2013-03-12 Sebastian Huber <sebastian.huber@embedded-brains.de>
[binutils-gdb.git] / gdb / mep-tdep.c
blob3d917738ac7e5462f1ce1d960d0dcf4cc09d44ad
1 /* Target-dependent code for the Toshiba MeP for GDB, the GNU debugger.
3 Copyright (C) 2001-2013 Free Software Foundation, Inc.
5 Contributed by Red Hat, Inc.
7 This file is part of GDB.
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22 #include "defs.h"
23 #include "frame.h"
24 #include "frame-unwind.h"
25 #include "frame-base.h"
26 #include "symtab.h"
27 #include "gdbtypes.h"
28 #include "gdbcmd.h"
29 #include "gdbcore.h"
30 #include "gdb_string.h"
31 #include "value.h"
32 #include "inferior.h"
33 #include "dis-asm.h"
34 #include "symfile.h"
35 #include "objfiles.h"
36 #include "language.h"
37 #include "arch-utils.h"
38 #include "regcache.h"
39 #include "remote.h"
40 #include "floatformat.h"
41 #include "sim-regno.h"
42 #include "disasm.h"
43 #include "trad-frame.h"
44 #include "reggroups.h"
45 #include "elf-bfd.h"
46 #include "elf/mep.h"
47 #include "prologue-value.h"
48 #include "cgen/bitset.h"
49 #include "infcall.h"
51 #include "gdb_assert.h"
53 /* Get the user's customized MeP coprocessor register names from
54 libopcodes. */
55 #include "opcodes/mep-desc.h"
56 #include "opcodes/mep-opc.h"
59 /* The gdbarch_tdep structure. */
61 /* A quick recap for GDB hackers not familiar with the whole Toshiba
62 Media Processor story:
64 The MeP media engine is a configureable processor: users can design
65 their own coprocessors, implement custom instructions, adjust cache
66 sizes, select optional standard facilities like add-and-saturate
67 instructions, and so on. Then, they can build custom versions of
68 the GNU toolchain to support their customized chips. The
69 MeP-Integrator program (see utils/mep) takes a GNU toolchain source
70 tree, and a config file pointing to various files provided by the
71 user describing their customizations, and edits the source tree to
72 produce a compiler that can generate their custom instructions, an
73 assembler that can assemble them and recognize their custom
74 register names, and so on.
76 Furthermore, the user can actually specify several of these custom
77 configurations, called 'me_modules', and get a toolchain which can
78 produce code for any of them, given a compiler/assembler switch;
79 you say something like 'gcc -mconfig=mm_max' to generate code for
80 the me_module named 'mm_max'.
82 GDB, in particular, needs to:
84 - use the coprocessor control register names provided by the user
85 in their hardware description, in expressions, 'info register'
86 output, and disassembly,
88 - know the number, names, and types of the coprocessor's
89 general-purpose registers, adjust the 'info all-registers' output
90 accordingly, and print error messages if the user refers to one
91 that doesn't exist
93 - allow access to the control bus space only when the configuration
94 actually has a control bus, and recognize which regions of the
95 control bus space are actually populated,
97 - disassemble using the user's provided mnemonics for their custom
98 instructions, and
100 - recognize whether the $hi and $lo registers are present, and
101 allow access to them only when they are actually there.
103 There are three sources of information about what sort of me_module
104 we're actually dealing with:
106 - A MeP executable file indicates which me_module it was compiled
107 for, and libopcodes has tables describing each module. So, given
108 an executable file, we can find out about the processor it was
109 compiled for.
111 - There are SID command-line options to select a particular
112 me_module, overriding the one specified in the ELF file. SID
113 provides GDB with a fake read-only register, 'module', which
114 indicates which me_module GDB is communicating with an instance
117 - There are SID command-line options to enable or disable certain
118 optional processor features, overriding the defaults for the
119 selected me_module. The MeP $OPT register indicates which
120 options are present on the current processor. */
123 struct gdbarch_tdep
125 /* A CGEN cpu descriptor for this BFD architecture and machine.
127 Note: this is *not* customized for any particular me_module; the
128 MeP libopcodes machinery actually puts off module-specific
129 customization until the last minute. So this contains
130 information about all supported me_modules. */
131 CGEN_CPU_DESC cpu_desc;
133 /* The me_module index from the ELF file we used to select this
134 architecture, or CONFIG_NONE if there was none.
136 Note that we should prefer to use the me_module number available
137 via the 'module' register, whenever we're actually talking to a
138 real target.
140 In the absence of live information, we'd like to get the
141 me_module number from the ELF file. But which ELF file: the
142 executable file, the core file, ... ? The answer is, "the last
143 ELF file we used to set the current architecture". Thus, we
144 create a separate instance of the gdbarch structure for each
145 me_module value mep_gdbarch_init sees, and store the me_module
146 value from the ELF file here. */
147 CONFIG_ATTR me_module;
152 /* Getting me_module information from the CGEN tables. */
155 /* Find an entry in the DESC's hardware table whose name begins with
156 PREFIX, and whose ISA mask intersects COPRO_ISA_MASK, but does not
157 intersect with GENERIC_ISA_MASK. If there is no matching entry,
158 return zero. */
159 static const CGEN_HW_ENTRY *
160 find_hw_entry_by_prefix_and_isa (CGEN_CPU_DESC desc,
161 const char *prefix,
162 CGEN_BITSET *copro_isa_mask,
163 CGEN_BITSET *generic_isa_mask)
165 int prefix_len = strlen (prefix);
166 int i;
168 for (i = 0; i < desc->hw_table.num_entries; i++)
170 const CGEN_HW_ENTRY *hw = desc->hw_table.entries[i];
171 if (strncmp (prefix, hw->name, prefix_len) == 0)
173 CGEN_BITSET *hw_isa_mask
174 = ((CGEN_BITSET *)
175 &CGEN_ATTR_CGEN_HW_ISA_VALUE (CGEN_HW_ATTRS (hw)));
177 if (cgen_bitset_intersect_p (hw_isa_mask, copro_isa_mask)
178 && ! cgen_bitset_intersect_p (hw_isa_mask, generic_isa_mask))
179 return hw;
183 return 0;
187 /* Find an entry in DESC's hardware table whose type is TYPE. Return
188 zero if there is none. */
189 static const CGEN_HW_ENTRY *
190 find_hw_entry_by_type (CGEN_CPU_DESC desc, CGEN_HW_TYPE type)
192 int i;
194 for (i = 0; i < desc->hw_table.num_entries; i++)
196 const CGEN_HW_ENTRY *hw = desc->hw_table.entries[i];
198 if (hw->type == type)
199 return hw;
202 return 0;
206 /* Return the CGEN hardware table entry for the coprocessor register
207 set for ME_MODULE, whose name prefix is PREFIX. If ME_MODULE has
208 no such register set, return zero. If ME_MODULE is the generic
209 me_module CONFIG_NONE, return the table entry for the register set
210 whose hardware type is GENERIC_TYPE. */
211 static const CGEN_HW_ENTRY *
212 me_module_register_set (CONFIG_ATTR me_module,
213 const char *prefix,
214 CGEN_HW_TYPE generic_type)
216 /* This is kind of tricky, because the hardware table is constructed
217 in a way that isn't very helpful. Perhaps we can fix that, but
218 here's how it works at the moment:
220 The configuration map, `mep_config_map', is indexed by me_module
221 number, and indicates which coprocessor and core ISAs that
222 me_module supports. The 'core_isa' mask includes all the core
223 ISAs, and the 'cop_isa' mask includes all the coprocessor ISAs.
224 The entry for the generic me_module, CONFIG_NONE, has an empty
225 'cop_isa', and its 'core_isa' selects only the standard MeP
226 instruction set.
228 The CGEN CPU descriptor's hardware table, desc->hw_table, has
229 entries for all the register sets, for all me_modules. Each
230 entry has a mask indicating which ISAs use that register set.
231 So, if an me_module supports some coprocessor ISA, we can find
232 applicable register sets by scanning the hardware table for
233 register sets whose masks include (at least some of) those ISAs.
235 Each hardware table entry also has a name, whose prefix says
236 whether it's a general-purpose ("h-cr") or control ("h-ccr")
237 coprocessor register set. It might be nicer to have an attribute
238 indicating what sort of register set it was, that we could use
239 instead of pattern-matching on the name.
241 When there is no hardware table entry whose mask includes a
242 particular coprocessor ISA and whose name starts with a given
243 prefix, then that means that that coprocessor doesn't have any
244 registers of that type. In such cases, this function must return
245 a null pointer.
247 Coprocessor register sets' masks may or may not include the core
248 ISA for the me_module they belong to. Those generated by a2cgen
249 do, but the sample me_module included in the unconfigured tree,
250 'ccfx', does not.
252 There are generic coprocessor register sets, intended only for
253 use with the generic me_module. Unfortunately, their masks
254 include *all* ISAs --- even those for coprocessors that don't
255 have such register sets. This makes detecting the case where a
256 coprocessor lacks a particular register set more complicated.
258 So, here's the approach we take:
260 - For CONFIG_NONE, we return the generic coprocessor register set.
262 - For any other me_module, we search for a register set whose
263 mask contains any of the me_module's coprocessor ISAs,
264 specifically excluding the generic coprocessor register sets. */
266 CGEN_CPU_DESC desc = gdbarch_tdep (target_gdbarch ())->cpu_desc;
267 const CGEN_HW_ENTRY *hw;
269 if (me_module == CONFIG_NONE)
270 hw = find_hw_entry_by_type (desc, generic_type);
271 else
273 CGEN_BITSET *cop = &mep_config_map[me_module].cop_isa;
274 CGEN_BITSET *core = &mep_config_map[me_module].core_isa;
275 CGEN_BITSET *generic = &mep_config_map[CONFIG_NONE].core_isa;
276 CGEN_BITSET *cop_and_core;
278 /* The coprocessor ISAs include the ISA for the specific core which
279 has that coprocessor. */
280 cop_and_core = cgen_bitset_copy (cop);
281 cgen_bitset_union (cop, core, cop_and_core);
282 hw = find_hw_entry_by_prefix_and_isa (desc, prefix, cop_and_core, generic);
285 return hw;
289 /* Given a hardware table entry HW representing a register set, return
290 a pointer to the keyword table with all the register names. If HW
291 is NULL, return NULL, to propage the "no such register set" info
292 along. */
293 static CGEN_KEYWORD *
294 register_set_keyword_table (const CGEN_HW_ENTRY *hw)
296 if (! hw)
297 return NULL;
299 /* Check that HW is actually a keyword table. */
300 gdb_assert (hw->asm_type == CGEN_ASM_KEYWORD);
302 /* The 'asm_data' field of a register set's hardware table entry
303 refers to a keyword table. */
304 return (CGEN_KEYWORD *) hw->asm_data;
308 /* Given a keyword table KEYWORD and a register number REGNUM, return
309 the name of the register, or "" if KEYWORD contains no register
310 whose number is REGNUM. */
311 static char *
312 register_name_from_keyword (CGEN_KEYWORD *keyword_table, int regnum)
314 const CGEN_KEYWORD_ENTRY *entry
315 = cgen_keyword_lookup_value (keyword_table, regnum);
317 if (entry)
319 char *name = entry->name;
321 /* The CGEN keyword entries for register names include the
322 leading $, which appears in MeP assembly as well as in GDB.
