Automatic date update in version.in
[binutils-gdb.git] / bfd / elfxx-mips.c
blobe0e23926f0397349b4eeac45fcdb57a8ecacf069
1 /* MIPS-specific support for ELF
2 Copyright (C) 1993-2022 Free Software Foundation, Inc.
4 Most of the information added by Ian Lance Taylor, Cygnus Support,
5 <ian@cygnus.com>.
6 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
7 <mark@codesourcery.com>
8 Traditional MIPS targets support added by Koundinya.K, Dansk Data
9 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
11 This file is part of BFD, the Binary File Descriptor library.
13 This program is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
15 the Free Software Foundation; either version 3 of the License, or
16 (at your option) any later version.
18 This program is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
23 You should have received a copy of the GNU General Public License
24 along with this program; if not, write to the Free Software
25 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
26 MA 02110-1301, USA. */
29 /* This file handles functionality common to the different MIPS ABI's. */
31 #include "sysdep.h"
32 #include "bfd.h"
33 #include "libbfd.h"
34 #include "libiberty.h"
35 #include "elf-bfd.h"
36 #include "ecoff-bfd.h"
37 #include "elfxx-mips.h"
38 #include "elf/mips.h"
39 #include "elf-vxworks.h"
40 #include "dwarf2.h"
42 /* Get the ECOFF swapping routines. */
43 #include "coff/sym.h"
44 #include "coff/symconst.h"
45 #include "coff/ecoff.h"
46 #include "coff/mips.h"
48 #include "hashtab.h"
50 /* Types of TLS GOT entry. */
51 enum mips_got_tls_type {
52 GOT_TLS_NONE,
53 GOT_TLS_GD,
54 GOT_TLS_LDM,
55 GOT_TLS_IE
58 /* This structure is used to hold information about one GOT entry.
59 There are four types of entry:
61 (1) an absolute address
62 requires: abfd == NULL
63 fields: d.address
65 (2) a SYMBOL + OFFSET address, where SYMBOL is local to an input bfd
66 requires: abfd != NULL, symndx >= 0, tls_type != GOT_TLS_LDM
67 fields: abfd, symndx, d.addend, tls_type
69 (3) a SYMBOL address, where SYMBOL is not local to an input bfd
70 requires: abfd != NULL, symndx == -1
71 fields: d.h, tls_type
73 (4) a TLS LDM slot
74 requires: abfd != NULL, symndx == 0, tls_type == GOT_TLS_LDM
75 fields: none; there's only one of these per GOT. */
76 struct mips_got_entry
78 /* One input bfd that needs the GOT entry. */
79 bfd *abfd;
80 /* The index of the symbol, as stored in the relocation r_info, if
81 we have a local symbol; -1 otherwise. */
82 long symndx;
83 union
85 /* If abfd == NULL, an address that must be stored in the got. */
86 bfd_vma address;
87 /* If abfd != NULL && symndx != -1, the addend of the relocation
88 that should be added to the symbol value. */
89 bfd_vma addend;
90 /* If abfd != NULL && symndx == -1, the hash table entry
91 corresponding to a symbol in the GOT. The symbol's entry
92 is in the local area if h->global_got_area is GGA_NONE,
93 otherwise it is in the global area. */
94 struct mips_elf_link_hash_entry *h;
95 } d;
97 /* The TLS type of this GOT entry. An LDM GOT entry will be a local
98 symbol entry with r_symndx == 0. */
99 unsigned char tls_type;
101 /* True if we have filled in the GOT contents for a TLS entry,
102 and created the associated relocations. */
103 unsigned char tls_initialized;
105 /* The offset from the beginning of the .got section to the entry
106 corresponding to this symbol+addend. If it's a global symbol
107 whose offset is yet to be decided, it's going to be -1. */
108 long gotidx;
111 /* This structure represents a GOT page reference from an input bfd.
112 Each instance represents a symbol + ADDEND, where the representation
113 of the symbol depends on whether it is local to the input bfd.
114 If it is, then SYMNDX >= 0, and the symbol has index SYMNDX in U.ABFD.
115 Otherwise, SYMNDX < 0 and U.H points to the symbol's hash table entry.
117 Page references with SYMNDX >= 0 always become page references
118 in the output. Page references with SYMNDX < 0 only become page
119 references if the symbol binds locally; in other cases, the page
120 reference decays to a global GOT reference. */
121 struct mips_got_page_ref
123 long symndx;
124 union
126 struct mips_elf_link_hash_entry *h;
127 bfd *abfd;
128 } u;
129 bfd_vma addend;
132 /* This structure describes a range of addends: [MIN_ADDEND, MAX_ADDEND].
133 The structures form a non-overlapping list that is sorted by increasing
134 MIN_ADDEND. */
135 struct mips_got_page_range
137 struct mips_got_page_range *next;
138 bfd_signed_vma min_addend;
139 bfd_signed_vma max_addend;
142 /* This structure describes the range of addends that are applied to page
143 relocations against a given section. */
144 struct mips_got_page_entry
146 /* The section that these entries are based on. */
147 asection *sec;
148 /* The ranges for this page entry. */
149 struct mips_got_page_range *ranges;
150 /* The maximum number of page entries needed for RANGES. */
151 bfd_vma num_pages;
154 /* This structure is used to hold .got information when linking. */
156 struct mips_got_info
158 /* The number of global .got entries. */
159 unsigned int global_gotno;
160 /* The number of global .got entries that are in the GGA_RELOC_ONLY area. */
161 unsigned int reloc_only_gotno;
162 /* The number of .got slots used for TLS. */
163 unsigned int tls_gotno;
164 /* The first unused TLS .got entry. Used only during
165 mips_elf_initialize_tls_index. */
166 unsigned int tls_assigned_gotno;
167 /* The number of local .got entries, eventually including page entries. */
168 unsigned int local_gotno;
169 /* The maximum number of page entries needed. */
170 unsigned int page_gotno;
171 /* The number of relocations needed for the GOT entries. */
172 unsigned int relocs;
173 /* The first unused local .got entry. */
174 unsigned int assigned_low_gotno;
175 /* The last unused local .got entry. */
176 unsigned int assigned_high_gotno;
177 /* A hash table holding members of the got. */
178 struct htab *got_entries;
179 /* A hash table holding mips_got_page_ref structures. */
180 struct htab *got_page_refs;
181 /* A hash table of mips_got_page_entry structures. */
182 struct htab *got_page_entries;
183 /* In multi-got links, a pointer to the next got (err, rather, most
184 of the time, it points to the previous got). */
185 struct mips_got_info *next;
188 /* Structure passed when merging bfds' gots. */
190 struct mips_elf_got_per_bfd_arg
192 /* The output bfd. */
193 bfd *obfd;
194 /* The link information. */
195 struct bfd_link_info *info;
196 /* A pointer to the primary got, i.e., the one that's going to get
197 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
198 DT_MIPS_GOTSYM. */
199 struct mips_got_info *primary;
200 /* A non-primary got we're trying to merge with other input bfd's
201 gots. */
202 struct mips_got_info *current;
203 /* The maximum number of got entries that can be addressed with a
204 16-bit offset. */
205 unsigned int max_count;
206 /* The maximum number of page entries needed by each got. */
207 unsigned int max_pages;
208 /* The total number of global entries which will live in the
209 primary got and be automatically relocated. This includes
210 those not referenced by the primary GOT but included in
211 the "master" GOT. */
212 unsigned int global_count;
215 /* A structure used to pass information to htab_traverse callbacks
216 when laying out the GOT. */
218 struct mips_elf_traverse_got_arg
220 struct bfd_link_info *info;
221 struct mips_got_info *g;
222 int value;
225 struct _mips_elf_section_data
227 struct bfd_elf_section_data elf;
228 union
230 bfd_byte *tdata;
231 } u;
234 #define mips_elf_section_data(sec) \
235 ((struct _mips_elf_section_data *) elf_section_data (sec))
237 #define is_mips_elf(bfd) \
238 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
239 && elf_tdata (bfd) != NULL \
240 && elf_object_id (bfd) == MIPS_ELF_DATA)
242 /* The ABI says that every symbol used by dynamic relocations must have
243 a global GOT entry. Among other things, this provides the dynamic
244 linker with a free, directly-indexed cache. The GOT can therefore
245 contain symbols that are not referenced by GOT relocations themselves
246 (in other words, it may have symbols that are not referenced by things
247 like R_MIPS_GOT16 and R_MIPS_GOT_PAGE).
249 GOT relocations are less likely to overflow if we put the associated
250 GOT entries towards the beginning. We therefore divide the global
251 GOT entries into two areas: "normal" and "reloc-only". Entries in
252 the first area can be used for both dynamic relocations and GP-relative
253 accesses, while those in the "reloc-only" area are for dynamic
254 relocations only.
256 These GGA_* ("Global GOT Area") values are organised so that lower
257 values are more general than higher values. Also, non-GGA_NONE
258 values are ordered by the position of the area in the GOT. */
259 #define GGA_NORMAL 0
260 #define GGA_RELOC_ONLY 1
261 #define GGA_NONE 2
263 /* Information about a non-PIC interface to a PIC function. There are
264 two ways of creating these interfaces. The first is to add:
266 lui $25,%hi(func)
267 addiu $25,$25,%lo(func)
269 immediately before a PIC function "func". The second is to add:
271 lui $25,%hi(func)
272 j func
273 addiu $25,$25,%lo(func)
275 to a separate trampoline section.
277 Stubs of the first kind go in a new section immediately before the
278 target function. Stubs of the second kind go in a single section
279 pointed to by the hash table's "strampoline" field. */
280 struct mips_elf_la25_stub {
281 /* The generated section that contains this stub. */
282 asection *stub_section;
284 /* The offset of the stub from the start of STUB_SECTION. */
285 bfd_vma offset;
287 /* One symbol for the original function. Its location is available
288 in H->root.root.u.def. */
289 struct mips_elf_link_hash_entry *h;
292 /* Macros for populating a mips_elf_la25_stub. */
294 #define LA25_LUI(VAL) (0x3c190000 | (VAL)) /* lui t9,VAL */
295 #define LA25_J(VAL) (0x08000000 | (((VAL) >> 2) & 0x3ffffff)) /* j VAL */
296 #define LA25_BC(VAL) (0xc8000000 | (((VAL) >> 2) & 0x3ffffff)) /* bc VAL */
297 #define LA25_ADDIU(VAL) (0x27390000 | (VAL)) /* addiu t9,t9,VAL */
298 #define LA25_LUI_MICROMIPS(VAL) \
299 (0x41b90000 | (VAL)) /* lui t9,VAL */
300 #define LA25_J_MICROMIPS(VAL) \
301 (0xd4000000 | (((VAL) >> 1) & 0x3ffffff)) /* j VAL */
302 #define LA25_ADDIU_MICROMIPS(VAL) \
303 (0x33390000 | (VAL)) /* addiu t9,t9,VAL */
305 /* This structure is passed to mips_elf_sort_hash_table_f when sorting
306 the dynamic symbols. */
308 struct mips_elf_hash_sort_data
310 /* The symbol in the global GOT with the lowest dynamic symbol table
311 index. */
312 struct elf_link_hash_entry *low;
313 /* The least dynamic symbol table index corresponding to a non-TLS
314 symbol with a GOT entry. */
315 bfd_size_type min_got_dynindx;
316 /* The greatest dynamic symbol table index corresponding to a symbol
317 with a GOT entry that is not referenced (e.g., a dynamic symbol
318 with dynamic relocations pointing to it from non-primary GOTs). */
319 bfd_size_type max_unref_got_dynindx;
320 /* The greatest dynamic symbol table index corresponding to a local
321 symbol. */
322 bfd_size_type max_local_dynindx;
323 /* The greatest dynamic symbol table index corresponding to an external
324 symbol without a GOT entry. */
325 bfd_size_type max_non_got_dynindx;
326 /* If non-NULL, output BFD for .MIPS.xhash finalization. */
327 bfd *output_bfd;
328 /* If non-NULL, pointer to contents of .MIPS.xhash for filling in
329 real final dynindx. */
330 bfd_byte *mipsxhash;
333 /* We make up to two PLT entries if needed, one for standard MIPS code
334 and one for compressed code, either a MIPS16 or microMIPS one. We
335 keep a separate record of traditional lazy-binding stubs, for easier
336 processing. */
338 struct plt_entry
340 /* Traditional SVR4 stub offset, or -1 if none. */
341 bfd_vma stub_offset;
343 /* Standard PLT entry offset, or -1 if none. */
344 bfd_vma mips_offset;
346 /* Compressed PLT entry offset, or -1 if none. */
347 bfd_vma comp_offset;
349 /* The corresponding .got.plt index, or -1 if none. */
350 bfd_vma gotplt_index;
352 /* Whether we need a standard PLT entry. */
353 unsigned int need_mips : 1;
355 /* Whether we need a compressed PLT entry. */
356 unsigned int need_comp : 1;
359 /* The MIPS ELF linker needs additional information for each symbol in
360 the global hash table. */
362 struct mips_elf_link_hash_entry
364 struct elf_link_hash_entry root;
366 /* External symbol information. */
367 EXTR esym;
369 /* The la25 stub we have created for ths symbol, if any. */
370 struct mips_elf_la25_stub *la25_stub;
372 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
373 this symbol. */
374 unsigned int possibly_dynamic_relocs;
376 /* If there is a stub that 32 bit functions should use to call this
377 16 bit function, this points to the section containing the stub. */
378 asection *fn_stub;
380 /* If there is a stub that 16 bit functions should use to call this
381 32 bit function, this points to the section containing the stub. */
382 asection *call_stub;
384 /* This is like the call_stub field, but it is used if the function
385 being called returns a floating point value. */
386 asection *call_fp_stub;
388 /* If non-zero, location in .MIPS.xhash to write real final dynindx. */
389 bfd_vma mipsxhash_loc;
391 /* The highest GGA_* value that satisfies all references to this symbol. */
392 unsigned int global_got_area : 2;
394 /* True if all GOT relocations against this symbol are for calls. This is
395 a looser condition than no_fn_stub below, because there may be other
396 non-call non-GOT relocations against the symbol. */
397 unsigned int got_only_for_calls : 1;
399 /* True if one of the relocations described by possibly_dynamic_relocs
400 is against a readonly section. */
401 unsigned int readonly_reloc : 1;
403 /* True if there is a relocation against this symbol that must be
404 resolved by the static linker (in other words, if the relocation
405 cannot possibly be made dynamic). */
406 unsigned int has_static_relocs : 1;
408 /* True if we must not create a .MIPS.stubs entry for this symbol.
409 This is set, for example, if there are relocations related to
410 taking the function's address, i.e. any but R_MIPS_CALL*16 ones.
411 See "MIPS ABI Supplement, 3rd Edition", p. 4-20. */
412 unsigned int no_fn_stub : 1;
414 /* Whether we need the fn_stub; this is true if this symbol appears
415 in any relocs other than a 16 bit call. */
416 unsigned int need_fn_stub : 1;
418 /* True if this symbol is referenced by branch relocations from
419 any non-PIC input file. This is used to determine whether an
420 la25 stub is required. */
421 unsigned int has_nonpic_branches : 1;
423 /* Does this symbol need a traditional MIPS lazy-binding stub
424 (as opposed to a PLT entry)? */
425 unsigned int needs_lazy_stub : 1;
427 /* Does this symbol resolve to a PLT entry? */
428 unsigned int use_plt_entry : 1;
431 /* MIPS ELF linker hash table. */
433 struct mips_elf_link_hash_table
435 struct elf_link_hash_table root;
437 /* The number of .rtproc entries. */
438 bfd_size_type procedure_count;
440 /* The size of the .compact_rel section (if SGI_COMPAT). */
441 bfd_size_type compact_rel_size;
443 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic entry
444 is set to the address of __rld_obj_head as in IRIX5 and IRIX6. */
445 bool use_rld_obj_head;
447 /* The __rld_map or __rld_obj_head symbol. */
448 struct elf_link_hash_entry *rld_symbol;
450 /* This is set if we see any mips16 stub sections. */
451 bool mips16_stubs_seen;
453 /* True if we can generate copy relocs and PLTs. */
454 bool use_plts_and_copy_relocs;
456 /* True if we can only use 32-bit microMIPS instructions. */
457 bool insn32;
459 /* True if we suppress checks for invalid branches between ISA modes. */
460 bool ignore_branch_isa;
462 /* True if we are targetting R6 compact branches. */
463 bool compact_branches;
465 /* True if we already reported the small-data section overflow. */
466 bool small_data_overflow_reported;
468 /* True if we use the special `__gnu_absolute_zero' symbol. */
469 bool use_absolute_zero;
471 /* True if we have been configured for a GNU target. */
472 bool gnu_target;
474 /* Shortcuts to some dynamic sections, or NULL if they are not
475 being used. */
476 asection *srelplt2;
477 asection *sstubs;
479 /* The master GOT information. */
480 struct mips_got_info *got_info;
482 /* The global symbol in the GOT with the lowest index in the dynamic
483 symbol table. */
484 struct elf_link_hash_entry *global_gotsym;
486 /* The size of the PLT header in bytes. */
487 bfd_vma plt_header_size;
489 /* The size of a standard PLT entry in bytes. */
490 bfd_vma plt_mips_entry_size;
492 /* The size of a compressed PLT entry in bytes. */
493 bfd_vma plt_comp_entry_size;
495 /* The offset of the next standard PLT entry to create. */
496 bfd_vma plt_mips_offset;
498 /* The offset of the next compressed PLT entry to create. */
499 bfd_vma plt_comp_offset;
501 /* The index of the next .got.plt entry to create. */
502 bfd_vma plt_got_index;
504 /* The number of functions that need a lazy-binding stub. */
505 bfd_vma lazy_stub_count;
507 /* The size of a function stub entry in bytes. */
508 bfd_vma function_stub_size;
510 /* The number of reserved entries at the beginning of the GOT. */
511 unsigned int reserved_gotno;
513 /* The section used for mips_elf_la25_stub trampolines.
514 See the comment above that structure for details. */
515 asection *strampoline;
517 /* A table of mips_elf_la25_stubs, indexed by (input_section, offset)
518 pairs. */
519 htab_t la25_stubs;
521 /* A function FN (NAME, IS, OS) that creates a new input section
522 called NAME and links it to output section OS. If IS is nonnull,
523 the new section should go immediately before it, otherwise it
524 should go at the (current) beginning of OS.
526 The function returns the new section on success, otherwise it
527 returns null. */
528 asection *(*add_stub_section) (const char *, asection *, asection *);
530 /* Is the PLT header compressed? */
531 unsigned int plt_header_is_comp : 1;
534 /* Get the MIPS ELF linker hash table from a link_info structure. */
536 #define mips_elf_hash_table(p) \
537 ((is_elf_hash_table ((p)->hash) \
538 && elf_hash_table_id (elf_hash_table (p)) == MIPS_ELF_DATA) \
539 ? (struct mips_elf_link_hash_table *) (p)->hash : NULL)
541 /* A structure used to communicate with htab_traverse callbacks. */
542 struct mips_htab_traverse_info
544 /* The usual link-wide information. */
545 struct bfd_link_info *info;
546 bfd *output_bfd;
548 /* Starts off FALSE and is set to TRUE if the link should be aborted. */
549 bool error;
552 /* MIPS ELF private object data. */
554 struct mips_elf_obj_tdata
556 /* Generic ELF private object data. */
557 struct elf_obj_tdata root;
559 /* Input BFD providing Tag_GNU_MIPS_ABI_FP attribute for output. */
560 bfd *abi_fp_bfd;
562 /* Input BFD providing Tag_GNU_MIPS_ABI_MSA attribute for output. */
563 bfd *abi_msa_bfd;
565 /* The abiflags for this object. */
566 Elf_Internal_ABIFlags_v0 abiflags;
567 bool abiflags_valid;
569 /* The GOT requirements of input bfds. */
570 struct mips_got_info *got;
572 /* Used by _bfd_mips_elf_find_nearest_line. The structure could be
573 included directly in this one, but there's no point to wasting
574 the memory just for the infrequently called find_nearest_line. */
575 struct mips_elf_find_line *find_line_info;
577 /* An array of stub sections indexed by symbol number. */
578 asection **local_stubs;
579 asection **local_call_stubs;
581 /* The Irix 5 support uses two virtual sections, which represent
582 text/data symbols defined in dynamic objects. */
583 asymbol *elf_data_symbol;
584 asymbol *elf_text_symbol;
585 asection *elf_data_section;
586 asection *elf_text_section;
589 /* Get MIPS ELF private object data from BFD's tdata. */
591 #define mips_elf_tdata(bfd) \
592 ((struct mips_elf_obj_tdata *) (bfd)->tdata.any)
594 #define TLS_RELOC_P(r_type) \
595 (r_type == R_MIPS_TLS_DTPMOD32 \
596 || r_type == R_MIPS_TLS_DTPMOD64 \
597 || r_type == R_MIPS_TLS_DTPREL32 \
598 || r_type == R_MIPS_TLS_DTPREL64 \
599 || r_type == R_MIPS_TLS_GD \
600 || r_type == R_MIPS_TLS_LDM \
601 || r_type == R_MIPS_TLS_DTPREL_HI16 \
602 || r_type == R_MIPS_TLS_DTPREL_LO16 \
603 || r_type == R_MIPS_TLS_GOTTPREL \
604 || r_type == R_MIPS_TLS_TPREL32 \
605 || r_type == R_MIPS_TLS_TPREL64 \
606 || r_type == R_MIPS_TLS_TPREL_HI16 \
607 || r_type == R_MIPS_TLS_TPREL_LO16 \
608 || r_type == R_MIPS16_TLS_GD \
609 || r_type == R_MIPS16_TLS_LDM \
610 || r_type == R_MIPS16_TLS_DTPREL_HI16 \
611 || r_type == R_MIPS16_TLS_DTPREL_LO16 \
612 || r_type == R_MIPS16_TLS_GOTTPREL \
613 || r_type == R_MIPS16_TLS_TPREL_HI16 \
614 || r_type == R_MIPS16_TLS_TPREL_LO16 \
615 || r_type == R_MICROMIPS_TLS_GD \
616 || r_type == R_MICROMIPS_TLS_LDM \
617 || r_type == R_MICROMIPS_TLS_DTPREL_HI16 \
618 || r_type == R_MICROMIPS_TLS_DTPREL_LO16 \
619 || r_type == R_MICROMIPS_TLS_GOTTPREL \
620 || r_type == R_MICROMIPS_TLS_TPREL_HI16 \
621 || r_type == R_MICROMIPS_TLS_TPREL_LO16)
623 /* Structure used to pass information to mips_elf_output_extsym. */
625 struct extsym_info
627 bfd *abfd;
628 struct bfd_link_info *info;
629 struct ecoff_debug_info *debug;
630 const struct ecoff_debug_swap *swap;
631 bool failed;
634 /* The names of the runtime procedure table symbols used on IRIX5. */
636 static const char * const mips_elf_dynsym_rtproc_names[] =
638 "_procedure_table",
639 "_procedure_string_table",
640 "_procedure_table_size",
641 NULL
644 /* These structures are used to generate the .compact_rel section on
645 IRIX5. */
647 typedef struct
649 unsigned long id1; /* Always one? */
650 unsigned long num; /* Number of compact relocation entries. */
651 unsigned long id2; /* Always two? */
652 unsigned long offset; /* The file offset of the first relocation. */
653 unsigned long reserved0; /* Zero? */
654 unsigned long reserved1; /* Zero? */
655 } Elf32_compact_rel;
657 typedef struct
659 bfd_byte id1[4];
660 bfd_byte num[4];
661 bfd_byte id2[4];
662 bfd_byte offset[4];
663 bfd_byte reserved0[4];
664 bfd_byte reserved1[4];
665 } Elf32_External_compact_rel;
667 typedef struct
669 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
670 unsigned int rtype : 4; /* Relocation types. See below. */
671 unsigned int dist2to : 8;
672 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
673 unsigned long konst; /* KONST field. See below. */
674 unsigned long vaddr; /* VADDR to be relocated. */
675 } Elf32_crinfo;
677 typedef struct
679 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
680 unsigned int rtype : 4; /* Relocation types. See below. */
681 unsigned int dist2to : 8;
682 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
683 unsigned long konst; /* KONST field. See below. */
684 } Elf32_crinfo2;
686 typedef struct
688 bfd_byte info[4];
689 bfd_byte konst[4];
690 bfd_byte vaddr[4];
691 } Elf32_External_crinfo;
693 typedef struct
695 bfd_byte info[4];
696 bfd_byte konst[4];
697 } Elf32_External_crinfo2;
699 /* These are the constants used to swap the bitfields in a crinfo. */
701 #define CRINFO_CTYPE (0x1U)
702 #define CRINFO_CTYPE_SH (31)
703 #define CRINFO_RTYPE (0xfU)
704 #define CRINFO_RTYPE_SH (27)
705 #define CRINFO_DIST2TO (0xffU)
706 #define CRINFO_DIST2TO_SH (19)
707 #define CRINFO_RELVADDR (0x7ffffU)
708 #define CRINFO_RELVADDR_SH (0)
710 /* A compact relocation info has long (3 words) or short (2 words)
711 formats. A short format doesn't have VADDR field and relvaddr
712 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
713 #define CRF_MIPS_LONG 1
714 #define CRF_MIPS_SHORT 0
716 /* There are 4 types of compact relocation at least. The value KONST
717 has different meaning for each type:
719 (type) (konst)
720 CT_MIPS_REL32 Address in data
721 CT_MIPS_WORD Address in word (XXX)
722 CT_MIPS_GPHI_LO GP - vaddr
723 CT_MIPS_JMPAD Address to jump
726 #define CRT_MIPS_REL32 0xa
727 #define CRT_MIPS_WORD 0xb
728 #define CRT_MIPS_GPHI_LO 0xc
729 #define CRT_MIPS_JMPAD 0xd
731 #define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
732 #define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
733 #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
734 #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
736 /* The structure of the runtime procedure descriptor created by the
737 loader for use by the static exception system. */
739 typedef struct runtime_pdr {
740 bfd_vma adr; /* Memory address of start of procedure. */
741 long regmask; /* Save register mask. */
742 long regoffset; /* Save register offset. */
743 long fregmask; /* Save floating point register mask. */
744 long fregoffset; /* Save floating point register offset. */
745 long frameoffset; /* Frame size. */
746 short framereg; /* Frame pointer register. */
747 short pcreg; /* Offset or reg of return pc. */
748 long irpss; /* Index into the runtime string table. */
749 long reserved;
750 struct exception_info *exception_info;/* Pointer to exception array. */
751 } RPDR, *pRPDR;
752 #define cbRPDR sizeof (RPDR)
753 #define rpdNil ((pRPDR) 0)
755 static struct mips_got_entry *mips_elf_create_local_got_entry
756 (bfd *, struct bfd_link_info *, bfd *, bfd_vma, unsigned long,
757 struct mips_elf_link_hash_entry *, int);
758 static bool mips_elf_sort_hash_table_f
759 (struct mips_elf_link_hash_entry *, void *);
760 static bfd_vma mips_elf_high
761 (bfd_vma);
762 static bool mips_elf_create_dynamic_relocation
763 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
764 struct mips_elf_link_hash_entry *, asection *, bfd_vma,
765 bfd_vma *, asection *);
766 static bfd_vma mips_elf_adjust_gp
767 (bfd *, struct mips_got_info *, bfd *);
769 /* This will be used when we sort the dynamic relocation records. */
770 static bfd *reldyn_sorting_bfd;
772 /* True if ABFD is for CPUs with load interlocking that include
773 non-MIPS1 CPUs and R3900. */
774 #define LOAD_INTERLOCKS_P(abfd) \
775 ( ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) != E_MIPS_ARCH_1) \
776 || ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_3900))
778 /* True if ABFD is for CPUs that are faster if JAL is converted to BAL.
779 This should be safe for all architectures. We enable this predicate
780 for RM9000 for now. */
781 #define JAL_TO_BAL_P(abfd) \
782 ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_9000)
784 /* True if ABFD is for CPUs that are faster if JALR is converted to BAL.
785 This should be safe for all architectures. We enable this predicate for
786 all CPUs. */
787 #define JALR_TO_BAL_P(abfd) 1
789 /* True if ABFD is for CPUs that are faster if JR is converted to B.
790 This should be safe for all architectures. We enable this predicate for
791 all CPUs. */
792 #define JR_TO_B_P(abfd) 1
794 /* True if ABFD is a PIC object. */
795 #define PIC_OBJECT_P(abfd) \
796 ((elf_elfheader (abfd)->e_flags & EF_MIPS_PIC) != 0)
798 /* Nonzero if ABFD is using the O32 ABI. */
799 #define ABI_O32_P(abfd) \
800 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
802 /* Nonzero if ABFD is using the N32 ABI. */
803 #define ABI_N32_P(abfd) \
804 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
806 /* Nonzero if ABFD is using the N64 ABI. */
807 #define ABI_64_P(abfd) \
808 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
810 /* Nonzero if ABFD is using NewABI conventions. */
811 #define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
813 /* Nonzero if ABFD has microMIPS code. */
814 #define MICROMIPS_P(abfd) \
815 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS) != 0)
817 /* Nonzero if ABFD is MIPS R6. */
818 #define MIPSR6_P(abfd) \
819 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6 \
820 || (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R6)
822 /* The IRIX compatibility level we are striving for. */
823 #define IRIX_COMPAT(abfd) \
824 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
826 /* Whether we are trying to be compatible with IRIX at all. */
827 #define SGI_COMPAT(abfd) \
828 (IRIX_COMPAT (abfd) != ict_none)
830 /* The name of the options section. */
831 #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
832 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
834 /* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
835 Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */
836 #define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
837 (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
839 /* True if NAME is the recognized name of any SHT_MIPS_ABIFLAGS section. */
840 #define MIPS_ELF_ABIFLAGS_SECTION_NAME_P(NAME) \
841 (strcmp (NAME, ".MIPS.abiflags") == 0)
843 /* Whether the section is readonly. */
844 #define MIPS_ELF_READONLY_SECTION(sec) \
845 ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) \
846 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
848 /* The name of the stub section. */
849 #define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
851 /* The size of an external REL relocation. */
852 #define MIPS_ELF_REL_SIZE(abfd) \
853 (get_elf_backend_data (abfd)->s->sizeof_rel)
855 /* The size of an external RELA relocation. */
856 #define MIPS_ELF_RELA_SIZE(abfd) \
857 (get_elf_backend_data (abfd)->s->sizeof_rela)
859 /* The size of an external dynamic table entry. */
860 #define MIPS_ELF_DYN_SIZE(abfd) \
861 (get_elf_backend_data (abfd)->s->sizeof_dyn)
863 /* The size of a GOT entry. */
864 #define MIPS_ELF_GOT_SIZE(abfd) \
865 (get_elf_backend_data (abfd)->s->arch_size / 8)
867 /* The size of the .rld_map section. */
868 #define MIPS_ELF_RLD_MAP_SIZE(abfd) \
869 (get_elf_backend_data (abfd)->s->arch_size / 8)
871 /* The size of a symbol-table entry. */
872 #define MIPS_ELF_SYM_SIZE(abfd) \
873 (get_elf_backend_data (abfd)->s->sizeof_sym)
875 /* The default alignment for sections, as a power of two. */
876 #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
877 (get_elf_backend_data (abfd)->s->log_file_align)
879 /* Get word-sized data. */
880 #define MIPS_ELF_GET_WORD(abfd, ptr) \
881 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
883 /* Put out word-sized data. */
884 #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
885 (ABI_64_P (abfd) \
886 ? bfd_put_64 (abfd, val, ptr) \
887 : bfd_put_32 (abfd, val, ptr))
889 /* The opcode for word-sized loads (LW or LD). */
890 #define MIPS_ELF_LOAD_WORD(abfd) \
891 (ABI_64_P (abfd) ? 0xdc000000 : 0x8c000000)
893 /* Add a dynamic symbol table-entry. */
894 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
895 _bfd_elf_add_dynamic_entry (info, tag, val)
897 #define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
898 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (abfd, rtype, rela))
900 /* The name of the dynamic relocation section. */
901 #define MIPS_ELF_REL_DYN_NAME(INFO) \
902 (mips_elf_hash_table (INFO)->root.target_os == is_vxworks \
903 ? ".rela.dyn" : ".rel.dyn")
905 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
906 from smaller values. Start with zero, widen, *then* decrement. */
907 #define MINUS_ONE (((bfd_vma)0) - 1)
908 #define MINUS_TWO (((bfd_vma)0) - 2)
910 /* The value to write into got[1] for SVR4 targets, to identify it is
911 a GNU object. The dynamic linker can then use got[1] to store the
912 module pointer. */
913 #define MIPS_ELF_GNU_GOT1_MASK(abfd) \
914 ((bfd_vma) 1 << (ABI_64_P (abfd) ? 63 : 31))
916 /* The offset of $gp from the beginning of the .got section. */
917 #define ELF_MIPS_GP_OFFSET(INFO) \
918 (mips_elf_hash_table (INFO)->root.target_os == is_vxworks \
919 ? 0x0 : 0x7ff0)
921 /* The maximum size of the GOT for it to be addressable using 16-bit
922 offsets from $gp. */
923 #define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff)
925 /* Instructions which appear in a stub. */
926 #define STUB_LW(abfd) \
927 ((ABI_64_P (abfd) \
928 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
929 : 0x8f998010)) /* lw t9,0x8010(gp) */
930 #define STUB_MOVE 0x03e07825 /* or t7,ra,zero */
931 #define STUB_LUI(VAL) (0x3c180000 + (VAL)) /* lui t8,VAL */
932 #define STUB_JALR 0x0320f809 /* jalr ra,t9 */
933 #define STUB_JALRC 0xf8190000 /* jalrc ra,t9 */
934 #define STUB_ORI(VAL) (0x37180000 + (VAL)) /* ori t8,t8,VAL */
935 #define STUB_LI16U(VAL) (0x34180000 + (VAL)) /* ori t8,zero,VAL unsigned */
936 #define STUB_LI16S(abfd, VAL) \
937 ((ABI_64_P (abfd) \
938 ? (0x64180000 + (VAL)) /* daddiu t8,zero,VAL sign extended */ \
939 : (0x24180000 + (VAL)))) /* addiu t8,zero,VAL sign extended */
941 /* Likewise for the microMIPS ASE. */
942 #define STUB_LW_MICROMIPS(abfd) \
943 (ABI_64_P (abfd) \
944 ? 0xdf3c8010 /* ld t9,0x8010(gp) */ \
945 : 0xff3c8010) /* lw t9,0x8010(gp) */
946 #define STUB_MOVE_MICROMIPS 0x0dff /* move t7,ra */
947 #define STUB_MOVE32_MICROMIPS 0x001f7a90 /* or t7,ra,zero */
948 #define STUB_LUI_MICROMIPS(VAL) \
949 (0x41b80000 + (VAL)) /* lui t8,VAL */
950 #define STUB_JALR_MICROMIPS 0x45d9 /* jalr t9 */
951 #define STUB_JALR32_MICROMIPS 0x03f90f3c /* jalr ra,t9 */
952 #define STUB_ORI_MICROMIPS(VAL) \
953 (0x53180000 + (VAL)) /* ori t8,t8,VAL */
954 #define STUB_LI16U_MICROMIPS(VAL) \
955 (0x53000000 + (VAL)) /* ori t8,zero,VAL unsigned */
956 #define STUB_LI16S_MICROMIPS(abfd, VAL) \
957 (ABI_64_P (abfd) \
958 ? 0x5f000000 + (VAL) /* daddiu t8,zero,VAL sign extended */ \
959 : 0x33000000 + (VAL)) /* addiu t8,zero,VAL sign extended */
961 #define MIPS_FUNCTION_STUB_NORMAL_SIZE 16
962 #define MIPS_FUNCTION_STUB_BIG_SIZE 20
963 #define MICROMIPS_FUNCTION_STUB_NORMAL_SIZE 12
964 #define MICROMIPS_FUNCTION_STUB_BIG_SIZE 16
965 #define MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE 16
966 #define MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE 20
968 /* The name of the dynamic interpreter. This is put in the .interp
969 section. */
971 #define ELF_DYNAMIC_INTERPRETER(abfd) \
972 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
973 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
974 : "/usr/lib/libc.so.1")
976 #ifdef BFD64
977 #define MNAME(bfd,pre,pos) \
978 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
979 #define ELF_R_SYM(bfd, i) \
980 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
981 #define ELF_R_TYPE(bfd, i) \
982 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
983 #define ELF_R_INFO(bfd, s, t) \
984 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
985 #else
986 #define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
987 #define ELF_R_SYM(bfd, i) \
988 (ELF32_R_SYM (i))
989 #define ELF_R_TYPE(bfd, i) \
990 (ELF32_R_TYPE (i))
991 #define ELF_R_INFO(bfd, s, t) \
992 (ELF32_R_INFO (s, t))
993 #endif
995 /* The mips16 compiler uses a couple of special sections to handle
996 floating point arguments.
998 Section names that look like .mips16.fn.FNNAME contain stubs that
999 copy floating point arguments from the fp regs to the gp regs and
1000 then jump to FNNAME. If any 32 bit function calls FNNAME, the
1001 call should be redirected to the stub instead. If no 32 bit
1002 function calls FNNAME, the stub should be discarded. We need to
1003 consider any reference to the function, not just a call, because
1004 if the address of the function is taken we will need the stub,
1005 since the address might be passed to a 32 bit function.
1007 Section names that look like .mips16.call.FNNAME contain stubs
1008 that copy floating point arguments from the gp regs to the fp
1009 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
1010 then any 16 bit function that calls FNNAME should be redirected
1011 to the stub instead. If FNNAME is not a 32 bit function, the
1012 stub should be discarded.
1014 .mips16.call.fp.FNNAME sections are similar, but contain stubs
1015 which call FNNAME and then copy the return value from the fp regs
1016 to the gp regs. These stubs store the return value in $18 while
1017 calling FNNAME; any function which might call one of these stubs
1018 must arrange to save $18 around the call. (This case is not
1019 needed for 32 bit functions that call 16 bit functions, because
1020 16 bit functions always return floating point values in both
1021 $f0/$f1 and $2/$3.)
1023 Note that in all cases FNNAME might be defined statically.
1024 Therefore, FNNAME is not used literally. Instead, the relocation
1025 information will indicate which symbol the section is for.
1027 We record any stubs that we find in the symbol table. */
1029 #define FN_STUB ".mips16.fn."
1030 #define CALL_STUB ".mips16.call."
1031 #define CALL_FP_STUB ".mips16.call.fp."
1033 #define FN_STUB_P(name) startswith (name, FN_STUB)
1034 #define CALL_STUB_P(name) startswith (name, CALL_STUB)
1035 #define CALL_FP_STUB_P(name) startswith (name, CALL_FP_STUB)
1037 /* The format of the first PLT entry in an O32 executable. */
1038 static const bfd_vma mips_o32_exec_plt0_entry[] =
1040 0x3c1c0000, /* lui $28, %hi(&GOTPLT[0]) */
1041 0x8f990000, /* lw $25, %lo(&GOTPLT[0])($28) */
1042 0x279c0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
1043 0x031cc023, /* subu $24, $24, $28 */
1044 0x03e07825, /* or t7, ra, zero */
1045 0x0018c082, /* srl $24, $24, 2 */
1046 0x0320f809, /* jalr $25 */
1047 0x2718fffe /* subu $24, $24, 2 */
1050 /* The format of the first PLT entry in an O32 executable using compact
1051 jumps. */
1052 static const bfd_vma mipsr6_o32_exec_plt0_entry_compact[] =
1054 0x3c1c0000, /* lui $28, %hi(&GOTPLT[0]) */
1055 0x8f990000, /* lw $25, %lo(&GOTPLT[0])($28) */
1056 0x279c0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
1057 0x031cc023, /* subu $24, $24, $28 */
1058 0x03e07821, /* move $15, $31 # 32-bit move (addu) */
1059 0x0018c082, /* srl $24, $24, 2 */
1060 0x2718fffe, /* subu $24, $24, 2 */
1061 0xf8190000 /* jalrc $25 */
1064 /* The format of the first PLT entry in an N32 executable. Different
1065 because gp ($28) is not available; we use t2 ($14) instead. */
1066 static const bfd_vma mips_n32_exec_plt0_entry[] =
1068 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1069 0x8dd90000, /* lw $25, %lo(&GOTPLT[0])($14) */
1070 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1071 0x030ec023, /* subu $24, $24, $14 */
1072 0x03e07825, /* or t7, ra, zero */
1073 0x0018c082, /* srl $24, $24, 2 */
1074 0x0320f809, /* jalr $25 */
1075 0x2718fffe /* subu $24, $24, 2 */
1078 /* The format of the first PLT entry in an N32 executable using compact
1079 jumps. Different because gp ($28) is not available; we use t2 ($14)
1080 instead. */
1081 static const bfd_vma mipsr6_n32_exec_plt0_entry_compact[] =
1083 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1084 0x8dd90000, /* lw $25, %lo(&GOTPLT[0])($14) */
1085 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1086 0x030ec023, /* subu $24, $24, $14 */
1087 0x03e07821, /* move $15, $31 # 32-bit move (addu) */
1088 0x0018c082, /* srl $24, $24, 2 */
1089 0x2718fffe, /* subu $24, $24, 2 */
1090 0xf8190000 /* jalrc $25 */
1093 /* The format of the first PLT entry in an N64 executable. Different
1094 from N32 because of the increased size of GOT entries. */
1095 static const bfd_vma mips_n64_exec_plt0_entry[] =
1097 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1098 0xddd90000, /* ld $25, %lo(&GOTPLT[0])($14) */
1099 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1100 0x030ec023, /* subu $24, $24, $14 */
1101 0x03e07825, /* or t7, ra, zero */
1102 0x0018c0c2, /* srl $24, $24, 3 */
1103 0x0320f809, /* jalr $25 */
1104 0x2718fffe /* subu $24, $24, 2 */
1107 /* The format of the first PLT entry in an N64 executable using compact
1108 jumps. Different from N32 because of the increased size of GOT
1109 entries. */
1110 static const bfd_vma mipsr6_n64_exec_plt0_entry_compact[] =
1112 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1113 0xddd90000, /* ld $25, %lo(&GOTPLT[0])($14) */
1114 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1115 0x030ec023, /* subu $24, $24, $14 */
1116 0x03e0782d, /* move $15, $31 # 64-bit move (daddu) */
1117 0x0018c0c2, /* srl $24, $24, 3 */
1118 0x2718fffe, /* subu $24, $24, 2 */
1119 0xf8190000 /* jalrc $25 */
1123 /* The format of the microMIPS first PLT entry in an O32 executable.
1124 We rely on v0 ($2) rather than t8 ($24) to contain the address
1125 of the GOTPLT entry handled, so this stub may only be used when
1126 all the subsequent PLT entries are microMIPS code too.
1128 The trailing NOP is for alignment and correct disassembly only. */
1129 static const bfd_vma micromips_o32_exec_plt0_entry[] =
1131 0x7980, 0x0000, /* addiupc $3, (&GOTPLT[0]) - . */
1132 0xff23, 0x0000, /* lw $25, 0($3) */
1133 0x0535, /* subu $2, $2, $3 */
1134 0x2525, /* srl $2, $2, 2 */
1135 0x3302, 0xfffe, /* subu $24, $2, 2 */
1136 0x0dff, /* move $15, $31 */
1137 0x45f9, /* jalrs $25 */
1138 0x0f83, /* move $28, $3 */
1139 0x0c00 /* nop */
1142 /* The format of the microMIPS first PLT entry in an O32 executable
1143 in the insn32 mode. */
1144 static const bfd_vma micromips_insn32_o32_exec_plt0_entry[] =
1146 0x41bc, 0x0000, /* lui $28, %hi(&GOTPLT[0]) */
1147 0xff3c, 0x0000, /* lw $25, %lo(&GOTPLT[0])($28) */
1148 0x339c, 0x0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
1149 0x0398, 0xc1d0, /* subu $24, $24, $28 */
1150 0x001f, 0x7a90, /* or $15, $31, zero */
1151 0x0318, 0x1040, /* srl $24, $24, 2 */
1152 0x03f9, 0x0f3c, /* jalr $25 */
1153 0x3318, 0xfffe /* subu $24, $24, 2 */
1156 /* The format of subsequent standard PLT entries. */
1157 static const bfd_vma mips_exec_plt_entry[] =
1159 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
1160 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
1161 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
1162 0x03200008 /* jr $25 */
1165 static const bfd_vma mipsr6_exec_plt_entry[] =
1167 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
1168 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
1169 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
1170 0x03200009 /* jr $25 */
1173 static const bfd_vma mipsr6_exec_plt_entry_compact[] =
1175 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
1176 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
1177 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
1178 0xd8190000 /* jic $25, 0 */
1181 /* The format of subsequent MIPS16 o32 PLT entries. We use v0 ($2)
1182 and v1 ($3) as temporaries because t8 ($24) and t9 ($25) are not
1183 directly addressable. */
1184 static const bfd_vma mips16_o32_exec_plt_entry[] =
1186 0xb203, /* lw $2, 12($pc) */
1187 0x9a60, /* lw $3, 0($2) */
1188 0x651a, /* move $24, $2 */
1189 0xeb00, /* jr $3 */
1190 0x653b, /* move $25, $3 */
1191 0x6500, /* nop */
1192 0x0000, 0x0000 /* .word (.got.plt entry) */
1195 /* The format of subsequent microMIPS o32 PLT entries. We use v0 ($2)
1196 as a temporary because t8 ($24) is not addressable with ADDIUPC. */
1197 static const bfd_vma micromips_o32_exec_plt_entry[] =
1199 0x7900, 0x0000, /* addiupc $2, (.got.plt entry) - . */
1200 0xff22, 0x0000, /* lw $25, 0($2) */
1201 0x4599, /* jr $25 */
1202 0x0f02 /* move $24, $2 */
1205 /* The format of subsequent microMIPS o32 PLT entries in the insn32 mode. */
1206 static const bfd_vma micromips_insn32_o32_exec_plt_entry[] =
1208 0x41af, 0x0000, /* lui $15, %hi(.got.plt entry) */
1209 0xff2f, 0x0000, /* lw $25, %lo(.got.plt entry)($15) */
1210 0x0019, 0x0f3c, /* jr $25 */
1211 0x330f, 0x0000 /* addiu $24, $15, %lo(.got.plt entry) */
1214 /* The format of the first PLT entry in a VxWorks executable. */
1215 static const bfd_vma mips_vxworks_exec_plt0_entry[] =
1217 0x3c190000, /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_) */
1218 0x27390000, /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_) */
1219 0x8f390008, /* lw t9, 8(t9) */
1220 0x00000000, /* nop */
1221 0x03200008, /* jr t9 */
1222 0x00000000 /* nop */
1225 /* The format of subsequent PLT entries. */
1226 static const bfd_vma mips_vxworks_exec_plt_entry[] =
1228 0x10000000, /* b .PLT_resolver */
1229 0x24180000, /* li t8, <pltindex> */
1230 0x3c190000, /* lui t9, %hi(<.got.plt slot>) */
1231 0x27390000, /* addiu t9, t9, %lo(<.got.plt slot>) */
1232 0x8f390000, /* lw t9, 0(t9) */
1233 0x00000000, /* nop */
1234 0x03200008, /* jr t9 */
1235 0x00000000 /* nop */
1238 /* The format of the first PLT entry in a VxWorks shared object. */
1239 static const bfd_vma mips_vxworks_shared_plt0_entry[] =
1241 0x8f990008, /* lw t9, 8(gp) */
1242 0x00000000, /* nop */
1243 0x03200008, /* jr t9 */
1244 0x00000000, /* nop */
1245 0x00000000, /* nop */
1246 0x00000000 /* nop */
1249 /* The format of subsequent PLT entries. */
1250 static const bfd_vma mips_vxworks_shared_plt_entry[] =
1252 0x10000000, /* b .PLT_resolver */
1253 0x24180000 /* li t8, <pltindex> */
1256 /* microMIPS 32-bit opcode helper installer. */
1258 static void
1259 bfd_put_micromips_32 (const bfd *abfd, bfd_vma opcode, bfd_byte *ptr)
1261 bfd_put_16 (abfd, (opcode >> 16) & 0xffff, ptr);
1262 bfd_put_16 (abfd, opcode & 0xffff, ptr + 2);
1265 /* microMIPS 32-bit opcode helper retriever. */
1267 static bfd_vma
1268 bfd_get_micromips_32 (const bfd *abfd, const bfd_byte *ptr)
1270 return (bfd_get_16 (abfd, ptr) << 16) | bfd_get_16 (abfd, ptr + 2);
1273 /* Look up an entry in a MIPS ELF linker hash table. */
1275 #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
1276 ((struct mips_elf_link_hash_entry *) \
1277 elf_link_hash_lookup (&(table)->root, (string), (create), \
1278 (copy), (follow)))
1280 /* Traverse a MIPS ELF linker hash table. */
1282 #define mips_elf_link_hash_traverse(table, func, info) \
1283 (elf_link_hash_traverse \
1284 (&(table)->root, \
1285 (bool (*) (struct elf_link_hash_entry *, void *)) (func), \
1286 (info)))
1288 /* Find the base offsets for thread-local storage in this object,
1289 for GD/LD and IE/LE respectively. */
1291 #define TP_OFFSET 0x7000
1292 #define DTP_OFFSET 0x8000
1294 static bfd_vma
1295 dtprel_base (struct bfd_link_info *info)
1297 /* If tls_sec is NULL, we should have signalled an error already. */
1298 if (elf_hash_table (info)->tls_sec == NULL)
1299 return 0;
1300 return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
1303 static bfd_vma
1304 tprel_base (struct bfd_link_info *info)
1306 /* If tls_sec is NULL, we should have signalled an error already. */
1307 if (elf_hash_table (info)->tls_sec == NULL)
1308 return 0;
1309 return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
1312 /* Create an entry in a MIPS ELF linker hash table. */
1314 static struct bfd_hash_entry *
1315 mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
1316 struct bfd_hash_table *table, const char *string)
1318 struct mips_elf_link_hash_entry *ret =
1319 (struct mips_elf_link_hash_entry *) entry;
1321 /* Allocate the structure if it has not already been allocated by a
1322 subclass. */
1323 if (ret == NULL)
1324 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
1325 if (ret == NULL)
1326 return (struct bfd_hash_entry *) ret;
1328 /* Call the allocation method of the superclass. */
1329 ret = ((struct mips_elf_link_hash_entry *)
1330 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
1331 table, string));
1332 if (ret != NULL)
1334 /* Set local fields. */
1335 memset (&ret->esym, 0, sizeof (EXTR));
1336 /* We use -2 as a marker to indicate that the information has
1337 not been set. -1 means there is no associated ifd. */
1338 ret->esym.ifd = -2;
1339 ret->la25_stub = 0;
1340 ret->possibly_dynamic_relocs = 0;
1341 ret->fn_stub = NULL;
1342 ret->call_stub = NULL;
1343 ret->call_fp_stub = NULL;
1344 ret->mipsxhash_loc = 0;
1345 ret->global_got_area = GGA_NONE;
1346 ret->got_only_for_calls = true;
1347 ret->readonly_reloc = false;
1348 ret->has_static_relocs = false;
1349 ret->no_fn_stub = false;
1350 ret->need_fn_stub = false;
1351 ret->has_nonpic_branches = false;
1352 ret->needs_lazy_stub = false;
1353 ret->use_plt_entry = false;
1356 return (struct bfd_hash_entry *) ret;
1359 /* Allocate MIPS ELF private object data. */
1361 bool
1362 _bfd_mips_elf_mkobject (bfd *abfd)
1364 return bfd_elf_allocate_object (abfd, sizeof (struct mips_elf_obj_tdata),
1365 MIPS_ELF_DATA);
1368 bool
1369 _bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
1371 if (!sec->used_by_bfd)
1373 struct _mips_elf_section_data *sdata;
1374 size_t amt = sizeof (*sdata);
1376 sdata = bfd_zalloc (abfd, amt);
1377 if (sdata == NULL)
1378 return false;
1379 sec->used_by_bfd = sdata;
1382 return _bfd_elf_new_section_hook (abfd, sec);
1385 /* Read ECOFF debugging information from a .mdebug section into a
1386 ecoff_debug_info structure. */
1388 bool
1389 _bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
1390 struct ecoff_debug_info *debug)
1392 HDRR *symhdr;
1393 const struct ecoff_debug_swap *swap;
1394 char *ext_hdr;
1396 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1397 memset (debug, 0, sizeof (*debug));
1399 ext_hdr = bfd_malloc (swap->external_hdr_size);
1400 if (ext_hdr == NULL && swap->external_hdr_size != 0)
1401 goto error_return;
1403 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
1404 swap->external_hdr_size))
1405 goto error_return;
1407 symhdr = &debug->symbolic_header;
1408 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
1410 /* The symbolic header contains absolute file offsets and sizes to
1411 read. */
1412 #define READ(ptr, offset, count, size, type) \
1413 do \
1415 size_t amt; \
1416 debug->ptr = NULL; \
1417 if (symhdr->count == 0) \
1418 break; \
1419 if (_bfd_mul_overflow (size, symhdr->count, &amt)) \
1421 bfd_set_error (bfd_error_file_too_big); \
1422 goto error_return; \
1424 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0) \
1425 goto error_return; \
1426 debug->ptr = (type) _bfd_malloc_and_read (abfd, amt, amt); \
1427 if (debug->ptr == NULL) \
1428 goto error_return; \
1429 } while (0)
1431 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
1432 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
1433 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
1434 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
1435 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
1436 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
1437 union aux_ext *);
1438 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
1439 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
1440 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
1441 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
1442 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
1443 #undef READ
1445 debug->fdr = NULL;
1447 return true;
1449 error_return:
1450 free (ext_hdr);
1451 free (debug->line);
1452 free (debug->external_dnr);
1453 free (debug->external_pdr);
1454 free (debug->external_sym);
1455 free (debug->external_opt);
1456 free (debug->external_aux);
1457 free (debug->ss);
1458 free (debug->ssext);
1459 free (debug->external_fdr);
1460 free (debug->external_rfd);
1461 free (debug->external_ext);
1462 return false;
1465 /* Swap RPDR (runtime procedure table entry) for output. */
1467 static void
1468 ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
1470 H_PUT_S32 (abfd, in->adr, ex->p_adr);
1471 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
1472 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
1473 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
1474 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
1475 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
1477 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
1478 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
1480 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
1483 /* Create a runtime procedure table from the .mdebug section. */
1485 static bool
1486 mips_elf_create_procedure_table (void *handle, bfd *abfd,
1487 struct bfd_link_info *info, asection *s,
1488 struct ecoff_debug_info *debug)
1490 const struct ecoff_debug_swap *swap;
1491 HDRR *hdr = &debug->symbolic_header;
1492 RPDR *rpdr, *rp;
1493 struct rpdr_ext *erp;
1494 void *rtproc;
1495 struct pdr_ext *epdr;
1496 struct sym_ext *esym;
1497 char *ss, **sv;
1498 char *str;
1499 bfd_size_type size;
1500 bfd_size_type count;
1501 unsigned long sindex;
1502 unsigned long i;
1503 PDR pdr;
1504 SYMR sym;
1505 const char *no_name_func = _("static procedure (no name)");
1507 epdr = NULL;
1508 rpdr = NULL;
1509 esym = NULL;
1510 ss = NULL;
1511 sv = NULL;
1513 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1515 sindex = strlen (no_name_func) + 1;
1516 count = hdr->ipdMax;
1517 if (count > 0)
1519 size = swap->external_pdr_size;
1521 epdr = bfd_malloc (size * count);
1522 if (epdr == NULL)
1523 goto error_return;
1525 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
1526 goto error_return;
1528 size = sizeof (RPDR);
1529 rp = rpdr = bfd_malloc (size * count);
1530 if (rpdr == NULL)
1531 goto error_return;
1533 size = sizeof (char *);
1534 sv = bfd_malloc (size * count);
1535 if (sv == NULL)
1536 goto error_return;
1538 count = hdr->isymMax;
1539 size = swap->external_sym_size;
1540 esym = bfd_malloc (size * count);
1541 if (esym == NULL)
1542 goto error_return;
1544 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
1545 goto error_return;
1547 count = hdr->issMax;
1548 ss = bfd_malloc (count);
1549 if (ss == NULL)
1550 goto error_return;
1551 if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss))
1552 goto error_return;
1554 count = hdr->ipdMax;
1555 for (i = 0; i < (unsigned long) count; i++, rp++)
1557 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
1558 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
1559 rp->adr = sym.value;
1560 rp->regmask = pdr.regmask;
1561 rp->regoffset = pdr.regoffset;
1562 rp->fregmask = pdr.fregmask;
1563 rp->fregoffset = pdr.fregoffset;
1564 rp->frameoffset = pdr.frameoffset;
1565 rp->framereg = pdr.framereg;
1566 rp->pcreg = pdr.pcreg;
1567 rp->irpss = sindex;
1568 sv[i] = ss + sym.iss;
1569 sindex += strlen (sv[i]) + 1;
1573 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
1574 size = BFD_ALIGN (size, 16);
1575 rtproc = bfd_alloc (abfd, size);
1576 if (rtproc == NULL)
1578 mips_elf_hash_table (info)->procedure_count = 0;
1579 goto error_return;
1582 mips_elf_hash_table (info)->procedure_count = count + 2;
1584 erp = rtproc;
1585 memset (erp, 0, sizeof (struct rpdr_ext));
1586 erp++;
1587 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
1588 strcpy (str, no_name_func);
1589 str += strlen (no_name_func) + 1;
1590 for (i = 0; i < count; i++)
1592 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
1593 strcpy (str, sv[i]);
1594 str += strlen (sv[i]) + 1;
1596 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
1598 /* Set the size and contents of .rtproc section. */
1599 s->size = size;
1600 s->contents = rtproc;
1602 /* Skip this section later on (I don't think this currently
1603 matters, but someday it might). */
1604 s->map_head.link_order = NULL;
1606 free (epdr);
1607 free (rpdr);
1608 free (esym);
1609 free (ss);
1610 free (sv);
1611 return true;
1613 error_return:
1614 free (epdr);
1615 free (rpdr);
1616 free (esym);
1617 free (ss);
1618 free (sv);
1619 return false;
1622 /* We're going to create a stub for H. Create a symbol for the stub's
1623 value and size, to help make the disassembly easier to read. */
1625 static bool
1626 mips_elf_create_stub_symbol (struct bfd_link_info *info,
1627 struct mips_elf_link_hash_entry *h,
1628 const char *prefix, asection *s, bfd_vma value,
1629 bfd_vma size)
1631 bool micromips_p = ELF_ST_IS_MICROMIPS (h->root.other);
1632 struct bfd_link_hash_entry *bh;
1633 struct elf_link_hash_entry *elfh;
1634 char *name;
1635 bool res;
1637 if (micromips_p)
1638 value |= 1;
1640 /* Create a new symbol. */
1641 name = concat (prefix, h->root.root.root.string, NULL);
1642 bh = NULL;
1643 res = _bfd_generic_link_add_one_symbol (info, s->owner, name,
1644 BSF_LOCAL, s, value, NULL,
1645 true, false, &bh);
1646 free (name);
1647 if (! res)
1648 return false;
1650 /* Make it a local function. */
1651 elfh = (struct elf_link_hash_entry *) bh;
1652 elfh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
1653 elfh->size = size;
1654 elfh->forced_local = 1;
1655 if (micromips_p)
1656 elfh->other = ELF_ST_SET_MICROMIPS (elfh->other);
1657 return true;
1660 /* We're about to redefine H. Create a symbol to represent H's
1661 current value and size, to help make the disassembly easier
1662 to read. */
1664 static bool
1665 mips_elf_create_shadow_symbol (struct bfd_link_info *info,
1666 struct mips_elf_link_hash_entry *h,
1667 const char *prefix)
1669 struct bfd_link_hash_entry *bh;
1670 struct elf_link_hash_entry *elfh;
1671 char *name;
1672 asection *s;
1673 bfd_vma value;
1674 bool res;
1676 /* Read the symbol's value. */
1677 BFD_ASSERT (h->root.root.type == bfd_link_hash_defined
1678 || h->root.root.type == bfd_link_hash_defweak);
1679 s = h->root.root.u.def.section;
1680 value = h->root.root.u.def.value;
1682 /* Create a new symbol. */
1683 name = concat (prefix, h->root.root.root.string, NULL);
1684 bh = NULL;
1685 res = _bfd_generic_link_add_one_symbol (info, s->owner, name,
1686 BSF_LOCAL, s, value, NULL,
1687 true, false, &bh);
1688 free (name);
1689 if (! res)
1690 return false;
1692 /* Make it local and copy the other attributes from H. */
1693 elfh = (struct elf_link_hash_entry *) bh;
1694 elfh->type = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (h->root.type));
1695 elfh->other = h->root.other;
1696 elfh->size = h->root.size;
1697 elfh->forced_local = 1;
1698 return true;
1701 /* Return TRUE if relocations in SECTION can refer directly to a MIPS16
1702 function rather than to a hard-float stub. */
1704 static bool
1705 section_allows_mips16_refs_p (asection *section)
1707 const char *name;
1709 name = bfd_section_name (section);
1710 return (FN_STUB_P (name)
1711 || CALL_STUB_P (name)
1712 || CALL_FP_STUB_P (name)
1713 || strcmp (name, ".pdr") == 0);
1716 /* [RELOCS, RELEND) are the relocations against SEC, which is a MIPS16
1717 stub section of some kind. Return the R_SYMNDX of the target
1718 function, or 0 if we can't decide which function that is. */
1720 static unsigned long
1721 mips16_stub_symndx (const struct elf_backend_data *bed,
1722 asection *sec ATTRIBUTE_UNUSED,
1723 const Elf_Internal_Rela *relocs,
1724 const Elf_Internal_Rela *relend)
1726 int int_rels_per_ext_rel = bed->s->int_rels_per_ext_rel;
1727 const Elf_Internal_Rela *rel;
1729 /* Trust the first R_MIPS_NONE relocation, if any, but not a subsequent
1730 one in a compound relocation. */
1731 for (rel = relocs; rel < relend; rel += int_rels_per_ext_rel)
1732 if (ELF_R_TYPE (sec->owner, rel->r_info) == R_MIPS_NONE)
1733 return ELF_R_SYM (sec->owner, rel->r_info);
1735 /* Otherwise trust the first relocation, whatever its kind. This is
1736 the traditional behavior. */
1737 if (relocs < relend)
1738 return ELF_R_SYM (sec->owner, relocs->r_info);
1740 return 0;
1743 /* Check the mips16 stubs for a particular symbol, and see if we can
1744 discard them. */
1746 static void
1747 mips_elf_check_mips16_stubs (struct bfd_link_info *info,
1748 struct mips_elf_link_hash_entry *h)
1750 /* Dynamic symbols must use the standard call interface, in case other
1751 objects try to call them. */
1752 if (h->fn_stub != NULL
1753 && h->root.dynindx != -1)
1755 mips_elf_create_shadow_symbol (info, h, ".mips16.");
1756 h->need_fn_stub = true;
1759 if (h->fn_stub != NULL
1760 && ! h->need_fn_stub)
1762 /* We don't need the fn_stub; the only references to this symbol
1763 are 16 bit calls. Clobber the size to 0 to prevent it from
1764 being included in the link. */
1765 h->fn_stub->size = 0;
1766 h->fn_stub->flags &= ~SEC_RELOC;
1767 h->fn_stub->reloc_count = 0;
1768 h->fn_stub->flags |= SEC_EXCLUDE;
1769 h->fn_stub->output_section = bfd_abs_section_ptr;
1772 if (h->call_stub != NULL
1773 && ELF_ST_IS_MIPS16 (h->root.other))
1775 /* We don't need the call_stub; this is a 16 bit function, so
1776 calls from other 16 bit functions are OK. Clobber the size
1777 to 0 to prevent it from being included in the link. */
1778 h->call_stub->size = 0;
1779 h->call_stub->flags &= ~SEC_RELOC;
1780 h->call_stub->reloc_count = 0;
1781 h->call_stub->flags |= SEC_EXCLUDE;
1782 h->call_stub->output_section = bfd_abs_section_ptr;
1785 if (h->call_fp_stub != NULL
1786 && ELF_ST_IS_MIPS16 (h->root.other))
1788 /* We don't need the call_stub; this is a 16 bit function, so
1789 calls from other 16 bit functions are OK. Clobber the size
1790 to 0 to prevent it from being included in the link. */
1791 h->call_fp_stub->size = 0;
1792 h->call_fp_stub->flags &= ~SEC_RELOC;
1793 h->call_fp_stub->reloc_count = 0;
1794 h->call_fp_stub->flags |= SEC_EXCLUDE;
1795 h->call_fp_stub->output_section = bfd_abs_section_ptr;
1799 /* Hashtable callbacks for mips_elf_la25_stubs. */
1801 static hashval_t
1802 mips_elf_la25_stub_hash (const void *entry_)
1804 const struct mips_elf_la25_stub *entry;
1806 entry = (struct mips_elf_la25_stub *) entry_;
1807 return entry->h->root.root.u.def.section->id
1808 + entry->h->root.root.u.def.value;
1811 static int
1812 mips_elf_la25_stub_eq (const void *entry1_, const void *entry2_)
1814 const struct mips_elf_la25_stub *entry1, *entry2;
1816 entry1 = (struct mips_elf_la25_stub *) entry1_;
1817 entry2 = (struct mips_elf_la25_stub *) entry2_;
1818 return ((entry1->h->root.root.u.def.section
1819 == entry2->h->root.root.u.def.section)
1820 && (entry1->h->root.root.u.def.value
1821 == entry2->h->root.root.u.def.value));
1824 /* Called by the linker to set up the la25 stub-creation code. FN is
1825 the linker's implementation of add_stub_function. Return true on
1826 success. */
1828 bool
1829 _bfd_mips_elf_init_stubs (struct bfd_link_info *info,
1830 asection *(*fn) (const char *, asection *,
1831 asection *))
1833 struct mips_elf_link_hash_table *htab;
1835 htab = mips_elf_hash_table (info);
1836 if (htab == NULL)
1837 return false;
1839 htab->add_stub_section = fn;
1840 htab->la25_stubs = htab_try_create (1, mips_elf_la25_stub_hash,
1841 mips_elf_la25_stub_eq, NULL);
1842 if (htab->la25_stubs == NULL)
1843 return false;
1845 return true;
1848 /* Return true if H is a locally-defined PIC function, in the sense
1849 that it or its fn_stub might need $25 to be valid on entry.
1850 Note that MIPS16 functions set up $gp using PC-relative instructions,
1851 so they themselves never need $25 to be valid. Only non-MIPS16
1852 entry points are of interest here. */
1854 static bool
1855 mips_elf_local_pic_function_p (struct mips_elf_link_hash_entry *h)
1857 return ((h->root.root.type == bfd_link_hash_defined
1858 || h->root.root.type == bfd_link_hash_defweak)
1859 && h->root.def_regular
1860 && !bfd_is_abs_section (h->root.root.u.def.section)
1861 && !bfd_is_und_section (h->root.root.u.def.section)
1862 && (!ELF_ST_IS_MIPS16 (h->root.other)
1863 || (h->fn_stub && h->need_fn_stub))
1864 && (PIC_OBJECT_P (h->root.root.u.def.section->owner)
1865 || ELF_ST_IS_MIPS_PIC (h->root.other)));
1868 /* Set *SEC to the input section that contains the target of STUB.
1869 Return the offset of the target from the start of that section. */
1871 static bfd_vma
1872 mips_elf_get_la25_target (struct mips_elf_la25_stub *stub,
1873 asection **sec)
1875 if (ELF_ST_IS_MIPS16 (stub->h->root.other))
1877 BFD_ASSERT (stub->h->need_fn_stub);
1878 *sec = stub->h->fn_stub;
1879 return 0;
1881 else
1883 *sec = stub->h->root.root.u.def.section;
1884 return stub->h->root.root.u.def.value;
1888 /* STUB describes an la25 stub that we have decided to implement
1889 by inserting an LUI/ADDIU pair before the target function.
1890 Create the section and redirect the function symbol to it. */
1892 static bool
1893 mips_elf_add_la25_intro (struct mips_elf_la25_stub *stub,
1894 struct bfd_link_info *info)
1896 struct mips_elf_link_hash_table *htab;
1897 char *name;
1898 asection *s, *input_section;
1899 unsigned int align;
1901 htab = mips_elf_hash_table (info);
1902 if (htab == NULL)
1903 return false;
1905 /* Create a unique name for the new section. */
1906 name = bfd_malloc (11 + sizeof (".text.stub."));
1907 if (name == NULL)
1908 return false;
1909 sprintf (name, ".text.stub.%d", (int) htab_elements (htab->la25_stubs));
1911 /* Create the section. */
1912 mips_elf_get_la25_target (stub, &input_section);
1913 s = htab->add_stub_section (name, input_section,
1914 input_section->output_section);
1915 if (s == NULL)
1916 return false;
1918 /* Make sure that any padding goes before the stub. */
1919 align = input_section->alignment_power;
1920 if (!bfd_set_section_alignment (s, align))
1921 return false;
1922 if (align > 3)
1923 s->size = (1 << align) - 8;
1925 /* Create a symbol for the stub. */
1926 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 8);
1927 stub->stub_section = s;
1928 stub->offset = s->size;
1930 /* Allocate room for it. */
1931 s->size += 8;
1932 return true;
1935 /* STUB describes an la25 stub that we have decided to implement
1936 with a separate trampoline. Allocate room for it and redirect
1937 the function symbol to it. */
1939 static bool
1940 mips_elf_add_la25_trampoline (struct mips_elf_la25_stub *stub,
1941 struct bfd_link_info *info)
1943 struct mips_elf_link_hash_table *htab;
1944 asection *s;
1946 htab = mips_elf_hash_table (info);
1947 if (htab == NULL)
1948 return false;
1950 /* Create a trampoline section, if we haven't already. */
1951 s = htab->strampoline;
1952 if (s == NULL)
1954 asection *input_section = stub->h->root.root.u.def.section;
1955 s = htab->add_stub_section (".text", NULL,
1956 input_section->output_section);
1957 if (s == NULL || !bfd_set_section_alignment (s, 4))
1958 return false;
1959 htab->strampoline = s;
1962 /* Create a symbol for the stub. */
1963 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 16);
1964 stub->stub_section = s;
1965 stub->offset = s->size;
1967 /* Allocate room for it. */
1968 s->size += 16;
1969 return true;
1972 /* H describes a symbol that needs an la25 stub. Make sure that an
1973 appropriate stub exists and point H at it. */
1975 static bool
1976 mips_elf_add_la25_stub (struct bfd_link_info *info,
1977 struct mips_elf_link_hash_entry *h)
1979 struct mips_elf_link_hash_table *htab;
1980 struct mips_elf_la25_stub search, *stub;
1981 bool use_trampoline_p;
1982 asection *s;
1983 bfd_vma value;
1984 void **slot;
1986 /* Describe the stub we want. */
1987 search.stub_section = NULL;
1988 search.offset = 0;
1989 search.h = h;
1991 /* See if we've already created an equivalent stub. */
1992 htab = mips_elf_hash_table (info);
1993 if (htab == NULL)
1994 return false;
1996 slot = htab_find_slot (htab->la25_stubs, &search, INSERT);
1997 if (slot == NULL)
1998 return false;
2000 stub = (struct mips_elf_la25_stub *) *slot;
2001 if (stub != NULL)
2003 /* We can reuse the existing stub. */
2004 h->la25_stub = stub;
2005 return true;
2008 /* Create a permanent copy of ENTRY and add it to the hash table. */
2009 stub = bfd_malloc (sizeof (search));
2010 if (stub == NULL)
2011 return false;
2012 *stub = search;
2013 *slot = stub;
2015 /* Prefer to use LUI/ADDIU stubs if the function is at the beginning
2016 of the section and if we would need no more than 2 nops. */
2017 value = mips_elf_get_la25_target (stub, &s);
2018 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
2019 value &= ~1;
2020 use_trampoline_p = (value != 0 || s->alignment_power > 4);
2022 h->la25_stub = stub;
2023 return (use_trampoline_p
2024 ? mips_elf_add_la25_trampoline (stub, info)
2025 : mips_elf_add_la25_intro (stub, info));
2028 /* A mips_elf_link_hash_traverse callback that is called before sizing
2029 sections. DATA points to a mips_htab_traverse_info structure. */
2031 static bool
2032 mips_elf_check_symbols (struct mips_elf_link_hash_entry *h, void *data)
2034 struct mips_htab_traverse_info *hti;
2036 hti = (struct mips_htab_traverse_info *) data;
2037 if (!bfd_link_relocatable (hti->info))
2038 mips_elf_check_mips16_stubs (hti->info, h);
2040 if (mips_elf_local_pic_function_p (h))
2042 /* PR 12845: If H is in a section that has been garbage
2043 collected it will have its output section set to *ABS*. */
2044 if (bfd_is_abs_section (h->root.root.u.def.section->output_section))
2045 return true;
2047 /* H is a function that might need $25 to be valid on entry.
