Automatic Copyright Year update after running gdb/copyright.py
[binutils-gdb.git] / gdb / gdbtypes.h
blob42878dba933d9101fe8713749d5a082b3795f4d7
2 /* Internal type definitions for GDB.
4 Copyright (C) 1992-2022 Free Software Foundation, Inc.
6 Contributed by Cygnus Support, using pieces from other GDB modules.
8 This file is part of GDB.
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23 #if !defined (GDBTYPES_H)
24 #define GDBTYPES_H 1
26 /* * \page gdbtypes GDB Types
28 GDB represents all the different kinds of types in programming
29 languages using a common representation defined in gdbtypes.h.
31 The main data structure is main_type; it consists of a code (such
32 as #TYPE_CODE_ENUM for enumeration types), a number of
33 generally-useful fields such as the printable name, and finally a
34 field main_type::type_specific that is a union of info specific to
35 particular languages or other special cases (such as calling
36 convention).
38 The available type codes are defined in enum #type_code. The enum
39 includes codes both for types that are common across a variety
40 of languages, and for types that are language-specific.
42 Most accesses to type fields go through macros such as
43 #TYPE_CODE(thistype) and #TYPE_FN_FIELD_CONST(thisfn, n). These are
44 written such that they can be used as both rvalues and lvalues.
47 #include "hashtab.h"
48 #include "gdbsupport/array-view.h"
49 #include "gdbsupport/gdb_optional.h"
50 #include "gdbsupport/offset-type.h"
51 #include "gdbsupport/enum-flags.h"
52 #include "gdbsupport/underlying.h"
53 #include "gdbsupport/print-utils.h"
54 #include "dwarf2.h"
55 #include "gdb_obstack.h"
56 #include "gmp-utils.h"
58 /* Forward declarations for prototypes. */
59 struct field;
60 struct block;
61 struct value_print_options;
62 struct language_defn;
63 struct dwarf2_per_cu_data;
64 struct dwarf2_per_objfile;
66 /* These declarations are DWARF-specific as some of the gdbtypes.h data types
67 are already DWARF-specific. */
69 /* * Offset relative to the start of its containing CU (compilation
70 unit). */
71 DEFINE_OFFSET_TYPE (cu_offset, unsigned int);
73 /* * Offset relative to the start of its .debug_info or .debug_types
74 section. */
75 DEFINE_OFFSET_TYPE (sect_offset, uint64_t);
77 static inline char *
78 sect_offset_str (sect_offset offset)
80 return hex_string (to_underlying (offset));
83 /* Some macros for char-based bitfields. */
85 #define B_SET(a,x) ((a)[(x)>>3] |= (1 << ((x)&7)))
86 #define B_CLR(a,x) ((a)[(x)>>3] &= ~(1 << ((x)&7)))
87 #define B_TST(a,x) ((a)[(x)>>3] & (1 << ((x)&7)))
88 #define B_TYPE unsigned char
89 #define B_BYTES(x) ( 1 + ((x)>>3) )
90 #define B_CLRALL(a,x) memset ((a), 0, B_BYTES(x))
92 /* * Different kinds of data types are distinguished by the `code'
93 field. */
95 enum type_code
97 TYPE_CODE_BITSTRING = -1, /**< Deprecated */
98 TYPE_CODE_UNDEF = 0, /**< Not used; catches errors */
99 TYPE_CODE_PTR, /**< Pointer type */
101 /* * Array type with lower & upper bounds.
103 Regardless of the language, GDB represents multidimensional
104 array types the way C does: as arrays of arrays. So an
105 instance of a GDB array type T can always be seen as a series
106 of instances of TYPE_TARGET_TYPE (T) laid out sequentially in
107 memory.
109 Row-major languages like C lay out multi-dimensional arrays so
110 that incrementing the rightmost index in a subscripting
111 expression results in the smallest change in the address of the
112 element referred to. Column-major languages like Fortran lay
113 them out so that incrementing the leftmost index results in the
114 smallest change.
116 This means that, in column-major languages, working our way
117 from type to target type corresponds to working through indices
118 from right to left, not left to right. */
119 TYPE_CODE_ARRAY,
121 TYPE_CODE_STRUCT, /**< C struct or Pascal record */
122 TYPE_CODE_UNION, /**< C union or Pascal variant part */
123 TYPE_CODE_ENUM, /**< Enumeration type */
124 TYPE_CODE_FLAGS, /**< Bit flags type */
125 TYPE_CODE_FUNC, /**< Function type */
126 TYPE_CODE_INT, /**< Integer type */
128 /* * Floating type. This is *NOT* a complex type. */
129 TYPE_CODE_FLT,
131 /* * Void type. The length field specifies the length (probably
132 always one) which is used in pointer arithmetic involving
133 pointers to this type, but actually dereferencing such a
134 pointer is invalid; a void type has no length and no actual
135 representation in memory or registers. A pointer to a void
136 type is a generic pointer. */
137 TYPE_CODE_VOID,
139 TYPE_CODE_SET, /**< Pascal sets */
140 TYPE_CODE_RANGE, /**< Range (integers within spec'd bounds). */
142 /* * A string type which is like an array of character but prints
143 differently. It does not contain a length field as Pascal
144 strings (for many Pascals, anyway) do; if we want to deal with
145 such strings, we should use a new type code. */
146 TYPE_CODE_STRING,
148 /* * Unknown type. The length field is valid if we were able to
149 deduce that much about the type, or 0 if we don't even know
150 that. */
151 TYPE_CODE_ERROR,
153 /* C++ */
154 TYPE_CODE_METHOD, /**< Method type */
156 /* * Pointer-to-member-function type. This describes how to access a
157 particular member function of a class (possibly a virtual
158 member function). The representation may vary between different
159 C++ ABIs. */
160 TYPE_CODE_METHODPTR,
162 /* * Pointer-to-member type. This is the offset within a class to
163 some particular data member. The only currently supported
164 representation uses an unbiased offset, with -1 representing
165 NULL; this is used by the Itanium C++ ABI (used by GCC on all
166 platforms). */
167 TYPE_CODE_MEMBERPTR,
169 TYPE_CODE_REF, /**< C++ Reference types */
171 TYPE_CODE_RVALUE_REF, /**< C++ rvalue reference types */
173 TYPE_CODE_CHAR, /**< *real* character type */
175 /* * Boolean type. 0 is false, 1 is true, and other values are
176 non-boolean (e.g. FORTRAN "logical" used as unsigned int). */
177 TYPE_CODE_BOOL,
179 /* Fortran */
180 TYPE_CODE_COMPLEX, /**< Complex float */
182 TYPE_CODE_TYPEDEF,
184 TYPE_CODE_NAMESPACE, /**< C++ namespace. */
186 TYPE_CODE_DECFLOAT, /**< Decimal floating point. */
188 TYPE_CODE_MODULE, /**< Fortran module. */
190 /* * Internal function type. */
191 TYPE_CODE_INTERNAL_FUNCTION,
193 /* * Methods implemented in extension languages. */
194 TYPE_CODE_XMETHOD,
196 /* * Fixed Point type. */
197 TYPE_CODE_FIXED_POINT,
200 /* * Some bits for the type's instance_flags word. See the macros
201 below for documentation on each bit. */
203 enum type_instance_flag_value : unsigned
205 TYPE_INSTANCE_FLAG_CONST = (1 << 0),
206 TYPE_INSTANCE_FLAG_VOLATILE = (1 << 1),
207 TYPE_INSTANCE_FLAG_CODE_SPACE = (1 << 2),
208 TYPE_INSTANCE_FLAG_DATA_SPACE = (1 << 3),
209 TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1 = (1 << 4),
210 TYPE_INSTANCE_FLAG_ADDRESS_CLASS_2 = (1 << 5),
211 TYPE_INSTANCE_FLAG_NOTTEXT = (1 << 6),
212 TYPE_INSTANCE_FLAG_RESTRICT = (1 << 7),
213 TYPE_INSTANCE_FLAG_ATOMIC = (1 << 8)
216 DEF_ENUM_FLAGS_TYPE (enum type_instance_flag_value, type_instance_flags);
218 /* * Not textual. By default, GDB treats all single byte integers as
219 characters (or elements of strings) unless this flag is set. */
221 #define TYPE_NOTTEXT(t) (((t)->instance_flags ()) & TYPE_INSTANCE_FLAG_NOTTEXT)
223 /* * Constant type. If this is set, the corresponding type has a
224 const modifier. */
226 #define TYPE_CONST(t) ((((t)->instance_flags ()) & TYPE_INSTANCE_FLAG_CONST) != 0)
228 /* * Volatile type. If this is set, the corresponding type has a
229 volatile modifier. */
231 #define TYPE_VOLATILE(t) \
232 ((((t)->instance_flags ()) & TYPE_INSTANCE_FLAG_VOLATILE) != 0)
234 /* * Restrict type. If this is set, the corresponding type has a
235 restrict modifier. */
237 #define TYPE_RESTRICT(t) \
238 ((((t)->instance_flags ()) & TYPE_INSTANCE_FLAG_RESTRICT) != 0)
240 /* * Atomic type. If this is set, the corresponding type has an
241 _Atomic modifier. */
243 #define TYPE_ATOMIC(t) \
244 ((((t)->instance_flags ()) & TYPE_INSTANCE_FLAG_ATOMIC) != 0)
246 /* * True if this type represents either an lvalue or lvalue reference type. */
248 #define TYPE_IS_REFERENCE(t) \
249 ((t)->code () == TYPE_CODE_REF || (t)->code () == TYPE_CODE_RVALUE_REF)
251 /* * True if this type is allocatable. */
252 #define TYPE_IS_ALLOCATABLE(t) \
253 ((t)->dyn_prop (DYN_PROP_ALLOCATED) != NULL)
255 /* * True if this type has variant parts. */
256 #define TYPE_HAS_VARIANT_PARTS(t) \
257 ((t)->dyn_prop (DYN_PROP_VARIANT_PARTS) != nullptr)
259 /* * True if this type has a dynamic length. */
260 #define TYPE_HAS_DYNAMIC_LENGTH(t) \
261 ((t)->dyn_prop (DYN_PROP_BYTE_SIZE) != nullptr)
263 /* * Instruction-space delimited type. This is for Harvard architectures
264 which have separate instruction and data address spaces (and perhaps
265 others).
267 GDB usually defines a flat address space that is a superset of the
268 architecture's two (or more) address spaces, but this is an extension
269 of the architecture's model.
271 If TYPE_INSTANCE_FLAG_CODE_SPACE is set, an object of the corresponding type
272 resides in instruction memory, even if its address (in the extended
273 flat address space) does not reflect this.
275 Similarly, if TYPE_INSTANCE_FLAG_DATA_SPACE is set, then an object of the
276 corresponding type resides in the data memory space, even if
277 this is not indicated by its (flat address space) address.
279 If neither flag is set, the default space for functions / methods
280 is instruction space, and for data objects is data memory. */
282 #define TYPE_CODE_SPACE(t) \
283 ((((t)->instance_flags ()) & TYPE_INSTANCE_FLAG_CODE_SPACE) != 0)
285 #define TYPE_DATA_SPACE(t) \
286 ((((t)->instance_flags ()) & TYPE_INSTANCE_FLAG_DATA_SPACE) != 0)
288 /* * Address class flags. Some environments provide for pointers
289 whose size is different from that of a normal pointer or address
290 types where the bits are interpreted differently than normal
291 addresses. The TYPE_INSTANCE_FLAG_ADDRESS_CLASS_n flags may be used in
292 target specific ways to represent these different types of address
293 classes. */
295 #define TYPE_ADDRESS_CLASS_1(t) (((t)->instance_flags ()) \
296 & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1)
297 #define TYPE_ADDRESS_CLASS_2(t) (((t)->instance_flags ()) \
298 & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_2)
299 #define TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL \
300 (TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_2)
301 #define TYPE_ADDRESS_CLASS_ALL(t) (((t)->instance_flags ()) \
302 & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
304 /* * Information about a single discriminant. */
306 struct discriminant_range
308 /* * The range of values for the variant. This is an inclusive
309 range. */
310 ULONGEST low, high;
312 /* * Return true if VALUE is contained in this range. IS_UNSIGNED
313 is true if this should be an unsigned comparison; false for
314 signed. */
315 bool contains (ULONGEST value, bool is_unsigned) const
317 if (is_unsigned)
318 return value >= low && value <= high;
319 LONGEST valuel = (LONGEST) value;
320 return valuel >= (LONGEST) low && valuel <= (LONGEST) high;
324 struct variant_part;
326 /* * A single variant. A variant has a list of discriminant values.