323 But we don't want to return that; GDB core code adds that
324 itself. */
325 if (name[0] == '$')
326 name++;
328 return name;
330 else
331 return "";
335 /* Masks for option bits in the OPT special-purpose register. */
336 enum {
337 MEP_OPT_DIV = 1 << 25, /* 32-bit divide instruction option */
338 MEP_OPT_MUL = 1 << 24, /* 32-bit multiply instruction option */
339 MEP_OPT_BIT = 1 << 23, /* bit manipulation instruction option */
340 MEP_OPT_SAT = 1 << 22, /* saturation instruction option */
341 MEP_OPT_CLP = 1 << 21, /* clip instruction option */
342 MEP_OPT_MIN = 1 << 20, /* min/max instruction option */
343 MEP_OPT_AVE = 1 << 19, /* average instruction option */
344 MEP_OPT_ABS = 1 << 18, /* absolute difference instruction option */
345 MEP_OPT_LDZ = 1 << 16, /* leading zero instruction option */
346 MEP_OPT_VL64 = 1 << 6, /* 64-bit VLIW operation mode option */
347 MEP_OPT_VL32 = 1 << 5, /* 32-bit VLIW operation mode option */
348 MEP_OPT_COP = 1 << 4, /* coprocessor option */
349 MEP_OPT_DSP = 1 << 2, /* DSP option */
350 MEP_OPT_UCI = 1 << 1, /* UCI option */
351 MEP_OPT_DBG = 1 << 0, /* DBG function option */
355 /* Given the option_mask value for a particular entry in
356 mep_config_map, produce the value the processor's OPT register
357 would use to represent the same set of options. */
358 static unsigned int
359 opt_from_option_mask (unsigned int option_mask)
361 /* A table mapping OPT register bits onto CGEN config map option
362 bits. */
363 struct {
364 unsigned int opt_bit, option_mask_bit;
365 } bits[] = {
366 { MEP_OPT_DIV, 1 << CGEN_INSN_OPTIONAL_DIV_INSN },
367 { MEP_OPT_MUL, 1 << CGEN_INSN_OPTIONAL_MUL_INSN },
368 { MEP_OPT_DIV, 1 << CGEN_INSN_OPTIONAL_DIV_INSN },
369 { MEP_OPT_DBG, 1 << CGEN_INSN_OPTIONAL_DEBUG_INSN },
370 { MEP_OPT_LDZ, 1 << CGEN_INSN_OPTIONAL_LDZ_INSN },
371 { MEP_OPT_ABS, 1 << CGEN_INSN_OPTIONAL_ABS_INSN },
372 { MEP_OPT_AVE, 1 << CGEN_INSN_OPTIONAL_AVE_INSN },
373 { MEP_OPT_MIN, 1 << CGEN_INSN_OPTIONAL_MINMAX_INSN },
374 { MEP_OPT_CLP, 1 << CGEN_INSN_OPTIONAL_CLIP_INSN },
375 { MEP_OPT_SAT, 1 << CGEN_INSN_OPTIONAL_SAT_INSN },
376 { MEP_OPT_UCI, 1 << CGEN_INSN_OPTIONAL_UCI_INSN },
377 { MEP_OPT_DSP, 1 << CGEN_INSN_OPTIONAL_DSP_INSN },
378 { MEP_OPT_COP, 1 << CGEN_INSN_OPTIONAL_CP_INSN },
381 int i;
382 unsigned int opt = 0;
384 for (i = 0; i < (sizeof (bits) / sizeof (bits[0])); i++)
385 if (option_mask & bits[i].option_mask_bit)
386 opt |= bits[i].opt_bit;
388 return opt;
392 /* Return the value the $OPT register would use to represent the set
393 of options for ME_MODULE. */
394 static unsigned int
395 me_module_opt (CONFIG_ATTR me_module)
397 return opt_from_option_mask (mep_config_map[me_module].option_mask);
401 /* Return the width of ME_MODULE's coprocessor data bus, in bits.
402 This is either 32 or 64. */
403 static int
404 me_module_cop_data_bus_width (CONFIG_ATTR me_module)
406 if (mep_config_map[me_module].option_mask
407 & (1 << CGEN_INSN_OPTIONAL_CP64_INSN))
408 return 64;
409 else
410 return 32;
414 /* Return true if ME_MODULE is big-endian, false otherwise. */
415 static int
416 me_module_big_endian (CONFIG_ATTR me_module)
418 return mep_config_map[me_module].big_endian;
422 /* Return the name of ME_MODULE, or NULL if it has no name. */
423 static const char *
424 me_module_name (CONFIG_ATTR me_module)
426 /* The default me_module has "" as its name, but it's easier for our
427 callers to test for NULL. */
428 if (! mep_config_map[me_module].name
429 || mep_config_map[me_module].name[0] == '\0')
430 return NULL;
431 else
432 return mep_config_map[me_module].name;
435 /* Register set. */
438 /* The MeP spec defines the following registers:
439 16 general purpose registers (r0-r15)
440 32 control/special registers (csr0-csr31)
441 32 coprocessor general-purpose registers (c0 -- c31)
442 64 coprocessor control registers (ccr0 -- ccr63)
444 For the raw registers, we assign numbers here explicitly, instead
445 of letting the enum assign them for us; the numbers are a matter of
446 external protocol, and shouldn't shift around as things are edited.
448 We access the control/special registers via pseudoregisters, to
449 enforce read-only portions that some registers have.
451 We access the coprocessor general purpose and control registers via
452 pseudoregisters, to make sure they appear in the proper order in
453 the 'info all-registers' command (which uses the register number
454 ordering), and also to allow them to be renamed and resized
455 depending on the me_module in use.
457 The MeP allows coprocessor general-purpose registers to be either
458 32 or 64 bits long, depending on the configuration. Since we don't
459 want the format of the 'g' packet to vary from one core to another,
460 the raw coprocessor GPRs are always 64 bits. GDB doesn't allow the
461 types of registers to change (see the implementation of
462 register_type), so we have four banks of pseudoregisters for the
463 coprocessor gprs --- 32-bit vs. 64-bit, and integer
464 vs. floating-point --- and we show or hide them depending on the
465 configuration. */
466 enum
468 MEP_FIRST_RAW_REGNUM = 0,
470 MEP_FIRST_GPR_REGNUM = 0,
471 MEP_R0_REGNUM = 0,
472 MEP_R1_REGNUM = 1,
473 MEP_R2_REGNUM = 2,
474 MEP_R3_REGNUM = 3,
475 MEP_R4_REGNUM = 4,
476 MEP_R5_REGNUM = 5,
477 MEP_R6_REGNUM = 6,
478 MEP_R7_REGNUM = 7,
479 MEP_R8_REGNUM = 8,
480 MEP_R9_REGNUM = 9,
481 MEP_R10_REGNUM = 10,
482 MEP_R11_REGNUM = 11,
483 MEP_R12_REGNUM = 12,
484 MEP_FP_REGNUM = MEP_R8_REGNUM,
485 MEP_R13_REGNUM = 13,
486 MEP_TP_REGNUM = MEP_R13_REGNUM, /* (r13) Tiny data pointer */
487 MEP_R14_REGNUM = 14,
488 MEP_GP_REGNUM = MEP_R14_REGNUM, /* (r14) Global pointer */
489 MEP_R15_REGNUM = 15,
490 MEP_SP_REGNUM = MEP_R15_REGNUM, /* (r15) Stack pointer */
491 MEP_LAST_GPR_REGNUM = MEP_R15_REGNUM,
493 /* The raw control registers. These are the values as received via
494 the remote protocol, directly from the target; we only let user
495 code touch the via the pseudoregisters, which enforce read-only
496 bits. */
497 MEP_FIRST_RAW_CSR_REGNUM = 16,
498 MEP_RAW_PC_REGNUM = 16, /* Program counter */
499 MEP_RAW_LP_REGNUM = 17, /* Link pointer */
500 MEP_RAW_SAR_REGNUM = 18, /* Raw shift amount */
501 MEP_RAW_CSR3_REGNUM = 19, /* csr3: reserved */
502 MEP_RAW_RPB_REGNUM = 20, /* Raw repeat begin address */
503 MEP_RAW_RPE_REGNUM = 21, /* Repeat end address */
504 MEP_RAW_RPC_REGNUM = 22, /* Repeat count */
505 MEP_RAW_HI_REGNUM = 23, /* Upper 32 bits of result of 64 bit mult/div */
506 MEP_RAW_LO_REGNUM = 24, /* Lower 32 bits of result of 64 bit mult/div */
507 MEP_RAW_CSR9_REGNUM = 25, /* csr3: reserved */
508 MEP_RAW_CSR10_REGNUM = 26, /* csr3: reserved */
509 MEP_RAW_CSR11_REGNUM = 27, /* csr3: reserved */
510 MEP_RAW_MB0_REGNUM = 28, /* Raw modulo begin address 0 */
511 MEP_RAW_ME0_REGNUM = 29, /* Raw modulo end address 0 */
512 MEP_RAW_MB1_REGNUM = 30, /* Raw modulo begin address 1 */
513 MEP_RAW_ME1_REGNUM = 31, /* Raw modulo end address 1 */
514 MEP_RAW_PSW_REGNUM = 32, /* Raw program status word */
515 MEP_RAW_ID_REGNUM = 33, /* Raw processor ID/revision */
516 MEP_RAW_TMP_REGNUM = 34, /* Temporary */
517 MEP_RAW_EPC_REGNUM = 35, /* Exception program counter */
518 MEP_RAW_EXC_REGNUM = 36, /* Raw exception cause */
519 MEP_RAW_CFG_REGNUM = 37, /* Raw processor configuration*/
520 MEP_RAW_CSR22_REGNUM = 38, /* csr3: reserved */
521 MEP_RAW_NPC_REGNUM = 39, /* Nonmaskable interrupt PC */
522 MEP_RAW_DBG_REGNUM = 40, /* Raw debug */
523 MEP_RAW_DEPC_REGNUM = 41, /* Debug exception PC */
524 MEP_RAW_OPT_REGNUM = 42, /* Raw options */
525 MEP_RAW_RCFG_REGNUM = 43, /* Raw local ram config */
526 MEP_RAW_CCFG_REGNUM = 44, /* Raw cache config */
527 MEP_RAW_CSR29_REGNUM = 45, /* csr3: reserved */
528 MEP_RAW_CSR30_REGNUM = 46, /* csr3: reserved */
529 MEP_RAW_CSR31_REGNUM = 47, /* csr3: reserved */
530 MEP_LAST_RAW_CSR_REGNUM = MEP_RAW_CSR31_REGNUM,
532 /* The raw coprocessor general-purpose registers. These are all 64
533 bits wide. */
534 MEP_FIRST_RAW_CR_REGNUM = 48,
535 MEP_LAST_RAW_CR_REGNUM = MEP_FIRST_RAW_CR_REGNUM + 31,
537 MEP_FIRST_RAW_CCR_REGNUM = 80,
538 MEP_LAST_RAW_CCR_REGNUM = MEP_FIRST_RAW_CCR_REGNUM + 63,
540 /* The module number register. This is the index of the me_module
541 of which the current target is an instance. (This is not a real
542 MeP-specified register; it's provided by SID.) */
543 MEP_MODULE_REGNUM,
545 MEP_LAST_RAW_REGNUM = MEP_MODULE_REGNUM,
547 MEP_NUM_RAW_REGS = MEP_LAST_RAW_REGNUM + 1,
549 /* Pseudoregisters. See mep_pseudo_register_read and
550 mep_pseudo_register_write. */
551 MEP_FIRST_PSEUDO_REGNUM = MEP_NUM_RAW_REGS,
553 /* We have a pseudoregister for every control/special register, to
554 implement registers with read-only bits. */
555 MEP_FIRST_CSR_REGNUM = MEP_FIRST_PSEUDO_REGNUM,
556 MEP_PC_REGNUM = MEP_FIRST_CSR_REGNUM, /* Program counter */
557 MEP_LP_REGNUM, /* Link pointer */
558 MEP_SAR_REGNUM, /* shift amount */
559 MEP_CSR3_REGNUM, /* csr3: reserved */
560 MEP_RPB_REGNUM, /* repeat begin address */
561 MEP_RPE_REGNUM, /* Repeat end address */
562 MEP_RPC_REGNUM, /* Repeat count */
563 MEP_HI_REGNUM, /* Upper 32 bits of the result of 64 bit mult/div */
564 MEP_LO_REGNUM, /* Lower 32 bits of the result of 64 bit mult/div */
565 MEP_CSR9_REGNUM, /* csr3: reserved */
566 MEP_CSR10_REGNUM, /* csr3: reserved */
567 MEP_CSR11_REGNUM, /* csr3: reserved */
568 MEP_MB0_REGNUM, /* modulo begin address 0 */
569 MEP_ME0_REGNUM, /* modulo end address 0 */
570 MEP_MB1_REGNUM, /* modulo begin address 1 */
571 MEP_ME1_REGNUM, /* modulo end address 1 */
572 MEP_PSW_REGNUM, /* program status word */
573 MEP_ID_REGNUM, /* processor ID/revision */
574 MEP_TMP_REGNUM, /* Temporary */
575 MEP_EPC_REGNUM, /* Exception program counter */
576 MEP_EXC_REGNUM, /* exception cause */
577 MEP_CFG_REGNUM, /* processor configuration*/
578 MEP_CSR22_REGNUM, /* csr3: reserved */
579 MEP_NPC_REGNUM, /* Nonmaskable interrupt PC */
580 MEP_DBG_REGNUM, /* debug */
581 MEP_DEPC_REGNUM, /* Debug exception PC */
582 MEP_OPT_REGNUM, /* options */
583 MEP_RCFG_REGNUM, /* local ram config */
584 MEP_CCFG_REGNUM, /* cache config */
585 MEP_CSR29_REGNUM, /* csr3: reserved */
586 MEP_CSR30_REGNUM, /* csr3: reserved */
587 MEP_CSR31_REGNUM, /* csr3: reserved */
588 MEP_LAST_CSR_REGNUM = MEP_CSR31_REGNUM,
590 /* The 32-bit integer view of the coprocessor GPR's. */
591 MEP_FIRST_CR32_REGNUM,
592 MEP_LAST_CR32_REGNUM = MEP_FIRST_CR32_REGNUM + 31,
594 /* The 32-bit floating-point view of the coprocessor GPR's. */
595 MEP_FIRST_FP_CR32_REGNUM,
596 MEP_LAST_FP_CR32_REGNUM = MEP_FIRST_FP_CR32_REGNUM + 31,
598 /* The 64-bit integer view of the coprocessor GPR's. */
599 MEP_FIRST_CR64_REGNUM,
600 MEP_LAST_CR64_REGNUM = MEP_FIRST_CR64_REGNUM + 31,
602 /* The 64-bit floating-point view of the coprocessor GPR's. */
603 MEP_FIRST_FP_CR64_REGNUM,
604 MEP_LAST_FP_CR64_REGNUM = MEP_FIRST_FP_CR64_REGNUM + 31,
606 MEP_FIRST_CCR_REGNUM,
607 MEP_LAST_CCR_REGNUM = MEP_FIRST_CCR_REGNUM + 63,
609 MEP_LAST_PSEUDO_REGNUM = MEP_LAST_CCR_REGNUM,
611 MEP_NUM_PSEUDO_REGS = (MEP_LAST_PSEUDO_REGNUM - MEP_LAST_RAW_REGNUM),
613 MEP_NUM_REGS = MEP_NUM_RAW_REGS + MEP_NUM_PSEUDO_REGS
617 #define IN_SET(set, n) \
618 (MEP_FIRST_ ## set ## _REGNUM <= (n) && (n) <= MEP_LAST_ ## set ## _REGNUM)
620 #define IS_GPR_REGNUM(n) (IN_SET (GPR, (n)))
621 #define IS_RAW_CSR_REGNUM(n) (IN_SET (RAW_CSR, (n)))
622 #define IS_RAW_CR_REGNUM(n) (IN_SET (RAW_CR, (n)))
623 #define IS_RAW_CCR_REGNUM(n) (IN_SET (RAW_CCR, (n)))
625 #define IS_CSR_REGNUM(n) (IN_SET (CSR, (n)))
626 #define IS_CR32_REGNUM(n) (IN_SET (CR32, (n)))
627 #define IS_FP_CR32_REGNUM(n) (IN_SET (FP_CR32, (n)))
628 #define IS_CR64_REGNUM(n) (IN_SET (CR64, (n)))
629 #define IS_FP_CR64_REGNUM(n) (IN_SET (FP_CR64, (n)))
630 #define IS_CR_REGNUM(n) (IS_CR32_REGNUM (n) || IS_FP_CR32_REGNUM (n) \
631 || IS_CR64_REGNUM (n) || IS_FP_CR64_REGNUM (n))
632 #define IS_CCR_REGNUM(n) (IN_SET (CCR, (n)))
634 #define IS_RAW_REGNUM(n) (IN_SET (RAW, (n)))
635 #define IS_PSEUDO_REGNUM(n) (IN_SET (PSEUDO, (n)))
637 #define NUM_REGS_IN_SET(set) \
638 (MEP_LAST_ ## set ## _REGNUM - MEP_FIRST_ ## set ## _REGNUM + 1)
640 #define MEP_GPR_SIZE (4) /* Size of a MeP general-purpose register. */
641 #define MEP_PSW_SIZE (4) /* Size of the PSW register. */
642 #define MEP_LP_SIZE (4) /* Size of the LP register. */
645 /* Many of the control/special registers contain bits that cannot be
646 written to; some are entirely read-only. So we present them all as
647 pseudoregisters.
