1 // icf.cc -- Identical Code Folding.
3 // Copyright (C) 2009-2020 Free Software Foundation, Inc.
4 // Written by Sriraman Tallam <tmsriram@google.com>.
6 // This file is part of gold.
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
23 // Identical Code Folding Algorithm
24 // ----------------------------------
25 // Detecting identical functions is done here and the basic algorithm
26 // is as follows. A checksum is computed on each foldable section using
27 // its contents and relocations. If the symbol name corresponding to
28 // a relocation is known it is used to compute the checksum. If the
29 // symbol name is not known the stringified name of the object and the
30 // section number pointed to by the relocation is used. The checksums
31 // are stored as keys in a hash map and a section is identical to some
32 // other section if its checksum is already present in the hash map.
33 // Checksum collisions are handled by using a multimap and explicitly
34 // checking the contents when two sections have the same checksum.
36 // However, two functions A and B with identical text but with
37 // relocations pointing to different foldable sections can be identical if
38 // the corresponding foldable sections to which their relocations point to
39 // turn out to be identical. Hence, this checksumming process must be
40 // done repeatedly until convergence is obtained. Here is an example for
41 // the following case :
43 // int funcA () int funcB ()
45 // return foo(); return goo();
48 // The functions funcA and funcB are identical if functions foo() and
49 // goo() are identical.
51 // Hence, as described above, we repeatedly do the checksumming,
52 // assigning identical functions to the same group, until convergence is
53 // obtained. Now, we have two different ways to do this depending on how
58 // We can start with marking all functions as different and repeatedly do
59 // the checksumming. This has the advantage that we do not need to wait
60 // for convergence. We can stop at any point and correctness will be
61 // guaranteed although not all cases would have been found. However, this
62 // has a problem that some cases can never be found even if it is run until
63 // convergence. Here is an example with mutually recursive functions :
65 // int funcA (int a) int funcB (int a)
67 // if (a == 1) if (a == 1)
68 // return 1; return 1;
69 // return 1 + funcB(a - 1); return 1 + funcA(a - 1);
72 // In this example funcA and funcB are identical and one of them could be
73 // folded into the other. However, if we start with assuming that funcA
74 // and funcB are not identical, the algorithm, even after it is run to
75 // convergence, cannot detect that they are identical. It should be noted
76 // that even if the functions were self-recursive, Algorithm I cannot catch
77 // that they are identical, at least as is.
81 // Here we start with marking all functions as identical and then repeat
82 // the checksumming until convergence. This can detect the above case
83 // mentioned above. It can detect all cases that Algorithm I can and more.
84 // However, the caveat is that it has to be run to convergence. It cannot
85 // be stopped arbitrarily like Algorithm I as correctness cannot be
86 // guaranteed. Algorithm II is not implemented.
88 // Algorithm I is used because experiments show that about three
89 // iterations are more than enough to achieve convergence. Algorithm I can
90 // handle recursive calls if it is changed to use a special common symbol
91 // for recursive relocs. This seems to be the most common case that
92 // Algorithm I could not catch as is. Mutually recursive calls are not
93 // frequent and Algorithm I wins because of its ability to be stopped
96 // Caveat with using function pointers :
97 // ------------------------------------
99 // Programs using function pointer comparisons/checks should use function
100 // folding with caution as the result of such comparisons could be different
101 // when folding takes place. This could lead to unexpected run-time
107 // ICF in safe mode folds only ctors and dtors if their function pointers can
108 // never be taken. Also, for X86-64, safe folding uses the relocation
109 // type to determine if a function's pointer is taken or not and only folds
110 // functions whose pointers are definitely not taken.
112 // Caveat with safe folding :
113 // ------------------------
115 // This applies only to x86_64.
117 // Position independent executables are created from PIC objects (compiled
118 // with -fPIC) and/or PIE objects (compiled with -fPIE). For PIE objects, the
119 // relocation types for function pointer taken and a call are the same.
120 // Now, it is not always possible to tell if an object used in the link of
121 // a pie executable is a PIC object or a PIE object. Hence, for pie
122 // executables, using relocation types to disambiguate function pointers is
123 // currently disabled.
