1 // aarch64.cc -- aarch64 target support for gold.
3 // Copyright (C) 2014-2020 Free Software Foundation, Inc.
4 // Written by Jing Yu <jingyu@google.com> and Han Shen <shenhan@google.com>.
6 // This file is part of gold.
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
31 #include "parameters.h"
38 #include "copy-relocs.h"
40 #include "target-reloc.h"
41 #include "target-select.h"
47 #include "aarch64-reloc-property.h"
49 // The first three .got.plt entries are reserved.
50 const int32_t AARCH64_GOTPLT_RESERVE_COUNT
= 3;
58 template<int size
, bool big_endian
>
59 class Output_data_plt_aarch64
;
61 template<int size
, bool big_endian
>
62 class Output_data_plt_aarch64_standard
;
64 template<int size
, bool big_endian
>
67 template<int size
, bool big_endian
>
68 class AArch64_relocate_functions
;
70 // Utility class dealing with insns. This is ported from macros in
71 // bfd/elfnn-aarch64.cc, but wrapped inside a class as static members. This
72 // class is used in erratum sequence scanning.
74 template<bool big_endian
>
75 class AArch64_insn_utilities
78 typedef typename
elfcpp::Swap
<32, big_endian
>::Valtype Insntype
;
80 static const int BYTES_PER_INSN
;
82 // Zero register encoding - 31.
83 static const unsigned int AARCH64_ZR
;
86 aarch64_bit(Insntype insn
, int pos
)
87 { return ((1 << pos
) & insn
) >> pos
; }
90 aarch64_bits(Insntype insn
, int pos
, int l
)
91 { return (insn
>> pos
) & ((1 << l
) - 1); }
93 // Get the encoding field "op31" of 3-source data processing insns. "op31" is
94 // the name defined in armv8 insn manual C3.5.9.
96 aarch64_op31(Insntype insn
)
97 { return aarch64_bits(insn
, 21, 3); }
99 // Get the encoding field "ra" of 3-source data processing insns. "ra" is the
100 // third source register. See armv8 insn manual C3.5.9.
102 aarch64_ra(Insntype insn
)
103 { return aarch64_bits(insn
, 10, 5); }
106 is_adr(const Insntype insn
)
107 { return (insn
& 0x9F000000) == 0x10000000; }
110 is_adrp(const Insntype insn
)
111 { return (insn
& 0x9F000000) == 0x90000000; }
114 is_mrs_tpidr_el0(const Insntype insn
)
115 { return (insn
& 0xFFFFFFE0) == 0xd53bd040; }
118 aarch64_rm(const Insntype insn
)
119 { return aarch64_bits(insn
, 16, 5); }
122 aarch64_rn(const Insntype insn
)
123 { return aarch64_bits(insn
, 5, 5); }
126 aarch64_rd(const Insntype insn
)
127 { return aarch64_bits(insn
, 0, 5); }
130 aarch64_rt(const Insntype insn
)
131 { return aarch64_bits(insn
, 0, 5); }
134 aarch64_rt2(const Insntype insn
)
135 { return aarch64_bits(insn
, 10, 5); }
137 // Encode imm21 into adr. Signed imm21 is in the range of [-1M, 1M).
139 aarch64_adr_encode_imm(Insntype adr
, int imm21
)
141 gold_assert(is_adr(adr
));
142 gold_assert(-(1 << 20) <= imm21
&& imm21
< (1 << 20));
143 const int mask19
= (1 << 19) - 1;
145 adr
&= ~((mask19
<< 5) | (mask2
<< 29));
146 adr
|= ((imm21
& mask2
) << 29) | (((imm21
>> 2) & mask19
) << 5);
150 // Retrieve encoded adrp 33-bit signed imm value. This value is obtained by
151 // 21-bit signed imm encoded in the insn multiplied by 4k (page size) and
152 // 64-bit sign-extended, resulting in [-4G, 4G) with 12-lsb being 0.
154 aarch64_adrp_decode_imm(const Insntype adrp
)
156 const int mask19
= (1 << 19) - 1;
158 gold_assert(is_adrp(adrp
));
159 // 21-bit imm encoded in adrp.
160 uint64_t imm
= ((adrp
>> 29) & mask2
) | (((adrp
>> 5) & mask19
) << 2);
161 // Retrieve msb of 21-bit-signed imm for sign extension.
162 uint64_t msbt
= (imm
>> 20) & 1;
163 // Real value is imm multiplied by 4k. Value now has 33-bit information.
164 int64_t value
= imm
<< 12;
165 // Sign extend to 64-bit by repeating msbt 31 (64-33) times and merge it
167 return ((((uint64_t)(1) << 32) - msbt
) << 33) | value
;
171 aarch64_b(const Insntype insn
)
172 { return (insn
& 0xFC000000) == 0x14000000; }
175 aarch64_bl(const Insntype insn
)
176 { return (insn
& 0xFC000000) == 0x94000000; }
179 aarch64_blr(const Insntype insn
)
180 { return (insn
& 0xFFFFFC1F) == 0xD63F0000; }
183 aarch64_br(const Insntype insn
)
184 { return (insn
& 0xFFFFFC1F) == 0xD61F0000; }
186 // All ld/st ops. See C4-182 of the ARM ARM. The encoding space for
187 // LD_PCREL, LDST_RO, LDST_UI and LDST_UIMM cover prefetch ops.
189 aarch64_ld(Insntype insn
) { return aarch64_bit(insn
, 22) == 1; }
192 aarch64_ldst(Insntype insn
)
193 { return (insn
& 0x0a000000) == 0x08000000; }
196 aarch64_ldst_ex(Insntype insn
)
197 { return (insn
& 0x3f000000) == 0x08000000; }
200 aarch64_ldst_pcrel(Insntype insn
)
201 { return (insn
& 0x3b000000) == 0x18000000; }
204 aarch64_ldst_nap(Insntype insn
)
205 { return (insn
& 0x3b800000) == 0x28000000; }
208 aarch64_ldstp_pi(Insntype insn
)
209 { return (insn
& 0x3b800000) == 0x28800000; }
212 aarch64_ldstp_o(Insntype insn
)
213 { return (insn
& 0x3b800000) == 0x29000000; }
216 aarch64_ldstp_pre(Insntype insn
)
217 { return (insn
& 0x3b800000) == 0x29800000; }
220 aarch64_ldst_ui(Insntype insn
)
221 { return (insn
& 0x3b200c00) == 0x38000000; }
224 aarch64_ldst_piimm(Insntype insn
)
225 { return (insn
& 0x3b200c00) == 0x38000400; }
228 aarch64_ldst_u(Insntype insn
)
229 { return (insn
& 0x3b200c00) == 0x38000800; }
232 aarch64_ldst_preimm(Insntype insn
)
233 { return (insn
& 0x3b200c00) == 0x38000c00; }
236 aarch64_ldst_ro(Insntype insn
)
237 { return (insn
& 0x3b200c00) == 0x38200800; }
240 aarch64_ldst_uimm(Insntype insn
)
241 { return (insn
& 0x3b000000) == 0x39000000; }
244 aarch64_ldst_simd_m(Insntype insn
)
245 { return (insn
& 0xbfbf0000) == 0x0c000000; }
248 aarch64_ldst_simd_m_pi(Insntype insn
)
249 { return (insn
& 0xbfa00000) == 0x0c800000; }
252 aarch64_ldst_simd_s(Insntype insn
)
253 { return (insn
& 0xbf9f0000) == 0x0d000000; }
256 aarch64_ldst_simd_s_pi(Insntype insn
)
257 { return (insn
& 0xbf800000) == 0x0d800000; }
259 // Classify an INSN if it is indeed a load/store. Return true if INSN is a
260 // LD/ST instruction otherwise return false. For scalar LD/ST instructions
261 // PAIR is FALSE, RT is returned and RT2 is set equal to RT. For LD/ST pair
262 // instructions PAIR is TRUE, RT and RT2 are returned.
264 aarch64_mem_op_p(Insntype insn
, unsigned int *rt
, unsigned int *rt2
,
265 bool *pair
, bool *load
)
273 /* Bail out quickly if INSN doesn't fall into the load-store
275 if (!aarch64_ldst (insn
))
280 if (aarch64_ldst_ex (insn
))
282 *rt
= aarch64_rt (insn
);
284 if (aarch64_bit (insn
, 21) == 1)
287 *rt2
= aarch64_rt2 (insn
);
289 *load
= aarch64_ld (insn
);
292 else if (aarch64_ldst_nap (insn
)
293 || aarch64_ldstp_pi (insn
)
294 || aarch64_ldstp_o (insn
)
295 || aarch64_ldstp_pre (insn
))
298 *rt
= aarch64_rt (insn
);
299 *rt2
= aarch64_rt2 (insn
);
300 *load
= aarch64_ld (insn
);
303 else if (aarch64_ldst_pcrel (insn
)
304 || aarch64_ldst_ui (insn
)
305 || aarch64_ldst_piimm (insn
)
306 || aarch64_ldst_u (insn
)
307 || aarch64_ldst_preimm (insn
)
308 || aarch64_ldst_ro (insn
)
309 || aarch64_ldst_uimm (insn
))
311 *rt
= aarch64_rt (insn
);
313 if (aarch64_ldst_pcrel (insn
))
315 opc
= aarch64_bits (insn
, 22, 2);
316 v
= aarch64_bit (insn
, 26);
317 opc_v
= opc
| (v
<< 2);
318 *load
= (opc_v
== 1 || opc_v
== 2 || opc_v
== 3
319 || opc_v
== 5 || opc_v
== 7);
322 else if (aarch64_ldst_simd_m (insn
)
323 || aarch64_ldst_simd_m_pi (insn
))
325 *rt
= aarch64_rt (insn
);
326 *load
= aarch64_bit (insn
, 22);
327 opcode
= (insn
>> 12) & 0xf;
354 else if (aarch64_ldst_simd_s (insn
)
355 || aarch64_ldst_simd_s_pi (insn
))
357 *rt
= aarch64_rt (insn
);
358 r
= (insn
>> 21) & 1;
359 *load
= aarch64_bit (insn
, 22);
360 opcode
= (insn
>> 13) & 0x7;
372 *rt2
= *rt
+ (r
== 0 ? 2 : 3);
380 *rt2
= *rt
+ (r
== 0 ? 2 : 3);
389 } // End of "aarch64_mem_op_p".
391 // Return true if INSN is mac insn.
393 aarch64_mac(Insntype insn
)
394 { return (insn
& 0xff000000) == 0x9b000000; }
396 // Return true if INSN is multiply-accumulate.
397 // (This is similar to implementaton in elfnn-aarch64.c.)
399 aarch64_mlxl(Insntype insn
)
401 uint32_t op31
= aarch64_op31(insn
);
402 if (aarch64_mac(insn
)
403 && (op31
== 0 || op31
== 1 || op31
== 5)
404 /* Exclude MUL instructions which are encoded as a multiple-accumulate
406 && aarch64_ra(insn
) != AARCH64_ZR
)
412 }; // End of "AArch64_insn_utilities".
415 // Insn length in byte.
417 template<bool big_endian
>
418 const int AArch64_insn_utilities
<big_endian
>::BYTES_PER_INSN
= 4;
421 // Zero register encoding - 31.
423 template<bool big_endian
>
424 const unsigned int AArch64_insn_utilities
<big_endian
>::AARCH64_ZR
= 0x1f;
427 // Output_data_got_aarch64 class.
429 template<int size
, bool big_endian
>
430 class Output_data_got_aarch64
: public Output_data_got
<size
, big_endian
>
433 typedef typename
elfcpp::Elf_types
<size
>::Elf_Addr Valtype
;
434 Output_data_got_aarch64(Symbol_table
* symtab
, Layout
* layout
)
435 : Output_data_got
<size
, big_endian
>(),
436 symbol_table_(symtab
), layout_(layout
)
439 // Add a static entry for the GOT entry at OFFSET. GSYM is a global
440 // symbol and R_TYPE is the code of a dynamic relocation that needs to be
441 // applied in a static link.
443 add_static_reloc(unsigned int got_offset
, unsigned int r_type
, Symbol
* gsym
)
444 { this->static_relocs_
.push_back(Static_reloc(got_offset
, r_type
, gsym
)); }
447 // Add a static reloc for the GOT entry at OFFSET. RELOBJ is an object
448 // defining a local symbol with INDEX. R_TYPE is the code of a dynamic
449 // relocation that needs to be applied in a static link.
451 add_static_reloc(unsigned int got_offset
, unsigned int r_type
,
452 Sized_relobj_file
<size
, big_endian
>* relobj
,
455 this->static_relocs_
.push_back(Static_reloc(got_offset
, r_type
, relobj
,
461 // Write out the GOT table.
463 do_write(Output_file
* of
) {
464 // The first entry in the GOT is the address of the .dynamic section.
465 gold_assert(this->data_size() >= size
/ 8);
466 Output_section
* dynamic
= this->layout_
->dynamic_section();
467 Valtype dynamic_addr
= dynamic
== NULL
? 0 : dynamic
->address();
468 this->replace_constant(0, dynamic_addr
);
469 Output_data_got
<size
, big_endian
>::do_write(of
);
471 // Handling static relocs
472 if (this->static_relocs_
.empty())
475 typedef typename
elfcpp::Elf_types
<size
>::Elf_Addr AArch64_address
;
477 gold_assert(parameters
->doing_static_link());
478 const off_t offset
= this->offset();
479 const section_size_type oview_size
=
480 convert_to_section_size_type(this->data_size());
481 unsigned char* const oview
= of
->get_output_view(offset
, oview_size
);
483 Output_segment
* tls_segment
= this->layout_
->tls_segment();
484 gold_assert(tls_segment
!= NULL
);
486 AArch64_address aligned_tcb_address
=
487 align_address(Target_aarch64
<size
, big_endian
>::TCB_SIZE
,
488 tls_segment
->maximum_alignment());
490 for (size_t i
= 0; i
< this->static_relocs_
.size(); ++i
)
492 Static_reloc
& reloc(this->static_relocs_
[i
]);
493 AArch64_address value
;
495 if (!reloc
.symbol_is_global())
497 Sized_relobj_file
<size
, big_endian
>* object
= reloc
.relobj();
498 const Symbol_value
<size
>* psymval
=
499 reloc
.relobj()->local_symbol(reloc
.index());
501 // We are doing static linking. Issue an error and skip this
502 // relocation if the symbol is undefined or in a discarded_section.
504 unsigned int shndx
= psymval
->input_shndx(&is_ordinary
);
505 if ((shndx
== elfcpp::SHN_UNDEF
)
507 && shndx
!= elfcpp::SHN_UNDEF
508 && !object
->is_section_included(shndx
)
509 && !this->symbol_table_
->is_section_folded(object
, shndx
)))
511 gold_error(_("undefined or discarded local symbol %u from "
512 " object %s in GOT"),
513 reloc
.index(), reloc
.relobj()->name().c_str());
516 value
= psymval
->value(object
, 0);
520 const Symbol
* gsym
= reloc
.symbol();
521 gold_assert(gsym
!= NULL
);
522 if (gsym
->is_forwarder())
523 gsym
= this->symbol_table_
->resolve_forwards(gsym
);
525 // We are doing static linking. Issue an error and skip this
526 // relocation if the symbol is undefined or in a discarded_section
527 // unless it is a weakly_undefined symbol.
528 if ((gsym
->is_defined_in_discarded_section()
529 || gsym
->is_undefined())
530 && !gsym
->is_weak_undefined())
532 gold_error(_("undefined or discarded symbol %s in GOT"),
537 if (!gsym
->is_weak_undefined())
539 const Sized_symbol
<size
>* sym
=
540 static_cast<const Sized_symbol
<size
>*>(gsym
);
541 value
= sym
->value();
547 unsigned got_offset
= reloc
.got_offset();
548 gold_assert(got_offset
< oview_size
);
550 typedef typename
elfcpp::Swap
<size
, big_endian
>::Valtype Valtype
;
551 Valtype
* wv
= reinterpret_cast<Valtype
*>(oview
+ got_offset
);
553 switch (reloc
.r_type())
555 case elfcpp::R_AARCH64_TLS_DTPREL64
:
558 case elfcpp::R_AARCH64_TLS_TPREL64
:
559 x
= value
+ aligned_tcb_address
;
564 elfcpp::Swap
<size
, big_endian
>::writeval(wv
, x
);
567 of
->write_output_view(offset
, oview_size
, oview
);
571 // Symbol table of the output object.
572 Symbol_table
* symbol_table_
;
573 // A pointer to the Layout class, so that we can find the .dynamic
574 // section when we write out the GOT section.
577 // This class represent dynamic relocations that need to be applied by
578 // gold because we are using TLS relocations in a static link.
582 Static_reloc(unsigned int got_offset
, unsigned int r_type
, Symbol
* gsym
)
583 : got_offset_(got_offset
), r_type_(r_type
), symbol_is_global_(true)
584 { this->u_
.global
.symbol
= gsym
; }
586 Static_reloc(unsigned int got_offset
, unsigned int r_type
,
587 Sized_relobj_file
<size
, big_endian
>* relobj
, unsigned int index
)
588 : got_offset_(got_offset
), r_type_(r_type
), symbol_is_global_(false)
590 this->u_
.local
.relobj
= relobj
;
591 this->u_
.local
.index
= index
;
594 // Return the GOT offset.
597 { return this->got_offset_
; }
602 { return this->r_type_
; }
604 // Whether the symbol is global or not.
606 symbol_is_global() const
607 { return this->symbol_is_global_
; }
609 // For a relocation against a global symbol, the global symbol.
613 gold_assert(this->symbol_is_global_
);
614 return this->u_
.global
.symbol
;
617 // For a relocation against a local symbol, the defining object.
618 Sized_relobj_file
<size
, big_endian
>*
621 gold_assert(!this->symbol_is_global_
);
622 return this->u_
.local
.relobj
;
625 // For a relocation against a local symbol, the local symbol index.
629 gold_assert(!this->symbol_is_global_
);
630 return this->u_
.local
.index
;
634 // GOT offset of the entry to which this relocation is applied.
635 unsigned int got_offset_
;
636 // Type of relocation.
637 unsigned int r_type_
;
638 // Whether this relocation is against a global symbol.
639 bool symbol_is_global_
;
640 // A global or local symbol.
645 // For a global symbol, the symbol itself.
650 // For a local symbol, the object defining the symbol.
651 Sized_relobj_file
<size
, big_endian
>* relobj
;
652 // For a local symbol, the symbol index.
656 }; // End of inner class Static_reloc
658 std::vector
<Static_reloc
> static_relocs_
;
659 }; // End of Output_data_got_aarch64
662 template<int size
, bool big_endian
>
663 class AArch64_input_section
;
666 template<int size
, bool big_endian
>
667 class AArch64_output_section
;
670 template<int size
, bool big_endian
>
671 class AArch64_relobj
;
674 // Stub type enum constants.
680 // Using adrp/add pair, 4 insns (including alignment) without mem access,
681 // the fastest stub. This has a limited jump distance, which is tested by
682 // aarch64_valid_for_adrp_p.
685 // Using ldr-absolute-address/br-register, 4 insns with 1 mem access,
686 // unlimited in jump distance.
687 ST_LONG_BRANCH_ABS
= 2,
689 // Using ldr/calculate-pcrel/jump, 8 insns (including alignment) with 1
690 // mem access, slowest one. Only used in position independent executables.
691 ST_LONG_BRANCH_PCREL
= 3,
693 // Stub for erratum 843419 handling.
696 // Stub for erratum 835769 handling.
699 // Number of total stub types.
704 // Struct that wraps insns for a particular stub. All stub templates are
705 // created/initialized as constants by Stub_template_repertoire.
707 template<bool big_endian
>
710 const typename AArch64_insn_utilities
<big_endian
>::Insntype
* insns
;
715 // Simple singleton class that creates/initializes/stores all types of stub
718 template<bool big_endian
>
719 class Stub_template_repertoire
722 typedef typename AArch64_insn_utilities
<big_endian
>::Insntype Insntype
;
724 // Single static method to get stub template for a given stub type.
725 static const Stub_template
<big_endian
>*
726 get_stub_template(int type
)
728 static Stub_template_repertoire
<big_endian
> singleton
;
729 return singleton
.stub_templates_
[type
];
733 // Constructor - creates/initializes all stub templates.
734 Stub_template_repertoire();
735 ~Stub_template_repertoire()
738 // Disallowing copy ctor and copy assignment operator.
739 Stub_template_repertoire(Stub_template_repertoire
&);
740 Stub_template_repertoire
& operator=(Stub_template_repertoire
&);
742 // Data that stores all insn templates.
743 const Stub_template
<big_endian
>* stub_templates_
[ST_NUMBER
];
744 }; // End of "class Stub_template_repertoire".
747 // Constructor - creates/initilizes all stub templates.
749 template<bool big_endian
>
750 Stub_template_repertoire
<big_endian
>::Stub_template_repertoire()
752 // Insn array definitions.
753 const static Insntype ST_NONE_INSNS
[] = {};
755 const static Insntype ST_ADRP_BRANCH_INSNS
[] =
757 0x90000010, /* adrp ip0, X */
758 /* ADR_PREL_PG_HI21(X) */
759 0x91000210, /* add ip0, ip0, :lo12:X */
760 /* ADD_ABS_LO12_NC(X) */
761 0xd61f0200, /* br ip0 */
762 0x00000000, /* alignment padding */
765 const static Insntype ST_LONG_BRANCH_ABS_INSNS
[] =
767 0x58000050, /* ldr ip0, 0x8 */
768 0xd61f0200, /* br ip0 */
769 0x00000000, /* address field */
770 0x00000000, /* address fields */
773 const static Insntype ST_LONG_BRANCH_PCREL_INSNS
[] =
775 0x58000090, /* ldr ip0, 0x10 */
776 0x10000011, /* adr ip1, #0 */
777 0x8b110210, /* add ip0, ip0, ip1 */
778 0xd61f0200, /* br ip0 */
779 0x00000000, /* address field */
780 0x00000000, /* address field */
781 0x00000000, /* alignment padding */
782 0x00000000, /* alignment padding */
785 const static Insntype ST_E_843419_INSNS
[] =
787 0x00000000, /* Placeholder for erratum insn. */
788 0x14000000, /* b <label> */
791 // ST_E_835769 has the same stub template as ST_E_843419
792 // but we reproduce the array here so that the sizeof
793 // expressions in install_insn_template will work.
794 const static Insntype ST_E_835769_INSNS
[] =
796 0x00000000, /* Placeholder for erratum insn. */
797 0x14000000, /* b <label> */
800 #define install_insn_template(T) \
801 const static Stub_template<big_endian> template_##T = { \
802 T##_INSNS, sizeof(T##_INSNS) / sizeof(T##_INSNS[0]) }; \
803 this->stub_templates_[T] = &template_##T
805 install_insn_template(ST_NONE
);
806 install_insn_template(ST_ADRP_BRANCH
);
807 install_insn_template(ST_LONG_BRANCH_ABS
);
808 install_insn_template(ST_LONG_BRANCH_PCREL
);
809 install_insn_template(ST_E_843419
);
810 install_insn_template(ST_E_835769
);
812 #undef install_insn_template
816 // Base class for stubs.
818 template<int size
, bool big_endian
>
822 typedef typename
elfcpp::Elf_types
<size
>::Elf_Addr AArch64_address
;
823 typedef typename AArch64_insn_utilities
<big_endian
>::Insntype Insntype
;
825 static const AArch64_address invalid_address
=
826 static_cast<AArch64_address
>(-1);
828 static const section_offset_type invalid_offset
=
829 static_cast<section_offset_type
>(-1);
832 : destination_address_(invalid_address
),
833 offset_(invalid_offset
),
843 { return this->type_
; }
845 // Get stub template that provides stub insn information.
846 const Stub_template
<big_endian
>*
847 stub_template() const
849 return Stub_template_repertoire
<big_endian
>::
850 get_stub_template(this->type());
853 // Get destination address.
855 destination_address() const
857 gold_assert(this->destination_address_
!= this->invalid_address
);
858 return this->destination_address_
;
861 // Set destination address.
863 set_destination_address(AArch64_address address
)
865 gold_assert(address
!= this->invalid_address
);
866 this->destination_address_
= address
;
869 // Reset the destination address.
871 reset_destination_address()
872 { this->destination_address_
= this->invalid_address
; }
874 // Get offset of code stub. For Reloc_stub, it is the offset from the
875 // beginning of its containing stub table; for Erratum_stub, it is the offset
876 // from the end of reloc_stubs.
880 gold_assert(this->offset_
!= this->invalid_offset
);
881 return this->offset_
;
886 set_offset(section_offset_type offset
)
887 { this->offset_
= offset
; }
889 // Return the stub insn.
892 { return this->stub_template()->insns
; }
894 // Return num of stub insns.
897 { return this->stub_template()->insn_num
; }
899 // Get size of the stub.
903 return this->insn_num() *
904 AArch64_insn_utilities
<big_endian
>::BYTES_PER_INSN
;
907 // Write stub to output file.
909 write(unsigned char* view
, section_size_type view_size
)
910 { this->do_write(view
, view_size
); }
913 // Abstract method to be implemented by sub-classes.
915 do_write(unsigned char*, section_size_type
) = 0;
918 // The last insn of a stub is a jump to destination insn. This field records
919 // the destination address.
920 AArch64_address destination_address_
;
921 // The stub offset. Note this has difference interpretations between an
922 // Reloc_stub and an Erratum_stub. For Reloc_stub this is the offset from the
923 // beginning of the containing stub_table, whereas for Erratum_stub, this is
924 // the offset from the end of reloc_stubs.
925 section_offset_type offset_
;
928 }; // End of "Stub_base".
931 // Erratum stub class. An erratum stub differs from a reloc stub in that for
932 // each erratum occurrence, we generate an erratum stub. We never share erratum
933 // stubs, whereas for reloc stubs, different branch insns share a single reloc
934 // stub as long as the branch targets are the same. (More to the point, reloc
935 // stubs can be shared because they're used to reach a specific target, whereas
936 // erratum stubs branch back to the original control flow.)
938 template<int size
, bool big_endian
>
939 class Erratum_stub
: public Stub_base
<size
, big_endian
>
942 typedef AArch64_relobj
<size
, big_endian
> The_aarch64_relobj
;
943 typedef typename
elfcpp::Elf_types
<size
>::Elf_Addr AArch64_address
;
944 typedef AArch64_insn_utilities
<big_endian
> Insn_utilities
;
945 typedef typename AArch64_insn_utilities
<big_endian
>::Insntype Insntype
;
947 static const int STUB_ADDR_ALIGN
;
949 static const Insntype invalid_insn
= static_cast<Insntype
>(-1);
951 Erratum_stub(The_aarch64_relobj
* relobj
, int type
,
952 unsigned shndx
, unsigned int sh_offset
)
953 : Stub_base
<size
, big_endian
>(type
), relobj_(relobj
),
954 shndx_(shndx
), sh_offset_(sh_offset
),
955 erratum_insn_(invalid_insn
),
956 erratum_address_(this->invalid_address
)
961 // Return the object that contains the erratum.
964 { return this->relobj_
; }
966 // Get section index of the erratum.
969 { return this->shndx_
; }
971 // Get section offset of the erratum.
974 { return this->sh_offset_
; }
976 // Get the erratum insn. This is the insn located at erratum_insn_address.
980 gold_assert(this->erratum_insn_
!= this->invalid_insn
);
981 return this->erratum_insn_
;
984 // Set the insn that the erratum happens to.
986 set_erratum_insn(Insntype insn
)
987 { this->erratum_insn_
= insn
; }
989 // For 843419, the erratum insn is ld/st xt, [xn, #uimm], which may be a
990 // relocation spot, in this case, the erratum_insn_ recorded at scanning phase
991 // is no longer the one we want to write out to the stub, update erratum_insn_
992 // with relocated version. Also note that in this case xn must not be "PC", so
993 // it is safe to move the erratum insn from the origin place to the stub. For
994 // 835769, the erratum insn is multiply-accumulate insn, which could not be a
995 // relocation spot (assertion added though).
997 update_erratum_insn(Insntype insn
)
999 gold_assert(this->erratum_insn_
!= this->invalid_insn
);
1000 switch (this->type())
1003 gold_assert(Insn_utilities::aarch64_ldst_uimm(insn
));
1004 gold_assert(Insn_utilities::aarch64_ldst_uimm(this->erratum_insn()));
1005 gold_assert(Insn_utilities::aarch64_rd(insn
) ==
1006 Insn_utilities::aarch64_rd(this->erratum_insn()));
1007 gold_assert(Insn_utilities::aarch64_rn(insn
) ==
1008 Insn_utilities::aarch64_rn(this->erratum_insn()));
1009 // Update plain ld/st insn with relocated insn.
1010 this->erratum_insn_
= insn
;
1013 gold_assert(insn
== this->erratum_insn());
1021 // Return the address where an erratum must be done.
1023 erratum_address() const
1025 gold_assert(this->erratum_address_
!= this->invalid_address
);
1026 return this->erratum_address_
;
1029 // Set the address where an erratum must be done.
1031 set_erratum_address(AArch64_address addr
)
1032 { this->erratum_address_
= addr
; }
1034 // Later relaxation passes of may alter the recorded erratum and destination
1035 // address. Given an up to date output section address of shidx_ in
1036 // relobj_ we can derive the erratum_address and destination address.
1038 update_erratum_address(AArch64_address output_section_addr
)
1040 const int BPI
= AArch64_insn_utilities
<big_endian
>::BYTES_PER_INSN
;
1041 AArch64_address updated_addr
= output_section_addr
+ this->sh_offset_
;
1042 this->set_erratum_address(updated_addr
);
1043 this->set_destination_address(updated_addr
+ BPI
);
1046 // Comparator used to group Erratum_stubs in a set by (obj, shndx,
1047 // sh_offset). We do not include 'type' in the calculation, because there is
1048 // at most one stub type at (obj, shndx, sh_offset).
1050 operator<(const Erratum_stub
<size
, big_endian
>& k
) const
1054 // We group stubs by relobj.
1055 if (this->relobj_
!= k
.relobj_
)
1056 return this->relobj_
< k
.relobj_
;
1057 // Then by section index.
1058 if (this->shndx_
!= k
.shndx_
)
1059 return this->shndx_
< k
.shndx_
;
1060 // Lastly by section offset.
1061 return this->sh_offset_
< k
.sh_offset_
;
1065 invalidate_erratum_stub()
1067 gold_assert(this->erratum_insn_
!= invalid_insn
);
1068 this->erratum_insn_
= invalid_insn
;
1072 is_invalidated_erratum_stub()
1073 { return this->erratum_insn_
== invalid_insn
; }
1077 do_write(unsigned char*, section_size_type
);
1080 // The object that needs to be fixed.
1081 The_aarch64_relobj
* relobj_
;
1082 // The shndx in the object that needs to be fixed.
1083 const unsigned int shndx_
;
1084 // The section offset in the obejct that needs to be fixed.
1085 const unsigned int sh_offset_
;
1086 // The insn to be fixed.
1087 Insntype erratum_insn_
;
1088 // The address of the above insn.
1089 AArch64_address erratum_address_
;
1090 }; // End of "Erratum_stub".
1093 // Erratum sub class to wrap additional info needed by 843419. In fixing this
1094 // erratum, we may choose to replace 'adrp' with 'adr', in this case, we need
1095 // adrp's code position (two or three insns before erratum insn itself).
1097 template<int size
, bool big_endian
>
1098 class E843419_stub
: public Erratum_stub
<size
, big_endian
>
1101 typedef typename AArch64_insn_utilities
<big_endian
>::Insntype Insntype
;
1103 E843419_stub(AArch64_relobj
<size
, big_endian
>* relobj
,
1104 unsigned int shndx
, unsigned int sh_offset
,
1105 unsigned int adrp_sh_offset
)
1106 : Erratum_stub
<size
, big_endian
>(relobj
, ST_E_843419
, shndx
, sh_offset
),
1107 adrp_sh_offset_(adrp_sh_offset
)
1111 adrp_sh_offset() const
1112 { return this->adrp_sh_offset_
; }
1115 // Section offset of "adrp". (We do not need a "adrp_shndx_" field, because we
1116 // can obtain it from its parent.)
1117 const unsigned int adrp_sh_offset_
;
1121 template<int size
, bool big_endian
>
1122 const int Erratum_stub
<size
, big_endian
>::STUB_ADDR_ALIGN
= 4;
1124 // Comparator used in set definition.
1125 template<int size
, bool big_endian
>
1126 struct Erratum_stub_less
1129 operator()(const Erratum_stub
<size
, big_endian
>* s1
,
1130 const Erratum_stub
<size
, big_endian
>* s2
) const
1131 { return *s1
< *s2
; }
1134 // Erratum_stub implementation for writing stub to output file.
1136 template<int size
, bool big_endian
>
1138 Erratum_stub
<size
, big_endian
>::do_write(unsigned char* view
, section_size_type
)
1140 typedef typename
elfcpp::Swap
<32, big_endian
>::Valtype Insntype
;
1141 const Insntype
* insns
= this->insns();
1142 uint32_t num_insns
= this->insn_num();
1143 Insntype
* ip
= reinterpret_cast<Insntype
*>(view
);
1144 // For current implemented erratum 843419 and 835769, the first insn in the
1145 // stub is always a copy of the problematic insn (in 843419, the mem access
1146 // insn, in 835769, the mac insn), followed by a jump-back.
1147 elfcpp::Swap
<32, big_endian
>::writeval(ip
, this->erratum_insn());
1148 for (uint32_t i
= 1; i
< num_insns
; ++i
)
1149 elfcpp::Swap
<32, big_endian
>::writeval(ip
+ i
, insns
[i
]);
1153 // Reloc stub class.
1155 template<int size
, bool big_endian
>
1156 class Reloc_stub
: public Stub_base
<size
, big_endian
>
1159 typedef Reloc_stub
<size
, big_endian
> This
;
1160 typedef typename
elfcpp::Elf_types
<size
>::Elf_Addr AArch64_address
;
1162 // Branch range. This is used to calculate the section group size, as well as
1163 // determine whether a stub is needed.
1164 static const int MAX_BRANCH_OFFSET
= ((1 << 25) - 1) << 2;
1165 static const int MIN_BRANCH_OFFSET
= -((1 << 25) << 2);
1167 // Constant used to determine if an offset fits in the adrp instruction
1169 static const int MAX_ADRP_IMM
= (1 << 20) - 1;
1170 static const int MIN_ADRP_IMM
= -(1 << 20);
1172 static const int BYTES_PER_INSN
= 4;
1173 static const int STUB_ADDR_ALIGN
;
1175 // Determine whether the offset fits in the jump/branch instruction.
1177 aarch64_valid_branch_offset_p(int64_t offset
)
1178 { return offset
>= MIN_BRANCH_OFFSET
&& offset
<= MAX_BRANCH_OFFSET
; }
1180 // Determine whether the offset fits in the adrp immediate field.
1182 aarch64_valid_for_adrp_p(AArch64_address location
, AArch64_address dest
)
1184 typedef AArch64_relocate_functions
<size
, big_endian
> Reloc
;
1185 int64_t adrp_imm
= (Reloc::Page(dest
) - Reloc::Page(location
)) >> 12;
1186 return adrp_imm
>= MIN_ADRP_IMM
&& adrp_imm
<= MAX_ADRP_IMM
;
1189 // Determine the stub type for a certain relocation or ST_NONE, if no stub is
1192 stub_type_for_reloc(unsigned int r_type
, AArch64_address address
,
1193 AArch64_address target
);
1195 Reloc_stub(int type
)
1196 : Stub_base
<size
, big_endian
>(type
)
1202 // The key class used to index the stub instance in the stub table's stub map.
1206 Key(int type
, const Symbol
* symbol
, const Relobj
* relobj
,
1207 unsigned int r_sym
, int32_t addend
)
1208 : type_(type
), addend_(addend
)
1212 this->r_sym_
= Reloc_stub::invalid_index
;
1213 this->u_
.symbol
= symbol
;
1217 gold_assert(relobj
!= NULL
&& r_sym
!= invalid_index
);
1218 this->r_sym_
= r_sym
;
1219 this->u_
.relobj
= relobj
;
1226 // Return stub type.
1229 { return this->type_
; }
1231 // Return the local symbol index or invalid_index.
1234 { return this->r_sym_
; }
1236 // Return the symbol if there is one.
1239 { return this->r_sym_
== invalid_index
? this->u_
.symbol
: NULL
; }
1241 // Return the relobj if there is one.
1244 { return this->r_sym_
!= invalid_index
? this->u_
.relobj
: NULL
; }
1246 // Whether this equals to another key k.
1248 eq(const Key
& k
) const
1250 return ((this->type_
== k
.type_
)
1251 && (this->r_sym_
== k
.r_sym_
)
1252 && ((this->r_sym_
!= Reloc_stub::invalid_index
)
1253 ? (this->u_
.relobj
== k
.u_
.relobj
)
1254 : (this->u_
.symbol
== k
.u_
.symbol
))
1255 && (this->addend_
== k
.addend_
));
1258 // Return a hash value.
1262 size_t name_hash_value
= gold::string_hash
<char>(
1263 (this->r_sym_
!= Reloc_stub::invalid_index
)
1264 ? this->u_
.relobj
->name().c_str()
1265 : this->u_
.symbol
->name());
1266 // We only have 4 stub types.
1267 size_t stub_type_hash_value
= 0x03 & this->type_
;
1268 return (name_hash_value
1269 ^ stub_type_hash_value
1270 ^ ((this->r_sym_
& 0x3fff) << 2)
1271 ^ ((this->addend_
& 0xffff) << 16));
1274 // Functors for STL associative containers.
1278 operator()(const Key
& k
) const
1279 { return k
.hash_value(); }
1285 operator()(const Key
& k1
, const Key
& k2
) const
1286 { return k1
.eq(k2
); }
1292 // If this is a local symbol, this is the index in the defining object.
1293 // Otherwise, it is invalid_index for a global symbol.
1294 unsigned int r_sym_
;
1295 // If r_sym_ is an invalid index, this points to a global symbol.
1296 // Otherwise, it points to a relobj. We used the unsized and target
1297 // independent Symbol and Relobj classes instead of Sized_symbol<32> and
1298 // Arm_relobj, in order to avoid making the stub class a template
1299 // as most of the stub machinery is endianness-neutral. However, it
1300 // may require a bit of casting done by users of this class.
1303 const Symbol
* symbol
;
1304 const Relobj
* relobj
;
1306 // Addend associated with a reloc.
1308 }; // End of inner class Reloc_stub::Key
1311 // This may be overridden in the child class.
1313 do_write(unsigned char*, section_size_type
);
1316 static const unsigned int invalid_index
= static_cast<unsigned int>(-1);
1317 }; // End of Reloc_stub
1319 template<int size
, bool big_endian
>
1320 const int Reloc_stub
<size
, big_endian
>::STUB_ADDR_ALIGN
= 4;
1322 // Write data to output file.
