2013-03-12 Sebastian Huber <sebastian.huber@embedded-brains.de>
[binutils-gdb.git] / gdb / dwarf2-frame.c
blobec4edfaaf33a4eb0df8a12f406ce9d8347849460
1 /* Frame unwinder for frames with DWARF Call Frame Information.
3 Copyright (C) 2003-2013 Free Software Foundation, Inc.
5 Contributed by Mark Kettenis.
7 This file is part of GDB.
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22 #include "defs.h"
23 #include "dwarf2expr.h"
24 #include "dwarf2.h"
25 #include "frame.h"
26 #include "frame-base.h"
27 #include "frame-unwind.h"
28 #include "gdbcore.h"
29 #include "gdbtypes.h"
30 #include "symtab.h"
31 #include "objfiles.h"
32 #include "regcache.h"
33 #include "value.h"
35 #include "gdb_assert.h"
36 #include "gdb_string.h"
38 #include "complaints.h"
39 #include "dwarf2-frame.h"
40 #include "ax.h"
41 #include "dwarf2loc.h"
42 #include "exceptions.h"
43 #include "dwarf2-frame-tailcall.h"
45 struct comp_unit;
47 /* Call Frame Information (CFI). */
49 /* Common Information Entry (CIE). */
51 struct dwarf2_cie
53 /* Computation Unit for this CIE. */
54 struct comp_unit *unit;
56 /* Offset into the .debug_frame section where this CIE was found.
57 Used to identify this CIE. */
58 ULONGEST cie_pointer;
60 /* Constant that is factored out of all advance location
61 instructions. */
62 ULONGEST code_alignment_factor;
64 /* Constants that is factored out of all offset instructions. */
65 LONGEST data_alignment_factor;
67 /* Return address column. */
68 ULONGEST return_address_register;
70 /* Instruction sequence to initialize a register set. */
71 const gdb_byte *initial_instructions;
72 const gdb_byte *end;
74 /* Saved augmentation, in case it's needed later. */
75 char *augmentation;
77 /* Encoding of addresses. */
78 gdb_byte encoding;
80 /* Target address size in bytes. */
81 int addr_size;
83 /* Target pointer size in bytes. */
84 int ptr_size;
86 /* True if a 'z' augmentation existed. */
87 unsigned char saw_z_augmentation;
89 /* True if an 'S' augmentation existed. */
90 unsigned char signal_frame;
92 /* The version recorded in the CIE. */
93 unsigned char version;
95 /* The segment size. */
96 unsigned char segment_size;
99 struct dwarf2_cie_table
101 int num_entries;
102 struct dwarf2_cie **entries;
105 /* Frame Description Entry (FDE). */
107 struct dwarf2_fde
109 /* CIE for this FDE. */
110 struct dwarf2_cie *cie;
112 /* First location associated with this FDE. */
113 CORE_ADDR initial_location;
115 /* Number of bytes of program instructions described by this FDE. */
116 CORE_ADDR address_range;
118 /* Instruction sequence. */
119 const gdb_byte *instructions;
120 const gdb_byte *end;
122 /* True if this FDE is read from a .eh_frame instead of a .debug_frame
123 section. */
124 unsigned char eh_frame_p;
127 struct dwarf2_fde_table
129 int num_entries;
130 struct dwarf2_fde **entries;
133 /* A minimal decoding of DWARF2 compilation units. We only decode
134 what's needed to get to the call frame information. */
136 struct comp_unit
138 /* Keep the bfd convenient. */
139 bfd *abfd;
141 struct objfile *objfile;
143 /* Pointer to the .debug_frame section loaded into memory. */
144 gdb_byte *dwarf_frame_buffer;
146 /* Length of the loaded .debug_frame section. */
147 bfd_size_type dwarf_frame_size;
149 /* Pointer to the .debug_frame section. */
150 asection *dwarf_frame_section;
152 /* Base for DW_EH_PE_datarel encodings. */
153 bfd_vma dbase;
155 /* Base for DW_EH_PE_textrel encodings. */
156 bfd_vma tbase;
159 static struct dwarf2_fde *dwarf2_frame_find_fde (CORE_ADDR *pc,
160 CORE_ADDR *out_offset);
162 static int dwarf2_frame_adjust_regnum (struct gdbarch *gdbarch, int regnum,
163 int eh_frame_p);
165 static CORE_ADDR read_encoded_value (struct comp_unit *unit, gdb_byte encoding,
166 int ptr_len, const gdb_byte *buf,
167 unsigned int *bytes_read_ptr,
168 CORE_ADDR func_base);
171 /* Structure describing a frame state. */
173 struct dwarf2_frame_state
175 /* Each register save state can be described in terms of a CFA slot,
176 another register, or a location expression. */
177 struct dwarf2_frame_state_reg_info
179 struct dwarf2_frame_state_reg *reg;
180 int num_regs;
182 LONGEST cfa_offset;
183 ULONGEST cfa_reg;
184 enum {
185 CFA_UNSET,
186 CFA_REG_OFFSET,
187 CFA_EXP
188 } cfa_how;
189 const gdb_byte *cfa_exp;
191 /* Used to implement DW_CFA_remember_state. */
192 struct dwarf2_frame_state_reg_info *prev;
193 } regs;
195 /* The PC described by the current frame state. */
196 CORE_ADDR pc;
198 /* Initial register set from the CIE.
199 Used to implement DW_CFA_restore. */
200 struct dwarf2_frame_state_reg_info initial;
202 /* The information we care about from the CIE. */
203 LONGEST data_align;
204 ULONGEST code_align;
205 ULONGEST retaddr_column;
207 /* Flags for known producer quirks. */
209 /* The ARM compilers, in DWARF2 mode, assume that DW_CFA_def_cfa
210 and DW_CFA_def_cfa_offset takes a factored offset. */
211 int armcc_cfa_offsets_sf;
213 /* The ARM compilers, in DWARF2 or DWARF3 mode, may assume that
214 the CFA is defined as REG - OFFSET rather than REG + OFFSET. */
215 int armcc_cfa_offsets_reversed;
218 /* Store the length the expression for the CFA in the `cfa_reg' field,
219 which is unused in that case. */
220 #define cfa_exp_len cfa_reg
222 /* Assert that the register set RS is large enough to store gdbarch_num_regs
223 columns. If necessary, enlarge the register set. */
225 static void
226 dwarf2_frame_state_alloc_regs (struct dwarf2_frame_state_reg_info *rs,
227 int num_regs)
229 size_t size = sizeof (struct dwarf2_frame_state_reg);
231 if (num_regs <= rs->num_regs)
232 return;
234 rs->reg = (struct dwarf2_frame_state_reg *)
235 xrealloc (rs->reg, num_regs * size);
237 /* Initialize newly allocated registers. */
238 memset (rs->reg + rs->num_regs, 0, (num_regs - rs->num_regs) * size);
239 rs->num_regs = num_regs;
242 /* Copy the register columns in register set RS into newly allocated
243 memory and return a pointer to this newly created copy. */
245 static struct dwarf2_frame_state_reg *
246 dwarf2_frame_state_copy_regs (struct dwarf2_frame_state_reg_info *rs)
248 size_t size = rs->num_regs * sizeof (struct dwarf2_frame_state_reg);
249 struct dwarf2_frame_state_reg *reg;
251 reg = (struct dwarf2_frame_state_reg *) xmalloc (size);
252 memcpy (reg, rs->reg, size);
254 return reg;
257 /* Release the memory allocated to register set RS. */
259 static void
260 dwarf2_frame_state_free_regs (struct dwarf2_frame_state_reg_info *rs)
262 if (rs)
264 dwarf2_frame_state_free_regs (rs->prev);
266 xfree (rs->reg);
267 xfree (rs);
271 /* Release the memory allocated to the frame state FS. */
273 static void
274 dwarf2_frame_state_free (void *p)
276 struct dwarf2_frame_state *fs = p;
278 dwarf2_frame_state_free_regs (fs->initial.prev);
279 dwarf2_frame_state_free_regs (fs->regs.prev);
280 xfree (fs->initial.reg);
281 xfree (fs->regs.reg);
282 xfree (fs);
286 /* Helper functions for execute_stack_op. */
288 static CORE_ADDR
289 read_reg (void *baton, int reg)
291 struct frame_info *this_frame = (struct frame_info *) baton;
292 struct gdbarch *gdbarch = get_frame_arch (this_frame);
293 int regnum;
294 gdb_byte *buf;
296 regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, reg);
298 buf = alloca (register_size (gdbarch, regnum));
299 get_frame_register (this_frame, regnum, buf);
301 /* Convert the register to an integer. This returns a LONGEST
302 rather than a CORE_ADDR, but unpack_pointer does the same thing
303 under the covers, and this makes more sense for non-pointer
304 registers. Maybe read_reg and the associated interfaces should
305 deal with "struct value" instead of CORE_ADDR. */
306 return unpack_long (register_type (gdbarch, regnum), buf);
309 static void
310 read_mem (void *baton, gdb_byte *buf, CORE_ADDR addr, size_t len)
312 read_memory (addr, buf, len);
315 /* Execute the required actions for both the DW_CFA_restore and
316 DW_CFA_restore_extended instructions. */
317 static void
318 dwarf2_restore_rule (struct gdbarch *gdbarch, ULONGEST reg_num,
319 struct dwarf2_frame_state *fs, int eh_frame_p)
321 ULONGEST reg;
323 gdb_assert (fs->initial.reg);
324 reg = dwarf2_frame_adjust_regnum (gdbarch, reg_num, eh_frame_p);
325 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
327 /* Check if this register was explicitly initialized in the
328 CIE initial instructions. If not, default the rule to
329 UNSPECIFIED. */
330 if (reg < fs->initial.num_regs)
331 fs->regs.reg[reg] = fs->initial.reg[reg];
332 else
333 fs->regs.reg[reg].how = DWARF2_FRAME_REG_UNSPECIFIED;
335 if (fs->regs.reg[reg].how == DWARF2_FRAME_REG_UNSPECIFIED)
336 complaint (&symfile_complaints, _("\
337 incomplete CFI data; DW_CFA_restore unspecified\n\
338 register %s (#%d) at %s"),
339 gdbarch_register_name
340 (gdbarch, gdbarch_dwarf2_reg_to_regnum (gdbarch, reg)),
341 gdbarch_dwarf2_reg_to_regnum (gdbarch, reg),
342 paddress (gdbarch, fs->pc));
345 /* Virtual method table for execute_stack_op below. */
347 static const struct dwarf_expr_context_funcs dwarf2_frame_ctx_funcs =
349 read_reg,
350 read_mem,
351 ctx_no_get_frame_base,
352 ctx_no_get_frame_cfa,
353 ctx_no_get_frame_pc,
354 ctx_no_get_tls_address,
355 ctx_no_dwarf_call,
356 ctx_no_get_base_type,
357 ctx_no_push_dwarf_reg_entry_value,
358 ctx_no_get_addr_index
361 static CORE_ADDR
362 execute_stack_op (const gdb_byte *exp, ULONGEST len, int addr_size,
