1 /* Copyright (C) 2009-2024 Free Software Foundation, Inc.
3 This file is part of GDB.
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 3 of the License, or
8 (at your option) any later version.
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
15 You should have received a copy of the GNU General Public License
16 along with this program. If not, see <http://www.gnu.org/licenses/>. */
18 #include "event-top.h"
19 #include "extract-store-integer.h"
21 #include "amd64-tdep.h"
22 #include "gdbsupport/x86-xstate.h"
26 #include "windows-tdep.h"
29 #include "frame-unwind.h"
30 #include "coff/internal.h"
31 #include "coff/i386.h"
37 /* The registers used to pass integer arguments during a function call. */
38 static int amd64_windows_dummy_call_integer_regs
[] =
40 AMD64_RCX_REGNUM
, /* %rcx */
41 AMD64_RDX_REGNUM
, /* %rdx */
42 AMD64_R8_REGNUM
, /* %r8 */
43 AMD64_R9_REGNUM
/* %r9 */
46 /* This vector maps GDB's idea of a register's number into an offset into
47 the Windows API CONTEXT structure. */
48 static int amd64_windows_gregset_reg_offset
[] =
74 288, /* FloatSave.FloatRegisters[0] */
75 304, /* FloatSave.FloatRegisters[1] */
76 320, /* FloatSave.FloatRegisters[2] */
77 336, /* FloatSave.FloatRegisters[3] */
78 352, /* FloatSave.FloatRegisters[4] */
79 368, /* FloatSave.FloatRegisters[5] */
80 384, /* FloatSave.FloatRegisters[6] */
81 400, /* FloatSave.FloatRegisters[7] */
82 256, /* FloatSave.ControlWord */
83 258, /* FloatSave.StatusWord */
84 260, /* FloatSave.TagWord */
85 268, /* FloatSave.ErrorSelector */
86 264, /* FloatSave.ErrorOffset */
87 276, /* FloatSave.DataSelector */
88 272, /* FloatSave.DataOffset */
89 268, /* FloatSave.ErrorSelector */
106 280, /* FloatSave.MxCsr */
109 #define AMD64_WINDOWS_SIZEOF_GREGSET 1232
111 /* Return nonzero if an argument of type TYPE should be passed
112 via one of the integer registers. */
115 amd64_windows_passed_by_integer_register (struct type
*type
)
117 switch (type
->code ())
122 case TYPE_CODE_RANGE
:
126 case TYPE_CODE_RVALUE_REF
:
127 case TYPE_CODE_STRUCT
:
128 case TYPE_CODE_UNION
:
129 case TYPE_CODE_COMPLEX
:
130 return (type
->length () == 1
131 || type
->length () == 2
132 || type
->length () == 4
133 || type
->length () == 8);
140 /* Return nonzero if an argument of type TYPE should be passed
141 via one of the XMM registers. */
144 amd64_windows_passed_by_xmm_register (struct type
*type
)
146 return ((type
->code () == TYPE_CODE_FLT
147 || type
->code () == TYPE_CODE_DECFLOAT
)
148 && (type
->length () == 4 || type
->length () == 8));
151 /* Return non-zero iff an argument of the given TYPE should be passed
155 amd64_windows_passed_by_pointer (struct type
*type
)
157 if (amd64_windows_passed_by_integer_register (type
))
160 if (amd64_windows_passed_by_xmm_register (type
))
166 /* For each argument that should be passed by pointer, reserve some
167 stack space, store a copy of the argument on the stack, and replace
168 the argument by its address. Return the new Stack Pointer value.
170 NARGS is the number of arguments. ARGS is the array containing
171 the value of each argument. SP is value of the Stack Pointer. */
174 amd64_windows_adjust_args_passed_by_pointer (struct value
**args
,
175 int nargs
, CORE_ADDR sp
)
179 for (i
= 0; i
< nargs
; i
++)
180 if (amd64_windows_passed_by_pointer (args
[i
]->type ()))
182 struct type
*type
= args
[i
]->type ();
183 const gdb_byte
*valbuf
= args
[i
]->contents ().data ();
184 const int len
= type
->length ();
186 /* Store a copy of that argument on the stack, aligned to
187 a 16 bytes boundary, and then use the copy's address as
192 write_memory (sp
, valbuf
, len
);
195 = value_addr (value_from_contents_and_address (type
, valbuf
, sp
));
201 /* Store the value of ARG in register REGNO (right-justified).
202 REGCACHE is the register cache. */
205 amd64_windows_store_arg_in_reg (struct regcache
*regcache
,
206 struct value
*arg
, int regno
)
208 gdb::array_view
<const gdb_byte
> valbuf
= arg
->contents ();
209 /* We only set 8 bytes, buf if it's a XMM register, 16 bytes are read. */
210 std::array
<gdb_byte
, 16> buf
{};
212 gdb_assert (valbuf
.size () <= 8);
213 std::copy (valbuf
.begin (), valbuf
.end (), buf
.begin ());
214 size_t reg_size
= regcache
->register_size (regno
);
215 gdb_assert (reg_size
<= buf
.size ());
216 gdb::array_view
<gdb_byte
> view (buf
);
217 regcache
->cooked_write (regno
, view
.slice (0, reg_size
));
220 /* Push the arguments for an inferior function call, and return
221 the updated value of the SP (Stack Pointer).