327 When the discriminator matches one of these, the variant is
328 enabled. Each variant controls zero or more fields; and may also
329 control other variant parts as well. This struct corresponds to
330 DW_TAG_variant in DWARF. */
332 struct variant : allocate_on_obstack
334 /* * The discriminant ranges for this variant. */
335 gdb::array_view<discriminant_range> discriminants;
337 /* * The fields controlled by this variant. This is inclusive on
338 the low end and exclusive on the high end. A variant may not
339 control any fields, in which case the two values will be equal.
340 These are indexes into the type's array of fields. */
341 int first_field;
342 int last_field;
344 /* * Variant parts controlled by this variant. */
345 gdb::array_view<variant_part> parts;
347 /* * Return true if this is the default variant. The default
348 variant can be recognized because it has no associated
349 discriminants. */
350 bool is_default () const
352 return discriminants.empty ();
355 /* * Return true if this variant matches VALUE. IS_UNSIGNED is true
356 if this should be an unsigned comparison; false for signed. */
357 bool matches (ULONGEST value, bool is_unsigned) const;
360 /* * A variant part. Each variant part has an optional discriminant
361 and holds an array of variants. This struct corresponds to
362 DW_TAG_variant_part in DWARF. */
364 struct variant_part : allocate_on_obstack
366 /* * The index of the discriminant field in the outer type. This is
367 an index into the type's array of fields. If this is -1, there
368 is no discriminant, and only the default variant can be
369 considered to be selected. */
370 int discriminant_index;
372 /* * True if this discriminant is unsigned; false if signed. This
373 comes from the type of the discriminant. */
374 bool is_unsigned;
376 /* * The variants that are controlled by this variant part. Note
377 that these will always be sorted by field number. */
378 gdb::array_view<variant> variants;
382 enum dynamic_prop_kind
384 PROP_UNDEFINED, /* Not defined. */
385 PROP_CONST, /* Constant. */
386 PROP_ADDR_OFFSET, /* Address offset. */
387 PROP_LOCEXPR, /* Location expression. */
388 PROP_LOCLIST, /* Location list. */
389 PROP_VARIANT_PARTS, /* Variant parts. */
390 PROP_TYPE, /* Type. */
391 PROP_VARIABLE_NAME, /* Variable name. */
394 union dynamic_prop_data
396 /* Storage for constant property. */
398 LONGEST const_val;
400 /* Storage for dynamic property. */
402 void *baton;
404 /* Storage of variant parts for a type. A type with variant parts
405 has all its fields "linearized" -- stored in a single field
406 array, just as if they had all been declared that way. The
407 variant parts are attached via a dynamic property, and then are
408 used to control which fields end up in the final type during
409 dynamic type resolution. */
411 const gdb::array_view<variant_part> *variant_parts;
413 /* Once a variant type is resolved, we may want to be able to go
414 from the resolved type to the original type. In this case we
415 rewrite the property's kind and set this field. */
417 struct type *original_type;
419 /* Name of a variable to look up; the variable holds the value of
420 this property. */
422 const char *variable_name;
425 /* * Used to store a dynamic property. */
427 struct dynamic_prop
429 dynamic_prop_kind kind () const
431 return m_kind;
434 void set_undefined ()
436 m_kind = PROP_UNDEFINED;
439 LONGEST const_val () const
441 gdb_assert (m_kind == PROP_CONST);
443 return m_data.const_val;
446 void set_const_val (LONGEST const_val)
448 m_kind = PROP_CONST;
449 m_data.const_val = const_val;
452 void *baton () const
454 gdb_assert (m_kind == PROP_LOCEXPR
455 || m_kind == PROP_LOCLIST
456 || m_kind == PROP_ADDR_OFFSET);
458 return m_data.baton;
461 void set_locexpr (void *baton)
463 m_kind = PROP_LOCEXPR;
464 m_data.baton = baton;
467 void set_loclist (void *baton)
469 m_kind = PROP_LOCLIST;
470 m_data.baton = baton;
473 void set_addr_offset (void *baton)
475 m_kind = PROP_ADDR_OFFSET;
476 m_data.baton = baton;
479 const gdb::array_view<variant_part> *variant_parts () const
481 gdb_assert (m_kind == PROP_VARIANT_PARTS);
483 return m_data.variant_parts;
486 void set_variant_parts (gdb::array_view<variant_part> *variant_parts)
488 m_kind = PROP_VARIANT_PARTS;
489 m_data.variant_parts = variant_parts;
492 struct type *original_type () const
494 gdb_assert (m_kind == PROP_TYPE);
496 return m_data.original_type;
499 void set_original_type (struct type *original_type)
501 m_kind = PROP_TYPE;
502 m_data.original_type = original_type;
505 /* Return the name of the variable that holds this property's value.
506 Only valid for PROP_VARIABLE_NAME. */
507 const char *variable_name () const
509 gdb_assert (m_kind == PROP_VARIABLE_NAME);
510 return m_data.variable_name;
513 /* Set the name of the variable that holds this property's value,
514 and set this property to be of kind PROP_VARIABLE_NAME. */
515 void set_variable_name (const char *name)
517 m_kind = PROP_VARIABLE_NAME;
518 m_data.variable_name = name;
521 /* Determine which field of the union dynamic_prop.data is used. */
522 enum dynamic_prop_kind m_kind;
524 /* Storage for dynamic or static value. */
525 union dynamic_prop_data m_data;
528 /* Compare two dynamic_prop objects for equality. dynamic_prop
529 instances are equal iff they have the same type and storage. */
530 extern bool operator== (const dynamic_prop &l, const dynamic_prop &r);
532 /* Compare two dynamic_prop objects for inequality. */
533 static inline bool operator!= (const dynamic_prop &l, const dynamic_prop &r)
535 return !(l == r);
538 /* * Define a type's dynamic property node kind. */
539 enum dynamic_prop_node_kind
541 /* A property providing a type's data location.
542 Evaluating this field yields to the location of an object's data. */
543 DYN_PROP_DATA_LOCATION,
545 /* A property representing DW_AT_allocated. The presence of this attribute
546 indicates that the object of the type can be allocated/deallocated. */
547 DYN_PROP_ALLOCATED,
549 /* A property representing DW_AT_associated. The presence of this attribute
550 indicated that the object of the type can be associated. */
551 DYN_PROP_ASSOCIATED,
553 /* A property providing an array's byte stride. */
554 DYN_PROP_BYTE_STRIDE,
556 /* A property holding variant parts. */
557 DYN_PROP_VARIANT_PARTS,
559 /* A property holding the size of the type. */
560 DYN_PROP_BYTE_SIZE,
563 /* * List for dynamic type attributes. */
564 struct dynamic_prop_list
566 /* The kind of dynamic prop in this node. */
567 enum dynamic_prop_node_kind prop_kind;
569 /* The dynamic property itself. */
570 struct dynamic_prop prop;
572 /* A pointer to the next dynamic property. */
573 struct dynamic_prop_list *next;
576 /* * Determine which field of the union main_type.fields[x].loc is
577 used. */
579 enum field_loc_kind
581 FIELD_LOC_KIND_BITPOS, /**< bitpos */
582 FIELD_LOC_KIND_ENUMVAL, /**< enumval */
583 FIELD_LOC_KIND_PHYSADDR, /**< physaddr */
584 FIELD_LOC_KIND_PHYSNAME, /**< physname */
585 FIELD_LOC_KIND_DWARF_BLOCK /**< dwarf_block */
588 /* * A discriminant to determine which field in the
589 main_type.type_specific union is being used, if any.
591 For types such as TYPE_CODE_FLT, the use of this
592 discriminant is really redundant, as we know from the type code
593 which field is going to be used. As such, it would be possible to
594 reduce the size of this enum in order to save a bit or two for
595 other fields of struct main_type. But, since we still have extra
596 room , and for the sake of clarity and consistency, we treat all fields
597 of the union the same way. */
599 enum type_specific_kind
601 TYPE_SPECIFIC_NONE,
602 TYPE_SPECIFIC_CPLUS_STUFF,
603 TYPE_SPECIFIC_GNAT_STUFF,
604 TYPE_SPECIFIC_FLOATFORMAT,
605 /* Note: This is used by TYPE_CODE_FUNC and TYPE_CODE_METHOD. */
606 TYPE_SPECIFIC_FUNC,
607 TYPE_SPECIFIC_SELF_TYPE,
608 TYPE_SPECIFIC_INT,
609 TYPE_SPECIFIC_FIXED_POINT,
612 union type_owner
614 struct objfile *objfile;
615 struct gdbarch *gdbarch;
618 union field_location
620 /* * Position of this field, counting in bits from start of
621 containing structure. For big-endian targets, it is the bit
622 offset to the MSB. For little-endian targets, it is the bit
623 offset to the LSB. */
625 LONGEST bitpos;
627 /* * Enum value. */
628 LONGEST enumval;
630 /* * For a static field, if TYPE_FIELD_STATIC_HAS_ADDR then
631 physaddr is the location (in the target) of the static
632 field. Otherwise, physname is the mangled label of the
633 static field. */
635 CORE_ADDR physaddr;
636 const char *physname;
638 /* * The field location can be computed by evaluating the
639 following DWARF block. Its DATA is allocated on
640 objfile_obstack - no CU load is needed to access it. */
642 struct dwarf2_locexpr_baton *dwarf_block;
645 struct field
647 struct type *type () const
649 return this->m_type;
652 void set_type (struct type *type)
654 this->m_type = type;
657 const char *name () const
659 return m_name;
662 void set_name (const char *name)
664 m_name = name;
667 /* Location getters / setters. */
669 field_loc_kind loc_kind () const
671 return m_loc_kind;
674 LONGEST loc_bitpos () const
676 gdb_assert (m_loc_kind == FIELD_LOC_KIND_BITPOS);
677 return m_loc.bitpos;
680 void set_loc_bitpos (LONGEST bitpos)
682 m_loc_kind = FIELD_LOC_KIND_BITPOS;
683 m_loc.bitpos = bitpos;
686 LONGEST loc_enumval () const
688 gdb_assert (m_loc_kind == FIELD_LOC_KIND_ENUMVAL);
689 return m_loc.enumval;
692 void set_loc_enumval (LONGEST enumval)
694 m_loc_kind = FIELD_LOC_KIND_ENUMVAL;
695 m_loc.enumval = enumval;
698 CORE_ADDR loc_physaddr () const
700 gdb_assert (m_loc_kind == FIELD_LOC_KIND_PHYSADDR);
701 return m_loc.physaddr;
704 void set_loc_physaddr (CORE_ADDR physaddr)
706 m_loc_kind = FIELD_LOC_KIND_PHYSADDR;
707 m_loc.physaddr = physaddr;
710 const char *loc_physname () const
712 gdb_assert (m_loc_kind == FIELD_LOC_KIND_PHYSNAME);
713 return m_loc.physname;
716 void set_loc_physname (const char *physname)
718 m_loc_kind = FIELD_LOC_KIND_PHYSNAME;
719 m_loc.physname = physname;
722 dwarf2_locexpr_baton *loc_dwarf_block () const
724 gdb_assert (m_loc_kind == FIELD_LOC_KIND_DWARF_BLOCK);
725 return m_loc.dwarf_block;
728 void set_loc_dwarf_block (dwarf2_locexpr_baton *dwarf_block)
730 m_loc_kind = FIELD_LOC_KIND_DWARF_BLOCK;
731 m_loc.dwarf_block = dwarf_block;
734 union field_location m_loc;
736 /* * For a function or member type, this is 1 if the argument is
737 marked artificial. Artificial arguments should not be shown
738 to the user. For TYPE_CODE_RANGE it is set if the specific
739 bound is not defined. */
741 unsigned int artificial : 1;
743 /* * Discriminant for union field_location. */
745 ENUM_BITFIELD(field_loc_kind) m_loc_kind : 3;
747 /* * Size of this field, in bits, or zero if not packed.
748 If non-zero in an array type, indicates the element size in
749 bits (used only in Ada at the moment).
750 For an unpacked field, the field's type's length
751 says how many bytes the field occupies. */
753 unsigned int bitsize : 28;
755 /* * In a struct or union type, type of this field.
756 - In a function or member type, type of this argument.
757 - In an array type, the domain-type of the array. */
759 struct type *m_type;
761 /* * Name of field, value or argument.
762 NULL for range bounds, array domains, and member function
763 arguments. */
765 const char *m_name;
768 struct range_bounds
770 ULONGEST bit_stride () const
772 if (this->flag_is_byte_stride)
773 return this->stride.const_val () * 8;
774 else
775 return this->stride.const_val ();
778 /* * Low bound of range. */
780 struct dynamic_prop low;
782 /* * High bound of range. */
784 struct dynamic_prop high;
786 /* The stride value for this range. This can be stored in bits or bytes
787 based on the value of BYTE_STRIDE_P. It is optional to have a stride
788 value, if this range has no stride value defined then this will be set
789 to the constant zero. */
791 struct dynamic_prop stride;
793 /* * The bias. Sometimes a range value is biased before storage.
