1 /* ELF executable support for BFD.
3 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
4 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012
5 Free Software Foundation, Inc.
7 This file is part of BFD, the Binary File Descriptor library.
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22 MA 02110-1301, USA. */
29 BFD support for ELF formats is being worked on.
30 Currently, the best supported back ends are for sparc and i386
31 (running svr4 or Solaris 2).
33 Documentation of the internals of the support code still needs
34 to be written. The code is changing quickly enough that we
35 haven't bothered yet. */
37 /* For sparc64-cross-sparc32. */
45 #include "libiberty.h"
46 #include "safe-ctype.h"
52 static int elf_sort_sections (const void *, const void *);
53 static bfd_boolean
assign_file_positions_except_relocs (bfd
*, struct bfd_link_info
*);
54 static bfd_boolean
prep_headers (bfd
*);
55 static bfd_boolean
swap_out_syms (bfd
*, struct bfd_strtab_hash
**, int) ;
56 static bfd_boolean
elf_read_notes (bfd
*, file_ptr
, bfd_size_type
) ;
57 static bfd_boolean
elf_parse_notes (bfd
*abfd
, char *buf
, size_t size
,
60 /* Swap version information in and out. The version information is
61 currently size independent. If that ever changes, this code will
62 need to move into elfcode.h. */
64 /* Swap in a Verdef structure. */
67 _bfd_elf_swap_verdef_in (bfd
*abfd
,
68 const Elf_External_Verdef
*src
,
69 Elf_Internal_Verdef
*dst
)
71 dst
->vd_version
= H_GET_16 (abfd
, src
->vd_version
);
72 dst
->vd_flags
= H_GET_16 (abfd
, src
->vd_flags
);
73 dst
->vd_ndx
= H_GET_16 (abfd
, src
->vd_ndx
);
74 dst
->vd_cnt
= H_GET_16 (abfd
, src
->vd_cnt
);
75 dst
->vd_hash
= H_GET_32 (abfd
, src
->vd_hash
);
76 dst
->vd_aux
= H_GET_32 (abfd
, src
->vd_aux
);
77 dst
->vd_next
= H_GET_32 (abfd
, src
->vd_next
);
80 /* Swap out a Verdef structure. */
83 _bfd_elf_swap_verdef_out (bfd
*abfd
,
84 const Elf_Internal_Verdef
*src
,
85 Elf_External_Verdef
*dst
)
87 H_PUT_16 (abfd
, src
->vd_version
, dst
->vd_version
);
88 H_PUT_16 (abfd
, src
->vd_flags
, dst
->vd_flags
);
89 H_PUT_16 (abfd
, src
->vd_ndx
, dst
->vd_ndx
);
90 H_PUT_16 (abfd
, src
->vd_cnt
, dst
->vd_cnt
);
91 H_PUT_32 (abfd
, src
->vd_hash
, dst
->vd_hash
);
92 H_PUT_32 (abfd
, src
->vd_aux
, dst
->vd_aux
);
93 H_PUT_32 (abfd
, src
->vd_next
, dst
->vd_next
);
96 /* Swap in a Verdaux structure. */
99 _bfd_elf_swap_verdaux_in (bfd
*abfd
,
100 const Elf_External_Verdaux
*src
,
101 Elf_Internal_Verdaux
*dst
)
103 dst
->vda_name
= H_GET_32 (abfd
, src
->vda_name
);
104 dst
->vda_next
= H_GET_32 (abfd
, src
->vda_next
);
107 /* Swap out a Verdaux structure. */
110 _bfd_elf_swap_verdaux_out (bfd
*abfd
,
111 const Elf_Internal_Verdaux
*src
,
112 Elf_External_Verdaux
*dst
)
114 H_PUT_32 (abfd
, src
->vda_name
, dst
->vda_name
);
115 H_PUT_32 (abfd
, src
->vda_next
, dst
->vda_next
);
118 /* Swap in a Verneed structure. */
121 _bfd_elf_swap_verneed_in (bfd
*abfd
,
122 const Elf_External_Verneed
*src
,
123 Elf_Internal_Verneed
*dst
)
125 dst
->vn_version
= H_GET_16 (abfd
, src
->vn_version
);
126 dst
->vn_cnt
= H_GET_16 (abfd
, src
->vn_cnt
);
127 dst
->vn_file
= H_GET_32 (abfd
, src
->vn_file
);
128 dst
->vn_aux
= H_GET_32 (abfd
, src
->vn_aux
);
129 dst
->vn_next
= H_GET_32 (abfd
, src
->vn_next
);
132 /* Swap out a Verneed structure. */
135 _bfd_elf_swap_verneed_out (bfd
*abfd
,
136 const Elf_Internal_Verneed
*src
,
137 Elf_External_Verneed
*dst
)
139 H_PUT_16 (abfd
, src
->vn_version
, dst
->vn_version
);
140 H_PUT_16 (abfd
, src
->vn_cnt
, dst
->vn_cnt
);
141 H_PUT_32 (abfd
, src
->vn_file
, dst
->vn_file
);
142 H_PUT_32 (abfd
, src
->vn_aux
, dst
->vn_aux
);
143 H_PUT_32 (abfd
, src
->vn_next
, dst
->vn_next
);
146 /* Swap in a Vernaux structure. */
149 _bfd_elf_swap_vernaux_in (bfd
*abfd
,
150 const Elf_External_Vernaux
*src
,
151 Elf_Internal_Vernaux
*dst
)
153 dst
->vna_hash
= H_GET_32 (abfd
, src
->vna_hash
);
154 dst
->vna_flags
= H_GET_16 (abfd
, src
->vna_flags
);
155 dst
->vna_other
= H_GET_16 (abfd
, src
->vna_other
);
156 dst
->vna_name
= H_GET_32 (abfd
, src
->vna_name
);
157 dst
->vna_next
= H_GET_32 (abfd
, src
->vna_next
);
160 /* Swap out a Vernaux structure. */
163 _bfd_elf_swap_vernaux_out (bfd
*abfd
,
164 const Elf_Internal_Vernaux
*src
,
165 Elf_External_Vernaux
*dst
)
167 H_PUT_32 (abfd
, src
->vna_hash
, dst
->vna_hash
);
168 H_PUT_16 (abfd
, src
->vna_flags
, dst
->vna_flags
);
169 H_PUT_16 (abfd
, src
->vna_other
, dst
->vna_other
);
170 H_PUT_32 (abfd
, src
->vna_name
, dst
->vna_name
);
171 H_PUT_32 (abfd
, src
->vna_next
, dst
->vna_next
);
174 /* Swap in a Versym structure. */
177 _bfd_elf_swap_versym_in (bfd
*abfd
,
178 const Elf_External_Versym
*src
,
179 Elf_Internal_Versym
*dst
)
181 dst
->vs_vers
= H_GET_16 (abfd
, src
->vs_vers
);
184 /* Swap out a Versym structure. */
187 _bfd_elf_swap_versym_out (bfd
*abfd
,
188 const Elf_Internal_Versym
*src
,
189 Elf_External_Versym
*dst
)
191 H_PUT_16 (abfd
, src
->vs_vers
, dst
->vs_vers
);
194 /* Standard ELF hash function. Do not change this function; you will
195 cause invalid hash tables to be generated. */
198 bfd_elf_hash (const char *namearg
)
200 const unsigned char *name
= (const unsigned char *) namearg
;
205 while ((ch
= *name
++) != '\0')
208 if ((g
= (h
& 0xf0000000)) != 0)
211 /* The ELF ABI says `h &= ~g', but this is equivalent in
212 this case and on some machines one insn instead of two. */
216 return h
& 0xffffffff;
219 /* DT_GNU_HASH hash function. Do not change this function; you will
220 cause invalid hash tables to be generated. */
223 bfd_elf_gnu_hash (const char *namearg
)
225 const unsigned char *name
= (const unsigned char *) namearg
;
226 unsigned long h
= 5381;
229 while ((ch
= *name
++) != '\0')
230 h
= (h
<< 5) + h
+ ch
;
231 return h
& 0xffffffff;
234 /* Create a tdata field OBJECT_SIZE bytes in length, zeroed out and with
235 the object_id field of an elf_obj_tdata field set to OBJECT_ID. */
237 bfd_elf_allocate_object (bfd
*abfd
,
239 enum elf_target_id object_id
)
241 BFD_ASSERT (object_size
>= sizeof (struct elf_obj_tdata
));
242 abfd
->tdata
.any
= bfd_zalloc (abfd
, object_size
);
243 if (abfd
->tdata
.any
== NULL
)
246 elf_object_id (abfd
) = object_id
;
247 elf_program_header_size (abfd
) = (bfd_size_type
) -1;
253 bfd_elf_make_object (bfd
*abfd
)
255 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
256 return bfd_elf_allocate_object (abfd
, sizeof (struct elf_obj_tdata
),
261 bfd_elf_mkcorefile (bfd
*abfd
)
263 /* I think this can be done just like an object file. */
264 return abfd
->xvec
->_bfd_set_format
[(int) bfd_object
] (abfd
);
268 bfd_elf_get_str_section (bfd
*abfd
, unsigned int shindex
)
270 Elf_Internal_Shdr
**i_shdrp
;
271 bfd_byte
*shstrtab
= NULL
;
273 bfd_size_type shstrtabsize
;
275 i_shdrp
= elf_elfsections (abfd
);
277 || shindex
>= elf_numsections (abfd
)
278 || i_shdrp
[shindex
] == 0)
281 shstrtab
= i_shdrp
[shindex
]->contents
;
282 if (shstrtab
== NULL
)
284 /* No cached one, attempt to read, and cache what we read. */
285 offset
= i_shdrp
[shindex
]->sh_offset
;
286 shstrtabsize
= i_shdrp
[shindex
]->sh_size
;
288 /* Allocate and clear an extra byte at the end, to prevent crashes
289 in case the string table is not terminated. */
290 if (shstrtabsize
+ 1 <= 1
291 || (shstrtab
= (bfd_byte
*) bfd_alloc (abfd
, shstrtabsize
+ 1)) == NULL
292 || bfd_seek (abfd
, offset
, SEEK_SET
) != 0)
294 else if (bfd_bread (shstrtab
, shstrtabsize
, abfd
) != shstrtabsize
)
296 if (bfd_get_error () != bfd_error_system_call
)
297 bfd_set_error (bfd_error_file_truncated
);
299 /* Once we've failed to read it, make sure we don't keep
300 trying. Otherwise, we'll keep allocating space for
301 the string table over and over. */
302 i_shdrp
[shindex
]->sh_size
= 0;
305 shstrtab
[shstrtabsize
] = '\0';
306 i_shdrp
[shindex
]->contents
= shstrtab
;
308 return (char *) shstrtab
;
312 bfd_elf_string_from_elf_section (bfd
*abfd
,
313 unsigned int shindex
,
314 unsigned int strindex
)
316 Elf_Internal_Shdr
*hdr
;
321 if (elf_elfsections (abfd
) == NULL
|| shindex
>= elf_numsections (abfd
))
324 hdr
= elf_elfsections (abfd
)[shindex
];
326 if (hdr
->contents
== NULL
327 && bfd_elf_get_str_section (abfd
, shindex
) == NULL
)
330 if (strindex
>= hdr
->sh_size
)
332 unsigned int shstrndx
= elf_elfheader(abfd
)->e_shstrndx
;
333 (*_bfd_error_handler
)
334 (_("%B: invalid string offset %u >= %lu for section `%s'"),
335 abfd
, strindex
, (unsigned long) hdr
->sh_size
,
336 (shindex
== shstrndx
&& strindex
== hdr
->sh_name
338 : bfd_elf_string_from_elf_section (abfd
, shstrndx
, hdr
->sh_name
)));
342 return ((char *) hdr
->contents
) + strindex
;
345 /* Read and convert symbols to internal format.
346 SYMCOUNT specifies the number of symbols to read, starting from
347 symbol SYMOFFSET. If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF
348 are non-NULL, they are used to store the internal symbols, external
349 symbols, and symbol section index extensions, respectively.
350 Returns a pointer to the internal symbol buffer (malloced if necessary)
351 or NULL if there were no symbols or some kind of problem. */
354 bfd_elf_get_elf_syms (bfd
*ibfd
,
355 Elf_Internal_Shdr
*symtab_hdr
,
358 Elf_Internal_Sym
*intsym_buf
,
360 Elf_External_Sym_Shndx
*extshndx_buf
)
362 Elf_Internal_Shdr
*shndx_hdr
;
364 const bfd_byte
*esym
;
365 Elf_External_Sym_Shndx
*alloc_extshndx
;
366 Elf_External_Sym_Shndx
*shndx
;
367 Elf_Internal_Sym
*alloc_intsym
;
368 Elf_Internal_Sym
*isym
;
369 Elf_Internal_Sym
*isymend
;
370 const struct elf_backend_data
*bed
;
375 if (bfd_get_flavour (ibfd
) != bfd_target_elf_flavour
)
381 /* Normal syms might have section extension entries. */
383 if (symtab_hdr
== &elf_tdata (ibfd
)->symtab_hdr
)
384 shndx_hdr
= &elf_tdata (ibfd
)->symtab_shndx_hdr
;
386 /* Read the symbols. */
388 alloc_extshndx
= NULL
;
390 bed
= get_elf_backend_data (ibfd
);
391 extsym_size
= bed
->s
->sizeof_sym
;
392 amt
= symcount
* extsym_size
;
393 pos
= symtab_hdr
->sh_offset
+ symoffset
* extsym_size
;
394 if (extsym_buf
== NULL
)
396 alloc_ext
= bfd_malloc2 (symcount
, extsym_size
);
397 extsym_buf
= alloc_ext
;
399 if (extsym_buf
== NULL
400 || bfd_seek (ibfd
, pos
, SEEK_SET
) != 0
401 || bfd_bread (extsym_buf
, amt
, ibfd
) != amt
)
407 if (shndx_hdr
== NULL
|| shndx_hdr
->sh_size
== 0)
411 amt
= symcount
* sizeof (Elf_External_Sym_Shndx
);
412 pos
= shndx_hdr
->sh_offset
+ symoffset
* sizeof (Elf_External_Sym_Shndx
);
413 if (extshndx_buf
== NULL
)
415 alloc_extshndx
= (Elf_External_Sym_Shndx
*)
416 bfd_malloc2 (symcount
, sizeof (Elf_External_Sym_Shndx
));
417 extshndx_buf
= alloc_extshndx
;
419 if (extshndx_buf
== NULL
420 || bfd_seek (ibfd
, pos
, SEEK_SET
) != 0
421 || bfd_bread (extshndx_buf
, amt
, ibfd
) != amt
)
428 if (intsym_buf
== NULL
)
430 alloc_intsym
= (Elf_Internal_Sym
*)
431 bfd_malloc2 (symcount
, sizeof (Elf_Internal_Sym
));
432 intsym_buf
= alloc_intsym
;
433 if (intsym_buf
== NULL
)
437 /* Convert the symbols to internal form. */
438 isymend
= intsym_buf
+ symcount
;
439 for (esym
= (const bfd_byte
*) extsym_buf
, isym
= intsym_buf
,
440 shndx
= extshndx_buf
;
442 esym
+= extsym_size
, isym
++, shndx
= shndx
!= NULL
? shndx
+ 1 : NULL
)
443 if (!(*bed
->s
->swap_symbol_in
) (ibfd
, esym
, shndx
, isym
))
445 symoffset
+= (esym
- (bfd_byte
*) extsym_buf
) / extsym_size
;
446 (*_bfd_error_handler
) (_("%B symbol number %lu references "
447 "nonexistent SHT_SYMTAB_SHNDX section"),
448 ibfd
, (unsigned long) symoffset
);
449 if (alloc_intsym
!= NULL
)
456 if (alloc_ext
!= NULL
)
458 if (alloc_extshndx
!= NULL
)
459 free (alloc_extshndx
);
464 /* Look up a symbol name. */
466 bfd_elf_sym_name (bfd
*abfd
,
467 Elf_Internal_Shdr
*symtab_hdr
,
468 Elf_Internal_Sym
*isym
,
472 unsigned int iname
= isym
->st_name
;
473 unsigned int shindex
= symtab_hdr
->sh_link
;
475 if (iname
== 0 && ELF_ST_TYPE (isym
->st_info
) == STT_SECTION
476 /* Check for a bogus st_shndx to avoid crashing. */
477 && isym
->st_shndx
< elf_numsections (abfd
))
479 iname
= elf_elfsections (abfd
)[isym
->st_shndx
]->sh_name
;
480 shindex
= elf_elfheader (abfd
)->e_shstrndx
;
483 name
= bfd_elf_string_from_elf_section (abfd
, shindex
, iname
);
486 else if (sym_sec
&& *name
== '\0')
487 name
= bfd_section_name (abfd
, sym_sec
);
492 /* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP
493 sections. The first element is the flags, the rest are section
496 typedef union elf_internal_group
{
497 Elf_Internal_Shdr
*shdr
;
499 } Elf_Internal_Group
;
501 /* Return the name of the group signature symbol. Why isn't the
502 signature just a string? */
505 group_signature (bfd
*abfd
, Elf_Internal_Shdr
*ghdr
)
507 Elf_Internal_Shdr
*hdr
;
508 unsigned char esym
[sizeof (Elf64_External_Sym
)];
509 Elf_External_Sym_Shndx eshndx
;
510 Elf_Internal_Sym isym
;
512 /* First we need to ensure the symbol table is available. Make sure
513 that it is a symbol table section. */
514 if (ghdr
->sh_link
>= elf_numsections (abfd
))
516 hdr
= elf_elfsections (abfd
) [ghdr
->sh_link
];
517 if (hdr
->sh_type
!= SHT_SYMTAB
518 || ! bfd_section_from_shdr (abfd
, ghdr
->sh_link
))
521 /* Go read the symbol. */
522 hdr
= &elf_tdata (abfd
)->symtab_hdr
;
523 if (bfd_elf_get_elf_syms (abfd
, hdr
, 1, ghdr
->sh_info
,
524 &isym
, esym
, &eshndx
) == NULL
)
527 return bfd_elf_sym_name (abfd
, hdr
, &isym
, NULL
);
530 /* Set next_in_group list pointer, and group name for NEWSECT. */
533 setup_group (bfd
*abfd
, Elf_Internal_Shdr
*hdr
, asection
*newsect
)
535 unsigned int num_group
= elf_tdata (abfd
)->num_group
;
537 /* If num_group is zero, read in all SHT_GROUP sections. The count
538 is set to -1 if there are no SHT_GROUP sections. */
541 unsigned int i
, shnum
;
543 /* First count the number of groups. If we have a SHT_GROUP
544 section with just a flag word (ie. sh_size is 4), ignore it. */
545 shnum
= elf_numsections (abfd
);
548 #define IS_VALID_GROUP_SECTION_HEADER(shdr, minsize) \
549 ( (shdr)->sh_type == SHT_GROUP \
550 && (shdr)->sh_size >= minsize \
551 && (shdr)->sh_entsize == GRP_ENTRY_SIZE \
552 && ((shdr)->sh_size % GRP_ENTRY_SIZE) == 0)
554 for (i
= 0; i
< shnum
; i
++)
556 Elf_Internal_Shdr
*shdr
= elf_elfsections (abfd
)[i
];
558 if (IS_VALID_GROUP_SECTION_HEADER (shdr
, 2 * GRP_ENTRY_SIZE
))
564 num_group
= (unsigned) -1;
565 elf_tdata (abfd
)->num_group
= num_group
;
569 /* We keep a list of elf section headers for group sections,
570 so we can find them quickly. */
573 elf_tdata (abfd
)->num_group
= num_group
;
574 elf_tdata (abfd
)->group_sect_ptr
= (Elf_Internal_Shdr
**)
575 bfd_alloc2 (abfd
, num_group
, sizeof (Elf_Internal_Shdr
*));
576 if (elf_tdata (abfd
)->group_sect_ptr
== NULL
)
580 for (i
= 0; i
< shnum
; i
++)
582 Elf_Internal_Shdr
*shdr
= elf_elfsections (abfd
)[i
];
584 if (IS_VALID_GROUP_SECTION_HEADER (shdr
, 2 * GRP_ENTRY_SIZE
))
587 Elf_Internal_Group
*dest
;
589 /* Add to list of sections. */
590 elf_tdata (abfd
)->group_sect_ptr
[num_group
] = shdr
;
593 /* Read the raw contents. */
594 BFD_ASSERT (sizeof (*dest
) >= 4);
595 amt
= shdr
->sh_size
* sizeof (*dest
) / 4;
596 shdr
->contents
= (unsigned char *)
597 bfd_alloc2 (abfd
, shdr
->sh_size
, sizeof (*dest
) / 4);
598 /* PR binutils/4110: Handle corrupt group headers. */
599 if (shdr
->contents
== NULL
)
602 (_("%B: Corrupt size field in group section header: 0x%lx"), abfd
, shdr
->sh_size
);
603 bfd_set_error (bfd_error_bad_value
);
607 memset (shdr
->contents
, 0, amt
);
609 if (bfd_seek (abfd
, shdr
->sh_offset
, SEEK_SET
) != 0
610 || (bfd_bread (shdr
->contents
, shdr
->sh_size
, abfd
)
614 /* Translate raw contents, a flag word followed by an
615 array of elf section indices all in target byte order,
616 to the flag word followed by an array of elf section
618 src
= shdr
->contents
+ shdr
->sh_size
;
619 dest
= (Elf_Internal_Group
*) (shdr
->contents
+ amt
);
626 idx
= H_GET_32 (abfd
, src
);
627 if (src
== shdr
->contents
)
630 if (shdr
->bfd_section
!= NULL
&& (idx
& GRP_COMDAT
))
631 shdr
->bfd_section
->flags
632 |= SEC_LINK_ONCE
| SEC_LINK_DUPLICATES_DISCARD
;
637 ((*_bfd_error_handler
)
638 (_("%B: invalid SHT_GROUP entry"), abfd
));
641 dest
->shdr
= elf_elfsections (abfd
)[idx
];
648 if (num_group
!= (unsigned) -1)
652 for (i
= 0; i
< num_group
; i
++)
654 Elf_Internal_Shdr
*shdr
= elf_tdata (abfd
)->group_sect_ptr
[i
];
655 Elf_Internal_Group
*idx
= (Elf_Internal_Group
*) shdr
->contents
;
656 unsigned int n_elt
= shdr
->sh_size
/ 4;
658 /* Look through this group's sections to see if current
659 section is a member. */
661 if ((++idx
)->shdr
== hdr
)
665 /* We are a member of this group. Go looking through
666 other members to see if any others are linked via
668 idx
= (Elf_Internal_Group
*) shdr
->contents
;
669 n_elt
= shdr
->sh_size
/ 4;
671 if ((s
= (++idx
)->shdr
->bfd_section
) != NULL
672 && elf_next_in_group (s
) != NULL
)
676 /* Snarf the group name from other member, and
677 insert current section in circular list. */
678 elf_group_name (newsect
) = elf_group_name (s
);
679 elf_next_in_group (newsect
) = elf_next_in_group (s
);
680 elf_next_in_group (s
) = newsect
;
686 gname
= group_signature (abfd
, shdr
);
689 elf_group_name (newsect
) = gname
;
691 /* Start a circular list with one element. */
692 elf_next_in_group (newsect
) = newsect
;
695 /* If the group section has been created, point to the
697 if (shdr
->bfd_section
!= NULL
)
698 elf_next_in_group (shdr
->bfd_section
) = newsect
;
706 if (elf_group_name (newsect
) == NULL
)
708 (*_bfd_error_handler
) (_("%B: no group info for section %A"),
715 _bfd_elf_setup_sections (bfd
*abfd
)
718 unsigned int num_group
= elf_tdata (abfd
)->num_group
;
719 bfd_boolean result
= TRUE
;
722 /* Process SHF_LINK_ORDER. */
723 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
725 Elf_Internal_Shdr
*this_hdr
= &elf_section_data (s
)->this_hdr
;
726 if ((this_hdr
->sh_flags
& SHF_LINK_ORDER
) != 0)
728 unsigned int elfsec
= this_hdr
->sh_link
;
729 /* FIXME: The old Intel compiler and old strip/objcopy may
730 not set the sh_link or sh_info fields. Hence we could
731 get the situation where elfsec is 0. */
734 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
735 if (bed
->link_order_error_handler
)
736 bed
->link_order_error_handler
737 (_("%B: warning: sh_link not set for section `%A'"),
742 asection
*linksec
= NULL
;
744 if (elfsec
< elf_numsections (abfd
))
746 this_hdr
= elf_elfsections (abfd
)[elfsec
];
747 linksec
= this_hdr
->bfd_section
;
751 Some strip/objcopy may leave an incorrect value in
752 sh_link. We don't want to proceed. */
755 (*_bfd_error_handler
)
756 (_("%B: sh_link [%d] in section `%A' is incorrect"),
757 s
->owner
, s
, elfsec
);
761 elf_linked_to_section (s
) = linksec
;
766 /* Process section groups. */
767 if (num_group
== (unsigned) -1)
770 for (i
= 0; i
< num_group
; i
++)
772 Elf_Internal_Shdr
*shdr
= elf_tdata (abfd
)->group_sect_ptr
[i
];
773 Elf_Internal_Group
*idx
= (Elf_Internal_Group
*) shdr
->contents
;
774 unsigned int n_elt
= shdr
->sh_size
/ 4;
777 if ((++idx
)->shdr
->bfd_section
)
778 elf_sec_group (idx
->shdr
->bfd_section
) = shdr
->bfd_section
;
779 else if (idx
->shdr
->sh_type
== SHT_RELA
780 || idx
->shdr
->sh_type
== SHT_REL
)
781 /* We won't include relocation sections in section groups in
782 output object files. We adjust the group section size here
783 so that relocatable link will work correctly when
784 relocation sections are in section group in input object
786 shdr
->bfd_section
->size
-= 4;
789 /* There are some unknown sections in the group. */
790 (*_bfd_error_handler
)
791 (_("%B: unknown [%d] section `%s' in group [%s]"),
793 (unsigned int) idx
->shdr
->sh_type
,
794 bfd_elf_string_from_elf_section (abfd
,
795 (elf_elfheader (abfd
)
798 shdr
->bfd_section
->name
);
806 bfd_elf_is_group_section (bfd
*abfd ATTRIBUTE_UNUSED
, const asection
*sec
)
808 return elf_next_in_group (sec
) != NULL
;
811 /* Make a BFD section from an ELF section. We store a pointer to the
812 BFD section in the bfd_section field of the header. */
815 _bfd_elf_make_section_from_shdr (bfd
*abfd
,
816 Elf_Internal_Shdr
*hdr
,
822 const struct elf_backend_data
*bed
;
824 if (hdr
->bfd_section
!= NULL
)
827 newsect
= bfd_make_section_anyway (abfd
, name
);
831 hdr
->bfd_section
= newsect
;
832 elf_section_data (newsect
)->this_hdr
= *hdr
;
833 elf_section_data (newsect
)->this_idx
= shindex
;
835 /* Always use the real type/flags. */
836 elf_section_type (newsect
) = hdr
->sh_type
;
837 elf_section_flags (newsect
) = hdr
->sh_flags
;
839 newsect
->filepos
= hdr
->sh_offset
;
841 if (! bfd_set_section_vma (abfd
, newsect
, hdr
->sh_addr
)
842 || ! bfd_set_section_size (abfd
, newsect
, hdr
->sh_size
)
843 || ! bfd_set_section_alignment (abfd
, newsect
,
844 bfd_log2 (hdr
->sh_addralign
)))
847 flags
= SEC_NO_FLAGS
;
848 if (hdr
->sh_type
!= SHT_NOBITS
)
849 flags
|= SEC_HAS_CONTENTS
;
850 if (hdr
->sh_type
== SHT_GROUP
)
851 flags
|= SEC_GROUP
| SEC_EXCLUDE
;
852 if ((hdr
->sh_flags
& SHF_ALLOC
) != 0)
855 if (hdr
->sh_type
!= SHT_NOBITS
)
858 if ((hdr
->sh_flags
& SHF_WRITE
) == 0)
859 flags
|= SEC_READONLY
;
860 if ((hdr
->sh_flags
& SHF_EXECINSTR
) != 0)
862 else if ((flags
& SEC_LOAD
) != 0)
864 if ((hdr
->sh_flags
& SHF_MERGE
) != 0)
867 newsect
->entsize
= hdr
->sh_entsize
;
868 if ((hdr
->sh_flags
& SHF_STRINGS
) != 0)
869 flags
|= SEC_STRINGS
;
871 if (hdr
->sh_flags
& SHF_GROUP
)
872 if (!setup_group (abfd
, hdr
, newsect
))
874 if ((hdr
->sh_flags
& SHF_TLS
) != 0)
875 flags
|= SEC_THREAD_LOCAL
;
876 if ((hdr
->sh_flags
& SHF_EXCLUDE
) != 0)
877 flags
|= SEC_EXCLUDE
;
879 if ((flags
& SEC_ALLOC
) == 0)
881 /* The debugging sections appear to be recognized only by name,
882 not any sort of flag. Their SEC_ALLOC bits are cleared. */
887 } debug_sections
[] =
889 { STRING_COMMA_LEN ("debug") }, /* 'd' */
890 { NULL
, 0 }, /* 'e' */
891 { NULL
, 0 }, /* 'f' */
892 { STRING_COMMA_LEN ("gnu.linkonce.wi.") }, /* 'g' */
893 { NULL
, 0 }, /* 'h' */
894 { NULL
, 0 }, /* 'i' */
895 { NULL
, 0 }, /* 'j' */
896 { NULL
, 0 }, /* 'k' */
897 { STRING_COMMA_LEN ("line") }, /* 'l' */
898 { NULL
, 0 }, /* 'm' */
899 { NULL
, 0 }, /* 'n' */
900 { NULL
, 0 }, /* 'o' */
901 { NULL
, 0 }, /* 'p' */
902 { NULL
, 0 }, /* 'q' */
903 { NULL
, 0 }, /* 'r' */
904 { STRING_COMMA_LEN ("stab") }, /* 's' */
905 { NULL
, 0 }, /* 't' */
906 { NULL
, 0 }, /* 'u' */
907 { NULL
, 0 }, /* 'v' */
908 { NULL
, 0 }, /* 'w' */
909 { NULL
, 0 }, /* 'x' */
910 { NULL
, 0 }, /* 'y' */
911 { STRING_COMMA_LEN ("zdebug") } /* 'z' */
916 int i
= name
[1] - 'd';
918 && i
< (int) ARRAY_SIZE (debug_sections
)
919 && debug_sections
[i
].name
!= NULL
920 && strncmp (&name
[1], debug_sections
[i
].name
,
921 debug_sections
[i
].len
) == 0)
922 flags
|= SEC_DEBUGGING
;
926 /* As a GNU extension, if the name begins with .gnu.linkonce, we
927 only link a single copy of the section. This is used to support
928 g++. g++ will emit each template expansion in its own section.