1324 template<int size
, bool big_endian
>
1326 Reloc_stub
<size
, big_endian
>::
1327 do_write(unsigned char* view
, section_size_type
)
1329 typedef typename
elfcpp::Swap
<32, big_endian
>::Valtype Insntype
;
1330 const uint32_t* insns
= this->insns();
1331 uint32_t num_insns
= this->insn_num();
1332 Insntype
* ip
= reinterpret_cast<Insntype
*>(view
);
1333 for (uint32_t i
= 0; i
< num_insns
; ++i
)
1334 elfcpp::Swap
<32, big_endian
>::writeval(ip
+ i
, insns
[i
]);
1338 // Determine the stub type for a certain relocation or ST_NONE, if no stub is
1341 template<int size
, bool big_endian
>
1343 Reloc_stub
<size
, big_endian
>::stub_type_for_reloc(
1344 unsigned int r_type
, AArch64_address location
, AArch64_address dest
)
1346 int64_t branch_offset
= 0;
1349 case elfcpp::R_AARCH64_CALL26
:
1350 case elfcpp::R_AARCH64_JUMP26
:
1351 branch_offset
= dest
- location
;
1357 if (aarch64_valid_branch_offset_p(branch_offset
))
1360 if (aarch64_valid_for_adrp_p(location
, dest
))
1361 return ST_ADRP_BRANCH
;
1363 // Always use PC-relative addressing in case of -shared or -pie.
1364 if (parameters
->options().output_is_position_independent())
1365 return ST_LONG_BRANCH_PCREL
;
1367 // This saves 2 insns per stub, compared to ST_LONG_BRANCH_PCREL.
1368 // But is only applicable to non-shared or non-pie.
1369 return ST_LONG_BRANCH_ABS
;
1372 // A class to hold stubs for the ARM target. This contains 2 different types of
1373 // stubs - reloc stubs and erratum stubs.
1375 template<int size
, bool big_endian
>
1376 class Stub_table
: public Output_data
1379 typedef Target_aarch64
<size
, big_endian
> The_target_aarch64
;
1380 typedef typename
elfcpp::Elf_types
<size
>::Elf_Addr AArch64_address
;
1381 typedef AArch64_relobj
<size
, big_endian
> The_aarch64_relobj
;
1382 typedef AArch64_input_section
<size
, big_endian
> The_aarch64_input_section
;
1383 typedef Reloc_stub
<size
, big_endian
> The_reloc_stub
;
1384 typedef typename
The_reloc_stub::Key The_reloc_stub_key
;
1385 typedef Erratum_stub
<size
, big_endian
> The_erratum_stub
;
1386 typedef Erratum_stub_less
<size
, big_endian
> The_erratum_stub_less
;
1387 typedef typename
The_reloc_stub_key::hash The_reloc_stub_key_hash
;
1388 typedef typename
The_reloc_stub_key::equal_to The_reloc_stub_key_equal_to
;
1389 typedef Stub_table
<size
, big_endian
> The_stub_table
;
1390 typedef Unordered_map
<The_reloc_stub_key
, The_reloc_stub
*,
1391 The_reloc_stub_key_hash
, The_reloc_stub_key_equal_to
>
1393 typedef typename
Reloc_stub_map::const_iterator Reloc_stub_map_const_iter
;
1394 typedef Relocate_info
<size
, big_endian
> The_relocate_info
;
1396 typedef std::set
<The_erratum_stub
*, The_erratum_stub_less
> Erratum_stub_set
;
1397 typedef typename
Erratum_stub_set::iterator Erratum_stub_set_iter
;
1399 Stub_table(The_aarch64_input_section
* owner
)
1400 : Output_data(), owner_(owner
), reloc_stubs_size_(0),
1401 erratum_stubs_size_(0), prev_data_size_(0)
1407 The_aarch64_input_section
*
1411 // Whether this stub table is empty.
1414 { return reloc_stubs_
.empty() && erratum_stubs_
.empty(); }
1416 // Return the current data size.
1418 current_data_size() const
1419 { return this->current_data_size_for_child(); }
1421 // Add a STUB using KEY. The caller is responsible for avoiding addition
1422 // if a STUB with the same key has already been added.
1424 add_reloc_stub(The_reloc_stub
* stub
, const The_reloc_stub_key
& key
);
1426 // Add an erratum stub into the erratum stub set. The set is ordered by
1427 // (relobj, shndx, sh_offset).
1429 add_erratum_stub(The_erratum_stub
* stub
);
1431 // Find if such erratum exists for any given (obj, shndx, sh_offset).
1433 find_erratum_stub(The_aarch64_relobj
* a64relobj
,
1434 unsigned int shndx
, unsigned int sh_offset
);
1436 // Find all the erratums for a given input section. The return value is a pair
1437 // of iterators [begin, end).
1438 std::pair
<Erratum_stub_set_iter
, Erratum_stub_set_iter
>
1439 find_erratum_stubs_for_input_section(The_aarch64_relobj
* a64relobj
,
1440 unsigned int shndx
);
1442 // Compute the erratum stub address.
1444 erratum_stub_address(The_erratum_stub
* stub
) const
1446 AArch64_address r
= align_address(this->address() + this->reloc_stubs_size_
,
1447 The_erratum_stub::STUB_ADDR_ALIGN
);
1448 r
+= stub
->offset();
1452 // Finalize stubs. No-op here, just for completeness.
1457 // Look up a relocation stub using KEY. Return NULL if there is none.
1459 find_reloc_stub(The_reloc_stub_key
& key
)
1461 Reloc_stub_map_const_iter p
= this->reloc_stubs_
.find(key
);
1462 return (p
!= this->reloc_stubs_
.end()) ? p
->second
: NULL
;
1465 // Relocate reloc stubs in this stub table. This does not relocate erratum stubs.
1467 relocate_reloc_stubs(const The_relocate_info
*,
1468 The_target_aarch64
*,
1474 // Relocate an erratum stub.
1476 relocate_erratum_stub(The_erratum_stub
*, unsigned char*);
1478 // Update data size at the end of a relaxation pass. Return true if data size
1479 // is different from that of the previous relaxation pass.
1481 update_data_size_changed_p()
1483 // No addralign changed here.
1484 off_t s
= align_address(this->reloc_stubs_size_
,
1485 The_erratum_stub::STUB_ADDR_ALIGN
)
1486 + this->erratum_stubs_size_
;
1487 bool changed
= (s
!= this->prev_data_size_
);
1488 this->prev_data_size_
= s
;
1493 // Write out section contents.
1495 do_write(Output_file
*);
1497 // Return the required alignment.
1499 do_addralign() const
1501 return std::max(The_reloc_stub::STUB_ADDR_ALIGN
,
1502 The_erratum_stub::STUB_ADDR_ALIGN
);
1505 // Reset address and file offset.
1507 do_reset_address_and_file_offset()
1508 { this->set_current_data_size_for_child(this->prev_data_size_
); }
1510 // Set final data size.
1512 set_final_data_size()
1513 { this->set_data_size(this->current_data_size()); }
1516 // Relocate one reloc stub.
1518 relocate_reloc_stub(The_reloc_stub
*,
1519 const The_relocate_info
*,
1520 The_target_aarch64
*,
1527 // Owner of this stub table.
1528 The_aarch64_input_section
* owner_
;
1529 // The relocation stubs.
1530 Reloc_stub_map reloc_stubs_
;
1531 // The erratum stubs.
1532 Erratum_stub_set erratum_stubs_
;
1533 // Size of reloc stubs.
1534 off_t reloc_stubs_size_
;
1535 // Size of erratum stubs.
1536 off_t erratum_stubs_size_
;
1537 // data size of this in the previous pass.
1538 off_t prev_data_size_
;
1539 }; // End of Stub_table
1542 // Add an erratum stub into the erratum stub set. The set is ordered by
1543 // (relobj, shndx, sh_offset).
1545 template<int size
, bool big_endian
>
1547 Stub_table
<size
, big_endian
>::add_erratum_stub(The_erratum_stub
* stub
)
1549 std::pair
<Erratum_stub_set_iter
, bool> ret
=
1550 this->erratum_stubs_
.insert(stub
);
1551 gold_assert(ret
.second
);
1552 this->erratum_stubs_size_
= align_address(
1553 this->erratum_stubs_size_
, The_erratum_stub::STUB_ADDR_ALIGN
);
1554 stub
->set_offset(this->erratum_stubs_size_
);
1555 this->erratum_stubs_size_
+= stub
->stub_size();
1559 // Find if such erratum exists for given (obj, shndx, sh_offset).
1561 template<int size
, bool big_endian
>
1562 Erratum_stub
<size
, big_endian
>*
1563 Stub_table
<size
, big_endian
>::find_erratum_stub(
1564 The_aarch64_relobj
* a64relobj
, unsigned int shndx
, unsigned int sh_offset
)
1566 // A dummy object used as key to search in the set.
1567 The_erratum_stub
key(a64relobj
, ST_NONE
,
1569 Erratum_stub_set_iter i
= this->erratum_stubs_
.find(&key
);
1570 if (i
!= this->erratum_stubs_
.end())
1572 The_erratum_stub
* stub(*i
);
1573 gold_assert(stub
->erratum_insn() != 0);
1580 // Find all the errata for a given input section. The return value is a pair of
1581 // iterators [begin, end).
1583 template<int size
, bool big_endian
>
1584 std::pair
<typename Stub_table
<size
, big_endian
>::Erratum_stub_set_iter
,
1585 typename Stub_table
<size
, big_endian
>::Erratum_stub_set_iter
>
1586 Stub_table
<size
, big_endian
>::find_erratum_stubs_for_input_section(
1587 The_aarch64_relobj
* a64relobj
, unsigned int shndx
)
1589 typedef std::pair
<Erratum_stub_set_iter
, Erratum_stub_set_iter
> Result_pair
;
1590 Erratum_stub_set_iter start
, end
;
1591 The_erratum_stub
low_key(a64relobj
, ST_NONE
, shndx
, 0);
1592 start
= this->erratum_stubs_
.lower_bound(&low_key
);
1593 if (start
== this->erratum_stubs_
.end())
1594 return Result_pair(this->erratum_stubs_
.end(),
1595 this->erratum_stubs_
.end());
1597 while (end
!= this->erratum_stubs_
.end() &&
1598 (*end
)->relobj() == a64relobj
&& (*end
)->shndx() == shndx
)
1600 return Result_pair(start
, end
);
1604 // Add a STUB using KEY. The caller is responsible for avoiding addition
1605 // if a STUB with the same key has already been added.
1607 template<int size
, bool big_endian
>
1609 Stub_table
<size
, big_endian
>::add_reloc_stub(
1610 The_reloc_stub
* stub
, const The_reloc_stub_key
& key
)
1612 gold_assert(stub
->type() == key
.type());
1613 this->reloc_stubs_
[key
] = stub
;
1615 // Assign stub offset early. We can do this because we never remove
1616 // reloc stubs and they are in the beginning of the stub table.
1617 this->reloc_stubs_size_
= align_address(this->reloc_stubs_size_
,
1618 The_reloc_stub::STUB_ADDR_ALIGN
);
1619 stub
->set_offset(this->reloc_stubs_size_
);
1620 this->reloc_stubs_size_
+= stub
->stub_size();
1624 // Relocate an erratum stub.
1626 template<int size
, bool big_endian
>
1628 Stub_table
<size
, big_endian
>::
1629 relocate_erratum_stub(The_erratum_stub
* estub
,
1630 unsigned char* view
)
1632 // Just for convenience.
1633 const int BPI
= AArch64_insn_utilities
<big_endian
>::BYTES_PER_INSN
;
1635 gold_assert(!estub
->is_invalidated_erratum_stub());
1636 AArch64_address stub_address
= this->erratum_stub_address(estub
);
1637 // The address of "b" in the stub that is to be "relocated".
1638 AArch64_address stub_b_insn_address
;
1639 // Branch offset that is to be filled in "b" insn.
1641 switch (estub
->type())
1645 // The 1st insn of the erratum could be a relocation spot,
1646 // in this case we need to fix it with
1647 // "(*i)->erratum_insn()".
1648 elfcpp::Swap
<32, big_endian
>::writeval(
1649 view
+ (stub_address
- this->address()),
1650 estub
->erratum_insn());
1651 // For the erratum, the 2nd insn is a b-insn to be patched
1653 stub_b_insn_address
= stub_address
+ 1 * BPI
;
1654 b_offset
= estub
->destination_address() - stub_b_insn_address
;
1655 AArch64_relocate_functions
<size
, big_endian
>::construct_b(
1656 view
+ (stub_b_insn_address
- this->address()),
1657 ((unsigned int)(b_offset
)) & 0xfffffff);
1663 estub
->invalidate_erratum_stub();
1667 // Relocate only reloc stubs in this stub table. This does not relocate erratum
1670 template<int size
, bool big_endian
>
1672 Stub_table
<size
, big_endian
>::
1673 relocate_reloc_stubs(const The_relocate_info
* relinfo
,
1674 The_target_aarch64
* target_aarch64
,
1675 Output_section
* output_section
,
1676 unsigned char* view
,
1677 AArch64_address address
,
1678 section_size_type view_size
)
1680 // "view_size" is the total size of the stub_table.
1681 gold_assert(address
== this->address() &&
1682 view_size
== static_cast<section_size_type
>(this->data_size()));
1683 for(Reloc_stub_map_const_iter p
= this->reloc_stubs_
.begin();
1684 p
!= this->reloc_stubs_
.end(); ++p
)
1685 relocate_reloc_stub(p
->second
, relinfo
, target_aarch64
, output_section
,
1686 view
, address
, view_size
);
1690 // Relocate one reloc stub. This is a helper for
1691 // Stub_table::relocate_reloc_stubs().
1693 template<int size
, bool big_endian
>
1695 Stub_table
<size
, big_endian
>::
1696 relocate_reloc_stub(The_reloc_stub
* stub
,
1697 const The_relocate_info
* relinfo
,
1698 The_target_aarch64
* target_aarch64
,
1699 Output_section
* output_section
,
1700 unsigned char* view
,
1701 AArch64_address address
,
1702 section_size_type view_size
)
1704 // "offset" is the offset from the beginning of the stub_table.
1705 section_size_type offset
= stub
->offset();
1706 section_size_type stub_size
= stub
->stub_size();
1707 // "view_size" is the total size of the stub_table.
1708 gold_assert(offset
+ stub_size
<= view_size
);
1710 target_aarch64
->relocate_reloc_stub(stub
, relinfo
, output_section
,
1711 view
+ offset
, address
+ offset
, view_size
);
1715 // Write out the stubs to file.
1717 template<int size
, bool big_endian
>
1719 Stub_table
<size
, big_endian
>::do_write(Output_file
* of
)
1721 off_t offset
= this->offset();
1722 const section_size_type oview_size
=
1723 convert_to_section_size_type(this->data_size());
1724 unsigned char* const oview
= of
->get_output_view(offset
, oview_size
);
1726 // Write relocation stubs.
1727 for (typename
Reloc_stub_map::const_iterator p
= this->reloc_stubs_
.begin();
1728 p
!= this->reloc_stubs_
.end(); ++p
)
1730 The_reloc_stub
* stub
= p
->second
;
1731 AArch64_address address
= this->address() + stub
->offset();
1732 gold_assert(address
==
1733 align_address(address
, The_reloc_stub::STUB_ADDR_ALIGN
));
1734 stub
->write(oview
+ stub
->offset(), stub
->stub_size());
1737 // Write erratum stubs.
1738 unsigned int erratum_stub_start_offset
=
1739 align_address(this->reloc_stubs_size_
, The_erratum_stub::STUB_ADDR_ALIGN
);
1740 for (typename
Erratum_stub_set::iterator p
= this->erratum_stubs_
.begin();
1741 p
!= this->erratum_stubs_
.end(); ++p
)
1743 The_erratum_stub
* stub(*p
);
1744 stub
->write(oview
+ erratum_stub_start_offset
+ stub
->offset(),
1748 of
->write_output_view(this->offset(), oview_size
, oview
);
1752 // AArch64_relobj class.
1754 template<int size
, bool big_endian
>
1755 class AArch64_relobj
: public Sized_relobj_file
<size
, big_endian
>
1758 typedef AArch64_relobj
<size
, big_endian
> This
;
1759 typedef Target_aarch64
<size
, big_endian
> The_target_aarch64
;
1760 typedef AArch64_input_section
<size
, big_endian
> The_aarch64_input_section
;
1761 typedef typename
elfcpp::Elf_types
<size
>::Elf_Addr AArch64_address
;
1762 typedef Stub_table
<size
, big_endian
> The_stub_table
;
1763 typedef Erratum_stub
<size
, big_endian
> The_erratum_stub
;
1764 typedef typename
The_stub_table::Erratum_stub_set_iter Erratum_stub_set_iter
;
1765 typedef std::vector
<The_stub_table
*> Stub_table_list
;
1766 static const AArch64_address invalid_address
=
1767 static_cast<AArch64_address
>(-1);
1769 AArch64_relobj(const std::string
& name
, Input_file
* input_file
, off_t offset
,
1770 const typename
elfcpp::Ehdr
<size
, big_endian
>& ehdr
)
1771 : Sized_relobj_file
<size
, big_endian
>(name
, input_file
, offset
, ehdr
),
1778 // Return the stub table of the SHNDX-th section if there is one.
1780 stub_table(unsigned int shndx
) const
1782 gold_assert(shndx
< this->stub_tables_
.size());
1783 return this->stub_tables_
[shndx
];
1786 // Set STUB_TABLE to be the stub_table of the SHNDX-th section.
1788 set_stub_table(unsigned int shndx
, The_stub_table
* stub_table
)
1790 gold_assert(shndx
< this->stub_tables_
.size());
1791 this->stub_tables_
[shndx
] = stub_table
;
1794 // Entrance to errata scanning.
1796 scan_errata(unsigned int shndx
,
1797 const elfcpp::Shdr
<size
, big_endian
>&,
1798 Output_section
*, const Symbol_table
*,
1799 The_target_aarch64
*);
1801 // Scan all relocation sections for stub generation.
1803 scan_sections_for_stubs(The_target_aarch64
*, const Symbol_table
*,
1806 // Whether a section is a scannable text section.
1808 text_section_is_scannable(const elfcpp::Shdr
<size
, big_endian
>&, unsigned int,
1809 const Output_section
*, const Symbol_table
*);
1811 // Convert regular input section with index SHNDX to a relaxed section.
1813 convert_input_section_to_relaxed_section(unsigned shndx
)
1815 // The stubs have relocations and we need to process them after writing
1816 // out the stubs. So relocation now must follow section write.
1817 this->set_section_offset(shndx
, -1ULL);
1818 this->set_relocs_must_follow_section_writes();
1821 // Structure for mapping symbol position.
1822 struct Mapping_symbol_position
1824 Mapping_symbol_position(unsigned int shndx
, AArch64_address offset
):
1825 shndx_(shndx
), offset_(offset
)
1828 // "<" comparator used in ordered_map container.
1830 operator<(const Mapping_symbol_position
& p
) const
1832 return (this->shndx_
< p
.shndx_
1833 || (this->shndx_
== p
.shndx_
&& this->offset_
< p
.offset_
));
1837 unsigned int shndx_
;
1840 AArch64_address offset_
;
1843 typedef std::map
<Mapping_symbol_position
, char> Mapping_symbol_info
;
1846 // Post constructor setup.
1850 // Call parent's setup method.
1851 Sized_relobj_file
<size
, big_endian
>::do_setup();
1853 // Initialize look-up tables.
1854 this->stub_tables_
.resize(this->shnum());
1858 do_relocate_sections(
1859 const Symbol_table
* symtab
, const Layout
* layout
,
1860 const unsigned char* pshdrs
, Output_file
* of
,
1861 typename Sized_relobj_file
<size
, big_endian
>::Views
* pviews
);
1863 // Count local symbols and (optionally) record mapping info.
1865 do_count_local_symbols(Stringpool_template
<char>*,
1866 Stringpool_template
<char>*);
1869 // Fix all errata in the object, and for each erratum, relocate corresponding
1872 fix_errata_and_relocate_erratum_stubs(
1873 typename Sized_relobj_file
<size
, big_endian
>::Views
* pviews
);
1875 // Try to fix erratum 843419 in an optimized way. Return true if patch is
1878 try_fix_erratum_843419_optimized(
1879 The_erratum_stub
*, AArch64_address
,
1880 typename Sized_relobj_file
<size
, big_endian
>::View_size
&);
1882 // Whether a section needs to be scanned for relocation stubs.
1884 section_needs_reloc_stub_scanning(const elfcpp::Shdr
<size
, big_endian
>&,
1885 const Relobj::Output_sections
&,
1886 const Symbol_table
*, const unsigned char*);
1888 // List of stub tables.
1889 Stub_table_list stub_tables_
;
1891 // Mapping symbol information sorted by (section index, section_offset).
1892 Mapping_symbol_info mapping_symbol_info_
;
1893 }; // End of AArch64_relobj
1896 // Override to record mapping symbol information.
1897 template<int size
, bool big_endian
>
1899 AArch64_relobj
<size
, big_endian
>::do_count_local_symbols(
1900 Stringpool_template
<char>* pool
, Stringpool_template
<char>* dynpool
)
1902 Sized_relobj_file
<size
, big_endian
>::do_count_local_symbols(pool
, dynpool
);
1904 // Only erratum-fixing work needs mapping symbols, so skip this time consuming
1905 // processing if not fixing erratum.
1906 if (!parameters
->options().fix_cortex_a53_843419()
1907 && !parameters
->options().fix_cortex_a53_835769())
1910 const unsigned int loccount
= this->local_symbol_count();
1914 // Read the symbol table section header.
1915 const unsigned int symtab_shndx
= this->symtab_shndx();
1916 elfcpp::Shdr
<size
, big_endian
>
1917 symtabshdr(this, this->elf_file()->section_header(symtab_shndx
));
1918 gold_assert(symtabshdr
.get_sh_type() == elfcpp::SHT_SYMTAB
);
1920 // Read the local symbols.
1921 const int sym_size
=elfcpp::Elf_sizes
<size
>::sym_size
;
1922 gold_assert(loccount
== symtabshdr
.get_sh_info());
1923 off_t locsize
= loccount
* sym_size
;
1924 const unsigned char* psyms
= this->get_view(symtabshdr
.get_sh_offset(),
1925 locsize
, true, true);
1927 // For mapping symbol processing, we need to read the symbol names.
1928 unsigned int strtab_shndx
= this->adjust_shndx(symtabshdr
.get_sh_link());
1929 if (strtab_shndx
>= this->shnum())
1931 this->error(_("invalid symbol table name index: %u"), strtab_shndx
);
1935 elfcpp::Shdr
<size
, big_endian
>
1936 strtabshdr(this, this->elf_file()->section_header(strtab_shndx
));
1937 if (strtabshdr
.get_sh_type() != elfcpp::SHT_STRTAB
)
1939 this->error(_("symbol table name section has wrong type: %u"),
1940 static_cast<unsigned int>(strtabshdr
.get_sh_type()));
1944 const char* pnames
=
1945 reinterpret_cast<const char*>(this->get_view(strtabshdr
.get_sh_offset(),
1946 strtabshdr
.get_sh_size(),
1949 // Skip the first dummy symbol.
1951 typename Sized_relobj_file
<size
, big_endian
>::Local_values
*
1952 plocal_values
= this->local_values();
1953 for (unsigned int i
= 1; i
< loccount
; ++i
, psyms
+= sym_size
)
1955 elfcpp::Sym
<size
, big_endian
> sym(psyms
);
1956 Symbol_value
<size
>& lv((*plocal_values
)[i
]);
1957 AArch64_address input_value
= lv
.input_value();
1959 // Check to see if this is a mapping symbol. AArch64 mapping symbols are
1960 // defined in "ELF for the ARM 64-bit Architecture", Table 4-4, Mapping
1962 // Mapping symbols could be one of the following 4 forms -
1967 const char* sym_name
= pnames
+ sym
.get_st_name();
1968 if (sym_name
[0] == '$' && (sym_name
[1] == 'x' || sym_name
[1] == 'd')
1969 && (sym_name
[2] == '\0' || sym_name
[2] == '.'))
1972 unsigned int input_shndx
=
1973 this->adjust_sym_shndx(i
, sym
.get_st_shndx(), &is_ordinary
);
1974 gold_assert(is_ordinary
);
1976 Mapping_symbol_position
msp(input_shndx
, input_value
);
1977 // Insert mapping_symbol_info into map whose ordering is defined by
1978 // (shndx, offset_within_section).
1979 this->mapping_symbol_info_
[msp
] = sym_name
[1];
1985 // Fix all errata in the object and for each erratum, we relocate the
1986 // corresponding erratum stub (by calling Stub_table::relocate_erratum_stub).
1988 template<int size
, bool big_endian
>
1990 AArch64_relobj
<size
, big_endian
>::fix_errata_and_relocate_erratum_stubs(
1991 typename Sized_relobj_file
<size
, big_endian
>::Views
* pviews
)
1993 typedef typename
elfcpp::Swap
<32,big_endian
>::Valtype Insntype
;
1994 unsigned int shnum
= this->shnum();
1995 const Relobj::Output_sections
& out_sections(this->output_sections());
1996 for (unsigned int i
= 1; i
< shnum
; ++i
)
1998 The_stub_table
* stub_table
= this->stub_table(i
);
2001 std::pair
<Erratum_stub_set_iter
, Erratum_stub_set_iter
>
2002 ipair(stub_table
->find_erratum_stubs_for_input_section(this, i
));
2003 Erratum_stub_set_iter p
= ipair
.first
, end
= ipair
.second
;
2004 typename Sized_relobj_file
<size
, big_endian
>::View_size
&
2005 pview((*pviews
)[i
]);
2006 AArch64_address view_offset
= 0;
2007 if (pview
.is_input_output_view
)
2009 // In this case, write_sections has not added the output offset to
2010 // the view's address, so we must do so. Currently this only happens
2011 // for a relaxed section.
2012 unsigned int index
= this->adjust_shndx(i
);
2013 const Output_relaxed_input_section
* poris
=
2014 out_sections
[index
]->find_relaxed_input_section(this, index
);
2015 gold_assert(poris
!= NULL
);
2016 view_offset
= poris
->address() - pview
.address
;
2021 The_erratum_stub
* stub
= *p
;
2023 // Double check data before fix.
2024 gold_assert(pview
.address
+ view_offset
+ stub
->sh_offset()
2025 == stub
->erratum_address());
2027 // Update previously recorded erratum insn with relocated
2030 reinterpret_cast<Insntype
*>(
2031 pview
.view
+ view_offset
+ stub
->sh_offset());
2032 Insntype insn_to_fix
= ip
[0];
2033 stub
->update_erratum_insn(insn_to_fix
);
2035 // First try to see if erratum is 843419 and if it can be fixed
2036 // without using branch-to-stub.
2037 if (!try_fix_erratum_843419_optimized(stub
, view_offset
, pview
))
2039 // Replace the erratum insn with a branch-to-stub.
2040 AArch64_address stub_address
=
2041 stub_table
->erratum_stub_address(stub
);
2042 unsigned int b_offset
= stub_address
- stub
->erratum_address();
2043 AArch64_relocate_functions
<size
, big_endian
>::construct_b(
2044 pview
.view
+ view_offset
+ stub
->sh_offset(),
2045 b_offset
& 0xfffffff);
2048 // Erratum fix is done (or skipped), continue to relocate erratum
2049 // stub. Note, when erratum fix is skipped (either because we
2050 // proactively change the code sequence or the code sequence is
2051 // changed by relaxation, etc), we can still safely relocate the
2052 // erratum stub, ignoring the fact the erratum could never be
2054 stub_table
->relocate_erratum_stub(
2056 pview
.view
+ (stub_table
->address() - pview
.address
));
2058 // Next erratum stub.
2065 // This is an optimization for 843419. This erratum requires the sequence begin
2066 // with 'adrp', when final value calculated by adrp fits in adr, we can just
2067 // replace 'adrp' with 'adr', so we save 2 jumps per occurrence. (Note, however,
2068 // in this case, we do not delete the erratum stub (too late to do so), it is
2069 // merely generated without ever being called.)
2071 template<int size
, bool big_endian
>
2073 AArch64_relobj
<size
, big_endian
>::try_fix_erratum_843419_optimized(
2074 The_erratum_stub
* stub
, AArch64_address view_offset
,
2075 typename Sized_relobj_file
<size
, big_endian
>::View_size
& pview
)
2077 if (stub
->type() != ST_E_843419
)
2080 typedef AArch64_insn_utilities
<big_endian
> Insn_utilities
;
2081 typedef typename
elfcpp::Swap
<32,big_endian
>::Valtype Insntype
;
2082 E843419_stub
<size
, big_endian
>* e843419_stub
=
2083 reinterpret_cast<E843419_stub
<size
, big_endian
>*>(stub
);
2084 AArch64_address pc
=
2085 pview
.address
+ view_offset
+ e843419_stub
->adrp_sh_offset();
2086 unsigned int adrp_offset
= e843419_stub
->adrp_sh_offset ();
2087 Insntype
* adrp_view
=
2088 reinterpret_cast<Insntype
*>(pview
.view
+ view_offset
+ adrp_offset
);
2089 Insntype adrp_insn
= adrp_view
[0];
2091 // If the instruction at adrp_sh_offset is "mrs R, tpidr_el0", it may come
2092 // from IE -> LE relaxation etc. This is a side-effect of TLS relaxation that
2093 // ADRP has been turned into MRS, there is no erratum risk anymore.
2094 // Therefore, we return true to avoid doing unnecessary branch-to-stub.
2095 if (Insn_utilities::is_mrs_tpidr_el0(adrp_insn
))
2098 // If the instruction at adrp_sh_offset is not ADRP and the instruction before
2099 // it is "mrs R, tpidr_el0", it may come from LD -> LE relaxation etc.
2100 // Like the above case, there is no erratum risk any more, we can safely
2102 if (!Insn_utilities::is_adrp(adrp_insn
) && adrp_offset
)
2104 Insntype
* prev_view
=
2105 reinterpret_cast<Insntype
*>(
2106 pview
.view
+ view_offset
+ adrp_offset
- 4);
2107 Insntype prev_insn
= prev_view
[0];
2109 if (Insn_utilities::is_mrs_tpidr_el0(prev_insn
))
2113 /* If we reach here, the first instruction must be ADRP. */
2114 gold_assert(Insn_utilities::is_adrp(adrp_insn
));
2115 // Get adrp 33-bit signed imm value.
2116 int64_t adrp_imm
= Insn_utilities::
2117 aarch64_adrp_decode_imm(adrp_insn
);
2118 // adrp - final value transferred to target register is calculated as:
2119 // PC[11:0] = Zeros(12)
2120 // adrp_dest_value = PC + adrp_imm;
2121 int64_t adrp_dest_value
= (pc
& ~((1 << 12) - 1)) + adrp_imm
;
2122 // adr -final value transferred to target register is calucalted as:
2125 // PC + adr_imm = adrp_dest_value
2127 // adr_imm = adrp_dest_value - PC
2128 int64_t adr_imm
= adrp_dest_value
- pc
;
2129 // Check if imm fits in adr (21-bit signed).
2130 if (-(1 << 20) <= adr_imm
&& adr_imm
< (1 << 20))
2132 // Convert 'adrp' into 'adr'.
2133 Insntype adr_insn
= adrp_insn
& ((1u << 31) - 1);
2134 adr_insn
= Insn_utilities::
2135 aarch64_adr_encode_imm(adr_insn
, adr_imm
);
2136 elfcpp::Swap
<32, big_endian
>::writeval(adrp_view
, adr_insn
);
2143 // Relocate sections.
2145 template<int size
, bool big_endian
>
2147 AArch64_relobj
<size
, big_endian
>::do_relocate_sections(
2148 const Symbol_table
* symtab
, const Layout
* layout
,
2149 const unsigned char* pshdrs
, Output_file
* of
,
2150 typename Sized_relobj_file
<size
, big_endian
>::Views
* pviews
)
2152 // Relocate the section data.
2153 this->relocate_section_range(symtab
, layout
, pshdrs
, of
, pviews
,
2154 1, this->shnum() - 1);
2156 // We do not generate stubs if doing a relocatable link.
2157 if (parameters
->options().relocatable())
2160 // This part only relocates erratum stubs that belong to input sections of this
2162 if (parameters
->options().fix_cortex_a53_843419()
2163 || parameters
->options().fix_cortex_a53_835769())
2164 this->fix_errata_and_relocate_erratum_stubs(pviews
);
2166 Relocate_info
<size
, big_endian
> relinfo
;
2167 relinfo
.symtab
= symtab
;
2168 relinfo
.layout
= layout
;
2169 relinfo
.object
= this;
2171 // This part relocates all reloc stubs that are contained in stub_tables of
2172 // this object file.
2173 unsigned int shnum
= this->shnum();
2174 The_target_aarch64
* target
= The_target_aarch64::current_target();
2176 for (unsigned int i
= 1; i
< shnum
; ++i
)
2178 The_aarch64_input_section
* aarch64_input_section
=
2179 target
->find_aarch64_input_section(this, i
);
2180 if (aarch64_input_section
!= NULL
2181 && aarch64_input_section
->is_stub_table_owner()
2182 && !aarch64_input_section
->stub_table()->empty())
2184 Output_section
* os
= this->output_section(i
);
2185 gold_assert(os
!= NULL
);
2187 relinfo
.reloc_shndx
= elfcpp::SHN_UNDEF
;
2188 relinfo
.reloc_shdr
= NULL
;
2189 relinfo
.data_shndx
= i
;
2190 relinfo
.data_shdr
= pshdrs
+ i
* elfcpp::Elf_sizes
<size
>::shdr_size
;
2192 typename Sized_relobj_file
<size
, big_endian
>::View_size
&
2193 view_struct
= (*pviews
)[i
];
2194 gold_assert(view_struct
.view
!= NULL
);
2196 The_stub_table
* stub_table
= aarch64_input_section
->stub_table();
2197 off_t offset
= stub_table
->address() - view_struct
.address
;
2198 unsigned char* view
= view_struct
.view
+ offset
;
2199 AArch64_address address
= stub_table
->address();
2200 section_size_type view_size
= stub_table
->data_size();
2201 stub_table
->relocate_reloc_stubs(&relinfo
, target
, os
, view
, address
,
2208 // Determine if an input section is scannable for stub processing. SHDR is
2209 // the header of the section and SHNDX is the section index. OS is the output
2210 // section for the input section and SYMTAB is the global symbol table used to
2211 // look up ICF information.
2213 template<int size
, bool big_endian
>
2215 AArch64_relobj
<size
, big_endian
>::text_section_is_scannable(
2216 const elfcpp::Shdr
<size
, big_endian
>& text_shdr
,
2217 unsigned int text_shndx
,
2218 const Output_section
* os
,
2219 const Symbol_table
* symtab
)
2221 // Skip any empty sections, unallocated sections or sections whose
2222 // type are not SHT_PROGBITS.
2223 if (text_shdr
.get_sh_size() == 0
2224 || (text_shdr
.get_sh_flags() & elfcpp::SHF_ALLOC
) == 0
2225 || text_shdr
.get_sh_type() != elfcpp::SHT_PROGBITS
)
2228 // Skip any discarded or ICF'ed sections.
2229 if (os
== NULL
|| symtab
->is_section_folded(this, text_shndx
))
2232 // Skip exception frame.
2233 if (strcmp(os
->name(), ".eh_frame") == 0)
2236 gold_assert(!this->is_output_section_offset_invalid(text_shndx
) ||
2237 os
->find_relaxed_input_section(this, text_shndx
) != NULL
);
2243 // Determine if we want to scan the SHNDX-th section for relocation stubs.
2244 // This is a helper for AArch64_relobj::scan_sections_for_stubs().
2246 template<int size
, bool big_endian
>
2248 AArch64_relobj
<size
, big_endian
>::section_needs_reloc_stub_scanning(
2249 const elfcpp::Shdr
<size
, big_endian
>& shdr
,
2250 const Relobj::Output_sections
& out_sections
,
2251 const Symbol_table
* symtab
,
2252 const unsigned char* pshdrs
)
2254 unsigned int sh_type
= shdr
.get_sh_type();
2255 if (sh_type
!= elfcpp::SHT_RELA
)
2258 // Ignore empty section.
2259 off_t sh_size
= shdr
.get_sh_size();
2263 // Ignore reloc section with unexpected symbol table. The
2264 // error will be reported in the final link.
2265 if (this->adjust_shndx(shdr
.get_sh_link()) != this->symtab_shndx())
2268 gold_assert(sh_type
== elfcpp::SHT_RELA
);
2269 unsigned int reloc_size
= elfcpp::Elf_sizes
<size
>::rela_size
;
2271 // Ignore reloc section with unexpected entsize or uneven size.
2272 // The error will be reported in the final link.
2273 if (reloc_size
!= shdr
.get_sh_entsize() || sh_size
% reloc_size
!= 0)
2276 // Ignore reloc section with bad info. This error will be
2277 // reported in the final link.
2278 unsigned int text_shndx
= this->adjust_shndx(shdr
.get_sh_info());
2279 if (text_shndx
>= this->shnum())
2282 const unsigned int shdr_size
= elfcpp::Elf_sizes
<size
>::shdr_size
;
2283 const elfcpp::Shdr
<size
, big_endian
> text_shdr(pshdrs
+
2284 text_shndx
* shdr_size
);
2285 return this->text_section_is_scannable(text_shdr
, text_shndx
,
2286 out_sections
[text_shndx
], symtab
);
2290 // Scan section SHNDX for erratum 843419 and 835769.
2292 template<int size
, bool big_endian
>
2294 AArch64_relobj
<size
, big_endian
>::scan_errata(
2295 unsigned int shndx
, const elfcpp::Shdr
<size
, big_endian
>& shdr
,
2296 Output_section
* os
, const Symbol_table
* symtab
,
2297 The_target_aarch64
* target
)
2299 if (shdr
.get_sh_size() == 0
2300 || (shdr
.get_sh_flags() &
2301 (elfcpp::SHF_ALLOC
| elfcpp::SHF_EXECINSTR
)) == 0
2302 || shdr
.get_sh_type() != elfcpp::SHT_PROGBITS
)
2305 if (!os
|| symtab
->is_section_folded(this, shndx
)) return;
2307 AArch64_address output_offset
= this->get_output_section_offset(shndx
);
2308 AArch64_address output_address
;
2309 if (output_offset
!= invalid_address
)
2310 output_address
= os
->address() + output_offset
;
2313 const Output_relaxed_input_section
* poris
=
2314 os
->find_relaxed_input_section(this, shndx
);
2316 output_address
= poris
->address();
2319 // Update the addresses in previously generated erratum stubs. Unlike when
2320 // we scan relocations for stubs, if section addresses have changed due to
2321 // other relaxations we are unlikely to scan the same erratum instances
2323 The_stub_table
* stub_table
= this->stub_table(shndx
);
2326 std::pair
<Erratum_stub_set_iter
, Erratum_stub_set_iter
>
2327 ipair(stub_table
->find_erratum_stubs_for_input_section(this, shndx
));
2328 for (Erratum_stub_set_iter p
= ipair
.first
; p
!= ipair
.second
; ++p
)
2329 (*p
)->update_erratum_address(output_address
);
2332 section_size_type input_view_size
= 0;
2333 const unsigned char* input_view
=
2334 this->section_contents(shndx
, &input_view_size
, false);
2336 Mapping_symbol_position
section_start(shndx
, 0);
2337 // Find the first mapping symbol record within section shndx.
