1 // symtab.cc -- the gold symbol table
3 // Copyright 2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
6 // This file is part of gold.
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
35 #include "dwarf_reader.h"
39 #include "workqueue.h"
43 #include "incremental.h"
50 // Initialize fields in Symbol. This initializes everything except u_
54 Symbol::init_fields(const char* name
, const char* version
,
55 elfcpp::STT type
, elfcpp::STB binding
,
56 elfcpp::STV visibility
, unsigned char nonvis
)
59 this->version_
= version
;
60 this->symtab_index_
= 0;
61 this->dynsym_index_
= 0;
62 this->got_offsets_
.init();
63 this->plt_offset_
= -1U;
65 this->binding_
= binding
;
66 this->visibility_
= visibility
;
67 this->nonvis_
= nonvis
;
68 this->is_def_
= false;
69 this->is_forwarder_
= false;
70 this->has_alias_
= false;
71 this->needs_dynsym_entry_
= false;
72 this->in_reg_
= false;
73 this->in_dyn_
= false;
74 this->has_warning_
= false;
75 this->is_copied_from_dynobj_
= false;
76 this->is_forced_local_
= false;
77 this->is_ordinary_shndx_
= false;
78 this->in_real_elf_
= false;
79 this->is_defined_in_discarded_section_
= false;
80 this->undef_binding_set_
= false;
81 this->undef_binding_weak_
= false;
82 this->is_predefined_
= false;
85 // Return the demangled version of the symbol's name, but only
86 // if the --demangle flag was set.
89 demangle(const char* name
)
91 if (!parameters
->options().do_demangle())
94 // cplus_demangle allocates memory for the result it returns,
95 // and returns NULL if the name is already demangled.
96 char* demangled_name
= cplus_demangle(name
, DMGL_ANSI
| DMGL_PARAMS
);
97 if (demangled_name
== NULL
)
100 std::string
retval(demangled_name
);
101 free(demangled_name
);
106 Symbol::demangled_name() const
108 return demangle(this->name());
111 // Initialize the fields in the base class Symbol for SYM in OBJECT.
113 template<int size
, bool big_endian
>
115 Symbol::init_base_object(const char* name
, const char* version
, Object
* object
,
116 const elfcpp::Sym
<size
, big_endian
>& sym
,
117 unsigned int st_shndx
, bool is_ordinary
)
119 this->init_fields(name
, version
, sym
.get_st_type(), sym
.get_st_bind(),
120 sym
.get_st_visibility(), sym
.get_st_nonvis());
121 this->u_
.from_object
.object
= object
;
122 this->u_
.from_object
.shndx
= st_shndx
;
123 this->is_ordinary_shndx_
= is_ordinary
;
124 this->source_
= FROM_OBJECT
;
125 this->in_reg_
= !object
->is_dynamic();
126 this->in_dyn_
= object
->is_dynamic();
127 this->in_real_elf_
= object
->pluginobj() == NULL
;
130 // Initialize the fields in the base class Symbol for a symbol defined
131 // in an Output_data.
134 Symbol::init_base_output_data(const char* name
, const char* version
,
135 Output_data
* od
, elfcpp::STT type
,
136 elfcpp::STB binding
, elfcpp::STV visibility
,
137 unsigned char nonvis
, bool offset_is_from_end
,
140 this->init_fields(name
, version
, type
, binding
, visibility
, nonvis
);
141 this->u_
.in_output_data
.output_data
= od
;
142 this->u_
.in_output_data
.offset_is_from_end
= offset_is_from_end
;
143 this->source_
= IN_OUTPUT_DATA
;
144 this->in_reg_
= true;
145 this->in_real_elf_
= true;
146 this->is_predefined_
= is_predefined
;
149 // Initialize the fields in the base class Symbol for a symbol defined
150 // in an Output_segment.
153 Symbol::init_base_output_segment(const char* name
, const char* version
,
154 Output_segment
* os
, elfcpp::STT type
,
155 elfcpp::STB binding
, elfcpp::STV visibility
,
156 unsigned char nonvis
,
157 Segment_offset_base offset_base
,
160 this->init_fields(name
, version
, type
, binding
, visibility
, nonvis
);
161 this->u_
.in_output_segment
.output_segment
= os
;
162 this->u_
.in_output_segment
.offset_base
= offset_base
;
163 this->source_
= IN_OUTPUT_SEGMENT
;
164 this->in_reg_
= true;
165 this->in_real_elf_
= true;
166 this->is_predefined_
= is_predefined
;
169 // Initialize the fields in the base class Symbol for a symbol defined
173 Symbol::init_base_constant(const char* name
, const char* version
,
174 elfcpp::STT type
, elfcpp::STB binding
,
175 elfcpp::STV visibility
, unsigned char nonvis
,
178 this->init_fields(name
, version
, type
, binding
, visibility
, nonvis
);
179 this->source_
= IS_CONSTANT
;
180 this->in_reg_
= true;
181 this->in_real_elf_
= true;
182 this->is_predefined_
= is_predefined
;
185 // Initialize the fields in the base class Symbol for an undefined
189 Symbol::init_base_undefined(const char* name
, const char* version
,
190 elfcpp::STT type
, elfcpp::STB binding
,
191 elfcpp::STV visibility
, unsigned char nonvis
)
193 this->init_fields(name
, version
, type
, binding
, visibility
, nonvis
);
194 this->dynsym_index_
= -1U;
195 this->source_
= IS_UNDEFINED
;
196 this->in_reg_
= true;
197 this->in_real_elf_
= true;
200 // Allocate a common symbol in the base.
203 Symbol::allocate_base_common(Output_data
* od
)
205 gold_assert(this->is_common());
206 this->source_
= IN_OUTPUT_DATA
;
207 this->u_
.in_output_data
.output_data
= od
;
208 this->u_
.in_output_data
.offset_is_from_end
= false;
211 // Initialize the fields in Sized_symbol for SYM in OBJECT.
214 template<bool big_endian
>
216 Sized_symbol
<size
>::init_object(const char* name
, const char* version
,
218 const elfcpp::Sym
<size
, big_endian
>& sym
,
219 unsigned int st_shndx
, bool is_ordinary
)
221 this->init_base_object(name
, version
, object
, sym
, st_shndx
, is_ordinary
);
222 this->value_
= sym
.get_st_value();
223 this->symsize_
= sym
.get_st_size();
226 // Initialize the fields in Sized_symbol for a symbol defined in an
231 Sized_symbol
<size
>::init_output_data(const char* name
, const char* version
,
232 Output_data
* od
, Value_type value
,
233 Size_type symsize
, elfcpp::STT type
,
235 elfcpp::STV visibility
,
236 unsigned char nonvis
,
237 bool offset_is_from_end
,
240 this->init_base_output_data(name
, version
, od
, type
, binding
, visibility
,
241 nonvis
, offset_is_from_end
, is_predefined
);
242 this->value_
= value
;
243 this->symsize_
= symsize
;
246 // Initialize the fields in Sized_symbol for a symbol defined in an
251 Sized_symbol
<size
>::init_output_segment(const char* name
, const char* version
,
252 Output_segment
* os
, Value_type value
,
253 Size_type symsize
, elfcpp::STT type
,
255 elfcpp::STV visibility
,
256 unsigned char nonvis
,
257 Segment_offset_base offset_base
,
260 this->init_base_output_segment(name
, version
, os
, type
, binding
, visibility
,
261 nonvis
, offset_base
, is_predefined
);
262 this->value_
= value
;
263 this->symsize_
= symsize
;
266 // Initialize the fields in Sized_symbol for a symbol defined as a
271 Sized_symbol
<size
>::init_constant(const char* name
, const char* version
,
272 Value_type value
, Size_type symsize
,
273 elfcpp::STT type
, elfcpp::STB binding
,
274 elfcpp::STV visibility
, unsigned char nonvis
,
277 this->init_base_constant(name
, version
, type
, binding
, visibility
, nonvis
,
279 this->value_
= value
;
280 this->symsize_
= symsize
;
283 // Initialize the fields in Sized_symbol for an undefined symbol.
287 Sized_symbol
<size
>::init_undefined(const char* name
, const char* version
,
288 elfcpp::STT type
, elfcpp::STB binding
,
289 elfcpp::STV visibility
, unsigned char nonvis
)
291 this->init_base_undefined(name
, version
, type
, binding
, visibility
, nonvis
);
296 // Return an allocated string holding the symbol's name as
297 // name@version. This is used for relocatable links.
300 Symbol::versioned_name() const
302 gold_assert(this->version_
!= NULL
);
303 std::string ret
= this->name_
;
307 ret
+= this->version_
;
311 // Return true if SHNDX represents a common symbol.
314 Symbol::is_common_shndx(unsigned int shndx
)
316 return (shndx
== elfcpp::SHN_COMMON
317 || shndx
== parameters
->target().small_common_shndx()
318 || shndx
== parameters
->target().large_common_shndx());
321 // Allocate a common symbol.
325 Sized_symbol
<size
>::allocate_common(Output_data
* od
, Value_type value
)
327 this->allocate_base_common(od
);
328 this->value_
= value
;
331 // The ""'s around str ensure str is a string literal, so sizeof works.
332 #define strprefix(var, str) (strncmp(var, str, sizeof("" str "") - 1) == 0)
334 // Return true if this symbol should be added to the dynamic symbol
338 Symbol::should_add_dynsym_entry(Symbol_table
* symtab
) const
340 // If the symbol is only present on plugin files, the plugin decided we
342 if (!this->in_real_elf())
345 // If the symbol is used by a dynamic relocation, we need to add it.
346 if (this->needs_dynsym_entry())
349 // If this symbol's section is not added, the symbol need not be added.
350 // The section may have been GCed. Note that export_dynamic is being
351 // overridden here. This should not be done for shared objects.
352 if (parameters
->options().gc_sections()
353 && !parameters
->options().shared()
354 && this->source() == Symbol::FROM_OBJECT
355 && !this->object()->is_dynamic())
357 Relobj
* relobj
= static_cast<Relobj
*>(this->object());
359 unsigned int shndx
= this->shndx(&is_ordinary
);
360 if (is_ordinary
&& shndx
!= elfcpp::SHN_UNDEF
361 && !relobj
->is_section_included(shndx
)
362 && !symtab
->is_section_folded(relobj
, shndx
))
366 // If the symbol was forced dynamic in a --dynamic-list file
367 // or an --export-dynamic-symbol option, add it.
368 if (!this->is_from_dynobj()
369 && (parameters
->options().in_dynamic_list(this->name())
370 || parameters
->options().is_export_dynamic_symbol(this->name())))
372 if (!this->is_forced_local())
374 gold_warning(_("Cannot export local symbol '%s'"),
375 this->demangled_name().c_str());
379 // If the symbol was forced local in a version script, do not add it.
380 if (this->is_forced_local())
383 // If dynamic-list-data was specified, add any STT_OBJECT.
384 if (parameters
->options().dynamic_list_data()
385 && !this->is_from_dynobj()
386 && this->type() == elfcpp::STT_OBJECT
)
389 // If --dynamic-list-cpp-new was specified, add any new/delete symbol.
390 // If --dynamic-list-cpp-typeinfo was specified, add any typeinfo symbols.
391 if ((parameters
->options().dynamic_list_cpp_new()
392 || parameters
->options().dynamic_list_cpp_typeinfo())
393 && !this->is_from_dynobj())
395 // TODO(csilvers): We could probably figure out if we're an operator
396 // new/delete or typeinfo without the need to demangle.
397 char* demangled_name
= cplus_demangle(this->name(),
398 DMGL_ANSI
| DMGL_PARAMS
);
399 if (demangled_name
== NULL
)
401 // Not a C++ symbol, so it can't satisfy these flags
403 else if (parameters
->options().dynamic_list_cpp_new()
404 && (strprefix(demangled_name
, "operator new")
405 || strprefix(demangled_name
, "operator delete")))
407 free(demangled_name
);
410 else if (parameters
->options().dynamic_list_cpp_typeinfo()
411 && (strprefix(demangled_name
, "typeinfo name for")
412 || strprefix(demangled_name
, "typeinfo for")))
414 free(demangled_name
);
418 free(demangled_name
);
421 // If exporting all symbols or building a shared library,
422 // and the symbol is defined in a regular object and is
423 // externally visible, we need to add it.
424 if ((parameters
->options().export_dynamic() || parameters
->options().shared())
425 && !this->is_from_dynobj()
426 && !this->is_undefined()
427 && this->is_externally_visible())
433 // Return true if the final value of this symbol is known at link
437 Symbol::final_value_is_known() const
439 // If we are not generating an executable, then no final values are
440 // known, since they will change at runtime.
441 if (parameters
->options().output_is_position_independent()
442 || parameters
->options().relocatable())
445 // If the symbol is not from an object file, and is not undefined,
446 // then it is defined, and known.
447 if (this->source_
!= FROM_OBJECT
)
449 if (this->source_
!= IS_UNDEFINED
)
454 // If the symbol is from a dynamic object, then the final value
456 if (this->object()->is_dynamic())
459 // If the symbol is not undefined (it is defined or common),
460 // then the final value is known.
461 if (!this->is_undefined())
465 // If the symbol is undefined, then whether the final value is known
466 // depends on whether we are doing a static link. If we are doing a
467 // dynamic link, then the final value could be filled in at runtime.
468 // This could reasonably be the case for a weak undefined symbol.
