1 /* Target-dependent code for the Motorola 88000 series.
3 Copyright (C) 2004-2015 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21 #include "arch-utils.h"
24 #include "frame-base.h"
25 #include "frame-unwind.h"
31 #include "trad-frame.h"
34 #include "m88k-tdep.h"
36 /* Fetch the instruction at PC. */
39 m88k_fetch_instruction (CORE_ADDR pc
, enum bfd_endian byte_order
)
41 return read_memory_unsigned_integer (pc
, 4, byte_order
);
44 /* Register information. */
46 /* Return the name of register REGNUM. */
49 m88k_register_name (struct gdbarch
*gdbarch
, int regnum
)
51 static char *register_names
[] =
53 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
54 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
55 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
56 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
57 "epsr", "fpsr", "fpcr", "sxip", "snip", "sfip"
60 if (regnum
>= 0 && regnum
< ARRAY_SIZE (register_names
))
61 return register_names
[regnum
];
66 /* Return the GDB type object for the "standard" data type of data in
70 m88k_register_type (struct gdbarch
*gdbarch
, int regnum
)
72 /* SXIP, SNIP, SFIP and R1 contain code addresses. */
73 if ((regnum
>= M88K_SXIP_REGNUM
&& regnum
<= M88K_SFIP_REGNUM
)
74 || regnum
== M88K_R1_REGNUM
)
75 return builtin_type (gdbarch
)->builtin_func_ptr
;
77 /* R30 and R31 typically contains data addresses. */
78 if (regnum
== M88K_R30_REGNUM
|| regnum
== M88K_R31_REGNUM
)
79 return builtin_type (gdbarch
)->builtin_data_ptr
;
81 return builtin_type (gdbarch
)->builtin_int32
;
86 m88k_addr_bits_remove (struct gdbarch
*gdbarch
, CORE_ADDR addr
)
88 /* All instructures are 4-byte aligned. The lower 2 bits of SXIP,
89 SNIP and SFIP are used for special purposes: bit 0 is the
90 exception bit and bit 1 is the valid bit. */
94 /* Use the program counter to determine the contents and size of a
95 breakpoint instruction. Return a pointer to a string of bytes that
96 encode a breakpoint instruction, store the length of the string in
97 *LEN and optionally adjust *PC to point to the correct memory
98 location for inserting the breakpoint. */
100 static const gdb_byte
*
101 m88k_breakpoint_from_pc (struct gdbarch
*gdbarch
, CORE_ADDR
*pc
, int *len
)
104 static gdb_byte break_insn
[] = { 0xf0, 0x00, 0xd1, 0xff };
106 *len
= sizeof (break_insn
);
111 m88k_unwind_pc (struct gdbarch
*gdbarch
, struct frame_info
*next_frame
)
115 pc
= frame_unwind_register_unsigned (next_frame
, M88K_SXIP_REGNUM
);
116 return m88k_addr_bits_remove (gdbarch
, pc
);
120 m88k_write_pc (struct regcache
*regcache
, CORE_ADDR pc
)
122 /* According to the MC88100 RISC Microprocessor User's Manual,
125 "... can be made to return to a particular instruction by placing
126 a valid instruction address in the SNIP and the next sequential
127 instruction address in the SFIP (with V bits set and E bits
128 clear). The rte resumes execution at the instruction pointed to
129 by the SNIP, then the SFIP."
