ignore invalid DOF provider sections
[binutils-gdb.git] / gdb / s390-linux-tdep.c
blob32a5ed6aa191cdef92ad6da9c40536e96ec7f4a5
1 /* Target-dependent code for GDB, the GNU debugger.
3 Copyright (C) 2001-2015 Free Software Foundation, Inc.
5 Contributed by D.J. Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com)
6 for IBM Deutschland Entwicklung GmbH, IBM Corporation.
8 This file is part of GDB.
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23 #include "defs.h"
24 #include "arch-utils.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "infrun.h"
28 #include "symtab.h"
29 #include "target.h"
30 #include "gdbcore.h"
31 #include "gdbcmd.h"
32 #include "objfiles.h"
33 #include "floatformat.h"
34 #include "regcache.h"
35 #include "trad-frame.h"
36 #include "frame-base.h"
37 #include "frame-unwind.h"
38 #include "dwarf2-frame.h"
39 #include "reggroups.h"
40 #include "regset.h"
41 #include "value.h"
42 #include "dis-asm.h"
43 #include "solib-svr4.h"
44 #include "prologue-value.h"
45 #include "linux-tdep.h"
46 #include "s390-linux-tdep.h"
47 #include "auxv.h"
48 #include "xml-syscall.h"
50 #include "stap-probe.h"
51 #include "ax.h"
52 #include "ax-gdb.h"
53 #include "user-regs.h"
54 #include "cli/cli-utils.h"
55 #include <ctype.h>
56 #include "elf/common.h"
57 #include "elf/s390.h"
58 #include "elf-bfd.h"
60 #include "features/s390-linux32.c"
61 #include "features/s390-linux32v1.c"
62 #include "features/s390-linux32v2.c"
63 #include "features/s390-linux64.c"
64 #include "features/s390-linux64v1.c"
65 #include "features/s390-linux64v2.c"
66 #include "features/s390-te-linux64.c"
67 #include "features/s390-vx-linux64.c"
68 #include "features/s390-tevx-linux64.c"
69 #include "features/s390x-linux64.c"
70 #include "features/s390x-linux64v1.c"
71 #include "features/s390x-linux64v2.c"
72 #include "features/s390x-te-linux64.c"
73 #include "features/s390x-vx-linux64.c"
74 #include "features/s390x-tevx-linux64.c"
76 #define XML_SYSCALL_FILENAME_S390 "syscalls/s390-linux.xml"
77 #define XML_SYSCALL_FILENAME_S390X "syscalls/s390x-linux.xml"
79 enum s390_abi_kind
81 ABI_LINUX_S390,
82 ABI_LINUX_ZSERIES
85 enum s390_vector_abi_kind
87 S390_VECTOR_ABI_NONE,
88 S390_VECTOR_ABI_128
91 /* The tdep structure. */
93 struct gdbarch_tdep
95 /* ABI version. */
96 enum s390_abi_kind abi;
98 /* Vector ABI. */
99 enum s390_vector_abi_kind vector_abi;
101 /* Pseudo register numbers. */
102 int gpr_full_regnum;
103 int pc_regnum;
104 int cc_regnum;
105 int v0_full_regnum;
107 int have_linux_v1;
108 int have_linux_v2;
109 int have_tdb;
113 /* ABI call-saved register information. */
115 static int
116 s390_register_call_saved (struct gdbarch *gdbarch, int regnum)
118 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
120 switch (tdep->abi)
122 case ABI_LINUX_S390:
123 if ((regnum >= S390_R6_REGNUM && regnum <= S390_R15_REGNUM)
124 || regnum == S390_F4_REGNUM || regnum == S390_F6_REGNUM
125 || regnum == S390_A0_REGNUM)
126 return 1;
128 break;
130 case ABI_LINUX_ZSERIES:
131 if ((regnum >= S390_R6_REGNUM && regnum <= S390_R15_REGNUM)
132 || (regnum >= S390_F8_REGNUM && regnum <= S390_F15_REGNUM)
133 || (regnum >= S390_A0_REGNUM && regnum <= S390_A1_REGNUM))
134 return 1;
136 break;
139 return 0;
142 static int
143 s390_cannot_store_register (struct gdbarch *gdbarch, int regnum)
145 /* The last-break address is read-only. */
146 return regnum == S390_LAST_BREAK_REGNUM;
149 static void
150 s390_write_pc (struct regcache *regcache, CORE_ADDR pc)
152 struct gdbarch *gdbarch = get_regcache_arch (regcache);
153 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
155 regcache_cooked_write_unsigned (regcache, tdep->pc_regnum, pc);
157 /* Set special SYSTEM_CALL register to 0 to prevent the kernel from
158 messing with the PC we just installed, if we happen to be within
159 an interrupted system call that the kernel wants to restart.
161 Note that after we return from the dummy call, the SYSTEM_CALL and
162 ORIG_R2 registers will be automatically restored, and the kernel
163 continues to restart the system call at this point. */
164 if (register_size (gdbarch, S390_SYSTEM_CALL_REGNUM) > 0)
165 regcache_cooked_write_unsigned (regcache, S390_SYSTEM_CALL_REGNUM, 0);
169 /* DWARF Register Mapping. */
171 static const short s390_dwarf_regmap[] =
173 /* 0-15: General Purpose Registers. */
174 S390_R0_REGNUM, S390_R1_REGNUM, S390_R2_REGNUM, S390_R3_REGNUM,
175 S390_R4_REGNUM, S390_R5_REGNUM, S390_R6_REGNUM, S390_R7_REGNUM,
176 S390_R8_REGNUM, S390_R9_REGNUM, S390_R10_REGNUM, S390_R11_REGNUM,
177 S390_R12_REGNUM, S390_R13_REGNUM, S390_R14_REGNUM, S390_R15_REGNUM,
179 /* 16-31: Floating Point Registers / Vector Registers 0-15. */
180 S390_F0_REGNUM, S390_F2_REGNUM, S390_F4_REGNUM, S390_F6_REGNUM,
181 S390_F1_REGNUM, S390_F3_REGNUM, S390_F5_REGNUM, S390_F7_REGNUM,
182 S390_F8_REGNUM, S390_F10_REGNUM, S390_F12_REGNUM, S390_F14_REGNUM,
183 S390_F9_REGNUM, S390_F11_REGNUM, S390_F13_REGNUM, S390_F15_REGNUM,
185 /* 32-47: Control Registers (not mapped). */
186 -1, -1, -1, -1, -1, -1, -1, -1,
187 -1, -1, -1, -1, -1, -1, -1, -1,
189 /* 48-63: Access Registers. */
190 S390_A0_REGNUM, S390_A1_REGNUM, S390_A2_REGNUM, S390_A3_REGNUM,
191 S390_A4_REGNUM, S390_A5_REGNUM, S390_A6_REGNUM, S390_A7_REGNUM,
192 S390_A8_REGNUM, S390_A9_REGNUM, S390_A10_REGNUM, S390_A11_REGNUM,
193 S390_A12_REGNUM, S390_A13_REGNUM, S390_A14_REGNUM, S390_A15_REGNUM,
195 /* 64-65: Program Status Word. */
196 S390_PSWM_REGNUM,
197 S390_PSWA_REGNUM,
199 /* 66-67: Reserved. */
200 -1, -1,
202 /* 68-83: Vector Registers 16-31. */
203 S390_V16_REGNUM, S390_V18_REGNUM, S390_V20_REGNUM, S390_V22_REGNUM,
204 S390_V17_REGNUM, S390_V19_REGNUM, S390_V21_REGNUM, S390_V23_REGNUM,
205 S390_V24_REGNUM, S390_V26_REGNUM, S390_V28_REGNUM, S390_V30_REGNUM,
206 S390_V25_REGNUM, S390_V27_REGNUM, S390_V29_REGNUM, S390_V31_REGNUM,
208 /* End of "official" DWARF registers. The remainder of the map is
209 for GDB internal use only. */
211 /* GPR Lower Half Access. */
212 S390_R0_REGNUM, S390_R1_REGNUM, S390_R2_REGNUM, S390_R3_REGNUM,
213 S390_R4_REGNUM, S390_R5_REGNUM, S390_R6_REGNUM, S390_R7_REGNUM,
214 S390_R8_REGNUM, S390_R9_REGNUM, S390_R10_REGNUM, S390_R11_REGNUM,
215 S390_R12_REGNUM, S390_R13_REGNUM, S390_R14_REGNUM, S390_R15_REGNUM,
218 enum { s390_dwarf_reg_r0l = ARRAY_SIZE (s390_dwarf_regmap) - 16 };
220 /* Convert DWARF register number REG to the appropriate register
221 number used by GDB. */
222 static int
223 s390_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
225 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
226 int gdb_reg = -1;
228 /* In a 32-on-64 debug scenario, debug info refers to the full
229 64-bit GPRs. Note that call frame information still refers to
230 the 32-bit lower halves, because s390_adjust_frame_regnum uses
231 special register numbers to access GPRs. */
232 if (tdep->gpr_full_regnum != -1 && reg >= 0 && reg < 16)
233 return tdep->gpr_full_regnum + reg;
235 if (reg >= 0 && reg < ARRAY_SIZE (s390_dwarf_regmap))
236 gdb_reg = s390_dwarf_regmap[reg];
238 if (tdep->v0_full_regnum == -1)
240 if (gdb_reg >= S390_V16_REGNUM && gdb_reg <= S390_V31_REGNUM)
241 gdb_reg = -1;
243 else
245 if (gdb_reg >= S390_F0_REGNUM && gdb_reg <= S390_F15_REGNUM)
246 gdb_reg = gdb_reg - S390_F0_REGNUM + tdep->v0_full_regnum;
249 return gdb_reg;
252 /* Translate a .eh_frame register to DWARF register, or adjust a
253 .debug_frame register. */
254 static int
255 s390_adjust_frame_regnum (struct gdbarch *gdbarch, int num, int eh_frame_p)
257 /* See s390_dwarf_reg_to_regnum for comments. */
258 return (num >= 0 && num < 16) ? num + s390_dwarf_reg_r0l : num;
262 /* Pseudo registers. */
264 static int
265 regnum_is_gpr_full (struct gdbarch_tdep *tdep, int regnum)
267 return (tdep->gpr_full_regnum != -1
268 && regnum >= tdep->gpr_full_regnum
269 && regnum <= tdep->gpr_full_regnum + 15);
272 /* Check whether REGNUM indicates a full vector register (v0-v15).
273 These pseudo-registers are composed of f0-f15 and v0l-v15l. */
275 static int
276 regnum_is_vxr_full (struct gdbarch_tdep *tdep, int regnum)
278 return (tdep->v0_full_regnum != -1
279 && regnum >= tdep->v0_full_regnum
280 && regnum <= tdep->v0_full_regnum + 15);
283 /* Return the name of register REGNO. Return the empty string for
284 registers that shouldn't be visible. */
286 static const char *
287 s390_register_name (struct gdbarch *gdbarch, int regnum)
289 if (regnum >= S390_V0_LOWER_REGNUM
290 && regnum <= S390_V15_LOWER_REGNUM)
291 return "";
292 return tdesc_register_name (gdbarch, regnum);
295 static const char *
296 s390_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
298 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
300 if (regnum == tdep->pc_regnum)
301 return "pc";
303 if (regnum == tdep->cc_regnum)
304 return "cc";
306 if (regnum_is_gpr_full (tdep, regnum))
308 static const char *full_name[] = {
309 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
310 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
312 return full_name[regnum - tdep->gpr_full_regnum];
315 if (regnum_is_vxr_full (tdep, regnum))
317 static const char *full_name[] = {
318 "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7",
319 "v8", "v9", "v10", "v11", "v12", "v13", "v14", "v15"
321 return full_name[regnum - tdep->v0_full_regnum];
324 internal_error (__FILE__, __LINE__, _("invalid regnum"));
327 static struct type *
328 s390_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
330 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
332 if (regnum == tdep->pc_regnum)
333 return builtin_type (gdbarch)->builtin_func_ptr;
335 if (regnum == tdep->cc_regnum)
336 return builtin_type (gdbarch)->builtin_int;
338 if (regnum_is_gpr_full (tdep, regnum))
339 return builtin_type (gdbarch)->builtin_uint64;
341 if (regnum_is_vxr_full (tdep, regnum))
342 return tdesc_find_type (gdbarch, "vec128");
344 internal_error (__FILE__, __LINE__, _("invalid regnum"));
347 static enum register_status
348 s390_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
349 int regnum, gdb_byte *buf)
351 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
352 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
353 int regsize = register_size (gdbarch, regnum);
354 ULONGEST val;
356 if (regnum == tdep->pc_regnum)
358 enum register_status status;
360 status = regcache_raw_read_unsigned (regcache, S390_PSWA_REGNUM, &val);
361 if (status == REG_VALID)
363 if (register_size (gdbarch, S390_PSWA_REGNUM) == 4)
364 val &= 0x7fffffff;
365 store_unsigned_integer (buf, regsize, byte_order, val);
367 return status;
370 if (regnum == tdep->cc_regnum)
372 enum register_status status;
374 status = regcache_raw_read_unsigned (regcache, S390_PSWM_REGNUM, &val);
375 if (status == REG_VALID)
377 if (register_size (gdbarch, S390_PSWA_REGNUM) == 4)
378 val = (val >> 12) & 3;
379 else
380 val = (val >> 44) & 3;
381 store_unsigned_integer (buf, regsize, byte_order, val);
383 return status;
386 if (regnum_is_gpr_full (tdep, regnum))
388 enum register_status status;
389 ULONGEST val_upper;
391 regnum -= tdep->gpr_full_regnum;
393 status = regcache_raw_read_unsigned (regcache, S390_R0_REGNUM + regnum, &val);
394 if (status == REG_VALID)
395 status = regcache_raw_read_unsigned (regcache, S390_R0_UPPER_REGNUM + regnum,
396 &val_upper);
397 if (status == REG_VALID)
399 val |= val_upper << 32;
400 store_unsigned_integer (buf, regsize, byte_order, val);
402 return status;
405 if (regnum_is_vxr_full (tdep, regnum))
407 enum register_status status;
409 regnum -= tdep->v0_full_regnum;
411 status = regcache_raw_read (regcache, S390_F0_REGNUM + regnum, buf);
412 if (status == REG_VALID)
413 status = regcache_raw_read (regcache,
414 S390_V0_LOWER_REGNUM + regnum, buf + 8);
415 return status;
418 internal_error (__FILE__, __LINE__, _("invalid regnum"));
421 static void
422 s390_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
423 int regnum, const gdb_byte *buf)
425 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
426 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
427 int regsize = register_size (gdbarch, regnum);
428 ULONGEST val, psw;
430 if (regnum == tdep->pc_regnum)
432 val = extract_unsigned_integer (buf, regsize, byte_order);
433 if (register_size (gdbarch, S390_PSWA_REGNUM) == 4)
435 regcache_raw_read_unsigned (regcache, S390_PSWA_REGNUM, &psw);
436 val = (psw & 0x80000000) | (val & 0x7fffffff);
438 regcache_raw_write_unsigned (regcache, S390_PSWA_REGNUM, val);
439 return;
442 if (regnum == tdep->cc_regnum)
444 val = extract_unsigned_integer (buf, regsize, byte_order);
445 regcache_raw_read_unsigned (regcache, S390_PSWM_REGNUM, &psw);
446 if (register_size (gdbarch, S390_PSWA_REGNUM) == 4)
447 val = (psw & ~((ULONGEST)3 << 12)) | ((val & 3) << 12);
448 else
449 val = (psw & ~((ULONGEST)3 << 44)) | ((val & 3) << 44);
450 regcache_raw_write_unsigned (regcache, S390_PSWM_REGNUM, val);
451 return;
454 if (regnum_is_gpr_full (tdep, regnum))
456 regnum -= tdep->gpr_full_regnum;
457 val = extract_unsigned_integer (buf, regsize, byte_order);
458 regcache_raw_write_unsigned (regcache, S390_R0_REGNUM + regnum,
459 val & 0xffffffff);
460 regcache_raw_write_unsigned (regcache, S390_R0_UPPER_REGNUM + regnum,
461 val >> 32);
462 return;
465 if (regnum_is_vxr_full (tdep, regnum))
467 regnum -= tdep->v0_full_regnum;
468 regcache_raw_write (regcache, S390_F0_REGNUM + regnum, buf);
469 regcache_raw_write (regcache, S390_V0_LOWER_REGNUM + regnum, buf + 8);
470 return;
473 internal_error (__FILE__, __LINE__, _("invalid regnum"));
476 /* 'float' values are stored in the upper half of floating-point
477 registers, even though we are otherwise a big-endian platform. The
478 same applies to a 'float' value within a vector. */
480 static struct value *
481 s390_value_from_register (struct gdbarch *gdbarch, struct type *type,
482 int regnum, struct frame_id frame_id)
484 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
485 struct value *value = default_value_from_register (gdbarch, type,
486 regnum, frame_id);
487 check_typedef (type);
489 if ((regnum >= S390_F0_REGNUM && regnum <= S390_F15_REGNUM
490 && TYPE_LENGTH (type) < 8)
491 || regnum_is_vxr_full (tdep, regnum)
492 || (regnum >= S390_V16_REGNUM && regnum <= S390_V31_REGNUM))
493 set_value_offset (value, 0);
495 return value;
498 /* Register groups. */
500 static int
501 s390_pseudo_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
502 struct reggroup *group)
504 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
506 /* We usually save/restore the whole PSW, which includes PC and CC.