469 return parameters
->doing_static_link();
472 // Return the output section where this symbol is defined.
475 Symbol::output_section() const
477 switch (this->source_
)
481 unsigned int shndx
= this->u_
.from_object
.shndx
;
482 if (shndx
!= elfcpp::SHN_UNDEF
&& this->is_ordinary_shndx_
)
484 gold_assert(!this->u_
.from_object
.object
->is_dynamic());
485 gold_assert(this->u_
.from_object
.object
->pluginobj() == NULL
);
486 Relobj
* relobj
= static_cast<Relobj
*>(this->u_
.from_object
.object
);
487 return relobj
->output_section(shndx
);
493 return this->u_
.in_output_data
.output_data
->output_section();
495 case IN_OUTPUT_SEGMENT
:
505 // Set the symbol's output section. This is used for symbols defined
506 // in scripts. This should only be called after the symbol table has
510 Symbol::set_output_section(Output_section
* os
)
512 switch (this->source_
)
516 gold_assert(this->output_section() == os
);
519 this->source_
= IN_OUTPUT_DATA
;
520 this->u_
.in_output_data
.output_data
= os
;
521 this->u_
.in_output_data
.offset_is_from_end
= false;
523 case IN_OUTPUT_SEGMENT
:
530 // Class Symbol_table.
532 Symbol_table::Symbol_table(unsigned int count
,
533 const Version_script_info
& version_script
)
534 : saw_undefined_(0), offset_(0), table_(count
), namepool_(),
535 forwarders_(), commons_(), tls_commons_(), small_commons_(),
536 large_commons_(), forced_locals_(), warnings_(),
537 version_script_(version_script
), gc_(NULL
), icf_(NULL
)
539 namepool_
.reserve(count
);
542 Symbol_table::~Symbol_table()
546 // The symbol table key equality function. This is called with
550 Symbol_table::Symbol_table_eq::operator()(const Symbol_table_key
& k1
,
551 const Symbol_table_key
& k2
) const
553 return k1
.first
== k2
.first
&& k1
.second
== k2
.second
;
557 Symbol_table::is_section_folded(Object
* obj
, unsigned int shndx
) const
559 return (parameters
->options().icf_enabled()
560 && this->icf_
->is_section_folded(obj
, shndx
));
563 // For symbols that have been listed with a -u or --export-dynamic-symbol
564 // option, add them to the work list to avoid gc'ing them.
567 Symbol_table::gc_mark_undef_symbols(Layout
* layout
)
569 for (options::String_set::const_iterator p
=
570 parameters
->options().undefined_begin();
571 p
!= parameters
->options().undefined_end();
574 const char* name
= p
->c_str();
575 Symbol
* sym
= this->lookup(name
);
576 gold_assert(sym
!= NULL
);
577 if (sym
->source() == Symbol::FROM_OBJECT
578 && !sym
->object()->is_dynamic())
580 this->gc_mark_symbol(sym
);
584 for (options::String_set::const_iterator p
=
585 parameters
->options().export_dynamic_symbol_begin();
586 p
!= parameters
->options().export_dynamic_symbol_end();
589 const char* name
= p
->c_str();
590 Symbol
* sym
= this->lookup(name
);
591 // It's not an error if a symbol named by --export-dynamic-symbol
594 && sym
->source() == Symbol::FROM_OBJECT
595 && !sym
->object()->is_dynamic())
597 this->gc_mark_symbol(sym
);
601 for (Script_options::referenced_const_iterator p
=
602 layout
->script_options()->referenced_begin();
603 p
!= layout
->script_options()->referenced_end();
606 Symbol
* sym
= this->lookup(p
->c_str());
607 gold_assert(sym
!= NULL
);
608 if (sym
->source() == Symbol::FROM_OBJECT
609 && !sym
->object()->is_dynamic())
611 this->gc_mark_symbol(sym
);
617 Symbol_table::gc_mark_symbol(Symbol
* sym
)
619 // Add the object and section to the work list.
621 unsigned int shndx
= sym
->shndx(&is_ordinary
);
622 if (is_ordinary
&& shndx
!= elfcpp::SHN_UNDEF
)
624 gold_assert(this->gc_
!= NULL
);
625 this->gc_
->worklist().push(Section_id(sym
->object(), shndx
));
627 parameters
->target().gc_mark_symbol(this, sym
);
630 // When doing garbage collection, keep symbols that have been seen in
633 Symbol_table::gc_mark_dyn_syms(Symbol
* sym
)
635 if (sym
->in_dyn() && sym
->source() == Symbol::FROM_OBJECT
636 && !sym
->object()->is_dynamic())
637 this->gc_mark_symbol(sym
);
640 // Make TO a symbol which forwards to FROM.
643 Symbol_table::make_forwarder(Symbol
* from
, Symbol
* to
)
645 gold_assert(from
!= to
);
646 gold_assert(!from
->is_forwarder() && !to
->is_forwarder());
647 this->forwarders_
[from
] = to
;
648 from
->set_forwarder();
651 // Resolve the forwards from FROM, returning the real symbol.
654 Symbol_table::resolve_forwards(const Symbol
* from
) const
656 gold_assert(from
->is_forwarder());
657 Unordered_map
<const Symbol
*, Symbol
*>::const_iterator p
=
658 this->forwarders_
.find(from
);
659 gold_assert(p
!= this->forwarders_
.end());
663 // Look up a symbol by name.
666 Symbol_table::lookup(const char* name
, const char* version
) const
668 Stringpool::Key name_key
;
669 name
= this->namepool_
.find(name
, &name_key
);
673 Stringpool::Key version_key
= 0;
676 version
= this->namepool_
.find(version
, &version_key
);
681 Symbol_table_key
key(name_key
, version_key
);
682 Symbol_table::Symbol_table_type::const_iterator p
= this->table_
.find(key
);
683 if (p
== this->table_
.end())
688 // Resolve a Symbol with another Symbol. This is only used in the
689 // unusual case where there are references to both an unversioned
690 // symbol and a symbol with a version, and we then discover that that
691 // version is the default version. Because this is unusual, we do
692 // this the slow way, by converting back to an ELF symbol.
694 template<int size
, bool big_endian
>
696 Symbol_table::resolve(Sized_symbol
<size
>* to
, const Sized_symbol
<size
>* from
)
698 unsigned char buf
[elfcpp::Elf_sizes
<size
>::sym_size
];
699 elfcpp::Sym_write
<size
, big_endian
> esym(buf
);
700 // We don't bother to set the st_name or the st_shndx field.
701 esym
.put_st_value(from
->value());
702 esym
.put_st_size(from
->symsize());
703 esym
.put_st_info(from
->binding(), from
->type());
704 esym
.put_st_other(from
->visibility(), from
->nonvis());
706 unsigned int shndx
= from
->shndx(&is_ordinary
);
707 this->resolve(to
, esym
.sym(), shndx
, is_ordinary
, shndx
, from
->object(),
713 if (parameters
->options().gc_sections())
714 this->gc_mark_dyn_syms(to
);
717 // Record that a symbol is forced to be local by a version script or
721 Symbol_table::force_local(Symbol
* sym
)
723 if (!sym
->is_defined() && !sym
->is_common())
725 if (sym
->is_forced_local())
727 // We already got this one.
730 sym
->set_is_forced_local();
731 this->forced_locals_
.push_back(sym
);
734 // Adjust NAME for wrapping, and update *NAME_KEY if necessary. This
735 // is only called for undefined symbols, when at least one --wrap
739 Symbol_table::wrap_symbol(const char* name
, Stringpool::Key
* name_key
)
741 // For some targets, we need to ignore a specific character when
742 // wrapping, and add it back later.
744 if (name
[0] == parameters
->target().wrap_char())
750 if (parameters
->options().is_wrap(name
))
752 // Turn NAME into __wrap_NAME.
759 // This will give us both the old and new name in NAMEPOOL_, but
760 // that is OK. Only the versions we need will wind up in the
761 // real string table in the output file.
762 return this->namepool_
.add(s
.c_str(), true, name_key
);
765 const char* const real_prefix
= "__real_";
766 const size_t real_prefix_length
= strlen(real_prefix
);
767 if (strncmp(name
, real_prefix
, real_prefix_length
) == 0
768 && parameters
->options().is_wrap(name
+ real_prefix_length
))
770 // Turn __real_NAME into NAME.
774 s
+= name
+ real_prefix_length
;
775 return this->namepool_
.add(s
.c_str(), true, name_key
);
781 // This is called when we see a symbol NAME/VERSION, and the symbol
782 // already exists in the symbol table, and VERSION is marked as being
783 // the default version. SYM is the NAME/VERSION symbol we just added.
784 // DEFAULT_IS_NEW is true if this is the first time we have seen the
785 // symbol NAME/NULL. PDEF points to the entry for NAME/NULL.
787 template<int size
, bool big_endian
>
789 Symbol_table::define_default_version(Sized_symbol
<size
>* sym
,
791 Symbol_table_type::iterator pdef
)
795 // This is the first time we have seen NAME/NULL. Make
796 // NAME/NULL point to NAME/VERSION, and mark SYM as the default
799 sym
->set_is_default();
801 else if (pdef
->second
== sym
)
803 // NAME/NULL already points to NAME/VERSION. Don't mark the
804 // symbol as the default if it is not already the default.
808 // This is the unfortunate case where we already have entries
809 // for both NAME/VERSION and NAME/NULL. We now see a symbol
810 // NAME/VERSION where VERSION is the default version. We have
811 // already resolved this new symbol with the existing
812 // NAME/VERSION symbol.
814 // It's possible that NAME/NULL and NAME/VERSION are both
815 // defined in regular objects. This can only happen if one
816 // object file defines foo and another defines foo@@ver. This
817 // is somewhat obscure, but we call it a multiple definition
820 // It's possible that NAME/NULL actually has a version, in which
821 // case it won't be the same as VERSION. This happens with
822 // ver_test_7.so in the testsuite for the symbol t2_2. We see
823 // t2_2@@VER2, so we define both t2_2/VER2 and t2_2/NULL. We
824 // then see an unadorned t2_2 in an object file and give it
825 // version VER1 from the version script. This looks like a
826 // default definition for VER1, so it looks like we should merge
827 // t2_2/NULL with t2_2/VER1. That doesn't make sense, but it's
828 // not obvious that this is an error, either. So we just punt.
830 // If one of the symbols has non-default visibility, and the
831 // other is defined in a shared object, then they are different
834 // Otherwise, we just resolve the symbols as though they were
837 if (pdef
->second
->version() != NULL
)
838 gold_assert(pdef
->second
->version() != sym
->version());
839 else if (sym
->visibility() != elfcpp::STV_DEFAULT
840 && pdef
->second
->is_from_dynobj())
842 else if (pdef
->second
->visibility() != elfcpp::STV_DEFAULT
843 && sym
->is_from_dynobj())
847 const Sized_symbol
<size
>* symdef
;
848 symdef
= this->get_sized_symbol
<size
>(pdef
->second
);
849 Symbol_table::resolve
<size
, big_endian
>(sym
, symdef
);
850 this->make_forwarder(pdef
->second
, sym
);
852 sym
->set_is_default();
857 // Add one symbol from OBJECT to the symbol table. NAME is symbol
858 // name and VERSION is the version; both are canonicalized. DEF is
859 // whether this is the default version. ST_SHNDX is the symbol's
860 // section index; IS_ORDINARY is whether this is a normal section
861 // rather than a special code.
863 // If IS_DEFAULT_VERSION is true, then this is the definition of a
864 // default version of a symbol. That means that any lookup of
865 // NAME/NULL and any lookup of NAME/VERSION should always return the
866 // same symbol. This is obvious for references, but in particular we
867 // want to do this for definitions: overriding NAME/NULL should also
868 // override NAME/VERSION. If we don't do that, it would be very hard
869 // to override functions in a shared library which uses versioning.
871 // We implement this by simply making both entries in the hash table
872 // point to the same Symbol structure. That is easy enough if this is
873 // the first time we see NAME/NULL or NAME/VERSION, but it is possible
874 // that we have seen both already, in which case they will both have
875 // independent entries in the symbol table. We can't simply change
876 // the symbol table entry, because we have pointers to the entries
877 // attached to the object files. So we mark the entry attached to the
878 // object file as a forwarder, and record it in the forwarders_ map.
879 // Note that entries in the hash table will never be marked as
882 // ORIG_ST_SHNDX and ST_SHNDX are almost always the same.
883 // ORIG_ST_SHNDX is the section index in the input file, or SHN_UNDEF
884 // for a special section code. ST_SHNDX may be modified if the symbol
885 // is defined in a section being discarded.
887 template<int size
, bool big_endian
>
889 Symbol_table::add_from_object(Object
* object
,
891 Stringpool::Key name_key
,
893 Stringpool::Key version_key
,
894 bool is_default_version
,
895 const elfcpp::Sym
<size
, big_endian
>& sym
,
896 unsigned int st_shndx
,
898 unsigned int orig_st_shndx
)
900 // Print a message if this symbol is being traced.
