_type0
;
8455 templ_type
= ada_find_parallel_type (var_type
, "___XVU");
8457 if (templ_type
!= NULL
)
8458 var_type
= templ_type
;
8460 if (is_unchecked_variant (var_type
, value_type (dval
)))
8463 ada_which_variant_applies (var_type
,
8464 value_type (dval
), value_contents (dval
));
8467 return empty_record (var_type
);
8468 else if (is_dynamic_field (var_type
, which
))
8469 return to_fixed_record_type
8470 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type
, which
)),
8471 valaddr
, address
, dval
);
8472 else if (variant_field_index (TYPE_FIELD_TYPE (var_type
, which
)) >= 0)
8474 to_fixed_record_type
8475 (TYPE_FIELD_TYPE (var_type
, which
), valaddr
, address
, dval
);
8477 return TYPE_FIELD_TYPE (var_type
, which
);
8480 /* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
8481 ENCODING_TYPE, a type following the GNAT conventions for discrete
8482 type encodings, only carries redundant information. */
8485 ada_is_redundant_range_encoding (struct type
*range_type
,
8486 struct type
*encoding_type
)
8488 struct type
*fixed_range_type
;
8493 gdb_assert (TYPE_CODE (range_type
) == TYPE_CODE_RANGE
);
8495 if (TYPE_CODE (get_base_type (range_type
))
8496 != TYPE_CODE (get_base_type (encoding_type
)))
8498 /* The compiler probably used a simple base type to describe
8499 the range type instead of the range's actual base type,
8500 expecting us to get the real base type from the encoding
8501 anyway. In this situation, the encoding cannot be ignored
8506 if (is_dynamic_type (range_type
))
8509 if (TYPE_NAME (encoding_type
) == NULL
)
8512 bounds_str
= strstr (TYPE_NAME (encoding_type
), "___XDLU_");
8513 if (bounds_str
== NULL
)
8516 n
= 8; /* Skip "___XDLU_". */
8517 if (!ada_scan_number (bounds_str
, n
, &lo
, &n
))
8519 if (TYPE_LOW_BOUND (range_type
) != lo
)
8522 n
+= 2; /* Skip the "__" separator between the two bounds. */
8523 if (!ada_scan_number (bounds_str
, n
, &hi
, &n
))
8525 if (TYPE_HIGH_BOUND (range_type
) != hi
)
8531 /* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
8532 a type following the GNAT encoding for describing array type
8533 indices, only carries redundant information. */
8536 ada_is_redundant_index_type_desc (struct type
*array_type
,
8537 struct type
*desc_type
)
8539 struct type
*this_layer
= check_typedef (array_type
);
8542 for (i
= 0; i
< TYPE_NFIELDS (desc_type
); i
++)
8544 if (!ada_is_redundant_range_encoding (TYPE_INDEX_TYPE (this_layer
),
8545 TYPE_FIELD_TYPE (desc_type
, i
)))
8547 this_layer
= check_typedef (TYPE_TARGET_TYPE (this_layer
));
8553 /* Assuming that TYPE0 is an array type describing the type of a value
8554 at ADDR, and that DVAL describes a record containing any
8555 discriminants used in TYPE0, returns a type for the value that
8556 contains no dynamic components (that is, no components whose sizes
8557 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8558 true, gives an error message if the resulting type's size is over
8561 static struct type
*
8562 to_fixed_array_type (struct type
*type0
, struct value
*dval
,
8565 struct type
*index_type_desc
;
8566 struct type
*result
;
8567 int constrained_packed_array_p
;
8568 static const char *xa_suffix
= "___XA";
8570 type0
= ada_check_typedef (type0
);
8571 if (TYPE_FIXED_INSTANCE (type0
))
8574 constrained_packed_array_p
= ada_is_constrained_packed_array_type (type0
);
8575 if (constrained_packed_array_p
)
8576 type0
= decode_constrained_packed_array_type (type0
);
8578 index_type_desc
= ada_find_parallel_type (type0
, xa_suffix
);
8580 /* As mentioned in exp_dbug.ads, for non bit-packed arrays an
8581 encoding suffixed with 'P' may still be generated. If so,
8582 it should be used to find the XA type. */
8584 if (index_type_desc
== NULL
)
8586 const char *type_name
= ada_type_name (type0
);
8588 if (type_name
!= NULL
)
8590 const int len
= strlen (type_name
);
8591 char *name
= (char *) alloca (len
+ strlen (xa_suffix
));
8593 if (type_name
[len
- 1] == 'P')
8595 strcpy (name
, type_name
);
8596 strcpy (name
+ len
- 1, xa_suffix
);
8597 index_type_desc
= ada_find_parallel_type_with_name (type0
, name
);
8602 ada_fixup_array_indexes_type (index_type_desc
);
8603 if (index_type_desc
!= NULL
8604 && ada_is_redundant_index_type_desc (type0
, index_type_desc
))
8606 /* Ignore this ___XA parallel type, as it does not bring any
8607 useful information. This allows us to avoid creating fixed
8608 versions of the array's index types, which would be identical
8609 to the original ones. This, in turn, can also help avoid
8610 the creation of fixed versions of the array itself. */
8611 index_type_desc
= NULL
;
8614 if (index_type_desc
== NULL
)
8616 struct type
*elt_type0
= ada_check_typedef (TYPE_TARGET_TYPE (type0
));
8618 /* NOTE: elt_type---the fixed version of elt_type0---should never
8619 depend on the contents of the array in properly constructed
8621 /* Create a fixed version of the array element type.
8622 We're not providing the address of an element here,
8623 and thus the actual object value cannot be inspected to do
8624 the conversion. This should not be a problem, since arrays of
8625 unconstrained objects are not allowed. In particular, all
8626 the elements of an array of a tagged type should all be of
8627 the same type specified in the debugging info. No need to
8628 consult the object tag. */
8629 struct type
*elt_type
= ada_to_fixed_type (elt_type0
, 0, 0, dval
, 1);
8631 /* Make sure we always create a new array type when dealing with
8632 packed array types, since we're going to fix-up the array
8633 type length and element bitsize a little further down. */
8634 if (elt_type0
== elt_type
&& !constrained_packed_array_p
)
8637 result
= create_array_type (alloc_type_copy (type0
),
8638 elt_type
, TYPE_INDEX_TYPE (type0
));
8643 struct type
*elt_type0
;
8646 for (i
= TYPE_NFIELDS (index_type_desc
); i
> 0; i
-= 1)
8647 elt_type0
= TYPE_TARGET_TYPE (elt_type0
);
8649 /* NOTE: result---the fixed version of elt_type0---should never
8650 depend on the contents of the array in properly constructed
8652 /* Create a fixed version of the array element type.
8653 We're not providing the address of an element here,
8654 and thus the actual object value cannot be inspected to do
8655 the conversion. This should not be a problem, since arrays of
8656 unconstrained objects are not allowed. In particular, all
8657 the elements of an array of a tagged type should all be of
8658 the same type specified in the debugging info. No need to
8659 consult the object tag. */
8661 ada_to_fixed_type (ada_check_typedef (elt_type0
), 0, 0, dval
, 1);
8664 for (i
= TYPE_NFIELDS (index_type_desc
) - 1; i
>= 0; i
-= 1)
8666 struct type
*range_type
=
8667 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc
, i
), dval
);
8669 result
= create_array_type (alloc_type_copy (elt_type0
),
8670 result
, range_type
);
8671 elt_type0
= TYPE_TARGET_TYPE (elt_type0
);
8673 if (!ignore_too_big
&& TYPE_LENGTH (result
) > varsize_limit
)
8674 error (_("array type with dynamic size is larger than varsize-limit"));
8677 /* We want to preserve the type name. This can be useful when
8678 trying to get the type name of a value that has already been
8679 printed (for instance, if the user did "print VAR; whatis $". */
8680 TYPE_NAME (result
) = TYPE_NAME (type0
);
8682 if (constrained_packed_array_p
)
8684 /* So far, the resulting type has been created as if the original
8685 type was a regular (non-packed) array type. As a result, the
8686 bitsize of the array elements needs to be set again, and the array
8687 length needs to be recomputed based on that bitsize. */
8688 int len
= TYPE_LENGTH (result
) / TYPE_LENGTH (TYPE_TARGET_TYPE (result
));
8689 int elt_bitsize
= TYPE_FIELD_BITSIZE (type0
, 0);
8691 TYPE_FIELD_BITSIZE (result
, 0) = TYPE_FIELD_BITSIZE (type0
, 0);
8692 TYPE_LENGTH (result
) = len
* elt_bitsize
/ HOST_CHAR_BIT
;
8693 if (TYPE_LENGTH (result
) * HOST_CHAR_BIT
< len
* elt_bitsize
)
8694 TYPE_LENGTH (result
)++;
8697 TYPE_FIXED_INSTANCE (result
) = 1;
8702 /* A standard type (containing no dynamically sized components)
8703 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8704 DVAL describes a record containing any discriminants used in TYPE0,
8705 and may be NULL if there are none, or if the object of type TYPE at
8706 ADDRESS or in VALADDR contains these discriminants.
8708 If CHECK_TAG is not null, in the case of tagged types, this function
8709 attempts to locate the object's tag and use it to compute the actual
8710 type. However, when ADDRESS is null, we cannot use it to determine the
8711 location of the tag, and therefore compute the tagged type's actual type.
8712 So we return the tagged type without consulting the tag. */
8714 static struct type
*
8715 ada_to_fixed_type_1 (struct type
*type
, const gdb_byte
*valaddr
,
8716 CORE_ADDR address
, struct value
*dval
, int check_tag
)
8718 type
= ada_check_typedef (type
);
8719 switch (TYPE_CODE (type
))
8723 case TYPE_CODE_STRUCT
:
8725 struct type
*static_type
= to_static_fixed_type (type
);
8726 struct type
*fixed_record_type
=
8727 to_fixed_record_type (type
, valaddr
, address
, NULL
);
8729 /* If STATIC_TYPE is a tagged type and we know the object's address,
8730 then we can determine its tag, and compute the object's actual
8731 type from there. Note that we have to use the fixed record
8732 type (the parent part of the record may have dynamic fields
8733 and the way the location of _tag is expressed may depend on
8736 if (check_tag
&& address
!= 0 && ada_is_tagged_type (static_type
, 0))
8739 value_tag_from_contents_and_address
8743 struct type
*real_type
= type_from_tag (tag
);
8745 value_from_contents_and_address (fixed_record_type
,
8748 fixed_record_type
= value_type (obj
);
8749 if (real_type
!= NULL
)
8750 return to_fixed_record_type
8752 value_address (ada_tag_value_at_base_address (obj
)), NULL
);
8755 /* Check to see if there is a parallel ___XVZ variable.
8756 If there is, then it provides the actual size of our type. */
8757 else if (ada_type_name (fixed_record_type
) != NULL
)
8759 const char *name
= ada_type_name (fixed_record_type
);
8760 char *xvz_name
= alloca (strlen (name
) + 7 /* "___XVZ\0" */);
8764 xsnprintf (xvz_name
, strlen (name
) + 7, "%s___XVZ", name
);
8765 size
= get_int_var_value (xvz_name
, &xvz_found
);
8766 if (xvz_found
&& TYPE_LENGTH (fixed_record_type
) != size
)
8768 fixed_record_type
= copy_type (fixed_record_type
);
8769 TYPE_LENGTH (fixed_record_type
) = size
;
8771 /* The FIXED_RECORD_TYPE may have be a stub. We have
8772 observed this when the debugging info is STABS, and
8773 apparently it is something that is hard to fix.
8775 In practice, we don't need the actual type definition
8776 at all, because the presence of the XVZ variable allows us
8777 to assume that there must be a XVS type as well, which we
8778 should be able to use later, when we need the actual type
8781 In the meantime, pretend that the "fixed" type we are
8782 returning is NOT a stub, because this can cause trouble
8783 when using this type to create new types targeting it.
8784 Indeed, the associated creation routines often check
8785 whether the target type is a stub and will try to replace
8786 it, thus using a type with the wrong size. This, in turn,
8787 might cause the new type to have the wrong size too.
8788 Consider the case of an array, for instance, where the size
8789 of the array is computed from the number of elements in
8790 our array multiplied by the size of its element. */
8791 TYPE_STUB (fixed_record_type
) = 0;
8794 return fixed_record_type
;
8796 case TYPE_CODE_ARRAY
:
8797 return to_fixed_array_type (type
, dval
, 1);
8798 case TYPE_CODE_UNION
:
8802 return to_fixed_variant_branch_type (type
, valaddr
, address
, dval
);
8806 /* The same as ada_to_fixed_type_1, except that it preserves the type
8807 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
8809 The typedef layer needs be preserved in order to differentiate between
8810 arrays and array pointers when both types are implemented using the same
8811 fat pointer. In the array pointer case, the pointer is encoded as
8812 a typedef of the pointer type. For instance, considering:
8814 type String_Access is access String;
8815 S1 : String_Access := null;
8817 To the debugger, S1 is defined as a typedef of type String. But
8818 to the user, it is a pointer. So if the user tries to print S1,
8819 we should not dereference the array, but print the array address
8822 If we didn't preserve the typedef layer, we would lose the fact that
8823 the type is to be presented as a pointer (needs de-reference before
8824 being printed). And we would also use the source-level type name. */
8827 ada_to_fixed_type (struct type
*type
, const gdb_byte
*valaddr
,
8828 CORE_ADDR address
, struct value
*dval
, int check_tag
)
8831 struct type
*fixed_type
=
8832 ada_to_fixed_type_1 (type
, valaddr
, address
, dval
, check_tag
);
8834 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
8835 then preserve the typedef layer.
8837 Implementation note: We can only check the main-type portion of
8838 the TYPE and FIXED_TYPE, because eliminating the typedef layer
8839 from TYPE now returns a type that has the same instance flags
8840 as TYPE. For instance, if TYPE is a "typedef const", and its
8841 target type is a "struct", then the typedef elimination will return
8842 a "const" version of the target type. See check_typedef for more
8843 details about how the typedef layer elimination is done.
8845 brobecker/2010-11-19: It seems to me that the only case where it is
8846 useful to preserve the typedef layer is when dealing with fat pointers.
8847 Perhaps, we could add a check for that and preserve the typedef layer
8848 only in that situation. But this seems unecessary so far, probably
8849 because we call check_typedef/ada_check_typedef pretty much everywhere.
8851 if (TYPE_CODE (type
) == TYPE_CODE_TYPEDEF
8852 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type
))
8853 == TYPE_MAIN_TYPE (fixed_type
)))
8859 /* A standard (static-sized) type corresponding as well as possible to
8860 TYPE0, but based on no runtime data. */
8862 static struct type
*
8863 to_static_fixed_type (struct type
*type0
)
8870 if (TYPE_FIXED_INSTANCE (type0
))
8873 type0
= ada_check_typedef (type0
);
8875 switch (TYPE_CODE (type0
))
8879 case TYPE_CODE_STRUCT
:
8880 type
= dynamic_template_type (type0
);
8882 return template_to_static_fixed_type (type
);
8884 return template_to_static_fixed_type (type0
);
8885 case TYPE_CODE_UNION
:
8886 type
= ada_find_parallel_type (type0
, "___XVU");
8888 return template_to_static_fixed_type (type
);
8890 return template_to_static_fixed_type (type0
);
8894 /* A static approximation of TYPE with all type wrappers removed. */
8896 static struct type
*
8897 static_unwrap_type (struct type
*type
)
8899 if (ada_is_aligner_type (type
))
8901 struct type
*type1
= TYPE_FIELD_TYPE (ada_check_typedef (type
), 0);
8902 if (ada_type_name (type1
) == NULL
)
8903 TYPE_NAME (type1
) = ada_type_name (type
);
8905 return static_unwrap_type (type1
);
8909 struct type
*raw_real_type
= ada_get_base_type (type
);
8911 if (raw_real_type
== type
)
8914 return to_static_fixed_type (raw_real_type
);
8918 /* In some cases, incomplete and private types require
8919 cross-references that are not resolved as records (for example,
8921 type FooP is access Foo;
8923 type Foo is array ...;
8924 ). In these cases, since there is no mechanism for producing
8925 cross-references to such types, we instead substitute for FooP a
8926 stub enumeration type that is nowhere resolved, and whose tag is
8927 the name of the actual type. Call these types "non-record stubs". */
8929 /* A type equivalent to TYPE that is not a non-record stub, if one
8930 exists, otherwise TYPE. */
8933 ada_check_typedef (struct type
*type
)
8938 /* If our type is a typedef type of a fat pointer, then we're done.
8939 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
8940 what allows us to distinguish between fat pointers that represent
8941 array types, and fat pointers that represent array access types
8942 (in both cases, the compiler implements them as fat pointers). */
8943 if (TYPE_CODE (type
) == TYPE_CODE_TYPEDEF
8944 && is_thick_pntr (ada_typedef_target_type (type
)))
8947 type
= check_typedef (type
);
8948 if (type
== NULL
|| TYPE_CODE (type
) != TYPE_CODE_ENUM
8949 || !TYPE_STUB (type
)
8950 || TYPE_TAG_NAME (type
) == NULL
)
8954 const char *name
= TYPE_TAG_NAME (type
);
8955 struct type
*type1
= ada_find_any_type (name
);
8960 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
8961 stubs pointing to arrays, as we don't create symbols for array
8962 types, only for the typedef-to-array types). If that's the case,
8963 strip the typedef layer. */
8964 if (TYPE_CODE (type1
) == TYPE_CODE_TYPEDEF
)
8965 type1
= ada_check_typedef (type1
);
8971 /* A value representing the data at VALADDR/ADDRESS as described by
8972 type TYPE0, but with a standard (static-sized) type that correctly
8973 describes it. If VAL0 is not NULL and TYPE0 already is a standard
8974 type, then return VAL0 [this feature is simply to avoid redundant
8975 creation of struct values]. */
8977 static struct value
*
8978 ada_to_fixed_value_create (struct type
*type0
, CORE_ADDR address
,
8981 struct type
*type
= ada_to_fixed_type (type0
, 0, address
, NULL
, 1);
8983 if (type
== type0
&& val0
!= NULL
)
8986 return value_from_contents_and_address (type
, 0, address
);
8989 /* A value representing VAL, but with a standard (static-sized) type
8990 that correctly describes it. Does not necessarily create a new
8994 ada_to_fixed_value (struct value
*val
)
8996 val
= unwrap_value (val
);
8997 val
= ada_to_fixed_value_create (value_type (val
),
8998 value_address (val
),
9006 /* Table mapping attribute numbers to names.
9007 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
9009 static const char *attribute_names
[] = {
9027 ada_attribute_name (enum exp_opcode n
)
9029 if (n
>= OP_ATR_FIRST
&& n
<= (int) OP_ATR_VAL
)
9030 return attribute_names
[n
- OP_ATR_FIRST
+ 1];
9032 return attribute_names
[0];
9035 /* Evaluate the 'POS attribute applied to ARG. */
9038 pos_atr (struct value
*arg
)
9040 struct value
*val
= coerce_ref (arg
);
9041 struct type
*type
= value_type (val
);
9044 if (!discrete_type_p (type
))
9045 error (_("'POS only defined on discrete types"));
9047 if (!discrete_position (type
, value_as_long (val
), &result
))
9048 error (_("enumeration value is invalid: can't find 'POS"));
9053 static struct value
*
9054 value_pos_atr (struct type
*type
, struct value
*arg
)
9056 return value_from_longest (type
, pos_atr (arg
));
9059 /* Evaluate the TYPE'VAL attribute applied to ARG. */
9061 static struct value
*
9062 value_val_atr (struct type
*type
, struct value
*arg
)
9064 if (!discrete_type_p (type
))
9065 error (_("'VAL only defined on discrete types"));
9066 if (!integer_type_p (value_type (arg
)))
9067 error (_("'VAL requires integral argument"));
9069 if (TYPE_CODE (type
) == TYPE_CODE_ENUM
)
9071 long pos
= value_as_long (arg
);
9073 if (pos
< 0 || pos
>= TYPE_NFIELDS (type
))
9074 error (_("argument to 'VAL out of range"));
9075 return value_from_longest (type
, TYPE_FIELD_ENUMVAL (type
, pos
));
9078 return value_from_longest (type
, value_as_long (arg
));
9084 /* True if TYPE appears to be an Ada character type.
9085 [At the moment, this is true only for Character and Wide_Character;
9086 It is a heuristic test that could stand improvement]. */
9089 ada_is_character_type (struct type
*type
)
9093 /* If the type code says it's a character, then assume it really is,
9094 and don't check any further. */
9095 if (TYPE_CODE (type
) == TYPE_CODE_CHAR
)
9098 /* Otherwise, assume it's a character type iff it is a discrete type
9099 with a known character type name. */
9100 name
= ada_type_name (type
);
9101 return (name
!= NULL
9102 && (TYPE_CODE (type
) == TYPE_CODE_INT
9103 || TYPE_CODE (type
) == TYPE_CODE_RANGE
)
9104 && (strcmp (name
, "character") == 0
9105 || strcmp (name
, "wide_character") == 0
9106 || strcmp (name
, "wide_wide_character") == 0
9107 || strcmp (name
, "unsigned char") == 0));
9110 /* True if TYPE appears to be an Ada string type. */
9113 ada_is_string_type (struct type
*type
)
9115 type
= ada_check_typedef (type
);
9117 && TYPE_CODE (type
) != TYPE_CODE_PTR
9118 && (ada_is_simple_array_type (type
)
9119 || ada_is_array_descriptor_type (type
))
9120 && ada_array_arity (type
) == 1)
9122 struct type
*elttype
= ada_array_element_type (type
, 1);
9124 return ada_is_character_type (elttype
);
9130 /* The compiler sometimes provides a parallel XVS type for a given
9131 PAD type. Normally, it is safe to follow the PAD type directly,
9132 but older versions of the compiler have a bug that causes the offset
9133 of its "F" field to be wrong. Following that field in that case
9134 would lead to incorrect results, but this can be worked around
9135 by ignoring the PAD type and using the associated XVS type instead.