794 The bias is added to the stored bits to form the true value. */
796 LONGEST bias;
798 /* True if HIGH range bound contains the number of elements in the
799 subrange. This affects how the final high bound is computed. */
801 unsigned int flag_upper_bound_is_count : 1;
803 /* True if LOW or/and HIGH are resolved into a static bound from
804 a dynamic one. */
806 unsigned int flag_bound_evaluated : 1;
808 /* If this is true this STRIDE is in bytes, otherwise STRIDE is in bits. */
810 unsigned int flag_is_byte_stride : 1;
813 /* Compare two range_bounds objects for equality. Simply does
814 memberwise comparison. */
815 extern bool operator== (const range_bounds &l, const range_bounds &r);
817 /* Compare two range_bounds objects for inequality. */
818 static inline bool operator!= (const range_bounds &l, const range_bounds &r)
820 return !(l == r);
823 union type_specific
825 /* * CPLUS_STUFF is for TYPE_CODE_STRUCT. It is initialized to
826 point to cplus_struct_default, a default static instance of a
827 struct cplus_struct_type. */
829 struct cplus_struct_type *cplus_stuff;
831 /* * GNAT_STUFF is for types for which the GNAT Ada compiler
832 provides additional information. */
834 struct gnat_aux_type *gnat_stuff;
836 /* * FLOATFORMAT is for TYPE_CODE_FLT. It is a pointer to a
837 floatformat object that describes the floating-point value
838 that resides within the type. */
840 const struct floatformat *floatformat;
842 /* * For TYPE_CODE_FUNC and TYPE_CODE_METHOD types. */
844 struct func_type *func_stuff;
846 /* * For types that are pointer to member types (TYPE_CODE_METHODPTR,
847 TYPE_CODE_MEMBERPTR), SELF_TYPE is the type that this pointer
848 is a member of. */
850 struct type *self_type;
852 /* * For TYPE_CODE_FIXED_POINT types, the info necessary to decode
853 values of that type. */
854 struct fixed_point_type_info *fixed_point_info;
856 /* * An integer-like scalar type may be stored in just part of its
857 enclosing storage bytes. This structure describes this
858 situation. */
859 struct
861 /* * The bit size of the integer. This can be 0. For integers
862 that fill their storage (the ordinary case), this field holds
863 the byte size times 8. */
864 unsigned short bit_size;
865 /* * The bit offset of the integer. This is ordinarily 0, and can
866 only be non-zero if the bit size is less than the storage
867 size. */
868 unsigned short bit_offset;
869 } int_stuff;
872 /* * Main structure representing a type in GDB.
874 This structure is space-critical. Its layout has been tweaked to
875 reduce the space used. */
877 struct main_type
879 /* * Code for kind of type. */
881 ENUM_BITFIELD(type_code) code : 8;
883 /* * Flags about this type. These fields appear at this location
884 because they packs nicely here. See the TYPE_* macros for
885 documentation about these fields. */
887 unsigned int m_flag_unsigned : 1;
888 unsigned int m_flag_nosign : 1;
889 unsigned int m_flag_stub : 1;
890 unsigned int m_flag_target_stub : 1;
891 unsigned int m_flag_prototyped : 1;
892 unsigned int m_flag_varargs : 1;
893 unsigned int m_flag_vector : 1;
894 unsigned int m_flag_stub_supported : 1;
895 unsigned int m_flag_gnu_ifunc : 1;
896 unsigned int m_flag_fixed_instance : 1;
897 unsigned int m_flag_objfile_owned : 1;
898 unsigned int m_flag_endianity_not_default : 1;
900 /* * True if this type was declared with "class" rather than
901 "struct". */
903 unsigned int m_flag_declared_class : 1;
905 /* * True if this is an enum type with disjoint values. This
906 affects how the enum is printed. */
908 unsigned int m_flag_flag_enum : 1;
910 /* * A discriminant telling us which field of the type_specific
911 union is being used for this type, if any. */
913 ENUM_BITFIELD(type_specific_kind) type_specific_field : 3;
915 /* * Number of fields described for this type. This field appears
916 at this location because it packs nicely here. */
918 short nfields;
920 /* * Name of this type, or NULL if none.
922 This is used for printing only. For looking up a name, look for
923 a symbol in the VAR_DOMAIN. This is generally allocated in the
924 objfile's obstack. However coffread.c uses malloc. */
926 const char *name;
928 /* * Every type is now associated with a particular objfile, and the
929 type is allocated on the objfile_obstack for that objfile. One
930 problem however, is that there are times when gdb allocates new
931 types while it is not in the process of reading symbols from a
932 particular objfile. Fortunately, these happen when the type
933 being created is a derived type of an existing type, such as in
934 lookup_pointer_type(). So we can just allocate the new type
935 using the same objfile as the existing type, but to do this we
936 need a backpointer to the objfile from the existing type. Yes
937 this is somewhat ugly, but without major overhaul of the internal
938 type system, it can't be avoided for now. */
940 union type_owner m_owner;
942 /* * For a pointer type, describes the type of object pointed to.
943 - For an array type, describes the type of the elements.
944 - For a function or method type, describes the type of the return value.
945 - For a range type, describes the type of the full range.
946 - For a complex type, describes the type of each coordinate.
947 - For a special record or union type encoding a dynamic-sized type
948 in GNAT, a memoized pointer to a corresponding static version of
949 the type.
950 - Unused otherwise. */
952 struct type *target_type;
954 /* * For structure and union types, a description of each field.
955 For set and pascal array types, there is one "field",
956 whose type is the domain type of the set or array.
957 For range types, there are two "fields",
958 the minimum and maximum values (both inclusive).
959 For enum types, each possible value is described by one "field".
960 For a function or method type, a "field" for each parameter.
961 For C++ classes, there is one field for each base class (if it is
962 a derived class) plus one field for each class data member. Member
963 functions are recorded elsewhere.
965 Using a pointer to a separate array of fields
966 allows all types to have the same size, which is useful
967 because we can allocate the space for a type before
968 we know what to put in it. */
970 union
972 struct field *fields;
974 /* * Union member used for range types. */
976 struct range_bounds *bounds;
978 /* If this is a scalar type, then this is its corresponding
979 complex type. */
980 struct type *complex_type;
982 } flds_bnds;
984 /* * Slot to point to additional language-specific fields of this
985 type. */
987 union type_specific type_specific;
989 /* * Contains all dynamic type properties. */
990 struct dynamic_prop_list *dyn_prop_list;
993 /* * Number of bits allocated for alignment. */
995 #define TYPE_ALIGN_BITS 8
997 /* * A ``struct type'' describes a particular instance of a type, with
998 some particular qualification. */
1000 struct type
1002 /* Get the type code of this type.
1004 Note that the code can be TYPE_CODE_TYPEDEF, so if you want the real
1005 type, you need to do `check_typedef (type)->code ()`. */
1006 type_code code () const
1008 return this->main_type->code;
1011 /* Set the type code of this type. */
1012 void set_code (type_code code)
1014 this->main_type->code = code;
1017 /* Get the name of this type. */
1018 const char *name () const
1020 return this->main_type->name;
1023 /* Set the name of this type. */
1024 void set_name (const char *name)
1026 this->main_type->name = name;
1029 /* Get the number of fields of this type. */
1030 int num_fields () const
1032 return this->main_type->nfields;
1035 /* Set the number of fields of this type. */
1036 void set_num_fields (int num_fields)
1038 this->main_type->nfields = num_fields;
1041 /* Get the fields array of this type. */
1042 struct field *fields () const
1044 return this->main_type->flds_bnds.fields;
1047 /* Get the field at index IDX. */
1048 struct field &field (int idx) const
1050 gdb_assert (idx >= 0 && idx < num_fields ());
1051 return this->fields ()[idx];
1054 /* Set the fields array of this type. */
1055 void set_fields (struct field *fields)
1057 this->main_type->flds_bnds.fields = fields;
1060 type *index_type () const
1062 return this->field (0).type ();
1065 void set_index_type (type *index_type)
1067 this->field (0).set_type (index_type);
1070 /* Return the instance flags converted to the correct type. */
1071 const type_instance_flags instance_flags () const
1073 return (enum type_instance_flag_value) this->m_instance_flags;
1076 /* Set the instance flags. */
1077 void set_instance_flags (type_instance_flags flags)
1079 this->m_instance_flags = flags;
1082 /* Get the bounds bounds of this type. The type must be a range type. */
1083 range_bounds *bounds () const
1085 switch (this->code ())
1087 case TYPE_CODE_RANGE:
1088 return this->main_type->flds_bnds.bounds;
1090 case TYPE_CODE_ARRAY:
1091 case TYPE_CODE_STRING:
1092 return this->index_type ()->bounds ();
1094 default:
1095 gdb_assert_not_reached
1096 ("type::bounds called on type with invalid code");
1100 /* Set the bounds of this type. The type must be a range type. */
1101 void set_bounds (range_bounds *bounds)
1103 gdb_assert (this->code () == TYPE_CODE_RANGE);
1105 this->main_type->flds_bnds.bounds = bounds;
1108 ULONGEST bit_stride () const
1110 if (this->code () == TYPE_CODE_ARRAY && this->field (0).bitsize != 0)
1111 return this->field (0).bitsize;
1112 return this->bounds ()->bit_stride ();
1115 /* Unsigned integer type. If this is not set for a TYPE_CODE_INT,
1116 the type is signed (unless TYPE_NOSIGN is set). */
1118 bool is_unsigned () const
1120 return this->main_type->m_flag_unsigned;
1123 void set_is_unsigned (bool is_unsigned)
1125 this->main_type->m_flag_unsigned = is_unsigned;
1128 /* No sign for this type. In C++, "char", "signed char", and
1129 "unsigned char" are distinct types; so we need an extra flag to
1130 indicate the absence of a sign! */
1132 bool has_no_signedness () const
1134 return this->main_type->m_flag_nosign;
1137 void set_has_no_signedness (bool has_no_signedness)
1139 this->main_type->m_flag_nosign = has_no_signedness;
1142 /* This appears in a type's flags word if it is a stub type (e.g.,
1143 if someone referenced a type that wasn't defined in a source file
1144 via (struct sir_not_appearing_in_this_film *)). */
1146 bool is_stub () const
1148 return this->main_type->m_flag_stub;
1151 void set_is_stub (bool is_stub)
1153 this->main_type->m_flag_stub = is_stub;
1156 /* The target type of this type is a stub type, and this type needs
1157 to be updated if it gets un-stubbed in check_typedef. Used for
1158 arrays and ranges, in which TYPE_LENGTH of the array/range gets set
1159 based on the TYPE_LENGTH of the target type. Also, set for
1160 TYPE_CODE_TYPEDEF. */
1162 bool target_is_stub () const
1164 return this->main_type->m_flag_target_stub;
1167 void set_target_is_stub (bool target_is_stub)
1169 this->main_type->m_flag_target_stub = target_is_stub;
1172 /* This is a function type which appears to have a prototype. We
1173 need this for function calls in order to tell us if it's necessary
1174 to coerce the args, or to just do the standard conversions. This
1175 is used with a short field. */
1177 bool is_prototyped () const
1179 return this->main_type->m_flag_prototyped;
1182 void set_is_prototyped (bool is_prototyped)
1184 this->main_type->m_flag_prototyped = is_prototyped;
1187 /* FIXME drow/2002-06-03: Only used for methods, but applies as well
1188 to functions. */
1190 bool has_varargs () const
1192 return this->main_type->m_flag_varargs;
1195 void set_has_varargs (bool has_varargs)
1197 this->main_type->m_flag_varargs = has_varargs;
1200 /* Identify a vector type. Gcc is handling this by adding an extra
1201 attribute to the array type. We slurp that in as a new flag of a
1202 type. This is used only in dwarf2read.c. */
1204 bool is_vector () const
1206 return this->main_type->m_flag_vector;
1209 void set_is_vector (bool is_vector)
1211 this->main_type->m_flag_vector = is_vector;
1214 /* This debug target supports TYPE_STUB(t). In the unsupported case
1215 we have to rely on NFIELDS to be zero etc., see TYPE_IS_OPAQUE().