901 if (parameters
->options().is_trace_symbol(name
))
903 if (orig_st_shndx
== elfcpp::SHN_UNDEF
)
904 gold_info(_("%s: reference to %s"), object
->name().c_str(), name
);
906 gold_info(_("%s: definition of %s"), object
->name().c_str(), name
);
909 // For an undefined symbol, we may need to adjust the name using
911 if (orig_st_shndx
== elfcpp::SHN_UNDEF
912 && parameters
->options().any_wrap())
914 const char* wrap_name
= this->wrap_symbol(name
, &name_key
);
915 if (wrap_name
!= name
)
917 // If we see a reference to malloc with version GLIBC_2.0,
918 // and we turn it into a reference to __wrap_malloc, then we
919 // discard the version number. Otherwise the user would be
920 // required to specify the correct version for
928 Symbol
* const snull
= NULL
;
929 std::pair
<typename
Symbol_table_type::iterator
, bool> ins
=
930 this->table_
.insert(std::make_pair(std::make_pair(name_key
, version_key
),
933 std::pair
<typename
Symbol_table_type::iterator
, bool> insdefault
=
934 std::make_pair(this->table_
.end(), false);
935 if (is_default_version
)
937 const Stringpool::Key vnull_key
= 0;
938 insdefault
= this->table_
.insert(std::make_pair(std::make_pair(name_key
,
943 // ins.first: an iterator, which is a pointer to a pair.
944 // ins.first->first: the key (a pair of name and version).
945 // ins.first->second: the value (Symbol*).
946 // ins.second: true if new entry was inserted, false if not.
948 Sized_symbol
<size
>* ret
;
953 // We already have an entry for NAME/VERSION.
954 ret
= this->get_sized_symbol
<size
>(ins
.first
->second
);
955 gold_assert(ret
!= NULL
);
957 was_undefined
= ret
->is_undefined();
958 was_common
= ret
->is_common();
960 this->resolve(ret
, sym
, st_shndx
, is_ordinary
, orig_st_shndx
, object
,
962 if (parameters
->options().gc_sections())
963 this->gc_mark_dyn_syms(ret
);
965 if (is_default_version
)
966 this->define_default_version
<size
, big_endian
>(ret
, insdefault
.second
,
971 // This is the first time we have seen NAME/VERSION.
972 gold_assert(ins
.first
->second
== NULL
);
974 if (is_default_version
&& !insdefault
.second
)
976 // We already have an entry for NAME/NULL. If we override
977 // it, then change it to NAME/VERSION.
978 ret
= this->get_sized_symbol
<size
>(insdefault
.first
->second
);
980 was_undefined
= ret
->is_undefined();
981 was_common
= ret
->is_common();
983 this->resolve(ret
, sym
, st_shndx
, is_ordinary
, orig_st_shndx
, object
,
985 if (parameters
->options().gc_sections())
986 this->gc_mark_dyn_syms(ret
);
987 ins
.first
->second
= ret
;
991 was_undefined
= false;
994 Sized_target
<size
, big_endian
>* target
=
995 parameters
->sized_target
<size
, big_endian
>();
996 if (!target
->has_make_symbol())
997 ret
= new Sized_symbol
<size
>();
1000 ret
= target
->make_symbol();
1003 // This means that we don't want a symbol table
1005 if (!is_default_version
)
1006 this->table_
.erase(ins
.first
);
1009 this->table_
.erase(insdefault
.first
);
1010 // Inserting INSDEFAULT invalidated INS.
1011 this->table_
.erase(std::make_pair(name_key
,
1018 ret
->init_object(name
, version
, object
, sym
, st_shndx
, is_ordinary
);
1020 ins
.first
->second
= ret
;
1021 if (is_default_version
)
1023 // This is the first time we have seen NAME/NULL. Point
1024 // it at the new entry for NAME/VERSION.
1025 gold_assert(insdefault
.second
);
1026 insdefault
.first
->second
= ret
;
1030 if (is_default_version
)
1031 ret
->set_is_default();
1034 // Record every time we see a new undefined symbol, to speed up
1036 if (!was_undefined
&& ret
->is_undefined())
1038 ++this->saw_undefined_
;
1039 if (parameters
->options().has_plugins())
1040 parameters
->options().plugins()->new_undefined_symbol(ret
);
1043 // Keep track of common symbols, to speed up common symbol
1045 if (!was_common
&& ret
->is_common())
1047 if (ret
->type() == elfcpp::STT_TLS
)
1048 this->tls_commons_
.push_back(ret
);
1049 else if (!is_ordinary
1050 && st_shndx
== parameters
->target().small_common_shndx())
1051 this->small_commons_
.push_back(ret
);
1052 else if (!is_ordinary
1053 && st_shndx
== parameters
->target().large_common_shndx())
1054 this->large_commons_
.push_back(ret
);
1056 this->commons_
.push_back(ret
);
1059 // If we're not doing a relocatable link, then any symbol with
1060 // hidden or internal visibility is local.
1061 if ((ret
->visibility() == elfcpp::STV_HIDDEN
1062 || ret
->visibility() == elfcpp::STV_INTERNAL
)
1063 && (ret
->binding() == elfcpp::STB_GLOBAL
1064 || ret
->binding() == elfcpp::STB_GNU_UNIQUE
1065 || ret
->binding() == elfcpp::STB_WEAK
)
1066 && !parameters
->options().relocatable())
1067 this->force_local(ret
);
1072 // Add all the symbols in a relocatable object to the hash table.
1074 template<int size
, bool big_endian
>
1076 Symbol_table::add_from_relobj(
1077 Sized_relobj_file
<size
, big_endian
>* relobj
,
1078 const unsigned char* syms
,
1080 size_t symndx_offset
,
1081 const char* sym_names
,
1082 size_t sym_name_size
,
1083 typename Sized_relobj_file
<size
, big_endian
>::Symbols
* sympointers
,
1088 gold_assert(size
== parameters
->target().get_size());
1090 const int sym_size
= elfcpp::Elf_sizes
<size
>::sym_size
;
1092 const bool just_symbols
= relobj
->just_symbols();
1094 const unsigned char* p
= syms
;
1095 for (size_t i
= 0; i
< count
; ++i
, p
+= sym_size
)
1097 (*sympointers
)[i
] = NULL
;
1099 elfcpp::Sym
<size
, big_endian
> sym(p
);
1101 unsigned int st_name
= sym
.get_st_name();
1102 if (st_name
>= sym_name_size
)
1104 relobj
->error(_("bad global symbol name offset %u at %zu"),
1109 const char* name
= sym_names
+ st_name
;
1112 unsigned int st_shndx
= relobj
->adjust_sym_shndx(i
+ symndx_offset
,
1115 unsigned int orig_st_shndx
= st_shndx
;
1117 orig_st_shndx
= elfcpp::SHN_UNDEF
;
1119 if (st_shndx
!= elfcpp::SHN_UNDEF
)
1122 // A symbol defined in a section which we are not including must
1123 // be treated as an undefined symbol.
1124 bool is_defined_in_discarded_section
= false;
1125 if (st_shndx
!= elfcpp::SHN_UNDEF
1127 && !relobj
->is_section_included(st_shndx
)
1128 && !this->is_section_folded(relobj
, st_shndx
))
1130 st_shndx
= elfcpp::SHN_UNDEF
;
1131 is_defined_in_discarded_section
= true;
1134 // In an object file, an '@' in the name separates the symbol
1135 // name from the version name. If there are two '@' characters,
1136 // this is the default version.
1137 const char* ver
= strchr(name
, '@');
1138 Stringpool::Key ver_key
= 0;
1140 // IS_DEFAULT_VERSION: is the version default?
1141 // IS_FORCED_LOCAL: is the symbol forced local?
1142 bool is_default_version
= false;
1143 bool is_forced_local
= false;
1145 // FIXME: For incremental links, we don't store version information,
1146 // so we need to ignore version symbols for now.
1147 if (parameters
->incremental_update() && ver
!= NULL
)
1149 namelen
= ver
- name
;
1155 // The symbol name is of the form foo@VERSION or foo@@VERSION
1156 namelen
= ver
- name
;
1160 is_default_version
= true;
1163 ver
= this->namepool_
.add(ver
, true, &ver_key
);
1165 // We don't want to assign a version to an undefined symbol,
1166 // even if it is listed in the version script. FIXME: What
1167 // about a common symbol?
1170 namelen
= strlen(name
);
1171 if (!this->version_script_
.empty()
1172 && st_shndx
!= elfcpp::SHN_UNDEF
)
1174 // The symbol name did not have a version, but the
1175 // version script may assign a version anyway.
1176 std::string version
;
1178 if (this->version_script_
.get_symbol_version(name
, &version
,
1182 is_forced_local
= true;
1183 else if (!version
.empty())
1185 ver
= this->namepool_
.add_with_length(version
.c_str(),
1189 is_default_version
= true;
1195 elfcpp::Sym
<size
, big_endian
>* psym
= &sym
;
1196 unsigned char symbuf
[sym_size
];
1197 elfcpp::Sym
<size
, big_endian
> sym2(symbuf
);
1200 memcpy(symbuf
, p
, sym_size
);
1201 elfcpp::Sym_write
<size
, big_endian
> sw(symbuf
);
1202 if (orig_st_shndx
!= elfcpp::SHN_UNDEF
1204 && relobj
->e_type() == elfcpp::ET_REL
)
1206 // Symbol values in relocatable object files are section
1207 // relative. This is normally what we want, but since here
1208 // we are converting the symbol to absolute we need to add
1209 // the section address. The section address in an object
1210 // file is normally zero, but people can use a linker
1211 // script to change it.
1212 sw
.put_st_value(sym
.get_st_value()
1213 + relobj
->section_address(orig_st_shndx
));
1215 st_shndx
= elfcpp::SHN_ABS
;
1216 is_ordinary
= false;
1220 // Fix up visibility if object has no-export set.
1221 if (relobj
->no_export()
1222 && (orig_st_shndx
!= elfcpp::SHN_UNDEF
|| !is_ordinary
))
1224 // We may have copied symbol already above.
1227 memcpy(symbuf
, p
, sym_size
);
1231 elfcpp::STV visibility
= sym2
.get_st_visibility();
1232 if (visibility
== elfcpp::STV_DEFAULT
1233 || visibility
== elfcpp::STV_PROTECTED
)
1235 elfcpp::Sym_write
<size
, big_endian
> sw(symbuf
);
1236 unsigned char nonvis
= sym2
.get_st_nonvis();
1237 sw
.put_st_other(elfcpp::STV_HIDDEN
, nonvis
);
1241 Stringpool::Key name_key
;
1242 name
= this->namepool_
.add_with_length(name
, namelen
, true,
1245 Sized_symbol
<size
>* res
;
1246 res
= this->add_from_object(relobj
, name
, name_key
, ver
, ver_key
,
1247 is_default_version
, *psym
, st_shndx
,
1248 is_ordinary
, orig_st_shndx
);
1250 if (is_forced_local
)
1251 this->force_local(res
);
1253 // Do not treat this symbol as garbage if this symbol will be
1254 // exported to the dynamic symbol table. This is true when
1255 // building a shared library or using --export-dynamic and
1256 // the symbol is externally visible.
1257 if (parameters
->options().gc_sections()
1258 && res
->is_externally_visible()
1259 && !res
->is_from_dynobj()
1260 && (parameters
->options().shared()
1261 || parameters
->options().export_dynamic()))
1262 this->gc_mark_symbol(res
);
1264 if (is_defined_in_discarded_section
)
1265 res
->set_is_defined_in_discarded_section();
1267 (*sympointers
)[i
] = res
;
1271 // Add a symbol from a plugin-claimed file.
1273 template<int size
, bool big_endian
>
1275 Symbol_table::add_from_pluginobj(
1276 Sized_pluginobj
<size
, big_endian
>* obj
,
1279 elfcpp::Sym
<size
, big_endian
>* sym
)
1281 unsigned int st_shndx
= sym
->get_st_shndx();
1282 bool is_ordinary
= st_shndx
< elfcpp::SHN_LORESERVE
;
1284 Stringpool::Key ver_key
= 0;
1285 bool is_default_version
= false;
1286 bool is_forced_local
= false;
1290 ver
= this->namepool_
.add(ver
, true, &ver_key
);
1292 // We don't want to assign a version to an undefined symbol,
1293 // even if it is listed in the version script. FIXME: What
1294 // about a common symbol?
1297 if (!this->version_script_
.empty()
1298 && st_shndx
!= elfcpp::SHN_UNDEF
)
1300 // The symbol name did not have a version, but the
1301 // version script may assign a version anyway.
1302 std::string version
;
1304 if (this->version_script_
.get_symbol_version(name
, &version
,
1308 is_forced_local
= true;
1309 else if (!version
.empty())
1311 ver
= this->namepool_
.add_with_length(version
.c_str(),
1315 is_default_version
= true;
1321 Stringpool::Key name_key
;
1322 name
= this->namepool_
.add(name
, true, &name_key
);
1324 Sized_symbol
<size
>* res
;
1325 res
= this->add_from_object(obj
, name
, name_key
, ver
, ver_key
,
1326 is_default_version
, *sym
, st_shndx
,
1327 is_ordinary
, st_shndx
);
1329 if (is_forced_local
)
1330 this->force_local(res
);
1335 // Add all the symbols in a dynamic object to the hash table.
1337 template<int size
, bool big_endian
>
1339 Symbol_table::add_from_dynobj(
1340 Sized_dynobj
<size
, big_endian
>* dynobj
,
1341 const unsigned char* syms
,
1343 const char* sym_names
,
1344 size_t sym_name_size
,
1345 const unsigned char* versym
,
1347 const std::vector
<const char*>* version_map
,
1348 typename Sized_relobj_file
<size
, big_endian
>::Symbols
* sympointers
,
1353 gold_assert(size
== parameters
->target().get_size());
1355 if (dynobj
->just_symbols())
1357 gold_error(_("--just-symbols does not make sense with a shared object"));
1361 // FIXME: For incremental links, we don't store version information,
1362 // so we need to ignore version symbols for now.
