2013-03-12 Sebastian Huber <sebastian.huber@embedded-brains.de>
[binutils-gdb.git] / gdb / gdbtypes.c
blob12730d7b12bad3aff0b13e1921a87743513e0cb2
1 /* Support routines for manipulating internal types for GDB.
3 Copyright (C) 1992-2013 Free Software Foundation, Inc.
5 Contributed by Cygnus Support, using pieces from other GDB modules.
7 This file is part of GDB.
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22 #include "defs.h"
23 #include "gdb_string.h"
24 #include "bfd.h"
25 #include "symtab.h"
26 #include "symfile.h"
27 #include "objfiles.h"
28 #include "gdbtypes.h"
29 #include "expression.h"
30 #include "language.h"
31 #include "target.h"
32 #include "value.h"
33 #include "demangle.h"
34 #include "complaints.h"
35 #include "gdbcmd.h"
36 #include "cp-abi.h"
37 #include "gdb_assert.h"
38 #include "hashtab.h"
39 #include "exceptions.h"
41 /* Initialize BADNESS constants. */
43 const struct rank LENGTH_MISMATCH_BADNESS = {100,0};
45 const struct rank TOO_FEW_PARAMS_BADNESS = {100,0};
46 const struct rank INCOMPATIBLE_TYPE_BADNESS = {100,0};
48 const struct rank EXACT_MATCH_BADNESS = {0,0};
50 const struct rank INTEGER_PROMOTION_BADNESS = {1,0};
51 const struct rank FLOAT_PROMOTION_BADNESS = {1,0};
52 const struct rank BASE_PTR_CONVERSION_BADNESS = {1,0};
53 const struct rank INTEGER_CONVERSION_BADNESS = {2,0};
54 const struct rank FLOAT_CONVERSION_BADNESS = {2,0};
55 const struct rank INT_FLOAT_CONVERSION_BADNESS = {2,0};
56 const struct rank VOID_PTR_CONVERSION_BADNESS = {2,0};
57 const struct rank BOOL_CONVERSION_BADNESS = {3,0};
58 const struct rank BASE_CONVERSION_BADNESS = {2,0};
59 const struct rank REFERENCE_CONVERSION_BADNESS = {2,0};
60 const struct rank NULL_POINTER_CONVERSION_BADNESS = {2,0};
61 const struct rank NS_POINTER_CONVERSION_BADNESS = {10,0};
62 const struct rank NS_INTEGER_POINTER_CONVERSION_BADNESS = {3,0};
64 /* Floatformat pairs. */
65 const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN] = {
66 &floatformat_ieee_half_big,
67 &floatformat_ieee_half_little
69 const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN] = {
70 &floatformat_ieee_single_big,
71 &floatformat_ieee_single_little
73 const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN] = {
74 &floatformat_ieee_double_big,
75 &floatformat_ieee_double_little
77 const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN] = {
78 &floatformat_ieee_double_big,
79 &floatformat_ieee_double_littlebyte_bigword
81 const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN] = {
82 &floatformat_i387_ext,
83 &floatformat_i387_ext
85 const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN] = {
86 &floatformat_m68881_ext,
87 &floatformat_m68881_ext
89 const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN] = {
90 &floatformat_arm_ext_big,
91 &floatformat_arm_ext_littlebyte_bigword
93 const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN] = {
94 &floatformat_ia64_spill_big,
95 &floatformat_ia64_spill_little
97 const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN] = {
98 &floatformat_ia64_quad_big,
99 &floatformat_ia64_quad_little
101 const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN] = {
102 &floatformat_vax_f,
103 &floatformat_vax_f
105 const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN] = {
106 &floatformat_vax_d,
107 &floatformat_vax_d
109 const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN] = {
110 &floatformat_ibm_long_double,
111 &floatformat_ibm_long_double
114 /* Should opaque types be resolved? */
116 static int opaque_type_resolution = 1;
118 /* A flag to enable printing of debugging information of C++
119 overloading. */
121 unsigned int overload_debug = 0;
123 /* A flag to enable strict type checking. */
125 static int strict_type_checking = 1;
127 /* A function to show whether opaque types are resolved. */
129 static void
130 show_opaque_type_resolution (struct ui_file *file, int from_tty,
131 struct cmd_list_element *c,
132 const char *value)
134 fprintf_filtered (file, _("Resolution of opaque struct/class/union types "
135 "(if set before loading symbols) is %s.\n"),
136 value);
139 /* A function to show whether C++ overload debugging is enabled. */
141 static void
142 show_overload_debug (struct ui_file *file, int from_tty,
143 struct cmd_list_element *c, const char *value)
145 fprintf_filtered (file, _("Debugging of C++ overloading is %s.\n"),
146 value);
149 /* A function to show the status of strict type checking. */
151 static void
152 show_strict_type_checking (struct ui_file *file, int from_tty,
153 struct cmd_list_element *c, const char *value)
155 fprintf_filtered (file, _("Strict type checking is %s.\n"), value);
159 /* Allocate a new OBJFILE-associated type structure and fill it
160 with some defaults. Space for the type structure is allocated
161 on the objfile's objfile_obstack. */
163 struct type *
164 alloc_type (struct objfile *objfile)
166 struct type *type;
168 gdb_assert (objfile != NULL);
170 /* Alloc the structure and start off with all fields zeroed. */
171 type = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct type);
172 TYPE_MAIN_TYPE (type) = OBSTACK_ZALLOC (&objfile->objfile_obstack,
173 struct main_type);
174 OBJSTAT (objfile, n_types++);
176 TYPE_OBJFILE_OWNED (type) = 1;
177 TYPE_OWNER (type).objfile = objfile;
179 /* Initialize the fields that might not be zero. */
181 TYPE_CODE (type) = TYPE_CODE_UNDEF;
182 TYPE_VPTR_FIELDNO (type) = -1;
183 TYPE_CHAIN (type) = type; /* Chain back to itself. */
185 return type;
188 /* Allocate a new GDBARCH-associated type structure and fill it
189 with some defaults. Space for the type structure is allocated
190 on the heap. */
192 struct type *
193 alloc_type_arch (struct gdbarch *gdbarch)
195 struct type *type;
197 gdb_assert (gdbarch != NULL);
199 /* Alloc the structure and start off with all fields zeroed. */
201 type = XZALLOC (struct type);
202 TYPE_MAIN_TYPE (type) = XZALLOC (struct main_type);
204 TYPE_OBJFILE_OWNED (type) = 0;
205 TYPE_OWNER (type).gdbarch = gdbarch;
207 /* Initialize the fields that might not be zero. */
209 TYPE_CODE (type) = TYPE_CODE_UNDEF;
210 TYPE_VPTR_FIELDNO (type) = -1;
211 TYPE_CHAIN (type) = type; /* Chain back to itself. */
213 return type;
216 /* If TYPE is objfile-associated, allocate a new type structure
217 associated with the same objfile. If TYPE is gdbarch-associated,
218 allocate a new type structure associated with the same gdbarch. */
220 struct type *
221 alloc_type_copy (const struct type *type)
223 if (TYPE_OBJFILE_OWNED (type))
224 return alloc_type (TYPE_OWNER (type).objfile);
225 else
226 return alloc_type_arch (TYPE_OWNER (type).gdbarch);
229 /* If TYPE is gdbarch-associated, return that architecture.
230 If TYPE is objfile-associated, return that objfile's architecture. */
232 struct gdbarch *
233 get_type_arch (const struct type *type)
235 if (TYPE_OBJFILE_OWNED (type))
236 return get_objfile_arch (TYPE_OWNER (type).objfile);
237 else
238 return TYPE_OWNER (type).gdbarch;
241 /* Alloc a new type instance structure, fill it with some defaults,
242 and point it at OLDTYPE. Allocate the new type instance from the
243 same place as OLDTYPE. */
245 static struct type *
246 alloc_type_instance (struct type *oldtype)
248 struct type *type;
250 /* Allocate the structure. */
252 if (! TYPE_OBJFILE_OWNED (oldtype))
253 type = XZALLOC (struct type);
254 else
255 type = OBSTACK_ZALLOC (&TYPE_OBJFILE (oldtype)->objfile_obstack,
256 struct type);
258 TYPE_MAIN_TYPE (type) = TYPE_MAIN_TYPE (oldtype);
260 TYPE_CHAIN (type) = type; /* Chain back to itself for now. */
262 return type;
265 /* Clear all remnants of the previous type at TYPE, in preparation for
266 replacing it with something else. Preserve owner information. */
268 static void
269 smash_type (struct type *type)
271 int objfile_owned = TYPE_OBJFILE_OWNED (type);
272 union type_owner owner = TYPE_OWNER (type);
274 memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type));
276 /* Restore owner information. */
277 TYPE_OBJFILE_OWNED (type) = objfile_owned;
278 TYPE_OWNER (type) = owner;
280 /* For now, delete the rings. */
281 TYPE_CHAIN (type) = type;
283 /* For now, leave the pointer/reference types alone. */
286 /* Lookup a pointer to a type TYPE. TYPEPTR, if nonzero, points
287 to a pointer to memory where the pointer type should be stored.
288 If *TYPEPTR is zero, update it to point to the pointer type we return.
289 We allocate new memory if needed. */
291 struct type *
292 make_pointer_type (struct type *type, struct type **typeptr)
294 struct type *ntype; /* New type */
295 struct type *chain;
297 ntype = TYPE_POINTER_TYPE (type);
299 if (ntype)
301 if (typeptr == 0)
302 return ntype; /* Don't care about alloc,
303 and have new type. */
304 else if (*typeptr == 0)
306 *typeptr = ntype; /* Tracking alloc, and have new type. */
307 return ntype;
311 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
313 ntype = alloc_type_copy (type);
314 if (typeptr)
315 *typeptr = ntype;
317 else /* We have storage, but need to reset it. */
319 ntype = *typeptr;
320 chain = TYPE_CHAIN (ntype);
321 smash_type (ntype);
322 TYPE_CHAIN (ntype) = chain;
325 TYPE_TARGET_TYPE (ntype) = type;
326 TYPE_POINTER_TYPE (type) = ntype;
328 /* FIXME! Assumes the machine has only one representation for pointers! */
330 TYPE_LENGTH (ntype)
331 = gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
332 TYPE_CODE (ntype) = TYPE_CODE_PTR;
334 /* Mark pointers as unsigned. The target converts between pointers
335 and addresses (CORE_ADDRs) using gdbarch_pointer_to_address and
336 gdbarch_address_to_pointer. */
337 TYPE_UNSIGNED (ntype) = 1;
339 /* Update the length of all the other variants of this type. */
340 chain = TYPE_CHAIN (ntype);
341 while (chain != ntype)
343 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
344 chain = TYPE_CHAIN (chain);
347 return ntype;
350 /* Given a type TYPE, return a type of pointers to that type.
351 May need to construct such a type if this is the first use. */
353 struct type *
354 lookup_pointer_type (struct type *type)
356 return make_pointer_type (type, (struct type **) 0);
359 /* Lookup a C++ `reference' to a type TYPE. TYPEPTR, if nonzero,
360 points to a pointer to memory where the reference type should be
361 stored. If *TYPEPTR is zero, update it to point to the reference
362 type we return. We allocate new memory if needed. */
364 struct type *
365 make_reference_type (struct type *type, struct type **typeptr)
367 struct type *ntype; /* New type */
368 struct type *chain;
370 ntype = TYPE_REFERENCE_TYPE (type);
372 if (ntype)
374 if (typeptr == 0)
375 return ntype; /* Don't care about alloc,
376 and have new type. */
377 else if (*typeptr == 0)
379 *typeptr = ntype; /* Tracking alloc, and have new type. */
380 return ntype;
384 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
386 ntype = alloc_type_copy (type);
387 if (typeptr)
388 *typeptr = ntype;
390 else /* We have storage, but need to reset it. */
392 ntype = *typeptr;
393 chain = TYPE_CHAIN (ntype);
394 smash_type (ntype);
395 TYPE_CHAIN (ntype) = chain;
398 TYPE_TARGET_TYPE (ntype) = type;
399 TYPE_REFERENCE_TYPE (type) = ntype;
401 /* FIXME! Assume the machine has only one representation for
402 references, and that it matches the (only) representation for
403 pointers! */
405 TYPE_LENGTH (ntype) =
406 gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
407 TYPE_CODE (ntype) = TYPE_CODE_REF;
409 if (!TYPE_REFERENCE_TYPE (type)) /* Remember it, if don't have one. */
410 TYPE_REFERENCE_TYPE (type) = ntype;
412 /* Update the length of all the other variants of this type. */
413 chain = TYPE_CHAIN (ntype);
414 while (chain != ntype)
416 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
417 chain = TYPE_CHAIN (chain);
420 return ntype;
423 /* Same as above, but caller doesn't care about memory allocation
424 details. */
426 struct type *
427 lookup_reference_type (struct type *type)
429 return make_reference_type (type, (struct type **) 0);
432 /* Lookup a function type that returns type TYPE. TYPEPTR, if
433 nonzero, points to a pointer to memory where the function type
434 should be stored. If *TYPEPTR is zero, update it to point to the
435 function type we return. We allocate new memory if needed. */
437 struct type *
438 make_function_type (struct type *type, struct type **typeptr)
440 struct type *ntype; /* New type */
442 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
444 ntype = alloc_type_copy (type);
445 if (typeptr)
446 *typeptr = ntype;
448 else /* We have storage, but need to reset it. */
450 ntype = *typeptr;
451 smash_type (ntype);
454 TYPE_TARGET_TYPE (ntype) = type;
456 TYPE_LENGTH (ntype) = 1;
457 TYPE_CODE (ntype) = TYPE_CODE_FUNC;
459 INIT_FUNC_SPECIFIC (ntype);
461 return ntype;
464 /* Given a type TYPE, return a type of functions that return that type.
465 May need to construct such a type if this is the first use. */
467 struct type *
468 lookup_function_type (struct type *type)
470 return make_function_type (type, (struct type **) 0);
473 /* Given a type TYPE and argument types, return the appropriate
474 function type. If the final type in PARAM_TYPES is NULL, make a
475 varargs function. */
477 struct type *
478 lookup_function_type_with_arguments (struct type *type,
479 int nparams,
480 struct type **param_types)
482 struct type *fn = make_function_type (type, (struct type **) 0);
483 int i;
485 if (nparams > 0)
487 if (param_types[nparams - 1] == NULL)
489 --nparams;
490 TYPE_VARARGS (fn) = 1;
492 else if (TYPE_CODE (check_typedef (param_types[nparams - 1]))
493 == TYPE_CODE_VOID)
495 --nparams;
496 /* Caller should have ensured this. */
497 gdb_assert (nparams == 0);
498 TYPE_PROTOTYPED (fn) = 1;
502 TYPE_NFIELDS (fn) = nparams;
503 TYPE_FIELDS (fn) = TYPE_ZALLOC (fn, nparams * sizeof (struct field));
504 for (i = 0; i < nparams; ++i)
505 TYPE_FIELD_TYPE (fn, i) = param_types[i];
507 return fn;
510 /* Identify address space identifier by name --
511 return the integer flag defined in gdbtypes.h. */
514 address_space_name_to_int (struct gdbarch *gdbarch, char *space_identifier)
516 int type_flags;
518 /* Check for known address space delimiters. */
519 if (!strcmp (space_identifier, "code"))
520 return TYPE_INSTANCE_FLAG_CODE_SPACE;
521 else if (!strcmp (space_identifier, "data"))
522 return TYPE_INSTANCE_FLAG_DATA_SPACE;
523 else if (gdbarch_address_class_name_to_type_flags_p (gdbarch)
524 && gdbarch_address_class_name_to_type_flags (gdbarch,
525 space_identifier,
526 &type_flags))
527 return type_flags;
528 else
529 error (_("Unknown address space specifier: \"%s\""), space_identifier);
532 /* Identify address space identifier by integer flag as defined in
533 gdbtypes.h -- return the string version of the adress space name. */
535 const char *
536 address_space_int_to_name (struct gdbarch *gdbarch, int space_flag)
538 if (space_flag & TYPE_INSTANCE_FLAG_CODE_SPACE)
539 return "code";
540 else if (space_flag & TYPE_INSTANCE_FLAG_DATA_SPACE)
541 return "data";
542 else if ((space_flag & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
543 && gdbarch_address_class_type_flags_to_name_p (gdbarch))
544 return gdbarch_address_class_type_flags_to_name (gdbarch, space_flag);
545 else
546 return NULL;
549 /* Create a new type with instance flags NEW_FLAGS, based on TYPE.
551 If STORAGE is non-NULL, create the new type instance there.
552 STORAGE must be in the same obstack as TYPE. */
554 static struct type *
555 make_qualified_type (struct type *type, int new_flags,
556 struct type *storage)
558 struct type *ntype;
560 ntype = type;
563 if (TYPE_INSTANCE_FLAGS (ntype) == new_flags)
564 return ntype;
565 ntype = TYPE_CHAIN (ntype);
567 while (ntype != type);
569 /* Create a new type instance. */
570 if (storage == NULL)
571 ntype = alloc_type_instance (type);
572 else
574 /* If STORAGE was provided, it had better be in the same objfile
575 as TYPE. Otherwise, we can't link it into TYPE's cv chain:
576 if one objfile is freed and the other kept, we'd have
577 dangling pointers. */
578 gdb_assert (TYPE_OBJFILE (type) == TYPE_OBJFILE (storage));
580 ntype = storage;
581 TYPE_MAIN_TYPE (ntype) = TYPE_MAIN_TYPE (type);
582 TYPE_CHAIN (ntype) = ntype;
585 /* Pointers or references to the original type are not relevant to
586 the new type. */
587 TYPE_POINTER_TYPE (ntype) = (struct type *) 0;
588 TYPE_REFERENCE_TYPE (ntype) = (struct type *) 0;
590 /* Chain the new qualified type to the old type. */
591 TYPE_CHAIN (ntype) = TYPE_CHAIN (type);
592 TYPE_CHAIN (type) = ntype;
594 /* Now set the instance flags and return the new type. */
595 TYPE_INSTANCE_FLAGS (ntype) = new_flags;
597 /* Set length of new type to that of the original type. */
598 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
600 return ntype;
603 /* Make an address-space-delimited variant of a type -- a type that
604 is identical to the one supplied except that it has an address
605 space attribute attached to it (such as "code" or "data").