131 The E bit is the least significant bit (bit 0). The V (valid)
132 bit is bit 1. This is why we logical or 2 into the values we are
133 writing below. It turns out that SXIP plays no role when
134 returning from an exception so nothing special has to be done
135 with it. We could even (presumably) give it a totally bogus
138 regcache_cooked_write_unsigned (regcache
, M88K_SXIP_REGNUM
, pc
);
139 regcache_cooked_write_unsigned (regcache
, M88K_SNIP_REGNUM
, pc
| 2);
140 regcache_cooked_write_unsigned (regcache
, M88K_SFIP_REGNUM
, (pc
+ 4) | 2);
144 /* The functions on this page are intended to be used to classify
145 function arguments. */
147 /* Check whether TYPE is "Integral or Pointer". */
150 m88k_integral_or_pointer_p (const struct type
*type
)
152 switch (TYPE_CODE (type
))
158 case TYPE_CODE_RANGE
:
160 /* We have byte, half-word, word and extended-word/doubleword
162 int len
= TYPE_LENGTH (type
);
163 return (len
== 1 || len
== 2 || len
== 4 || len
== 8);
169 /* Allow only 32-bit pointers. */
170 return (TYPE_LENGTH (type
) == 4);
180 /* Check whether TYPE is "Floating". */
183 m88k_floating_p (const struct type
*type
)
185 switch (TYPE_CODE (type
))
189 int len
= TYPE_LENGTH (type
);
190 return (len
== 4 || len
== 8);
199 /* Check whether TYPE is "Structure or Union". */
202 m88k_structure_or_union_p (const struct type
*type
)
204 switch (TYPE_CODE (type
))
206 case TYPE_CODE_STRUCT
:
207 case TYPE_CODE_UNION
:
216 /* Check whether TYPE has 8-byte alignment. */
219 m88k_8_byte_align_p (struct type
*type
)
221 if (m88k_structure_or_union_p (type
))
225 for (i
= 0; i
< TYPE_NFIELDS (type
); i
++)
227 struct type
*subtype
= check_typedef (TYPE_FIELD_TYPE (type
, i
));
229 if (m88k_8_byte_align_p (subtype
))
234 if (m88k_integral_or_pointer_p (type
) || m88k_floating_p (type
))
235 return (TYPE_LENGTH (type
) == 8);
240 /* Check whether TYPE can be passed in a register. */
243 m88k_in_register_p (struct type
*type
)
245 if (m88k_integral_or_pointer_p (type
) || m88k_floating_p (type
))
248 if (m88k_structure_or_union_p (type
) && TYPE_LENGTH (type
) == 4)
255 m88k_store_arguments (struct regcache
*regcache
, int nargs
,
256 struct value
**args
, CORE_ADDR sp
)
258 struct gdbarch
*gdbarch
= get_regcache_arch (regcache
);
259 int num_register_words
= 0;
260 int num_stack_words
= 0;
263 for (i
= 0; i
< nargs
; i
++)
265 struct type
*type
= value_type (args
[i
]);
266 int len
= TYPE_LENGTH (type
);
268 if (m88k_integral_or_pointer_p (type
) && len
< 4)
270 args
[i
] = value_cast (builtin_type (gdbarch
)->builtin_int32
,
272 type
= value_type (args
[i
]);
273 len
= TYPE_LENGTH (type
);
276 if (m88k_in_register_p (type
))
280 if (num_register_words
% 2 == 1 && m88k_8_byte_align_p (type
))
283 num_words
+= ((len
+ 3) / 4);
284 if (num_register_words
+ num_words
<= 8)
286 num_register_words
+= num_words
;
290 /* We've run out of available registers. Pass the argument
294 if (num_stack_words
% 2 == 1 && m88k_8_byte_align_p (type
))
297 num_stack_words
+= ((len
+ 3) / 4);
300 /* Allocate stack space. */
301 sp
= align_down (sp
- 32 - num_stack_words
* 4, 16);
302 num_stack_words