1363 if (parameters
->incremental_update())
1366 if (versym
!= NULL
&& versym_size
/ 2 < count
)
1368 dynobj
->error(_("too few symbol versions"));
1372 const int sym_size
= elfcpp::Elf_sizes
<size
>::sym_size
;
1374 // We keep a list of all STT_OBJECT symbols, so that we can resolve
1375 // weak aliases. This is necessary because if the dynamic object
1376 // provides the same variable under two names, one of which is a
1377 // weak definition, and the regular object refers to the weak
1378 // definition, we have to put both the weak definition and the
1379 // strong definition into the dynamic symbol table. Given a weak
1380 // definition, the only way that we can find the corresponding
1381 // strong definition, if any, is to search the symbol table.
1382 std::vector
<Sized_symbol
<size
>*> object_symbols
;
1384 const unsigned char* p
= syms
;
1385 const unsigned char* vs
= versym
;
1386 for (size_t i
= 0; i
< count
; ++i
, p
+= sym_size
, vs
+= 2)
1388 elfcpp::Sym
<size
, big_endian
> sym(p
);
1390 if (sympointers
!= NULL
)
1391 (*sympointers
)[i
] = NULL
;
1393 // Ignore symbols with local binding or that have
1394 // internal or hidden visibility.
1395 if (sym
.get_st_bind() == elfcpp::STB_LOCAL
1396 || sym
.get_st_visibility() == elfcpp::STV_INTERNAL
1397 || sym
.get_st_visibility() == elfcpp::STV_HIDDEN
)
1400 // A protected symbol in a shared library must be treated as a
1401 // normal symbol when viewed from outside the shared library.
1402 // Implement this by overriding the visibility here.
1403 elfcpp::Sym
<size
, big_endian
>* psym
= &sym
;
1404 unsigned char symbuf
[sym_size
];
1405 elfcpp::Sym
<size
, big_endian
> sym2(symbuf
);
1406 if (sym
.get_st_visibility() == elfcpp::STV_PROTECTED
)
1408 memcpy(symbuf
, p
, sym_size
);
1409 elfcpp::Sym_write
<size
, big_endian
> sw(symbuf
);
1410 sw
.put_st_other(elfcpp::STV_DEFAULT
, sym
.get_st_nonvis());
1414 unsigned int st_name
= psym
->get_st_name();
1415 if (st_name
>= sym_name_size
)
1417 dynobj
->error(_("bad symbol name offset %u at %zu"),
1422 const char* name
= sym_names
+ st_name
;
1425 unsigned int st_shndx
= dynobj
->adjust_sym_shndx(i
, psym
->get_st_shndx(),
1428 if (st_shndx
!= elfcpp::SHN_UNDEF
)
1431 Sized_symbol
<size
>* res
;
1435 Stringpool::Key name_key
;
1436 name
= this->namepool_
.add(name
, true, &name_key
);
1437 res
= this->add_from_object(dynobj
, name
, name_key
, NULL
, 0,
1438 false, *psym
, st_shndx
, is_ordinary
,
1443 // Read the version information.
1445 unsigned int v
= elfcpp::Swap
<16, big_endian
>::readval(vs
);
1447 bool hidden
= (v
& elfcpp::VERSYM_HIDDEN
) != 0;
1448 v
&= elfcpp::VERSYM_VERSION
;
1450 // The Sun documentation says that V can be VER_NDX_LOCAL,
1451 // or VER_NDX_GLOBAL, or a version index. The meaning of
1452 // VER_NDX_LOCAL is defined as "Symbol has local scope."
1453 // The old GNU linker will happily generate VER_NDX_LOCAL
1454 // for an undefined symbol. I don't know what the Sun
1455 // linker will generate.
1457 if (v
== static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL
)
1458 && st_shndx
!= elfcpp::SHN_UNDEF
)
1460 // This symbol should not be visible outside the object.
1464 // At this point we are definitely going to add this symbol.
1465 Stringpool::Key name_key
;
1466 name
= this->namepool_
.add(name
, true, &name_key
);
1468 if (v
== static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL
)
1469 || v
== static_cast<unsigned int>(elfcpp::VER_NDX_GLOBAL
))
1471 // This symbol does not have a version.
1472 res
= this->add_from_object(dynobj
, name
, name_key
, NULL
, 0,
1473 false, *psym
, st_shndx
, is_ordinary
,
1478 if (v
>= version_map
->size())
1480 dynobj
->error(_("versym for symbol %zu out of range: %u"),
1485 const char* version
= (*version_map
)[v
];
1486 if (version
== NULL
)
1488 dynobj
->error(_("versym for symbol %zu has no name: %u"),
1493 Stringpool::Key version_key
;
1494 version
= this->namepool_
.add(version
, true, &version_key
);
1496 // If this is an absolute symbol, and the version name
1497 // and symbol name are the same, then this is the
1498 // version definition symbol. These symbols exist to
1499 // support using -u to pull in particular versions. We
1500 // do not want to record a version for them.
1501 if (st_shndx
== elfcpp::SHN_ABS
1503 && name_key
== version_key
)
1504 res
= this->add_from_object(dynobj
, name
, name_key
, NULL
, 0,
1505 false, *psym
, st_shndx
, is_ordinary
,
1509 const bool is_default_version
=
1510 !hidden
&& st_shndx
!= elfcpp::SHN_UNDEF
;
1511 res
= this->add_from_object(dynobj
, name
, name_key
, version
,
1512 version_key
, is_default_version
,
1514 is_ordinary
, st_shndx
);
1519 // Note that it is possible that RES was overridden by an
1520 // earlier object, in which case it can't be aliased here.
1521 if (st_shndx
!= elfcpp::SHN_UNDEF
1523 && psym
->get_st_type() == elfcpp::STT_OBJECT
1524 && res
->source() == Symbol::FROM_OBJECT
1525 && res
->object() == dynobj
)
1526 object_symbols
.push_back(res
);
1528 if (sympointers
!= NULL
)
1529 (*sympointers
)[i
] = res
;
1532 this->record_weak_aliases(&object_symbols
);
1535 // Add a symbol from a incremental object file.
1537 template<int size
, bool big_endian
>
1539 Symbol_table::add_from_incrobj(
1543 elfcpp::Sym
<size
, big_endian
>* sym
)
1545 unsigned int st_shndx
= sym
->get_st_shndx();
1546 bool is_ordinary
= st_shndx
< elfcpp::SHN_LORESERVE
;
1548 Stringpool::Key ver_key
= 0;
1549 bool is_default_version
= false;
1550 bool is_forced_local
= false;
1552 Stringpool::Key name_key
;
1553 name
= this->namepool_
.add(name
, true, &name_key
);
1555 Sized_symbol
<size
>* res
;
1556 res
= this->add_from_object(obj
, name
, name_key
, ver
, ver_key
,
1557 is_default_version
, *sym
, st_shndx
,
1558 is_ordinary
, st_shndx
);
1560 if (is_forced_local
)
1561 this->force_local(res
);
1566 // This is used to sort weak aliases. We sort them first by section
1567 // index, then by offset, then by weak ahead of strong.
1570 class Weak_alias_sorter
1573 bool operator()(const Sized_symbol
<size
>*, const Sized_symbol
<size
>*) const;
1578 Weak_alias_sorter
<size
>::operator()(const Sized_symbol
<size
>* s1
,
1579 const Sized_symbol
<size
>* s2
) const
1582 unsigned int s1_shndx
= s1
->shndx(&is_ordinary
);
1583 gold_assert(is_ordinary
);
1584 unsigned int s2_shndx
= s2
->shndx(&is_ordinary
);
1585 gold_assert(is_ordinary
);
1586 if (s1_shndx
!= s2_shndx
)
1587 return s1_shndx
< s2_shndx
;
1589 if (s1
->value() != s2
->value())
1590 return s1
->value() < s2
->value();
1591 if (s1
->binding() != s2
->binding())
1593 if (s1
->binding() == elfcpp::STB_WEAK
)
1595 if (s2
->binding() == elfcpp::STB_WEAK
)
1598 return std::string(s1
->name()) < std::string(s2
->name());
1601 // SYMBOLS is a list of object symbols from a dynamic object. Look
1602 // for any weak aliases, and record them so that if we add the weak
1603 // alias to the dynamic symbol table, we also add the corresponding
1608 Symbol_table::record_weak_aliases(std::vector
<Sized_symbol
<size
>*>* symbols
)
1610 // Sort the vector by section index, then by offset, then by weak
1612 std::sort(symbols
->begin(), symbols
->end(), Weak_alias_sorter
<size
>());
1614 // Walk through the vector. For each weak definition, record
1616 for (typename
std::vector
<Sized_symbol
<size
>*>::const_iterator p
=
1618 p
!= symbols
->end();
1621 if ((*p
)->binding() != elfcpp::STB_WEAK
)
1624 // Build a circular list of weak aliases. Each symbol points to
1625 // the next one in the circular list.
1627 Sized_symbol
<size
>* from_sym
= *p
;
1628 typename
std::vector
<Sized_symbol
<size
>*>::const_iterator q
;
1629 for (q
= p
+ 1; q
!= symbols
->end(); ++q
)
1632 if ((*q
)->shndx(&dummy
) != from_sym
->shndx(&dummy
)
1633 || (*q
)->value() != from_sym
->value())
1636 this->weak_aliases_
[from_sym
] = *q
;
1637 from_sym
->set_has_alias();
1643 this->weak_aliases_
[from_sym
] = *p
;
1644 from_sym
->set_has_alias();
1651 // Create and return a specially defined symbol. If ONLY_IF_REF is
1652 // true, then only create the symbol if there is a reference to it.
1653 // If this does not return NULL, it sets *POLDSYM to the existing
1654 // symbol if there is one. This sets *RESOLVE_OLDSYM if we should
1655 // resolve the newly created symbol to the old one. This
1656 // canonicalizes *PNAME and *PVERSION.
1658 template<int size
, bool big_endian
>
1660 Symbol_table::define_special_symbol(const char** pname
, const char** pversion
,
1662 Sized_symbol
<size
>** poldsym
,
1663 bool* resolve_oldsym
)
1665 *resolve_oldsym
= false;
1668 // If the caller didn't give us a version, see if we get one from
1669 // the version script.
1671 bool is_default_version
= false;
1672 if (*pversion
== NULL
)
1675 if (this->version_script_
.get_symbol_version(*pname
, &v
, &is_global
))
1677 if (is_global
&& !v
.empty())
1679 *pversion
= v
.c_str();
1680 // If we get the version from a version script, then we
1681 // are also the default version.
1682 is_default_version
= true;
1688 Sized_symbol
<size
>* sym
;
1690 bool add_to_table
= false;
1691 typename
Symbol_table_type::iterator add_loc
= this->table_
.end();
1692 bool add_def_to_table
= false;
1693 typename
Symbol_table_type::iterator add_def_loc
= this->table_
.end();
1697 oldsym
= this->lookup(*pname
, *pversion
);
1698 if (oldsym
== NULL
&& is_default_version
)
1699 oldsym
= this->lookup(*pname
, NULL
);
1700 if (oldsym
== NULL
|| !oldsym
->is_undefined())
1703 *pname
= oldsym
->name();
1704 if (is_default_version
)
1705 *pversion
= this->namepool_
.add(*pversion
, true, NULL
);
1707 *pversion
= oldsym
->version();
1711 // Canonicalize NAME and VERSION.
1712 Stringpool::Key name_key
;
1713 *pname
= this->namepool_
.add(*pname
, true, &name_key
);
1715 Stringpool::Key version_key
= 0;
1716 if (*pversion
!= NULL
)
1717 *pversion
= this->namepool_
.add(*pversion
, true, &version_key
);
1719 Symbol
* const snull
= NULL
;
1720 std::pair
<typename
Symbol_table_type::iterator
, bool> ins
=
1721 this->table_
.insert(std::make_pair(std::make_pair(name_key
,
1725 std::pair
<typename
Symbol_table_type::iterator
, bool> insdefault
=
1726 std::make_pair(this->table_
.end(), false);
1727 if (is_default_version
)
1729 const Stringpool::Key vnull
= 0;
1731 this->table_
.insert(std::make_pair(std::make_pair(name_key
,
1738 // We already have a symbol table entry for NAME/VERSION.
1739 oldsym
= ins
.first
->second
;
1740 gold_assert(oldsym
!= NULL
);
1742 if (is_default_version
)
1744 Sized_symbol
<size
>* soldsym
=
1745 this->get_sized_symbol
<size
>(oldsym
);
1746 this->define_default_version
<size
, big_endian
>(soldsym
,
1753 // We haven't seen this symbol before.
1754 gold_assert(ins
.first
->second
== NULL
);
1756 add_to_table
= true;
1757 add_loc
= ins
.first
;
1759 if (is_default_version
&& !insdefault
.second
)
1761 // We are adding NAME/VERSION, and it is the default
1762 // version. We already have an entry for NAME/NULL.