125 // Further, it is not correct to use safe folding to build non-pie
126 // executables using PIC/PIE objects. PIC/PIE objects have different
127 // relocation types for function pointers than non-PIC objects, and the
128 // current implementation of safe folding does not handle those relocation
129 // types. Hence, if used, functions whose pointers are taken could still be
130 // folded causing unpredictable run-time behaviour if the pointers were used
133 // Notes regarding C++ exception handling :
134 // --------------------------------------
136 // It is possible for two sections to have identical text, identical
137 // relocations, but different exception handling metadata (unwind
138 // information in the .eh_frame section, and/or handler information in
139 // a .gcc_except_table section). Thus, if a foldable section is
140 // referenced from a .eh_frame FDE, we must include in its checksum
141 // the contents of that FDE as well as of the CIE that the FDE refers
142 // to. The CIE and FDE in turn probably contain relocations to the
143 // personality routine and LSDA, which are handled like any other
144 // relocation for ICF purposes. This logic is helped by the fact that
145 // gcc with -ffunction-sections puts each function's LSDA in its own
146 // .gcc_except_table.<functionname> section. Given sections for two
147 // functions with nontrivial exception handling logic, we will
148 // determine on the first iteration that their .gcc_except_table
149 // sections are identical and can be folded, and on the second
150 // iteration that their .text and .eh_frame contents (including the
151 // now-merged .gcc_except_table relocations for the LSDA) are
152 // identical and can be folded.
155 // How to run : --icf=[safe|all|none]
156 // Optional parameters : --icf-iterations <num> --print-icf-sections
158 // Performance : Less than 20 % link-time overhead on industry strength
159 // applications. Up to 6 % text size reductions.
166 #include "libiberty.h"
167 #include "demangle.h"
169 #include "int_encoding.h"
176 // This function determines if a section or a group of identical
177 // sections has unique contents. Such unique sections or groups can be
178 // declared final and need not be processed any further.
180 // ID_SECTION : Vector mapping a section index to a Section_id pair.
181 // IS_SECN_OR_GROUP_UNIQUE : To check if a section or a group of identical
182 // sections is already known to be unique.
183 // SECTION_CONTENTS : Contains the section's text and relocs to sections
184 // that cannot be folded. SECTION_CONTENTS are NULL
185 // implies that this function is being called for the
186 // first time before the first iteration of icf.
189 preprocess_for_unique_sections(const std::vector
<Section_id
>& id_section
,
190 std::vector
<bool>* is_secn_or_group_unique
,
191 std::vector
<std::string
>* section_contents
)
193 Unordered_map
<uint32_t, unsigned int> uniq_map
;
194 std::pair
<Unordered_map
<uint32_t, unsigned int>::iterator
, bool>
197 for (unsigned int i
= 0; i
< id_section
.size(); i
++)
199 if ((*is_secn_or_group_unique
)[i
])
203 Section_id secn
= id_section
[i
];
204 section_size_type plen
;
205 if (section_contents
== NULL
)
207 // Lock the object so we can read from it. This is only called
208 // single-threaded from queue_middle_tasks, so it is OK to lock.
209 // Unfortunately we have no way to pass in a Task token.
210 const Task
* dummy_task
= reinterpret_cast<const Task
*>(-1);
211 Task_lock_obj
<Object
> tl(dummy_task
, secn
.first
);
212 const unsigned char* contents
;
213 contents
= secn
.first
->section_contents(secn
.second
,
216 cksum
= xcrc32(contents
, plen
, 0xffffffff);
220 const unsigned char* contents_array
= reinterpret_cast
221 <const unsigned char*>((*section_contents
)[i
].c_str());
222 cksum
= xcrc32(contents_array
, (*section_contents
)[i
].length(),
225 uniq_map_insert
= uniq_map
.insert(std::make_pair(cksum
, i
));
226 if (uniq_map_insert
.second
)
228 (*is_secn_or_group_unique
)[i
] = true;
232 (*is_secn_or_group_unique
)[i
] = false;
233 (*is_secn_or_group_unique
)[uniq_map_insert
.first
->second
] = false;
238 // For SHF_MERGE sections that use REL relocations, the addend is stored in
239 // the text section at the relocation offset. Read the addend value given
240 // the pointer to the addend in the text section and the addend size.
241 // Update the addend value if a valid addend is found.
243 // RELOC_ADDEND_PTR : Pointer to the addend in the text section.
244 // ADDEND_SIZE : The size of the addend.
245 // RELOC_ADDEND_VALUE : Pointer to the addend that is updated.
248 get_rel_addend(const unsigned char* reloc_addend_ptr
,
249 const unsigned int addend_size
,
250 uint64_t* reloc_addend_value
)
257 *reloc_addend_value
=
258 read_from_pointer
<8>(reloc_addend_ptr
);
261 *reloc_addend_value
=
262 read_from_pointer
<16>(reloc_addend_ptr
);
265 *reloc_addend_value
=
266 read_from_pointer
<32>(reloc_addend_ptr
);
269 *reloc_addend_value
=
270 read_from_pointer
<64>(reloc_addend_ptr
);
277 // This returns the buffer containing the section's contents, both
278 // text and relocs. Relocs are differentiated as those pointing to
279 // sections that could be folded and those that cannot. Only relocs
280 // pointing to sections that could be folded are recomputed on
281 // subsequent invocations of this function.
283 // FIRST_ITERATION : true if it is the first invocation.