507 However, some older gdbservers may not support saving/restoring
508 the whole PSW yet, and will return an XML register description
509 excluding those from the save/restore register groups. In those
510 cases, we still need to explicitly save/restore PC and CC in order
511 to push or pop frames. Since this doesn't hurt anything if we
512 already save/restore the whole PSW (it's just redundant), we add
513 PC and CC at this point unconditionally. */
514 if (group == save_reggroup || group == restore_reggroup)
515 return regnum == tdep->pc_regnum || regnum == tdep->cc_regnum;
517 if (group == vector_reggroup)
518 return regnum_is_vxr_full (tdep, regnum);
520 if (group == general_reggroup && regnum_is_vxr_full (tdep, regnum))
521 return 0;
523 return default_register_reggroup_p (gdbarch, regnum, group);
527 /* Maps for register sets. */
529 static const struct regcache_map_entry s390_gregmap[] =
531 { 1, S390_PSWM_REGNUM },
532 { 1, S390_PSWA_REGNUM },
533 { 16, S390_R0_REGNUM },
534 { 16, S390_A0_REGNUM },
535 { 1, S390_ORIG_R2_REGNUM },
536 { 0 }
539 static const struct regcache_map_entry s390_fpregmap[] =
541 { 1, S390_FPC_REGNUM, 8 },
542 { 16, S390_F0_REGNUM, 8 },
543 { 0 }
546 static const struct regcache_map_entry s390_regmap_upper[] =
548 { 16, S390_R0_UPPER_REGNUM, 4 },
549 { 0 }
552 static const struct regcache_map_entry s390_regmap_last_break[] =
554 { 1, REGCACHE_MAP_SKIP, 4 },
555 { 1, S390_LAST_BREAK_REGNUM, 4 },
556 { 0 }
559 static const struct regcache_map_entry s390x_regmap_last_break[] =
561 { 1, S390_LAST_BREAK_REGNUM, 8 },
562 { 0 }
565 static const struct regcache_map_entry s390_regmap_system_call[] =
567 { 1, S390_SYSTEM_CALL_REGNUM, 4 },
568 { 0 }
571 static const struct regcache_map_entry s390_regmap_tdb[] =
573 { 1, S390_TDB_DWORD0_REGNUM, 8 },
574 { 1, S390_TDB_ABORT_CODE_REGNUM, 8 },
575 { 1, S390_TDB_CONFLICT_TOKEN_REGNUM, 8 },
576 { 1, S390_TDB_ATIA_REGNUM, 8 },
577 { 12, REGCACHE_MAP_SKIP, 8 },
578 { 16, S390_TDB_R0_REGNUM, 8 },
579 { 0 }
582 static const struct regcache_map_entry s390_regmap_vxrs_low[] =
584 { 16, S390_V0_LOWER_REGNUM, 8 },
585 { 0 }
588 static const struct regcache_map_entry s390_regmap_vxrs_high[] =
590 { 16, S390_V16_REGNUM, 16 },
591 { 0 }
595 /* Supply the TDB regset. Like regcache_supply_regset, but invalidate
596 the TDB registers unless the TDB format field is valid. */
598 static void
599 s390_supply_tdb_regset (const struct regset *regset, struct regcache *regcache,
600 int regnum, const void *regs, size_t len)
602 ULONGEST tdw;
603 enum register_status ret;
604 int i;
606 regcache_supply_regset (regset, regcache, regnum, regs, len);
607 ret = regcache_cooked_read_unsigned (regcache, S390_TDB_DWORD0_REGNUM, &tdw);
608 if (ret != REG_VALID || (tdw >> 56) != 1)
609 regcache_supply_regset (regset, regcache, regnum, NULL, len);
612 const struct regset s390_gregset = {
613 s390_gregmap,
614 regcache_supply_regset,
615 regcache_collect_regset
618 const struct regset s390_fpregset = {
619 s390_fpregmap,
620 regcache_supply_regset,
621 regcache_collect_regset
624 static const struct regset s390_upper_regset = {
625 s390_regmap_upper,
626 regcache_supply_regset,
627 regcache_collect_regset
630 const struct regset s390_last_break_regset = {
631 s390_regmap_last_break,
632 regcache_supply_regset,
633 regcache_collect_regset
636 const struct regset s390x_last_break_regset = {
637 s390x_regmap_last_break,
638 regcache_supply_regset,
639 regcache_collect_regset
642 const struct regset s390_system_call_regset = {
643 s390_regmap_system_call,
644 regcache_supply_regset,
645 regcache_collect_regset
648 const struct regset s390_tdb_regset = {
649 s390_regmap_tdb,
650 s390_supply_tdb_regset,
651 regcache_collect_regset
654 const struct regset s390_vxrs_low_regset = {
655 s390_regmap_vxrs_low,
656 regcache_supply_regset,
657 regcache_collect_regset
660 const struct regset s390_vxrs_high_regset = {
661 s390_regmap_vxrs_high,
662 regcache_supply_regset,
663 regcache_collect_regset
666 /* Iterate over supported core file register note sections. */
668 static void
669 s390_iterate_over_regset_sections (struct gdbarch *gdbarch,
670 iterate_over_regset_sections_cb *cb,
671 void *cb_data,
672 const struct regcache *regcache)
674 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
675 const int gregset_size = (tdep->abi == ABI_LINUX_S390 ?
676 s390_sizeof_gregset : s390x_sizeof_gregset);
678 cb (".reg", gregset_size, &s390_gregset, NULL, cb_data);
679 cb (".reg2", s390_sizeof_fpregset, &s390_fpregset, NULL, cb_data);
681 if (tdep->abi == ABI_LINUX_S390 && tdep->gpr_full_regnum != -1)
682 cb (".reg-s390-high-gprs", 16 * 4, &s390_upper_regset,
683 "s390 GPR upper halves", cb_data);
685 if (tdep->have_linux_v1)
686 cb (".reg-s390-last-break", 8,
687 (gdbarch_ptr_bit (gdbarch) == 32
688 ? &s390_last_break_regset : &s390x_last_break_regset),
689 "s930 last-break address", cb_data);
691 if (tdep->have_linux_v2)
692 cb (".reg-s390-system-call", 4, &s390_system_call_regset,
693 "s390 system-call", cb_data);
695 /* If regcache is set, we are in "write" (gcore) mode. In this
696 case, don't iterate over the TDB unless its registers are
697 available. */
698 if (tdep->have_tdb
699 && (regcache == NULL
700 || REG_VALID == regcache_register_status (regcache,
701 S390_TDB_DWORD0_REGNUM)))
702 cb (".reg-s390-tdb", s390_sizeof_tdbregset, &s390_tdb_regset,
703 "s390 TDB", cb_data);
705 if (tdep->v0_full_regnum != -1)
707 cb (".reg-s390-vxrs-low", 16 * 8, &s390_vxrs_low_regset,
708 "s390 vector registers 0-15 lower half", cb_data);
709 cb (".reg-s390-vxrs-high", 16 * 16, &s390_vxrs_high_regset,
710 "s390 vector registers 16-31", cb_data);
714 static const struct target_desc *
715 s390_core_read_description (struct gdbarch *gdbarch,
716 struct target_ops *target, bfd *abfd)
718 asection *section = bfd_get_section_by_name (abfd, ".reg");
719 CORE_ADDR hwcap = 0;
720 int high_gprs, v1, v2, te, vx;
722 target_auxv_search (target, AT_HWCAP, &hwcap);
723 if (!section)
724 return NULL;
726 high_gprs = (bfd_get_section_by_name (abfd, ".reg-s390-high-gprs")
727 != NULL);
728 v1 = (bfd_get_section_by_name (abfd, ".reg-s390-last-break") != NULL);
729 v2 = (bfd_get_section_by_name (abfd, ".reg-s390-system-call") != NULL);
730 vx = (hwcap & HWCAP_S390_VX);
731 te = (hwcap & HWCAP_S390_TE);
733 switch (bfd_section_size (abfd, section))
735 case s390_sizeof_gregset:
736 if (high_gprs)
737 return (te && vx ? tdesc_s390_tevx_linux64 :
738 vx ? tdesc_s390_vx_linux64 :
739 te ? tdesc_s390_te_linux64 :
740 v2 ? tdesc_s390_linux64v2 :
741 v1 ? tdesc_s390_linux64v1 : tdesc_s390_linux64);
742 else
743 return (v2 ? tdesc_s390_linux32v2 :
744 v1 ? tdesc_s390_linux32v1 : tdesc_s390_linux32);
746 case s390x_sizeof_gregset:
747 return (te && vx ? tdesc_s390x_tevx_linux64 :
748 vx ? tdesc_s390x_vx_linux64 :
749 te ? tdesc_s390x_te_linux64 :
750 v2 ? tdesc_s390x_linux64v2 :
751 v1 ? tdesc_s390x_linux64v1 : tdesc_s390x_linux64);
753 default:
754 return NULL;
759 /* Decoding S/390 instructions. */
761 /* Named opcode values for the S/390 instructions we recognize. Some
762 instructions have their opcode split across two fields; those are the
763 op1_* and op2_* enums. */
764 enum
766 op1_lhi = 0xa7, op2_lhi = 0x08,
767 op1_lghi = 0xa7, op2_lghi = 0x09,
768 op1_lgfi = 0xc0, op2_lgfi = 0x01,
769 op_lr = 0x18,
770 op_lgr = 0xb904,
771 op_l = 0x58,
772 op1_ly = 0xe3, op2_ly = 0x58,
773 op1_lg = 0xe3, op2_lg = 0x04,
774 op_lm = 0x98,
775 op1_lmy = 0xeb, op2_lmy = 0x98,
776 op1_lmg = 0xeb, op2_lmg = 0x04,
777 op_st = 0x50,
778 op1_sty = 0xe3, op2_sty = 0x50,
779 op1_stg = 0xe3, op2_stg = 0x24,
780 op_std = 0x60,
781 op_stm = 0x90,
782 op1_stmy = 0xeb, op2_stmy = 0x90,
783 op1_stmg = 0xeb, op2_stmg = 0x24,
784 op1_aghi = 0xa7, op2_aghi = 0x0b,
785 op1_ahi = 0xa7, op2_ahi = 0x0a,
786 op1_agfi = 0xc2, op2_agfi = 0x08,
787 op1_afi = 0xc2, op2_afi = 0x09,
788 op1_algfi= 0xc2, op2_algfi= 0x0a,
789 op1_alfi = 0xc2, op2_alfi = 0x0b,
790 op_ar = 0x1a,
791 op_agr = 0xb908,
792 op_a = 0x5a,
793 op1_ay = 0xe3, op2_ay = 0x5a,
794 op1_ag = 0xe3, op2_ag = 0x08,
795 op1_slgfi= 0xc2, op2_slgfi= 0x04,
796 op1_slfi = 0xc2, op2_slfi = 0x05,
797 op_sr = 0x1b,
798 op_sgr = 0xb909,
799 op_s = 0x5b,
800 op1_sy = 0xe3, op2_sy = 0x5b,
801 op1_sg = 0xe3, op2_sg = 0x09,
802 op_nr = 0x14,
803 op_ngr = 0xb980,
804 op_la = 0x41,
805 op1_lay = 0xe3, op2_lay = 0x71,
806 op1_larl = 0xc0, op2_larl = 0x00,
807 op_basr = 0x0d,
808 op_bas = 0x4d,
809 op_bcr = 0x07,
810 op_bc = 0x0d,
811 op_bctr = 0x06,
812 op_bctgr = 0xb946,
813 op_bct = 0x46,
814 op1_bctg = 0xe3, op2_bctg = 0x46,
815 op_bxh = 0x86,
816 op1_bxhg = 0xeb, op2_bxhg = 0x44,
817 op_bxle = 0x87,
818 op1_bxleg= 0xeb, op2_bxleg= 0x45,
819 op1_bras = 0xa7, op2_bras = 0x05,
820 op1_brasl= 0xc0, op2_brasl= 0x05,
821 op1_brc = 0xa7, op2_brc = 0x04,
822 op1_brcl = 0xc0, op2_brcl = 0x04,
823 op1_brct = 0xa7, op2_brct = 0x06,
824 op1_brctg= 0xa7, op2_brctg= 0x07,
825 op_brxh = 0x84,
826 op1_brxhg= 0xec, op2_brxhg= 0x44,
827 op_brxle = 0x85,
828 op1_brxlg= 0xec, op2_brxlg= 0x45,
829 op_svc = 0x0a,
833 /* Read a single instruction from address AT. */
835 #define S390_MAX_INSTR_SIZE 6
836 static int
837 s390_readinstruction (bfd_byte instr[], CORE_ADDR at)
839 static int s390_instrlen[] = { 2, 4, 4, 6 };
840 int instrlen;
842 if (target_read_memory (at, &instr[0], 2))
843 return -1;
844 instrlen = s390_instrlen[instr[0] >> 6];
845 if (instrlen > 2)
847 if (target_read_memory (at + 2, &instr[2], instrlen - 2))
848 return -1;
850 return instrlen;
854 /* The functions below are for recognizing and decoding S/390
855 instructions of various formats. Each of them checks whether INSN
856 is an instruction of the given format, with the specified opcodes.
857 If it is, it sets the remaining arguments to the values of the
858 instruction's fields, and returns a non-zero value; otherwise, it
859 returns zero.
