1 /* Symbol table lookup for the GNU debugger, GDB.
3 Copyright (C) 1986-2020 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
30 #include "gdb_regex.h"
31 #include "expression.h"
36 #include "filenames.h" /* for FILENAME_CMP */
37 #include "objc-lang.h"
43 #include "cli/cli-utils.h"
44 #include "cli/cli-style.h"
47 #include "typeprint.h"
49 #include "gdb_obstack.h"
51 #include "dictionary.h"
53 #include <sys/types.h>
58 #include "cp-support.h"
59 #include "observable.h"
62 #include "macroscope.h"
64 #include "parser-defs.h"
65 #include "completer.h"
66 #include "progspace-and-thread.h"
67 #include "gdbsupport/gdb_optional.h"
68 #include "filename-seen-cache.h"
69 #include "arch-utils.h"
71 #include "gdbsupport/gdb_string_view.h"
72 #include "gdbsupport/pathstuff.h"
73 #include "gdbsupport/common-utils.h"
75 /* Forward declarations for local functions. */
77 static void rbreak_command (const char *, int);
79 static int find_line_common (struct linetable
*, int, int *, int);
81 static struct block_symbol
82 lookup_symbol_aux (const char *name
,
83 symbol_name_match_type match_type
,
84 const struct block
*block
,
85 const domain_enum domain
,
86 enum language language
,
87 struct field_of_this_result
*);
90 struct block_symbol
lookup_local_symbol (const char *name
,
91 symbol_name_match_type match_type
,
92 const struct block
*block
,
93 const domain_enum domain
,
94 enum language language
);
96 static struct block_symbol
97 lookup_symbol_in_objfile (struct objfile
*objfile
,
98 enum block_enum block_index
,
99 const char *name
, const domain_enum domain
);
101 /* Type of the data stored on the program space. */
105 main_info () = default;
109 xfree (name_of_main
);
112 /* Name of "main". */
114 char *name_of_main
= nullptr;
116 /* Language of "main". */
118 enum language language_of_main
= language_unknown
;
121 /* Program space key for finding name and language of "main". */
123 static const program_space_key
<main_info
> main_progspace_key
;
125 /* The default symbol cache size.
126 There is no extra cpu cost for large N (except when flushing the cache,
127 which is rare). The value here is just a first attempt. A better default
128 value may be higher or lower. A prime number can make up for a bad hash
129 computation, so that's why the number is what it is. */
130 #define DEFAULT_SYMBOL_CACHE_SIZE 1021
132 /* The maximum symbol cache size.
133 There's no method to the decision of what value to use here, other than
134 there's no point in allowing a user typo to make gdb consume all memory. */
135 #define MAX_SYMBOL_CACHE_SIZE (1024*1024)
137 /* symbol_cache_lookup returns this if a previous lookup failed to find the
138 symbol in any objfile. */
139 #define SYMBOL_LOOKUP_FAILED \
140 ((struct block_symbol) {(struct symbol *) 1, NULL})
141 #define SYMBOL_LOOKUP_FAILED_P(SIB) (SIB.symbol == (struct symbol *) 1)
143 /* Recording lookups that don't find the symbol is just as important, if not
144 more so, than recording found symbols. */
146 enum symbol_cache_slot_state
149 SYMBOL_SLOT_NOT_FOUND
,
153 struct symbol_cache_slot
155 enum symbol_cache_slot_state state
;
157 /* The objfile that was current when the symbol was looked up.
158 This is only needed for global blocks, but for simplicity's sake
159 we allocate the space for both. If data shows the extra space used
160 for static blocks is a problem, we can split things up then.
162 Global blocks need cache lookup to include the objfile context because
163 we need to account for gdbarch_iterate_over_objfiles_in_search_order
164 which can traverse objfiles in, effectively, any order, depending on
165 the current objfile, thus affecting which symbol is found. Normally,
166 only the current objfile is searched first, and then the rest are
167 searched in recorded order; but putting cache lookup inside
168 gdbarch_iterate_over_objfiles_in_search_order would be awkward.
169 Instead we just make the current objfile part of the context of
170 cache lookup. This means we can record the same symbol multiple times,
171 each with a different "current objfile" that was in effect when the
172 lookup was saved in the cache, but cache space is pretty cheap. */
173 const struct objfile
*objfile_context
;
177 struct block_symbol found
;
186 /* Clear out SLOT. */
189 symbol_cache_clear_slot (struct symbol_cache_slot
*slot
)
191 if (slot
->state
== SYMBOL_SLOT_NOT_FOUND
)
192 xfree (slot
->value
.not_found
.name
);
193 slot
->state
= SYMBOL_SLOT_UNUSED
;
196 /* Symbols don't specify global vs static block.
197 So keep them in separate caches. */
199 struct block_symbol_cache
203 unsigned int collisions
;
205 /* SYMBOLS is a variable length array of this size.
206 One can imagine that in general one cache (global/static) should be a
207 fraction of the size of the other, but there's no data at the moment
208 on which to decide. */
211 struct symbol_cache_slot symbols
[1];
214 /* Clear all slots of BSC and free BSC. */
217 destroy_block_symbol_cache (struct block_symbol_cache
*bsc
)
221 for (unsigned int i
= 0; i
< bsc
->size
; i
++)
222 symbol_cache_clear_slot (&bsc
->symbols
[i
]);
229 Searching for symbols in the static and global blocks over multiple objfiles
230 again and again can be slow, as can searching very big objfiles. This is a
231 simple cache to improve symbol lookup performance, which is critical to
232 overall gdb performance.
234 Symbols are hashed on the name, its domain, and block.
235 They are also hashed on their objfile for objfile-specific lookups. */
239 symbol_cache () = default;
243 destroy_block_symbol_cache (global_symbols
);
244 destroy_block_symbol_cache (static_symbols
);
247 struct block_symbol_cache
*global_symbols
= nullptr;
248 struct block_symbol_cache
*static_symbols
= nullptr;
251 /* Program space key for finding its symbol cache. */
253 static const program_space_key
<symbol_cache
> symbol_cache_key
;
255 /* When non-zero, print debugging messages related to symtab creation. */
256 unsigned int symtab_create_debug
= 0;
258 /* When non-zero, print debugging messages related to symbol lookup. */
259 unsigned int symbol_lookup_debug
= 0;
261 /* The size of the cache is staged here. */
262 static unsigned int new_symbol_cache_size
= DEFAULT_SYMBOL_CACHE_SIZE
;
264 /* The current value of the symbol cache size.
265 This is saved so that if the user enters a value too big we can restore
266 the original value from here. */
267 static unsigned int symbol_cache_size
= DEFAULT_SYMBOL_CACHE_SIZE
;
269 /* True if a file may be known by two different basenames.
270 This is the uncommon case, and significantly slows down gdb.
271 Default set to "off" to not slow down the common case. */
272 bool basenames_may_differ
= false;
274 /* Allow the user to configure the debugger behavior with respect
275 to multiple-choice menus when more than one symbol matches during
278 const char multiple_symbols_ask
[] = "ask";
279 const char multiple_symbols_all
[] = "all";
280 const char multiple_symbols_cancel
[] = "cancel";
281 static const char *const multiple_symbols_modes
[] =
283 multiple_symbols_ask
,
284 multiple_symbols_all
,
285 multiple_symbols_cancel
,
288 static const char *multiple_symbols_mode
= multiple_symbols_all
;
290 /* Read-only accessor to AUTO_SELECT_MODE. */
293 multiple_symbols_select_mode (void)
295 return multiple_symbols_mode
;
298 /* Return the name of a domain_enum. */
301 domain_name (domain_enum e
)
305 case UNDEF_DOMAIN
: return "UNDEF_DOMAIN";
306 case VAR_DOMAIN
: return "VAR_DOMAIN";
307 case STRUCT_DOMAIN
: return "STRUCT_DOMAIN";
308 case MODULE_DOMAIN
: return "MODULE_DOMAIN";
309 case LABEL_DOMAIN
: return "LABEL_DOMAIN";
310 case COMMON_BLOCK_DOMAIN
: return "COMMON_BLOCK_DOMAIN";
311 default: gdb_assert_not_reached ("bad domain_enum");
315 /* Return the name of a search_domain . */
318 search_domain_name (enum search_domain e
)
322 case VARIABLES_DOMAIN
: return "VARIABLES_DOMAIN";
323 case FUNCTIONS_DOMAIN
: return "FUNCTIONS_DOMAIN";
324 case TYPES_DOMAIN
: return "TYPES_DOMAIN";
325 case MODULES_DOMAIN
: return "MODULES_DOMAIN";
326 case ALL_DOMAIN
: return "ALL_DOMAIN";
327 default: gdb_assert_not_reached ("bad search_domain");
334 compunit_primary_filetab (const struct compunit_symtab
*cust
)
336 gdb_assert (COMPUNIT_FILETABS (cust
) != NULL
);
338 /* The primary file symtab is the first one in the list. */
339 return COMPUNIT_FILETABS (cust
);
345 compunit_language (const struct compunit_symtab
*cust
)
347 struct symtab
*symtab
= compunit_primary_filetab (cust
);
349 /* The language of the compunit symtab is the language of its primary
351 return SYMTAB_LANGUAGE (symtab
);
357 minimal_symbol::data_p () const
359 return type
== mst_data
362 || type
== mst_file_data
363 || type
== mst_file_bss
;
369 minimal_symbol::text_p () const
371 return type
== mst_text
372 || type
== mst_text_gnu_ifunc
373 || type
== mst_data_gnu_ifunc
374 || type
== mst_slot_got_plt
375 || type
== mst_solib_trampoline
376 || type
== mst_file_text
;
379 /* See whether FILENAME matches SEARCH_NAME using the rule that we
380 advertise to the user. (The manual's description of linespecs
381 describes what we advertise). Returns true if they match, false
385 compare_filenames_for_search (const char *filename
, const char *search_name
)
387 int len
= strlen (filename
);
388 size_t search_len
= strlen (search_name
);
390 if (len
< search_len
)
393 /* The tail of FILENAME must match. */
394 if (FILENAME_CMP (filename
+ len
- search_len
, search_name
) != 0)
397 /* Either the names must completely match, or the character
398 preceding the trailing SEARCH_NAME segment of FILENAME must be a
401 The check !IS_ABSOLUTE_PATH ensures SEARCH_NAME "/dir/file.c"
402 cannot match FILENAME "/path//dir/file.c" - as user has requested
403 absolute path. The sama applies for "c:\file.c" possibly
404 incorrectly hypothetically matching "d:\dir\c:\file.c".
406 The HAS_DRIVE_SPEC purpose is to make FILENAME "c:file.c"
407 compatible with SEARCH_NAME "file.c". In such case a compiler had
408 to put the "c:file.c" name into debug info. Such compatibility
409 works only on GDB built for DOS host. */
410 return (len
== search_len
411 || (!IS_ABSOLUTE_PATH (search_name
)
412 && IS_DIR_SEPARATOR (filename
[len
- search_len
- 1]))
413 || (HAS_DRIVE_SPEC (filename
)
414 && STRIP_DRIVE_SPEC (filename
) == &filename
[len
- search_len
]));
417 /* Same as compare_filenames_for_search, but for glob-style patterns.
418 Heads up on the order of the arguments. They match the order of
419 compare_filenames_for_search, but it's the opposite of the order of
420 arguments to gdb_filename_fnmatch. */
423 compare_glob_filenames_for_search (const char *filename
,
424 const char *search_name
)
426 /* We rely on the property of glob-style patterns with FNM_FILE_NAME that
427 all /s have to be explicitly specified. */
428 int file_path_elements
= count_path_elements (filename
);
429 int search_path_elements
= count_path_elements (search_name
);
431 if (search_path_elements
> file_path_elements
)
434 if (IS_ABSOLUTE_PATH (search_name
))
436 return (search_path_elements
== file_path_elements
437 && gdb_filename_fnmatch (search_name
, filename
,
438 FNM_FILE_NAME
| FNM_NOESCAPE
) == 0);
442 const char *file_to_compare
443 = strip_leading_path_elements (filename
,
444 file_path_elements
- search_path_elements
);
446 return gdb_filename_fnmatch (search_name
, file_to_compare
,
447 FNM_FILE_NAME
| FNM_NOESCAPE
) == 0;
451 /* Check for a symtab of a specific name by searching some symtabs.
452 This is a helper function for callbacks of iterate_over_symtabs.
454 If NAME is not absolute, then REAL_PATH is NULL
455 If NAME is absolute, then REAL_PATH is the gdb_realpath form of NAME.
457 The return value, NAME, REAL_PATH and CALLBACK are identical to the
458 `map_symtabs_matching_filename' method of quick_symbol_functions.
460 FIRST and AFTER_LAST indicate the range of compunit symtabs to search.
461 Each symtab within the specified compunit symtab is also searched.
462 AFTER_LAST is one past the last compunit symtab to search; NULL means to
463 search until the end of the list. */
466 iterate_over_some_symtabs (const char *name
,
467 const char *real_path
,
468 struct compunit_symtab
*first
,
469 struct compunit_symtab
*after_last
,
470 gdb::function_view
<bool (symtab
*)> callback
)
472 struct compunit_symtab
*cust
;
473 const char* base_name
= lbasename (name
);
475 for (cust
= first
; cust
!= NULL
&& cust
!= after_last
; cust
= cust
->next
)
477 for (symtab
*s
: compunit_filetabs (cust
))
479 if (compare_filenames_for_search (s
->filename
, name
))
486 /* Before we invoke realpath, which can get expensive when many
487 files are involved, do a quick comparison of the basenames. */
488 if (! basenames_may_differ
489 && FILENAME_CMP (base_name
, lbasename (s
->filename
)) != 0)
492 if (compare_filenames_for_search (symtab_to_fullname (s
), name
))
499 /* If the user gave us an absolute path, try to find the file in
500 this symtab and use its absolute path. */
501 if (real_path
!= NULL
)
503 const char *fullname
= symtab_to_fullname (s
);
505 gdb_assert (IS_ABSOLUTE_PATH (real_path
));
506 gdb_assert (IS_ABSOLUTE_PATH (name
));
507 gdb::unique_xmalloc_ptr
<char> fullname_real_path
508 = gdb_realpath (fullname
);
509 fullname
= fullname_real_path
.get ();
510 if (FILENAME_CMP (real_path
, fullname
) == 0)
523 /* Check for a symtab of a specific name; first in symtabs, then in
524 psymtabs. *If* there is no '/' in the name, a match after a '/'
525 in the symtab filename will also work.
527 Calls CALLBACK with each symtab that is found. If CALLBACK returns
528 true, the search stops. */
531 iterate_over_symtabs (const char *name
,
532 gdb::function_view
<bool (symtab
*)> callback
)
534 gdb::unique_xmalloc_ptr
<char> real_path
;
536 /* Here we are interested in canonicalizing an absolute path, not
537 absolutizing a relative path. */
538 if (IS_ABSOLUTE_PATH (name
))
540 real_path
= gdb_realpath (name
);
541 gdb_assert (IS_ABSOLUTE_PATH (real_path
.get ()));
544 for (objfile
*objfile
: current_program_space
->objfiles ())
546 if (iterate_over_some_symtabs (name
, real_path
.get (),
547 objfile
->compunit_symtabs
, NULL
,
552 /* Same search rules as above apply here, but now we look thru the
555 for (objfile
*objfile
: current_program_space
->objfiles ())
558 && objfile
->sf
->qf
->map_symtabs_matching_filename (objfile
,
566 /* A wrapper for iterate_over_symtabs that returns the first matching
570 lookup_symtab (const char *name
)
572 struct symtab
*result
= NULL
;
574 iterate_over_symtabs (name
, [&] (symtab
*symtab
)
584 /* Mangle a GDB method stub type. This actually reassembles the pieces of the
585 full method name, which consist of the class name (from T), the unadorned
586 method name from METHOD_ID, and the signature for the specific overload,
587 specified by SIGNATURE_ID. Note that this function is g++ specific. */
590 gdb_mangle_name (struct type
*type
, int method_id
, int signature_id
)
592 int mangled_name_len
;
594 struct fn_field
*f
= TYPE_FN_FIELDLIST1 (type
, method_id
);
595 struct fn_field
*method
= &f
[signature_id
];
596 const char *field_name
= TYPE_FN_FIELDLIST_NAME (type
, method_id
);
597 const char *physname
= TYPE_FN_FIELD_PHYSNAME (f
, signature_id
);
598 const char *newname
= TYPE_NAME (type
);
600 /* Does the form of physname indicate that it is the full mangled name
601 of a constructor (not just the args)? */
602 int is_full_physname_constructor
;
605 int is_destructor
= is_destructor_name (physname
);
606 /* Need a new type prefix. */
607 const char *const_prefix
= method
->is_const
? "C" : "";
608 const char *volatile_prefix
= method
->is_volatile
? "V" : "";
610 int len
= (newname
== NULL
? 0 : strlen (newname
));
612 /* Nothing to do if physname already contains a fully mangled v3 abi name
613 or an operator name. */
614 if ((physname
[0] == '_' && physname
[1] == 'Z')
615 || is_operator_name (field_name
))
616 return xstrdup (physname
);
618 is_full_physname_constructor
= is_constructor_name (physname
);
620 is_constructor
= is_full_physname_constructor
621 || (newname
&& strcmp (field_name
, newname
) == 0);
624 is_destructor
= (startswith (physname
, "__dt"));
626 if (is_destructor
|| is_full_physname_constructor
)
628 mangled_name
= (char *) xmalloc (strlen (physname
) + 1);
629 strcpy (mangled_name
, physname
);
635 xsnprintf (buf
, sizeof (buf
), "__%s%s", const_prefix
, volatile_prefix
);
637 else if (physname
[0] == 't' || physname
[0] == 'Q')
639 /* The physname for template and qualified methods already includes
641 xsnprintf (buf
, sizeof (buf
), "__%s%s", const_prefix
, volatile_prefix
);
647 xsnprintf (buf
, sizeof (buf
), "__%s%s%d", const_prefix
,
648 volatile_prefix
, len
);
650 mangled_name_len
= ((is_constructor
? 0 : strlen (field_name
))
651 + strlen (buf
) + len
+ strlen (physname
) + 1);
653 mangled_name
= (char *) xmalloc (mangled_name_len
);
655 mangled_name
[0] = '\0';
657 strcpy (mangled_name
, field_name
);
659 strcat (mangled_name
, buf
);
660 /* If the class doesn't have a name, i.e. newname NULL, then we just
661 mangle it using 0 for the length of the class. Thus it gets mangled
662 as something starting with `::' rather than `classname::'. */
664 strcat (mangled_name
, newname
);
666 strcat (mangled_name
, physname
);
667 return (mangled_name
);
670 /* Set the demangled name of GSYMBOL to NAME. NAME must be already
671 correctly allocated. */
674 symbol_set_demangled_name (struct general_symbol_info
*gsymbol
,
676 struct obstack
*obstack
)
678 if (gsymbol
->language () == language_ada
)
682 gsymbol
->ada_mangled
= 0;
683 gsymbol
->language_specific
.obstack
= obstack
;
687 gsymbol
->ada_mangled
= 1;
688 gsymbol
->language_specific
.demangled_name
= name
;
692 gsymbol
->language_specific
.demangled_name
= name
;
695 /* Return the demangled name of GSYMBOL. */
698 symbol_get_demangled_name (const struct general_symbol_info
*gsymbol
)
700 if (gsymbol
->language () == language_ada
)
702 if (!gsymbol
->ada_mangled
)
707 return gsymbol
->language_specific
.demangled_name
;
711 /* Initialize the language dependent portion of a symbol
712 depending upon the language for the symbol. */
715 general_symbol_info::set_language (enum language language
,
716 struct obstack
*obstack
)
718 m_language
= language
;
719 if (language
== language_cplus
720 || language
== language_d
721 || language
== language_go
722 || language
== language_objc
723 || language
== language_fortran
)
725 symbol_set_demangled_name (this, NULL
, obstack
);
727 else if (language
== language_ada
)
729 gdb_assert (ada_mangled
== 0);
730 language_specific
.obstack
= obstack
;
734 memset (&language_specific
, 0, sizeof (language_specific
));
738 /* Functions to initialize a symbol's mangled name. */
740 /* Objects of this type are stored in the demangled name hash table. */
741 struct demangled_name_entry
743 demangled_name_entry (gdb::string_view mangled_name
)
744 : mangled (mangled_name
) {}
746 gdb::string_view mangled
;
747 enum language language
;
748 gdb::unique_xmalloc_ptr
<char> demangled
;
751 /* Hash function for the demangled name hash. */
754 hash_demangled_name_entry (const void *data
)
756 const struct demangled_name_entry
*e
757 = (const struct demangled_name_entry
*) data
;
759 return fast_hash (e
->mangled
.data (), e
->mangled
.length ());
762 /* Equality function for the demangled name hash. */
765 eq_demangled_name_entry (const void *a
, const void *b
)
767 const struct demangled_name_entry
*da
768 = (const struct demangled_name_entry
*) a
;
769 const struct demangled_name_entry
*db
770 = (const struct demangled_name_entry
*) b
;
772 return da
->mangled
== db
->mangled
;
776 free_demangled_name_entry (void *data
)
778 struct demangled_name_entry
*e
779 = (struct demangled_name_entry
*) data
;
781 e
->~demangled_name_entry();
784 /* Create the hash table used for demangled names. Each hash entry is
785 a pair of strings; one for the mangled name and one for the demangled
786 name. The entry is hashed via just the mangled name. */
789 create_demangled_names_hash (struct objfile_per_bfd_storage
*per_bfd
)
791 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
792 The hash table code will round this up to the next prime number.
793 Choosing a much larger table size wastes memory, and saves only about
794 1% in symbol reading. However, if the minsym count is already
795 initialized (e.g. because symbol name setting was deferred to
796 a background thread) we can initialize the hashtable with a count
797 based on that, because we will almost certainly have at least that
798 many entries. If we have a nonzero number but less than 256,
799 we still stay with 256 to have some space for psymbols, etc. */
801 /* htab will expand the table when it is 3/4th full, so we account for that
802 here. +2 to round up. */
803 int minsym_based_count
= (per_bfd
->minimal_symbol_count
+ 2) / 3 * 4;
804 int count
= std::max (per_bfd
->minimal_symbol_count
, minsym_based_count
);
806 per_bfd
->demangled_names_hash
.reset (htab_create_alloc
807 (count
, hash_demangled_name_entry
, eq_demangled_name_entry
,
808 free_demangled_name_entry
, xcalloc
, xfree
));
814 symbol_find_demangled_name (struct general_symbol_info
*gsymbol
,
817 char *demangled
= NULL
;
820 if (gsymbol
->language () == language_unknown
)
821 gsymbol
->m_language
= language_auto
;
823 if (gsymbol
->language () != language_auto
)
825 const struct language_defn
*lang
= language_def (gsymbol
->language ());
827 language_sniff_from_mangled_name (lang
, mangled
, &demangled
);
831 for (i
= language_unknown
; i
< nr_languages
; ++i
)
833 enum language l
= (enum language
) i
;
834 const struct language_defn
*lang
= language_def (l
);
836 if (language_sniff_from_mangled_name (lang
, mangled
, &demangled
))
838 gsymbol
->m_language
= l
;
846 /* Set both the mangled and demangled (if any) names for GSYMBOL based
847 on LINKAGE_NAME and LEN. Ordinarily, NAME is copied onto the
848 objfile's obstack; but if COPY_NAME is 0 and if NAME is
849 NUL-terminated, then this function assumes that NAME is already
850 correctly saved (either permanently or with a lifetime tied to the
851 objfile), and it will not be copied.
853 The hash table corresponding to OBJFILE is used, and the memory
854 comes from the per-BFD storage_obstack. LINKAGE_NAME is copied,
855 so the pointer can be discarded after calling this function. */
858 general_symbol_info::compute_and_set_names (gdb::string_view linkage_name
,
860 objfile_per_bfd_storage
*per_bfd
,
861 gdb::optional
<hashval_t
> hash
)
863 struct demangled_name_entry
**slot
;
865 if (language () == language_ada
)
867 /* In Ada, we do the symbol lookups using the mangled name, so
868 we can save some space by not storing the demangled name. */
870 m_name
= linkage_name
.data ();
873 char *name
= (char *) obstack_alloc (&per_bfd
->storage_obstack
,
874 linkage_name
.length () + 1);
876 memcpy (name
, linkage_name
.data (), linkage_name
.length ());
877 name
[linkage_name
.length ()] = '\0';
880 symbol_set_demangled_name (this, NULL
, &per_bfd
->storage_obstack
);
885 if (per_bfd
->demangled_names_hash
== NULL
)
886 create_demangled_names_hash (per_bfd
);
888 struct demangled_name_entry
entry (linkage_name
);
889 if (!hash
.has_value ())
890 hash
= hash_demangled_name_entry (&entry
);
891 slot
= ((struct demangled_name_entry
**)
892 htab_find_slot_with_hash (per_bfd
->demangled_names_hash
.get (),
893 &entry
, *hash
, INSERT
));
895 /* The const_cast is safe because the only reason it is already
896 initialized is if we purposefully set it from a background
897 thread to avoid doing the work here. However, it is still
898 allocated from the heap and needs to be freed by us, just
899 like if we called symbol_find_demangled_name here. If this is
900 nullptr, we call symbol_find_demangled_name below, but we put
901 this smart pointer here to be sure that we don't leak this name. */
902 gdb::unique_xmalloc_ptr
<char> demangled_name
903 (const_cast<char *> (language_specific
.demangled_name
));
905 /* If this name is not in the hash table, add it. */
907 /* A C version of the symbol may have already snuck into the table.