9137 Set to True if the debugger should trust the contents of PAD types.
9138 Otherwise, ignore the PAD type if there is a parallel XVS type. */
9139 static int trust_pad_over_xvs
= 1;
9141 /* True if TYPE is a struct type introduced by the compiler to force the
9142 alignment of a value. Such types have a single field with a
9143 distinctive name. */
9146 ada_is_aligner_type (struct type
*type
)
9148 type
= ada_check_typedef (type
);
9150 if (!trust_pad_over_xvs
&& ada_find_parallel_type (type
, "___XVS") != NULL
)
9153 return (TYPE_CODE (type
) == TYPE_CODE_STRUCT
9154 && TYPE_NFIELDS (type
) == 1
9155 && strcmp (TYPE_FIELD_NAME (type
, 0), "F") == 0);
9158 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
9159 the parallel type. */
9162 ada_get_base_type (struct type
*raw_type
)
9164 struct type
*real_type_namer
;
9165 struct type
*raw_real_type
;
9167 if (raw_type
== NULL
|| TYPE_CODE (raw_type
) != TYPE_CODE_STRUCT
)
9170 if (ada_is_aligner_type (raw_type
))
9171 /* The encoding specifies that we should always use the aligner type.
9172 So, even if this aligner type has an associated XVS type, we should
9175 According to the compiler gurus, an XVS type parallel to an aligner
9176 type may exist because of a stabs limitation. In stabs, aligner
9177 types are empty because the field has a variable-sized type, and
9178 thus cannot actually be used as an aligner type. As a result,
9179 we need the associated parallel XVS type to decode the type.
9180 Since the policy in the compiler is to not change the internal
9181 representation based on the debugging info format, we sometimes
9182 end up having a redundant XVS type parallel to the aligner type. */
9185 real_type_namer
= ada_find_parallel_type (raw_type
, "___XVS");
9186 if (real_type_namer
== NULL
9187 || TYPE_CODE (real_type_namer
) != TYPE_CODE_STRUCT
9188 || TYPE_NFIELDS (real_type_namer
) != 1)
9191 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer
, 0)) != TYPE_CODE_REF
)
9193 /* This is an older encoding form where the base type needs to be
9194 looked up by name. We prefer the newer enconding because it is
9196 raw_real_type
= ada_find_any_type (TYPE_FIELD_NAME (real_type_namer
, 0));
9197 if (raw_real_type
== NULL
)
9200 return raw_real_type
;
9203 /* The field in our XVS type is a reference to the base type. */
9204 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer
, 0));
9207 /* The type of value designated by TYPE, with all aligners removed. */
9210 ada_aligned_type (struct type
*type
)
9212 if (ada_is_aligner_type (type
))
9213 return ada_aligned_type (TYPE_FIELD_TYPE (type
, 0));
9215 return ada_get_base_type (type
);
9219 /* The address of the aligned value in an object at address VALADDR
9220 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
9223 ada_aligned_value_addr (struct type
*type
, const gdb_byte
*valaddr
)
9225 if (ada_is_aligner_type (type
))
9226 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type
, 0),
9228 TYPE_FIELD_BITPOS (type
,
9229 0) / TARGET_CHAR_BIT
);
9236 /* The printed representation of an enumeration literal with encoded
9237 name NAME. The value is good to the next call of ada_enum_name. */
9239 ada_enum_name (const char *name
)
9241 static char *result
;
9242 static size_t result_len
= 0;
9245 /* First, unqualify the enumeration name:
9246 1. Search for the last '.' character. If we find one, then skip
9247 all the preceding characters, the unqualified name starts
9248 right after that dot.
9249 2. Otherwise, we may be debugging on a target where the compiler
9250 translates dots into "__". Search forward for double underscores,
9251 but stop searching when we hit an overloading suffix, which is
9252 of the form "__" followed by digits. */
9254 tmp
= strrchr (name
, '.');
9259 while ((tmp
= strstr (name
, "__")) != NULL
)
9261 if (isdigit (tmp
[2]))
9272 if (name
[1] == 'U' || name
[1] == 'W')
9274 if (sscanf (name
+ 2, "%x", &v
) != 1)
9280 GROW_VECT (result
, result_len
, 16);
9281 if (isascii (v
) && isprint (v
))
9282 xsnprintf (result
, result_len
, "'%c'", v
);
9283 else if (name
[1] == 'U')
9284 xsnprintf (result
, result_len
, "[\"%02x\"]", v
);
9286 xsnprintf (result
, result_len
, "[\"%04x\"]", v
);
9292 tmp
= strstr (name
, "__");
9294 tmp
= strstr (name
, "$");
9297 GROW_VECT (result
, result_len
, tmp
- name
+ 1);
9298 strncpy (result
, name
, tmp
- name
);
9299 result
[tmp
- name
] = '\0';
9307 /* Evaluate the subexpression of EXP starting at *POS as for
9308 evaluate_type, updating *POS to point just past the evaluated
9311 static struct value
*
9312 evaluate_subexp_type (struct expression
*exp
, int *pos
)
9314 return evaluate_subexp (NULL_TYPE
, exp
, pos
, EVAL_AVOID_SIDE_EFFECTS
);
9317 /* If VAL is wrapped in an aligner or subtype wrapper, return the
9320 static struct value
*
9321 unwrap_value (struct value
*val
)
9323 struct type
*type
= ada_check_typedef (value_type (val
));
9325 if (ada_is_aligner_type (type
))
9327 struct value
*v
= ada_value_struct_elt (val
, "F", 0);
9328 struct type
*val_type
= ada_check_typedef (value_type (v
));
9330 if (ada_type_name (val_type
) == NULL
)
9331 TYPE_NAME (val_type
) = ada_type_name (type
);
9333 return unwrap_value (v
);
9337 struct type
*raw_real_type
=
9338 ada_check_typedef (ada_get_base_type (type
));
9340 /* If there is no parallel XVS or XVE type, then the value is
9341 already unwrapped. Return it without further modification. */
9342 if ((type
== raw_real_type
)
9343 && ada_find_parallel_type (type
, "___XVE") == NULL
)
9347 coerce_unspec_val_to_type
9348 (val
, ada_to_fixed_type (raw_real_type
, 0,
9349 value_address (val
),
9354 static struct value
*
9355 cast_to_fixed (struct type
*type
, struct value
*arg
)
9359 if (type
== value_type (arg
))
9361 else if (ada_is_fixed_point_type (value_type (arg
)))
9362 val
= ada_float_to_fixed (type
,
9363 ada_fixed_to_float (value_type (arg
),
9364 value_as_long (arg
)));
9367 DOUBLEST argd
= value_as_double (arg
);
9369 val
= ada_float_to_fixed (type
, argd
);
9372 return value_from_longest (type
, val
);
9375 static struct value
*
9376 cast_from_fixed (struct type
*type
, struct value
*arg
)
9378 DOUBLEST val
= ada_fixed_to_float (value_type (arg
),
9379 value_as_long (arg
));
9381 return value_from_double (type
, val
);
9384 /* Given two array types T1 and T2, return nonzero iff both arrays
9385 contain the same number of elements. */
9388 ada_same_array_size_p (struct type
*t1
, struct type
*t2
)
9390 LONGEST lo1
, hi1
, lo2
, hi2
;
9392 /* Get the array bounds in order to verify that the size of
9393 the two arrays match. */
9394 if (!get_array_bounds (t1
, &lo1
, &hi1
)
9395 || !get_array_bounds (t2
, &lo2
, &hi2
))
9396 error (_("unable to determine array bounds"));
9398 /* To make things easier for size comparison, normalize a bit
9399 the case of empty arrays by making sure that the difference
9400 between upper bound and lower bound is always -1. */
9406 return (hi1
- lo1
== hi2
- lo2
);
9409 /* Assuming that VAL is an array of integrals, and TYPE represents
9410 an array with the same number of elements, but with wider integral
9411 elements, return an array "casted" to TYPE. In practice, this
9412 means that the returned array is built by casting each element
9413 of the original array into TYPE's (wider) element type. */
9415 static struct value
*
9416 ada_promote_array_of_integrals (struct type
*type
, struct value
*val
)
9418 struct type
*elt_type
= TYPE_TARGET_TYPE (type
);
9423 /* Verify that both val and type are arrays of scalars, and
9424 that the size of val's elements is smaller than the size
9425 of type's element. */
9426 gdb_assert (TYPE_CODE (type
) == TYPE_CODE_ARRAY
);
9427 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type
)));
9428 gdb_assert (TYPE_CODE (value_type (val
)) == TYPE_CODE_ARRAY
);
9429 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val
))));
9430 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type
))
9431 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val
))));
9433 if (!get_array_bounds (type
, &lo
, &hi
))
9434 error (_("unable to determine array bounds"));
9436 res
= allocate_value (type
);
9438 /* Promote each array element. */
9439 for (i
= 0; i
< hi
- lo
+ 1; i
++)
9441 struct value
*elt
= value_cast (elt_type
, value_subscript (val
, lo
+ i
));
9443 memcpy (value_contents_writeable (res
) + (i
* TYPE_LENGTH (elt_type
)),
9444 value_contents_all (elt
), TYPE_LENGTH (elt_type
));
9450 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9451 return the converted value. */
9453 static struct value
*
9454 coerce_for_assign (struct type
*type
, struct value
*val
)
9456 struct type
*type2
= value_type (val
);
9461 type2
= ada_check_typedef (type2
);
9462 type
= ada_check_typedef (type
);
9464 if (TYPE_CODE (type2
) == TYPE_CODE_PTR
9465 && TYPE_CODE (type
) == TYPE_CODE_ARRAY
)
9467 val
= ada_value_ind (val
);
9468 type2
= value_type (val
);
9471 if (TYPE_CODE (type2
) == TYPE_CODE_ARRAY
9472 && TYPE_CODE (type
) == TYPE_CODE_ARRAY
)
9474 if (!ada_same_array_size_p (type
, type2
))
9475 error (_("cannot assign arrays of different length"));
9477 if (is_integral_type (TYPE_TARGET_TYPE (type
))
9478 && is_integral_type (TYPE_TARGET_TYPE (type2
))
9479 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2
))
9480 < TYPE_LENGTH (TYPE_TARGET_TYPE (type
)))
9482 /* Allow implicit promotion of the array elements to
9484 return ada_promote_array_of_integrals (type
, val
);
9487 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2
))
9488 != TYPE_LENGTH (TYPE_TARGET_TYPE (type
)))
9489 error (_("Incompatible types in assignment"));
9490 deprecated_set_value_type (val
, type
);
9495 static struct value
*
9496 ada_value_binop (struct value
*arg1
, struct value
*arg2
, enum exp_opcode op
)
9499 struct type
*type1
, *type2
;
9502 arg1
= coerce_ref (arg1
);
9503 arg2
= coerce_ref (arg2
);
9504 type1
= get_base_type (ada_check_typedef (value_type (arg1
)));
9505 type2
= get_base_type (ada_check_typedef (value_type (arg2
)));
9507 if (TYPE_CODE (type1
) != TYPE_CODE_INT
9508 || TYPE_CODE (type2
) != TYPE_CODE_INT
)
9509 return value_binop (arg1
, arg2
, op
);
9518 return value_binop (arg1
, arg2
, op
);
9521 v2
= value_as_long (arg2
);
9523 error (_("second operand of %s must not be zero."), op_string (op
));
9525 if (TYPE_UNSIGNED (type1
) || op
== BINOP_MOD
)
9526 return value_binop (arg1
, arg2
, op
);
9528 v1
= value_as_long (arg1
);
9533 if (!TRUNCATION_TOWARDS_ZERO
&& v1
* (v1
% v2
) < 0)
9534 v
+= v
> 0 ? -1 : 1;
9542 /* Should not reach this point. */
9546 val
= allocate_value (type1
);
9547 store_unsigned_integer (value_contents_raw (val
),
9548 TYPE_LENGTH (value_type (val
)),
9549 gdbarch_byte_order (get_type_arch (type1
)), v
);
9554 ada_value_equal (struct value
*arg1
, struct value
*arg2
)
9556 if (ada_is_direct_array_type (value_type (arg1
))
9557 || ada_is_direct_array_type (value_type (arg2
)))
9559 /* Automatically dereference any array reference before
9560 we attempt to perform the comparison. */
9561 arg1
= ada_coerce_ref (arg1
);
9562 arg2
= ada_coerce_ref (arg2
);
9564 arg1
= ada_coerce_to_simple_array (arg1
);
9565 arg2
= ada_coerce_to_simple_array (arg2
);
9566 if (TYPE_CODE (value_type (arg1
)) != TYPE_CODE_ARRAY
9567 || TYPE_CODE (value_type (arg2
)) != TYPE_CODE_ARRAY
)
9568 error (_("Attempt to compare array with non-array"));
9569 /* FIXME: The following works only for types whose
9570 representations use all bits (no padding or undefined bits)
9571 and do not have user-defined equality. */
9573 TYPE_LENGTH (value_type (arg1
)) == TYPE_LENGTH (value_type (arg2
))
9574 && memcmp (value_contents (arg1
), value_contents (arg2
),
9575 TYPE_LENGTH (value_type (arg1
))) == 0;
9577 return value_equal (arg1
, arg2
);
9580 /* Total number of component associations in the aggregate starting at
9581 index PC in EXP. Assumes that index PC is the start of an
9585 num_component_specs (struct expression
*exp
, int pc
)
9589 m
= exp
->elts
[pc
+ 1].longconst
;
9592 for (i
= 0; i
< m
; i
+= 1)
9594 switch (exp
->elts
[pc
].opcode
)
9600 n
+= exp
->elts
[pc
+ 1].longconst
;
9603 ada_evaluate_subexp (NULL
, exp
, &pc
, EVAL_SKIP
);
9608 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
9609 component of LHS (a simple array or a record), updating *POS past
9610 the expression, assuming that LHS is contained in CONTAINER. Does
9611 not modify the inferior's memory, nor does it modify LHS (unless
9612 LHS == CONTAINER). */
9615 assign_component (struct value
*container
, struct value
*lhs
, LONGEST index
,
9616 struct expression
*exp
, int *pos
)
9618 struct value
*mark
= value_mark ();
9621 if (TYPE_CODE (value_type (lhs
)) == TYPE_CODE_ARRAY
)
9623 struct type
*index_type
= builtin_type (exp
->gdbarch
)->builtin_int
;
9624 struct value
*index_val
= value_from_longest (index_type
, index
);
9626 elt
= unwrap_value (ada_value_subscript (lhs
, 1, &index_val
));
9630 elt
= ada_index_struct_field (index
, lhs
, 0, value_type (lhs
));
9631 elt
= ada_to_fixed_value (elt
);
9634 if (exp
->elts
[*pos
].opcode
== OP_AGGREGATE
)
9635 assign_aggregate (container
, elt
, exp
, pos
, EVAL_NORMAL
);
9637 value_assign_to_component (container
, elt
,
9638 ada_evaluate_subexp (NULL
, exp
, pos
,
9641 value_free_to_mark (mark
);
9644 /* Assuming that LHS represents an lvalue having a record or array
9645 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9646 of that aggregate's value to LHS, advancing *POS past the
9647 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
9648 lvalue containing LHS (possibly LHS itself). Does not modify
9649 the inferior's memory, nor does it modify the contents of
9650 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
9652 static struct value
*
9653 assign_aggregate (struct value
*container
,
9654 struct value
*lhs
, struct expression
*exp
,
9655 int *pos
, enum noside noside
)
9657 struct type
*lhs_type
;
9658 int n
= exp
->elts
[*pos
+1].longconst
;
9659 LONGEST low_index
, high_index
;
9662 int max_indices
, num_indices
;
9666 if (noside
!= EVAL_NORMAL
)
9668 for (i
= 0; i
< n
; i
+= 1)
9669 ada_evaluate_subexp (NULL
, exp
, pos
, noside
);
9673 container
= ada_coerce_ref (container
);
9674 if (ada_is_direct_array_type (value_type (container
)))
9675 container
= ada_coerce_to_simple_array (container
);
9676 lhs
= ada_coerce_ref (lhs
);
9677 if (!deprecated_value_modifiable (lhs
))
9678 error (_("Left operand of assignment is not a modifiable lvalue."));
9680 lhs_type
= value_type (lhs
);
9681 if (ada_is_direct_array_type (lhs_type
))
9683 lhs
= ada_coerce_to_simple_array (lhs
);
9684 lhs_type
= value_type (lhs
);
9685 low_index
= TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type
);
9686 high_index
= TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type
);
9688 else if (TYPE_CODE (lhs_type
) == TYPE_CODE_STRUCT
)
9691 high_index
= num_visible_fields (lhs_type
) - 1;
9694 error (_("Left-hand side must be array or record."));
9696 num_specs
= num_component_specs (exp
, *pos
- 3);
9697 max_indices
= 4 * num_specs
+ 4;
9698 indices
= alloca (max_indices
* sizeof (indices
[0]));
9699 indices
[0] = indices
[1] = low_index
- 1;
9700 indices
[2] = indices
[3] = high_index
+ 1;
9703 for (i
= 0; i
< n
; i
+= 1)
9705 switch (exp
->elts
[*pos
].opcode
)
9708 aggregate_assign_from_choices (container
, lhs
, exp
, pos
, indices
,
9709 &num_indices
, max_indices
,
9710 low_index
, high_index
);
9713 aggregate_assign_positional (container
, lhs
, exp
, pos
, indices
,
9714 &num_indices
, max_indices
,
9715 low_index
, high_index
);
9719 error (_("Misplaced 'others' clause"));
9720 aggregate_assign_others (container
, lhs
, exp
, pos
, indices
,
9721 num_indices
, low_index
, high_index
);
9724 error (_("Internal error: bad aggregate clause"));
9731 /* Assign into the component of LHS indexed by the OP_POSITIONAL
9732 construct at *POS, updating *POS past the construct, given that
9733 the positions are relative to lower bound LOW, where HIGH is the
9734 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
9735 updating *NUM_INDICES as needed. CONTAINER is as for
9736 assign_aggregate. */
9738 aggregate_assign_positional (struct value
*container
,
9739 struct value
*lhs
, struct expression
*exp
,
9740 int *pos
, LONGEST
*indices
, int *num_indices
,
9741 int max_indices
, LONGEST low
, LONGEST high
)
9743 LONGEST ind
= longest_to_int (exp
->elts
[*pos
+ 1].longconst
) + low
;
9745 if (ind
- 1 == high
)
9746 warning (_("Extra components in aggregate ignored."));
9749 add_component_interval (ind
, ind
, indices
, num_indices
, max_indices
);
9751 assign_component (container
, lhs
, ind
, exp
, pos
);
9754 ada_evaluate_subexp (NULL
, exp
, pos
, EVAL_SKIP
);
9757 /* Assign into the components of LHS indexed by the OP_CHOICES
9758 construct at *POS, updating *POS past the construct, given that
9759 the allowable indices are LOW..HIGH. Record the indices assigned
9760 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
9761 needed. CONTAINER is as for assign_aggregate. */
9763 aggregate_assign_from_choices (struct value
*container
,
9764 struct value
*lhs
, struct expression
*exp
,
9765 int *pos
, LONGEST
*indices
, int *num_indices
,
9766 int max_indices
, LONGEST low
, LONGEST high
)
9769 int n_choices
= longest_to_int (exp
->elts
[*pos
+1].longconst
);
9770 int choice_pos
, expr_pc
;
9771 int is_array
= ada_is_direct_array_type (value_type (lhs
));
9773 choice_pos
= *pos
+= 3;
9775 for (j
= 0; j
< n_choices
; j
+= 1)
9776 ada_evaluate_subexp (NULL
, exp
, pos
, EVAL_SKIP
);
9778 ada_evaluate_subexp (NULL
, exp
, pos
, EVAL_SKIP
);
9780 for (j
= 0; j
< n_choices
; j
+= 1)
9782 LONGEST lower
, upper
;
9783 enum exp_opcode op
= exp
->elts
[choice_pos
].opcode
;
9785 if (op
== OP_DISCRETE_RANGE
)
9788 lower
= value_as_long (ada_evaluate_subexp (NULL
, exp
, pos
,
9790 upper
= value_as_long (ada_evaluate_subexp (NULL
, exp
, pos
,
9795 lower
= value_as_long (ada_evaluate_subexp (NULL
, exp
, &choice_pos
,
9807 name
= &exp
->elts
[choice_pos
+ 2].string
;
9810 name
= SYMBOL_NATURAL_NAME (exp
->elts
[choice_pos
+ 2].symbol
);
9813 error (_("Invalid record component association."));
9815 ada_evaluate_subexp (NULL
, exp
, &choice_pos
, EVAL_SKIP
);
9817 if (! find_struct_field (name
, value_type (lhs
), 0,
9818 NULL
, NULL
, NULL
, NULL
, &ind
))
9819 error (_("Unknown component name: %s."), name
);
9820 lower
= upper
= ind
;
9823 if (lower
<= upper
&& (lower
< low
|| upper
> high
))
9824 error (_("Index in component association out of bounds."));
9826 add_component_interval (lower
, upper
, indices
, num_indices
,
9828 while (lower
<= upper
)
9833 assign_component (container
, lhs
, lower
, exp
, &pos1
);
9839 /* Assign the value of the expression in the OP_OTHERS construct in
9840 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
9841 have not been previously assigned. The index intervals already assigned
9842 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
9843 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
9845 aggregate_assign_others (struct value
*container
,
9846 struct value
*lhs
, struct expression
*exp
,
9847 int *pos
, LONGEST
*indices
, int num_indices
,
9848 LONGEST low
, LONGEST high
)
9851 int expr_pc
= *pos
+ 1;
9853 for (i
= 0; i
< num_indices
- 2; i
+= 2)
9857 for (ind
= indices
[i
+ 1] + 1; ind
< indices
[i
+ 2]; ind
+= 1)
9862 assign_component (container
, lhs
, ind
, exp
, &localpos
);
9865 ada_evaluate_subexp (NULL
, exp
, pos
, EVAL_SKIP
);
9868 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
9869 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
9870 modifying *SIZE as needed. It is an error if *SIZE exceeds
9871 MAX_SIZE. The resulting intervals do not overlap. */
9873 add_component_interval (LONGEST low
, LONGEST high
,
9874 LONGEST
* indices
, int *size
, int max_size
)
9878 for (i
= 0; i
< *size
; i
+= 2) {
9879 if (high
>= indices
[i
] && low
<= indices
[i
+ 1])
9883 for (kh
= i
+ 2; kh
< *size
; kh
+= 2)
9884 if (high
< indices
[kh
])
9886 if (low
< indices
[i
])
9888 indices
[i
+ 1] = indices
[kh
- 1];
9889 if (high
> indices
[i
+ 1])
9890 indices
[i
+ 1] = high
;
9891 memcpy (indices
+ i
+ 2, indices
+ kh
, *size
- kh
);
9892 *size
-= kh
- i
- 2;
9895 else if (high
< indices
[i
])
9899 if (*size
== max_size
)
9900 error (_("Internal error: miscounted aggregate components."));
9902 for (j
= *size
-1; j
>= i
+2; j
-= 1)
9903 indices
[j
] = indices
[j
- 2];
9905 indices
[i
+ 1] = high
;
9908 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
9911 static struct value
*
9912 ada_value_cast (struct type
*type
, struct value
*arg2
, enum noside noside
)
9914 if (type
== ada_check_typedef (value_type (arg2
)))
9917 if (ada_is_fixed_point_type (type
))
9918 return (cast_to_fixed (type
, arg2
));
9920 if (ada_is_fixed_point_type (value_type (arg2
)))
9921 return cast_from_fixed (type
, arg2
);
9923 return value_cast (type
, arg2
);
9926 /* Evaluating Ada expressions, and printing their result.