223 All arguments are identical to the arguments used in
224 amd64_windows_push_dummy_call. */
227 amd64_windows_push_arguments (struct regcache
*regcache
, int nargs
,
228 struct value
**args
, CORE_ADDR sp
,
229 function_call_return_method return_method
)
233 struct value
**stack_args
= XALLOCAVEC (struct value
*, nargs
);
234 int num_stack_args
= 0;
235 int num_elements
= 0;
238 /* First, handle the arguments passed by pointer.
240 These arguments are replaced by pointers to a copy we are making
241 in inferior memory. So use a copy of the ARGS table, to avoid
242 modifying the original one. */
245 struct value
**args1
= XALLOCAVEC (struct value
*, nargs
);
247 memcpy (args1
, args
, nargs
* sizeof (struct value
*));
248 sp
= amd64_windows_adjust_args_passed_by_pointer (args1
, nargs
, sp
);
252 /* Reserve a register for the "hidden" argument. */
253 if (return_method
== return_method_struct
)
256 for (i
= 0; i
< nargs
; i
++)
258 struct type
*type
= args
[i
]->type ();
259 int len
= type
->length ();
262 if (reg_idx
< ARRAY_SIZE (amd64_windows_dummy_call_integer_regs
))
264 if (amd64_windows_passed_by_integer_register (type
))
266 amd64_windows_store_arg_in_reg
268 amd64_windows_dummy_call_integer_regs
[reg_idx
]);
272 else if (amd64_windows_passed_by_xmm_register (type
))
274 amd64_windows_store_arg_in_reg
275 (regcache
, args
[i
], AMD64_XMM0_REGNUM
+ reg_idx
);
276 /* In case of varargs, these parameters must also be
277 passed via the integer registers. */
278 amd64_windows_store_arg_in_reg
280 amd64_windows_dummy_call_integer_regs
[reg_idx
]);
288 num_elements
+= ((len
+ 7) / 8);
289 stack_args
[num_stack_args
++] = args
[i
];
293 /* Allocate space for the arguments on the stack, keeping it
294 aligned on a 16 byte boundary. */
295 sp
-= num_elements
* 8;
298 /* Write out the arguments to the stack. */
299 for (i
= 0; i
< num_stack_args
; i
++)
301 struct type
*type
= stack_args
[i
]->type ();
302 const gdb_byte
*valbuf
= stack_args
[i
]->contents ().data ();
304 write_memory (sp
+ element
* 8, valbuf
, type
->length ());
305 element
+= ((type
->length () + 7) / 8);
311 /* Implement the "push_dummy_call" gdbarch method. */
314 amd64_windows_push_dummy_call
315 (struct gdbarch
*gdbarch
, struct value
*function
,
316 struct regcache
*regcache
, CORE_ADDR bp_addr
,
317 int nargs
, struct value
**args
, CORE_ADDR sp
,
318 function_call_return_method return_method
, CORE_ADDR struct_addr
)
320 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
321 std::array
<gdb_byte
, 8> buf
;
323 /* Pass arguments. */
324 sp
= amd64_windows_push_arguments (regcache
, nargs
, args
, sp
,
327 /* Pass "hidden" argument". */
328 if (return_method
== return_method_struct
)
330 /* The "hidden" argument is passed through the first argument
332 const int arg_regnum
= amd64_windows_dummy_call_integer_regs
[0];
334 store_unsigned_integer (buf
, byte_order
, struct_addr
);
335 regcache
->cooked_write (arg_regnum
, buf
);
338 /* Reserve some memory on the stack for the integer-parameter
339 registers, as required by the ABI. */
340 sp
-= ARRAY_SIZE (amd64_windows_dummy_call_integer_regs
) * 8;
342 /* Store return address. */
344 store_unsigned_integer (buf
, byte_order
, bp_addr
);
345 write_memory (sp
, buf
.data (), buf
.size ());
347 /* Update the stack pointer... */
348 store_unsigned_integer (buf
, byte_order
, sp
);
349 regcache
->cooked_write (AMD64_RSP_REGNUM
, buf
);
351 /* ...and fake a frame pointer. */
352 regcache
->cooked_write (AMD64_RBP_REGNUM
, buf
);
357 /* Implement the "return_value" gdbarch method for amd64-windows. */
359 static enum return_value_convention
360 amd64_windows_return_value (struct gdbarch
*gdbarch
, struct value
*function
,
361 struct type
*type
, struct regcache
*regcache
,
362 struct value
**read_value
, const gdb_byte
*writebuf
)
364 int len
= type
->length ();
367 /* See if our value is returned through a register. If it is, then
368 store the associated register number in REGNUM. */
369 switch (type
->code ())
372 /* floats, and doubles are returned via XMM0. */
373 if (len
== 4 || len
== 8)
374 regnum
= AMD64_XMM0_REGNUM
;
376 case TYPE_CODE_ARRAY
:
377 /* __m128, __m128i and __m128d are returned via XMM0. */
378 if (type
->is_vector () && len
== 16)
380 enum type_code code
= type
->target_type ()->code ();
381 if (code
== TYPE_CODE_INT
|| code
== TYPE_CODE_FLT
)
383 regnum
= AMD64_XMM0_REGNUM
;
389 /* All other values that are 1, 2, 4 or 8 bytes long are returned
391 if (len
== 1 || len
== 2 || len
== 4 || len
== 8)
392 regnum
= AMD64_RAX_REGNUM
;
393 else if (len
== 16 && type
->code () == TYPE_CODE_INT
)
394 regnum
= AMD64_XMM0_REGNUM
;
400 /* RAX contains the address where the return value has been stored. */
401 if (read_value
!= nullptr)
405 regcache_raw_read_unsigned (regcache
, AMD64_RAX_REGNUM
, &addr
);
406 *read_value
= value_at_non_lval (type
, addr
);
408 return RETURN_VALUE_ABI_RETURNS_ADDRESS
;
412 /* Extract the return value from the register where it was stored. */
413 if (read_value
!= nullptr)
415 *read_value
= value::allocate (type
);
416 regcache
->raw_read_part (regnum
, 0, len
,
417 (*read_value
)->contents_raw ().data ());
420 regcache
->raw_write_part (regnum