1763 oldsym
= insdefault
.first
->second
;
1764 *resolve_oldsym
= true;
1770 if (is_default_version
)
1772 add_def_to_table
= true;
1773 add_def_loc
= insdefault
.first
;
1779 const Target
& target
= parameters
->target();
1780 if (!target
.has_make_symbol())
1781 sym
= new Sized_symbol
<size
>();
1784 Sized_target
<size
, big_endian
>* sized_target
=
1785 parameters
->sized_target
<size
, big_endian
>();
1786 sym
= sized_target
->make_symbol();
1792 add_loc
->second
= sym
;
1794 gold_assert(oldsym
!= NULL
);
1796 if (add_def_to_table
)
1797 add_def_loc
->second
= sym
;
1799 *poldsym
= this->get_sized_symbol
<size
>(oldsym
);
1804 // Define a symbol based on an Output_data.
1807 Symbol_table::define_in_output_data(const char* name
,
1808 const char* version
,
1814 elfcpp::STB binding
,
1815 elfcpp::STV visibility
,
1816 unsigned char nonvis
,
1817 bool offset_is_from_end
,
1820 if (parameters
->target().get_size() == 32)
1822 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1823 return this->do_define_in_output_data
<32>(name
, version
, defined
, od
,
1824 value
, symsize
, type
, binding
,
1832 else if (parameters
->target().get_size() == 64)
1834 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1835 return this->do_define_in_output_data
<64>(name
, version
, defined
, od
,
1836 value
, symsize
, type
, binding
,
1848 // Define a symbol in an Output_data, sized version.
1852 Symbol_table::do_define_in_output_data(
1854 const char* version
,
1857 typename
elfcpp::Elf_types
<size
>::Elf_Addr value
,
1858 typename
elfcpp::Elf_types
<size
>::Elf_WXword symsize
,
1860 elfcpp::STB binding
,
1861 elfcpp::STV visibility
,
1862 unsigned char nonvis
,
1863 bool offset_is_from_end
,
1866 Sized_symbol
<size
>* sym
;
1867 Sized_symbol
<size
>* oldsym
;
1868 bool resolve_oldsym
;
1870 if (parameters
->target().is_big_endian())
1872 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1873 sym
= this->define_special_symbol
<size
, true>(&name
, &version
,
1874 only_if_ref
, &oldsym
,
1882 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1883 sym
= this->define_special_symbol
<size
, false>(&name
, &version
,
1884 only_if_ref
, &oldsym
,
1894 sym
->init_output_data(name
, version
, od
, value
, symsize
, type
, binding
,
1895 visibility
, nonvis
, offset_is_from_end
,
1896 defined
== PREDEFINED
);
1900 if (binding
== elfcpp::STB_LOCAL
1901 || this->version_script_
.symbol_is_local(name
))
1902 this->force_local(sym
);
1903 else if (version
!= NULL
)
1904 sym
->set_is_default();
1908 if (Symbol_table::should_override_with_special(oldsym
, type
, defined
))
1909 this->override_with_special(oldsym
, sym
);
1920 // Define a symbol based on an Output_segment.
1923 Symbol_table::define_in_output_segment(const char* name
,
1924 const char* version
,
1930 elfcpp::STB binding
,
1931 elfcpp::STV visibility
,
1932 unsigned char nonvis
,
1933 Symbol::Segment_offset_base offset_base
,
1936 if (parameters
->target().get_size() == 32)
1938 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1939 return this->do_define_in_output_segment
<32>(name
, version
, defined
, os
,
1940 value
, symsize
, type
,
1941 binding
, visibility
, nonvis
,
1942 offset_base
, only_if_ref
);
1947 else if (parameters
->target().get_size() == 64)
1949 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1950 return this->do_define_in_output_segment
<64>(name
, version
, defined
, os
,
1951 value
, symsize
, type
,
1952 binding
, visibility
, nonvis
,
1953 offset_base
, only_if_ref
);
1962 // Define a symbol in an Output_segment, sized version.
1966 Symbol_table::do_define_in_output_segment(
1968 const char* version
,
1971 typename
elfcpp::Elf_types
<size
>::Elf_Addr value
,
1972 typename
elfcpp::Elf_types
<size
>::Elf_WXword symsize
,
1974 elfcpp::STB binding
,
1975 elfcpp::STV visibility
,
1976 unsigned char nonvis
,
1977 Symbol::Segment_offset_base offset_base
,
1980 Sized_symbol
<size
>* sym
;
1981 Sized_symbol
<size
>* oldsym
;
1982 bool resolve_oldsym
;
1984 if (parameters
->target().is_big_endian())
1986 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1987 sym
= this->define_special_symbol
<size
, true>(&name
, &version
,
1988 only_if_ref
, &oldsym
,
1996 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1997 sym
= this->define_special_symbol
<size
, false>(&name
, &version
,
1998 only_if_ref
, &oldsym
,
2008 sym
->init_output_segment(name
, version
, os
, value
, symsize
, type
, binding
,
2009 visibility
, nonvis
, offset_base
,
2010 defined
== PREDEFINED
);
2014 if (binding
== elfcpp::STB_LOCAL
2015 || this->version_script_
.symbol_is_local(name
))
2016 this->force_local(sym
);
2017 else if (version
!= NULL
)
2018 sym
->set_is_default();
2022 if (Symbol_table::should_override_with_special(oldsym
, type
, defined
))
2023 this->override_with_special(oldsym
, sym
);
2034 // Define a special symbol with a constant value. It is a multiple
2035 // definition error if this symbol is already defined.
2038 Symbol_table::define_as_constant(const char* name
,
2039 const char* version
,
2044 elfcpp::STB binding
,
2045 elfcpp::STV visibility
,
2046 unsigned char nonvis
,
2048 bool force_override
)
2050 if (parameters
->target().get_size() == 32)
2052 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2053 return this->do_define_as_constant
<32>(name
, version
, defined
, value
,
2054 symsize
, type
, binding
,
2055 visibility
, nonvis
, only_if_ref
,
2061 else if (parameters
->target().get_size() == 64)
2063 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2064 return this->do_define_as_constant
<64>(name
, version
, defined
, value
,
2065 symsize
, type
, binding
,
2066 visibility
, nonvis
, only_if_ref
,
2076 // Define a symbol as a constant, sized version.
2080 Symbol_table::do_define_as_constant(
2082 const char* version
,
2084 typename
elfcpp::Elf_types
<size
>::Elf_Addr value
,
2085 typename
elfcpp::Elf_types
<size
>::Elf_WXword symsize
,
2087 elfcpp::STB binding
,
2088 elfcpp::STV visibility
,
2089 unsigned char nonvis
,
2091 bool force_override
)
2093 Sized_symbol
<size
>* sym
;
2094 Sized_symbol
<size
>* oldsym
;
2095 bool resolve_oldsym
;
2097 if (parameters
->target().is_big_endian())
2099 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2100 sym
= this->define_special_symbol
<size
, true>(&name
, &version
,
2101 only_if_ref
, &oldsym
,
2109 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2110 sym
= this->define_special_symbol
<size
, false>(&name
, &version
,
2111 only_if_ref
, &oldsym
,
2121 sym
->init_constant(name
, version
, value
, symsize
, type
, binding
, visibility
,
2122 nonvis
, defined
== PREDEFINED
);
2126 // Version symbols are absolute symbols with name == version.
2127 // We don't want to force them to be local.
2128 if ((version
== NULL
2131 && (binding
== elfcpp::STB_LOCAL
2132 || this->version_script_
.symbol_is_local(name
)))
2133 this->force_local(sym
);
2134 else if (version
!= NULL
2135 && (name
!= version
|| value
!= 0))
2136 sym
->set_is_default();
2141 || Symbol_table::should_override_with_special(oldsym
, type
, defined
))
2142 this->override_with_special(oldsym
, sym
);
2153 // Define a set of symbols in output sections.
2156 Symbol_table::define_symbols(const Layout
* layout
, int count
,
2157 const Define_symbol_in_section
* p
,
2160 for (int i
= 0; i
< count
; ++i
, ++p
)
2162 Output_section
* os
= layout
->find_output_section(p
->output_section
);
2164 this->define_in_output_data(p
->name
, NULL
, PREDEFINED
, os
, p
->value
,
2165 p
->size
, p
->type
, p
->binding
,
2166 p
->visibility
, p
->nonvis
,
2167 p
->offset_is_from_end
,
2168 only_if_ref
|| p
->only_if_ref
);
2170 this->define_as_constant(p
->name
, NULL
, PREDEFINED
, 0, p
->size
,
2171 p
->type
, p
->binding
, p
->visibility
, p
->nonvis
,
2172 only_if_ref
|| p
->only_if_ref
,
2177 // Define a set of symbols in output segments.
2180 Symbol_table::define_symbols(const Layout
* layout
, int count
,
2181 const Define_symbol_in_segment
* p
,
2184 for (int i
= 0; i
< count
; ++i
, ++p
)
2186 Output_segment
* os
= layout
->find_output_segment(p
->segment_type
,
2187 p
->segment_flags_set
,
2188 p
->segment_flags_clear
);
2190 this->define_in_output_segment(p
->name
, NULL
, PREDEFINED
, os
, p
->value
,
2191 p
->size
, p
->type
, p
->binding
,
2192 p
->visibility
, p
->nonvis
,
2194 only_if_ref
|| p
->only_if_ref
);
2196 this->define_as_constant(p
->name
, NULL
, PREDEFINED
, 0, p
->size
,
2197 p
->type
, p
->binding
, p
->visibility
, p
->nonvis
,
2198 only_if_ref
|| p
->only_if_ref
,
2203 // Define CSYM using a COPY reloc. POSD is the Output_data where the
2204 // symbol should be defined--typically a .dyn.bss section. VALUE is
2205 // the offset within POSD.
2209 Symbol_table::define_with_copy_reloc(
2210 Sized_symbol
<size
>* csym
,
2212 typename
elfcpp::Elf_types
<size
>::Elf_Addr value
)
2214 gold_assert(csym
->is_from_dynobj());
2215 gold_assert(!csym
->is_copied_from_dynobj());
2216 Object
* object
= csym
->object();
2217 gold_assert(object
->is_dynamic());
2218 Dynobj
* dynobj
= static_cast<Dynobj
*>(object
);
2220 // Our copied variable has to override any variable in a shared
2222 elfcpp::STB binding
= csym
->binding();
2223 if (binding
== elfcpp::STB_WEAK
)
2224 binding
= elfcpp::STB_GLOBAL
;
2226 this->define_in_output_data(csym
->name(), csym
->version(), COPY
,
2227 posd
, value
, csym
->symsize(),
2228 csym
->type(), binding
,
2229 csym
->visibility(), csym
->nonvis(),
2232 csym
->set_is_copied_from_dynobj();
2233 csym
->set_needs_dynsym_entry();
2235 this->copied_symbol_dynobjs_
[csym
] = dynobj
;
2237 // We have now defined all aliases, but we have not entered them all
2238 // in the copied_symbol_dynobjs_ map.
2239 if (csym
->has_alias())
2244 sym
= this->weak_aliases_
[sym
];
2247 gold_assert(sym
->output_data() == posd
);
2249 sym
->set_is_copied_from_dynobj();
2250 this->copied_symbol_dynobjs_
[sym
] = dynobj
;
2255 // SYM is defined using a COPY reloc. Return the dynamic object where
2256 // the original definition was found.
2259 Symbol_table::get_copy_source(const Symbol
* sym
) const
2261 gold_assert(sym
->is_copied_from_dynobj());
2262 Copied_symbol_dynobjs::const_iterator p
=
2263 this->copied_symbol_dynobjs_
.find(sym
);
2264 gold_assert(p
!= this->copied_symbol_dynobjs_
.end());
2268 // Add any undefined symbols named on the command line.
2271 Symbol_table::add_undefined_symbols_from_command_line(Layout
* layout
)
2273 if (parameters
->options().any_undefined()
2274 || layout
->script_options()->any_unreferenced())
2276 if (parameters
->target().get_size() == 32)
2278 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2279 this->do_add_undefined_symbols_from_command_line
<32>(layout
);
2284 else if (parameters
->target().get_size() == 64)
2286 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2287 this->do_add_undefined_symbols_from_command_line
<64>(layout
);
2299 Symbol_table::do_add_undefined_symbols_from_command_line(Layout
* layout
)
2301 for (options::String_set::const_iterator p
=
2302 parameters
->options().undefined_begin();
2303 p
!= parameters
->options().undefined_end();
2305 this->add_undefined_symbol_from_command_line
<size
>(p
->c_str());
2307 for (options::String_set::const_iterator p
=
2308 parameters
->options().export_dynamic_symbol_begin();
2309 p
!= parameters
->options().export_dynamic_symbol_end();
2311 this->add_undefined_symbol_from_command_line
<size
>(p
->c_str());
2313 for (Script_options::referenced_const_iterator p
=
2314 layout
->script_options()->referenced_begin();
2315 p
!= layout
->script_options()->referenced_end();
2317 this->add_undefined_symbol_from_command_line
<size
>(p
->c_str());
2322 Symbol_table::add_undefined_symbol_from_command_line(const char* name
)
2324 if (this->lookup(name
) != NULL
)
2327 const char* version
= NULL
;
2329 Sized_symbol
<size
>* sym
;
2330 Sized_symbol
<size
>* oldsym
;
2331 bool resolve_oldsym
;
2332 if (parameters
->target().is_big_endian())
2334 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2335 sym
= this->define_special_symbol
<size
, true>(&name
, &version
,
2344 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2345 sym
= this->define_special_symbol
<size
, false>(&name
, &version
,
2353 gold_assert(oldsym
== NULL
);
2355 sym
->init_undefined(name
, version
, elfcpp::STT_NOTYPE
, elfcpp::STB_GLOBAL
,
2356 elfcpp::STV_DEFAULT
, 0);
2357 ++this->saw_undefined_
;
2360 // Set the dynamic symbol indexes. INDEX is the index of the first
2361 // global dynamic symbol. Pointers to the symbols are stored into the
2362 // vector SYMS. The names are added to DYNPOOL. This returns an
2363 // updated dynamic symbol index.