2048 If we're creating a non-PIC relocatable object, mark H as
2049 being PIC. If we're creating a non-relocatable object with
2050 non-PIC branches and jumps to H, make sure that H has an la25
2051 stub. */
2052 if (bfd_link_relocatable (hti->info))
2054 if (!PIC_OBJECT_P (hti->output_bfd))
2055 h->root.other = ELF_ST_SET_MIPS_PIC (h->root.other);
2057 else if (h->has_nonpic_branches && !mips_elf_add_la25_stub (hti->info, h))
2059 hti->error = true;
2060 return false;
2063 return true;
2066 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
2067 Most mips16 instructions are 16 bits, but these instructions
2068 are 32 bits.
2070 The format of these instructions is:
2072 +--------------+--------------------------------+
2073 | JALX | X| Imm 20:16 | Imm 25:21 |
2074 +--------------+--------------------------------+
2075 | Immediate 15:0 |
2076 +-----------------------------------------------+
2078 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
2079 Note that the immediate value in the first word is swapped.
2081 When producing a relocatable object file, R_MIPS16_26 is
2082 handled mostly like R_MIPS_26. In particular, the addend is
2083 stored as a straight 26-bit value in a 32-bit instruction.
2084 (gas makes life simpler for itself by never adjusting a
2085 R_MIPS16_26 reloc to be against a section, so the addend is
2086 always zero). However, the 32 bit instruction is stored as 2
2087 16-bit values, rather than a single 32-bit value. In a
2088 big-endian file, the result is the same; in a little-endian
2089 file, the two 16-bit halves of the 32 bit value are swapped.
2090 This is so that a disassembler can recognize the jal
2091 instruction.
2093 When doing a final link, R_MIPS16_26 is treated as a 32 bit
2094 instruction stored as two 16-bit values. The addend A is the
2095 contents of the targ26 field. The calculation is the same as
2096 R_MIPS_26. When storing the calculated value, reorder the
2097 immediate value as shown above, and don't forget to store the
2098 value as two 16-bit values.
2100 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
2101 defined as
2103 big-endian:
2104 +--------+----------------------+
2105 | | |
2106 | | targ26-16 |
2107 |31 26|25 0|
2108 +--------+----------------------+
2110 little-endian:
2111 +----------+------+-------------+
2112 | | | |
2113 | sub1 | | sub2 |
2114 |0 9|10 15|16 31|
2115 +----------+--------------------+
2116 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
2117 ((sub1 << 16) | sub2)).
2119 When producing a relocatable object file, the calculation is
2120 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
2121 When producing a fully linked file, the calculation is
2122 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
2123 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
2125 The table below lists the other MIPS16 instruction relocations.
2126 Each one is calculated in the same way as the non-MIPS16 relocation
2127 given on the right, but using the extended MIPS16 layout of 16-bit
2128 immediate fields:
2130 R_MIPS16_GPREL R_MIPS_GPREL16
2131 R_MIPS16_GOT16 R_MIPS_GOT16
2132 R_MIPS16_CALL16 R_MIPS_CALL16
2133 R_MIPS16_HI16 R_MIPS_HI16
2134 R_MIPS16_LO16 R_MIPS_LO16
2136 A typical instruction will have a format like this:
2138 +--------------+--------------------------------+
2139 | EXTEND | Imm 10:5 | Imm 15:11 |
2140 +--------------+--------------------------------+
2141 | Major | rx | ry | Imm 4:0 |
2142 +--------------+--------------------------------+
2144 EXTEND is the five bit value 11110. Major is the instruction
2145 opcode.
2147 All we need to do here is shuffle the bits appropriately.
2148 As above, the two 16-bit halves must be swapped on a
2149 little-endian system.
2151 Finally R_MIPS16_PC16_S1 corresponds to R_MIPS_PC16, however the
2152 relocatable field is shifted by 1 rather than 2 and the same bit
2153 shuffling is done as with the relocations above. */
2155 static inline bool
2156 mips16_reloc_p (int r_type)
2158 switch (r_type)
2160 case R_MIPS16_26:
2161 case R_MIPS16_GPREL:
2162 case R_MIPS16_GOT16:
2163 case R_MIPS16_CALL16:
2164 case R_MIPS16_HI16:
2165 case R_MIPS16_LO16:
2166 case R_MIPS16_TLS_GD:
2167 case R_MIPS16_TLS_LDM:
2168 case R_MIPS16_TLS_DTPREL_HI16:
2169 case R_MIPS16_TLS_DTPREL_LO16:
2170 case R_MIPS16_TLS_GOTTPREL:
2171 case R_MIPS16_TLS_TPREL_HI16:
2172 case R_MIPS16_TLS_TPREL_LO16:
2173 case R_MIPS16_PC16_S1:
2174 return true;
2176 default:
2177 return false;
2181 /* Check if a microMIPS reloc. */
2183 static inline bool
2184 micromips_reloc_p (unsigned int r_type)
2186 return r_type >= R_MICROMIPS_min && r_type < R_MICROMIPS_max;
2189 /* Similar to MIPS16, the two 16-bit halves in microMIPS must be swapped
2190 on a little-endian system. This does not apply to R_MICROMIPS_PC7_S1
2191 and R_MICROMIPS_PC10_S1 relocs that apply to 16-bit instructions. */
2193 static inline bool
2194 micromips_reloc_shuffle_p (unsigned int r_type)
2196 return (micromips_reloc_p (r_type)
2197 && r_type != R_MICROMIPS_PC7_S1
2198 && r_type != R_MICROMIPS_PC10_S1);
2201 static inline bool
2202 got16_reloc_p (int r_type)
2204 return (r_type == R_MIPS_GOT16
2205 || r_type == R_MIPS16_GOT16
2206 || r_type == R_MICROMIPS_GOT16);
2209 static inline bool
2210 call16_reloc_p (int r_type)
2212 return (r_type == R_MIPS_CALL16
2213 || r_type == R_MIPS16_CALL16
2214 || r_type == R_MICROMIPS_CALL16);
2217 static inline bool
2218 got_disp_reloc_p (unsigned int r_type)
2220 return r_type == R_MIPS_GOT_DISP || r_type == R_MICROMIPS_GOT_DISP;
2223 static inline bool
2224 got_page_reloc_p (unsigned int r_type)
2226 return r_type == R_MIPS_GOT_PAGE || r_type == R_MICROMIPS_GOT_PAGE;
2229 static inline bool
2230 got_lo16_reloc_p (unsigned int r_type)
2232 return r_type == R_MIPS_GOT_LO16 || r_type == R_MICROMIPS_GOT_LO16;
2235 static inline bool
2236 call_hi16_reloc_p (unsigned int r_type)
2238 return r_type == R_MIPS_CALL_HI16 || r_type == R_MICROMIPS_CALL_HI16;
2241 static inline bool
2242 call_lo16_reloc_p (unsigned int r_type)
2244 return r_type == R_MIPS_CALL_LO16 || r_type == R_MICROMIPS_CALL_LO16;
2247 static inline bool
2248 hi16_reloc_p (int r_type)
2250 return (r_type == R_MIPS_HI16
2251 || r_type == R_MIPS16_HI16
2252 || r_type == R_MICROMIPS_HI16
2253 || r_type == R_MIPS_PCHI16);
2256 static inline bool
2257 lo16_reloc_p (int r_type)
2259 return (r_type == R_MIPS_LO16
2260 || r_type == R_MIPS16_LO16
2261 || r_type == R_MICROMIPS_LO16
2262 || r_type == R_MIPS_PCLO16);
2265 static inline bool
2266 mips16_call_reloc_p (int r_type)
2268 return r_type == R_MIPS16_26 || r_type == R_MIPS16_CALL16;
2271 static inline bool
2272 jal_reloc_p (int r_type)
2274 return (r_type == R_MIPS_26
2275 || r_type == R_MIPS16_26
2276 || r_type == R_MICROMIPS_26_S1);
2279 static inline bool
2280 b_reloc_p (int r_type)
2282 return (r_type == R_MIPS_PC26_S2
2283 || r_type == R_MIPS_PC21_S2
2284 || r_type == R_MIPS_PC16
2285 || r_type == R_MIPS_GNU_REL16_S2
2286 || r_type == R_MIPS16_PC16_S1
2287 || r_type == R_MICROMIPS_PC16_S1
2288 || r_type == R_MICROMIPS_PC10_S1
2289 || r_type == R_MICROMIPS_PC7_S1);
2292 static inline bool
2293 aligned_pcrel_reloc_p (int r_type)
2295 return (r_type == R_MIPS_PC18_S3
2296 || r_type == R_MIPS_PC19_S2);
2299 static inline bool
2300 branch_reloc_p (int r_type)
2302 return (r_type == R_MIPS_26
2303 || r_type == R_MIPS_PC26_S2
2304 || r_type == R_MIPS_PC21_S2
2305 || r_type == R_MIPS_PC16
2306 || r_type == R_MIPS_GNU_REL16_S2);
2309 static inline bool
2310 mips16_branch_reloc_p (int r_type)
2312 return (r_type == R_MIPS16_26
2313 || r_type == R_MIPS16_PC16_S1);
2316 static inline bool
2317 micromips_branch_reloc_p (int r_type)
2319 return (r_type == R_MICROMIPS_26_S1
2320 || r_type == R_MICROMIPS_PC16_S1
2321 || r_type == R_MICROMIPS_PC10_S1
2322 || r_type == R_MICROMIPS_PC7_S1);
2325 static inline bool
2326 tls_gd_reloc_p (unsigned int r_type)
2328 return (r_type == R_MIPS_TLS_GD
2329 || r_type == R_MIPS16_TLS_GD
2330 || r_type == R_MICROMIPS_TLS_GD);
2333 static inline bool
2334 tls_ldm_reloc_p (unsigned int r_type)
2336 return (r_type == R_MIPS_TLS_LDM
2337 || r_type == R_MIPS16_TLS_LDM
2338 || r_type == R_MICROMIPS_TLS_LDM);
2341 static inline bool
2342 tls_gottprel_reloc_p (unsigned int r_type)
2344 return (r_type == R_MIPS_TLS_GOTTPREL
2345 || r_type == R_MIPS16_TLS_GOTTPREL
2346 || r_type == R_MICROMIPS_TLS_GOTTPREL);
2349 void
2350 _bfd_mips_elf_reloc_unshuffle (bfd *abfd, int r_type,
2351 bool jal_shuffle, bfd_byte *data)
2353 bfd_vma first, second, val;
2355 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
2356 return;
2358 /* Pick up the first and second halfwords of the instruction. */
2359 first = bfd_get_16 (abfd, data);
2360 second = bfd_get_16 (abfd, data + 2);
2361 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2362 val = first << 16 | second;
2363 else if (r_type != R_MIPS16_26)
2364 val = (((first & 0xf800) << 16) | ((second & 0xffe0) << 11)
2365 | ((first & 0x1f) << 11) | (first & 0x7e0) | (second & 0x1f));
2366 else
2367 val = (((first & 0xfc00) << 16) | ((first & 0x3e0) << 11)
2368 | ((first & 0x1f) << 21) | second);
2369 bfd_put_32 (abfd, val, data);
2372 void
2373 _bfd_mips_elf_reloc_shuffle (bfd *abfd, int r_type,
2374 bool jal_shuffle, bfd_byte *data)
2376 bfd_vma first, second, val;
2378 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
2379 return;
2381 val = bfd_get_32 (abfd, data);
2382 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2384 second = val & 0xffff;
2385 first = val >> 16;
2387 else if (r_type != R_MIPS16_26)
2389 second = ((val >> 11) & 0xffe0) | (val & 0x1f);
2390 first = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
2392 else
2394 second = val & 0xffff;
2395 first = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
2396 | ((val >> 21) & 0x1f);
2398 bfd_put_16 (abfd, second, data + 2);
2399 bfd_put_16 (abfd, first, data);
2402 bfd_reloc_status_type
2403 _bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
2404 arelent *reloc_entry, asection *input_section,
2405 bool relocatable, void *data, bfd_vma gp)
2407 bfd_vma relocation;
2408 bfd_signed_vma val;
2409 bfd_reloc_status_type status;
2411 if (bfd_is_com_section (symbol->section))
2412 relocation = 0;
2413 else
2414 relocation = symbol->value;
2416 relocation += symbol->section->output_section->vma;
2417 relocation += symbol->section->output_offset;
2419 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2420 return bfd_reloc_outofrange;
2422 /* Set val to the offset into the section or symbol. */
2423 val = reloc_entry->addend;
2425 _bfd_mips_elf_sign_extend (val, 16);
2427 /* Adjust val for the final section location and GP value. If we
2428 are producing relocatable output, we don't want to do this for
2429 an external symbol. */
2430 if (! relocatable
2431 || (symbol->flags & BSF_SECTION_SYM) != 0)
2432 val += relocation - gp;
2434 if (reloc_entry->howto->partial_inplace)
2436 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2437 (bfd_byte *) data
2438 + reloc_entry->address);
2439 if (status != bfd_reloc_ok)
2440 return status;
2442 else
2443 reloc_entry->addend = val;
2445 if (relocatable)
2446 reloc_entry->address += input_section->output_offset;
2448 return bfd_reloc_ok;
2451 /* Used to store a REL high-part relocation such as R_MIPS_HI16 or
2452 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
2453 that contains the relocation field and DATA points to the start of
2454 INPUT_SECTION. */
2456 struct mips_hi16
2458 struct mips_hi16 *next;
2459 bfd_byte *data;
2460 asection *input_section;
2461 arelent rel;
2464 /* FIXME: This should not be a static variable. */
2466 static struct mips_hi16 *mips_hi16_list;
2468 /* A howto special_function for REL *HI16 relocations. We can only
2469 calculate the correct value once we've seen the partnering
2470 *LO16 relocation, so just save the information for later.
2472 The ABI requires that the *LO16 immediately follow the *HI16.
2473 However, as a GNU extension, we permit an arbitrary number of
2474 *HI16s to be associated with a single *LO16. This significantly
2475 simplies the relocation handling in gcc. */
2477 bfd_reloc_status_type
2478 _bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2479 asymbol *symbol ATTRIBUTE_UNUSED, void *data,
2480 asection *input_section, bfd *output_bfd,
2481 char **error_message ATTRIBUTE_UNUSED)
2483 struct mips_hi16 *n;
2485 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2486 return bfd_reloc_outofrange;
2488 n = bfd_malloc (sizeof *n);
2489 if (n == NULL)
2490 return bfd_reloc_outofrange;
2492 n->next = mips_hi16_list;
2493 n->data = data;
2494 n->input_section = input_section;
2495 n->rel = *reloc_entry;
2496 mips_hi16_list = n;
2498 if (output_bfd != NULL)
2499 reloc_entry->address += input_section->output_offset;
2501 return bfd_reloc_ok;
2504 /* A howto special_function for REL R_MIPS*_GOT16 relocations. This is just
2505 like any other 16-bit relocation when applied to global symbols, but is
2506 treated in the same as R_MIPS_HI16 when applied to local symbols. */
2508 bfd_reloc_status_type
2509 _bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2510 void *data, asection *input_section,
2511 bfd *output_bfd, char **error_message)
2513 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
2514 || bfd_is_und_section (bfd_asymbol_section (symbol))
2515 || bfd_is_com_section (bfd_asymbol_section (symbol)))
2516 /* The relocation is against a global symbol. */
2517 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2518 input_section, output_bfd,
2519 error_message);
2521 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
2522 input_section, output_bfd, error_message);
2525 /* A howto special_function for REL *LO16 relocations. The *LO16 itself
2526 is a straightforward 16 bit inplace relocation, but we must deal with
2527 any partnering high-part relocations as well. */
2529 bfd_reloc_status_type
2530 _bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2531 void *data, asection *input_section,
2532 bfd *output_bfd, char **error_message)
2534 bfd_vma vallo;
2535 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2537 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2538 return bfd_reloc_outofrange;
2540 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, false,
2541 location);
2542 vallo = bfd_get_32 (abfd, location);
2543 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, false,
2544 location);
2546 while (mips_hi16_list != NULL)
2548 bfd_reloc_status_type ret;
2549 struct mips_hi16 *hi;
2551 hi = mips_hi16_list;
2553 /* R_MIPS*_GOT16 relocations are something of a special case. We
2554 want to install the addend in the same way as for a R_MIPS*_HI16
2555 relocation (with a rightshift of 16). However, since GOT16
2556 relocations can also be used with global symbols, their howto
2557 has a rightshift of 0. */
2558 if (hi->rel.howto->type == R_MIPS_GOT16)
2559 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, false);
2560 else if (hi->rel.howto->type == R_MIPS16_GOT16)
2561 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS16_HI16, false);
2562 else if (hi->rel.howto->type == R_MICROMIPS_GOT16)
2563 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MICROMIPS_HI16, false);
2565 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
2566 carry or borrow will induce a change of +1 or -1 in the high part. */
2567 hi->rel.addend += (vallo + 0x8000) & 0xffff;
2569 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
2570 hi->input_section, output_bfd,
2571 error_message);
2572 if (ret != bfd_reloc_ok)
2573 return ret;
2575 mips_hi16_list = hi->next;
2576 free (hi);
2579 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2580 input_section, output_bfd,
2581 error_message);
2584 /* A generic howto special_function. This calculates and installs the
2585 relocation itself, thus avoiding the oft-discussed problems in
2586 bfd_perform_relocation and bfd_install_relocation. */
2588 bfd_reloc_status_type
2589 _bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2590 asymbol *symbol, void *data ATTRIBUTE_UNUSED,
2591 asection *input_section, bfd *output_bfd,
2592 char **error_message ATTRIBUTE_UNUSED)
2594 bfd_signed_vma val;
2595 bfd_reloc_status_type status;
2596 bool relocatable;
2598 relocatable = (output_bfd != NULL);
2600 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2601 return bfd_reloc_outofrange;
2603 /* Build up the field adjustment in VAL. */
2604 val = 0;
2605 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
2607 /* Either we're calculating the final field value or we have a
2608 relocation against a section symbol. Add in the section's
2609 offset or address. */
2610 val += symbol->section->output_section->vma;
2611 val += symbol->section->output_offset;
2614 if (!relocatable)
2616 /* We're calculating the final field value. Add in the symbol's value
2617 and, if pc-relative, subtract the address of the field itself. */
2618 val += symbol->value;
2619 if (reloc_entry->howto->pc_relative)
2621 val -= input_section->output_section->vma;
2622 val -= input_section->output_offset;
2623 val -= reloc_entry->address;
2627 /* VAL is now the final adjustment. If we're keeping this relocation
2628 in the output file, and if the relocation uses a separate addend,
2629 we just need to add VAL to that addend. Otherwise we need to add
2630 VAL to the relocation field itself. */
2631 if (relocatable && !reloc_entry->howto->partial_inplace)
2632 reloc_entry->addend += val;
2633 else
2635 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2637 /* Add in the separate addend, if any. */
2638 val += reloc_entry->addend;
2640 /* Add VAL to the relocation field. */
2641 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, false,
2642 location);
2643 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2644 location);
2645 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, false,
2646 location);
2648 if (status != bfd_reloc_ok)
2649 return status;
2652 if (relocatable)
2653 reloc_entry->address += input_section->output_offset;
2655 return bfd_reloc_ok;
2658 /* Swap an entry in a .gptab section. Note that these routines rely
2659 on the equivalence of the two elements of the union. */
2661 static void
2662 bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
2663 Elf32_gptab *in)
2665 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
2666 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
2669 static void
2670 bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
2671 Elf32_External_gptab *ex)
2673 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
2674 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
2677 static void
2678 bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
2679 Elf32_External_compact_rel *ex)
2681 H_PUT_32 (abfd, in->id1, ex->id1);
2682 H_PUT_32 (abfd, in->num, ex->num);
2683 H_PUT_32 (abfd, in->id2, ex->id2);
2684 H_PUT_32 (abfd, in->offset, ex->offset);
2685 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
2686 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
2689 static void
2690 bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
2691 Elf32_External_crinfo *ex)
2693 unsigned long l;
2695 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
2696 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
2697 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
2698 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
2699 H_PUT_32 (abfd, l, ex->info);
2700 H_PUT_32 (abfd, in->konst, ex->konst);
2701 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
2704 /* A .reginfo section holds a single Elf32_RegInfo structure. These
2705 routines swap this structure in and out. They are used outside of
2706 BFD, so they are globally visible. */
2708 void
2709 bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
2710 Elf32_RegInfo *in)
2712 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2713 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2714 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2715 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2716 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2717 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
2720 void
2721 bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
2722 Elf32_External_RegInfo *ex)
2724 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2725 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2726 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2727 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2728 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2729 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
2732 /* In the 64 bit ABI, the .MIPS.options section holds register
2733 information in an Elf64_Reginfo structure. These routines swap
2734 them in and out. They are globally visible because they are used
2735 outside of BFD. These routines are here so that gas can call them
2736 without worrying about whether the 64 bit ABI has been included. */
2738 void
2739 bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
2740 Elf64_Internal_RegInfo *in)
2742 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2743 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
2744 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2745 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2746 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2747 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2748 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
2751 void
2752 bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
2753 Elf64_External_RegInfo *ex)
2755 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2756 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
2757 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2758 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2759 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2760 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2761 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
2764 /* Swap in an options header. */
2766 void
2767 bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
2768 Elf_Internal_Options *in)
2770 in->kind = H_GET_8 (abfd, ex->kind);
2771 in->size = H_GET_8 (abfd, ex->size);
2772 in->section = H_GET_16 (abfd, ex->section);
2773 in->info = H_GET_32 (abfd, ex->info);
2776 /* Swap out an options header. */
2778 void
2779 bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
2780 Elf_External_Options *ex)
2782 H_PUT_8 (abfd, in->kind, ex->kind);
2783 H_PUT_8 (abfd, in->size, ex->size);
2784 H_PUT_16 (abfd, in->section, ex->section);
2785 H_PUT_32 (abfd, in->info, ex->info);
2788 /* Swap in an abiflags structure. */
2790 void
2791 bfd_mips_elf_swap_abiflags_v0_in (bfd *abfd,
2792 const Elf_External_ABIFlags_v0 *ex,
2793 Elf_Internal_ABIFlags_v0 *in)
2795 in->version = H_GET_16 (abfd, ex->version);
2796 in->isa_level = H_GET_8 (abfd, ex->isa_level);
2797 in->isa_rev = H_GET_8 (abfd, ex->isa_rev);
2798 in->gpr_size = H_GET_8 (abfd, ex->gpr_size);
2799 in->cpr1_size = H_GET_8 (abfd, ex->cpr1_size);
2800 in->cpr2_size = H_GET_8 (abfd, ex->cpr2_size);
2801 in->fp_abi = H_GET_8 (abfd, ex->fp_abi);
2802 in->isa_ext = H_GET_32 (abfd, ex->isa_ext);
2803 in->ases = H_GET_32 (abfd, ex->ases);
2804 in->flags1 = H_GET_32 (abfd, ex->flags1);
2805 in->flags2 = H_GET_32 (abfd, ex->flags2);
2808 /* Swap out an abiflags structure. */
2810 void
2811 bfd_mips_elf_swap_abiflags_v0_out (bfd *abfd,
2812 const Elf_Internal_ABIFlags_v0 *in,
2813 Elf_External_ABIFlags_v0 *ex)
2815 H_PUT_16 (abfd, in->version, ex->version);
2816 H_PUT_8 (abfd, in->isa_level, ex->isa_level);
2817 H_PUT_8 (abfd, in->isa_rev, ex->isa_rev);
2818 H_PUT_8 (abfd, in->gpr_size, ex->gpr_size);
2819 H_PUT_8 (abfd, in->cpr1_size, ex->cpr1_size);
2820 H_PUT_8 (abfd, in->cpr2_size, ex->cpr2_size);
2821 H_PUT_8 (abfd, in->fp_abi, ex->fp_abi);
2822 H_PUT_32 (abfd, in->isa_ext, ex->isa_ext);
2823 H_PUT_32 (abfd, in->ases, ex->ases);
2824 H_PUT_32 (abfd, in->flags1, ex->flags1);
2825 H_PUT_32 (abfd, in->flags2, ex->flags2);
2828 /* This function is called via qsort() to sort the dynamic relocation
2829 entries by increasing r_symndx value. */
2831 static int
2832 sort_dynamic_relocs (const void *arg1, const void *arg2)
2834 Elf_Internal_Rela int_reloc1;
2835 Elf_Internal_Rela int_reloc2;
2836 int diff;
2838 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
2839 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
2841 diff = ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
2842 if (diff != 0)
2843 return diff;
2845 if (int_reloc1.r_offset < int_reloc2.r_offset)
2846 return -1;
2847 if (int_reloc1.r_offset > int_reloc2.r_offset)
2848 return 1;
2849 return 0;
2852 /* Like sort_dynamic_relocs, but used for elf64 relocations. */
2854 static int
2855 sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED,
2856 const void *arg2 ATTRIBUTE_UNUSED)
2858 #ifdef BFD64
2859 Elf_Internal_Rela int_reloc1[3];
2860 Elf_Internal_Rela int_reloc2[3];
2862 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2863 (reldyn_sorting_bfd, arg1, int_reloc1);
2864 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2865 (reldyn_sorting_bfd, arg2, int_reloc2);
2867 if (ELF64_R_SYM (int_reloc1[0].r_info) < ELF64_R_SYM (int_reloc2[0].r_info))
2868 return -1;
2869 if (ELF64_R_SYM (int_reloc1[0].r_info) > ELF64_R_SYM (int_reloc2[0].r_info))
2870 return 1;
2872 if (int_reloc1[0].r_offset < int_reloc2[0].r_offset)
2873 return -1;
2874 if (int_reloc1[0].r_offset > int_reloc2[0].r_offset)
2875 return 1;
2876 return 0;
2877 #else
2878 abort ();
2879 #endif
2883 /* This routine is used to write out ECOFF debugging external symbol
2884 information. It is called via mips_elf_link_hash_traverse. The
2885 ECOFF external symbol information must match the ELF external
2886 symbol information. Unfortunately, at this point we don't know
2887 whether a symbol is required by reloc information, so the two
2888 tables may wind up being different. We must sort out the external
2889 symbol information before we can set the final size of the .mdebug
2890 section, and we must set the size of the .mdebug section before we
2891 can relocate any sections, and we can't know which symbols are
2892 required by relocation until we relocate the sections.
2893 Fortunately, it is relatively unlikely that any symbol will be
2894 stripped but required by a reloc. In particular, it can not happen
2895 when generating a final executable. */
2897 static bool
2898 mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
2900 struct extsym_info *einfo = data;
2901 bool strip;
2902 asection *sec, *output_section;
2904 if (h->root.indx == -2)
2905 strip = false;
2906 else if ((h->root.def_dynamic
2907 || h->root.ref_dynamic
2908 || h->root.type == bfd_link_hash_new)
2909 && !h->root.def_regular
2910 && !h->root.ref_regular)
2911 strip = true;
2912 else if (einfo->info->strip == strip_all
2913 || (einfo->info->strip == strip_some
2914 && bfd_hash_lookup (einfo->info->keep_hash,
2915 h->root.root.root.string,
2916 false, false) == NULL))
2917 strip = true;
2918 else
2919 strip = false;
2921 if (strip)
2922 return true;
2924 if (h->esym.ifd == -2)
2926 h->esym.jmptbl = 0;
2927 h->esym.cobol_main = 0;
2928 h->esym.weakext = 0;
2929 h->esym.reserved = 0;
2930 h->esym.ifd = ifdNil;
2931 h->esym.asym.value = 0;
2932 h->esym.asym.st = stGlobal;
2934 if (h->root.root.type == bfd_link_hash_undefined
2935 || h->root.root.type == bfd_link_hash_undefweak)
2937 const char *name;
2939 /* Use undefined class. Also, set class and type for some
2940 special symbols. */
2941 name = h->root.root.root.string;
2942 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
2943 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
2945 h->esym.asym.sc = scData;
2946 h->esym.asym.st = stLabel;
2947 h->esym.asym.value = 0;
2949 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
2951 h->esym.asym.sc = scAbs;
2952 h->esym.asym.st = stLabel;
2953 h->esym.asym.value =
2954 mips_elf_hash_table (einfo->info)->procedure_count;
2956 else
2957 h->esym.asym.sc = scUndefined;
2959 else if (h->root.root.type != bfd_link_hash_defined
2960 && h->root.root.type != bfd_link_hash_defweak)
2961 h->esym.asym.sc = scAbs;
2962 else
2964 const char *name;
2966 sec = h->root.root.u.def.section;
2967 output_section = sec->output_section;
2969 /* When making a shared library and symbol h is the one from
2970 the another shared library, OUTPUT_SECTION may be null. */
2971 if (output_section == NULL)
2972 h->esym.asym.sc = scUndefined;
2973 else
2975 name = bfd_section_name (output_section);
2977 if (strcmp (name, ".text") == 0)
2978 h->esym.asym.sc = scText;
2979 else if (strcmp (name, ".data") == 0)
2980 h->esym.asym.sc = scData;
2981 else if (strcmp (name, ".sdata") == 0)
2982 h->esym.asym.sc = scSData;
2983 else if (strcmp (name, ".rodata") == 0
2984 || strcmp (name, ".rdata") == 0)
2985 h->esym.asym.sc = scRData;
2986 else if (strcmp (name, ".bss") == 0)
2987 h->esym.asym.sc = scBss;
2988 else if (strcmp (name, ".sbss") == 0)
2989 h->esym.asym.sc = scSBss;
2990 else if (strcmp (name, ".init") == 0)
2991 h->esym.asym.sc = scInit;
2992 else if (strcmp (name, ".fini") == 0)
2993 h->esym.asym.sc = scFini;
2994 else
2995 h->esym.asym.sc = scAbs;
2999 h->esym.asym.reserved = 0;
3000 h->esym.asym.index = indexNil;
3003 if (h->root.root.type == bfd_link_hash_common)
3004 h->esym.asym.value = h->root.root.u.c.size;
3005 else if (h->root.root.type == bfd_link_hash_defined
3006 || h->root.root.type == bfd_link_hash_defweak)
3008 if (h->esym.asym.sc == scCommon)
3009 h->esym.asym.sc = scBss;
3010 else if (h->esym.asym.sc == scSCommon)
3011 h->esym.asym.sc = scSBss;
3013 sec = h->root.root.u.def.section;
3014 output_section = sec->output_section;
3015 if (output_section != NULL)
3016 h->esym.asym.value = (h->root.root.u.def.value
3017 + sec->output_offset
3018 + output_section->vma);
3019 else
3020 h->esym.asym.value = 0;
3022 else
3024 struct mips_elf_link_hash_entry *hd = h;
3026 while (hd->root.root.type == bfd_link_hash_indirect)
3027 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
3029 if (hd->needs_lazy_stub)
3031 BFD_ASSERT (hd->root.plt.plist != NULL);
3032 BFD_ASSERT (hd->root.plt.plist->stub_offset != MINUS_ONE);
3033 /* Set type and value for a symbol with a function stub. */
3034 h->esym.asym.st = stProc;
3035 sec = hd->root.root.u.def.section;
3036 if (sec == NULL)
3037 h->esym.asym.value = 0;
3038 else
3040 output_section = sec->output_section;
3041 if (output_section != NULL)
3042 h->esym.asym.value = (hd->root.plt.plist->stub_offset
3043 + sec->output_offset
3044 + output_section->vma);
3045 else
3046 h->esym.asym.value = 0;
3051 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
3052 h->root.root.root.string,
3053 &h->esym))
3055 einfo->failed = true;
3056 return false;
3059 return true;
3062 /* A comparison routine used to sort .gptab entries. */
3064 static int
3065 gptab_compare (const void *p1, const void *p2)
3067 const Elf32_gptab *a1 = p1;
3068 const Elf32_gptab *a2 = p2;
3070 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
3073 /* Functions to manage the got entry hash table. */
3075 /* Use all 64 bits of a bfd_vma for the computation of a 32-bit
3076 hash number. */
3078 static inline hashval_t
3079 mips_elf_hash_bfd_vma (bfd_vma addr)
3081 #ifdef BFD64
3082 return addr + (addr >> 32);
3083 #else
3084 return addr;
3085 #endif
3088 static hashval_t
3089 mips_elf_got_entry_hash (const void *entry_)
3091 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
3093 return (entry->symndx
3094 + ((entry->tls_type == GOT_TLS_LDM) << 18)
3095 + (entry->tls_type == GOT_TLS_LDM ? 0
3096 : !entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
3097 : entry->symndx >= 0 ? (entry->abfd->id
3098 + mips_elf_hash_bfd_vma (entry->d.addend))
3099 : entry->d.h->root.root.root.hash));
3102 static int
3103 mips_elf_got_entry_eq (const void *entry1, const void *entry2)
3105 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
3106 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
3108 return (e1->symndx == e2->symndx
3109 && e1->tls_type == e2->tls_type
3110 && (e1->tls_type == GOT_TLS_LDM ? true
3111 : !e1->abfd ? !e2->abfd && e1->d.address == e2->d.address
3112 : e1->symndx >= 0 ? (e1->abfd == e2->abfd
3113 && e1->d.addend == e2->d.addend)
3114 : e2->abfd && e1->d.h == e2->d.h));
3117 static hashval_t
3118 mips_got_page_ref_hash (const void *ref_)
3120 const struct mips_got_page_ref *ref;
3122 ref = (const struct mips_got_page_ref *) ref_;
3123 return ((ref->symndx >= 0
3124 ? (hashval_t) (ref->u.abfd->id + ref->symndx)
3125 : ref->u.h->root.root.root.hash)
3126 + mips_elf_hash_bfd_vma (ref->addend));
3129 static int
3130 mips_got_page_ref_eq (const void *ref1_, const void *ref2_)
3132 const struct mips_got_page_ref *ref1, *ref2;
3134 ref1 = (const struct mips_got_page_ref *) ref1_;
3135 ref2 = (const struct mips_got_page_ref *) ref2_;
3136 return (ref1->symndx == ref2->symndx
3137 && (ref1->symndx < 0
3138 ? ref1->u.h == ref2->u.h
3139 : ref1->u.abfd == ref2->u.abfd)
3140 && ref1->addend == ref2->addend);
3143 static hashval_t
3144 mips_got_page_entry_hash (const void *entry_)
3146 const struct mips_got_page_entry *entry;
3148 entry = (const struct mips_got_page_entry *) entry_;
3149 return entry->sec->id;
3152 static int
3153 mips_got_page_entry_eq (const void *entry1_, const void *entry2_)
3155 const struct mips_got_page_entry *entry1, *entry2;
3157 entry1 = (const struct mips_got_page_entry *) entry1_;
3158 entry2 = (const struct mips_got_page_entry *) entry2_;
3159 return entry1->sec == entry2->sec;
3162 /* Create and return a new mips_got_info structure. */
3164 static struct mips_got_info *
3165 mips_elf_create_got_info (bfd *abfd)
3167 struct mips_got_info *g;
3169 g = bfd_zalloc (abfd, sizeof (struct mips_got_info));
3170 if (g == NULL)
3171 return NULL;
3173 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
3174 mips_elf_got_entry_eq, NULL);
3175 if (g->got_entries == NULL)
3176 return NULL;
3178 g->got_page_refs = htab_try_create (1, mips_got_page_ref_hash,
3179 mips_got_page_ref_eq, NULL);
3180 if (g->got_page_refs == NULL)
3181 return NULL;
3183 return g;
3186 /* Return the GOT info for input bfd ABFD, trying to create a new one if
3187 CREATE_P and if ABFD doesn't already have a GOT. */
3189 static struct mips_got_info *
3190 mips_elf_bfd_got (bfd *abfd, bool create_p)
3192 struct mips_elf_obj_tdata *tdata;
3194 if (!is_mips_elf (abfd))
3195 return NULL;
3197 tdata = mips_elf_tdata (abfd);
3198 if (!tdata->got && create_p)
3199 tdata->got = mips_elf_create_got_info (abfd);
3200 return tdata->got;
3203 /* Record that ABFD should use output GOT G. */
3205 static void
3206 mips_elf_replace_bfd_got (bfd *abfd, struct mips_got_info *g)
3208 struct mips_elf_obj_tdata *tdata;
3210 BFD_ASSERT (is_mips_elf (abfd));
3211 tdata = mips_elf_tdata (abfd);
3212 if (tdata->got)
3214 /* The GOT structure itself and the hash table entries are
3215 allocated to a bfd, but the hash tables aren't. */
3216 htab_delete (tdata->got->got_entries);
3217 htab_delete (tdata->got->got_page_refs);
3218 if (tdata->got->got_page_entries)
3219 htab_delete (tdata->got->got_page_entries);
3221 tdata->got = g;
3224 /* Return the dynamic relocation section. If it doesn't exist, try to
3225 create a new it if CREATE_P, otherwise return NULL. Also return NULL
3226 if creation fails. */
3228 static asection *
3229 mips_elf_rel_dyn_section (struct bfd_link_info *info, bool create_p)
3231 const char *dname;
3232 asection *sreloc;
3233 bfd *dynobj;
3235 dname = MIPS_ELF_REL_DYN_NAME (info);
3236 dynobj = elf_hash_table (info)->dynobj;
3237 sreloc = bfd_get_linker_section (dynobj, dname);
3238 if (sreloc == NULL && create_p)
3240 sreloc = bfd_make_section_anyway_with_flags (dynobj, dname,
3241 (SEC_ALLOC
3242 | SEC_LOAD
3243 | SEC_HAS_CONTENTS
3244 | SEC_IN_MEMORY
3245 | SEC_LINKER_CREATED
3246 | SEC_READONLY));
3247 if (sreloc == NULL
3248 || !bfd_set_section_alignment (sreloc,
3249 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
3250 return NULL;
3252 return sreloc;
3255 /* Return the GOT_TLS_* type required by relocation type R_TYPE. */
3257 static int
3258 mips_elf_reloc_tls_type (unsigned int r_type)
3260 if (tls_gd_reloc_p (r_type))
3261 return GOT_TLS_GD;
3263 if (tls_ldm_reloc_p (r_type))
3264 return GOT_TLS_LDM;
3266 if (tls_gottprel_reloc_p (r_type))
3267 return GOT_TLS_IE;
3269 return GOT_TLS_NONE;
3272 /* Return the number of GOT slots needed for GOT TLS type TYPE. */
3274 static int
3275 mips_tls_got_entries (unsigned int type)
3277 switch (type)
3279 case GOT_TLS_GD:
3280 case GOT_TLS_LDM:
3281 return 2;
3283 case GOT_TLS_IE:
3284 return 1;
3286 case GOT_TLS_NONE:
3287 return 0;
3289 abort ();
3292 /* Count the number of relocations needed for a TLS GOT entry, with
3293 access types from TLS_TYPE, and symbol H (or a local symbol if H
3294 is NULL). */
3296 static int
3297 mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type,
3298 struct elf_link_hash_entry *h)
3300 int indx = 0;
3301 bool need_relocs = false;
3302 bool dyn = elf_hash_table (info)->dynamic_sections_created;
3304 if (h != NULL
3305 && h->dynindx != -1
3306 && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info), h)
3307 && (bfd_link_dll (info) || !SYMBOL_REFERENCES_LOCAL (info, h)))
3308 indx = h->dynindx;
3310 if ((bfd_link_dll (info) || indx != 0)
3311 && (h == NULL
3312 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
3313 || h->root.type != bfd_link_hash_undefweak))
3314 need_relocs = true;
3316 if (!need_relocs)
3317 return 0;
3319 switch (tls_type)
3321 case GOT_TLS_GD:
3322 return indx != 0 ? 2 : 1;
3324 case GOT_TLS_IE:
3325 return 1;
3327 case GOT_TLS_LDM:
3328 return bfd_link_dll (info) ? 1 : 0;
3330 default:
3331 return 0;
3335 /* Add the number of GOT entries and TLS relocations required by ENTRY
3336 to G. */
3338 static void
3339 mips_elf_count_got_entry (struct bfd_link_info *info,
3340 struct mips_got_info *g,
3341 struct mips_got_entry *entry)
3343 if (entry->tls_type)
3345 g->tls_gotno += mips_tls_got_entries (entry->tls_type);
3346 g->relocs += mips_tls_got_relocs (info, entry->tls_type,
3347 entry->symndx < 0
3348 ? &entry->d.h->root : NULL);
3350 else if (entry->symndx >= 0 || entry->d.h->global_got_area == GGA_NONE)
3351 g->local_gotno += 1;
3352 else
3353 g->global_gotno += 1;
3356 /* Output a simple dynamic relocation into SRELOC. */
3358 static void
3359 mips_elf_output_dynamic_relocation (bfd *output_bfd,
3360 asection *sreloc,
3361 unsigned long reloc_index,
3362 unsigned long indx,
3363 int r_type,
3364 bfd_vma offset)
3366 Elf_Internal_Rela rel[3];
3368 memset (rel, 0, sizeof (rel));
3370 rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type);
3371 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
3373 if (ABI_64_P (output_bfd))
3375 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
3376 (output_bfd, &rel[0],
3377 (sreloc->contents
3378 + reloc_index * sizeof (Elf64_Mips_External_Rel)));
3380 else
3381 bfd_elf32_swap_reloc_out
3382 (output_bfd, &rel[0],
3383 (sreloc->contents
3384 + reloc_index * sizeof (Elf32_External_Rel)));
3387 /* Initialize a set of TLS GOT entries for one symbol. */
3389 static void
3390 mips_elf_initialize_tls_slots (bfd *abfd, struct bfd_link_info *info,
3391 struct mips_got_entry *entry,
3392 struct mips_elf_link_hash_entry *h,
3393 bfd_vma value)
3395 bool dyn = elf_hash_table (info)->dynamic_sections_created;
3396 struct mips_elf_link_hash_table *htab;
3397 int indx;
3398 asection *sreloc, *sgot;
3399 bfd_vma got_offset, got_offset2;
3400 bool need_relocs = false;
3402 htab = mips_elf_hash_table (info);
3403 if (htab == NULL)
3404 return;
3406 sgot = htab->root.sgot;
3408 indx = 0;
3409 if (h != NULL
3410 && h->root.dynindx != -1
3411 && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info), &h->root)
3412 && (bfd_link_dll (info) || !SYMBOL_REFERENCES_LOCAL (info, &h->root)))
3413 indx = h->root.dynindx;
3415 if (entry->tls_initialized)
3416 return;
3418 if ((bfd_link_dll (info) || indx != 0)
3419 && (h == NULL
3420 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
3421 || h->root.type != bfd_link_hash_undefweak))
3422 need_relocs = true;
3424 /* MINUS_ONE means the symbol is not defined in this object. It may not
3425 be defined at all; assume that the value doesn't matter in that
3426 case. Otherwise complain if we would use the value. */
3427 BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs)
3428 || h->root.root.type == bfd_link_hash_undefweak);
3430 /* Emit necessary relocations. */
3431 sreloc = mips_elf_rel_dyn_section (info, false);
3432 got_offset = entry->gotidx;
3434 switch (entry->tls_type)
3436 case GOT_TLS_GD:
3437 /* General Dynamic. */
3438 got_offset2 = got_offset + MIPS_ELF_GOT_SIZE (abfd);
3440 if (need_relocs)
3442 mips_elf_output_dynamic_relocation
3443 (abfd, sreloc, sreloc->reloc_count++, indx,
3444 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3445 sgot->output_offset + sgot->output_section->vma + got_offset);
3447 if (indx)
3448 mips_elf_output_dynamic_relocation
3449 (abfd, sreloc, sreloc->reloc_count++, indx,
3450 ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32,
3451 sgot->output_offset + sgot->output_section->vma + got_offset2);
3452 else
3453 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
3454 sgot->contents + got_offset2);
3456 else
3458 MIPS_ELF_PUT_WORD (abfd, 1,
3459 sgot->contents + got_offset);
3460 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
3461 sgot->contents + got_offset2);
3463 break;
3465 case GOT_TLS_IE:
3466 /* Initial Exec model. */
3467 if (need_relocs)
3469 if (indx == 0)
3470 MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma,
3471 sgot->contents + got_offset);
3472 else
3473 MIPS_ELF_PUT_WORD (abfd, 0,
3474 sgot->contents + got_offset);
3476 mips_elf_output_dynamic_relocation
3477 (abfd, sreloc, sreloc->reloc_count++, indx,
3478 ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32,
3479 sgot->output_offset + sgot->output_section->vma + got_offset);
3481 else
3482 MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info),
3483 sgot->contents + got_offset);
3484 break;
3486 case GOT_TLS_LDM:
3487 /* The initial offset is zero, and the LD offsets will include the
3488 bias by DTP_OFFSET. */
3489 MIPS_ELF_PUT_WORD (abfd, 0,
3490 sgot->contents + got_offset
3491 + MIPS_ELF_GOT_SIZE (abfd));
3493 if (!bfd_link_dll (info))
3494 MIPS_ELF_PUT_WORD (abfd, 1,
3495 sgot->contents + got_offset);
3496 else
3497 mips_elf_output_dynamic_relocation
3498 (abfd, sreloc, sreloc->reloc_count++, indx,
3499 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3500 sgot->output_offset + sgot->output_section->vma + got_offset);
3501 break;
3503 default:
3504 abort ();
3507 entry->tls_initialized = true;
3510 /* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry
3511 for global symbol H. .got.plt comes before the GOT, so the offset
3512 will be negative. */
3514 static bfd_vma
3515 mips_elf_gotplt_index (struct bfd_link_info *info,
3516 struct elf_link_hash_entry *h)
3518 bfd_vma got_address, got_value;
3519 struct mips_elf_link_hash_table *htab;
3521 htab = mips_elf_hash_table (info);
3522 BFD_ASSERT (htab != NULL);
3524 BFD_ASSERT (h->plt.plist != NULL);
3525 BFD_ASSERT (h->plt.plist->gotplt_index != MINUS_ONE);
3527 /* Calculate the address of the associated .got.plt entry. */
3528 got_address = (htab->root.sgotplt->output_section->vma
3529 + htab->root.sgotplt->output_offset
3530 + (h->plt.plist->gotplt_index
3531 * MIPS_ELF_GOT_SIZE (info->output_bfd)));
3533 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
3534 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
3535 + htab->root.hgot->root.u.def.section->output_offset
3536 + htab->root.hgot->root.u.def.value);
3538 return got_address - got_value;
3541 /* Return the GOT offset for address VALUE. If there is not yet a GOT
3542 entry for this value, create one. If R_SYMNDX refers to a TLS symbol,
3543 create a TLS GOT entry instead. Return -1 if no satisfactory GOT
3544 offset can be found. */
3546 static bfd_vma
3547 mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3548 bfd_vma value, unsigned long r_symndx,
3549 struct mips_elf_link_hash_entry *h, int r_type)
3551 struct mips_elf_link_hash_table *htab;
3552 struct mips_got_entry *entry;
3554 htab = mips_elf_hash_table (info);
3555 BFD_ASSERT (htab != NULL);
3557 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value,
3558 r_symndx, h, r_type);
3559 if (!entry)
3560 return MINUS_ONE;
3562 if (entry->tls_type)
3563 mips_elf_initialize_tls_slots (abfd, info, entry, h, value);
3564 return entry->gotidx;
3567 /* Return the GOT index of global symbol H in the primary GOT. */
3569 static bfd_vma
3570 mips_elf_primary_global_got_index (bfd *obfd, struct bfd_link_info *info,
3571 struct elf_link_hash_entry *h)
3573 struct mips_elf_link_hash_table *htab;
3574 long global_got_dynindx;
3575 struct mips_got_info *g;
3576 bfd_vma got_index;
3578 htab = mips_elf_hash_table (info);
3579 BFD_ASSERT (htab != NULL);
3581 global_got_dynindx = 0;
3582 if (htab->global_gotsym != NULL)
3583 global_got_dynindx = htab->global_gotsym->dynindx;
3585 /* Once we determine the global GOT entry with the lowest dynamic
3586 symbol table index, we must put all dynamic symbols with greater
3587 indices into the primary GOT. That makes it easy to calculate the
3588 GOT offset. */
3589 BFD_ASSERT (h->dynindx >= global_got_dynindx);
3590 g = mips_elf_bfd_got (obfd, false);
3591 got_index = ((h->dynindx - global_got_dynindx + g->local_gotno)
3592 * MIPS_ELF_GOT_SIZE (obfd));
3593 BFD_ASSERT (got_index < htab->root.sgot->size);
3595 return got_index;
3598 /* Return the GOT index for the global symbol indicated by H, which is
3599 referenced by a relocation of type R_TYPE in IBFD. */
3601 static bfd_vma
3602 mips_elf_global_got_index (bfd *obfd, struct bfd_link_info *info, bfd *ibfd,
3603 struct elf_link_hash_entry *h, int r_type)
3605 struct mips_elf_link_hash_table *htab;
3606 struct mips_got_info *g;
3607 struct mips_got_entry lookup, *entry;
3608 bfd_vma gotidx;
3610 htab = mips_elf_hash_table (info);
3611 BFD_ASSERT (htab != NULL);
3613 g = mips_elf_bfd_got (ibfd, false);
3614 BFD_ASSERT (g);
3616 lookup.tls_type = mips_elf_reloc_tls_type (r_type);
3617 if (!lookup.tls_type && g == mips_elf_bfd_got (obfd, false))
3618 return mips_elf_primary_global_got_index (obfd, info, h);
3620 lookup.abfd = ibfd;
3621 lookup.symndx = -1;
3622 lookup.d.h = (struct mips_elf_link_hash_entry *) h;
3623 entry = htab_find (g->got_entries, &lookup);
3624 BFD_ASSERT (entry);
3626 gotidx = entry->gotidx;
3627 BFD_ASSERT (gotidx > 0 && gotidx < htab->root.sgot->size);
3629 if (lookup.tls_type)
3631 bfd_vma value = MINUS_ONE;
3633 if ((h->root.type == bfd_link_hash_defined
3634 || h->root.type == bfd_link_hash_defweak)
3635 && h->root.u.def.section->output_section)
3636 value = (h->root.u.def.value
3637 + h->root.u.def.section->output_offset
3638 + h->root.u.def.section->output_section->vma);
3640 mips_elf_initialize_tls_slots (obfd, info, entry, lookup.d.h, value);
3642 return gotidx;
3645 /* Find a GOT page entry that points to within 32KB of VALUE. These
3646 entries are supposed to be placed at small offsets in the GOT, i.e.,
3647 within 32KB of GP. Return the index of the GOT entry, or -1 if no
3648 entry could be created. If OFFSETP is nonnull, use it to return the
3649 offset of the GOT entry from VALUE. */
3651 static bfd_vma
3652 mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3653 bfd_vma value, bfd_vma *offsetp)
3655 bfd_vma page, got_index;
3656 struct mips_got_entry *entry;
3658 page = (value + 0x8000) & ~(bfd_vma) 0xffff;
3659 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, page, 0,
3660 NULL, R_MIPS_GOT_PAGE);
3662 if (!entry)
3663 return MINUS_ONE;
3665 got_index = entry->gotidx;
3667 if (offsetp)
3668 *offsetp = value - entry->d.address;
3670 return got_index;
3673 /* Find a local GOT entry for an R_MIPS*_GOT16 relocation against VALUE.
3674 EXTERNAL is true if the relocation was originally against a global
3675 symbol that binds locally. */
3677 static bfd_vma
3678 mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3679 bfd_vma value, bool external)
3681 struct mips_got_entry *entry;
3683 /* GOT16 relocations against local symbols are followed by a LO16
3684 relocation; those against global symbols are not. Thus if the
3685 symbol was originally local, the GOT16 relocation should load the
3686 equivalent of %hi(VALUE), otherwise it should load VALUE itself. */
3687 if (! external)
3688 value = mips_elf_high (value) << 16;
3690 /* It doesn't matter whether the original relocation was R_MIPS_GOT16,
3691 R_MIPS16_GOT16, R_MIPS_CALL16, etc. The format of the entry is the
3692 same in all cases. */
3693 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value, 0,
3694 NULL, R_MIPS_GOT16);
3695 if (entry)
3696 return entry->gotidx;
3697 else
3698 return MINUS_ONE;
3701 /* Returns the offset for the entry at the INDEXth position
3702 in the GOT. */
3704 static bfd_vma
3705 mips_elf_got_offset_from_index (struct bfd_link_info *info, bfd *output_bfd,
3706 bfd *input_bfd, bfd_vma got_index)
3708 struct mips_elf_link_hash_table *htab;
3709 asection *sgot;
3710 bfd_vma gp;
3712 htab = mips_elf_hash_table (info);
3713 BFD_ASSERT (htab != NULL);
3715 sgot = htab->root.sgot;
3716 gp = _bfd_get_gp_value (output_bfd)
3717 + mips_elf_adjust_gp (output_bfd, htab->got_info, input_bfd);
3719 return sgot->output_section->vma + sgot->output_offset + got_index - gp;
3722 /* Create and return a local GOT entry for VALUE, which was calculated
3723 from a symbol belonging to INPUT_SECTON. Return NULL if it could not
3724 be created. If R_SYMNDX refers to a TLS symbol, create a TLS entry
3725 instead. */
3727 static struct mips_got_entry *
3728 mips_elf_create_local_got_entry (bfd *abfd, struct bfd_link_info *info,
3729 bfd *ibfd, bfd_vma value,
3730 unsigned long r_symndx,
3731 struct mips_elf_link_hash_entry *h,
3732 int r_type)
3734 struct mips_got_entry lookup, *entry;
3735 void **loc;
3736 struct mips_got_info *g;
3737 struct mips_elf_link_hash_table *htab;
3738 bfd_vma gotidx;
3740 htab = mips_elf_hash_table (info);
3741 BFD_ASSERT (htab != NULL);
3743 g = mips_elf_bfd_got (ibfd, false);
3744 if (g == NULL)
3746 g = mips_elf_bfd_got (abfd, false);
3747 BFD_ASSERT (g != NULL);
3750 /* This function shouldn't be called for symbols that live in the global
3751 area of the GOT. */
3752 BFD_ASSERT (h == NULL || h->global_got_area == GGA_NONE);
3754 lookup.tls_type = mips_elf_reloc_tls_type (r_type);
3755 if (lookup.tls_type)
3757 lookup.abfd = ibfd;
3758 if (tls_ldm_reloc_p (r_type))
3760 lookup.symndx = 0;
3761 lookup.d.addend = 0;
3763 else if (h == NULL)
3765 lookup.symndx = r_symndx;
3766 lookup.d.addend = 0;
3768 else
3770 lookup.symndx = -1;
3771 lookup.d.h = h;
3774 entry = (struct mips_got_entry *) htab_find (g->got_entries, &lookup);
3775 BFD_ASSERT (entry);
3777 gotidx = entry->gotidx;
3778 BFD_ASSERT (gotidx > 0 && gotidx < htab->root.sgot->size);
3780 return entry;
3783 lookup.abfd = NULL;
3784 lookup.symndx = -1;
3785 lookup.d.address = value;
3786 loc = htab_find_slot (g->got_entries, &lookup, INSERT);
3787 if (!loc)
3788 return NULL;
3790 entry = (struct mips_got_entry *) *loc;
3791 if (entry)
3792 return entry;
3794 if (g->assigned_low_gotno > g->assigned_high_gotno)
3796 /* We didn't allocate enough space in the GOT. */
3797 _bfd_error_handler
3798 (_("not enough GOT space for local GOT entries"));
3799 bfd_set_error (bfd_error_bad_value);
3800 return NULL;
3803 entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry));
3804 if (!entry)
3805 return NULL;
3807 if (got16_reloc_p (r_type)
3808 || call16_reloc_p (r_type)
3809 || got_page_reloc_p (r_type)
3810 || got_disp_reloc_p (r_type))
3811 lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_low_gotno++;
3812 else
3813 lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_high_gotno--;
3815 *entry = lookup;
3816 *loc = entry;
3818 MIPS_ELF_PUT_WORD (abfd, value, htab->root.sgot->contents + entry->gotidx);
3820 /* These GOT entries need a dynamic relocation on VxWorks. */
3821 if (htab->root.target_os == is_vxworks)
3823 Elf_Internal_Rela outrel;
3824 asection *s;
3825 bfd_byte *rloc;
3826 bfd_vma got_address;
3828 s = mips_elf_rel_dyn_section (info, false);
3829 got_address = (htab->root.sgot->output_section->vma
3830 + htab->root.sgot->output_offset
3831 + entry->gotidx);
3833 rloc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
3834 outrel.r_offset = got_address;
3835 outrel.r_info = ELF32_R_INFO (STN_UNDEF, R_MIPS_32);
3836 outrel.r_addend = value;
3837 bfd_elf32_swap_reloca_out (abfd, &outrel, rloc);
3840 return entry;
3843 /* Return the number of dynamic section symbols required by OUTPUT_BFD.
3844 The number might be exact or a worst-case estimate, depending on how
3845 much information is available to elf_backend_omit_section_dynsym at
3846 the current linking stage. */
3848 static bfd_size_type
3849 count_section_dynsyms (bfd *output_bfd, struct bfd_link_info *info)
3851 bfd_size_type count;
3853 count = 0;
3854 if (bfd_link_pic (info)
3855 || elf_hash_table (info)->is_relocatable_executable)
3857 asection *p;
3858 const struct elf_backend_data *bed;
3860 bed = get_elf_backend_data (output_bfd);
3861 for (p = output_bfd->sections; p ; p = p->next)
3862 if ((p->flags & SEC_EXCLUDE) == 0
3863 && (p->flags & SEC_ALLOC) != 0
3864 && elf_hash_table (info)->dynamic_relocs
3865 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
3866 ++count;
3868 return count;
3871 /* Sort the dynamic symbol table so that symbols that need GOT entries
3872 appear towards the end. */
3874 static bool
3875 mips_elf_sort_hash_table (bfd *abfd, struct bfd_link_info *info)
3877 struct mips_elf_link_hash_table *htab;
3878 struct mips_elf_hash_sort_data hsd;
3879 struct mips_got_info *g;
3881 htab = mips_elf_hash_table (info);
3882 BFD_ASSERT (htab != NULL);
3884 if (htab->root.dynsymcount == 0)
3885 return true;
3887 g = htab->got_info;
3888 if (g == NULL)
3889 return true;
3891 hsd.low = NULL;
3892 hsd.max_unref_got_dynindx
3893 = hsd.min_got_dynindx
3894 = (htab->root.dynsymcount - g->reloc_only_gotno);
3895 /* Add 1 to local symbol indices to account for the mandatory NULL entry
3896 at the head of the table; see `_bfd_elf_link_renumber_dynsyms'. */
3897 hsd.max_local_dynindx = count_section_dynsyms (abfd, info) + 1;
3898 hsd.max_non_got_dynindx = htab->root.local_dynsymcount + 1;
3899 hsd.output_bfd = abfd;
3900 if (htab->root.dynobj != NULL
3901 && htab->root.dynamic_sections_created
3902 && info->emit_gnu_hash)
3904 asection *s = bfd_get_linker_section (htab->root.dynobj, ".MIPS.xhash");
3905 BFD_ASSERT (s != NULL);
3906 hsd.mipsxhash = s->contents;
3907 BFD_ASSERT (hsd.mipsxhash != NULL);
3909 else
3910 hsd.mipsxhash = NULL;
3911 mips_elf_link_hash_traverse (htab, mips_elf_sort_hash_table_f, &hsd);
3913 /* There should have been enough room in the symbol table to
3914 accommodate both the GOT and non-GOT symbols. */
3915 BFD_ASSERT (hsd.max_local_dynindx <= htab->root.local_dynsymcount + 1);
3916 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
3917 BFD_ASSERT (hsd.max_unref_got_dynindx == htab->root.dynsymcount);
3918 BFD_ASSERT (htab->root.dynsymcount - hsd.min_got_dynindx == g->global_gotno);
3920 /* Now we know which dynamic symbol has the lowest dynamic symbol
3921 table index in the GOT. */
3922 htab->global_gotsym = hsd.low;
3924 return true;
3927 /* If H needs a GOT entry, assign it the highest available dynamic
3928 index. Otherwise, assign it the lowest available dynamic
3929 index. */
3931 static bool
3932 mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
3934 struct mips_elf_hash_sort_data *hsd = data;
3936 /* Symbols without dynamic symbol table entries aren't interesting
3937 at all. */
3938 if (h->root.dynindx == -1)
3939 return true;
3941 switch (h->global_got_area)
3943 case GGA_NONE:
3944 if (h->root.forced_local)
3945 h->root.dynindx = hsd->max_local_dynindx++;
3946 else
3947 h->root.dynindx = hsd->max_non_got_dynindx++;
3948 break;
3950 case GGA_NORMAL:
3951 h->root.dynindx = --hsd->min_got_dynindx;
3952 hsd->low = (struct elf_link_hash_entry *) h;
3953 break;
3955 case GGA_RELOC_ONLY:
3956 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
3957 hsd->low = (struct elf_link_hash_entry *) h;
3958 h->root.dynindx = hsd->max_unref_got_dynindx++;
3959 break;
3962 /* Populate the .MIPS.xhash translation table entry with
3963 the symbol dynindx. */
3964 if (h->mipsxhash_loc != 0 && hsd->mipsxhash != NULL)
3965 bfd_put_32 (hsd->output_bfd, h->root.dynindx,
3966 hsd->mipsxhash + h->mipsxhash_loc);
3968 return true;
3971 /* Record that input bfd ABFD requires a GOT entry like *LOOKUP
3972 (which is owned by the caller and shouldn't be added to the
3973 hash table directly). */
3975 static bool
3976 mips_elf_record_got_entry (struct bfd_link_info *info, bfd *abfd,
3977 struct mips_got_entry *lookup)
3979 struct mips_elf_link_hash_table *htab;
3980 struct mips_got_entry *entry;
3981 struct mips_got_info *g;
3982 void **loc, **bfd_loc;
3984 /* Make sure there's a slot for this entry in the master GOT. */
3985 htab = mips_elf_hash_table (info);
3986 g = htab->got_info;
3987 loc = htab_find_slot (g->got_entries, lookup, INSERT);
3988 if (!loc)
3989 return false;
3991 /* Populate the entry if it isn't already. */
3992 entry = (struct mips_got_entry *) *loc;
3993 if (!entry)
3995 entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry));
3996 if (!entry)
3997 return false;
3999 lookup->tls_initialized = false;
4000 lookup->gotidx = -1;
4001 *entry = *lookup;
4002 *loc = entry;
4005 /* Reuse the same GOT entry for the BFD's GOT. */
4006 g = mips_elf_bfd_got (abfd, true);
4007 if (!g)
4008 return false;
4010 bfd_loc = htab_find_slot (g->got_entries, lookup, INSERT);
4011 if (!bfd_loc)
4012 return false;
4014 if (!*bfd_loc)
4015 *bfd_loc = entry;
4016 return true;
4019 /* ABFD has a GOT relocation of type R_TYPE against H. Reserve a GOT
4020 entry for it. FOR_CALL is true if the caller is only interested in
4021 using the GOT entry for calls. */
4023 static bool
4024 mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
4025 bfd *abfd, struct bfd_link_info *info,
4026 bool for_call, int r_type)
4028 struct mips_elf_link_hash_table *htab;
4029 struct mips_elf_link_hash_entry *hmips;
4030 struct mips_got_entry entry;
4031 unsigned char tls_type;
4033 htab = mips_elf_hash_table (info);
4034 BFD_ASSERT (htab != NULL);
4036 hmips = (struct mips_elf_link_hash_entry *) h;
4037 if (!for_call)
4038 hmips->got_only_for_calls = false;
4040 /* A global symbol in the GOT must also be in the dynamic symbol
4041 table. */
4042 if (h->dynindx == -1)
4044 switch (ELF_ST_VISIBILITY (h->other))
4046 case STV_INTERNAL:
4047 case STV_HIDDEN:
4048 _bfd_mips_elf_hide_symbol (info, h, true);
4049 break;
4051 if (!bfd_elf_link_record_dynamic_symbol (info, h))
4052 return false;
4055 tls_type = mips_elf_reloc_tls_type (r_type);
4056 if (tls_type == GOT_TLS_NONE && hmips->global_got_area > GGA_NORMAL)
4057 hmips->global_got_area = GGA_NORMAL;
4059 entry.abfd = abfd;
4060 entry.symndx = -1;
4061 entry.d.h = (struct mips_elf_link_hash_entry *) h;
4062 entry.tls_type = tls_type;
4063 return mips_elf_record_got_entry (info, abfd, &entry);
4066 /* ABFD has a GOT relocation of type R_TYPE against symbol SYMNDX + ADDEND,
4067 where SYMNDX is a local symbol. Reserve a GOT entry for it. */
4069 static bool
4070 mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
4071 struct bfd_link_info *info, int r_type)
4073 struct mips_elf_link_hash_table *htab;
4074 struct mips_got_info *g;
4075 struct mips_got_entry entry;
4077 htab = mips_elf_hash_table (info);
4078 BFD_ASSERT (htab != NULL);
4080 g = htab->got_info;
4081 BFD_ASSERT (g != NULL);
4083 entry.abfd = abfd;
4084 entry.symndx = symndx;
4085 entry.d.addend = addend;
4086 entry.tls_type = mips_elf_reloc_tls_type (r_type);
4087 return mips_elf_record_got_entry (info, abfd, &entry);
4090 /* Record that ABFD has a page relocation against SYMNDX + ADDEND.