9927 ------------------------------------------------------
9932 We usually evaluate an Ada expression in order to print its value.
9933 We also evaluate an expression in order to print its type, which
9934 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
9935 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
9936 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
9937 the evaluation compared to the EVAL_NORMAL, but is otherwise very
9940 Evaluating expressions is a little more complicated for Ada entities
9941 than it is for entities in languages such as C. The main reason for
9942 this is that Ada provides types whose definition might be dynamic.
9943 One example of such types is variant records. Or another example
9944 would be an array whose bounds can only be known at run time.
9946 The following description is a general guide as to what should be
9947 done (and what should NOT be done) in order to evaluate an expression
9948 involving such types, and when. This does not cover how the semantic
9949 information is encoded by GNAT as this is covered separatly. For the
9950 document used as the reference for the GNAT encoding, see exp_dbug.ads
9951 in the GNAT sources.
9953 Ideally, we should embed each part of this description next to its
9954 associated code. Unfortunately, the amount of code is so vast right
9955 now that it's hard to see whether the code handling a particular
9956 situation might be duplicated or not. One day, when the code is
9957 cleaned up, this guide might become redundant with the comments
9958 inserted in the code, and we might want to remove it.
9960 2. ``Fixing'' an Entity, the Simple Case:
9961 -----------------------------------------
9963 When evaluating Ada expressions, the tricky issue is that they may
9964 reference entities whose type contents and size are not statically
9965 known. Consider for instance a variant record:
9967 type Rec (Empty : Boolean := True) is record
9970 when False => Value : Integer;
9973 Yes : Rec := (Empty => False, Value => 1);
9974 No : Rec := (empty => True);
9976 The size and contents of that record depends on the value of the
9977 descriminant (Rec.Empty). At this point, neither the debugging
9978 information nor the associated type structure in GDB are able to
9979 express such dynamic types. So what the debugger does is to create
9980 "fixed" versions of the type that applies to the specific object.
9981 We also informally refer to this opperation as "fixing" an object,
9982 which means creating its associated fixed type.
9984 Example: when printing the value of variable "Yes" above, its fixed
9985 type would look like this:
9992 On the other hand, if we printed the value of "No", its fixed type
9999 Things become a little more complicated when trying to fix an entity
10000 with a dynamic type that directly contains another dynamic type,
10001 such as an array of variant records, for instance. There are
10002 two possible cases: Arrays, and records.
10004 3. ``Fixing'' Arrays:
10005 ---------------------
10007 The type structure in GDB describes an array in terms of its bounds,
10008 and the type of its elements. By design, all elements in the array
10009 have the same type and we cannot represent an array of variant elements
10010 using the current type structure in GDB. When fixing an array,
10011 we cannot fix the array element, as we would potentially need one
10012 fixed type per element of the array. As a result, the best we can do
10013 when fixing an array is to produce an array whose bounds and size
10014 are correct (allowing us to read it from memory), but without having
10015 touched its element type. Fixing each element will be done later,
10016 when (if) necessary.
10018 Arrays are a little simpler to handle than records, because the same
10019 amount of memory is allocated for each element of the array, even if
10020 the amount of space actually used by each element differs from element
10021 to element. Consider for instance the following array of type Rec:
10023 type Rec_Array is array (1 .. 2) of Rec;
10025 The actual amount of memory occupied by each element might be different
10026 from element to element, depending on the value of their discriminant.
10027 But the amount of space reserved for each element in the array remains
10028 fixed regardless. So we simply need to compute that size using
10029 the debugging information available, from which we can then determine
10030 the array size (we multiply the number of elements of the array by
10031 the size of each element).
10033 The simplest case is when we have an array of a constrained element
10034 type. For instance, consider the following type declarations:
10036 type Bounded_String (Max_Size : Integer) is
10038 Buffer : String (1 .. Max_Size);
10040 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
10042 In this case, the compiler describes the array as an array of
10043 variable-size elements (identified by its XVS suffix) for which
10044 the size can be read in the parallel XVZ variable.
10046 In the case of an array of an unconstrained element type, the compiler
10047 wraps the array element inside a private PAD type. This type should not
10048 be shown to the user, and must be "unwrap"'ed before printing. Note
10049 that we also use the adjective "aligner" in our code to designate
10050 these wrapper types.
10052 In some cases, the size allocated for each element is statically
10053 known. In that case, the PAD type already has the correct size,
10054 and the array element should remain unfixed.
10056 But there are cases when this size is not statically known.
10057 For instance, assuming that "Five" is an integer variable:
10059 type Dynamic is array (1 .. Five) of Integer;
10060 type Wrapper (Has_Length : Boolean := False) is record
10063 when True => Length : Integer;
10064 when False => null;
10067 type Wrapper_Array is array (1 .. 2) of Wrapper;
10069 Hello : Wrapper_Array := (others => (Has_Length => True,
10070 Data => (others => 17),
10074 The debugging info would describe variable Hello as being an
10075 array of a PAD type. The size of that PAD type is not statically
10076 known, but can be determined using a parallel XVZ variable.
10077 In that case, a copy of the PAD type with the correct size should
10078 be used for the fixed array.
10080 3. ``Fixing'' record type objects:
10081 ----------------------------------
10083 Things are slightly different from arrays in the case of dynamic
10084 record types. In this case, in order to compute the associated
10085 fixed type, we need to determine the size and offset of each of
10086 its components. This, in turn, requires us to compute the fixed
10087 type of each of these components.
10089 Consider for instance the example:
10091 type Bounded_String (Max_Size : Natural) is record
10092 Str : String (1 .. Max_Size);
10095 My_String : Bounded_String (Max_Size => 10);
10097 In that case, the position of field "Length" depends on the size
10098 of field Str, which itself depends on the value of the Max_Size
10099 discriminant. In order to fix the type of variable My_String,
10100 we need to fix the type of field Str. Therefore, fixing a variant
10101 record requires us to fix each of its components.
10103 However, if a component does not have a dynamic size, the component
10104 should not be fixed. In particular, fields that use a PAD type
10105 should not fixed. Here is an example where this might happen
10106 (assuming type Rec above):
10108 type Container (Big : Boolean) is record
10112 when True => Another : Integer;
10113 when False => null;
10116 My_Container : Container := (Big => False,
10117 First => (Empty => True),
10120 In that example, the compiler creates a PAD type for component First,
10121 whose size is constant, and then positions the component After just
10122 right after it. The offset of component After is therefore constant
10125 The debugger computes the position of each field based on an algorithm
10126 that uses, among other things, the actual position and size of the field
10127 preceding it. Let's now imagine that the user is trying to print
10128 the value of My_Container. If the type fixing was recursive, we would
10129 end up computing the offset of field After based on the size of the
10130 fixed version of field First. And since in our example First has
10131 only one actual field, the size of the fixed type is actually smaller
10132 than the amount of space allocated to that field, and thus we would
10133 compute the wrong offset of field After.
10135 To make things more complicated, we need to watch out for dynamic
10136 components of variant records (identified by the ___XVL suffix in
10137 the component name). Even if the target type is a PAD type, the size
10138 of that type might not be statically known. So the PAD type needs
10139 to be unwrapped and the resulting type needs to be fixed. Otherwise,
10140 we might end up with the wrong size for our component. This can be
10141 observed with the following type declarations:
10143 type Octal is new Integer range 0 .. 7;
10144 type Octal_Array is array (Positive range <>) of Octal;
10145 pragma Pack (Octal_Array);
10147 type Octal_Buffer (Size : Positive) is record
10148 Buffer : Octal_Array (1 .. Size);
10152 In that case, Buffer is a PAD type whose size is unset and needs
10153 to be computed by fixing the unwrapped type.
10155 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
10156 ----------------------------------------------------------
10158 Lastly, when should the sub-elements of an entity that remained unfixed
10159 thus far, be actually fixed?
10161 The answer is: Only when referencing that element. For instance
10162 when selecting one component of a record, this specific component
10163 should be fixed at that point in time. Or when printing the value
10164 of a record, each component should be fixed before its value gets
10165 printed. Similarly for arrays, the element of the array should be
10166 fixed when printing each element of the array, or when extracting
10167 one element out of that array. On the other hand, fixing should
10168 not be performed on the elements when taking a slice of an array!
10170 Note that one of the side-effects of miscomputing the offset and
10171 size of each field is that we end up also miscomputing the size
10172 of the containing type. This can have adverse results when computing
10173 the value of an entity. GDB fetches the value of an entity based
10174 on the size of its type, and thus a wrong size causes GDB to fetch
10175 the wrong amount of memory. In the case where the computed size is
10176 too small, GDB fetches too little data to print the value of our
10177 entiry. Results in this case as unpredicatble, as we usually read
10178 past the buffer containing the data =:-o. */
10180 /* Implement the evaluate_exp routine in the exp_descriptor structure
10181 for the Ada language. */
10183 static struct value
*
10184 ada_evaluate_subexp (struct type
*expect_type
, struct expression
*exp
,
10185 int *pos
, enum noside noside
)
10187 enum exp_opcode op
;
10191 struct value
*arg1
= NULL
, *arg2
= NULL
, *arg3
;
10194 struct value
**argvec
;
10198 op
= exp
->elts
[pc
].opcode
;
10204 arg1
= evaluate_subexp_standard (expect_type
, exp
, pos
, noside
);
10206 if (noside
== EVAL_NORMAL
)
10207 arg1
= unwrap_value (arg1
);
10209 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
10210 then we need to perform the conversion manually, because
10211 evaluate_subexp_standard doesn't do it. This conversion is
10212 necessary in Ada because the different kinds of float/fixed
10213 types in Ada have different representations.
10215 Similarly, we need to perform the conversion from OP_LONG
10217 if ((op
== OP_DOUBLE
|| op
== OP_LONG
) && expect_type
!= NULL
)
10218 arg1
= ada_value_cast (expect_type
, arg1
, noside
);
10224 struct value
*result
;
10227 result
= evaluate_subexp_standard (expect_type
, exp
, pos
, noside
);
10228 /* The result type will have code OP_STRING, bashed there from
10229 OP_ARRAY. Bash it back. */
10230 if (TYPE_CODE (value_type (result
)) == TYPE_CODE_STRING
)
10231 TYPE_CODE (value_type (result
)) = TYPE_CODE_ARRAY
;
10237 type
= exp
->elts
[pc
+ 1].type
;
10238 arg1
= evaluate_subexp (type
, exp
, pos
, noside
);
10239 if (noside
== EVAL_SKIP
)
10241 arg1
= ada_value_cast (type
, arg1
, noside
);
10246 type
= exp
->elts
[pc
+ 1].type
;
10247 return ada_evaluate_subexp (type
, exp
, pos
, noside
);
10250 arg1
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
10251 if (exp
->elts
[*pos
].opcode
== OP_AGGREGATE
)
10253 arg1
= assign_aggregate (arg1
, arg1
, exp
, pos
, noside
);
10254 if (noside
== EVAL_SKIP
|| noside
== EVAL_AVOID_SIDE_EFFECTS
)
10256 return ada_value_assign (arg1
, arg1
);
10258 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
10259 except if the lhs of our assignment is a convenience variable.
10260 In the case of assigning to a convenience variable, the lhs
10261 should be exactly the result of the evaluation of the rhs. */
10262 type
= value_type (arg1
);
10263 if (VALUE_LVAL (arg1
) == lval_internalvar
)
10265 arg2
= evaluate_subexp (type
, exp
, pos
, noside
);
10266 if (noside
== EVAL_SKIP
|| noside
== EVAL_AVOID_SIDE_EFFECTS
)
10268 if (ada_is_fixed_point_type (value_type (arg1
)))
10269 arg2
= cast_to_fixed (value_type (arg1
), arg2
);
10270 else if (ada_is_fixed_point_type (value_type (arg2
)))
10272 (_("Fixed-point values must be assigned to fixed-point variables"));
10274 arg2
= coerce_for_assign (value_type (arg1
), arg2
);
10275 return ada_value_assign (arg1
, arg2
);
10278 arg1
= evaluate_subexp_with_coercion (exp
, pos
, noside
);
10279 arg2
= evaluate_subexp_with_coercion (exp
, pos
, noside
);
10280 if (noside
== EVAL_SKIP
)
10282 if (TYPE_CODE (value_type (arg1
)) == TYPE_CODE_PTR
)
10283 return (value_from_longest
10284 (value_type (arg1
),
10285 value_as_long (arg1
) + value_as_long (arg2
)));
10286 if (TYPE_CODE (value_type (arg2
)) == TYPE_CODE_PTR
)
10287 return (value_from_longest
10288 (value_type (arg2
),
10289 value_as_long (arg1
) + value_as_long (arg2
)));
10290 if ((ada_is_fixed_point_type (value_type (arg1
))
10291 || ada_is_fixed_point_type (value_type (arg2
)))
10292 && value_type (arg1
) != value_type (arg2
))
10293 error (_("Operands of fixed-point addition must have the same type"));
10294 /* Do the addition, and cast the result to the type of the first
10295 argument. We cannot cast the result to a reference type, so if
10296 ARG1 is a reference type, find its underlying type. */
10297 type
= value_type (arg1
);
10298 while (TYPE_CODE (type
) == TYPE_CODE_REF
)
10299 type
= TYPE_TARGET_TYPE (type
);
10300 binop_promote (exp
->language_defn
, exp
->gdbarch
, &arg1
, &arg2
);
10301 return value_cast (type
, value_binop (arg1
, arg2
, BINOP_ADD
));
10304 arg1
= evaluate_subexp_with_coercion (exp
, pos
, noside
);
10305 arg2
= evaluate_subexp_with_coercion (exp
, pos
, noside
);
10306 if (noside
== EVAL_SKIP
)
10308 if (TYPE_CODE (value_type (arg1
)) == TYPE_CODE_PTR
)
10309 return (value_from_longest
10310 (value_type (arg1
),
10311 value_as_long (arg1
) - value_as_long (arg2
)));
10312 if (TYPE_CODE (value_type (arg2
)) == TYPE_CODE_PTR
)
10313 return (value_from_longest
10314 (value_type (arg2
),
10315 value_as_long (arg1
) - value_as_long (arg2
)));
10316 if ((ada_is_fixed_point_type (value_type (arg1
))
10317 || ada_is_fixed_point_type (value_type (arg2
)))
10318 && value_type (arg1
) != value_type (arg2
))
10319 error (_("Operands of fixed-point subtraction "
10320 "must have the same type"));
10321 /* Do the substraction, and cast the result to the type of the first
10322 argument. We cannot cast the result to a reference type, so if
10323 ARG1 is a reference type, find its underlying type. */
10324 type
= value_type (arg1
);
10325 while (TYPE_CODE (type
) == TYPE_CODE_REF
)
10326 type
= TYPE_TARGET_TYPE (type
);
10327 binop_promote (exp
->language_defn
, exp
->gdbarch
, &arg1
, &arg2
);
10328 return value_cast (type
, value_binop (arg1
, arg2
, BINOP_SUB
));
10334 arg1
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
10335 arg2
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
10336 if (noside
== EVAL_SKIP
)
10338 else if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
10340 binop_promote (exp
->language_defn
, exp
->gdbarch
, &arg1
, &arg2
);
10341 return value_zero (value_type (arg1
), not_lval
);
10345 type
= builtin_type (exp
->gdbarch
)->builtin_double
;
10346 if (ada_is_fixed_point_type (value_type (arg1
)))
10347 arg1
= cast_from_fixed (type
, arg1
);
10348 if (ada_is_fixed_point_type (value_type (arg2
)))
10349 arg2
= cast_from_fixed (type
, arg2
);
10350 binop_promote (exp
->language_defn
, exp
->gdbarch
, &arg1
, &arg2
);
10351 return ada_value_binop (arg1
, arg2
, op
);
10355 case BINOP_NOTEQUAL
:
10356 arg1
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
10357 arg2
= evaluate_subexp (value_type (arg1
), exp
, pos
, noside
);
10358 if (noside
== EVAL_SKIP
)
10360 if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
10364 binop_promote (exp
->language_defn
, exp
->gdbarch
, &arg1
, &arg2
);
10365 tem
= ada_value_equal (arg1
, arg2
);
10367 if (op
== BINOP_NOTEQUAL
)
10369 type
= language_bool_type (exp
->language_defn
, exp
->gdbarch
);
10370 return value_from_longest (type
, (LONGEST
) tem
);
10373 arg1
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
10374 if (noside
== EVAL_SKIP
)
10376 else if (ada_is_fixed_point_type (value_type (arg1
)))
10377 return value_cast (value_type (arg1
), value_neg (arg1
));
10380 unop_promote (exp
->language_defn
, exp
->gdbarch
, &arg1
);
10381 return value_neg (arg1
);
10384 case BINOP_LOGICAL_AND
:
10385 case BINOP_LOGICAL_OR
:
10386 case UNOP_LOGICAL_NOT
:
10391 val
= evaluate_subexp_standard (expect_type
, exp
, pos
, noside
);
10392 type
= language_bool_type (exp
->language_defn
, exp
->gdbarch
);
10393 return value_cast (type
, val
);
10396 case BINOP_BITWISE_AND
:
10397 case BINOP_BITWISE_IOR
:
10398 case BINOP_BITWISE_XOR
:
10402 arg1
= evaluate_subexp (NULL_TYPE
, exp
, pos
, EVAL_AVOID_SIDE_EFFECTS
);
10404 val
= evaluate_subexp_standard (expect_type
, exp
, pos
, noside
);
10406 return value_cast (value_type (arg1
), val
);
10412 if (noside
== EVAL_SKIP
)
10418 if (SYMBOL_DOMAIN (exp
->elts
[pc
+ 2].symbol
) == UNDEF_DOMAIN
)
10419 /* Only encountered when an unresolved symbol occurs in a
10420 context other than a function call, in which case, it is
10422 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10423 SYMBOL_PRINT_NAME (exp
->elts
[pc
+ 2].symbol
));
10425 if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
10427 type
= static_unwrap_type (SYMBOL_TYPE (exp
->elts
[pc
+ 2].symbol
));
10428 /* Check to see if this is a tagged type. We also need to handle
10429 the case where the type is a reference to a tagged type, but
10430 we have to be careful to exclude pointers to tagged types.
10431 The latter should be shown as usual (as a pointer), whereas
10432 a reference should mostly be transparent to the user. */
10433 if (ada_is_tagged_type (type
, 0)
10434 || (TYPE_CODE (type
) == TYPE_CODE_REF
10435 && ada_is_tagged_type (TYPE_TARGET_TYPE (type
), 0)))
10437 /* Tagged types are a little special in the fact that the real
10438 type is dynamic and can only be determined by inspecting the
10439 object's tag. This means that we need to get the object's
10440 value first (EVAL_NORMAL) and then extract the actual object
10443 Note that we cannot skip the final step where we extract
10444 the object type from its tag, because the EVAL_NORMAL phase
10445 results in dynamic components being resolved into fixed ones.
10446 This can cause problems when trying to print the type
10447 description of tagged types whose parent has a dynamic size:
10448 We use the type name of the "_parent" component in order
10449 to print the name of the ancestor type in the type description.
10450 If that component had a dynamic size, the resolution into
10451 a fixed type would result in the loss of that type name,
10452 thus preventing us from printing the name of the ancestor
10453 type in the type description. */
10454 arg1
= evaluate_subexp (NULL_TYPE
, exp
, pos
, EVAL_NORMAL
);
10456 if (TYPE_CODE (type
) != TYPE_CODE_REF
)
10458 struct type
*actual_type
;
10460 actual_type
= type_from_tag (ada_value_tag (arg1
));
10461 if (actual_type
== NULL
)
10462 /* If, for some reason, we were unable to determine
10463 the actual type from the tag, then use the static
10464 approximation that we just computed as a fallback.
10465 This can happen if the debugging information is
10466 incomplete, for instance. */
10467 actual_type
= type
;
10468 return value_zero (actual_type
, not_lval
);
10472 /* In the case of a ref, ada_coerce_ref takes care
10473 of determining the actual type. But the evaluation
10474 should return a ref as it should be valid to ask
10475 for its address; so rebuild a ref after coerce. */
10476 arg1
= ada_coerce_ref (arg1
);
10477 return value_ref (arg1
);
10481 /* Records and unions for which GNAT encodings have been
10482 generated need to be statically fixed as well.
10483 Otherwise, non-static fixing produces a type where
10484 all dynamic properties are removed, which prevents "ptype"
10485 from being able to completely describe the type.