1216 TYPE_STUB(t) with !TYPE_STUB_SUPPORTED(t) may exist if we only
1217 guessed the TYPE_STUB(t) value (see dwarfread.c). */
1219 bool stub_is_supported () const
1221 return this->main_type->m_flag_stub_supported;
1224 void set_stub_is_supported (bool stub_is_supported)
1226 this->main_type->m_flag_stub_supported = stub_is_supported;
1229 /* Used only for TYPE_CODE_FUNC where it specifies the real function
1230 address is returned by this function call. TYPE_TARGET_TYPE
1231 determines the final returned function type to be presented to
1232 user. */
1234 bool is_gnu_ifunc () const
1236 return this->main_type->m_flag_gnu_ifunc;
1239 void set_is_gnu_ifunc (bool is_gnu_ifunc)
1241 this->main_type->m_flag_gnu_ifunc = is_gnu_ifunc;
1244 /* The debugging formats (especially STABS) do not contain enough
1245 information to represent all Ada types---especially those whose
1246 size depends on dynamic quantities. Therefore, the GNAT Ada
1247 compiler includes extra information in the form of additional type
1248 definitions connected by naming conventions. This flag indicates
1249 that the type is an ordinary (unencoded) GDB type that has been
1250 created from the necessary run-time information, and does not need
1251 further interpretation. Optionally marks ordinary, fixed-size GDB
1252 type. */
1254 bool is_fixed_instance () const
1256 return this->main_type->m_flag_fixed_instance;
1259 void set_is_fixed_instance (bool is_fixed_instance)
1261 this->main_type->m_flag_fixed_instance = is_fixed_instance;
1264 /* A compiler may supply dwarf instrumentation that indicates the desired
1265 endian interpretation of the variable differs from the native endian
1266 representation. */
1268 bool endianity_is_not_default () const
1270 return this->main_type->m_flag_endianity_not_default;
1273 void set_endianity_is_not_default (bool endianity_is_not_default)
1275 this->main_type->m_flag_endianity_not_default = endianity_is_not_default;
1279 /* True if this type was declared using the "class" keyword. This is
1280 only valid for C++ structure and enum types. If false, a structure
1281 was declared as a "struct"; if true it was declared "class". For
1282 enum types, this is true when "enum class" or "enum struct" was
1283 used to declare the type. */
1285 bool is_declared_class () const
1287 return this->main_type->m_flag_declared_class;
1290 void set_is_declared_class (bool is_declared_class) const
1292 this->main_type->m_flag_declared_class = is_declared_class;
1295 /* True if this type is a "flag" enum. A flag enum is one where all
1296 the values are pairwise disjoint when "and"ed together. This
1297 affects how enum values are printed. */
1299 bool is_flag_enum () const
1301 return this->main_type->m_flag_flag_enum;
1304 void set_is_flag_enum (bool is_flag_enum)
1306 this->main_type->m_flag_flag_enum = is_flag_enum;
1309 /* * Assuming that THIS is a TYPE_CODE_FIXED_POINT, return a reference
1310 to this type's fixed_point_info. */
1312 struct fixed_point_type_info &fixed_point_info () const
1314 gdb_assert (this->code () == TYPE_CODE_FIXED_POINT);
1315 gdb_assert (this->main_type->type_specific.fixed_point_info != nullptr);
1317 return *this->main_type->type_specific.fixed_point_info;
1320 /* * Assuming that THIS is a TYPE_CODE_FIXED_POINT, set this type's
1321 fixed_point_info to INFO. */
1323 void set_fixed_point_info (struct fixed_point_type_info *info) const
1325 gdb_assert (this->code () == TYPE_CODE_FIXED_POINT);
1327 this->main_type->type_specific.fixed_point_info = info;
1330 /* * Assuming that THIS is a TYPE_CODE_FIXED_POINT, return its base type.
1332 In other words, this returns the type after having peeled all
1333 intermediate type layers (such as TYPE_CODE_RANGE, for instance).
1334 The TYPE_CODE of the type returned is guaranteed to be
1335 a TYPE_CODE_FIXED_POINT. */
1337 struct type *fixed_point_type_base_type ();
1339 /* * Assuming that THIS is a TYPE_CODE_FIXED_POINT, return its scaling
1340 factor. */
1342 const gdb_mpq &fixed_point_scaling_factor ();
1344 /* * Return the dynamic property of the requested KIND from this type's
1345 list of dynamic properties. */
1346 dynamic_prop *dyn_prop (dynamic_prop_node_kind kind) const;
1348 /* * Given a dynamic property PROP of a given KIND, add this dynamic
1349 property to this type.
1351 This function assumes that this type is objfile-owned. */
1352 void add_dyn_prop (dynamic_prop_node_kind kind, dynamic_prop prop);
1354 /* * Remove dynamic property of kind KIND from this type, if it exists. */
1355 void remove_dyn_prop (dynamic_prop_node_kind kind);
1357 /* Return true if this type is owned by an objfile. Return false if it is
1358 owned by an architecture. */
1359 bool is_objfile_owned () const
1361 return this->main_type->m_flag_objfile_owned;
1364 /* Set the owner of the type to be OBJFILE. */
1365 void set_owner (objfile *objfile)
1367 gdb_assert (objfile != nullptr);
1369 this->main_type->m_owner.objfile = objfile;
1370 this->main_type->m_flag_objfile_owned = true;
1373 /* Set the owner of the type to be ARCH. */
1374 void set_owner (gdbarch *arch)
1376 gdb_assert (arch != nullptr);
1378 this->main_type->m_owner.gdbarch = arch;
1379 this->main_type->m_flag_objfile_owned = false;
1382 /* Return the objfile owner of this type.
1384 Return nullptr if this type is not objfile-owned. */
1385 struct objfile *objfile_owner () const
1387 if (!this->is_objfile_owned ())
1388 return nullptr;
1390 return this->main_type->m_owner.objfile;
1393 /* Return the gdbarch owner of this type.
1395 Return nullptr if this type is not gdbarch-owned. */
1396 gdbarch *arch_owner () const
1398 if (this->is_objfile_owned ())
1399 return nullptr;
1401 return this->main_type->m_owner.gdbarch;
1404 /* Return the type's architecture. For types owned by an
1405 architecture, that architecture is returned. For types owned by an
1406 objfile, that objfile's architecture is returned.
1408 The return value is always non-nullptr. */
1409 gdbarch *arch () const;
1411 /* * Return true if this is an integer type whose logical (bit) size
1412 differs from its storage size; false otherwise. Always return
1413 false for non-integer (i.e., non-TYPE_SPECIFIC_INT) types. */
1414 bool bit_size_differs_p () const
1416 return (main_type->type_specific_field == TYPE_SPECIFIC_INT
1417 && main_type->type_specific.int_stuff.bit_size != 8 * length);
1420 /* * Return the logical (bit) size for this integer type. Only
1421 valid for integer (TYPE_SPECIFIC_INT) types. */
1422 unsigned short bit_size () const
1424 gdb_assert (main_type->type_specific_field == TYPE_SPECIFIC_INT);
1425 return main_type->type_specific.int_stuff.bit_size;
1428 /* * Return the bit offset for this integer type. Only valid for
1429 integer (TYPE_SPECIFIC_INT) types. */
1430 unsigned short bit_offset () const
1432 gdb_assert (main_type->type_specific_field == TYPE_SPECIFIC_INT);
1433 return main_type->type_specific.int_stuff.bit_offset;
1436 /* Return true if this is a pointer or reference type. */
1437 bool is_pointer_or_reference () const
1439 return this->code () == TYPE_CODE_PTR || TYPE_IS_REFERENCE (this);
1442 /* * Type that is a pointer to this type.
1443 NULL if no such pointer-to type is known yet.
1444 The debugger may add the address of such a type
1445 if it has to construct one later. */
1447 struct type *pointer_type;
1449 /* * C++: also need a reference type. */
1451 struct type *reference_type;
1453 /* * A C++ rvalue reference type added in C++11. */
1455 struct type *rvalue_reference_type;
1457 /* * Variant chain. This points to a type that differs from this
1458 one only in qualifiers and length. Currently, the possible
1459 qualifiers are const, volatile, code-space, data-space, and
1460 address class. The length may differ only when one of the
1461 address class flags are set. The variants are linked in a
1462 circular ring and share MAIN_TYPE. */
1464 struct type *chain;
1466 /* * The alignment for this type. Zero means that the alignment was
1467 not specified in the debug info. Note that this is stored in a
1468 funny way: as the log base 2 (plus 1) of the alignment; so a
1469 value of 1 means the alignment is 1, and a value of 9 means the
1470 alignment is 256. */
1472 unsigned align_log2 : TYPE_ALIGN_BITS;
1474 /* * Flags specific to this instance of the type, indicating where
1475 on the ring we are.
1477 For TYPE_CODE_TYPEDEF the flags of the typedef type should be
1478 binary or-ed with the target type, with a special case for
1479 address class and space class. For example if this typedef does
1480 not specify any new qualifiers, TYPE_INSTANCE_FLAGS is 0 and the
1481 instance flags are completely inherited from the target type. No
1482 qualifiers can be cleared by the typedef. See also
1483 check_typedef. */
1484 unsigned m_instance_flags : 9;
1486 /* * Length of storage for a value of this type. The value is the
1487 expression in host bytes of what sizeof(type) would return. This
1488 size includes padding. For example, an i386 extended-precision
1489 floating point value really only occupies ten bytes, but most
1490 ABI's declare its size to be 12 bytes, to preserve alignment.
1491 A `struct type' representing such a floating-point type would
1492 have a `length' value of 12, even though the last two bytes are
1493 unused.
1495 Since this field is expressed in host bytes, its value is appropriate
1496 to pass to memcpy and such (it is assumed that GDB itself always runs
1497 on an 8-bits addressable architecture). However, when using it for
1498 target address arithmetic (e.g. adding it to a target address), the
1499 type_length_units function should be used in order to get the length
1500 expressed in target addressable memory units. */
1502 ULONGEST length;
1504 /* * Core type, shared by a group of qualified types. */
1506 struct main_type *main_type;
1509 struct fn_fieldlist
1512 /* * The overloaded name.
1513 This is generally allocated in the objfile's obstack.
1514 However stabsread.c sometimes uses malloc. */
1516 const char *name;
1518 /* * The number of methods with this name. */
1520 int length;
1522 /* * The list of methods. */
1524 struct fn_field *fn_fields;
1529 struct fn_field
1531 /* * If is_stub is clear, this is the mangled name which we can look
1532 up to find the address of the method (FIXME: it would be cleaner
1533 to have a pointer to the struct symbol here instead).
1535 If is_stub is set, this is the portion of the mangled name which
1536 specifies the arguments. For example, "ii", if there are two int
1537 arguments, or "" if there are no arguments. See gdb_mangle_name
1538 for the conversion from this format to the one used if is_stub is
1539 clear. */
1541 const char *physname;
1543 /* * The function type for the method.
1545 (This comment used to say "The return value of the method", but
1546 that's wrong. The function type is expected here, i.e. something
1547 with TYPE_CODE_METHOD, and *not* the return-value type). */
1549 struct type *type;
1551 /* * For virtual functions. First baseclass that defines this
1552 virtual function. */
1554 struct type *fcontext;
1556 /* Attributes. */
1558 unsigned int is_const:1;
1559 unsigned int is_volatile:1;
1560 unsigned int is_private:1;
1561 unsigned int is_protected:1;
1562 unsigned int is_artificial:1;
1564 /* * A stub method only has some fields valid (but they are enough
1565 to reconstruct the rest of the fields). */
1567 unsigned int is_stub:1;
1569 /* * True if this function is a constructor, false otherwise. */
1571 unsigned int is_constructor : 1;
1573 /* * True if this function is deleted, false otherwise. */
1575 unsigned int is_deleted : 1;
1577 /* * DW_AT_defaulted attribute for this function. The value is one
1578 of the DW_DEFAULTED constants. */
1580 ENUM_BITFIELD (dwarf_defaulted_attribute) defaulted : 2;
1582 /* * Unused. */
1584 unsigned int dummy:6;
1586 /* * Index into that baseclass's virtual function table, minus 2;
1587 else if static: VOFFSET_STATIC; else: 0. */
1589 unsigned int voffset:16;
1591 #define VOFFSET_STATIC 1
1595 struct decl_field
1597 /* * Unqualified name to be prefixed by owning class qualified
1598 name. */
1600 const char *name;
1602 /* * Type this typedef named NAME represents. */
1604 struct type *type;
1606 /* * True if this field was declared protected, false otherwise. */
1607 unsigned int is_protected : 1;
1609 /* * True if this field was declared private, false otherwise. */
1610 unsigned int is_private : 1;
1613 /* * C++ language-specific information for TYPE_CODE_STRUCT and
1614 TYPE_CODE_UNION nodes. */
1616 struct cplus_struct_type
1618 /* * Number of base classes this type derives from. The
1619 baseclasses are stored in the first N_BASECLASSES fields
1620 (i.e. the `fields' field of the struct type). The only fields
1621 of struct field that are used are: type, name, loc.bitpos. */
1623 short n_baseclasses;
1625 /* * Field number of the virtual function table pointer in VPTR_BASETYPE.
1626 All access to this field must be through TYPE_VPTR_FIELDNO as one
1627 thing it does is check whether the field has been initialized.
1628 Initially TYPE_RAW_CPLUS_SPECIFIC has the value of cplus_struct_default,
1629 which for portability reasons doesn't initialize this field.