649 The following table describes the special properties of each CSR. */
650 struct mep_csr_register
652 /* The number of this CSR's raw register. */
653 int raw;
655 /* The number of this CSR's pseudoregister. */
656 int pseudo;
658 /* A mask of the bits that are writeable: if a bit is set here, then
659 it can be modified; if the bit is clear, then it cannot. */
660 LONGEST writeable_bits;
664 /* mep_csr_registers[i] describes the i'th CSR.
665 We just list the register numbers here explicitly to help catch
666 typos. */
667 #define CSR(name) MEP_RAW_ ## name ## _REGNUM, MEP_ ## name ## _REGNUM
668 struct mep_csr_register mep_csr_registers[] = {
669 { CSR(PC), 0xffffffff }, /* manual says r/o, but we can write it */
670 { CSR(LP), 0xffffffff },
671 { CSR(SAR), 0x0000003f },
672 { CSR(CSR3), 0xffffffff },
673 { CSR(RPB), 0xfffffffe },
674 { CSR(RPE), 0xffffffff },
675 { CSR(RPC), 0xffffffff },
676 { CSR(HI), 0xffffffff },
677 { CSR(LO), 0xffffffff },
678 { CSR(CSR9), 0xffffffff },
679 { CSR(CSR10), 0xffffffff },
680 { CSR(CSR11), 0xffffffff },
681 { CSR(MB0), 0x0000ffff },
682 { CSR(ME0), 0x0000ffff },
683 { CSR(MB1), 0x0000ffff },
684 { CSR(ME1), 0x0000ffff },
685 { CSR(PSW), 0x000003ff },
686 { CSR(ID), 0x00000000 },
687 { CSR(TMP), 0xffffffff },
688 { CSR(EPC), 0xffffffff },
689 { CSR(EXC), 0x000030f0 },
690 { CSR(CFG), 0x00c0001b },
691 { CSR(CSR22), 0xffffffff },
692 { CSR(NPC), 0xffffffff },
693 { CSR(DBG), 0x00000580 },
694 { CSR(DEPC), 0xffffffff },
695 { CSR(OPT), 0x00000000 },
696 { CSR(RCFG), 0x00000000 },
697 { CSR(CCFG), 0x00000000 },
698 { CSR(CSR29), 0xffffffff },
699 { CSR(CSR30), 0xffffffff },
700 { CSR(CSR31), 0xffffffff },
704 /* If R is the number of a raw register, then mep_raw_to_pseudo[R] is
705 the number of the corresponding pseudoregister. Otherwise,
706 mep_raw_to_pseudo[R] == R. */
707 static int mep_raw_to_pseudo[MEP_NUM_REGS];
709 /* If R is the number of a pseudoregister, then mep_pseudo_to_raw[R]
710 is the number of the underlying raw register. Otherwise
711 mep_pseudo_to_raw[R] == R. */
712 static int mep_pseudo_to_raw[MEP_NUM_REGS];
714 static void
715 mep_init_pseudoregister_maps (void)
717 int i;
719 /* Verify that mep_csr_registers covers all the CSRs, in order. */
720 gdb_assert (ARRAY_SIZE (mep_csr_registers) == NUM_REGS_IN_SET (CSR));
721 gdb_assert (ARRAY_SIZE (mep_csr_registers) == NUM_REGS_IN_SET (RAW_CSR));
723 /* Verify that the raw and pseudo ranges have matching sizes. */
724 gdb_assert (NUM_REGS_IN_SET (RAW_CSR) == NUM_REGS_IN_SET (CSR));
725 gdb_assert (NUM_REGS_IN_SET (RAW_CR) == NUM_REGS_IN_SET (CR32));
726 gdb_assert (NUM_REGS_IN_SET (RAW_CR) == NUM_REGS_IN_SET (CR64));
727 gdb_assert (NUM_REGS_IN_SET (RAW_CCR) == NUM_REGS_IN_SET (CCR));
729 for (i = 0; i < ARRAY_SIZE (mep_csr_registers); i++)
731 struct mep_csr_register *r = &mep_csr_registers[i];
733 gdb_assert (r->pseudo == MEP_FIRST_CSR_REGNUM + i);
734 gdb_assert (r->raw == MEP_FIRST_RAW_CSR_REGNUM + i);
737 /* Set up the initial raw<->pseudo mappings. */
738 for (i = 0; i < MEP_NUM_REGS; i++)
740 mep_raw_to_pseudo[i] = i;
741 mep_pseudo_to_raw[i] = i;
744 /* Add the CSR raw<->pseudo mappings. */
745 for (i = 0; i < ARRAY_SIZE (mep_csr_registers); i++)
747 struct mep_csr_register *r = &mep_csr_registers[i];
749 mep_raw_to_pseudo[r->raw] = r->pseudo;
750 mep_pseudo_to_raw[r->pseudo] = r->raw;
753 /* Add the CR raw<->pseudo mappings. */
754 for (i = 0; i < NUM_REGS_IN_SET (RAW_CR); i++)
756 int raw = MEP_FIRST_RAW_CR_REGNUM + i;
757 int pseudo32 = MEP_FIRST_CR32_REGNUM + i;
758 int pseudofp32 = MEP_FIRST_FP_CR32_REGNUM + i;
759 int pseudo64 = MEP_FIRST_CR64_REGNUM + i;
760 int pseudofp64 = MEP_FIRST_FP_CR64_REGNUM + i;
762 /* Truly, the raw->pseudo mapping depends on the current module.
763 But we use the raw->pseudo mapping when we read the debugging
764 info; at that point, we don't know what module we'll actually
765 be running yet. So, we always supply the 64-bit register
766 numbers; GDB knows how to pick a smaller value out of a
767 larger register properly. */
768 mep_raw_to_pseudo[raw] = pseudo64;
769 mep_pseudo_to_raw[pseudo32] = raw;
770 mep_pseudo_to_raw[pseudofp32] = raw;
771 mep_pseudo_to_raw[pseudo64] = raw;
772 mep_pseudo_to_raw[pseudofp64] = raw;
775 /* Add the CCR raw<->pseudo mappings. */
776 for (i = 0; i < NUM_REGS_IN_SET (CCR); i++)
778 int raw = MEP_FIRST_RAW_CCR_REGNUM + i;
779 int pseudo = MEP_FIRST_CCR_REGNUM + i;
780 mep_raw_to_pseudo[raw] = pseudo;
781 mep_pseudo_to_raw[pseudo] = raw;
786 static int
787 mep_debug_reg_to_regnum (struct gdbarch *gdbarch, int debug_reg)
789 /* The debug info uses the raw register numbers. */
790 return mep_raw_to_pseudo[debug_reg];
794 /* Return the size, in bits, of the coprocessor pseudoregister
795 numbered PSEUDO. */
796 static int
797 mep_pseudo_cr_size (int pseudo)
799 if (IS_CR32_REGNUM (pseudo)
800 || IS_FP_CR32_REGNUM (pseudo))
801 return 32;
802 else if (IS_CR64_REGNUM (pseudo)
803 || IS_FP_CR64_REGNUM (pseudo))
804 return 64;
805 else
806 gdb_assert_not_reached ("unexpected coprocessor pseudo register");
810 /* If the coprocessor pseudoregister numbered PSEUDO is a
811 floating-point register, return non-zero; if it is an integer
812 register, return zero. */
813 static int
814 mep_pseudo_cr_is_float (int pseudo)
816 return (IS_FP_CR32_REGNUM (pseudo)
817 || IS_FP_CR64_REGNUM (pseudo));
821 /* Given a coprocessor GPR pseudoregister number, return its index
822 within that register bank. */
823 static int
824 mep_pseudo_cr_index (int pseudo)
826 if (IS_CR32_REGNUM (pseudo))
827 return pseudo - MEP_FIRST_CR32_REGNUM;
828 else if (IS_FP_CR32_REGNUM (pseudo))
829 return pseudo - MEP_FIRST_FP_CR32_REGNUM;
830 else if (IS_CR64_REGNUM (pseudo))
831 return pseudo - MEP_FIRST_CR64_REGNUM;
832 else if (IS_FP_CR64_REGNUM (pseudo))
833 return pseudo - MEP_FIRST_FP_CR64_REGNUM;
834 else
835 gdb_assert_not_reached ("unexpected coprocessor pseudo register");
839 /* Return the me_module index describing the current target.
841 If the current target has registers (e.g., simulator, remote
842 target), then this uses the value of the 'module' register, raw
843 register MEP_MODULE_REGNUM. Otherwise, this retrieves the value
844 from the ELF header's e_flags field of the current executable
845 file. */
846 static CONFIG_ATTR
847 current_me_module (void)
849 if (target_has_registers)
851 ULONGEST regval;
852 regcache_cooked_read_unsigned (get_current_regcache (),
853 MEP_MODULE_REGNUM, &regval);
854 return regval;
856 else
857 return gdbarch_tdep (target_gdbarch ())->me_module;
861 /* Return the set of options for the current target, in the form that
862 the OPT register would use.