10486 For instance, a case statement in a variant record would be
10487 replaced by the relevant components based on the actual
10488 value of the discriminants. */
10489 if ((TYPE_CODE (type
) == TYPE_CODE_STRUCT
10490 && dynamic_template_type (type
) != NULL
)
10491 || (TYPE_CODE (type
) == TYPE_CODE_UNION
10492 && ada_find_parallel_type (type
, "___XVU") != NULL
))
10495 return value_zero (to_static_fixed_type (type
), not_lval
);
10499 arg1
= evaluate_subexp_standard (expect_type
, exp
, pos
, noside
);
10500 return ada_to_fixed_value (arg1
);
10505 /* Allocate arg vector, including space for the function to be
10506 called in argvec[0] and a terminating NULL. */
10507 nargs
= longest_to_int (exp
->elts
[pc
+ 1].longconst
);
10509 (struct value
**) alloca (sizeof (struct value
*) * (nargs
+ 2));
10511 if (exp
->elts
[*pos
].opcode
== OP_VAR_VALUE
10512 && SYMBOL_DOMAIN (exp
->elts
[pc
+ 5].symbol
) == UNDEF_DOMAIN
)
10513 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10514 SYMBOL_PRINT_NAME (exp
->elts
[pc
+ 5].symbol
));
10517 for (tem
= 0; tem
<= nargs
; tem
+= 1)
10518 argvec
[tem
] = evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
10521 if (noside
== EVAL_SKIP
)
10525 if (ada_is_constrained_packed_array_type
10526 (desc_base_type (value_type (argvec
[0]))))
10527 argvec
[0] = ada_coerce_to_simple_array (argvec
[0]);
10528 else if (TYPE_CODE (value_type (argvec
[0])) == TYPE_CODE_ARRAY
10529 && TYPE_FIELD_BITSIZE (value_type (argvec
[0]), 0) != 0)
10530 /* This is a packed array that has already been fixed, and
10531 therefore already coerced to a simple array. Nothing further
10534 else if (TYPE_CODE (value_type (argvec
[0])) == TYPE_CODE_REF
10535 || (TYPE_CODE (value_type (argvec
[0])) == TYPE_CODE_ARRAY
10536 && VALUE_LVAL (argvec
[0]) == lval_memory
))
10537 argvec
[0] = value_addr (argvec
[0]);
10539 type
= ada_check_typedef (value_type (argvec
[0]));
10541 /* Ada allows us to implicitly dereference arrays when subscripting
10542 them. So, if this is an array typedef (encoding use for array
10543 access types encoded as fat pointers), strip it now. */
10544 if (TYPE_CODE (type
) == TYPE_CODE_TYPEDEF
)
10545 type
= ada_typedef_target_type (type
);
10547 if (TYPE_CODE (type
) == TYPE_CODE_PTR
)
10549 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type
))))
10551 case TYPE_CODE_FUNC
:
10552 type
= ada_check_typedef (TYPE_TARGET_TYPE (type
));
10554 case TYPE_CODE_ARRAY
:
10556 case TYPE_CODE_STRUCT
:
10557 if (noside
!= EVAL_AVOID_SIDE_EFFECTS
)
10558 argvec
[0] = ada_value_ind (argvec
[0]);
10559 type
= ada_check_typedef (TYPE_TARGET_TYPE (type
));
10562 error (_("cannot subscript or call something of type `%s'"),
10563 ada_type_name (value_type (argvec
[0])));
10568 switch (TYPE_CODE (type
))
10570 case TYPE_CODE_FUNC
:
10571 if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
10573 struct type
*rtype
= TYPE_TARGET_TYPE (type
);
10575 if (TYPE_GNU_IFUNC (type
))
10576 return allocate_value (TYPE_TARGET_TYPE (rtype
));
10577 return allocate_value (rtype
);
10579 return call_function_by_hand (argvec
[0], nargs
, argvec
+ 1);
10580 case TYPE_CODE_INTERNAL_FUNCTION
:
10581 if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
10582 /* We don't know anything about what the internal
10583 function might return, but we have to return
10585 return value_zero (builtin_type (exp
->gdbarch
)->builtin_int
,
10588 return call_internal_function (exp
->gdbarch
, exp
->language_defn
,
10589 argvec
[0], nargs
, argvec
+ 1);
10591 case TYPE_CODE_STRUCT
:
10595 arity
= ada_array_arity (type
);
10596 type
= ada_array_element_type (type
, nargs
);
10598 error (_("cannot subscript or call a record"));
10599 if (arity
!= nargs
)
10600 error (_("wrong number of subscripts; expecting %d"), arity
);
10601 if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
10602 return value_zero (ada_aligned_type (type
), lval_memory
);
10604 unwrap_value (ada_value_subscript
10605 (argvec
[0], nargs
, argvec
+ 1));
10607 case TYPE_CODE_ARRAY
:
10608 if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
10610 type
= ada_array_element_type (type
, nargs
);
10612 error (_("element type of array unknown"));
10614 return value_zero (ada_aligned_type (type
), lval_memory
);
10617 unwrap_value (ada_value_subscript
10618 (ada_coerce_to_simple_array (argvec
[0]),
10619 nargs
, argvec
+ 1));
10620 case TYPE_CODE_PTR
: /* Pointer to array */
10621 if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
10623 type
= to_fixed_array_type (TYPE_TARGET_TYPE (type
), NULL
, 1);
10624 type
= ada_array_element_type (type
, nargs
);
10626 error (_("element type of array unknown"));
10628 return value_zero (ada_aligned_type (type
), lval_memory
);
10631 unwrap_value (ada_value_ptr_subscript (argvec
[0],
10632 nargs
, argvec
+ 1));
10635 error (_("Attempt to index or call something other than an "
10636 "array or function"));
10641 struct value
*array
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
10642 struct value
*low_bound_val
=
10643 evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
10644 struct value
*high_bound_val
=
10645 evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
10647 LONGEST high_bound
;
10649 low_bound_val
= coerce_ref (low_bound_val
);
10650 high_bound_val
= coerce_ref (high_bound_val
);
10651 low_bound
= value_as_long (low_bound_val
);
10652 high_bound
= value_as_long (high_bound_val
);
10654 if (noside
== EVAL_SKIP
)
10657 /* If this is a reference to an aligner type, then remove all
10659 if (TYPE_CODE (value_type (array
)) == TYPE_CODE_REF
10660 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array
))))
10661 TYPE_TARGET_TYPE (value_type (array
)) =
10662 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array
)));
10664 if (ada_is_constrained_packed_array_type (value_type (array
)))
10665 error (_("cannot slice a packed array"));
10667 /* If this is a reference to an array or an array lvalue,
10668 convert to a pointer. */
10669 if (TYPE_CODE (value_type (array
)) == TYPE_CODE_REF
10670 || (TYPE_CODE (value_type (array
)) == TYPE_CODE_ARRAY
10671 && VALUE_LVAL (array
) == lval_memory
))
10672 array
= value_addr (array
);
10674 if (noside
== EVAL_AVOID_SIDE_EFFECTS
10675 && ada_is_array_descriptor_type (ada_check_typedef
10676 (value_type (array
))))
10677 return empty_array (ada_type_of_array (array
, 0), low_bound
);
10679 array
= ada_coerce_to_simple_array_ptr (array
);
10681 /* If we have more than one level of pointer indirection,
10682 dereference the value until we get only one level. */
10683 while (TYPE_CODE (value_type (array
)) == TYPE_CODE_PTR
10684 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array
)))
10686 array
= value_ind (array
);
10688 /* Make sure we really do have an array type before going further,
10689 to avoid a SEGV when trying to get the index type or the target
10690 type later down the road if the debug info generated by
10691 the compiler is incorrect or incomplete. */
10692 if (!ada_is_simple_array_type (value_type (array
)))
10693 error (_("cannot take slice of non-array"));
10695 if (TYPE_CODE (ada_check_typedef (value_type (array
)))
10698 struct type
*type0
= ada_check_typedef (value_type (array
));
10700 if (high_bound
< low_bound
|| noside
== EVAL_AVOID_SIDE_EFFECTS
)
10701 return empty_array (TYPE_TARGET_TYPE (type0
), low_bound
);
10704 struct type
*arr_type0
=
10705 to_fixed_array_type (TYPE_TARGET_TYPE (type0
), NULL
, 1);
10707 return ada_value_slice_from_ptr (array
, arr_type0
,
10708 longest_to_int (low_bound
),
10709 longest_to_int (high_bound
));
10712 else if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
10714 else if (high_bound
< low_bound
)
10715 return empty_array (value_type (array
), low_bound
);
10717 return ada_value_slice (array
, longest_to_int (low_bound
),
10718 longest_to_int (high_bound
));
10721 case UNOP_IN_RANGE
:
10723 arg1
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
10724 type
= check_typedef (exp
->elts
[pc
+ 1].type
);
10726 if (noside
== EVAL_SKIP
)
10729 switch (TYPE_CODE (type
))
10732 lim_warning (_("Membership test incompletely implemented; "
10733 "always returns true"));
10734 type
= language_bool_type (exp
->language_defn
, exp
->gdbarch
);
10735 return value_from_longest (type
, (LONGEST
) 1);
10737 case TYPE_CODE_RANGE
:
10738 arg2
= value_from_longest (type
, TYPE_LOW_BOUND (type
));
10739 arg3
= value_from_longest (type
, TYPE_HIGH_BOUND (type
));
10740 binop_promote (exp
->language_defn
, exp
->gdbarch
, &arg1
, &arg2
);
10741 binop_promote (exp
->language_defn
, exp
->gdbarch
, &arg1
, &arg3
);
10742 type
= language_bool_type (exp
->language_defn
, exp
->gdbarch
);
10744 value_from_longest (type
,
10745 (value_less (arg1
, arg3
)
10746 || value_equal (arg1
, arg3
))
10747 && (value_less (arg2
, arg1
)
10748 || value_equal (arg2
, arg1
)));
10751 case BINOP_IN_BOUNDS
:
10753 arg1
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
10754 arg2
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
10756 if (noside
== EVAL_SKIP
)
10759 if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
10761 type
= language_bool_type (exp
->language_defn
, exp
->gdbarch
);
10762 return value_zero (type
, not_lval
);
10765 tem
= longest_to_int (exp
->elts
[pc
+ 1].longconst
);
10767 type
= ada_index_type (value_type (arg2
), tem
, "range");
10769 type
= value_type (arg1
);
10771 arg3
= value_from_longest (type
, ada_array_bound (arg2
, tem
, 1));
10772 arg2
= value_from_longest (type
, ada_array_bound (arg2
, tem
, 0));
10774 binop_promote (exp
->language_defn
, exp
->gdbarch
, &arg1
, &arg2
);
10775 binop_promote (exp
->language_defn
, exp
->gdbarch
, &arg1
, &arg3
);
10776 type
= language_bool_type (exp
->language_defn
, exp
->gdbarch
);
10778 value_from_longest (type
,
10779 (value_less (arg1
, arg3
)
10780 || value_equal (arg1
, arg3
))
10781 && (value_less (arg2
, arg1
)
10782 || value_equal (arg2
, arg1
)));
10784 case TERNOP_IN_RANGE
:
10785 arg1
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
10786 arg2
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
10787 arg3
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
10789 if (noside
== EVAL_SKIP
)
10792 binop_promote (exp
->language_defn
, exp
->gdbarch
, &arg1
, &arg2
);
10793 binop_promote (exp
->language_defn
, exp
->gdbarch
, &arg1
, &arg3
);
10794 type
= language_bool_type (exp
->language_defn
, exp
->gdbarch
);
10796 value_from_longest (type
,
10797 (value_less (arg1
, arg3
)
10798 || value_equal (arg1
, arg3
))
10799 && (value_less (arg2
, arg1
)
10800 || value_equal (arg2
, arg1
)));
10804 case OP_ATR_LENGTH
:
10806 struct type
*type_arg
;
10808 if (exp
->elts
[*pos
].opcode
== OP_TYPE
)
10810 evaluate_subexp (NULL_TYPE
, exp
, pos
, EVAL_SKIP
);
10812 type_arg
= check_typedef (exp
->elts
[pc
+ 2].type
);
10816 arg1
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
10820 if (exp
->elts
[*pos
].opcode
!= OP_LONG
)
10821 error (_("Invalid operand to '%s"), ada_attribute_name (op
));
10822 tem
= longest_to_int (exp
->elts
[*pos
+ 2].longconst
);
10825 if (noside
== EVAL_SKIP
)
10828 if (type_arg
== NULL
)
10830 arg1
= ada_coerce_ref (arg1
);
10832 if (ada_is_constrained_packed_array_type (value_type (arg1
)))
10833 arg1
= ada_coerce_to_simple_array (arg1
);
10835 if (op
== OP_ATR_LENGTH
)
10836 type
= builtin_type (exp
->gdbarch
)->builtin_int
;
10839 type
= ada_index_type (value_type (arg1
), tem
,
10840 ada_attribute_name (op
));
10842 type
= builtin_type (exp
->gdbarch
)->builtin_int
;
10845 if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
10846 return allocate_value (type
);
10850 default: /* Should never happen. */
10851 error (_("unexpected attribute encountered"));
10853 return value_from_longest
10854 (type
, ada_array_bound (arg1
, tem
, 0));
10856 return value_from_longest
10857 (type
, ada_array_bound (arg1
, tem
, 1));
10858 case OP_ATR_LENGTH
:
10859 return value_from_longest
10860 (type
, ada_array_length (arg1
, tem
));
10863 else if (discrete_type_p (type_arg
))
10865 struct type
*range_type
;
10866 const char *name
= ada_type_name (type_arg
);
10869 if (name
!= NULL
&& TYPE_CODE (type_arg
) != TYPE_CODE_ENUM
)
10870 range_type
= to_fixed_range_type (type_arg
, NULL
);
10871 if (range_type
== NULL
)
10872 range_type
= type_arg
;
10876 error (_("unexpected attribute encountered"));
10878 return value_from_longest
10879 (range_type
, ada_discrete_type_low_bound (range_type
));
10881 return value_from_longest
10882 (range_type
, ada_discrete_type_high_bound (range_type
));
10883 case OP_ATR_LENGTH
:
10884 error (_("the 'length attribute applies only to array types"));
10887 else if (TYPE_CODE (type_arg
) == TYPE_CODE_FLT
)
10888 error (_("unimplemented type attribute"));
10893 if (ada_is_constrained_packed_array_type (type_arg
))
10894 type_arg
= decode_constrained_packed_array_type (type_arg
);
10896 if (op
== OP_ATR_LENGTH
)
10897 type
= builtin_type (exp
->gdbarch
)->builtin_int
;
10900 type
= ada_index_type (type_arg
, tem
, ada_attribute_name (op
));
10902 type
= builtin_type (exp
->gdbarch
)->builtin_int
;
10905 if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
10906 return allocate_value (type
);
10911 error (_("unexpected attribute encountered"));
10913 low
= ada_array_bound_from_type (type_arg
, tem
, 0);
10914 return value_from_longest (type
, low
);
10916 high
= ada_array_bound_from_type (type_arg
, tem
, 1);
10917 return value_from_longest (type
, high
);
10918 case OP_ATR_LENGTH
:
10919 low
= ada_array_bound_from_type (type_arg
, tem
, 0);
10920 high
= ada_array_bound_from_type (type_arg
, tem
, 1);
10921 return value_from_longest (type
, high
- low
+ 1);
10927 arg1
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
10928 if (noside
== EVAL_SKIP
)
10931 if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
10932 return value_zero (ada_tag_type (arg1
), not_lval
);
10934 return ada_value_tag (arg1
);
10938 evaluate_subexp (NULL_TYPE
, exp
, pos
, EVAL_SKIP
);
10939 arg1
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
10940 arg2
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
10941 if (noside
== EVAL_SKIP
)
10943 else if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
10944 return value_zero (value_type (arg1
), not_lval
);
10947 binop_promote (exp
->language_defn
, exp
->gdbarch
, &arg1
, &arg2
);
10948 return value_binop (arg1
, arg2
,
10949 op
== OP_ATR_MIN
? BINOP_MIN
: BINOP_MAX
);
10952 case OP_ATR_MODULUS
:
10954 struct type
*type_arg
= check_typedef (exp
->elts
[pc
+ 2].type
);
10956 evaluate_subexp (NULL_TYPE
, exp
, pos
, EVAL_SKIP
);
10957 if (noside
== EVAL_SKIP
)
10960 if (!ada_is_modular_type (type_arg
))
10961 error (_("'modulus must be applied to modular type"));
10963 return value_from_longest (TYPE_TARGET_TYPE (type_arg
),
10964 ada_modulus (type_arg
));
10969 evaluate_subexp (NULL_TYPE
, exp
, pos
, EVAL_SKIP
);
10970 arg1
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
10971 if (noside
== EVAL_SKIP
)
10973 type
= builtin_type (exp
->gdbarch
)->builtin_int
;
10974 if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
10975 return value_zero (type
, not_lval
);
10977 return value_pos_atr (type
, arg1
);
10980 arg1
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
10981 type
= value_type (arg1
);
10983 /* If the argument is a reference, then dereference its type, since
10984 the user is really asking for the size of the actual object,
10985 not the size of the pointer. */
10986 if (TYPE_CODE (type
) == TYPE_CODE_REF
)
10987 type
= TYPE_TARGET_TYPE (type
);
10989 if (noside
== EVAL_SKIP
)
10991 else if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
10992 return value_zero (builtin_type (exp
->gdbarch
)->builtin_int
, not_lval
);
10994 return value_from_longest (builtin_type (exp
->gdbarch
)->builtin_int
,
10995 TARGET_CHAR_BIT
* TYPE_LENGTH (type
));
10998 evaluate_subexp (NULL_TYPE
, exp
, pos
, EVAL_SKIP
);
10999 arg1
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
11000 type
= exp
->elts
[pc
+ 2].type
;
11001 if (noside
== EVAL_SKIP
)
11003 else if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
11004 return value_zero (type
, not_lval
);
11006 return value_val_atr (type
, arg1
);
11009 arg1
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
11010 arg2
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
11011 if (noside
== EVAL_SKIP
)
11013 else if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
11014 return value_zero (value_type (arg1
), not_lval
);
11017 /* For integer exponentiation operations,
11018 only promote the first argument. */
11019 if (is_integral_type (value_type (arg2
)))
11020 unop_promote (exp
->language_defn
, exp
->gdbarch
, &arg1
);
11022 binop_promote (exp
->language_defn
, exp
->gdbarch
, &arg1
, &arg2
);
11024 return value_binop (arg1
, arg2
, op
);
11028 arg1
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
11029 if (noside
== EVAL_SKIP
)
11035 arg1
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
11036 if (noside
== EVAL_SKIP
)
11038 unop_promote (exp
->language_defn
, exp
->gdbarch
, &arg1
);
11039 if (value_less (arg1
, value_zero (value_type (arg1
), not_lval
)))
11040 return value_neg (arg1
);
11045 preeval_pos
= *pos
;
11046 arg1
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
11047 if (noside
== EVAL_SKIP
)
11049 type
= ada_check_typedef (value_type (arg1
));
11050 if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
11052 if (ada_is_array_descriptor_type (type
))
11053 /* GDB allows dereferencing GNAT array descriptors. */
11055 struct type
*arrType
= ada_type_of_array (arg1
, 0);
11057 if (arrType
== NULL
)
11058 error (_("Attempt to dereference null array pointer."));
11059 return value_at_lazy (arrType
, 0);
11061 else if (TYPE_CODE (type
) == TYPE_CODE_PTR
11062 || TYPE_CODE (type
) == TYPE_CODE_REF
11063 /* In C you can dereference an array to get the 1st elt. */
11064 || TYPE_CODE (type
) == TYPE_CODE_ARRAY
)
11066 /* As mentioned in the OP_VAR_VALUE case, tagged types can
11067 only be determined by inspecting the object's tag.
11068 This means that we need to evaluate completely the
11069 expression in order to get its type. */
11071 if ((TYPE_CODE (type
) == TYPE_CODE_REF
11072 || TYPE_CODE (type
) == TYPE_CODE_PTR
)
11073 && ada_is_tagged_type (TYPE_TARGET_TYPE (type
), 0))
11075 arg1
= evaluate_subexp (NULL_TYPE
, exp
, &preeval_pos
,
11077 type
= value_type (ada_value_ind (arg1
));
11081 type
= to_static_fixed_type
11083 (ada_check_typedef (TYPE_TARGET_TYPE (type
))));
11085 ada_ensure_varsize_limit (type
);
11086 return value_zero (type
, lval_memory
);
11088 else if (TYPE_CODE (type
) == TYPE_CODE_INT
)
11090 /* GDB allows dereferencing an int. */
11091 if (expect_type
== NULL
)
11092 return value_zero (builtin_type (exp
->gdbarch
)->builtin_int
,
11097 to_static_fixed_type (ada_aligned_type (expect_type
));
11098 return value_zero (expect_type
, lval_memory
);
11102 error (_("Attempt to take contents of a non-pointer value."));
11104 arg1
= ada_coerce_ref (arg1
); /* FIXME: What is this for?? */
11105 type
= ada_check_typedef (value_type (arg1
));
11107 if (TYPE_CODE (type
) == TYPE_CODE_INT
)
11108 /* GDB allows dereferencing an int. If we were given
11109 the expect_type, then use that as the target type.