, 0, len
, writebuf
);
421 return RETURN_VALUE_REGISTER_CONVENTION
;
425 /* Check that the code pointed to by PC corresponds to a call to
426 __main, skip it if so. Return PC otherwise. */
429 amd64_skip_main_prologue (struct gdbarch
*gdbarch
, CORE_ADDR pc
)
431 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
434 target_read_memory (pc
, &op
, 1);
437 std::array
<gdb_byte
, 4> buf
;
439 if (target_read_memory (pc
+ 1, buf
.data (), buf
.size ()) == 0)
443 call_dest
= pc
+ 5 + extract_signed_integer (buf
, byte_order
);
444 bound_minimal_symbol s
= lookup_minimal_symbol_by_pc (call_dest
);
446 && s
.minsym
->linkage_name () != NULL
447 && strcmp (s
.minsym
->linkage_name (), "__main") == 0)
455 struct amd64_windows_frame_cache
457 /* ImageBase for the module. */
458 CORE_ADDR image_base
;
460 /* Function start and end rva. */
464 /* Next instruction to be executed. */
470 /* Address of saved integer and xmm registers. */
471 CORE_ADDR prev_reg_addr
[16];
472 CORE_ADDR prev_xmm_addr
[16];
474 /* These two next fields are set only for machine info frames. */
476 /* Likewise for RIP. */
477 CORE_ADDR prev_rip_addr
;
479 /* Likewise for RSP. */
480 CORE_ADDR prev_rsp_addr
;
482 /* Address of the previous frame. */
486 /* Convert a Windows register number to gdb. */
487 static const enum amd64_regnum amd64_windows_w2gdb_regnum
[] =
507 /* Return TRUE iff PC is the range of the function corresponding to
511 pc_in_range (CORE_ADDR pc
, const struct amd64_windows_frame_cache
*cache
)
513 return (pc
>= cache
->image_base
+ cache
->start_rva
514 && pc
< cache
->image_base
+ cache
->end_rva
);
517 /* Try to recognize and decode an epilogue sequence.
519 Return -1 if we fail to read the instructions for any reason.
520 Return 1 if an epilogue sequence was recognized, 0 otherwise. */
523 amd64_windows_frame_decode_epilogue (const frame_info_ptr
&this_frame
,
524 struct amd64_windows_frame_cache
*cache
)
526 /* According to MSDN an epilogue "must consist of either an add RSP,constant
527 or lea RSP,constant[FPReg], followed by a series of zero or more 8-byte
528 register pops and a return or a jmp".
530 Furthermore, according to RtlVirtualUnwind, the complete list of
535 - jmp imm8 | imm32 [eb rel8] or [e9 rel32]
536 - jmp qword ptr imm32 - not handled
537 - rex.w jmp reg [4X ff eY]
540 CORE_ADDR pc
= cache
->pc
;
541 CORE_ADDR cur_sp
= cache
->sp
;
542 struct gdbarch
*gdbarch
= get_frame_arch (this_frame
);
543 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
547 /* We don't care about the instruction deallocating the frame:
548 if it hasn't been executed, the pc is still in the body,
549 if it has been executed, the following epilog decoding will work. */
552 - pop reg [41 58-5f] or [58-5f]. */
557 if (target_read_memory (pc
, &op
, 1) != 0)
560 if (op
>= 0x40 && op
<= 0x4f)
566 if (target_read_memory (pc
+ 1, &op
, 1) != 0)
572 if (op
>= 0x58 && op
<= 0x5f)
575 gdb_byte reg
= (op
& 0x0f) | ((rex
& 1) << 3);
577 cache
->prev_reg_addr
[amd64_windows_w2gdb_regnum
[reg
]] = cur_sp
;
584 /* Allow the user to break this loop. This shouldn't happen as the
585 number of consecutive pop should be small. */
589 /* Then decode the marker. */
592 if (target_read_memory (pc
, &op
, 1) != 0)
599 cache
->prev_rip_addr
= cur_sp
;
600 cache
->prev_sp
= cur_sp
+ 8;
609 if (target_read_memory (pc
+ 1, &rel8
, 1) != 0)
611 npc
= pc
+ 2 + (signed char) rel8
;
613 /* If the jump is within the function, then this is not a marker,
614 otherwise this is a tail-call. */
615 return !pc_in_range (npc
, cache
);
621 std::array
<gdb_byte
, 4> rel32
;
624 if (target_read_memory (pc
+ 1, rel32
.data (), rel32
.size ()) != 0)
626 npc
= pc
+ 5 + extract_signed_integer (rel32
, byte_order
);
628 /* If the jump is within the function, then this is not a marker,
629 otherwise this is a tail-call. */
630 return !pc_in_range (npc
, cache
);
636 std::array
<gdb_byte
, 2> imm16
;
638 if (target_read_memory (pc
+ 1, imm16
.data (), imm16
.size ()) != 0)
640 cache
->prev_rip_addr
= cur_sp
;
641 cache
->prev_sp
= cur_sp
642 + extract_unsigned_integer (imm16
, byte_order
);
651 if (target_read_memory (pc
+ 2, &op1
, 1) != 0)
656 cache
->prev_rip_addr
= cur_sp
;
657 cache
->prev_sp
= cur_sp
+ 8;
677 /* Got a REX prefix, read next byte. */
679 if (target_read_memory (pc
+ 1, &op
, 1) != 0)
687 if (target_read_memory (pc
+ 2, &op1
, 1) != 0)
689 return (op1
& 0xf8) == 0xe0;
695 /* Not REX, so unknown. */
700 /* Decode and execute unwind insns at UNWIND_INFO. */
703 amd64_windows_frame_decode_insns (const frame_info_ptr
&this_frame
,
704 struct amd64_windows_frame_cache
*cache
,
705 CORE_ADDR unwind_info
)
707 CORE_ADDR save_addr
= 0;
708 CORE_ADDR cur_sp
= cache
->sp
;
709 struct gdbarch
*gdbarch
= get_frame_arch (this_frame
);
710 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
713 /* There are at least 3 possibilities to share an unwind info entry:
714 1. Two different runtime_function entries (in .pdata) can point to the
715 same unwind info entry. There is no such indication while unwinding,
716 so we don't really care about that case. We suppose this scheme is
717 used to save memory when the unwind entries are exactly the same.