1630 TYPE_VPTR_FIELDNO returns -1 for this case.
1632 If -1, we were unable to find the virtual function table pointer in
1633 initial symbol reading, and get_vptr_fieldno should be called to find
1634 it if possible. get_vptr_fieldno will update this field if possible.
1635 Otherwise the value is left at -1.
1637 Unused if this type does not have virtual functions. */
1639 short vptr_fieldno;
1641 /* * Number of methods with unique names. All overloaded methods
1642 with the same name count only once. */
1644 short nfn_fields;
1646 /* * Number of template arguments. */
1648 unsigned short n_template_arguments;
1650 /* * One if this struct is a dynamic class, as defined by the
1651 Itanium C++ ABI: if it requires a virtual table pointer,
1652 because it or any of its base classes have one or more virtual
1653 member functions or virtual base classes. Minus one if not
1654 dynamic. Zero if not yet computed. */
1656 int is_dynamic : 2;
1658 /* * The calling convention for this type, fetched from the
1659 DW_AT_calling_convention attribute. The value is one of the
1660 DW_CC constants. */
1662 ENUM_BITFIELD (dwarf_calling_convention) calling_convention : 8;
1664 /* * The base class which defined the virtual function table pointer. */
1666 struct type *vptr_basetype;
1668 /* * For derived classes, the number of base classes is given by
1669 n_baseclasses and virtual_field_bits is a bit vector containing
1670 one bit per base class. If the base class is virtual, the
1671 corresponding bit will be set.
1672 I.E, given:
1674 class A{};
1675 class B{};
1676 class C : public B, public virtual A {};
1678 B is a baseclass of C; A is a virtual baseclass for C.
1679 This is a C++ 2.0 language feature. */
1681 B_TYPE *virtual_field_bits;
1683 /* * For classes with private fields, the number of fields is
1684 given by nfields and private_field_bits is a bit vector
1685 containing one bit per field.
1687 If the field is private, the corresponding bit will be set. */
1689 B_TYPE *private_field_bits;
1691 /* * For classes with protected fields, the number of fields is
1692 given by nfields and protected_field_bits is a bit vector
1693 containing one bit per field.
1695 If the field is private, the corresponding bit will be set. */
1697 B_TYPE *protected_field_bits;
1699 /* * For classes with fields to be ignored, either this is
1700 optimized out or this field has length 0. */
1702 B_TYPE *ignore_field_bits;
1704 /* * For classes, structures, and unions, a description of each
1705 field, which consists of an overloaded name, followed by the
1706 types of arguments that the method expects, and then the name
1707 after it has been renamed to make it distinct.
1709 fn_fieldlists points to an array of nfn_fields of these. */
1711 struct fn_fieldlist *fn_fieldlists;
1713 /* * typedefs defined inside this class. typedef_field points to
1714 an array of typedef_field_count elements. */
1716 struct decl_field *typedef_field;
1718 unsigned typedef_field_count;
1720 /* * The nested types defined by this type. nested_types points to
1721 an array of nested_types_count elements. */
1723 struct decl_field *nested_types;
1725 unsigned nested_types_count;
1727 /* * The template arguments. This is an array with
1728 N_TEMPLATE_ARGUMENTS elements. This is NULL for non-template
1729 classes. */
1731 struct symbol **template_arguments;
1734 /* * Struct used to store conversion rankings. */
1736 struct rank
1738 short rank;
1740 /* * When two conversions are of the same type and therefore have
1741 the same rank, subrank is used to differentiate the two.
1743 Eg: Two derived-class-pointer to base-class-pointer conversions
1744 would both have base pointer conversion rank, but the
1745 conversion with the shorter distance to the ancestor is
1746 preferable. 'subrank' would be used to reflect that. */
1748 short subrank;
1751 /* * Used for ranking a function for overload resolution. */
1753 typedef std::vector<rank> badness_vector;
1755 /* * GNAT Ada-specific information for various Ada types. */
1757 struct gnat_aux_type
1759 /* * Parallel type used to encode information about dynamic types
1760 used in Ada (such as variant records, variable-size array,
1761 etc). */
1762 struct type* descriptive_type;
1765 /* * For TYPE_CODE_FUNC and TYPE_CODE_METHOD types. */
1767 struct func_type
1769 /* * The calling convention for targets supporting multiple ABIs.
1770 Right now this is only fetched from the Dwarf-2
1771 DW_AT_calling_convention attribute. The value is one of the
1772 DW_CC constants. */
1774 ENUM_BITFIELD (dwarf_calling_convention) calling_convention : 8;
1776 /* * Whether this function normally returns to its caller. It is
1777 set from the DW_AT_noreturn attribute if set on the
1778 DW_TAG_subprogram. */
1780 unsigned int is_noreturn : 1;
1782 /* * Only those DW_TAG_call_site's in this function that have
1783 DW_AT_call_tail_call set are linked in this list. Function
1784 without its tail call list complete
1785 (DW_AT_call_all_tail_calls or its superset
1786 DW_AT_call_all_calls) has TAIL_CALL_LIST NULL, even if some
1787 DW_TAG_call_site's exist in such function. */
1789 struct call_site *tail_call_list;
1791 /* * For method types (TYPE_CODE_METHOD), the aggregate type that
1792 contains the method. */
1794 struct type *self_type;
1797 /* struct call_site_parameter can be referenced in callees by several ways. */
1799 enum call_site_parameter_kind
1801 /* * Use field call_site_parameter.u.dwarf_reg. */
1802 CALL_SITE_PARAMETER_DWARF_REG,
1804 /* * Use field call_site_parameter.u.fb_offset. */
1805 CALL_SITE_PARAMETER_FB_OFFSET,
1807 /* * Use field call_site_parameter.u.param_offset. */
1808 CALL_SITE_PARAMETER_PARAM_OFFSET
1811 struct call_site_target
1813 field_loc_kind loc_kind () const
1815 return m_loc_kind;
1818 CORE_ADDR loc_physaddr () const
1820 gdb_assert (m_loc_kind == FIELD_LOC_KIND_PHYSADDR);
1821 return m_loc.physaddr;
1824 void set_loc_physaddr (CORE_ADDR physaddr)
1826 m_loc_kind = FIELD_LOC_KIND_PHYSADDR;
1827 m_loc.physaddr = physaddr;
1830 const char *loc_physname () const
1832 gdb_assert (m_loc_kind == FIELD_LOC_KIND_PHYSNAME);
1833 return m_loc.physname;
1836 void set_loc_physname (const char *physname)
1838 m_loc_kind = FIELD_LOC_KIND_PHYSNAME;
1839 m_loc.physname = physname;
1842 dwarf2_locexpr_baton *loc_dwarf_block () const
1844 gdb_assert (m_loc_kind == FIELD_LOC_KIND_DWARF_BLOCK);
1845 return m_loc.dwarf_block;
1848 void set_loc_dwarf_block (dwarf2_locexpr_baton *dwarf_block)
1850 m_loc_kind = FIELD_LOC_KIND_DWARF_BLOCK;
1851 m_loc.dwarf_block = dwarf_block;
1854 union field_location m_loc;
1856 /* * Discriminant for union field_location. */
1858 ENUM_BITFIELD(field_loc_kind) m_loc_kind : 3;
1861 union call_site_parameter_u
1863 /* * DW_TAG_formal_parameter's DW_AT_location's DW_OP_regX
1864 as DWARF register number, for register passed
1865 parameters. */
1867 int dwarf_reg;
1869 /* * Offset from the callee's frame base, for stack passed
1870 parameters. This equals offset from the caller's stack
1871 pointer. */
1873 CORE_ADDR fb_offset;
1875 /* * Offset relative to the start of this PER_CU to
1876 DW_TAG_formal_parameter which is referenced by both
1877 caller and the callee. */
1879 cu_offset param_cu_off;
1882 struct call_site_parameter
1884 ENUM_BITFIELD (call_site_parameter_kind) kind : 2;
1886 union call_site_parameter_u u;
1888 /* * DW_TAG_formal_parameter's DW_AT_call_value. It is never NULL. */
1890 const gdb_byte *value;
1891 size_t value_size;
1893 /* * DW_TAG_formal_parameter's DW_AT_call_data_value.
1894 It may be NULL if not provided by DWARF. */
1896 const gdb_byte *data_value;
1897 size_t data_value_size;
1900 /* * A place where a function gets called from, represented by
1901 DW_TAG_call_site. It can be looked up from symtab->call_site_htab. */
1903 struct call_site
1905 call_site (CORE_ADDR pc, dwarf2_per_cu_data *per_cu,
1906 dwarf2_per_objfile *per_objfile)
1907 : per_cu (per_cu), per_objfile (per_objfile), m_unrelocated_pc (pc)
1910 static int
1911 eq (const call_site *a, const call_site *b)
1913 return a->m_unrelocated_pc == b->m_unrelocated_pc;
1916 static hashval_t
1917 hash (const call_site *a)
1919 return a->m_unrelocated_pc;
1922 static int
1923 eq (const void *a, const void *b)
1925 return eq ((const call_site *)a, (const call_site *)b);
1928 static hashval_t
1929 hash (const void *a)
1931 return hash ((const call_site *)a);
1934 /* Return the address of the first instruction after this call. */
1936 CORE_ADDR pc () const;
1938 /* * List successor with head in FUNC_TYPE.TAIL_CALL_LIST. */
1940 struct call_site *tail_call_next = nullptr;
1942 /* * Describe DW_AT_call_target. Missing attribute uses
1943 FIELD_LOC_KIND_DWARF_BLOCK with FIELD_DWARF_BLOCK == NULL. */
1945 struct call_site_target target {};
1947 /* * Size of the PARAMETER array. */
1949 unsigned parameter_count = 0;
1951 /* * CU of the function where the call is located. It gets used
1952 for DWARF blocks execution in the parameter array below. */
1954 dwarf2_per_cu_data *const per_cu = nullptr;
1956 /* objfile of the function where the call is located. */
1958 dwarf2_per_objfile *const per_objfile = nullptr;
1960 private:
1961 /* Unrelocated address of the first instruction after this call. */
1962 const CORE_ADDR m_unrelocated_pc;
1964 public:
1965 /* * Describe DW_TAG_call_site's DW_TAG_formal_parameter. */
1967 struct call_site_parameter parameter[];
1970 /* The type-specific info for TYPE_CODE_FIXED_POINT types. */
1972 struct fixed_point_type_info
1974 /* The fixed point type's scaling factor. */
1975 gdb_mpq scaling_factor;
1978 /* * The default value of TYPE_CPLUS_SPECIFIC(T) points to this shared
1979 static structure. */
1981 extern const struct cplus_struct_type cplus_struct_default;
1983 extern void allocate_cplus_struct_type (struct type *);
1985 #define INIT_CPLUS_SPECIFIC(type) \
1986 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF, \
1987 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type*) \
1988 &cplus_struct_default)
1990 #define ALLOCATE_CPLUS_STRUCT_TYPE(type) allocate_cplus_struct_type (type)
1992 #define HAVE_CPLUS_STRUCT(type) \
1993 (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_CPLUS_STUFF \
1994 && TYPE_RAW_CPLUS_SPECIFIC (type) != &cplus_struct_default)
1996 #define INIT_NONE_SPECIFIC(type) \
1997 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_NONE, \
1998 TYPE_MAIN_TYPE (type)->type_specific = {})
2000 extern const struct gnat_aux_type gnat_aux_default;
2002 extern void allocate_gnat_aux_type (struct type *);
2004 #define INIT_GNAT_SPECIFIC(type) \
2005 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF, \
2006 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *) &gnat_aux_default)
2007 #define ALLOCATE_GNAT_AUX_TYPE(type) allocate_gnat_aux_type (type)
2008 /* * A macro that returns non-zero if the type-specific data should be
2009 read as "gnat-stuff". */
2010 #define HAVE_GNAT_AUX_INFO(type) \
2011 (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_GNAT_STUFF)
2013 /* * True if TYPE is known to be an Ada type of some kind. */
2014 #define ADA_TYPE_P(type) \
2015 (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_GNAT_STUFF \
2016 || (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE \
2017 && (type)->is_fixed_instance ()))
2019 #define INIT_FUNC_SPECIFIC(type) \
2020 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FUNC, \
2021 TYPE_MAIN_TYPE (type)->type_specific.func_stuff = (struct func_type *) \
2022 TYPE_ZALLOC (type, \
2023 sizeof (*TYPE_MAIN_TYPE (type)->type_specific.func_stuff)))
2025 /* "struct fixed_point_type_info" has a field that has a destructor.