2338 typename
Mapping_symbol_info::const_iterator p
=
2339 this->mapping_symbol_info_
.lower_bound(section_start
);
2340 while (p
!= this->mapping_symbol_info_
.end() &&
2341 p
->first
.shndx_
== shndx
)
2343 typename
Mapping_symbol_info::const_iterator prev
= p
;
2345 if (prev
->second
== 'x')
2347 section_size_type span_start
=
2348 convert_to_section_size_type(prev
->first
.offset_
);
2349 section_size_type span_end
;
2350 if (p
!= this->mapping_symbol_info_
.end()
2351 && p
->first
.shndx_
== shndx
)
2352 span_end
= convert_to_section_size_type(p
->first
.offset_
);
2354 span_end
= convert_to_section_size_type(shdr
.get_sh_size());
2356 // Here we do not share the scanning code of both errata. For 843419,
2357 // only the last few insns of each page are examined, which is fast,
2358 // whereas, for 835769, every insn pair needs to be checked.
2360 if (parameters
->options().fix_cortex_a53_843419())
2361 target
->scan_erratum_843419_span(
2362 this, shndx
, span_start
, span_end
,
2363 const_cast<unsigned char*>(input_view
), output_address
);
2365 if (parameters
->options().fix_cortex_a53_835769())
2366 target
->scan_erratum_835769_span(
2367 this, shndx
, span_start
, span_end
,
2368 const_cast<unsigned char*>(input_view
), output_address
);
2374 // Scan relocations for stub generation.
2376 template<int size
, bool big_endian
>
2378 AArch64_relobj
<size
, big_endian
>::scan_sections_for_stubs(
2379 The_target_aarch64
* target
,
2380 const Symbol_table
* symtab
,
2381 const Layout
* layout
)
2383 unsigned int shnum
= this->shnum();
2384 const unsigned int shdr_size
= elfcpp::Elf_sizes
<size
>::shdr_size
;
2386 // Read the section headers.
2387 const unsigned char* pshdrs
= this->get_view(this->elf_file()->shoff(),
2391 // To speed up processing, we set up hash tables for fast lookup of
2392 // input offsets to output addresses.
2393 this->initialize_input_to_output_maps();
2395 const Relobj::Output_sections
& out_sections(this->output_sections());
2397 Relocate_info
<size
, big_endian
> relinfo
;
2398 relinfo
.symtab
= symtab
;
2399 relinfo
.layout
= layout
;
2400 relinfo
.object
= this;
2402 // Do relocation stubs scanning.
2403 const unsigned char* p
= pshdrs
+ shdr_size
;
2404 for (unsigned int i
= 1; i
< shnum
; ++i
, p
+= shdr_size
)
2406 const elfcpp::Shdr
<size
, big_endian
> shdr(p
);
2407 if (parameters
->options().fix_cortex_a53_843419()
2408 || parameters
->options().fix_cortex_a53_835769())
2409 scan_errata(i
, shdr
, out_sections
[i
], symtab
, target
);
2410 if (this->section_needs_reloc_stub_scanning(shdr
, out_sections
, symtab
,
2413 unsigned int index
= this->adjust_shndx(shdr
.get_sh_info());
2414 AArch64_address output_offset
=
2415 this->get_output_section_offset(index
);
2416 AArch64_address output_address
;
2417 if (output_offset
!= invalid_address
)
2419 output_address
= out_sections
[index
]->address() + output_offset
;
2423 // Currently this only happens for a relaxed section.
2424 const Output_relaxed_input_section
* poris
=
2425 out_sections
[index
]->find_relaxed_input_section(this, index
);
2426 gold_assert(poris
!= NULL
);
2427 output_address
= poris
->address();
2430 // Get the relocations.
2431 const unsigned char* prelocs
= this->get_view(shdr
.get_sh_offset(),
2435 // Get the section contents.
2436 section_size_type input_view_size
= 0;
2437 const unsigned char* input_view
=
2438 this->section_contents(index
, &input_view_size
, false);
2440 relinfo
.reloc_shndx
= i
;
2441 relinfo
.data_shndx
= index
;
2442 unsigned int sh_type
= shdr
.get_sh_type();
2443 unsigned int reloc_size
;
2444 gold_assert (sh_type
== elfcpp::SHT_RELA
);
2445 reloc_size
= elfcpp::Elf_sizes
<size
>::rela_size
;
2447 Output_section
* os
= out_sections
[index
];
2448 target
->scan_section_for_stubs(&relinfo
, sh_type
, prelocs
,
2449 shdr
.get_sh_size() / reloc_size
,
2451 output_offset
== invalid_address
,
2452 input_view
, output_address
,
2459 // A class to wrap an ordinary input section containing executable code.
2461 template<int size
, bool big_endian
>
2462 class AArch64_input_section
: public Output_relaxed_input_section
2465 typedef Stub_table
<size
, big_endian
> The_stub_table
;
2467 AArch64_input_section(Relobj
* relobj
, unsigned int shndx
)
2468 : Output_relaxed_input_section(relobj
, shndx
, 1),
2470 original_contents_(NULL
), original_size_(0),
2471 original_addralign_(1)
2474 ~AArch64_input_section()
2475 { delete[] this->original_contents_
; }
2481 // Set the stub_table.
2483 set_stub_table(The_stub_table
* st
)
2484 { this->stub_table_
= st
; }
2486 // Whether this is a stub table owner.
2488 is_stub_table_owner() const
2489 { return this->stub_table_
!= NULL
&& this->stub_table_
->owner() == this; }
2491 // Return the original size of the section.
2493 original_size() const
2494 { return this->original_size_
; }
2496 // Return the stub table.
2499 { return stub_table_
; }
2502 // Write out this input section.
2504 do_write(Output_file
*);
2506 // Return required alignment of this.
2508 do_addralign() const
2510 if (this->is_stub_table_owner())
2511 return std::max(this->stub_table_
->addralign(),
2512 static_cast<uint64_t>(this->original_addralign_
));
2514 return this->original_addralign_
;
2517 // Finalize data size.
2519 set_final_data_size();
2521 // Reset address and file offset.
2523 do_reset_address_and_file_offset();
2527 do_output_offset(const Relobj
* object
, unsigned int shndx
,
2528 section_offset_type offset
,
2529 section_offset_type
* poutput
) const
2531 if ((object
== this->relobj())
2532 && (shndx
== this->shndx())
2535 convert_types
<section_offset_type
, uint32_t>(this->original_size_
)))
2545 // Copying is not allowed.
2546 AArch64_input_section(const AArch64_input_section
&);
2547 AArch64_input_section
& operator=(const AArch64_input_section
&);
2549 // The relocation stubs.
2550 The_stub_table
* stub_table_
;
2551 // Original section contents. We have to make a copy here since the file
2552 // containing the original section may not be locked when we need to access
2554 unsigned char* original_contents_
;
2555 // Section size of the original input section.
2556 uint32_t original_size_
;
2557 // Address alignment of the original input section.
2558 uint32_t original_addralign_
;
2559 }; // End of AArch64_input_section
2562 // Finalize data size.
2564 template<int size
, bool big_endian
>
2566 AArch64_input_section
<size
, big_endian
>::set_final_data_size()
2568 off_t off
= convert_types
<off_t
, uint64_t>(this->original_size_
);
2570 if (this->is_stub_table_owner())
2572 this->stub_table_
->finalize_data_size();
2573 off
= align_address(off
, this->stub_table_
->addralign());
2574 off
+= this->stub_table_
->data_size();
2576 this->set_data_size(off
);
2580 // Reset address and file offset.
2582 template<int size
, bool big_endian
>
2584 AArch64_input_section
<size
, big_endian
>::do_reset_address_and_file_offset()
2586 // Size of the original input section contents.
2587 off_t off
= convert_types
<off_t
, uint64_t>(this->original_size_
);
2589 // If this is a stub table owner, account for the stub table size.
2590 if (this->is_stub_table_owner())
2592 The_stub_table
* stub_table
= this->stub_table_
;
2594 // Reset the stub table's address and file offset. The
2595 // current data size for child will be updated after that.
2596 stub_table_
->reset_address_and_file_offset();
2597 off
= align_address(off
, stub_table_
->addralign());
2598 off
+= stub_table
->current_data_size();
2601 this->set_current_data_size(off
);
2605 // Initialize an Arm_input_section.
2607 template<int size
, bool big_endian
>
2609 AArch64_input_section
<size
, big_endian
>::init()
2611 Relobj
* relobj
= this->relobj();
2612 unsigned int shndx
= this->shndx();
2614 // We have to cache original size, alignment and contents to avoid locking
2615 // the original file.
2616 this->original_addralign_
=
2617 convert_types
<uint32_t, uint64_t>(relobj
->section_addralign(shndx
));
2619 // This is not efficient but we expect only a small number of relaxed
2620 // input sections for stubs.
2621 section_size_type section_size
;
2622 const unsigned char* section_contents
=
2623 relobj
->section_contents(shndx
, §ion_size
, false);
2624 this->original_size_
=
2625 convert_types
<uint32_t, uint64_t>(relobj
->section_size(shndx
));
2627 gold_assert(this->original_contents_
== NULL
);
2628 this->original_contents_
= new unsigned char[section_size
];
2629 memcpy(this->original_contents_
, section_contents
, section_size
);
2631 // We want to make this look like the original input section after
2632 // output sections are finalized.
2633 Output_section
* os
= relobj
->output_section(shndx
);
2634 off_t offset
= relobj
->output_section_offset(shndx
);
2635 gold_assert(os
!= NULL
&& !relobj
->is_output_section_offset_invalid(shndx
));
2636 this->set_address(os
->address() + offset
);
2637 this->set_file_offset(os
->offset() + offset
);
2638 this->set_current_data_size(this->original_size_
);
2639 this->finalize_data_size();
2643 // Write data to output file.
2645 template<int size
, bool big_endian
>
2647 AArch64_input_section
<size
, big_endian
>::do_write(Output_file
* of
)
2649 // We have to write out the original section content.
2650 gold_assert(this->original_contents_
!= NULL
);
2651 of
->write(this->offset(), this->original_contents_
,
2652 this->original_size_
);
2654 // If this owns a stub table and it is not empty, write it.
2655 if (this->is_stub_table_owner() && !this->stub_table_
->empty())
2656 this->stub_table_
->write(of
);
2660 // Arm output section class. This is defined mainly to add a number of stub
2661 // generation methods.
2663 template<int size
, bool big_endian
>
2664 class AArch64_output_section
: public Output_section
2667 typedef Target_aarch64
<size
, big_endian
> The_target_aarch64
;
2668 typedef AArch64_relobj
<size
, big_endian
> The_aarch64_relobj
;
2669 typedef Stub_table
<size
, big_endian
> The_stub_table
;
2670 typedef AArch64_input_section
<size
, big_endian
> The_aarch64_input_section
;
2673 AArch64_output_section(const char* name
, elfcpp::Elf_Word type
,
2674 elfcpp::Elf_Xword flags
)
2675 : Output_section(name
, type
, flags
)
2678 ~AArch64_output_section() {}
2680 // Group input sections for stub generation.
2682 group_sections(section_size_type
, bool, Target_aarch64
<size
, big_endian
>*,
2686 typedef Output_section::Input_section Input_section
;
2687 typedef Output_section::Input_section_list Input_section_list
;
2689 // Create a stub group.
2691 create_stub_group(Input_section_list::const_iterator
,
2692 Input_section_list::const_iterator
,
2693 Input_section_list::const_iterator
,
2694 The_target_aarch64
*,
2695 std::vector
<Output_relaxed_input_section
*>&,
2697 }; // End of AArch64_output_section
2700 // Create a stub group for input sections from FIRST to LAST. OWNER points to
2701 // the input section that will be the owner of the stub table.
2703 template<int size
, bool big_endian
> void
2704 AArch64_output_section
<size
, big_endian
>::create_stub_group(
2705 Input_section_list::const_iterator first
,
2706 Input_section_list::const_iterator last
,
2707 Input_section_list::const_iterator owner
,
2708 The_target_aarch64
* target
,
2709 std::vector
<Output_relaxed_input_section
*>& new_relaxed_sections
,
2712 // Currently we convert ordinary input sections into relaxed sections only
2714 The_aarch64_input_section
* input_section
;
2715 if (owner
->is_relaxed_input_section())
2719 gold_assert(owner
->is_input_section());
2720 // Create a new relaxed input section. We need to lock the original
2722 Task_lock_obj
<Object
> tl(task
, owner
->relobj());
2724 target
->new_aarch64_input_section(owner
->relobj(), owner
->shndx());
2725 new_relaxed_sections
.push_back(input_section
);
2728 // Create a stub table.
2729 The_stub_table
* stub_table
=
2730 target
->new_stub_table(input_section
);
2732 input_section
->set_stub_table(stub_table
);
2734 Input_section_list::const_iterator p
= first
;
2735 // Look for input sections or relaxed input sections in [first ... last].
2738 if (p
->is_input_section() || p
->is_relaxed_input_section())
2740 // The stub table information for input sections live
2741 // in their objects.
2742 The_aarch64_relobj
* aarch64_relobj
=
2743 static_cast<The_aarch64_relobj
*>(p
->relobj());
2744 aarch64_relobj
->set_stub_table(p
->shndx(), stub_table
);
2747 while (p
++ != last
);
2751 // Group input sections for stub generation. GROUP_SIZE is roughly the limit of
2752 // stub groups. We grow a stub group by adding input section until the size is
2753 // just below GROUP_SIZE. The last input section will be converted into a stub
2754 // table owner. If STUB_ALWAYS_AFTER_BRANCH is false, we also add input sectiond
2755 // after the stub table, effectively doubling the group size.
2757 // This is similar to the group_sections() function in elf32-arm.c but is
2758 // implemented differently.
2760 template<int size
, bool big_endian
>
2761 void AArch64_output_section
<size
, big_endian
>::group_sections(
2762 section_size_type group_size
,
2763 bool stubs_always_after_branch
,
2764 Target_aarch64
<size
, big_endian
>* target
,
2770 FINDING_STUB_SECTION
,
2774 std::vector
<Output_relaxed_input_section
*> new_relaxed_sections
;
2776 State state
= NO_GROUP
;
2777 section_size_type off
= 0;
2778 section_size_type group_begin_offset
= 0;
2779 section_size_type group_end_offset
= 0;
2780 section_size_type stub_table_end_offset
= 0;
2781 Input_section_list::const_iterator group_begin
=
2782 this->input_sections().end();
2783 Input_section_list::const_iterator stub_table
=
2784 this->input_sections().end();
2785 Input_section_list::const_iterator group_end
= this->input_sections().end();
2786 for (Input_section_list::const_iterator p
= this->input_sections().begin();
2787 p
!= this->input_sections().end();
2790 section_size_type section_begin_offset
=
2791 align_address(off
, p
->addralign());
2792 section_size_type section_end_offset
=
2793 section_begin_offset
+ p
->data_size();
2795 // Check to see if we should group the previously seen sections.
2801 case FINDING_STUB_SECTION
:
2802 // Adding this section makes the group larger than GROUP_SIZE.
2803 if (section_end_offset
- group_begin_offset
>= group_size
)
2805 if (stubs_always_after_branch
)
2807 gold_assert(group_end
!= this->input_sections().end());
2808 this->create_stub_group(group_begin
, group_end
, group_end
,
2809 target
, new_relaxed_sections
,
2815 // Input sections up to stub_group_size bytes after the stub
2816 // table can be handled by it too.
2817 state
= HAS_STUB_SECTION
;
2818 stub_table
= group_end
;
2819 stub_table_end_offset
= group_end_offset
;
2824 case HAS_STUB_SECTION
:
2825 // Adding this section makes the post stub-section group larger
2828 // NOT SUPPORTED YET. For completeness only.
2829 if (section_end_offset
- stub_table_end_offset
>= group_size
)
2831 gold_assert(group_end
!= this->input_sections().end());
2832 this->create_stub_group(group_begin
, group_end
, stub_table
,
2833 target
, new_relaxed_sections
, task
);
2842 // If we see an input section and currently there is no group, start
2843 // a new one. Skip any empty sections. We look at the data size
2844 // instead of calling p->relobj()->section_size() to avoid locking.
2845 if ((p
->is_input_section() || p
->is_relaxed_input_section())
2846 && (p
->data_size() != 0))
2848 if (state
== NO_GROUP
)
2850 state
= FINDING_STUB_SECTION
;
2852 group_begin_offset
= section_begin_offset
;
2855 // Keep track of the last input section seen.
2857 group_end_offset
= section_end_offset
;
2860 off
= section_end_offset
;
2863 // Create a stub group for any ungrouped sections.
2864 if (state
== FINDING_STUB_SECTION
|| state
== HAS_STUB_SECTION
)
2866 gold_assert(group_end
!= this->input_sections().end());
2867 this->create_stub_group(group_begin
, group_end
,
2868 (state
== FINDING_STUB_SECTION
2871 target
, new_relaxed_sections
, task
);
2874 if (!new_relaxed_sections
.empty())
2875 this->convert_input_sections_to_relaxed_sections(new_relaxed_sections
);
2877 // Update the section offsets
2878 for (size_t i
= 0; i
< new_relaxed_sections
.size(); ++i
)
2880 The_aarch64_relobj
* relobj
= static_cast<The_aarch64_relobj
*>(
2881 new_relaxed_sections
[i
]->relobj());
2882 unsigned int shndx
= new_relaxed_sections
[i
]->shndx();
2883 // Tell AArch64_relobj that this input section is converted.
2884 relobj
->convert_input_section_to_relaxed_section(shndx
);
2886 } // End of AArch64_output_section::group_sections
2889 AArch64_reloc_property_table
* aarch64_reloc_property_table
= NULL
;
2892 // The aarch64 target class.
2894 // http://infocenter.arm.com/help/topic/com.arm.doc.ihi0056b/IHI0056B_aaelf64.pdf
2895 template<int size
, bool big_endian
>
2896 class Target_aarch64
: public Sized_target
<size
, big_endian
>
2899 typedef Target_aarch64
<size
, big_endian
> This
;
2900 typedef Output_data_reloc
<elfcpp::SHT_RELA
, true, size
, big_endian
>
2902 typedef Relocate_info
<size
, big_endian
> The_relocate_info
;
2903 typedef typename
elfcpp::Elf_types
<size
>::Elf_Addr Address
;
2904 typedef AArch64_relobj
<size
, big_endian
> The_aarch64_relobj
;
2905 typedef Reloc_stub
<size
, big_endian
> The_reloc_stub
;
2906 typedef Erratum_stub
<size
, big_endian
> The_erratum_stub
;
2907 typedef typename Reloc_stub
<size
, big_endian
>::Key The_reloc_stub_key
;
2908 typedef Stub_table
<size
, big_endian
> The_stub_table
;
2909 typedef std::vector
<The_stub_table
*> Stub_table_list
;
2910 typedef typename
Stub_table_list::iterator Stub_table_iterator
;
2911 typedef AArch64_input_section
<size
, big_endian
> The_aarch64_input_section
;
2912 typedef AArch64_output_section
<size
, big_endian
> The_aarch64_output_section
;
2913 typedef Unordered_map
<Section_id
,
2914 AArch64_input_section
<size
, big_endian
>*,
2915 Section_id_hash
> AArch64_input_section_map
;
2916 typedef AArch64_insn_utilities
<big_endian
> Insn_utilities
;
2917 const static int TCB_SIZE
= size
/ 8 * 2;
2919 Target_aarch64(const Target::Target_info
* info
= &aarch64_info
)
2920 : Sized_target
<size
, big_endian
>(info
),
2921 got_(NULL
), plt_(NULL
), got_plt_(NULL
), got_irelative_(NULL
),
2922 got_tlsdesc_(NULL
), global_offset_table_(NULL
), rela_dyn_(NULL
),
2923 rela_irelative_(NULL
), copy_relocs_(elfcpp::R_AARCH64_COPY
),
2924 got_mod_index_offset_(-1U),
2925 tlsdesc_reloc_info_(), tls_base_symbol_defined_(false),
2926 stub_tables_(), stub_group_size_(0), aarch64_input_section_map_()
2929 // Scan the relocations to determine unreferenced sections for
2930 // garbage collection.
2932 gc_process_relocs(Symbol_table
* symtab
,
2934 Sized_relobj_file
<size
, big_endian
>* object
,
2935 unsigned int data_shndx
,
2936 unsigned int sh_type
,
2937 const unsigned char* prelocs
,
2939 Output_section
* output_section
,
2940 bool needs_special_offset_handling
,
2941 size_t local_symbol_count
,
2942 const unsigned char* plocal_symbols
);
2944 // Scan the relocations to look for symbol adjustments.
2946 scan_relocs(Symbol_table
* symtab
,
2948 Sized_relobj_file
<size
, big_endian
>* object
,
2949 unsigned int data_shndx
,
2950 unsigned int sh_type
,
2951 const unsigned char* prelocs
,
2953 Output_section
* output_section
,
2954 bool needs_special_offset_handling
,
2955 size_t local_symbol_count
,
2956 const unsigned char* plocal_symbols
);
2958 // Finalize the sections.
2960 do_finalize_sections(Layout
*, const Input_objects
*, Symbol_table
*);
2962 // Return the value to use for a dynamic which requires special
2965 do_dynsym_value(const Symbol
*) const;
2967 // Relocate a section.
2969 relocate_section(const Relocate_info
<size
, big_endian
>*,
2970 unsigned int sh_type
,
2971 const unsigned char* prelocs
,
2973 Output_section
* output_section
,
2974 bool needs_special_offset_handling
,
2975 unsigned char* view
,
2976 typename
elfcpp::Elf_types
<size
>::Elf_Addr view_address
,
2977 section_size_type view_size
,
2978 const Reloc_symbol_changes
*);
2980 // Scan the relocs during a relocatable link.
2982 scan_relocatable_relocs(Symbol_table
* symtab
,
2984 Sized_relobj_file
<size
, big_endian
>* object
,
2985 unsigned int data_shndx
,
2986 unsigned int sh_type
,
2987 const unsigned char* prelocs
,
2989 Output_section
* output_section
,
2990 bool needs_special_offset_handling
,
2991 size_t local_symbol_count
,
2992 const unsigned char* plocal_symbols
,
2993 Relocatable_relocs
*);
2995 // Scan the relocs for --emit-relocs.
2997 emit_relocs_scan(Symbol_table
* symtab
,
2999 Sized_relobj_file
<size
, big_endian
>* object
,
3000 unsigned int data_shndx
,
3001 unsigned int sh_type
,
3002 const unsigned char* prelocs
,
3004 Output_section
* output_section
,
3005 bool needs_special_offset_handling
,
3006 size_t local_symbol_count
,
3007 const unsigned char* plocal_syms
,
3008 Relocatable_relocs
* rr
);
3010 // Relocate a section during a relocatable link.
3013 const Relocate_info
<size
, big_endian
>*,
3014 unsigned int sh_type
,
3015 const unsigned char* prelocs
,
3017 Output_section
* output_section
,
3018 typename
elfcpp::Elf_types
<size
>::Elf_Off offset_in_output_section
,
3019 unsigned char* view
,
3020 typename
elfcpp::Elf_types
<size
>::Elf_Addr view_address
,
3021 section_size_type view_size
,
3022 unsigned char* reloc_view
,
3023 section_size_type reloc_view_size
);
3025 // Return the symbol index to use for a target specific relocation.
3026 // The only target specific relocation is R_AARCH64_TLSDESC for a
3027 // local symbol, which is an absolute reloc.
3029 do_reloc_symbol_index(void*, unsigned int r_type
) const
3031 gold_assert(r_type
== elfcpp::R_AARCH64_TLSDESC
);
3035 // Return the addend to use for a target specific relocation.
3037 do_reloc_addend(void* arg
, unsigned int r_type
, uint64_t addend
) const;
3039 // Return the PLT section.
3041 do_plt_address_for_global(const Symbol
* gsym
) const
3042 { return this->plt_section()->address_for_global(gsym
); }
3045 do_plt_address_for_local(const Relobj
* relobj
, unsigned int symndx
) const
3046 { return this->plt_section()->address_for_local(relobj
, symndx
); }
3048 // This function should be defined in targets that can use relocation
3049 // types to determine (implemented in local_reloc_may_be_function_pointer
3050 // and global_reloc_may_be_function_pointer)
3051 // if a function's pointer is taken. ICF uses this in safe mode to only
3052 // fold those functions whose pointer is defintely not taken.
3054 do_can_check_for_function_pointers() const
3057 // Return the number of entries in the PLT.
3059 plt_entry_count() const;
3061 //Return the offset of the first non-reserved PLT entry.
3063 first_plt_entry_offset() const;
3065 // Return the size of each PLT entry.
3067 plt_entry_size() const;
3069 // Create a stub table.
3071 new_stub_table(The_aarch64_input_section
*);
3073 // Create an aarch64 input section.
3074 The_aarch64_input_section
*
3075 new_aarch64_input_section(Relobj
*, unsigned int);
3077 // Find an aarch64 input section instance for a given OBJ and SHNDX.
3078 The_aarch64_input_section
*
3079 find_aarch64_input_section(Relobj
*, unsigned int) const;
3081 // Return the thread control block size.
3083 tcb_size() const { return This::TCB_SIZE
; }
3085 // Scan a section for stub generation.
3087 scan_section_for_stubs(const Relocate_info
<size
, big_endian
>*, unsigned int,
3088 const unsigned char*, size_t, Output_section
*,
3089 bool, const unsigned char*,
3093 // Scan a relocation section for stub.
3094 template<int sh_type
>
3096 scan_reloc_section_for_stubs(
3097 const The_relocate_info
* relinfo
,
3098 const unsigned char* prelocs
,
3100 Output_section
* output_section
,
3101 bool needs_special_offset_handling
,
3102 const unsigned char* view
,
3103 Address view_address
,
3106 // Relocate a single reloc stub.
3108 relocate_reloc_stub(The_reloc_stub
*, const Relocate_info
<size
, big_endian
>*,
3109 Output_section
*, unsigned char*, Address
,
3112 // Get the default AArch64 target.
3116 gold_assert(parameters
->target().machine_code() == elfcpp::EM_AARCH64
3117 && parameters
->target().get_size() == size
3118 && parameters
->target().is_big_endian() == big_endian
);
3119 return static_cast<This
*>(parameters
->sized_target
<size
, big_endian
>());
3123 // Scan erratum 843419 for a part of a section.
3125 scan_erratum_843419_span(
3126 AArch64_relobj
<size
, big_endian
>*,
3128 const section_size_type
,
3129 const section_size_type
,
3133 // Scan erratum 835769 for a part of a section.
3135 scan_erratum_835769_span(
3136 AArch64_relobj
<size
, big_endian
>*,
3138 const section_size_type
,
3139 const section_size_type
,
3145 do_select_as_default_target()
3147 gold_assert(aarch64_reloc_property_table
== NULL
);
3148 aarch64_reloc_property_table
= new AArch64_reloc_property_table();
3151 // Add a new reloc argument, returning the index in the vector.
3153 add_tlsdesc_info(Sized_relobj_file
<size
, big_endian
>* object
,
3156 this->tlsdesc_reloc_info_
.push_back(Tlsdesc_info(object
, r_sym
));
3157 return this->tlsdesc_reloc_info_
.size() - 1;
3160 virtual Output_data_plt_aarch64
<size
, big_endian
>*
3161 do_make_data_plt(Layout
* layout
,
3162 Output_data_got_aarch64
<size
, big_endian
>* got
,
3163 Output_data_space
* got_plt
,
3164 Output_data_space
* got_irelative
)
3166 return new Output_data_plt_aarch64_standard
<size
, big_endian
>(
3167 layout
, got
, got_plt
, got_irelative
);
3171 // do_make_elf_object to override the same function in the base class.
3173 do_make_elf_object(const std::string
&, Input_file
*, off_t
,
3174 const elfcpp::Ehdr
<size
, big_endian
>&);
3176 Output_data_plt_aarch64
<size
, big_endian
>*
3177 make_data_plt(Layout
* layout
,
3178 Output_data_got_aarch64
<size
, big_endian
>* got
,
3179 Output_data_space
* got_plt
,
3180 Output_data_space
* got_irelative
)
3182 return this->do_make_data_plt(layout
, got
, got_plt
, got_irelative
);
3185 // We only need to generate stubs, and hence perform relaxation if we are
3186 // not doing relocatable linking.
3188 do_may_relax() const
3189 { return !parameters
->options().relocatable(); }
3191 // Relaxation hook. This is where we do stub generation.
3193 do_relax(int, const Input_objects
*, Symbol_table
*, Layout
*, const Task
*);
3196 group_sections(Layout
* layout
,
3197 section_size_type group_size
,
3198 bool stubs_always_after_branch
,
3202 scan_reloc_for_stub(const The_relocate_info
*, unsigned int,
3203 const Sized_symbol
<size
>*, unsigned int,
3204 const Symbol_value
<size
>*,
3205 typename
elfcpp::Elf_types
<size
>::Elf_Swxword
,
3208 // Make an output section.
3210 do_make_output_section(const char* name
, elfcpp::Elf_Word type
,
3211 elfcpp::Elf_Xword flags
)
3212 { return new The_aarch64_output_section(name
, type
, flags
); }
3215 // The class which scans relocations.
3220 : issued_non_pic_error_(false)
3224 local(Symbol_table
* symtab
, Layout
* layout
, Target_aarch64
* target
,
3225 Sized_relobj_file
<size
, big_endian
>* object
,
3226 unsigned int data_shndx
,
3227 Output_section
* output_section
,
3228 const elfcpp::Rela
<size
, big_endian
>& reloc
, unsigned int r_type
,
3229 const elfcpp::Sym
<size
, big_endian
>& lsym
,
3233 global(Symbol_table
* symtab
, Layout
* layout
, Target_aarch64
* target
,
3234 Sized_relobj_file
<size
, big_endian
>* object
,
3235 unsigned int data_shndx
,
3236 Output_section
* output_section
,
3237 const elfcpp::Rela
<size
, big_endian
>& reloc
, unsigned int r_type
,
3241 local_reloc_may_be_function_pointer(Symbol_table
* , Layout
* ,
3242 Target_aarch64
<size
, big_endian
>* ,
3243 Sized_relobj_file
<size
, big_endian
>* ,
3246 const elfcpp::Rela
<size
, big_endian
>& ,
3247 unsigned int r_type
,
3248 const elfcpp::Sym
<size
, big_endian
>&);
3251 global_reloc_may_be_function_pointer(Symbol_table
* , Layout
* ,
3252 Target_aarch64
<size
, big_endian
>* ,
3253 Sized_relobj_file
<size
, big_endian
>* ,
3256 const elfcpp::Rela
<size
, big_endian
>& ,
3257 unsigned int r_type
,
3262 unsupported_reloc_local(Sized_relobj_file
<size
, big_endian
>*,
3263 unsigned int r_type
);
3266 unsupported_reloc_global(Sized_relobj_file
<size
, big_endian
>*,
3267 unsigned int r_type
, Symbol
*);
3270 possible_function_pointer_reloc(unsigned int r_type
);
3273 check_non_pic(Relobj
*, unsigned int r_type
);
3276 reloc_needs_plt_for_ifunc(Sized_relobj_file
<size
, big_endian
>*,
3277 unsigned int r_type
);
3279 // Whether we have issued an error about a non-PIC compilation.
3280 bool issued_non_pic_error_
;
3283 // The class which implements relocation.
3288 : skip_call_tls_get_addr_(false)
3294 // Do a relocation. Return false if the caller should not issue
3295 // any warnings about this relocation.
3297 relocate(const Relocate_info
<size
, big_endian
>*, unsigned int,
3298 Target_aarch64
*, Output_section
*, size_t, const unsigned char*,
3299 const Sized_symbol
<size
>*, const Symbol_value
<size
>*,
3300 unsigned char*, typename
elfcpp::Elf_types
<size
>::Elf_Addr
,
3304 inline typename AArch64_relocate_functions
<size
, big_endian
>::Status
3305 relocate_tls(const Relocate_info
<size
, big_endian
>*,
3306 Target_aarch64
<size
, big_endian
>*,
3308 const elfcpp::Rela
<size
, big_endian
>&,
3309 unsigned int r_type
, const Sized_symbol
<size
>*,
3310 const Symbol_value
<size
>*,
3312 typename
elfcpp::Elf_types
<size
>::Elf_Addr
);
3314 inline typename AArch64_relocate_functions
<size
, big_endian
>::Status
3316 const Relocate_info
<size
, big_endian
>*,
3317 Target_aarch64
<size
, big_endian
>*,
3318 const elfcpp::Rela
<size
, big_endian
>&,
3321 const Symbol_value
<size
>*);
3323 inline typename AArch64_relocate_functions
<size
, big_endian
>::Status
3325 const Relocate_info
<size
, big_endian
>*,
3326 Target_aarch64
<size
, big_endian
>*,
3327 const elfcpp::Rela
<size
, big_endian
>&,
3330 const Symbol_value
<size
>*);
3332 inline typename AArch64_relocate_functions
<size
, big_endian
>::Status
3334 const Relocate_info
<size
, big_endian
>*,
3335 Target_aarch64
<size
, big_endian
>*,
3336 const elfcpp::Rela
<size
, big_endian
>&,
3339 const Symbol_value
<size
>*);
3341 inline typename AArch64_relocate_functions
<size
, big_endian
>::Status
3343 const Relocate_info
<size
, big_endian
>*,
3344 Target_aarch64
<size
, big_endian
>*,
3345 const elfcpp::Rela
<size
, big_endian
>&,
3348 const Symbol_value
<size
>*);
3350 inline typename AArch64_relocate_functions
<size
, big_endian
>::Status
3352 const Relocate_info
<size
, big_endian
>*,
3353 Target_aarch64
<size
, big_endian
>*,
3354 const elfcpp::Rela
<size
, big_endian
>&,
3357 const Symbol_value
<size
>*,
3358 typename
elfcpp::Elf_types
<size
>::Elf_Addr
,
3359 typename
elfcpp::Elf_types
<size
>::Elf_Addr
);
3361 bool skip_call_tls_get_addr_
;
3363 }; // End of class Relocate
3365 // Adjust TLS relocation type based on the options and whether this
3366 // is a local symbol.
3367 static tls::Tls_optimization
3368 optimize_tls_reloc(bool is_final
, int r_type
);
3370 // Get the GOT section, creating it if necessary.
3371 Output_data_got_aarch64
<size
, big_endian
>*
3372 got_section(Symbol_table
*, Layout
*);
3374 // Get the GOT PLT section.
3376 got_plt_section() const
3378 gold_assert(this->got_plt_
!= NULL
);
3379 return this->got_plt_
;
3382 // Get the GOT section for TLSDESC entries.
3383 Output_data_got
<size
, big_endian
>*
3384 got_tlsdesc_section() const
3386 gold_assert(this->got_tlsdesc_
!= NULL
);
3387 return this->got_tlsdesc_
;
3390 // Create the PLT section.
3392 make_plt_section(Symbol_table
* symtab
, Layout
* layout
);
3394 // Create a PLT entry for a global symbol.
3396 make_plt_entry(Symbol_table
*, Layout
*, Symbol
*);
3398 // Create a PLT entry for a local STT_GNU_IFUNC symbol.
3400 make_local_ifunc_plt_entry(Symbol_table
*, Layout
*,
3401 Sized_relobj_file
<size
, big_endian
>* relobj
,
3402 unsigned int local_sym_index
);
3404 // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
3406 define_tls_base_symbol(Symbol_table
*, Layout
*);
3408 // Create the reserved PLT and GOT entries for the TLS descriptor resolver.
3410 reserve_tlsdesc_entries(Symbol_table
* symtab
, Layout
* layout
);
3412 // Create a GOT entry for the TLS module index.
3414 got_mod_index_entry(Symbol_table
* symtab
, Layout
* layout
,
3415 Sized_relobj_file
<size
, big_endian
>* object
);
3417 // Get the PLT section.
3418 Output_data_plt_aarch64
<size
, big_endian
>*
3421 gold_assert(this->plt_
!= NULL
);
3425 // Helper method to create erratum stubs for ST_E_843419 and ST_E_835769. For
3426 // ST_E_843419, we need an additional field for adrp offset.
3427 void create_erratum_stub(
3428 AArch64_relobj
<size
, big_endian
>* relobj
,
3430 section_size_type erratum_insn_offset
,
3431 Address erratum_address
,
3432 typename
Insn_utilities::Insntype erratum_insn
,
3434 unsigned int e843419_adrp_offset
=0);
3436 // Return whether this is a 3-insn erratum sequence.
3437 bool is_erratum_843419_sequence(
3438 typename
elfcpp::Swap
<32,big_endian
>::Valtype insn1
,
3439 typename
elfcpp::Swap
<32,big_endian
>::Valtype insn2
,
3440 typename
elfcpp::Swap
<32,big_endian
>::Valtype insn3
);
3442 // Return whether this is a 835769 sequence.
3443 // (Similarly implemented as in elfnn-aarch64.c.)
3444 bool is_erratum_835769_sequence(
3445 typename
elfcpp::Swap
<32,big_endian
>::Valtype
,
3446 typename
elfcpp::Swap
<32,big_endian
>::Valtype
);
3448 // Get the dynamic reloc section, creating it if necessary.
3450 rela_dyn_section(Layout
*);
3452 // Get the section to use for TLSDESC relocations.
3454 rela_tlsdesc_section(Layout
*) const;
3456 // Get the section to use for IRELATIVE relocations.
3458 rela_irelative_section(Layout
*);
3460 // Add a potential copy relocation.
3462 copy_reloc(Symbol_table
* symtab
, Layout
* layout
,
3463 Sized_relobj_file
<size
, big_endian
>* object
,
3464 unsigned int shndx
, Output_section
* output_section
,
3465 Symbol
* sym
, const elfcpp::Rela
<size
, big_endian
>& reloc
)
3467 unsigned int r_type
= elfcpp::elf_r_type
<size
>(reloc
.get_r_info());
3468 this->copy_relocs_
.copy_reloc(symtab
, layout
,
3469 symtab
->get_sized_symbol
<size
>(sym
),
3470 object
, shndx
, output_section
,
3471 r_type
, reloc
.get_r_offset(),
3472 reloc
.get_r_addend(),
3473 this->rela_dyn_section(layout
));
3476 // Information about this specific target which we pass to the
3477 // general Target structure.
3478 static const Target::Target_info aarch64_info
;
3480 // The types of GOT entries needed for this platform.
3481 // These values are exposed to the ABI in an incremental link.
3482 // Do not renumber existing values without changing the version
3483 // number of the .gnu_incremental_inputs section.
3486 GOT_TYPE_STANDARD
= 0, // GOT entry for a regular symbol
3487 GOT_TYPE_TLS_OFFSET
= 1, // GOT entry for TLS offset
3488 GOT_TYPE_TLS_PAIR
= 2, // GOT entry for TLS module/offset pair
3489 GOT_TYPE_TLS_DESC
= 3 // GOT entry for TLS_DESC pair
3492 // This type is used as the argument to the target specific
3493 // relocation routines. The only target specific reloc is
3494 // R_AARCh64_TLSDESC against a local symbol.
3497 Tlsdesc_info(Sized_relobj_file
<size
, big_endian
>* a_object
,
3498 unsigned int a_r_sym
)
3499 : object(a_object
), r_sym(a_r_sym
)
3502 // The object in which the local symbol is defined.
