1 /* Ada language support routines for GDB, the GNU debugger.
3 Copyright (C) 1992-2022 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23 #include "gdbsupport/gdb_regex.h"
28 #include "expression.h"
29 #include "parser-defs.h"
35 #include "breakpoint.h"
38 #include "gdbsupport/gdb_obstack.h"
40 #include "completer.h"
47 #include "observable.h"
49 #include "typeprint.h"
50 #include "namespace.h"
51 #include "cli/cli-style.h"
52 #include "cli/cli-decode.h"
55 #include "mi/mi-common.h"
56 #include "arch-utils.h"
57 #include "cli/cli-utils.h"
58 #include "gdbsupport/function-view.h"
59 #include "gdbsupport/byte-vector.h"
64 /* Define whether or not the C operator '/' truncates towards zero for
65 differently signed operands (truncation direction is undefined in C).
66 Copied from valarith.c. */
68 #ifndef TRUNCATION_TOWARDS_ZERO
69 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
72 static struct type
*desc_base_type (struct type
*);
74 static struct type
*desc_bounds_type (struct type
*);
76 static struct value
*desc_bounds (struct value
*);
78 static int fat_pntr_bounds_bitpos (struct type
*);
80 static int fat_pntr_bounds_bitsize (struct type
*);
82 static struct type
*desc_data_target_type (struct type
*);
84 static struct value
*desc_data (struct value
*);
86 static int fat_pntr_data_bitpos (struct type
*);
88 static int fat_pntr_data_bitsize (struct type
*);
90 static struct value
*desc_one_bound (struct value
*, int, int);
92 static int desc_bound_bitpos (struct type
*, int, int);
94 static int desc_bound_bitsize (struct type
*, int, int);
96 static struct type
*desc_index_type (struct type
*, int);
98 static int desc_arity (struct type
*);
100 static int ada_args_match (struct symbol
*, struct value
**, int);
102 static struct value
*make_array_descriptor (struct type
*, struct value
*);
104 static void ada_add_block_symbols (std::vector
<struct block_symbol
> &,
105 const struct block
*,
106 const lookup_name_info
&lookup_name
,
107 domain_enum
, struct objfile
*);
109 static void ada_add_all_symbols (std::vector
<struct block_symbol
> &,
110 const struct block
*,
111 const lookup_name_info
&lookup_name
,
112 domain_enum
, int, int *);
114 static int is_nonfunction (const std::vector
<struct block_symbol
> &);
116 static void add_defn_to_vec (std::vector
<struct block_symbol
> &,
118 const struct block
*);
120 static int possible_user_operator_p (enum exp_opcode
, struct value
**);
122 static const char *ada_decoded_op_name (enum exp_opcode
);
124 static int numeric_type_p (struct type
*);
126 static int integer_type_p (struct type
*);
128 static int scalar_type_p (struct type
*);
130 static int discrete_type_p (struct type
*);
132 static struct type
*ada_lookup_struct_elt_type (struct type
*, const char *,
135 static struct type
*ada_find_parallel_type_with_name (struct type
*,
138 static int is_dynamic_field (struct type
*, int);
140 static struct type
*to_fixed_variant_branch_type (struct type
*,
142 CORE_ADDR
, struct value
*);
144 static struct type
*to_fixed_array_type (struct type
*, struct value
*, int);
146 static struct type
*to_fixed_range_type (struct type
*, struct value
*);
148 static struct type
*to_static_fixed_type (struct type
*);
149 static struct type
*static_unwrap_type (struct type
*type
);
151 static struct value
*unwrap_value (struct value
*);
153 static struct type
*constrained_packed_array_type (struct type
*, long *);
155 static struct type
*decode_constrained_packed_array_type (struct type
*);
157 static long decode_packed_array_bitsize (struct type
*);
159 static struct value
*decode_constrained_packed_array (struct value
*);
161 static int ada_is_unconstrained_packed_array_type (struct type
*);
163 static struct value
*value_subscript_packed (struct value
*, int,
166 static struct value
*coerce_unspec_val_to_type (struct value
*,
169 static int lesseq_defined_than (struct symbol
*, struct symbol
*);
171 static int equiv_types (struct type
*, struct type
*);
173 static int is_name_suffix (const char *);
175 static int advance_wild_match (const char **, const char *, char);
177 static bool wild_match (const char *name
, const char *patn
);
179 static struct value
*ada_coerce_ref (struct value
*);
181 static LONGEST
pos_atr (struct value
*);
183 static struct value
*val_atr (struct type
*, LONGEST
);
185 static struct symbol
*standard_lookup (const char *, const struct block
*,
188 static struct value
*ada_search_struct_field (const char *, struct value
*, int,
191 static int find_struct_field (const char *, struct type
*, int,
192 struct type
**, int *, int *, int *, int *);
194 static int ada_resolve_function (std::vector
<struct block_symbol
> &,
195 struct value
**, int, const char *,
196 struct type
*, bool);
198 static int ada_is_direct_array_type (struct type
*);
200 static struct value
*ada_index_struct_field (int, struct value
*, int,
203 static void add_component_interval (LONGEST
, LONGEST
, std::vector
<LONGEST
> &);
206 static struct type
*ada_find_any_type (const char *name
);
208 static symbol_name_matcher_ftype
*ada_get_symbol_name_matcher
209 (const lookup_name_info
&lookup_name
);
213 /* The character set used for source files. */
214 static const char *ada_source_charset
;
216 /* The string "UTF-8". This is here so we can check for the UTF-8
217 charset using == rather than strcmp. */
218 static const char ada_utf8
[] = "UTF-8";
220 /* Each entry in the UTF-32 case-folding table is of this form. */
223 /* The start and end, inclusive, of this range of codepoints. */
225 /* The delta to apply to get the upper-case form. 0 if this is
226 already upper-case. */
228 /* The delta to apply to get the lower-case form. 0 if this is
229 already lower-case. */
232 bool operator< (uint32_t val
) const
238 static const utf8_entry ada_case_fold
[] =
240 #include "ada-casefold.h"
245 /* The result of a symbol lookup to be stored in our symbol cache. */
249 /* The name used to perform the lookup. */
251 /* The namespace used during the lookup. */
253 /* The symbol returned by the lookup, or NULL if no matching symbol
256 /* The block where the symbol was found, or NULL if no matching
258 const struct block
*block
;
259 /* A pointer to the next entry with the same hash. */
260 struct cache_entry
*next
;
263 /* The Ada symbol cache, used to store the result of Ada-mode symbol
264 lookups in the course of executing the user's commands.
266 The cache is implemented using a simple, fixed-sized hash.
267 The size is fixed on the grounds that there are not likely to be
268 all that many symbols looked up during any given session, regardless
269 of the size of the symbol table. If we decide to go to a resizable
270 table, let's just use the stuff from libiberty instead. */
272 #define HASH_SIZE 1009
274 struct ada_symbol_cache
276 /* An obstack used to store the entries in our cache. */
277 struct auto_obstack cache_space
;
279 /* The root of the hash table used to implement our symbol cache. */
280 struct cache_entry
*root
[HASH_SIZE
] {};
283 static const char ada_completer_word_break_characters
[] =
285 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
287 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
290 /* The name of the symbol to use to get the name of the main subprogram. */
291 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME
[]
292 = "__gnat_ada_main_program_name";
294 /* Limit on the number of warnings to raise per expression evaluation. */
295 static int warning_limit
= 2;
297 /* Number of warning messages issued; reset to 0 by cleanups after
298 expression evaluation. */
299 static int warnings_issued
= 0;
301 static const char * const known_runtime_file_name_patterns
[] = {
302 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
305 static const char * const known_auxiliary_function_name_patterns
[] = {
306 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
309 /* Maintenance-related settings for this module. */
311 static struct cmd_list_element
*maint_set_ada_cmdlist
;
312 static struct cmd_list_element
*maint_show_ada_cmdlist
;
314 /* The "maintenance ada set/show ignore-descriptive-type" value. */
316 static bool ada_ignore_descriptive_types_p
= false;
318 /* Inferior-specific data. */
320 /* Per-inferior data for this module. */
322 struct ada_inferior_data
324 /* The ada__tags__type_specific_data type, which is used when decoding
325 tagged types. With older versions of GNAT, this type was directly
326 accessible through a component ("tsd") in the object tag. But this
327 is no longer the case, so we cache it for each inferior. */
328 struct type
*tsd_type
= nullptr;
330 /* The exception_support_info data. This data is used to determine
331 how to implement support for Ada exception catchpoints in a given
333 const struct exception_support_info
*exception_info
= nullptr;
336 /* Our key to this module's inferior data. */
337 static const registry
<inferior
>::key
<ada_inferior_data
> ada_inferior_data
;
339 /* Return our inferior data for the given inferior (INF).
341 This function always returns a valid pointer to an allocated
342 ada_inferior_data structure. If INF's inferior data has not
343 been previously set, this functions creates a new one with all
344 fields set to zero, sets INF's inferior to it, and then returns
345 a pointer to that newly allocated ada_inferior_data. */
347 static struct ada_inferior_data
*
348 get_ada_inferior_data (struct inferior
*inf
)
350 struct ada_inferior_data
*data
;
352 data
= ada_inferior_data
.get (inf
);
354 data
= ada_inferior_data
.emplace (inf
);
359 /* Perform all necessary cleanups regarding our module's inferior data
360 that is required after the inferior INF just exited. */
363 ada_inferior_exit (struct inferior
*inf
)
365 ada_inferior_data
.clear (inf
);
369 /* program-space-specific data. */
371 /* This module's per-program-space data. */
372 struct ada_pspace_data
374 /* The Ada symbol cache. */
375 std::unique_ptr
<ada_symbol_cache
> sym_cache
;
378 /* Key to our per-program-space data. */
379 static const registry
<program_space
>::key
<ada_pspace_data
>
380 ada_pspace_data_handle
;
382 /* Return this module's data for the given program space (PSPACE).
383 If not is found, add a zero'ed one now.
385 This function always returns a valid object. */
387 static struct ada_pspace_data
*
388 get_ada_pspace_data (struct program_space
*pspace
)
390 struct ada_pspace_data
*data
;
392 data
= ada_pspace_data_handle
.get (pspace
);
394 data
= ada_pspace_data_handle
.emplace (pspace
);
401 /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
402 all typedef layers have been peeled. Otherwise, return TYPE.
404 Normally, we really expect a typedef type to only have 1 typedef layer.
405 In other words, we really expect the target type of a typedef type to be
406 a non-typedef type. This is particularly true for Ada units, because
407 the language does not have a typedef vs not-typedef distinction.
408 In that respect, the Ada compiler has been trying to eliminate as many
409 typedef definitions in the debugging information, since they generally
410 do not bring any extra information (we still use typedef under certain
411 circumstances related mostly to the GNAT encoding).
413 Unfortunately, we have seen situations where the debugging information
414 generated by the compiler leads to such multiple typedef layers. For
415 instance, consider the following example with stabs:
417 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
418 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
420 This is an error in the debugging information which causes type
421 pck__float_array___XUP to be defined twice, and the second time,
422 it is defined as a typedef of a typedef.
424 This is on the fringe of legality as far as debugging information is
425 concerned, and certainly unexpected. But it is easy to handle these
426 situations correctly, so we can afford to be lenient in this case. */
429 ada_typedef_target_type (struct type
*type
)
431 while (type
->code () == TYPE_CODE_TYPEDEF
)
432 type
= TYPE_TARGET_TYPE (type
);
436 /* Given DECODED_NAME a string holding a symbol name in its
437 decoded form (ie using the Ada dotted notation), returns
438 its unqualified name. */
441 ada_unqualified_name (const char *decoded_name
)
445 /* If the decoded name starts with '<', it means that the encoded
446 name does not follow standard naming conventions, and thus that
447 it is not your typical Ada symbol name. Trying to unqualify it
448 is therefore pointless and possibly erroneous. */
449 if (decoded_name
[0] == '<')
452 result
= strrchr (decoded_name
, '.');
454 result
++; /* Skip the dot... */
456 result
= decoded_name
;
461 /* Return a string starting with '<', followed by STR, and '>'. */
464 add_angle_brackets (const char *str
)
466 return string_printf ("<%s>", str
);
469 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
470 suffix of FIELD_NAME beginning "___". */
473 field_name_match (const char *field_name
, const char *target
)
475 int len
= strlen (target
);
478 (strncmp (field_name
, target
, len
) == 0
479 && (field_name
[len
] == '\0'
480 || (startswith (field_name
+ len
, "___")
481 && strcmp (field_name
+ strlen (field_name
) - 6,
486 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
487 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
488 and return its index. This function also handles fields whose name
489 have ___ suffixes because the compiler sometimes alters their name
490 by adding such a suffix to represent fields with certain constraints.
491 If the field could not be found, return a negative number if
492 MAYBE_MISSING is set. Otherwise raise an error. */
495 ada_get_field_index (const struct type
*type
, const char *field_name
,
499 struct type
*struct_type
= check_typedef ((struct type
*) type
);
501 for (fieldno
= 0; fieldno
< struct_type
->num_fields (); fieldno
++)
502 if (field_name_match (struct_type
->field (fieldno
).name (), field_name
))
506 error (_("Unable to find field %s in struct %s. Aborting"),
507 field_name
, struct_type
->name ());
512 /* The length of the prefix of NAME prior to any "___" suffix. */
515 ada_name_prefix_len (const char *name
)
521 const char *p
= strstr (name
, "___");
524 return strlen (name
);
530 /* Return non-zero if SUFFIX is a suffix of STR.
531 Return zero if STR is null. */
534 is_suffix (const char *str
, const char *suffix
)
541 len2
= strlen (suffix
);
542 return (len1
>= len2
&& strcmp (str
+ len1
- len2
, suffix
) == 0);
545 /* The contents of value VAL, treated as a value of type TYPE. The
546 result is an lval in memory if VAL is. */
548 static struct value
*
549 coerce_unspec_val_to_type (struct value
*val
, struct type
*type
)
551 type
= ada_check_typedef (type
);
552 if (value_type (val
) == type
)
556 struct value
*result
;
558 if (value_optimized_out (val
))
559 result
= allocate_optimized_out_value (type
);
560 else if (value_lazy (val
)
561 /* Be careful not to make a lazy not_lval value. */
562 || (VALUE_LVAL (val
) != not_lval
563 && TYPE_LENGTH (type
) > TYPE_LENGTH (value_type (val
))))
564 result
= allocate_value_lazy (type
);
567 result
= allocate_value (type
);
568 value_contents_copy (result
, 0, val
, 0, TYPE_LENGTH (type
));
570 set_value_component_location (result
, val
);
571 set_value_bitsize (result
, value_bitsize (val
));
572 set_value_bitpos (result
, value_bitpos (val
));
573 if (VALUE_LVAL (result
) == lval_memory
)
574 set_value_address (result
, value_address (val
));
579 static const gdb_byte
*
580 cond_offset_host (const gdb_byte
*valaddr
, long offset
)
585 return valaddr
+ offset
;
589 cond_offset_target (CORE_ADDR address
, long offset
)
594 return address
+ offset
;
597 /* Issue a warning (as for the definition of warning in utils.c, but
598 with exactly one argument rather than ...), unless the limit on the
599 number of warnings has passed during the evaluation of the current
602 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
603 provided by "complaint". */
604 static void lim_warning (const char *format
, ...) ATTRIBUTE_PRINTF (1, 2);
607 lim_warning (const char *format
, ...)
611 va_start (args
, format
);
612 warnings_issued
+= 1;
613 if (warnings_issued
<= warning_limit
)
614 vwarning (format
, args
);
619 /* Maximum value of a SIZE-byte signed integer type. */
621 max_of_size (int size
)
623 LONGEST top_bit
= (LONGEST
) 1 << (size
* 8 - 2);
625 return top_bit
| (top_bit
- 1);
628 /* Minimum value of a SIZE-byte signed integer type. */
630 min_of_size (int size
)
632 return -max_of_size (size
) - 1;
635 /* Maximum value of a SIZE-byte unsigned integer type. */
637 umax_of_size (int size
)
639 ULONGEST top_bit
= (ULONGEST
) 1 << (size
* 8 - 1);
641 return top_bit
| (top_bit
- 1);
644 /* Maximum value of integral type T, as a signed quantity. */
646 max_of_type (struct type
*t
)
648 if (t
->is_unsigned ())
649 return (LONGEST
) umax_of_size (TYPE_LENGTH (t
));
651 return max_of_size (TYPE_LENGTH (t
));
654 /* Minimum value of integral type T, as a signed quantity. */
656 min_of_type (struct type
*t
)
658 if (t
->is_unsigned ())
661 return min_of_size (TYPE_LENGTH (t
));
664 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
666 ada_discrete_type_high_bound (struct type
*type
)
668 type
= resolve_dynamic_type (type
, {}, 0);
669 switch (type
->code ())
671 case TYPE_CODE_RANGE
:
673 const dynamic_prop
&high
= type
->bounds ()->high
;
675 if (high
.kind () == PROP_CONST
)
676 return high
.const_val ();
679 gdb_assert (high
.kind () == PROP_UNDEFINED
);
681 /* This happens when trying to evaluate a type's dynamic bound
682 without a live target. There is nothing relevant for us to
683 return here, so return 0. */
688 return type
->field (type
->num_fields () - 1).loc_enumval ();
693 return max_of_type (type
);
695 error (_("Unexpected type in ada_discrete_type_high_bound."));
699 /* The smallest value in the domain of TYPE, a discrete type, as an integer. */
701 ada_discrete_type_low_bound (struct type
*type
)
703 type
= resolve_dynamic_type (type
, {}, 0);
704 switch (type
->code ())
706 case TYPE_CODE_RANGE
:
708 const dynamic_prop
&low
= type
->bounds ()->low
;
710 if (low
.kind () == PROP_CONST
)
711 return low
.const_val ();
714 gdb_assert (low
.kind () == PROP_UNDEFINED
);
716 /* This happens when trying to evaluate a type's dynamic bound
717 without a live target. There is nothing relevant for us to
718 return here, so return 0. */
723 return type
->field (0).loc_enumval ();
728 return min_of_type (type
);
730 error (_("Unexpected type in ada_discrete_type_low_bound."));
734 /* The identity on non-range types. For range types, the underlying
735 non-range scalar type. */
738 get_base_type (struct type
*type
)
740 while (type
!= NULL
&& type
->code () == TYPE_CODE_RANGE
)
742 if (type
== TYPE_TARGET_TYPE (type
) || TYPE_TARGET_TYPE (type
) == NULL
)
744 type
= TYPE_TARGET_TYPE (type
);
749 /* Return a decoded version of the given VALUE. This means returning
750 a value whose type is obtained by applying all the GNAT-specific
751 encodings, making the resulting type a static but standard description
752 of the initial type. */
755 ada_get_decoded_value (struct value
*value
)
757 struct type
*type
= ada_check_typedef (value_type (value
));
759 if (ada_is_array_descriptor_type (type
)
760 || (ada_is_constrained_packed_array_type (type
)
761 && type
->code () != TYPE_CODE_PTR
))
763 if (type
->code () == TYPE_CODE_TYPEDEF
) /* array access type. */
764 value
= ada_coerce_to_simple_array_ptr (value
);
766 value
= ada_coerce_to_simple_array (value
);
769 value
= ada_to_fixed_value (value
);
774 /* Same as ada_get_decoded_value, but with the given TYPE.
775 Because there is no associated actual value for this type,
776 the resulting type might be a best-effort approximation in
777 the case of dynamic types. */
780 ada_get_decoded_type (struct type
*type
)
782 type
= to_static_fixed_type (type
);
783 if (ada_is_constrained_packed_array_type (type
))
784 type
= ada_coerce_to_simple_array_type (type
);
790 /* Language Selection */
792 /* If the main program is in Ada, return language_ada, otherwise return LANG
793 (the main program is in Ada iif the adainit symbol is found). */
796 ada_update_initial_language (enum language lang
)
798 if (lookup_minimal_symbol ("adainit", NULL
, NULL
).minsym
!= NULL
)
804 /* If the main procedure is written in Ada, then return its name.
805 The result is good until the next call. Return NULL if the main
806 procedure doesn't appear to be in Ada. */
811 struct bound_minimal_symbol msym
;
812 static gdb::unique_xmalloc_ptr
<char> main_program_name
;
814 /* For Ada, the name of the main procedure is stored in a specific
815 string constant, generated by the binder. Look for that symbol,
816 extract its address, and then read that string. If we didn't find
817 that string, then most probably the main procedure is not written
819 msym
= lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME
, NULL
, NULL
);
821 if (msym
.minsym
!= NULL
)
823 CORE_ADDR main_program_name_addr
= msym
.value_address ();
824 if (main_program_name_addr
== 0)
825 error (_("Invalid address for Ada main program name."));
827 main_program_name
= target_read_string (main_program_name_addr
, 1024);
828 return main_program_name
.get ();
831 /* The main procedure doesn't seem to be in Ada. */
837 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
840 const struct ada_opname_map ada_opname_table
[] = {
841 {"Oadd", "\"+\"", BINOP_ADD
},
842 {"Osubtract", "\"-\"", BINOP_SUB
},
843 {"Omultiply", "\"*\"", BINOP_MUL
},
844 {"Odivide", "\"/\"", BINOP_DIV
},
845 {"Omod", "\"mod\"", BINOP_MOD
},
846 {"Orem", "\"rem\"", BINOP_REM
},
847 {"Oexpon", "\"**\"", BINOP_EXP
},
848 {"Olt", "\"<\"", BINOP_LESS
},
849 {"Ole", "\"<=\"", BINOP_LEQ
},
850 {"Ogt", "\">\"", BINOP_GTR
},
851 {"Oge", "\">=\"", BINOP_GEQ
},
852 {"Oeq", "\"=\"", BINOP_EQUAL
},
853 {"One", "\"/=\"", BINOP_NOTEQUAL
},
854 {"Oand", "\"and\"", BINOP_BITWISE_AND
},
855 {"Oor", "\"or\"", BINOP_BITWISE_IOR
},
856 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR
},
857 {"Oconcat", "\"&\"", BINOP_CONCAT
},
858 {"Oabs", "\"abs\"", UNOP_ABS
},
859 {"Onot", "\"not\"", UNOP_LOGICAL_NOT
},
860 {"Oadd", "\"+\"", UNOP_PLUS
},
861 {"Osubtract", "\"-\"", UNOP_NEG
},
865 /* If STR is a decoded version of a compiler-provided suffix (like the
866 "[cold]" in "symbol[cold]"), return true. Otherwise, return
870 is_compiler_suffix (const char *str
)
872 gdb_assert (*str
== '[');
874 while (*str
!= '\0' && isalpha (*str
))
876 /* We accept a missing "]" in order to support completion. */
877 return *str
== '\0' || (str
[0] == ']' && str
[1] == '\0');
880 /* Append a non-ASCII character to RESULT. */
882 append_hex_encoded (std::string
&result
, uint32_t one_char
)
884 if (one_char
<= 0xff)
887 result
.append (phex (one_char
, 1));
889 else if (one_char
<= 0xffff)
892 result
.append (phex (one_char
, 2));
896 result
.append ("WW");
897 result
.append (phex (one_char
, 4));
901 /* Return a string that is a copy of the data in STORAGE, with
902 non-ASCII characters replaced by the appropriate hex encoding. A
903 template is used because, for UTF-8, we actually want to work with
904 UTF-32 codepoints. */
907 copy_and_hex_encode (struct obstack
*storage
)
909 const T
*chars
= (T
*) obstack_base (storage
);
910 int num_chars
= obstack_object_size (storage
) / sizeof (T
);
912 for (int i
= 0; i
< num_chars
; ++i
)
914 if (chars
[i
] <= 0x7f)
916 /* The host character set has to be a superset of ASCII, as
917 are all the other character sets we can use. */
918 result
.push_back (chars
[i
]);
921 append_hex_encoded (result
, chars
[i
]);
926 /* The "encoded" form of DECODED, according to GNAT conventions. If
927 THROW_ERRORS, throw an error if invalid operator name is found.
928 Otherwise, return the empty string in that case. */
931 ada_encode_1 (const char *decoded
, bool throw_errors
)
936 std::string encoding_buffer
;
937 bool saw_non_ascii
= false;
938 for (const char *p
= decoded
; *p
!= '\0'; p
+= 1)
940 if ((*p
& 0x80) != 0)
941 saw_non_ascii
= true;
944 encoding_buffer
.append ("__");
945 else if (*p
== '[' && is_compiler_suffix (p
))
947 encoding_buffer
= encoding_buffer
+ "." + (p
+ 1);
948 if (encoding_buffer
.back () == ']')
949 encoding_buffer
.pop_back ();
954 const struct ada_opname_map
*mapping
;
956 for (mapping
= ada_opname_table
;
957 mapping
->encoded
!= NULL
958 && !startswith (p
, mapping
->decoded
); mapping
+= 1)
960 if (mapping
->encoded
== NULL
)
963 error (_("invalid Ada operator name: %s"), p
);
967 encoding_buffer
.append (mapping
->encoded
);
971 encoding_buffer
.push_back (*p
);
974 /* If a non-ASCII character is seen, we must convert it to the
975 appropriate hex form. As this is more expensive, we keep track
976 of whether it is even necessary. */
979 auto_obstack storage
;
980 bool is_utf8
= ada_source_charset
== ada_utf8
;
983 convert_between_encodings
985 is_utf8
? HOST_UTF32
: ada_source_charset
,
986 (const gdb_byte
*) encoding_buffer
.c_str (),
987 encoding_buffer
.length (), 1,
988 &storage
, translit_none
);
990 catch (const gdb_exception
&)
992 static bool warned
= false;
994 /* Converting to UTF-32 shouldn't fail, so if it doesn't, we
995 might like to know why. */
999 warning (_("charset conversion failure for '%s'.\n"
1000 "You may have the wrong value for 'set ada source-charset'."),
1001 encoding_buffer
.c_str ());
1004 /* We don't try to recover from errors. */
1005 return encoding_buffer
;
1009 return copy_and_hex_encode
<uint32_t> (&storage
);
1010 return copy_and_hex_encode
<gdb_byte
> (&storage
);
1013 return encoding_buffer
;
1016 /* Find the entry for C in the case-folding table. Return nullptr if
1017 the entry does not cover C. */
1018 static const utf8_entry
*
1019 find_case_fold_entry (uint32_t c
)
1021 auto iter
= std::lower_bound (std::begin (ada_case_fold
),
1022 std::end (ada_case_fold
),
1024 if (iter
== std::end (ada_case_fold
)
1031 /* Return NAME folded to lower case, or, if surrounded by single
1032 quotes, unfolded, but with the quotes stripped away. If
1033 THROW_ON_ERROR is true, encoding failures will throw an exception
1034 rather than emitting a warning. Result good to next call. */
1037 ada_fold_name (gdb::string_view name
, bool throw_on_error
= false)
1039 static std::string fold_storage
;
1041 if (!name
.empty () && name
[0] == '\'')
1042 fold_storage
= gdb::to_string (name
.substr (1, name
.size () - 2));
1045 /* Why convert to UTF-32 and implement our own case-folding,
1046 rather than convert to wchar_t and use the platform's
1047 functions? I'm glad you asked.
1049 The main problem is that GNAT implements an unusual rule for
1050 case folding. For ASCII letters, letters in single-byte
1051 encodings (such as ISO-8859-*), and Unicode letters that fit
1052 in a single byte (i.e., code point is <= 0xff), the letter is
1053 folded to lower case. Other Unicode letters are folded to
1056 This rule means that the code must be able to examine the
1057 value of the character. And, some hosts do not use Unicode
1058 for wchar_t, so examining the value of such characters is
1060 auto_obstack storage
;
1063 convert_between_encodings
1064 (host_charset (), HOST_UTF32
,
1065 (const gdb_byte
*) name
.data (),
1067 &storage
, translit_none
);
1069 catch (const gdb_exception
&)
1074 static bool warned
= false;
1076 /* Converting to UTF-32 shouldn't fail, so if it doesn't, we
1077 might like to know why. */
1081 warning (_("could not convert '%s' from the host encoding (%s) to UTF-32.\n"
1082 "This normally should not happen, please file a bug report."),
1083 gdb::to_string (name
).c_str (), host_charset ());
1086 /* We don't try to recover from errors; just return the
1088 fold_storage
= gdb::to_string (name
);
1089 return fold_storage
.c_str ();
1092 bool is_utf8
= ada_source_charset
== ada_utf8
;
1093 uint32_t *chars
= (uint32_t *) obstack_base (&storage
);
1094 int num_chars
= obstack_object_size (&storage
) / sizeof (uint32_t);
1095 for (int i
= 0; i
< num_chars
; ++i
)
1097 const struct utf8_entry
*entry
= find_case_fold_entry (chars
[i
]);
1098 if (entry
!= nullptr)
1100 uint32_t low
= chars
[i
] + entry
->lower_delta
;
1101 if (!is_utf8
|| low
<= 0xff)
1104 chars
[i
] = chars
[i
] + entry
->upper_delta
;
1108 /* Now convert back to ordinary characters. */
1109 auto_obstack reconverted
;
1112 convert_between_encodings (HOST_UTF32
,
1114 (const gdb_byte
*) chars
,
1115 num_chars
* sizeof (uint32_t),
1119 obstack_1grow (&reconverted
, '\0');
1120 fold_storage
= std::string ((const char *) obstack_base (&reconverted
));
1122 catch (const gdb_exception
&)
1127 static bool warned
= false;
1129 /* Converting back from UTF-32 shouldn't normally fail, but
1130 there are some host encodings without upper/lower
1135 warning (_("could not convert the lower-cased variant of '%s'\n"
1136 "from UTF-32 to the host encoding (%s)."),
1137 gdb::to_string (name
).c_str (), host_charset ());
1140 /* We don't try to recover from errors; just return the
1142 fold_storage
= gdb::to_string (name
);
1146 return fold_storage
.c_str ();
1149 /* The "encoded" form of DECODED, according to GNAT conventions. */
1152 ada_encode (const char *decoded
)
1154 if (decoded
[0] != '<')
1155 decoded
= ada_fold_name (decoded
);
1156 return ada_encode_1 (decoded
, true);
1159 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
1162 is_lower_alphanum (const char c
)
1164 return (isdigit (c
) || (isalpha (c
) && islower (c
)));
1167 /* ENCODED is the linkage name of a symbol and LEN contains its length.
1168 This function saves in LEN the length of that same symbol name but
1169 without either of these suffixes:
1175 These are suffixes introduced by the compiler for entities such as
1176 nested subprogram for instance, in order to avoid name clashes.
1177 They do not serve any purpose for the debugger. */
1180 ada_remove_trailing_digits (const char *encoded
, int *len
)
1182 if (*len
> 1 && isdigit (encoded
[*len
- 1]))
1186 while (i
> 0 && isdigit (encoded
[i
]))
1188 if (i
>= 0 && encoded
[i
] == '.')
1190 else if (i
>= 0 && encoded
[i
] == '$')
1192 else if (i
>= 2 && startswith (encoded
+ i
- 2, "___"))
1194 else if (i
>= 1 && startswith (encoded
+ i
- 1, "__"))
1199 /* Remove the suffix introduced by the compiler for protected object
1203 ada_remove_po_subprogram_suffix (const char *encoded
, int *len
)
1205 /* Remove trailing N. */
1207 /* Protected entry subprograms are broken into two
1208 separate subprograms: The first one is unprotected, and has
1209 a 'N' suffix; the second is the protected version, and has
1210 the 'P' suffix. The second calls the first one after handling
1211 the protection. Since the P subprograms are internally generated,
1212 we leave these names undecoded, giving the user a clue that this
1213 entity is internal. */
1216 && encoded
[*len
- 1] == 'N'
1217 && (isdigit (encoded
[*len
- 2]) || islower (encoded
[*len
- 2])))
1221 /* If ENCODED ends with a compiler-provided suffix (like ".cold"),
1222 then update *LEN to remove the suffix and return the offset of the
1223 character just past the ".". Otherwise, return -1. */
1226 remove_compiler_suffix (const char *encoded
, int *len
)
1228 int offset
= *len
- 1;
1229 while (offset
> 0 && isalpha (encoded
[offset
]))
1231 if (offset
> 0 && encoded
[offset
] == '.')
1239 /* Convert an ASCII hex string to a number. Reads exactly N
1240 characters from STR. Returns true on success, false if one of the
1241 digits was not a hex digit. */
1243 convert_hex (const char *str
, int n
, uint32_t *out
)
1245 uint32_t result
= 0;
1247 for (int i
= 0; i
< n
; ++i
)
1249 if (!isxdigit (str
[i
]))
1252 result
|= fromhex (str
[i
]);
1259 /* Convert a wide character from its ASCII hex representation in STR
1260 (consisting of exactly N characters) to the host encoding,
1261 appending the resulting bytes to OUT. If N==2 and the Ada source
1262 charset is not UTF-8, then hex refers to an encoding in the
1263 ADA_SOURCE_CHARSET; otherwise, use UTF-32. Return true on success.
1264 Return false and do not modify OUT on conversion failure. */
1266 convert_from_hex_encoded (std::string
&out
, const char *str
, int n
)
1270 if (!convert_hex (str
, n
, &value
))
1275 /* In the 'U' case, the hex digits encode the character in the
1276 Ada source charset. However, if the source charset is UTF-8,
1277 this really means it is a single-byte UTF-32 character. */
1278 if (n
== 2 && ada_source_charset
!= ada_utf8
)
1280 gdb_byte one_char
= (gdb_byte
) value
;
1282 convert_between_encodings (ada_source_charset
, host_charset (),
1284 sizeof (one_char
), sizeof (one_char
),
1285 &bytes
, translit_none
);
1288 convert_between_encodings (HOST_UTF32
, host_charset (),
1289 (const gdb_byte
*) &value
,
1290 sizeof (value
), sizeof (value
),
1291 &bytes
, translit_none
);
1292 obstack_1grow (&bytes
, '\0');
1293 out
.append ((const char *) obstack_base (&bytes
));
1295 catch (const gdb_exception
&)
1297 /* On failure, the caller will just let the encoded form
1298 through, which seems basically reasonable. */
1305 /* See ada-lang.h. */
1308 ada_decode (const char *encoded
, bool wrap
, bool operators
)
1314 std::string decoded
;
1317 /* With function descriptors on PPC64, the value of a symbol named
1318 ".FN", if it exists, is the entry point of the function "FN". */
1319 if (encoded
[0] == '.')
1322 /* The name of the Ada main procedure starts with "_ada_".
1323 This prefix is not part of the decoded name, so skip this part
1324 if we see this prefix. */
1325 if (startswith (encoded
, "_ada_"))
1327 /* The "___ghost_" prefix is used for ghost entities. Normally
1328 these aren't preserved but when they are, it's useful to see
1330 if (startswith (encoded
, "___ghost_"))
1333 /* If the name starts with '_', then it is not a properly encoded
1334 name, so do not attempt to decode it. Similarly, if the name
1335 starts with '<', the name should not be decoded. */
1336 if (encoded
[0] == '_' || encoded
[0] == '<')
1339 len0
= strlen (encoded
);
1341 suffix
= remove_compiler_suffix (encoded
, &len0
);
1343 ada_remove_trailing_digits (encoded
, &len0
);
1344 ada_remove_po_subprogram_suffix (encoded
, &len0
);
1346 /* Remove the ___X.* suffix if present. Do not forget to verify that
1347 the suffix is located before the current "end" of ENCODED. We want
1348 to avoid re-matching parts of ENCODED that have previously been
1349 marked as discarded (by decrementing LEN0). */
1350 p
= strstr (encoded
, "___");
1351 if (p
!= NULL
&& p
- encoded
< len0
- 3)
1359 /* Remove any trailing TKB suffix. It tells us that this symbol
1360 is for the body of a task, but that information does not actually
1361 appear in the decoded name. */
1363 if (len0
> 3 && startswith (encoded
+ len0
- 3, "TKB"))
1366 /* Remove any trailing TB suffix. The TB suffix is slightly different
1367 from the TKB suffix because it is used for non-anonymous task
1370 if (len0
> 2 && startswith (encoded
+ len0
- 2, "TB"))
1373 /* Remove trailing "B" suffixes. */
1374 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1376 if (len0
> 1 && startswith (encoded
+ len0
- 1, "B"))
1379 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1381 if (len0
> 1 && isdigit (encoded
[len0
- 1]))
1384 while ((i
>= 0 && isdigit (encoded
[i
]))
1385 || (i
>= 1 && encoded
[i
] == '_' && isdigit (encoded
[i
- 1])))
1387 if (i
> 1 && encoded
[i
] == '_' && encoded
[i
- 1] == '_')
1389 else if (encoded
[i
] == '$')
1393 /* The first few characters that are not alphabetic are not part
1394 of any encoding we use, so we can copy them over verbatim. */
1396 for (i
= 0; i
< len0
&& !isalpha (encoded
[i
]); i
+= 1)
1397 decoded
.push_back (encoded
[i
]);
1402 /* Is this a symbol function? */
1403 if (operators
&& at_start_name
&& encoded
[i
] == 'O')
1407 for (k
= 0; ada_opname_table
[k
].encoded
!= NULL
; k
+= 1)
1409 int op_len
= strlen (ada_opname_table
[k
].encoded
);
1410 if ((strncmp (ada_opname_table
[k
].encoded
+ 1, encoded
+ i
+ 1,
1412 && !isalnum (encoded
[i
+ op_len
]))
1414 decoded
.append (ada_opname_table
[k
].decoded
);
1420 if (ada_opname_table
[k
].encoded
!= NULL
)
1425 /* Replace "TK__" with "__", which will eventually be translated
1426 into "." (just below). */
1428 if (i
< len0
- 4 && startswith (encoded
+ i
, "TK__"))
1431 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1432 be translated into "." (just below). These are internal names
1433 generated for anonymous blocks inside which our symbol is nested. */
1435 if (len0
- i
> 5 && encoded
[i
] == '_' && encoded
[i
+1] == '_'
1436 && encoded
[i
+2] == 'B' && encoded
[i
+3] == '_'
1437 && isdigit (encoded
[i
+4]))
1441 while (k
< len0
&& isdigit (encoded
[k
]))
1442 k
++; /* Skip any extra digit. */
1444 /* Double-check that the "__B_{DIGITS}+" sequence we found
1445 is indeed followed by "__". */
1446 if (len0
- k
> 2 && encoded
[k
] == '_' && encoded
[k
+1] == '_')
1450 /* Remove _E{DIGITS}+[sb] */
1452 /* Just as for protected object subprograms, there are 2 categories
1453 of subprograms created by the compiler for each entry. The first
1454 one implements the actual entry code, and has a suffix following
1455 the convention above; the second one implements the barrier and
1456 uses the same convention as above, except that the 'E' is replaced
1459 Just as above, we do not decode the name of barrier functions
1460 to give the user a clue that the code he is debugging has been
1461 internally generated. */
1463 if (len0
- i
> 3 && encoded
[i
] == '_' && encoded
[i
+1] == 'E'
1464 && isdigit (encoded
[i
+2]))
1468 while (k
< len0
&& isdigit (encoded
[k
]))
1472 && (encoded
[k
] == 'b' || encoded
[k
] == 's'))
1475 /* Just as an extra precaution, make sure that if this
1476 suffix is followed by anything else, it is a '_'.
1477 Otherwise, we matched this sequence by accident. */
1479 || (k
< len0
&& encoded
[k
] == '_'))
1484 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1485 the GNAT front-end in protected object subprograms. */
1488 && encoded
[i
] == 'N' && encoded
[i
+1] == '_' && encoded
[i
+2] == '_')
1490 /* Backtrack a bit up until we reach either the begining of
1491 the encoded name, or "__". Make sure that we only find
1492 digits or lowercase characters. */
1493 const char *ptr
= encoded
+ i
- 1;
1495 while (ptr
>= encoded
&& is_lower_alphanum (ptr
[0]))
1498 || (ptr
> encoded
&& ptr
[0] == '_' && ptr
[-1] == '_'))
1502 if (i
< len0
+ 3 && encoded
[i
] == 'U' && isxdigit (encoded
[i
+ 1]))
1504 if (convert_from_hex_encoded (decoded
, &encoded
[i
+ 1], 2))
1510 else if (i
< len0
+ 5 && encoded
[i
] == 'W' && isxdigit (encoded
[i
+ 1]))
1512 if (convert_from_hex_encoded (decoded
, &encoded
[i
+ 1], 4))
1518 else if (i
< len0
+ 10 && encoded
[i
] == 'W' && encoded
[i
+ 1] == 'W'
1519 && isxdigit (encoded
[i
+ 2]))
1521 if (convert_from_hex_encoded (decoded
, &encoded
[i
+ 2], 8))
1528 if (encoded
[i
] == 'X' && i
!= 0 && isalnum (encoded
[i
- 1]))
1530 /* This is a X[bn]* sequence not separated from the previous
1531 part of the name with a non-alpha-numeric character (in other
1532 words, immediately following an alpha-numeric character), then
1533 verify that it is placed at the end of the encoded name. If
1534 not, then the encoding is not valid and we should abort the
1535 decoding. Otherwise, just skip it, it is used in body-nested
1539 while (i
< len0
&& (encoded
[i
] == 'b' || encoded
[i
] == 'n'));
1543 else if (i
< len0
- 2 && encoded
[i
] == '_' && encoded
[i
+ 1] == '_')
1545 /* Replace '__' by '.'. */
1546 decoded
.push_back ('.');
1552 /* It's a character part of the decoded name, so just copy it
1554 decoded
.push_back (encoded
[i
]);
1559 /* Decoded names should never contain any uppercase character.
1560 Double-check this, and abort the decoding if we find one. */
1564 for (i
= 0; i
< decoded
.length(); ++i
)
1565 if (isupper (decoded
[i
]) || decoded
[i
] == ' ')
1569 /* If the compiler added a suffix, append it now. */
1571 decoded
= decoded
+ "[" + &encoded
[suffix
] + "]";
1579 if (encoded
[0] == '<')
1582 decoded
= '<' + std::string(encoded
) + '>';
1586 /* Table for keeping permanent unique copies of decoded names. Once
1587 allocated, names in this table are never released. While this is a
1588 storage leak, it should not be significant unless there are massive
1589 changes in the set of decoded names in successive versions of a
1590 symbol table loaded during a single session. */
1591 static struct htab
*decoded_names_store
;
1593 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1594 in the language-specific part of GSYMBOL, if it has not been
1595 previously computed. Tries to save the decoded name in the same
1596 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1597 in any case, the decoded symbol has a lifetime at least that of
1599 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1600 const, but nevertheless modified to a semantically equivalent form
1601 when a decoded name is cached in it. */
1604 ada_decode_symbol (const struct general_symbol_info
*arg
)
1606 struct general_symbol_info
*gsymbol
= (struct general_symbol_info
*) arg
;
1607 const char **resultp
=
1608 &gsymbol
->language_specific
.demangled_name
;
1610 if (!gsymbol
->ada_mangled
)
1612 std::string decoded
= ada_decode (gsymbol
->linkage_name ());
1613 struct obstack
*obstack
= gsymbol
->language_specific
.obstack
;
1615 gsymbol
->ada_mangled
= 1;
1617 if (obstack
!= NULL
)
1618 *resultp
= obstack_strdup (obstack
, decoded
.c_str ());
1621 /* Sometimes, we can't find a corresponding objfile, in
1622 which case, we put the result on the heap. Since we only
1623 decode when needed, we hope this usually does not cause a
1624 significant memory leak (FIXME). */
1626 char **slot
= (char **) htab_find_slot (decoded_names_store
,
1627 decoded
.c_str (), INSERT
);
1630 *slot
= xstrdup (decoded
.c_str ());
1642 /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1643 generated by the GNAT compiler to describe the index type used
1644 for each dimension of an array, check whether it follows the latest
1645 known encoding. If not, fix it up to conform to the latest encoding.
1646 Otherwise, do nothing. This function also does nothing if
1647 INDEX_DESC_TYPE is NULL.
1649 The GNAT encoding used to describe the array index type evolved a bit.
1650 Initially, the information would be provided through the name of each
1651 field of the structure type only, while the type of these fields was
1652 described as unspecified and irrelevant. The debugger was then expected
1653 to perform a global type lookup using the name of that field in order
1654 to get access to the full index type description. Because these global
1655 lookups can be very expensive, the encoding was later enhanced to make
1656 the global lookup unnecessary by defining the field type as being
1657 the full index type description.
1659 The purpose of this routine is to allow us to support older versions
1660 of the compiler by detecting the use of the older encoding, and by
1661 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1662 we essentially replace each field's meaningless type by the associated
1666 ada_fixup_array_indexes_type (struct type
*index_desc_type
)
1670 if (index_desc_type
== NULL
)
1672 gdb_assert (index_desc_type
->num_fields () > 0);
1674 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1675 to check one field only, no need to check them all). If not, return
1678 If our INDEX_DESC_TYPE was generated using the older encoding,
1679 the field type should be a meaningless integer type whose name
1680 is not equal to the field name. */
1681 if (index_desc_type
->field (0).type ()->name () != NULL
1682 && strcmp (index_desc_type
->field (0).type ()->name (),
1683 index_desc_type
->field (0).name ()) == 0)
1686 /* Fixup each field of INDEX_DESC_TYPE. */
1687 for (i
= 0; i
< index_desc_type
->num_fields (); i
++)
1689 const char *name
= index_desc_type
->field (i
).name ();
1690 struct type
*raw_type
= ada_check_typedef (ada_find_any_type (name
));
1693 index_desc_type
->field (i
).set_type (raw_type
);
1697 /* The desc_* routines return primitive portions of array descriptors
1700 /* The descriptor or array type, if any, indicated by TYPE; removes
1701 level of indirection, if needed. */
1703 static struct type
*
1704 desc_base_type (struct type
*type
)
1708 type
= ada_check_typedef (type
);
1709 if (type
->code () == TYPE_CODE_TYPEDEF
)
1710 type
= ada_typedef_target_type (type
);
1713 && (type
->code () == TYPE_CODE_PTR
1714 || type
->code () == TYPE_CODE_REF
))
1715 return ada_check_typedef (TYPE_TARGET_TYPE (type
));
1720 /* True iff TYPE indicates a "thin" array pointer type. */
1723 is_thin_pntr (struct type
*type
)
1726 is_suffix (ada_type_name (desc_base_type (type
)), "___XUT")
1727 || is_suffix (ada_type_name (desc_base_type (type
)), "___XUT___XVE");
1730 /* The descriptor type for thin pointer type TYPE. */
1732 static struct type
*
1733 thin_descriptor_type (struct type
*type
)
1735 struct type
*base_type
= desc_base_type (type
);
1737 if (base_type
== NULL
)
1739 if (is_suffix (ada_type_name (base_type
), "___XVE"))
1743 struct type
*alt_type
= ada_find_parallel_type (base_type
, "___XVE");
1745 if (alt_type
== NULL
)
1752 /* A pointer to the array data for thin-pointer value VAL. */
1754 static struct value
*
1755 thin_data_pntr (struct value
*val
)
1757 struct type
*type
= ada_check_typedef (value_type (val
));
1758 struct type
*data_type
= desc_data_target_type (thin_descriptor_type (type
));
1760 data_type
= lookup_pointer_type (data_type
);
1762 if (type
->code () == TYPE_CODE_PTR
)
1763 return value_cast (data_type
, value_copy (val
));
1765 return value_from_longest (data_type
, value_address (val
));
1768 /* True iff TYPE indicates a "thick" array pointer type. */
1771 is_thick_pntr (struct type
*type
)
1773 type
= desc_base_type (type
);
1774 return (type
!= NULL
&& type
->code () == TYPE_CODE_STRUCT
1775 && lookup_struct_elt_type (type
, "P_BOUNDS", 1) != NULL
);
1778 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1779 pointer to one, the type of its bounds data; otherwise, NULL. */
1781 static struct type
*
1782 desc_bounds_type (struct type
*type
)
1786 type
= desc_base_type (type
);
1790 else if (is_thin_pntr (type
))
1792 type
= thin_descriptor_type (type
);
1795 r
= lookup_struct_elt_type (type
, "BOUNDS", 1);
1797 return ada_check_typedef (r
);
1799 else if (type
->code () == TYPE_CODE_STRUCT
)
1801 r
= lookup_struct_elt_type (type
, "P_BOUNDS", 1);
1803 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r
)));
1808 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1809 one, a pointer to its bounds data. Otherwise NULL. */
1811 static struct value
*
1812 desc_bounds (struct value
*arr
)
1814 struct type
*type
= ada_check_typedef (value_type (arr
));
1816 if (is_thin_pntr (type
))
1818 struct type
*bounds_type
=
1819 desc_bounds_type (thin_descriptor_type (type
));
1822 if (bounds_type
== NULL
)
1823 error (_("Bad GNAT array descriptor"));
1825 /* NOTE: The following calculation is not really kosher, but
1826 since desc_type is an XVE-encoded type (and shouldn't be),
1827 the correct calculation is a real pain. FIXME (and fix GCC). */
1828 if (type
->code () == TYPE_CODE_PTR
)
1829 addr
= value_as_long (arr
);
1831 addr
= value_address (arr
);
1834 value_from_longest (lookup_pointer_type (bounds_type
),
1835 addr
- TYPE_LENGTH (bounds_type
));
1838 else if (is_thick_pntr (type
))
1840 struct value
*p_bounds
= value_struct_elt (&arr
, {}, "P_BOUNDS", NULL
,
1841 _("Bad GNAT array descriptor"));
1842 struct type
*p_bounds_type
= value_type (p_bounds
);
1845 && p_bounds_type
->code () == TYPE_CODE_PTR
)
1847 struct type
*target_type
= TYPE_TARGET_TYPE (p_bounds_type
);
1849 if (target_type
->is_stub ())
1850 p_bounds
= value_cast (lookup_pointer_type
1851 (ada_check_typedef (target_type
)),
1855 error (_("Bad GNAT array descriptor"));
1863 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1864 position of the field containing the address of the bounds data. */
1867 fat_pntr_bounds_bitpos (struct type
*type
)
1869 return desc_base_type (type
)->field (1).loc_bitpos ();
1872 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1873 size of the field containing the address of the bounds data. */
1876 fat_pntr_bounds_bitsize (struct type
*type
)
1878 type
= desc_base_type (type
);
1880 if (TYPE_FIELD_BITSIZE (type
, 1) > 0)
1881 return TYPE_FIELD_BITSIZE (type
, 1);
1883 return 8 * TYPE_LENGTH (ada_check_typedef (type
->field (1).type ()));
1886 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1887 pointer to one, the type of its array data (a array-with-no-bounds type);
1888 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1891 static struct type
*
1892 desc_data_target_type (struct type
*type
)
1894 type
= desc_base_type (type
);
1896 /* NOTE: The following is bogus; see comment in desc_bounds. */
1897 if (is_thin_pntr (type
))
1898 return desc_base_type (thin_descriptor_type (type
)->field (1).type ());
1899 else if (is_thick_pntr (type
))
1901 struct type
*data_type
= lookup_struct_elt_type (type
, "P_ARRAY", 1);
1904 && ada_check_typedef (data_type
)->code () == TYPE_CODE_PTR
)
1905 return ada_check_typedef (TYPE_TARGET_TYPE (data_type
));
1911 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1914 static struct value
*
1915 desc_data (struct value
*arr
)
1917 struct type
*type
= value_type (arr
);
1919 if (is_thin_pntr (type
))
1920 return thin_data_pntr (arr
);
1921 else if (is_thick_pntr (type
))
1922 return value_struct_elt (&arr
, {}, "P_ARRAY", NULL
,
1923 _("Bad GNAT array descriptor"));
1929 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1930 position of the field containing the address of the data. */
1933 fat_pntr_data_bitpos (struct type
*type
)
1935 return desc_base_type (type
)->field (0).loc_bitpos ();
1938 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1939 size of the field containing the address of the data. */
1942 fat_pntr_data_bitsize (struct type
*type
)
1944 type
= desc_base_type (type
);
1946 if (TYPE_FIELD_BITSIZE (type
, 0) > 0)
1947 return TYPE_FIELD_BITSIZE (type
, 0);
1949 return TARGET_CHAR_BIT
* TYPE_LENGTH (type
->field (0).type ());
1952 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1953 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1954 bound, if WHICH is 1. The first bound is I=1. */
1956 static struct value
*
1957 desc_one_bound (struct value
*bounds
, int i
, int which
)
1959 char bound_name
[20];
1960 xsnprintf (bound_name
, sizeof (bound_name
), "%cB%d",
1961 which
? 'U' : 'L', i
- 1);
1962 return value_struct_elt (&bounds
, {}, bound_name
, NULL
,
1963 _("Bad GNAT array descriptor bounds"));
1966 /* If BOUNDS is an array-bounds structure type, return the bit position
1967 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1968 bound, if WHICH is 1. The first bound is I=1. */
1971 desc_bound_bitpos (struct type
*type
, int i
, int which
)
1973 return desc_base_type (type
)->field (2 * i
+ which
- 2).loc_bitpos ();
1976 /* If BOUNDS is an array-bounds structure type, return the bit field size
1977 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1978 bound, if WHICH is 1. The first bound is I=1. */
1981 desc_bound_bitsize (struct type
*type
, int i
, int which
)
1983 type
= desc_base_type (type
);
1985 if (TYPE_FIELD_BITSIZE (type
, 2 * i
+ which
- 2) > 0)
1986 return TYPE_FIELD_BITSIZE (type
, 2 * i
+ which
- 2);
1988 return 8 * TYPE_LENGTH (type
->field (2 * i
+ which
- 2).type ());
1991 /* If TYPE is the type of an array-bounds structure, the type of its
1992 Ith bound (numbering from 1). Otherwise, NULL. */
1994 static struct type
*
1995 desc_index_type (struct type
*type
, int i
)
1997 type
= desc_base_type (type
);
1999 if (type
->code () == TYPE_CODE_STRUCT
)
2001 char bound_name
[20];
2002 xsnprintf (bound_name
, sizeof (bound_name
), "LB%d", i
- 1);
2003 return lookup_struct_elt_type (type
, bound_name
, 1);
2009 /* The number of index positions in the array-bounds type TYPE.