2026 See allocate_fixed_point_type_info to understand how this is
2027 handled. */
2028 #define INIT_FIXED_POINT_SPECIFIC(type) \
2029 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FIXED_POINT, \
2030 allocate_fixed_point_type_info (type))
2032 #define TYPE_MAIN_TYPE(thistype) (thistype)->main_type
2033 #define TYPE_TARGET_TYPE(thistype) TYPE_MAIN_TYPE(thistype)->target_type
2034 #define TYPE_POINTER_TYPE(thistype) (thistype)->pointer_type
2035 #define TYPE_REFERENCE_TYPE(thistype) (thistype)->reference_type
2036 #define TYPE_RVALUE_REFERENCE_TYPE(thistype) (thistype)->rvalue_reference_type
2037 #define TYPE_CHAIN(thistype) (thistype)->chain
2038 /* * Note that if thistype is a TYPEDEF type, you have to call check_typedef.
2039 But check_typedef does set the TYPE_LENGTH of the TYPEDEF type,
2040 so you only have to call check_typedef once. Since allocate_value
2041 calls check_typedef, TYPE_LENGTH (VALUE_TYPE (X)) is safe. */
2042 #define TYPE_LENGTH(thistype) (thistype)->length
2044 /* * Return the alignment of the type in target addressable memory
2045 units, or 0 if no alignment was specified. */
2046 #define TYPE_RAW_ALIGN(thistype) type_raw_align (thistype)
2048 /* * Return the alignment of the type in target addressable memory
2049 units, or 0 if no alignment was specified. */
2050 extern unsigned type_raw_align (struct type *);
2052 /* * Return the alignment of the type in target addressable memory
2053 units. Return 0 if the alignment cannot be determined; but note
2054 that this makes an effort to compute the alignment even it it was
2055 not specified in the debug info. */
2056 extern unsigned type_align (struct type *);
2058 /* * Set the alignment of the type. The alignment must be a power of
2059 2. Returns false if the given value does not fit in the available
2060 space in struct type. */
2061 extern bool set_type_align (struct type *, ULONGEST);
2063 /* Property accessors for the type data location. */
2064 #define TYPE_DATA_LOCATION(thistype) \
2065 ((thistype)->dyn_prop (DYN_PROP_DATA_LOCATION))
2066 #define TYPE_DATA_LOCATION_BATON(thistype) \
2067 TYPE_DATA_LOCATION (thistype)->data.baton
2068 #define TYPE_DATA_LOCATION_ADDR(thistype) \
2069 (TYPE_DATA_LOCATION (thistype)->const_val ())
2070 #define TYPE_DATA_LOCATION_KIND(thistype) \
2071 (TYPE_DATA_LOCATION (thistype)->kind ())
2072 #define TYPE_DYNAMIC_LENGTH(thistype) \
2073 ((thistype)->dyn_prop (DYN_PROP_BYTE_SIZE))
2075 /* Property accessors for the type allocated/associated. */
2076 #define TYPE_ALLOCATED_PROP(thistype) \
2077 ((thistype)->dyn_prop (DYN_PROP_ALLOCATED))
2078 #define TYPE_ASSOCIATED_PROP(thistype) \
2079 ((thistype)->dyn_prop (DYN_PROP_ASSOCIATED))
2081 /* C++ */
2083 #define TYPE_SELF_TYPE(thistype) internal_type_self_type (thistype)
2084 /* Do not call this, use TYPE_SELF_TYPE. */
2085 extern struct type *internal_type_self_type (struct type *);
2086 extern void set_type_self_type (struct type *, struct type *);
2088 extern int internal_type_vptr_fieldno (struct type *);
2089 extern void set_type_vptr_fieldno (struct type *, int);
2090 extern struct type *internal_type_vptr_basetype (struct type *);
2091 extern void set_type_vptr_basetype (struct type *, struct type *);
2092 #define TYPE_VPTR_FIELDNO(thistype) internal_type_vptr_fieldno (thistype)
2093 #define TYPE_VPTR_BASETYPE(thistype) internal_type_vptr_basetype (thistype)
2095 #define TYPE_NFN_FIELDS(thistype) TYPE_CPLUS_SPECIFIC(thistype)->nfn_fields
2096 #define TYPE_SPECIFIC_FIELD(thistype) \
2097 TYPE_MAIN_TYPE(thistype)->type_specific_field
2098 /* We need this tap-dance with the TYPE_RAW_SPECIFIC because of the case
2099 where we're trying to print an Ada array using the C language.
2100 In that case, there is no "cplus_stuff", but the C language assumes
2101 that there is. What we do, in that case, is pretend that there is
2102 an implicit one which is the default cplus stuff. */
2103 #define TYPE_CPLUS_SPECIFIC(thistype) \
2104 (!HAVE_CPLUS_STRUCT(thistype) \
2105 ? (struct cplus_struct_type*)&cplus_struct_default \
2106 : TYPE_RAW_CPLUS_SPECIFIC(thistype))
2107 #define TYPE_RAW_CPLUS_SPECIFIC(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.cplus_stuff
2108 #define TYPE_CPLUS_CALLING_CONVENTION(thistype) \
2109 TYPE_MAIN_TYPE(thistype)->type_specific.cplus_stuff->calling_convention
2110 #define TYPE_FLOATFORMAT(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.floatformat
2111 #define TYPE_GNAT_SPECIFIC(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.gnat_stuff
2112 #define TYPE_DESCRIPTIVE_TYPE(thistype) TYPE_GNAT_SPECIFIC(thistype)->descriptive_type
2113 #define TYPE_CALLING_CONVENTION(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.func_stuff->calling_convention
2114 #define TYPE_NO_RETURN(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.func_stuff->is_noreturn
2115 #define TYPE_TAIL_CALL_LIST(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.func_stuff->tail_call_list
2116 #define TYPE_BASECLASS(thistype,index) ((thistype)->field (index).type ())
2117 #define TYPE_N_BASECLASSES(thistype) TYPE_CPLUS_SPECIFIC(thistype)->n_baseclasses
2118 #define TYPE_BASECLASS_NAME(thistype,index) (thistype->field (index).name ())
2119 #define TYPE_BASECLASS_BITPOS(thistype,index) (thistype->field (index).loc_bitpos ())
2120 #define BASETYPE_VIA_PUBLIC(thistype, index) \
2121 ((!TYPE_FIELD_PRIVATE(thistype, index)) && (!TYPE_FIELD_PROTECTED(thistype, index)))
2122 #define TYPE_CPLUS_DYNAMIC(thistype) TYPE_CPLUS_SPECIFIC (thistype)->is_dynamic
2124 #define BASETYPE_VIA_VIRTUAL(thistype, index) \
2125 (TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits == NULL ? 0 \
2126 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits, (index)))
2128 #define FIELD_ARTIFICIAL(thisfld) ((thisfld).artificial)
2129 #define FIELD_BITSIZE(thisfld) ((thisfld).bitsize)
2131 #define TYPE_FIELD_ARTIFICIAL(thistype, n) FIELD_ARTIFICIAL((thistype)->field (n))
2132 #define TYPE_FIELD_BITSIZE(thistype, n) FIELD_BITSIZE((thistype)->field (n))
2133 #define TYPE_FIELD_PACKED(thistype, n) (FIELD_BITSIZE((thistype)->field (n))!=0)
2135 #define TYPE_FIELD_PRIVATE_BITS(thistype) \
2136 TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits
2137 #define TYPE_FIELD_PROTECTED_BITS(thistype) \
2138 TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits
2139 #define TYPE_FIELD_IGNORE_BITS(thistype) \
2140 TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits
2141 #define TYPE_FIELD_VIRTUAL_BITS(thistype) \
2142 TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits
2143 #define SET_TYPE_FIELD_PRIVATE(thistype, n) \
2144 B_SET (TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits, (n))
2145 #define SET_TYPE_FIELD_PROTECTED(thistype, n) \
2146 B_SET (TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits, (n))
2147 #define SET_TYPE_FIELD_IGNORE(thistype, n) \
2148 B_SET (TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits, (n))
2149 #define SET_TYPE_FIELD_VIRTUAL(thistype, n) \
2150 B_SET (TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits, (n))
2151 #define TYPE_FIELD_PRIVATE(thistype, n) \
2152 (TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits == NULL ? 0 \
2153 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits, (n)))
2154 #define TYPE_FIELD_PROTECTED(thistype, n) \
2155 (TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits == NULL ? 0 \
2156 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits, (n)))
2157 #define TYPE_FIELD_IGNORE(thistype, n) \
2158 (TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits == NULL ? 0 \
2159 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits, (n)))
2160 #define TYPE_FIELD_VIRTUAL(thistype, n) \
2161 (TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits == NULL ? 0 \
2162 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits, (n)))
2164 #define TYPE_FN_FIELDLISTS(thistype) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists
2165 #define TYPE_FN_FIELDLIST(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n]
2166 #define TYPE_FN_FIELDLIST1(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n].fn_fields
2167 #define TYPE_FN_FIELDLIST_NAME(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n].name
2168 #define TYPE_FN_FIELDLIST_LENGTH(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n].length
2170 #define TYPE_N_TEMPLATE_ARGUMENTS(thistype) \
2171 TYPE_CPLUS_SPECIFIC (thistype)->n_template_arguments
2172 #define TYPE_TEMPLATE_ARGUMENTS(thistype) \
2173 TYPE_CPLUS_SPECIFIC (thistype)->template_arguments
2174 #define TYPE_TEMPLATE_ARGUMENT(thistype, n) \
2175 TYPE_CPLUS_SPECIFIC (thistype)->template_arguments[n]
2177 #define TYPE_FN_FIELD(thisfn, n) (thisfn)[n]
2178 #define TYPE_FN_FIELD_PHYSNAME(thisfn, n) (thisfn)[n].physname
2179 #define TYPE_FN_FIELD_TYPE(thisfn, n) (thisfn)[n].type
2180 #define TYPE_FN_FIELD_ARGS(thisfn, n) (((thisfn)[n].type)->fields ())
2181 #define TYPE_FN_FIELD_CONST(thisfn, n) ((thisfn)[n].is_const)
2182 #define TYPE_FN_FIELD_VOLATILE(thisfn, n) ((thisfn)[n].is_volatile)
2183 #define TYPE_FN_FIELD_PRIVATE(thisfn, n) ((thisfn)[n].is_private)
2184 #define TYPE_FN_FIELD_PROTECTED(thisfn, n) ((thisfn)[n].is_protected)
2185 #define TYPE_FN_FIELD_ARTIFICIAL(thisfn, n) ((thisfn)[n].is_artificial)
2186 #define TYPE_FN_FIELD_STUB(thisfn, n) ((thisfn)[n].is_stub)
2187 #define TYPE_FN_FIELD_CONSTRUCTOR(thisfn, n) ((thisfn)[n].is_constructor)
2188 #define TYPE_FN_FIELD_FCONTEXT(thisfn, n) ((thisfn)[n].fcontext)
2189 #define TYPE_FN_FIELD_VOFFSET(thisfn, n) ((thisfn)[n].voffset-2)
2190 #define TYPE_FN_FIELD_VIRTUAL_P(thisfn, n) ((thisfn)[n].voffset > 1)
2191 #define TYPE_FN_FIELD_STATIC_P(thisfn, n) ((thisfn)[n].voffset == VOFFSET_STATIC)
2192 #define TYPE_FN_FIELD_DEFAULTED(thisfn, n) ((thisfn)[n].defaulted)
2193 #define TYPE_FN_FIELD_DELETED(thisfn, n) ((thisfn)[n].is_deleted)
2195 /* Accessors for typedefs defined by a class. */
2196 #define TYPE_TYPEDEF_FIELD_ARRAY(thistype) \
2197 TYPE_CPLUS_SPECIFIC (thistype)->typedef_field
2198 #define TYPE_TYPEDEF_FIELD(thistype, n) \
2199 TYPE_CPLUS_SPECIFIC (thistype)->typedef_field[n]
2200 #define TYPE_TYPEDEF_FIELD_NAME(thistype, n) \
2201 TYPE_TYPEDEF_FIELD (thistype, n).name
2202 #define TYPE_TYPEDEF_FIELD_TYPE(thistype, n) \
2203 TYPE_TYPEDEF_FIELD (thistype, n).type
2204 #define TYPE_TYPEDEF_FIELD_COUNT(thistype) \
2205 TYPE_CPLUS_SPECIFIC (thistype)->typedef_field_count
2206 #define TYPE_TYPEDEF_FIELD_PROTECTED(thistype, n) \
2207 TYPE_TYPEDEF_FIELD (thistype, n).is_protected
2208 #define TYPE_TYPEDEF_FIELD_PRIVATE(thistype, n) \
2209 TYPE_TYPEDEF_FIELD (thistype, n).is_private
2211 #define TYPE_NESTED_TYPES_ARRAY(thistype) \
2212 TYPE_CPLUS_SPECIFIC (thistype)->nested_types
2213 #define TYPE_NESTED_TYPES_FIELD(thistype, n) \
2214 TYPE_CPLUS_SPECIFIC (thistype)->nested_types[n]
2215 #define TYPE_NESTED_TYPES_FIELD_NAME(thistype, n) \
2216 TYPE_NESTED_TYPES_FIELD (thistype, n).name
2217 #define TYPE_NESTED_TYPES_FIELD_TYPE(thistype, n) \
2218 TYPE_NESTED_TYPES_FIELD (thistype, n).type
2219 #define TYPE_NESTED_TYPES_COUNT(thistype) \
2220 TYPE_CPLUS_SPECIFIC (thistype)->nested_types_count
2221 #define TYPE_NESTED_TYPES_FIELD_PROTECTED(thistype, n) \
2222 TYPE_NESTED_TYPES_FIELD (thistype, n).is_protected
2223 #define TYPE_NESTED_TYPES_FIELD_PRIVATE(thistype, n) \
2224 TYPE_NESTED_TYPES_FIELD (thistype, n).is_private
2226 #define TYPE_IS_OPAQUE(thistype) \
2227 ((((thistype)->code () == TYPE_CODE_STRUCT) \
2228 || ((thistype)->code () == TYPE_CODE_UNION)) \
2229 && ((thistype)->num_fields () == 0) \
2230 && (!HAVE_CPLUS_STRUCT (thistype) \
2231 || TYPE_NFN_FIELDS (thistype) == 0) \
2232 && ((thistype)->is_stub () || !(thistype)->stub_is_supported ()))
2234 /* * A helper macro that returns the name of a type or "unnamed type"
2235 if the type has no name. */
2237 #define TYPE_SAFE_NAME(type) \
2238 (type->name () != nullptr ? type->name () : _("<unnamed type>"))
2240 /* * A helper macro that returns the name of an error type. If the
2241 type has a name, it is used; otherwise, a default is used. */
2243 #define TYPE_ERROR_NAME(type) \
2244 (type->name () ? type->name () : _("<error type>"))
2246 /* Given TYPE, return its floatformat. */
2247 const struct floatformat *floatformat_from_type (const struct type *type);
2249 struct builtin_type
2251 /* Integral types. */
2253 /* Implicit size/sign (based on the architecture's ABI). */
2254 struct type *builtin_void;
2255 struct type *builtin_char;
2256 struct type *builtin_short;
2257 struct type *builtin_int;
2258 struct type *builtin_long;
2259 struct type *builtin_signed_char;
2260 struct type *builtin_unsigned_char;
2261 struct type *builtin_unsigned_short;
2262 struct type *builtin_unsigned_int;
2263 struct type *builtin_unsigned_long;
2264 struct type *builtin_bfloat16;
2265 struct type *builtin_half;
2266 struct type *builtin_float;
2267 struct type *builtin_double;
2268 struct type *builtin_long_double;
2269 struct type *builtin_complex;
2270 struct type *builtin_double_complex;
2271 struct type *builtin_string;
2272 struct type *builtin_bool;
2273 struct type *builtin_long_long;
2274 struct type *builtin_unsigned_long_long;
2275 struct type *builtin_decfloat;
2276 struct type *builtin_decdouble;
2277 struct type *builtin_declong;
2279 /* "True" character types.