861 These functions' arguments appear in the order they appear in the
862 instruction, not in the machine-language form. So, opcodes always
863 come first, even though they're sometimes scattered around the
864 instructions. And displacements appear before base and extension
865 registers, as they do in the assembly syntax, not at the end, as
866 they do in the machine language. */
867 static int
868 is_ri (bfd_byte *insn, int op1, int op2, unsigned int *r1, int *i2)
870 if (insn[0] == op1 && (insn[1] & 0xf) == op2)
872 *r1 = (insn[1] >> 4) & 0xf;
873 /* i2 is a 16-bit signed quantity. */
874 *i2 = (((insn[2] << 8) | insn[3]) ^ 0x8000) - 0x8000;
875 return 1;
877 else
878 return 0;
882 static int
883 is_ril (bfd_byte *insn, int op1, int op2,
884 unsigned int *r1, int *i2)
886 if (insn[0] == op1 && (insn[1] & 0xf) == op2)
888 *r1 = (insn[1] >> 4) & 0xf;
889 /* i2 is a signed quantity. If the host 'int' is 32 bits long,
890 no sign extension is necessary, but we don't want to assume
891 that. */
892 *i2 = (((insn[2] << 24)
893 | (insn[3] << 16)
894 | (insn[4] << 8)
895 | (insn[5])) ^ 0x80000000) - 0x80000000;
896 return 1;
898 else
899 return 0;
903 static int
904 is_rr (bfd_byte *insn, int op, unsigned int *r1, unsigned int *r2)
906 if (insn[0] == op)
908 *r1 = (insn[1] >> 4) & 0xf;
909 *r2 = insn[1] & 0xf;
910 return 1;
912 else
913 return 0;
917 static int
918 is_rre (bfd_byte *insn, int op, unsigned int *r1, unsigned int *r2)
920 if (((insn[0] << 8) | insn[1]) == op)
922 /* Yes, insn[3]. insn[2] is unused in RRE format. */
923 *r1 = (insn[3] >> 4) & 0xf;
924 *r2 = insn[3] & 0xf;
925 return 1;
927 else
928 return 0;
932 static int
933 is_rs (bfd_byte *insn, int op,
934 unsigned int *r1, unsigned int *r3, int *d2, unsigned int *b2)
936 if (insn[0] == op)
938 *r1 = (insn[1] >> 4) & 0xf;
939 *r3 = insn[1] & 0xf;
940 *b2 = (insn[2] >> 4) & 0xf;
941 *d2 = ((insn[2] & 0xf) << 8) | insn[3];
942 return 1;
944 else
945 return 0;
949 static int
950 is_rsy (bfd_byte *insn, int op1, int op2,
951 unsigned int *r1, unsigned int *r3, int *d2, unsigned int *b2)
953 if (insn[0] == op1
954 && insn[5] == op2)
956 *r1 = (insn[1] >> 4) & 0xf;
957 *r3 = insn[1] & 0xf;
958 *b2 = (insn[2] >> 4) & 0xf;
959 /* The 'long displacement' is a 20-bit signed integer. */
960 *d2 = ((((insn[2] & 0xf) << 8) | insn[3] | (insn[4] << 12))
961 ^ 0x80000) - 0x80000;
962 return 1;
964 else
965 return 0;
969 static int
970 is_rsi (bfd_byte *insn, int op,
971 unsigned int *r1, unsigned int *r3, int *i2)
973 if (insn[0] == op)
975 *r1 = (insn[1] >> 4) & 0xf;
976 *r3 = insn[1] & 0xf;
977 /* i2 is a 16-bit signed quantity. */
978 *i2 = (((insn[2] << 8) | insn[3]) ^ 0x8000) - 0x8000;
979 return 1;
981 else
982 return 0;
986 static int
987 is_rie (bfd_byte *insn, int op1, int op2,
988 unsigned int *r1, unsigned int *r3, int *i2)
990 if (insn[0] == op1
991 && insn[5] == op2)
993 *r1 = (insn[1] >> 4) & 0xf;
994 *r3 = insn[1] & 0xf;
995 /* i2 is a 16-bit signed quantity. */
996 *i2 = (((insn[2] << 8) | insn[3]) ^ 0x8000) - 0x8000;
997 return 1;
999 else
1000 return 0;
1004 static int
1005 is_rx (bfd_byte *insn, int op,
1006 unsigned int *r1, int *d2, unsigned int *x2, unsigned int *b2)
1008 if (insn[0] == op)
1010 *r1 = (insn[1] >> 4) & 0xf;
1011 *x2 = insn[1] & 0xf;
1012 *b2 = (insn[2] >> 4) & 0xf;
1013 *d2 = ((insn[2] & 0xf) << 8) | insn[3];
1014 return 1;
1016 else
1017 return 0;
1021 static int
1022 is_rxy (bfd_byte *insn, int op1, int op2,
1023 unsigned int *r1, int *d2, unsigned int *x2, unsigned int *b2)
1025 if (insn[0] == op1
1026 && insn[5] == op2)
1028 *r1 = (insn[1] >> 4) & 0xf;
1029 *x2 = insn[1] & 0xf;
1030 *b2 = (insn[2] >> 4) & 0xf;
1031 /* The 'long displacement' is a 20-bit signed integer. */
1032 *d2 = ((((insn[2] & 0xf) << 8) | insn[3] | (insn[4] << 12))
1033 ^ 0x80000) - 0x80000;
1034 return 1;
1036 else
1037 return 0;
1041 /* Prologue analysis. */
1043 #define S390_NUM_GPRS 16
1044 #define S390_NUM_FPRS 16
1046 struct s390_prologue_data {
1048 /* The stack. */
1049 struct pv_area *stack;
1051 /* The size and byte-order of a GPR or FPR. */
1052 int gpr_size;
1053 int fpr_size;
1054 enum bfd_endian byte_order;
1056 /* The general-purpose registers. */
1057 pv_t gpr[S390_NUM_GPRS];
1059 /* The floating-point registers. */
1060 pv_t fpr[S390_NUM_FPRS];
1062 /* The offset relative to the CFA where the incoming GPR N was saved
1063 by the function prologue. 0 if not saved or unknown. */
1064 int gpr_slot[S390_NUM_GPRS];
1066 /* Likewise for FPRs. */
1067 int fpr_slot[S390_NUM_FPRS];
1069 /* Nonzero if the backchain was saved. This is assumed to be the
1070 case when the incoming SP is saved at the current SP location. */
1071 int back_chain_saved_p;
1074 /* Return the effective address for an X-style instruction, like:
1076 L R1, D2(X2, B2)
1078 Here, X2 and B2 are registers, and D2 is a signed 20-bit
1079 constant; the effective address is the sum of all three. If either
1080 X2 or B2 are zero, then it doesn't contribute to the sum --- this
1081 means that r0 can't be used as either X2 or B2. */
1082 static pv_t
1083 s390_addr (struct s390_prologue_data *data,
1084 int d2, unsigned int x2, unsigned int b2)
1086 pv_t result;
1088 result = pv_constant (d2);
1089 if (x2)
1090 result = pv_add (result, data->gpr[x2]);
1091 if (b2)
1092 result = pv_add (result, data->gpr[b2]);
1094 return result;
1097 /* Do a SIZE-byte store of VALUE to D2(X2,B2). */
1098 static void
1099 s390_store (struct s390_prologue_data *data,
1100 int d2, unsigned int x2, unsigned int b2, CORE_ADDR size,
1101 pv_t value)
1103 pv_t addr = s390_addr (data, d2, x2, b2);
1104 pv_t offset;
1106 /* Check whether we are storing the backchain. */
1107 offset = pv_subtract (data->gpr[S390_SP_REGNUM - S390_R0_REGNUM], addr);
1109 if (pv_is_constant (offset) && offset.k == 0)
1110 if (size == data->gpr_size
1111 && pv_is_register_k (value, S390_SP_REGNUM, 0))
1113 data->back_chain_saved_p = 1;
1114 return;
1118 /* Check whether we are storing a register into the stack. */
1119 if (!pv_area_store_would_trash (data->stack, addr))
1120 pv_area_store (data->stack, addr, size, value);
1123 /* Note: If this is some store we cannot identify, you might think we
1124 should forget our cached values, as any of those might have been hit.
1126 However, we make the assumption that the register save areas are only
1127 ever stored to once in any given function, and we do recognize these
1128 stores. Thus every store we cannot recognize does not hit our data. */
1131 /* Do a SIZE-byte load from D2(X2,B2). */
1132 static pv_t
1133 s390_load (struct s390_prologue_data *data,
1134 int d2, unsigned int x2, unsigned int b2, CORE_ADDR size)
1137 pv_t addr = s390_addr (data, d2, x2, b2);
1139 /* If it's a load from an in-line constant pool, then we can
1140 simulate that, under the assumption that the code isn't
1141 going to change between the time the processor actually
1142 executed it creating the current frame, and the time when
1143 we're analyzing the code to unwind past that frame. */
1144 if (pv_is_constant (addr))
1146 struct target_section *secp;
1147 secp = target_section_by_addr (&current_target, addr.k);
1148 if (secp != NULL
1149 && (bfd_get_section_flags (secp->the_bfd_section->owner,
1150 secp->the_bfd_section)
1151 & SEC_READONLY))
1152 return pv_constant (read_memory_integer (addr.k, size,
1153 data->byte_order));
1156 /* Check whether we are accessing one of our save slots. */
1157 return pv_area_fetch (data->stack, addr, size);
1160 /* Function for finding saved registers in a 'struct pv_area'; we pass
1161 this to pv_area_scan.
1163 If VALUE is a saved register, ADDR says it was saved at a constant
1164 offset from the frame base, and SIZE indicates that the whole
1165 register was saved, record its offset in the reg_offset table in
1166 PROLOGUE_UNTYPED. */
1167 static void
1168 s390_check_for_saved (void *data_untyped, pv_t addr,
1169 CORE_ADDR size, pv_t value)
1171 struct s390_prologue_data *data = data_untyped;
1172 int i, offset;
1174 if (!pv_is_register (addr, S390_SP_REGNUM))
1175 return;
1177 offset = 16 * data->gpr_size + 32 - addr.k;
1179 /* If we are storing the original value of a register, we want to
1180 record the CFA offset. If the same register is stored multiple
1181 times, the stack slot with the highest address counts. */
1183 for (i = 0; i < S390_NUM_GPRS; i++)
1184 if (size == data->gpr_size
1185 && pv_is_register_k (value, S390_R0_REGNUM + i, 0))
1186 if (data->gpr_slot[i] == 0
1187 || data->gpr_slot[i] > offset)
1189 data->gpr_slot[i] = offset;
1190 return;
1193 for (i = 0; i < S390_NUM_FPRS; i++)
1194 if (size == data->fpr_size
1195 && pv_is_register_k (value, S390_F0_REGNUM + i, 0))
1196 if (data->fpr_slot[i] == 0
1197 || data->fpr_slot[i] > offset)
1199 data->fpr_slot[i] = offset;
1200 return;
1204 /* Analyze the prologue of the function starting at START_PC,
1205 continuing at most until CURRENT_PC. Initialize DATA to
1206 hold all information we find out about the state of the registers
1207 and stack slots. Return the address of the instruction after
1208 the last one that changed the SP, FP, or back chain; or zero
1209 on error. */
1210 static CORE_ADDR
1211 s390_analyze_prologue (struct gdbarch *gdbarch,
1212 CORE_ADDR start_pc,
1213 CORE_ADDR current_pc,
1214 struct s390_prologue_data *data)
1216 int word_size = gdbarch_ptr_bit (gdbarch) / 8;
1218 /* Our return value:
1219 The address of the instruction after the last one that changed
1220 the SP, FP, or back chain; zero if we got an error trying to
1221 read memory. */
1222 CORE_ADDR result = start_pc;
1224 /* The current PC for our abstract interpretation. */
1225 CORE_ADDR pc;
1227 /* The address of the next instruction after that. */
1228 CORE_ADDR next_pc;
1230 /* Set up everything's initial value. */
1232 int i;
1234 data->stack = make_pv_area (S390_SP_REGNUM, gdbarch_addr_bit (gdbarch));
1236 /* For the purpose of prologue tracking, we consider the GPR size to
1237 be equal to the ABI word size, even if it is actually larger
1238 (i.e. when running a 32-bit binary under a 64-bit kernel). */
1239 data->gpr_size = word_size;
1240 data->fpr_size = 8;
1241 data->byte_order = gdbarch_byte_order (gdbarch);
1243 for (i = 0; i < S390_NUM_GPRS; i++)
1244 data->gpr[i] = pv_register (S390_R0_REGNUM + i, 0);
1246 for (i = 0; i < S390_NUM_FPRS; i++)
1247 data->fpr[i] = pv_register (S390_F0_REGNUM + i, 0);
1249 for (i = 0; i < S390_NUM_GPRS; i++)
1250 data->gpr_slot[i] = 0;
1252 for (i = 0; i < S390_NUM_FPRS; i++)
1253 data->fpr_slot[i] = 0;
1255 data->back_chain_saved_p = 0;
1258 /* Start interpreting instructions, until we hit the frame's
1259 current PC or the first branch instruction. */
1260 for (pc = start_pc; pc > 0 && pc < current_pc; pc = next_pc)
1262 bfd_byte insn[S390_MAX_INSTR_SIZE];
1263 int insn_len = s390_readinstruction (insn, pc);
1265 bfd_byte dummy[S390_MAX_INSTR_SIZE] = { 0 };
1266 bfd_byte *insn32 = word_size == 4 ? insn : dummy;
1267 bfd_byte *insn64 = word_size == 8 ? insn : dummy;
1269 /* Fields for various kinds of instructions. */
1270 unsigned int b2, r1, r2, x2, r3;
1271 int i2, d2;
1273 /* The values of SP and FP before this instruction,
1274 for detecting instructions that change them. */
1275 pv_t pre_insn_sp, pre_insn_fp;
1276 /* Likewise for the flag whether the back chain was saved. */
1277 int pre_insn_back_chain_saved_p;
1279 /* If we got an error trying to read the instruction, report it. */
1280 if (insn_len < 0)
1282 result = 0;
1283 break;
1286 next_pc = pc + insn_len;
1288 pre_insn_sp = data->gpr[S390_SP_REGNUM - S390_R0_REGNUM];
1289 pre_insn_fp = data->gpr[S390_FRAME_REGNUM - S390_R0_REGNUM];
1290 pre_insn_back_chain_saved_p = data->back_chain_saved_p;
1293 /* LHI r1, i2 --- load halfword immediate. */
1294 /* LGHI r1, i2 --- load halfword immediate (64-bit version). */
1295 /* LGFI r1, i2 --- load fullword immediate. */
1296 if (is_ri (insn32, op1_lhi, op2_lhi, &r1, &i2)
1297 || is_ri (insn64, op1_lghi, op2_lghi, &r1, &i2)
1298 || is_ril (insn, op1_lgfi, op2_lgfi, &r1, &i2))
1299 data->gpr[r1] = pv_constant (i2);
1301 /* LR r1, r2 --- load from register. */
1302 /* LGR r1, r2 --- load from register (64-bit version). */
1303 else if (is_rr (insn32, op_lr, &r1, &r2)
1304 || is_rre (insn64, op_lgr, &r1, &r2))
1305 data->gpr[r1] = data->gpr[r2];
1307 /* L r1, d2(x2, b2) --- load. */
1308 /* LY r1, d2(x2, b2) --- load (long-displacement version). */
1309 /* LG r1, d2(x2, b2) --- load (64-bit version). */
1310 else if (is_rx (insn32, op_l, &r1, &d2, &x2, &b2)
1311 || is_rxy (insn32, op1_ly, op2_ly, &r1, &d2, &x2, &b2)
1312 || is_rxy (insn64, op1_lg, op2_lg, &r1, &d2, &x2, &b2))
1313 data->gpr[r1] = s390_load (data, d2, x2, b2, data->gpr_size);
1315 /* ST r1, d2(x2, b2) --- store. */
1316 /* STY r1, d2(x2, b2) --- store (long-displacement version). */
1317 /* STG r1, d2(x2, b2) --- store (64-bit version). */
1318 else if (is_rx (insn32, op_st, &r1, &d2, &x2, &b2)
1319 || is_rxy (insn32, op1_sty, op2_sty, &r1, &d2, &x2, &b2)
1320 || is_rxy (insn64, op1_stg, op2_stg, &r1, &d2, &x2, &b2))
1321 s390_store (data, d2, x2, b2, data->gpr_size, data->gpr[r1]);
1323 /* STD r1, d2(x2,b2) --- store floating-point register. */
1324 else if (is_rx (insn, op_std, &r1, &d2, &x2, &b2))
1325 s390_store (data, d2, x2, b2, data->fpr_size, data->fpr[r1]);
1327 /* STM r1, r3, d2(b2) --- store multiple. */
1328 /* STMY r1, r3, d2(b2) --- store multiple (long-displacement
1329 version). */
1330 /* STMG r1, r3, d2(b2) --- store multiple (64-bit version). */
1331 else if (is_rs (insn32, op_stm, &r1, &r3, &d2, &b2)
1332 || is_rsy (insn32, op1_stmy, op2_stmy, &r1, &r3, &d2, &b2)
1333 || is_rsy (insn64, op1_stmg, op2_stmg, &r1, &r3, &d2, &b2))
1335 for (; r1 <= r3; r1++, d2 += data->gpr_size)
1336 s390_store (data, d2, 0, b2, data->gpr_size, data->gpr[r1]);
1339 /* AHI r1, i2 --- add halfword immediate. */
1340 /* AGHI r1, i2 --- add halfword immediate (64-bit version). */
1341 /* AFI r1, i2 --- add fullword immediate. */
1342 /* AGFI r1, i2 --- add fullword immediate (64-bit version). */
1343 else if (is_ri (insn32, op1_ahi, op2_ahi, &r1, &i2)
1344 || is_ri (insn64, op1_aghi, op2_aghi, &r1, &i2)
1345 || is_ril (insn32, op1_afi, op2_afi, &r1, &i2)
1346 || is_ril (insn64, op1_agfi, op2_agfi, &r1, &i2))
1347 data->gpr[r1] = pv_add_constant (data->gpr[r1], i2);
