2013-03-12 Sebastian Huber <sebastian.huber@embedded-brains.de>
[binutils-gdb.git] / gdb / ia64-linux-nat.c
blob3bd4237ea20e9358245523100e192789eed364e5
1 /* Functions specific to running gdb native on IA-64 running
2 GNU/Linux.
4 Copyright (C) 1999-2013 Free Software Foundation, Inc.
6 This file is part of GDB.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21 #include "defs.h"
22 #include "gdb_string.h"
23 #include "inferior.h"
24 #include "target.h"
25 #include "gdbcore.h"
26 #include "regcache.h"
27 #include "ia64-tdep.h"
28 #include "linux-nat.h"
30 #include <signal.h>
31 #include <sys/ptrace.h>
32 #include "gdb_wait.h"
33 #ifdef HAVE_SYS_REG_H
34 #include <sys/reg.h>
35 #endif
36 #include <sys/syscall.h>
37 #include <sys/user.h>
39 #include <asm/ptrace_offsets.h>
40 #include <sys/procfs.h>
42 /* Prototypes for supply_gregset etc. */
43 #include "gregset.h"
45 /* These must match the order of the register names.
47 Some sort of lookup table is needed because the offsets associated
48 with the registers are all over the board. */
50 static int u_offsets[] =
52 /* general registers */
53 -1, /* gr0 not available; i.e, it's always zero. */
54 PT_R1,
55 PT_R2,
56 PT_R3,
57 PT_R4,
58 PT_R5,
59 PT_R6,
60 PT_R7,
61 PT_R8,
62 PT_R9,
63 PT_R10,
64 PT_R11,
65 PT_R12,
66 PT_R13,
67 PT_R14,
68 PT_R15,
69 PT_R16,
70 PT_R17,
71 PT_R18,
72 PT_R19,
73 PT_R20,
74 PT_R21,
75 PT_R22,
76 PT_R23,
77 PT_R24,
78 PT_R25,
79 PT_R26,
80 PT_R27,
81 PT_R28,
82 PT_R29,
83 PT_R30,
84 PT_R31,
85 /* gr32 through gr127 not directly available via the ptrace interface. */
86 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
87 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
88 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
89 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
90 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
91 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
92 /* Floating point registers */
93 -1, -1, /* f0 and f1 not available (f0 is +0.0 and f1 is +1.0). */
94 PT_F2,
95 PT_F3,
96 PT_F4,
97 PT_F5,
98 PT_F6,
99 PT_F7,
100 PT_F8,
101 PT_F9,
102 PT_F10,
103 PT_F11,
104 PT_F12,
105 PT_F13,
106 PT_F14,
107 PT_F15,
108 PT_F16,
109 PT_F17,
110 PT_F18,
111 PT_F19,
112 PT_F20,
113 PT_F21,
114 PT_F22,
115 PT_F23,
116 PT_F24,
117 PT_F25,
118 PT_F26,
119 PT_F27,
120 PT_F28,
121 PT_F29,
122 PT_F30,
123 PT_F31,
124 PT_F32,
125 PT_F33,
126 PT_F34,
127 PT_F35,
128 PT_F36,
129 PT_F37,
130 PT_F38,
131 PT_F39,
132 PT_F40,
133 PT_F41,
134 PT_F42,
135 PT_F43,
136 PT_F44,
137 PT_F45,
138 PT_F46,
139 PT_F47,
140 PT_F48,
141 PT_F49,
142 PT_F50,
143 PT_F51,
144 PT_F52,
145 PT_F53,
146 PT_F54,
147 PT_F55,
148 PT_F56,
149 PT_F57,
150 PT_F58,
151 PT_F59,
152 PT_F60,
153 PT_F61,
154 PT_F62,
155 PT_F63,
156 PT_F64,
157 PT_F65,
158 PT_F66,
159 PT_F67,
160 PT_F68,
161 PT_F69,
162 PT_F70,
163 PT_F71,
164 PT_F72,
165 PT_F73,
166 PT_F74,
167 PT_F75,
168 PT_F76,
169 PT_F77,
170 PT_F78,
171 PT_F79,
172 PT_F80,
173 PT_F81,
174 PT_F82,
175 PT_F83,
176 PT_F84,
177 PT_F85,
178 PT_F86,
179 PT_F87,
180 PT_F88,
181 PT_F89,
182 PT_F90,
183 PT_F91,
184 PT_F92,
185 PT_F93,
186 PT_F94,
187 PT_F95,
188 PT_F96,
189 PT_F97,
190 PT_F98,
191 PT_F99,
192 PT_F100,
193 PT_F101,
194 PT_F102,
195 PT_F103,
196 PT_F104,
197 PT_F105,
198 PT_F106,
199 PT_F107,
200 PT_F108,
201 PT_F109,
202 PT_F110,
203 PT_F111,
204 PT_F112,