718 2. Chained unwind_info entries, with no unwind codes (no prologue).
719 There is a major difference with the previous case: the pc range for
720 the function is different (in case 1, the pc range comes from the
721 runtime_function entry; in case 2, the pc range for the chained entry
722 comes from the first unwind entry). Case 1 cannot be used instead as
723 the pc is not in the prologue. This case is officially documented.
724 (There might be unwind code in the first unwind entry to handle
725 additional unwinding). GCC (at least until gcc 5.0) doesn't chain
727 3. Undocumented unwind info redirection. Hard to know the exact purpose,
728 so it is considered as a memory optimization of case 2.
733 /* Unofficially documented unwind info redirection, when UNWIND_INFO
734 address is odd (http://www.codemachine.com/article_x64deepdive.html).
736 struct external_pex64_runtime_function d
;
738 if (target_read_memory (cache
->image_base
+ (unwind_info
& ~1),
739 (gdb_byte
*) &d
, sizeof (d
)) != 0)
743 = extract_unsigned_integer (d
.rva_BeginAddress
, 4, byte_order
);
745 = extract_unsigned_integer (d
.rva_EndAddress
, 4, byte_order
);
747 = extract_unsigned_integer (d
.rva_UnwindData
, 4, byte_order
);
752 struct external_pex64_unwind_info ex_ui
;
753 /* There are at most 256 16-bit unwind insns. */
754 gdb_byte insns
[2 * 256];
757 unsigned char codes_count
;
758 unsigned char frame_reg
;
761 /* Read and decode header. */
762 if (target_read_memory (cache
->image_base
+ unwind_info
,
763 (gdb_byte
*) &ex_ui
, sizeof (ex_ui
)) != 0)
766 frame_debug_printf ("%s: ver: %02x, plgsz: %02x, cnt: %02x, frame: %02x",
767 paddress (gdbarch
, unwind_info
),
768 ex_ui
.Version_Flags
, ex_ui
.SizeOfPrologue
,
769 ex_ui
.CountOfCodes
, ex_ui
.FrameRegisterOffset
);
772 if (PEX64_UWI_VERSION (ex_ui
.Version_Flags
) != 1
773 && PEX64_UWI_VERSION (ex_ui
.Version_Flags
) != 2)
776 start
= cache
->image_base
+ cache
->start_rva
;
778 && !(cache
->pc
>= start
&& cache
->pc
< start
+ ex_ui
.SizeOfPrologue
))
780 /* We want to detect if the PC points to an epilogue. This needs
781 to be checked only once, and an epilogue can be anywhere but in
782 the prologue. If so, the epilogue detection+decoding function is
783 sufficient. Otherwise, the unwinder will consider that the PC
784 is in the body of the function and will need to decode unwind
786 if (amd64_windows_frame_decode_epilogue (this_frame
, cache
) == 1)
789 /* Not in an epilog. Clear possible side effects. */
790 memset (cache
->prev_reg_addr
, 0, sizeof (cache
->prev_reg_addr
));
793 codes_count
= ex_ui
.CountOfCodes
;
794 frame_reg
= PEX64_UWI_FRAMEREG (ex_ui
.FrameRegisterOffset
);
798 /* According to msdn:
799 If an FP reg is used, then any unwind code taking an offset must
800 only be used after the FP reg is established in the prolog. */
801 std::array
<gdb_byte
, 8> buf
;
802 int frreg
= amd64_windows_w2gdb_regnum
[frame_reg
];
804 get_frame_register (this_frame
, frreg
, buf
);
805 save_addr
= extract_unsigned_integer (buf
, byte_order
);
807 frame_debug_printf (" frame_reg=%s, val=%s",
808 gdbarch_register_name (gdbarch
, frreg
),
809 paddress (gdbarch
, save_addr
));
814 && target_read_memory (cache
->image_base
+ unwind_info
816 insns
, codes_count
* 2) != 0)
819 end_insns
= &insns
[codes_count
* 2];
822 /* Skip opcodes 6 of version 2. This opcode is not documented. */
823 if (PEX64_UWI_VERSION (ex_ui
.Version_Flags
) == 2)
825 for (; p
< end_insns
; p
+= 2)
826 if (PEX64_UNWCODE_CODE (p
[1]) != 6)
830 for (; p
< end_insns
; p
+= 2)
834 /* Virtually execute the operation if the pc is after the
835 corresponding instruction (that does matter in case of break
836 within the prologue). Note that for chained info (!first), the
837 prologue has been fully executed. */
838 if (cache
->pc
>= start
+ p
[0] || cache