1349 /* ALFI r1, i2 --- add logical immediate. */
1350 /* ALGFI r1, i2 --- add logical immediate (64-bit version). */
1351 else if (is_ril (insn32, op1_alfi, op2_alfi, &r1, &i2)
1352 || is_ril (insn64, op1_algfi, op2_algfi, &r1, &i2))
1353 data->gpr[r1] = pv_add_constant (data->gpr[r1],
1354 (CORE_ADDR)i2 & 0xffffffff);
1356 /* AR r1, r2 -- add register. */
1357 /* AGR r1, r2 -- add register (64-bit version). */
1358 else if (is_rr (insn32, op_ar, &r1, &r2)
1359 || is_rre (insn64, op_agr, &r1, &r2))
1360 data->gpr[r1] = pv_add (data->gpr[r1], data->gpr[r2]);
1362 /* A r1, d2(x2, b2) -- add. */
1363 /* AY r1, d2(x2, b2) -- add (long-displacement version). */
1364 /* AG r1, d2(x2, b2) -- add (64-bit version). */
1365 else if (is_rx (insn32, op_a, &r1, &d2, &x2, &b2)
1366 || is_rxy (insn32, op1_ay, op2_ay, &r1, &d2, &x2, &b2)
1367 || is_rxy (insn64, op1_ag, op2_ag, &r1, &d2, &x2, &b2))
1368 data->gpr[r1] = pv_add (data->gpr[r1],
1369 s390_load (data, d2, x2, b2, data->gpr_size));
1371 /* SLFI r1, i2 --- subtract logical immediate. */
1372 /* SLGFI r1, i2 --- subtract logical immediate (64-bit version). */
1373 else if (is_ril (insn32, op1_slfi, op2_slfi, &r1, &i2)
1374 || is_ril (insn64, op1_slgfi, op2_slgfi, &r1, &i2))
1375 data->gpr[r1] = pv_add_constant (data->gpr[r1],
1376 -((CORE_ADDR)i2 & 0xffffffff));
1378 /* SR r1, r2 -- subtract register. */
1379 /* SGR r1, r2 -- subtract register (64-bit version). */
1380 else if (is_rr (insn32, op_sr, &r1, &r2)
1381 || is_rre (insn64, op_sgr, &r1, &r2))
1382 data->gpr[r1] = pv_subtract (data->gpr[r1], data->gpr[r2]);
1384 /* S r1, d2(x2, b2) -- subtract. */
1385 /* SY r1, d2(x2, b2) -- subtract (long-displacement version). */
1386 /* SG r1, d2(x2, b2) -- subtract (64-bit version). */
1387 else if (is_rx (insn32, op_s, &r1, &d2, &x2, &b2)
1388 || is_rxy (insn32, op1_sy, op2_sy, &r1, &d2, &x2, &b2)
1389 || is_rxy (insn64, op1_sg, op2_sg, &r1, &d2, &x2, &b2))
1390 data->gpr[r1] = pv_subtract (data->gpr[r1],
1391 s390_load (data, d2, x2, b2, data->gpr_size));
1393 /* LA r1, d2(x2, b2) --- load address. */
1394 /* LAY r1, d2(x2, b2) --- load address (long-displacement version). */
1395 else if (is_rx (insn, op_la, &r1, &d2, &x2, &b2)
1396 || is_rxy (insn, op1_lay, op2_lay, &r1, &d2, &x2, &b2))
1397 data->gpr[r1] = s390_addr (data, d2, x2, b2);
1399 /* LARL r1, i2 --- load address relative long. */
1400 else if (is_ril (insn, op1_larl, op2_larl, &r1, &i2))
1401 data->gpr[r1] = pv_constant (pc + i2 * 2);
1403 /* BASR r1, 0 --- branch and save.
1404 Since r2 is zero, this saves the PC in r1, but doesn't branch. */
1405 else if (is_rr (insn, op_basr, &r1, &r2)
1406 && r2 == 0)
1407 data->gpr[r1] = pv_constant (next_pc);
1409 /* BRAS r1, i2 --- branch relative and save. */
1410 else if (is_ri (insn, op1_bras, op2_bras, &r1, &i2))
1412 data->gpr[r1] = pv_constant (next_pc);
1413 next_pc = pc + i2 * 2;
1415 /* We'd better not interpret any backward branches. We'll
1416 never terminate. */
1417 if (next_pc <= pc)
1418 break;
1421 /* Terminate search when hitting any other branch instruction. */
1422 else if (is_rr (insn, op_basr, &r1, &r2)
1423 || is_rx (insn, op_bas, &r1, &d2, &x2, &b2)
1424 || is_rr (insn, op_bcr, &r1, &r2)
1425 || is_rx (insn, op_bc, &r1, &d2, &x2, &b2)
1426 || is_ri (insn, op1_brc, op2_brc, &r1, &i2)
1427 || is_ril (insn, op1_brcl, op2_brcl, &r1, &i2)
1428 || is_ril (insn, op1_brasl, op2_brasl, &r2, &i2))
1429 break;
1431 else
1433 /* An instruction we don't know how to simulate. The only
1434 safe thing to do would be to set every value we're tracking
1435 to 'unknown'. Instead, we'll be optimistic: we assume that
1436 we *can* interpret every instruction that the compiler uses
1437 to manipulate any of the data we're interested in here --
1438 then we can just ignore anything else. */
1441 /* Record the address after the last instruction that changed
1442 the FP, SP, or backlink. Ignore instructions that changed
1443 them back to their original values --- those are probably
1444 restore instructions. (The back chain is never restored,
1445 just popped.) */
1447 pv_t sp = data->gpr[S390_SP_REGNUM - S390_R0_REGNUM];
1448 pv_t fp = data->gpr[S390_FRAME_REGNUM - S390_R0_REGNUM];
1450 if ((! pv_is_identical (pre_insn_sp, sp)
1451 && ! pv_is_register_k (sp, S390_SP_REGNUM, 0)
1452 && sp.kind != pvk_unknown)
1453 || (! pv_is_identical (pre_insn_fp, fp)
1454 && ! pv_is_register_k (fp, S390_FRAME_REGNUM, 0)
1455 && fp.kind != pvk_unknown)
1456 || pre_insn_back_chain_saved_p != data->back_chain_saved_p)
1457 result = next_pc;
1461 /* Record where all the registers were saved. */
1462 pv_area_scan (data->stack, s390_check_for_saved, data);
1464 free_pv_area (data->stack);
1465 data->stack = NULL;
1467 return result;
1470 /* Advance PC across any function entry prologue instructions to reach
1471 some "real" code. */
1472 static CORE_ADDR
1473 s390_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1475 struct s390_prologue_data data;
1476 CORE_ADDR skip_pc, func_addr;
1478 if (find_pc_partial_function (pc, NULL, &func_addr, NULL))
1480 CORE_ADDR post_prologue_pc
1481 = skip_prologue_using_sal (gdbarch, func_addr);
1482 if (post_prologue_pc != 0)
1483 return max (pc, post_prologue_pc);
1486 skip_pc = s390_analyze_prologue (gdbarch, pc, (CORE_ADDR)-1, &data);
1487 return skip_pc ? skip_pc : pc;
1490 /* Implmement the stack_frame_destroyed_p gdbarch method. */
1491 static int
1492 s390_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
1494 int word_size = gdbarch_ptr_bit (gdbarch) / 8;
1496 /* In frameless functions, there's not frame to destroy and thus
1497 we don't care about the epilogue.
1499 In functions with frame, the epilogue sequence is a pair of
1500 a LM-type instruction that restores (amongst others) the
1501 return register %r14 and the stack pointer %r15, followed
1502 by a branch 'br %r14' --or equivalent-- that effects the
1503 actual return.
1505 In that situation, this function needs to return 'true' in
1506 exactly one case: when pc points to that branch instruction.
1508 Thus we try to disassemble the one instructions immediately
1509 preceding pc and check whether it is an LM-type instruction
1510 modifying the stack pointer.
1512 Note that disassembling backwards is not reliable, so there
1513 is a slight chance of false positives here ... */
1515 bfd_byte insn[6];
1516 unsigned int r1, r3, b2;
1517 int d2;
1519 if (word_size == 4
1520 && !target_read_memory (pc - 4, insn, 4)
1521 && is_rs (insn, op_lm, &r1, &r3, &d2, &b2)
1522 && r3 == S390_SP_REGNUM - S390_R0_REGNUM)
1523 return 1;
1525 if (word_size == 4
1526 && !target_read_memory (pc - 6, insn, 6)
1527 && is_rsy (insn, op1_lmy, op2_lmy, &r1, &r3, &d2, &b2)
1528 && r3 == S390_SP_REGNUM - S390_R0_REGNUM)
1529 return 1;
1531 if (word_size == 8
1532 && !target_read_memory (pc - 6, insn, 6)
1533 && is_rsy (insn, op1_lmg, op2_lmg, &r1, &r3, &d2, &b2)
1534 && r3 == S390_SP_REGNUM - S390_R0_REGNUM)
1535 return 1;
1537 return 0;
1540 /* Displaced stepping. */
1542 /* Fix up the state of registers and memory after having single-stepped
1543 a displaced instruction. */
1544 static void
1545 s390_displaced_step_fixup (struct gdbarch *gdbarch,
1546 struct displaced_step_closure *closure,
1547 CORE_ADDR from, CORE_ADDR to,
1548 struct regcache *regs)
1550 /* Since we use simple_displaced_step_copy_insn, our closure is a
1551 copy of the instruction. */
1552 gdb_byte *insn = (gdb_byte *) closure;
1553 static int s390_instrlen[] = { 2, 4, 4, 6 };
1554 int insnlen = s390_instrlen[insn[0] >> 6];
1556 /* Fields for various kinds of instructions. */
1557 unsigned int b2, r1, r2, x2, r3;
1558 int i2, d2;
1560 /* Get current PC and addressing mode bit. */
1561 CORE_ADDR pc = regcache_read_pc (regs);
1562 ULONGEST amode = 0;
1564 if (register_size (gdbarch, S390_PSWA_REGNUM) == 4)
1566 regcache_cooked_read_unsigned (regs, S390_PSWA_REGNUM, &amode);
1567 amode &= 0x80000000;
1570 if (debug_displaced)
1571 fprintf_unfiltered (gdb_stdlog,
1572 "displaced: (s390) fixup (%s, %s) pc %s len %d amode 0x%x\n",
1573 paddress (gdbarch, from), paddress (gdbarch, to),
1574 paddress (gdbarch, pc), insnlen, (int) amode);
1576 /* Handle absolute branch and save instructions. */
1577 if (is_rr (insn, op_basr, &r1, &r2)
1578 || is_rx (insn, op_bas, &r1, &d2, &x2, &b2))
1580 /* Recompute saved return address in R1. */
1581 regcache_cooked_write_unsigned (regs, S390_R0_REGNUM + r1,
1582 amode | (from + insnlen));
1585 /* Handle absolute branch instructions. */
1586 else if (is_rr (insn, op_bcr, &r1, &r2)
1587 || is_rx (insn, op_bc, &r1, &d2, &x2, &b2)
1588 || is_rr (insn, op_bctr, &r1, &r2)
1589 || is_rre (insn, op_bctgr, &r1, &r2)
1590 || is_rx (insn, op_bct, &r1, &d2, &x2, &b2)
1591 || is_rxy (insn, op1_bctg, op2_brctg, &r1, &d2, &x2, &b2)
1592 || is_rs (insn, op_bxh, &r1, &r3, &d2, &b2)
1593 || is_rsy (insn, op1_bxhg, op2_bxhg, &r1, &r3, &d2, &b2)
1594 || is_rs (insn, op_bxle, &r1, &r3, &d2, &b2)
1595 || is_rsy (insn, op1_bxleg, op2_bxleg, &r1, &r3, &d2, &b2))
1597 /* Update PC iff branch was *not* taken. */
1598 if (pc == to + insnlen)
1599 regcache_write_pc (regs, from + insnlen);
1602 /* Handle PC-relative branch and save instructions. */
1603 else if (is_ri (insn, op1_bras, op2_bras, &r1, &i2)
1604 || is_ril (insn, op1_brasl, op2_brasl, &r1, &i2))
1606 /* Update PC. */
1607 regcache_write_pc (regs, pc - to + from);
1608 /* Recompute saved return address in R1. */
1609 regcache_cooked_write_unsigned (regs, S390_R0_REGNUM + r1,
1610 amode | (from + insnlen));
1613 /* Handle PC-relative branch instructions. */
1614 else if (is_ri (insn, op1_brc, op2_brc, &r1, &i2)
1615 || is_ril (insn, op1_brcl, op2_brcl, &r1, &i2)
1616 || is_ri (insn, op1_brct, op2_brct, &r1, &i2)
1617 || is_ri (insn, op1_brctg, op2_brctg, &r1, &i2)
1618 || is_rsi (insn, op_brxh, &r1, &r3, &i2)
1619 || is_rie (insn, op1_brxhg, op2_brxhg, &r1, &r3, &i2)
1620 || is_rsi (insn, op_brxle, &r1, &r3, &i2)
1621 || is_rie (insn, op1_brxlg, op2_brxlg, &r1, &r3, &i2))
1623 /* Update PC. */
1624 regcache_write_pc (regs, pc - to + from);
1627 /* Handle LOAD ADDRESS RELATIVE LONG. */
1628 else if (is_ril (insn, op1_larl, op2_larl, &r1, &i2))
1630 /* Update PC. */
1631 regcache_write_pc (regs, from + insnlen);
1632 /* Recompute output address in R1. */
1633 regcache_cooked_write_unsigned (regs, S390_R0_REGNUM + r1,
1634 amode | (from + i2 * 2));
1637 /* If we executed a breakpoint instruction, point PC right back at it. */
1638 else if (insn[0] == 0x0 && insn[1] == 0x1)
1639 regcache_write_pc (regs, from);
1641 /* For any other insn, PC points right after the original instruction. */
1642 else
1643 regcache_write_pc (regs, from + insnlen);
1645 if (debug_displaced)
1646 fprintf_unfiltered (gdb_stdlog,
1647 "displaced: (s390) pc is now %s\n",
1648 paddress (gdbarch, regcache_read_pc (regs)));
1652 /* Helper routine to unwind pseudo registers. */
1654 static struct value *
1655 s390_unwind_pseudo_register (struct frame_info *this_frame, int regnum)
1657 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1658 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1659 struct type *type = register_type (gdbarch, regnum);
1661 /* Unwind PC via PSW address. */
1662 if (regnum == tdep->pc_regnum)
1664 struct value *val;
1666 val = frame_unwind_register_value (this_frame, S390_PSWA_REGNUM);
1667 if (!value_optimized_out (val))
1669 LONGEST pswa = value_as_long (val);
1671 if (TYPE_LENGTH (type) == 4)
1672 return value_from_pointer (type, pswa & 0x7fffffff);
1673 else
1674 return value_from_pointer (type, pswa);
1678 /* Unwind CC via PSW mask. */
1679 if (regnum == tdep->cc_regnum)
1681 struct value *val;
1683 val = frame_unwind_register_value (this_frame, S390_PSWM_REGNUM);
1684 if (!value_optimized_out (val))
1686 LONGEST pswm = value_as_long (val);
1688 if (TYPE_LENGTH (type) == 4)
1689 return value_from_longest (type, (pswm >> 12) & 3);
1690 else
1691 return value_from_longest (type, (pswm >> 44) & 3);
1695 /* Unwind full GPRs to show at least the lower halves (as the
1696 upper halves are undefined). */
1697 if (regnum_is_gpr_full (tdep, regnum))
1699 int reg = regnum - tdep->gpr_full_regnum;
1700 struct value *val;
1702 val = frame_unwind_register_value (this_frame, S390_R0_REGNUM + reg);
1703 if (!value_optimized_out (val))
1704 return value_cast (type, val);
1707 return allocate_optimized_out_value (type);
1710 static struct value *
1711 s390_trad_frame_prev_register (struct frame_info *this_frame,
1712 struct trad_frame_saved_reg saved_regs[],
1713 int regnum)
1715 if (regnum < S390_NUM_REGS)
1716 return trad_frame_get_prev_register (this_frame, saved_regs, regnum);
1717 else
1718 return s390_unwind_pseudo_register (this_frame, regnum);
1722 /* Normal stack frames. */
1724 struct s390_unwind_cache {
1726 CORE_ADDR func;
1727 CORE_ADDR frame_base;
1728 CORE_ADDR local_base;
1730 struct trad_frame_saved_reg *saved_regs;
1733 static int
1734 s390_prologue_frame_unwind_cache (struct frame_info *this_frame,
1735 struct s390_unwind_cache *info)
1737 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1738 int word_size = gdbarch_ptr_bit (gdbarch) / 8;
1739 struct s390_prologue_data data;
1740 pv_t *fp = &data.gpr[S390_FRAME_REGNUM - S390_R0_REGNUM];
1741 pv_t *sp = &data.gpr[S390_SP_REGNUM - S390_R0_REGNUM];
1742 int i;
1743 CORE_ADDR cfa;
1744 CORE_ADDR func;
1745 CORE_ADDR result;
1746 ULONGEST reg;
1747 CORE_ADDR prev_sp;
1748 int frame_pointer;
1749 int size;
1750 struct frame_info *next_frame;
1752 /* Try to find the function start address. If we can't find it, we don't
1753 bother searching for it -- with modern compilers this would be mostly
1754 pointless anyway. Trust that we'll either have valid DWARF-2 CFI data
1755 or else a valid backchain ... */
1756 func = get_frame_func (this_frame);
1757 if (!func)
1758 return 0;
1760 /* Try to analyze the prologue. */
1761 result = s390_analyze_prologue (gdbarch, func,
1762 get_frame_pc (this_frame), &data);
1763 if (!result)
1764 return 0;
1766 /* If this was successful, we should have found the instruction that
1767 sets the stack pointer register to the previous value of the stack
1768 pointer minus the frame size. */
1769 if (!pv_is_register (*sp, S390_SP_REGNUM))
1770 return 0;
1772 /* A frame size of zero at this point can mean either a real
1773 frameless function, or else a failure to find the prologue.