363 CORE_ADDR offset, struct frame_info *this_frame,
364 CORE_ADDR initial, int initial_in_stack_memory)
366 struct dwarf_expr_context *ctx;
367 CORE_ADDR result;
368 struct cleanup *old_chain;
370 ctx = new_dwarf_expr_context ();
371 old_chain = make_cleanup_free_dwarf_expr_context (ctx);
372 make_cleanup_value_free_to_mark (value_mark ());
374 ctx->gdbarch = get_frame_arch (this_frame);
375 ctx->addr_size = addr_size;
376 ctx->ref_addr_size = -1;
377 ctx->offset = offset;
378 ctx->baton = this_frame;
379 ctx->funcs = &dwarf2_frame_ctx_funcs;
381 dwarf_expr_push_address (ctx, initial, initial_in_stack_memory);
382 dwarf_expr_eval (ctx, exp, len);
384 if (ctx->location == DWARF_VALUE_MEMORY)
385 result = dwarf_expr_fetch_address (ctx, 0);
386 else if (ctx->location == DWARF_VALUE_REGISTER)
387 result = read_reg (this_frame, value_as_long (dwarf_expr_fetch (ctx, 0)));
388 else
390 /* This is actually invalid DWARF, but if we ever do run across
391 it somehow, we might as well support it. So, instead, report
392 it as unimplemented. */
393 error (_("\
394 Not implemented: computing unwound register using explicit value operator"));
397 do_cleanups (old_chain);
399 return result;
403 /* Execute FDE program from INSN_PTR possibly up to INSN_END or up to inferior
404 PC. Modify FS state accordingly. Return current INSN_PTR where the
405 execution has stopped, one can resume it on the next call. */
407 static const gdb_byte *
408 execute_cfa_program (struct dwarf2_fde *fde, const gdb_byte *insn_ptr,
409 const gdb_byte *insn_end, struct gdbarch *gdbarch,
410 CORE_ADDR pc, struct dwarf2_frame_state *fs)
412 int eh_frame_p = fde->eh_frame_p;
413 int bytes_read;
414 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
416 while (insn_ptr < insn_end && fs->pc <= pc)
418 gdb_byte insn = *insn_ptr++;
419 uint64_t utmp, reg;
420 int64_t offset;
422 if ((insn & 0xc0) == DW_CFA_advance_loc)
423 fs->pc += (insn & 0x3f) * fs->code_align;
424 else if ((insn & 0xc0) == DW_CFA_offset)
426 reg = insn & 0x3f;
427 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
428 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
429 offset = utmp * fs->data_align;
430 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
431 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
432 fs->regs.reg[reg].loc.offset = offset;
434 else if ((insn & 0xc0) == DW_CFA_restore)
436 reg = insn & 0x3f;
437 dwarf2_restore_rule (gdbarch, reg, fs, eh_frame_p);
439 else
441 switch (insn)
443 case DW_CFA_set_loc:
444 fs->pc = read_encoded_value (fde->cie->unit, fde->cie->encoding,
445 fde->cie->ptr_size, insn_ptr,
446 &bytes_read, fde->initial_location);
447 /* Apply the objfile offset for relocatable objects. */
448 fs->pc += ANOFFSET (fde->cie->unit->objfile->section_offsets,
449 SECT_OFF_TEXT (fde->cie->unit->objfile));
450 insn_ptr += bytes_read;
451 break;
453 case DW_CFA_advance_loc1:
454 utmp = extract_unsigned_integer (insn_ptr, 1, byte_order);
455 fs->pc += utmp * fs->code_align;
456 insn_ptr++;
457 break;
458 case DW_CFA_advance_loc2:
459 utmp = extract_unsigned_integer (insn_ptr, 2, byte_order);
460 fs->pc += utmp * fs->code_align;
461 insn_ptr += 2;
462 break;
463 case DW_CFA_advance_loc4:
464 utmp = extract_unsigned_integer (insn_ptr, 4, byte_order);
465 fs->pc += utmp * fs->code_align;
466 insn_ptr += 4;
467 break;
469 case DW_CFA_offset_extended:
470 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
471 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
472 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
473 offset = utmp * fs->data_align;
474 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
475 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
476 fs->regs.reg[reg].loc.offset = offset;
477 break;
479 case DW_CFA_restore_extended:
480 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
481 dwarf2_restore_rule (gdbarch, reg, fs, eh_frame_p);
482 break;
484 case DW_CFA_undefined:
485 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
486 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
487 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
488 fs->regs.reg[reg].how = DWARF2_FRAME_REG_UNDEFINED;
489 break;
491 case DW_CFA_same_value:
492 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
493 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
494 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
495 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAME_VALUE;
496 break;
498 case DW_CFA_register:
499 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
500 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
501 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
502 utmp = dwarf2_frame_adjust_regnum (gdbarch, utmp, eh_frame_p);
503 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
504 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_REG;
505 fs->regs.reg[reg].loc.reg = utmp;
506 break;
508 case DW_CFA_remember_state:
510 struct dwarf2_frame_state_reg_info *new_rs;
512 new_rs = XMALLOC (struct dwarf2_frame_state_reg_info);
513 *new_rs = fs->regs;
514 fs->regs.reg = dwarf2_frame_state_copy_regs (&fs->regs);
515 fs->regs.prev = new_rs;
517 break;
519 case DW_CFA_restore_state:
521 struct dwarf2_frame_state_reg_info *old_rs = fs->regs.prev;
523 if (old_rs == NULL)
525 complaint (&symfile_complaints, _("\
526 bad CFI data; mismatched DW_CFA_restore_state at %s"),
527 paddress (gdbarch, fs->pc));
529 else
531 xfree (fs->regs.reg);
532 fs->regs = *old_rs;
533 xfree (old_rs);
536 break;
538 case DW_CFA_def_cfa:
539 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
540 fs->regs.cfa_reg = reg;
541 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
543 if (fs->armcc_cfa_offsets_sf)
544 utmp *= fs->data_align;
546 fs->regs.cfa_offset = utmp;
547 fs->regs.cfa_how = CFA_REG_OFFSET;
548 break;
550 case DW_CFA_def_cfa_register:
551 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
552 fs->regs.cfa_reg = dwarf2_frame_adjust_regnum (gdbarch, reg,
553 eh_frame_p);
554 fs->regs.cfa_how = CFA_REG_OFFSET;
555 break;
557 case DW_CFA_def_cfa_offset:
558 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
560 if (fs->armcc_cfa_offsets_sf)
561 utmp *= fs->data_align;
563 fs->regs.cfa_offset = utmp;
564 /* cfa_how deliberately not set. */
565 break;
567 case DW_CFA_nop:
568 break;
570 case DW_CFA_def_cfa_expression:
571 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
572 fs->regs.cfa_exp_len = utmp;
573 fs->regs.cfa_exp = insn_ptr;
574 fs->regs.cfa_how = CFA_EXP;
575 insn_ptr += fs->regs.cfa_exp_len;
576 break;
578 case DW_CFA_expression:
579 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
580 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
581 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
582 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
583 fs->regs.reg[reg].loc.exp = insn_ptr;
584 fs->regs.reg[reg].exp_len = utmp;
585 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_EXP;
586 insn_ptr += utmp;
587 break;
589 case DW_CFA_offset_extended_sf:
590 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
591 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
592 insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset);
593 offset *= fs->data_align;
594 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
595 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
596 fs->regs.reg[reg].loc.offset = offset;
597 break;
599 case DW_CFA_val_offset:
600 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
601 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
602 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
603 offset = utmp * fs->data_align;
604 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_OFFSET;
605 fs->regs.reg[reg].loc.offset = offset;
606 break;
608 case DW_CFA_val_offset_sf:
609 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
610 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
611 insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset);
612 offset *= fs->data_align;
613 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_OFFSET;
614 fs->regs.reg[reg].loc.offset = offset;
615 break;
617 case DW_CFA_val_expression:
618 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
619 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
620 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
621 fs->regs.reg[reg].loc.exp = insn_ptr;
622 fs->regs.reg[reg].exp_len = utmp;
623 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_EXP;
624 insn_ptr += utmp;
625 break;
627 case DW_CFA_def_cfa_sf:
628 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
629 fs->regs.cfa_reg = dwarf2_frame_adjust_regnum (gdbarch, reg,
630 eh_frame_p);
631 insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset);
632 fs->regs.cfa_offset = offset * fs->data_align;
633 fs->regs.cfa_how = CFA_REG_OFFSET;
634 break;
636 case DW_CFA_def_cfa_offset_sf:
637 insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset);
638 fs->regs.cfa_offset = offset * fs->data_align;
639 /* cfa_how deliberately not set. */
640 break;
642 case DW_CFA_GNU_window_save:
643 /* This is SPARC-specific code, and contains hard-coded
644 constants for the register numbering scheme used by
645 GCC. Rather than having a architecture-specific
646 operation that's only ever used by a single
647 architecture, we provide the implementation here.