2280 We use these for the '/c' print format, because c_char is just a
2281 one-byte integral type, which languages less laid back than C
2282 will print as ... well, a one-byte integral type. */
2283 struct type *builtin_true_char;
2284 struct type *builtin_true_unsigned_char;
2286 /* Explicit sizes - see C9X <intypes.h> for naming scheme. The "int0"
2287 is for when an architecture needs to describe a register that has
2288 no size. */
2289 struct type *builtin_int0;
2290 struct type *builtin_int8;
2291 struct type *builtin_uint8;
2292 struct type *builtin_int16;
2293 struct type *builtin_uint16;
2294 struct type *builtin_int24;
2295 struct type *builtin_uint24;
2296 struct type *builtin_int32;
2297 struct type *builtin_uint32;
2298 struct type *builtin_int64;
2299 struct type *builtin_uint64;
2300 struct type *builtin_int128;
2301 struct type *builtin_uint128;
2303 /* Wide character types. */
2304 struct type *builtin_char16;
2305 struct type *builtin_char32;
2306 struct type *builtin_wchar;
2308 /* Pointer types. */
2310 /* * `pointer to data' type. Some target platforms use an implicitly
2311 {sign,zero} -extended 32-bit ABI pointer on a 64-bit ISA. */
2312 struct type *builtin_data_ptr;
2314 /* * `pointer to function (returning void)' type. Harvard
2315 architectures mean that ABI function and code pointers are not
2316 interconvertible. Similarly, since ANSI, C standards have
2317 explicitly said that pointers to functions and pointers to data
2318 are not interconvertible --- that is, you can't cast a function
2319 pointer to void * and back, and expect to get the same value.
2320 However, all function pointer types are interconvertible, so void
2321 (*) () can server as a generic function pointer. */
2323 struct type *builtin_func_ptr;
2325 /* * `function returning pointer to function (returning void)' type.
2326 The final void return type is not significant for it. */
2328 struct type *builtin_func_func;
2330 /* Special-purpose types. */
2332 /* * This type is used to represent a GDB internal function. */
2334 struct type *internal_fn;
2336 /* * This type is used to represent an xmethod. */
2337 struct type *xmethod;
2340 /* * Return the type table for the specified architecture. */
2342 extern const struct builtin_type *builtin_type (struct gdbarch *gdbarch);
2344 /* * Per-objfile types used by symbol readers. */
2346 struct objfile_type
2348 /* Basic types based on the objfile architecture. */
2349 struct type *builtin_void;
2350 struct type *builtin_char;
2351 struct type *builtin_short;
2352 struct type *builtin_int;
2353 struct type *builtin_long;
2354 struct type *builtin_long_long;
2355 struct type *builtin_signed_char;
2356 struct type *builtin_unsigned_char;
2357 struct type *builtin_unsigned_short;
2358 struct type *builtin_unsigned_int;
2359 struct type *builtin_unsigned_long;
2360 struct type *builtin_unsigned_long_long;
2361 struct type *builtin_half;
2362 struct type *builtin_float;
2363 struct type *builtin_double;
2364 struct type *builtin_long_double;
2366 /* * This type is used to represent symbol addresses. */
2367 struct type *builtin_core_addr;
2369 /* * This type represents a type that was unrecognized in symbol
2370 read-in. */
2371 struct type *builtin_error;
2373 /* * Types used for symbols with no debug information. */
2374 struct type *nodebug_text_symbol;
2375 struct type *nodebug_text_gnu_ifunc_symbol;
2376 struct type *nodebug_got_plt_symbol;
2377 struct type *nodebug_data_symbol;
2378 struct type *nodebug_unknown_symbol;
2379 struct type *nodebug_tls_symbol;
2382 /* * Return the type table for the specified objfile. */
2384 extern const struct objfile_type *objfile_type (struct objfile *objfile);
2386 /* Explicit floating-point formats. See "floatformat.h". */
2387 extern const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN];
2388 extern const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN];
2389 extern const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN];
2390 extern const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN];
2391 extern const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN];
2392 extern const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN];
2393 extern const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN];
2394 extern const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN];
2395 extern const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN];
2396 extern const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN];
2397 extern const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN];
2398 extern const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN];
2399 extern const struct floatformat *floatformats_bfloat16[BFD_ENDIAN_UNKNOWN];
2401 /* Allocate space for storing data associated with a particular
2402 type. We ensure that the space is allocated using the same
2403 mechanism that was used to allocate the space for the type
2404 structure itself. I.e. if the type is on an objfile's
2405 objfile_obstack, then the space for data associated with that type
2406 will also be allocated on the objfile_obstack. If the type is
2407 associated with a gdbarch, then the space for data associated with that
2408 type will also be allocated on the gdbarch_obstack.
2410 If a type is not associated with neither an objfile or a gdbarch then
2411 you should not use this macro to allocate space for data, instead you
2412 should call xmalloc directly, and ensure the memory is correctly freed
2413 when it is no longer needed. */
2415 #define TYPE_ALLOC(t,size) \
2416 (obstack_alloc (((t)->is_objfile_owned () \
2417 ? &((t)->objfile_owner ()->objfile_obstack) \
2418 : gdbarch_obstack ((t)->arch_owner ())), \
2419 size))
2422 /* See comment on TYPE_ALLOC. */
2424 #define TYPE_ZALLOC(t,size) (memset (TYPE_ALLOC (t, size), 0, size))
2426 /* Use alloc_type to allocate a type owned by an objfile. Use
2427 alloc_type_arch to allocate a type owned by an architecture. Use
2428 alloc_type_copy to allocate a type with the same owner as a
2429 pre-existing template type, no matter whether objfile or
2430 gdbarch. */
2431 extern struct type *alloc_type (struct objfile *);
2432 extern struct type *alloc_type_arch (struct gdbarch *);
2433 extern struct type *alloc_type_copy (const struct type *);
2435 /* * This returns the target type (or NULL) of TYPE, also skipping
2436 past typedefs. */
2438 extern struct type *get_target_type (struct type *type);
2440 /* Return the equivalent of TYPE_LENGTH, but in number of target
2441 addressable memory units of the associated gdbarch instead of bytes. */
2443 extern unsigned int type_length_units (struct type *type);
2445 /* * Helper function to construct objfile-owned types. */
2447 extern struct type *init_type (struct objfile *, enum type_code, int,
2448 const char *);
2449 extern struct type *init_integer_type (struct objfile *, int, int,
2450 const char *);
2451 extern struct type *init_character_type (struct objfile *, int, int,
2452 const char *);
2453 extern struct type *init_boolean_type (struct objfile *, int, int,
2454 const char *);
2455 extern struct type *init_float_type (struct objfile *, int, const char *,
2456 const struct floatformat **,
2457 enum bfd_endian = BFD_ENDIAN_UNKNOWN);
2458 extern struct type *init_decfloat_type (struct objfile *, int, const char *);
2459 extern bool can_create_complex_type (struct type *);
2460 extern struct type *init_complex_type (const char *, struct type *);
2461 extern struct type *init_pointer_type (struct objfile *, int, const char *,
2462 struct type *);
2463 extern struct type *init_fixed_point_type (struct objfile *, int, int,
2464 const char *);
2466 /* Helper functions to construct architecture-owned types. */
2467 extern struct type *arch_type (struct gdbarch *, enum type_code, int,
2468 const char *);
2469 extern struct type *arch_integer_type (struct gdbarch *, int, int,
2470 const char *);
2471 extern struct type *arch_character_type (struct gdbarch *, int, int,
2472 const char *);
2473 extern struct type *arch_boolean_type (struct gdbarch *, int, int,
2474 const char *);
2475 extern struct type *arch_float_type (struct gdbarch *, int, const char *,
2476 const struct floatformat **);
2477 extern struct type *arch_decfloat_type (struct gdbarch *, int, const char *);
2478 extern struct type *arch_pointer_type (struct gdbarch *, int, const char *,
2479 struct type *);
2481 /* Helper functions to construct a struct or record type. An
2482 initially empty type is created using arch_composite_type().