607 The space attributes "code" and "data" are for Harvard
608 architectures. The address space attributes are for architectures
609 which have alternately sized pointers or pointers with alternate
610 representations. */
612 struct type *
613 make_type_with_address_space (struct type *type, int space_flag)
615 int new_flags = ((TYPE_INSTANCE_FLAGS (type)
616 & ~(TYPE_INSTANCE_FLAG_CODE_SPACE
617 | TYPE_INSTANCE_FLAG_DATA_SPACE
618 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL))
619 | space_flag);
621 return make_qualified_type (type, new_flags, NULL);
624 /* Make a "c-v" variant of a type -- a type that is identical to the
625 one supplied except that it may have const or volatile attributes
626 CNST is a flag for setting the const attribute
627 VOLTL is a flag for setting the volatile attribute
628 TYPE is the base type whose variant we are creating.
630 If TYPEPTR and *TYPEPTR are non-zero, then *TYPEPTR points to
631 storage to hold the new qualified type; *TYPEPTR and TYPE must be
632 in the same objfile. Otherwise, allocate fresh memory for the new
633 type whereever TYPE lives. If TYPEPTR is non-zero, set it to the
634 new type we construct. */
636 struct type *
637 make_cv_type (int cnst, int voltl,
638 struct type *type,
639 struct type **typeptr)
641 struct type *ntype; /* New type */
643 int new_flags = (TYPE_INSTANCE_FLAGS (type)
644 & ~(TYPE_INSTANCE_FLAG_CONST
645 | TYPE_INSTANCE_FLAG_VOLATILE));
647 if (cnst)
648 new_flags |= TYPE_INSTANCE_FLAG_CONST;
650 if (voltl)
651 new_flags |= TYPE_INSTANCE_FLAG_VOLATILE;
653 if (typeptr && *typeptr != NULL)
655 /* TYPE and *TYPEPTR must be in the same objfile. We can't have
656 a C-V variant chain that threads across objfiles: if one
657 objfile gets freed, then the other has a broken C-V chain.
659 This code used to try to copy over the main type from TYPE to
660 *TYPEPTR if they were in different objfiles, but that's
661 wrong, too: TYPE may have a field list or member function
662 lists, which refer to types of their own, etc. etc. The
663 whole shebang would need to be copied over recursively; you
664 can't have inter-objfile pointers. The only thing to do is
665 to leave stub types as stub types, and look them up afresh by
666 name each time you encounter them. */
667 gdb_assert (TYPE_OBJFILE (*typeptr) == TYPE_OBJFILE (type));
670 ntype = make_qualified_type (type, new_flags,
671 typeptr ? *typeptr : NULL);
673 if (typeptr != NULL)
674 *typeptr = ntype;
676 return ntype;
679 /* Make a 'restrict'-qualified version of TYPE. */
681 struct type *
682 make_restrict_type (struct type *type)
684 return make_qualified_type (type,
685 (TYPE_INSTANCE_FLAGS (type)
686 | TYPE_INSTANCE_FLAG_RESTRICT),
687 NULL);
690 /* Replace the contents of ntype with the type *type. This changes the
691 contents, rather than the pointer for TYPE_MAIN_TYPE (ntype); thus
692 the changes are propogated to all types in the TYPE_CHAIN.
694 In order to build recursive types, it's inevitable that we'll need
695 to update types in place --- but this sort of indiscriminate
696 smashing is ugly, and needs to be replaced with something more
697 controlled. TYPE_MAIN_TYPE is a step in this direction; it's not
698 clear if more steps are needed. */
700 void
701 replace_type (struct type *ntype, struct type *type)
703 struct type *chain;
705 /* These two types had better be in the same objfile. Otherwise,
706 the assignment of one type's main type structure to the other
707 will produce a type with references to objects (names; field
708 lists; etc.) allocated on an objfile other than its own. */
709 gdb_assert (TYPE_OBJFILE (ntype) == TYPE_OBJFILE (ntype));
711 *TYPE_MAIN_TYPE (ntype) = *TYPE_MAIN_TYPE (type);
713 /* The type length is not a part of the main type. Update it for
714 each type on the variant chain. */
715 chain = ntype;
718 /* Assert that this element of the chain has no address-class bits
719 set in its flags. Such type variants might have type lengths
720 which are supposed to be different from the non-address-class
721 variants. This assertion shouldn't ever be triggered because
722 symbol readers which do construct address-class variants don't
723 call replace_type(). */
724 gdb_assert (TYPE_ADDRESS_CLASS_ALL (chain) == 0);
726 TYPE_LENGTH (chain) = TYPE_LENGTH (type);
727 chain = TYPE_CHAIN (chain);
729 while (ntype != chain);
731 /* Assert that the two types have equivalent instance qualifiers.
732 This should be true for at least all of our debug readers. */
733 gdb_assert (TYPE_INSTANCE_FLAGS (ntype) == TYPE_INSTANCE_FLAGS (type));
736 /* Implement direct support for MEMBER_TYPE in GNU C++.
737 May need to construct such a type if this is the first use.
738 The TYPE is the type of the member. The DOMAIN is the type
739 of the aggregate that the member belongs to. */
741 struct type *
742 lookup_memberptr_type (struct type *type, struct type *domain)
744 struct type *mtype;
746 mtype = alloc_type_copy (type);
747 smash_to_memberptr_type (mtype, domain, type);
748 return mtype;
751 /* Return a pointer-to-method type, for a method of type TO_TYPE. */
753 struct type *
754 lookup_methodptr_type (struct type *to_type)
756 struct type *mtype;
758 mtype = alloc_type_copy (to_type);
759 smash_to_methodptr_type (mtype, to_type);
760 return mtype;
763 /* Allocate a stub method whose return type is TYPE. This apparently
764 happens for speed of symbol reading, since parsing out the
765 arguments to the method is cpu-intensive, the way we are doing it.
766 So, we will fill in arguments later. This always returns a fresh
767 type. */
769 struct type *
770 allocate_stub_method (struct type *type)
772 struct type *mtype;
774 mtype = alloc_type_copy (type);
775 TYPE_CODE (mtype) = TYPE_CODE_METHOD;
776 TYPE_LENGTH (mtype) = 1;
777 TYPE_STUB (mtype) = 1;
778 TYPE_TARGET_TYPE (mtype) = type;
779 /* _DOMAIN_TYPE (mtype) = unknown yet */
780 return mtype;
783 /* Create a range type using either a blank type supplied in
784 RESULT_TYPE, or creating a new type, inheriting the objfile from
785 INDEX_TYPE.
787 Indices will be of type INDEX_TYPE, and will range from LOW_BOUND
788 to HIGH_BOUND, inclusive.
790 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
791 sure it is TYPE_CODE_UNDEF before we bash it into a range type? */
793 struct type *
794 create_range_type (struct type *result_type, struct type *index_type,
795 LONGEST low_bound, LONGEST high_bound)
797 if (result_type == NULL)
798 result_type = alloc_type_copy (index_type);
799 TYPE_CODE (result_type) = TYPE_CODE_RANGE;
800 TYPE_TARGET_TYPE (result_type) = index_type;
801 if (TYPE_STUB (index_type))
802 TYPE_TARGET_STUB (result_type) = 1;
803 else
804 TYPE_LENGTH (result_type) = TYPE_LENGTH (check_typedef (index_type));
805 TYPE_RANGE_DATA (result_type) = (struct range_bounds *)
806 TYPE_ZALLOC (result_type, sizeof (struct range_bounds));
807 TYPE_LOW_BOUND (result_type) = low_bound;
808 TYPE_HIGH_BOUND (result_type) = high_bound;
810 if (low_bound >= 0)
811 TYPE_UNSIGNED (result_type) = 1;
813 return result_type;
816 /* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type
817 TYPE. Return 1 if type is a range type, 0 if it is discrete (and
818 bounds will fit in LONGEST), or -1 otherwise. */
821 get_discrete_bounds (struct type *type, LONGEST *lowp, LONGEST *highp)
823 CHECK_TYPEDEF (type);
824 switch (TYPE_CODE (type))
826 case TYPE_CODE_RANGE:
827 *lowp = TYPE_LOW_BOUND (type);
828 *highp = TYPE_HIGH_BOUND (type);
829 return 1;
830 case TYPE_CODE_ENUM:
831 if (TYPE_NFIELDS (type) > 0)
833 /* The enums may not be sorted by value, so search all
834 entries. */
835 int i;
837 *lowp = *highp = TYPE_FIELD_ENUMVAL (type, 0);
838 for (i = 0; i < TYPE_NFIELDS (type); i++)
840 if (TYPE_FIELD_ENUMVAL (type, i) < *lowp)
841 *lowp = TYPE_FIELD_ENUMVAL (type, i);
842 if (TYPE_FIELD_ENUMVAL (type, i) > *highp)
843 *highp = TYPE_FIELD_ENUMVAL (type, i);
846 /* Set unsigned indicator if warranted. */
847 if (*lowp >= 0)
849 TYPE_UNSIGNED (type) = 1;
852 else
854 *lowp = 0;
855 *highp = -1;
857 return 0;
858 case TYPE_CODE_BOOL:
859 *lowp = 0;
860 *highp = 1;
861 return 0;
862 case TYPE_CODE_INT:
863 if (TYPE_LENGTH (type) > sizeof (LONGEST)) /* Too big */
864 return -1;
865 if (!TYPE_UNSIGNED (type))
867 *lowp = -(1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1));
868 *highp = -*lowp - 1;
869 return 0;
871 /* ... fall through for unsigned ints ... */
872 case TYPE_CODE_CHAR:
873 *lowp = 0;
874 /* This round-about calculation is to avoid shifting by
875 TYPE_LENGTH (type) * TARGET_CHAR_BIT, which will not work
876 if TYPE_LENGTH (type) == sizeof (LONGEST). */
877 *highp = 1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1);
878 *highp = (*highp - 1) | *highp;
879 return 0;
880 default:
881 return -1;
885 /* Assuming TYPE is a simple, non-empty array type, compute its upper
886 and lower bound. Save the low bound into LOW_BOUND if not NULL.
887 Save the high bound into HIGH_BOUND if not NULL.
889 Return 1 if the operation was successful. Return zero otherwise,
890 in which case the values of LOW_BOUND and HIGH_BOUNDS are unmodified.
892 We now simply use get_discrete_bounds call to get the values
893 of the low and high bounds.
894 get_discrete_bounds can return three values:
895 1, meaning that index is a range,
896 0, meaning that index is a discrete type,
897 or -1 for failure. */
900 get_array_bounds (struct type *type, LONGEST *low_bound, LONGEST *high_bound)
902 struct type *index = TYPE_INDEX_TYPE (type);
903 LONGEST low = 0;
904 LONGEST high = 0;
905 int res;
907 if (index == NULL)
908 return 0;
910 res = get_discrete_bounds (index, &low, &high);
911 if (res == -1)
912 return 0;
914 /* Check if the array bounds are undefined. */
915 if (res == 1
916 && ((low_bound && TYPE_ARRAY_LOWER_BOUND_IS_UNDEFINED (type))
917 || (high_bound && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))))
918 return 0;
920 if (low_bound)
921 *low_bound = low;
923 if (high_bound)
924 *high_bound = high;
926 return 1;
929 /* Create an array type using either a blank type supplied in
930 RESULT_TYPE, or creating a new type, inheriting the objfile from
931 RANGE_TYPE.
933 Elements will be of type ELEMENT_TYPE, the indices will be of type
934 RANGE_TYPE.
936 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
937 sure it is TYPE_CODE_UNDEF before we bash it into an array
938 type? */
940 struct type *
941 create_array_type (struct type *result_type,
942 struct type *element_type,
943 struct type *range_type)
945 LONGEST low_bound, high_bound;
947 if (result_type == NULL)
948 result_type = alloc_type_copy (range_type);
950 TYPE_CODE (result_type) = TYPE_CODE_ARRAY;
951 TYPE_TARGET_TYPE (result_type) = element_type;
952 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
953 low_bound = high_bound = 0;
954 CHECK_TYPEDEF (element_type);
955 /* Be careful when setting the array length. Ada arrays can be
956 empty arrays with the high_bound being smaller than the low_bound.
957 In such cases, the array length should be zero. */
958 if (high_bound < low_bound)
959 TYPE_LENGTH (result_type) = 0;
960 else
961 TYPE_LENGTH (result_type) =
962 TYPE_LENGTH (element_type) * (high_bound - low_bound + 1);
963 TYPE_NFIELDS (result_type) = 1;
964 TYPE_FIELDS (result_type) =
965 (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
966 TYPE_INDEX_TYPE (result_type) = range_type;
967 TYPE_VPTR_FIELDNO (result_type) = -1;
969 /* TYPE_FLAG_TARGET_STUB will take care of zero length arrays. */
970 if (TYPE_LENGTH (result_type) == 0)
971 TYPE_TARGET_STUB (result_type) = 1;
973 return result_type;
976 struct type *
977 lookup_array_range_type (struct type *element_type,
978 LONGEST low_bound, LONGEST high_bound)
980 struct gdbarch *gdbarch = get_type_arch (element_type);
981 struct type *index_type = builtin_type (gdbarch)->builtin_int;
982 struct type *range_type
983 = create_range_type (NULL, index_type, low_bound, high_bound);
985 return create_array_type (NULL, element_type, range_type);
988 /* Create a string type using either a blank type supplied in
989 RESULT_TYPE, or creating a new type. String types are similar
990 enough to array of char types that we can use create_array_type to
991 build the basic type and then bash it into a string type.
993 For fixed length strings, the range type contains 0 as the lower
994 bound and the length of the string minus one as the upper bound.
996 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
997 sure it is TYPE_CODE_UNDEF before we bash it into a string
998 type? */
1000 struct type *
1001 create_string_type (struct type *result_type,
1002 struct type *string_char_type,
1003 struct type *range_type)
1005 result_type = create_array_type (result_type,
1006 string_char_type,
1007 range_type);
1008 TYPE_CODE (result_type) = TYPE_CODE_STRING;
1009 return result_type;
1012 struct type *
1013 lookup_string_range_type (struct type *string_char_type,
1014 LONGEST low_bound, LONGEST high_bound)
1016 struct type *result_type;
1018 result_type = lookup_array_range_type (string_char_type,
1019 low_bound, high_bound);
1020 TYPE_CODE (result_type) = TYPE_CODE_STRING;
1021 return result_type;
1024 struct type *
1025 create_set_type (struct type *result_type, struct type *domain_type)
1027 if (result_type == NULL)
1028 result_type = alloc_type_copy (domain_type);
1030 TYPE_CODE (result_type) = TYPE_CODE_SET;
1031 TYPE_NFIELDS (result_type) = 1;
1032 TYPE_FIELDS (result_type) = TYPE_ZALLOC (result_type, sizeof (struct field));
1034 if (!TYPE_STUB (domain_type))
1036 LONGEST low_bound, high_bound, bit_length;
1038 if (get_discrete_bounds (domain_type, &low_bound, &high_bound) < 0)
1039 low_bound = high_bound = 0;
1040 bit_length = high_bound - low_bound + 1;
1041 TYPE_LENGTH (result_type)
1042 = (bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
1043 if (low_bound >= 0)
1044 TYPE_UNSIGNED (result_type) = 1;
1046 TYPE_FIELD_TYPE (result_type, 0) = domain_type;
1048 return result_type;
1051 /* Convert ARRAY_TYPE to a vector type. This may modify ARRAY_TYPE
1052 and any array types nested inside it. */
1054 void
1055 make_vector_type (struct type *array_type)
1057 struct type *inner_array, *elt_type;
1058 int flags;
1060 /* Find the innermost array type, in case the array is
1061 multi-dimensional. */
1062 inner_array = array_type;
1063 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
1064 inner_array = TYPE_TARGET_TYPE (inner_array);
1066 elt_type = TYPE_TARGET_TYPE (inner_array);
1067 if (TYPE_CODE (elt_type) == TYPE_CODE_INT)
1069 flags = TYPE_INSTANCE_FLAGS (elt_type) | TYPE_INSTANCE_FLAG_NOTTEXT;
1070 elt_type = make_qualified_type (elt_type, flags, NULL);
1071 TYPE_TARGET_TYPE (inner_array) = elt_type;
1074 TYPE_VECTOR (array_type) = 1;
1077 struct type *
1078 init_vector_type (struct type *elt_type, int n)
1080 struct type *array_type;
1082 array_type = lookup_array_range_type (elt_type, 0, n - 1);
1083 make_vector_type (array_type);
1084 return array_type;
1087 /* Smash TYPE to be a type of pointers to members of DOMAIN with type
1088 TO_TYPE. A member pointer is a wierd thing -- it amounts to a
1089 typed offset into a struct, e.g. "an int at offset 8". A MEMBER
1090 TYPE doesn't include the offset (that's the value of the MEMBER
1091 itself), but does include the structure type into which it points
1092 (for some reason).
1094 When "smashing" the type, we preserve the objfile that the old type
1095 pointed to, since we aren't changing where the type is actually
1096 allocated. */
1098 void
1099 smash_to_memberptr_type (struct type *type, struct type *domain,
1100 struct type *to_type)
1102 smash_type (type);
1103 TYPE_TARGET_TYPE (type) = to_type;
1104 TYPE_DOMAIN_TYPE (type) = domain;
1105 /* Assume that a data member pointer is the same size as a normal
1106 pointer. */
1107 TYPE_LENGTH (type)
1108 = gdbarch_ptr_bit (get_type_arch (to_type)) / TARGET_CHAR_BIT;
1109 TYPE_CODE (type) = TYPE_CODE_MEMBERPTR;
1112 /* Smash TYPE to be a type of pointer to methods type TO_TYPE.