908 This happens to, e.g., main.init (__go_init_main). Cope. */
909 || (language () == language_go
&& (*slot
)->demangled
== nullptr))
911 /* A 0-terminated copy of the linkage name. Callers must set COPY_NAME
912 to true if the string might not be nullterminated. We have to make
913 this copy because demangling needs a nullterminated string. */
914 gdb::string_view linkage_name_copy
;
917 char *alloc_name
= (char *) alloca (linkage_name
.length () + 1);
918 memcpy (alloc_name
, linkage_name
.data (), linkage_name
.length ());
919 alloc_name
[linkage_name
.length ()] = '\0';
921 linkage_name_copy
= gdb::string_view (alloc_name
,
922 linkage_name
.length ());
925 linkage_name_copy
= linkage_name
;
927 if (demangled_name
.get () == nullptr)
929 (symbol_find_demangled_name (this, linkage_name_copy
.data ()));
931 /* Suppose we have demangled_name==NULL, copy_name==0, and
932 linkage_name_copy==linkage_name. In this case, we already have the
933 mangled name saved, and we don't have a demangled name. So,
934 you might think we could save a little space by not recording
935 this in the hash table at all.
937 It turns out that it is actually important to still save such
938 an entry in the hash table, because storing this name gives
939 us better bcache hit rates for partial symbols. */
943 = ((struct demangled_name_entry
*)
944 obstack_alloc (&per_bfd
->storage_obstack
,
945 sizeof (demangled_name_entry
)));
946 new (*slot
) demangled_name_entry (linkage_name
);
950 /* If we must copy the mangled name, put it directly after
951 the struct so we can have a single allocation. */
953 = ((struct demangled_name_entry
*)
954 obstack_alloc (&per_bfd
->storage_obstack
,
955 sizeof (demangled_name_entry
)
956 + linkage_name
.length () + 1));
957 char *mangled_ptr
= reinterpret_cast<char *> (*slot
+ 1);
958 memcpy (mangled_ptr
, linkage_name
.data (), linkage_name
.length ());
959 mangled_ptr
[linkage_name
.length ()] = '\0';
960 new (*slot
) demangled_name_entry
961 (gdb::string_view (mangled_ptr
, linkage_name
.length ()));
963 (*slot
)->demangled
= std::move (demangled_name
);
964 (*slot
)->language
= language ();
966 else if (language () == language_unknown
|| language () == language_auto
)
967 m_language
= (*slot
)->language
;
969 m_name
= (*slot
)->mangled
.data ();
970 if ((*slot
)->demangled
!= nullptr)
971 symbol_set_demangled_name (this, (*slot
)->demangled
.get (),
972 &per_bfd
->storage_obstack
);
974 symbol_set_demangled_name (this, NULL
, &per_bfd
->storage_obstack
);
980 general_symbol_info::natural_name () const
988 case language_fortran
:
989 if (symbol_get_demangled_name (this) != NULL
)
990 return symbol_get_demangled_name (this);
993 return ada_decode_symbol (this);
997 return linkage_name ();
1003 general_symbol_info::demangled_name () const
1005 const char *dem_name
= NULL
;
1007 switch (language ())
1009 case language_cplus
:
1013 case language_fortran
:
1014 dem_name
= symbol_get_demangled_name (this);
1017 dem_name
= ada_decode_symbol (this);
1028 general_symbol_info::search_name () const
1030 if (language () == language_ada
)
1031 return linkage_name ();
1033 return natural_name ();
1039 symbol_matches_search_name (const struct general_symbol_info
*gsymbol
,
1040 const lookup_name_info
&name
)
1042 symbol_name_matcher_ftype
*name_match
1043 = get_symbol_name_matcher (language_def (gsymbol
->language ()), name
);
1044 return name_match (gsymbol
->search_name (), name
, NULL
);
1049 /* Return true if the two sections are the same, or if they could
1050 plausibly be copies of each other, one in an original object
1051 file and another in a separated debug file. */
1054 matching_obj_sections (struct obj_section
*obj_first
,
1055 struct obj_section
*obj_second
)
1057 asection
*first
= obj_first
? obj_first
->the_bfd_section
: NULL
;
1058 asection
*second
= obj_second
? obj_second
->the_bfd_section
: NULL
;
1060 /* If they're the same section, then they match. */
1061 if (first
== second
)
1064 /* If either is NULL, give up. */
1065 if (first
== NULL
|| second
== NULL
)
1068 /* This doesn't apply to absolute symbols. */
1069 if (first
->owner
== NULL
|| second
->owner
== NULL
)
1072 /* If they're in the same object file, they must be different sections. */
1073 if (first
->owner
== second
->owner
)
1076 /* Check whether the two sections are potentially corresponding. They must
1077 have the same size, address, and name. We can't compare section indexes,
1078 which would be more reliable, because some sections may have been
1080 if (bfd_section_size (first
) != bfd_section_size (second
))
1083 /* In-memory addresses may start at a different offset, relativize them. */
1084 if (bfd_section_vma (first
) - bfd_get_start_address (first
->owner
)
1085 != bfd_section_vma (second
) - bfd_get_start_address (second
->owner
))
1088 if (bfd_section_name (first
) == NULL
1089 || bfd_section_name (second
) == NULL
1090 || strcmp (bfd_section_name (first
), bfd_section_name (second
)) != 0)
1093 /* Otherwise check that they are in corresponding objfiles. */
1095 struct objfile
*obj
= NULL
;
1096 for (objfile
*objfile
: current_program_space
->objfiles ())
1097 if (objfile
->obfd
== first
->owner
)
1102 gdb_assert (obj
!= NULL
);
1104 if (obj
->separate_debug_objfile
!= NULL
1105 && obj
->separate_debug_objfile
->obfd
== second
->owner
)
1107 if (obj
->separate_debug_objfile_backlink
!= NULL
1108 && obj
->separate_debug_objfile_backlink
->obfd
== second
->owner
)
1117 expand_symtab_containing_pc (CORE_ADDR pc
, struct obj_section
*section
)
1119 struct bound_minimal_symbol msymbol
;
1121 /* If we know that this is not a text address, return failure. This is
1122 necessary because we loop based on texthigh and textlow, which do
1123 not include the data ranges. */
1124 msymbol
= lookup_minimal_symbol_by_pc_section (pc
, section
);
1125 if (msymbol
.minsym
&& msymbol
.minsym
->data_p ())
1128 for (objfile
*objfile
: current_program_space
->objfiles ())
1130 struct compunit_symtab
*cust
= NULL
;
1133 cust
= objfile
->sf
->qf
->find_pc_sect_compunit_symtab (objfile
, msymbol
,
1140 /* Hash function for the symbol cache. */
1143 hash_symbol_entry (const struct objfile
*objfile_context
,
1144 const char *name
, domain_enum domain
)
1146 unsigned int hash
= (uintptr_t) objfile_context
;
1149 hash
+= htab_hash_string (name
);
1151 /* Because of symbol_matches_domain we need VAR_DOMAIN and STRUCT_DOMAIN
1152 to map to the same slot. */
1153 if (domain
== STRUCT_DOMAIN
)
1154 hash
+= VAR_DOMAIN
* 7;
1161 /* Equality function for the symbol cache. */
1164 eq_symbol_entry (const struct symbol_cache_slot
*slot
,
1165 const struct objfile
*objfile_context
,
1166 const char *name
, domain_enum domain
)
1168 const char *slot_name
;
1169 domain_enum slot_domain
;
1171 if (slot
->state
== SYMBOL_SLOT_UNUSED
)
1174 if (slot
->objfile_context
!= objfile_context
)
1177 if (slot
->state
== SYMBOL_SLOT_NOT_FOUND
)
1179 slot_name
= slot
->value
.not_found
.name
;
1180 slot_domain
= slot
->value
.not_found
.domain
;
1184 slot_name
= slot
->value
.found
.symbol
->search_name ();
1185 slot_domain
= SYMBOL_DOMAIN (slot
->value
.found
.symbol
);
1188 /* NULL names match. */
1189 if (slot_name
== NULL
&& name
== NULL
)
1191 /* But there's no point in calling symbol_matches_domain in the
1192 SYMBOL_SLOT_FOUND case. */
1193 if (slot_domain
!= domain
)
1196 else if (slot_name
!= NULL
&& name
!= NULL
)
1198 /* It's important that we use the same comparison that was done
1199 the first time through. If the slot records a found symbol,
1200 then this means using the symbol name comparison function of
1201 the symbol's language with symbol->search_name (). See
1202 dictionary.c. It also means using symbol_matches_domain for
1203 found symbols. See block.c.
1205 If the slot records a not-found symbol, then require a precise match.
1206 We could still be lax with whitespace like strcmp_iw though. */
1208 if (slot
->state
== SYMBOL_SLOT_NOT_FOUND
)
1210 if (strcmp (slot_name
, name
) != 0)
1212 if (slot_domain
!= domain
)
1217 struct symbol
*sym
= slot
->value
.found
.symbol
;
1218 lookup_name_info
lookup_name (name
, symbol_name_match_type::FULL
);
1220 if (!SYMBOL_MATCHES_SEARCH_NAME (sym
, lookup_name
))
1223 if (!symbol_matches_domain (sym
->language (), slot_domain
, domain
))
1229 /* Only one name is NULL. */
1236 /* Given a cache of size SIZE, return the size of the struct (with variable
1237 length array) in bytes. */
1240 symbol_cache_byte_size (unsigned int size
)
1242 return (sizeof (struct block_symbol_cache
)
1243 + ((size
- 1) * sizeof (struct symbol_cache_slot
)));
1249 resize_symbol_cache (struct symbol_cache
*cache
, unsigned int new_size
)
1251 /* If there's no change in size, don't do anything.
1252 All caches have the same size, so we can just compare with the size
1253 of the global symbols cache. */
1254 if ((cache
->global_symbols
!= NULL
1255 && cache
->global_symbols
->size
== new_size
)
1256 || (cache
->global_symbols
== NULL
1260 destroy_block_symbol_cache (cache
->global_symbols
);
1261 destroy_block_symbol_cache (cache
->static_symbols
);
1265 cache
->global_symbols
= NULL
;
1266 cache
->static_symbols
= NULL
;
1270 size_t total_size
= symbol_cache_byte_size (new_size
);
1272 cache
->global_symbols
1273 = (struct block_symbol_cache
*) xcalloc (1, total_size
);
1274 cache
->static_symbols
1275 = (struct block_symbol_cache
*) xcalloc (1, total_size
);
1276 cache
->global_symbols
->size
= new_size
;
1277 cache
->static_symbols
->size
= new_size
;
1281 /* Return the symbol cache of PSPACE.
1282 Create one if it doesn't exist yet. */
1284 static struct symbol_cache
*
1285 get_symbol_cache (struct program_space
*pspace
)
1287 struct symbol_cache
*cache
= symbol_cache_key
.get (pspace
);
1291 cache
= symbol_cache_key
.emplace (pspace
);
1292 resize_symbol_cache (cache
, symbol_cache_size
);
1298 /* Set the size of the symbol cache in all program spaces. */
1301 set_symbol_cache_size (unsigned int new_size
)
1303 struct program_space
*pspace
;
1305 ALL_PSPACES (pspace
)
1307 struct symbol_cache
*cache
= symbol_cache_key
.get (pspace
);
1309 /* The pspace could have been created but not have a cache yet. */
1311 resize_symbol_cache (cache
, new_size
);
1315 /* Called when symbol-cache-size is set. */
1318 set_symbol_cache_size_handler (const char *args
, int from_tty
,
1319 struct cmd_list_element
*c
)
1321 if (new_symbol_cache_size
> MAX_SYMBOL_CACHE_SIZE
)
1323 /* Restore the previous value.
1324 This is the value the "show" command prints. */
1325 new_symbol_cache_size
= symbol_cache_size
;
1327 error (_("Symbol cache size is too large, max is %u."),
1328 MAX_SYMBOL_CACHE_SIZE
);
1330 symbol_cache_size
= new_symbol_cache_size
;
1332 set_symbol_cache_size (symbol_cache_size
);
1335 /* Lookup symbol NAME,DOMAIN in BLOCK in the symbol cache of PSPACE.
1336 OBJFILE_CONTEXT is the current objfile, which may be NULL.
1337 The result is the symbol if found, SYMBOL_LOOKUP_FAILED if a previous lookup
1338 failed (and thus this one will too), or NULL if the symbol is not present
1340 *BSC_PTR and *SLOT_PTR are set to the cache and slot of the symbol, which
1341 can be used to save the result of a full lookup attempt. */
1343 static struct block_symbol
1344 symbol_cache_lookup (struct symbol_cache
*cache
,
1345 struct objfile
*objfile_context
, enum block_enum block
,
1346 const char *name
, domain_enum domain
,
1347 struct block_symbol_cache
**bsc_ptr
,
1348 struct symbol_cache_slot
**slot_ptr
)
1350 struct block_symbol_cache
*bsc
;
1352 struct symbol_cache_slot
*slot
;
1354 if (block
== GLOBAL_BLOCK
)
1355 bsc
= cache
->global_symbols
;
1357 bsc
= cache
->static_symbols
;
1365 hash
= hash_symbol_entry (objfile_context
, name
, domain
);
1366 slot
= bsc
->symbols
+ hash
% bsc
->size
;
1371 if (eq_symbol_entry (slot
, objfile_context
, name
, domain
))
1373 if (symbol_lookup_debug
)
1374 fprintf_unfiltered (gdb_stdlog
,
1375 "%s block symbol cache hit%s for %s, %s\n",
1376 block
== GLOBAL_BLOCK
? "Global" : "Static",
1377 slot
->state
== SYMBOL_SLOT_NOT_FOUND
1378 ? " (not found)" : "",
1379 name
, domain_name (domain
));
1381 if (slot
->state
== SYMBOL_SLOT_NOT_FOUND
)
1382 return SYMBOL_LOOKUP_FAILED
;
1383 return slot
->value
.found
;
1386 /* Symbol is not present in the cache. */
1388 if (symbol_lookup_debug
)
1390 fprintf_unfiltered (gdb_stdlog
,
1391 "%s block symbol cache miss for %s, %s\n",
1392 block
== GLOBAL_BLOCK
? "Global" : "Static",
1393 name
, domain_name (domain
));
1399 /* Mark SYMBOL as found in SLOT.
1400 OBJFILE_CONTEXT is the current objfile when the lookup was done, or NULL
1401 if it's not needed to distinguish lookups (STATIC_BLOCK). It is *not*
1402 necessarily the objfile the symbol was found in. */
1405 symbol_cache_mark_found (struct block_symbol_cache
*bsc
,
1406 struct symbol_cache_slot
*slot
,
1407 struct objfile
*objfile_context
,
1408 struct symbol
*symbol
,
1409 const struct block
*block
)
1413 if (slot
->state
!= SYMBOL_SLOT_UNUSED
)
1416 symbol_cache_clear_slot (slot
);
1418 slot
->state
= SYMBOL_SLOT_FOUND
;
1419 slot
->objfile_context
= objfile_context
;
1420 slot
->value
.found
.symbol
= symbol
;
1421 slot
->value
.found
.block
= block
;
1424 /* Mark symbol NAME, DOMAIN as not found in SLOT.
1425 OBJFILE_CONTEXT is the current objfile when the lookup was done, or NULL
1426 if it's not needed to distinguish lookups (STATIC_BLOCK). */
1429 symbol_cache_mark_not_found (struct block_symbol_cache
*bsc
,
1430 struct symbol_cache_slot
*slot
,
1431 struct objfile
*objfile_context
,
1432 const char *name
, domain_enum domain
)
1436 if (slot
->state
!= SYMBOL_SLOT_UNUSED
)
1439 symbol_cache_clear_slot (slot
);
1441 slot
->state
= SYMBOL_SLOT_NOT_FOUND
;
1442 slot
->objfile_context
= objfile_context
;
1443 slot
->value
.not_found
.name
= xstrdup (name
);
1444 slot
->value
.not_found
.domain
= domain
;
1447 /* Flush the symbol cache of PSPACE. */
1450 symbol_cache_flush (struct program_space
*pspace
)
1452 struct symbol_cache
*cache
= symbol_cache_key
.get (pspace
);
1457 if (cache
->global_symbols
== NULL
)
1459 gdb_assert (symbol_cache_size
== 0);
1460 gdb_assert (cache
->static_symbols
== NULL
);
1464 /* If the cache is untouched since the last flush, early exit.
1465 This is important for performance during the startup of a program linked
1466 with 100s (or 1000s) of shared libraries. */
1467 if (cache
->global_symbols
->misses
== 0
1468 && cache
->static_symbols
->misses
== 0)
1471 gdb_assert (cache
->global_symbols
->size
== symbol_cache_size
);
1472 gdb_assert (cache
->static_symbols
->size
== symbol_cache_size
);
1474 for (pass
= 0; pass
< 2; ++pass
)
1476 struct block_symbol_cache
*bsc
1477 = pass
== 0 ? cache
->global_symbols
: cache
->static_symbols
;
1480 for (i
= 0; i
< bsc
->size
; ++i
)
1481 symbol_cache_clear_slot (&bsc
->symbols
[i
]);
1484 cache
->global_symbols
->hits
= 0;
1485 cache
->global_symbols
->misses
= 0;
1486 cache
->global_symbols
->collisions
= 0;
1487 cache
->static_symbols
->hits
= 0;
1488 cache
->static_symbols
->misses
= 0;
1489 cache
->static_symbols
->collisions
= 0;
1495 symbol_cache_dump (const struct symbol_cache
*cache
)
1499 if (cache
->global_symbols
== NULL
)
1501 printf_filtered (" <disabled>\n");
1505 for (pass
= 0; pass
< 2; ++pass
)
1507 const struct block_symbol_cache
*bsc
1508 = pass
== 0 ? cache
->global_symbols
: cache
->static_symbols
;
1512 printf_filtered ("Global symbols:\n");
1514 printf_filtered ("Static symbols:\n");
1516 for (i
= 0; i
< bsc
->size
; ++i
)
1518 const struct symbol_cache_slot
*slot
= &bsc
->symbols
[i
];
1522 switch (slot
->state
)
1524 case SYMBOL_SLOT_UNUSED
:
1526 case SYMBOL_SLOT_NOT_FOUND
:
1527 printf_filtered (" [%4u] = %s, %s %s (not found)\n", i
,
1528 host_address_to_string (slot
->objfile_context
),
1529 slot
->value
.not_found
.name
,
1530 domain_name (slot
->value
.not_found
.domain
));
1532 case SYMBOL_SLOT_FOUND
:
1534 struct symbol
*found
= slot
->value
.found
.symbol
;
1535 const struct objfile
*context
= slot
->objfile_context
;
1537 printf_filtered (" [%4u] = %s, %s %s\n", i
,
1538 host_address_to_string (context
),
1539 found
->print_name (),
1540 domain_name (SYMBOL_DOMAIN (found
)));
1548 /* The "mt print symbol-cache" command. */
1551 maintenance_print_symbol_cache (const char *args
, int from_tty
)
1553 struct program_space
*pspace
;
1555 ALL_PSPACES (pspace
)
1557 struct symbol_cache
*cache
;
1559 printf_filtered (_("Symbol cache for pspace %d\n%s:\n"),
1561 pspace
->symfile_object_file
!= NULL
1562 ? objfile_name (pspace
->symfile_object_file
)
1563 : "(no object file)");
1565 /* If the cache hasn't been created yet, avoid creating one. */
1566 cache
= symbol_cache_key
.get (pspace
);
1568 printf_filtered (" <empty>\n");
1570 symbol_cache_dump (cache
);
1574 /* The "mt flush-symbol-cache" command. */
1577 maintenance_flush_symbol_cache (const char *args
, int from_tty
)
1579 struct program_space
*pspace
;
1581 ALL_PSPACES (pspace
)
1583 symbol_cache_flush (pspace
);
1587 /* Print usage statistics of CACHE. */
1590 symbol_cache_stats (struct symbol_cache
*cache
)
1594 if (cache
->global_symbols
== NULL
)
1596 printf_filtered (" <disabled>\n");
1600 for (pass
= 0; pass
< 2; ++pass
)
1602 const struct block_symbol_cache
*bsc
1603 = pass
== 0 ? cache
->global_symbols
: cache
->static_symbols
;
1608 printf_filtered ("Global block cache stats:\n");
1610 printf_filtered ("Static block cache stats:\n");
1612 printf_filtered (" size: %u\n", bsc
->size
);
1613 printf_filtered (" hits: %u\n", bsc
->hits
);
1614 printf_filtered (" misses: %u\n", bsc
->misses
);
1615 printf_filtered (" collisions: %u\n", bsc
->collisions
);
1619 /* The "mt print symbol-cache-statistics" command. */
1622 maintenance_print_symbol_cache_statistics (const char *args
, int from_tty
)
1624 struct program_space
*pspace
;
1626 ALL_PSPACES (pspace
)
1628 struct symbol_cache
*cache
;
1630 printf_filtered (_("Symbol cache statistics for pspace %d\n%s:\n"),
1632 pspace
->symfile_object_file
!= NULL
1633 ? objfile_name (pspace
->symfile_object_file
)
1634 : "(no object file)");
1636 /* If the cache hasn't been created yet, avoid creating one. */
1637 cache
= symbol_cache_key
.get (pspace
);
1639 printf_filtered (" empty, no stats available\n");
1641 symbol_cache_stats (cache
);
1645 /* This module's 'new_objfile' observer. */
1648 symtab_new_objfile_observer (struct objfile
*objfile
)
1650 /* Ideally we'd use OBJFILE->pspace, but OBJFILE may be NULL. */
1651 symbol_cache_flush (current_program_space
);
1654 /* This module's 'free_objfile' observer. */
1657 symtab_free_objfile_observer (struct objfile
*objfile
)
1659 symbol_cache_flush (objfile
->pspace
);
1662 /* Debug symbols usually don't have section information. We need to dig that
1663 out of the minimal symbols and stash that in the debug symbol. */
1666 fixup_section (struct general_symbol_info
*ginfo
,
1667 CORE_ADDR addr
, struct objfile
*objfile
)
1669 struct minimal_symbol
*msym
;
1671 /* First, check whether a minimal symbol with the same name exists
1672 and points to the same address. The address check is required
1673 e.g. on PowerPC64, where the minimal symbol for a function will
1674 point to the function descriptor, while the debug symbol will
1675 point to the actual function code. */
1676 msym
= lookup_minimal_symbol_by_pc_name (addr
, ginfo
->linkage_name (),
1679 ginfo
->section
= MSYMBOL_SECTION (msym
);
1682 /* Static, function-local variables do appear in the linker
1683 (minimal) symbols, but are frequently given names that won't
1684 be found via lookup_minimal_symbol(). E.g., it has been
1685 observed in frv-uclinux (ELF) executables that a static,
1686 function-local variable named "foo" might appear in the
1687 linker symbols as "foo.6" or "foo.3". Thus, there is no
1688 point in attempting to extend the lookup-by-name mechanism to
1689 handle this case due to the fact that there can be multiple
1692 So, instead, search the section table when lookup by name has
1693 failed. The ``addr'' and ``endaddr'' fields may have already
1694 been relocated. If so, the relocation offset needs to be
1695 subtracted from these values when performing the comparison.
1696 We unconditionally subtract it, because, when no relocation
1697 has been performed, the value will simply be zero.
1699 The address of the symbol whose section we're fixing up HAS
1700 NOT BEEN adjusted (relocated) yet. It can't have been since
1701 the section isn't yet known and knowing the section is
1702 necessary in order to add the correct relocation value. In
1703 other words, we wouldn't even be in this function (attempting
1704 to compute the section) if it were already known.
1706 Note that it is possible to search the minimal symbols
1707 (subtracting the relocation value if necessary) to find the
1708 matching minimal symbol, but this is overkill and much less
1709 efficient. It is not necessary to find the matching minimal
1710 symbol, only its section.