284 // FIXED_CACHE : String that stores the portion of the result that
285 // does not change from iteration to iteration;
286 // written if first_iteration is true, read if it's false.
287 // SECN : Section for which contents are desired.
288 // SELF_SECN : Relocations that target this section will be
289 // considered "relocations to self" so that recursive
290 // functions can be folded. Should normally be the
291 // same as `secn` except when processing extra identity
293 // NUM_TRACKED_RELOCS : Vector reference to store the number of relocs
295 // KEPT_SECTION_ID : Vector which maps folded sections to kept sections.
296 // START_OFFSET : Only consider the part of the section at and after
298 // END_OFFSET : Only consider the part of the section before this
302 get_section_contents(bool first_iteration
,
303 std::string
* fixed_cache
,
304 const Section_id
& secn
,
305 const Section_id
& self_secn
,
306 unsigned int* num_tracked_relocs
,
307 Symbol_table
* symtab
,
308 const std::vector
<unsigned int>& kept_section_id
,
309 section_offset_type start_offset
= 0,
310 section_offset_type end_offset
=
311 std::numeric_limits
<section_offset_type
>::max())
313 section_size_type plen
;
314 const unsigned char* contents
= NULL
;
316 contents
= secn
.first
->section_contents(secn
.second
, &plen
, false);
318 // The buffer to hold all the contents including relocs. A checksum
319 // is then computed on this buffer.
321 std::string icf_reloc_buffer
;
323 Icf::Reloc_info_list
& reloc_info_list
=
324 symtab
->icf()->reloc_info_list();
326 Icf::Reloc_info_list::iterator it_reloc_info_list
=
327 reloc_info_list
.find(secn
);
330 icf_reloc_buffer
.clear();
332 // Process relocs and put them into the buffer.
334 if (it_reloc_info_list
!= reloc_info_list
.end())
336 Icf::Sections_reachable_info
&v
=
337 (it_reloc_info_list
->second
).section_info
;
338 // Stores the information of the symbol pointed to by the reloc.
339 const Icf::Symbol_info
&s
= (it_reloc_info_list
->second
).symbol_info
;
340 // Stores the addend and the symbol value.
341 Icf::Addend_info
&a
= (it_reloc_info_list
->second
).addend_info
;
342 // Stores the offset of the reloc.
343 const Icf::Offset_info
&o
= (it_reloc_info_list
->second
).offset_info
;
344 const Icf::Reloc_addend_size_info
&reloc_addend_size_info
=
345 (it_reloc_info_list
->second
).reloc_addend_size_info
;
346 Icf::Sections_reachable_info::iterator it_v
= v
.begin();
347 Icf::Symbol_info::const_iterator it_s
= s
.begin();
348 Icf::Addend_info::iterator it_a
= a
.begin();
349 Icf::Offset_info::const_iterator it_o
= o
.begin();
350 Icf::Reloc_addend_size_info::const_iterator it_addend_size
=
351 reloc_addend_size_info
.begin();
353 for (; it_v
!= v
.end(); ++it_v
, ++it_s
, ++it_a
, ++it_o
, ++it_addend_size
)
355 Symbol
* gsym
= *it_s
;
356 bool is_section_symbol
= false;
358 // Ignore relocations outside the region we were told to look at
359 if (static_cast<section_offset_type
>(*it_o
) < start_offset
360 || static_cast<section_offset_type
>(*it_o
) >= end_offset
)
363 // A -1 value in the symbol vector indicates a local section symbol.
364 if (gsym
== reinterpret_cast<Symbol
*>(-1))
366 is_section_symbol
= true;
371 && it_v
->first
!= NULL
)
374 loc
.object
= it_v
->first
;
375 loc
.shndx
= it_v
->second
;
376 loc
.offset
= convert_types
<off_t
, long long>(it_a
->first
378 // Look through function descriptors
379 parameters
->target().function_location(&loc
);
380 if (loc
.shndx
!= it_v
->second
)
382 it_v
->second
= loc
.shndx
;
383 // Modify symvalue/addend to the code entry.
384 it_a
->first
= loc
.offset
;
389 // ADDEND_STR stores the symbol value and addend and offset,
390 // each at most 16 hex digits long. it_a points to a pair
391 // where first is the symbol value and second is the
395 // It would be nice if we could use format macros in inttypes.h
396 // here but there are not in ISO/IEC C++ 1998.
397 snprintf(addend_str
, sizeof(addend_str
), "%llx %llx %llx",
398 static_cast<long long>((*it_a
).first
),
399 static_cast<long long>((*it_a
).second
),
400 static_cast<unsigned long long>(*it_o
- start_offset
));
402 // If the symbol pointed to by the reloc is not in an ordinary
403 // section or if the symbol type is not FROM_OBJECT, then the
405 if (it_v
->first
== NULL
)
409 // If the symbol name is available, use it.