2010 Return 0 if TYPE is NULL. */
2013 desc_arity (struct type
*type
)
2015 type
= desc_base_type (type
);
2018 return type
->num_fields () / 2;
2022 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
2023 an array descriptor type (representing an unconstrained array
2027 ada_is_direct_array_type (struct type
*type
)
2031 type
= ada_check_typedef (type
);
2032 return (type
->code () == TYPE_CODE_ARRAY
2033 || ada_is_array_descriptor_type (type
));
2036 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
2040 ada_is_array_type (struct type
*type
)
2043 && (type
->code () == TYPE_CODE_PTR
2044 || type
->code () == TYPE_CODE_REF
))
2045 type
= TYPE_TARGET_TYPE (type
);
2046 return ada_is_direct_array_type (type
);
2049 /* Non-zero iff TYPE is a simple array type or pointer to one. */
2052 ada_is_simple_array_type (struct type
*type
)
2056 type
= ada_check_typedef (type
);
2057 return (type
->code () == TYPE_CODE_ARRAY
2058 || (type
->code () == TYPE_CODE_PTR
2059 && (ada_check_typedef (TYPE_TARGET_TYPE (type
))->code ()
2060 == TYPE_CODE_ARRAY
)));
2063 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
2066 ada_is_array_descriptor_type (struct type
*type
)
2068 struct type
*data_type
= desc_data_target_type (type
);
2072 type
= ada_check_typedef (type
);
2073 return (data_type
!= NULL
2074 && data_type
->code () == TYPE_CODE_ARRAY
2075 && desc_arity (desc_bounds_type (type
)) > 0);
2078 /* Non-zero iff type is a partially mal-formed GNAT array
2079 descriptor. FIXME: This is to compensate for some problems with
2080 debugging output from GNAT. Re-examine periodically to see if it
2084 ada_is_bogus_array_descriptor (struct type
*type
)
2088 && type
->code () == TYPE_CODE_STRUCT
2089 && (lookup_struct_elt_type (type
, "P_BOUNDS", 1) != NULL
2090 || lookup_struct_elt_type (type
, "P_ARRAY", 1) != NULL
)
2091 && !ada_is_array_descriptor_type (type
);
2095 /* If ARR has a record type in the form of a standard GNAT array descriptor,
2096 (fat pointer) returns the type of the array data described---specifically,
2097 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
2098 in from the descriptor; otherwise, they are left unspecified. If
2099 the ARR denotes a null array descriptor and BOUNDS is non-zero,
2100 returns NULL. The result is simply the type of ARR if ARR is not
2103 static struct type
*
2104 ada_type_of_array (struct value
*arr
, int bounds
)
2106 if (ada_is_constrained_packed_array_type (value_type (arr
)))
2107 return decode_constrained_packed_array_type (value_type (arr
));
2109 if (!ada_is_array_descriptor_type (value_type (arr
)))
2110 return value_type (arr
);
2114 struct type
*array_type
=
2115 ada_check_typedef (desc_data_target_type (value_type (arr
)));
2117 if (ada_is_unconstrained_packed_array_type (value_type (arr
)))
2118 TYPE_FIELD_BITSIZE (array_type
, 0) =
2119 decode_packed_array_bitsize (value_type (arr
));
2125 struct type
*elt_type
;
2127 struct value
*descriptor
;
2129 elt_type
= ada_array_element_type (value_type (arr
), -1);
2130 arity
= ada_array_arity (value_type (arr
));
2132 if (elt_type
== NULL
|| arity
== 0)
2133 return ada_check_typedef (value_type (arr
));
2135 descriptor
= desc_bounds (arr
);
2136 if (value_as_long (descriptor
) == 0)
2140 struct type
*range_type
= alloc_type_copy (value_type (arr
));
2141 struct type
*array_type
= alloc_type_copy (value_type (arr
));
2142 struct value
*low
= desc_one_bound (descriptor
, arity
, 0);
2143 struct value
*high
= desc_one_bound (descriptor
, arity
, 1);
2146 create_static_range_type (range_type
, value_type (low
),
2147 longest_to_int (value_as_long (low
)),
2148 longest_to_int (value_as_long (high
)));
2149 elt_type
= create_array_type (array_type
, elt_type
, range_type
);
2151 if (ada_is_unconstrained_packed_array_type (value_type (arr
)))
2153 /* We need to store the element packed bitsize, as well as
2154 recompute the array size, because it was previously
2155 computed based on the unpacked element size. */
2156 LONGEST lo
= value_as_long (low
);
2157 LONGEST hi
= value_as_long (high
);
2159 TYPE_FIELD_BITSIZE (elt_type
, 0) =
2160 decode_packed_array_bitsize (value_type (arr
));
2161 /* If the array has no element, then the size is already
2162 zero, and does not need to be recomputed. */
2166 (hi
- lo
+ 1) * TYPE_FIELD_BITSIZE (elt_type
, 0);
2168 TYPE_LENGTH (array_type
) = (array_bitsize
+ 7) / 8;
2173 return lookup_pointer_type (elt_type
);
2177 /* If ARR does not represent an array, returns ARR unchanged.
2178 Otherwise, returns either a standard GDB array with bounds set
2179 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
2180 GDB array. Returns NULL if ARR is a null fat pointer. */
2183 ada_coerce_to_simple_array_ptr (struct value
*arr
)
2185 if (ada_is_array_descriptor_type (value_type (arr
)))
2187 struct type
*arrType
= ada_type_of_array (arr
, 1);
2189 if (arrType
== NULL
)
2191 return value_cast (arrType
, value_copy (desc_data (arr
)));
2193 else if (ada_is_constrained_packed_array_type (value_type (arr
)))
2194 return decode_constrained_packed_array (arr
);
2199 /* If ARR does not represent an array, returns ARR unchanged.
2200 Otherwise, returns a standard GDB array describing ARR (which may
2201 be ARR itself if it already is in the proper form). */
2204 ada_coerce_to_simple_array (struct value
*arr
)
2206 if (ada_is_array_descriptor_type (value_type (arr
)))
2208 struct value
*arrVal
= ada_coerce_to_simple_array_ptr (arr
);
2211 error (_("Bounds unavailable for null array pointer."));
2212 return value_ind (arrVal
);
2214 else if (ada_is_constrained_packed_array_type (value_type (arr
)))
2215 return decode_constrained_packed_array (arr
);
2220 /* If TYPE represents a GNAT array type, return it translated to an
2221 ordinary GDB array type (possibly with BITSIZE fields indicating
2222 packing). For other types, is the identity. */
2225 ada_coerce_to_simple_array_type (struct type
*type
)
2227 if (ada_is_constrained_packed_array_type (type
))
2228 return decode_constrained_packed_array_type (type
);
2230 if (ada_is_array_descriptor_type (type
))
2231 return ada_check_typedef (desc_data_target_type (type
));
2236 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
2239 ada_is_gnat_encoded_packed_array_type (struct type
*type
)
2243 type
= desc_base_type (type
);
2244 type
= ada_check_typedef (type
);
2246 ada_type_name (type
) != NULL
2247 && strstr (ada_type_name (type
), "___XP") != NULL
;
2250 /* Non-zero iff TYPE represents a standard GNAT constrained
2251 packed-array type. */
2254 ada_is_constrained_packed_array_type (struct type
*type
)
2256 return ada_is_gnat_encoded_packed_array_type (type
)
2257 && !ada_is_array_descriptor_type (type
);
2260 /* Non-zero iff TYPE represents an array descriptor for a
2261 unconstrained packed-array type. */
2264 ada_is_unconstrained_packed_array_type (struct type
*type
)
2266 if (!ada_is_array_descriptor_type (type
))
2269 if (ada_is_gnat_encoded_packed_array_type (type
))
2272 /* If we saw GNAT encodings, then the above code is sufficient.
2273 However, with minimal encodings, we will just have a thick
2275 if (is_thick_pntr (type
))
2277 type
= desc_base_type (type
);
2278 /* The structure's first field is a pointer to an array, so this
2279 fetches the array type. */
2280 type
= TYPE_TARGET_TYPE (type
->field (0).type ());
2281 if (type
->code () == TYPE_CODE_TYPEDEF
)
2282 type
= ada_typedef_target_type (type
);
2283 /* Now we can see if the array elements are packed. */
2284 return TYPE_FIELD_BITSIZE (type
, 0) > 0;
2290 /* Return true if TYPE is a (Gnat-encoded) constrained packed array
2291 type, or if it is an ordinary (non-Gnat-encoded) packed array. */
2294 ada_is_any_packed_array_type (struct type
*type
)
2296 return (ada_is_constrained_packed_array_type (type
)
2297 || (type
->code () == TYPE_CODE_ARRAY
2298 && TYPE_FIELD_BITSIZE (type
, 0) % 8 != 0));
2301 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
2302 return the size of its elements in bits. */
2305 decode_packed_array_bitsize (struct type
*type
)
2307 const char *raw_name
;
2311 /* Access to arrays implemented as fat pointers are encoded as a typedef
2312 of the fat pointer type. We need the name of the fat pointer type
2313 to do the decoding, so strip the typedef layer. */
2314 if (type
->code () == TYPE_CODE_TYPEDEF
)
2315 type
= ada_typedef_target_type (type
);
2317 raw_name
= ada_type_name (ada_check_typedef (type
));
2319 raw_name
= ada_type_name (desc_base_type (type
));
2324 tail
= strstr (raw_name
, "___XP");
2325 if (tail
== nullptr)
2327 gdb_assert (is_thick_pntr (type
));
2328 /* The structure's first field is a pointer to an array, so this
2329 fetches the array type. */
2330 type
= TYPE_TARGET_TYPE (type
->field (0).type ());
2331 /* Now we can see if the array elements are packed. */
2332 return TYPE_FIELD_BITSIZE (type
, 0);
2335 if (sscanf (tail
+ sizeof ("___XP") - 1, "%ld", &bits
) != 1)
2338 (_("could not understand bit size information on packed array"));
2345 /* Given that TYPE is a standard GDB array type with all bounds filled
2346 in, and that the element size of its ultimate scalar constituents
2347 (that is, either its elements, or, if it is an array of arrays, its
2348 elements' elements, etc.) is *ELT_BITS, return an identical type,
2349 but with the bit sizes of its elements (and those of any
2350 constituent arrays) recorded in the BITSIZE components of its
2351 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2354 Note that, for arrays whose index type has an XA encoding where
2355 a bound references a record discriminant, getting that discriminant,
2356 and therefore the actual value of that bound, is not possible
2357 because none of the given parameters gives us access to the record.
2358 This function assumes that it is OK in the context where it is being
2359 used to return an array whose bounds are still dynamic and where
2360 the length is arbitrary. */
2362 static struct type
*
2363 constrained_packed_array_type (struct type
*type
, long *elt_bits
)
2365 struct type
*new_elt_type
;
2366 struct type
*new_type
;
2367 struct type
*index_type_desc
;
2368 struct type
*index_type
;
2369 LONGEST low_bound
, high_bound
;
2371 type
= ada_check_typedef (type
);
2372 if (type
->code () != TYPE_CODE_ARRAY
)
2375 index_type_desc
= ada_find_parallel_type (type
, "___XA");
2376 if (index_type_desc
)
2377 index_type
= to_fixed_range_type (index_type_desc
->field (0).type (),
2380 index_type
= type
->index_type ();
2382 new_type
= alloc_type_copy (type
);
2384 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type
)),
2386 create_array_type (new_type
, new_elt_type
, index_type
);
2387 TYPE_FIELD_BITSIZE (new_type
, 0) = *elt_bits
;
2388 new_type
->set_name (ada_type_name (type
));
2390 if ((check_typedef (index_type
)->code () == TYPE_CODE_RANGE
2391 && is_dynamic_type (check_typedef (index_type
)))
2392 || !get_discrete_bounds (index_type
, &low_bound
, &high_bound
))
2393 low_bound
= high_bound
= 0;
2394 if (high_bound
< low_bound
)
2395 *elt_bits
= TYPE_LENGTH (new_type
) = 0;
2398 *elt_bits
*= (high_bound
- low_bound
+ 1);
2399 TYPE_LENGTH (new_type
) =
2400 (*elt_bits
+ HOST_CHAR_BIT
- 1) / HOST_CHAR_BIT
;
2403 new_type
->set_is_fixed_instance (true);
2407 /* The array type encoded by TYPE, where
2408 ada_is_constrained_packed_array_type (TYPE). */
2410 static struct type
*
2411 decode_constrained_packed_array_type (struct type
*type
)
2413 const char *raw_name
= ada_type_name (ada_check_typedef (type
));
2416 struct type
*shadow_type
;
2420 raw_name
= ada_type_name (desc_base_type (type
));
2425 name
= (char *) alloca (strlen (raw_name
) + 1);
2426 tail
= strstr (raw_name
, "___XP");
2427 type
= desc_base_type (type
);
2429 memcpy (name
, raw_name
, tail
- raw_name
);
2430 name
[tail
- raw_name
] = '\000';
2432 shadow_type
= ada_find_parallel_type_with_name (type
, name
);
2434 if (shadow_type
== NULL
)
2436 lim_warning (_("could not find bounds information on packed array"));
2439 shadow_type
= check_typedef (shadow_type
);
2441 if (shadow_type
->code () != TYPE_CODE_ARRAY
)
2443 lim_warning (_("could not understand bounds "
2444 "information on packed array"));
2448 bits
= decode_packed_array_bitsize (type
);
2449 return constrained_packed_array_type (shadow_type
, &bits
);
2452 /* Helper function for decode_constrained_packed_array. Set the field
2453 bitsize on a series of packed arrays. Returns the number of
2454 elements in TYPE. */
2457 recursively_update_array_bitsize (struct type
*type
)
2459 gdb_assert (type
->code () == TYPE_CODE_ARRAY
);
2462 if (!get_discrete_bounds (type
->index_type (), &low
, &high
)
2465 LONGEST our_len
= high
- low
+ 1;
2467 struct type
*elt_type
= TYPE_TARGET_TYPE (type
);
2468 if (elt_type
->code () == TYPE_CODE_ARRAY
)
2470 LONGEST elt_len
= recursively_update_array_bitsize (elt_type
);
2471 LONGEST elt_bitsize
= elt_len
* TYPE_FIELD_BITSIZE (elt_type
, 0);
2472 TYPE_FIELD_BITSIZE (type
, 0) = elt_bitsize
;
2474 TYPE_LENGTH (type
) = ((our_len
* elt_bitsize
+ HOST_CHAR_BIT
- 1)
2481 /* Given that ARR is a struct value *indicating a GNAT constrained packed
2482 array, returns a simple array that denotes that array. Its type is a
2483 standard GDB array type except that the BITSIZEs of the array
2484 target types are set to the number of bits in each element, and the
2485 type length is set appropriately. */
2487 static struct value
*
2488 decode_constrained_packed_array (struct value
*arr
)
2492 /* If our value is a pointer, then dereference it. Likewise if
2493 the value is a reference. Make sure that this operation does not
2494 cause the target type to be fixed, as this would indirectly cause
2495 this array to be decoded. The rest of the routine assumes that
2496 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2497 and "value_ind" routines to perform the dereferencing, as opposed
2498 to using "ada_coerce_ref" or "ada_value_ind". */
2499 arr
= coerce_ref (arr
);
2500 if (ada_check_typedef (value_type (arr
))->code () == TYPE_CODE_PTR
)
2501 arr
= value_ind (arr
);
2503 type
= decode_constrained_packed_array_type (value_type (arr
));
2506 error (_("can't unpack array"));
2510 /* Decoding the packed array type could not correctly set the field
2511 bitsizes for any dimension except the innermost, because the
2512 bounds may be variable and were not passed to that function. So,
2513 we further resolve the array bounds here and then update the
2515 const gdb_byte
*valaddr
= value_contents_for_printing (arr
).data ();
2516 CORE_ADDR address
= value_address (arr
);
2517 gdb::array_view
<const gdb_byte
> view
2518 = gdb::make_array_view (valaddr
, TYPE_LENGTH (type
));
2519 type
= resolve_dynamic_type (type
, view
, address
);
2520 recursively_update_array_bitsize (type
);
2522 if (type_byte_order (value_type (arr
)) == BFD_ENDIAN_BIG
2523 && ada_is_modular_type (value_type (arr
)))
2525 /* This is a (right-justified) modular type representing a packed
2526 array with no wrapper. In order to interpret the value through
2527 the (left-justified) packed array type we just built, we must
2528 first left-justify it. */
2529 int bit_size
, bit_pos
;
2532 mod
= ada_modulus (value_type (arr
)) - 1;
2539 bit_pos
= HOST_CHAR_BIT
* TYPE_LENGTH (value_type (arr
)) - bit_size
;
2540 arr
= ada_value_primitive_packed_val (arr
, NULL
,
2541 bit_pos
/ HOST_CHAR_BIT
,
2542 bit_pos
% HOST_CHAR_BIT
,
2547 return coerce_unspec_val_to_type (arr
, type
);
2551 /* The value of the element of packed array ARR at the ARITY indices
2552 given in IND. ARR must be a simple array. */
2554 static struct value
*
2555 value_subscript_packed (struct value
*arr
, int arity
, struct value
**ind
)
2558 int bits
, elt_off
, bit_off
;
2559 long elt_total_bit_offset
;
2560 struct type
*elt_type
;
2564 elt_total_bit_offset
= 0;
2565 elt_type
= ada_check_typedef (value_type (arr
));
2566 for (i
= 0; i
< arity
; i
+= 1)
2568 if (elt_type
->code () != TYPE_CODE_ARRAY
2569 || TYPE_FIELD_BITSIZE (elt_type
, 0) == 0)
2571 (_("attempt to do packed indexing of "
2572 "something other than a packed array"));
2575 struct type
*range_type
= elt_type
->index_type ();
2576 LONGEST lowerbound
, upperbound
;
2579 if (!get_discrete_bounds (range_type
, &lowerbound
, &upperbound
))
2581 lim_warning (_("don't know bounds of array"));
2582 lowerbound
= upperbound
= 0;
2585 idx
= pos_atr (ind
[i
]);
2586 if (idx
< lowerbound
|| idx
> upperbound
)
2587 lim_warning (_("packed array index %ld out of bounds"),
2589 bits
= TYPE_FIELD_BITSIZE (elt_type
, 0);
2590 elt_total_bit_offset
+= (idx
- lowerbound
) * bits
;
2591 elt_type
= ada_check_typedef (TYPE_TARGET_TYPE (elt_type
));
2594 elt_off
= elt_total_bit_offset
/ HOST_CHAR_BIT
;
2595 bit_off
= elt_total_bit_offset
% HOST_CHAR_BIT
;
2597 v
= ada_value_primitive_packed_val (arr
, NULL
, elt_off
, bit_off
,
2602 /* Non-zero iff TYPE includes negative integer values. */
2605 has_negatives (struct type
*type
)
2607 switch (type
->code ())
2612 return !type
->is_unsigned ();
2613 case TYPE_CODE_RANGE
:
2614 return type
->bounds ()->low
.const_val () - type
->bounds ()->bias
< 0;
2618 /* With SRC being a buffer containing BIT_SIZE bits of data at BIT_OFFSET,
2619 unpack that data into UNPACKED. UNPACKED_LEN is the size in bytes of
2620 the unpacked buffer.
2622 The size of the unpacked buffer (UNPACKED_LEN) is expected to be large
2623 enough to contain at least BIT_OFFSET bits. If not, an error is raised.
2625 IS_BIG_ENDIAN is nonzero if the data is stored in big endian mode,
2628 IS_SIGNED_TYPE is nonzero if the data corresponds to a signed type.
2630 IS_SCALAR is nonzero if the data corresponds to a signed type. */
2633 ada_unpack_from_contents (const gdb_byte
*src
, int bit_offset
, int bit_size
,
2634 gdb_byte
*unpacked
, int unpacked_len
,
2635 int is_big_endian
, int is_signed_type
,
2638 int src_len
= (bit_size
+ bit_offset
+ HOST_CHAR_BIT
- 1) / 8;
2639 int src_idx
; /* Index into the source area */
2640 int src_bytes_left
; /* Number of source bytes left to process. */
2641 int srcBitsLeft
; /* Number of source bits left to move */
2642 int unusedLS
; /* Number of bits in next significant
2643 byte of source that are unused */
2645 int unpacked_idx
; /* Index into the unpacked buffer */
2646 int unpacked_bytes_left
; /* Number of bytes left to set in unpacked. */
2648 unsigned long accum
; /* Staging area for bits being transferred */
2649 int accumSize
; /* Number of meaningful bits in accum */
2652 /* Transmit bytes from least to most significant; delta is the direction
2653 the indices move. */
2654 int delta
= is_big_endian
? -1 : 1;
2656 /* Make sure that unpacked is large enough to receive the BIT_SIZE
2658 if ((bit_size
+ HOST_CHAR_BIT
- 1) / HOST_CHAR_BIT
> unpacked_len
)
2659 error (_("Cannot unpack %d bits into buffer of %d bytes"),
2660 bit_size
, unpacked_len
);
2662 srcBitsLeft
= bit_size
;
2663 src_bytes_left
= src_len
;
2664 unpacked_bytes_left
= unpacked_len
;
2669 src_idx
= src_len
- 1;
2671 && ((src
[0] << bit_offset
) & (1 << (HOST_CHAR_BIT
- 1))))
2675 (HOST_CHAR_BIT
- (bit_size
+ bit_offset
) % HOST_CHAR_BIT
)
2681 unpacked_idx
= unpacked_len
- 1;
2685 /* Non-scalar values must be aligned at a byte boundary... */
2687 (HOST_CHAR_BIT
- bit_size
% HOST_CHAR_BIT
) % HOST_CHAR_BIT
;
2688 /* ... And are placed at the beginning (most-significant) bytes
2690 unpacked_idx
= (bit_size
+ HOST_CHAR_BIT
- 1) / HOST_CHAR_BIT
- 1;
2691 unpacked_bytes_left
= unpacked_idx
+ 1;
2696 int sign_bit_offset
= (bit_size
+ bit_offset
- 1) % 8;
2698 src_idx
= unpacked_idx
= 0;
2699 unusedLS
= bit_offset
;
2702 if (is_signed_type
&& (src
[src_len
- 1] & (1 << sign_bit_offset
)))
2707 while (src_bytes_left
> 0)
2709 /* Mask for removing bits of the next source byte that are not
2710 part of the value. */
2711 unsigned int unusedMSMask
=
2712 (1 << (srcBitsLeft
>= HOST_CHAR_BIT
? HOST_CHAR_BIT
: srcBitsLeft
)) -
2714 /* Sign-extend bits for this byte. */
2715 unsigned int signMask
= sign
& ~unusedMSMask
;
2718 (((src
[src_idx
] >> unusedLS
) & unusedMSMask
) | signMask
) << accumSize
;
2719 accumSize
+= HOST_CHAR_BIT
- unusedLS
;
2720 if (accumSize
>= HOST_CHAR_BIT
)
2722 unpacked
[unpacked_idx
] = accum
& ~(~0UL << HOST_CHAR_BIT
);
2723 accumSize
-= HOST_CHAR_BIT
;
2724 accum
>>= HOST_CHAR_BIT
;
2725 unpacked_bytes_left
-= 1;
2726 unpacked_idx
+= delta
;
2728 srcBitsLeft
-= HOST_CHAR_BIT
- unusedLS
;
2730 src_bytes_left
-= 1;
2733 while (unpacked_bytes_left
> 0)
2735 accum
|= sign
<< accumSize
;
2736 unpacked
[unpacked_idx
] = accum
& ~(~0UL << HOST_CHAR_BIT
);
2737 accumSize
-= HOST_CHAR_BIT
;
2740 accum
>>= HOST_CHAR_BIT
;
2741 unpacked_bytes_left
-= 1;
2742 unpacked_idx
+= delta
;
2746 /* Create a new value of type TYPE from the contents of OBJ starting
2747 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2748 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2749 assigning through the result will set the field fetched from.
2750 VALADDR is ignored unless OBJ is NULL, in which case,
2751 VALADDR+OFFSET must address the start of storage containing the
2752 packed value. The value returned in this case is never an lval.
2753 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2756 ada_value_primitive_packed_val (struct value
*obj
, const gdb_byte
*valaddr
,
2757 long offset
, int bit_offset
, int bit_size
,
2761 const gdb_byte
*src
; /* First byte containing data to unpack */
2763 const int is_scalar
= is_scalar_type (type
);
2764 const int is_big_endian
= type_byte_order (type
) == BFD_ENDIAN_BIG
;
2765 gdb::byte_vector staging
;
2767 type
= ada_check_typedef (type
);
2770 src
= valaddr
+ offset
;
2772 src
= value_contents (obj
).data () + offset
;
2774 if (is_dynamic_type (type
))
2776 /* The length of TYPE might by dynamic, so we need to resolve
2777 TYPE in order to know its actual size, which we then use
2778 to create the contents buffer of the value we return.
2779 The difficulty is that the data containing our object is
2780 packed, and therefore maybe not at a byte boundary. So, what
2781 we do, is unpack the data into a byte-aligned buffer, and then
2782 use that buffer as our object's value for resolving the type. */
2783 int staging_len
= (bit_size
+ HOST_CHAR_BIT
- 1) / HOST_CHAR_BIT
;
2784 staging
.resize (staging_len
);
2786 ada_unpack_from_contents (src
, bit_offset
, bit_size
,
2787 staging
.data (), staging
.size (),
2788 is_big_endian
, has_negatives (type
),
2790 type
= resolve_dynamic_type (type
, staging
, 0);
2791 if (TYPE_LENGTH (type
) < (bit_size
+ HOST_CHAR_BIT
- 1) / HOST_CHAR_BIT
)
2793 /* This happens when the length of the object is dynamic,
2794 and is actually smaller than the space reserved for it.
2795 For instance, in an array of variant records, the bit_size
2796 we're given is the array stride, which is constant and
2797 normally equal to the maximum size of its element.
2798 But, in reality, each element only actually spans a portion
2800 bit_size
= TYPE_LENGTH (type
) * HOST_CHAR_BIT
;
2806 v
= allocate_value (type
);
2807 src
= valaddr
+ offset
;
2809 else if (VALUE_LVAL (obj
) == lval_memory
&& value_lazy (obj
))
2811 int src_len
= (bit_size
+ bit_offset
+ HOST_CHAR_BIT
- 1) / 8;
2814 v
= value_at (type
, value_address (obj
) + offset
);
2815 buf
= (gdb_byte
*) alloca (src_len
);
2816 read_memory (value_address (v
), buf
, src_len
);
2821 v
= allocate_value (type
);
2822 src
= value_contents (obj
).data () + offset
;
2827 long new_offset
= offset
;
2829 set_value_component_location (v
, obj
);
2830 set_value_bitpos (v
, bit_offset
+ value_bitpos (obj
));
2831 set_value_bitsize (v
, bit_size
);
2832 if (value_bitpos (v
) >= HOST_CHAR_BIT
)
2835 set_value_bitpos (v
, value_bitpos (v
) - HOST_CHAR_BIT
);
2837 set_value_offset (v
, new_offset
);
2839 /* Also set the parent value. This is needed when trying to
2840 assign a new value (in inferior memory). */
2841 set_value_parent (v
, obj
);
2844 set_value_bitsize (v
, bit_size
);
2845 unpacked
= value_contents_writeable (v
).data ();
2849 memset (unpacked
, 0, TYPE_LENGTH (type
));
2853 if (staging
.size () == TYPE_LENGTH (type
))
2855 /* Small short-cut: If we've unpacked the data into a buffer
2856 of the same size as TYPE's length, then we can reuse that,
2857 instead of doing the unpacking again. */
2858 memcpy (unpacked
, staging
.data (), staging
.size ());
2861 ada_unpack_from_contents (src
, bit_offset
, bit_size
,
2862 unpacked
, TYPE_LENGTH (type
),
2863 is_big_endian
, has_negatives (type
), is_scalar
);
2868 /* Store the contents of FROMVAL into the location of TOVAL.
2869 Return a new value with the location of TOVAL and contents of
2870 FROMVAL. Handles assignment into packed fields that have
2871 floating-point or non-scalar types. */
2873 static struct value
*
2874 ada_value_assign (struct value
*toval
, struct value
*fromval
)
2876 struct type
*type
= value_type (toval
);
2877 int bits
= value_bitsize (toval
);
2879 toval
= ada_coerce_ref (toval
);
2880 fromval
= ada_coerce_ref (fromval
);
2882 if (ada_is_direct_array_type (value_type (toval
)))
2883 toval
= ada_coerce_to_simple_array (toval
);
2884 if (ada_is_direct_array_type (value_type (fromval
)))
2885 fromval
= ada_coerce_to_simple_array (fromval
);
2887 if (!deprecated_value_modifiable (toval
))
2888 error (_("Left operand of assignment is not a modifiable lvalue."));
2890 if (VALUE_LVAL (toval
) == lval_memory
2892 && (type
->code () == TYPE_CODE_FLT
2893 || type
->code () == TYPE_CODE_STRUCT
))
2895 int len
= (value_bitpos (toval
)
2896 + bits
+ HOST_CHAR_BIT
- 1) / HOST_CHAR_BIT
;
2898 gdb_byte
*buffer
= (gdb_byte
*) alloca (len
);
2900 CORE_ADDR to_addr
= value_address (toval
);
2902 if (type
->code () == TYPE_CODE_FLT
)
2903 fromval
= value_cast (type
, fromval
);
2905 read_memory (to_addr
, buffer
, len
);
2906 from_size
= value_bitsize (fromval
);
2908 from_size
= TYPE_LENGTH (value_type (fromval
)) * TARGET_CHAR_BIT
;
2910 const int is_big_endian
= type_byte_order (type
) == BFD_ENDIAN_BIG
;
2911 ULONGEST from_offset
= 0;
2912 if (is_big_endian
&& is_scalar_type (value_type (fromval
)))
2913 from_offset
= from_size
- bits
;
2914 copy_bitwise (buffer
, value_bitpos (toval
),
2915 value_contents (fromval
).data (), from_offset
,
2916 bits
, is_big_endian
);
2917 write_memory_with_notification (to_addr
, buffer
, len
);
2919 val
= value_copy (toval
);
2920 memcpy (value_contents_raw (val
).data (),
2921 value_contents (fromval
).data (),
2922 TYPE_LENGTH (type
));
2923 deprecated_set_value_type (val
, type
);
2928 return value_assign (toval
, fromval
);
2932 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2933 CONTAINER, assign the contents of VAL to COMPONENTS's place in
2934 CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2935 COMPONENT, and not the inferior's memory. The current contents
2936 of COMPONENT are ignored.
2938 Although not part of the initial design, this function also works
2939 when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER
2940 had a null address, and COMPONENT had an address which is equal to
2941 its offset inside CONTAINER. */
2944 value_assign_to_component (struct value
*container
, struct value
*component
,
2947 LONGEST offset_in_container
=
2948 (LONGEST
) (value_address (component
) - value_address (container
));
2949 int bit_offset_in_container
=
2950 value_bitpos (component
) - value_bitpos (container
);
2953 val
= value_cast (value_type (component
), val
);
2955 if (value_bitsize (component
) == 0)
2956 bits
= TARGET_CHAR_BIT
* TYPE_LENGTH (value_type (component
));
2958 bits
= value_bitsize (component
);
2960 if (type_byte_order (value_type (container
)) == BFD_ENDIAN_BIG
)
2964 if (is_scalar_type (check_typedef (value_type (component
))))
2966 = TYPE_LENGTH (value_type (component
)) * TARGET_CHAR_BIT
- bits
;
2969 copy_bitwise ((value_contents_writeable (container
).data ()
2970 + offset_in_container
),
2971 value_bitpos (container
) + bit_offset_in_container
,
2972 value_contents (val
).data (), src_offset
, bits
, 1);
2975 copy_bitwise ((value_contents_writeable (container
).data ()
2976 + offset_in_container
),
2977 value_bitpos (container
) + bit_offset_in_container
,
2978 value_contents (val
).data (), 0, bits
, 0);
2981 /* Determine if TYPE is an access to an unconstrained array. */
2984 ada_is_access_to_unconstrained_array (struct type
*type
)
2986 return (type
->code () == TYPE_CODE_TYPEDEF
2987 && is_thick_pntr (ada_typedef_target_type (type
)));
2990 /* The value of the element of array ARR at the ARITY indices given in IND.
2991 ARR may be either a simple array, GNAT array descriptor, or pointer
2995 ada_value_subscript (struct value
*arr
, int arity
, struct value
**ind
)
2999 struct type
*elt_type
;
3001 elt
= ada_coerce_to_simple_array (arr
);
3003 elt_type
= ada_check_typedef (value_type (elt
));
3004 if (elt_type
->code () == TYPE_CODE_ARRAY
3005 && TYPE_FIELD_BITSIZE (elt_type
, 0) > 0)
3006 return value_subscript_packed (elt
, arity
, ind
);
3008 for (k
= 0; k
< arity
; k
+= 1)
3010 struct type
*saved_elt_type
= TYPE_TARGET_TYPE (elt_type
);
3012 if (elt_type
->code () != TYPE_CODE_ARRAY
)
3013 error (_("too many subscripts (%d expected)"), k
);
3015 elt
= value_subscript (elt
, pos_atr (ind
[k
]));
3017 if (ada_is_access_to_unconstrained_array (saved_elt_type
)
3018 && value_type (elt
)->code () != TYPE_CODE_TYPEDEF
)
3020 /* The element is a typedef to an unconstrained array,
3021 except that the value_subscript call stripped the
3022 typedef layer. The typedef layer is GNAT's way to
3023 specify that the element is, at the source level, an
3024 access to the unconstrained array, rather than the
3025 unconstrained array. So, we need to restore that
3026 typedef layer, which we can do by forcing the element's
3027 type back to its original type. Otherwise, the returned
3028 value is going to be printed as the array, rather
3029 than as an access. Another symptom of the same issue
3030 would be that an expression trying to dereference the
3031 element would also be improperly rejected. */
3032 deprecated_set_value_type (elt
, saved_elt_type
);
3035 elt_type
= ada_check_typedef (value_type (elt
));
3041 /* Assuming ARR is a pointer to a GDB array, the value of the element
3042 of *ARR at the ARITY indices given in IND.
3043 Does not read the entire array into memory.
3045 Note: Unlike what one would expect, this function is used instead of
3046 ada_value_subscript for basically all non-packed array types. The reason
3047 for this is that a side effect of doing our own pointer arithmetics instead
3048 of relying on value_subscript is that there is no implicit typedef peeling.
3049 This is important for arrays of array accesses, where it allows us to
3050 preserve the fact that the array's element is an array access, where the
3051 access part os encoded in a typedef layer. */
3053 static struct value
*
3054 ada_value_ptr_subscript (struct value
*arr
, int arity
, struct value
**ind
)
3057 struct value
*array_ind
= ada_value_ind (arr
);
3059 = check_typedef (value_enclosing_type (array_ind
));
3061 if (type
->code () == TYPE_CODE_ARRAY
3062 && TYPE_FIELD_BITSIZE (type
, 0) > 0)
3063 return value_subscript_packed (array_ind
, arity
, ind
);
3065 for (k
= 0; k
< arity
; k
+= 1)
3069 if (type
->code () != TYPE_CODE_ARRAY
)
3070 error (_("too many subscripts (%d expected)"), k
);
3071 arr
= value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type
)),
3073 get_discrete_bounds (type
->index_type (), &lwb
, &upb
);
3074 arr
= value_ptradd (arr
, pos_atr (ind
[k
]) - lwb
);
3075 type
= TYPE_TARGET_TYPE (type
);
3078 return value_ind (arr
);
3081 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
3082 actual type of ARRAY_PTR is ignored), returns the Ada slice of
3083 HIGH'Pos-LOW'Pos+1 elements starting at index LOW. The lower bound of
3084 this array is LOW, as per Ada rules. */
3085 static struct value
*
3086 ada_value_slice_from_ptr (struct value
*array_ptr
, struct type
*type
,
3089 struct type
*type0
= ada_check_typedef (type
);
3090 struct type
*base_index_type
= TYPE_TARGET_TYPE (type0
->index_type ());
3091 struct type
*index_type
3092 = create_static_range_type (NULL
, base_index_type
, low
, high
);
3093 struct type
*slice_type
= create_array_type_with_stride
3094 (NULL
, TYPE_TARGET_TYPE (type0
), index_type
,
3095 type0
->dyn_prop (DYN_PROP_BYTE_STRIDE
),
3096 TYPE_FIELD_BITSIZE (type0
, 0));
3097 int base_low
= ada_discrete_type_low_bound (type0
->index_type ());
3098 gdb::optional
<LONGEST
> base_low_pos
, low_pos
;
3101 low_pos
= discrete_position (base_index_type
, low
);
3102 base_low_pos
= discrete_position (base_index_type
, base_low
);
3104 if (!low_pos
.has_value () || !base_low_pos
.has_value ())
3106 warning (_("unable to get positions in slice, use bounds instead"));
3108 base_low_pos
= base_low
;
3111 ULONGEST stride
= TYPE_FIELD_BITSIZE (slice_type
, 0) / 8;
3113 stride
= TYPE_LENGTH (TYPE_TARGET_TYPE (type0
));
3115 base
= value_as_address (array_ptr
) + (*low_pos
- *base_low_pos
) * stride
;
3116 return value_at_lazy (slice_type
, base
);
3120 static struct value
*
3121 ada_value_slice (struct value
*array
, int low
, int high
)
3123 struct type
*type
= ada_check_typedef (value_type (array
));
3124 struct type
*base_index_type
= TYPE_TARGET_TYPE (type
->index_type ());
3125 struct type
*index_type
3126 = create_static_range_type (NULL
, type
->index_type (), low
, high
);
3127 struct type
*slice_type
= create_array_type_with_stride
3128 (NULL
, TYPE_TARGET_TYPE (type
), index_type
,
3129 type
->dyn_prop (DYN_PROP_BYTE_STRIDE
),
3130 TYPE_FIELD_BITSIZE (type
, 0));
3131 gdb::optional
<LONGEST
> low_pos
, high_pos
;
3134 low_pos
= discrete_position (base_index_type
, low
);
3135 high_pos
= discrete_position (base_index_type
, high
);
3137 if (!low_pos
.has_value () || !high_pos
.has_value ())
3139 warning (_("unable to get positions in slice, use bounds instead"));
3144 return value_cast (slice_type
,
3145 value_slice (array
, low
, *high_pos
- *low_pos
+ 1));
3148 /* If type is a record type in the form of a standard GNAT array
3149 descriptor, returns the number of dimensions for type. If arr is a
3150 simple array, returns the number of "array of"s that prefix its
3151 type designation. Otherwise, returns 0. */
3154 ada_array_arity (struct type
*type
)
3161 type
= desc_base_type (type
);
3164 if (type
->code () == TYPE_CODE_STRUCT
)
3165 return desc_arity (desc_bounds_type (type
));
3167 while (type
->code () == TYPE_CODE_ARRAY
)
3170 type
= ada_check_typedef (TYPE_TARGET_TYPE (type
));
3176 /* If TYPE is a record type in the form of a standard GNAT array
3177 descriptor or a simple array type, returns the element type for
3178 TYPE after indexing by NINDICES indices, or by all indices if
3179 NINDICES is -1. Otherwise, returns NULL. */
3182 ada_array_element_type (struct type
*type
, int nindices
)
3184 type
= desc_base_type (type
);
3186 if (type
->code () == TYPE_CODE_STRUCT
)
3189 struct type
*p_array_type
;
3191 p_array_type
= desc_data_target_type (type
);
3193 k
= ada_array_arity (type
);
3197 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
3198 if (nindices
>= 0 && k
> nindices
)
3200 while (k
> 0 && p_array_type
!= NULL
)
3202 p_array_type
= ada_check_typedef (TYPE_TARGET_TYPE (p_array_type
));
3205 return p_array_type
;
3207 else if (type
->code () == TYPE_CODE_ARRAY
)
3209 while (nindices
!= 0 && type
->code () == TYPE_CODE_ARRAY
)
3211 type
= TYPE_TARGET_TYPE (type
);
3212 /* A multi-dimensional array is represented using a sequence
3213 of array types. If one of these types has a name, then
3214 it is not another dimension of the outer array, but
3215 rather the element type of the outermost array. */
3216 if (type
->name () != nullptr)
3226 /* See ada-lang.h. */
3229 ada_index_type (struct type
*type
, int n
, const char *name
)
3231 struct type
*result_type
;
3233 type
= desc_base_type (type
);
3235 if (n
< 0 || n
> ada_array_arity (type
))
3236 error (_("invalid dimension number to '%s"), name
);
3238 if (ada_is_simple_array_type (type
))
3242 for (i
= 1; i
< n
; i
+= 1)
3244 type
= ada_check_typedef (type
);
3245 type
= TYPE_TARGET_TYPE (type
);
3247 result_type
= TYPE_TARGET_TYPE (ada_check_typedef (type
)->index_type ());
3248 /* FIXME: The stabs type r(0,0);bound;bound in an array type
3249 has a target type of TYPE_CODE_UNDEF. We compensate here, but
3250 perhaps stabsread.c would make more sense. */
3251 if (result_type
&& result_type
->code () == TYPE_CODE_UNDEF
)
3256 result_type
= desc_index_type (desc_bounds_type (type
), n
);
3257 if (result_type
== NULL
)
3258 error (_("attempt to take bound of something that is not an array"));
3264 /* Given that arr is an array type, returns the lower bound of the
3265 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
3266 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
3267 array-descriptor type. It works for other arrays with bounds supplied
3268 by run-time quantities other than discriminants. */
3271 ada_array_bound_from_type (struct type
*arr_type
, int n
, int which
)
3273 struct type
*type
, *index_type_desc
, *index_type
;
3276 gdb_assert (which
== 0 || which
== 1);
3278 if (ada_is_constrained_packed_array_type (arr_type
))
3279 arr_type
= decode_constrained_packed_array_type (arr_type
);
3281 if (arr_type
== NULL
|| !ada_is_simple_array_type (arr_type
))
3282 return (LONGEST
) - which
;
3284 if (arr_type
->code () == TYPE_CODE_PTR
)
3285 type
= TYPE_TARGET_TYPE (arr_type
);
3289 if (type
->is_fixed_instance ())
3291 /* The array has already been fixed, so we do not need to
3292 check the parallel ___XA type again. That encoding has
3293 already been applied, so ignore it now. */
3294 index_type_desc
= NULL
;
3298 index_type_desc
= ada_find_parallel_type (type
, "___XA");
3299 ada_fixup_array_indexes_type (index_type_desc
);
3302 if (index_type_desc
!= NULL
)
3303 index_type
= to_fixed_range_type (index_type_desc
->field (n
- 1).type (),
3307 struct type
*elt_type
= check_typedef (type
);
3309 for (i
= 1; i
< n
; i
++)
3310 elt_type
= check_typedef (TYPE_TARGET_TYPE (elt_type
));
3312 index_type
= elt_type
->index_type ();
3316 (LONGEST
) (which
== 0
3317 ? ada_discrete_type_low_bound (index_type
)
3318 : ada_discrete_type_high_bound (index_type
));
3321 /* Given that arr is an array value, returns the lower bound of the
3322 nth index (numbering from 1) if WHICH is 0, and the upper bound if
3323 WHICH is 1. This routine will also work for arrays with bounds
3324 supplied by run-time quantities other than discriminants. */
3327 ada_array_bound (struct value
*arr
, int n
, int which
)
3329 struct type
*arr_type
;
3331 if (check_typedef (value_type (arr
))->code () == TYPE_CODE_PTR
)
3332 arr
= value_ind (arr
);
3333 arr_type
= value_enclosing_type (arr
);
3335 if (ada_is_constrained_packed_array_type (arr_type
))
3336 return ada_array_bound (decode_constrained_packed_array (arr
), n
, which
);
3337 else if (ada_is_simple_array_type (arr_type
))
3338 return ada_array_bound_from_type (arr_type
, n
, which
);
3340 return value_as_long (desc_one_bound (desc_bounds (arr
), n
, which
));
3343 /* Given that arr is an array value, returns the length of the
3344 nth index. This routine will also work for arrays with bounds
3345 supplied by run-time quantities other than discriminants.
3346 Does not work for arrays indexed by enumeration types with representation
3347 clauses at the moment. */
3350 ada_array_length (struct value
*arr
, int n
)
3352 struct type
*arr_type
, *index_type
;
3355 if (check_typedef (value_type (arr
))->code () == TYPE_CODE_PTR
)
3356 arr
= value_ind (arr
);
3357 arr_type
= value_enclosing_type (arr
);
3359 if (ada_is_constrained_packed_array_type (arr_type
))
3360 return ada_array_length (decode_constrained_packed_array (arr
), n
);
3362 if (ada_is_simple_array_type (arr_type
))
3364 low
= ada_array_bound_from_type (arr_type
, n
, 0);
3365 high
= ada_array_bound_from_type (arr_type
, n
, 1);
3369 low
= value_as_long (desc_one_bound (desc_bounds (arr
), n
, 0));
3370 high
= value_as_long (desc_one_bound (desc_bounds (arr
), n
, 1));
3373 arr_type
= check_typedef (arr_type
);
3374 index_type
= ada_index_type (arr_type
, n
, "length");
3375 if (index_type
!= NULL
)
3377 struct type
*base_type
;
3378 if (index_type
->code () == TYPE_CODE_RANGE
)
3379 base_type
= TYPE_TARGET_TYPE (index_type
);
3381 base_type
= index_type
;
3383 low
= pos_atr (value_from_longest (base_type
, low
));
3384 high
= pos_atr (value_from_longest (base_type
, high
));
3386 return high
- low
+ 1;
3389 /* An array whose type is that of ARR_TYPE (an array type), with
3390 bounds LOW to HIGH, but whose contents are unimportant. If HIGH is
3391 less than LOW, then LOW-1 is used. */
3393 static struct value
*
3394 empty_array (struct type
*arr_type
, int low
, int high
)
3396 struct type
*arr_type0
= ada_check_typedef (arr_type
);
3397 struct type
*index_type
3398 = create_static_range_type
3399 (NULL
, TYPE_TARGET_TYPE (arr_type0
->index_type ()), low
,
3400 high
< low
? low
- 1 : high
);
3401 struct type
*elt_type
= ada_array_element_type (arr_type0
, 1);
3403 return allocate_value (create_array_type (NULL
, elt_type
, index_type
));
3407 /* Name resolution */
3409 /* The "decoded" name for the user-definable Ada operator corresponding
3413 ada_decoded_op_name (enum exp_opcode op
)
3417 for (i
= 0; ada_opname_table
[i
].encoded
!= NULL
; i
+= 1)
3419 if (ada_opname_table
[i
].op
== op
)
3420 return ada_opname_table
[i
].decoded
;
3422 error (_("Could not find operator name for opcode"));
3425 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3426 in a listing of choices during disambiguation (see sort_choices, below).
3427 The idea is that overloadings of a subprogram name from the
3428 same package should sort in their source order. We settle for ordering
3429 such symbols by their trailing number (__N or $N). */
3432 encoded_ordered_before (const char *N0
, const char *N1
)
3436 else if (N0
== NULL
)
3442 for (k0
= strlen (N0
) - 1; k0
> 0 && isdigit (N0
[k0
]); k0
-= 1)
3444 for (k1
= strlen (N1
) - 1; k1
> 0 && isdigit (N1
[k1
]); k1
-= 1)
3446 if ((N0
[k0
] == '_' || N0
[k0
] == '$') && N0
[k0
+ 1] != '\000'
3447 && (N1
[k1
] == '_' || N1
[k1
] == '$') && N1
[k1
+ 1] != '\000')
3452 while (N0
[n0
] == '_' && n0
> 0 && N0
[n0
- 1] == '_')
3455 while (N1
[n1
] == '_' && n1
> 0 && N1
[n1
- 1] == '_')
3457 if (n0
== n1
&& strncmp (N0
, N1
, n0
) == 0)
3458 return (atoi (N0
+ k0
+ 1) < atoi (N1
+ k1
+ 1));
3460 return (strcmp (N0
, N1
) < 0);
3464 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3468 sort_choices (struct block_symbol syms
[], int nsyms
)
3472 for (i
= 1; i
< nsyms
; i
+= 1)
3474 struct block_symbol sym
= syms
[i
];
3477 for (j
= i
- 1; j
>= 0; j
-= 1)
3479 if (encoded_ordered_before (syms
[j
].symbol
->linkage_name (),
3480 sym
.symbol
->linkage_name ()))
3482 syms
[j
+ 1] = syms
[j
];
3488 /* Whether GDB should display formals and return types for functions in the
3489 overloads selection menu. */
3490 static bool print_signatures
= true;
3492 /* Print the signature for SYM on STREAM according to the FLAGS options. For
3493 all but functions, the signature is just the name of the symbol. For
3494 functions, this is the name of the function, the list of types for formals
3495 and the return type (if any). */
3498 ada_print_symbol_signature (struct ui_file
*stream
, struct symbol
*sym
,
3499 const struct type_print_options
*flags
)
3501 struct type
*type
= sym
->type ();
3503 gdb_printf (stream
, "%s", sym
->print_name ());
3504 if (!print_signatures
3506 || type
->code () != TYPE_CODE_FUNC
)
3509 if (type
->num_fields () > 0)
3513 gdb_printf (stream
, " (");
3514 for (i
= 0; i
< type
->num_fields (); ++i
)
3517 gdb_printf (stream
, "; ");
3518 ada_print_type (type
->field (i
).type (), NULL
, stream
, -1, 0,
3521 gdb_printf (stream
, ")");
3523 if (TYPE_TARGET_TYPE (type
) != NULL
3524 && TYPE_TARGET_TYPE (type
)->code () != TYPE_CODE_VOID
)
3526 gdb_printf (stream
, " return ");
3527 ada_print_type (TYPE_TARGET_TYPE (type
), NULL
, stream
, -1, 0, flags
);
3531 /* Read and validate a set of numeric choices from the user in the
3532 range 0 .. N_CHOICES-1. Place the results in increasing
3533 order in CHOICES[0 .. N-1], and return N.
3535 The user types choices as a sequence of numbers on one line
3536 separated by blanks, encoding them as follows:
3538 + A choice of 0 means to cancel the selection, throwing an error.
3539 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3540 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3542 The user is not allowed to choose more than MAX_RESULTS values.