->pc
< start
)
840 frame_debug_printf (" op #%u: off=0x%02x, insn=0x%02x",
841 (unsigned) (p
- insns
), p
[0], p
[1]);
843 /* If there is no frame registers defined, the current value of
844 rsp is used instead. */
850 switch (PEX64_UNWCODE_CODE (p
[1]))
852 case UWOP_PUSH_NONVOL
:
853 /* Push pre-decrements RSP. */
854 reg
= amd64_windows_w2gdb_regnum
[PEX64_UNWCODE_INFO (p
[1])];
855 cache
->prev_reg_addr
[reg
] = cur_sp
;
858 case UWOP_ALLOC_LARGE
:
859 if (PEX64_UNWCODE_INFO (p
[1]) == 0)
861 8 * extract_unsigned_integer (p
+ 2, 2, byte_order
);
862 else if (PEX64_UNWCODE_INFO (p
[1]) == 1)
863 cur_sp
+= extract_unsigned_integer (p
+ 2, 4, byte_order
);
867 case UWOP_ALLOC_SMALL
:
868 cur_sp
+= 8 + 8 * PEX64_UNWCODE_INFO (p
[1]);
872 - PEX64_UWI_FRAMEOFF (ex_ui
.FrameRegisterOffset
) * 16;
874 case UWOP_SAVE_NONVOL
:
875 reg
= amd64_windows_w2gdb_regnum
[PEX64_UNWCODE_INFO (p
[1])];
876 cache
->prev_reg_addr
[reg
] = save_addr
877 + 8 * extract_unsigned_integer (p
+ 2, 2, byte_order
);
879 case UWOP_SAVE_NONVOL_FAR
:
880 reg
= amd64_windows_w2gdb_regnum
[PEX64_UNWCODE_INFO (p
[1])];
881 cache
->prev_reg_addr
[reg
] = save_addr
882 + 8 * extract_unsigned_integer (p
+ 2, 4, byte_order
);
884 case UWOP_SAVE_XMM128
:
885 cache
->prev_xmm_addr
[PEX64_UNWCODE_INFO (p
[1])] =
887 - 16 * extract_unsigned_integer (p
+ 2, 2, byte_order
);
889 case UWOP_SAVE_XMM128_FAR
:
890 cache
->prev_xmm_addr
[PEX64_UNWCODE_INFO (p
[1])] =
892 - 16 * extract_unsigned_integer (p
+ 2, 4, byte_order
);
894 case UWOP_PUSH_MACHFRAME
:
895 if (PEX64_UNWCODE_INFO (p
[1]) == 0)
897 cache
->prev_rip_addr
= cur_sp
+ 0;
898 cache
->prev_rsp_addr
= cur_sp
+ 24;
901 else if (PEX64_UNWCODE_INFO (p
[1]) == 1)
903 cache
->prev_rip_addr
= cur_sp
+ 8;
904 cache
->prev_rsp_addr
= cur_sp
+ 32;
914 /* Display address where the register was saved. */
916 frame_debug_printf (" [reg %s at %s]",
917 gdbarch_register_name (gdbarch
, reg
),
919 cache
->prev_reg_addr
[reg
]));
922 /* Adjust with the length of the opcode. */
923 switch (PEX64_UNWCODE_CODE (p
[1]))
925 case UWOP_PUSH_NONVOL
:
926 case UWOP_ALLOC_SMALL
:
928 case UWOP_PUSH_MACHFRAME
:
930 case UWOP_ALLOC_LARGE
:
931 if (PEX64_UNWCODE_INFO (p
[1]) == 0)
933 else if (PEX64_UNWCODE_INFO (p
[1]) == 1)
938 case UWOP_SAVE_NONVOL
:
939 case UWOP_SAVE_XMM128
:
942 case UWOP_SAVE_NONVOL_FAR
:
943 case UWOP_SAVE_XMM128_FAR
:
950 if (PEX64_UWI_FLAGS (ex_ui
.Version_Flags
) != UNW_FLAG_CHAININFO
)
952 /* End of unwind info. */
957 /* Read the chained unwind info. */
958 struct external_pex64_runtime_function d
;
961 /* Not anymore the first entry. */
964 /* Stay aligned on word boundary. */
965 chain_vma
= cache
->image_base
+ unwind_info
966 + sizeof (ex_ui
) + ((codes_count
+ 1) & ~1) * 2;
968 if (target_read_memory (chain_vma
, (gdb_byte
*) &d
, sizeof (d
)) != 0)
971 /* Decode begin/end. This may be different from .pdata index, as
972 an unwind info may be shared by several functions (in particular
973 if many functions have the same prolog and handler. */
975 extract_unsigned_integer (d
.rva_BeginAddress
, 4, byte_order
);
977 extract_unsigned_integer (d
.rva_EndAddress
, 4, byte_order
);
979 extract_unsigned_integer (d
.rva_UnwindData
, 4, byte_order
);
981 frame_debug_printf ("next in chain: unwind_data=%s, start_rva=%s, "
983 paddress (gdbarch
, unwind_info
),
984 paddress (gdbarch
, cache
->start_rva
),
985 paddress (gdbarch
, cache
->end_rva
));
988 /* Allow the user to break this loop. */
991 /* PC is saved by the call. */
992 if (cache
->prev_rip_addr
== 0)
993 cache
->prev_rip_addr
= cur_sp
;
994 cache
->prev_sp
= cur_sp
+ 8;
996 frame_debug_printf (" prev_sp: %s, prev_pc @%s",
997 paddress (gdbarch
, cache
->prev_sp
),
998 paddress (gdbarch
, cache
->prev_rip_addr
));
1001 /* Find SEH unwind info for PC, returning 0 on success.