11110 Otherwise, assume that the target type is an int. */
11112 if (expect_type
!= NULL
)
11113 return ada_value_ind (value_cast (lookup_pointer_type (expect_type
),
11116 return value_at_lazy (builtin_type (exp
->gdbarch
)->builtin_int
,
11117 (CORE_ADDR
) value_as_address (arg1
));
11120 if (ada_is_array_descriptor_type (type
))
11121 /* GDB allows dereferencing GNAT array descriptors. */
11122 return ada_coerce_to_simple_array (arg1
);
11124 return ada_value_ind (arg1
);
11126 case STRUCTOP_STRUCT
:
11127 tem
= longest_to_int (exp
->elts
[pc
+ 1].longconst
);
11128 (*pos
) += 3 + BYTES_TO_EXP_ELEM (tem
+ 1);
11129 preeval_pos
= *pos
;
11130 arg1
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
11131 if (noside
== EVAL_SKIP
)
11133 if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
11135 struct type
*type1
= value_type (arg1
);
11137 if (ada_is_tagged_type (type1
, 1))
11139 type
= ada_lookup_struct_elt_type (type1
,
11140 &exp
->elts
[pc
+ 2].string
,
11143 /* If the field is not found, check if it exists in the
11144 extension of this object's type. This means that we
11145 need to evaluate completely the expression. */
11149 arg1
= evaluate_subexp (NULL_TYPE
, exp
, &preeval_pos
,
11151 arg1
= ada_value_struct_elt (arg1
,
11152 &exp
->elts
[pc
+ 2].string
,
11154 arg1
= unwrap_value (arg1
);
11155 type
= value_type (ada_to_fixed_value (arg1
));
11160 ada_lookup_struct_elt_type (type1
, &exp
->elts
[pc
+ 2].string
, 1,
11163 return value_zero (ada_aligned_type (type
), lval_memory
);
11166 arg1
= ada_value_struct_elt (arg1
, &exp
->elts
[pc
+ 2].string
, 0);
11167 arg1
= unwrap_value (arg1
);
11168 return ada_to_fixed_value (arg1
);
11171 /* The value is not supposed to be used. This is here to make it
11172 easier to accommodate expressions that contain types. */
11174 if (noside
== EVAL_SKIP
)
11176 else if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
11177 return allocate_value (exp
->elts
[pc
+ 1].type
);
11179 error (_("Attempt to use a type name as an expression"));
11184 case OP_DISCRETE_RANGE
:
11185 case OP_POSITIONAL
:
11187 if (noside
== EVAL_NORMAL
)
11191 error (_("Undefined name, ambiguous name, or renaming used in "
11192 "component association: %s."), &exp
->elts
[pc
+2].string
);
11194 error (_("Aggregates only allowed on the right of an assignment"));
11196 internal_error (__FILE__
, __LINE__
,
11197 _("aggregate apparently mangled"));
11200 ada_forward_operator_length (exp
, pc
, &oplen
, &nargs
);
11202 for (tem
= 0; tem
< nargs
; tem
+= 1)
11203 ada_evaluate_subexp (NULL
, exp
, pos
, noside
);
11208 return value_from_longest (builtin_type (exp
->gdbarch
)->builtin_int
, 1);
11214 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
11215 type name that encodes the 'small and 'delta information.
11216 Otherwise, return NULL. */
11218 static const char *
11219 fixed_type_info (struct type
*type
)
11221 const char *name
= ada_type_name (type
);
11222 enum type_code code
= (type
== NULL
) ? TYPE_CODE_UNDEF
: TYPE_CODE (type
);
11224 if ((code
== TYPE_CODE_INT
|| code
== TYPE_CODE_RANGE
) && name
!= NULL
)
11226 const char *tail
= strstr (name
, "___XF_");
11233 else if (code
== TYPE_CODE_RANGE
&& TYPE_TARGET_TYPE (type
) != type
)
11234 return fixed_type_info (TYPE_TARGET_TYPE (type
));
11239 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
11242 ada_is_fixed_point_type (struct type
*type
)
11244 return fixed_type_info (type
) != NULL
;
11247 /* Return non-zero iff TYPE represents a System.Address type. */
11250 ada_is_system_address_type (struct type
*type
)
11252 return (TYPE_NAME (type
)
11253 && strcmp (TYPE_NAME (type
), "system__address") == 0);
11256 /* Assuming that TYPE is the representation of an Ada fixed-point
11257 type, return its delta, or -1 if the type is malformed and the
11258 delta cannot be determined. */
11261 ada_delta (struct type
*type
)
11263 const char *encoding
= fixed_type_info (type
);
11266 /* Strictly speaking, num and den are encoded as integer. However,
11267 they may not fit into a long, and they will have to be converted
11268 to DOUBLEST anyway. So scan them as DOUBLEST. */
11269 if (sscanf (encoding
, "_%" DOUBLEST_SCAN_FORMAT
"_%" DOUBLEST_SCAN_FORMAT
,
11276 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
11277 factor ('SMALL value) associated with the type. */
11280 scaling_factor (struct type
*type
)
11282 const char *encoding
= fixed_type_info (type
);
11283 DOUBLEST num0
, den0
, num1
, den1
;
11286 /* Strictly speaking, num's and den's are encoded as integer. However,
11287 they may not fit into a long, and they will have to be converted
11288 to DOUBLEST anyway. So scan them as DOUBLEST. */
11289 n
= sscanf (encoding
,
11290 "_%" DOUBLEST_SCAN_FORMAT
"_%" DOUBLEST_SCAN_FORMAT
11291 "_%" DOUBLEST_SCAN_FORMAT
"_%" DOUBLEST_SCAN_FORMAT
,
11292 &num0
, &den0
, &num1
, &den1
);
11297 return num1
/ den1
;
11299 return num0
/ den0
;
11303 /* Assuming that X is the representation of a value of fixed-point
11304 type TYPE, return its floating-point equivalent. */
11307 ada_fixed_to_float (struct type
*type
, LONGEST x
)
11309 return (DOUBLEST
) x
*scaling_factor (type
);
11312 /* The representation of a fixed-point value of type TYPE
11313 corresponding to the value X. */
11316 ada_float_to_fixed (struct type
*type
, DOUBLEST x
)
11318 return (LONGEST
) (x
/ scaling_factor (type
) + 0.5);
11325 /* Scan STR beginning at position K for a discriminant name, and
11326 return the value of that discriminant field of DVAL in *PX. If
11327 PNEW_K is not null, put the position of the character beyond the
11328 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
11329 not alter *PX and *PNEW_K if unsuccessful. */
11332 scan_discrim_bound (char *str
, int k
, struct value
*dval
, LONGEST
* px
,
11335 static char *bound_buffer
= NULL
;
11336 static size_t bound_buffer_len
= 0;
11339 struct value
*bound_val
;
11341 if (dval
== NULL
|| str
== NULL
|| str
[k
] == '\0')
11344 pend
= strstr (str
+ k
, "__");
11348 k
+= strlen (bound
);
11352 GROW_VECT (bound_buffer
, bound_buffer_len
, pend
- (str
+ k
) + 1);
11353 bound
= bound_buffer
;
11354 strncpy (bound_buffer
, str
+ k
, pend
- (str
+ k
));
11355 bound
[pend
- (str
+ k
)] = '\0';
11359 bound_val
= ada_search_struct_field (bound
, dval
, 0, value_type (dval
));
11360 if (bound_val
== NULL
)
11363 *px
= value_as_long (bound_val
);
11364 if (pnew_k
!= NULL
)
11369 /* Value of variable named NAME in the current environment. If
11370 no such variable found, then if ERR_MSG is null, returns 0, and
11371 otherwise causes an error with message ERR_MSG. */
11373 static struct value
*
11374 get_var_value (char *name
, char *err_msg
)
11376 struct block_symbol
*syms
;
11379 nsyms
= ada_lookup_symbol_list (name
, get_selected_block (0), VAR_DOMAIN
,
11384 if (err_msg
== NULL
)
11387 error (("%s"), err_msg
);
11390 return value_of_variable (syms
[0].symbol
, syms
[0].block
);
11393 /* Value of integer variable named NAME in the current environment. If
11394 no such variable found, returns 0, and sets *FLAG to 0. If
11395 successful, sets *FLAG to 1. */
11398 get_int_var_value (char *name
, int *flag
)
11400 struct value
*var_val
= get_var_value (name
, 0);
11412 return value_as_long (var_val
);
11417 /* Return a range type whose base type is that of the range type named
11418 NAME in the current environment, and whose bounds are calculated
11419 from NAME according to the GNAT range encoding conventions.
11420 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
11421 corresponding range type from debug information; fall back to using it
11422 if symbol lookup fails. If a new type must be created, allocate it
11423 like ORIG_TYPE was. The bounds information, in general, is encoded
11424 in NAME, the base type given in the named range type. */
11426 static struct type
*
11427 to_fixed_range_type (struct type
*raw_type
, struct value
*dval
)
11430 struct type
*base_type
;
11431 char *subtype_info
;
11433 gdb_assert (raw_type
!= NULL
);
11434 gdb_assert (TYPE_NAME (raw_type
) != NULL
);
11436 if (TYPE_CODE (raw_type
) == TYPE_CODE_RANGE
)
11437 base_type
= TYPE_TARGET_TYPE (raw_type
);
11439 base_type
= raw_type
;
11441 name
= TYPE_NAME (raw_type
);
11442 subtype_info
= strstr (name
, "___XD");
11443 if (subtype_info
== NULL
)
11445 LONGEST L
= ada_discrete_type_low_bound (raw_type
);
11446 LONGEST U
= ada_discrete_type_high_bound (raw_type
);
11448 if (L
< INT_MIN
|| U
> INT_MAX
)
11451 return create_static_range_type (alloc_type_copy (raw_type
), raw_type
,
11456 static char *name_buf
= NULL
;
11457 static size_t name_len
= 0;
11458 int prefix_len
= subtype_info
- name
;
11464 GROW_VECT (name_buf
, name_len
, prefix_len
+ 5);
11465 strncpy (name_buf
, name
, prefix_len
);
11466 name_buf
[prefix_len
] = '\0';
11469 bounds_str
= strchr (subtype_info
, '_');
11472 if (*subtype_info
== 'L')
11474 if (!ada_scan_number (bounds_str
, n
, &L
, &n
)
11475 && !scan_discrim_bound (bounds_str
, n
, dval
, &L
, &n
))
11477 if (bounds_str
[n
] == '_')
11479 else if (bounds_str
[n
] == '.') /* FIXME? SGI Workshop kludge. */
11487 strcpy (name_buf
+ prefix_len
, "___L");
11488 L
= get_int_var_value (name_buf
, &ok
);
11491 lim_warning (_("Unknown lower bound, using 1."));
11496 if (*subtype_info
== 'U')
11498 if (!ada_scan_number (bounds_str
, n
, &U
, &n
)
11499 && !scan_discrim_bound (bounds_str
, n
, dval
, &U
, &n
))
11506 strcpy (name_buf
+ prefix_len
, "___U");
11507 U
= get_int_var_value (name_buf
, &ok
);
11510 lim_warning (_("Unknown upper bound, using %ld."), (long) L
);
11515 type
= create_static_range_type (alloc_type_copy (raw_type
),
11517 TYPE_NAME (type
) = name
;
11522 /* True iff NAME is the name of a range type. */
11525 ada_is_range_type_name (const char *name
)
11527 return (name
!= NULL
&& strstr (name
, "___XD"));
11531 /* Modular types */
11533 /* True iff TYPE is an Ada modular type. */
11536 ada_is_modular_type (struct type
*type
)
11538 struct type
*subranged_type
= get_base_type (type
);
11540 return (subranged_type
!= NULL
&& TYPE_CODE (type
) == TYPE_CODE_RANGE
11541 && TYPE_CODE (subranged_type
) == TYPE_CODE_INT
11542 && TYPE_UNSIGNED (subranged_type
));
11545 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11548 ada_modulus (struct type
*type
)
11550 return (ULONGEST
) TYPE_HIGH_BOUND (type
) + 1;
11554 /* Ada exception catchpoint support:
11555 ---------------------------------
11557 We support 3 kinds of exception catchpoints:
11558 . catchpoints on Ada exceptions
11559 . catchpoints on unhandled Ada exceptions
11560 . catchpoints on failed assertions
11562 Exceptions raised during failed assertions, or unhandled exceptions
11563 could perfectly be caught with the general catchpoint on Ada exceptions.
11564 However, we can easily differentiate these two special cases, and having
11565 the option to distinguish these two cases from the rest can be useful
11566 to zero-in on certain situations.
11568 Exception catchpoints are a specialized form of breakpoint,
11569 since they rely on inserting breakpoints inside known routines
11570 of the GNAT runtime. The implementation therefore uses a standard
11571 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11574 Support in the runtime for exception catchpoints have been changed
11575 a few times already, and these changes affect the implementation
11576 of these catchpoints. In order to be able to support several
11577 variants of the runtime, we use a sniffer that will determine
11578 the runtime variant used by the program being debugged. */
11580 /* Ada's standard exceptions.
11582 The Ada 83 standard also defined Numeric_Error. But there so many
11583 situations where it was unclear from the Ada 83 Reference Manual
11584 (RM) whether Constraint_Error or Numeric_Error should be raised,
11585 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11586 Interpretation saying that anytime the RM says that Numeric_Error
11587 should be raised, the implementation may raise Constraint_Error.
11588 Ada 95 went one step further and pretty much removed Numeric_Error
11589 from the list of standard exceptions (it made it a renaming of
11590 Constraint_Error, to help preserve compatibility when compiling
11591 an Ada83 compiler). As such, we do not include Numeric_Error from
11592 this list of standard exceptions. */
11594 static char *standard_exc
[] = {
11595 "constraint_error",
11601 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype
) (void);
11603 /* A structure that describes how to support exception catchpoints
11604 for a given executable. */
11606 struct exception_support_info
11608 /* The name of the symbol to break on in order to insert
11609 a catchpoint on exceptions. */
11610 const char *catch_exception_sym
;
11612 /* The name of the symbol to break on in order to insert
11613 a catchpoint on unhandled exceptions. */
11614 const char *catch_exception_unhandled_sym
;
11616 /* The name of the symbol to break on in order to insert
11617 a catchpoint on failed assertions. */
11618 const char *catch_assert_sym
;
11620 /* Assuming that the inferior just triggered an unhandled exception
11621 catchpoint, this function is responsible for returning the address
11622 in inferior memory where the name of that exception is stored.
11623 Return zero if the address could not be computed. */
11624 ada_unhandled_exception_name_addr_ftype
*unhandled_exception_name_addr
;
11627 static CORE_ADDR
ada_unhandled_exception_name_addr (void);
11628 static CORE_ADDR
ada_unhandled_exception_name_addr_from_raise (void);
11630 /* The following exception support info structure describes how to
11631 implement exception catchpoints with the latest version of the
11632 Ada runtime (as of 2007-03-06). */
11634 static const struct exception_support_info default_exception_support_info
=
11636 "__gnat_debug_raise_exception", /* catch_exception_sym */
11637 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11638 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11639 ada_unhandled_exception_name_addr
11642 /* The following exception support info structure describes how to
11643 implement exception catchpoints with a slightly older version
11644 of the Ada runtime. */
11646 static const struct exception_support_info exception_support_info_fallback
=
11648 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
11649 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11650 "system__assertions__raise_assert_failure", /* catch_assert_sym */
11651 ada_unhandled_exception_name_addr_from_raise
11654 /* Return nonzero if we can detect the exception support routines
11655 described in EINFO.
11657 This function errors out if an abnormal situation is detected
11658 (for instance, if we find the exception support routines, but
11659 that support is found to be incomplete). */
11662 ada_has_this_exception_support (const struct exception_support_info
*einfo
)
11664 struct symbol
*sym
;
11666 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11667 that should be compiled with debugging information. As a result, we
11668 expect to find that symbol in the symtabs. */
11670 sym
= standard_lookup (einfo
->catch_exception_sym
, NULL
, VAR_DOMAIN
);
11673 /* Perhaps we did not find our symbol because the Ada runtime was
11674 compiled without debugging info, or simply stripped of it.
11675 It happens on some GNU/Linux distributions for instance, where
11676 users have to install a separate debug package in order to get
11677 the runtime's debugging info. In that situation, let the user
11678 know why we cannot insert an Ada exception catchpoint.
11680 Note: Just for the purpose of inserting our Ada exception
11681 catchpoint, we could rely purely on the associated minimal symbol.
11682 But we would be operating in degraded mode anyway, since we are
11683 still lacking the debugging info needed later on to extract
11684 the name of the exception being raised (this name is printed in
11685 the catchpoint message, and is also used when trying to catch
11686 a specific exception). We do not handle this case for now. */
11687 struct bound_minimal_symbol msym
11688 = lookup_minimal_symbol (einfo
->catch_exception_sym
, NULL
, NULL
);
11690 if (msym
.minsym
&& MSYMBOL_TYPE (msym
.minsym
) != mst_solib_trampoline
)
11691 error (_("Your Ada runtime appears to be missing some debugging "
11692 "information.\nCannot insert Ada exception catchpoint "
11693 "in this configuration."));
11698 /* Make sure that the symbol we found corresponds to a function. */
11700 if (SYMBOL_CLASS (sym
) != LOC_BLOCK
)
11701 error (_("Symbol \"%s\" is not a function (class = %d)"),
11702 SYMBOL_LINKAGE_NAME (sym
), SYMBOL_CLASS (sym
));
11707 /* Inspect the Ada runtime and determine which exception info structure
11708 should be used to provide support for exception catchpoints.
11710 This function will always set the per-inferior exception_info,
11711 or raise an error. */
11714 ada_exception_support_info_sniffer (void)
11716 struct ada_inferior_data
*data
= get_ada_inferior_data (current_inferior ());
11718 /* If the exception info is already known, then no need to recompute it. */
11719 if (data
->exception_info
!= NULL
)
11722 /* Check the latest (default) exception support info. */
11723 if (ada_has_this_exception_support (&default_exception_support_info
))
11725 data
->exception_info
= &default_exception_support_info
;
11729 /* Try our fallback exception suport info. */
11730 if (ada_has_this_exception_support (&exception_support_info_fallback
))
11732 data
->exception_info
= &exception_support_info_fallback
;
11736 /* Sometimes, it is normal for us to not be able to find the routine
11737 we are looking for. This happens when the program is linked with
11738 the shared version of the GNAT runtime, and the program has not been
11739 started yet. Inform the user of these two possible causes if
11742 if (ada_update_initial_language (language_unknown
) != language_ada
)
11743 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
11745 /* If the symbol does not exist, then check that the program is
11746 already started, to make sure that shared libraries have been
11747 loaded. If it is not started, this may mean that the symbol is
11748 in a shared library. */
11750 if (ptid_get_pid (inferior_ptid
) == 0)
11751 error (_("Unable to insert catchpoint. Try to start the program first."));
11753 /* At this point, we know that we are debugging an Ada program and
11754 that the inferior has been started, but we still are not able to
11755 find the run-time symbols. That can mean that we are in
11756 configurable run time mode, or that a-except as been optimized
11757 out by the linker... In any case, at this point it is not worth
11758 supporting this feature. */
11760 error (_("Cannot insert Ada exception catchpoints in this configuration."));
11763 /* True iff FRAME is very likely to be that of a function that is
11764 part of the runtime system. This is all very heuristic, but is
11765 intended to be used as advice as to what frames are uninteresting
11769 is_known_support_routine (struct frame_info
*frame
)
11771 struct symtab_and_line sal
;
11773 enum language func_lang
;
11775 const char *fullname
;
11777 /* If this code does not have any debugging information (no symtab),
11778 This cannot be any user code. */
11780 find_frame_sal (frame
, &sal
);
11781 if (sal
.symtab
== NULL
)
11784 /* If there is a symtab, but the associated source file cannot be
11785 located, then assume this is not user code: Selecting a frame
11786 for which we cannot display the code would not be very helpful
11787 for the user. This should also take care of case such as VxWorks
11788 where the kernel has some debugging info provided for a few units. */
11790 fullname
= symtab_to_fullname (sal
.symtab
);
11791 if (access (fullname
, R_OK
) != 0)
11794 /* Check the unit filename againt the Ada runtime file naming.
11795 We also check the name of the objfile against the name of some
11796 known system libraries that sometimes come with debugging info
11799 for (i
= 0; known_runtime_file_name_patterns
[i
] != NULL
; i
+= 1)
11801 re_comp (known_runtime_file_name_patterns
[i
]);
11802 if (re_exec (lbasename (sal
.symtab
->filename
)))
11804 if (SYMTAB_OBJFILE (sal
.symtab
) != NULL
11805 && re_exec (objfile_name (SYMTAB_OBJFILE (sal
.symtab
))))
11809 /* Check whether the function is a GNAT-generated entity. */
11811 find_frame_funname (frame
, &func_name
, &func_lang
, NULL
);
11812 if (func_name
== NULL
)
11815 for (i
= 0; known_auxiliary_function_name_patterns
[i
] != NULL
; i
+= 1)
11817 re_comp (known_auxiliary_function_name_patterns
[i
]);
11818 if (re_exec (func_name
))
11829 /* Find the first frame that contains debugging information and that is not
11830 part of the Ada run-time, starting from FI and moving upward. */
11833 ada_find_printable_frame (struct frame_info
*fi
)
11835 for (; fi
!= NULL
; fi
= get_prev_frame (fi
))
11837 if (!is_known_support_routine (fi
))
11846 /* Assuming that the inferior just triggered an unhandled exception
11847 catchpoint, return the address in inferior memory where the name
11848 of the exception is stored.
11850 Return zero if the address could not be computed. */
11853 ada_unhandled_exception_name_addr (void)
11855 return parse_and_eval_address ("e.full_name");
11858 /* Same as ada_unhandled_exception_name_addr, except that this function
11859 should be used when the inferior uses an older version of the runtime,
11860 where the exception name needs to be extracted from a specific frame
11861 several frames up in the callstack. */
11864 ada_unhandled_exception_name_addr_from_raise (void)
11867 struct frame_info
*fi
;
11868 struct ada_inferior_data
*data
= get_ada_inferior_data (current_inferior ());
11869 struct cleanup
*old_chain
;
11871 /* To determine the name of this exception, we need to select
11872 the frame corresponding to RAISE_SYM_NAME. This frame is
11873 at least 3 levels up, so we simply skip the first 3 frames
11874 without checking the name of their associated function. */
11875 fi
= get_current_frame ();
11876 for (frame_level
= 0; frame_level
< 3; frame_level
+= 1)
11878 fi
= get_prev_frame (fi
);
11880 old_chain
= make_cleanup (null_cleanup
, NULL
);
11884 enum language func_lang
;
11886 find_frame_funname (fi
, &func_name
, &func_lang
, NULL
);
11887 if (func_name
!= NULL
)
11889 make_cleanup (xfree
, func_name
);
11891 if (strcmp (func_name
,
11892 data
->exception_info
->catch_exception_sym
) == 0)
11893 break; /* We found the frame we were looking for... */
11894 fi
= get_prev_frame (fi
);
11897 do_cleanups (old_chain
);
11903 return parse_and_eval_address ("id.full_name");
11906 /* Assuming the inferior just triggered an Ada exception catchpoint
11907 (of any type), return the address in inferior memory where the name
11908 of the exception is stored, if applicable.