929 The symbols will be defined as weak, so that multiple definitions
930 are permitted. The GNU linker extension is to actually discard
931 all but one of the sections. */
932 if (CONST_STRNEQ (name
, ".gnu.linkonce")
933 && elf_next_in_group (newsect
) == NULL
)
934 flags
|= SEC_LINK_ONCE
| SEC_LINK_DUPLICATES_DISCARD
;
936 bed
= get_elf_backend_data (abfd
);
937 if (bed
->elf_backend_section_flags
)
938 if (! bed
->elf_backend_section_flags (&flags
, hdr
))
941 if (! bfd_set_section_flags (abfd
, newsect
, flags
))
944 /* We do not parse the PT_NOTE segments as we are interested even in the
945 separate debug info files which may have the segments offsets corrupted.
946 PT_NOTEs from the core files are currently not parsed using BFD. */
947 if (hdr
->sh_type
== SHT_NOTE
)
951 if (!bfd_malloc_and_get_section (abfd
, newsect
, &contents
))
954 elf_parse_notes (abfd
, (char *) contents
, hdr
->sh_size
, -1);
958 if ((flags
& SEC_ALLOC
) != 0)
960 Elf_Internal_Phdr
*phdr
;
961 unsigned int i
, nload
;
963 /* Some ELF linkers produce binaries with all the program header
964 p_paddr fields zero. If we have such a binary with more than
965 one PT_LOAD header, then leave the section lma equal to vma
966 so that we don't create sections with overlapping lma. */
967 phdr
= elf_tdata (abfd
)->phdr
;
968 for (nload
= 0, i
= 0; i
< elf_elfheader (abfd
)->e_phnum
; i
++, phdr
++)
969 if (phdr
->p_paddr
!= 0)
971 else if (phdr
->p_type
== PT_LOAD
&& phdr
->p_memsz
!= 0)
973 if (i
>= elf_elfheader (abfd
)->e_phnum
&& nload
> 1)
976 phdr
= elf_tdata (abfd
)->phdr
;
977 for (i
= 0; i
< elf_elfheader (abfd
)->e_phnum
; i
++, phdr
++)
979 if (((phdr
->p_type
== PT_LOAD
980 && (hdr
->sh_flags
& SHF_TLS
) == 0)
981 || phdr
->p_type
== PT_TLS
)
982 && ELF_SECTION_IN_SEGMENT (hdr
, phdr
))
984 if ((flags
& SEC_LOAD
) == 0)
985 newsect
->lma
= (phdr
->p_paddr
986 + hdr
->sh_addr
- phdr
->p_vaddr
);
988 /* We used to use the same adjustment for SEC_LOAD
989 sections, but that doesn't work if the segment
990 is packed with code from multiple VMAs.
991 Instead we calculate the section LMA based on
992 the segment LMA. It is assumed that the
993 segment will contain sections with contiguous
994 LMAs, even if the VMAs are not. */
995 newsect
->lma
= (phdr
->p_paddr
996 + hdr
->sh_offset
- phdr
->p_offset
);
998 /* With contiguous segments, we can't tell from file
999 offsets whether a section with zero size should
1000 be placed at the end of one segment or the
1001 beginning of the next. Decide based on vaddr. */
1002 if (hdr
->sh_addr
>= phdr
->p_vaddr
1003 && (hdr
->sh_addr
+ hdr
->sh_size
1004 <= phdr
->p_vaddr
+ phdr
->p_memsz
))
1010 /* Compress/decompress DWARF debug sections with names: .debug_* and
1011 .zdebug_*, after the section flags is set. */
1012 if ((flags
& SEC_DEBUGGING
)
1013 && ((name
[1] == 'd' && name
[6] == '_')
1014 || (name
[1] == 'z' && name
[7] == '_')))
1016 enum { nothing
, compress
, decompress
} action
= nothing
;
1019 if (bfd_is_section_compressed (abfd
, newsect
))
1021 /* Compressed section. Check if we should decompress. */
1022 if ((abfd
->flags
& BFD_DECOMPRESS
))
1023 action
= decompress
;
1027 /* Normal section. Check if we should compress. */
1028 if ((abfd
->flags
& BFD_COMPRESS
) && newsect
->size
!= 0)
1038 if (!bfd_init_section_compress_status (abfd
, newsect
))
1040 (*_bfd_error_handler
)
1041 (_("%B: unable to initialize compress status for section %s"),
1047 unsigned int len
= strlen (name
);
1049 new_name
= bfd_alloc (abfd
, len
+ 2);
1050 if (new_name
== NULL
)
1054 memcpy (new_name
+ 2, name
+ 1, len
);
1058 if (!bfd_init_section_decompress_status (abfd
, newsect
))
1060 (*_bfd_error_handler
)
1061 (_("%B: unable to initialize decompress status for section %s"),
1067 unsigned int len
= strlen (name
);
1069 new_name
= bfd_alloc (abfd
, len
);
1070 if (new_name
== NULL
)
1073 memcpy (new_name
+ 1, name
+ 2, len
- 1);
1077 if (new_name
!= NULL
)
1078 bfd_rename_section (abfd
, newsect
, new_name
);
1084 const char *const bfd_elf_section_type_names
[] = {
1085 "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
1086 "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
1087 "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
1090 /* ELF relocs are against symbols. If we are producing relocatable
1091 output, and the reloc is against an external symbol, and nothing
1092 has given us any additional addend, the resulting reloc will also
1093 be against the same symbol. In such a case, we don't want to
1094 change anything about the way the reloc is handled, since it will
1095 all be done at final link time. Rather than put special case code
1096 into bfd_perform_relocation, all the reloc types use this howto
1097 function. It just short circuits the reloc if producing
1098 relocatable output against an external symbol. */
1100 bfd_reloc_status_type
1101 bfd_elf_generic_reloc (bfd
*abfd ATTRIBUTE_UNUSED
,
1102 arelent
*reloc_entry
,
1104 void *data ATTRIBUTE_UNUSED
,
1105 asection
*input_section
,
1107 char **error_message ATTRIBUTE_UNUSED
)
1109 if (output_bfd
!= NULL
1110 && (symbol
->flags
& BSF_SECTION_SYM
) == 0
1111 && (! reloc_entry
->howto
->partial_inplace
1112 || reloc_entry
->addend
== 0))
1114 reloc_entry
->address
+= input_section
->output_offset
;
1115 return bfd_reloc_ok
;
1118 return bfd_reloc_continue
;
1121 /* Copy the program header and other data from one object module to
1125 _bfd_elf_copy_private_bfd_data (bfd
*ibfd
, bfd
*obfd
)
1127 if (bfd_get_flavour (ibfd
) != bfd_target_elf_flavour
1128 || bfd_get_flavour (obfd
) != bfd_target_elf_flavour
)
1131 BFD_ASSERT (!elf_flags_init (obfd
)
1132 || (elf_elfheader (obfd
)->e_flags
1133 == elf_elfheader (ibfd
)->e_flags
));
1135 elf_gp (obfd
) = elf_gp (ibfd
);
1136 elf_elfheader (obfd
)->e_flags
= elf_elfheader (ibfd
)->e_flags
;
1137 elf_flags_init (obfd
) = TRUE
;
1139 /* Copy object attributes. */
1140 _bfd_elf_copy_obj_attributes (ibfd
, obfd
);
1145 get_segment_type (unsigned int p_type
)
1150 case PT_NULL
: pt
= "NULL"; break;
1151 case PT_LOAD
: pt
= "LOAD"; break;
1152 case PT_DYNAMIC
: pt
= "DYNAMIC"; break;
1153 case PT_INTERP
: pt
= "INTERP"; break;
1154 case PT_NOTE
: pt
= "NOTE"; break;
1155 case PT_SHLIB
: pt
= "SHLIB"; break;
1156 case PT_PHDR
: pt
= "PHDR"; break;
1157 case PT_TLS
: pt
= "TLS"; break;
1158 case PT_GNU_EH_FRAME
: pt
= "EH_FRAME"; break;
1159 case PT_GNU_STACK
: pt
= "STACK"; break;
1160 case PT_GNU_RELRO
: pt
= "RELRO"; break;
1161 default: pt
= NULL
; break;
1166 /* Print out the program headers. */
1169 _bfd_elf_print_private_bfd_data (bfd
*abfd
, void *farg
)
1171 FILE *f
= (FILE *) farg
;
1172 Elf_Internal_Phdr
*p
;
1174 bfd_byte
*dynbuf
= NULL
;
1176 p
= elf_tdata (abfd
)->phdr
;
1181 fprintf (f
, _("\nProgram Header:\n"));
1182 c
= elf_elfheader (abfd
)->e_phnum
;
1183 for (i
= 0; i
< c
; i
++, p
++)
1185 const char *pt
= get_segment_type (p
->p_type
);
1190 sprintf (buf
, "0x%lx", p
->p_type
);
1193 fprintf (f
, "%8s off 0x", pt
);
1194 bfd_fprintf_vma (abfd
, f
, p
->p_offset
);
1195 fprintf (f
, " vaddr 0x");
1196 bfd_fprintf_vma (abfd
, f
, p
->p_vaddr
);
1197 fprintf (f
, " paddr 0x");
1198 bfd_fprintf_vma (abfd
, f
, p
->p_paddr
);
1199 fprintf (f
, " align 2**%u\n", bfd_log2 (p
->p_align
));
1200 fprintf (f
, " filesz 0x");
1201 bfd_fprintf_vma (abfd
, f
, p
->p_filesz
);
1202 fprintf (f
, " memsz 0x");
1203 bfd_fprintf_vma (abfd
, f
, p
->p_memsz
);
1204 fprintf (f
, " flags %c%c%c",
1205 (p
->p_flags
& PF_R
) != 0 ? 'r' : '-',
1206 (p
->p_flags
& PF_W
) != 0 ? 'w' : '-',
1207 (p
->p_flags
& PF_X
) != 0 ? 'x' : '-');
1208 if ((p
->p_flags
&~ (unsigned) (PF_R
| PF_W
| PF_X
)) != 0)
1209 fprintf (f
, " %lx", p
->p_flags
&~ (unsigned) (PF_R
| PF_W
| PF_X
));
1214 s
= bfd_get_section_by_name (abfd
, ".dynamic");
1217 unsigned int elfsec
;
1218 unsigned long shlink
;
1219 bfd_byte
*extdyn
, *extdynend
;
1221 void (*swap_dyn_in
) (bfd
*, const void *, Elf_Internal_Dyn
*);
1223 fprintf (f
, _("\nDynamic Section:\n"));
1225 if (!bfd_malloc_and_get_section (abfd
, s
, &dynbuf
))
1228 elfsec
= _bfd_elf_section_from_bfd_section (abfd
, s
);
1229 if (elfsec
== SHN_BAD
)
1231 shlink
= elf_elfsections (abfd
)[elfsec
]->sh_link
;
1233 extdynsize
= get_elf_backend_data (abfd
)->s
->sizeof_dyn
;
1234 swap_dyn_in
= get_elf_backend_data (abfd
)->s
->swap_dyn_in
;
1237 extdynend
= extdyn
+ s
->size
;
1238 for (; extdyn
< extdynend
; extdyn
+= extdynsize
)
1240 Elf_Internal_Dyn dyn
;
1241 const char *name
= "";
1243 bfd_boolean stringp
;
1244 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
1246 (*swap_dyn_in
) (abfd
, extdyn
, &dyn
);
1248 if (dyn
.d_tag
== DT_NULL
)
1255 if (bed
->elf_backend_get_target_dtag
)
1256 name
= (*bed
->elf_backend_get_target_dtag
) (dyn
.d_tag
);
1258 if (!strcmp (name
, ""))
1260 sprintf (ab
, "0x%lx", (unsigned long) dyn
.d_tag
);
1265 case DT_NEEDED
: name
= "NEEDED"; stringp
= TRUE
; break;
1266 case DT_PLTRELSZ
: name
= "PLTRELSZ"; break;
1267 case DT_PLTGOT
: name
= "PLTGOT"; break;
1268 case DT_HASH
: name
= "HASH"; break;
1269 case DT_STRTAB
: name
= "STRTAB"; break;
1270 case DT_SYMTAB
: name
= "SYMTAB"; break;
1271 case DT_RELA
: name
= "RELA"; break;
1272 case DT_RELASZ
: name
= "RELASZ"; break;
1273 case DT_RELAENT
: name
= "RELAENT"; break;
1274 case DT_STRSZ
: name
= "STRSZ"; break;
1275 case DT_SYMENT
: name
= "SYMENT"; break;
1276 case DT_INIT
: name
= "INIT"; break;
1277 case DT_FINI
: name
= "FINI"; break;
1278 case DT_SONAME
: name
= "SONAME"; stringp
= TRUE
; break;
1279 case DT_RPATH
: name
= "RPATH"; stringp
= TRUE
; break;
1280 case DT_SYMBOLIC
: name
= "SYMBOLIC"; break;
1281 case DT_REL
: name
= "REL"; break;
1282 case DT_RELSZ
: name
= "RELSZ"; break;
1283 case DT_RELENT
: name
= "RELENT"; break;
1284 case DT_PLTREL
: name
= "PLTREL"; break;
1285 case DT_DEBUG
: name
= "DEBUG"; break;
1286 case DT_TEXTREL
: name
= "TEXTREL"; break;
1287 case DT_JMPREL
: name
= "JMPREL"; break;
1288 case DT_BIND_NOW
: name
= "BIND_NOW"; break;
1289 case DT_INIT_ARRAY
: name
= "INIT_ARRAY"; break;
1290 case DT_FINI_ARRAY
: name
= "FINI_ARRAY"; break;
1291 case DT_INIT_ARRAYSZ
: name
= "INIT_ARRAYSZ"; break;
1292 case DT_FINI_ARRAYSZ
: name
= "FINI_ARRAYSZ"; break;
1293 case DT_RUNPATH
: name
= "RUNPATH"; stringp
= TRUE
; break;
1294 case DT_FLAGS
: name
= "FLAGS"; break;
1295 case DT_PREINIT_ARRAY
: name
= "PREINIT_ARRAY"; break;
1296 case DT_PREINIT_ARRAYSZ
: name
= "PREINIT_ARRAYSZ"; break;
1297 case DT_CHECKSUM
: name
= "CHECKSUM"; break;
1298 case DT_PLTPADSZ
: name
= "PLTPADSZ"; break;
1299 case DT_MOVEENT
: name
= "MOVEENT"; break;
1300 case DT_MOVESZ
: name
= "MOVESZ"; break;
1301 case DT_FEATURE
: name
= "FEATURE"; break;
1302 case DT_POSFLAG_1
: name
= "POSFLAG_1"; break;
1303 case DT_SYMINSZ
: name
= "SYMINSZ"; break;
1304 case DT_SYMINENT
: name
= "SYMINENT"; break;
1305 case DT_CONFIG
: name
= "CONFIG"; stringp
= TRUE
; break;
1306 case DT_DEPAUDIT
: name
= "DEPAUDIT"; stringp
= TRUE
; break;
1307 case DT_AUDIT
: name
= "AUDIT"; stringp
= TRUE
; break;
1308 case DT_PLTPAD
: name
= "PLTPAD"; break;
1309 case DT_MOVETAB
: name
= "MOVETAB"; break;
1310 case DT_SYMINFO
: name
= "SYMINFO"; break;
1311 case DT_RELACOUNT
: name
= "RELACOUNT"; break;
1312 case DT_RELCOUNT
: name
= "RELCOUNT"; break;
1313 case DT_FLAGS_1
: name
= "FLAGS_1"; break;
1314 case DT_VERSYM
: name
= "VERSYM"; break;
1315 case DT_VERDEF
: name
= "VERDEF"; break;
1316 case DT_VERDEFNUM
: name
= "VERDEFNUM"; break;
1317 case DT_VERNEED
: name
= "VERNEED"; break;
1318 case DT_VERNEEDNUM
: name
= "VERNEEDNUM"; break;
1319 case DT_AUXILIARY
: name
= "AUXILIARY"; stringp
= TRUE
; break;
1320 case DT_USED
: name
= "USED"; break;
1321 case DT_FILTER
: name
= "FILTER"; stringp
= TRUE
; break;
1322 case DT_GNU_HASH
: name
= "GNU_HASH"; break;
1325 fprintf (f
, " %-20s ", name
);
1329 bfd_fprintf_vma (abfd
, f
, dyn
.d_un
.d_val
);
1334 unsigned int tagv
= dyn
.d_un
.d_val
;
1336 string
= bfd_elf_string_from_elf_section (abfd
, shlink
, tagv
);
1339 fprintf (f
, "%s", string
);
1348 if ((elf_dynverdef (abfd
) != 0 && elf_tdata (abfd
)->verdef
== NULL
)
1349 || (elf_dynverref (abfd
) != 0 && elf_tdata (abfd
)->verref
== NULL
))
1351 if (! _bfd_elf_slurp_version_tables (abfd
, FALSE
))
1355 if (elf_dynverdef (abfd
) != 0)
1357 Elf_Internal_Verdef
*t
;
1359 fprintf (f
, _("\nVersion definitions:\n"));
1360 for (t
= elf_tdata (abfd
)->verdef
; t
!= NULL
; t
= t
->vd_nextdef
)
1362 fprintf (f
, "%d 0x%2.2x 0x%8.8lx %s\n", t
->vd_ndx
,
1363 t
->vd_flags
, t
->vd_hash
,
1364 t
->vd_nodename
? t
->vd_nodename
: "<corrupt>");
1365 if (t
->vd_auxptr
!= NULL
&& t
->vd_auxptr
->vda_nextptr
!= NULL
)
1367 Elf_Internal_Verdaux
*a
;
1370 for (a
= t
->vd_auxptr
->vda_nextptr
;
1374 a
->vda_nodename
? a
->vda_nodename
: "<corrupt>");
1380 if (elf_dynverref (abfd
) != 0)
1382 Elf_Internal_Verneed
*t
;
1384 fprintf (f
, _("\nVersion References:\n"));
1385 for (t
= elf_tdata (abfd
)->verref
; t
!= NULL
; t
= t
->vn_nextref
)
1387 Elf_Internal_Vernaux
*a
;
1389 fprintf (f
, _(" required from %s:\n"),
1390 t
->vn_filename
? t
->vn_filename
: "<corrupt>");
1391 for (a
= t
->vn_auxptr
; a
!= NULL
; a
= a
->vna_nextptr
)
1392 fprintf (f
, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a
->vna_hash
,
1393 a
->vna_flags
, a
->vna_other
,
1394 a
->vna_nodename
? a
->vna_nodename
: "<corrupt>");
1406 /* Display ELF-specific fields of a symbol. */
1409 bfd_elf_print_symbol (bfd
*abfd
,
1412 bfd_print_symbol_type how
)
1414 FILE *file
= (FILE *) filep
;
1417 case bfd_print_symbol_name
:
1418 fprintf (file
, "%s", symbol
->name
);
1420 case bfd_print_symbol_more
:
1421 fprintf (file
, "elf ");
1422 bfd_fprintf_vma (abfd
, file
, symbol
->value
);
1423 fprintf (file
, " %lx", (unsigned long) symbol
->flags
);
1425 case bfd_print_symbol_all
:
1427 const char *section_name
;
1428 const char *name
= NULL
;
1429 const struct elf_backend_data
*bed
;
1430 unsigned char st_other
;
1433 section_name
= symbol
->section
? symbol
->section
->name
: "(*none*)";
1435 bed
= get_elf_backend_data (abfd
);
1436 if (bed
->elf_backend_print_symbol_all
)
1437 name
= (*bed
->elf_backend_print_symbol_all
) (abfd
, filep
, symbol
);
1441 name
= symbol
->name
;
1442 bfd_print_symbol_vandf (abfd
, file
, symbol
);
1445 fprintf (file
, " %s\t", section_name
);
1446 /* Print the "other" value for a symbol. For common symbols,
1447 we've already printed the size; now print the alignment.
1448 For other symbols, we have no specified alignment, and
1449 we've printed the address; now print the size. */
1450 if (symbol
->section
&& bfd_is_com_section (symbol
->section
))
1451 val
= ((elf_symbol_type
*) symbol
)->internal_elf_sym
.st_value
;
1453 val
= ((elf_symbol_type
*) symbol
)->internal_elf_sym
.st_size
;
1454 bfd_fprintf_vma (abfd
, file
, val
);
1456 /* If we have version information, print it. */
1457 if (elf_tdata (abfd
)->dynversym_section
!= 0
1458 && (elf_tdata (abfd
)->dynverdef_section
!= 0
1459 || elf_tdata (abfd
)->dynverref_section
!= 0))
1461 unsigned int vernum
;
1462 const char *version_string
;
1464 vernum
= ((elf_symbol_type
*) symbol
)->version
& VERSYM_VERSION
;
1467 version_string
= "";
1468 else if (vernum
== 1)
1469 version_string
= "Base";
1470 else if (vernum
<= elf_tdata (abfd
)->cverdefs
)
1472 elf_tdata (abfd
)->verdef
[vernum
- 1].vd_nodename
;
1475 Elf_Internal_Verneed
*t
;
1477 version_string
= "";
1478 for (t
= elf_tdata (abfd
)->verref
;
1482 Elf_Internal_Vernaux
*a
;
1484 for (a
= t
->vn_auxptr
; a
!= NULL
; a
= a
->vna_nextptr
)
1486 if (a
->vna_other
== vernum
)
1488 version_string
= a
->vna_nodename
;
1495 if ((((elf_symbol_type
*) symbol
)->version
& VERSYM_HIDDEN
) == 0)
1496 fprintf (file
, " %-11s", version_string
);
1501 fprintf (file
, " (%s)", version_string
);
1502 for (i
= 10 - strlen (version_string
); i
> 0; --i
)
1507 /* If the st_other field is not zero, print it. */
1508 st_other
= ((elf_symbol_type
*) symbol
)->internal_elf_sym
.st_other
;
1513 case STV_INTERNAL
: fprintf (file
, " .internal"); break;
1514 case STV_HIDDEN
: fprintf (file
, " .hidden"); break;
1515 case STV_PROTECTED
: fprintf (file
, " .protected"); break;
1517 /* Some other non-defined flags are also present, so print
1519 fprintf (file
, " 0x%02x", (unsigned int) st_other
);
1522 fprintf (file
, " %s", name
);
1528 /* Allocate an ELF string table--force the first byte to be zero. */
1530 struct bfd_strtab_hash
*
1531 _bfd_elf_stringtab_init (void)
1533 struct bfd_strtab_hash
*ret
;
1535 ret
= _bfd_stringtab_init ();
1540 loc
= _bfd_stringtab_add (ret
, "", TRUE
, FALSE
);
1541 BFD_ASSERT (loc
== 0 || loc
== (bfd_size_type
) -1);
1542 if (loc
== (bfd_size_type
) -1)
1544 _bfd_stringtab_free (ret
);
1551 /* ELF .o/exec file reading */
1553 /* Create a new bfd section from an ELF section header. */
1556 bfd_section_from_shdr (bfd
*abfd
, unsigned int shindex
)
1558 Elf_Internal_Shdr
*hdr
;
1559 Elf_Internal_Ehdr
*ehdr
;
1560 const struct elf_backend_data
*bed
;
1563 if (shindex
>= elf_numsections (abfd
))
1566 hdr
= elf_elfsections (abfd
)[shindex
];
1567 ehdr
= elf_elfheader (abfd
);
1568 name
= bfd_elf_string_from_elf_section (abfd
, ehdr
->e_shstrndx
,
1573 bed
= get_elf_backend_data (abfd
);
1574 switch (hdr
->sh_type
)
1577 /* Inactive section. Throw it away. */
1580 case SHT_PROGBITS
: /* Normal section with contents. */
1581 case SHT_NOBITS
: /* .bss section. */
1582 case SHT_HASH
: /* .hash section. */
1583 case SHT_NOTE
: /* .note section. */
1584 case SHT_INIT_ARRAY
: /* .init_array section. */
1585 case SHT_FINI_ARRAY
: /* .fini_array section. */
1586 case SHT_PREINIT_ARRAY
: /* .preinit_array section. */
1587 case SHT_GNU_LIBLIST
: /* .gnu.liblist section. */
1588 case SHT_GNU_HASH
: /* .gnu.hash section. */
1589 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
);
1591 case SHT_DYNAMIC
: /* Dynamic linking information. */
1592 if (! _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
))
1594 if (hdr
->sh_link
> elf_numsections (abfd
))
1596 /* PR 10478: Accept Solaris binaries with a sh_link
1597 field set to SHN_BEFORE or SHN_AFTER. */
1598 switch (bfd_get_arch (abfd
))
1601 case bfd_arch_sparc
:
1602 if (hdr
->sh_link
== (SHN_LORESERVE
& 0xffff) /* SHN_BEFORE */
1603 || hdr
->sh_link
== ((SHN_LORESERVE
+ 1) & 0xffff) /* SHN_AFTER */)
1605 /* Otherwise fall through. */
1610 else if (elf_elfsections (abfd
)[hdr
->sh_link
] == NULL
)
1612 else if (elf_elfsections (abfd
)[hdr
->sh_link
]->sh_type
!= SHT_STRTAB
)
1614 Elf_Internal_Shdr
*dynsymhdr
;
1616 /* The shared libraries distributed with hpux11 have a bogus
1617 sh_link field for the ".dynamic" section. Find the
1618 string table for the ".dynsym" section instead. */
1619 if (elf_dynsymtab (abfd
) != 0)
1621 dynsymhdr
= elf_elfsections (abfd
)[elf_dynsymtab (abfd
)];
1622 hdr
->sh_link
= dynsymhdr
->sh_link
;
1626 unsigned int i
, num_sec
;
1628 num_sec
= elf_numsections (abfd
);
1629 for (i
= 1; i
< num_sec
; i
++)
1631 dynsymhdr
= elf_elfsections (abfd
)[i
];
1632 if (dynsymhdr
->sh_type
== SHT_DYNSYM
)
1634 hdr
->sh_link
= dynsymhdr
->sh_link
;
1642 case SHT_SYMTAB
: /* A symbol table */
1643 if (elf_onesymtab (abfd
) == shindex
)
1646 if (hdr
->sh_entsize
!= bed
->s
->sizeof_sym
)
1648 if (hdr
->sh_info
* hdr
->sh_entsize
> hdr
->sh_size
)
1650 if (hdr
->sh_size
!= 0)
1652 /* Some assemblers erroneously set sh_info to one with a
1653 zero sh_size. ld sees this as a global symbol count
1654 of (unsigned) -1. Fix it here. */
1658 BFD_ASSERT (elf_onesymtab (abfd
) == 0);
1659 elf_onesymtab (abfd
) = shindex
;
1660 elf_tdata (abfd
)->symtab_hdr
= *hdr
;
1661 elf_elfsections (abfd
)[shindex
] = hdr
= &elf_tdata (abfd
)->symtab_hdr
;
1662 abfd
->flags
|= HAS_SYMS
;
1664 /* Sometimes a shared object will map in the symbol table. If
1665 SHF_ALLOC is set, and this is a shared object, then we also
1666 treat this section as a BFD section. We can not base the
1667 decision purely on SHF_ALLOC, because that flag is sometimes
1668 set in a relocatable object file, which would confuse the
1670 if ((hdr
->sh_flags
& SHF_ALLOC
) != 0
1671 && (abfd
->flags
& DYNAMIC
) != 0
1672 && ! _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
,
1676 /* Go looking for SHT_SYMTAB_SHNDX too, since if there is one we
1677 can't read symbols without that section loaded as well. It
1678 is most likely specified by the next section header. */
1679 if (elf_elfsections (abfd
)[elf_symtab_shndx (abfd
)]->sh_link
!= shindex
)
1681 unsigned int i
, num_sec
;
1683 num_sec
= elf_numsections (abfd
);
1684 for (i
= shindex
+ 1; i
< num_sec
; i
++)
1686 Elf_Internal_Shdr
*hdr2
= elf_elfsections (abfd
)[i
];
1687 if (hdr2
->sh_type
== SHT_SYMTAB_SHNDX
1688 && hdr2
->sh_link
== shindex
)
1692 for (i
= 1; i
< shindex
; i
++)
1694 Elf_Internal_Shdr
*hdr2
= elf_elfsections (abfd
)[i
];
1695 if (hdr2
->sh_type
== SHT_SYMTAB_SHNDX
1696 && hdr2
->sh_link
== shindex
)
1700 return bfd_section_from_shdr (abfd
, i
);
1704 case SHT_DYNSYM
: /* A dynamic symbol table */
1705 if (elf_dynsymtab (abfd
) == shindex
)
1708 if (hdr
->sh_entsize
!= bed
->s
->sizeof_sym
)
1710 if (hdr
->sh_info
* hdr
->sh_entsize
> hdr
->sh_size
)
1712 if (hdr
->sh_size
!= 0)
1714 /* Some linkers erroneously set sh_info to one with a
1715 zero sh_size. ld sees this as a global symbol count
1716 of (unsigned) -1. Fix it here. */
1720 BFD_ASSERT (elf_dynsymtab (abfd
) == 0);
1721 elf_dynsymtab (abfd
) = shindex
;
1722 elf_tdata (abfd
)->dynsymtab_hdr
= *hdr
;
1723 elf_elfsections (abfd
)[shindex
] = hdr
= &elf_tdata (abfd
)->dynsymtab_hdr
;
1724 abfd
->flags
|= HAS_SYMS
;
1726 /* Besides being a symbol table, we also treat this as a regular
1727 section, so that objcopy can handle it. */
1728 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
);
1730 case SHT_SYMTAB_SHNDX
: /* Symbol section indices when >64k sections */
1731 if (elf_symtab_shndx (abfd
) == shindex
)
1734 BFD_ASSERT (elf_symtab_shndx (abfd
) == 0);
1735 elf_symtab_shndx (abfd
) = shindex
;
1736 elf_tdata (abfd
)->symtab_shndx_hdr
= *hdr
;
1737 elf_elfsections (abfd
)[shindex
] = &elf_tdata (abfd
)->symtab_shndx_hdr
;
1740 case SHT_STRTAB
: /* A string table */
1741 if (hdr
->bfd_section
!= NULL
)
1743 if (ehdr
->e_shstrndx
== shindex
)
1745 elf_tdata (abfd
)->shstrtab_hdr
= *hdr
;
1746 elf_elfsections (abfd
)[shindex
] = &elf_tdata (abfd
)->shstrtab_hdr
;
1749 if (elf_elfsections (abfd
)[elf_onesymtab (abfd
)]->sh_link
== shindex
)
1752 elf_tdata (abfd
)->strtab_hdr
= *hdr
;
1753 elf_elfsections (abfd
)[shindex
] = &elf_tdata (abfd
)->strtab_hdr
;
1756 if (elf_elfsections (abfd
)[elf_dynsymtab (abfd
)]->sh_link
== shindex
)
1759 elf_tdata (abfd
)->dynstrtab_hdr
= *hdr
;
1760 hdr
= &elf_tdata (abfd
)->dynstrtab_hdr
;
1761 elf_elfsections (abfd
)[shindex
] = hdr
;
1762 /* We also treat this as a regular section, so that objcopy
1764 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
,
1768 /* If the string table isn't one of the above, then treat it as a
1769 regular section. We need to scan all the headers to be sure,
1770 just in case this strtab section appeared before the above. */
1771 if (elf_onesymtab (abfd
) == 0 || elf_dynsymtab (abfd
) == 0)
1773 unsigned int i
, num_sec
;
1775 num_sec
= elf_numsections (abfd
);
1776 for (i
= 1; i
< num_sec
; i
++)
1778 Elf_Internal_Shdr
*hdr2
= elf_elfsections (abfd
)[i
];
1779 if (hdr2
->sh_link
== shindex
)
1781 /* Prevent endless recursion on broken objects. */
1784 if (! bfd_section_from_shdr (abfd
, i
))
1786 if (elf_onesymtab (abfd
) == i
)
1788 if (elf_dynsymtab (abfd
) == i
)
1789 goto dynsymtab_strtab
;
1793 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
);
1797 /* *These* do a lot of work -- but build no sections! */
1799 asection
*target_sect
;
1800 Elf_Internal_Shdr
*hdr2
, **p_hdr
;
1801 unsigned int num_sec
= elf_numsections (abfd
);
1802 struct bfd_elf_section_data
*esdt
;
1806 != (bfd_size_type
) (hdr
->sh_type
== SHT_REL
1807 ? bed
->s
->sizeof_rel
: bed
->s
->sizeof_rela
))
1810 /* Check for a bogus link to avoid crashing. */
1811 if (hdr
->sh_link
>= num_sec
)
1813 ((*_bfd_error_handler
)
1814 (_("%B: invalid link %lu for reloc section %s (index %u)"),
1815 abfd
, hdr
->sh_link
, name
, shindex
));
1816 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
,
1820 /* For some incomprehensible reason Oracle distributes
1821 libraries for Solaris in which some of the objects have
1822 bogus sh_link fields. It would be nice if we could just
1823 reject them, but, unfortunately, some people need to use
1824 them. We scan through the section headers; if we find only
1825 one suitable symbol table, we clobber the sh_link to point
1826 to it. I hope this doesn't break anything.