1114 When "smashing" the type, we preserve the objfile that the old type
1115 pointed to, since we aren't changing where the type is actually
1116 allocated. */
1118 void
1119 smash_to_methodptr_type (struct type *type, struct type *to_type)
1121 smash_type (type);
1122 TYPE_TARGET_TYPE (type) = to_type;
1123 TYPE_DOMAIN_TYPE (type) = TYPE_DOMAIN_TYPE (to_type);
1124 TYPE_LENGTH (type) = cplus_method_ptr_size (to_type);
1125 TYPE_CODE (type) = TYPE_CODE_METHODPTR;
1128 /* Smash TYPE to be a type of method of DOMAIN with type TO_TYPE.
1129 METHOD just means `function that gets an extra "this" argument'.
1131 When "smashing" the type, we preserve the objfile that the old type
1132 pointed to, since we aren't changing where the type is actually
1133 allocated. */
1135 void
1136 smash_to_method_type (struct type *type, struct type *domain,
1137 struct type *to_type, struct field *args,
1138 int nargs, int varargs)
1140 smash_type (type);
1141 TYPE_TARGET_TYPE (type) = to_type;
1142 TYPE_DOMAIN_TYPE (type) = domain;
1143 TYPE_FIELDS (type) = args;
1144 TYPE_NFIELDS (type) = nargs;
1145 if (varargs)
1146 TYPE_VARARGS (type) = 1;
1147 TYPE_LENGTH (type) = 1; /* In practice, this is never needed. */
1148 TYPE_CODE (type) = TYPE_CODE_METHOD;
1151 /* Return a typename for a struct/union/enum type without "struct ",
1152 "union ", or "enum ". If the type has a NULL name, return NULL. */
1154 const char *
1155 type_name_no_tag (const struct type *type)
1157 if (TYPE_TAG_NAME (type) != NULL)
1158 return TYPE_TAG_NAME (type);
1160 /* Is there code which expects this to return the name if there is
1161 no tag name? My guess is that this is mainly used for C++ in
1162 cases where the two will always be the same. */
1163 return TYPE_NAME (type);
1166 /* A wrapper of type_name_no_tag which calls error if the type is anonymous.
1167 Since GCC PR debug/47510 DWARF provides associated information to detect the
1168 anonymous class linkage name from its typedef.
1170 Parameter TYPE should not yet have CHECK_TYPEDEF applied, this function will
1171 apply it itself. */
1173 const char *
1174 type_name_no_tag_or_error (struct type *type)
1176 struct type *saved_type = type;
1177 const char *name;
1178 struct objfile *objfile;
1180 CHECK_TYPEDEF (type);
1182 name = type_name_no_tag (type);
1183 if (name != NULL)
1184 return name;
1186 name = type_name_no_tag (saved_type);
1187 objfile = TYPE_OBJFILE (saved_type);
1188 error (_("Invalid anonymous type %s [in module %s], GCC PR debug/47510 bug?"),
1189 name ? name : "<anonymous>", objfile ? objfile->name : "<arch>");
1192 /* Lookup a typedef or primitive type named NAME, visible in lexical
1193 block BLOCK. If NOERR is nonzero, return zero if NAME is not
1194 suitably defined. */
1196 struct type *
1197 lookup_typename (const struct language_defn *language,
1198 struct gdbarch *gdbarch, const char *name,
1199 const struct block *block, int noerr)
1201 struct symbol *sym;
1202 struct type *type;
1204 sym = lookup_symbol (name, block, VAR_DOMAIN, 0);
1205 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
1206 return SYMBOL_TYPE (sym);
1208 type = language_lookup_primitive_type_by_name (language, gdbarch, name);
1209 if (type)
1210 return type;
1212 if (noerr)
1213 return NULL;
1214 error (_("No type named %s."), name);
1217 struct type *
1218 lookup_unsigned_typename (const struct language_defn *language,
1219 struct gdbarch *gdbarch, const char *name)
1221 char *uns = alloca (strlen (name) + 10);
1223 strcpy (uns, "unsigned ");
1224 strcpy (uns + 9, name);
1225 return lookup_typename (language, gdbarch, uns, (struct block *) NULL, 0);
1228 struct type *
1229 lookup_signed_typename (const struct language_defn *language,
1230 struct gdbarch *gdbarch, const char *name)
1232 struct type *t;
1233 char *uns = alloca (strlen (name) + 8);
1235 strcpy (uns, "signed ");
1236 strcpy (uns + 7, name);
1237 t = lookup_typename (language, gdbarch, uns, (struct block *) NULL, 1);
1238 /* If we don't find "signed FOO" just try again with plain "FOO". */
1239 if (t != NULL)
1240 return t;
1241 return lookup_typename (language, gdbarch, name, (struct block *) NULL, 0);
1244 /* Lookup a structure type named "struct NAME",
1245 visible in lexical block BLOCK. */
1247 struct type *
1248 lookup_struct (const char *name, const struct block *block)
1250 struct symbol *sym;
1252 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
1254 if (sym == NULL)
1256 error (_("No struct type named %s."), name);
1258 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1260 error (_("This context has class, union or enum %s, not a struct."),
1261 name);
1263 return (SYMBOL_TYPE (sym));
1266 /* Lookup a union type named "union NAME",
1267 visible in lexical block BLOCK. */
1269 struct type *
1270 lookup_union (const char *name, const struct block *block)
1272 struct symbol *sym;
1273 struct type *t;
1275 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
1277 if (sym == NULL)
1278 error (_("No union type named %s."), name);
1280 t = SYMBOL_TYPE (sym);
1282 if (TYPE_CODE (t) == TYPE_CODE_UNION)
1283 return t;
1285 /* If we get here, it's not a union. */
1286 error (_("This context has class, struct or enum %s, not a union."),
1287 name);
1290 /* Lookup an enum type named "enum NAME",
1291 visible in lexical block BLOCK. */
1293 struct type *
1294 lookup_enum (const char *name, const struct block *block)
1296 struct symbol *sym;
1298 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
1299 if (sym == NULL)
1301 error (_("No enum type named %s."), name);
1303 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_ENUM)
1305 error (_("This context has class, struct or union %s, not an enum."),
1306 name);
1308 return (SYMBOL_TYPE (sym));
1311 /* Lookup a template type named "template NAME<TYPE>",
1312 visible in lexical block BLOCK. */
1314 struct type *
1315 lookup_template_type (char *name, struct type *type,
1316 const struct block *block)
1318 struct symbol *sym;
1319 char *nam = (char *)
1320 alloca (strlen (name) + strlen (TYPE_NAME (type)) + 4);
1322 strcpy (nam, name);
1323 strcat (nam, "<");
1324 strcat (nam, TYPE_NAME (type));
1325 strcat (nam, " >"); /* FIXME, extra space still introduced in gcc? */
1327 sym = lookup_symbol (nam, block, VAR_DOMAIN, 0);
1329 if (sym == NULL)
1331 error (_("No template type named %s."), name);
1333 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1335 error (_("This context has class, union or enum %s, not a struct."),
1336 name);
1338 return (SYMBOL_TYPE (sym));
1341 /* Given a type TYPE, lookup the type of the component of type named
1342 NAME.
1344 TYPE can be either a struct or union, or a pointer or reference to
1345 a struct or union. If it is a pointer or reference, its target
1346 type is automatically used. Thus '.' and '->' are interchangable,
1347 as specified for the definitions of the expression element types
1348 STRUCTOP_STRUCT and STRUCTOP_PTR.
1350 If NOERR is nonzero, return zero if NAME is not suitably defined.
1351 If NAME is the name of a baseclass type, return that type. */
1353 struct type *
1354 lookup_struct_elt_type (struct type *type, char *name, int noerr)
1356 int i;
1357 char *typename;
1359 for (;;)
1361 CHECK_TYPEDEF (type);
1362 if (TYPE_CODE (type) != TYPE_CODE_PTR
1363 && TYPE_CODE (type) != TYPE_CODE_REF)
1364 break;
1365 type = TYPE_TARGET_TYPE (type);
1368 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
1369 && TYPE_CODE (type) != TYPE_CODE_UNION)
1371 typename = type_to_string (type);
1372 make_cleanup (xfree, typename);
1373 error (_("Type %s is not a structure or union type."), typename);
1376 #if 0
1377 /* FIXME: This change put in by Michael seems incorrect for the case
1378 where the structure tag name is the same as the member name.
1379 I.e. when doing "ptype bell->bar" for "struct foo { int bar; int
1380 foo; } bell;" Disabled by fnf. */
1382 char *typename;
1384 typename = type_name_no_tag (type);
1385 if (typename != NULL && strcmp (typename, name) == 0)
1386 return type;
1388 #endif
1390 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1392 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1394 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1396 return TYPE_FIELD_TYPE (type, i);
1398 else if (!t_field_name || *t_field_name == '\0')
1400 struct type *subtype
1401 = lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name, 1);
1403 if (subtype != NULL)
1404 return subtype;
1408 /* OK, it's not in this class. Recursively check the baseclasses. */
1409 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1411 struct type *t;
1413 t = lookup_struct_elt_type (TYPE_BASECLASS (type, i), name, 1);
1414 if (t != NULL)
1416 return t;
1420 if (noerr)
1422 return NULL;
1425 typename = type_to_string (type);
1426 make_cleanup (xfree, typename);
1427 error (_("Type %s has no component named %s."), typename, name);
1430 /* Lookup the vptr basetype/fieldno values for TYPE.
1431 If found store vptr_basetype in *BASETYPEP if non-NULL, and return
1432 vptr_fieldno. Also, if found and basetype is from the same objfile,
1433 cache the results.
1434 If not found, return -1 and ignore BASETYPEP.
1435 Callers should be aware that in some cases (for example,
1436 the type or one of its baseclasses is a stub type and we are
1437 debugging a .o file, or the compiler uses DWARF-2 and is not GCC),
1438 this function will not be able to find the
1439 virtual function table pointer, and vptr_fieldno will remain -1 and
1440 vptr_basetype will remain NULL or incomplete. */
1443 get_vptr_fieldno (struct type *type, struct type **basetypep)
1445 CHECK_TYPEDEF (type);
1447 if (TYPE_VPTR_FIELDNO (type) < 0)
1449 int i;
1451 /* We must start at zero in case the first (and only) baseclass
1452 is virtual (and hence we cannot share the table pointer). */
1453 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
1455 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
1456 int fieldno;
1457 struct type *basetype;
1459 fieldno = get_vptr_fieldno (baseclass, &basetype);
1460 if (fieldno >= 0)
1462 /* If the type comes from a different objfile we can't cache
1463 it, it may have a different lifetime. PR 2384 */
1464 if (TYPE_OBJFILE (type) == TYPE_OBJFILE (basetype))
1466 TYPE_VPTR_FIELDNO (type) = fieldno;
1467 TYPE_VPTR_BASETYPE (type) = basetype;
1469 if (basetypep)
1470 *basetypep = basetype;
1471 return fieldno;
1475 /* Not found. */
1476 return -1;
1478 else
1480 if (basetypep)
1481 *basetypep = TYPE_VPTR_BASETYPE (type);
1482 return TYPE_VPTR_FIELDNO (type);
1486 static void
1487 stub_noname_complaint (void)
1489 complaint (&symfile_complaints, _("stub type has NULL name"));
1492 /* Find the real type of TYPE. This function returns the real type,
1493 after removing all layers of typedefs, and completing opaque or stub
1494 types. Completion changes the TYPE argument, but stripping of
1495 typedefs does not.
1497 Instance flags (e.g. const/volatile) are preserved as typedefs are
1498 stripped. If necessary a new qualified form of the underlying type
1499 is created.
1501 NOTE: This will return a typedef if TYPE_TARGET_TYPE for the typedef has
1502 not been computed and we're either in the middle of reading symbols, or
1503 there was no name for the typedef in the debug info.
1505 NOTE: Lookup of opaque types can throw errors for invalid symbol files.
1506 QUITs in the symbol reading code can also throw.
1507 Thus this function can throw an exception.
1509 If TYPE is a TYPE_CODE_TYPEDEF, its length is updated to the length of
1510 the target type.
1512 If this is a stubbed struct (i.e. declared as struct foo *), see if
1513 we can find a full definition in some other file. If so, copy this
1514 definition, so we can use it in future. There used to be a comment
1515 (but not any code) that if we don't find a full definition, we'd
1516 set a flag so we don't spend time in the future checking the same
1517 type. That would be a mistake, though--we might load in more
1518 symbols which contain a full definition for the type. */
1520 struct type *
1521 check_typedef (struct type *type)
1523 struct type *orig_type = type;
1524 /* While we're removing typedefs, we don't want to lose qualifiers.
1525 E.g., const/volatile. */
1526 int instance_flags = TYPE_INSTANCE_FLAGS (type);
1528 gdb_assert (type);
1530 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1532 if (!TYPE_TARGET_TYPE (type))
1534 const char *name;
1535 struct symbol *sym;
1537 /* It is dangerous to call lookup_symbol if we are currently
1538 reading a symtab. Infinite recursion is one danger. */
1539 if (currently_reading_symtab)
1540 return make_qualified_type (type, instance_flags, NULL);
1542 name = type_name_no_tag (type);
1543 /* FIXME: shouldn't we separately check the TYPE_NAME and
1544 the TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or
1545 VAR_DOMAIN as appropriate? (this code was written before
1546 TYPE_NAME and TYPE_TAG_NAME were separate). */
1547 if (name == NULL)
1549 stub_noname_complaint ();
1550 return make_qualified_type (type, instance_flags, NULL);
1552 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0);
1553 if (sym)
1554 TYPE_TARGET_TYPE (type) = SYMBOL_TYPE (sym);
1555 else /* TYPE_CODE_UNDEF */
1556 TYPE_TARGET_TYPE (type) = alloc_type_arch (get_type_arch (type));
1558 type = TYPE_TARGET_TYPE (type);
1560 /* Preserve the instance flags as we traverse down the typedef chain.
1562 Handling address spaces/classes is nasty, what do we do if there's a
1563 conflict?
1564 E.g., what if an outer typedef marks the type as class_1 and an inner
1565 typedef marks the type as class_2?
1566 This is the wrong place to do such error checking. We leave it to
1567 the code that created the typedef in the first place to flag the
1568 error. We just pick the outer address space (akin to letting the
1569 outer cast in a chain of casting win), instead of assuming
1570 "it can't happen". */
1572 const int ALL_SPACES = (TYPE_INSTANCE_FLAG_CODE_SPACE
1573 | TYPE_INSTANCE_FLAG_DATA_SPACE);
1574 const int ALL_CLASSES = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL;
1575 int new_instance_flags = TYPE_INSTANCE_FLAGS (type);
1577 /* Treat code vs data spaces and address classes separately. */
1578 if ((instance_flags & ALL_SPACES) != 0)
1579 new_instance_flags &= ~ALL_SPACES;
1580 if ((instance_flags & ALL_CLASSES) != 0)
1581 new_instance_flags &= ~ALL_CLASSES;
1583 instance_flags |= new_instance_flags;
1587 /* If this is a struct/class/union with no fields, then check
1588 whether a full definition exists somewhere else. This is for
1589 systems where a type definition with no fields is issued for such
1590 types, instead of identifying them as stub types in the first
1591 place. */
1593 if (TYPE_IS_OPAQUE (type)
1594 && opaque_type_resolution
1595 && !currently_reading_symtab)
1597 const char *name = type_name_no_tag (type);
1598 struct type *newtype;
1600 if (name == NULL)
1602 stub_noname_complaint ();
1603 return make_qualified_type (type, instance_flags, NULL);
1605 newtype = lookup_transparent_type (name);
1607 if (newtype)
1609 /* If the resolved type and the stub are in the same
1610 objfile, then replace the stub type with the real deal.
1611 But if they're in separate objfiles, leave the stub
1612 alone; we'll just look up the transparent type every time
1613 we call check_typedef. We can't create pointers between
1614 types allocated to different objfiles, since they may
1615 have different lifetimes. Trying to copy NEWTYPE over to
1616 TYPE's objfile is pointless, too, since you'll have to
1617 move over any other types NEWTYPE refers to, which could
1618 be an unbounded amount of stuff. */
1619 if (TYPE_OBJFILE (newtype) == TYPE_OBJFILE (type))
1620 type = make_qualified_type (newtype,
1621 TYPE_INSTANCE_FLAGS (type),
1622 type);
1623 else
1624 type = newtype;
1627 /* Otherwise, rely on the stub flag being set for opaque/stubbed
1628 types. */
1629 else if (TYPE_STUB (type) && !currently_reading_symtab)
1631 const char *name = type_name_no_tag (type);
1632 /* FIXME: shouldn't we separately check the TYPE_NAME and the
1633 TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or VAR_DOMAIN
1634 as appropriate? (this code was written before TYPE_NAME and
1635 TYPE_TAG_NAME were separate). */
1636 struct symbol *sym;
1638 if (name == NULL)
1640 stub_noname_complaint ();
1641 return make_qualified_type (type, instance_flags, NULL);
1643 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0);
1644 if (sym)
1646 /* Same as above for opaque types, we can replace the stub
1647 with the complete type only if they are in the same
1648 objfile. */
1649 if (TYPE_OBJFILE (SYMBOL_TYPE(sym)) == TYPE_OBJFILE (type))
1650 type = make_qualified_type (SYMBOL_TYPE (sym),
1651 TYPE_INSTANCE_FLAGS (type),
1652 type);
1653 else
1654 type = SYMBOL_TYPE (sym);
1658 if (TYPE_TARGET_STUB (type))
1660 struct type *range_type;
1661 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
1663 if (TYPE_STUB (target_type) || TYPE_TARGET_STUB (target_type))
1665 /* Nothing we can do. */
1667 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY
1668 && TYPE_NFIELDS (type) == 1
1669 && (TYPE_CODE (range_type = TYPE_INDEX_TYPE (type))
1670 == TYPE_CODE_RANGE))
1672 /* Now recompute the length of the array type, based on its
1673 number of elements and the target type's length.