= num_register_words
= 0;
304 for (i
= 0; i
< nargs
; i
++)
306 const bfd_byte
*valbuf
= value_contents (args
[i
]);
307 struct type
*type
= value_type (args
[i
]);
308 int len
= TYPE_LENGTH (type
);
309 int stack_word
= num_stack_words
;
311 if (m88k_in_register_p (type
))
313 int register_word
= num_register_words
;
315 if (register_word
% 2 == 1 && m88k_8_byte_align_p (type
))
318 gdb_assert (len
== 4 || len
== 8);
320 if (register_word
+ len
/ 8 < 8)
322 int regnum
= M88K_R2_REGNUM
+ register_word
;
324 regcache_raw_write (regcache
, regnum
, valbuf
);
326 regcache_raw_write (regcache
, regnum
+ 1, valbuf
+ 4);
328 num_register_words
= (register_word
+ len
/ 4);
333 if (stack_word
% 2 == -1 && m88k_8_byte_align_p (type
))
336 write_memory (sp
+ stack_word
* 4, valbuf
, len
);
337 num_stack_words
= (stack_word
+ (len
+ 3) / 4);
344 m88k_push_dummy_call (struct gdbarch
*gdbarch
, struct value
*function
,
345 struct regcache
*regcache
, CORE_ADDR bp_addr
, int nargs
,
346 struct value
**args
, CORE_ADDR sp
, int struct_return
,
347 CORE_ADDR struct_addr
)
349 /* Set up the function arguments. */
350 sp
= m88k_store_arguments (regcache
, nargs
, args
, sp
);
351 gdb_assert (sp
% 16 == 0);
353 /* Store return value address. */
355 regcache_raw_write_unsigned (regcache
, M88K_R12_REGNUM
, struct_addr
);
357 /* Store the stack pointer and return address in the appropriate
359 regcache_raw_write_unsigned (regcache
, M88K_R31_REGNUM
, sp
);
360 regcache_raw_write_unsigned (regcache
, M88K_R1_REGNUM
, bp_addr
);
362 /* Return the stack pointer. */
366 static struct frame_id
367 m88k_dummy_id (struct gdbarch
*arch
, struct frame_info
*this_frame
)
371 sp
= get_frame_register_unsigned (this_frame
, M88K_R31_REGNUM
);
372 return frame_id_build (sp
, get_frame_pc (this_frame
));
376 /* Determine, for architecture GDBARCH, how a return value of TYPE
377 should be returned. If it is supposed to be returned in registers,
378 and READBUF is non-zero, read the appropriate value from REGCACHE,
379 and copy it into READBUF. If WRITEBUF is non-zero, write the value
380 from WRITEBUF into REGCACHE. */
382 static enum return_value_convention
383 m88k_return_value (struct gdbarch
*gdbarch
, struct value
*function
,
384 struct type
*type
, struct regcache
*regcache
,
385 gdb_byte
*readbuf
, const gdb_byte
*writebuf
)
387 int len
= TYPE_LENGTH (type
);
390 if (!m88k_integral_or_pointer_p (type
) && !m88k_floating_p (type
))
391 return RETURN_VALUE_STRUCT_CONVENTION
;
395 /* Read the contents of R2 and (if necessary) R3. */
396 regcache_cooked_read (regcache
, M88K_R2_REGNUM
, buf
);
399 regcache_cooked_read (regcache
, M88K_R3_REGNUM
, buf
+ 4);
400 gdb_assert (len
== 8);
401 memcpy (readbuf
, buf
, len
);
405 /* Just stripping off any unused bytes should preserve the
406 signed-ness just fine. */
407 memcpy (readbuf
, buf
+ 4 - len
, len
);
413 /* Read the contents to R2 and (if necessary) R3. */
416 gdb_assert (len
== 8);
417 memcpy (buf
, writebuf
, 8);
418 regcache_cooked_write (regcache
, M88K_R3_REGNUM
, buf
+ 4);
422 /* ??? Do we need to do any sign-extension here? */