864 If the current target has registers (e.g., simulator, remote
865 target), then this is the actual value of the OPT register. If the
866 current target does not have registers (e.g., an executable file),
867 then use the 'module_opt' field we computed when we build the
868 gdbarch object for this module. */
869 static unsigned int
870 current_options (void)
872 if (target_has_registers)
874 ULONGEST regval;
875 regcache_cooked_read_unsigned (get_current_regcache (),
876 MEP_OPT_REGNUM, &regval);
877 return regval;
879 else
880 return me_module_opt (current_me_module ());
884 /* Return the width of the current me_module's coprocessor data bus,
885 in bits. This is either 32 or 64. */
886 static int
887 current_cop_data_bus_width (void)
889 return me_module_cop_data_bus_width (current_me_module ());
893 /* Return the keyword table of coprocessor general-purpose register
894 names appropriate for the me_module we're dealing with. */
895 static CGEN_KEYWORD *
896 current_cr_names (void)
898 const CGEN_HW_ENTRY *hw
899 = me_module_register_set (current_me_module (), "h-cr-", HW_H_CR);
901 return register_set_keyword_table (hw);
905 /* Return non-zero if the coprocessor general-purpose registers are
906 floating-point values, zero otherwise. */
907 static int
908 current_cr_is_float (void)
910 const CGEN_HW_ENTRY *hw
911 = me_module_register_set (current_me_module (), "h-cr-", HW_H_CR);
913 return CGEN_ATTR_CGEN_HW_IS_FLOAT_VALUE (CGEN_HW_ATTRS (hw));
917 /* Return the keyword table of coprocessor control register names
918 appropriate for the me_module we're dealing with. */
919 static CGEN_KEYWORD *
920 current_ccr_names (void)
922 const CGEN_HW_ENTRY *hw
923 = me_module_register_set (current_me_module (), "h-ccr-", HW_H_CCR);
925 return register_set_keyword_table (hw);
929 static const char *
930 mep_register_name (struct gdbarch *gdbarch, int regnr)
932 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
934 /* General-purpose registers. */
935 static const char *gpr_names[] = {
936 "r0", "r1", "r2", "r3", /* 0 */
937 "r4", "r5", "r6", "r7", /* 4 */
938 "fp", "r9", "r10", "r11", /* 8 */
939 "r12", "tp", "gp", "sp" /* 12 */
942 /* Special-purpose registers. */
943 static const char *csr_names[] = {
944 "pc", "lp", "sar", "", /* 0 csr3: reserved */
945 "rpb", "rpe", "rpc", "hi", /* 4 */
946 "lo", "", "", "", /* 8 csr9-csr11: reserved */
947 "mb0", "me0", "mb1", "me1", /* 12 */
949 "psw", "id", "tmp", "epc", /* 16 */
950 "exc", "cfg", "", "npc", /* 20 csr22: reserved */
951 "dbg", "depc", "opt", "rcfg", /* 24 */
952 "ccfg", "", "", "" /* 28 csr29-csr31: reserved */
955 if (IS_GPR_REGNUM (regnr))
956 return gpr_names[regnr - MEP_R0_REGNUM];
957 else if (IS_CSR_REGNUM (regnr))
959 /* The 'hi' and 'lo' registers are only present on processors
960 that have the 'MUL' or 'DIV' instructions enabled. */
961 if ((regnr == MEP_HI_REGNUM || regnr == MEP_LO_REGNUM)
962 && (! (current_options () & (MEP_OPT_MUL | MEP_OPT_DIV))))
963 return "";
965 return csr_names[regnr - MEP_FIRST_CSR_REGNUM];
967 else if (IS_CR_REGNUM (regnr))
969 CGEN_KEYWORD *names;
970 int cr_size;
971 int cr_is_float;
973 /* Does this module have a coprocessor at all? */
974 if (! (current_options () & MEP_OPT_COP))
975 return "";
977 names = current_cr_names ();
978 if (! names)
979 /* This module's coprocessor has no general-purpose registers. */
980 return "";
982 cr_size = current_cop_data_bus_width ();
983 if (cr_size != mep_pseudo_cr_size (regnr))
984 /* This module's coprocessor's GPR's are of a different size. */
985 return "";
987 cr_is_float = current_cr_is_float ();
988 /* The extra ! operators ensure we get boolean equality, not
989 numeric equality. */
990 if (! cr_is_float != ! mep_pseudo_cr_is_float (regnr))
991 /* This module's coprocessor's GPR's are of a different type. */
992 return "";
994 return register_name_from_keyword (names, mep_pseudo_cr_index (regnr));
996 else if (IS_CCR_REGNUM (regnr))
998 /* Does this module have a coprocessor at all? */
999 if (! (current_options () & MEP_OPT_COP))
1000 return "";
1003 CGEN_KEYWORD *names = current_ccr_names ();
1005 if (! names)
1006 /* This me_module's coprocessor has no control registers. */
1007 return "";
1009 return register_name_from_keyword (names, regnr-MEP_FIRST_CCR_REGNUM);
1013 /* It might be nice to give the 'module' register a name, but that
1014 would affect the output of 'info all-registers', which would
1015 disturb the test suites. So we leave it invisible. */
1016 else
1017 return NULL;
1021 /* Custom register groups for the MeP. */
1022 static struct reggroup *mep_csr_reggroup; /* control/special */
1023 static struct reggroup *mep_cr_reggroup; /* coprocessor general-purpose */
1024 static struct reggroup *mep_ccr_reggroup; /* coprocessor control */
1027 static int
1028 mep_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
1029 struct reggroup *group)
1031 /* Filter reserved or unused register numbers. */
1033 const char *name = mep_register_name (gdbarch, regnum);
1035 if (! name || name[0] == '\0')
1036 return 0;
1039 /* We could separate the GPRs and the CSRs. Toshiba has approved of
1040 the existing behavior, so we'd want to run that by them. */
1041 if (group == general_reggroup)
1042 return (IS_GPR_REGNUM (regnum)
1043 || IS_CSR_REGNUM (regnum));
1045 /* Everything is in the 'all' reggroup, except for the raw CSR's. */
1046 else if (group == all_reggroup)
1047 return (IS_GPR_REGNUM (regnum)
1048 || IS_CSR_REGNUM (regnum)
1049 || IS_CR_REGNUM (regnum)
1050 || IS_CCR_REGNUM (regnum));
1052 /* All registers should be saved and restored, except for the raw
1053 CSR's.
1055 This is probably right if the coprocessor is something like a
1056 floating-point unit, but would be wrong if the coprocessor is
1057 something that does I/O, where register accesses actually cause
1058 externally-visible actions. But I get the impression that the
1059 coprocessor isn't supposed to do things like that --- you'd use a
1060 hardware engine, perhaps. */
1061 else if (group == save_reggroup || group == restore_reggroup)
1062 return (IS_GPR_REGNUM (regnum)
1063 || IS_CSR_REGNUM (regnum)
1064 || IS_CR_REGNUM (regnum)
1065 || IS_CCR_REGNUM (regnum));
1067 else if (group == mep_csr_reggroup)
1068 return IS_CSR_REGNUM (regnum);
1069 else if (group == mep_cr_reggroup)
1070 return IS_CR_REGNUM (regnum);
1071 else if (group == mep_ccr_reggroup)
1072 return IS_CCR_REGNUM (regnum);
1073 else
1074 return 0;
1078 static struct type *
1079 mep_register_type (struct gdbarch *gdbarch, int reg_nr)
1081 /* Coprocessor general-purpose registers may be either 32 or 64 bits
1082 long. So for them, the raw registers are always 64 bits long (to
1083 keep the 'g' packet format fixed), and the pseudoregisters vary
1084 in length. */
1085 if (IS_RAW_CR_REGNUM (reg_nr))
1086 return builtin_type (gdbarch)->builtin_uint64;
1088 /* Since GDB doesn't allow registers to change type, we have two
1089 banks of pseudoregisters for the coprocessor general-purpose
1090 registers: one that gives a 32-bit view, and one that gives a
1091 64-bit view. We hide or show one or the other depending on the
1092 current module. */
1093 if (IS_CR_REGNUM (reg_nr))
1095 int size = mep_pseudo_cr_size (reg_nr);
1096 if (size == 32)
1098 if (mep_pseudo_cr_is_float (reg_nr))
1099 return builtin_type (gdbarch)->builtin_float;
1100 else
1101 return builtin_type (gdbarch)->builtin_uint32;
1103 else if (size == 64)
1105 if (mep_pseudo_cr_is_float (reg_nr))
1106 return builtin_type (gdbarch)->builtin_double;
1107 else
1108 return builtin_type (gdbarch)->builtin_uint64;
1110 else
1111 gdb_assert_not_reached ("unexpected cr size");
1114 /* All other registers are 32 bits long. */
1115 else
1116 return builtin_type (gdbarch)->builtin_uint32;
1120 static CORE_ADDR
1121 mep_read_pc (struct regcache *regcache)
1123 ULONGEST pc;
1124 regcache_cooked_read_unsigned (regcache, MEP_PC_REGNUM, &pc);
1125 return pc;
1128 static void
1129 mep_write_pc (struct regcache *regcache, CORE_ADDR pc)
1131 regcache_cooked_write_unsigned (regcache, MEP_PC_REGNUM, pc);
1135 static enum register_status
1136 mep_pseudo_cr32_read (struct gdbarch *gdbarch,
1137 struct regcache *regcache,
1138 int cookednum,
1139 void *buf)
1141 enum register_status status;
1142 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1143 /* Read the raw register into a 64-bit buffer, and then return the
1144 appropriate end of that buffer. */
1145 int rawnum = mep_pseudo_to_raw[cookednum];
1146 gdb_byte buf64[8];
1148 gdb_assert (TYPE_LENGTH (register_type (gdbarch, rawnum)) == sizeof (buf64));
1149 gdb_assert (TYPE_LENGTH (register_type (gdbarch, cookednum)) == 4);
1150 status = regcache_raw_read (regcache, rawnum, buf64);
1151 if (status == REG_VALID)
1153 /* Slow, but legible. */
1154 store_unsigned_integer (buf, 4, byte_order,
1155 extract_unsigned_integer (buf64, 8, byte_order));
1157 return status;
1161 static enum register_status
1162 mep_pseudo_cr64_read (struct gdbarch *gdbarch,
1163 struct regcache *regcache,
1164 int cookednum,
1165 void *buf)
1167 return regcache_raw_read (regcache, mep_pseudo_to_raw[cookednum], buf);
1171 static enum register_status
1172 mep_pseudo_register_read (struct gdbarch *gdbarch,
1173 struct regcache *regcache,
1174 int cookednum,
1175 gdb_byte *buf)
1177 if (IS_CSR_REGNUM (cookednum)
1178 || IS_CCR_REGNUM (cookednum))
1179 return regcache_raw_read (regcache, mep_pseudo_to_raw[cookednum], buf);
1180 else if (IS_CR32_REGNUM (cookednum)
1181 || IS_FP_CR32_REGNUM (cookednum))
1182 return mep_pseudo_cr32_read (gdbarch, regcache, cookednum, buf);
1183 else if (IS_CR64_REGNUM (cookednum)
1184 || IS_FP_CR64_REGNUM (cookednum))
1185 return mep_pseudo_cr64_read (gdbarch, regcache, cookednum, buf);
1186 else
1187 gdb_assert_not_reached ("unexpected pseudo register");
1191 static void
1192 mep_pseudo_csr_write (struct gdbarch *gdbarch,
1193 struct regcache *regcache,
1194 int cookednum,
1195 const void *buf)
1197 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1198 int size = register_size (gdbarch, cookednum);
1199 struct mep_csr_register *r
1200 = &mep_csr_registers[cookednum - MEP_FIRST_CSR_REGNUM];
1202 if (r->writeable_bits == 0)
1203 /* A completely read-only register; avoid the read-modify-
1204 write cycle, and juts ignore the entire write. */
1206 else
1208 /* A partially writeable register; do a read-modify-write cycle. */
1209 ULONGEST old_bits;
1210 ULONGEST new_bits;
1211 ULONGEST mixed_bits;
1213 regcache_raw_read_unsigned (regcache, r->raw, &old_bits);
1214 new_bits = extract_unsigned_integer (buf, size, byte_order);
1215 mixed_bits = ((r->writeable_bits & new_bits)
1216 | (~r->writeable_bits & old_bits));
1217 regcache_raw_write_unsigned (regcache, r->raw, mixed_bits);
1222 static void
1223 mep_pseudo_cr32_write (struct gdbarch *gdbarch,
1224 struct regcache *regcache,
1225 int cookednum,
1226 const void *buf)
1228 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1229 /* Expand the 32-bit value into a 64-bit value, and write that to
1230 the pseudoregister. */
1231 int rawnum = mep_pseudo_to_raw[cookednum];
1232 gdb_byte buf64[8];
1234 gdb_assert (TYPE_LENGTH (register_type (gdbarch, rawnum)) == sizeof (buf64));
1235 gdb_assert (TYPE_LENGTH (register_type (gdbarch, cookednum)) == 4);
1236 /* Slow, but legible. */
1237 store_unsigned_integer (buf64, 8, byte_order,
1238 extract_unsigned_integer (buf, 4, byte_order));
1239 regcache_raw_write (regcache, rawnum, buf64);
1243 static void
1244 mep_pseudo_cr64_write (struct gdbarch *gdbarch,
1245 struct regcache *regcache,
1246 int cookednum,
1247 const void *buf)
1249 regcache_raw_write (regcache, mep_pseudo_to_raw[cookednum], buf);
1253 static void
1254 mep_pseudo_register_write (struct gdbarch *gdbarch,
1255 struct regcache *regcache,
1256 int cookednum,
1257 const gdb_byte *buf)
1259 if (IS_CSR_REGNUM (cookednum))
1260 mep_pseudo_csr_write (gdbarch, regcache, cookednum, buf);
1261 else if (IS_CR32_REGNUM (cookednum)
1262 || IS_FP_CR32_REGNUM (cookednum))
1263 mep_pseudo_cr32_write (gdbarch, regcache, cookednum, buf);
1264 else if (IS_CR64_REGNUM (cookednum)
1265 || IS_FP_CR64_REGNUM (cookednum))
1266 mep_pseudo_cr64_write (gdbarch, regcache, cookednum, buf);
1267 else if (IS_CCR_REGNUM (cookednum))
1268 regcache_raw_write (regcache, mep_pseudo_to_raw[cookednum], buf);
1269 else
1270 gdb_assert_not_reached ("unexpected pseudo register");
1275 /* Disassembly. */
1277 /* The mep disassembler needs to know about the section in order to
1278 work correctly. */
1279 static int
1280 mep_gdb_print_insn (bfd_vma pc, disassemble_info * info)
1282 struct obj_section * s = find_pc_section (pc);
1284 if (s)
1286 /* The libopcodes disassembly code uses the section to find the
1287 BFD, the BFD to find the ELF header, the ELF header to find
1288 the me_module index, and the me_module index to select the
1289 right instructions to print. */
1290 info->section = s->the_bfd_section;
1291 info->arch = bfd_arch_mep;
1293 return print_insn_mep (pc, info);
1296 return 0;
1300 /* Prologue analysis. */
1303 /* The MeP has two classes of instructions: "core" instructions, which
1304 are pretty normal RISC chip stuff, and "coprocessor" instructions,
1305 which are mostly concerned with moving data in and out of
1306 coprocessor registers, and branching on coprocessor condition
1307 codes. There's space in the instruction set for custom coprocessor
1308 instructions, too.