411 buffer
.append(gsym
->name());
412 // Append the addend.
413 buffer
.append(addend_str
);
419 Section_id
reloc_secn(it_v
->first
, it_v
->second
);
421 // If this reloc turns back and points to the same section,
422 // like a recursive call, use a special symbol to mark this.
423 if (reloc_secn
.first
== self_secn
.first
424 && reloc_secn
.second
== self_secn
.second
)
429 buffer
.append(addend_str
);
434 Icf::Uniq_secn_id_map
& section_id_map
=
435 symtab
->icf()->section_to_int_map();
436 Icf::Uniq_secn_id_map::iterator section_id_map_it
=
437 section_id_map
.find(reloc_secn
);
438 bool is_sym_preemptible
= (gsym
!= NULL
439 && !gsym
->is_from_dynobj()
440 && !gsym
->is_undefined()
441 && gsym
->is_preemptible());
442 if (!is_sym_preemptible
443 && section_id_map_it
!= section_id_map
.end())
445 // This is a reloc to a section that might be folded.
446 if (num_tracked_relocs
)
447 (*num_tracked_relocs
)++;
449 char kept_section_str
[10];
450 unsigned int secn_id
= section_id_map_it
->second
;
451 snprintf(kept_section_str
, sizeof(kept_section_str
), "%u",
452 kept_section_id
[secn_id
]);
455 buffer
.append("ICF_R");
456 buffer
.append(addend_str
);
458 icf_reloc_buffer
.append(kept_section_str
);
459 // Append the addend.
460 icf_reloc_buffer
.append(addend_str
);
461 icf_reloc_buffer
.append("@");
465 // This is a reloc to a section that cannot be folded.
466 // Process it only in the first iteration.
467 if (!first_iteration
)
470 uint64_t secn_flags
= (it_v
->first
)->section_flags(it_v
->second
);
471 // This reloc points to a merge section. Hash the
472 // contents of this section.
473 if ((secn_flags
& elfcpp::SHF_MERGE
) != 0
474 && parameters
->target().can_icf_inline_merge_sections())
477 (it_v
->first
)->section_entsize(it_v
->second
);
478 long long offset
= it_a
->first
;
480 // Handle SHT_RELA and SHT_REL addends. Only one of these
481 // addends exists. When pointing to a merge section, the
482 // addend only matters if it's relative to a section
483 // symbol. In order to unambiguously identify the target
484 // of the relocation, the compiler (and assembler) must use
485 // a local non-section symbol unless Symbol+Addend does in
486 // fact point directly to the target. (In other words,
487 // a bias for a pc-relative reference or a non-zero based
488 // access forces the use of a local symbol, and the addend
489 // is used only to provide that bias.)
490 uint64_t reloc_addend_value
= 0;
491 if (is_section_symbol
)
493 // Get the SHT_RELA addend. For RELA relocations,
494 // we have the addend from the relocation.
495 reloc_addend_value
= it_a
->second
;
497 // Handle SHT_REL addends.
498 // For REL relocations, we need to fetch the addend
499 // from the section contents.
500 const unsigned char* reloc_addend_ptr
=
501 contents
+ static_cast<unsigned long long>(*it_o
);
503 // Update the addend value with the SHT_REL addend if
505 get_rel_addend(reloc_addend_ptr
, *it_addend_size
,
506 &reloc_addend_value
);
508 // Ignore the addend when it is a negative value.
509 // See the comments in Merged_symbol_value::value
511 if (reloc_addend_value
< 0xffffff00)
512 offset
= offset
+ reloc_addend_value
;
515 section_size_type secn_len
;
517 const unsigned char* str_contents
=
518 (it_v
->first
)->section_contents(it_v
->second
,
521 gold_assert (offset
< (long long) secn_len
);
523 if ((secn_flags
& elfcpp::SHF_STRINGS
) != 0)
525 // String merge section.
526 const char* str_char
=
527 reinterpret_cast<const char*>(str_contents
);
532 buffer
.append(str_char
);
537 const uint16_t* ptr_16
=
538 reinterpret_cast<const uint16_t*>(str_char
);
539 unsigned int strlen_16
= 0;
540 // Find the NULL character.
541 while(*(ptr_16
+ strlen_16
) != 0)
543 buffer
.append(str_char
, strlen_16
* 2);
548 const uint32_t* ptr_32
=
549 reinterpret_cast<const uint32_t*>(str_char
);
550 unsigned int strlen_32
= 0;
551 // Find the NULL character.
552 while(*(ptr_32
+ strlen_32
) != 0)
554 buffer
.append(str_char
, strlen_32
* 4);
563 // Use the entsize to determine the length to copy.
564 uint64_t bufsize
= entsize
;
565 // If entsize is too big, copy all the remaining bytes.