648 Incidentally that's what GCC does too in its
649 unwinder. */
651 int size = register_size (gdbarch, 0);
653 dwarf2_frame_state_alloc_regs (&fs->regs, 32);
654 for (reg = 8; reg < 16; reg++)
656 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_REG;
657 fs->regs.reg[reg].loc.reg = reg + 16;
659 for (reg = 16; reg < 32; reg++)
661 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
662 fs->regs.reg[reg].loc.offset = (reg - 16) * size;
665 break;
667 case DW_CFA_GNU_args_size:
668 /* Ignored. */
669 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
670 break;
672 case DW_CFA_GNU_negative_offset_extended:
673 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
674 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
675 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &offset);
676 offset *= fs->data_align;
677 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
678 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
679 fs->regs.reg[reg].loc.offset = -offset;
680 break;
682 default:
683 internal_error (__FILE__, __LINE__,
684 _("Unknown CFI encountered."));
689 if (fs->initial.reg == NULL)
691 /* Don't allow remember/restore between CIE and FDE programs. */
692 dwarf2_frame_state_free_regs (fs->regs.prev);
693 fs->regs.prev = NULL;
696 return insn_ptr;
700 /* Architecture-specific operations. */
702 /* Per-architecture data key. */
703 static struct gdbarch_data *dwarf2_frame_data;
705 struct dwarf2_frame_ops
707 /* Pre-initialize the register state REG for register REGNUM. */
708 void (*init_reg) (struct gdbarch *, int, struct dwarf2_frame_state_reg *,
709 struct frame_info *);
711 /* Check whether the THIS_FRAME is a signal trampoline. */
712 int (*signal_frame_p) (struct gdbarch *, struct frame_info *);
714 /* Convert .eh_frame register number to DWARF register number, or
715 adjust .debug_frame register number. */
716 int (*adjust_regnum) (struct gdbarch *, int, int);
719 /* Default architecture-specific register state initialization
720 function. */
722 static void
723 dwarf2_frame_default_init_reg (struct gdbarch *gdbarch, int regnum,
724 struct dwarf2_frame_state_reg *reg,
725 struct frame_info *this_frame)
727 /* If we have a register that acts as a program counter, mark it as
728 a destination for the return address. If we have a register that
729 serves as the stack pointer, arrange for it to be filled with the
730 call frame address (CFA). The other registers are marked as
731 unspecified.
733 We copy the return address to the program counter, since many
734 parts in GDB assume that it is possible to get the return address
735 by unwinding the program counter register. However, on ISA's
736 with a dedicated return address register, the CFI usually only
737 contains information to unwind that return address register.
739 The reason we're treating the stack pointer special here is
740 because in many cases GCC doesn't emit CFI for the stack pointer
741 and implicitly assumes that it is equal to the CFA. This makes
742 some sense since the DWARF specification (version 3, draft 8,
743 p. 102) says that:
745 "Typically, the CFA is defined to be the value of the stack
746 pointer at the call site in the previous frame (which may be
747 different from its value on entry to the current frame)."
749 However, this isn't true for all platforms supported by GCC
750 (e.g. IBM S/390 and zSeries). Those architectures should provide
751 their own architecture-specific initialization function. */
753 if (regnum == gdbarch_pc_regnum (gdbarch))
754 reg->how = DWARF2_FRAME_REG_RA;
755 else if (regnum == gdbarch_sp_regnum (gdbarch))
756 reg->how = DWARF2_FRAME_REG_CFA;
759 /* Return a default for the architecture-specific operations. */
761 static void *
762 dwarf2_frame_init (struct obstack *obstack)
764 struct dwarf2_frame_ops *ops;
766 ops = OBSTACK_ZALLOC (obstack, struct dwarf2_frame_ops);
767 ops->init_reg = dwarf2_frame_default_init_reg;
768 return ops;
771 /* Set the architecture-specific register state initialization
772 function for GDBARCH to INIT_REG. */
774 void
775 dwarf2_frame_set_init_reg (struct gdbarch *gdbarch,
776 void (*init_reg) (struct gdbarch *, int,
777 struct dwarf2_frame_state_reg *,
778 struct frame_info *))
780 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
782 ops->init_reg = init_reg;
785 /* Pre-initialize the register state REG for register REGNUM. */
787 static void
788 dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
789 struct dwarf2_frame_state_reg *reg,
790 struct frame_info *this_frame)
792 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
794 ops->init_reg (gdbarch, regnum, reg, this_frame);
797 /* Set the architecture-specific signal trampoline recognition
798 function for GDBARCH to SIGNAL_FRAME_P. */
800 void
801 dwarf2_frame_set_signal_frame_p (struct gdbarch *gdbarch,
802 int (*signal_frame_p) (struct gdbarch *,
803 struct frame_info *))
805 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
807 ops->signal_frame_p = signal_frame_p;
810 /* Query the architecture-specific signal frame recognizer for
811 THIS_FRAME. */
813 static int
814 dwarf2_frame_signal_frame_p (struct gdbarch *gdbarch,
815 struct frame_info *this_frame)
817 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
819 if (ops->signal_frame_p == NULL)
820 return 0;
821 return ops->signal_frame_p (gdbarch, this_frame);
824 /* Set the architecture-specific adjustment of .eh_frame and .debug_frame
825 register numbers. */
827 void
828 dwarf2_frame_set_adjust_regnum (struct gdbarch *gdbarch,
829 int (*adjust_regnum) (struct gdbarch *,
830 int, int))
832 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
834 ops->adjust_regnum = adjust_regnum;
837 /* Translate a .eh_frame register to DWARF register, or adjust a .debug_frame
838 register. */
840 static int
841 dwarf2_frame_adjust_regnum (struct gdbarch *gdbarch,
842 int regnum, int eh_frame_p)
844 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
846 if (ops->adjust_regnum == NULL)
847 return regnum;
848 return ops->adjust_regnum (gdbarch, regnum, eh_frame_p);
851 static void
852 dwarf2_frame_find_quirks (struct dwarf2_frame_state *fs,
853 struct dwarf2_fde *fde)
855 struct symtab *s;
857 s = find_pc_symtab (fs->pc);
858 if (s == NULL)
859 return;
861 if (producer_is_realview (s->producer))
863 if (fde->cie->version == 1)
864 fs->armcc_cfa_offsets_sf = 1;
866 if (fde->cie->version == 1)
867 fs->armcc_cfa_offsets_reversed = 1;
869 /* The reversed offset problem is present in some compilers
870 using DWARF3, but it was eventually fixed. Check the ARM
871 defined augmentations, which are in the format "armcc" followed
872 by a list of one-character options. The "+" option means
873 this problem is fixed (no quirk needed). If the armcc
874 augmentation is missing, the quirk is needed. */
875 if (fde->cie->version == 3
876 && (strncmp (fde->cie->augmentation, "armcc", 5) != 0
877 || strchr (fde->cie->augmentation + 5, '+') == NULL))
878 fs->armcc_cfa_offsets_reversed = 1;
880 return;
885 void
886 dwarf2_compile_cfa_to_ax (struct agent_expr *expr, struct axs_value *loc,
887 struct gdbarch *gdbarch,
888 CORE_ADDR pc,
889 struct dwarf2_per_cu_data *data)
891 struct dwarf2_fde *fde;
892 CORE_ADDR text_offset;
893 struct dwarf2_frame_state fs;
894 int addr_size;
896 memset (&fs, 0, sizeof (struct dwarf2_frame_state));
898 fs.pc = pc;
900 /* Find the correct FDE. */
901 fde = dwarf2_frame_find_fde (&fs.pc, &text_offset);
902 if (fde == NULL)
903 error (_("Could not compute CFA; needed to translate this expression"));
905 /* Extract any interesting information from the CIE. */
906 fs.data_align = fde->cie->data_alignment_factor;
907 fs.code_align = fde->cie->code_alignment_factor;
908 fs.retaddr_column = fde->cie->return_address_register;
909 addr_size = fde->cie->addr_size;
911 /* Check for "quirks" - known bugs in producers. */
912 dwarf2_frame_find_quirks (&fs, fde);
914 /* First decode all the insns in the CIE. */
915 execute_cfa_program (fde, fde->cie->initial_instructions,
916 fde->cie->end, gdbarch, pc, &fs);
918 /* Save the initialized register set. */
919 fs.initial = fs.regs;
920 fs.initial.reg = dwarf2_frame_state_copy_regs (&fs.regs);
922 /* Then decode the insns in the FDE up to our target PC. */
923 execute_cfa_program (fde, fde->instructions, fde->end, gdbarch, pc, &fs);
925 /* Calculate the CFA. */
926 switch (fs.regs.cfa_how)
928 case CFA_REG_OFFSET:
930 int regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, fs.regs.cfa_reg);
932 if (regnum == -1)
933 error (_("Unable to access DWARF register number %d"),
934 (int) fs.regs.cfa_reg); /* FIXME */
935 ax_reg (expr, regnum);
937 if (fs.regs.cfa_offset != 0)
939 if (fs.armcc_cfa_offsets_reversed)
940 ax_const_l (expr, -fs.regs.cfa_offset);
941 else
942 ax_const_l (expr, fs.regs.cfa_offset);
943 ax_simple (expr, aop_add);
946 break;
948 case CFA_EXP:
949 ax_const_l (expr, text_offset);
950 dwarf2_compile_expr_to_ax (expr, loc, gdbarch, addr_size,
951 fs.regs.cfa_exp,
952 fs.regs.cfa_exp + fs.regs.cfa_exp_len,
953 data);
954 break;
956 default:
957 internal_error (__FILE__, __LINE__, _("Unknown CFA rule."));
962 struct dwarf2_frame_cache
964 /* DWARF Call Frame Address. */
965 CORE_ADDR cfa;
967 /* Set if the return address column was marked as unavailable
968 (required non-collected memory or registers to compute). */
969 int unavailable_retaddr;
971 /* Set if the return address column was marked as undefined. */
972 int undefined_retaddr;
974 /* Saved registers, indexed by GDB register number, not by DWARF
975 register number. */
976 struct dwarf2_frame_state_reg *reg;
978 /* Return address register. */
979 struct dwarf2_frame_state_reg retaddr_reg;
981 /* Target address size in bytes. */
982 int addr_size;
984 /* The .text offset. */
985 CORE_ADDR text_offset;
987 /* If not NULL then this frame is the bottom frame of a TAILCALL_FRAME
988 sequence. If NULL then it is a normal case with no TAILCALL_FRAME
989 involved. Non-bottom frames of a virtual tail call frames chain use
990 dwarf2_tailcall_frame_unwind unwinder so this field does not apply for
991 them. */
992 void *tailcall_cache;
995 /* A cleanup that sets a pointer to NULL. */
997 static void
998 clear_pointer_cleanup (void *arg)
1000 void **ptr = arg;
1002 *ptr = NULL;
1005 static struct dwarf2_frame_cache *
1006 dwarf2_frame_cache (struct frame_info *this_frame, void **this_cache)
1008 struct cleanup *reset_cache_cleanup, *old_chain;
1009 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1010 const int num_regs = gdbarch_num_regs (gdbarch)
1011 + gdbarch_num_pseudo_regs (gdbarch);
1012 struct dwarf2_frame_cache *cache;
1013 struct dwarf2_frame_state *fs;
1014 struct dwarf2_fde *fde;
1015 volatile struct gdb_exception ex;
1016 CORE_ADDR entry_pc;
1017 LONGEST entry_cfa_sp_offset;
1018 int entry_cfa_sp_offset_p = 0;
1019 const gdb_byte *instr;
1021 if (*this_cache)
1022 return *this_cache;
1024 /* Allocate a new cache. */
1025 cache = FRAME_OBSTACK_ZALLOC (struct dwarf2_frame_cache);
1026 cache->reg = FRAME_OBSTACK_CALLOC (num_regs, struct dwarf2_frame_state_reg);
1027 *this_cache = cache;
1028 reset_cache_cleanup = make_cleanup (clear_pointer_cleanup, this_cache);
1030 /* Allocate and initialize the frame state. */
1031 fs = XZALLOC (struct dwarf2_frame_state);
1032 old_chain = make_cleanup (dwarf2_frame_state_free, fs);
1034 /* Unwind the PC.