3544 ANNOTATION_SUFFIX, if present, is used to annotate the input
3545 prompts (for use with the -f switch). */
3548 get_selections (int *choices
, int n_choices
, int max_results
,
3549 int is_all_choice
, const char *annotation_suffix
)
3554 int first_choice
= is_all_choice
? 2 : 1;
3556 prompt
= getenv ("PS2");
3560 args
= command_line_input (prompt
, annotation_suffix
);
3563 error_no_arg (_("one or more choice numbers"));
3567 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3568 order, as given in args. Choices are validated. */
3574 args
= skip_spaces (args
);
3575 if (*args
== '\0' && n_chosen
== 0)
3576 error_no_arg (_("one or more choice numbers"));
3577 else if (*args
== '\0')
3580 choice
= strtol (args
, &args2
, 10);
3581 if (args
== args2
|| choice
< 0
3582 || choice
> n_choices
+ first_choice
- 1)
3583 error (_("Argument must be choice number"));
3587 error (_("cancelled"));
3589 if (choice
< first_choice
)
3591 n_chosen
= n_choices
;
3592 for (j
= 0; j
< n_choices
; j
+= 1)
3596 choice
-= first_choice
;
3598 for (j
= n_chosen
- 1; j
>= 0 && choice
< choices
[j
]; j
-= 1)
3602 if (j
< 0 || choice
!= choices
[j
])
3606 for (k
= n_chosen
- 1; k
> j
; k
-= 1)
3607 choices
[k
+ 1] = choices
[k
];
3608 choices
[j
+ 1] = choice
;
3613 if (n_chosen
> max_results
)
3614 error (_("Select no more than %d of the above"), max_results
);
3619 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3620 by asking the user (if necessary), returning the number selected,
3621 and setting the first elements of SYMS items. Error if no symbols
3624 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3625 to be re-integrated one of these days. */
3628 user_select_syms (struct block_symbol
*syms
, int nsyms
, int max_results
)
3631 int *chosen
= XALLOCAVEC (int , nsyms
);
3633 int first_choice
= (max_results
== 1) ? 1 : 2;
3634 const char *select_mode
= multiple_symbols_select_mode ();
3636 if (max_results
< 1)
3637 error (_("Request to select 0 symbols!"));
3641 if (select_mode
== multiple_symbols_cancel
)
3643 canceled because the command is ambiguous\n\
3644 See set/show multiple-symbol."));
3646 /* If select_mode is "all", then return all possible symbols.
3647 Only do that if more than one symbol can be selected, of course.
3648 Otherwise, display the menu as usual. */
3649 if (select_mode
== multiple_symbols_all
&& max_results
> 1)
3652 gdb_printf (_("[0] cancel\n"));
3653 if (max_results
> 1)
3654 gdb_printf (_("[1] all\n"));
3656 sort_choices (syms
, nsyms
);
3658 for (i
= 0; i
< nsyms
; i
+= 1)
3660 if (syms
[i
].symbol
== NULL
)
3663 if (syms
[i
].symbol
->aclass () == LOC_BLOCK
)
3665 struct symtab_and_line sal
=
3666 find_function_start_sal (syms
[i
].symbol
, 1);
3668 gdb_printf ("[%d] ", i
+ first_choice
);
3669 ada_print_symbol_signature (gdb_stdout
, syms
[i
].symbol
,
3670 &type_print_raw_options
);
3671 if (sal
.symtab
== NULL
)
3672 gdb_printf (_(" at %p[<no source file available>%p]:%d\n"),
3673 metadata_style
.style ().ptr (), nullptr, sal
.line
);
3677 styled_string (file_name_style
.style (),
3678 symtab_to_filename_for_display (sal
.symtab
)),
3685 (syms
[i
].symbol
->aclass () == LOC_CONST
3686 && syms
[i
].symbol
->type () != NULL
3687 && syms
[i
].symbol
->type ()->code () == TYPE_CODE_ENUM
);
3688 struct symtab
*symtab
= NULL
;
3690 if (syms
[i
].symbol
->is_objfile_owned ())
3691 symtab
= syms
[i
].symbol
->symtab ();
3693 if (syms
[i
].symbol
->line () != 0 && symtab
!= NULL
)
3695 gdb_printf ("[%d] ", i
+ first_choice
);
3696 ada_print_symbol_signature (gdb_stdout
, syms
[i
].symbol
,
3697 &type_print_raw_options
);
3698 gdb_printf (_(" at %s:%d\n"),
3699 symtab_to_filename_for_display (symtab
),
3700 syms
[i
].symbol
->line ());
3702 else if (is_enumeral
3703 && syms
[i
].symbol
->type ()->name () != NULL
)
3705 gdb_printf (("[%d] "), i
+ first_choice
);
3706 ada_print_type (syms
[i
].symbol
->type (), NULL
,
3707 gdb_stdout
, -1, 0, &type_print_raw_options
);
3708 gdb_printf (_("'(%s) (enumeral)\n"),
3709 syms
[i
].symbol
->print_name ());
3713 gdb_printf ("[%d] ", i
+ first_choice
);
3714 ada_print_symbol_signature (gdb_stdout
, syms
[i
].symbol
,
3715 &type_print_raw_options
);
3718 gdb_printf (is_enumeral
3719 ? _(" in %s (enumeral)\n")
3721 symtab_to_filename_for_display (symtab
));
3723 gdb_printf (is_enumeral
3724 ? _(" (enumeral)\n")
3730 n_chosen
= get_selections (chosen
, nsyms
, max_results
, max_results
> 1,
3733 for (i
= 0; i
< n_chosen
; i
+= 1)
3734 syms
[i
] = syms
[chosen
[i
]];
3739 /* See ada-lang.h. */
3742 ada_find_operator_symbol (enum exp_opcode op
, bool parse_completion
,
3743 int nargs
, value
*argvec
[])
3745 if (possible_user_operator_p (op
, argvec
))
3747 std::vector
<struct block_symbol
> candidates
3748 = ada_lookup_symbol_list (ada_decoded_op_name (op
),
3751 int i
= ada_resolve_function (candidates
, argvec
,
3752 nargs
, ada_decoded_op_name (op
), NULL
,
3755 return candidates
[i
];
3760 /* See ada-lang.h. */
3763 ada_resolve_funcall (struct symbol
*sym
, const struct block
*block
,
3764 struct type
*context_type
,
3765 bool parse_completion
,
3766 int nargs
, value
*argvec
[],
3767 innermost_block_tracker
*tracker
)
3769 std::vector
<struct block_symbol
> candidates
3770 = ada_lookup_symbol_list (sym
->linkage_name (), block
, VAR_DOMAIN
);
3773 if (candidates
.size () == 1)
3777 i
= ada_resolve_function
3780 sym
->linkage_name (),
3781 context_type
, parse_completion
);
3783 error (_("Could not find a match for %s"), sym
->print_name ());
3786 tracker
->update (candidates
[i
]);
3787 return candidates
[i
];
3790 /* Resolve a mention of a name where the context type is an
3791 enumeration type. */
3794 ada_resolve_enum (std::vector
<struct block_symbol
> &syms
,
3795 const char *name
, struct type
*context_type
,
3796 bool parse_completion
)
3798 gdb_assert (context_type
->code () == TYPE_CODE_ENUM
);
3799 context_type
= ada_check_typedef (context_type
);
3801 for (int i
= 0; i
< syms
.size (); ++i
)
3803 /* We already know the name matches, so we're just looking for
3804 an element of the correct enum type. */
3805 if (ada_check_typedef (syms
[i
].symbol
->type ()) == context_type
)
3809 error (_("No name '%s' in enumeration type '%s'"), name
,
3810 ada_type_name (context_type
));
3813 /* See ada-lang.h. */
3816 ada_resolve_variable (struct symbol
*sym
, const struct block
*block
,
3817 struct type
*context_type
,
3818 bool parse_completion
,
3820 innermost_block_tracker
*tracker
)
3822 std::vector
<struct block_symbol
> candidates
3823 = ada_lookup_symbol_list (sym
->linkage_name (), block
, VAR_DOMAIN
);
3825 if (std::any_of (candidates
.begin (),
3827 [] (block_symbol
&bsym
)
3829 switch (bsym
.symbol
->aclass ())
3834 case LOC_REGPARM_ADDR
:
3843 /* Types tend to get re-introduced locally, so if there
3844 are any local symbols that are not types, first filter
3848 (candidates
.begin (),
3850 [] (block_symbol
&bsym
)
3852 return bsym
.symbol
->aclass () == LOC_TYPEDEF
;
3857 /* Filter out artificial symbols. */
3860 (candidates
.begin (),
3862 [] (block_symbol
&bsym
)
3864 return bsym
.symbol
->is_artificial ();
3869 if (candidates
.empty ())
3870 error (_("No definition found for %s"), sym
->print_name ());
3871 else if (candidates
.size () == 1)
3873 else if (context_type
!= nullptr
3874 && context_type
->code () == TYPE_CODE_ENUM
)
3875 i
= ada_resolve_enum (candidates
, sym
->linkage_name (), context_type
,
3877 else if (deprocedure_p
&& !is_nonfunction (candidates
))
3879 i
= ada_resolve_function
3880 (candidates
, NULL
, 0,
3881 sym
->linkage_name (),
3882 context_type
, parse_completion
);
3884 error (_("Could not find a match for %s"), sym
->print_name ());
3888 gdb_printf (_("Multiple matches for %s\n"), sym
->print_name ());
3889 user_select_syms (candidates
.data (), candidates
.size (), 1);
3893 tracker
->update (candidates
[i
]);
3894 return candidates
[i
];
3897 /* Return non-zero if formal type FTYPE matches actual type ATYPE. */
3898 /* The term "match" here is rather loose. The match is heuristic and
3902 ada_type_match (struct type
*ftype
, struct type
*atype
)
3904 ftype
= ada_check_typedef (ftype
);
3905 atype
= ada_check_typedef (atype
);
3907 if (ftype
->code () == TYPE_CODE_REF
)
3908 ftype
= TYPE_TARGET_TYPE (ftype
);
3909 if (atype
->code () == TYPE_CODE_REF
)
3910 atype
= TYPE_TARGET_TYPE (atype
);
3912 switch (ftype
->code ())
3915 return ftype
->code () == atype
->code ();
3917 if (atype
->code () != TYPE_CODE_PTR
)
3919 atype
= TYPE_TARGET_TYPE (atype
);
3920 /* This can only happen if the actual argument is 'null'. */
3921 if (atype
->code () == TYPE_CODE_INT
&& TYPE_LENGTH (atype
) == 0)
3923 return ada_type_match (TYPE_TARGET_TYPE (ftype
), atype
);
3925 case TYPE_CODE_ENUM
:
3926 case TYPE_CODE_RANGE
:
3927 switch (atype
->code ())
3930 case TYPE_CODE_ENUM
:
3931 case TYPE_CODE_RANGE
:
3937 case TYPE_CODE_ARRAY
:
3938 return (atype
->code () == TYPE_CODE_ARRAY
3939 || ada_is_array_descriptor_type (atype
));
3941 case TYPE_CODE_STRUCT
:
3942 if (ada_is_array_descriptor_type (ftype
))
3943 return (atype
->code () == TYPE_CODE_ARRAY
3944 || ada_is_array_descriptor_type (atype
));
3946 return (atype
->code () == TYPE_CODE_STRUCT
3947 && !ada_is_array_descriptor_type (atype
));
3949 case TYPE_CODE_UNION
:
3951 return (atype
->code () == ftype
->code ());
3955 /* Return non-zero if the formals of FUNC "sufficiently match" the
3956 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3957 may also be an enumeral, in which case it is treated as a 0-
3958 argument function. */
3961 ada_args_match (struct symbol
*func
, struct value
**actuals
, int n_actuals
)
3964 struct type
*func_type
= func
->type ();
3966 if (func
->aclass () == LOC_CONST
3967 && func_type
->code () == TYPE_CODE_ENUM
)
3968 return (n_actuals
== 0);
3969 else if (func_type
== NULL
|| func_type
->code () != TYPE_CODE_FUNC
)
3972 if (func_type
->num_fields () != n_actuals
)
3975 for (i
= 0; i
< n_actuals
; i
+= 1)
3977 if (actuals
[i
] == NULL
)
3981 struct type
*ftype
= ada_check_typedef (func_type
->field (i
).type ());
3982 struct type
*atype
= ada_check_typedef (value_type (actuals
[i
]));
3984 if (!ada_type_match (ftype
, atype
))
3991 /* False iff function type FUNC_TYPE definitely does not produce a value
3992 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3993 FUNC_TYPE is not a valid function type with a non-null return type
3994 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3997 return_match (struct type
*func_type
, struct type
*context_type
)
3999 struct type
*return_type
;
4001 if (func_type
== NULL
)
4004 if (func_type
->code () == TYPE_CODE_FUNC
)
4005 return_type
= get_base_type (TYPE_TARGET_TYPE (func_type
));
4007 return_type
= get_base_type (func_type
);
4008 if (return_type
== NULL
)
4011 context_type
= get_base_type (context_type
);
4013 if (return_type
->code () == TYPE_CODE_ENUM
)
4014 return context_type
== NULL
|| return_type
== context_type
;
4015 else if (context_type
== NULL
)
4016 return return_type
->code () != TYPE_CODE_VOID
;
4018 return return_type
->code () == context_type
->code ();
4022 /* Returns the index in SYMS that contains the symbol for the
4023 function (if any) that matches the types of the NARGS arguments in
4024 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
4025 that returns that type, then eliminate matches that don't. If
4026 CONTEXT_TYPE is void and there is at least one match that does not
4027 return void, eliminate all matches that do.
4029 Asks the user if there is more than one match remaining. Returns -1
4030 if there is no such symbol or none is selected. NAME is used
4031 solely for messages. May re-arrange and modify SYMS in
4032 the process; the index returned is for the modified vector. */
4035 ada_resolve_function (std::vector
<struct block_symbol
> &syms
,
4036 struct value
**args
, int nargs
,
4037 const char *name
, struct type
*context_type
,
4038 bool parse_completion
)
4042 int m
; /* Number of hits */
4045 /* In the first pass of the loop, we only accept functions matching
4046 context_type. If none are found, we add a second pass of the loop
4047 where every function is accepted. */
4048 for (fallback
= 0; m
== 0 && fallback
< 2; fallback
++)
4050 for (k
= 0; k
< syms
.size (); k
+= 1)
4052 struct type
*type
= ada_check_typedef (syms
[k
].symbol
->type ());
4054 if (ada_args_match (syms
[k
].symbol
, args
, nargs
)
4055 && (fallback
|| return_match (type
, context_type
)))
4063 /* If we got multiple matches, ask the user which one to use. Don't do this
4064 interactive thing during completion, though, as the purpose of the
4065 completion is providing a list of all possible matches. Prompting the
4066 user to filter it down would be completely unexpected in this case. */
4069 else if (m
> 1 && !parse_completion
)
4071 gdb_printf (_("Multiple matches for %s\n"), name
);
4072 user_select_syms (syms
.data (), m
, 1);
4078 /* Type-class predicates */
4080 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
4084 numeric_type_p (struct type
*type
)
4090 switch (type
->code ())
4094 case TYPE_CODE_FIXED_POINT
:
4096 case TYPE_CODE_RANGE
:
4097 return (type
== TYPE_TARGET_TYPE (type
)
4098 || numeric_type_p (TYPE_TARGET_TYPE (type
)));
4105 /* True iff TYPE is integral (an INT or RANGE of INTs). */
4108 integer_type_p (struct type
*type
)
4114 switch (type
->code ())
4118 case TYPE_CODE_RANGE
:
4119 return (type
== TYPE_TARGET_TYPE (type
)
4120 || integer_type_p (TYPE_TARGET_TYPE (type
)));
4127 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
4130 scalar_type_p (struct type
*type
)
4136 switch (type
->code ())
4139 case TYPE_CODE_RANGE
:
4140 case TYPE_CODE_ENUM
:
4142 case TYPE_CODE_FIXED_POINT
:
4150 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
4153 discrete_type_p (struct type
*type
)
4159 switch (type
->code ())
4162 case TYPE_CODE_RANGE
:
4163 case TYPE_CODE_ENUM
:
4164 case TYPE_CODE_BOOL
:
4172 /* Returns non-zero if OP with operands in the vector ARGS could be
4173 a user-defined function. Errs on the side of pre-defined operators
4174 (i.e., result 0). */
4177 possible_user_operator_p (enum exp_opcode op
, struct value
*args
[])
4179 struct type
*type0
=
4180 (args
[0] == NULL
) ? NULL
: ada_check_typedef (value_type (args
[0]));
4181 struct type
*type1
=
4182 (args
[1] == NULL
) ? NULL
: ada_check_typedef (value_type (args
[1]));
4196 return (!(numeric_type_p (type0
) && numeric_type_p (type1
)));
4200 case BINOP_BITWISE_AND
:
4201 case BINOP_BITWISE_IOR
:
4202 case BINOP_BITWISE_XOR
:
4203 return (!(integer_type_p (type0
) && integer_type_p (type1
)));
4206 case BINOP_NOTEQUAL
:
4211 return (!(scalar_type_p (type0
) && scalar_type_p (type1
)));
4214 return !ada_is_array_type (type0
) || !ada_is_array_type (type1
);
4217 return (!(numeric_type_p (type0
) && integer_type_p (type1
)));
4221 case UNOP_LOGICAL_NOT
:
4223 return (!numeric_type_p (type0
));
4232 1. In the following, we assume that a renaming type's name may
4233 have an ___XD suffix. It would be nice if this went away at some
4235 2. We handle both the (old) purely type-based representation of
4236 renamings and the (new) variable-based encoding. At some point,
4237 it is devoutly to be hoped that the former goes away
4238 (FIXME: hilfinger-2007-07-09).
4239 3. Subprogram renamings are not implemented, although the XRS
4240 suffix is recognized (FIXME: hilfinger-2007-07-09). */
4242 /* If SYM encodes a renaming,
4244 <renaming> renames <renamed entity>,
4246 sets *LEN to the length of the renamed entity's name,
4247 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4248 the string describing the subcomponent selected from the renamed
4249 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
4250 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4251 are undefined). Otherwise, returns a value indicating the category
4252 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4253 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4254 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
4255 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4256 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4257 may be NULL, in which case they are not assigned.
4259 [Currently, however, GCC does not generate subprogram renamings.] */
4261 enum ada_renaming_category
4262 ada_parse_renaming (struct symbol
*sym
,
4263 const char **renamed_entity
, int *len
,
4264 const char **renaming_expr
)
4266 enum ada_renaming_category kind
;
4271 return ADA_NOT_RENAMING
;
4272 switch (sym
->aclass ())
4275 return ADA_NOT_RENAMING
;
4279 case LOC_OPTIMIZED_OUT
:
4280 info
= strstr (sym
->linkage_name (), "___XR");
4282 return ADA_NOT_RENAMING
;
4286 kind
= ADA_OBJECT_RENAMING
;
4290 kind
= ADA_EXCEPTION_RENAMING
;
4294 kind
= ADA_PACKAGE_RENAMING
;
4298 kind
= ADA_SUBPROGRAM_RENAMING
;
4302 return ADA_NOT_RENAMING
;
4306 if (renamed_entity
!= NULL
)
4307 *renamed_entity
= info
;
4308 suffix
= strstr (info
, "___XE");
4309 if (suffix
== NULL
|| suffix
== info
)
4310 return ADA_NOT_RENAMING
;
4312 *len
= strlen (info
) - strlen (suffix
);
4314 if (renaming_expr
!= NULL
)
4315 *renaming_expr
= suffix
;
4319 /* Compute the value of the given RENAMING_SYM, which is expected to
4320 be a symbol encoding a renaming expression. BLOCK is the block
4321 used to evaluate the renaming. */
4323 static struct value
*
4324 ada_read_renaming_var_value (struct symbol
*renaming_sym
,
4325 const struct block
*block
)
4327 const char *sym_name
;
4329 sym_name
= renaming_sym
->linkage_name ();
4330 expression_up expr
= parse_exp_1 (&sym_name
, 0, block
, 0);
4331 return evaluate_expression (expr
.get ());
4335 /* Evaluation: Function Calls */
4337 /* Return an lvalue containing the value VAL. This is the identity on
4338 lvalues, and otherwise has the side-effect of allocating memory
4339 in the inferior where a copy of the value contents is copied. */
4341 static struct value
*
4342 ensure_lval (struct value
*val
)
4344 if (VALUE_LVAL (val
) == not_lval
4345 || VALUE_LVAL (val
) == lval_internalvar
)
4347 int len
= TYPE_LENGTH (ada_check_typedef (value_type (val
)));
4348 const CORE_ADDR addr
=
4349 value_as_long (value_allocate_space_in_inferior (len
));
4351 VALUE_LVAL (val
) = lval_memory
;
4352 set_value_address (val
, addr
);
4353 write_memory (addr
, value_contents (val
).data (), len
);
4359 /* Given ARG, a value of type (pointer or reference to a)*
4360 structure/union, extract the component named NAME from the ultimate
4361 target structure/union and return it as a value with its
4364 The routine searches for NAME among all members of the structure itself
4365 and (recursively) among all members of any wrapper members
4368 If NO_ERR, then simply return NULL in case of error, rather than
4371 static struct value
*
4372 ada_value_struct_elt (struct value
*arg
, const char *name
, int no_err
)
4374 struct type
*t
, *t1
;
4379 t1
= t
= ada_check_typedef (value_type (arg
));
4380 if (t
->code () == TYPE_CODE_REF
)
4382 t1
= TYPE_TARGET_TYPE (t
);
4385 t1
= ada_check_typedef (t1
);
4386 if (t1
->code () == TYPE_CODE_PTR
)
4388 arg
= coerce_ref (arg
);
4393 while (t
->code () == TYPE_CODE_PTR
)
4395 t1
= TYPE_TARGET_TYPE (t
);
4398 t1
= ada_check_typedef (t1
);
4399 if (t1
->code () == TYPE_CODE_PTR
)
4401 arg
= value_ind (arg
);
4408 if (t1
->code () != TYPE_CODE_STRUCT
&& t1
->code () != TYPE_CODE_UNION
)
4412 v
= ada_search_struct_field (name
, arg
, 0, t
);
4415 int bit_offset
, bit_size
, byte_offset
;
4416 struct type
*field_type
;
4419 if (t
->code () == TYPE_CODE_PTR
)
4420 address
= value_address (ada_value_ind (arg
));
4422 address
= value_address (ada_coerce_ref (arg
));
4424 /* Check to see if this is a tagged type. We also need to handle
4425 the case where the type is a reference to a tagged type, but
4426 we have to be careful to exclude pointers to tagged types.
4427 The latter should be shown as usual (as a pointer), whereas
4428 a reference should mostly be transparent to the user. */
4430 if (ada_is_tagged_type (t1
, 0)
4431 || (t1
->code () == TYPE_CODE_REF
4432 && ada_is_tagged_type (TYPE_TARGET_TYPE (t1
), 0)))
4434 /* We first try to find the searched field in the current type.
4435 If not found then let's look in the fixed type. */
4437 if (!find_struct_field (name
, t1
, 0,
4438 nullptr, nullptr, nullptr,
4447 /* Convert to fixed type in all cases, so that we have proper
4448 offsets to each field in unconstrained record types. */
4449 t1
= ada_to_fixed_type (ada_get_base_type (t1
), NULL
,
4450 address
, NULL
, check_tag
);
4452 /* Resolve the dynamic type as well. */
4453 arg
= value_from_contents_and_address (t1
, nullptr, address
);
4454 t1
= value_type (arg
);
4456 if (find_struct_field (name
, t1
, 0,
4457 &field_type
, &byte_offset
, &bit_offset
,
4462 if (t
->code () == TYPE_CODE_REF
)
4463 arg
= ada_coerce_ref (arg
);
4465 arg
= ada_value_ind (arg
);
4466 v
= ada_value_primitive_packed_val (arg
, NULL
, byte_offset
,
4467 bit_offset
, bit_size
,
4471 v
= value_at_lazy (field_type
, address
+ byte_offset
);
4475 if (v
!= NULL
|| no_err
)
4478 error (_("There is no member named %s."), name
);
4484 error (_("Attempt to extract a component of "
4485 "a value that is not a record."));
4488 /* Return the value ACTUAL, converted to be an appropriate value for a
4489 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4490 allocating any necessary descriptors (fat pointers), or copies of
4491 values not residing in memory, updating it as needed. */
4494 ada_convert_actual (struct value
*actual
, struct type
*formal_type0
)
4496 struct type
*actual_type
= ada_check_typedef (value_type (actual
));
4497 struct type
*formal_type
= ada_check_typedef (formal_type0
);
4498 struct type
*formal_target
=
4499 formal_type
->code () == TYPE_CODE_PTR
4500 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type
)) : formal_type
;
4501 struct type
*actual_target
=
4502 actual_type
->code () == TYPE_CODE_PTR
4503 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type
)) : actual_type
;
4505 if (ada_is_array_descriptor_type (formal_target
)
4506 && actual_target
->code () == TYPE_CODE_ARRAY
)
4507 return make_array_descriptor (formal_type
, actual
);
4508 else if (formal_type
->code () == TYPE_CODE_PTR
4509 || formal_type
->code () == TYPE_CODE_REF
)
4511 struct value
*result
;
4513 if (formal_target
->code () == TYPE_CODE_ARRAY
4514 && ada_is_array_descriptor_type (actual_target
))
4515 result
= desc_data (actual
);
4516 else if (formal_type
->code () != TYPE_CODE_PTR
)
4518 if (VALUE_LVAL (actual
) != lval_memory
)
4522 actual_type
= ada_check_typedef (value_type (actual
));
4523 val
= allocate_value (actual_type
);
4524 copy (value_contents (actual
), value_contents_raw (val
));
4525 actual
= ensure_lval (val
);
4527 result
= value_addr (actual
);
4531 return value_cast_pointers (formal_type
, result
, 0);
4533 else if (actual_type
->code () == TYPE_CODE_PTR
)
4534 return ada_value_ind (actual
);
4535 else if (ada_is_aligner_type (formal_type
))
4537 /* We need to turn this parameter into an aligner type
4539 struct value
*aligner
= allocate_value (formal_type
);
4540 struct value
*component
= ada_value_struct_elt (aligner
, "F", 0);
4542 value_assign_to_component (aligner
, component
, actual
);
4549 /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4550 type TYPE. This is usually an inefficient no-op except on some targets
4551 (such as AVR) where the representation of a pointer and an address
4555 value_pointer (struct value
*value
, struct type
*type
)
4557 unsigned len
= TYPE_LENGTH (type
);
4558 gdb_byte
*buf
= (gdb_byte
*) alloca (len
);
4561 addr
= value_address (value
);
4562 gdbarch_address_to_pointer (type
->arch (), type
, buf
, addr
);
4563 addr
= extract_unsigned_integer (buf
, len
, type_byte_order (type
));
4568 /* Push a descriptor of type TYPE for array value ARR on the stack at
4569 *SP, updating *SP to reflect the new descriptor. Return either
4570 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4571 to-descriptor type rather than a descriptor type), a struct value *
4572 representing a pointer to this descriptor. */
4574 static struct value
*
4575 make_array_descriptor (struct type
*type
, struct value
*arr
)
4577 struct type
*bounds_type
= desc_bounds_type (type
);
4578 struct type
*desc_type
= desc_base_type (type
);
4579 struct value
*descriptor
= allocate_value (desc_type
);
4580 struct value
*bounds
= allocate_value (bounds_type
);
4583 for (i
= ada_array_arity (ada_check_typedef (value_type (arr
)));
4586 modify_field (value_type (bounds
),
4587 value_contents_writeable (bounds
).data (),
4588 ada_array_bound (arr
, i
, 0),
4589 desc_bound_bitpos (bounds_type
, i
, 0),
4590 desc_bound_bitsize (bounds_type
, i
, 0));
4591 modify_field (value_type (bounds
),
4592 value_contents_writeable (bounds
).data (),
4593 ada_array_bound (arr
, i
, 1),
4594 desc_bound_bitpos (bounds_type
, i
, 1),
4595 desc_bound_bitsize (bounds_type
, i
, 1));
4598 bounds
= ensure_lval (bounds
);
4600 modify_field (value_type (descriptor
),
4601 value_contents_writeable (descriptor
).data (),
4602 value_pointer (ensure_lval (arr
),
4603 desc_type
->field (0).type ()),
4604 fat_pntr_data_bitpos (desc_type
),
4605 fat_pntr_data_bitsize (desc_type
));
4607 modify_field (value_type (descriptor
),
4608 value_contents_writeable (descriptor
).data (),
4609 value_pointer (bounds
,
4610 desc_type
->field (1).type ()),
4611 fat_pntr_bounds_bitpos (desc_type
),
4612 fat_pntr_bounds_bitsize (desc_type
));
4614 descriptor
= ensure_lval (descriptor
);
4616 if (type
->code () == TYPE_CODE_PTR
)
4617 return value_addr (descriptor
);
4622 /* Symbol Cache Module */
4624 /* Performance measurements made as of 2010-01-15 indicate that
4625 this cache does bring some noticeable improvements. Depending
4626 on the type of entity being printed, the cache can make it as much
4627 as an order of magnitude faster than without it.
4629 The descriptive type DWARF extension has significantly reduced
4630 the need for this cache, at least when DWARF is being used. However,
4631 even in this case, some expensive name-based symbol searches are still
4632 sometimes necessary - to find an XVZ variable, mostly. */
4634 /* Return the symbol cache associated to the given program space PSPACE.
4635 If not allocated for this PSPACE yet, allocate and initialize one. */
4637 static struct ada_symbol_cache
*
4638 ada_get_symbol_cache (struct program_space
*pspace
)
4640 struct ada_pspace_data
*pspace_data
= get_ada_pspace_data (pspace
);
4642 if (pspace_data
->sym_cache
== nullptr)
4643 pspace_data
->sym_cache
.reset (new ada_symbol_cache
);
4645 return pspace_data
->sym_cache
.get ();
4648 /* Clear all entries from the symbol cache. */
4651 ada_clear_symbol_cache ()
4653 struct ada_pspace_data
*pspace_data
4654 = get_ada_pspace_data (current_program_space
);
4656 if (pspace_data
->sym_cache
!= nullptr)
4657 pspace_data
->sym_cache
.reset ();
4660 /* Search our cache for an entry matching NAME and DOMAIN.
4661 Return it if found, or NULL otherwise. */
4663 static struct cache_entry
**
4664 find_entry (const char *name
, domain_enum domain
)
4666 struct ada_symbol_cache
*sym_cache
4667 = ada_get_symbol_cache (current_program_space
);
4668 int h
= msymbol_hash (name
) % HASH_SIZE
;
4669 struct cache_entry
**e
;
4671 for (e
= &sym_cache
->root
[h
]; *e
!= NULL
; e
= &(*e
)->next
)
4673 if (domain
== (*e
)->domain
&& strcmp (name
, (*e
)->name
) == 0)
4679 /* Search the symbol cache for an entry matching NAME and DOMAIN.
4680 Return 1 if found, 0 otherwise.
4682 If an entry was found and SYM is not NULL, set *SYM to the entry's
4683 SYM. Same principle for BLOCK if not NULL. */
4686 lookup_cached_symbol (const char *name
, domain_enum domain
,
4687 struct symbol
**sym
, const struct block
**block
)
4689 struct cache_entry
**e
= find_entry (name
, domain
);
4696 *block
= (*e
)->block
;
4700 /* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
4701 in domain DOMAIN, save this result in our symbol cache. */
4704 cache_symbol (const char *name
, domain_enum domain
, struct symbol
*sym
,
4705 const struct block
*block
)
4707 struct ada_symbol_cache
*sym_cache
4708 = ada_get_symbol_cache (current_program_space
);
4710 struct cache_entry
*e
;
4712 /* Symbols for builtin types don't have a block.
4713 For now don't cache such symbols. */
4714 if (sym
!= NULL
&& !sym
->is_objfile_owned ())
4717 /* If the symbol is a local symbol, then do not cache it, as a search
4718 for that symbol depends on the context. To determine whether
4719 the symbol is local or not, we check the block where we found it
4720 against the global and static blocks of its associated symtab. */
4723 const blockvector
&bv
= *sym
->symtab ()->compunit ()->blockvector ();
4725 if (bv
.global_block () != block
&& bv
.static_block () != block
)
4729 h
= msymbol_hash (name
) % HASH_SIZE
;
4730 e
= XOBNEW (&sym_cache
->cache_space
, cache_entry
);
4731 e
->next
= sym_cache
->root
[h
];
4732 sym_cache
->root
[h
] = e
;
4733 e
->name
= obstack_strdup (&sym_cache
->cache_space
, name
);
4741 /* Return the symbol name match type that should be used used when
4742 searching for all symbols matching LOOKUP_NAME.
4744 LOOKUP_NAME is expected to be a symbol name after transformation
4747 static symbol_name_match_type
4748 name_match_type_from_name (const char *lookup_name
)
4750 return (strstr (lookup_name
, "__") == NULL
4751 ? symbol_name_match_type::WILD
4752 : symbol_name_match_type::FULL
);
4755 /* Return the result of a standard (literal, C-like) lookup of NAME in
4756 given DOMAIN, visible from lexical block BLOCK. */
4758 static struct symbol
*
4759 standard_lookup (const char *name
, const struct block
*block
,
4762 /* Initialize it just to avoid a GCC false warning. */
4763 struct block_symbol sym
= {};
4765 if (lookup_cached_symbol (name
, domain
, &sym
.symbol
, NULL
))
4767 ada_lookup_encoded_symbol (name
, block
, domain
, &sym
);
4768 cache_symbol (name
, domain
, sym
.symbol
, sym
.block
);
4773 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4774 in the symbol fields of SYMS. We treat enumerals as functions,
4775 since they contend in overloading in the same way. */
4777 is_nonfunction (const std::vector
<struct block_symbol
> &syms
)
4779 for (const block_symbol
&sym
: syms
)
4780 if (sym
.symbol
->type ()->code () != TYPE_CODE_FUNC
4781 && (sym
.symbol
->type ()->code () != TYPE_CODE_ENUM
4782 || sym
.symbol
->aclass () != LOC_CONST
))
4788 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4789 struct types. Otherwise, they may not. */
4792 equiv_types (struct type
*type0
, struct type
*type1
)
4796 if (type0
== NULL
|| type1
== NULL
4797 || type0
->code () != type1
->code ())
4799 if ((type0
->code () == TYPE_CODE_STRUCT
4800 || type0
->code () == TYPE_CODE_ENUM
)
4801 && ada_type_name (type0
) != NULL
&& ada_type_name (type1
) != NULL
4802 && strcmp (ada_type_name (type0
), ada_type_name (type1
)) == 0)
4808 /* True iff SYM0 represents the same entity as SYM1, or one that is
4809 no more defined than that of SYM1. */
4812 lesseq_defined_than (struct symbol
*sym0
, struct symbol
*sym1
)
4816 if (sym0
->domain () != sym1
->domain ()
4817 || sym0
->aclass () != sym1
->aclass ())
4820 switch (sym0
->aclass ())
4826 struct type
*type0
= sym0
->type ();
4827 struct type
*type1
= sym1
->type ();
4828 const char *name0
= sym0
->linkage_name ();
4829 const char *name1
= sym1
->linkage_name ();
4830 int len0
= strlen (name0
);
4833 type0
->code () == type1
->code ()
4834 && (equiv_types (type0
, type1
)
4835 || (len0
< strlen (name1
) && strncmp (name0
, name1
, len0
) == 0
4836 && startswith (name1
+ len0
, "___XV")));
4839 return sym0
->value_longest () == sym1
->value_longest ()
4840 && equiv_types (sym0
->type (), sym1
->type ());
4844 const char *name0
= sym0
->linkage_name ();
4845 const char *name1
= sym1
->linkage_name ();
4846 return (strcmp (name0
, name1
) == 0
4847 && sym0
->value_address () == sym1
->value_address ());
4855 /* Append (SYM,BLOCK) to the end of the array of struct block_symbol
4856 records in RESULT. Do nothing if SYM is a duplicate. */
4859 add_defn_to_vec (std::vector
<struct block_symbol
> &result
,
4861 const struct block
*block
)
4863 /* Do not try to complete stub types, as the debugger is probably
4864 already scanning all symbols matching a certain name at the
4865 time when this function is called. Trying to replace the stub
4866 type by its associated full type will cause us to restart a scan
4867 which may lead to an infinite recursion. Instead, the client
4868 collecting the matching symbols will end up collecting several
4869 matches, with at least one of them complete. It can then filter
4870 out the stub ones if needed. */
4872 for (int i
= result
.size () - 1; i
>= 0; i
-= 1)
4874 if (lesseq_defined_than (sym
, result
[i
].symbol
))
4876 else if (lesseq_defined_than (result
[i
].symbol
, sym
))
4878 result
[i
].symbol
= sym
;
4879 result
[i
].block
= block
;
4884 struct block_symbol info
;
4887 result
.push_back (info
);
4890 /* Return a bound minimal symbol matching NAME according to Ada
4891 decoding rules. Returns an invalid symbol if there is no such
4892 minimal symbol. Names prefixed with "standard__" are handled
4893 specially: "standard__" is first stripped off, and only static and
4894 global symbols are searched. */
4896 struct bound_minimal_symbol
4897 ada_lookup_simple_minsym (const char *name
)
4899 struct bound_minimal_symbol result
;
4901 symbol_name_match_type match_type
= name_match_type_from_name (name
);
4902 lookup_name_info
lookup_name (name
, match_type
);
4904 symbol_name_matcher_ftype
*match_name
4905 = ada_get_symbol_name_matcher (lookup_name
);
4907 for (objfile
*objfile
: current_program_space
->objfiles ())
4909 for (minimal_symbol
*msymbol
: objfile
->msymbols ())
4911 if (match_name (msymbol
->linkage_name (), lookup_name
, NULL
)
4912 && msymbol
->type () != mst_solib_trampoline
)
4914 result
.minsym
= msymbol
;
4915 result
.objfile
= objfile
;
4924 /* True if TYPE is definitely an artificial type supplied to a symbol
4925 for which no debugging information was given in the symbol file. */
4928 is_nondebugging_type (struct type
*type
)
4930 const char *name
= ada_type_name (type
);
4932 return (name
!= NULL
&& strcmp (name
, "<variable, no debug info>") == 0);
4935 /* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4936 that are deemed "identical" for practical purposes.
4938 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4939 types and that their number of enumerals is identical (in other
4940 words, type1->num_fields () == type2->num_fields ()). */
4943 ada_identical_enum_types_p (struct type
*type1
, struct type
*type2
)
4947 /* The heuristic we use here is fairly conservative. We consider
4948 that 2 enumerate types are identical if they have the same
4949 number of enumerals and that all enumerals have the same
4950 underlying value and name. */
4952 /* All enums in the type should have an identical underlying value. */
4953 for (i
= 0; i
< type1
->num_fields (); i
++)
4954 if (type1
->field (i
).loc_enumval () != type2
->field (i
).loc_enumval ())
4957 /* All enumerals should also have the same name (modulo any numerical
4959 for (i
= 0; i
< type1
->num_fields (); i
++)
4961 const char *name_1
= type1
->field (i
).name ();
4962 const char *name_2
= type2
->field (i
).name ();
4963 int len_1
= strlen (name_1
);
4964 int len_2
= strlen (name_2
);
4966 ada_remove_trailing_digits (type1
->field (i
).name (), &len_1
);
4967 ada_remove_trailing_digits (type2
->field (i
).name (), &len_2
);
4969 || strncmp (type1
->field (i
).name (),
4970 type2
->field (i
).name (),
4978 /* Return nonzero if all the symbols in SYMS are all enumeral symbols
4979 that are deemed "identical" for practical purposes. Sometimes,
4980 enumerals are not strictly identical, but their types are so similar
4981 that they can be considered identical.
4983 For instance, consider the following code:
4985 type Color is (Black, Red, Green, Blue, White);
4986 type RGB_Color is new Color range Red .. Blue;
4988 Type RGB_Color is a subrange of an implicit type which is a copy
4989 of type Color. If we call that implicit type RGB_ColorB ("B" is
4990 for "Base Type"), then type RGB_ColorB is a copy of type Color.
4991 As a result, when an expression references any of the enumeral
4992 by name (Eg. "print green"), the expression is technically
4993 ambiguous and the user should be asked to disambiguate. But
4994 doing so would only hinder the user, since it wouldn't matter
4995 what choice he makes, the outcome would always be the same.
4996 So, for practical purposes, we consider them as the same. */
4999 symbols_are_identical_enums (const std::vector
<struct block_symbol
> &syms
)
5003 /* Before performing a thorough comparison check of each type,
5004 we perform a series of inexpensive checks. We expect that these
5005 checks will quickly fail in the vast majority of cases, and thus
5006 help prevent the unnecessary use of a more expensive comparison.
5007 Said comparison also expects us to make some of these checks
5008 (see ada_identical_enum_types_p). */
5010 /* Quick check: All symbols should have an enum type. */
5011 for (i
= 0; i
< syms
.size (); i
++)
5012 if (syms
[i
].symbol
->type ()->code () != TYPE_CODE_ENUM
)
5015 /* Quick check: They should all have the same value. */
5016 for (i
= 1; i
< syms
.size (); i
++)
5017 if (syms
[i
].symbol
->value_longest () != syms
[0].symbol
->value_longest ())
5020 /* Quick check: They should all have the same number of enumerals. */
5021 for (i
= 1; i
< syms
.size (); i
++)
5022 if (syms
[i
].symbol
->type ()->num_fields ()
5023 != syms
[0].symbol
->type ()->num_fields ())
5026 /* All the sanity checks passed, so we might have a set of
5027 identical enumeration types. Perform a more complete
5028 comparison of the type of each symbol. */
5029 for (i
= 1; i
< syms
.size (); i
++)
5030 if (!ada_identical_enum_types_p (syms
[i
].symbol
->type (),
5031 syms
[0].symbol
->type ()))
5037 /* Remove any non-debugging symbols in SYMS that definitely
5038 duplicate other symbols in the list (The only case I know of where
5039 this happens is when object files containing stabs-in-ecoff are
5040 linked with files containing ordinary ecoff debugging symbols (or no
5041 debugging symbols)). Modifies SYMS to squeeze out deleted entries. */
5044 remove_extra_symbols (std::vector
<struct block_symbol
> *syms
)
5048 /* We should never be called with less than 2 symbols, as there
5049 cannot be any extra symbol in that case. But it's easy to
5050 handle, since we have nothing to do in that case. */
5051 if (syms
->size () < 2)
5055 while (i
< syms
->size ())
5059 /* If two symbols have the same name and one of them is a stub type,
5060 the get rid of the stub. */
5062 if ((*syms
)[i
].symbol
->type ()->is_stub ()
5063 && (*syms
)[i
].symbol
->linkage_name () != NULL
)
5065 for (j
= 0; j
< syms
->size (); j
++)
5068 && !(*syms
)[j
].symbol
->type ()->is_stub ()
5069 && (*syms
)[j
].symbol
->linkage_name () != NULL
5070 && strcmp ((*syms
)[i
].symbol
->linkage_name (),
5071 (*syms
)[j
].symbol
->linkage_name ()) == 0)
5076 /* Two symbols with the same name, same class and same address
5077 should be identical. */
5079 else if ((*syms
)[i
].symbol
->linkage_name () != NULL
5080 && (*syms
)[i
].symbol
->aclass () == LOC_STATIC
5081 && is_nondebugging_type ((*syms
)[i
].symbol
->type ()))
5083 for (j
= 0; j
< syms
->size (); j
+= 1)
5086 && (*syms
)[j
].symbol
->linkage_name () != NULL
5087 && strcmp ((*syms
)[i
].symbol
->linkage_name (),
5088 (*syms
)[j
].symbol
->linkage_name ()) == 0
5089 && ((*syms
)[i
].symbol
->aclass ()
5090 == (*syms
)[j
].symbol
->aclass ())
5091 && (*syms
)[i
].symbol
->value_address ()
5092 == (*syms
)[j
].symbol
->value_address ())
5098 syms
->erase (syms
->begin () + i
);
5103 /* If all the remaining symbols are identical enumerals, then
5104 just keep the first one and discard the rest.
5106 Unlike what we did previously, we do not discard any entry
5107 unless they are ALL identical. This is because the symbol
5108 comparison is not a strict comparison, but rather a practical
5109 comparison. If all symbols are considered identical, then
5110 we can just go ahead and use the first one and discard the rest.
5111 But if we cannot reduce the list to a single element, we have
5112 to ask the user to disambiguate anyways. And if we have to
5113 present a multiple-choice menu, it's less confusing if the list
5114 isn't missing some choices that were identical and yet distinct. */
5115 if (symbols_are_identical_enums (*syms
))
5119 /* Given a type that corresponds to a renaming entity, use the type name
5120 to extract the scope (package name or function name, fully qualified,
5121 and following the GNAT encoding convention) where this renaming has been
5125 xget_renaming_scope (struct type
*renaming_type
)
5127 /* The renaming types adhere to the following convention:
5128 <scope>__<rename>___<XR extension>.
5129 So, to extract the scope, we search for the "___XR" extension,
5130 and then backtrack until we find the first "__". */
5132 const char *name
= renaming_type
->name ();
5133 const char *suffix
= strstr (name
, "___XR");
5136 /* Now, backtrack a bit until we find the first "__". Start looking
5137 at suffix - 3, as the <rename> part is at least one character long. */
5139 for (last
= suffix
- 3; last
> name
; last
--)
5140 if (last
[0] == '_' && last
[1] == '_')
5143 /* Make a copy of scope and return it. */
5144 return std::string (name
, last
);
5147 /* Return nonzero if NAME corresponds to a package name. */
5150 is_package_name (const char *name
)
5152 /* Here, We take advantage of the fact that no symbols are generated
5153 for packages, while symbols are generated for each function.
5154 So the condition for NAME represent a package becomes equivalent
5155 to NAME not existing in our list of symbols. There is only one
5156 small complication with library-level functions (see below). */
5158 /* If it is a function that has not been defined at library level,
5159 then we should be able to look it up in the symbols. */
5160 if (standard_lookup (name
, NULL
, VAR_DOMAIN
) != NULL
)
5163 /* Library-level function names start with "_ada_". See if function
5164 "_ada_" followed by NAME can be found. */
5166 /* Do a quick check that NAME does not contain "__", since library-level
5167 functions names cannot contain "__" in them. */
5168 if (strstr (name
, "__") != NULL
)
5171 std::string fun_name
= string_printf ("_ada_%s", name
);
5173 return (standard_lookup (fun_name
.c_str (), NULL
, VAR_DOMAIN
) == NULL
);
5176 /* Return nonzero if SYM corresponds to a renaming entity that is
5177 not visible from FUNCTION_NAME. */
5180 old_renaming_is_invisible (const struct symbol
*sym
, const char *function_name
)
5182 if (sym
->aclass () != LOC_TYPEDEF
)
5185 std::string scope
= xget_renaming_scope (sym
->type ());
5187 /* If the rename has been defined in a package, then it is visible. */
5188 if (is_package_name (scope
.c_str ()))
5191 /* Check that the rename is in the current function scope by checking
5192 that its name starts with SCOPE. */
5194 /* If the function name starts with "_ada_", it means that it is
5195 a library-level function. Strip this prefix before doing the
5196 comparison, as the encoding for the renaming does not contain
5198 if (startswith (function_name
, "_ada_"))
5201 return !startswith (function_name
, scope
.c_str ());
5204 /* Remove entries from SYMS that corresponds to a renaming entity that
5205 is not visible from the function associated with CURRENT_BLOCK or
5206 that is superfluous due to the presence of more specific renaming
5207 information. Places surviving symbols in the initial entries of
5211 First, in cases where an object renaming is implemented as a
5212 reference variable, GNAT may produce both the actual reference
5213 variable and the renaming encoding. In this case, we discard the
5216 Second, GNAT emits a type following a specified encoding for each renaming
5217 entity. Unfortunately, STABS currently does not support the definition
5218 of types that are local to a given lexical block, so all renamings types
5219 are emitted at library level. As a consequence, if an application
5220 contains two renaming entities using the same name, and a user tries to
5221 print the value of one of these entities, the result of the ada symbol
5222 lookup will also contain the wrong renaming type.
5224 This function partially covers for this limitation by attempting to
5225 remove from the SYMS list renaming symbols that should be visible
5226 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
5227 method with the current information available. The implementation
5228 below has a couple of limitations (FIXME: brobecker-2003-05-12):
5230 - When the user tries to print a rename in a function while there
5231 is another rename entity defined in a package: Normally, the
5232 rename in the function has precedence over the rename in the
5233 package, so the latter should be removed from the list. This is
5234 currently not the case.
5236 - This function will incorrectly remove valid renames if
5237 the CURRENT_BLOCK corresponds to a function which symbol name
5238 has been changed by an "Export" pragma. As a consequence,
5239 the user will be unable to print such rename entities. */
5242 remove_irrelevant_renamings (std::vector
<struct block_symbol
> *syms
,
5243 const struct block
*current_block
)
5245 struct symbol
*current_function
;
5246 const char *current_function_name
;
5248 int is_new_style_renaming
;
5250 /* If there is both a renaming foo___XR... encoded as a variable and
5251 a simple variable foo in the same block, discard the latter.
5252 First, zero out such symbols, then compress. */
5253 is_new_style_renaming
= 0;
5254 for (i
= 0; i
< syms
->size (); i
+= 1)
5256 struct symbol
*sym
= (*syms
)[i
].symbol
;
5257 const struct block
*block
= (*syms
)[i
].block
;
5261 if (sym
== NULL
|| sym
->aclass () == LOC_TYPEDEF
)
5263 name
= sym
->linkage_name ();
5264 suffix
= strstr (name
, "___XR");
5268 int name_len
= suffix
- name
;
5271 is_new_style_renaming
= 1;
5272 for (j
= 0; j
< syms
->size (); j
+= 1)
5273 if (i
!= j
&& (*syms
)[j
].symbol
!= NULL
5274 && strncmp (name
, (*syms
)[j
].symbol
->linkage_name (),
5276 && block
== (*syms
)[j
].block
)
5277 (*syms
)[j
].symbol
= NULL
;
5280 if (is_new_style_renaming
)
5284 for (j
= k
= 0; j
< syms
->size (); j
+= 1)
5285 if ((*syms
)[j
].symbol
!= NULL
)
5287 (*syms
)[k
] = (*syms
)[j
];
5294 /* Extract the function name associated to CURRENT_BLOCK.
5295 Abort if unable to do so. */
5297 if (current_block
== NULL
)
5300 current_function
= block_linkage_function (current_block
);
5301 if (current_function
== NULL
)
5304 current_function_name
= current_function
->linkage_name ();
5305 if (current_function_name
== NULL
)
5308 /* Check each of the symbols, and remove it from the list if it is
5309 a type corresponding to a renaming that is out of the scope of
5310 the current block. */
5313 while (i
< syms
->size ())
5315 if (ada_parse_renaming ((*syms
)[i
].symbol
, NULL
, NULL
, NULL
)
5316 == ADA_OBJECT_RENAMING
5317 && old_renaming_is_invisible ((*syms
)[i
].symbol
,
5318 current_function_name
))
5319 syms
->erase (syms
->begin () + i
);
5325 /* Add to RESULT all symbols from BLOCK (and its super-blocks)
5326 whose name and domain match LOOKUP_NAME and DOMAIN respectively.
5328 Note: This function assumes that RESULT is empty. */
5331 ada_add_local_symbols (std::vector
<struct block_symbol
> &result
,
5332 const lookup_name_info
&lookup_name
,
5333 const struct block
*block
, domain_enum domain
)
5335 while (block
!= NULL
)
5337 ada_add_block_symbols (result
, block
, lookup_name
, domain
, NULL
);
5339 /* If we found a non-function match, assume that's the one. We
5340 only check this when finding a function boundary, so that we
5341 can accumulate all results from intervening blocks first. */
5342 if (block
->function () != nullptr && is_nonfunction (result
))
5345 block
= block
->superblock ();
5349 /* An object of this type is used as the callback argument when
5350 calling the map_matching_symbols method. */
5354 explicit match_data (std::vector
<struct block_symbol
> *rp
)
5358 DISABLE_COPY_AND_ASSIGN (match_data
);
5360 bool operator() (struct block_symbol
*bsym
);
5362 struct objfile
*objfile
= nullptr;
5363 std::vector
<struct block_symbol
> *resultp
;
5364 struct symbol
*arg_sym
= nullptr;
5365 bool found_sym
= false;
5368 /* A callback for add_nonlocal_symbols that adds symbol, found in
5369 BSYM, to a list of symbols. */
5372 match_data::operator() (struct block_symbol
*bsym
)
5374 const struct block
*block
= bsym
->block
;
5375 struct symbol
*sym
= bsym
->symbol
;
5379 if (!found_sym
&& arg_sym
!= NULL
)
5380 add_defn_to_vec (*resultp
,
5381 fixup_symbol_section (arg_sym
, objfile
),
5388 if (sym
->aclass () == LOC_UNRESOLVED
)
5390 else if (sym
->is_argument ())
5395 add_defn_to_vec (*resultp
,
5396 fixup_symbol_section (sym
, objfile
),
5403 /* Helper for add_nonlocal_symbols. Find symbols in DOMAIN which are
5404 targeted by renamings matching LOOKUP_NAME in BLOCK. Add these
5405 symbols to RESULT. Return whether we found such symbols. */
5408 ada_add_block_renamings (std::vector
<struct block_symbol
> &result
,
5409 const struct block
*block
,
5410 const lookup_name_info
&lookup_name
,
5413 struct using_direct
*renaming
;
5414 int defns_mark
= result
.size ();
5416 symbol_name_matcher_ftype
*name_match
5417 = ada_get_symbol_name_matcher (lookup_name
);
5419 for (renaming
= block_using (block
);
5421 renaming
= renaming
->next
)
5425 /* Avoid infinite recursions: skip this renaming if we are actually
5426 already traversing it.