1828 Don't do it on executable nor shared library. */
1829 if ((abfd
->flags
& (DYNAMIC
| EXEC_P
)) == 0
1830 && elf_elfsections (abfd
)[hdr
->sh_link
]->sh_type
!= SHT_SYMTAB
1831 && elf_elfsections (abfd
)[hdr
->sh_link
]->sh_type
!= SHT_DYNSYM
)
1837 for (scan
= 1; scan
< num_sec
; scan
++)
1839 if (elf_elfsections (abfd
)[scan
]->sh_type
== SHT_SYMTAB
1840 || elf_elfsections (abfd
)[scan
]->sh_type
== SHT_DYNSYM
)
1851 hdr
->sh_link
= found
;
1854 /* Get the symbol table. */
1855 if ((elf_elfsections (abfd
)[hdr
->sh_link
]->sh_type
== SHT_SYMTAB
1856 || elf_elfsections (abfd
)[hdr
->sh_link
]->sh_type
== SHT_DYNSYM
)
1857 && ! bfd_section_from_shdr (abfd
, hdr
->sh_link
))
1860 /* If this reloc section does not use the main symbol table we
1861 don't treat it as a reloc section. BFD can't adequately
1862 represent such a section, so at least for now, we don't
1863 try. We just present it as a normal section. We also
1864 can't use it as a reloc section if it points to the null
1865 section, an invalid section, another reloc section, or its
1866 sh_link points to the null section. */
1867 if (hdr
->sh_link
!= elf_onesymtab (abfd
)
1868 || hdr
->sh_link
== SHN_UNDEF
1869 || hdr
->sh_info
== SHN_UNDEF
1870 || hdr
->sh_info
>= num_sec
1871 || elf_elfsections (abfd
)[hdr
->sh_info
]->sh_type
== SHT_REL
1872 || elf_elfsections (abfd
)[hdr
->sh_info
]->sh_type
== SHT_RELA
)
1873 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
,
1876 if (! bfd_section_from_shdr (abfd
, hdr
->sh_info
))
1878 target_sect
= bfd_section_from_elf_index (abfd
, hdr
->sh_info
);
1879 if (target_sect
== NULL
)
1882 esdt
= elf_section_data (target_sect
);
1883 if (hdr
->sh_type
== SHT_RELA
)
1884 p_hdr
= &esdt
->rela
.hdr
;
1886 p_hdr
= &esdt
->rel
.hdr
;
1888 BFD_ASSERT (*p_hdr
== NULL
);
1889 amt
= sizeof (*hdr2
);
1890 hdr2
= (Elf_Internal_Shdr
*) bfd_alloc (abfd
, amt
);
1895 elf_elfsections (abfd
)[shindex
] = hdr2
;
1896 target_sect
->reloc_count
+= NUM_SHDR_ENTRIES (hdr
);
1897 target_sect
->flags
|= SEC_RELOC
;
1898 target_sect
->relocation
= NULL
;
1899 target_sect
->rel_filepos
= hdr
->sh_offset
;
1900 /* In the section to which the relocations apply, mark whether
1901 its relocations are of the REL or RELA variety. */
1902 if (hdr
->sh_size
!= 0)
1904 if (hdr
->sh_type
== SHT_RELA
)
1905 target_sect
->use_rela_p
= 1;
1907 abfd
->flags
|= HAS_RELOC
;
1911 case SHT_GNU_verdef
:
1912 elf_dynverdef (abfd
) = shindex
;
1913 elf_tdata (abfd
)->dynverdef_hdr
= *hdr
;
1914 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
);
1916 case SHT_GNU_versym
:
1917 if (hdr
->sh_entsize
!= sizeof (Elf_External_Versym
))
1919 elf_dynversym (abfd
) = shindex
;
1920 elf_tdata (abfd
)->dynversym_hdr
= *hdr
;
1921 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
);
1923 case SHT_GNU_verneed
:
1924 elf_dynverref (abfd
) = shindex
;
1925 elf_tdata (abfd
)->dynverref_hdr
= *hdr
;
1926 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
);
1932 if (! IS_VALID_GROUP_SECTION_HEADER (hdr
, GRP_ENTRY_SIZE
))
1934 if (!_bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
))
1936 if (hdr
->contents
!= NULL
)
1938 Elf_Internal_Group
*idx
= (Elf_Internal_Group
*) hdr
->contents
;
1939 unsigned int n_elt
= hdr
->sh_size
/ GRP_ENTRY_SIZE
;
1942 if (idx
->flags
& GRP_COMDAT
)
1943 hdr
->bfd_section
->flags
1944 |= SEC_LINK_ONCE
| SEC_LINK_DUPLICATES_DISCARD
;
1946 /* We try to keep the same section order as it comes in. */
1948 while (--n_elt
!= 0)
1952 if (idx
->shdr
!= NULL
1953 && (s
= idx
->shdr
->bfd_section
) != NULL
1954 && elf_next_in_group (s
) != NULL
)
1956 elf_next_in_group (hdr
->bfd_section
) = s
;
1964 /* Possibly an attributes section. */
1965 if (hdr
->sh_type
== SHT_GNU_ATTRIBUTES
1966 || hdr
->sh_type
== bed
->obj_attrs_section_type
)
1968 if (! _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
))
1970 _bfd_elf_parse_attributes (abfd
, hdr
);
1974 /* Check for any processor-specific section types. */
1975 if (bed
->elf_backend_section_from_shdr (abfd
, hdr
, name
, shindex
))
1978 if (hdr
->sh_type
>= SHT_LOUSER
&& hdr
->sh_type
<= SHT_HIUSER
)
1980 if ((hdr
->sh_flags
& SHF_ALLOC
) != 0)
1981 /* FIXME: How to properly handle allocated section reserved
1982 for applications? */
1983 (*_bfd_error_handler
)
1984 (_("%B: don't know how to handle allocated, application "
1985 "specific section `%s' [0x%8x]"),
1986 abfd
, name
, hdr
->sh_type
);
1988 /* Allow sections reserved for applications. */
1989 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
,
1992 else if (hdr
->sh_type
>= SHT_LOPROC
1993 && hdr
->sh_type
<= SHT_HIPROC
)
1994 /* FIXME: We should handle this section. */
1995 (*_bfd_error_handler
)
1996 (_("%B: don't know how to handle processor specific section "
1998 abfd
, name
, hdr
->sh_type
);
1999 else if (hdr
->sh_type
>= SHT_LOOS
&& hdr
->sh_type
<= SHT_HIOS
)
2001 /* Unrecognised OS-specific sections. */
2002 if ((hdr
->sh_flags
& SHF_OS_NONCONFORMING
) != 0)
2003 /* SHF_OS_NONCONFORMING indicates that special knowledge is
2004 required to correctly process the section and the file should
2005 be rejected with an error message. */
2006 (*_bfd_error_handler
)
2007 (_("%B: don't know how to handle OS specific section "
2009 abfd
, name
, hdr
->sh_type
);
2011 /* Otherwise it should be processed. */
2012 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
);
2015 /* FIXME: We should handle this section. */
2016 (*_bfd_error_handler
)
2017 (_("%B: don't know how to handle section `%s' [0x%8x]"),
2018 abfd
, name
, hdr
->sh_type
);
2026 /* Return the local symbol specified by ABFD, R_SYMNDX. */
2029 bfd_sym_from_r_symndx (struct sym_cache
*cache
,
2031 unsigned long r_symndx
)
2033 unsigned int ent
= r_symndx
% LOCAL_SYM_CACHE_SIZE
;
2035 if (cache
->abfd
!= abfd
|| cache
->indx
[ent
] != r_symndx
)
2037 Elf_Internal_Shdr
*symtab_hdr
;
2038 unsigned char esym
[sizeof (Elf64_External_Sym
)];
2039 Elf_External_Sym_Shndx eshndx
;
2041 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
2042 if (bfd_elf_get_elf_syms (abfd
, symtab_hdr
, 1, r_symndx
,
2043 &cache
->sym
[ent
], esym
, &eshndx
) == NULL
)
2046 if (cache
->abfd
!= abfd
)
2048 memset (cache
->indx
, -1, sizeof (cache
->indx
));
2051 cache
->indx
[ent
] = r_symndx
;
2054 return &cache
->sym
[ent
];
2057 /* Given an ELF section number, retrieve the corresponding BFD
2061 bfd_section_from_elf_index (bfd
*abfd
, unsigned int sec_index
)
2063 if (sec_index
>= elf_numsections (abfd
))
2065 return elf_elfsections (abfd
)[sec_index
]->bfd_section
;
2068 static const struct bfd_elf_special_section special_sections_b
[] =
2070 { STRING_COMMA_LEN (".bss"), -2, SHT_NOBITS
, SHF_ALLOC
+ SHF_WRITE
},
2071 { NULL
, 0, 0, 0, 0 }
2074 static const struct bfd_elf_special_section special_sections_c
[] =
2076 { STRING_COMMA_LEN (".comment"), 0, SHT_PROGBITS
, 0 },
2077 { NULL
, 0, 0, 0, 0 }
2080 static const struct bfd_elf_special_section special_sections_d
[] =
2082 { STRING_COMMA_LEN (".data"), -2, SHT_PROGBITS
, SHF_ALLOC
+ SHF_WRITE
},
2083 { STRING_COMMA_LEN (".data1"), 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_WRITE
},
2084 { STRING_COMMA_LEN (".debug"), 0, SHT_PROGBITS
, 0 },
2085 { STRING_COMMA_LEN (".debug_line"), 0, SHT_PROGBITS
, 0 },
2086 { STRING_COMMA_LEN (".debug_info"), 0, SHT_PROGBITS
, 0 },
2087 { STRING_COMMA_LEN (".debug_abbrev"), 0, SHT_PROGBITS
, 0 },
2088 { STRING_COMMA_LEN (".debug_aranges"), 0, SHT_PROGBITS
, 0 },
2089 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC
, SHF_ALLOC
},
2090 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB
, SHF_ALLOC
},
2091 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM
, SHF_ALLOC
},
2092 { NULL
, 0, 0, 0, 0 }
2095 static const struct bfd_elf_special_section special_sections_f
[] =
2097 { STRING_COMMA_LEN (".fini"), 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_EXECINSTR
},
2098 { STRING_COMMA_LEN (".fini_array"), 0, SHT_FINI_ARRAY
, SHF_ALLOC
+ SHF_WRITE
},
2099 { NULL
, 0, 0, 0, 0 }
2102 static const struct bfd_elf_special_section special_sections_g
[] =
2104 { STRING_COMMA_LEN (".gnu.linkonce.b"), -2, SHT_NOBITS
, SHF_ALLOC
+ SHF_WRITE
},
2105 { STRING_COMMA_LEN (".gnu.lto_"), -1, SHT_PROGBITS
, SHF_EXCLUDE
},
2106 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_WRITE
},
2107 { STRING_COMMA_LEN (".gnu.version"), 0, SHT_GNU_versym
, 0 },
2108 { STRING_COMMA_LEN (".gnu.version_d"), 0, SHT_GNU_verdef
, 0 },
2109 { STRING_COMMA_LEN (".gnu.version_r"), 0, SHT_GNU_verneed
, 0 },
2110 { STRING_COMMA_LEN (".gnu.liblist"), 0, SHT_GNU_LIBLIST
, SHF_ALLOC
},
2111 { STRING_COMMA_LEN (".gnu.conflict"), 0, SHT_RELA
, SHF_ALLOC
},
2112 { STRING_COMMA_LEN (".gnu.hash"), 0, SHT_GNU_HASH
, SHF_ALLOC
},
2113 { NULL
, 0, 0, 0, 0 }
2116 static const struct bfd_elf_special_section special_sections_h
[] =
2118 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH
, SHF_ALLOC
},
2119 { NULL
, 0, 0, 0, 0 }
2122 static const struct bfd_elf_special_section special_sections_i
[] =
2124 { STRING_COMMA_LEN (".init"), 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_EXECINSTR
},
2125 { STRING_COMMA_LEN (".init_array"), 0, SHT_INIT_ARRAY
, SHF_ALLOC
+ SHF_WRITE
},
2126 { STRING_COMMA_LEN (".interp"), 0, SHT_PROGBITS
, 0 },
2127 { NULL
, 0, 0, 0, 0 }
2130 static const struct bfd_elf_special_section special_sections_l
[] =
2132 { STRING_COMMA_LEN (".line"), 0, SHT_PROGBITS
, 0 },
2133 { NULL
, 0, 0, 0, 0 }
2136 static const struct bfd_elf_special_section special_sections_n
[] =
2138 { STRING_COMMA_LEN (".note.GNU-stack"), 0, SHT_PROGBITS
, 0 },
2139 { STRING_COMMA_LEN (".note"), -1, SHT_NOTE
, 0 },
2140 { NULL
, 0, 0, 0, 0 }
2143 static const struct bfd_elf_special_section special_sections_p
[] =
2145 { STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY
, SHF_ALLOC
+ SHF_WRITE
},
2146 { STRING_COMMA_LEN (".plt"), 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_EXECINSTR
},
2147 { NULL
, 0, 0, 0, 0 }
2150 static const struct bfd_elf_special_section special_sections_r
[] =
2152 { STRING_COMMA_LEN (".rodata"), -2, SHT_PROGBITS
, SHF_ALLOC
},
2153 { STRING_COMMA_LEN (".rodata1"), 0, SHT_PROGBITS
, SHF_ALLOC
},
2154 { STRING_COMMA_LEN (".rela"), -1, SHT_RELA
, 0 },
2155 { STRING_COMMA_LEN (".rel"), -1, SHT_REL
, 0 },
2156 { NULL
, 0, 0, 0, 0 }
2159 static const struct bfd_elf_special_section special_sections_s
[] =
2161 { STRING_COMMA_LEN (".shstrtab"), 0, SHT_STRTAB
, 0 },
2162 { STRING_COMMA_LEN (".strtab"), 0, SHT_STRTAB
, 0 },
2163 { STRING_COMMA_LEN (".symtab"), 0, SHT_SYMTAB
, 0 },
2164 /* See struct bfd_elf_special_section declaration for the semantics of
2165 this special case where .prefix_length != strlen (.prefix). */
2166 { ".stabstr", 5, 3, SHT_STRTAB
, 0 },
2167 { NULL
, 0, 0, 0, 0 }
2170 static const struct bfd_elf_special_section special_sections_t
[] =
2172 { STRING_COMMA_LEN (".text"), -2, SHT_PROGBITS
, SHF_ALLOC
+ SHF_EXECINSTR
},
2173 { STRING_COMMA_LEN (".tbss"), -2, SHT_NOBITS
, SHF_ALLOC
+ SHF_WRITE
+ SHF_TLS
},
2174 { STRING_COMMA_LEN (".tdata"), -2, SHT_PROGBITS
, SHF_ALLOC
+ SHF_WRITE
+ SHF_TLS
},
2175 { NULL
, 0, 0, 0, 0 }
2178 static const struct bfd_elf_special_section special_sections_z
[] =
2180 { STRING_COMMA_LEN (".zdebug_line"), 0, SHT_PROGBITS
, 0 },
2181 { STRING_COMMA_LEN (".zdebug_info"), 0, SHT_PROGBITS
, 0 },
2182 { STRING_COMMA_LEN (".zdebug_abbrev"), 0, SHT_PROGBITS
, 0 },
2183 { STRING_COMMA_LEN (".zdebug_aranges"), 0, SHT_PROGBITS
, 0 },
2184 { NULL
, 0, 0, 0, 0 }
2187 static const struct bfd_elf_special_section
* const special_sections
[] =
2189 special_sections_b
, /* 'b' */
2190 special_sections_c
, /* 'c' */
2191 special_sections_d
, /* 'd' */
2193 special_sections_f
, /* 'f' */
2194 special_sections_g
, /* 'g' */
2195 special_sections_h
, /* 'h' */
2196 special_sections_i
, /* 'i' */
2199 special_sections_l
, /* 'l' */
2201 special_sections_n
, /* 'n' */
2203 special_sections_p
, /* 'p' */
2205 special_sections_r
, /* 'r' */
2206 special_sections_s
, /* 's' */
2207 special_sections_t
, /* 't' */
2213 special_sections_z
/* 'z' */
2216 const struct bfd_elf_special_section
*
2217 _bfd_elf_get_special_section (const char *name
,
2218 const struct bfd_elf_special_section
*spec
,
2224 len
= strlen (name
);
2226 for (i
= 0; spec
[i
].prefix
!= NULL
; i
++)
2229 int prefix_len
= spec
[i
].prefix_length
;
2231 if (len
< prefix_len
)
2233 if (memcmp (name
, spec
[i
].prefix
, prefix_len
) != 0)
2236 suffix_len
= spec
[i
].suffix_length
;
2237 if (suffix_len
<= 0)
2239 if (name
[prefix_len
] != 0)
2241 if (suffix_len
== 0)
2243 if (name
[prefix_len
] != '.'
2244 && (suffix_len
== -2
2245 || (rela
&& spec
[i
].type
== SHT_REL
)))
2251 if (len
< prefix_len
+ suffix_len
)
2253 if (memcmp (name
+ len
- suffix_len
,
2254 spec
[i
].prefix
+ prefix_len
,
2264 const struct bfd_elf_special_section
*
2265 _bfd_elf_get_sec_type_attr (bfd
*abfd
, asection
*sec
)
2268 const struct bfd_elf_special_section
*spec
;
2269 const struct elf_backend_data
*bed
;
2271 /* See if this is one of the special sections. */
2272 if (sec
->name
== NULL
)
2275 bed
= get_elf_backend_data (abfd
);
2276 spec
= bed
->special_sections
;
2279 spec
= _bfd_elf_get_special_section (sec
->name
,
2280 bed
->special_sections
,
2286 if (sec
->name
[0] != '.')
2289 i
= sec
->name
[1] - 'b';
2290 if (i
< 0 || i
> 'z' - 'b')
2293 spec
= special_sections
[i
];
2298 return _bfd_elf_get_special_section (sec
->name
, spec
, sec
->use_rela_p
);
2302 _bfd_elf_new_section_hook (bfd
*abfd
, asection
*sec
)
2304 struct bfd_elf_section_data
*sdata
;
2305 const struct elf_backend_data
*bed
;
2306 const struct bfd_elf_special_section
*ssect
;
2308 sdata
= (struct bfd_elf_section_data
*) sec
->used_by_bfd
;
2311 sdata
= (struct bfd_elf_section_data
*) bfd_zalloc (abfd
,
2315 sec
->used_by_bfd
= sdata
;
2318 /* Indicate whether or not this section should use RELA relocations. */
2319 bed
= get_elf_backend_data (abfd
);
2320 sec
->use_rela_p
= bed
->default_use_rela_p
;
2322 /* When we read a file, we don't need to set ELF section type and
2323 flags. They will be overridden in _bfd_elf_make_section_from_shdr
2324 anyway. We will set ELF section type and flags for all linker
2325 created sections. If user specifies BFD section flags, we will
2326 set ELF section type and flags based on BFD section flags in
2327 elf_fake_sections. Special handling for .init_array/.fini_array
2328 output sections since they may contain .ctors/.dtors input
2329 sections. We don't want _bfd_elf_init_private_section_data to
2330 copy ELF section type from .ctors/.dtors input sections. */
2331 if (abfd
->direction
!= read_direction
2332 || (sec
->flags
& SEC_LINKER_CREATED
) != 0)
2334 ssect
= (*bed
->get_sec_type_attr
) (abfd
, sec
);
2337 || (sec
->flags
& SEC_LINKER_CREATED
) != 0
2338 || ssect
->type
== SHT_INIT_ARRAY
2339 || ssect
->type
== SHT_FINI_ARRAY
))
2341 elf_section_type (sec
) = ssect
->type
;
2342 elf_section_flags (sec
) = ssect
->attr
;
2346 return _bfd_generic_new_section_hook (abfd
, sec
);
2349 /* Create a new bfd section from an ELF program header.
2351 Since program segments have no names, we generate a synthetic name
2352 of the form segment<NUM>, where NUM is generally the index in the
2353 program header table. For segments that are split (see below) we
2354 generate the names segment<NUM>a and segment<NUM>b.
2356 Note that some program segments may have a file size that is different than
2357 (less than) the memory size. All this means is that at execution the
2358 system must allocate the amount of memory specified by the memory size,
2359 but only initialize it with the first "file size" bytes read from the
2360 file. This would occur for example, with program segments consisting
2361 of combined data+bss.
2363 To handle the above situation, this routine generates TWO bfd sections
2364 for the single program segment. The first has the length specified by
2365 the file size of the segment, and the second has the length specified
2366 by the difference between the two sizes. In effect, the segment is split
2367 into its initialized and uninitialized parts.