1712 Note that this technique (of doing a section table search)
1713 can fail when unrelocated section addresses overlap. For
1714 this reason, we still attempt a lookup by name prior to doing
1715 a search of the section table. */
1717 struct obj_section
*s
;
1720 ALL_OBJFILE_OSECTIONS (objfile
, s
)
1722 int idx
= s
- objfile
->sections
;
1723 CORE_ADDR offset
= objfile
->section_offsets
[idx
];
1728 if (obj_section_addr (s
) - offset
<= addr
1729 && addr
< obj_section_endaddr (s
) - offset
)
1731 ginfo
->section
= idx
;
1736 /* If we didn't find the section, assume it is in the first
1737 section. If there is no allocated section, then it hardly
1738 matters what we pick, so just pick zero. */
1742 ginfo
->section
= fallback
;
1747 fixup_symbol_section (struct symbol
*sym
, struct objfile
*objfile
)
1754 if (!SYMBOL_OBJFILE_OWNED (sym
))
1757 /* We either have an OBJFILE, or we can get at it from the sym's
1758 symtab. Anything else is a bug. */
1759 gdb_assert (objfile
|| symbol_symtab (sym
));
1761 if (objfile
== NULL
)
1762 objfile
= symbol_objfile (sym
);
1764 if (SYMBOL_OBJ_SECTION (objfile
, sym
))
1767 /* We should have an objfile by now. */
1768 gdb_assert (objfile
);
1770 switch (SYMBOL_CLASS (sym
))
1774 addr
= SYMBOL_VALUE_ADDRESS (sym
);
1777 addr
= BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym
));
1781 /* Nothing else will be listed in the minsyms -- no use looking
1786 fixup_section (sym
, addr
, objfile
);
1793 demangle_for_lookup_info::demangle_for_lookup_info
1794 (const lookup_name_info
&lookup_name
, language lang
)
1796 demangle_result_storage storage
;
1798 if (lookup_name
.ignore_parameters () && lang
== language_cplus
)
1800 gdb::unique_xmalloc_ptr
<char> without_params
1801 = cp_remove_params_if_any (lookup_name
.name ().c_str (),
1802 lookup_name
.completion_mode ());
1804 if (without_params
!= NULL
)
1806 if (lookup_name
.match_type () != symbol_name_match_type::SEARCH_NAME
)
1807 m_demangled_name
= demangle_for_lookup (without_params
.get (),
1813 if (lookup_name
.match_type () == symbol_name_match_type::SEARCH_NAME
)
1814 m_demangled_name
= lookup_name
.name ();
1816 m_demangled_name
= demangle_for_lookup (lookup_name
.name ().c_str (),
1822 const lookup_name_info
&
1823 lookup_name_info::match_any ()
1825 /* Lookup any symbol that "" would complete. I.e., this matches all
1827 static const lookup_name_info
lookup_name ({}, symbol_name_match_type::FULL
,
1833 /* Compute the demangled form of NAME as used by the various symbol
1834 lookup functions. The result can either be the input NAME
1835 directly, or a pointer to a buffer owned by the STORAGE object.
1837 For Ada, this function just returns NAME, unmodified.
1838 Normally, Ada symbol lookups are performed using the encoded name
1839 rather than the demangled name, and so it might seem to make sense
1840 for this function to return an encoded version of NAME.
1841 Unfortunately, we cannot do this, because this function is used in
1842 circumstances where it is not appropriate to try to encode NAME.
1843 For instance, when displaying the frame info, we demangle the name
1844 of each parameter, and then perform a symbol lookup inside our
1845 function using that demangled name. In Ada, certain functions
1846 have internally-generated parameters whose name contain uppercase
1847 characters. Encoding those name would result in those uppercase
1848 characters to become lowercase, and thus cause the symbol lookup
1852 demangle_for_lookup (const char *name
, enum language lang
,
1853 demangle_result_storage
&storage
)
1855 /* If we are using C++, D, or Go, demangle the name before doing a
1856 lookup, so we can always binary search. */
1857 if (lang
== language_cplus
)
1859 char *demangled_name
= gdb_demangle (name
, DMGL_ANSI
| DMGL_PARAMS
);
1860 if (demangled_name
!= NULL
)
1861 return storage
.set_malloc_ptr (demangled_name
);
1863 /* If we were given a non-mangled name, canonicalize it
1864 according to the language (so far only for C++). */
1865 std::string canon
= cp_canonicalize_string (name
);
1866 if (!canon
.empty ())
1867 return storage
.swap_string (canon
);
1869 else if (lang
== language_d
)
1871 char *demangled_name
= d_demangle (name
, 0);
1872 if (demangled_name
!= NULL
)
1873 return storage
.set_malloc_ptr (demangled_name
);
1875 else if (lang
== language_go
)
1877 char *demangled_name
= go_demangle (name
, 0);
1878 if (demangled_name
!= NULL
)
1879 return storage
.set_malloc_ptr (demangled_name
);
1888 search_name_hash (enum language language
, const char *search_name
)
1890 return language_def (language
)->la_search_name_hash (search_name
);
1895 This function (or rather its subordinates) have a bunch of loops and
1896 it would seem to be attractive to put in some QUIT's (though I'm not really
1897 sure whether it can run long enough to be really important). But there
1898 are a few calls for which it would appear to be bad news to quit
1899 out of here: e.g., find_proc_desc in alpha-mdebug-tdep.c. (Note
1900 that there is C++ code below which can error(), but that probably
1901 doesn't affect these calls since they are looking for a known
1902 variable and thus can probably assume it will never hit the C++
1906 lookup_symbol_in_language (const char *name
, const struct block
*block
,
1907 const domain_enum domain
, enum language lang
,
1908 struct field_of_this_result
*is_a_field_of_this
)
1910 demangle_result_storage storage
;
1911 const char *modified_name
= demangle_for_lookup (name
, lang
, storage
);
1913 return lookup_symbol_aux (modified_name
,
1914 symbol_name_match_type::FULL
,
1915 block
, domain
, lang
,
1916 is_a_field_of_this
);
1922 lookup_symbol (const char *name
, const struct block
*block
,
1924 struct field_of_this_result
*is_a_field_of_this
)
1926 return lookup_symbol_in_language (name
, block
, domain
,
1927 current_language
->la_language
,
1928 is_a_field_of_this
);
1934 lookup_symbol_search_name (const char *search_name
, const struct block
*block
,
1937 return lookup_symbol_aux (search_name
, symbol_name_match_type::SEARCH_NAME
,
1938 block
, domain
, language_asm
, NULL
);
1944 lookup_language_this (const struct language_defn
*lang
,
1945 const struct block
*block
)
1947 if (lang
->la_name_of_this
== NULL
|| block
== NULL
)
1950 if (symbol_lookup_debug
> 1)
1952 struct objfile
*objfile
= lookup_objfile_from_block (block
);
1954 fprintf_unfiltered (gdb_stdlog
,
1955 "lookup_language_this (%s, %s (objfile %s))",
1956 lang
->la_name
, host_address_to_string (block
),
1957 objfile_debug_name (objfile
));
1964 sym
= block_lookup_symbol (block
, lang
->la_name_of_this
,
1965 symbol_name_match_type::SEARCH_NAME
,
1969 if (symbol_lookup_debug
> 1)
1971 fprintf_unfiltered (gdb_stdlog
, " = %s (%s, block %s)\n",
1973 host_address_to_string (sym
),
1974 host_address_to_string (block
));
1976 return (struct block_symbol
) {sym
, block
};
1978 if (BLOCK_FUNCTION (block
))
1980 block
= BLOCK_SUPERBLOCK (block
);
1983 if (symbol_lookup_debug
> 1)
1984 fprintf_unfiltered (gdb_stdlog
, " = NULL\n");
1988 /* Given TYPE, a structure/union,
1989 return 1 if the component named NAME from the ultimate target
1990 structure/union is defined, otherwise, return 0. */
1993 check_field (struct type
*type
, const char *name
,
1994 struct field_of_this_result
*is_a_field_of_this
)
1998 /* The type may be a stub. */
1999 type
= check_typedef (type
);
2001 for (i
= TYPE_NFIELDS (type
) - 1; i
>= TYPE_N_BASECLASSES (type
); i
--)
2003 const char *t_field_name
= TYPE_FIELD_NAME (type
, i
);
2005 if (t_field_name
&& (strcmp_iw (t_field_name
, name
) == 0))
2007 is_a_field_of_this
->type
= type
;
2008 is_a_field_of_this
->field
= &TYPE_FIELD (type
, i
);
2013 /* C++: If it was not found as a data field, then try to return it
2014 as a pointer to a method. */
2016 for (i
= TYPE_NFN_FIELDS (type
) - 1; i
>= 0; --i
)
2018 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type
, i
), name
) == 0)
2020 is_a_field_of_this
->type
= type
;
2021 is_a_field_of_this
->fn_field
= &TYPE_FN_FIELDLIST (type
, i
);
2026 for (i
= TYPE_N_BASECLASSES (type
) - 1; i
>= 0; i
--)
2027 if (check_field (TYPE_BASECLASS (type
, i
), name
, is_a_field_of_this
))
2033 /* Behave like lookup_symbol except that NAME is the natural name
2034 (e.g., demangled name) of the symbol that we're looking for. */
2036 static struct block_symbol
2037 lookup_symbol_aux (const char *name
, symbol_name_match_type match_type
,
2038 const struct block
*block
,
2039 const domain_enum domain
, enum language language
,
2040 struct field_of_this_result
*is_a_field_of_this
)
2042 struct block_symbol result
;
2043 const struct language_defn
*langdef
;
2045 if (symbol_lookup_debug
)
2047 struct objfile
*objfile
= lookup_objfile_from_block (block
);
2049 fprintf_unfiltered (gdb_stdlog
,
2050 "lookup_symbol_aux (%s, %s (objfile %s), %s, %s)\n",
2051 name
, host_address_to_string (block
),
2053 ? objfile_debug_name (objfile
) : "NULL",
2054 domain_name (domain
), language_str (language
));
2057 /* Make sure we do something sensible with is_a_field_of_this, since
2058 the callers that set this parameter to some non-null value will
2059 certainly use it later. If we don't set it, the contents of
2060 is_a_field_of_this are undefined. */
2061 if (is_a_field_of_this
!= NULL
)
2062 memset (is_a_field_of_this
, 0, sizeof (*is_a_field_of_this
));
2064 /* Search specified block and its superiors. Don't search
2065 STATIC_BLOCK or GLOBAL_BLOCK. */
2067 result
= lookup_local_symbol (name
, match_type
, block
, domain
, language
);
2068 if (result
.symbol
!= NULL
)
2070 if (symbol_lookup_debug
)
2072 fprintf_unfiltered (gdb_stdlog
, "lookup_symbol_aux (...) = %s\n",
2073 host_address_to_string (result
.symbol
));
2078 /* If requested to do so by the caller and if appropriate for LANGUAGE,
2079 check to see if NAME is a field of `this'. */
2081 langdef
= language_def (language
);
2083 /* Don't do this check if we are searching for a struct. It will
2084 not be found by check_field, but will be found by other
2086 if (is_a_field_of_this
!= NULL
&& domain
!= STRUCT_DOMAIN
)
2088 result
= lookup_language_this (langdef
, block
);
2092 struct type
*t
= result
.symbol
->type
;
2094 /* I'm not really sure that type of this can ever
2095 be typedefed; just be safe. */
2096 t
= check_typedef (t
);
2097 if (TYPE_CODE (t
) == TYPE_CODE_PTR
|| TYPE_IS_REFERENCE (t
))
2098 t
= TYPE_TARGET_TYPE (t
);
2100 if (TYPE_CODE (t
) != TYPE_CODE_STRUCT
2101 && TYPE_CODE (t
) != TYPE_CODE_UNION
)
2102 error (_("Internal error: `%s' is not an aggregate"),
2103 langdef
->la_name_of_this
);
2105 if (check_field (t
, name
, is_a_field_of_this
))
2107 if (symbol_lookup_debug
)
2109 fprintf_unfiltered (gdb_stdlog
,
2110 "lookup_symbol_aux (...) = NULL\n");
2117 /* Now do whatever is appropriate for LANGUAGE to look
2118 up static and global variables. */
2120 result
= langdef
->la_lookup_symbol_nonlocal (langdef
, name
, block
, domain
);
2121 if (result
.symbol
!= NULL
)
2123 if (symbol_lookup_debug
)
2125 fprintf_unfiltered (gdb_stdlog
, "lookup_symbol_aux (...) = %s\n",
2126 host_address_to_string (result
.symbol
));
2131 /* Now search all static file-level symbols. Not strictly correct,
2132 but more useful than an error. */
2134 result
= lookup_static_symbol (name
, domain
);
2135 if (symbol_lookup_debug
)
2137 fprintf_unfiltered (gdb_stdlog
, "lookup_symbol_aux (...) = %s\n",
2138 result
.symbol
!= NULL
2139 ? host_address_to_string (result
.symbol
)
2145 /* Check to see if the symbol is defined in BLOCK or its superiors.
2146 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
2148 static struct block_symbol
2149 lookup_local_symbol (const char *name
,
2150 symbol_name_match_type match_type
,
2151 const struct block
*block
,
2152 const domain_enum domain
,
2153 enum language language
)
2156 const struct block
*static_block
= block_static_block (block
);
2157 const char *scope
= block_scope (block
);
2159 /* Check if either no block is specified or it's a global block. */
2161 if (static_block
== NULL
)
2164 while (block
!= static_block
)
2166 sym
= lookup_symbol_in_block (name
, match_type
, block
, domain
);
2168 return (struct block_symbol
) {sym
, block
};
2170 if (language
== language_cplus
|| language
== language_fortran
)
2172 struct block_symbol blocksym
2173 = cp_lookup_symbol_imports_or_template (scope
, name
, block
,
2176 if (blocksym
.symbol
!= NULL
)
2180 if (BLOCK_FUNCTION (block
) != NULL
&& block_inlined_p (block
))
2182 block
= BLOCK_SUPERBLOCK (block
);
2185 /* We've reached the end of the function without finding a result. */
2193 lookup_objfile_from_block (const struct block
*block
)
2198 block
= block_global_block (block
);
2199 /* Look through all blockvectors. */
2200 for (objfile
*obj
: current_program_space
->objfiles ())
2202 for (compunit_symtab
*cust
: obj
->compunits ())
2203 if (block
== BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust
),
2206 if (obj
->separate_debug_objfile_backlink
)
2207 obj
= obj
->separate_debug_objfile_backlink
;
2219 lookup_symbol_in_block (const char *name
, symbol_name_match_type match_type
,
2220 const struct block
*block
,
2221 const domain_enum domain
)
2225 if (symbol_lookup_debug
> 1)
2227 struct objfile
*objfile
= lookup_objfile_from_block (block
);
2229 fprintf_unfiltered (gdb_stdlog
,
2230 "lookup_symbol_in_block (%s, %s (objfile %s), %s)",
2231 name
, host_address_to_string (block
),
2232 objfile_debug_name (objfile
),
2233 domain_name (domain
));
2236 sym
= block_lookup_symbol (block
, name
, match_type
, domain
);
2239 if (symbol_lookup_debug
> 1)
2241 fprintf_unfiltered (gdb_stdlog
, " = %s\n",
2242 host_address_to_string (sym
));
2244 return fixup_symbol_section (sym
, NULL
);
2247 if (symbol_lookup_debug
> 1)
2248 fprintf_unfiltered (gdb_stdlog
, " = NULL\n");
2255 lookup_global_symbol_from_objfile (struct objfile
*main_objfile
,
2256 enum block_enum block_index
,
2258 const domain_enum domain
)
2260 gdb_assert (block_index
== GLOBAL_BLOCK
|| block_index
== STATIC_BLOCK
);
2262 for (objfile
*objfile
: main_objfile
->separate_debug_objfiles ())
2264 struct block_symbol result
2265 = lookup_symbol_in_objfile (objfile
, block_index
, name
, domain
);
2267 if (result
.symbol
!= nullptr)
2274 /* Check to see if the symbol is defined in one of the OBJFILE's
2275 symtabs. BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
2276 depending on whether or not we want to search global symbols or
2279 static struct block_symbol
2280 lookup_symbol_in_objfile_symtabs (struct objfile
*objfile
,
2281 enum block_enum block_index
, const char *name
,
2282 const domain_enum domain
)
2284 gdb_assert (block_index
== GLOBAL_BLOCK
|| block_index
== STATIC_BLOCK
);
2286 if (symbol_lookup_debug
> 1)
2288 fprintf_unfiltered (gdb_stdlog
,
2289 "lookup_symbol_in_objfile_symtabs (%s, %s, %s, %s)",
2290 objfile_debug_name (objfile
),
2291 block_index
== GLOBAL_BLOCK
2292 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2293 name
, domain_name (domain
));
2296 for (compunit_symtab
*cust
: objfile
->compunits ())
2298 const struct blockvector
*bv
;
2299 const struct block
*block
;
2300 struct block_symbol result
;
2302 bv
= COMPUNIT_BLOCKVECTOR (cust
);
2303 block
= BLOCKVECTOR_BLOCK (bv
, block_index
);
2304 result
.symbol
= block_lookup_symbol_primary (block
, name
, domain
);
2305 result
.block
= block
;
2306 if (result
.symbol
!= NULL
)
2308 if (symbol_lookup_debug
> 1)
2310 fprintf_unfiltered (gdb_stdlog
, " = %s (block %s)\n",
2311 host_address_to_string (result
.symbol
),
2312 host_address_to_string (block
));
2314 result
.symbol
= fixup_symbol_section (result
.symbol
, objfile
);
2320 if (symbol_lookup_debug
> 1)
2321 fprintf_unfiltered (gdb_stdlog
, " = NULL\n");
2325 /* Wrapper around lookup_symbol_in_objfile_symtabs for search_symbols.
2326 Look up LINKAGE_NAME in DOMAIN in the global and static blocks of OBJFILE
2327 and all associated separate debug objfiles.
2329 Normally we only look in OBJFILE, and not any separate debug objfiles
2330 because the outer loop will cause them to be searched too. This case is
2331 different. Here we're called from search_symbols where it will only
2332 call us for the objfile that contains a matching minsym. */
2334 static struct block_symbol
2335 lookup_symbol_in_objfile_from_linkage_name (struct objfile
*objfile
,
2336 const char *linkage_name
,
2339 enum language lang
= current_language
->la_language
;
2340 struct objfile
*main_objfile
;
2342 demangle_result_storage storage
;
2343 const char *modified_name
= demangle_for_lookup (linkage_name
, lang
, storage
);
2345 if (objfile
->separate_debug_objfile_backlink
)
2346 main_objfile
= objfile
->separate_debug_objfile_backlink
;
2348 main_objfile
= objfile
;
2350 for (::objfile
*cur_objfile
: main_objfile
->separate_debug_objfiles ())
2352 struct block_symbol result
;
2354 result
= lookup_symbol_in_objfile_symtabs (cur_objfile
, GLOBAL_BLOCK
,
2355 modified_name
, domain
);
2356 if (result
.symbol
== NULL
)
2357 result
= lookup_symbol_in_objfile_symtabs (cur_objfile
, STATIC_BLOCK
,
2358 modified_name
, domain
);
2359 if (result
.symbol
!= NULL
)
2366 /* A helper function that throws an exception when a symbol was found
2367 in a psymtab but not in a symtab. */
2369 static void ATTRIBUTE_NORETURN
2370 error_in_psymtab_expansion (enum block_enum block_index
, const char *name
,
2371 struct compunit_symtab
*cust
)
2374 Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n\
2375 %s may be an inlined function, or may be a template function\n \
2376 (if a template, try specifying an instantiation: %s<type>)."),
2377 block_index
== GLOBAL_BLOCK
? "global" : "static",
2379 symtab_to_filename_for_display (compunit_primary_filetab (cust
)),
2383 /* A helper function for various lookup routines that interfaces with
2384 the "quick" symbol table functions. */
2386 static struct block_symbol
2387 lookup_symbol_via_quick_fns (struct objfile
*objfile
,
2388 enum block_enum block_index
, const char *name
,
2389 const domain_enum domain
)
2391 struct compunit_symtab
*cust
;
2392 const struct blockvector
*bv
;
2393 const struct block
*block
;
2394 struct block_symbol result
;
2399 if (symbol_lookup_debug
> 1)
2401 fprintf_unfiltered (gdb_stdlog
,
2402 "lookup_symbol_via_quick_fns (%s, %s, %s, %s)\n",
2403 objfile_debug_name (objfile
),
2404 block_index
== GLOBAL_BLOCK
2405 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2406 name
, domain_name (domain
));
2409 cust
= objfile
->sf
->qf
->lookup_symbol (objfile
, block_index
, name
, domain
);
2412 if (symbol_lookup_debug
> 1)
2414 fprintf_unfiltered (gdb_stdlog
,
2415 "lookup_symbol_via_quick_fns (...) = NULL\n");
2420 bv
= COMPUNIT_BLOCKVECTOR (cust
);
2421 block
= BLOCKVECTOR_BLOCK (bv
, block_index
);
2422 result
.symbol
= block_lookup_symbol (block
, name
,
2423 symbol_name_match_type::FULL
, domain
);
2424 if (result
.symbol
== NULL
)
2425 error_in_psymtab_expansion (block_index
, name
, cust
);
2427 if (symbol_lookup_debug
> 1)
2429 fprintf_unfiltered (gdb_stdlog
,
2430 "lookup_symbol_via_quick_fns (...) = %s (block %s)\n",
2431 host_address_to_string (result
.symbol
),
2432 host_address_to_string (block
));
2435 result
.symbol
= fixup_symbol_section (result
.symbol
, objfile
);
2436 result
.block
= block
;
2443 basic_lookup_symbol_nonlocal (const struct language_defn
*langdef
,
2445 const struct block
*block
,
2446 const domain_enum domain
)
2448 struct block_symbol result
;
2450 /* NOTE: dje/2014-10-26: The lookup in all objfiles search could skip
2451 the current objfile. Searching the current objfile first is useful
2452 for both matching user expectations as well as performance. */
2454 result
= lookup_symbol_in_static_block (name
, block
, domain
);
2455 if (result
.symbol
!= NULL
)
2458 /* If we didn't find a definition for a builtin type in the static block,
2459 search for it now. This is actually the right thing to do and can be
2460 a massive performance win. E.g., when debugging a program with lots of
2461 shared libraries we could search all of them only to find out the
2462 builtin type isn't defined in any of them. This is common for types
2464 if (domain
== VAR_DOMAIN
)
2466 struct gdbarch
*gdbarch
;
2469 gdbarch
= target_gdbarch ();
2471 gdbarch
= block_gdbarch (block
);
2472 result
.symbol
= language_lookup_primitive_type_as_symbol (langdef
,
2474 result
.block
= NULL
;
2475 if (result
.symbol
!= NULL
)
2479 return lookup_global_symbol (name
, block
, domain
);
2485 lookup_symbol_in_static_block (const char *name
,
2486 const struct block
*block
,
2487 const domain_enum domain
)
2489 const struct block
*static_block
= block_static_block (block
);
2492 if (static_block
== NULL
)
2495 if (symbol_lookup_debug
)
2497 struct objfile
*objfile
= lookup_objfile_from_block (static_block
);
2499 fprintf_unfiltered (gdb_stdlog
,
2500 "lookup_symbol_in_static_block (%s, %s (objfile %s),"
2503 host_address_to_string (block
),
2504 objfile_debug_name (objfile
),
2505 domain_name (domain
));
2508 sym
= lookup_symbol_in_block (name
,
2509 symbol_name_match_type::FULL
,
2510 static_block
, domain
);
2511 if (symbol_lookup_debug
)
2513 fprintf_unfiltered (gdb_stdlog
,
2514 "lookup_symbol_in_static_block (...) = %s\n",
2515 sym
!= NULL
? host_address_to_string (sym
) : "NULL");
2517 return (struct block_symbol
) {sym
, static_block
};
2520 /* Perform the standard symbol lookup of NAME in OBJFILE:
2521 1) First search expanded symtabs, and if not found
2522 2) Search the "quick" symtabs (partial or .gdb_index).
2523 BLOCK_INDEX is one of GLOBAL_BLOCK or STATIC_BLOCK. */
2525 static struct block_symbol
2526 lookup_symbol_in_objfile (struct objfile
*objfile
, enum block_enum block_index
,
2527 const char *name
, const domain_enum domain
)
2529 struct block_symbol result
;
2531 gdb_assert (block_index
== GLOBAL_BLOCK
|| block_index
== STATIC_BLOCK
);
2533 if (symbol_lookup_debug
)
2535 fprintf_unfiltered (gdb_stdlog
,
2536 "lookup_symbol_in_objfile (%s, %s, %s, %s)\n",
2537 objfile_debug_name (objfile
),
2538 block_index
== GLOBAL_BLOCK
2539 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2540 name
, domain_name (domain
));
2543 result
= lookup_symbol_in_objfile_symtabs (objfile
, block_index
,
2545 if (result
.symbol
!= NULL
)
2547 if (symbol_lookup_debug
)
2549 fprintf_unfiltered (gdb_stdlog
,
2550 "lookup_symbol_in_objfile (...) = %s"
2552 host_address_to_string (result
.symbol
));
2557 result
= lookup_symbol_via_quick_fns (objfile
, block_index
,
2559 if (symbol_lookup_debug
)
2561 fprintf_unfiltered (gdb_stdlog
,
2562 "lookup_symbol_in_objfile (...) = %s%s\n",
2563 result
.symbol
!= NULL
2564 ? host_address_to_string (result
.symbol
)
2566 result
.symbol
!= NULL
? " (via quick fns)" : "");
2571 /* Private data to be used with lookup_symbol_global_iterator_cb. */
2573 struct global_or_static_sym_lookup_data
2575 /* The name of the symbol we are searching for. */
2578 /* The domain to use for our search. */
2581 /* The block index in which to search. */
2582 enum block_enum block_index
;
2584 /* The field where the callback should store the symbol if found.
2585 It should be initialized to {NULL, NULL} before the search is started. */
2586 struct block_symbol result
;
2589 /* A callback function for gdbarch_iterate_over_objfiles_in_search_order.
2590 It searches by name for a symbol in the block given by BLOCK_INDEX of the
2591 given OBJFILE. The arguments for the search are passed via CB_DATA, which
2592 in reality is a pointer to struct global_or_static_sym_lookup_data. */
2595 lookup_symbol_global_or_static_iterator_cb (struct objfile
*objfile
,
2598 struct global_or_static_sym_lookup_data
*data
=
2599 (struct global_or_static_sym_lookup_data
*) cb_data
;
2601 gdb_assert (data
->result
.symbol
== NULL
2602 && data
->result
.block
== NULL
);
2604 data
->result
= lookup_symbol_in_objfile (objfile
, data
->block_index
,
2605 data
->name
, data
->domain
);
2607 /* If we found a match, tell the iterator to stop. Otherwise,
2609 return (data
->result
.symbol
!= NULL
);
2612 /* This function contains the common code of lookup_{global,static}_symbol.