1674 Watch out for Ada null Ada arrays where the high bound
1675 is smaller than the low bound. */
1676 const LONGEST low_bound = TYPE_LOW_BOUND (range_type);
1677 const LONGEST high_bound = TYPE_HIGH_BOUND (range_type);
1678 ULONGEST len;
1680 if (high_bound < low_bound)
1681 len = 0;
1682 else
1684 /* For now, we conservatively take the array length to be 0
1685 if its length exceeds UINT_MAX. The code below assumes
1686 that for x < 0, (ULONGEST) x == -x + ULONGEST_MAX + 1,
1687 which is technically not guaranteed by C, but is usually true
1688 (because it would be true if x were unsigned with its
1689 high-order bit on). It uses the fact that
1690 high_bound-low_bound is always representable in
1691 ULONGEST and that if high_bound-low_bound+1 overflows,
1692 it overflows to 0. We must change these tests if we
1693 decide to increase the representation of TYPE_LENGTH
1694 from unsigned int to ULONGEST. */
1695 ULONGEST ulow = low_bound, uhigh = high_bound;
1696 ULONGEST tlen = TYPE_LENGTH (target_type);
1698 len = tlen * (uhigh - ulow + 1);
1699 if (tlen == 0 || (len / tlen - 1 + ulow) != uhigh
1700 || len > UINT_MAX)
1701 len = 0;
1703 TYPE_LENGTH (type) = len;
1704 TYPE_TARGET_STUB (type) = 0;
1706 else if (TYPE_CODE (type) == TYPE_CODE_RANGE)
1708 TYPE_LENGTH (type) = TYPE_LENGTH (target_type);
1709 TYPE_TARGET_STUB (type) = 0;
1713 type = make_qualified_type (type, instance_flags, NULL);
1715 /* Cache TYPE_LENGTH for future use. */
1716 TYPE_LENGTH (orig_type) = TYPE_LENGTH (type);
1718 return type;
1721 /* Parse a type expression in the string [P..P+LENGTH). If an error
1722 occurs, silently return a void type. */
1724 static struct type *
1725 safe_parse_type (struct gdbarch *gdbarch, char *p, int length)
1727 struct ui_file *saved_gdb_stderr;
1728 struct type *type = NULL; /* Initialize to keep gcc happy. */
1729 volatile struct gdb_exception except;
1731 /* Suppress error messages. */
1732 saved_gdb_stderr = gdb_stderr;
1733 gdb_stderr = ui_file_new ();
1735 /* Call parse_and_eval_type() without fear of longjmp()s. */
1736 TRY_CATCH (except, RETURN_MASK_ERROR)
1738 type = parse_and_eval_type (p, length);
1741 if (except.reason < 0)
1742 type = builtin_type (gdbarch)->builtin_void;
1744 /* Stop suppressing error messages. */
1745 ui_file_delete (gdb_stderr);
1746 gdb_stderr = saved_gdb_stderr;
1748 return type;
1751 /* Ugly hack to convert method stubs into method types.
1753 He ain't kiddin'. This demangles the name of the method into a
1754 string including argument types, parses out each argument type,
1755 generates a string casting a zero to that type, evaluates the
1756 string, and stuffs the resulting type into an argtype vector!!!
1757 Then it knows the type of the whole function (including argument
1758 types for overloading), which info used to be in the stab's but was
1759 removed to hack back the space required for them. */
1761 static void
1762 check_stub_method (struct type *type, int method_id, int signature_id)
1764 struct gdbarch *gdbarch = get_type_arch (type);
1765 struct fn_field *f;
1766 char *mangled_name = gdb_mangle_name (type, method_id, signature_id);
1767 char *demangled_name = cplus_demangle (mangled_name,
1768 DMGL_PARAMS | DMGL_ANSI);
1769 char *argtypetext, *p;
1770 int depth = 0, argcount = 1;
1771 struct field *argtypes;
1772 struct type *mtype;
1774 /* Make sure we got back a function string that we can use. */
1775 if (demangled_name)
1776 p = strchr (demangled_name, '(');
1777 else
1778 p = NULL;
1780 if (demangled_name == NULL || p == NULL)
1781 error (_("Internal: Cannot demangle mangled name `%s'."),
1782 mangled_name);
1784 /* Now, read in the parameters that define this type. */
1785 p += 1;
1786 argtypetext = p;
1787 while (*p)
1789 if (*p == '(' || *p == '<')
1791 depth += 1;
1793 else if (*p == ')' || *p == '>')
1795 depth -= 1;
1797 else if (*p == ',' && depth == 0)
1799 argcount += 1;
1802 p += 1;
1805 /* If we read one argument and it was ``void'', don't count it. */
1806 if (strncmp (argtypetext, "(void)", 6) == 0)
1807 argcount -= 1;
1809 /* We need one extra slot, for the THIS pointer. */
1811 argtypes = (struct field *)
1812 TYPE_ALLOC (type, (argcount + 1) * sizeof (struct field));
1813 p = argtypetext;
1815 /* Add THIS pointer for non-static methods. */
1816 f = TYPE_FN_FIELDLIST1 (type, method_id);
1817 if (TYPE_FN_FIELD_STATIC_P (f, signature_id))
1818 argcount = 0;
1819 else
1821 argtypes[0].type = lookup_pointer_type (type);
1822 argcount = 1;
1825 if (*p != ')') /* () means no args, skip while. */
1827 depth = 0;
1828 while (*p)
1830 if (depth <= 0 && (*p == ',' || *p == ')'))
1832 /* Avoid parsing of ellipsis, they will be handled below.
1833 Also avoid ``void'' as above. */
1834 if (strncmp (argtypetext, "...", p - argtypetext) != 0
1835 && strncmp (argtypetext, "void", p - argtypetext) != 0)
1837 argtypes[argcount].type =
1838 safe_parse_type (gdbarch, argtypetext, p - argtypetext);
1839 argcount += 1;
1841 argtypetext = p + 1;
1844 if (*p == '(' || *p == '<')
1846 depth += 1;
1848 else if (*p == ')' || *p == '>')
1850 depth -= 1;
1853 p += 1;
1857 TYPE_FN_FIELD_PHYSNAME (f, signature_id) = mangled_name;
1859 /* Now update the old "stub" type into a real type. */
1860 mtype = TYPE_FN_FIELD_TYPE (f, signature_id);
1861 TYPE_DOMAIN_TYPE (mtype) = type;
1862 TYPE_FIELDS (mtype) = argtypes;
1863 TYPE_NFIELDS (mtype) = argcount;
1864 TYPE_STUB (mtype) = 0;
1865 TYPE_FN_FIELD_STUB (f, signature_id) = 0;
1866 if (p[-2] == '.')
1867 TYPE_VARARGS (mtype) = 1;
1869 xfree (demangled_name);
1872 /* This is the external interface to check_stub_method, above. This
1873 function unstubs all of the signatures for TYPE's METHOD_ID method
1874 name. After calling this function TYPE_FN_FIELD_STUB will be
1875 cleared for each signature and TYPE_FN_FIELDLIST_NAME will be
1876 correct.
1878 This function unfortunately can not die until stabs do. */
1880 void
1881 check_stub_method_group (struct type *type, int method_id)
1883 int len = TYPE_FN_FIELDLIST_LENGTH (type, method_id);
1884 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
1885 int j, found_stub = 0;
1887 for (j = 0; j < len; j++)
1888 if (TYPE_FN_FIELD_STUB (f, j))
1890 found_stub = 1;
1891 check_stub_method (type, method_id, j);
1894 /* GNU v3 methods with incorrect names were corrected when we read
1895 in type information, because it was cheaper to do it then. The
1896 only GNU v2 methods with incorrect method names are operators and
1897 destructors; destructors were also corrected when we read in type
1898 information.
1900 Therefore the only thing we need to handle here are v2 operator
1901 names. */
1902 if (found_stub && strncmp (TYPE_FN_FIELD_PHYSNAME (f, 0), "_Z", 2) != 0)
1904 int ret;
1905 char dem_opname[256];
1907 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
1908 method_id),
1909 dem_opname, DMGL_ANSI);
1910 if (!ret)
1911 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
1912 method_id),
1913 dem_opname, 0);
1914 if (ret)
1915 TYPE_FN_FIELDLIST_NAME (type, method_id) = xstrdup (dem_opname);
1919 /* Ensure it is in .rodata (if available) by workarounding GCC PR 44690. */
1920 const struct cplus_struct_type cplus_struct_default = { };
1922 void
1923 allocate_cplus_struct_type (struct type *type)
1925 if (HAVE_CPLUS_STRUCT (type))
1926 /* Structure was already allocated. Nothing more to do. */
1927 return;
1929 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF;
1930 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type *)
1931 TYPE_ALLOC (type, sizeof (struct cplus_struct_type));
1932 *(TYPE_RAW_CPLUS_SPECIFIC (type)) = cplus_struct_default;
1935 const struct gnat_aux_type gnat_aux_default =
1936 { NULL };
1938 /* Set the TYPE's type-specific kind to TYPE_SPECIFIC_GNAT_STUFF,
1939 and allocate the associated gnat-specific data. The gnat-specific
1940 data is also initialized to gnat_aux_default. */
1942 void
1943 allocate_gnat_aux_type (struct type *type)
1945 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF;
1946 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *)
1947 TYPE_ALLOC (type, sizeof (struct gnat_aux_type));
1948 *(TYPE_GNAT_SPECIFIC (type)) = gnat_aux_default;
1951 /* Helper function to initialize the standard scalar types.
1953 If NAME is non-NULL, then it is used to initialize the type name.
1954 Note that NAME is not copied; it is required to have a lifetime at
1955 least as long as OBJFILE. */
1957 struct type *
1958 init_type (enum type_code code, int length, int flags,
1959 const char *name, struct objfile *objfile)
1961 struct type *type;
1963 type = alloc_type (objfile);
1964 TYPE_CODE (type) = code;
1965 TYPE_LENGTH (type) = length;
1967 gdb_assert (!(flags & (TYPE_FLAG_MIN - 1)));
1968 if (flags & TYPE_FLAG_UNSIGNED)
1969 TYPE_UNSIGNED (type) = 1;
1970 if (flags & TYPE_FLAG_NOSIGN)
1971 TYPE_NOSIGN (type) = 1;
1972 if (flags & TYPE_FLAG_STUB)
1973 TYPE_STUB (type) = 1;
1974 if (flags & TYPE_FLAG_TARGET_STUB)
1975 TYPE_TARGET_STUB (type) = 1;
1976 if (flags & TYPE_FLAG_STATIC)
1977 TYPE_STATIC (type) = 1;
1978 if (flags & TYPE_FLAG_PROTOTYPED)
1979 TYPE_PROTOTYPED (type) = 1;
1980 if (flags & TYPE_FLAG_INCOMPLETE)
1981 TYPE_INCOMPLETE (type) = 1;
1982 if (flags & TYPE_FLAG_VARARGS)
1983 TYPE_VARARGS (type) = 1;
1984 if (flags & TYPE_FLAG_VECTOR)
1985 TYPE_VECTOR (type) = 1;
1986 if (flags & TYPE_FLAG_STUB_SUPPORTED)
1987 TYPE_STUB_SUPPORTED (type) = 1;
1988 if (flags & TYPE_FLAG_FIXED_INSTANCE)
1989 TYPE_FIXED_INSTANCE (type) = 1;
1990 if (flags & TYPE_FLAG_GNU_IFUNC)
1991 TYPE_GNU_IFUNC (type) = 1;
1993 TYPE_NAME (type) = name;
1995 /* C++ fancies. */
1997 if (name && strcmp (name, "char") == 0)
1998 TYPE_NOSIGN (type) = 1;
2000 switch (code)
2002 case TYPE_CODE_STRUCT:
2003 case TYPE_CODE_UNION:
2004 case TYPE_CODE_NAMESPACE:
2005 INIT_CPLUS_SPECIFIC (type);
2006 break;
2007 case TYPE_CODE_FLT:
2008 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FLOATFORMAT;
2009 break;
2010 case TYPE_CODE_FUNC:
2011 INIT_FUNC_SPECIFIC (type);
2012 break;
2014 return type;
2017 /* Queries on types. */
2020 can_dereference (struct type *t)
2022 /* FIXME: Should we return true for references as well as
2023 pointers? */
2024 CHECK_TYPEDEF (t);
2025 return
2026 (t != NULL
2027 && TYPE_CODE (t) == TYPE_CODE_PTR
2028 && TYPE_CODE (TYPE_TARGET_TYPE (t)) != TYPE_CODE_VOID);
2032 is_integral_type (struct type *t)
2034 CHECK_TYPEDEF (t);
2035 return
2036 ((t != NULL)
2037 && ((TYPE_CODE (t) == TYPE_CODE_INT)
2038 || (TYPE_CODE (t) == TYPE_CODE_ENUM)
2039 || (TYPE_CODE (t) == TYPE_CODE_FLAGS)
2040 || (TYPE_CODE (t) == TYPE_CODE_CHAR)
2041 || (TYPE_CODE (t) == TYPE_CODE_RANGE)
2042 || (TYPE_CODE (t) == TYPE_CODE_BOOL)));
2045 /* Return true if TYPE is scalar. */
2047 static int
2048 is_scalar_type (struct type *type)
2050 CHECK_TYPEDEF (type);
2052 switch (TYPE_CODE (type))
2054 case TYPE_CODE_ARRAY:
2055 case TYPE_CODE_STRUCT:
2056 case TYPE_CODE_UNION:
2057 case TYPE_CODE_SET:
2058 case TYPE_CODE_STRING:
2059 return 0;
2060 default:
2061 return 1;
2065 /* Return true if T is scalar, or a composite type which in practice has
2066 the memory layout of a scalar type. E.g., an array or struct with only
2067 one scalar element inside it, or a union with only scalar elements. */
2070 is_scalar_type_recursive (struct type *t)
2072 CHECK_TYPEDEF (t);
2074 if (is_scalar_type (t))
2075 return 1;
2076 /* Are we dealing with an array or string of known dimensions? */
2077 else if ((TYPE_CODE (t) == TYPE_CODE_ARRAY
2078 || TYPE_CODE (t) == TYPE_CODE_STRING) && TYPE_NFIELDS (t) == 1
2079 && TYPE_CODE (TYPE_INDEX_TYPE (t)) == TYPE_CODE_RANGE)
2081 LONGEST low_bound, high_bound;
2082 struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (t));
2084 get_discrete_bounds (TYPE_INDEX_TYPE (t), &low_bound, &high_bound);
2086 return high_bound == low_bound && is_scalar_type_recursive (elt_type);
2088 /* Are we dealing with a struct with one element? */
2089 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT && TYPE_NFIELDS (t) == 1)
2090 return is_scalar_type_recursive (TYPE_FIELD_TYPE (t, 0));
2091 else if (TYPE_CODE (t) == TYPE_CODE_UNION)
2093 int i, n = TYPE_NFIELDS (t);
2095 /* If all elements of the union are scalar, then the union is scalar. */
2096 for (i = 0; i < n; i++)
2097 if (!is_scalar_type_recursive (TYPE_FIELD_TYPE (t, i)))
2098 return 0;
2100 return 1;
2103 return 0;
2106 /* A helper function which returns true if types A and B represent the
2107 "same" class type. This is true if the types have the same main
2108 type, or the same name. */
2111 class_types_same_p (const struct type *a, const struct type *b)
2113 return (TYPE_MAIN_TYPE (a) == TYPE_MAIN_TYPE (b)
2114 || (TYPE_NAME (a) && TYPE_NAME (b)
2115 && !strcmp (TYPE_NAME (a), TYPE_NAME (b))));
2118 /* If BASE is an ancestor of DCLASS return the distance between them.
2119 otherwise return -1;
2122 class A {};
2123 class B: public A {};
2124 class C: public B {};
2125 class D: C {};
2127 distance_to_ancestor (A, A, 0) = 0
2128 distance_to_ancestor (A, B, 0) = 1
2129 distance_to_ancestor (A, C, 0) = 2
2130 distance_to_ancestor (A, D, 0) = 3
2132 If PUBLIC is 1 then only public ancestors are considered,
2133 and the function returns the distance only if BASE is a public ancestor
2134 of DCLASS.