2372 _bfd_elf_make_section_from_phdr (bfd
*abfd
,
2373 Elf_Internal_Phdr
*hdr
,
2375 const char *type_name
)
2383 split
= ((hdr
->p_memsz
> 0)
2384 && (hdr
->p_filesz
> 0)
2385 && (hdr
->p_memsz
> hdr
->p_filesz
));
2387 if (hdr
->p_filesz
> 0)
2389 sprintf (namebuf
, "%s%d%s", type_name
, hdr_index
, split
? "a" : "");
2390 len
= strlen (namebuf
) + 1;
2391 name
= (char *) bfd_alloc (abfd
, len
);
2394 memcpy (name
, namebuf
, len
);
2395 newsect
= bfd_make_section (abfd
, name
);
2396 if (newsect
== NULL
)
2398 newsect
->vma
= hdr
->p_vaddr
;
2399 newsect
->lma
= hdr
->p_paddr
;
2400 newsect
->size
= hdr
->p_filesz
;
2401 newsect
->filepos
= hdr
->p_offset
;
2402 newsect
->flags
|= SEC_HAS_CONTENTS
;
2403 newsect
->alignment_power
= bfd_log2 (hdr
->p_align
);
2404 if (hdr
->p_type
== PT_LOAD
)
2406 newsect
->flags
|= SEC_ALLOC
;
2407 newsect
->flags
|= SEC_LOAD
;
2408 if (hdr
->p_flags
& PF_X
)
2410 /* FIXME: all we known is that it has execute PERMISSION,
2412 newsect
->flags
|= SEC_CODE
;
2415 if (!(hdr
->p_flags
& PF_W
))
2417 newsect
->flags
|= SEC_READONLY
;
2421 if (hdr
->p_memsz
> hdr
->p_filesz
)
2425 sprintf (namebuf
, "%s%d%s", type_name
, hdr_index
, split
? "b" : "");
2426 len
= strlen (namebuf
) + 1;
2427 name
= (char *) bfd_alloc (abfd
, len
);
2430 memcpy (name
, namebuf
, len
);
2431 newsect
= bfd_make_section (abfd
, name
);
2432 if (newsect
== NULL
)
2434 newsect
->vma
= hdr
->p_vaddr
+ hdr
->p_filesz
;
2435 newsect
->lma
= hdr
->p_paddr
+ hdr
->p_filesz
;
2436 newsect
->size
= hdr
->p_memsz
- hdr
->p_filesz
;
2437 newsect
->filepos
= hdr
->p_offset
+ hdr
->p_filesz
;
2438 align
= newsect
->vma
& -newsect
->vma
;
2439 if (align
== 0 || align
> hdr
->p_align
)
2440 align
= hdr
->p_align
;
2441 newsect
->alignment_power
= bfd_log2 (align
);
2442 if (hdr
->p_type
== PT_LOAD
)
2444 /* Hack for gdb. Segments that have not been modified do
2445 not have their contents written to a core file, on the
2446 assumption that a debugger can find the contents in the
2447 executable. We flag this case by setting the fake
2448 section size to zero. Note that "real" bss sections will
2449 always have their contents dumped to the core file. */
2450 if (bfd_get_format (abfd
) == bfd_core
)
2452 newsect
->flags
|= SEC_ALLOC
;
2453 if (hdr
->p_flags
& PF_X
)
2454 newsect
->flags
|= SEC_CODE
;
2456 if (!(hdr
->p_flags
& PF_W
))
2457 newsect
->flags
|= SEC_READONLY
;
2464 bfd_section_from_phdr (bfd
*abfd
, Elf_Internal_Phdr
*hdr
, int hdr_index
)
2466 const struct elf_backend_data
*bed
;
2468 switch (hdr
->p_type
)
2471 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, hdr_index
, "null");
2474 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, hdr_index
, "load");
2477 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, hdr_index
, "dynamic");
2480 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, hdr_index
, "interp");
2483 if (! _bfd_elf_make_section_from_phdr (abfd
, hdr
, hdr_index
, "note"))
2485 if (! elf_read_notes (abfd
, hdr
->p_offset
, hdr
->p_filesz
))
2490 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, hdr_index
, "shlib");
2493 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, hdr_index
, "phdr");
2495 case PT_GNU_EH_FRAME
:
2496 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, hdr_index
,
2500 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, hdr_index
, "stack");
2503 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, hdr_index
, "relro");
2506 /* Check for any processor-specific program segment types. */
2507 bed
= get_elf_backend_data (abfd
);
2508 return bed
->elf_backend_section_from_phdr (abfd
, hdr
, hdr_index
, "proc");
2512 /* Return the REL_HDR for SEC, assuming there is only a single one, either
2516 _bfd_elf_single_rel_hdr (asection
*sec
)
2518 if (elf_section_data (sec
)->rel
.hdr
)
2520 BFD_ASSERT (elf_section_data (sec
)->rela
.hdr
== NULL
);
2521 return elf_section_data (sec
)->rel
.hdr
;
2524 return elf_section_data (sec
)->rela
.hdr
;
2527 /* Allocate and initialize a section-header for a new reloc section,
2528 containing relocations against ASECT. It is stored in RELDATA. If
2529 USE_RELA_P is TRUE, we use RELA relocations; otherwise, we use REL
2533 _bfd_elf_init_reloc_shdr (bfd
*abfd
,
2534 struct bfd_elf_section_reloc_data
*reldata
,
2536 bfd_boolean use_rela_p
)
2538 Elf_Internal_Shdr
*rel_hdr
;
2540 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
2543 amt
= sizeof (Elf_Internal_Shdr
);
2544 BFD_ASSERT (reldata
->hdr
== NULL
);
2545 rel_hdr
= bfd_zalloc (abfd
, amt
);
2546 reldata
->hdr
= rel_hdr
;
2548 amt
= sizeof ".rela" + strlen (asect
->name
);
2549 name
= (char *) bfd_alloc (abfd
, amt
);
2552 sprintf (name
, "%s%s", use_rela_p
? ".rela" : ".rel", asect
->name
);
2554 (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd
), name
,
2556 if (rel_hdr
->sh_name
== (unsigned int) -1)
2558 rel_hdr
->sh_type
= use_rela_p
? SHT_RELA
: SHT_REL
;
2559 rel_hdr
->sh_entsize
= (use_rela_p
2560 ? bed
->s
->sizeof_rela
2561 : bed
->s
->sizeof_rel
);
2562 rel_hdr
->sh_addralign
= (bfd_vma
) 1 << bed
->s
->log_file_align
;
2563 rel_hdr
->sh_flags
= 0;
2564 rel_hdr
->sh_addr
= 0;
2565 rel_hdr
->sh_size
= 0;
2566 rel_hdr
->sh_offset
= 0;
2571 /* Return the default section type based on the passed in section flags. */
2574 bfd_elf_get_default_section_type (flagword flags
)
2576 if ((flags
& SEC_ALLOC
) != 0
2577 && (flags
& (SEC_LOAD
| SEC_HAS_CONTENTS
)) == 0)
2579 return SHT_PROGBITS
;
2582 struct fake_section_arg
2584 struct bfd_link_info
*link_info
;
2588 /* Set up an ELF internal section header for a section. */
2591 elf_fake_sections (bfd
*abfd
, asection
*asect
, void *fsarg
)
2593 struct fake_section_arg
*arg
= (struct fake_section_arg
*)fsarg
;
2594 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
2595 struct bfd_elf_section_data
*esd
= elf_section_data (asect
);
2596 Elf_Internal_Shdr
*this_hdr
;
2597 unsigned int sh_type
;
2601 /* We already failed; just get out of the bfd_map_over_sections
2606 this_hdr
= &esd
->this_hdr
;
2608 this_hdr
->sh_name
= (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd
),
2609 asect
->name
, FALSE
);
2610 if (this_hdr
->sh_name
== (unsigned int) -1)
2616 /* Don't clear sh_flags. Assembler may set additional bits. */
2618 if ((asect
->flags
& SEC_ALLOC
) != 0
2619 || asect
->user_set_vma
)
2620 this_hdr
->sh_addr
= asect
->vma
;
2622 this_hdr
->sh_addr
= 0;
2624 this_hdr
->sh_offset
= 0;
2625 this_hdr
->sh_size
= asect
->size
;
2626 this_hdr
->sh_link
= 0;
2627 this_hdr
->sh_addralign
= (bfd_vma
) 1 << asect
->alignment_power
;
2628 /* The sh_entsize and sh_info fields may have been set already by
2629 copy_private_section_data. */
2631 this_hdr
->bfd_section
= asect
;
2632 this_hdr
->contents
= NULL
;
2634 /* If the section type is unspecified, we set it based on
2636 if ((asect
->flags
& SEC_GROUP
) != 0)
2637 sh_type
= SHT_GROUP
;
2639 sh_type
= bfd_elf_get_default_section_type (asect
->flags
);
2641 if (this_hdr
->sh_type
== SHT_NULL
)
2642 this_hdr
->sh_type
= sh_type
;
2643 else if (this_hdr
->sh_type
== SHT_NOBITS
2644 && sh_type
== SHT_PROGBITS
2645 && (asect
->flags
& SEC_ALLOC
) != 0)
2647 /* Warn if we are changing a NOBITS section to PROGBITS, but
2648 allow the link to proceed. This can happen when users link
2649 non-bss input sections to bss output sections, or emit data
2650 to a bss output section via a linker script. */
2651 (*_bfd_error_handler
)
2652 (_("warning: section `%A' type changed to PROGBITS"), asect
);
2653 this_hdr
->sh_type
= sh_type
;
2656 switch (this_hdr
->sh_type
)
2662 case SHT_INIT_ARRAY
:
2663 case SHT_FINI_ARRAY
:
2664 case SHT_PREINIT_ARRAY
:
2671 this_hdr
->sh_entsize
= bed
->s
->sizeof_hash_entry
;
2675 this_hdr
->sh_entsize
= bed
->s
->sizeof_sym
;
2679 this_hdr
->sh_entsize
= bed
->s
->sizeof_dyn
;
2683 if (get_elf_backend_data (abfd
)->may_use_rela_p
)
2684 this_hdr
->sh_entsize
= bed
->s
->sizeof_rela
;
2688 if (get_elf_backend_data (abfd
)->may_use_rel_p
)
2689 this_hdr
->sh_entsize
= bed
->s
->sizeof_rel
;
2692 case SHT_GNU_versym
:
2693 this_hdr
->sh_entsize
= sizeof (Elf_External_Versym
);
2696 case SHT_GNU_verdef
:
2697 this_hdr
->sh_entsize
= 0;
2698 /* objcopy or strip will copy over sh_info, but may not set
2699 cverdefs. The linker will set cverdefs, but sh_info will be
2701 if (this_hdr
->sh_info
== 0)
2702 this_hdr
->sh_info
= elf_tdata (abfd
)->cverdefs
;
2704 BFD_ASSERT (elf_tdata (abfd
)->cverdefs
== 0
2705 || this_hdr
->sh_info
== elf_tdata (abfd
)->cverdefs
);
2708 case SHT_GNU_verneed
:
2709 this_hdr
->sh_entsize
= 0;
2710 /* objcopy or strip will copy over sh_info, but may not set
2711 cverrefs. The linker will set cverrefs, but sh_info will be
2713 if (this_hdr
->sh_info
== 0)
2714 this_hdr
->sh_info
= elf_tdata (abfd
)->cverrefs
;
2716 BFD_ASSERT (elf_tdata (abfd
)->cverrefs
== 0
2717 || this_hdr
->sh_info
== elf_tdata (abfd
)->cverrefs
);
2721 this_hdr
->sh_entsize
= GRP_ENTRY_SIZE
;
2725 this_hdr
->sh_entsize
= bed
->s
->arch_size
== 64 ? 0 : 4;
2729 if ((asect
->flags
& SEC_ALLOC
) != 0)
2730 this_hdr
->sh_flags
|= SHF_ALLOC
;
2731 if ((asect
->flags
& SEC_READONLY
) == 0)
2732 this_hdr
->sh_flags
|= SHF_WRITE
;
2733 if ((asect
->flags
& SEC_CODE
) != 0)
2734 this_hdr
->sh_flags
|= SHF_EXECINSTR
;
2735 if ((asect
->flags
& SEC_MERGE
) != 0)
2737 this_hdr
->sh_flags
|= SHF_MERGE
;
2738 this_hdr
->sh_entsize
= asect
->entsize
;
2739 if ((asect
->flags
& SEC_STRINGS
) != 0)
2740 this_hdr
->sh_flags
|= SHF_STRINGS
;
2742 if ((asect
->flags
& SEC_GROUP
) == 0 && elf_group_name (asect
) != NULL
)
2743 this_hdr
->sh_flags
|= SHF_GROUP
;
2744 if ((asect
->flags
& SEC_THREAD_LOCAL
) != 0)
2746 this_hdr
->sh_flags
|= SHF_TLS
;
2747 if (asect
->size
== 0
2748 && (asect
->flags
& SEC_HAS_CONTENTS
) == 0)
2750 struct bfd_link_order
*o
= asect
->map_tail
.link_order
;
2752 this_hdr
->sh_size
= 0;
2755 this_hdr
->sh_size
= o
->offset
+ o
->size
;
2756 if (this_hdr
->sh_size
!= 0)
2757 this_hdr
->sh_type
= SHT_NOBITS
;
2761 if ((asect
->flags
& (SEC_GROUP
| SEC_EXCLUDE
)) == SEC_EXCLUDE
)
2762 this_hdr
->sh_flags
|= SHF_EXCLUDE
;
2764 /* If the section has relocs, set up a section header for the
2765 SHT_REL[A] section. If two relocation sections are required for
2766 this section, it is up to the processor-specific back-end to
2767 create the other. */
2768 if ((asect
->flags
& SEC_RELOC
) != 0)
2770 /* When doing a relocatable link, create both REL and RELA sections if
2773 /* Do the normal setup if we wouldn't create any sections here. */
2774 && esd
->rel
.count
+ esd
->rela
.count
> 0
2775 && (arg
->link_info
->relocatable
|| arg
->link_info
->emitrelocations
))
2777 if (esd
->rel
.count
&& esd
->rel
.hdr
== NULL
2778 && !_bfd_elf_init_reloc_shdr (abfd
, &esd
->rel
, asect
, FALSE
))
2783 if (esd
->rela
.count
&& esd
->rela
.hdr
== NULL
2784 && !_bfd_elf_init_reloc_shdr (abfd
, &esd
->rela
, asect
, TRUE
))
2790 else if (!_bfd_elf_init_reloc_shdr (abfd
,
2792 ? &esd
->rela
: &esd
->rel
),
2798 /* Check for processor-specific section types. */
2799 sh_type
= this_hdr
->sh_type
;
2800 if (bed
->elf_backend_fake_sections
2801 && !(*bed
->elf_backend_fake_sections
) (abfd
, this_hdr
, asect
))
2804 if (sh_type
== SHT_NOBITS
&& asect
->size
!= 0)
2806 /* Don't change the header type from NOBITS if we are being
2807 called for objcopy --only-keep-debug. */
2808 this_hdr
->sh_type
= sh_type
;
2812 /* Fill in the contents of a SHT_GROUP section. Called from
2813 _bfd_elf_compute_section_file_positions for gas, objcopy, and
2814 when ELF targets use the generic linker, ld. Called for ld -r
2815 from bfd_elf_final_link. */
2818 bfd_elf_set_group_contents (bfd
*abfd
, asection
*sec
, void *failedptrarg
)
2820 bfd_boolean
*failedptr
= (bfd_boolean
*) failedptrarg
;
2821 asection
*elt
, *first
;
2825 /* Ignore linker created group section. See elfNN_ia64_object_p in
2827 if (((sec
->flags
& (SEC_GROUP
| SEC_LINKER_CREATED
)) != SEC_GROUP
)
2831 if (elf_section_data (sec
)->this_hdr
.sh_info
== 0)
2833 unsigned long symindx
= 0;
2835 /* elf_group_id will have been set up by objcopy and the
2837 if (elf_group_id (sec
) != NULL
)
2838 symindx
= elf_group_id (sec
)->udata
.i
;
2842 /* If called from the assembler, swap_out_syms will have set up
2843 elf_section_syms. */
2844 BFD_ASSERT (elf_section_syms (abfd
) != NULL
);
2845 symindx
= elf_section_syms (abfd
)[sec
->index
]->udata
.i
;
2847 elf_section_data (sec
)->this_hdr
.sh_info
= symindx
;
2849 else if (elf_section_data (sec
)->this_hdr
.sh_info
== (unsigned int) -2)
2851 /* The ELF backend linker sets sh_info to -2 when the group
2852 signature symbol is global, and thus the index can't be
2853 set until all local symbols are output. */
2854 asection
*igroup
= elf_sec_group (elf_next_in_group (sec
));
2855 struct bfd_elf_section_data
*sec_data
= elf_section_data (igroup
);
2856 unsigned long symndx
= sec_data
->this_hdr
.sh_info
;
2857 unsigned long extsymoff
= 0;
2858 struct elf_link_hash_entry
*h
;
2860 if (!elf_bad_symtab (igroup
->owner
))
2862 Elf_Internal_Shdr
*symtab_hdr
;
2864 symtab_hdr
= &elf_tdata (igroup
->owner
)->symtab_hdr
;
2865 extsymoff
= symtab_hdr
->sh_info
;
2867 h
= elf_sym_hashes (igroup
->owner
)[symndx
- extsymoff
];
2868 while (h
->root
.type
== bfd_link_hash_indirect
2869 || h
->root
.type
== bfd_link_hash_warning
)
2870 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
2872 elf_section_data (sec
)->this_hdr
.sh_info
= h
->indx
;
2875 /* The contents won't be allocated for "ld -r" or objcopy. */
2877 if (sec
->contents
== NULL
)
2880 sec
->contents
= (unsigned char *) bfd_alloc (abfd
, sec
->size
);
2882 /* Arrange for the section to be written out. */
2883 elf_section_data (sec
)->this_hdr
.contents
= sec
->contents
;
2884 if (sec
->contents
== NULL
)
2891 loc
= sec
->contents
+ sec
->size
;
2893 /* Get the pointer to the first section in the group that gas
2894 squirreled away here. objcopy arranges for this to be set to the
2895 start of the input section group. */
2896 first
= elt
= elf_next_in_group (sec
);
2898 /* First element is a flag word. Rest of section is elf section
2899 indices for all the sections of the group. Write them backwards
2900 just to keep the group in the same order as given in .section
2901 directives, not that it matters. */
2908 s
= s
->output_section
;
2910 && !bfd_is_abs_section (s
))
2912 unsigned int idx
= elf_section_data (s
)->this_idx
;
2915 H_PUT_32 (abfd
, idx
, loc
);
2917 elt
= elf_next_in_group (elt
);
2922 if ((loc
-= 4) != sec
->contents
)
2925 H_PUT_32 (abfd
, sec
->flags
& SEC_LINK_ONCE
? GRP_COMDAT
: 0, loc
);
2928 /* Assign all ELF section numbers. The dummy first section is handled here
2929 too. The link/info pointers for the standard section types are filled
2930 in here too, while we're at it. */
2933 assign_section_numbers (bfd
*abfd
, struct bfd_link_info
*link_info
)
2935 struct elf_obj_tdata
*t
= elf_tdata (abfd
);
2937 unsigned int section_number
, secn
;
2938 Elf_Internal_Shdr
**i_shdrp
;
2939 struct bfd_elf_section_data
*d
;
2940 bfd_boolean need_symtab
;
2944 _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd
));
2946 /* SHT_GROUP sections are in relocatable files only. */
2947 if (link_info
== NULL
|| link_info
->relocatable
)
2949 /* Put SHT_GROUP sections first. */
2950 for (sec
= abfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
2952 d
= elf_section_data (sec
);
2954 if (d
->this_hdr
.sh_type
== SHT_GROUP
)
2956 if (sec
->flags
& SEC_LINKER_CREATED
)
2958 /* Remove the linker created SHT_GROUP sections. */
2959 bfd_section_list_remove (abfd
, sec
);
2960 abfd
->section_count
--;
2963 d
->this_idx
= section_number
++;
2968 for (sec
= abfd
->sections
; sec
; sec
= sec
->next
)
2970 d
= elf_section_data (sec
);
2972 if (d
->this_hdr
.sh_type
!= SHT_GROUP
)
2973 d
->this_idx
= section_number
++;
2974 _bfd_elf_strtab_addref (elf_shstrtab (abfd
), d
->this_hdr
.sh_name
);
2977 d
->rel
.idx
= section_number
++;
2978 _bfd_elf_strtab_addref (elf_shstrtab (abfd
), d
->rel
.hdr
->sh_name
);
2985 d
->rela
.idx
= section_number
++;
2986 _bfd_elf_strtab_addref (elf_shstrtab (abfd
), d
->rela
.hdr
->sh_name
);
2992 t
->shstrtab_section
= section_number
++;
2993 _bfd_elf_strtab_addref (elf_shstrtab (abfd
), t
->shstrtab_hdr
.sh_name
);
2994 elf_elfheader (abfd
)->e_shstrndx
= t
->shstrtab_section
;
2996 need_symtab
= (bfd_get_symcount (abfd
) > 0
2997 || (link_info
== NULL
2998 && ((abfd
->flags
& (EXEC_P
| DYNAMIC
| HAS_RELOC
))
3002 t
->symtab_section
= section_number
++;
3003 _bfd_elf_strtab_addref (elf_shstrtab (abfd
), t
->symtab_hdr
.sh_name
);
3004 if (section_number
> ((SHN_LORESERVE
- 2) & 0xFFFF))
3006 t
->symtab_shndx_section
= section_number
++;
3007 t
->symtab_shndx_hdr
.sh_name
3008 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd
),
3009 ".symtab_shndx", FALSE
);
3010 if (t
->symtab_shndx_hdr
.sh_name
== (unsigned int) -1)
3013 t
->strtab_section
= section_number
++;
3014 _bfd_elf_strtab_addref (elf_shstrtab (abfd
), t
->strtab_hdr
.sh_name
);
3017 if (section_number
>= SHN_LORESERVE
)
3019 _bfd_error_handler (_("%B: too many sections: %u"),
3020 abfd
, section_number
);
3024 _bfd_elf_strtab_finalize (elf_shstrtab (abfd
));
3025 t
->shstrtab_hdr
.sh_size
= _bfd_elf_strtab_size (elf_shstrtab (abfd
));
3027 elf_numsections (abfd
) = section_number
;
3028 elf_elfheader (abfd
)->e_shnum
= section_number
;
3030 /* Set up the list of section header pointers, in agreement with the
3032 i_shdrp
= (Elf_Internal_Shdr
**) bfd_zalloc2 (abfd
, section_number
,
3033 sizeof (Elf_Internal_Shdr
*));
3034 if (i_shdrp
== NULL
)
3037 i_shdrp
[0] = (Elf_Internal_Shdr
*) bfd_zalloc (abfd
,
3038 sizeof (Elf_Internal_Shdr
));
3039 if (i_shdrp
[0] == NULL
)
3041 bfd_release (abfd
, i_shdrp
);
3045 elf_elfsections (abfd
) = i_shdrp
;
3047 i_shdrp
[t
->shstrtab_section
] = &t
->shstrtab_hdr
;
3050 i_shdrp
[t
->symtab_section
] = &t
->symtab_hdr
;
3051 if (elf_numsections (abfd
) > (SHN_LORESERVE
& 0xFFFF))
3053 i_shdrp
[t
->symtab_shndx_section
] = &t
->symtab_shndx_hdr
;
3054 t
->symtab_shndx_hdr
.sh_link
= t
->symtab_section
;
3056 i_shdrp
[t
->strtab_section
] = &t
->strtab_hdr
;
3057 t
->symtab_hdr
.sh_link
= t
->strtab_section
;
3060 for (sec
= abfd
->sections
; sec
; sec
= sec
->next
)
3065 d
= elf_section_data (sec
);
3067 i_shdrp
[d
->this_idx
] = &d
->this_hdr
;
3068 if (d
->rel
.idx
!= 0)
3069 i_shdrp
[d
->rel
.idx
] = d
->rel
.hdr
;
3070 if (d
->rela
.idx
!= 0)
3071 i_shdrp
[d
->rela
.idx
] = d
->rela
.hdr
;
3073 /* Fill in the sh_link and sh_info fields while we're at it. */
3075 /* sh_link of a reloc section is the section index of the symbol
3076 table. sh_info is the section index of the section to which
3077 the relocation entries apply. */
3078 if (d
->rel
.idx
!= 0)
3080 d
->rel
.hdr
->sh_link
= t
->symtab_section
;
3081 d
->rel
.hdr
->sh_info
= d
->this_idx
;
3083 if (d
->rela
.idx
!= 0)
3085 d
->rela
.hdr
->sh_link
= t
->symtab_section
;
3086 d
->rela
.hdr
->sh_info
= d
->this_idx
;
3089 /* We need to set up sh_link for SHF_LINK_ORDER. */
3090 if ((d
->this_hdr
.sh_flags
& SHF_LINK_ORDER
) != 0)
3092 s
= elf_linked_to_section (sec
);
3095 /* elf_linked_to_section points to the input section. */
3096 if (link_info
!= NULL
)
3098 /* Check discarded linkonce section. */
3099 if (discarded_section (s
))
3102 (*_bfd_error_handler
)
3103 (_("%B: sh_link of section `%A' points to discarded section `%A' of `%B'"),
3104 abfd
, d
->this_hdr
.bfd_section
,
3106 /* Point to the kept section if it has the same
3107 size as the discarded one. */
3108 kept
= _bfd_elf_check_kept_section (s
, link_info
);
3111 bfd_set_error (bfd_error_bad_value
);
3117 s
= s
->output_section
;
3118 BFD_ASSERT (s
!= NULL
);
3122 /* Handle objcopy. */
3123 if (s
->output_section
== NULL
)
3125 (*_bfd_error_handler
)
3126 (_("%B: sh_link of section `%A' points to removed section `%A' of `%B'"),
3127 abfd
, d
->this_hdr
.bfd_section
, s
, s
->owner
);
3128 bfd_set_error (bfd_error_bad_value
);
3131 s
= s
->output_section
;
3133 d
->this_hdr
.sh_link
= elf_section_data (s
)->this_idx
;
3138 The Intel C compiler generates SHT_IA_64_UNWIND with
3139 SHF_LINK_ORDER. But it doesn't set the sh_link or
3140 sh_info fields. Hence we could get the situation
3142 const struct elf_backend_data
*bed
3143 = get_elf_backend_data (abfd
);
3144 if (bed
->link_order_error_handler
)
3145 bed
->link_order_error_handler
3146 (_("%B: warning: sh_link not set for section `%A'"),
3151 switch (d
->this_hdr
.sh_type
)
3155 /* A reloc section which we are treating as a normal BFD
3156 section. sh_link is the section index of the symbol
3157 table. sh_info is the section index of the section to
3158 which the relocation entries apply. We assume that an
3159 allocated reloc section uses the dynamic symbol table.
3160 FIXME: How can we be sure? */
3161 s
= bfd_get_section_by_name (abfd
, ".dynsym");
3163 d
->this_hdr
.sh_link
= elf_section_data (s
)->this_idx
;
3165 /* We look up the section the relocs apply to by name. */
3167 if (d
->this_hdr
.sh_type
== SHT_REL
)
3171 s
= bfd_get_section_by_name (abfd
, name
);
3173 d
->this_hdr
.sh_info
= elf_section_data (s
)->this_idx
;
3177 /* We assume that a section named .stab*str is a stabs
3178 string section. We look for a section with the same name
3179 but without the trailing ``str'', and set its sh_link
3180 field to point to this section. */
3181 if (CONST_STRNEQ (sec
->name
, ".stab")
3182 && strcmp (sec
->name
+ strlen (sec
->name
) - 3, "str") == 0)
3187 len
= strlen (sec
->name
);
3188 alc
= (char *) bfd_malloc (len
- 2);
3191 memcpy (alc
, sec
->name
, len
- 3);
3192 alc
[len
- 3] = '\0';
3193 s
= bfd_get_section_by_name (abfd
, alc
);
3197 elf_section_data (s
)->this_hdr
.sh_link
= d
->this_idx
;
3199 /* This is a .stab section. */
3200 if (elf_section_data (s
)->this_hdr
.sh_entsize
== 0)
3201 elf_section_data (s
)->this_hdr
.sh_entsize
3202 = 4 + 2 * bfd_get_arch_size (abfd
) / 8;
3209 case SHT_GNU_verneed
:
3210 case SHT_GNU_verdef
:
3211 /* sh_link is the section header index of the string table
3212 used for the dynamic entries, or the symbol table, or the
3214 s
= bfd_get_section_by_name (abfd
, ".dynstr");
3216 d
->this_hdr
.sh_link
= elf_section_data (s
)->this_idx
;
3219 case SHT_GNU_LIBLIST
:
3220 /* sh_link is the section header index of the prelink library
3221 list used for the dynamic entries, or the symbol table, or
3222 the version strings. */
3223 s
= bfd_get_section_by_name (abfd
, (sec
->flags
& SEC_ALLOC
)
3224 ? ".dynstr" : ".gnu.libstr");
3226 d
->this_hdr
.sh_link
= elf_section_data (s
)->this_idx
;
3231 case SHT_GNU_versym
:
3232 /* sh_link is the section header index of the symbol table
3233 this hash table or version table is for. */
3234 s
= bfd_get_section_by_name (abfd
, ".dynsym");
3236 d
->this_hdr
.sh_link
= elf_section_data (s
)->this_idx
;
3240 d
->this_hdr
.sh_link
= t
->symtab_section
;
3244 for (secn
= 1; secn
< section_number
; ++secn
)
3245 if (i_shdrp
[secn
] == NULL
)
3246 i_shdrp
[secn
] = i_shdrp
[0];
3248 i_shdrp
[secn
]->sh_name
= _bfd_elf_strtab_offset (elf_shstrtab (abfd
),
3249 i_shdrp
[secn
]->sh_name
);
3254 sym_is_global (bfd
*abfd
, asymbol
*sym
)
3256 /* If the backend has a special mapping, use it. */
3257 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
3258 if (bed
->elf_backend_sym_is_global
)
3259 return (*bed
->elf_backend_sym_is_global
) (abfd
, sym
);
3261 return ((sym
->flags
& (BSF_GLOBAL
| BSF_WEAK
| BSF_GNU_UNIQUE
)) != 0
3262 || bfd_is_und_section (bfd_get_section (sym
))
3263 || bfd_is_com_section (bfd_get_section (sym
)));
3266 /* Don't output section symbols for sections that are not going to be
3267 output, or that are duplicates. */
3270 ignore_section_sym (bfd
*abfd
, asymbol
*sym
)
3272 return ((sym
->flags
& BSF_SECTION_SYM
) != 0
3273 && !(sym
->section
->owner
== abfd
3274 || (sym
->section
->output_section
->owner
== abfd
3275 && sym
->section
->output_offset
== 0)
3276 || bfd_is_abs_section (sym
->section
)));
3279 /* Map symbol from it's internal number to the external number, moving
3280 all local symbols to be at the head of the list. */
3283 elf_map_symbols (bfd
*abfd
)
3285 unsigned int symcount
= bfd_get_symcount (abfd
);
3286 asymbol
**syms
= bfd_get_outsymbols (abfd
);
3287 asymbol
**sect_syms
;
3288 unsigned int num_locals
= 0;
3289 unsigned int num_globals
= 0;
3290 unsigned int num_locals2
= 0;
3291 unsigned int num_globals2
= 0;
3298 fprintf (stderr
, "elf_map_symbols\n");
3302 for (asect
= abfd
->sections
; asect
; asect
= asect
->next
)
3304 if (max_index
< asect
->index
)
3305 max_index
= asect
->index
;
3309 sect_syms
= (asymbol
**) bfd_zalloc2 (abfd
, max_index
, sizeof (asymbol
*));
3310 if (sect_syms
== NULL
)
3312 elf_section_syms (abfd
) = sect_syms
;
3313 elf_num_section_syms (abfd
) = max_index
;
3315 /* Init sect_syms entries for any section symbols we have already
3316 decided to output. */
3317 for (idx
= 0; idx
< symcount
; idx
++)
3319 asymbol
*sym
= syms
[idx
];
3321 if ((sym
->flags
& BSF_SECTION_SYM
) != 0
3323 && !ignore_section_sym (abfd
, sym
)
3324 && !bfd_is_abs_section (sym
->section
))
3326 asection
*sec
= sym
->section
;
3328 if (sec
->owner
!= abfd
)
3329 sec
= sec
->output_section
;
3331 sect_syms
[sec
->index
] = syms
[idx
];
3335 /* Classify all of the symbols. */
3336 for (idx
= 0; idx
< symcount
; idx
++)
3338 if (sym_is_global (abfd
, syms
[idx
]))
3340 else if (!ignore_section_sym (abfd
, syms
[idx
]))
3344 /* We will be adding a section symbol for each normal BFD section. Most
3345 sections will already have a section symbol in outsymbols, but
3346 eg. SHT_GROUP sections will not, and we need the section symbol mapped
3347 at least in that case. */
3348 for (asect
= abfd
->sections
; asect
; asect
= asect
->next
)
3350 if (sect_syms
[asect
->index
] == NULL
)
3352 if (!sym_is_global (abfd
, asect
->symbol
))
3359 /* Now sort the symbols so the local symbols are first. */
3360 new_syms
= (asymbol
**) bfd_alloc2 (abfd
, num_locals
+ num_globals
,
3361 sizeof (asymbol
*));
3363 if (new_syms
== NULL
)
3366 for (idx
= 0; idx
< symcount
; idx
++)
3368 asymbol
*sym
= syms
[idx
];
3371 if (sym_is_global (abfd
, sym
))
3372 i
= num_locals
+ num_globals2
++;
3373 else if (!ignore_section_sym (abfd
, sym
))
3378 sym
->udata
.i
= i
+ 1;
3380 for (asect
= abfd
->sections
; asect
; asect
= asect
->next
)
3382 if (sect_syms
[asect
->index
] == NULL
)
3384 asymbol
*sym
= asect
->symbol
;
3387 sect_syms
[asect
->index
] = sym
;
3388 if (!sym_is_global (abfd
, sym
))
3391 i
= num_locals
+ num_globals2
++;
3393 sym
->udata
.i
= i
+ 1;
3397 bfd_set_symtab (abfd
, new_syms
, num_locals
+ num_globals
);
3399 elf_num_locals (abfd
) = num_locals
;
3400 elf_num_globals (abfd
) = num_globals
;
3404 /* Align to the maximum file alignment that could be required for any
3405 ELF data structure. */
3407 static inline file_ptr
3408 align_file_position (file_ptr off
, int align
)
3410 return (off
+ align
- 1) & ~(align
- 1);
3413 /* Assign a file position to a section, optionally aligning to the
3414 required section alignment. */
3417 _bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr
*i_shdrp
,
3421 if (align
&& i_shdrp
->sh_addralign
> 1)
3422 offset
= BFD_ALIGN (offset
, i_shdrp
->sh_addralign
);
3423 i_shdrp
->sh_offset
= offset
;
3424 if (i_shdrp
->bfd_section
!= NULL
)
3425 i_shdrp
->bfd_section
->filepos
= offset
;
3426 if (i_shdrp
->sh_type
!= SHT_NOBITS
)
3427 offset
+= i_shdrp
->sh_size
;
3431 /* Compute the file positions we are going to put the sections at, and
3432 otherwise prepare to begin writing out the ELF file. If LINK_INFO
3433 is not NULL, this is being called by the ELF backend linker. */
3436 _bfd_elf_compute_section_file_positions (bfd
*abfd
,
3437 struct bfd_link_info
*link_info
)
3439 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
3440 struct fake_section_arg fsargs
;
3442 struct bfd_strtab_hash
*strtab
= NULL
;
3443 Elf_Internal_Shdr
*shstrtab_hdr
;
3444 bfd_boolean need_symtab
;
3446 if (abfd
->output_has_begun
)
3449 /* Do any elf backend specific processing first. */
3450 if (bed
->elf_backend_begin_write_processing
)
3451 (*bed
->elf_backend_begin_write_processing
) (abfd
, link_info
);
3453 if (! prep_headers (abfd
))
3456 /* Post process the headers if necessary. */
3457 if (bed
->elf_backend_post_process_headers
)
3458 (*bed
->elf_backend_post_process_headers
) (abfd
, link_info
);
3460 fsargs
.failed
= FALSE
;
3461 fsargs
.link_info
= link_info
;
3462 bfd_map_over_sections (abfd
, elf_fake_sections
, &fsargs
);
3466 if (!assign_section_numbers (abfd
, link_info
))
3469 /* The backend linker builds symbol table information itself. */
3470 need_symtab
= (link_info
== NULL
3471 && (bfd_get_symcount (abfd
) > 0
3472 || ((abfd
->flags
& (EXEC_P
| DYNAMIC
| HAS_RELOC
))
3476 /* Non-zero if doing a relocatable link. */
3477 int relocatable_p
= ! (abfd
->flags
& (EXEC_P
| DYNAMIC
));
3479 if (! swap_out_syms (abfd
, &strtab
, relocatable_p
))
3484 if (link_info
== NULL
)
3486 bfd_map_over_sections (abfd
, bfd_elf_set_group_contents
, &failed
);
3491 shstrtab_hdr
= &elf_tdata (abfd
)->shstrtab_hdr
;
3492 /* sh_name was set in prep_headers. */
3493 shstrtab_hdr
->sh_type
= SHT_STRTAB
;
3494 shstrtab_hdr
->sh_flags
= 0;
3495 shstrtab_hdr
->sh_addr
= 0;
3496 shstrtab_hdr
->sh_size
= _bfd_elf_strtab_size (elf_shstrtab (abfd
));
3497 shstrtab_hdr
->sh_entsize
= 0;
3498 shstrtab_hdr
->sh_link
= 0;
3499 shstrtab_hdr
->sh_info
= 0;
3500 /* sh_offset is set in assign_file_positions_except_relocs. */
3501 shstrtab_hdr
->sh_addralign
= 1;
3503 if (!assign_file_positions_except_relocs (abfd
, link_info
))
3509 Elf_Internal_Shdr
*hdr
;
3511 off
= elf_tdata (abfd
)->next_file_pos
;
3513 hdr
= &elf_tdata (abfd
)->symtab_hdr
;
3514 off
= _bfd_elf_assign_file_position_for_section (hdr
, off
, TRUE
);
3516 hdr
= &elf_tdata (abfd
)->symtab_shndx_hdr
;
3517 if (hdr
->sh_size
!= 0)
3518 off
= _bfd_elf_assign_file_position_for_section (hdr
, off
, TRUE
);
3520 hdr
= &elf_tdata (abfd
)->strtab_hdr
;
3521 off
= _bfd_elf_assign_file_position_for_section (hdr
, off
, TRUE
);
3523 elf_tdata (abfd
)->next_file_pos
= off
;
3525 /* Now that we know where the .strtab section goes, write it
3527 if (bfd_seek (abfd
, hdr
->sh_offset
, SEEK_SET
) != 0
3528 || ! _bfd_stringtab_emit (abfd
, strtab
))
3530 _bfd_stringtab_free (strtab
);
3533 abfd
->output_has_begun
= TRUE
;
3538 /* Make an initial estimate of the size of the program header. If we
3539 get the number wrong here, we'll redo section placement. */
3541 static bfd_size_type
3542 get_program_header_size (bfd
*abfd
, struct bfd_link_info
*info
)
3546 const struct elf_backend_data
*bed
;
3548 /* Assume we will need exactly two PT_LOAD segments: one for text
3549 and one for data. */
3552 s
= bfd_get_section_by_name (abfd
, ".interp");
3553 if (s
!= NULL
&& (s
->flags
& SEC_LOAD
) != 0)
3555 /* If we have a loadable interpreter section, we need a
3556 PT_INTERP segment. In this case, assume we also need a
3557 PT_PHDR segment, although that may not be true for all
3562 if (bfd_get_section_by_name (abfd
, ".dynamic") != NULL
)
3564 /* We need a PT_DYNAMIC segment. */
3568 if (info
!= NULL
&& info
->relro
)
3570 /* We need a PT_GNU_RELRO segment. */
3574 if (elf_tdata (abfd
)->eh_frame_hdr
)
3576 /* We need a PT_GNU_EH_FRAME segment. */
3580 if (elf_tdata (abfd
)->stack_flags
)
3582 /* We need a PT_GNU_STACK segment. */
3586 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
3588 if ((s
->flags
& SEC_LOAD
) != 0
3589 && CONST_STRNEQ (s
->name
, ".note"))
3591 /* We need a PT_NOTE segment. */
3593 /* Try to create just one PT_NOTE segment
3594 for all adjacent loadable .note* sections.