2613 OBJFILE is only used if BLOCK_INDEX is GLOBAL_SCOPE, in which case it is
2614 the objfile to start the lookup in. */
2616 static struct block_symbol
2617 lookup_global_or_static_symbol (const char *name
,
2618 enum block_enum block_index
,
2619 struct objfile
*objfile
,
2620 const domain_enum domain
)
2622 struct symbol_cache
*cache
= get_symbol_cache (current_program_space
);
2623 struct block_symbol result
;
2624 struct global_or_static_sym_lookup_data lookup_data
;
2625 struct block_symbol_cache
*bsc
;
2626 struct symbol_cache_slot
*slot
;
2628 gdb_assert (block_index
== GLOBAL_BLOCK
|| block_index
== STATIC_BLOCK
);
2629 gdb_assert (objfile
== nullptr || block_index
== GLOBAL_BLOCK
);
2631 /* First see if we can find the symbol in the cache.
2632 This works because we use the current objfile to qualify the lookup. */
2633 result
= symbol_cache_lookup (cache
, objfile
, block_index
, name
, domain
,
2635 if (result
.symbol
!= NULL
)
2637 if (SYMBOL_LOOKUP_FAILED_P (result
))
2642 /* Do a global search (of global blocks, heh). */
2643 if (result
.symbol
== NULL
)
2645 memset (&lookup_data
, 0, sizeof (lookup_data
));
2646 lookup_data
.name
= name
;
2647 lookup_data
.block_index
= block_index
;
2648 lookup_data
.domain
= domain
;
2649 gdbarch_iterate_over_objfiles_in_search_order
2650 (objfile
!= NULL
? get_objfile_arch (objfile
) : target_gdbarch (),
2651 lookup_symbol_global_or_static_iterator_cb
, &lookup_data
, objfile
);
2652 result
= lookup_data
.result
;
2655 if (result
.symbol
!= NULL
)
2656 symbol_cache_mark_found (bsc
, slot
, objfile
, result
.symbol
, result
.block
);
2658 symbol_cache_mark_not_found (bsc
, slot
, objfile
, name
, domain
);
2666 lookup_static_symbol (const char *name
, const domain_enum domain
)
2668 return lookup_global_or_static_symbol (name
, STATIC_BLOCK
, nullptr, domain
);
2674 lookup_global_symbol (const char *name
,
2675 const struct block
*block
,
2676 const domain_enum domain
)
2678 /* If a block was passed in, we want to search the corresponding
2679 global block first. This yields "more expected" behavior, and is
2680 needed to support 'FILENAME'::VARIABLE lookups. */
2681 const struct block
*global_block
= block_global_block (block
);
2682 if (global_block
!= nullptr)
2684 symbol
*sym
= lookup_symbol_in_block (name
,
2685 symbol_name_match_type::FULL
,
2686 global_block
, domain
);
2688 return { sym
, global_block
};
2691 struct objfile
*objfile
= lookup_objfile_from_block (block
);
2692 return lookup_global_or_static_symbol (name
, GLOBAL_BLOCK
, objfile
, domain
);
2696 symbol_matches_domain (enum language symbol_language
,
2697 domain_enum symbol_domain
,
2700 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
2701 Similarly, any Ada type declaration implicitly defines a typedef. */
2702 if (symbol_language
== language_cplus
2703 || symbol_language
== language_d
2704 || symbol_language
== language_ada
2705 || symbol_language
== language_rust
)
2707 if ((domain
== VAR_DOMAIN
|| domain
== STRUCT_DOMAIN
)
2708 && symbol_domain
== STRUCT_DOMAIN
)
2711 /* For all other languages, strict match is required. */
2712 return (symbol_domain
== domain
);
2718 lookup_transparent_type (const char *name
)
2720 return current_language
->la_lookup_transparent_type (name
);
2723 /* A helper for basic_lookup_transparent_type that interfaces with the
2724 "quick" symbol table functions. */
2726 static struct type
*
2727 basic_lookup_transparent_type_quick (struct objfile
*objfile
,
2728 enum block_enum block_index
,
2731 struct compunit_symtab
*cust
;
2732 const struct blockvector
*bv
;
2733 const struct block
*block
;
2738 cust
= objfile
->sf
->qf
->lookup_symbol (objfile
, block_index
, name
,
2743 bv
= COMPUNIT_BLOCKVECTOR (cust
);
2744 block
= BLOCKVECTOR_BLOCK (bv
, block_index
);
2745 sym
= block_find_symbol (block
, name
, STRUCT_DOMAIN
,
2746 block_find_non_opaque_type
, NULL
);
2748 error_in_psymtab_expansion (block_index
, name
, cust
);
2749 gdb_assert (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym
)));
2750 return SYMBOL_TYPE (sym
);
2753 /* Subroutine of basic_lookup_transparent_type to simplify it.
2754 Look up the non-opaque definition of NAME in BLOCK_INDEX of OBJFILE.
2755 BLOCK_INDEX is either GLOBAL_BLOCK or STATIC_BLOCK. */
2757 static struct type
*
2758 basic_lookup_transparent_type_1 (struct objfile
*objfile
,
2759 enum block_enum block_index
,
2762 const struct blockvector
*bv
;
2763 const struct block
*block
;
2764 const struct symbol
*sym
;
2766 for (compunit_symtab
*cust
: objfile
->compunits ())
2768 bv
= COMPUNIT_BLOCKVECTOR (cust
);
2769 block
= BLOCKVECTOR_BLOCK (bv
, block_index
);
2770 sym
= block_find_symbol (block
, name
, STRUCT_DOMAIN
,
2771 block_find_non_opaque_type
, NULL
);
2774 gdb_assert (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym
)));
2775 return SYMBOL_TYPE (sym
);
2782 /* The standard implementation of lookup_transparent_type. This code
2783 was modeled on lookup_symbol -- the parts not relevant to looking
2784 up types were just left out. In particular it's assumed here that
2785 types are available in STRUCT_DOMAIN and only in file-static or
2789 basic_lookup_transparent_type (const char *name
)
2793 /* Now search all the global symbols. Do the symtab's first, then
2794 check the psymtab's. If a psymtab indicates the existence
2795 of the desired name as a global, then do psymtab-to-symtab
2796 conversion on the fly and return the found symbol. */
2798 for (objfile
*objfile
: current_program_space
->objfiles ())
2800 t
= basic_lookup_transparent_type_1 (objfile
, GLOBAL_BLOCK
, name
);
2805 for (objfile
*objfile
: current_program_space
->objfiles ())
2807 t
= basic_lookup_transparent_type_quick (objfile
, GLOBAL_BLOCK
, name
);
2812 /* Now search the static file-level symbols.
2813 Not strictly correct, but more useful than an error.
2814 Do the symtab's first, then
2815 check the psymtab's. If a psymtab indicates the existence
2816 of the desired name as a file-level static, then do psymtab-to-symtab
2817 conversion on the fly and return the found symbol. */
2819 for (objfile
*objfile
: current_program_space
->objfiles ())
2821 t
= basic_lookup_transparent_type_1 (objfile
, STATIC_BLOCK
, name
);
2826 for (objfile
*objfile
: current_program_space
->objfiles ())
2828 t
= basic_lookup_transparent_type_quick (objfile
, STATIC_BLOCK
, name
);
2833 return (struct type
*) 0;
2839 iterate_over_symbols (const struct block
*block
,
2840 const lookup_name_info
&name
,
2841 const domain_enum domain
,
2842 gdb::function_view
<symbol_found_callback_ftype
> callback
)
2844 struct block_iterator iter
;
2847 ALL_BLOCK_SYMBOLS_WITH_NAME (block
, name
, iter
, sym
)
2849 if (symbol_matches_domain (sym
->language (), SYMBOL_DOMAIN (sym
), domain
))
2851 struct block_symbol block_sym
= {sym
, block
};
2853 if (!callback (&block_sym
))
2863 iterate_over_symbols_terminated
2864 (const struct block
*block
,
2865 const lookup_name_info
&name
,
2866 const domain_enum domain
,
2867 gdb::function_view
<symbol_found_callback_ftype
> callback
)
2869 if (!iterate_over_symbols (block
, name
, domain
, callback
))
2871 struct block_symbol block_sym
= {nullptr, block
};
2872 return callback (&block_sym
);
2875 /* Find the compunit symtab associated with PC and SECTION.
2876 This will read in debug info as necessary. */
2878 struct compunit_symtab
*
2879 find_pc_sect_compunit_symtab (CORE_ADDR pc
, struct obj_section
*section
)
2881 struct compunit_symtab
*best_cust
= NULL
;
2882 CORE_ADDR distance
= 0;
2883 struct bound_minimal_symbol msymbol
;
2885 /* If we know that this is not a text address, return failure. This is
2886 necessary because we loop based on the block's high and low code
2887 addresses, which do not include the data ranges, and because
2888 we call find_pc_sect_psymtab which has a similar restriction based
2889 on the partial_symtab's texthigh and textlow. */
2890 msymbol
= lookup_minimal_symbol_by_pc_section (pc
, section
);
2891 if (msymbol
.minsym
&& msymbol
.minsym
->data_p ())
2894 /* Search all symtabs for the one whose file contains our address, and which
2895 is the smallest of all the ones containing the address. This is designed
2896 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
2897 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
2898 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
2900 This happens for native ecoff format, where code from included files
2901 gets its own symtab. The symtab for the included file should have
2902 been read in already via the dependency mechanism.
2903 It might be swifter to create several symtabs with the same name
2904 like xcoff does (I'm not sure).
2906 It also happens for objfiles that have their functions reordered.
2907 For these, the symtab we are looking for is not necessarily read in. */
2909 for (objfile
*obj_file
: current_program_space
->objfiles ())
2911 for (compunit_symtab
*cust
: obj_file
->compunits ())
2913 const struct block
*b
;
2914 const struct blockvector
*bv
;
2916 bv
= COMPUNIT_BLOCKVECTOR (cust
);
2917 b
= BLOCKVECTOR_BLOCK (bv
, GLOBAL_BLOCK
);
2919 if (BLOCK_START (b
) <= pc
2920 && BLOCK_END (b
) > pc
2922 || BLOCK_END (b
) - BLOCK_START (b
) < distance
))
2924 /* For an objfile that has its functions reordered,
2925 find_pc_psymtab will find the proper partial symbol table
2926 and we simply return its corresponding symtab. */
2927 /* In order to better support objfiles that contain both
2928 stabs and coff debugging info, we continue on if a psymtab
2930 if ((obj_file
->flags
& OBJF_REORDERED
) && obj_file
->sf
)
2932 struct compunit_symtab
*result
;
2935 = obj_file
->sf
->qf
->find_pc_sect_compunit_symtab (obj_file
,
2945 struct block_iterator iter
;
2946 struct symbol
*sym
= NULL
;
2948 ALL_BLOCK_SYMBOLS (b
, iter
, sym
)
2950 fixup_symbol_section (sym
, obj_file
);
2951 if (matching_obj_sections (SYMBOL_OBJ_SECTION (obj_file
,
2957 continue; /* No symbol in this symtab matches
2960 distance
= BLOCK_END (b
) - BLOCK_START (b
);
2966 if (best_cust
!= NULL
)
2969 /* Not found in symtabs, search the "quick" symtabs (e.g. psymtabs). */
2971 for (objfile
*objf
: current_program_space
->objfiles ())
2973 struct compunit_symtab
*result
;
2977 result
= objf
->sf
->qf
->find_pc_sect_compunit_symtab (objf
,
2988 /* Find the compunit symtab associated with PC.
2989 This will read in debug info as necessary.
2990 Backward compatibility, no section. */
2992 struct compunit_symtab
*
2993 find_pc_compunit_symtab (CORE_ADDR pc
)
2995 return find_pc_sect_compunit_symtab (pc
, find_pc_mapped_section (pc
));
3001 find_symbol_at_address (CORE_ADDR address
)
3003 for (objfile
*objfile
: current_program_space
->objfiles ())
3005 if (objfile
->sf
== NULL
3006 || objfile
->sf
->qf
->find_compunit_symtab_by_address
== NULL
)
3009 struct compunit_symtab
*symtab
3010 = objfile
->sf
->qf
->find_compunit_symtab_by_address (objfile
, address
);
3013 const struct blockvector
*bv
= COMPUNIT_BLOCKVECTOR (symtab
);
3015 for (int i
= GLOBAL_BLOCK
; i
<= STATIC_BLOCK
; ++i
)
3017 const struct block
*b
= BLOCKVECTOR_BLOCK (bv
, i
);
3018 struct block_iterator iter
;
3021 ALL_BLOCK_SYMBOLS (b
, iter
, sym
)
3023 if (SYMBOL_CLASS (sym
) == LOC_STATIC
3024 && SYMBOL_VALUE_ADDRESS (sym
) == address
)
3036 /* Find the source file and line number for a given PC value and SECTION.
3037 Return a structure containing a symtab pointer, a line number,
3038 and a pc range for the entire source line.
3039 The value's .pc field is NOT the specified pc.
3040 NOTCURRENT nonzero means, if specified pc is on a line boundary,
3041 use the line that ends there. Otherwise, in that case, the line
3042 that begins there is used. */
3044 /* The big complication here is that a line may start in one file, and end just
3045 before the start of another file. This usually occurs when you #include
3046 code in the middle of a subroutine. To properly find the end of a line's PC
3047 range, we must search all symtabs associated with this compilation unit, and
3048 find the one whose first PC is closer than that of the next line in this
3051 struct symtab_and_line
3052 find_pc_sect_line (CORE_ADDR pc
, struct obj_section
*section
, int notcurrent
)
3054 struct compunit_symtab
*cust
;
3055 struct linetable
*l
;
3057 struct linetable_entry
*item
;
3058 const struct blockvector
*bv
;
3059 struct bound_minimal_symbol msymbol
;
3061 /* Info on best line seen so far, and where it starts, and its file. */
3063 struct linetable_entry
*best
= NULL
;
3064 CORE_ADDR best_end
= 0;
3065 struct symtab
*best_symtab
= 0;
3067 /* Store here the first line number
3068 of a file which contains the line at the smallest pc after PC.
3069 If we don't find a line whose range contains PC,
3070 we will use a line one less than this,
3071 with a range from the start of that file to the first line's pc. */
3072 struct linetable_entry
*alt
= NULL
;
3074 /* Info on best line seen in this file. */
3076 struct linetable_entry
*prev
;
3078 /* If this pc is not from the current frame,
3079 it is the address of the end of a call instruction.
3080 Quite likely that is the start of the following statement.
3081 But what we want is the statement containing the instruction.
3082 Fudge the pc to make sure we get that. */
3084 /* It's tempting to assume that, if we can't find debugging info for
3085 any function enclosing PC, that we shouldn't search for line
3086 number info, either. However, GAS can emit line number info for
3087 assembly files --- very helpful when debugging hand-written
3088 assembly code. In such a case, we'd have no debug info for the
3089 function, but we would have line info. */
3094 /* elz: added this because this function returned the wrong
3095 information if the pc belongs to a stub (import/export)
3096 to call a shlib function. This stub would be anywhere between
3097 two functions in the target, and the line info was erroneously
3098 taken to be the one of the line before the pc. */
3100 /* RT: Further explanation:
3102 * We have stubs (trampolines) inserted between procedures.
3104 * Example: "shr1" exists in a shared library, and a "shr1" stub also
3105 * exists in the main image.
3107 * In the minimal symbol table, we have a bunch of symbols
3108 * sorted by start address. The stubs are marked as "trampoline",
3109 * the others appear as text. E.g.:
3111 * Minimal symbol table for main image
3112 * main: code for main (text symbol)
3113 * shr1: stub (trampoline symbol)
3114 * foo: code for foo (text symbol)
3116 * Minimal symbol table for "shr1" image:
3118 * shr1: code for shr1 (text symbol)
3121 * So the code below is trying to detect if we are in the stub
3122 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
3123 * and if found, do the symbolization from the real-code address
3124 * rather than the stub address.
3126 * Assumptions being made about the minimal symbol table:
3127 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
3128 * if we're really in the trampoline.s If we're beyond it (say
3129 * we're in "foo" in the above example), it'll have a closer
3130 * symbol (the "foo" text symbol for example) and will not
3131 * return the trampoline.
3132 * 2. lookup_minimal_symbol_text() will find a real text symbol
3133 * corresponding to the trampoline, and whose address will
3134 * be different than the trampoline address. I put in a sanity
3135 * check for the address being the same, to avoid an
3136 * infinite recursion.
3138 msymbol
= lookup_minimal_symbol_by_pc (pc
);
3139 if (msymbol
.minsym
!= NULL
)
3140 if (MSYMBOL_TYPE (msymbol
.minsym
) == mst_solib_trampoline
)
3142 struct bound_minimal_symbol mfunsym
3143 = lookup_minimal_symbol_text (msymbol
.minsym
->linkage_name (),
3146 if (mfunsym
.minsym
== NULL
)
3147 /* I eliminated this warning since it is coming out
3148 * in the following situation:
3149 * gdb shmain // test program with shared libraries
3150 * (gdb) break shr1 // function in shared lib
3151 * Warning: In stub for ...
3152 * In the above situation, the shared lib is not loaded yet,
3153 * so of course we can't find the real func/line info,
3154 * but the "break" still works, and the warning is annoying.
3155 * So I commented out the warning. RT */
3156 /* warning ("In stub for %s; unable to find real function/line info",
3157 msymbol->linkage_name ()); */
3160 else if (BMSYMBOL_VALUE_ADDRESS (mfunsym
)
3161 == BMSYMBOL_VALUE_ADDRESS (msymbol
))
3162 /* Avoid infinite recursion */
3163 /* See above comment about why warning is commented out. */
3164 /* warning ("In stub for %s; unable to find real function/line info",
3165 msymbol->linkage_name ()); */
3169 return find_pc_line (BMSYMBOL_VALUE_ADDRESS (mfunsym
), 0);
3172 symtab_and_line val
;
3173 val
.pspace
= current_program_space
;
3175 cust
= find_pc_sect_compunit_symtab (pc
, section
);
3178 /* If no symbol information, return previous pc. */
3185 bv
= COMPUNIT_BLOCKVECTOR (cust
);
3187 /* Look at all the symtabs that share this blockvector.
3188 They all have the same apriori range, that we found was right;
3189 but they have different line tables. */
3191 for (symtab
*iter_s
: compunit_filetabs (cust
))
3193 /* Find the best line in this symtab. */
3194 l
= SYMTAB_LINETABLE (iter_s
);
3200 /* I think len can be zero if the symtab lacks line numbers
3201 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
3202 I'm not sure which, and maybe it depends on the symbol
3208 item
= l
->item
; /* Get first line info. */
3210 /* Is this file's first line closer than the first lines of other files?
3211 If so, record this file, and its first line, as best alternate. */
3212 if (item
->pc
> pc
&& (!alt
|| item
->pc
< alt
->pc
))
3215 auto pc_compare
= [](const CORE_ADDR
& comp_pc
,
3216 const struct linetable_entry
& lhs
)->bool
3218 return comp_pc
< lhs
.pc
;
3221 struct linetable_entry
*first
= item
;
3222 struct linetable_entry
*last
= item
+ len
;
3223 item
= std::upper_bound (first
, last
, pc
, pc_compare
);
3225 prev
= item
- 1; /* Found a matching item. */
3227 /* At this point, prev points at the line whose start addr is <= pc, and
3228 item points at the next line. If we ran off the end of the linetable
3229 (pc >= start of the last line), then prev == item. If pc < start of
3230 the first line, prev will not be set. */
3232 /* Is this file's best line closer than the best in the other files?
3233 If so, record this file, and its best line, as best so far. Don't
3234 save prev if it represents the end of a function (i.e. line number
3235 0) instead of a real line. */
3237 if (prev
&& prev
->line
&& (!best
|| prev
->pc
> best
->pc
))
3240 best_symtab
= iter_s
;
3242 /* Discard BEST_END if it's before the PC of the current BEST. */
3243 if (best_end
<= best
->pc
)
3247 /* If another line (denoted by ITEM) is in the linetable and its
3248 PC is after BEST's PC, but before the current BEST_END, then
3249 use ITEM's PC as the new best_end. */
3250 if (best
&& item
< last
&& item
->pc
> best
->pc
3251 && (best_end
== 0 || best_end
> item
->pc
))
3252 best_end
= item
->pc
;
3257 /* If we didn't find any line number info, just return zeros.
3258 We used to return alt->line - 1 here, but that could be
3259 anywhere; if we don't have line number info for this PC,
3260 don't make some up. */
3263 else if (best
->line
== 0)
3265 /* If our best fit is in a range of PC's for which no line
3266 number info is available (line number is zero) then we didn't
3267 find any valid line information. */
3272 val
.symtab
= best_symtab
;
3273 val
.line
= best
->line
;
3275 if (best_end
&& (!alt
|| best_end
< alt
->pc
))
3280 val
.end
= BLOCK_END (BLOCKVECTOR_BLOCK (bv
, GLOBAL_BLOCK
));
3282 val
.section
= section
;
3286 /* Backward compatibility (no section). */
3288 struct symtab_and_line
3289 find_pc_line (CORE_ADDR pc
, int notcurrent
)
3291 struct obj_section
*section
;
3293 section
= find_pc_overlay (pc
);
3294 if (pc_in_unmapped_range (pc
, section
))
3295 pc
= overlay_mapped_address (pc
, section
);
3296 return find_pc_sect_line (pc
, section
, notcurrent
);
3302 find_pc_line_symtab (CORE_ADDR pc
)
3304 struct symtab_and_line sal
;
3306 /* This always passes zero for NOTCURRENT to find_pc_line.
3307 There are currently no callers that ever pass non-zero. */
3308 sal
= find_pc_line (pc
, 0);
3312 /* Find line number LINE in any symtab whose name is the same as
3315 If found, return the symtab that contains the linetable in which it was
3316 found, set *INDEX to the index in the linetable of the best entry
3317 found, and set *EXACT_MATCH to true if the value returned is an
3320 If not found, return NULL. */
3323 find_line_symtab (struct symtab
*sym_tab
, int line
,
3324 int *index
, bool *exact_match
)
3326 int exact
= 0; /* Initialized here to avoid a compiler warning. */
3328 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
3332 struct linetable
*best_linetable
;
3333 struct symtab
*best_symtab
;
3335 /* First try looking it up in the given symtab. */
3336 best_linetable
= SYMTAB_LINETABLE (sym_tab
);
3337 best_symtab
= sym_tab
;
3338 best_index
= find_line_common (best_linetable
, line
, &exact
, 0);
3339 if (best_index
< 0 || !exact
)
3341 /* Didn't find an exact match. So we better keep looking for
3342 another symtab with the same name. In the case of xcoff,
3343 multiple csects for one source file (produced by IBM's FORTRAN
3344 compiler) produce multiple symtabs (this is unavoidable
3345 assuming csects can be at arbitrary places in memory and that
3346 the GLOBAL_BLOCK of a symtab has a begin and end address). */
3348 /* BEST is the smallest linenumber > LINE so far seen,
3349 or 0 if none has been seen so far.
3350 BEST_INDEX and BEST_LINETABLE identify the item for it. */
3353 if (best_index
>= 0)
3354 best
= best_linetable
->item
[best_index
].line
;
3358 for (objfile
*objfile
: current_program_space
->objfiles ())
3361 objfile
->sf
->qf
->expand_symtabs_with_fullname
3362 (objfile
, symtab_to_fullname (sym_tab
));
3365 for (objfile
*objfile
: current_program_space
->objfiles ())
3367 for (compunit_symtab
*cu
: objfile
->compunits ())
3369 for (symtab
*s
: compunit_filetabs (cu
))
3371 struct linetable
*l
;
3374 if (FILENAME_CMP (sym_tab
->filename
, s
->filename
) != 0)
3376 if (FILENAME_CMP (symtab_to_fullname (sym_tab
),
3377 symtab_to_fullname (s
)) != 0)
3379 l
= SYMTAB_LINETABLE (s
);
3380 ind
= find_line_common (l
, line
, &exact
, 0);
3390 if (best
== 0 || l
->item
[ind
].line
< best
)
3392 best
= l
->item
[ind
].line
;
3407 *index
= best_index
;
3409 *exact_match
= (exact
!= 0);
3414 /* Given SYMTAB, returns all the PCs function in the symtab that
3415 exactly match LINE. Returns an empty vector if there are no exact
3416 matches, but updates BEST_ITEM in this case. */
3418 std::vector
<CORE_ADDR
>
3419 find_pcs_for_symtab_line (struct symtab
*symtab
, int line
,
3420 struct linetable_entry
**best_item
)
3423 std::vector
<CORE_ADDR
> result
;
3425 /* First, collect all the PCs that are at this line. */
3431 idx
= find_line_common (SYMTAB_LINETABLE (symtab
), line
, &was_exact
,
3438 struct linetable_entry
*item
= &SYMTAB_LINETABLE (symtab
)->item
[idx
];
3440 if (*best_item
== NULL
|| item
->line
< (*best_item
)->line
)
3446 result
.push_back (SYMTAB_LINETABLE (symtab
)->item
[idx
].pc
);
3454 /* Set the PC value for a given source file and line number and return true.