5428 Currently, symbol lookup in Ada don't use the namespace machinery from
5429 C++/Fortran support: skip namespace imports that use them. */
5430 if (renaming
->searched
5431 || (renaming
->import_src
!= NULL
5432 && renaming
->import_src
[0] != '\0')
5433 || (renaming
->import_dest
!= NULL
5434 && renaming
->import_dest
[0] != '\0'))
5436 renaming
->searched
= 1;
5438 /* TODO: here, we perform another name-based symbol lookup, which can
5439 pull its own multiple overloads. In theory, we should be able to do
5440 better in this case since, in DWARF, DW_AT_import is a DIE reference,
5441 not a simple name. But in order to do this, we would need to enhance
5442 the DWARF reader to associate a symbol to this renaming, instead of a
5443 name. So, for now, we do something simpler: re-use the C++/Fortran
5444 namespace machinery. */
5445 r_name
= (renaming
->alias
!= NULL
5447 : renaming
->declaration
);
5448 if (name_match (r_name
, lookup_name
, NULL
))
5450 lookup_name_info
decl_lookup_name (renaming
->declaration
,
5451 lookup_name
.match_type ());
5452 ada_add_all_symbols (result
, block
, decl_lookup_name
, domain
,
5455 renaming
->searched
= 0;
5457 return result
.size () != defns_mark
;
5460 /* Implements compare_names, but only applying the comparision using
5461 the given CASING. */
5464 compare_names_with_case (const char *string1
, const char *string2
,
5465 enum case_sensitivity casing
)
5467 while (*string1
!= '\0' && *string2
!= '\0')
5471 if (isspace (*string1
) || isspace (*string2
))
5472 return strcmp_iw_ordered (string1
, string2
);
5474 if (casing
== case_sensitive_off
)
5476 c1
= tolower (*string1
);
5477 c2
= tolower (*string2
);
5494 return strcmp_iw_ordered (string1
, string2
);
5496 if (*string2
== '\0')
5498 if (is_name_suffix (string1
))
5505 if (*string2
== '(')
5506 return strcmp_iw_ordered (string1
, string2
);
5509 if (casing
== case_sensitive_off
)
5510 return tolower (*string1
) - tolower (*string2
);
5512 return *string1
- *string2
;
5517 /* Compare STRING1 to STRING2, with results as for strcmp.
5518 Compatible with strcmp_iw_ordered in that...
5520 strcmp_iw_ordered (STRING1, STRING2) <= 0
5524 compare_names (STRING1, STRING2) <= 0
5526 (they may differ as to what symbols compare equal). */
5529 compare_names (const char *string1
, const char *string2
)
5533 /* Similar to what strcmp_iw_ordered does, we need to perform
5534 a case-insensitive comparison first, and only resort to
5535 a second, case-sensitive, comparison if the first one was
5536 not sufficient to differentiate the two strings. */
5538 result
= compare_names_with_case (string1
, string2
, case_sensitive_off
);
5540 result
= compare_names_with_case (string1
, string2
, case_sensitive_on
);
5545 /* Convenience function to get at the Ada encoded lookup name for
5546 LOOKUP_NAME, as a C string. */
5549 ada_lookup_name (const lookup_name_info
&lookup_name
)
5551 return lookup_name
.ada ().lookup_name ().c_str ();
5554 /* A helper for add_nonlocal_symbols. Call expand_matching_symbols
5555 for OBJFILE, then walk the objfile's symtabs and update the
5559 map_matching_symbols (struct objfile
*objfile
,
5560 const lookup_name_info
&lookup_name
,
5566 data
.objfile
= objfile
;
5567 objfile
->expand_matching_symbols (lookup_name
, domain
, global
,
5568 is_wild_match
? nullptr : compare_names
);
5570 const int block_kind
= global
? GLOBAL_BLOCK
: STATIC_BLOCK
;
5571 for (compunit_symtab
*symtab
: objfile
->compunits ())
5573 const struct block
*block
5574 = symtab
->blockvector ()->block (block_kind
);
5575 if (!iterate_over_symbols_terminated (block
, lookup_name
,
5581 /* Add to RESULT all non-local symbols whose name and domain match
5582 LOOKUP_NAME and DOMAIN respectively. The search is performed on
5583 GLOBAL_BLOCK symbols if GLOBAL is non-zero, or on STATIC_BLOCK
5584 symbols otherwise. */
5587 add_nonlocal_symbols (std::vector
<struct block_symbol
> &result
,
5588 const lookup_name_info
&lookup_name
,
5589 domain_enum domain
, int global
)
5591 struct match_data
data (&result
);
5593 bool is_wild_match
= lookup_name
.ada ().wild_match_p ();
5595 for (objfile
*objfile
: current_program_space
->objfiles ())
5597 map_matching_symbols (objfile
, lookup_name
, is_wild_match
, domain
,
5600 for (compunit_symtab
*cu
: objfile
->compunits ())
5602 const struct block
*global_block
5603 = cu
->blockvector ()->global_block ();
5605 if (ada_add_block_renamings (result
, global_block
, lookup_name
,
5607 data
.found_sym
= true;
5611 if (result
.empty () && global
&& !is_wild_match
)
5613 const char *name
= ada_lookup_name (lookup_name
);
5614 std::string bracket_name
= std::string ("<_ada_") + name
+ '>';
5615 lookup_name_info
name1 (bracket_name
, symbol_name_match_type::FULL
);
5617 for (objfile
*objfile
: current_program_space
->objfiles ())
5618 map_matching_symbols (objfile
, name1
, false, domain
, global
, data
);
5622 /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if
5623 FULL_SEARCH is non-zero, enclosing scope and in global scopes,
5624 returning the number of matches. Add these to RESULT.
5626 When FULL_SEARCH is non-zero, any non-function/non-enumeral
5627 symbol match within the nest of blocks whose innermost member is BLOCK,
5628 is the one match returned (no other matches in that or
5629 enclosing blocks is returned). If there are any matches in or
5630 surrounding BLOCK, then these alone are returned.
5632 Names prefixed with "standard__" are handled specially:
5633 "standard__" is first stripped off (by the lookup_name
5634 constructor), and only static and global symbols are searched.
5636 If MADE_GLOBAL_LOOKUP_P is non-null, set it before return to whether we had
5637 to lookup global symbols. */
5640 ada_add_all_symbols (std::vector
<struct block_symbol
> &result
,
5641 const struct block
*block
,
5642 const lookup_name_info
&lookup_name
,
5645 int *made_global_lookup_p
)
5649 if (made_global_lookup_p
)
5650 *made_global_lookup_p
= 0;
5652 /* Special case: If the user specifies a symbol name inside package
5653 Standard, do a non-wild matching of the symbol name without
5654 the "standard__" prefix. This was primarily introduced in order
5655 to allow the user to specifically access the standard exceptions
5656 using, for instance, Standard.Constraint_Error when Constraint_Error
5657 is ambiguous (due to the user defining its own Constraint_Error
5658 entity inside its program). */
5659 if (lookup_name
.ada ().standard_p ())
5662 /* Check the non-global symbols. If we have ANY match, then we're done. */
5667 ada_add_local_symbols (result
, lookup_name
, block
, domain
);
5670 /* In the !full_search case we're are being called by
5671 iterate_over_symbols, and we don't want to search
5673 ada_add_block_symbols (result
, block
, lookup_name
, domain
, NULL
);
5675 if (!result
.empty () || !full_search
)
5679 /* No non-global symbols found. Check our cache to see if we have
5680 already performed this search before. If we have, then return
5683 if (lookup_cached_symbol (ada_lookup_name (lookup_name
),
5684 domain
, &sym
, &block
))
5687 add_defn_to_vec (result
, sym
, block
);
5691 if (made_global_lookup_p
)
5692 *made_global_lookup_p
= 1;
5694 /* Search symbols from all global blocks. */
5696 add_nonlocal_symbols (result
, lookup_name
, domain
, 1);
5698 /* Now add symbols from all per-file blocks if we've gotten no hits
5699 (not strictly correct, but perhaps better than an error). */
5701 if (result
.empty ())
5702 add_nonlocal_symbols (result
, lookup_name
, domain
, 0);
5705 /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if FULL_SEARCH
5706 is non-zero, enclosing scope and in global scopes.
5708 Returns (SYM,BLOCK) tuples, indicating the symbols found and the
5709 blocks and symbol tables (if any) in which they were found.
5711 When full_search is non-zero, any non-function/non-enumeral
5712 symbol match within the nest of blocks whose innermost member is BLOCK,
5713 is the one match returned (no other matches in that or
5714 enclosing blocks is returned). If there are any matches in or
5715 surrounding BLOCK, then these alone are returned.
5717 Names prefixed with "standard__" are handled specially: "standard__"
5718 is first stripped off, and only static and global symbols are searched. */
5720 static std::vector
<struct block_symbol
>
5721 ada_lookup_symbol_list_worker (const lookup_name_info
&lookup_name
,
5722 const struct block
*block
,
5726 int syms_from_global_search
;
5727 std::vector
<struct block_symbol
> results
;
5729 ada_add_all_symbols (results
, block
, lookup_name
,
5730 domain
, full_search
, &syms_from_global_search
);
5732 remove_extra_symbols (&results
);
5734 if (results
.empty () && full_search
&& syms_from_global_search
)
5735 cache_symbol (ada_lookup_name (lookup_name
), domain
, NULL
, NULL
);
5737 if (results
.size () == 1 && full_search
&& syms_from_global_search
)
5738 cache_symbol (ada_lookup_name (lookup_name
), domain
,
5739 results
[0].symbol
, results
[0].block
);
5741 remove_irrelevant_renamings (&results
, block
);
5745 /* Find symbols in DOMAIN matching NAME, in BLOCK and enclosing scope and
5746 in global scopes, returning (SYM,BLOCK) tuples.
5748 See ada_lookup_symbol_list_worker for further details. */
5750 std::vector
<struct block_symbol
>
5751 ada_lookup_symbol_list (const char *name
, const struct block
*block
,
5754 symbol_name_match_type name_match_type
= name_match_type_from_name (name
);
5755 lookup_name_info
lookup_name (name
, name_match_type
);
5757 return ada_lookup_symbol_list_worker (lookup_name
, block
, domain
, 1);
5760 /* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5761 to 1, but choosing the first symbol found if there are multiple
5764 The result is stored in *INFO, which must be non-NULL.
5765 If no match is found, INFO->SYM is set to NULL. */
5768 ada_lookup_encoded_symbol (const char *name
, const struct block
*block
,
5770 struct block_symbol
*info
)
5772 /* Since we already have an encoded name, wrap it in '<>' to force a
5773 verbatim match. Otherwise, if the name happens to not look like
5774 an encoded name (because it doesn't include a "__"),
5775 ada_lookup_name_info would re-encode/fold it again, and that
5776 would e.g., incorrectly lowercase object renaming names like
5777 "R28b" -> "r28b". */
5778 std::string verbatim
= add_angle_brackets (name
);
5780 gdb_assert (info
!= NULL
);
5781 *info
= ada_lookup_symbol (verbatim
.c_str (), block
, domain
);
5784 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5785 scope and in global scopes, or NULL if none. NAME is folded and
5786 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
5787 choosing the first symbol if there are multiple choices. */
5790 ada_lookup_symbol (const char *name
, const struct block
*block0
,
5793 std::vector
<struct block_symbol
> candidates
5794 = ada_lookup_symbol_list (name
, block0
, domain
);
5796 if (candidates
.empty ())
5799 block_symbol info
= candidates
[0];
5800 info
.symbol
= fixup_symbol_section (info
.symbol
, NULL
);
5805 /* True iff STR is a possible encoded suffix of a normal Ada name
5806 that is to be ignored for matching purposes. Suffixes of parallel
5807 names (e.g., XVE) are not included here. Currently, the possible suffixes
5808 are given by any of the regular expressions:
5810 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5811 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
5812 TKB [subprogram suffix for task bodies]
5813 _E[0-9]+[bs]$ [protected object entry suffixes]
5814 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
5816 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5817 match is performed. This sequence is used to differentiate homonyms,
5818 is an optional part of a valid name suffix. */
5821 is_name_suffix (const char *str
)
5824 const char *matching
;
5825 const int len
= strlen (str
);
5827 /* Skip optional leading __[0-9]+. */
5829 if (len
> 3 && str
[0] == '_' && str
[1] == '_' && isdigit (str
[2]))
5832 while (isdigit (str
[0]))
5838 if (str
[0] == '.' || str
[0] == '$')
5841 while (isdigit (matching
[0]))
5843 if (matching
[0] == '\0')
5849 if (len
> 3 && str
[0] == '_' && str
[1] == '_' && str
[2] == '_')
5852 while (isdigit (matching
[0]))
5854 if (matching
[0] == '\0')
5858 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5860 if (strcmp (str
, "TKB") == 0)
5864 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
5865 with a N at the end. Unfortunately, the compiler uses the same
5866 convention for other internal types it creates. So treating
5867 all entity names that end with an "N" as a name suffix causes
5868 some regressions. For instance, consider the case of an enumerated
5869 type. To support the 'Image attribute, it creates an array whose
5871 Having a single character like this as a suffix carrying some
5872 information is a bit risky. Perhaps we should change the encoding
5873 to be something like "_N" instead. In the meantime, do not do
5874 the following check. */
5875 /* Protected Object Subprograms */
5876 if (len
== 1 && str
[0] == 'N')
5881 if (len
> 3 && str
[0] == '_' && str
[1] == 'E' && isdigit (str
[2]))
5884 while (isdigit (matching
[0]))
5886 if ((matching
[0] == 'b' || matching
[0] == 's')
5887 && matching
[1] == '\0')
5891 /* ??? We should not modify STR directly, as we are doing below. This
5892 is fine in this case, but may become problematic later if we find
5893 that this alternative did not work, and want to try matching
5894 another one from the begining of STR. Since we modified it, we
5895 won't be able to find the begining of the string anymore! */
5899 while (str
[0] != '_' && str
[0] != '\0')
5901 if (str
[0] != 'n' && str
[0] != 'b')
5907 if (str
[0] == '\000')
5912 if (str
[1] != '_' || str
[2] == '\000')
5916 if (strcmp (str
+ 3, "JM") == 0)
5918 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5919 the LJM suffix in favor of the JM one. But we will
5920 still accept LJM as a valid suffix for a reasonable
5921 amount of time, just to allow ourselves to debug programs
5922 compiled using an older version of GNAT. */
5923 if (strcmp (str
+ 3, "LJM") == 0)
5927 if (str
[4] == 'F' || str
[4] == 'D' || str
[4] == 'B'
5928 || str
[4] == 'U' || str
[4] == 'P')
5930 if (str
[4] == 'R' && str
[5] != 'T')
5934 if (!isdigit (str
[2]))
5936 for (k
= 3; str
[k
] != '\0'; k
+= 1)
5937 if (!isdigit (str
[k
]) && str
[k
] != '_')
5941 if (str
[0] == '$' && isdigit (str
[1]))
5943 for (k
= 2; str
[k
] != '\0'; k
+= 1)
5944 if (!isdigit (str
[k
]) && str
[k
] != '_')
5951 /* Return non-zero if the string starting at NAME and ending before
5952 NAME_END contains no capital letters. */
5955 is_valid_name_for_wild_match (const char *name0
)
5957 std::string decoded_name
= ada_decode (name0
);
5960 /* If the decoded name starts with an angle bracket, it means that
5961 NAME0 does not follow the GNAT encoding format. It should then
5962 not be allowed as a possible wild match. */
5963 if (decoded_name
[0] == '<')
5966 for (i
=0; decoded_name
[i
] != '\0'; i
++)
5967 if (isalpha (decoded_name
[i
]) && !islower (decoded_name
[i
]))
5973 /* Advance *NAMEP to next occurrence in the string NAME0 of the TARGET0
5974 character which could start a simple name. Assumes that *NAMEP points
5975 somewhere inside the string beginning at NAME0. */
5978 advance_wild_match (const char **namep
, const char *name0
, char target0
)
5980 const char *name
= *namep
;
5990 if ((t1
>= 'a' && t1
<= 'z') || (t1
>= '0' && t1
<= '9'))
5993 if (name
== name0
+ 5 && startswith (name0
, "_ada"))
5998 else if (t1
== '_' && ((name
[2] >= 'a' && name
[2] <= 'z')
5999 || name
[2] == target0
))
6004 else if (t1
== '_' && name
[2] == 'B' && name
[3] == '_')
6006 /* Names like "pkg__B_N__name", where N is a number, are
6007 block-local. We can handle these by simply skipping
6014 else if ((t0
>= 'a' && t0
<= 'z') || (t0
>= '0' && t0
<= '9'))
6024 /* Return true iff NAME encodes a name of the form prefix.PATN.
6025 Ignores any informational suffixes of NAME (i.e., for which
6026 is_name_suffix is true). Assumes that PATN is a lower-cased Ada
6030 wild_match (const char *name
, const char *patn
)
6033 const char *name0
= name
;
6035 if (startswith (name
, "___ghost_"))
6040 const char *match
= name
;
6044 for (name
+= 1, p
= patn
+ 1; *p
!= '\0'; name
+= 1, p
+= 1)
6047 if (*p
== '\0' && is_name_suffix (name
))
6048 return match
== name0
|| is_valid_name_for_wild_match (name0
);
6050 if (name
[-1] == '_')
6053 if (!advance_wild_match (&name
, name0
, *patn
))
6058 /* Add symbols from BLOCK matching LOOKUP_NAME in DOMAIN to RESULT (if
6059 necessary). OBJFILE is the section containing BLOCK. */
6062 ada_add_block_symbols (std::vector
<struct block_symbol
> &result
,
6063 const struct block
*block
,
6064 const lookup_name_info
&lookup_name
,
6065 domain_enum domain
, struct objfile
*objfile
)
6067 struct block_iterator iter
;
6068 /* A matching argument symbol, if any. */
6069 struct symbol
*arg_sym
;
6070 /* Set true when we find a matching non-argument symbol. */
6076 for (sym
= block_iter_match_first (block
, lookup_name
, &iter
);
6078 sym
= block_iter_match_next (lookup_name
, &iter
))
6080 if (symbol_matches_domain (sym
->language (), sym
->domain (), domain
))
6082 if (sym
->aclass () != LOC_UNRESOLVED
)
6084 if (sym
->is_argument ())
6089 add_defn_to_vec (result
,
6090 fixup_symbol_section (sym
, objfile
),
6097 /* Handle renamings. */
6099 if (ada_add_block_renamings (result
, block
, lookup_name
, domain
))
6102 if (!found_sym
&& arg_sym
!= NULL
)
6104 add_defn_to_vec (result
,
6105 fixup_symbol_section (arg_sym
, objfile
),
6109 if (!lookup_name
.ada ().wild_match_p ())
6113 const std::string
&ada_lookup_name
= lookup_name
.ada ().lookup_name ();
6114 const char *name
= ada_lookup_name
.c_str ();
6115 size_t name_len
= ada_lookup_name
.size ();
6117 ALL_BLOCK_SYMBOLS (block
, iter
, sym
)
6119 if (symbol_matches_domain (sym
->language (),
6120 sym
->domain (), domain
))
6124 cmp
= (int) '_' - (int) sym
->linkage_name ()[0];
6127 cmp
= !startswith (sym
->linkage_name (), "_ada_");
6129 cmp
= strncmp (name
, sym
->linkage_name () + 5,
6134 && is_name_suffix (sym
->linkage_name () + name_len
+ 5))
6136 if (sym
->aclass () != LOC_UNRESOLVED
)
6138 if (sym
->is_argument ())
6143 add_defn_to_vec (result
,
6144 fixup_symbol_section (sym
, objfile
),
6152 /* NOTE: This really shouldn't be needed for _ada_ symbols.
6153 They aren't parameters, right? */
6154 if (!found_sym
&& arg_sym
!= NULL
)
6156 add_defn_to_vec (result
,
6157 fixup_symbol_section (arg_sym
, objfile
),
6164 /* Symbol Completion */
6169 ada_lookup_name_info::matches
6170 (const char *sym_name
,
6171 symbol_name_match_type match_type
,
6172 completion_match_result
*comp_match_res
) const
6175 const char *text
= m_encoded_name
.c_str ();
6176 size_t text_len
= m_encoded_name
.size ();
6178 /* First, test against the fully qualified name of the symbol. */
6180 if (strncmp (sym_name
, text
, text_len
) == 0)
6183 std::string decoded_name
= ada_decode (sym_name
);
6184 if (match
&& !m_encoded_p
)
6186 /* One needed check before declaring a positive match is to verify
6187 that iff we are doing a verbatim match, the decoded version
6188 of the symbol name starts with '<'. Otherwise, this symbol name
6189 is not a suitable completion. */
6191 bool has_angle_bracket
= (decoded_name
[0] == '<');
6192 match
= (has_angle_bracket
== m_verbatim_p
);
6195 if (match
&& !m_verbatim_p
)
6197 /* When doing non-verbatim match, another check that needs to
6198 be done is to verify that the potentially matching symbol name
6199 does not include capital letters, because the ada-mode would
6200 not be able to understand these symbol names without the
6201 angle bracket notation. */
6204 for (tmp
= sym_name
; *tmp
!= '\0' && !isupper (*tmp
); tmp
++);
6209 /* Second: Try wild matching... */
6211 if (!match
&& m_wild_match_p
)
6213 /* Since we are doing wild matching, this means that TEXT
6214 may represent an unqualified symbol name. We therefore must
6215 also compare TEXT against the unqualified name of the symbol. */
6216 sym_name
= ada_unqualified_name (decoded_name
.c_str ());
6218 if (strncmp (sym_name
, text
, text_len
) == 0)
6222 /* Finally: If we found a match, prepare the result to return. */
6227 if (comp_match_res
!= NULL
)
6229 std::string
&match_str
= comp_match_res
->match
.storage ();
6232 match_str
= ada_decode (sym_name
);
6236 match_str
= add_angle_brackets (sym_name
);
6238 match_str
= sym_name
;
6242 comp_match_res
->set_match (match_str
.c_str ());
6250 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6251 for tagged types. */
6254 ada_is_dispatch_table_ptr_type (struct type
*type
)
6258 if (type
->code () != TYPE_CODE_PTR
)
6261 name
= TYPE_TARGET_TYPE (type
)->name ();
6265 return (strcmp (name
, "ada__tags__dispatch_table") == 0);
6268 /* Return non-zero if TYPE is an interface tag. */
6271 ada_is_interface_tag (struct type
*type
)
6273 const char *name
= type
->name ();
6278 return (strcmp (name
, "ada__tags__interface_tag") == 0);
6281 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
6282 to be invisible to users. */
6285 ada_is_ignored_field (struct type
*type
, int field_num
)
6287 if (field_num
< 0 || field_num
> type
->num_fields ())
6290 /* Check the name of that field. */
6292 const char *name
= type
->field (field_num
).name ();
6294 /* Anonymous field names should not be printed.
6295 brobecker/2007-02-20: I don't think this can actually happen
6296 but we don't want to print the value of anonymous fields anyway. */
6300 /* Normally, fields whose name start with an underscore ("_")
6301 are fields that have been internally generated by the compiler,
6302 and thus should not be printed. The "_parent" field is special,
6303 however: This is a field internally generated by the compiler
6304 for tagged types, and it contains the components inherited from
6305 the parent type. This field should not be printed as is, but
6306 should not be ignored either. */
6307 if (name
[0] == '_' && !startswith (name
, "_parent"))
6310 /* The compiler doesn't document this, but sometimes it emits
6311 a field whose name starts with a capital letter, like 'V148s'.
6312 These aren't marked as artificial in any way, but we know they
6313 should be ignored. However, wrapper fields should not be
6315 if (name
[0] == 'S' || name
[0] == 'R' || name
[0] == 'O')
6317 /* Wrapper field. */
6319 else if (isupper (name
[0]))
6323 /* If this is the dispatch table of a tagged type or an interface tag,
6325 if (ada_is_tagged_type (type
, 1)
6326 && (ada_is_dispatch_table_ptr_type (type
->field (field_num
).type ())
6327 || ada_is_interface_tag (type
->field (field_num
).type ())))
6330 /* Not a special field, so it should not be ignored. */
6334 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
6335 pointer or reference type whose ultimate target has a tag field. */
6338 ada_is_tagged_type (struct type
*type
, int refok
)
6340 return (ada_lookup_struct_elt_type (type
, "_tag", refok
, 1) != NULL
);
6343 /* True iff TYPE represents the type of X'Tag */
6346 ada_is_tag_type (struct type
*type
)
6348 type
= ada_check_typedef (type
);
6350 if (type
== NULL
|| type
->code () != TYPE_CODE_PTR
)
6354 const char *name
= ada_type_name (TYPE_TARGET_TYPE (type
));
6356 return (name
!= NULL
6357 && strcmp (name
, "ada__tags__dispatch_table") == 0);
6361 /* The type of the tag on VAL. */
6363 static struct type
*
6364 ada_tag_type (struct value
*val
)
6366 return ada_lookup_struct_elt_type (value_type (val
), "_tag", 1, 0);
6369 /* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6370 retired at Ada 05). */
6373 is_ada95_tag (struct value
*tag
)
6375 return ada_value_struct_elt (tag
, "tsd", 1) != NULL
;
6378 /* The value of the tag on VAL. */
6380 static struct value
*
6381 ada_value_tag (struct value
*val
)
6383 return ada_value_struct_elt (val
, "_tag", 0);
6386 /* The value of the tag on the object of type TYPE whose contents are
6387 saved at VALADDR, if it is non-null, or is at memory address
6390 static struct value
*
6391 value_tag_from_contents_and_address (struct type
*type
,
6392 const gdb_byte
*valaddr
,
6395 int tag_byte_offset
;
6396 struct type
*tag_type
;
6398 gdb::array_view
<const gdb_byte
> contents
;
6399 if (valaddr
!= nullptr)
6400 contents
= gdb::make_array_view (valaddr
, TYPE_LENGTH (type
));
6401 struct type
*resolved_type
= resolve_dynamic_type (type
, contents
, address
);
6402 if (find_struct_field ("_tag", resolved_type
, 0, &tag_type
, &tag_byte_offset
,
6405 const gdb_byte
*valaddr1
= ((valaddr
== NULL
)
6407 : valaddr
+ tag_byte_offset
);
6408 CORE_ADDR address1
= (address
== 0) ? 0 : address
+ tag_byte_offset
;
6410 return value_from_contents_and_address (tag_type
, valaddr1
, address1
);
6415 static struct type
*
6416 type_from_tag (struct value
*tag
)
6418 gdb::unique_xmalloc_ptr
<char> type_name
= ada_tag_name (tag
);
6420 if (type_name
!= NULL
)
6421 return ada_find_any_type (ada_encode (type_name
.get ()).c_str ());
6425 /* Given a value OBJ of a tagged type, return a value of this
6426 type at the base address of the object. The base address, as
6427 defined in Ada.Tags, it is the address of the primary tag of
6428 the object, and therefore where the field values of its full
6429 view can be fetched. */
6432 ada_tag_value_at_base_address (struct value
*obj
)
6435 LONGEST offset_to_top
= 0;
6436 struct type
*ptr_type
, *obj_type
;
6438 CORE_ADDR base_address
;
6440 obj_type
= value_type (obj
);
6442 /* It is the responsability of the caller to deref pointers. */
6444 if (obj_type
->code () == TYPE_CODE_PTR
|| obj_type
->code () == TYPE_CODE_REF
)
6447 tag
= ada_value_tag (obj
);
6451 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6453 if (is_ada95_tag (tag
))
6456 struct type
*offset_type
6457 = language_lookup_primitive_type (language_def (language_ada
),
6458 target_gdbarch(), "storage_offset");
6459 ptr_type
= lookup_pointer_type (offset_type
);
6460 val
= value_cast (ptr_type
, tag
);
6464 /* It is perfectly possible that an exception be raised while
6465 trying to determine the base address, just like for the tag;
6466 see ada_tag_name for more details. We do not print the error
6467 message for the same reason. */
6471 offset_to_top
= value_as_long (value_ind (value_ptradd (val
, -2)));
6474 catch (const gdb_exception_error
&e
)
6479 /* If offset is null, nothing to do. */
6481 if (offset_to_top
== 0)
6484 /* -1 is a special case in Ada.Tags; however, what should be done
6485 is not quite clear from the documentation. So do nothing for
6488 if (offset_to_top
== -1)
6491 /* Storage_Offset'Last is used to indicate that a dynamic offset to
6492 top is used. In this situation the offset is stored just after
6493 the tag, in the object itself. */
6494 ULONGEST last
= (((ULONGEST
) 1) << (8 * TYPE_LENGTH (offset_type
) - 1)) - 1;
6495 if (offset_to_top
== last
)
6497 struct value
*tem
= value_addr (tag
);
6498 tem
= value_ptradd (tem
, 1);
6499 tem
= value_cast (ptr_type
, tem
);
6500 offset_to_top
= value_as_long (value_ind (tem
));
6503 if (offset_to_top
> 0)
6505 /* OFFSET_TO_TOP used to be a positive value to be subtracted
6506 from the base address. This was however incompatible with
6507 C++ dispatch table: C++ uses a *negative* value to *add*
6508 to the base address. Ada's convention has therefore been
6509 changed in GNAT 19.0w 20171023: since then, C++ and Ada
6510 use the same convention. Here, we support both cases by
6511 checking the sign of OFFSET_TO_TOP. */
6512 offset_to_top
= -offset_to_top
;
6515 base_address
= value_address (obj
) + offset_to_top
;
6516 tag
= value_tag_from_contents_and_address (obj_type
, NULL
, base_address
);
6518 /* Make sure that we have a proper tag at the new address.
6519 Otherwise, offset_to_top is bogus (which can happen when
6520 the object is not initialized yet). */
6525 obj_type
= type_from_tag (tag
);
6530 return value_from_contents_and_address (obj_type
, NULL
, base_address
);
6533 /* Return the "ada__tags__type_specific_data" type. */
6535 static struct type
*
6536 ada_get_tsd_type (struct inferior
*inf
)
6538 struct ada_inferior_data
*data
= get_ada_inferior_data (inf
);
6540 if (data
->tsd_type
== 0)
6541 data
->tsd_type
= ada_find_any_type ("ada__tags__type_specific_data");
6542 return data
->tsd_type
;
6545 /* Return the TSD (type-specific data) associated to the given TAG.
6546 TAG is assumed to be the tag of a tagged-type entity.
6548 May return NULL if we are unable to get the TSD. */
6550 static struct value
*
6551 ada_get_tsd_from_tag (struct value
*tag
)
6556 /* First option: The TSD is simply stored as a field of our TAG.
6557 Only older versions of GNAT would use this format, but we have
6558 to test it first, because there are no visible markers for
6559 the current approach except the absence of that field. */
6561 val
= ada_value_struct_elt (tag
, "tsd", 1);
6565 /* Try the second representation for the dispatch table (in which
6566 there is no explicit 'tsd' field in the referent of the tag pointer,
6567 and instead the tsd pointer is stored just before the dispatch
6570 type
= ada_get_tsd_type (current_inferior());
6573 type
= lookup_pointer_type (lookup_pointer_type (type
));
6574 val
= value_cast (type
, tag
);
6577 return value_ind (value_ptradd (val
, -1));
6580 /* Given the TSD of a tag (type-specific data), return a string
6581 containing the name of the associated type.
6583 May return NULL if we are unable to determine the tag name. */
6585 static gdb::unique_xmalloc_ptr
<char>
6586 ada_tag_name_from_tsd (struct value
*tsd
)
6590 val
= ada_value_struct_elt (tsd
, "expanded_name", 1);
6593 gdb::unique_xmalloc_ptr
<char> buffer
6594 = target_read_string (value_as_address (val
), INT_MAX
);
6595 if (buffer
== nullptr)
6600 /* Let this throw an exception on error. If the data is
6601 uninitialized, we'd rather not have the user see a
6603 const char *folded
= ada_fold_name (buffer
.get (), true);
6604 return make_unique_xstrdup (folded
);
6606 catch (const gdb_exception
&)
6612 /* The type name of the dynamic type denoted by the 'tag value TAG, as
6615 Return NULL if the TAG is not an Ada tag, or if we were unable to
6616 determine the name of that tag. */
6618 gdb::unique_xmalloc_ptr
<char>
6619 ada_tag_name (struct value
*tag
)
6621 gdb::unique_xmalloc_ptr
<char> name
;
6623 if (!ada_is_tag_type (value_type (tag
)))
6626 /* It is perfectly possible that an exception be raised while trying
6627 to determine the TAG's name, even under normal circumstances:
6628 The associated variable may be uninitialized or corrupted, for
6629 instance. We do not let any exception propagate past this point.
6630 instead we return NULL.
6632 We also do not print the error message either (which often is very
6633 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6634 the caller print a more meaningful message if necessary. */
6637 struct value
*tsd
= ada_get_tsd_from_tag (tag
);
6640 name
= ada_tag_name_from_tsd (tsd
);
6642 catch (const gdb_exception_error
&e
)
6649 /* The parent type of TYPE, or NULL if none. */
6652 ada_parent_type (struct type
*type
)
6656 type
= ada_check_typedef (type
);
6658 if (type
== NULL
|| type
->code () != TYPE_CODE_STRUCT
)
6661 for (i
= 0; i
< type
->num_fields (); i
+= 1)
6662 if (ada_is_parent_field (type
, i
))
6664 struct type
*parent_type
= type
->field (i
).type ();
6666 /* If the _parent field is a pointer, then dereference it. */
6667 if (parent_type
->code () == TYPE_CODE_PTR
)
6668 parent_type
= TYPE_TARGET_TYPE (parent_type
);
6669 /* If there is a parallel XVS type, get the actual base type. */
6670 parent_type
= ada_get_base_type (parent_type
);
6672 return ada_check_typedef (parent_type
);
6678 /* True iff field number FIELD_NUM of structure type TYPE contains the
6679 parent-type (inherited) fields of a derived type. Assumes TYPE is
6680 a structure type with at least FIELD_NUM+1 fields. */
6683 ada_is_parent_field (struct type
*type
, int field_num
)
6685 const char *name
= ada_check_typedef (type
)->field (field_num
).name ();
6687 return (name
!= NULL
6688 && (startswith (name
, "PARENT")
6689 || startswith (name
, "_parent")));
6692 /* True iff field number FIELD_NUM of structure type TYPE is a
6693 transparent wrapper field (which should be silently traversed when doing
6694 field selection and flattened when printing). Assumes TYPE is a
6695 structure type with at least FIELD_NUM+1 fields. Such fields are always
6699 ada_is_wrapper_field (struct type
*type
, int field_num
)
6701 const char *name
= type
->field (field_num
).name ();
6703 if (name
!= NULL
&& strcmp (name
, "RETVAL") == 0)
6705 /* This happens in functions with "out" or "in out" parameters
6706 which are passed by copy. For such functions, GNAT describes
6707 the function's return type as being a struct where the return
6708 value is in a field called RETVAL, and where the other "out"
6709 or "in out" parameters are fields of that struct. This is not
6714 return (name
!= NULL
6715 && (startswith (name
, "PARENT")
6716 || strcmp (name
, "REP") == 0
6717 || startswith (name
, "_parent")
6718 || name
[0] == 'S' || name
[0] == 'R' || name
[0] == 'O'));
6721 /* True iff field number FIELD_NUM of structure or union type TYPE
6722 is a variant wrapper. Assumes TYPE is a structure type with at least
6723 FIELD_NUM+1 fields. */
6726 ada_is_variant_part (struct type
*type
, int field_num
)
6728 /* Only Ada types are eligible. */
6729 if (!ADA_TYPE_P (type
))
6732 struct type
*field_type
= type
->field (field_num
).type ();
6734 return (field_type
->code () == TYPE_CODE_UNION
6735 || (is_dynamic_field (type
, field_num
)
6736 && (TYPE_TARGET_TYPE (field_type
)->code ()
6737 == TYPE_CODE_UNION
)));
6740 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
6741 whose discriminants are contained in the record type OUTER_TYPE,
6742 returns the type of the controlling discriminant for the variant.
6743 May return NULL if the type could not be found. */
6746 ada_variant_discrim_type (struct type
*var_type
, struct type
*outer_type
)
6748 const char *name
= ada_variant_discrim_name (var_type
);
6750 return ada_lookup_struct_elt_type (outer_type
, name
, 1, 1);
6753 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
6754 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
6755 represents a 'when others' clause; otherwise 0. */
6758 ada_is_others_clause (struct type
*type
, int field_num
)
6760 const char *name
= type
->field (field_num
).name ();
6762 return (name
!= NULL
&& name
[0] == 'O');
6765 /* Assuming that TYPE0 is the type of the variant part of a record,
6766 returns the name of the discriminant controlling the variant.
6767 The value is valid until the next call to ada_variant_discrim_name. */
6770 ada_variant_discrim_name (struct type
*type0
)
6772 static std::string result
;
6775 const char *discrim_end
;
6776 const char *discrim_start
;
6778 if (type0
->code () == TYPE_CODE_PTR
)
6779 type
= TYPE_TARGET_TYPE (type0
);
6783 name
= ada_type_name (type
);
6785 if (name
== NULL
|| name
[0] == '\000')
6788 for (discrim_end
= name
+ strlen (name
) - 6; discrim_end
!= name
;
6791 if (startswith (discrim_end
, "___XVN"))
6794 if (discrim_end
== name
)
6797 for (discrim_start
= discrim_end
; discrim_start
!= name
+ 3;
6800 if (discrim_start
== name
+ 1)
6802 if ((discrim_start
> name
+ 3
6803 && startswith (discrim_start
- 3, "___"))
6804 || discrim_start
[-1] == '.')
6808 result
= std::string (discrim_start
, discrim_end
- discrim_start
);
6809 return result
.c_str ();
6812 /* Scan STR for a subtype-encoded number, beginning at position K.
6813 Put the position of the character just past the number scanned in
6814 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
6815 Return 1 if there was a valid number at the given position, and 0
6816 otherwise. A "subtype-encoded" number consists of the absolute value
6817 in decimal, followed by the letter 'm' to indicate a negative number.
6818 Assumes 0m does not occur. */
6821 ada_scan_number (const char str
[], int k
, LONGEST
* R
, int *new_k
)
6825 if (!isdigit (str
[k
]))
6828 /* Do it the hard way so as not to make any assumption about
6829 the relationship of unsigned long (%lu scan format code) and
6832 while (isdigit (str
[k
]))
6834 RU
= RU
* 10 + (str
[k
] - '0');
6841 *R
= (-(LONGEST
) (RU
- 1)) - 1;
6847 /* NOTE on the above: Technically, C does not say what the results of
6848 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
6849 number representable as a LONGEST (although either would probably work
6850 in most implementations). When RU>0, the locution in the then branch
6851 above is always equivalent to the negative of RU. */
6858 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
6859 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
6860 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
6863 ada_in_variant (LONGEST val
, struct type
*type
, int field_num
)
6865 const char *name
= type
->field (field_num
).name ();
6879 if (!ada_scan_number (name
, p
+ 1, &W
, &p
))
6889 if (!ada_scan_number (name
, p
+ 1, &L
, &p
)
6890 || name
[p
] != 'T' || !ada_scan_number (name
, p
+ 1, &U
, &p
))
6892 if (val
>= L
&& val
<= U
)
6904 /* FIXME: Lots of redundancy below. Try to consolidate. */
6906 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
6907 ARG_TYPE, extract and return the value of one of its (non-static)
6908 fields. FIELDNO says which field. Differs from value_primitive_field
6909 only in that it can handle packed values of arbitrary type. */
6912 ada_value_primitive_field (struct value
*arg1
, int offset
, int fieldno
,
6913 struct type
*arg_type
)
6917 arg_type
= ada_check_typedef (arg_type
);
6918 type
= arg_type
->field (fieldno
).type ();
6920 /* Handle packed fields. It might be that the field is not packed
6921 relative to its containing structure, but the structure itself is
6922 packed; in this case we must take the bit-field path. */
6923 if (TYPE_FIELD_BITSIZE (arg_type
, fieldno
) != 0 || value_bitpos (arg1
) != 0)
6925 int bit_pos
= arg_type
->field (fieldno
).loc_bitpos ();
6926 int bit_size
= TYPE_FIELD_BITSIZE (arg_type
, fieldno
);
6928 return ada_value_primitive_packed_val (arg1
,
6929 value_contents (arg1
).data (),
6930 offset
+ bit_pos
/ 8,
6931 bit_pos
% 8, bit_size
, type
);
6934 return value_primitive_field (arg1
, offset
, fieldno
, arg_type
);
6937 /* Find field with name NAME in object of type TYPE. If found,
6938 set the following for each argument that is non-null:
6939 - *FIELD_TYPE_P to the field's type;
6940 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
6941 an object of that type;
6942 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
6943 - *BIT_SIZE_P to its size in bits if the field is packed, and
6945 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
6946 fields up to but not including the desired field, or by the total
6947 number of fields if not found. A NULL value of NAME never
6948 matches; the function just counts visible fields in this case.
6950 Notice that we need to handle when a tagged record hierarchy
6951 has some components with the same name, like in this scenario:
6953 type Top_T is tagged record
6959 type Middle_T is new Top.Top_T with record
6960 N : Character := 'a';
6964 type Bottom_T is new Middle.Middle_T with record
6966 C : Character := '5';
6968 A : Character := 'J';
6971 Let's say we now have a variable declared and initialized as follow:
6973 TC : Top_A := new Bottom_T;
6975 And then we use this variable to call this function
6977 procedure Assign (Obj: in out Top_T; TV : Integer);
6981 Assign (Top_T (B), 12);
6983 Now, we're in the debugger, and we're inside that procedure
6984 then and we want to print the value of obj.c:
6986 Usually, the tagged record or one of the parent type owns the
6987 component to print and there's no issue but in this particular
6988 case, what does it mean to ask for Obj.C? Since the actual
6989 type for object is type Bottom_T, it could mean two things: type
6990 component C from the Middle_T view, but also component C from
6991 Bottom_T. So in that "undefined" case, when the component is
6992 not found in the non-resolved type (which includes all the
6993 components of the parent type), then resolve it and see if we
6994 get better luck once expanded.
6996 In the case of homonyms in the derived tagged type, we don't
6997 guaranty anything, and pick the one that's easiest for us
7000 Returns 1 if found, 0 otherwise. */
7003 find_struct_field (const char *name
, struct type
*type
, int offset
,
7004 struct type
**field_type_p
,
7005 int *byte_offset_p
, int *bit_offset_p
, int *bit_size_p
,
7009 int parent_offset
= -1;
7011 type
= ada_check_typedef (type
);
7013 if (field_type_p
!= NULL
)
7014 *field_type_p
= NULL
;
7015 if (byte_offset_p
!= NULL
)
7017 if (bit_offset_p
!= NULL
)
7019 if (bit_size_p
!= NULL
)
7022 for (i
= 0; i
< type
->num_fields (); i
+= 1)
7024 /* These can't be computed using TYPE_FIELD_BITPOS for a dynamic
7025 type. However, we only need the values to be correct when
7026 the caller asks for them. */
7027 int bit_pos
= 0, fld_offset
= 0;
7028 if (byte_offset_p
!= nullptr || bit_offset_p
!= nullptr)
7030 bit_pos
= type
->field (i
).loc_bitpos ();
7031 fld_offset
= offset
+ bit_pos
/ 8;
7034 const char *t_field_name
= type
->field (i
).name ();
7036 if (t_field_name
== NULL
)
7039 else if (ada_is_parent_field (type
, i
))
7041 /* This is a field pointing us to the parent type of a tagged
7042 type. As hinted in this function's documentation, we give
7043 preference to fields in the current record first, so what
7044 we do here is just record the index of this field before
7045 we skip it. If it turns out we couldn't find our field
7046 in the current record, then we'll get back to it and search
7047 inside it whether the field might exist in the parent. */
7053 else if (name
!= NULL
&& field_name_match (t_field_name
, name
))
7055 int bit_size
= TYPE_FIELD_BITSIZE (type
, i
);
7057 if (field_type_p
!= NULL
)
7058 *field_type_p
= type
->field (i
).type ();
7059 if (byte_offset_p
!= NULL
)
7060 *byte_offset_p
= fld_offset
;
7061 if (bit_offset_p
!= NULL
)
7062 *bit_offset_p
= bit_pos
% 8;
7063 if (bit_size_p
!= NULL
)
7064 *bit_size_p
= bit_size
;
7067 else if (ada_is_wrapper_field (type
, i
))
7069 if (find_struct_field (name
, type
->field (i
).type (), fld_offset
,
7070 field_type_p
, byte_offset_p
, bit_offset_p
,
7071 bit_size_p
, index_p
))
7074 else if (ada_is_variant_part (type
, i
))
7076 /* PNH: Wait. Do we ever execute this section, or is ARG always of
7079 struct type
*field_type
7080 = ada_check_typedef (type
->field (i
).type ());
7082 for (j
= 0; j
< field_type
->num_fields (); j
+= 1)
7084 if (find_struct_field (name
, field_type
->field (j
).type (),
7086 + field_type
->field (j
).loc_bitpos () / 8,
7087 field_type_p
, byte_offset_p
,
7088 bit_offset_p
, bit_size_p
, index_p
))
7092 else if (index_p
!= NULL
)
7096 /* Field not found so far. If this is a tagged type which
7097 has a parent, try finding that field in the parent now. */
7099 if (parent_offset
!= -1)
7101 /* As above, only compute the offset when truly needed. */
7102 int fld_offset
= offset
;
7103 if (byte_offset_p
!= nullptr || bit_offset_p
!= nullptr)
7105 int bit_pos
= type
->field (parent_offset
).loc_bitpos ();
7106 fld_offset
+= bit_pos
/ 8;
7109 if (find_struct_field (name
, type
->field (parent_offset
).type (),
7110 fld_offset
, field_type_p
, byte_offset_p
,
7111 bit_offset_p
, bit_size_p
, index_p
))
7118 /* Number of user-visible fields in record type TYPE. */
7121 num_visible_fields (struct type
*type
)
7126 find_struct_field (NULL
, type
, 0, NULL
, NULL
, NULL
, NULL
, &n
);
7130 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
7131 and search in it assuming it has (class) type TYPE.
7132 If found, return value, else return NULL.
7134 Searches recursively through wrapper fields (e.g., '_parent').
7136 In the case of homonyms in the tagged types, please refer to the
7137 long explanation in find_struct_field's function documentation. */
7139 static struct value
*
7140 ada_search_struct_field (const char *name
, struct value
*arg
, int offset
,
7144 int parent_offset
= -1;
7146 type
= ada_check_typedef (type
);
7147 for (i
= 0; i
< type
->num_fields (); i
+= 1)
7149 const char *t_field_name
= type
->field (i
).name ();
7151 if (t_field_name
== NULL
)
7154 else if (ada_is_parent_field (type
, i
))
7156 /* This is a field pointing us to the parent type of a tagged
7157 type. As hinted in this function's documentation, we give
7158 preference to fields in the current record first, so what
7159 we do here is just record the index of this field before
7160 we skip it. If it turns out we couldn't find our field
7161 in the current record, then we'll get back to it and search
7162 inside it whether the field might exist in the parent. */
7168 else if (field_name_match (t_field_name
, name
))
7169 return ada_value_primitive_field (arg
, offset
, i
, type
);
7171 else if (ada_is_wrapper_field (type
, i
))
7173 struct value
*v
= /* Do not let indent join lines here. */
7174 ada_search_struct_field (name
, arg
,
7175 offset
+ type
->field (i
).loc_bitpos () / 8,
7176 type
->field (i
).type ());
7182 else if (ada_is_variant_part (type
, i
))
7184 /* PNH: Do we ever get here? See find_struct_field. */
7186 struct type
*field_type
= ada_check_typedef (type
->field (i
).type ());
7187 int var_offset
= offset
+ type
->field (i
).loc_bitpos () / 8;
7189 for (j
= 0; j
< field_type
->num_fields (); j
+= 1)
7191 struct value
*v
= ada_search_struct_field
/* Force line
7194 var_offset
+ field_type
->field (j
).loc_bitpos () / 8,
7195 field_type
->field (j
).type ());
7203 /* Field not found so far. If this is a tagged type which
7204 has a parent, try finding that field in the parent now. */
7206 if (parent_offset
!= -1)
7208 struct value
*v
= ada_search_struct_field (
7209 name
, arg
, offset
+ type
->field (parent_offset
).loc_bitpos () / 8,
7210 type
->field (parent_offset
).type ());
7219 static struct value
*ada_index_struct_field_1 (int *, struct value
*,
7220 int, struct type
*);
7223 /* Return field #INDEX in ARG, where the index is that returned by
7224 * find_struct_field through its INDEX_P argument. Adjust the address
7225 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
7226 * If found, return value, else return NULL. */
7228 static struct value
*
7229 ada_index_struct_field (int index
, struct value
*arg
, int offset
,
7232 return ada_index_struct_field_1 (&index
, arg
, offset
, type
);
7236 /* Auxiliary function for ada_index_struct_field. Like
7237 * ada_index_struct_field, but takes index from *INDEX_P and modifies
7240 static struct value
*
7241 ada_index_struct_field_1 (int *index_p
, struct value
*arg
, int offset
,
7245 type
= ada_check_typedef (type
);
7247 for (i
= 0; i
< type
->num_fields (); i
+= 1)
7249 if (type
->field (i
).name () == NULL
)
7251 else if (ada_is_wrapper_field (type
, i
))
7253 struct value
*v
= /* Do not let indent join lines here. */
7254 ada_index_struct_field_1 (index_p
, arg
,
7255 offset
+ type
->field (i
).loc_bitpos () / 8,
7256 type
->field (i
).type ());
7262 else if (ada_is_variant_part (type
, i
))
7264 /* PNH: Do we ever get here? See ada_search_struct_field,
7265 find_struct_field. */
7266 error (_("Cannot assign this kind of variant record"));
7268 else if (*index_p
== 0)
7269 return ada_value_primitive_field (arg
, offset
, i
, type
);
7276 /* Return a string representation of type TYPE. */
7279 type_as_string (struct type
*type
)
7281 string_file tmp_stream
;
7283 type_print (type
, "", &tmp_stream
, -1);
7285 return tmp_stream
.release ();
7288 /* Given a type TYPE, look up the type of the component of type named NAME.
7289 If DISPP is non-null, add its byte displacement from the beginning of a
7290 structure (pointed to by a value) of type TYPE to *DISPP (does not
7291 work for packed fields).
7293 Matches any field whose name has NAME as a prefix, possibly
7296 TYPE can be either a struct or union. If REFOK, TYPE may also
7297 be a (pointer or reference)+ to a struct or union, and the
7298 ultimate target type will be searched.
7300 Looks recursively into variant clauses and parent types.
7302 In the case of homonyms in the tagged types, please refer to the
7303 long explanation in find_struct_field's function documentation.