2137 distance_to_ancestor (A, D, 1) = -1. */
2139 static int
2140 distance_to_ancestor (struct type *base, struct type *dclass, int public)
2142 int i;
2143 int d;
2145 CHECK_TYPEDEF (base);
2146 CHECK_TYPEDEF (dclass);
2148 if (class_types_same_p (base, dclass))
2149 return 0;
2151 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
2153 if (public && ! BASETYPE_VIA_PUBLIC (dclass, i))
2154 continue;
2156 d = distance_to_ancestor (base, TYPE_BASECLASS (dclass, i), public);
2157 if (d >= 0)
2158 return 1 + d;
2161 return -1;
2164 /* Check whether BASE is an ancestor or base class or DCLASS
2165 Return 1 if so, and 0 if not.
2166 Note: If BASE and DCLASS are of the same type, this function
2167 will return 1. So for some class A, is_ancestor (A, A) will
2168 return 1. */
2171 is_ancestor (struct type *base, struct type *dclass)
2173 return distance_to_ancestor (base, dclass, 0) >= 0;
2176 /* Like is_ancestor, but only returns true when BASE is a public
2177 ancestor of DCLASS. */
2180 is_public_ancestor (struct type *base, struct type *dclass)
2182 return distance_to_ancestor (base, dclass, 1) >= 0;
2185 /* A helper function for is_unique_ancestor. */
2187 static int
2188 is_unique_ancestor_worker (struct type *base, struct type *dclass,
2189 int *offset,
2190 const gdb_byte *valaddr, int embedded_offset,
2191 CORE_ADDR address, struct value *val)
2193 int i, count = 0;
2195 CHECK_TYPEDEF (base);
2196 CHECK_TYPEDEF (dclass);
2198 for (i = 0; i < TYPE_N_BASECLASSES (dclass) && count < 2; ++i)
2200 struct type *iter;
2201 int this_offset;
2203 iter = check_typedef (TYPE_BASECLASS (dclass, i));
2205 this_offset = baseclass_offset (dclass, i, valaddr, embedded_offset,
2206 address, val);
2208 if (class_types_same_p (base, iter))
2210 /* If this is the first subclass, set *OFFSET and set count
2211 to 1. Otherwise, if this is at the same offset as
2212 previous instances, do nothing. Otherwise, increment
2213 count. */
2214 if (*offset == -1)
2216 *offset = this_offset;
2217 count = 1;
2219 else if (this_offset == *offset)
2221 /* Nothing. */
2223 else
2224 ++count;
2226 else
2227 count += is_unique_ancestor_worker (base, iter, offset,
2228 valaddr,
2229 embedded_offset + this_offset,
2230 address, val);
2233 return count;
2236 /* Like is_ancestor, but only returns true if BASE is a unique base
2237 class of the type of VAL. */
2240 is_unique_ancestor (struct type *base, struct value *val)
2242 int offset = -1;
2244 return is_unique_ancestor_worker (base, value_type (val), &offset,
2245 value_contents_for_printing (val),
2246 value_embedded_offset (val),
2247 value_address (val), val) == 1;
2251 /* Overload resolution. */
2253 /* Return the sum of the rank of A with the rank of B. */
2255 struct rank
2256 sum_ranks (struct rank a, struct rank b)
2258 struct rank c;
2259 c.rank = a.rank + b.rank;
2260 c.subrank = a.subrank + b.subrank;
2261 return c;
2264 /* Compare rank A and B and return:
2265 0 if a = b
2266 1 if a is better than b
2267 -1 if b is better than a. */
2270 compare_ranks (struct rank a, struct rank b)
2272 if (a.rank == b.rank)
2274 if (a.subrank == b.subrank)
2275 return 0;
2276 if (a.subrank < b.subrank)
2277 return 1;
2278 if (a.subrank > b.subrank)
2279 return -1;
2282 if (a.rank < b.rank)
2283 return 1;
2285 /* a.rank > b.rank */
2286 return -1;
2289 /* Functions for overload resolution begin here. */
2291 /* Compare two badness vectors A and B and return the result.
2292 0 => A and B are identical
2293 1 => A and B are incomparable
2294 2 => A is better than B
2295 3 => A is worse than B */
2298 compare_badness (struct badness_vector *a, struct badness_vector *b)
2300 int i;
2301 int tmp;
2302 short found_pos = 0; /* any positives in c? */
2303 short found_neg = 0; /* any negatives in c? */
2305 /* differing lengths => incomparable */
2306 if (a->length != b->length)
2307 return 1;
2309 /* Subtract b from a */
2310 for (i = 0; i < a->length; i++)
2312 tmp = compare_ranks (b->rank[i], a->rank[i]);
2313 if (tmp > 0)
2314 found_pos = 1;
2315 else if (tmp < 0)
2316 found_neg = 1;
2319 if (found_pos)
2321 if (found_neg)
2322 return 1; /* incomparable */
2323 else
2324 return 3; /* A > B */
2326 else
2327 /* no positives */
2329 if (found_neg)
2330 return 2; /* A < B */
2331 else
2332 return 0; /* A == B */
2336 /* Rank a function by comparing its parameter types (PARMS, length
2337 NPARMS), to the types of an argument list (ARGS, length NARGS).
2338 Return a pointer to a badness vector. This has NARGS + 1
2339 entries. */
2341 struct badness_vector *
2342 rank_function (struct type **parms, int nparms,
2343 struct value **args, int nargs)
2345 int i;
2346 struct badness_vector *bv;
2347 int min_len = nparms < nargs ? nparms : nargs;
2349 bv = xmalloc (sizeof (struct badness_vector));
2350 bv->length = nargs + 1; /* add 1 for the length-match rank. */
2351 bv->rank = xmalloc ((nargs + 1) * sizeof (int));
2353 /* First compare the lengths of the supplied lists.
2354 If there is a mismatch, set it to a high value. */
2356 /* pai/1997-06-03 FIXME: when we have debug info about default
2357 arguments and ellipsis parameter lists, we should consider those
2358 and rank the length-match more finely. */
2360 LENGTH_MATCH (bv) = (nargs != nparms)
2361 ? LENGTH_MISMATCH_BADNESS
2362 : EXACT_MATCH_BADNESS;
2364 /* Now rank all the parameters of the candidate function. */
2365 for (i = 1; i <= min_len; i++)
2366 bv->rank[i] = rank_one_type (parms[i - 1], value_type (args[i - 1]),
2367 args[i - 1]);
2369 /* If more arguments than parameters, add dummy entries. */
2370 for (i = min_len + 1; i <= nargs; i++)
2371 bv->rank[i] = TOO_FEW_PARAMS_BADNESS;
2373 return bv;
2376 /* Compare the names of two integer types, assuming that any sign
2377 qualifiers have been checked already. We do it this way because
2378 there may be an "int" in the name of one of the types. */
2380 static int
2381 integer_types_same_name_p (const char *first, const char *second)
2383 int first_p, second_p;
2385 /* If both are shorts, return 1; if neither is a short, keep
2386 checking. */
2387 first_p = (strstr (first, "short") != NULL);
2388 second_p = (strstr (second, "short") != NULL);
2389 if (first_p && second_p)
2390 return 1;
2391 if (first_p || second_p)
2392 return 0;
2394 /* Likewise for long. */
2395 first_p = (strstr (first, "long") != NULL);
2396 second_p = (strstr (second, "long") != NULL);
2397 if (first_p && second_p)
2398 return 1;
2399 if (first_p || second_p)
2400 return 0;
2402 /* Likewise for char. */
2403 first_p = (strstr (first, "char") != NULL);
2404 second_p = (strstr (second, "char") != NULL);
2405 if (first_p && second_p)
2406 return 1;
2407 if (first_p || second_p)
2408 return 0;
2410 /* They must both be ints. */
2411 return 1;
2414 /* Compares type A to type B returns 1 if the represent the same type
2415 0 otherwise. */
2418 types_equal (struct type *a, struct type *b)
2420 /* Identical type pointers. */
2421 /* However, this still doesn't catch all cases of same type for b
2422 and a. The reason is that builtin types are different from
2423 the same ones constructed from the object. */
2424 if (a == b)
2425 return 1;
2427 /* Resolve typedefs */
2428 if (TYPE_CODE (a) == TYPE_CODE_TYPEDEF)
2429 a = check_typedef (a);
2430 if (TYPE_CODE (b) == TYPE_CODE_TYPEDEF)
2431 b = check_typedef (b);
2433 /* If after resolving typedefs a and b are not of the same type
2434 code then they are not equal. */
2435 if (TYPE_CODE (a) != TYPE_CODE (b))
2436 return 0;
2438 /* If a and b are both pointers types or both reference types then
2439 they are equal of the same type iff the objects they refer to are
2440 of the same type. */
2441 if (TYPE_CODE (a) == TYPE_CODE_PTR
2442 || TYPE_CODE (a) == TYPE_CODE_REF)
2443 return types_equal (TYPE_TARGET_TYPE (a),
2444 TYPE_TARGET_TYPE (b));
2446 /* Well, damnit, if the names are exactly the same, I'll say they
2447 are exactly the same. This happens when we generate method
2448 stubs. The types won't point to the same address, but they
2449 really are the same. */
2451 if (TYPE_NAME (a) && TYPE_NAME (b)
2452 && strcmp (TYPE_NAME (a), TYPE_NAME (b)) == 0)
2453 return 1;
2455 /* Check if identical after resolving typedefs. */
2456 if (a == b)
2457 return 1;
2459 return 0;
2462 /* Compare one type (PARM) for compatibility with another (ARG).
2463 * PARM is intended to be the parameter type of a function; and
2464 * ARG is the supplied argument's type. This function tests if
2465 * the latter can be converted to the former.
2466 * VALUE is the argument's value or NULL if none (or called recursively)
2468 * Return 0 if they are identical types;
2469 * Otherwise, return an integer which corresponds to how compatible
2470 * PARM is to ARG. The higher the return value, the worse the match.
2471 * Generally the "bad" conversions are all uniformly assigned a 100. */
2473 struct rank
2474 rank_one_type (struct type *parm, struct type *arg, struct value *value)
2476 struct rank rank = {0,0};
2478 if (types_equal (parm, arg))
2479 return EXACT_MATCH_BADNESS;
2481 /* Resolve typedefs */
2482 if (TYPE_CODE (parm) == TYPE_CODE_TYPEDEF)
2483 parm = check_typedef (parm);
2484 if (TYPE_CODE (arg) == TYPE_CODE_TYPEDEF)
2485 arg = check_typedef (arg);
2487 /* See through references, since we can almost make non-references
2488 references. */
2489 if (TYPE_CODE (arg) == TYPE_CODE_REF)
2490 return (sum_ranks (rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL),
2491 REFERENCE_CONVERSION_BADNESS));
2492 if (TYPE_CODE (parm) == TYPE_CODE_REF)
2493 return (sum_ranks (rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL),
2494 REFERENCE_CONVERSION_BADNESS));
2495 if (overload_debug)
2496 /* Debugging only. */
2497 fprintf_filtered (gdb_stderr,
2498 "------ Arg is %s [%d], parm is %s [%d]\n",
2499 TYPE_NAME (arg), TYPE_CODE (arg),
2500 TYPE_NAME (parm), TYPE_CODE (parm));
2502 /* x -> y means arg of type x being supplied for parameter of type y. */
2504 switch (TYPE_CODE (parm))
2506 case TYPE_CODE_PTR:
2507 switch (TYPE_CODE (arg))
2509 case TYPE_CODE_PTR:
2511 /* Allowed pointer conversions are:
2512 (a) pointer to void-pointer conversion. */
2513 if (TYPE_CODE (TYPE_TARGET_TYPE (parm)) == TYPE_CODE_VOID)
2514 return VOID_PTR_CONVERSION_BADNESS;
2516 /* (b) pointer to ancestor-pointer conversion. */
2517 rank.subrank = distance_to_ancestor (TYPE_TARGET_TYPE (parm),
2518 TYPE_TARGET_TYPE (arg),
2520 if (rank.subrank >= 0)
2521 return sum_ranks (BASE_PTR_CONVERSION_BADNESS, rank);
2523 return INCOMPATIBLE_TYPE_BADNESS;
2524 case TYPE_CODE_ARRAY:
2525 if (types_equal (TYPE_TARGET_TYPE (parm),
2526 TYPE_TARGET_TYPE (arg)))
2527 return EXACT_MATCH_BADNESS;
2528 return INCOMPATIBLE_TYPE_BADNESS;
2529 case TYPE_CODE_FUNC:
2530 return rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL);
2531 case TYPE_CODE_INT:
2532 if (value != NULL && TYPE_CODE (value_type (value)) == TYPE_CODE_INT)
2534 if (value_as_long (value) == 0)
2536 /* Null pointer conversion: allow it to be cast to a pointer.
2537 [4.10.1 of C++ standard draft n3290] */
2538 return NULL_POINTER_CONVERSION_BADNESS;
2540 else
2542 /* If type checking is disabled, allow the conversion. */
2543 if (!strict_type_checking)
2544 return NS_INTEGER_POINTER_CONVERSION_BADNESS;
2547 /* fall through */
2548 case TYPE_CODE_ENUM:
2549 case TYPE_CODE_FLAGS:
2550 case TYPE_CODE_CHAR:
2551 case TYPE_CODE_RANGE:
2552 case TYPE_CODE_BOOL:
2553 default:
2554 return INCOMPATIBLE_TYPE_BADNESS;
2556 case TYPE_CODE_ARRAY:
2557 switch (TYPE_CODE (arg))
2559 case TYPE_CODE_PTR:
2560 case TYPE_CODE_ARRAY:
2561 return rank_one_type (TYPE_TARGET_TYPE (parm),
2562 TYPE_TARGET_TYPE (arg), NULL);
2563 default:
2564 return INCOMPATIBLE_TYPE_BADNESS;
2566 case TYPE_CODE_FUNC:
2567 switch (TYPE_CODE (arg))
2569 case TYPE_CODE_PTR: /* funcptr -> func */
2570 return rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL);
2571 default:
2572 return INCOMPATIBLE_TYPE_BADNESS;
2574 case TYPE_CODE_INT:
2575 switch (TYPE_CODE (arg))
2577 case TYPE_CODE_INT:
2578 if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
2580 /* Deal with signed, unsigned, and plain chars and
2581 signed and unsigned ints. */
2582 if (TYPE_NOSIGN (parm))
2584 /* This case only for character types. */
2585 if (TYPE_NOSIGN (arg))
2586 return EXACT_MATCH_BADNESS; /* plain char -> plain char */
2587 else /* signed/unsigned char -> plain char */
2588 return INTEGER_CONVERSION_BADNESS;
2590 else if (TYPE_UNSIGNED (parm))
2592 if (TYPE_UNSIGNED (arg))
2594 /* unsigned int -> unsigned int, or
2595 unsigned long -> unsigned long */
2596 if (integer_types_same_name_p (TYPE_NAME (parm),
2597 TYPE_NAME (arg)))
2598 return EXACT_MATCH_BADNESS;
2599 else if (integer_types_same_name_p (TYPE_NAME (arg),
2600 "int")
2601 && integer_types_same_name_p (TYPE_NAME (parm),
2602 "long"))
2603 /* unsigned int -> unsigned long */
2604 return INTEGER_PROMOTION_BADNESS;
2605 else
2606 /* unsigned long -> unsigned int */
2607 return INTEGER_CONVERSION_BADNESS;
2609 else
2611 if (integer_types_same_name_p (TYPE_NAME (arg),
2612 "long")
2613 && integer_types_same_name_p (TYPE_NAME (parm),
2614 "int"))
2615 /* signed long -> unsigned int */
2616 return INTEGER_CONVERSION_BADNESS;
2617 else
2618 /* signed int/long -> unsigned int/long */
2619 return INTEGER_CONVERSION_BADNESS;
2622 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
2624 if (integer_types_same_name_p (TYPE_NAME (parm),
2625 TYPE_NAME (arg)))
2626 return EXACT_MATCH_BADNESS;
2627 else if (integer_types_same_name_p (TYPE_NAME (arg),
2628 "int")
2629 && integer_types_same_name_p (TYPE_NAME (parm),
2630 "long"))
2631 return INTEGER_PROMOTION_BADNESS;
2632 else
2633 return INTEGER_CONVERSION_BADNESS;
2635 else
2636 return INTEGER_CONVERSION_BADNESS;
2638 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
2639 return INTEGER_PROMOTION_BADNESS;
2640 else
2641 return INTEGER_CONVERSION_BADNESS;
2642 case TYPE_CODE_ENUM:
2643 case TYPE_CODE_FLAGS:
2644 case TYPE_CODE_CHAR:
2645 case TYPE_CODE_RANGE:
2646 case TYPE_CODE_BOOL:
2647 return INTEGER_PROMOTION_BADNESS;
2648 case TYPE_CODE_FLT:
2649 return INT_FLOAT_CONVERSION_BADNESS;
2650 case TYPE_CODE_PTR:
2651 return NS_POINTER_CONVERSION_BADNESS;
2652 default:
2653 return INCOMPATIBLE_TYPE_BADNESS;
2655 break;
2656 case TYPE_CODE_ENUM:
2657 switch (TYPE_CODE (arg))
2659 case TYPE_CODE_INT:
2660 case TYPE_CODE_CHAR:
2661 case TYPE_CODE_RANGE:
2662 case TYPE_CODE_BOOL:
2663 case TYPE_CODE_ENUM:
2664 return INTEGER_CONVERSION_BADNESS;
2665 case TYPE_CODE_FLT:
2666 return INT_FLOAT_CONVERSION_BADNESS;
2667 default:
2668 return INCOMPATIBLE_TYPE_BADNESS;
2670 break;
2671 case TYPE_CODE_CHAR:
2672 switch (TYPE_CODE (arg))
2674 case TYPE_CODE_RANGE:
2675 case TYPE_CODE_BOOL:
2676 case TYPE_CODE_ENUM:
2677 return INTEGER_CONVERSION_BADNESS;
2678 case TYPE_CODE_FLT:
2679 return INT_FLOAT_CONVERSION_BADNESS;
2680 case TYPE_CODE_INT:
2681 if (TYPE_LENGTH (arg) > TYPE_LENGTH (parm))
2682 return INTEGER_CONVERSION_BADNESS;
2683 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
2684 return INTEGER_PROMOTION_BADNESS;
2685 /* >>> !! else fall through !! <<< */
2686 case TYPE_CODE_CHAR:
2687 /* Deal with signed, unsigned, and plain chars for C++ and
2688 with int cases falling through from previous case. */
2689 if (TYPE_NOSIGN (parm))
2691 if (TYPE_NOSIGN (arg))
2692 return EXACT_MATCH_BADNESS;
2693 else
2694 return INTEGER_CONVERSION_BADNESS;
2696 else if (TYPE_UNSIGNED (parm))
2698 if (TYPE_UNSIGNED (arg))
2699 return EXACT_MATCH_BADNESS;
2700 else
2701 return INTEGER_PROMOTION_BADNESS;
2703 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
2704 return EXACT_MATCH_BADNESS;
2705 else
2706 return INTEGER_CONVERSION_BADNESS;
2707 default:
2708 return INCOMPATIBLE_TYPE_BADNESS;
2710 break;
2711 case TYPE_CODE_RANGE:
2712 switch (TYPE_CODE (arg))
2714 case TYPE_CODE_INT:
2715 case TYPE_CODE_CHAR:
2716 case TYPE_CODE_RANGE:
2717 case TYPE_CODE_BOOL:
2718 case TYPE_CODE_ENUM:
2719 return INTEGER_CONVERSION_BADNESS;
2720 case TYPE_CODE_FLT:
2721 return INT_FLOAT_CONVERSION_BADNESS;
2722 default:
2723 return INCOMPATIBLE_TYPE_BADNESS;
2725 break;
2726 case TYPE_CODE_BOOL:
2727 switch (TYPE_CODE (arg))
2729 /* n3290 draft, section 4.12.1 (conv.bool):
2731 "A prvalue of arithmetic, unscoped enumeration, pointer, or
2732 pointer to member type can be converted to a prvalue of type
2733 bool. A zero value, null pointer value, or null member pointer
2734 value is converted to false; any other value is converted to
2735 true. A prvalue of type std::nullptr_t can be converted to a
2736 prvalue of type bool; the resulting value is false." */
2737 case TYPE_CODE_INT:
2738 case TYPE_CODE_CHAR:
2739 case TYPE_CODE_ENUM:
2740 case TYPE_CODE_FLT:
2741 case TYPE_CODE_MEMBERPTR:
2742 case TYPE_CODE_PTR:
2743 return BOOL_CONVERSION_BADNESS;
2744 case TYPE_CODE_RANGE:
2745 return INCOMPATIBLE_TYPE_BADNESS;
2746 case TYPE_CODE_BOOL:
2747 return EXACT_MATCH_BADNESS;
2748 default:
2749 return INCOMPATIBLE_TYPE_BADNESS;
2751 break;
2752 case TYPE_CODE_FLT:
2753 switch (TYPE_CODE (arg))
2755 case TYPE_CODE_FLT:
2756 if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
2757 return FLOAT_PROMOTION_BADNESS;
2758 else if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
2759 return EXACT_MATCH_BADNESS;
2760 else
2761 return FLOAT_CONVERSION_BADNESS;
2762 case TYPE_CODE_INT:
2763 case TYPE_CODE_BOOL:
2764 case TYPE_CODE_ENUM:
2765 case TYPE_CODE_RANGE:
2766 case TYPE_CODE_CHAR:
2767 return INT_FLOAT_CONVERSION_BADNESS;
2768 default:
2769 return INCOMPATIBLE_TYPE_BADNESS;
2771 break;
2772 case TYPE_CODE_COMPLEX:
2773 switch (TYPE_CODE (arg))
2774 { /* Strictly not needed for C++, but... */
2775 case TYPE_CODE_FLT:
2776 return FLOAT_PROMOTION_BADNESS;
2777 case TYPE_CODE_COMPLEX:
2778 return EXACT_MATCH_BADNESS;
2779 default:
2780 return INCOMPATIBLE_TYPE_BADNESS;
2782 break;
2783 case TYPE_CODE_STRUCT:
2784 /* currently same as TYPE_CODE_CLASS. */
2785 switch (TYPE_CODE (arg))
2787 case TYPE_CODE_STRUCT:
2788 /* Check for derivation */
2789 rank.subrank = distance_to_ancestor (parm, arg, 0);
2790 if (rank.subrank >= 0)
2791 return sum_ranks (BASE_CONVERSION_BADNESS, rank);
2792 /* else fall through */
2793 default:
2794 return INCOMPATIBLE_TYPE_BADNESS;
2796 break;
2797 case TYPE_CODE_UNION:
2798 switch (TYPE_CODE (arg))
2800 case TYPE_CODE_UNION:
2801 default:
2802 return INCOMPATIBLE_TYPE_BADNESS;
2804 break;
2805 case TYPE_CODE_MEMBERPTR:
2806 switch (TYPE_CODE (arg))
2808 default:
2809 return INCOMPATIBLE_TYPE_BADNESS;
2811 break;
2812 case TYPE_CODE_METHOD:
2813 switch (TYPE_CODE (arg))
2816 default:
2817 return INCOMPATIBLE_TYPE_BADNESS;
2819 break;
2820 case TYPE_CODE_REF:
2821 switch (TYPE_CODE (arg))
2824 default:
2825 return INCOMPATIBLE_TYPE_BADNESS;
2828 break;
2829 case TYPE_CODE_SET:
2830 switch (TYPE_CODE (arg))
2832 /* Not in C++ */
2833 case TYPE_CODE_SET:
2834 return rank_one_type (TYPE_FIELD_TYPE (parm, 0),
2835 TYPE_FIELD_TYPE (arg, 0), NULL);
2836 default:
2837 return INCOMPATIBLE_TYPE_BADNESS;
2839 break;
2840 case TYPE_CODE_VOID:
2841 default:
2842 return INCOMPATIBLE_TYPE_BADNESS;
2843 } /* switch (TYPE_CODE (arg)) */
2846 /* End of functions for overload resolution. */
2848 /* Routines to pretty-print types. */
2850 static void
2851 print_bit_vector (B_TYPE *bits, int nbits)
2853 int bitno;
2855 for (bitno = 0; bitno < nbits; bitno++)
2857 if ((bitno % 8) == 0)
2859 puts_filtered (" ");
2861 if (B_TST (bits, bitno))
2862 printf_filtered (("1"));
2863 else
2864 printf_filtered (("0"));
2868 /* Note the first arg should be the "this" pointer, we may not want to
2869 include it since we may get into a infinitely recursive
2870 situation. */
2872 static void
2873 print_arg_types (struct field *args, int nargs, int spaces)
2875 if (args != NULL)
2877 int i;
2879 for (i = 0; i < nargs; i++)
2880 recursive_dump_type (args[i].type, spaces + 2);
2885 field_is_static (struct field *f)
2887 /* "static" fields are the fields whose location is not relative
2888 to the address of the enclosing struct. It would be nice to
2889 have a dedicated flag that would be set for static fields when
2890 the type is being created. But in practice, checking the field
2891 loc_kind should give us an accurate answer. */
2892 return (FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSNAME
2893 || FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSADDR);
2896 static void
2897 dump_fn_fieldlists (struct type *type, int spaces)
2899 int method_idx;
2900 int overload_idx;
2901 struct fn_field *f;
2903 printfi_filtered (spaces, "fn_fieldlists ");
2904 gdb_print_host_address (TYPE_FN_FIELDLISTS (type), gdb_stdout);
2905 printf_filtered ("\n");
2906 for (method_idx = 0; method_idx < TYPE_NFN_FIELDS (type); method_idx++)
2908 f = TYPE_FN_FIELDLIST1 (type, method_idx);
2909 printfi_filtered (spaces + 2, "[%d] name '%s' (",
2910 method_idx,
2911 TYPE_FN_FIELDLIST_NAME (type, method_idx));
2912 gdb_print_host_address (TYPE_FN_FIELDLIST_NAME (type, method_idx),
2913 gdb_stdout);
2914 printf_filtered (_(") length %d\n"),
2915 TYPE_FN_FIELDLIST_LENGTH (type, method_idx));
2916 for (overload_idx = 0;
2917 overload_idx < TYPE_FN_FIELDLIST_LENGTH (type, method_idx);
2918 overload_idx++)
2920 printfi_filtered (spaces + 4, "[%d] physname '%s' (",
2921 overload_idx,
2922 TYPE_FN_FIELD_PHYSNAME (f, overload_idx));
2923 gdb_print_host_address (TYPE_FN_FIELD_PHYSNAME (f, overload_idx),
2924 gdb_stdout);
2925 printf_filtered (")\n");
2926 printfi_filtered (spaces + 8, "type ");
2927 gdb_print_host_address (TYPE_FN_FIELD_TYPE (f, overload_idx),
2928 gdb_stdout);
2929 printf_filtered ("\n");
2931 recursive_dump_type (TYPE_FN_FIELD_TYPE (f, overload_idx),
2932 spaces + 8 + 2);
2934 printfi_filtered (spaces + 8, "args ");
2935 gdb_print_host_address (TYPE_FN_FIELD_ARGS (f, overload_idx),
2936 gdb_stdout);
2937 printf_filtered ("\n");
2939 print_arg_types (TYPE_FN_FIELD_ARGS (f, overload_idx),
2940 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f,
2941 overload_idx)),
2942 spaces);
2943 printfi_filtered (spaces + 8, "fcontext ");
2944 gdb_print_host_address (TYPE_FN_FIELD_FCONTEXT (f, overload_idx),
2945 gdb_stdout);
2946 printf_filtered ("\n");
2948 printfi_filtered (spaces + 8, "is_const %d\n",
2949 TYPE_FN_FIELD_CONST (f, overload_idx));
2950 printfi_filtered (spaces + 8, "is_volatile %d\n",
2951 TYPE_FN_FIELD_VOLATILE (f, overload_idx));
2952 printfi_filtered (spaces + 8, "is_private %d\n",
2953 TYPE_FN_FIELD_PRIVATE (f, overload_idx));
2954 printfi_filtered (spaces + 8, "is_protected %d\n",
2955 TYPE_FN_FIELD_PROTECTED (f, overload_idx));
2956 printfi_filtered (spaces + 8, "is_stub %d\n",
2957 TYPE_FN_FIELD_STUB (f, overload_idx));
2958 printfi_filtered (spaces + 8, "voffset %u\n",
2959 TYPE_FN_FIELD_VOFFSET (f, overload_idx));
2964 static void
2965 print_cplus_stuff (struct type *type, int spaces)
2967 printfi_filtered (spaces, "n_baseclasses %d\n",
2968 TYPE_N_BASECLASSES (type));
2969 printfi_filtered (spaces, "nfn_fields %d\n",
2970 TYPE_NFN_FIELDS (type));
2971 if (TYPE_N_BASECLASSES (type) > 0)
2973 printfi_filtered (spaces, "virtual_field_bits (%d bits at *",
2974 TYPE_N_BASECLASSES (type));
2975 gdb_print_host_address (TYPE_FIELD_VIRTUAL_BITS (type),
2976 gdb_stdout);
2977 printf_filtered (")");
2979 print_bit_vector (TYPE_FIELD_VIRTUAL_BITS (type),
2980 TYPE_N_BASECLASSES (type));
2981 puts_filtered ("\n");
2983 if (TYPE_NFIELDS (type) > 0)
2985 if (TYPE_FIELD_PRIVATE_BITS (type) != NULL)
2987 printfi_filtered (spaces,
2988 "private_field_bits (%d bits at *",
2989 TYPE_NFIELDS (type));
2990 gdb_print_host_address (TYPE_FIELD_PRIVATE_BITS (type),
2991 gdb_stdout);
2992 printf_filtered (")");
2993 print_bit_vector (TYPE_FIELD_PRIVATE_BITS (type),
2994 TYPE_NFIELDS (type));
2995 puts_filtered ("\n");
2997 if (TYPE_FIELD_PROTECTED_BITS (type) != NULL)
2999 printfi_filtered (spaces,
3000 "protected_field_bits (%d bits at *",
3001 TYPE_NFIELDS (type));
3002 gdb_print_host_address (TYPE_FIELD_PROTECTED_BITS (type),
3003 gdb_stdout);
3004 printf_filtered (")");
3005 print_bit_vector (TYPE_FIELD_PROTECTED_BITS (type),
3006 TYPE_NFIELDS (type));
3007 puts_filtered ("\n");
3010 if (TYPE_NFN_FIELDS (type) > 0)
3012 dump_fn_fieldlists (type, spaces);
3016 /* Print the contents of the TYPE's type_specific union, assuming that
3017 its type-specific kind is TYPE_SPECIFIC_GNAT_STUFF. */
3019 static void
3020 print_gnat_stuff (struct type *type, int spaces)
3022 struct type *descriptive_type = TYPE_DESCRIPTIVE_TYPE (type);
3024 recursive_dump_type (descriptive_type, spaces + 2);
3027 static struct obstack dont_print_type_obstack;
3029 void
3030 recursive_dump_type (struct type *type, int spaces)
3032 int idx;
3034 if (spaces == 0)
3035 obstack_begin (&dont_print_type_obstack, 0);
3037 if (TYPE_NFIELDS (type) > 0
3038 || (HAVE_CPLUS_STRUCT (type) && TYPE_NFN_FIELDS (type) > 0))
3040 struct type **first_dont_print
3041 = (struct type **) obstack_base (&dont_print_type_obstack);
3043 int i = (struct type **)
3044 obstack_next_free (&dont_print_type_obstack) - first_dont_print;
3046 while (--i >= 0)
3048 if (type == first_dont_print[i])
3050 printfi_filtered (spaces, "type node ");
3051 gdb_print_host_address (type, gdb_stdout);
3052 printf_filtered (_(" <same as already seen type>\n"));
3053 return;
3057 obstack_ptr_grow (&dont_print_type_obstack, type);
3060 printfi_filtered (spaces, "type node ");
3061 gdb_print_host_address (type, gdb_stdout);
3062 printf_filtered ("\n");
3063 printfi_filtered (spaces, "name '%s' (",
3064 TYPE_NAME (type) ? TYPE_NAME (type) : "<NULL>");
3065 gdb_print_host_address (TYPE_NAME (type), gdb_stdout);
3066 printf_filtered (")\n");
3067 printfi_filtered (spaces, "tagname '%s' (",
3068 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) : "<NULL>");
3069 gdb_print_host_address (TYPE_TAG_NAME (type), gdb_stdout);
3070 printf_filtered (")\n");
3071 printfi_filtered (spaces, "code 0x%x ", TYPE_CODE (type));
3072 switch (TYPE_CODE (type))
3074 case TYPE_CODE_UNDEF:
3075 printf_filtered ("(TYPE_CODE_UNDEF)");
3076 break;
3077 case TYPE_CODE_PTR:
3078 printf_filtered ("(TYPE_CODE_PTR)");
3079 break;
3080 case TYPE_CODE_ARRAY:
3081 printf_filtered ("(TYPE_CODE_ARRAY)");
3082 break;
3083 case TYPE_CODE_STRUCT:
3084 printf_filtered ("(TYPE_CODE_STRUCT)");
3085 break;
3086 case TYPE_CODE_UNION:
3087 printf_filtered ("(TYPE_CODE_UNION)");
3088 break;
3089 case TYPE_CODE_ENUM:
3090 printf_filtered ("(TYPE_CODE_ENUM)");
3091 break;
3092 case TYPE_CODE_FLAGS:
3093 printf_filtered ("(TYPE_CODE_FLAGS)");
3094 break;
3095 case TYPE_CODE_FUNC:
3096 printf_filtered ("(TYPE_CODE_FUNC)");
3097 break;
3098 case TYPE_CODE_INT:
3099 printf_filtered ("(TYPE_CODE_INT)");
3100 break;
3101 case TYPE_CODE_FLT:
3102 printf_filtered ("(TYPE_CODE_FLT)");
3103 break;
3104 case TYPE_CODE_VOID:
3105 printf_filtered ("(TYPE_CODE_VOID)");
3106 break;
3107 case TYPE_CODE_SET:
3108 printf_filtered ("(TYPE_CODE_SET)");
3109 break;
3110 case TYPE_CODE_RANGE:
3111 printf_filtered ("(TYPE_CODE_RANGE)");
3112 break;
3113 case TYPE_CODE_STRING:
3114 printf_filtered ("(TYPE_CODE_STRING)");
3115 break;
3116 case TYPE_CODE_ERROR:
3117 printf_filtered ("(TYPE_CODE_ERROR)");
3118 break;
3119 case TYPE_CODE_MEMBERPTR:
3120 printf_filtered ("(TYPE_CODE_MEMBERPTR)");
3121 break;
3122 case TYPE_CODE_METHODPTR:
3123 printf_filtered ("(TYPE_CODE_METHODPTR)");
3124 break;
3125 case TYPE_CODE_METHOD:
3126 printf_filtered ("(TYPE_CODE_METHOD)");
3127 break;
3128 case TYPE_CODE_REF:
3129 printf_filtered ("(TYPE_CODE_REF)");
3130 break;
3131 case TYPE_CODE_CHAR:
3132 printf_filtered ("(TYPE_CODE_CHAR)");
3133 break;
3134 case TYPE_CODE_BOOL:
3135 printf_filtered ("(TYPE_CODE_BOOL)");
3136 break;
3137 case TYPE_CODE_COMPLEX:
3138 printf_filtered ("(TYPE_CODE_COMPLEX)");
3139 break;
3140 case TYPE_CODE_TYPEDEF:
3141 printf_filtered ("(TYPE_CODE_TYPEDEF)");
3142 break;
3143 case TYPE_CODE_NAMESPACE:
3144 printf_filtered ("(TYPE_CODE_NAMESPACE)");
3145 break;
3146 default:
3147 printf_filtered ("(UNKNOWN TYPE CODE)");
3148 break;
3150 puts_filtered ("\n");
3151 printfi_filtered (spaces, "length %d\n", TYPE_LENGTH (type));
3152 if (TYPE_OBJFILE_OWNED (type))
3154 printfi_filtered (spaces, "objfile ");
3155 gdb_print_host_address (TYPE_OWNER (type).objfile, gdb_stdout);
3157 else
3159 printfi_filtered (spaces, "gdbarch ");
3160 gdb_print_host_address (TYPE_OWNER (type).gdbarch, gdb_stdout);
3162 printf_filtered ("\n");
3163 printfi_filtered (spaces, "target_type ");
3164 gdb_print_host_address (TYPE_TARGET_TYPE (type), gdb_stdout);
3165 printf_filtered ("\n");
3166 if (TYPE_TARGET_TYPE (type) != NULL)
3168 recursive_dump_type (TYPE_TARGET_TYPE (type), spaces + 2);
3170 printfi_filtered (spaces, "pointer_type ");