205 PT_F113,
206 PT_F114,
207 PT_F115,
208 PT_F116,
209 PT_F117,
210 PT_F118,
211 PT_F119,
212 PT_F120,
213 PT_F121,
214 PT_F122,
215 PT_F123,
216 PT_F124,
217 PT_F125,
218 PT_F126,
219 PT_F127,
220 /* Predicate registers - we don't fetch these individually. */
221 -1, -1, -1, -1, -1, -1, -1, -1,
222 -1, -1, -1, -1, -1, -1, -1, -1,
223 -1, -1, -1, -1, -1, -1, -1, -1,
224 -1, -1, -1, -1, -1, -1, -1, -1,
225 -1, -1, -1, -1, -1, -1, -1, -1,
226 -1, -1, -1, -1, -1, -1, -1, -1,
227 -1, -1, -1, -1, -1, -1, -1, -1,
228 -1, -1, -1, -1, -1, -1, -1, -1,
229 /* branch registers */
230 PT_B0,
231 PT_B1,
232 PT_B2,
233 PT_B3,
234 PT_B4,
235 PT_B5,
236 PT_B6,
237 PT_B7,
238 /* Virtual frame pointer and virtual return address pointer. */
239 -1, -1,
240 /* other registers */
241 PT_PR,
242 PT_CR_IIP, /* ip */
243 PT_CR_IPSR, /* psr */
244 PT_CFM, /* cfm */
245 /* kernel registers not visible via ptrace interface (?) */
246 -1, -1, -1, -1, -1, -1, -1, -1,
247 /* hole */
248 -1, -1, -1, -1, -1, -1, -1, -1,
249 PT_AR_RSC,
250 PT_AR_BSP,
251 PT_AR_BSPSTORE,
252 PT_AR_RNAT,
254 -1, /* Not available: FCR, IA32 floating control register. */
255 -1, -1,
256 -1, /* Not available: EFLAG */
257 -1, /* Not available: CSD */
258 -1, /* Not available: SSD */
259 -1, /* Not available: CFLG */
260 -1, /* Not available: FSR */
261 -1, /* Not available: FIR */
262 -1, /* Not available: FDR */
264 PT_AR_CCV,
265 -1, -1, -1,
266 PT_AR_UNAT,
267 -1, -1, -1,
268 PT_AR_FPSR,
269 -1, -1, -1,
270 -1, /* Not available: ITC */
271 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
272 -1, -1, -1, -1, -1, -1, -1, -1, -1,
273 PT_AR_PFS,
274 PT_AR_LC,
275 PT_AR_EC,
276 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
277 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
278 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
279 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
280 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
281 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
283 /* nat bits - not fetched directly; instead we obtain these bits from
284 either rnat or unat or from memory. */
285 -1, -1, -1, -1, -1, -1, -1, -1,
286 -1, -1, -1, -1, -1, -1, -1, -1,
287 -1, -1, -1, -1, -1, -1, -1, -1,
288 -1, -1, -1, -1, -1, -1, -1, -1,
289 -1, -1, -1, -1, -1, -1, -1, -1,
290 -1, -1, -1, -1, -1, -1, -1, -1,
291 -1, -1, -1, -1, -1, -1, -1, -1,
292 -1, -1, -1, -1, -1, -1, -1, -1,
293 -1, -1, -1, -1, -1, -1, -1, -1,
294 -1, -1, -1, -1, -1, -1, -1, -1,
295 -1, -1, -1, -1, -1, -1, -1, -1,
296 -1, -1, -1, -1, -1, -1, -1, -1,
297 -1, -1, -1, -1, -1, -1, -1, -1,
298 -1, -1, -1, -1, -1, -1, -1, -1,
299 -1, -1, -1, -1, -1, -1, -1, -1,
300 -1, -1, -1, -1, -1, -1, -1, -1,
303 static CORE_ADDR
304 ia64_register_addr (struct gdbarch *gdbarch, int regno)
306 CORE_ADDR addr;
308 if (regno < 0 || regno >= gdbarch_num_regs (gdbarch))
309 error (_("Invalid register number %d."), regno);
311 if (u_offsets[regno] == -1)
312 addr = 0;
313 else
314 addr = (CORE_ADDR) u_offsets[regno];
316 return addr;
319 static int
320 ia64_cannot_fetch_register (struct gdbarch *gdbarch, int regno)
322 return regno < 0
323 || regno >= gdbarch_num_regs (gdbarch)
324 || u_offsets[regno] == -1;
327 static int
328 ia64_cannot_store_register (struct gdbarch *gdbarch, int regno)
330 /* Rationale behind not permitting stores to bspstore...