1036 Note that if the next frame is never supposed to return (i.e. a call
1037 to abort), the compiler might optimize away the instruction at
1038 its return address. As a result the return address will
1039 point at some random instruction, and the CFI for that
1040 instruction is probably worthless to us. GCC's unwinder solves
1041 this problem by substracting 1 from the return address to get an
1042 address in the middle of a presumed call instruction (or the
1043 instruction in the associated delay slot). This should only be
1044 done for "normal" frames and not for resume-type frames (signal
1045 handlers, sentinel frames, dummy frames). The function
1046 get_frame_address_in_block does just this. It's not clear how
1047 reliable the method is though; there is the potential for the
1048 register state pre-call being different to that on return. */
1049 fs->pc = get_frame_address_in_block (this_frame);
1051 /* Find the correct FDE. */
1052 fde = dwarf2_frame_find_fde (&fs->pc, &cache->text_offset);
1053 gdb_assert (fde != NULL);
1055 /* Extract any interesting information from the CIE. */
1056 fs->data_align = fde->cie->data_alignment_factor;
1057 fs->code_align = fde->cie->code_alignment_factor;
1058 fs->retaddr_column = fde->cie->return_address_register;
1059 cache->addr_size = fde->cie->addr_size;
1061 /* Check for "quirks" - known bugs in producers. */
1062 dwarf2_frame_find_quirks (fs, fde);
1064 /* First decode all the insns in the CIE. */
1065 execute_cfa_program (fde, fde->cie->initial_instructions,
1066 fde->cie->end, gdbarch,
1067 get_frame_address_in_block (this_frame), fs);
1069 /* Save the initialized register set. */
1070 fs->initial = fs->regs;
1071 fs->initial.reg = dwarf2_frame_state_copy_regs (&fs->regs);
1073 if (get_frame_func_if_available (this_frame, &entry_pc))
1075 /* Decode the insns in the FDE up to the entry PC. */
1076 instr = execute_cfa_program (fde, fde->instructions, fde->end, gdbarch,
1077 entry_pc, fs);
1079 if (fs->regs.cfa_how == CFA_REG_OFFSET
1080 && (gdbarch_dwarf2_reg_to_regnum (gdbarch, fs->regs.cfa_reg)
1081 == gdbarch_sp_regnum (gdbarch)))
1083 entry_cfa_sp_offset = fs->regs.cfa_offset;
1084 entry_cfa_sp_offset_p = 1;
1087 else
1088 instr = fde->instructions;
1090 /* Then decode the insns in the FDE up to our target PC. */
1091 execute_cfa_program (fde, instr, fde->end, gdbarch,
1092 get_frame_address_in_block (this_frame), fs);
1094 TRY_CATCH (ex, RETURN_MASK_ERROR)
1096 /* Calculate the CFA. */
1097 switch (fs->regs.cfa_how)
1099 case CFA_REG_OFFSET:
1100 cache->cfa = read_reg (this_frame, fs->regs.cfa_reg);
1101 if (fs->armcc_cfa_offsets_reversed)
1102 cache->cfa -= fs->regs.cfa_offset;
1103 else
1104 cache->cfa += fs->regs.cfa_offset;
1105 break;
1107 case CFA_EXP:
1108 cache->cfa =
1109 execute_stack_op (fs->regs.cfa_exp, fs->regs.cfa_exp_len,
1110 cache->addr_size, cache->text_offset,
1111 this_frame, 0, 0);
1112 break;
1114 default:
1115 internal_error (__FILE__, __LINE__, _("Unknown CFA rule."));
1118 if (ex.reason < 0)
1120 if (ex.error == NOT_AVAILABLE_ERROR)
1122 cache->unavailable_retaddr = 1;
1123 do_cleanups (old_chain);
1124 discard_cleanups (reset_cache_cleanup);
1125 return cache;
1128 throw_exception (ex);
1131 /* Initialize the register state. */
1133 int regnum;
1135 for (regnum = 0; regnum < num_regs; regnum++)
1136 dwarf2_frame_init_reg (gdbarch, regnum, &cache->reg[regnum], this_frame);
1139 /* Go through the DWARF2 CFI generated table and save its register
1140 location information in the cache. Note that we don't skip the
1141 return address column; it's perfectly all right for it to
1142 correspond to a real register. If it doesn't correspond to a
1143 real register, or if we shouldn't treat it as such,
1144 gdbarch_dwarf2_reg_to_regnum should be defined to return a number outside
1145 the range [0, gdbarch_num_regs). */
1147 int column; /* CFI speak for "register number". */
1149 for (column = 0; column < fs->regs.num_regs; column++)
1151 /* Use the GDB register number as the destination index. */
1152 int regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, column);
1154 /* If there's no corresponding GDB register, ignore it. */
1155 if (regnum < 0 || regnum >= num_regs)
1156 continue;
1158 /* NOTE: cagney/2003-09-05: CFI should specify the disposition
1159 of all debug info registers. If it doesn't, complain (but
1160 not too loudly). It turns out that GCC assumes that an
1161 unspecified register implies "same value" when CFI (draft
1162 7) specifies nothing at all. Such a register could equally
1163 be interpreted as "undefined". Also note that this check
1164 isn't sufficient; it only checks that all registers in the
1165 range [0 .. max column] are specified, and won't detect
1166 problems when a debug info register falls outside of the
1167 table. We need a way of iterating through all the valid
1168 DWARF2 register numbers. */
1169 if (fs->regs.reg[column].how == DWARF2_FRAME_REG_UNSPECIFIED)
1171 if (cache->reg[regnum].how == DWARF2_FRAME_REG_UNSPECIFIED)
1172 complaint (&symfile_complaints, _("\
1173 incomplete CFI data; unspecified registers (e.g., %s) at %s"),
1174 gdbarch_register_name (gdbarch, regnum),
1175 paddress (gdbarch, fs->pc));
1177 else
1178 cache->reg[regnum] = fs->regs.reg[column];
1182 /* Eliminate any DWARF2_FRAME_REG_RA rules, and save the information
1183 we need for evaluating DWARF2_FRAME_REG_RA_OFFSET rules. */
1185 int regnum;
1187 for (regnum = 0; regnum < num_regs; regnum++)
1189 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA
1190 || cache->reg[regnum].how == DWARF2_FRAME_REG_RA_OFFSET)
1192 struct dwarf2_frame_state_reg *retaddr_reg =
1193 &fs->regs.reg[fs->retaddr_column];
1195 /* It seems rather bizarre to specify an "empty" column as
1196 the return adress column. However, this is exactly
1197 what GCC does on some targets. It turns out that GCC
1198 assumes that the return address can be found in the
1199 register corresponding to the return address column.
1200 Incidentally, that's how we should treat a return
1201 address column specifying "same value" too. */
1202 if (fs->retaddr_column < fs->regs.num_regs
1203 && retaddr_reg->how != DWARF2_FRAME_REG_UNSPECIFIED
1204 && retaddr_reg->how != DWARF2_FRAME_REG_SAME_VALUE)
1206 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA)
1207 cache->reg[regnum] = *retaddr_reg;
1208 else
1209 cache->retaddr_reg = *retaddr_reg;
1211 else
1213 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA)
1215 cache->reg[regnum].loc.reg = fs->retaddr_column;
1216 cache->reg[regnum].how = DWARF2_FRAME_REG_SAVED_REG;
1218 else
1220 cache->retaddr_reg.loc.reg = fs->retaddr_column;
1221 cache->retaddr_reg.how = DWARF2_FRAME_REG_SAVED_REG;
1228 if (fs->retaddr_column < fs->regs.num_regs
1229 && fs->regs.reg[fs->retaddr_column].how == DWARF2_FRAME_REG_UNDEFINED)
1230 cache->undefined_retaddr = 1;
1232 do_cleanups (old_chain);
1234 /* Try to find a virtual tail call frames chain with bottom (callee) frame
1235 starting at THIS_FRAME. */
1236 dwarf2_tailcall_sniffer_first (this_frame, &cache->tailcall_cache,
1237 (entry_cfa_sp_offset_p
1238 ? &entry_cfa_sp_offset : NULL));
1240 discard_cleanups (reset_cache_cleanup);
1241 return cache;
1244 static enum unwind_stop_reason
1245 dwarf2_frame_unwind_stop_reason (struct frame_info *this_frame,
1246 void **this_cache)
1248 struct dwarf2_frame_cache *cache
1249 = dwarf2_frame_cache (this_frame, this_cache);
1251 if (cache->unavailable_retaddr)
1252 return UNWIND_UNAVAILABLE;
1254 if (cache->undefined_retaddr)
1255 return UNWIND_OUTERMOST;
1257 return UNWIND_NO_REASON;
1260 static void
1261 dwarf2_frame_this_id (struct frame_info *this_frame, void **this_cache,
1262 struct frame_id *this_id)
1264 struct dwarf2_frame_cache *cache =
1265 dwarf2_frame_cache (this_frame, this_cache);
1267 if (cache->unavailable_retaddr)
1268 return;
1270 if (cache->undefined_retaddr)
1271 return;
1273 (*this_id) = frame_id_build (cache->cfa, get_frame_func (this_frame));
1276 static struct value *
1277 dwarf2_frame_prev_register (struct frame_info *this_frame, void **this_cache,
1278 int regnum)
1280 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1281 struct dwarf2_frame_cache *cache =
1282 dwarf2_frame_cache (this_frame, this_cache);
1283 CORE_ADDR addr;
1284 int realnum;
1286 /* Non-bottom frames of a virtual tail call frames chain use
1287 dwarf2_tailcall_frame_unwind unwinder so this code does not apply for
1288 them. If dwarf2_tailcall_prev_register_first does not have specific value
1289 unwind the register, tail call frames are assumed to have the register set
1290 of the top caller. */
1291 if (cache->tailcall_cache)
1293 struct value *val;
1295 val = dwarf2_tailcall_prev_register_first (this_frame,
1296 &cache->tailcall_cache,
1297 regnum);
1298 if (val)
1299 return val;
1302 switch (cache->reg[regnum].how)
1304 case DWARF2_FRAME_REG_UNDEFINED:
1305 /* If CFI explicitly specified that the value isn't defined,
1306 mark it as optimized away; the value isn't available. */
1307 return frame_unwind_got_optimized (this_frame, regnum);
1309 case DWARF2_FRAME_REG_SAVED_OFFSET:
1310 addr = cache->cfa + cache->reg[regnum].loc.offset;
1311 return frame_unwind_got_memory (this_frame, regnum, addr);
1313 case DWARF2_FRAME_REG_SAVED_REG:
1314 realnum
1315 = gdbarch_dwarf2_reg_to_regnum (gdbarch, cache->reg[regnum].loc.reg);
1316 return frame_unwind_got_register (this_frame, regnum, realnum);
1318 case DWARF2_FRAME_REG_SAVED_EXP:
1319 addr = execute_stack_op (cache->reg[regnum].loc.exp,
1320 cache->reg[regnum].exp_len,
1321 cache->addr_size, cache->text_offset,
1322 this_frame, cache->cfa, 1);
1323 return frame_unwind_got_memory (this_frame, regnum, addr);
1325 case DWARF2_FRAME_REG_SAVED_VAL_OFFSET:
1326 addr = cache->cfa + cache->reg[regnum].loc.offset;
1327 return frame_unwind_got_constant (this_frame, regnum, addr);
1329 case DWARF2_FRAME_REG_SAVED_VAL_EXP:
1330 addr = execute_stack_op (cache->reg[regnum].loc.exp,
1331 cache->reg[regnum].exp_len,
1332 cache->addr_size, cache->text_offset,
1333 this_frame, cache->cfa, 1);
1334 return frame_unwind_got_constant (this_frame, regnum, addr);
1336 case DWARF2_FRAME_REG_UNSPECIFIED:
1337 /* GCC, in its infinite wisdom decided to not provide unwind
1338 information for registers that are "same value". Since
1339 DWARF2 (3 draft 7) doesn't define such behavior, said
1340 registers are actually undefined (which is different to CFI
1341 "undefined"). Code above issues a complaint about this.