7305 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7306 TYPE is not a type of the right kind. */
7308 static struct type
*
7309 ada_lookup_struct_elt_type (struct type
*type
, const char *name
, int refok
,
7313 int parent_offset
= -1;
7318 if (refok
&& type
!= NULL
)
7321 type
= ada_check_typedef (type
);
7322 if (type
->code () != TYPE_CODE_PTR
&& type
->code () != TYPE_CODE_REF
)
7324 type
= TYPE_TARGET_TYPE (type
);
7328 || (type
->code () != TYPE_CODE_STRUCT
7329 && type
->code () != TYPE_CODE_UNION
))
7334 error (_("Type %s is not a structure or union type"),
7335 type
!= NULL
? type_as_string (type
).c_str () : _("(null)"));
7338 type
= to_static_fixed_type (type
);
7340 for (i
= 0; i
< type
->num_fields (); i
+= 1)
7342 const char *t_field_name
= type
->field (i
).name ();
7345 if (t_field_name
== NULL
)
7348 else if (ada_is_parent_field (type
, i
))
7350 /* This is a field pointing us to the parent type of a tagged
7351 type. As hinted in this function's documentation, we give
7352 preference to fields in the current record first, so what
7353 we do here is just record the index of this field before
7354 we skip it. If it turns out we couldn't find our field
7355 in the current record, then we'll get back to it and search
7356 inside it whether the field might exist in the parent. */
7362 else if (field_name_match (t_field_name
, name
))
7363 return type
->field (i
).type ();
7365 else if (ada_is_wrapper_field (type
, i
))
7367 t
= ada_lookup_struct_elt_type (type
->field (i
).type (), name
,
7373 else if (ada_is_variant_part (type
, i
))
7376 struct type
*field_type
= ada_check_typedef (type
->field (i
).type ());
7378 for (j
= field_type
->num_fields () - 1; j
>= 0; j
-= 1)
7380 /* FIXME pnh 2008/01/26: We check for a field that is
7381 NOT wrapped in a struct, since the compiler sometimes
7382 generates these for unchecked variant types. Revisit
7383 if the compiler changes this practice. */
7384 const char *v_field_name
= field_type
->field (j
).name ();
7386 if (v_field_name
!= NULL
7387 && field_name_match (v_field_name
, name
))
7388 t
= field_type
->field (j
).type ();
7390 t
= ada_lookup_struct_elt_type (field_type
->field (j
).type (),
7400 /* Field not found so far. If this is a tagged type which
7401 has a parent, try finding that field in the parent now. */
7403 if (parent_offset
!= -1)
7407 t
= ada_lookup_struct_elt_type (type
->field (parent_offset
).type (),
7416 const char *name_str
= name
!= NULL
? name
: _("<null>");
7418 error (_("Type %s has no component named %s"),
7419 type_as_string (type
).c_str (), name_str
);
7425 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7426 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7427 represents an unchecked union (that is, the variant part of a
7428 record that is named in an Unchecked_Union pragma). */
7431 is_unchecked_variant (struct type
*var_type
, struct type
*outer_type
)
7433 const char *discrim_name
= ada_variant_discrim_name (var_type
);
7435 return (ada_lookup_struct_elt_type (outer_type
, discrim_name
, 0, 1) == NULL
);
7439 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7440 within OUTER, determine which variant clause (field number in VAR_TYPE,
7441 numbering from 0) is applicable. Returns -1 if none are. */
7444 ada_which_variant_applies (struct type
*var_type
, struct value
*outer
)
7448 const char *discrim_name
= ada_variant_discrim_name (var_type
);
7449 struct value
*discrim
;
7450 LONGEST discrim_val
;
7452 /* Using plain value_from_contents_and_address here causes problems
7453 because we will end up trying to resolve a type that is currently
7454 being constructed. */
7455 discrim
= ada_value_struct_elt (outer
, discrim_name
, 1);
7456 if (discrim
== NULL
)
7458 discrim_val
= value_as_long (discrim
);
7461 for (i
= 0; i
< var_type
->num_fields (); i
+= 1)
7463 if (ada_is_others_clause (var_type
, i
))
7465 else if (ada_in_variant (discrim_val
, var_type
, i
))
7469 return others_clause
;
7474 /* Dynamic-Sized Records */
7476 /* Strategy: The type ostensibly attached to a value with dynamic size
7477 (i.e., a size that is not statically recorded in the debugging
7478 data) does not accurately reflect the size or layout of the value.
7479 Our strategy is to convert these values to values with accurate,
7480 conventional types that are constructed on the fly. */
7482 /* There is a subtle and tricky problem here. In general, we cannot
7483 determine the size of dynamic records without its data. However,
7484 the 'struct value' data structure, which GDB uses to represent
7485 quantities in the inferior process (the target), requires the size
7486 of the type at the time of its allocation in order to reserve space
7487 for GDB's internal copy of the data. That's why the
7488 'to_fixed_xxx_type' routines take (target) addresses as parameters,
7489 rather than struct value*s.
7491 However, GDB's internal history variables ($1, $2, etc.) are
7492 struct value*s containing internal copies of the data that are not, in
7493 general, the same as the data at their corresponding addresses in
7494 the target. Fortunately, the types we give to these values are all
7495 conventional, fixed-size types (as per the strategy described
7496 above), so that we don't usually have to perform the
7497 'to_fixed_xxx_type' conversions to look at their values.
7498 Unfortunately, there is one exception: if one of the internal
7499 history variables is an array whose elements are unconstrained
7500 records, then we will need to create distinct fixed types for each
7501 element selected. */
7503 /* The upshot of all of this is that many routines take a (type, host
7504 address, target address) triple as arguments to represent a value.
7505 The host address, if non-null, is supposed to contain an internal
7506 copy of the relevant data; otherwise, the program is to consult the
7507 target at the target address. */
7509 /* Assuming that VAL0 represents a pointer value, the result of
7510 dereferencing it. Differs from value_ind in its treatment of
7511 dynamic-sized types. */
7514 ada_value_ind (struct value
*val0
)
7516 struct value
*val
= value_ind (val0
);
7518 if (ada_is_tagged_type (value_type (val
), 0))
7519 val
= ada_tag_value_at_base_address (val
);
7521 return ada_to_fixed_value (val
);
7524 /* The value resulting from dereferencing any "reference to"
7525 qualifiers on VAL0. */
7527 static struct value
*
7528 ada_coerce_ref (struct value
*val0
)
7530 if (value_type (val0
)->code () == TYPE_CODE_REF
)
7532 struct value
*val
= val0
;
7534 val
= coerce_ref (val
);
7536 if (ada_is_tagged_type (value_type (val
), 0))
7537 val
= ada_tag_value_at_base_address (val
);
7539 return ada_to_fixed_value (val
);
7545 /* Return the bit alignment required for field #F of template type TYPE. */
7548 field_alignment (struct type
*type
, int f
)
7550 const char *name
= type
->field (f
).name ();
7554 /* The field name should never be null, unless the debugging information
7555 is somehow malformed. In this case, we assume the field does not
7556 require any alignment. */
7560 len
= strlen (name
);
7562 if (!isdigit (name
[len
- 1]))
7565 if (isdigit (name
[len
- 2]))
7566 align_offset
= len
- 2;
7568 align_offset
= len
- 1;
7570 if (align_offset
< 7 || !startswith (name
+ align_offset
- 6, "___XV"))
7571 return TARGET_CHAR_BIT
;
7573 return atoi (name
+ align_offset
) * TARGET_CHAR_BIT
;
7576 /* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
7578 static struct symbol
*
7579 ada_find_any_type_symbol (const char *name
)
7583 sym
= standard_lookup (name
, get_selected_block (NULL
), VAR_DOMAIN
);
7584 if (sym
!= NULL
&& sym
->aclass () == LOC_TYPEDEF
)
7587 sym
= standard_lookup (name
, NULL
, STRUCT_DOMAIN
);
7591 /* Find a type named NAME. Ignores ambiguity. This routine will look
7592 solely for types defined by debug info, it will not search the GDB
7595 static struct type
*
7596 ada_find_any_type (const char *name
)
7598 struct symbol
*sym
= ada_find_any_type_symbol (name
);
7601 return sym
->type ();
7606 /* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7607 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7608 symbol, in which case it is returned. Otherwise, this looks for
7609 symbols whose name is that of NAME_SYM suffixed with "___XR".
7610 Return symbol if found, and NULL otherwise. */
7613 ada_is_renaming_symbol (struct symbol
*name_sym
)
7615 const char *name
= name_sym
->linkage_name ();
7616 return strstr (name
, "___XR") != NULL
;
7619 /* Because of GNAT encoding conventions, several GDB symbols may match a
7620 given type name. If the type denoted by TYPE0 is to be preferred to
7621 that of TYPE1 for purposes of type printing, return non-zero;
7622 otherwise return 0. */
7625 ada_prefer_type (struct type
*type0
, struct type
*type1
)
7629 else if (type0
== NULL
)
7631 else if (type1
->code () == TYPE_CODE_VOID
)
7633 else if (type0
->code () == TYPE_CODE_VOID
)
7635 else if (type1
->name () == NULL
&& type0
->name () != NULL
)
7637 else if (ada_is_constrained_packed_array_type (type0
))
7639 else if (ada_is_array_descriptor_type (type0
)
7640 && !ada_is_array_descriptor_type (type1
))
7644 const char *type0_name
= type0
->name ();
7645 const char *type1_name
= type1
->name ();
7647 if (type0_name
!= NULL
&& strstr (type0_name
, "___XR") != NULL
7648 && (type1_name
== NULL
|| strstr (type1_name
, "___XR") == NULL
))
7654 /* The name of TYPE, which is its TYPE_NAME. Null if TYPE is
7658 ada_type_name (struct type
*type
)
7662 return type
->name ();
7665 /* Search the list of "descriptive" types associated to TYPE for a type
7666 whose name is NAME. */
7668 static struct type
*
7669 find_parallel_type_by_descriptive_type (struct type
*type
, const char *name
)
7671 struct type
*result
, *tmp
;
7673 if (ada_ignore_descriptive_types_p
)
7676 /* If there no descriptive-type info, then there is no parallel type
7678 if (!HAVE_GNAT_AUX_INFO (type
))
7681 result
= TYPE_DESCRIPTIVE_TYPE (type
);
7682 while (result
!= NULL
)
7684 const char *result_name
= ada_type_name (result
);
7686 if (result_name
== NULL
)
7688 warning (_("unexpected null name on descriptive type"));
7692 /* If the names match, stop. */
7693 if (strcmp (result_name
, name
) == 0)
7696 /* Otherwise, look at the next item on the list, if any. */
7697 if (HAVE_GNAT_AUX_INFO (result
))
7698 tmp
= TYPE_DESCRIPTIVE_TYPE (result
);
7702 /* If not found either, try after having resolved the typedef. */
7707 result
= check_typedef (result
);
7708 if (HAVE_GNAT_AUX_INFO (result
))
7709 result
= TYPE_DESCRIPTIVE_TYPE (result
);
7715 /* If we didn't find a match, see whether this is a packed array. With
7716 older compilers, the descriptive type information is either absent or
7717 irrelevant when it comes to packed arrays so the above lookup fails.
7718 Fall back to using a parallel lookup by name in this case. */
7719 if (result
== NULL
&& ada_is_constrained_packed_array_type (type
))
7720 return ada_find_any_type (name
);
7725 /* Find a parallel type to TYPE with the specified NAME, using the
7726 descriptive type taken from the debugging information, if available,
7727 and otherwise using the (slower) name-based method. */
7729 static struct type
*
7730 ada_find_parallel_type_with_name (struct type
*type
, const char *name
)
7732 struct type
*result
= NULL
;
7734 if (HAVE_GNAT_AUX_INFO (type
))
7735 result
= find_parallel_type_by_descriptive_type (type
, name
);
7737 result
= ada_find_any_type (name
);
7742 /* Same as above, but specify the name of the parallel type by appending
7743 SUFFIX to the name of TYPE. */
7746 ada_find_parallel_type (struct type
*type
, const char *suffix
)
7749 const char *type_name
= ada_type_name (type
);
7752 if (type_name
== NULL
)
7755 len
= strlen (type_name
);
7757 name
= (char *) alloca (len
+ strlen (suffix
) + 1);
7759 strcpy (name
, type_name
);
7760 strcpy (name
+ len
, suffix
);
7762 return ada_find_parallel_type_with_name (type
, name
);
7765 /* If TYPE is a variable-size record type, return the corresponding template
7766 type describing its fields. Otherwise, return NULL. */
7768 static struct type
*
7769 dynamic_template_type (struct type
*type
)
7771 type
= ada_check_typedef (type
);
7773 if (type
== NULL
|| type
->code () != TYPE_CODE_STRUCT
7774 || ada_type_name (type
) == NULL
)
7778 int len
= strlen (ada_type_name (type
));
7780 if (len
> 6 && strcmp (ada_type_name (type
) + len
- 6, "___XVE") == 0)
7783 return ada_find_parallel_type (type
, "___XVE");
7787 /* Assuming that TEMPL_TYPE is a union or struct type, returns
7788 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
7791 is_dynamic_field (struct type
*templ_type
, int field_num
)
7793 const char *name
= templ_type
->field (field_num
).name ();
7796 && templ_type
->field (field_num
).type ()->code () == TYPE_CODE_PTR
7797 && strstr (name
, "___XVL") != NULL
;
7800 /* The index of the variant field of TYPE, or -1 if TYPE does not
7801 represent a variant record type. */
7804 variant_field_index (struct type
*type
)
7808 if (type
== NULL
|| type
->code () != TYPE_CODE_STRUCT
)
7811 for (f
= 0; f
< type
->num_fields (); f
+= 1)
7813 if (ada_is_variant_part (type
, f
))
7819 /* A record type with no fields. */
7821 static struct type
*
7822 empty_record (struct type
*templ
)
7824 struct type
*type
= alloc_type_copy (templ
);
7826 type
->set_code (TYPE_CODE_STRUCT
);
7827 INIT_NONE_SPECIFIC (type
);
7828 type
->set_name ("<empty>");
7829 TYPE_LENGTH (type
) = 0;
7833 /* An ordinary record type (with fixed-length fields) that describes
7834 the value of type TYPE at VALADDR or ADDRESS (see comments at
7835 the beginning of this section) VAL according to GNAT conventions.
7836 DVAL0 should describe the (portion of a) record that contains any
7837 necessary discriminants. It should be NULL if value_type (VAL) is
7838 an outer-level type (i.e., as opposed to a branch of a variant.) A
7839 variant field (unless unchecked) is replaced by a particular branch
7842 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
7843 length are not statically known are discarded. As a consequence,
7844 VALADDR, ADDRESS and DVAL0 are ignored.
7846 NOTE: Limitations: For now, we assume that dynamic fields and
7847 variants occupy whole numbers of bytes. However, they need not be
7851 ada_template_to_fixed_record_type_1 (struct type
*type
,
7852 const gdb_byte
*valaddr
,
7853 CORE_ADDR address
, struct value
*dval0
,
7854 int keep_dynamic_fields
)
7856 struct value
*mark
= value_mark ();
7859 int nfields
, bit_len
;
7865 /* Compute the number of fields in this record type that are going
7866 to be processed: unless keep_dynamic_fields, this includes only
7867 fields whose position and length are static will be processed. */
7868 if (keep_dynamic_fields
)
7869 nfields
= type
->num_fields ();
7873 while (nfields
< type
->num_fields ()
7874 && !ada_is_variant_part (type
, nfields
)
7875 && !is_dynamic_field (type
, nfields
))
7879 rtype
= alloc_type_copy (type
);
7880 rtype
->set_code (TYPE_CODE_STRUCT
);
7881 INIT_NONE_SPECIFIC (rtype
);
7882 rtype
->set_num_fields (nfields
);
7884 ((struct field
*) TYPE_ZALLOC (rtype
, nfields
* sizeof (struct field
)));
7885 rtype
->set_name (ada_type_name (type
));
7886 rtype
->set_is_fixed_instance (true);
7892 for (f
= 0; f
< nfields
; f
+= 1)
7894 off
= align_up (off
, field_alignment (type
, f
))
7895 + type
->field (f
).loc_bitpos ();
7896 rtype
->field (f
).set_loc_bitpos (off
);
7897 TYPE_FIELD_BITSIZE (rtype
, f
) = 0;
7899 if (ada_is_variant_part (type
, f
))
7904 else if (is_dynamic_field (type
, f
))
7906 const gdb_byte
*field_valaddr
= valaddr
;
7907 CORE_ADDR field_address
= address
;
7908 struct type
*field_type
=
7909 TYPE_TARGET_TYPE (type
->field (f
).type ());
7913 /* Using plain value_from_contents_and_address here
7914 causes problems because we will end up trying to
7915 resolve a type that is currently being
7917 dval
= value_from_contents_and_address_unresolved (rtype
,
7920 rtype
= value_type (dval
);
7925 /* If the type referenced by this field is an aligner type, we need
7926 to unwrap that aligner type, because its size might not be set.
7927 Keeping the aligner type would cause us to compute the wrong
7928 size for this field, impacting the offset of the all the fields
7929 that follow this one. */
7930 if (ada_is_aligner_type (field_type
))
7932 long field_offset
= type
->field (f
).loc_bitpos ();
7934 field_valaddr
= cond_offset_host (field_valaddr
, field_offset
);
7935 field_address
= cond_offset_target (field_address
, field_offset
);
7936 field_type
= ada_aligned_type (field_type
);
7939 field_valaddr
= cond_offset_host (field_valaddr
,
7940 off
/ TARGET_CHAR_BIT
);
7941 field_address
= cond_offset_target (field_address
,
7942 off
/ TARGET_CHAR_BIT
);
7944 /* Get the fixed type of the field. Note that, in this case,
7945 we do not want to get the real type out of the tag: if
7946 the current field is the parent part of a tagged record,
7947 we will get the tag of the object. Clearly wrong: the real
7948 type of the parent is not the real type of the child. We
7949 would end up in an infinite loop. */
7950 field_type
= ada_get_base_type (field_type
);
7951 field_type
= ada_to_fixed_type (field_type
, field_valaddr
,
7952 field_address
, dval
, 0);
7954 rtype
->field (f
).set_type (field_type
);
7955 rtype
->field (f
).set_name (type
->field (f
).name ());
7956 /* The multiplication can potentially overflow. But because
7957 the field length has been size-checked just above, and
7958 assuming that the maximum size is a reasonable value,
7959 an overflow should not happen in practice. So rather than
7960 adding overflow recovery code to this already complex code,
7961 we just assume that it's not going to happen. */
7963 TYPE_LENGTH (rtype
->field (f
).type ()) * TARGET_CHAR_BIT
;
7967 /* Note: If this field's type is a typedef, it is important
7968 to preserve the typedef layer.
7970 Otherwise, we might be transforming a typedef to a fat
7971 pointer (encoding a pointer to an unconstrained array),
7972 into a basic fat pointer (encoding an unconstrained
7973 array). As both types are implemented using the same
7974 structure, the typedef is the only clue which allows us
7975 to distinguish between the two options. Stripping it
7976 would prevent us from printing this field appropriately. */
7977 rtype
->field (f
).set_type (type
->field (f
).type ());
7978 rtype
->field (f
).set_name (type
->field (f
).name ());
7979 if (TYPE_FIELD_BITSIZE (type
, f
) > 0)
7981 TYPE_FIELD_BITSIZE (rtype
, f
) = TYPE_FIELD_BITSIZE (type
, f
);
7984 struct type
*field_type
= type
->field (f
).type ();
7986 /* We need to be careful of typedefs when computing
7987 the length of our field. If this is a typedef,
7988 get the length of the target type, not the length
7990 if (field_type
->code () == TYPE_CODE_TYPEDEF
)
7991 field_type
= ada_typedef_target_type (field_type
);
7994 TYPE_LENGTH (ada_check_typedef (field_type
)) * TARGET_CHAR_BIT
;
7997 if (off
+ fld_bit_len
> bit_len
)
7998 bit_len
= off
+ fld_bit_len
;
8000 TYPE_LENGTH (rtype
) =
8001 align_up (bit_len
, TARGET_CHAR_BIT
) / TARGET_CHAR_BIT
;
8004 /* We handle the variant part, if any, at the end because of certain
8005 odd cases in which it is re-ordered so as NOT to be the last field of
8006 the record. This can happen in the presence of representation
8008 if (variant_field
>= 0)
8010 struct type
*branch_type
;
8012 off
= rtype
->field (variant_field
).loc_bitpos ();
8016 /* Using plain value_from_contents_and_address here causes
8017 problems because we will end up trying to resolve a type
8018 that is currently being constructed. */
8019 dval
= value_from_contents_and_address_unresolved (rtype
, valaddr
,
8021 rtype
= value_type (dval
);
8027 to_fixed_variant_branch_type
8028 (type
->field (variant_field
).type (),
8029 cond_offset_host (valaddr
, off
/ TARGET_CHAR_BIT
),
8030 cond_offset_target (address
, off
/ TARGET_CHAR_BIT
), dval
);
8031 if (branch_type
== NULL
)
8033 for (f
= variant_field
+ 1; f
< rtype
->num_fields (); f
+= 1)
8034 rtype
->field (f
- 1) = rtype
->field (f
);
8035 rtype
->set_num_fields (rtype
->num_fields () - 1);
8039 rtype
->field (variant_field
).set_type (branch_type
);
8040 rtype
->field (variant_field
).set_name ("S");
8042 TYPE_LENGTH (rtype
->field (variant_field
).type ()) *
8044 if (off
+ fld_bit_len
> bit_len
)
8045 bit_len
= off
+ fld_bit_len
;
8046 TYPE_LENGTH (rtype
) =
8047 align_up (bit_len
, TARGET_CHAR_BIT
) / TARGET_CHAR_BIT
;
8051 /* According to exp_dbug.ads, the size of TYPE for variable-size records
8052 should contain the alignment of that record, which should be a strictly
8053 positive value. If null or negative, then something is wrong, most
8054 probably in the debug info. In that case, we don't round up the size
8055 of the resulting type. If this record is not part of another structure,
8056 the current RTYPE length might be good enough for our purposes. */
8057 if (TYPE_LENGTH (type
) <= 0)
8060 warning (_("Invalid type size for `%s' detected: %s."),
8061 rtype
->name (), pulongest (TYPE_LENGTH (type
)));
8063 warning (_("Invalid type size for <unnamed> detected: %s."),
8064 pulongest (TYPE_LENGTH (type
)));
8068 TYPE_LENGTH (rtype
) = align_up (TYPE_LENGTH (rtype
),
8069 TYPE_LENGTH (type
));
8072 value_free_to_mark (mark
);
8076 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8079 static struct type
*
8080 template_to_fixed_record_type (struct type
*type
, const gdb_byte
*valaddr
,
8081 CORE_ADDR address
, struct value
*dval0
)
8083 return ada_template_to_fixed_record_type_1 (type
, valaddr
,
8087 /* An ordinary record type in which ___XVL-convention fields and
8088 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8089 static approximations, containing all possible fields. Uses
8090 no runtime values. Useless for use in values, but that's OK,
8091 since the results are used only for type determinations. Works on both
8092 structs and unions. Representation note: to save space, we memorize
8093 the result of this function in the TYPE_TARGET_TYPE of the
8096 static struct type
*
8097 template_to_static_fixed_type (struct type
*type0
)
8103 /* No need no do anything if the input type is already fixed. */
8104 if (type0
->is_fixed_instance ())
8107 /* Likewise if we already have computed the static approximation. */
8108 if (TYPE_TARGET_TYPE (type0
) != NULL
)
8109 return TYPE_TARGET_TYPE (type0
);
8111 /* Don't clone TYPE0 until we are sure we are going to need a copy. */
8113 nfields
= type0
->num_fields ();
8115 /* Whether or not we cloned TYPE0, cache the result so that we don't do
8116 recompute all over next time. */
8117 TYPE_TARGET_TYPE (type0
) = type
;
8119 for (f
= 0; f
< nfields
; f
+= 1)
8121 struct type
*field_type
= type0
->field (f
).type ();
8122 struct type
*new_type
;
8124 if (is_dynamic_field (type0
, f
))
8126 field_type
= ada_check_typedef (field_type
);
8127 new_type
= to_static_fixed_type (TYPE_TARGET_TYPE (field_type
));
8130 new_type
= static_unwrap_type (field_type
);
8132 if (new_type
!= field_type
)
8134 /* Clone TYPE0 only the first time we get a new field type. */
8137 TYPE_TARGET_TYPE (type0
) = type
= alloc_type_copy (type0
);
8138 type
->set_code (type0
->code ());
8139 INIT_NONE_SPECIFIC (type
);
8140 type
->set_num_fields (nfields
);
8144 TYPE_ALLOC (type
, nfields
* sizeof (struct field
)));
8145 memcpy (fields
, type0
->fields (),
8146 sizeof (struct field
) * nfields
);
8147 type
->set_fields (fields
);
8149 type
->set_name (ada_type_name (type0
));
8150 type
->set_is_fixed_instance (true);
8151 TYPE_LENGTH (type
) = 0;
8153 type
->field (f
).set_type (new_type
);
8154 type
->field (f
).set_name (type0
->field (f
).name ());
8161 /* Given an object of type TYPE whose contents are at VALADDR and
8162 whose address in memory is ADDRESS, returns a revision of TYPE,
8163 which should be a non-dynamic-sized record, in which the variant
8164 part, if any, is replaced with the appropriate branch. Looks
8165 for discriminant values in DVAL0, which can be NULL if the record
8166 contains the necessary discriminant values. */
8168 static struct type
*
8169 to_record_with_fixed_variant_part (struct type
*type
, const gdb_byte
*valaddr
,
8170 CORE_ADDR address
, struct value
*dval0
)
8172 struct value
*mark
= value_mark ();
8175 struct type
*branch_type
;
8176 int nfields
= type
->num_fields ();
8177 int variant_field
= variant_field_index (type
);
8179 if (variant_field
== -1)
8184 dval
= value_from_contents_and_address (type
, valaddr
, address
);
8185 type
= value_type (dval
);
8190 rtype
= alloc_type_copy (type
);
8191 rtype
->set_code (TYPE_CODE_STRUCT
);
8192 INIT_NONE_SPECIFIC (rtype
);
8193 rtype
->set_num_fields (nfields
);
8196 (struct field
*) TYPE_ALLOC (rtype
, nfields
* sizeof (struct field
));
8197 memcpy (fields
, type
->fields (), sizeof (struct field
) * nfields
);
8198 rtype
->set_fields (fields
);
8200 rtype
->set_name (ada_type_name (type
));
8201 rtype
->set_is_fixed_instance (true);
8202 TYPE_LENGTH (rtype
) = TYPE_LENGTH (type
);
8204 branch_type
= to_fixed_variant_branch_type
8205 (type
->field (variant_field
).type (),
8206 cond_offset_host (valaddr
,
8207 type
->field (variant_field
).loc_bitpos ()
8209 cond_offset_target (address
,
8210 type
->field (variant_field
).loc_bitpos ()
8211 / TARGET_CHAR_BIT
), dval
);
8212 if (branch_type
== NULL
)
8216 for (f
= variant_field
+ 1; f
< nfields
; f
+= 1)
8217 rtype
->field (f
- 1) = rtype
->field (f
);
8218 rtype
->set_num_fields (rtype
->num_fields () - 1);
8222 rtype
->field (variant_field
).set_type (branch_type
);
8223 rtype
->field (variant_field
).set_name ("S");
8224 TYPE_FIELD_BITSIZE (rtype
, variant_field
) = 0;
8225 TYPE_LENGTH (rtype
) += TYPE_LENGTH (branch_type
);
8227 TYPE_LENGTH (rtype
) -= TYPE_LENGTH (type
->field (variant_field
).type ());
8229 value_free_to_mark (mark
);
8233 /* An ordinary record type (with fixed-length fields) that describes
8234 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8235 beginning of this section]. Any necessary discriminants' values
8236 should be in DVAL, a record value; it may be NULL if the object
8237 at ADDR itself contains any necessary discriminant values.
8238 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8239 values from the record are needed. Except in the case that DVAL,
8240 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8241 unchecked) is replaced by a particular branch of the variant.
8243 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8244 is questionable and may be removed. It can arise during the
8245 processing of an unconstrained-array-of-record type where all the
8246 variant branches have exactly the same size. This is because in
8247 such cases, the compiler does not bother to use the XVS convention
8248 when encoding the record. I am currently dubious of this
8249 shortcut and suspect the compiler should be altered. FIXME. */
8251 static struct type
*
8252 to_fixed_record_type (struct type
*type0
, const gdb_byte
*valaddr
,
8253 CORE_ADDR address
, struct value
*dval
)
8255 struct type
*templ_type
;
8257 if (type0
->is_fixed_instance ())
8260 templ_type
= dynamic_template_type (type0
);
8262 if (templ_type
!= NULL
)
8263 return template_to_fixed_record_type (templ_type
, valaddr
, address
, dval
);
8264 else if (variant_field_index (type0
) >= 0)
8266 if (dval
== NULL
&& valaddr
== NULL
&& address
== 0)
8268 return to_record_with_fixed_variant_part (type0
, valaddr
, address
,
8273 type0
->set_is_fixed_instance (true);
8279 /* An ordinary record type (with fixed-length fields) that describes
8280 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8281 union type. Any necessary discriminants' values should be in DVAL,
8282 a record value. That is, this routine selects the appropriate
8283 branch of the union at ADDR according to the discriminant value
8284 indicated in the union's type name. Returns VAR_TYPE0 itself if
8285 it represents a variant subject to a pragma Unchecked_Union. */
8287 static struct type
*
8288 to_fixed_variant_branch_type (struct type
*var_type0
, const gdb_byte
*valaddr
,
8289 CORE_ADDR address
, struct value
*dval
)
8292 struct type
*templ_type
;
8293 struct type
*var_type
;
8295 if (var_type0
->code () == TYPE_CODE_PTR
)
8296 var_type
= TYPE_TARGET_TYPE (var_type0
);
8298 var_type
= var_type0
;
8300 templ_type
= ada_find_parallel_type (var_type
, "___XVU");
8302 if (templ_type
!= NULL
)
8303 var_type
= templ_type
;
8305 if (is_unchecked_variant (var_type
, value_type (dval
)))
8307 which
= ada_which_variant_applies (var_type
, dval
);
8310 return empty_record (var_type
);
8311 else if (is_dynamic_field (var_type
, which
))
8312 return to_fixed_record_type
8313 (TYPE_TARGET_TYPE (var_type
->field (which
).type ()),
8314 valaddr
, address
, dval
);
8315 else if (variant_field_index (var_type
->field (which
).type ()) >= 0)
8317 to_fixed_record_type
8318 (var_type
->field (which
).type (), valaddr
, address
, dval
);
8320 return var_type
->field (which
).type ();
8323 /* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
8324 ENCODING_TYPE, a type following the GNAT conventions for discrete
8325 type encodings, only carries redundant information. */
8328 ada_is_redundant_range_encoding (struct type
*range_type
,
8329 struct type
*encoding_type
)
8331 const char *bounds_str
;
8335 gdb_assert (range_type
->code () == TYPE_CODE_RANGE
);
8337 if (get_base_type (range_type
)->code ()
8338 != get_base_type (encoding_type
)->code ())
8340 /* The compiler probably used a simple base type to describe
8341 the range type instead of the range's actual base type,
8342 expecting us to get the real base type from the encoding
8343 anyway. In this situation, the encoding cannot be ignored
8348 if (is_dynamic_type (range_type
))
8351 if (encoding_type
->name () == NULL
)
8354 bounds_str
= strstr (encoding_type
->name (), "___XDLU_");
8355 if (bounds_str
== NULL
)
8358 n
= 8; /* Skip "___XDLU_". */
8359 if (!ada_scan_number (bounds_str
, n
, &lo
, &n
))
8361 if (range_type
->bounds ()->low
.const_val () != lo
)
8364 n
+= 2; /* Skip the "__" separator between the two bounds. */
8365 if (!ada_scan_number (bounds_str
, n
, &hi
, &n
))
8367 if (range_type
->bounds ()->high
.const_val () != hi
)
8373 /* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
8374 a type following the GNAT encoding for describing array type
8375 indices, only carries redundant information. */
8378 ada_is_redundant_index_type_desc (struct type
*array_type
,
8379 struct type
*desc_type
)
8381 struct type
*this_layer
= check_typedef (array_type
);
8384 for (i
= 0; i
< desc_type
->num_fields (); i
++)
8386 if (!ada_is_redundant_range_encoding (this_layer
->index_type (),
8387 desc_type
->field (i
).type ()))
8389 this_layer
= check_typedef (TYPE_TARGET_TYPE (this_layer
));
8395 /* Assuming that TYPE0 is an array type describing the type of a value
8396 at ADDR, and that DVAL describes a record containing any
8397 discriminants used in TYPE0, returns a type for the value that
8398 contains no dynamic components (that is, no components whose sizes
8399 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8400 true, gives an error message if the resulting type's size is over
8403 static struct type
*
8404 to_fixed_array_type (struct type
*type0
, struct value
*dval
,
8407 struct type
*index_type_desc
;
8408 struct type
*result
;
8409 int constrained_packed_array_p
;
8410 static const char *xa_suffix
= "___XA";
8412 type0
= ada_check_typedef (type0
);
8413 if (type0
->is_fixed_instance ())
8416 constrained_packed_array_p
= ada_is_constrained_packed_array_type (type0
);
8417 if (constrained_packed_array_p
)
8419 type0
= decode_constrained_packed_array_type (type0
);
8420 if (type0
== nullptr)
8421 error (_("could not decode constrained packed array type"));
8424 index_type_desc
= ada_find_parallel_type (type0
, xa_suffix
);
8426 /* As mentioned in exp_dbug.ads, for non bit-packed arrays an
8427 encoding suffixed with 'P' may still be generated. If so,
8428 it should be used to find the XA type. */
8430 if (index_type_desc
== NULL
)
8432 const char *type_name
= ada_type_name (type0
);
8434 if (type_name
!= NULL
)
8436 const int len
= strlen (type_name
);
8437 char *name
= (char *) alloca (len
+ strlen (xa_suffix
));
8439 if (type_name
[len
- 1] == 'P')
8441 strcpy (name
, type_name
);
8442 strcpy (name
+ len
- 1, xa_suffix
);
8443 index_type_desc
= ada_find_parallel_type_with_name (type0
, name
);
8448 ada_fixup_array_indexes_type (index_type_desc
);
8449 if (index_type_desc
!= NULL
8450 && ada_is_redundant_index_type_desc (type0
, index_type_desc
))
8452 /* Ignore this ___XA parallel type, as it does not bring any
8453 useful information. This allows us to avoid creating fixed
8454 versions of the array's index types, which would be identical
8455 to the original ones. This, in turn, can also help avoid
8456 the creation of fixed versions of the array itself. */
8457 index_type_desc
= NULL
;
8460 if (index_type_desc
== NULL
)
8462 struct type
*elt_type0
= ada_check_typedef (TYPE_TARGET_TYPE (type0
));
8464 /* NOTE: elt_type---the fixed version of elt_type0---should never
8465 depend on the contents of the array in properly constructed
8467 /* Create a fixed version of the array element type.
8468 We're not providing the address of an element here,
8469 and thus the actual object value cannot be inspected to do
8470 the conversion. This should not be a problem, since arrays of
8471 unconstrained objects are not allowed. In particular, all
8472 the elements of an array of a tagged type should all be of
8473 the same type specified in the debugging info. No need to
8474 consult the object tag. */
8475 struct type
*elt_type
= ada_to_fixed_type (elt_type0
, 0, 0, dval
, 1);
8477 /* Make sure we always create a new array type when dealing with
8478 packed array types, since we're going to fix-up the array
8479 type length and element bitsize a little further down. */
8480 if (elt_type0
== elt_type
&& !constrained_packed_array_p
)
8483 result
= create_array_type (alloc_type_copy (type0
),
8484 elt_type
, type0
->index_type ());
8489 struct type
*elt_type0
;
8492 for (i
= index_type_desc
->num_fields (); i
> 0; i
-= 1)
8493 elt_type0
= TYPE_TARGET_TYPE (elt_type0
);
8495 /* NOTE: result---the fixed version of elt_type0---should never
8496 depend on the contents of the array in properly constructed
8498 /* Create a fixed version of the array element type.
8499 We're not providing the address of an element here,
8500 and thus the actual object value cannot be inspected to do
8501 the conversion. This should not be a problem, since arrays of
8502 unconstrained objects are not allowed. In particular, all
8503 the elements of an array of a tagged type should all be of
8504 the same type specified in the debugging info. No need to
8505 consult the object tag. */
8507 ada_to_fixed_type (ada_check_typedef (elt_type0
), 0, 0, dval
, 1);
8510 for (i
= index_type_desc
->num_fields () - 1; i
>= 0; i
-= 1)
8512 struct type
*range_type
=
8513 to_fixed_range_type (index_type_desc
->field (i
).type (), dval
);
8515 result
= create_array_type (alloc_type_copy (elt_type0
),
8516 result
, range_type
);
8517 elt_type0
= TYPE_TARGET_TYPE (elt_type0
);
8521 /* We want to preserve the type name. This can be useful when
8522 trying to get the type name of a value that has already been
8523 printed (for instance, if the user did "print VAR; whatis $". */
8524 result
->set_name (type0
->name ());
8526 if (constrained_packed_array_p
)
8528 /* So far, the resulting type has been created as if the original
8529 type was a regular (non-packed) array type. As a result, the
8530 bitsize of the array elements needs to be set again, and the array
8531 length needs to be recomputed based on that bitsize. */
8532 int len
= TYPE_LENGTH (result
) / TYPE_LENGTH (TYPE_TARGET_TYPE (result
));
8533 int elt_bitsize
= TYPE_FIELD_BITSIZE (type0
, 0);
8535 TYPE_FIELD_BITSIZE (result
, 0) = TYPE_FIELD_BITSIZE (type0
, 0);
8536 TYPE_LENGTH (result
) = len
* elt_bitsize
/ HOST_CHAR_BIT
;
8537 if (TYPE_LENGTH (result
) * HOST_CHAR_BIT
< len
* elt_bitsize
)
8538 TYPE_LENGTH (result
)++;
8541 result
->set_is_fixed_instance (true);
8546 /* A standard type (containing no dynamically sized components)
8547 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8548 DVAL describes a record containing any discriminants used in TYPE0,
8549 and may be NULL if there are none, or if the object of type TYPE at
8550 ADDRESS or in VALADDR contains these discriminants.
8552 If CHECK_TAG is not null, in the case of tagged types, this function
8553 attempts to locate the object's tag and use it to compute the actual
8554 type. However, when ADDRESS is null, we cannot use it to determine the
8555 location of the tag, and therefore compute the tagged type's actual type.
8556 So we return the tagged type without consulting the tag. */
8558 static struct type
*
8559 ada_to_fixed_type_1 (struct type
*type
, const gdb_byte
*valaddr
,
8560 CORE_ADDR address
, struct value
*dval
, int check_tag
)
8562 type
= ada_check_typedef (type
);
8564 /* Only un-fixed types need to be handled here. */
8565 if (!HAVE_GNAT_AUX_INFO (type
))
8568 switch (type
->code ())
8572 case TYPE_CODE_STRUCT
:
8574 struct type
*static_type
= to_static_fixed_type (type
);
8575 struct type
*fixed_record_type
=
8576 to_fixed_record_type (type
, valaddr
, address
, NULL
);
8578 /* If STATIC_TYPE is a tagged type and we know the object's address,
8579 then we can determine its tag, and compute the object's actual
8580 type from there. Note that we have to use the fixed record
8581 type (the parent part of the record may have dynamic fields
8582 and the way the location of _tag is expressed may depend on
8585 if (check_tag
&& address
!= 0 && ada_is_tagged_type (static_type
, 0))
8588 value_tag_from_contents_and_address
8592 struct type
*real_type
= type_from_tag (tag
);
8594 value_from_contents_and_address (fixed_record_type
,
8597 fixed_record_type
= value_type (obj
);
8598 if (real_type
!= NULL
)
8599 return to_fixed_record_type
8601 value_address (ada_tag_value_at_base_address (obj
)), NULL
);
8604 /* Check to see if there is a parallel ___XVZ variable.
8605 If there is, then it provides the actual size of our type. */
8606 else if (ada_type_name (fixed_record_type
) != NULL
)
8608 const char *name
= ada_type_name (fixed_record_type
);
8610 = (char *) alloca (strlen (name
) + 7 /* "___XVZ\0" */);
8611 bool xvz_found
= false;
8614 xsnprintf (xvz_name
, strlen (name
) + 7, "%s___XVZ", name
);
8617 xvz_found
= get_int_var_value (xvz_name
, size
);
8619 catch (const gdb_exception_error
&except
)
8621 /* We found the variable, but somehow failed to read
8622 its value. Rethrow the same error, but with a little
8623 bit more information, to help the user understand
8624 what went wrong (Eg: the variable might have been
8626 throw_error (except
.error
,
8627 _("unable to read value of %s (%s)"),
8628 xvz_name
, except
.what ());
8631 if (xvz_found
&& TYPE_LENGTH (fixed_record_type
) != size
)
8633 fixed_record_type
= copy_type (fixed_record_type
);
8634 TYPE_LENGTH (fixed_record_type
) = size
;
8636 /* The FIXED_RECORD_TYPE may have be a stub. We have
8637 observed this when the debugging info is STABS, and
8638 apparently it is something that is hard to fix.
8640 In practice, we don't need the actual type definition
8641 at all, because the presence of the XVZ variable allows us
8642 to assume that there must be a XVS type as well, which we
8643 should be able to use later, when we need the actual type
8646 In the meantime, pretend that the "fixed" type we are
8647 returning is NOT a stub, because this can cause trouble
8648 when using this type to create new types targeting it.
8649 Indeed, the associated creation routines often check
8650 whether the target type is a stub and will try to replace
8651 it, thus using a type with the wrong size. This, in turn,
8652 might cause the new type to have the wrong size too.
8653 Consider the case of an array, for instance, where the size
8654 of the array is computed from the number of elements in
8655 our array multiplied by the size of its element. */
8656 fixed_record_type
->set_is_stub (false);
8659 return fixed_record_type
;
8661 case TYPE_CODE_ARRAY
:
8662 return to_fixed_array_type (type
, dval
, 1);
8663 case TYPE_CODE_UNION
:
8667 return to_fixed_variant_branch_type (type
, valaddr
, address
, dval
);
8671 /* The same as ada_to_fixed_type_1, except that it preserves the type
8672 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
8674 The typedef layer needs be preserved in order to differentiate between
8675 arrays and array pointers when both types are implemented using the same
8676 fat pointer. In the array pointer case, the pointer is encoded as
8677 a typedef of the pointer type. For instance, considering:
8679 type String_Access is access String;
8680 S1 : String_Access := null;
8682 To the debugger, S1 is defined as a typedef of type String. But
8683 to the user, it is a pointer. So if the user tries to print S1,
8684 we should not dereference the array, but print the array address
8687 If we didn't preserve the typedef layer, we would lose the fact that
8688 the type is to be presented as a pointer (needs de-reference before
8689 being printed). And we would also use the source-level type name. */
8692 ada_to_fixed_type (struct type
*type
, const gdb_byte
*valaddr
,
8693 CORE_ADDR address
, struct value
*dval
, int check_tag
)
8696 struct type
*fixed_type
=
8697 ada_to_fixed_type_1 (type
, valaddr
, address
, dval
, check_tag
);
8699 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
8700 then preserve the typedef layer.
8702 Implementation note: We can only check the main-type portion of
8703 the TYPE and FIXED_TYPE, because eliminating the typedef layer
8704 from TYPE now returns a type that has the same instance flags
8705 as TYPE. For instance, if TYPE is a "typedef const", and its
8706 target type is a "struct", then the typedef elimination will return
8707 a "const" version of the target type. See check_typedef for more
8708 details about how the typedef layer elimination is done.
8710 brobecker/2010-11-19: It seems to me that the only case where it is
8711 useful to preserve the typedef layer is when dealing with fat pointers.
8712 Perhaps, we could add a check for that and preserve the typedef layer
8713 only in that situation. But this seems unnecessary so far, probably
8714 because we call check_typedef/ada_check_typedef pretty much everywhere.
8716 if (type
->code () == TYPE_CODE_TYPEDEF
8717 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type
))
8718 == TYPE_MAIN_TYPE (fixed_type
)))
8724 /* A standard (static-sized) type corresponding as well as possible to
8725 TYPE0, but based on no runtime data. */
8727 static struct type
*
8728 to_static_fixed_type (struct type
*type0
)
8735 if (type0
->is_fixed_instance ())
8738 type0
= ada_check_typedef (type0
);
8740 switch (type0
->code ())
8744 case TYPE_CODE_STRUCT
:
8745 type
= dynamic_template_type (type0
);
8747 return template_to_static_fixed_type (type
);
8749 return template_to_static_fixed_type (type0
);
8750 case TYPE_CODE_UNION
:
8751 type
= ada_find_parallel_type (type0
, "___XVU");
8753 return template_to_static_fixed_type (type
);
8755 return template_to_static_fixed_type (type0
);
8759 /* A static approximation of TYPE with all type wrappers removed. */
8761 static struct type
*
8762 static_unwrap_type (struct type
*type
)
8764 if (ada_is_aligner_type (type
))
8766 struct type
*type1
= ada_check_typedef (type
)->field (0).type ();
8767 if (ada_type_name (type1
) == NULL
)
8768 type1
->set_name (ada_type_name (type
));
8770 return static_unwrap_type (type1
);
8774 struct type
*raw_real_type
= ada_get_base_type (type
);
8776 if (raw_real_type
== type
)
8779 return to_static_fixed_type (raw_real_type
);
8783 /* In some cases, incomplete and private types require
8784 cross-references that are not resolved as records (for example,
8786 type FooP is access Foo;
8788 type Foo is array ...;
8789 ). In these cases, since there is no mechanism for producing
8790 cross-references to such types, we instead substitute for FooP a
8791 stub enumeration type that is nowhere resolved, and whose tag is
8792 the name of the actual type. Call these types "non-record stubs". */
8794 /* A type equivalent to TYPE that is not a non-record stub, if one
8795 exists, otherwise TYPE. */
8798 ada_check_typedef (struct type
*type
)
8803 /* If our type is an access to an unconstrained array, which is encoded
8804 as a TYPE_CODE_TYPEDEF of a fat pointer, then we're done.
8805 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
8806 what allows us to distinguish between fat pointers that represent
8807 array types, and fat pointers that represent array access types
8808 (in both cases, the compiler implements them as fat pointers). */
8809 if (ada_is_access_to_unconstrained_array (type
))
8812 type
= check_typedef (type
);
8813 if (type
== NULL
|| type
->code () != TYPE_CODE_ENUM
8814 || !type
->is_stub ()
8815 || type
->name () == NULL
)
8819 const char *name
= type
->name ();
8820 struct type
*type1
= ada_find_any_type (name
);
8825 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
8826 stubs pointing to arrays, as we don't create symbols for array
8827 types, only for the typedef-to-array types). If that's the case,
8828 strip the typedef layer. */
8829 if (type1
->code () == TYPE_CODE_TYPEDEF
)
8830 type1
= ada_check_typedef (type1
);
8836 /* A value representing the data at VALADDR/ADDRESS as described by
8837 type TYPE0, but with a standard (static-sized) type that correctly
8838 describes it. If VAL0 is not NULL and TYPE0 already is a standard
8839 type, then return VAL0 [this feature is simply to avoid redundant
8840 creation of struct values]. */
8842 static struct value
*
8843 ada_to_fixed_value_create (struct type
*type0
, CORE_ADDR address
,
8846 struct type
*type
= ada_to_fixed_type (type0
, 0, address
, NULL
, 1);
8848 if (type
== type0
&& val0
!= NULL
)
8851 if (VALUE_LVAL (val0
) != lval_memory
)
8853 /* Our value does not live in memory; it could be a convenience
8854 variable, for instance. Create a not_lval value using val0's
8856 return value_from_contents (type
, value_contents (val0
).data ());
8859 return value_from_contents_and_address (type
, 0, address
);
8862 /* A value representing VAL, but with a standard (static-sized) type
8863 that correctly describes it. Does not necessarily create a new
8867 ada_to_fixed_value (struct value
*val
)
8869 val
= unwrap_value (val
);
8870 val
= ada_to_fixed_value_create (value_type (val
), value_address (val
), val
);
8877 /* Table mapping attribute numbers to names.
8878 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
8880 static const char * const attribute_names
[] = {
8898 ada_attribute_name (enum exp_opcode n
)
8900 if (n
>= OP_ATR_FIRST
&& n
<= (int) OP_ATR_VAL
)
8901 return attribute_names
[n
- OP_ATR_FIRST
+ 1];
8903 return attribute_names
[0];
8906 /* Evaluate the 'POS attribute applied to ARG. */
8909 pos_atr (struct value
*arg
)
8911 struct value
*val
= coerce_ref (arg
);
8912 struct type
*type
= value_type (val
);
8914 if (!discrete_type_p (type
))
8915 error (_("'POS only defined on discrete types"));
8917 gdb::optional
<LONGEST
> result
= discrete_position (type
, value_as_long (val
));
8918 if (!result
.has_value ())
8919 error (_("enumeration value is invalid: can't find 'POS"));
8925 ada_pos_atr (struct type
*expect_type
,
8926 struct expression
*exp
,
8927 enum noside noside
, enum exp_opcode op
,
8930 struct type
*type
= builtin_type (exp
->gdbarch
)->builtin_int
;
8931 if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
8932 return value_zero (type
, not_lval
);
8933 return value_from_longest (type
, pos_atr (arg
));
8936 /* Evaluate the TYPE'VAL attribute applied to ARG. */
8938 static struct value
*
8939 val_atr (struct type
*type
, LONGEST val
)
8941 gdb_assert (discrete_type_p (type
));
8942 if (type
->code () == TYPE_CODE_RANGE
)
8943 type
= TYPE_TARGET_TYPE (type
);
8944 if (type
->code () == TYPE_CODE_ENUM
)
8946 if (val
< 0 || val
>= type
->num_fields ())
8947 error (_("argument to 'VAL out of range"));
8948 val
= type
->field (val
).loc_enumval ();
8950 return value_from_longest (type
, val
);
8954 ada_val_atr (enum noside noside
, struct type
*type
, struct value
*arg
)
8956 if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
8957 return value_zero (type
, not_lval
);
8959 if (!discrete_type_p (type
))
8960 error (_("'VAL only defined on discrete types"));
8961 if (!integer_type_p (value_type (arg
)))
8962 error (_("'VAL requires integral argument"));
8964 return val_atr (type
, value_as_long (arg
));
8970 /* True if TYPE appears to be an Ada character type.
8971 [At the moment, this is true only for Character and Wide_Character;
8972 It is a heuristic test that could stand improvement]. */
8975 ada_is_character_type (struct type
*type
)
8979 /* If the type code says it's a character, then assume it really is,
8980 and don't check any further. */
8981 if (type
->code () == TYPE_CODE_CHAR
)
8984 /* Otherwise, assume it's a character type iff it is a discrete type
8985 with a known character type name. */
8986 name
= ada_type_name (type
);
8987 return (name
!= NULL
8988 && (type
->code () == TYPE_CODE_INT
8989 || type
->code () == TYPE_CODE_RANGE
)
8990 && (strcmp (name
, "character") == 0
8991 || strcmp (name
, "wide_character") == 0
8992 || strcmp (name
, "wide_wide_character") == 0
8993 || strcmp (name
, "unsigned char") == 0));
8996 /* True if TYPE appears to be an Ada string type. */
8999 ada_is_string_type (struct type
*type
)
9001 type
= ada_check_typedef (type
);
9003 && type
->code () != TYPE_CODE_PTR
9004 && (ada_is_simple_array_type (type
)
9005 || ada_is_array_descriptor_type (type
))
9006 && ada_array_arity (type
) == 1)
9008 struct type
*elttype
= ada_array_element_type (type
, 1);
9010 return ada_is_character_type (elttype
);
9016 /* The compiler sometimes provides a parallel XVS type for a given
9017 PAD type. Normally, it is safe to follow the PAD type directly,
9018 but older versions of the compiler have a bug that causes the offset
9019 of its "F" field to be wrong. Following that field in that case
9020 would lead to incorrect results, but this can be worked around
9021 by ignoring the PAD type and using the associated XVS type instead.