332 The IA-64 architecture provides bspstore and bsp which refer
333 memory locations in the RSE's backing store. bspstore is the
334 next location which will be written when the RSE needs to write
335 to memory. bsp is the address at which r32 in the current frame
336 would be found if it were written to the backing store.
338 The IA-64 architecture provides read-only access to bsp and
339 read/write access to bspstore (but only when the RSE is in
340 the enforced lazy mode). It should be noted that stores
341 to bspstore also affect the value of bsp. Changing bspstore
342 does not affect the number of dirty entries between bspstore
343 and bsp, so changing bspstore by N words will also cause bsp
344 to be changed by (roughly) N as well. (It could be N-1 or N+1
345 depending upon where the NaT collection bits fall.)
347 OTOH, the Linux kernel provides read/write access to bsp (and
348 currently read/write access to bspstore as well). But it
349 is definitely the case that if you change one, the other
350 will change at the same time. It is more useful to gdb to
351 be able to change bsp. So in order to prevent strange and
352 undesirable things from happening when a dummy stack frame
353 is popped (after calling an inferior function), we allow
354 bspstore to be read, but not written. (Note that popping
355 a (generic) dummy stack frame causes all registers that
356 were previously read from the inferior process to be written
357 back.) */
359 return regno < 0
360 || regno >= gdbarch_num_regs (gdbarch)
361 || u_offsets[regno] == -1
362 || regno == IA64_BSPSTORE_REGNUM;
365 void
366 supply_gregset (struct regcache *regcache, const gregset_t *gregsetp)
368 int regi;
369 const greg_t *regp = (const greg_t *) gregsetp;
371 for (regi = IA64_GR0_REGNUM; regi <= IA64_GR31_REGNUM; regi++)
373 regcache_raw_supply (regcache, regi, regp + (regi - IA64_GR0_REGNUM));
376 /* FIXME: NAT collection bits are at index 32; gotta deal with these
377 somehow... */
379 regcache_raw_supply (regcache, IA64_PR_REGNUM, regp + 33);
381 for (regi = IA64_BR0_REGNUM; regi <= IA64_BR7_REGNUM; regi++)
383 regcache_raw_supply (regcache, regi,
384 regp + 34 + (regi - IA64_BR0_REGNUM));
387 regcache_raw_supply (regcache, IA64_IP_REGNUM, regp + 42);
388 regcache_raw_supply (regcache, IA64_CFM_REGNUM, regp + 43);
389 regcache_raw_supply (regcache, IA64_PSR_REGNUM, regp + 44);
390 regcache_raw_supply (regcache, IA64_RSC_REGNUM, regp + 45);
391 regcache_raw_supply (regcache, IA64_BSP_REGNUM, regp + 46);
392 regcache_raw_supply (regcache, IA64_BSPSTORE_REGNUM, regp + 47);
393 regcache_raw_supply (regcache, IA64_RNAT_REGNUM, regp + 48);
394 regcache_raw_supply (regcache, IA64_CCV_REGNUM, regp + 49);
395 regcache_raw_supply (regcache, IA64_UNAT_REGNUM, regp + 50);
396 regcache_raw_supply (regcache, IA64_FPSR_REGNUM, regp + 51);
397 regcache_raw_supply (regcache, IA64_PFS_REGNUM, regp + 52);
398 regcache_raw_supply (regcache, IA64_LC_REGNUM, regp + 53);
399 regcache_raw_supply (regcache, IA64_EC_REGNUM, regp + 54);
402 void
403 fill_gregset (const struct regcache *regcache, gregset_t *gregsetp, int regno)
405 int regi;
406 greg_t *regp = (greg_t *) gregsetp;
408 #define COPY_REG(_idx_,_regi_) \
409 if ((regno == -1) || regno == _regi_) \
410 regcache_raw_collect (regcache, _regi_, regp + _idx_)
412 for (regi = IA64_GR0_REGNUM; regi <= IA64_GR31_REGNUM; regi++)