4091 H is the symbol's hash table entry, or null if SYMNDX is local
4092 to ABFD. */
4094 static bool
4095 mips_elf_record_got_page_ref (struct bfd_link_info *info, bfd *abfd,
4096 long symndx, struct elf_link_hash_entry *h,
4097 bfd_signed_vma addend)
4099 struct mips_elf_link_hash_table *htab;
4100 struct mips_got_info *g1, *g2;
4101 struct mips_got_page_ref lookup, *entry;
4102 void **loc, **bfd_loc;
4104 htab = mips_elf_hash_table (info);
4105 BFD_ASSERT (htab != NULL);
4107 g1 = htab->got_info;
4108 BFD_ASSERT (g1 != NULL);
4110 if (h)
4112 lookup.symndx = -1;
4113 lookup.u.h = (struct mips_elf_link_hash_entry *) h;
4115 else
4117 lookup.symndx = symndx;
4118 lookup.u.abfd = abfd;
4120 lookup.addend = addend;
4121 loc = htab_find_slot (g1->got_page_refs, &lookup, INSERT);
4122 if (loc == NULL)
4123 return false;
4125 entry = (struct mips_got_page_ref *) *loc;
4126 if (!entry)
4128 entry = bfd_alloc (abfd, sizeof (*entry));
4129 if (!entry)
4130 return false;
4132 *entry = lookup;
4133 *loc = entry;
4136 /* Add the same entry to the BFD's GOT. */
4137 g2 = mips_elf_bfd_got (abfd, true);
4138 if (!g2)
4139 return false;
4141 bfd_loc = htab_find_slot (g2->got_page_refs, &lookup, INSERT);
4142 if (!bfd_loc)
4143 return false;
4145 if (!*bfd_loc)
4146 *bfd_loc = entry;
4148 return true;
4151 /* Add room for N relocations to the .rel(a).dyn section in ABFD. */
4153 static void
4154 mips_elf_allocate_dynamic_relocations (bfd *abfd, struct bfd_link_info *info,
4155 unsigned int n)
4157 asection *s;
4158 struct mips_elf_link_hash_table *htab;
4160 htab = mips_elf_hash_table (info);
4161 BFD_ASSERT (htab != NULL);
4163 s = mips_elf_rel_dyn_section (info, false);
4164 BFD_ASSERT (s != NULL);
4166 if (htab->root.target_os == is_vxworks)
4167 s->size += n * MIPS_ELF_RELA_SIZE (abfd);
4168 else
4170 if (s->size == 0)
4172 /* Make room for a null element. */
4173 s->size += MIPS_ELF_REL_SIZE (abfd);
4174 ++s->reloc_count;
4176 s->size += n * MIPS_ELF_REL_SIZE (abfd);
4180 /* A htab_traverse callback for GOT entries, with DATA pointing to a
4181 mips_elf_traverse_got_arg structure. Count the number of GOT
4182 entries and TLS relocs. Set DATA->value to true if we need
4183 to resolve indirect or warning symbols and then recreate the GOT. */
4185 static int
4186 mips_elf_check_recreate_got (void **entryp, void *data)
4188 struct mips_got_entry *entry;
4189 struct mips_elf_traverse_got_arg *arg;
4191 entry = (struct mips_got_entry *) *entryp;
4192 arg = (struct mips_elf_traverse_got_arg *) data;
4193 if (entry->abfd != NULL && entry->symndx == -1)
4195 struct mips_elf_link_hash_entry *h;
4197 h = entry->d.h;
4198 if (h->root.root.type == bfd_link_hash_indirect
4199 || h->root.root.type == bfd_link_hash_warning)
4201 arg->value = true;
4202 return 0;
4205 mips_elf_count_got_entry (arg->info, arg->g, entry);
4206 return 1;
4209 /* A htab_traverse callback for GOT entries, with DATA pointing to a
4210 mips_elf_traverse_got_arg structure. Add all entries to DATA->g,
4211 converting entries for indirect and warning symbols into entries
4212 for the target symbol. Set DATA->g to null on error. */
4214 static int
4215 mips_elf_recreate_got (void **entryp, void *data)
4217 struct mips_got_entry new_entry, *entry;
4218 struct mips_elf_traverse_got_arg *arg;
4219 void **slot;
4221 entry = (struct mips_got_entry *) *entryp;
4222 arg = (struct mips_elf_traverse_got_arg *) data;
4223 if (entry->abfd != NULL
4224 && entry->symndx == -1
4225 && (entry->d.h->root.root.type == bfd_link_hash_indirect
4226 || entry->d.h->root.root.type == bfd_link_hash_warning))
4228 struct mips_elf_link_hash_entry *h;
4230 new_entry = *entry;
4231 entry = &new_entry;
4232 h = entry->d.h;
4235 BFD_ASSERT (h->global_got_area == GGA_NONE);
4236 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
4238 while (h->root.root.type == bfd_link_hash_indirect
4239 || h->root.root.type == bfd_link_hash_warning);
4240 entry->d.h = h;
4242 slot = htab_find_slot (arg->g->got_entries, entry, INSERT);
4243 if (slot == NULL)
4245 arg->g = NULL;
4246 return 0;
4248 if (*slot == NULL)
4250 if (entry == &new_entry)
4252 entry = bfd_alloc (entry->abfd, sizeof (*entry));
4253 if (!entry)
4255 arg->g = NULL;
4256 return 0;
4258 *entry = new_entry;
4260 *slot = entry;
4261 mips_elf_count_got_entry (arg->info, arg->g, entry);
4263 return 1;
4266 /* Return the maximum number of GOT page entries required for RANGE. */
4268 static bfd_vma
4269 mips_elf_pages_for_range (const struct mips_got_page_range *range)
4271 return (range->max_addend - range->min_addend + 0x1ffff) >> 16;
4274 /* Record that G requires a page entry that can reach SEC + ADDEND. */
4276 static bool
4277 mips_elf_record_got_page_entry (struct mips_elf_traverse_got_arg *arg,
4278 asection *sec, bfd_signed_vma addend)
4280 struct mips_got_info *g = arg->g;
4281 struct mips_got_page_entry lookup, *entry;
4282 struct mips_got_page_range **range_ptr, *range;
4283 bfd_vma old_pages, new_pages;
4284 void **loc;
4286 /* Find the mips_got_page_entry hash table entry for this section. */
4287 lookup.sec = sec;
4288 loc = htab_find_slot (g->got_page_entries, &lookup, INSERT);
4289 if (loc == NULL)
4290 return false;
4292 /* Create a mips_got_page_entry if this is the first time we've
4293 seen the section. */
4294 entry = (struct mips_got_page_entry *) *loc;
4295 if (!entry)
4297 entry = bfd_zalloc (arg->info->output_bfd, sizeof (*entry));
4298 if (!entry)
4299 return false;
4301 entry->sec = sec;
4302 *loc = entry;
4305 /* Skip over ranges whose maximum extent cannot share a page entry
4306 with ADDEND. */
4307 range_ptr = &entry->ranges;
4308 while (*range_ptr && addend > (*range_ptr)->max_addend + 0xffff)
4309 range_ptr = &(*range_ptr)->next;
4311 /* If we scanned to the end of the list, or found a range whose
4312 minimum extent cannot share a page entry with ADDEND, create
4313 a new singleton range. */
4314 range = *range_ptr;
4315 if (!range || addend < range->min_addend - 0xffff)
4317 range = bfd_zalloc (arg->info->output_bfd, sizeof (*range));
4318 if (!range)
4319 return false;
4321 range->next = *range_ptr;
4322 range->min_addend = addend;
4323 range->max_addend = addend;
4325 *range_ptr = range;
4326 entry->num_pages++;
4327 g->page_gotno++;
4328 return true;
4331 /* Remember how many pages the old range contributed. */
4332 old_pages = mips_elf_pages_for_range (range);
4334 /* Update the ranges. */
4335 if (addend < range->min_addend)
4336 range->min_addend = addend;
4337 else if (addend > range->max_addend)
4339 if (range->next && addend >= range->next->min_addend - 0xffff)
4341 old_pages += mips_elf_pages_for_range (range->next);
4342 range->max_addend = range->next->max_addend;
4343 range->next = range->next->next;
4345 else
4346 range->max_addend = addend;
4349 /* Record any change in the total estimate. */
4350 new_pages = mips_elf_pages_for_range (range);
4351 if (old_pages != new_pages)
4353 entry->num_pages += new_pages - old_pages;
4354 g->page_gotno += new_pages - old_pages;
4357 return true;
4360 /* A htab_traverse callback for which *REFP points to a mips_got_page_ref
4361 and for which DATA points to a mips_elf_traverse_got_arg. Work out
4362 whether the page reference described by *REFP needs a GOT page entry,
4363 and record that entry in DATA->g if so. Set DATA->g to null on failure. */
4365 static int
4366 mips_elf_resolve_got_page_ref (void **refp, void *data)
4368 struct mips_got_page_ref *ref;
4369 struct mips_elf_traverse_got_arg *arg;
4370 struct mips_elf_link_hash_table *htab;
4371 asection *sec;
4372 bfd_vma addend;
4374 ref = (struct mips_got_page_ref *) *refp;
4375 arg = (struct mips_elf_traverse_got_arg *) data;
4376 htab = mips_elf_hash_table (arg->info);
4378 if (ref->symndx < 0)
4380 struct mips_elf_link_hash_entry *h;
4382 /* Global GOT_PAGEs decay to GOT_DISP and so don't need page entries. */
4383 h = ref->u.h;
4384 if (!SYMBOL_REFERENCES_LOCAL (arg->info, &h->root))
4385 return 1;
4387 /* Ignore undefined symbols; we'll issue an error later if
4388 appropriate. */
4389 if (!((h->root.root.type == bfd_link_hash_defined
4390 || h->root.root.type == bfd_link_hash_defweak)
4391 && h->root.root.u.def.section))
4392 return 1;
4394 sec = h->root.root.u.def.section;
4395 addend = h->root.root.u.def.value + ref->addend;
4397 else
4399 Elf_Internal_Sym *isym;
4401 /* Read in the symbol. */
4402 isym = bfd_sym_from_r_symndx (&htab->root.sym_cache, ref->u.abfd,
4403 ref->symndx);
4404 if (isym == NULL)
4406 arg->g = NULL;
4407 return 0;
4410 /* Get the associated input section. */
4411 sec = bfd_section_from_elf_index (ref->u.abfd, isym->st_shndx);
4412 if (sec == NULL)
4414 arg->g = NULL;
4415 return 0;
4418 /* If this is a mergable section, work out the section and offset
4419 of the merged data. For section symbols, the addend specifies
4420 of the offset _of_ the first byte in the data, otherwise it
4421 specifies the offset _from_ the first byte. */
4422 if (sec->flags & SEC_MERGE)
4424 void *secinfo;
4426 secinfo = elf_section_data (sec)->sec_info;
4427 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
4428 addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo,
4429 isym->st_value + ref->addend);
4430 else
4431 addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo,
4432 isym->st_value) + ref->addend;
4434 else
4435 addend = isym->st_value + ref->addend;
4437 if (!mips_elf_record_got_page_entry (arg, sec, addend))
4439 arg->g = NULL;
4440 return 0;
4442 return 1;
4445 /* If any entries in G->got_entries are for indirect or warning symbols,
4446 replace them with entries for the target symbol. Convert g->got_page_refs
4447 into got_page_entry structures and estimate the number of page entries
4448 that they require. */
4450 static bool
4451 mips_elf_resolve_final_got_entries (struct bfd_link_info *info,
4452 struct mips_got_info *g)
4454 struct mips_elf_traverse_got_arg tga;
4455 struct mips_got_info oldg;
4457 oldg = *g;
4459 tga.info = info;
4460 tga.g = g;
4461 tga.value = false;
4462 htab_traverse (g->got_entries, mips_elf_check_recreate_got, &tga);
4463 if (tga.value)
4465 *g = oldg;
4466 g->got_entries = htab_create (htab_size (oldg.got_entries),
4467 mips_elf_got_entry_hash,
4468 mips_elf_got_entry_eq, NULL);
4469 if (!g->got_entries)
4470 return false;
4472 htab_traverse (oldg.got_entries, mips_elf_recreate_got, &tga);
4473 if (!tga.g)
4474 return false;
4476 htab_delete (oldg.got_entries);
4479 g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
4480 mips_got_page_entry_eq, NULL);
4481 if (g->got_page_entries == NULL)
4482 return false;
4484 tga.info = info;
4485 tga.g = g;
4486 htab_traverse (g->got_page_refs, mips_elf_resolve_got_page_ref, &tga);
4488 return true;
4491 /* Return true if a GOT entry for H should live in the local rather than
4492 global GOT area. */
4494 static bool
4495 mips_use_local_got_p (struct bfd_link_info *info,
4496 struct mips_elf_link_hash_entry *h)
4498 /* Symbols that aren't in the dynamic symbol table must live in the
4499 local GOT. This includes symbols that are completely undefined
4500 and which therefore don't bind locally. We'll report undefined
4501 symbols later if appropriate. */
4502 if (h->root.dynindx == -1)
4503 return true;
4505 /* Absolute symbols, if ever they need a GOT entry, cannot ever go
4506 to the local GOT, as they would be implicitly relocated by the
4507 base address by the dynamic loader. */
4508 if (bfd_is_abs_symbol (&h->root.root))
4509 return false;
4511 /* Symbols that bind locally can (and in the case of forced-local
4512 symbols, must) live in the local GOT. */
4513 if (h->got_only_for_calls
4514 ? SYMBOL_CALLS_LOCAL (info, &h->root)
4515 : SYMBOL_REFERENCES_LOCAL (info, &h->root))
4516 return true;
4518 /* If this is an executable that must provide a definition of the symbol,
4519 either though PLTs or copy relocations, then that address should go in
4520 the local rather than global GOT. */
4521 if (bfd_link_executable (info) && h->has_static_relocs)
4522 return true;
4524 return false;
4527 /* A mips_elf_link_hash_traverse callback for which DATA points to the
4528 link_info structure. Decide whether the hash entry needs an entry in
4529 the global part of the primary GOT, setting global_got_area accordingly.
4530 Count the number of global symbols that are in the primary GOT only
4531 because they have relocations against them (reloc_only_gotno). */
4533 static bool
4534 mips_elf_count_got_symbols (struct mips_elf_link_hash_entry *h, void *data)
4536 struct bfd_link_info *info;
4537 struct mips_elf_link_hash_table *htab;
4538 struct mips_got_info *g;
4540 info = (struct bfd_link_info *) data;
4541 htab = mips_elf_hash_table (info);
4542 g = htab->got_info;
4543 if (h->global_got_area != GGA_NONE)
4545 /* Make a final decision about whether the symbol belongs in the
4546 local or global GOT. */
4547 if (mips_use_local_got_p (info, h))
4548 /* The symbol belongs in the local GOT. We no longer need this
4549 entry if it was only used for relocations; those relocations
4550 will be against the null or section symbol instead of H. */
4551 h->global_got_area = GGA_NONE;
4552 else if (htab->root.target_os == is_vxworks
4553 && h->got_only_for_calls
4554 && h->root.plt.plist->mips_offset != MINUS_ONE)
4555 /* On VxWorks, calls can refer directly to the .got.plt entry;
4556 they don't need entries in the regular GOT. .got.plt entries
4557 will be allocated by _bfd_mips_elf_adjust_dynamic_symbol. */
4558 h->global_got_area = GGA_NONE;
4559 else if (h->global_got_area == GGA_RELOC_ONLY)
4561 g->reloc_only_gotno++;
4562 g->global_gotno++;
4565 return 1;
4568 /* A htab_traverse callback for GOT entries. Add each one to the GOT
4569 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */
4571 static int
4572 mips_elf_add_got_entry (void **entryp, void *data)
4574 struct mips_got_entry *entry;
4575 struct mips_elf_traverse_got_arg *arg;
4576 void **slot;
4578 entry = (struct mips_got_entry *) *entryp;
4579 arg = (struct mips_elf_traverse_got_arg *) data;
4580 slot = htab_find_slot (arg->g->got_entries, entry, INSERT);
4581 if (!slot)
4583 arg->g = NULL;
4584 return 0;
4586 if (!*slot)
4588 *slot = entry;
4589 mips_elf_count_got_entry (arg->info, arg->g, entry);
4591 return 1;
4594 /* A htab_traverse callback for GOT page entries. Add each one to the GOT
4595 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */
4597 static int
4598 mips_elf_add_got_page_entry (void **entryp, void *data)
4600 struct mips_got_page_entry *entry;
4601 struct mips_elf_traverse_got_arg *arg;
4602 void **slot;
4604 entry = (struct mips_got_page_entry *) *entryp;
4605 arg = (struct mips_elf_traverse_got_arg *) data;
4606 slot = htab_find_slot (arg->g->got_page_entries, entry, INSERT);
4607 if (!slot)
4609 arg->g = NULL;
4610 return 0;
4612 if (!*slot)
4614 *slot = entry;
4615 arg->g->page_gotno += entry->num_pages;
4617 return 1;
4620 /* Consider merging FROM, which is ABFD's GOT, into TO. Return -1 if
4621 this would lead to overflow, 1 if they were merged successfully,
4622 and 0 if a merge failed due to lack of memory. (These values are chosen
4623 so that nonnegative return values can be returned by a htab_traverse
4624 callback.) */
4626 static int
4627 mips_elf_merge_got_with (bfd *abfd, struct mips_got_info *from,
4628 struct mips_got_info *to,
4629 struct mips_elf_got_per_bfd_arg *arg)
4631 struct mips_elf_traverse_got_arg tga;
4632 unsigned int estimate;
4634 /* Work out how many page entries we would need for the combined GOT. */
4635 estimate = arg->max_pages;
4636 if (estimate >= from->page_gotno + to->page_gotno)
4637 estimate = from->page_gotno + to->page_gotno;
4639 /* And conservatively estimate how many local and TLS entries
4640 would be needed. */
4641 estimate += from->local_gotno + to->local_gotno;
4642 estimate += from->tls_gotno + to->tls_gotno;
4644 /* If we're merging with the primary got, any TLS relocations will
4645 come after the full set of global entries. Otherwise estimate those
4646 conservatively as well. */
4647 if (to == arg->primary && from->tls_gotno + to->tls_gotno)
4648 estimate += arg->global_count;
4649 else
4650 estimate += from->global_gotno + to->global_gotno;
4652 /* Bail out if the combined GOT might be too big. */
4653 if (estimate > arg->max_count)
4654 return -1;
4656 /* Transfer the bfd's got information from FROM to TO. */
4657 tga.info = arg->info;
4658 tga.g = to;
4659 htab_traverse (from->got_entries, mips_elf_add_got_entry, &tga);
4660 if (!tga.g)
4661 return 0;
4663 htab_traverse (from->got_page_entries, mips_elf_add_got_page_entry, &tga);
4664 if (!tga.g)
4665 return 0;
4667 mips_elf_replace_bfd_got (abfd, to);
4668 return 1;
4671 /* Attempt to merge GOT G, which belongs to ABFD. Try to use as much
4672 as possible of the primary got, since it doesn't require explicit
4673 dynamic relocations, but don't use bfds that would reference global
4674 symbols out of the addressable range. Failing the primary got,
4675 attempt to merge with the current got, or finish the current got
4676 and then make make the new got current. */
4678 static bool
4679 mips_elf_merge_got (bfd *abfd, struct mips_got_info *g,
4680 struct mips_elf_got_per_bfd_arg *arg)
4682 unsigned int estimate;
4683 int result;
4685 if (!mips_elf_resolve_final_got_entries (arg->info, g))
4686 return false;
4688 /* Work out the number of page, local and TLS entries. */
4689 estimate = arg->max_pages;
4690 if (estimate > g->page_gotno)
4691 estimate = g->page_gotno;
4692 estimate += g->local_gotno + g->tls_gotno;
4694 /* We place TLS GOT entries after both locals and globals. The globals
4695 for the primary GOT may overflow the normal GOT size limit, so be
4696 sure not to merge a GOT which requires TLS with the primary GOT in that
4697 case. This doesn't affect non-primary GOTs. */
4698 estimate += (g->tls_gotno > 0 ? arg->global_count : g->global_gotno);
4700 if (estimate <= arg->max_count)
4702 /* If we don't have a primary GOT, use it as
4703 a starting point for the primary GOT. */
4704 if (!arg->primary)
4706 arg->primary = g;
4707 return true;
4710 /* Try merging with the primary GOT. */
4711 result = mips_elf_merge_got_with (abfd, g, arg->primary, arg);
4712 if (result >= 0)
4713 return result;
4716 /* If we can merge with the last-created got, do it. */
4717 if (arg->current)
4719 result = mips_elf_merge_got_with (abfd, g, arg->current, arg);
4720 if (result >= 0)
4721 return result;
4724 /* Well, we couldn't merge, so create a new GOT. Don't check if it
4725 fits; if it turns out that it doesn't, we'll get relocation
4726 overflows anyway. */
4727 g->next = arg->current;
4728 arg->current = g;
4730 return true;
4733 /* ENTRYP is a hash table entry for a mips_got_entry. Set its gotidx
4734 to GOTIDX, duplicating the entry if it has already been assigned
4735 an index in a different GOT. */
4737 static bool
4738 mips_elf_set_gotidx (void **entryp, long gotidx)
4740 struct mips_got_entry *entry;
4742 entry = (struct mips_got_entry *) *entryp;
4743 if (entry->gotidx > 0)
4745 struct mips_got_entry *new_entry;
4747 new_entry = bfd_alloc (entry->abfd, sizeof (*entry));
4748 if (!new_entry)
4749 return false;
4751 *new_entry = *entry;
4752 *entryp = new_entry;
4753 entry = new_entry;
4755 entry->gotidx = gotidx;
4756 return true;
4759 /* Set the TLS GOT index for the GOT entry in ENTRYP. DATA points to a
4760 mips_elf_traverse_got_arg in which DATA->value is the size of one
4761 GOT entry. Set DATA->g to null on failure. */
4763 static int
4764 mips_elf_initialize_tls_index (void **entryp, void *data)
4766 struct mips_got_entry *entry;
4767 struct mips_elf_traverse_got_arg *arg;
4769 /* We're only interested in TLS symbols. */
4770 entry = (struct mips_got_entry *) *entryp;
4771 if (entry->tls_type == GOT_TLS_NONE)
4772 return 1;
4774 arg = (struct mips_elf_traverse_got_arg *) data;
4775 if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->tls_assigned_gotno))
4777 arg->g = NULL;
4778 return 0;
4781 /* Account for the entries we've just allocated. */
4782 arg->g->tls_assigned_gotno += mips_tls_got_entries (entry->tls_type);
4783 return 1;
4786 /* A htab_traverse callback for GOT entries, where DATA points to a
4787 mips_elf_traverse_got_arg. Set the global_got_area of each global
4788 symbol to DATA->value. */
4790 static int
4791 mips_elf_set_global_got_area (void **entryp, void *data)
4793 struct mips_got_entry *entry;
4794 struct mips_elf_traverse_got_arg *arg;
4796 entry = (struct mips_got_entry *) *entryp;
4797 arg = (struct mips_elf_traverse_got_arg *) data;
4798 if (entry->abfd != NULL
4799 && entry->symndx == -1
4800 && entry->d.h->global_got_area != GGA_NONE)
4801 entry->d.h->global_got_area = arg->value;
4802 return 1;
4805 /* A htab_traverse callback for secondary GOT entries, where DATA points
4806 to a mips_elf_traverse_got_arg. Assign GOT indices to global entries
4807 and record the number of relocations they require. DATA->value is
4808 the size of one GOT entry. Set DATA->g to null on failure. */
4810 static int
4811 mips_elf_set_global_gotidx (void **entryp, void *data)
4813 struct mips_got_entry *entry;
4814 struct mips_elf_traverse_got_arg *arg;
4816 entry = (struct mips_got_entry *) *entryp;
4817 arg = (struct mips_elf_traverse_got_arg *) data;
4818 if (entry->abfd != NULL
4819 && entry->symndx == -1
4820 && entry->d.h->global_got_area != GGA_NONE)
4822 if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->assigned_low_gotno))
4824 arg->g = NULL;
4825 return 0;
4827 arg->g->assigned_low_gotno += 1;
4829 if (bfd_link_pic (arg->info)
4830 || (elf_hash_table (arg->info)->dynamic_sections_created
4831 && entry->d.h->root.def_dynamic
4832 && !entry->d.h->root.def_regular))
4833 arg->g->relocs += 1;
4836 return 1;
4839 /* A htab_traverse callback for GOT entries for which DATA is the
4840 bfd_link_info. Forbid any global symbols from having traditional
4841 lazy-binding stubs. */
4843 static int
4844 mips_elf_forbid_lazy_stubs (void **entryp, void *data)
4846 struct bfd_link_info *info;
4847 struct mips_elf_link_hash_table *htab;
4848 struct mips_got_entry *entry;
4850 entry = (struct mips_got_entry *) *entryp;
4851 info = (struct bfd_link_info *) data;
4852 htab = mips_elf_hash_table (info);
4853 BFD_ASSERT (htab != NULL);
4855 if (entry->abfd != NULL
4856 && entry->symndx == -1
4857 && entry->d.h->needs_lazy_stub)
4859 entry->d.h->needs_lazy_stub = false;
4860 htab->lazy_stub_count--;
4863 return 1;
4866 /* Return the offset of an input bfd IBFD's GOT from the beginning of
4867 the primary GOT. */
4868 static bfd_vma
4869 mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
4871 if (!g->next)
4872 return 0;
4874 g = mips_elf_bfd_got (ibfd, false);
4875 if (! g)
4876 return 0;
4878 BFD_ASSERT (g->next);
4880 g = g->next;
4882 return (g->local_gotno + g->global_gotno + g->tls_gotno)
4883 * MIPS_ELF_GOT_SIZE (abfd);
4886 /* Turn a single GOT that is too big for 16-bit addressing into
4887 a sequence of GOTs, each one 16-bit addressable. */
4889 static bool
4890 mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
4891 asection *got, bfd_size_type pages)
4893 struct mips_elf_link_hash_table *htab;
4894 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
4895 struct mips_elf_traverse_got_arg tga;
4896 struct mips_got_info *g, *gg;
4897 unsigned int assign, needed_relocs;
4898 bfd *dynobj, *ibfd;
4900 dynobj = elf_hash_table (info)->dynobj;
4901 htab = mips_elf_hash_table (info);
4902 BFD_ASSERT (htab != NULL);
4904 g = htab->got_info;
4906 got_per_bfd_arg.obfd = abfd;
4907 got_per_bfd_arg.info = info;
4908 got_per_bfd_arg.current = NULL;
4909 got_per_bfd_arg.primary = NULL;
4910 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (info)
4911 / MIPS_ELF_GOT_SIZE (abfd))
4912 - htab->reserved_gotno);
4913 got_per_bfd_arg.max_pages = pages;
4914 /* The number of globals that will be included in the primary GOT.
4915 See the calls to mips_elf_set_global_got_area below for more
4916 information. */
4917 got_per_bfd_arg.global_count = g->global_gotno;
4919 /* Try to merge the GOTs of input bfds together, as long as they
4920 don't seem to exceed the maximum GOT size, choosing one of them
4921 to be the primary GOT. */
4922 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
4924 gg = mips_elf_bfd_got (ibfd, false);
4925 if (gg && !mips_elf_merge_got (ibfd, gg, &got_per_bfd_arg))
4926 return false;
4929 /* If we do not find any suitable primary GOT, create an empty one. */
4930 if (got_per_bfd_arg.primary == NULL)
4931 g->next = mips_elf_create_got_info (abfd);
4932 else
4933 g->next = got_per_bfd_arg.primary;
4934 g->next->next = got_per_bfd_arg.current;
4936 /* GG is now the master GOT, and G is the primary GOT. */
4937 gg = g;
4938 g = g->next;
4940 /* Map the output bfd to the primary got. That's what we're going
4941 to use for bfds that use GOT16 or GOT_PAGE relocations that we
4942 didn't mark in check_relocs, and we want a quick way to find it.
4943 We can't just use gg->next because we're going to reverse the
4944 list. */
4945 mips_elf_replace_bfd_got (abfd, g);
4947 /* Every symbol that is referenced in a dynamic relocation must be
4948 present in the primary GOT, so arrange for them to appear after
4949 those that are actually referenced. */
4950 gg->reloc_only_gotno = gg->global_gotno - g->global_gotno;
4951 g->global_gotno = gg->global_gotno;
4953 tga.info = info;
4954 tga.value = GGA_RELOC_ONLY;
4955 htab_traverse (gg->got_entries, mips_elf_set_global_got_area, &tga);
4956 tga.value = GGA_NORMAL;
4957 htab_traverse (g->got_entries, mips_elf_set_global_got_area, &tga);
4959 /* Now go through the GOTs assigning them offset ranges.
4960 [assigned_low_gotno, local_gotno[ will be set to the range of local
4961 entries in each GOT. We can then compute the end of a GOT by
4962 adding local_gotno to global_gotno. We reverse the list and make
4963 it circular since then we'll be able to quickly compute the
4964 beginning of a GOT, by computing the end of its predecessor. To
4965 avoid special cases for the primary GOT, while still preserving
4966 assertions that are valid for both single- and multi-got links,
4967 we arrange for the main got struct to have the right number of
4968 global entries, but set its local_gotno such that the initial
4969 offset of the primary GOT is zero. Remember that the primary GOT
4970 will become the last item in the circular linked list, so it
4971 points back to the master GOT. */
4972 gg->local_gotno = -g->global_gotno;
4973 gg->global_gotno = g->global_gotno;
4974 gg->tls_gotno = 0;
4975 assign = 0;
4976 gg->next = gg;
4980 struct mips_got_info *gn;
4982 assign += htab->reserved_gotno;
4983 g->assigned_low_gotno = assign;
4984 g->local_gotno += assign;
4985 g->local_gotno += (pages < g->page_gotno ? pages : g->page_gotno);
4986 g->assigned_high_gotno = g->local_gotno - 1;
4987 assign = g->local_gotno + g->global_gotno + g->tls_gotno;
4989 /* Take g out of the direct list, and push it onto the reversed
4990 list that gg points to. g->next is guaranteed to be nonnull after
4991 this operation, as required by mips_elf_initialize_tls_index. */
4992 gn = g->next;
4993 g->next = gg->next;
4994 gg->next = g;
4996 /* Set up any TLS entries. We always place the TLS entries after
4997 all non-TLS entries. */
4998 g->tls_assigned_gotno = g->local_gotno + g->global_gotno;
4999 tga.g = g;
5000 tga.value = MIPS_ELF_GOT_SIZE (abfd);
5001 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga);
5002 if (!tga.g)
5003 return false;
5004 BFD_ASSERT (g->tls_assigned_gotno == assign);
5006 /* Move onto the next GOT. It will be a secondary GOT if nonull. */
5007 g = gn;
5009 /* Forbid global symbols in every non-primary GOT from having
5010 lazy-binding stubs. */
5011 if (g)
5012 htab_traverse (g->got_entries, mips_elf_forbid_lazy_stubs, info);
5014 while (g);
5016 got->size = assign * MIPS_ELF_GOT_SIZE (abfd);
5018 needed_relocs = 0;
5019 for (g = gg->next; g && g->next != gg; g = g->next)
5021 unsigned int save_assign;
5023 /* Assign offsets to global GOT entries and count how many
5024 relocations they need. */
5025 save_assign = g->assigned_low_gotno;
5026 g->assigned_low_gotno = g->local_gotno;
5027 tga.info = info;
5028 tga.value = MIPS_ELF_GOT_SIZE (abfd);
5029 tga.g = g;
5030 htab_traverse (g->got_entries, mips_elf_set_global_gotidx, &tga);
5031 if (!tga.g)
5032 return false;
5033 BFD_ASSERT (g->assigned_low_gotno == g->local_gotno + g->global_gotno);
5034 g->assigned_low_gotno = save_assign;
5036 if (bfd_link_pic (info))
5038 g->relocs += g->local_gotno - g->assigned_low_gotno;
5039 BFD_ASSERT (g->assigned_low_gotno == g->next->local_gotno
5040 + g->next->global_gotno
5041 + g->next->tls_gotno
5042 + htab->reserved_gotno);
5044 needed_relocs += g->relocs;
5046 needed_relocs += g->relocs;
5048 if (needed_relocs)
5049 mips_elf_allocate_dynamic_relocations (dynobj, info,
5050 needed_relocs);
5052 return true;
5056 /* Returns the first relocation of type r_type found, beginning with
5057 RELOCATION. RELEND is one-past-the-end of the relocation table. */
5059 static const Elf_Internal_Rela *
5060 mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
5061 const Elf_Internal_Rela *relocation,
5062 const Elf_Internal_Rela *relend)
5064 unsigned long r_symndx = ELF_R_SYM (abfd, relocation->r_info);
5066 while (relocation < relend)
5068 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type
5069 && ELF_R_SYM (abfd, relocation->r_info) == r_symndx)
5070 return relocation;
5072 ++relocation;
5075 /* We didn't find it. */
5076 return NULL;
5079 /* Return whether an input relocation is against a local symbol. */
5081 static bool
5082 mips_elf_local_relocation_p (bfd *input_bfd,
5083 const Elf_Internal_Rela *relocation,
5084 asection **local_sections)
5086 unsigned long r_symndx;
5087 Elf_Internal_Shdr *symtab_hdr;
5088 size_t extsymoff;
5090 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
5091 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5092 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
5094 if (r_symndx < extsymoff)
5095 return true;
5096 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
5097 return true;
5099 return false;
5102 /* Sign-extend VALUE, which has the indicated number of BITS. */
5104 bfd_vma
5105 _bfd_mips_elf_sign_extend (bfd_vma value, int bits)
5107 if (value & ((bfd_vma) 1 << (bits - 1)))
5108 /* VALUE is negative. */
5109 value |= ((bfd_vma) - 1) << bits;
5111 return value;
5114 /* Return non-zero if the indicated VALUE has overflowed the maximum
5115 range expressible by a signed number with the indicated number of
5116 BITS. */
5118 static bool
5119 mips_elf_overflow_p (bfd_vma value, int bits)
5121 bfd_signed_vma svalue = (bfd_signed_vma) value;
5123 if (svalue > (1 << (bits - 1)) - 1)
5124 /* The value is too big. */
5125 return true;
5126 else if (svalue < -(1 << (bits - 1)))
5127 /* The value is too small. */
5128 return true;
5130 /* All is well. */
5131 return false;
5134 /* Calculate the %high function. */
5136 static bfd_vma
5137 mips_elf_high (bfd_vma value)
5139 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
5142 /* Calculate the %higher function. */
5144 static bfd_vma
5145 mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
5147 #ifdef BFD64
5148 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
5149 #else
5150 abort ();
5151 return MINUS_ONE;
5152 #endif
5155 /* Calculate the %highest function. */
5157 static bfd_vma
5158 mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
5160 #ifdef BFD64
5161 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
5162 #else
5163 abort ();
5164 return MINUS_ONE;
5165 #endif
5168 /* Create the .compact_rel section. */
5170 static bool
5171 mips_elf_create_compact_rel_section
5172 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
5174 flagword flags;
5175 register asection *s;
5177 if (bfd_get_linker_section (abfd, ".compact_rel") == NULL)
5179 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
5180 | SEC_READONLY);
5182 s = bfd_make_section_anyway_with_flags (abfd, ".compact_rel", flags);
5183 if (s == NULL
5184 || !bfd_set_section_alignment (s, MIPS_ELF_LOG_FILE_ALIGN (abfd)))
5185 return false;
5187 s->size = sizeof (Elf32_External_compact_rel);
5190 return true;
5193 /* Create the .got section to hold the global offset table. */
5195 static bool
5196 mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
5198 flagword flags;
5199 register asection *s;
5200 struct elf_link_hash_entry *h;
5201 struct bfd_link_hash_entry *bh;
5202 struct mips_elf_link_hash_table *htab;
5204 htab = mips_elf_hash_table (info);
5205 BFD_ASSERT (htab != NULL);
5207 /* This function may be called more than once. */
5208 if (htab->root.sgot)
5209 return true;
5211 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
5212 | SEC_LINKER_CREATED);
5214 /* We have to use an alignment of 2**4 here because this is hardcoded
5215 in the function stub generation and in the linker script. */
5216 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
5217 if (s == NULL
5218 || !bfd_set_section_alignment (s, 4))
5219 return false;
5220 htab->root.sgot = s;
5222 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
5223 linker script because we don't want to define the symbol if we
5224 are not creating a global offset table. */
5225 bh = NULL;
5226 if (! (_bfd_generic_link_add_one_symbol
5227 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
5228 0, NULL, false, get_elf_backend_data (abfd)->collect, &bh)))
5229 return false;
5231 h = (struct elf_link_hash_entry *) bh;
5232 h->non_elf = 0;
5233 h->def_regular = 1;
5234 h->type = STT_OBJECT;
5235 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
5236 elf_hash_table (info)->hgot = h;
5238 if (bfd_link_pic (info)
5239 && ! bfd_elf_link_record_dynamic_symbol (info, h))
5240 return false;
5242 htab->got_info = mips_elf_create_got_info (abfd);
5243 mips_elf_section_data (s)->elf.this_hdr.sh_flags
5244 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
5246 /* We also need a .got.plt section when generating PLTs. */
5247 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt",
5248 SEC_ALLOC | SEC_LOAD
5249 | SEC_HAS_CONTENTS
5250 | SEC_IN_MEMORY
5251 | SEC_LINKER_CREATED);
5252 if (s == NULL)
5253 return false;
5254 htab->root.sgotplt = s;
5256 return true;
5259 /* Return true if H refers to the special VxWorks __GOTT_BASE__ or
5260 __GOTT_INDEX__ symbols. These symbols are only special for
5261 shared objects; they are not used in executables. */
5263 static bool
5264 is_gott_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h)
5266 return (mips_elf_hash_table (info)->root.target_os == is_vxworks
5267 && bfd_link_pic (info)
5268 && (strcmp (h->root.root.string, "__GOTT_BASE__") == 0
5269 || strcmp (h->root.root.string, "__GOTT_INDEX__") == 0));
5272 /* Return TRUE if a relocation of type R_TYPE from INPUT_BFD might
5273 require an la25 stub. See also mips_elf_local_pic_function_p,
5274 which determines whether the destination function ever requires a
5275 stub. */
5277 static bool
5278 mips_elf_relocation_needs_la25_stub (bfd *input_bfd, int r_type,
5279 bool target_is_16_bit_code_p)
5281 /* We specifically ignore branches and jumps from EF_PIC objects,
5282 where the onus is on the compiler or programmer to perform any
5283 necessary initialization of $25. Sometimes such initialization
5284 is unnecessary; for example, -mno-shared functions do not use
5285 the incoming value of $25, and may therefore be called directly. */
5286 if (PIC_OBJECT_P (input_bfd))
5287 return false;
5289 switch (r_type)
5291 case R_MIPS_26:
5292 case R_MIPS_PC16:
5293 case R_MIPS_PC21_S2:
5294 case R_MIPS_PC26_S2:
5295 case R_MICROMIPS_26_S1:
5296 case R_MICROMIPS_PC7_S1:
5297 case R_MICROMIPS_PC10_S1:
5298 case R_MICROMIPS_PC16_S1:
5299 case R_MICROMIPS_PC23_S2:
5300 return true;
5302 case R_MIPS16_26:
5303 return !target_is_16_bit_code_p;
5305 default:
5306 return false;
5310 /* Obtain the field relocated by RELOCATION. */
5312 static bfd_vma
5313 mips_elf_obtain_contents (reloc_howto_type *howto,
5314 const Elf_Internal_Rela *relocation,
5315 bfd *input_bfd, bfd_byte *contents)
5317 bfd_vma x = 0;
5318 bfd_byte *location = contents + relocation->r_offset;
5319 unsigned int size = bfd_get_reloc_size (howto);
5321 /* Obtain the bytes. */
5322 if (size != 0)
5323 x = bfd_get (8 * size, input_bfd, location);
5325 return x;
5328 /* Store the field relocated by RELOCATION. */
5330 static void
5331 mips_elf_store_contents (reloc_howto_type *howto,
5332 const Elf_Internal_Rela *relocation,
5333 bfd *input_bfd, bfd_byte *contents, bfd_vma x)
5335 bfd_byte *location = contents + relocation->r_offset;
5336 unsigned int size = bfd_get_reloc_size (howto);
5338 /* Put the value into the output. */
5339 if (size != 0)
5340 bfd_put (8 * size, input_bfd, x, location);
5343 /* Try to patch a load from GOT instruction in CONTENTS pointed to by
5344 RELOCATION described by HOWTO, with a move of 0 to the load target
5345 register, returning TRUE if that is successful and FALSE otherwise.
5346 If DOIT is FALSE, then only determine it patching is possible and
5347 return status without actually changing CONTENTS.
5350 static bool
5351 mips_elf_nullify_got_load (bfd *input_bfd, bfd_byte *contents,
5352 const Elf_Internal_Rela *relocation,
5353 reloc_howto_type *howto, bool doit)
5355 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
5356 bfd_byte *location = contents + relocation->r_offset;
5357 bool nullified = true;
5358 bfd_vma x;
5360 _bfd_mips_elf_reloc_unshuffle (input_bfd, r_type, false, location);
5362 /* Obtain the current value. */
5363 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
5365 /* Note that in the unshuffled MIPS16 encoding RX is at bits [21:19]
5366 while RY is at bits [18:16] of the combined 32-bit instruction word. */
5367 if (mips16_reloc_p (r_type)
5368 && (((x >> 22) & 0x3ff) == 0x3d3 /* LW */
5369 || ((x >> 22) & 0x3ff) == 0x3c7)) /* LD */
5370 x = (0x3cdU << 22) | (x & (7 << 16)) << 3; /* LI */
5371 else if (micromips_reloc_p (r_type)
5372 && ((x >> 26) & 0x37) == 0x37) /* LW/LD */
5373 x = (0xc << 26) | (x & (0x1f << 21)); /* ADDIU */
5374 else if (((x >> 26) & 0x3f) == 0x23 /* LW */
5375 || ((x >> 26) & 0x3f) == 0x37) /* LD */
5376 x = (0x9 << 26) | (x & (0x1f << 16)); /* ADDIU */
5377 else
5378 nullified = false;
5380 /* Put the value into the output. */
5381 if (doit && nullified)
5382 mips_elf_store_contents (howto, relocation, input_bfd, contents, x);
5384 _bfd_mips_elf_reloc_shuffle (input_bfd, r_type, false, location);
5386 return nullified;
5389 /* Calculate the value produced by the RELOCATION (which comes from
5390 the INPUT_BFD). The ADDEND is the addend to use for this
5391 RELOCATION; RELOCATION->R_ADDEND is ignored.
5393 The result of the relocation calculation is stored in VALUEP.
5394 On exit, set *CROSS_MODE_JUMP_P to true if the relocation field
5395 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
5397 This function returns bfd_reloc_continue if the caller need take no
5398 further action regarding this relocation, bfd_reloc_notsupported if
5399 something goes dramatically wrong, bfd_reloc_overflow if an
5400 overflow occurs, and bfd_reloc_ok to indicate success. */
5402 static bfd_reloc_status_type
5403 mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
5404 asection *input_section, bfd_byte *contents,
5405 struct bfd_link_info *info,
5406 const Elf_Internal_Rela *relocation,
5407 bfd_vma addend, reloc_howto_type *howto,
5408 Elf_Internal_Sym *local_syms,
5409 asection **local_sections, bfd_vma *valuep,
5410 const char **namep,
5411 bool *cross_mode_jump_p,
5412 bool save_addend)
5414 /* The eventual value we will return. */
5415 bfd_vma value;
5416 /* The address of the symbol against which the relocation is
5417 occurring. */
5418 bfd_vma symbol = 0;
5419 /* The final GP value to be used for the relocatable, executable, or
5420 shared object file being produced. */
5421 bfd_vma gp;
5422 /* The place (section offset or address) of the storage unit being
5423 relocated. */
5424 bfd_vma p;
5425 /* The value of GP used to create the relocatable object. */
5426 bfd_vma gp0;
5427 /* The offset into the global offset table at which the address of
5428 the relocation entry symbol, adjusted by the addend, resides
5429 during execution. */
5430 bfd_vma g = MINUS_ONE;
5431 /* The section in which the symbol referenced by the relocation is
5432 located. */
5433 asection *sec = NULL;
5434 struct mips_elf_link_hash_entry *h = NULL;
5435 /* TRUE if the symbol referred to by this relocation is a local
5436 symbol. */
5437 bool local_p, was_local_p;
5438 /* TRUE if the symbol referred to by this relocation is a section
5439 symbol. */
5440 bool section_p = false;
5441 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
5442 bool gp_disp_p = false;
5443 /* TRUE if the symbol referred to by this relocation is
5444 "__gnu_local_gp". */
5445 bool gnu_local_gp_p = false;
5446 Elf_Internal_Shdr *symtab_hdr;
5447 size_t extsymoff;
5448 unsigned long r_symndx;
5449 int r_type;
5450 /* TRUE if overflow occurred during the calculation of the
5451 relocation value. */
5452 bool overflowed_p;
5453 /* TRUE if this relocation refers to a MIPS16 function. */
5454 bool target_is_16_bit_code_p = false;
5455 bool target_is_micromips_code_p = false;
5456 struct mips_elf_link_hash_table *htab;
5457 bfd *dynobj;
5458 bool resolved_to_zero;
5460 dynobj = elf_hash_table (info)->dynobj;
5461 htab = mips_elf_hash_table (info);
5462 BFD_ASSERT (htab != NULL);
5464 /* Parse the relocation. */
5465 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
5466 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
5467 p = (input_section->output_section->vma
5468 + input_section->output_offset
5469 + relocation->r_offset);
5471 /* Assume that there will be no overflow. */
5472 overflowed_p = false;
5474 /* Figure out whether or not the symbol is local, and get the offset
5475 used in the array of hash table entries. */
5476 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5477 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
5478 local_sections);
5479 was_local_p = local_p;
5480 if (! elf_bad_symtab (input_bfd))
5481 extsymoff = symtab_hdr->sh_info;
5482 else
5484 /* The symbol table does not follow the rule that local symbols
5485 must come before globals. */
5486 extsymoff = 0;
5489 /* Figure out the value of the symbol. */
5490 if (local_p)
5492 bool micromips_p = MICROMIPS_P (abfd);
5493 Elf_Internal_Sym *sym;
5495 sym = local_syms + r_symndx;
5496 sec = local_sections[r_symndx];
5498 section_p = ELF_ST_TYPE (sym->st_info) == STT_SECTION;
5500 symbol = sec->output_section->vma + sec->output_offset;
5501 if (!section_p || (sec->flags & SEC_MERGE))
5502 symbol += sym->st_value;
5503 if ((sec->flags & SEC_MERGE) && section_p)
5505 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
5506 addend -= symbol;
5507 addend += sec->output_section->vma + sec->output_offset;
5510 /* MIPS16/microMIPS text labels should be treated as odd. */
5511 if (ELF_ST_IS_COMPRESSED (sym->st_other))
5512 ++symbol;
5514 /* Record the name of this symbol, for our caller. */
5515 *namep = bfd_elf_string_from_elf_section (input_bfd,
5516 symtab_hdr->sh_link,
5517 sym->st_name);
5518 if (*namep == NULL || **namep == '\0')
5519 *namep = bfd_section_name (sec);
5521 /* For relocations against a section symbol and ones against no
5522 symbol (absolute relocations) infer the ISA mode from the addend. */
5523 if (section_p || r_symndx == STN_UNDEF)
5525 target_is_16_bit_code_p = (addend & 1) && !micromips_p;
5526 target_is_micromips_code_p = (addend & 1) && micromips_p;
5528 /* For relocations against an absolute symbol infer the ISA mode
5529 from the value of the symbol plus addend. */
5530 else if (bfd_is_abs_section (sec))
5532 target_is_16_bit_code_p = ((symbol + addend) & 1) && !micromips_p;
5533 target_is_micromips_code_p = ((symbol + addend) & 1) && micromips_p;
5535 /* Otherwise just use the regular symbol annotation available. */
5536 else
5538 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (sym->st_other);
5539 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (sym->st_other);
5542 else
5544 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
5546 /* For global symbols we look up the symbol in the hash-table. */
5547 h = ((struct mips_elf_link_hash_entry *)
5548 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
5549 /* Find the real hash-table entry for this symbol. */
5550 while (h->root.root.type == bfd_link_hash_indirect
5551 || h->root.root.type == bfd_link_hash_warning)
5552 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
5554 /* Record the name of this symbol, for our caller. */
5555 *namep = h->root.root.root.string;
5557 /* See if this is the special _gp_disp symbol. Note that such a
5558 symbol must always be a global symbol. */
5559 if (strcmp (*namep, "_gp_disp") == 0
5560 && ! NEWABI_P (input_bfd))
5562 /* Relocations against _gp_disp are permitted only with
5563 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
5564 if (!hi16_reloc_p (r_type) && !lo16_reloc_p (r_type))
5565 return bfd_reloc_notsupported;
5567 gp_disp_p = true;
5569 /* See if this is the special _gp symbol. Note that such a
5570 symbol must always be a global symbol. */
5571 else if (strcmp (*namep, "__gnu_local_gp") == 0)
5572 gnu_local_gp_p = true;
5575 /* If this symbol is defined, calculate its address. Note that
5576 _gp_disp is a magic symbol, always implicitly defined by the
5577 linker, so it's inappropriate to check to see whether or not
5578 its defined. */
5579 else if ((h->root.root.type == bfd_link_hash_defined
5580 || h->root.root.type == bfd_link_hash_defweak)
5581 && h->root.root.u.def.section)
5583 sec = h->root.root.u.def.section;
5584 if (sec->output_section)
5585 symbol = (h->root.root.u.def.value
5586 + sec->output_section->vma
5587 + sec->output_offset);
5588 else
5589 symbol = h->root.root.u.def.value;
5591 else if (h->root.root.type == bfd_link_hash_undefweak)
5592 /* We allow relocations against undefined weak symbols, giving
5593 it the value zero, so that you can undefined weak functions
5594 and check to see if they exist by looking at their
5595 addresses. */
5596 symbol = 0;
5597 else if (info->unresolved_syms_in_objects == RM_IGNORE
5598 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5599 symbol = 0;
5600 else if (strcmp (*namep, SGI_COMPAT (input_bfd)
5601 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
5603 /* If this is a dynamic link, we should have created a
5604 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
5605 in _bfd_mips_elf_create_dynamic_sections.
5606 Otherwise, we should define the symbol with a value of 0.
5607 FIXME: It should probably get into the symbol table
5608 somehow as well. */
5609 BFD_ASSERT (! bfd_link_pic (info));
5610 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
5611 symbol = 0;
5613 else if (ELF_MIPS_IS_OPTIONAL (h->root.other))
5615 /* This is an optional symbol - an Irix specific extension to the
5616 ELF spec. Ignore it for now.
5617 XXX - FIXME - there is more to the spec for OPTIONAL symbols
5618 than simply ignoring them, but we do not handle this for now.
5619 For information see the "64-bit ELF Object File Specification"
5620 which is available from here:
5621 http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */
5622 symbol = 0;
5624 else
5626 bool reject_undefined
5627 = ((info->unresolved_syms_in_objects == RM_DIAGNOSE
5628 && !info->warn_unresolved_syms)
5629 || ELF_ST_VISIBILITY (h->root.other) != STV_DEFAULT);
5631 info->callbacks->undefined_symbol
5632 (info, h->root.root.root.string, input_bfd,
5633 input_section, relocation->r_offset, reject_undefined);
5635 if (reject_undefined)
5636 return bfd_reloc_undefined;
5638 symbol = 0;
5641 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (h->root.other);
5642 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (h->root.other);
5645 /* If this is a reference to a 16-bit function with a stub, we need
5646 to redirect the relocation to the stub unless:
5648 (a) the relocation is for a MIPS16 JAL;
5650 (b) the relocation is for a MIPS16 PIC call, and there are no
5651 non-MIPS16 uses of the GOT slot; or
5653 (c) the section allows direct references to MIPS16 functions. */
5654 if (r_type != R_MIPS16_26
5655 && !bfd_link_relocatable (info)
5656 && ((h != NULL
5657 && h->fn_stub != NULL
5658 && (r_type != R_MIPS16_CALL16 || h->need_fn_stub))
5659 || (local_p
5660 && mips_elf_tdata (input_bfd)->local_stubs != NULL
5661 && mips_elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
5662 && !section_allows_mips16_refs_p (input_section))
5664 /* This is a 32- or 64-bit call to a 16-bit function. We should
5665 have already noticed that we were going to need the
5666 stub. */
5667 if (local_p)
5669 sec = mips_elf_tdata (input_bfd)->local_stubs[r_symndx];
5670 value = 0;
5672 else
5674 BFD_ASSERT (h->need_fn_stub);
5675 if (h->la25_stub)
5677 /* If a LA25 header for the stub itself exists, point to the
5678 prepended LUI/ADDIU sequence. */
5679 sec = h->la25_stub->stub_section;
5680 value = h->la25_stub->offset;
5682 else
5684 sec = h->fn_stub;
5685 value = 0;
5689 symbol = sec->output_section->vma + sec->output_offset + value;
5690 /* The target is 16-bit, but the stub isn't. */
5691 target_is_16_bit_code_p = false;
5693 /* If this is a MIPS16 call with a stub, that is made through the PLT or
5694 to a standard MIPS function, we need to redirect the call to the stub.
5695 Note that we specifically exclude R_MIPS16_CALL16 from this behavior;
5696 indirect calls should use an indirect stub instead. */
5697 else if (r_type == R_MIPS16_26 && !bfd_link_relocatable (info)
5698 && ((h != NULL && (h->call_stub != NULL || h->call_fp_stub != NULL))
5699 || (local_p
5700 && mips_elf_tdata (input_bfd)->local_call_stubs != NULL
5701 && mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx] != NULL))
5702 && ((h != NULL && h->use_plt_entry) || !target_is_16_bit_code_p))
5704 if (local_p)
5705 sec = mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx];
5706 else
5708 /* If both call_stub and call_fp_stub are defined, we can figure
5709 out which one to use by checking which one appears in the input
5710 file. */
5711 if (h->call_stub != NULL && h->call_fp_stub != NULL)
5713 asection *o;
5715 sec = NULL;
5716 for (o = input_bfd->sections; o != NULL; o = o->next)
5718 if (CALL_FP_STUB_P (bfd_section_name (o)))
5720 sec = h->call_fp_stub;
5721 break;
5724 if (sec == NULL)
5725 sec = h->call_stub;
5727 else if (h->call_stub != NULL)
5728 sec = h->call_stub;
5729 else
5730 sec = h->call_fp_stub;
5733 BFD_ASSERT (sec->size > 0);
5734 symbol = sec->output_section->vma + sec->output_offset;
5736 /* If this is a direct call to a PIC function, redirect to the
5737 non-PIC stub. */
5738 else if (h != NULL && h->la25_stub
5739 && mips_elf_relocation_needs_la25_stub (input_bfd, r_type,
5740 target_is_16_bit_code_p))
5742 symbol = (h->la25_stub->stub_section->output_section->vma
5743 + h->la25_stub->stub_section->output_offset
5744 + h->la25_stub->offset);
5745 if (ELF_ST_IS_MICROMIPS (h->root.other))
5746 symbol |= 1;
5748 /* For direct MIPS16 and microMIPS calls make sure the compressed PLT
5749 entry is used if a standard PLT entry has also been made. In this
5750 case the symbol will have been set by mips_elf_set_plt_sym_value
5751 to point to the standard PLT entry, so redirect to the compressed
5752 one. */
5753 else if ((mips16_branch_reloc_p (r_type)
5754 || micromips_branch_reloc_p (r_type))
5755 && !bfd_link_relocatable (info)
5756 && h != NULL
5757 && h->use_plt_entry
5758 && h->root.plt.plist->comp_offset != MINUS_ONE
5759 && h->root.plt.plist->mips_offset != MINUS_ONE)
5761 bool micromips_p = MICROMIPS_P (abfd);
5763 sec = htab->root.splt;
5764 symbol = (sec->output_section->vma
5765 + sec->output_offset
5766 + htab->plt_header_size
5767 + htab->plt_mips_offset
5768 + h->root.plt.plist->comp_offset
5769 + 1);
5771 target_is_16_bit_code_p = !micromips_p;
5772 target_is_micromips_code_p = micromips_p;
5775 /* Make sure MIPS16 and microMIPS are not used together. */
5776 if ((mips16_branch_reloc_p (r_type) && target_is_micromips_code_p)
5777 || (micromips_branch_reloc_p (r_type) && target_is_16_bit_code_p))
5779 _bfd_error_handler
5780 (_("MIPS16 and microMIPS functions cannot call each other"));
5781 return bfd_reloc_notsupported;
5784 /* Calls from 16-bit code to 32-bit code and vice versa require the
5785 mode change. However, we can ignore calls to undefined weak symbols,
5786 which should never be executed at runtime. This exception is important
5787 because the assembly writer may have "known" that any definition of the
5788 symbol would be 16-bit code, and that direct jumps were therefore
5789 acceptable. */
5790 *cross_mode_jump_p = (!bfd_link_relocatable (info)
5791 && !(h && h->root.root.type == bfd_link_hash_undefweak)
5792 && ((mips16_branch_reloc_p (r_type)
5793 && !target_is_16_bit_code_p)
5794 || (micromips_branch_reloc_p (r_type)
5795 && !target_is_micromips_code_p)
5796 || ((branch_reloc_p (r_type)
5797 || r_type == R_MIPS_JALR)
5798 && (target_is_16_bit_code_p
5799 || target_is_micromips_code_p))));
5801 resolved_to_zero = (h != NULL
5802 && UNDEFWEAK_NO_DYNAMIC_RELOC (info, &h->root));
5804 switch (r_type)
5806 case R_MIPS16_CALL16:
5807 case R_MIPS16_GOT16:
5808 case R_MIPS_CALL16:
5809 case R_MIPS_GOT16:
5810 case R_MIPS_GOT_PAGE:
5811 case R_MIPS_GOT_DISP:
5812 case R_MIPS_GOT_LO16:
5813 case R_MIPS_CALL_LO16:
5814 case R_MICROMIPS_CALL16:
5815 case R_MICROMIPS_GOT16:
5816 case R_MICROMIPS_GOT_PAGE:
5817 case R_MICROMIPS_GOT_DISP:
5818 case R_MICROMIPS_GOT_LO16:
5819 case R_MICROMIPS_CALL_LO16:
5820 if (resolved_to_zero
5821 && !bfd_link_relocatable (info)
5822 && mips_elf_nullify_got_load (input_bfd, contents,
5823 relocation, howto, true))
5824 return bfd_reloc_continue;
5826 /* Fall through. */
5827 case R_MIPS_GOT_HI16:
5828 case R_MIPS_CALL_HI16:
5829 case R_MICROMIPS_GOT_HI16:
5830 case R_MICROMIPS_CALL_HI16:
5831 if (resolved_to_zero
5832 && htab->use_absolute_zero
5833 && bfd_link_pic (info))
5835 /* Redirect to the special `__gnu_absolute_zero' symbol. */
5836 h = mips_elf_link_hash_lookup (htab, "__gnu_absolute_zero",
5837 false, false, false);
5838 BFD_ASSERT (h != NULL);
5840 break;
5843 local_p = (h == NULL || mips_use_local_got_p (info, h));
5845 gp0 = _bfd_get_gp_value (input_bfd);
5846 gp = _bfd_get_gp_value (abfd);
5847 if (htab->got_info)
5848 gp += mips_elf_adjust_gp (abfd, htab->got_info, input_bfd);
5850 if (gnu_local_gp_p)
5851 symbol = gp;
5853 /* Global R_MIPS_GOT_PAGE/R_MICROMIPS_GOT_PAGE relocations are equivalent
5854 to R_MIPS_GOT_DISP/R_MICROMIPS_GOT_DISP. The addend is applied by the
5855 corresponding R_MIPS_GOT_OFST/R_MICROMIPS_GOT_OFST. */
5856 if (got_page_reloc_p (r_type) && !local_p)
5858 r_type = (micromips_reloc_p (r_type)
5859 ? R_MICROMIPS_GOT_DISP : R_MIPS_GOT_DISP);
5860 addend = 0;
5863 /* If we haven't already determined the GOT offset, and we're going
5864 to need it, get it now. */
5865 switch (r_type)
5867 case R_MIPS16_CALL16:
5868 case R_MIPS16_GOT16:
5869 case R_MIPS_CALL16:
5870 case R_MIPS_GOT16:
5871 case R_MIPS_GOT_DISP:
5872 case R_MIPS_GOT_HI16:
5873 case R_MIPS_CALL_HI16:
5874 case R_MIPS_GOT_LO16:
5875 case R_MIPS_CALL_LO16:
5876 case R_MICROMIPS_CALL16:
5877 case R_MICROMIPS_GOT16:
5878 case R_MICROMIPS_GOT_DISP:
5879 case R_MICROMIPS_GOT_HI16:
5880 case R_MICROMIPS_CALL_HI16:
5881 case R_MICROMIPS_GOT_LO16:
5882 case R_MICROMIPS_CALL_LO16:
5883 case R_MIPS_TLS_GD:
5884 case R_MIPS_TLS_GOTTPREL:
5885 case R_MIPS_TLS_LDM:
5886 case R_MIPS16_TLS_GD:
5887 case R_MIPS16_TLS_GOTTPREL:
5888 case R_MIPS16_TLS_LDM:
5889 case R_MICROMIPS_TLS_GD:
5890 case R_MICROMIPS_TLS_GOTTPREL:
5891 case R_MICROMIPS_TLS_LDM:
5892 /* Find the index into the GOT where this value is located. */
5893 if (tls_ldm_reloc_p (r_type))
5895 g = mips_elf_local_got_index (abfd, input_bfd, info,
5896 0, 0, NULL, r_type);
5897 if (g == MINUS_ONE)
5898 return bfd_reloc_outofrange;
5900 else if (!local_p)
5902 /* On VxWorks, CALL relocations should refer to the .got.plt
5903 entry, which is initialized to point at the PLT stub. */
5904 if (htab->root.target_os == is_vxworks
5905 && (call_hi16_reloc_p (r_type)
5906 || call_lo16_reloc_p (r_type)
5907 || call16_reloc_p (r_type)))
5909 BFD_ASSERT (addend == 0);
5910 BFD_ASSERT (h->root.needs_plt);
5911 g = mips_elf_gotplt_index (info, &h->root);
5913 else
5915 BFD_ASSERT (addend == 0);
5916 g = mips_elf_global_got_index (abfd, info, input_bfd,
5917 &h->root, r_type);
5918 if (!TLS_RELOC_P (r_type)
5919 && !elf_hash_table (info)->dynamic_sections_created)
5920 /* This is a static link. We must initialize the GOT entry. */
5921 MIPS_ELF_PUT_WORD (dynobj, symbol, htab->root.sgot->contents + g);
5924 else if (htab->root.target_os != is_vxworks
5925 && (call16_reloc_p (r_type) || got16_reloc_p (r_type)))
5926 /* The calculation below does not involve "g". */
5927 break;
5928 else
5930 g = mips_elf_local_got_index (abfd, input_bfd, info,
5931 symbol + addend, r_symndx, h, r_type);
5932 if (g == MINUS_ONE)
5933 return bfd_reloc_outofrange;
5936 /* Convert GOT indices to actual offsets. */
5937 g = mips_elf_got_offset_from_index (info, abfd, input_bfd, g);
5938 break;
5941 /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__
5942 symbols are resolved by the loader. Add them to .rela.dyn. */
5943 if (h != NULL && is_gott_symbol (info, &h->root))
5945 Elf_Internal_Rela outrel;
5946 bfd_byte *loc;
5947 asection *s;
5949 s = mips_elf_rel_dyn_section (info, false);
5950 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
5952 outrel.r_offset = (input_section->output_section->vma
5953 + input_section->output_offset
5954 + relocation->r_offset);
5955 outrel.r_info = ELF32_R_INFO (h->root.dynindx, r_type);
5956 outrel.r_addend = addend;
5957 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
5959 /* If we've written this relocation for a readonly section,
5960 we need to set DF_TEXTREL again, so that we do not delete the
5961 DT_TEXTREL tag. */
5962 if (MIPS_ELF_READONLY_SECTION (input_section))
5963 info->flags |= DF_TEXTREL;
5965 *valuep = 0;
5966 return bfd_reloc_ok;
5969 /* Figure out what kind of relocation is being performed. */
5970 switch (r_type)
5972 case R_MIPS_NONE:
5973 return bfd_reloc_continue;
5975 case R_MIPS_16:
5976 if (howto->partial_inplace)
5977 addend = _bfd_mips_elf_sign_extend (addend, 16);
5978 value = symbol + addend;
5979 overflowed_p = mips_elf_overflow_p (value, 16);
5980 break;
5982 case R_MIPS_32:
5983 case R_MIPS_REL32:
5984 case R_MIPS_64:
5985 if ((bfd_link_pic (info)
5986 || (htab->root.dynamic_sections_created
5987 && h != NULL
5988 && h->root.def_dynamic
5989 && !h->root.def_regular
5990 && !h->has_static_relocs))
5991 && r_symndx != STN_UNDEF
5992 && (h == NULL
5993 || h->root.root.type != bfd_link_hash_undefweak
5994 || (ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
5995 && !resolved_to_zero))
5996 && (input_section->flags & SEC_ALLOC) != 0)
5998 /* If we're creating a shared library, then we can't know
5999 where the symbol will end up. So, we create a relocation
6000 record in the output, and leave the job up to the dynamic
6001 linker. We must do the same for executable references to
6002 shared library symbols, unless we've decided to use copy
6003 relocs or PLTs instead. */
6004 value = addend;
6005 if (!mips_elf_create_dynamic_relocation (abfd,
6006 info,
6007 relocation,
6009 sec,
6010 symbol,
6011 &value,
6012 input_section))
6013 return bfd_reloc_undefined;
6015 else
6017 if (r_type != R_MIPS_REL32)
6018 value = symbol + addend;
6019 else
6020 value = addend;
6022 value &= howto->dst_mask;
6023 break;
6025 case R_MIPS_PC32:
6026 value = symbol + addend - p;
6027 value &= howto->dst_mask;
6028 break;
6030 case R_MIPS16_26:
6031 /* The calculation for R_MIPS16_26 is just the same as for an
6032 R_MIPS_26. It's only the storage of the relocated field into
6033 the output file that's different. That's handled in
6034 mips_elf_perform_relocation. So, we just fall through to the
6035 R_MIPS_26 case here. */
6036 case R_MIPS_26:
6037 case R_MICROMIPS_26_S1:
6039 unsigned int shift;
6041 /* Shift is 2, unusually, for microMIPS JALX. */
6042 shift = (!*cross_mode_jump_p && r_type == R_MICROMIPS_26_S1) ? 1 : 2;
6044 if (howto->partial_inplace && !section_p)
6045 value = _bfd_mips_elf_sign_extend (addend, 26 + shift);
6046 else
6047 value = addend;
6048 value += symbol;
6050 /* Make sure the target of a jump is suitably aligned. Bit 0 must
6051 be the correct ISA mode selector except for weak undefined
6052 symbols. */
6053 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6054 && (*cross_mode_jump_p
6055 ? (value & 3) != (r_type == R_MIPS_26)
6056 : (value & ((1 << shift) - 1)) != (r_type != R_MIPS_26)))
6057 return bfd_reloc_outofrange;
6059 value >>= shift;
6060 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6061 overflowed_p = (value >> 26) != ((p + 4) >> (26 + shift));
6062 value &= howto->dst_mask;
6064 break;
6066 case R_MIPS_TLS_DTPREL_HI16:
6067 case R_MIPS16_TLS_DTPREL_HI16:
6068 case R_MICROMIPS_TLS_DTPREL_HI16:
6069 value = (mips_elf_high (addend + symbol - dtprel_base (info))
6070 & howto->dst_mask);
6071 break;
6073 case R_MIPS_TLS_DTPREL_LO16:
6074 case R_MIPS_TLS_DTPREL32:
6075 case R_MIPS_TLS_DTPREL64:
6076 case R_MIPS16_TLS_DTPREL_LO16:
6077 case R_MICROMIPS_TLS_DTPREL_LO16:
6078 value = (symbol + addend - dtprel_base (info)) & howto->dst_mask;
6079 break;
6081 case R_MIPS_TLS_TPREL_HI16:
6082 case R_MIPS16_TLS_TPREL_HI16:
6083 case R_MICROMIPS_TLS_TPREL_HI16:
6084 value = (mips_elf_high (addend + symbol - tprel_base (info))
6085 & howto->dst_mask);
6086 break;
6088 case R_MIPS_TLS_TPREL_LO16:
6089 case R_MIPS_TLS_TPREL32:
6090 case R_MIPS_TLS_TPREL64:
6091 case R_MIPS16_TLS_TPREL_LO16:
6092 case R_MICROMIPS_TLS_TPREL_LO16:
6093 value = (symbol + addend - tprel_base (info)) & howto->dst_mask;
6094 break;
6096 case R_MIPS_HI16:
6097 case R_MIPS16_HI16:
6098 case R_MICROMIPS_HI16:
6099 if (!gp_disp_p)
6101 value = mips_elf_high (addend + symbol);
6102 value &= howto->dst_mask;
6104 else
6106 /* For MIPS16 ABI code we generate this sequence
6107 0: li $v0,%hi(_gp_disp)
6108 4: addiupc $v1,%lo(_gp_disp)
6109 8: sll $v0,16
6110 12: addu $v0,$v1
6111 14: move $gp,$v0
6112 So the offsets of hi and lo relocs are the same, but the
6113 base $pc is that used by the ADDIUPC instruction at $t9 + 4.
6114 ADDIUPC clears the low two bits of the instruction address,
6115 so the base is ($t9 + 4) & ~3. */
6116 if (r_type == R_MIPS16_HI16)
6117 value = mips_elf_high (addend + gp - ((p + 4) & ~(bfd_vma) 0x3));
6118 /* The microMIPS .cpload sequence uses the same assembly
6119 instructions as the traditional psABI version, but the
6120 incoming $t9 has the low bit set. */
6121 else if (r_type == R_MICROMIPS_HI16)
6122 value = mips_elf_high (addend + gp - p - 1);
6123 else
6124 value = mips_elf_high (addend + gp - p);
6126 break;
6128 case R_MIPS_LO16:
6129 case R_MIPS16_LO16:
6130 case R_MICROMIPS_LO16:
6131 case R_MICROMIPS_HI0_LO16:
6132 if (!gp_disp_p)
6133 value = (symbol + addend) & howto->dst_mask;
6134 else
6136 /* See the comment for R_MIPS16_HI16 above for the reason
6137 for this conditional. */
6138 if (r_type == R_MIPS16_LO16)
6139 value = addend + gp - (p & ~(bfd_vma) 0x3);
6140 else if (r_type == R_MICROMIPS_LO16
6141 || r_type == R_MICROMIPS_HI0_LO16)
6142 value = addend + gp - p + 3;
6143 else
6144 value = addend + gp - p + 4;
6145 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
6146 for overflow. But, on, say, IRIX5, relocations against
6147 _gp_disp are normally generated from the .cpload
6148 pseudo-op. It generates code that normally looks like
6149 this:
6151 lui $gp,%hi(_gp_disp)
6152 addiu $gp,$gp,%lo(_gp_disp)
6153 addu $gp,$gp,$t9
6155 Here $t9 holds the address of the function being called,
6156 as required by the MIPS ELF ABI. The R_MIPS_LO16
6157 relocation can easily overflow in this situation, but the
6158 R_MIPS_HI16 relocation will handle the overflow.
6159 Therefore, we consider this a bug in the MIPS ABI, and do
6160 not check for overflow here. */
6162 break;
6164 case R_MIPS_LITERAL:
6165 case R_MICROMIPS_LITERAL:
6166 /* Because we don't merge literal sections, we can handle this
6167 just like R_MIPS_GPREL16. In the long run, we should merge
6168 shared literals, and then we will need to additional work
6169 here. */
6171 /* Fall through. */
6173 case R_MIPS16_GPREL:
6174 /* The R_MIPS16_GPREL performs the same calculation as
6175 R_MIPS_GPREL16, but stores the relocated bits in a different
6176 order. We don't need to do anything special here; the
6177 differences are handled in mips_elf_perform_relocation. */
6178 case R_MIPS_GPREL16:
6179 case R_MICROMIPS_GPREL7_S2:
6180 case R_MICROMIPS_GPREL16:
6181 /* Only sign-extend the addend if it was extracted from the
6182 instruction. If the addend was separate, leave it alone,
6183 otherwise we may lose significant bits. */
6184 if (howto->partial_inplace)
6185 addend = _bfd_mips_elf_sign_extend (addend, 16);
6186 value = symbol + addend - gp;
6187 /* If the symbol was local, any earlier relocatable links will
6188 have adjusted its addend with the gp offset, so compensate
6189 for that now. Don't do it for symbols forced local in this
6190 link, though, since they won't have had the gp offset applied
6191 to them before. */
6192 if (was_local_p)
6193 value += gp0;
6194 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6195 overflowed_p = mips_elf_overflow_p (value, 16);
6196 break;
6198 case R_MIPS16_GOT16:
6199 case R_MIPS16_CALL16:
6200 case R_MIPS_GOT16:
6201 case R_MIPS_CALL16:
6202 case R_MICROMIPS_GOT16:
6203 case R_MICROMIPS_CALL16:
6204 /* VxWorks does not have separate local and global semantics for
6205 R_MIPS*_GOT16; every relocation evaluates to "G". */
6206 if (htab->root.target_os != is_vxworks && local_p)
6208 value = mips_elf_got16_entry (abfd, input_bfd, info,
6209 symbol + addend, !was_local_p);
6210 if (value == MINUS_ONE)
6211 return bfd_reloc_outofrange;
6212 value
6213 = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
6214 overflowed_p = mips_elf_overflow_p (value, 16);
6215 break;
6218 /* Fall through. */
6220 case R_MIPS_TLS_GD:
6221 case R_MIPS_TLS_GOTTPREL:
6222 case R_MIPS_TLS_LDM:
6223 case R_MIPS_GOT_DISP:
6224 case R_MIPS16_TLS_GD:
6225 case R_MIPS16_TLS_GOTTPREL:
6226 case R_MIPS16_TLS_LDM:
6227 case R_MICROMIPS_TLS_GD:
6228 case R_MICROMIPS_TLS_GOTTPREL:
6229 case R_MICROMIPS_TLS_LDM:
6230 case R_MICROMIPS_GOT_DISP:
6231 value = g;
6232 overflowed_p = mips_elf_overflow_p (value, 16);
6233 break;
6235 case R_MIPS_GPREL32:
6236 value = (addend + symbol + gp0 - gp);
6237 if (!save_addend)
6238 value &= howto->dst_mask;
6239 break;
6241 case R_MIPS_PC16:
6242 case R_MIPS_GNU_REL16_S2:
6243 if (howto->partial_inplace)
6244 addend = _bfd_mips_elf_sign_extend (addend, 18);
6246 /* No need to exclude weak undefined symbols here as they resolve
6247 to 0 and never set `*cross_mode_jump_p', so this alignment check
6248 will never trigger for them. */
6249 if (*cross_mode_jump_p
6250 ? ((symbol + addend) & 3) != 1
6251 : ((symbol + addend) & 3) != 0)
6252 return bfd_reloc_outofrange;
6254 value = symbol + addend - p;
6255 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6256 overflowed_p = mips_elf_overflow_p (value, 18);
6257 value >>= howto->rightshift;
6258 value &= howto->dst_mask;
6259 break;
6261 case R_MIPS16_PC16_S1:
6262 if (howto->partial_inplace)
6263 addend = _bfd_mips_elf_sign_extend (addend, 17);
6265 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6266 && (*cross_mode_jump_p
6267 ? ((symbol + addend) & 3) != 0
6268 : ((symbol + addend) & 1) == 0))
6269 return bfd_reloc_outofrange;
6271 value = symbol + addend - p;
6272 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6273 overflowed_p = mips_elf_overflow_p (value, 17);
6274 value >>= howto->rightshift;
6275 value &= howto->dst_mask;
6276 break;
6278 case R_MIPS_PC21_S2:
6279 if (howto->partial_inplace)
6280 addend = _bfd_mips_elf_sign_extend (addend, 23);
6282 if ((symbol + addend) & 3)
6283 return bfd_reloc_outofrange;
6285 value = symbol + addend - p;
6286 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6287 overflowed_p = mips_elf_overflow_p (value, 23);
6288 value >>= howto->rightshift;
6289 value &= howto->dst_mask;
6290 break;
6292 case R_MIPS_PC26_S2:
6293 if (howto->partial_inplace)
6294 addend = _bfd_mips_elf_sign_extend (addend, 28);
6296 if ((symbol + addend) & 3)
6297 return bfd_reloc_outofrange;
6299 value = symbol + addend - p;
6300 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6301 overflowed_p = mips_elf_overflow_p (value, 28);
6302 value >>= howto->rightshift;
6303 value &= howto->dst_mask;
6304 break;
6306 case R_MIPS_PC18_S3:
6307 if (howto->partial_inplace)
6308 addend = _bfd_mips_elf_sign_extend (addend, 21);
6310 if ((symbol + addend) & 7)
6311 return bfd_reloc_outofrange;
6313 value = symbol + addend - ((p | 7) ^ 7);
6314 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6315 overflowed_p = mips_elf_overflow_p (value, 21);
6316 value >>= howto->rightshift;
6317 value &= howto->dst_mask;
6318 break;
6320 case R_MIPS_PC19_S2:
6321 if (howto->partial_inplace)
6322 addend = _bfd_mips_elf_sign_extend (addend, 21);
6324 if ((symbol + addend) & 3)
6325 return bfd_reloc_outofrange;
6327 value = symbol + addend - p;
6328 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6329 overflowed_p = mips_elf_overflow_p (value, 21);
6330 value >>= howto->rightshift;
6331 value &= howto->dst_mask;
6332 break;
6334 case R_MIPS_PCHI16:
6335 value = mips_elf_high (symbol + addend - p);
6336 value &= howto->dst_mask;
6337 break;
6339 case R_MIPS_PCLO16:
6340 if (howto->partial_inplace)
6341 addend = _bfd_mips_elf_sign_extend (addend, 16);
6342 value = symbol + addend - p;
6343 value &= howto->dst_mask;
6344 break;
6346 case R_MICROMIPS_PC7_S1:
6347 if (howto->partial_inplace)
6348 addend = _bfd_mips_elf_sign_extend (addend, 8);
6350 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6351 && (*cross_mode_jump_p
6352 ? ((symbol + addend + 2) & 3) != 0
6353 : ((symbol + addend + 2) & 1) == 0))
6354 return bfd_reloc_outofrange;
6356 value = symbol + addend - p;
6357 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6358 overflowed_p = mips_elf_overflow_p (value, 8);
6359 value >>= howto->rightshift;
6360 value &= howto->dst_mask;
6361 break;
6363 case R_MICROMIPS_PC10_S1:
6364 if (howto->partial_inplace)
6365 addend = _bfd_mips_elf_sign_extend (addend, 11);
6367 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6368 && (*cross_mode_jump_p
6369 ? ((symbol + addend + 2) & 3) != 0
6370 : ((symbol + addend + 2) & 1) == 0))
6371 return bfd_reloc_outofrange;
6373 value = symbol + addend - p;
6374 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6375 overflowed_p = mips_elf_overflow_p (value, 11);
6376 value >>= howto->rightshift;
6377 value &= howto->dst_mask;
6378 break;
6380 case R_MICROMIPS_PC16_S1:
6381 if (howto->partial_inplace)
6382 addend = _bfd_mips_elf_sign_extend (addend, 17);
6384 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6385 && (*cross_mode_jump_p
6386 ? ((symbol + addend) & 3) != 0
6387 : ((symbol + addend) & 1) == 0))
6388 return bfd_reloc_outofrange;
6390 value = symbol + addend - p;
6391 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6392 overflowed_p = mips_elf_overflow_p (value, 17);
6393 value >>= howto->rightshift;
6394 value &= howto->dst_mask;
6395 break;
6397 case R_MICROMIPS_PC23_S2:
6398 if (howto->partial_inplace)
6399 addend = _bfd_mips_elf_sign_extend (addend, 25);
6400 value = symbol + addend - ((p | 3) ^ 3);
6401 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6402 overflowed_p = mips_elf_overflow_p (value, 25);
6403 value >>= howto->rightshift;
6404 value &= howto->dst_mask;
6405 break;
6407 case R_MIPS_GOT_HI16:
6408 case R_MIPS_CALL_HI16:
6409 case R_MICROMIPS_GOT_HI16:
6410 case R_MICROMIPS_CALL_HI16:
6411 /* We're allowed to handle these two relocations identically.