1774 Perform some sanity checks to verify we really have a
1775 frameless function. */
1776 if (sp->k == 0)
1778 /* If the next frame is a NORMAL_FRAME, this frame *cannot* have frame
1779 size zero. This is only possible if the next frame is a sentinel
1780 frame, a dummy frame, or a signal trampoline frame. */
1781 /* FIXME: cagney/2004-05-01: This sanity check shouldn't be
1782 needed, instead the code should simpliy rely on its
1783 analysis. */
1784 next_frame = get_next_frame (this_frame);
1785 while (next_frame && get_frame_type (next_frame) == INLINE_FRAME)
1786 next_frame = get_next_frame (next_frame);
1787 if (next_frame
1788 && get_frame_type (get_next_frame (this_frame)) == NORMAL_FRAME)
1789 return 0;
1791 /* If we really have a frameless function, %r14 must be valid
1792 -- in particular, it must point to a different function. */
1793 reg = get_frame_register_unsigned (this_frame, S390_RETADDR_REGNUM);
1794 reg = gdbarch_addr_bits_remove (gdbarch, reg) - 1;
1795 if (get_pc_function_start (reg) == func)
1797 /* However, there is one case where it *is* valid for %r14
1798 to point to the same function -- if this is a recursive
1799 call, and we have stopped in the prologue *before* the
1800 stack frame was allocated.
1802 Recognize this case by looking ahead a bit ... */
1804 struct s390_prologue_data data2;
1805 pv_t *sp = &data2.gpr[S390_SP_REGNUM - S390_R0_REGNUM];
1807 if (!(s390_analyze_prologue (gdbarch, func, (CORE_ADDR)-1, &data2)
1808 && pv_is_register (*sp, S390_SP_REGNUM)
1809 && sp->k != 0))
1810 return 0;
1815 /* OK, we've found valid prologue data. */
1816 size = -sp->k;
1818 /* If the frame pointer originally also holds the same value
1819 as the stack pointer, we're probably using it. If it holds
1820 some other value -- even a constant offset -- it is most
1821 likely used as temp register. */
1822 if (pv_is_identical (*sp, *fp))
1823 frame_pointer = S390_FRAME_REGNUM;
1824 else
1825 frame_pointer = S390_SP_REGNUM;
1827 /* If we've detected a function with stack frame, we'll still have to
1828 treat it as frameless if we're currently within the function epilog
1829 code at a point where the frame pointer has already been restored.
1830 This can only happen in an innermost frame. */
1831 /* FIXME: cagney/2004-05-01: This sanity check shouldn't be needed,
1832 instead the code should simpliy rely on its analysis. */
1833 next_frame = get_next_frame (this_frame);
1834 while (next_frame && get_frame_type (next_frame) == INLINE_FRAME)
1835 next_frame = get_next_frame (next_frame);
1836 if (size > 0
1837 && (next_frame == NULL
1838 || get_frame_type (get_next_frame (this_frame)) != NORMAL_FRAME))
1840 /* See the comment in s390_stack_frame_destroyed_p on why this is
1841 not completely reliable ... */
1842 if (s390_stack_frame_destroyed_p (gdbarch, get_frame_pc (this_frame)))
1844 memset (&data, 0, sizeof (data));
1845 size = 0;
1846 frame_pointer = S390_SP_REGNUM;
1850 /* Once we know the frame register and the frame size, we can unwind
1851 the current value of the frame register from the next frame, and
1852 add back the frame size to arrive that the previous frame's
1853 stack pointer value. */
1854 prev_sp = get_frame_register_unsigned (this_frame, frame_pointer) + size;
1855 cfa = prev_sp + 16*word_size + 32;
1857 /* Set up ABI call-saved/call-clobbered registers. */
1858 for (i = 0; i < S390_NUM_REGS; i++)
1859 if (!s390_register_call_saved (gdbarch, i))
1860 trad_frame_set_unknown (info->saved_regs, i);
1862 /* CC is always call-clobbered. */
1863 trad_frame_set_unknown (info->saved_regs, S390_PSWM_REGNUM);
1865 /* Record the addresses of all register spill slots the prologue parser
1866 has recognized. Consider only registers defined as call-saved by the
1867 ABI; for call-clobbered registers the parser may have recognized
1868 spurious stores. */
1870 for (i = 0; i < 16; i++)
1871 if (s390_register_call_saved (gdbarch, S390_R0_REGNUM + i)
1872 && data.gpr_slot[i] != 0)
1873 info->saved_regs[S390_R0_REGNUM + i].addr = cfa - data.gpr_slot[i];
1875 for (i = 0; i < 16; i++)
1876 if (s390_register_call_saved (gdbarch, S390_F0_REGNUM + i)
1877 && data.fpr_slot[i] != 0)
1878 info->saved_regs[S390_F0_REGNUM + i].addr = cfa - data.fpr_slot[i];
1880 /* Function return will set PC to %r14. */
1881 info->saved_regs[S390_PSWA_REGNUM] = info->saved_regs[S390_RETADDR_REGNUM];
1883 /* In frameless functions, we unwind simply by moving the return
1884 address to the PC. However, if we actually stored to the
1885 save area, use that -- we might only think the function frameless
1886 because we're in the middle of the prologue ... */
1887 if (size == 0
1888 && !trad_frame_addr_p (info->saved_regs, S390_PSWA_REGNUM))
1890 info->saved_regs[S390_PSWA_REGNUM].realreg = S390_RETADDR_REGNUM;
1893 /* Another sanity check: unless this is a frameless function,
1894 we should have found spill slots for SP and PC.
1895 If not, we cannot unwind further -- this happens e.g. in
1896 libc's thread_start routine. */
1897 if (size > 0)
1899 if (!trad_frame_addr_p (info->saved_regs, S390_SP_REGNUM)
1900 || !trad_frame_addr_p (info->saved_regs, S390_PSWA_REGNUM))
1901 prev_sp = -1;
1904 /* We use the current value of the frame register as local_base,
1905 and the top of the register save area as frame_base. */
1906 if (prev_sp != -1)
1908 info->frame_base = prev_sp + 16*word_size + 32;
1909 info->local_base = prev_sp - size;
1912 info->func = func;
1913 return 1;
1916 static void
1917 s390_backchain_frame_unwind_cache (struct frame_info *this_frame,
1918 struct s390_unwind_cache *info)
1920 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1921 int word_size = gdbarch_ptr_bit (gdbarch) / 8;
1922 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1923 CORE_ADDR backchain;
1924 ULONGEST reg;
1925 LONGEST sp;
1926 int i;
1928 /* Set up ABI call-saved/call-clobbered registers. */
1929 for (i = 0; i < S390_NUM_REGS; i++)
1930 if (!s390_register_call_saved (gdbarch, i))
1931 trad_frame_set_unknown (info->saved_regs, i);
1933 /* CC is always call-clobbered. */
1934 trad_frame_set_unknown (info->saved_regs, S390_PSWM_REGNUM);
1936 /* Get the backchain. */
1937 reg = get_frame_register_unsigned (this_frame, S390_SP_REGNUM);
1938 backchain = read_memory_unsigned_integer (reg, word_size, byte_order);
1940 /* A zero backchain terminates the frame chain. As additional
1941 sanity check, let's verify that the spill slot for SP in the
1942 save area pointed to by the backchain in fact links back to
1943 the save area. */
1944 if (backchain != 0
1945 && safe_read_memory_integer (backchain + 15*word_size,
1946 word_size, byte_order, &sp)
1947 && (CORE_ADDR)sp == backchain)
1949 /* We don't know which registers were saved, but it will have
1950 to be at least %r14 and %r15. This will allow us to continue
1951 unwinding, but other prev-frame registers may be incorrect ... */
1952 info->saved_regs[S390_SP_REGNUM].addr = backchain + 15*word_size;
1953 info->saved_regs[S390_RETADDR_REGNUM].addr = backchain + 14*word_size;
1955 /* Function return will set PC to %r14. */
1956 info->saved_regs[S390_PSWA_REGNUM]
1957 = info->saved_regs[S390_RETADDR_REGNUM];
1959 /* We use the current value of the frame register as local_base,
1960 and the top of the register save area as frame_base. */
1961 info->frame_base = backchain + 16*word_size + 32;
1962 info->local_base = reg;
1965 info->func = get_frame_pc (this_frame);
1968 static struct s390_unwind_cache *
1969 s390_frame_unwind_cache (struct frame_info *this_frame,
1970 void **this_prologue_cache)
1972 struct s390_unwind_cache *info;
1974 if (*this_prologue_cache)
1975 return *this_prologue_cache;
1977 info = FRAME_OBSTACK_ZALLOC (struct s390_unwind_cache);
1978 *this_prologue_cache = info;
1979 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
1980 info->func = -1;
1981 info->frame_base = -1;
1982 info->local_base = -1;
1986 /* Try to use prologue analysis to fill the unwind cache.