414 COPY_REG (regi - IA64_GR0_REGNUM, regi);
417 /* FIXME: NAT collection bits at index 32? */
419 COPY_REG (33, IA64_PR_REGNUM);
421 for (regi = IA64_BR0_REGNUM; regi <= IA64_BR7_REGNUM; regi++)
423 COPY_REG (34 + (regi - IA64_BR0_REGNUM), regi);
426 COPY_REG (42, IA64_IP_REGNUM);
427 COPY_REG (43, IA64_CFM_REGNUM);
428 COPY_REG (44, IA64_PSR_REGNUM);
429 COPY_REG (45, IA64_RSC_REGNUM);
430 COPY_REG (46, IA64_BSP_REGNUM);
431 COPY_REG (47, IA64_BSPSTORE_REGNUM);
432 COPY_REG (48, IA64_RNAT_REGNUM);
433 COPY_REG (49, IA64_CCV_REGNUM);
434 COPY_REG (50, IA64_UNAT_REGNUM);
435 COPY_REG (51, IA64_FPSR_REGNUM);
436 COPY_REG (52, IA64_PFS_REGNUM);
437 COPY_REG (53, IA64_LC_REGNUM);
438 COPY_REG (54, IA64_EC_REGNUM);
441 /* Given a pointer to a floating point register set in /proc format
442 (fpregset_t *), unpack the register contents and supply them as gdb's
443 idea of the current floating point register values. */
445 void
446 supply_fpregset (struct regcache *regcache, const fpregset_t *fpregsetp)
448 int regi;
449 const char *from;
450 const gdb_byte f_zero[16] = { 0 };
451 const gdb_byte f_one[16] =
452 { 0, 0, 0, 0, 0, 0, 0, 0x80, 0xff, 0xff, 0, 0, 0, 0, 0, 0 };
454 /* Kernel generated cores have fr1==0 instead of 1.0. Older GDBs
455 did the same. So ignore whatever might be recorded in fpregset_t
456 for fr0/fr1 and always supply their expected values. */
458 /* fr0 is always read as zero. */
459 regcache_raw_supply (regcache, IA64_FR0_REGNUM, f_zero);
460 /* fr1 is always read as one (1.0). */
461 regcache_raw_supply (regcache, IA64_FR1_REGNUM, f_one);
463 for (regi = IA64_FR2_REGNUM; regi <= IA64_FR127_REGNUM; regi++)
465 from = (const char *) &((*fpregsetp)[regi - IA64_FR0_REGNUM]);
466 regcache_raw_supply (regcache, regi, from);
470 /* Given a pointer to a floating point register set in /proc format
471 (fpregset_t *), update the register specified by REGNO from gdb's idea
472 of the current floating point register set. If REGNO is -1, update
473 them all. */
475 void
476 fill_fpregset (const struct regcache *regcache,
477 fpregset_t *fpregsetp, int regno)
479 int regi;
481 for (regi = IA64_FR0_REGNUM; regi <= IA64_FR127_REGNUM; regi++)
483 if ((regno == -1) || (regno == regi))
484 regcache_raw_collect (regcache, regi,
485 &((*fpregsetp)[regi - IA64_FR0_REGNUM]));
489 #define IA64_PSR_DB (1UL << 24)
490 #define IA64_PSR_DD (1UL << 39)
492 static void
493 enable_watchpoints_in_psr (ptid_t ptid)
495 struct regcache *regcache = get_thread_regcache (ptid);
496 ULONGEST psr;
498 regcache_cooked_read_unsigned (regcache, IA64_PSR_REGNUM, &psr);
499 if (!(psr & IA64_PSR_DB))
501 psr |= IA64_PSR_DB; /* Set the db bit - this enables hardware
502 watchpoints and breakpoints. */
503 regcache_cooked_write_unsigned (regcache, IA64_PSR_REGNUM, psr);
507 static long debug_registers[8];
509 static void
510 store_debug_register (ptid_t ptid, int idx, long val)
512 int tid;
514 tid = TIDGET (ptid);
515 if (tid == 0)
516 tid = PIDGET (ptid);
518 (void) ptrace (PT_WRITE_U, tid, (PTRACE_TYPE_ARG3) (PT_DBR + 8 * idx), val);
521 static void
522 store_debug_register_pair (ptid_t ptid, int idx, long *dbr_addr,
523 long *dbr_mask)
525 if (dbr_addr)
526 store_debug_register (ptid, 2 * idx, *dbr_addr);
527 if (dbr_mask)
528 store_debug_register (ptid, 2 * idx + 1, *dbr_mask);
531 static int