1310 Instructions can be 16 or 32 bits long; the top two bits of the
1311 first byte indicate the length. The coprocessor instructions are
1312 mixed in with the core instructions, and there's no easy way to
1313 distinguish them; you have to completely decode them to tell one
1314 from the other.
1316 The MeP also supports a "VLIW" operation mode, where instructions
1317 always occur in fixed-width bundles. The bundles are either 32
1318 bits or 64 bits long, depending on a fixed configuration flag. You
1319 decode the first part of the bundle as normal; if it's a core
1320 instruction, and there's any space left in the bundle, the
1321 remainder of the bundle is a coprocessor instruction, which will
1322 execute in parallel with the core instruction. If the first part
1323 of the bundle is a coprocessor instruction, it occupies the entire
1324 bundle.
1326 So, here are all the cases:
1328 - 32-bit VLIW mode:
1329 Every bundle is four bytes long, and naturally aligned, and can hold
1330 one or two instructions:
1331 - 16-bit core instruction; 16-bit coprocessor instruction
1332 These execute in parallel.
1333 - 32-bit core instruction
1334 - 32-bit coprocessor instruction
1336 - 64-bit VLIW mode:
1337 Every bundle is eight bytes long, and naturally aligned, and can hold
1338 one or two instructions:
1339 - 16-bit core instruction; 48-bit (!) coprocessor instruction
1340 These execute in parallel.
1341 - 32-bit core instruction; 32-bit coprocessor instruction
1342 These execute in parallel.
1343 - 64-bit coprocessor instruction
1345 Now, the MeP manual doesn't define any 48- or 64-bit coprocessor
1346 instruction, so I don't really know what's up there; perhaps these
1347 are always the user-defined coprocessor instructions. */
1350 /* Return non-zero if PC is in a VLIW code section, zero
1351 otherwise. */
1352 static int
1353 mep_pc_in_vliw_section (CORE_ADDR pc)
1355 struct obj_section *s = find_pc_section (pc);
1356 if (s)
1357 return (s->the_bfd_section->flags & SEC_MEP_VLIW);
1358 return 0;
1362 /* Set *INSN to the next core instruction at PC, and return the
1363 address of the next instruction.
1365 The MeP instruction encoding is endian-dependent. 16- and 32-bit
1366 instructions are encoded as one or two two-byte parts, and each
1367 part is byte-swapped independently. Thus:
1369 void
1370 foo (void)
1372 asm ("movu $1, 0x123456");
1373 asm ("sb $1,0x5678($2)");
1374 asm ("clip $1, 19");
1377 compiles to this big-endian code:
1379 0: d1 56 12 34 movu $1,0x123456
1380 4: c1 28 56 78 sb $1,22136($2)
1381 8: f1 01 10 98 clip $1,0x13
1382 c: 70 02 ret
1384 and this little-endian code:
1386 0: 56 d1 34 12 movu $1,0x123456
1387 4: 28 c1 78 56 sb $1,22136($2)
1388 8: 01 f1 98 10 clip $1,0x13
1389 c: 02 70 ret
1391 Instructions are returned in *INSN in an endian-independent form: a
1392 given instruction always appears in *INSN the same way, regardless
1393 of whether the instruction stream is big-endian or little-endian.
1395 *INSN's most significant 16 bits are the first (i.e., at lower
1396 addresses) 16 bit part of the instruction. Its least significant
1397 16 bits are the second (i.e., higher-addressed) 16 bit part of the
1398 instruction, or zero for a 16-bit instruction. Both 16-bit parts
1399 are fetched using the current endianness.
1401 So, the *INSN values for the instruction sequence above would be
1402 the following, in either endianness:
1404 0xd1561234 movu $1,0x123456
1405 0xc1285678 sb $1,22136($2)
1406 0xf1011098 clip $1,0x13
1407 0x70020000 ret
1409 (In a sense, it would be more natural to return 16-bit instructions
1410 in the least significant 16 bits of *INSN, but that would be
1411 ambiguous. In order to tell whether you're looking at a 16- or a
1412 32-bit instruction, you have to consult the major opcode field ---
1413 the most significant four bits of the instruction's first 16-bit
1414 part. But if we put 16-bit instructions at the least significant
1415 end of *INSN, then you don't know where to find the major opcode
1416 field until you know if it's a 16- or a 32-bit instruction ---
1417 which is where we started.)
1419 If PC points to a core / coprocessor bundle in a VLIW section, set
1420 *INSN to the core instruction, and return the address of the next
1421 bundle. This has the effect of skipping the bundled coprocessor
1422 instruction. That's okay, since coprocessor instructions aren't
1423 significant to prologue analysis --- for the time being,
1424 anyway. */
1426 static CORE_ADDR
1427 mep_get_insn (struct gdbarch *gdbarch, CORE_ADDR pc, long *insn)
1429 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1430 int pc_in_vliw_section;
1431 int vliw_mode;
1432 int insn_len;
1433 gdb_byte buf[2];
1435 *insn = 0;
1437 /* Are we in a VLIW section? */
1438 pc_in_vliw_section = mep_pc_in_vliw_section (pc);
1439 if (pc_in_vliw_section)
1441 /* Yes, find out which bundle size. */
1442 vliw_mode = current_options () & (MEP_OPT_VL32 | MEP_OPT_VL64);
1444 /* If PC is in a VLIW section, but the current core doesn't say
1445 that it supports either VLIW mode, then we don't have enough
1446 information to parse the instruction stream it contains.
1447 Since the "undifferentiated" standard core doesn't have
1448 either VLIW mode bit set, this could happen.
1450 But it shouldn't be an error to (say) set a breakpoint in a
1451 VLIW section, if you know you'll never reach it. (Perhaps
1452 you have a script that sets a bunch of standard breakpoints.)
1454 So we'll just return zero here, and hope for the best. */
1455 if (! (vliw_mode & (MEP_OPT_VL32 | MEP_OPT_VL64)))
1456 return 0;
1458 /* If both VL32 and VL64 are set, that's bogus, too. */
1459 if (vliw_mode == (MEP_OPT_VL32 | MEP_OPT_VL64))
1460 return 0;
1462 else
1463 vliw_mode = 0;
1465 read_memory (pc, buf, sizeof (buf));
1466 *insn = extract_unsigned_integer (buf, 2, byte_order) << 16;
1468 /* The major opcode --- the top four bits of the first 16-bit
1469 part --- indicates whether this instruction is 16 or 32 bits
1470 long. All 32-bit instructions have a major opcode whose top
1471 two bits are 11; all the rest are 16-bit instructions. */
1472 if ((*insn & 0xc0000000) == 0xc0000000)
1474 /* Fetch the second 16-bit part of the instruction. */
1475 read_memory (pc + 2, buf, sizeof (buf));
1476 *insn = *insn | extract_unsigned_integer (buf, 2, byte_order);
1479 /* If we're in VLIW code, then the VLIW width determines the address
1480 of the next instruction. */
1481 if (vliw_mode)
1483 /* In 32-bit VLIW code, all bundles are 32 bits long. We ignore the
1484 coprocessor half of a core / copro bundle. */
1485 if (vliw_mode == MEP_OPT_VL32)
1486 insn_len = 4;
1488 /* In 64-bit VLIW code, all bundles are 64 bits long. We ignore the
1489 coprocessor half of a core / copro bundle. */
1490 else if (vliw_mode == MEP_OPT_VL64)
1491 insn_len = 8;
1493 /* We'd better be in either core, 32-bit VLIW, or 64-bit VLIW mode. */
1494 else
1495 gdb_assert_not_reached ("unexpected vliw mode");
1498 /* Otherwise, the top two bits of the major opcode are (again) what
1499 we need to check. */
1500 else if ((*insn & 0xc0000000) == 0xc0000000)
1501 insn_len = 4;
1502 else
1503 insn_len = 2;
1505 return pc + insn_len;
1509 /* Sign-extend the LEN-bit value N. */
1510 #define SEXT(n, len) ((((int) (n)) ^ (1 << ((len) - 1))) - (1 << ((len) - 1)))
1512 /* Return the LEN-bit field at POS from I. */
1513 #define FIELD(i, pos, len) (((i) >> (pos)) & ((1 << (len)) - 1))
1515 /* Like FIELD, but sign-extend the field's value. */
1516 #define SFIELD(i, pos, len) (SEXT (FIELD ((i), (pos), (len)), (len)))
1519 /* Macros for decoding instructions.