3595 gABI requires that within a PT_NOTE segment
3596 (and also inside of each SHT_NOTE section)
3597 each note is padded to a multiple of 4 size,
3598 so we check whether the sections are correctly
3600 if (s
->alignment_power
== 2)
3601 while (s
->next
!= NULL
3602 && s
->next
->alignment_power
== 2
3603 && (s
->next
->flags
& SEC_LOAD
) != 0
3604 && CONST_STRNEQ (s
->next
->name
, ".note"))
3609 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
3611 if (s
->flags
& SEC_THREAD_LOCAL
)
3613 /* We need a PT_TLS segment. */
3619 /* Let the backend count up any program headers it might need. */
3620 bed
= get_elf_backend_data (abfd
);
3621 if (bed
->elf_backend_additional_program_headers
)
3625 a
= (*bed
->elf_backend_additional_program_headers
) (abfd
, info
);
3631 return segs
* bed
->s
->sizeof_phdr
;
3634 /* Find the segment that contains the output_section of section. */
3637 _bfd_elf_find_segment_containing_section (bfd
* abfd
, asection
* section
)
3639 struct elf_segment_map
*m
;
3640 Elf_Internal_Phdr
*p
;
3642 for (m
= elf_tdata (abfd
)->segment_map
,
3643 p
= elf_tdata (abfd
)->phdr
;
3649 for (i
= m
->count
- 1; i
>= 0; i
--)
3650 if (m
->sections
[i
] == section
)
3657 /* Create a mapping from a set of sections to a program segment. */
3659 static struct elf_segment_map
*
3660 make_mapping (bfd
*abfd
,
3661 asection
**sections
,
3666 struct elf_segment_map
*m
;
3671 amt
= sizeof (struct elf_segment_map
);
3672 amt
+= (to
- from
- 1) * sizeof (asection
*);
3673 m
= (struct elf_segment_map
*) bfd_zalloc (abfd
, amt
);
3677 m
->p_type
= PT_LOAD
;
3678 for (i
= from
, hdrpp
= sections
+ from
; i
< to
; i
++, hdrpp
++)
3679 m
->sections
[i
- from
] = *hdrpp
;
3680 m
->count
= to
- from
;
3682 if (from
== 0 && phdr
)
3684 /* Include the headers in the first PT_LOAD segment. */
3685 m
->includes_filehdr
= 1;
3686 m
->includes_phdrs
= 1;
3692 /* Create the PT_DYNAMIC segment, which includes DYNSEC. Returns NULL
3695 struct elf_segment_map
*
3696 _bfd_elf_make_dynamic_segment (bfd
*abfd
, asection
*dynsec
)
3698 struct elf_segment_map
*m
;
3700 m
= (struct elf_segment_map
*) bfd_zalloc (abfd
,
3701 sizeof (struct elf_segment_map
));
3705 m
->p_type
= PT_DYNAMIC
;
3707 m
->sections
[0] = dynsec
;
3712 /* Possibly add or remove segments from the segment map. */
3715 elf_modify_segment_map (bfd
*abfd
,
3716 struct bfd_link_info
*info
,
3717 bfd_boolean remove_empty_load
)
3719 struct elf_segment_map
**m
;
3720 const struct elf_backend_data
*bed
;
3722 /* The placement algorithm assumes that non allocated sections are
3723 not in PT_LOAD segments. We ensure this here by removing such
3724 sections from the segment map. We also remove excluded
3725 sections. Finally, any PT_LOAD segment without sections is
3727 m
= &elf_tdata (abfd
)->segment_map
;
3730 unsigned int i
, new_count
;
3732 for (new_count
= 0, i
= 0; i
< (*m
)->count
; i
++)
3734 if (((*m
)->sections
[i
]->flags
& SEC_EXCLUDE
) == 0
3735 && (((*m
)->sections
[i
]->flags
& SEC_ALLOC
) != 0
3736 || (*m
)->p_type
!= PT_LOAD
))
3738 (*m
)->sections
[new_count
] = (*m
)->sections
[i
];
3742 (*m
)->count
= new_count
;
3744 if (remove_empty_load
&& (*m
)->p_type
== PT_LOAD
&& (*m
)->count
== 0)
3750 bed
= get_elf_backend_data (abfd
);
3751 if (bed
->elf_backend_modify_segment_map
!= NULL
)
3753 if (!(*bed
->elf_backend_modify_segment_map
) (abfd
, info
))
3760 /* Set up a mapping from BFD sections to program segments. */
3763 _bfd_elf_map_sections_to_segments (bfd
*abfd
, struct bfd_link_info
*info
)
3766 struct elf_segment_map
*m
;
3767 asection
**sections
= NULL
;
3768 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
3769 bfd_boolean no_user_phdrs
;
3771 no_user_phdrs
= elf_tdata (abfd
)->segment_map
== NULL
;
3774 info
->user_phdrs
= !no_user_phdrs
;
3776 if (no_user_phdrs
&& bfd_count_sections (abfd
) != 0)
3780 struct elf_segment_map
*mfirst
;
3781 struct elf_segment_map
**pm
;
3784 unsigned int phdr_index
;
3785 bfd_vma maxpagesize
;
3787 bfd_boolean phdr_in_segment
= TRUE
;
3788 bfd_boolean writable
;
3790 asection
*first_tls
= NULL
;
3791 asection
*dynsec
, *eh_frame_hdr
;
3793 bfd_vma addr_mask
, wrap_to
= 0;
3795 /* Select the allocated sections, and sort them. */
3797 sections
= (asection
**) bfd_malloc2 (bfd_count_sections (abfd
),
3798 sizeof (asection
*));
3799 if (sections
== NULL
)
3802 /* Calculate top address, avoiding undefined behaviour of shift
3803 left operator when shift count is equal to size of type
3805 addr_mask
= ((bfd_vma
) 1 << (bfd_arch_bits_per_address (abfd
) - 1)) - 1;
3806 addr_mask
= (addr_mask
<< 1) + 1;
3809 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
3811 if ((s
->flags
& SEC_ALLOC
) != 0)
3815 /* A wrapping section potentially clashes with header. */
3816 if (((s
->lma
+ s
->size
) & addr_mask
) < (s
->lma
& addr_mask
))
3817 wrap_to
= (s
->lma
+ s
->size
) & addr_mask
;
3820 BFD_ASSERT (i
<= bfd_count_sections (abfd
));
3823 qsort (sections
, (size_t) count
, sizeof (asection
*), elf_sort_sections
);
3825 /* Build the mapping. */
3830 /* If we have a .interp section, then create a PT_PHDR segment for
3831 the program headers and a PT_INTERP segment for the .interp
3833 s
= bfd_get_section_by_name (abfd
, ".interp");
3834 if (s
!= NULL
&& (s
->flags
& SEC_LOAD
) != 0)
3836 amt
= sizeof (struct elf_segment_map
);
3837 m
= (struct elf_segment_map
*) bfd_zalloc (abfd
, amt
);
3841 m
->p_type
= PT_PHDR
;
3842 /* FIXME: UnixWare and Solaris set PF_X, Irix 5 does not. */
3843 m
->p_flags
= PF_R
| PF_X
;
3844 m
->p_flags_valid
= 1;
3845 m
->includes_phdrs
= 1;
3850 amt
= sizeof (struct elf_segment_map
);
3851 m
= (struct elf_segment_map
*) bfd_zalloc (abfd
, amt
);
3855 m
->p_type
= PT_INTERP
;
3863 /* Look through the sections. We put sections in the same program
3864 segment when the start of the second section can be placed within
3865 a few bytes of the end of the first section. */
3869 maxpagesize
= bed
->maxpagesize
;
3871 dynsec
= bfd_get_section_by_name (abfd
, ".dynamic");
3873 && (dynsec
->flags
& SEC_LOAD
) == 0)
3876 /* Deal with -Ttext or something similar such that the first section
3877 is not adjacent to the program headers. This is an
3878 approximation, since at this point we don't know exactly how many
3879 program headers we will need. */
3882 bfd_size_type phdr_size
= elf_tdata (abfd
)->program_header_size
;
3884 if (phdr_size
== (bfd_size_type
) -1)
3885 phdr_size
= get_program_header_size (abfd
, info
);
3886 if ((abfd
->flags
& D_PAGED
) == 0
3887 || (sections
[0]->lma
& addr_mask
) < phdr_size
3888 || ((sections
[0]->lma
& addr_mask
) % maxpagesize
3889 < phdr_size
% maxpagesize
)
3890 || (sections
[0]->lma
& addr_mask
& -maxpagesize
) < wrap_to
)
3891 phdr_in_segment
= FALSE
;
3894 for (i
= 0, hdrpp
= sections
; i
< count
; i
++, hdrpp
++)
3897 bfd_boolean new_segment
;
3901 /* See if this section and the last one will fit in the same
3904 if (last_hdr
== NULL
)
3906 /* If we don't have a segment yet, then we don't need a new
3907 one (we build the last one after this loop). */
3908 new_segment
= FALSE
;
3910 else if (last_hdr
->lma
- last_hdr
->vma
!= hdr
->lma
- hdr
->vma
)
3912 /* If this section has a different relation between the
3913 virtual address and the load address, then we need a new
3917 else if (hdr
->lma
< last_hdr
->lma
+ last_size
3918 || last_hdr
->lma
+ last_size
< last_hdr
->lma
)
3920 /* If this section has a load address that makes it overlap
3921 the previous section, then we need a new segment. */
3924 /* In the next test we have to be careful when last_hdr->lma is close
3925 to the end of the address space. If the aligned address wraps
3926 around to the start of the address space, then there are no more
3927 pages left in memory and it is OK to assume that the current
3928 section can be included in the current segment. */
3929 else if ((BFD_ALIGN (last_hdr
->lma
+ last_size
, maxpagesize
) + maxpagesize
3931 && (BFD_ALIGN (last_hdr
->lma
+ last_size
, maxpagesize
) + maxpagesize
3934 /* If putting this section in this segment would force us to
3935 skip a page in the segment, then we need a new segment. */
3938 else if ((last_hdr
->flags
& (SEC_LOAD
| SEC_THREAD_LOCAL
)) == 0
3939 && (hdr
->flags
& (SEC_LOAD
| SEC_THREAD_LOCAL
)) != 0)
3941 /* We don't want to put a loadable section after a
3942 nonloadable section in the same segment.
3943 Consider .tbss sections as loadable for this purpose. */
3946 else if ((abfd
->flags
& D_PAGED
) == 0)
3948 /* If the file is not demand paged, which means that we
3949 don't require the sections to be correctly aligned in the
3950 file, then there is no other reason for a new segment. */
3951 new_segment
= FALSE
;
3954 && (hdr
->flags
& SEC_READONLY
) == 0
3955 && (((last_hdr
->lma
+ last_size
- 1) & -maxpagesize
)
3956 != (hdr
->lma
& -maxpagesize
)))
3958 /* We don't want to put a writable section in a read only
3959 segment, unless they are on the same page in memory
3960 anyhow. We already know that the last section does not
3961 bring us past the current section on the page, so the
3962 only case in which the new section is not on the same
3963 page as the previous section is when the previous section
3964 ends precisely on a page boundary. */
3969 /* Otherwise, we can use the same segment. */
3970 new_segment
= FALSE
;
3973 /* Allow interested parties a chance to override our decision. */
3974 if (last_hdr
!= NULL
3976 && info
->callbacks
->override_segment_assignment
!= NULL
)
3978 = info
->callbacks
->override_segment_assignment (info
, abfd
, hdr
,
3984 if ((hdr
->flags
& SEC_READONLY
) == 0)
3987 /* .tbss sections effectively have zero size. */
3988 if ((hdr
->flags
& (SEC_THREAD_LOCAL
| SEC_LOAD
))
3989 != SEC_THREAD_LOCAL
)
3990 last_size
= hdr
->size
;
3996 /* We need a new program segment. We must create a new program
3997 header holding all the sections from phdr_index until hdr. */
3999 m
= make_mapping (abfd
, sections
, phdr_index
, i
, phdr_in_segment
);
4006 if ((hdr
->flags
& SEC_READONLY
) == 0)
4012 /* .tbss sections effectively have zero size. */
4013 if ((hdr
->flags
& (SEC_THREAD_LOCAL
| SEC_LOAD
)) != SEC_THREAD_LOCAL
)
4014 last_size
= hdr
->size
;
4018 phdr_in_segment
= FALSE
;
4021 /* Create a final PT_LOAD program segment, but not if it's just
4023 if (last_hdr
!= NULL
4024 && (i
- phdr_index
!= 1
4025 || ((last_hdr
->flags
& (SEC_THREAD_LOCAL
| SEC_LOAD
))
4026 != SEC_THREAD_LOCAL
)))
4028 m
= make_mapping (abfd
, sections
, phdr_index
, i
, phdr_in_segment
);
4036 /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */
4039 m
= _bfd_elf_make_dynamic_segment (abfd
, dynsec
);
4046 /* For each batch of consecutive loadable .note sections,
4047 add a PT_NOTE segment. We don't use bfd_get_section_by_name,
4048 because if we link together nonloadable .note sections and
4049 loadable .note sections, we will generate two .note sections
4050 in the output file. FIXME: Using names for section types is
4052 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
4054 if ((s
->flags
& SEC_LOAD
) != 0
4055 && CONST_STRNEQ (s
->name
, ".note"))
4060 amt
= sizeof (struct elf_segment_map
);
4061 if (s
->alignment_power
== 2)
4062 for (s2
= s
; s2
->next
!= NULL
; s2
= s2
->next
)
4064 if (s2
->next
->alignment_power
== 2
4065 && (s2
->next
->flags
& SEC_LOAD
) != 0
4066 && CONST_STRNEQ (s2
->next
->name
, ".note")
4067 && align_power (s2
->lma
+ s2
->size
, 2)
4073 amt
+= (count
- 1) * sizeof (asection
*);
4074 m
= (struct elf_segment_map
*) bfd_zalloc (abfd
, amt
);
4078 m
->p_type
= PT_NOTE
;
4082 m
->sections
[m
->count
- count
--] = s
;
4083 BFD_ASSERT ((s
->flags
& SEC_THREAD_LOCAL
) == 0);
4086 m
->sections
[m
->count
- 1] = s
;
4087 BFD_ASSERT ((s
->flags
& SEC_THREAD_LOCAL
) == 0);
4091 if (s
->flags
& SEC_THREAD_LOCAL
)
4099 /* If there are any SHF_TLS output sections, add PT_TLS segment. */
4102 amt
= sizeof (struct elf_segment_map
);
4103 amt
+= (tls_count
- 1) * sizeof (asection
*);
4104 m
= (struct elf_segment_map
*) bfd_zalloc (abfd
, amt
);
4109 m
->count
= tls_count
;
4110 /* Mandated PF_R. */
4112 m
->p_flags_valid
= 1;
4113 for (i
= 0; i
< (unsigned int) tls_count
; ++i
)
4115 BFD_ASSERT (first_tls
->flags
& SEC_THREAD_LOCAL
);
4116 m
->sections
[i
] = first_tls
;
4117 first_tls
= first_tls
->next
;
4124 /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME
4126 eh_frame_hdr
= elf_tdata (abfd
)->eh_frame_hdr
;
4127 if (eh_frame_hdr
!= NULL
4128 && (eh_frame_hdr
->output_section
->flags
& SEC_LOAD
) != 0)
4130 amt
= sizeof (struct elf_segment_map
);
4131 m
= (struct elf_segment_map
*) bfd_zalloc (abfd
, amt
);
4135 m
->p_type
= PT_GNU_EH_FRAME
;
4137 m
->sections
[0] = eh_frame_hdr
->output_section
;
4143 if (elf_tdata (abfd
)->stack_flags
)
4145 amt
= sizeof (struct elf_segment_map
);
4146 m
= (struct elf_segment_map
*) bfd_zalloc (abfd
, amt
);
4150 m
->p_type
= PT_GNU_STACK
;
4151 m
->p_flags
= elf_tdata (abfd
)->stack_flags
;
4152 m
->p_flags_valid
= 1;
4158 if (info
!= NULL
&& info
->relro
)
4160 for (m
= mfirst
; m
!= NULL
; m
= m
->next
)
4162 if (m
->p_type
== PT_LOAD
4164 && m
->sections
[0]->vma
>= info
->relro_start
4165 && m
->sections
[0]->vma
< info
->relro_end
)
4168 while (--i
!= (unsigned) -1)
4169 if ((m
->sections
[i
]->flags
& (SEC_LOAD
| SEC_HAS_CONTENTS
))
4170 == (SEC_LOAD
| SEC_HAS_CONTENTS
))
4173 if (i
== (unsigned) -1)
4176 if (m
->sections
[i
]->vma
+ m
->sections
[i
]->size
4182 /* Make a PT_GNU_RELRO segment only when it isn't empty. */
4185 amt
= sizeof (struct elf_segment_map
);
4186 m
= (struct elf_segment_map
*) bfd_zalloc (abfd
, amt
);
4190 m
->p_type
= PT_GNU_RELRO
;
4192 m
->p_flags_valid
= 1;
4200 elf_tdata (abfd
)->segment_map
= mfirst
;
4203 if (!elf_modify_segment_map (abfd
, info
, no_user_phdrs
))
4206 for (count
= 0, m
= elf_tdata (abfd
)->segment_map
; m
!= NULL
; m
= m
->next
)
4208 elf_tdata (abfd
)->program_header_size
= count
* bed
->s
->sizeof_phdr
;
4213 if (sections
!= NULL
)
4218 /* Sort sections by address. */
4221 elf_sort_sections (const void *arg1
, const void *arg2
)
4223 const asection
*sec1
= *(const asection
**) arg1
;
4224 const asection
*sec2
= *(const asection
**) arg2
;
4225 bfd_size_type size1
, size2
;
4227 /* Sort by LMA first, since this is the address used to
4228 place the section into a segment. */
4229 if (sec1
->lma
< sec2
->lma
)
4231 else if (sec1
->lma
> sec2
->lma
)
4234 /* Then sort by VMA. Normally the LMA and the VMA will be
4235 the same, and this will do nothing. */
4236 if (sec1
->vma
< sec2
->vma
)
4238 else if (sec1
->vma
> sec2
->vma
)
4241 /* Put !SEC_LOAD sections after SEC_LOAD ones. */
4243 #define TOEND(x) (((x)->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0)
4249 /* If the indicies are the same, do not return 0
4250 here, but continue to try the next comparison. */
4251 if (sec1
->target_index
- sec2
->target_index
!= 0)
4252 return sec1
->target_index
- sec2
->target_index
;
4257 else if (TOEND (sec2
))
4262 /* Sort by size, to put zero sized sections
4263 before others at the same address. */
4265 size1
= (sec1
->flags
& SEC_LOAD
) ? sec1
->size
: 0;
4266 size2
= (sec2
->flags
& SEC_LOAD
) ? sec2
->size
: 0;
4273 return sec1
->target_index
- sec2
->target_index
;
4276 /* Ian Lance Taylor writes:
4278 We shouldn't be using % with a negative signed number. That's just
4279 not good. We have to make sure either that the number is not
4280 negative, or that the number has an unsigned type. When the types
4281 are all the same size they wind up as unsigned. When file_ptr is a
4282 larger signed type, the arithmetic winds up as signed long long,
4285 What we're trying to say here is something like ``increase OFF by
4286 the least amount that will cause it to be equal to the VMA modulo
4288 /* In other words, something like:
4290 vma_offset = m->sections[0]->vma % bed->maxpagesize;
4291 off_offset = off % bed->maxpagesize;
4292 if (vma_offset < off_offset)
4293 adjustment = vma_offset + bed->maxpagesize - off_offset;
4295 adjustment = vma_offset - off_offset;
4297 which can can be collapsed into the expression below. */
4300 vma_page_aligned_bias (bfd_vma vma
, ufile_ptr off
, bfd_vma maxpagesize
)
4302 return ((vma
- off
) % maxpagesize
);
4306 print_segment_map (const struct elf_segment_map
*m
)
4309 const char *pt
= get_segment_type (m
->p_type
);
4314 if (m
->p_type
>= PT_LOPROC
&& m
->p_type
<= PT_HIPROC
)
4315 sprintf (buf
, "LOPROC+%7.7x",
4316 (unsigned int) (m
->p_type
- PT_LOPROC
));
4317 else if (m
->p_type
>= PT_LOOS
&& m
->p_type
<= PT_HIOS
)
4318 sprintf (buf
, "LOOS+%7.7x",
4319 (unsigned int) (m
->p_type
- PT_LOOS
));
4321 snprintf (buf
, sizeof (buf
), "%8.8x",
4322 (unsigned int) m
->p_type
);
4326 fprintf (stderr
, "%s:", pt
);
4327 for (j
= 0; j
< m
->count
; j
++)
4328 fprintf (stderr
, " %s", m
->sections
[j
]->name
);
4334 write_zeros (bfd
*abfd
, file_ptr pos
, bfd_size_type len
)
4339 if (bfd_seek (abfd
, pos
, SEEK_SET
) != 0)
4341 buf
= bfd_zmalloc (len
);
4344 ret
= bfd_bwrite (buf
, len
, abfd
) == len
;
4349 /* Assign file positions to the sections based on the mapping from
4350 sections to segments. This function also sets up some fields in
4354 assign_file_positions_for_load_sections (bfd
*abfd
,
4355 struct bfd_link_info
*link_info
)
4357 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
4358 struct elf_segment_map
*m
;
4359 Elf_Internal_Phdr
*phdrs
;
4360 Elf_Internal_Phdr
*p
;
4362 bfd_size_type maxpagesize
;
4365 bfd_vma header_pad
= 0;
4367 if (link_info
== NULL
4368 && !_bfd_elf_map_sections_to_segments (abfd
, link_info
))
4372 for (m
= elf_tdata (abfd
)->segment_map
; m
!= NULL
; m
= m
->next
)
4376 header_pad
= m
->header_size
;
4381 elf_elfheader (abfd
)->e_phoff
= bed
->s
->sizeof_ehdr
;
4382 elf_elfheader (abfd
)->e_phentsize
= bed
->s
->sizeof_phdr
;
4386 /* PR binutils/12467. */
4387 elf_elfheader (abfd
)->e_phoff
= 0;
4388 elf_elfheader (abfd
)->e_phentsize
= 0;
4391 elf_elfheader (abfd
)->e_phnum
= alloc
;
4393 if (elf_tdata (abfd
)->program_header_size
== (bfd_size_type
) -1)
4394 elf_tdata (abfd
)->program_header_size
= alloc
* bed
->s
->sizeof_phdr
;
4396 BFD_ASSERT (elf_tdata (abfd
)->program_header_size
4397 >= alloc
* bed
->s
->sizeof_phdr
);
4401 elf_tdata (abfd
)->next_file_pos
= bed
->s
->sizeof_ehdr
;
4405 /* We're writing the size in elf_tdata (abfd)->program_header_size,
4406 see assign_file_positions_except_relocs, so make sure we have
4407 that amount allocated, with trailing space cleared.
4408 The variable alloc contains the computed need, while elf_tdata
4409 (abfd)->program_header_size contains the size used for the
4411 See ld/emultempl/elf-generic.em:gld${EMULATION_NAME}_map_segments
4412 where the layout is forced to according to a larger size in the
4413 last iterations for the testcase ld-elf/header. */
4414 BFD_ASSERT (elf_tdata (abfd
)->program_header_size
% bed
->s
->sizeof_phdr
4416 phdrs
= (Elf_Internal_Phdr
*)
4418 (elf_tdata (abfd
)->program_header_size
/ bed
->s
->sizeof_phdr
),
4419 sizeof (Elf_Internal_Phdr
));
4420 elf_tdata (abfd
)->phdr
= phdrs
;
4425 if ((abfd
->flags
& D_PAGED
) != 0)
4426 maxpagesize
= bed
->maxpagesize
;
4428 off
= bed
->s
->sizeof_ehdr
;
4429 off
+= alloc
* bed
->s
->sizeof_phdr
;
4430 if (header_pad
< (bfd_vma
) off
)
4436 for (m
= elf_tdata (abfd
)->segment_map
, p
= phdrs
, j
= 0;
4438 m
= m
->next
, p
++, j
++)
4442 bfd_boolean no_contents
;
4444 /* If elf_segment_map is not from map_sections_to_segments, the
4445 sections may not be correctly ordered. NOTE: sorting should
4446 not be done to the PT_NOTE section of a corefile, which may
4447 contain several pseudo-sections artificially created by bfd.
4448 Sorting these pseudo-sections breaks things badly. */
4450 && !(elf_elfheader (abfd
)->e_type
== ET_CORE
4451 && m
->p_type
== PT_NOTE
))
4452 qsort (m
->sections
, (size_t) m
->count
, sizeof (asection
*),
4455 /* An ELF segment (described by Elf_Internal_Phdr) may contain a
4456 number of sections with contents contributing to both p_filesz
4457 and p_memsz, followed by a number of sections with no contents
4458 that just contribute to p_memsz. In this loop, OFF tracks next
4459 available file offset for PT_LOAD and PT_NOTE segments. */
4460 p
->p_type
= m
->p_type
;
4461 p
->p_flags
= m
->p_flags
;
4466 p
->p_vaddr
= m
->sections
[0]->vma
- m
->p_vaddr_offset
;
4468 if (m
->p_paddr_valid
)
4469 p
->p_paddr
= m
->p_paddr
;
4470 else if (m
->count
== 0)
4473 p
->p_paddr
= m
->sections
[0]->lma
- m
->p_vaddr_offset
;
4475 if (p
->p_type
== PT_LOAD
4476 && (abfd
->flags
& D_PAGED
) != 0)
4478 /* p_align in demand paged PT_LOAD segments effectively stores
4479 the maximum page size. When copying an executable with
4480 objcopy, we set m->p_align from the input file. Use this
4481 value for maxpagesize rather than bed->maxpagesize, which
4482 may be different. Note that we use maxpagesize for PT_TLS
4483 segment alignment later in this function, so we are relying
4484 on at least one PT_LOAD segment appearing before a PT_TLS
4486 if (m
->p_align_valid
)
4487 maxpagesize
= m
->p_align
;
4489 p
->p_align
= maxpagesize
;
4491 else if (m
->p_align_valid
)
4492 p
->p_align
= m
->p_align
;
4493 else if (m
->count
== 0)
4494 p
->p_align
= 1 << bed
->s
->log_file_align
;
4498 no_contents
= FALSE
;
4500 if (p
->p_type
== PT_LOAD
4503 bfd_size_type align
;
4504 unsigned int align_power
= 0;
4506 if (m
->p_align_valid
)
4510 for (i
= 0, secpp
= m
->sections
; i
< m
->count
; i
++, secpp
++)
4512 unsigned int secalign
;
4514 secalign
= bfd_get_section_alignment (abfd
, *secpp
);
4515 if (secalign
> align_power
)
4516 align_power
= secalign
;
4518 align
= (bfd_size_type
) 1 << align_power
;
4519 if (align
< maxpagesize
)
4520 align
= maxpagesize
;
4523 for (i
= 0; i
< m
->count
; i
++)
4524 if ((m
->sections
[i
]->flags
& (SEC_LOAD
| SEC_HAS_CONTENTS
)) == 0)
4525 /* If we aren't making room for this section, then
4526 it must be SHT_NOBITS regardless of what we've
4527 set via struct bfd_elf_special_section. */
4528 elf_section_type (m
->sections
[i
]) = SHT_NOBITS
;
4530 /* Find out whether this segment contains any loadable
4533 for (i
= 0; i
< m
->count
; i
++)
4534 if (elf_section_type (m
->sections
[i
]) != SHT_NOBITS
)
4536 no_contents
= FALSE
;
4540 off_adjust
= vma_page_aligned_bias (p
->p_vaddr
, off
, align
);
4544 /* We shouldn't need to align the segment on disk since
4545 the segment doesn't need file space, but the gABI
4546 arguably requires the alignment and glibc ld.so
4547 checks it. So to comply with the alignment
4548 requirement but not waste file space, we adjust
4549 p_offset for just this segment. (OFF_ADJUST is
4550 subtracted from OFF later.) This may put p_offset
4551 past the end of file, but that shouldn't matter. */
4556 /* Make sure the .dynamic section is the first section in the
4557 PT_DYNAMIC segment. */
4558 else if (p
->p_type
== PT_DYNAMIC
4560 && strcmp (m
->sections
[0]->name
, ".dynamic") != 0)
4563 (_("%B: The first section in the PT_DYNAMIC segment is not the .dynamic section"),
4565 bfd_set_error (bfd_error_bad_value
);
4568 /* Set the note section type to SHT_NOTE. */
4569 else if (p
->p_type
== PT_NOTE
)
4570 for (i
= 0; i
< m
->count
; i
++)
4571 elf_section_type (m
->sections
[i
]) = SHT_NOTE
;
4577 if (m
->includes_filehdr
)
4579 if (!m
->p_flags_valid
)
4581 p
->p_filesz
= bed
->s
->sizeof_ehdr
;
4582 p
->p_memsz
= bed
->s
->sizeof_ehdr
;
4585 if (p
->p_vaddr
< (bfd_vma
) off
)
4587 (*_bfd_error_handler
)
4588 (_("%B: Not enough room for program headers, try linking with -N"),
4590 bfd_set_error (bfd_error_bad_value
);
4595 if (!m
->p_paddr_valid
)
4600 if (m
->includes_phdrs
)
4602 if (!m
->p_flags_valid
)
4605 if (!m
->includes_filehdr
)
4607 p
->p_offset
= bed
->s
->sizeof_ehdr
;
4611 p
->p_vaddr
-= off
- p
->p_offset
;
4612 if (!m
->p_paddr_valid
)
4613 p
->p_paddr
-= off
- p
->p_offset
;
4617 p
->p_filesz
+= alloc
* bed
->s
->sizeof_phdr
;
4618 p
->p_memsz
+= alloc
* bed
->s
->sizeof_phdr
;
4621 p
->p_filesz
+= header_pad
;
4622 p
->p_memsz
+= header_pad
;
4626 if (p
->p_type
== PT_LOAD
4627 || (p
->p_type
== PT_NOTE
&& bfd_get_format (abfd
) == bfd_core
))
4629 if (!m
->includes_filehdr
&& !m
->includes_phdrs
)
4635 adjust
= off
- (p
->p_offset
+ p
->p_filesz
);
4637 p
->p_filesz
+= adjust
;
4638 p
->p_memsz
+= adjust
;
4642 /* Set up p_filesz, p_memsz, p_align and p_flags from the section
4643 maps. Set filepos for sections in PT_LOAD segments, and in
4644 core files, for sections in PT_NOTE segments.