1342 Here just fudge the books, assume GCC, and that the value is
1343 more inner on the stack. */
1344 return frame_unwind_got_register (this_frame, regnum, regnum);
1346 case DWARF2_FRAME_REG_SAME_VALUE:
1347 return frame_unwind_got_register (this_frame, regnum, regnum);
1349 case DWARF2_FRAME_REG_CFA:
1350 return frame_unwind_got_address (this_frame, regnum, cache->cfa);
1352 case DWARF2_FRAME_REG_CFA_OFFSET:
1353 addr = cache->cfa + cache->reg[regnum].loc.offset;
1354 return frame_unwind_got_address (this_frame, regnum, addr);
1356 case DWARF2_FRAME_REG_RA_OFFSET:
1357 addr = cache->reg[regnum].loc.offset;
1358 regnum = gdbarch_dwarf2_reg_to_regnum
1359 (gdbarch, cache->retaddr_reg.loc.reg);
1360 addr += get_frame_register_unsigned (this_frame, regnum);
1361 return frame_unwind_got_address (this_frame, regnum, addr);
1363 case DWARF2_FRAME_REG_FN:
1364 return cache->reg[regnum].loc.fn (this_frame, this_cache, regnum);
1366 default:
1367 internal_error (__FILE__, __LINE__, _("Unknown register rule."));
1371 /* Proxy for tailcall_frame_dealloc_cache for bottom frame of a virtual tail
1372 call frames chain. */
1374 static void
1375 dwarf2_frame_dealloc_cache (struct frame_info *self, void *this_cache)
1377 struct dwarf2_frame_cache *cache = dwarf2_frame_cache (self, &this_cache);
1379 if (cache->tailcall_cache)
1380 dwarf2_tailcall_frame_unwind.dealloc_cache (self, cache->tailcall_cache);
1383 static int
1384 dwarf2_frame_sniffer (const struct frame_unwind *self,
1385 struct frame_info *this_frame, void **this_cache)
1387 /* Grab an address that is guarenteed to reside somewhere within the
1388 function. get_frame_pc(), with a no-return next function, can
1389 end up returning something past the end of this function's body.
1390 If the frame we're sniffing for is a signal frame whose start
1391 address is placed on the stack by the OS, its FDE must
1392 extend one byte before its start address or we could potentially
1393 select the FDE of the previous function. */
1394 CORE_ADDR block_addr = get_frame_address_in_block (this_frame);
1395 struct dwarf2_fde *fde = dwarf2_frame_find_fde (&block_addr, NULL);
1397 if (!fde)
1398 return 0;
1400 /* On some targets, signal trampolines may have unwind information.
1401 We need to recognize them so that we set the frame type
1402 correctly. */
1404 if (fde->cie->signal_frame
1405 || dwarf2_frame_signal_frame_p (get_frame_arch (this_frame),
1406 this_frame))
1407 return self->type == SIGTRAMP_FRAME;
1409 if (self->type != NORMAL_FRAME)
1410 return 0;
1412 /* Preinitializa the cache so that TAILCALL_FRAME can find the record by
1413 dwarf2_tailcall_sniffer_first. */
1414 dwarf2_frame_cache (this_frame, this_cache);
1416 return 1;
1419 static const struct frame_unwind dwarf2_frame_unwind =
1421 NORMAL_FRAME,
1422 dwarf2_frame_unwind_stop_reason,
1423 dwarf2_frame_this_id,
1424 dwarf2_frame_prev_register,
1425 NULL,
1426 dwarf2_frame_sniffer,
1427 dwarf2_frame_dealloc_cache
1430 static const struct frame_unwind dwarf2_signal_frame_unwind =
1432 SIGTRAMP_FRAME,
1433 dwarf2_frame_unwind_stop_reason,
1434 dwarf2_frame_this_id,
1435 dwarf2_frame_prev_register,
1436 NULL,
1437 dwarf2_frame_sniffer,
1439 /* TAILCALL_CACHE can never be in such frame to need dealloc_cache. */
1440 NULL
1443 /* Append the DWARF-2 frame unwinders to GDBARCH's list. */
1445 void
1446 dwarf2_append_unwinders (struct gdbarch *gdbarch)
1448 /* TAILCALL_FRAME must be first to find the record by
1449 dwarf2_tailcall_sniffer_first. */
1450 frame_unwind_append_unwinder (gdbarch, &dwarf2_tailcall_frame_unwind);
1452 frame_unwind_append_unwinder (gdbarch, &dwarf2_frame_unwind);
1453 frame_unwind_append_unwinder (gdbarch, &dwarf2_signal_frame_unwind);
1457 /* There is no explicitly defined relationship between the CFA and the
1458 location of frame's local variables and arguments/parameters.
1459 Therefore, frame base methods on this page should probably only be
1460 used as a last resort, just to avoid printing total garbage as a
1461 response to the "info frame" command. */
1463 static CORE_ADDR
1464 dwarf2_frame_base_address (struct frame_info *this_frame, void **this_cache)
1466 struct dwarf2_frame_cache *cache =
1467 dwarf2_frame_cache (this_frame, this_cache);
1469 return cache->cfa;
1472 static const struct frame_base dwarf2_frame_base =
1474 &dwarf2_frame_unwind,
1475 dwarf2_frame_base_address,
1476 dwarf2_frame_base_address,
1477 dwarf2_frame_base_address
1480 const struct frame_base *
1481 dwarf2_frame_base_sniffer (struct frame_info *this_frame)
1483 CORE_ADDR block_addr = get_frame_address_in_block (this_frame);
1485 if (dwarf2_frame_find_fde (&block_addr, NULL))
1486 return &dwarf2_frame_base;
1488 return NULL;
1491 /* Compute the CFA for THIS_FRAME, but only if THIS_FRAME came from
1492 the DWARF unwinder. This is used to implement
1493 DW_OP_call_frame_cfa. */
1495 CORE_ADDR
1496 dwarf2_frame_cfa (struct frame_info *this_frame)
1498 while (get_frame_type (this_frame) == INLINE_FRAME)
1499 this_frame = get_prev_frame (this_frame);
1500 /* This restriction could be lifted if other unwinders are known to
1501 compute the frame base in a way compatible with the DWARF
1502 unwinder. */
1503 if (!frame_unwinder_is (this_frame, &dwarf2_frame_unwind)
1504 && !frame_unwinder_is (this_frame, &dwarf2_tailcall_frame_unwind))
1505 error (_("can't compute CFA for this frame"));
1506 if (get_frame_unwind_stop_reason (this_frame) == UNWIND_UNAVAILABLE)
1507 throw_error (NOT_AVAILABLE_ERROR,
1508 _("can't compute CFA for this frame: "
1509 "required registers or memory are unavailable"));
1510 return get_frame_base (this_frame);
1513 const struct objfile_data *dwarf2_frame_objfile_data;
1515 static unsigned int
1516 read_1_byte (bfd *abfd, const gdb_byte *buf)
1518 return bfd_get_8 (abfd, buf);
1521 static unsigned int
1522 read_4_bytes (bfd *abfd, const gdb_byte *buf)
1524 return bfd_get_32 (abfd, buf);
1527 static ULONGEST
1528 read_8_bytes (bfd *abfd, const gdb_byte *buf)
1530 return bfd_get_64 (abfd, buf);
1533 static ULONGEST
1534 read_initial_length (bfd *abfd, const gdb_byte *buf,
1535 unsigned int *bytes_read_ptr)
1537 LONGEST result;
1539 result = bfd_get_32 (abfd, buf);
1540 if (result == 0xffffffff)
1542 result = bfd_get_64 (abfd, buf + 4);
1543 *bytes_read_ptr = 12;
1545 else
1546 *bytes_read_ptr = 4;
1548 return result;
1552 /* Pointer encoding helper functions. */
1554 /* GCC supports exception handling based on DWARF2 CFI. However, for
1555 technical reasons, it encodes addresses in its FDE's in a different
1556 way. Several "pointer encodings" are supported. The encoding
1557 that's used for a particular FDE is determined by the 'R'
1558 augmentation in the associated CIE. The argument of this
1559 augmentation is a single byte.