423 memcpy (buf
+ 4 - len
, writebuf
, len
);
425 regcache_cooked_write (regcache
, M88K_R2_REGNUM
, buf
);
428 return RETURN_VALUE_REGISTER_CONVENTION
;
431 /* Default frame unwinder. */
433 struct m88k_frame_cache
442 /* Table of saved registers. */
443 struct trad_frame_saved_reg
*saved_regs
;
446 /* Prologue analysis. */
448 /* Macros for extracting fields from instructions. */
450 #define BITMASK(pos, width) (((0x1 << (width)) - 1) << (pos))
451 #define EXTRACT_FIELD(val, pos, width) ((val) >> (pos) & BITMASK (0, width))
452 #define SUBU_OFFSET(x) ((unsigned)(x & 0xFFFF))
453 #define ST_OFFSET(x) ((unsigned)((x) & 0xFFFF))
454 #define ST_SRC(x) EXTRACT_FIELD ((x), 21, 5)
455 #define ADDU_OFFSET(x) ((unsigned)(x & 0xFFFF))
457 /* Possible actions to be taken by the prologue analyzer for the
458 instructions it encounters. */
460 enum m88k_prologue_insn_action
462 M88K_PIA_SKIP
, /* Ignore. */
463 M88K_PIA_NOTE_ST
, /* Note register store. */
464 M88K_PIA_NOTE_STD
, /* Note register pair store. */
465 M88K_PIA_NOTE_SP_ADJUSTMENT
, /* Note stack pointer adjustment. */
466 M88K_PIA_NOTE_FP_ASSIGNMENT
, /* Note frame pointer assignment. */
467 M88K_PIA_NOTE_BRANCH
, /* Note branch. */
468 M88K_PIA_NOTE_PROLOGUE_END
/* Note end of prologue. */
471 /* Table of instructions that may comprise a function prologue. */
473 struct m88k_prologue_insn
477 enum m88k_prologue_insn_action action
;
480 struct m88k_prologue_insn m88k_prologue_insn_table
[] =
482 /* Various register move instructions. */
483 { 0x58000000, 0xf800ffff, M88K_PIA_SKIP
}, /* or/or.u with immed of 0 */
484 { 0xf4005800, 0xfc1fffe0, M88K_PIA_SKIP
}, /* or rd,r0,rs */
485 { 0xf4005800, 0xfc00ffff, M88K_PIA_SKIP
}, /* or rd,rs,r0 */
487 /* Various other instructions. */
488 { 0x58000000, 0xf8000000, M88K_PIA_SKIP
}, /* or/or.u */
490 /* Stack pointer setup: "subu sp,sp,n" where n is a multiple of 8. */
491 { 0x67ff0000, 0xffff0007, M88K_PIA_NOTE_SP_ADJUSTMENT
},
493 /* Frame pointer assignment: "addu r30,r31,n". */
494 { 0x63df0000, 0xffff0000, M88K_PIA_NOTE_FP_ASSIGNMENT
},
496 /* Store to stack instructions; either "st rx,sp,n" or "st.d rx,sp,n". */
497 { 0x241f0000, 0xfc1f0000, M88K_PIA_NOTE_ST
}, /* st rx,sp,n */
498 { 0x201f0000, 0xfc1f0000, M88K_PIA_NOTE_STD
}, /* st.d rs,sp,n */
500 /* Instructions needed for setting up r25 for pic code. */
501 { 0x5f200000, 0xffff0000, M88K_PIA_SKIP
}, /* or.u r25,r0,offset_high */
502 { 0xcc000002, 0xffffffff, M88K_PIA_SKIP
}, /* bsr.n Lab */
503 { 0x5b390000, 0xffff0000, M88K_PIA_SKIP
}, /* or r25,r25,offset_low */
504 { 0xf7396001, 0xffffffff, M88K_PIA_SKIP
}, /* Lab: addu r25,r25,r1 */
506 /* Various branch or jump instructions which have a delay slot --
507 these do not form part of the prologue, but the instruction in
508 the delay slot might be a store instruction which should be
510 { 0xc4000000, 0xe4000000, M88K_PIA_NOTE_BRANCH
},
511 /* br.n, bsr.n, bb0.n, or bb1.n */
512 { 0xec000000, 0xfc000000, M88K_PIA_NOTE_BRANCH
}, /* bcnd.n */
513 { 0xf400c400, 0xfffff7e0, M88K_PIA_NOTE_BRANCH
}, /* jmp.n or jsr.n */
515 /* Catch all. Ends prologue analysis. */