3503 Sized_relobj_file
<size
, big_endian
>* object
;
3504 // The local symbol index in the object.
3509 Output_data_got_aarch64
<size
, big_endian
>* got_
;
3511 Output_data_plt_aarch64
<size
, big_endian
>* plt_
;
3512 // The GOT PLT section.
3513 Output_data_space
* got_plt_
;
3514 // The GOT section for IRELATIVE relocations.
3515 Output_data_space
* got_irelative_
;
3516 // The GOT section for TLSDESC relocations.
3517 Output_data_got
<size
, big_endian
>* got_tlsdesc_
;
3518 // The _GLOBAL_OFFSET_TABLE_ symbol.
3519 Symbol
* global_offset_table_
;
3520 // The dynamic reloc section.
3521 Reloc_section
* rela_dyn_
;
3522 // The section to use for IRELATIVE relocs.
3523 Reloc_section
* rela_irelative_
;
3524 // Relocs saved to avoid a COPY reloc.
3525 Copy_relocs
<elfcpp::SHT_RELA
, size
, big_endian
> copy_relocs_
;
3526 // Offset of the GOT entry for the TLS module index.
3527 unsigned int got_mod_index_offset_
;
3528 // We handle R_AARCH64_TLSDESC against a local symbol as a target
3529 // specific relocation. Here we store the object and local symbol
3530 // index for the relocation.
3531 std::vector
<Tlsdesc_info
> tlsdesc_reloc_info_
;
3532 // True if the _TLS_MODULE_BASE_ symbol has been defined.
3533 bool tls_base_symbol_defined_
;
3534 // List of stub_tables
3535 Stub_table_list stub_tables_
;
3536 // Actual stub group size
3537 section_size_type stub_group_size_
;
3538 AArch64_input_section_map aarch64_input_section_map_
;
3539 }; // End of Target_aarch64
3543 const Target::Target_info Target_aarch64
<64, false>::aarch64_info
=
3546 false, // is_big_endian
3547 elfcpp::EM_AARCH64
, // machine_code
3548 false, // has_make_symbol
3549 false, // has_resolve
3550 false, // has_code_fill
3551 false, // is_default_stack_executable
3552 true, // can_icf_inline_merge_sections
3554 "/lib/ld.so.1", // program interpreter
3555 0x400000, // default_text_segment_address
3556 0x10000, // abi_pagesize (overridable by -z max-page-size)
3557 0x1000, // common_pagesize (overridable by -z common-page-size)
3558 false, // isolate_execinstr
3560 elfcpp::SHN_UNDEF
, // small_common_shndx
3561 elfcpp::SHN_UNDEF
, // large_common_shndx
3562 0, // small_common_section_flags
3563 0, // large_common_section_flags
3564 NULL
, // attributes_section
3565 NULL
, // attributes_vendor
3566 "_start", // entry_symbol_name
3567 32, // hash_entry_size
3568 elfcpp::SHT_PROGBITS
, // unwind_section_type
3572 const Target::Target_info Target_aarch64
<32, false>::aarch64_info
=
3575 false, // is_big_endian
3576 elfcpp::EM_AARCH64
, // machine_code
3577 false, // has_make_symbol
3578 false, // has_resolve
3579 false, // has_code_fill
3580 false, // is_default_stack_executable
3581 false, // can_icf_inline_merge_sections
3583 "/lib/ld.so.1", // program interpreter
3584 0x400000, // default_text_segment_address
3585 0x10000, // abi_pagesize (overridable by -z max-page-size)
3586 0x1000, // common_pagesize (overridable by -z common-page-size)
3587 false, // isolate_execinstr
3589 elfcpp::SHN_UNDEF
, // small_common_shndx
3590 elfcpp::SHN_UNDEF
, // large_common_shndx
3591 0, // small_common_section_flags
3592 0, // large_common_section_flags
3593 NULL
, // attributes_section
3594 NULL
, // attributes_vendor
3595 "_start", // entry_symbol_name
3596 32, // hash_entry_size
3597 elfcpp::SHT_PROGBITS
, // unwind_section_type
3601 const Target::Target_info Target_aarch64
<64, true>::aarch64_info
=
3604 true, // is_big_endian
3605 elfcpp::EM_AARCH64
, // machine_code
3606 false, // has_make_symbol
3607 false, // has_resolve
3608 false, // has_code_fill
3609 false, // is_default_stack_executable
3610 true, // can_icf_inline_merge_sections
3612 "/lib/ld.so.1", // program interpreter
3613 0x400000, // default_text_segment_address
3614 0x10000, // abi_pagesize (overridable by -z max-page-size)
3615 0x1000, // common_pagesize (overridable by -z common-page-size)
3616 false, // isolate_execinstr
3618 elfcpp::SHN_UNDEF
, // small_common_shndx
3619 elfcpp::SHN_UNDEF
, // large_common_shndx
3620 0, // small_common_section_flags
3621 0, // large_common_section_flags
3622 NULL
, // attributes_section
3623 NULL
, // attributes_vendor
3624 "_start", // entry_symbol_name
3625 32, // hash_entry_size
3626 elfcpp::SHT_PROGBITS
, // unwind_section_type
3630 const Target::Target_info Target_aarch64
<32, true>::aarch64_info
=
3633 true, // is_big_endian
3634 elfcpp::EM_AARCH64
, // machine_code
3635 false, // has_make_symbol
3636 false, // has_resolve
3637 false, // has_code_fill
3638 false, // is_default_stack_executable
3639 false, // can_icf_inline_merge_sections
3641 "/lib/ld.so.1", // program interpreter
3642 0x400000, // default_text_segment_address
3643 0x10000, // abi_pagesize (overridable by -z max-page-size)
3644 0x1000, // common_pagesize (overridable by -z common-page-size)
3645 false, // isolate_execinstr
3647 elfcpp::SHN_UNDEF
, // small_common_shndx
3648 elfcpp::SHN_UNDEF
, // large_common_shndx
3649 0, // small_common_section_flags
3650 0, // large_common_section_flags
3651 NULL
, // attributes_section
3652 NULL
, // attributes_vendor
3653 "_start", // entry_symbol_name
3654 32, // hash_entry_size
3655 elfcpp::SHT_PROGBITS
, // unwind_section_type
3658 // Get the GOT section, creating it if necessary.
3660 template<int size
, bool big_endian
>
3661 Output_data_got_aarch64
<size
, big_endian
>*
3662 Target_aarch64
<size
, big_endian
>::got_section(Symbol_table
* symtab
,
3665 if (this->got_
== NULL
)
3667 gold_assert(symtab
!= NULL
&& layout
!= NULL
);
3669 // When using -z now, we can treat .got.plt as a relro section.
3670 // Without -z now, it is modified after program startup by lazy
3672 bool is_got_plt_relro
= parameters
->options().now();
3673 Output_section_order got_order
= (is_got_plt_relro
3675 : ORDER_RELRO_LAST
);
3676 Output_section_order got_plt_order
= (is_got_plt_relro
3678 : ORDER_NON_RELRO_FIRST
);
3680 // Layout of .got and .got.plt sections.
3681 // .got[0] &_DYNAMIC <-_GLOBAL_OFFSET_TABLE_
3683 // .gotplt[0] reserved for ld.so (&linkmap) <--DT_PLTGOT
3684 // .gotplt[1] reserved for ld.so (resolver)
3685 // .gotplt[2] reserved
3687 // Generate .got section.
3688 this->got_
= new Output_data_got_aarch64
<size
, big_endian
>(symtab
,
3690 layout
->add_output_section_data(".got", elfcpp::SHT_PROGBITS
,
3691 (elfcpp::SHF_ALLOC
| elfcpp::SHF_WRITE
),
3692 this->got_
, got_order
, true);
3693 // The first word of GOT is reserved for the address of .dynamic.
3694 // We put 0 here now. The value will be replaced later in
3695 // Output_data_got_aarch64::do_write.
3696 this->got_
->add_constant(0);
3698 // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
3699 // _GLOBAL_OFFSET_TABLE_ value points to the start of the .got section,
3700 // even if there is a .got.plt section.
3701 this->global_offset_table_
=
3702 symtab
->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL
,
3703 Symbol_table::PREDEFINED
,
3705 0, 0, elfcpp::STT_OBJECT
,
3707 elfcpp::STV_HIDDEN
, 0,
3710 // Generate .got.plt section.
3711 this->got_plt_
= new Output_data_space(size
/ 8, "** GOT PLT");
3712 layout
->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS
,
3714 | elfcpp::SHF_WRITE
),
3715 this->got_plt_
, got_plt_order
,
3718 // The first three entries are reserved.
3719 this->got_plt_
->set_current_data_size(
3720 AARCH64_GOTPLT_RESERVE_COUNT
* (size
/ 8));
3722 // If there are any IRELATIVE relocations, they get GOT entries
3723 // in .got.plt after the jump slot entries.
3724 this->got_irelative_
= new Output_data_space(size
/ 8,
3725 "** GOT IRELATIVE PLT");
3726 layout
->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS
,
3728 | elfcpp::SHF_WRITE
),
3729 this->got_irelative_
,
3733 // If there are any TLSDESC relocations, they get GOT entries in
3734 // .got.plt after the jump slot and IRELATIVE entries.
3735 this->got_tlsdesc_
= new Output_data_got
<size
, big_endian
>();
3736 layout
->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS
,
3738 | elfcpp::SHF_WRITE
),
3743 if (!is_got_plt_relro
)
3745 // Those bytes can go into the relro segment.
3746 layout
->increase_relro(
3747 AARCH64_GOTPLT_RESERVE_COUNT
* (size
/ 8));
3754 // Get the dynamic reloc section, creating it if necessary.
3756 template<int size
, bool big_endian
>
3757 typename Target_aarch64
<size
, big_endian
>::Reloc_section
*
3758 Target_aarch64
<size
, big_endian
>::rela_dyn_section(Layout
* layout
)
3760 if (this->rela_dyn_
== NULL
)
3762 gold_assert(layout
!= NULL
);
3763 this->rela_dyn_
= new Reloc_section(parameters
->options().combreloc());
3764 layout
->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA
,
3765 elfcpp::SHF_ALLOC
, this->rela_dyn_
,
3766 ORDER_DYNAMIC_RELOCS
, false);
3768 return this->rela_dyn_
;
3771 // Get the section to use for IRELATIVE relocs, creating it if
3772 // necessary. These go in .rela.dyn, but only after all other dynamic
3773 // relocations. They need to follow the other dynamic relocations so
3774 // that they can refer to global variables initialized by those
3777 template<int size
, bool big_endian
>
3778 typename Target_aarch64
<size
, big_endian
>::Reloc_section
*
3779 Target_aarch64
<size
, big_endian
>::rela_irelative_section(Layout
* layout
)
3781 if (this->rela_irelative_
== NULL
)
3783 // Make sure we have already created the dynamic reloc section.
3784 this->rela_dyn_section(layout
);
3785 this->rela_irelative_
= new Reloc_section(false);
3786 layout
->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA
,
3787 elfcpp::SHF_ALLOC
, this->rela_irelative_
,
3788 ORDER_DYNAMIC_RELOCS
, false);
3789 gold_assert(this->rela_dyn_
->output_section()
3790 == this->rela_irelative_
->output_section());
3792 return this->rela_irelative_
;
3796 // do_make_elf_object to override the same function in the base class. We need
3797 // to use a target-specific sub-class of Sized_relobj_file<size, big_endian> to
3798 // store backend specific information. Hence we need to have our own ELF object
3801 template<int size
, bool big_endian
>
3803 Target_aarch64
<size
, big_endian
>::do_make_elf_object(
3804 const std::string
& name
,
3805 Input_file
* input_file
,
3806 off_t offset
, const elfcpp::Ehdr
<size
, big_endian
>& ehdr
)
3808 int et
= ehdr
.get_e_type();
3809 // ET_EXEC files are valid input for --just-symbols/-R,
3810 // and we treat them as relocatable objects.
3811 if (et
== elfcpp::ET_EXEC
&& input_file
->just_symbols())
3812 return Sized_target
<size
, big_endian
>::do_make_elf_object(
3813 name
, input_file
, offset
, ehdr
);
3814 else if (et
== elfcpp::ET_REL
)
3816 AArch64_relobj
<size
, big_endian
>* obj
=
3817 new AArch64_relobj
<size
, big_endian
>(name
, input_file
, offset
, ehdr
);
3821 else if (et
== elfcpp::ET_DYN
)
3823 // Keep base implementation.
3824 Sized_dynobj
<size
, big_endian
>* obj
=
3825 new Sized_dynobj
<size
, big_endian
>(name
, input_file
, offset
, ehdr
);
3831 gold_error(_("%s: unsupported ELF file type %d"),
3838 // Scan a relocation for stub generation.
3840 template<int size
, bool big_endian
>
3842 Target_aarch64
<size
, big_endian
>::scan_reloc_for_stub(
3843 const Relocate_info
<size
, big_endian
>* relinfo
,
3844 unsigned int r_type
,
3845 const Sized_symbol
<size
>* gsym
,
3847 const Symbol_value
<size
>* psymval
,
3848 typename
elfcpp::Elf_types
<size
>::Elf_Swxword addend
,
3851 const AArch64_relobj
<size
, big_endian
>* aarch64_relobj
=
3852 static_cast<AArch64_relobj
<size
, big_endian
>*>(relinfo
->object
);
3854 Symbol_value
<size
> symval
;
3857 const AArch64_reloc_property
* arp
= aarch64_reloc_property_table
->
3858 get_reloc_property(r_type
);
3859 if (gsym
->use_plt_offset(arp
->reference_flags()))
3861 // This uses a PLT, change the symbol value.
3862 symval
.set_output_value(this->plt_address_for_global(gsym
));
3865 else if (gsym
->is_undefined())
3867 // There is no need to generate a stub symbol if the original symbol
3869 gold_debug(DEBUG_TARGET
,
3870 "stub: not creating a stub for undefined symbol %s in file %s",
3871 gsym
->name(), aarch64_relobj
->name().c_str());
3876 // Get the symbol value.
3877 typename Symbol_value
<size
>::Value value
= psymval
->value(aarch64_relobj
, 0);
3879 // Owing to pipelining, the PC relative branches below actually skip
3880 // two instructions when the branch offset is 0.
3881 Address destination
= static_cast<Address
>(-1);
3884 case elfcpp::R_AARCH64_CALL26
:
3885 case elfcpp::R_AARCH64_JUMP26
:
3886 destination
= value
+ addend
;
3892 int stub_type
= The_reloc_stub::
3893 stub_type_for_reloc(r_type
, address
, destination
);
3894 if (stub_type
== ST_NONE
)
3897 The_stub_table
* stub_table
= aarch64_relobj
->stub_table(relinfo
->data_shndx
);
3898 gold_assert(stub_table
!= NULL
);
3900 The_reloc_stub_key
key(stub_type
, gsym
, aarch64_relobj
, r_sym
, addend
);
3901 The_reloc_stub
* stub
= stub_table
->find_reloc_stub(key
);
3904 stub
= new The_reloc_stub(stub_type
);
3905 stub_table
->add_reloc_stub(stub
, key
);
3907 stub
->set_destination_address(destination
);
3908 } // End of Target_aarch64::scan_reloc_for_stub
3911 // This function scans a relocation section for stub generation.
3912 // The template parameter Relocate must be a class type which provides
3913 // a single function, relocate(), which implements the machine
3914 // specific part of a relocation.
3916 // BIG_ENDIAN is the endianness of the data. SH_TYPE is the section type:
3917 // SHT_REL or SHT_RELA.
3919 // PRELOCS points to the relocation data. RELOC_COUNT is the number
3920 // of relocs. OUTPUT_SECTION is the output section.
3921 // NEEDS_SPECIAL_OFFSET_HANDLING is true if input offsets need to be
3922 // mapped to output offsets.
3924 // VIEW is the section data, VIEW_ADDRESS is its memory address, and
3925 // VIEW_SIZE is the size. These refer to the input section, unless
3926 // NEEDS_SPECIAL_OFFSET_HANDLING is true, in which case they refer to
3927 // the output section.
3929 template<int size
, bool big_endian
>
3930 template<int sh_type
>
3932 Target_aarch64
<size
, big_endian
>::scan_reloc_section_for_stubs(
3933 const Relocate_info
<size
, big_endian
>* relinfo
,
3934 const unsigned char* prelocs
,
3936 Output_section
* /*output_section*/,
3937 bool /*needs_special_offset_handling*/,
3938 const unsigned char* /*view*/,
3939 Address view_address
,
3942 typedef typename Reloc_types
<sh_type
,size
,big_endian
>::Reloc Reltype
;
3944 const int reloc_size
=
3945 Reloc_types
<sh_type
,size
,big_endian
>::reloc_size
;
3946 AArch64_relobj
<size
, big_endian
>* object
=
3947 static_cast<AArch64_relobj
<size
, big_endian
>*>(relinfo
->object
);
3948 unsigned int local_count
= object
->local_symbol_count();
3950 gold::Default_comdat_behavior default_comdat_behavior
;
3951 Comdat_behavior comdat_behavior
= CB_UNDETERMINED
;
3953 for (size_t i
= 0; i
< reloc_count
; ++i
, prelocs
+= reloc_size
)
3955 Reltype
reloc(prelocs
);
3956 typename
elfcpp::Elf_types
<size
>::Elf_WXword r_info
= reloc
.get_r_info();
3957 unsigned int r_sym
= elfcpp::elf_r_sym
<size
>(r_info
);
3958 unsigned int r_type
= elfcpp::elf_r_type
<size
>(r_info
);
3959 if (r_type
!= elfcpp::R_AARCH64_CALL26
3960 && r_type
!= elfcpp::R_AARCH64_JUMP26
)
3963 section_offset_type offset
=
3964 convert_to_section_size_type(reloc
.get_r_offset());
3967 typename
elfcpp::Elf_types
<size
>::Elf_Swxword addend
=
3968 reloc
.get_r_addend();
3970 const Sized_symbol
<size
>* sym
;
3971 Symbol_value
<size
> symval
;
3972 const Symbol_value
<size
> *psymval
;
3973 bool is_defined_in_discarded_section
;
3975 const Symbol
* gsym
= NULL
;
3976 if (r_sym
< local_count
)
3979 psymval
= object
->local_symbol(r_sym
);
3981 // If the local symbol belongs to a section we are discarding,
3982 // and that section is a debug section, try to find the
3983 // corresponding kept section and map this symbol to its
3984 // counterpart in the kept section. The symbol must not
3985 // correspond to a section we are folding.
3987 shndx
= psymval
->input_shndx(&is_ordinary
);
3988 is_defined_in_discarded_section
=
3990 && shndx
!= elfcpp::SHN_UNDEF
3991 && !object
->is_section_included(shndx
)
3992 && !relinfo
->symtab
->is_section_folded(object
, shndx
));
3994 // We need to compute the would-be final value of this local
3996 if (!is_defined_in_discarded_section
)
3998 typedef Sized_relobj_file
<size
, big_endian
> ObjType
;
3999 if (psymval
->is_section_symbol())
4000 symval
.set_is_section_symbol();
4001 typename
ObjType::Compute_final_local_value_status status
=
4002 object
->compute_final_local_value(r_sym
, psymval
, &symval
,
4004 if (status
== ObjType::CFLV_OK
)
4006 // Currently we cannot handle a branch to a target in
4007 // a merged section. If this is the case, issue an error
4008 // and also free the merge symbol value.
4009 if (!symval
.has_output_value())
4011 const std::string
& section_name
=
4012 object
->section_name(shndx
);
4013 object
->error(_("cannot handle branch to local %u "
4014 "in a merged section %s"),
4015 r_sym
, section_name
.c_str());
4021 // We cannot determine the final value.
4028 gsym
= object
->global_symbol(r_sym
);
4029 gold_assert(gsym
!= NULL
);
4030 if (gsym
->is_forwarder())
4031 gsym
= relinfo
->symtab
->resolve_forwards(gsym
);
4033 sym
= static_cast<const Sized_symbol
<size
>*>(gsym
);
4034 if (sym
->has_symtab_index() && sym
->symtab_index() != -1U)
4035 symval
.set_output_symtab_index(sym
->symtab_index());
4037 symval
.set_no_output_symtab_entry();
4039 // We need to compute the would-be final value of this global
4041 const Symbol_table
* symtab
= relinfo
->symtab
;
4042 const Sized_symbol
<size
>* sized_symbol
=
4043 symtab
->get_sized_symbol
<size
>(gsym
);
4044 Symbol_table::Compute_final_value_status status
;
4045 typename
elfcpp::Elf_types
<size
>::Elf_Addr value
=
4046 symtab
->compute_final_value
<size
>(sized_symbol
, &status
);
4048 // Skip this if the symbol has not output section.
4049 if (status
== Symbol_table::CFVS_NO_OUTPUT_SECTION
)
4051 symval
.set_output_value(value
);
4053 if (gsym
->type() == elfcpp::STT_TLS
)
4054 symval
.set_is_tls_symbol();
4055 else if (gsym
->type() == elfcpp::STT_GNU_IFUNC
)
4056 symval
.set_is_ifunc_symbol();
4059 is_defined_in_discarded_section
=
4060 (gsym
->is_defined_in_discarded_section()
4061 && gsym
->is_undefined());
4065 Symbol_value
<size
> symval2
;
4066 if (is_defined_in_discarded_section
)
4068 std::string name
= object
->section_name(relinfo
->data_shndx
);
4070 if (comdat_behavior
== CB_UNDETERMINED
)
4071 comdat_behavior
= default_comdat_behavior
.get(name
.c_str());
4073 if (comdat_behavior
== CB_PRETEND
)
4076 typename
elfcpp::Elf_types
<size
>::Elf_Addr value
=
4077 object
->map_to_kept_section(shndx
, name
, &found
);
4079 symval2
.set_output_value(value
+ psymval
->input_value());
4081 symval2
.set_output_value(0);
4085 if (comdat_behavior
== CB_ERROR
)
4086 issue_discarded_error(relinfo
, i
, offset
, r_sym
, gsym
);
4087 symval2
.set_output_value(0);
4089 symval2
.set_no_output_symtab_entry();
4093 this->scan_reloc_for_stub(relinfo
, r_type
, sym
, r_sym
, psymval
,
4094 addend
, view_address
+ offset
);
4095 } // End of iterating relocs in a section
4096 } // End of Target_aarch64::scan_reloc_section_for_stubs
4099 // Scan an input section for stub generation.
4101 template<int size
, bool big_endian
>
4103 Target_aarch64
<size
, big_endian
>::scan_section_for_stubs(
4104 const Relocate_info
<size
, big_endian
>* relinfo
,
4105 unsigned int sh_type
,
4106 const unsigned char* prelocs
,
4108 Output_section
* output_section
,
4109 bool needs_special_offset_handling
,
4110 const unsigned char* view
,
4111 Address view_address
,
4112 section_size_type view_size
)
4114 gold_assert(sh_type
== elfcpp::SHT_RELA
);
4115 this->scan_reloc_section_for_stubs
<elfcpp::SHT_RELA
>(
4120 needs_special_offset_handling
,
4127 // Relocate a single reloc stub.
4129 template<int size
, bool big_endian
>
4130 void Target_aarch64
<size
, big_endian
>::
4131 relocate_reloc_stub(The_reloc_stub
* stub
,
4132 const The_relocate_info
*,
4134 unsigned char* view
,
4138 typedef AArch64_relocate_functions
<size
, big_endian
> The_reloc_functions
;
4139 typedef typename
The_reloc_functions::Status The_reloc_functions_status
;
4140 typedef typename
elfcpp::Swap
<32,big_endian
>::Valtype Insntype
;
4142 Insntype
* ip
= reinterpret_cast<Insntype
*>(view
);
4143 int insn_number
= stub
->insn_num();
4144 const uint32_t* insns
= stub
->insns();
4145 // Check the insns are really those stub insns.
4146 for (int i
= 0; i
< insn_number
; ++i
)
4148 Insntype insn
= elfcpp::Swap
<32,big_endian
>::readval(ip
+ i
);
4149 gold_assert(((uint32_t)insn
== insns
[i
]));
4152 Address dest
= stub
->destination_address();
4154 switch(stub
->type())
4156 case ST_ADRP_BRANCH
:
4158 // 1st reloc is ADR_PREL_PG_HI21
4159 The_reloc_functions_status status
=
4160 The_reloc_functions::adrp(view
, dest
, address
);
4161 // An error should never arise in the above step. If so, please
4162 // check 'aarch64_valid_for_adrp_p'.
4163 gold_assert(status
== The_reloc_functions::STATUS_OKAY
);
4165 // 2nd reloc is ADD_ABS_LO12_NC
4166 const AArch64_reloc_property
* arp
=
4167 aarch64_reloc_property_table
->get_reloc_property(
4168 elfcpp::R_AARCH64_ADD_ABS_LO12_NC
);
4169 gold_assert(arp
!= NULL
);
4170 status
= The_reloc_functions::template
4171 rela_general
<32>(view
+ 4, dest
, 0, arp
);
4172 // An error should never arise, it is an "_NC" relocation.
4173 gold_assert(status
== The_reloc_functions::STATUS_OKAY
);
4177 case ST_LONG_BRANCH_ABS
:
4178 // 1st reloc is R_AARCH64_PREL64, at offset 8
4179 elfcpp::Swap
<64,big_endian
>::writeval(view
+ 8, dest
);
4182 case ST_LONG_BRANCH_PCREL
:
4184 // "PC" calculation is the 2nd insn in the stub.
4185 uint64_t offset
= dest
- (address
+ 4);
4186 // Offset is placed at offset 4 and 5.
4187 elfcpp::Swap
<64,big_endian
>::writeval(view
+ 16, offset
);
4197 // A class to handle the PLT data.
4198 // This is an abstract base class that handles most of the linker details
4199 // but does not know the actual contents of PLT entries. The derived
4200 // classes below fill in those details.
4202 template<int size
, bool big_endian
>
4203 class Output_data_plt_aarch64
: public Output_section_data
4206 typedef Output_data_reloc
<elfcpp::SHT_RELA
, true, size
, big_endian
>
4208 typedef typename
elfcpp::Elf_types
<size
>::Elf_Addr Address
;
4210 Output_data_plt_aarch64(Layout
* layout
,
4212 Output_data_got_aarch64
<size
, big_endian
>* got
,
4213 Output_data_space
* got_plt
,
4214 Output_data_space
* got_irelative
)
4215 : Output_section_data(addralign
), tlsdesc_rel_(NULL
), irelative_rel_(NULL
),
4216 got_(got
), got_plt_(got_plt
), got_irelative_(got_irelative
),
4217 count_(0), irelative_count_(0), tlsdesc_got_offset_(-1U)
4218 { this->init(layout
); }
4220 // Initialize the PLT section.
4222 init(Layout
* layout
);
4224 // Add an entry to the PLT.
4226 add_entry(Symbol_table
*, Layout
*, Symbol
* gsym
);
4228 // Add an entry to the PLT for a local STT_GNU_IFUNC symbol.
4230 add_local_ifunc_entry(Symbol_table
* symtab
, Layout
*,
4231 Sized_relobj_file
<size
, big_endian
>* relobj
,
4232 unsigned int local_sym_index
);
4234 // Add the relocation for a PLT entry.
4236 add_relocation(Symbol_table
*, Layout
*, Symbol
* gsym
,
4237 unsigned int got_offset
);
4239 // Add the reserved TLSDESC_PLT entry to the PLT.
4241 reserve_tlsdesc_entry(unsigned int got_offset
)
4242 { this->tlsdesc_got_offset_
= got_offset
; }
4244 // Return true if a TLSDESC_PLT entry has been reserved.
4246 has_tlsdesc_entry() const
4247 { return this->tlsdesc_got_offset_
!= -1U; }
4249 // Return the GOT offset for the reserved TLSDESC_PLT entry.
4251 get_tlsdesc_got_offset() const
4252 { return this->tlsdesc_got_offset_
; }
4254 // Return the PLT offset of the reserved TLSDESC_PLT entry.
4256 get_tlsdesc_plt_offset() const
4258 return (this->first_plt_entry_offset() +
4259 (this->count_
+ this->irelative_count_
)
4260 * this->get_plt_entry_size());
4263 // Return the .rela.plt section data.
4266 { return this->rel_
; }
4268 // Return where the TLSDESC relocations should go.
4270 rela_tlsdesc(Layout
*);
4272 // Return where the IRELATIVE relocations should go in the PLT
4275 rela_irelative(Symbol_table
*, Layout
*);
4277 // Return whether we created a section for IRELATIVE relocations.
4279 has_irelative_section() const
4280 { return this->irelative_rel_
!= NULL
; }
4282 // Return the number of PLT entries.
4285 { return this->count_
+ this->irelative_count_
; }
4287 // Return the offset of the first non-reserved PLT entry.
4289 first_plt_entry_offset() const
4290 { return this->do_first_plt_entry_offset(); }
4292 // Return the size of a PLT entry.
4294 get_plt_entry_size() const
4295 { return this->do_get_plt_entry_size(); }
4297 // Return the reserved tlsdesc entry size.
4299 get_plt_tlsdesc_entry_size() const
4300 { return this->do_get_plt_tlsdesc_entry_size(); }
4302 // Return the PLT address to use for a global symbol.
4304 address_for_global(const Symbol
*);
4306 // Return the PLT address to use for a local symbol.
4308 address_for_local(const Relobj
*, unsigned int symndx
);
4311 // Fill in the first PLT entry.
4313 fill_first_plt_entry(unsigned char* pov
,
4314 Address got_address
,
4315 Address plt_address
)
4316 { this->do_fill_first_plt_entry(pov
, got_address
, plt_address
); }
4318 // Fill in a normal PLT entry.
4320 fill_plt_entry(unsigned char* pov
,
4321 Address got_address
,
4322 Address plt_address
,
4323 unsigned int got_offset
,
4324 unsigned int plt_offset
)
4326 this->do_fill_plt_entry(pov
, got_address
, plt_address
,
4327 got_offset
, plt_offset
);
4330 // Fill in the reserved TLSDESC PLT entry.
4332 fill_tlsdesc_entry(unsigned char* pov
,
4333 Address gotplt_address
,
4334 Address plt_address
,
4336 unsigned int tlsdesc_got_offset
,
4337 unsigned int plt_offset
)
4339 this->do_fill_tlsdesc_entry(pov
, gotplt_address
, plt_address
, got_base
,
4340 tlsdesc_got_offset
, plt_offset
);
4343 virtual unsigned int
4344 do_first_plt_entry_offset() const = 0;
4346 virtual unsigned int
4347 do_get_plt_entry_size() const = 0;
4349 virtual unsigned int
4350 do_get_plt_tlsdesc_entry_size() const = 0;
4353 do_fill_first_plt_entry(unsigned char* pov
,
4355 Address plt_addr
) = 0;
4358 do_fill_plt_entry(unsigned char* pov
,
4359 Address got_address
,
4360 Address plt_address
,
4361 unsigned int got_offset
,
4362 unsigned int plt_offset
) = 0;
4365 do_fill_tlsdesc_entry(unsigned char* pov
,
4366 Address gotplt_address
,
4367 Address plt_address
,
4369 unsigned int tlsdesc_got_offset
,
4370 unsigned int plt_offset
) = 0;
4373 do_adjust_output_section(Output_section
* os
);
4375 // Write to a map file.
4377 do_print_to_mapfile(Mapfile
* mapfile
) const
4378 { mapfile
->print_output_data(this, _("** PLT")); }
4381 // Set the final size.
4383 set_final_data_size();
4385 // Write out the PLT data.
4387 do_write(Output_file
*);
4389 // The reloc section.
4390 Reloc_section
* rel_
;
4392 // The TLSDESC relocs, if necessary. These must follow the regular
4394 Reloc_section
* tlsdesc_rel_
;
4396 // The IRELATIVE relocs, if necessary. These must follow the
4397 // regular PLT relocations.
4398 Reloc_section
* irelative_rel_
;
4400 // The .got section.
4401 Output_data_got_aarch64
<size
, big_endian
>* got_
;
4403 // The .got.plt section.
4404 Output_data_space
* got_plt_
;
4406 // The part of the .got.plt section used for IRELATIVE relocs.
4407 Output_data_space
* got_irelative_
;
4409 // The number of PLT entries.
4410 unsigned int count_
;
4412 // Number of PLT entries with R_AARCH64_IRELATIVE relocs. These
4413 // follow the regular PLT entries.
4414 unsigned int irelative_count_
;
4416 // GOT offset of the reserved TLSDESC_GOT entry for the lazy trampoline.
4417 // Communicated to the loader via DT_TLSDESC_GOT. The magic value -1
4418 // indicates an offset is not allocated.
4419 unsigned int tlsdesc_got_offset_
;
4422 // Initialize the PLT section.
4424 template<int size
, bool big_endian
>
4426 Output_data_plt_aarch64
<size
, big_endian
>::init(Layout
* layout
)
4428 this->rel_
= new Reloc_section(false);
4429 layout
->add_output_section_data(".rela.plt", elfcpp::SHT_RELA
,
4430 elfcpp::SHF_ALLOC
, this->rel_
,
4431 ORDER_DYNAMIC_PLT_RELOCS
, false);
4434 template<int size
, bool big_endian
>
4436 Output_data_plt_aarch64
<size
, big_endian
>::do_adjust_output_section(
4439 os
->set_entsize(this->get_plt_entry_size());
4442 // Add an entry to the PLT.
4444 template<int size
, bool big_endian
>
4446 Output_data_plt_aarch64
<size
, big_endian
>::add_entry(Symbol_table
* symtab
,
4447 Layout
* layout
, Symbol
* gsym
)
4449 gold_assert(!gsym
->has_plt_offset());
4451 unsigned int* pcount
;
4452 unsigned int plt_reserved
;
4453 Output_section_data_build
* got
;
4455 if (gsym
->type() == elfcpp::STT_GNU_IFUNC
4456 && gsym
->can_use_relative_reloc(false))
4458 pcount
= &this->irelative_count_
;
4460 got
= this->got_irelative_
;
4464 pcount
= &this->count_
;
4465 plt_reserved
= this->first_plt_entry_offset();
4466 got
= this->got_plt_
;
4469 gsym
->set_plt_offset((*pcount
) * this->get_plt_entry_size()
4474 section_offset_type got_offset
= got
->current_data_size();
4476 // Every PLT entry needs a GOT entry which points back to the PLT
4477 // entry (this will be changed by the dynamic linker, normally
4478 // lazily when the function is called).
4479 got
->set_current_data_size(got_offset
+ size
/ 8);
4481 // Every PLT entry needs a reloc.
4482 this->add_relocation(symtab
, layout
, gsym
, got_offset
);
4484 // Note that we don't need to save the symbol. The contents of the
4485 // PLT are independent of which symbols are used. The symbols only
4486 // appear in the relocations.
4489 // Add an entry to the PLT for a local STT_GNU_IFUNC symbol. Return
4492 template<int size
, bool big_endian
>
4494 Output_data_plt_aarch64
<size
, big_endian
>::add_local_ifunc_entry(
4495 Symbol_table
* symtab
,
4497 Sized_relobj_file
<size
, big_endian
>* relobj
,
4498 unsigned int local_sym_index
)
4500 unsigned int plt_offset
= this->irelative_count_
* this->get_plt_entry_size();
4501 ++this->irelative_count_
;
4503 section_offset_type got_offset
= this->got_irelative_
->current_data_size();
4505 // Every PLT entry needs a GOT entry which points back to the PLT
4507 this->got_irelative_
->set_current_data_size(got_offset
+ size
/ 8);
4509 // Every PLT entry needs a reloc.
4510 Reloc_section
* rela
= this->rela_irelative(symtab
, layout
);
4511 rela
->add_symbolless_local_addend(relobj
, local_sym_index
,
4512 elfcpp::R_AARCH64_IRELATIVE
,
4513 this->got_irelative_
, got_offset
, 0);
4518 // Add the relocation for a PLT entry.
4520 template<int size
, bool big_endian
>
4522 Output_data_plt_aarch64
<size
, big_endian
>::add_relocation(
4523 Symbol_table
* symtab
, Layout
* layout
, Symbol
* gsym
, unsigned int got_offset
)
4525 if (gsym
->type() == elfcpp::STT_GNU_IFUNC
4526 && gsym
->can_use_relative_reloc(false))
4528 Reloc_section
* rela
= this->rela_irelative(symtab
, layout
);
4529 rela
->add_symbolless_global_addend(gsym
, elfcpp::R_AARCH64_IRELATIVE
,
4530 this->got_irelative_
, got_offset
, 0);
4534 gsym
->set_needs_dynsym_entry();
4535 this->rel_
->add_global(gsym
, elfcpp::R_AARCH64_JUMP_SLOT
, this->got_plt_
,
4540 // Return where the TLSDESC relocations should go, creating it if
4541 // necessary. These follow the JUMP_SLOT relocations.
4543 template<int size
, bool big_endian
>
4544 typename Output_data_plt_aarch64
<size
, big_endian
>::Reloc_section
*
4545 Output_data_plt_aarch64
<size
, big_endian
>::rela_tlsdesc(Layout
* layout
)
4547 if (this->tlsdesc_rel_
== NULL
)
4549 this->tlsdesc_rel_
= new Reloc_section(false);
4550 layout
->add_output_section_data(".rela.plt", elfcpp::SHT_RELA
,
4551 elfcpp::SHF_ALLOC
, this->tlsdesc_rel_
,
4552 ORDER_DYNAMIC_PLT_RELOCS
, false);
4553 gold_assert(this->tlsdesc_rel_
->output_section()
4554 == this->rel_
->output_section());
4556 return this->tlsdesc_rel_
;
4559 // Return where the IRELATIVE relocations should go in the PLT. These
4560 // follow the JUMP_SLOT and the TLSDESC relocations.
4562 template<int size
, bool big_endian
>
4563 typename Output_data_plt_aarch64
<size
, big_endian
>::Reloc_section
*
4564 Output_data_plt_aarch64
<size
, big_endian
>::rela_irelative(Symbol_table
* symtab
,
4567 if (this->irelative_rel_
== NULL
)
4569 // Make sure we have a place for the TLSDESC relocations, in
4570 // case we see any later on.
4571 this->rela_tlsdesc(layout
);
4572 this->irelative_rel_
= new Reloc_section(false);
4573 layout
->add_output_section_data(".rela.plt", elfcpp::SHT_RELA
,
4574 elfcpp::SHF_ALLOC
, this->irelative_rel_
,
4575 ORDER_DYNAMIC_PLT_RELOCS
, false);
4576 gold_assert(this->irelative_rel_
->output_section()
4577 == this->rel_
->output_section());
4579 if (parameters
->doing_static_link())
4581 // A statically linked executable will only have a .rela.plt
4582 // section to hold R_AARCH64_IRELATIVE relocs for
4583 // STT_GNU_IFUNC symbols. The library will use these
4584 // symbols to locate the IRELATIVE relocs at program startup
4586 symtab
->define_in_output_data("__rela_iplt_start", NULL
,
4587 Symbol_table::PREDEFINED
,
4588 this->irelative_rel_
, 0, 0,
4589 elfcpp::STT_NOTYPE
, elfcpp::STB_GLOBAL
,
4590 elfcpp::STV_HIDDEN
, 0, false, true);
4591 symtab
->define_in_output_data("__rela_iplt_end", NULL
,
4592 Symbol_table::PREDEFINED
,
4593 this->irelative_rel_
, 0, 0,
4594 elfcpp::STT_NOTYPE
, elfcpp::STB_GLOBAL
,
4595 elfcpp::STV_HIDDEN
, 0, true, true);
4598 return this->irelative_rel_
;
4601 // Return the PLT address to use for a global symbol.