1521 Remember that 16-bit instructions are placed in bits 16..31 of i,
1522 not at the least significant end; this means that the major opcode
1523 field is always in the same place, regardless of the width of the
1524 instruction. As a reminder of this, we show the lower 16 bits of a
1525 16-bit instruction as xxxx_xxxx_xxxx_xxxx. */
1527 /* SB Rn,(Rm) 0000_nnnn_mmmm_1000 */
1528 /* SH Rn,(Rm) 0000_nnnn_mmmm_1001 */
1529 /* SW Rn,(Rm) 0000_nnnn_mmmm_1010 */
1531 /* SW Rn,disp16(Rm) 1100_nnnn_mmmm_1010 dddd_dddd_dddd_dddd */
1532 #define IS_SW(i) (((i) & 0xf00f0000) == 0xc00a0000)
1533 /* SB Rn,disp16(Rm) 1100_nnnn_mmmm_1000 dddd_dddd_dddd_dddd */
1534 #define IS_SB(i) (((i) & 0xf00f0000) == 0xc0080000)
1535 /* SH Rn,disp16(Rm) 1100_nnnn_mmmm_1001 dddd_dddd_dddd_dddd */
1536 #define IS_SH(i) (((i) & 0xf00f0000) == 0xc0090000)
1537 #define SWBH_32_BASE(i) (FIELD (i, 20, 4))
1538 #define SWBH_32_SOURCE(i) (FIELD (i, 24, 4))
1539 #define SWBH_32_OFFSET(i) (SFIELD (i, 0, 16))
1541 /* SW Rn,disp7.align4(SP) 0100_nnnn_0ddd_dd10 xxxx_xxxx_xxxx_xxxx */
1542 #define IS_SW_IMMD(i) (((i) & 0xf0830000) == 0x40020000)
1543 #define SW_IMMD_SOURCE(i) (FIELD (i, 24, 4))
1544 #define SW_IMMD_OFFSET(i) (FIELD (i, 18, 5) << 2)
1546 /* SW Rn,(Rm) 0000_nnnn_mmmm_1010 xxxx_xxxx_xxxx_xxxx */
1547 #define IS_SW_REG(i) (((i) & 0xf00f0000) == 0x000a0000)
1548 #define SW_REG_SOURCE(i) (FIELD (i, 24, 4))
1549 #define SW_REG_BASE(i) (FIELD (i, 20, 4))
1551 /* ADD3 Rl,Rn,Rm 1001_nnnn_mmmm_llll xxxx_xxxx_xxxx_xxxx */
1552 #define IS_ADD3_16_REG(i) (((i) & 0xf0000000) == 0x90000000)
1553 #define ADD3_16_REG_SRC1(i) (FIELD (i, 20, 4)) /* n */
1554 #define ADD3_16_REG_SRC2(i) (FIELD (i, 24, 4)) /* m */
1556 /* ADD3 Rn,Rm,imm16 1100_nnnn_mmmm_0000 iiii_iiii_iiii_iiii */
1557 #define IS_ADD3_32(i) (((i) & 0xf00f0000) == 0xc0000000)
1558 #define ADD3_32_TARGET(i) (FIELD (i, 24, 4))
1559 #define ADD3_32_SOURCE(i) (FIELD (i, 20, 4))
1560 #define ADD3_32_OFFSET(i) (SFIELD (i, 0, 16))
1562 /* ADD3 Rn,SP,imm7.align4 0100_nnnn_0iii_ii00 xxxx_xxxx_xxxx_xxxx */
1563 #define IS_ADD3_16(i) (((i) & 0xf0830000) == 0x40000000)
1564 #define ADD3_16_TARGET(i) (FIELD (i, 24, 4))
1565 #define ADD3_16_OFFSET(i) (FIELD (i, 18, 5) << 2)
1567 /* ADD Rn,imm6 0110_nnnn_iiii_ii00 xxxx_xxxx_xxxx_xxxx */
1568 #define IS_ADD(i) (((i) & 0xf0030000) == 0x60000000)
1569 #define ADD_TARGET(i) (FIELD (i, 24, 4))
1570 #define ADD_OFFSET(i) (SFIELD (i, 18, 6))
1572 /* LDC Rn,imm5 0111_nnnn_iiii_101I xxxx_xxxx_xxxx_xxxx
1573 imm5 = I||i[7:4] */
1574 #define IS_LDC(i) (((i) & 0xf00e0000) == 0x700a0000)
1575 #define LDC_IMM(i) ((FIELD (i, 16, 1) << 4) | FIELD (i, 20, 4))
1576 #define LDC_TARGET(i) (FIELD (i, 24, 4))
1578 /* LW Rn,disp16(Rm) 1100_nnnn_mmmm_1110 dddd_dddd_dddd_dddd */
1579 #define IS_LW(i) (((i) & 0xf00f0000) == 0xc00e0000)
1580 #define LW_TARGET(i) (FIELD (i, 24, 4))
1581 #define LW_BASE(i) (FIELD (i, 20, 4))
1582 #define LW_OFFSET(i) (SFIELD (i, 0, 16))
1584 /* MOV Rn,Rm 0000_nnnn_mmmm_0000 xxxx_xxxx_xxxx_xxxx */
1585 #define IS_MOV(i) (((i) & 0xf00f0000) == 0x00000000)
1586 #define MOV_TARGET(i) (FIELD (i, 24, 4))
1587 #define MOV_SOURCE(i) (FIELD (i, 20, 4))
1589 /* BRA disp12.align2 1011_dddd_dddd_ddd0 xxxx_xxxx_xxxx_xxxx */
1590 #define IS_BRA(i) (((i) & 0xf0010000) == 0xb0000000)
1591 #define BRA_DISP(i) (SFIELD (i, 17, 11) << 1)
1594 /* This structure holds the results of a prologue analysis. */
1595 struct mep_prologue
1597 /* The architecture for which we generated this prologue info. */
1598 struct gdbarch *gdbarch;
1600 /* The offset from the frame base to the stack pointer --- always
1601 zero or negative.
1603 Calling this a "size" is a bit misleading, but given that the
1604 stack grows downwards, using offsets for everything keeps one
1605 from going completely sign-crazy: you never change anything's
1606 sign for an ADD instruction; always change the second operand's
1607 sign for a SUB instruction; and everything takes care of
1608 itself. */
1609 int frame_size;
1611 /* Non-zero if this function has initialized the frame pointer from
1612 the stack pointer, zero otherwise. */
1613 int has_frame_ptr;
1615 /* If has_frame_ptr is non-zero, this is the offset from the frame
1616 base to where the frame pointer points. This is always zero or
1617 negative. */
1618 int frame_ptr_offset;
1620 /* The address of the first instruction at which the frame has been
1621 set up and the arguments are where the debug info says they are
1622 --- as best as we can tell. */
1623 CORE_ADDR prologue_end;
1625 /* reg_offset[R] is the offset from the CFA at which register R is
1626 saved, or 1 if register R has not been saved. (Real values are
1627 always zero or negative.) */
1628 int reg_offset[MEP_NUM_REGS];
1631 /* Return non-zero if VALUE is an incoming argument register. */
1633 static int
1634 is_arg_reg (pv_t value)
1636 return (value.kind == pvk_register
1637 && MEP_R1_REGNUM <= value.reg && value.reg <= MEP_R4_REGNUM
1638 && value.k == 0);
1641 /* Return non-zero if a store of REG's current value VALUE to ADDR is
1642 probably spilling an argument register to its stack slot in STACK.
1643 Such instructions should be included in the prologue, if possible.
1645 The store is a spill if:
1646 - the value being stored is REG's original value;
1647 - the value has not already been stored somewhere in STACK; and
1648 - ADDR is a stack slot's address (e.g., relative to the original
1649 value of the SP). */
1650 static int
1651 is_arg_spill (struct gdbarch *gdbarch, pv_t value, pv_t addr,
1652 struct pv_area *stack)
1654 return (is_arg_reg (value)
1655 && pv_is_register (addr, MEP_SP_REGNUM)
1656 && ! pv_area_find_reg (stack, gdbarch, value.reg, 0));
1660 /* Function for finding saved registers in a 'struct pv_area'; we pass
1661 this to pv_area_scan.
1663 If VALUE is a saved register, ADDR says it was saved at a constant
1664 offset from the frame base, and SIZE indicates that the whole
1665 register was saved, record its offset in RESULT_UNTYPED. */
1666 static void
1667 check_for_saved (void *result_untyped, pv_t addr, CORE_ADDR size, pv_t value)
1669 struct mep_prologue *result = (struct mep_prologue *) result_untyped;
1671 if (value.kind == pvk_register
1672 && value.k == 0
1673 && pv_is_register (addr, MEP_SP_REGNUM)
1674 && size == register_size (result->gdbarch, value.reg))
1675 result->reg_offset[value.reg] = addr.k;
1679 /* Analyze a prologue starting at START_PC, going no further than
1680 LIMIT_PC. Fill in RESULT as appropriate. */
1681 static void
1682 mep_analyze_prologue (struct gdbarch *gdbarch,
1683 CORE_ADDR start_pc, CORE_ADDR limit_pc,
1684 struct mep_prologue *result)
1686 CORE_ADDR pc;
1687 unsigned long insn;
1688 int rn;
1689 int found_lp = 0;
1690 pv_t reg[MEP_NUM_REGS];
1691 struct pv_area *stack;
1692 struct cleanup *back_to;
1693 CORE_ADDR after_last_frame_setup_insn = start_pc;
1695 memset (result, 0, sizeof (*result));
1696 result->gdbarch = gdbarch;
1698 for (rn = 0; rn < MEP_NUM_REGS; rn++)
1700 reg[rn] = pv_register (rn, 0);
1701 result->reg_offset[rn] = 1;
1704 stack = make_pv_area (MEP_SP_REGNUM, gdbarch_addr_bit (gdbarch));
1705 back_to = make_cleanup_free_pv_area (stack);
1707 pc = start_pc;
1708 while (pc < limit_pc)
1710 CORE_ADDR next_pc;
1711 pv_t pre_insn_fp, pre_insn_sp;
1713 next_pc = mep_get_insn (gdbarch, pc, &insn);
1715 /* A zero return from mep_get_insn means that either we weren't
1716 able to read the instruction from memory, or that we don't
1717 have enough information to be able to reliably decode it. So
1718 we'll store here and hope for the best. */
1719 if (! next_pc)
1720 break;
1722 /* Note the current values of the SP and FP, so we can tell if
1723 this instruction changed them, below. */
1724 pre_insn_fp = reg[MEP_FP_REGNUM];
1725 pre_insn_sp = reg[MEP_SP_REGNUM];
1727 if (IS_ADD (insn))
1729 int rn = ADD_TARGET (insn);
1730 CORE_ADDR imm6 = ADD_OFFSET (insn);
1732 reg[rn] = pv_add_constant (reg[rn], imm6);
1734 else if (IS_ADD3_16 (insn))
1736 int rn = ADD3_16_TARGET (insn);
1737 int imm7 = ADD3_16_OFFSET (insn);
1739 reg[rn] = pv_add_constant (reg[MEP_SP_REGNUM], imm7);
1741 else if (IS_ADD3_32 (insn))
1743 int rn = ADD3_32_TARGET (insn);
1744 int rm = ADD3_32_SOURCE (insn);
1745 int imm16 = ADD3_32_OFFSET (insn);
1747 reg[rn] = pv_add_constant (reg[rm], imm16);
1749 else if (IS_SW_REG (insn))
1751 int rn = SW_REG_SOURCE (insn);
1752 int rm = SW_REG_BASE (insn);
1754 /* If simulating this store would require us to forget
1755 everything we know about the stack frame in the name of
1756 accuracy, it would be better to just quit now. */
1757 if (pv_area_store_would_trash (stack, reg[rm]))
1758 break;
1760 if (is_arg_spill (gdbarch, reg[rn], reg[rm], stack))
1761 after_last_frame_setup_insn = next_pc;
1763 pv_area_store (stack, reg[rm], 4, reg[rn]);
1765 else if (IS_SW_IMMD (insn))
1767 int rn = SW_IMMD_SOURCE (insn);
1768 int offset = SW_IMMD_OFFSET (insn);
1769 pv_t addr = pv_add_constant (reg[MEP_SP_REGNUM], offset);
1771 /* If simulating this store would require us to forget
1772 everything we know about the stack frame in the name of
1773 accuracy, it would be better to just quit now. */
1774 if (pv_area_store_would_trash (stack, addr))
1775 break;
1777 if (is_arg_spill (gdbarch, reg[rn], addr, stack))
1778 after_last_frame_setup_insn = next_pc;
1780 pv_area_store (stack, addr, 4, reg[rn]);
1782 else if (IS_MOV (insn))
1784 int rn = MOV_TARGET (insn);
1785 int rm = MOV_SOURCE (insn);
1787 reg[rn] = reg[rm];
1789 if (pv_is_register (reg[rm], rm) && is_arg_reg (reg[rm]))
1790 after_last_frame_setup_insn = next_pc;
1792 else if (IS_SB (insn) || IS_SH (insn) || IS_SW (insn))
1794 int rn = SWBH_32_SOURCE (insn);
1795 int rm = SWBH_32_BASE (insn);
1796 int disp = SWBH_32_OFFSET (insn);
1797 int size = (IS_SB (insn) ? 1
1798 : IS_SH (insn) ? 2
1799 : (gdb_assert (IS_SW (insn)), 4));
1800 pv_t addr = pv_add_constant (reg[rm], disp);
1802 if (pv_area_store_would_trash (stack, addr))
1803 break;
1805 if (is_arg_spill (gdbarch, reg[rn], addr, stack))
1806 after_last_frame_setup_insn = next_pc;
1808 pv_area_store (stack, addr, size, reg[rn]);
1810 else if (IS_LDC (insn))
1812 int rn = LDC_TARGET (insn);
1813 int cr = LDC_IMM (insn) + MEP_FIRST_CSR_REGNUM;
1815 reg[rn] = reg[cr];
1817 else if (IS_LW (insn))
1819 int rn = LW_TARGET (insn);
1820 int rm = LW_BASE (insn);
1821 int offset = LW_OFFSET (insn);
1822 pv_t addr = pv_add_constant (reg[rm], offset);
1824 reg[rn] = pv_area_fetch (stack, addr, 4);
1826 else if (IS_BRA (insn) && BRA_DISP (insn) > 0)
1828 /* When a loop appears as the first statement of a function
1829 body, gcc 4.x will use a BRA instruction to branch to the
1830 loop condition checking code. This BRA instruction is
1831 marked as part of the prologue. We therefore set next_pc
1832 to this branch target and also stop the prologue scan.