4645 assign_file_positions_for_non_load_sections will set filepos
4646 for other sections and update p_filesz for other segments. */
4647 for (i
= 0, secpp
= m
->sections
; i
< m
->count
; i
++, secpp
++)
4650 bfd_size_type align
;
4651 Elf_Internal_Shdr
*this_hdr
;
4654 this_hdr
= &elf_section_data (sec
)->this_hdr
;
4655 align
= (bfd_size_type
) 1 << bfd_get_section_alignment (abfd
, sec
);
4657 if ((p
->p_type
== PT_LOAD
4658 || p
->p_type
== PT_TLS
)
4659 && (this_hdr
->sh_type
!= SHT_NOBITS
4660 || ((this_hdr
->sh_flags
& SHF_ALLOC
) != 0
4661 && ((this_hdr
->sh_flags
& SHF_TLS
) == 0
4662 || p
->p_type
== PT_TLS
))))
4664 bfd_vma p_start
= p
->p_paddr
;
4665 bfd_vma p_end
= p_start
+ p
->p_memsz
;
4666 bfd_vma s_start
= sec
->lma
;
4667 bfd_vma adjust
= s_start
- p_end
;
4671 || p_end
< p_start
))
4673 (*_bfd_error_handler
)
4674 (_("%B: section %A lma %#lx adjusted to %#lx"), abfd
, sec
,
4675 (unsigned long) s_start
, (unsigned long) p_end
);
4679 p
->p_memsz
+= adjust
;
4681 if (this_hdr
->sh_type
!= SHT_NOBITS
)
4683 if (p
->p_filesz
+ adjust
< p
->p_memsz
)
4685 /* We have a PROGBITS section following NOBITS ones.
4686 Allocate file space for the NOBITS section(s) and
4688 adjust
= p
->p_memsz
- p
->p_filesz
;
4689 if (!write_zeros (abfd
, off
, adjust
))
4693 p
->p_filesz
+= adjust
;
4697 if (p
->p_type
== PT_NOTE
&& bfd_get_format (abfd
) == bfd_core
)
4699 /* The section at i == 0 is the one that actually contains
4703 this_hdr
->sh_offset
= sec
->filepos
= off
;
4704 off
+= this_hdr
->sh_size
;
4705 p
->p_filesz
= this_hdr
->sh_size
;
4711 /* The rest are fake sections that shouldn't be written. */
4720 if (p
->p_type
== PT_LOAD
)
4722 this_hdr
->sh_offset
= sec
->filepos
= off
;
4723 if (this_hdr
->sh_type
!= SHT_NOBITS
)
4724 off
+= this_hdr
->sh_size
;
4726 else if (this_hdr
->sh_type
== SHT_NOBITS
4727 && (this_hdr
->sh_flags
& SHF_TLS
) != 0
4728 && this_hdr
->sh_offset
== 0)
4730 /* This is a .tbss section that didn't get a PT_LOAD.
4731 (See _bfd_elf_map_sections_to_segments "Create a
4732 final PT_LOAD".) Set sh_offset to the value it
4733 would have if we had created a zero p_filesz and
4734 p_memsz PT_LOAD header for the section. This
4735 also makes the PT_TLS header have the same
4737 bfd_vma adjust
= vma_page_aligned_bias (this_hdr
->sh_addr
,
4739 this_hdr
->sh_offset
= sec
->filepos
= off
+ adjust
;
4742 if (this_hdr
->sh_type
!= SHT_NOBITS
)
4744 p
->p_filesz
+= this_hdr
->sh_size
;
4745 /* A load section without SHF_ALLOC is something like
4746 a note section in a PT_NOTE segment. These take
4747 file space but are not loaded into memory. */
4748 if ((this_hdr
->sh_flags
& SHF_ALLOC
) != 0)
4749 p
->p_memsz
+= this_hdr
->sh_size
;
4751 else if ((this_hdr
->sh_flags
& SHF_ALLOC
) != 0)
4753 if (p
->p_type
== PT_TLS
)
4754 p
->p_memsz
+= this_hdr
->sh_size
;
4756 /* .tbss is special. It doesn't contribute to p_memsz of
4758 else if ((this_hdr
->sh_flags
& SHF_TLS
) == 0)
4759 p
->p_memsz
+= this_hdr
->sh_size
;
4762 if (align
> p
->p_align
4763 && !m
->p_align_valid
4764 && (p
->p_type
!= PT_LOAD
4765 || (abfd
->flags
& D_PAGED
) == 0))
4769 if (!m
->p_flags_valid
)
4772 if ((this_hdr
->sh_flags
& SHF_EXECINSTR
) != 0)
4774 if ((this_hdr
->sh_flags
& SHF_WRITE
) != 0)
4780 /* Check that all sections are in a PT_LOAD segment.
4781 Don't check funky gdb generated core files. */
4782 if (p
->p_type
== PT_LOAD
&& bfd_get_format (abfd
) != bfd_core
)
4784 bfd_boolean check_vma
= TRUE
;
4786 for (i
= 1; i
< m
->count
; i
++)
4787 if (m
->sections
[i
]->vma
== m
->sections
[i
- 1]->vma
4788 && ELF_SECTION_SIZE (&(elf_section_data (m
->sections
[i
])
4789 ->this_hdr
), p
) != 0
4790 && ELF_SECTION_SIZE (&(elf_section_data (m
->sections
[i
- 1])
4791 ->this_hdr
), p
) != 0)
4793 /* Looks like we have overlays packed into the segment. */
4798 for (i
= 0; i
< m
->count
; i
++)
4800 Elf_Internal_Shdr
*this_hdr
;
4803 sec
= m
->sections
[i
];
4804 this_hdr
= &(elf_section_data(sec
)->this_hdr
);
4805 if (!ELF_SECTION_IN_SEGMENT_1 (this_hdr
, p
, check_vma
, 0)
4806 && !ELF_TBSS_SPECIAL (this_hdr
, p
))
4808 (*_bfd_error_handler
)
4809 (_("%B: section `%A' can't be allocated in segment %d"),
4811 print_segment_map (m
);
4817 elf_tdata (abfd
)->next_file_pos
= off
;
4821 /* Assign file positions for the other sections. */
4824 assign_file_positions_for_non_load_sections (bfd
*abfd
,
4825 struct bfd_link_info
*link_info
)
4827 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
4828 Elf_Internal_Shdr
**i_shdrpp
;
4829 Elf_Internal_Shdr
**hdrpp
;
4830 Elf_Internal_Phdr
*phdrs
;
4831 Elf_Internal_Phdr
*p
;
4832 struct elf_segment_map
*m
;
4833 struct elf_segment_map
*hdrs_segment
;
4834 bfd_vma filehdr_vaddr
, filehdr_paddr
;
4835 bfd_vma phdrs_vaddr
, phdrs_paddr
;
4837 unsigned int num_sec
;
4841 i_shdrpp
= elf_elfsections (abfd
);
4842 num_sec
= elf_numsections (abfd
);
4843 off
= elf_tdata (abfd
)->next_file_pos
;
4844 for (i
= 1, hdrpp
= i_shdrpp
+ 1; i
< num_sec
; i
++, hdrpp
++)
4846 struct elf_obj_tdata
*tdata
= elf_tdata (abfd
);
4847 Elf_Internal_Shdr
*hdr
;
4850 if (hdr
->bfd_section
!= NULL
4851 && (hdr
->bfd_section
->filepos
!= 0
4852 || (hdr
->sh_type
== SHT_NOBITS
4853 && hdr
->contents
== NULL
)))
4854 BFD_ASSERT (hdr
->sh_offset
== hdr
->bfd_section
->filepos
);
4855 else if ((hdr
->sh_flags
& SHF_ALLOC
) != 0)
4857 if (hdr
->sh_size
!= 0)
4858 (*_bfd_error_handler
)
4859 (_("%B: warning: allocated section `%s' not in segment"),
4861 (hdr
->bfd_section
== NULL
4863 : hdr
->bfd_section
->name
));
4864 /* We don't need to page align empty sections. */
4865 if ((abfd
->flags
& D_PAGED
) != 0 && hdr
->sh_size
!= 0)
4866 off
+= vma_page_aligned_bias (hdr
->sh_addr
, off
,
4869 off
+= vma_page_aligned_bias (hdr
->sh_addr
, off
,
4871 off
= _bfd_elf_assign_file_position_for_section (hdr
, off
,
4874 else if (((hdr
->sh_type
== SHT_REL
|| hdr
->sh_type
== SHT_RELA
)
4875 && hdr
->bfd_section
== NULL
)
4876 || hdr
== i_shdrpp
[tdata
->symtab_section
]
4877 || hdr
== i_shdrpp
[tdata
->symtab_shndx_section
]
4878 || hdr
== i_shdrpp
[tdata
->strtab_section
])
4879 hdr
->sh_offset
= -1;
4881 off
= _bfd_elf_assign_file_position_for_section (hdr
, off
, TRUE
);
4884 /* Now that we have set the section file positions, we can set up
4885 the file positions for the non PT_LOAD segments. */
4889 phdrs_vaddr
= bed
->maxpagesize
+ bed
->s
->sizeof_ehdr
;
4891 hdrs_segment
= NULL
;
4892 phdrs
= elf_tdata (abfd
)->phdr
;
4893 for (m
= elf_tdata (abfd
)->segment_map
, p
= phdrs
;
4898 if (p
->p_type
!= PT_LOAD
)
4901 if (m
->includes_filehdr
)
4903 filehdr_vaddr
= p
->p_vaddr
;
4904 filehdr_paddr
= p
->p_paddr
;
4906 if (m
->includes_phdrs
)
4908 phdrs_vaddr
= p
->p_vaddr
;
4909 phdrs_paddr
= p
->p_paddr
;
4910 if (m
->includes_filehdr
)
4913 phdrs_vaddr
+= bed
->s
->sizeof_ehdr
;
4914 phdrs_paddr
+= bed
->s
->sizeof_ehdr
;
4919 if (hdrs_segment
!= NULL
&& link_info
!= NULL
)
4921 /* There is a segment that contains both the file headers and the
4922 program headers, so provide a symbol __ehdr_start pointing there.
4923 A program can use this to examine itself robustly. */
4925 struct elf_link_hash_entry
*hash
4926 = elf_link_hash_lookup (elf_hash_table (link_info
), "__ehdr_start",
4927 FALSE
, FALSE
, TRUE
);
4928 /* If the symbol was referenced and not defined, define it. */
4930 && (hash
->root
.type
== bfd_link_hash_new
4931 || hash
->root
.type
== bfd_link_hash_undefined
4932 || hash
->root
.type
== bfd_link_hash_undefweak
4933 || hash
->root
.type
== bfd_link_hash_common
))
4936 if (hdrs_segment
->count
!= 0)
4937 /* The segment contains sections, so use the first one. */
4938 s
= hdrs_segment
->sections
[0];
4940 /* Use the first (i.e. lowest-addressed) section in any segment. */
4941 for (m
= elf_tdata (abfd
)->segment_map
; m
!= NULL
; m
= m
->next
)
4950 hash
->root
.u
.def
.value
= filehdr_vaddr
- s
->vma
;
4951 hash
->root
.u
.def
.section
= s
;
4955 hash
->root
.u
.def
.value
= filehdr_vaddr
;
4956 hash
->root
.u
.def
.section
= bfd_abs_section_ptr
;
4959 hash
->root
.type
= bfd_link_hash_defined
;
4960 hash
->def_regular
= 1;
4965 for (m
= elf_tdata (abfd
)->segment_map
, p
= phdrs
;
4969 if (p
->p_type
== PT_GNU_RELRO
)
4971 const Elf_Internal_Phdr
*lp
;
4972 struct elf_segment_map
*lm
;
4974 if (link_info
!= NULL
)
4976 /* During linking the range of the RELRO segment is passed
4978 for (lm
= elf_tdata (abfd
)->segment_map
, lp
= phdrs
;
4980 lm
= lm
->next
, lp
++)
4982 if (lp
->p_type
== PT_LOAD
4983 && lp
->p_vaddr
< link_info
->relro_end
4984 && lp
->p_vaddr
+ lp
->p_filesz
>= link_info
->relro_end
4986 && lm
->sections
[0]->vma
>= link_info
->relro_start
)
4990 /* PR ld/14207. If the RELRO segment doesn't fit in the
4991 LOAD segment, it should be removed. */
4992 BFD_ASSERT (lm
!= NULL
);
4996 /* Otherwise we are copying an executable or shared
4997 library, but we need to use the same linker logic. */
4998 for (lp
= phdrs
; lp
< phdrs
+ count
; ++lp
)
5000 if (lp
->p_type
== PT_LOAD
5001 && lp
->p_paddr
== p
->p_paddr
)
5006 if (lp
< phdrs
+ count
)
5008 p
->p_vaddr
= lp
->p_vaddr
;
5009 p
->p_paddr
= lp
->p_paddr
;
5010 p
->p_offset
= lp
->p_offset
;
5011 if (link_info
!= NULL
)
5012 p
->p_filesz
= link_info
->relro_end
- lp
->p_vaddr
;
5013 else if (m
->p_size_valid
)
5014 p
->p_filesz
= m
->p_size
;
5017 p
->p_memsz
= p
->p_filesz
;
5018 /* Preserve the alignment and flags if they are valid. The
5019 gold linker generates RW/4 for the PT_GNU_RELRO section.
5020 It is better for objcopy/strip to honor these attributes
5021 otherwise gdb will choke when using separate debug files.
5023 if (!m
->p_align_valid
)
5025 if (!m
->p_flags_valid
)
5026 p
->p_flags
= (lp
->p_flags
& ~PF_W
);
5030 memset (p
, 0, sizeof *p
);
5031 p
->p_type
= PT_NULL
;
5034 else if (m
->count
!= 0)
5036 if (p
->p_type
!= PT_LOAD
5037 && (p
->p_type
!= PT_NOTE
5038 || bfd_get_format (abfd
) != bfd_core
))
5040 BFD_ASSERT (!m
->includes_filehdr
&& !m
->includes_phdrs
);
5043 p
->p_offset
= m
->sections
[0]->filepos
;
5044 for (i
= m
->count
; i
-- != 0;)
5046 asection
*sect
= m
->sections
[i
];
5047 Elf_Internal_Shdr
*hdr
= &elf_section_data (sect
)->this_hdr
;
5048 if (hdr
->sh_type
!= SHT_NOBITS
)
5050 p
->p_filesz
= (sect
->filepos
- m
->sections
[0]->filepos
5057 else if (m
->includes_filehdr
)
5059 p
->p_vaddr
= filehdr_vaddr
;
5060 if (! m
->p_paddr_valid
)
5061 p
->p_paddr
= filehdr_paddr
;
5063 else if (m
->includes_phdrs
)
5065 p
->p_vaddr
= phdrs_vaddr
;
5066 if (! m
->p_paddr_valid
)
5067 p
->p_paddr
= phdrs_paddr
;
5071 elf_tdata (abfd
)->next_file_pos
= off
;
5076 /* Work out the file positions of all the sections. This is called by
5077 _bfd_elf_compute_section_file_positions. All the section sizes and
5078 VMAs must be known before this is called.
5080 Reloc sections come in two flavours: Those processed specially as
5081 "side-channel" data attached to a section to which they apply, and
5082 those that bfd doesn't process as relocations. The latter sort are
5083 stored in a normal bfd section by bfd_section_from_shdr. We don't
5084 consider the former sort here, unless they form part of the loadable
5085 image. Reloc sections not assigned here will be handled later by
5086 assign_file_positions_for_relocs.
5088 We also don't set the positions of the .symtab and .strtab here. */
5091 assign_file_positions_except_relocs (bfd
*abfd
,
5092 struct bfd_link_info
*link_info
)
5094 struct elf_obj_tdata
*tdata
= elf_tdata (abfd
);
5095 Elf_Internal_Ehdr
*i_ehdrp
= elf_elfheader (abfd
);
5097 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
5099 if ((abfd
->flags
& (EXEC_P
| DYNAMIC
)) == 0
5100 && bfd_get_format (abfd
) != bfd_core
)
5102 Elf_Internal_Shdr
** const i_shdrpp
= elf_elfsections (abfd
);
5103 unsigned int num_sec
= elf_numsections (abfd
);
5104 Elf_Internal_Shdr
**hdrpp
;
5107 /* Start after the ELF header. */
5108 off
= i_ehdrp
->e_ehsize
;
5110 /* We are not creating an executable, which means that we are
5111 not creating a program header, and that the actual order of
5112 the sections in the file is unimportant. */
5113 for (i
= 1, hdrpp
= i_shdrpp
+ 1; i
< num_sec
; i
++, hdrpp
++)
5115 Elf_Internal_Shdr
*hdr
;
5118 if (((hdr
->sh_type
== SHT_REL
|| hdr
->sh_type
== SHT_RELA
)
5119 && hdr
->bfd_section
== NULL
)
5120 || i
== tdata
->symtab_section
5121 || i
== tdata
->symtab_shndx_section
5122 || i
== tdata
->strtab_section
)
5124 hdr
->sh_offset
= -1;
5127 off
= _bfd_elf_assign_file_position_for_section (hdr
, off
, TRUE
);
5134 /* Assign file positions for the loaded sections based on the
5135 assignment of sections to segments. */
5136 if (!assign_file_positions_for_load_sections (abfd
, link_info
))
5139 /* And for non-load sections. */
5140 if (!assign_file_positions_for_non_load_sections (abfd
, link_info
))
5143 if (bed
->elf_backend_modify_program_headers
!= NULL
)
5145 if (!(*bed
->elf_backend_modify_program_headers
) (abfd
, link_info
))
5149 /* Write out the program headers. */
5150 alloc
= tdata
->program_header_size
/ bed
->s
->sizeof_phdr
;
5151 if (bfd_seek (abfd
, (bfd_signed_vma
) bed
->s
->sizeof_ehdr
, SEEK_SET
) != 0
5152 || bed
->s
->write_out_phdrs (abfd
, tdata
->phdr
, alloc
) != 0)
5155 off
= tdata
->next_file_pos
;
5158 /* Place the section headers. */
5159 off
= align_file_position (off
, 1 << bed
->s
->log_file_align
);
5160 i_ehdrp
->e_shoff
= off
;
5161 off
+= i_ehdrp
->e_shnum
* i_ehdrp
->e_shentsize
;
5163 tdata
->next_file_pos
= off
;
5169 prep_headers (bfd
*abfd
)
5171 Elf_Internal_Ehdr
*i_ehdrp
; /* Elf file header, internal form. */
5172 struct elf_strtab_hash
*shstrtab
;
5173 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
5175 i_ehdrp
= elf_elfheader (abfd
);
5177 shstrtab
= _bfd_elf_strtab_init ();
5178 if (shstrtab
== NULL
)
5181 elf_shstrtab (abfd
) = shstrtab
;
5183 i_ehdrp
->e_ident
[EI_MAG0
] = ELFMAG0
;
5184 i_ehdrp
->e_ident
[EI_MAG1
] = ELFMAG1
;
5185 i_ehdrp
->e_ident
[EI_MAG2
] = ELFMAG2
;
5186 i_ehdrp
->e_ident
[EI_MAG3
] = ELFMAG3
;
5188 i_ehdrp
->e_ident
[EI_CLASS
] = bed
->s
->elfclass
;
5189 i_ehdrp
->e_ident
[EI_DATA
] =
5190 bfd_big_endian (abfd
) ? ELFDATA2MSB
: ELFDATA2LSB
;
5191 i_ehdrp
->e_ident
[EI_VERSION
] = bed
->s
->ev_current
;
5193 if ((abfd
->flags
& DYNAMIC
) != 0)
5194 i_ehdrp
->e_type
= ET_DYN
;
5195 else if ((abfd
->flags
& EXEC_P
) != 0)
5196 i_ehdrp
->e_type
= ET_EXEC
;
5197 else if (bfd_get_format (abfd
) == bfd_core
)
5198 i_ehdrp
->e_type
= ET_CORE
;
5200 i_ehdrp
->e_type
= ET_REL
;
5202 switch (bfd_get_arch (abfd
))
5204 case bfd_arch_unknown
:
5205 i_ehdrp
->e_machine
= EM_NONE
;
5208 /* There used to be a long list of cases here, each one setting
5209 e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE
5210 in the corresponding bfd definition. To avoid duplication,
5211 the switch was removed. Machines that need special handling
5212 can generally do it in elf_backend_final_write_processing(),
5213 unless they need the information earlier than the final write.
5214 Such need can generally be supplied by replacing the tests for
5215 e_machine with the conditions used to determine it. */
5217 i_ehdrp
->e_machine
= bed
->elf_machine_code
;
5220 i_ehdrp
->e_version
= bed
->s
->ev_current
;
5221 i_ehdrp
->e_ehsize
= bed
->s
->sizeof_ehdr
;
5223 /* No program header, for now. */
5224 i_ehdrp
->e_phoff
= 0;
5225 i_ehdrp
->e_phentsize
= 0;
5226 i_ehdrp
->e_phnum
= 0;
5228 /* Each bfd section is section header entry. */
5229 i_ehdrp
->e_entry
= bfd_get_start_address (abfd
);
5230 i_ehdrp
->e_shentsize
= bed
->s
->sizeof_shdr
;
5232 /* If we're building an executable, we'll need a program header table. */
5233 if (abfd
->flags
& EXEC_P
)
5234 /* It all happens later. */
5238 i_ehdrp
->e_phentsize
= 0;
5239 i_ehdrp
->e_phoff
= 0;
5242 elf_tdata (abfd
)->symtab_hdr
.sh_name
=
5243 (unsigned int) _bfd_elf_strtab_add (shstrtab
, ".symtab", FALSE
);
5244 elf_tdata (abfd
)->strtab_hdr
.sh_name
=
5245 (unsigned int) _bfd_elf_strtab_add (shstrtab
, ".strtab", FALSE
);
5246 elf_tdata (abfd
)->shstrtab_hdr
.sh_name
=
5247 (unsigned int) _bfd_elf_strtab_add (shstrtab
, ".shstrtab", FALSE
);
5248 if (elf_tdata (abfd
)->symtab_hdr
.sh_name
== (unsigned int) -1
5249 || elf_tdata (abfd
)->symtab_hdr
.sh_name
== (unsigned int) -1
5250 || elf_tdata (abfd
)->shstrtab_hdr
.sh_name
== (unsigned int) -1)
5256 /* Assign file positions for all the reloc sections which are not part
5257 of the loadable file image. */
5260 _bfd_elf_assign_file_positions_for_relocs (bfd
*abfd
)
5263 unsigned int i
, num_sec
;
5264 Elf_Internal_Shdr
**shdrpp
;
5266 off
= elf_tdata (abfd
)->next_file_pos
;
5268 num_sec
= elf_numsections (abfd
);
5269 for (i
= 1, shdrpp
= elf_elfsections (abfd
) + 1; i
< num_sec
; i
++, shdrpp
++)
5271 Elf_Internal_Shdr
*shdrp
;
5274 if ((shdrp
->sh_type
== SHT_REL
|| shdrp
->sh_type
== SHT_RELA
)
5275 && shdrp
->sh_offset
== -1)
5276 off
= _bfd_elf_assign_file_position_for_section (shdrp
, off
, TRUE
);
5279 elf_tdata (abfd
)->next_file_pos
= off
;
5283 _bfd_elf_write_object_contents (bfd
*abfd
)
5285 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
5286 Elf_Internal_Shdr
**i_shdrp
;
5288 unsigned int count
, num_sec
;
5290 if (! abfd
->output_has_begun
5291 && ! _bfd_elf_compute_section_file_positions (abfd
, NULL
))
5294 i_shdrp
= elf_elfsections (abfd
);
5297 bfd_map_over_sections (abfd
, bed
->s
->write_relocs
, &failed
);
5301 _bfd_elf_assign_file_positions_for_relocs (abfd
);
5303 /* After writing the headers, we need to write the sections too... */
5304 num_sec
= elf_numsections (abfd
);
5305 for (count
= 1; count
< num_sec
; count
++)
5307 if (bed
->elf_backend_section_processing
)
5308 (*bed
->elf_backend_section_processing
) (abfd
, i_shdrp
[count
]);
5309 if (i_shdrp
[count
]->contents
)
5311 bfd_size_type amt
= i_shdrp
[count
]->sh_size
;
5313 if (bfd_seek (abfd
, i_shdrp
[count
]->sh_offset
, SEEK_SET
) != 0
5314 || bfd_bwrite (i_shdrp
[count
]->contents
, amt
, abfd
) != amt
)
5319 /* Write out the section header names. */
5320 if (elf_shstrtab (abfd
) != NULL
5321 && (bfd_seek (abfd
, elf_tdata (abfd
)->shstrtab_hdr
.sh_offset
, SEEK_SET
) != 0
5322 || !_bfd_elf_strtab_emit (abfd
, elf_shstrtab (abfd
))))
5325 if (bed
->elf_backend_final_write_processing
)
5326 (*bed
->elf_backend_final_write_processing
) (abfd
,
5327 elf_tdata (abfd
)->linker
);
5329 if (!bed
->s
->write_shdrs_and_ehdr (abfd
))
5332 /* This is last since write_shdrs_and_ehdr can touch i_shdrp[0]. */
5333 if (elf_tdata (abfd
)->after_write_object_contents
)
5334 return (*elf_tdata (abfd
)->after_write_object_contents
) (abfd
);
5340 _bfd_elf_write_corefile_contents (bfd
*abfd
)
5342 /* Hopefully this can be done just like an object file. */
5343 return _bfd_elf_write_object_contents (abfd
);
5346 /* Given a section, search the header to find them. */
5349 _bfd_elf_section_from_bfd_section (bfd
*abfd
, struct bfd_section
*asect
)
5351 const struct elf_backend_data
*bed
;
5352 unsigned int sec_index
;
5354 if (elf_section_data (asect
) != NULL
5355 && elf_section_data (asect
)->this_idx
!= 0)
5356 return elf_section_data (asect
)->this_idx
;
5358 if (bfd_is_abs_section (asect
))
5359 sec_index
= SHN_ABS
;
5360 else if (bfd_is_com_section (asect
))
5361 sec_index
= SHN_COMMON
;
5362 else if (bfd_is_und_section (asect
))
5363 sec_index
= SHN_UNDEF
;
5365 sec_index
= SHN_BAD
;
5367 bed
= get_elf_backend_data (abfd
);
5368 if (bed
->elf_backend_section_from_bfd_section
)
5370 int retval
= sec_index
;
5372 if ((*bed
->elf_backend_section_from_bfd_section
) (abfd
, asect
, &retval
))
5376 if (sec_index
== SHN_BAD
)
5377 bfd_set_error (bfd_error_nonrepresentable_section
);
5382 /* Given a BFD symbol, return the index in the ELF symbol table, or -1
5386 _bfd_elf_symbol_from_bfd_symbol (bfd
*abfd
, asymbol
**asym_ptr_ptr
)
5388 asymbol
*asym_ptr
= *asym_ptr_ptr
;
5390 flagword flags
= asym_ptr
->flags
;
5392 /* When gas creates relocations against local labels, it creates its
5393 own symbol for the section, but does put the symbol into the
5394 symbol chain, so udata is 0. When the linker is generating
5395 relocatable output, this section symbol may be for one of the
5396 input sections rather than the output section. */
5397 if (asym_ptr
->udata
.i
== 0
5398 && (flags
& BSF_SECTION_SYM
)
5399 && asym_ptr
->section
)
5404 sec
= asym_ptr
->section
;
5405 if (sec
->owner
!= abfd
&& sec
->output_section
!= NULL
)
5406 sec
= sec
->output_section
;
5407 if (sec
->owner
== abfd
5408 && (indx
= sec
->index
) < elf_num_section_syms (abfd
)
5409 && elf_section_syms (abfd
)[indx
] != NULL
)
5410 asym_ptr
->udata
.i
= elf_section_syms (abfd
)[indx
]->udata
.i
;
5413 idx
= asym_ptr
->udata
.i
;
5417 /* This case can occur when using --strip-symbol on a symbol
5418 which is used in a relocation entry. */
5419 (*_bfd_error_handler
)
5420 (_("%B: symbol `%s' required but not present"),
5421 abfd
, bfd_asymbol_name (asym_ptr
));
5422 bfd_set_error (bfd_error_no_symbols
);
5429 "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8lx\n",
5430 (long) asym_ptr
, asym_ptr
->name
, idx
, (long) flags
);
5438 /* Rewrite program header information. */
5441 rewrite_elf_program_header (bfd
*ibfd
, bfd
*obfd
)
5443 Elf_Internal_Ehdr
*iehdr
;
5444 struct elf_segment_map
*map
;
5445 struct elf_segment_map
*map_first
;
5446 struct elf_segment_map
**pointer_to_map
;
5447 Elf_Internal_Phdr
*segment
;
5450 unsigned int num_segments
;
5451 bfd_boolean phdr_included
= FALSE
;
5452 bfd_boolean p_paddr_valid
;
5453 bfd_vma maxpagesize
;
5454 struct elf_segment_map
*phdr_adjust_seg
= NULL
;
5455 unsigned int phdr_adjust_num
= 0;
5456 const struct elf_backend_data
*bed
;
5458 bed
= get_elf_backend_data (ibfd
);
5459 iehdr
= elf_elfheader (ibfd
);
5462 pointer_to_map
= &map_first
;
5464 num_segments
= elf_elfheader (ibfd
)->e_phnum
;
5465 maxpagesize
= get_elf_backend_data (obfd
)->maxpagesize
;
5467 /* Returns the end address of the segment + 1. */
5468 #define SEGMENT_END(segment, start) \
5469 (start + (segment->p_memsz > segment->p_filesz \
5470 ? segment->p_memsz : segment->p_filesz))
5472 #define SECTION_SIZE(section, segment) \
5473 (((section->flags & (SEC_HAS_CONTENTS | SEC_THREAD_LOCAL)) \
5474 != SEC_THREAD_LOCAL || segment->p_type == PT_TLS) \
5475 ? section->size : 0)
5477 /* Returns TRUE if the given section is contained within
5478 the given segment. VMA addresses are compared. */
5479 #define IS_CONTAINED_BY_VMA(section, segment) \
5480 (section->vma >= segment->p_vaddr \
5481 && (section->vma + SECTION_SIZE (section, segment) \
5482 <= (SEGMENT_END (segment, segment->p_vaddr))))
5484 /* Returns TRUE if the given section is contained within
5485 the given segment. LMA addresses are compared. */
5486 #define IS_CONTAINED_BY_LMA(section, segment, base) \
5487 (section->lma >= base \
5488 && (section->lma + SECTION_SIZE (section, segment) \
5489 <= SEGMENT_END (segment, base)))
5491 /* Handle PT_NOTE segment. */
5492 #define IS_NOTE(p, s) \
5493 (p->p_type == PT_NOTE \
5494 && elf_section_type (s) == SHT_NOTE \
5495 && (bfd_vma) s->filepos >= p->p_offset \
5496 && ((bfd_vma) s->filepos + s->size \
5497 <= p->p_offset + p->p_filesz))
5499 /* Special case: corefile "NOTE" section containing regs, prpsinfo
5501 #define IS_COREFILE_NOTE(p, s) \
5503 && bfd_get_format (ibfd) == bfd_core \
5507 /* The complicated case when p_vaddr is 0 is to handle the Solaris
5508 linker, which generates a PT_INTERP section with p_vaddr and
5509 p_memsz set to 0. */
5510 #define IS_SOLARIS_PT_INTERP(p, s) \
5512 && p->p_paddr == 0 \
5513 && p->p_memsz == 0 \
5514 && p->p_filesz > 0 \
5515 && (s->flags & SEC_HAS_CONTENTS) != 0 \
5517 && (bfd_vma) s->filepos >= p->p_offset \
5518 && ((bfd_vma) s->filepos + s->size \
5519 <= p->p_offset + p->p_filesz))
5521 /* Decide if the given section should be included in the given segment.