6412 The dynamic linker is allowed to handle the CALL relocations
6413 differently by creating a lazy evaluation stub. */
6414 value = g;
6415 value = mips_elf_high (value);
6416 value &= howto->dst_mask;
6417 break;
6419 case R_MIPS_GOT_LO16:
6420 case R_MIPS_CALL_LO16:
6421 case R_MICROMIPS_GOT_LO16:
6422 case R_MICROMIPS_CALL_LO16:
6423 value = g & howto->dst_mask;
6424 break;
6426 case R_MIPS_GOT_PAGE:
6427 case R_MICROMIPS_GOT_PAGE:
6428 value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
6429 if (value == MINUS_ONE)
6430 return bfd_reloc_outofrange;
6431 value = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
6432 overflowed_p = mips_elf_overflow_p (value, 16);
6433 break;
6435 case R_MIPS_GOT_OFST:
6436 case R_MICROMIPS_GOT_OFST:
6437 if (local_p)
6438 mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
6439 else
6440 value = addend;
6441 overflowed_p = mips_elf_overflow_p (value, 16);
6442 break;
6444 case R_MIPS_SUB:
6445 case R_MICROMIPS_SUB:
6446 value = symbol - addend;
6447 value &= howto->dst_mask;
6448 break;
6450 case R_MIPS_HIGHER:
6451 case R_MICROMIPS_HIGHER:
6452 value = mips_elf_higher (addend + symbol);
6453 value &= howto->dst_mask;
6454 break;
6456 case R_MIPS_HIGHEST:
6457 case R_MICROMIPS_HIGHEST:
6458 value = mips_elf_highest (addend + symbol);
6459 value &= howto->dst_mask;
6460 break;
6462 case R_MIPS_SCN_DISP:
6463 case R_MICROMIPS_SCN_DISP:
6464 value = symbol + addend - sec->output_offset;
6465 value &= howto->dst_mask;
6466 break;
6468 case R_MIPS_JALR:
6469 case R_MICROMIPS_JALR:
6470 /* This relocation is only a hint. In some cases, we optimize
6471 it into a bal instruction. But we don't try to optimize
6472 when the symbol does not resolve locally. */
6473 if (h != NULL && !SYMBOL_CALLS_LOCAL (info, &h->root))
6474 return bfd_reloc_continue;
6475 /* We can't optimize cross-mode jumps either. */
6476 if (*cross_mode_jump_p)
6477 return bfd_reloc_continue;
6478 value = symbol + addend;
6479 /* Neither we can non-instruction-aligned targets. */
6480 if (r_type == R_MIPS_JALR ? (value & 3) != 0 : (value & 1) == 0)
6481 return bfd_reloc_continue;
6482 break;
6484 case R_MIPS_PJUMP:
6485 case R_MIPS_GNU_VTINHERIT:
6486 case R_MIPS_GNU_VTENTRY:
6487 /* We don't do anything with these at present. */
6488 return bfd_reloc_continue;
6490 default:
6491 /* An unrecognized relocation type. */
6492 return bfd_reloc_notsupported;
6495 /* Store the VALUE for our caller. */
6496 *valuep = value;
6497 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
6500 /* It has been determined that the result of the RELOCATION is the
6501 VALUE. Use HOWTO to place VALUE into the output file at the
6502 appropriate position. The SECTION is the section to which the
6503 relocation applies.
6504 CROSS_MODE_JUMP_P is true if the relocation field
6505 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
6507 Returns FALSE if anything goes wrong. */
6509 static bool
6510 mips_elf_perform_relocation (struct bfd_link_info *info,
6511 reloc_howto_type *howto,
6512 const Elf_Internal_Rela *relocation,
6513 bfd_vma value, bfd *input_bfd,
6514 asection *input_section, bfd_byte *contents,
6515 bool cross_mode_jump_p)
6517 bfd_vma x;
6518 bfd_byte *location;
6519 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
6521 /* Figure out where the relocation is occurring. */
6522 location = contents + relocation->r_offset;
6524 _bfd_mips_elf_reloc_unshuffle (input_bfd, r_type, false, location);
6526 /* Obtain the current value. */
6527 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
6529 /* Clear the field we are setting. */
6530 x &= ~howto->dst_mask;
6532 /* Set the field. */
6533 x |= (value & howto->dst_mask);
6535 /* Detect incorrect JALX usage. If required, turn JAL or BAL into JALX. */
6536 if (!cross_mode_jump_p && jal_reloc_p (r_type))
6538 bfd_vma opcode = x >> 26;
6540 if (r_type == R_MIPS16_26 ? opcode == 0x7
6541 : r_type == R_MICROMIPS_26_S1 ? opcode == 0x3c
6542 : opcode == 0x1d)
6544 info->callbacks->einfo
6545 (_("%X%H: unsupported JALX to the same ISA mode\n"),
6546 input_bfd, input_section, relocation->r_offset);
6547 return true;
6550 if (cross_mode_jump_p && jal_reloc_p (r_type))
6552 bool ok;
6553 bfd_vma opcode = x >> 26;
6554 bfd_vma jalx_opcode;
6556 /* Check to see if the opcode is already JAL or JALX. */
6557 if (r_type == R_MIPS16_26)
6559 ok = ((opcode == 0x6) || (opcode == 0x7));
6560 jalx_opcode = 0x7;
6562 else if (r_type == R_MICROMIPS_26_S1)
6564 ok = ((opcode == 0x3d) || (opcode == 0x3c));
6565 jalx_opcode = 0x3c;
6567 else
6569 ok = ((opcode == 0x3) || (opcode == 0x1d));
6570 jalx_opcode = 0x1d;
6573 /* If the opcode is not JAL or JALX, there's a problem. We cannot
6574 convert J or JALS to JALX. */
6575 if (!ok)
6577 info->callbacks->einfo
6578 (_("%X%H: unsupported jump between ISA modes; "
6579 "consider recompiling with interlinking enabled\n"),
6580 input_bfd, input_section, relocation->r_offset);
6581 return true;
6584 /* Make this the JALX opcode. */
6585 x = (x & ~(0x3fu << 26)) | (jalx_opcode << 26);
6587 else if (cross_mode_jump_p && b_reloc_p (r_type))
6589 bool ok = false;
6590 bfd_vma opcode = x >> 16;
6591 bfd_vma jalx_opcode = 0;
6592 bfd_vma sign_bit = 0;
6593 bfd_vma addr;
6594 bfd_vma dest;
6596 if (r_type == R_MICROMIPS_PC16_S1)
6598 ok = opcode == 0x4060;
6599 jalx_opcode = 0x3c;
6600 sign_bit = 0x10000;
6601 value <<= 1;
6603 else if (r_type == R_MIPS_PC16 || r_type == R_MIPS_GNU_REL16_S2)
6605 ok = opcode == 0x411;
6606 jalx_opcode = 0x1d;
6607 sign_bit = 0x20000;
6608 value <<= 2;
6611 if (ok && !bfd_link_pic (info))
6613 addr = (input_section->output_section->vma
6614 + input_section->output_offset
6615 + relocation->r_offset
6616 + 4);
6617 dest = (addr
6618 + (((value & ((sign_bit << 1) - 1)) ^ sign_bit) - sign_bit));
6620 if ((addr >> 28) << 28 != (dest >> 28) << 28)
6622 info->callbacks->einfo
6623 (_("%X%H: cannot convert branch between ISA modes "
6624 "to JALX: relocation out of range\n"),
6625 input_bfd, input_section, relocation->r_offset);
6626 return true;
6629 /* Make this the JALX opcode. */
6630 x = ((dest >> 2) & 0x3ffffff) | jalx_opcode << 26;
6632 else if (!mips_elf_hash_table (info)->ignore_branch_isa)
6634 info->callbacks->einfo
6635 (_("%X%H: unsupported branch between ISA modes\n"),
6636 input_bfd, input_section, relocation->r_offset);
6637 return true;
6641 /* Try converting JAL to BAL and J(AL)R to B(AL), if the target is in
6642 range. */
6643 if (!bfd_link_relocatable (info)
6644 && !cross_mode_jump_p
6645 && ((JAL_TO_BAL_P (input_bfd)
6646 && r_type == R_MIPS_26
6647 && (x >> 26) == 0x3) /* jal addr */
6648 || (JALR_TO_BAL_P (input_bfd)
6649 && r_type == R_MIPS_JALR
6650 && x == 0x0320f809) /* jalr t9 */
6651 || (JR_TO_B_P (input_bfd)
6652 && r_type == R_MIPS_JALR
6653 && (x & ~1) == 0x03200008))) /* jr t9 / jalr zero, t9 */
6655 bfd_vma addr;
6656 bfd_vma dest;
6657 bfd_signed_vma off;
6659 addr = (input_section->output_section->vma
6660 + input_section->output_offset
6661 + relocation->r_offset
6662 + 4);
6663 if (r_type == R_MIPS_26)
6664 dest = (value << 2) | ((addr >> 28) << 28);
6665 else
6666 dest = value;
6667 off = dest - addr;
6668 if (off <= 0x1ffff && off >= -0x20000)
6670 if ((x & ~1) == 0x03200008) /* jr t9 / jalr zero, t9 */
6671 x = 0x10000000 | (((bfd_vma) off >> 2) & 0xffff); /* b addr */
6672 else
6673 x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */
6677 /* Put the value into the output. */
6678 mips_elf_store_contents (howto, relocation, input_bfd, contents, x);
6680 _bfd_mips_elf_reloc_shuffle (input_bfd, r_type, !bfd_link_relocatable (info),
6681 location);
6683 return true;
6686 /* Create a rel.dyn relocation for the dynamic linker to resolve. REL
6687 is the original relocation, which is now being transformed into a
6688 dynamic relocation. The ADDENDP is adjusted if necessary; the
6689 caller should store the result in place of the original addend. */
6691 static bool
6692 mips_elf_create_dynamic_relocation (bfd *output_bfd,
6693 struct bfd_link_info *info,
6694 const Elf_Internal_Rela *rel,
6695 struct mips_elf_link_hash_entry *h,
6696 asection *sec, bfd_vma symbol,
6697 bfd_vma *addendp, asection *input_section)
6699 Elf_Internal_Rela outrel[3];
6700 asection *sreloc;
6701 bfd *dynobj;
6702 int r_type;
6703 long indx;
6704 bool defined_p;
6705 struct mips_elf_link_hash_table *htab;
6707 htab = mips_elf_hash_table (info);
6708 BFD_ASSERT (htab != NULL);
6710 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
6711 dynobj = elf_hash_table (info)->dynobj;
6712 sreloc = mips_elf_rel_dyn_section (info, false);
6713 BFD_ASSERT (sreloc != NULL);
6714 BFD_ASSERT (sreloc->contents != NULL);
6715 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
6716 < sreloc->size);
6718 outrel[0].r_offset =
6719 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
6720 if (ABI_64_P (output_bfd))
6722 outrel[1].r_offset =
6723 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
6724 outrel[2].r_offset =
6725 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
6728 if (outrel[0].r_offset == MINUS_ONE)
6729 /* The relocation field has been deleted. */
6730 return true;
6732 if (outrel[0].r_offset == MINUS_TWO)
6734 /* The relocation field has been converted into a relative value of
6735 some sort. Functions like _bfd_elf_write_section_eh_frame expect
6736 the field to be fully relocated, so add in the symbol's value. */
6737 *addendp += symbol;
6738 return true;
6741 /* We must now calculate the dynamic symbol table index to use
6742 in the relocation. */
6743 if (h != NULL && ! SYMBOL_REFERENCES_LOCAL (info, &h->root))
6745 BFD_ASSERT (htab->root.target_os == is_vxworks
6746 || h->global_got_area != GGA_NONE);
6747 indx = h->root.dynindx;
6748 if (SGI_COMPAT (output_bfd))
6749 defined_p = h->root.def_regular;
6750 else
6751 /* ??? glibc's ld.so just adds the final GOT entry to the
6752 relocation field. It therefore treats relocs against
6753 defined symbols in the same way as relocs against
6754 undefined symbols. */
6755 defined_p = false;
6757 else
6759 if (sec != NULL && bfd_is_abs_section (sec))
6760 indx = 0;
6761 else if (sec == NULL || sec->owner == NULL)
6763 bfd_set_error (bfd_error_bad_value);
6764 return false;
6766 else
6768 indx = elf_section_data (sec->output_section)->dynindx;
6769 if (indx == 0)
6771 asection *osec = htab->root.text_index_section;
6772 indx = elf_section_data (osec)->dynindx;
6774 if (indx == 0)
6775 abort ();
6778 /* Instead of generating a relocation using the section
6779 symbol, we may as well make it a fully relative
6780 relocation. We want to avoid generating relocations to
6781 local symbols because we used to generate them
6782 incorrectly, without adding the original symbol value,
6783 which is mandated by the ABI for section symbols. In
6784 order to give dynamic loaders and applications time to
6785 phase out the incorrect use, we refrain from emitting
6786 section-relative relocations. It's not like they're
6787 useful, after all. This should be a bit more efficient
6788 as well. */
6789 /* ??? Although this behavior is compatible with glibc's ld.so,
6790 the ABI says that relocations against STN_UNDEF should have
6791 a symbol value of 0. Irix rld honors this, so relocations
6792 against STN_UNDEF have no effect. */
6793 if (!SGI_COMPAT (output_bfd))
6794 indx = 0;
6795 defined_p = true;
6798 /* If the relocation was previously an absolute relocation and
6799 this symbol will not be referred to by the relocation, we must
6800 adjust it by the value we give it in the dynamic symbol table.
6801 Otherwise leave the job up to the dynamic linker. */
6802 if (defined_p && r_type != R_MIPS_REL32)
6803 *addendp += symbol;
6805 if (htab->root.target_os == is_vxworks)
6806 /* VxWorks uses non-relative relocations for this. */
6807 outrel[0].r_info = ELF32_R_INFO (indx, R_MIPS_32);
6808 else
6809 /* The relocation is always an REL32 relocation because we don't
6810 know where the shared library will wind up at load-time. */
6811 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
6812 R_MIPS_REL32);
6814 /* For strict adherence to the ABI specification, we should
6815 generate a R_MIPS_64 relocation record by itself before the
6816 _REL32/_64 record as well, such that the addend is read in as
6817 a 64-bit value (REL32 is a 32-bit relocation, after all).
6818 However, since none of the existing ELF64 MIPS dynamic
6819 loaders seems to care, we don't waste space with these
6820 artificial relocations. If this turns out to not be true,
6821 mips_elf_allocate_dynamic_relocation() should be tweaked so
6822 as to make room for a pair of dynamic relocations per
6823 invocation if ABI_64_P, and here we should generate an
6824 additional relocation record with R_MIPS_64 by itself for a
6825 NULL symbol before this relocation record. */
6826 outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
6827 ABI_64_P (output_bfd)
6828 ? R_MIPS_64
6829 : R_MIPS_NONE);
6830 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
6832 /* Adjust the output offset of the relocation to reference the
6833 correct location in the output file. */
6834 outrel[0].r_offset += (input_section->output_section->vma
6835 + input_section->output_offset);
6836 outrel[1].r_offset += (input_section->output_section->vma
6837 + input_section->output_offset);
6838 outrel[2].r_offset += (input_section->output_section->vma
6839 + input_section->output_offset);
6841 /* Put the relocation back out. We have to use the special
6842 relocation outputter in the 64-bit case since the 64-bit
6843 relocation format is non-standard. */
6844 if (ABI_64_P (output_bfd))
6846 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
6847 (output_bfd, &outrel[0],
6848 (sreloc->contents
6849 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
6851 else if (htab->root.target_os == is_vxworks)
6853 /* VxWorks uses RELA rather than REL dynamic relocations. */
6854 outrel[0].r_addend = *addendp;
6855 bfd_elf32_swap_reloca_out
6856 (output_bfd, &outrel[0],
6857 (sreloc->contents
6858 + sreloc->reloc_count * sizeof (Elf32_External_Rela)));
6860 else
6861 bfd_elf32_swap_reloc_out
6862 (output_bfd, &outrel[0],
6863 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
6865 /* We've now added another relocation. */
6866 ++sreloc->reloc_count;
6868 /* Make sure the output section is writable. The dynamic linker
6869 will be writing to it. */
6870 elf_section_data (input_section->output_section)->this_hdr.sh_flags
6871 |= SHF_WRITE;
6873 /* On IRIX5, make an entry of compact relocation info. */
6874 if (IRIX_COMPAT (output_bfd) == ict_irix5)
6876 asection *scpt = bfd_get_linker_section (dynobj, ".compact_rel");
6877 bfd_byte *cr;
6879 if (scpt)
6881 Elf32_crinfo cptrel;
6883 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
6884 cptrel.vaddr = (rel->r_offset
6885 + input_section->output_section->vma
6886 + input_section->output_offset);
6887 if (r_type == R_MIPS_REL32)
6888 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
6889 else
6890 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
6891 mips_elf_set_cr_dist2to (cptrel, 0);
6892 cptrel.konst = *addendp;
6894 cr = (scpt->contents
6895 + sizeof (Elf32_External_compact_rel));
6896 mips_elf_set_cr_relvaddr (cptrel, 0);
6897 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
6898 ((Elf32_External_crinfo *) cr
6899 + scpt->reloc_count));
6900 ++scpt->reloc_count;
6904 /* If we've written this relocation for a readonly section,
6905 we need to set DF_TEXTREL again, so that we do not delete the
6906 DT_TEXTREL tag. */
6907 if (MIPS_ELF_READONLY_SECTION (input_section))
6908 info->flags |= DF_TEXTREL;
6910 return true;
6913 /* Return the MACH for a MIPS e_flags value. */
6915 unsigned long
6916 _bfd_elf_mips_mach (flagword flags)
6918 switch (flags & EF_MIPS_MACH)
6920 case E_MIPS_MACH_3900:
6921 return bfd_mach_mips3900;
6923 case E_MIPS_MACH_4010:
6924 return bfd_mach_mips4010;
6926 case E_MIPS_MACH_4100:
6927 return bfd_mach_mips4100;
6929 case E_MIPS_MACH_4111:
6930 return bfd_mach_mips4111;
6932 case E_MIPS_MACH_4120:
6933 return bfd_mach_mips4120;
6935 case E_MIPS_MACH_4650:
6936 return bfd_mach_mips4650;
6938 case E_MIPS_MACH_5400:
6939 return bfd_mach_mips5400;
6941 case E_MIPS_MACH_5500:
6942 return bfd_mach_mips5500;
6944 case E_MIPS_MACH_5900:
6945 return bfd_mach_mips5900;
6947 case E_MIPS_MACH_9000:
6948 return bfd_mach_mips9000;
6950 case E_MIPS_MACH_SB1:
6951 return bfd_mach_mips_sb1;
6953 case E_MIPS_MACH_LS2E:
6954 return bfd_mach_mips_loongson_2e;
6956 case E_MIPS_MACH_LS2F:
6957 return bfd_mach_mips_loongson_2f;
6959 case E_MIPS_MACH_GS464:
6960 return bfd_mach_mips_gs464;
6962 case E_MIPS_MACH_GS464E:
6963 return bfd_mach_mips_gs464e;
6965 case E_MIPS_MACH_GS264E:
6966 return bfd_mach_mips_gs264e;
6968 case E_MIPS_MACH_OCTEON3:
6969 return bfd_mach_mips_octeon3;
6971 case E_MIPS_MACH_OCTEON2:
6972 return bfd_mach_mips_octeon2;
6974 case E_MIPS_MACH_OCTEON:
6975 return bfd_mach_mips_octeon;
6977 case E_MIPS_MACH_XLR:
6978 return bfd_mach_mips_xlr;
6980 case E_MIPS_MACH_IAMR2:
6981 return bfd_mach_mips_interaptiv_mr2;
6983 default:
6984 switch (flags & EF_MIPS_ARCH)
6986 default:
6987 case E_MIPS_ARCH_1:
6988 return bfd_mach_mips3000;
6990 case E_MIPS_ARCH_2:
6991 return bfd_mach_mips6000;
6993 case E_MIPS_ARCH_3:
6994 return bfd_mach_mips4000;
6996 case E_MIPS_ARCH_4:
6997 return bfd_mach_mips8000;
6999 case E_MIPS_ARCH_5:
7000 return bfd_mach_mips5;
7002 case E_MIPS_ARCH_32:
7003 return bfd_mach_mipsisa32;
7005 case E_MIPS_ARCH_64:
7006 return bfd_mach_mipsisa64;
7008 case E_MIPS_ARCH_32R2:
7009 return bfd_mach_mipsisa32r2;
7011 case E_MIPS_ARCH_64R2:
7012 return bfd_mach_mipsisa64r2;
7014 case E_MIPS_ARCH_32R6:
7015 return bfd_mach_mipsisa32r6;
7017 case E_MIPS_ARCH_64R6:
7018 return bfd_mach_mipsisa64r6;
7022 return 0;
7025 /* Return printable name for ABI. */
7027 static inline char *
7028 elf_mips_abi_name (bfd *abfd)
7030 flagword flags;
7032 flags = elf_elfheader (abfd)->e_flags;
7033 switch (flags & EF_MIPS_ABI)
7035 case 0:
7036 if (ABI_N32_P (abfd))
7037 return "N32";
7038 else if (ABI_64_P (abfd))
7039 return "64";
7040 else
7041 return "none";
7042 case E_MIPS_ABI_O32:
7043 return "O32";
7044 case E_MIPS_ABI_O64:
7045 return "O64";
7046 case E_MIPS_ABI_EABI32:
7047 return "EABI32";
7048 case E_MIPS_ABI_EABI64:
7049 return "EABI64";
7050 default:
7051 return "unknown abi";
7055 /* MIPS ELF uses two common sections. One is the usual one, and the
7056 other is for small objects. All the small objects are kept
7057 together, and then referenced via the gp pointer, which yields
7058 faster assembler code. This is what we use for the small common
7059 section. This approach is copied from ecoff.c. */
7060 static asection mips_elf_scom_section;
7061 static const asymbol mips_elf_scom_symbol =
7062 GLOBAL_SYM_INIT (".scommon", &mips_elf_scom_section);
7063 static asection mips_elf_scom_section =
7064 BFD_FAKE_SECTION (mips_elf_scom_section, &mips_elf_scom_symbol,
7065 ".scommon", 0, SEC_IS_COMMON | SEC_SMALL_DATA);
7067 /* MIPS ELF also uses an acommon section, which represents an
7068 allocated common symbol which may be overridden by a
7069 definition in a shared library. */
7070 static asection mips_elf_acom_section;
7071 static const asymbol mips_elf_acom_symbol =
7072 GLOBAL_SYM_INIT (".acommon", &mips_elf_acom_section);
7073 static asection mips_elf_acom_section =
7074 BFD_FAKE_SECTION (mips_elf_acom_section, &mips_elf_acom_symbol,
7075 ".acommon", 0, SEC_ALLOC);
7077 /* This is used for both the 32-bit and the 64-bit ABI. */
7079 void
7080 _bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
7082 elf_symbol_type *elfsym;
7084 /* Handle the special MIPS section numbers that a symbol may use. */
7085 elfsym = (elf_symbol_type *) asym;
7086 switch (elfsym->internal_elf_sym.st_shndx)
7088 case SHN_MIPS_ACOMMON:
7089 /* This section is used in a dynamically linked executable file.
7090 It is an allocated common section. The dynamic linker can
7091 either resolve these symbols to something in a shared
7092 library, or it can just leave them here. For our purposes,
7093 we can consider these symbols to be in a new section. */
7094 asym->section = &mips_elf_acom_section;
7095 break;
7097 case SHN_COMMON:
7098 /* Common symbols less than the GP size are automatically
7099 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
7100 if (asym->value > elf_gp_size (abfd)
7101 || ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_TLS
7102 || IRIX_COMPAT (abfd) == ict_irix6)
7103 break;
7104 /* Fall through. */
7105 case SHN_MIPS_SCOMMON:
7106 asym->section = &mips_elf_scom_section;
7107 asym->value = elfsym->internal_elf_sym.st_size;
7108 break;
7110 case SHN_MIPS_SUNDEFINED:
7111 asym->section = bfd_und_section_ptr;
7112 break;
7114 case SHN_MIPS_TEXT:
7116 asection *section = bfd_get_section_by_name (abfd, ".text");
7118 if (section != NULL)
7120 asym->section = section;
7121 /* MIPS_TEXT is a bit special, the address is not an offset
7122 to the base of the .text section. So subtract the section
7123 base address to make it an offset. */
7124 asym->value -= section->vma;
7127 break;
7129 case SHN_MIPS_DATA:
7131 asection *section = bfd_get_section_by_name (abfd, ".data");
7133 if (section != NULL)
7135 asym->section = section;
7136 /* MIPS_DATA is a bit special, the address is not an offset
7137 to the base of the .data section. So subtract the section
7138 base address to make it an offset. */
7139 asym->value -= section->vma;
7142 break;
7145 /* If this is an odd-valued function symbol, assume it's a MIPS16
7146 or microMIPS one. */
7147 if (ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_FUNC
7148 && (asym->value & 1) != 0)
7150 asym->value--;
7151 if (MICROMIPS_P (abfd))
7152 elfsym->internal_elf_sym.st_other
7153 = ELF_ST_SET_MICROMIPS (elfsym->internal_elf_sym.st_other);
7154 else
7155 elfsym->internal_elf_sym.st_other
7156 = ELF_ST_SET_MIPS16 (elfsym->internal_elf_sym.st_other);
7160 /* Implement elf_backend_eh_frame_address_size. This differs from
7161 the default in the way it handles EABI64.
7163 EABI64 was originally specified as an LP64 ABI, and that is what
7164 -mabi=eabi normally gives on a 64-bit target. However, gcc has
7165 historically accepted the combination of -mabi=eabi and -mlong32,
7166 and this ILP32 variation has become semi-official over time.
7167 Both forms use elf32 and have pointer-sized FDE addresses.
7169 If an EABI object was generated by GCC 4.0 or above, it will have
7170 an empty .gcc_compiled_longXX section, where XX is the size of longs
7171 in bits. Unfortunately, ILP32 objects generated by earlier compilers
7172 have no special marking to distinguish them from LP64 objects.
7174 We don't want users of the official LP64 ABI to be punished for the
7175 existence of the ILP32 variant, but at the same time, we don't want
7176 to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
7177 We therefore take the following approach:
7179 - If ABFD contains a .gcc_compiled_longXX section, use it to
7180 determine the pointer size.
7182 - Otherwise check the type of the first relocation. Assume that
7183 the LP64 ABI is being used if the relocation is of type R_MIPS_64.
7185 - Otherwise punt.
7187 The second check is enough to detect LP64 objects generated by pre-4.0
7188 compilers because, in the kind of output generated by those compilers,
7189 the first relocation will be associated with either a CIE personality
7190 routine or an FDE start address. Furthermore, the compilers never
7191 used a special (non-pointer) encoding for this ABI.
7193 Checking the relocation type should also be safe because there is no
7194 reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never
7195 did so. */
7197 unsigned int
7198 _bfd_mips_elf_eh_frame_address_size (bfd *abfd, const asection *sec)
7200 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
7201 return 8;
7202 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
7204 bool long32_p, long64_p;
7206 long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0;
7207 long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0;
7208 if (long32_p && long64_p)
7209 return 0;
7210 if (long32_p)
7211 return 4;
7212 if (long64_p)
7213 return 8;
7215 if (sec->reloc_count > 0
7216 && elf_section_data (sec)->relocs != NULL
7217 && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info)
7218 == R_MIPS_64))
7219 return 8;
7221 return 0;
7223 return 4;
7226 /* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
7227 relocations against two unnamed section symbols to resolve to the
7228 same address. For example, if we have code like:
7230 lw $4,%got_disp(.data)($gp)
7231 lw $25,%got_disp(.text)($gp)
7232 jalr $25
7234 then the linker will resolve both relocations to .data and the program
7235 will jump there rather than to .text.
7237 We can work around this problem by giving names to local section symbols.
7238 This is also what the MIPSpro tools do. */
7240 bool
7241 _bfd_mips_elf_name_local_section_symbols (bfd *abfd)
7243 return elf_elfheader (abfd)->e_type == ET_REL && SGI_COMPAT (abfd);
7246 /* Work over a section just before writing it out. This routine is
7247 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
7248 sections that need the SHF_MIPS_GPREL flag by name; there has to be
7249 a better way. */
7251 bool
7252 _bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
7254 if (hdr->sh_type == SHT_MIPS_REGINFO
7255 && hdr->sh_size > 0)
7257 bfd_byte buf[4];
7259 BFD_ASSERT (hdr->contents == NULL);
7261 if (hdr->sh_size != sizeof (Elf32_External_RegInfo))
7263 _bfd_error_handler
7264 (_("%pB: incorrect `.reginfo' section size; "
7265 "expected %" PRIu64 ", got %" PRIu64),
7266 abfd, (uint64_t) sizeof (Elf32_External_RegInfo),
7267 (uint64_t) hdr->sh_size);
7268 bfd_set_error (bfd_error_bad_value);
7269 return false;
7272 if (bfd_seek (abfd,
7273 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
7274 SEEK_SET) != 0)
7275 return false;
7276 H_PUT_32 (abfd, elf_gp (abfd), buf);
7277 if (bfd_bwrite (buf, 4, abfd) != 4)
7278 return false;
7281 if (hdr->sh_type == SHT_MIPS_OPTIONS
7282 && hdr->bfd_section != NULL
7283 && mips_elf_section_data (hdr->bfd_section) != NULL
7284 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
7286 bfd_byte *contents, *l, *lend;
7288 /* We stored the section contents in the tdata field in the
7289 set_section_contents routine. We save the section contents
7290 so that we don't have to read them again.
7291 At this point we know that elf_gp is set, so we can look
7292 through the section contents to see if there is an
7293 ODK_REGINFO structure. */
7295 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
7296 l = contents;
7297 lend = contents + hdr->sh_size;
7298 while (l + sizeof (Elf_External_Options) <= lend)
7300 Elf_Internal_Options intopt;
7302 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
7303 &intopt);
7304 if (intopt.size < sizeof (Elf_External_Options))
7306 _bfd_error_handler
7307 /* xgettext:c-format */
7308 (_("%pB: warning: bad `%s' option size %u smaller than"
7309 " its header"),
7310 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
7311 break;
7313 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
7315 bfd_byte buf[8];
7317 if (bfd_seek (abfd,
7318 (hdr->sh_offset
7319 + (l - contents)
7320 + sizeof (Elf_External_Options)
7321 + (sizeof (Elf64_External_RegInfo) - 8)),
7322 SEEK_SET) != 0)
7323 return false;
7324 H_PUT_64 (abfd, elf_gp (abfd), buf);
7325 if (bfd_bwrite (buf, 8, abfd) != 8)
7326 return false;
7328 else if (intopt.kind == ODK_REGINFO)
7330 bfd_byte buf[4];
7332 if (bfd_seek (abfd,
7333 (hdr->sh_offset
7334 + (l - contents)
7335 + sizeof (Elf_External_Options)
7336 + (sizeof (Elf32_External_RegInfo) - 4)),
7337 SEEK_SET) != 0)
7338 return false;
7339 H_PUT_32 (abfd, elf_gp (abfd), buf);
7340 if (bfd_bwrite (buf, 4, abfd) != 4)
7341 return false;
7343 l += intopt.size;
7347 if (hdr->bfd_section != NULL)
7349 const char *name = bfd_section_name (hdr->bfd_section);
7351 /* .sbss is not handled specially here because the GNU/Linux
7352 prelinker can convert .sbss from NOBITS to PROGBITS and
7353 changing it back to NOBITS breaks the binary. The entry in
7354 _bfd_mips_elf_special_sections will ensure the correct flags
7355 are set on .sbss if BFD creates it without reading it from an
7356 input file, and without special handling here the flags set
7357 on it in an input file will be followed. */
7358 if (strcmp (name, ".sdata") == 0
7359 || strcmp (name, ".lit8") == 0
7360 || strcmp (name, ".lit4") == 0)
7361 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
7362 else if (strcmp (name, ".srdata") == 0)
7363 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
7364 else if (strcmp (name, ".compact_rel") == 0)
7365 hdr->sh_flags = 0;
7366 else if (strcmp (name, ".rtproc") == 0)
7368 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
7370 unsigned int adjust;
7372 adjust = hdr->sh_size % hdr->sh_addralign;
7373 if (adjust != 0)
7374 hdr->sh_size += hdr->sh_addralign - adjust;
7379 return true;
7382 /* Handle a MIPS specific section when reading an object file. This
7383 is called when elfcode.h finds a section with an unknown type.
7384 This routine supports both the 32-bit and 64-bit ELF ABI. */
7386 bool
7387 _bfd_mips_elf_section_from_shdr (bfd *abfd,
7388 Elf_Internal_Shdr *hdr,
7389 const char *name,
7390 int shindex)
7392 flagword flags = 0;
7394 /* There ought to be a place to keep ELF backend specific flags, but
7395 at the moment there isn't one. We just keep track of the
7396 sections by their name, instead. Fortunately, the ABI gives
7397 suggested names for all the MIPS specific sections, so we will
7398 probably get away with this. */
7399 switch (hdr->sh_type)
7401 case SHT_MIPS_LIBLIST:
7402 if (strcmp (name, ".liblist") != 0)
7403 return false;
7404 break;
7405 case SHT_MIPS_MSYM:
7406 if (strcmp (name, ".msym") != 0)
7407 return false;
7408 break;
7409 case SHT_MIPS_CONFLICT:
7410 if (strcmp (name, ".conflict") != 0)
7411 return false;
7412 break;
7413 case SHT_MIPS_GPTAB:
7414 if (! startswith (name, ".gptab."))
7415 return false;
7416 break;
7417 case SHT_MIPS_UCODE:
7418 if (strcmp (name, ".ucode") != 0)
7419 return false;
7420 break;
7421 case SHT_MIPS_DEBUG:
7422 if (strcmp (name, ".mdebug") != 0)
7423 return false;
7424 flags = SEC_DEBUGGING;
7425 break;
7426 case SHT_MIPS_REGINFO:
7427 if (strcmp (name, ".reginfo") != 0
7428 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
7429 return false;
7430 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
7431 break;
7432 case SHT_MIPS_IFACE:
7433 if (strcmp (name, ".MIPS.interfaces") != 0)
7434 return false;
7435 break;
7436 case SHT_MIPS_CONTENT:
7437 if (! startswith (name, ".MIPS.content"))
7438 return false;
7439 break;
7440 case SHT_MIPS_OPTIONS:
7441 if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
7442 return false;
7443 break;
7444 case SHT_MIPS_ABIFLAGS:
7445 if (!MIPS_ELF_ABIFLAGS_SECTION_NAME_P (name))
7446 return false;
7447 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
7448 break;
7449 case SHT_MIPS_DWARF:
7450 if (! startswith (name, ".debug_")
7451 && ! startswith (name, ".gnu.debuglto_.debug_")
7452 && ! startswith (name, ".zdebug_")
7453 && ! startswith (name, ".gnu.debuglto_.zdebug_"))
7454 return false;
7455 break;
7456 case SHT_MIPS_SYMBOL_LIB:
7457 if (strcmp (name, ".MIPS.symlib") != 0)
7458 return false;
7459 break;
7460 case SHT_MIPS_EVENTS:
7461 if (! startswith (name, ".MIPS.events")
7462 && ! startswith (name, ".MIPS.post_rel"))
7463 return false;
7464 break;
7465 case SHT_MIPS_XHASH:
7466 if (strcmp (name, ".MIPS.xhash") != 0)
7467 return false;
7468 default:
7469 break;
7472 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
7473 return false;
7475 if (hdr->sh_flags & SHF_MIPS_GPREL)
7476 flags |= SEC_SMALL_DATA;
7478 if (flags)
7480 if (!bfd_set_section_flags (hdr->bfd_section,
7481 (bfd_section_flags (hdr->bfd_section)
7482 | flags)))
7483 return false;
7486 if (hdr->sh_type == SHT_MIPS_ABIFLAGS)
7488 Elf_External_ABIFlags_v0 ext;
7490 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
7491 &ext, 0, sizeof ext))
7492 return false;
7493 bfd_mips_elf_swap_abiflags_v0_in (abfd, &ext,
7494 &mips_elf_tdata (abfd)->abiflags);
7495 if (mips_elf_tdata (abfd)->abiflags.version != 0)
7496 return false;
7497 mips_elf_tdata (abfd)->abiflags_valid = true;
7500 /* FIXME: We should record sh_info for a .gptab section. */
7502 /* For a .reginfo section, set the gp value in the tdata information
7503 from the contents of this section. We need the gp value while
7504 processing relocs, so we just get it now. The .reginfo section
7505 is not used in the 64-bit MIPS ELF ABI. */
7506 if (hdr->sh_type == SHT_MIPS_REGINFO)
7508 Elf32_External_RegInfo ext;
7509 Elf32_RegInfo s;
7511 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
7512 &ext, 0, sizeof ext))
7513 return false;
7514 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
7515 elf_gp (abfd) = s.ri_gp_value;
7518 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
7519 set the gp value based on what we find. We may see both
7520 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
7521 they should agree. */
7522 if (hdr->sh_type == SHT_MIPS_OPTIONS)
7524 bfd_byte *contents, *l, *lend;
7526 contents = bfd_malloc (hdr->sh_size);
7527 if (contents == NULL)
7528 return false;
7529 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
7530 0, hdr->sh_size))
7532 free (contents);
7533 return false;
7535 l = contents;
7536 lend = contents + hdr->sh_size;
7537 while (l + sizeof (Elf_External_Options) <= lend)
7539 Elf_Internal_Options intopt;
7541 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
7542 &intopt);
7543 if (intopt.size < sizeof (Elf_External_Options))
7545 bad_opt:
7546 _bfd_error_handler
7547 /* xgettext:c-format */
7548 (_("%pB: warning: truncated `%s' option"),
7549 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd));
7550 break;
7552 if (intopt.kind == ODK_REGINFO)
7554 if (ABI_64_P (abfd))
7556 Elf64_Internal_RegInfo intreg;
7557 size_t needed = (sizeof (Elf_External_Options)
7558 + sizeof (Elf64_External_RegInfo));
7559 if (intopt.size < needed || (size_t) (lend - l) < needed)
7560 goto bad_opt;
7561 bfd_mips_elf64_swap_reginfo_in
7562 (abfd,
7563 ((Elf64_External_RegInfo *)
7564 (l + sizeof (Elf_External_Options))),
7565 &intreg);
7566 elf_gp (abfd) = intreg.ri_gp_value;
7568 else
7570 Elf32_RegInfo intreg;
7571 size_t needed = (sizeof (Elf_External_Options)
7572 + sizeof (Elf32_External_RegInfo));
7573 if (intopt.size < needed || (size_t) (lend - l) < needed)
7574 goto bad_opt;
7575 bfd_mips_elf32_swap_reginfo_in
7576 (abfd,
7577 ((Elf32_External_RegInfo *)
7578 (l + sizeof (Elf_External_Options))),
7579 &intreg);
7580 elf_gp (abfd) = intreg.ri_gp_value;
7583 l += intopt.size;
7585 free (contents);
7588 return true;
7591 /* Set the correct type for a MIPS ELF section. We do this by the
7592 section name, which is a hack, but ought to work. This routine is
7593 used by both the 32-bit and the 64-bit ABI. */
7595 bool
7596 _bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
7598 const char *name = bfd_section_name (sec);
7600 if (strcmp (name, ".liblist") == 0)
7602 hdr->sh_type = SHT_MIPS_LIBLIST;
7603 hdr->sh_info = sec->size / sizeof (Elf32_Lib);
7604 /* The sh_link field is set in final_write_processing. */
7606 else if (strcmp (name, ".conflict") == 0)
7607 hdr->sh_type = SHT_MIPS_CONFLICT;
7608 else if (startswith (name, ".gptab."))
7610 hdr->sh_type = SHT_MIPS_GPTAB;
7611 hdr->sh_entsize = sizeof (Elf32_External_gptab);
7612 /* The sh_info field is set in final_write_processing. */
7614 else if (strcmp (name, ".ucode") == 0)
7615 hdr->sh_type = SHT_MIPS_UCODE;
7616 else if (strcmp (name, ".mdebug") == 0)
7618 hdr->sh_type = SHT_MIPS_DEBUG;
7619 /* In a shared object on IRIX 5.3, the .mdebug section has an
7620 entsize of 0. FIXME: Does this matter? */
7621 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
7622 hdr->sh_entsize = 0;
7623 else
7624 hdr->sh_entsize = 1;
7626 else if (strcmp (name, ".reginfo") == 0)
7628 hdr->sh_type = SHT_MIPS_REGINFO;
7629 /* In a shared object on IRIX 5.3, the .reginfo section has an
7630 entsize of 0x18. FIXME: Does this matter? */
7631 if (SGI_COMPAT (abfd))
7633 if ((abfd->flags & DYNAMIC) != 0)
7634 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
7635 else
7636 hdr->sh_entsize = 1;
7638 else
7639 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
7641 else if (SGI_COMPAT (abfd)
7642 && (strcmp (name, ".hash") == 0
7643 || strcmp (name, ".dynamic") == 0
7644 || strcmp (name, ".dynstr") == 0))
7646 if (SGI_COMPAT (abfd))
7647 hdr->sh_entsize = 0;
7648 #if 0
7649 /* This isn't how the IRIX6 linker behaves. */
7650 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
7651 #endif
7653 else if (strcmp (name, ".got") == 0
7654 || strcmp (name, ".srdata") == 0
7655 || strcmp (name, ".sdata") == 0
7656 || strcmp (name, ".sbss") == 0
7657 || strcmp (name, ".lit4") == 0
7658 || strcmp (name, ".lit8") == 0)
7659 hdr->sh_flags |= SHF_MIPS_GPREL;
7660 else if (strcmp (name, ".MIPS.interfaces") == 0)
7662 hdr->sh_type = SHT_MIPS_IFACE;
7663 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7665 else if (startswith (name, ".MIPS.content"))
7667 hdr->sh_type = SHT_MIPS_CONTENT;
7668 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7669 /* The sh_info field is set in final_write_processing. */
7671 else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
7673 hdr->sh_type = SHT_MIPS_OPTIONS;
7674 hdr->sh_entsize = 1;
7675 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7677 else if (startswith (name, ".MIPS.abiflags"))
7679 hdr->sh_type = SHT_MIPS_ABIFLAGS;
7680 hdr->sh_entsize = sizeof (Elf_External_ABIFlags_v0);
7682 else if (startswith (name, ".debug_")
7683 || startswith (name, ".gnu.debuglto_.debug_")
7684 || startswith (name, ".zdebug_")
7685 || startswith (name, ".gnu.debuglto_.zdebug_"))
7687 hdr->sh_type = SHT_MIPS_DWARF;
7689 /* Irix facilities such as libexc expect a single .debug_frame
7690 per executable, the system ones have NOSTRIP set and the linker
7691 doesn't merge sections with different flags so ... */
7692 if (SGI_COMPAT (abfd) && startswith (name, ".debug_frame"))
7693 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7695 else if (strcmp (name, ".MIPS.symlib") == 0)
7697 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
7698 /* The sh_link and sh_info fields are set in
7699 final_write_processing. */
7701 else if (startswith (name, ".MIPS.events")
7702 || startswith (name, ".MIPS.post_rel"))
7704 hdr->sh_type = SHT_MIPS_EVENTS;
7705 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7706 /* The sh_link field is set in final_write_processing. */
7708 else if (strcmp (name, ".msym") == 0)
7710 hdr->sh_type = SHT_MIPS_MSYM;
7711 hdr->sh_flags |= SHF_ALLOC;
7712 hdr->sh_entsize = 8;
7714 else if (strcmp (name, ".MIPS.xhash") == 0)
7716 hdr->sh_type = SHT_MIPS_XHASH;
7717 hdr->sh_flags |= SHF_ALLOC;
7718 hdr->sh_entsize = get_elf_backend_data(abfd)->s->arch_size == 64 ? 0 : 4;
7721 /* The generic elf_fake_sections will set up REL_HDR using the default
7722 kind of relocations. We used to set up a second header for the
7723 non-default kind of relocations here, but only NewABI would use
7724 these, and the IRIX ld doesn't like resulting empty RELA sections.
7725 Thus we create those header only on demand now. */
7727 return true;
7730 /* Given a BFD section, try to locate the corresponding ELF section
7731 index. This is used by both the 32-bit and the 64-bit ABI.
7732 Actually, it's not clear to me that the 64-bit ABI supports these,
7733 but for non-PIC objects we will certainly want support for at least
7734 the .scommon section. */
7736 bool
7737 _bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
7738 asection *sec, int *retval)
7740 if (strcmp (bfd_section_name (sec), ".scommon") == 0)
7742 *retval = SHN_MIPS_SCOMMON;
7743 return true;
7745 if (strcmp (bfd_section_name (sec), ".acommon") == 0)
7747 *retval = SHN_MIPS_ACOMMON;
7748 return true;
7750 return false;
7753 /* Hook called by the linker routine which adds symbols from an object
7754 file. We must handle the special MIPS section numbers here. */
7756 bool
7757 _bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
7758 Elf_Internal_Sym *sym, const char **namep,
7759 flagword *flagsp ATTRIBUTE_UNUSED,
7760 asection **secp, bfd_vma *valp)
7762 if (SGI_COMPAT (abfd)
7763 && (abfd->flags & DYNAMIC) != 0
7764 && strcmp (*namep, "_rld_new_interface") == 0)
7766 /* Skip IRIX5 rld entry name. */
7767 *namep = NULL;
7768 return true;
7771 /* Shared objects may have a dynamic symbol '_gp_disp' defined as
7772 a SECTION *ABS*. This causes ld to think it can resolve _gp_disp
7773 by setting a DT_NEEDED for the shared object. Since _gp_disp is
7774 a magic symbol resolved by the linker, we ignore this bogus definition
7775 of _gp_disp. New ABI objects do not suffer from this problem so this
7776 is not done for them. */
7777 if (!NEWABI_P(abfd)
7778 && (sym->st_shndx == SHN_ABS)
7779 && (strcmp (*namep, "_gp_disp") == 0))
7781 *namep = NULL;
7782 return true;
7785 switch (sym->st_shndx)
7787 case SHN_COMMON:
7788 /* Common symbols less than the GP size are automatically
7789 treated as SHN_MIPS_SCOMMON symbols. */
7790 if (sym->st_size > elf_gp_size (abfd)
7791 || ELF_ST_TYPE (sym->st_info) == STT_TLS
7792 || IRIX_COMPAT (abfd) == ict_irix6)
7793 break;
7794 /* Fall through. */
7795 case SHN_MIPS_SCOMMON:
7796 *secp = bfd_make_section_old_way (abfd, ".scommon");
7797 (*secp)->flags |= SEC_IS_COMMON | SEC_SMALL_DATA;
7798 *valp = sym->st_size;
7799 break;
7801 case SHN_MIPS_TEXT:
7802 /* This section is used in a shared object. */
7803 if (mips_elf_tdata (abfd)->elf_text_section == NULL)
7805 asymbol *elf_text_symbol;
7806 asection *elf_text_section;
7807 size_t amt = sizeof (asection);
7809 elf_text_section = bfd_zalloc (abfd, amt);
7810 if (elf_text_section == NULL)
7811 return false;
7813 amt = sizeof (asymbol);
7814 elf_text_symbol = bfd_zalloc (abfd, amt);
7815 if (elf_text_symbol == NULL)
7816 return false;
7818 /* Initialize the section. */
7820 mips_elf_tdata (abfd)->elf_text_section = elf_text_section;
7821 mips_elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
7823 elf_text_section->symbol = elf_text_symbol;
7824 elf_text_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_text_symbol;
7826 elf_text_section->name = ".text";
7827 elf_text_section->flags = SEC_NO_FLAGS;
7828 elf_text_section->output_section = NULL;
7829 elf_text_section->owner = abfd;
7830 elf_text_symbol->name = ".text";
7831 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7832 elf_text_symbol->section = elf_text_section;
7834 /* This code used to do *secp = bfd_und_section_ptr if
7835 bfd_link_pic (info). I don't know why, and that doesn't make sense,
7836 so I took it out. */
7837 *secp = mips_elf_tdata (abfd)->elf_text_section;
7838 break;
7840 case SHN_MIPS_ACOMMON:
7841 /* Fall through. XXX Can we treat this as allocated data? */
7842 case SHN_MIPS_DATA:
7843 /* This section is used in a shared object. */
7844 if (mips_elf_tdata (abfd)->elf_data_section == NULL)
7846 asymbol *elf_data_symbol;
7847 asection *elf_data_section;
7848 size_t amt = sizeof (asection);
7850 elf_data_section = bfd_zalloc (abfd, amt);
7851 if (elf_data_section == NULL)
7852 return false;
7854 amt = sizeof (asymbol);
7855 elf_data_symbol = bfd_zalloc (abfd, amt);
7856 if (elf_data_symbol == NULL)
7857 return false;
7859 /* Initialize the section. */
7861 mips_elf_tdata (abfd)->elf_data_section = elf_data_section;
7862 mips_elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
7864 elf_data_section->symbol = elf_data_symbol;
7865 elf_data_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_data_symbol;
7867 elf_data_section->name = ".data";
7868 elf_data_section->flags = SEC_NO_FLAGS;
7869 elf_data_section->output_section = NULL;
7870 elf_data_section->owner = abfd;
7871 elf_data_symbol->name = ".data";
7872 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7873 elf_data_symbol->section = elf_data_section;
7875 /* This code used to do *secp = bfd_und_section_ptr if
7876 bfd_link_pic (info). I don't know why, and that doesn't make sense,
7877 so I took it out. */
7878 *secp = mips_elf_tdata (abfd)->elf_data_section;
7879 break;
7881 case SHN_MIPS_SUNDEFINED:
7882 *secp = bfd_und_section_ptr;
7883 break;
7886 if (SGI_COMPAT (abfd)
7887 && ! bfd_link_pic (info)
7888 && info->output_bfd->xvec == abfd->xvec
7889 && strcmp (*namep, "__rld_obj_head") == 0)
7891 struct elf_link_hash_entry *h;
7892 struct bfd_link_hash_entry *bh;
7894 /* Mark __rld_obj_head as dynamic. */
7895 bh = NULL;
7896 if (! (_bfd_generic_link_add_one_symbol
7897 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, false,
7898 get_elf_backend_data (abfd)->collect, &bh)))
7899 return false;
7901 h = (struct elf_link_hash_entry *) bh;
7902 h->non_elf = 0;
7903 h->def_regular = 1;
7904 h->type = STT_OBJECT;
7906 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7907 return false;
7909 mips_elf_hash_table (info)->use_rld_obj_head = true;
7910 mips_elf_hash_table (info)->rld_symbol = h;
7913 /* If this is a mips16 text symbol, add 1 to the value to make it
7914 odd. This will cause something like .word SYM to come up with
7915 the right value when it is loaded into the PC. */
7916 if (ELF_ST_IS_COMPRESSED (sym->st_other))
7917 ++*valp;
7919 return true;
7922 /* This hook function is called before the linker writes out a global
7923 symbol. We mark symbols as small common if appropriate. This is
7924 also where we undo the increment of the value for a mips16 symbol. */
7927 _bfd_mips_elf_link_output_symbol_hook
7928 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
7929 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
7930 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
7932 /* If we see a common symbol, which implies a relocatable link, then
7933 if a symbol was small common in an input file, mark it as small
7934 common in the output file. */
7935 if (sym->st_shndx == SHN_COMMON
7936 && strcmp (input_sec->name, ".scommon") == 0)
7937 sym->st_shndx = SHN_MIPS_SCOMMON;
7939 if (ELF_ST_IS_COMPRESSED (sym->st_other))
7940 sym->st_value &= ~1;
7942 return 1;
7945 /* Functions for the dynamic linker. */
7947 /* Create dynamic sections when linking against a dynamic object. */
7949 bool
7950 _bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
7952 struct elf_link_hash_entry *h;
7953 struct bfd_link_hash_entry *bh;
7954 flagword flags;
7955 register asection *s;
7956 const char * const *namep;
7957 struct mips_elf_link_hash_table *htab;
7959 htab = mips_elf_hash_table (info);
7960 BFD_ASSERT (htab != NULL);
7962 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
7963 | SEC_LINKER_CREATED | SEC_READONLY);
7965 /* The psABI requires a read-only .dynamic section, but the VxWorks
7966 EABI doesn't. */
7967 if (htab->root.target_os != is_vxworks)
7969 s = bfd_get_linker_section (abfd, ".dynamic");
7970 if (s != NULL)
7972 if (!bfd_set_section_flags (s, flags))
7973 return false;
7977 /* We need to create .got section. */
7978 if (!mips_elf_create_got_section (abfd, info))
7979 return false;
7981 if (! mips_elf_rel_dyn_section (info, true))
7982 return false;
7984 /* Create .stub section. */
7985 s = bfd_make_section_anyway_with_flags (abfd,
7986 MIPS_ELF_STUB_SECTION_NAME (abfd),
7987 flags | SEC_CODE);
7988 if (s == NULL
7989 || !bfd_set_section_alignment (s, MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7990 return false;
7991 htab->sstubs = s;
7993 if (!mips_elf_hash_table (info)->use_rld_obj_head
7994 && bfd_link_executable (info)
7995 && bfd_get_linker_section (abfd, ".rld_map") == NULL)
7997 s = bfd_make_section_anyway_with_flags (abfd, ".rld_map",
7998 flags &~ (flagword) SEC_READONLY);
7999 if (s == NULL
8000 || !bfd_set_section_alignment (s, MIPS_ELF_LOG_FILE_ALIGN (abfd)))
8001 return false;
8004 /* Create .MIPS.xhash section. */
8005 if (info->emit_gnu_hash)
8006 s = bfd_make_section_anyway_with_flags (abfd, ".MIPS.xhash",
8007 flags | SEC_READONLY);
8009 /* On IRIX5, we adjust add some additional symbols and change the
8010 alignments of several sections. There is no ABI documentation
8011 indicating that this is necessary on IRIX6, nor any evidence that
8012 the linker takes such action. */
8013 if (IRIX_COMPAT (abfd) == ict_irix5)
8015 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
8017 bh = NULL;
8018 if (! (_bfd_generic_link_add_one_symbol
8019 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
8020 NULL, false, get_elf_backend_data (abfd)->collect, &bh)))
8021 return false;
8023 h = (struct elf_link_hash_entry *) bh;
8024 h->mark = 1;
8025 h->non_elf = 0;
8026 h->def_regular = 1;
8027 h->type = STT_SECTION;
8029 if (! bfd_elf_link_record_dynamic_symbol (info, h))
8030 return false;
8033 /* We need to create a .compact_rel section. */
8034 if (SGI_COMPAT (abfd))
8036 if (!mips_elf_create_compact_rel_section (abfd, info))
8037 return false;
8040 /* Change alignments of some sections. */
8041 s = bfd_get_linker_section (abfd, ".hash");
8042 if (s != NULL)
8043 bfd_set_section_alignment (s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
8045 s = bfd_get_linker_section (abfd, ".dynsym");
8046 if (s != NULL)
8047 bfd_set_section_alignment (s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
8049 s = bfd_get_linker_section (abfd, ".dynstr");
8050 if (s != NULL)
8051 bfd_set_section_alignment (s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
8053 /* ??? */
8054 s = bfd_get_section_by_name (abfd, ".reginfo");
8055 if (s != NULL)
8056 bfd_set_section_alignment (s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
8058 s = bfd_get_linker_section (abfd, ".dynamic");
8059 if (s != NULL)
8060 bfd_set_section_alignment (s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
8063 if (bfd_link_executable (info))
8065 const char *name;
8067 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
8068 bh = NULL;
8069 if (!(_bfd_generic_link_add_one_symbol
8070 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
8071 NULL, false, get_elf_backend_data (abfd)->collect, &bh)))
8072 return false;
8074 h = (struct elf_link_hash_entry *) bh;
8075 h->non_elf = 0;
8076 h->def_regular = 1;
8077 h->type = STT_SECTION;
8079 if (! bfd_elf_link_record_dynamic_symbol (info, h))
8080 return false;
8082 if (! mips_elf_hash_table (info)->use_rld_obj_head)
8084 /* __rld_map is a four byte word located in the .data section
8085 and is filled in by the rtld to contain a pointer to
8086 the _r_debug structure. Its symbol value will be set in
8087 _bfd_mips_elf_finish_dynamic_symbol. */
8088 s = bfd_get_linker_section (abfd, ".rld_map");
8089 BFD_ASSERT (s != NULL);
8091 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
8092 bh = NULL;
8093 if (!(_bfd_generic_link_add_one_symbol
8094 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, false,
8095 get_elf_backend_data (abfd)->collect, &bh)))
8096 return false;
8098 h = (struct elf_link_hash_entry *) bh;
8099 h->non_elf = 0;
8100 h->def_regular = 1;
8101 h->type = STT_OBJECT;
8103 if (! bfd_elf_link_record_dynamic_symbol (info, h))
8104 return false;
8105 mips_elf_hash_table (info)->rld_symbol = h;
8109 /* Create the .plt, .rel(a).plt, .dynbss and .rel(a).bss sections.
8110 Also, on VxWorks, create the _PROCEDURE_LINKAGE_TABLE_ symbol. */
8111 if (!_bfd_elf_create_dynamic_sections (abfd, info))
8112 return false;
8114 /* Do the usual VxWorks handling. */
8115 if (htab->root.target_os == is_vxworks
8116 && !elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2))
8117 return false;
8119 return true;
8122 /* Return true if relocation REL against section SEC is a REL rather than
8123 RELA relocation. RELOCS is the first relocation in the section and
8124 ABFD is the bfd that contains SEC. */
8126 static bool
8127 mips_elf_rel_relocation_p (bfd *abfd, asection *sec,
8128 const Elf_Internal_Rela *relocs,
8129 const Elf_Internal_Rela *rel)
8131 Elf_Internal_Shdr *rel_hdr;
8132 const struct elf_backend_data *bed;
8134 /* To determine which flavor of relocation this is, we depend on the
8135 fact that the INPUT_SECTION's REL_HDR is read before RELA_HDR. */
8136 rel_hdr = elf_section_data (sec)->rel.hdr;
8137 if (rel_hdr == NULL)
8138 return false;
8139 bed = get_elf_backend_data (abfd);
8140 return ((size_t) (rel - relocs)
8141 < NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel);
8144 /* Read the addend for REL relocation REL, which belongs to bfd ABFD.
8145 HOWTO is the relocation's howto and CONTENTS points to the contents
8146 of the section that REL is against. */
8148 static bfd_vma
8149 mips_elf_read_rel_addend (bfd *abfd, const Elf_Internal_Rela *rel,
8150 reloc_howto_type *howto, bfd_byte *contents)
8152 bfd_byte *location;
8153 unsigned int r_type;
8154 bfd_vma addend;
8155 bfd_vma bytes;
8157 r_type = ELF_R_TYPE (abfd, rel->r_info);
8158 location = contents + rel->r_offset;
8160 /* Get the addend, which is stored in the input file. */
8161 _bfd_mips_elf_reloc_unshuffle (abfd, r_type, false, location);
8162 bytes = mips_elf_obtain_contents (howto, rel, abfd, contents);
8163 _bfd_mips_elf_reloc_shuffle (abfd, r_type, false, location);
8165 addend = bytes & howto->src_mask;
8167 /* Shift is 2, unusually, for microMIPS JALX. Adjust the addend
8168 accordingly. */
8169 if (r_type == R_MICROMIPS_26_S1 && (bytes >> 26) == 0x3c)
8170 addend <<= 1;
8172 return addend;
8175 /* REL is a relocation in ABFD that needs a partnering LO16 relocation
8176 and *ADDEND is the addend for REL itself. Look for the LO16 relocation
8177 and update *ADDEND with the final addend. Return true on success
8178 or false if the LO16 could not be found. RELEND is the exclusive
8179 upper bound on the relocations for REL's section. */
8181 static bool
8182 mips_elf_add_lo16_rel_addend (bfd *abfd,
8183 const Elf_Internal_Rela *rel,
8184 const Elf_Internal_Rela *relend,
8185 bfd_byte *contents, bfd_vma *addend)
8187 unsigned int r_type, lo16_type;
8188 const Elf_Internal_Rela *lo16_relocation;
8189 reloc_howto_type *lo16_howto;
8190 bfd_vma l;
8192 r_type = ELF_R_TYPE (abfd, rel->r_info);
8193 if (mips16_reloc_p (r_type))
8194 lo16_type = R_MIPS16_LO16;
8195 else if (micromips_reloc_p (r_type))
8196 lo16_type = R_MICROMIPS_LO16;
8197 else if (r_type == R_MIPS_PCHI16)
8198 lo16_type = R_MIPS_PCLO16;
8199 else
8200 lo16_type = R_MIPS_LO16;
8202 /* The combined value is the sum of the HI16 addend, left-shifted by
8203 sixteen bits, and the LO16 addend, sign extended. (Usually, the
8204 code does a `lui' of the HI16 value, and then an `addiu' of the
8205 LO16 value.)
8207 Scan ahead to find a matching LO16 relocation.
8209 According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must
8210 be immediately following. However, for the IRIX6 ABI, the next
8211 relocation may be a composed relocation consisting of several
8212 relocations for the same address. In that case, the R_MIPS_LO16
8213 relocation may occur as one of these. We permit a similar
8214 extension in general, as that is useful for GCC.
8216 In some cases GCC dead code elimination removes the LO16 but keeps
8217 the corresponding HI16. This is strictly speaking a violation of
8218 the ABI but not immediately harmful. */
8219 lo16_relocation = mips_elf_next_relocation (abfd, lo16_type, rel, relend);
8220 if (lo16_relocation == NULL)
8221 return false;
8223 /* Obtain the addend kept there. */
8224 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, lo16_type, false);
8225 l = mips_elf_read_rel_addend (abfd, lo16_relocation, lo16_howto, contents);
8227 l <<= lo16_howto->rightshift;
8228 l = _bfd_mips_elf_sign_extend (l, 16);
8230 *addend <<= 16;
8231 *addend += l;
8232 return true;
8235 /* Try to read the contents of section SEC in bfd ABFD. Return true and
8236 store the contents in *CONTENTS on success. Assume that *CONTENTS
8237 already holds the contents if it is nonull on entry. */
8239 static bool
8240 mips_elf_get_section_contents (bfd *abfd, asection *sec, bfd_byte **contents)
8242 if (*contents)
8243 return true;
8245 /* Get cached copy if it exists. */
8246 if (elf_section_data (sec)->this_hdr.contents != NULL)
8248 *contents = elf_section_data (sec)->this_hdr.contents;
8249 return true;
8252 return bfd_malloc_and_get_section (abfd, sec, contents);
8255 /* Make a new PLT record to keep internal data. */
8257 static struct plt_entry *
8258 mips_elf_make_plt_record (bfd *abfd)
8260 struct plt_entry *entry;
8262 entry = bfd_zalloc (abfd, sizeof (*entry));
8263 if (entry == NULL)
8264 return NULL;
8266 entry->stub_offset = MINUS_ONE;
8267 entry->mips_offset = MINUS_ONE;
8268 entry->comp_offset = MINUS_ONE;
8269 entry->gotplt_index = MINUS_ONE;
8270 return entry;
8273 /* Define the special `__gnu_absolute_zero' symbol. We only need this
8274 for PIC code, as otherwise there is no load-time relocation involved
8275 and local GOT entries whose value is zero at static link time will
8276 retain their value at load time. */
8278 static bool
8279 mips_elf_define_absolute_zero (bfd *abfd, struct bfd_link_info *info,
8280 struct mips_elf_link_hash_table *htab,
8281 unsigned int r_type)
8283 union
8285 struct elf_link_hash_entry *eh;
8286 struct bfd_link_hash_entry *bh;
8288 hzero;
8290 BFD_ASSERT (!htab->use_absolute_zero);
8291 BFD_ASSERT (bfd_link_pic (info));
8293 hzero.bh = NULL;
8294 if (!_bfd_generic_link_add_one_symbol (info, abfd, "__gnu_absolute_zero",
8295 BSF_GLOBAL, bfd_abs_section_ptr, 0,
8296 NULL, false, false, &hzero.bh))
8297 return false;
8299 BFD_ASSERT (hzero.bh != NULL);
8300 hzero.eh->size = 0;
8301 hzero.eh->type = STT_NOTYPE;
8302 hzero.eh->other = STV_PROTECTED;
8303 hzero.eh->def_regular = 1;
8304 hzero.eh->non_elf = 0;
8306 if (!mips_elf_record_global_got_symbol (hzero.eh, abfd, info, true, r_type))
8307 return false;
8309 htab->use_absolute_zero = true;
8311 return true;
8314 /* Look through the relocs for a section during the first phase, and
8315 allocate space in the global offset table and record the need for
8316 standard MIPS and compressed procedure linkage table entries. */
8318 bool
8319 _bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
8320 asection *sec, const Elf_Internal_Rela *relocs)
8322 const char *name;
8323 bfd *dynobj;
8324 Elf_Internal_Shdr *symtab_hdr;
8325 struct elf_link_hash_entry **sym_hashes;
8326 size_t extsymoff;
8327 const Elf_Internal_Rela *rel;
8328 const Elf_Internal_Rela *rel_end;
8329 asection *sreloc;
8330 const struct elf_backend_data *bed;
8331 struct mips_elf_link_hash_table *htab;
8332 bfd_byte *contents;
8333 bfd_vma addend;
8334 reloc_howto_type *howto;
8336 if (bfd_link_relocatable (info))
8337 return true;
8339 htab = mips_elf_hash_table (info);
8340 BFD_ASSERT (htab != NULL);
8342 dynobj = elf_hash_table (info)->dynobj;
8343 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8344 sym_hashes = elf_sym_hashes (abfd);
8345 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
8347 bed = get_elf_backend_data (abfd);
8348 rel_end = relocs + sec->reloc_count;
8350 /* Check for the mips16 stub sections. */
8352 name = bfd_section_name (sec);
8353 if (FN_STUB_P (name))
8355 unsigned long r_symndx;
8357 /* Look at the relocation information to figure out which symbol
8358 this is for. */
8360 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
8361 if (r_symndx == 0)
8363 _bfd_error_handler
8364 /* xgettext:c-format */
8365 (_("%pB: warning: cannot determine the target function for"
8366 " stub section `%s'"),
8367 abfd, name);
8368 bfd_set_error (bfd_error_bad_value);
8369 return false;
8372 if (r_symndx < extsymoff
8373 || sym_hashes[r_symndx - extsymoff] == NULL)
8375 asection *o;
8377 /* This stub is for a local symbol. This stub will only be
8378 needed if there is some relocation in this BFD, other
8379 than a 16 bit function call, which refers to this symbol. */
8380 for (o = abfd->sections; o != NULL; o = o->next)
8382 Elf_Internal_Rela *sec_relocs;
8383 const Elf_Internal_Rela *r, *rend;
8385 /* We can ignore stub sections when looking for relocs. */
8386 if ((o->flags & SEC_RELOC) == 0
8387 || o->reloc_count == 0
8388 || section_allows_mips16_refs_p (o))
8389 continue;
8391 sec_relocs
8392 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
8393 info->keep_memory);
8394 if (sec_relocs == NULL)
8395 return false;
8397 rend = sec_relocs + o->reloc_count;
8398 for (r = sec_relocs; r < rend; r++)
8399 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
8400 && !mips16_call_reloc_p (ELF_R_TYPE (abfd, r->r_info)))
8401 break;
8403 if (elf_section_data (o)->relocs != sec_relocs)
8404 free (sec_relocs);
8406 if (r < rend)
8407 break;
8410 if (o == NULL)
8412 /* There is no non-call reloc for this stub, so we do
8413 not need it. Since this function is called before
8414 the linker maps input sections to output sections, we
8415 can easily discard it by setting the SEC_EXCLUDE
8416 flag. */
8417 sec->flags |= SEC_EXCLUDE;
8418 return true;
8421 /* Record this stub in an array of local symbol stubs for
8422 this BFD. */
8423 if (mips_elf_tdata (abfd)->local_stubs == NULL)
8425 unsigned long symcount;
8426 asection **n;
8427 bfd_size_type amt;
8429 if (elf_bad_symtab (abfd))
8430 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
8431 else
8432 symcount = symtab_hdr->sh_info;
8433 amt = symcount * sizeof (asection *);
8434 n = bfd_zalloc (abfd, amt);
8435 if (n == NULL)
8436 return false;
8437 mips_elf_tdata (abfd)->local_stubs = n;
8440 sec->flags |= SEC_KEEP;
8441 mips_elf_tdata (abfd)->local_stubs[r_symndx] = sec;
8443 /* We don't need to set mips16_stubs_seen in this case.