1833 The instructions at and beyond the branch target should
1834 no longer be associated with the prologue.
1836 Note that we only consider forward branches here. We
1837 presume that a forward branch is being used to skip over
1838 a loop body.
1840 A backwards branch is covered by the default case below.
1841 If we were to encounter a backwards branch, that would
1842 most likely mean that we've scanned through a loop body.
1843 We definitely want to stop the prologue scan when this
1844 happens and that is precisely what is done by the default
1845 case below. */
1846 next_pc = pc + BRA_DISP (insn);
1847 after_last_frame_setup_insn = next_pc;
1848 break;
1850 else
1851 /* We've hit some instruction we don't know how to simulate.
1852 Strictly speaking, we should set every value we're
1853 tracking to "unknown". But we'll be optimistic, assume
1854 that we have enough information already, and stop
1855 analysis here. */
1856 break;
1858 /* If this instruction changed the FP or decreased the SP (i.e.,
1859 allocated more stack space), then this may be a good place to
1860 declare the prologue finished. However, there are some
1861 exceptions:
1863 - If the instruction just changed the FP back to its original
1864 value, then that's probably a restore instruction. The
1865 prologue should definitely end before that.
1867 - If the instruction increased the value of the SP (that is,
1868 shrunk the frame), then it's probably part of a frame
1869 teardown sequence, and the prologue should end before that. */
1871 if (! pv_is_identical (reg[MEP_FP_REGNUM], pre_insn_fp))
1873 if (! pv_is_register_k (reg[MEP_FP_REGNUM], MEP_FP_REGNUM, 0))
1874 after_last_frame_setup_insn = next_pc;
1876 else if (! pv_is_identical (reg[MEP_SP_REGNUM], pre_insn_sp))
1878 /* The comparison of constants looks odd, there, because .k
1879 is unsigned. All it really means is that the new value
1880 is lower than it was before the instruction. */
1881 if (pv_is_register (pre_insn_sp, MEP_SP_REGNUM)
1882 && pv_is_register (reg[MEP_SP_REGNUM], MEP_SP_REGNUM)
1883 && ((pre_insn_sp.k - reg[MEP_SP_REGNUM].k)
1884 < (reg[MEP_SP_REGNUM].k - pre_insn_sp.k)))
1885 after_last_frame_setup_insn = next_pc;
1888 pc = next_pc;
1891 /* Is the frame size (offset, really) a known constant? */
1892 if (pv_is_register (reg[MEP_SP_REGNUM], MEP_SP_REGNUM))
1893 result->frame_size = reg[MEP_SP_REGNUM].k;
1895 /* Was the frame pointer initialized? */
1896 if (pv_is_register (reg[MEP_FP_REGNUM], MEP_SP_REGNUM))
1898 result->has_frame_ptr = 1;
1899 result->frame_ptr_offset = reg[MEP_FP_REGNUM].k;
1902 /* Record where all the registers were saved. */
1903 pv_area_scan (stack, check_for_saved, (void *) result);
1905 result->prologue_end = after_last_frame_setup_insn;
1907 do_cleanups (back_to);
1911 static CORE_ADDR
1912 mep_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1914 const char *name;
1915 CORE_ADDR func_addr, func_end;
1916 struct mep_prologue p;
1918 /* Try to find the extent of the function that contains PC. */
1919 if (! find_pc_partial_function (pc, &name, &func_addr, &func_end))
1920 return pc;
1922 mep_analyze_prologue (gdbarch, pc, func_end, &p);
1923 return p.prologue_end;
1928 /* Breakpoints. */
1930 static const unsigned char *
1931 mep_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR * pcptr, int *lenptr)
1933 static unsigned char breakpoint[] = { 0x70, 0x32 };
1934 *lenptr = sizeof (breakpoint);
1935 return breakpoint;
1940 /* Frames and frame unwinding. */
1943 static struct mep_prologue *
1944 mep_analyze_frame_prologue (struct frame_info *this_frame,
1945 void **this_prologue_cache)
1947 if (! *this_prologue_cache)
1949 CORE_ADDR func_start, stop_addr;
1951 *this_prologue_cache
1952 = FRAME_OBSTACK_ZALLOC (struct mep_prologue);
1954 func_start = get_frame_func (this_frame);
1955 stop_addr = get_frame_pc (this_frame);
1957 /* If we couldn't find any function containing the PC, then
1958 just initialize the prologue cache, but don't do anything. */
1959 if (! func_start)
1960 stop_addr = func_start;
1962 mep_analyze_prologue (get_frame_arch (this_frame),
1963 func_start, stop_addr, *this_prologue_cache);
1966 return *this_prologue_cache;
1970 /* Given the next frame and a prologue cache, return this frame's
1971 base. */
1972 static CORE_ADDR
1973 mep_frame_base (struct frame_info *this_frame,
1974 void **this_prologue_cache)
1976 struct mep_prologue *p
1977 = mep_analyze_frame_prologue (this_frame, this_prologue_cache);
1979 /* In functions that use alloca, the distance between the stack
1980 pointer and the frame base varies dynamically, so we can't use
1981 the SP plus static information like prologue analysis to find the
1982 frame base. However, such functions must have a frame pointer,
1983 to be able to restore the SP on exit. So whenever we do have a
1984 frame pointer, use that to find the base. */
1985 if (p->has_frame_ptr)
1987 CORE_ADDR fp
1988 = get_frame_register_unsigned (this_frame, MEP_FP_REGNUM);
1989 return fp - p->frame_ptr_offset;
1991 else
1993 CORE_ADDR sp
1994 = get_frame_register_unsigned (this_frame, MEP_SP_REGNUM);
1995 return sp - p->frame_size;
2000 static void
2001 mep_frame_this_id (struct frame_info *this_frame,
2002 void **this_prologue_cache,
2003 struct frame_id *this_id)
2005 *this_id = frame_id_build (mep_frame_base (this_frame, this_prologue_cache),
2006 get_frame_func (this_frame));
2010 static struct value *
2011 mep_frame_prev_register (struct frame_info *this_frame,
2012 void **this_prologue_cache, int regnum)
2014 struct mep_prologue *p
2015 = mep_analyze_frame_prologue (this_frame, this_prologue_cache);
2017 /* There are a number of complications in unwinding registers on the
2018 MeP, having to do with core functions calling VLIW functions and
2019 vice versa.
2021 The least significant bit of the link register, LP.LTOM, is the
2022 VLIW mode toggle bit: it's set if a core function called a VLIW
2023 function, or vice versa, and clear when the caller and callee
2024 were both in the same mode.
2026 So, if we're asked to unwind the PC, then we really want to
2027 unwind the LP and clear the least significant bit. (Real return
2028 addresses are always even.) And if we want to unwind the program
2029 status word (PSW), we need to toggle PSW.OM if LP.LTOM is set.
2031 Tweaking the register values we return in this way means that the
2032 bits in BUFFERP[] are not the same as the bits you'd find at
2033 ADDRP in the inferior, so we make sure lvalp is not_lval when we
2034 do this. */
2035 if (regnum == MEP_PC_REGNUM)
2037 struct value *value;
2038 CORE_ADDR lp;
2039 value = mep_frame_prev_register (this_frame, this_prologue_cache,
2040 MEP_LP_REGNUM);
2041 lp = value_as_long (value);
2042 release_value (value);
2043 value_free (value);
2045 return frame_unwind_got_constant (this_frame, regnum, lp & ~1);
2047 else
2049 CORE_ADDR frame_base = mep_frame_base (this_frame, this_prologue_cache);
2050 struct value *value;
2052 /* Our caller's SP is our frame base. */
2053 if (regnum == MEP_SP_REGNUM)
2054 return frame_unwind_got_constant (this_frame, regnum, frame_base);
2056 /* If prologue analysis says we saved this register somewhere,
2057 return a description of the stack slot holding it. */
2058 if (p->reg_offset[regnum] != 1)
2059 value = frame_unwind_got_memory (this_frame, regnum,
2060 frame_base + p->reg_offset[regnum]);
2062 /* Otherwise, presume we haven't changed the value of this
2063 register, and get it from the next frame. */
2064 else
2065 value = frame_unwind_got_register (this_frame, regnum, regnum);
2067 /* If we need to toggle the operating mode, do so. */
2068 if (regnum == MEP_PSW_REGNUM)
2070 CORE_ADDR psw, lp;
2072 psw = value_as_long (value);
2073 release_value (value);
2074 value_free (value);
2076 /* Get the LP's value, too. */
2077 value = get_frame_register_value (this_frame, MEP_LP_REGNUM);
2078 lp = value_as_long (value);
2079 release_value (value);
2080 value_free (value);
2082 /* If LP.LTOM is set, then toggle PSW.OM. */
2083 if (lp & 0x1)
2084 psw ^= 0x1000;
2086 return frame_unwind_got_constant (this_frame, regnum, psw);
2089 return value;
2094 static const struct frame_unwind mep_frame_unwind = {
2095 NORMAL_FRAME,
2096 default_frame_unwind_stop_reason,
2097 mep_frame_this_id,
2098 mep_frame_prev_register,
2099 NULL,
2100 default_frame_sniffer
2104 /* Our general unwinding function can handle unwinding the PC. */
2105 static CORE_ADDR
2106 mep_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
2108 return frame_unwind_register_unsigned (next_frame, MEP_PC_REGNUM);
2112 /* Our general unwinding function can handle unwinding the SP. */
2113 static CORE_ADDR
2114 mep_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
2116 return frame_unwind_register_unsigned (next_frame, MEP_SP_REGNUM);
2121 /* Return values. */
2124 static int
2125 mep_use_struct_convention (struct type *type)
2127 return (TYPE_LENGTH (type) > MEP_GPR_SIZE);
2131 static void
2132 mep_extract_return_value (struct gdbarch *arch,
2133 struct type *type,
2134 struct regcache *regcache,
2135 gdb_byte *valbuf)
2137 int byte_order = gdbarch_byte_order (arch);
2139 /* Values that don't occupy a full register appear at the less
2140 significant end of the value. This is the offset to where the
2141 value starts. */
2142 int offset;
2144 /* Return values > MEP_GPR_SIZE bytes are returned in memory,
2145 pointed to by R0. */
2146 gdb_assert (TYPE_LENGTH (type) <= MEP_GPR_SIZE);
2148 if (byte_order == BFD_ENDIAN_BIG)
2149 offset = MEP_GPR_SIZE - TYPE_LENGTH (type);
2150 else
2151 offset = 0;
2153 /* Return values that do fit in a single register are returned in R0. */
2154 regcache_cooked_read_part (regcache, MEP_R0_REGNUM,
2155 offset, TYPE_LENGTH (type),
2156 valbuf);
2160 static void
2161 mep_store_return_value (struct gdbarch *arch,
2162 struct type *type,
2163 struct regcache *regcache,
2164 const gdb_byte *valbuf)
2166 int byte_order = gdbarch_byte_order (arch);
2168 /* Values that fit in a single register go in R0. */
2169 if (TYPE_LENGTH (type) <= MEP_GPR_SIZE)
2171 /* Values that don't occupy a full register appear at the least
2172 significant end of the value. This is the offset to where the
2173 value starts. */
2174 int offset;
2176 if (byte_order == BFD_ENDIAN_BIG)
2177 offset = MEP_GPR_SIZE - TYPE_LENGTH (type);
2178 else
2179 offset = 0;
2181 regcache_cooked_write_part (regcache, MEP_R0_REGNUM,
2182 offset, TYPE_LENGTH (type),
2183 valbuf);
2186 /* Return values larger than a single register are returned in
2187 memory, pointed to by R0. Unfortunately, we can't count on R0
2188 pointing to the return buffer, so we raise an error here. */
2189 else
2190 error (_("\
2191 GDB cannot set return values larger than four bytes; the Media Processor's\n\
2192 calling conventions do not provide enough information to do this.\n\
2193 Try using the 'return' command with no argument."));
2196 static enum return_value_convention
2197 mep_return_value (struct gdbarch *gdbarch, struct value *function,
2198 struct type *type, struct regcache *regcache,
2199 gdb_byte *readbuf, const gdb_byte *writebuf)
2201 if (mep_use_struct_convention (type))
2203 if (readbuf)
2205 ULONGEST addr;
2206 /* Although the address of the struct buffer gets passed in R1, it's
2207 returned in R0. Fetch R0's value and then read the memory
2208 at that address. */
2209 regcache_raw_read_unsigned (regcache, MEP_R0_REGNUM, &addr);
2210 read_memory (addr, readbuf, TYPE_LENGTH (type));
2212 if (writebuf)
2214 /* Return values larger than a single register are returned in
2215 memory, pointed to by R0. Unfortunately, we can't count on R0
2216 pointing to the return buffer, so we raise an error here. */
2217 error (_("\
2218 GDB cannot set return values larger than four bytes; the Media Processor's\n\
2219 calling conventions do not provide enough information to do this.\n\
2220 Try using the 'return' command with no argument."));
2222 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
2225 if (readbuf)
2226 mep_extract_return_value (gdbarch, type, regcache, readbuf);
2227 if (writebuf)
2228 mep_store_return_value (gdbarch, type, regcache, writebuf);
2230 return RETURN_VALUE_REGISTER_CONVENTION;
2234 /* Inferior calls. */
2237 static CORE_ADDR
2238 mep_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
2240 /* Require word alignment. */
2241 return sp & -4;
2245 /* From "lang_spec2.txt":
2247 4.2 Calling conventions
2249 4.2.1 Core register conventions
2251 - Parameters should be evaluated from left to right, and they
2252 should be held in $1,$2,$3,$4 in order. The fifth parameter or
2253 after should be held in the stack. If the size is larger than 4
2254 bytes in the first four parameters, the pointer should be held in
2255 the registers instead. If the size is larger than 4 bytes in the
2256 fifth parameter or after, the pointer should be held in the stack.