4603 template<int size
, bool big_endian
>
4605 Output_data_plt_aarch64
<size
, big_endian
>::address_for_global(
4608 uint64_t offset
= 0;
4609 if (gsym
->type() == elfcpp::STT_GNU_IFUNC
4610 && gsym
->can_use_relative_reloc(false))
4611 offset
= (this->first_plt_entry_offset() +
4612 this->count_
* this->get_plt_entry_size());
4613 return this->address() + offset
+ gsym
->plt_offset();
4616 // Return the PLT address to use for a local symbol. These are always
4617 // IRELATIVE relocs.
4619 template<int size
, bool big_endian
>
4621 Output_data_plt_aarch64
<size
, big_endian
>::address_for_local(
4622 const Relobj
* object
,
4625 return (this->address()
4626 + this->first_plt_entry_offset()
4627 + this->count_
* this->get_plt_entry_size()
4628 + object
->local_plt_offset(r_sym
));
4631 // Set the final size.
4633 template<int size
, bool big_endian
>
4635 Output_data_plt_aarch64
<size
, big_endian
>::set_final_data_size()
4637 unsigned int count
= this->count_
+ this->irelative_count_
;
4638 unsigned int extra_size
= 0;
4639 if (this->has_tlsdesc_entry())
4640 extra_size
+= this->get_plt_tlsdesc_entry_size();
4641 this->set_data_size(this->first_plt_entry_offset()
4642 + count
* this->get_plt_entry_size()
4646 template<int size
, bool big_endian
>
4647 class Output_data_plt_aarch64_standard
:
4648 public Output_data_plt_aarch64
<size
, big_endian
>
4651 typedef typename
elfcpp::Elf_types
<size
>::Elf_Addr Address
;
4652 Output_data_plt_aarch64_standard(
4654 Output_data_got_aarch64
<size
, big_endian
>* got
,
4655 Output_data_space
* got_plt
,
4656 Output_data_space
* got_irelative
)
4657 : Output_data_plt_aarch64
<size
, big_endian
>(layout
,
4664 // Return the offset of the first non-reserved PLT entry.
4665 virtual unsigned int
4666 do_first_plt_entry_offset() const
4667 { return this->first_plt_entry_size
; }
4669 // Return the size of a PLT entry
4670 virtual unsigned int
4671 do_get_plt_entry_size() const
4672 { return this->plt_entry_size
; }
4674 // Return the size of a tlsdesc entry
4675 virtual unsigned int
4676 do_get_plt_tlsdesc_entry_size() const
4677 { return this->plt_tlsdesc_entry_size
; }
4680 do_fill_first_plt_entry(unsigned char* pov
,
4681 Address got_address
,
4682 Address plt_address
);
4685 do_fill_plt_entry(unsigned char* pov
,
4686 Address got_address
,
4687 Address plt_address
,
4688 unsigned int got_offset
,
4689 unsigned int plt_offset
);
4692 do_fill_tlsdesc_entry(unsigned char* pov
,
4693 Address gotplt_address
,
4694 Address plt_address
,
4696 unsigned int tlsdesc_got_offset
,
4697 unsigned int plt_offset
);
4700 // The size of the first plt entry size.
4701 static const int first_plt_entry_size
= 32;
4702 // The size of the plt entry size.
4703 static const int plt_entry_size
= 16;
4704 // The size of the plt tlsdesc entry size.
4705 static const int plt_tlsdesc_entry_size
= 32;
4706 // Template for the first PLT entry.
4707 static const uint32_t first_plt_entry
[first_plt_entry_size
/ 4];
4708 // Template for subsequent PLT entries.
4709 static const uint32_t plt_entry
[plt_entry_size
/ 4];
4710 // The reserved TLSDESC entry in the PLT for an executable.
4711 static const uint32_t tlsdesc_plt_entry
[plt_tlsdesc_entry_size
/ 4];
4714 // The first entry in the PLT for an executable.
4718 Output_data_plt_aarch64_standard
<32, false>::
4719 first_plt_entry
[first_plt_entry_size
/ 4] =
4721 0xa9bf7bf0, /* stp x16, x30, [sp, #-16]! */
4722 0x90000010, /* adrp x16, PLT_GOT+0x8 */
4723 0xb9400A11, /* ldr w17, [x16, #PLT_GOT+0x8] */
4724 0x11002210, /* add w16, w16,#PLT_GOT+0x8 */
4725 0xd61f0220, /* br x17 */
4726 0xd503201f, /* nop */
4727 0xd503201f, /* nop */
4728 0xd503201f, /* nop */
4734 Output_data_plt_aarch64_standard
<32, true>::
4735 first_plt_entry
[first_plt_entry_size
/ 4] =
4737 0xa9bf7bf0, /* stp x16, x30, [sp, #-16]! */
4738 0x90000010, /* adrp x16, PLT_GOT+0x8 */
4739 0xb9400A11, /* ldr w17, [x16, #PLT_GOT+0x8] */
4740 0x11002210, /* add w16, w16,#PLT_GOT+0x8 */
4741 0xd61f0220, /* br x17 */
4742 0xd503201f, /* nop */
4743 0xd503201f, /* nop */
4744 0xd503201f, /* nop */
4750 Output_data_plt_aarch64_standard
<64, false>::
4751 first_plt_entry
[first_plt_entry_size
/ 4] =
4753 0xa9bf7bf0, /* stp x16, x30, [sp, #-16]! */
4754 0x90000010, /* adrp x16, PLT_GOT+16 */
4755 0xf9400A11, /* ldr x17, [x16, #PLT_GOT+0x10] */
4756 0x91004210, /* add x16, x16,#PLT_GOT+0x10 */
4757 0xd61f0220, /* br x17 */
4758 0xd503201f, /* nop */
4759 0xd503201f, /* nop */
4760 0xd503201f, /* nop */
4766 Output_data_plt_aarch64_standard
<64, true>::
4767 first_plt_entry
[first_plt_entry_size
/ 4] =
4769 0xa9bf7bf0, /* stp x16, x30, [sp, #-16]! */
4770 0x90000010, /* adrp x16, PLT_GOT+16 */
4771 0xf9400A11, /* ldr x17, [x16, #PLT_GOT+0x10] */
4772 0x91004210, /* add x16, x16,#PLT_GOT+0x10 */
4773 0xd61f0220, /* br x17 */
4774 0xd503201f, /* nop */
4775 0xd503201f, /* nop */
4776 0xd503201f, /* nop */
4782 Output_data_plt_aarch64_standard
<32, false>::
4783 plt_entry
[plt_entry_size
/ 4] =
4785 0x90000010, /* adrp x16, PLTGOT + n * 4 */
4786 0xb9400211, /* ldr w17, [w16, PLTGOT + n * 4] */
4787 0x11000210, /* add w16, w16, :lo12:PLTGOT + n * 4 */
4788 0xd61f0220, /* br x17. */
4794 Output_data_plt_aarch64_standard
<32, true>::
4795 plt_entry
[plt_entry_size
/ 4] =
4797 0x90000010, /* adrp x16, PLTGOT + n * 4 */
4798 0xb9400211, /* ldr w17, [w16, PLTGOT + n * 4] */
4799 0x11000210, /* add w16, w16, :lo12:PLTGOT + n * 4 */
4800 0xd61f0220, /* br x17. */
4806 Output_data_plt_aarch64_standard
<64, false>::
4807 plt_entry
[plt_entry_size
/ 4] =
4809 0x90000010, /* adrp x16, PLTGOT + n * 8 */
4810 0xf9400211, /* ldr x17, [x16, PLTGOT + n * 8] */
4811 0x91000210, /* add x16, x16, :lo12:PLTGOT + n * 8 */
4812 0xd61f0220, /* br x17. */
4818 Output_data_plt_aarch64_standard
<64, true>::
4819 plt_entry
[plt_entry_size
/ 4] =
4821 0x90000010, /* adrp x16, PLTGOT + n * 8 */
4822 0xf9400211, /* ldr x17, [x16, PLTGOT + n * 8] */
4823 0x91000210, /* add x16, x16, :lo12:PLTGOT + n * 8 */
4824 0xd61f0220, /* br x17. */
4828 template<int size
, bool big_endian
>
4830 Output_data_plt_aarch64_standard
<size
, big_endian
>::do_fill_first_plt_entry(
4832 Address got_address
,
4833 Address plt_address
)
4835 // PLT0 of the small PLT looks like this in ELF64 -
4836 // stp x16, x30, [sp, #-16]! Save the reloc and lr on stack.
4837 // adrp x16, PLT_GOT + 16 Get the page base of the GOTPLT
4838 // ldr x17, [x16, #:lo12:PLT_GOT+16] Load the address of the
4840 // add x16, x16, #:lo12:PLT_GOT+16 Load the lo12 bits of the
4841 // GOTPLT entry for this.
4843 // PLT0 will be slightly different in ELF32 due to different got entry
4845 memcpy(pov
, this->first_plt_entry
, this->first_plt_entry_size
);
4846 Address gotplt_2nd_ent
= got_address
+ (size
/ 8) * 2;
4848 // Fill in the top 21 bits for this: ADRP x16, PLT_GOT + 8 * 2.
4849 // ADRP: (PG(S+A)-PG(P)) >> 12) & 0x1fffff.
4850 // FIXME: This only works for 64bit
4851 AArch64_relocate_functions
<size
, big_endian
>::adrp(pov
+ 4,
4852 gotplt_2nd_ent
, plt_address
+ 4);
4854 // Fill in R_AARCH64_LDST8_LO12
4855 elfcpp::Swap
<32, big_endian
>::writeval(
4857 ((this->first_plt_entry
[2] & 0xffc003ff)
4858 | ((gotplt_2nd_ent
& 0xff8) << 7)));
4860 // Fill in R_AARCH64_ADD_ABS_LO12
4861 elfcpp::Swap
<32, big_endian
>::writeval(
4863 ((this->first_plt_entry
[3] & 0xffc003ff)
4864 | ((gotplt_2nd_ent
& 0xfff) << 10)));
4868 // Subsequent entries in the PLT for an executable.
4869 // FIXME: This only works for 64bit
4871 template<int size
, bool big_endian
>
4873 Output_data_plt_aarch64_standard
<size
, big_endian
>::do_fill_plt_entry(
4875 Address got_address
,
4876 Address plt_address
,
4877 unsigned int got_offset
,
4878 unsigned int plt_offset
)
4880 memcpy(pov
, this->plt_entry
, this->plt_entry_size
);
4882 Address gotplt_entry_address
= got_address
+ got_offset
;
4883 Address plt_entry_address
= plt_address
+ plt_offset
;
4885 // Fill in R_AARCH64_PCREL_ADR_HI21
4886 AArch64_relocate_functions
<size
, big_endian
>::adrp(
4888 gotplt_entry_address
,
4891 // Fill in R_AARCH64_LDST64_ABS_LO12
4892 elfcpp::Swap
<32, big_endian
>::writeval(
4894 ((this->plt_entry
[1] & 0xffc003ff)
4895 | ((gotplt_entry_address
& 0xff8) << 7)));
4897 // Fill in R_AARCH64_ADD_ABS_LO12
4898 elfcpp::Swap
<32, big_endian
>::writeval(
4900 ((this->plt_entry
[2] & 0xffc003ff)
4901 | ((gotplt_entry_address
& 0xfff) <<10)));
4908 Output_data_plt_aarch64_standard
<32, false>::
4909 tlsdesc_plt_entry
[plt_tlsdesc_entry_size
/ 4] =
4911 0xa9bf0fe2, /* stp x2, x3, [sp, #-16]! */
4912 0x90000002, /* adrp x2, 0 */
4913 0x90000003, /* adrp x3, 0 */
4914 0xb9400042, /* ldr w2, [w2, #0] */
4915 0x11000063, /* add w3, w3, 0 */
4916 0xd61f0040, /* br x2 */
4917 0xd503201f, /* nop */
4918 0xd503201f, /* nop */
4923 Output_data_plt_aarch64_standard
<32, true>::
4924 tlsdesc_plt_entry
[plt_tlsdesc_entry_size
/ 4] =
4926 0xa9bf0fe2, /* stp x2, x3, [sp, #-16]! */
4927 0x90000002, /* adrp x2, 0 */
4928 0x90000003, /* adrp x3, 0 */
4929 0xb9400042, /* ldr w2, [w2, #0] */
4930 0x11000063, /* add w3, w3, 0 */
4931 0xd61f0040, /* br x2 */
4932 0xd503201f, /* nop */
4933 0xd503201f, /* nop */
4938 Output_data_plt_aarch64_standard
<64, false>::
4939 tlsdesc_plt_entry
[plt_tlsdesc_entry_size
/ 4] =
4941 0xa9bf0fe2, /* stp x2, x3, [sp, #-16]! */
4942 0x90000002, /* adrp x2, 0 */
4943 0x90000003, /* adrp x3, 0 */
4944 0xf9400042, /* ldr x2, [x2, #0] */
4945 0x91000063, /* add x3, x3, 0 */
4946 0xd61f0040, /* br x2 */
4947 0xd503201f, /* nop */
4948 0xd503201f, /* nop */
4953 Output_data_plt_aarch64_standard
<64, true>::
4954 tlsdesc_plt_entry
[plt_tlsdesc_entry_size
/ 4] =
4956 0xa9bf0fe2, /* stp x2, x3, [sp, #-16]! */
4957 0x90000002, /* adrp x2, 0 */
4958 0x90000003, /* adrp x3, 0 */
4959 0xf9400042, /* ldr x2, [x2, #0] */
4960 0x91000063, /* add x3, x3, 0 */
4961 0xd61f0040, /* br x2 */
4962 0xd503201f, /* nop */
4963 0xd503201f, /* nop */
4966 template<int size
, bool big_endian
>
4968 Output_data_plt_aarch64_standard
<size
, big_endian
>::do_fill_tlsdesc_entry(
4970 Address gotplt_address
,
4971 Address plt_address
,
4973 unsigned int tlsdesc_got_offset
,
4974 unsigned int plt_offset
)
4976 memcpy(pov
, tlsdesc_plt_entry
, plt_tlsdesc_entry_size
);
4978 // move DT_TLSDESC_GOT address into x2
4979 // move .got.plt address into x3
4980 Address tlsdesc_got_entry
= got_base
+ tlsdesc_got_offset
;
4981 Address plt_entry_address
= plt_address
+ plt_offset
;
4983 // R_AARCH64_ADR_PREL_PG_HI21
4984 AArch64_relocate_functions
<size
, big_endian
>::adrp(
4987 plt_entry_address
+ 4);
4989 // R_AARCH64_ADR_PREL_PG_HI21
4990 AArch64_relocate_functions
<size
, big_endian
>::adrp(
4993 plt_entry_address
+ 8);
4995 // R_AARCH64_LDST64_ABS_LO12
4996 elfcpp::Swap
<32, big_endian
>::writeval(
4998 ((this->tlsdesc_plt_entry
[3] & 0xffc003ff)
4999 | ((tlsdesc_got_entry
& 0xff8) << 7)));
5001 // R_AARCH64_ADD_ABS_LO12
5002 elfcpp::Swap
<32, big_endian
>::writeval(
5004 ((this->tlsdesc_plt_entry
[4] & 0xffc003ff)
5005 | ((gotplt_address
& 0xfff) << 10)));
5008 // Write out the PLT. This uses the hand-coded instructions above,
5009 // and adjusts them as needed. This is specified by the AMD64 ABI.
5011 template<int size
, bool big_endian
>
5013 Output_data_plt_aarch64
<size
, big_endian
>::do_write(Output_file
* of
)
5015 const off_t offset
= this->offset();
5016 const section_size_type oview_size
=
5017 convert_to_section_size_type(this->data_size());
5018 unsigned char* const oview
= of
->get_output_view(offset
, oview_size
);
5020 const off_t got_file_offset
= this->got_plt_
->offset();
5021 gold_assert(got_file_offset
+ this->got_plt_
->data_size()
5022 == this->got_irelative_
->offset());
5024 const section_size_type got_size
=
5025 convert_to_section_size_type(this->got_plt_
->data_size()
5026 + this->got_irelative_
->data_size());
5027 unsigned char* const got_view
= of
->get_output_view(got_file_offset
,
5030 unsigned char* pov
= oview
;
5032 // The base address of the .plt section.
5033 typename
elfcpp::Elf_types
<size
>::Elf_Addr plt_address
= this->address();
5034 // The base address of the PLT portion of the .got section.
5035 typename
elfcpp::Elf_types
<size
>::Elf_Addr gotplt_address
5036 = this->got_plt_
->address();
5038 this->fill_first_plt_entry(pov
, gotplt_address
, plt_address
);
5039 pov
+= this->first_plt_entry_offset();
5041 // The first three entries in .got.plt are reserved.
5042 unsigned char* got_pov
= got_view
;
5043 memset(got_pov
, 0, size
/ 8 * AARCH64_GOTPLT_RESERVE_COUNT
);
5044 got_pov
+= (size
/ 8) * AARCH64_GOTPLT_RESERVE_COUNT
;
5046 unsigned int plt_offset
= this->first_plt_entry_offset();
5047 unsigned int got_offset
= (size
/ 8) * AARCH64_GOTPLT_RESERVE_COUNT
;
5048 const unsigned int count
= this->count_
+ this->irelative_count_
;
5049 for (unsigned int plt_index
= 0;
5052 pov
+= this->get_plt_entry_size(),
5053 got_pov
+= size
/ 8,
5054 plt_offset
+= this->get_plt_entry_size(),
5055 got_offset
+= size
/ 8)
5057 // Set and adjust the PLT entry itself.
5058 this->fill_plt_entry(pov
, gotplt_address
, plt_address
,
5059 got_offset
, plt_offset
);
5061 // Set the entry in the GOT, which points to plt0.
5062 elfcpp::Swap
<size
, big_endian
>::writeval(got_pov
, plt_address
);
5065 if (this->has_tlsdesc_entry())
5067 // Set and adjust the reserved TLSDESC PLT entry.
5068 unsigned int tlsdesc_got_offset
= this->get_tlsdesc_got_offset();
5069 // The base address of the .base section.
5070 typename
elfcpp::Elf_types
<size
>::Elf_Addr got_base
=
5071 this->got_
->address();
5072 this->fill_tlsdesc_entry(pov
, gotplt_address
, plt_address
, got_base
,
5073 tlsdesc_got_offset
, plt_offset
);
5074 pov
+= this->get_plt_tlsdesc_entry_size();
5077 gold_assert(static_cast<section_size_type
>(pov
- oview
) == oview_size
);
5078 gold_assert(static_cast<section_size_type
>(got_pov
- got_view
) == got_size
);
5080 of
->write_output_view(offset
, oview_size
, oview
);
5081 of
->write_output_view(got_file_offset
, got_size
, got_view
);
5084 // Telling how to update the immediate field of an instruction.
5085 struct AArch64_howto
5087 // The immediate field mask.
5088 elfcpp::Elf_Xword dst_mask
;
5090 // The offset to apply relocation immediate
5093 // The second part offset, if the immediate field has two parts.
5094 // -1 if the immediate field has only one part.
5098 static const AArch64_howto aarch64_howto
[AArch64_reloc_property::INST_NUM
] =
5100 {0, -1, -1}, // DATA
5101 {0x1fffe0, 5, -1}, // MOVW [20:5]-imm16
5102 {0xffffe0, 5, -1}, // LD [23:5]-imm19
5103 {0x60ffffe0, 29, 5}, // ADR [30:29]-immlo [23:5]-immhi
5104 {0x60ffffe0, 29, 5}, // ADRP [30:29]-immlo [23:5]-immhi
5105 {0x3ffc00, 10, -1}, // ADD [21:10]-imm12
5106 {0x3ffc00, 10, -1}, // LDST [21:10]-imm12
5107 {0x7ffe0, 5, -1}, // TBZNZ [18:5]-imm14
5108 {0xffffe0, 5, -1}, // CONDB [23:5]-imm19
5109 {0x3ffffff, 0, -1}, // B [25:0]-imm26
5110 {0x3ffffff, 0, -1}, // CALL [25:0]-imm26
5113 // AArch64 relocate function class
5115 template<int size
, bool big_endian
>
5116 class AArch64_relocate_functions
5121 STATUS_OKAY
, // No error during relocation.
5122 STATUS_OVERFLOW
, // Relocation overflow.
5123 STATUS_BAD_RELOC
, // Relocation cannot be applied.
5126 typedef AArch64_relocate_functions
<size
, big_endian
> This
;
5127 typedef typename
elfcpp::Elf_types
<size
>::Elf_Addr Address
;
5128 typedef Relocate_info
<size
, big_endian
> The_relocate_info
;
5129 typedef AArch64_relobj
<size
, big_endian
> The_aarch64_relobj
;
5130 typedef Reloc_stub
<size
, big_endian
> The_reloc_stub
;
5131 typedef Stub_table
<size
, big_endian
> The_stub_table
;
5132 typedef elfcpp::Rela
<size
, big_endian
> The_rela
;
5133 typedef typename
elfcpp::Swap
<size
, big_endian
>::Valtype AArch64_valtype
;
5135 // Return the page address of the address.
5136 // Page(address) = address & ~0xFFF
5138 static inline AArch64_valtype
5139 Page(Address address
)
5141 return (address
& (~static_cast<Address
>(0xFFF)));
5145 // Update instruction (pointed by view) with selected bits (immed).
5146 // val = (val & ~dst_mask) | (immed << doffset)
5148 template<int valsize
>
5150 update_view(unsigned char* view
,
5151 AArch64_valtype immed
,
5152 elfcpp::Elf_Xword doffset
,
5153 elfcpp::Elf_Xword dst_mask
)
5155 typedef typename
elfcpp::Swap
<valsize
, big_endian
>::Valtype Valtype
;
5156 Valtype
* wv
= reinterpret_cast<Valtype
*>(view
);
5157 Valtype val
= elfcpp::Swap
<valsize
, big_endian
>::readval(wv
);
5159 // Clear immediate fields.
5161 elfcpp::Swap
<valsize
, big_endian
>::writeval(wv
,
5162 static_cast<Valtype
>(val
| (immed
<< doffset
)));
5165 // Update two parts of an instruction (pointed by view) with selected
5166 // bits (immed1 and immed2).
5167 // val = (val & ~dst_mask) | (immed1 << doffset1) | (immed2 << doffset2)
5169 template<int valsize
>
5171 update_view_two_parts(
5172 unsigned char* view
,
5173 AArch64_valtype immed1
,
5174 AArch64_valtype immed2
,
5175 elfcpp::Elf_Xword doffset1
,
5176 elfcpp::Elf_Xword doffset2
,
5177 elfcpp::Elf_Xword dst_mask
)
5179 typedef typename
elfcpp::Swap
<valsize
, big_endian
>::Valtype Valtype
;
5180 Valtype
* wv
= reinterpret_cast<Valtype
*>(view
);
5181 Valtype val
= elfcpp::Swap
<valsize
, big_endian
>::readval(wv
);
5183 elfcpp::Swap
<valsize
, big_endian
>::writeval(wv
,
5184 static_cast<Valtype
>(val
| (immed1
<< doffset1
) |
5185 (immed2
<< doffset2
)));
5188 // Update adr or adrp instruction with immed.
5189 // In adr and adrp: [30:29] immlo [23:5] immhi
5192 update_adr(unsigned char* view
, AArch64_valtype immed
)
5194 elfcpp::Elf_Xword dst_mask
= (0x3 << 29) | (0x7ffff << 5);
5195 This::template update_view_two_parts
<32>(
5198 (immed
& 0x1ffffc) >> 2,
5204 // Update movz/movn instruction with bits immed.
5205 // Set instruction to movz if is_movz is true, otherwise set instruction
5209 update_movnz(unsigned char* view
,
5210 AArch64_valtype immed
,
5213 typedef typename
elfcpp::Swap
<32, big_endian
>::Valtype Valtype
;
5214 Valtype
* wv
= reinterpret_cast<Valtype
*>(view
);
5215 Valtype val
= elfcpp::Swap
<32, big_endian
>::readval(wv
);
5217 const elfcpp::Elf_Xword doffset
=
5218 aarch64_howto
[AArch64_reloc_property::INST_MOVW
].doffset
;
5219 const elfcpp::Elf_Xword dst_mask
=
5220 aarch64_howto
[AArch64_reloc_property::INST_MOVW
].dst_mask
;
5222 // Clear immediate fields and opc code.
5223 val
&= ~(dst_mask
| (0x3 << 29));
5225 // Set instruction to movz or movn.
5226 // movz: [30:29] is 10 movn: [30:29] is 00
5230 elfcpp::Swap
<32, big_endian
>::writeval(wv
,
5231 static_cast<Valtype
>(val
| (immed
<< doffset
)));
5236 // Update selected bits in text.
5238 template<int valsize
>
5239 static inline typename
This::Status
5240 reloc_common(unsigned char* view
, Address x
,
5241 const AArch64_reloc_property
* reloc_property
)
5243 // Select bits from X.
5244 Address immed
= reloc_property
->select_x_value(x
);
5247 const AArch64_reloc_property::Reloc_inst inst
=
5248 reloc_property
->reloc_inst();
5249 // If it is a data relocation or instruction has 2 parts of immediate
5250 // fields, you should not call pcrela_general.
5251 gold_assert(aarch64_howto
[inst
].doffset2
== -1 &&
5252 aarch64_howto
[inst
].doffset
!= -1);
5253 This::template update_view
<valsize
>(view
, immed
,
5254 aarch64_howto
[inst
].doffset
,
5255 aarch64_howto
[inst
].dst_mask
);
5257 // Do check overflow or alignment if needed.
5258 return (reloc_property
->checkup_x_value(x
)
5260 : This::STATUS_OVERFLOW
);
5263 // Construct a B insn. Note, although we group it here with other relocation
5264 // operation, there is actually no 'relocation' involved here.
5266 construct_b(unsigned char* view
, unsigned int branch_offset
)
5268 update_view_two_parts
<32>(view
, 0x05, (branch_offset
>> 2),
5272 // Do a simple rela relocation at unaligned addresses.
5274 template<int valsize
>
5275 static inline typename
This::Status
5276 rela_ua(unsigned char* view
,
5277 const Sized_relobj_file
<size
, big_endian
>* object
,
5278 const Symbol_value
<size
>* psymval
,
5279 AArch64_valtype addend
,
5280 const AArch64_reloc_property
* reloc_property
)
5282 typedef typename
elfcpp::Swap_unaligned
<valsize
, big_endian
>::Valtype
5284 typename
elfcpp::Elf_types
<size
>::Elf_Addr x
=
5285 psymval
->value(object
, addend
);
5286 elfcpp::Swap_unaligned
<valsize
, big_endian
>::writeval(view
,
5287 static_cast<Valtype
>(x
));
5288 return (reloc_property
->checkup_x_value(x
)
5290 : This::STATUS_OVERFLOW
);
5293 // Do a simple pc-relative relocation at unaligned addresses.
5295 template<int valsize
>
5296 static inline typename
This::Status
5297 pcrela_ua(unsigned char* view
,
5298 const Sized_relobj_file
<size
, big_endian
>* object
,
5299 const Symbol_value
<size
>* psymval
,
5300 AArch64_valtype addend
,
5302 const AArch64_reloc_property
* reloc_property
)
5304 typedef typename
elfcpp::Swap_unaligned
<valsize
, big_endian
>::Valtype
5306 Address x
= psymval
->value(object
, addend
) - address
;
5307 elfcpp::Swap_unaligned
<valsize
, big_endian
>::writeval(view
,
5308 static_cast<Valtype
>(x
));
5309 return (reloc_property
->checkup_x_value(x
)
5311 : This::STATUS_OVERFLOW
);
5314 // Do a simple rela relocation at aligned addresses.
5316 template<int valsize
>
5317 static inline typename
This::Status
5319 unsigned char* view
,
5320 const Sized_relobj_file
<size
, big_endian
>* object
,
5321 const Symbol_value
<size
>* psymval
,
5322 AArch64_valtype addend
,
5323 const AArch64_reloc_property
* reloc_property
)
5325 typedef typename
elfcpp::Swap
<valsize
, big_endian
>::Valtype Valtype
;
5326 Valtype
* wv
= reinterpret_cast<Valtype
*>(view
);
5327 Address x
= psymval
->value(object
, addend
);
5328 elfcpp::Swap
<valsize
, big_endian
>::writeval(wv
,static_cast<Valtype
>(x
));
5329 return (reloc_property
->checkup_x_value(x
)
5331 : This::STATUS_OVERFLOW
);
5334 // Do relocate. Update selected bits in text.
5335 // new_val = (val & ~dst_mask) | (immed << doffset)
5337 template<int valsize
>
5338 static inline typename
This::Status
5339 rela_general(unsigned char* view
,
5340 const Sized_relobj_file
<size
, big_endian
>* object
,
5341 const Symbol_value
<size
>* psymval
,
5342 AArch64_valtype addend
,
5343 const AArch64_reloc_property
* reloc_property
)
5345 // Calculate relocation.
5346 Address x
= psymval
->value(object
, addend
);
5347 return This::template reloc_common
<valsize
>(view
, x
, reloc_property
);
5350 // Do relocate. Update selected bits in text.
5351 // new val = (val & ~dst_mask) | (immed << doffset)
5353 template<int valsize
>
5354 static inline typename
This::Status
5356 unsigned char* view
,
5358 AArch64_valtype addend
,
5359 const AArch64_reloc_property
* reloc_property
)
5361 // Calculate relocation.
5362 Address x
= s
+ addend
;
5363 return This::template reloc_common
<valsize
>(view
, x
, reloc_property
);
5366 // Do address relative relocate. Update selected bits in text.
5367 // new val = (val & ~dst_mask) | (immed << doffset)
5369 template<int valsize
>
5370 static inline typename
This::Status
5372 unsigned char* view
,
5373 const Sized_relobj_file
<size
, big_endian
>* object
,
5374 const Symbol_value
<size
>* psymval
,
5375 AArch64_valtype addend
,
5377 const AArch64_reloc_property
* reloc_property
)
5379 // Calculate relocation.
5380 Address x
= psymval
->value(object
, addend
) - address
;
5381 return This::template reloc_common
<valsize
>(view
, x
, reloc_property
);
5385 // Calculate (S + A) - address, update adr instruction.
5387 static inline typename
This::Status
5388 adr(unsigned char* view
,
5389 const Sized_relobj_file
<size
, big_endian
>* object
,
5390 const Symbol_value
<size
>* psymval
,
5393 const AArch64_reloc_property
* /* reloc_property */)
5395 AArch64_valtype x
= psymval
->value(object
, addend
) - address
;
5396 // Pick bits [20:0] of X.
5397 AArch64_valtype immed
= x
& 0x1fffff;
5398 update_adr(view
, immed
);
5399 // Check -2^20 <= X < 2^20
5400 return (size
== 64 && Bits
<21>::has_overflow((x
))
5401 ? This::STATUS_OVERFLOW
5402 : This::STATUS_OKAY
);
5405 // Calculate PG(S+A) - PG(address), update adrp instruction.
5406 // R_AARCH64_ADR_PREL_PG_HI21
5408 static inline typename
This::Status
5410 unsigned char* view
,
5414 AArch64_valtype x
= This::Page(sa
) - This::Page(address
);
5415 // Pick [32:12] of X.
5416 AArch64_valtype immed
= (x
>> 12) & 0x1fffff;
5417 update_adr(view
, immed
);
5418 // Check -2^32 <= X < 2^32
5419 return (size
== 64 && Bits
<33>::has_overflow((x
))
5420 ? This::STATUS_OVERFLOW
5421 : This::STATUS_OKAY
);
5424 // Calculate PG(S+A) - PG(address), update adrp instruction.
5425 // R_AARCH64_ADR_PREL_PG_HI21
5427 static inline typename
This::Status
5428 adrp(unsigned char* view
,
5429 const Sized_relobj_file
<size
, big_endian
>* object
,
5430 const Symbol_value
<size
>* psymval
,
5433 const AArch64_reloc_property
* reloc_property
)
5435 Address sa
= psymval
->value(object
, addend
);
5436 AArch64_valtype x
= This::Page(sa
) - This::Page(address
);
5437 // Pick [32:12] of X.
5438 AArch64_valtype immed
= (x
>> 12) & 0x1fffff;
5439 update_adr(view
, immed
);
5440 return (reloc_property
->checkup_x_value(x
)
5442 : This::STATUS_OVERFLOW
);
5445 // Update mov[n/z] instruction. Check overflow if needed.
5446 // If X >=0, set the instruction to movz and its immediate value to the
5448 // If X < 0, set the instruction to movn and its immediate value to
5449 // NOT (selected bits of).
5451 static inline typename
This::Status
5452 movnz(unsigned char* view
,
5454 const AArch64_reloc_property
* reloc_property
)
5456 // Select bits from X.
5459 typedef typename
elfcpp::Elf_types
<size
>::Elf_Swxword SignedW
;
5460 if (static_cast<SignedW
>(x
) >= 0)
5462 immed
= reloc_property
->select_x_value(x
);
5467 immed
= reloc_property
->select_x_value(~x
);;
5471 // Update movnz instruction.
5472 update_movnz(view
, immed
, is_movz
);
5474 // Do check overflow or alignment if needed.
5475 return (reloc_property
->checkup_x_value(x
)
5477 : This::STATUS_OVERFLOW
);
5481 maybe_apply_stub(unsigned int,
5482 const The_relocate_info
*,
5486 const Sized_symbol
<size
>*,
5487 const Symbol_value
<size
>*,
5488 const Sized_relobj_file
<size
, big_endian
>*,
5491 }; // End of AArch64_relocate_functions
5494 // For a certain relocation type (usually jump/branch), test to see if the
5495 // destination needs a stub to fulfil. If so, re-route the destination of the
5496 // original instruction to the stub, note, at this time, the stub has already
5499 template<int size
, bool big_endian
>
5501 AArch64_relocate_functions
<size
, big_endian
>::
5502 maybe_apply_stub(unsigned int r_type
,
5503 const The_relocate_info
* relinfo
,
5504 const The_rela
& rela
,
5505 unsigned char* view
,
5507 const Sized_symbol
<size
>* gsym
,
5508 const Symbol_value
<size
>* psymval
,
5509 const Sized_relobj_file
<size
, big_endian
>* object
,
5510 section_size_type current_group_size
)
5512 if (parameters
->options().relocatable())
5515 typename
elfcpp::Elf_types
<size
>::Elf_Swxword addend
= rela
.get_r_addend();
5516 Address branch_target
= psymval
->value(object
, 0) + addend
;
5518 The_reloc_stub::stub_type_for_reloc(r_type
, address
, branch_target
);
5519 if (stub_type
== ST_NONE
)
5522 const The_aarch64_relobj
* aarch64_relobj
=
5523 static_cast<const The_aarch64_relobj
*>(object
);
5524 const AArch64_reloc_property
* arp
=
5525 aarch64_reloc_property_table
->get_reloc_property(r_type
);
5526 gold_assert(arp
!= NULL
);
5528 // We don't create stubs for undefined symbols, but do for weak.
5530 && !gsym
->use_plt_offset(arp
->reference_flags())
5531 && gsym
->is_undefined())
5533 gold_debug(DEBUG_TARGET
,
5534 "stub: looking for a stub for undefined symbol %s in file %s",
5535 gsym
->name(), aarch64_relobj
->name().c_str());
5539 The_stub_table
* stub_table
= aarch64_relobj
->stub_table(relinfo
->data_shndx
);
5540 gold_assert(stub_table
!= NULL
);
5542 unsigned int r_sym
= elfcpp::elf_r_sym
<size
>(rela
.get_r_info());
5543 typename
The_reloc_stub::Key
stub_key(stub_type
, gsym
, object
, r_sym
, addend
);
5544 The_reloc_stub
* stub
= stub_table
->find_reloc_stub(stub_key
);
5545 gold_assert(stub
!= NULL
);
5547 Address new_branch_target
= stub_table
->address() + stub
->offset();
5548 typename
elfcpp::Swap
<size
, big_endian
>::Valtype branch_offset
=
5549 new_branch_target
- address
;
5550 typename
This::Status status
= This::template
5551 rela_general
<32>(view
, branch_offset
, 0, arp
);
5552 if (status
!= This::STATUS_OKAY
)
5553 gold_error(_("Stub is too far away, try a smaller value "
5554 "for '--stub-group-size'. The current value is 0x%lx."),
5555 static_cast<unsigned long>(current_group_size
));
5560 // Group input sections for stub generation.
5562 // We group input sections in an output section so that the total size,
5563 // including any padding space due to alignment is smaller than GROUP_SIZE
5564 // unless the only input section in group is bigger than GROUP_SIZE already.
5565 // Then an ARM stub table is created to follow the last input section
5566 // in group. For each group an ARM stub table is created an is placed
5567 // after the last group. If STUB_ALWAYS_AFTER_BRANCH is false, we further
5568 // extend the group after the stub table.
5570 template<int size
, bool big_endian
>
5572 Target_aarch64
<size
, big_endian
>::group_sections(
5574 section_size_type group_size
,
5575 bool stubs_always_after_branch
,
5578 // Group input sections and insert stub table
5579 Layout::Section_list section_list
;
5580 layout
->get_executable_sections(§ion_list
);
5581 for (Layout::Section_list::const_iterator p
= section_list
.begin();
5582 p
!= section_list
.end();
5585 AArch64_output_section
<size
, big_endian
>* output_section
=
5586 static_cast<AArch64_output_section
<size
, big_endian
>*>(*p
);
5587 output_section
->group_sections(group_size
, stubs_always_after_branch
,
5593 // Find the AArch64_input_section object corresponding to the SHNDX-th input
5594 // section of RELOBJ.
5596 template<int size
, bool big_endian
>
5597 AArch64_input_section
<size
, big_endian
>*
5598 Target_aarch64
<size
, big_endian
>::find_aarch64_input_section(
5599 Relobj
* relobj
, unsigned int shndx
) const
5601 Section_id
sid(relobj
, shndx
);
5602 typename
AArch64_input_section_map::const_iterator p
=
5603 this->aarch64_input_section_map_
.find(sid
);
5604 return (p
!= this->aarch64_input_section_map_
.end()) ? p
->second
: NULL
;
5608 // Make a new AArch64_input_section object.
5610 template<int size
, bool big_endian
>
5611 AArch64_input_section
<size
, big_endian
>*
5612 Target_aarch64
<size
, big_endian
>::new_aarch64_input_section(
5613 Relobj
* relobj
, unsigned int shndx
)
5615 Section_id
sid(relobj
, shndx
);
5617 AArch64_input_section
<size
, big_endian
>* input_section
=
5618 new AArch64_input_section
<size
, big_endian
>(relobj
, shndx
);
5619 input_section
->init();
5621 // Register new AArch64_input_section in map for look-up.
5622 std::pair
<typename
AArch64_input_section_map::iterator
,bool> ins
=
5623 this->aarch64_input_section_map_
.insert(
5624 std::make_pair(sid
, input_section
));
5626 // Make sure that it we have not created another AArch64_input_section
5627 // for this input section already.