516 { 0x00000000, 0x00000000, M88K_PIA_NOTE_PROLOGUE_END
}
519 /* Do a full analysis of the function prologue at PC and update CACHE
520 accordingly. Bail out early if LIMIT is reached. Return the
521 address where the analysis stopped. If LIMIT points beyond the
522 function prologue, the return address should be the end of the
526 m88k_analyze_prologue (struct gdbarch
*gdbarch
,
527 CORE_ADDR pc
, CORE_ADDR limit
,
528 struct m88k_frame_cache
*cache
)
530 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
531 CORE_ADDR end
= limit
;
533 /* Provide a dummy cache if necessary. */
536 size_t sizeof_saved_regs
=
537 (M88K_R31_REGNUM
+ 1) * sizeof (struct trad_frame_saved_reg
);
539 cache
= alloca (sizeof (struct m88k_frame_cache
));
540 cache
->saved_regs
= alloca (sizeof_saved_regs
);
542 /* We only initialize the members we care about. */
543 cache
->saved_regs
[M88K_R1_REGNUM
].addr
= -1;
544 cache
->fp_offset
= -1;
549 struct m88k_prologue_insn
*pi
= m88k_prologue_insn_table
;
550 unsigned long insn
= m88k_fetch_instruction (pc
, byte_order
);
552 while ((insn
& pi
->mask
) != pi
->insn
)
558 /* If we have a frame pointer, and R1 has been saved,
559 consider this instruction as not being part of the
561 if (cache
->fp_offset
!= -1
562 && cache
->saved_regs
[M88K_R1_REGNUM
].addr
!= -1)
563 return min (pc
, end
);
566 case M88K_PIA_NOTE_ST
:
567 case M88K_PIA_NOTE_STD
:
568 /* If no frame has been allocated, the stores aren't part of
570 if (cache
->sp_offset
== 0)
571 return min (pc
, end
);
573 /* Record location of saved registers. */
575 int regnum
= ST_SRC (insn
) + M88K_R0_REGNUM
;
576 ULONGEST offset
= ST_OFFSET (insn
);
578 cache
->saved_regs
[regnum
].addr
= offset
;
579 if (pi
->action
== M88K_PIA_NOTE_STD
&& regnum
< M88K_R31_REGNUM
)
580 cache
->saved_regs
[regnum
+ 1].addr
= offset
+ 4;
584 case M88K_PIA_NOTE_SP_ADJUSTMENT
:
585 /* A second stack pointer adjustment isn't part of the
587 if (cache
->sp_offset
!= 0)
588 return min (pc
, end
);
590 /* Store stack pointer adjustment. */
591 cache
->sp_offset
= -SUBU_OFFSET (insn
);
594 case M88K_PIA_NOTE_FP_ASSIGNMENT
:
595 /* A second frame pointer assignment isn't part of the
597 if (cache
->fp_offset
!= -1)
598 return min (pc
, end
);
600 /* Record frame pointer assignment. */
601 cache
->fp_offset
= ADDU_OFFSET (insn
);
604 case M88K_PIA_NOTE_BRANCH
:
605 /* The branch instruction isn't part of the prologue, but
606 the instruction in the delay slot might be. Limit the
607 prologue analysis to the delay slot and record the branch
608 instruction as the end of the prologue. */
609 limit
= min (limit
, pc
+ 2 * M88K_INSN_SIZE
);
613 case M88K_PIA_NOTE_PROLOGUE_END
:
614 return min (pc
, end
);
617 pc
+= M88K_INSN_SIZE
;
623 /* An upper limit to the size of the prologue. */
624 const int m88k_max_prologue_size
= 128 * M88K_INSN_SIZE
;
626 /* Return the address of first real instruction of the function
630 m88k_skip_prologue (struct gdbarch
*gdbarch
, CORE_ADDR pc
)
632 struct symtab_and_line sal
;
633 CORE_ADDR func_start
, func_end
;
635 /* This is the preferred method, find the end of the prologue by