566 if ((offset
+ entsize
) > secn_len
)
567 bufsize
= secn_len
- offset
;
568 buffer
.append(reinterpret_cast<const
569 char*>(str_contents
),
574 else if (gsym
!= NULL
)
576 // If symbol name is available use that.
577 buffer
.append(gsym
->name());
578 // Append the addend.
579 buffer
.append(addend_str
);
584 // Symbol name is not available, like for a local symbol,
585 // use object and section id.
586 buffer
.append(it_v
->first
->name());
588 snprintf(secn_id
, sizeof(secn_id
), "%u",it_v
->second
);
589 buffer
.append(secn_id
);
590 // Append the addend.
591 buffer
.append(addend_str
);
600 buffer
.append("Contents = ");
602 const unsigned char* slice_end
=
603 contents
+ std::min
<section_offset_type
>(plen
, end_offset
);
605 if (contents
+ start_offset
< slice_end
)
607 buffer
.append(reinterpret_cast<const char*>(contents
+ start_offset
),
608 slice_end
- (contents
+ start_offset
));
612 // Add any extra identity regions.
613 std::pair
<Icf::Extra_identity_list::const_iterator
,
614 Icf::Extra_identity_list::const_iterator
>
615 extra_range
= symtab
->icf()->extra_identity_list().equal_range(secn
);
616 for (Icf::Extra_identity_list::const_iterator it_ext
= extra_range
.first
;
617 it_ext
!= extra_range
.second
; ++it_ext
)
619 std::string external_fixed
;
620 std::string external_all
=
621 get_section_contents(first_iteration
, &external_fixed
,
622 it_ext
->second
.section
, self_secn
,
623 num_tracked_relocs
, symtab
,
624 kept_section_id
, it_ext
->second
.offset
,
625 it_ext
->second
.offset
+ it_ext
->second
.length
);
626 buffer
.append(external_fixed
);
627 icf_reloc_buffer
.append(external_all
, external_fixed
.length(),
633 // Store the section contents that don't change to avoid recomputing
634 // during the next call to this function.
635 *fixed_cache
= buffer
;
639 gold_assert(buffer
.empty());
641 // Reuse the contents computed in the previous iteration.
642 buffer
.append(*fixed_cache
);
645 buffer
.append(icf_reloc_buffer
);
649 // This function computes a checksum on each section to detect and form
650 // groups of identical sections. The first iteration does this for all
652 // Further iterations do this only for the kept sections from each group to
653 // determine if larger groups of identical sections could be formed. The
654 // first section in each group is the kept section for that group.
656 // CRC32 is the checksumming algorithm and can have collisions. That is,
657 // two sections with different contents can have the same checksum. Hence,
658 // a multimap is used to maintain more than one group of checksum
659 // identical sections. A section is added to a group only after its
660 // contents are explicitly compared with the kept section of the group.
663 // ITERATION_NUM : Invocation instance of this function.
664 // NUM_TRACKED_RELOCS : Vector reference to store the number of relocs
666 // KEPT_SECTION_ID : Vector which maps folded sections to kept sections.
667 // ID_SECTION : Vector mapping a section to an unique integer.
668 // IS_SECN_OR_GROUP_UNIQUE : To check if a section or a group of identical
669 // sections is already known to be unique.
670 // SECTION_CONTENTS : Store the section's text and relocs to non-ICF
674 match_sections(unsigned int iteration_num
,
675 Symbol_table
* symtab
,
676 std::vector
<unsigned int>* num_tracked_relocs
,
677 std::vector
<unsigned int>* kept_section_id
,
678 const std::vector
<Section_id
>& id_section
,
679 const std::vector
<uint64_t>& section_addraligns
,
680 std::vector
<bool>* is_secn_or_group_unique
,
681 std::vector
<std::string
>* section_contents
)
683 Unordered_multimap
<uint32_t, unsigned int> section_cksum
;
684 std::pair
<Unordered_multimap
<uint32_t, unsigned int>::iterator
,
685 Unordered_multimap
<uint32_t, unsigned int>::iterator
> key_range
;
686 bool converged
= true;
688 if (iteration_num
== 1)
689 preprocess_for_unique_sections(id_section
,
690 is_secn_or_group_unique
,
693 preprocess_for_unique_sections(id_section
,
694 is_secn_or_group_unique
,
697 std::vector
<std::string
> full_section_contents
;
699 for (unsigned int i
= 0; i
< id_section
.size(); i
++)
701 full_section_contents
.push_back("");
702 if ((*is_secn_or_group_unique
)[i
])
705 Section_id secn
= id_section
[i
];
707 // Lock the object so we can read from it. This is only called
708 // single-threaded from queue_middle_tasks, so it is OK to lock.