1561 The address can be encoded as 2 bytes, 4 bytes, 8 bytes, or as a
1562 LEB128. This is encoded in bits 0, 1 and 2. Bit 3 encodes whether
1563 the address is signed or unsigned. Bits 4, 5 and 6 encode how the
1564 address should be interpreted (absolute, relative to the current
1565 position in the FDE, ...). Bit 7, indicates that the address
1566 should be dereferenced. */
1568 static gdb_byte
1569 encoding_for_size (unsigned int size)
1571 switch (size)
1573 case 2:
1574 return DW_EH_PE_udata2;
1575 case 4:
1576 return DW_EH_PE_udata4;
1577 case 8:
1578 return DW_EH_PE_udata8;
1579 default:
1580 internal_error (__FILE__, __LINE__, _("Unsupported address size"));
1584 static CORE_ADDR
1585 read_encoded_value (struct comp_unit *unit, gdb_byte encoding,
1586 int ptr_len, const gdb_byte *buf,
1587 unsigned int *bytes_read_ptr,
1588 CORE_ADDR func_base)
1590 ptrdiff_t offset;
1591 CORE_ADDR base;
1593 /* GCC currently doesn't generate DW_EH_PE_indirect encodings for
1594 FDE's. */
1595 if (encoding & DW_EH_PE_indirect)
1596 internal_error (__FILE__, __LINE__,
1597 _("Unsupported encoding: DW_EH_PE_indirect"));
1599 *bytes_read_ptr = 0;
1601 switch (encoding & 0x70)
1603 case DW_EH_PE_absptr:
1604 base = 0;
1605 break;
1606 case DW_EH_PE_pcrel:
1607 base = bfd_get_section_vma (unit->abfd, unit->dwarf_frame_section);
1608 base += (buf - unit->dwarf_frame_buffer);
1609 break;
1610 case DW_EH_PE_datarel:
1611 base = unit->dbase;
1612 break;
1613 case DW_EH_PE_textrel:
1614 base = unit->tbase;
1615 break;
1616 case DW_EH_PE_funcrel:
1617 base = func_base;
1618 break;
1619 case DW_EH_PE_aligned:
1620 base = 0;
1621 offset = buf - unit->dwarf_frame_buffer;
1622 if ((offset % ptr_len) != 0)
1624 *bytes_read_ptr = ptr_len - (offset % ptr_len);
1625 buf += *bytes_read_ptr;
1627 break;
1628 default:
1629 internal_error (__FILE__, __LINE__,
1630 _("Invalid or unsupported encoding"));
1633 if ((encoding & 0x07) == 0x00)
1635 encoding |= encoding_for_size (ptr_len);
1636 if (bfd_get_sign_extend_vma (unit->abfd))
1637 encoding |= DW_EH_PE_signed;
1640 switch (encoding & 0x0f)
1642 case DW_EH_PE_uleb128:
1644 uint64_t value;
1645 const gdb_byte *end_buf = buf + (sizeof (value) + 1) * 8 / 7;
1647 *bytes_read_ptr += safe_read_uleb128 (buf, end_buf, &value) - buf;
1648 return base + value;
1650 case DW_EH_PE_udata2:
1651 *bytes_read_ptr += 2;
1652 return (base + bfd_get_16 (unit->abfd, (bfd_byte *) buf));
1653 case DW_EH_PE_udata4:
1654 *bytes_read_ptr += 4;
1655 return (base + bfd_get_32 (unit->abfd, (bfd_byte *) buf));
1656 case DW_EH_PE_udata8:
1657 *bytes_read_ptr += 8;
1658 return (base + bfd_get_64 (unit->abfd, (bfd_byte *) buf));
1659 case DW_EH_PE_sleb128:
1661 int64_t value;
1662 const gdb_byte *end_buf = buf + (sizeof (value) + 1) * 8 / 7;
1664 *bytes_read_ptr += safe_read_sleb128 (buf, end_buf, &value) - buf;
1665 return base + value;
1667 case DW_EH_PE_sdata2:
1668 *bytes_read_ptr += 2;
1669 return (base + bfd_get_signed_16 (unit->abfd, (bfd_byte *) buf));
1670 case DW_EH_PE_sdata4:
1671 *bytes_read_ptr += 4;
1672 return (base + bfd_get_signed_32 (unit->abfd, (bfd_byte *) buf));
1673 case DW_EH_PE_sdata8:
1674 *bytes_read_ptr += 8;
1675 return (base + bfd_get_signed_64 (unit->abfd, (bfd_byte *) buf));
1676 default:
1677 internal_error (__FILE__, __LINE__,
1678 _("Invalid or unsupported encoding"));
1683 static int
1684 bsearch_cie_cmp (const void *key, const void *element)
1686 ULONGEST cie_pointer = *(ULONGEST *) key;
1687 struct dwarf2_cie *cie = *(struct dwarf2_cie **) element;
1689 if (cie_pointer == cie->cie_pointer)
1690 return 0;
1692 return (cie_pointer < cie->cie_pointer) ? -1 : 1;
1695 /* Find CIE with the given CIE_POINTER in CIE_TABLE. */
1696 static struct dwarf2_cie *
1697 find_cie (struct dwarf2_cie_table *cie_table, ULONGEST cie_pointer)
1699 struct dwarf2_cie **p_cie;
1701 /* The C standard (ISO/IEC 9899:TC2) requires the BASE argument to
1702 bsearch be non-NULL. */
1703 if (cie_table->entries == NULL)
1705 gdb_assert (cie_table->num_entries == 0);
1706 return NULL;
1709 p_cie = bsearch (&cie_pointer, cie_table->entries, cie_table->num_entries,
1710 sizeof (cie_table->entries[0]), bsearch_cie_cmp);
1711 if (p_cie != NULL)
1712 return *p_cie;
1713 return NULL;
1716 /* Add a pointer to new CIE to the CIE_TABLE, allocating space for it. */
1717 static void
1718 add_cie (struct dwarf2_cie_table *cie_table, struct dwarf2_cie *cie)
1720 const int n = cie_table->num_entries;
1722 gdb_assert (n < 1
1723 || cie_table->entries[n - 1]->cie_pointer < cie->cie_pointer);
1725 cie_table->entries =
1726 xrealloc (cie_table->entries, (n + 1) * sizeof (cie_table->entries[0]));
1727 cie_table->entries[n] = cie;
1728 cie_table->num_entries = n + 1;
1731 static int
1732 bsearch_fde_cmp (const void *key, const void *element)
1734 CORE_ADDR seek_pc = *(CORE_ADDR *) key;
1735 struct dwarf2_fde *fde = *(struct dwarf2_fde **) element;
1737 if (seek_pc < fde->initial_location)
1738 return -1;
1739 if (seek_pc < fde->initial_location + fde->address_range)
1740 return 0;
1741 return 1;
1744 /* Find the FDE for *PC. Return a pointer to the FDE, and store the
1745 inital location associated with it into *PC. */
1747 static struct dwarf2_fde *
1748 dwarf2_frame_find_fde (CORE_ADDR *pc, CORE_ADDR *out_offset)
1750 struct objfile *objfile;
1752 ALL_OBJFILES (objfile)
1754 struct dwarf2_fde_table *fde_table;
1755 struct dwarf2_fde **p_fde;
1756 CORE_ADDR offset;
1757 CORE_ADDR seek_pc;
1759 fde_table = objfile_data (objfile, dwarf2_frame_objfile_data);
1760 if (fde_table == NULL)
1762 dwarf2_build_frame_info (objfile);
1763 fde_table = objfile_data (objfile, dwarf2_frame_objfile_data);
1765 gdb_assert (fde_table != NULL);
1767 if (fde_table->num_entries == 0)
1768 continue;
1770 gdb_assert (objfile->section_offsets);
1771 offset = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
1773 gdb_assert (fde_table->num_entries > 0);
1774 if (*pc < offset + fde_table->entries[0]->initial_location)
1775 continue;
1777 seek_pc = *pc - offset;
1778 p_fde = bsearch (&seek_pc, fde_table->entries, fde_table->num_entries,
1779 sizeof (fde_table->entries[0]), bsearch_fde_cmp);
1780 if (p_fde != NULL)
1782 *pc = (*p_fde)->initial_location + offset;
1783 if (out_offset)
1784 *out_offset = offset;
1785 return *p_fde;
1788 return NULL;
1791 /* Add a pointer to new FDE to the FDE_TABLE, allocating space for it. */
1792 static void
1793 add_fde (struct dwarf2_fde_table *fde_table, struct dwarf2_fde *fde)
1795 if (fde->address_range == 0)
1796 /* Discard useless FDEs. */
1797 return;
1799 fde_table->num_entries += 1;
1800 fde_table->entries =
1801 xrealloc (fde_table->entries,
1802 fde_table->num_entries * sizeof (fde_table->entries[0]));
1803 fde_table->entries[fde_table->num_entries - 1] = fde;
1806 #define DW64_CIE_ID 0xffffffffffffffffULL
1808 /* Defines the type of eh_frames that are expected to be decoded: CIE, FDE
1809 or any of them. */
1811 enum eh_frame_type
1813 EH_CIE_TYPE_ID = 1 << 0,
1814 EH_FDE_TYPE_ID = 1 << 1,
1815 EH_CIE_OR_FDE_TYPE_ID = EH_CIE_TYPE_ID | EH_FDE_TYPE_ID
1818 static const gdb_byte *decode_frame_entry (struct comp_unit *unit,
1819 const gdb_byte *start,
1820 int eh_frame_p,
1821 struct dwarf2_cie_table *cie_table,
1822 struct dwarf2_fde_table *fde_table,
1823 enum eh_frame_type entry_type);
1825 /* Decode the next CIE or FDE, entry_type specifies the expected type.