636 using the debugging information. */
637 if (find_pc_partial_function (pc
, NULL
, &func_start
, &func_end
))
639 sal
= find_pc_line (func_start
, 0);
641 if (sal
.end
< func_end
&& pc
<= sal
.end
)
645 return m88k_analyze_prologue (gdbarch
, pc
, pc
+ m88k_max_prologue_size
,
649 static struct m88k_frame_cache
*
650 m88k_frame_cache (struct frame_info
*this_frame
, void **this_cache
)
652 struct gdbarch
*gdbarch
= get_frame_arch (this_frame
);
653 struct m88k_frame_cache
*cache
;
659 cache
= FRAME_OBSTACK_ZALLOC (struct m88k_frame_cache
);
660 cache
->saved_regs
= trad_frame_alloc_saved_regs (this_frame
);
661 cache
->fp_offset
= -1;
663 cache
->pc
= get_frame_func (this_frame
);
665 m88k_analyze_prologue (gdbarch
, cache
->pc
, get_frame_pc (this_frame
),
668 /* Calculate the stack pointer used in the prologue. */
669 if (cache
->fp_offset
!= -1)
673 fp
= get_frame_register_unsigned (this_frame
, M88K_R30_REGNUM
);
674 frame_sp
= fp
- cache
->fp_offset
;
678 /* If we know where the return address is saved, we can take a
679 solid guess at what the frame pointer should be. */
680 if (cache
->saved_regs
[M88K_R1_REGNUM
].addr
!= -1)
681 cache
->fp_offset
= cache
->saved_regs
[M88K_R1_REGNUM
].addr
- 4;
682 frame_sp
= get_frame_register_unsigned (this_frame
, M88K_R31_REGNUM
);
685 /* Now that we know the stack pointer, adjust the location of the
690 for (regnum
= M88K_R0_REGNUM
; regnum
< M88K_R31_REGNUM
; regnum
++)
691 if (cache
->saved_regs
[regnum
].addr
!= -1)
692 cache
->saved_regs
[regnum
].addr
+= frame_sp
;
695 /* Calculate the frame's base. */
696 cache
->base
= frame_sp
- cache
->sp_offset
;
697 trad_frame_set_value (cache
->saved_regs
, M88K_R31_REGNUM
, cache
->base
);
699 /* Identify SXIP with the return address in R1. */
700 cache
->saved_regs
[M88K_SXIP_REGNUM
] = cache
->saved_regs
[M88K_R1_REGNUM
];
707 m88k_frame_this_id (struct frame_info
*this_frame
, void **this_cache
,
708 struct frame_id
*this_id
)
710 struct m88k_frame_cache
*cache
= m88k_frame_cache (this_frame
, this_cache
);
712 /* This marks the outermost frame. */
713 if (cache
->base
== 0)
716 (*this_id
) = frame_id_build (cache
->base
, cache
->pc
);
719 static struct value
*
720 m88k_frame_prev_register (struct frame_info
*this_frame
,
721 void **this_cache
, int regnum
)
723 struct m88k_frame_cache
*cache
= m88k_frame_cache (this_frame
, this_cache
);
725 if (regnum
== M88K_SNIP_REGNUM
|| regnum
== M88K_SFIP_REGNUM
)
730 value
= trad_frame_get_prev_register (this_frame
, cache
->saved_regs
,
732 pc
= value_as_long (value
);
733 release_value (value
);
736 if (regnum
== M88K_SFIP_REGNUM
)
739 return frame_unwind_got_constant (this_frame
, regnum
, pc
+ 4);
742 return trad_frame_get_prev_register (this_frame
, cache
->saved_regs
, regnum
);
745 static const struct frame_unwind m88k_frame_unwind
=
748 default_frame_unwind_stop_reason
,
750 m88k_frame_prev_register
,
752 default_frame_sniffer
757 m88k_frame_base_address (struct frame_info
*this_frame
, void **this_cache
)
759 struct m88k_frame_cache
*cache
= m88k_frame_cache (this_frame
, this_cache
);
761 if (cache
->fp_offset
!= -1)
762 return cache