8444 That flag is used to see whether we need to look through
8445 the global symbol table for stubs. We don't need to set
8446 it here, because we just have a local stub. */
8448 else
8450 struct mips_elf_link_hash_entry *h;
8452 h = ((struct mips_elf_link_hash_entry *)
8453 sym_hashes[r_symndx - extsymoff]);
8455 while (h->root.root.type == bfd_link_hash_indirect
8456 || h->root.root.type == bfd_link_hash_warning)
8457 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
8459 /* H is the symbol this stub is for. */
8461 /* If we already have an appropriate stub for this function, we
8462 don't need another one, so we can discard this one. Since
8463 this function is called before the linker maps input sections
8464 to output sections, we can easily discard it by setting the
8465 SEC_EXCLUDE flag. */
8466 if (h->fn_stub != NULL)
8468 sec->flags |= SEC_EXCLUDE;
8469 return true;
8472 sec->flags |= SEC_KEEP;
8473 h->fn_stub = sec;
8474 mips_elf_hash_table (info)->mips16_stubs_seen = true;
8477 else if (CALL_STUB_P (name) || CALL_FP_STUB_P (name))
8479 unsigned long r_symndx;
8480 struct mips_elf_link_hash_entry *h;
8481 asection **loc;
8483 /* Look at the relocation information to figure out which symbol
8484 this is for. */
8486 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
8487 if (r_symndx == 0)
8489 _bfd_error_handler
8490 /* xgettext:c-format */
8491 (_("%pB: warning: cannot determine the target function for"
8492 " stub section `%s'"),
8493 abfd, name);
8494 bfd_set_error (bfd_error_bad_value);
8495 return false;
8498 if (r_symndx < extsymoff
8499 || sym_hashes[r_symndx - extsymoff] == NULL)
8501 asection *o;
8503 /* This stub is for a local symbol. This stub will only be
8504 needed if there is some relocation (R_MIPS16_26) in this BFD
8505 that refers to this symbol. */
8506 for (o = abfd->sections; o != NULL; o = o->next)
8508 Elf_Internal_Rela *sec_relocs;
8509 const Elf_Internal_Rela *r, *rend;
8511 /* We can ignore stub sections when looking for relocs. */
8512 if ((o->flags & SEC_RELOC) == 0
8513 || o->reloc_count == 0
8514 || section_allows_mips16_refs_p (o))
8515 continue;
8517 sec_relocs
8518 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
8519 info->keep_memory);
8520 if (sec_relocs == NULL)
8521 return false;
8523 rend = sec_relocs + o->reloc_count;
8524 for (r = sec_relocs; r < rend; r++)
8525 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
8526 && ELF_R_TYPE (abfd, r->r_info) == R_MIPS16_26)
8527 break;
8529 if (elf_section_data (o)->relocs != sec_relocs)
8530 free (sec_relocs);
8532 if (r < rend)
8533 break;
8536 if (o == NULL)
8538 /* There is no non-call reloc for this stub, so we do
8539 not need it. Since this function is called before
8540 the linker maps input sections to output sections, we
8541 can easily discard it by setting the SEC_EXCLUDE
8542 flag. */
8543 sec->flags |= SEC_EXCLUDE;
8544 return true;
8547 /* Record this stub in an array of local symbol call_stubs for
8548 this BFD. */
8549 if (mips_elf_tdata (abfd)->local_call_stubs == NULL)
8551 unsigned long symcount;
8552 asection **n;
8553 bfd_size_type amt;
8555 if (elf_bad_symtab (abfd))
8556 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
8557 else
8558 symcount = symtab_hdr->sh_info;
8559 amt = symcount * sizeof (asection *);
8560 n = bfd_zalloc (abfd, amt);
8561 if (n == NULL)
8562 return false;
8563 mips_elf_tdata (abfd)->local_call_stubs = n;
8566 sec->flags |= SEC_KEEP;
8567 mips_elf_tdata (abfd)->local_call_stubs[r_symndx] = sec;
8569 /* We don't need to set mips16_stubs_seen in this case.
8570 That flag is used to see whether we need to look through
8571 the global symbol table for stubs. We don't need to set
8572 it here, because we just have a local stub. */
8574 else
8576 h = ((struct mips_elf_link_hash_entry *)
8577 sym_hashes[r_symndx - extsymoff]);
8579 /* H is the symbol this stub is for. */
8581 if (CALL_FP_STUB_P (name))
8582 loc = &h->call_fp_stub;
8583 else
8584 loc = &h->call_stub;
8586 /* If we already have an appropriate stub for this function, we
8587 don't need another one, so we can discard this one. Since
8588 this function is called before the linker maps input sections
8589 to output sections, we can easily discard it by setting the
8590 SEC_EXCLUDE flag. */
8591 if (*loc != NULL)
8593 sec->flags |= SEC_EXCLUDE;
8594 return true;
8597 sec->flags |= SEC_KEEP;
8598 *loc = sec;
8599 mips_elf_hash_table (info)->mips16_stubs_seen = true;
8603 sreloc = NULL;
8604 contents = NULL;
8605 for (rel = relocs; rel < rel_end; ++rel)
8607 unsigned long r_symndx;
8608 unsigned int r_type;
8609 struct elf_link_hash_entry *h;
8610 bool can_make_dynamic_p;
8611 bool call_reloc_p;
8612 bool constrain_symbol_p;
8614 r_symndx = ELF_R_SYM (abfd, rel->r_info);
8615 r_type = ELF_R_TYPE (abfd, rel->r_info);
8617 if (r_symndx < extsymoff)
8618 h = NULL;
8619 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
8621 _bfd_error_handler
8622 /* xgettext:c-format */
8623 (_("%pB: malformed reloc detected for section %s"),
8624 abfd, name);
8625 bfd_set_error (bfd_error_bad_value);
8626 return false;
8628 else
8630 h = sym_hashes[r_symndx - extsymoff];
8631 if (h != NULL)
8633 while (h->root.type == bfd_link_hash_indirect
8634 || h->root.type == bfd_link_hash_warning)
8635 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8639 /* Set CAN_MAKE_DYNAMIC_P to true if we can convert this
8640 relocation into a dynamic one. */
8641 can_make_dynamic_p = false;
8643 /* Set CALL_RELOC_P to true if the relocation is for a call,
8644 and if pointer equality therefore doesn't matter. */
8645 call_reloc_p = false;
8647 /* Set CONSTRAIN_SYMBOL_P if we need to take the relocation
8648 into account when deciding how to define the symbol. */
8649 constrain_symbol_p = true;
8651 switch (r_type)
8653 case R_MIPS_CALL16:
8654 case R_MIPS_CALL_HI16:
8655 case R_MIPS_CALL_LO16:
8656 case R_MIPS16_CALL16:
8657 case R_MICROMIPS_CALL16:
8658 case R_MICROMIPS_CALL_HI16:
8659 case R_MICROMIPS_CALL_LO16:
8660 call_reloc_p = true;
8661 /* Fall through. */
8663 case R_MIPS_GOT16:
8664 case R_MIPS_GOT_LO16:
8665 case R_MIPS_GOT_PAGE:
8666 case R_MIPS_GOT_DISP:
8667 case R_MIPS16_GOT16:
8668 case R_MICROMIPS_GOT16:
8669 case R_MICROMIPS_GOT_LO16:
8670 case R_MICROMIPS_GOT_PAGE:
8671 case R_MICROMIPS_GOT_DISP:
8672 /* If we have a symbol that will resolve to zero at static link
8673 time and it is used by a GOT relocation applied to code we
8674 cannot relax to an immediate zero load, then we will be using
8675 the special `__gnu_absolute_zero' symbol whose value is zero
8676 at dynamic load time. We ignore HI16-type GOT relocations at
8677 this stage, because their handling will depend entirely on
8678 the corresponding LO16-type GOT relocation. */
8679 if (!call_hi16_reloc_p (r_type)
8680 && h != NULL
8681 && bfd_link_pic (info)
8682 && !htab->use_absolute_zero
8683 && UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
8685 bool rel_reloc;
8687 if (!mips_elf_get_section_contents (abfd, sec, &contents))
8688 return false;
8690 rel_reloc = mips_elf_rel_relocation_p (abfd, sec, relocs, rel);
8691 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, !rel_reloc);
8693 if (!mips_elf_nullify_got_load (abfd, contents, rel, howto,
8694 false))
8695 if (!mips_elf_define_absolute_zero (abfd, info, htab, r_type))
8696 return false;
8699 /* Fall through. */
8700 case R_MIPS_GOT_HI16:
8701 case R_MIPS_GOT_OFST:
8702 case R_MIPS_TLS_GOTTPREL:
8703 case R_MIPS_TLS_GD:
8704 case R_MIPS_TLS_LDM:
8705 case R_MIPS16_TLS_GOTTPREL:
8706 case R_MIPS16_TLS_GD:
8707 case R_MIPS16_TLS_LDM:
8708 case R_MICROMIPS_GOT_HI16:
8709 case R_MICROMIPS_GOT_OFST:
8710 case R_MICROMIPS_TLS_GOTTPREL:
8711 case R_MICROMIPS_TLS_GD:
8712 case R_MICROMIPS_TLS_LDM:
8713 if (dynobj == NULL)
8714 elf_hash_table (info)->dynobj = dynobj = abfd;
8715 if (!mips_elf_create_got_section (dynobj, info))
8716 return false;
8717 if (htab->root.target_os == is_vxworks
8718 && !bfd_link_pic (info))
8720 _bfd_error_handler
8721 /* xgettext:c-format */
8722 (_("%pB: GOT reloc at %#" PRIx64 " not expected in executables"),
8723 abfd, (uint64_t) rel->r_offset);
8724 bfd_set_error (bfd_error_bad_value);
8725 return false;
8727 can_make_dynamic_p = true;
8728 break;
8730 case R_MIPS_NONE:
8731 case R_MIPS_JALR:
8732 case R_MICROMIPS_JALR:
8733 /* These relocations have empty fields and are purely there to
8734 provide link information. The symbol value doesn't matter. */
8735 constrain_symbol_p = false;
8736 break;
8738 case R_MIPS_GPREL16:
8739 case R_MIPS_GPREL32:
8740 case R_MIPS16_GPREL:
8741 case R_MICROMIPS_GPREL16:
8742 /* GP-relative relocations always resolve to a definition in a
8743 regular input file, ignoring the one-definition rule. This is
8744 important for the GP setup sequence in NewABI code, which
8745 always resolves to a local function even if other relocations
8746 against the symbol wouldn't. */
8747 constrain_symbol_p = false;
8748 break;
8750 case R_MIPS_32:
8751 case R_MIPS_REL32:
8752 case R_MIPS_64:
8753 /* In VxWorks executables, references to external symbols
8754 must be handled using copy relocs or PLT entries; it is not
8755 possible to convert this relocation into a dynamic one.
8757 For executables that use PLTs and copy-relocs, we have a
8758 choice between converting the relocation into a dynamic
8759 one or using copy relocations or PLT entries. It is
8760 usually better to do the former, unless the relocation is
8761 against a read-only section. */
8762 if ((bfd_link_pic (info)
8763 || (h != NULL
8764 && htab->root.target_os != is_vxworks
8765 && strcmp (h->root.root.string, "__gnu_local_gp") != 0
8766 && !(!info->nocopyreloc
8767 && !PIC_OBJECT_P (abfd)
8768 && MIPS_ELF_READONLY_SECTION (sec))))
8769 && (sec->flags & SEC_ALLOC) != 0)
8771 can_make_dynamic_p = true;
8772 if (dynobj == NULL)
8773 elf_hash_table (info)->dynobj = dynobj = abfd;
8775 break;
8777 case R_MIPS_26:
8778 case R_MIPS_PC16:
8779 case R_MIPS_PC21_S2:
8780 case R_MIPS_PC26_S2:
8781 case R_MIPS16_26:
8782 case R_MIPS16_PC16_S1:
8783 case R_MICROMIPS_26_S1:
8784 case R_MICROMIPS_PC7_S1:
8785 case R_MICROMIPS_PC10_S1:
8786 case R_MICROMIPS_PC16_S1:
8787 case R_MICROMIPS_PC23_S2:
8788 call_reloc_p = true;
8789 break;
8792 if (h)
8794 if (constrain_symbol_p)
8796 if (!can_make_dynamic_p)
8797 ((struct mips_elf_link_hash_entry *) h)->has_static_relocs = 1;
8799 if (!call_reloc_p)
8800 h->pointer_equality_needed = 1;
8802 /* We must not create a stub for a symbol that has
8803 relocations related to taking the function's address.
8804 This doesn't apply to VxWorks, where CALL relocs refer
8805 to a .got.plt entry instead of a normal .got entry. */
8806 if (htab->root.target_os != is_vxworks
8807 && (!can_make_dynamic_p || !call_reloc_p))
8808 ((struct mips_elf_link_hash_entry *) h)->no_fn_stub = true;
8811 /* Relocations against the special VxWorks __GOTT_BASE__ and
8812 __GOTT_INDEX__ symbols must be left to the loader. Allocate
8813 room for them in .rela.dyn. */
8814 if (is_gott_symbol (info, h))
8816 if (sreloc == NULL)
8818 sreloc = mips_elf_rel_dyn_section (info, true);
8819 if (sreloc == NULL)
8820 return false;
8822 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8823 if (MIPS_ELF_READONLY_SECTION (sec))
8824 /* We tell the dynamic linker that there are
8825 relocations against the text segment. */
8826 info->flags |= DF_TEXTREL;
8829 else if (call_lo16_reloc_p (r_type)
8830 || got_lo16_reloc_p (r_type)
8831 || got_disp_reloc_p (r_type)
8832 || (got16_reloc_p (r_type)
8833 && htab->root.target_os == is_vxworks))
8835 /* We may need a local GOT entry for this relocation. We
8836 don't count R_MIPS_GOT_PAGE because we can estimate the
8837 maximum number of pages needed by looking at the size of
8838 the segment. Similar comments apply to R_MIPS*_GOT16 and
8839 R_MIPS*_CALL16, except on VxWorks, where GOT relocations
8840 always evaluate to "G". We don't count R_MIPS_GOT_HI16, or
8841 R_MIPS_CALL_HI16 because these are always followed by an
8842 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
8843 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
8844 rel->r_addend, info, r_type))
8845 return false;
8848 if (h != NULL
8849 && mips_elf_relocation_needs_la25_stub (abfd, r_type,
8850 ELF_ST_IS_MIPS16 (h->other)))
8851 ((struct mips_elf_link_hash_entry *) h)->has_nonpic_branches = true;
8853 switch (r_type)
8855 case R_MIPS_CALL16:
8856 case R_MIPS16_CALL16:
8857 case R_MICROMIPS_CALL16:
8858 if (h == NULL)
8860 _bfd_error_handler
8861 /* xgettext:c-format */
8862 (_("%pB: CALL16 reloc at %#" PRIx64 " not against global symbol"),
8863 abfd, (uint64_t) rel->r_offset);
8864 bfd_set_error (bfd_error_bad_value);
8865 return false;
8867 /* Fall through. */
8869 case R_MIPS_CALL_HI16:
8870 case R_MIPS_CALL_LO16:
8871 case R_MICROMIPS_CALL_HI16:
8872 case R_MICROMIPS_CALL_LO16:
8873 if (h != NULL)
8875 /* Make sure there is room in the regular GOT to hold the
8876 function's address. We may eliminate it in favour of
8877 a .got.plt entry later; see mips_elf_count_got_symbols. */
8878 if (!mips_elf_record_global_got_symbol (h, abfd, info, true,
8879 r_type))
8880 return false;
8882 /* We need a stub, not a plt entry for the undefined
8883 function. But we record it as if it needs plt. See
8884 _bfd_elf_adjust_dynamic_symbol. */
8885 h->needs_plt = 1;
8886 h->type = STT_FUNC;
8888 break;
8890 case R_MIPS_GOT_PAGE:
8891 case R_MICROMIPS_GOT_PAGE:
8892 case R_MIPS16_GOT16:
8893 case R_MIPS_GOT16:
8894 case R_MIPS_GOT_HI16:
8895 case R_MIPS_GOT_LO16:
8896 case R_MICROMIPS_GOT16:
8897 case R_MICROMIPS_GOT_HI16:
8898 case R_MICROMIPS_GOT_LO16:
8899 if (!h || got_page_reloc_p (r_type))
8901 /* This relocation needs (or may need, if h != NULL) a
8902 page entry in the GOT. For R_MIPS_GOT_PAGE we do not
8903 know for sure until we know whether the symbol is
8904 preemptible. */
8905 if (mips_elf_rel_relocation_p (abfd, sec, relocs, rel))
8907 if (!mips_elf_get_section_contents (abfd, sec, &contents))
8908 return false;
8909 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, false);
8910 addend = mips_elf_read_rel_addend (abfd, rel,
8911 howto, contents);
8912 if (got16_reloc_p (r_type))
8913 mips_elf_add_lo16_rel_addend (abfd, rel, rel_end,
8914 contents, &addend);
8915 else
8916 addend <<= howto->rightshift;
8918 else
8919 addend = rel->r_addend;
8920 if (!mips_elf_record_got_page_ref (info, abfd, r_symndx,
8921 h, addend))
8922 return false;
8924 if (h)
8926 struct mips_elf_link_hash_entry *hmips =
8927 (struct mips_elf_link_hash_entry *) h;
8929 /* This symbol is definitely not overridable. */
8930 if (hmips->root.def_regular
8931 && ! (bfd_link_pic (info) && ! info->symbolic
8932 && ! hmips->root.forced_local))
8933 h = NULL;
8936 /* If this is a global, overridable symbol, GOT_PAGE will
8937 decay to GOT_DISP, so we'll need a GOT entry for it. */
8938 /* Fall through. */
8940 case R_MIPS_GOT_DISP:
8941 case R_MICROMIPS_GOT_DISP:
8942 if (h && !mips_elf_record_global_got_symbol (h, abfd, info,
8943 false, r_type))
8944 return false;
8945 break;
8947 case R_MIPS_TLS_GOTTPREL:
8948 case R_MIPS16_TLS_GOTTPREL:
8949 case R_MICROMIPS_TLS_GOTTPREL:
8950 if (bfd_link_pic (info))
8951 info->flags |= DF_STATIC_TLS;
8952 /* Fall through */
8954 case R_MIPS_TLS_LDM:
8955 case R_MIPS16_TLS_LDM:
8956 case R_MICROMIPS_TLS_LDM:
8957 if (tls_ldm_reloc_p (r_type))
8959 r_symndx = STN_UNDEF;
8960 h = NULL;
8962 /* Fall through */
8964 case R_MIPS_TLS_GD:
8965 case R_MIPS16_TLS_GD:
8966 case R_MICROMIPS_TLS_GD:
8967 /* This symbol requires a global offset table entry, or two
8968 for TLS GD relocations. */
8969 if (h != NULL)
8971 if (!mips_elf_record_global_got_symbol (h, abfd, info,
8972 false, r_type))
8973 return false;
8975 else
8977 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
8978 rel->r_addend,
8979 info, r_type))
8980 return false;
8982 break;
8984 case R_MIPS_32:
8985 case R_MIPS_REL32:
8986 case R_MIPS_64:
8987 /* In VxWorks executables, references to external symbols
8988 are handled using copy relocs or PLT stubs, so there's
8989 no need to add a .rela.dyn entry for this relocation. */
8990 if (can_make_dynamic_p)
8992 if (sreloc == NULL)
8994 sreloc = mips_elf_rel_dyn_section (info, true);
8995 if (sreloc == NULL)
8996 return false;
8998 if (bfd_link_pic (info) && h == NULL)
9000 /* When creating a shared object, we must copy these
9001 reloc types into the output file as R_MIPS_REL32
9002 relocs. Make room for this reloc in .rel(a).dyn. */
9003 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
9004 if (MIPS_ELF_READONLY_SECTION (sec))
9005 /* We tell the dynamic linker that there are
9006 relocations against the text segment. */
9007 info->flags |= DF_TEXTREL;
9009 else
9011 struct mips_elf_link_hash_entry *hmips;
9013 /* For a shared object, we must copy this relocation
9014 unless the symbol turns out to be undefined and
9015 weak with non-default visibility, in which case
9016 it will be left as zero.
9018 We could elide R_MIPS_REL32 for locally binding symbols
9019 in shared libraries, but do not yet do so.
9021 For an executable, we only need to copy this
9022 reloc if the symbol is defined in a dynamic
9023 object. */
9024 hmips = (struct mips_elf_link_hash_entry *) h;
9025 ++hmips->possibly_dynamic_relocs;
9026 if (MIPS_ELF_READONLY_SECTION (sec))
9027 /* We need it to tell the dynamic linker if there
9028 are relocations against the text segment. */
9029 hmips->readonly_reloc = true;
9033 if (SGI_COMPAT (abfd))
9034 mips_elf_hash_table (info)->compact_rel_size +=
9035 sizeof (Elf32_External_crinfo);
9036 break;
9038 case R_MIPS_26:
9039 case R_MIPS_GPREL16:
9040 case R_MIPS_LITERAL:
9041 case R_MIPS_GPREL32:
9042 case R_MICROMIPS_26_S1:
9043 case R_MICROMIPS_GPREL16:
9044 case R_MICROMIPS_LITERAL:
9045 case R_MICROMIPS_GPREL7_S2:
9046 if (SGI_COMPAT (abfd))
9047 mips_elf_hash_table (info)->compact_rel_size +=
9048 sizeof (Elf32_External_crinfo);
9049 break;
9051 /* This relocation describes the C++ object vtable hierarchy.
9052 Reconstruct it for later use during GC. */
9053 case R_MIPS_GNU_VTINHERIT:
9054 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
9055 return false;
9056 break;
9058 /* This relocation describes which C++ vtable entries are actually
9059 used. Record for later use during GC. */
9060 case R_MIPS_GNU_VTENTRY:
9061 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
9062 return false;
9063 break;
9065 default:
9066 break;
9069 /* Record the need for a PLT entry. At this point we don't know
9070 yet if we are going to create a PLT in the first place, but
9071 we only record whether the relocation requires a standard MIPS
9072 or a compressed code entry anyway. If we don't make a PLT after
9073 all, then we'll just ignore these arrangements. Likewise if
9074 a PLT entry is not created because the symbol is satisfied
9075 locally. */
9076 if (h != NULL
9077 && (branch_reloc_p (r_type)
9078 || mips16_branch_reloc_p (r_type)
9079 || micromips_branch_reloc_p (r_type))
9080 && !SYMBOL_CALLS_LOCAL (info, h))
9082 if (h->plt.plist == NULL)
9083 h->plt.plist = mips_elf_make_plt_record (abfd);
9084 if (h->plt.plist == NULL)
9085 return false;
9087 if (branch_reloc_p (r_type))
9088 h->plt.plist->need_mips = true;
9089 else
9090 h->plt.plist->need_comp = true;
9093 /* See if this reloc would need to refer to a MIPS16 hard-float stub,
9094 if there is one. We only need to handle global symbols here;
9095 we decide whether to keep or delete stubs for local symbols
9096 when processing the stub's relocations. */
9097 if (h != NULL
9098 && !mips16_call_reloc_p (r_type)
9099 && !section_allows_mips16_refs_p (sec))
9101 struct mips_elf_link_hash_entry *mh;
9103 mh = (struct mips_elf_link_hash_entry *) h;
9104 mh->need_fn_stub = true;
9107 /* Refuse some position-dependent relocations when creating a
9108 shared library. Do not refuse R_MIPS_32 / R_MIPS_64; they're
9109 not PIC, but we can create dynamic relocations and the result
9110 will be fine. Also do not refuse R_MIPS_LO16, which can be
9111 combined with R_MIPS_GOT16. */
9112 if (bfd_link_pic (info))
9114 switch (r_type)
9116 case R_MIPS_TLS_TPREL_HI16:
9117 case R_MIPS16_TLS_TPREL_HI16:
9118 case R_MICROMIPS_TLS_TPREL_HI16:
9119 case R_MIPS_TLS_TPREL_LO16:
9120 case R_MIPS16_TLS_TPREL_LO16:
9121 case R_MICROMIPS_TLS_TPREL_LO16:
9122 /* These are okay in PIE, but not in a shared library. */
9123 if (bfd_link_executable (info))
9124 break;
9126 /* FALLTHROUGH */
9128 case R_MIPS16_HI16:
9129 case R_MIPS_HI16:
9130 case R_MIPS_HIGHER:
9131 case R_MIPS_HIGHEST:
9132 case R_MICROMIPS_HI16:
9133 case R_MICROMIPS_HIGHER:
9134 case R_MICROMIPS_HIGHEST:
9135 /* Don't refuse a high part relocation if it's against
9136 no symbol (e.g. part of a compound relocation). */
9137 if (r_symndx == STN_UNDEF)
9138 break;
9140 /* Likewise an absolute symbol. */
9141 if (h != NULL && bfd_is_abs_symbol (&h->root))
9142 break;
9144 /* R_MIPS_HI16 against _gp_disp is used for $gp setup,
9145 and has a special meaning. */
9146 if (!NEWABI_P (abfd) && h != NULL
9147 && strcmp (h->root.root.string, "_gp_disp") == 0)
9148 break;
9150 /* Likewise __GOTT_BASE__ and __GOTT_INDEX__ on VxWorks. */
9151 if (is_gott_symbol (info, h))
9152 break;
9154 /* FALLTHROUGH */
9156 case R_MIPS16_26:
9157 case R_MIPS_26:
9158 case R_MICROMIPS_26_S1:
9159 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, NEWABI_P (abfd));
9160 /* An error for unsupported relocations is raised as part
9161 of the above search, so we can skip the following. */
9162 if (howto != NULL)
9163 info->callbacks->einfo
9164 /* xgettext:c-format */
9165 (_("%X%H: relocation %s against `%s' cannot be used"
9166 " when making a shared object; recompile with -fPIC\n"),
9167 abfd, sec, rel->r_offset, howto->name,
9168 (h) ? h->root.root.string : "a local symbol");
9169 break;
9170 default:
9171 break;
9176 return true;
9179 /* Allocate space for global sym dynamic relocs. */
9181 static bool
9182 allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
9184 struct bfd_link_info *info = inf;
9185 bfd *dynobj;
9186 struct mips_elf_link_hash_entry *hmips;
9187 struct mips_elf_link_hash_table *htab;
9189 htab = mips_elf_hash_table (info);
9190 BFD_ASSERT (htab != NULL);
9192 dynobj = elf_hash_table (info)->dynobj;
9193 hmips = (struct mips_elf_link_hash_entry *) h;
9195 /* VxWorks executables are handled elsewhere; we only need to
9196 allocate relocations in shared objects. */
9197 if (htab->root.target_os == is_vxworks && !bfd_link_pic (info))
9198 return true;
9200 /* Ignore indirect symbols. All relocations against such symbols
9201 will be redirected to the target symbol. */
9202 if (h->root.type == bfd_link_hash_indirect)
9203 return true;
9205 /* If this symbol is defined in a dynamic object, or we are creating
9206 a shared library, we will need to copy any R_MIPS_32 or
9207 R_MIPS_REL32 relocs against it into the output file. */
9208 if (! bfd_link_relocatable (info)
9209 && hmips->possibly_dynamic_relocs != 0
9210 && (h->root.type == bfd_link_hash_defweak
9211 || (!h->def_regular && !ELF_COMMON_DEF_P (h))
9212 || bfd_link_pic (info)))
9214 bool do_copy = true;
9216 if (h->root.type == bfd_link_hash_undefweak)
9218 /* Do not copy relocations for undefined weak symbols that
9219 we are not going to export. */
9220 if (UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
9221 do_copy = false;
9223 /* Make sure undefined weak symbols are output as a dynamic
9224 symbol in PIEs. */
9225 else if (h->dynindx == -1 && !h->forced_local)
9227 if (! bfd_elf_link_record_dynamic_symbol (info, h))
9228 return false;
9232 if (do_copy)
9234 /* Even though we don't directly need a GOT entry for this symbol,
9235 the SVR4 psABI requires it to have a dynamic symbol table
9236 index greater that DT_MIPS_GOTSYM if there are dynamic
9237 relocations against it.
9239 VxWorks does not enforce the same mapping between the GOT
9240 and the symbol table, so the same requirement does not
9241 apply there. */
9242 if (htab->root.target_os != is_vxworks)
9244 if (hmips->global_got_area > GGA_RELOC_ONLY)
9245 hmips->global_got_area = GGA_RELOC_ONLY;
9246 hmips->got_only_for_calls = false;
9249 mips_elf_allocate_dynamic_relocations
9250 (dynobj, info, hmips->possibly_dynamic_relocs);
9251 if (hmips->readonly_reloc)
9252 /* We tell the dynamic linker that there are relocations
9253 against the text segment. */
9254 info->flags |= DF_TEXTREL;
9258 return true;
9261 /* Adjust a symbol defined by a dynamic object and referenced by a
9262 regular object. The current definition is in some section of the
9263 dynamic object, but we're not including those sections. We have to
9264 change the definition to something the rest of the link can
9265 understand. */
9267 bool
9268 _bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
9269 struct elf_link_hash_entry *h)
9271 bfd *dynobj;
9272 struct mips_elf_link_hash_entry *hmips;
9273 struct mips_elf_link_hash_table *htab;
9274 asection *s, *srel;
9276 htab = mips_elf_hash_table (info);
9277 BFD_ASSERT (htab != NULL);
9279 dynobj = elf_hash_table (info)->dynobj;
9280 hmips = (struct mips_elf_link_hash_entry *) h;
9282 /* Make sure we know what is going on here. */
9283 if (dynobj == NULL
9284 || (! h->needs_plt
9285 && ! h->is_weakalias
9286 && (! h->def_dynamic
9287 || ! h->ref_regular
9288 || h->def_regular)))
9290 if (h->type == STT_GNU_IFUNC)
9291 _bfd_error_handler (_("IFUNC symbol %s in dynamic symbol table - IFUNCS are not supported"),
9292 h->root.root.string);
9293 else
9294 _bfd_error_handler (_("non-dynamic symbol %s in dynamic symbol table"),
9295 h->root.root.string);
9296 return true;
9299 hmips = (struct mips_elf_link_hash_entry *) h;
9301 /* If there are call relocations against an externally-defined symbol,
9302 see whether we can create a MIPS lazy-binding stub for it. We can
9303 only do this if all references to the function are through call
9304 relocations, and in that case, the traditional lazy-binding stubs
9305 are much more efficient than PLT entries.
9307 Traditional stubs are only available on SVR4 psABI-based systems;
9308 VxWorks always uses PLTs instead. */
9309 if (htab->root.target_os != is_vxworks
9310 && h->needs_plt
9311 && !hmips->no_fn_stub)
9313 if (! elf_hash_table (info)->dynamic_sections_created)
9314 return true;
9316 /* If this symbol is not defined in a regular file, then set
9317 the symbol to the stub location. This is required to make
9318 function pointers compare as equal between the normal
9319 executable and the shared library. */
9320 if (!h->def_regular
9321 && !bfd_is_abs_section (htab->sstubs->output_section))
9323 hmips->needs_lazy_stub = true;
9324 htab->lazy_stub_count++;
9325 return true;
9328 /* As above, VxWorks requires PLT entries for externally-defined
9329 functions that are only accessed through call relocations.
9331 Both VxWorks and non-VxWorks targets also need PLT entries if there
9332 are static-only relocations against an externally-defined function.
9333 This can technically occur for shared libraries if there are
9334 branches to the symbol, although it is unlikely that this will be
9335 used in practice due to the short ranges involved. It can occur
9336 for any relative or absolute relocation in executables; in that
9337 case, the PLT entry becomes the function's canonical address. */
9338 else if (((h->needs_plt && !hmips->no_fn_stub)
9339 || (h->type == STT_FUNC && hmips->has_static_relocs))
9340 && htab->use_plts_and_copy_relocs
9341 && !SYMBOL_CALLS_LOCAL (info, h)
9342 && !(ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
9343 && h->root.type == bfd_link_hash_undefweak))
9345 bool micromips_p = MICROMIPS_P (info->output_bfd);
9346 bool newabi_p = NEWABI_P (info->output_bfd);
9348 /* If this is the first symbol to need a PLT entry, then make some
9349 basic setup. Also work out PLT entry sizes. We'll need them
9350 for PLT offset calculations. */
9351 if (htab->plt_mips_offset + htab->plt_comp_offset == 0)
9353 BFD_ASSERT (htab->root.sgotplt->size == 0);
9354 BFD_ASSERT (htab->plt_got_index == 0);
9356 /* If we're using the PLT additions to the psABI, each PLT
9357 entry is 16 bytes and the PLT0 entry is 32 bytes.
9358 Encourage better cache usage by aligning. We do this
9359 lazily to avoid pessimizing traditional objects. */
9360 if (htab->root.target_os != is_vxworks
9361 && !bfd_set_section_alignment (htab->root.splt, 5))
9362 return false;
9364 /* Make sure that .got.plt is word-aligned. We do this lazily
9365 for the same reason as above. */
9366 if (!bfd_set_section_alignment (htab->root.sgotplt,
9367 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
9368 return false;
9370 /* On non-VxWorks targets, the first two entries in .got.plt
9371 are reserved. */
9372 if (htab->root.target_os != is_vxworks)
9373 htab->plt_got_index
9374 += (get_elf_backend_data (dynobj)->got_header_size
9375 / MIPS_ELF_GOT_SIZE (dynobj));
9377 /* On VxWorks, also allocate room for the header's
9378 .rela.plt.unloaded entries. */
9379 if (htab->root.target_os == is_vxworks
9380 && !bfd_link_pic (info))
9381 htab->srelplt2->size += 2 * sizeof (Elf32_External_Rela);
9383 /* Now work out the sizes of individual PLT entries. */
9384 if (htab->root.target_os == is_vxworks
9385 && bfd_link_pic (info))
9386 htab->plt_mips_entry_size
9387 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry);
9388 else if (htab->root.target_os == is_vxworks)
9389 htab->plt_mips_entry_size
9390 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry);
9391 else if (newabi_p)
9392 htab->plt_mips_entry_size
9393 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9394 else if (!micromips_p)
9396 htab->plt_mips_entry_size
9397 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9398 htab->plt_comp_entry_size
9399 = 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry);
9401 else if (htab->insn32)
9403 htab->plt_mips_entry_size
9404 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9405 htab->plt_comp_entry_size
9406 = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry);
9408 else
9410 htab->plt_mips_entry_size
9411 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9412 htab->plt_comp_entry_size
9413 = 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry);
9417 if (h->plt.plist == NULL)
9418 h->plt.plist = mips_elf_make_plt_record (dynobj);
9419 if (h->plt.plist == NULL)
9420 return false;
9422 /* There are no defined MIPS16 or microMIPS PLT entries for VxWorks,
9423 n32 or n64, so always use a standard entry there.
9425 If the symbol has a MIPS16 call stub and gets a PLT entry, then
9426 all MIPS16 calls will go via that stub, and there is no benefit
9427 to having a MIPS16 entry. And in the case of call_stub a
9428 standard entry actually has to be used as the stub ends with a J
9429 instruction. */
9430 if (newabi_p
9431 || htab->root.target_os == is_vxworks
9432 || hmips->call_stub
9433 || hmips->call_fp_stub)
9435 h->plt.plist->need_mips = true;
9436 h->plt.plist->need_comp = false;
9439 /* Otherwise, if there are no direct calls to the function, we
9440 have a free choice of whether to use standard or compressed
9441 entries. Prefer microMIPS entries if the object is known to
9442 contain microMIPS code, so that it becomes possible to create
9443 pure microMIPS binaries. Prefer standard entries otherwise,
9444 because MIPS16 ones are no smaller and are usually slower. */
9445 if (!h->plt.plist->need_mips && !h->plt.plist->need_comp)
9447 if (micromips_p)
9448 h->plt.plist->need_comp = true;
9449 else
9450 h->plt.plist->need_mips = true;
9453 if (h->plt.plist->need_mips)
9455 h->plt.plist->mips_offset = htab->plt_mips_offset;
9456 htab->plt_mips_offset += htab->plt_mips_entry_size;
9458 if (h->plt.plist->need_comp)
9460 h->plt.plist->comp_offset = htab->plt_comp_offset;
9461 htab->plt_comp_offset += htab->plt_comp_entry_size;
9464 /* Reserve the corresponding .got.plt entry now too. */
9465 h->plt.plist->gotplt_index = htab->plt_got_index++;
9467 /* If the output file has no definition of the symbol, set the
9468 symbol's value to the address of the stub. */
9469 if (!bfd_link_pic (info) && !h->def_regular)
9470 hmips->use_plt_entry = true;
9472 /* Make room for the R_MIPS_JUMP_SLOT relocation. */
9473 htab->root.srelplt->size += (htab->root.target_os == is_vxworks
9474 ? MIPS_ELF_RELA_SIZE (dynobj)
9475 : MIPS_ELF_REL_SIZE (dynobj));
9477 /* Make room for the .rela.plt.unloaded relocations. */
9478 if (htab->root.target_os == is_vxworks && !bfd_link_pic (info))
9479 htab->srelplt2->size += 3 * sizeof (Elf32_External_Rela);
9481 /* All relocations against this symbol that could have been made
9482 dynamic will now refer to the PLT entry instead. */
9483 hmips->possibly_dynamic_relocs = 0;
9485 return true;
9488 /* If this is a weak symbol, and there is a real definition, the
9489 processor independent code will have arranged for us to see the
9490 real definition first, and we can just use the same value. */
9491 if (h->is_weakalias)
9493 struct elf_link_hash_entry *def = weakdef (h);
9494 BFD_ASSERT (def->root.type == bfd_link_hash_defined);
9495 h->root.u.def.section = def->root.u.def.section;
9496 h->root.u.def.value = def->root.u.def.value;
9497 return true;
9500 /* Otherwise, there is nothing further to do for symbols defined
9501 in regular objects. */
9502 if (h->def_regular)
9503 return true;
9505 /* There's also nothing more to do if we'll convert all relocations
9506 against this symbol into dynamic relocations. */
9507 if (!hmips->has_static_relocs)
9508 return true;
9510 /* We're now relying on copy relocations. Complain if we have
9511 some that we can't convert. */
9512 if (!htab->use_plts_and_copy_relocs || bfd_link_pic (info))
9514 _bfd_error_handler (_("non-dynamic relocations refer to "
9515 "dynamic symbol %s"),
9516 h->root.root.string);
9517 bfd_set_error (bfd_error_bad_value);
9518 return false;
9521 /* We must allocate the symbol in our .dynbss section, which will
9522 become part of the .bss section of the executable. There will be
9523 an entry for this symbol in the .dynsym section. The dynamic
9524 object will contain position independent code, so all references
9525 from the dynamic object to this symbol will go through the global
9526 offset table. The dynamic linker will use the .dynsym entry to
9527 determine the address it must put in the global offset table, so
9528 both the dynamic object and the regular object will refer to the
9529 same memory location for the variable. */
9531 if ((h->root.u.def.section->flags & SEC_READONLY) != 0)
9533 s = htab->root.sdynrelro;
9534 srel = htab->root.sreldynrelro;
9536 else
9538 s = htab->root.sdynbss;
9539 srel = htab->root.srelbss;
9541 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
9543 if (htab->root.target_os == is_vxworks)
9544 srel->size += sizeof (Elf32_External_Rela);
9545 else
9546 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
9547 h->needs_copy = 1;
9550 /* All relocations against this symbol that could have been made
9551 dynamic will now refer to the local copy instead. */
9552 hmips->possibly_dynamic_relocs = 0;
9554 return _bfd_elf_adjust_dynamic_copy (info, h, s);
9557 /* This function is called after all the input files have been read,
9558 and the input sections have been assigned to output sections. We
9559 check for any mips16 stub sections that we can discard. */
9561 bool
9562 _bfd_mips_elf_always_size_sections (bfd *output_bfd,
9563 struct bfd_link_info *info)
9565 asection *sect;
9566 struct mips_elf_link_hash_table *htab;
9567 struct mips_htab_traverse_info hti;
9569 htab = mips_elf_hash_table (info);
9570 BFD_ASSERT (htab != NULL);
9572 /* The .reginfo section has a fixed size. */
9573 sect = bfd_get_section_by_name (output_bfd, ".reginfo");
9574 if (sect != NULL)
9576 bfd_set_section_size (sect, sizeof (Elf32_External_RegInfo));
9577 sect->flags |= SEC_FIXED_SIZE | SEC_HAS_CONTENTS;
9580 /* The .MIPS.abiflags section has a fixed size. */
9581 sect = bfd_get_section_by_name (output_bfd, ".MIPS.abiflags");
9582 if (sect != NULL)
9584 bfd_set_section_size (sect, sizeof (Elf_External_ABIFlags_v0));
9585 sect->flags |= SEC_FIXED_SIZE | SEC_HAS_CONTENTS;
9588 hti.info = info;
9589 hti.output_bfd = output_bfd;
9590 hti.error = false;
9591 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
9592 mips_elf_check_symbols, &hti);
9593 if (hti.error)
9594 return false;
9596 return true;
9599 /* If the link uses a GOT, lay it out and work out its size. */
9601 static bool
9602 mips_elf_lay_out_got (bfd *output_bfd, struct bfd_link_info *info)
9604 bfd *dynobj;
9605 asection *s;
9606 struct mips_got_info *g;
9607 bfd_size_type loadable_size = 0;
9608 bfd_size_type page_gotno;
9609 bfd *ibfd;
9610 struct mips_elf_traverse_got_arg tga;
9611 struct mips_elf_link_hash_table *htab;
9613 htab = mips_elf_hash_table (info);
9614 BFD_ASSERT (htab != NULL);
9616 s = htab->root.sgot;
9617 if (s == NULL)
9618 return true;
9620 dynobj = elf_hash_table (info)->dynobj;
9621 g = htab->got_info;
9623 /* Allocate room for the reserved entries. VxWorks always reserves
9624 3 entries; other objects only reserve 2 entries. */
9625 BFD_ASSERT (g->assigned_low_gotno == 0);
9626 if (htab->root.target_os == is_vxworks)
9627 htab->reserved_gotno = 3;
9628 else
9629 htab->reserved_gotno = 2;
9630 g->local_gotno += htab->reserved_gotno;
9631 g->assigned_low_gotno = htab->reserved_gotno;
9633 /* Decide which symbols need to go in the global part of the GOT and
9634 count the number of reloc-only GOT symbols. */
9635 mips_elf_link_hash_traverse (htab, mips_elf_count_got_symbols, info);
9637 if (!mips_elf_resolve_final_got_entries (info, g))
9638 return false;
9640 /* Calculate the total loadable size of the output. That
9641 will give us the maximum number of GOT_PAGE entries
9642 required. */
9643 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
9645 asection *subsection;
9647 for (subsection = ibfd->sections;
9648 subsection;
9649 subsection = subsection->next)
9651 if ((subsection->flags & SEC_ALLOC) == 0)
9652 continue;
9653 loadable_size += ((subsection->size + 0xf)
9654 &~ (bfd_size_type) 0xf);
9658 if (htab->root.target_os == is_vxworks)
9659 /* There's no need to allocate page entries for VxWorks; R_MIPS*_GOT16
9660 relocations against local symbols evaluate to "G", and the EABI does
9661 not include R_MIPS_GOT_PAGE. */
9662 page_gotno = 0;
9663 else
9664 /* Assume there are two loadable segments consisting of contiguous
9665 sections. Is 5 enough? */
9666 page_gotno = (loadable_size >> 16) + 5;
9668 /* Choose the smaller of the two page estimates; both are intended to be
9669 conservative. */
9670 if (page_gotno > g->page_gotno)
9671 page_gotno = g->page_gotno;
9673 g->local_gotno += page_gotno;
9674 g->assigned_high_gotno = g->local_gotno - 1;
9676 s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9677 s->size += g->global_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9678 s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9680 /* VxWorks does not support multiple GOTs. It initializes $gp to
9681 __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the
9682 dynamic loader. */
9683 if (htab->root.target_os != is_vxworks
9684 && s->size > MIPS_ELF_GOT_MAX_SIZE (info))
9686 if (!mips_elf_multi_got (output_bfd, info, s, page_gotno))
9687 return false;
9689 else
9691 /* Record that all bfds use G. This also has the effect of freeing
9692 the per-bfd GOTs, which we no longer need. */
9693 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
9694 if (mips_elf_bfd_got (ibfd, false))
9695 mips_elf_replace_bfd_got (ibfd, g);
9696 mips_elf_replace_bfd_got (output_bfd, g);
9698 /* Set up TLS entries. */
9699 g->tls_assigned_gotno = g->global_gotno + g->local_gotno;
9700 tga.info = info;
9701 tga.g = g;
9702 tga.value = MIPS_ELF_GOT_SIZE (output_bfd);
9703 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga);
9704 if (!tga.g)
9705 return false;
9706 BFD_ASSERT (g->tls_assigned_gotno
9707 == g->global_gotno + g->local_gotno + g->tls_gotno);
9709 /* Each VxWorks GOT entry needs an explicit relocation. */
9710 if (htab->root.target_os == is_vxworks && bfd_link_pic (info))
9711 g->relocs += g->global_gotno + g->local_gotno - htab->reserved_gotno;
9713 /* Allocate room for the TLS relocations. */
9714 if (g->relocs)
9715 mips_elf_allocate_dynamic_relocations (dynobj, info, g->relocs);
9718 return true;
9721 /* Estimate the size of the .MIPS.stubs section. */
9723 static void
9724 mips_elf_estimate_stub_size (bfd *output_bfd, struct bfd_link_info *info)
9726 struct mips_elf_link_hash_table *htab;
9727 bfd_size_type dynsymcount;
9729 htab = mips_elf_hash_table (info);
9730 BFD_ASSERT (htab != NULL);
9732 if (htab->lazy_stub_count == 0)
9733 return;
9735 /* IRIX rld assumes that a function stub isn't at the end of the .text
9736 section, so add a dummy entry to the end. */
9737 htab->lazy_stub_count++;
9739 /* Get a worst-case estimate of the number of dynamic symbols needed.
9740 At this point, dynsymcount does not account for section symbols
9741 and count_section_dynsyms may overestimate the number that will
9742 be needed. */
9743 dynsymcount = (elf_hash_table (info)->dynsymcount
9744 + count_section_dynsyms (output_bfd, info));
9746 /* Determine the size of one stub entry. There's no disadvantage
9747 from using microMIPS code here, so for the sake of pure-microMIPS
9748 binaries we prefer it whenever there's any microMIPS code in
9749 output produced at all. This has a benefit of stubs being
9750 shorter by 4 bytes each too, unless in the insn32 mode. */
9751 if (!MICROMIPS_P (output_bfd))
9752 htab->function_stub_size = (dynsymcount > 0x10000
9753 ? MIPS_FUNCTION_STUB_BIG_SIZE
9754 : MIPS_FUNCTION_STUB_NORMAL_SIZE);
9755 else if (htab->insn32)
9756 htab->function_stub_size = (dynsymcount > 0x10000
9757 ? MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE
9758 : MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE);
9759 else
9760 htab->function_stub_size = (dynsymcount > 0x10000
9761 ? MICROMIPS_FUNCTION_STUB_BIG_SIZE
9762 : MICROMIPS_FUNCTION_STUB_NORMAL_SIZE);
9764 htab->sstubs->size = htab->lazy_stub_count * htab->function_stub_size;
9767 /* A mips_elf_link_hash_traverse callback for which DATA points to a
9768 mips_htab_traverse_info. If H needs a traditional MIPS lazy-binding
9769 stub, allocate an entry in the stubs section. */
9771 static bool
9772 mips_elf_allocate_lazy_stub (struct mips_elf_link_hash_entry *h, void *data)
9774 struct mips_htab_traverse_info *hti = data;
9775 struct mips_elf_link_hash_table *htab;
9776 struct bfd_link_info *info;
9777 bfd *output_bfd;
9779 info = hti->info;
9780 output_bfd = hti->output_bfd;
9781 htab = mips_elf_hash_table (info);
9782 BFD_ASSERT (htab != NULL);
9784 if (h->needs_lazy_stub)
9786 bool micromips_p = MICROMIPS_P (output_bfd);
9787 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9788 bfd_vma isa_bit = micromips_p;
9790 BFD_ASSERT (htab->root.dynobj != NULL);
9791 if (h->root.plt.plist == NULL)
9792 h->root.plt.plist = mips_elf_make_plt_record (htab->sstubs->owner);
9793 if (h->root.plt.plist == NULL)
9795 hti->error = true;
9796 return false;
9798 h->root.root.u.def.section = htab->sstubs;
9799 h->root.root.u.def.value = htab->sstubs->size + isa_bit;
9800 h->root.plt.plist->stub_offset = htab->sstubs->size;
9801 h->root.other = other;
9802 htab->sstubs->size += htab->function_stub_size;
9804 return true;
9807 /* Allocate offsets in the stubs section to each symbol that needs one.
9808 Set the final size of the .MIPS.stub section. */
9810 static bool
9811 mips_elf_lay_out_lazy_stubs (struct bfd_link_info *info)
9813 bfd *output_bfd = info->output_bfd;
9814 bool micromips_p = MICROMIPS_P (output_bfd);
9815 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9816 bfd_vma isa_bit = micromips_p;
9817 struct mips_elf_link_hash_table *htab;
9818 struct mips_htab_traverse_info hti;
9819 struct elf_link_hash_entry *h;
9820 bfd *dynobj;
9822 htab = mips_elf_hash_table (info);
9823 BFD_ASSERT (htab != NULL);
9825 if (htab->lazy_stub_count == 0)
9826 return true;
9828 htab->sstubs->size = 0;
9829 hti.info = info;
9830 hti.output_bfd = output_bfd;
9831 hti.error = false;
9832 mips_elf_link_hash_traverse (htab, mips_elf_allocate_lazy_stub, &hti);
9833 if (hti.error)
9834 return false;
9835 htab->sstubs->size += htab->function_stub_size;
9836 BFD_ASSERT (htab->sstubs->size
9837 == htab->lazy_stub_count * htab->function_stub_size);
9839 dynobj = elf_hash_table (info)->dynobj;
9840 BFD_ASSERT (dynobj != NULL);
9841 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->sstubs, "_MIPS_STUBS_");
9842 if (h == NULL)
9843 return false;
9844 h->root.u.def.value = isa_bit;
9845 h->other = other;
9846 h->type = STT_FUNC;
9848 return true;
9851 /* A mips_elf_link_hash_traverse callback for which DATA points to a
9852 bfd_link_info. If H uses the address of a PLT entry as the value
9853 of the symbol, then set the entry in the symbol table now. Prefer
9854 a standard MIPS PLT entry. */
9856 static bool
9857 mips_elf_set_plt_sym_value (struct mips_elf_link_hash_entry *h, void *data)
9859 struct bfd_link_info *info = data;
9860 bool micromips_p = MICROMIPS_P (info->output_bfd);
9861 struct mips_elf_link_hash_table *htab;
9862 unsigned int other;
9863 bfd_vma isa_bit;
9864 bfd_vma val;
9866 htab = mips_elf_hash_table (info);
9867 BFD_ASSERT (htab != NULL);
9869 if (h->use_plt_entry)
9871 BFD_ASSERT (h->root.plt.plist != NULL);
9872 BFD_ASSERT (h->root.plt.plist->mips_offset != MINUS_ONE
9873 || h->root.plt.plist->comp_offset != MINUS_ONE);
9875 val = htab->plt_header_size;
9876 if (h->root.plt.plist->mips_offset != MINUS_ONE)
9878 isa_bit = 0;
9879 val += h->root.plt.plist->mips_offset;
9880 other = 0;
9882 else
9884 isa_bit = 1;
9885 val += htab->plt_mips_offset + h->root.plt.plist->comp_offset;
9886 other = micromips_p ? STO_MICROMIPS : STO_MIPS16;
9888 val += isa_bit;
9889 /* For VxWorks, point at the PLT load stub rather than the lazy
9890 resolution stub; this stub will become the canonical function
9891 address. */
9892 if (htab->root.target_os == is_vxworks)
9893 val += 8;
9895 h->root.root.u.def.section = htab->root.splt;
9896 h->root.root.u.def.value = val;
9897 h->root.other = other;
9900 return true;
9903 /* Set the sizes of the dynamic sections. */
9905 bool
9906 _bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
9907 struct bfd_link_info *info)
9909 bfd *dynobj;
9910 asection *s, *sreldyn;
9911 bool reltext;
9912 struct mips_elf_link_hash_table *htab;
9914 htab = mips_elf_hash_table (info);
9915 BFD_ASSERT (htab != NULL);
9916 dynobj = elf_hash_table (info)->dynobj;
9917 BFD_ASSERT (dynobj != NULL);
9919 if (elf_hash_table (info)->dynamic_sections_created)
9921 /* Set the contents of the .interp section to the interpreter. */
9922 if (bfd_link_executable (info) && !info->nointerp)
9924 s = bfd_get_linker_section (dynobj, ".interp");
9925 BFD_ASSERT (s != NULL);
9926 s->size
9927 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
9928 s->contents
9929 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
9932 /* Figure out the size of the PLT header if we know that we
9933 are using it. For the sake of cache alignment always use
9934 a standard header whenever any standard entries are present
9935 even if microMIPS entries are present as well. This also
9936 lets the microMIPS header rely on the value of $v0 only set
9937 by microMIPS entries, for a small size reduction.
9939 Set symbol table entry values for symbols that use the
9940 address of their PLT entry now that we can calculate it.
9942 Also create the _PROCEDURE_LINKAGE_TABLE_ symbol if we
9943 haven't already in _bfd_elf_create_dynamic_sections. */
9944 if (htab->root.splt && htab->plt_mips_offset + htab->plt_comp_offset != 0)
9946 bool micromips_p = (MICROMIPS_P (output_bfd)
9947 && !htab->plt_mips_offset);
9948 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9949 bfd_vma isa_bit = micromips_p;
9950 struct elf_link_hash_entry *h;
9951 bfd_vma size;
9953 BFD_ASSERT (htab->use_plts_and_copy_relocs);
9954 BFD_ASSERT (htab->root.sgotplt->size == 0);
9955 BFD_ASSERT (htab->root.splt->size == 0);
9957 if (htab->root.target_os == is_vxworks && bfd_link_pic (info))
9958 size = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry);
9959 else if (htab->root.target_os == is_vxworks)
9960 size = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry);
9961 else if (ABI_64_P (output_bfd))
9962 size = 4 * ARRAY_SIZE (mips_n64_exec_plt0_entry);
9963 else if (ABI_N32_P (output_bfd))
9964 size = 4 * ARRAY_SIZE (mips_n32_exec_plt0_entry);
9965 else if (!micromips_p)
9966 size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
9967 else if (htab->insn32)
9968 size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry);
9969 else
9970 size = 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry);
9972 htab->plt_header_is_comp = micromips_p;
9973 htab->plt_header_size = size;
9974 htab->root.splt->size = (size
9975 + htab->plt_mips_offset
9976 + htab->plt_comp_offset);
9977 htab->root.sgotplt->size = (htab->plt_got_index
9978 * MIPS_ELF_GOT_SIZE (dynobj));
9980 mips_elf_link_hash_traverse (htab, mips_elf_set_plt_sym_value, info);
9982 if (htab->root.hplt == NULL)
9984 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->root.splt,
9985 "_PROCEDURE_LINKAGE_TABLE_");
9986 htab->root.hplt = h;
9987 if (h == NULL)
9988 return false;
9991 h = htab->root.hplt;
9992 h->root.u.def.value = isa_bit;
9993 h->other = other;
9994 h->type = STT_FUNC;
9998 /* Allocate space for global sym dynamic relocs. */
9999 elf_link_hash_traverse (&htab->root, allocate_dynrelocs, info);
10001 mips_elf_estimate_stub_size (output_bfd, info);
10003 if (!mips_elf_lay_out_got (output_bfd, info))
10004 return false;
10006 mips_elf_lay_out_lazy_stubs (info);
10008 /* The check_relocs and adjust_dynamic_symbol entry points have
10009 determined the sizes of the various dynamic sections. Allocate
10010 memory for them. */
10011 reltext = false;
10012 for (s = dynobj->sections; s != NULL; s = s->next)
10014 const char *name;
10016 /* It's OK to base decisions on the section name, because none
10017 of the dynobj section names depend upon the input files. */
10018 name = bfd_section_name (s);
10020 if ((s->flags & SEC_LINKER_CREATED) == 0)
10021 continue;
10023 if (startswith (name, ".rel"))
10025 if (s->size != 0)
10027 const char *outname;
10028 asection *target;
10030 /* If this relocation section applies to a read only
10031 section, then we probably need a DT_TEXTREL entry.
10032 If the relocation section is .rel(a).dyn, we always
10033 assert a DT_TEXTREL entry rather than testing whether
10034 there exists a relocation to a read only section or
10035 not. */
10036 outname = bfd_section_name (s->output_section);
10037 target = bfd_get_section_by_name (output_bfd, outname + 4);
10038 if ((target != NULL
10039 && (target->flags & SEC_READONLY) != 0
10040 && (target->flags & SEC_ALLOC) != 0)
10041 || strcmp (outname, MIPS_ELF_REL_DYN_NAME (info)) == 0)
10042 reltext = true;
10044 /* We use the reloc_count field as a counter if we need
10045 to copy relocs into the output file. */
10046 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) != 0)
10047 s->reloc_count = 0;
10049 /* If combreloc is enabled, elf_link_sort_relocs() will
10050 sort relocations, but in a different way than we do,
10051 and before we're done creating relocations. Also, it
10052 will move them around between input sections'
10053 relocation's contents, so our sorting would be
10054 broken, so don't let it run. */
10055 info->combreloc = 0;
10058 else if (bfd_link_executable (info)
10059 && ! mips_elf_hash_table (info)->use_rld_obj_head
10060 && startswith (name, ".rld_map"))
10062 /* We add a room for __rld_map. It will be filled in by the
10063 rtld to contain a pointer to the _r_debug structure. */
10064 s->size += MIPS_ELF_RLD_MAP_SIZE (output_bfd);
10066 else if (SGI_COMPAT (output_bfd)
10067 && startswith (name, ".compact_rel"))
10068 s->size += mips_elf_hash_table (info)->compact_rel_size;
10069 else if (s == htab->root.splt)
10071 /* If the last PLT entry has a branch delay slot, allocate
10072 room for an extra nop to fill the delay slot. This is
10073 for CPUs without load interlocking. */
10074 if (! LOAD_INTERLOCKS_P (output_bfd)
10075 && htab->root.target_os != is_vxworks
10076 && s->size > 0)
10077 s->size += 4;
10079 else if (! startswith (name, ".init")
10080 && s != htab->root.sgot
10081 && s != htab->root.sgotplt
10082 && s != htab->sstubs
10083 && s != htab->root.sdynbss
10084 && s != htab->root.sdynrelro)
10086 /* It's not one of our sections, so don't allocate space. */
10087 continue;
10090 if (s->size == 0)
10092 s->flags |= SEC_EXCLUDE;
10093 continue;
10096 if ((s->flags & SEC_HAS_CONTENTS) == 0)
10097 continue;
10099 /* Allocate memory for the section contents. */
10100 s->contents = bfd_zalloc (dynobj, s->size);
10101 if (s->contents == NULL)
10103 bfd_set_error (bfd_error_no_memory);
10104 return false;
10108 if (elf_hash_table (info)->dynamic_sections_created)
10110 /* Add some entries to the .dynamic section. We fill in the
10111 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
10112 must add the entries now so that we get the correct size for
10113 the .dynamic section. */
10115 /* SGI object has the equivalence of DT_DEBUG in the
10116 DT_MIPS_RLD_MAP entry. This must come first because glibc
10117 only fills in DT_MIPS_RLD_MAP (not DT_DEBUG) and some tools
10118 may only look at the first one they see. */
10119 if (!bfd_link_pic (info)
10120 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
10121 return false;
10123 if (bfd_link_executable (info)
10124 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP_REL, 0))
10125 return false;
10127 /* The DT_DEBUG entry may be filled in by the dynamic linker and
10128 used by the debugger. */
10129 if (bfd_link_executable (info)
10130 && !SGI_COMPAT (output_bfd)
10131 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
10132 return false;
10134 if (reltext
10135 && (SGI_COMPAT (output_bfd)
10136 || htab->root.target_os == is_vxworks))
10137 info->flags |= DF_TEXTREL;
10139 if ((info->flags & DF_TEXTREL) != 0)
10141 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
10142 return false;
10144 /* Clear the DF_TEXTREL flag. It will be set again if we
10145 write out an actual text relocation; we may not, because
10146 at this point we do not know whether e.g. any .eh_frame
10147 absolute relocations have been converted to PC-relative. */
10148 info->flags &= ~DF_TEXTREL;
10151 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
10152 return false;
10154 sreldyn = mips_elf_rel_dyn_section (info, false);
10155 if (htab->root.target_os == is_vxworks)
10157 /* VxWorks uses .rela.dyn instead of .rel.dyn. It does not
10158 use any of the DT_MIPS_* tags. */
10159 if (sreldyn && sreldyn->size > 0)
10161 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELA, 0))
10162 return false;
10164 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELASZ, 0))
10165 return false;
10167 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELAENT, 0))
10168 return false;
10171 else
10173 if (sreldyn && sreldyn->size > 0
10174 && !bfd_is_abs_section (sreldyn->output_section))
10176 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
10177 return false;
10179 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
10180 return false;
10182 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
10183 return false;
10186 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
10187 return false;
10189 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
10190 return false;
10192 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
10193 return false;
10195 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
10196 return false;
10198 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
10199 return false;
10201 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
10202 return false;
10204 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
10205 return false;
10207 if (info->emit_gnu_hash
10208 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_XHASH, 0))
10209 return false;
10211 if (IRIX_COMPAT (dynobj) == ict_irix5
10212 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
10213 return false;
10215 if (IRIX_COMPAT (dynobj) == ict_irix6
10216 && (bfd_get_section_by_name
10217 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
10218 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
10219 return false;
10221 if (htab->root.splt->size > 0)
10223 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTREL, 0))
10224 return false;
10226 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_JMPREL, 0))
10227 return false;
10229 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTRELSZ, 0))
10230 return false;
10232 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_PLTGOT, 0))
10233 return false;
10235 if (htab->root.target_os == is_vxworks
10236 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
10237 return false;
10240 return true;
10243 /* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD.
10244 Adjust its R_ADDEND field so that it is correct for the output file.
10245 LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols
10246 and sections respectively; both use symbol indexes. */
10248 static void
10249 mips_elf_adjust_addend (bfd *output_bfd, struct bfd_link_info *info,
10250 bfd *input_bfd, Elf_Internal_Sym *local_syms,
10251 asection **local_sections, Elf_Internal_Rela *rel)
10253 unsigned int r_type, r_symndx;
10254 Elf_Internal_Sym *sym;
10255 asection *sec;
10257 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
10259 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
10260 if (gprel16_reloc_p (r_type)
10261 || r_type == R_MIPS_GPREL32
10262 || literal_reloc_p (r_type))
10264 rel->r_addend += _bfd_get_gp_value (input_bfd);
10265 rel->r_addend -= _bfd_get_gp_value (output_bfd);
10268 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
10269 sym = local_syms + r_symndx;
10271 /* Adjust REL's addend to account for section merging. */
10272 if (!bfd_link_relocatable (info))
10274 sec = local_sections[r_symndx];
10275 _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
10278 /* This would normally be done by the rela_normal code in elflink.c. */
10279 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
10280 rel->r_addend += local_sections[r_symndx]->output_offset;
10284 /* Handle relocations against symbols from removed linkonce sections,
10285 or sections discarded by a linker script. We use this wrapper around
10286 RELOC_AGAINST_DISCARDED_SECTION to handle triplets of compound relocs
10287 on 64-bit ELF targets. In this case for any relocation handled, which
10288 always be the first in a triplet, the remaining two have to be processed
10289 together with the first, even if they are R_MIPS_NONE. It is the symbol
10290 index referred by the first reloc that applies to all the three and the
10291 remaining two never refer to an object symbol. And it is the final
10292 relocation (the last non-null one) that determines the output field of
10293 the whole relocation so retrieve the corresponding howto structure for
10294 the relocatable field to be cleared by RELOC_AGAINST_DISCARDED_SECTION.