2483 Fields are then added using append_composite_type_field*(). A union
2484 type has its size set to the largest field. A struct type has each
2485 field packed against the previous. */
2487 extern struct type *arch_composite_type (struct gdbarch *gdbarch,
2488 const char *name, enum type_code code);
2489 extern void append_composite_type_field (struct type *t, const char *name,
2490 struct type *field);
2491 extern void append_composite_type_field_aligned (struct type *t,
2492 const char *name,
2493 struct type *field,
2494 int alignment);
2495 struct field *append_composite_type_field_raw (struct type *t, const char *name,
2496 struct type *field);
2498 /* Helper functions to construct a bit flags type. An initially empty
2499 type is created using arch_flag_type(). Flags are then added using
2500 append_flag_type_field() and append_flag_type_flag(). */
2501 extern struct type *arch_flags_type (struct gdbarch *gdbarch,
2502 const char *name, int bit);
2503 extern void append_flags_type_field (struct type *type,
2504 int start_bitpos, int nr_bits,
2505 struct type *field_type, const char *name);
2506 extern void append_flags_type_flag (struct type *type, int bitpos,
2507 const char *name);
2509 extern void make_vector_type (struct type *array_type);
2510 extern struct type *init_vector_type (struct type *elt_type, int n);
2512 extern struct type *lookup_reference_type (struct type *, enum type_code);
2513 extern struct type *lookup_lvalue_reference_type (struct type *);
2514 extern struct type *lookup_rvalue_reference_type (struct type *);
2517 extern struct type *make_reference_type (struct type *, struct type **,
2518 enum type_code);
2520 extern struct type *make_cv_type (int, int, struct type *, struct type **);
2522 extern struct type *make_restrict_type (struct type *);
2524 extern struct type *make_unqualified_type (struct type *);
2526 extern struct type *make_atomic_type (struct type *);
2528 extern void replace_type (struct type *, struct type *);
2530 extern type_instance_flags address_space_name_to_type_instance_flags
2531 (struct gdbarch *, const char *);
2533 extern const char *address_space_type_instance_flags_to_name
2534 (struct gdbarch *, type_instance_flags);
2536 extern struct type *make_type_with_address_space
2537 (struct type *type, type_instance_flags space_identifier);
2539 extern struct type *lookup_memberptr_type (struct type *, struct type *);
2541 extern struct type *lookup_methodptr_type (struct type *);
2543 extern void smash_to_method_type (struct type *type, struct type *self_type,
2544 struct type *to_type, struct field *args,
2545 int nargs, int varargs);
2547 extern void smash_to_memberptr_type (struct type *, struct type *,
2548 struct type *);
2550 extern void smash_to_methodptr_type (struct type *, struct type *);
2552 extern struct type *allocate_stub_method (struct type *);
2554 extern const char *type_name_or_error (struct type *type);
2556 struct struct_elt
2558 /* The field of the element, or NULL if no element was found. */
2559 struct field *field;
2561 /* The bit offset of the element in the parent structure. */
2562 LONGEST offset;
2565 /* Given a type TYPE, lookup the field and offset of the component named
2566 NAME.
2568 TYPE can be either a struct or union, or a pointer or reference to
2569 a struct or union. If it is a pointer or reference, its target
2570 type is automatically used. Thus '.' and '->' are interchangable,
2571 as specified for the definitions of the expression element types
2572 STRUCTOP_STRUCT and STRUCTOP_PTR.
2574 If NOERR is nonzero, the returned structure will have field set to
2575 NULL if there is no component named NAME.
2577 If the component NAME is a field in an anonymous substructure of
2578 TYPE, the returned offset is a "global" offset relative to TYPE
2579 rather than an offset within the substructure. */
2581 extern struct_elt lookup_struct_elt (struct type *, const char *, int);
2583 /* Given a type TYPE, lookup the type of the component named NAME.
2585 TYPE can be either a struct or union, or a pointer or reference to
2586 a struct or union. If it is a pointer or reference, its target
2587 type is automatically used. Thus '.' and '->' are interchangable,
2588 as specified for the definitions of the expression element types
2589 STRUCTOP_STRUCT and STRUCTOP_PTR.
2591 If NOERR is nonzero, return NULL if there is no component named
2592 NAME. */
2594 extern struct type *lookup_struct_elt_type (struct type *, const char *, int);
2596 extern struct type *make_pointer_type (struct type *, struct type **);
2598 extern struct type *lookup_pointer_type (struct type *);
2600 extern struct type *make_function_type (struct type *, struct type **);
2602 extern struct type *lookup_function_type (struct type *);
2604 extern struct type *lookup_function_type_with_arguments (struct type *,
2605 int,
2606 struct type **);
2608 extern struct type *create_static_range_type (struct type *, struct type *,
2609 LONGEST, LONGEST);
2612 extern struct type *create_array_type_with_stride
2613 (struct type *, struct type *, struct type *,
2614 struct dynamic_prop *, unsigned int);
2616 extern struct type *create_range_type (struct type *, struct type *,
2617 const struct dynamic_prop *,
2618 const struct dynamic_prop *,
2619 LONGEST);
2621 /* Like CREATE_RANGE_TYPE but also sets up a stride. When BYTE_STRIDE_P
2622 is true the value in STRIDE is a byte stride, otherwise STRIDE is a bit
2623 stride. */
2625 extern struct type * create_range_type_with_stride
2626 (struct type *result_type, struct type *index_type,
2627 const struct dynamic_prop *low_bound,
2628 const struct dynamic_prop *high_bound, LONGEST bias,
2629 const struct dynamic_prop *stride, bool byte_stride_p);
2631 extern struct type *create_array_type (struct type *, struct type *,
2632 struct type *);
2634 extern struct type *lookup_array_range_type (struct type *, LONGEST, LONGEST);
2636 extern struct type *create_string_type (struct type *, struct type *,
2637 struct type *);
2638 extern struct type *lookup_string_range_type (struct type *, LONGEST, LONGEST);
2640 extern struct type *create_set_type (struct type *, struct type *);
2642 extern struct type *lookup_unsigned_typename (const struct language_defn *,
2643 const char *);
2645 extern struct type *lookup_signed_typename (const struct language_defn *,
2646 const char *);
2648 extern ULONGEST get_unsigned_type_max (struct type *);
2650 extern void get_signed_type_minmax (struct type *, LONGEST *, LONGEST *);
2652 extern CORE_ADDR get_pointer_type_max (struct type *);
2654 /* * Resolve all dynamic values of a type e.g. array bounds to static values.
2655 ADDR specifies the location of the variable the type is bound to.
2656 If TYPE has no dynamic properties return TYPE; otherwise a new type with
2657 static properties is returned.
2659 For an array type, if the element type is dynamic, then that will
2660 not be resolved. This is done because each individual element may
2661 have a different type when resolved (depending on the contents of
2662 memory). In this situation, 'is_dynamic_type' will still return
2663 true for the return value of this function. */
2664 extern struct type *resolve_dynamic_type
2665 (struct type *type, gdb::array_view<const gdb_byte> valaddr,
2666 CORE_ADDR addr);
2668 /* * Predicate if the type has dynamic values, which are not resolved yet.
2669 See the caveat in 'resolve_dynamic_type' to understand a scenario
2670 where an apparently-resolved type may still be considered
2671 "dynamic". */
2672 extern int is_dynamic_type (struct type *type);
2674 extern struct type *check_typedef (struct type *);
2676 extern void check_stub_method_group (struct type *, int);
2678 extern char *gdb_mangle_name (struct type *, int, int);
2680 extern struct type *lookup_typename (const struct language_defn *,
2681 const char *, const struct block *, int);
2683 extern struct type *lookup_template_type (const char *, struct type *,
2684 const struct block *);
2686 extern int get_vptr_fieldno (struct type *, struct type **);
2688 /* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type
2689 TYPE.
2691 Return true if the two bounds are available, false otherwise. */
2693 extern bool get_discrete_bounds (struct type *type, LONGEST *lowp,
2694 LONGEST *highp);
2696 /* If TYPE's low bound is a known constant, return it, else return nullopt. */
2698 extern gdb::optional<LONGEST> get_discrete_low_bound (struct type *type);
2700 /* If TYPE's high bound is a known constant, return it, else return nullopt. */
2702 extern gdb::optional<LONGEST> get_discrete_high_bound (struct type *type);
2704 /* Assuming TYPE is a simple, non-empty array type, compute its upper
2705 and lower bound. Save the low bound into LOW_BOUND if not NULL.
2706 Save the high bound into HIGH_BOUND if not NULL.
2708 Return true if the operation was successful. Return false otherwise,
2709 in which case the values of LOW_BOUND and HIGH_BOUNDS are unmodified. */
2711 extern bool get_array_bounds (struct type *type, LONGEST *low_bound,
2712 LONGEST *high_bound);
2714 extern gdb::optional<LONGEST> discrete_position (struct type *type,
2715 LONGEST val);
2717 extern int class_types_same_p (const struct type *, const struct type *);
2719 extern int is_ancestor (struct type *, struct type *);
2721 extern int is_public_ancestor (struct type *, struct type *);
2723 extern int is_unique_ancestor (struct type *, struct value *);
2725 /* Overload resolution */
2727 /* * Badness if parameter list length doesn't match arg list length. */
2728 extern const struct rank LENGTH_MISMATCH_BADNESS;
2730 /* * Dummy badness value for nonexistent parameter positions. */
2731 extern const struct rank TOO_FEW_PARAMS_BADNESS;
2732 /* * Badness if no conversion among types. */
2733 extern const struct rank INCOMPATIBLE_TYPE_BADNESS;
2735 /* * Badness of an exact match. */
2736 extern const struct rank EXACT_MATCH_BADNESS;
2738 /* * Badness of integral promotion. */
2739 extern const struct rank INTEGER_PROMOTION_BADNESS;
2740 /* * Badness of floating promotion. */
2741 extern const struct rank FLOAT_PROMOTION_BADNESS;
2742 /* * Badness of converting a derived class pointer
2743 to a base class pointer. */
2744 extern const struct rank BASE_PTR_CONVERSION_BADNESS;
2745 /* * Badness of integral conversion. */
2746 extern const struct rank INTEGER_CONVERSION_BADNESS;
2747 /* * Badness of floating conversion. */
2748 extern const struct rank FLOAT_CONVERSION_BADNESS;
2749 /* * Badness of integer<->floating conversions. */
2750 extern const struct rank INT_FLOAT_CONVERSION_BADNESS;
2751 /* * Badness of conversion of pointer to void pointer. */
2752 extern const struct rank VOID_PTR_CONVERSION_BADNESS;
2753 /* * Badness of conversion to boolean. */
2754 extern const struct rank BOOL_CONVERSION_BADNESS;
2755 /* * Badness of converting derived to base class. */
2756 extern const struct rank BASE_CONVERSION_BADNESS;
2757 /* * Badness of converting from non-reference to reference. Subrank
2758 is the type of reference conversion being done. */
2759 extern const struct rank REFERENCE_CONVERSION_BADNESS;
2760 extern const struct rank REFERENCE_SEE_THROUGH_BADNESS;
2761 /* * Conversion to rvalue reference. */
2762 #define REFERENCE_CONVERSION_RVALUE 1
2763 /* * Conversion to const lvalue reference. */
2764 #define REFERENCE_CONVERSION_CONST_LVALUE 2
2766 /* * Badness of converting integer 0 to NULL pointer. */
2767 extern const struct rank NULL_POINTER_CONVERSION;
2768 /* * Badness of cv-conversion. Subrank is a flag describing the conversions
2769 being done. */
2770 extern const struct rank CV_CONVERSION_BADNESS;
2771 #define CV_CONVERSION_CONST 1
2772 #define CV_CONVERSION_VOLATILE 2
2774 /* Non-standard conversions allowed by the debugger */
2776 /* * Converting a pointer to an int is usually OK. */
2777 extern const struct rank NS_POINTER_CONVERSION_BADNESS;
2779 /* * Badness of converting a (non-zero) integer constant
2780 to a pointer. */
2781 extern const struct rank NS_INTEGER_POINTER_CONVERSION_BADNESS;
2783 extern struct rank sum_ranks (struct rank a, struct rank b);
2784 extern int compare_ranks (struct rank a, struct rank b);
2786 extern int compare_badness (const badness_vector &,
2787 const badness_vector &);
2789 extern badness_vector rank_function (gdb::array_view<type *> parms,
2790 gdb::array_view<value *> args);
2792 extern struct rank rank_one_type (struct type *, struct type *,
2793 struct value *);
2795 extern void recursive_dump_type (struct type *, int);
2797 extern int field_is_static (struct field *);
2799 /* printcmd.c */
2801 extern void print_scalar_formatted (const gdb_byte *, struct type *,
2802 const struct value_print_options *,
2803 int, struct ui_file *);
2805 extern int can_dereference (struct type *);
2807 extern int is_integral_type (struct type *);
2809 extern int is_floating_type (struct type *);
2811 extern int is_scalar_type (struct type *type);
2813 extern int is_scalar_type_recursive (struct type *);
2815 extern int class_or_union_p (const struct type *);
2817 extern void maintenance_print_type (const char *, int);
2819 extern htab_up create_copied_types_hash (struct objfile *objfile);
2821 extern struct type *copy_type_recursive (struct objfile *objfile,
2822 struct type *type,
2823 htab_t copied_types);
2825 extern struct type *copy_type (const struct type *type);
2827 extern bool types_equal (struct type *, struct type *);
2829 extern bool types_deeply_equal (struct type *, struct type *);
2831 extern int type_not_allocated (const struct type *type);
2833 extern int type_not_associated (const struct type *type);
2835 /* Return True if TYPE is a TYPE_CODE_FIXED_POINT or if TYPE is
2836 a range type whose base type is a TYPE_CODE_FIXED_POINT. */
2837 extern bool is_fixed_point_type (struct type *type);
2839 /* Allocate a fixed-point type info for TYPE. This should only be
2840 called by INIT_FIXED_POINT_SPECIFIC. */
2841 extern void allocate_fixed_point_type_info (struct type *type);
2843 /* * When the type includes explicit byte ordering, return that.
2844 Otherwise, the byte ordering from gdbarch_byte_order for
2845 the type's arch is returned. */
2847 extern enum bfd_endian type_byte_order (const struct type *type);
2849 /* A flag to enable printing of debugging information of C++
2850 overloading. */
2852 extern unsigned int overload_debug;
2854 #endif /* GDBTYPES_H */