709 // Unfortunately we have no way to pass in a Task token.
710 const Task
* dummy_task
= reinterpret_cast<const Task
*>(-1);
711 Task_lock_obj
<Object
> tl(dummy_task
, secn
.first
);
713 std::string this_secn_contents
;
715 std::string
* this_secn_cache
= &((*section_contents
)[i
]);
716 if (iteration_num
== 1)
718 unsigned int num_relocs
= 0;
719 this_secn_contents
= get_section_contents(true, this_secn_cache
,
720 secn
, secn
, &num_relocs
,
721 symtab
, (*kept_section_id
));
722 (*num_tracked_relocs
)[i
] = num_relocs
;
726 if ((*kept_section_id
)[i
] != i
)
728 // This section is already folded into something.
731 this_secn_contents
= get_section_contents(false, this_secn_cache
,
733 symtab
, (*kept_section_id
));
736 const unsigned char* this_secn_contents_array
=
737 reinterpret_cast<const unsigned char*>(this_secn_contents
.c_str());
738 cksum
= xcrc32(this_secn_contents_array
, this_secn_contents
.length(),
740 size_t count
= section_cksum
.count(cksum
);
744 // Start a group with this cksum.
745 section_cksum
.insert(std::make_pair(cksum
, i
));
746 full_section_contents
[i
] = this_secn_contents
;
750 key_range
= section_cksum
.equal_range(cksum
);
751 Unordered_multimap
<uint32_t, unsigned int>::iterator it
;
752 // Search all the groups with this cksum for a match.
753 for (it
= key_range
.first
; it
!= key_range
.second
; ++it
)
755 unsigned int kept_section
= it
->second
;
756 if (full_section_contents
[kept_section
].length()
757 != this_secn_contents
.length())
759 if (memcmp(full_section_contents
[kept_section
].c_str(),
760 this_secn_contents
.c_str(),
761 this_secn_contents
.length()) != 0)
764 // Check section alignment here.
765 // The section with the larger alignment requirement
766 // should be kept. We assume alignment can only be
767 // zero or positive integral powers of two.
768 uint64_t align_i
= section_addraligns
[i
];
769 uint64_t align_kept
= section_addraligns
[kept_section
];
770 if (align_i
<= align_kept
)
772 (*kept_section_id
)[i
] = kept_section
;
776 (*kept_section_id
)[kept_section
] = i
;
778 full_section_contents
[kept_section
].swap(
779 full_section_contents
[i
]);
785 if (it
== key_range
.second
)
787 // Create a new group for this cksum.
788 section_cksum
.insert(std::make_pair(cksum
, i
));
789 full_section_contents
[i
] = this_secn_contents
;
792 // If there are no relocs to foldable sections do not process
793 // this section any further.
794 if (iteration_num
== 1 && (*num_tracked_relocs
)[i
] == 0)
795 (*is_secn_or_group_unique
)[i
] = true;
798 // If a section was folded into another section that was later folded
799 // again then the former has to be updated.
800 for (unsigned int i
= 0; i
< id_section
.size(); i
++)
802 // Find the end of the folding chain
803 unsigned int kept
= i
;
804 while ((*kept_section_id
)[kept
] != kept
)
806 kept
= (*kept_section_id
)[kept
];
808 // Update every element of the chain
809 unsigned int current
= i
;
810 while ((*kept_section_id
)[current
] != kept
)
812 unsigned int next
= (*kept_section_id
)[current
];
813 (*kept_section_id
)[current
] = kept
;
821 // During safe icf (--icf=safe), only fold functions that are ctors or dtors.
822 // This function returns true if the section name is that of a ctor or a dtor.
825 is_function_ctor_or_dtor(const std::string
& section_name
)
827 const char* mangled_func_name
= strrchr(section_name
.c_str(), '.');
828 gold_assert(mangled_func_name
!= NULL
);
829 if ((is_prefix_of("._ZN", mangled_func_name
)
830 || is_prefix_of("._ZZ", mangled_func_name
))
831 && (is_gnu_v3_mangled_ctor(mangled_func_name
+ 1)
832 || is_gnu_v3_mangled_dtor(mangled_func_name
+ 1)))
839 // Iterate through the .eh_frame section that has index
840 // `ehframe_shndx` in `object`, adding entries to extra_identity_list_
841 // that will cause the contents of each FDE and its CIE to be included
842 // in the logical ICF identity of the function that the FDE refers to.
845 Icf::add_ehframe_links(Relobj
* object
, unsigned int ehframe_shndx
,
848 section_size_type contents_len
;
849 const unsigned char* pcontents
= object
->section_contents(ehframe_shndx
,
852 const unsigned char* p
= pcontents
;
853 const unsigned char* pend
= pcontents
+ contents_len
;
855 Sections_reachable_info::iterator it_target
= relocs
.section_info
.begin();
856 Sections_reachable_info::iterator it_target_end
= relocs
.section_info
.end();
857 Offset_info::iterator it_offset
= relocs
.offset_info
.begin();
858 Offset_info::iterator it_offset_end
= relocs
.offset_info
.end();
860 // Maps section offset to the length of the CIE defined at that offset.