1826 Return NULL if invalid input, otherwise the next byte to be processed. */
1828 static const gdb_byte *
1829 decode_frame_entry_1 (struct comp_unit *unit, const gdb_byte *start,
1830 int eh_frame_p,
1831 struct dwarf2_cie_table *cie_table,
1832 struct dwarf2_fde_table *fde_table,
1833 enum eh_frame_type entry_type)
1835 struct gdbarch *gdbarch = get_objfile_arch (unit->objfile);
1836 const gdb_byte *buf, *end;
1837 LONGEST length;
1838 unsigned int bytes_read;
1839 int dwarf64_p;
1840 ULONGEST cie_id;
1841 ULONGEST cie_pointer;
1842 int64_t sleb128;
1843 uint64_t uleb128;
1845 buf = start;
1846 length = read_initial_length (unit->abfd, buf, &bytes_read);
1847 buf += bytes_read;
1848 end = buf + length;
1850 /* Are we still within the section? */
1851 if (end > unit->dwarf_frame_buffer + unit->dwarf_frame_size)
1852 return NULL;
1854 if (length == 0)
1855 return end;
1857 /* Distinguish between 32 and 64-bit encoded frame info. */
1858 dwarf64_p = (bytes_read == 12);
1860 /* In a .eh_frame section, zero is used to distinguish CIEs from FDEs. */
1861 if (eh_frame_p)
1862 cie_id = 0;
1863 else if (dwarf64_p)
1864 cie_id = DW64_CIE_ID;
1865 else
1866 cie_id = DW_CIE_ID;
1868 if (dwarf64_p)
1870 cie_pointer = read_8_bytes (unit->abfd, buf);
1871 buf += 8;
1873 else
1875 cie_pointer = read_4_bytes (unit->abfd, buf);
1876 buf += 4;
1879 if (cie_pointer == cie_id)
1881 /* This is a CIE. */
1882 struct dwarf2_cie *cie;
1883 char *augmentation;
1884 unsigned int cie_version;
1886 /* Check that a CIE was expected. */
1887 if ((entry_type & EH_CIE_TYPE_ID) == 0)
1888 error (_("Found a CIE when not expecting it."));
1890 /* Record the offset into the .debug_frame section of this CIE. */
1891 cie_pointer = start - unit->dwarf_frame_buffer;
1893 /* Check whether we've already read it. */
1894 if (find_cie (cie_table, cie_pointer))
1895 return end;
1897 cie = (struct dwarf2_cie *)
1898 obstack_alloc (&unit->objfile->objfile_obstack,
1899 sizeof (struct dwarf2_cie));
1900 cie->initial_instructions = NULL;
1901 cie->cie_pointer = cie_pointer;
1903 /* The encoding for FDE's in a normal .debug_frame section
1904 depends on the target address size. */
1905 cie->encoding = DW_EH_PE_absptr;
1907 /* We'll determine the final value later, but we need to
1908 initialize it conservatively. */
1909 cie->signal_frame = 0;
1911 /* Check version number. */
1912 cie_version = read_1_byte (unit->abfd, buf);
1913 if (cie_version != 1 && cie_version != 3 && cie_version != 4)
1914 return NULL;
1915 cie->version = cie_version;
1916 buf += 1;
1918 /* Interpret the interesting bits of the augmentation. */
1919 cie->augmentation = augmentation = (char *) buf;
1920 buf += (strlen (augmentation) + 1);
1922 /* Ignore armcc augmentations. We only use them for quirks,
1923 and that doesn't happen until later. */
1924 if (strncmp (augmentation, "armcc", 5) == 0)
1925 augmentation += strlen (augmentation);
1927 /* The GCC 2.x "eh" augmentation has a pointer immediately
1928 following the augmentation string, so it must be handled
1929 first. */
1930 if (augmentation[0] == 'e' && augmentation[1] == 'h')
1932 /* Skip. */
1933 buf += gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
1934 augmentation += 2;
1937 if (cie->version >= 4)
1939 /* FIXME: check that this is the same as from the CU header. */
1940 cie->addr_size = read_1_byte (unit->abfd, buf);
1941 ++buf;
1942 cie->segment_size = read_1_byte (unit->abfd, buf);
1943 ++buf;
1945 else
1947 cie->addr_size = gdbarch_dwarf2_addr_size (gdbarch);
1948 cie->segment_size = 0;
1950 /* Address values in .eh_frame sections are defined to have the
1951 target's pointer size. Watchout: This breaks frame info for
1952 targets with pointer size < address size, unless a .debug_frame
1953 section exists as well. */
1954 if (eh_frame_p)
1955 cie->ptr_size = gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
1956 else
1957 cie->ptr_size = cie->addr_size;
1959 buf = gdb_read_uleb128 (buf, end, &uleb128);
1960 if (buf == NULL)
1961 return NULL;
1962 cie->code_alignment_factor = uleb128;
1964 buf = gdb_read_sleb128 (buf, end, &sleb128);
1965 if (buf == NULL)
1966 return NULL;
1967 cie->data_alignment_factor = sleb128;
1969 if (cie_version == 1)
1971 cie->return_address_register = read_1_byte (unit->abfd, buf);
1972 ++buf;
1974 else
1976 buf = gdb_read_uleb128 (buf, end, &uleb128);
1977 if (buf == NULL)
1978 return NULL;
1979 cie->return_address_register = uleb128;
1982 cie->return_address_register
1983 = dwarf2_frame_adjust_regnum (gdbarch,
1984 cie->return_address_register,
1985 eh_frame_p);
1987 cie->saw_z_augmentation = (*augmentation == 'z');
1988 if (cie->saw_z_augmentation)
1990 uint64_t length;
1992 buf = gdb_read_uleb128 (buf, end, &length);
1993 if (buf == NULL)
1994 return NULL;
1995 cie->initial_instructions = buf + length;
1996 augmentation++;
1999 while (*augmentation)
2001 /* "L" indicates a byte showing how the LSDA pointer is encoded. */
2002 if (*augmentation == 'L')
2004 /* Skip. */
2005 buf++;
2006 augmentation++;
2009 /* "R" indicates a byte indicating how FDE addresses are encoded. */
2010 else if (*augmentation == 'R')
2012 cie->encoding = *buf++;
2013 augmentation++;
2016 /* "P" indicates a personality routine in the CIE augmentation. */
2017 else if (*augmentation == 'P')
2019 /* Skip. Avoid indirection since we throw away the result. */
2020 gdb_byte encoding = (*buf++) & ~DW_EH_PE_indirect;
2021 read_encoded_value (unit, encoding, cie->ptr_size,
2022 buf, &bytes_read, 0);
2023 buf += bytes_read;
2024 augmentation++;
2027 /* "S" indicates a signal frame, such that the return
2028 address must not be decremented to locate the call frame
2029 info for the previous frame; it might even be the first
2030 instruction of a function, so decrementing it would take
2031 us to a different function. */
2032 else if (*augmentation == 'S')
2034 cie->signal_frame = 1;
2035 augmentation++;
2038 /* Otherwise we have an unknown augmentation. Assume that either
2039 there is no augmentation data, or we saw a 'z' prefix. */
2040 else
2042 if (cie->initial_instructions)
2043 buf = cie->initial_instructions;
2044 break;
2048 cie->initial_instructions = buf;
2049 cie->end = end;
2050 cie->unit = unit;
2052 add_cie (cie_table, cie);
2054 else
2056 /* This is a FDE. */
2057 struct dwarf2_fde *fde;
2059 /* Check that an FDE was expected. */
2060 if ((entry_type & EH_FDE_TYPE_ID) == 0)
2061 error (_("Found an FDE when not expecting it."));
2063 /* In an .eh_frame section, the CIE pointer is the delta between the
2064 address within the FDE where the CIE pointer is stored and the
2065 address of the CIE. Convert it to an offset into the .eh_frame
2066 section. */
2067 if (eh_frame_p)
2069 cie_pointer = buf - unit->dwarf_frame_buffer - cie_pointer;
2070 cie_pointer -= (dwarf64_p ? 8 : 4);
2073 /* In either case, validate the result is still within the section. */
2074 if (cie_pointer >= unit->dwarf_frame_size)
2075 return NULL;
2077 fde = (struct dwarf2_fde *)
2078 obstack_alloc (&unit->objfile->objfile_obstack,
2079 sizeof (struct dwarf2_fde));
2080 fde->cie = find_cie (cie_table, cie_pointer);
2081 if (fde->cie == NULL)
2083 decode_frame_entry (unit, unit->dwarf_frame_buffer + cie_pointer,
2084 eh_frame_p, cie_table, fde_table,
2085 EH_CIE_TYPE_ID);
2086 fde->cie = find_cie (cie_table, cie_pointer);
2089 gdb_assert (fde->cie != NULL);
2091 fde->initial_location =
2092 read_encoded_value (unit, fde->cie->encoding, fde->cie->ptr_size,
2093 buf, &bytes_read, 0);
2094 buf += bytes_read;
2096 fde->address_range =
2097 read_encoded_value (unit, fde->cie->encoding & 0x0f,
2098 fde->cie->ptr_size, buf, &bytes_read, 0);
2099 buf += bytes_read;
2101 /* A 'z' augmentation in the CIE implies the presence of an
2102 augmentation field in the FDE as well. The only thing known
2103 to be in here at present is the LSDA entry for EH. So we
2104 can skip the whole thing. */
2105 if (fde->cie->saw_z_augmentation)
2107 uint64_t length;
2109 buf = gdb_read_uleb128 (buf, end, &length);
2110 if (buf == NULL)
2111 return NULL;
2112 buf += length;
2113 if (buf > end)
2114 return NULL;
2117 fde->instructions = buf;
2118 fde->end = end;
2120 fde->eh_frame_p = eh_frame_p;
2122 add_fde (fde_table, fde);
2125 return end;
2128 /* Read a CIE or FDE in BUF and decode it. Entry_type specifies whether we
2129 expect an FDE or a CIE. */
2131 static const gdb_byte *
2132 decode_frame_entry (struct comp_unit *unit, const gdb_byte *start,
2133 int eh_frame_p,
2134 struct dwarf2_cie_table *cie_table,
2135 struct dwarf2_fde_table *fde_table,
2136 enum eh_frame_type entry_type)
2138 enum { NONE, ALIGN4, ALIGN8, FAIL } workaround = NONE;
2139 const gdb_byte *ret;
2140 ptrdiff_t start_offset;
2142 while (1)
2144 ret = decode_frame_entry_1 (unit, start, eh_frame_p,
2145 cie_table, fde_table, entry_type);
2146 if (ret != NULL)
2147 break;
2149 /* We have corrupt input data of some form. */
2151 /* ??? Try, weakly, to work around compiler/assembler/linker bugs
2152 and mismatches wrt padding and alignment of debug sections. */
2153 /* Note that there is no requirement in the standard for any
2154 alignment at all in the frame unwind sections. Testing for
2155 alignment before trying to interpret data would be incorrect.
2157 However, GCC traditionally arranged for frame sections to be
2158 sized such that the FDE length and CIE fields happen to be
2159 aligned (in theory, for performance). This, unfortunately,
2160 was done with .align directives, which had the side effect of
2161 forcing the section to be aligned by the linker.