2258 - Return value of a function should be held in register $0. If the
2259 size of return value is larger than 4 bytes, $1 should hold the
2260 pointer pointing memory that would hold the return value. In this
2261 case, the first parameter should be held in $2, the second one in
2262 $3, and the third one in $4, and the forth parameter or after
2263 should be held in the stack.
2265 [This doesn't say so, but arguments shorter than four bytes are
2266 passed in the least significant end of a four-byte word when
2267 they're passed on the stack.] */
2270 /* Traverse the list of ARGC arguments ARGV; for every ARGV[i] too
2271 large to fit in a register, save it on the stack, and place its
2272 address in COPY[i]. SP is the initial stack pointer; return the
2273 new stack pointer. */
2274 static CORE_ADDR
2275 push_large_arguments (CORE_ADDR sp, int argc, struct value **argv,
2276 CORE_ADDR copy[])
2278 int i;
2280 for (i = 0; i < argc; i++)
2282 unsigned arg_len = TYPE_LENGTH (value_type (argv[i]));
2284 if (arg_len > MEP_GPR_SIZE)
2286 /* Reserve space for the copy, and then round the SP down, to
2287 make sure it's all aligned properly. */
2288 sp = (sp - arg_len) & -4;
2289 write_memory (sp, value_contents (argv[i]), arg_len);
2290 copy[i] = sp;
2294 return sp;
2298 static CORE_ADDR
2299 mep_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2300 struct regcache *regcache, CORE_ADDR bp_addr,
2301 int argc, struct value **argv, CORE_ADDR sp,
2302 int struct_return,
2303 CORE_ADDR struct_addr)
2305 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2306 CORE_ADDR *copy = (CORE_ADDR *) alloca (argc * sizeof (copy[0]));
2307 CORE_ADDR func_addr = find_function_addr (function, NULL);
2308 int i;
2310 /* The number of the next register available to hold an argument. */
2311 int arg_reg;
2313 /* The address of the next stack slot available to hold an argument. */
2314 CORE_ADDR arg_stack;
2316 /* The address of the end of the stack area for arguments. This is
2317 just for error checking. */
2318 CORE_ADDR arg_stack_end;
2320 sp = push_large_arguments (sp, argc, argv, copy);
2322 /* Reserve space for the stack arguments, if any. */
2323 arg_stack_end = sp;
2324 if (argc + (struct_addr ? 1 : 0) > 4)
2325 sp -= ((argc + (struct_addr ? 1 : 0)) - 4) * MEP_GPR_SIZE;
2327 arg_reg = MEP_R1_REGNUM;
2328 arg_stack = sp;
2330 /* If we're returning a structure by value, push the pointer to the
2331 buffer as the first argument. */
2332 if (struct_return)
2334 regcache_cooked_write_unsigned (regcache, arg_reg, struct_addr);
2335 arg_reg++;
2338 for (i = 0; i < argc; i++)
2340 ULONGEST value;
2342 /* Arguments that fit in a GPR get expanded to fill the GPR. */
2343 if (TYPE_LENGTH (value_type (argv[i])) <= MEP_GPR_SIZE)
2344 value = extract_unsigned_integer (value_contents (argv[i]),
2345 TYPE_LENGTH (value_type (argv[i])),
2346 byte_order);
2348 /* Arguments too large to fit in a GPR get copied to the stack,
2349 and we pass a pointer to the copy. */
2350 else
2351 value = copy[i];
2353 /* We use $1 -- $4 for passing arguments, then use the stack. */
2354 if (arg_reg <= MEP_R4_REGNUM)
2356 regcache_cooked_write_unsigned (regcache, arg_reg, value);
2357 arg_reg++;
2359 else
2361 gdb_byte buf[MEP_GPR_SIZE];
2362 store_unsigned_integer (buf, MEP_GPR_SIZE, byte_order, value);
2363 write_memory (arg_stack, buf, MEP_GPR_SIZE);
2364 arg_stack += MEP_GPR_SIZE;
2368 gdb_assert (arg_stack <= arg_stack_end);
2370 /* Set the return address. */
2371 regcache_cooked_write_unsigned (regcache, MEP_LP_REGNUM, bp_addr);
2373 /* Update the stack pointer. */
2374 regcache_cooked_write_unsigned (regcache, MEP_SP_REGNUM, sp);
2376 return sp;
2380 static struct frame_id
2381 mep_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
2383 CORE_ADDR sp = get_frame_register_unsigned (this_frame, MEP_SP_REGNUM);
2384 return frame_id_build (sp, get_frame_pc (this_frame));
2389 /* Initialization. */
2392 static struct gdbarch *
2393 mep_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2395 struct gdbarch *gdbarch;
2396 struct gdbarch_tdep *tdep;
2398 /* Which me_module are we building a gdbarch object for? */
2399 CONFIG_ATTR me_module;
2401 /* If we have a BFD in hand, figure out which me_module it was built
2402 for. Otherwise, use the no-particular-me_module code. */
2403 if (info.abfd)
2405 /* The way to get the me_module code depends on the object file
2406 format. At the moment, we only know how to handle ELF. */
2407 if (bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
2408 me_module = elf_elfheader (info.abfd)->e_flags & EF_MEP_INDEX_MASK;
2409 else
2410 me_module = CONFIG_NONE;
2412 else
2413 me_module = CONFIG_NONE;
2415 /* If we're setting the architecture from a file, check the
2416 endianness of the file against that of the me_module. */
2417 if (info.abfd)
2419 /* The negations on either side make the comparison treat all
2420 non-zero (true) values as equal. */
2421 if (! bfd_big_endian (info.abfd) != ! me_module_big_endian (me_module))
2423 const char *module_name = me_module_name (me_module);
2424 const char *module_endianness
2425 = me_module_big_endian (me_module) ? "big" : "little";
2426 const char *file_name = bfd_get_filename (info.abfd);
2427 const char *file_endianness
2428 = bfd_big_endian (info.abfd) ? "big" : "little";
2430 fputc_unfiltered ('\n', gdb_stderr);
2431 if (module_name)
2432 warning (_("the MeP module '%s' is %s-endian, but the executable\n"
2433 "%s is %s-endian."),
2434 module_name, module_endianness,
2435 file_name, file_endianness);
2436 else
2437 warning (_("the selected MeP module is %s-endian, but the "
2438 "executable\n"
2439 "%s is %s-endian."),
2440 module_endianness, file_name, file_endianness);
2444 /* Find a candidate among the list of architectures we've created
2445 already. info->bfd_arch_info needs to match, but we also want
2446 the right me_module: the ELF header's e_flags field needs to
2447 match as well. */
2448 for (arches = gdbarch_list_lookup_by_info (arches, &info);
2449 arches != NULL;
2450 arches = gdbarch_list_lookup_by_info (arches->next, &info))
2451 if (gdbarch_tdep (arches->gdbarch)->me_module == me_module)
2452 return arches->gdbarch;
2454 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
2455 gdbarch = gdbarch_alloc (&info, tdep);
2457 /* Get a CGEN CPU descriptor for this architecture. */
2459 const char *mach_name = info.bfd_arch_info->printable_name;
2460 enum cgen_endian endian = (info.byte_order == BFD_ENDIAN_BIG
2461 ? CGEN_ENDIAN_BIG
2462 : CGEN_ENDIAN_LITTLE);
2464 tdep->cpu_desc = mep_cgen_cpu_open (CGEN_CPU_OPEN_BFDMACH, mach_name,
2465 CGEN_CPU_OPEN_ENDIAN, endian,
2466 CGEN_CPU_OPEN_END);
2469 tdep->me_module = me_module;
2471 /* Register set. */
2472 set_gdbarch_read_pc (gdbarch, mep_read_pc);
2473 set_gdbarch_write_pc (gdbarch, mep_write_pc);
2474 set_gdbarch_num_regs (gdbarch, MEP_NUM_RAW_REGS);
2475 set_gdbarch_sp_regnum (gdbarch, MEP_SP_REGNUM);
2476 set_gdbarch_register_name (gdbarch, mep_register_name);
2477 set_gdbarch_register_type (gdbarch, mep_register_type);
2478 set_gdbarch_num_pseudo_regs (gdbarch, MEP_NUM_PSEUDO_REGS);
2479 set_gdbarch_pseudo_register_read (gdbarch, mep_pseudo_register_read);
2480 set_gdbarch_pseudo_register_write (gdbarch, mep_pseudo_register_write);
2481 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, mep_debug_reg_to_regnum);
2482 set_gdbarch_stab_reg_to_regnum (gdbarch, mep_debug_reg_to_regnum);
2484 set_gdbarch_register_reggroup_p (gdbarch, mep_register_reggroup_p);
2485 reggroup_add (gdbarch, all_reggroup);
2486 reggroup_add (gdbarch, general_reggroup);
2487 reggroup_add (gdbarch, save_reggroup);
2488 reggroup_add (gdbarch, restore_reggroup);
2489 reggroup_add (gdbarch, mep_csr_reggroup);
2490 reggroup_add (gdbarch, mep_cr_reggroup);
2491 reggroup_add (gdbarch, mep_ccr_reggroup);
2493 /* Disassembly. */
2494 set_gdbarch_print_insn (gdbarch, mep_gdb_print_insn);
2496 /* Breakpoints. */
2497 set_gdbarch_breakpoint_from_pc (gdbarch, mep_breakpoint_from_pc);
2498 set_gdbarch_decr_pc_after_break (gdbarch, 0);
2499 set_gdbarch_skip_prologue (gdbarch, mep_skip_prologue);
2501 /* Frames and frame unwinding. */
2502 frame_unwind_append_unwinder (gdbarch, &mep_frame_unwind);
2503 set_gdbarch_unwind_pc (gdbarch, mep_unwind_pc);
2504 set_gdbarch_unwind_sp (gdbarch, mep_unwind_sp);
2505 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2506 set_gdbarch_frame_args_skip (gdbarch, 0);
2508 /* Return values. */
2509 set_gdbarch_return_value (gdbarch, mep_return_value);
2511 /* Inferior function calls. */
2512 set_gdbarch_frame_align (gdbarch, mep_frame_align);
2513 set_gdbarch_push_dummy_call (gdbarch, mep_push_dummy_call);
2514 set_gdbarch_dummy_id (gdbarch, mep_dummy_id);
2516 return gdbarch;
2519 /* Provide a prototype to silence -Wmissing-prototypes. */
2520 extern initialize_file_ftype _initialize_mep_tdep;
2522 void
2523 _initialize_mep_tdep (void)
2525 mep_csr_reggroup = reggroup_new ("csr", USER_REGGROUP);
2526 mep_cr_reggroup = reggroup_new ("cr", USER_REGGROUP);
2527 mep_ccr_reggroup = reggroup_new ("ccr", USER_REGGROUP);
2529 register_gdbarch_init (bfd_arch_mep, mep_gdbarch_init);
2531 mep_init_pseudoregister_maps ();