3455 Returns false for invalid line number (and sets the PC to 0).
3456 The source file is specified with a struct symtab. */
3459 find_line_pc (struct symtab
*symtab
, int line
, CORE_ADDR
*pc
)
3461 struct linetable
*l
;
3468 symtab
= find_line_symtab (symtab
, line
, &ind
, NULL
);
3471 l
= SYMTAB_LINETABLE (symtab
);
3472 *pc
= l
->item
[ind
].pc
;
3479 /* Find the range of pc values in a line.
3480 Store the starting pc of the line into *STARTPTR
3481 and the ending pc (start of next line) into *ENDPTR.
3482 Returns true to indicate success.
3483 Returns false if could not find the specified line. */
3486 find_line_pc_range (struct symtab_and_line sal
, CORE_ADDR
*startptr
,
3489 CORE_ADDR startaddr
;
3490 struct symtab_and_line found_sal
;
3493 if (startaddr
== 0 && !find_line_pc (sal
.symtab
, sal
.line
, &startaddr
))
3496 /* This whole function is based on address. For example, if line 10 has
3497 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
3498 "info line *0x123" should say the line goes from 0x100 to 0x200
3499 and "info line *0x355" should say the line goes from 0x300 to 0x400.
3500 This also insures that we never give a range like "starts at 0x134
3501 and ends at 0x12c". */
3503 found_sal
= find_pc_sect_line (startaddr
, sal
.section
, 0);
3504 if (found_sal
.line
!= sal
.line
)
3506 /* The specified line (sal) has zero bytes. */
3507 *startptr
= found_sal
.pc
;
3508 *endptr
= found_sal
.pc
;
3512 *startptr
= found_sal
.pc
;
3513 *endptr
= found_sal
.end
;
3518 /* Given a line table and a line number, return the index into the line
3519 table for the pc of the nearest line whose number is >= the specified one.
3520 Return -1 if none is found. The value is >= 0 if it is an index.
3521 START is the index at which to start searching the line table.
3523 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
3526 find_line_common (struct linetable
*l
, int lineno
,
3527 int *exact_match
, int start
)
3532 /* BEST is the smallest linenumber > LINENO so far seen,
3533 or 0 if none has been seen so far.
3534 BEST_INDEX identifies the item for it. */
3536 int best_index
= -1;
3547 for (i
= start
; i
< len
; i
++)
3549 struct linetable_entry
*item
= &(l
->item
[i
]);
3551 if (item
->line
== lineno
)
3553 /* Return the first (lowest address) entry which matches. */
3558 if (item
->line
> lineno
&& (best
== 0 || item
->line
< best
))
3565 /* If we got here, we didn't get an exact match. */
3570 find_pc_line_pc_range (CORE_ADDR pc
, CORE_ADDR
*startptr
, CORE_ADDR
*endptr
)
3572 struct symtab_and_line sal
;
3574 sal
= find_pc_line (pc
, 0);
3577 return sal
.symtab
!= 0;
3580 /* Helper for find_function_start_sal. Does most of the work, except
3581 setting the sal's symbol. */
3583 static symtab_and_line
3584 find_function_start_sal_1 (CORE_ADDR func_addr
, obj_section
*section
,
3587 symtab_and_line sal
= find_pc_sect_line (func_addr
, section
, 0);
3589 if (funfirstline
&& sal
.symtab
!= NULL
3590 && (COMPUNIT_LOCATIONS_VALID (SYMTAB_COMPUNIT (sal
.symtab
))
3591 || SYMTAB_LANGUAGE (sal
.symtab
) == language_asm
))
3593 struct gdbarch
*gdbarch
= get_objfile_arch (SYMTAB_OBJFILE (sal
.symtab
));
3596 if (gdbarch_skip_entrypoint_p (gdbarch
))
3597 sal
.pc
= gdbarch_skip_entrypoint (gdbarch
, sal
.pc
);
3601 /* We always should have a line for the function start address.
3602 If we don't, something is odd. Create a plain SAL referring
3603 just the PC and hope that skip_prologue_sal (if requested)
3604 can find a line number for after the prologue. */
3605 if (sal
.pc
< func_addr
)
3608 sal
.pspace
= current_program_space
;
3610 sal
.section
= section
;
3614 skip_prologue_sal (&sal
);
3622 find_function_start_sal (CORE_ADDR func_addr
, obj_section
*section
,
3626 = find_function_start_sal_1 (func_addr
, section
, funfirstline
);
3628 /* find_function_start_sal_1 does a linetable search, so it finds
3629 the symtab and linenumber, but not a symbol. Fill in the
3630 function symbol too. */
3631 sal
.symbol
= find_pc_sect_containing_function (sal
.pc
, sal
.section
);
3639 find_function_start_sal (symbol
*sym
, bool funfirstline
)
3641 fixup_symbol_section (sym
, NULL
);
3643 = find_function_start_sal_1 (BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym
)),
3644 SYMBOL_OBJ_SECTION (symbol_objfile (sym
), sym
),
3651 /* Given a function start address FUNC_ADDR and SYMTAB, find the first
3652 address for that function that has an entry in SYMTAB's line info
3653 table. If such an entry cannot be found, return FUNC_ADDR
3657 skip_prologue_using_lineinfo (CORE_ADDR func_addr
, struct symtab
*symtab
)
3659 CORE_ADDR func_start
, func_end
;
3660 struct linetable
*l
;
3663 /* Give up if this symbol has no lineinfo table. */
3664 l
= SYMTAB_LINETABLE (symtab
);
3668 /* Get the range for the function's PC values, or give up if we
3669 cannot, for some reason. */
3670 if (!find_pc_partial_function (func_addr
, NULL
, &func_start
, &func_end
))
3673 /* Linetable entries are ordered by PC values, see the commentary in
3674 symtab.h where `struct linetable' is defined. Thus, the first
3675 entry whose PC is in the range [FUNC_START..FUNC_END[ is the
3676 address we are looking for. */
3677 for (i
= 0; i
< l
->nitems
; i
++)
3679 struct linetable_entry
*item
= &(l
->item
[i
]);
3681 /* Don't use line numbers of zero, they mark special entries in
3682 the table. See the commentary on symtab.h before the
3683 definition of struct linetable. */
3684 if (item
->line
> 0 && func_start
<= item
->pc
&& item
->pc
< func_end
)
3691 /* Adjust SAL to the first instruction past the function prologue.
3692 If the PC was explicitly specified, the SAL is not changed.
3693 If the line number was explicitly specified then the SAL can still be
3694 updated, unless the language for SAL is assembler, in which case the SAL
3695 will be left unchanged.
3696 If SAL is already past the prologue, then do nothing. */
3699 skip_prologue_sal (struct symtab_and_line
*sal
)
3702 struct symtab_and_line start_sal
;
3703 CORE_ADDR pc
, saved_pc
;
3704 struct obj_section
*section
;
3706 struct objfile
*objfile
;
3707 struct gdbarch
*gdbarch
;
3708 const struct block
*b
, *function_block
;
3709 int force_skip
, skip
;
3711 /* Do not change the SAL if PC was specified explicitly. */
3712 if (sal
->explicit_pc
)
3715 /* In assembly code, if the user asks for a specific line then we should
3716 not adjust the SAL. The user already has instruction level
3717 visibility in this case, so selecting a line other than one requested
3718 is likely to be the wrong choice. */
3719 if (sal
->symtab
!= nullptr
3720 && sal
->explicit_line
3721 && SYMTAB_LANGUAGE (sal
->symtab
) == language_asm
)
3724 scoped_restore_current_pspace_and_thread restore_pspace_thread
;
3726 switch_to_program_space_and_thread (sal
->pspace
);
3728 sym
= find_pc_sect_function (sal
->pc
, sal
->section
);
3731 fixup_symbol_section (sym
, NULL
);
3733 objfile
= symbol_objfile (sym
);
3734 pc
= BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym
));
3735 section
= SYMBOL_OBJ_SECTION (objfile
, sym
);
3736 name
= sym
->linkage_name ();
3740 struct bound_minimal_symbol msymbol
3741 = lookup_minimal_symbol_by_pc_section (sal
->pc
, sal
->section
);
3743 if (msymbol
.minsym
== NULL
)
3746 objfile
= msymbol
.objfile
;
3747 pc
= BMSYMBOL_VALUE_ADDRESS (msymbol
);
3748 section
= MSYMBOL_OBJ_SECTION (objfile
, msymbol
.minsym
);
3749 name
= msymbol
.minsym
->linkage_name ();
3752 gdbarch
= get_objfile_arch (objfile
);
3754 /* Process the prologue in two passes. In the first pass try to skip the
3755 prologue (SKIP is true) and verify there is a real need for it (indicated
3756 by FORCE_SKIP). If no such reason was found run a second pass where the
3757 prologue is not skipped (SKIP is false). */
3762 /* Be conservative - allow direct PC (without skipping prologue) only if we
3763 have proven the CU (Compilation Unit) supports it. sal->SYMTAB does not
3764 have to be set by the caller so we use SYM instead. */
3766 && COMPUNIT_LOCATIONS_VALID (SYMTAB_COMPUNIT (symbol_symtab (sym
))))
3774 /* If the function is in an unmapped overlay, use its unmapped LMA address,
3775 so that gdbarch_skip_prologue has something unique to work on. */
3776 if (section_is_overlay (section
) && !section_is_mapped (section
))
3777 pc
= overlay_unmapped_address (pc
, section
);
3779 /* Skip "first line" of function (which is actually its prologue). */
3780 pc
+= gdbarch_deprecated_function_start_offset (gdbarch
);
3781 if (gdbarch_skip_entrypoint_p (gdbarch
))
3782 pc
= gdbarch_skip_entrypoint (gdbarch
, pc
);
3784 pc
= gdbarch_skip_prologue_noexcept (gdbarch
, pc
);
3786 /* For overlays, map pc back into its mapped VMA range. */
3787 pc
= overlay_mapped_address (pc
, section
);
3789 /* Calculate line number. */
3790 start_sal
= find_pc_sect_line (pc
, section
, 0);
3792 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
3793 line is still part of the same function. */
3794 if (skip
&& start_sal
.pc
!= pc
3795 && (sym
? (BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym
)) <= start_sal
.end
3796 && start_sal
.end
< BLOCK_END (SYMBOL_BLOCK_VALUE (sym
)))
3797 : (lookup_minimal_symbol_by_pc_section (start_sal
.end
, section
).minsym
3798 == lookup_minimal_symbol_by_pc_section (pc
, section
).minsym
)))
3800 /* First pc of next line */
3802 /* Recalculate the line number (might not be N+1). */
3803 start_sal
= find_pc_sect_line (pc
, section
, 0);
3806 /* On targets with executable formats that don't have a concept of
3807 constructors (ELF with .init has, PE doesn't), gcc emits a call
3808 to `__main' in `main' between the prologue and before user
3810 if (gdbarch_skip_main_prologue_p (gdbarch
)
3811 && name
&& strcmp_iw (name
, "main") == 0)
3813 pc
= gdbarch_skip_main_prologue (gdbarch
, pc
);
3814 /* Recalculate the line number (might not be N+1). */
3815 start_sal
= find_pc_sect_line (pc
, section
, 0);
3819 while (!force_skip
&& skip
--);
3821 /* If we still don't have a valid source line, try to find the first
3822 PC in the lineinfo table that belongs to the same function. This
3823 happens with COFF debug info, which does not seem to have an
3824 entry in lineinfo table for the code after the prologue which has
3825 no direct relation to source. For example, this was found to be
3826 the case with the DJGPP target using "gcc -gcoff" when the
3827 compiler inserted code after the prologue to make sure the stack
3829 if (!force_skip
&& sym
&& start_sal
.symtab
== NULL
)
3831 pc
= skip_prologue_using_lineinfo (pc
, symbol_symtab (sym
));
3832 /* Recalculate the line number. */
3833 start_sal
= find_pc_sect_line (pc
, section
, 0);
3836 /* If we're already past the prologue, leave SAL unchanged. Otherwise
3837 forward SAL to the end of the prologue. */
3842 sal
->section
= section
;
3843 sal
->symtab
= start_sal
.symtab
;
3844 sal
->line
= start_sal
.line
;
3845 sal
->end
= start_sal
.end
;
3847 /* Check if we are now inside an inlined function. If we can,
3848 use the call site of the function instead. */
3849 b
= block_for_pc_sect (sal
->pc
, sal
->section
);
3850 function_block
= NULL
;
3853 if (BLOCK_FUNCTION (b
) != NULL
&& block_inlined_p (b
))
3855 else if (BLOCK_FUNCTION (b
) != NULL
)
3857 b
= BLOCK_SUPERBLOCK (b
);
3859 if (function_block
!= NULL
3860 && SYMBOL_LINE (BLOCK_FUNCTION (function_block
)) != 0)
3862 sal
->line
= SYMBOL_LINE (BLOCK_FUNCTION (function_block
));
3863 sal
->symtab
= symbol_symtab (BLOCK_FUNCTION (function_block
));
3867 /* Given PC at the function's start address, attempt to find the
3868 prologue end using SAL information. Return zero if the skip fails.
3870 A non-optimized prologue traditionally has one SAL for the function
3871 and a second for the function body. A single line function has
3872 them both pointing at the same line.
3874 An optimized prologue is similar but the prologue may contain
3875 instructions (SALs) from the instruction body. Need to skip those
3876 while not getting into the function body.
3878 The functions end point and an increasing SAL line are used as
3879 indicators of the prologue's endpoint.
3881 This code is based on the function refine_prologue_limit
3885 skip_prologue_using_sal (struct gdbarch
*gdbarch
, CORE_ADDR func_addr
)
3887 struct symtab_and_line prologue_sal
;
3890 const struct block
*bl
;
3892 /* Get an initial range for the function. */
3893 find_pc_partial_function (func_addr
, NULL
, &start_pc
, &end_pc
);
3894 start_pc
+= gdbarch_deprecated_function_start_offset (gdbarch
);
3896 prologue_sal
= find_pc_line (start_pc
, 0);
3897 if (prologue_sal
.line
!= 0)
3899 /* For languages other than assembly, treat two consecutive line
3900 entries at the same address as a zero-instruction prologue.
3901 The GNU assembler emits separate line notes for each instruction
3902 in a multi-instruction macro, but compilers generally will not
3904 if (prologue_sal
.symtab
->language
!= language_asm
)
3906 struct linetable
*linetable
= SYMTAB_LINETABLE (prologue_sal
.symtab
);
3909 /* Skip any earlier lines, and any end-of-sequence marker
3910 from a previous function. */
3911 while (linetable
->item
[idx
].pc
!= prologue_sal
.pc
3912 || linetable
->item
[idx
].line
== 0)
3915 if (idx
+1 < linetable
->nitems
3916 && linetable
->item
[idx
+1].line
!= 0
3917 && linetable
->item
[idx
+1].pc
== start_pc
)
3921 /* If there is only one sal that covers the entire function,
3922 then it is probably a single line function, like
3924 if (prologue_sal
.end
>= end_pc
)
3927 while (prologue_sal
.end
< end_pc
)
3929 struct symtab_and_line sal
;
3931 sal
= find_pc_line (prologue_sal
.end
, 0);
3934 /* Assume that a consecutive SAL for the same (or larger)
3935 line mark the prologue -> body transition. */
3936 if (sal
.line
>= prologue_sal
.line
)
3938 /* Likewise if we are in a different symtab altogether
3939 (e.g. within a file included via #include). */
3940 if (sal
.symtab
!= prologue_sal
.symtab
)
3943 /* The line number is smaller. Check that it's from the
3944 same function, not something inlined. If it's inlined,
3945 then there is no point comparing the line numbers. */
3946 bl
= block_for_pc (prologue_sal
.end
);
3949 if (block_inlined_p (bl
))
3951 if (BLOCK_FUNCTION (bl
))
3956 bl
= BLOCK_SUPERBLOCK (bl
);
3961 /* The case in which compiler's optimizer/scheduler has
3962 moved instructions into the prologue. We look ahead in
3963 the function looking for address ranges whose
3964 corresponding line number is less the first one that we
3965 found for the function. This is more conservative then
3966 refine_prologue_limit which scans a large number of SALs
3967 looking for any in the prologue. */
3972 if (prologue_sal
.end
< end_pc
)
3973 /* Return the end of this line, or zero if we could not find a
3975 return prologue_sal
.end
;
3977 /* Don't return END_PC, which is past the end of the function. */
3978 return prologue_sal
.pc
;
3984 find_function_alias_target (bound_minimal_symbol msymbol
)
3986 CORE_ADDR func_addr
;
3987 if (!msymbol_is_function (msymbol
.objfile
, msymbol
.minsym
, &func_addr
))
3990 symbol
*sym
= find_pc_function (func_addr
);
3992 && SYMBOL_CLASS (sym
) == LOC_BLOCK
3993 && BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym
)) == func_addr
)
4000 /* If P is of the form "operator[ \t]+..." where `...' is
4001 some legitimate operator text, return a pointer to the
4002 beginning of the substring of the operator text.
4003 Otherwise, return "". */
4006 operator_chars (const char *p
, const char **end
)
4009 if (!startswith (p
, CP_OPERATOR_STR
))
4011 p
+= CP_OPERATOR_LEN
;
4013 /* Don't get faked out by `operator' being part of a longer
4015 if (isalpha (*p
) || *p
== '_' || *p
== '$' || *p
== '\0')
4018 /* Allow some whitespace between `operator' and the operator symbol. */
4019 while (*p
== ' ' || *p
== '\t')
4022 /* Recognize 'operator TYPENAME'. */
4024 if (isalpha (*p
) || *p
== '_' || *p
== '$')
4026 const char *q
= p
+ 1;
4028 while (isalnum (*q
) || *q
== '_' || *q
== '$')
4037 case '\\': /* regexp quoting */
4040 if (p
[2] == '=') /* 'operator\*=' */
4042 else /* 'operator\*' */
4046 else if (p
[1] == '[')
4049 error (_("mismatched quoting on brackets, "
4050 "try 'operator\\[\\]'"));
4051 else if (p
[2] == '\\' && p
[3] == ']')
4053 *end
= p
+ 4; /* 'operator\[\]' */
4057 error (_("nothing is allowed between '[' and ']'"));
4061 /* Gratuitous quote: skip it and move on. */
4083 if (p
[0] == '-' && p
[1] == '>')
4085 /* Struct pointer member operator 'operator->'. */
4088 *end
= p
+ 3; /* 'operator->*' */
4091 else if (p
[2] == '\\')
4093 *end
= p
+ 4; /* Hopefully 'operator->\*' */
4098 *end
= p
+ 2; /* 'operator->' */
4102 if (p
[1] == '=' || p
[1] == p
[0])
4113 error (_("`operator ()' must be specified "
4114 "without whitespace in `()'"));
4119 error (_("`operator ?:' must be specified "
4120 "without whitespace in `?:'"));
4125 error (_("`operator []' must be specified "
4126 "without whitespace in `[]'"));
4130 error (_("`operator %s' not supported"), p
);
4139 /* What part to match in a file name. */
4141 struct filename_partial_match_opts
4143 /* Only match the directory name part. */
4144 bool dirname
= false;
4146 /* Only match the basename part. */
4147 bool basename
= false;
4150 /* Data structure to maintain printing state for output_source_filename. */
4152 struct output_source_filename_data
4154 /* Output only filenames matching REGEXP. */
4156 gdb::optional
<compiled_regex
> c_regexp
;
4157 /* Possibly only match a part of the filename. */
4158 filename_partial_match_opts partial_match
;
4161 /* Cache of what we've seen so far. */
4162 struct filename_seen_cache
*filename_seen_cache
;
4164 /* Flag of whether we're printing the first one. */
4168 /* Slave routine for sources_info. Force line breaks at ,'s.
4169 NAME is the name to print.
4170 DATA contains the state for printing and watching for duplicates. */
4173 output_source_filename (const char *name
,
4174 struct output_source_filename_data
*data
)
4176 /* Since a single source file can result in several partial symbol
4177 tables, we need to avoid printing it more than once. Note: if
4178 some of the psymtabs are read in and some are not, it gets
4179 printed both under "Source files for which symbols have been
4180 read" and "Source files for which symbols will be read in on
4181 demand". I consider this a reasonable way to deal with the
4182 situation. I'm not sure whether this can also happen for
4183 symtabs; it doesn't hurt to check. */
4185 /* Was NAME already seen? */
4186 if (data
->filename_seen_cache
->seen (name
))
4188 /* Yes; don't print it again. */
4192 /* Does it match data->regexp? */
4193 if (data
->c_regexp
.has_value ())
4195 const char *to_match
;
4196 std::string dirname
;
4198 if (data
->partial_match
.dirname
)
4200 dirname
= ldirname (name
);
4201 to_match
= dirname
.c_str ();
4203 else if (data
->partial_match
.basename
)
4204 to_match
= lbasename (name
);
4208 if (data
->c_regexp
->exec (to_match
, 0, NULL
, 0) != 0)
4212 /* Print it and reset *FIRST. */
4214 printf_filtered (", ");
4218 fputs_styled (name
, file_name_style
.style (), gdb_stdout
);
4221 /* A callback for map_partial_symbol_filenames. */
4224 output_partial_symbol_filename (const char *filename
, const char *fullname
,
4227 output_source_filename (fullname
? fullname
: filename
,
4228 (struct output_source_filename_data
*) data
);
4231 using isrc_flag_option_def
4232 = gdb::option::flag_option_def
<filename_partial_match_opts
>;
4234 static const gdb::option::option_def info_sources_option_defs
[] = {
4236 isrc_flag_option_def
{
4238 [] (filename_partial_match_opts
*opts
) { return &opts
->dirname
; },
4239 N_("Show only the files having a dirname matching REGEXP."),
4242 isrc_flag_option_def
{
4244 [] (filename_partial_match_opts
*opts
) { return &opts
->basename
; },
4245 N_("Show only the files having a basename matching REGEXP."),
4250 /* Create an option_def_group for the "info sources" options, with
4251 ISRC_OPTS as context. */
4253 static inline gdb::option::option_def_group
4254 make_info_sources_options_def_group (filename_partial_match_opts
*isrc_opts
)
4256 return {{info_sources_option_defs
}, isrc_opts
};
4259 /* Prints the header message for the source files that will be printed
4260 with the matching info present in DATA. SYMBOL_MSG is a message
4261 that tells what will or has been done with the symbols of the
4262 matching source files. */
4265 print_info_sources_header (const char *symbol_msg
,
4266 const struct output_source_filename_data
*data
)
4268 puts_filtered (symbol_msg
);
4269 if (!data
->regexp
.empty ())
4271 if (data
->partial_match
.dirname
)
4272 printf_filtered (_("(dirname matching regular expression \"%s\")"),
4273 data
->regexp
.c_str ());
4274 else if (data
->partial_match
.basename
)
4275 printf_filtered (_("(basename matching regular expression \"%s\")"),
4276 data
->regexp
.c_str ());
4278 printf_filtered (_("(filename matching regular expression \"%s\")"),
4279 data
->regexp
.c_str ());
4281 puts_filtered ("\n");
4284 /* Completer for "info sources". */
4287 info_sources_command_completer (cmd_list_element
*ignore
,
4288 completion_tracker
&tracker
,
4289 const char *text
, const char *word
)
4291 const auto group
= make_info_sources_options_def_group (nullptr);
4292 if (gdb::option::complete_options
4293 (tracker
, &text
, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND
, group
))
4298 info_sources_command (const char *args
, int from_tty
)
4300 struct output_source_filename_data data
;
4302 if (!have_full_symbols () && !have_partial_symbols ())
4304 error (_("No symbol table is loaded. Use the \"file\" command."));
4307 filename_seen_cache filenames_seen
;
4309 auto group
= make_info_sources_options_def_group (&data
.partial_match
);
4311 gdb::option::process_options
4312 (&args
, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_ERROR
, group
);
4314 if (args
!= NULL
&& *args
!= '\000')
4317 data
.filename_seen_cache
= &filenames_seen
;
4320 if (data
.partial_match
.dirname
&& data
.partial_match
.basename
)
4321 error (_("You cannot give both -basename and -dirname to 'info sources'."));
4322 if ((data
.partial_match
.dirname
|| data
.partial_match
.basename
)
4323 && data
.regexp
.empty ())
4324 error (_("Missing REGEXP for 'info sources'."));
4326 if (data
.regexp
.empty ())
4327 data
.c_regexp
.reset ();
4330 int cflags
= REG_NOSUB
;
4331 #ifdef HAVE_CASE_INSENSITIVE_FILE_SYSTEM
4332 cflags
|= REG_ICASE
;
4334 data
.c_regexp
.emplace (data
.regexp
.c_str (), cflags
,
4335 _("Invalid regexp"));
4338 print_info_sources_header
4339 (_("Source files for which symbols have been read in:\n"), &data
);
4341 for (objfile
*objfile
: current_program_space
->objfiles ())
4343 for (compunit_symtab
*cu
: objfile
->compunits ())
4345 for (symtab
*s
: compunit_filetabs (cu
))
4347 const char *fullname
= symtab_to_fullname (s
);
4349 output_source_filename (fullname
, &data
);
4353 printf_filtered ("\n\n");
4355 print_info_sources_header
4356 (_("Source files for which symbols will be read in on demand:\n"), &data
);
4358 filenames_seen
.clear ();
4360 map_symbol_filenames (output_partial_symbol_filename
, &data
,
4361 1 /*need_fullname*/);
4362 printf_filtered ("\n");
4365 /* Compare FILE against all the entries of FILENAMES. If BASENAMES is
4366 true compare only lbasename of FILENAMES. */
4369 file_matches (const char *file
, const std::vector
<const char *> &filenames
,
4372 if (filenames
.empty ())
4375 for (const char *name
: filenames
)
4377 name
= (basenames
? lbasename (name
) : name
);
4378 if (compare_filenames_for_search (file
, name
))
4385 /* Helper function for std::sort on symbol_search objects. Can only sort
4386 symbols, not minimal symbols. */
4389 symbol_search::compare_search_syms (const symbol_search
&sym_a
,
4390 const symbol_search
&sym_b
)
4394 c
= FILENAME_CMP (symbol_symtab (sym_a
.symbol
)->filename
,
4395 symbol_symtab (sym_b
.symbol
)->filename
);
4399 if (sym_a
.block
!= sym_b
.block
)
4400 return sym_a
.block
- sym_b
.block
;
4402 return strcmp (sym_a
.symbol
->print_name (), sym_b
.symbol
->print_name ());
4405 /* Returns true if the type_name of symbol_type of SYM matches TREG.