3171 gdb_print_host_address (TYPE_POINTER_TYPE (type), gdb_stdout);
3172 printf_filtered ("\n");
3173 printfi_filtered (spaces, "reference_type ");
3174 gdb_print_host_address (TYPE_REFERENCE_TYPE (type), gdb_stdout);
3175 printf_filtered ("\n");
3176 printfi_filtered (spaces, "type_chain ");
3177 gdb_print_host_address (TYPE_CHAIN (type), gdb_stdout);
3178 printf_filtered ("\n");
3179 printfi_filtered (spaces, "instance_flags 0x%x",
3180 TYPE_INSTANCE_FLAGS (type));
3181 if (TYPE_CONST (type))
3183 puts_filtered (" TYPE_FLAG_CONST");
3185 if (TYPE_VOLATILE (type))
3187 puts_filtered (" TYPE_FLAG_VOLATILE");
3189 if (TYPE_CODE_SPACE (type))
3191 puts_filtered (" TYPE_FLAG_CODE_SPACE");
3193 if (TYPE_DATA_SPACE (type))
3195 puts_filtered (" TYPE_FLAG_DATA_SPACE");
3197 if (TYPE_ADDRESS_CLASS_1 (type))
3199 puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_1");
3201 if (TYPE_ADDRESS_CLASS_2 (type))
3203 puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_2");
3205 if (TYPE_RESTRICT (type))
3207 puts_filtered (" TYPE_FLAG_RESTRICT");
3209 puts_filtered ("\n");
3211 printfi_filtered (spaces, "flags");
3212 if (TYPE_UNSIGNED (type))
3214 puts_filtered (" TYPE_FLAG_UNSIGNED");
3216 if (TYPE_NOSIGN (type))
3218 puts_filtered (" TYPE_FLAG_NOSIGN");
3220 if (TYPE_STUB (type))
3222 puts_filtered (" TYPE_FLAG_STUB");
3224 if (TYPE_TARGET_STUB (type))
3226 puts_filtered (" TYPE_FLAG_TARGET_STUB");
3228 if (TYPE_STATIC (type))
3230 puts_filtered (" TYPE_FLAG_STATIC");
3232 if (TYPE_PROTOTYPED (type))
3234 puts_filtered (" TYPE_FLAG_PROTOTYPED");
3236 if (TYPE_INCOMPLETE (type))
3238 puts_filtered (" TYPE_FLAG_INCOMPLETE");
3240 if (TYPE_VARARGS (type))
3242 puts_filtered (" TYPE_FLAG_VARARGS");
3244 /* This is used for things like AltiVec registers on ppc. Gcc emits
3245 an attribute for the array type, which tells whether or not we
3246 have a vector, instead of a regular array. */
3247 if (TYPE_VECTOR (type))
3249 puts_filtered (" TYPE_FLAG_VECTOR");
3251 if (TYPE_FIXED_INSTANCE (type))
3253 puts_filtered (" TYPE_FIXED_INSTANCE");
3255 if (TYPE_STUB_SUPPORTED (type))
3257 puts_filtered (" TYPE_STUB_SUPPORTED");
3259 if (TYPE_NOTTEXT (type))
3261 puts_filtered (" TYPE_NOTTEXT");
3263 puts_filtered ("\n");
3264 printfi_filtered (spaces, "nfields %d ", TYPE_NFIELDS (type));
3265 gdb_print_host_address (TYPE_FIELDS (type), gdb_stdout);
3266 puts_filtered ("\n");
3267 for (idx = 0; idx < TYPE_NFIELDS (type); idx++)
3269 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
3270 printfi_filtered (spaces + 2,
3271 "[%d] enumval %s type ",
3272 idx, plongest (TYPE_FIELD_ENUMVAL (type, idx)));
3273 else
3274 printfi_filtered (spaces + 2,
3275 "[%d] bitpos %d bitsize %d type ",
3276 idx, TYPE_FIELD_BITPOS (type, idx),
3277 TYPE_FIELD_BITSIZE (type, idx));
3278 gdb_print_host_address (TYPE_FIELD_TYPE (type, idx), gdb_stdout);
3279 printf_filtered (" name '%s' (",
3280 TYPE_FIELD_NAME (type, idx) != NULL
3281 ? TYPE_FIELD_NAME (type, idx)
3282 : "<NULL>");
3283 gdb_print_host_address (TYPE_FIELD_NAME (type, idx), gdb_stdout);
3284 printf_filtered (")\n");
3285 if (TYPE_FIELD_TYPE (type, idx) != NULL)
3287 recursive_dump_type (TYPE_FIELD_TYPE (type, idx), spaces + 4);
3290 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
3292 printfi_filtered (spaces, "low %s%s high %s%s\n",
3293 plongest (TYPE_LOW_BOUND (type)),
3294 TYPE_LOW_BOUND_UNDEFINED (type) ? " (undefined)" : "",
3295 plongest (TYPE_HIGH_BOUND (type)),
3296 TYPE_HIGH_BOUND_UNDEFINED (type)
3297 ? " (undefined)" : "");
3299 printfi_filtered (spaces, "vptr_basetype ");
3300 gdb_print_host_address (TYPE_VPTR_BASETYPE (type), gdb_stdout);
3301 puts_filtered ("\n");
3302 if (TYPE_VPTR_BASETYPE (type) != NULL)
3304 recursive_dump_type (TYPE_VPTR_BASETYPE (type), spaces + 2);
3306 printfi_filtered (spaces, "vptr_fieldno %d\n",
3307 TYPE_VPTR_FIELDNO (type));
3309 switch (TYPE_SPECIFIC_FIELD (type))
3311 case TYPE_SPECIFIC_CPLUS_STUFF:
3312 printfi_filtered (spaces, "cplus_stuff ");
3313 gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type),
3314 gdb_stdout);
3315 puts_filtered ("\n");
3316 print_cplus_stuff (type, spaces);
3317 break;
3319 case TYPE_SPECIFIC_GNAT_STUFF:
3320 printfi_filtered (spaces, "gnat_stuff ");
3321 gdb_print_host_address (TYPE_GNAT_SPECIFIC (type), gdb_stdout);
3322 puts_filtered ("\n");
3323 print_gnat_stuff (type, spaces);
3324 break;
3326 case TYPE_SPECIFIC_FLOATFORMAT:
3327 printfi_filtered (spaces, "floatformat ");
3328 if (TYPE_FLOATFORMAT (type) == NULL)
3329 puts_filtered ("(null)");
3330 else
3332 puts_filtered ("{ ");
3333 if (TYPE_FLOATFORMAT (type)[0] == NULL
3334 || TYPE_FLOATFORMAT (type)[0]->name == NULL)
3335 puts_filtered ("(null)");
3336 else
3337 puts_filtered (TYPE_FLOATFORMAT (type)[0]->name);
3339 puts_filtered (", ");
3340 if (TYPE_FLOATFORMAT (type)[1] == NULL
3341 || TYPE_FLOATFORMAT (type)[1]->name == NULL)
3342 puts_filtered ("(null)");
3343 else
3344 puts_filtered (TYPE_FLOATFORMAT (type)[1]->name);
3346 puts_filtered (" }");
3348 puts_filtered ("\n");
3349 break;
3351 case TYPE_SPECIFIC_FUNC:
3352 printfi_filtered (spaces, "calling_convention %d\n",
3353 TYPE_CALLING_CONVENTION (type));
3354 /* tail_call_list is not printed. */
3355 break;
3358 if (spaces == 0)
3359 obstack_free (&dont_print_type_obstack, NULL);
3362 /* Trivial helpers for the libiberty hash table, for mapping one
3363 type to another. */
3365 struct type_pair
3367 struct type *old, *new;
3370 static hashval_t
3371 type_pair_hash (const void *item)
3373 const struct type_pair *pair = item;
3375 return htab_hash_pointer (pair->old);
3378 static int
3379 type_pair_eq (const void *item_lhs, const void *item_rhs)
3381 const struct type_pair *lhs = item_lhs, *rhs = item_rhs;
3383 return lhs->old == rhs->old;
3386 /* Allocate the hash table used by copy_type_recursive to walk
3387 types without duplicates. We use OBJFILE's obstack, because
3388 OBJFILE is about to be deleted. */
3390 htab_t
3391 create_copied_types_hash (struct objfile *objfile)
3393 return htab_create_alloc_ex (1, type_pair_hash, type_pair_eq,
3394 NULL, &objfile->objfile_obstack,
3395 hashtab_obstack_allocate,
3396 dummy_obstack_deallocate);
3399 /* Recursively copy (deep copy) TYPE, if it is associated with
3400 OBJFILE. Return a new type allocated using malloc, a saved type if
3401 we have already visited TYPE (using COPIED_TYPES), or TYPE if it is
3402 not associated with OBJFILE. */
3404 struct type *
3405 copy_type_recursive (struct objfile *objfile,
3406 struct type *type,
3407 htab_t copied_types)
3409 struct type_pair *stored, pair;
3410 void **slot;
3411 struct type *new_type;
3413 if (! TYPE_OBJFILE_OWNED (type))
3414 return type;
3416 /* This type shouldn't be pointing to any types in other objfiles;
3417 if it did, the type might disappear unexpectedly. */
3418 gdb_assert (TYPE_OBJFILE (type) == objfile);
3420 pair.old = type;
3421 slot = htab_find_slot (copied_types, &pair, INSERT);
3422 if (*slot != NULL)
3423 return ((struct type_pair *) *slot)->new;
3425 new_type = alloc_type_arch (get_type_arch (type));
3427 /* We must add the new type to the hash table immediately, in case
3428 we encounter this type again during a recursive call below. */
3429 stored
3430 = obstack_alloc (&objfile->objfile_obstack, sizeof (struct type_pair));
3431 stored->old = type;
3432 stored->new = new_type;
3433 *slot = stored;
3435 /* Copy the common fields of types. For the main type, we simply
3436 copy the entire thing and then update specific fields as needed. */
3437 *TYPE_MAIN_TYPE (new_type) = *TYPE_MAIN_TYPE (type);
3438 TYPE_OBJFILE_OWNED (new_type) = 0;
3439 TYPE_OWNER (new_type).gdbarch = get_type_arch (type);
3441 if (TYPE_NAME (type))
3442 TYPE_NAME (new_type) = xstrdup (TYPE_NAME (type));
3443 if (TYPE_TAG_NAME (type))
3444 TYPE_TAG_NAME (new_type) = xstrdup (TYPE_TAG_NAME (type));
3446 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
3447 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
3449 /* Copy the fields. */
3450 if (TYPE_NFIELDS (type))
3452 int i, nfields;
3454 nfields = TYPE_NFIELDS (type);
3455 TYPE_FIELDS (new_type) = XCALLOC (nfields, struct field);
3456 for (i = 0; i < nfields; i++)
3458 TYPE_FIELD_ARTIFICIAL (new_type, i) =
3459 TYPE_FIELD_ARTIFICIAL (type, i);
3460 TYPE_FIELD_BITSIZE (new_type, i) = TYPE_FIELD_BITSIZE (type, i);
3461 if (TYPE_FIELD_TYPE (type, i))
3462 TYPE_FIELD_TYPE (new_type, i)
3463 = copy_type_recursive (objfile, TYPE_FIELD_TYPE (type, i),
3464 copied_types);
3465 if (TYPE_FIELD_NAME (type, i))
3466 TYPE_FIELD_NAME (new_type, i) =
3467 xstrdup (TYPE_FIELD_NAME (type, i));
3468 switch (TYPE_FIELD_LOC_KIND (type, i))
3470 case FIELD_LOC_KIND_BITPOS:
3471 SET_FIELD_BITPOS (TYPE_FIELD (new_type, i),
3472 TYPE_FIELD_BITPOS (type, i));
3473 break;
3474 case FIELD_LOC_KIND_ENUMVAL:
3475 SET_FIELD_ENUMVAL (TYPE_FIELD (new_type, i),
3476 TYPE_FIELD_ENUMVAL (type, i));
3477 break;
3478 case FIELD_LOC_KIND_PHYSADDR:
3479 SET_FIELD_PHYSADDR (TYPE_FIELD (new_type, i),
3480 TYPE_FIELD_STATIC_PHYSADDR (type, i));
3481 break;
3482 case FIELD_LOC_KIND_PHYSNAME:
3483 SET_FIELD_PHYSNAME (TYPE_FIELD (new_type, i),
3484 xstrdup (TYPE_FIELD_STATIC_PHYSNAME (type,
3485 i)));
3486 break;
3487 default:
3488 internal_error (__FILE__, __LINE__,
3489 _("Unexpected type field location kind: %d"),
3490 TYPE_FIELD_LOC_KIND (type, i));
3495 /* For range types, copy the bounds information. */
3496 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
3498 TYPE_RANGE_DATA (new_type) = xmalloc (sizeof (struct range_bounds));
3499 *TYPE_RANGE_DATA (new_type) = *TYPE_RANGE_DATA (type);
3502 /* Copy pointers to other types. */
3503 if (TYPE_TARGET_TYPE (type))
3504 TYPE_TARGET_TYPE (new_type) =
3505 copy_type_recursive (objfile,
3506 TYPE_TARGET_TYPE (type),
3507 copied_types);
3508 if (TYPE_VPTR_BASETYPE (type))
3509 TYPE_VPTR_BASETYPE (new_type) =
3510 copy_type_recursive (objfile,
3511 TYPE_VPTR_BASETYPE (type),
3512 copied_types);
3513 /* Maybe copy the type_specific bits.
3515 NOTE drow/2005-12-09: We do not copy the C++-specific bits like
3516 base classes and methods. There's no fundamental reason why we
3517 can't, but at the moment it is not needed. */
3519 if (TYPE_CODE (type) == TYPE_CODE_FLT)
3520 TYPE_FLOATFORMAT (new_type) = TYPE_FLOATFORMAT (type);
3521 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3522 || TYPE_CODE (type) == TYPE_CODE_UNION
3523 || TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
3524 INIT_CPLUS_SPECIFIC (new_type);
3526 return new_type;
3529 /* Make a copy of the given TYPE, except that the pointer & reference
3530 types are not preserved.
3532 This function assumes that the given type has an associated objfile.
3533 This objfile is used to allocate the new type. */
3535 struct type *
3536 copy_type (const struct type *type)
3538 struct type *new_type;
3540 gdb_assert (TYPE_OBJFILE_OWNED (type));
3542 new_type = alloc_type_copy (type);
3543 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
3544 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
3545 memcpy (TYPE_MAIN_TYPE (new_type), TYPE_MAIN_TYPE (type),
3546 sizeof (struct main_type));
3548 return new_type;
3551 /* Helper functions to initialize architecture-specific types. */
3553 /* Allocate a type structure associated with GDBARCH and set its
3554 CODE, LENGTH, and NAME fields. */
3556 struct type *
3557 arch_type (struct gdbarch *gdbarch,
3558 enum type_code code, int length, char *name)
3560 struct type *type;
3562 type = alloc_type_arch (gdbarch);
3563 TYPE_CODE (type) = code;
3564 TYPE_LENGTH (type) = length;
3566 if (name)
3567 TYPE_NAME (type) = xstrdup (name);
3569 return type;
3572 /* Allocate a TYPE_CODE_INT type structure associated with GDBARCH.
3573 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
3574 the type's TYPE_UNSIGNED flag. NAME is the type name. */
3576 struct type *
3577 arch_integer_type (struct gdbarch *gdbarch,
3578 int bit, int unsigned_p, char *name)
3580 struct type *t;
3582 t = arch_type (gdbarch, TYPE_CODE_INT, bit / TARGET_CHAR_BIT, name);
3583 if (unsigned_p)
3584 TYPE_UNSIGNED (t) = 1;
3585 if (name && strcmp (name, "char") == 0)
3586 TYPE_NOSIGN (t) = 1;
3588 return t;
3591 /* Allocate a TYPE_CODE_CHAR type structure associated with GDBARCH.
3592 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
3593 the type's TYPE_UNSIGNED flag. NAME is the type name. */
3595 struct type *
3596 arch_character_type (struct gdbarch *gdbarch,
3597 int bit, int unsigned_p, char *name)
3599 struct type *t;
3601 t = arch_type (gdbarch, TYPE_CODE_CHAR, bit / TARGET_CHAR_BIT, name);
3602 if (unsigned_p)
3603 TYPE_UNSIGNED (t) = 1;
3605 return t;
3608 /* Allocate a TYPE_CODE_BOOL type structure associated with GDBARCH.
3609 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
3610 the type's TYPE_UNSIGNED flag. NAME is the type name. */
3612 struct type *
3613 arch_boolean_type (struct gdbarch *gdbarch,
3614 int bit, int unsigned_p, char *name)
3616 struct type *t;
3618 t = arch_type (gdbarch, TYPE_CODE_BOOL, bit / TARGET_CHAR_BIT, name);
3619 if (unsigned_p)
3620 TYPE_UNSIGNED (t) = 1;
3622 return t;
3625 /* Allocate a TYPE_CODE_FLT type structure associated with GDBARCH.
3626 BIT is the type size in bits; if BIT equals -1, the size is
3627 determined by the floatformat. NAME is the type name. Set the
3628 TYPE_FLOATFORMAT from FLOATFORMATS. */
3630 struct type *
3631 arch_float_type (struct gdbarch *gdbarch,
3632 int bit, char *name, const struct floatformat **floatformats)
3634 struct type *t;
3636 if (bit == -1)
3638 gdb_assert (floatformats != NULL);
3639 gdb_assert (floatformats[0] != NULL && floatformats[1] != NULL);
3640 bit = floatformats[0]->totalsize;
3642 gdb_assert (bit >= 0);
3644 t = arch_type (gdbarch, TYPE_CODE_FLT, bit / TARGET_CHAR_BIT, name);
3645 TYPE_FLOATFORMAT (t) = floatformats;
3646 return t;
3649 /* Allocate a TYPE_CODE_COMPLEX type structure associated with GDBARCH.
3650 NAME is the type name. TARGET_TYPE is the component float type. */
3652 struct type *
3653 arch_complex_type (struct gdbarch *gdbarch,
3654 char *name, struct type *target_type)
3656 struct type *t;
3658 t = arch_type (gdbarch, TYPE_CODE_COMPLEX,
3659 2 * TYPE_LENGTH (target_type), name);
3660 TYPE_TARGET_TYPE (t) = target_type;
3661 return t;
3664 /* Allocate a TYPE_CODE_FLAGS type structure associated with GDBARCH.