861 typedef Unordered_map
<section_offset_type
, section_size_type
> Cie_map
;
864 uint32_t (*read_swap_32
)(const unsigned char*);
865 if (object
->is_big_endian())
866 read_swap_32
= &elfcpp::Swap
<32, true>::readval
;
868 read_swap_32
= &elfcpp::Swap
<32, false>::readval
;
870 // TODO: The logic for parsing the CIE/FDE framing is copied from
871 // Eh_frame::do_add_ehframe_input_section() and might want to be
872 // factored into a shared helper function.
878 unsigned int len
= read_swap_32(p
);
882 // We should only find a zero-length entry at the end of the
888 // We don't support a 64-bit .eh_frame.
889 if (len
== 0xffffffff)
891 if (static_cast<unsigned int>(pend
- p
) < len
)
894 const unsigned char* const pentend
= p
+ len
;
899 unsigned int id
= read_swap_32(p
);
905 cies
.insert(std::make_pair(p
- pcontents
, len
- 4));
910 Cie_map::const_iterator it
;
911 it
= cies
.find((p
- pcontents
) - (id
- 4));
912 if (it
== cies
.end())
915 // Figure out which section this FDE refers into. The word at `p`
916 // is an address, and we expect to see a relocation there. If not,
917 // this FDE isn't ICF-relevant.
918 while (it_offset
!= it_offset_end
919 && it_target
!= it_target_end
920 && static_cast<ptrdiff_t>(*it_offset
) < (p
- pcontents
))
925 if (it_offset
!= it_offset_end
926 && it_target
!= it_target_end
927 && static_cast<ptrdiff_t>(*it_offset
) == (p
- pcontents
))
929 // Found a reloc. Add this FDE and its CIE as extra identity
930 // info for the section it refers to.
931 Extra_identity_info rec_fde
= {Section_id(object
, ehframe_shndx
),
932 p
- pcontents
, len
- 4};
933 Extra_identity_info rec_cie
= {Section_id(object
, ehframe_shndx
),
934 it
->first
, it
->second
};
935 extra_identity_list_
.insert(std::make_pair(*it_target
, rec_fde
));
936 extra_identity_list_
.insert(std::make_pair(*it_target
, rec_cie
));
946 // This is the main ICF function called in gold.cc. This does the
947 // initialization and calls match_sections repeatedly (thrice by default)
948 // which computes the crc checksums and detects identical functions.
951 Icf::find_identical_sections(const Input_objects
* input_objects
,
952 Symbol_table
* symtab
)
954 unsigned int section_num
= 0;
955 std::vector
<unsigned int> num_tracked_relocs
;
956 std::vector
<uint64_t> section_addraligns
;
957 std::vector
<bool> is_secn_or_group_unique
;
958 std::vector
<std::string
> section_contents
;
959 const Target
& target
= parameters
->target();
961 // Decide which sections are possible candidates first.
963 for (Input_objects::Relobj_iterator p
= input_objects
->relobj_begin();
964 p
!= input_objects
->relobj_end();
967 // Lock the object so we can read from it. This is only called
968 // single-threaded from queue_middle_tasks, so it is OK to lock.
969 // Unfortunately we have no way to pass in a Task token.
970 const Task
* dummy_task
= reinterpret_cast<const Task
*>(-1);
971 Task_lock_obj
<Object
> tl(dummy_task
, *p
);
972 std::vector
<unsigned int> eh_frame_ind
;
974 for (unsigned int i
= 0; i
< (*p
)->shnum(); ++i
)
976 const std::string section_name
= (*p
)->section_name(i
);
977 if (!is_section_foldable_candidate(section_name
))
979 if (is_prefix_of(".eh_frame", section_name
.c_str()))
980 eh_frame_ind
.push_back(i
);
984 if (!(*p
)->is_section_included(i
))
986 if (parameters
->options().gc_sections()
987 && symtab
->gc()->is_section_garbage(*p
, i
))
989 // With --icf=safe, check if the mangled function name is a ctor
990 // or a dtor. The mangled function name can be obtained from the
991 // section name by stripping the section prefix.