4406 If SYM has no symbol_type or symbol_name, returns false. */
4409 treg_matches_sym_type_name (const compiled_regex
&treg
,
4410 const struct symbol
*sym
)
4412 struct type
*sym_type
;
4413 std::string printed_sym_type_name
;
4415 if (symbol_lookup_debug
> 1)
4417 fprintf_unfiltered (gdb_stdlog
,
4418 "treg_matches_sym_type_name\n sym %s\n",
4419 sym
->natural_name ());
4422 sym_type
= SYMBOL_TYPE (sym
);
4423 if (sym_type
== NULL
)
4427 scoped_switch_to_sym_language_if_auto
l (sym
);
4429 printed_sym_type_name
= type_to_string (sym_type
);
4433 if (symbol_lookup_debug
> 1)
4435 fprintf_unfiltered (gdb_stdlog
,
4436 " sym_type_name %s\n",
4437 printed_sym_type_name
.c_str ());
4441 if (printed_sym_type_name
.empty ())
4444 return treg
.exec (printed_sym_type_name
.c_str (), 0, NULL
, 0) == 0;
4450 global_symbol_searcher::is_suitable_msymbol
4451 (const enum search_domain kind
, const minimal_symbol
*msymbol
)
4453 switch (MSYMBOL_TYPE (msymbol
))
4459 return kind
== VARIABLES_DOMAIN
;
4462 case mst_solib_trampoline
:
4463 case mst_text_gnu_ifunc
:
4464 return kind
== FUNCTIONS_DOMAIN
;
4473 global_symbol_searcher::expand_symtabs
4474 (objfile
*objfile
, const gdb::optional
<compiled_regex
> &preg
) const
4476 enum search_domain kind
= m_kind
;
4477 bool found_msymbol
= false;
4480 objfile
->sf
->qf
->expand_symtabs_matching
4482 [&] (const char *filename
, bool basenames
)
4484 return file_matches (filename
, filenames
, basenames
);
4486 lookup_name_info::match_any (),
4487 [&] (const char *symname
)
4489 return (!preg
.has_value ()
4490 || preg
->exec (symname
, 0, NULL
, 0) == 0);
4495 /* Here, we search through the minimal symbol tables for functions and
4496 variables that match, and force their symbols to be read. This is in
4497 particular necessary for demangled variable names, which are no longer
4498 put into the partial symbol tables. The symbol will then be found
4499 during the scan of symtabs later.
4501 For functions, find_pc_symtab should succeed if we have debug info for
4502 the function, for variables we have to call
4503 lookup_symbol_in_objfile_from_linkage_name to determine if the
4504 variable has debug info. If the lookup fails, set found_msymbol so
4505 that we will rescan to print any matching symbols without debug info.
4506 We only search the objfile the msymbol came from, we no longer search
4507 all objfiles. In large programs (1000s of shared libs) searching all
4508 objfiles is not worth the pain. */
4509 if (filenames
.empty ()
4510 && (kind
== VARIABLES_DOMAIN
|| kind
== FUNCTIONS_DOMAIN
))
4512 for (minimal_symbol
*msymbol
: objfile
->msymbols ())
4516 if (msymbol
->created_by_gdb
)
4519 if (is_suitable_msymbol (kind
, msymbol
))
4521 if (!preg
.has_value ()
4522 || preg
->exec (msymbol
->natural_name (), 0,
4525 /* An important side-effect of these lookup functions is
4526 to expand the symbol table if msymbol is found, later
4527 in the process we will add matching symbols or
4528 msymbols to the results list, and that requires that
4529 the symbols tables are expanded. */
4530 if (kind
== FUNCTIONS_DOMAIN
4531 ? (find_pc_compunit_symtab
4532 (MSYMBOL_VALUE_ADDRESS (objfile
, msymbol
))
4534 : (lookup_symbol_in_objfile_from_linkage_name
4535 (objfile
, msymbol
->linkage_name (),
4538 found_msymbol
= true;
4544 return found_msymbol
;
4550 global_symbol_searcher::add_matching_symbols
4552 const gdb::optional
<compiled_regex
> &preg
,
4553 const gdb::optional
<compiled_regex
> &treg
,
4554 std::set
<symbol_search
> *result_set
) const
4556 enum search_domain kind
= m_kind
;
4558 /* Add matching symbols (if not already present). */
4559 for (compunit_symtab
*cust
: objfile
->compunits ())
4561 const struct blockvector
*bv
= COMPUNIT_BLOCKVECTOR (cust
);
4563 for (block_enum block
: { GLOBAL_BLOCK
, STATIC_BLOCK
})
4565 struct block_iterator iter
;
4567 const struct block
*b
= BLOCKVECTOR_BLOCK (bv
, block
);
4569 ALL_BLOCK_SYMBOLS (b
, iter
, sym
)
4571 struct symtab
*real_symtab
= symbol_symtab (sym
);
4575 /* Check first sole REAL_SYMTAB->FILENAME. It does
4576 not need to be a substring of symtab_to_fullname as
4577 it may contain "./" etc. */
4578 if ((file_matches (real_symtab
->filename
, filenames
, false)
4579 || ((basenames_may_differ
4580 || file_matches (lbasename (real_symtab
->filename
),
4582 && file_matches (symtab_to_fullname (real_symtab
),
4584 && ((!preg
.has_value ()
4585 || preg
->exec (sym
->natural_name (), 0,
4587 && ((kind
== VARIABLES_DOMAIN
4588 && SYMBOL_CLASS (sym
) != LOC_TYPEDEF
4589 && SYMBOL_CLASS (sym
) != LOC_UNRESOLVED
4590 && SYMBOL_CLASS (sym
) != LOC_BLOCK
4591 /* LOC_CONST can be used for more than
4592 just enums, e.g., c++ static const
4593 members. We only want to skip enums
4595 && !(SYMBOL_CLASS (sym
) == LOC_CONST
4596 && (TYPE_CODE (SYMBOL_TYPE (sym
))
4598 && (!treg
.has_value ()
4599 || treg_matches_sym_type_name (*treg
, sym
)))
4600 || (kind
== FUNCTIONS_DOMAIN
4601 && SYMBOL_CLASS (sym
) == LOC_BLOCK
4602 && (!treg
.has_value ()
4603 || treg_matches_sym_type_name (*treg
,
4605 || (kind
== TYPES_DOMAIN
4606 && SYMBOL_CLASS (sym
) == LOC_TYPEDEF
4607 && SYMBOL_DOMAIN (sym
) != MODULE_DOMAIN
)
4608 || (kind
== MODULES_DOMAIN
4609 && SYMBOL_DOMAIN (sym
) == MODULE_DOMAIN
4610 && SYMBOL_LINE (sym
) != 0))))
4612 if (result_set
->size () < m_max_search_results
)
4614 /* Match, insert if not already in the results. */
4615 symbol_search
ss (block
, sym
);
4616 if (result_set
->find (ss
) == result_set
->end ())
4617 result_set
->insert (ss
);
4632 global_symbol_searcher::add_matching_msymbols
4633 (objfile
*objfile
, const gdb::optional
<compiled_regex
> &preg
,
4634 std::vector
<symbol_search
> *results
) const
4636 enum search_domain kind
= m_kind
;
4638 for (minimal_symbol
*msymbol
: objfile
->msymbols ())
4642 if (msymbol
->created_by_gdb
)
4645 if (is_suitable_msymbol (kind
, msymbol
))
4647 if (!preg
.has_value ()
4648 || preg
->exec (msymbol
->natural_name (), 0,
4651 /* For functions we can do a quick check of whether the
4652 symbol might be found via find_pc_symtab. */
4653 if (kind
!= FUNCTIONS_DOMAIN
4654 || (find_pc_compunit_symtab
4655 (MSYMBOL_VALUE_ADDRESS (objfile
, msymbol
))
4658 if (lookup_symbol_in_objfile_from_linkage_name
4659 (objfile
, msymbol
->linkage_name (),
4660 VAR_DOMAIN
).symbol
== NULL
)
4662 /* Matching msymbol, add it to the results list. */
4663 if (results
->size () < m_max_search_results
)
4664 results
->emplace_back (GLOBAL_BLOCK
, msymbol
, objfile
);
4678 std::vector
<symbol_search
>
4679 global_symbol_searcher::search () const
4681 gdb::optional
<compiled_regex
> preg
;
4682 gdb::optional
<compiled_regex
> treg
;
4684 gdb_assert (m_kind
!= ALL_DOMAIN
);
4686 if (m_symbol_name_regexp
!= NULL
)
4688 const char *symbol_name_regexp
= m_symbol_name_regexp
;
4690 /* Make sure spacing is right for C++ operators.
4691 This is just a courtesy to make the matching less sensitive
4692 to how many spaces the user leaves between 'operator'
4693 and <TYPENAME> or <OPERATOR>. */
4695 const char *opname
= operator_chars (symbol_name_regexp
, &opend
);
4699 int fix
= -1; /* -1 means ok; otherwise number of
4702 if (isalpha (*opname
) || *opname
== '_' || *opname
== '$')
4704 /* There should 1 space between 'operator' and 'TYPENAME'. */
4705 if (opname
[-1] != ' ' || opname
[-2] == ' ')
4710 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
4711 if (opname
[-1] == ' ')
4714 /* If wrong number of spaces, fix it. */
4717 char *tmp
= (char *) alloca (8 + fix
+ strlen (opname
) + 1);
4719 sprintf (tmp
, "operator%.*s%s", fix
, " ", opname
);
4720 symbol_name_regexp
= tmp
;
4724 int cflags
= REG_NOSUB
| (case_sensitivity
== case_sensitive_off
4726 preg
.emplace (symbol_name_regexp
, cflags
,
4727 _("Invalid regexp"));
4730 if (m_symbol_type_regexp
!= NULL
)
4732 int cflags
= REG_NOSUB
| (case_sensitivity
== case_sensitive_off
4734 treg
.emplace (m_symbol_type_regexp
, cflags
,
4735 _("Invalid regexp"));
4738 bool found_msymbol
= false;
4739 std::set
<symbol_search
> result_set
;
4740 for (objfile
*objfile
: current_program_space
->objfiles ())
4742 /* Expand symtabs within objfile that possibly contain matching
4744 found_msymbol
|= expand_symtabs (objfile
, preg
);
4746 /* Find matching symbols within OBJFILE and add them in to the
4747 RESULT_SET set. Use a set here so that we can easily detect
4748 duplicates as we go, and can therefore track how many unique
4749 matches we have found so far. */
4750 if (!add_matching_symbols (objfile
, preg
, treg
, &result_set
))
4754 /* Convert the result set into a sorted result list, as std::set is
4755 defined to be sorted then no explicit call to std::sort is needed. */
4756 std::vector
<symbol_search
> result (result_set
.begin (), result_set
.end ());
4758 /* If there are no debug symbols, then add matching minsyms. But if the
4759 user wants to see symbols matching a type regexp, then never give a
4760 minimal symbol, as we assume that a minimal symbol does not have a
4762 if ((found_msymbol
|| (filenames
.empty () && m_kind
== VARIABLES_DOMAIN
))
4763 && !m_exclude_minsyms
4764 && !treg
.has_value ())
4766 gdb_assert (m_kind
== VARIABLES_DOMAIN
|| m_kind
== FUNCTIONS_DOMAIN
);
4767 for (objfile
*objfile
: current_program_space
->objfiles ())
4768 if (!add_matching_msymbols (objfile
, preg
, &result
))
4778 symbol_to_info_string (struct symbol
*sym
, int block
,
4779 enum search_domain kind
)
4783 gdb_assert (block
== GLOBAL_BLOCK
|| block
== STATIC_BLOCK
);
4785 if (kind
!= TYPES_DOMAIN
&& block
== STATIC_BLOCK
)
4788 /* Typedef that is not a C++ class. */
4789 if (kind
== TYPES_DOMAIN
4790 && SYMBOL_DOMAIN (sym
) != STRUCT_DOMAIN
)
4792 string_file tmp_stream
;
4794 /* FIXME: For C (and C++) we end up with a difference in output here
4795 between how a typedef is printed, and non-typedefs are printed.
4796 The TYPEDEF_PRINT code places a ";" at the end in an attempt to
4797 appear C-like, while TYPE_PRINT doesn't.
4799 For the struct printing case below, things are worse, we force
4800 printing of the ";" in this function, which is going to be wrong
4801 for languages that don't require a ";" between statements. */
4802 if (TYPE_CODE (SYMBOL_TYPE (sym
)) == TYPE_CODE_TYPEDEF
)
4803 typedef_print (SYMBOL_TYPE (sym
), sym
, &tmp_stream
);
4805 type_print (SYMBOL_TYPE (sym
), "", &tmp_stream
, -1);
4806 str
+= tmp_stream
.string ();
4808 /* variable, func, or typedef-that-is-c++-class. */
4809 else if (kind
< TYPES_DOMAIN
4810 || (kind
== TYPES_DOMAIN
4811 && SYMBOL_DOMAIN (sym
) == STRUCT_DOMAIN
))
4813 string_file tmp_stream
;
4815 type_print (SYMBOL_TYPE (sym
),
4816 (SYMBOL_CLASS (sym
) == LOC_TYPEDEF
4817 ? "" : sym
->print_name ()),
4820 str
+= tmp_stream
.string ();
4823 /* Printing of modules is currently done here, maybe at some future
4824 point we might want a language specific method to print the module
4825 symbol so that we can customise the output more. */
4826 else if (kind
== MODULES_DOMAIN
)
4827 str
+= sym
->print_name ();
4832 /* Helper function for symbol info commands, for example 'info functions',
4833 'info variables', etc. KIND is the kind of symbol we searched for, and
4834 BLOCK is the type of block the symbols was found in, either GLOBAL_BLOCK
4835 or STATIC_BLOCK. SYM is the symbol we found. If LAST is not NULL,
4836 print file and line number information for the symbol as well. Skip
4837 printing the filename if it matches LAST. */
4840 print_symbol_info (enum search_domain kind
,
4842 int block
, const char *last
)
4844 scoped_switch_to_sym_language_if_auto
l (sym
);
4845 struct symtab
*s
= symbol_symtab (sym
);
4849 const char *s_filename
= symtab_to_filename_for_display (s
);
4851 if (filename_cmp (last
, s_filename
) != 0)
4853 printf_filtered (_("\nFile %ps:\n"),
4854 styled_string (file_name_style
.style (),
4858 if (SYMBOL_LINE (sym
) != 0)
4859 printf_filtered ("%d:\t", SYMBOL_LINE (sym
));
4861 puts_filtered ("\t");
4864 std::string str
= symbol_to_info_string (sym
, block
, kind
);
4865 printf_filtered ("%s\n", str
.c_str ());
4868 /* This help function for symtab_symbol_info() prints information
4869 for non-debugging symbols to gdb_stdout. */
4872 print_msymbol_info (struct bound_minimal_symbol msymbol
)
4874 struct gdbarch
*gdbarch
= get_objfile_arch (msymbol
.objfile
);
4877 if (gdbarch_addr_bit (gdbarch
) <= 32)
4878 tmp
= hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol
)
4879 & (CORE_ADDR
) 0xffffffff,
4882 tmp
= hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol
),
4885 ui_file_style sym_style
= (msymbol
.minsym
->text_p ()
4886 ? function_name_style
.style ()
4887 : ui_file_style ());
4889 printf_filtered (_("%ps %ps\n"),
4890 styled_string (address_style
.style (), tmp
),
4891 styled_string (sym_style
, msymbol
.minsym
->print_name ()));
4894 /* This is the guts of the commands "info functions", "info types", and
4895 "info variables". It calls search_symbols to find all matches and then
4896 print_[m]symbol_info to print out some useful information about the
4900 symtab_symbol_info (bool quiet
, bool exclude_minsyms
,
4901 const char *regexp
, enum search_domain kind
,
4902 const char *t_regexp
, int from_tty
)
4904 static const char * const classnames
[] =
4905 {"variable", "function", "type", "module"};
4906 const char *last_filename
= "";
4909 gdb_assert (kind
!= ALL_DOMAIN
);
4911 if (regexp
!= nullptr && *regexp
== '\0')
4914 global_symbol_searcher
spec (kind
, regexp
);
4915 spec
.set_symbol_type_regexp (t_regexp
);
4916 spec
.set_exclude_minsyms (exclude_minsyms
);
4917 std::vector
<symbol_search
> symbols
= spec
.search ();
4923 if (t_regexp
!= NULL
)
4925 (_("All %ss matching regular expression \"%s\""
4926 " with type matching regular expression \"%s\":\n"),
4927 classnames
[kind
], regexp
, t_regexp
);
4929 printf_filtered (_("All %ss matching regular expression \"%s\":\n"),
4930 classnames
[kind
], regexp
);
4934 if (t_regexp
!= NULL
)
4936 (_("All defined %ss"
4937 " with type matching regular expression \"%s\" :\n"),
4938 classnames
[kind
], t_regexp
);
4940 printf_filtered (_("All defined %ss:\n"), classnames
[kind
]);
4944 for (const symbol_search
&p
: symbols
)
4948 if (p
.msymbol
.minsym
!= NULL
)
4953 printf_filtered (_("\nNon-debugging symbols:\n"));
4956 print_msymbol_info (p
.msymbol
);
4960 print_symbol_info (kind
,
4965 = symtab_to_filename_for_display (symbol_symtab (p
.symbol
));
4970 /* Structure to hold the values of the options used by the 'info variables'
4971 and 'info functions' commands. These correspond to the -q, -t, and -n
4974 struct info_print_options
4977 bool exclude_minsyms
= false;
4978 char *type_regexp
= nullptr;
4980 ~info_print_options ()
4982 xfree (type_regexp
);
4986 /* The options used by the 'info variables' and 'info functions'
4989 static const gdb::option::option_def info_print_options_defs
[] = {
4990 gdb::option::boolean_option_def
<info_print_options
> {
4992 [] (info_print_options
*opt
) { return &opt
->quiet
; },
4993 nullptr, /* show_cmd_cb */
4994 nullptr /* set_doc */
4997 gdb::option::boolean_option_def
<info_print_options
> {
4999 [] (info_print_options
*opt
) { return &opt
->exclude_minsyms
; },
5000 nullptr, /* show_cmd_cb */
5001 nullptr /* set_doc */
5004 gdb::option::string_option_def
<info_print_options
> {
5006 [] (info_print_options
*opt
) { return &opt
->type_regexp
; },
5007 nullptr, /* show_cmd_cb */
5008 nullptr /* set_doc */
5012 /* Returns the option group used by 'info variables' and 'info
5015 static gdb::option::option_def_group
5016 make_info_print_options_def_group (info_print_options
*opts
)
5018 return {{info_print_options_defs
}, opts
};
5021 /* Command completer for 'info variables' and 'info functions'. */
5024 info_print_command_completer (struct cmd_list_element
*ignore
,
5025 completion_tracker
&tracker
,
5026 const char *text
, const char * /* word */)
5029 = make_info_print_options_def_group (nullptr);
5030 if (gdb::option::complete_options
5031 (tracker
, &text
, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND
, group
))
5034 const char *word
= advance_to_expression_complete_word_point (tracker
, text
);
5035 symbol_completer (ignore
, tracker
, text
, word
);
5038 /* Implement the 'info variables' command. */
5041 info_variables_command (const char *args
, int from_tty
)
5043 info_print_options opts
;
5044 auto grp
= make_info_print_options_def_group (&opts
);
5045 gdb::option::process_options
5046 (&args
, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND
, grp
);
5047 if (args
!= nullptr && *args
== '\0')
5050 symtab_symbol_info (opts
.quiet
, opts
.exclude_minsyms
, args
, VARIABLES_DOMAIN
,
5051 opts
.type_regexp
, from_tty
);
5054 /* Implement the 'info functions' command. */
5057 info_functions_command (const char *args
, int from_tty
)
5059 info_print_options opts
;
5060 auto grp
= make_info_print_options_def_group (&opts
);
5061 gdb::option::process_options
5062 (&args
, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND
, grp
);
5063 if (args
!= nullptr && *args
== '\0')
5066 symtab_symbol_info (opts
.quiet
, opts
.exclude_minsyms
, args
,
5067 FUNCTIONS_DOMAIN
, opts
.type_regexp
, from_tty
);
5070 /* Holds the -q option for the 'info types' command. */
5072 struct info_types_options
5077 /* The options used by the 'info types' command. */
5079 static const gdb::option::option_def info_types_options_defs
[] = {
5080 gdb::option::boolean_option_def
<info_types_options
> {
5082 [] (info_types_options
*opt
) { return &opt
->quiet
; },
5083 nullptr, /* show_cmd_cb */
5084 nullptr /* set_doc */
5088 /* Returns the option group used by 'info types'. */
5090 static gdb::option::option_def_group
5091 make_info_types_options_def_group (info_types_options
*opts
)
5093 return {{info_types_options_defs
}, opts
};
5096 /* Implement the 'info types' command. */
5099 info_types_command (const char *args
, int from_tty
)
5101 info_types_options opts
;
5103 auto grp
= make_info_types_options_def_group (&opts
);
5104 gdb::option::process_options
5105 (&args
, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND
, grp
);
5106 if (args
!= nullptr && *args
== '\0')
5108 symtab_symbol_info (opts
.quiet
, false, args
, TYPES_DOMAIN
, NULL
, from_tty
);
5111 /* Command completer for 'info types' command. */
5114 info_types_command_completer (struct cmd_list_element
*ignore
,
5115 completion_tracker
&tracker
,
5116 const char *text
, const char * /* word */)
5119 = make_info_types_options_def_group (nullptr);
5120 if (gdb::option::complete_options
5121 (tracker
, &text
, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND
, group
))
5124 const char *word
= advance_to_expression_complete_word_point (tracker
, text
);
5125 symbol_completer (ignore
, tracker
, text
, word
);
5128 /* Implement the 'info modules' command. */
5131 info_modules_command (const char *args
, int from_tty
)
5133 info_types_options opts
;
5135 auto grp
= make_info_types_options_def_group (&opts
);
5136 gdb::option::process_options
5137 (&args
, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND
, grp
);
5138 if (args
!= nullptr && *args
== '\0')
5140 symtab_symbol_info (opts
.quiet
, true, args
, MODULES_DOMAIN
, NULL
,
5145 rbreak_command (const char *regexp
, int from_tty
)
5148 const char *file_name
= nullptr;
5150 if (regexp
!= nullptr)
5152 const char *colon
= strchr (regexp
, ':');
5154 if (colon
&& *(colon
+ 1) != ':')
5159 colon_index
= colon
- regexp
;
5160 local_name
= (char *) alloca (colon_index
+ 1);
5161 memcpy (local_name
, regexp
, colon_index
);
5162 local_name
[colon_index
--] = 0;
5163 while (isspace (local_name
[colon_index
]))
5164 local_name
[colon_index
--] = 0;
5165 file_name
= local_name
;
5166 regexp
= skip_spaces (colon
+ 1);
5170 global_symbol_searcher
spec (FUNCTIONS_DOMAIN
, regexp
);
5171 if (file_name
!= nullptr)
5172 spec
.filenames
.push_back (file_name
);
5173 std::vector
<symbol_search
> symbols
= spec
.search ();
5175 scoped_rbreak_breakpoints finalize
;
5176 for (const symbol_search
&p
: symbols
)
5178 if (p
.msymbol
.minsym
== NULL
)
5180 struct symtab
*symtab
= symbol_symtab (p
.symbol
);
5181 const char *fullname
= symtab_to_fullname (symtab
);
5183 string
= string_printf ("%s:'%s'", fullname
,
5184 p
.symbol
->linkage_name ());
5185 break_command (&string
[0], from_tty
);
5186 print_symbol_info (FUNCTIONS_DOMAIN
, p
.symbol
, p
.block
, NULL
);
5190 string
= string_printf ("'%s'",
5191 p
.msymbol
.minsym
->linkage_name ());
5193 break_command (&string
[0], from_tty
);
5194 printf_filtered ("<function, no debug info> %s;\n",
5195 p
.msymbol
.minsym
->print_name ());
5201 /* Evaluate if SYMNAME matches LOOKUP_NAME. */
5204 compare_symbol_name (const char *symbol_name
, language symbol_language
,
5205 const lookup_name_info
&lookup_name
,
5206 completion_match_result
&match_res
)
5208 const language_defn
*lang
= language_def (symbol_language
);
5210 symbol_name_matcher_ftype
*name_match
5211 = get_symbol_name_matcher (lang
, lookup_name
);
5213 return name_match (symbol_name
, lookup_name
, &match_res
);
5219 completion_list_add_name (completion_tracker
&tracker
,
5220 language symbol_language
,
5221 const char *symname
,
5222 const lookup_name_info
&lookup_name
,
5223 const char *text
, const char *word
)
5225 completion_match_result
&match_res
5226 = tracker
.reset_completion_match_result ();
5228 /* Clip symbols that cannot match. */
5229 if (!compare_symbol_name (symname
, symbol_language
, lookup_name
, match_res
))
5232 /* Refresh SYMNAME from the match string. It's potentially
5233 different depending on language. (E.g., on Ada, the match may be
5234 the encoded symbol name wrapped in "<>"). */
5235 symname
= match_res
.match
.match ();
5236 gdb_assert (symname
!= NULL
);
5238 /* We have a match for a completion, so add SYMNAME to the current list
5239 of matches. Note that the name is moved to freshly malloc'd space. */
5242 gdb::unique_xmalloc_ptr
<char> completion
5243 = make_completion_match_str (symname
, text
, word
);
5245 /* Here we pass the match-for-lcd object to add_completion. Some
5246 languages match the user text against substrings of symbol
5247 names in some cases. E.g., in C++, "b push_ba" completes to
5248 "std::vector::push_back", "std::string::push_back", etc., and
5249 in this case we want the completion lowest common denominator
5250 to be "push_back" instead of "std::". */
5251 tracker
.add_completion (std::move (completion
),
5252 &match_res
.match_for_lcd
, text
, word
);
5256 /* completion_list_add_name wrapper for struct symbol. */
5259 completion_list_add_symbol (completion_tracker
&tracker
,
5261 const lookup_name_info
&lookup_name
,
5262 const char *text
, const char *word
)
5264 completion_list_add_name (tracker
, sym
->language (),
5265 sym
->natural_name (),
5266 lookup_name
, text
, word
);
5269 /* completion_list_add_name wrapper for struct minimal_symbol. */
5272 completion_list_add_msymbol (completion_tracker
&tracker
,
5273 minimal_symbol
*sym
,
5274 const lookup_name_info
&lookup_name
,
5275 const char *text
, const char *word
)
5277 completion_list_add_name (tracker
, sym
->language (),
5278 sym
->natural_name (),
5279 lookup_name
, text
, word
);
5283 /* ObjC: In case we are completing on a selector, look as the msymbol
5284 again and feed all the selectors into the mill. */
5287 completion_list_objc_symbol (completion_tracker
&tracker
,
5288 struct minimal_symbol
*msymbol
,
5289 const lookup_name_info
&lookup_name
,
5290 const char *text
, const char *word
)
5292 static char *tmp
= NULL
;
5293 static unsigned int tmplen
= 0;
5295 const char *method
, *category
, *selector
;
5298 method
= msymbol
->natural_name ();
5300 /* Is it a method? */
5301 if ((method
[0] != '-') && (method
[0] != '+'))
5305 /* Complete on shortened method method. */
5306 completion_list_add_name (tracker
, language_objc
,
5311 while ((strlen (method
) + 1) >= tmplen
)
5317 tmp
= (char *) xrealloc (tmp
, tmplen
);
5319 selector
= strchr (method
, ' ');
5320 if (selector
!= NULL
)
5323 category
= strchr (method
, '(');
5325 if ((category
!= NULL
) && (selector
!= NULL
))
5327 memcpy (tmp
, method
, (category
- method
));
5328 tmp
[category
- method
] = ' ';
5329 memcpy (tmp
+ (category
- method
) + 1, selector
, strlen (selector
) + 1);
5330 completion_list_add_name (tracker
, language_objc
, tmp
,
5331 lookup_name
, text
, word
);
5333 completion_list_add_name (tracker
, language_objc
, tmp
+ 1,
5334 lookup_name
, text
, word
);
5337 if (selector
!= NULL
)
5339 /* Complete on selector only. */
5340 strcpy (tmp
, selector
);
5341 tmp2
= strchr (tmp
, ']');
5345 completion_list_add_name (tracker
, language_objc
, tmp
,
5346 lookup_name
, text
, word
);
5350 /* Break the non-quoted text based on the characters which are in
5351 symbols. FIXME: This should probably be language-specific. */
5354 language_search_unquoted_string (const char *text
, const char *p
)
5356 for (; p
> text
; --p
)
5358 if (isalnum (p
[-1]) || p
[-1] == '_' || p
[-1] == '\0')
5362 if ((current_language
->la_language
== language_objc
))
5364 if (p
[-1] == ':') /* Might be part of a method name. */
5366 else if (p
[-1] == '[' && (p
[-2] == '-' || p
[-2] == '+'))
5367 p
-= 2; /* Beginning of a method name. */
5368 else if (p
[-1] == ' ' || p
[-1] == '(' || p
[-1] == ')')
5369 { /* Might be part of a method name. */
5372 /* Seeing a ' ' or a '(' is not conclusive evidence
5373 that we are in the middle of a method name. However,
5374 finding "-[" or "+[" should be pretty un-ambiguous.