3665 NAME is the type name. LENGTH is the size of the flag word in bytes. */
3667 struct type *
3668 arch_flags_type (struct gdbarch *gdbarch, char *name, int length)
3670 int nfields = length * TARGET_CHAR_BIT;
3671 struct type *type;
3673 type = arch_type (gdbarch, TYPE_CODE_FLAGS, length, name);
3674 TYPE_UNSIGNED (type) = 1;
3675 TYPE_NFIELDS (type) = nfields;
3676 TYPE_FIELDS (type) = TYPE_ZALLOC (type, nfields * sizeof (struct field));
3678 return type;
3681 /* Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
3682 position BITPOS is called NAME. */
3684 void
3685 append_flags_type_flag (struct type *type, int bitpos, char *name)
3687 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLAGS);
3688 gdb_assert (bitpos < TYPE_NFIELDS (type));
3689 gdb_assert (bitpos >= 0);
3691 if (name)
3693 TYPE_FIELD_NAME (type, bitpos) = xstrdup (name);
3694 SET_FIELD_BITPOS (TYPE_FIELD (type, bitpos), bitpos);
3696 else
3698 /* Don't show this field to the user. */
3699 SET_FIELD_BITPOS (TYPE_FIELD (type, bitpos), -1);
3703 /* Allocate a TYPE_CODE_STRUCT or TYPE_CODE_UNION type structure (as
3704 specified by CODE) associated with GDBARCH. NAME is the type name. */
3706 struct type *
3707 arch_composite_type (struct gdbarch *gdbarch, char *name, enum type_code code)
3709 struct type *t;
3711 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
3712 t = arch_type (gdbarch, code, 0, NULL);
3713 TYPE_TAG_NAME (t) = name;
3714 INIT_CPLUS_SPECIFIC (t);
3715 return t;
3718 /* Add new field with name NAME and type FIELD to composite type T.
3719 Do not set the field's position or adjust the type's length;
3720 the caller should do so. Return the new field. */
3722 struct field *
3723 append_composite_type_field_raw (struct type *t, char *name,
3724 struct type *field)
3726 struct field *f;
3728 TYPE_NFIELDS (t) = TYPE_NFIELDS (t) + 1;
3729 TYPE_FIELDS (t) = xrealloc (TYPE_FIELDS (t),
3730 sizeof (struct field) * TYPE_NFIELDS (t));
3731 f = &(TYPE_FIELDS (t)[TYPE_NFIELDS (t) - 1]);
3732 memset (f, 0, sizeof f[0]);
3733 FIELD_TYPE (f[0]) = field;
3734 FIELD_NAME (f[0]) = name;
3735 return f;
3738 /* Add new field with name NAME and type FIELD to composite type T.
3739 ALIGNMENT (if non-zero) specifies the minimum field alignment. */
3741 void
3742 append_composite_type_field_aligned (struct type *t, char *name,
3743 struct type *field, int alignment)
3745 struct field *f = append_composite_type_field_raw (t, name, field);
3747 if (TYPE_CODE (t) == TYPE_CODE_UNION)
3749 if (TYPE_LENGTH (t) < TYPE_LENGTH (field))
3750 TYPE_LENGTH (t) = TYPE_LENGTH (field);
3752 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT)
3754 TYPE_LENGTH (t) = TYPE_LENGTH (t) + TYPE_LENGTH (field);
3755 if (TYPE_NFIELDS (t) > 1)
3757 SET_FIELD_BITPOS (f[0],
3758 (FIELD_BITPOS (f[-1])
3759 + (TYPE_LENGTH (FIELD_TYPE (f[-1]))
3760 * TARGET_CHAR_BIT)));
3762 if (alignment)
3764 int left;
3766 alignment *= TARGET_CHAR_BIT;
3767 left = FIELD_BITPOS (f[0]) % alignment;
3769 if (left)
3771 SET_FIELD_BITPOS (f[0], FIELD_BITPOS (f[0]) + (alignment - left));
3772 TYPE_LENGTH (t) += (alignment - left) / TARGET_CHAR_BIT;
3779 /* Add new field with name NAME and type FIELD to composite type T. */
3781 void
3782 append_composite_type_field (struct type *t, char *name,
3783 struct type *field)
3785 append_composite_type_field_aligned (t, name, field, 0);
3788 static struct gdbarch_data *gdbtypes_data;
3790 const struct builtin_type *
3791 builtin_type (struct gdbarch *gdbarch)
3793 return gdbarch_data (gdbarch, gdbtypes_data);
3796 static void *
3797 gdbtypes_post_init (struct gdbarch *gdbarch)
3799 struct builtin_type *builtin_type
3800 = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct builtin_type);
3802 /* Basic types. */
3803 builtin_type->builtin_void
3804 = arch_type (gdbarch, TYPE_CODE_VOID, 1, "void");
3805 builtin_type->builtin_char
3806 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
3807 !gdbarch_char_signed (gdbarch), "char");
3808 builtin_type->builtin_signed_char
3809 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
3810 0, "signed char");
3811 builtin_type->builtin_unsigned_char
3812 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
3813 1, "unsigned char");
3814 builtin_type->builtin_short
3815 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
3816 0, "short");
3817 builtin_type->builtin_unsigned_short
3818 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
3819 1, "unsigned short");
3820 builtin_type->builtin_int
3821 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
3822 0, "int");
3823 builtin_type->builtin_unsigned_int
3824 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
3825 1, "unsigned int");
3826 builtin_type->builtin_long
3827 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
3828 0, "long");
3829 builtin_type->builtin_unsigned_long
3830 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
3831 1, "unsigned long");
3832 builtin_type->builtin_long_long
3833 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
3834 0, "long long");
3835 builtin_type->builtin_unsigned_long_long
3836 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
3837 1, "unsigned long long");
3838 builtin_type->builtin_float
3839 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
3840 "float", gdbarch_float_format (gdbarch));
3841 builtin_type->builtin_double
3842 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
3843 "double", gdbarch_double_format (gdbarch));
3844 builtin_type->builtin_long_double
3845 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
3846 "long double", gdbarch_long_double_format (gdbarch));
3847 builtin_type->builtin_complex
3848 = arch_complex_type (gdbarch, "complex",
3849 builtin_type->builtin_float);
3850 builtin_type->builtin_double_complex
3851 = arch_complex_type (gdbarch, "double complex",
3852 builtin_type->builtin_double);
3853 builtin_type->builtin_string
3854 = arch_type (gdbarch, TYPE_CODE_STRING, 1, "string");
3855 builtin_type->builtin_bool
3856 = arch_type (gdbarch, TYPE_CODE_BOOL, 1, "bool");
3858 /* The following three are about decimal floating point types, which
3859 are 32-bits, 64-bits and 128-bits respectively. */
3860 builtin_type->builtin_decfloat
3861 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 32 / 8, "_Decimal32");
3862 builtin_type->builtin_decdouble
3863 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 64 / 8, "_Decimal64");
3864 builtin_type->builtin_declong
3865 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 128 / 8, "_Decimal128");
3867 /* "True" character types. */
3868 builtin_type->builtin_true_char
3869 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "true character");
3870 builtin_type->builtin_true_unsigned_char
3871 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 1, "true character");
3873 /* Fixed-size integer types. */
3874 builtin_type->builtin_int0
3875 = arch_integer_type (gdbarch, 0, 0, "int0_t");
3876 builtin_type->builtin_int8
3877 = arch_integer_type (gdbarch, 8, 0, "int8_t");
3878 builtin_type->builtin_uint8
3879 = arch_integer_type (gdbarch, 8, 1, "uint8_t");
3880 builtin_type->builtin_int16
3881 = arch_integer_type (gdbarch, 16, 0, "int16_t");
3882 builtin_type->builtin_uint16
3883 = arch_integer_type (gdbarch, 16, 1, "uint16_t");
3884 builtin_type->builtin_int32
3885 = arch_integer_type (gdbarch, 32, 0, "int32_t");
3886 builtin_type->builtin_uint32
3887 = arch_integer_type (gdbarch, 32, 1, "uint32_t");
3888 builtin_type->builtin_int64
3889 = arch_integer_type (gdbarch, 64, 0, "int64_t");
3890 builtin_type->builtin_uint64
3891 = arch_integer_type (gdbarch, 64, 1, "uint64_t");
3892 builtin_type->builtin_int128
3893 = arch_integer_type (gdbarch, 128, 0, "int128_t");
3894 builtin_type->builtin_uint128
3895 = arch_integer_type (gdbarch, 128, 1, "uint128_t");
3896 TYPE_INSTANCE_FLAGS (builtin_type->builtin_int8) |=
3897 TYPE_INSTANCE_FLAG_NOTTEXT;
3898 TYPE_INSTANCE_FLAGS (builtin_type->builtin_uint8) |=
3899 TYPE_INSTANCE_FLAG_NOTTEXT;
3901 /* Wide character types. */
3902 builtin_type->builtin_char16
3903 = arch_integer_type (gdbarch, 16, 0, "char16_t");
3904 builtin_type->builtin_char32
3905 = arch_integer_type (gdbarch, 32, 0, "char32_t");
3908 /* Default data/code pointer types. */
3909 builtin_type->builtin_data_ptr
3910 = lookup_pointer_type (builtin_type->builtin_void);
3911 builtin_type->builtin_func_ptr
3912 = lookup_pointer_type (lookup_function_type (builtin_type->builtin_void));
3913 builtin_type->builtin_func_func
3914 = lookup_function_type (builtin_type->builtin_func_ptr);
3916 /* This type represents a GDB internal function. */
3917 builtin_type->internal_fn
3918 = arch_type (gdbarch, TYPE_CODE_INTERNAL_FUNCTION, 0,
3919 "<internal function>");
3921 return builtin_type;
3924 /* This set of objfile-based types is intended to be used by symbol
3925 readers as basic types. */
3927 static const struct objfile_data *objfile_type_data;
3929 const struct objfile_type *
3930 objfile_type (struct objfile *objfile)
3932 struct gdbarch *gdbarch;
3933 struct objfile_type *objfile_type
3934 = objfile_data (objfile, objfile_type_data);
3936 if (objfile_type)
3937 return objfile_type;
3939 objfile_type = OBSTACK_CALLOC (&objfile->objfile_obstack,
3940 1, struct objfile_type);
3942 /* Use the objfile architecture to determine basic type properties. */
3943 gdbarch = get_objfile_arch (objfile);
3945 /* Basic types. */
3946 objfile_type->builtin_void
3947 = init_type (TYPE_CODE_VOID, 1,
3949 "void", objfile);
3951 objfile_type->builtin_char
3952 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3953 (TYPE_FLAG_NOSIGN
3954 | (gdbarch_char_signed (gdbarch) ? 0 : TYPE_FLAG_UNSIGNED)),
3955 "char", objfile);
3956 objfile_type->builtin_signed_char
3957 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3959 "signed char", objfile);
3960 objfile_type->builtin_unsigned_char
3961 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3962 TYPE_FLAG_UNSIGNED,
3963 "unsigned char", objfile);
3964 objfile_type->builtin_short
3965 = init_type (TYPE_CODE_INT,
3966 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
3967 0, "short", objfile);
3968 objfile_type->builtin_unsigned_short
3969 = init_type (TYPE_CODE_INT,
3970 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
3971 TYPE_FLAG_UNSIGNED, "unsigned short", objfile);
3972 objfile_type->builtin_int
3973 = init_type (TYPE_CODE_INT,
3974 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
3975 0, "int", objfile);
3976 objfile_type->builtin_unsigned_int
3977 = init_type (TYPE_CODE_INT,
3978 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
3979 TYPE_FLAG_UNSIGNED, "unsigned int", objfile);
3980 objfile_type->builtin_long
3981 = init_type (TYPE_CODE_INT,
3982 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
3983 0, "long", objfile);
3984 objfile_type->builtin_unsigned_long
3985 = init_type (TYPE_CODE_INT,
3986 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
3987 TYPE_FLAG_UNSIGNED, "unsigned long", objfile);
3988 objfile_type->builtin_long_long
3989 = init_type (TYPE_CODE_INT,
3990 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
3991 0, "long long", objfile);
3992 objfile_type->builtin_unsigned_long_long
3993 = init_type (TYPE_CODE_INT,
3994 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
3995 TYPE_FLAG_UNSIGNED, "unsigned long long", objfile);
3997 objfile_type->builtin_float
3998 = init_type (TYPE_CODE_FLT,
3999 gdbarch_float_bit (gdbarch) / TARGET_CHAR_BIT,
4000 0, "float", objfile);
4001 TYPE_FLOATFORMAT (objfile_type->builtin_float)
4002 = gdbarch_float_format (gdbarch);
4003 objfile_type->builtin_double
4004 = init_type (TYPE_CODE_FLT,
4005 gdbarch_double_bit (gdbarch) / TARGET_CHAR_BIT,
4006 0, "double", objfile);
4007 TYPE_FLOATFORMAT (objfile_type->builtin_double)
4008 = gdbarch_double_format (gdbarch);
4009 objfile_type->builtin_long_double
4010 = init_type (TYPE_CODE_FLT,
4011 gdbarch_long_double_bit (gdbarch) / TARGET_CHAR_BIT,
4012 0, "long double", objfile);
4013 TYPE_FLOATFORMAT (objfile_type->builtin_long_double)
4014 = gdbarch_long_double_format (gdbarch);
4016 /* This type represents a type that was unrecognized in symbol read-in. */
4017 objfile_type->builtin_error
4018 = init_type (TYPE_CODE_ERROR, 0, 0, "<unknown type>", objfile);
4020 /* The following set of types is used for symbols with no
4021 debug information. */
4022 objfile_type->nodebug_text_symbol
4023 = init_type (TYPE_CODE_FUNC, 1, 0,
4024 "<text variable, no debug info>", objfile);
4025 TYPE_TARGET_TYPE (objfile_type->nodebug_text_symbol)
4026 = objfile_type->builtin_int;
4027 objfile_type->nodebug_text_gnu_ifunc_symbol
4028 = init_type (TYPE_CODE_FUNC, 1, TYPE_FLAG_GNU_IFUNC,
4029 "<text gnu-indirect-function variable, no debug info>",
4030 objfile);
4031 TYPE_TARGET_TYPE (objfile_type->nodebug_text_gnu_ifunc_symbol)
4032 = objfile_type->nodebug_text_symbol;
4033 objfile_type->nodebug_got_plt_symbol
4034 = init_type (TYPE_CODE_PTR, gdbarch_addr_bit (gdbarch) / 8, 0,
4035 "<text from jump slot in .got.plt, no debug info>",
4036 objfile);
4037 TYPE_TARGET_TYPE (objfile_type->nodebug_got_plt_symbol)
4038 = objfile_type->nodebug_text_symbol;
4039 objfile_type->nodebug_data_symbol
4040 = init_type (TYPE_CODE_INT,
4041 gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0,
4042 "<data variable, no debug info>", objfile);
4043 objfile_type->nodebug_unknown_symbol
4044 = init_type (TYPE_CODE_INT, 1, 0,
4045 "<variable (not text or data), no debug info>", objfile);
4046 objfile_type->nodebug_tls_symbol
4047 = init_type (TYPE_CODE_INT,
4048 gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0,
4049 "<thread local variable, no debug info>", objfile);
4051 /* NOTE: on some targets, addresses and pointers are not necessarily
4052 the same --- for example, on the D10V, pointers are 16 bits long,
4053 but addresses are 32 bits long. See doc/gdbint.texinfo,
4054 ``Pointers Are Not Always Addresses''.
4056 The upshot is:
4057 - gdb's `struct type' always describes the target's
4058 representation.
4059 - gdb's `struct value' objects should always hold values in
4060 target form.
4061 - gdb's CORE_ADDR values are addresses in the unified virtual
4062 address space that the assembler and linker work with. Thus,
4063 since target_read_memory takes a CORE_ADDR as an argument, it
4064 can access any memory on the target, even if the processor has
4065 separate code and data address spaces.
4067 So, for example:
4068 - If v is a value holding a D10V code pointer, its contents are
4069 in target form: a big-endian address left-shifted two bits.
4070 - If p is a D10V pointer type, TYPE_LENGTH (p) == 2, just as
4071 sizeof (void *) == 2 on the target.
4073 In this context, objfile_type->builtin_core_addr is a bit odd:
4074 it's a target type for a value the target will never see. It's
4075 only used to hold the values of (typeless) linker symbols, which
4076 are indeed in the unified virtual address space. */
4078 objfile_type->builtin_core_addr
4079 = init_type (TYPE_CODE_INT,
4080 gdbarch_addr_bit (gdbarch) / 8,
4081 TYPE_FLAG_UNSIGNED, "__CORE_ADDR", objfile);
4083 set_objfile_data (objfile, objfile_type_data, objfile_type);
4084 return objfile_type;
4087 extern initialize_file_ftype _initialize_gdbtypes;
4089 void
4090 _initialize_gdbtypes (void)
4092 gdbtypes_data = gdbarch_data_register_post_init (gdbtypes_post_init);
4093 objfile_type_data = register_objfile_data ();
4095 add_setshow_zuinteger_cmd ("overload", no_class, &overload_debug,
4096 _("Set debugging of C++ overloading."),
4097 _("Show debugging of C++ overloading."),
4098 _("When enabled, ranking of the "
4099 "functions is displayed."),
4100 NULL,
4101 show_overload_debug,
4102 &setdebuglist, &showdebuglist);
4104 /* Add user knob for controlling resolution of opaque types. */
4105 add_setshow_boolean_cmd ("opaque-type-resolution", class_support,
4106 &opaque_type_resolution,
4107 _("Set resolution of opaque struct/class/union"
4108 " types (if set before loading symbols)."),
4109 _("Show resolution of opaque struct/class/union"
4110 " types (if set before loading symbols)."),
4111 NULL, NULL,
4112 show_opaque_type_resolution,
4113 &setlist, &showlist);
4115 /* Add an option to permit non-strict type checking. */
4116 add_setshow_boolean_cmd ("type", class_support,
4117 &strict_type_checking,
4118 _("Set strict type checking."),
4119 _("Show strict type checking."),
4120 NULL, NULL,
4121 show_strict_type_checking,
4122 &setchecklist, &showchecklist);