5628 gold_assert(ins
.second
);
5630 return input_section
;
5634 // Relaxation hook. This is where we do stub generation.
5636 template<int size
, bool big_endian
>
5638 Target_aarch64
<size
, big_endian
>::do_relax(
5640 const Input_objects
* input_objects
,
5641 Symbol_table
* symtab
,
5645 gold_assert(!parameters
->options().relocatable());
5648 // We don't handle negative stub_group_size right now.
5649 this->stub_group_size_
= abs(parameters
->options().stub_group_size());
5650 if (this->stub_group_size_
== 1)
5652 // Leave room for 4096 4-byte stub entries. If we exceed that, then we
5653 // will fail to link. The user will have to relink with an explicit
5654 // group size option.
5655 this->stub_group_size_
= The_reloc_stub::MAX_BRANCH_OFFSET
-
5658 group_sections(layout
, this->stub_group_size_
, true, task
);
5662 // If this is not the first pass, addresses and file offsets have
5663 // been reset at this point, set them here.
5664 for (Stub_table_iterator sp
= this->stub_tables_
.begin();
5665 sp
!= this->stub_tables_
.end(); ++sp
)
5667 The_stub_table
* stt
= *sp
;
5668 The_aarch64_input_section
* owner
= stt
->owner();
5669 off_t off
= align_address(owner
->original_size(),
5671 stt
->set_address_and_file_offset(owner
->address() + off
,
5672 owner
->offset() + off
);
5676 // Scan relocs for relocation stubs
5677 for (Input_objects::Relobj_iterator op
= input_objects
->relobj_begin();
5678 op
!= input_objects
->relobj_end();
5681 The_aarch64_relobj
* aarch64_relobj
=
5682 static_cast<The_aarch64_relobj
*>(*op
);
5683 // Lock the object so we can read from it. This is only called
5684 // single-threaded from Layout::finalize, so it is OK to lock.
5685 Task_lock_obj
<Object
> tl(task
, aarch64_relobj
);
5686 aarch64_relobj
->scan_sections_for_stubs(this, symtab
, layout
);
5689 bool any_stub_table_changed
= false;
5690 for (Stub_table_iterator siter
= this->stub_tables_
.begin();
5691 siter
!= this->stub_tables_
.end() && !any_stub_table_changed
; ++siter
)
5693 The_stub_table
* stub_table
= *siter
;
5694 if (stub_table
->update_data_size_changed_p())
5696 The_aarch64_input_section
* owner
= stub_table
->owner();
5697 uint64_t address
= owner
->address();
5698 off_t offset
= owner
->offset();
5699 owner
->reset_address_and_file_offset();
5700 owner
->set_address_and_file_offset(address
, offset
);
5702 any_stub_table_changed
= true;
5706 // Do not continue relaxation.
5707 bool continue_relaxation
= any_stub_table_changed
;
5708 if (!continue_relaxation
)
5709 for (Stub_table_iterator sp
= this->stub_tables_
.begin();
5710 (sp
!= this->stub_tables_
.end());
5712 (*sp
)->finalize_stubs();
5714 return continue_relaxation
;
5718 // Make a new Stub_table.
5720 template<int size
, bool big_endian
>
5721 Stub_table
<size
, big_endian
>*
5722 Target_aarch64
<size
, big_endian
>::new_stub_table(
5723 AArch64_input_section
<size
, big_endian
>* owner
)
5725 Stub_table
<size
, big_endian
>* stub_table
=
5726 new Stub_table
<size
, big_endian
>(owner
);
5727 stub_table
->set_address(align_address(
5728 owner
->address() + owner
->data_size(), 8));
5729 stub_table
->set_file_offset(owner
->offset() + owner
->data_size());
5730 stub_table
->finalize_data_size();
5732 this->stub_tables_
.push_back(stub_table
);
5738 template<int size
, bool big_endian
>
5740 Target_aarch64
<size
, big_endian
>::do_reloc_addend(
5741 void* arg
, unsigned int r_type
, uint64_t) const
5743 gold_assert(r_type
== elfcpp::R_AARCH64_TLSDESC
);
5744 uintptr_t intarg
= reinterpret_cast<uintptr_t>(arg
);
5745 gold_assert(intarg
< this->tlsdesc_reloc_info_
.size());
5746 const Tlsdesc_info
& ti(this->tlsdesc_reloc_info_
[intarg
]);
5747 const Symbol_value
<size
>* psymval
= ti
.object
->local_symbol(ti
.r_sym
);
5748 gold_assert(psymval
->is_tls_symbol());
5749 // The value of a TLS symbol is the offset in the TLS segment.
5750 return psymval
->value(ti
.object
, 0);
5753 // Return the number of entries in the PLT.
5755 template<int size
, bool big_endian
>
5757 Target_aarch64
<size
, big_endian
>::plt_entry_count() const
5759 if (this->plt_
== NULL
)
5761 return this->plt_
->entry_count();
5764 // Return the offset of the first non-reserved PLT entry.
5766 template<int size
, bool big_endian
>
5768 Target_aarch64
<size
, big_endian
>::first_plt_entry_offset() const
5770 return this->plt_
->first_plt_entry_offset();
5773 // Return the size of each PLT entry.
5775 template<int size
, bool big_endian
>
5777 Target_aarch64
<size
, big_endian
>::plt_entry_size() const
5779 return this->plt_
->get_plt_entry_size();
5782 // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
5784 template<int size
, bool big_endian
>
5786 Target_aarch64
<size
, big_endian
>::define_tls_base_symbol(
5787 Symbol_table
* symtab
, Layout
* layout
)
5789 if (this->tls_base_symbol_defined_
)
5792 Output_segment
* tls_segment
= layout
->tls_segment();
5793 if (tls_segment
!= NULL
)
5795 // _TLS_MODULE_BASE_ always points to the beginning of tls segment.
5796 symtab
->define_in_output_segment("_TLS_MODULE_BASE_", NULL
,
5797 Symbol_table::PREDEFINED
,
5801 elfcpp::STV_HIDDEN
, 0,
5802 Symbol::SEGMENT_START
,
5805 this->tls_base_symbol_defined_
= true;
5808 // Create the reserved PLT and GOT entries for the TLS descriptor resolver.
5810 template<int size
, bool big_endian
>
5812 Target_aarch64
<size
, big_endian
>::reserve_tlsdesc_entries(
5813 Symbol_table
* symtab
, Layout
* layout
)
5815 if (this->plt_
== NULL
)
5816 this->make_plt_section(symtab
, layout
);
5818 if (!this->plt_
->has_tlsdesc_entry())
5820 // Allocate the TLSDESC_GOT entry.
5821 Output_data_got_aarch64
<size
, big_endian
>* got
=
5822 this->got_section(symtab
, layout
);
5823 unsigned int got_offset
= got
->add_constant(0);
5825 // Allocate the TLSDESC_PLT entry.
5826 this->plt_
->reserve_tlsdesc_entry(got_offset
);
5830 // Create a GOT entry for the TLS module index.
5832 template<int size
, bool big_endian
>
5834 Target_aarch64
<size
, big_endian
>::got_mod_index_entry(
5835 Symbol_table
* symtab
, Layout
* layout
,
5836 Sized_relobj_file
<size
, big_endian
>* object
)
5838 if (this->got_mod_index_offset_
== -1U)
5840 gold_assert(symtab
!= NULL
&& layout
!= NULL
&& object
!= NULL
);
5841 Reloc_section
* rela_dyn
= this->rela_dyn_section(layout
);
5842 Output_data_got_aarch64
<size
, big_endian
>* got
=
5843 this->got_section(symtab
, layout
);
5844 unsigned int got_offset
= got
->add_constant(0);
5845 rela_dyn
->add_local(object
, 0, elfcpp::R_AARCH64_TLS_DTPMOD64
, got
,
5847 got
->add_constant(0);
5848 this->got_mod_index_offset_
= got_offset
;
5850 return this->got_mod_index_offset_
;
5853 // Optimize the TLS relocation type based on what we know about the
5854 // symbol. IS_FINAL is true if the final address of this symbol is
5855 // known at link time.
5857 template<int size
, bool big_endian
>
5858 tls::Tls_optimization
5859 Target_aarch64
<size
, big_endian
>::optimize_tls_reloc(bool is_final
,
5862 // If we are generating a shared library, then we can't do anything
5864 if (parameters
->options().shared())
5865 return tls::TLSOPT_NONE
;
5869 case elfcpp::R_AARCH64_TLSGD_ADR_PAGE21
:
5870 case elfcpp::R_AARCH64_TLSGD_ADD_LO12_NC
:
5871 case elfcpp::R_AARCH64_TLSDESC_LD_PREL19
:
5872 case elfcpp::R_AARCH64_TLSDESC_ADR_PREL21
:
5873 case elfcpp::R_AARCH64_TLSDESC_ADR_PAGE21
:
5874 case elfcpp::R_AARCH64_TLSDESC_LD64_LO12
:
5875 case elfcpp::R_AARCH64_TLSDESC_ADD_LO12
:
5876 case elfcpp::R_AARCH64_TLSDESC_OFF_G1
:
5877 case elfcpp::R_AARCH64_TLSDESC_OFF_G0_NC
:
5878 case elfcpp::R_AARCH64_TLSDESC_LDR
:
5879 case elfcpp::R_AARCH64_TLSDESC_ADD
:
5880 case elfcpp::R_AARCH64_TLSDESC_CALL
:
5881 // These are General-Dynamic which permits fully general TLS
5882 // access. Since we know that we are generating an executable,
5883 // we can convert this to Initial-Exec. If we also know that
5884 // this is a local symbol, we can further switch to Local-Exec.
5886 return tls::TLSOPT_TO_LE
;
5887 return tls::TLSOPT_TO_IE
;
5889 case elfcpp::R_AARCH64_TLSLD_ADR_PAGE21
:
5890 case elfcpp::R_AARCH64_TLSLD_ADD_LO12_NC
:
5891 case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G1
:
5892 case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G0_NC
:
5893 case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_HI12
:
5894 case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_LO12_NC
:
5895 // These are Local-Dynamic, which refer to local symbols in the
5896 // dynamic TLS block. Since we know that we generating an
5897 // executable, we can switch to Local-Exec.
5898 return tls::TLSOPT_TO_LE
;
5900 case elfcpp::R_AARCH64_TLSIE_MOVW_GOTTPREL_G1
:
5901 case elfcpp::R_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC
:
5902 case elfcpp::R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21
:
5903 case elfcpp::R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC
:
5904 case elfcpp::R_AARCH64_TLSIE_LD_GOTTPREL_PREL19
:
5905 // These are Initial-Exec relocs which get the thread offset
5906 // from the GOT. If we know that we are linking against the
5907 // local symbol, we can switch to Local-Exec, which links the
5908 // thread offset into the instruction.
5910 return tls::TLSOPT_TO_LE
;
5911 return tls::TLSOPT_NONE
;
5913 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G2
:
5914 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1
:
5915 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1_NC
:
5916 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0
:
5917 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0_NC
:
5918 case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_HI12
:
5919 case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12
:
5920 case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12_NC
:
5921 case elfcpp::R_AARCH64_TLSLE_LDST8_TPREL_LO12
:
5922 case elfcpp::R_AARCH64_TLSLE_LDST8_TPREL_LO12_NC
:
5923 case elfcpp::R_AARCH64_TLSLE_LDST16_TPREL_LO12
:
5924 case elfcpp::R_AARCH64_TLSLE_LDST16_TPREL_LO12_NC
:
5925 case elfcpp::R_AARCH64_TLSLE_LDST32_TPREL_LO12
:
5926 case elfcpp::R_AARCH64_TLSLE_LDST32_TPREL_LO12_NC
:
5927 case elfcpp::R_AARCH64_TLSLE_LDST64_TPREL_LO12
:
5928 case elfcpp::R_AARCH64_TLSLE_LDST64_TPREL_LO12_NC
:
5929 // When we already have Local-Exec, there is nothing further we
5931 return tls::TLSOPT_NONE
;
5938 // Returns true if this relocation type could be that of a function pointer.
5940 template<int size
, bool big_endian
>
5942 Target_aarch64
<size
, big_endian
>::Scan::possible_function_pointer_reloc(
5943 unsigned int r_type
)
5947 case elfcpp::R_AARCH64_ADR_PREL_PG_HI21
:
5948 case elfcpp::R_AARCH64_ADR_PREL_PG_HI21_NC
:
5949 case elfcpp::R_AARCH64_ADD_ABS_LO12_NC
:
5950 case elfcpp::R_AARCH64_ADR_GOT_PAGE
:
5951 case elfcpp::R_AARCH64_LD64_GOT_LO12_NC
:
5959 // For safe ICF, scan a relocation for a local symbol to check if it
5960 // corresponds to a function pointer being taken. In that case mark
5961 // the function whose pointer was taken as not foldable.
5963 template<int size
, bool big_endian
>
5965 Target_aarch64
<size
, big_endian
>::Scan::local_reloc_may_be_function_pointer(
5968 Target_aarch64
<size
, big_endian
>* ,
5969 Sized_relobj_file
<size
, big_endian
>* ,
5972 const elfcpp::Rela
<size
, big_endian
>& ,
5973 unsigned int r_type
,
5974 const elfcpp::Sym
<size
, big_endian
>&)
5976 // When building a shared library, do not fold any local symbols.
5977 return (parameters
->options().shared()
5978 || possible_function_pointer_reloc(r_type
));
5981 // For safe ICF, scan a relocation for a global symbol to check if it
5982 // corresponds to a function pointer being taken. In that case mark
5983 // the function whose pointer was taken as not foldable.
5985 template<int size
, bool big_endian
>
5987 Target_aarch64
<size
, big_endian
>::Scan::global_reloc_may_be_function_pointer(
5990 Target_aarch64
<size
, big_endian
>* ,
5991 Sized_relobj_file
<size
, big_endian
>* ,
5994 const elfcpp::Rela
<size
, big_endian
>& ,
5995 unsigned int r_type
,
5998 // When building a shared library, do not fold symbols whose visibility
5999 // is hidden, internal or protected.
6000 return ((parameters
->options().shared()
6001 && (gsym
->visibility() == elfcpp::STV_INTERNAL
6002 || gsym
->visibility() == elfcpp::STV_PROTECTED
6003 || gsym
->visibility() == elfcpp::STV_HIDDEN
))
6004 || possible_function_pointer_reloc(r_type
));
6007 // Report an unsupported relocation against a local symbol.
6009 template<int size
, bool big_endian
>
6011 Target_aarch64
<size
, big_endian
>::Scan::unsupported_reloc_local(
6012 Sized_relobj_file
<size
, big_endian
>* object
,
6013 unsigned int r_type
)
6015 gold_error(_("%s: unsupported reloc %u against local symbol"),
6016 object
->name().c_str(), r_type
);
6019 // We are about to emit a dynamic relocation of type R_TYPE. If the
6020 // dynamic linker does not support it, issue an error.
6022 template<int size
, bool big_endian
>
6024 Target_aarch64
<size
, big_endian
>::Scan::check_non_pic(Relobj
* object
,
6025 unsigned int r_type
)
6027 gold_assert(r_type
!= elfcpp::R_AARCH64_NONE
);
6031 // These are the relocation types supported by glibc for AARCH64.
6032 case elfcpp::R_AARCH64_NONE
:
6033 case elfcpp::R_AARCH64_COPY
:
6034 case elfcpp::R_AARCH64_GLOB_DAT
:
6035 case elfcpp::R_AARCH64_JUMP_SLOT
:
6036 case elfcpp::R_AARCH64_RELATIVE
:
6037 case elfcpp::R_AARCH64_TLS_DTPREL64
:
6038 case elfcpp::R_AARCH64_TLS_DTPMOD64
:
6039 case elfcpp::R_AARCH64_TLS_TPREL64
:
6040 case elfcpp::R_AARCH64_TLSDESC
:
6041 case elfcpp::R_AARCH64_IRELATIVE
:
6042 case elfcpp::R_AARCH64_ABS32
:
6043 case elfcpp::R_AARCH64_ABS64
:
6050 // This prevents us from issuing more than one error per reloc
6051 // section. But we can still wind up issuing more than one
6052 // error per object file.
6053 if (this->issued_non_pic_error_
)
6055 gold_assert(parameters
->options().output_is_position_independent());
6056 object
->error(_("requires unsupported dynamic reloc; "
6057 "recompile with -fPIC"));
6058 this->issued_non_pic_error_
= true;
6062 // Return whether we need to make a PLT entry for a relocation of the
6063 // given type against a STT_GNU_IFUNC symbol.
6065 template<int size
, bool big_endian
>
6067 Target_aarch64
<size
, big_endian
>::Scan::reloc_needs_plt_for_ifunc(
6068 Sized_relobj_file
<size
, big_endian
>* object
,
6069 unsigned int r_type
)
6071 const AArch64_reloc_property
* arp
=
6072 aarch64_reloc_property_table
->get_reloc_property(r_type
);
6073 gold_assert(arp
!= NULL
);
6075 int flags
= arp
->reference_flags();
6076 if (flags
& Symbol::TLS_REF
)
6078 gold_error(_("%s: unsupported TLS reloc %s for IFUNC symbol"),
6079 object
->name().c_str(), arp
->name().c_str());
6085 // Scan a relocation for a local symbol.
6087 template<int size
, bool big_endian
>
6089 Target_aarch64
<size
, big_endian
>::Scan::local(
6090 Symbol_table
* symtab
,
6092 Target_aarch64
<size
, big_endian
>* target
,
6093 Sized_relobj_file
<size
, big_endian
>* object
,
6094 unsigned int data_shndx
,
6095 Output_section
* output_section
,
6096 const elfcpp::Rela
<size
, big_endian
>& rela
,
6097 unsigned int r_type
,
6098 const elfcpp::Sym
<size
, big_endian
>& lsym
,
6104 typedef Output_data_reloc
<elfcpp::SHT_RELA
, true, size
, big_endian
>
6106 unsigned int r_sym
= elfcpp::elf_r_sym
<size
>(rela
.get_r_info());
6108 // A local STT_GNU_IFUNC symbol may require a PLT entry.
6109 bool is_ifunc
= lsym
.get_st_type() == elfcpp::STT_GNU_IFUNC
;
6110 if (is_ifunc
&& this->reloc_needs_plt_for_ifunc(object
, r_type
))
6111 target
->make_local_ifunc_plt_entry(symtab
, layout
, object
, r_sym
);
6115 case elfcpp::R_AARCH64_NONE
:
6118 case elfcpp::R_AARCH64_ABS32
:
6119 case elfcpp::R_AARCH64_ABS16
:
6120 if (parameters
->options().output_is_position_independent())
6122 gold_error(_("%s: unsupported reloc %u in pos independent link."),
6123 object
->name().c_str(), r_type
);
6127 case elfcpp::R_AARCH64_ABS64
:
6128 // If building a shared library or pie, we need to mark this as a dynmic
6129 // reloction, so that the dynamic loader can relocate it.
6130 if (parameters
->options().output_is_position_independent())
6132 Reloc_section
* rela_dyn
= target
->rela_dyn_section(layout
);
6133 rela_dyn
->add_local_relative(object
, r_sym
,
6134 elfcpp::R_AARCH64_RELATIVE
,
6137 rela
.get_r_offset(),
6138 rela
.get_r_addend(),
6143 case elfcpp::R_AARCH64_PREL64
:
6144 case elfcpp::R_AARCH64_PREL32
:
6145 case elfcpp::R_AARCH64_PREL16
:
6148 case elfcpp::R_AARCH64_ADR_GOT_PAGE
:
6149 case elfcpp::R_AARCH64_LD64_GOT_LO12_NC
:
6150 case elfcpp::R_AARCH64_LD64_GOTPAGE_LO15
:
6151 // The above relocations are used to access GOT entries.
6153 Output_data_got_aarch64
<size
, big_endian
>* got
=
6154 target
->got_section(symtab
, layout
);
6155 bool is_new
= false;
6156 // This symbol requires a GOT entry.
6158 is_new
= got
->add_local_plt(object
, r_sym
, GOT_TYPE_STANDARD
);
6160 is_new
= got
->add_local(object
, r_sym
, GOT_TYPE_STANDARD
);
6161 if (is_new
&& parameters
->options().output_is_position_independent())
6162 target
->rela_dyn_section(layout
)->
6163 add_local_relative(object
,
6165 elfcpp::R_AARCH64_RELATIVE
,
6167 object
->local_got_offset(r_sym
,
6174 case elfcpp::R_AARCH64_MOVW_UABS_G0
: // 263
6175 case elfcpp::R_AARCH64_MOVW_UABS_G0_NC
: // 264
6176 case elfcpp::R_AARCH64_MOVW_UABS_G1
: // 265
6177 case elfcpp::R_AARCH64_MOVW_UABS_G1_NC
: // 266
6178 case elfcpp::R_AARCH64_MOVW_UABS_G2
: // 267
6179 case elfcpp::R_AARCH64_MOVW_UABS_G2_NC
: // 268
6180 case elfcpp::R_AARCH64_MOVW_UABS_G3
: // 269
6181 case elfcpp::R_AARCH64_MOVW_SABS_G0
: // 270
6182 case elfcpp::R_AARCH64_MOVW_SABS_G1
: // 271
6183 case elfcpp::R_AARCH64_MOVW_SABS_G2
: // 272
6184 if (parameters
->options().output_is_position_independent())
6186 gold_error(_("%s: unsupported reloc %u in pos independent link."),
6187 object
->name().c_str(), r_type
);
6191 case elfcpp::R_AARCH64_LD_PREL_LO19
: // 273
6192 case elfcpp::R_AARCH64_ADR_PREL_LO21
: // 274
6193 case elfcpp::R_AARCH64_ADR_PREL_PG_HI21
: // 275
6194 case elfcpp::R_AARCH64_ADR_PREL_PG_HI21_NC
: // 276
6195 case elfcpp::R_AARCH64_ADD_ABS_LO12_NC
: // 277
6196 case elfcpp::R_AARCH64_LDST8_ABS_LO12_NC
: // 278
6197 case elfcpp::R_AARCH64_LDST16_ABS_LO12_NC
: // 284
6198 case elfcpp::R_AARCH64_LDST32_ABS_LO12_NC
: // 285
6199 case elfcpp::R_AARCH64_LDST64_ABS_LO12_NC
: // 286
6200 case elfcpp::R_AARCH64_LDST128_ABS_LO12_NC
: // 299
6203 // Control flow, pc-relative. We don't need to do anything for a relative
6204 // addressing relocation against a local symbol if it does not reference
6206 case elfcpp::R_AARCH64_TSTBR14
:
6207 case elfcpp::R_AARCH64_CONDBR19
:
6208 case elfcpp::R_AARCH64_JUMP26
:
6209 case elfcpp::R_AARCH64_CALL26
:
6212 case elfcpp::R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21
:
6213 case elfcpp::R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC
:
6215 tls::Tls_optimization tlsopt
= Target_aarch64
<size
, big_endian
>::
6216 optimize_tls_reloc(!parameters
->options().shared(), r_type
);
6217 if (tlsopt
== tls::TLSOPT_TO_LE
)
6220 layout
->set_has_static_tls();
6221 // Create a GOT entry for the tp-relative offset.
6222 if (!parameters
->doing_static_link())
6224 Output_data_got_aarch64
<size
, big_endian
>* got
=
6225 target
->got_section(symtab
, layout
);
6226 got
->add_local_with_rel(object
, r_sym
, GOT_TYPE_TLS_OFFSET
,
6227 target
->rela_dyn_section(layout
),
6228 elfcpp::R_AARCH64_TLS_TPREL64
);
6230 else if (!object
->local_has_got_offset(r_sym
,
6231 GOT_TYPE_TLS_OFFSET
))
6233 Output_data_got_aarch64
<size
, big_endian
>* got
=
6234 target
->got_section(symtab
, layout
);
6235 got
->add_local(object
, r_sym
, GOT_TYPE_TLS_OFFSET
);
6236 unsigned int got_offset
=
6237 object
->local_got_offset(r_sym
, GOT_TYPE_TLS_OFFSET
);
6238 const elfcpp::Elf_Xword addend
= rela
.get_r_addend();
6239 gold_assert(addend
== 0);
6240 got
->add_static_reloc(got_offset
, elfcpp::R_AARCH64_TLS_TPREL64
,
6246 case elfcpp::R_AARCH64_TLSGD_ADR_PAGE21
:
6247 case elfcpp::R_AARCH64_TLSGD_ADD_LO12_NC
:
6249 tls::Tls_optimization tlsopt
= Target_aarch64
<size
, big_endian
>::
6250 optimize_tls_reloc(!parameters
->options().shared(), r_type
);
6251 if (tlsopt
== tls::TLSOPT_TO_LE
)
6253 layout
->set_has_static_tls();
6256 gold_assert(tlsopt
== tls::TLSOPT_NONE
);
6258 Output_data_got_aarch64
<size
, big_endian
>* got
=
6259 target
->got_section(symtab
, layout
);
6260 got
->add_local_pair_with_rel(object
,r_sym
, data_shndx
,
6262 target
->rela_dyn_section(layout
),
6263 elfcpp::R_AARCH64_TLS_DTPMOD64
);
6267 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G2
:
6268 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1
:
6269 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1_NC
:
6270 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0
:
6271 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0_NC
:
6272 case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_HI12
:
6273 case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12
:
6274 case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12_NC
:
6275 case elfcpp::R_AARCH64_TLSLE_LDST8_TPREL_LO12
:
6276 case elfcpp::R_AARCH64_TLSLE_LDST8_TPREL_LO12_NC
:
6277 case elfcpp::R_AARCH64_TLSLE_LDST16_TPREL_LO12
:
6278 case elfcpp::R_AARCH64_TLSLE_LDST16_TPREL_LO12_NC
:
6279 case elfcpp::R_AARCH64_TLSLE_LDST32_TPREL_LO12
:
6280 case elfcpp::R_AARCH64_TLSLE_LDST32_TPREL_LO12_NC
:
6281 case elfcpp::R_AARCH64_TLSLE_LDST64_TPREL_LO12
:
6282 case elfcpp::R_AARCH64_TLSLE_LDST64_TPREL_LO12_NC
:
6284 layout
->set_has_static_tls();
6285 bool output_is_shared
= parameters
->options().shared();
6286 if (output_is_shared
)
6287 gold_error(_("%s: unsupported TLSLE reloc %u in shared code."),
6288 object
->name().c_str(), r_type
);
6292 case elfcpp::R_AARCH64_TLSLD_ADR_PAGE21
:
6293 case elfcpp::R_AARCH64_TLSLD_ADD_LO12_NC
:
6295 tls::Tls_optimization tlsopt
= Target_aarch64
<size
, big_endian
>::
6296 optimize_tls_reloc(!parameters
->options().shared(), r_type
);
6297 if (tlsopt
== tls::TLSOPT_NONE
)
6299 // Create a GOT entry for the module index.
6300 target
->got_mod_index_entry(symtab
, layout
, object
);
6302 else if (tlsopt
!= tls::TLSOPT_TO_LE
)
6303 unsupported_reloc_local(object
, r_type
);
6307 case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G1
:
6308 case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G0_NC
:
6309 case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_HI12
:
6310 case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_LO12_NC
:
6313 case elfcpp::R_AARCH64_TLSDESC_ADR_PAGE21
:
6314 case elfcpp::R_AARCH64_TLSDESC_LD64_LO12
:
6315 case elfcpp::R_AARCH64_TLSDESC_ADD_LO12
:
6317 tls::Tls_optimization tlsopt
= Target_aarch64
<size
, big_endian
>::
6318 optimize_tls_reloc(!parameters
->options().shared(), r_type
);
6319 target
->define_tls_base_symbol(symtab
, layout
);
6320 if (tlsopt
== tls::TLSOPT_NONE
)
6322 // Create reserved PLT and GOT entries for the resolver.
6323 target
->reserve_tlsdesc_entries(symtab
, layout
);
6325 // Generate a double GOT entry with an R_AARCH64_TLSDESC reloc.
6326 // The R_AARCH64_TLSDESC reloc is resolved lazily, so the GOT
6327 // entry needs to be in an area in .got.plt, not .got. Call
6328 // got_section to make sure the section has been created.
6329 target
->got_section(symtab
, layout
);
6330 Output_data_got
<size
, big_endian
>* got
=
6331 target
->got_tlsdesc_section();
6332 unsigned int r_sym
= elfcpp::elf_r_sym
<size
>(rela
.get_r_info());
6333 if (!object
->local_has_got_offset(r_sym
, GOT_TYPE_TLS_DESC
))
6335 unsigned int got_offset
= got
->add_constant(0);
6336 got
->add_constant(0);
6337 object
->set_local_got_offset(r_sym
, GOT_TYPE_TLS_DESC
,
6339 Reloc_section
* rt
= target
->rela_tlsdesc_section(layout
);
6340 // We store the arguments we need in a vector, and use
6341 // the index into the vector as the parameter to pass
6342 // to the target specific routines.
6343 uintptr_t intarg
= target
->add_tlsdesc_info(object
, r_sym
);
6344 void* arg
= reinterpret_cast<void*>(intarg
);
6345 rt
->add_target_specific(elfcpp::R_AARCH64_TLSDESC
, arg
,
6346 got
, got_offset
, 0);
6349 else if (tlsopt
!= tls::TLSOPT_TO_LE
)
6350 unsupported_reloc_local(object
, r_type
);
6354 case elfcpp::R_AARCH64_TLSDESC_CALL
:
6358 unsupported_reloc_local(object
, r_type
);
6363 // Report an unsupported relocation against a global symbol.
6365 template<int size
, bool big_endian
>
6367 Target_aarch64
<size
, big_endian
>::Scan::unsupported_reloc_global(
6368 Sized_relobj_file
<size
, big_endian
>* object
,
6369 unsigned int r_type
,
6372 gold_error(_("%s: unsupported reloc %u against global symbol %s"),
6373 object
->name().c_str(), r_type
, gsym
->demangled_name().c_str());
6376 template<int size
, bool big_endian
>
6378 Target_aarch64
<size
, big_endian
>::Scan::global(
6379 Symbol_table
* symtab
,
6381 Target_aarch64
<size
, big_endian
>* target
,
6382 Sized_relobj_file
<size
, big_endian
> * object
,
6383 unsigned int data_shndx
,
6384 Output_section
* output_section
,
6385 const elfcpp::Rela
<size
, big_endian
>& rela
,
6386 unsigned int r_type
,
6389 // A STT_GNU_IFUNC symbol may require a PLT entry.
6390 if (gsym
->type() == elfcpp::STT_GNU_IFUNC
6391 && this->reloc_needs_plt_for_ifunc(object
, r_type
))
6392 target
->make_plt_entry(symtab
, layout
, gsym
);
6394 typedef Output_data_reloc
<elfcpp::SHT_RELA
, true, size
, big_endian
>
6396 const AArch64_reloc_property
* arp
=
6397 aarch64_reloc_property_table
->get_reloc_property(r_type
);
6398 gold_assert(arp
!= NULL
);
6402 case elfcpp::R_AARCH64_NONE
:
6405 case elfcpp::R_AARCH64_ABS16
:
6406 case elfcpp::R_AARCH64_ABS32
:
6407 case elfcpp::R_AARCH64_ABS64
:
6409 // Make a PLT entry if necessary.
6410 if (gsym
->needs_plt_entry())
6412 target
->make_plt_entry(symtab
, layout
, gsym
);
6413 // Since this is not a PC-relative relocation, we may be
6414 // taking the address of a function. In that case we need to
6415 // set the entry in the dynamic symbol table to the address of
6417 if (gsym
->is_from_dynobj() && !parameters
->options().shared())
6418 gsym
->set_needs_dynsym_value();
6420 // Make a dynamic relocation if necessary.
6421 if (gsym
->needs_dynamic_reloc(arp
->reference_flags()))
6423 if (!parameters
->options().output_is_position_independent()
6424 && gsym
->may_need_copy_reloc())
6426 target
->copy_reloc(symtab
, layout
, object
,
6427 data_shndx
, output_section
, gsym
, rela
);
6429 else if (r_type
== elfcpp::R_AARCH64_ABS64
6430 && gsym
->type() == elfcpp::STT_GNU_IFUNC
6431 && gsym
->can_use_relative_reloc(false)
6432 && !gsym
->is_from_dynobj()
6433 && !gsym
->is_undefined()
6434 && !gsym
->is_preemptible())
6436 // Use an IRELATIVE reloc for a locally defined STT_GNU_IFUNC
6437 // symbol. This makes a function address in a PIE executable
6438 // match the address in a shared library that it links against.
6439 Reloc_section
* rela_dyn
=
6440 target
->rela_irelative_section(layout
);
6441 unsigned int r_type
= elfcpp::R_AARCH64_IRELATIVE
;
6442 rela_dyn
->add_symbolless_global_addend(gsym
, r_type
,
6443 output_section
, object
,
6445 rela
.get_r_offset(),
6446 rela
.get_r_addend());
6448 else if (r_type
== elfcpp::R_AARCH64_ABS64
6449 && gsym
->can_use_relative_reloc(false))
6451 Reloc_section
* rela_dyn
= target
->rela_dyn_section(layout
);
6452 rela_dyn
->add_global_relative(gsym
,
6453 elfcpp::R_AARCH64_RELATIVE
,
6457 rela
.get_r_offset(),
6458 rela
.get_r_addend(),
6463 check_non_pic(object
, r_type
);
6464 Output_data_reloc
<elfcpp::SHT_RELA
, true, size
, big_endian
>*
6465 rela_dyn
= target
->rela_dyn_section(layout
);
6466 rela_dyn
->add_global(
6467 gsym
, r_type
, output_section
, object
,
6468 data_shndx
, rela
.get_r_offset(),rela
.get_r_addend());
6474 case elfcpp::R_AARCH64_PREL16
:
6475 case elfcpp::R_AARCH64_PREL32
:
6476 case elfcpp::R_AARCH64_PREL64
:
6477 // This is used to fill the GOT absolute address.
6478 if (gsym
->needs_plt_entry())
6480 target
->make_plt_entry(symtab
, layout
, gsym
);
6484 case elfcpp::R_AARCH64_MOVW_UABS_G0
: // 263
6485 case elfcpp::R_AARCH64_MOVW_UABS_G0_NC
: // 264
6486 case elfcpp::R_AARCH64_MOVW_UABS_G1
: // 265
6487 case elfcpp::R_AARCH64_MOVW_UABS_G1_NC
: // 266
6488 case elfcpp::R_AARCH64_MOVW_UABS_G2
: // 267
6489 case elfcpp::R_AARCH64_MOVW_UABS_G2_NC
: // 268
6490 case elfcpp::R_AARCH64_MOVW_UABS_G3
: // 269
6491 case elfcpp::R_AARCH64_MOVW_SABS_G0
: // 270
6492 case elfcpp::R_AARCH64_MOVW_SABS_G1
: // 271
6493 case elfcpp::R_AARCH64_MOVW_SABS_G2
: // 272
6494 if (parameters
->options().output_is_position_independent())
6496 gold_error(_("%s: unsupported reloc %u in pos independent link."),
6497 object
->name().c_str(), r_type
);
6499 // Make a PLT entry if necessary.
6500 if (gsym
->needs_plt_entry())
6502 target
->make_plt_entry(symtab
, layout
, gsym
);
6503 // Since this is not a PC-relative relocation, we may be
6504 // taking the address of a function. In that case we need to
6505 // set the entry in the dynamic symbol table to the address of
6507 if (gsym
->is_from_dynobj() && !parameters
->options().shared())
6508 gsym
->set_needs_dynsym_value();
6512 case elfcpp::R_AARCH64_LD_PREL_LO19
: // 273
6513 case elfcpp::R_AARCH64_ADR_PREL_LO21
: // 274
6514 case elfcpp::R_AARCH64_ADR_PREL_PG_HI21
: // 275
6515 case elfcpp::R_AARCH64_ADR_PREL_PG_HI21_NC
: // 276
6516 case elfcpp::R_AARCH64_ADD_ABS_LO12_NC
: // 277
6517 case elfcpp::R_AARCH64_LDST8_ABS_LO12_NC
: // 278
6518 case elfcpp::R_AARCH64_LDST16_ABS_LO12_NC
: // 284
6519 case elfcpp::R_AARCH64_LDST32_ABS_LO12_NC
: // 285
6520 case elfcpp::R_AARCH64_LDST64_ABS_LO12_NC
: // 286
6521 case elfcpp::R_AARCH64_LDST128_ABS_LO12_NC
: // 299
6523 if (gsym
->needs_plt_entry())
6524 target
->make_plt_entry(symtab
, layout
, gsym
);
6525 // Make a dynamic relocation if necessary.
6526 if (gsym
->needs_dynamic_reloc(arp
->reference_flags()))
6528 if (parameters
->options().output_is_executable()
6529 && gsym
->may_need_copy_reloc())
6531 target
->copy_reloc(symtab
, layout
, object
,
6532 data_shndx
, output_section
, gsym
, rela
);
6538 case elfcpp::R_AARCH64_ADR_GOT_PAGE
:
6539 case elfcpp::R_AARCH64_LD64_GOT_LO12_NC
:
6540 case elfcpp::R_AARCH64_LD64_GOTPAGE_LO15
:
6542 // The above relocations are used to access GOT entries.
6543 // Note a GOT entry is an *address* to a symbol.
6544 // The symbol requires a GOT entry
6545 Output_data_got_aarch64
<size
, big_endian
>* got
=
6546 target
->got_section(symtab
, layout
);
6547 if (gsym
->final_value_is_known())
6549 // For a STT_GNU_IFUNC symbol we want the PLT address.
6550 if (gsym
->type() == elfcpp::STT_GNU_IFUNC
)
6551 got
->add_global_plt(gsym
, GOT_TYPE_STANDARD
);
6553 got
->add_global(gsym
, GOT_TYPE_STANDARD
);
6557 // If this symbol is not fully resolved, we need to add a dynamic
6558 // relocation for it.
6559 Reloc_section
* rela_dyn
= target
->rela_dyn_section(layout
);
6561 // Use a GLOB_DAT rather than a RELATIVE reloc if:
6563 // 1) The symbol may be defined in some other module.
6564 // 2) We are building a shared library and this is a protected
6565 // symbol; using GLOB_DAT means that the dynamic linker can use
6566 // the address of the PLT in the main executable when appropriate
6567 // so that function address comparisons work.
6568 // 3) This is a STT_GNU_IFUNC symbol in position dependent code,
6569 // again so that function address comparisons work.
6570 if (gsym
->is_from_dynobj()
6571 || gsym
->is_undefined()
6572 || gsym
->is_preemptible()
6573 || (gsym
->visibility() == elfcpp::STV_PROTECTED
6574 && parameters
->options().shared())
6575 || (gsym
->type() == elfcpp::STT_GNU_IFUNC
6576 && parameters
->options().output_is_position_independent()))
6577 got
->add_global_with_rel(gsym
, GOT_TYPE_STANDARD
,
6578 rela_dyn
, elfcpp::R_AARCH64_GLOB_DAT
);
6581 // For a STT_GNU_IFUNC symbol we want to write the PLT
6582 // offset into the GOT, so that function pointer
6583 // comparisons work correctly.