9023 Set to True if the debugger should trust the contents of PAD types.
9024 Otherwise, ignore the PAD type if there is a parallel XVS type. */
9025 static bool trust_pad_over_xvs
= true;
9027 /* True if TYPE is a struct type introduced by the compiler to force the
9028 alignment of a value. Such types have a single field with a
9029 distinctive name. */
9032 ada_is_aligner_type (struct type
*type
)
9034 type
= ada_check_typedef (type
);
9036 if (!trust_pad_over_xvs
&& ada_find_parallel_type (type
, "___XVS") != NULL
)
9039 return (type
->code () == TYPE_CODE_STRUCT
9040 && type
->num_fields () == 1
9041 && strcmp (type
->field (0).name (), "F") == 0);
9044 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
9045 the parallel type. */
9048 ada_get_base_type (struct type
*raw_type
)
9050 struct type
*real_type_namer
;
9051 struct type
*raw_real_type
;
9053 if (raw_type
== NULL
|| raw_type
->code () != TYPE_CODE_STRUCT
)
9056 if (ada_is_aligner_type (raw_type
))
9057 /* The encoding specifies that we should always use the aligner type.
9058 So, even if this aligner type has an associated XVS type, we should
9061 According to the compiler gurus, an XVS type parallel to an aligner
9062 type may exist because of a stabs limitation. In stabs, aligner
9063 types are empty because the field has a variable-sized type, and
9064 thus cannot actually be used as an aligner type. As a result,
9065 we need the associated parallel XVS type to decode the type.
9066 Since the policy in the compiler is to not change the internal
9067 representation based on the debugging info format, we sometimes
9068 end up having a redundant XVS type parallel to the aligner type. */
9071 real_type_namer
= ada_find_parallel_type (raw_type
, "___XVS");
9072 if (real_type_namer
== NULL
9073 || real_type_namer
->code () != TYPE_CODE_STRUCT
9074 || real_type_namer
->num_fields () != 1)
9077 if (real_type_namer
->field (0).type ()->code () != TYPE_CODE_REF
)
9079 /* This is an older encoding form where the base type needs to be
9080 looked up by name. We prefer the newer encoding because it is
9082 raw_real_type
= ada_find_any_type (real_type_namer
->field (0).name ());
9083 if (raw_real_type
== NULL
)
9086 return raw_real_type
;
9089 /* The field in our XVS type is a reference to the base type. */
9090 return TYPE_TARGET_TYPE (real_type_namer
->field (0).type ());
9093 /* The type of value designated by TYPE, with all aligners removed. */
9096 ada_aligned_type (struct type
*type
)
9098 if (ada_is_aligner_type (type
))
9099 return ada_aligned_type (type
->field (0).type ());
9101 return ada_get_base_type (type
);
9105 /* The address of the aligned value in an object at address VALADDR
9106 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
9109 ada_aligned_value_addr (struct type
*type
, const gdb_byte
*valaddr
)
9111 if (ada_is_aligner_type (type
))
9112 return ada_aligned_value_addr
9113 (type
->field (0).type (),
9114 valaddr
+ type
->field (0).loc_bitpos () / TARGET_CHAR_BIT
);
9121 /* The printed representation of an enumeration literal with encoded
9122 name NAME. The value is good to the next call of ada_enum_name. */
9124 ada_enum_name (const char *name
)
9126 static std::string storage
;
9129 /* First, unqualify the enumeration name:
9130 1. Search for the last '.' character. If we find one, then skip
9131 all the preceding characters, the unqualified name starts
9132 right after that dot.
9133 2. Otherwise, we may be debugging on a target where the compiler
9134 translates dots into "__". Search forward for double underscores,
9135 but stop searching when we hit an overloading suffix, which is
9136 of the form "__" followed by digits. */
9138 tmp
= strrchr (name
, '.');
9143 while ((tmp
= strstr (name
, "__")) != NULL
)
9145 if (isdigit (tmp
[2]))
9156 if (name
[1] == 'U' || name
[1] == 'W')
9159 if (name
[1] == 'W' && name
[2] == 'W')
9161 /* Also handle the QWW case. */
9164 if (sscanf (name
+ offset
, "%x", &v
) != 1)
9167 else if (((name
[1] >= '0' && name
[1] <= '9')
9168 || (name
[1] >= 'a' && name
[1] <= 'z'))
9171 storage
= string_printf ("'%c'", name
[1]);
9172 return storage
.c_str ();
9177 if (isascii (v
) && isprint (v
))
9178 storage
= string_printf ("'%c'", v
);
9179 else if (name
[1] == 'U')
9180 storage
= string_printf ("'[\"%02x\"]'", v
);
9181 else if (name
[2] != 'W')
9182 storage
= string_printf ("'[\"%04x\"]'", v
);
9184 storage
= string_printf ("'[\"%06x\"]'", v
);
9186 return storage
.c_str ();
9190 tmp
= strstr (name
, "__");
9192 tmp
= strstr (name
, "$");
9195 storage
= std::string (name
, tmp
- name
);
9196 return storage
.c_str ();
9203 /* If VAL is wrapped in an aligner or subtype wrapper, return the
9206 static struct value
*
9207 unwrap_value (struct value
*val
)
9209 struct type
*type
= ada_check_typedef (value_type (val
));
9211 if (ada_is_aligner_type (type
))
9213 struct value
*v
= ada_value_struct_elt (val
, "F", 0);
9214 struct type
*val_type
= ada_check_typedef (value_type (v
));
9216 if (ada_type_name (val_type
) == NULL
)
9217 val_type
->set_name (ada_type_name (type
));
9219 return unwrap_value (v
);
9223 struct type
*raw_real_type
=
9224 ada_check_typedef (ada_get_base_type (type
));
9226 /* If there is no parallel XVS or XVE type, then the value is
9227 already unwrapped. Return it without further modification. */
9228 if ((type
== raw_real_type
)
9229 && ada_find_parallel_type (type
, "___XVE") == NULL
)
9233 coerce_unspec_val_to_type
9234 (val
, ada_to_fixed_type (raw_real_type
, 0,
9235 value_address (val
),
9240 /* Given two array types T1 and T2, return nonzero iff both arrays
9241 contain the same number of elements. */
9244 ada_same_array_size_p (struct type
*t1
, struct type
*t2
)
9246 LONGEST lo1
, hi1
, lo2
, hi2
;
9248 /* Get the array bounds in order to verify that the size of
9249 the two arrays match. */
9250 if (!get_array_bounds (t1
, &lo1
, &hi1
)
9251 || !get_array_bounds (t2
, &lo2
, &hi2
))
9252 error (_("unable to determine array bounds"));
9254 /* To make things easier for size comparison, normalize a bit
9255 the case of empty arrays by making sure that the difference
9256 between upper bound and lower bound is always -1. */
9262 return (hi1
- lo1
== hi2
- lo2
);
9265 /* Assuming that VAL is an array of integrals, and TYPE represents
9266 an array with the same number of elements, but with wider integral
9267 elements, return an array "casted" to TYPE. In practice, this
9268 means that the returned array is built by casting each element
9269 of the original array into TYPE's (wider) element type. */
9271 static struct value
*
9272 ada_promote_array_of_integrals (struct type
*type
, struct value
*val
)
9274 struct type
*elt_type
= TYPE_TARGET_TYPE (type
);
9278 /* Verify that both val and type are arrays of scalars, and
9279 that the size of val's elements is smaller than the size
9280 of type's element. */
9281 gdb_assert (type
->code () == TYPE_CODE_ARRAY
);
9282 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type
)));
9283 gdb_assert (value_type (val
)->code () == TYPE_CODE_ARRAY
);
9284 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val
))));
9285 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type
))
9286 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val
))));
9288 if (!get_array_bounds (type
, &lo
, &hi
))
9289 error (_("unable to determine array bounds"));
9291 value
*res
= allocate_value (type
);
9292 gdb::array_view
<gdb_byte
> res_contents
= value_contents_writeable (res
);
9294 /* Promote each array element. */
9295 for (i
= 0; i
< hi
- lo
+ 1; i
++)
9297 struct value
*elt
= value_cast (elt_type
, value_subscript (val
, lo
+ i
));
9298 int elt_len
= TYPE_LENGTH (elt_type
);
9300 copy (value_contents_all (elt
), res_contents
.slice (elt_len
* i
, elt_len
));
9306 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9307 return the converted value. */
9309 static struct value
*
9310 coerce_for_assign (struct type
*type
, struct value
*val
)
9312 struct type
*type2
= value_type (val
);
9317 type2
= ada_check_typedef (type2
);
9318 type
= ada_check_typedef (type
);
9320 if (type2
->code () == TYPE_CODE_PTR
9321 && type
->code () == TYPE_CODE_ARRAY
)
9323 val
= ada_value_ind (val
);
9324 type2
= value_type (val
);
9327 if (type2
->code () == TYPE_CODE_ARRAY
9328 && type
->code () == TYPE_CODE_ARRAY
)
9330 if (!ada_same_array_size_p (type
, type2
))
9331 error (_("cannot assign arrays of different length"));
9333 if (is_integral_type (TYPE_TARGET_TYPE (type
))
9334 && is_integral_type (TYPE_TARGET_TYPE (type2
))
9335 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2
))
9336 < TYPE_LENGTH (TYPE_TARGET_TYPE (type
)))
9338 /* Allow implicit promotion of the array elements to
9340 return ada_promote_array_of_integrals (type
, val
);
9343 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2
))
9344 != TYPE_LENGTH (TYPE_TARGET_TYPE (type
)))
9345 error (_("Incompatible types in assignment"));
9346 deprecated_set_value_type (val
, type
);
9351 static struct value
*
9352 ada_value_binop (struct value
*arg1
, struct value
*arg2
, enum exp_opcode op
)
9355 struct type
*type1
, *type2
;
9358 arg1
= coerce_ref (arg1
);
9359 arg2
= coerce_ref (arg2
);
9360 type1
= get_base_type (ada_check_typedef (value_type (arg1
)));
9361 type2
= get_base_type (ada_check_typedef (value_type (arg2
)));
9363 if (type1
->code () != TYPE_CODE_INT
9364 || type2
->code () != TYPE_CODE_INT
)
9365 return value_binop (arg1
, arg2
, op
);
9374 return value_binop (arg1
, arg2
, op
);
9377 v2
= value_as_long (arg2
);
9381 if (op
== BINOP_MOD
)
9383 else if (op
== BINOP_DIV
)
9387 gdb_assert (op
== BINOP_REM
);
9391 error (_("second operand of %s must not be zero."), name
);
9394 if (type1
->is_unsigned () || op
== BINOP_MOD
)
9395 return value_binop (arg1
, arg2
, op
);
9397 v1
= value_as_long (arg1
);
9402 if (!TRUNCATION_TOWARDS_ZERO
&& v1
* (v1
% v2
) < 0)
9403 v
+= v
> 0 ? -1 : 1;
9411 /* Should not reach this point. */
9415 val
= allocate_value (type1
);
9416 store_unsigned_integer (value_contents_raw (val
).data (),
9417 TYPE_LENGTH (value_type (val
)),
9418 type_byte_order (type1
), v
);
9423 ada_value_equal (struct value
*arg1
, struct value
*arg2
)
9425 if (ada_is_direct_array_type (value_type (arg1
))
9426 || ada_is_direct_array_type (value_type (arg2
)))
9428 struct type
*arg1_type
, *arg2_type
;
9430 /* Automatically dereference any array reference before
9431 we attempt to perform the comparison. */
9432 arg1
= ada_coerce_ref (arg1
);
9433 arg2
= ada_coerce_ref (arg2
);
9435 arg1
= ada_coerce_to_simple_array (arg1
);
9436 arg2
= ada_coerce_to_simple_array (arg2
);
9438 arg1_type
= ada_check_typedef (value_type (arg1
));
9439 arg2_type
= ada_check_typedef (value_type (arg2
));
9441 if (arg1_type
->code () != TYPE_CODE_ARRAY
9442 || arg2_type
->code () != TYPE_CODE_ARRAY
)
9443 error (_("Attempt to compare array with non-array"));
9444 /* FIXME: The following works only for types whose
9445 representations use all bits (no padding or undefined bits)
9446 and do not have user-defined equality. */
9447 return (TYPE_LENGTH (arg1_type
) == TYPE_LENGTH (arg2_type
)
9448 && memcmp (value_contents (arg1
).data (),
9449 value_contents (arg2
).data (),
9450 TYPE_LENGTH (arg1_type
)) == 0);
9452 return value_equal (arg1
, arg2
);
9459 check_objfile (const std::unique_ptr
<ada_component
> &comp
,
9460 struct objfile
*objfile
)
9462 return comp
->uses_objfile (objfile
);
9465 /* Assign the result of evaluating ARG starting at *POS to the INDEXth
9466 component of LHS (a simple array or a record). Does not modify the
9467 inferior's memory, nor does it modify LHS (unless LHS ==
9471 assign_component (struct value
*container
, struct value
*lhs
, LONGEST index
,
9472 struct expression
*exp
, operation_up
&arg
)
9474 scoped_value_mark mark
;
9477 struct type
*lhs_type
= check_typedef (value_type (lhs
));
9479 if (lhs_type
->code () == TYPE_CODE_ARRAY
)
9481 struct type
*index_type
= builtin_type (exp
->gdbarch
)->builtin_int
;
9482 struct value
*index_val
= value_from_longest (index_type
, index
);
9484 elt
= unwrap_value (ada_value_subscript (lhs
, 1, &index_val
));
9488 elt
= ada_index_struct_field (index
, lhs
, 0, value_type (lhs
));
9489 elt
= ada_to_fixed_value (elt
);
9492 ada_aggregate_operation
*ag_op
9493 = dynamic_cast<ada_aggregate_operation
*> (arg
.get ());
9494 if (ag_op
!= nullptr)
9495 ag_op
->assign_aggregate (container
, elt
, exp
);
9497 value_assign_to_component (container
, elt
,
9498 arg
->evaluate (nullptr, exp
,
9503 ada_aggregate_component::uses_objfile (struct objfile
*objfile
)
9505 for (const auto &item
: m_components
)
9506 if (item
->uses_objfile (objfile
))
9512 ada_aggregate_component::dump (ui_file
*stream
, int depth
)
9514 gdb_printf (stream
, _("%*sAggregate\n"), depth
, "");
9515 for (const auto &item
: m_components
)
9516 item
->dump (stream
, depth
+ 1);
9520 ada_aggregate_component::assign (struct value
*container
,
9521 struct value
*lhs
, struct expression
*exp
,
9522 std::vector
<LONGEST
> &indices
,
9523 LONGEST low
, LONGEST high
)
9525 for (auto &item
: m_components
)
9526 item
->assign (container
, lhs
, exp
, indices
, low
, high
);
9529 /* See ada-exp.h. */
9532 ada_aggregate_operation::assign_aggregate (struct value
*container
,
9534 struct expression
*exp
)
9536 struct type
*lhs_type
;
9537 LONGEST low_index
, high_index
;
9539 container
= ada_coerce_ref (container
);
9540 if (ada_is_direct_array_type (value_type (container
)))
9541 container
= ada_coerce_to_simple_array (container
);
9542 lhs
= ada_coerce_ref (lhs
);
9543 if (!deprecated_value_modifiable (lhs
))
9544 error (_("Left operand of assignment is not a modifiable lvalue."));
9546 lhs_type
= check_typedef (value_type (lhs
));
9547 if (ada_is_direct_array_type (lhs_type
))
9549 lhs
= ada_coerce_to_simple_array (lhs
);
9550 lhs_type
= check_typedef (value_type (lhs
));
9551 low_index
= lhs_type
->bounds ()->low
.const_val ();
9552 high_index
= lhs_type
->bounds ()->high
.const_val ();
9554 else if (lhs_type
->code () == TYPE_CODE_STRUCT
)
9557 high_index
= num_visible_fields (lhs_type
) - 1;
9560 error (_("Left-hand side must be array or record."));
9562 std::vector
<LONGEST
> indices (4);
9563 indices
[0] = indices
[1] = low_index
- 1;
9564 indices
[2] = indices
[3] = high_index
+ 1;
9566 std::get
<0> (m_storage
)->assign (container
, lhs
, exp
, indices
,
9567 low_index
, high_index
);
9573 ada_positional_component::uses_objfile (struct objfile
*objfile
)
9575 return m_op
->uses_objfile (objfile
);
9579 ada_positional_component::dump (ui_file
*stream
, int depth
)
9581 gdb_printf (stream
, _("%*sPositional, index = %d\n"),
9582 depth
, "", m_index
);
9583 m_op
->dump (stream
, depth
+ 1);
9586 /* Assign into the component of LHS indexed by the OP_POSITIONAL
9587 construct, given that the positions are relative to lower bound
9588 LOW, where HIGH is the upper bound. Record the position in
9589 INDICES. CONTAINER is as for assign_aggregate. */
9591 ada_positional_component::assign (struct value
*container
,
9592 struct value
*lhs
, struct expression
*exp
,
9593 std::vector
<LONGEST
> &indices
,
9594 LONGEST low
, LONGEST high
)
9596 LONGEST ind
= m_index
+ low
;
9598 if (ind
- 1 == high
)
9599 warning (_("Extra components in aggregate ignored."));
9602 add_component_interval (ind
, ind
, indices
);
9603 assign_component (container
, lhs
, ind
, exp
, m_op
);
9608 ada_discrete_range_association::uses_objfile (struct objfile
*objfile
)
9610 return m_low
->uses_objfile (objfile
) || m_high
->uses_objfile (objfile
);
9614 ada_discrete_range_association::dump (ui_file
*stream
, int depth
)
9616 gdb_printf (stream
, _("%*sDiscrete range:\n"), depth
, "");
9617 m_low
->dump (stream
, depth
+ 1);
9618 m_high
->dump (stream
, depth
+ 1);
9622 ada_discrete_range_association::assign (struct value
*container
,
9624 struct expression
*exp
,
9625 std::vector
<LONGEST
> &indices
,
9626 LONGEST low
, LONGEST high
,
9629 LONGEST lower
= value_as_long (m_low
->evaluate (nullptr, exp
, EVAL_NORMAL
));
9630 LONGEST upper
= value_as_long (m_high
->evaluate (nullptr, exp
, EVAL_NORMAL
));
9632 if (lower
<= upper
&& (lower
< low
|| upper
> high
))
9633 error (_("Index in component association out of bounds."));
9635 add_component_interval (lower
, upper
, indices
);
9636 while (lower
<= upper
)
9638 assign_component (container
, lhs
, lower
, exp
, op
);
9644 ada_name_association::uses_objfile (struct objfile
*objfile
)
9646 return m_val
->uses_objfile (objfile
);
9650 ada_name_association::dump (ui_file
*stream
, int depth
)
9652 gdb_printf (stream
, _("%*sName:\n"), depth
, "");
9653 m_val
->dump (stream
, depth
+ 1);
9657 ada_name_association::assign (struct value
*container
,
9659 struct expression
*exp
,
9660 std::vector
<LONGEST
> &indices
,
9661 LONGEST low
, LONGEST high
,
9666 if (ada_is_direct_array_type (value_type (lhs
)))
9667 index
= longest_to_int (value_as_long (m_val
->evaluate (nullptr, exp
,
9671 ada_string_operation
*strop
9672 = dynamic_cast<ada_string_operation
*> (m_val
.get ());
9675 if (strop
!= nullptr)
9676 name
= strop
->get_name ();
9679 ada_var_value_operation
*vvo
9680 = dynamic_cast<ada_var_value_operation
*> (m_val
.get ());
9682 error (_("Invalid record component association."));
9683 name
= vvo
->get_symbol ()->natural_name ();
9687 if (! find_struct_field (name
, value_type (lhs
), 0,
9688 NULL
, NULL
, NULL
, NULL
, &index
))
9689 error (_("Unknown component name: %s."), name
);
9692 add_component_interval (index
, index
, indices
);
9693 assign_component (container
, lhs
, index
, exp
, op
);
9697 ada_choices_component::uses_objfile (struct objfile
*objfile
)
9699 if (m_op
->uses_objfile (objfile
))
9701 for (const auto &item
: m_assocs
)
9702 if (item
->uses_objfile (objfile
))
9708 ada_choices_component::dump (ui_file
*stream
, int depth
)
9710 gdb_printf (stream
, _("%*sChoices:\n"), depth
, "");
9711 m_op
->dump (stream
, depth
+ 1);
9712 for (const auto &item
: m_assocs
)
9713 item
->dump (stream
, depth
+ 1);
9716 /* Assign into the components of LHS indexed by the OP_CHOICES
9717 construct at *POS, updating *POS past the construct, given that
9718 the allowable indices are LOW..HIGH. Record the indices assigned
9719 to in INDICES. CONTAINER is as for assign_aggregate. */
9721 ada_choices_component::assign (struct value
*container
,
9722 struct value
*lhs
, struct expression
*exp
,
9723 std::vector
<LONGEST
> &indices
,
9724 LONGEST low
, LONGEST high
)
9726 for (auto &item
: m_assocs
)
9727 item
->assign (container
, lhs
, exp
, indices
, low
, high
, m_op
);
9731 ada_others_component::uses_objfile (struct objfile
*objfile
)
9733 return m_op
->uses_objfile (objfile
);
9737 ada_others_component::dump (ui_file
*stream
, int depth
)
9739 gdb_printf (stream
, _("%*sOthers:\n"), depth
, "");
9740 m_op
->dump (stream
, depth
+ 1);
9743 /* Assign the value of the expression in the OP_OTHERS construct in
9744 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
9745 have not been previously assigned. The index intervals already assigned
9746 are in INDICES. CONTAINER is as for assign_aggregate. */
9748 ada_others_component::assign (struct value
*container
,
9749 struct value
*lhs
, struct expression
*exp
,
9750 std::vector
<LONGEST
> &indices
,
9751 LONGEST low
, LONGEST high
)
9753 int num_indices
= indices
.size ();
9754 for (int i
= 0; i
< num_indices
- 2; i
+= 2)
9756 for (LONGEST ind
= indices
[i
+ 1] + 1; ind
< indices
[i
+ 2]; ind
+= 1)
9757 assign_component (container
, lhs
, ind
, exp
, m_op
);
9762 ada_assign_operation::evaluate (struct type
*expect_type
,
9763 struct expression
*exp
,
9766 value
*arg1
= std::get
<0> (m_storage
)->evaluate (nullptr, exp
, noside
);
9768 ada_aggregate_operation
*ag_op
9769 = dynamic_cast<ada_aggregate_operation
*> (std::get
<1> (m_storage
).get ());
9770 if (ag_op
!= nullptr)
9772 if (noside
!= EVAL_NORMAL
)
9775 arg1
= ag_op
->assign_aggregate (arg1
, arg1
, exp
);
9776 return ada_value_assign (arg1
, arg1
);
9778 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
9779 except if the lhs of our assignment is a convenience variable.
9780 In the case of assigning to a convenience variable, the lhs
9781 should be exactly the result of the evaluation of the rhs. */
9782 struct type
*type
= value_type (arg1
);
9783 if (VALUE_LVAL (arg1
) == lval_internalvar
)
9785 value
*arg2
= std::get
<1> (m_storage
)->evaluate (type
, exp
, noside
);
9786 if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
9788 if (VALUE_LVAL (arg1
) == lval_internalvar
)
9793 arg2
= coerce_for_assign (value_type (arg1
), arg2
);
9794 return ada_value_assign (arg1
, arg2
);
9797 } /* namespace expr */
9799 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
9800 [ INDICES[0] .. INDICES[1] ],... The resulting intervals do not
9803 add_component_interval (LONGEST low
, LONGEST high
,
9804 std::vector
<LONGEST
> &indices
)
9808 int size
= indices
.size ();
9809 for (i
= 0; i
< size
; i
+= 2) {
9810 if (high
>= indices
[i
] && low
<= indices
[i
+ 1])
9814 for (kh
= i
+ 2; kh
< size
; kh
+= 2)
9815 if (high
< indices
[kh
])
9817 if (low
< indices
[i
])
9819 indices
[i
+ 1] = indices
[kh
- 1];
9820 if (high
> indices
[i
+ 1])
9821 indices
[i
+ 1] = high
;
9822 memcpy (indices
.data () + i
+ 2, indices
.data () + kh
, size
- kh
);
9823 indices
.resize (kh
- i
- 2);
9826 else if (high
< indices
[i
])
9830 indices
.resize (indices
.size () + 2);
9831 for (j
= indices
.size () - 1; j
>= i
+ 2; j
-= 1)
9832 indices
[j
] = indices
[j
- 2];
9834 indices
[i
+ 1] = high
;
9837 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
9840 static struct value
*
9841 ada_value_cast (struct type
*type
, struct value
*arg2
)
9843 if (type
== ada_check_typedef (value_type (arg2
)))
9846 return value_cast (type
, arg2
);
9849 /* Evaluating Ada expressions, and printing their result.
9850 ------------------------------------------------------
9855 We usually evaluate an Ada expression in order to print its value.
9856 We also evaluate an expression in order to print its type, which
9857 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
9858 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
9859 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
9860 the evaluation compared to the EVAL_NORMAL, but is otherwise very
9863 Evaluating expressions is a little more complicated for Ada entities
9864 than it is for entities in languages such as C. The main reason for
9865 this is that Ada provides types whose definition might be dynamic.
9866 One example of such types is variant records. Or another example
9867 would be an array whose bounds can only be known at run time.
9869 The following description is a general guide as to what should be
9870 done (and what should NOT be done) in order to evaluate an expression
9871 involving such types, and when. This does not cover how the semantic
9872 information is encoded by GNAT as this is covered separatly. For the
9873 document used as the reference for the GNAT encoding, see exp_dbug.ads
9874 in the GNAT sources.
9876 Ideally, we should embed each part of this description next to its
9877 associated code. Unfortunately, the amount of code is so vast right
9878 now that it's hard to see whether the code handling a particular
9879 situation might be duplicated or not. One day, when the code is
9880 cleaned up, this guide might become redundant with the comments
9881 inserted in the code, and we might want to remove it.
9883 2. ``Fixing'' an Entity, the Simple Case:
9884 -----------------------------------------
9886 When evaluating Ada expressions, the tricky issue is that they may
9887 reference entities whose type contents and size are not statically
9888 known. Consider for instance a variant record:
9890 type Rec (Empty : Boolean := True) is record
9893 when False => Value : Integer;
9896 Yes : Rec := (Empty => False, Value => 1);
9897 No : Rec := (empty => True);
9899 The size and contents of that record depends on the value of the
9900 descriminant (Rec.Empty). At this point, neither the debugging
9901 information nor the associated type structure in GDB are able to
9902 express such dynamic types. So what the debugger does is to create
9903 "fixed" versions of the type that applies to the specific object.
9904 We also informally refer to this operation as "fixing" an object,
9905 which means creating its associated fixed type.
9907 Example: when printing the value of variable "Yes" above, its fixed
9908 type would look like this:
9915 On the other hand, if we printed the value of "No", its fixed type
9922 Things become a little more complicated when trying to fix an entity
9923 with a dynamic type that directly contains another dynamic type,
9924 such as an array of variant records, for instance. There are
9925 two possible cases: Arrays, and records.
9927 3. ``Fixing'' Arrays:
9928 ---------------------
9930 The type structure in GDB describes an array in terms of its bounds,
9931 and the type of its elements. By design, all elements in the array
9932 have the same type and we cannot represent an array of variant elements
9933 using the current type structure in GDB. When fixing an array,
9934 we cannot fix the array element, as we would potentially need one
9935 fixed type per element of the array. As a result, the best we can do
9936 when fixing an array is to produce an array whose bounds and size
9937 are correct (allowing us to read it from memory), but without having
9938 touched its element type. Fixing each element will be done later,
9939 when (if) necessary.
9941 Arrays are a little simpler to handle than records, because the same
9942 amount of memory is allocated for each element of the array, even if
9943 the amount of space actually used by each element differs from element
9944 to element. Consider for instance the following array of type Rec:
9946 type Rec_Array is array (1 .. 2) of Rec;
9948 The actual amount of memory occupied by each element might be different
9949 from element to element, depending on the value of their discriminant.
9950 But the amount of space reserved for each element in the array remains
9951 fixed regardless. So we simply need to compute that size using
9952 the debugging information available, from which we can then determine
9953 the array size (we multiply the number of elements of the array by
9954 the size of each element).
9956 The simplest case is when we have an array of a constrained element
9957 type. For instance, consider the following type declarations:
9959 type Bounded_String (Max_Size : Integer) is
9961 Buffer : String (1 .. Max_Size);
9963 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
9965 In this case, the compiler describes the array as an array of
9966 variable-size elements (identified by its XVS suffix) for which
9967 the size can be read in the parallel XVZ variable.
9969 In the case of an array of an unconstrained element type, the compiler
9970 wraps the array element inside a private PAD type. This type should not
9971 be shown to the user, and must be "unwrap"'ed before printing. Note
9972 that we also use the adjective "aligner" in our code to designate
9973 these wrapper types.
9975 In some cases, the size allocated for each element is statically
9976 known. In that case, the PAD type already has the correct size,
9977 and the array element should remain unfixed.
9979 But there are cases when this size is not statically known.
9980 For instance, assuming that "Five" is an integer variable:
9982 type Dynamic is array (1 .. Five) of Integer;
9983 type Wrapper (Has_Length : Boolean := False) is record
9986 when True => Length : Integer;
9990 type Wrapper_Array is array (1 .. 2) of Wrapper;
9992 Hello : Wrapper_Array := (others => (Has_Length => True,
9993 Data => (others => 17),
9997 The debugging info would describe variable Hello as being an
9998 array of a PAD type. The size of that PAD type is not statically
9999 known, but can be determined using a parallel XVZ variable.
10000 In that case, a copy of the PAD type with the correct size should
10001 be used for the fixed array.
10003 3. ``Fixing'' record type objects:
10004 ----------------------------------
10006 Things are slightly different from arrays in the case of dynamic
10007 record types. In this case, in order to compute the associated
10008 fixed type, we need to determine the size and offset of each of
10009 its components. This, in turn, requires us to compute the fixed
10010 type of each of these components.
10012 Consider for instance the example:
10014 type Bounded_String (Max_Size : Natural) is record
10015 Str : String (1 .. Max_Size);
10018 My_String : Bounded_String (Max_Size => 10);
10020 In that case, the position of field "Length" depends on the size
10021 of field Str, which itself depends on the value of the Max_Size
10022 discriminant. In order to fix the type of variable My_String,
10023 we need to fix the type of field Str. Therefore, fixing a variant
10024 record requires us to fix each of its components.
10026 However, if a component does not have a dynamic size, the component
10027 should not be fixed. In particular, fields that use a PAD type
10028 should not fixed. Here is an example where this might happen
10029 (assuming type Rec above):
10031 type Container (Big : Boolean) is record
10035 when True => Another : Integer;
10036 when False => null;
10039 My_Container : Container := (Big => False,
10040 First => (Empty => True),
10043 In that example, the compiler creates a PAD type for component First,
10044 whose size is constant, and then positions the component After just
10045 right after it. The offset of component After is therefore constant
10048 The debugger computes the position of each field based on an algorithm
10049 that uses, among other things, the actual position and size of the field
10050 preceding it. Let's now imagine that the user is trying to print
10051 the value of My_Container. If the type fixing was recursive, we would
10052 end up computing the offset of field After based on the size of the
10053 fixed version of field First. And since in our example First has
10054 only one actual field, the size of the fixed type is actually smaller
10055 than the amount of space allocated to that field, and thus we would
10056 compute the wrong offset of field After.
10058 To make things more complicated, we need to watch out for dynamic
10059 components of variant records (identified by the ___XVL suffix in
10060 the component name). Even if the target type is a PAD type, the size
10061 of that type might not be statically known. So the PAD type needs
10062 to be unwrapped and the resulting type needs to be fixed. Otherwise,
10063 we might end up with the wrong size for our component. This can be
10064 observed with the following type declarations:
10066 type Octal is new Integer range 0 .. 7;
10067 type Octal_Array is array (Positive range <>) of Octal;
10068 pragma Pack (Octal_Array);
10070 type Octal_Buffer (Size : Positive) is record
10071 Buffer : Octal_Array (1 .. Size);
10075 In that case, Buffer is a PAD type whose size is unset and needs
10076 to be computed by fixing the unwrapped type.
10078 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
10079 ----------------------------------------------------------
10081 Lastly, when should the sub-elements of an entity that remained unfixed
10082 thus far, be actually fixed?
10084 The answer is: Only when referencing that element. For instance
10085 when selecting one component of a record, this specific component
10086 should be fixed at that point in time. Or when printing the value
10087 of a record, each component should be fixed before its value gets
10088 printed. Similarly for arrays, the element of the array should be
10089 fixed when printing each element of the array, or when extracting
10090 one element out of that array. On the other hand, fixing should
10091 not be performed on the elements when taking a slice of an array!
10093 Note that one of the side effects of miscomputing the offset and
10094 size of each field is that we end up also miscomputing the size
10095 of the containing type. This can have adverse results when computing
10096 the value of an entity. GDB fetches the value of an entity based
10097 on the size of its type, and thus a wrong size causes GDB to fetch
10098 the wrong amount of memory. In the case where the computed size is
10099 too small, GDB fetches too little data to print the value of our
10100 entity. Results in this case are unpredictable, as we usually read
10101 past the buffer containing the data =:-o. */
10103 /* A helper function for TERNOP_IN_RANGE. */
10106 eval_ternop_in_range (struct type
*expect_type
, struct expression
*exp
,
10107 enum noside noside
,
10108 value
*arg1
, value
*arg2
, value
*arg3
)
10110 binop_promote (exp
->language_defn
, exp
->gdbarch
, &arg1
, &arg2
);
10111 binop_promote (exp
->language_defn
, exp
->gdbarch
, &arg1
, &arg3
);
10112 struct type
*type
= language_bool_type (exp
->language_defn
, exp
->gdbarch
);
10114 value_from_longest (type
,
10115 (value_less (arg1
, arg3
)
10116 || value_equal (arg1
, arg3
))
10117 && (value_less (arg2
, arg1
)
10118 || value_equal (arg2
, arg1
)));
10121 /* A helper function for UNOP_NEG. */
10124 ada_unop_neg (struct type
*expect_type
,
10125 struct expression
*exp
,
10126 enum noside noside
, enum exp_opcode op
,
10127 struct value
*arg1
)
10129 unop_promote (exp
->language_defn
, exp
->gdbarch
, &arg1
);
10130 return value_neg (arg1
);
10133 /* A helper function for UNOP_IN_RANGE. */
10136 ada_unop_in_range (struct type
*expect_type
,
10137 struct expression
*exp
,
10138 enum noside noside
, enum exp_opcode op
,
10139 struct value
*arg1
, struct type
*type
)
10141 struct value
*arg2
, *arg3
;
10142 switch (type
->code ())
10145 lim_warning (_("Membership test incompletely implemented; "
10146 "always returns true"));
10147 type
= language_bool_type (exp
->language_defn
, exp
->gdbarch
);
10148 return value_from_longest (type
, (LONGEST
) 1);
10150 case TYPE_CODE_RANGE
:
10151 arg2
= value_from_longest (type
,
10152 type
->bounds ()->low
.const_val ());
10153 arg3
= value_from_longest (type
,
10154 type
->bounds ()->high
.const_val ());
10155 binop_promote (exp
->language_defn
, exp
->gdbarch
, &arg1
, &arg2
);
10156 binop_promote (exp
->language_defn
, exp
->gdbarch
, &arg1
, &arg3
);
10157 type
= language_bool_type (exp
->language_defn
, exp
->gdbarch
);
10159 value_from_longest (type
,
10160 (value_less (arg1
, arg3
)
10161 || value_equal (arg1
, arg3
))
10162 && (value_less (arg2
, arg1
)
10163 || value_equal (arg2
, arg1
)));
10167 /* A helper function for OP_ATR_TAG. */
10170 ada_atr_tag (struct type
*expect_type
,
10171 struct expression
*exp
,
10172 enum noside noside
, enum exp_opcode op
,
10173 struct value
*arg1
)
10175 if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
10176 return value_zero (ada_tag_type (arg1
), not_lval
);
10178 return ada_value_tag (arg1
);
10181 /* A helper function for OP_ATR_SIZE. */
10184 ada_atr_size (struct type
*expect_type
,
10185 struct expression
*exp
,
10186 enum noside noside
, enum exp_opcode op
,
10187 struct value
*arg1
)
10189 struct type
*type
= value_type (arg1
);
10191 /* If the argument is a reference, then dereference its type, since
10192 the user is really asking for the size of the actual object,
10193 not the size of the pointer. */
10194 if (type
->code () == TYPE_CODE_REF
)
10195 type
= TYPE_TARGET_TYPE (type
);
10197 if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
10198 return value_zero (builtin_type (exp
->gdbarch
)->builtin_int
, not_lval
);
10200 return value_from_longest (builtin_type (exp
->gdbarch
)->builtin_int
,
10201 TARGET_CHAR_BIT
* TYPE_LENGTH (type
));
10204 /* A helper function for UNOP_ABS. */
10207 ada_abs (struct type
*expect_type
,
10208 struct expression
*exp
,
10209 enum noside noside
, enum exp_opcode op
,
10210 struct value
*arg1
)
10212 unop_promote (exp
->language_defn
, exp
->gdbarch
, &arg1
);
10213 if (value_less (arg1
, value_zero (value_type (arg1
), not_lval
)))
10214 return value_neg (arg1
);
10219 /* A helper function for BINOP_MUL. */
10222 ada_mult_binop (struct type
*expect_type
,
10223 struct expression
*exp
,
10224 enum noside noside
, enum exp_opcode op
,
10225 struct value
*arg1
, struct value
*arg2
)
10227 if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
10229 binop_promote (exp
->language_defn
, exp
->gdbarch
, &arg1
, &arg2
);
10230 return value_zero (value_type (arg1
), not_lval
);
10234 binop_promote (exp
->language_defn
, exp
->gdbarch
, &arg1
, &arg2
);
10235 return ada_value_binop (arg1
, arg2
, op
);
10239 /* A helper function for BINOP_EQUAL and BINOP_NOTEQUAL. */
10242 ada_equal_binop (struct type
*expect_type
,
10243 struct expression
*exp
,
10244 enum noside noside
, enum exp_opcode op
,
10245 struct value
*arg1
, struct value
*arg2
)
10248 if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
10252 binop_promote (exp
->language_defn
, exp
->gdbarch
, &arg1
, &arg2
);
10253 tem
= ada_value_equal (arg1
, arg2
);
10255 if (op
== BINOP_NOTEQUAL
)
10257 struct type
*type
= language_bool_type (exp
->language_defn
, exp
->gdbarch
);
10258 return value_from_longest (type
, (LONGEST
) tem
);
10261 /* A helper function for TERNOP_SLICE. */
10264 ada_ternop_slice (struct expression
*exp
,
10265 enum noside noside
,
10266 struct value
*array
, struct value
*low_bound_val
,
10267 struct value
*high_bound_val
)
10270 LONGEST high_bound
;
10272 low_bound_val
= coerce_ref (low_bound_val
);
10273 high_bound_val
= coerce_ref (high_bound_val
);
10274 low_bound
= value_as_long (low_bound_val
);
10275 high_bound
= value_as_long (high_bound_val
);
10277 /* If this is a reference to an aligner type, then remove all
10279 if (value_type (array
)->code () == TYPE_CODE_REF
10280 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array
))))
10281 TYPE_TARGET_TYPE (value_type (array
)) =
10282 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array
)));
10284 if (ada_is_any_packed_array_type (value_type (array
)))
10285 error (_("cannot slice a packed array"));
10287 /* If this is a reference to an array or an array lvalue,
10288 convert to a pointer. */
10289 if (value_type (array
)->code () == TYPE_CODE_REF
10290 || (value_type (array
)->code () == TYPE_CODE_ARRAY
10291 && VALUE_LVAL (array
) == lval_memory
))
10292 array
= value_addr (array
);
10294 if (noside
== EVAL_AVOID_SIDE_EFFECTS
10295 && ada_is_array_descriptor_type (ada_check_typedef
10296 (value_type (array
))))
10297 return empty_array (ada_type_of_array (array
, 0), low_bound
,
10300 array
= ada_coerce_to_simple_array_ptr (array
);
10302 /* If we have more than one level of pointer indirection,
10303 dereference the value until we get only one level. */
10304 while (value_type (array
)->code () == TYPE_CODE_PTR
10305 && (TYPE_TARGET_TYPE (value_type (array
))->code ()
10307 array
= value_ind (array
);
10309 /* Make sure we really do have an array type before going further,
10310 to avoid a SEGV when trying to get the index type or the target
10311 type later down the road if the debug info generated by
10312 the compiler is incorrect or incomplete. */
10313 if (!ada_is_simple_array_type (value_type (array
)))
10314 error (_("cannot take slice of non-array"));
10316 if (ada_check_typedef (value_type (array
))->code ()
10319 struct type
*type0
= ada_check_typedef (value_type (array
));
10321 if (high_bound
< low_bound
|| noside
== EVAL_AVOID_SIDE_EFFECTS
)
10322 return empty_array (TYPE_TARGET_TYPE (type0
), low_bound
, high_bound
);
10325 struct type
*arr_type0
=
10326 to_fixed_array_type (TYPE_TARGET_TYPE (type0
), NULL
, 1);
10328 return ada_value_slice_from_ptr (array
, arr_type0
,
10329 longest_to_int (low_bound
),
10330 longest_to_int (high_bound
));
10333 else if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
10335 else if (high_bound
< low_bound
)
10336 return empty_array (value_type (array
), low_bound
, high_bound
);
10338 return ada_value_slice (array
, longest_to_int (low_bound
),
10339 longest_to_int (high_bound
));
10342 /* A helper function for BINOP_IN_BOUNDS. */
10345 ada_binop_in_bounds (struct expression
*exp
, enum noside noside
,
10346 struct value
*arg1
, struct value
*arg2
, int n
)
10348 if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
10350 struct type
*type
= language_bool_type (exp
->language_defn
,
10352 return value_zero (type
, not_lval
);
10355 struct type
*type
= ada_index_type (value_type (arg2
), n
, "range");
10357 type
= value_type (arg1
);
10359 value
*arg3
= value_from_longest (type
, ada_array_bound (arg2
, n
, 1));
10360 arg2
= value_from_longest (type
, ada_array_bound (arg2
, n
, 0));
10362 binop_promote (exp
->language_defn
, exp
->gdbarch
, &arg1
, &arg2
);
10363 binop_promote (exp
->language_defn
, exp
->gdbarch
, &arg1
, &arg3
);
10364 type
= language_bool_type (exp
->language_defn
, exp
->gdbarch
);
10365 return value_from_longest (type
,
10366 (value_less (arg1
, arg3
)
10367 || value_equal (arg1
, arg3
))
10368 && (value_less (arg2
, arg1
)
10369 || value_equal (arg2
, arg1
)));
10372 /* A helper function for some attribute operations. */
10375 ada_unop_atr (struct expression
*exp
, enum noside noside
, enum exp_opcode op
,
10376 struct value
*arg1
, struct type
*type_arg
, int tem
)
10378 if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
10380 if (type_arg
== NULL
)
10381 type_arg
= value_type (arg1
);
10383 if (ada_is_constrained_packed_array_type (type_arg
))
10384 type_arg
= decode_constrained_packed_array_type (type_arg
);
10386 if (!discrete_type_p (type_arg
))
10390 default: /* Should never happen. */
10391 error (_("unexpected attribute encountered"));
10394 type_arg
= ada_index_type (type_arg
, tem
,
10395 ada_attribute_name (op
));
10397 case OP_ATR_LENGTH
:
10398 type_arg
= builtin_type (exp
->gdbarch
)->builtin_int
;
10403 return value_zero (type_arg
, not_lval
);
10405 else if (type_arg
== NULL
)
10407 arg1
= ada_coerce_ref (arg1
);
10409 if (ada_is_constrained_packed_array_type (value_type (arg1
)))
10410 arg1
= ada_coerce_to_simple_array (arg1
);
10413 if (op
== OP_ATR_LENGTH
)
10414 type
= builtin_type (exp
->gdbarch
)->builtin_int
;
10417 type
= ada_index_type (value_type (arg1
), tem
,
10418 ada_attribute_name (op
));
10420 type
= builtin_type (exp
->gdbarch
)->builtin_int
;
10425 default: /* Should never happen. */
10426 error (_("unexpected attribute encountered"));
10428 return value_from_longest
10429 (type
, ada_array_bound (arg1
, tem
, 0));
10431 return value_from_longest
10432 (type
, ada_array_bound (arg1
, tem
, 1));
10433 case OP_ATR_LENGTH
:
10434 return value_from_longest
10435 (type
, ada_array_length (arg1
, tem
));
10438 else if (discrete_type_p (type_arg
))
10440 struct type
*range_type
;
10441 const char *name
= ada_type_name (type_arg
);
10444 if (name
!= NULL
&& type_arg
->code () != TYPE_CODE_ENUM
)
10445 range_type
= to_fixed_range_type (type_arg
, NULL
);
10446 if (range_type
== NULL
)
10447 range_type
= type_arg
;
10451 error (_("unexpected attribute encountered"));
10453 return value_from_longest
10454 (range_type
, ada_discrete_type_low_bound (range_type
));
10456 return value_from_longest
10457 (range_type
, ada_discrete_type_high_bound (range_type
));
10458 case OP_ATR_LENGTH
:
10459 error (_("the 'length attribute applies only to array types"));
10462 else if (type_arg
->code () == TYPE_CODE_FLT
)
10463 error (_("unimplemented type attribute"));
10468 if (ada_is_constrained_packed_array_type (type_arg
))
10469 type_arg
= decode_constrained_packed_array_type (type_arg
);
10472 if (op
== OP_ATR_LENGTH
)
10473 type
= builtin_type (exp
->gdbarch
)->builtin_int
;
10476 type
= ada_index_type (type_arg
, tem
, ada_attribute_name (op
));
10478 type
= builtin_type (exp
->gdbarch
)->builtin_int
;
10484 error (_("unexpected attribute encountered"));
10486 low
= ada_array_bound_from_type (type_arg
, tem
, 0);
10487 return value_from_longest (type
, low
);
10489 high
= ada_array_bound_from_type (type_arg
, tem
, 1);
10490 return value_from_longest (type
, high
);
10491 case OP_ATR_LENGTH
:
10492 low
= ada_array_bound_from_type (type_arg
, tem
, 0);
10493 high
= ada_array_bound_from_type (type_arg
, tem
, 1);
10494 return value_from_longest (type
, high
- low
+ 1);
10499 /* A helper function for OP_ATR_MIN and OP_ATR_MAX. */
10502 ada_binop_minmax (struct type
*expect_type
,
10503 struct expression
*exp
,
10504 enum noside noside
, enum exp_opcode op
,
10505 struct value
*arg1
, struct value
*arg2
)
10507 if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
10508 return value_zero (value_type (arg1
), not_lval
);
10511 binop_promote (exp
->language_defn
, exp
->gdbarch
, &arg1
, &arg2
);
10512 return value_binop (arg1
, arg2
, op
);
10516 /* A helper function for BINOP_EXP. */
10519 ada_binop_exp (struct type
*expect_type
,
10520 struct expression
*exp
,
10521 enum noside noside
, enum exp_opcode op
,
10522 struct value
*arg1
, struct value
*arg2
)
10524 if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
10525 return value_zero (value_type (arg1
), not_lval
);
10528 /* For integer exponentiation operations,
10529 only promote the first argument. */
10530 if (is_integral_type (value_type (arg2
)))
10531 unop_promote (exp
->language_defn
, exp
->gdbarch
, &arg1
);
10533 binop_promote (exp
->language_defn
, exp
->gdbarch
, &arg1
, &arg2
);
10535 return value_binop (arg1
, arg2
, op
);
10542 /* See ada-exp.h. */
10545 ada_resolvable::replace (operation_up
&&owner
,
10546 struct expression
*exp
,
10547 bool deprocedure_p
,
10548 bool parse_completion
,
10549 innermost_block_tracker
*tracker
,
10550 struct type
*context_type
)
10552 if (resolve (exp
, deprocedure_p
, parse_completion
, tracker
, context_type
))
10553 return (make_operation
<ada_funcall_operation
>
10554 (std::move (owner
),
10555 std::vector
<operation_up
> ()));
10556 return std::move (owner
);
10559 /* Convert the character literal whose value would be VAL to the
10560 appropriate value of type TYPE, if there is a translation.
10561 Otherwise return VAL. Hence, in an enumeration type ('A', 'B'),
10562 the literal 'A' (VAL == 65), returns 0. */
10565 convert_char_literal (struct type
*type
, LONGEST val
)
10572 type
= check_typedef (type
);
10573 if (type
->code () != TYPE_CODE_ENUM
)
10576 if ((val
>= 'a' && val
<= 'z') || (val
>= '0' && val
<= '9'))
10577 xsnprintf (name
, sizeof (name
), "Q%c", (int) val
);
10578 else if (val
>= 0 && val
< 256)
10579 xsnprintf (name
, sizeof (name
), "QU%02x", (unsigned) val
);
10580 else if (val
>= 0 && val
< 0x10000)
10581 xsnprintf (name
, sizeof (name
), "QW%04x", (unsigned) val
);
10583 xsnprintf (name
, sizeof (name
), "QWW%08lx", (unsigned long) val
);
10584 size_t len
= strlen (name
);
10585 for (f
= 0; f
< type
->num_fields (); f
+= 1)
10587 /* Check the suffix because an enum constant in a package will
10588 have a name like "pkg__QUxx". This is safe enough because we
10589 already have the correct type, and because mangling means
10590 there can't be clashes. */
10591 const char *ename
= type
->field (f
).name ();
10592 size_t elen
= strlen (ename
);
10594 if (elen
>= len
&& strcmp (name
, ename
+ elen
- len
) == 0)
10595 return type
->field (f
).loc_enumval ();
10601 ada_char_operation::evaluate (struct type
*expect_type
,
10602 struct expression
*exp
,
10603 enum noside noside
)
10605 value
*result
= long_const_operation::evaluate (expect_type
, exp
, noside
);
10606 if (expect_type
!= nullptr)
10607 result
= ada_value_cast (expect_type
, result
);
10611 /* See ada-exp.h. */
10614 ada_char_operation::replace (operation_up
&&owner
,
10615 struct expression
*exp
,
10616 bool deprocedure_p
,
10617 bool parse_completion
,
10618 innermost_block_tracker
*tracker
,
10619 struct type
*context_type
)
10621 operation_up result
= std::move (owner
);
10623 if (context_type
!= nullptr && context_type
->code () == TYPE_CODE_ENUM
)
10625 gdb_assert (result
.get () == this);
10626 std::get
<0> (m_storage
) = context_type
;
10627 std::get
<1> (m_storage
)
10628 = convert_char_literal (context_type
, std::get
<1> (m_storage
));
10635 ada_wrapped_operation::evaluate (struct type
*expect_type
,
10636 struct expression
*exp
,
10637 enum noside noside
)
10639 value
*result
= std::get
<0> (m_storage
)->evaluate (expect_type
, exp
, noside
);
10640 if (noside
== EVAL_NORMAL
)
10641 result
= unwrap_value (result
);
10643 /* If evaluating an OP_FLOAT and an EXPECT_TYPE was provided,
10644 then we need to perform the conversion manually, because
10645 evaluate_subexp_standard doesn't do it. This conversion is
10646 necessary in Ada because the different kinds of float/fixed
10647 types in Ada have different representations.