->base
+ cache
->sp_offset
+ cache
->fp_offset
;
767 static const struct frame_base m88k_frame_base
=
770 m88k_frame_base_address
,
771 m88k_frame_base_address
,
772 m88k_frame_base_address
776 /* Core file support. */
778 /* Supply register REGNUM from the buffer specified by GREGS and LEN
779 in the general-purpose register set REGSET to register cache
780 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
783 m88k_supply_gregset (const struct regset
*regset
,
784 struct regcache
*regcache
,
785 int regnum
, const void *gregs
, size_t len
)
787 const gdb_byte
*regs
= gregs
;
790 for (i
= 0; i
< M88K_NUM_REGS
; i
++)
792 if (regnum
== i
|| regnum
== -1)
793 regcache_raw_supply (regcache
, i
, regs
+ i
* 4);
797 /* Motorola 88000 register set. */
799 static const struct regset m88k_gregset
=
805 /* Iterate over supported core file register note sections. */
808 m88k_iterate_over_regset_sections (struct gdbarch
*gdbarch
,
809 iterate_over_regset_sections_cb
*cb
,
811 const struct regcache
*regcache
)
813 cb (".reg", M88K_NUM_REGS
* 4, &m88k_gregset
, NULL
, cb_data
);
817 static struct gdbarch
*
818 m88k_gdbarch_init (struct gdbarch_info info
, struct gdbarch_list
*arches
)
820 struct gdbarch
*gdbarch
;
822 /* If there is already a candidate, use it. */
823 arches
= gdbarch_list_lookup_by_info (arches
, &info
);
825 return arches
->gdbarch
;
827 /* Allocate space for the new architecture. */
828 gdbarch
= gdbarch_alloc (&info
, NULL
);
830 /* There is no real `long double'. */
831 set_gdbarch_long_double_bit (gdbarch
, 64);
832 set_gdbarch_long_double_format (gdbarch
, floatformats_ieee_double
);
834 set_gdbarch_num_regs (gdbarch
, M88K_NUM_REGS
);
835 set_gdbarch_register_name (gdbarch
, m88k_register_name
);
836 set_gdbarch_register_type (gdbarch
, m88k_register_type
);
838 /* Register numbers of various important registers. */
839 set_gdbarch_sp_regnum (gdbarch
, M88K_R31_REGNUM
);
840 set_gdbarch_pc_regnum (gdbarch
, M88K_SXIP_REGNUM
);
842 /* Core file support. */
843 set_gdbarch_iterate_over_regset_sections
844 (gdbarch
, m88k_iterate_over_regset_sections
);
846 set_gdbarch_print_insn (gdbarch
, print_insn_m88k
);
848 set_gdbarch_skip_prologue (gdbarch
, m88k_skip_prologue
);
850 /* Stack grows downward. */
851 set_gdbarch_inner_than (gdbarch
, core_addr_lessthan
);
853 /* Call dummy code. */
854 set_gdbarch_push_dummy_call (gdbarch
, m88k_push_dummy_call
);
855 set_gdbarch_dummy_id (gdbarch
, m88k_dummy_id
);
857 /* Return value info. */
858 set_gdbarch_return_value (gdbarch
, m88k_return_value
);
860 set_gdbarch_addr_bits_remove (gdbarch
, m88k_addr_bits_remove
);
861 set_gdbarch_breakpoint_from_pc (gdbarch
, m88k_breakpoint_from_pc
);
862 set_gdbarch_unwind_pc (gdbarch
, m88k_unwind_pc
);
863 set_gdbarch_write_pc (gdbarch
, m88k_write_pc
);
865 frame_base_set_default (gdbarch
, &m88k_frame_base
);
866 frame_unwind_append_unwinder (gdbarch
, &m88k_frame_unwind
);
872 /* Provide a prototype to silence -Wmissing-prototypes. */
873 void _initialize_m88k_tdep (void);
876 _initialize_m88k_tdep (void)
878 gdbarch_register (bfd_arch_m88k
, m88k_gdbarch_init
, NULL
);