532 is_power_of_2 (int val)
534 int i, onecount;
536 onecount = 0;
537 for (i = 0; i < 8 * sizeof (val); i++)
538 if (val & (1 << i))
539 onecount++;
541 return onecount <= 1;
544 static int
545 ia64_linux_insert_watchpoint (CORE_ADDR addr, int len, int rw,
546 struct expression *cond)
548 struct lwp_info *lp;
549 int idx;
550 long dbr_addr, dbr_mask;
551 int max_watchpoints = 4;
553 if (len <= 0 || !is_power_of_2 (len))
554 return -1;
556 for (idx = 0; idx < max_watchpoints; idx++)
558 dbr_mask = debug_registers[idx * 2 + 1];
559 if ((dbr_mask & (0x3UL << 62)) == 0)
561 /* Exit loop if both r and w bits clear. */
562 break;
566 if (idx == max_watchpoints)
567 return -1;
569 dbr_addr = (long) addr;
570 dbr_mask = (~(len - 1) & 0x00ffffffffffffffL); /* construct mask to match */
571 dbr_mask |= 0x0800000000000000L; /* Only match privilege level 3 */
572 switch (rw)
574 case hw_write:
575 dbr_mask |= (1L << 62); /* Set w bit */
576 break;
577 case hw_read:
578 dbr_mask |= (1L << 63); /* Set r bit */
579 break;
580 case hw_access:
581 dbr_mask |= (3L << 62); /* Set both r and w bits */
582 break;
583 default:
584 return -1;
587 debug_registers[2 * idx] = dbr_addr;
588 debug_registers[2 * idx + 1] = dbr_mask;
589 ALL_LWPS (lp)
591 store_debug_register_pair (lp->ptid, idx, &dbr_addr, &dbr_mask);
592 enable_watchpoints_in_psr (lp->ptid);
595 return 0;
598 static int
599 ia64_linux_remove_watchpoint (CORE_ADDR addr, int len, int type,
600 struct expression *cond)
602 int idx;
603 long dbr_addr, dbr_mask;
604 int max_watchpoints = 4;
606 if (len <= 0 || !is_power_of_2 (len))
607 return -1;
609 for (idx = 0; idx < max_watchpoints; idx++)
611 dbr_addr = debug_registers[2 * idx];
612 dbr_mask = debug_registers[2 * idx + 1];
613 if ((dbr_mask & (0x3UL << 62)) && addr == (CORE_ADDR) dbr_addr)
615 struct lwp_info *lp;
617 debug_registers[2 * idx] = 0;
618 debug_registers[2 * idx + 1] = 0;
619 dbr_addr = 0;
620 dbr_mask = 0;
622 ALL_LWPS (lp)
623 store_debug_register_pair (lp->ptid, idx, &dbr_addr, &dbr_mask);
625 return 0;
628 return -1;
631 static void
632 ia64_linux_new_thread (struct lwp_info *lp)
634 int i, any;
636 any = 0;
637 for (i = 0; i < 8; i++)
639 if (debug_registers[i] != 0)
640 any = 1;
641 store_debug_register (lp->ptid, i, debug_registers[i]);
644 if (any)
645 enable_watchpoints_in_psr (lp->ptid);
648 static int
649 ia64_linux_stopped_data_address (struct target_ops *ops, CORE_ADDR *addr_p)
651 CORE_ADDR psr;
652 siginfo_t siginfo;
653 struct regcache *regcache = get_current_regcache ();
655 if (!linux_nat_get_siginfo (inferior_ptid, &siginfo))
656 return 0;
658 if (siginfo.si_signo != SIGTRAP
659 || (siginfo.si_code & 0xffff) != 0x0004 /* TRAP_HWBKPT */)
660 return 0;
662 regcache_cooked_read_unsigned (regcache, IA64_PSR_REGNUM, &psr);
663 psr |= IA64_PSR_DD; /* Set the dd bit - this will disable the watchpoint
664 for the next instruction. */
665 regcache_cooked_write_unsigned (regcache, IA64_PSR_REGNUM, psr);
667 *addr_p = (CORE_ADDR) siginfo.si_addr;
668 return 1;
671 static int
672 ia64_linux_stopped_by_watchpoint (void)
674 CORE_ADDR addr;
675 return ia64_linux_stopped_data_address (&current_target, &addr);
678 static int
679 ia64_linux_can_use_hw_breakpoint (int type, int cnt, int othertype)
681 return 1;
685 /* Fetch register REGNUM from the inferior. */
687 static void