10649 Similarly, we need to perform the conversion from OP_LONG
10651 if ((opcode () == OP_FLOAT
|| opcode () == OP_LONG
) && expect_type
!= NULL
)
10652 result
= ada_value_cast (expect_type
, result
);
10658 ada_string_operation::evaluate (struct type
*expect_type
,
10659 struct expression
*exp
,
10660 enum noside noside
)
10662 struct type
*char_type
;
10663 if (expect_type
!= nullptr && ada_is_string_type (expect_type
))
10664 char_type
= ada_array_element_type (expect_type
, 1);
10666 char_type
= language_string_char_type (exp
->language_defn
, exp
->gdbarch
);
10668 const std::string
&str
= std::get
<0> (m_storage
);
10669 const char *encoding
;
10670 switch (TYPE_LENGTH (char_type
))
10674 /* Simply copy over the data -- this isn't perhaps strictly
10675 correct according to the encodings, but it is gdb's
10676 historical behavior. */
10677 struct type
*stringtype
10678 = lookup_array_range_type (char_type
, 1, str
.length ());
10679 struct value
*val
= allocate_value (stringtype
);
10680 memcpy (value_contents_raw (val
).data (), str
.c_str (),
10686 if (gdbarch_byte_order (exp
->gdbarch
) == BFD_ENDIAN_BIG
)
10687 encoding
= "UTF-16BE";
10689 encoding
= "UTF-16LE";
10693 if (gdbarch_byte_order (exp
->gdbarch
) == BFD_ENDIAN_BIG
)
10694 encoding
= "UTF-32BE";
10696 encoding
= "UTF-32LE";
10700 error (_("unexpected character type size %s"),
10701 pulongest (TYPE_LENGTH (char_type
)));
10704 auto_obstack converted
;
10705 convert_between_encodings (host_charset (), encoding
,
10706 (const gdb_byte
*) str
.c_str (),
10708 &converted
, translit_none
);
10710 struct type
*stringtype
10711 = lookup_array_range_type (char_type
, 1,
10712 obstack_object_size (&converted
)
10713 / TYPE_LENGTH (char_type
));
10714 struct value
*val
= allocate_value (stringtype
);
10715 memcpy (value_contents_raw (val
).data (),
10716 obstack_base (&converted
),
10717 obstack_object_size (&converted
));
10722 ada_concat_operation::evaluate (struct type
*expect_type
,
10723 struct expression
*exp
,
10724 enum noside noside
)
10726 /* If one side is a literal, evaluate the other side first so that
10727 the expected type can be set properly. */
10728 const operation_up
&lhs_expr
= std::get
<0> (m_storage
);
10729 const operation_up
&rhs_expr
= std::get
<1> (m_storage
);
10732 if (dynamic_cast<ada_string_operation
*> (lhs_expr
.get ()) != nullptr)
10734 rhs
= rhs_expr
->evaluate (nullptr, exp
, noside
);
10735 lhs
= lhs_expr
->evaluate (value_type (rhs
), exp
, noside
);
10737 else if (dynamic_cast<ada_char_operation
*> (lhs_expr
.get ()) != nullptr)
10739 rhs
= rhs_expr
->evaluate (nullptr, exp
, noside
);
10740 struct type
*rhs_type
= check_typedef (value_type (rhs
));
10741 struct type
*elt_type
= nullptr;
10742 if (rhs_type
->code () == TYPE_CODE_ARRAY
)
10743 elt_type
= TYPE_TARGET_TYPE (rhs_type
);
10744 lhs
= lhs_expr
->evaluate (elt_type
, exp
, noside
);
10746 else if (dynamic_cast<ada_string_operation
*> (rhs_expr
.get ()) != nullptr)
10748 lhs
= lhs_expr
->evaluate (nullptr, exp
, noside
);
10749 rhs
= rhs_expr
->evaluate (value_type (lhs
), exp
, noside
);
10751 else if (dynamic_cast<ada_char_operation
*> (rhs_expr
.get ()) != nullptr)
10753 lhs
= lhs_expr
->evaluate (nullptr, exp
, noside
);
10754 struct type
*lhs_type
= check_typedef (value_type (lhs
));
10755 struct type
*elt_type
= nullptr;
10756 if (lhs_type
->code () == TYPE_CODE_ARRAY
)
10757 elt_type
= TYPE_TARGET_TYPE (lhs_type
);
10758 rhs
= rhs_expr
->evaluate (elt_type
, exp
, noside
);
10761 return concat_operation::evaluate (expect_type
, exp
, noside
);
10763 return value_concat (lhs
, rhs
);
10767 ada_qual_operation::evaluate (struct type
*expect_type
,
10768 struct expression
*exp
,
10769 enum noside noside
)
10771 struct type
*type
= std::get
<1> (m_storage
);
10772 return std::get
<0> (m_storage
)->evaluate (type
, exp
, noside
);
10776 ada_ternop_range_operation::evaluate (struct type
*expect_type
,
10777 struct expression
*exp
,
10778 enum noside noside
)
10780 value
*arg0
= std::get
<0> (m_storage
)->evaluate (nullptr, exp
, noside
);
10781 value
*arg1
= std::get
<1> (m_storage
)->evaluate (nullptr, exp
, noside
);
10782 value
*arg2
= std::get
<2> (m_storage
)->evaluate (nullptr, exp
, noside
);
10783 return eval_ternop_in_range (expect_type
, exp
, noside
, arg0
, arg1
, arg2
);
10787 ada_binop_addsub_operation::evaluate (struct type
*expect_type
,
10788 struct expression
*exp
,
10789 enum noside noside
)
10791 value
*arg1
= std::get
<1> (m_storage
)->evaluate_with_coercion (exp
, noside
);
10792 value
*arg2
= std::get
<2> (m_storage
)->evaluate_with_coercion (exp
, noside
);
10794 auto do_op
= [=] (LONGEST x
, LONGEST y
)
10796 if (std::get
<0> (m_storage
) == BINOP_ADD
)
10801 if (value_type (arg1
)->code () == TYPE_CODE_PTR
)
10802 return (value_from_longest
10803 (value_type (arg1
),
10804 do_op (value_as_long (arg1
), value_as_long (arg2
))));
10805 if (value_type (arg2
)->code () == TYPE_CODE_PTR
)
10806 return (value_from_longest
10807 (value_type (arg2
),
10808 do_op (value_as_long (arg1
), value_as_long (arg2
))));
10809 /* Preserve the original type for use by the range case below.
10810 We cannot cast the result to a reference type, so if ARG1 is
10811 a reference type, find its underlying type. */
10812 struct type
*type
= value_type (arg1
);
10813 while (type
->code () == TYPE_CODE_REF
)
10814 type
= TYPE_TARGET_TYPE (type
);
10815 binop_promote (exp
->language_defn
, exp
->gdbarch
, &arg1
, &arg2
);
10816 arg1
= value_binop (arg1
, arg2
, std::get
<0> (m_storage
));
10817 /* We need to special-case the result with a range.
10818 This is done for the benefit of "ptype". gdb's Ada support
10819 historically used the LHS to set the result type here, so
10820 preserve this behavior. */
10821 if (type
->code () == TYPE_CODE_RANGE
)
10822 arg1
= value_cast (type
, arg1
);
10827 ada_unop_atr_operation::evaluate (struct type
*expect_type
,
10828 struct expression
*exp
,
10829 enum noside noside
)
10831 struct type
*type_arg
= nullptr;
10832 value
*val
= nullptr;
10834 if (std::get
<0> (m_storage
)->opcode () == OP_TYPE
)
10836 value
*tem
= std::get
<0> (m_storage
)->evaluate (nullptr, exp
,
10837 EVAL_AVOID_SIDE_EFFECTS
);
10838 type_arg
= value_type (tem
);
10841 val
= std::get
<0> (m_storage
)->evaluate (nullptr, exp
, noside
);
10843 return ada_unop_atr (exp
, noside
, std::get
<1> (m_storage
),
10844 val
, type_arg
, std::get
<2> (m_storage
));
10848 ada_var_msym_value_operation::evaluate_for_cast (struct type
*expect_type
,
10849 struct expression
*exp
,
10850 enum noside noside
)
10852 if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
10853 return value_zero (expect_type
, not_lval
);
10855 const bound_minimal_symbol
&b
= std::get
<0> (m_storage
);
10856 value
*val
= evaluate_var_msym_value (noside
, b
.objfile
, b
.minsym
);
10858 val
= ada_value_cast (expect_type
, val
);
10860 /* Follow the Ada language semantics that do not allow taking
10861 an address of the result of a cast (view conversion in Ada). */
10862 if (VALUE_LVAL (val
) == lval_memory
)
10864 if (value_lazy (val
))
10865 value_fetch_lazy (val
);
10866 VALUE_LVAL (val
) = not_lval
;
10872 ada_var_value_operation::evaluate_for_cast (struct type
*expect_type
,
10873 struct expression
*exp
,
10874 enum noside noside
)
10876 value
*val
= evaluate_var_value (noside
,
10877 std::get
<0> (m_storage
).block
,
10878 std::get
<0> (m_storage
).symbol
);
10880 val
= ada_value_cast (expect_type
, val
);
10882 /* Follow the Ada language semantics that do not allow taking
10883 an address of the result of a cast (view conversion in Ada). */
10884 if (VALUE_LVAL (val
) == lval_memory
)
10886 if (value_lazy (val
))
10887 value_fetch_lazy (val
);
10888 VALUE_LVAL (val
) = not_lval
;
10894 ada_var_value_operation::evaluate (struct type
*expect_type
,
10895 struct expression
*exp
,
10896 enum noside noside
)
10898 symbol
*sym
= std::get
<0> (m_storage
).symbol
;
10900 if (sym
->domain () == UNDEF_DOMAIN
)
10901 /* Only encountered when an unresolved symbol occurs in a
10902 context other than a function call, in which case, it is
10904 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10905 sym
->print_name ());
10907 if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
10909 struct type
*type
= static_unwrap_type (sym
->type ());
10910 /* Check to see if this is a tagged type. We also need to handle
10911 the case where the type is a reference to a tagged type, but
10912 we have to be careful to exclude pointers to tagged types.
10913 The latter should be shown as usual (as a pointer), whereas
10914 a reference should mostly be transparent to the user. */
10915 if (ada_is_tagged_type (type
, 0)
10916 || (type
->code () == TYPE_CODE_REF
10917 && ada_is_tagged_type (TYPE_TARGET_TYPE (type
), 0)))
10919 /* Tagged types are a little special in the fact that the real
10920 type is dynamic and can only be determined by inspecting the
10921 object's tag. This means that we need to get the object's
10922 value first (EVAL_NORMAL) and then extract the actual object
10925 Note that we cannot skip the final step where we extract
10926 the object type from its tag, because the EVAL_NORMAL phase
10927 results in dynamic components being resolved into fixed ones.
10928 This can cause problems when trying to print the type
10929 description of tagged types whose parent has a dynamic size:
10930 We use the type name of the "_parent" component in order
10931 to print the name of the ancestor type in the type description.
10932 If that component had a dynamic size, the resolution into
10933 a fixed type would result in the loss of that type name,
10934 thus preventing us from printing the name of the ancestor
10935 type in the type description. */
10936 value
*arg1
= evaluate (nullptr, exp
, EVAL_NORMAL
);
10938 if (type
->code () != TYPE_CODE_REF
)
10940 struct type
*actual_type
;
10942 actual_type
= type_from_tag (ada_value_tag (arg1
));
10943 if (actual_type
== NULL
)
10944 /* If, for some reason, we were unable to determine
10945 the actual type from the tag, then use the static
10946 approximation that we just computed as a fallback.
10947 This can happen if the debugging information is
10948 incomplete, for instance. */
10949 actual_type
= type
;
10950 return value_zero (actual_type
, not_lval
);
10954 /* In the case of a ref, ada_coerce_ref takes care
10955 of determining the actual type. But the evaluation
10956 should return a ref as it should be valid to ask
10957 for its address; so rebuild a ref after coerce. */
10958 arg1
= ada_coerce_ref (arg1
);
10959 return value_ref (arg1
, TYPE_CODE_REF
);
10963 /* Records and unions for which GNAT encodings have been
10964 generated need to be statically fixed as well.
10965 Otherwise, non-static fixing produces a type where
10966 all dynamic properties are removed, which prevents "ptype"
10967 from being able to completely describe the type.
10968 For instance, a case statement in a variant record would be
10969 replaced by the relevant components based on the actual
10970 value of the discriminants. */
10971 if ((type
->code () == TYPE_CODE_STRUCT
10972 && dynamic_template_type (type
) != NULL
)
10973 || (type
->code () == TYPE_CODE_UNION
10974 && ada_find_parallel_type (type
, "___XVU") != NULL
))
10975 return value_zero (to_static_fixed_type (type
), not_lval
);
10978 value
*arg1
= var_value_operation::evaluate (expect_type
, exp
, noside
);
10979 return ada_to_fixed_value (arg1
);
10983 ada_var_value_operation::resolve (struct expression
*exp
,
10984 bool deprocedure_p
,
10985 bool parse_completion
,
10986 innermost_block_tracker
*tracker
,
10987 struct type
*context_type
)
10989 symbol
*sym
= std::get
<0> (m_storage
).symbol
;
10990 if (sym
->domain () == UNDEF_DOMAIN
)
10992 block_symbol resolved
10993 = ada_resolve_variable (sym
, std::get
<0> (m_storage
).block
,
10994 context_type
, parse_completion
,
10995 deprocedure_p
, tracker
);
10996 std::get
<0> (m_storage
) = resolved
;
11000 && (std::get
<0> (m_storage
).symbol
->type ()->code ()
11001 == TYPE_CODE_FUNC
))
11008 ada_atr_val_operation::evaluate (struct type
*expect_type
,
11009 struct expression
*exp
,
11010 enum noside noside
)
11012 value
*arg
= std::get
<1> (m_storage
)->evaluate (nullptr, exp
, noside
);
11013 return ada_val_atr (noside
, std::get
<0> (m_storage
), arg
);
11017 ada_unop_ind_operation::evaluate (struct type
*expect_type
,
11018 struct expression
*exp
,
11019 enum noside noside
)
11021 value
*arg1
= std::get
<0> (m_storage
)->evaluate (expect_type
, exp
, noside
);
11023 struct type
*type
= ada_check_typedef (value_type (arg1
));
11024 if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
11026 if (ada_is_array_descriptor_type (type
))
11027 /* GDB allows dereferencing GNAT array descriptors. */
11029 struct type
*arrType
= ada_type_of_array (arg1
, 0);
11031 if (arrType
== NULL
)
11032 error (_("Attempt to dereference null array pointer."));
11033 return value_at_lazy (arrType
, 0);
11035 else if (type
->code () == TYPE_CODE_PTR
11036 || type
->code () == TYPE_CODE_REF
11037 /* In C you can dereference an array to get the 1st elt. */
11038 || type
->code () == TYPE_CODE_ARRAY
)
11040 /* As mentioned in the OP_VAR_VALUE case, tagged types can
11041 only be determined by inspecting the object's tag.
11042 This means that we need to evaluate completely the
11043 expression in order to get its type. */
11045 if ((type
->code () == TYPE_CODE_REF
11046 || type
->code () == TYPE_CODE_PTR
)
11047 && ada_is_tagged_type (TYPE_TARGET_TYPE (type
), 0))
11049 arg1
= std::get
<0> (m_storage
)->evaluate (nullptr, exp
,
11051 type
= value_type (ada_value_ind (arg1
));
11055 type
= to_static_fixed_type
11057 (ada_check_typedef (TYPE_TARGET_TYPE (type
))));
11059 return value_zero (type
, lval_memory
);
11061 else if (type
->code () == TYPE_CODE_INT
)
11063 /* GDB allows dereferencing an int. */
11064 if (expect_type
== NULL
)
11065 return value_zero (builtin_type (exp
->gdbarch
)->builtin_int
,
11070 to_static_fixed_type (ada_aligned_type (expect_type
));
11071 return value_zero (expect_type
, lval_memory
);
11075 error (_("Attempt to take contents of a non-pointer value."));
11077 arg1
= ada_coerce_ref (arg1
); /* FIXME: What is this for?? */
11078 type
= ada_check_typedef (value_type (arg1
));
11080 if (type
->code () == TYPE_CODE_INT
)
11081 /* GDB allows dereferencing an int. If we were given
11082 the expect_type, then use that as the target type.
11083 Otherwise, assume that the target type is an int. */
11085 if (expect_type
!= NULL
)
11086 return ada_value_ind (value_cast (lookup_pointer_type (expect_type
),
11089 return value_at_lazy (builtin_type (exp
->gdbarch
)->builtin_int
,
11090 (CORE_ADDR
) value_as_address (arg1
));
11093 if (ada_is_array_descriptor_type (type
))
11094 /* GDB allows dereferencing GNAT array descriptors. */
11095 return ada_coerce_to_simple_array (arg1
);
11097 return ada_value_ind (arg1
);
11101 ada_structop_operation::evaluate (struct type
*expect_type
,
11102 struct expression
*exp
,
11103 enum noside noside
)
11105 value
*arg1
= std::get
<0> (m_storage
)->evaluate (nullptr, exp
, noside
);
11106 const char *str
= std::get
<1> (m_storage
).c_str ();
11107 if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
11110 struct type
*type1
= value_type (arg1
);
11112 if (ada_is_tagged_type (type1
, 1))
11114 type
= ada_lookup_struct_elt_type (type1
, str
, 1, 1);
11116 /* If the field is not found, check if it exists in the
11117 extension of this object's type. This means that we
11118 need to evaluate completely the expression. */
11122 arg1
= std::get
<0> (m_storage
)->evaluate (nullptr, exp
,
11124 arg1
= ada_value_struct_elt (arg1
, str
, 0);
11125 arg1
= unwrap_value (arg1
);
11126 type
= value_type (ada_to_fixed_value (arg1
));
11130 type
= ada_lookup_struct_elt_type (type1
, str
, 1, 0);
11132 return value_zero (ada_aligned_type (type
), lval_memory
);
11136 arg1
= ada_value_struct_elt (arg1
, str
, 0);
11137 arg1
= unwrap_value (arg1
);
11138 return ada_to_fixed_value (arg1
);
11143 ada_funcall_operation::evaluate (struct type
*expect_type
,
11144 struct expression
*exp
,
11145 enum noside noside
)
11147 const std::vector
<operation_up
> &args_up
= std::get
<1> (m_storage
);
11148 int nargs
= args_up
.size ();
11149 std::vector
<value
*> argvec (nargs
);
11150 operation_up
&callee_op
= std::get
<0> (m_storage
);
11152 ada_var_value_operation
*avv
11153 = dynamic_cast<ada_var_value_operation
*> (callee_op
.get ());
11155 && avv
->get_symbol ()->domain () == UNDEF_DOMAIN
)
11156 error (_("Unexpected unresolved symbol, %s, during evaluation"),
11157 avv
->get_symbol ()->print_name ());
11159 value
*callee
= callee_op
->evaluate (nullptr, exp
, noside
);
11160 for (int i
= 0; i
< args_up
.size (); ++i
)
11161 argvec
[i
] = args_up
[i
]->evaluate (nullptr, exp
, noside
);
11163 if (ada_is_constrained_packed_array_type
11164 (desc_base_type (value_type (callee
))))
11165 callee
= ada_coerce_to_simple_array (callee
);
11166 else if (value_type (callee
)->code () == TYPE_CODE_ARRAY
11167 && TYPE_FIELD_BITSIZE (value_type (callee
), 0) != 0)
11168 /* This is a packed array that has already been fixed, and
11169 therefore already coerced to a simple array. Nothing further
11172 else if (value_type (callee
)->code () == TYPE_CODE_REF
)
11174 /* Make sure we dereference references so that all the code below
11175 feels like it's really handling the referenced value. Wrapping
11176 types (for alignment) may be there, so make sure we strip them as
11178 callee
= ada_to_fixed_value (coerce_ref (callee
));
11180 else if (value_type (callee
)->code () == TYPE_CODE_ARRAY
11181 && VALUE_LVAL (callee
) == lval_memory
)
11182 callee
= value_addr (callee
);
11184 struct type
*type
= ada_check_typedef (value_type (callee
));
11186 /* Ada allows us to implicitly dereference arrays when subscripting
11187 them. So, if this is an array typedef (encoding use for array
11188 access types encoded as fat pointers), strip it now. */
11189 if (type
->code () == TYPE_CODE_TYPEDEF
)
11190 type
= ada_typedef_target_type (type
);
11192 if (type
->code () == TYPE_CODE_PTR
)
11194 switch (ada_check_typedef (TYPE_TARGET_TYPE (type
))->code ())
11196 case TYPE_CODE_FUNC
:
11197 type
= ada_check_typedef (TYPE_TARGET_TYPE (type
));
11199 case TYPE_CODE_ARRAY
:
11201 case TYPE_CODE_STRUCT
:
11202 if (noside
!= EVAL_AVOID_SIDE_EFFECTS
)
11203 callee
= ada_value_ind (callee
);
11204 type
= ada_check_typedef (TYPE_TARGET_TYPE (type
));
11207 error (_("cannot subscript or call something of type `%s'"),
11208 ada_type_name (value_type (callee
)));
11213 switch (type
->code ())
11215 case TYPE_CODE_FUNC
:
11216 if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
11218 if (TYPE_TARGET_TYPE (type
) == NULL
)
11219 error_call_unknown_return_type (NULL
);
11220 return allocate_value (TYPE_TARGET_TYPE (type
));
11222 return call_function_by_hand (callee
, NULL
, argvec
);
11223 case TYPE_CODE_INTERNAL_FUNCTION
:
11224 if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
11225 /* We don't know anything about what the internal
11226 function might return, but we have to return
11228 return value_zero (builtin_type (exp
->gdbarch
)->builtin_int
,
11231 return call_internal_function (exp
->gdbarch
, exp
->language_defn
,
11235 case TYPE_CODE_STRUCT
:
11239 arity
= ada_array_arity (type
);
11240 type
= ada_array_element_type (type
, nargs
);
11242 error (_("cannot subscript or call a record"));
11243 if (arity
!= nargs
)
11244 error (_("wrong number of subscripts; expecting %d"), arity
);
11245 if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
11246 return value_zero (ada_aligned_type (type
), lval_memory
);
11248 unwrap_value (ada_value_subscript
11249 (callee
, nargs
, argvec
.data ()));
11251 case TYPE_CODE_ARRAY
:
11252 if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
11254 type
= ada_array_element_type (type
, nargs
);
11256 error (_("element type of array unknown"));
11258 return value_zero (ada_aligned_type (type
), lval_memory
);
11261 unwrap_value (ada_value_subscript
11262 (ada_coerce_to_simple_array (callee
),
11263 nargs
, argvec
.data ()));
11264 case TYPE_CODE_PTR
: /* Pointer to array */
11265 if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
11267 type
= to_fixed_array_type (TYPE_TARGET_TYPE (type
), NULL
, 1);
11268 type
= ada_array_element_type (type
, nargs
);
11270 error (_("element type of array unknown"));
11272 return value_zero (ada_aligned_type (type
), lval_memory
);
11275 unwrap_value (ada_value_ptr_subscript (callee
, nargs
,
11279 error (_("Attempt to index or call something other than an "
11280 "array or function"));
11285 ada_funcall_operation::resolve (struct expression
*exp
,
11286 bool deprocedure_p
,
11287 bool parse_completion
,
11288 innermost_block_tracker
*tracker
,
11289 struct type
*context_type
)
11291 operation_up
&callee_op
= std::get
<0> (m_storage
);
11293 ada_var_value_operation
*avv
11294 = dynamic_cast<ada_var_value_operation
*> (callee_op
.get ());
11295 if (avv
== nullptr)
11298 symbol
*sym
= avv
->get_symbol ();
11299 if (sym
->domain () != UNDEF_DOMAIN
)
11302 const std::vector
<operation_up
> &args_up
= std::get
<1> (m_storage
);
11303 int nargs
= args_up
.size ();
11304 std::vector
<value
*> argvec (nargs
);
11306 for (int i
= 0; i
< args_up
.size (); ++i
)
11307 argvec
[i
] = args_up
[i
]->evaluate (nullptr, exp
, EVAL_AVOID_SIDE_EFFECTS
);
11309 const block
*block
= avv
->get_block ();
11310 block_symbol resolved
11311 = ada_resolve_funcall (sym
, block
,
11312 context_type
, parse_completion
,
11313 nargs
, argvec
.data (),
11316 std::get
<0> (m_storage
)
11317 = make_operation
<ada_var_value_operation
> (resolved
);
11322 ada_ternop_slice_operation::resolve (struct expression
*exp
,
11323 bool deprocedure_p
,
11324 bool parse_completion
,
11325 innermost_block_tracker
*tracker
,
11326 struct type
*context_type
)
11328 /* Historically this check was done during resolution, so we
11329 continue that here. */
11330 value
*v
= std::get
<0> (m_storage
)->evaluate (context_type
, exp
,
11331 EVAL_AVOID_SIDE_EFFECTS
);
11332 if (ada_is_any_packed_array_type (value_type (v
)))
11333 error (_("cannot slice a packed array"));
11341 /* Return non-zero iff TYPE represents a System.Address type. */
11344 ada_is_system_address_type (struct type
*type
)
11346 return (type
->name () && strcmp (type
->name (), "system__address") == 0);
11353 /* Scan STR beginning at position K for a discriminant name, and
11354 return the value of that discriminant field of DVAL in *PX. If
11355 PNEW_K is not null, put the position of the character beyond the
11356 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
11357 not alter *PX and *PNEW_K if unsuccessful. */
11360 scan_discrim_bound (const char *str
, int k
, struct value
*dval
, LONGEST
* px
,
11363 static std::string storage
;
11364 const char *pstart
, *pend
, *bound
;
11365 struct value
*bound_val
;
11367 if (dval
== NULL
|| str
== NULL
|| str
[k
] == '\0')
11371 pend
= strstr (pstart
, "__");
11375 k
+= strlen (bound
);
11379 int len
= pend
- pstart
;
11381 /* Strip __ and beyond. */
11382 storage
= std::string (pstart
, len
);
11383 bound
= storage
.c_str ();
11387 bound_val
= ada_search_struct_field (bound
, dval
, 0, value_type (dval
));
11388 if (bound_val
== NULL
)
11391 *px
= value_as_long (bound_val
);
11392 if (pnew_k
!= NULL
)
11397 /* Value of variable named NAME. Only exact matches are considered.
11398 If no such variable found, then if ERR_MSG is null, returns 0, and
11399 otherwise causes an error with message ERR_MSG. */
11401 static struct value
*
11402 get_var_value (const char *name
, const char *err_msg
)
11404 std::string quoted_name
= add_angle_brackets (name
);
11406 lookup_name_info
lookup_name (quoted_name
, symbol_name_match_type::FULL
);
11408 std::vector
<struct block_symbol
> syms
11409 = ada_lookup_symbol_list_worker (lookup_name
,
11410 get_selected_block (0),
11413 if (syms
.size () != 1)
11415 if (err_msg
== NULL
)
11418 error (("%s"), err_msg
);
11421 return value_of_variable (syms
[0].symbol
, syms
[0].block
);
11424 /* Value of integer variable named NAME in the current environment.
11425 If no such variable is found, returns false. Otherwise, sets VALUE
11426 to the variable's value and returns true. */
11429 get_int_var_value (const char *name
, LONGEST
&value
)
11431 struct value
*var_val
= get_var_value (name
, 0);
11436 value
= value_as_long (var_val
);
11441 /* Return a range type whose base type is that of the range type named
11442 NAME in the current environment, and whose bounds are calculated
11443 from NAME according to the GNAT range encoding conventions.
11444 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
11445 corresponding range type from debug information; fall back to using it
11446 if symbol lookup fails. If a new type must be created, allocate it
11447 like ORIG_TYPE was. The bounds information, in general, is encoded
11448 in NAME, the base type given in the named range type. */
11450 static struct type
*
11451 to_fixed_range_type (struct type
*raw_type
, struct value
*dval
)
11454 struct type
*base_type
;
11455 const char *subtype_info
;
11457 gdb_assert (raw_type
!= NULL
);
11458 gdb_assert (raw_type
->name () != NULL
);
11460 if (raw_type
->code () == TYPE_CODE_RANGE
)
11461 base_type
= TYPE_TARGET_TYPE (raw_type
);
11463 base_type
= raw_type
;
11465 name
= raw_type
->name ();
11466 subtype_info
= strstr (name
, "___XD");
11467 if (subtype_info
== NULL
)
11469 LONGEST L
= ada_discrete_type_low_bound (raw_type
);
11470 LONGEST U
= ada_discrete_type_high_bound (raw_type
);
11472 if (L
< INT_MIN
|| U
> INT_MAX
)
11475 return create_static_range_type (alloc_type_copy (raw_type
), raw_type
,
11480 int prefix_len
= subtype_info
- name
;
11483 const char *bounds_str
;
11487 bounds_str
= strchr (subtype_info
, '_');
11490 if (*subtype_info
== 'L')
11492 if (!ada_scan_number (bounds_str
, n
, &L
, &n
)
11493 && !scan_discrim_bound (bounds_str
, n
, dval
, &L
, &n
))
11495 if (bounds_str
[n
] == '_')
11497 else if (bounds_str
[n
] == '.') /* FIXME? SGI Workshop kludge. */
11503 std::string name_buf
= std::string (name
, prefix_len
) + "___L";
11504 if (!get_int_var_value (name_buf
.c_str (), L
))
11506 lim_warning (_("Unknown lower bound, using 1."));
11511 if (*subtype_info
== 'U')
11513 if (!ada_scan_number (bounds_str
, n
, &U
, &n
)
11514 && !scan_discrim_bound (bounds_str
, n
, dval
, &U
, &n
))
11519 std::string name_buf
= std::string (name
, prefix_len
) + "___U";
11520 if (!get_int_var_value (name_buf
.c_str (), U
))
11522 lim_warning (_("Unknown upper bound, using %ld."), (long) L
);
11527 type
= create_static_range_type (alloc_type_copy (raw_type
),
11529 /* create_static_range_type alters the resulting type's length
11530 to match the size of the base_type, which is not what we want.
11531 Set it back to the original range type's length. */
11532 TYPE_LENGTH (type
) = TYPE_LENGTH (raw_type
);
11533 type
->set_name (name
);
11538 /* True iff NAME is the name of a range type. */
11541 ada_is_range_type_name (const char *name
)
11543 return (name
!= NULL
&& strstr (name
, "___XD"));
11547 /* Modular types */
11549 /* True iff TYPE is an Ada modular type. */
11552 ada_is_modular_type (struct type
*type
)
11554 struct type
*subranged_type
= get_base_type (type
);
11556 return (subranged_type
!= NULL
&& type
->code () == TYPE_CODE_RANGE
11557 && subranged_type
->code () == TYPE_CODE_INT
11558 && subranged_type
->is_unsigned ());
11561 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11564 ada_modulus (struct type
*type
)
11566 const dynamic_prop
&high
= type
->bounds ()->high
;
11568 if (high
.kind () == PROP_CONST
)
11569 return (ULONGEST
) high
.const_val () + 1;
11571 /* If TYPE is unresolved, the high bound might be a location list. Return
11572 0, for lack of a better value to return. */
11577 /* Ada exception catchpoint support:
11578 ---------------------------------
11580 We support 3 kinds of exception catchpoints:
11581 . catchpoints on Ada exceptions
11582 . catchpoints on unhandled Ada exceptions
11583 . catchpoints on failed assertions
11585 Exceptions raised during failed assertions, or unhandled exceptions
11586 could perfectly be caught with the general catchpoint on Ada exceptions.
11587 However, we can easily differentiate these two special cases, and having
11588 the option to distinguish these two cases from the rest can be useful
11589 to zero-in on certain situations.
11591 Exception catchpoints are a specialized form of breakpoint,
11592 since they rely on inserting breakpoints inside known routines
11593 of the GNAT runtime. The implementation therefore uses a standard
11594 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11597 Support in the runtime for exception catchpoints have been changed
11598 a few times already, and these changes affect the implementation
11599 of these catchpoints. In order to be able to support several
11600 variants of the runtime, we use a sniffer that will determine
11601 the runtime variant used by the program being debugged. */
11603 /* Ada's standard exceptions.
11605 The Ada 83 standard also defined Numeric_Error. But there so many
11606 situations where it was unclear from the Ada 83 Reference Manual
11607 (RM) whether Constraint_Error or Numeric_Error should be raised,
11608 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11609 Interpretation saying that anytime the RM says that Numeric_Error
11610 should be raised, the implementation may raise Constraint_Error.
11611 Ada 95 went one step further and pretty much removed Numeric_Error
11612 from the list of standard exceptions (it made it a renaming of
11613 Constraint_Error, to help preserve compatibility when compiling
11614 an Ada83 compiler). As such, we do not include Numeric_Error from
11615 this list of standard exceptions. */
11617 static const char * const standard_exc
[] = {
11618 "constraint_error",
11624 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype
) (void);
11626 /* A structure that describes how to support exception catchpoints
11627 for a given executable. */
11629 struct exception_support_info
11631 /* The name of the symbol to break on in order to insert
11632 a catchpoint on exceptions. */
11633 const char *catch_exception_sym
;
11635 /* The name of the symbol to break on in order to insert
11636 a catchpoint on unhandled exceptions. */
11637 const char *catch_exception_unhandled_sym
;
11639 /* The name of the symbol to break on in order to insert
11640 a catchpoint on failed assertions. */
11641 const char *catch_assert_sym
;
11643 /* The name of the symbol to break on in order to insert
11644 a catchpoint on exception handling. */
11645 const char *catch_handlers_sym
;
11647 /* Assuming that the inferior just triggered an unhandled exception
11648 catchpoint, this function is responsible for returning the address
11649 in inferior memory where the name of that exception is stored.
11650 Return zero if the address could not be computed. */
11651 ada_unhandled_exception_name_addr_ftype
*unhandled_exception_name_addr
;
11654 static CORE_ADDR
ada_unhandled_exception_name_addr (void);
11655 static CORE_ADDR
ada_unhandled_exception_name_addr_from_raise (void);
11657 /* The following exception support info structure describes how to
11658 implement exception catchpoints with the latest version of the
11659 Ada runtime (as of 2019-08-??). */
11661 static const struct exception_support_info default_exception_support_info
=
11663 "__gnat_debug_raise_exception", /* catch_exception_sym */
11664 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11665 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11666 "__gnat_begin_handler_v1", /* catch_handlers_sym */
11667 ada_unhandled_exception_name_addr
11670 /* The following exception support info structure describes how to
11671 implement exception catchpoints with an earlier version of the
11672 Ada runtime (as of 2007-03-06) using v0 of the EH ABI. */
11674 static const struct exception_support_info exception_support_info_v0
=
11676 "__gnat_debug_raise_exception", /* catch_exception_sym */
11677 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11678 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11679 "__gnat_begin_handler", /* catch_handlers_sym */
11680 ada_unhandled_exception_name_addr
11683 /* The following exception support info structure describes how to
11684 implement exception catchpoints with a slightly older version
11685 of the Ada runtime. */
11687 static const struct exception_support_info exception_support_info_fallback
=
11689 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
11690 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11691 "system__assertions__raise_assert_failure", /* catch_assert_sym */
11692 "__gnat_begin_handler", /* catch_handlers_sym */
11693 ada_unhandled_exception_name_addr_from_raise
11696 /* Return nonzero if we can detect the exception support routines
11697 described in EINFO.
11699 This function errors out if an abnormal situation is detected
11700 (for instance, if we find the exception support routines, but
11701 that support is found to be incomplete). */
11704 ada_has_this_exception_support (const struct exception_support_info
*einfo
)
11706 struct symbol
*sym
;
11708 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11709 that should be compiled with debugging information. As a result, we
11710 expect to find that symbol in the symtabs. */
11712 sym
= standard_lookup (einfo
->catch_exception_sym
, NULL
, VAR_DOMAIN
);
11715 /* Perhaps we did not find our symbol because the Ada runtime was
11716 compiled without debugging info, or simply stripped of it.
11717 It happens on some GNU/Linux distributions for instance, where
11718 users have to install a separate debug package in order to get
11719 the runtime's debugging info. In that situation, let the user
11720 know why we cannot insert an Ada exception catchpoint.
11722 Note: Just for the purpose of inserting our Ada exception
11723 catchpoint, we could rely purely on the associated minimal symbol.
11724 But we would be operating in degraded mode anyway, since we are
11725 still lacking the debugging info needed later on to extract
11726 the name of the exception being raised (this name is printed in
11727 the catchpoint message, and is also used when trying to catch
11728 a specific exception). We do not handle this case for now. */
11729 struct bound_minimal_symbol msym
11730 = lookup_minimal_symbol (einfo
->catch_exception_sym
, NULL
, NULL
);
11732 if (msym
.minsym
&& msym
.minsym
->type () != mst_solib_trampoline
)
11733 error (_("Your Ada runtime appears to be missing some debugging "
11734 "information.\nCannot insert Ada exception catchpoint "
11735 "in this configuration."));
11740 /* Make sure that the symbol we found corresponds to a function. */
11742 if (sym
->aclass () != LOC_BLOCK
)
11744 error (_("Symbol \"%s\" is not a function (class = %d)"),
11745 sym
->linkage_name (), sym
->aclass ());
11749 sym
= standard_lookup (einfo
->catch_handlers_sym
, NULL
, VAR_DOMAIN
);
11752 struct bound_minimal_symbol msym
11753 = lookup_minimal_symbol (einfo
->catch_handlers_sym
, NULL
, NULL
);
11755 if (msym
.minsym
&& msym
.minsym
->type () != mst_solib_trampoline
)
11756 error (_("Your Ada runtime appears to be missing some debugging "
11757 "information.\nCannot insert Ada exception catchpoint "
11758 "in this configuration."));
11763 /* Make sure that the symbol we found corresponds to a function. */
11765 if (sym
->aclass () != LOC_BLOCK
)
11767 error (_("Symbol \"%s\" is not a function (class = %d)"),
11768 sym
->linkage_name (), sym
->aclass ());
11775 /* Inspect the Ada runtime and determine which exception info structure
11776 should be used to provide support for exception catchpoints.
11778 This function will always set the per-inferior exception_info,
11779 or raise an error. */
11782 ada_exception_support_info_sniffer (void)
11784 struct ada_inferior_data
*data
= get_ada_inferior_data (current_inferior ());
11786 /* If the exception info is already known, then no need to recompute it. */
11787 if (data
->exception_info
!= NULL
)
11790 /* Check the latest (default) exception support info. */
11791 if (ada_has_this_exception_support (&default_exception_support_info
))
11793 data
->exception_info
= &default_exception_support_info
;
11797 /* Try the v0 exception suport info. */
11798 if (ada_has_this_exception_support (&exception_support_info_v0
))
11800 data
->exception_info
= &exception_support_info_v0
;
11804 /* Try our fallback exception suport info. */
11805 if (ada_has_this_exception_support (&exception_support_info_fallback
))
11807 data
->exception_info
= &exception_support_info_fallback
;
11811 /* Sometimes, it is normal for us to not be able to find the routine
11812 we are looking for. This happens when the program is linked with
11813 the shared version of the GNAT runtime, and the program has not been
11814 started yet. Inform the user of these two possible causes if
11817 if (ada_update_initial_language (language_unknown
) != language_ada
)
11818 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
11820 /* If the symbol does not exist, then check that the program is
11821 already started, to make sure that shared libraries have been
11822 loaded. If it is not started, this may mean that the symbol is
11823 in a shared library. */
11825 if (inferior_ptid
.pid () == 0)
11826 error (_("Unable to insert catchpoint. Try to start the program first."));
11828 /* At this point, we know that we are debugging an Ada program and
11829 that the inferior has been started, but we still are not able to
11830 find the run-time symbols. That can mean that we are in
11831 configurable run time mode, or that a-except as been optimized
11832 out by the linker... In any case, at this point it is not worth
11833 supporting this feature. */
11835 error (_("Cannot insert Ada exception catchpoints in this configuration."));
11838 /* True iff FRAME is very likely to be that of a function that is
11839 part of the runtime system. This is all very heuristic, but is
11840 intended to be used as advice as to what frames are uninteresting
11844 is_known_support_routine (struct frame_info
*frame
)
11846 enum language func_lang
;
11848 const char *fullname
;
11850 /* If this code does not have any debugging information (no symtab),
11851 This cannot be any user code. */
11853 symtab_and_line sal
= find_frame_sal (frame
);
11854 if (sal
.symtab
== NULL
)
11857 /* If there is a symtab, but the associated source file cannot be
11858 located, then assume this is not user code: Selecting a frame
11859 for which we cannot display the code would not be very helpful
11860 for the user. This should also take care of case such as VxWorks
11861 where the kernel has some debugging info provided for a few units. */
11863 fullname
= symtab_to_fullname (sal
.symtab
);
11864 if (access (fullname
, R_OK
) != 0)
11867 /* Check the unit filename against the Ada runtime file naming.
11868 We also check the name of the objfile against the name of some
11869 known system libraries that sometimes come with debugging info
11872 for (i
= 0; known_runtime_file_name_patterns
[i
] != NULL
; i
+= 1)
11874 re_comp (known_runtime_file_name_patterns
[i
]);
11875 if (re_exec (lbasename (sal
.symtab
->filename
)))
11877 if (sal
.symtab
->compunit ()->objfile () != NULL
11878 && re_exec (objfile_name (sal
.symtab
->compunit ()->objfile ())))
11882 /* Check whether the function is a GNAT-generated entity. */
11884 gdb::unique_xmalloc_ptr
<char> func_name
11885 = find_frame_funname (frame
, &func_lang
, NULL
);
11886 if (func_name
== NULL
)
11889 for (i
= 0; known_auxiliary_function_name_patterns
[i
] != NULL
; i
+= 1)
11891 re_comp (known_auxiliary_function_name_patterns
[i
]);
11892 if (re_exec (func_name
.get ()))
11899 /* Find the first frame that contains debugging information and that is not
11900 part of the Ada run-time, starting from FI and moving upward. */
11903 ada_find_printable_frame (struct frame_info
*fi
)
11905 for (; fi
!= NULL
; fi
= get_prev_frame (fi
))
11907 if (!is_known_support_routine (fi
))
11916 /* Assuming that the inferior just triggered an unhandled exception
11917 catchpoint, return the address in inferior memory where the name
11918 of the exception is stored.
11920 Return zero if the address could not be computed. */
11923 ada_unhandled_exception_name_addr (void)
11925 return parse_and_eval_address ("e.full_name");
11928 /* Same as ada_unhandled_exception_name_addr, except that this function
11929 should be used when the inferior uses an older version of the runtime,
11930 where the exception name needs to be extracted from a specific frame
11931 several frames up in the callstack. */
11934 ada_unhandled_exception_name_addr_from_raise (void)
11937 struct frame_info
*fi
;
11938 struct ada_inferior_data
*data
= get_ada_inferior_data (current_inferior ());
11940 /* To determine the name of this exception, we need to select
11941 the frame corresponding to RAISE_SYM_NAME. This frame is
11942 at least 3 levels up, so we simply skip the first 3 frames
11943 without checking the name of their associated function. */
11944 fi
= get_current_frame ();
11945 for (frame_level
= 0; frame_level
< 3; frame_level
+= 1)
11947 fi
= get_prev_frame (fi
);
11951 enum language func_lang
;
11953 gdb::unique_xmalloc_ptr
<char> func_name
11954 = find_frame_funname (fi
, &func_lang
, NULL
);
11955 if (func_name
!= NULL
)
11957 if (strcmp (func_name
.get (),
11958 data
->exception_info
->catch_exception_sym
) == 0)
11959 break; /* We found the frame we were looking for... */
11961 fi
= get_prev_frame (fi
);
11968 return parse_and_eval_address ("id.full_name");
11971 /* Assuming the inferior just triggered an Ada exception catchpoint
11972 (of any type), return the address in inferior memory where the name
11973 of the exception is stored, if applicable.
11975 Assumes the selected frame is the current frame.
11977 Return zero if the address could not be computed, or if not relevant. */
11980 ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex
)
11982 struct ada_inferior_data
*data
= get_ada_inferior_data (current_inferior ());
11986 case ada_catch_exception
:
11987 return (parse_and_eval_address ("e.full_name"));
11990 case ada_catch_exception_unhandled
:
11991 return data
->exception_info
->unhandled_exception_name_addr ();
11994 case ada_catch_handlers
:
11995 return 0; /* The runtimes does not provide access to the exception
11999 case ada_catch_assert
:
12000 return 0; /* Exception name is not relevant in this case. */
12004 internal_error (__FILE__
, __LINE__
, _("unexpected catchpoint type"));
12008 return 0; /* Should never be reached. */
12011 /* Assuming the inferior is stopped at an exception catchpoint,
12012 return the message which was associated to the exception, if
12013 available. Return NULL if the message could not be retrieved.
12015 Note: The exception message can be associated to an exception
12016 either through the use of the Raise_Exception function, or
12017 more simply (Ada 2005 and later), via:
12019 raise Exception_Name with "exception message";
12023 static gdb::unique_xmalloc_ptr
<char>
12024 ada_exception_message_1 (void)
12026 struct value
*e_msg_val
;
12029 /* For runtimes that support this feature, the exception message
12030 is passed as an unbounded string argument called "message". */
12031 e_msg_val
= parse_and_eval ("message");
12032 if (e_msg_val
== NULL
)
12033 return NULL
; /* Exception message not supported. */
12035 e_msg_val
= ada_coerce_to_simple_array (e_msg_val
);
12036 gdb_assert (e_msg_val
!= NULL
);
12037 e_msg_len
= TYPE_LENGTH (value_type (e_msg_val
));
12039 /* If the message string is empty, then treat it as if there was
12040 no exception message. */
12041 if (e_msg_len
<= 0)
12044 gdb::unique_xmalloc_ptr
<char> e_msg ((char *) xmalloc (e_msg_len
+ 1));
12045 read_memory (value_address (e_msg_val
), (gdb_byte
*) e_msg
.get (),
12047 e_msg
.get ()[e_msg_len
] = '\0';
12052 /* Same as ada_exception_message_1, except that all exceptions are
12053 contained here (returning NULL instead). */
12055 static gdb::unique_xmalloc_ptr
<char>
12056 ada_exception_message (void)
12058 gdb::unique_xmalloc_ptr
<char> e_msg
;
12062 e_msg
= ada_exception_message_1 ();
12064 catch (const gdb_exception_error
&e
)
12066 e_msg
.reset (nullptr);
12072 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
12073 any error that ada_exception_name_addr_1 might cause to be thrown.
12074 When an error is intercepted, a warning with the error message is printed,
12075 and zero is returned. */
12078 ada_exception_name_addr (enum ada_exception_catchpoint_kind ex
)
12080 CORE_ADDR result
= 0;
12084 result
= ada_exception_name_addr_1 (ex
);
12087 catch (const gdb_exception_error
&e
)
12089 warning (_("failed to get exception name: %s"), e
.what ());
12096 static std::string ada_exception_catchpoint_cond_string
12097 (const char *excep_string
,
12098 enum ada_exception_catchpoint_kind ex
);
12100 /* Ada catchpoints.
12102 In the case of catchpoints on Ada exceptions, the catchpoint will
12103 stop the target on every exception the program throws. When a user
12104 specifies the name of a specific exception, we translate this
12105 request into a condition expression (in text form), and then parse
12106 it into an expression stored in each of the catchpoint's locations.
12107 We then use this condition to check whether the exception that was
12108 raised is the one the user is interested in. If not, then the
12109 target is resumed again. We store the name of the requested
12110 exception, in order to be able to re-set the condition expression
12111 when symbols change. */
12113 /* An instance of this type is used to represent an Ada catchpoint. */
12115 struct ada_catchpoint
: public code_breakpoint
12117 ada_catchpoint (struct gdbarch
*gdbarch_
,
12118 enum ada_exception_catchpoint_kind kind
,
12119 struct symtab_and_line sal
,
12120 const char *addr_string_
,
12124 : code_breakpoint (gdbarch_
, bp_catchpoint
),
12127 add_location (sal
);
12129 /* Unlike most code_breakpoint types, Ada catchpoints are
12130 pspace-specific. */
12131 gdb_assert (sal
.pspace
!= nullptr);
12132 this->pspace
= sal
.pspace
;
12136 struct gdbarch
*loc_gdbarch
= get_sal_arch (sal
);
12138 loc_gdbarch
= gdbarch
;
12140 describe_other_breakpoints (loc_gdbarch
,
12141 sal
.pspace
, sal
.pc
, sal
.section
, -1);
12142 /* FIXME: brobecker/2006-12-28: Actually, re-implement a special
12143 version for exception catchpoints, because two catchpoints
12144 used for different exception names will use the same address.
12145 In this case, a "breakpoint ... also set at..." warning is
12146 unproductive. Besides, the warning phrasing is also a bit
12147 inappropriate, we should use the word catchpoint, and tell
12148 the user what type of catchpoint it is. The above is good
12149 enough for now, though. */
12152 enable_state
= enabled
? bp_enabled
: bp_disabled
;
12153 disposition
= tempflag
? disp_del
: disp_donttouch
;
12154 locspec
= string_to_location_spec (&addr_string_
,
12155 language_def (language_ada
));
12156 language
= language_ada
;
12159 struct bp_location
*allocate_location () override
;
12160 void re_set () override
;
12161 void check_status (struct bpstat
*bs
) override
;
12162 enum print_stop_action
print_it (const bpstat
*bs
) const override
;
12163 bool print_one (bp_location
**) const override
;
12164 void print_mention () const override
;
12165 void print_recreate (struct ui_file
*fp
) const override
;
12167 /* The name of the specific exception the user specified. */
12168 std::string excep_string
;
12170 /* What kind of catchpoint this is. */
12171 enum ada_exception_catchpoint_kind m_kind
;
12174 /* An instance of this type is used to represent an Ada catchpoint
12175 breakpoint location. */
12177 class ada_catchpoint_location
: public bp_location
12180 explicit ada_catchpoint_location (ada_catchpoint
*owner
)
12181 : bp_location (owner
, bp_loc_software_breakpoint
)
12184 /* The condition that checks whether the exception that was raised
12185 is the specific exception the user specified on catchpoint
12187 expression_up excep_cond_expr
;
12190 /* Parse the exception condition string in the context of each of the
12191 catchpoint's locations, and store them for later evaluation. */
12194 create_excep_cond_exprs (struct ada_catchpoint
*c
,
12195 enum ada_exception_catchpoint_kind ex
)
12197 /* Nothing to do if there's no specific exception to catch. */
12198 if (c
->excep_string
.empty ())
12201 /* Same if there are no locations... */
12202 if (c
->loc
== NULL
)
12205 /* Compute the condition expression in text form, from the specific
12206 expection we want to catch. */
12207 std::string cond_string
12208 = ada_exception_catchpoint_cond_string (c
->excep_string
.c_str (), ex
);
12210 /* Iterate over all the catchpoint's locations, and parse an
12211 expression for each. */
12212 for (bp_location
*bl
: c
->locations ())
12214 struct ada_catchpoint_location
*ada_loc
12215 = (struct ada_catchpoint_location
*) bl
;
12218 if (!bl
->shlib_disabled
)
12222 s
= cond_string
.c_str ();
12225 exp
= parse_exp_1 (&s
, bl
->address
,
12226 block_for_pc (bl
->address
),
12229 catch (const gdb_exception_error
&e
)
12231 warning (_("failed to reevaluate internal exception condition "
12232 "for catchpoint %d: %s"),
12233 c
->number
, e
.what ());
12237 ada_loc
->excep_cond_expr
= std::move (exp
);
12241 /* Implement the ALLOCATE_LOCATION method in the structure for all
12242 exception catchpoint kinds. */
12244 struct bp_location
*
12245 ada_catchpoint::allocate_location ()
12247 return new ada_catchpoint_location (this);
12250 /* Implement the RE_SET method in the structure for all exception
12251 catchpoint kinds. */
12254 ada_catchpoint::re_set ()
12256 /* Call the base class's method. This updates the catchpoint's
12258 this->code_breakpoint::re_set ();
12260 /* Reparse the exception conditional expressions. One for each
12262 create_excep_cond_exprs (this, m_kind
);
12265 /* Returns true if we should stop for this breakpoint hit. If the
12266 user specified a specific exception, we only want to cause a stop
12267 if the program thrown that exception. */
12270 should_stop_exception (const struct bp_location
*bl
)
12272 struct ada_catchpoint
*c
= (struct ada_catchpoint
*) bl
->owner
;
12273 const struct ada_catchpoint_location
*ada_loc
12274 = (const struct ada_catchpoint_location
*) bl
;
12277 struct internalvar
*var
= lookup_internalvar ("_ada_exception");
12278 if (c
->m_kind
== ada_catch_assert
)
12279 clear_internalvar (var
);
12286 if (c
->m_kind
== ada_catch_handlers
)
12287 expr
= ("GNAT_GCC_exception_Access(gcc_exception)"
12288 ".all.occurrence.id");
12292 struct value
*exc
= parse_and_eval (expr
);
12293 set_internalvar (var
, exc
);
12295 catch (const gdb_exception_error
&ex
)
12297 clear_internalvar (var
);
12301 /* With no specific exception, should always stop. */
12302 if (c
->excep_string
.empty ())
12305 if (ada_loc
->excep_cond_expr
== NULL
)
12307 /* We will have a NULL expression if back when we were creating
12308 the expressions, this location's had failed to parse. */
12315 struct value
*mark
;
12317 mark
= value_mark ();
12318 stop
= value_true (evaluate_expression (ada_loc
->excep_cond_expr
.get ()));
12319 value_free_to_mark (mark
);
12321 catch (const gdb_exception
&ex
)
12323 exception_fprintf (gdb_stderr
, ex
,
12324 _("Error in testing exception condition:\n"));
12330 /* Implement the CHECK_STATUS method in the structure for all
12331 exception catchpoint kinds. */
12334 ada_catchpoint::check_status (bpstat
*bs
)
12336 bs
->stop
= should_stop_exception (bs
->bp_location_at
.get ());
12339 /* Implement the PRINT_IT method in the structure for all exception
12340 catchpoint kinds. */
12342 enum print_stop_action
12343 ada_catchpoint::print_it (const bpstat
*bs
) const
12345 struct ui_out
*uiout
= current_uiout
;
12347 annotate_catchpoint (number
);
12349 if (uiout
->is_mi_like_p ())
12351 uiout
->field_string ("reason",
12352 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT
));
12353 uiout
->field_string ("disp", bpdisp_text (disposition
));
12356 uiout
->text (disposition
== disp_del
12357 ? "\nTemporary catchpoint " : "\nCatchpoint ");
12358 uiout
->field_signed ("bkptno", number
);
12359 uiout
->text (", ");
12361 /* ada_exception_name_addr relies on the selected frame being the
12362 current frame. Need to do this here because this function may be
12363 called more than once when printing a stop, and below, we'll
12364 select the first frame past the Ada run-time (see
12365 ada_find_printable_frame). */
12366 select_frame (get_current_frame ());
12370 case ada_catch_exception
:
12371 case ada_catch_exception_unhandled
:
12372 case ada_catch_handlers
:
12374 const CORE_ADDR addr
= ada_exception_name_addr (m_kind
);
12375 char exception_name
[256];
12379 read_memory (addr
, (gdb_byte
*) exception_name
,
12380 sizeof (exception_name
) - 1);
12381 exception_name
[sizeof (exception_name
) - 1] = '\0';
12385 /* For some reason, we were unable to read the exception
12386 name. This could happen if the Runtime was compiled
12387 without debugging info, for instance. In that case,
12388 just replace the exception name by the generic string
12389 "exception" - it will read as "an exception" in the
12390 notification we are about to print. */
12391 memcpy (exception_name
, "exception", sizeof ("exception"));
12393 /* In the case of unhandled exception breakpoints, we print
12394 the exception name as "unhandled EXCEPTION_NAME", to make
12395 it clearer to the user which kind of catchpoint just got
12396 hit. We used ui_out_text to make sure that this extra
12397 info does not pollute the exception name in the MI case. */
12398 if (m_kind
== ada_catch_exception_unhandled
)
12399 uiout
->text ("unhandled ");
12400 uiout
->field_string ("exception-name", exception_name
);
12403 case ada_catch_assert
:
12404 /* In this case, the name of the exception is not really
12405 important. Just print "failed assertion" to make it clearer
12406 that his program just hit an assertion-failure catchpoint.