10296 Note that RELOC_AGAINST_DISCARDED_SECTION is a macro that uses "continue"
10297 and therefore requires to be pasted in a loop. It also defines a block
10298 and does not protect any of its arguments, hence the extra brackets. */
10300 static void
10301 mips_reloc_against_discarded_section (bfd *output_bfd,
10302 struct bfd_link_info *info,
10303 bfd *input_bfd, asection *input_section,
10304 Elf_Internal_Rela **rel,
10305 const Elf_Internal_Rela **relend,
10306 bool rel_reloc,
10307 reloc_howto_type *howto,
10308 bfd_byte *contents)
10310 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
10311 int count = bed->s->int_rels_per_ext_rel;
10312 unsigned int r_type;
10313 int i;
10315 for (i = count - 1; i > 0; i--)
10317 r_type = ELF_R_TYPE (output_bfd, (*rel)[i].r_info);
10318 if (r_type != R_MIPS_NONE)
10320 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
10321 break;
10326 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
10327 (*rel), count, (*relend),
10328 howto, i, contents);
10330 while (0);
10333 /* Relocate a MIPS ELF section. */
10336 _bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
10337 bfd *input_bfd, asection *input_section,
10338 bfd_byte *contents, Elf_Internal_Rela *relocs,
10339 Elf_Internal_Sym *local_syms,
10340 asection **local_sections)
10342 Elf_Internal_Rela *rel;
10343 const Elf_Internal_Rela *relend;
10344 bfd_vma addend = 0;
10345 bool use_saved_addend_p = false;
10347 relend = relocs + input_section->reloc_count;
10348 for (rel = relocs; rel < relend; ++rel)
10350 const char *name;
10351 bfd_vma value = 0;
10352 reloc_howto_type *howto;
10353 bool cross_mode_jump_p = false;
10354 /* TRUE if the relocation is a RELA relocation, rather than a
10355 REL relocation. */
10356 bool rela_relocation_p = true;
10357 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
10358 const char *msg;
10359 unsigned long r_symndx;
10360 asection *sec;
10361 Elf_Internal_Shdr *symtab_hdr;
10362 struct elf_link_hash_entry *h;
10363 bool rel_reloc;
10365 rel_reloc = (NEWABI_P (input_bfd)
10366 && mips_elf_rel_relocation_p (input_bfd, input_section,
10367 relocs, rel));
10368 /* Find the relocation howto for this relocation. */
10369 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
10371 r_symndx = ELF_R_SYM (input_bfd, rel->r_info);
10372 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
10373 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
10375 sec = local_sections[r_symndx];
10376 h = NULL;
10378 else
10380 unsigned long extsymoff;
10382 extsymoff = 0;
10383 if (!elf_bad_symtab (input_bfd))
10384 extsymoff = symtab_hdr->sh_info;
10385 h = elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
10386 while (h->root.type == bfd_link_hash_indirect
10387 || h->root.type == bfd_link_hash_warning)
10388 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10390 sec = NULL;
10391 if (h->root.type == bfd_link_hash_defined
10392 || h->root.type == bfd_link_hash_defweak)
10393 sec = h->root.u.def.section;
10396 if (sec != NULL && discarded_section (sec))
10398 mips_reloc_against_discarded_section (output_bfd, info, input_bfd,
10399 input_section, &rel, &relend,
10400 rel_reloc, howto, contents);
10401 continue;
10404 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
10406 /* Some 32-bit code uses R_MIPS_64. In particular, people use
10407 64-bit code, but make sure all their addresses are in the
10408 lowermost or uppermost 32-bit section of the 64-bit address
10409 space. Thus, when they use an R_MIPS_64 they mean what is
10410 usually meant by R_MIPS_32, with the exception that the
10411 stored value is sign-extended to 64 bits. */
10412 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, false);
10414 /* On big-endian systems, we need to lie about the position
10415 of the reloc. */
10416 if (bfd_big_endian (input_bfd))
10417 rel->r_offset += 4;
10420 if (!use_saved_addend_p)
10422 /* If these relocations were originally of the REL variety,
10423 we must pull the addend out of the field that will be
10424 relocated. Otherwise, we simply use the contents of the
10425 RELA relocation. */
10426 if (mips_elf_rel_relocation_p (input_bfd, input_section,
10427 relocs, rel))
10429 rela_relocation_p = false;
10430 addend = mips_elf_read_rel_addend (input_bfd, rel,
10431 howto, contents);
10432 if (hi16_reloc_p (r_type)
10433 || (got16_reloc_p (r_type)
10434 && mips_elf_local_relocation_p (input_bfd, rel,
10435 local_sections)))
10437 if (!mips_elf_add_lo16_rel_addend (input_bfd, rel, relend,
10438 contents, &addend))
10440 if (h)
10441 name = h->root.root.string;
10442 else
10443 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
10444 local_syms + r_symndx,
10445 sec);
10446 _bfd_error_handler
10447 /* xgettext:c-format */
10448 (_("%pB: can't find matching LO16 reloc against `%s'"
10449 " for %s at %#" PRIx64 " in section `%pA'"),
10450 input_bfd, name,
10451 howto->name, (uint64_t) rel->r_offset, input_section);
10454 else
10455 addend <<= howto->rightshift;
10457 else
10458 addend = rel->r_addend;
10459 mips_elf_adjust_addend (output_bfd, info, input_bfd,
10460 local_syms, local_sections, rel);
10463 if (bfd_link_relocatable (info))
10465 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
10466 && bfd_big_endian (input_bfd))
10467 rel->r_offset -= 4;
10469 if (!rela_relocation_p && rel->r_addend)
10471 addend += rel->r_addend;
10472 if (hi16_reloc_p (r_type) || got16_reloc_p (r_type))
10473 addend = mips_elf_high (addend);
10474 else if (r_type == R_MIPS_HIGHER)
10475 addend = mips_elf_higher (addend);
10476 else if (r_type == R_MIPS_HIGHEST)
10477 addend = mips_elf_highest (addend);
10478 else
10479 addend >>= howto->rightshift;
10481 /* We use the source mask, rather than the destination
10482 mask because the place to which we are writing will be
10483 source of the addend in the final link. */
10484 addend &= howto->src_mask;
10486 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
10487 /* See the comment above about using R_MIPS_64 in the 32-bit
10488 ABI. Here, we need to update the addend. It would be
10489 possible to get away with just using the R_MIPS_32 reloc
10490 but for endianness. */
10492 bfd_vma sign_bits;
10493 bfd_vma low_bits;
10494 bfd_vma high_bits;
10496 if (addend & ((bfd_vma) 1 << 31))
10497 #ifdef BFD64
10498 sign_bits = ((bfd_vma) 1 << 32) - 1;
10499 #else
10500 sign_bits = -1;
10501 #endif
10502 else
10503 sign_bits = 0;
10505 /* If we don't know that we have a 64-bit type,
10506 do two separate stores. */
10507 if (bfd_big_endian (input_bfd))
10509 /* Store the sign-bits (which are most significant)
10510 first. */
10511 low_bits = sign_bits;
10512 high_bits = addend;
10514 else
10516 low_bits = addend;
10517 high_bits = sign_bits;
10519 bfd_put_32 (input_bfd, low_bits,
10520 contents + rel->r_offset);
10521 bfd_put_32 (input_bfd, high_bits,
10522 contents + rel->r_offset + 4);
10523 continue;
10526 if (! mips_elf_perform_relocation (info, howto, rel, addend,
10527 input_bfd, input_section,
10528 contents, false))
10529 return false;
10532 /* Go on to the next relocation. */
10533 continue;
10536 /* In the N32 and 64-bit ABIs there may be multiple consecutive
10537 relocations for the same offset. In that case we are
10538 supposed to treat the output of each relocation as the addend
10539 for the next. */
10540 if (rel + 1 < relend
10541 && rel->r_offset == rel[1].r_offset
10542 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
10543 use_saved_addend_p = true;
10544 else
10545 use_saved_addend_p = false;
10547 /* Figure out what value we are supposed to relocate. */
10548 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
10549 input_section, contents,
10550 info, rel, addend, howto,
10551 local_syms, local_sections,
10552 &value, &name, &cross_mode_jump_p,
10553 use_saved_addend_p))
10555 case bfd_reloc_continue:
10556 /* There's nothing to do. */
10557 continue;
10559 case bfd_reloc_undefined:
10560 /* mips_elf_calculate_relocation already called the
10561 undefined_symbol callback. There's no real point in
10562 trying to perform the relocation at this point, so we
10563 just skip ahead to the next relocation. */
10564 continue;
10566 case bfd_reloc_notsupported:
10567 msg = _("internal error: unsupported relocation error");
10568 info->callbacks->warning
10569 (info, msg, name, input_bfd, input_section, rel->r_offset);
10570 return false;
10572 case bfd_reloc_overflow:
10573 if (use_saved_addend_p)
10574 /* Ignore overflow until we reach the last relocation for
10575 a given location. */
10577 else
10579 struct mips_elf_link_hash_table *htab;
10581 htab = mips_elf_hash_table (info);
10582 BFD_ASSERT (htab != NULL);
10583 BFD_ASSERT (name != NULL);
10584 if (!htab->small_data_overflow_reported
10585 && (gprel16_reloc_p (howto->type)
10586 || literal_reloc_p (howto->type)))
10588 msg = _("small-data section exceeds 64KB;"
10589 " lower small-data size limit (see option -G)");
10591 htab->small_data_overflow_reported = true;
10592 (*info->callbacks->einfo) ("%P: %s\n", msg);
10594 (*info->callbacks->reloc_overflow)
10595 (info, NULL, name, howto->name, (bfd_vma) 0,
10596 input_bfd, input_section, rel->r_offset);
10598 break;
10600 case bfd_reloc_ok:
10601 break;
10603 case bfd_reloc_outofrange:
10604 msg = NULL;
10605 if (jal_reloc_p (howto->type))
10606 msg = (cross_mode_jump_p
10607 ? _("cannot convert a jump to JALX "
10608 "for a non-word-aligned address")
10609 : (howto->type == R_MIPS16_26
10610 ? _("jump to a non-word-aligned address")
10611 : _("jump to a non-instruction-aligned address")));
10612 else if (b_reloc_p (howto->type))
10613 msg = (cross_mode_jump_p
10614 ? _("cannot convert a branch to JALX "
10615 "for a non-word-aligned address")
10616 : _("branch to a non-instruction-aligned address"));
10617 else if (aligned_pcrel_reloc_p (howto->type))
10618 msg = _("PC-relative load from unaligned address");
10619 if (msg)
10621 info->callbacks->einfo
10622 ("%X%H: %s\n", input_bfd, input_section, rel->r_offset, msg);
10623 break;
10625 /* Fall through. */
10627 default:
10628 abort ();
10629 break;
10632 /* If we've got another relocation for the address, keep going
10633 until we reach the last one. */
10634 if (use_saved_addend_p)
10636 addend = value;
10637 continue;
10640 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
10641 /* See the comment above about using R_MIPS_64 in the 32-bit
10642 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
10643 that calculated the right value. Now, however, we
10644 sign-extend the 32-bit result to 64-bits, and store it as a
10645 64-bit value. We are especially generous here in that we
10646 go to extreme lengths to support this usage on systems with
10647 only a 32-bit VMA. */
10649 bfd_vma sign_bits;
10650 bfd_vma low_bits;
10651 bfd_vma high_bits;
10653 if (value & ((bfd_vma) 1 << 31))
10654 #ifdef BFD64
10655 sign_bits = ((bfd_vma) 1 << 32) - 1;
10656 #else
10657 sign_bits = -1;
10658 #endif
10659 else
10660 sign_bits = 0;
10662 /* If we don't know that we have a 64-bit type,
10663 do two separate stores. */
10664 if (bfd_big_endian (input_bfd))
10666 /* Undo what we did above. */
10667 rel->r_offset -= 4;
10668 /* Store the sign-bits (which are most significant)
10669 first. */
10670 low_bits = sign_bits;
10671 high_bits = value;
10673 else
10675 low_bits = value;
10676 high_bits = sign_bits;
10678 bfd_put_32 (input_bfd, low_bits,
10679 contents + rel->r_offset);
10680 bfd_put_32 (input_bfd, high_bits,
10681 contents + rel->r_offset + 4);
10682 continue;
10685 /* Actually perform the relocation. */
10686 if (! mips_elf_perform_relocation (info, howto, rel, value,
10687 input_bfd, input_section,
10688 contents, cross_mode_jump_p))
10689 return false;
10692 return true;
10695 /* A function that iterates over each entry in la25_stubs and fills
10696 in the code for each one. DATA points to a mips_htab_traverse_info. */
10698 static int
10699 mips_elf_create_la25_stub (void **slot, void *data)
10701 struct mips_htab_traverse_info *hti;
10702 struct mips_elf_link_hash_table *htab;
10703 struct mips_elf_la25_stub *stub;
10704 asection *s;
10705 bfd_byte *loc;
10706 bfd_vma offset, target, target_high, target_low;
10707 bfd_vma branch_pc;
10708 bfd_signed_vma pcrel_offset = 0;
10710 stub = (struct mips_elf_la25_stub *) *slot;
10711 hti = (struct mips_htab_traverse_info *) data;
10712 htab = mips_elf_hash_table (hti->info);
10713 BFD_ASSERT (htab != NULL);
10715 /* Create the section contents, if we haven't already. */
10716 s = stub->stub_section;
10717 loc = s->contents;
10718 if (loc == NULL)
10720 loc = bfd_malloc (s->size);
10721 if (loc == NULL)
10723 hti->error = true;
10724 return false;
10726 s->contents = loc;
10729 /* Work out where in the section this stub should go. */
10730 offset = stub->offset;
10732 /* We add 8 here to account for the LUI/ADDIU instructions
10733 before the branch instruction. This cannot be moved down to
10734 where pcrel_offset is calculated as 's' is updated in
10735 mips_elf_get_la25_target. */
10736 branch_pc = s->output_section->vma + s->output_offset + offset + 8;
10738 /* Work out the target address. */
10739 target = mips_elf_get_la25_target (stub, &s);
10740 target += s->output_section->vma + s->output_offset;
10742 target_high = ((target + 0x8000) >> 16) & 0xffff;
10743 target_low = (target & 0xffff);
10745 /* Calculate the PC of the compact branch instruction (for the case where
10746 compact branches are used for either microMIPSR6 or MIPSR6 with
10747 compact branches. Add 4-bytes to account for BC using the PC of the
10748 next instruction as the base. */
10749 pcrel_offset = target - (branch_pc + 4);
10751 if (stub->stub_section != htab->strampoline)
10753 /* This is a simple LUI/ADDIU stub. Zero out the beginning
10754 of the section and write the two instructions at the end. */
10755 memset (loc, 0, offset);
10756 loc += offset;
10757 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
10759 bfd_put_micromips_32 (hti->output_bfd,
10760 LA25_LUI_MICROMIPS (target_high),
10761 loc);
10762 bfd_put_micromips_32 (hti->output_bfd,
10763 LA25_ADDIU_MICROMIPS (target_low),
10764 loc + 4);
10766 else
10768 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
10769 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 4);
10772 else
10774 /* This is trampoline. */
10775 loc += offset;
10776 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
10778 bfd_put_micromips_32 (hti->output_bfd,
10779 LA25_LUI_MICROMIPS (target_high), loc);
10780 bfd_put_micromips_32 (hti->output_bfd,
10781 LA25_J_MICROMIPS (target), loc + 4);
10782 bfd_put_micromips_32 (hti->output_bfd,
10783 LA25_ADDIU_MICROMIPS (target_low), loc + 8);
10784 bfd_put_32 (hti->output_bfd, 0, loc + 12);
10786 else
10788 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
10789 if (MIPSR6_P (hti->output_bfd) && htab->compact_branches)
10791 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 4);
10792 bfd_put_32 (hti->output_bfd, LA25_BC (pcrel_offset), loc + 8);
10794 else
10796 bfd_put_32 (hti->output_bfd, LA25_J (target), loc + 4);
10797 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 8);
10799 bfd_put_32 (hti->output_bfd, 0, loc + 12);
10802 return true;
10805 /* If NAME is one of the special IRIX6 symbols defined by the linker,
10806 adjust it appropriately now. */
10808 static void
10809 mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
10810 const char *name, Elf_Internal_Sym *sym)
10812 /* The linker script takes care of providing names and values for
10813 these, but we must place them into the right sections. */
10814 static const char* const text_section_symbols[] = {
10815 "_ftext",
10816 "_etext",
10817 "__dso_displacement",
10818 "__elf_header",
10819 "__program_header_table",
10820 NULL
10823 static const char* const data_section_symbols[] = {
10824 "_fdata",
10825 "_edata",
10826 "_end",
10827 "_fbss",
10828 NULL
10831 const char* const *p;
10832 int i;
10834 for (i = 0; i < 2; ++i)
10835 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
10837 ++p)
10838 if (strcmp (*p, name) == 0)
10840 /* All of these symbols are given type STT_SECTION by the
10841 IRIX6 linker. */
10842 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10843 sym->st_other = STO_PROTECTED;
10845 /* The IRIX linker puts these symbols in special sections. */
10846 if (i == 0)
10847 sym->st_shndx = SHN_MIPS_TEXT;
10848 else
10849 sym->st_shndx = SHN_MIPS_DATA;
10851 break;
10855 /* Finish up dynamic symbol handling. We set the contents of various
10856 dynamic sections here. */
10858 bool
10859 _bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
10860 struct bfd_link_info *info,
10861 struct elf_link_hash_entry *h,
10862 Elf_Internal_Sym *sym)
10864 bfd *dynobj;
10865 asection *sgot;
10866 struct mips_got_info *g, *gg;
10867 const char *name;
10868 int idx;
10869 struct mips_elf_link_hash_table *htab;
10870 struct mips_elf_link_hash_entry *hmips;
10872 htab = mips_elf_hash_table (info);
10873 BFD_ASSERT (htab != NULL);
10874 dynobj = elf_hash_table (info)->dynobj;
10875 hmips = (struct mips_elf_link_hash_entry *) h;
10877 BFD_ASSERT (htab->root.target_os != is_vxworks);
10879 if (h->plt.plist != NULL
10880 && (h->plt.plist->mips_offset != MINUS_ONE
10881 || h->plt.plist->comp_offset != MINUS_ONE))
10883 /* We've decided to create a PLT entry for this symbol. */
10884 bfd_byte *loc;
10885 bfd_vma header_address, got_address;
10886 bfd_vma got_address_high, got_address_low, load;
10887 bfd_vma got_index;
10888 bfd_vma isa_bit;
10890 got_index = h->plt.plist->gotplt_index;
10892 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10893 BFD_ASSERT (h->dynindx != -1);
10894 BFD_ASSERT (htab->root.splt != NULL);
10895 BFD_ASSERT (got_index != MINUS_ONE);
10896 BFD_ASSERT (!h->def_regular);
10898 /* Calculate the address of the PLT header. */
10899 isa_bit = htab->plt_header_is_comp;
10900 header_address = (htab->root.splt->output_section->vma
10901 + htab->root.splt->output_offset + isa_bit);
10903 /* Calculate the address of the .got.plt entry. */
10904 got_address = (htab->root.sgotplt->output_section->vma
10905 + htab->root.sgotplt->output_offset
10906 + got_index * MIPS_ELF_GOT_SIZE (dynobj));
10908 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
10909 got_address_low = got_address & 0xffff;
10911 /* The PLT sequence is not safe for N64 if .got.plt entry's address
10912 cannot be loaded in two instructions. */
10913 if (ABI_64_P (output_bfd)
10914 && ((got_address + 0x80008000) & ~(bfd_vma) 0xffffffff) != 0)
10916 _bfd_error_handler
10917 /* xgettext:c-format */
10918 (_("%pB: `%pA' entry VMA of %#" PRIx64 " outside the 32-bit range "
10919 "supported; consider using `-Ttext-segment=...'"),
10920 output_bfd,
10921 htab->root.sgotplt->output_section,
10922 (int64_t) got_address);
10923 bfd_set_error (bfd_error_no_error);
10924 return false;
10927 /* Initially point the .got.plt entry at the PLT header. */
10928 loc = (htab->root.sgotplt->contents
10929 + got_index * MIPS_ELF_GOT_SIZE (dynobj));
10930 if (ABI_64_P (output_bfd))
10931 bfd_put_64 (output_bfd, header_address, loc);
10932 else
10933 bfd_put_32 (output_bfd, header_address, loc);
10935 /* Now handle the PLT itself. First the standard entry (the order
10936 does not matter, we just have to pick one). */
10937 if (h->plt.plist->mips_offset != MINUS_ONE)
10939 const bfd_vma *plt_entry;
10940 bfd_vma plt_offset;
10942 plt_offset = htab->plt_header_size + h->plt.plist->mips_offset;
10944 BFD_ASSERT (plt_offset <= htab->root.splt->size);
10946 /* Find out where the .plt entry should go. */
10947 loc = htab->root.splt->contents + plt_offset;
10949 /* Pick the load opcode. */
10950 load = MIPS_ELF_LOAD_WORD (output_bfd);
10952 /* Fill in the PLT entry itself. */
10954 if (MIPSR6_P (output_bfd))
10955 plt_entry = htab->compact_branches ? mipsr6_exec_plt_entry_compact
10956 : mipsr6_exec_plt_entry;
10957 else
10958 plt_entry = mips_exec_plt_entry;
10959 bfd_put_32 (output_bfd, plt_entry[0] | got_address_high, loc);
10960 bfd_put_32 (output_bfd, plt_entry[1] | got_address_low | load,
10961 loc + 4);
10963 if (! LOAD_INTERLOCKS_P (output_bfd)
10964 || (MIPSR6_P (output_bfd) && htab->compact_branches))
10966 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 8);
10967 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
10969 else
10971 bfd_put_32 (output_bfd, plt_entry[3], loc + 8);
10972 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low,
10973 loc + 12);
10977 /* Now the compressed entry. They come after any standard ones. */
10978 if (h->plt.plist->comp_offset != MINUS_ONE)
10980 bfd_vma plt_offset;
10982 plt_offset = (htab->plt_header_size + htab->plt_mips_offset
10983 + h->plt.plist->comp_offset);
10985 BFD_ASSERT (plt_offset <= htab->root.splt->size);
10987 /* Find out where the .plt entry should go. */
10988 loc = htab->root.splt->contents + plt_offset;
10990 /* Fill in the PLT entry itself. */
10991 if (!MICROMIPS_P (output_bfd))
10993 const bfd_vma *plt_entry = mips16_o32_exec_plt_entry;
10995 bfd_put_16 (output_bfd, plt_entry[0], loc);
10996 bfd_put_16 (output_bfd, plt_entry[1], loc + 2);
10997 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10998 bfd_put_16 (output_bfd, plt_entry[3], loc + 6);
10999 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
11000 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
11001 bfd_put_32 (output_bfd, got_address, loc + 12);
11003 else if (htab->insn32)
11005 const bfd_vma *plt_entry = micromips_insn32_o32_exec_plt_entry;
11007 bfd_put_16 (output_bfd, plt_entry[0], loc);
11008 bfd_put_16 (output_bfd, got_address_high, loc + 2);
11009 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
11010 bfd_put_16 (output_bfd, got_address_low, loc + 6);
11011 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
11012 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
11013 bfd_put_16 (output_bfd, plt_entry[6], loc + 12);
11014 bfd_put_16 (output_bfd, got_address_low, loc + 14);
11016 else
11018 const bfd_vma *plt_entry = micromips_o32_exec_plt_entry;
11019 bfd_signed_vma gotpc_offset;
11020 bfd_vma loc_address;
11022 BFD_ASSERT (got_address % 4 == 0);
11024 loc_address = (htab->root.splt->output_section->vma
11025 + htab->root.splt->output_offset + plt_offset);
11026 gotpc_offset = got_address - ((loc_address | 3) ^ 3);
11028 /* ADDIUPC has a span of +/-16MB, check we're in range. */
11029 if (gotpc_offset + 0x1000000 >= 0x2000000)
11031 _bfd_error_handler
11032 /* xgettext:c-format */
11033 (_("%pB: `%pA' offset of %" PRId64 " from `%pA' "
11034 "beyond the range of ADDIUPC"),
11035 output_bfd,
11036 htab->root.sgotplt->output_section,
11037 (int64_t) gotpc_offset,
11038 htab->root.splt->output_section);
11039 bfd_set_error (bfd_error_no_error);
11040 return false;
11042 bfd_put_16 (output_bfd,
11043 plt_entry[0] | ((gotpc_offset >> 18) & 0x7f), loc);
11044 bfd_put_16 (output_bfd, (gotpc_offset >> 2) & 0xffff, loc + 2);
11045 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
11046 bfd_put_16 (output_bfd, plt_entry[3], loc + 6);
11047 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
11048 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
11052 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
11053 mips_elf_output_dynamic_relocation (output_bfd, htab->root.srelplt,
11054 got_index - 2, h->dynindx,
11055 R_MIPS_JUMP_SLOT, got_address);
11057 /* We distinguish between PLT entries and lazy-binding stubs by
11058 giving the former an st_other value of STO_MIPS_PLT. Set the
11059 flag and leave the value if there are any relocations in the
11060 binary where pointer equality matters. */
11061 sym->st_shndx = SHN_UNDEF;
11062 if (h->pointer_equality_needed)
11063 sym->st_other = ELF_ST_SET_MIPS_PLT (sym->st_other);
11064 else
11066 sym->st_value = 0;
11067 sym->st_other = 0;
11071 if (h->plt.plist != NULL && h->plt.plist->stub_offset != MINUS_ONE)
11073 /* We've decided to create a lazy-binding stub. */
11074 bool micromips_p = MICROMIPS_P (output_bfd);
11075 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
11076 bfd_vma stub_size = htab->function_stub_size;
11077 bfd_byte stub[MIPS_FUNCTION_STUB_BIG_SIZE];
11078 bfd_vma isa_bit = micromips_p;
11079 bfd_vma stub_big_size;
11081 if (!micromips_p)
11082 stub_big_size = MIPS_FUNCTION_STUB_BIG_SIZE;
11083 else if (htab->insn32)
11084 stub_big_size = MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE;
11085 else
11086 stub_big_size = MICROMIPS_FUNCTION_STUB_BIG_SIZE;
11088 /* This symbol has a stub. Set it up. */
11090 BFD_ASSERT (h->dynindx != -1);
11092 BFD_ASSERT (stub_size == stub_big_size || h->dynindx <= 0xffff);
11094 /* Values up to 2^31 - 1 are allowed. Larger values would cause
11095 sign extension at runtime in the stub, resulting in a negative
11096 index value. */
11097 if (h->dynindx & ~0x7fffffff)
11098 return false;
11100 /* Fill the stub. */
11101 if (micromips_p)
11103 idx = 0;
11104 bfd_put_micromips_32 (output_bfd, STUB_LW_MICROMIPS (output_bfd),
11105 stub + idx);
11106 idx += 4;
11107 if (htab->insn32)
11109 bfd_put_micromips_32 (output_bfd,
11110 STUB_MOVE32_MICROMIPS, stub + idx);
11111 idx += 4;
11113 else
11115 bfd_put_16 (output_bfd, STUB_MOVE_MICROMIPS, stub + idx);
11116 idx += 2;
11118 if (stub_size == stub_big_size)
11120 long dynindx_hi = (h->dynindx >> 16) & 0x7fff;
11122 bfd_put_micromips_32 (output_bfd,
11123 STUB_LUI_MICROMIPS (dynindx_hi),
11124 stub + idx);
11125 idx += 4;
11127 if (htab->insn32)
11129 bfd_put_micromips_32 (output_bfd, STUB_JALR32_MICROMIPS,
11130 stub + idx);
11131 idx += 4;
11133 else
11135 bfd_put_16 (output_bfd, STUB_JALR_MICROMIPS, stub + idx);
11136 idx += 2;
11139 /* If a large stub is not required and sign extension is not a
11140 problem, then use legacy code in the stub. */
11141 if (stub_size == stub_big_size)
11142 bfd_put_micromips_32 (output_bfd,
11143 STUB_ORI_MICROMIPS (h->dynindx & 0xffff),
11144 stub + idx);
11145 else if (h->dynindx & ~0x7fff)
11146 bfd_put_micromips_32 (output_bfd,
11147 STUB_LI16U_MICROMIPS (h->dynindx & 0xffff),
11148 stub + idx);
11149 else
11150 bfd_put_micromips_32 (output_bfd,
11151 STUB_LI16S_MICROMIPS (output_bfd,
11152 h->dynindx),
11153 stub + idx);
11155 else
11157 idx = 0;
11158 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub + idx);
11159 idx += 4;
11160 bfd_put_32 (output_bfd, STUB_MOVE, stub + idx);
11161 idx += 4;
11162 if (stub_size == stub_big_size)
11164 bfd_put_32 (output_bfd, STUB_LUI ((h->dynindx >> 16) & 0x7fff),
11165 stub + idx);
11166 idx += 4;
11169 if (!(MIPSR6_P (output_bfd) && htab->compact_branches))
11171 bfd_put_32 (output_bfd, STUB_JALR, stub + idx);
11172 idx += 4;
11175 /* If a large stub is not required and sign extension is not a
11176 problem, then use legacy code in the stub. */
11177 if (stub_size == stub_big_size)
11178 bfd_put_32 (output_bfd, STUB_ORI (h->dynindx & 0xffff),
11179 stub + idx);
11180 else if (h->dynindx & ~0x7fff)
11181 bfd_put_32 (output_bfd, STUB_LI16U (h->dynindx & 0xffff),
11182 stub + idx);
11183 else
11184 bfd_put_32 (output_bfd, STUB_LI16S (output_bfd, h->dynindx),
11185 stub + idx);
11186 idx += 4;
11188 if (MIPSR6_P (output_bfd) && htab->compact_branches)
11189 bfd_put_32 (output_bfd, STUB_JALRC, stub + idx);
11192 BFD_ASSERT (h->plt.plist->stub_offset <= htab->sstubs->size);
11193 memcpy (htab->sstubs->contents + h->plt.plist->stub_offset,
11194 stub, stub_size);
11196 /* Mark the symbol as undefined. stub_offset != -1 occurs
11197 only for the referenced symbol. */
11198 sym->st_shndx = SHN_UNDEF;
11200 /* The run-time linker uses the st_value field of the symbol
11201 to reset the global offset table entry for this external
11202 to its stub address when unlinking a shared object. */
11203 sym->st_value = (htab->sstubs->output_section->vma
11204 + htab->sstubs->output_offset
11205 + h->plt.plist->stub_offset
11206 + isa_bit);
11207 sym->st_other = other;
11210 /* If we have a MIPS16 function with a stub, the dynamic symbol must
11211 refer to the stub, since only the stub uses the standard calling
11212 conventions. */
11213 if (h->dynindx != -1 && hmips->fn_stub != NULL)
11215 BFD_ASSERT (hmips->need_fn_stub);
11216 sym->st_value = (hmips->fn_stub->output_section->vma
11217 + hmips->fn_stub->output_offset);
11218 sym->st_size = hmips->fn_stub->size;
11219 sym->st_other = ELF_ST_VISIBILITY (sym->st_other);
11222 BFD_ASSERT (h->dynindx != -1
11223 || h->forced_local);
11225 sgot = htab->root.sgot;
11226 g = htab->got_info;
11227 BFD_ASSERT (g != NULL);
11229 /* Run through the global symbol table, creating GOT entries for all
11230 the symbols that need them. */
11231 if (hmips->global_got_area != GGA_NONE)
11233 bfd_vma offset;
11234 bfd_vma value;
11236 value = sym->st_value;
11237 offset = mips_elf_primary_global_got_index (output_bfd, info, h);
11238 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
11241 if (hmips->global_got_area != GGA_NONE && g->next)
11243 struct mips_got_entry e, *p;
11244 bfd_vma entry;
11245 bfd_vma offset;
11247 gg = g;
11249 e.abfd = output_bfd;
11250 e.symndx = -1;
11251 e.d.h = hmips;
11252 e.tls_type = GOT_TLS_NONE;
11254 for (g = g->next; g->next != gg; g = g->next)
11256 if (g->got_entries
11257 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
11258 &e)))
11260 offset = p->gotidx;
11261 BFD_ASSERT (offset > 0 && offset < htab->root.sgot->size);
11262 if (bfd_link_pic (info)
11263 || (elf_hash_table (info)->dynamic_sections_created
11264 && p->d.h != NULL
11265 && p->d.h->root.def_dynamic
11266 && !p->d.h->root.def_regular))
11268 /* Create an R_MIPS_REL32 relocation for this entry. Due to
11269 the various compatibility problems, it's easier to mock
11270 up an R_MIPS_32 or R_MIPS_64 relocation and leave
11271 mips_elf_create_dynamic_relocation to calculate the
11272 appropriate addend. */
11273 Elf_Internal_Rela rel[3];
11275 memset (rel, 0, sizeof (rel));
11276 if (ABI_64_P (output_bfd))
11277 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
11278 else
11279 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
11280 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
11282 entry = 0;
11283 if (! (mips_elf_create_dynamic_relocation
11284 (output_bfd, info, rel,
11285 e.d.h, NULL, sym->st_value, &entry, sgot)))
11286 return false;
11288 else
11289 entry = sym->st_value;
11290 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
11295 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
11296 name = h->root.root.string;
11297 if (h == elf_hash_table (info)->hdynamic
11298 || h == elf_hash_table (info)->hgot)
11299 sym->st_shndx = SHN_ABS;
11300 else if (strcmp (name, "_DYNAMIC_LINK") == 0
11301 || strcmp (name, "_DYNAMIC_LINKING") == 0)
11303 sym->st_shndx = SHN_ABS;
11304 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
11305 sym->st_value = 1;
11307 else if (SGI_COMPAT (output_bfd))
11309 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
11310 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
11312 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
11313 sym->st_other = STO_PROTECTED;
11314 sym->st_value = 0;
11315 sym->st_shndx = SHN_MIPS_DATA;
11317 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
11319 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
11320 sym->st_other = STO_PROTECTED;
11321 sym->st_value = mips_elf_hash_table (info)->procedure_count;
11322 sym->st_shndx = SHN_ABS;
11324 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
11326 if (h->type == STT_FUNC)
11327 sym->st_shndx = SHN_MIPS_TEXT;
11328 else if (h->type == STT_OBJECT)
11329 sym->st_shndx = SHN_MIPS_DATA;
11333 /* Emit a copy reloc, if needed. */
11334 if (h->needs_copy)
11336 asection *s;
11337 bfd_vma symval;
11339 BFD_ASSERT (h->dynindx != -1);
11340 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11342 s = mips_elf_rel_dyn_section (info, false);
11343 symval = (h->root.u.def.section->output_section->vma
11344 + h->root.u.def.section->output_offset
11345 + h->root.u.def.value);
11346 mips_elf_output_dynamic_relocation (output_bfd, s, s->reloc_count++,
11347 h->dynindx, R_MIPS_COPY, symval);
11350 /* Handle the IRIX6-specific symbols. */
11351 if (IRIX_COMPAT (output_bfd) == ict_irix6)
11352 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
11354 /* Keep dynamic compressed symbols odd. This allows the dynamic linker
11355 to treat compressed symbols like any other. */
11356 if (ELF_ST_IS_MIPS16 (sym->st_other))
11358 BFD_ASSERT (sym->st_value & 1);
11359 sym->st_other -= STO_MIPS16;
11361 else if (ELF_ST_IS_MICROMIPS (sym->st_other))
11363 BFD_ASSERT (sym->st_value & 1);
11364 sym->st_other -= STO_MICROMIPS;
11367 return true;
11370 /* Likewise, for VxWorks. */
11372 bool
11373 _bfd_mips_vxworks_finish_dynamic_symbol (bfd *output_bfd,
11374 struct bfd_link_info *info,
11375 struct elf_link_hash_entry *h,
11376 Elf_Internal_Sym *sym)
11378 bfd *dynobj;
11379 asection *sgot;
11380 struct mips_got_info *g;
11381 struct mips_elf_link_hash_table *htab;
11382 struct mips_elf_link_hash_entry *hmips;
11384 htab = mips_elf_hash_table (info);
11385 BFD_ASSERT (htab != NULL);
11386 dynobj = elf_hash_table (info)->dynobj;
11387 hmips = (struct mips_elf_link_hash_entry *) h;
11389 if (h->plt.plist != NULL && h->plt.plist->mips_offset != MINUS_ONE)
11391 bfd_byte *loc;
11392 bfd_vma plt_address, got_address, got_offset, branch_offset;
11393 Elf_Internal_Rela rel;
11394 static const bfd_vma *plt_entry;
11395 bfd_vma gotplt_index;
11396 bfd_vma plt_offset;
11398 plt_offset = htab->plt_header_size + h->plt.plist->mips_offset;
11399 gotplt_index = h->plt.plist->gotplt_index;
11401 BFD_ASSERT (h->dynindx != -1);
11402 BFD_ASSERT (htab->root.splt != NULL);
11403 BFD_ASSERT (gotplt_index != MINUS_ONE);
11404 BFD_ASSERT (plt_offset <= htab->root.splt->size);
11406 /* Calculate the address of the .plt entry. */
11407 plt_address = (htab->root.splt->output_section->vma
11408 + htab->root.splt->output_offset
11409 + plt_offset);
11411 /* Calculate the address of the .got.plt entry. */
11412 got_address = (htab->root.sgotplt->output_section->vma
11413 + htab->root.sgotplt->output_offset
11414 + gotplt_index * MIPS_ELF_GOT_SIZE (output_bfd));
11416 /* Calculate the offset of the .got.plt entry from
11417 _GLOBAL_OFFSET_TABLE_. */
11418 got_offset = mips_elf_gotplt_index (info, h);
11420 /* Calculate the offset for the branch at the start of the PLT
11421 entry. The branch jumps to the beginning of .plt. */
11422 branch_offset = -(plt_offset / 4 + 1) & 0xffff;
11424 /* Fill in the initial value of the .got.plt entry. */
11425 bfd_put_32 (output_bfd, plt_address,
11426 (htab->root.sgotplt->contents
11427 + gotplt_index * MIPS_ELF_GOT_SIZE (output_bfd)));
11429 /* Find out where the .plt entry should go. */
11430 loc = htab->root.splt->contents + plt_offset;
11432 if (bfd_link_pic (info))
11434 plt_entry = mips_vxworks_shared_plt_entry;
11435 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
11436 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_index, loc + 4);
11438 else
11440 bfd_vma got_address_high, got_address_low;
11442 plt_entry = mips_vxworks_exec_plt_entry;
11443 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
11444 got_address_low = got_address & 0xffff;
11446 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
11447 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_index, loc + 4);
11448 bfd_put_32 (output_bfd, plt_entry[2] | got_address_high, loc + 8);
11449 bfd_put_32 (output_bfd, plt_entry[3] | got_address_low, loc + 12);
11450 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11451 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11452 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
11453 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
11455 loc = (htab->srelplt2->contents
11456 + (gotplt_index * 3 + 2) * sizeof (Elf32_External_Rela));
11458 /* Emit a relocation for the .got.plt entry. */
11459 rel.r_offset = got_address;
11460 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
11461 rel.r_addend = plt_offset;
11462 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11464 /* Emit a relocation for the lui of %hi(<.got.plt slot>). */
11465 loc += sizeof (Elf32_External_Rela);
11466 rel.r_offset = plt_address + 8;
11467 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11468 rel.r_addend = got_offset;
11469 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11471 /* Emit a relocation for the addiu of %lo(<.got.plt slot>). */
11472 loc += sizeof (Elf32_External_Rela);
11473 rel.r_offset += 4;
11474 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11475 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11478 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
11479 loc = (htab->root.srelplt->contents
11480 + gotplt_index * sizeof (Elf32_External_Rela));
11481 rel.r_offset = got_address;
11482 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_JUMP_SLOT);
11483 rel.r_addend = 0;
11484 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11486 if (!h->def_regular)
11487 sym->st_shndx = SHN_UNDEF;
11490 BFD_ASSERT (h->dynindx != -1 || h->forced_local);
11492 sgot = htab->root.sgot;
11493 g = htab->got_info;
11494 BFD_ASSERT (g != NULL);
11496 /* See if this symbol has an entry in the GOT. */
11497 if (hmips->global_got_area != GGA_NONE)
11499 bfd_vma offset;
11500 Elf_Internal_Rela outrel;
11501 bfd_byte *loc;
11502 asection *s;
11504 /* Install the symbol value in the GOT. */
11505 offset = mips_elf_primary_global_got_index (output_bfd, info, h);
11506 MIPS_ELF_PUT_WORD (output_bfd, sym->st_value, sgot->contents + offset);
11508 /* Add a dynamic relocation for it. */
11509 s = mips_elf_rel_dyn_section (info, false);
11510 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
11511 outrel.r_offset = (sgot->output_section->vma
11512 + sgot->output_offset
11513 + offset);
11514 outrel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_32);
11515 outrel.r_addend = 0;
11516 bfd_elf32_swap_reloca_out (dynobj, &outrel, loc);
11519 /* Emit a copy reloc, if needed. */
11520 if (h->needs_copy)
11522 Elf_Internal_Rela rel;
11523 asection *srel;
11524 bfd_byte *loc;
11526 BFD_ASSERT (h->dynindx != -1);
11528 rel.r_offset = (h->root.u.def.section->output_section->vma
11529 + h->root.u.def.section->output_offset
11530 + h->root.u.def.value);
11531 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_COPY);
11532 rel.r_addend = 0;
11533 if (h->root.u.def.section == htab->root.sdynrelro)
11534 srel = htab->root.sreldynrelro;
11535 else
11536 srel = htab->root.srelbss;
11537 loc = srel->contents + srel->reloc_count * sizeof (Elf32_External_Rela);
11538 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11539 ++srel->reloc_count;
11542 /* If this is a mips16/microMIPS symbol, force the value to be even. */
11543 if (ELF_ST_IS_COMPRESSED (sym->st_other))
11544 sym->st_value &= ~1;
11546 return true;
11549 /* Write out a plt0 entry to the beginning of .plt. */
11551 static bool
11552 mips_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
11554 bfd_byte *loc;
11555 bfd_vma gotplt_value, gotplt_value_high, gotplt_value_low;
11556 static const bfd_vma *plt_entry;
11557 struct mips_elf_link_hash_table *htab;
11559 htab = mips_elf_hash_table (info);
11560 BFD_ASSERT (htab != NULL);
11562 if (ABI_64_P (output_bfd))
11563 plt_entry = (htab->compact_branches
11564 ? mipsr6_n64_exec_plt0_entry_compact
11565 : mips_n64_exec_plt0_entry);
11566 else if (ABI_N32_P (output_bfd))
11567 plt_entry = (htab->compact_branches
11568 ? mipsr6_n32_exec_plt0_entry_compact
11569 : mips_n32_exec_plt0_entry);
11570 else if (!htab->plt_header_is_comp)
11571 plt_entry = (htab->compact_branches
11572 ? mipsr6_o32_exec_plt0_entry_compact
11573 : mips_o32_exec_plt0_entry);
11574 else if (htab->insn32)
11575 plt_entry = micromips_insn32_o32_exec_plt0_entry;
11576 else
11577 plt_entry = micromips_o32_exec_plt0_entry;
11579 /* Calculate the value of .got.plt. */
11580 gotplt_value = (htab->root.sgotplt->output_section->vma
11581 + htab->root.sgotplt->output_offset);
11582 gotplt_value_high = ((gotplt_value + 0x8000) >> 16) & 0xffff;
11583 gotplt_value_low = gotplt_value & 0xffff;
11585 /* The PLT sequence is not safe for N64 if .got.plt's address can
11586 not be loaded in two instructions. */
11587 if (ABI_64_P (output_bfd)
11588 && ((gotplt_value + 0x80008000) & ~(bfd_vma) 0xffffffff) != 0)
11590 _bfd_error_handler
11591 /* xgettext:c-format */
11592 (_("%pB: `%pA' start VMA of %#" PRIx64 " outside the 32-bit range "
11593 "supported; consider using `-Ttext-segment=...'"),
11594 output_bfd,
11595 htab->root.sgotplt->output_section,
11596 (int64_t) gotplt_value);
11597 bfd_set_error (bfd_error_no_error);
11598 return false;
11601 /* Install the PLT header. */
11602 loc = htab->root.splt->contents;
11603 if (plt_entry == micromips_o32_exec_plt0_entry)
11605 bfd_vma gotpc_offset;
11606 bfd_vma loc_address;
11607 size_t i;
11609 BFD_ASSERT (gotplt_value % 4 == 0);
11611 loc_address = (htab->root.splt->output_section->vma
11612 + htab->root.splt->output_offset);
11613 gotpc_offset = gotplt_value - ((loc_address | 3) ^ 3);
11615 /* ADDIUPC has a span of +/-16MB, check we're in range. */
11616 if (gotpc_offset + 0x1000000 >= 0x2000000)
11618 _bfd_error_handler
11619 /* xgettext:c-format */
11620 (_("%pB: `%pA' offset of %" PRId64 " from `%pA' "
11621 "beyond the range of ADDIUPC"),
11622 output_bfd,
11623 htab->root.sgotplt->output_section,
11624 (int64_t) gotpc_offset,
11625 htab->root.splt->output_section);
11626 bfd_set_error (bfd_error_no_error);
11627 return false;
11629 bfd_put_16 (output_bfd,
11630 plt_entry[0] | ((gotpc_offset >> 18) & 0x7f), loc);
11631 bfd_put_16 (output_bfd, (gotpc_offset >> 2) & 0xffff, loc + 2);
11632 for (i = 2; i < ARRAY_SIZE (micromips_o32_exec_plt0_entry); i++)
11633 bfd_put_16 (output_bfd, plt_entry[i], loc + (i * 2));
11635 else if (plt_entry == micromips_insn32_o32_exec_plt0_entry)
11637 size_t i;
11639 bfd_put_16 (output_bfd, plt_entry[0], loc);
11640 bfd_put_16 (output_bfd, gotplt_value_high, loc + 2);
11641 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
11642 bfd_put_16 (output_bfd, gotplt_value_low, loc + 6);
11643 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
11644 bfd_put_16 (output_bfd, gotplt_value_low, loc + 10);
11645 for (i = 6; i < ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry); i++)
11646 bfd_put_16 (output_bfd, plt_entry[i], loc + (i * 2));
11648 else
11650 bfd_put_32 (output_bfd, plt_entry[0] | gotplt_value_high, loc);
11651 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_value_low, loc + 4);
11652 bfd_put_32 (output_bfd, plt_entry[2] | gotplt_value_low, loc + 8);
11653 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
11654 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11655 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11656 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
11657 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
11660 return true;
11663 /* Install the PLT header for a VxWorks executable and finalize the
11664 contents of .rela.plt.unloaded. */
11666 static void
11667 mips_vxworks_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
11669 Elf_Internal_Rela rela;
11670 bfd_byte *loc;
11671 bfd_vma got_value, got_value_high, got_value_low, plt_address;
11672 static const bfd_vma *plt_entry;
11673 struct mips_elf_link_hash_table *htab;
11675 htab = mips_elf_hash_table (info);
11676 BFD_ASSERT (htab != NULL);
11678 plt_entry = mips_vxworks_exec_plt0_entry;
11680 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
11681 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
11682 + htab->root.hgot->root.u.def.section->output_offset
11683 + htab->root.hgot->root.u.def.value);
11685 got_value_high = ((got_value + 0x8000) >> 16) & 0xffff;
11686 got_value_low = got_value & 0xffff;
11688 /* Calculate the address of the PLT header. */
11689 plt_address = (htab->root.splt->output_section->vma
11690 + htab->root.splt->output_offset);
11692 /* Install the PLT header. */
11693 loc = htab->root.splt->contents;
11694 bfd_put_32 (output_bfd, plt_entry[0] | got_value_high, loc);
11695 bfd_put_32 (output_bfd, plt_entry[1] | got_value_low, loc + 4);
11696 bfd_put_32 (output_bfd, plt_entry[2], loc + 8);
11697 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
11698 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11699 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11701 /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_). */
11702 loc = htab->srelplt2->contents;
11703 rela.r_offset = plt_address;
11704 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11705 rela.r_addend = 0;
11706 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
11707 loc += sizeof (Elf32_External_Rela);
11709 /* Output the relocation for the following addiu of
11710 %lo(_GLOBAL_OFFSET_TABLE_). */
11711 rela.r_offset += 4;
11712 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11713 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
11714 loc += sizeof (Elf32_External_Rela);
11716 /* Fix up the remaining relocations. They may have the wrong
11717 symbol index for _G_O_T_ or _P_L_T_ depending on the order
11718 in which symbols were output. */
11719 while (loc < htab->srelplt2->contents + htab->srelplt2->size)
11721 Elf_Internal_Rela rel;
11723 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11724 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
11725 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11726 loc += sizeof (Elf32_External_Rela);
11728 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11729 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11730 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11731 loc += sizeof (Elf32_External_Rela);
11733 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11734 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11735 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11736 loc += sizeof (Elf32_External_Rela);
11740 /* Install the PLT header for a VxWorks shared library. */
11742 static void
11743 mips_vxworks_finish_shared_plt (bfd *output_bfd, struct bfd_link_info *info)
11745 unsigned int i;
11746 struct mips_elf_link_hash_table *htab;
11748 htab = mips_elf_hash_table (info);
11749 BFD_ASSERT (htab != NULL);
11751 /* We just need to copy the entry byte-by-byte. */
11752 for (i = 0; i < ARRAY_SIZE (mips_vxworks_shared_plt0_entry); i++)
11753 bfd_put_32 (output_bfd, mips_vxworks_shared_plt0_entry[i],
11754 htab->root.splt->contents + i * 4);
11757 /* Finish up the dynamic sections. */
11759 bool
11760 _bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
11761 struct bfd_link_info *info)
11763 bfd *dynobj;
11764 asection *sdyn;
11765 asection *sgot;
11766 struct mips_got_info *gg, *g;
11767 struct mips_elf_link_hash_table *htab;
11769 htab = mips_elf_hash_table (info);
11770 BFD_ASSERT (htab != NULL);
11772 dynobj = elf_hash_table (info)->dynobj;
11774 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
11776 sgot = htab->root.sgot;
11777 gg = htab->got_info;
11779 if (elf_hash_table (info)->dynamic_sections_created)
11781 bfd_byte *b;
11782 int dyn_to_skip = 0, dyn_skipped = 0;
11784 BFD_ASSERT (sdyn != NULL);
11785 BFD_ASSERT (gg != NULL);
11787 g = mips_elf_bfd_got (output_bfd, false);
11788 BFD_ASSERT (g != NULL);
11790 for (b = sdyn->contents;
11791 b < sdyn->contents + sdyn->size;
11792 b += MIPS_ELF_DYN_SIZE (dynobj))
11794 Elf_Internal_Dyn dyn;
11795 const char *name;
11796 size_t elemsize;
11797 asection *s;
11798 bool swap_out_p;
11800 /* Read in the current dynamic entry. */
11801 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
11803 /* Assume that we're going to modify it and write it out. */
11804 swap_out_p = true;
11806 switch (dyn.d_tag)
11808 case DT_RELENT:
11809 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
11810 break;
11812 case DT_RELAENT:
11813 BFD_ASSERT (htab->root.target_os == is_vxworks);
11814 dyn.d_un.d_val = MIPS_ELF_RELA_SIZE (dynobj);
11815 break;
11817 case DT_STRSZ:
11818 /* Rewrite DT_STRSZ. */
11819 dyn.d_un.d_val =
11820 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
11821 break;
11823 case DT_PLTGOT:
11824 s = htab->root.sgot;
11825 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
11826 break;
11828 case DT_MIPS_PLTGOT:
11829 s = htab->root.sgotplt;
11830 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
11831 break;
11833 case DT_MIPS_RLD_VERSION:
11834 dyn.d_un.d_val = 1; /* XXX */
11835 break;
11837 case DT_MIPS_FLAGS:
11838 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
11839 break;
11841 case DT_MIPS_TIME_STAMP:
11843 time_t t;
11844 time (&t);
11845 dyn.d_un.d_val = t;
11847 break;
11849 case DT_MIPS_ICHECKSUM:
11850 /* XXX FIXME: */
11851 swap_out_p = false;
11852 break;
11854 case DT_MIPS_IVERSION:
11855 /* XXX FIXME: */
11856 swap_out_p = false;
11857 break;
11859 case DT_MIPS_BASE_ADDRESS:
11860 s = output_bfd->sections;
11861 BFD_ASSERT (s != NULL);
11862 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
11863 break;
11865 case DT_MIPS_LOCAL_GOTNO:
11866 dyn.d_un.d_val = g->local_gotno;
11867 break;
11869 case DT_MIPS_UNREFEXTNO:
11870 /* The index into the dynamic symbol table which is the
11871 entry of the first external symbol that is not
11872 referenced within the same object. */
11873 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
11874 break;
11876 case DT_MIPS_GOTSYM:
11877 if (htab->global_gotsym)
11879 dyn.d_un.d_val = htab->global_gotsym->dynindx;
11880 break;
11882 /* In case if we don't have global got symbols we default
11883 to setting DT_MIPS_GOTSYM to the same value as
11884 DT_MIPS_SYMTABNO. */
11885 /* Fall through. */
11887 case DT_MIPS_SYMTABNO:
11888 name = ".dynsym";
11889 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
11890 s = bfd_get_linker_section (dynobj, name);
11892 if (s != NULL)
11893 dyn.d_un.d_val = s->size / elemsize;
11894 else
11895 dyn.d_un.d_val = 0;
11896 break;
11898 case DT_MIPS_HIPAGENO:
11899 dyn.d_un.d_val = g->local_gotno - htab->reserved_gotno;
11900 break;
11902 case DT_MIPS_RLD_MAP:
11904 struct elf_link_hash_entry *h;
11905 h = mips_elf_hash_table (info)->rld_symbol;
11906 if (!h)
11908 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11909 swap_out_p = false;
11910 break;
11912 s = h->root.u.def.section;
11914 /* The MIPS_RLD_MAP tag stores the absolute address of the
11915 debug pointer. */
11916 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
11917 + h->root.u.def.value);
11919 break;
11921 case DT_MIPS_RLD_MAP_REL:
11923 struct elf_link_hash_entry *h;
11924 bfd_vma dt_addr, rld_addr;
11925 h = mips_elf_hash_table (info)->rld_symbol;
11926 if (!h)
11928 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11929 swap_out_p = false;
11930 break;
11932 s = h->root.u.def.section;
11934 /* The MIPS_RLD_MAP_REL tag stores the offset to the debug
11935 pointer, relative to the address of the tag. */
11936 dt_addr = (sdyn->output_section->vma + sdyn->output_offset
11937 + (b - sdyn->contents));
11938 rld_addr = (s->output_section->vma + s->output_offset
11939 + h->root.u.def.value);
11940 dyn.d_un.d_ptr = rld_addr - dt_addr;
11942 break;
11944 case DT_MIPS_OPTIONS:
11945 s = (bfd_get_section_by_name
11946 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
11947 dyn.d_un.d_ptr = s->vma;
11948 break;
11950 case DT_PLTREL:
11951 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11952 if (htab->root.target_os == is_vxworks)
11953 dyn.d_un.d_val = DT_RELA;
11954 else
11955 dyn.d_un.d_val = DT_REL;
11956 break;
11958 case DT_PLTRELSZ:
11959 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11960 dyn.d_un.d_val = htab->root.srelplt->size;
11961 break;
11963 case DT_JMPREL:
11964 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11965 dyn.d_un.d_ptr = (htab->root.srelplt->output_section->vma
11966 + htab->root.srelplt->output_offset);
11967 break;
11969 case DT_TEXTREL:
11970 /* If we didn't need any text relocations after all, delete
11971 the dynamic tag. */
11972 if (!(info->flags & DF_TEXTREL))
11974 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11975 swap_out_p = false;
11977 break;
11979 case DT_FLAGS:
11980 /* If we didn't need any text relocations after all, clear
11981 DF_TEXTREL from DT_FLAGS. */
11982 if (!(info->flags & DF_TEXTREL))
11983 dyn.d_un.d_val &= ~DF_TEXTREL;
11984 else
11985 swap_out_p = false;
11986 break;
11988 case DT_MIPS_XHASH:
11989 name = ".MIPS.xhash";
11990 s = bfd_get_linker_section (dynobj, name);
11991 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
11992 break;
11994 default:
11995 swap_out_p = false;
11996 if (htab->root.target_os == is_vxworks
11997 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
11998 swap_out_p = true;
11999 break;
12002 if (swap_out_p || dyn_skipped)
12003 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
12004 (dynobj, &dyn, b - dyn_skipped);
12006 if (dyn_to_skip)
12008 dyn_skipped += dyn_to_skip;
12009 dyn_to_skip = 0;
12013 /* Wipe out any trailing entries if we shifted down a dynamic tag. */
12014 if (dyn_skipped > 0)
12015 memset (b - dyn_skipped, 0, dyn_skipped);
12018 if (sgot != NULL && sgot->size > 0
12019 && !bfd_is_abs_section (sgot->output_section))
12021 if (htab->root.target_os == is_vxworks)
12023 /* The first entry of the global offset table points to the
12024 ".dynamic" section. The second is initialized by the
12025 loader and contains the shared library identifier.
12026 The third is also initialized by the loader and points
12027 to the lazy resolution stub. */
12028 MIPS_ELF_PUT_WORD (output_bfd,
12029 sdyn->output_offset + sdyn->output_section->vma,
12030 sgot->contents);
12031 MIPS_ELF_PUT_WORD (output_bfd, 0,
12032 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
12033 MIPS_ELF_PUT_WORD (output_bfd, 0,
12034 sgot->contents
12035 + 2 * MIPS_ELF_GOT_SIZE (output_bfd));
12037 else
12039 /* The first entry of the global offset table will be filled at
12040 runtime. The second entry will be used by some runtime loaders.
12041 This isn't the case of IRIX rld. */
12042 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
12043 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
12044 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
12047 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
12048 = MIPS_ELF_GOT_SIZE (output_bfd);
12051 /* Generate dynamic relocations for the non-primary gots. */
12052 if (gg != NULL && gg->next)
12054 Elf_Internal_Rela rel[3];
12055 bfd_vma addend = 0;
12057 memset (rel, 0, sizeof (rel));
12058 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
12060 for (g = gg->next; g->next != gg; g = g->next)
12062 bfd_vma got_index = g->next->local_gotno + g->next->global_gotno
12063 + g->next->tls_gotno;
12065 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
12066 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
12067 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
12068 sgot->contents
12069 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
12071 if (! bfd_link_pic (info))
12072 continue;
12074 for (; got_index < g->local_gotno; got_index++)
12076 if (got_index >= g->assigned_low_gotno
12077 && got_index <= g->assigned_high_gotno)
12078 continue;
12080 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
12081 = got_index * MIPS_ELF_GOT_SIZE (output_bfd);
12082 if (!(mips_elf_create_dynamic_relocation
12083 (output_bfd, info, rel, NULL,
12084 bfd_abs_section_ptr,
12085 0, &addend, sgot)))
12086 return false;
12087 BFD_ASSERT (addend == 0);
12092 /* The generation of dynamic relocations for the non-primary gots
12093 adds more dynamic relocations. We cannot count them until
12094 here. */
12096 if (elf_hash_table (info)->dynamic_sections_created)
12098 bfd_byte *b;
12099 bool swap_out_p;
12101 BFD_ASSERT (sdyn != NULL);
12103 for (b = sdyn->contents;
12104 b < sdyn->contents + sdyn->size;
12105 b += MIPS_ELF_DYN_SIZE (dynobj))
12107 Elf_Internal_Dyn dyn;
12108 asection *s;
12110 /* Read in the current dynamic entry. */
12111 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
12113 /* Assume that we're going to modify it and write it out. */
12114 swap_out_p = true;
12116 switch (dyn.d_tag)
12118 case DT_RELSZ:
12119 /* Reduce DT_RELSZ to account for any relocations we
12120 decided not to make. This is for the n64 irix rld,
12121 which doesn't seem to apply any relocations if there
12122 are trailing null entries. */
12123 s = mips_elf_rel_dyn_section (info, false);
12124 dyn.d_un.d_val = (s->reloc_count
12125 * (ABI_64_P (output_bfd)
12126 ? sizeof (Elf64_Mips_External_Rel)
12127 : sizeof (Elf32_External_Rel)));
12128 /* Adjust the section size too. Tools like the prelinker
12129 can reasonably expect the values to the same. */
12130 BFD_ASSERT (!bfd_is_abs_section (s->output_section));
12131 elf_section_data (s->output_section)->this_hdr.sh_size
12132 = dyn.d_un.d_val;
12133 break;
12135 default:
12136 swap_out_p = false;
12137 break;
12140 if (swap_out_p)
12141 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
12142 (dynobj, &dyn, b);
12147 asection *s;
12148 Elf32_compact_rel cpt;
12150 if (SGI_COMPAT (output_bfd))
12152 /* Write .compact_rel section out. */
12153 s = bfd_get_linker_section (dynobj, ".compact_rel");
12154 if (s != NULL)
12156 cpt.id1 = 1;
12157 cpt.num = s->reloc_count;
12158 cpt.id2 = 2;
12159 cpt.offset = (s->output_section->filepos
12160 + sizeof (Elf32_External_compact_rel));
12161 cpt.reserved0 = 0;
12162 cpt.reserved1 = 0;
12163 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
12164 ((Elf32_External_compact_rel *)
12165 s->contents));
12167 /* Clean up a dummy stub function entry in .text. */
12168 if (htab->sstubs != NULL
12169 && htab->sstubs->contents != NULL)
12171 file_ptr dummy_offset;
12173 BFD_ASSERT (htab->sstubs->size >= htab->function_stub_size);
12174 dummy_offset = htab->sstubs->size - htab->function_stub_size;
12175 memset (htab->sstubs->contents + dummy_offset, 0,
12176 htab->function_stub_size);
12181 /* The psABI says that the dynamic relocations must be sorted in
12182 increasing order of r_symndx. The VxWorks EABI doesn't require
12183 this, and because the code below handles REL rather than RELA
12184 relocations, using it for VxWorks would be outright harmful. */
12185 if (htab->root.target_os != is_vxworks)
12187 s = mips_elf_rel_dyn_section (info, false);
12188 if (s != NULL
12189 && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
12191 reldyn_sorting_bfd = output_bfd;
12193 if (ABI_64_P (output_bfd))
12194 qsort ((Elf64_External_Rel *) s->contents + 1,
12195 s->reloc_count - 1, sizeof (Elf64_Mips_External_Rel),
12196 sort_dynamic_relocs_64);
12197 else
12198 qsort ((Elf32_External_Rel *) s->contents + 1,
12199 s->reloc_count - 1, sizeof (Elf32_External_Rel),
12200 sort_dynamic_relocs);
12205 if (htab->root.splt && htab->root.splt->size > 0)
12207 if (htab->root.target_os == is_vxworks)
12209 if (bfd_link_pic (info))
12210 mips_vxworks_finish_shared_plt (output_bfd, info);
12211 else
12212 mips_vxworks_finish_exec_plt (output_bfd, info);
12214 else
12216 BFD_ASSERT (!bfd_link_pic (info));
12217 if (!mips_finish_exec_plt (output_bfd, info))
12218 return false;
12221 return true;
12225 /* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
12227 static void
12228 mips_set_isa_flags (bfd *abfd)
12230 flagword val;
12232 switch (bfd_get_mach (abfd))
12234 default:
12235 if (ABI_N32_P (abfd) || ABI_64_P (abfd))
12236 val = E_MIPS_ARCH_3;
12237 else
12238 val = E_MIPS_ARCH_1;
12239 break;
12241 case bfd_mach_mips3000:
12242 val = E_MIPS_ARCH_1;
12243 break;
12245 case bfd_mach_mips3900:
12246 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
12247 break;
12249 case bfd_mach_mips6000:
12250 val = E_MIPS_ARCH_2;
12251 break;
12253 case bfd_mach_mips4010:
12254 val = E_MIPS_ARCH_2 | E_MIPS_MACH_4010;
12255 break;
12257 case bfd_mach_mips4000:
12258 case bfd_mach_mips4300:
12259 case bfd_mach_mips4400:
12260 case bfd_mach_mips4600:
12261 val = E_MIPS_ARCH_3;
12262 break;
12264 case bfd_mach_mips4100:
12265 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
12266 break;
12268 case bfd_mach_mips4111:
12269 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
12270 break;
12272 case bfd_mach_mips4120:
12273 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
12274 break;
12276 case bfd_mach_mips4650:
12277 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
12278 break;
12280 case bfd_mach_mips5400:
12281 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
12282 break;
12284 case bfd_mach_mips5500:
12285 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
12286 break;
12288 case bfd_mach_mips5900:
12289 val = E_MIPS_ARCH_3 | E_MIPS_MACH_5900;
12290 break;
12292 case bfd_mach_mips9000:
12293 val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000;
12294 break;
12296 case bfd_mach_mips5000:
12297 case bfd_mach_mips7000:
12298 case bfd_mach_mips8000:
12299 case bfd_mach_mips10000:
12300 case bfd_mach_mips12000:
12301 case bfd_mach_mips14000:
12302 case bfd_mach_mips16000:
12303 val = E_MIPS_ARCH_4;
12304 break;
12306 case bfd_mach_mips5:
12307 val = E_MIPS_ARCH_5;
12308 break;
12310 case bfd_mach_mips_loongson_2e:
12311 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2E;
12312 break;
12314 case bfd_mach_mips_loongson_2f:
12315 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2F;
12316 break;
12318 case bfd_mach_mips_sb1:
12319 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
12320 break;
12322 case bfd_mach_mips_gs464:
12323 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_GS464;
12324 break;
12326 case bfd_mach_mips_gs464e:
12327 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_GS464E;
12328 break;
12330 case bfd_mach_mips_gs264e:
12331 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_GS264E;
12332 break;
12334 case bfd_mach_mips_octeon:
12335 case bfd_mach_mips_octeonp:
12336 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON;
12337 break;
12339 case bfd_mach_mips_octeon3:
12340 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON3;
12341 break;
12343 case bfd_mach_mips_xlr:
12344 val = E_MIPS_ARCH_64 | E_MIPS_MACH_XLR;
12345 break;
12347 case bfd_mach_mips_octeon2:
12348 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON2;
12349 break;
12351 case bfd_mach_mipsisa32:
12352 val = E_MIPS_ARCH_32;
12353 break;
12355 case bfd_mach_mipsisa64:
12356 val = E_MIPS_ARCH_64;
12357 break;
12359 case bfd_mach_mipsisa32r2:
12360 case bfd_mach_mipsisa32r3:
12361 case bfd_mach_mipsisa32r5:
12362 val = E_MIPS_ARCH_32R2;
12363 break;
12365 case bfd_mach_mips_interaptiv_mr2:
12366 val = E_MIPS_ARCH_32R2 | E_MIPS_MACH_IAMR2;
12367 break;
12369 case bfd_mach_mipsisa64r2:
12370 case bfd_mach_mipsisa64r3:
12371 case bfd_mach_mipsisa64r5:
12372 val = E_MIPS_ARCH_64R2;
12373 break;
12375 case bfd_mach_mipsisa32r6:
12376 val = E_MIPS_ARCH_32R6;
12377 break;
12379 case bfd_mach_mipsisa64r6:
12380 val = E_MIPS_ARCH_64R6;
12381 break;
12383 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
12384 elf_elfheader (abfd)->e_flags |= val;
12389 /* Whether to sort relocs output by ld -r or ld --emit-relocs, by r_offset.
12390 Don't do so for code sections. We want to keep ordering of HI16/LO16
12391 as is. On the other hand, elf-eh-frame.c processing requires .eh_frame
12392 relocs to be sorted. */
12394 bool
12395 _bfd_mips_elf_sort_relocs_p (asection *sec)
12397 return (sec->flags & SEC_CODE) == 0;
12401 /* The final processing done just before writing out a MIPS ELF object
12402 file. This gets the MIPS architecture right based on the machine
12403 number. This is used by both the 32-bit and the 64-bit ABI. */
12405 void
12406 _bfd_mips_final_write_processing (bfd *abfd)
12408 unsigned int i;
12409 Elf_Internal_Shdr **hdrpp;
12410 const char *name;
12411 asection *sec;
12413 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
12414 is nonzero. This is for compatibility with old objects, which used
12415 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
12416 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
12417 mips_set_isa_flags (abfd);
12419 /* Set the sh_info field for .gptab sections and other appropriate
12420 info for each special section. */
12421 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
12422 i < elf_numsections (abfd);
12423 i++, hdrpp++)
12425 switch ((*hdrpp)->sh_type)
12427 case SHT_MIPS_MSYM:
12428 case SHT_MIPS_LIBLIST:
12429 sec = bfd_get_section_by_name (abfd, ".dynstr");
12430 if (sec != NULL)
12431 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12432 break;
12434 case SHT_MIPS_GPTAB:
12435 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12436 name = bfd_section_name ((*hdrpp)->bfd_section);
12437 BFD_ASSERT (name != NULL
12438 && startswith (name, ".gptab."));
12439 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
12440 BFD_ASSERT (sec != NULL);
12441 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
12442 break;
12444 case SHT_MIPS_CONTENT:
12445 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12446 name = bfd_section_name ((*hdrpp)->bfd_section);
12447 BFD_ASSERT (name != NULL
12448 && startswith (name, ".MIPS.content"));
12449 sec = bfd_get_section_by_name (abfd,
12450 name + sizeof ".MIPS.content" - 1);
12451 BFD_ASSERT (sec != NULL);
12452 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12453 break;
12455 case SHT_MIPS_SYMBOL_LIB:
12456 sec = bfd_get_section_by_name (abfd, ".dynsym");
12457 if (sec != NULL)
12458 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12459 sec = bfd_get_section_by_name (abfd, ".liblist");
12460 if (sec != NULL)
12461 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
12462 break;
12464 case SHT_MIPS_EVENTS:
12465 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12466 name = bfd_section_name ((*hdrpp)->bfd_section);
12467 BFD_ASSERT (name != NULL);
12468 if (startswith (name, ".MIPS.events"))
12469 sec = bfd_get_section_by_name (abfd,
12470 name + sizeof ".MIPS.events" - 1);
12471 else
12473 BFD_ASSERT (startswith (name, ".MIPS.post_rel"));
12474 sec = bfd_get_section_by_name (abfd,
12475 (name
12476 + sizeof ".MIPS.post_rel" - 1));
12478 BFD_ASSERT (sec != NULL);
12479 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12480 break;
12482 case SHT_MIPS_XHASH:
12483 sec = bfd_get_section_by_name (abfd, ".dynsym");
12484 if (sec != NULL)
12485 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12490 bool
12491 _bfd_mips_elf_final_write_processing (bfd *abfd)
12493 _bfd_mips_final_write_processing (abfd);
12494 return _bfd_elf_final_write_processing (abfd);
12497 /* When creating an IRIX5 executable, we need REGINFO and RTPROC
12498 segments. */
12501 _bfd_mips_elf_additional_program_headers (bfd *abfd,
12502 struct bfd_link_info *info ATTRIBUTE_UNUSED)
12504 asection *s;
12505 int ret = 0;
12507 /* See if we need a PT_MIPS_REGINFO segment. */
12508 s = bfd_get_section_by_name (abfd, ".reginfo");
12509 if (s && (s->flags & SEC_LOAD))
12510 ++ret;
12512 /* See if we need a PT_MIPS_ABIFLAGS segment. */
12513 if (bfd_get_section_by_name (abfd, ".MIPS.abiflags"))
12514 ++ret;
12516 /* See if we need a PT_MIPS_OPTIONS segment. */
12517 if (IRIX_COMPAT (abfd) == ict_irix6
12518 && bfd_get_section_by_name (abfd,
12519 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
12520 ++ret;
12522 /* See if we need a PT_MIPS_RTPROC segment. */
12523 if (IRIX_COMPAT (abfd) == ict_irix5
12524 && bfd_get_section_by_name (abfd, ".dynamic")
12525 && bfd_get_section_by_name (abfd, ".mdebug"))
12526 ++ret;
12528 /* Allocate a PT_NULL header in dynamic objects. See
12529 _bfd_mips_elf_modify_segment_map for details. */
12530 if (!SGI_COMPAT (abfd)
12531 && bfd_get_section_by_name (abfd, ".dynamic"))
12532 ++ret;
12534 return ret;
12537 /* Modify the segment map for an IRIX5 executable. */
12539 bool
12540 _bfd_mips_elf_modify_segment_map (bfd *abfd,
12541 struct bfd_link_info *info)
12543 asection *s;
12544 struct elf_segment_map *m, **pm;
12545 size_t amt;
12547 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
12548 segment. */
12549 s = bfd_get_section_by_name (abfd, ".reginfo");
12550 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12552 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12553 if (m->p_type == PT_MIPS_REGINFO)
12554 break;
12555 if (m == NULL)
12557 amt = sizeof *m;
12558 m = bfd_zalloc (abfd, amt);
12559 if (m == NULL)
12560 return false;
12562 m->p_type = PT_MIPS_REGINFO;
12563 m->count = 1;
12564 m->sections[0] = s;
12566 /* We want to put it after the PHDR and INTERP segments. */
12567 pm = &elf_seg_map (abfd);
12568 while (*pm != NULL
12569 && ((*pm)->p_type == PT_PHDR
12570 || (*pm)->p_type == PT_INTERP))
12571 pm = &(*pm)->next;
12573 m->next = *pm;
12574 *pm = m;
12578 /* If there is a .MIPS.abiflags section, we need a PT_MIPS_ABIFLAGS
12579 segment. */
12580 s = bfd_get_section_by_name (abfd, ".MIPS.abiflags");
12581 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12583 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12584 if (m->p_type == PT_MIPS_ABIFLAGS)
12585 break;
12586 if (m == NULL)
12588 amt = sizeof *m;
12589 m = bfd_zalloc (abfd, amt);
12590 if (m == NULL)
12591 return false;
12593 m->p_type = PT_MIPS_ABIFLAGS;
12594 m->count = 1;
12595 m->sections[0] = s;
12597 /* We want to put it after the PHDR and INTERP segments. */
12598 pm = &elf_seg_map (abfd);
12599 while (*pm != NULL
12600 && ((*pm)->p_type == PT_PHDR
12601 || (*pm)->p_type == PT_INTERP))
12602 pm = &(*pm)->next;
12604 m->next = *pm;
12605 *pm = m;
12609 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
12610 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
12611 PT_MIPS_OPTIONS segment immediately following the program header
12612 table. */
12613 if (NEWABI_P (abfd)
12614 /* On non-IRIX6 new abi, we'll have already created a segment
12615 for this section, so don't create another. I'm not sure this
12616 is not also the case for IRIX 6, but I can't test it right
12617 now. */
12618 && IRIX_COMPAT (abfd) == ict_irix6)
12620 for (s = abfd->sections; s; s = s->next)
12621 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
12622 break;
12624 if (s)
12626 struct elf_segment_map *options_segment;
12628 pm = &elf_seg_map (abfd);
12629 while (*pm != NULL
12630 && ((*pm)->p_type == PT_PHDR
12631 || (*pm)->p_type == PT_INTERP))
12632 pm = &(*pm)->next;
12634 if (*pm == NULL || (*pm)->p_type != PT_MIPS_OPTIONS)
12636 amt = sizeof (struct elf_segment_map);
12637 options_segment = bfd_zalloc (abfd, amt);
12638 options_segment->next = *pm;
12639 options_segment->p_type = PT_MIPS_OPTIONS;
12640 options_segment->p_flags = PF_R;
12641 options_segment->p_flags_valid = true;
12642 options_segment->count = 1;
12643 options_segment->sections[0] = s;
12644 *pm = options_segment;
12648 else
12650 if (IRIX_COMPAT (abfd) == ict_irix5)
12652 /* If there are .dynamic and .mdebug sections, we make a room
12653 for the RTPROC header. FIXME: Rewrite without section names. */
12654 if (bfd_get_section_by_name (abfd, ".interp") == NULL
12655 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
12656 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
12658 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12659 if (m->p_type == PT_MIPS_RTPROC)
12660 break;
12661 if (m == NULL)
12663 amt = sizeof *m;
12664 m = bfd_zalloc (abfd, amt);
12665 if (m == NULL)
12666 return false;
12668 m->p_type = PT_MIPS_RTPROC;
12670 s = bfd_get_section_by_name (abfd, ".rtproc");
12671 if (s == NULL)
12673 m->count = 0;
12674 m->p_flags = 0;
12675 m->p_flags_valid = 1;
12677 else
12679 m->count = 1;
12680 m->sections[0] = s;
12683 /* We want to put it after the DYNAMIC segment. */
12684 pm = &elf_seg_map (abfd);
12685 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
12686 pm = &(*pm)->next;
12687 if (*pm != NULL)
12688 pm = &(*pm)->next;
12690 m->next = *pm;
12691 *pm = m;
12695 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
12696 .dynstr, .dynsym, and .hash sections, and everything in
12697 between. */
12698 for (pm = &elf_seg_map (abfd); *pm != NULL;
12699 pm = &(*pm)->next)
12700 if ((*pm)->p_type == PT_DYNAMIC)
12701 break;
12702 m = *pm;
12703 /* GNU/Linux binaries do not need the extended PT_DYNAMIC section.
12704 glibc's dynamic linker has traditionally derived the number of
12705 tags from the p_filesz field, and sometimes allocates stack
12706 arrays of that size. An overly-big PT_DYNAMIC segment can
12707 be actively harmful in such cases. Making PT_DYNAMIC contain
12708 other sections can also make life hard for the prelinker,
12709 which might move one of the other sections to a different
12710 PT_LOAD segment. */
12711 if (SGI_COMPAT (abfd)
12712 && m != NULL
12713 && m->count == 1
12714 && strcmp (m->sections[0]->name, ".dynamic") == 0)
12716 static const char *sec_names[] =
12718 ".dynamic", ".dynstr", ".dynsym", ".hash"
12720 bfd_vma low, high;
12721 unsigned int i, c;
12722 struct elf_segment_map *n;
12724 low = ~(bfd_vma) 0;
12725 high = 0;
12726 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
12728 s = bfd_get_section_by_name (abfd, sec_names[i]);
12729 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12731 bfd_size_type sz;
12733 if (low > s->vma)
12734 low = s->vma;
12735 sz = s->size;
12736 if (high < s->vma + sz)
12737 high = s->vma + sz;
12741 c = 0;
12742 for (s = abfd->sections; s != NULL; s = s->next)
12743 if ((s->flags & SEC_LOAD) != 0
12744 && s->vma >= low
12745 && s->vma + s->size <= high)
12746 ++c;
12748 amt = sizeof *n - sizeof (asection *) + c * sizeof (asection *);
12749 n = bfd_zalloc (abfd, amt);
12750 if (n == NULL)
12751 return false;
12752 *n = *m;
12753 n->count = c;
12755 i = 0;
12756 for (s = abfd->sections; s != NULL; s = s->next)
12758 if ((s->flags & SEC_LOAD) != 0
12759 && s->vma >= low
12760 && s->vma + s->size <= high)
12762 n->sections[i] = s;
12763 ++i;
12767 *pm = n;
12771 /* Allocate a spare program header in dynamic objects so that tools
12772 like the prelinker can add an extra PT_LOAD entry.