6585 if (gsym
->type() != elfcpp::STT_GNU_IFUNC
)
6586 is_new
= got
->add_global(gsym
, GOT_TYPE_STANDARD
);
6589 is_new
= got
->add_global_plt(gsym
, GOT_TYPE_STANDARD
);
6590 // Tell the dynamic linker to use the PLT address
6591 // when resolving relocations.
6592 if (gsym
->is_from_dynobj()
6593 && !parameters
->options().shared())
6594 gsym
->set_needs_dynsym_value();
6598 rela_dyn
->add_global_relative(
6599 gsym
, elfcpp::R_AARCH64_RELATIVE
,
6601 gsym
->got_offset(GOT_TYPE_STANDARD
),
6610 case elfcpp::R_AARCH64_TSTBR14
:
6611 case elfcpp::R_AARCH64_CONDBR19
:
6612 case elfcpp::R_AARCH64_JUMP26
:
6613 case elfcpp::R_AARCH64_CALL26
:
6615 if (gsym
->final_value_is_known())
6618 if (gsym
->is_defined() &&
6619 !gsym
->is_from_dynobj() &&
6620 !gsym
->is_preemptible())
6623 // Make plt entry for function call.
6624 target
->make_plt_entry(symtab
, layout
, gsym
);
6628 case elfcpp::R_AARCH64_TLSGD_ADR_PAGE21
:
6629 case elfcpp::R_AARCH64_TLSGD_ADD_LO12_NC
: // General dynamic
6631 tls::Tls_optimization tlsopt
= Target_aarch64
<size
, big_endian
>::
6632 optimize_tls_reloc(gsym
->final_value_is_known(), r_type
);
6633 if (tlsopt
== tls::TLSOPT_TO_LE
)
6635 layout
->set_has_static_tls();
6638 gold_assert(tlsopt
== tls::TLSOPT_NONE
);
6641 Output_data_got_aarch64
<size
, big_endian
>* got
=
6642 target
->got_section(symtab
, layout
);
6643 // Create 2 consecutive entries for module index and offset.
6644 got
->add_global_pair_with_rel(gsym
, GOT_TYPE_TLS_PAIR
,
6645 target
->rela_dyn_section(layout
),
6646 elfcpp::R_AARCH64_TLS_DTPMOD64
,
6647 elfcpp::R_AARCH64_TLS_DTPREL64
);
6651 case elfcpp::R_AARCH64_TLSLD_ADR_PAGE21
:
6652 case elfcpp::R_AARCH64_TLSLD_ADD_LO12_NC
: // Local dynamic
6654 tls::Tls_optimization tlsopt
= Target_aarch64
<size
, big_endian
>::
6655 optimize_tls_reloc(!parameters
->options().shared(), r_type
);
6656 if (tlsopt
== tls::TLSOPT_NONE
)
6658 // Create a GOT entry for the module index.
6659 target
->got_mod_index_entry(symtab
, layout
, object
);
6661 else if (tlsopt
!= tls::TLSOPT_TO_LE
)
6662 unsupported_reloc_local(object
, r_type
);
6666 case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G1
:
6667 case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G0_NC
:
6668 case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_HI12
:
6669 case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_LO12_NC
: // Other local dynamic
6672 case elfcpp::R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21
:
6673 case elfcpp::R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC
: // Initial executable
6675 tls::Tls_optimization tlsopt
= Target_aarch64
<size
, big_endian
>::
6676 optimize_tls_reloc(gsym
->final_value_is_known(), r_type
);
6677 if (tlsopt
== tls::TLSOPT_TO_LE
)
6680 layout
->set_has_static_tls();
6681 // Create a GOT entry for the tp-relative offset.
6682 Output_data_got_aarch64
<size
, big_endian
>* got
6683 = target
->got_section(symtab
, layout
);
6684 if (!parameters
->doing_static_link())
6686 got
->add_global_with_rel(
6687 gsym
, GOT_TYPE_TLS_OFFSET
,
6688 target
->rela_dyn_section(layout
),
6689 elfcpp::R_AARCH64_TLS_TPREL64
);
6691 if (!gsym
->has_got_offset(GOT_TYPE_TLS_OFFSET
))
6693 got
->add_global(gsym
, GOT_TYPE_TLS_OFFSET
);
6694 unsigned int got_offset
=
6695 gsym
->got_offset(GOT_TYPE_TLS_OFFSET
);
6696 const elfcpp::Elf_Xword addend
= rela
.get_r_addend();
6697 gold_assert(addend
== 0);
6698 got
->add_static_reloc(got_offset
,
6699 elfcpp::R_AARCH64_TLS_TPREL64
, gsym
);
6704 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G2
:
6705 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1
:
6706 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1_NC
:
6707 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0
:
6708 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0_NC
:
6709 case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_HI12
:
6710 case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12
:
6711 case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12_NC
:
6712 case elfcpp::R_AARCH64_TLSLE_LDST8_TPREL_LO12
:
6713 case elfcpp::R_AARCH64_TLSLE_LDST8_TPREL_LO12_NC
:
6714 case elfcpp::R_AARCH64_TLSLE_LDST16_TPREL_LO12
:
6715 case elfcpp::R_AARCH64_TLSLE_LDST16_TPREL_LO12_NC
:
6716 case elfcpp::R_AARCH64_TLSLE_LDST32_TPREL_LO12
:
6717 case elfcpp::R_AARCH64_TLSLE_LDST32_TPREL_LO12_NC
:
6718 case elfcpp::R_AARCH64_TLSLE_LDST64_TPREL_LO12
:
6719 case elfcpp::R_AARCH64_TLSLE_LDST64_TPREL_LO12_NC
: // Local executable
6720 layout
->set_has_static_tls();
6721 if (parameters
->options().shared())
6722 gold_error(_("%s: unsupported TLSLE reloc type %u in shared objects."),
6723 object
->name().c_str(), r_type
);
6726 case elfcpp::R_AARCH64_TLSDESC_ADR_PAGE21
:
6727 case elfcpp::R_AARCH64_TLSDESC_LD64_LO12
:
6728 case elfcpp::R_AARCH64_TLSDESC_ADD_LO12
: // TLS descriptor
6730 target
->define_tls_base_symbol(symtab
, layout
);
6731 tls::Tls_optimization tlsopt
= Target_aarch64
<size
, big_endian
>::
6732 optimize_tls_reloc(gsym
->final_value_is_known(), r_type
);
6733 if (tlsopt
== tls::TLSOPT_NONE
)
6735 // Create reserved PLT and GOT entries for the resolver.
6736 target
->reserve_tlsdesc_entries(symtab
, layout
);
6738 // Create a double GOT entry with an R_AARCH64_TLSDESC
6739 // relocation. The R_AARCH64_TLSDESC is resolved lazily, so the GOT
6740 // entry needs to be in an area in .got.plt, not .got. Call
6741 // got_section to make sure the section has been created.
6742 target
->got_section(symtab
, layout
);
6743 Output_data_got
<size
, big_endian
>* got
=
6744 target
->got_tlsdesc_section();
6745 Reloc_section
* rt
= target
->rela_tlsdesc_section(layout
);
6746 got
->add_global_pair_with_rel(gsym
, GOT_TYPE_TLS_DESC
, rt
,
6747 elfcpp::R_AARCH64_TLSDESC
, 0);
6749 else if (tlsopt
== tls::TLSOPT_TO_IE
)
6751 // Create a GOT entry for the tp-relative offset.
6752 Output_data_got
<size
, big_endian
>* got
6753 = target
->got_section(symtab
, layout
);
6754 got
->add_global_with_rel(gsym
, GOT_TYPE_TLS_OFFSET
,
6755 target
->rela_dyn_section(layout
),
6756 elfcpp::R_AARCH64_TLS_TPREL64
);
6758 else if (tlsopt
!= tls::TLSOPT_TO_LE
)
6759 unsupported_reloc_global(object
, r_type
, gsym
);
6763 case elfcpp::R_AARCH64_TLSDESC_CALL
:
6767 gold_error(_("%s: unsupported reloc type in global scan"),
6768 aarch64_reloc_property_table
->
6769 reloc_name_in_error_message(r_type
).c_str());
6772 } // End of Scan::global
6775 // Create the PLT section.
6776 template<int size
, bool big_endian
>
6778 Target_aarch64
<size
, big_endian
>::make_plt_section(
6779 Symbol_table
* symtab
, Layout
* layout
)
6781 if (this->plt_
== NULL
)
6783 // Create the GOT section first.
6784 this->got_section(symtab
, layout
);
6786 this->plt_
= this->make_data_plt(layout
, this->got_
, this->got_plt_
,
6787 this->got_irelative_
);
6789 layout
->add_output_section_data(".plt", elfcpp::SHT_PROGBITS
,
6791 | elfcpp::SHF_EXECINSTR
),
6792 this->plt_
, ORDER_PLT
, false);
6794 // Make the sh_info field of .rela.plt point to .plt.
6795 Output_section
* rela_plt_os
= this->plt_
->rela_plt()->output_section();
6796 rela_plt_os
->set_info_section(this->plt_
->output_section());
6800 // Return the section for TLSDESC relocations.
6802 template<int size
, bool big_endian
>
6803 typename Target_aarch64
<size
, big_endian
>::Reloc_section
*
6804 Target_aarch64
<size
, big_endian
>::rela_tlsdesc_section(Layout
* layout
) const
6806 return this->plt_section()->rela_tlsdesc(layout
);
6809 // Create a PLT entry for a global symbol.
6811 template<int size
, bool big_endian
>
6813 Target_aarch64
<size
, big_endian
>::make_plt_entry(
6814 Symbol_table
* symtab
,
6818 if (gsym
->has_plt_offset())
6821 if (this->plt_
== NULL
)
6822 this->make_plt_section(symtab
, layout
);
6824 this->plt_
->add_entry(symtab
, layout
, gsym
);
6827 // Make a PLT entry for a local STT_GNU_IFUNC symbol.
6829 template<int size
, bool big_endian
>
6831 Target_aarch64
<size
, big_endian
>::make_local_ifunc_plt_entry(
6832 Symbol_table
* symtab
, Layout
* layout
,
6833 Sized_relobj_file
<size
, big_endian
>* relobj
,
6834 unsigned int local_sym_index
)
6836 if (relobj
->local_has_plt_offset(local_sym_index
))
6838 if (this->plt_
== NULL
)
6839 this->make_plt_section(symtab
, layout
);
6840 unsigned int plt_offset
= this->plt_
->add_local_ifunc_entry(symtab
, layout
,
6843 relobj
->set_local_plt_offset(local_sym_index
, plt_offset
);
6846 template<int size
, bool big_endian
>
6848 Target_aarch64
<size
, big_endian
>::gc_process_relocs(
6849 Symbol_table
* symtab
,
6851 Sized_relobj_file
<size
, big_endian
>* object
,
6852 unsigned int data_shndx
,
6853 unsigned int sh_type
,
6854 const unsigned char* prelocs
,
6856 Output_section
* output_section
,
6857 bool needs_special_offset_handling
,
6858 size_t local_symbol_count
,
6859 const unsigned char* plocal_symbols
)
6861 typedef Target_aarch64
<size
, big_endian
> Aarch64
;
6862 typedef gold::Default_classify_reloc
<elfcpp::SHT_RELA
, size
, big_endian
>
6865 if (sh_type
== elfcpp::SHT_REL
)
6870 gold::gc_process_relocs
<size
, big_endian
, Aarch64
, Scan
, Classify_reloc
>(
6879 needs_special_offset_handling
,
6884 // Scan relocations for a section.
6886 template<int size
, bool big_endian
>
6888 Target_aarch64
<size
, big_endian
>::scan_relocs(
6889 Symbol_table
* symtab
,
6891 Sized_relobj_file
<size
, big_endian
>* object
,
6892 unsigned int data_shndx
,
6893 unsigned int sh_type
,
6894 const unsigned char* prelocs
,
6896 Output_section
* output_section
,
6897 bool needs_special_offset_handling
,
6898 size_t local_symbol_count
,
6899 const unsigned char* plocal_symbols
)
6901 typedef Target_aarch64
<size
, big_endian
> Aarch64
;
6902 typedef gold::Default_classify_reloc
<elfcpp::SHT_RELA
, size
, big_endian
>
6905 if (sh_type
== elfcpp::SHT_REL
)
6907 gold_error(_("%s: unsupported REL reloc section"),
6908 object
->name().c_str());
6912 gold::scan_relocs
<size
, big_endian
, Aarch64
, Scan
, Classify_reloc
>(
6921 needs_special_offset_handling
,
6926 // Return the value to use for a dynamic which requires special
6927 // treatment. This is how we support equality comparisons of function
6928 // pointers across shared library boundaries, as described in the
6929 // processor specific ABI supplement.
6931 template<int size
, bool big_endian
>
6933 Target_aarch64
<size
, big_endian
>::do_dynsym_value(const Symbol
* gsym
) const
6935 gold_assert(gsym
->is_from_dynobj() && gsym
->has_plt_offset());
6936 return this->plt_address_for_global(gsym
);
6940 // Finalize the sections.
6942 template<int size
, bool big_endian
>
6944 Target_aarch64
<size
, big_endian
>::do_finalize_sections(
6946 const Input_objects
*,
6947 Symbol_table
* symtab
)
6949 const Reloc_section
* rel_plt
= (this->plt_
== NULL
6951 : this->plt_
->rela_plt());
6952 layout
->add_target_dynamic_tags(false, this->got_plt_
, rel_plt
,
6953 this->rela_dyn_
, true, false);
6955 // Emit any relocs we saved in an attempt to avoid generating COPY
6957 if (this->copy_relocs_
.any_saved_relocs())
6958 this->copy_relocs_
.emit(this->rela_dyn_section(layout
));
6960 // Fill in some more dynamic tags.
6961 Output_data_dynamic
* const odyn
= layout
->dynamic_data();
6964 if (this->plt_
!= NULL
6965 && this->plt_
->output_section() != NULL
6966 && this->plt_
->has_tlsdesc_entry())
6968 unsigned int plt_offset
= this->plt_
->get_tlsdesc_plt_offset();
6969 unsigned int got_offset
= this->plt_
->get_tlsdesc_got_offset();
6970 this->got_
->finalize_data_size();
6971 odyn
->add_section_plus_offset(elfcpp::DT_TLSDESC_PLT
,
6972 this->plt_
, plt_offset
);
6973 odyn
->add_section_plus_offset(elfcpp::DT_TLSDESC_GOT
,
6974 this->got_
, got_offset
);
6978 // Set the size of the _GLOBAL_OFFSET_TABLE_ symbol to the size of
6979 // the .got section.
6980 Symbol
* sym
= this->global_offset_table_
;
6983 uint64_t data_size
= this->got_
->current_data_size();
6984 symtab
->get_sized_symbol
<size
>(sym
)->set_symsize(data_size
);
6986 // If the .got section is more than 0x8000 bytes, we add
6987 // 0x8000 to the value of _GLOBAL_OFFSET_TABLE_, so that 16
6988 // bit relocations have a greater chance of working.
6989 if (data_size
>= 0x8000)
6990 symtab
->get_sized_symbol
<size
>(sym
)->set_value(
6991 symtab
->get_sized_symbol
<size
>(sym
)->value() + 0x8000);
6994 if (parameters
->doing_static_link()
6995 && (this->plt_
== NULL
|| !this->plt_
->has_irelative_section()))
6997 // If linking statically, make sure that the __rela_iplt symbols
6998 // were defined if necessary, even if we didn't create a PLT.
6999 static const Define_symbol_in_segment syms
[] =
7002 "__rela_iplt_start", // name
7003 elfcpp::PT_LOAD
, // segment_type
7004 elfcpp::PF_W
, // segment_flags_set
7005 elfcpp::PF(0), // segment_flags_clear
7008 elfcpp::STT_NOTYPE
, // type
7009 elfcpp::STB_GLOBAL
, // binding
7010 elfcpp::STV_HIDDEN
, // visibility
7012 Symbol::SEGMENT_START
, // offset_from_base
7016 "__rela_iplt_end", // name
7017 elfcpp::PT_LOAD
, // segment_type
7018 elfcpp::PF_W
, // segment_flags_set
7019 elfcpp::PF(0), // segment_flags_clear
7022 elfcpp::STT_NOTYPE
, // type
7023 elfcpp::STB_GLOBAL
, // binding
7024 elfcpp::STV_HIDDEN
, // visibility
7026 Symbol::SEGMENT_START
, // offset_from_base
7031 symtab
->define_symbols(layout
, 2, syms
,
7032 layout
->script_options()->saw_sections_clause());
7038 // Perform a relocation.
7040 template<int size
, bool big_endian
>
7042 Target_aarch64
<size
, big_endian
>::Relocate::relocate(
7043 const Relocate_info
<size
, big_endian
>* relinfo
,
7045 Target_aarch64
<size
, big_endian
>* target
,
7048 const unsigned char* preloc
,
7049 const Sized_symbol
<size
>* gsym
,
7050 const Symbol_value
<size
>* psymval
,
7051 unsigned char* view
,
7052 typename
elfcpp::Elf_types
<size
>::Elf_Addr address
,
7053 section_size_type
/* view_size */)
7058 typedef AArch64_relocate_functions
<size
, big_endian
> Reloc
;
7060 const elfcpp::Rela
<size
, big_endian
> rela(preloc
);
7061 unsigned int r_type
= elfcpp::elf_r_type
<size
>(rela
.get_r_info());
7062 const AArch64_reloc_property
* reloc_property
=
7063 aarch64_reloc_property_table
->get_reloc_property(r_type
);
7065 if (reloc_property
== NULL
)
7067 std::string reloc_name
=
7068 aarch64_reloc_property_table
->reloc_name_in_error_message(r_type
);
7069 gold_error_at_location(relinfo
, relnum
, rela
.get_r_offset(),
7070 _("cannot relocate %s in object file"),
7071 reloc_name
.c_str());
7075 const Sized_relobj_file
<size
, big_endian
>* object
= relinfo
->object
;
7077 // Pick the value to use for symbols defined in the PLT.
7078 Symbol_value
<size
> symval
;
7080 && gsym
->use_plt_offset(reloc_property
->reference_flags()))
7082 symval
.set_output_value(target
->plt_address_for_global(gsym
));
7085 else if (gsym
== NULL
&& psymval
->is_ifunc_symbol())
7087 unsigned int r_sym
= elfcpp::elf_r_sym
<size
>(rela
.get_r_info());
7088 if (object
->local_has_plt_offset(r_sym
))
7090 symval
.set_output_value(target
->plt_address_for_local(object
, r_sym
));
7095 const elfcpp::Elf_Xword addend
= rela
.get_r_addend();
7097 // Get the GOT offset if needed.
7098 // For aarch64, the GOT pointer points to the start of the GOT section.
7099 bool have_got_offset
= false;
7101 int got_base
= (target
->got_
!= NULL
7102 ? (target
->got_
->current_data_size() >= 0x8000
7107 case elfcpp::R_AARCH64_MOVW_GOTOFF_G0
:
7108 case elfcpp::R_AARCH64_MOVW_GOTOFF_G0_NC
:
7109 case elfcpp::R_AARCH64_MOVW_GOTOFF_G1
:
7110 case elfcpp::R_AARCH64_MOVW_GOTOFF_G1_NC
:
7111 case elfcpp::R_AARCH64_MOVW_GOTOFF_G2
:
7112 case elfcpp::R_AARCH64_MOVW_GOTOFF_G2_NC
:
7113 case elfcpp::R_AARCH64_MOVW_GOTOFF_G3
:
7114 case elfcpp::R_AARCH64_GOTREL64
:
7115 case elfcpp::R_AARCH64_GOTREL32
:
7116 case elfcpp::R_AARCH64_GOT_LD_PREL19
:
7117 case elfcpp::R_AARCH64_LD64_GOTOFF_LO15
:
7118 case elfcpp::R_AARCH64_ADR_GOT_PAGE
:
7119 case elfcpp::R_AARCH64_LD64_GOT_LO12_NC
:
7120 case elfcpp::R_AARCH64_LD64_GOTPAGE_LO15
:
7123 gold_assert(gsym
->has_got_offset(GOT_TYPE_STANDARD
));
7124 got_offset
= gsym
->got_offset(GOT_TYPE_STANDARD
) - got_base
;
7128 unsigned int r_sym
= elfcpp::elf_r_sym
<size
>(rela
.get_r_info());
7129 gold_assert(object
->local_has_got_offset(r_sym
, GOT_TYPE_STANDARD
));
7130 got_offset
= (object
->local_got_offset(r_sym
, GOT_TYPE_STANDARD
)
7133 have_got_offset
= true;
7140 typename
Reloc::Status reloc_status
= Reloc::STATUS_OKAY
;
7141 typename
elfcpp::Elf_types
<size
>::Elf_Addr value
;
7144 case elfcpp::R_AARCH64_NONE
:
7147 case elfcpp::R_AARCH64_ABS64
:
7148 if (!parameters
->options().apply_dynamic_relocs()
7149 && parameters
->options().output_is_position_independent()
7151 && gsym
->needs_dynamic_reloc(reloc_property
->reference_flags())
7152 && !gsym
->can_use_relative_reloc(false))
7153 // We have generated an absolute dynamic relocation, so do not
7154 // apply the relocation statically. (Works around bugs in older
7155 // Android dynamic linkers.)
7157 reloc_status
= Reloc::template rela_ua
<64>(
7158 view
, object
, psymval
, addend
, reloc_property
);
7161 case elfcpp::R_AARCH64_ABS32
:
7162 if (!parameters
->options().apply_dynamic_relocs()
7163 && parameters
->options().output_is_position_independent()
7165 && gsym
->needs_dynamic_reloc(reloc_property
->reference_flags()))
7166 // We have generated an absolute dynamic relocation, so do not
7167 // apply the relocation statically. (Works around bugs in older
7168 // Android dynamic linkers.)
7170 reloc_status
= Reloc::template rela_ua
<32>(
7171 view
, object
, psymval
, addend
, reloc_property
);
7174 case elfcpp::R_AARCH64_ABS16
:
7175 if (!parameters
->options().apply_dynamic_relocs()
7176 && parameters
->options().output_is_position_independent()
7178 && gsym
->needs_dynamic_reloc(reloc_property
->reference_flags()))
7179 // We have generated an absolute dynamic relocation, so do not
7180 // apply the relocation statically. (Works around bugs in older
7181 // Android dynamic linkers.)
7183 reloc_status
= Reloc::template rela_ua
<16>(
7184 view
, object
, psymval
, addend
, reloc_property
);
7187 case elfcpp::R_AARCH64_PREL64
:
7188 reloc_status
= Reloc::template pcrela_ua
<64>(
7189 view
, object
, psymval
, addend
, address
, reloc_property
);
7192 case elfcpp::R_AARCH64_PREL32
:
7193 reloc_status
= Reloc::template pcrela_ua
<32>(
7194 view
, object
, psymval
, addend
, address
, reloc_property
);
7197 case elfcpp::R_AARCH64_PREL16
:
7198 reloc_status
= Reloc::template pcrela_ua
<16>(
7199 view
, object
, psymval
, addend
, address
, reloc_property
);
7202 case elfcpp::R_AARCH64_MOVW_UABS_G0
:
7203 case elfcpp::R_AARCH64_MOVW_UABS_G0_NC
:
7204 case elfcpp::R_AARCH64_MOVW_UABS_G1
:
7205 case elfcpp::R_AARCH64_MOVW_UABS_G1_NC
:
7206 case elfcpp::R_AARCH64_MOVW_UABS_G2
:
7207 case elfcpp::R_AARCH64_MOVW_UABS_G2_NC
:
7208 case elfcpp::R_AARCH64_MOVW_UABS_G3
:
7209 reloc_status
= Reloc::template rela_general
<32>(
7210 view
, object
, psymval
, addend
, reloc_property
);
7212 case elfcpp::R_AARCH64_MOVW_SABS_G0
:
7213 case elfcpp::R_AARCH64_MOVW_SABS_G1
:
7214 case elfcpp::R_AARCH64_MOVW_SABS_G2
:
7215 reloc_status
= Reloc::movnz(view
, psymval
->value(object
, addend
),
7219 case elfcpp::R_AARCH64_LD_PREL_LO19
:
7220 reloc_status
= Reloc::template pcrela_general
<32>(
7221 view
, object
, psymval
, addend
, address
, reloc_property
);
7224 case elfcpp::R_AARCH64_ADR_PREL_LO21
:
7225 reloc_status
= Reloc::adr(view
, object
, psymval
, addend
,
7226 address
, reloc_property
);
7229 case elfcpp::R_AARCH64_ADR_PREL_PG_HI21_NC
:
7230 case elfcpp::R_AARCH64_ADR_PREL_PG_HI21
:
7231 reloc_status
= Reloc::adrp(view
, object
, psymval
, addend
, address
,
7235 case elfcpp::R_AARCH64_LDST8_ABS_LO12_NC
:
7236 case elfcpp::R_AARCH64_LDST16_ABS_LO12_NC
:
7237 case elfcpp::R_AARCH64_LDST32_ABS_LO12_NC
:
7238 case elfcpp::R_AARCH64_LDST64_ABS_LO12_NC
:
7239 case elfcpp::R_AARCH64_LDST128_ABS_LO12_NC
:
7240 case elfcpp::R_AARCH64_ADD_ABS_LO12_NC
:
7241 reloc_status
= Reloc::template rela_general
<32>(
7242 view
, object
, psymval
, addend
, reloc_property
);
7245 case elfcpp::R_AARCH64_CALL26
:
7246 if (this->skip_call_tls_get_addr_
)
7248 // Double check that the TLSGD insn has been optimized away.
7249 typedef typename
elfcpp::Swap
<32, big_endian
>::Valtype Insntype
;
7250 Insntype insn
= elfcpp::Swap
<32, big_endian
>::readval(
7251 reinterpret_cast<Insntype
*>(view
));
7252 gold_assert((insn
& 0xff000000) == 0x91000000);
7254 reloc_status
= Reloc::STATUS_OKAY
;
7255 this->skip_call_tls_get_addr_
= false;
7256 // Return false to stop further processing this reloc.
7260 case elfcpp::R_AARCH64_JUMP26
:
7261 if (Reloc::maybe_apply_stub(r_type
, relinfo
, rela
, view
, address
,
7262 gsym
, psymval
, object
,
7263 target
->stub_group_size_
))
7266 case elfcpp::R_AARCH64_TSTBR14
:
7267 case elfcpp::R_AARCH64_CONDBR19
:
7268 reloc_status
= Reloc::template pcrela_general
<32>(
7269 view
, object
, psymval
, addend
, address
, reloc_property
);
7272 case elfcpp::R_AARCH64_ADR_GOT_PAGE
:
7273 gold_assert(have_got_offset
);
7274 value
= target
->got_
->address() + got_base
+ got_offset
;
7275 reloc_status
= Reloc::adrp(view
, value
+ addend
, address
);
7278 case elfcpp::R_AARCH64_LD64_GOT_LO12_NC
:
7279 gold_assert(have_got_offset
);
7280 value
= target
->got_
->address() + got_base
+ got_offset
;
7281 reloc_status
= Reloc::template rela_general
<32>(
7282 view
, value
, addend
, reloc_property
);
7285 case elfcpp::R_AARCH64_LD64_GOTPAGE_LO15
:
7287 gold_assert(have_got_offset
);
7288 value
= target
->got_
->address() + got_base
+ got_offset
+ addend
-
7289 Reloc::Page(target
->got_
->address() + got_base
);
7290 if ((value
& 7) != 0)
7291 reloc_status
= Reloc::STATUS_OVERFLOW
;
7293 reloc_status
= Reloc::template reloc_common
<32>(
7294 view
, value
, reloc_property
);
7298 case elfcpp::R_AARCH64_TLSGD_ADR_PAGE21
:
7299 case elfcpp::R_AARCH64_TLSGD_ADD_LO12_NC
:
7300 case elfcpp::R_AARCH64_TLSLD_ADR_PAGE21
:
7301 case elfcpp::R_AARCH64_TLSLD_ADD_LO12_NC
:
7302 case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G1
:
7303 case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G0_NC
:
7304 case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_HI12
:
7305 case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_LO12_NC
:
7306 case elfcpp::R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21
:
7307 case elfcpp::R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC
:
7308 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G2
:
7309 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1
:
7310 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1_NC
:
7311 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0
:
7312 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0_NC
:
7313 case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_HI12
:
7314 case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12
:
7315 case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12_NC
:
7316 case elfcpp::R_AARCH64_TLSLE_LDST8_TPREL_LO12
:
7317 case elfcpp::R_AARCH64_TLSLE_LDST8_TPREL_LO12_NC
:
7318 case elfcpp::R_AARCH64_TLSLE_LDST16_TPREL_LO12
:
7319 case elfcpp::R_AARCH64_TLSLE_LDST16_TPREL_LO12_NC
:
7320 case elfcpp::R_AARCH64_TLSLE_LDST32_TPREL_LO12
:
7321 case elfcpp::R_AARCH64_TLSLE_LDST32_TPREL_LO12_NC
:
7322 case elfcpp::R_AARCH64_TLSLE_LDST64_TPREL_LO12
:
7323 case elfcpp::R_AARCH64_TLSLE_LDST64_TPREL_LO12_NC
:
7324 case elfcpp::R_AARCH64_TLSDESC_ADR_PAGE21
:
7325 case elfcpp::R_AARCH64_TLSDESC_LD64_LO12
:
7326 case elfcpp::R_AARCH64_TLSDESC_ADD_LO12
:
7327 case elfcpp::R_AARCH64_TLSDESC_CALL
:
7328 reloc_status
= relocate_tls(relinfo
, target
, relnum
, rela
, r_type
,
7329 gsym
, psymval
, view
, address
);
7332 // These are dynamic relocations, which are unexpected when linking.
7333 case elfcpp::R_AARCH64_COPY
:
7334 case elfcpp::R_AARCH64_GLOB_DAT
:
7335 case elfcpp::R_AARCH64_JUMP_SLOT
:
7336 case elfcpp::R_AARCH64_RELATIVE
:
7337 case elfcpp::R_AARCH64_IRELATIVE
:
7338 case elfcpp::R_AARCH64_TLS_DTPREL64
:
7339 case elfcpp::R_AARCH64_TLS_DTPMOD64
:
7340 case elfcpp::R_AARCH64_TLS_TPREL64
:
7341 case elfcpp::R_AARCH64_TLSDESC
:
7342 gold_error_at_location(relinfo
, relnum
, rela
.get_r_offset(),
7343 _("unexpected reloc %u in object file"),
7348 gold_error_at_location(relinfo
, relnum
, rela
.get_r_offset(),
7349 _("unsupported reloc %s"),
7350 reloc_property
->name().c_str());
7354 // Report any errors.
7355 switch (reloc_status
)
7357 case Reloc::STATUS_OKAY
:
7359 case Reloc::STATUS_OVERFLOW
:
7360 gold_error_at_location(relinfo
, relnum
, rela
.get_r_offset(),
7361 _("relocation overflow in %s"),
7362 reloc_property
->name().c_str());
7364 case Reloc::STATUS_BAD_RELOC
:
7365 gold_error_at_location(
7368 rela
.get_r_offset(),
7369 _("unexpected opcode while processing relocation %s"),
7370 reloc_property
->name().c_str());
7380 template<int size
, bool big_endian
>
7382 typename AArch64_relocate_functions
<size
, big_endian
>::Status
7383 Target_aarch64
<size
, big_endian
>::Relocate::relocate_tls(
7384 const Relocate_info
<size
, big_endian
>* relinfo
,
7385 Target_aarch64
<size
, big_endian
>* target
,
7387 const elfcpp::Rela
<size
, big_endian
>& rela
,
7388 unsigned int r_type
, const Sized_symbol
<size
>* gsym
,
7389 const Symbol_value
<size
>* psymval
,
7390 unsigned char* view
,
7391 typename
elfcpp::Elf_types
<size
>::Elf_Addr address
)
7393 typedef AArch64_relocate_functions
<size
, big_endian
> aarch64_reloc_funcs
;
7394 typedef typename
elfcpp::Elf_types
<size
>::Elf_Addr AArch64_address
;
7396 Output_segment
* tls_segment
= relinfo
->layout
->tls_segment();
7397 const elfcpp::Elf_Xword addend
= rela
.get_r_addend();
7398 const AArch64_reloc_property
* reloc_property
=
7399 aarch64_reloc_property_table
->get_reloc_property(r_type
);
7400 gold_assert(reloc_property
!= NULL
);
7402 const bool is_final
= (gsym
== NULL
7403 ? !parameters
->options().shared()
7404 : gsym
->final_value_is_known());
7405 tls::Tls_optimization tlsopt
= Target_aarch64
<size
, big_endian
>::
7406 optimize_tls_reloc(is_final
, r_type
);
7408 Sized_relobj_file
<size
, big_endian
>* object
= relinfo
->object
;
7409 int tls_got_offset_type
;
7412 case elfcpp::R_AARCH64_TLSGD_ADR_PAGE21
:
7413 case elfcpp::R_AARCH64_TLSGD_ADD_LO12_NC
: // Global-dynamic
7415 if (tlsopt
== tls::TLSOPT_TO_LE
)
7417 if (tls_segment
== NULL
)
7419 gold_assert(parameters
->errors()->error_count() > 0
7420 || issue_undefined_symbol_error(gsym
));
7421 return aarch64_reloc_funcs::STATUS_BAD_RELOC
;
7423 return tls_gd_to_le(relinfo
, target
, rela
, r_type
, view
,
7426 else if (tlsopt
== tls::TLSOPT_NONE
)
7428 tls_got_offset_type
= GOT_TYPE_TLS_PAIR
;
7429 // Firstly get the address for the got entry.
7430 typename
elfcpp::Elf_types
<size
>::Elf_Addr got_entry_address
;
7433 gold_assert(gsym
->has_got_offset(tls_got_offset_type
));
7434 got_entry_address
= target
->got_
->address() +
7435 gsym
->got_offset(tls_got_offset_type
);
7439 unsigned int r_sym
= elfcpp::elf_r_sym
<size
>(rela
.get_r_info());
7441 object
->local_has_got_offset(r_sym
, tls_got_offset_type
));
7442 got_entry_address
= target
->got_
->address() +
7443 object
->local_got_offset(r_sym
, tls_got_offset_type
);
7446 // Relocate the address into adrp/ld, adrp/add pair.
7449 case elfcpp::R_AARCH64_TLSGD_ADR_PAGE21
:
7450 return aarch64_reloc_funcs::adrp(
7451 view
, got_entry_address
+ addend
, address
);
7455 case elfcpp::R_AARCH64_TLSGD_ADD_LO12_NC
:
7456 return aarch64_reloc_funcs::template rela_general
<32>(
7457 view
, got_entry_address
, addend
, reloc_property
);
7464 gold_error_at_location(relinfo
, relnum
, rela
.get_r_offset(),
7465 _("unsupported gd_to_ie relaxation on %u"),
7470 case elfcpp::R_AARCH64_TLSLD_ADR_PAGE21
:
7471 case elfcpp::R_AARCH64_TLSLD_ADD_LO12_NC
: // Local-dynamic
7473 if (tlsopt
== tls::TLSOPT_TO_LE
)
7475 if (tls_segment
== NULL
)
7477 gold_assert(parameters
->errors()->error_count() > 0
7478 || issue_undefined_symbol_error(gsym
));
7479 return aarch64_reloc_funcs::STATUS_BAD_RELOC
;
7481 return this->tls_ld_to_le(relinfo
, target
, rela
, r_type
, view
,
7485 gold_assert(tlsopt
== tls::TLSOPT_NONE
);
7486 // Relocate the field with the offset of the GOT entry for
7487 // the module index.
7488 typename
elfcpp::Elf_types
<size
>::Elf_Addr got_entry_address
;
7489 got_entry_address
= (target
->got_mod_index_entry(NULL
, NULL
, NULL
) +
7490 target
->got_
->address());
7494 case elfcpp::R_AARCH64_TLSLD_ADR_PAGE21
:
7495 return aarch64_reloc_funcs::adrp(
7496 view
, got_entry_address
+ addend
, address
);
7499 case elfcpp::R_AARCH64_TLSLD_ADD_LO12_NC
:
7500 return aarch64_reloc_funcs::template rela_general
<32>(
7501 view
, got_entry_address
, addend
, reloc_property
);
7510 case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G1
:
7511 case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G0_NC
:
7512 case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_HI12
:
7513 case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_LO12_NC
: // Other local-dynamic
7515 AArch64_address value
= psymval
->value(object
, 0);
7516 if (tlsopt
== tls::TLSOPT_TO_LE
)
7518 if (tls_segment
== NULL
)
7520 gold_assert(parameters
->errors()->error_count() > 0
7521 || issue_undefined_symbol_error(gsym
));
7522 return aarch64_reloc_funcs::STATUS_BAD_RELOC
;
7527 case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G1
:
7528 return aarch64_reloc_funcs::movnz(view
, value
+ addend
,
7532 case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G0_NC
:
7533 case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_HI12
:
7534 case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_LO12_NC
:
7535 return aarch64_reloc_funcs::template rela_general
<32>(
7536 view
, value
, addend
, reloc_property
);
7542 // We should never reach here.
7546 case elfcpp::R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21
:
7547 case elfcpp::R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC
: // Initial-exec
7549 if (tlsopt
== tls::TLSOPT_TO_LE
)
7551 if (tls_segment
== NULL
)
7553 gold_assert(parameters
->errors()->error_count() > 0
7554 || issue_undefined_symbol_error(gsym
));
7555 return aarch64_reloc_funcs::STATUS_BAD_RELOC
;
7557 return tls_ie_to_le(relinfo
, target
, rela
, r_type
, view
,
7560 tls_got_offset_type
= GOT_TYPE_TLS_OFFSET
;
7562 // Firstly get the address for the got entry.
7563 typename
elfcpp::Elf_types
<size
>::Elf_Addr got_entry_address
;
7566 gold_assert(gsym
->has_got_offset(tls_got_offset_type
));
7567 got_entry_address
= target
->got_
->address() +
7568 gsym
->got_offset(tls_got_offset_type
);
7572 unsigned int r_sym
= elfcpp::elf_r_sym
<size
>(rela
.get_r_info());
7574 object
->local_has_got_offset(r_sym
, tls_got_offset_type
));
7575 got_entry_address
= target
->got_
->address() +
7576 object
->local_got_offset(r_sym
, tls_got_offset_type
);
7578 // Relocate the address into adrp/ld, adrp/add pair.
7581 case elfcpp::R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21
:
7582 return aarch64_reloc_funcs::adrp(view
, got_entry_address
+ addend
,
7585 case elfcpp::R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC
:
7586 return aarch64_reloc_funcs::template rela_general
<32>(
7587 view
, got_entry_address
, addend
, reloc_property
);
7592 // We shall never reach here.