1987 If this fails, fall back to reading the stack backchain. */
1988 if (!s390_prologue_frame_unwind_cache (this_frame, info))
1989 s390_backchain_frame_unwind_cache (this_frame, info);
1991 CATCH (ex, RETURN_MASK_ERROR)
1993 if (ex.error != NOT_AVAILABLE_ERROR)
1994 throw_exception (ex);
1996 END_CATCH
1998 return info;
2001 static void
2002 s390_frame_this_id (struct frame_info *this_frame,
2003 void **this_prologue_cache,
2004 struct frame_id *this_id)
2006 struct s390_unwind_cache *info
2007 = s390_frame_unwind_cache (this_frame, this_prologue_cache);
2009 if (info->frame_base == -1)
2010 return;
2012 *this_id = frame_id_build (info->frame_base, info->func);
2015 static struct value *
2016 s390_frame_prev_register (struct frame_info *this_frame,
2017 void **this_prologue_cache, int regnum)
2019 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2020 struct s390_unwind_cache *info
2021 = s390_frame_unwind_cache (this_frame, this_prologue_cache);
2023 return s390_trad_frame_prev_register (this_frame, info->saved_regs, regnum);
2026 static const struct frame_unwind s390_frame_unwind = {
2027 NORMAL_FRAME,
2028 default_frame_unwind_stop_reason,
2029 s390_frame_this_id,
2030 s390_frame_prev_register,
2031 NULL,
2032 default_frame_sniffer
2036 /* Code stubs and their stack frames. For things like PLTs and NULL
2037 function calls (where there is no true frame and the return address
2038 is in the RETADDR register). */
2040 struct s390_stub_unwind_cache
2042 CORE_ADDR frame_base;
2043 struct trad_frame_saved_reg *saved_regs;
2046 static struct s390_stub_unwind_cache *
2047 s390_stub_frame_unwind_cache (struct frame_info *this_frame,
2048 void **this_prologue_cache)
2050 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2051 int word_size = gdbarch_ptr_bit (gdbarch) / 8;
2052 struct s390_stub_unwind_cache *info;
2053 ULONGEST reg;
2055 if (*this_prologue_cache)
2056 return *this_prologue_cache;
2058 info = FRAME_OBSTACK_ZALLOC (struct s390_stub_unwind_cache);
2059 *this_prologue_cache = info;
2060 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
2062 /* The return address is in register %r14. */
2063 info->saved_regs[S390_PSWA_REGNUM].realreg = S390_RETADDR_REGNUM;
2065 /* Retrieve stack pointer and determine our frame base. */
2066 reg = get_frame_register_unsigned (this_frame, S390_SP_REGNUM);
2067 info->frame_base = reg + 16*word_size + 32;
2069 return info;
2072 static void
2073 s390_stub_frame_this_id (struct frame_info *this_frame,
2074 void **this_prologue_cache,
2075 struct frame_id *this_id)
2077 struct s390_stub_unwind_cache *info
2078 = s390_stub_frame_unwind_cache (this_frame, this_prologue_cache);
2079 *this_id = frame_id_build (info->frame_base, get_frame_pc (this_frame));
2082 static struct value *
2083 s390_stub_frame_prev_register (struct frame_info *this_frame,
2084 void **this_prologue_cache, int regnum)
2086 struct s390_stub_unwind_cache *info
2087 = s390_stub_frame_unwind_cache (this_frame, this_prologue_cache);
2088 return s390_trad_frame_prev_register (this_frame, info->saved_regs, regnum);
2091 static int
2092 s390_stub_frame_sniffer (const struct frame_unwind *self,
2093 struct frame_info *this_frame,
2094 void **this_prologue_cache)
2096 CORE_ADDR addr_in_block;
2097 bfd_byte insn[S390_MAX_INSTR_SIZE];
2099 /* If the current PC points to non-readable memory, we assume we
2100 have trapped due to an invalid function pointer call. We handle
2101 the non-existing current function like a PLT stub. */
2102 addr_in_block = get_frame_address_in_block (this_frame);
2103 if (in_plt_section (addr_in_block)
2104 || s390_readinstruction (insn, get_frame_pc (this_frame)) < 0)
2105 return 1;
2106 return 0;
2109 static const struct frame_unwind s390_stub_frame_unwind = {
2110 NORMAL_FRAME,
2111 default_frame_unwind_stop_reason,
2112 s390_stub_frame_this_id,
2113 s390_stub_frame_prev_register,
2114 NULL,
2115 s390_stub_frame_sniffer
2119 /* Signal trampoline stack frames. */
2121 struct s390_sigtramp_unwind_cache {
2122 CORE_ADDR frame_base;
2123 struct trad_frame_saved_reg *saved_regs;
2126 static struct s390_sigtramp_unwind_cache *
2127 s390_sigtramp_frame_unwind_cache (struct frame_info *this_frame,
2128 void **this_prologue_cache)
2130 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2131 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2132 int word_size = gdbarch_ptr_bit (gdbarch) / 8;
2133 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2134 struct s390_sigtramp_unwind_cache *info;
2135 ULONGEST this_sp, prev_sp;
2136 CORE_ADDR next_ra, next_cfa, sigreg_ptr, sigreg_high_off;
2137 int i;
2139 if (*this_prologue_cache)
2140 return *this_prologue_cache;
2142 info = FRAME_OBSTACK_ZALLOC (struct s390_sigtramp_unwind_cache);
2143 *this_prologue_cache = info;
2144 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
2146 this_sp = get_frame_register_unsigned (this_frame, S390_SP_REGNUM);
2147 next_ra = get_frame_pc (this_frame);
2148 next_cfa = this_sp + 16*word_size + 32;
2150 /* New-style RT frame:
2151 retcode + alignment (8 bytes)
2152 siginfo (128 bytes)
2153 ucontext (contains sigregs at offset 5 words). */
2154 if (next_ra == next_cfa)
2156 sigreg_ptr = next_cfa + 8 + 128 + align_up (5*word_size, 8);
2157 /* sigregs are followed by uc_sigmask (8 bytes), then by the
2158 upper GPR halves if present. */
2159 sigreg_high_off = 8;
2162 /* Old-style RT frame and all non-RT frames:
2163 old signal mask (8 bytes)
2164 pointer to sigregs. */
2165 else
2167 sigreg_ptr = read_memory_unsigned_integer (next_cfa + 8,
2168 word_size, byte_order);
2169 /* sigregs are followed by signo (4 bytes), then by the
2170 upper GPR halves if present. */
2171 sigreg_high_off = 4;
2174 /* The sigregs structure looks like this:
2175 long psw_mask;
2176 long psw_addr;
2177 long gprs[16];
2178 int acrs[16];
2179 int fpc;
2180 int __pad;
2181 double fprs[16]; */
2183 /* PSW mask and address. */
2184 info->saved_regs[S390_PSWM_REGNUM].addr = sigreg_ptr;
2185 sigreg_ptr += word_size;
2186 info->saved_regs[S390_PSWA_REGNUM].addr = sigreg_ptr;
2187 sigreg_ptr += word_size;
2189 /* Then the GPRs. */
2190 for (i = 0; i < 16; i++)
2192 info->saved_regs[S390_R0_REGNUM + i].addr = sigreg_ptr;
2193 sigreg_ptr += word_size;
2196 /* Then the ACRs. */
2197 for (i = 0; i < 16; i++)
2199 info->saved_regs[S390_A0_REGNUM + i].addr = sigreg_ptr;
2200 sigreg_ptr += 4;
2203 /* The floating-point control word. */
2204 info->saved_regs[S390_FPC_REGNUM].addr = sigreg_ptr;
2205 sigreg_ptr += 8;
2207 /* And finally the FPRs. */
2208 for (i = 0; i < 16; i++)
2210 info->saved_regs[S390_F0_REGNUM + i].addr = sigreg_ptr;
2211 sigreg_ptr += 8;
2214 /* If we have them, the GPR upper halves are appended at the end. */
2215 sigreg_ptr += sigreg_high_off;
2216 if (tdep->gpr_full_regnum != -1)
2217 for (i = 0; i < 16; i++)
2219 info->saved_regs[S390_R0_UPPER_REGNUM + i].addr = sigreg_ptr;
2220 sigreg_ptr += 4;
2223 /* Restore the previous frame's SP. */
2224 prev_sp = read_memory_unsigned_integer (
2225 info->saved_regs[S390_SP_REGNUM].addr,
2226 word_size, byte_order);
2228 /* Determine our frame base. */
2229 info->frame_base = prev_sp + 16*word_size + 32;
2231 return info;
2234 static void
2235 s390_sigtramp_frame_this_id (struct frame_info *this_frame,
2236 void **this_prologue_cache,
2237 struct frame_id *this_id)
2239 struct s390_sigtramp_unwind_cache *info
2240 = s390_sigtramp_frame_unwind_cache (this_frame, this_prologue_cache);
2241 *this_id = frame_id_build (info->frame_base, get_frame_pc (this_frame));
2244 static struct value *
2245 s390_sigtramp_frame_prev_register (struct frame_info *this_frame,
2246 void **this_prologue_cache, int regnum)
2248 struct s390_sigtramp_unwind_cache *info
2249 = s390_sigtramp_frame_unwind_cache (this_frame, this_prologue_cache);
2250 return s390_trad_frame_prev_register (this_frame, info->saved_regs, regnum);
2253 static int
2254 s390_sigtramp_frame_sniffer (const struct frame_unwind *self,
2255 struct frame_info *this_frame,
2256 void **this_prologue_cache)
2258 CORE_ADDR pc = get_frame_pc (this_frame);
2259 bfd_byte sigreturn[2];
2261 if (target_read_memory (pc, sigreturn, 2))
2262 return 0;
2264 if (sigreturn[0] != op_svc)
2265 return 0;
2267 if (sigreturn[1] != 119 /* sigreturn */
2268 && sigreturn[1] != 173 /* rt_sigreturn */)
2269 return 0;
2271 return 1;
2274 static const struct frame_unwind s390_sigtramp_frame_unwind = {
2275 SIGTRAMP_FRAME,
2276 default_frame_unwind_stop_reason,
2277 s390_sigtramp_frame_this_id,
2278 s390_sigtramp_frame_prev_register,
2279 NULL,
2280 s390_sigtramp_frame_sniffer
2283 /* Retrieve the syscall number at a ptrace syscall-stop. Return -1
2284 upon error. */
2286 static LONGEST
2287 s390_linux_get_syscall_number (struct gdbarch *gdbarch,
2288 ptid_t ptid)
2290 struct regcache *regs = get_thread_regcache (ptid);
2291 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2292 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2293 ULONGEST pc;
2294 ULONGEST svc_number = -1;
2295 unsigned opcode;
2297 /* Assume that the PC points after the 2-byte SVC instruction. We
2298 don't currently support SVC via EXECUTE. */
2299 regcache_cooked_read_unsigned (regs, tdep->pc_regnum, &pc);
2300 pc -= 2;
2301 opcode = read_memory_unsigned_integer ((CORE_ADDR) pc, 1, byte_order);
2302 if (opcode != op_svc)
2303 return -1;
2305 svc_number = read_memory_unsigned_integer ((CORE_ADDR) pc + 1, 1,
2306 byte_order);
2307 if (svc_number == 0)
2308 regcache_cooked_read_unsigned (regs, S390_R1_REGNUM, &svc_number);
2310 return svc_number;
2314 /* Frame base handling. */
2316 static CORE_ADDR
2317 s390_frame_base_address (struct frame_info *this_frame, void **this_cache)
2319 struct s390_unwind_cache *info
2320 = s390_frame_unwind_cache (this_frame, this_cache);
2321 return info->frame_base;
2324 static CORE_ADDR
2325 s390_local_base_address (struct frame_info *this_frame, void **this_cache)
2327 struct s390_unwind_cache *info
2328 = s390_frame_unwind_cache (this_frame, this_cache);
2329 return info->local_base;
2332 static const struct frame_base s390_frame_base = {
2333 &s390_frame_unwind,
2334 s390_frame_base_address,
2335 s390_local_base_address,
2336 s390_local_base_address
2339 static CORE_ADDR
2340 s390_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
2342 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2343 ULONGEST pc;
2344 pc = frame_unwind_register_unsigned (next_frame, tdep->pc_regnum);
2345 return gdbarch_addr_bits_remove (gdbarch, pc);
2348 static CORE_ADDR
2349 s390_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
2351 ULONGEST sp;
2352 sp = frame_unwind_register_unsigned (next_frame, S390_SP_REGNUM);
2353 return gdbarch_addr_bits_remove (gdbarch, sp);
2357 /* DWARF-2 frame support. */
2359 static struct value *
2360 s390_dwarf2_prev_register (struct frame_info *this_frame, void **this_cache,
2361 int regnum)
2363 return s390_unwind_pseudo_register (this_frame, regnum);
2366 static void
2367 s390_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
2368 struct dwarf2_frame_state_reg *reg,
2369 struct frame_info *this_frame)
2371 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2373 /* The condition code (and thus PSW mask) is call-clobbered. */
2374 if (regnum == S390_PSWM_REGNUM)
2375 reg->how = DWARF2_FRAME_REG_UNDEFINED;
2377 /* The PSW address unwinds to the return address. */
2378 else if (regnum == S390_PSWA_REGNUM)
2379 reg->how = DWARF2_FRAME_REG_RA;
2381 /* Fixed registers are call-saved or call-clobbered
2382 depending on the ABI in use. */
2383 else if (regnum < S390_NUM_REGS)
2385 if (s390_register_call_saved (gdbarch, regnum))
2386 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
2387 else
2388 reg->how = DWARF2_FRAME_REG_UNDEFINED;
2391 /* We install a special function to unwind pseudos. */
2392 else
2394 reg->how = DWARF2_FRAME_REG_FN;
2395 reg->loc.fn = s390_dwarf2_prev_register;
2400 /* Dummy function calls. */
2402 /* Unwrap any single-field structs in TYPE and return the effective
2403 "inner" type. E.g., yield "float" for all these cases:
2405 float x;
2406 struct { float x };
2407 struct { struct { float x; } x; };
2408 struct { struct { struct { float x; } x; } x; };
2410 However, if an inner type is smaller than MIN_SIZE, abort the
2411 unwrapping. */
2413 static struct type *
2414 s390_effective_inner_type (struct type *type, unsigned int min_size)
2416 while (TYPE_CODE (type) == TYPE_CODE_STRUCT
2417 && TYPE_NFIELDS (type) == 1)
2419 struct type *inner = check_typedef (TYPE_FIELD_TYPE (type, 0));
2421 if (TYPE_LENGTH (inner) < min_size)
2422 break;
2423 type = inner;
2426 return type;
2429 /* Return non-zero if TYPE should be passed like "float" or
2430 "double". */
2432 static int
2433 s390_function_arg_float (struct type *type)
2435 /* Note that long double as well as complex types are intentionally
2436 excluded. */
2437 if (TYPE_LENGTH (type) > 8)
2438 return 0;
2440 /* A struct containing just a float or double is passed like a float
2441 or double. */
2442 type = s390_effective_inner_type (type, 0);
2444 return (TYPE_CODE (type) == TYPE_CODE_FLT
2445 || TYPE_CODE (type) == TYPE_CODE_DECFLOAT);
2448 /* Return non-zero if TYPE should be passed like a vector. */
2450 static int
2451 s390_function_arg_vector (struct type *type)
2453 if (TYPE_LENGTH (type) > 16)
2454 return 0;
2456 /* Structs containing just a vector are passed like a vector. */
2457 type = s390_effective_inner_type (type, TYPE_LENGTH (type));
2459 return TYPE_CODE (type) == TYPE_CODE_ARRAY && TYPE_VECTOR (type);
2462 /* Determine whether N is a power of two. */
2464 static int
2465 is_power_of_two (unsigned int n)
2467 return n && ((n & (n - 1)) == 0);
2470 /* For an argument whose type is TYPE and which is not passed like a
2471 float or vector, return non-zero if it should be passed like "int"
2472 or "long long". */
2474 static int
2475 s390_function_arg_integer (struct type *type)
2477 enum type_code code = TYPE_CODE (type);
2479 if (TYPE_LENGTH (type) > 8)
2480 return 0;
2482 if (code == TYPE_CODE_INT
2483 || code == TYPE_CODE_ENUM
2484 || code == TYPE_CODE_RANGE
2485 || code == TYPE_CODE_CHAR
2486 || code == TYPE_CODE_BOOL
2487 || code == TYPE_CODE_PTR
2488 || code == TYPE_CODE_REF)
2489 return 1;
2491 return ((code == TYPE_CODE_UNION || code == TYPE_CODE_STRUCT)
2492 && is_power_of_two (TYPE_LENGTH (type)));
2495 /* Argument passing state: Internal data structure passed to helper
2496 routines of s390_push_dummy_call. */
2498 struct s390_arg_state
2500 /* Register cache, or NULL, if we are in "preparation mode". */
2501 struct regcache *regcache;
2502 /* Next available general/floating-point/vector register for
2503 argument passing. */
2504 int gr, fr, vr;
2505 /* Current pointer to copy area (grows downwards). */
2506 CORE_ADDR copy;
2507 /* Current pointer to parameter area (grows upwards). */
2508 CORE_ADDR argp;
2511 /* Prepare one argument ARG for a dummy call and update the argument
2512 passing state AS accordingly. If the regcache field in AS is set,
2513 operate in "write mode" and write ARG into the inferior. Otherwise
2514 run "preparation mode" and skip all updates to the inferior. */
2516 static void
2517 s390_handle_arg (struct s390_arg_state *as, struct value *arg,
2518 struct gdbarch_tdep *tdep, int word_size,
2519 enum bfd_endian byte_order, int is_unnamed)
2521 struct type *type = check_typedef (value_type (arg));
2522 unsigned int length = TYPE_LENGTH (type);
2523 int write_mode = as->regcache != NULL;
2525 if (s390_function_arg_float (type))
2527 /* The GNU/Linux for S/390 ABI uses FPRs 0 and 2 to pass
2528 arguments. The GNU/Linux for zSeries ABI uses 0, 2, 4, and
2529 6. */
2530 if (as->fr <= (tdep->abi == ABI_LINUX_S390 ? 2 : 6))
2532 /* When we store a single-precision value in an FP register,
2533 it occupies the leftmost bits. */
2534 if (write_mode)
2535 regcache_cooked_write_part (as->regcache,
2536 S390_F0_REGNUM + as->fr,
2537 0, length,
2538 value_contents (arg));
2539 as->fr += 2;
2541 else
2543 /* When we store a single-precision value in a stack slot,
2544 it occupies the rightmost bits. */
2545 as->argp = align_up (as->argp + length, word_size);
2546 if (write_mode)
2547 write_memory (as->argp - length, value_contents (arg),
2548 length);
2551 else if (tdep->vector_abi == S390_VECTOR_ABI_128
2552 && s390_function_arg_vector (type))
2554 static const char use_vr[] = {24, 26, 28, 30, 25, 27, 29, 31};
2556 if (!is_unnamed && as->vr < ARRAY_SIZE (use_vr))
2558 int regnum = S390_V24_REGNUM + use_vr[as->vr] - 24;
2560 if (write_mode)
2561 regcache_cooked_write_part (as->regcache, regnum,
2562 0, length,
2563 value_contents (arg));
2564 as->vr++;
2566 else
2568 if (write_mode)
2569 write_memory (as->argp, value_contents (arg), length);
2570 as->argp = align_up (as->argp + length, word_size);
2573 else if (s390_function_arg_integer (type) && length <= word_size)
2575 /* Initialize it just to avoid a GCC false warning. */
2576 ULONGEST val = 0;
2578 if (write_mode)
2580 /* Place value in least significant bits of the register or
2581 memory word and sign- or zero-extend to full word size.