12774 If the prelinker needs to make room for a new PT_LOAD entry, its
12775 standard procedure is to move the first (read-only) sections into
12776 the new (writable) segment. However, the MIPS ABI requires
12777 .dynamic to be in a read-only segment, and the section will often
12778 start within sizeof (ElfNN_Phdr) bytes of the last program header.
12780 Although the prelinker could in principle move .dynamic to a
12781 writable segment, it seems better to allocate a spare program
12782 header instead, and avoid the need to move any sections.
12783 There is a long tradition of allocating spare dynamic tags,
12784 so allocating a spare program header seems like a natural
12785 extension.
12787 If INFO is NULL, we may be copying an already prelinked binary
12788 with objcopy or strip, so do not add this header. */
12789 if (info != NULL
12790 && !SGI_COMPAT (abfd)
12791 && bfd_get_section_by_name (abfd, ".dynamic"))
12793 for (pm = &elf_seg_map (abfd); *pm != NULL; pm = &(*pm)->next)
12794 if ((*pm)->p_type == PT_NULL)
12795 break;
12796 if (*pm == NULL)
12798 m = bfd_zalloc (abfd, sizeof (*m));
12799 if (m == NULL)
12800 return false;
12802 m->p_type = PT_NULL;
12803 *pm = m;
12807 return true;
12810 /* Return the section that should be marked against GC for a given
12811 relocation. */
12813 asection *
12814 _bfd_mips_elf_gc_mark_hook (asection *sec,
12815 struct bfd_link_info *info,
12816 Elf_Internal_Rela *rel,
12817 struct elf_link_hash_entry *h,
12818 Elf_Internal_Sym *sym)
12820 /* ??? Do mips16 stub sections need to be handled special? */
12822 if (h != NULL)
12823 switch (ELF_R_TYPE (sec->owner, rel->r_info))
12825 case R_MIPS_GNU_VTINHERIT:
12826 case R_MIPS_GNU_VTENTRY:
12827 return NULL;
12830 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
12833 /* Prevent .MIPS.abiflags from being discarded with --gc-sections. */
12835 bool
12836 _bfd_mips_elf_gc_mark_extra_sections (struct bfd_link_info *info,
12837 elf_gc_mark_hook_fn gc_mark_hook)
12839 bfd *sub;
12841 _bfd_elf_gc_mark_extra_sections (info, gc_mark_hook);
12843 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12845 asection *o;
12847 if (! is_mips_elf (sub))
12848 continue;
12850 for (o = sub->sections; o != NULL; o = o->next)
12851 if (!o->gc_mark
12852 && MIPS_ELF_ABIFLAGS_SECTION_NAME_P (bfd_section_name (o)))
12854 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
12855 return false;
12859 return true;
12862 /* Copy data from a MIPS ELF indirect symbol to its direct symbol,
12863 hiding the old indirect symbol. Process additional relocation
12864 information. Also called for weakdefs, in which case we just let
12865 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
12867 void
12868 _bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info,
12869 struct elf_link_hash_entry *dir,
12870 struct elf_link_hash_entry *ind)
12872 struct mips_elf_link_hash_entry *dirmips, *indmips;
12874 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
12876 dirmips = (struct mips_elf_link_hash_entry *) dir;
12877 indmips = (struct mips_elf_link_hash_entry *) ind;
12878 /* Any absolute non-dynamic relocations against an indirect or weak
12879 definition will be against the target symbol. */
12880 if (indmips->has_static_relocs)
12881 dirmips->has_static_relocs = true;
12883 if (ind->root.type != bfd_link_hash_indirect)
12884 return;
12886 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
12887 if (indmips->readonly_reloc)
12888 dirmips->readonly_reloc = true;
12889 if (indmips->no_fn_stub)
12890 dirmips->no_fn_stub = true;
12891 if (indmips->fn_stub)
12893 dirmips->fn_stub = indmips->fn_stub;
12894 indmips->fn_stub = NULL;
12896 if (indmips->need_fn_stub)
12898 dirmips->need_fn_stub = true;
12899 indmips->need_fn_stub = false;
12901 if (indmips->call_stub)
12903 dirmips->call_stub = indmips->call_stub;
12904 indmips->call_stub = NULL;
12906 if (indmips->call_fp_stub)
12908 dirmips->call_fp_stub = indmips->call_fp_stub;
12909 indmips->call_fp_stub = NULL;
12911 if (indmips->global_got_area < dirmips->global_got_area)
12912 dirmips->global_got_area = indmips->global_got_area;
12913 if (indmips->global_got_area < GGA_NONE)
12914 indmips->global_got_area = GGA_NONE;
12915 if (indmips->has_nonpic_branches)
12916 dirmips->has_nonpic_branches = true;
12919 /* Take care of the special `__gnu_absolute_zero' symbol and ignore attempts
12920 to hide it. It has to remain global (it will also be protected) so as to
12921 be assigned a global GOT entry, which will then remain unchanged at load
12922 time. */
12924 void
12925 _bfd_mips_elf_hide_symbol (struct bfd_link_info *info,
12926 struct elf_link_hash_entry *entry,
12927 bool force_local)
12929 struct mips_elf_link_hash_table *htab;
12931 htab = mips_elf_hash_table (info);
12932 BFD_ASSERT (htab != NULL);
12933 if (htab->use_absolute_zero
12934 && strcmp (entry->root.root.string, "__gnu_absolute_zero") == 0)
12935 return;
12937 _bfd_elf_link_hash_hide_symbol (info, entry, force_local);
12940 #define PDR_SIZE 32
12942 bool
12943 _bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
12944 struct bfd_link_info *info)
12946 asection *o;
12947 bool ret = false;
12948 unsigned char *tdata;
12949 size_t i, skip;
12951 o = bfd_get_section_by_name (abfd, ".pdr");
12952 if (! o)
12953 return false;
12954 if (o->size == 0)
12955 return false;
12956 if (o->size % PDR_SIZE != 0)
12957 return false;
12958 if (o->output_section != NULL
12959 && bfd_is_abs_section (o->output_section))
12960 return false;
12962 tdata = bfd_zmalloc (o->size / PDR_SIZE);
12963 if (! tdata)
12964 return false;
12966 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
12967 info->keep_memory);
12968 if (!cookie->rels)
12970 free (tdata);
12971 return false;
12974 cookie->rel = cookie->rels;
12975 cookie->relend = cookie->rels + o->reloc_count;
12977 for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
12979 if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
12981 tdata[i] = 1;
12982 skip ++;
12986 if (skip != 0)
12988 mips_elf_section_data (o)->u.tdata = tdata;
12989 if (o->rawsize == 0)
12990 o->rawsize = o->size;
12991 o->size -= skip * PDR_SIZE;
12992 ret = true;
12994 else
12995 free (tdata);
12997 if (! info->keep_memory)
12998 free (cookie->rels);
13000 return ret;
13003 bool
13004 _bfd_mips_elf_ignore_discarded_relocs (asection *sec)
13006 if (strcmp (sec->name, ".pdr") == 0)
13007 return true;
13008 return false;
13011 bool
13012 _bfd_mips_elf_write_section (bfd *output_bfd,
13013 struct bfd_link_info *link_info ATTRIBUTE_UNUSED,
13014 asection *sec, bfd_byte *contents)
13016 bfd_byte *to, *from, *end;
13017 int i;
13019 if (strcmp (sec->name, ".pdr") != 0)
13020 return false;
13022 if (mips_elf_section_data (sec)->u.tdata == NULL)
13023 return false;
13025 to = contents;
13026 end = contents + sec->size;
13027 for (from = contents, i = 0;
13028 from < end;
13029 from += PDR_SIZE, i++)
13031 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
13032 continue;
13033 if (to != from)
13034 memcpy (to, from, PDR_SIZE);
13035 to += PDR_SIZE;
13037 bfd_set_section_contents (output_bfd, sec->output_section, contents,
13038 sec->output_offset, sec->size);
13039 return true;
13042 /* microMIPS code retains local labels for linker relaxation. Omit them
13043 from output by default for clarity. */
13045 bool
13046 _bfd_mips_elf_is_target_special_symbol (bfd *abfd, asymbol *sym)
13048 return _bfd_elf_is_local_label_name (abfd, sym->name);
13051 /* MIPS ELF uses a special find_nearest_line routine in order the
13052 handle the ECOFF debugging information. */
13054 struct mips_elf_find_line
13056 struct ecoff_debug_info d;
13057 struct ecoff_find_line i;
13060 bool
13061 _bfd_mips_elf_find_nearest_line (bfd *abfd, asymbol **symbols,
13062 asection *section, bfd_vma offset,
13063 const char **filename_ptr,
13064 const char **functionname_ptr,
13065 unsigned int *line_ptr,
13066 unsigned int *discriminator_ptr)
13068 asection *msec;
13070 if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset,
13071 filename_ptr, functionname_ptr,
13072 line_ptr, discriminator_ptr,
13073 dwarf_debug_sections,
13074 &elf_tdata (abfd)->dwarf2_find_line_info)
13075 == 1)
13076 return true;
13078 if (_bfd_dwarf1_find_nearest_line (abfd, symbols, section, offset,
13079 filename_ptr, functionname_ptr,
13080 line_ptr))
13082 if (!*functionname_ptr)
13083 _bfd_elf_find_function (abfd, symbols, section, offset,
13084 *filename_ptr ? NULL : filename_ptr,
13085 functionname_ptr);
13086 return true;
13089 msec = bfd_get_section_by_name (abfd, ".mdebug");
13090 if (msec != NULL)
13092 flagword origflags;
13093 struct mips_elf_find_line *fi;
13094 const struct ecoff_debug_swap * const swap =
13095 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
13097 /* If we are called during a link, mips_elf_final_link may have
13098 cleared the SEC_HAS_CONTENTS field. We force it back on here
13099 if appropriate (which it normally will be). */
13100 origflags = msec->flags;
13101 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
13102 msec->flags |= SEC_HAS_CONTENTS;
13104 fi = mips_elf_tdata (abfd)->find_line_info;
13105 if (fi == NULL)
13107 bfd_size_type external_fdr_size;
13108 char *fraw_src;
13109 char *fraw_end;
13110 struct fdr *fdr_ptr;
13111 bfd_size_type amt = sizeof (struct mips_elf_find_line);
13113 fi = bfd_zalloc (abfd, amt);
13114 if (fi == NULL)
13116 msec->flags = origflags;
13117 return false;
13120 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
13122 msec->flags = origflags;
13123 return false;
13126 /* Swap in the FDR information. */
13127 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
13128 fi->d.fdr = bfd_alloc (abfd, amt);
13129 if (fi->d.fdr == NULL)
13131 msec->flags = origflags;
13132 return false;
13134 external_fdr_size = swap->external_fdr_size;
13135 fdr_ptr = fi->d.fdr;
13136 fraw_src = (char *) fi->d.external_fdr;
13137 fraw_end = (fraw_src
13138 + fi->d.symbolic_header.ifdMax * external_fdr_size);
13139 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
13140 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
13142 mips_elf_tdata (abfd)->find_line_info = fi;
13144 /* Note that we don't bother to ever free this information.
13145 find_nearest_line is either called all the time, as in
13146 objdump -l, so the information should be saved, or it is
13147 rarely called, as in ld error messages, so the memory
13148 wasted is unimportant. Still, it would probably be a
13149 good idea for free_cached_info to throw it away. */
13152 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
13153 &fi->i, filename_ptr, functionname_ptr,
13154 line_ptr))
13156 msec->flags = origflags;
13157 return true;
13160 msec->flags = origflags;
13163 /* Fall back on the generic ELF find_nearest_line routine. */
13165 return _bfd_elf_find_nearest_line (abfd, symbols, section, offset,
13166 filename_ptr, functionname_ptr,
13167 line_ptr, discriminator_ptr);
13170 bool
13171 _bfd_mips_elf_find_inliner_info (bfd *abfd,
13172 const char **filename_ptr,
13173 const char **functionname_ptr,
13174 unsigned int *line_ptr)
13176 bool found;
13177 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
13178 functionname_ptr, line_ptr,
13179 & elf_tdata (abfd)->dwarf2_find_line_info);
13180 return found;
13184 /* When are writing out the .options or .MIPS.options section,
13185 remember the bytes we are writing out, so that we can install the
13186 GP value in the section_processing routine. */
13188 bool
13189 _bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
13190 const void *location,
13191 file_ptr offset, bfd_size_type count)
13193 if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name))
13195 bfd_byte *c;
13197 if (elf_section_data (section) == NULL)
13199 size_t amt = sizeof (struct bfd_elf_section_data);
13200 section->used_by_bfd = bfd_zalloc (abfd, amt);
13201 if (elf_section_data (section) == NULL)
13202 return false;
13204 c = mips_elf_section_data (section)->u.tdata;
13205 if (c == NULL)
13207 c = bfd_zalloc (abfd, section->size);
13208 if (c == NULL)
13209 return false;
13210 mips_elf_section_data (section)->u.tdata = c;
13213 memcpy (c + offset, location, count);
13216 return _bfd_elf_set_section_contents (abfd, section, location, offset,
13217 count);
13220 /* This is almost identical to bfd_generic_get_... except that some
13221 MIPS relocations need to be handled specially. Sigh. */
13223 bfd_byte *
13224 _bfd_elf_mips_get_relocated_section_contents
13225 (bfd *abfd,
13226 struct bfd_link_info *link_info,
13227 struct bfd_link_order *link_order,
13228 bfd_byte *data,
13229 bool relocatable,
13230 asymbol **symbols)
13232 bfd *input_bfd = link_order->u.indirect.section->owner;
13233 asection *input_section = link_order->u.indirect.section;
13234 long reloc_size;
13235 arelent **reloc_vector;
13236 long reloc_count;
13238 reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
13239 if (reloc_size < 0)
13240 return NULL;
13242 /* Read in the section. */
13243 if (!bfd_get_full_section_contents (input_bfd, input_section, &data))
13244 return NULL;
13246 if (data == NULL)
13247 return NULL;
13249 if (reloc_size == 0)
13250 return data;
13252 reloc_vector = (arelent **) bfd_malloc (reloc_size);
13253 if (reloc_vector == NULL)
13255 struct mips_hi16 **hip, *hi;
13256 error_return:
13257 /* If we are going to return an error, remove entries on
13258 mips_hi16_list that point into this section's data. Data
13259 will typically be freed on return from this function. */
13260 hip = &mips_hi16_list;
13261 while ((hi = *hip) != NULL)
13263 if (hi->input_section == input_section)
13265 *hip = hi->next;
13266 free (hi);
13268 else
13269 hip = &hi->next;
13271 data = NULL;
13272 goto out;
13275 reloc_count = bfd_canonicalize_reloc (input_bfd,
13276 input_section,
13277 reloc_vector,
13278 symbols);
13279 if (reloc_count < 0)
13280 goto error_return;
13282 if (reloc_count > 0)
13284 arelent **parent;
13285 /* for mips */
13286 int gp_found;
13287 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
13290 struct bfd_hash_entry *h;
13291 struct bfd_link_hash_entry *lh;
13292 /* Skip all this stuff if we aren't mixing formats. */
13293 if (abfd && input_bfd
13294 && abfd->xvec == input_bfd->xvec)
13295 lh = 0;
13296 else
13298 h = bfd_hash_lookup (&link_info->hash->table, "_gp", false, false);
13299 lh = (struct bfd_link_hash_entry *) h;
13301 lookup:
13302 if (lh)
13304 switch (lh->type)
13306 case bfd_link_hash_undefined:
13307 case bfd_link_hash_undefweak:
13308 case bfd_link_hash_common:
13309 gp_found = 0;
13310 break;
13311 case bfd_link_hash_defined:
13312 case bfd_link_hash_defweak:
13313 gp_found = 1;
13314 gp = lh->u.def.value;
13315 break;
13316 case bfd_link_hash_indirect:
13317 case bfd_link_hash_warning:
13318 lh = lh->u.i.link;
13319 /* @@FIXME ignoring warning for now */
13320 goto lookup;
13321 case bfd_link_hash_new:
13322 default:
13323 abort ();
13326 else
13327 gp_found = 0;
13329 /* end mips */
13331 for (parent = reloc_vector; *parent != NULL; parent++)
13333 char *error_message = NULL;
13334 asymbol *symbol;
13335 bfd_reloc_status_type r;
13337 symbol = *(*parent)->sym_ptr_ptr;
13338 /* PR ld/19628: A specially crafted input file
13339 can result in a NULL symbol pointer here. */
13340 if (symbol == NULL)
13342 link_info->callbacks->einfo
13343 /* xgettext:c-format */
13344 (_("%X%P: %pB(%pA): error: relocation for offset %V has no value\n"),
13345 abfd, input_section, (* parent)->address);
13346 goto error_return;
13349 /* Zap reloc field when the symbol is from a discarded
13350 section, ignoring any addend. Do the same when called
13351 from bfd_simple_get_relocated_section_contents for
13352 undefined symbols in debug sections. This is to keep
13353 debug info reasonably sane, in particular so that
13354 DW_FORM_ref_addr to another file's .debug_info isn't
13355 confused with an offset into the current file's
13356 .debug_info. */
13357 if ((symbol->section != NULL && discarded_section (symbol->section))
13358 || (symbol->section == bfd_und_section_ptr
13359 && (input_section->flags & SEC_DEBUGGING) != 0
13360 && link_info->input_bfds == link_info->output_bfd))
13362 bfd_vma off;
13363 static reloc_howto_type none_howto
13364 = HOWTO (0, 0, 0, 0, false, 0, complain_overflow_dont, NULL,
13365 "unused", false, 0, 0, false);
13367 off = ((*parent)->address
13368 * bfd_octets_per_byte (input_bfd, input_section));
13369 _bfd_clear_contents ((*parent)->howto, input_bfd,
13370 input_section, data, off);
13371 (*parent)->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
13372 (*parent)->addend = 0;
13373 (*parent)->howto = &none_howto;
13374 r = bfd_reloc_ok;
13377 /* Specific to MIPS: Deal with relocation types that require
13378 knowing the gp of the output bfd. */
13380 /* If we've managed to find the gp and have a special
13381 function for the relocation then go ahead, else default
13382 to the generic handling. */
13383 else if (gp_found
13384 && ((*parent)->howto->special_function
13385 == _bfd_mips_elf32_gprel16_reloc))
13386 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, symbol, *parent,
13387 input_section, relocatable,
13388 data, gp);
13389 else
13390 r = bfd_perform_relocation (input_bfd,
13391 *parent,
13392 data,
13393 input_section,
13394 relocatable ? abfd : NULL,
13395 &error_message);
13397 if (relocatable)
13399 asection *os = input_section->output_section;
13401 /* A partial link, so keep the relocs. */
13402 os->orelocation[os->reloc_count] = *parent;
13403 os->reloc_count++;
13406 if (r != bfd_reloc_ok)
13408 switch (r)
13410 case bfd_reloc_undefined:
13411 (*link_info->callbacks->undefined_symbol)
13412 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
13413 input_bfd, input_section, (*parent)->address, true);
13414 break;
13415 case bfd_reloc_dangerous:
13416 BFD_ASSERT (error_message != NULL);
13417 (*link_info->callbacks->reloc_dangerous)
13418 (link_info, error_message,
13419 input_bfd, input_section, (*parent)->address);
13420 break;
13421 case bfd_reloc_overflow:
13422 (*link_info->callbacks->reloc_overflow)
13423 (link_info, NULL,
13424 bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
13425 (*parent)->howto->name, (*parent)->addend,
13426 input_bfd, input_section, (*parent)->address);
13427 break;
13428 case bfd_reloc_outofrange:
13429 /* PR ld/13730:
13430 This error can result when processing some partially
13431 complete binaries. Do not abort, but issue an error
13432 message instead. */
13433 link_info->callbacks->einfo
13434 /* xgettext:c-format */
13435 (_("%X%P: %pB(%pA): relocation \"%pR\" goes out of range\n"),
13436 abfd, input_section, * parent);
13437 goto error_return;
13439 case bfd_reloc_notsupported:
13440 /* PR ld/17512
13441 This error can result when processing a corrupt binary.
13442 Do not abort. Issue an error message instead. */
13443 link_info->callbacks->einfo
13444 /* xgettext:c-format */
13445 (_("%X%P: %pB(%pA): relocation \"%pR\" is not supported\n"),
13446 abfd, input_section, * parent);
13447 goto error_return;
13449 default:
13450 /* PR 17512; file: 90c2a92e.
13451 Report unexpected results, without aborting. */
13452 link_info->callbacks->einfo
13453 /* xgettext:c-format */
13454 (_("%X%P: %pB(%pA): relocation \"%pR\" returns an unrecognized value %x\n"),
13455 abfd, input_section, * parent, r);
13456 break;
13463 out:
13464 free (reloc_vector);
13465 return data;
13468 static bool
13469 mips_elf_relax_delete_bytes (bfd *abfd,
13470 asection *sec, bfd_vma addr, int count)
13472 Elf_Internal_Shdr *symtab_hdr;
13473 unsigned int sec_shndx;
13474 bfd_byte *contents;
13475 Elf_Internal_Rela *irel, *irelend;
13476 Elf_Internal_Sym *isym;
13477 Elf_Internal_Sym *isymend;
13478 struct elf_link_hash_entry **sym_hashes;
13479 struct elf_link_hash_entry **end_hashes;
13480 struct elf_link_hash_entry **start_hashes;
13481 unsigned int symcount;
13483 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
13484 contents = elf_section_data (sec)->this_hdr.contents;
13486 irel = elf_section_data (sec)->relocs;
13487 irelend = irel + sec->reloc_count;
13489 /* Actually delete the bytes. */
13490 memmove (contents + addr, contents + addr + count,
13491 (size_t) (sec->size - addr - count));
13492 sec->size -= count;
13494 /* Adjust all the relocs. */
13495 for (irel = elf_section_data (sec)->relocs; irel < irelend; irel++)
13497 /* Get the new reloc address. */
13498 if (irel->r_offset > addr)
13499 irel->r_offset -= count;
13502 BFD_ASSERT (addr % 2 == 0);
13503 BFD_ASSERT (count % 2 == 0);
13505 /* Adjust the local symbols defined in this section. */
13506 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
13507 isym = (Elf_Internal_Sym *) symtab_hdr->contents;
13508 for (isymend = isym + symtab_hdr->sh_info; isym < isymend; isym++)
13509 if (isym->st_shndx == sec_shndx && isym->st_value > addr)
13510 isym->st_value -= count;
13512 /* Now adjust the global symbols defined in this section. */
13513 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
13514 - symtab_hdr->sh_info);
13515 sym_hashes = start_hashes = elf_sym_hashes (abfd);
13516 end_hashes = sym_hashes + symcount;
13518 for (; sym_hashes < end_hashes; sym_hashes++)
13520 struct elf_link_hash_entry *sym_hash = *sym_hashes;
13522 if ((sym_hash->root.type == bfd_link_hash_defined
13523 || sym_hash->root.type == bfd_link_hash_defweak)
13524 && sym_hash->root.u.def.section == sec)
13526 bfd_vma value = sym_hash->root.u.def.value;
13528 if (ELF_ST_IS_MICROMIPS (sym_hash->other))
13529 value &= MINUS_TWO;
13530 if (value > addr)
13531 sym_hash->root.u.def.value -= count;
13535 return true;
13539 /* Opcodes needed for microMIPS relaxation as found in
13540 opcodes/micromips-opc.c. */
13542 struct opcode_descriptor {
13543 unsigned long match;
13544 unsigned long mask;
13547 /* The $ra register aka $31. */
13549 #define RA 31
13551 /* 32-bit instruction format register fields. */
13553 #define OP32_SREG(opcode) (((opcode) >> 16) & 0x1f)
13554 #define OP32_TREG(opcode) (((opcode) >> 21) & 0x1f)
13556 /* Check if a 5-bit register index can be abbreviated to 3 bits. */
13558 #define OP16_VALID_REG(r) \
13559 ((2 <= (r) && (r) <= 7) || (16 <= (r) && (r) <= 17))
13562 /* 32-bit and 16-bit branches. */
13564 static const struct opcode_descriptor b_insns_32[] = {
13565 { /* "b", "p", */ 0x40400000, 0xffff0000 }, /* bgez 0 */
13566 { /* "b", "p", */ 0x94000000, 0xffff0000 }, /* beq 0, 0 */
13567 { 0, 0 } /* End marker for find_match(). */
13570 static const struct opcode_descriptor bc_insn_32 =
13571 { /* "bc(1|2)(ft)", "N,p", */ 0x42800000, 0xfec30000 };
13573 static const struct opcode_descriptor bz_insn_32 =
13574 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 };
13576 static const struct opcode_descriptor bzal_insn_32 =
13577 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 };
13579 static const struct opcode_descriptor beq_insn_32 =
13580 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 };
13582 static const struct opcode_descriptor b_insn_16 =
13583 { /* "b", "mD", */ 0xcc00, 0xfc00 };
13585 static const struct opcode_descriptor bz_insn_16 =
13586 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 };
13589 /* 32-bit and 16-bit branch EQ and NE zero. */
13591 /* NOTE: All opcode tables have BEQ/BNE in the same order: first the
13592 eq and second the ne. This convention is used when replacing a
13593 32-bit BEQ/BNE with the 16-bit version. */
13595 #define BZC32_REG_FIELD(r) (((r) & 0x1f) << 16)
13597 static const struct opcode_descriptor bz_rs_insns_32[] = {
13598 { /* "beqz", "s,p", */ 0x94000000, 0xffe00000 },
13599 { /* "bnez", "s,p", */ 0xb4000000, 0xffe00000 },
13600 { 0, 0 } /* End marker for find_match(). */
13603 static const struct opcode_descriptor bz_rt_insns_32[] = {
13604 { /* "beqz", "t,p", */ 0x94000000, 0xfc01f000 },
13605 { /* "bnez", "t,p", */ 0xb4000000, 0xfc01f000 },
13606 { 0, 0 } /* End marker for find_match(). */
13609 static const struct opcode_descriptor bzc_insns_32[] = {
13610 { /* "beqzc", "s,p", */ 0x40e00000, 0xffe00000 },
13611 { /* "bnezc", "s,p", */ 0x40a00000, 0xffe00000 },
13612 { 0, 0 } /* End marker for find_match(). */
13615 static const struct opcode_descriptor bz_insns_16[] = {
13616 { /* "beqz", "md,mE", */ 0x8c00, 0xfc00 },
13617 { /* "bnez", "md,mE", */ 0xac00, 0xfc00 },
13618 { 0, 0 } /* End marker for find_match(). */
13621 /* Switch between a 5-bit register index and its 3-bit shorthand. */
13623 #define BZ16_REG(opcode) ((((((opcode) >> 7) & 7) + 0x1e) & 0xf) + 2)
13624 #define BZ16_REG_FIELD(r) (((r) & 7) << 7)
13627 /* 32-bit instructions with a delay slot. */
13629 static const struct opcode_descriptor jal_insn_32_bd16 =
13630 { /* "jals", "a", */ 0x74000000, 0xfc000000 };
13632 static const struct opcode_descriptor jal_insn_32_bd32 =
13633 { /* "jal", "a", */ 0xf4000000, 0xfc000000 };
13635 static const struct opcode_descriptor jal_x_insn_32_bd32 =
13636 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 };
13638 static const struct opcode_descriptor j_insn_32 =
13639 { /* "j", "a", */ 0xd4000000, 0xfc000000 };
13641 static const struct opcode_descriptor jalr_insn_32 =
13642 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff };
13644 /* This table can be compacted, because no opcode replacement is made. */
13646 static const struct opcode_descriptor ds_insns_32_bd16[] = {
13647 { /* "jals", "a", */ 0x74000000, 0xfc000000 },
13649 { /* "jalrs[.hb]", "t,s", */ 0x00004f3c, 0xfc00efff },
13650 { /* "b(ge|lt)zals", "s,p", */ 0x42200000, 0xffa00000 },
13652 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 },
13653 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 },
13654 { /* "j", "a", */ 0xd4000000, 0xfc000000 },
13655 { 0, 0 } /* End marker for find_match(). */
13658 /* This table can be compacted, because no opcode replacement is made. */
13660 static const struct opcode_descriptor ds_insns_32_bd32[] = {
13661 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 },
13663 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff },
13664 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 },
13665 { 0, 0 } /* End marker for find_match(). */
13669 /* 16-bit instructions with a delay slot. */
13671 static const struct opcode_descriptor jalr_insn_16_bd16 =
13672 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 };
13674 static const struct opcode_descriptor jalr_insn_16_bd32 =
13675 { /* "jalr", "my,mj", */ 0x45c0, 0xffe0 };
13677 static const struct opcode_descriptor jr_insn_16 =
13678 { /* "jr", "mj", */ 0x4580, 0xffe0 };
13680 #define JR16_REG(opcode) ((opcode) & 0x1f)
13682 /* This table can be compacted, because no opcode replacement is made. */
13684 static const struct opcode_descriptor ds_insns_16_bd16[] = {
13685 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 },
13687 { /* "b", "mD", */ 0xcc00, 0xfc00 },
13688 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 },
13689 { /* "jr", "mj", */ 0x4580, 0xffe0 },
13690 { 0, 0 } /* End marker for find_match(). */
13694 /* LUI instruction. */
13696 static const struct opcode_descriptor lui_insn =
13697 { /* "lui", "s,u", */ 0x41a00000, 0xffe00000 };
13700 /* ADDIU instruction. */
13702 static const struct opcode_descriptor addiu_insn =
13703 { /* "addiu", "t,r,j", */ 0x30000000, 0xfc000000 };
13705 static const struct opcode_descriptor addiupc_insn =
13706 { /* "addiu", "mb,$pc,mQ", */ 0x78000000, 0xfc000000 };
13708 #define ADDIUPC_REG_FIELD(r) \
13709 (((2 <= (r) && (r) <= 7) ? (r) : ((r) - 16)) << 23)
13712 /* Relaxable instructions in a JAL delay slot: MOVE. */
13714 /* The 16-bit move has rd in 9:5 and rs in 4:0. The 32-bit moves
13715 (ADDU, OR) have rd in 15:11 and rs in 10:16. */
13716 #define MOVE32_RD(opcode) (((opcode) >> 11) & 0x1f)
13717 #define MOVE32_RS(opcode) (((opcode) >> 16) & 0x1f)
13719 #define MOVE16_RD_FIELD(r) (((r) & 0x1f) << 5)
13720 #define MOVE16_RS_FIELD(r) (((r) & 0x1f) )
13722 static const struct opcode_descriptor move_insns_32[] = {
13723 { /* "move", "d,s", */ 0x00000290, 0xffe007ff }, /* or d,s,$0 */
13724 { /* "move", "d,s", */ 0x00000150, 0xffe007ff }, /* addu d,s,$0 */
13725 { 0, 0 } /* End marker for find_match(). */
13728 static const struct opcode_descriptor move_insn_16 =
13729 { /* "move", "mp,mj", */ 0x0c00, 0xfc00 };
13732 /* NOP instructions. */
13734 static const struct opcode_descriptor nop_insn_32 =
13735 { /* "nop", "", */ 0x00000000, 0xffffffff };
13737 static const struct opcode_descriptor nop_insn_16 =
13738 { /* "nop", "", */ 0x0c00, 0xffff };
13741 /* Instruction match support. */
13743 #define MATCH(opcode, insn) ((opcode & insn.mask) == insn.match)
13745 static int
13746 find_match (unsigned long opcode, const struct opcode_descriptor insn[])
13748 unsigned long indx;
13750 for (indx = 0; insn[indx].mask != 0; indx++)
13751 if (MATCH (opcode, insn[indx]))
13752 return indx;
13754 return -1;
13758 /* Branch and delay slot decoding support. */
13760 /* If PTR points to what *might* be a 16-bit branch or jump, then
13761 return the minimum length of its delay slot, otherwise return 0.
13762 Non-zero results are not definitive as we might be checking against
13763 the second half of another instruction. */
13765 static int
13766 check_br16_dslot (bfd *abfd, bfd_byte *ptr)
13768 unsigned long opcode;
13769 int bdsize;
13771 opcode = bfd_get_16 (abfd, ptr);
13772 if (MATCH (opcode, jalr_insn_16_bd32) != 0)
13773 /* 16-bit branch/jump with a 32-bit delay slot. */
13774 bdsize = 4;
13775 else if (MATCH (opcode, jalr_insn_16_bd16) != 0
13776 || find_match (opcode, ds_insns_16_bd16) >= 0)
13777 /* 16-bit branch/jump with a 16-bit delay slot. */
13778 bdsize = 2;
13779 else
13780 /* No delay slot. */
13781 bdsize = 0;
13783 return bdsize;
13786 /* If PTR points to what *might* be a 32-bit branch or jump, then
13787 return the minimum length of its delay slot, otherwise return 0.
13788 Non-zero results are not definitive as we might be checking against
13789 the second half of another instruction. */
13791 static int
13792 check_br32_dslot (bfd *abfd, bfd_byte *ptr)
13794 unsigned long opcode;
13795 int bdsize;
13797 opcode = bfd_get_micromips_32 (abfd, ptr);
13798 if (find_match (opcode, ds_insns_32_bd32) >= 0)
13799 /* 32-bit branch/jump with a 32-bit delay slot. */
13800 bdsize = 4;
13801 else if (find_match (opcode, ds_insns_32_bd16) >= 0)
13802 /* 32-bit branch/jump with a 16-bit delay slot. */
13803 bdsize = 2;
13804 else
13805 /* No delay slot. */
13806 bdsize = 0;
13808 return bdsize;
13811 /* If PTR points to a 16-bit branch or jump with a 32-bit delay slot
13812 that doesn't fiddle with REG, then return TRUE, otherwise FALSE. */
13814 static bool
13815 check_br16 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
13817 unsigned long opcode;
13819 opcode = bfd_get_16 (abfd, ptr);
13820 if (MATCH (opcode, b_insn_16)
13821 /* B16 */
13822 || (MATCH (opcode, jr_insn_16) && reg != JR16_REG (opcode))
13823 /* JR16 */
13824 || (MATCH (opcode, bz_insn_16) && reg != BZ16_REG (opcode))
13825 /* BEQZ16, BNEZ16 */
13826 || (MATCH (opcode, jalr_insn_16_bd32)
13827 /* JALR16 */
13828 && reg != JR16_REG (opcode) && reg != RA))
13829 return true;
13831 return false;
13834 /* If PTR points to a 32-bit branch or jump that doesn't fiddle with REG,
13835 then return TRUE, otherwise FALSE. */
13837 static bool
13838 check_br32 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
13840 unsigned long opcode;
13842 opcode = bfd_get_micromips_32 (abfd, ptr);
13843 if (MATCH (opcode, j_insn_32)
13844 /* J */
13845 || MATCH (opcode, bc_insn_32)
13846 /* BC1F, BC1T, BC2F, BC2T */
13847 || (MATCH (opcode, jal_x_insn_32_bd32) && reg != RA)
13848 /* JAL, JALX */
13849 || (MATCH (opcode, bz_insn_32) && reg != OP32_SREG (opcode))
13850 /* BGEZ, BGTZ, BLEZ, BLTZ */
13851 || (MATCH (opcode, bzal_insn_32)
13852 /* BGEZAL, BLTZAL */
13853 && reg != OP32_SREG (opcode) && reg != RA)
13854 || ((MATCH (opcode, jalr_insn_32) || MATCH (opcode, beq_insn_32))
13855 /* JALR, JALR.HB, BEQ, BNE */
13856 && reg != OP32_SREG (opcode) && reg != OP32_TREG (opcode)))
13857 return true;
13859 return false;
13862 /* If the instruction encoding at PTR and relocations [INTERNAL_RELOCS,
13863 IRELEND) at OFFSET indicate that there must be a compact branch there,
13864 then return TRUE, otherwise FALSE. */
13866 static bool
13867 check_relocated_bzc (bfd *abfd, const bfd_byte *ptr, bfd_vma offset,
13868 const Elf_Internal_Rela *internal_relocs,
13869 const Elf_Internal_Rela *irelend)
13871 const Elf_Internal_Rela *irel;
13872 unsigned long opcode;
13874 opcode = bfd_get_micromips_32 (abfd, ptr);
13875 if (find_match (opcode, bzc_insns_32) < 0)
13876 return false;
13878 for (irel = internal_relocs; irel < irelend; irel++)
13879 if (irel->r_offset == offset
13880 && ELF32_R_TYPE (irel->r_info) == R_MICROMIPS_PC16_S1)
13881 return true;
13883 return false;
13886 /* Bitsize checking. */
13887 #define IS_BITSIZE(val, N) \
13888 (((((val) & ((1ULL << (N)) - 1)) ^ (1ULL << ((N) - 1))) \
13889 - (1ULL << ((N) - 1))) == (val))
13892 bool
13893 _bfd_mips_elf_relax_section (bfd *abfd, asection *sec,
13894 struct bfd_link_info *link_info,
13895 bool *again)
13897 bool insn32 = mips_elf_hash_table (link_info)->insn32;
13898 Elf_Internal_Shdr *symtab_hdr;
13899 Elf_Internal_Rela *internal_relocs;
13900 Elf_Internal_Rela *irel, *irelend;
13901 bfd_byte *contents = NULL;
13902 Elf_Internal_Sym *isymbuf = NULL;
13904 /* Assume nothing changes. */
13905 *again = false;
13907 /* We don't have to do anything for a relocatable link, if
13908 this section does not have relocs, or if this is not a
13909 code section. */
13911 if (bfd_link_relocatable (link_info)
13912 || (sec->flags & SEC_RELOC) == 0
13913 || sec->reloc_count == 0
13914 || (sec->flags & SEC_CODE) == 0)
13915 return true;
13917 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
13919 /* Get a copy of the native relocations. */
13920 internal_relocs = (_bfd_elf_link_read_relocs
13921 (abfd, sec, NULL, (Elf_Internal_Rela *) NULL,
13922 link_info->keep_memory));
13923 if (internal_relocs == NULL)
13924 goto error_return;
13926 /* Walk through them looking for relaxing opportunities. */
13927 irelend = internal_relocs + sec->reloc_count;
13928 for (irel = internal_relocs; irel < irelend; irel++)
13930 unsigned long r_symndx = ELF32_R_SYM (irel->r_info);
13931 unsigned int r_type = ELF32_R_TYPE (irel->r_info);
13932 bool target_is_micromips_code_p;
13933 unsigned long opcode;
13934 bfd_vma symval;
13935 bfd_vma pcrval;
13936 bfd_byte *ptr;
13937 int fndopc;
13939 /* The number of bytes to delete for relaxation and from where
13940 to delete these bytes starting at irel->r_offset. */
13941 int delcnt = 0;
13942 int deloff = 0;
13944 /* If this isn't something that can be relaxed, then ignore
13945 this reloc. */
13946 if (r_type != R_MICROMIPS_HI16
13947 && r_type != R_MICROMIPS_PC16_S1
13948 && r_type != R_MICROMIPS_26_S1)
13949 continue;
13951 /* Get the section contents if we haven't done so already. */
13952 if (contents == NULL)
13954 /* Get cached copy if it exists. */
13955 if (elf_section_data (sec)->this_hdr.contents != NULL)
13956 contents = elf_section_data (sec)->this_hdr.contents;
13957 /* Go get them off disk. */
13958 else if (!bfd_malloc_and_get_section (abfd, sec, &contents))
13959 goto error_return;
13961 ptr = contents + irel->r_offset;
13963 /* Read this BFD's local symbols if we haven't done so already. */
13964 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
13966 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
13967 if (isymbuf == NULL)
13968 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
13969 symtab_hdr->sh_info, 0,
13970 NULL, NULL, NULL);
13971 if (isymbuf == NULL)
13972 goto error_return;
13975 /* Get the value of the symbol referred to by the reloc. */
13976 if (r_symndx < symtab_hdr->sh_info)
13978 /* A local symbol. */
13979 Elf_Internal_Sym *isym;
13980 asection *sym_sec;
13982 isym = isymbuf + r_symndx;
13983 if (isym->st_shndx == SHN_UNDEF)
13984 sym_sec = bfd_und_section_ptr;
13985 else if (isym->st_shndx == SHN_ABS)
13986 sym_sec = bfd_abs_section_ptr;
13987 else if (isym->st_shndx == SHN_COMMON)
13988 sym_sec = bfd_com_section_ptr;
13989 else
13990 sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
13991 symval = (isym->st_value
13992 + sym_sec->output_section->vma
13993 + sym_sec->output_offset);
13994 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (isym->st_other);
13996 else
13998 unsigned long indx;
13999 struct elf_link_hash_entry *h;
14001 /* An external symbol. */
14002 indx = r_symndx - symtab_hdr->sh_info;
14003 h = elf_sym_hashes (abfd)[indx];
14004 BFD_ASSERT (h != NULL);
14006 if (h->root.type != bfd_link_hash_defined
14007 && h->root.type != bfd_link_hash_defweak)
14008 /* This appears to be a reference to an undefined
14009 symbol. Just ignore it -- it will be caught by the
14010 regular reloc processing. */
14011 continue;
14013 symval = (h->root.u.def.value
14014 + h->root.u.def.section->output_section->vma
14015 + h->root.u.def.section->output_offset);
14016 target_is_micromips_code_p = (!h->needs_plt
14017 && ELF_ST_IS_MICROMIPS (h->other));
14021 /* For simplicity of coding, we are going to modify the
14022 section contents, the section relocs, and the BFD symbol
14023 table. We must tell the rest of the code not to free up this
14024 information. It would be possible to instead create a table
14025 of changes which have to be made, as is done in coff-mips.c;
14026 that would be more work, but would require less memory when
14027 the linker is run. */
14029 /* Only 32-bit instructions relaxed. */
14030 if (irel->r_offset + 4 > sec->size)
14031 continue;
14033 opcode = bfd_get_micromips_32 (abfd, ptr);
14035 /* This is the pc-relative distance from the instruction the
14036 relocation is applied to, to the symbol referred. */
14037 pcrval = (symval
14038 - (sec->output_section->vma + sec->output_offset)
14039 - irel->r_offset);
14041 /* R_MICROMIPS_HI16 / LUI relaxation to nil, performing relaxation
14042 of corresponding R_MICROMIPS_LO16 to R_MICROMIPS_HI0_LO16 or
14043 R_MICROMIPS_PC23_S2. The R_MICROMIPS_PC23_S2 condition is
14045 (symval % 4 == 0 && IS_BITSIZE (pcrval, 25))
14047 where pcrval has first to be adjusted to apply against the LO16
14048 location (we make the adjustment later on, when we have figured
14049 out the offset). */
14050 if (r_type == R_MICROMIPS_HI16 && MATCH (opcode, lui_insn))
14052 bool bzc = false;
14053 unsigned long nextopc;
14054 unsigned long reg;
14055 bfd_vma offset;
14057 /* Give up if the previous reloc was a HI16 against this symbol
14058 too. */
14059 if (irel > internal_relocs
14060 && ELF32_R_TYPE (irel[-1].r_info) == R_MICROMIPS_HI16
14061 && ELF32_R_SYM (irel[-1].r_info) == r_symndx)
14062 continue;
14064 /* Or if the next reloc is not a LO16 against this symbol. */
14065 if (irel + 1 >= irelend
14066 || ELF32_R_TYPE (irel[1].r_info) != R_MICROMIPS_LO16
14067 || ELF32_R_SYM (irel[1].r_info) != r_symndx)
14068 continue;
14070 /* Or if the second next reloc is a LO16 against this symbol too. */
14071 if (irel + 2 >= irelend
14072 && ELF32_R_TYPE (irel[2].r_info) == R_MICROMIPS_LO16
14073 && ELF32_R_SYM (irel[2].r_info) == r_symndx)
14074 continue;
14076 /* See if the LUI instruction *might* be in a branch delay slot.
14077 We check whether what looks like a 16-bit branch or jump is
14078 actually an immediate argument to a compact branch, and let
14079 it through if so. */
14080 if (irel->r_offset >= 2
14081 && check_br16_dslot (abfd, ptr - 2)
14082 && !(irel->r_offset >= 4
14083 && (bzc = check_relocated_bzc (abfd,
14084 ptr - 4, irel->r_offset - 4,
14085 internal_relocs, irelend))))
14086 continue;
14087 if (irel->r_offset >= 4
14088 && !bzc
14089 && check_br32_dslot (abfd, ptr - 4))
14090 continue;
14092 reg = OP32_SREG (opcode);
14094 /* We only relax adjacent instructions or ones separated with
14095 a branch or jump that has a delay slot. The branch or jump
14096 must not fiddle with the register used to hold the address.
14097 Subtract 4 for the LUI itself. */
14098 offset = irel[1].r_offset - irel[0].r_offset;
14099 switch (offset - 4)
14101 case 0:
14102 break;
14103 case 2:
14104 if (check_br16 (abfd, ptr + 4, reg))
14105 break;
14106 continue;
14107 case 4:
14108 if (check_br32 (abfd, ptr + 4, reg))
14109 break;
14110 continue;
14111 default:
14112 continue;
14115 nextopc = bfd_get_micromips_32 (abfd, contents + irel[1].r_offset);
14117 /* Give up unless the same register is used with both
14118 relocations. */
14119 if (OP32_SREG (nextopc) != reg)
14120 continue;
14122 /* Now adjust pcrval, subtracting the offset to the LO16 reloc
14123 and rounding up to take masking of the two LSBs into account. */
14124 pcrval = ((pcrval - offset + 3) | 3) ^ 3;
14126 /* R_MICROMIPS_LO16 relaxation to R_MICROMIPS_HI0_LO16. */
14127 if (IS_BITSIZE (symval, 16))
14129 /* Fix the relocation's type. */
14130 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_HI0_LO16);
14132 /* Instructions using R_MICROMIPS_LO16 have the base or
14133 source register in bits 20:16. This register becomes $0
14134 (zero) as the result of the R_MICROMIPS_HI16 being 0. */
14135 nextopc &= ~0x001f0000;
14136 bfd_put_16 (abfd, (nextopc >> 16) & 0xffff,
14137 contents + irel[1].r_offset);
14140 /* R_MICROMIPS_LO16 / ADDIU relaxation to R_MICROMIPS_PC23_S2.
14141 We add 4 to take LUI deletion into account while checking
14142 the PC-relative distance. */
14143 else if (symval % 4 == 0
14144 && IS_BITSIZE (pcrval + 4, 25)
14145 && MATCH (nextopc, addiu_insn)
14146 && OP32_TREG (nextopc) == OP32_SREG (nextopc)
14147 && OP16_VALID_REG (OP32_TREG (nextopc)))
14149 /* Fix the relocation's type. */
14150 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC23_S2);
14152 /* Replace ADDIU with the ADDIUPC version. */
14153 nextopc = (addiupc_insn.match
14154 | ADDIUPC_REG_FIELD (OP32_TREG (nextopc)));
14156 bfd_put_micromips_32 (abfd, nextopc,
14157 contents + irel[1].r_offset);
14160 /* Can't do anything, give up, sigh... */
14161 else
14162 continue;
14164 /* Fix the relocation's type. */
14165 irel->r_info = ELF32_R_INFO (r_symndx, R_MIPS_NONE);
14167 /* Delete the LUI instruction: 4 bytes at irel->r_offset. */
14168 delcnt = 4;
14169 deloff = 0;
14172 /* Compact branch relaxation -- due to the multitude of macros
14173 employed by the compiler/assembler, compact branches are not
14174 always generated. Obviously, this can/will be fixed elsewhere,
14175 but there is no drawback in double checking it here. */
14176 else if (r_type == R_MICROMIPS_PC16_S1
14177 && irel->r_offset + 5 < sec->size
14178 && ((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
14179 || (fndopc = find_match (opcode, bz_rt_insns_32)) >= 0)
14180 && ((!insn32
14181 && (delcnt = MATCH (bfd_get_16 (abfd, ptr + 4),
14182 nop_insn_16) ? 2 : 0))
14183 || (irel->r_offset + 7 < sec->size
14184 && (delcnt = MATCH (bfd_get_micromips_32 (abfd,
14185 ptr + 4),
14186 nop_insn_32) ? 4 : 0))))
14188 unsigned long reg;
14190 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
14192 /* Replace BEQZ/BNEZ with the compact version. */
14193 opcode = (bzc_insns_32[fndopc].match
14194 | BZC32_REG_FIELD (reg)
14195 | (opcode & 0xffff)); /* Addend value. */
14197 bfd_put_micromips_32 (abfd, opcode, ptr);
14199 /* Delete the delay slot NOP: two or four bytes from
14200 irel->offset + 4; delcnt has already been set above. */
14201 deloff = 4;
14204 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC10_S1. We need
14205 to check the distance from the next instruction, so subtract 2. */
14206 else if (!insn32
14207 && r_type == R_MICROMIPS_PC16_S1
14208 && IS_BITSIZE (pcrval - 2, 11)
14209 && find_match (opcode, b_insns_32) >= 0)
14211 /* Fix the relocation's type. */
14212 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC10_S1);
14214 /* Replace the 32-bit opcode with a 16-bit opcode. */
14215 bfd_put_16 (abfd,
14216 (b_insn_16.match
14217 | (opcode & 0x3ff)), /* Addend value. */
14218 ptr);
14220 /* Delete 2 bytes from irel->r_offset + 2. */
14221 delcnt = 2;
14222 deloff = 2;
14225 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC7_S1. We need
14226 to check the distance from the next instruction, so subtract 2. */
14227 else if (!insn32
14228 && r_type == R_MICROMIPS_PC16_S1
14229 && IS_BITSIZE (pcrval - 2, 8)
14230 && (((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
14231 && OP16_VALID_REG (OP32_SREG (opcode)))
14232 || ((fndopc = find_match (opcode, bz_rt_insns_32)) >= 0
14233 && OP16_VALID_REG (OP32_TREG (opcode)))))
14235 unsigned long reg;
14237 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
14239 /* Fix the relocation's type. */
14240 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC7_S1);
14242 /* Replace the 32-bit opcode with a 16-bit opcode. */
14243 bfd_put_16 (abfd,
14244 (bz_insns_16[fndopc].match
14245 | BZ16_REG_FIELD (reg)
14246 | (opcode & 0x7f)), /* Addend value. */
14247 ptr);
14249 /* Delete 2 bytes from irel->r_offset + 2. */
14250 delcnt = 2;
14251 deloff = 2;
14254 /* R_MICROMIPS_26_S1 -- JAL to JALS relaxation for microMIPS targets. */
14255 else if (!insn32
14256 && r_type == R_MICROMIPS_26_S1
14257 && target_is_micromips_code_p
14258 && irel->r_offset + 7 < sec->size
14259 && MATCH (opcode, jal_insn_32_bd32))
14261 unsigned long n32opc;
14262 bool relaxed = false;
14264 n32opc = bfd_get_micromips_32 (abfd, ptr + 4);
14266 if (MATCH (n32opc, nop_insn_32))
14268 /* Replace delay slot 32-bit NOP with a 16-bit NOP. */
14269 bfd_put_16 (abfd, nop_insn_16.match, ptr + 4);
14271 relaxed = true;
14273 else if (find_match (n32opc, move_insns_32) >= 0)
14275 /* Replace delay slot 32-bit MOVE with 16-bit MOVE. */
14276 bfd_put_16 (abfd,
14277 (move_insn_16.match
14278 | MOVE16_RD_FIELD (MOVE32_RD (n32opc))
14279 | MOVE16_RS_FIELD (MOVE32_RS (n32opc))),
14280 ptr + 4);
14282 relaxed = true;
14284 /* Other 32-bit instructions relaxable to 16-bit
14285 instructions will be handled here later. */
14287 if (relaxed)
14289 /* JAL with 32-bit delay slot that is changed to a JALS
14290 with 16-bit delay slot. */
14291 bfd_put_micromips_32 (abfd, jal_insn_32_bd16.match, ptr);
14293 /* Delete 2 bytes from irel->r_offset + 6. */
14294 delcnt = 2;
14295 deloff = 6;
14299 if (delcnt != 0)
14301 /* Note that we've changed the relocs, section contents, etc. */
14302 elf_section_data (sec)->relocs = internal_relocs;
14303 elf_section_data (sec)->this_hdr.contents = contents;
14304 symtab_hdr->contents = (unsigned char *) isymbuf;
14306 /* Delete bytes depending on the delcnt and deloff. */
14307 if (!mips_elf_relax_delete_bytes (abfd, sec,
14308 irel->r_offset + deloff, delcnt))
14309 goto error_return;
14311 /* That will change things, so we should relax again.
14312 Note that this is not required, and it may be slow. */
14313 *again = true;
14317 if (isymbuf != NULL
14318 && symtab_hdr->contents != (unsigned char *) isymbuf)
14320 if (! link_info->keep_memory)
14321 free (isymbuf);
14322 else
14324 /* Cache the symbols for elf_link_input_bfd. */
14325 symtab_hdr->contents = (unsigned char *) isymbuf;
14329 if (contents != NULL
14330 && elf_section_data (sec)->this_hdr.contents != contents)
14332 if (! link_info->keep_memory)
14333 free (contents);
14334 else
14336 /* Cache the section contents for elf_link_input_bfd. */
14337 elf_section_data (sec)->this_hdr.contents = contents;
14341 if (elf_section_data (sec)->relocs != internal_relocs)
14342 free (internal_relocs);
14344 return true;
14346 error_return:
14347 if (symtab_hdr->contents != (unsigned char *) isymbuf)
14348 free (isymbuf);
14349 if (elf_section_data (sec)->this_hdr.contents != contents)
14350 free (contents);
14351 if (elf_section_data (sec)->relocs != internal_relocs)
14352 free (internal_relocs);
14354 return false;
14357 /* Create a MIPS ELF linker hash table. */
14359 struct bfd_link_hash_table *
14360 _bfd_mips_elf_link_hash_table_create (bfd *abfd)
14362 struct mips_elf_link_hash_table *ret;
14363 size_t amt = sizeof (struct mips_elf_link_hash_table);
14365 ret = bfd_zmalloc (amt);
14366 if (ret == NULL)
14367 return NULL;
14369 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
14370 mips_elf_link_hash_newfunc,
14371 sizeof (struct mips_elf_link_hash_entry),
14372 MIPS_ELF_DATA))
14374 free (ret);
14375 return NULL;
14377 ret->root.init_plt_refcount.plist = NULL;
14378 ret->root.init_plt_offset.plist = NULL;
14380 return &ret->root.root;
14383 /* Likewise, but indicate that the target is VxWorks. */
14385 struct bfd_link_hash_table *
14386 _bfd_mips_vxworks_link_hash_table_create (bfd *abfd)
14388 struct bfd_link_hash_table *ret;
14390 ret = _bfd_mips_elf_link_hash_table_create (abfd);
14391 if (ret)
14393 struct mips_elf_link_hash_table *htab;
14395 htab = (struct mips_elf_link_hash_table *) ret;
14396 htab->use_plts_and_copy_relocs = true;
14398 return ret;
14401 /* A function that the linker calls if we are allowed to use PLTs
14402 and copy relocs. */
14404 void
14405 _bfd_mips_elf_use_plts_and_copy_relocs (struct bfd_link_info *info)
14407 mips_elf_hash_table (info)->use_plts_and_copy_relocs = true;
14410 /* A function that the linker calls to select between all or only
14411 32-bit microMIPS instructions, and between making or ignoring
14412 branch relocation checks for invalid transitions between ISA modes.
14413 Also record whether we have been configured for a GNU target. */
14415 void
14416 _bfd_mips_elf_linker_flags (struct bfd_link_info *info, bool insn32,
14417 bool ignore_branch_isa,
14418 bool gnu_target)
14420 mips_elf_hash_table (info)->insn32 = insn32;
14421 mips_elf_hash_table (info)->ignore_branch_isa = ignore_branch_isa;
14422 mips_elf_hash_table (info)->gnu_target = gnu_target;
14425 /* A function that the linker calls to enable use of compact branches in
14426 linker generated code for MIPSR6. */
14428 void
14429 _bfd_mips_elf_compact_branches (struct bfd_link_info *info, bool on)
14431 mips_elf_hash_table (info)->compact_branches = on;
14435 /* Structure for saying that BFD machine EXTENSION extends BASE. */
14437 struct mips_mach_extension
14439 unsigned long extension, base;
14443 /* An array describing how BFD machines relate to one another. The entries
14444 are ordered topologically with MIPS I extensions listed last. */
14446 static const struct mips_mach_extension mips_mach_extensions[] =
14448 /* MIPS64r2 extensions. */
14449 { bfd_mach_mips_octeon3, bfd_mach_mips_octeon2 },
14450 { bfd_mach_mips_octeon2, bfd_mach_mips_octeonp },
14451 { bfd_mach_mips_octeonp, bfd_mach_mips_octeon },
14452 { bfd_mach_mips_octeon, bfd_mach_mipsisa64r2 },
14453 { bfd_mach_mips_gs264e, bfd_mach_mips_gs464e },
14454 { bfd_mach_mips_gs464e, bfd_mach_mips_gs464 },
14455 { bfd_mach_mips_gs464, bfd_mach_mipsisa64r2 },
14457 /* MIPS64 extensions. */
14458 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
14459 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
14460 { bfd_mach_mips_xlr, bfd_mach_mipsisa64 },
14462 /* MIPS V extensions. */
14463 { bfd_mach_mipsisa64, bfd_mach_mips5 },
14465 /* R10000 extensions. */
14466 { bfd_mach_mips12000, bfd_mach_mips10000 },
14467 { bfd_mach_mips14000, bfd_mach_mips10000 },
14468 { bfd_mach_mips16000, bfd_mach_mips10000 },
14470 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
14471 vr5400 ISA, but doesn't include the multimedia stuff. It seems
14472 better to allow vr5400 and vr5500 code to be merged anyway, since
14473 many libraries will just use the core ISA. Perhaps we could add
14474 some sort of ASE flag if this ever proves a problem. */
14475 { bfd_mach_mips5500, bfd_mach_mips5400 },
14476 { bfd_mach_mips5400, bfd_mach_mips5000 },
14478 /* MIPS IV extensions. */
14479 { bfd_mach_mips5, bfd_mach_mips8000 },
14480 { bfd_mach_mips10000, bfd_mach_mips8000 },
14481 { bfd_mach_mips5000, bfd_mach_mips8000 },
14482 { bfd_mach_mips7000, bfd_mach_mips8000 },
14483 { bfd_mach_mips9000, bfd_mach_mips8000 },
14485 /* VR4100 extensions. */
14486 { bfd_mach_mips4120, bfd_mach_mips4100 },
14487 { bfd_mach_mips4111, bfd_mach_mips4100 },
14489 /* MIPS III extensions. */
14490 { bfd_mach_mips_loongson_2e, bfd_mach_mips4000 },
14491 { bfd_mach_mips_loongson_2f, bfd_mach_mips4000 },
14492 { bfd_mach_mips8000, bfd_mach_mips4000 },
14493 { bfd_mach_mips4650, bfd_mach_mips4000 },
14494 { bfd_mach_mips4600, bfd_mach_mips4000 },
14495 { bfd_mach_mips4400, bfd_mach_mips4000 },
14496 { bfd_mach_mips4300, bfd_mach_mips4000 },
14497 { bfd_mach_mips4100, bfd_mach_mips4000 },
14498 { bfd_mach_mips5900, bfd_mach_mips4000 },
14500 /* MIPS32r3 extensions. */
14501 { bfd_mach_mips_interaptiv_mr2, bfd_mach_mipsisa32r3 },
14503 /* MIPS32r2 extensions. */
14504 { bfd_mach_mipsisa32r3, bfd_mach_mipsisa32r2 },
14506 /* MIPS32 extensions. */
14507 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
14509 /* MIPS II extensions. */
14510 { bfd_mach_mips4000, bfd_mach_mips6000 },
14511 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
14512 { bfd_mach_mips4010, bfd_mach_mips6000 },
14514 /* MIPS I extensions. */
14515 { bfd_mach_mips6000, bfd_mach_mips3000 },
14516 { bfd_mach_mips3900, bfd_mach_mips3000 }
14519 /* Return true if bfd machine EXTENSION is an extension of machine BASE. */
14521 static bool
14522 mips_mach_extends_p (unsigned long base, unsigned long extension)
14524 size_t i;
14526 if (extension == base)
14527 return true;
14529 if (base == bfd_mach_mipsisa32
14530 && mips_mach_extends_p (bfd_mach_mipsisa64, extension))
14531 return true;
14533 if (base == bfd_mach_mipsisa32r2
14534 && mips_mach_extends_p (bfd_mach_mipsisa64r2, extension))
14535 return true;
14537 for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++)
14538 if (extension == mips_mach_extensions[i].extension)
14540 extension = mips_mach_extensions[i].base;
14541 if (extension == base)
14542 return true;
14545 return false;
14548 /* Return the BFD mach for each .MIPS.abiflags ISA Extension. */
14550 static unsigned long
14551 bfd_mips_isa_ext_mach (unsigned int isa_ext)
14553 switch (isa_ext)
14555 case AFL_EXT_3900: return bfd_mach_mips3900;
14556 case AFL_EXT_4010: return bfd_mach_mips4010;
14557 case AFL_EXT_4100: return bfd_mach_mips4100;
14558 case AFL_EXT_4111: return bfd_mach_mips4111;
14559 case AFL_EXT_4120: return bfd_mach_mips4120;
14560 case AFL_EXT_4650: return bfd_mach_mips4650;
14561 case AFL_EXT_5400: return bfd_mach_mips5400;
14562 case AFL_EXT_5500: return bfd_mach_mips5500;
14563 case AFL_EXT_5900: return bfd_mach_mips5900;
14564 case AFL_EXT_10000: return bfd_mach_mips10000;
14565 case AFL_EXT_LOONGSON_2E: return bfd_mach_mips_loongson_2e;
14566 case AFL_EXT_LOONGSON_2F: return bfd_mach_mips_loongson_2f;
14567 case AFL_EXT_SB1: return bfd_mach_mips_sb1;
14568 case AFL_EXT_OCTEON: return bfd_mach_mips_octeon;
14569 case AFL_EXT_OCTEONP: return bfd_mach_mips_octeonp;
14570 case AFL_EXT_OCTEON2: return bfd_mach_mips_octeon2;
14571 case AFL_EXT_XLR: return bfd_mach_mips_xlr;
14572 default: return bfd_mach_mips3000;
14576 /* Return the .MIPS.abiflags value representing each ISA Extension. */
14578 unsigned int
14579 bfd_mips_isa_ext (bfd *abfd)
14581 switch (bfd_get_mach (abfd))
14583 case bfd_mach_mips3900: return AFL_EXT_3900;
14584 case bfd_mach_mips4010: return AFL_EXT_4010;
14585 case bfd_mach_mips4100: return AFL_EXT_4100;
14586 case bfd_mach_mips4111: return AFL_EXT_4111;
14587 case bfd_mach_mips4120: return AFL_EXT_4120;
14588 case bfd_mach_mips4650: return AFL_EXT_4650;
14589 case bfd_mach_mips5400: return AFL_EXT_5400;
14590 case bfd_mach_mips5500: return AFL_EXT_5500;
14591 case bfd_mach_mips5900: return AFL_EXT_5900;
14592 case bfd_mach_mips10000: return AFL_EXT_10000;
14593 case bfd_mach_mips_loongson_2e: return AFL_EXT_LOONGSON_2E;
14594 case bfd_mach_mips_loongson_2f: return AFL_EXT_LOONGSON_2F;
14595 case bfd_mach_mips_sb1: return AFL_EXT_SB1;
14596 case bfd_mach_mips_octeon: return AFL_EXT_OCTEON;
14597 case bfd_mach_mips_octeonp: return AFL_EXT_OCTEONP;
14598 case bfd_mach_mips_octeon3: return AFL_EXT_OCTEON3;
14599 case bfd_mach_mips_octeon2: return AFL_EXT_OCTEON2;
14600 case bfd_mach_mips_xlr: return AFL_EXT_XLR;
14601 case bfd_mach_mips_interaptiv_mr2:
14602 return AFL_EXT_INTERAPTIV_MR2;
14603 default: return 0;
14607 /* Encode ISA level and revision as a single value. */
14608 #define LEVEL_REV(LEV,REV) ((LEV) << 3 | (REV))
14610 /* Decode a single value into level and revision. */
14611 #define ISA_LEVEL(LEVREV) ((LEVREV) >> 3)
14612 #define ISA_REV(LEVREV) ((LEVREV) & 0x7)
14614 /* Update the isa_level, isa_rev, isa_ext fields of abiflags. */
14616 static void
14617 update_mips_abiflags_isa (bfd *abfd, Elf_Internal_ABIFlags_v0 *abiflags)
14619 int new_isa = 0;
14620 switch (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH)
14622 case E_MIPS_ARCH_1: new_isa = LEVEL_REV (1, 0); break;
14623 case E_MIPS_ARCH_2: new_isa = LEVEL_REV (2, 0); break;
14624 case E_MIPS_ARCH_3: new_isa = LEVEL_REV (3, 0); break;
14625 case E_MIPS_ARCH_4: new_isa = LEVEL_REV (4, 0); break;
14626 case E_MIPS_ARCH_5: new_isa = LEVEL_REV (5, 0); break;
14627 case E_MIPS_ARCH_32: new_isa = LEVEL_REV (32, 1); break;
14628 case E_MIPS_ARCH_32R2: new_isa = LEVEL_REV (32, 2); break;
14629 case E_MIPS_ARCH_32R6: new_isa = LEVEL_REV (32, 6); break;
14630 case E_MIPS_ARCH_64: new_isa = LEVEL_REV (64, 1); break;
14631 case E_MIPS_ARCH_64R2: new_isa = LEVEL_REV (64, 2); break;
14632 case E_MIPS_ARCH_64R6: new_isa = LEVEL_REV (64, 6); break;
14633 default:
14634 _bfd_error_handler
14635 /* xgettext:c-format */
14636 (_("%pB: unknown architecture %s"),
14637 abfd, bfd_printable_name (abfd));
14640 if (new_isa > LEVEL_REV (abiflags->isa_level, abiflags->isa_rev))
14642 abiflags->isa_level = ISA_LEVEL (new_isa);
14643 abiflags->isa_rev = ISA_REV (new_isa);
14646 /* Update the isa_ext if ABFD describes a further extension. */
14647 if (mips_mach_extends_p (bfd_mips_isa_ext_mach (abiflags->isa_ext),
14648 bfd_get_mach (abfd)))
14649 abiflags->isa_ext = bfd_mips_isa_ext (abfd);
14652 /* Return true if the given ELF header flags describe a 32-bit binary. */
14654 static bool
14655 mips_32bit_flags_p (flagword flags)
14657 return ((flags & EF_MIPS_32BITMODE) != 0
14658 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
14659 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
14660 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
14661 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
14662 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
14663 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2
14664 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6);
14667 /* Infer the content of the ABI flags based on the elf header. */
14669 static void
14670 infer_mips_abiflags (bfd *abfd, Elf_Internal_ABIFlags_v0* abiflags)
14672 obj_attribute *in_attr;
14674 memset (abiflags, 0, sizeof (Elf_Internal_ABIFlags_v0));
14675 update_mips_abiflags_isa (abfd, abiflags);
14677 if (mips_32bit_flags_p (elf_elfheader (abfd)->e_flags))
14678 abiflags->gpr_size = AFL_REG_32;
14679 else
14680 abiflags->gpr_size = AFL_REG_64;
14682 abiflags->cpr1_size = AFL_REG_NONE;
14684 in_attr = elf_known_obj_attributes (abfd)[OBJ_ATTR_GNU];
14685 abiflags->fp_abi = in_attr[Tag_GNU_MIPS_ABI_FP].i;
14687 if (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_SINGLE
14688 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_XX
14689 || (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_DOUBLE
14690 && abiflags->gpr_size == AFL_REG_32))
14691 abiflags->cpr1_size = AFL_REG_32;
14692 else if (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_DOUBLE
14693 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_64
14694 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_64A)
14695 abiflags->cpr1_size = AFL_REG_64;
14697 abiflags->cpr2_size = AFL_REG_NONE;
14699 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
14700 abiflags->ases |= AFL_ASE_MDMX;
14701 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
14702 abiflags->ases |= AFL_ASE_MIPS16;
14703 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
14704 abiflags->ases |= AFL_ASE_MICROMIPS;
14706 if (abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_ANY
14707 && abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_SOFT
14708 && abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_64A
14709 && abiflags->isa_level >= 32
14710 && abiflags->ases != AFL_ASE_LOONGSON_EXT)
14711 abiflags->flags1 |= AFL_FLAGS1_ODDSPREG;
14714 /* We need to use a special link routine to handle the .reginfo and
14715 the .mdebug sections. We need to merge all instances of these
14716 sections together, not write them all out sequentially. */
14718 bool
14719 _bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
14721 asection *o;
14722 struct bfd_link_order *p;
14723 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
14724 asection *rtproc_sec, *abiflags_sec;
14725 Elf32_RegInfo reginfo;
14726 struct ecoff_debug_info debug;
14727 struct mips_htab_traverse_info hti;
14728 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14729 const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap;
14730 HDRR *symhdr = &debug.symbolic_header;
14731 void *mdebug_handle = NULL;
14732 asection *s;
14733 EXTR esym;
14734 unsigned int i;
14735 bfd_size_type amt;
14736 struct mips_elf_link_hash_table *htab;
14738 static const char * const secname[] =
14740 ".text", ".init", ".fini", ".data",
14741 ".rodata", ".sdata", ".sbss", ".bss"
14743 static const int sc[] =
14745 scText, scInit, scFini, scData,
14746 scRData, scSData, scSBss, scBss
14749 htab = mips_elf_hash_table (info);
14750 BFD_ASSERT (htab != NULL);
14752 /* Sort the dynamic symbols so that those with GOT entries come after
14753 those without. */
14754 if (!mips_elf_sort_hash_table (abfd, info))
14755 return false;
14757 /* Create any scheduled LA25 stubs. */
14758 hti.info = info;
14759 hti.output_bfd = abfd;
14760 hti.error = false;
14761 htab_traverse (htab->la25_stubs, mips_elf_create_la25_stub, &hti);
14762 if (hti.error)
14763 return false;
14765 /* Get a value for the GP register. */
14766 if (elf_gp (abfd) == 0)
14768 struct bfd_link_hash_entry *h;
14770 h = bfd_link_hash_lookup (info->hash, "_gp", false, false, true);
14771 if (h != NULL && h->type == bfd_link_hash_defined)
14772 elf_gp (abfd) = (h->u.def.value
14773 + h->u.def.section->output_section->vma
14774 + h->u.def.section->output_offset);
14775 else if (htab->root.target_os == is_vxworks
14776 && (h = bfd_link_hash_lookup (info->hash,
14777 "_GLOBAL_OFFSET_TABLE_",
14778 false, false, true))
14779 && h->type == bfd_link_hash_defined)
14780 elf_gp (abfd) = (h->u.def.section->output_section->vma
14781 + h->u.def.section->output_offset
14782 + h->u.def.value);
14783 else if (bfd_link_relocatable (info))
14785 bfd_vma lo = MINUS_ONE;
14787 /* Find the GP-relative section with the lowest offset. */
14788 for (o = abfd->sections; o != NULL; o = o->next)
14789 if (o->vma < lo
14790 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
14791 lo = o->vma;
14793 /* And calculate GP relative to that. */
14794 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (info);
14796 else
14798 /* If the relocate_section function needs to do a reloc
14799 involving the GP value, it should make a reloc_dangerous
14800 callback to warn that GP is not defined. */
14804 /* Go through the sections and collect the .reginfo and .mdebug
14805 information. */
14806 abiflags_sec = NULL;
14807 reginfo_sec = NULL;
14808 mdebug_sec = NULL;
14809 gptab_data_sec = NULL;
14810 gptab_bss_sec = NULL;
14811 for (o = abfd->sections; o != NULL; o = o->next)
14813 if (strcmp (o->name, ".MIPS.abiflags") == 0)
14815 /* We have found the .MIPS.abiflags section in the output file.