5375 Unfortunately we have to find it now to decide. */
5378 if (isalnum (t
[-1]) || t
[-1] == '_' ||
5379 t
[-1] == ' ' || t
[-1] == ':' ||
5380 t
[-1] == '(' || t
[-1] == ')')
5385 if (t
[-1] == '[' && (t
[-2] == '-' || t
[-2] == '+'))
5386 p
= t
- 2; /* Method name detected. */
5387 /* Else we leave with p unchanged. */
5397 completion_list_add_fields (completion_tracker
&tracker
,
5399 const lookup_name_info
&lookup_name
,
5400 const char *text
, const char *word
)
5402 if (SYMBOL_CLASS (sym
) == LOC_TYPEDEF
)
5404 struct type
*t
= SYMBOL_TYPE (sym
);
5405 enum type_code c
= TYPE_CODE (t
);
5408 if (c
== TYPE_CODE_UNION
|| c
== TYPE_CODE_STRUCT
)
5409 for (j
= TYPE_N_BASECLASSES (t
); j
< TYPE_NFIELDS (t
); j
++)
5410 if (TYPE_FIELD_NAME (t
, j
))
5411 completion_list_add_name (tracker
, sym
->language (),
5412 TYPE_FIELD_NAME (t
, j
),
5413 lookup_name
, text
, word
);
5420 symbol_is_function_or_method (symbol
*sym
)
5422 switch (TYPE_CODE (SYMBOL_TYPE (sym
)))
5424 case TYPE_CODE_FUNC
:
5425 case TYPE_CODE_METHOD
:
5435 symbol_is_function_or_method (minimal_symbol
*msymbol
)
5437 switch (MSYMBOL_TYPE (msymbol
))
5440 case mst_text_gnu_ifunc
:
5441 case mst_solib_trampoline
:
5451 bound_minimal_symbol
5452 find_gnu_ifunc (const symbol
*sym
)
5454 if (SYMBOL_CLASS (sym
) != LOC_BLOCK
)
5457 lookup_name_info
lookup_name (sym
->search_name (),
5458 symbol_name_match_type::SEARCH_NAME
);
5459 struct objfile
*objfile
= symbol_objfile (sym
);
5461 CORE_ADDR address
= BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym
));
5462 minimal_symbol
*ifunc
= NULL
;
5464 iterate_over_minimal_symbols (objfile
, lookup_name
,
5465 [&] (minimal_symbol
*minsym
)
5467 if (MSYMBOL_TYPE (minsym
) == mst_text_gnu_ifunc
5468 || MSYMBOL_TYPE (minsym
) == mst_data_gnu_ifunc
)
5470 CORE_ADDR msym_addr
= MSYMBOL_VALUE_ADDRESS (objfile
, minsym
);
5471 if (MSYMBOL_TYPE (minsym
) == mst_data_gnu_ifunc
)
5473 struct gdbarch
*gdbarch
= get_objfile_arch (objfile
);
5475 = gdbarch_convert_from_func_ptr_addr (gdbarch
,
5477 current_top_target ());
5479 if (msym_addr
== address
)
5489 return {ifunc
, objfile
};
5493 /* Add matching symbols from SYMTAB to the current completion list. */
5496 add_symtab_completions (struct compunit_symtab
*cust
,
5497 completion_tracker
&tracker
,
5498 complete_symbol_mode mode
,
5499 const lookup_name_info
&lookup_name
,
5500 const char *text
, const char *word
,
5501 enum type_code code
)
5504 const struct block
*b
;
5505 struct block_iterator iter
;
5511 for (i
= GLOBAL_BLOCK
; i
<= STATIC_BLOCK
; i
++)
5514 b
= BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust
), i
);
5515 ALL_BLOCK_SYMBOLS (b
, iter
, sym
)
5517 if (completion_skip_symbol (mode
, sym
))
5520 if (code
== TYPE_CODE_UNDEF
5521 || (SYMBOL_DOMAIN (sym
) == STRUCT_DOMAIN
5522 && TYPE_CODE (SYMBOL_TYPE (sym
)) == code
))
5523 completion_list_add_symbol (tracker
, sym
,
5531 default_collect_symbol_completion_matches_break_on
5532 (completion_tracker
&tracker
, complete_symbol_mode mode
,
5533 symbol_name_match_type name_match_type
,
5534 const char *text
, const char *word
,
5535 const char *break_on
, enum type_code code
)
5537 /* Problem: All of the symbols have to be copied because readline
5538 frees them. I'm not going to worry about this; hopefully there
5539 won't be that many. */
5542 const struct block
*b
;
5543 const struct block
*surrounding_static_block
, *surrounding_global_block
;
5544 struct block_iterator iter
;
5545 /* The symbol we are completing on. Points in same buffer as text. */
5546 const char *sym_text
;
5548 /* Now look for the symbol we are supposed to complete on. */
5549 if (mode
== complete_symbol_mode::LINESPEC
)
5555 const char *quote_pos
= NULL
;
5557 /* First see if this is a quoted string. */
5559 for (p
= text
; *p
!= '\0'; ++p
)
5561 if (quote_found
!= '\0')
5563 if (*p
== quote_found
)
5564 /* Found close quote. */
5566 else if (*p
== '\\' && p
[1] == quote_found
)
5567 /* A backslash followed by the quote character
5568 doesn't end the string. */
5571 else if (*p
== '\'' || *p
== '"')
5577 if (quote_found
== '\'')
5578 /* A string within single quotes can be a symbol, so complete on it. */
5579 sym_text
= quote_pos
+ 1;
5580 else if (quote_found
== '"')
5581 /* A double-quoted string is never a symbol, nor does it make sense
5582 to complete it any other way. */
5588 /* It is not a quoted string. Break it based on the characters
5589 which are in symbols. */
5592 if (isalnum (p
[-1]) || p
[-1] == '_' || p
[-1] == '\0'
5593 || p
[-1] == ':' || strchr (break_on
, p
[-1]) != NULL
)
5602 lookup_name_info
lookup_name (sym_text
, name_match_type
, true);
5604 /* At this point scan through the misc symbol vectors and add each
5605 symbol you find to the list. Eventually we want to ignore
5606 anything that isn't a text symbol (everything else will be
5607 handled by the psymtab code below). */
5609 if (code
== TYPE_CODE_UNDEF
)
5611 for (objfile
*objfile
: current_program_space
->objfiles ())
5613 for (minimal_symbol
*msymbol
: objfile
->msymbols ())
5617 if (completion_skip_symbol (mode
, msymbol
))
5620 completion_list_add_msymbol (tracker
, msymbol
, lookup_name
,
5623 completion_list_objc_symbol (tracker
, msymbol
, lookup_name
,
5629 /* Add completions for all currently loaded symbol tables. */
5630 for (objfile
*objfile
: current_program_space
->objfiles ())
5632 for (compunit_symtab
*cust
: objfile
->compunits ())
5633 add_symtab_completions (cust
, tracker
, mode
, lookup_name
,
5634 sym_text
, word
, code
);
5637 /* Look through the partial symtabs for all symbols which begin by
5638 matching SYM_TEXT. Expand all CUs that you find to the list. */
5639 expand_symtabs_matching (NULL
,
5642 [&] (compunit_symtab
*symtab
) /* expansion notify */
5644 add_symtab_completions (symtab
,
5645 tracker
, mode
, lookup_name
,
5646 sym_text
, word
, code
);
5650 /* Search upwards from currently selected frame (so that we can
5651 complete on local vars). Also catch fields of types defined in
5652 this places which match our text string. Only complete on types
5653 visible from current context. */
5655 b
= get_selected_block (0);
5656 surrounding_static_block
= block_static_block (b
);
5657 surrounding_global_block
= block_global_block (b
);
5658 if (surrounding_static_block
!= NULL
)
5659 while (b
!= surrounding_static_block
)
5663 ALL_BLOCK_SYMBOLS (b
, iter
, sym
)
5665 if (code
== TYPE_CODE_UNDEF
)
5667 completion_list_add_symbol (tracker
, sym
, lookup_name
,
5669 completion_list_add_fields (tracker
, sym
, lookup_name
,
5672 else if (SYMBOL_DOMAIN (sym
) == STRUCT_DOMAIN
5673 && TYPE_CODE (SYMBOL_TYPE (sym
)) == code
)
5674 completion_list_add_symbol (tracker
, sym
, lookup_name
,
5678 /* Stop when we encounter an enclosing function. Do not stop for
5679 non-inlined functions - the locals of the enclosing function
5680 are in scope for a nested function. */
5681 if (BLOCK_FUNCTION (b
) != NULL
&& block_inlined_p (b
))
5683 b
= BLOCK_SUPERBLOCK (b
);
5686 /* Add fields from the file's types; symbols will be added below. */
5688 if (code
== TYPE_CODE_UNDEF
)
5690 if (surrounding_static_block
!= NULL
)
5691 ALL_BLOCK_SYMBOLS (surrounding_static_block
, iter
, sym
)
5692 completion_list_add_fields (tracker
, sym
, lookup_name
,
5695 if (surrounding_global_block
!= NULL
)
5696 ALL_BLOCK_SYMBOLS (surrounding_global_block
, iter
, sym
)
5697 completion_list_add_fields (tracker
, sym
, lookup_name
,
5701 /* Skip macros if we are completing a struct tag -- arguable but
5702 usually what is expected. */
5703 if (current_language
->la_macro_expansion
== macro_expansion_c
5704 && code
== TYPE_CODE_UNDEF
)
5706 gdb::unique_xmalloc_ptr
<struct macro_scope
> scope
;
5708 /* This adds a macro's name to the current completion list. */
5709 auto add_macro_name
= [&] (const char *macro_name
,
5710 const macro_definition
*,
5711 macro_source_file
*,
5714 completion_list_add_name (tracker
, language_c
, macro_name
,
5715 lookup_name
, sym_text
, word
);
5718 /* Add any macros visible in the default scope. Note that this
5719 may yield the occasional wrong result, because an expression
5720 might be evaluated in a scope other than the default. For
5721 example, if the user types "break file:line if <TAB>", the
5722 resulting expression will be evaluated at "file:line" -- but
5723 at there does not seem to be a way to detect this at
5725 scope
= default_macro_scope ();
5727 macro_for_each_in_scope (scope
->file
, scope
->line
,
5730 /* User-defined macros are always visible. */
5731 macro_for_each (macro_user_macros
, add_macro_name
);
5736 default_collect_symbol_completion_matches (completion_tracker
&tracker
,
5737 complete_symbol_mode mode
,
5738 symbol_name_match_type name_match_type
,
5739 const char *text
, const char *word
,
5740 enum type_code code
)
5742 return default_collect_symbol_completion_matches_break_on (tracker
, mode
,
5748 /* Collect all symbols (regardless of class) which begin by matching
5752 collect_symbol_completion_matches (completion_tracker
&tracker
,
5753 complete_symbol_mode mode
,
5754 symbol_name_match_type name_match_type
,
5755 const char *text
, const char *word
)
5757 current_language
->la_collect_symbol_completion_matches (tracker
, mode
,
5763 /* Like collect_symbol_completion_matches, but only collect
5764 STRUCT_DOMAIN symbols whose type code is CODE. */
5767 collect_symbol_completion_matches_type (completion_tracker
&tracker
,
5768 const char *text
, const char *word
,
5769 enum type_code code
)
5771 complete_symbol_mode mode
= complete_symbol_mode::EXPRESSION
;
5772 symbol_name_match_type name_match_type
= symbol_name_match_type::EXPRESSION
;
5774 gdb_assert (code
== TYPE_CODE_UNION
5775 || code
== TYPE_CODE_STRUCT
5776 || code
== TYPE_CODE_ENUM
);
5777 current_language
->la_collect_symbol_completion_matches (tracker
, mode
,
5782 /* Like collect_symbol_completion_matches, but collects a list of
5783 symbols defined in all source files named SRCFILE. */
5786 collect_file_symbol_completion_matches (completion_tracker
&tracker
,
5787 complete_symbol_mode mode
,
5788 symbol_name_match_type name_match_type
,
5789 const char *text
, const char *word
,
5790 const char *srcfile
)
5792 /* The symbol we are completing on. Points in same buffer as text. */
5793 const char *sym_text
;
5795 /* Now look for the symbol we are supposed to complete on.
5796 FIXME: This should be language-specific. */
5797 if (mode
== complete_symbol_mode::LINESPEC
)
5803 const char *quote_pos
= NULL
;
5805 /* First see if this is a quoted string. */
5807 for (p
= text
; *p
!= '\0'; ++p
)
5809 if (quote_found
!= '\0')
5811 if (*p
== quote_found
)
5812 /* Found close quote. */
5814 else if (*p
== '\\' && p
[1] == quote_found
)
5815 /* A backslash followed by the quote character
5816 doesn't end the string. */
5819 else if (*p
== '\'' || *p
== '"')
5825 if (quote_found
== '\'')
5826 /* A string within single quotes can be a symbol, so complete on it. */
5827 sym_text
= quote_pos
+ 1;
5828 else if (quote_found
== '"')
5829 /* A double-quoted string is never a symbol, nor does it make sense
5830 to complete it any other way. */
5836 /* Not a quoted string. */
5837 sym_text
= language_search_unquoted_string (text
, p
);
5841 lookup_name_info
lookup_name (sym_text
, name_match_type
, true);
5843 /* Go through symtabs for SRCFILE and check the externs and statics
5844 for symbols which match. */
5845 iterate_over_symtabs (srcfile
, [&] (symtab
*s
)
5847 add_symtab_completions (SYMTAB_COMPUNIT (s
),
5848 tracker
, mode
, lookup_name
,
5849 sym_text
, word
, TYPE_CODE_UNDEF
);
5854 /* A helper function for make_source_files_completion_list. It adds
5855 another file name to a list of possible completions, growing the
5856 list as necessary. */
5859 add_filename_to_list (const char *fname
, const char *text
, const char *word
,
5860 completion_list
*list
)
5862 list
->emplace_back (make_completion_match_str (fname
, text
, word
));
5866 not_interesting_fname (const char *fname
)
5868 static const char *illegal_aliens
[] = {
5869 "_globals_", /* inserted by coff_symtab_read */
5874 for (i
= 0; illegal_aliens
[i
]; i
++)
5876 if (filename_cmp (fname
, illegal_aliens
[i
]) == 0)
5882 /* An object of this type is passed as the user_data argument to
5883 map_partial_symbol_filenames. */
5884 struct add_partial_filename_data
5886 struct filename_seen_cache
*filename_seen_cache
;
5890 completion_list
*list
;
5893 /* A callback for map_partial_symbol_filenames. */
5896 maybe_add_partial_symtab_filename (const char *filename
, const char *fullname
,
5899 struct add_partial_filename_data
*data
5900 = (struct add_partial_filename_data
*) user_data
;
5902 if (not_interesting_fname (filename
))
5904 if (!data
->filename_seen_cache
->seen (filename
)
5905 && filename_ncmp (filename
, data
->text
, data
->text_len
) == 0)
5907 /* This file matches for a completion; add it to the
5908 current list of matches. */
5909 add_filename_to_list (filename
, data
->text
, data
->word
, data
->list
);
5913 const char *base_name
= lbasename (filename
);
5915 if (base_name
!= filename
5916 && !data
->filename_seen_cache
->seen (base_name
)
5917 && filename_ncmp (base_name
, data
->text
, data
->text_len
) == 0)
5918 add_filename_to_list (base_name
, data
->text
, data
->word
, data
->list
);
5922 /* Return a list of all source files whose names begin with matching
5923 TEXT. The file names are looked up in the symbol tables of this
5927 make_source_files_completion_list (const char *text
, const char *word
)
5929 size_t text_len
= strlen (text
);
5930 completion_list list
;
5931 const char *base_name
;
5932 struct add_partial_filename_data datum
;
5934 if (!have_full_symbols () && !have_partial_symbols ())
5937 filename_seen_cache filenames_seen
;
5939 for (objfile
*objfile
: current_program_space
->objfiles ())
5941 for (compunit_symtab
*cu
: objfile
->compunits ())
5943 for (symtab
*s
: compunit_filetabs (cu
))
5945 if (not_interesting_fname (s
->filename
))
5947 if (!filenames_seen
.seen (s
->filename
)
5948 && filename_ncmp (s
->filename
, text
, text_len
) == 0)
5950 /* This file matches for a completion; add it to the current
5952 add_filename_to_list (s
->filename
, text
, word
, &list
);
5956 /* NOTE: We allow the user to type a base name when the
5957 debug info records leading directories, but not the other
5958 way around. This is what subroutines of breakpoint
5959 command do when they parse file names. */
5960 base_name
= lbasename (s
->filename
);
5961 if (base_name
!= s
->filename
5962 && !filenames_seen
.seen (base_name
)
5963 && filename_ncmp (base_name
, text
, text_len
) == 0)
5964 add_filename_to_list (base_name
, text
, word
, &list
);
5970 datum
.filename_seen_cache
= &filenames_seen
;
5973 datum
.text_len
= text_len
;
5975 map_symbol_filenames (maybe_add_partial_symtab_filename
, &datum
,
5976 0 /*need_fullname*/);
5983 /* Return the "main_info" object for the current program space. If
5984 the object has not yet been created, create it and fill in some
5987 static struct main_info
*
5988 get_main_info (void)
5990 struct main_info
*info
= main_progspace_key
.get (current_program_space
);
5994 /* It may seem strange to store the main name in the progspace
5995 and also in whatever objfile happens to see a main name in
5996 its debug info. The reason for this is mainly historical:
5997 gdb returned "main" as the name even if no function named
5998 "main" was defined the program; and this approach lets us
5999 keep compatibility. */
6000 info
= main_progspace_key
.emplace (current_program_space
);
6007 set_main_name (const char *name
, enum language lang
)
6009 struct main_info
*info
= get_main_info ();
6011 if (info
->name_of_main
!= NULL
)
6013 xfree (info
->name_of_main
);
6014 info
->name_of_main
= NULL
;
6015 info
->language_of_main
= language_unknown
;
6019 info
->name_of_main
= xstrdup (name
);
6020 info
->language_of_main
= lang
;
6024 /* Deduce the name of the main procedure, and set NAME_OF_MAIN
6028 find_main_name (void)
6030 const char *new_main_name
;
6032 /* First check the objfiles to see whether a debuginfo reader has
6033 picked up the appropriate main name. Historically the main name
6034 was found in a more or less random way; this approach instead
6035 relies on the order of objfile creation -- which still isn't
6036 guaranteed to get the correct answer, but is just probably more
6038 for (objfile
*objfile
: current_program_space
->objfiles ())
6040 if (objfile
->per_bfd
->name_of_main
!= NULL
)
6042 set_main_name (objfile
->per_bfd
->name_of_main
,
6043 objfile
->per_bfd
->language_of_main
);
6048 /* Try to see if the main procedure is in Ada. */
6049 /* FIXME: brobecker/2005-03-07: Another way of doing this would
6050 be to add a new method in the language vector, and call this
6051 method for each language until one of them returns a non-empty
6052 name. This would allow us to remove this hard-coded call to
6053 an Ada function. It is not clear that this is a better approach
6054 at this point, because all methods need to be written in a way
6055 such that false positives never be returned. For instance, it is
6056 important that a method does not return a wrong name for the main
6057 procedure if the main procedure is actually written in a different
6058 language. It is easy to guaranty this with Ada, since we use a
6059 special symbol generated only when the main in Ada to find the name
6060 of the main procedure. It is difficult however to see how this can
6061 be guarantied for languages such as C, for instance. This suggests
6062 that order of call for these methods becomes important, which means
6063 a more complicated approach. */
6064 new_main_name
= ada_main_name ();
6065 if (new_main_name
!= NULL
)
6067 set_main_name (new_main_name
, language_ada
);
6071 new_main_name
= d_main_name ();
6072 if (new_main_name
!= NULL
)
6074 set_main_name (new_main_name
, language_d
);
6078 new_main_name
= go_main_name ();
6079 if (new_main_name
!= NULL
)
6081 set_main_name (new_main_name
, language_go
);
6085 new_main_name
= pascal_main_name ();
6086 if (new_main_name
!= NULL
)
6088 set_main_name (new_main_name
, language_pascal
);
6092 /* The languages above didn't identify the name of the main procedure.