1003 UNWIND_INFO is set to the rva of unwind info address, IMAGE_BASE
1004 to the base address of the corresponding image, and START_RVA
1005 to the rva of the function containing PC. */
1008 amd64_windows_find_unwind_info (struct gdbarch
*gdbarch
, CORE_ADDR pc
,
1009 CORE_ADDR
*unwind_info
,
1010 CORE_ADDR
*image_base
,
1011 CORE_ADDR
*start_rva
,
1014 struct obj_section
*sec
;
1016 IMAGE_DATA_DIRECTORY
*dir
;
1017 struct objfile
*objfile
;
1018 unsigned long lo
, hi
;
1020 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
1022 /* Get the corresponding exception directory. */
1023 sec
= find_pc_section (pc
);
1026 objfile
= sec
->objfile
;
1027 pe
= pe_data (sec
->objfile
->obfd
);
1028 dir
= &pe
->pe_opthdr
.DataDirectory
[PE_EXCEPTION_TABLE
];
1030 base
= pe
->pe_opthdr
.ImageBase
+ objfile
->text_section_offset ();
1035 Note: This does not handle dynamically added entries (for JIT
1036 engines). For this, we would need to ask the kernel directly,
1037 which means getting some info from the native layer. For the
1038 rest of the code, however, it's probably faster to search
1039 the entry ourselves. */
1041 hi
= dir
->Size
/ sizeof (struct external_pex64_runtime_function
);
1045 unsigned long mid
= lo
+ (hi
- lo
) / 2;
1046 struct external_pex64_runtime_function d
;
1049 if (target_read_memory (base
+ dir
->VirtualAddress
+ mid
* sizeof (d
),
1050 (gdb_byte
*) &d
, sizeof (d
)) != 0)
1053 sa
= extract_unsigned_integer (d
.rva_BeginAddress
, 4, byte_order
);
1054 ea
= extract_unsigned_integer (d
.rva_EndAddress
, 4, byte_order
);
1057 else if (pc
>= base
+ ea
)
1059 else if (pc
>= base
+ sa
&& pc
< base
+ ea
)
1065 extract_unsigned_integer (d
.rva_UnwindData
, 4, byte_order
);
1072 frame_debug_printf ("image_base=%s, unwind_data=%s",
1073 paddress (gdbarch
, base
),
1074 paddress (gdbarch
, *unwind_info
));
1079 /* Fill THIS_CACHE using the native amd64-windows unwinding data
1082 static struct amd64_windows_frame_cache
*
1083 amd64_windows_frame_cache (const frame_info_ptr
&this_frame
, void **this_cache
)
1085 struct gdbarch
*gdbarch
= get_frame_arch (this_frame
);
1086 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
1087 struct amd64_windows_frame_cache
*cache
;
1088 std::array
<gdb_byte
, 8> buf
;
1090 CORE_ADDR unwind_info
= 0;
1093 return (struct amd64_windows_frame_cache
*) *this_cache
;
1095 cache
= FRAME_OBSTACK_ZALLOC (struct amd64_windows_frame_cache
);
1096 *this_cache
= cache
;
1098 /* Get current PC and SP. */
1099 pc
= get_frame_pc (this_frame
);
1100 get_frame_register (this_frame
, AMD64_RSP_REGNUM
, buf
);
1101 cache
->sp
= extract_unsigned_integer (buf
, byte_order
);
1104 /* If we can't find the unwind info, keep trying as though this is a
1105 leaf function. This situation can happen when PC==0, see
1106 https://sourceware.org/bugzilla/show_bug.cgi?id=30255. */
1107 if (amd64_windows_find_unwind_info (gdbarch
, pc
, &unwind_info
,
1111 || unwind_info
== 0)
1113 /* Assume a leaf function. */
1114 cache
->prev_sp
= cache
->sp
+ 8;
1115 cache
->prev_rip_addr
= cache
->sp
;
1119 /* Decode unwind insns to compute saved addresses. */
1120 amd64_windows_frame_decode_insns (this_frame
, cache
, unwind_info
);
1125 /* Implement the "prev_register" method of struct frame_unwind
1126 using the standard Windows x64 SEH info. */
1128 static struct value
*
1129 amd64_windows_frame_prev_register (const frame_info_ptr
&this_frame
,
1130 void **this_cache
, int regnum
)
1132 struct gdbarch
*gdbarch
= get_frame_arch (this_frame
);
1133 struct amd64_windows_frame_cache
*cache
=
1134 amd64_windows_frame_cache (this_frame
, this_cache
);
1137 frame_debug_printf ("%s for sp=%s",
1138 gdbarch_register_name (gdbarch
, regnum
),
1139 paddress (gdbarch
, cache
->prev_sp
));
1141 if (regnum
>= AMD64_XMM0_REGNUM
&& regnum
<= AMD64_XMM0_REGNUM
+ 15)
1142 prev
= cache
->prev_xmm_addr
[regnum
- AMD64_XMM0_REGNUM
];
1143 else if (regnum
== AMD64_RSP_REGNUM
)
1145 prev
= cache
->prev_rsp_addr
;
1147 return frame_unwind_got_constant (this_frame
, regnum
, cache
->prev_sp
);
1149 else if (regnum
>= AMD64_RAX_REGNUM
&& regnum
<= AMD64_R15_REGNUM
)
1150 prev