14816 Look through all the link_orders comprising it and remove them.
14817 The data is merged in _bfd_mips_elf_merge_private_bfd_data. */
14818 for (p = o->map_head.link_order; p != NULL; p = p->next)
14820 asection *input_section;
14822 if (p->type != bfd_indirect_link_order)
14824 if (p->type == bfd_data_link_order)
14825 continue;
14826 abort ();
14829 input_section = p->u.indirect.section;
14831 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14832 elf_link_input_bfd ignores this section. */
14833 input_section->flags &= ~SEC_HAS_CONTENTS;
14836 /* Size has been set in _bfd_mips_elf_always_size_sections. */
14837 BFD_ASSERT(o->size == sizeof (Elf_External_ABIFlags_v0));
14839 /* Skip this section later on (I don't think this currently
14840 matters, but someday it might). */
14841 o->map_head.link_order = NULL;
14843 abiflags_sec = o;
14846 if (strcmp (o->name, ".reginfo") == 0)
14848 memset (&reginfo, 0, sizeof reginfo);
14850 /* We have found the .reginfo section in the output file.
14851 Look through all the link_orders comprising it and merge
14852 the information together. */
14853 for (p = o->map_head.link_order; p != NULL; p = p->next)
14855 asection *input_section;
14856 bfd *input_bfd;
14857 Elf32_External_RegInfo ext;
14858 Elf32_RegInfo sub;
14859 bfd_size_type sz;
14861 if (p->type != bfd_indirect_link_order)
14863 if (p->type == bfd_data_link_order)
14864 continue;
14865 abort ();
14868 input_section = p->u.indirect.section;
14869 input_bfd = input_section->owner;
14871 sz = (input_section->size < sizeof (ext)
14872 ? input_section->size : sizeof (ext));
14873 memset (&ext, 0, sizeof (ext));
14874 if (! bfd_get_section_contents (input_bfd, input_section,
14875 &ext, 0, sz))
14876 return false;
14878 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
14880 reginfo.ri_gprmask |= sub.ri_gprmask;
14881 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
14882 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
14883 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
14884 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
14886 /* ri_gp_value is set by the function
14887 `_bfd_mips_elf_section_processing' when the section is
14888 finally written out. */
14890 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14891 elf_link_input_bfd ignores this section. */
14892 input_section->flags &= ~SEC_HAS_CONTENTS;
14895 /* Size has been set in _bfd_mips_elf_always_size_sections. */
14896 BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo));
14898 /* Skip this section later on (I don't think this currently
14899 matters, but someday it might). */
14900 o->map_head.link_order = NULL;
14902 reginfo_sec = o;
14905 if (strcmp (o->name, ".mdebug") == 0)
14907 struct extsym_info einfo;
14908 bfd_vma last;
14910 /* We have found the .mdebug section in the output file.
14911 Look through all the link_orders comprising it and merge
14912 the information together. */
14913 symhdr->magic = swap->sym_magic;
14914 /* FIXME: What should the version stamp be? */
14915 symhdr->vstamp = 0;
14916 symhdr->ilineMax = 0;
14917 symhdr->cbLine = 0;
14918 symhdr->idnMax = 0;
14919 symhdr->ipdMax = 0;
14920 symhdr->isymMax = 0;
14921 symhdr->ioptMax = 0;
14922 symhdr->iauxMax = 0;
14923 symhdr->issMax = 0;
14924 symhdr->issExtMax = 0;
14925 symhdr->ifdMax = 0;
14926 symhdr->crfd = 0;
14927 symhdr->iextMax = 0;
14929 /* We accumulate the debugging information itself in the
14930 debug_info structure. */
14931 debug.line = NULL;
14932 debug.external_dnr = NULL;
14933 debug.external_pdr = NULL;
14934 debug.external_sym = NULL;
14935 debug.external_opt = NULL;
14936 debug.external_aux = NULL;
14937 debug.ss = NULL;
14938 debug.ssext = debug.ssext_end = NULL;
14939 debug.external_fdr = NULL;
14940 debug.external_rfd = NULL;
14941 debug.external_ext = debug.external_ext_end = NULL;
14943 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
14944 if (mdebug_handle == NULL)
14945 return false;
14947 esym.jmptbl = 0;
14948 esym.cobol_main = 0;
14949 esym.weakext = 0;
14950 esym.reserved = 0;
14951 esym.ifd = ifdNil;
14952 esym.asym.iss = issNil;
14953 esym.asym.st = stLocal;
14954 esym.asym.reserved = 0;
14955 esym.asym.index = indexNil;
14956 last = 0;
14957 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
14959 esym.asym.sc = sc[i];
14960 s = bfd_get_section_by_name (abfd, secname[i]);
14961 if (s != NULL)
14963 esym.asym.value = s->vma;
14964 last = s->vma + s->size;
14966 else
14967 esym.asym.value = last;
14968 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
14969 secname[i], &esym))
14970 return false;
14973 for (p = o->map_head.link_order; p != NULL; p = p->next)
14975 asection *input_section;
14976 bfd *input_bfd;
14977 const struct ecoff_debug_swap *input_swap;
14978 struct ecoff_debug_info input_debug;
14979 char *eraw_src;
14980 char *eraw_end;
14982 if (p->type != bfd_indirect_link_order)
14984 if (p->type == bfd_data_link_order)
14985 continue;
14986 abort ();
14989 input_section = p->u.indirect.section;
14990 input_bfd = input_section->owner;
14992 if (!is_mips_elf (input_bfd))
14994 /* I don't know what a non MIPS ELF bfd would be
14995 doing with a .mdebug section, but I don't really
14996 want to deal with it. */
14997 continue;
15000 input_swap = (get_elf_backend_data (input_bfd)
15001 ->elf_backend_ecoff_debug_swap);
15003 BFD_ASSERT (p->size == input_section->size);
15005 /* The ECOFF linking code expects that we have already
15006 read in the debugging information and set up an
15007 ecoff_debug_info structure, so we do that now. */
15008 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
15009 &input_debug))
15010 return false;
15012 if (! (bfd_ecoff_debug_accumulate
15013 (mdebug_handle, abfd, &debug, swap, input_bfd,
15014 &input_debug, input_swap, info)))
15015 return false;
15017 /* Loop through the external symbols. For each one with
15018 interesting information, try to find the symbol in
15019 the linker global hash table and save the information
15020 for the output external symbols. */
15021 eraw_src = input_debug.external_ext;
15022 eraw_end = (eraw_src
15023 + (input_debug.symbolic_header.iextMax
15024 * input_swap->external_ext_size));
15025 for (;
15026 eraw_src < eraw_end;
15027 eraw_src += input_swap->external_ext_size)
15029 EXTR ext;
15030 const char *name;
15031 struct mips_elf_link_hash_entry *h;
15033 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
15034 if (ext.asym.sc == scNil
15035 || ext.asym.sc == scUndefined
15036 || ext.asym.sc == scSUndefined)
15037 continue;
15039 name = input_debug.ssext + ext.asym.iss;
15040 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
15041 name, false, false, true);
15042 if (h == NULL || h->esym.ifd != -2)
15043 continue;
15045 if (ext.ifd != -1)
15047 BFD_ASSERT (ext.ifd
15048 < input_debug.symbolic_header.ifdMax);
15049 ext.ifd = input_debug.ifdmap[ext.ifd];
15052 h->esym = ext;
15055 /* Free up the information we just read. */
15056 free (input_debug.line);
15057 free (input_debug.external_dnr);
15058 free (input_debug.external_pdr);
15059 free (input_debug.external_sym);
15060 free (input_debug.external_opt);
15061 free (input_debug.external_aux);
15062 free (input_debug.ss);
15063 free (input_debug.ssext);
15064 free (input_debug.external_fdr);
15065 free (input_debug.external_rfd);
15066 free (input_debug.external_ext);
15068 /* Hack: reset the SEC_HAS_CONTENTS flag so that
15069 elf_link_input_bfd ignores this section. */
15070 input_section->flags &= ~SEC_HAS_CONTENTS;
15073 if (SGI_COMPAT (abfd) && bfd_link_pic (info))
15075 /* Create .rtproc section. */
15076 rtproc_sec = bfd_get_linker_section (abfd, ".rtproc");
15077 if (rtproc_sec == NULL)
15079 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
15080 | SEC_LINKER_CREATED | SEC_READONLY);
15082 rtproc_sec = bfd_make_section_anyway_with_flags (abfd,
15083 ".rtproc",
15084 flags);
15085 if (rtproc_sec == NULL
15086 || !bfd_set_section_alignment (rtproc_sec, 4))
15087 return false;
15090 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
15091 info, rtproc_sec,
15092 &debug))
15093 return false;
15096 /* Build the external symbol information. */
15097 einfo.abfd = abfd;
15098 einfo.info = info;
15099 einfo.debug = &debug;
15100 einfo.swap = swap;
15101 einfo.failed = false;
15102 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
15103 mips_elf_output_extsym, &einfo);
15104 if (einfo.failed)
15105 return false;
15107 /* Set the size of the .mdebug section. */
15108 o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
15110 /* Skip this section later on (I don't think this currently
15111 matters, but someday it might). */
15112 o->map_head.link_order = NULL;
15114 mdebug_sec = o;
15117 if (startswith (o->name, ".gptab."))
15119 const char *subname;
15120 unsigned int c;
15121 Elf32_gptab *tab;
15122 Elf32_External_gptab *ext_tab;
15123 unsigned int j;
15125 /* The .gptab.sdata and .gptab.sbss sections hold
15126 information describing how the small data area would
15127 change depending upon the -G switch. These sections
15128 not used in executables files. */
15129 if (! bfd_link_relocatable (info))
15131 for (p = o->map_head.link_order; p != NULL; p = p->next)
15133 asection *input_section;
15135 if (p->type != bfd_indirect_link_order)
15137 if (p->type == bfd_data_link_order)
15138 continue;
15139 abort ();
15142 input_section = p->u.indirect.section;
15144 /* Hack: reset the SEC_HAS_CONTENTS flag so that
15145 elf_link_input_bfd ignores this section. */
15146 input_section->flags &= ~SEC_HAS_CONTENTS;
15149 /* Skip this section later on (I don't think this
15150 currently matters, but someday it might). */
15151 o->map_head.link_order = NULL;
15153 /* Really remove the section. */
15154 bfd_section_list_remove (abfd, o);
15155 --abfd->section_count;
15157 continue;
15160 /* There is one gptab for initialized data, and one for
15161 uninitialized data. */
15162 if (strcmp (o->name, ".gptab.sdata") == 0)
15163 gptab_data_sec = o;
15164 else if (strcmp (o->name, ".gptab.sbss") == 0)
15165 gptab_bss_sec = o;
15166 else
15168 _bfd_error_handler
15169 /* xgettext:c-format */
15170 (_("%pB: illegal section name `%pA'"), abfd, o);
15171 bfd_set_error (bfd_error_nonrepresentable_section);
15172 return false;
15175 /* The linker script always combines .gptab.data and
15176 .gptab.sdata into .gptab.sdata, and likewise for
15177 .gptab.bss and .gptab.sbss. It is possible that there is
15178 no .sdata or .sbss section in the output file, in which
15179 case we must change the name of the output section. */
15180 subname = o->name + sizeof ".gptab" - 1;
15181 if (bfd_get_section_by_name (abfd, subname) == NULL)
15183 if (o == gptab_data_sec)
15184 o->name = ".gptab.data";
15185 else
15186 o->name = ".gptab.bss";
15187 subname = o->name + sizeof ".gptab" - 1;
15188 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
15191 /* Set up the first entry. */
15192 c = 1;
15193 amt = c * sizeof (Elf32_gptab);
15194 tab = bfd_malloc (amt);
15195 if (tab == NULL)
15196 return false;
15197 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
15198 tab[0].gt_header.gt_unused = 0;
15200 /* Combine the input sections. */
15201 for (p = o->map_head.link_order; p != NULL; p = p->next)
15203 asection *input_section;
15204 bfd *input_bfd;
15205 bfd_size_type size;
15206 unsigned long last;
15207 bfd_size_type gpentry;
15209 if (p->type != bfd_indirect_link_order)
15211 if (p->type == bfd_data_link_order)
15212 continue;
15213 abort ();
15216 input_section = p->u.indirect.section;
15217 input_bfd = input_section->owner;
15219 /* Combine the gptab entries for this input section one
15220 by one. We know that the input gptab entries are
15221 sorted by ascending -G value. */
15222 size = input_section->size;
15223 last = 0;
15224 for (gpentry = sizeof (Elf32_External_gptab);
15225 gpentry < size;
15226 gpentry += sizeof (Elf32_External_gptab))
15228 Elf32_External_gptab ext_gptab;
15229 Elf32_gptab int_gptab;
15230 unsigned long val;
15231 unsigned long add;
15232 bool exact;
15233 unsigned int look;
15235 if (! (bfd_get_section_contents
15236 (input_bfd, input_section, &ext_gptab, gpentry,
15237 sizeof (Elf32_External_gptab))))
15239 free (tab);
15240 return false;
15243 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
15244 &int_gptab);
15245 val = int_gptab.gt_entry.gt_g_value;
15246 add = int_gptab.gt_entry.gt_bytes - last;
15248 exact = false;
15249 for (look = 1; look < c; look++)
15251 if (tab[look].gt_entry.gt_g_value >= val)
15252 tab[look].gt_entry.gt_bytes += add;
15254 if (tab[look].gt_entry.gt_g_value == val)
15255 exact = true;
15258 if (! exact)
15260 Elf32_gptab *new_tab;
15261 unsigned int max;
15263 /* We need a new table entry. */
15264 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
15265 new_tab = bfd_realloc (tab, amt);
15266 if (new_tab == NULL)
15268 free (tab);
15269 return false;
15271 tab = new_tab;
15272 tab[c].gt_entry.gt_g_value = val;
15273 tab[c].gt_entry.gt_bytes = add;
15275 /* Merge in the size for the next smallest -G
15276 value, since that will be implied by this new
15277 value. */
15278 max = 0;
15279 for (look = 1; look < c; look++)
15281 if (tab[look].gt_entry.gt_g_value < val
15282 && (max == 0
15283 || (tab[look].gt_entry.gt_g_value
15284 > tab[max].gt_entry.gt_g_value)))
15285 max = look;
15287 if (max != 0)
15288 tab[c].gt_entry.gt_bytes +=
15289 tab[max].gt_entry.gt_bytes;
15291 ++c;
15294 last = int_gptab.gt_entry.gt_bytes;
15297 /* Hack: reset the SEC_HAS_CONTENTS flag so that
15298 elf_link_input_bfd ignores this section. */
15299 input_section->flags &= ~SEC_HAS_CONTENTS;
15302 /* The table must be sorted by -G value. */
15303 if (c > 2)
15304 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
15306 /* Swap out the table. */
15307 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
15308 ext_tab = bfd_alloc (abfd, amt);
15309 if (ext_tab == NULL)
15311 free (tab);
15312 return false;
15315 for (j = 0; j < c; j++)
15316 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
15317 free (tab);
15319 o->size = c * sizeof (Elf32_External_gptab);
15320 o->contents = (bfd_byte *) ext_tab;
15322 /* Skip this section later on (I don't think this currently
15323 matters, but someday it might). */
15324 o->map_head.link_order = NULL;
15328 /* Invoke the regular ELF backend linker to do all the work. */
15329 if (!bfd_elf_final_link (abfd, info))
15330 return false;
15332 /* Now write out the computed sections. */
15334 if (abiflags_sec != NULL)
15336 Elf_External_ABIFlags_v0 ext;
15337 Elf_Internal_ABIFlags_v0 *abiflags;
15339 abiflags = &mips_elf_tdata (abfd)->abiflags;
15341 /* Set up the abiflags if no valid input sections were found. */
15342 if (!mips_elf_tdata (abfd)->abiflags_valid)
15344 infer_mips_abiflags (abfd, abiflags);
15345 mips_elf_tdata (abfd)->abiflags_valid = true;
15347 bfd_mips_elf_swap_abiflags_v0_out (abfd, abiflags, &ext);
15348 if (! bfd_set_section_contents (abfd, abiflags_sec, &ext, 0, sizeof ext))
15349 return false;
15352 if (reginfo_sec != NULL)
15354 Elf32_External_RegInfo ext;
15356 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
15357 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
15358 return false;
15361 if (mdebug_sec != NULL)
15363 BFD_ASSERT (abfd->output_has_begun);
15364 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
15365 swap, info,
15366 mdebug_sec->filepos))
15367 return false;
15369 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
15372 if (gptab_data_sec != NULL)
15374 if (! bfd_set_section_contents (abfd, gptab_data_sec,
15375 gptab_data_sec->contents,
15376 0, gptab_data_sec->size))
15377 return false;
15380 if (gptab_bss_sec != NULL)
15382 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
15383 gptab_bss_sec->contents,
15384 0, gptab_bss_sec->size))
15385 return false;
15388 if (SGI_COMPAT (abfd))
15390 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
15391 if (rtproc_sec != NULL)
15393 if (! bfd_set_section_contents (abfd, rtproc_sec,
15394 rtproc_sec->contents,
15395 0, rtproc_sec->size))
15396 return false;
15400 return true;
15403 /* Merge object file header flags from IBFD into OBFD. Raise an error
15404 if there are conflicting settings. */
15406 static bool
15407 mips_elf_merge_obj_e_flags (bfd *ibfd, struct bfd_link_info *info)
15409 bfd *obfd = info->output_bfd;
15410 struct mips_elf_obj_tdata *out_tdata = mips_elf_tdata (obfd);
15411 flagword old_flags;
15412 flagword new_flags;
15413 bool ok;
15415 new_flags = elf_elfheader (ibfd)->e_flags;
15416 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
15417 old_flags = elf_elfheader (obfd)->e_flags;
15419 /* Check flag compatibility. */
15421 new_flags &= ~EF_MIPS_NOREORDER;
15422 old_flags &= ~EF_MIPS_NOREORDER;
15424 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
15425 doesn't seem to matter. */
15426 new_flags &= ~EF_MIPS_XGOT;
15427 old_flags &= ~EF_MIPS_XGOT;
15429 /* MIPSpro generates ucode info in n64 objects. Again, we should
15430 just be able to ignore this. */
15431 new_flags &= ~EF_MIPS_UCODE;
15432 old_flags &= ~EF_MIPS_UCODE;
15434 /* DSOs should only be linked with CPIC code. */
15435 if ((ibfd->flags & DYNAMIC) != 0)
15436 new_flags |= EF_MIPS_PIC | EF_MIPS_CPIC;
15438 if (new_flags == old_flags)
15439 return true;
15441 ok = true;
15443 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
15444 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
15446 _bfd_error_handler
15447 (_("%pB: warning: linking abicalls files with non-abicalls files"),
15448 ibfd);
15449 ok = true;
15452 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
15453 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
15454 if (! (new_flags & EF_MIPS_PIC))
15455 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
15457 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
15458 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
15460 /* Compare the ISAs. */
15461 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
15463 _bfd_error_handler
15464 (_("%pB: linking 32-bit code with 64-bit code"),
15465 ibfd);
15466 ok = false;
15468 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
15470 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
15471 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
15473 /* Copy the architecture info from IBFD to OBFD. Also copy
15474 the 32-bit flag (if set) so that we continue to recognise
15475 OBFD as a 32-bit binary. */
15476 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
15477 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
15478 elf_elfheader (obfd)->e_flags
15479 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15481 /* Update the ABI flags isa_level, isa_rev, isa_ext fields. */
15482 update_mips_abiflags_isa (obfd, &out_tdata->abiflags);
15484 /* Copy across the ABI flags if OBFD doesn't use them
15485 and if that was what caused us to treat IBFD as 32-bit. */
15486 if ((old_flags & EF_MIPS_ABI) == 0
15487 && mips_32bit_flags_p (new_flags)
15488 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
15489 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
15491 else
15493 /* The ISAs aren't compatible. */
15494 _bfd_error_handler
15495 /* xgettext:c-format */
15496 (_("%pB: linking %s module with previous %s modules"),
15497 ibfd,
15498 bfd_printable_name (ibfd),
15499 bfd_printable_name (obfd));
15500 ok = false;
15504 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15505 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15507 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
15508 does set EI_CLASS differently from any 32-bit ABI. */
15509 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
15510 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
15511 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
15513 /* Only error if both are set (to different values). */
15514 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
15515 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
15516 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
15518 _bfd_error_handler
15519 /* xgettext:c-format */
15520 (_("%pB: ABI mismatch: linking %s module with previous %s modules"),
15521 ibfd,
15522 elf_mips_abi_name (ibfd),
15523 elf_mips_abi_name (obfd));
15524 ok = false;
15526 new_flags &= ~EF_MIPS_ABI;
15527 old_flags &= ~EF_MIPS_ABI;
15530 /* Compare ASEs. Forbid linking MIPS16 and microMIPS ASE modules together
15531 and allow arbitrary mixing of the remaining ASEs (retain the union). */
15532 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
15534 int old_micro = old_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
15535 int new_micro = new_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
15536 int old_m16 = old_flags & EF_MIPS_ARCH_ASE_M16;
15537 int new_m16 = new_flags & EF_MIPS_ARCH_ASE_M16;
15538 int micro_mis = old_m16 && new_micro;
15539 int m16_mis = old_micro && new_m16;
15541 if (m16_mis || micro_mis)
15543 _bfd_error_handler
15544 /* xgettext:c-format */
15545 (_("%pB: ASE mismatch: linking %s module with previous %s modules"),
15546 ibfd,
15547 m16_mis ? "MIPS16" : "microMIPS",
15548 m16_mis ? "microMIPS" : "MIPS16");
15549 ok = false;
15552 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
15554 new_flags &= ~ EF_MIPS_ARCH_ASE;
15555 old_flags &= ~ EF_MIPS_ARCH_ASE;
15558 /* Compare NaN encodings. */
15559 if ((new_flags & EF_MIPS_NAN2008) != (old_flags & EF_MIPS_NAN2008))
15561 /* xgettext:c-format */
15562 _bfd_error_handler (_("%pB: linking %s module with previous %s modules"),
15563 ibfd,
15564 (new_flags & EF_MIPS_NAN2008
15565 ? "-mnan=2008" : "-mnan=legacy"),
15566 (old_flags & EF_MIPS_NAN2008
15567 ? "-mnan=2008" : "-mnan=legacy"));
15568 ok = false;
15569 new_flags &= ~EF_MIPS_NAN2008;
15570 old_flags &= ~EF_MIPS_NAN2008;
15573 /* Compare FP64 state. */
15574 if ((new_flags & EF_MIPS_FP64) != (old_flags & EF_MIPS_FP64))
15576 /* xgettext:c-format */
15577 _bfd_error_handler (_("%pB: linking %s module with previous %s modules"),
15578 ibfd,
15579 (new_flags & EF_MIPS_FP64
15580 ? "-mfp64" : "-mfp32"),
15581 (old_flags & EF_MIPS_FP64
15582 ? "-mfp64" : "-mfp32"));
15583 ok = false;
15584 new_flags &= ~EF_MIPS_FP64;
15585 old_flags &= ~EF_MIPS_FP64;
15588 /* Warn about any other mismatches */
15589 if (new_flags != old_flags)
15591 /* xgettext:c-format */
15592 _bfd_error_handler
15593 (_("%pB: uses different e_flags (%#x) fields than previous modules "
15594 "(%#x)"),
15595 ibfd, new_flags, old_flags);
15596 ok = false;
15599 return ok;
15602 /* Merge object attributes from IBFD into OBFD. Raise an error if
15603 there are conflicting attributes. */
15604 static bool
15605 mips_elf_merge_obj_attributes (bfd *ibfd, struct bfd_link_info *info)
15607 bfd *obfd = info->output_bfd;
15608 obj_attribute *in_attr;
15609 obj_attribute *out_attr;
15610 bfd *abi_fp_bfd;
15611 bfd *abi_msa_bfd;
15613 abi_fp_bfd = mips_elf_tdata (obfd)->abi_fp_bfd;
15614 in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
15615 if (!abi_fp_bfd && in_attr[Tag_GNU_MIPS_ABI_FP].i != Val_GNU_MIPS_ABI_FP_ANY)
15616 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15618 abi_msa_bfd = mips_elf_tdata (obfd)->abi_msa_bfd;
15619 if (!abi_msa_bfd
15620 && in_attr[Tag_GNU_MIPS_ABI_MSA].i != Val_GNU_MIPS_ABI_MSA_ANY)
15621 mips_elf_tdata (obfd)->abi_msa_bfd = ibfd;
15623 if (!elf_known_obj_attributes_proc (obfd)[0].i)
15625 /* This is the first object. Copy the attributes. */
15626 _bfd_elf_copy_obj_attributes (ibfd, obfd);
15628 /* Use the Tag_null value to indicate the attributes have been
15629 initialized. */
15630 elf_known_obj_attributes_proc (obfd)[0].i = 1;
15632 return true;
15635 /* Check for conflicting Tag_GNU_MIPS_ABI_FP attributes and merge
15636 non-conflicting ones. */
15637 out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
15638 if (in_attr[Tag_GNU_MIPS_ABI_FP].i != out_attr[Tag_GNU_MIPS_ABI_FP].i)
15640 int out_fp, in_fp;
15642 out_fp = out_attr[Tag_GNU_MIPS_ABI_FP].i;
15643 in_fp = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15644 out_attr[Tag_GNU_MIPS_ABI_FP].type = 1;
15645 if (out_fp == Val_GNU_MIPS_ABI_FP_ANY)
15646 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_fp;
15647 else if (out_fp == Val_GNU_MIPS_ABI_FP_XX
15648 && (in_fp == Val_GNU_MIPS_ABI_FP_DOUBLE
15649 || in_fp == Val_GNU_MIPS_ABI_FP_64
15650 || in_fp == Val_GNU_MIPS_ABI_FP_64A))
15652 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15653 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15655 else if (in_fp == Val_GNU_MIPS_ABI_FP_XX
15656 && (out_fp == Val_GNU_MIPS_ABI_FP_DOUBLE
15657 || out_fp == Val_GNU_MIPS_ABI_FP_64
15658 || out_fp == Val_GNU_MIPS_ABI_FP_64A))
15659 /* Keep the current setting. */;
15660 else if (out_fp == Val_GNU_MIPS_ABI_FP_64A
15661 && in_fp == Val_GNU_MIPS_ABI_FP_64)
15663 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15664 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15666 else if (in_fp == Val_GNU_MIPS_ABI_FP_64A
15667 && out_fp == Val_GNU_MIPS_ABI_FP_64)
15668 /* Keep the current setting. */;
15669 else if (in_fp != Val_GNU_MIPS_ABI_FP_ANY)
15671 const char *out_string, *in_string;
15673 out_string = _bfd_mips_fp_abi_string (out_fp);
15674 in_string = _bfd_mips_fp_abi_string (in_fp);
15675 /* First warn about cases involving unrecognised ABIs. */
15676 if (!out_string && !in_string)
15677 /* xgettext:c-format */
15678 _bfd_error_handler
15679 (_("warning: %pB uses unknown floating point ABI %d "
15680 "(set by %pB), %pB uses unknown floating point ABI %d"),
15681 obfd, out_fp, abi_fp_bfd, ibfd, in_fp);
15682 else if (!out_string)
15683 _bfd_error_handler
15684 /* xgettext:c-format */
15685 (_("warning: %pB uses unknown floating point ABI %d "
15686 "(set by %pB), %pB uses %s"),
15687 obfd, out_fp, abi_fp_bfd, ibfd, in_string);
15688 else if (!in_string)
15689 _bfd_error_handler
15690 /* xgettext:c-format */
15691 (_("warning: %pB uses %s (set by %pB), "
15692 "%pB uses unknown floating point ABI %d"),
15693 obfd, out_string, abi_fp_bfd, ibfd, in_fp);
15694 else
15696 /* If one of the bfds is soft-float, the other must be
15697 hard-float. The exact choice of hard-float ABI isn't
15698 really relevant to the error message. */
15699 if (in_fp == Val_GNU_MIPS_ABI_FP_SOFT)
15700 out_string = "-mhard-float";
15701 else if (out_fp == Val_GNU_MIPS_ABI_FP_SOFT)
15702 in_string = "-mhard-float";
15703 _bfd_error_handler
15704 /* xgettext:c-format */
15705 (_("warning: %pB uses %s (set by %pB), %pB uses %s"),
15706 obfd, out_string, abi_fp_bfd, ibfd, in_string);
15711 /* Check for conflicting Tag_GNU_MIPS_ABI_MSA attributes and merge
15712 non-conflicting ones. */
15713 if (in_attr[Tag_GNU_MIPS_ABI_MSA].i != out_attr[Tag_GNU_MIPS_ABI_MSA].i)
15715 out_attr[Tag_GNU_MIPS_ABI_MSA].type = 1;
15716 if (out_attr[Tag_GNU_MIPS_ABI_MSA].i == Val_GNU_MIPS_ABI_MSA_ANY)
15717 out_attr[Tag_GNU_MIPS_ABI_MSA].i = in_attr[Tag_GNU_MIPS_ABI_MSA].i;
15718 else if (in_attr[Tag_GNU_MIPS_ABI_MSA].i != Val_GNU_MIPS_ABI_MSA_ANY)
15719 switch (out_attr[Tag_GNU_MIPS_ABI_MSA].i)
15721 case Val_GNU_MIPS_ABI_MSA_128:
15722 _bfd_error_handler
15723 /* xgettext:c-format */
15724 (_("warning: %pB uses %s (set by %pB), "
15725 "%pB uses unknown MSA ABI %d"),
15726 obfd, "-mmsa", abi_msa_bfd,
15727 ibfd, in_attr[Tag_GNU_MIPS_ABI_MSA].i);
15728 break;
15730 default:
15731 switch (in_attr[Tag_GNU_MIPS_ABI_MSA].i)
15733 case Val_GNU_MIPS_ABI_MSA_128:
15734 _bfd_error_handler
15735 /* xgettext:c-format */
15736 (_("warning: %pB uses unknown MSA ABI %d "
15737 "(set by %pB), %pB uses %s"),
15738 obfd, out_attr[Tag_GNU_MIPS_ABI_MSA].i,
15739 abi_msa_bfd, ibfd, "-mmsa");
15740 break;
15742 default:
15743 _bfd_error_handler
15744 /* xgettext:c-format */
15745 (_("warning: %pB uses unknown MSA ABI %d "
15746 "(set by %pB), %pB uses unknown MSA ABI %d"),
15747 obfd, out_attr[Tag_GNU_MIPS_ABI_MSA].i,
15748 abi_msa_bfd, ibfd, in_attr[Tag_GNU_MIPS_ABI_MSA].i);
15749 break;
15754 /* Merge Tag_compatibility attributes and any common GNU ones. */
15755 return _bfd_elf_merge_object_attributes (ibfd, info);
15758 /* Merge object ABI flags from IBFD into OBFD. Raise an error if
15759 there are conflicting settings. */
15761 static bool
15762 mips_elf_merge_obj_abiflags (bfd *ibfd, bfd *obfd)
15764 obj_attribute *out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
15765 struct mips_elf_obj_tdata *out_tdata = mips_elf_tdata (obfd);
15766 struct mips_elf_obj_tdata *in_tdata = mips_elf_tdata (ibfd);
15768 /* Update the output abiflags fp_abi using the computed fp_abi. */
15769 out_tdata->abiflags.fp_abi = out_attr[Tag_GNU_MIPS_ABI_FP].i;
15771 #define max(a, b) ((a) > (b) ? (a) : (b))
15772 /* Merge abiflags. */
15773 out_tdata->abiflags.isa_level = max (out_tdata->abiflags.isa_level,
15774 in_tdata->abiflags.isa_level);
15775 out_tdata->abiflags.isa_rev = max (out_tdata->abiflags.isa_rev,
15776 in_tdata->abiflags.isa_rev);
15777 out_tdata->abiflags.gpr_size = max (out_tdata->abiflags.gpr_size,
15778 in_tdata->abiflags.gpr_size);
15779 out_tdata->abiflags.cpr1_size = max (out_tdata->abiflags.cpr1_size,
15780 in_tdata->abiflags.cpr1_size);
15781 out_tdata->abiflags.cpr2_size = max (out_tdata->abiflags.cpr2_size,
15782 in_tdata->abiflags.cpr2_size);
15783 #undef max
15784 out_tdata->abiflags.ases |= in_tdata->abiflags.ases;
15785 out_tdata->abiflags.flags1 |= in_tdata->abiflags.flags1;
15787 return true;
15790 /* Merge backend specific data from an object file to the output
15791 object file when linking. */
15793 bool
15794 _bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info)
15796 bfd *obfd = info->output_bfd;
15797 struct mips_elf_obj_tdata *out_tdata;
15798 struct mips_elf_obj_tdata *in_tdata;
15799 bool null_input_bfd = true;
15800 asection *sec;
15801 bool ok;
15803 /* Check if we have the same endianness. */
15804 if (! _bfd_generic_verify_endian_match (ibfd, info))
15806 _bfd_error_handler
15807 (_("%pB: endianness incompatible with that of the selected emulation"),
15808 ibfd);
15809 return false;
15812 if (!is_mips_elf (ibfd) || !is_mips_elf (obfd))
15813 return true;
15815 in_tdata = mips_elf_tdata (ibfd);
15816 out_tdata = mips_elf_tdata (obfd);
15818 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
15820 _bfd_error_handler
15821 (_("%pB: ABI is incompatible with that of the selected emulation"),
15822 ibfd);
15823 return false;
15826 /* Check to see if the input BFD actually contains any sections. If not,
15827 then it has no attributes, and its flags may not have been initialized
15828 either, but it cannot actually cause any incompatibility. */
15829 /* FIXME: This excludes any input shared library from consideration. */
15830 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
15832 /* Ignore synthetic sections and empty .text, .data and .bss sections
15833 which are automatically generated by gas. Also ignore fake
15834 (s)common sections, since merely defining a common symbol does
15835 not affect compatibility. */
15836 if ((sec->flags & SEC_IS_COMMON) == 0
15837 && strcmp (sec->name, ".reginfo")
15838 && strcmp (sec->name, ".mdebug")
15839 && (sec->size != 0
15840 || (strcmp (sec->name, ".text")
15841 && strcmp (sec->name, ".data")
15842 && strcmp (sec->name, ".bss"))))
15844 null_input_bfd = false;
15845 break;
15848 if (null_input_bfd)
15849 return true;
15851 /* Populate abiflags using existing information. */
15852 if (in_tdata->abiflags_valid)
15854 obj_attribute *in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
15855 Elf_Internal_ABIFlags_v0 in_abiflags;
15856 Elf_Internal_ABIFlags_v0 abiflags;
15858 /* Set up the FP ABI attribute from the abiflags if it is not already
15859 set. */
15860 if (in_attr[Tag_GNU_MIPS_ABI_FP].i == Val_GNU_MIPS_ABI_FP_ANY)
15861 in_attr[Tag_GNU_MIPS_ABI_FP].i = in_tdata->abiflags.fp_abi;
15863 infer_mips_abiflags (ibfd, &abiflags);
15864 in_abiflags = in_tdata->abiflags;
15866 /* It is not possible to infer the correct ISA revision
15867 for R3 or R5 so drop down to R2 for the checks. */
15868 if (in_abiflags.isa_rev == 3 || in_abiflags.isa_rev == 5)
15869 in_abiflags.isa_rev = 2;
15871 if (LEVEL_REV (in_abiflags.isa_level, in_abiflags.isa_rev)
15872 < LEVEL_REV (abiflags.isa_level, abiflags.isa_rev))
15873 _bfd_error_handler
15874 (_("%pB: warning: inconsistent ISA between e_flags and "
15875 ".MIPS.abiflags"), ibfd);
15876 if (abiflags.fp_abi != Val_GNU_MIPS_ABI_FP_ANY
15877 && in_abiflags.fp_abi != abiflags.fp_abi)
15878 _bfd_error_handler
15879 (_("%pB: warning: inconsistent FP ABI between .gnu.attributes and "
15880 ".MIPS.abiflags"), ibfd);
15881 if ((in_abiflags.ases & abiflags.ases) != abiflags.ases)
15882 _bfd_error_handler
15883 (_("%pB: warning: inconsistent ASEs between e_flags and "
15884 ".MIPS.abiflags"), ibfd);
15885 /* The isa_ext is allowed to be an extension of what can be inferred
15886 from e_flags. */
15887 if (!mips_mach_extends_p (bfd_mips_isa_ext_mach (abiflags.isa_ext),
15888 bfd_mips_isa_ext_mach (in_abiflags.isa_ext)))
15889 _bfd_error_handler
15890 (_("%pB: warning: inconsistent ISA extensions between e_flags and "
15891 ".MIPS.abiflags"), ibfd);
15892 if (in_abiflags.flags2 != 0)
15893 _bfd_error_handler
15894 (_("%pB: warning: unexpected flag in the flags2 field of "
15895 ".MIPS.abiflags (0x%lx)"), ibfd,
15896 in_abiflags.flags2);
15898 else
15900 infer_mips_abiflags (ibfd, &in_tdata->abiflags);
15901 in_tdata->abiflags_valid = true;
15904 if (!out_tdata->abiflags_valid)
15906 /* Copy input abiflags if output abiflags are not already valid. */
15907 out_tdata->abiflags = in_tdata->abiflags;
15908 out_tdata->abiflags_valid = true;
15911 if (! elf_flags_init (obfd))
15913 elf_flags_init (obfd) = true;
15914 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
15915 elf_elfheader (obfd)->e_ident[EI_CLASS]
15916 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
15918 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
15919 && (bfd_get_arch_info (obfd)->the_default
15920 || mips_mach_extends_p (bfd_get_mach (obfd),
15921 bfd_get_mach (ibfd))))
15923 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
15924 bfd_get_mach (ibfd)))
15925 return false;
15927 /* Update the ABI flags isa_level, isa_rev and isa_ext fields. */
15928 update_mips_abiflags_isa (obfd, &out_tdata->abiflags);
15931 ok = true;
15933 else
15934 ok = mips_elf_merge_obj_e_flags (ibfd, info);
15936 ok = mips_elf_merge_obj_attributes (ibfd, info) && ok;
15938 ok = mips_elf_merge_obj_abiflags (ibfd, obfd) && ok;
15940 if (!ok)
15942 bfd_set_error (bfd_error_bad_value);
15943 return false;
15946 return true;
15949 /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
15951 bool
15952 _bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
15954 BFD_ASSERT (!elf_flags_init (abfd)
15955 || elf_elfheader (abfd)->e_flags == flags);
15957 elf_elfheader (abfd)->e_flags = flags;
15958 elf_flags_init (abfd) = true;
15959 return true;
15962 char *
15963 _bfd_mips_elf_get_target_dtag (bfd_vma dtag)
15965 switch (dtag)
15967 default: return "";
15968 case DT_MIPS_RLD_VERSION:
15969 return "MIPS_RLD_VERSION";
15970 case DT_MIPS_TIME_STAMP:
15971 return "MIPS_TIME_STAMP";
15972 case DT_MIPS_ICHECKSUM:
15973 return "MIPS_ICHECKSUM";
15974 case DT_MIPS_IVERSION:
15975 return "MIPS_IVERSION";
15976 case DT_MIPS_FLAGS:
15977 return "MIPS_FLAGS";
15978 case DT_MIPS_BASE_ADDRESS:
15979 return "MIPS_BASE_ADDRESS";
15980 case DT_MIPS_MSYM:
15981 return "MIPS_MSYM";
15982 case DT_MIPS_CONFLICT:
15983 return "MIPS_CONFLICT";
15984 case DT_MIPS_LIBLIST:
15985 return "MIPS_LIBLIST";
15986 case DT_MIPS_LOCAL_GOTNO:
15987 return "MIPS_LOCAL_GOTNO";
15988 case DT_MIPS_CONFLICTNO:
15989 return "MIPS_CONFLICTNO";
15990 case DT_MIPS_LIBLISTNO:
15991 return "MIPS_LIBLISTNO";
15992 case DT_MIPS_SYMTABNO:
15993 return "MIPS_SYMTABNO";
15994 case DT_MIPS_UNREFEXTNO:
15995 return "MIPS_UNREFEXTNO";
15996 case DT_MIPS_GOTSYM:
15997 return "MIPS_GOTSYM";
15998 case DT_MIPS_HIPAGENO:
15999 return "MIPS_HIPAGENO";
16000 case DT_MIPS_RLD_MAP:
16001 return "MIPS_RLD_MAP";
16002 case DT_MIPS_RLD_MAP_REL:
16003 return "MIPS_RLD_MAP_REL";
16004 case DT_MIPS_DELTA_CLASS:
16005 return "MIPS_DELTA_CLASS";
16006 case DT_MIPS_DELTA_CLASS_NO:
16007 return "MIPS_DELTA_CLASS_NO";
16008 case DT_MIPS_DELTA_INSTANCE:
16009 return "MIPS_DELTA_INSTANCE";
16010 case DT_MIPS_DELTA_INSTANCE_NO:
16011 return "MIPS_DELTA_INSTANCE_NO";
16012 case DT_MIPS_DELTA_RELOC:
16013 return "MIPS_DELTA_RELOC";
16014 case DT_MIPS_DELTA_RELOC_NO:
16015 return "MIPS_DELTA_RELOC_NO";
16016 case DT_MIPS_DELTA_SYM:
16017 return "MIPS_DELTA_SYM";
16018 case DT_MIPS_DELTA_SYM_NO:
16019 return "MIPS_DELTA_SYM_NO";
16020 case DT_MIPS_DELTA_CLASSSYM:
16021 return "MIPS_DELTA_CLASSSYM";
16022 case DT_MIPS_DELTA_CLASSSYM_NO:
16023 return "MIPS_DELTA_CLASSSYM_NO";
16024 case DT_MIPS_CXX_FLAGS:
16025 return "MIPS_CXX_FLAGS";
16026 case DT_MIPS_PIXIE_INIT:
16027 return "MIPS_PIXIE_INIT";
16028 case DT_MIPS_SYMBOL_LIB:
16029 return "MIPS_SYMBOL_LIB";
16030 case DT_MIPS_LOCALPAGE_GOTIDX:
16031 return "MIPS_LOCALPAGE_GOTIDX";
16032 case DT_MIPS_LOCAL_GOTIDX:
16033 return "MIPS_LOCAL_GOTIDX";
16034 case DT_MIPS_HIDDEN_GOTIDX:
16035 return "MIPS_HIDDEN_GOTIDX";
16036 case DT_MIPS_PROTECTED_GOTIDX:
16037 return "MIPS_PROTECTED_GOT_IDX";
16038 case DT_MIPS_OPTIONS:
16039 return "MIPS_OPTIONS";
16040 case DT_MIPS_INTERFACE:
16041 return "MIPS_INTERFACE";
16042 case DT_MIPS_DYNSTR_ALIGN:
16043 return "DT_MIPS_DYNSTR_ALIGN";
16044 case DT_MIPS_INTERFACE_SIZE:
16045 return "DT_MIPS_INTERFACE_SIZE";
16046 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR:
16047 return "DT_MIPS_RLD_TEXT_RESOLVE_ADDR";
16048 case DT_MIPS_PERF_SUFFIX:
16049 return "DT_MIPS_PERF_SUFFIX";
16050 case DT_MIPS_COMPACT_SIZE:
16051 return "DT_MIPS_COMPACT_SIZE";
16052 case DT_MIPS_GP_VALUE:
16053 return "DT_MIPS_GP_VALUE";
16054 case DT_MIPS_AUX_DYNAMIC:
16055 return "DT_MIPS_AUX_DYNAMIC";
16056 case DT_MIPS_PLTGOT:
16057 return "DT_MIPS_PLTGOT";
16058 case DT_MIPS_RWPLT:
16059 return "DT_MIPS_RWPLT";
16060 case DT_MIPS_XHASH:
16061 return "DT_MIPS_XHASH";
16065 /* Return the meaning of Tag_GNU_MIPS_ABI_FP value FP, or null if
16066 not known. */
16068 const char *
16069 _bfd_mips_fp_abi_string (int fp)
16071 switch (fp)
16073 /* These strings aren't translated because they're simply
16074 option lists. */
16075 case Val_GNU_MIPS_ABI_FP_DOUBLE:
16076 return "-mdouble-float";
16078 case Val_GNU_MIPS_ABI_FP_SINGLE:
16079 return "-msingle-float";
16081 case Val_GNU_MIPS_ABI_FP_SOFT:
16082 return "-msoft-float";
16084 case Val_GNU_MIPS_ABI_FP_OLD_64:
16085 return _("-mips32r2 -mfp64 (12 callee-saved)");
16087 case Val_GNU_MIPS_ABI_FP_XX:
16088 return "-mfpxx";
16090 case Val_GNU_MIPS_ABI_FP_64:
16091 return "-mgp32 -mfp64";
16093 case Val_GNU_MIPS_ABI_FP_64A:
16094 return "-mgp32 -mfp64 -mno-odd-spreg";
16096 default:
16097 return 0;
16101 static void
16102 print_mips_ases (FILE *file, unsigned int mask)
16104 if (mask & AFL_ASE_DSP)
16105 fputs ("\n\tDSP ASE", file);
16106 if (mask & AFL_ASE_DSPR2)
16107 fputs ("\n\tDSP R2 ASE", file);
16108 if (mask & AFL_ASE_DSPR3)
16109 fputs ("\n\tDSP R3 ASE", file);
16110 if (mask & AFL_ASE_EVA)
16111 fputs ("\n\tEnhanced VA Scheme", file);
16112 if (mask & AFL_ASE_MCU)
16113 fputs ("\n\tMCU (MicroController) ASE", file);
16114 if (mask & AFL_ASE_MDMX)
16115 fputs ("\n\tMDMX ASE", file);
16116 if (mask & AFL_ASE_MIPS3D)
16117 fputs ("\n\tMIPS-3D ASE", file);
16118 if (mask & AFL_ASE_MT)
16119 fputs ("\n\tMT ASE", file);
16120 if (mask & AFL_ASE_SMARTMIPS)
16121 fputs ("\n\tSmartMIPS ASE", file);
16122 if (mask & AFL_ASE_VIRT)
16123 fputs ("\n\tVZ ASE", file);
16124 if (mask & AFL_ASE_MSA)
16125 fputs ("\n\tMSA ASE", file);
16126 if (mask & AFL_ASE_MIPS16)
16127 fputs ("\n\tMIPS16 ASE", file);
16128 if (mask & AFL_ASE_MICROMIPS)
16129 fputs ("\n\tMICROMIPS ASE", file);
16130 if (mask & AFL_ASE_XPA)
16131 fputs ("\n\tXPA ASE", file);
16132 if (mask & AFL_ASE_MIPS16E2)
16133 fputs ("\n\tMIPS16e2 ASE", file);
16134 if (mask & AFL_ASE_CRC)
16135 fputs ("\n\tCRC ASE", file);
16136 if (mask & AFL_ASE_GINV)
16137 fputs ("\n\tGINV ASE", file);
16138 if (mask & AFL_ASE_LOONGSON_MMI)
16139 fputs ("\n\tLoongson MMI ASE", file);
16140 if (mask & AFL_ASE_LOONGSON_CAM)
16141 fputs ("\n\tLoongson CAM ASE", file);
16142 if (mask & AFL_ASE_LOONGSON_EXT)
16143 fputs ("\n\tLoongson EXT ASE", file);
16144 if (mask & AFL_ASE_LOONGSON_EXT2)
16145 fputs ("\n\tLoongson EXT2 ASE", file);
16146 if (mask == 0)
16147 fprintf (file, "\n\t%s", _("None"));
16148 else if ((mask & ~AFL_ASE_MASK) != 0)
16149 fprintf (stdout, "\n\t%s (%x)", _("Unknown"), mask & ~AFL_ASE_MASK);
16152 static void
16153 print_mips_isa_ext (FILE *file, unsigned int isa_ext)
16155 switch (isa_ext)
16157 case 0:
16158 fputs (_("None"), file);
16159 break;
16160 case AFL_EXT_XLR:
16161 fputs ("RMI XLR", file);
16162 break;
16163 case AFL_EXT_OCTEON3:
16164 fputs ("Cavium Networks Octeon3", file);
16165 break;
16166 case AFL_EXT_OCTEON2:
16167 fputs ("Cavium Networks Octeon2", file);
16168 break;
16169 case AFL_EXT_OCTEONP:
16170 fputs ("Cavium Networks OcteonP", file);
16171 break;
16172 case AFL_EXT_OCTEON:
16173 fputs ("Cavium Networks Octeon", file);
16174 break;
16175 case AFL_EXT_5900:
16176 fputs ("Toshiba R5900", file);
16177 break;
16178 case AFL_EXT_4650:
16179 fputs ("MIPS R4650", file);
16180 break;
16181 case AFL_EXT_4010:
16182 fputs ("LSI R4010", file);
16183 break;
16184 case AFL_EXT_4100:
16185 fputs ("NEC VR4100", file);
16186 break;
16187 case AFL_EXT_3900:
16188 fputs ("Toshiba R3900", file);
16189 break;
16190 case AFL_EXT_10000:
16191 fputs ("MIPS R10000", file);
16192 break;
16193 case AFL_EXT_SB1:
16194 fputs ("Broadcom SB-1", file);
16195 break;
16196 case AFL_EXT_4111:
16197 fputs ("NEC VR4111/VR4181", file);
16198 break;
16199 case AFL_EXT_4120:
16200 fputs ("NEC VR4120", file);
16201 break;
16202 case AFL_EXT_5400:
16203 fputs ("NEC VR5400", file);
16204 break;
16205 case AFL_EXT_5500:
16206 fputs ("NEC VR5500", file);
16207 break;
16208 case AFL_EXT_LOONGSON_2E:
16209 fputs ("ST Microelectronics Loongson 2E", file);
16210 break;
16211 case AFL_EXT_LOONGSON_2F:
16212 fputs ("ST Microelectronics Loongson 2F", file);
16213 break;
16214 case AFL_EXT_INTERAPTIV_MR2:
16215 fputs ("Imagination interAptiv MR2", file);
16216 break;
16217 default:
16218 fprintf (file, "%s (%d)", _("Unknown"), isa_ext);
16219 break;
16223 static void
16224 print_mips_fp_abi_value (FILE *file, int val)
16226 switch (val)
16228 case Val_GNU_MIPS_ABI_FP_ANY:
16229 fprintf (file, _("Hard or soft float\n"));
16230 break;
16231 case Val_GNU_MIPS_ABI_FP_DOUBLE:
16232 fprintf (file, _("Hard float (double precision)\n"));
16233 break;
16234 case Val_GNU_MIPS_ABI_FP_SINGLE:
16235 fprintf (file, _("Hard float (single precision)\n"));
16236 break;
16237 case Val_GNU_MIPS_ABI_FP_SOFT:
16238 fprintf (file, _("Soft float\n"));
16239 break;
16240 case Val_GNU_MIPS_ABI_FP_OLD_64:
16241 fprintf (file, _("Hard float (MIPS32r2 64-bit FPU 12 callee-saved)\n"));
16242 break;
16243 case Val_GNU_MIPS_ABI_FP_XX:
16244 fprintf (file, _("Hard float (32-bit CPU, Any FPU)\n"));
16245 break;
16246 case Val_GNU_MIPS_ABI_FP_64:
16247 fprintf (file, _("Hard float (32-bit CPU, 64-bit FPU)\n"));
16248 break;
16249 case Val_GNU_MIPS_ABI_FP_64A:
16250 fprintf (file, _("Hard float compat (32-bit CPU, 64-bit FPU)\n"));
16251 break;
16252 default:
16253 fprintf (file, "??? (%d)\n", val);
16254 break;
16258 static int
16259 get_mips_reg_size (int reg_size)
16261 return (reg_size == AFL_REG_NONE) ? 0
16262 : (reg_size == AFL_REG_32) ? 32
16263 : (reg_size == AFL_REG_64) ? 64
16264 : (reg_size == AFL_REG_128) ? 128
16265 : -1;
16268 bool
16269 _bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
16271 FILE *file = ptr;
16273 BFD_ASSERT (abfd != NULL && ptr != NULL);
16275 /* Print normal ELF private data. */
16276 _bfd_elf_print_private_bfd_data (abfd, ptr);
16278 /* xgettext:c-format */
16279 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
16281 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
16282 fprintf (file, _(" [abi=O32]"));
16283 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
16284 fprintf (file, _(" [abi=O64]"));
16285 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
16286 fprintf (file, _(" [abi=EABI32]"));
16287 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
16288 fprintf (file, _(" [abi=EABI64]"));
16289 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
16290 fprintf (file, _(" [abi unknown]"));
16291 else if (ABI_N32_P (abfd))
16292 fprintf (file, _(" [abi=N32]"));
16293 else if (ABI_64_P (abfd))
16294 fprintf (file, _(" [abi=64]"));
16295 else
16296 fprintf (file, _(" [no abi set]"));
16298 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
16299 fprintf (file, " [mips1]");
16300 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
16301 fprintf (file, " [mips2]");
16302 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
16303 fprintf (file, " [mips3]");
16304 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
16305 fprintf (file, " [mips4]");
16306 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
16307 fprintf (file, " [mips5]");
16308 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
16309 fprintf (file, " [mips32]");
16310 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
16311 fprintf (file, " [mips64]");
16312 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
16313 fprintf (file, " [mips32r2]");
16314 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
16315 fprintf (file, " [mips64r2]");
16316 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6)
16317 fprintf (file, " [mips32r6]");
16318 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R6)
16319 fprintf (file, " [mips64r6]");
16320 else
16321 fprintf (file, _(" [unknown ISA]"));
16323 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
16324 fprintf (file, " [mdmx]");
16326 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
16327 fprintf (file, " [mips16]");
16329 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
16330 fprintf (file, " [micromips]");
16332 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NAN2008)
16333 fprintf (file, " [nan2008]");
16335 if (elf_elfheader (abfd)->e_flags & EF_MIPS_FP64)
16336 fprintf (file, " [old fp64]");
16338 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
16339 fprintf (file, " [32bitmode]");
16340 else
16341 fprintf (file, _(" [not 32bitmode]"));
16343 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NOREORDER)
16344 fprintf (file, " [noreorder]");
16346 if (elf_elfheader (abfd)->e_flags & EF_MIPS_PIC)
16347 fprintf (file, " [PIC]");
16349 if (elf_elfheader (abfd)->e_flags & EF_MIPS_CPIC)
16350 fprintf (file, " [CPIC]");
16352 if (elf_elfheader (abfd)->e_flags & EF_MIPS_XGOT)
16353 fprintf (file, " [XGOT]");
16355 if (elf_elfheader (abfd)->e_flags & EF_MIPS_UCODE)
16356 fprintf (file, " [UCODE]");
16358 fputc ('\n', file);
16360 if (mips_elf_tdata (abfd)->abiflags_valid)
16362 Elf_Internal_ABIFlags_v0 *abiflags = &mips_elf_tdata (abfd)->abiflags;
16363 fprintf (file, "\nMIPS ABI Flags Version: %d\n", abiflags->version);
16364 fprintf (file, "\nISA: MIPS%d", abiflags->isa_level);
16365 if (abiflags->isa_rev > 1)
16366 fprintf (file, "r%d", abiflags->isa_rev);
16367 fprintf (file, "\nGPR size: %d",
16368 get_mips_reg_size (abiflags->gpr_size));
16369 fprintf (file, "\nCPR1 size: %d",
16370 get_mips_reg_size (abiflags->cpr1_size));
16371 fprintf (file, "\nCPR2 size: %d",
16372 get_mips_reg_size (abiflags->cpr2_size));
16373 fputs ("\nFP ABI: ", file);
16374 print_mips_fp_abi_value (file, abiflags->fp_abi);
16375 fputs ("ISA Extension: ", file);
16376 print_mips_isa_ext (file, abiflags->isa_ext);
16377 fputs ("\nASEs:", file);
16378 print_mips_ases (file, abiflags->ases);
16379 fprintf (file, "\nFLAGS 1: %8.8lx", abiflags->flags1);
16380 fprintf (file, "\nFLAGS 2: %8.8lx", abiflags->flags2);
16381 fputc ('\n', file);
16384 return true;
16387 const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] =
16389 { STRING_COMMA_LEN (".lit4"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
16390 { STRING_COMMA_LEN (".lit8"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
16391 { STRING_COMMA_LEN (".mdebug"), 0, SHT_MIPS_DEBUG, 0 },
16392 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
16393 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
16394 { STRING_COMMA_LEN (".ucode"), 0, SHT_MIPS_UCODE, 0 },
16395 { STRING_COMMA_LEN (".MIPS.xhash"), 0, SHT_MIPS_XHASH, SHF_ALLOC },
16396 { NULL, 0, 0, 0, 0 }
16399 /* Merge non visibility st_other attributes. Ensure that the
16400 STO_OPTIONAL flag is copied into h->other, even if this is not a
16401 definiton of the symbol. */
16402 void
16403 _bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
16404 unsigned int st_other,
16405 bool definition,
16406 bool dynamic ATTRIBUTE_UNUSED)
16408 if ((st_other & ~ELF_ST_VISIBILITY (-1)) != 0)
16410 unsigned char other;
16412 other = (definition ? st_other : h->other);
16413 other &= ~ELF_ST_VISIBILITY (-1);
16414 h->other = other | ELF_ST_VISIBILITY (h->other);
16417 if (!definition
16418 && ELF_MIPS_IS_OPTIONAL (st_other))
16419 h->other |= STO_OPTIONAL;
16422 /* Decide whether an undefined symbol is special and can be ignored.
16423 This is the case for OPTIONAL symbols on IRIX. */
16424 bool
16425 _bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry *h)
16427 return ELF_MIPS_IS_OPTIONAL (h->other) != 0;
16430 bool
16431 _bfd_mips_elf_common_definition (Elf_Internal_Sym *sym)
16433 return (sym->st_shndx == SHN_COMMON
16434 || sym->st_shndx == SHN_MIPS_ACOMMON
16435 || sym->st_shndx == SHN_MIPS_SCOMMON);
16438 /* Return address for Ith PLT stub in section PLT, for relocation REL
16439 or (bfd_vma) -1 if it should not be included. */
16441 bfd_vma
16442 _bfd_mips_elf_plt_sym_val (bfd_vma i, const asection *plt,
16443 const arelent *rel ATTRIBUTE_UNUSED)
16445 return (plt->vma
16446 + 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry)
16447 + i * 4 * ARRAY_SIZE (mips_exec_plt_entry));
16450 /* Build a table of synthetic symbols to represent the PLT. As with MIPS16
16451 and microMIPS PLT slots we may have a many-to-one mapping between .plt
16452 and .got.plt and also the slots may be of a different size each we walk
16453 the PLT manually fetching instructions and matching them against known
16454 patterns. To make things easier standard MIPS slots, if any, always come
16455 first. As we don't create proper ELF symbols we use the UDATA.I member
16456 of ASYMBOL to carry ISA annotation. The encoding used is the same as
16457 with the ST_OTHER member of the ELF symbol. */
16459 long
16460 _bfd_mips_elf_get_synthetic_symtab (bfd *abfd,
16461 long symcount ATTRIBUTE_UNUSED,
16462 asymbol **syms ATTRIBUTE_UNUSED,
16463 long dynsymcount, asymbol **dynsyms,
16464 asymbol **ret)
16466 static const char pltname[] = "_PROCEDURE_LINKAGE_TABLE_";
16467 static const char microsuffix[] = "@micromipsplt";
16468 static const char m16suffix[] = "@mips16plt";
16469 static const char mipssuffix[] = "@plt";
16471 bool (*slurp_relocs) (bfd *, asection *, asymbol **, bool);
16472 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
16473 bool micromips_p = MICROMIPS_P (abfd);
16474 Elf_Internal_Shdr *hdr;
16475 bfd_byte *plt_data;
16476 bfd_vma plt_offset;
16477 unsigned int other;
16478 bfd_vma entry_size;
16479 bfd_vma plt0_size;
16480 asection *relplt;
16481 bfd_vma opcode;
16482 asection *plt;
16483 asymbol *send;
16484 size_t size;
16485 char *names;
16486 long counti;
16487 arelent *p;
16488 asymbol *s;
16489 char *nend;
16490 long count;
16491 long pi;
16492 long i;
16493 long n;
16495 *ret = NULL;
16497 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0 || dynsymcount <= 0)
16498 return 0;
16500 relplt = bfd_get_section_by_name (abfd, ".rel.plt");
16501 if (relplt == NULL)
16502 return 0;
16504 hdr = &elf_section_data (relplt)->this_hdr;
16505 if (hdr->sh_link != elf_dynsymtab (abfd) || hdr->sh_type != SHT_REL)
16506 return 0;
16508 plt = bfd_get_section_by_name (abfd, ".plt");
16509 if (plt == NULL)
16510 return 0;
16512 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
16513 if (!(*slurp_relocs) (abfd, relplt, dynsyms, true))
16514 return -1;
16515 p = relplt->relocation;
16517 /* Calculating the exact amount of space required for symbols would
16518 require two passes over the PLT, so just pessimise assuming two
16519 PLT slots per relocation. */
16520 count = relplt->size / hdr->sh_entsize;
16521 counti = count * bed->s->int_rels_per_ext_rel;
16522 size = 2 * count * sizeof (asymbol);
16523 size += count * (sizeof (mipssuffix) +
16524 (micromips_p ? sizeof (microsuffix) : sizeof (m16suffix)));
16525 for (pi = 0; pi < counti; pi += bed->s->int_rels_per_ext_rel)
16526 size += 2 * strlen ((*p[pi].sym_ptr_ptr)->name);
16528 /* Add the size of "_PROCEDURE_LINKAGE_TABLE_" too. */
16529 size += sizeof (asymbol) + sizeof (pltname);
16531 if (!bfd_malloc_and_get_section (abfd, plt, &plt_data))
16532 return -1;
16534 if (plt->size < 16)
16535 return -1;
16537 s = *ret = bfd_malloc (size);
16538 if (s == NULL)
16539 return -1;
16540 send = s + 2 * count + 1;
16542 names = (char *) send;
16543 nend = (char *) s + size;
16544 n = 0;
16546 opcode = bfd_get_micromips_32 (abfd, plt_data + 12);
16547 if (opcode == 0x3302fffe)
16549 if (!micromips_p)
16550 return -1;
16551 plt0_size = 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry);
16552 other = STO_MICROMIPS;
16554 else if (opcode == 0x0398c1d0)
16556 if (!micromips_p)
16557 return -1;
16558 plt0_size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry);
16559 other = STO_MICROMIPS;
16561 else
16563 plt0_size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
16564 other = 0;
16567 s->the_bfd = abfd;
16568 s->flags = BSF_SYNTHETIC | BSF_FUNCTION | BSF_LOCAL;
16569 s->section = plt;
16570 s->value = 0;
16571 s->name = names;
16572 s->udata.i = other;
16573 memcpy (names, pltname, sizeof (pltname));
16574 names += sizeof (pltname);
16575 ++s, ++n;
16577 pi = 0;
16578 for (plt_offset = plt0_size;
16579 plt_offset + 8 <= plt->size && s < send;
16580 plt_offset += entry_size)
16582 bfd_vma gotplt_addr;
16583 const char *suffix;
16584 bfd_vma gotplt_hi;
16585 bfd_vma gotplt_lo;
16586 size_t suffixlen;
16588 opcode = bfd_get_micromips_32 (abfd, plt_data + plt_offset + 4);
16590 /* Check if the second word matches the expected MIPS16 instruction. */
16591 if (opcode == 0x651aeb00)
16593 if (micromips_p)
16594 return -1;
16595 /* Truncated table??? */
16596 if (plt_offset + 16 > plt->size)
16597 break;
16598 gotplt_addr = bfd_get_32 (abfd, plt_data + plt_offset + 12);
16599 entry_size = 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry);
16600 suffixlen = sizeof (m16suffix);
16601 suffix = m16suffix;
16602 other = STO_MIPS16;
16604 /* Likewise the expected microMIPS instruction (no insn32 mode). */
16605 else if (opcode == 0xff220000)
16607 if (!micromips_p)
16608 return -1;
16609 gotplt_hi = bfd_get_16 (abfd, plt_data + plt_offset) & 0x7f;
16610 gotplt_lo = bfd_get_16 (abfd, plt_data + plt_offset + 2) & 0xffff;
16611 gotplt_hi = ((gotplt_hi ^ 0x40) - 0x40) << 18;
16612 gotplt_lo <<= 2;
16613 gotplt_addr = gotplt_hi + gotplt_lo;
16614 gotplt_addr += ((plt->vma + plt_offset) | 3) ^ 3;
16615 entry_size = 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry);
16616 suffixlen = sizeof (microsuffix);
16617 suffix = microsuffix;
16618 other = STO_MICROMIPS;
16620 /* Likewise the expected microMIPS instruction (insn32 mode). */
16621 else if ((opcode & 0xffff0000) == 0xff2f0000)
16623 gotplt_hi = bfd_get_16 (abfd, plt_data + plt_offset + 2) & 0xffff;
16624 gotplt_lo = bfd_get_16 (abfd, plt_data + plt_offset + 6) & 0xffff;
16625 gotplt_hi = ((gotplt_hi ^ 0x8000) - 0x8000) << 16;
16626 gotplt_lo = (gotplt_lo ^ 0x8000) - 0x8000;
16627 gotplt_addr = gotplt_hi + gotplt_lo;
16628 entry_size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry);
16629 suffixlen = sizeof (microsuffix);
16630 suffix = microsuffix;
16631 other = STO_MICROMIPS;
16633 /* Otherwise assume standard MIPS code. */
16634 else
16636 gotplt_hi = bfd_get_32 (abfd, plt_data + plt_offset) & 0xffff;
16637 gotplt_lo = bfd_get_32 (abfd, plt_data + plt_offset + 4) & 0xffff;
16638 gotplt_hi = ((gotplt_hi ^ 0x8000) - 0x8000) << 16;
16639 gotplt_lo = (gotplt_lo ^ 0x8000) - 0x8000;
16640 gotplt_addr = gotplt_hi + gotplt_lo;
16641 entry_size = 4 * ARRAY_SIZE (mips_exec_plt_entry);
16642 suffixlen = sizeof (mipssuffix);
16643 suffix = mipssuffix;
16644 other = 0;
16646 /* Truncated table??? */
16647 if (plt_offset + entry_size > plt->size)
16648 break;
16650 for (i = 0;
16651 i < count && p[pi].address != gotplt_addr;
16652 i++, pi = (pi + bed->s->int_rels_per_ext_rel) % counti);
16654 if (i < count)
16656 size_t namelen;
16657 size_t len;
16659 *s = **p[pi].sym_ptr_ptr;
16660 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
16661 we are defining a symbol, ensure one of them is set. */
16662 if ((s->flags & BSF_LOCAL) == 0)
16663 s->flags |= BSF_GLOBAL;
16664 s->flags |= BSF_SYNTHETIC;
16665 s->section = plt;
16666 s->value = plt_offset;
16667 s->name = names;
16668 s->udata.i = other;
16670 len = strlen ((*p[pi].sym_ptr_ptr)->name);
16671 namelen = len + suffixlen;
16672 if (names + namelen > nend)
16673 break;
16675 memcpy (names, (*p[pi].sym_ptr_ptr)->name, len);
16676 names += len;
16677 memcpy (names, suffix, suffixlen);
16678 names += suffixlen;
16680 ++s, ++n;
16681 pi = (pi + bed->s->int_rels_per_ext_rel) % counti;
16685 free (plt_data);
16687 return n;
16690 /* Return the ABI flags associated with ABFD if available. */
16692 Elf_Internal_ABIFlags_v0 *
16693 bfd_mips_elf_get_abiflags (bfd *abfd)
16695 struct mips_elf_obj_tdata *tdata = mips_elf_tdata (abfd);
16697 return tdata->abiflags_valid ? &tdata->abiflags : NULL;
16700 /* MIPS libc ABI versions, used with the EI_ABIVERSION ELF file header
16701 field. Taken from `libc-abis.h' generated at GNU libc build time.
16702 Using a MIPS_ prefix as other libc targets use different values. */
16703 enum
16705 MIPS_LIBC_ABI_DEFAULT = 0,
16706 MIPS_LIBC_ABI_MIPS_PLT,
16707 MIPS_LIBC_ABI_UNIQUE,
16708 MIPS_LIBC_ABI_MIPS_O32_FP64,
16709 MIPS_LIBC_ABI_ABSOLUTE,
16710 MIPS_LIBC_ABI_XHASH,
16711 MIPS_LIBC_ABI_MAX
16714 bool
16715 _bfd_mips_init_file_header (bfd *abfd, struct bfd_link_info *link_info)
16717 struct mips_elf_link_hash_table *htab = NULL;
16718 Elf_Internal_Ehdr *i_ehdrp;
16720 if (!_bfd_elf_init_file_header (abfd, link_info))
16721 return false;
16723 i_ehdrp = elf_elfheader (abfd);
16724 if (link_info)
16726 htab = mips_elf_hash_table (link_info);
16727 BFD_ASSERT (htab != NULL);
16730 if (htab != NULL
16731 && htab->use_plts_and_copy_relocs
16732 && htab->root.target_os != is_vxworks)
16733 i_ehdrp->e_ident[EI_ABIVERSION] = MIPS_LIBC_ABI_MIPS_PLT;
16735 if (mips_elf_tdata (abfd)->abiflags.fp_abi == Val_GNU_MIPS_ABI_FP_64
16736 || mips_elf_tdata (abfd)->abiflags.fp_abi == Val_GNU_MIPS_ABI_FP_64A)
16737 i_ehdrp->e_ident[EI_ABIVERSION] = MIPS_LIBC_ABI_MIPS_O32_FP64;
16739 /* Mark that we need support for absolute symbols in the dynamic loader. */
16740 if (htab != NULL && htab->use_absolute_zero && htab->gnu_target)
16741 i_ehdrp->e_ident[EI_ABIVERSION] = MIPS_LIBC_ABI_ABSOLUTE;
16743 /* Mark that we need support for .MIPS.xhash in the dynamic linker,
16744 if it is the only hash section that will be created. */
16745 if (link_info && link_info->emit_gnu_hash && !link_info->emit_hash)
16746 i_ehdrp->e_ident[EI_ABIVERSION] = MIPS_LIBC_ABI_XHASH;
16747 return true;
16751 _bfd_mips_elf_compact_eh_encoding
16752 (struct bfd_link_info *link_info ATTRIBUTE_UNUSED)
16754 return DW_EH_PE_pcrel | DW_EH_PE_sdata4;
16757 /* Return the opcode for can't unwind. */
16760 _bfd_mips_elf_cant_unwind_opcode
16761 (struct bfd_link_info *link_info ATTRIBUTE_UNUSED)
16763 return COMPACT_EH_CANT_UNWIND_OPCODE;
16766 /* Record a position XLAT_LOC in the xlat translation table, associated with
16767 the hash entry H. The entry in the translation table will later be
16768 populated with the real symbol dynindx. */
16770 void
16771 _bfd_mips_elf_record_xhash_symbol (struct elf_link_hash_entry *h,
16772 bfd_vma xlat_loc)
16774 struct mips_elf_link_hash_entry *hmips;
16776 hmips = (struct mips_elf_link_hash_entry *) h;
16777 hmips->mipsxhash_loc = xlat_loc;