2366 Symbol_table::set_dynsym_indexes(unsigned int index
,
2367 std::vector
<Symbol
*>* syms
,
2368 Stringpool
* dynpool
,
2371 for (Symbol_table_type::iterator p
= this->table_
.begin();
2372 p
!= this->table_
.end();
2375 Symbol
* sym
= p
->second
;
2377 // Note that SYM may already have a dynamic symbol index, since
2378 // some symbols appear more than once in the symbol table, with
2379 // and without a version.
2381 if (!sym
->should_add_dynsym_entry(this))
2382 sym
->set_dynsym_index(-1U);
2383 else if (!sym
->has_dynsym_index())
2385 sym
->set_dynsym_index(index
);
2387 syms
->push_back(sym
);
2388 dynpool
->add(sym
->name(), false, NULL
);
2390 // Record any version information.
2391 if (sym
->version() != NULL
)
2392 versions
->record_version(this, dynpool
, sym
);
2394 // If the symbol is defined in a dynamic object and is
2395 // referenced in a regular object, then mark the dynamic
2396 // object as needed. This is used to implement --as-needed.
2397 if (sym
->is_from_dynobj() && sym
->in_reg())
2398 sym
->object()->set_is_needed();
2402 // Finish up the versions. In some cases this may add new dynamic
2404 index
= versions
->finalize(this, index
, syms
);
2409 // Set the final values for all the symbols. The index of the first
2410 // global symbol in the output file is *PLOCAL_SYMCOUNT. Record the
2411 // file offset OFF. Add their names to POOL. Return the new file
2412 // offset. Update *PLOCAL_SYMCOUNT if necessary.
2415 Symbol_table::finalize(off_t off
, off_t dynoff
, size_t dyn_global_index
,
2416 size_t dyncount
, Stringpool
* pool
,
2417 unsigned int* plocal_symcount
)
2421 gold_assert(*plocal_symcount
!= 0);
2422 this->first_global_index_
= *plocal_symcount
;
2424 this->dynamic_offset_
= dynoff
;
2425 this->first_dynamic_global_index_
= dyn_global_index
;
2426 this->dynamic_count_
= dyncount
;
2428 if (parameters
->target().get_size() == 32)
2430 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_32_LITTLE)
2431 ret
= this->sized_finalize
<32>(off
, pool
, plocal_symcount
);
2436 else if (parameters
->target().get_size() == 64)
2438 #if defined(HAVE_TARGET_64_BIG) || defined(HAVE_TARGET_64_LITTLE)
2439 ret
= this->sized_finalize
<64>(off
, pool
, plocal_symcount
);
2447 // Now that we have the final symbol table, we can reliably note
2448 // which symbols should get warnings.
2449 this->warnings_
.note_warnings(this);
2454 // SYM is going into the symbol table at *PINDEX. Add the name to
2455 // POOL, update *PINDEX and *POFF.
2459 Symbol_table::add_to_final_symtab(Symbol
* sym
, Stringpool
* pool
,
2460 unsigned int* pindex
, off_t
* poff
)
2462 sym
->set_symtab_index(*pindex
);
2463 if (sym
->version() == NULL
|| !parameters
->options().relocatable())
2464 pool
->add(sym
->name(), false, NULL
);
2466 pool
->add(sym
->versioned_name(), true, NULL
);
2468 *poff
+= elfcpp::Elf_sizes
<size
>::sym_size
;
2471 // Set the final value for all the symbols. This is called after
2472 // Layout::finalize, so all the output sections have their final
2477 Symbol_table::sized_finalize(off_t off
, Stringpool
* pool
,
2478 unsigned int* plocal_symcount
)
2480 off
= align_address(off
, size
>> 3);
2481 this->offset_
= off
;
2483 unsigned int index
= *plocal_symcount
;
2484 const unsigned int orig_index
= index
;
2486 // First do all the symbols which have been forced to be local, as
2487 // they must appear before all global symbols.
2488 for (Forced_locals::iterator p
= this->forced_locals_
.begin();
2489 p
!= this->forced_locals_
.end();
2493 gold_assert(sym
->is_forced_local());
2494 if (this->sized_finalize_symbol
<size
>(sym
))
2496 this->add_to_final_symtab
<size
>(sym
, pool
, &index
, &off
);
2501 // Now do all the remaining symbols.
2502 for (Symbol_table_type::iterator p
= this->table_
.begin();
2503 p
!= this->table_
.end();
2506 Symbol
* sym
= p
->second
;
2507 if (this->sized_finalize_symbol
<size
>(sym
))
2508 this->add_to_final_symtab
<size
>(sym
, pool
, &index
, &off
);
2511 this->output_count_
= index
- orig_index
;
2516 // Compute the final value of SYM and store status in location PSTATUS.
2517 // During relaxation, this may be called multiple times for a symbol to
2518 // compute its would-be final value in each relaxation pass.
2521 typename Sized_symbol
<size
>::Value_type
2522 Symbol_table::compute_final_value(
2523 const Sized_symbol
<size
>* sym
,
2524 Compute_final_value_status
* pstatus
) const
2526 typedef typename Sized_symbol
<size
>::Value_type Value_type
;
2529 switch (sym
->source())
2531 case Symbol::FROM_OBJECT
:
2534 unsigned int shndx
= sym
->shndx(&is_ordinary
);
2537 && shndx
!= elfcpp::SHN_ABS
2538 && !Symbol::is_common_shndx(shndx
))
2540 *pstatus
= CFVS_UNSUPPORTED_SYMBOL_SECTION
;
2544 Object
* symobj
= sym
->object();
2545 if (symobj
->is_dynamic())
2548 shndx
= elfcpp::SHN_UNDEF
;
2550 else if (symobj
->pluginobj() != NULL
)
2553 shndx
= elfcpp::SHN_UNDEF
;
2555 else if (shndx
== elfcpp::SHN_UNDEF
)
2557 else if (!is_ordinary
2558 && (shndx
== elfcpp::SHN_ABS
2559 || Symbol::is_common_shndx(shndx
)))
2560 value
= sym
->value();
2563 Relobj
* relobj
= static_cast<Relobj
*>(symobj
);
2564 Output_section
* os
= relobj
->output_section(shndx
);
2566 if (this->is_section_folded(relobj
, shndx
))
2568 gold_assert(os
== NULL
);
2569 // Get the os of the section it is folded onto.
2570 Section_id folded
= this->icf_
->get_folded_section(relobj
,
2572 gold_assert(folded
.first
!= NULL
);
2573 Relobj
* folded_obj
= reinterpret_cast<Relobj
*>(folded
.first
);
2574 unsigned folded_shndx
= folded
.second
;
2576 os
= folded_obj
->output_section(folded_shndx
);
2577 gold_assert(os
!= NULL
);
2579 // Replace (relobj, shndx) with canonical ICF input section.
2580 shndx
= folded_shndx
;
2581 relobj
= folded_obj
;
2584 uint64_t secoff64
= relobj
->output_section_offset(shndx
);
2587 bool static_or_reloc
= (parameters
->doing_static_link() ||
2588 parameters
->options().relocatable());
2589 gold_assert(static_or_reloc
|| sym
->dynsym_index() == -1U);
2591 *pstatus
= CFVS_NO_OUTPUT_SECTION
;
2595 if (secoff64
== -1ULL)
2597 // The section needs special handling (e.g., a merge section).
2599 value
= os
->output_address(relobj
, shndx
, sym
->value());
2604 convert_types
<Value_type
, uint64_t>(secoff64
);
2605 if (sym
->type() == elfcpp::STT_TLS
)
2606 value
= sym
->value() + os
->tls_offset() + secoff
;
2608 value
= sym
->value() + os
->address() + secoff
;
2614 case Symbol::IN_OUTPUT_DATA
:
2616 Output_data
* od
= sym
->output_data();
2617 value
= sym
->value();
2618 if (sym
->type() != elfcpp::STT_TLS
)
2619 value
+= od
->address();
2622 Output_section
* os
= od
->output_section();
2623 gold_assert(os
!= NULL
);
2624 value
+= os
->tls_offset() + (od
->address() - os
->address());
2626 if (sym
->offset_is_from_end())
2627 value
+= od
->data_size();
2631 case Symbol::IN_OUTPUT_SEGMENT
:
2633 Output_segment
* os
= sym
->output_segment();
2634 value
= sym
->value();
2635 if (sym
->type() != elfcpp::STT_TLS
)
2636 value
+= os
->vaddr();
2637 switch (sym
->offset_base())
2639 case Symbol::SEGMENT_START
:
2641 case Symbol::SEGMENT_END
:
2642 value
+= os
->memsz();
2644 case Symbol::SEGMENT_BSS
:
2645 value
+= os
->filesz();
2653 case Symbol::IS_CONSTANT
:
2654 value
= sym
->value();
2657 case Symbol::IS_UNDEFINED
:
2669 // Finalize the symbol SYM. This returns true if the symbol should be
2670 // added to the symbol table, false otherwise.
2674 Symbol_table::sized_finalize_symbol(Symbol
* unsized_sym
)
2676 typedef typename Sized_symbol
<size
>::Value_type Value_type
;
2678 Sized_symbol
<size
>* sym
= static_cast<Sized_symbol
<size
>*>(unsized_sym
);
2680 // The default version of a symbol may appear twice in the symbol
2681 // table. We only need to finalize it once.
2682 if (sym
->has_symtab_index())
2687 gold_assert(!sym
->has_symtab_index());
2688 sym
->set_symtab_index(-1U);
2689 gold_assert(sym
->dynsym_index() == -1U);
2693 // If the symbol is only present on plugin files, the plugin decided we
2695 if (!sym
->in_real_elf())
2697 gold_assert(!sym
->has_symtab_index());
2698 sym
->set_symtab_index(-1U);
2702 // Compute final symbol value.
2703 Compute_final_value_status status
;
2704 Value_type value
= this->compute_final_value(sym
, &status
);
2710 case CFVS_UNSUPPORTED_SYMBOL_SECTION
:
2713 unsigned int shndx
= sym
->shndx(&is_ordinary
);
2714 gold_error(_("%s: unsupported symbol section 0x%x"),
2715 sym
->demangled_name().c_str(), shndx
);
2718 case CFVS_NO_OUTPUT_SECTION
:
2719 sym
->set_symtab_index(-1U);
2725 sym
->set_value(value
);
2727 if (parameters
->options().strip_all()
2728 || !parameters
->options().should_retain_symbol(sym
->name()))
2730 sym
->set_symtab_index(-1U);
2737 // Write out the global symbols.
2740 Symbol_table::write_globals(const Stringpool
* sympool
,
2741 const Stringpool
* dynpool
,
2742 Output_symtab_xindex
* symtab_xindex
,
2743 Output_symtab_xindex
* dynsym_xindex
,
2744 Output_file
* of
) const
2746 switch (parameters
->size_and_endianness())
2748 #ifdef HAVE_TARGET_32_LITTLE
2749 case Parameters::TARGET_32_LITTLE
:
2750 this->sized_write_globals
<32, false>(sympool
, dynpool
, symtab_xindex
,
2754 #ifdef HAVE_TARGET_32_BIG
2755 case Parameters::TARGET_32_BIG
:
2756 this->sized_write_globals
<32, true>(sympool
, dynpool
, symtab_xindex
,
2760 #ifdef HAVE_TARGET_64_LITTLE
2761 case Parameters::TARGET_64_LITTLE
:
2762 this->sized_write_globals
<64, false>(sympool
, dynpool
, symtab_xindex
,
2766 #ifdef HAVE_TARGET_64_BIG
2767 case Parameters::TARGET_64_BIG
:
2768 this->sized_write_globals
<64, true>(sympool
, dynpool
, symtab_xindex
,
2777 // Write out the global symbols.
2779 template<int size
, bool big_endian
>
2781 Symbol_table::sized_write_globals(const Stringpool
* sympool
,
2782 const Stringpool
* dynpool
,
2783 Output_symtab_xindex
* symtab_xindex
,
2784 Output_symtab_xindex
* dynsym_xindex
,
2785 Output_file
* of
) const
2787 const Target
& target
= parameters
->target();
2789 const int sym_size
= elfcpp::Elf_sizes
<size
>::sym_size
;
2791 const unsigned int output_count
= this->output_count_
;
2792 const section_size_type oview_size
= output_count
* sym_size
;
2793 const unsigned int first_global_index
= this->first_global_index_
;
2794 unsigned char* psyms
;
2795 if (this->offset_
== 0 || output_count
== 0)
2798 psyms
= of
->get_output_view(this->offset_
, oview_size
);
2800 const unsigned int dynamic_count
= this->dynamic_count_
;
2801 const section_size_type dynamic_size
= dynamic_count
* sym_size
;
2802 const unsigned int first_dynamic_global_index
=
2803 this->first_dynamic_global_index_
;
2804 unsigned char* dynamic_view
;
2805 if (this->dynamic_offset_
== 0 || dynamic_count
== 0)
2806 dynamic_view
= NULL
;
2808 dynamic_view
= of
->get_output_view(this->dynamic_offset_
, dynamic_size
);
2810 for (Symbol_table_type::const_iterator p
= this->table_
.begin();
2811 p
!= this->table_
.end();
2814 Sized_symbol
<size
>* sym
= static_cast<Sized_symbol
<size
>*>(p
->second
);
2816 // Possibly warn about unresolved symbols in shared libraries.