2163 This becomes a problem when you have some other producer that
2164 creates frame sections that are not as strictly aligned. That
2165 produces a hole in the frame info that gets filled by the
2166 linker with zeros.
2168 The GCC behaviour is arguably a bug, but it's effectively now
2169 part of the ABI, so we're now stuck with it, at least at the
2170 object file level. A smart linker may decide, in the process
2171 of compressing duplicate CIE information, that it can rewrite
2172 the entire output section without this extra padding. */
2174 start_offset = start - unit->dwarf_frame_buffer;
2175 if (workaround < ALIGN4 && (start_offset & 3) != 0)
2177 start += 4 - (start_offset & 3);
2178 workaround = ALIGN4;
2179 continue;
2181 if (workaround < ALIGN8 && (start_offset & 7) != 0)
2183 start += 8 - (start_offset & 7);
2184 workaround = ALIGN8;
2185 continue;
2188 /* Nothing left to try. Arrange to return as if we've consumed
2189 the entire input section. Hopefully we'll get valid info from
2190 the other of .debug_frame/.eh_frame. */
2191 workaround = FAIL;
2192 ret = unit->dwarf_frame_buffer + unit->dwarf_frame_size;
2193 break;
2196 switch (workaround)
2198 case NONE:
2199 break;
2201 case ALIGN4:
2202 complaint (&symfile_complaints, _("\
2203 Corrupt data in %s:%s; align 4 workaround apparently succeeded"),
2204 unit->dwarf_frame_section->owner->filename,
2205 unit->dwarf_frame_section->name);
2206 break;
2208 case ALIGN8:
2209 complaint (&symfile_complaints, _("\
2210 Corrupt data in %s:%s; align 8 workaround apparently succeeded"),
2211 unit->dwarf_frame_section->owner->filename,
2212 unit->dwarf_frame_section->name);
2213 break;
2215 default:
2216 complaint (&symfile_complaints,
2217 _("Corrupt data in %s:%s"),
2218 unit->dwarf_frame_section->owner->filename,
2219 unit->dwarf_frame_section->name);
2220 break;
2223 return ret;
2226 static int
2227 qsort_fde_cmp (const void *a, const void *b)
2229 struct dwarf2_fde *aa = *(struct dwarf2_fde **)a;
2230 struct dwarf2_fde *bb = *(struct dwarf2_fde **)b;
2232 if (aa->initial_location == bb->initial_location)
2234 if (aa->address_range != bb->address_range
2235 && aa->eh_frame_p == 0 && bb->eh_frame_p == 0)
2236 /* Linker bug, e.g. gold/10400.
2237 Work around it by keeping stable sort order. */
2238 return (a < b) ? -1 : 1;
2239 else
2240 /* Put eh_frame entries after debug_frame ones. */
2241 return aa->eh_frame_p - bb->eh_frame_p;
2244 return (aa->initial_location < bb->initial_location) ? -1 : 1;
2247 void
2248 dwarf2_build_frame_info (struct objfile *objfile)
2250 struct comp_unit *unit;
2251 const gdb_byte *frame_ptr;
2252 struct dwarf2_cie_table cie_table;
2253 struct dwarf2_fde_table fde_table;
2254 struct dwarf2_fde_table *fde_table2;
2255 volatile struct gdb_exception e;
2257 cie_table.num_entries = 0;
2258 cie_table.entries = NULL;
2260 fde_table.num_entries = 0;
2261 fde_table.entries = NULL;
2263 /* Build a minimal decoding of the DWARF2 compilation unit. */
2264 unit = (struct comp_unit *) obstack_alloc (&objfile->objfile_obstack,
2265 sizeof (struct comp_unit));
2266 unit->abfd = objfile->obfd;
2267 unit->objfile = objfile;
2268 unit->dbase = 0;
2269 unit->tbase = 0;
2271 if (objfile->separate_debug_objfile_backlink == NULL)
2273 /* Do not read .eh_frame from separate file as they must be also
2274 present in the main file. */
2275 dwarf2_get_section_info (objfile, DWARF2_EH_FRAME,
2276 &unit->dwarf_frame_section,
2277 &unit->dwarf_frame_buffer,
2278 &unit->dwarf_frame_size);
2279 if (unit->dwarf_frame_size)
2281 asection *got, *txt;
2283 /* FIXME: kettenis/20030602: This is the DW_EH_PE_datarel base
2284 that is used for the i386/amd64 target, which currently is
2285 the only target in GCC that supports/uses the
2286 DW_EH_PE_datarel encoding. */
2287 got = bfd_get_section_by_name (unit->abfd, ".got");
2288 if (got)
2289 unit->dbase = got->vma;
2291 /* GCC emits the DW_EH_PE_textrel encoding type on sh and ia64
2292 so far. */
2293 txt = bfd_get_section_by_name (unit->abfd, ".text");
2294 if (txt)
2295 unit->tbase = txt->vma;
2297 TRY_CATCH (e, RETURN_MASK_ERROR)
2299 frame_ptr = unit->dwarf_frame_buffer;
2300 while (frame_ptr < unit->dwarf_frame_buffer + unit->dwarf_frame_size)
2301 frame_ptr = decode_frame_entry (unit, frame_ptr, 1,
2302 &cie_table, &fde_table,
2303 EH_CIE_OR_FDE_TYPE_ID);
2306 if (e.reason < 0)
2308 warning (_("skipping .eh_frame info of %s: %s"),
2309 objfile->name, e.message);
2311 if (fde_table.num_entries != 0)
2313 xfree (fde_table.entries);
2314 fde_table.entries = NULL;
2315 fde_table.num_entries = 0;
2317 /* The cie_table is discarded by the next if. */
2320 if (cie_table.num_entries != 0)
2322 /* Reinit cie_table: debug_frame has different CIEs. */
2323 xfree (cie_table.entries);
2324 cie_table.num_entries = 0;
2325 cie_table.entries = NULL;
2330 dwarf2_get_section_info (objfile, DWARF2_DEBUG_FRAME,
2331 &unit->dwarf_frame_section,
2332 &unit->dwarf_frame_buffer,
2333 &unit->dwarf_frame_size);
2334 if (unit->dwarf_frame_size)
2336 int num_old_fde_entries = fde_table.num_entries;
2338 TRY_CATCH (e, RETURN_MASK_ERROR)
2340 frame_ptr = unit->dwarf_frame_buffer;
2341 while (frame_ptr < unit->dwarf_frame_buffer + unit->dwarf_frame_size)
2342 frame_ptr = decode_frame_entry (unit, frame_ptr, 0,
2343 &cie_table, &fde_table,
2344 EH_CIE_OR_FDE_TYPE_ID);
2346 if (e.reason < 0)
2348 warning (_("skipping .debug_frame info of %s: %s"),
2349 objfile->name, e.message);
2351 if (fde_table.num_entries != 0)
2353 fde_table.num_entries = num_old_fde_entries;
2354 if (num_old_fde_entries == 0)
2356 xfree (fde_table.entries);
2357 fde_table.entries = NULL;
2359 else
2361 fde_table.entries = xrealloc (fde_table.entries,
2362 fde_table.num_entries *
2363 sizeof (fde_table.entries[0]));
2366 fde_table.num_entries = num_old_fde_entries;
2367 /* The cie_table is discarded by the next if. */
2371 /* Discard the cie_table, it is no longer needed. */
2372 if (cie_table.num_entries != 0)
2374 xfree (cie_table.entries);
2375 cie_table.entries = NULL; /* Paranoia. */
2376 cie_table.num_entries = 0; /* Paranoia. */
2379 /* Copy fde_table to obstack: it is needed at runtime. */
2380 fde_table2 = (struct dwarf2_fde_table *)
2381 obstack_alloc (&objfile->objfile_obstack, sizeof (*fde_table2));
2383 if (fde_table.num_entries == 0)
2385 fde_table2->entries = NULL;
2386 fde_table2->num_entries = 0;
2388 else
2390 struct dwarf2_fde *fde_prev = NULL;
2391 struct dwarf2_fde *first_non_zero_fde = NULL;
2392 int i;
2394 /* Prepare FDE table for lookups. */
2395 qsort (fde_table.entries, fde_table.num_entries,
2396 sizeof (fde_table.entries[0]), qsort_fde_cmp);
2398 /* Check for leftovers from --gc-sections. The GNU linker sets
2399 the relevant symbols to zero, but doesn't zero the FDE *end*
2400 ranges because there's no relocation there. It's (offset,
2401 length), not (start, end). On targets where address zero is
2402 just another valid address this can be a problem, since the
2403 FDEs appear to be non-empty in the output --- we could pick
2404 out the wrong FDE. To work around this, when overlaps are
2405 detected, we prefer FDEs that do not start at zero.
2407 Start by finding the first FDE with non-zero start. Below
2408 we'll discard all FDEs that start at zero and overlap this
2409 one. */
2410 for (i = 0; i < fde_table.num_entries; i++)
2412 struct dwarf2_fde *fde = fde_table.entries[i];
2414 if (fde->initial_location != 0)
2416 first_non_zero_fde = fde;
2417 break;
2421 /* Since we'll be doing bsearch, squeeze out identical (except
2422 for eh_frame_p) fde entries so bsearch result is predictable.
2423 Also discard leftovers from --gc-sections. */
2424 fde_table2->num_entries = 0;
2425 for (i = 0; i < fde_table.num_entries; i++)
2427 struct dwarf2_fde *fde = fde_table.entries[i];
2429 if (fde->initial_location == 0
2430 && first_non_zero_fde != NULL
2431 && (first_non_zero_fde->initial_location
2432 < fde->initial_location + fde->address_range))
2433 continue;
2435 if (fde_prev != NULL
2436 && fde_prev->initial_location == fde->initial_location)
2437 continue;
2439 obstack_grow (&objfile->objfile_obstack, &fde_table.entries[i],
2440 sizeof (fde_table.entries[0]));
2441 ++fde_table2->num_entries;
2442 fde_prev = fde;
2444 fde_table2->entries = obstack_finish (&objfile->objfile_obstack);
2446 /* Discard the original fde_table. */
2447 xfree (fde_table.entries);
2450 set_objfile_data (objfile, dwarf2_frame_objfile_data, fde_table2);
2453 /* Provide a prototype to silence -Wmissing-prototypes. */
2454 void _initialize_dwarf2_frame (void);
2456 void
2457 _initialize_dwarf2_frame (void)
2459 dwarf2_frame_data = gdbarch_data_register_pre_init (dwarf2_frame_init);
2460 dwarf2_frame_objfile_data = register_objfile_data ();