2582 This also applies to a struct or union. */
2583 val = TYPE_UNSIGNED (type)
2584 ? extract_unsigned_integer (value_contents (arg),
2585 length, byte_order)
2586 : extract_signed_integer (value_contents (arg),
2587 length, byte_order);
2590 if (as->gr <= 6)
2592 if (write_mode)
2593 regcache_cooked_write_unsigned (as->regcache,
2594 S390_R0_REGNUM + as->gr,
2595 val);
2596 as->gr++;
2598 else
2600 if (write_mode)
2601 write_memory_unsigned_integer (as->argp, word_size,
2602 byte_order, val);
2603 as->argp += word_size;
2606 else if (s390_function_arg_integer (type) && length == 8)
2608 if (as->gr <= 5)
2610 if (write_mode)
2612 regcache_cooked_write (as->regcache,
2613 S390_R0_REGNUM + as->gr,
2614 value_contents (arg));
2615 regcache_cooked_write (as->regcache,
2616 S390_R0_REGNUM + as->gr + 1,
2617 value_contents (arg) + word_size);
2619 as->gr += 2;
2621 else
2623 /* If we skipped r6 because we couldn't fit a DOUBLE_ARG
2624 in it, then don't go back and use it again later. */
2625 as->gr = 7;
2627 if (write_mode)
2628 write_memory (as->argp, value_contents (arg), length);
2629 as->argp += length;
2632 else
2634 /* This argument type is never passed in registers. Place the
2635 value in the copy area and pass a pointer to it. Use 8-byte
2636 alignment as a conservative assumption. */
2637 as->copy = align_down (as->copy - length, 8);
2638 if (write_mode)
2639 write_memory (as->copy, value_contents (arg), length);
2641 if (as->gr <= 6)
2643 if (write_mode)
2644 regcache_cooked_write_unsigned (as->regcache,
2645 S390_R0_REGNUM + as->gr,
2646 as->copy);
2647 as->gr++;
2649 else
2651 if (write_mode)
2652 write_memory_unsigned_integer (as->argp, word_size,
2653 byte_order, as->copy);
2654 as->argp += word_size;
2659 /* Put the actual parameter values pointed to by ARGS[0..NARGS-1] in
2660 place to be passed to a function, as specified by the "GNU/Linux
2661 for S/390 ELF Application Binary Interface Supplement".
2663 SP is the current stack pointer. We must put arguments, links,
2664 padding, etc. whereever they belong, and return the new stack
2665 pointer value.
2667 If STRUCT_RETURN is non-zero, then the function we're calling is
2668 going to return a structure by value; STRUCT_ADDR is the address of
2669 a block we've allocated for it on the stack.
2671 Our caller has taken care of any type promotions needed to satisfy
2672 prototypes or the old K&R argument-passing rules. */
2674 static CORE_ADDR
2675 s390_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2676 struct regcache *regcache, CORE_ADDR bp_addr,
2677 int nargs, struct value **args, CORE_ADDR sp,
2678 int struct_return, CORE_ADDR struct_addr)
2680 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2681 int word_size = gdbarch_ptr_bit (gdbarch) / 8;
2682 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2683 int i;
2684 struct s390_arg_state arg_state, arg_prep;
2685 CORE_ADDR param_area_start, new_sp;
2686 struct type *ftype = check_typedef (value_type (function));
2688 if (TYPE_CODE (ftype) == TYPE_CODE_PTR)
2689 ftype = check_typedef (TYPE_TARGET_TYPE (ftype));
2691 arg_prep.copy = sp;
2692 arg_prep.gr = struct_return ? 3 : 2;
2693 arg_prep.fr = 0;
2694 arg_prep.vr = 0;
2695 arg_prep.argp = 0;
2696 arg_prep.regcache = NULL;
2698 /* Initialize arg_state for "preparation mode". */
2699 arg_state = arg_prep;
2701 /* Update arg_state.copy with the start of the reference-to-copy area
2702 and arg_state.argp with the size of the parameter area. */
2703 for (i = 0; i < nargs; i++)
2704 s390_handle_arg (&arg_state, args[i], tdep, word_size, byte_order,
2705 TYPE_VARARGS (ftype) && i >= TYPE_NFIELDS (ftype));
2707 param_area_start = align_down (arg_state.copy - arg_state.argp, 8);
2709 /* Allocate the standard frame areas: the register save area, the
2710 word reserved for the compiler, and the back chain pointer. */
2711 new_sp = param_area_start - (16 * word_size + 32);
2713 /* Now we have the final stack pointer. Make sure we didn't
2714 underflow; on 31-bit, this would result in addresses with the
2715 high bit set, which causes confusion elsewhere. Note that if we
2716 error out here, stack and registers remain untouched. */
2717 if (gdbarch_addr_bits_remove (gdbarch, new_sp) != new_sp)
2718 error (_("Stack overflow"));
2720 /* Pass the structure return address in general register 2. */
2721 if (struct_return)
2722 regcache_cooked_write_unsigned (regcache, S390_R2_REGNUM, struct_addr);
2724 /* Initialize arg_state for "write mode". */
2725 arg_state = arg_prep;
2726 arg_state.argp = param_area_start;
2727 arg_state.regcache = regcache;
2729 /* Write all parameters. */
2730 for (i = 0; i < nargs; i++)
2731 s390_handle_arg (&arg_state, args[i], tdep, word_size, byte_order,
2732 TYPE_VARARGS (ftype) && i >= TYPE_NFIELDS (ftype));
2734 /* Store return PSWA. In 31-bit mode, keep addressing mode bit. */
2735 if (word_size == 4)
2737 ULONGEST pswa;
2738 regcache_cooked_read_unsigned (regcache, S390_PSWA_REGNUM, &pswa);
2739 bp_addr = (bp_addr & 0x7fffffff) | (pswa & 0x80000000);
2741 regcache_cooked_write_unsigned (regcache, S390_RETADDR_REGNUM, bp_addr);
2743 /* Store updated stack pointer. */
2744 regcache_cooked_write_unsigned (regcache, S390_SP_REGNUM, new_sp);
2746 /* We need to return the 'stack part' of the frame ID,
2747 which is actually the top of the register save area. */
2748 return param_area_start;
2751 /* Assuming THIS_FRAME is a dummy, return the frame ID of that
2752 dummy frame. The frame ID's base needs to match the TOS value
2753 returned by push_dummy_call, and the PC match the dummy frame's
2754 breakpoint. */
2755 static struct frame_id
2756 s390_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
2758 int word_size = gdbarch_ptr_bit (gdbarch) / 8;
2759 CORE_ADDR sp = get_frame_register_unsigned (this_frame, S390_SP_REGNUM);
2760 sp = gdbarch_addr_bits_remove (gdbarch, sp);
2762 return frame_id_build (sp + 16*word_size + 32,
2763 get_frame_pc (this_frame));
2766 static CORE_ADDR
2767 s390_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
2769 /* Both the 32- and 64-bit ABI's say that the stack pointer should
2770 always be aligned on an eight-byte boundary. */
2771 return (addr & -8);
2775 /* Helper for s390_return_value: Set or retrieve a function return
2776 value if it resides in a register. */
2778 static void
2779 s390_register_return_value (struct gdbarch *gdbarch, struct type *type,
2780 struct regcache *regcache,
2781 gdb_byte *out, const gdb_byte *in)
2783 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2784 int word_size = gdbarch_ptr_bit (gdbarch) / 8;
2785 int length = TYPE_LENGTH (type);
2786 int code = TYPE_CODE (type);
2788 if (code == TYPE_CODE_FLT || code == TYPE_CODE_DECFLOAT)
2790 /* Float-like value: left-aligned in f0. */
2791 if (in != NULL)
2792 regcache_cooked_write_part (regcache, S390_F0_REGNUM,
2793 0, length, in);
2794 else
2795 regcache_cooked_read_part (regcache, S390_F0_REGNUM,
2796 0, length, out);
2798 else if (code == TYPE_CODE_ARRAY)
2800 /* Vector: left-aligned in v24. */
2801 if (in != NULL)
2802 regcache_cooked_write_part (regcache, S390_V24_REGNUM,
2803 0, length, in);
2804 else
2805 regcache_cooked_read_part (regcache, S390_V24_REGNUM,
2806 0, length, out);
2808 else if (length <= word_size)
2810 /* Integer: zero- or sign-extended in r2. */
2811 if (out != NULL)
2812 regcache_cooked_read_part (regcache, S390_R2_REGNUM,
2813 word_size - length, length, out);
2814 else if (TYPE_UNSIGNED (type))
2815 regcache_cooked_write_unsigned
2816 (regcache, S390_R2_REGNUM,
2817 extract_unsigned_integer (in, length, byte_order));
2818 else
2819 regcache_cooked_write_signed
2820 (regcache, S390_R2_REGNUM,
2821 extract_signed_integer (in, length, byte_order));
2823 else if (length == 2 * word_size)
2825 /* Double word: in r2 and r3. */
2826 if (in != NULL)
2828 regcache_cooked_write (regcache, S390_R2_REGNUM, in);
2829 regcache_cooked_write (regcache, S390_R3_REGNUM,
2830 in + word_size);
2832 else
2834 regcache_cooked_read (regcache, S390_R2_REGNUM, out);
2835 regcache_cooked_read (regcache, S390_R3_REGNUM,
2836 out + word_size);
2839 else
2840 internal_error (__FILE__, __LINE__, _("invalid return type"));
2844 /* Implement the 'return_value' gdbarch method. */
2846 static enum return_value_convention
2847 s390_return_value (struct gdbarch *gdbarch, struct value *function,
2848 struct type *type, struct regcache *regcache,
2849 gdb_byte *out, const gdb_byte *in)
2851 enum return_value_convention rvc;
2853 type = check_typedef (type);
2855 switch (TYPE_CODE (type))
2857 case TYPE_CODE_STRUCT:
2858 case TYPE_CODE_UNION:
2859 case TYPE_CODE_COMPLEX:
2860 rvc = RETURN_VALUE_STRUCT_CONVENTION;
2861 break;
2862 case TYPE_CODE_ARRAY:
2863 rvc = (gdbarch_tdep (gdbarch)->vector_abi == S390_VECTOR_ABI_128
2864 && TYPE_LENGTH (type) <= 16 && TYPE_VECTOR (type))
2865 ? RETURN_VALUE_REGISTER_CONVENTION
2866 : RETURN_VALUE_STRUCT_CONVENTION;
2867 break;
2868 default:
2869 rvc = TYPE_LENGTH (type) <= 8
2870 ? RETURN_VALUE_REGISTER_CONVENTION
2871 : RETURN_VALUE_STRUCT_CONVENTION;
2874 if (in != NULL || out != NULL)
2876 if (rvc == RETURN_VALUE_REGISTER_CONVENTION)
2877 s390_register_return_value (gdbarch, type, regcache, out, in);
2878 else if (in != NULL)
2879 error (_("Cannot set function return value."));
2880 else
2881 error (_("Function return value unknown."));
2884 return rvc;
2888 /* Breakpoints. */
2890 static const gdb_byte *
2891 s390_breakpoint_from_pc (struct gdbarch *gdbarch,
2892 CORE_ADDR *pcptr, int *lenptr)
2894 static const gdb_byte breakpoint[] = { 0x0, 0x1 };
2896 *lenptr = sizeof (breakpoint);
2897 return breakpoint;
2901 /* Address handling. */
2903 static CORE_ADDR
2904 s390_addr_bits_remove (struct gdbarch *gdbarch, CORE_ADDR addr)
2906 return addr & 0x7fffffff;
2909 static int
2910 s390_address_class_type_flags (int byte_size, int dwarf2_addr_class)
2912 if (byte_size == 4)
2913 return TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1;
2914 else
2915 return 0;
2918 static const char *
2919 s390_address_class_type_flags_to_name (struct gdbarch *gdbarch, int type_flags)
2921 if (type_flags & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1)
2922 return "mode32";
2923 else
2924 return NULL;
2927 static int
2928 s390_address_class_name_to_type_flags (struct gdbarch *gdbarch,
2929 const char *name,
2930 int *type_flags_ptr)
2932 if (strcmp (name, "mode32") == 0)
2934 *type_flags_ptr = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1;
2935 return 1;
2937 else
2938 return 0;
2941 /* Implement gdbarch_gcc_target_options. GCC does not know "-m32" or
2942 "-mcmodel=large". */
2944 static char *
2945 s390_gcc_target_options (struct gdbarch *gdbarch)
2947 return xstrdup (gdbarch_ptr_bit (gdbarch) == 64 ? "-m64" : "-m31");
2950 /* Implement gdbarch_gnu_triplet_regexp. Target triplets are "s390-*"
2951 for 31-bit and "s390x-*" for 64-bit, while the BFD arch name is
2952 always "s390". Note that an s390x compiler supports "-m31" as
2953 well. */
2955 static const char *
2956 s390_gnu_triplet_regexp (struct gdbarch *gdbarch)
2958 return "s390x?";
2961 /* Implementation of `gdbarch_stap_is_single_operand', as defined in
2962 gdbarch.h. */
2964 static int
2965 s390_stap_is_single_operand (struct gdbarch *gdbarch, const char *s)
2967 return ((isdigit (*s) && s[1] == '(' && s[2] == '%') /* Displacement
2968 or indirection. */
2969 || *s == '%' /* Register access. */
2970 || isdigit (*s)); /* Literal number. */
2973 /* Set up gdbarch struct. */
2975 static struct gdbarch *
2976 s390_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2978 const struct target_desc *tdesc = info.target_desc;
2979 struct tdesc_arch_data *tdesc_data = NULL;
2980 struct gdbarch *gdbarch;
2981 struct gdbarch_tdep *tdep;
2982 enum s390_abi_kind tdep_abi;
2983 enum s390_vector_abi_kind vector_abi;
2984 int have_upper = 0;
2985 int have_linux_v1 = 0;
2986 int have_linux_v2 = 0;
2987 int have_tdb = 0;
2988 int have_vx = 0;
2989 int first_pseudo_reg, last_pseudo_reg;
2990 static const char *const stap_register_prefixes[] = { "%", NULL };
2991 static const char *const stap_register_indirection_prefixes[] = { "(",
2992 NULL };
2993 static const char *const stap_register_indirection_suffixes[] = { ")",
2994 NULL };
2996 /* Default ABI and register size. */
2997 switch (info.bfd_arch_info->mach)
2999 case bfd_mach_s390_31:
3000 tdep_abi = ABI_LINUX_S390;
3001 break;
3003 case bfd_mach_s390_64:
3004 tdep_abi = ABI_LINUX_ZSERIES;
3005 break;
3007 default:
3008 return NULL;
3011 /* Use default target description if none provided by the target. */
3012 if (!tdesc_has_registers (tdesc))
3014 if (tdep_abi == ABI_LINUX_S390)
3015 tdesc = tdesc_s390_linux32;