2817 this->warn_about_undefined_dynobj_symbol(sym
);
2819 unsigned int sym_index
= sym
->symtab_index();
2820 unsigned int dynsym_index
;
2821 if (dynamic_view
== NULL
)
2824 dynsym_index
= sym
->dynsym_index();
2826 if (sym_index
== -1U && dynsym_index
== -1U)
2828 // This symbol is not included in the output file.
2833 typename
elfcpp::Elf_types
<size
>::Elf_Addr sym_value
= sym
->value();
2834 typename
elfcpp::Elf_types
<size
>::Elf_Addr dynsym_value
= sym_value
;
2835 elfcpp::STB binding
= sym
->binding();
2837 // If --no-gnu-unique is set, change STB_GNU_UNIQUE to STB_GLOBAL.
2838 if (binding
== elfcpp::STB_GNU_UNIQUE
2839 && !parameters
->options().gnu_unique())
2840 binding
= elfcpp::STB_GLOBAL
;
2842 switch (sym
->source())
2844 case Symbol::FROM_OBJECT
:
2847 unsigned int in_shndx
= sym
->shndx(&is_ordinary
);
2850 && in_shndx
!= elfcpp::SHN_ABS
2851 && !Symbol::is_common_shndx(in_shndx
))
2853 gold_error(_("%s: unsupported symbol section 0x%x"),
2854 sym
->demangled_name().c_str(), in_shndx
);
2859 Object
* symobj
= sym
->object();
2860 if (symobj
->is_dynamic())
2862 if (sym
->needs_dynsym_value())
2863 dynsym_value
= target
.dynsym_value(sym
);
2864 shndx
= elfcpp::SHN_UNDEF
;
2865 if (sym
->is_undef_binding_weak())
2866 binding
= elfcpp::STB_WEAK
;
2868 binding
= elfcpp::STB_GLOBAL
;
2870 else if (symobj
->pluginobj() != NULL
)
2871 shndx
= elfcpp::SHN_UNDEF
;
2872 else if (in_shndx
== elfcpp::SHN_UNDEF
2874 && (in_shndx
== elfcpp::SHN_ABS
2875 || Symbol::is_common_shndx(in_shndx
))))
2879 Relobj
* relobj
= static_cast<Relobj
*>(symobj
);
2880 Output_section
* os
= relobj
->output_section(in_shndx
);
2881 if (this->is_section_folded(relobj
, in_shndx
))
2883 // This global symbol must be written out even though
2885 // Get the os of the section it is folded onto.
2887 this->icf_
->get_folded_section(relobj
, in_shndx
);
2888 gold_assert(folded
.first
!=NULL
);
2889 Relobj
* folded_obj
=
2890 reinterpret_cast<Relobj
*>(folded
.first
);
2891 os
= folded_obj
->output_section(folded
.second
);
2892 gold_assert(os
!= NULL
);
2894 gold_assert(os
!= NULL
);
2895 shndx
= os
->out_shndx();
2897 if (shndx
>= elfcpp::SHN_LORESERVE
)
2899 if (sym_index
!= -1U)
2900 symtab_xindex
->add(sym_index
, shndx
);
2901 if (dynsym_index
!= -1U)
2902 dynsym_xindex
->add(dynsym_index
, shndx
);
2903 shndx
= elfcpp::SHN_XINDEX
;
2906 // In object files symbol values are section
2908 if (parameters
->options().relocatable())
2909 sym_value
-= os
->address();
2915 case Symbol::IN_OUTPUT_DATA
:
2916 shndx
= sym
->output_data()->out_shndx();
2917 if (shndx
>= elfcpp::SHN_LORESERVE
)
2919 if (sym_index
!= -1U)
2920 symtab_xindex
->add(sym_index
, shndx
);
2921 if (dynsym_index
!= -1U)
2922 dynsym_xindex
->add(dynsym_index
, shndx
);
2923 shndx
= elfcpp::SHN_XINDEX
;
2927 case Symbol::IN_OUTPUT_SEGMENT
:
2928 shndx
= elfcpp::SHN_ABS
;
2931 case Symbol::IS_CONSTANT
:
2932 shndx
= elfcpp::SHN_ABS
;
2935 case Symbol::IS_UNDEFINED
:
2936 shndx
= elfcpp::SHN_UNDEF
;
2943 if (sym_index
!= -1U)
2945 sym_index
-= first_global_index
;
2946 gold_assert(sym_index
< output_count
);
2947 unsigned char* ps
= psyms
+ (sym_index
* sym_size
);
2948 this->sized_write_symbol
<size
, big_endian
>(sym
, sym_value
, shndx
,
2949 binding
, sympool
, ps
);
2952 if (dynsym_index
!= -1U)
2954 dynsym_index
-= first_dynamic_global_index
;
2955 gold_assert(dynsym_index
< dynamic_count
);
2956 unsigned char* pd
= dynamic_view
+ (dynsym_index
* sym_size
);
2957 this->sized_write_symbol
<size
, big_endian
>(sym
, dynsym_value
, shndx
,
2958 binding
, dynpool
, pd
);
2962 of
->write_output_view(this->offset_
, oview_size
, psyms
);
2963 if (dynamic_view
!= NULL
)
2964 of
->write_output_view(this->dynamic_offset_
, dynamic_size
, dynamic_view
);
2967 // Write out the symbol SYM, in section SHNDX, to P. POOL is the
2968 // strtab holding the name.
2970 template<int size
, bool big_endian
>
2972 Symbol_table::sized_write_symbol(
2973 Sized_symbol
<size
>* sym
,
2974 typename
elfcpp::Elf_types
<size
>::Elf_Addr value
,
2976 elfcpp::STB binding
,
2977 const Stringpool
* pool
,
2978 unsigned char* p
) const
2980 elfcpp::Sym_write
<size
, big_endian
> osym(p
);
2981 if (sym
->version() == NULL
|| !parameters
->options().relocatable())
2982 osym
.put_st_name(pool
->get_offset(sym
->name()));
2984 osym
.put_st_name(pool
->get_offset(sym
->versioned_name()));
2985 osym
.put_st_value(value
);
2986 // Use a symbol size of zero for undefined symbols from shared libraries.
2987 if (shndx
== elfcpp::SHN_UNDEF
&& sym
->is_from_dynobj())
2988 osym
.put_st_size(0);
2990 osym
.put_st_size(sym
->symsize());
2991 elfcpp::STT type
= sym
->type();
2992 // Turn IFUNC symbols from shared libraries into normal FUNC symbols.
2993 if (type
== elfcpp::STT_GNU_IFUNC
2994 && sym
->is_from_dynobj())
2995 type
= elfcpp::STT_FUNC
;
2996 // A version script may have overridden the default binding.
2997 if (sym
->is_forced_local())
2998 osym
.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL
, type
));
3000 osym
.put_st_info(elfcpp::elf_st_info(binding
, type
));
3001 osym
.put_st_other(elfcpp::elf_st_other(sym
->visibility(), sym
->nonvis()));
3002 osym
.put_st_shndx(shndx
);
3005 // Check for unresolved symbols in shared libraries. This is
3006 // controlled by the --allow-shlib-undefined option.
3008 // We only warn about libraries for which we have seen all the
3009 // DT_NEEDED entries. We don't try to track down DT_NEEDED entries
3010 // which were not seen in this link. If we didn't see a DT_NEEDED
3011 // entry, we aren't going to be able to reliably report whether the
3012 // symbol is undefined.
3014 // We also don't warn about libraries found in a system library
3015 // directory (e.g., /lib or /usr/lib); we assume that those libraries
3016 // are OK. This heuristic avoids problems on GNU/Linux, in which -ldl
3017 // can have undefined references satisfied by ld-linux.so.
3020 Symbol_table::warn_about_undefined_dynobj_symbol(Symbol
* sym
) const
3023 if (sym
->source() == Symbol::FROM_OBJECT
3024 && sym
->object()->is_dynamic()
3025 && sym
->shndx(&dummy
) == elfcpp::SHN_UNDEF
3026 && sym
->binding() != elfcpp::STB_WEAK
3027 && !parameters
->options().allow_shlib_undefined()
3028 && !parameters
->target().is_defined_by_abi(sym
)
3029 && !sym
->object()->is_in_system_directory())
3031 // A very ugly cast.
3032 Dynobj
* dynobj
= static_cast<Dynobj
*>(sym
->object());
3033 if (!dynobj
->has_unknown_needed_entries())
3034 gold_undefined_symbol(sym
);
3038 // Write out a section symbol. Return the update offset.
3041 Symbol_table::write_section_symbol(const Output_section
* os
,
3042 Output_symtab_xindex
* symtab_xindex
,
3046 switch (parameters
->size_and_endianness())
3048 #ifdef HAVE_TARGET_32_LITTLE
3049 case Parameters::TARGET_32_LITTLE
:
3050 this->sized_write_section_symbol
<32, false>(os
, symtab_xindex
, of
,
3054 #ifdef HAVE_TARGET_32_BIG
3055 case Parameters::TARGET_32_BIG
:
3056 this->sized_write_section_symbol
<32, true>(os
, symtab_xindex
, of
,
3060 #ifdef HAVE_TARGET_64_LITTLE
3061 case Parameters::TARGET_64_LITTLE
:
3062 this->sized_write_section_symbol
<64, false>(os
, symtab_xindex
, of
,
3066 #ifdef HAVE_TARGET_64_BIG
3067 case Parameters::TARGET_64_BIG
:
3068 this->sized_write_section_symbol
<64, true>(os
, symtab_xindex
, of
,
3077 // Write out a section symbol, specialized for size and endianness.
3079 template<int size
, bool big_endian
>
3081 Symbol_table::sized_write_section_symbol(const Output_section
* os
,
3082 Output_symtab_xindex
* symtab_xindex
,
3086 const int sym_size
= elfcpp::Elf_sizes
<size
>::sym_size
;
3088 unsigned char* pov
= of
->get_output_view(offset
, sym_size
);
3090 elfcpp::Sym_write
<size
, big_endian
> osym(pov
);
3091 osym
.put_st_name(0);
3092 if (parameters
->options().relocatable())
3093 osym
.put_st_value(0);
3095 osym
.put_st_value(os
->address());
3096 osym
.put_st_size(0);
3097 osym
.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL
,
3098 elfcpp::STT_SECTION
));
3099 osym
.put_st_other(elfcpp::elf_st_other(elfcpp::STV_DEFAULT
, 0));
3101 unsigned int shndx
= os
->out_shndx();
3102 if (shndx
>= elfcpp::SHN_LORESERVE
)
3104 symtab_xindex
->add(os
->symtab_index(), shndx
);
3105 shndx
= elfcpp::SHN_XINDEX
;
3107 osym
.put_st_shndx(shndx
);
3109 of
->write_output_view(offset
, sym_size
, pov
);
3112 // Print statistical information to stderr. This is used for --stats.
3115 Symbol_table::print_stats() const
3117 #if defined(HAVE_TR1_UNORDERED_MAP) || defined(HAVE_EXT_HASH_MAP)
3118 fprintf(stderr
, _("%s: symbol table entries: %zu; buckets: %zu\n"),
3119 program_name
, this->table_
.size(), this->table_
.bucket_count());
3121 fprintf(stderr
, _("%s: symbol table entries: %zu\n"),
3122 program_name
, this->table_
.size());
3124 this->namepool_
.print_stats("symbol table stringpool");
3127 // We check for ODR violations by looking for symbols with the same
3128 // name for which the debugging information reports that they were
3129 // defined in disjoint source locations. When comparing the source
3130 // location, we consider instances with the same base filename to be
3131 // the same. This is because different object files/shared libraries
3132 // can include the same header file using different paths, and
3133 // different optimization settings can make the line number appear to
3134 // be a couple lines off, and we don't want to report an ODR violation
3137 // This struct is used to compare line information, as returned by
3138 // Dwarf_line_info::one_addr2line. It implements a < comparison
3139 // operator used with std::sort.
3141 struct Odr_violation_compare
3144 operator()(const std::string
& s1
, const std::string
& s2
) const
3146 // Inputs should be of the form "dirname/filename:linenum" where
3147 // "dirname/" is optional. We want to compare just the filename:linenum.
3149 // Find the last '/' in each string.
3150 std::string::size_type s1begin
= s1
.rfind('/');
3151 std::string::size_type s2begin
= s2
.rfind('/');
3152 // If there was no '/' in a string, start at the beginning.
3153 if (s1begin
== std::string::npos
)
3155 if (s2begin
== std::string::npos
)
3157 return s1
.compare(s1begin
, std::string::npos
,
3158 s2
, s2begin
, std::string::npos
) < 0;
3162 // Returns all of the lines attached to LOC, not just the one the
3163 // instruction actually came from.