7595 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G2
:
7596 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1
:
7597 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1_NC
:
7598 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0
:
7599 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0_NC
:
7600 case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_HI12
:
7601 case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12
:
7602 case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12_NC
:
7603 case elfcpp::R_AARCH64_TLSLE_LDST8_TPREL_LO12
:
7604 case elfcpp::R_AARCH64_TLSLE_LDST8_TPREL_LO12_NC
:
7605 case elfcpp::R_AARCH64_TLSLE_LDST16_TPREL_LO12
:
7606 case elfcpp::R_AARCH64_TLSLE_LDST16_TPREL_LO12_NC
:
7607 case elfcpp::R_AARCH64_TLSLE_LDST32_TPREL_LO12
:
7608 case elfcpp::R_AARCH64_TLSLE_LDST32_TPREL_LO12_NC
:
7609 case elfcpp::R_AARCH64_TLSLE_LDST64_TPREL_LO12
:
7610 case elfcpp::R_AARCH64_TLSLE_LDST64_TPREL_LO12_NC
:
7612 gold_assert(tls_segment
!= NULL
);
7613 AArch64_address value
= psymval
->value(object
, 0);
7615 if (!parameters
->options().shared())
7617 AArch64_address aligned_tcb_size
=
7618 align_address(target
->tcb_size(),
7619 tls_segment
->maximum_alignment());
7620 value
+= aligned_tcb_size
;
7623 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G2
:
7624 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1
:
7625 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0
:
7626 return aarch64_reloc_funcs::movnz(view
, value
+ addend
,
7629 return aarch64_reloc_funcs::template
7630 rela_general
<32>(view
,
7637 gold_error(_("%s: unsupported reloc %u "
7638 "in non-static TLSLE mode."),
7639 object
->name().c_str(), r_type
);
7643 case elfcpp::R_AARCH64_TLSDESC_ADR_PAGE21
:
7644 case elfcpp::R_AARCH64_TLSDESC_LD64_LO12
:
7645 case elfcpp::R_AARCH64_TLSDESC_ADD_LO12
:
7646 case elfcpp::R_AARCH64_TLSDESC_CALL
:
7648 if (tlsopt
== tls::TLSOPT_TO_LE
)
7650 if (tls_segment
== NULL
)
7652 gold_assert(parameters
->errors()->error_count() > 0
7653 || issue_undefined_symbol_error(gsym
));
7654 return aarch64_reloc_funcs::STATUS_BAD_RELOC
;
7656 return tls_desc_gd_to_le(relinfo
, target
, rela
, r_type
,
7661 tls_got_offset_type
= (tlsopt
== tls::TLSOPT_TO_IE
7662 ? GOT_TYPE_TLS_OFFSET
7663 : GOT_TYPE_TLS_DESC
);
7664 int got_tlsdesc_offset
= 0;
7665 if (r_type
!= elfcpp::R_AARCH64_TLSDESC_CALL
7666 && tlsopt
== tls::TLSOPT_NONE
)
7668 // We created GOT entries in the .got.tlsdesc portion of the
7669 // .got.plt section, but the offset stored in the symbol is the
7670 // offset within .got.tlsdesc.
7671 got_tlsdesc_offset
= (target
->got_tlsdesc_
->address()
7672 - target
->got_
->address());
7674 typename
elfcpp::Elf_types
<size
>::Elf_Addr got_entry_address
;
7677 gold_assert(gsym
->has_got_offset(tls_got_offset_type
));
7678 got_entry_address
= target
->got_
->address()
7679 + got_tlsdesc_offset
7680 + gsym
->got_offset(tls_got_offset_type
);
7684 unsigned int r_sym
= elfcpp::elf_r_sym
<size
>(rela
.get_r_info());
7686 object
->local_has_got_offset(r_sym
, tls_got_offset_type
));
7687 got_entry_address
= target
->got_
->address() +
7688 got_tlsdesc_offset
+
7689 object
->local_got_offset(r_sym
, tls_got_offset_type
);
7691 if (tlsopt
== tls::TLSOPT_TO_IE
)
7693 return tls_desc_gd_to_ie(relinfo
, target
, rela
, r_type
,
7694 view
, psymval
, got_entry_address
,
7698 // Now do tlsdesc relocation.
7701 case elfcpp::R_AARCH64_TLSDESC_ADR_PAGE21
:
7702 return aarch64_reloc_funcs::adrp(view
,
7703 got_entry_address
+ addend
,
7706 case elfcpp::R_AARCH64_TLSDESC_LD64_LO12
:
7707 case elfcpp::R_AARCH64_TLSDESC_ADD_LO12
:
7708 return aarch64_reloc_funcs::template rela_general
<32>(
7709 view
, got_entry_address
, addend
, reloc_property
);
7711 case elfcpp::R_AARCH64_TLSDESC_CALL
:
7712 return aarch64_reloc_funcs::STATUS_OKAY
;
7722 gold_error(_("%s: unsupported TLS reloc %u."),
7723 object
->name().c_str(), r_type
);
7725 return aarch64_reloc_funcs::STATUS_BAD_RELOC
;
7726 } // End of relocate_tls.
7729 template<int size
, bool big_endian
>
7731 typename AArch64_relocate_functions
<size
, big_endian
>::Status
7732 Target_aarch64
<size
, big_endian
>::Relocate::tls_gd_to_le(
7733 const Relocate_info
<size
, big_endian
>* relinfo
,
7734 Target_aarch64
<size
, big_endian
>* target
,
7735 const elfcpp::Rela
<size
, big_endian
>& rela
,
7736 unsigned int r_type
,
7737 unsigned char* view
,
7738 const Symbol_value
<size
>* psymval
)
7740 typedef AArch64_relocate_functions
<size
, big_endian
> aarch64_reloc_funcs
;
7741 typedef typename
elfcpp::Swap
<32, big_endian
>::Valtype Insntype
;
7742 typedef typename
elfcpp::Elf_types
<size
>::Elf_Addr AArch64_address
;
7744 Insntype
* ip
= reinterpret_cast<Insntype
*>(view
);
7745 Insntype insn1
= elfcpp::Swap
<32, big_endian
>::readval(ip
);
7746 Insntype insn2
= elfcpp::Swap
<32, big_endian
>::readval(ip
+ 1);
7747 Insntype insn3
= elfcpp::Swap
<32, big_endian
>::readval(ip
+ 2);
7749 if (r_type
== elfcpp::R_AARCH64_TLSGD_ADD_LO12_NC
)
7751 // This is the 2nd relocs, optimization should already have been
7753 gold_assert((insn1
& 0xfff00000) == 0x91400000);
7754 return aarch64_reloc_funcs::STATUS_OKAY
;
7757 // The original sequence is -
7758 // 90000000 adrp x0, 0 <main>
7759 // 91000000 add x0, x0, #0x0
7760 // 94000000 bl 0 <__tls_get_addr>
7761 // optimized to sequence -
7762 // d53bd040 mrs x0, tpidr_el0
7763 // 91400000 add x0, x0, #0x0, lsl #12
7764 // 91000000 add x0, x0, #0x0
7766 // Unlike tls_ie_to_le, we change the 3 insns in one function call when we
7767 // encounter the first relocation "R_AARCH64_TLSGD_ADR_PAGE21". Because we
7768 // have to change "bl tls_get_addr", which does not have a corresponding tls
7769 // relocation type. So before proceeding, we need to make sure compiler
7770 // does not change the sequence.
7771 if(!(insn1
== 0x90000000 // adrp x0,0
7772 && insn2
== 0x91000000 // add x0, x0, #0x0
7773 && insn3
== 0x94000000)) // bl 0
7775 // Ideally we should give up gd_to_le relaxation and do gd access.
7776 // However the gd_to_le relaxation decision has been made early
7777 // in the scan stage, where we did not allocate any GOT entry for
7778 // this symbol. Therefore we have to exit and report error now.
7779 gold_error(_("unexpected reloc insn sequence while relaxing "
7780 "tls gd to le for reloc %u."), r_type
);
7781 return aarch64_reloc_funcs::STATUS_BAD_RELOC
;
7785 insn1
= 0xd53bd040; // mrs x0, tpidr_el0
7786 insn2
= 0x91400000; // add x0, x0, #0x0, lsl #12
7787 insn3
= 0x91000000; // add x0, x0, #0x0
7788 elfcpp::Swap
<32, big_endian
>::writeval(ip
, insn1
);
7789 elfcpp::Swap
<32, big_endian
>::writeval(ip
+ 1, insn2
);
7790 elfcpp::Swap
<32, big_endian
>::writeval(ip
+ 2, insn3
);
7792 // Calculate tprel value.
7793 Output_segment
* tls_segment
= relinfo
->layout
->tls_segment();
7794 gold_assert(tls_segment
!= NULL
);
7795 AArch64_address value
= psymval
->value(relinfo
->object
, 0);
7796 const elfcpp::Elf_Xword addend
= rela
.get_r_addend();
7797 AArch64_address aligned_tcb_size
=
7798 align_address(target
->tcb_size(), tls_segment
->maximum_alignment());
7799 AArch64_address x
= value
+ aligned_tcb_size
;
7801 // After new insns are written, apply TLSLE relocs.
7802 const AArch64_reloc_property
* rp1
=
7803 aarch64_reloc_property_table
->get_reloc_property(
7804 elfcpp::R_AARCH64_TLSLE_ADD_TPREL_HI12
);
7805 const AArch64_reloc_property
* rp2
=
7806 aarch64_reloc_property_table
->get_reloc_property(
7807 elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12
);
7808 gold_assert(rp1
!= NULL
&& rp2
!= NULL
);
7810 typename
aarch64_reloc_funcs::Status s1
=
7811 aarch64_reloc_funcs::template rela_general
<32>(view
+ 4,
7815 if (s1
!= aarch64_reloc_funcs::STATUS_OKAY
)
7818 typename
aarch64_reloc_funcs::Status s2
=
7819 aarch64_reloc_funcs::template rela_general
<32>(view
+ 8,
7824 this->skip_call_tls_get_addr_
= true;
7826 } // End of tls_gd_to_le
7829 template<int size
, bool big_endian
>
7831 typename AArch64_relocate_functions
<size
, big_endian
>::Status
7832 Target_aarch64
<size
, big_endian
>::Relocate::tls_ld_to_le(
7833 const Relocate_info
<size
, big_endian
>* relinfo
,
7834 Target_aarch64
<size
, big_endian
>* target
,
7835 const elfcpp::Rela
<size
, big_endian
>& rela
,
7836 unsigned int r_type
,
7837 unsigned char* view
,
7838 const Symbol_value
<size
>* psymval
)
7840 typedef AArch64_relocate_functions
<size
, big_endian
> aarch64_reloc_funcs
;
7841 typedef typename
elfcpp::Swap
<32, big_endian
>::Valtype Insntype
;
7842 typedef typename
elfcpp::Elf_types
<size
>::Elf_Addr AArch64_address
;
7844 Insntype
* ip
= reinterpret_cast<Insntype
*>(view
);
7845 Insntype insn1
= elfcpp::Swap
<32, big_endian
>::readval(ip
);
7846 Insntype insn2
= elfcpp::Swap
<32, big_endian
>::readval(ip
+ 1);
7847 Insntype insn3
= elfcpp::Swap
<32, big_endian
>::readval(ip
+ 2);
7849 if (r_type
== elfcpp::R_AARCH64_TLSLD_ADD_LO12_NC
)
7851 // This is the 2nd relocs, optimization should already have been
7853 gold_assert((insn1
& 0xfff00000) == 0x91400000);
7854 return aarch64_reloc_funcs::STATUS_OKAY
;
7857 // The original sequence is -
7858 // 90000000 adrp x0, 0 <main>
7859 // 91000000 add x0, x0, #0x0
7860 // 94000000 bl 0 <__tls_get_addr>
7861 // optimized to sequence -
7862 // d53bd040 mrs x0, tpidr_el0
7863 // 91400000 add x0, x0, #0x0, lsl #12
7864 // 91000000 add x0, x0, #0x0
7866 // Unlike tls_ie_to_le, we change the 3 insns in one function call when we
7867 // encounter the first relocation "R_AARCH64_TLSLD_ADR_PAGE21". Because we
7868 // have to change "bl tls_get_addr", which does not have a corresponding tls
7869 // relocation type. So before proceeding, we need to make sure compiler
7870 // does not change the sequence.
7871 if(!(insn1
== 0x90000000 // adrp x0,0
7872 && insn2
== 0x91000000 // add x0, x0, #0x0
7873 && insn3
== 0x94000000)) // bl 0
7875 // Ideally we should give up gd_to_le relaxation and do gd access.
7876 // However the gd_to_le relaxation decision has been made early
7877 // in the scan stage, where we did not allocate a GOT entry for
7878 // this symbol. Therefore we have to exit and report an error now.
7879 gold_error(_("unexpected reloc insn sequence while relaxing "
7880 "tls gd to le for reloc %u."), r_type
);
7881 return aarch64_reloc_funcs::STATUS_BAD_RELOC
;
7885 insn1
= 0xd53bd040; // mrs x0, tpidr_el0
7886 insn2
= 0x91400000; // add x0, x0, #0x0, lsl #12
7887 insn3
= 0x91000000; // add x0, x0, #0x0
7888 elfcpp::Swap
<32, big_endian
>::writeval(ip
, insn1
);
7889 elfcpp::Swap
<32, big_endian
>::writeval(ip
+ 1, insn2
);
7890 elfcpp::Swap
<32, big_endian
>::writeval(ip
+ 2, insn3
);
7892 // Calculate tprel value.
7893 Output_segment
* tls_segment
= relinfo
->layout
->tls_segment();
7894 gold_assert(tls_segment
!= NULL
);
7895 AArch64_address value
= psymval
->value(relinfo
->object
, 0);
7896 const elfcpp::Elf_Xword addend
= rela
.get_r_addend();
7897 AArch64_address aligned_tcb_size
=
7898 align_address(target
->tcb_size(), tls_segment
->maximum_alignment());
7899 AArch64_address x
= value
+ aligned_tcb_size
;
7901 // After new insns are written, apply TLSLE relocs.
7902 const AArch64_reloc_property
* rp1
=
7903 aarch64_reloc_property_table
->get_reloc_property(
7904 elfcpp::R_AARCH64_TLSLE_ADD_TPREL_HI12
);
7905 const AArch64_reloc_property
* rp2
=
7906 aarch64_reloc_property_table
->get_reloc_property(
7907 elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12
);
7908 gold_assert(rp1
!= NULL
&& rp2
!= NULL
);
7910 typename
aarch64_reloc_funcs::Status s1
=
7911 aarch64_reloc_funcs::template rela_general
<32>(view
+ 4,
7915 if (s1
!= aarch64_reloc_funcs::STATUS_OKAY
)
7918 typename
aarch64_reloc_funcs::Status s2
=
7919 aarch64_reloc_funcs::template rela_general
<32>(view
+ 8,
7924 this->skip_call_tls_get_addr_
= true;
7927 } // End of tls_ld_to_le
7929 template<int size
, bool big_endian
>
7931 typename AArch64_relocate_functions
<size
, big_endian
>::Status
7932 Target_aarch64
<size
, big_endian
>::Relocate::tls_ie_to_le(
7933 const Relocate_info
<size
, big_endian
>* relinfo
,
7934 Target_aarch64
<size
, big_endian
>* target
,
7935 const elfcpp::Rela
<size
, big_endian
>& rela
,
7936 unsigned int r_type
,
7937 unsigned char* view
,
7938 const Symbol_value
<size
>* psymval
)
7940 typedef typename
elfcpp::Elf_types
<size
>::Elf_Addr AArch64_address
;
7941 typedef typename
elfcpp::Swap
<32, big_endian
>::Valtype Insntype
;
7942 typedef AArch64_relocate_functions
<size
, big_endian
> aarch64_reloc_funcs
;
7944 AArch64_address value
= psymval
->value(relinfo
->object
, 0);
7945 Output_segment
* tls_segment
= relinfo
->layout
->tls_segment();
7946 AArch64_address aligned_tcb_address
=
7947 align_address(target
->tcb_size(), tls_segment
->maximum_alignment());
7948 const elfcpp::Elf_Xword addend
= rela
.get_r_addend();
7949 AArch64_address x
= value
+ addend
+ aligned_tcb_address
;
7950 // "x" is the offset to tp, we can only do this if x is within
7951 // range [0, 2^32-1]
7952 if (!(size
== 32 || (size
== 64 && (static_cast<uint64_t>(x
) >> 32) == 0)))
7954 gold_error(_("TLS variable referred by reloc %u is too far from TP."),
7956 return aarch64_reloc_funcs::STATUS_BAD_RELOC
;
7959 Insntype
* ip
= reinterpret_cast<Insntype
*>(view
);
7960 Insntype insn
= elfcpp::Swap
<32, big_endian
>::readval(ip
);
7963 if (r_type
== elfcpp::R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21
)
7966 regno
= (insn
& 0x1f);
7967 newinsn
= (0xd2a00000 | regno
) | (((x
>> 16) & 0xffff) << 5);
7969 else if (r_type
== elfcpp::R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC
)
7972 regno
= (insn
& 0x1f);
7973 gold_assert(regno
== ((insn
>> 5) & 0x1f));
7974 newinsn
= (0xf2800000 | regno
) | ((x
& 0xffff) << 5);
7979 elfcpp::Swap
<32, big_endian
>::writeval(ip
, newinsn
);
7980 return aarch64_reloc_funcs::STATUS_OKAY
;
7981 } // End of tls_ie_to_le
7984 template<int size
, bool big_endian
>
7986 typename AArch64_relocate_functions
<size
, big_endian
>::Status
7987 Target_aarch64
<size
, big_endian
>::Relocate::tls_desc_gd_to_le(
7988 const Relocate_info
<size
, big_endian
>* relinfo
,
7989 Target_aarch64
<size
, big_endian
>* target
,
7990 const elfcpp::Rela
<size
, big_endian
>& rela
,
7991 unsigned int r_type
,
7992 unsigned char* view
,
7993 const Symbol_value
<size
>* psymval
)
7995 typedef typename
elfcpp::Elf_types
<size
>::Elf_Addr AArch64_address
;
7996 typedef typename
elfcpp::Swap
<32, big_endian
>::Valtype Insntype
;
7997 typedef AArch64_relocate_functions
<size
, big_endian
> aarch64_reloc_funcs
;
7999 // TLSDESC-GD sequence is like:
8000 // adrp x0, :tlsdesc:v1
8001 // ldr x1, [x0, #:tlsdesc_lo12:v1]
8002 // add x0, x0, :tlsdesc_lo12:v1
8005 // After desc_gd_to_le optimization, the sequence will be like:
8006 // movz x0, #0x0, lsl #16
8011 // Calculate tprel value.
8012 Output_segment
* tls_segment
= relinfo
->layout
->tls_segment();
8013 gold_assert(tls_segment
!= NULL
);
8014 Insntype
* ip
= reinterpret_cast<Insntype
*>(view
);
8015 const elfcpp::Elf_Xword addend
= rela
.get_r_addend();
8016 AArch64_address value
= psymval
->value(relinfo
->object
, addend
);
8017 AArch64_address aligned_tcb_size
=
8018 align_address(target
->tcb_size(), tls_segment
->maximum_alignment());
8019 AArch64_address x
= value
+ aligned_tcb_size
;
8020 // x is the offset to tp, we can only do this if x is within range
8021 // [0, 2^32-1]. If x is out of range, fail and exit.
8022 if (size
== 64 && (static_cast<uint64_t>(x
) >> 32) != 0)
8024 gold_error(_("TLS variable referred by reloc %u is too far from TP. "
8025 "We Can't do gd_to_le relaxation.\n"), r_type
);
8026 return aarch64_reloc_funcs::STATUS_BAD_RELOC
;
8031 case elfcpp::R_AARCH64_TLSDESC_ADD_LO12
:
8032 case elfcpp::R_AARCH64_TLSDESC_CALL
:
8034 newinsn
= 0xd503201f;
8037 case elfcpp::R_AARCH64_TLSDESC_ADR_PAGE21
:
8039 newinsn
= 0xd2a00000 | (((x
>> 16) & 0xffff) << 5);
8042 case elfcpp::R_AARCH64_TLSDESC_LD64_LO12
:
8044 newinsn
= 0xf2800000 | ((x
& 0xffff) << 5);
8048 gold_error(_("unsupported tlsdesc gd_to_le optimization on reloc %u"),
8052 elfcpp::Swap
<32, big_endian
>::writeval(ip
, newinsn
);
8053 return aarch64_reloc_funcs::STATUS_OKAY
;
8054 } // End of tls_desc_gd_to_le
8057 template<int size
, bool big_endian
>
8059 typename AArch64_relocate_functions
<size
, big_endian
>::Status
8060 Target_aarch64
<size
, big_endian
>::Relocate::tls_desc_gd_to_ie(
8061 const Relocate_info
<size
, big_endian
>* /* relinfo */,
8062 Target_aarch64
<size
, big_endian
>* /* target */,
8063 const elfcpp::Rela
<size
, big_endian
>& rela
,
8064 unsigned int r_type
,
8065 unsigned char* view
,
8066 const Symbol_value
<size
>* /* psymval */,
8067 typename
elfcpp::Elf_types
<size
>::Elf_Addr got_entry_address
,
8068 typename
elfcpp::Elf_types
<size
>::Elf_Addr address
)
8070 typedef typename
elfcpp::Swap
<32, big_endian
>::Valtype Insntype
;
8071 typedef AArch64_relocate_functions
<size
, big_endian
> aarch64_reloc_funcs
;
8073 // TLSDESC-GD sequence is like:
8074 // adrp x0, :tlsdesc:v1
8075 // ldr x1, [x0, #:tlsdesc_lo12:v1]
8076 // add x0, x0, :tlsdesc_lo12:v1
8079 // After desc_gd_to_ie optimization, the sequence will be like:
8080 // adrp x0, :tlsie:v1
8081 // ldr x0, [x0, :tlsie_lo12:v1]
8085 Insntype
* ip
= reinterpret_cast<Insntype
*>(view
);
8086 const elfcpp::Elf_Xword addend
= rela
.get_r_addend();
8090 case elfcpp::R_AARCH64_TLSDESC_ADD_LO12
:
8091 case elfcpp::R_AARCH64_TLSDESC_CALL
:
8093 newinsn
= 0xd503201f;
8094 elfcpp::Swap
<32, big_endian
>::writeval(ip
, newinsn
);
8097 case elfcpp::R_AARCH64_TLSDESC_ADR_PAGE21
:
8099 return aarch64_reloc_funcs::adrp(view
, got_entry_address
+ addend
,
8104 case elfcpp::R_AARCH64_TLSDESC_LD64_LO12
:
8106 // Set ldr target register to be x0.
8107 Insntype insn
= elfcpp::Swap
<32, big_endian
>::readval(ip
);
8109 elfcpp::Swap
<32, big_endian
>::writeval(ip
, insn
);
8111 const AArch64_reloc_property
* reloc_property
=
8112 aarch64_reloc_property_table
->get_reloc_property(
8113 elfcpp::R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC
);
8114 return aarch64_reloc_funcs::template rela_general
<32>(
8115 view
, got_entry_address
, addend
, reloc_property
);
8120 gold_error(_("Don't support tlsdesc gd_to_ie optimization on reloc %u"),
8124 return aarch64_reloc_funcs::STATUS_OKAY
;
8125 } // End of tls_desc_gd_to_ie
8127 // Relocate section data.
8129 template<int size
, bool big_endian
>
8131 Target_aarch64
<size
, big_endian
>::relocate_section(
8132 const Relocate_info
<size
, big_endian
>* relinfo
,
8133 unsigned int sh_type
,
8134 const unsigned char* prelocs
,
8136 Output_section
* output_section
,
8137 bool needs_special_offset_handling
,
8138 unsigned char* view
,
8139 typename
elfcpp::Elf_types
<size
>::Elf_Addr address
,
8140 section_size_type view_size
,
8141 const Reloc_symbol_changes
* reloc_symbol_changes
)
8143 typedef typename
elfcpp::Elf_types
<size
>::Elf_Addr Address
;
8144 typedef Target_aarch64
<size
, big_endian
> Aarch64
;
8145 typedef typename Target_aarch64
<size
, big_endian
>::Relocate AArch64_relocate
;
8146 typedef gold::Default_classify_reloc
<elfcpp::SHT_RELA
, size
, big_endian
>
8149 gold_assert(sh_type
== elfcpp::SHT_RELA
);
8151 // See if we are relocating a relaxed input section. If so, the view
8152 // covers the whole output section and we need to adjust accordingly.
8153 if (needs_special_offset_handling
)
8155 const Output_relaxed_input_section
* poris
=
8156 output_section
->find_relaxed_input_section(relinfo
->object
,
8157 relinfo
->data_shndx
);
8160 Address section_address
= poris
->address();
8161 section_size_type section_size
= poris
->data_size();
8163 gold_assert((section_address
>= address
)
8164 && ((section_address
+ section_size
)
8165 <= (address
+ view_size
)));
8167 off_t offset
= section_address
- address
;
8170 view_size
= section_size
;
8174 gold::relocate_section
<size
, big_endian
, Aarch64
, AArch64_relocate
,
8175 gold::Default_comdat_behavior
, Classify_reloc
>(
8181 needs_special_offset_handling
,
8185 reloc_symbol_changes
);
8188 // Scan the relocs during a relocatable link.
8190 template<int size
, bool big_endian
>
8192 Target_aarch64
<size
, big_endian
>::scan_relocatable_relocs(
8193 Symbol_table
* symtab
,
8195 Sized_relobj_file
<size
, big_endian
>* object
,
8196 unsigned int data_shndx
,
8197 unsigned int sh_type
,
8198 const unsigned char* prelocs
,
8200 Output_section
* output_section
,
8201 bool needs_special_offset_handling
,
8202 size_t local_symbol_count
,
8203 const unsigned char* plocal_symbols
,
8204 Relocatable_relocs
* rr
)
8206 typedef gold::Default_classify_reloc
<elfcpp::SHT_RELA
, size
, big_endian
>
8208 typedef gold::Default_scan_relocatable_relocs
<Classify_reloc
>
8209 Scan_relocatable_relocs
;
8211 gold_assert(sh_type
== elfcpp::SHT_RELA
);
8213 gold::scan_relocatable_relocs
<size
, big_endian
, Scan_relocatable_relocs
>(
8221 needs_special_offset_handling
,
8227 // Scan the relocs for --emit-relocs.
8229 template<int size
, bool big_endian
>
8231 Target_aarch64
<size
, big_endian
>::emit_relocs_scan(
8232 Symbol_table
* symtab
,
8234 Sized_relobj_file
<size
, big_endian
>* object
,
8235 unsigned int data_shndx
,
8236 unsigned int sh_type
,
8237 const unsigned char* prelocs
,
8239 Output_section
* output_section
,
8240 bool needs_special_offset_handling
,
8241 size_t local_symbol_count
,
8242 const unsigned char* plocal_syms
,
8243 Relocatable_relocs
* rr
)
8245 typedef gold::Default_classify_reloc
<elfcpp::SHT_RELA
, size
, big_endian
>
8247 typedef gold::Default_emit_relocs_strategy
<Classify_reloc
>
8248 Emit_relocs_strategy
;
8250 gold_assert(sh_type
== elfcpp::SHT_RELA
);
8252 gold::scan_relocatable_relocs
<size
, big_endian
, Emit_relocs_strategy
>(
8260 needs_special_offset_handling
,
8266 // Relocate a section during a relocatable link.
8268 template<int size
, bool big_endian
>
8270 Target_aarch64
<size
, big_endian
>::relocate_relocs(
8271 const Relocate_info
<size
, big_endian
>* relinfo
,
8272 unsigned int sh_type
,
8273 const unsigned char* prelocs
,
8275 Output_section
* output_section
,
8276 typename
elfcpp::Elf_types
<size
>::Elf_Off offset_in_output_section
,
8277 unsigned char* view
,
8278 typename
elfcpp::Elf_types
<size
>::Elf_Addr view_address
,
8279 section_size_type view_size
,
8280 unsigned char* reloc_view
,
8281 section_size_type reloc_view_size
)
8283 typedef gold::Default_classify_reloc
<elfcpp::SHT_RELA
, size
, big_endian
>
8286 gold_assert(sh_type
== elfcpp::SHT_RELA
);
8288 gold::relocate_relocs
<size
, big_endian
, Classify_reloc
>(
8293 offset_in_output_section
,
8302 // Return whether this is a 3-insn erratum sequence.
8304 template<int size
, bool big_endian
>
8306 Target_aarch64
<size
, big_endian
>::is_erratum_843419_sequence(
8307 typename
elfcpp::Swap
<32,big_endian
>::Valtype insn1
,
8308 typename
elfcpp::Swap
<32,big_endian
>::Valtype insn2
,
8309 typename
elfcpp::Swap
<32,big_endian
>::Valtype insn3
)
8314 // The 2nd insn is a single register load or store; or register pair
8316 if (Insn_utilities::aarch64_mem_op_p(insn2
, &rt1
, &rt2
, &pair
, &load
)
8317 && (!pair
|| (pair
&& !load
)))
8319 // The 3rd insn is a load or store instruction from the "Load/store
8320 // register (unsigned immediate)" encoding class, using Rn as the
8321 // base address register.
8322 if (Insn_utilities::aarch64_ldst_uimm(insn3
)
8323 && (Insn_utilities::aarch64_rn(insn3
)
8324 == Insn_utilities::aarch64_rd(insn1
)))
8331 // Return whether this is a 835769 sequence.
8332 // (Similarly implemented as in elfnn-aarch64.c.)
8334 template<int size
, bool big_endian
>
8336 Target_aarch64
<size
, big_endian
>::is_erratum_835769_sequence(
8337 typename
elfcpp::Swap
<32,big_endian
>::Valtype insn1
,
8338 typename
elfcpp::Swap
<32,big_endian
>::Valtype insn2
)
8348 if (Insn_utilities::aarch64_mlxl(insn2
)
8349 && Insn_utilities::aarch64_mem_op_p (insn1
, &rt
, &rt2
, &pair
, &load
))
8351 /* Any SIMD memory op is independent of the subsequent MLA
8352 by definition of the erratum. */
8353 if (Insn_utilities::aarch64_bit(insn1
, 26))
8356 /* If not SIMD, check for integer memory ops and MLA relationship. */
8357 rn
= Insn_utilities::aarch64_rn(insn2
);
8358 ra
= Insn_utilities::aarch64_ra(insn2
);
8359 rm
= Insn_utilities::aarch64_rm(insn2
);
8361 /* If this is a load and there's a true(RAW) dependency, we are safe
8362 and this is not an erratum sequence. */
8364 (rt
== rn
|| rt
== rm
|| rt
== ra
8365 || (pair
&& (rt2
== rn
|| rt2
== rm
|| rt2
== ra
))))
8368 /* We conservatively put out stubs for all other cases (including
8377 // Helper method to create erratum stub for ST_E_843419 and ST_E_835769.
8379 template<int size
, bool big_endian
>
8381 Target_aarch64
<size
, big_endian
>::create_erratum_stub(
8382 AArch64_relobj
<size
, big_endian
>* relobj
,
8384 section_size_type erratum_insn_offset
,
8385 Address erratum_address
,
8386 typename
Insn_utilities::Insntype erratum_insn
,
8388 unsigned int e843419_adrp_offset
)
8390 gold_assert(erratum_type
== ST_E_843419
|| erratum_type
== ST_E_835769
);
8391 The_stub_table
* stub_table
= relobj
->stub_table(shndx
);
8392 gold_assert(stub_table
!= NULL
);
8393 if (stub_table
->find_erratum_stub(relobj
,
8395 erratum_insn_offset
) == NULL
)
8397 const int BPI
= AArch64_insn_utilities
<big_endian
>::BYTES_PER_INSN
;
8398 The_erratum_stub
* stub
;
8399 if (erratum_type
== ST_E_835769
)
8400 stub
= new The_erratum_stub(relobj
, erratum_type
, shndx
,
8401 erratum_insn_offset
);
8402 else if (erratum_type
== ST_E_843419
)
8403 stub
= new E843419_stub
<size
, big_endian
>(
8404 relobj
, shndx
, erratum_insn_offset
, e843419_adrp_offset
);
8407 stub
->set_erratum_insn(erratum_insn
);
8408 stub
->set_erratum_address(erratum_address
);
8409 // For erratum ST_E_843419 and ST_E_835769, the destination address is
8410 // always the next insn after erratum insn.
8411 stub
->set_destination_address(erratum_address
+ BPI
);
8412 stub_table
->add_erratum_stub(stub
);
8417 // Scan erratum for section SHNDX range [output_address + span_start,
8418 // output_address + span_end). Note here we do not share the code with
8419 // scan_erratum_843419_span function, because for 843419 we optimize by only
8420 // scanning the last few insns of a page, whereas for 835769, we need to scan
8423 template<int size
, bool big_endian
>
8425 Target_aarch64
<size
, big_endian
>::scan_erratum_835769_span(
8426 AArch64_relobj
<size
, big_endian
>* relobj
,
8428 const section_size_type span_start
,
8429 const section_size_type span_end
,
8430 unsigned char* input_view
,
8431 Address output_address
)
8433 typedef typename
Insn_utilities::Insntype Insntype
;
8435 const int BPI
= AArch64_insn_utilities
<big_endian
>::BYTES_PER_INSN
;
8437 // Adjust output_address and view to the start of span.
8438 output_address
+= span_start
;
8439 input_view
+= span_start
;
8441 section_size_type span_length
= span_end
- span_start
;
8442 section_size_type offset
= 0;
8443 for (offset
= 0; offset
+ BPI
< span_length
; offset
+= BPI
)
8445 Insntype
* ip
= reinterpret_cast<Insntype
*>(input_view
+ offset
);
8446 Insntype insn1
= ip
[0];
8447 Insntype insn2
= ip
[1];
8448 if (is_erratum_835769_sequence(insn1
, insn2
))
8450 Insntype erratum_insn
= insn2
;
8451 // "span_start + offset" is the offset for insn1. So for insn2, it is
8452 // "span_start + offset + BPI".
8453 section_size_type erratum_insn_offset
= span_start
+ offset
+ BPI
;
8454 Address erratum_address
= output_address
+ offset
+ BPI
;
8455 gold_info(_("Erratum 835769 found and fixed at \"%s\", "
8456 "section %d, offset 0x%08x."),
8457 relobj
->name().c_str(), shndx
,
8458 (unsigned int)(span_start
+ offset
));
8460 this->create_erratum_stub(relobj
, shndx
,
8461 erratum_insn_offset
, erratum_address
,
8462 erratum_insn
, ST_E_835769
);
8463 offset
+= BPI
; // Skip mac insn.
8466 } // End of "Target_aarch64::scan_erratum_835769_span".
8469 // Scan erratum for section SHNDX range
8470 // [output_address + span_start, output_address + span_end).
8472 template<int size
, bool big_endian
>
8474 Target_aarch64
<size
, big_endian
>::scan_erratum_843419_span(
8475 AArch64_relobj
<size
, big_endian
>* relobj
,
8477 const section_size_type span_start
,
8478 const section_size_type span_end
,
8479 unsigned char* input_view
,
8480 Address output_address
)
8482 typedef typename
Insn_utilities::Insntype Insntype
;
8484 // Adjust output_address and view to the start of span.
8485 output_address
+= span_start
;
8486 input_view
+= span_start
;
8488 if ((output_address
& 0x03) != 0)
8491 section_size_type offset
= 0;
8492 section_size_type span_length
= span_end
- span_start
;
8493 // The first instruction must be ending at 0xFF8 or 0xFFC.
8494 unsigned int page_offset
= output_address
& 0xFFF;
8495 // Make sure starting position, that is "output_address+offset",
8496 // starts at page position 0xff8 or 0xffc.
8497 if (page_offset
< 0xff8)
8498 offset
= 0xff8 - page_offset
;
8499 while (offset
+ 3 * Insn_utilities::BYTES_PER_INSN
<= span_length
)
8501 Insntype
* ip
= reinterpret_cast<Insntype
*>(input_view
+ offset
);
8502 Insntype insn1
= ip
[0];
8503 if (Insn_utilities::is_adrp(insn1
))
8505 Insntype insn2
= ip
[1];
8506 Insntype insn3
= ip
[2];
8507 Insntype erratum_insn
;
8508 unsigned insn_offset
;
8509 bool do_report
= false;
8510 if (is_erratum_843419_sequence(insn1
, insn2
, insn3
))
8513 erratum_insn
= insn3
;
8514 insn_offset
= 2 * Insn_utilities::BYTES_PER_INSN
;
8516 else if (offset
+ 4 * Insn_utilities::BYTES_PER_INSN
<= span_length
)
8518 // Optionally we can have an insn between ins2 and ins3
8519 Insntype insn_opt
= ip
[2];
8520 // And insn_opt must not be a branch.
8521 if (!Insn_utilities::aarch64_b(insn_opt
)
8522 && !Insn_utilities::aarch64_bl(insn_opt
)
8523 && !Insn_utilities::aarch64_blr(insn_opt
)
8524 && !Insn_utilities::aarch64_br(insn_opt
))
8526 // And insn_opt must not write to dest reg in insn1. However
8527 // we do a conservative scan, which means we may fix/report
8528 // more than necessary, but it doesn't hurt.
8530 Insntype insn4
= ip
[3];
8531 if (is_erratum_843419_sequence(insn1
, insn2
, insn4
))
8534 erratum_insn
= insn4
;
8535 insn_offset
= 3 * Insn_utilities::BYTES_PER_INSN
;
8541 unsigned int erratum_insn_offset
=
8542 span_start
+ offset
+ insn_offset
;
8543 Address erratum_address
=
8544 output_address
+ offset
+ insn_offset
;
8545 create_erratum_stub(relobj
, shndx
,
8546 erratum_insn_offset
, erratum_address
,
8547 erratum_insn
, ST_E_843419
,
8548 span_start
+ offset
);
8552 // Advance to next candidate instruction. We only consider instruction
8553 // sequences starting at a page offset of 0xff8 or 0xffc.
8554 page_offset
= (output_address
+ offset
) & 0xfff;
8555 if (page_offset
== 0xff8)
8557 else // (page_offset == 0xffc), we move to next page's 0xff8.
8560 } // End of "Target_aarch64::scan_erratum_843419_span".
8563 // The selector for aarch64 object files.
8565 template<int size
, bool big_endian
>
8566 class Target_selector_aarch64
: public Target_selector
8569 Target_selector_aarch64();
8572 do_instantiate_target()
8573 { return new Target_aarch64
<size
, big_endian
>(); }
8577 Target_selector_aarch64
<32, true>::Target_selector_aarch64()
8578 : Target_selector(elfcpp::EM_AARCH64
, 32, true,
8579 "elf32-bigaarch64", "aarch64_elf32_be_vec")
8583 Target_selector_aarch64
<32, false>::Target_selector_aarch64()
8584 : Target_selector(elfcpp::EM_AARCH64
, 32, false,
8585 "elf32-littleaarch64", "aarch64_elf32_le_vec")
8589 Target_selector_aarch64
<64, true>::Target_selector_aarch64()
8590 : Target_selector(elfcpp::EM_AARCH64
, 64, true,
8591 "elf64-bigaarch64", "aarch64_elf64_be_vec")
8595 Target_selector_aarch64
<64, false>::Target_selector_aarch64()
8596 : Target_selector(elfcpp::EM_AARCH64
, 64, false,
8597 "elf64-littleaarch64", "aarch64_elf64_le_vec")
8600 Target_selector_aarch64
<32, true> target_selector_aarch64elf32b
;
8601 Target_selector_aarch64
<32, false> target_selector_aarch64elf32
;
8602 Target_selector_aarch64
<64, true> target_selector_aarch64elfb
;
8603 Target_selector_aarch64
<64, false> target_selector_aarch64elf
;
8605 } // End anonymous namespace.