5522 A section will be included if:
5523 1. It is within the address space of the segment -- we use the LMA
5524 if that is set for the segment and the VMA otherwise,
5525 2. It is an allocated section or a NOTE section in a PT_NOTE
5527 3. There is an output section associated with it,
5528 4. The section has not already been allocated to a previous segment.
5529 5. PT_GNU_STACK segments do not include any sections.
5530 6. PT_TLS segment includes only SHF_TLS sections.
5531 7. SHF_TLS sections are only in PT_TLS or PT_LOAD segments.
5532 8. PT_DYNAMIC should not contain empty sections at the beginning
5533 (with the possible exception of .dynamic). */
5534 #define IS_SECTION_IN_INPUT_SEGMENT(section, segment, bed) \
5535 ((((segment->p_paddr \
5536 ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr) \
5537 : IS_CONTAINED_BY_VMA (section, segment)) \
5538 && (section->flags & SEC_ALLOC) != 0) \
5539 || IS_NOTE (segment, section)) \
5540 && segment->p_type != PT_GNU_STACK \
5541 && (segment->p_type != PT_TLS \
5542 || (section->flags & SEC_THREAD_LOCAL)) \
5543 && (segment->p_type == PT_LOAD \
5544 || segment->p_type == PT_TLS \
5545 || (section->flags & SEC_THREAD_LOCAL) == 0) \
5546 && (segment->p_type != PT_DYNAMIC \
5547 || SECTION_SIZE (section, segment) > 0 \
5548 || (segment->p_paddr \
5549 ? segment->p_paddr != section->lma \
5550 : segment->p_vaddr != section->vma) \
5551 || (strcmp (bfd_get_section_name (ibfd, section), ".dynamic") \
5553 && !section->segment_mark)
5555 /* If the output section of a section in the input segment is NULL,
5556 it is removed from the corresponding output segment. */
5557 #define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed) \
5558 (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed) \
5559 && section->output_section != NULL)
5561 /* Returns TRUE iff seg1 starts after the end of seg2. */
5562 #define SEGMENT_AFTER_SEGMENT(seg1, seg2, field) \
5563 (seg1->field >= SEGMENT_END (seg2, seg2->field))
5565 /* Returns TRUE iff seg1 and seg2 overlap. Segments overlap iff both
5566 their VMA address ranges and their LMA address ranges overlap.
5567 It is possible to have overlapping VMA ranges without overlapping LMA
5568 ranges. RedBoot images for example can have both .data and .bss mapped
5569 to the same VMA range, but with the .data section mapped to a different
5571 #define SEGMENT_OVERLAPS(seg1, seg2) \
5572 ( !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_vaddr) \
5573 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_vaddr)) \
5574 && !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_paddr) \
5575 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_paddr)))
5577 /* Initialise the segment mark field. */
5578 for (section
= ibfd
->sections
; section
!= NULL
; section
= section
->next
)
5579 section
->segment_mark
= FALSE
;
5581 /* The Solaris linker creates program headers in which all the
5582 p_paddr fields are zero. When we try to objcopy or strip such a
5583 file, we get confused. Check for this case, and if we find it
5584 don't set the p_paddr_valid fields. */
5585 p_paddr_valid
= FALSE
;
5586 for (i
= 0, segment
= elf_tdata (ibfd
)->phdr
;
5589 if (segment
->p_paddr
!= 0)
5591 p_paddr_valid
= TRUE
;
5595 /* Scan through the segments specified in the program header
5596 of the input BFD. For this first scan we look for overlaps
5597 in the loadable segments. These can be created by weird
5598 parameters to objcopy. Also, fix some solaris weirdness. */
5599 for (i
= 0, segment
= elf_tdata (ibfd
)->phdr
;
5604 Elf_Internal_Phdr
*segment2
;
5606 if (segment
->p_type
== PT_INTERP
)
5607 for (section
= ibfd
->sections
; section
; section
= section
->next
)
5608 if (IS_SOLARIS_PT_INTERP (segment
, section
))
5610 /* Mininal change so that the normal section to segment
5611 assignment code will work. */
5612 segment
->p_vaddr
= section
->vma
;
5616 if (segment
->p_type
!= PT_LOAD
)
5618 /* Remove PT_GNU_RELRO segment. */
5619 if (segment
->p_type
== PT_GNU_RELRO
)
5620 segment
->p_type
= PT_NULL
;
5624 /* Determine if this segment overlaps any previous segments. */
5625 for (j
= 0, segment2
= elf_tdata (ibfd
)->phdr
; j
< i
; j
++, segment2
++)
5627 bfd_signed_vma extra_length
;
5629 if (segment2
->p_type
!= PT_LOAD
5630 || !SEGMENT_OVERLAPS (segment
, segment2
))
5633 /* Merge the two segments together. */
5634 if (segment2
->p_vaddr
< segment
->p_vaddr
)
5636 /* Extend SEGMENT2 to include SEGMENT and then delete
5638 extra_length
= (SEGMENT_END (segment
, segment
->p_vaddr
)
5639 - SEGMENT_END (segment2
, segment2
->p_vaddr
));
5641 if (extra_length
> 0)
5643 segment2
->p_memsz
+= extra_length
;
5644 segment2
->p_filesz
+= extra_length
;
5647 segment
->p_type
= PT_NULL
;
5649 /* Since we have deleted P we must restart the outer loop. */
5651 segment
= elf_tdata (ibfd
)->phdr
;
5656 /* Extend SEGMENT to include SEGMENT2 and then delete
5658 extra_length
= (SEGMENT_END (segment2
, segment2
->p_vaddr
)
5659 - SEGMENT_END (segment
, segment
->p_vaddr
));
5661 if (extra_length
> 0)
5663 segment
->p_memsz
+= extra_length
;
5664 segment
->p_filesz
+= extra_length
;
5667 segment2
->p_type
= PT_NULL
;
5672 /* The second scan attempts to assign sections to segments. */
5673 for (i
= 0, segment
= elf_tdata (ibfd
)->phdr
;
5677 unsigned int section_count
;
5678 asection
**sections
;
5679 asection
*output_section
;
5681 bfd_vma matching_lma
;
5682 bfd_vma suggested_lma
;
5685 asection
*first_section
;
5686 bfd_boolean first_matching_lma
;
5687 bfd_boolean first_suggested_lma
;
5689 if (segment
->p_type
== PT_NULL
)
5692 first_section
= NULL
;
5693 /* Compute how many sections might be placed into this segment. */
5694 for (section
= ibfd
->sections
, section_count
= 0;
5696 section
= section
->next
)
5698 /* Find the first section in the input segment, which may be
5699 removed from the corresponding output segment. */
5700 if (IS_SECTION_IN_INPUT_SEGMENT (section
, segment
, bed
))
5702 if (first_section
== NULL
)
5703 first_section
= section
;
5704 if (section
->output_section
!= NULL
)
5709 /* Allocate a segment map big enough to contain
5710 all of the sections we have selected. */
5711 amt
= sizeof (struct elf_segment_map
);
5712 amt
+= ((bfd_size_type
) section_count
- 1) * sizeof (asection
*);
5713 map
= (struct elf_segment_map
*) bfd_zalloc (obfd
, amt
);
5717 /* Initialise the fields of the segment map. Default to
5718 using the physical address of the segment in the input BFD. */
5720 map
->p_type
= segment
->p_type
;
5721 map
->p_flags
= segment
->p_flags
;
5722 map
->p_flags_valid
= 1;
5724 /* If the first section in the input segment is removed, there is
5725 no need to preserve segment physical address in the corresponding
5727 if (!first_section
|| first_section
->output_section
!= NULL
)
5729 map
->p_paddr
= segment
->p_paddr
;
5730 map
->p_paddr_valid
= p_paddr_valid
;
5733 /* Determine if this segment contains the ELF file header
5734 and if it contains the program headers themselves. */
5735 map
->includes_filehdr
= (segment
->p_offset
== 0
5736 && segment
->p_filesz
>= iehdr
->e_ehsize
);
5737 map
->includes_phdrs
= 0;
5739 if (!phdr_included
|| segment
->p_type
!= PT_LOAD
)
5741 map
->includes_phdrs
=
5742 (segment
->p_offset
<= (bfd_vma
) iehdr
->e_phoff
5743 && (segment
->p_offset
+ segment
->p_filesz
5744 >= ((bfd_vma
) iehdr
->e_phoff
5745 + iehdr
->e_phnum
* iehdr
->e_phentsize
)));
5747 if (segment
->p_type
== PT_LOAD
&& map
->includes_phdrs
)
5748 phdr_included
= TRUE
;
5751 if (section_count
== 0)
5753 /* Special segments, such as the PT_PHDR segment, may contain
5754 no sections, but ordinary, loadable segments should contain
5755 something. They are allowed by the ELF spec however, so only
5756 a warning is produced. */
5757 if (segment
->p_type
== PT_LOAD
)
5758 (*_bfd_error_handler
) (_("%B: warning: Empty loadable segment"
5759 " detected, is this intentional ?\n"),
5763 *pointer_to_map
= map
;
5764 pointer_to_map
= &map
->next
;
5769 /* Now scan the sections in the input BFD again and attempt
5770 to add their corresponding output sections to the segment map.
5771 The problem here is how to handle an output section which has
5772 been moved (ie had its LMA changed). There are four possibilities:
5774 1. None of the sections have been moved.
5775 In this case we can continue to use the segment LMA from the
5778 2. All of the sections have been moved by the same amount.
5779 In this case we can change the segment's LMA to match the LMA
5780 of the first section.
5782 3. Some of the sections have been moved, others have not.
5783 In this case those sections which have not been moved can be
5784 placed in the current segment which will have to have its size,
5785 and possibly its LMA changed, and a new segment or segments will
5786 have to be created to contain the other sections.
5788 4. The sections have been moved, but not by the same amount.
5789 In this case we can change the segment's LMA to match the LMA
5790 of the first section and we will have to create a new segment
5791 or segments to contain the other sections.
5793 In order to save time, we allocate an array to hold the section
5794 pointers that we are interested in. As these sections get assigned
5795 to a segment, they are removed from this array. */
5797 sections
= (asection
**) bfd_malloc2 (section_count
, sizeof (asection
*));
5798 if (sections
== NULL
)
5801 /* Step One: Scan for segment vs section LMA conflicts.
5802 Also add the sections to the section array allocated above.
5803 Also add the sections to the current segment. In the common
5804 case, where the sections have not been moved, this means that
5805 we have completely filled the segment, and there is nothing
5810 first_matching_lma
= TRUE
;
5811 first_suggested_lma
= TRUE
;
5813 for (section
= ibfd
->sections
;
5815 section
= section
->next
)
5816 if (section
== first_section
)
5819 for (j
= 0; section
!= NULL
; section
= section
->next
)
5821 if (INCLUDE_SECTION_IN_SEGMENT (section
, segment
, bed
))
5823 output_section
= section
->output_section
;
5825 sections
[j
++] = section
;
5827 /* The Solaris native linker always sets p_paddr to 0.
5828 We try to catch that case here, and set it to the
5829 correct value. Note - some backends require that
5830 p_paddr be left as zero. */
5832 && segment
->p_vaddr
!= 0
5833 && !bed
->want_p_paddr_set_to_zero
5835 && output_section
->lma
!= 0
5836 && output_section
->vma
== (segment
->p_vaddr
5837 + (map
->includes_filehdr
5840 + (map
->includes_phdrs
5842 * iehdr
->e_phentsize
)
5844 map
->p_paddr
= segment
->p_vaddr
;
5846 /* Match up the physical address of the segment with the
5847 LMA address of the output section. */
5848 if (IS_CONTAINED_BY_LMA (output_section
, segment
, map
->p_paddr
)
5849 || IS_COREFILE_NOTE (segment
, section
)
5850 || (bed
->want_p_paddr_set_to_zero
5851 && IS_CONTAINED_BY_VMA (output_section
, segment
)))
5853 if (first_matching_lma
|| output_section
->lma
< matching_lma
)
5855 matching_lma
= output_section
->lma
;
5856 first_matching_lma
= FALSE
;
5859 /* We assume that if the section fits within the segment
5860 then it does not overlap any other section within that
5862 map
->sections
[isec
++] = output_section
;
5864 else if (first_suggested_lma
)
5866 suggested_lma
= output_section
->lma
;
5867 first_suggested_lma
= FALSE
;
5870 if (j
== section_count
)
5875 BFD_ASSERT (j
== section_count
);
5877 /* Step Two: Adjust the physical address of the current segment,
5879 if (isec
== section_count
)
5881 /* All of the sections fitted within the segment as currently
5882 specified. This is the default case. Add the segment to
5883 the list of built segments and carry on to process the next
5884 program header in the input BFD. */
5885 map
->count
= section_count
;
5886 *pointer_to_map
= map
;
5887 pointer_to_map
= &map
->next
;
5890 && !bed
->want_p_paddr_set_to_zero
5891 && matching_lma
!= map
->p_paddr
5892 && !map
->includes_filehdr
5893 && !map
->includes_phdrs
)
5894 /* There is some padding before the first section in the
5895 segment. So, we must account for that in the output
5897 map
->p_vaddr_offset
= matching_lma
- map
->p_paddr
;
5904 if (!first_matching_lma
)
5906 /* At least one section fits inside the current segment.
5907 Keep it, but modify its physical address to match the
5908 LMA of the first section that fitted. */
5909 map
->p_paddr
= matching_lma
;
5913 /* None of the sections fitted inside the current segment.
5914 Change the current segment's physical address to match
5915 the LMA of the first section. */
5916 map
->p_paddr
= suggested_lma
;
5919 /* Offset the segment physical address from the lma
5920 to allow for space taken up by elf headers. */
5921 if (map
->includes_filehdr
)
5923 if (map
->p_paddr
>= iehdr
->e_ehsize
)
5924 map
->p_paddr
-= iehdr
->e_ehsize
;
5927 map
->includes_filehdr
= FALSE
;
5928 map
->includes_phdrs
= FALSE
;
5932 if (map
->includes_phdrs
)
5934 if (map
->p_paddr
>= iehdr
->e_phnum
* iehdr
->e_phentsize
)
5936 map
->p_paddr
-= iehdr
->e_phnum
* iehdr
->e_phentsize
;
5938 /* iehdr->e_phnum is just an estimate of the number
5939 of program headers that we will need. Make a note
5940 here of the number we used and the segment we chose
5941 to hold these headers, so that we can adjust the
5942 offset when we know the correct value. */
5943 phdr_adjust_num
= iehdr
->e_phnum
;
5944 phdr_adjust_seg
= map
;
5947 map
->includes_phdrs
= FALSE
;
5951 /* Step Three: Loop over the sections again, this time assigning
5952 those that fit to the current segment and removing them from the
5953 sections array; but making sure not to leave large gaps. Once all
5954 possible sections have been assigned to the current segment it is
5955 added to the list of built segments and if sections still remain
5956 to be assigned, a new segment is constructed before repeating
5963 first_suggested_lma
= TRUE
;
5965 /* Fill the current segment with sections that fit. */
5966 for (j
= 0; j
< section_count
; j
++)
5968 section
= sections
[j
];
5970 if (section
== NULL
)
5973 output_section
= section
->output_section
;
5975 BFD_ASSERT (output_section
!= NULL
);
5977 if (IS_CONTAINED_BY_LMA (output_section
, segment
, map
->p_paddr
)
5978 || IS_COREFILE_NOTE (segment
, section
))
5980 if (map
->count
== 0)
5982 /* If the first section in a segment does not start at
5983 the beginning of the segment, then something is
5985 if (output_section
->lma
5987 + (map
->includes_filehdr
? iehdr
->e_ehsize
: 0)
5988 + (map
->includes_phdrs
5989 ? iehdr
->e_phnum
* iehdr
->e_phentsize
5997 prev_sec
= map
->sections
[map
->count
- 1];
5999 /* If the gap between the end of the previous section
6000 and the start of this section is more than
6001 maxpagesize then we need to start a new segment. */
6002 if ((BFD_ALIGN (prev_sec
->lma
+ prev_sec
->size
,
6004 < BFD_ALIGN (output_section
->lma
, maxpagesize
))
6005 || (prev_sec
->lma
+ prev_sec
->size
6006 > output_section
->lma
))
6008 if (first_suggested_lma
)
6010 suggested_lma
= output_section
->lma
;
6011 first_suggested_lma
= FALSE
;
6018 map
->sections
[map
->count
++] = output_section
;
6021 section
->segment_mark
= TRUE
;
6023 else if (first_suggested_lma
)
6025 suggested_lma
= output_section
->lma
;
6026 first_suggested_lma
= FALSE
;
6030 BFD_ASSERT (map
->count
> 0);
6032 /* Add the current segment to the list of built segments. */
6033 *pointer_to_map
= map
;
6034 pointer_to_map
= &map
->next
;
6036 if (isec
< section_count
)
6038 /* We still have not allocated all of the sections to
6039 segments. Create a new segment here, initialise it
6040 and carry on looping. */
6041 amt
= sizeof (struct elf_segment_map
);
6042 amt
+= ((bfd_size_type
) section_count
- 1) * sizeof (asection
*);
6043 map
= (struct elf_segment_map
*) bfd_alloc (obfd
, amt
);
6050 /* Initialise the fields of the segment map. Set the physical
6051 physical address to the LMA of the first section that has
6052 not yet been assigned. */
6054 map
->p_type
= segment
->p_type
;
6055 map
->p_flags
= segment
->p_flags
;
6056 map
->p_flags_valid
= 1;
6057 map
->p_paddr
= suggested_lma
;
6058 map
->p_paddr_valid
= p_paddr_valid
;
6059 map
->includes_filehdr
= 0;
6060 map
->includes_phdrs
= 0;
6063 while (isec
< section_count
);
6068 elf_tdata (obfd
)->segment_map
= map_first
;
6070 /* If we had to estimate the number of program headers that were
6071 going to be needed, then check our estimate now and adjust
6072 the offset if necessary. */
6073 if (phdr_adjust_seg
!= NULL
)
6077 for (count
= 0, map
= map_first
; map
!= NULL
; map
= map
->next
)
6080 if (count
> phdr_adjust_num
)
6081 phdr_adjust_seg
->p_paddr
6082 -= (count
- phdr_adjust_num
) * iehdr
->e_phentsize
;
6087 #undef IS_CONTAINED_BY_VMA
6088 #undef IS_CONTAINED_BY_LMA
6090 #undef IS_COREFILE_NOTE
6091 #undef IS_SOLARIS_PT_INTERP
6092 #undef IS_SECTION_IN_INPUT_SEGMENT
6093 #undef INCLUDE_SECTION_IN_SEGMENT
6094 #undef SEGMENT_AFTER_SEGMENT
6095 #undef SEGMENT_OVERLAPS
6099 /* Copy ELF program header information. */
6102 copy_elf_program_header (bfd
*ibfd
, bfd
*obfd
)
6104 Elf_Internal_Ehdr
*iehdr
;
6105 struct elf_segment_map
*map
;
6106 struct elf_segment_map
*map_first
;
6107 struct elf_segment_map
**pointer_to_map
;
6108 Elf_Internal_Phdr
*segment
;
6110 unsigned int num_segments
;
6111 bfd_boolean phdr_included
= FALSE
;
6112 bfd_boolean p_paddr_valid
;
6114 iehdr
= elf_elfheader (ibfd
);
6117 pointer_to_map
= &map_first
;
6119 /* If all the segment p_paddr fields are zero, don't set
6120 map->p_paddr_valid. */
6121 p_paddr_valid
= FALSE
;
6122 num_segments
= elf_elfheader (ibfd
)->e_phnum
;
6123 for (i
= 0, segment
= elf_tdata (ibfd
)->phdr
;
6126 if (segment
->p_paddr
!= 0)
6128 p_paddr_valid
= TRUE
;
6132 for (i
= 0, segment
= elf_tdata (ibfd
)->phdr
;
6137 unsigned int section_count
;
6139 Elf_Internal_Shdr
*this_hdr
;
6140 asection
*first_section
= NULL
;
6141 asection
*lowest_section
;
6143 /* Compute how many sections are in this segment. */
6144 for (section
= ibfd
->sections
, section_count
= 0;
6146 section
= section
->next
)
6148 this_hdr
= &(elf_section_data(section
)->this_hdr
);
6149 if (ELF_SECTION_IN_SEGMENT (this_hdr
, segment
))
6151 if (first_section
== NULL
)
6152 first_section
= section
;
6157 /* Allocate a segment map big enough to contain
6158 all of the sections we have selected. */
6159 amt
= sizeof (struct elf_segment_map
);
6160 if (section_count
!= 0)
6161 amt
+= ((bfd_size_type
) section_count
- 1) * sizeof (asection
*);
6162 map
= (struct elf_segment_map
*) bfd_zalloc (obfd
, amt
);
6166 /* Initialize the fields of the output segment map with the
6169 map
->p_type
= segment
->p_type
;
6170 map
->p_flags
= segment
->p_flags
;
6171 map
->p_flags_valid
= 1;
6172 map
->p_paddr
= segment
->p_paddr
;
6173 map
->p_paddr_valid
= p_paddr_valid
;
6174 map
->p_align
= segment
->p_align
;
6175 map
->p_align_valid
= 1;
6176 map
->p_vaddr_offset
= 0;
6178 if (map
->p_type
== PT_GNU_RELRO
)
6180 /* The PT_GNU_RELRO segment may contain the first a few
6181 bytes in the .got.plt section even if the whole .got.plt
6182 section isn't in the PT_GNU_RELRO segment. We won't
6183 change the size of the PT_GNU_RELRO segment. */
6184 map
->p_size
= segment
->p_memsz
;
6185 map
->p_size_valid
= 1;
6188 /* Determine if this segment contains the ELF file header
6189 and if it contains the program headers themselves. */
6190 map
->includes_filehdr
= (segment
->p_offset
== 0
6191 && segment
->p_filesz
>= iehdr
->e_ehsize
);
6193 map
->includes_phdrs
= 0;
6194 if (! phdr_included
|| segment
->p_type
!= PT_LOAD
)
6196 map
->includes_phdrs
=
6197 (segment
->p_offset
<= (bfd_vma
) iehdr
->e_phoff
6198 && (segment
->p_offset
+ segment
->p_filesz
6199 >= ((bfd_vma
) iehdr
->e_phoff
6200 + iehdr
->e_phnum
* iehdr
->e_phentsize
)));
6202 if (segment
->p_type
== PT_LOAD
&& map
->includes_phdrs
)
6203 phdr_included
= TRUE
;
6206 lowest_section
= first_section
;
6207 if (section_count
!= 0)
6209 unsigned int isec
= 0;
6211 for (section
= first_section
;
6213 section
= section
->next
)
6215 this_hdr
= &(elf_section_data(section
)->this_hdr
);
6216 if (ELF_SECTION_IN_SEGMENT (this_hdr
, segment
))
6218 map
->sections
[isec
++] = section
->output_section
;
6219 if (section
->lma
< lowest_section
->lma
)
6220 lowest_section
= section
;
6221 if ((section
->flags
& SEC_ALLOC
) != 0)
6225 /* Section lmas are set up from PT_LOAD header
6226 p_paddr in _bfd_elf_make_section_from_shdr.
6227 If this header has a p_paddr that disagrees
6228 with the section lma, flag the p_paddr as
6230 if ((section
->flags
& SEC_LOAD
) != 0)
6231 seg_off
= this_hdr
->sh_offset
- segment
->p_offset
;
6233 seg_off
= this_hdr
->sh_addr
- segment
->p_vaddr
;
6234 if (section
->lma
- segment
->p_paddr
!= seg_off
)
6235 map
->p_paddr_valid
= FALSE
;
6237 if (isec
== section_count
)
6243 if (map
->includes_filehdr
&& lowest_section
!= NULL
)
6244 /* We need to keep the space used by the headers fixed. */
6245 map
->header_size
= lowest_section
->vma
- segment
->p_vaddr
;
6247 if (!map
->includes_phdrs
6248 && !map
->includes_filehdr
6249 && map
->p_paddr_valid
)
6250 /* There is some other padding before the first section. */
6251 map
->p_vaddr_offset
= ((lowest_section
? lowest_section
->lma
: 0)
6252 - segment
->p_paddr
);
6254 map
->count
= section_count
;
6255 *pointer_to_map
= map
;
6256 pointer_to_map
= &map
->next
;
6259 elf_tdata (obfd
)->segment_map
= map_first
;
6263 /* Copy private BFD data. This copies or rewrites ELF program header
6267 copy_private_bfd_data (bfd
*ibfd
, bfd
*obfd
)
6269 if (bfd_get_flavour (ibfd
) != bfd_target_elf_flavour
6270 || bfd_get_flavour (obfd
) != bfd_target_elf_flavour
)
6273 if (elf_tdata (ibfd
)->phdr
== NULL
)
6276 if (ibfd
->xvec
== obfd
->xvec
)
6278 /* Check to see if any sections in the input BFD
6279 covered by ELF program header have changed. */
6280 Elf_Internal_Phdr
*segment
;
6281 asection
*section
, *osec
;
6282 unsigned int i
, num_segments
;
6283 Elf_Internal_Shdr
*this_hdr
;
6284 const struct elf_backend_data
*bed
;
6286 bed
= get_elf_backend_data (ibfd
);
6288 /* Regenerate the segment map if p_paddr is set to 0. */
6289 if (bed
->want_p_paddr_set_to_zero
)
6292 /* Initialize the segment mark field. */
6293 for (section
= obfd
->sections
; section
!= NULL
;
6294 section
= section
->next
)
6295 section
->segment_mark
= FALSE
;
6297 num_segments
= elf_elfheader (ibfd
)->e_phnum
;
6298 for (i
= 0, segment
= elf_tdata (ibfd
)->phdr
;
6302 /* PR binutils/3535. The Solaris linker always sets the p_paddr
6303 and p_memsz fields of special segments (DYNAMIC, INTERP) to 0
6304 which severly confuses things, so always regenerate the segment
6305 map in this case. */
6306 if (segment
->p_paddr
== 0
6307 && segment
->p_memsz
== 0
6308 && (segment
->p_type
== PT_INTERP
|| segment
->p_type
== PT_DYNAMIC
))
6311 for (section
= ibfd
->sections
;
6312 section
!= NULL
; section
= section
->next
)
6314 /* We mark the output section so that we know it comes
6315 from the input BFD. */
6316 osec
= section
->output_section
;
6318 osec
->segment_mark
= TRUE
;
6320 /* Check if this section is covered by the segment. */
6321 this_hdr
= &(elf_section_data(section
)->this_hdr
);
6322 if (ELF_SECTION_IN_SEGMENT (this_hdr
, segment
))
6324 /* FIXME: Check if its output section is changed or
6325 removed. What else do we need to check? */
6327 || section
->flags
!= osec
->flags
6328 || section
->lma
!= osec
->lma
6329 || section
->vma
!= osec
->vma
6330 || section
->size
!= osec
->size
6331 || section
->rawsize
!= osec
->rawsize
6332 || section
->alignment_power
!= osec
->alignment_power
)
6338 /* Check to see if any output section do not come from the
6340 for (section
= obfd
->sections
; section
!= NULL
;
6341 section
= section
->next
)
6343 if (section
->segment_mark
== FALSE
)
6346 section
->segment_mark
= FALSE
;
6349 return copy_elf_program_header (ibfd
, obfd
);
6353 return rewrite_elf_program_header (ibfd
, obfd
);
6356 /* Initialize private output section information from input section. */
6359 _bfd_elf_init_private_section_data (bfd
*ibfd
,
6363 struct bfd_link_info
*link_info
)
6366 Elf_Internal_Shdr
*ihdr
, *ohdr
;
6367 bfd_boolean final_link
= link_info
!= NULL
&& !link_info
->relocatable
;
6369 if (ibfd
->xvec
->flavour
!= bfd_target_elf_flavour
6370 || obfd
->xvec
->flavour
!= bfd_target_elf_flavour
)
6373 BFD_ASSERT (elf_section_data (osec
) != NULL
);
6375 /* For objcopy and relocatable link, don't copy the output ELF
6376 section type from input if the output BFD section flags have been
6377 set to something different. For a final link allow some flags
6378 that the linker clears to differ. */
6379 if (elf_section_type (osec
) == SHT_NULL
6380 && (osec
->flags
== isec
->flags
6382 && ((osec
->flags
^ isec
->flags
)
6383 & ~(SEC_LINK_ONCE
| SEC_LINK_DUPLICATES
| SEC_RELOC
)) == 0)))
6384 elf_section_type (osec
) = elf_section_type (isec
);
6386 /* FIXME: Is this correct for all OS/PROC specific flags? */
6387 elf_section_flags (osec
) |= (elf_section_flags (isec
)
6388 & (SHF_MASKOS
| SHF_MASKPROC
));
6390 /* Set things up for objcopy and relocatable link. The output
6391 SHT_GROUP section will have its elf_next_in_group pointing back
6392 to the input group members. Ignore linker created group section.