688 ia64_linux_fetch_register (struct regcache *regcache, int regnum)
690 struct gdbarch *gdbarch = get_regcache_arch (regcache);
691 CORE_ADDR addr;
692 size_t size;
693 PTRACE_TYPE_RET *buf;
694 int pid, i;
696 /* r0 cannot be fetched but is always zero. */
697 if (regnum == IA64_GR0_REGNUM)
699 const gdb_byte zero[8] = { 0 };
701 gdb_assert (sizeof (zero) == register_size (gdbarch, regnum));
702 regcache_raw_supply (regcache, regnum, zero);
703 return;
706 /* fr0 cannot be fetched but is always zero. */
707 if (regnum == IA64_FR0_REGNUM)
709 const gdb_byte f_zero[16] = { 0 };
711 gdb_assert (sizeof (f_zero) == register_size (gdbarch, regnum));
712 regcache_raw_supply (regcache, regnum, f_zero);
713 return;
716 /* fr1 cannot be fetched but is always one (1.0). */
717 if (regnum == IA64_FR1_REGNUM)
719 const gdb_byte f_one[16] =
720 { 0, 0, 0, 0, 0, 0, 0, 0x80, 0xff, 0xff, 0, 0, 0, 0, 0, 0 };
722 gdb_assert (sizeof (f_one) == register_size (gdbarch, regnum));
723 regcache_raw_supply (regcache, regnum, f_one);
724 return;
727 if (ia64_cannot_fetch_register (gdbarch, regnum))
729 regcache_raw_supply (regcache, regnum, NULL);
730 return;
733 /* Cater for systems like GNU/Linux, that implement threads as
734 separate processes. */
735 pid = ptid_get_lwp (inferior_ptid);
736 if (pid == 0)
737 pid = ptid_get_pid (inferior_ptid);
739 /* This isn't really an address, but ptrace thinks of it as one. */
740 addr = ia64_register_addr (gdbarch, regnum);
741 size = register_size (gdbarch, regnum);
743 gdb_assert ((size % sizeof (PTRACE_TYPE_RET)) == 0);
744 buf = alloca (size);
746 /* Read the register contents from the inferior a chunk at a time. */
747 for (i = 0; i < size / sizeof (PTRACE_TYPE_RET); i++)
749 errno = 0;
750 buf[i] = ptrace (PT_READ_U, pid, (PTRACE_TYPE_ARG3)addr, 0);
751 if (errno != 0)
752 error (_("Couldn't read register %s (#%d): %s."),
753 gdbarch_register_name (gdbarch, regnum),
754 regnum, safe_strerror (errno));
756 addr += sizeof (PTRACE_TYPE_RET);
758 regcache_raw_supply (regcache, regnum, buf);
761 /* Fetch register REGNUM from the inferior. If REGNUM is -1, do this
762 for all registers. */
764 static void
765 ia64_linux_fetch_registers (struct target_ops *ops,
766 struct regcache *regcache, int regnum)
768 if (regnum == -1)
769 for (regnum = 0;
770 regnum < gdbarch_num_regs (get_regcache_arch (regcache));
771 regnum++)
772 ia64_linux_fetch_register (regcache, regnum);
773 else
774 ia64_linux_fetch_register (regcache, regnum);
777 /* Store register REGNUM into the inferior. */
779 static void
780 ia64_linux_store_register (const struct regcache *regcache, int regnum)
782 struct gdbarch *gdbarch = get_regcache_arch (regcache);
783 CORE_ADDR addr;
784 size_t size;
785 PTRACE_TYPE_RET *buf;
786 int pid, i;
788 if (ia64_cannot_store_register (gdbarch, regnum))
789 return;
791 /* Cater for systems like GNU/Linux, that implement threads as
792 separate processes. */
793 pid = ptid_get_lwp (inferior_ptid);
794 if (pid == 0)
795 pid = ptid_get_pid (inferior_ptid);
797 /* This isn't really an address, but ptrace thinks of it as one. */
798 addr = ia64_register_addr (gdbarch, regnum);
799 size = register_size (gdbarch, regnum);
801 gdb_assert ((size % sizeof (PTRACE_TYPE_RET)) == 0);
802 buf = alloca (size);
804 /* Write the register contents into the inferior a chunk at a time. */