11910 Return zero if the address could not be computed, or if not relevant. */
11913 ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex
,
11914 struct breakpoint
*b
)
11916 struct ada_inferior_data
*data
= get_ada_inferior_data (current_inferior ());
11920 case ada_catch_exception
:
11921 return (parse_and_eval_address ("e.full_name"));
11924 case ada_catch_exception_unhandled
:
11925 return data
->exception_info
->unhandled_exception_name_addr ();
11928 case ada_catch_assert
:
11929 return 0; /* Exception name is not relevant in this case. */
11933 internal_error (__FILE__
, __LINE__
, _("unexpected catchpoint type"));
11937 return 0; /* Should never be reached. */
11940 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
11941 any error that ada_exception_name_addr_1 might cause to be thrown.
11942 When an error is intercepted, a warning with the error message is printed,
11943 and zero is returned. */
11946 ada_exception_name_addr (enum ada_exception_catchpoint_kind ex
,
11947 struct breakpoint
*b
)
11949 CORE_ADDR result
= 0;
11953 result
= ada_exception_name_addr_1 (ex
, b
);
11956 CATCH (e
, RETURN_MASK_ERROR
)
11958 warning (_("failed to get exception name: %s"), e
.message
);
11966 static char *ada_exception_catchpoint_cond_string (const char *excep_string
);
11968 /* Ada catchpoints.
11970 In the case of catchpoints on Ada exceptions, the catchpoint will
11971 stop the target on every exception the program throws. When a user
11972 specifies the name of a specific exception, we translate this
11973 request into a condition expression (in text form), and then parse
11974 it into an expression stored in each of the catchpoint's locations.
11975 We then use this condition to check whether the exception that was
11976 raised is the one the user is interested in. If not, then the
11977 target is resumed again. We store the name of the requested
11978 exception, in order to be able to re-set the condition expression
11979 when symbols change. */
11981 /* An instance of this type is used to represent an Ada catchpoint
11982 breakpoint location. It includes a "struct bp_location" as a kind
11983 of base class; users downcast to "struct bp_location *" when
11986 struct ada_catchpoint_location
11988 /* The base class. */
11989 struct bp_location base
;
11991 /* The condition that checks whether the exception that was raised
11992 is the specific exception the user specified on catchpoint
11994 struct expression
*excep_cond_expr
;
11997 /* Implement the DTOR method in the bp_location_ops structure for all
11998 Ada exception catchpoint kinds. */
12001 ada_catchpoint_location_dtor (struct bp_location
*bl
)
12003 struct ada_catchpoint_location
*al
= (struct ada_catchpoint_location
*) bl
;
12005 xfree (al
->excep_cond_expr
);
12008 /* The vtable to be used in Ada catchpoint locations. */
12010 static const struct bp_location_ops ada_catchpoint_location_ops
=
12012 ada_catchpoint_location_dtor
12015 /* An instance of this type is used to represent an Ada catchpoint.
12016 It includes a "struct breakpoint" as a kind of base class; users
12017 downcast to "struct breakpoint *" when needed. */
12019 struct ada_catchpoint
12021 /* The base class. */
12022 struct breakpoint base
;
12024 /* The name of the specific exception the user specified. */
12025 char *excep_string
;
12028 /* Parse the exception condition string in the context of each of the
12029 catchpoint's locations, and store them for later evaluation. */
12032 create_excep_cond_exprs (struct ada_catchpoint
*c
)
12034 struct cleanup
*old_chain
;
12035 struct bp_location
*bl
;
12038 /* Nothing to do if there's no specific exception to catch. */
12039 if (c
->excep_string
== NULL
)
12042 /* Same if there are no locations... */
12043 if (c
->base
.loc
== NULL
)
12046 /* Compute the condition expression in text form, from the specific
12047 expection we want to catch. */
12048 cond_string
= ada_exception_catchpoint_cond_string (c
->excep_string
);
12049 old_chain
= make_cleanup (xfree
, cond_string
);
12051 /* Iterate over all the catchpoint's locations, and parse an
12052 expression for each. */
12053 for (bl
= c
->base
.loc
; bl
!= NULL
; bl
= bl
->next
)
12055 struct ada_catchpoint_location
*ada_loc
12056 = (struct ada_catchpoint_location
*) bl
;
12057 struct expression
*exp
= NULL
;
12059 if (!bl
->shlib_disabled
)
12066 exp
= parse_exp_1 (&s
, bl
->address
,
12067 block_for_pc (bl
->address
), 0);
12069 CATCH (e
, RETURN_MASK_ERROR
)
12071 warning (_("failed to reevaluate internal exception condition "
12072 "for catchpoint %d: %s"),
12073 c
->base
.number
, e
.message
);
12074 /* There is a bug in GCC on sparc-solaris when building with
12075 optimization which causes EXP to change unexpectedly
12076 (http://gcc.gnu.org/bugzilla/show_bug.cgi?id=56982).
12077 The problem should be fixed starting with GCC 4.9.
12078 In the meantime, work around it by forcing EXP back
12085 ada_loc
->excep_cond_expr
= exp
;
12088 do_cleanups (old_chain
);
12091 /* Implement the DTOR method in the breakpoint_ops structure for all
12092 exception catchpoint kinds. */
12095 dtor_exception (enum ada_exception_catchpoint_kind ex
, struct breakpoint
*b
)
12097 struct ada_catchpoint
*c
= (struct ada_catchpoint
*) b
;
12099 xfree (c
->excep_string
);
12101 bkpt_breakpoint_ops
.dtor (b
);
12104 /* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
12105 structure for all exception catchpoint kinds. */
12107 static struct bp_location
*
12108 allocate_location_exception (enum ada_exception_catchpoint_kind ex
,
12109 struct breakpoint
*self
)
12111 struct ada_catchpoint_location
*loc
;
12113 loc
= XNEW (struct ada_catchpoint_location
);
12114 init_bp_location (&loc
->base
, &ada_catchpoint_location_ops
, self
);
12115 loc
->excep_cond_expr
= NULL
;
12119 /* Implement the RE_SET method in the breakpoint_ops structure for all
12120 exception catchpoint kinds. */
12123 re_set_exception (enum ada_exception_catchpoint_kind ex
, struct breakpoint
*b
)
12125 struct ada_catchpoint
*c
= (struct ada_catchpoint
*) b
;
12127 /* Call the base class's method. This updates the catchpoint's
12129 bkpt_breakpoint_ops
.re_set (b
);
12131 /* Reparse the exception conditional expressions. One for each
12133 create_excep_cond_exprs (c
);
12136 /* Returns true if we should stop for this breakpoint hit. If the
12137 user specified a specific exception, we only want to cause a stop
12138 if the program thrown that exception. */
12141 should_stop_exception (const struct bp_location
*bl
)
12143 struct ada_catchpoint
*c
= (struct ada_catchpoint
*) bl
->owner
;
12144 const struct ada_catchpoint_location
*ada_loc
12145 = (const struct ada_catchpoint_location
*) bl
;
12148 /* With no specific exception, should always stop. */
12149 if (c
->excep_string
== NULL
)
12152 if (ada_loc
->excep_cond_expr
== NULL
)
12154 /* We will have a NULL expression if back when we were creating
12155 the expressions, this location's had failed to parse. */
12162 struct value
*mark
;
12164 mark
= value_mark ();
12165 stop
= value_true (evaluate_expression (ada_loc
->excep_cond_expr
));
12166 value_free_to_mark (mark
);
12168 CATCH (ex
, RETURN_MASK_ALL
)
12170 exception_fprintf (gdb_stderr
, ex
,
12171 _("Error in testing exception condition:\n"));
12178 /* Implement the CHECK_STATUS method in the breakpoint_ops structure
12179 for all exception catchpoint kinds. */
12182 check_status_exception (enum ada_exception_catchpoint_kind ex
, bpstat bs
)
12184 bs
->stop
= should_stop_exception (bs
->bp_location_at
);
12187 /* Implement the PRINT_IT method in the breakpoint_ops structure
12188 for all exception catchpoint kinds. */
12190 static enum print_stop_action
12191 print_it_exception (enum ada_exception_catchpoint_kind ex
, bpstat bs
)
12193 struct ui_out
*uiout
= current_uiout
;
12194 struct breakpoint
*b
= bs
->breakpoint_at
;
12196 annotate_catchpoint (b
->number
);
12198 if (ui_out_is_mi_like_p (uiout
))
12200 ui_out_field_string (uiout
, "reason",
12201 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT
));
12202 ui_out_field_string (uiout
, "disp", bpdisp_text (b
->disposition
));
12205 ui_out_text (uiout
,
12206 b
->disposition
== disp_del
? "\nTemporary catchpoint "
12207 : "\nCatchpoint ");
12208 ui_out_field_int (uiout
, "bkptno", b
->number
);
12209 ui_out_text (uiout
, ", ");
12213 case ada_catch_exception
:
12214 case ada_catch_exception_unhandled
:
12216 const CORE_ADDR addr
= ada_exception_name_addr (ex
, b
);
12217 char exception_name
[256];
12221 read_memory (addr
, (gdb_byte
*) exception_name
,
12222 sizeof (exception_name
) - 1);
12223 exception_name
[sizeof (exception_name
) - 1] = '\0';
12227 /* For some reason, we were unable to read the exception
12228 name. This could happen if the Runtime was compiled
12229 without debugging info, for instance. In that case,
12230 just replace the exception name by the generic string
12231 "exception" - it will read as "an exception" in the
12232 notification we are about to print. */
12233 memcpy (exception_name
, "exception", sizeof ("exception"));
12235 /* In the case of unhandled exception breakpoints, we print
12236 the exception name as "unhandled EXCEPTION_NAME", to make
12237 it clearer to the user which kind of catchpoint just got
12238 hit. We used ui_out_text to make sure that this extra
12239 info does not pollute the exception name in the MI case. */
12240 if (ex
== ada_catch_exception_unhandled
)
12241 ui_out_text (uiout
, "unhandled ");
12242 ui_out_field_string (uiout
, "exception-name", exception_name
);
12245 case ada_catch_assert
:
12246 /* In this case, the name of the exception is not really
12247 important. Just print "failed assertion" to make it clearer
12248 that his program just hit an assertion-failure catchpoint.
12249 We used ui_out_text because this info does not belong in
12251 ui_out_text (uiout
, "failed assertion");
12254 ui_out_text (uiout
, " at ");
12255 ada_find_printable_frame (get_current_frame ());
12257 return PRINT_SRC_AND_LOC
;
12260 /* Implement the PRINT_ONE method in the breakpoint_ops structure
12261 for all exception catchpoint kinds. */
12264 print_one_exception (enum ada_exception_catchpoint_kind ex
,
12265 struct breakpoint
*b
, struct bp_location
**last_loc
)
12267 struct ui_out
*uiout
= current_uiout
;
12268 struct ada_catchpoint
*c
= (struct ada_catchpoint
*) b
;
12269 struct value_print_options opts
;
12271 get_user_print_options (&opts
);
12272 if (opts
.addressprint
)
12274 annotate_field (4);
12275 ui_out_field_core_addr (uiout
, "addr", b
->loc
->gdbarch
, b
->loc
->address
);
12278 annotate_field (5);
12279 *last_loc
= b
->loc
;
12282 case ada_catch_exception
:
12283 if (c
->excep_string
!= NULL
)
12285 char *msg
= xstrprintf (_("`%s' Ada exception"), c
->excep_string
);
12287 ui_out_field_string (uiout
, "what", msg
);
12291 ui_out_field_string (uiout
, "what", "all Ada exceptions");
12295 case ada_catch_exception_unhandled
:
12296 ui_out_field_string (uiout
, "what", "unhandled Ada exceptions");
12299 case ada_catch_assert
:
12300 ui_out_field_string (uiout
, "what", "failed Ada assertions");
12304 internal_error (__FILE__
, __LINE__
, _("unexpected catchpoint type"));
12309 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
12310 for all exception catchpoint kinds. */
12313 print_mention_exception (enum ada_exception_catchpoint_kind ex
,
12314 struct breakpoint
*b
)
12316 struct ada_catchpoint
*c
= (struct ada_catchpoint
*) b
;
12317 struct ui_out
*uiout
= current_uiout
;
12319 ui_out_text (uiout
, b
->disposition
== disp_del
? _("Temporary catchpoint ")
12320 : _("Catchpoint "));
12321 ui_out_field_int (uiout
, "bkptno", b
->number
);
12322 ui_out_text (uiout
, ": ");
12326 case ada_catch_exception
:
12327 if (c
->excep_string
!= NULL
)
12329 char *info
= xstrprintf (_("`%s' Ada exception"), c
->excep_string
);
12330 struct cleanup
*old_chain
= make_cleanup (xfree
, info
);
12332 ui_out_text (uiout
, info
);
12333 do_cleanups (old_chain
);
12336 ui_out_text (uiout
, _("all Ada exceptions"));
12339 case ada_catch_exception_unhandled
:
12340 ui_out_text (uiout
, _("unhandled Ada exceptions"));
12343 case ada_catch_assert
:
12344 ui_out_text (uiout
, _("failed Ada assertions"));
12348 internal_error (__FILE__
, __LINE__
, _("unexpected catchpoint type"));
12353 /* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12354 for all exception catchpoint kinds. */
12357 print_recreate_exception (enum ada_exception_catchpoint_kind ex
,
12358 struct breakpoint
*b
, struct ui_file
*fp
)
12360 struct ada_catchpoint
*c
= (struct ada_catchpoint
*) b
;
12364 case ada_catch_exception
:
12365 fprintf_filtered (fp
, "catch exception");
12366 if (c
->excep_string
!= NULL
)
12367 fprintf_filtered (fp
, " %s", c
->excep_string
);
12370 case ada_catch_exception_unhandled
:
12371 fprintf_filtered (fp
, "catch exception unhandled");
12374 case ada_catch_assert
:
12375 fprintf_filtered (fp
, "catch assert");
12379 internal_error (__FILE__
, __LINE__
, _("unexpected catchpoint type"));
12381 print_recreate_thread (b
, fp
);
12384 /* Virtual table for "catch exception" breakpoints. */
12387 dtor_catch_exception (struct breakpoint
*b
)
12389 dtor_exception (ada_catch_exception
, b
);
12392 static struct bp_location
*
12393 allocate_location_catch_exception (struct breakpoint
*self
)
12395 return allocate_location_exception (ada_catch_exception
, self
);
12399 re_set_catch_exception (struct breakpoint
*b
)
12401 re_set_exception (ada_catch_exception
, b
);
12405 check_status_catch_exception (bpstat bs
)
12407 check_status_exception (ada_catch_exception
, bs
);
12410 static enum print_stop_action
12411 print_it_catch_exception (bpstat bs
)
12413 return print_it_exception (ada_catch_exception
, bs
);
12417 print_one_catch_exception (struct breakpoint
*b
, struct bp_location
**last_loc
)
12419 print_one_exception (ada_catch_exception
, b
, last_loc
);
12423 print_mention_catch_exception (struct breakpoint
*b
)
12425 print_mention_exception (ada_catch_exception
, b
);
12429 print_recreate_catch_exception (struct breakpoint
*b
, struct ui_file
*fp
)
12431 print_recreate_exception (ada_catch_exception
, b
, fp
);
12434 static struct breakpoint_ops catch_exception_breakpoint_ops
;
12436 /* Virtual table for "catch exception unhandled" breakpoints. */
12439 dtor_catch_exception_unhandled (struct breakpoint
*b
)
12441 dtor_exception (ada_catch_exception_unhandled
, b
);
12444 static struct bp_location
*
12445 allocate_location_catch_exception_unhandled (struct breakpoint
*self
)
12447 return allocate_location_exception (ada_catch_exception_unhandled
, self
);
12451 re_set_catch_exception_unhandled (struct breakpoint
*b
)
12453 re_set_exception (ada_catch_exception_unhandled
, b
);
12457 check_status_catch_exception_unhandled (bpstat bs
)
12459 check_status_exception (ada_catch_exception_unhandled
, bs
);
12462 static enum print_stop_action
12463 print_it_catch_exception_unhandled (bpstat bs
)
12465 return print_it_exception (ada_catch_exception_unhandled
, bs
);
12469 print_one_catch_exception_unhandled (struct breakpoint
*b
,
12470 struct bp_location
**last_loc
)
12472 print_one_exception (ada_catch_exception_unhandled
, b
, last_loc
);
12476 print_mention_catch_exception_unhandled (struct breakpoint
*b
)
12478 print_mention_exception (ada_catch_exception_unhandled
, b
);
12482 print_recreate_catch_exception_unhandled (struct breakpoint
*b
,
12483 struct ui_file
*fp
)
12485 print_recreate_exception (ada_catch_exception_unhandled
, b
, fp
);
12488 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops
;
12490 /* Virtual table for "catch assert" breakpoints. */
12493 dtor_catch_assert (struct breakpoint
*b
)
12495 dtor_exception (ada_catch_assert
, b
);
12498 static struct bp_location
*
12499 allocate_location_catch_assert (struct breakpoint
*self
)
12501 return allocate_location_exception (ada_catch_assert
, self
);
12505 re_set_catch_assert (struct breakpoint
*b
)
12507 re_set_exception (ada_catch_assert
, b
);
12511 check_status_catch_assert (bpstat bs
)
12513 check_status_exception (ada_catch_assert
, bs
);
12516 static enum print_stop_action
12517 print_it_catch_assert (bpstat bs
)
12519 return print_it_exception (ada_catch_assert
, bs
);
12523 print_one_catch_assert (struct breakpoint
*b
, struct bp_location
**last_loc
)
12525 print_one_exception (ada_catch_assert
, b
, last_loc
);
12529 print_mention_catch_assert (struct breakpoint
*b
)
12531 print_mention_exception (ada_catch_assert
, b
);
12535 print_recreate_catch_assert (struct breakpoint
*b
, struct ui_file
*fp
)
12537 print_recreate_exception (ada_catch_assert
, b
, fp
);
12540 static struct breakpoint_ops catch_assert_breakpoint_ops
;
12542 /* Return a newly allocated copy of the first space-separated token
12543 in ARGSP, and then adjust ARGSP to point immediately after that
12546 Return NULL if ARGPS does not contain any more tokens. */
12549 ada_get_next_arg (char **argsp
)
12551 char *args
= *argsp
;
12555 args
= skip_spaces (args
);
12556 if (args
[0] == '\0')
12557 return NULL
; /* No more arguments. */
12559 /* Find the end of the current argument. */
12561 end
= skip_to_space (args
);
12563 /* Adjust ARGSP to point to the start of the next argument. */
12567 /* Make a copy of the current argument and return it. */
12569 result
= xmalloc (end
- args
+ 1);
12570 strncpy (result
, args
, end
- args
);
12571 result
[end
- args
] = '\0';
12576 /* Split the arguments specified in a "catch exception" command.
12577 Set EX to the appropriate catchpoint type.
12578 Set EXCEP_STRING to the name of the specific exception if
12579 specified by the user.
12580 If a condition is found at the end of the arguments, the condition
12581 expression is stored in COND_STRING (memory must be deallocated
12582 after use). Otherwise COND_STRING is set to NULL. */
12585 catch_ada_exception_command_split (char *args
,
12586 enum ada_exception_catchpoint_kind
*ex
,
12587 char **excep_string
,
12588 char **cond_string
)
12590 struct cleanup
*old_chain
= make_cleanup (null_cleanup
, NULL
);
12591 char *exception_name
;
12594 exception_name
= ada_get_next_arg (&args
);
12595 if (exception_name
!= NULL
&& strcmp (exception_name
, "if") == 0)
12597 /* This is not an exception name; this is the start of a condition
12598 expression for a catchpoint on all exceptions. So, "un-get"
12599 this token, and set exception_name to NULL. */
12600 xfree (exception_name
);
12601 exception_name
= NULL
;
12604 make_cleanup (xfree
, exception_name
);
12606 /* Check to see if we have a condition. */
12608 args
= skip_spaces (args
);
12609 if (startswith (args
, "if")
12610 && (isspace (args
[2]) || args
[2] == '\0'))
12613 args
= skip_spaces (args
);
12615 if (args
[0] == '\0')
12616 error (_("Condition missing after `if' keyword"));
12617 cond
= xstrdup (args
);
12618 make_cleanup (xfree
, cond
);
12620 args
+= strlen (args
);
12623 /* Check that we do not have any more arguments. Anything else
12626 if (args
[0] != '\0')
12627 error (_("Junk at end of expression"));
12629 discard_cleanups (old_chain
);
12631 if (exception_name
== NULL
)
12633 /* Catch all exceptions. */
12634 *ex
= ada_catch_exception
;
12635 *excep_string
= NULL
;
12637 else if (strcmp (exception_name
, "unhandled") == 0)
12639 /* Catch unhandled exceptions. */
12640 *ex
= ada_catch_exception_unhandled
;
12641 *excep_string
= NULL
;
12645 /* Catch a specific exception. */
12646 *ex
= ada_catch_exception
;
12647 *excep_string
= exception_name
;
12649 *cond_string
= cond
;
12652 /* Return the name of the symbol on which we should break in order to
12653 implement a catchpoint of the EX kind. */
12655 static const char *
12656 ada_exception_sym_name (enum ada_exception_catchpoint_kind ex
)
12658 struct ada_inferior_data
*data
= get_ada_inferior_data (current_inferior ());
12660 gdb_assert (data
->exception_info
!= NULL
);
12664 case ada_catch_exception
:
12665 return (data
->exception_info
->catch_exception_sym
);
12667 case ada_catch_exception_unhandled
:
12668 return (data
->exception_info
->catch_exception_unhandled_sym
);
12670 case ada_catch_assert
:
12671 return (data
->exception_info
->catch_assert_sym
);
12674 internal_error (__FILE__
, __LINE__
,
12675 _("unexpected catchpoint kind (%d)"), ex
);
12679 /* Return the breakpoint ops "virtual table" used for catchpoints
12682 static const struct breakpoint_ops
*
12683 ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex
)
12687 case ada_catch_exception
:
12688 return (&catch_exception_breakpoint_ops
);
12690 case ada_catch_exception_unhandled
:
12691 return (&catch_exception_unhandled_breakpoint_ops
);
12693 case ada_catch_assert
:
12694 return (&catch_assert_breakpoint_ops
);
12697 internal_error (__FILE__
, __LINE__
,
12698 _("unexpected catchpoint kind (%d)"), ex
);
12702 /* Return the condition that will be used to match the current exception
12703 being raised with the exception that the user wants to catch. This
12704 assumes that this condition is used when the inferior just triggered
12705 an exception catchpoint.