3016 else
3017 tdesc = tdesc_s390x_linux64;
3020 /* Check any target description for validity. */
3021 if (tdesc_has_registers (tdesc))
3023 static const char *const gprs[] = {
3024 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
3025 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
3027 static const char *const fprs[] = {
3028 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
3029 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15"
3031 static const char *const acrs[] = {
3032 "acr0", "acr1", "acr2", "acr3", "acr4", "acr5", "acr6", "acr7",
3033 "acr8", "acr9", "acr10", "acr11", "acr12", "acr13", "acr14", "acr15"
3035 static const char *const gprs_lower[] = {
3036 "r0l", "r1l", "r2l", "r3l", "r4l", "r5l", "r6l", "r7l",
3037 "r8l", "r9l", "r10l", "r11l", "r12l", "r13l", "r14l", "r15l"
3039 static const char *const gprs_upper[] = {
3040 "r0h", "r1h", "r2h", "r3h", "r4h", "r5h", "r6h", "r7h",
3041 "r8h", "r9h", "r10h", "r11h", "r12h", "r13h", "r14h", "r15h"
3043 static const char *const tdb_regs[] = {
3044 "tdb0", "tac", "tct", "atia",
3045 "tr0", "tr1", "tr2", "tr3", "tr4", "tr5", "tr6", "tr7",
3046 "tr8", "tr9", "tr10", "tr11", "tr12", "tr13", "tr14", "tr15"
3048 static const char *const vxrs_low[] = {
3049 "v0l", "v1l", "v2l", "v3l", "v4l", "v5l", "v6l", "v7l", "v8l",
3050 "v9l", "v10l", "v11l", "v12l", "v13l", "v14l", "v15l",
3052 static const char *const vxrs_high[] = {
3053 "v16", "v17", "v18", "v19", "v20", "v21", "v22", "v23", "v24",
3054 "v25", "v26", "v27", "v28", "v29", "v30", "v31",
3056 const struct tdesc_feature *feature;
3057 int i, valid_p = 1;
3059 feature = tdesc_find_feature (tdesc, "org.gnu.gdb.s390.core");
3060 if (feature == NULL)
3061 return NULL;
3063 tdesc_data = tdesc_data_alloc ();
3065 valid_p &= tdesc_numbered_register (feature, tdesc_data,
3066 S390_PSWM_REGNUM, "pswm");
3067 valid_p &= tdesc_numbered_register (feature, tdesc_data,
3068 S390_PSWA_REGNUM, "pswa");
3070 if (tdesc_unnumbered_register (feature, "r0"))
3072 for (i = 0; i < 16; i++)
3073 valid_p &= tdesc_numbered_register (feature, tdesc_data,
3074 S390_R0_REGNUM + i, gprs[i]);
3076 else
3078 have_upper = 1;
3080 for (i = 0; i < 16; i++)
3081 valid_p &= tdesc_numbered_register (feature, tdesc_data,
3082 S390_R0_REGNUM + i,
3083 gprs_lower[i]);
3084 for (i = 0; i < 16; i++)
3085 valid_p &= tdesc_numbered_register (feature, tdesc_data,
3086 S390_R0_UPPER_REGNUM + i,
3087 gprs_upper[i]);
3090 feature = tdesc_find_feature (tdesc, "org.gnu.gdb.s390.fpr");
3091 if (feature == NULL)
3093 tdesc_data_cleanup (tdesc_data);
3094 return NULL;
3097 valid_p &= tdesc_numbered_register (feature, tdesc_data,
3098 S390_FPC_REGNUM, "fpc");
3099 for (i = 0; i < 16; i++)
3100 valid_p &= tdesc_numbered_register (feature, tdesc_data,
3101 S390_F0_REGNUM + i, fprs[i]);
3103 feature = tdesc_find_feature (tdesc, "org.gnu.gdb.s390.acr");
3104 if (feature == NULL)
3106 tdesc_data_cleanup (tdesc_data);
3107 return NULL;
3110 for (i = 0; i < 16; i++)
3111 valid_p &= tdesc_numbered_register (feature, tdesc_data,
3112 S390_A0_REGNUM + i, acrs[i]);
3114 /* Optional GNU/Linux-specific "registers". */
3115 feature = tdesc_find_feature (tdesc, "org.gnu.gdb.s390.linux");
3116 if (feature)
3118 tdesc_numbered_register (feature, tdesc_data,
3119 S390_ORIG_R2_REGNUM, "orig_r2");
3121 if (tdesc_numbered_register (feature, tdesc_data,
3122 S390_LAST_BREAK_REGNUM, "last_break"))
3123 have_linux_v1 = 1;
3125 if (tdesc_numbered_register (feature, tdesc_data,
3126 S390_SYSTEM_CALL_REGNUM, "system_call"))
3127 have_linux_v2 = 1;
3129 if (have_linux_v2 > have_linux_v1)
3130 valid_p = 0;
3133 /* Transaction diagnostic block. */
3134 feature = tdesc_find_feature (tdesc, "org.gnu.gdb.s390.tdb");
3135 if (feature)
3137 for (i = 0; i < ARRAY_SIZE (tdb_regs); i++)
3138 valid_p &= tdesc_numbered_register (feature, tdesc_data,
3139 S390_TDB_DWORD0_REGNUM + i,
3140 tdb_regs[i]);
3141 have_tdb = 1;
3144 /* Vector registers. */
3145 feature = tdesc_find_feature (tdesc, "org.gnu.gdb.s390.vx");
3146 if (feature)
3148 for (i = 0; i < 16; i++)
3149 valid_p &= tdesc_numbered_register (feature, tdesc_data,
3150 S390_V0_LOWER_REGNUM + i,
3151 vxrs_low[i]);
3152 for (i = 0; i < 16; i++)
3153 valid_p &= tdesc_numbered_register (feature, tdesc_data,
3154 S390_V16_REGNUM + i,
3155 vxrs_high[i]);
3156 have_vx = 1;
3159 if (!valid_p)
3161 tdesc_data_cleanup (tdesc_data);
3162 return NULL;
3166 /* Determine vector ABI. */
3167 vector_abi = S390_VECTOR_ABI_NONE;
3168 #ifdef HAVE_ELF
3169 if (have_vx
3170 && info.abfd != NULL
3171 && info.abfd->format == bfd_object
3172 && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour
3173 && bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_GNU,
3174 Tag_GNU_S390_ABI_Vector) == 2)
3175 vector_abi = S390_VECTOR_ABI_128;
3176 #endif
3178 /* Find a candidate among extant architectures. */
3179 for (arches = gdbarch_list_lookup_by_info (arches, &info);
3180 arches != NULL;
3181 arches = gdbarch_list_lookup_by_info (arches->next, &info))
3183 tdep = gdbarch_tdep (arches->gdbarch);
3184 if (!tdep)
3185 continue;
3186 if (tdep->abi != tdep_abi)
3187 continue;
3188 if (tdep->vector_abi != vector_abi)
3189 continue;
3190 if ((tdep->gpr_full_regnum != -1) != have_upper)
3191 continue;
3192 if (tdesc_data != NULL)
3193 tdesc_data_cleanup (tdesc_data);
3194 return arches->gdbarch;
3197 /* Otherwise create a new gdbarch for the specified machine type. */
3198 tdep = XCNEW (struct gdbarch_tdep);
3199 tdep->abi = tdep_abi;
3200 tdep->vector_abi = vector_abi;
3201 tdep->have_linux_v1 = have_linux_v1;
3202 tdep->have_linux_v2 = have_linux_v2;
3203 tdep->have_tdb = have_tdb;
3204 gdbarch = gdbarch_alloc (&info, tdep);
3206 set_gdbarch_believe_pcc_promotion (gdbarch, 0);
3207 set_gdbarch_char_signed (gdbarch, 0);
3209 /* S/390 GNU/Linux uses either 64-bit or 128-bit long doubles.
3210 We can safely let them default to 128-bit, since the debug info
3211 will give the size of type actually used in each case. */
3212 set_gdbarch_long_double_bit (gdbarch, 128);
3213 set_gdbarch_long_double_format (gdbarch, floatformats_ia64_quad);
3215 /* Amount PC must be decremented by after a breakpoint. This is
3216 often the number of bytes returned by gdbarch_breakpoint_from_pc but not
3217 always. */
3218 set_gdbarch_decr_pc_after_break (gdbarch, 2);
3219 /* Stack grows downward. */
3220 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
3221 set_gdbarch_breakpoint_from_pc (gdbarch, s390_breakpoint_from_pc);
3222 set_gdbarch_skip_prologue (gdbarch, s390_skip_prologue);
3223 set_gdbarch_stack_frame_destroyed_p (gdbarch, s390_stack_frame_destroyed_p);
3225 set_gdbarch_num_regs (gdbarch, S390_NUM_REGS);
3226 set_gdbarch_sp_regnum (gdbarch, S390_SP_REGNUM);
3227 set_gdbarch_fp0_regnum (gdbarch, S390_F0_REGNUM);
3228 set_gdbarch_stab_reg_to_regnum (gdbarch, s390_dwarf_reg_to_regnum);
3229 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, s390_dwarf_reg_to_regnum);
3230 set_gdbarch_value_from_register (gdbarch, s390_value_from_register);
3231 set_gdbarch_core_read_description (gdbarch, s390_core_read_description);
3232 set_gdbarch_iterate_over_regset_sections (gdbarch,
3233 s390_iterate_over_regset_sections);
3234 set_gdbarch_cannot_store_register (gdbarch, s390_cannot_store_register);
3235 set_gdbarch_write_pc (gdbarch, s390_write_pc);
3236 set_gdbarch_pseudo_register_read (gdbarch, s390_pseudo_register_read);
3237 set_gdbarch_pseudo_register_write (gdbarch, s390_pseudo_register_write);
3238 set_tdesc_pseudo_register_name (gdbarch, s390_pseudo_register_name);
3239 set_tdesc_pseudo_register_type (gdbarch, s390_pseudo_register_type);
3240 set_tdesc_pseudo_register_reggroup_p (gdbarch,
3241 s390_pseudo_register_reggroup_p);
3242 tdesc_use_registers (gdbarch, tdesc, tdesc_data);
3243 set_gdbarch_register_name (gdbarch, s390_register_name);
3245 /* Assign pseudo register numbers. */
3246 first_pseudo_reg = gdbarch_num_regs (gdbarch);
3247 last_pseudo_reg = first_pseudo_reg;
3248 tdep->gpr_full_regnum = -1;
3249 if (have_upper)
3251 tdep->gpr_full_regnum = last_pseudo_reg;
3252 last_pseudo_reg += 16;
3254 tdep->v0_full_regnum = -1;
3255 if (have_vx)
3257 tdep->v0_full_regnum = last_pseudo_reg;
3258 last_pseudo_reg += 16;
3260 tdep->pc_regnum = last_pseudo_reg++;
3261 tdep->cc_regnum = last_pseudo_reg++;
3262 set_gdbarch_pc_regnum (gdbarch, tdep->pc_regnum);
3263 set_gdbarch_num_pseudo_regs (gdbarch, last_pseudo_reg - first_pseudo_reg);
3265 /* Inferior function calls. */
3266 set_gdbarch_push_dummy_call (gdbarch, s390_push_dummy_call);
3267 set_gdbarch_dummy_id (gdbarch, s390_dummy_id);
3268 set_gdbarch_frame_align (gdbarch, s390_frame_align);
3269 set_gdbarch_return_value (gdbarch, s390_return_value);
3271 /* Syscall handling. */
3272 set_gdbarch_get_syscall_number (gdbarch, s390_linux_get_syscall_number);
3274 /* Frame handling. */
3275 dwarf2_frame_set_init_reg (gdbarch, s390_dwarf2_frame_init_reg);
3276 dwarf2_frame_set_adjust_regnum (gdbarch, s390_adjust_frame_regnum);
3277 dwarf2_append_unwinders (gdbarch);
3278 frame_base_append_sniffer (gdbarch, dwarf2_frame_base_sniffer);
3279 frame_unwind_append_unwinder (gdbarch, &s390_stub_frame_unwind);
3280 frame_unwind_append_unwinder (gdbarch, &s390_sigtramp_frame_unwind);
3281 frame_unwind_append_unwinder (gdbarch, &s390_frame_unwind);
3282 frame_base_set_default (gdbarch, &s390_frame_base);
3283 set_gdbarch_unwind_pc (gdbarch, s390_unwind_pc);
3284 set_gdbarch_unwind_sp (gdbarch, s390_unwind_sp);
3286 /* Displaced stepping. */
3287 set_gdbarch_displaced_step_copy_insn (gdbarch,
3288 simple_displaced_step_copy_insn);
3289 set_gdbarch_displaced_step_fixup (gdbarch, s390_displaced_step_fixup);
3290 set_gdbarch_displaced_step_free_closure (gdbarch,
3291 simple_displaced_step_free_closure);
3292 set_gdbarch_displaced_step_location (gdbarch, linux_displaced_step_location);
3293 set_gdbarch_max_insn_length (gdbarch, S390_MAX_INSTR_SIZE);
3295 /* Note that GNU/Linux is the only OS supported on this
3296 platform. */
3297 linux_init_abi (info, gdbarch);
3299 switch (tdep->abi)
3301 case ABI_LINUX_S390:
3302 set_gdbarch_addr_bits_remove (gdbarch, s390_addr_bits_remove);
3303 set_solib_svr4_fetch_link_map_offsets
3304 (gdbarch, svr4_ilp32_fetch_link_map_offsets);
3306 set_xml_syscall_file_name (gdbarch, XML_SYSCALL_FILENAME_S390);
3307 break;
3309 case ABI_LINUX_ZSERIES:
3310 set_gdbarch_long_bit (gdbarch, 64);
3311 set_gdbarch_long_long_bit (gdbarch, 64);
3312 set_gdbarch_ptr_bit (gdbarch, 64);
3313 set_solib_svr4_fetch_link_map_offsets
3314 (gdbarch, svr4_lp64_fetch_link_map_offsets);
3315 set_gdbarch_address_class_type_flags (gdbarch,
3316 s390_address_class_type_flags);
3317 set_gdbarch_address_class_type_flags_to_name (gdbarch,
3318 s390_address_class_type_flags_to_name);
3319 set_gdbarch_address_class_name_to_type_flags (gdbarch,
3320 s390_address_class_name_to_type_flags);
3321 set_xml_syscall_file_name (gdbarch, XML_SYSCALL_FILENAME_S390X);
3322 break;
3325 set_gdbarch_print_insn (gdbarch, print_insn_s390);
3327 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
3329 /* Enable TLS support. */
3330 set_gdbarch_fetch_tls_load_module_address (gdbarch,
3331 svr4_fetch_objfile_link_map);
3333 /* SystemTap functions. */
3334 set_gdbarch_stap_register_prefixes (gdbarch, stap_register_prefixes);
3335 set_gdbarch_stap_register_indirection_prefixes (gdbarch,
3336 stap_register_indirection_prefixes);
3337 set_gdbarch_stap_register_indirection_suffixes (gdbarch,
3338 stap_register_indirection_suffixes);
3339 set_gdbarch_stap_is_single_operand (gdbarch, s390_stap_is_single_operand);
3340 set_gdbarch_gcc_target_options (gdbarch, s390_gcc_target_options);
3341 set_gdbarch_gnu_triplet_regexp (gdbarch, s390_gnu_triplet_regexp);
3343 return gdbarch;
3347 extern initialize_file_ftype _initialize_s390_tdep; /* -Wmissing-prototypes */
3349 void
3350 _initialize_s390_tdep (void)
3352 /* Hook us into the gdbarch mechanism. */
3353 register_gdbarch_init (bfd_arch_s390, s390_gdbarch_init);
3355 /* Initialize the GNU/Linux target descriptions. */
3356 initialize_tdesc_s390_linux32 ();
3357 initialize_tdesc_s390_linux32v1 ();
3358 initialize_tdesc_s390_linux32v2 ();
3359 initialize_tdesc_s390_linux64 ();
3360 initialize_tdesc_s390_linux64v1 ();
3361 initialize_tdesc_s390_linux64v2 ();
3362 initialize_tdesc_s390_te_linux64 ();
3363 initialize_tdesc_s390_vx_linux64 ();
3364 initialize_tdesc_s390_tevx_linux64 ();
3365 initialize_tdesc_s390x_linux64 ();
3366 initialize_tdesc_s390x_linux64v1 ();
3367 initialize_tdesc_s390x_linux64v2 ();
3368 initialize_tdesc_s390x_te_linux64 ();
3369 initialize_tdesc_s390x_vx_linux64 ();
3370 initialize_tdesc_s390x_tevx_linux64 ();