805 regcache_raw_collect (regcache, regnum, buf);
806 for (i = 0; i < size / sizeof (PTRACE_TYPE_RET); i++)
808 errno = 0;
809 ptrace (PT_WRITE_U, pid, (PTRACE_TYPE_ARG3)addr, buf[i]);
810 if (errno != 0)
811 error (_("Couldn't write register %s (#%d): %s."),
812 gdbarch_register_name (gdbarch, regnum),
813 regnum, safe_strerror (errno));
815 addr += sizeof (PTRACE_TYPE_RET);
819 /* Store register REGNUM back into the inferior. If REGNUM is -1, do
820 this for all registers. */
822 static void
823 ia64_linux_store_registers (struct target_ops *ops,
824 struct regcache *regcache, int regnum)
826 if (regnum == -1)
827 for (regnum = 0;
828 regnum < gdbarch_num_regs (get_regcache_arch (regcache));
829 regnum++)
830 ia64_linux_store_register (regcache, regnum);
831 else
832 ia64_linux_store_register (regcache, regnum);
836 static LONGEST (*super_xfer_partial) (struct target_ops *, enum target_object,
837 const char *, gdb_byte *,
838 const gdb_byte *, ULONGEST, LONGEST);
840 static LONGEST
841 ia64_linux_xfer_partial (struct target_ops *ops,
842 enum target_object object,
843 const char *annex,
844 gdb_byte *readbuf, const gdb_byte *writebuf,
845 ULONGEST offset, LONGEST len)
847 if (object == TARGET_OBJECT_UNWIND_TABLE && writebuf == NULL && offset == 0)
848 return syscall (__NR_getunwind, readbuf, len);
850 return super_xfer_partial (ops, object, annex, readbuf, writebuf,
851 offset, len);
854 /* For break.b instruction ia64 CPU forgets the immediate value and generates
855 SIGILL with ILL_ILLOPC instead of more common SIGTRAP with TRAP_BRKPT.
856 ia64 does not use gdbarch_decr_pc_after_break so we do not have to make any
857 difference for the signals here. */
859 static int
860 ia64_linux_status_is_event (int status)
862 return WIFSTOPPED (status) && (WSTOPSIG (status) == SIGTRAP
863 || WSTOPSIG (status) == SIGILL);
866 void _initialize_ia64_linux_nat (void);
868 void
869 _initialize_ia64_linux_nat (void)
871 struct target_ops *t;
873 /* Fill in the generic GNU/Linux methods. */
874 t = linux_target ();
876 /* Override the default fetch/store register routines. */
877 t->to_fetch_registers = ia64_linux_fetch_registers;
878 t->to_store_registers = ia64_linux_store_registers;
880 /* Override the default to_xfer_partial. */
881 super_xfer_partial = t->to_xfer_partial;
882 t->to_xfer_partial = ia64_linux_xfer_partial;
884 /* Override watchpoint routines. */
886 /* The IA-64 architecture can step over a watch point (without triggering
887 it again) if the "dd" (data debug fault disable) bit in the processor
888 status word is set.
890 This PSR bit is set in ia64_linux_stopped_by_watchpoint when the
891 code there has determined that a hardware watchpoint has indeed
892 been hit. The CPU will then be able to execute one instruction
893 without triggering a watchpoint. */
895 t->to_have_steppable_watchpoint = 1;
896 t->to_can_use_hw_breakpoint = ia64_linux_can_use_hw_breakpoint;
897 t->to_stopped_by_watchpoint = ia64_linux_stopped_by_watchpoint;
898 t->to_stopped_data_address = ia64_linux_stopped_data_address;
899 t->to_insert_watchpoint = ia64_linux_insert_watchpoint;
900 t->to_remove_watchpoint = ia64_linux_remove_watchpoint;
902 /* Register the target. */
903 linux_nat_add_target (t);
904 linux_nat_set_new_thread (t, ia64_linux_new_thread);
905 linux_nat_set_status_is_event (t, ia64_linux_status_is_event);