= cache
->prev_reg_addr
[regnum
- AMD64_RAX_REGNUM
];
1151 else if (regnum
== AMD64_RIP_REGNUM
)
1152 prev
= cache
->prev_rip_addr
;
1157 frame_debug_printf (" -> at %s", paddress (gdbarch
, prev
));
1161 /* Register was saved. */
1162 return frame_unwind_got_memory (this_frame
, regnum
, prev
);
1166 /* Register is either volatile or not modified. */
1167 return frame_unwind_got_register (this_frame
, regnum
, regnum
);
1171 /* Implement the "this_id" method of struct frame_unwind using
1172 the standard Windows x64 SEH info. */
1175 amd64_windows_frame_this_id (const frame_info_ptr
&this_frame
, void **this_cache
,
1176 struct frame_id
*this_id
)
1178 struct amd64_windows_frame_cache
*cache
=
1179 amd64_windows_frame_cache (this_frame
, this_cache
);
1181 *this_id
= frame_id_build (cache
->prev_sp
,
1182 cache
->image_base
+ cache
->start_rva
);
1185 /* Windows x64 SEH unwinder. */
1187 static const struct frame_unwind_legacy
amd64_windows_frame_unwind (
1191 default_frame_unwind_stop_reason
,
1192 &amd64_windows_frame_this_id
,
1193 &amd64_windows_frame_prev_register
,
1195 default_frame_sniffer
1198 /* Implement the "skip_prologue" gdbarch method. */
1201 amd64_windows_skip_prologue (struct gdbarch
*gdbarch
, CORE_ADDR pc
)
1203 CORE_ADDR func_addr
;
1204 CORE_ADDR unwind_info
= 0;
1205 CORE_ADDR image_base
, start_rva
, end_rva
;
1206 struct external_pex64_unwind_info ex_ui
;
1208 /* Use prologue size from unwind info. */
1209 if (amd64_windows_find_unwind_info (gdbarch
, pc
, &unwind_info
,
1210 &image_base
, &start_rva
, &end_rva
) == 0)
1212 if (unwind_info
== 0)
1214 /* Leaf function. */
1217 else if (target_read_memory (image_base
+ unwind_info
,
1218 (gdb_byte
*) &ex_ui
, sizeof (ex_ui
)) == 0
1219 && PEX64_UWI_VERSION (ex_ui
.Version_Flags
) == 1)
1220 return std::max (pc
, image_base
+ start_rva
+ ex_ui
.SizeOfPrologue
);
1223 /* See if we can determine the end of the prologue via the symbol
1224 table. If so, then return either the PC, or the PC after
1225 the prologue, whichever is greater. */
1226 if (find_pc_partial_function (pc
, NULL
, &func_addr
, NULL
))
1228 CORE_ADDR post_prologue_pc
1229 = skip_prologue_using_sal (gdbarch
, func_addr
);
1231 if (post_prologue_pc
!= 0)
1232 return std::max (pc
, post_prologue_pc
);
1238 /* Check Win64 DLL jmp trampolines and find jump destination. */
1241 amd64_windows_skip_trampoline_code (const frame_info_ptr
&frame
, CORE_ADDR pc
)
1243 CORE_ADDR destination
= 0;
1244 struct gdbarch
*gdbarch
= get_frame_arch (frame
);
1245 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
1247 /* Check for jmp *<offset>(%rip) (jump near, absolute indirect (/4)). */
1248 if (pc
&& read_memory_unsigned_integer (pc
, 2, byte_order
) == 0x25ff)
1250 /* Get opcode offset and see if we can find a reference in our data. */
1252 = read_memory_unsigned_integer (pc
+ 2, 4, byte_order
);
1254 /* Get address of function pointer at end of pc. */
1255 CORE_ADDR indirect_addr
= pc
+ offset
+ 6;
1257 struct minimal_symbol
*indsym
1259 ? lookup_minimal_symbol_by_pc (indirect_addr
).minsym
1261 const char *symname
= indsym
? indsym
->linkage_name () : NULL
;
1265 if (startswith (symname
, "__imp_")
1266 || startswith (symname
, "_imp_"))
1268 = read_memory_unsigned_integer (indirect_addr
, 8, byte_order
);
1275 /* Implement the "auto_wide_charset" gdbarch method. */
1278 amd64_windows_auto_wide_charset (void)
1283 /* Common parts for gdbarch initialization for Windows and Cygwin on AMD64. */
1286 amd64_windows_init_abi_common (gdbarch_info info
, struct gdbarch
*gdbarch
)
1288 i386_gdbarch_tdep
*tdep
= gdbarch_tdep
<i386_gdbarch_tdep
> (gdbarch
);
1290 /* The dwarf2 unwinder (appended very early by i386_gdbarch_init) is
1291 preferred over the SEH one. The reasons are:
1292 - binaries without SEH but with dwarf2 debug info are correctly handled
1293 (although they aren't ABI compliant, gcc before 4.7 didn't emit SEH
1295 - dwarf3 DW_OP_call_frame_cfa is correctly handled (it can only be
1296 handled if the dwarf2 unwinder is used).
1298 The call to amd64_init_abi appends default unwinders, that aren't
1299 compatible with the SEH one.