6093 Fallback to "main". */
6094 set_main_name ("main", language_unknown
);
6102 struct main_info
*info
= get_main_info ();
6104 if (info
->name_of_main
== NULL
)
6107 return info
->name_of_main
;
6110 /* Return the language of the main function. If it is not known,
6111 return language_unknown. */
6114 main_language (void)
6116 struct main_info
*info
= get_main_info ();
6118 if (info
->name_of_main
== NULL
)
6121 return info
->language_of_main
;
6124 /* Handle ``executable_changed'' events for the symtab module. */
6127 symtab_observer_executable_changed (void)
6129 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
6130 set_main_name (NULL
, language_unknown
);
6133 /* Return 1 if the supplied producer string matches the ARM RealView
6134 compiler (armcc). */
6137 producer_is_realview (const char *producer
)
6139 static const char *const arm_idents
[] = {
6140 "ARM C Compiler, ADS",
6141 "Thumb C Compiler, ADS",
6142 "ARM C++ Compiler, ADS",
6143 "Thumb C++ Compiler, ADS",
6144 "ARM/Thumb C/C++ Compiler, RVCT",
6145 "ARM C/C++ Compiler, RVCT"
6149 if (producer
== NULL
)
6152 for (i
= 0; i
< ARRAY_SIZE (arm_idents
); i
++)
6153 if (startswith (producer
, arm_idents
[i
]))
6161 /* The next index to hand out in response to a registration request. */
6163 static int next_aclass_value
= LOC_FINAL_VALUE
;
6165 /* The maximum number of "aclass" registrations we support. This is
6166 constant for convenience. */
6167 #define MAX_SYMBOL_IMPLS (LOC_FINAL_VALUE + 10)
6169 /* The objects representing the various "aclass" values. The elements
6170 from 0 up to LOC_FINAL_VALUE-1 represent themselves, and subsequent
6171 elements are those registered at gdb initialization time. */
6173 static struct symbol_impl symbol_impl
[MAX_SYMBOL_IMPLS
];
6175 /* The globally visible pointer. This is separate from 'symbol_impl'
6176 so that it can be const. */
6178 const struct symbol_impl
*symbol_impls
= &symbol_impl
[0];
6180 /* Make sure we saved enough room in struct symbol. */
6182 gdb_static_assert (MAX_SYMBOL_IMPLS
<= (1 << SYMBOL_ACLASS_BITS
));
6184 /* Register a computed symbol type. ACLASS must be LOC_COMPUTED. OPS
6185 is the ops vector associated with this index. This returns the new
6186 index, which should be used as the aclass_index field for symbols
6190 register_symbol_computed_impl (enum address_class aclass
,
6191 const struct symbol_computed_ops
*ops
)
6193 int result
= next_aclass_value
++;
6195 gdb_assert (aclass
== LOC_COMPUTED
);
6196 gdb_assert (result
< MAX_SYMBOL_IMPLS
);
6197 symbol_impl
[result
].aclass
= aclass
;
6198 symbol_impl
[result
].ops_computed
= ops
;
6200 /* Sanity check OPS. */
6201 gdb_assert (ops
!= NULL
);
6202 gdb_assert (ops
->tracepoint_var_ref
!= NULL
);
6203 gdb_assert (ops
->describe_location
!= NULL
);
6204 gdb_assert (ops
->get_symbol_read_needs
!= NULL
);
6205 gdb_assert (ops
->read_variable
!= NULL
);
6210 /* Register a function with frame base type. ACLASS must be LOC_BLOCK.
6211 OPS is the ops vector associated with this index. This returns the
6212 new index, which should be used as the aclass_index field for symbols
6216 register_symbol_block_impl (enum address_class aclass
,
6217 const struct symbol_block_ops
*ops
)
6219 int result
= next_aclass_value
++;
6221 gdb_assert (aclass
== LOC_BLOCK
);
6222 gdb_assert (result
< MAX_SYMBOL_IMPLS
);
6223 symbol_impl
[result
].aclass
= aclass
;
6224 symbol_impl
[result
].ops_block
= ops
;
6226 /* Sanity check OPS. */
6227 gdb_assert (ops
!= NULL
);
6228 gdb_assert (ops
->find_frame_base_location
!= NULL
);
6233 /* Register a register symbol type. ACLASS must be LOC_REGISTER or
6234 LOC_REGPARM_ADDR. OPS is the register ops vector associated with
6235 this index. This returns the new index, which should be used as
6236 the aclass_index field for symbols of this type. */
6239 register_symbol_register_impl (enum address_class aclass
,
6240 const struct symbol_register_ops
*ops
)
6242 int result
= next_aclass_value
++;
6244 gdb_assert (aclass
== LOC_REGISTER
|| aclass
== LOC_REGPARM_ADDR
);
6245 gdb_assert (result
< MAX_SYMBOL_IMPLS
);
6246 symbol_impl
[result
].aclass
= aclass
;
6247 symbol_impl
[result
].ops_register
= ops
;
6252 /* Initialize elements of 'symbol_impl' for the constants in enum
6256 initialize_ordinary_address_classes (void)
6260 for (i
= 0; i
< LOC_FINAL_VALUE
; ++i
)
6261 symbol_impl
[i
].aclass
= (enum address_class
) i
;
6266 /* Initialize the symbol SYM, and mark it as being owned by an objfile. */
6269 initialize_objfile_symbol (struct symbol
*sym
)
6271 SYMBOL_OBJFILE_OWNED (sym
) = 1;
6272 SYMBOL_SECTION (sym
) = -1;
6275 /* Allocate and initialize a new 'struct symbol' on OBJFILE's
6279 allocate_symbol (struct objfile
*objfile
)
6281 struct symbol
*result
= new (&objfile
->objfile_obstack
) symbol ();
6283 initialize_objfile_symbol (result
);
6288 /* Allocate and initialize a new 'struct template_symbol' on OBJFILE's
6291 struct template_symbol
*
6292 allocate_template_symbol (struct objfile
*objfile
)
6294 struct template_symbol
*result
;
6296 result
= new (&objfile
->objfile_obstack
) template_symbol ();
6297 initialize_objfile_symbol (result
);
6305 symbol_objfile (const struct symbol
*symbol
)
6307 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol
));
6308 return SYMTAB_OBJFILE (symbol
->owner
.symtab
);
6314 symbol_arch (const struct symbol
*symbol
)
6316 if (!SYMBOL_OBJFILE_OWNED (symbol
))
6317 return symbol
->owner
.arch
;
6318 return get_objfile_arch (SYMTAB_OBJFILE (symbol
->owner
.symtab
));
6324 symbol_symtab (const struct symbol
*symbol
)
6326 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol
));
6327 return symbol
->owner
.symtab
;
6333 symbol_set_symtab (struct symbol
*symbol
, struct symtab
*symtab
)
6335 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol
));
6336 symbol
->owner
.symtab
= symtab
;
6342 get_symbol_address (const struct symbol
*sym
)
6344 gdb_assert (sym
->maybe_copied
);
6345 gdb_assert (SYMBOL_CLASS (sym
) == LOC_STATIC
);
6347 const char *linkage_name
= sym
->linkage_name ();
6349 for (objfile
*objfile
: current_program_space
->objfiles ())
6351 bound_minimal_symbol minsym
6352 = lookup_minimal_symbol_linkage (linkage_name
, objfile
);
6353 if (minsym
.minsym
!= nullptr)
6354 return BMSYMBOL_VALUE_ADDRESS (minsym
);
6356 return sym
->value
.address
;
6362 get_msymbol_address (struct objfile
*objf
, const struct minimal_symbol
*minsym
)
6364 gdb_assert (minsym
->maybe_copied
);
6365 gdb_assert ((objf
->flags
& OBJF_MAINLINE
) == 0);
6367 const char *linkage_name
= minsym
->linkage_name ();
6369 for (objfile
*objfile
: current_program_space
->objfiles ())
6371 if ((objfile
->flags
& OBJF_MAINLINE
) != 0)
6373 bound_minimal_symbol found
6374 = lookup_minimal_symbol_linkage (linkage_name
, objfile
);
6375 if (found
.minsym
!= nullptr)
6376 return BMSYMBOL_VALUE_ADDRESS (found
);
6379 return minsym
->value
.address
+ objf
->section_offsets
[minsym
->section
];
6384 /* Hold the sub-commands of 'info module'. */
6386 static struct cmd_list_element
*info_module_cmdlist
= NULL
;
6388 /* Implement the 'info module' command, just displays some help text for
6389 the available sub-commands. */
6392 info_module_command (const char *args
, int from_tty
)
6394 help_list (info_module_cmdlist
, "info module ", class_info
, gdb_stdout
);
6399 std::vector
<module_symbol_search
>
6400 search_module_symbols (const char *module_regexp
, const char *regexp
,
6401 const char *type_regexp
, search_domain kind
)
6403 std::vector
<module_symbol_search
> results
;
6405 /* Search for all modules matching MODULE_REGEXP. */
6406 global_symbol_searcher
spec1 (MODULES_DOMAIN
, module_regexp
);
6407 spec1
.set_exclude_minsyms (true);
6408 std::vector
<symbol_search
> modules
= spec1
.search ();
6410 /* Now search for all symbols of the required KIND matching the required
6411 regular expressions. We figure out which ones are in which modules
6413 global_symbol_searcher
spec2 (kind
, regexp
);
6414 spec2
.set_symbol_type_regexp (type_regexp
);
6415 spec2
.set_exclude_minsyms (true);
6416 std::vector
<symbol_search
> symbols
= spec2
.search ();
6418 /* Now iterate over all MODULES, checking to see which items from
6419 SYMBOLS are in each module. */
6420 for (const symbol_search
&p
: modules
)
6424 /* This is a module. */
6425 gdb_assert (p
.symbol
!= nullptr);
6427 std::string prefix
= p
.symbol
->print_name ();
6430 for (const symbol_search
&q
: symbols
)
6432 if (q
.symbol
== nullptr)
6435 if (strncmp (q
.symbol
->print_name (), prefix
.c_str (),
6436 prefix
.size ()) != 0)
6439 results
.push_back ({p
, q
});
6446 /* Implement the core of both 'info module functions' and 'info module
6450 info_module_subcommand (bool quiet
, const char *module_regexp
,
6451 const char *regexp
, const char *type_regexp
,
6454 /* Print a header line. Don't build the header line bit by bit as this
6455 prevents internationalisation. */
6458 if (module_regexp
== nullptr)
6460 if (type_regexp
== nullptr)
6462 if (regexp
== nullptr)
6463 printf_filtered ((kind
== VARIABLES_DOMAIN
6464 ? _("All variables in all modules:")
6465 : _("All functions in all modules:")));
6468 ((kind
== VARIABLES_DOMAIN
6469 ? _("All variables matching regular expression"
6470 " \"%s\" in all modules:")
6471 : _("All functions matching regular expression"
6472 " \"%s\" in all modules:")),
6477 if (regexp
== nullptr)
6479 ((kind
== VARIABLES_DOMAIN
6480 ? _("All variables with type matching regular "
6481 "expression \"%s\" in all modules:")
6482 : _("All functions with type matching regular "
6483 "expression \"%s\" in all modules:")),
6487 ((kind
== VARIABLES_DOMAIN
6488 ? _("All variables matching regular expression "
6489 "\"%s\",\n\twith type matching regular "
6490 "expression \"%s\" in all modules:")
6491 : _("All functions matching regular expression "
6492 "\"%s\",\n\twith type matching regular "
6493 "expression \"%s\" in all modules:")),
6494 regexp
, type_regexp
);
6499 if (type_regexp
== nullptr)
6501 if (regexp
== nullptr)
6503 ((kind
== VARIABLES_DOMAIN
6504 ? _("All variables in all modules matching regular "
6505 "expression \"%s\":")
6506 : _("All functions in all modules matching regular "
6507 "expression \"%s\":")),
6511 ((kind
== VARIABLES_DOMAIN
6512 ? _("All variables matching regular expression "
6513 "\"%s\",\n\tin all modules matching regular "
6514 "expression \"%s\":")
6515 : _("All functions matching regular expression "
6516 "\"%s\",\n\tin all modules matching regular "
6517 "expression \"%s\":")),
6518 regexp
, module_regexp
);
6522 if (regexp
== nullptr)
6524 ((kind
== VARIABLES_DOMAIN
6525 ? _("All variables with type matching regular "
6526 "expression \"%s\"\n\tin all modules matching "
6527 "regular expression \"%s\":")
6528 : _("All functions with type matching regular "
6529 "expression \"%s\"\n\tin all modules matching "
6530 "regular expression \"%s\":")),
6531 type_regexp
, module_regexp
);
6534 ((kind
== VARIABLES_DOMAIN
6535 ? _("All variables matching regular expression "
6536 "\"%s\",\n\twith type matching regular expression "
6537 "\"%s\",\n\tin all modules matching regular "
6538 "expression \"%s\":")
6539 : _("All functions matching regular expression "
6540 "\"%s\",\n\twith type matching regular expression "
6541 "\"%s\",\n\tin all modules matching regular "
6542 "expression \"%s\":")),
6543 regexp
, type_regexp
, module_regexp
);
6546 printf_filtered ("\n");
6549 /* Find all symbols of type KIND matching the given regular expressions
6550 along with the symbols for the modules in which those symbols
6552 std::vector
<module_symbol_search
> module_symbols
6553 = search_module_symbols (module_regexp
, regexp
, type_regexp
, kind
);
6555 std::sort (module_symbols
.begin (), module_symbols
.end (),
6556 [] (const module_symbol_search
&a
, const module_symbol_search
&b
)
6558 if (a
.first
< b
.first
)
6560 else if (a
.first
== b
.first
)
6561 return a
.second
< b
.second
;
6566 const char *last_filename
= "";
6567 const symbol
*last_module_symbol
= nullptr;
6568 for (const module_symbol_search
&ms
: module_symbols
)
6570 const symbol_search
&p
= ms
.first
;
6571 const symbol_search
&q
= ms
.second
;
6573 gdb_assert (q
.symbol
!= nullptr);
6575 if (last_module_symbol
!= p
.symbol
)
6577 printf_filtered ("\n");
6578 printf_filtered (_("Module \"%s\":\n"), p
.symbol
->print_name ());
6579 last_module_symbol
= p
.symbol
;
6583 print_symbol_info (FUNCTIONS_DOMAIN
, q
.symbol
, q
.block
,
6586 = symtab_to_filename_for_display (symbol_symtab (q
.symbol
));
6590 /* Hold the option values for the 'info module .....' sub-commands. */
6592 struct info_modules_var_func_options
6595 char *type_regexp
= nullptr;
6596 char *module_regexp
= nullptr;
6598 ~info_modules_var_func_options ()
6600 xfree (type_regexp
);
6601 xfree (module_regexp
);
6605 /* The options used by 'info module variables' and 'info module functions'
6608 static const gdb::option::option_def info_modules_var_func_options_defs
[] = {
6609 gdb::option::boolean_option_def
<info_modules_var_func_options
> {
6611 [] (info_modules_var_func_options
*opt
) { return &opt
->quiet
; },
6612 nullptr, /* show_cmd_cb */
6613 nullptr /* set_doc */
6616 gdb::option::string_option_def
<info_modules_var_func_options
> {
6618 [] (info_modules_var_func_options
*opt
) { return &opt
->type_regexp
; },
6619 nullptr, /* show_cmd_cb */
6620 nullptr /* set_doc */
6623 gdb::option::string_option_def
<info_modules_var_func_options
> {
6625 [] (info_modules_var_func_options
*opt
) { return &opt
->module_regexp
; },
6626 nullptr, /* show_cmd_cb */
6627 nullptr /* set_doc */
6631 /* Return the option group used by the 'info module ...' sub-commands. */
6633 static inline gdb::option::option_def_group
6634 make_info_modules_var_func_options_def_group
6635 (info_modules_var_func_options
*opts
)
6637 return {{info_modules_var_func_options_defs
}, opts
};
6640 /* Implements the 'info module functions' command. */
6643 info_module_functions_command (const char *args
, int from_tty
)
6645 info_modules_var_func_options opts
;
6646 auto grp
= make_info_modules_var_func_options_def_group (&opts
);
6647 gdb::option::process_options
6648 (&args
, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND
, grp
);
6649 if (args
!= nullptr && *args
== '\0')
6652 info_module_subcommand (opts
.quiet
, opts
.module_regexp
, args
,
6653 opts
.type_regexp
, FUNCTIONS_DOMAIN
);
6656 /* Implements the 'info module variables' command. */
6659 info_module_variables_command (const char *args
, int from_tty
)
6661 info_modules_var_func_options opts
;
6662 auto grp
= make_info_modules_var_func_options_def_group (&opts
);
6663 gdb::option::process_options
6664 (&args
, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND
, grp
);
6665 if (args
!= nullptr && *args
== '\0')
6668 info_module_subcommand (opts
.quiet
, opts
.module_regexp
, args
,
6669 opts
.type_regexp
, VARIABLES_DOMAIN
);
6672 /* Command completer for 'info module ...' sub-commands. */
6675 info_module_var_func_command_completer (struct cmd_list_element
*ignore
,
6676 completion_tracker
&tracker
,
6678 const char * /* word */)
6681 const auto group
= make_info_modules_var_func_options_def_group (nullptr);
6682 if (gdb::option::complete_options
6683 (tracker
, &text
, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND
, group
))
6686 const char *word
= advance_to_expression_complete_word_point (tracker
, text
);
6687 symbol_completer (ignore
, tracker
, text
, word
);
6693 _initialize_symtab (void)
6695 cmd_list_element
*c
;
6697 initialize_ordinary_address_classes ();
6699 c
= add_info ("variables", info_variables_command
,
6700 info_print_args_help (_("\
6701 All global and static variable names or those matching REGEXPs.\n\
6702 Usage: info variables [-q] [-n] [-t TYPEREGEXP] [NAMEREGEXP]\n\
6703 Prints the global and static variables.\n"),
6704 _("global and static variables"),
6706 set_cmd_completer_handle_brkchars (c
, info_print_command_completer
);
6709 c
= add_com ("whereis", class_info
, info_variables_command
,
6710 info_print_args_help (_("\
6711 All global and static variable names, or those matching REGEXPs.\n\
6712 Usage: whereis [-q] [-n] [-t TYPEREGEXP] [NAMEREGEXP]\n\
6713 Prints the global and static variables.\n"),
6714 _("global and static variables"),
6716 set_cmd_completer_handle_brkchars (c
, info_print_command_completer
);
6719 c
= add_info ("functions", info_functions_command
,
6720 info_print_args_help (_("\
6721 All function names or those matching REGEXPs.\n\
6722 Usage: info functions [-q] [-n] [-t TYPEREGEXP] [NAMEREGEXP]\n\
6723 Prints the functions.\n"),
6726 set_cmd_completer_handle_brkchars (c
, info_print_command_completer
);
6728 c
= add_info ("types", info_types_command
, _("\
6729 All type names, or those matching REGEXP.\n\
6730 Usage: info types [-q] [REGEXP]\n\
6731 Print information about all types matching REGEXP, or all types if no\n\
6732 REGEXP is given. The optional flag -q disables printing of headers."));
6733 set_cmd_completer_handle_brkchars (c
, info_types_command_completer
);
6735 const auto info_sources_opts
= make_info_sources_options_def_group (nullptr);
6737 static std::string info_sources_help
6738 = gdb::option::build_help (_("\
6739 All source files in the program or those matching REGEXP.\n\
6740 Usage: info sources [OPTION]... [REGEXP]\n\
6741 By default, REGEXP is used to match anywhere in the filename.\n\
6747 c
= add_info ("sources", info_sources_command
, info_sources_help
.c_str ());
6748 set_cmd_completer_handle_brkchars (c
, info_sources_command_completer
);
6750 c
= add_info ("modules", info_modules_command
,
6751 _("All module names, or those matching REGEXP."));
6752 set_cmd_completer_handle_brkchars (c
, info_types_command_completer
);
6754 add_prefix_cmd ("module", class_info
, info_module_command
, _("\
6755 Print information about modules."),
6756 &info_module_cmdlist
, "info module ",
6759 c
= add_cmd ("functions", class_info
, info_module_functions_command
, _("\
6760 Display functions arranged by modules.\n\
6761 Usage: info module functions [-q] [-m MODREGEXP] [-t TYPEREGEXP] [REGEXP]\n\
6762 Print a summary of all functions within each Fortran module, grouped by\n\
6763 module and file. For each function the line on which the function is\n\
6764 defined is given along with the type signature and name of the function.\n\
6766 If REGEXP is provided then only functions whose name matches REGEXP are\n\
6767 listed. If MODREGEXP is provided then only functions in modules matching\n\
6768 MODREGEXP are listed. If TYPEREGEXP is given then only functions whose\n\
6769 type signature matches TYPEREGEXP are listed.\n\
6771 The -q flag suppresses printing some header information."),
6772 &info_module_cmdlist
);
6773 set_cmd_completer_handle_brkchars
6774 (c
, info_module_var_func_command_completer
);
6776 c
= add_cmd ("variables", class_info
, info_module_variables_command
, _("\
6777 Display variables arranged by modules.\n\
6778 Usage: info module variables [-q] [-m MODREGEXP] [-t TYPEREGEXP] [REGEXP]\n\
6779 Print a summary of all variables within each Fortran module, grouped by\n\
6780 module and file. For each variable the line on which the variable is\n\
6781 defined is given along with the type and name of the variable.\n\
6783 If REGEXP is provided then only variables whose name matches REGEXP are\n\
6784 listed. If MODREGEXP is provided then only variables in modules matching\n\
6785 MODREGEXP are listed. If TYPEREGEXP is given then only variables whose\n\
6786 type matches TYPEREGEXP are listed.\n\
6788 The -q flag suppresses printing some header information."),
6789 &info_module_cmdlist
);
6790 set_cmd_completer_handle_brkchars
6791 (c
, info_module_var_func_command_completer
);
6793 add_com ("rbreak", class_breakpoint
, rbreak_command
,
6794 _("Set a breakpoint for all functions matching REGEXP."));
6796 add_setshow_enum_cmd ("multiple-symbols", no_class
,
6797 multiple_symbols_modes
, &multiple_symbols_mode
,
6799 Set how the debugger handles ambiguities in expressions."), _("\
6800 Show how the debugger handles ambiguities in expressions."), _("\
6801 Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
6802 NULL
, NULL
, &setlist
, &showlist
);
6804 add_setshow_boolean_cmd ("basenames-may-differ", class_obscure
,
6805 &basenames_may_differ
, _("\
6806 Set whether a source file may have multiple base names."), _("\
6807 Show whether a source file may have multiple base names."), _("\
6808 (A \"base name\" is the name of a file with the directory part removed.\n\
6809 Example: The base name of \"/home/user/hello.c\" is \"hello.c\".)\n\
6810 If set, GDB will canonicalize file names (e.g., expand symlinks)\n\
6811 before comparing them. Canonicalization is an expensive operation,\n\
6812 but it allows the same file be known by more than one base name.\n\
6813 If not set (the default), all source files are assumed to have just\n\
6814 one base name, and gdb will do file name comparisons more efficiently."),
6816 &setlist
, &showlist
);
6818 add_setshow_zuinteger_cmd ("symtab-create", no_class
, &symtab_create_debug
,
6819 _("Set debugging of symbol table creation."),
6820 _("Show debugging of symbol table creation."), _("\
6821 When enabled (non-zero), debugging messages are printed when building\n\
6822 symbol tables. A value of 1 (one) normally provides enough information.\n\
6823 A value greater than 1 provides more verbose information."),
6826 &setdebuglist
, &showdebuglist
);
6828 add_setshow_zuinteger_cmd ("symbol-lookup", no_class
, &symbol_lookup_debug
,
6830 Set debugging of symbol lookup."), _("\
6831 Show debugging of symbol lookup."), _("\
6832 When enabled (non-zero), symbol lookups are logged."),
6834 &setdebuglist
, &showdebuglist
);
6836 add_setshow_zuinteger_cmd ("symbol-cache-size", no_class
,
6837 &new_symbol_cache_size
,
6838 _("Set the size of the symbol cache."),
6839 _("Show the size of the symbol cache."), _("\
6840 The size of the symbol cache.\n\
6841 If zero then the symbol cache is disabled."),
6842 set_symbol_cache_size_handler
, NULL
,
6843 &maintenance_set_cmdlist
,
6844 &maintenance_show_cmdlist
);
6846 add_cmd ("symbol-cache", class_maintenance
, maintenance_print_symbol_cache
,
6847 _("Dump the symbol cache for each program space."),
6848 &maintenanceprintlist
);
6850 add_cmd ("symbol-cache-statistics", class_maintenance
,
6851 maintenance_print_symbol_cache_statistics
,
6852 _("Print symbol cache statistics for each program space."),
6853 &maintenanceprintlist
);
6855 add_cmd ("flush-symbol-cache", class_maintenance
,
6856 maintenance_flush_symbol_cache
,
6857 _("Flush the symbol cache for each program space."),
6860 gdb::observers::executable_changed
.attach (symtab_observer_executable_changed
);
6861 gdb::observers::new_objfile
.attach (symtab_new_objfile_observer
);
6862 gdb::observers::free_objfile
.attach (symtab_free_objfile_observer
);