12407 We used ui_out_text because this info does not belong in
12409 uiout
->text ("failed assertion");
12413 gdb::unique_xmalloc_ptr
<char> exception_message
= ada_exception_message ();
12414 if (exception_message
!= NULL
)
12416 uiout
->text (" (");
12417 uiout
->field_string ("exception-message", exception_message
.get ());
12421 uiout
->text (" at ");
12422 ada_find_printable_frame (get_current_frame ());
12424 return PRINT_SRC_AND_LOC
;
12427 /* Implement the PRINT_ONE method in the structure for all exception
12428 catchpoint kinds. */
12431 ada_catchpoint::print_one (bp_location
**last_loc
) const
12433 struct ui_out
*uiout
= current_uiout
;
12434 struct value_print_options opts
;
12436 get_user_print_options (&opts
);
12438 if (opts
.addressprint
)
12439 uiout
->field_skip ("addr");
12441 annotate_field (5);
12444 case ada_catch_exception
:
12445 if (!excep_string
.empty ())
12447 std::string msg
= string_printf (_("`%s' Ada exception"),
12448 excep_string
.c_str ());
12450 uiout
->field_string ("what", msg
);
12453 uiout
->field_string ("what", "all Ada exceptions");
12457 case ada_catch_exception_unhandled
:
12458 uiout
->field_string ("what", "unhandled Ada exceptions");
12461 case ada_catch_handlers
:
12462 if (!excep_string
.empty ())
12464 uiout
->field_fmt ("what",
12465 _("`%s' Ada exception handlers"),
12466 excep_string
.c_str ());
12469 uiout
->field_string ("what", "all Ada exceptions handlers");
12472 case ada_catch_assert
:
12473 uiout
->field_string ("what", "failed Ada assertions");
12477 internal_error (__FILE__
, __LINE__
, _("unexpected catchpoint type"));
12484 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
12485 for all exception catchpoint kinds. */
12488 ada_catchpoint::print_mention () const
12490 struct ui_out
*uiout
= current_uiout
;
12492 uiout
->text (disposition
== disp_del
? _("Temporary catchpoint ")
12493 : _("Catchpoint "));
12494 uiout
->field_signed ("bkptno", number
);
12495 uiout
->text (": ");
12499 case ada_catch_exception
:
12500 if (!excep_string
.empty ())
12502 std::string info
= string_printf (_("`%s' Ada exception"),
12503 excep_string
.c_str ());
12504 uiout
->text (info
);
12507 uiout
->text (_("all Ada exceptions"));
12510 case ada_catch_exception_unhandled
:
12511 uiout
->text (_("unhandled Ada exceptions"));
12514 case ada_catch_handlers
:
12515 if (!excep_string
.empty ())
12518 = string_printf (_("`%s' Ada exception handlers"),
12519 excep_string
.c_str ());
12520 uiout
->text (info
);
12523 uiout
->text (_("all Ada exceptions handlers"));
12526 case ada_catch_assert
:
12527 uiout
->text (_("failed Ada assertions"));
12531 internal_error (__FILE__
, __LINE__
, _("unexpected catchpoint type"));
12536 /* Implement the PRINT_RECREATE method in the structure for all
12537 exception catchpoint kinds. */
12540 ada_catchpoint::print_recreate (struct ui_file
*fp
) const
12544 case ada_catch_exception
:
12545 gdb_printf (fp
, "catch exception");
12546 if (!excep_string
.empty ())
12547 gdb_printf (fp
, " %s", excep_string
.c_str ());
12550 case ada_catch_exception_unhandled
:
12551 gdb_printf (fp
, "catch exception unhandled");
12554 case ada_catch_handlers
:
12555 gdb_printf (fp
, "catch handlers");
12558 case ada_catch_assert
:
12559 gdb_printf (fp
, "catch assert");
12563 internal_error (__FILE__
, __LINE__
, _("unexpected catchpoint type"));
12565 print_recreate_thread (fp
);
12568 /* See ada-lang.h. */
12571 is_ada_exception_catchpoint (breakpoint
*bp
)
12573 return dynamic_cast<ada_catchpoint
*> (bp
) != nullptr;
12576 /* Split the arguments specified in a "catch exception" command.
12577 Set EX to the appropriate catchpoint type.
12578 Set EXCEP_STRING to the name of the specific exception if
12579 specified by the user.
12580 IS_CATCH_HANDLERS_CMD: True if the arguments are for a
12581 "catch handlers" command. False otherwise.
12582 If a condition is found at the end of the arguments, the condition
12583 expression is stored in COND_STRING (memory must be deallocated
12584 after use). Otherwise COND_STRING is set to NULL. */
12587 catch_ada_exception_command_split (const char *args
,
12588 bool is_catch_handlers_cmd
,
12589 enum ada_exception_catchpoint_kind
*ex
,
12590 std::string
*excep_string
,
12591 std::string
*cond_string
)
12593 std::string exception_name
;
12595 exception_name
= extract_arg (&args
);
12596 if (exception_name
== "if")
12598 /* This is not an exception name; this is the start of a condition
12599 expression for a catchpoint on all exceptions. So, "un-get"
12600 this token, and set exception_name to NULL. */
12601 exception_name
.clear ();
12605 /* Check to see if we have a condition. */
12607 args
= skip_spaces (args
);
12608 if (startswith (args
, "if")
12609 && (isspace (args
[2]) || args
[2] == '\0'))
12612 args
= skip_spaces (args
);
12614 if (args
[0] == '\0')
12615 error (_("Condition missing after `if' keyword"));
12616 *cond_string
= args
;
12618 args
+= strlen (args
);
12621 /* Check that we do not have any more arguments. Anything else
12624 if (args
[0] != '\0')
12625 error (_("Junk at end of expression"));
12627 if (is_catch_handlers_cmd
)
12629 /* Catch handling of exceptions. */
12630 *ex
= ada_catch_handlers
;
12631 *excep_string
= exception_name
;
12633 else if (exception_name
.empty ())
12635 /* Catch all exceptions. */
12636 *ex
= ada_catch_exception
;
12637 excep_string
->clear ();
12639 else if (exception_name
== "unhandled")
12641 /* Catch unhandled exceptions. */
12642 *ex
= ada_catch_exception_unhandled
;
12643 excep_string
->clear ();
12647 /* Catch a specific exception. */
12648 *ex
= ada_catch_exception
;
12649 *excep_string
= exception_name
;
12653 /* Return the name of the symbol on which we should break in order to
12654 implement a catchpoint of the EX kind. */
12656 static const char *
12657 ada_exception_sym_name (enum ada_exception_catchpoint_kind ex
)
12659 struct ada_inferior_data
*data
= get_ada_inferior_data (current_inferior ());
12661 gdb_assert (data
->exception_info
!= NULL
);
12665 case ada_catch_exception
:
12666 return (data
->exception_info
->catch_exception_sym
);
12668 case ada_catch_exception_unhandled
:
12669 return (data
->exception_info
->catch_exception_unhandled_sym
);
12671 case ada_catch_assert
:
12672 return (data
->exception_info
->catch_assert_sym
);
12674 case ada_catch_handlers
:
12675 return (data
->exception_info
->catch_handlers_sym
);
12678 internal_error (__FILE__
, __LINE__
,
12679 _("unexpected catchpoint kind (%d)"), ex
);
12683 /* Return the condition that will be used to match the current exception
12684 being raised with the exception that the user wants to catch. This
12685 assumes that this condition is used when the inferior just triggered
12686 an exception catchpoint.
12687 EX: the type of catchpoints used for catching Ada exceptions. */
12690 ada_exception_catchpoint_cond_string (const char *excep_string
,
12691 enum ada_exception_catchpoint_kind ex
)
12693 bool is_standard_exc
= false;
12694 std::string result
;
12696 if (ex
== ada_catch_handlers
)
12698 /* For exception handlers catchpoints, the condition string does
12699 not use the same parameter as for the other exceptions. */
12700 result
= ("long_integer (GNAT_GCC_exception_Access"
12701 "(gcc_exception).all.occurrence.id)");
12704 result
= "long_integer (e)";
12706 /* The standard exceptions are a special case. They are defined in
12707 runtime units that have been compiled without debugging info; if
12708 EXCEP_STRING is the not-fully-qualified name of a standard
12709 exception (e.g. "constraint_error") then, during the evaluation
12710 of the condition expression, the symbol lookup on this name would
12711 *not* return this standard exception. The catchpoint condition
12712 may then be set only on user-defined exceptions which have the
12713 same not-fully-qualified name (e.g. my_package.constraint_error).
12715 To avoid this unexcepted behavior, these standard exceptions are
12716 systematically prefixed by "standard". This means that "catch
12717 exception constraint_error" is rewritten into "catch exception
12718 standard.constraint_error".
12720 If an exception named constraint_error is defined in another package of
12721 the inferior program, then the only way to specify this exception as a
12722 breakpoint condition is to use its fully-qualified named:
12723 e.g. my_package.constraint_error. */
12725 for (const char *name
: standard_exc
)
12727 if (strcmp (name
, excep_string
) == 0)
12729 is_standard_exc
= true;
12736 if (is_standard_exc
)
12737 string_appendf (result
, "long_integer (&standard.%s)", excep_string
);
12739 string_appendf (result
, "long_integer (&%s)", excep_string
);
12744 /* Return the symtab_and_line that should be used to insert an exception
12745 catchpoint of the TYPE kind.
12747 ADDR_STRING returns the name of the function where the real
12748 breakpoint that implements the catchpoints is set, depending on the
12749 type of catchpoint we need to create. */
12751 static struct symtab_and_line
12752 ada_exception_sal (enum ada_exception_catchpoint_kind ex
,
12753 std::string
*addr_string
)
12755 const char *sym_name
;
12756 struct symbol
*sym
;
12758 /* First, find out which exception support info to use. */
12759 ada_exception_support_info_sniffer ();
12761 /* Then lookup the function on which we will break in order to catch
12762 the Ada exceptions requested by the user. */
12763 sym_name
= ada_exception_sym_name (ex
);
12764 sym
= standard_lookup (sym_name
, NULL
, VAR_DOMAIN
);
12767 error (_("Catchpoint symbol not found: %s"), sym_name
);
12769 if (sym
->aclass () != LOC_BLOCK
)
12770 error (_("Unable to insert catchpoint. %s is not a function."), sym_name
);
12772 /* Set ADDR_STRING. */
12773 *addr_string
= sym_name
;
12775 return find_function_start_sal (sym
, 1);
12778 /* Create an Ada exception catchpoint.
12780 EX_KIND is the kind of exception catchpoint to be created.
12782 If EXCEPT_STRING is empty, this catchpoint is expected to trigger
12783 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
12784 of the exception to which this catchpoint applies.
12786 COND_STRING, if not empty, is the catchpoint condition.
12788 TEMPFLAG, if nonzero, means that the underlying breakpoint
12789 should be temporary.
12791 FROM_TTY is the usual argument passed to all commands implementations. */
12794 create_ada_exception_catchpoint (struct gdbarch
*gdbarch
,
12795 enum ada_exception_catchpoint_kind ex_kind
,
12796 const std::string
&excep_string
,
12797 const std::string
&cond_string
,
12802 std::string addr_string
;
12803 struct symtab_and_line sal
= ada_exception_sal (ex_kind
, &addr_string
);
12805 std::unique_ptr
<ada_catchpoint
> c
12806 (new ada_catchpoint (gdbarch
, ex_kind
, sal
, addr_string
.c_str (),
12807 tempflag
, disabled
, from_tty
));
12808 c
->excep_string
= excep_string
;
12809 create_excep_cond_exprs (c
.get (), ex_kind
);
12810 if (!cond_string
.empty ())
12811 set_breakpoint_condition (c
.get (), cond_string
.c_str (), from_tty
, false);
12812 install_breakpoint (0, std::move (c
), 1);
12815 /* Implement the "catch exception" command. */
12818 catch_ada_exception_command (const char *arg_entry
, int from_tty
,
12819 struct cmd_list_element
*command
)
12821 const char *arg
= arg_entry
;
12822 struct gdbarch
*gdbarch
= get_current_arch ();
12824 enum ada_exception_catchpoint_kind ex_kind
;
12825 std::string excep_string
;
12826 std::string cond_string
;
12828 tempflag
= command
->context () == CATCH_TEMPORARY
;
12832 catch_ada_exception_command_split (arg
, false, &ex_kind
, &excep_string
,
12834 create_ada_exception_catchpoint (gdbarch
, ex_kind
,
12835 excep_string
, cond_string
,
12836 tempflag
, 1 /* enabled */,
12840 /* Implement the "catch handlers" command. */
12843 catch_ada_handlers_command (const char *arg_entry
, int from_tty
,
12844 struct cmd_list_element
*command
)
12846 const char *arg
= arg_entry
;
12847 struct gdbarch
*gdbarch
= get_current_arch ();
12849 enum ada_exception_catchpoint_kind ex_kind
;
12850 std::string excep_string
;
12851 std::string cond_string
;
12853 tempflag
= command
->context () == CATCH_TEMPORARY
;
12857 catch_ada_exception_command_split (arg
, true, &ex_kind
, &excep_string
,
12859 create_ada_exception_catchpoint (gdbarch
, ex_kind
,
12860 excep_string
, cond_string
,
12861 tempflag
, 1 /* enabled */,
12865 /* Completion function for the Ada "catch" commands. */
12868 catch_ada_completer (struct cmd_list_element
*cmd
, completion_tracker
&tracker
,
12869 const char *text
, const char *word
)
12871 std::vector
<ada_exc_info
> exceptions
= ada_exceptions_list (NULL
);
12873 for (const ada_exc_info
&info
: exceptions
)
12875 if (startswith (info
.name
, word
))
12876 tracker
.add_completion (make_unique_xstrdup (info
.name
));
12880 /* Split the arguments specified in a "catch assert" command.
12882 ARGS contains the command's arguments (or the empty string if
12883 no arguments were passed).
12885 If ARGS contains a condition, set COND_STRING to that condition
12886 (the memory needs to be deallocated after use). */
12889 catch_ada_assert_command_split (const char *args
, std::string
&cond_string
)
12891 args
= skip_spaces (args
);
12893 /* Check whether a condition was provided. */
12894 if (startswith (args
, "if")
12895 && (isspace (args
[2]) || args
[2] == '\0'))
12898 args
= skip_spaces (args
);
12899 if (args
[0] == '\0')
12900 error (_("condition missing after `if' keyword"));
12901 cond_string
.assign (args
);
12904 /* Otherwise, there should be no other argument at the end of
12906 else if (args
[0] != '\0')
12907 error (_("Junk at end of arguments."));
12910 /* Implement the "catch assert" command. */
12913 catch_assert_command (const char *arg_entry
, int from_tty
,
12914 struct cmd_list_element
*command
)
12916 const char *arg
= arg_entry
;
12917 struct gdbarch
*gdbarch
= get_current_arch ();
12919 std::string cond_string
;
12921 tempflag
= command
->context () == CATCH_TEMPORARY
;
12925 catch_ada_assert_command_split (arg
, cond_string
);
12926 create_ada_exception_catchpoint (gdbarch
, ada_catch_assert
,
12928 tempflag
, 1 /* enabled */,
12932 /* Return non-zero if the symbol SYM is an Ada exception object. */
12935 ada_is_exception_sym (struct symbol
*sym
)
12937 const char *type_name
= sym
->type ()->name ();
12939 return (sym
->aclass () != LOC_TYPEDEF
12940 && sym
->aclass () != LOC_BLOCK
12941 && sym
->aclass () != LOC_CONST
12942 && sym
->aclass () != LOC_UNRESOLVED
12943 && type_name
!= NULL
&& strcmp (type_name
, "exception") == 0);
12946 /* Given a global symbol SYM, return non-zero iff SYM is a non-standard
12947 Ada exception object. This matches all exceptions except the ones
12948 defined by the Ada language. */
12951 ada_is_non_standard_exception_sym (struct symbol
*sym
)
12953 if (!ada_is_exception_sym (sym
))
12956 for (const char *name
: standard_exc
)
12957 if (strcmp (sym
->linkage_name (), name
) == 0)
12958 return 0; /* A standard exception. */
12960 /* Numeric_Error is also a standard exception, so exclude it.
12961 See the STANDARD_EXC description for more details as to why
12962 this exception is not listed in that array. */
12963 if (strcmp (sym
->linkage_name (), "numeric_error") == 0)
12969 /* A helper function for std::sort, comparing two struct ada_exc_info
12972 The comparison is determined first by exception name, and then
12973 by exception address. */
12976 ada_exc_info::operator< (const ada_exc_info
&other
) const
12980 result
= strcmp (name
, other
.name
);
12983 if (result
== 0 && addr
< other
.addr
)
12989 ada_exc_info::operator== (const ada_exc_info
&other
) const
12991 return addr
== other
.addr
&& strcmp (name
, other
.name
) == 0;
12994 /* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
12995 routine, but keeping the first SKIP elements untouched.
12997 All duplicates are also removed. */
13000 sort_remove_dups_ada_exceptions_list (std::vector
<ada_exc_info
> *exceptions
,
13003 std::sort (exceptions
->begin () + skip
, exceptions
->end ());
13004 exceptions
->erase (std::unique (exceptions
->begin () + skip
, exceptions
->end ()),
13005 exceptions
->end ());
13008 /* Add all exceptions defined by the Ada standard whose name match
13009 a regular expression.
13011 If PREG is not NULL, then this regexp_t object is used to
13012 perform the symbol name matching. Otherwise, no name-based
13013 filtering is performed.
13015 EXCEPTIONS is a vector of exceptions to which matching exceptions
13019 ada_add_standard_exceptions (compiled_regex
*preg
,
13020 std::vector
<ada_exc_info
> *exceptions
)
13022 for (const char *name
: standard_exc
)
13024 if (preg
== NULL
|| preg
->exec (name
, 0, NULL
, 0) == 0)
13026 struct bound_minimal_symbol msymbol
13027 = ada_lookup_simple_minsym (name
);
13029 if (msymbol
.minsym
!= NULL
)
13031 struct ada_exc_info info
13032 = {name
, msymbol
.value_address ()};
13034 exceptions
->push_back (info
);
13040 /* Add all Ada exceptions defined locally and accessible from the given
13043 If PREG is not NULL, then this regexp_t object is used to
13044 perform the symbol name matching. Otherwise, no name-based
13045 filtering is performed.
13047 EXCEPTIONS is a vector of exceptions to which matching exceptions
13051 ada_add_exceptions_from_frame (compiled_regex
*preg
,
13052 struct frame_info
*frame
,
13053 std::vector
<ada_exc_info
> *exceptions
)
13055 const struct block
*block
= get_frame_block (frame
, 0);
13059 struct block_iterator iter
;
13060 struct symbol
*sym
;
13062 ALL_BLOCK_SYMBOLS (block
, iter
, sym
)
13064 switch (sym
->aclass ())
13071 if (ada_is_exception_sym (sym
))
13073 struct ada_exc_info info
= {sym
->print_name (),
13074 sym
->value_address ()};
13076 exceptions
->push_back (info
);
13080 if (block
->function () != NULL
)
13082 block
= block
->superblock ();
13086 /* Return true if NAME matches PREG or if PREG is NULL. */
13089 name_matches_regex (const char *name
, compiled_regex
*preg
)
13091 return (preg
== NULL
13092 || preg
->exec (ada_decode (name
).c_str (), 0, NULL
, 0) == 0);
13095 /* Add all exceptions defined globally whose name name match
13096 a regular expression, excluding standard exceptions.
13098 The reason we exclude standard exceptions is that they need
13099 to be handled separately: Standard exceptions are defined inside
13100 a runtime unit which is normally not compiled with debugging info,
13101 and thus usually do not show up in our symbol search. However,
13102 if the unit was in fact built with debugging info, we need to
13103 exclude them because they would duplicate the entry we found
13104 during the special loop that specifically searches for those
13105 standard exceptions.
13107 If PREG is not NULL, then this regexp_t object is used to
13108 perform the symbol name matching. Otherwise, no name-based
13109 filtering is performed.
13111 EXCEPTIONS is a vector of exceptions to which matching exceptions
13115 ada_add_global_exceptions (compiled_regex
*preg
,
13116 std::vector
<ada_exc_info
> *exceptions
)
13118 /* In Ada, the symbol "search name" is a linkage name, whereas the
13119 regular expression used to do the matching refers to the natural
13120 name. So match against the decoded name. */
13121 expand_symtabs_matching (NULL
,
13122 lookup_name_info::match_any (),
13123 [&] (const char *search_name
)
13125 std::string decoded
= ada_decode (search_name
);
13126 return name_matches_regex (decoded
.c_str (), preg
);
13129 SEARCH_GLOBAL_BLOCK
| SEARCH_STATIC_BLOCK
,
13132 for (objfile
*objfile
: current_program_space
->objfiles ())
13134 for (compunit_symtab
*s
: objfile
->compunits ())
13136 const struct blockvector
*bv
= s
->blockvector ();
13139 for (i
= GLOBAL_BLOCK
; i
<= STATIC_BLOCK
; i
++)
13141 const struct block
*b
= bv
->block (i
);
13142 struct block_iterator iter
;
13143 struct symbol
*sym
;
13145 ALL_BLOCK_SYMBOLS (b
, iter
, sym
)
13146 if (ada_is_non_standard_exception_sym (sym
)
13147 && name_matches_regex (sym
->natural_name (), preg
))
13149 struct ada_exc_info info
13150 = {sym
->print_name (), sym
->value_address ()};
13152 exceptions
->push_back (info
);
13159 /* Implements ada_exceptions_list with the regular expression passed
13160 as a regex_t, rather than a string.
13162 If not NULL, PREG is used to filter out exceptions whose names
13163 do not match. Otherwise, all exceptions are listed. */
13165 static std::vector
<ada_exc_info
>
13166 ada_exceptions_list_1 (compiled_regex
*preg
)
13168 std::vector
<ada_exc_info
> result
;
13171 /* First, list the known standard exceptions. These exceptions
13172 need to be handled separately, as they are usually defined in
13173 runtime units that have been compiled without debugging info. */
13175 ada_add_standard_exceptions (preg
, &result
);
13177 /* Next, find all exceptions whose scope is local and accessible
13178 from the currently selected frame. */
13180 if (has_stack_frames ())
13182 prev_len
= result
.size ();
13183 ada_add_exceptions_from_frame (preg
, get_selected_frame (NULL
),
13185 if (result
.size () > prev_len
)
13186 sort_remove_dups_ada_exceptions_list (&result
, prev_len
);
13189 /* Add all exceptions whose scope is global. */
13191 prev_len
= result
.size ();
13192 ada_add_global_exceptions (preg
, &result
);
13193 if (result
.size () > prev_len
)
13194 sort_remove_dups_ada_exceptions_list (&result
, prev_len
);
13199 /* Return a vector of ada_exc_info.
13201 If REGEXP is NULL, all exceptions are included in the result.
13202 Otherwise, it should contain a valid regular expression,
13203 and only the exceptions whose names match that regular expression
13204 are included in the result.
13206 The exceptions are sorted in the following order:
13207 - Standard exceptions (defined by the Ada language), in
13208 alphabetical order;
13209 - Exceptions only visible from the current frame, in
13210 alphabetical order;
13211 - Exceptions whose scope is global, in alphabetical order. */
13213 std::vector
<ada_exc_info
>
13214 ada_exceptions_list (const char *regexp
)
13216 if (regexp
== NULL
)
13217 return ada_exceptions_list_1 (NULL
);
13219 compiled_regex
reg (regexp
, REG_NOSUB
, _("invalid regular expression"));
13220 return ada_exceptions_list_1 (®
);
13223 /* Implement the "info exceptions" command. */
13226 info_exceptions_command (const char *regexp
, int from_tty
)
13228 struct gdbarch
*gdbarch
= get_current_arch ();
13230 std::vector
<ada_exc_info
> exceptions
= ada_exceptions_list (regexp
);
13232 if (regexp
!= NULL
)
13234 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp
);
13236 gdb_printf (_("All defined Ada exceptions:\n"));
13238 for (const ada_exc_info
&info
: exceptions
)
13239 gdb_printf ("%s: %s\n", info
.name
, paddress (gdbarch
, info
.addr
));
13243 /* Language vector */
13245 /* symbol_name_matcher_ftype adapter for wild_match. */
13248 do_wild_match (const char *symbol_search_name
,
13249 const lookup_name_info
&lookup_name
,
13250 completion_match_result
*comp_match_res
)
13252 return wild_match (symbol_search_name
, ada_lookup_name (lookup_name
));
13255 /* symbol_name_matcher_ftype adapter for full_match. */
13258 do_full_match (const char *symbol_search_name
,
13259 const lookup_name_info
&lookup_name
,
13260 completion_match_result
*comp_match_res
)
13262 const char *lname
= lookup_name
.ada ().lookup_name ().c_str ();
13264 /* If both symbols start with "_ada_", just let the loop below
13265 handle the comparison. However, if only the symbol name starts
13266 with "_ada_", skip the prefix and let the match proceed as
13268 if (startswith (symbol_search_name
, "_ada_")
13269 && !startswith (lname
, "_ada"))
13270 symbol_search_name
+= 5;
13271 /* Likewise for ghost entities. */
13272 if (startswith (symbol_search_name
, "___ghost_")
13273 && !startswith (lname
, "___ghost_"))
13274 symbol_search_name
+= 9;
13276 int uscore_count
= 0;
13277 while (*lname
!= '\0')
13279 if (*symbol_search_name
!= *lname
)
13281 if (*symbol_search_name
== 'B' && uscore_count
== 2
13282 && symbol_search_name
[1] == '_')
13284 symbol_search_name
+= 2;
13285 while (isdigit (*symbol_search_name
))
13286 ++symbol_search_name
;
13287 if (symbol_search_name
[0] == '_'
13288 && symbol_search_name
[1] == '_')
13290 symbol_search_name
+= 2;
13297 if (*symbol_search_name
== '_')
13302 ++symbol_search_name
;
13306 return is_name_suffix (symbol_search_name
);
13309 /* symbol_name_matcher_ftype for exact (verbatim) matches. */
13312 do_exact_match (const char *symbol_search_name
,
13313 const lookup_name_info
&lookup_name
,
13314 completion_match_result
*comp_match_res
)
13316 return strcmp (symbol_search_name
, ada_lookup_name (lookup_name
)) == 0;
13319 /* Build the Ada lookup name for LOOKUP_NAME. */
13321 ada_lookup_name_info::ada_lookup_name_info (const lookup_name_info
&lookup_name
)
13323 gdb::string_view user_name
= lookup_name
.name ();
13325 if (!user_name
.empty () && user_name
[0] == '<')
13327 if (user_name
.back () == '>')
13329 = gdb::to_string (user_name
.substr (1, user_name
.size () - 2));
13332 = gdb::to_string (user_name
.substr (1, user_name
.size () - 1));
13333 m_encoded_p
= true;
13334 m_verbatim_p
= true;
13335 m_wild_match_p
= false;
13336 m_standard_p
= false;
13340 m_verbatim_p
= false;
13342 m_encoded_p
= user_name
.find ("__") != gdb::string_view::npos
;
13346 const char *folded
= ada_fold_name (user_name
);
13347 m_encoded_name
= ada_encode_1 (folded
, false);
13348 if (m_encoded_name
.empty ())
13349 m_encoded_name
= gdb::to_string (user_name
);
13352 m_encoded_name
= gdb::to_string (user_name
);
13354 /* Handle the 'package Standard' special case. See description
13355 of m_standard_p. */
13356 if (startswith (m_encoded_name
.c_str (), "standard__"))
13358 m_encoded_name
= m_encoded_name
.substr (sizeof ("standard__") - 1);
13359 m_standard_p
= true;
13362 m_standard_p
= false;
13364 /* If the name contains a ".", then the user is entering a fully
13365 qualified entity name, and the match must not be done in wild
13366 mode. Similarly, if the user wants to complete what looks
13367 like an encoded name, the match must not be done in wild
13368 mode. Also, in the standard__ special case always do
13369 non-wild matching. */
13371 = (lookup_name
.match_type () != symbol_name_match_type::FULL
13374 && user_name
.find ('.') == std::string::npos
);
13378 /* symbol_name_matcher_ftype method for Ada. This only handles
13379 completion mode. */
13382 ada_symbol_name_matches (const char *symbol_search_name
,
13383 const lookup_name_info
&lookup_name
,
13384 completion_match_result
*comp_match_res
)
13386 return lookup_name
.ada ().matches (symbol_search_name
,
13387 lookup_name
.match_type (),
13391 /* A name matcher that matches the symbol name exactly, with
13395 literal_symbol_name_matcher (const char *symbol_search_name
,
13396 const lookup_name_info
&lookup_name
,
13397 completion_match_result
*comp_match_res
)
13399 gdb::string_view name_view
= lookup_name
.name ();
13401 if (lookup_name
.completion_mode ()
13402 ? (strncmp (symbol_search_name
, name_view
.data (),
13403 name_view
.size ()) == 0)
13404 : symbol_search_name
== name_view
)
13406 if (comp_match_res
!= NULL
)
13407 comp_match_res
->set_match (symbol_search_name
);
13414 /* Implement the "get_symbol_name_matcher" language_defn method for
13417 static symbol_name_matcher_ftype
*
13418 ada_get_symbol_name_matcher (const lookup_name_info
&lookup_name
)
13420 if (lookup_name
.match_type () == symbol_name_match_type::SEARCH_NAME
)
13421 return literal_symbol_name_matcher
;
13423 if (lookup_name
.completion_mode ())
13424 return ada_symbol_name_matches
;
13427 if (lookup_name
.ada ().wild_match_p ())
13428 return do_wild_match
;
13429 else if (lookup_name
.ada ().verbatim_p ())
13430 return do_exact_match
;
13432 return do_full_match
;
13436 /* Class representing the Ada language. */
13438 class ada_language
: public language_defn
13442 : language_defn (language_ada
)
13445 /* See language.h. */
13447 const char *name () const override
13450 /* See language.h. */
13452 const char *natural_name () const override
13455 /* See language.h. */
13457 const std::vector
<const char *> &filename_extensions () const override
13459 static const std::vector
<const char *> extensions
13460 = { ".adb", ".ads", ".a", ".ada", ".dg" };
13464 /* Print an array element index using the Ada syntax. */
13466 void print_array_index (struct type
*index_type
,
13468 struct ui_file
*stream
,
13469 const value_print_options
*options
) const override
13471 struct value
*index_value
= val_atr (index_type
, index
);
13473 value_print (index_value
, stream
, options
);
13474 gdb_printf (stream
, " => ");
13477 /* Implement the "read_var_value" language_defn method for Ada. */
13479 struct value
*read_var_value (struct symbol
*var
,
13480 const struct block
*var_block
,
13481 struct frame_info
*frame
) const override
13483 /* The only case where default_read_var_value is not sufficient
13484 is when VAR is a renaming... */
13485 if (frame
!= nullptr)
13487 const struct block
*frame_block
= get_frame_block (frame
, NULL
);
13488 if (frame_block
!= nullptr && ada_is_renaming_symbol (var
))
13489 return ada_read_renaming_var_value (var
, frame_block
);
13492 /* This is a typical case where we expect the default_read_var_value
13493 function to work. */
13494 return language_defn::read_var_value (var
, var_block
, frame
);
13497 /* See language.h. */
13498 bool symbol_printing_suppressed (struct symbol
*symbol
) const override
13500 return symbol
->is_artificial ();
13503 /* See language.h. */
13504 void language_arch_info (struct gdbarch
*gdbarch
,
13505 struct language_arch_info
*lai
) const override
13507 const struct builtin_type
*builtin
= builtin_type (gdbarch
);
13509 /* Helper function to allow shorter lines below. */
13510 auto add
= [&] (struct type
*t
)
13512 lai
->add_primitive_type (t
);
13515 add (arch_integer_type (gdbarch
, gdbarch_int_bit (gdbarch
),
13517 add (arch_integer_type (gdbarch
, gdbarch_long_bit (gdbarch
),
13518 0, "long_integer"));
13519 add (arch_integer_type (gdbarch
, gdbarch_short_bit (gdbarch
),
13520 0, "short_integer"));
13521 struct type
*char_type
= arch_character_type (gdbarch
, TARGET_CHAR_BIT
,
13523 lai
->set_string_char_type (char_type
);
13525 add (arch_character_type (gdbarch
, 16, 1, "wide_character"));
13526 add (arch_character_type (gdbarch
, 32, 1, "wide_wide_character"));
13527 add (arch_float_type (gdbarch
, gdbarch_float_bit (gdbarch
),
13528 "float", gdbarch_float_format (gdbarch
)));
13529 add (arch_float_type (gdbarch
, gdbarch_double_bit (gdbarch
),
13530 "long_float", gdbarch_double_format (gdbarch
)));
13531 add (arch_integer_type (gdbarch
, gdbarch_long_long_bit (gdbarch
),
13532 0, "long_long_integer"));
13533 add (arch_float_type (gdbarch
, gdbarch_long_double_bit (gdbarch
),
13535 gdbarch_long_double_format (gdbarch
)));
13536 add (arch_integer_type (gdbarch
, gdbarch_int_bit (gdbarch
),
13538 add (arch_integer_type (gdbarch
, gdbarch_int_bit (gdbarch
),
13540 add (builtin
->builtin_void
);
13542 struct type
*system_addr_ptr
13543 = lookup_pointer_type (arch_type (gdbarch
, TYPE_CODE_VOID
, TARGET_CHAR_BIT
,
13545 system_addr_ptr
->set_name ("system__address");
13546 add (system_addr_ptr
);
13548 /* Create the equivalent of the System.Storage_Elements.Storage_Offset
13549 type. This is a signed integral type whose size is the same as
13550 the size of addresses. */
13551 unsigned int addr_length
= TYPE_LENGTH (system_addr_ptr
);
13552 add (arch_integer_type (gdbarch
, addr_length
* HOST_CHAR_BIT
, 0,
13553 "storage_offset"));
13555 lai
->set_bool_type (builtin
->builtin_bool
);
13558 /* See language.h. */
13560 bool iterate_over_symbols
13561 (const struct block
*block
, const lookup_name_info
&name
,
13562 domain_enum domain
,
13563 gdb::function_view
<symbol_found_callback_ftype
> callback
) const override
13565 std::vector
<struct block_symbol
> results
13566 = ada_lookup_symbol_list_worker (name
, block
, domain
, 0);
13567 for (block_symbol
&sym
: results
)
13569 if (!callback (&sym
))
13576 /* See language.h. */
13577 bool sniff_from_mangled_name
13578 (const char *mangled
,
13579 gdb::unique_xmalloc_ptr
<char> *out
) const override
13581 std::string demangled
= ada_decode (mangled
);
13585 if (demangled
!= mangled
&& demangled
[0] != '<')
13587 /* Set the gsymbol language to Ada, but still return 0.
13588 Two reasons for that:
13590 1. For Ada, we prefer computing the symbol's decoded name
13591 on the fly rather than pre-compute it, in order to save
13592 memory (Ada projects are typically very large).
13594 2. There are some areas in the definition of the GNAT
13595 encoding where, with a bit of bad luck, we might be able
13596 to decode a non-Ada symbol, generating an incorrect
13597 demangled name (Eg: names ending with "TB" for instance
13598 are identified as task bodies and so stripped from
13599 the decoded name returned).
13601 Returning true, here, but not setting *DEMANGLED, helps us get
13602 a little bit of the best of both worlds. Because we're last,
13603 we should not affect any of the other languages that were
13604 able to demangle the symbol before us; we get to correctly
13605 tag Ada symbols as such; and even if we incorrectly tagged a
13606 non-Ada symbol, which should be rare, any routing through the
13607 Ada language should be transparent (Ada tries to behave much
13608 like C/C++ with non-Ada symbols). */
13615 /* See language.h. */
13617 gdb::unique_xmalloc_ptr
<char> demangle_symbol (const char *mangled
,
13618 int options
) const override
13620 return make_unique_xstrdup (ada_decode (mangled
).c_str ());
13623 /* See language.h. */
13625 void print_type (struct type
*type
, const char *varstring
,
13626 struct ui_file
*stream
, int show
, int level
,
13627 const struct type_print_options
*flags
) const override
13629 ada_print_type (type
, varstring
, stream
, show
, level
, flags
);
13632 /* See language.h. */
13634 const char *word_break_characters (void) const override
13636 return ada_completer_word_break_characters
;
13639 /* See language.h. */
13641 void collect_symbol_completion_matches (completion_tracker
&tracker
,
13642 complete_symbol_mode mode
,
13643 symbol_name_match_type name_match_type
,
13644 const char *text
, const char *word
,
13645 enum type_code code
) const override
13647 struct symbol
*sym
;
13648 const struct block
*b
, *surrounding_static_block
= 0;
13649 struct block_iterator iter
;
13651 gdb_assert (code
== TYPE_CODE_UNDEF
);
13653 lookup_name_info
lookup_name (text
, name_match_type
, true);
13655 /* First, look at the partial symtab symbols. */
13656 expand_symtabs_matching (NULL
,
13660 SEARCH_GLOBAL_BLOCK
| SEARCH_STATIC_BLOCK
,
13663 /* At this point scan through the misc symbol vectors and add each
13664 symbol you find to the list. Eventually we want to ignore
13665 anything that isn't a text symbol (everything else will be
13666 handled by the psymtab code above). */
13668 for (objfile
*objfile
: current_program_space
->objfiles ())
13670 for (minimal_symbol
*msymbol
: objfile
->msymbols ())
13674 if (completion_skip_symbol (mode
, msymbol
))
13677 language symbol_language
= msymbol
->language ();
13679 /* Ada minimal symbols won't have their language set to Ada. If
13680 we let completion_list_add_name compare using the
13681 default/C-like matcher, then when completing e.g., symbols in a
13682 package named "pck", we'd match internal Ada symbols like
13683 "pckS", which are invalid in an Ada expression, unless you wrap
13684 them in '<' '>' to request a verbatim match.
13686 Unfortunately, some Ada encoded names successfully demangle as
13687 C++ symbols (using an old mangling scheme), such as "name__2Xn"
13688 -> "Xn::name(void)" and thus some Ada minimal symbols end up
13689 with the wrong language set. Paper over that issue here. */
13690 if (symbol_language
== language_auto
13691 || symbol_language
== language_cplus
)
13692 symbol_language
= language_ada
;
13694 completion_list_add_name (tracker
,
13696 msymbol
->linkage_name (),
13697 lookup_name
, text
, word
);
13701 /* Search upwards from currently selected frame (so that we can
13702 complete on local vars. */
13704 for (b
= get_selected_block (0); b
!= NULL
; b
= b
->superblock ())
13706 if (!b
->superblock ())
13707 surrounding_static_block
= b
; /* For elmin of dups */
13709 ALL_BLOCK_SYMBOLS (b
, iter
, sym
)
13711 if (completion_skip_symbol (mode
, sym
))
13714 completion_list_add_name (tracker
,
13716 sym
->linkage_name (),
13717 lookup_name
, text
, word
);
13721 /* Go through the symtabs and check the externs and statics for
13722 symbols which match. */
13724 for (objfile
*objfile
: current_program_space
->objfiles ())
13726 for (compunit_symtab
*s
: objfile
->compunits ())
13729 b
= s
->blockvector ()->global_block ();
13730 ALL_BLOCK_SYMBOLS (b
, iter
, sym
)
13732 if (completion_skip_symbol (mode
, sym
))
13735 completion_list_add_name (tracker
,
13737 sym
->linkage_name (),
13738 lookup_name
, text
, word
);
13743 for (objfile
*objfile
: current_program_space
->objfiles ())
13745 for (compunit_symtab
*s
: objfile
->compunits ())
13748 b
= s
->blockvector ()->static_block ();
13749 /* Don't do this block twice. */
13750 if (b
== surrounding_static_block
)
13752 ALL_BLOCK_SYMBOLS (b
, iter
, sym
)
13754 if (completion_skip_symbol (mode
, sym
))
13757 completion_list_add_name (tracker
,
13759 sym
->linkage_name (),
13760 lookup_name
, text
, word
);
13766 /* See language.h. */
13768 gdb::unique_xmalloc_ptr
<char> watch_location_expression
13769 (struct type
*type
, CORE_ADDR addr
) const override
13771 type
= check_typedef (TYPE_TARGET_TYPE (check_typedef (type
)));
13772 std::string name
= type_to_string (type
);
13773 return xstrprintf ("{%s} %s", name
.c_str (), core_addr_to_string (addr
));
13776 /* See language.h. */
13778 void value_print (struct value
*val
, struct ui_file
*stream
,
13779 const struct value_print_options
*options
) const override
13781 return ada_value_print (val
, stream
, options
);
13784 /* See language.h. */
13786 void value_print_inner
13787 (struct value
*val
, struct ui_file
*stream
, int recurse
,
13788 const struct value_print_options
*options
) const override
13790 return ada_value_print_inner (val
, stream
, recurse
, options
);
13793 /* See language.h. */
13795 struct block_symbol lookup_symbol_nonlocal
13796 (const char *name
, const struct block
*block
,
13797 const domain_enum domain
) const override
13799 struct block_symbol sym
;
13801 sym
= ada_lookup_symbol (name
, block_static_block (block
), domain
);
13802 if (sym
.symbol
!= NULL
)
13805 /* If we haven't found a match at this point, try the primitive
13806 types. In other languages, this search is performed before
13807 searching for global symbols in order to short-circuit that
13808 global-symbol search if it happens that the name corresponds
13809 to a primitive type. But we cannot do the same in Ada, because
13810 it is perfectly legitimate for a program to declare a type which
13811 has the same name as a standard type. If looking up a type in
13812 that situation, we have traditionally ignored the primitive type
13813 in favor of user-defined types. This is why, unlike most other
13814 languages, we search the primitive types this late and only after
13815 having searched the global symbols without success. */
13817 if (domain
== VAR_DOMAIN
)
13819 struct gdbarch
*gdbarch
;
13822 gdbarch
= target_gdbarch ();
13824 gdbarch
= block_gdbarch (block
);
13826 = language_lookup_primitive_type_as_symbol (this, gdbarch
, name
);
13827 if (sym
.symbol
!= NULL
)
13834 /* See language.h. */
13836 int parser (struct parser_state
*ps
) const override
13838 warnings_issued
= 0;
13839 return ada_parse (ps
);
13842 /* See language.h. */
13844 void emitchar (int ch
, struct type
*chtype
,
13845 struct ui_file
*stream
, int quoter
) const override
13847 ada_emit_char (ch
, chtype
, stream
, quoter
, 1);
13850 /* See language.h. */
13852 void printchar (int ch
, struct type
*chtype
,
13853 struct ui_file
*stream
) const override
13855 ada_printchar (ch
, chtype
, stream
);
13858 /* See language.h. */
13860 void printstr (struct ui_file
*stream
, struct type
*elttype
,
13861 const gdb_byte
*string
, unsigned int length
,
13862 const char *encoding
, int force_ellipses
,
13863 const struct value_print_options
*options
) const override
13865 ada_printstr (stream
, elttype
, string
, length
, encoding
,
13866 force_ellipses
, options
);
13869 /* See language.h. */
13871 void print_typedef (struct type
*type
, struct symbol
*new_symbol
,
13872 struct ui_file
*stream
) const override
13874 ada_print_typedef (type
, new_symbol
, stream
);
13877 /* See language.h. */
13879 bool is_string_type_p (struct type
*type
) const override
13881 return ada_is_string_type (type
);
13884 /* See language.h. */
13886 const char *struct_too_deep_ellipsis () const override
13887 { return "(...)"; }
13889 /* See language.h. */
13891 bool c_style_arrays_p () const override
13894 /* See language.h. */
13896 bool store_sym_names_in_linkage_form_p () const override
13899 /* See language.h. */
13901 const struct lang_varobj_ops
*varobj_ops () const override
13902 { return &ada_varobj_ops
; }
13905 /* See language.h. */
13907 symbol_name_matcher_ftype
*get_symbol_name_matcher_inner
13908 (const lookup_name_info
&lookup_name
) const override
13910 return ada_get_symbol_name_matcher (lookup_name
);
13914 /* Single instance of the Ada language class. */
13916 static ada_language ada_language_defn
;
13918 /* Command-list for the "set/show ada" prefix command. */
13919 static struct cmd_list_element
*set_ada_list
;
13920 static struct cmd_list_element
*show_ada_list
;
13922 /* This module's 'new_objfile' observer. */
13925 ada_new_objfile_observer (struct objfile
*objfile
)
13927 ada_clear_symbol_cache ();
13930 /* This module's 'free_objfile' observer. */
13933 ada_free_objfile_observer (struct objfile
*objfile
)
13935 ada_clear_symbol_cache ();
13938 /* Charsets known to GNAT. */
13939 static const char * const gnat_source_charsets
[] =
13941 /* Note that code below assumes that the default comes first.
13942 Latin-1 is the default here, because that is also GNAT's
13952 /* Note that this value is special-cased in the encoder and
13958 void _initialize_ada_language ();
13960 _initialize_ada_language ()
13962 add_setshow_prefix_cmd
13964 _("Prefix command for changing Ada-specific settings."),
13965 _("Generic command for showing Ada-specific settings."),
13966 &set_ada_list
, &show_ada_list
,
13967 &setlist
, &showlist
);
13969 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure
,
13970 &trust_pad_over_xvs
, _("\
13971 Enable or disable an optimization trusting PAD types over XVS types."), _("\
13972 Show whether an optimization trusting PAD types over XVS types is activated."),
13974 This is related to the encoding used by the GNAT compiler. The debugger\n\
13975 should normally trust the contents of PAD types, but certain older versions\n\
13976 of GNAT have a bug that sometimes causes the information in the PAD type\n\
13977 to be incorrect. Turning this setting \"off\" allows the debugger to\n\
13978 work around this bug. It is always safe to turn this option \"off\", but\n\
13979 this incurs a slight performance penalty, so it is recommended to NOT change\n\
13980 this option to \"off\" unless necessary."),
13981 NULL
, NULL
, &set_ada_list
, &show_ada_list
);
13983 add_setshow_boolean_cmd ("print-signatures", class_vars
,
13984 &print_signatures
, _("\
13985 Enable or disable the output of formal and return types for functions in the \
13986 overloads selection menu."), _("\
13987 Show whether the output of formal and return types for functions in the \
13988 overloads selection menu is activated."),
13989 NULL
, NULL
, NULL
, &set_ada_list
, &show_ada_list
);
13991 ada_source_charset
= gnat_source_charsets
[0];
13992 add_setshow_enum_cmd ("source-charset", class_files
,
13993 gnat_source_charsets
,
13994 &ada_source_charset
, _("\
13995 Set the Ada source character set."), _("\
13996 Show the Ada source character set."), _("\
13997 The character set used for Ada source files.\n\
13998 This must correspond to the '-gnati' or '-gnatW' option passed to GNAT."),
14000 &set_ada_list
, &show_ada_list
);
14002 add_catch_command ("exception", _("\
14003 Catch Ada exceptions, when raised.\n\
14004 Usage: catch exception [ARG] [if CONDITION]\n\
14005 Without any argument, stop when any Ada exception is raised.\n\
14006 If ARG is \"unhandled\" (without the quotes), only stop when the exception\n\
14007 being raised does not have a handler (and will therefore lead to the task's\n\
14009 Otherwise, the catchpoint only stops when the name of the exception being\n\
14010 raised is the same as ARG.\n\
14011 CONDITION is a boolean expression that is evaluated to see whether the\n\
14012 exception should cause a stop."),
14013 catch_ada_exception_command
,
14014 catch_ada_completer
,
14018 add_catch_command ("handlers", _("\
14019 Catch Ada exceptions, when handled.\n\
14020 Usage: catch handlers [ARG] [if CONDITION]\n\
14021 Without any argument, stop when any Ada exception is handled.\n\
14022 With an argument, catch only exceptions with the given name.\n\
14023 CONDITION is a boolean expression that is evaluated to see whether the\n\
14024 exception should cause a stop."),
14025 catch_ada_handlers_command
,
14026 catch_ada_completer
,
14029 add_catch_command ("assert", _("\
14030 Catch failed Ada assertions, when raised.\n\
14031 Usage: catch assert [if CONDITION]\n\
14032 CONDITION is a boolean expression that is evaluated to see whether the\n\
14033 exception should cause a stop."),
14034 catch_assert_command
,
14039 add_info ("exceptions", info_exceptions_command
,
14041 List all Ada exception names.\n\
14042 Usage: info exceptions [REGEXP]\n\
14043 If a regular expression is passed as an argument, only those matching\n\
14044 the regular expression are listed."));
14046 add_setshow_prefix_cmd ("ada", class_maintenance
,
14047 _("Set Ada maintenance-related variables."),
14048 _("Show Ada maintenance-related variables."),
14049 &maint_set_ada_cmdlist
, &maint_show_ada_cmdlist
,
14050 &maintenance_set_cmdlist
, &maintenance_show_cmdlist
);
14052 add_setshow_boolean_cmd
14053 ("ignore-descriptive-types", class_maintenance
,
14054 &ada_ignore_descriptive_types_p
,
14055 _("Set whether descriptive types generated by GNAT should be ignored."),
14056 _("Show whether descriptive types generated by GNAT should be ignored."),
14058 When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
14059 DWARF attribute."),
14060 NULL
, NULL
, &maint_set_ada_cmdlist
, &maint_show_ada_cmdlist
);
14062 decoded_names_store
= htab_create_alloc (256, htab_hash_string
,
14064 NULL
, xcalloc
, xfree
);
14066 /* The ada-lang observers. */
14067 gdb::observers::new_objfile
.attach (ada_new_objfile_observer
, "ada-lang");
14068 gdb::observers::free_objfile
.attach (ada_free_objfile_observer
, "ada-lang");
14069 gdb::observers::inferior_exit
.attach (ada_inferior_exit
, "ada-lang");