992 if (parameters
->options().icf_safe_folding()
993 && !is_function_ctor_or_dtor(section_name
)
994 && (!target
.can_check_for_function_pointers()
995 || section_has_function_pointers(*p
, i
)))
999 this->id_section_
.push_back(Section_id(*p
, i
));
1000 this->section_id_
[Section_id(*p
, i
)] = section_num
;
1001 this->kept_section_id_
.push_back(section_num
);
1002 num_tracked_relocs
.push_back(0);
1003 section_addraligns
.push_back((*p
)->section_addralign(i
));
1004 is_secn_or_group_unique
.push_back(false);
1005 section_contents
.push_back("");
1009 for (std::vector
<unsigned int>::iterator it_eh_ind
= eh_frame_ind
.begin();
1010 it_eh_ind
!= eh_frame_ind
.end(); ++it_eh_ind
)
1012 // gc_process_relocs() recorded relocations for this
1013 // section even though we can't fold it. We need to
1014 // use those relocations to associate other foldable
1015 // sections with the FDEs and CIEs that are relevant
1016 // to them, so we can avoid merging sections that
1017 // don't have identical exception-handling behavior.
1019 Section_id
sect(*p
, *it_eh_ind
);
1020 Reloc_info_list::iterator it_rel
= this->reloc_info_list().find(sect
);
1021 if (it_rel
!= this->reloc_info_list().end())
1023 if (!add_ehframe_links(*p
, *it_eh_ind
, it_rel
->second
))
1025 gold_warning(_("could not parse eh_frame section %s(%s); ICF "
1026 "might not preserve exception handling "
1028 (*p
)->name().c_str(),
1029 (*p
)->section_name(*it_eh_ind
).c_str());
1035 unsigned int num_iterations
= 0;
1037 // Default number of iterations to run ICF is 3.
1038 unsigned int max_iterations
= (parameters
->options().icf_iterations() > 0)
1039 ? parameters
->options().icf_iterations()
1042 bool converged
= false;
1044 while (!converged
&& (num_iterations
< max_iterations
))
1047 converged
= match_sections(num_iterations
, symtab
,
1048 &num_tracked_relocs
, &this->kept_section_id_
,
1049 this->id_section_
, section_addraligns
,
1050 &is_secn_or_group_unique
, §ion_contents
);
1053 if (parameters
->options().print_icf_sections())
1056 gold_info(_("%s: ICF Converged after %u iteration(s)"),
1057 program_name
, num_iterations
);
1059 gold_info(_("%s: ICF stopped after %u iteration(s)"),
1060 program_name
, num_iterations
);
1063 // Unfold --keep-unique symbols.
1064 for (options::String_set::const_iterator p
=
1065 parameters
->options().keep_unique_begin();
1066 p
!= parameters
->options().keep_unique_end();
1069 const char* name
= p
->c_str();
1070 Symbol
* sym
= symtab
->lookup(name
);
1073 gold_warning(_("Could not find symbol %s to unfold\n"), name
);
1075 else if (sym
->source() == Symbol::FROM_OBJECT
1076 && !sym
->object()->is_dynamic())
1078 Relobj
* obj
= static_cast<Relobj
*>(sym
->object());
1080 unsigned int shndx
= sym
->shndx(&is_ordinary
);
1083 this->unfold_section(obj
, shndx
);
1092 // Unfolds the section denoted by OBJ and SHNDX if folded.
1095 Icf::unfold_section(Relobj
* obj
, unsigned int shndx
)
1097 Section_id
secn(obj
, shndx
);
1098 Uniq_secn_id_map::iterator it
= this->section_id_
.find(secn
);
1099 if (it
== this->section_id_
.end())
1101 unsigned int section_num
= it
->second
;
1102 unsigned int kept_section_id
= this->kept_section_id_
[section_num
];
1103 if (kept_section_id
!= section_num
)
1104 this->kept_section_id_
[section_num
] = section_num
;
1107 // This function determines if the section corresponding to the
1108 // given object and index is folded based on if the kept section
1109 // is different from this section.
1112 Icf::is_section_folded(Relobj
* obj
, unsigned int shndx
)
1114 Section_id
secn(obj
, shndx
);
1115 Uniq_secn_id_map::iterator it
= this->section_id_
.find(secn
);
1116 if (it
== this->section_id_
.end())
1118 unsigned int section_num
= it
->second
;
1119 unsigned int kept_section_id
= this->kept_section_id_
[section_num
];
1120 return kept_section_id
!= section_num
;
1123 // This function returns the folded section for the given section.
1126 Icf::get_folded_section(Relobj
* dup_obj
, unsigned int dup_shndx
)
1128 Section_id
dup_secn(dup_obj
, dup_shndx
);
1129 Uniq_secn_id_map::iterator it
= this->section_id_
.find(dup_secn
);
1130 gold_assert(it
!= this->section_id_
.end());
1131 unsigned int section_num
= it
->second
;
1132 unsigned int kept_section_id
= this->kept_section_id_
[section_num
];
1133 Section_id folded_section
= this->id_section_
[kept_section_id
];
1134 return folded_section
;
1137 } // End of namespace gold.