3164 std::vector
<std::string
>
3165 Symbol_table::linenos_from_loc(const Task
* task
,
3166 const Symbol_location
& loc
)
3168 // We need to lock the object in order to read it. This
3169 // means that we have to run in a singleton Task. If we
3170 // want to run this in a general Task for better
3171 // performance, we will need one Task for object, plus
3172 // appropriate locking to ensure that we don't conflict with
3173 // other uses of the object. Also note, one_addr2line is not
3174 // currently thread-safe.
3175 Task_lock_obj
<Object
> tl(task
, loc
.object
);
3177 std::vector
<std::string
> result
;
3178 Symbol_location code_loc
= loc
;
3179 parameters
->target().function_location(&code_loc
);
3180 // 16 is the size of the object-cache that one_addr2line should use.
3181 std::string canonical_result
= Dwarf_line_info::one_addr2line(
3182 code_loc
.object
, code_loc
.shndx
, code_loc
.offset
, 16, &result
);
3183 if (!canonical_result
.empty())
3184 result
.push_back(canonical_result
);
3188 // OutputIterator that records if it was ever assigned to. This
3189 // allows it to be used with std::set_intersection() to check for
3190 // intersection rather than computing the intersection.
3191 struct Check_intersection
3193 Check_intersection()
3197 bool had_intersection() const
3198 { return this->value_
; }
3200 Check_intersection
& operator++()
3203 Check_intersection
& operator*()
3206 template<typename T
>
3207 Check_intersection
& operator=(const T
&)
3209 this->value_
= true;
3217 // Check candidate_odr_violations_ to find symbols with the same name
3218 // but apparently different definitions (different source-file/line-no
3219 // for each line assigned to the first instruction).
3222 Symbol_table::detect_odr_violations(const Task
* task
,
3223 const char* output_file_name
) const
3225 for (Odr_map::const_iterator it
= candidate_odr_violations_
.begin();
3226 it
!= candidate_odr_violations_
.end();
3229 const char* const symbol_name
= it
->first
;
3231 std::string first_object_name
;
3232 std::vector
<std::string
> first_object_linenos
;
3234 Unordered_set
<Symbol_location
, Symbol_location_hash
>::const_iterator
3235 locs
= it
->second
.begin();
3236 const Unordered_set
<Symbol_location
, Symbol_location_hash
>::const_iterator
3237 locs_end
= it
->second
.end();
3238 for (; locs
!= locs_end
&& first_object_linenos
.empty(); ++locs
)
3240 // Save the line numbers from the first definition to
3241 // compare to the other definitions. Ideally, we'd compare
3242 // every definition to every other, but we don't want to
3243 // take O(N^2) time to do this. This shortcut may cause
3244 // false negatives that appear or disappear depending on the
3245 // link order, but it won't cause false positives.
3246 first_object_name
= locs
->object
->name();
3247 first_object_linenos
= this->linenos_from_loc(task
, *locs
);
3250 // Sort by Odr_violation_compare to make std::set_intersection work.
3251 std::sort(first_object_linenos
.begin(), first_object_linenos
.end(),
3252 Odr_violation_compare());
3254 for (; locs
!= locs_end
; ++locs
)
3256 std::vector
<std::string
> linenos
=
3257 this->linenos_from_loc(task
, *locs
);
3258 // linenos will be empty if we couldn't parse the debug info.
3259 if (linenos
.empty())
3261 // Sort by Odr_violation_compare to make std::set_intersection work.
3262 std::sort(linenos
.begin(), linenos
.end(), Odr_violation_compare());
3264 Check_intersection intersection_result
=
3265 std::set_intersection(first_object_linenos
.begin(),
3266 first_object_linenos
.end(),
3269 Check_intersection(),
3270 Odr_violation_compare());
3271 if (!intersection_result
.had_intersection())
3273 gold_warning(_("while linking %s: symbol '%s' defined in "
3274 "multiple places (possible ODR violation):"),
3275 output_file_name
, demangle(symbol_name
).c_str());
3276 // This only prints one location from each definition,
3277 // which may not be the location we expect to intersect
3278 // with another definition. We could print the whole
3279 // set of locations, but that seems too verbose.
3280 gold_assert(!first_object_linenos
.empty());
3281 gold_assert(!linenos
.empty());
3282 fprintf(stderr
, _(" %s from %s\n"),
3283 first_object_linenos
[0].c_str(),
3284 first_object_name
.c_str());
3285 fprintf(stderr
, _(" %s from %s\n"),
3287 locs
->object
->name().c_str());
3288 // Only print one broken pair, to avoid needing to
3289 // compare against a list of the disjoint definition
3290 // locations we've found so far. (If we kept comparing
3291 // against just the first one, we'd get a lot of
3292 // redundant complaints about the second definition
3298 // We only call one_addr2line() in this function, so we can clear its cache.
3299 Dwarf_line_info::clear_addr2line_cache();
3302 // Warnings functions.
3304 // Add a new warning.
3307 Warnings::add_warning(Symbol_table
* symtab
, const char* name
, Object
* obj
,
3308 const std::string
& warning
)
3310 name
= symtab
->canonicalize_name(name
);
3311 this->warnings_
[name
].set(obj
, warning
);
3314 // Look through the warnings and mark the symbols for which we should
3315 // warn. This is called during Layout::finalize when we know the
3316 // sources for all the symbols.
3319 Warnings::note_warnings(Symbol_table
* symtab
)
3321 for (Warning_table::iterator p
= this->warnings_
.begin();
3322 p
!= this->warnings_
.end();
3325 Symbol
* sym
= symtab
->lookup(p
->first
, NULL
);
3327 && sym
->source() == Symbol::FROM_OBJECT
3328 && sym
->object() == p
->second
.object
)
3329 sym
->set_has_warning();
3333 // Issue a warning. This is called when we see a relocation against a
3334 // symbol for which has a warning.
3336 template<int size
, bool big_endian
>
3338 Warnings::issue_warning(const Symbol
* sym
,
3339 const Relocate_info
<size
, big_endian
>* relinfo
,
3340 size_t relnum
, off_t reloffset
) const
3342 gold_assert(sym
->has_warning());
3344 // We don't want to issue a warning for a relocation against the
3345 // symbol in the same object file in which the symbol is defined.
3346 if (sym
->object() == relinfo
->object
)
3349 Warning_table::const_iterator p
= this->warnings_
.find(sym
->name());
3350 gold_assert(p
!= this->warnings_
.end());
3351 gold_warning_at_location(relinfo
, relnum
, reloffset
,
3352 "%s", p
->second
.text
.c_str());
3355 // Instantiate the templates we need. We could use the configure
3356 // script to restrict this to only the ones needed for implemented
3359 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3362 Sized_symbol
<32>::allocate_common(Output_data
*, Value_type
);
3365 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3368 Sized_symbol
<64>::allocate_common(Output_data
*, Value_type
);
3371 #ifdef HAVE_TARGET_32_LITTLE
3374 Symbol_table::add_from_relobj
<32, false>(
3375 Sized_relobj_file
<32, false>* relobj
,
3376 const unsigned char* syms
,
3378 size_t symndx_offset
,
3379 const char* sym_names
,
3380 size_t sym_name_size
,
3381 Sized_relobj_file
<32, false>::Symbols
* sympointers
,
3385 #ifdef HAVE_TARGET_32_BIG
3388 Symbol_table::add_from_relobj
<32, true>(
3389 Sized_relobj_file
<32, true>* relobj
,
3390 const unsigned char* syms
,
3392 size_t symndx_offset
,
3393 const char* sym_names
,
3394 size_t sym_name_size
,
3395 Sized_relobj_file
<32, true>::Symbols
* sympointers
,
3399 #ifdef HAVE_TARGET_64_LITTLE
3402 Symbol_table::add_from_relobj
<64, false>(
3403 Sized_relobj_file
<64, false>* relobj
,
3404 const unsigned char* syms
,
3406 size_t symndx_offset
,
3407 const char* sym_names
,
3408 size_t sym_name_size
,
3409 Sized_relobj_file
<64, false>::Symbols
* sympointers
,
3413 #ifdef HAVE_TARGET_64_BIG
3416 Symbol_table::add_from_relobj
<64, true>(
3417 Sized_relobj_file
<64, true>* relobj
,
3418 const unsigned char* syms
,
3420 size_t symndx_offset
,
3421 const char* sym_names
,
3422 size_t sym_name_size
,
3423 Sized_relobj_file
<64, true>::Symbols
* sympointers
,
3427 #ifdef HAVE_TARGET_32_LITTLE
3430 Symbol_table::add_from_pluginobj
<32, false>(
3431 Sized_pluginobj
<32, false>* obj
,
3434 elfcpp::Sym
<32, false>* sym
);
3437 #ifdef HAVE_TARGET_32_BIG
3440 Symbol_table::add_from_pluginobj
<32, true>(
3441 Sized_pluginobj
<32, true>* obj
,
3444 elfcpp::Sym
<32, true>* sym
);
3447 #ifdef HAVE_TARGET_64_LITTLE
3450 Symbol_table::add_from_pluginobj
<64, false>(
3451 Sized_pluginobj
<64, false>* obj
,
3454 elfcpp::Sym
<64, false>* sym
);
3457 #ifdef HAVE_TARGET_64_BIG
3460 Symbol_table::add_from_pluginobj
<64, true>(
3461 Sized_pluginobj
<64, true>* obj
,
3464 elfcpp::Sym
<64, true>* sym
);
3467 #ifdef HAVE_TARGET_32_LITTLE
3470 Symbol_table::add_from_dynobj
<32, false>(
3471 Sized_dynobj
<32, false>* dynobj
,
3472 const unsigned char* syms
,
3474 const char* sym_names
,
3475 size_t sym_name_size
,
3476 const unsigned char* versym
,
3478 const std::vector
<const char*>* version_map
,
3479 Sized_relobj_file
<32, false>::Symbols
* sympointers
,
3483 #ifdef HAVE_TARGET_32_BIG
3486 Symbol_table::add_from_dynobj
<32, true>(
3487 Sized_dynobj
<32, true>* dynobj
,
3488 const unsigned char* syms
,
3490 const char* sym_names
,
3491 size_t sym_name_size
,
3492 const unsigned char* versym
,
3494 const std::vector
<const char*>* version_map
,
3495 Sized_relobj_file
<32, true>::Symbols
* sympointers
,
3499 #ifdef HAVE_TARGET_64_LITTLE
3502 Symbol_table::add_from_dynobj
<64, false>(
3503 Sized_dynobj
<64, false>* dynobj
,
3504 const unsigned char* syms
,
3506 const char* sym_names
,
3507 size_t sym_name_size
,
3508 const unsigned char* versym
,
3510 const std::vector
<const char*>* version_map
,
3511 Sized_relobj_file
<64, false>::Symbols
* sympointers
,
3515 #ifdef HAVE_TARGET_64_BIG
3518 Symbol_table::add_from_dynobj
<64, true>(
3519 Sized_dynobj
<64, true>* dynobj
,
3520 const unsigned char* syms
,
3522 const char* sym_names
,
3523 size_t sym_name_size
,
3524 const unsigned char* versym
,
3526 const std::vector
<const char*>* version_map
,
3527 Sized_relobj_file
<64, true>::Symbols
* sympointers
,
3531 #ifdef HAVE_TARGET_32_LITTLE
3534 Symbol_table::add_from_incrobj(
3538 elfcpp::Sym
<32, false>* sym
);
3541 #ifdef HAVE_TARGET_32_BIG
3544 Symbol_table::add_from_incrobj(
3548 elfcpp::Sym
<32, true>* sym
);
3551 #ifdef HAVE_TARGET_64_LITTLE
3554 Symbol_table::add_from_incrobj(
3558 elfcpp::Sym
<64, false>* sym
);
3561 #ifdef HAVE_TARGET_64_BIG
3564 Symbol_table::add_from_incrobj(
3568 elfcpp::Sym
<64, true>* sym
);
3571 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3574 Symbol_table::define_with_copy_reloc
<32>(
3575 Sized_symbol
<32>* sym
,
3577 elfcpp::Elf_types
<32>::Elf_Addr value
);
3580 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3583 Symbol_table::define_with_copy_reloc
<64>(
3584 Sized_symbol
<64>* sym
,
3586 elfcpp::Elf_types
<64>::Elf_Addr value
);
3589 #ifdef HAVE_TARGET_32_LITTLE
3592 Warnings::issue_warning
<32, false>(const Symbol
* sym
,
3593 const Relocate_info
<32, false>* relinfo
,
3594 size_t relnum
, off_t reloffset
) const;
3597 #ifdef HAVE_TARGET_32_BIG
3600 Warnings::issue_warning
<32, true>(const Symbol
* sym
,
3601 const Relocate_info
<32, true>* relinfo
,
3602 size_t relnum
, off_t reloffset
) const;
3605 #ifdef HAVE_TARGET_64_LITTLE
3608 Warnings::issue_warning
<64, false>(const Symbol
* sym
,
3609 const Relocate_info
<64, false>* relinfo
,
3610 size_t relnum
, off_t reloffset
) const;
3613 #ifdef HAVE_TARGET_64_BIG
3616 Warnings::issue_warning
<64, true>(const Symbol
* sym
,
3617 const Relocate_info
<64, true>* relinfo
,
3618 size_t relnum
, off_t reloffset
) const;
3621 } // End namespace gold.