12707 The string returned is a newly allocated string that needs to be
12708 deallocated later. */
12711 ada_exception_catchpoint_cond_string (const char *excep_string
)
12715 /* The standard exceptions are a special case. They are defined in
12716 runtime units that have been compiled without debugging info; if
12717 EXCEP_STRING is the not-fully-qualified name of a standard
12718 exception (e.g. "constraint_error") then, during the evaluation
12719 of the condition expression, the symbol lookup on this name would
12720 *not* return this standard exception. The catchpoint condition
12721 may then be set only on user-defined exceptions which have the
12722 same not-fully-qualified name (e.g. my_package.constraint_error).
12724 To avoid this unexcepted behavior, these standard exceptions are
12725 systematically prefixed by "standard". This means that "catch
12726 exception constraint_error" is rewritten into "catch exception
12727 standard.constraint_error".
12729 If an exception named contraint_error is defined in another package of
12730 the inferior program, then the only way to specify this exception as a
12731 breakpoint condition is to use its fully-qualified named:
12732 e.g. my_package.constraint_error. */
12734 for (i
= 0; i
< sizeof (standard_exc
) / sizeof (char *); i
++)
12736 if (strcmp (standard_exc
[i
], excep_string
) == 0)
12738 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
12742 return xstrprintf ("long_integer (e) = long_integer (&%s)", excep_string
);
12745 /* Return the symtab_and_line that should be used to insert an exception
12746 catchpoint of the TYPE kind.
12748 EXCEP_STRING should contain the name of a specific exception that
12749 the catchpoint should catch, or NULL otherwise.
12751 ADDR_STRING returns the name of the function where the real
12752 breakpoint that implements the catchpoints is set, depending on the
12753 type of catchpoint we need to create. */
12755 static struct symtab_and_line
12756 ada_exception_sal (enum ada_exception_catchpoint_kind ex
, char *excep_string
,
12757 char **addr_string
, const struct breakpoint_ops
**ops
)
12759 const char *sym_name
;
12760 struct symbol
*sym
;
12762 /* First, find out which exception support info to use. */
12763 ada_exception_support_info_sniffer ();
12765 /* Then lookup the function on which we will break in order to catch
12766 the Ada exceptions requested by the user. */
12767 sym_name
= ada_exception_sym_name (ex
);
12768 sym
= standard_lookup (sym_name
, NULL
, VAR_DOMAIN
);
12770 /* We can assume that SYM is not NULL at this stage. If the symbol
12771 did not exist, ada_exception_support_info_sniffer would have
12772 raised an exception.
12774 Also, ada_exception_support_info_sniffer should have already
12775 verified that SYM is a function symbol. */
12776 gdb_assert (sym
!= NULL
);
12777 gdb_assert (SYMBOL_CLASS (sym
) == LOC_BLOCK
);
12779 /* Set ADDR_STRING. */
12780 *addr_string
= xstrdup (sym_name
);
12783 *ops
= ada_exception_breakpoint_ops (ex
);
12785 return find_function_start_sal (sym
, 1);
12788 /* Create an Ada exception catchpoint.
12790 EX_KIND is the kind of exception catchpoint to be created.
12792 If EXCEPT_STRING is NULL, this catchpoint is expected to trigger
12793 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
12794 of the exception to which this catchpoint applies. When not NULL,
12795 the string must be allocated on the heap, and its deallocation
12796 is no longer the responsibility of the caller.
12798 COND_STRING, if not NULL, is the catchpoint condition. This string
12799 must be allocated on the heap, and its deallocation is no longer
12800 the responsibility of the caller.
12802 TEMPFLAG, if nonzero, means that the underlying breakpoint
12803 should be temporary.
12805 FROM_TTY is the usual argument passed to all commands implementations. */
12808 create_ada_exception_catchpoint (struct gdbarch
*gdbarch
,
12809 enum ada_exception_catchpoint_kind ex_kind
,
12810 char *excep_string
,
12816 struct ada_catchpoint
*c
;
12817 char *addr_string
= NULL
;
12818 const struct breakpoint_ops
*ops
= NULL
;
12819 struct symtab_and_line sal
12820 = ada_exception_sal (ex_kind
, excep_string
, &addr_string
, &ops
);
12822 c
= XNEW (struct ada_catchpoint
);
12823 init_ada_exception_breakpoint (&c
->base
, gdbarch
, sal
, addr_string
,
12824 ops
, tempflag
, disabled
, from_tty
);
12825 c
->excep_string
= excep_string
;
12826 create_excep_cond_exprs (c
);
12827 if (cond_string
!= NULL
)
12828 set_breakpoint_condition (&c
->base
, cond_string
, from_tty
);
12829 install_breakpoint (0, &c
->base
, 1);
12832 /* Implement the "catch exception" command. */
12835 catch_ada_exception_command (char *arg
, int from_tty
,
12836 struct cmd_list_element
*command
)
12838 struct gdbarch
*gdbarch
= get_current_arch ();
12840 enum ada_exception_catchpoint_kind ex_kind
;
12841 char *excep_string
= NULL
;
12842 char *cond_string
= NULL
;
12844 tempflag
= get_cmd_context (command
) == CATCH_TEMPORARY
;
12848 catch_ada_exception_command_split (arg
, &ex_kind
, &excep_string
,
12850 create_ada_exception_catchpoint (gdbarch
, ex_kind
,
12851 excep_string
, cond_string
,
12852 tempflag
, 1 /* enabled */,
12856 /* Split the arguments specified in a "catch assert" command.
12858 ARGS contains the command's arguments (or the empty string if
12859 no arguments were passed).
12861 If ARGS contains a condition, set COND_STRING to that condition
12862 (the memory needs to be deallocated after use). */
12865 catch_ada_assert_command_split (char *args
, char **cond_string
)
12867 args
= skip_spaces (args
);
12869 /* Check whether a condition was provided. */
12870 if (startswith (args
, "if")
12871 && (isspace (args
[2]) || args
[2] == '\0'))
12874 args
= skip_spaces (args
);
12875 if (args
[0] == '\0')
12876 error (_("condition missing after `if' keyword"));
12877 *cond_string
= xstrdup (args
);
12880 /* Otherwise, there should be no other argument at the end of
12882 else if (args
[0] != '\0')
12883 error (_("Junk at end of arguments."));
12886 /* Implement the "catch assert" command. */
12889 catch_assert_command (char *arg
, int from_tty
,
12890 struct cmd_list_element
*command
)
12892 struct gdbarch
*gdbarch
= get_current_arch ();
12894 char *cond_string
= NULL
;
12896 tempflag
= get_cmd_context (command
) == CATCH_TEMPORARY
;
12900 catch_ada_assert_command_split (arg
, &cond_string
);
12901 create_ada_exception_catchpoint (gdbarch
, ada_catch_assert
,
12903 tempflag
, 1 /* enabled */,
12907 /* Return non-zero if the symbol SYM is an Ada exception object. */
12910 ada_is_exception_sym (struct symbol
*sym
)
12912 const char *type_name
= type_name_no_tag (SYMBOL_TYPE (sym
));
12914 return (SYMBOL_CLASS (sym
) != LOC_TYPEDEF
12915 && SYMBOL_CLASS (sym
) != LOC_BLOCK
12916 && SYMBOL_CLASS (sym
) != LOC_CONST
12917 && SYMBOL_CLASS (sym
) != LOC_UNRESOLVED
12918 && type_name
!= NULL
&& strcmp (type_name
, "exception") == 0);
12921 /* Given a global symbol SYM, return non-zero iff SYM is a non-standard
12922 Ada exception object. This matches all exceptions except the ones
12923 defined by the Ada language. */
12926 ada_is_non_standard_exception_sym (struct symbol
*sym
)
12930 if (!ada_is_exception_sym (sym
))
12933 for (i
= 0; i
< ARRAY_SIZE (standard_exc
); i
++)
12934 if (strcmp (SYMBOL_LINKAGE_NAME (sym
), standard_exc
[i
]) == 0)
12935 return 0; /* A standard exception. */
12937 /* Numeric_Error is also a standard exception, so exclude it.
12938 See the STANDARD_EXC description for more details as to why
12939 this exception is not listed in that array. */
12940 if (strcmp (SYMBOL_LINKAGE_NAME (sym
), "numeric_error") == 0)
12946 /* A helper function for qsort, comparing two struct ada_exc_info
12949 The comparison is determined first by exception name, and then
12950 by exception address. */
12953 compare_ada_exception_info (const void *a
, const void *b
)
12955 const struct ada_exc_info
*exc_a
= (struct ada_exc_info
*) a
;
12956 const struct ada_exc_info
*exc_b
= (struct ada_exc_info
*) b
;
12959 result
= strcmp (exc_a
->name
, exc_b
->name
);
12963 if (exc_a
->addr
< exc_b
->addr
)
12965 if (exc_a
->addr
> exc_b
->addr
)
12971 /* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
12972 routine, but keeping the first SKIP elements untouched.
12974 All duplicates are also removed. */
12977 sort_remove_dups_ada_exceptions_list (VEC(ada_exc_info
) **exceptions
,
12980 struct ada_exc_info
*to_sort
12981 = VEC_address (ada_exc_info
, *exceptions
) + skip
;
12983 = VEC_length (ada_exc_info
, *exceptions
) - skip
;
12986 qsort (to_sort
, to_sort_len
, sizeof (struct ada_exc_info
),
12987 compare_ada_exception_info
);
12989 for (i
= 1, j
= 1; i
< to_sort_len
; i
++)
12990 if (compare_ada_exception_info (&to_sort
[i
], &to_sort
[j
- 1]) != 0)
12991 to_sort
[j
++] = to_sort
[i
];
12993 VEC_truncate(ada_exc_info
, *exceptions
, skip
+ to_sort_len
);
12996 /* A function intended as the "name_matcher" callback in the struct
12997 quick_symbol_functions' expand_symtabs_matching method.
12999 SEARCH_NAME is the symbol's search name.
13001 If USER_DATA is not NULL, it is a pointer to a regext_t object
13002 used to match the symbol (by natural name). Otherwise, when USER_DATA
13003 is null, no filtering is performed, and all symbols are a positive
13007 ada_exc_search_name_matches (const char *search_name
, void *user_data
)
13009 regex_t
*preg
= user_data
;
13014 /* In Ada, the symbol "search name" is a linkage name, whereas
13015 the regular expression used to do the matching refers to
13016 the natural name. So match against the decoded name. */
13017 return (regexec (preg
, ada_decode (search_name
), 0, NULL
, 0) == 0);
13020 /* Add all exceptions defined by the Ada standard whose name match
13021 a regular expression.
13023 If PREG is not NULL, then this regexp_t object is used to
13024 perform the symbol name matching. Otherwise, no name-based
13025 filtering is performed.
13027 EXCEPTIONS is a vector of exceptions to which matching exceptions
13031 ada_add_standard_exceptions (regex_t
*preg
, VEC(ada_exc_info
) **exceptions
)
13035 for (i
= 0; i
< ARRAY_SIZE (standard_exc
); i
++)
13038 || regexec (preg
, standard_exc
[i
], 0, NULL
, 0) == 0)
13040 struct bound_minimal_symbol msymbol
13041 = ada_lookup_simple_minsym (standard_exc
[i
]);
13043 if (msymbol
.minsym
!= NULL
)
13045 struct ada_exc_info info
13046 = {standard_exc
[i
], BMSYMBOL_VALUE_ADDRESS (msymbol
)};
13048 VEC_safe_push (ada_exc_info
, *exceptions
, &info
);
13054 /* Add all Ada exceptions defined locally and accessible from the given
13057 If PREG is not NULL, then this regexp_t object is used to
13058 perform the symbol name matching. Otherwise, no name-based
13059 filtering is performed.
13061 EXCEPTIONS is a vector of exceptions to which matching exceptions
13065 ada_add_exceptions_from_frame (regex_t
*preg
, struct frame_info
*frame
,
13066 VEC(ada_exc_info
) **exceptions
)
13068 const struct block
*block
= get_frame_block (frame
, 0);
13072 struct block_iterator iter
;
13073 struct symbol
*sym
;
13075 ALL_BLOCK_SYMBOLS (block
, iter
, sym
)
13077 switch (SYMBOL_CLASS (sym
))
13084 if (ada_is_exception_sym (sym
))
13086 struct ada_exc_info info
= {SYMBOL_PRINT_NAME (sym
),
13087 SYMBOL_VALUE_ADDRESS (sym
)};
13089 VEC_safe_push (ada_exc_info
, *exceptions
, &info
);
13093 if (BLOCK_FUNCTION (block
) != NULL
)
13095 block
= BLOCK_SUPERBLOCK (block
);
13099 /* Add all exceptions defined globally whose name name match
13100 a regular expression, excluding standard exceptions.
13102 The reason we exclude standard exceptions is that they need
13103 to be handled separately: Standard exceptions are defined inside
13104 a runtime unit which is normally not compiled with debugging info,
13105 and thus usually do not show up in our symbol search. However,
13106 if the unit was in fact built with debugging info, we need to
13107 exclude them because they would duplicate the entry we found
13108 during the special loop that specifically searches for those
13109 standard exceptions.
13111 If PREG is not NULL, then this regexp_t object is used to
13112 perform the symbol name matching. Otherwise, no name-based
13113 filtering is performed.
13115 EXCEPTIONS is a vector of exceptions to which matching exceptions
13119 ada_add_global_exceptions (regex_t
*preg
, VEC(ada_exc_info
) **exceptions
)
13121 struct objfile
*objfile
;
13122 struct compunit_symtab
*s
;
13124 expand_symtabs_matching (NULL
, ada_exc_search_name_matches
, NULL
,
13125 VARIABLES_DOMAIN
, preg
);
13127 ALL_COMPUNITS (objfile
, s
)
13129 const struct blockvector
*bv
= COMPUNIT_BLOCKVECTOR (s
);
13132 for (i
= GLOBAL_BLOCK
; i
<= STATIC_BLOCK
; i
++)
13134 struct block
*b
= BLOCKVECTOR_BLOCK (bv
, i
);
13135 struct block_iterator iter
;
13136 struct symbol
*sym
;
13138 ALL_BLOCK_SYMBOLS (b
, iter
, sym
)
13139 if (ada_is_non_standard_exception_sym (sym
)
13141 || regexec (preg
, SYMBOL_NATURAL_NAME (sym
),
13144 struct ada_exc_info info
13145 = {SYMBOL_PRINT_NAME (sym
), SYMBOL_VALUE_ADDRESS (sym
)};
13147 VEC_safe_push (ada_exc_info
, *exceptions
, &info
);
13153 /* Implements ada_exceptions_list with the regular expression passed
13154 as a regex_t, rather than a string.
13156 If not NULL, PREG is used to filter out exceptions whose names
13157 do not match. Otherwise, all exceptions are listed. */
13159 static VEC(ada_exc_info
) *
13160 ada_exceptions_list_1 (regex_t
*preg
)
13162 VEC(ada_exc_info
) *result
= NULL
;
13163 struct cleanup
*old_chain
13164 = make_cleanup (VEC_cleanup (ada_exc_info
), &result
);
13167 /* First, list the known standard exceptions. These exceptions
13168 need to be handled separately, as they are usually defined in
13169 runtime units that have been compiled without debugging info. */
13171 ada_add_standard_exceptions (preg
, &result
);
13173 /* Next, find all exceptions whose scope is local and accessible
13174 from the currently selected frame. */
13176 if (has_stack_frames ())
13178 prev_len
= VEC_length (ada_exc_info
, result
);
13179 ada_add_exceptions_from_frame (preg
, get_selected_frame (NULL
),
13181 if (VEC_length (ada_exc_info
, result
) > prev_len
)
13182 sort_remove_dups_ada_exceptions_list (&result
, prev_len
);
13185 /* Add all exceptions whose scope is global. */
13187 prev_len
= VEC_length (ada_exc_info
, result
);
13188 ada_add_global_exceptions (preg
, &result
);
13189 if (VEC_length (ada_exc_info
, result
) > prev_len
)
13190 sort_remove_dups_ada_exceptions_list (&result
, prev_len
);
13192 discard_cleanups (old_chain
);
13196 /* Return a vector of ada_exc_info.
13198 If REGEXP is NULL, all exceptions are included in the result.
13199 Otherwise, it should contain a valid regular expression,
13200 and only the exceptions whose names match that regular expression
13201 are included in the result.