1301 frame_unwind_append_unwinder (gdbarch
, &amd64_windows_frame_unwind
);
1303 amd64_init_abi (info
, gdbarch
,
1304 amd64_target_description (X86_XSTATE_SSE_MASK
, false));
1306 /* Function calls. */
1307 set_gdbarch_push_dummy_call (gdbarch
, amd64_windows_push_dummy_call
);
1308 set_gdbarch_return_value_as_value (gdbarch
, amd64_windows_return_value
);
1309 set_gdbarch_skip_main_prologue (gdbarch
, amd64_skip_main_prologue
);
1310 set_gdbarch_skip_trampoline_code (gdbarch
,
1311 amd64_windows_skip_trampoline_code
);
1313 set_gdbarch_skip_prologue (gdbarch
, amd64_windows_skip_prologue
);
1315 tdep
->gregset_reg_offset
= amd64_windows_gregset_reg_offset
;
1316 tdep
->gregset_num_regs
= ARRAY_SIZE (amd64_windows_gregset_reg_offset
);
1317 tdep
->sizeof_gregset
= AMD64_WINDOWS_SIZEOF_GREGSET
;
1318 tdep
->sizeof_fpregset
= 0;
1320 /* Core file support. */
1321 set_gdbarch_core_xfer_shared_libraries
1322 (gdbarch
, windows_core_xfer_shared_libraries
);
1323 set_gdbarch_core_pid_to_str (gdbarch
, windows_core_pid_to_str
);
1325 set_gdbarch_auto_wide_charset (gdbarch
, amd64_windows_auto_wide_charset
);
1328 /* gdbarch initialization for Windows on AMD64. */
1331 amd64_windows_init_abi (struct gdbarch_info info
, struct gdbarch
*gdbarch
)
1333 amd64_windows_init_abi_common (info
, gdbarch
);
1334 windows_init_abi (info
, gdbarch
);
1336 /* On Windows, "long"s are only 32bit. */
1337 set_gdbarch_long_bit (gdbarch
, 32);
1340 /* Sigwrapper unwinder instruction patterns for AMD64. */
1342 static const gdb_byte amd64_sigbe_bytes
[] = {
1343 0x49, 0xc7, 0xc3, 0xf8, 0xff, 0xff, 0xff, /* movq $-8,%r11 */
1344 0x4d, 0x0f, 0xc1, 0x9a, /* xaddq %r11,$tls::stackptr(%r10) */
1345 /* 4 bytes for tls::stackptr operand. */
1348 static const gdb_byte amd64_sigdelayed_bytes
[] = {
1349 0x49, 0xc7, 0xc3, 0xf8, 0xff, 0xff, 0xff, /* movq $-8,%r11 */
1350 0x4d, 0x0f, 0xc1, 0x9c, 0x24, /* xaddq %r11,$tls::stackptr(%r12) */
1351 /* 4 bytes for tls::stackptr operand. */
1354 static const gdb::array_view
<const gdb_byte
> amd64_sig_patterns
[] {
1355 { amd64_sigbe_bytes
},
1356 { amd64_sigdelayed_bytes
},
1359 /* The sigwrapper unwinder on AMD64. */
1361 static const cygwin_sigwrapper_frame_unwind
1362 amd64_cygwin_sigwrapper_frame_unwind (amd64_sig_patterns
);
1364 /* gdbarch initialization for Cygwin on AMD64. */
1367 amd64_cygwin_init_abi (struct gdbarch_info info
, struct gdbarch
*gdbarch
)
1369 frame_unwind_append_unwinder (gdbarch
, &amd64_cygwin_sigwrapper_frame_unwind
);
1371 amd64_windows_init_abi_common (info
, gdbarch
);
1372 cygwin_init_abi (info
, gdbarch
);
1376 amd64_windows_osabi_sniffer (bfd
*abfd
)
1378 const char *target_name
= bfd_get_target (abfd
);
1380 if (!streq (target_name
, "pei-x86-64"))
1381 return GDB_OSABI_UNKNOWN
;
1383 if (is_linked_with_cygwin_dll (abfd
))
1384 return GDB_OSABI_CYGWIN
;
1386 return GDB_OSABI_WINDOWS
;
1389 static enum gdb_osabi
1390 amd64_cygwin_core_osabi_sniffer (bfd
*abfd
)
1392 const char *target_name
= bfd_get_target (abfd
);
1394 /* Cygwin uses elf core dumps. Do not claim all ELF executables,
1395 check whether there is a .reg section of proper size. */
1396 if (strcmp (target_name
, "elf64-x86-64") == 0)
1398 asection
*section
= bfd_get_section_by_name (abfd
, ".reg");
1399 if (section
!= nullptr
1400 && bfd_section_size (section
) == AMD64_WINDOWS_SIZEOF_GREGSET
)
1401 return GDB_OSABI_CYGWIN
;
1404 return GDB_OSABI_UNKNOWN
;
1407 void _initialize_amd64_windows_tdep ();
1409 _initialize_amd64_windows_tdep ()
1411 gdbarch_register_osabi (bfd_arch_i386
, bfd_mach_x86_64
, GDB_OSABI_WINDOWS
,
1412 amd64_windows_init_abi
);
1413 gdbarch_register_osabi (bfd_arch_i386
, bfd_mach_x86_64
, GDB_OSABI_CYGWIN
,
1414 amd64_cygwin_init_abi
);
1416 gdbarch_register_osabi_sniffer (bfd_arch_i386
, bfd_target_coff_flavour
,
1417 amd64_windows_osabi_sniffer
);
1419 /* Cygwin uses elf core dumps. */
1420 gdbarch_register_osabi_sniffer (bfd_arch_i386
, bfd_target_elf_flavour
,
1421 amd64_cygwin_core_osabi_sniffer
);