13203 The exceptions are sorted in the following order:
13204 - Standard exceptions (defined by the Ada language), in
13205 alphabetical order;
13206 - Exceptions only visible from the current frame, in
13207 alphabetical order;
13208 - Exceptions whose scope is global, in alphabetical order. */
13210 VEC(ada_exc_info
) *
13211 ada_exceptions_list (const char *regexp
)
13213 VEC(ada_exc_info
) *result
= NULL
;
13214 struct cleanup
*old_chain
= NULL
;
13217 if (regexp
!= NULL
)
13218 old_chain
= compile_rx_or_error (®
, regexp
,
13219 _("invalid regular expression"));
13221 result
= ada_exceptions_list_1 (regexp
!= NULL
? ®
: NULL
);
13223 if (old_chain
!= NULL
)
13224 do_cleanups (old_chain
);
13228 /* Implement the "info exceptions" command. */
13231 info_exceptions_command (char *regexp
, int from_tty
)
13233 VEC(ada_exc_info
) *exceptions
;
13234 struct cleanup
*cleanup
;
13235 struct gdbarch
*gdbarch
= get_current_arch ();
13237 struct ada_exc_info
*info
;
13239 exceptions
= ada_exceptions_list (regexp
);
13240 cleanup
= make_cleanup (VEC_cleanup (ada_exc_info
), &exceptions
);
13242 if (regexp
!= NULL
)
13244 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp
);
13246 printf_filtered (_("All defined Ada exceptions:\n"));
13248 for (ix
= 0; VEC_iterate(ada_exc_info
, exceptions
, ix
, info
); ix
++)
13249 printf_filtered ("%s: %s\n", info
->name
, paddress (gdbarch
, info
->addr
));
13251 do_cleanups (cleanup
);
13255 /* Information about operators given special treatment in functions
13257 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
13259 #define ADA_OPERATORS \
13260 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
13261 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
13262 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
13263 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
13264 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
13265 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
13266 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
13267 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
13268 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
13269 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
13270 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
13271 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
13272 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
13273 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
13274 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
13275 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
13276 OP_DEFN (OP_OTHERS, 1, 1, 0) \
13277 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
13278 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
13281 ada_operator_length (const struct expression
*exp
, int pc
, int *oplenp
,
13284 switch (exp
->elts
[pc
- 1].opcode
)
13287 operator_length_standard (exp
, pc
, oplenp
, argsp
);
13290 #define OP_DEFN(op, len, args, binop) \
13291 case op: *oplenp = len; *argsp = args; break;
13297 *argsp
= longest_to_int (exp
->elts
[pc
- 2].longconst
);
13302 *argsp
= longest_to_int (exp
->elts
[pc
- 2].longconst
) + 1;
13307 /* Implementation of the exp_descriptor method operator_check. */
13310 ada_operator_check (struct expression
*exp
, int pos
,
13311 int (*objfile_func
) (struct objfile
*objfile
, void *data
),
13314 const union exp_element
*const elts
= exp
->elts
;
13315 struct type
*type
= NULL
;
13317 switch (elts
[pos
].opcode
)
13319 case UNOP_IN_RANGE
:
13321 type
= elts
[pos
+ 1].type
;
13325 return operator_check_standard (exp
, pos
, objfile_func
, data
);
13328 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
13330 if (type
&& TYPE_OBJFILE (type
)
13331 && (*objfile_func
) (TYPE_OBJFILE (type
), data
))
13338 ada_op_name (enum exp_opcode opcode
)
13343 return op_name_standard (opcode
);
13345 #define OP_DEFN(op, len, args, binop) case op: return #op;
13350 return "OP_AGGREGATE";
13352 return "OP_CHOICES";
13358 /* As for operator_length, but assumes PC is pointing at the first
13359 element of the operator, and gives meaningful results only for the
13360 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
13363 ada_forward_operator_length (struct expression
*exp
, int pc
,
13364 int *oplenp
, int *argsp
)
13366 switch (exp
->elts
[pc
].opcode
)
13369 *oplenp
= *argsp
= 0;
13372 #define OP_DEFN(op, len, args, binop) \
13373 case op: *oplenp = len; *argsp = args; break;
13379 *argsp
= longest_to_int (exp
->elts
[pc
+ 1].longconst
);
13384 *argsp
= longest_to_int (exp
->elts
[pc
+ 1].longconst
) + 1;
13390 int len
= longest_to_int (exp
->elts
[pc
+ 1].longconst
);
13392 *oplenp
= 4 + BYTES_TO_EXP_ELEM (len
+ 1);
13400 ada_dump_subexp_body (struct expression
*exp
, struct ui_file
*stream
, int elt
)
13402 enum exp_opcode op
= exp
->elts
[elt
].opcode
;
13407 ada_forward_operator_length (exp
, elt
, &oplen
, &nargs
);
13411 /* Ada attributes ('Foo). */
13414 case OP_ATR_LENGTH
:
13418 case OP_ATR_MODULUS
:
13425 case UNOP_IN_RANGE
:
13427 /* XXX: gdb_sprint_host_address, type_sprint */
13428 fprintf_filtered (stream
, _("Type @"));
13429 gdb_print_host_address (exp
->elts
[pc
+ 1].type
, stream
);
13430 fprintf_filtered (stream
, " (");
13431 type_print (exp
->elts
[pc
+ 1].type
, NULL
, stream
, 0);
13432 fprintf_filtered (stream
, ")");
13434 case BINOP_IN_BOUNDS
:
13435 fprintf_filtered (stream
, " (%d)",
13436 longest_to_int (exp
->elts
[pc
+ 2].longconst
));
13438 case TERNOP_IN_RANGE
:
13443 case OP_DISCRETE_RANGE
:
13444 case OP_POSITIONAL
:
13451 char *name
= &exp
->elts
[elt
+ 2].string
;
13452 int len
= longest_to_int (exp
->elts
[elt
+ 1].longconst
);
13454 fprintf_filtered (stream
, "Text: `%.*s'", len
, name
);
13459 return dump_subexp_body_standard (exp
, stream
, elt
);
13463 for (i
= 0; i
< nargs
; i
+= 1)
13464 elt
= dump_subexp (exp
, stream
, elt
);
13469 /* The Ada extension of print_subexp (q.v.). */
13472 ada_print_subexp (struct expression
*exp
, int *pos
,
13473 struct ui_file
*stream
, enum precedence prec
)
13475 int oplen
, nargs
, i
;
13477 enum exp_opcode op
= exp
->elts
[pc
].opcode
;
13479 ada_forward_operator_length (exp
, pc
, &oplen
, &nargs
);
13486 print_subexp_standard (exp
, pos
, stream
, prec
);
13490 fputs_filtered (SYMBOL_NATURAL_NAME (exp
->elts
[pc
+ 2].symbol
), stream
);
13493 case BINOP_IN_BOUNDS
:
13494 /* XXX: sprint_subexp */
13495 print_subexp (exp
, pos
, stream
, PREC_SUFFIX
);
13496 fputs_filtered (" in ", stream
);
13497 print_subexp (exp
, pos
, stream
, PREC_SUFFIX
);
13498 fputs_filtered ("'range", stream
);
13499 if (exp
->elts
[pc
+ 1].longconst
> 1)
13500 fprintf_filtered (stream
, "(%ld)",
13501 (long) exp
->elts
[pc
+ 1].longconst
);
13504 case TERNOP_IN_RANGE
:
13505 if (prec
>= PREC_EQUAL
)
13506 fputs_filtered ("(", stream
);
13507 /* XXX: sprint_subexp */
13508 print_subexp (exp
, pos
, stream
, PREC_SUFFIX
);
13509 fputs_filtered (" in ", stream
);
13510 print_subexp (exp
, pos
, stream
, PREC_EQUAL
);
13511 fputs_filtered (" .. ", stream
);
13512 print_subexp (exp
, pos
, stream
, PREC_EQUAL
);
13513 if (prec
>= PREC_EQUAL
)
13514 fputs_filtered (")", stream
);
13519 case OP_ATR_LENGTH
:
13523 case OP_ATR_MODULUS
:
13528 if (exp
->elts
[*pos
].opcode
== OP_TYPE
)
13530 if (TYPE_CODE (exp
->elts
[*pos
+ 1].type
) != TYPE_CODE_VOID
)
13531 LA_PRINT_TYPE (exp
->elts
[*pos
+ 1].type
, "", stream
, 0, 0,
13532 &type_print_raw_options
);
13536 print_subexp (exp
, pos
, stream
, PREC_SUFFIX
);
13537 fprintf_filtered (stream
, "'%s", ada_attribute_name (op
));
13542 for (tem
= 1; tem
< nargs
; tem
+= 1)
13544 fputs_filtered ((tem
== 1) ? " (" : ", ", stream
);
13545 print_subexp (exp
, pos
, stream
, PREC_ABOVE_COMMA
);
13547 fputs_filtered (")", stream
);
13552 type_print (exp
->elts
[pc
+ 1].type
, "", stream
, 0);
13553 fputs_filtered ("'(", stream
);
13554 print_subexp (exp
, pos
, stream
, PREC_PREFIX
);
13555 fputs_filtered (")", stream
);
13558 case UNOP_IN_RANGE
:
13559 /* XXX: sprint_subexp */
13560 print_subexp (exp
, pos
, stream
, PREC_SUFFIX
);
13561 fputs_filtered (" in ", stream
);
13562 LA_PRINT_TYPE (exp
->elts
[pc
+ 1].type
, "", stream
, 1, 0,
13563 &type_print_raw_options
);
13566 case OP_DISCRETE_RANGE
:
13567 print_subexp (exp
, pos
, stream
, PREC_SUFFIX
);
13568 fputs_filtered ("..", stream
);
13569 print_subexp (exp
, pos
, stream
, PREC_SUFFIX
);
13573 fputs_filtered ("others => ", stream
);
13574 print_subexp (exp
, pos
, stream
, PREC_SUFFIX
);
13578 for (i
= 0; i
< nargs
-1; i
+= 1)
13581 fputs_filtered ("|", stream
);
13582 print_subexp (exp
, pos
, stream
, PREC_SUFFIX
);
13584 fputs_filtered (" => ", stream
);
13585 print_subexp (exp
, pos
, stream
, PREC_SUFFIX
);
13588 case OP_POSITIONAL
:
13589 print_subexp (exp
, pos
, stream
, PREC_SUFFIX
);
13593 fputs_filtered ("(", stream
);
13594 for (i
= 0; i
< nargs
; i
+= 1)
13597 fputs_filtered (", ", stream
);
13598 print_subexp (exp
, pos
, stream
, PREC_SUFFIX
);
13600 fputs_filtered (")", stream
);
13605 /* Table mapping opcodes into strings for printing operators
13606 and precedences of the operators. */
13608 static const struct op_print ada_op_print_tab
[] = {
13609 {":=", BINOP_ASSIGN
, PREC_ASSIGN
, 1},
13610 {"or else", BINOP_LOGICAL_OR
, PREC_LOGICAL_OR
, 0},
13611 {"and then", BINOP_LOGICAL_AND
, PREC_LOGICAL_AND
, 0},
13612 {"or", BINOP_BITWISE_IOR
, PREC_BITWISE_IOR
, 0},
13613 {"xor", BINOP_BITWISE_XOR
, PREC_BITWISE_XOR
, 0},
13614 {"and", BINOP_BITWISE_AND
, PREC_BITWISE_AND
, 0},
13615 {"=", BINOP_EQUAL
, PREC_EQUAL
, 0},
13616 {"/=", BINOP_NOTEQUAL
, PREC_EQUAL
, 0},
13617 {"<=", BINOP_LEQ
, PREC_ORDER
, 0},
13618 {">=", BINOP_GEQ
, PREC_ORDER
, 0},
13619 {">", BINOP_GTR
, PREC_ORDER
, 0},
13620 {"<", BINOP_LESS
, PREC_ORDER
, 0},
13621 {">>", BINOP_RSH
, PREC_SHIFT
, 0},
13622 {"<<", BINOP_LSH
, PREC_SHIFT
, 0},
13623 {"+", BINOP_ADD
, PREC_ADD
, 0},
13624 {"-", BINOP_SUB
, PREC_ADD
, 0},
13625 {"&", BINOP_CONCAT
, PREC_ADD
, 0},
13626 {"*", BINOP_MUL
, PREC_MUL
, 0},
13627 {"/", BINOP_DIV
, PREC_MUL
, 0},
13628 {"rem", BINOP_REM
, PREC_MUL
, 0},
13629 {"mod", BINOP_MOD
, PREC_MUL
, 0},
13630 {"**", BINOP_EXP
, PREC_REPEAT
, 0},
13631 {"@", BINOP_REPEAT
, PREC_REPEAT
, 0},
13632 {"-", UNOP_NEG
, PREC_PREFIX
, 0},
13633 {"+", UNOP_PLUS
, PREC_PREFIX
, 0},
13634 {"not ", UNOP_LOGICAL_NOT
, PREC_PREFIX
, 0},
13635 {"not ", UNOP_COMPLEMENT
, PREC_PREFIX
, 0},
13636 {"abs ", UNOP_ABS
, PREC_PREFIX
, 0},
13637 {".all", UNOP_IND
, PREC_SUFFIX
, 1},
13638 {"'access", UNOP_ADDR
, PREC_SUFFIX
, 1},
13639 {"'size", OP_ATR_SIZE
, PREC_SUFFIX
, 1},
13640 {NULL
, OP_NULL
, PREC_SUFFIX
, 0}
13643 enum ada_primitive_types
{
13644 ada_primitive_type_int
,
13645 ada_primitive_type_long
,
13646 ada_primitive_type_short
,
13647 ada_primitive_type_char
,
13648 ada_primitive_type_float
,
13649 ada_primitive_type_double
,
13650 ada_primitive_type_void
,
13651 ada_primitive_type_long_long
,
13652 ada_primitive_type_long_double
,
13653 ada_primitive_type_natural
,
13654 ada_primitive_type_positive
,
13655 ada_primitive_type_system_address
,
13656 nr_ada_primitive_types
13660 ada_language_arch_info (struct gdbarch
*gdbarch
,
13661 struct language_arch_info
*lai
)
13663 const struct builtin_type
*builtin
= builtin_type (gdbarch
);
13665 lai
->primitive_type_vector
13666 = GDBARCH_OBSTACK_CALLOC (gdbarch
, nr_ada_primitive_types
+ 1,
13669 lai
->primitive_type_vector
[ada_primitive_type_int
]
13670 = arch_integer_type (gdbarch
, gdbarch_int_bit (gdbarch
),
13672 lai
->primitive_type_vector
[ada_primitive_type_long
]
13673 = arch_integer_type (gdbarch
, gdbarch_long_bit (gdbarch
),
13674 0, "long_integer");
13675 lai
->primitive_type_vector
[ada_primitive_type_short
]
13676 = arch_integer_type (gdbarch
, gdbarch_short_bit (gdbarch
),
13677 0, "short_integer");
13678 lai
->string_char_type
13679 = lai
->primitive_type_vector
[ada_primitive_type_char
]
13680 = arch_integer_type (gdbarch
, TARGET_CHAR_BIT
, 0, "character");
13681 lai
->primitive_type_vector
[ada_primitive_type_float
]
13682 = arch_float_type (gdbarch
, gdbarch_float_bit (gdbarch
),
13684 lai
->primitive_type_vector
[ada_primitive_type_double
]
13685 = arch_float_type (gdbarch
, gdbarch_double_bit (gdbarch
),
13686 "long_float", NULL
);
13687 lai
->primitive_type_vector
[ada_primitive_type_long_long
]
13688 = arch_integer_type (gdbarch
, gdbarch_long_long_bit (gdbarch
),
13689 0, "long_long_integer");
13690 lai
->primitive_type_vector
[ada_primitive_type_long_double
]
13691 = arch_float_type (gdbarch
, gdbarch_double_bit (gdbarch
),
13692 "long_long_float", NULL
);
13693 lai
->primitive_type_vector
[ada_primitive_type_natural
]
13694 = arch_integer_type (gdbarch
, gdbarch_int_bit (gdbarch
),
13696 lai
->primitive_type_vector
[ada_primitive_type_positive
]
13697 = arch_integer_type (gdbarch
, gdbarch_int_bit (gdbarch
),
13699 lai
->primitive_type_vector
[ada_primitive_type_void
]
13700 = builtin
->builtin_void
;
13702 lai
->primitive_type_vector
[ada_primitive_type_system_address
]
13703 = lookup_pointer_type (arch_type (gdbarch
, TYPE_CODE_VOID
, 1, "void"));
13704 TYPE_NAME (lai
->primitive_type_vector
[ada_primitive_type_system_address
])
13705 = "system__address";
13707 lai
->bool_type_symbol
= NULL
;
13708 lai
->bool_type_default
= builtin
->builtin_bool
;
13711 /* Language vector */
13713 /* Not really used, but needed in the ada_language_defn. */
13716 emit_char (int c
, struct type
*type
, struct ui_file
*stream
, int quoter
)
13718 ada_emit_char (c
, type
, stream
, quoter
, 1);
13722 parse (struct parser_state
*ps
)
13724 warnings_issued
= 0;
13725 return ada_parse (ps
);
13728 static const struct exp_descriptor ada_exp_descriptor
= {
13730 ada_operator_length
,
13731 ada_operator_check
,
13733 ada_dump_subexp_body
,
13734 ada_evaluate_subexp
13737 /* Implement the "la_get_symbol_name_cmp" language_defn method
13740 static symbol_name_cmp_ftype
13741 ada_get_symbol_name_cmp (const char *lookup_name
)
13743 if (should_use_wild_match (lookup_name
))
13746 return compare_names
;
13749 /* Implement the "la_read_var_value" language_defn method for Ada. */
13751 static struct value
*
13752 ada_read_var_value (struct symbol
*var
, struct frame_info
*frame
)
13754 const struct block
*frame_block
= NULL
;
13755 struct symbol
*renaming_sym
= NULL
;
13757 /* The only case where default_read_var_value is not sufficient
13758 is when VAR is a renaming... */
13760 frame_block
= get_frame_block (frame
, NULL
);
13762 renaming_sym
= ada_find_renaming_symbol (var
, frame_block
);
13763 if (renaming_sym
!= NULL
)
13764 return ada_read_renaming_var_value (renaming_sym
, frame_block
);
13766 /* This is a typical case where we expect the default_read_var_value
13767 function to work. */
13768 return default_read_var_value (var
, frame
);
13771 const struct language_defn ada_language_defn
= {
13772 "ada", /* Language name */
13776 case_sensitive_on
, /* Yes, Ada is case-insensitive, but
13777 that's not quite what this means. */
13779 macro_expansion_no
,
13780 &ada_exp_descriptor
,
13784 ada_printchar
, /* Print a character constant */
13785 ada_printstr
, /* Function to print string constant */
13786 emit_char
, /* Function to print single char (not used) */
13787 ada_print_type
, /* Print a type using appropriate syntax */
13788 ada_print_typedef
, /* Print a typedef using appropriate syntax */
13789 ada_val_print
, /* Print a value using appropriate syntax */
13790 ada_value_print
, /* Print a top-level value */
13791 ada_read_var_value
, /* la_read_var_value */
13792 NULL
, /* Language specific skip_trampoline */
13793 NULL
, /* name_of_this */
13794 ada_lookup_symbol_nonlocal
, /* Looking up non-local symbols. */
13795 basic_lookup_transparent_type
, /* lookup_transparent_type */
13796 ada_la_decode
, /* Language specific symbol demangler */
13797 NULL
, /* Language specific
13798 class_name_from_physname */
13799 ada_op_print_tab
, /* expression operators for printing */
13800 0, /* c-style arrays */
13801 1, /* String lower bound */
13802 ada_get_gdb_completer_word_break_characters
,
13803 ada_make_symbol_completion_list
,
13804 ada_language_arch_info
,
13805 ada_print_array_index
,
13806 default_pass_by_reference
,
13808 ada_get_symbol_name_cmp
, /* la_get_symbol_name_cmp */
13809 ada_iterate_over_symbols
,
13816 /* Provide a prototype to silence -Wmissing-prototypes. */
13817 extern initialize_file_ftype _initialize_ada_language
;
13819 /* Command-list for the "set/show ada" prefix command. */
13820 static struct cmd_list_element
*set_ada_list
;
13821 static struct cmd_list_element
*show_ada_list
;
13823 /* Implement the "set ada" prefix command. */
13826 set_ada_command (char *arg
, int from_tty
)
13828 printf_unfiltered (_(\
13829 "\"set ada\" must be followed by the name of a setting.\n"));
13830 help_list (set_ada_list
, "set ada ", all_commands
, gdb_stdout
);
13833 /* Implement the "show ada" prefix command. */
13836 show_ada_command (char *args
, int from_tty
)
13838 cmd_show_list (show_ada_list
, from_tty
, "");
13842 initialize_ada_catchpoint_ops (void)
13844 struct breakpoint_ops
*ops
;
13846 initialize_breakpoint_ops ();
13848 ops
= &catch_exception_breakpoint_ops
;
13849 *ops
= bkpt_breakpoint_ops
;
13850 ops
->dtor
= dtor_catch_exception
;
13851 ops
->allocate_location
= allocate_location_catch_exception
;
13852 ops
->re_set
= re_set_catch_exception
;
13853 ops
->check_status
= check_status_catch_exception
;
13854 ops
->print_it
= print_it_catch_exception
;
13855 ops
->print_one
= print_one_catch_exception
;
13856 ops
->print_mention
= print_mention_catch_exception
;
13857 ops
->print_recreate
= print_recreate_catch_exception
;
13859 ops
= &catch_exception_unhandled_breakpoint_ops
;
13860 *ops
= bkpt_breakpoint_ops
;
13861 ops
->dtor
= dtor_catch_exception_unhandled
;
13862 ops
->allocate_location
= allocate_location_catch_exception_unhandled
;
13863 ops
->re_set
= re_set_catch_exception_unhandled
;
13864 ops
->check_status
= check_status_catch_exception_unhandled
;
13865 ops
->print_it
= print_it_catch_exception_unhandled
;
13866 ops
->print_one
= print_one_catch_exception_unhandled
;
13867 ops
->print_mention
= print_mention_catch_exception_unhandled
;
13868 ops
->print_recreate
= print_recreate_catch_exception_unhandled
;
13870 ops
= &catch_assert_breakpoint_ops
;
13871 *ops
= bkpt_breakpoint_ops
;
13872 ops
->dtor
= dtor_catch_assert
;
13873 ops
->allocate_location
= allocate_location_catch_assert
;
13874 ops
->re_set
= re_set_catch_assert
;
13875 ops
->check_status
= check_status_catch_assert
;
13876 ops
->print_it
= print_it_catch_assert
;
13877 ops
->print_one
= print_one_catch_assert
;
13878 ops
->print_mention
= print_mention_catch_assert
;
13879 ops
->print_recreate
= print_recreate_catch_assert
;
13882 /* This module's 'new_objfile' observer. */
13885 ada_new_objfile_observer (struct objfile
*objfile
)
13887 ada_clear_symbol_cache ();
13890 /* This module's 'free_objfile' observer. */
13893 ada_free_objfile_observer (struct objfile
*objfile
)
13895 ada_clear_symbol_cache ();
13899 _initialize_ada_language (void)
13901 add_language (&ada_language_defn
);
13903 initialize_ada_catchpoint_ops ();
13905 add_prefix_cmd ("ada", no_class
, set_ada_command
,
13906 _("Prefix command for changing Ada-specfic settings"),
13907 &set_ada_list
, "set ada ", 0, &setlist
);
13909 add_prefix_cmd ("ada", no_class
, show_ada_command
,
13910 _("Generic command for showing Ada-specific settings."),
13911 &show_ada_list
, "show ada ", 0, &showlist
);
13913 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure
,
13914 &trust_pad_over_xvs
, _("\
13915 Enable or disable an optimization trusting PAD types over XVS types"), _("\
13916 Show whether an optimization trusting PAD types over XVS types is activated"),
13918 This is related to the encoding used by the GNAT compiler. The debugger\n\
13919 should normally trust the contents of PAD types, but certain older versions\n\
13920 of GNAT have a bug that sometimes causes the information in the PAD type\n\
13921 to be incorrect. Turning this setting \"off\" allows the debugger to\n\
13922 work around this bug. It is always safe to turn this option \"off\", but\n\
13923 this incurs a slight performance penalty, so it is recommended to NOT change\n\
13924 this option to \"off\" unless necessary."),
13925 NULL
, NULL
, &set_ada_list
, &show_ada_list
);
13927 add_catch_command ("exception", _("\
13928 Catch Ada exceptions, when raised.\n\
13929 With an argument, catch only exceptions with the given name."),
13930 catch_ada_exception_command
,
13934 add_catch_command ("assert", _("\
13935 Catch failed Ada assertions, when raised.\n\
13936 With an argument, catch only exceptions with the given name."),
13937 catch_assert_command
,
13942 varsize_limit
= 65536;
13944 add_info ("exceptions", info_exceptions_command
,
13946 List all Ada exception names.\n\
13947 If a regular expression is passed as an argument, only those matching\n\
13948 the regular expression are listed."));
13950 add_prefix_cmd ("ada", class_maintenance
, maint_set_ada_cmd
,
13951 _("Set Ada maintenance-related variables."),
13952 &maint_set_ada_cmdlist
, "maintenance set ada ",
13953 0/*allow-unknown*/, &maintenance_set_cmdlist
);
13955 add_prefix_cmd ("ada", class_maintenance
, maint_show_ada_cmd
,
13956 _("Show Ada maintenance-related variables"),
13957 &maint_show_ada_cmdlist
, "maintenance show ada ",
13958 0/*allow-unknown*/, &maintenance_show_cmdlist
);
13960 add_setshow_boolean_cmd
13961 ("ignore-descriptive-types", class_maintenance
,
13962 &ada_ignore_descriptive_types_p
,
13963 _("Set whether descriptive types generated by GNAT should be ignored."),
13964 _("Show whether descriptive types generated by GNAT should be ignored."),
13966 When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
13967 DWARF attribute."),
13968 NULL
, NULL
, &maint_set_ada_cmdlist
, &maint_show_ada_cmdlist
);
13970 obstack_init (&symbol_list_obstack
);
13972 decoded_names_store
= htab_create_alloc
13973 (256, htab_hash_string
, (int (*)(const void *, const void *)) streq
,
13974 NULL
, xcalloc
, xfree
);
13976 /* The ada-lang observers. */
13977 observer_attach_new_objfile (ada_new_objfile_observer
);
13978 observer_attach_free_objfile (ada_free_objfile_observer
);
13979 observer_attach_inferior_exit (ada_inferior_exit
);
13981 /* Setup various context-specific data. */
13983 = register_inferior_data_with_cleanup (NULL
, ada_inferior_data_cleanup
);
13984 ada_pspace_data_handle
13985 = register_program_space_data_with_cleanup (NULL
, ada_pspace_data_cleanup
);