6393 See elfNN_ia64_object_p in elfxx-ia64.c. */
6396 if (elf_sec_group (isec
) == NULL
6397 || (elf_sec_group (isec
)->flags
& SEC_LINKER_CREATED
) == 0)
6399 if (elf_section_flags (isec
) & SHF_GROUP
)
6400 elf_section_flags (osec
) |= SHF_GROUP
;
6401 elf_next_in_group (osec
) = elf_next_in_group (isec
);
6402 elf_section_data (osec
)->group
= elf_section_data (isec
)->group
;
6406 ihdr
= &elf_section_data (isec
)->this_hdr
;
6408 /* We need to handle elf_linked_to_section for SHF_LINK_ORDER. We
6409 don't use the output section of the linked-to section since it
6410 may be NULL at this point. */
6411 if ((ihdr
->sh_flags
& SHF_LINK_ORDER
) != 0)
6413 ohdr
= &elf_section_data (osec
)->this_hdr
;
6414 ohdr
->sh_flags
|= SHF_LINK_ORDER
;
6415 elf_linked_to_section (osec
) = elf_linked_to_section (isec
);
6418 osec
->use_rela_p
= isec
->use_rela_p
;
6423 /* Copy private section information. This copies over the entsize
6424 field, and sometimes the info field. */
6427 _bfd_elf_copy_private_section_data (bfd
*ibfd
,
6432 Elf_Internal_Shdr
*ihdr
, *ohdr
;
6434 if (ibfd
->xvec
->flavour
!= bfd_target_elf_flavour
6435 || obfd
->xvec
->flavour
!= bfd_target_elf_flavour
)
6438 ihdr
= &elf_section_data (isec
)->this_hdr
;
6439 ohdr
= &elf_section_data (osec
)->this_hdr
;
6441 ohdr
->sh_entsize
= ihdr
->sh_entsize
;
6443 if (ihdr
->sh_type
== SHT_SYMTAB
6444 || ihdr
->sh_type
== SHT_DYNSYM
6445 || ihdr
->sh_type
== SHT_GNU_verneed
6446 || ihdr
->sh_type
== SHT_GNU_verdef
)
6447 ohdr
->sh_info
= ihdr
->sh_info
;
6449 return _bfd_elf_init_private_section_data (ibfd
, isec
, obfd
, osec
,
6453 /* Look at all the SHT_GROUP sections in IBFD, making any adjustments
6454 necessary if we are removing either the SHT_GROUP section or any of
6455 the group member sections. DISCARDED is the value that a section's
6456 output_section has if the section will be discarded, NULL when this
6457 function is called from objcopy, bfd_abs_section_ptr when called
6461 _bfd_elf_fixup_group_sections (bfd
*ibfd
, asection
*discarded
)
6465 for (isec
= ibfd
->sections
; isec
!= NULL
; isec
= isec
->next
)
6466 if (elf_section_type (isec
) == SHT_GROUP
)
6468 asection
*first
= elf_next_in_group (isec
);
6469 asection
*s
= first
;
6470 bfd_size_type removed
= 0;
6474 /* If this member section is being output but the
6475 SHT_GROUP section is not, then clear the group info
6476 set up by _bfd_elf_copy_private_section_data. */
6477 if (s
->output_section
!= discarded
6478 && isec
->output_section
== discarded
)
6480 elf_section_flags (s
->output_section
) &= ~SHF_GROUP
;
6481 elf_group_name (s
->output_section
) = NULL
;
6483 /* Conversely, if the member section is not being output
6484 but the SHT_GROUP section is, then adjust its size. */
6485 else if (s
->output_section
== discarded
6486 && isec
->output_section
!= discarded
)
6488 s
= elf_next_in_group (s
);
6494 if (discarded
!= NULL
)
6496 /* If we've been called for ld -r, then we need to
6497 adjust the input section size. This function may
6498 be called multiple times, so save the original
6500 if (isec
->rawsize
== 0)
6501 isec
->rawsize
= isec
->size
;
6502 isec
->size
= isec
->rawsize
- removed
;
6506 /* Adjust the output section size when called from
6508 isec
->output_section
->size
-= removed
;
6516 /* Copy private header information. */
6519 _bfd_elf_copy_private_header_data (bfd
*ibfd
, bfd
*obfd
)
6521 if (bfd_get_flavour (ibfd
) != bfd_target_elf_flavour
6522 || bfd_get_flavour (obfd
) != bfd_target_elf_flavour
)
6525 /* Copy over private BFD data if it has not already been copied.
6526 This must be done here, rather than in the copy_private_bfd_data
6527 entry point, because the latter is called after the section
6528 contents have been set, which means that the program headers have
6529 already been worked out. */
6530 if (elf_tdata (obfd
)->segment_map
== NULL
&& elf_tdata (ibfd
)->phdr
!= NULL
)
6532 if (! copy_private_bfd_data (ibfd
, obfd
))
6536 return _bfd_elf_fixup_group_sections (ibfd
, NULL
);
6539 /* Copy private symbol information. If this symbol is in a section
6540 which we did not map into a BFD section, try to map the section
6541 index correctly. We use special macro definitions for the mapped
6542 section indices; these definitions are interpreted by the
6543 swap_out_syms function. */
6545 #define MAP_ONESYMTAB (SHN_HIOS + 1)
6546 #define MAP_DYNSYMTAB (SHN_HIOS + 2)
6547 #define MAP_STRTAB (SHN_HIOS + 3)
6548 #define MAP_SHSTRTAB (SHN_HIOS + 4)
6549 #define MAP_SYM_SHNDX (SHN_HIOS + 5)
6552 _bfd_elf_copy_private_symbol_data (bfd
*ibfd
,
6557 elf_symbol_type
*isym
, *osym
;
6559 if (bfd_get_flavour (ibfd
) != bfd_target_elf_flavour
6560 || bfd_get_flavour (obfd
) != bfd_target_elf_flavour
)
6563 isym
= elf_symbol_from (ibfd
, isymarg
);
6564 osym
= elf_symbol_from (obfd
, osymarg
);
6567 && isym
->internal_elf_sym
.st_shndx
!= 0
6569 && bfd_is_abs_section (isym
->symbol
.section
))
6573 shndx
= isym
->internal_elf_sym
.st_shndx
;
6574 if (shndx
== elf_onesymtab (ibfd
))
6575 shndx
= MAP_ONESYMTAB
;
6576 else if (shndx
== elf_dynsymtab (ibfd
))
6577 shndx
= MAP_DYNSYMTAB
;
6578 else if (shndx
== elf_tdata (ibfd
)->strtab_section
)
6580 else if (shndx
== elf_tdata (ibfd
)->shstrtab_section
)
6581 shndx
= MAP_SHSTRTAB
;
6582 else if (shndx
== elf_tdata (ibfd
)->symtab_shndx_section
)
6583 shndx
= MAP_SYM_SHNDX
;
6584 osym
->internal_elf_sym
.st_shndx
= shndx
;
6590 /* Swap out the symbols. */
6593 swap_out_syms (bfd
*abfd
,
6594 struct bfd_strtab_hash
**sttp
,
6597 const struct elf_backend_data
*bed
;
6600 struct bfd_strtab_hash
*stt
;
6601 Elf_Internal_Shdr
*symtab_hdr
;
6602 Elf_Internal_Shdr
*symtab_shndx_hdr
;
6603 Elf_Internal_Shdr
*symstrtab_hdr
;
6604 bfd_byte
*outbound_syms
;
6605 bfd_byte
*outbound_shndx
;
6608 bfd_boolean name_local_sections
;
6610 if (!elf_map_symbols (abfd
))
6613 /* Dump out the symtabs. */
6614 stt
= _bfd_elf_stringtab_init ();
6618 bed
= get_elf_backend_data (abfd
);
6619 symcount
= bfd_get_symcount (abfd
);
6620 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
6621 symtab_hdr
->sh_type
= SHT_SYMTAB
;
6622 symtab_hdr
->sh_entsize
= bed
->s
->sizeof_sym
;
6623 symtab_hdr
->sh_size
= symtab_hdr
->sh_entsize
* (symcount
+ 1);
6624 symtab_hdr
->sh_info
= elf_num_locals (abfd
) + 1;
6625 symtab_hdr
->sh_addralign
= (bfd_vma
) 1 << bed
->s
->log_file_align
;
6627 symstrtab_hdr
= &elf_tdata (abfd
)->strtab_hdr
;
6628 symstrtab_hdr
->sh_type
= SHT_STRTAB
;
6630 outbound_syms
= (bfd_byte
*) bfd_alloc2 (abfd
, 1 + symcount
,
6631 bed
->s
->sizeof_sym
);
6632 if (outbound_syms
== NULL
)
6634 _bfd_stringtab_free (stt
);
6637 symtab_hdr
->contents
= outbound_syms
;
6639 outbound_shndx
= NULL
;
6640 symtab_shndx_hdr
= &elf_tdata (abfd
)->symtab_shndx_hdr
;
6641 if (symtab_shndx_hdr
->sh_name
!= 0)
6643 amt
= (bfd_size_type
) (1 + symcount
) * sizeof (Elf_External_Sym_Shndx
);
6644 outbound_shndx
= (bfd_byte
*)
6645 bfd_zalloc2 (abfd
, 1 + symcount
, sizeof (Elf_External_Sym_Shndx
));
6646 if (outbound_shndx
== NULL
)
6648 _bfd_stringtab_free (stt
);
6652 symtab_shndx_hdr
->contents
= outbound_shndx
;
6653 symtab_shndx_hdr
->sh_type
= SHT_SYMTAB_SHNDX
;
6654 symtab_shndx_hdr
->sh_size
= amt
;
6655 symtab_shndx_hdr
->sh_addralign
= sizeof (Elf_External_Sym_Shndx
);
6656 symtab_shndx_hdr
->sh_entsize
= sizeof (Elf_External_Sym_Shndx
);
6659 /* Now generate the data (for "contents"). */
6661 /* Fill in zeroth symbol and swap it out. */
6662 Elf_Internal_Sym sym
;
6668 sym
.st_shndx
= SHN_UNDEF
;
6669 sym
.st_target_internal
= 0;
6670 bed
->s
->swap_symbol_out (abfd
, &sym
, outbound_syms
, outbound_shndx
);
6671 outbound_syms
+= bed
->s
->sizeof_sym
;
6672 if (outbound_shndx
!= NULL
)
6673 outbound_shndx
+= sizeof (Elf_External_Sym_Shndx
);
6677 = (bed
->elf_backend_name_local_section_symbols
6678 && bed
->elf_backend_name_local_section_symbols (abfd
));
6680 syms
= bfd_get_outsymbols (abfd
);
6681 for (idx
= 0; idx
< symcount
; idx
++)
6683 Elf_Internal_Sym sym
;
6684 bfd_vma value
= syms
[idx
]->value
;
6685 elf_symbol_type
*type_ptr
;
6686 flagword flags
= syms
[idx
]->flags
;
6689 if (!name_local_sections
6690 && (flags
& (BSF_SECTION_SYM
| BSF_GLOBAL
)) == BSF_SECTION_SYM
)
6692 /* Local section symbols have no name. */
6697 sym
.st_name
= (unsigned long) _bfd_stringtab_add (stt
,
6700 if (sym
.st_name
== (unsigned long) -1)
6702 _bfd_stringtab_free (stt
);
6707 type_ptr
= elf_symbol_from (abfd
, syms
[idx
]);
6709 if ((flags
& BSF_SECTION_SYM
) == 0
6710 && bfd_is_com_section (syms
[idx
]->section
))
6712 /* ELF common symbols put the alignment into the `value' field,
6713 and the size into the `size' field. This is backwards from
6714 how BFD handles it, so reverse it here. */
6715 sym
.st_size
= value
;
6716 if (type_ptr
== NULL
6717 || type_ptr
->internal_elf_sym
.st_value
== 0)
6718 sym
.st_value
= value
>= 16 ? 16 : (1 << bfd_log2 (value
));
6720 sym
.st_value
= type_ptr
->internal_elf_sym
.st_value
;
6721 sym
.st_shndx
= _bfd_elf_section_from_bfd_section
6722 (abfd
, syms
[idx
]->section
);
6726 asection
*sec
= syms
[idx
]->section
;
6729 if (sec
->output_section
)
6731 value
+= sec
->output_offset
;
6732 sec
= sec
->output_section
;
6735 /* Don't add in the section vma for relocatable output. */
6736 if (! relocatable_p
)
6738 sym
.st_value
= value
;
6739 sym
.st_size
= type_ptr
? type_ptr
->internal_elf_sym
.st_size
: 0;
6741 if (bfd_is_abs_section (sec
)
6743 && type_ptr
->internal_elf_sym
.st_shndx
!= 0)
6745 /* This symbol is in a real ELF section which we did
6746 not create as a BFD section. Undo the mapping done
6747 by copy_private_symbol_data. */
6748 shndx
= type_ptr
->internal_elf_sym
.st_shndx
;
6752 shndx
= elf_onesymtab (abfd
);
6755 shndx
= elf_dynsymtab (abfd
);
6758 shndx
= elf_tdata (abfd
)->strtab_section
;
6761 shndx
= elf_tdata (abfd
)->shstrtab_section
;
6764 shndx
= elf_tdata (abfd
)->symtab_shndx_section
;
6772 shndx
= _bfd_elf_section_from_bfd_section (abfd
, sec
);
6774 if (shndx
== SHN_BAD
)
6778 /* Writing this would be a hell of a lot easier if
6779 we had some decent documentation on bfd, and
6780 knew what to expect of the library, and what to
6781 demand of applications. For example, it
6782 appears that `objcopy' might not set the
6783 section of a symbol to be a section that is
6784 actually in the output file. */
6785 sec2
= bfd_get_section_by_name (abfd
, sec
->name
);
6788 _bfd_error_handler (_("\
6789 Unable to find equivalent output section for symbol '%s' from section '%s'"),
6790 syms
[idx
]->name
? syms
[idx
]->name
: "<Local sym>",
6792 bfd_set_error (bfd_error_invalid_operation
);
6793 _bfd_stringtab_free (stt
);
6797 shndx
= _bfd_elf_section_from_bfd_section (abfd
, sec2
);
6798 BFD_ASSERT (shndx
!= SHN_BAD
);
6802 sym
.st_shndx
= shndx
;
6805 if ((flags
& BSF_THREAD_LOCAL
) != 0)
6807 else if ((flags
& BSF_GNU_INDIRECT_FUNCTION
) != 0)
6808 type
= STT_GNU_IFUNC
;
6809 else if ((flags
& BSF_FUNCTION
) != 0)
6811 else if ((flags
& BSF_OBJECT
) != 0)
6813 else if ((flags
& BSF_RELC
) != 0)
6815 else if ((flags
& BSF_SRELC
) != 0)
6820 if (syms
[idx
]->section
->flags
& SEC_THREAD_LOCAL
)
6823 /* Processor-specific types. */
6824 if (type_ptr
!= NULL
6825 && bed
->elf_backend_get_symbol_type
)
6826 type
= ((*bed
->elf_backend_get_symbol_type
)
6827 (&type_ptr
->internal_elf_sym
, type
));
6829 if (flags
& BSF_SECTION_SYM
)
6831 if (flags
& BSF_GLOBAL
)
6832 sym
.st_info
= ELF_ST_INFO (STB_GLOBAL
, STT_SECTION
);
6834 sym
.st_info
= ELF_ST_INFO (STB_LOCAL
, STT_SECTION
);
6836 else if (bfd_is_com_section (syms
[idx
]->section
))
6838 #ifdef USE_STT_COMMON
6839 if (type
== STT_OBJECT
)
6840 sym
.st_info
= ELF_ST_INFO (STB_GLOBAL
, STT_COMMON
);
6843 sym
.st_info
= ELF_ST_INFO (STB_GLOBAL
, type
);
6845 else if (bfd_is_und_section (syms
[idx
]->section
))
6846 sym
.st_info
= ELF_ST_INFO (((flags
& BSF_WEAK
)
6850 else if (flags
& BSF_FILE
)
6851 sym
.st_info
= ELF_ST_INFO (STB_LOCAL
, STT_FILE
);
6854 int bind
= STB_LOCAL
;
6856 if (flags
& BSF_LOCAL
)
6858 else if (flags
& BSF_GNU_UNIQUE
)
6859 bind
= STB_GNU_UNIQUE
;
6860 else if (flags
& BSF_WEAK
)
6862 else if (flags
& BSF_GLOBAL
)
6865 sym
.st_info
= ELF_ST_INFO (bind
, type
);
6868 if (type_ptr
!= NULL
)
6870 sym
.st_other
= type_ptr
->internal_elf_sym
.st_other
;
6871 sym
.st_target_internal
6872 = type_ptr
->internal_elf_sym
.st_target_internal
;
6877 sym
.st_target_internal
= 0;
6880 bed
->s
->swap_symbol_out (abfd
, &sym
, outbound_syms
, outbound_shndx
);
6881 outbound_syms
+= bed
->s
->sizeof_sym
;
6882 if (outbound_shndx
!= NULL
)
6883 outbound_shndx
+= sizeof (Elf_External_Sym_Shndx
);
6887 symstrtab_hdr
->sh_size
= _bfd_stringtab_size (stt
);
6888 symstrtab_hdr
->sh_type
= SHT_STRTAB
;
6890 symstrtab_hdr
->sh_flags
= 0;
6891 symstrtab_hdr
->sh_addr
= 0;
6892 symstrtab_hdr
->sh_entsize
= 0;
6893 symstrtab_hdr
->sh_link
= 0;
6894 symstrtab_hdr
->sh_info
= 0;
6895 symstrtab_hdr
->sh_addralign
= 1;
6900 /* Return the number of bytes required to hold the symtab vector.
6902 Note that we base it on the count plus 1, since we will null terminate
6903 the vector allocated based on this size. However, the ELF symbol table
6904 always has a dummy entry as symbol #0, so it ends up even. */
6907 _bfd_elf_get_symtab_upper_bound (bfd
*abfd
)
6911 Elf_Internal_Shdr
*hdr
= &elf_tdata (abfd
)->symtab_hdr
;
6913 symcount
= hdr
->sh_size
/ get_elf_backend_data (abfd
)->s
->sizeof_sym
;
6914 symtab_size
= (symcount
+ 1) * (sizeof (asymbol
*));
6916 symtab_size
-= sizeof (asymbol
*);
6922 _bfd_elf_get_dynamic_symtab_upper_bound (bfd
*abfd
)
6926 Elf_Internal_Shdr
*hdr
= &elf_tdata (abfd
)->dynsymtab_hdr
;
6928 if (elf_dynsymtab (abfd
) == 0)
6930 bfd_set_error (bfd_error_invalid_operation
);
6934 symcount
= hdr
->sh_size
/ get_elf_backend_data (abfd
)->s
->sizeof_sym
;
6935 symtab_size
= (symcount
+ 1) * (sizeof (asymbol
*));
6937 symtab_size
-= sizeof (asymbol
*);
6943 _bfd_elf_get_reloc_upper_bound (bfd
*abfd ATTRIBUTE_UNUSED
,
6946 return (asect
->reloc_count
+ 1) * sizeof (arelent
*);
6949 /* Canonicalize the relocs. */
6952 _bfd_elf_canonicalize_reloc (bfd
*abfd
,
6959 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
6961 if (! bed
->s
->slurp_reloc_table (abfd
, section
, symbols
, FALSE
))
6964 tblptr
= section
->relocation
;
6965 for (i
= 0; i
< section
->reloc_count
; i
++)
6966 *relptr
++ = tblptr
++;
6970 return section
->reloc_count
;
6974 _bfd_elf_canonicalize_symtab (bfd
*abfd
, asymbol
**allocation
)
6976 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
6977 long symcount
= bed
->s
->slurp_symbol_table (abfd
, allocation
, FALSE
);
6980 bfd_get_symcount (abfd
) = symcount
;
6985 _bfd_elf_canonicalize_dynamic_symtab (bfd
*abfd
,
6986 asymbol
**allocation
)
6988 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
6989 long symcount
= bed
->s
->slurp_symbol_table (abfd
, allocation
, TRUE
);
6992 bfd_get_dynamic_symcount (abfd
) = symcount
;
6996 /* Return the size required for the dynamic reloc entries. Any loadable
6997 section that was actually installed in the BFD, and has type SHT_REL
6998 or SHT_RELA, and uses the dynamic symbol table, is considered to be a
6999 dynamic reloc section. */
7002 _bfd_elf_get_dynamic_reloc_upper_bound (bfd
*abfd
)
7007 if (elf_dynsymtab (abfd
) == 0)
7009 bfd_set_error (bfd_error_invalid_operation
);
7013 ret
= sizeof (arelent
*);
7014 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
7015 if (elf_section_data (s
)->this_hdr
.sh_link
== elf_dynsymtab (abfd
)
7016 && (elf_section_data (s
)->this_hdr
.sh_type
== SHT_REL
7017 || elf_section_data (s
)->this_hdr
.sh_type
== SHT_RELA
))
7018 ret
+= ((s
->size
/ elf_section_data (s
)->this_hdr
.sh_entsize
)
7019 * sizeof (arelent
*));
7024 /* Canonicalize the dynamic relocation entries. Note that we return the
7025 dynamic relocations as a single block, although they are actually
7026 associated with particular sections; the interface, which was
7027 designed for SunOS style shared libraries, expects that there is only
7028 one set of dynamic relocs. Any loadable section that was actually
7029 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses the
7030 dynamic symbol table, is considered to be a dynamic reloc section. */
7033 _bfd_elf_canonicalize_dynamic_reloc (bfd
*abfd
,
7037 bfd_boolean (*slurp_relocs
) (bfd
*, asection
*, asymbol
**, bfd_boolean
);
7041 if (elf_dynsymtab (abfd
) == 0)
7043 bfd_set_error (bfd_error_invalid_operation
);
7047 slurp_relocs
= get_elf_backend_data (abfd
)->s
->slurp_reloc_table
;
7049 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
7051 if (elf_section_data (s
)->this_hdr
.sh_link
== elf_dynsymtab (abfd
)
7052 && (elf_section_data (s
)->this_hdr
.sh_type
== SHT_REL
7053 || elf_section_data (s
)->this_hdr
.sh_type
== SHT_RELA
))
7058 if (! (*slurp_relocs
) (abfd
, s
, syms
, TRUE
))
7060 count
= s
->size
/ elf_section_data (s
)->this_hdr
.sh_entsize
;
7062 for (i
= 0; i
< count
; i
++)
7073 /* Read in the version information. */
7076 _bfd_elf_slurp_version_tables (bfd
*abfd
, bfd_boolean default_imported_symver
)
7078 bfd_byte
*contents
= NULL
;
7079 unsigned int freeidx
= 0;
7081 if (elf_dynverref (abfd
) != 0)
7083 Elf_Internal_Shdr
*hdr
;
7084 Elf_External_Verneed
*everneed
;
7085 Elf_Internal_Verneed
*iverneed
;
7087 bfd_byte
*contents_end
;
7089 hdr
= &elf_tdata (abfd
)->dynverref_hdr
;
7091 elf_tdata (abfd
)->verref
= (Elf_Internal_Verneed
*)
7092 bfd_zalloc2 (abfd
, hdr
->sh_info
, sizeof (Elf_Internal_Verneed
));
7093 if (elf_tdata (abfd
)->verref
== NULL
)
7096 elf_tdata (abfd
)->cverrefs
= hdr
->sh_info
;
7098 contents
= (bfd_byte
*) bfd_malloc (hdr
->sh_size
);
7099 if (contents
== NULL
)
7101 error_return_verref
:
7102 elf_tdata (abfd
)->verref
= NULL
;
7103 elf_tdata (abfd
)->cverrefs
= 0;
7106 if (bfd_seek (abfd
, hdr
->sh_offset
, SEEK_SET
) != 0
7107 || bfd_bread (contents
, hdr
->sh_size
, abfd
) != hdr
->sh_size
)
7108 goto error_return_verref
;
7110 if (hdr
->sh_info
&& hdr
->sh_size
< sizeof (Elf_External_Verneed
))
7111 goto error_return_verref
;
7113 BFD_ASSERT (sizeof (Elf_External_Verneed
)
7114 == sizeof (Elf_External_Vernaux
));
7115 contents_end
= contents
+ hdr
->sh_size
- sizeof (Elf_External_Verneed
);
7116 everneed
= (Elf_External_Verneed
*) contents
;
7117 iverneed
= elf_tdata (abfd
)->verref
;
7118 for (i
= 0; i
< hdr
->sh_info
; i
++, iverneed
++)
7120 Elf_External_Vernaux
*evernaux
;
7121 Elf_Internal_Vernaux
*ivernaux
;
7124 _bfd_elf_swap_verneed_in (abfd
, everneed
, iverneed
);
7126 iverneed
->vn_bfd
= abfd
;
7128 iverneed
->vn_filename
=
7129 bfd_elf_string_from_elf_section (abfd
, hdr
->sh_link
,
7131 if (iverneed
->vn_filename
== NULL
)
7132 goto error_return_verref
;
7134 if (iverneed
->vn_cnt
== 0)
7135 iverneed
->vn_auxptr
= NULL
;
7138 iverneed
->vn_auxptr
= (struct elf_internal_vernaux
*)
7139 bfd_alloc2 (abfd
, iverneed
->vn_cnt
,
7140 sizeof (Elf_Internal_Vernaux
));
7141 if (iverneed
->vn_auxptr
== NULL
)
7142 goto error_return_verref
;
7145 if (iverneed
->vn_aux
7146 > (size_t) (contents_end
- (bfd_byte
*) everneed
))
7147 goto error_return_verref
;
7149 evernaux
= ((Elf_External_Vernaux
*)
7150 ((bfd_byte
*) everneed
+ iverneed
->vn_aux
));
7151 ivernaux
= iverneed
->vn_auxptr
;
7152 for (j
= 0; j
< iverneed
->vn_cnt
; j
++, ivernaux
++)
7154 _bfd_elf_swap_vernaux_in (abfd
, evernaux
, ivernaux
);
7156 ivernaux
->vna_nodename
=
7157 bfd_elf_string_from_elf_section (abfd
, hdr
->sh_link
,
7158 ivernaux
->vna_name
);
7159 if (ivernaux
->vna_nodename
== NULL
)
7160 goto error_return_verref
;
7162 if (j
+ 1 < iverneed
->vn_cnt
)
7163 ivernaux
->vna_nextptr
= ivernaux
+ 1;
7165 ivernaux
->vna_nextptr
= NULL
;
7167 if (ivernaux
->vna_next
7168 > (size_t) (contents_end
- (bfd_byte
*) evernaux
))
7169 goto error_return_verref
;
7171 evernaux
= ((Elf_External_Vernaux
*)
7172 ((bfd_byte
*) evernaux
+ ivernaux
->vna_next
));
7174 if (ivernaux
->vna_other
> freeidx
)
7175 freeidx
= ivernaux
->vna_other
;
7178 if (i
+ 1 < hdr
->sh_info
)
7179 iverneed
->vn_nextref
= iverneed
+ 1;
7181 iverneed
->vn_nextref
= NULL
;
7183 if (iverneed
->vn_next
7184 > (size_t) (contents_end
- (bfd_byte
*) everneed
))
7185 goto error_return_verref
;
7187 everneed
= ((Elf_External_Verneed
*)
7188 ((bfd_byte
*) everneed
+ iverneed
->vn_next
));
7195 if (elf_dynverdef (abfd
) != 0)
7197 Elf_Internal_Shdr
*hdr
;
7198 Elf_External_Verdef
*everdef
;
7199 Elf_Internal_Verdef
*iverdef
;
7200 Elf_Internal_Verdef
*iverdefarr
;
7201 Elf_Internal_Verdef iverdefmem
;
7203 unsigned int maxidx
;
7204 bfd_byte
*contents_end_def
, *contents_end_aux
;
7206 hdr
= &elf_tdata (abfd
)->dynverdef_hdr
;
7208 contents
= (bfd_byte
*) bfd_malloc (hdr
->sh_size
);
7209 if (contents
== NULL
)
7211 if (bfd_seek (abfd
, hdr
->sh_offset
, SEEK_SET
) != 0
7212 || bfd_bread (contents
, hdr
->sh_size
, abfd
) != hdr
->sh_size
)
7215 if (hdr
->sh_info
&& hdr
->sh_size
< sizeof (Elf_External_Verdef
))
7218 BFD_ASSERT (sizeof (Elf_External_Verdef
)
7219 >= sizeof (Elf_External_Verdaux
));
7220 contents_end_def
= contents
+ hdr
->sh_size
7221 - sizeof (Elf_External_Verdef
);
7222 contents_end_aux
= contents
+ hdr
->sh_size
7223 - sizeof (Elf_External_Verdaux
);
7225 /* We know the number of entries in the section but not the maximum
7226 index. Therefore we have to run through all entries and find
7228 everdef
= (Elf_External_Verdef
*) contents
;
7230 for (i
= 0; i
< hdr
->sh_info
; ++i
)
7232 _bfd_elf_swap_verdef_in (abfd
, everdef
, &iverdefmem
);
7234 if ((iverdefmem
.vd_ndx
& ((unsigned) VERSYM_VERSION
)) > maxidx
)
7235 maxidx
= iverdefmem
.vd_ndx
& ((unsigned) VERSYM_VERSION
);
7237 if (iverdefmem
.vd_next
7238 > (size_t) (contents_end_def
- (bfd_byte
*) everdef
))
7241 everdef
= ((Elf_External_Verdef
*)
7242 ((bfd_byte
*) everdef
+ iverdefmem
.vd_next
));
7245 if (default_imported_symver
)
7247 if (freeidx
> maxidx
)
7252 elf_tdata (abfd
)->verdef
= (Elf_Internal_Verdef
*)
7253 bfd_zalloc2 (abfd
, maxidx
, sizeof (Elf_Internal_Verdef
));
7254 if (elf_tdata (abfd
)->verdef
== NULL
)
7257 elf_tdata (abfd
)->cverdefs
= maxidx
;
7259 everdef
= (Elf_External_Verdef
*) contents
;
7260 iverdefarr
= elf_tdata (abfd
)->verdef
;
7261 for (i
= 0; i
< hdr
->sh_info
; i
++)
7263 Elf_External_Verdaux
*everdaux
;
7264 Elf_Internal_Verdaux
*iverdaux
;
7267 _bfd_elf_swap_verdef_in (abfd
, everdef
, &iverdefmem
);
7269 if ((iverdefmem
.vd_ndx
& VERSYM_VERSION
) == 0)
7271 error_return_verdef
:
7272 elf_tdata (abfd
)->verdef
= NULL
;
7273 elf_tdata (abfd
)->cverdefs
= 0;
7277 iverdef
= &iverdefarr
[(iverdefmem
.vd_ndx
& VERSYM_VERSION
) - 1];
7278 memcpy (iverdef
, &iverdefmem
, sizeof (Elf_Internal_Verdef
));
7280 iverdef
->vd_bfd
= abfd
;
7282 if (iverdef
->vd_cnt
== 0)
7283 iverdef
->vd_auxptr
= NULL
;
7286 iverdef
->vd_auxptr
= (struct elf_internal_verdaux
*)
7287 bfd_alloc2 (abfd
, iverdef
->vd_cnt
,
7288 sizeof (Elf_Internal_Verdaux
));
7289 if (iverdef
->vd_auxptr
== NULL
)
7290 goto error_return_verdef
;
7294 > (size_t) (contents_end_aux
- (bfd_byte
*) everdef
))
7295 goto error_return_verdef
;
7297 everdaux
= ((Elf_External_Verdaux
*)
7298 ((bfd_byte
*) everdef
+ iverdef
->vd_aux
));
7299 iverdaux
= iverdef
->vd_auxptr
;
7300 for (j
= 0; j
< iverdef
->vd_cnt
; j
++, iverdaux
++)
7302 _bfd_elf_swap_verdaux_in (abfd
, everdaux
, iverdaux
);
7304 iverdaux
->vda_nodename
=
7305 bfd_elf_string_from_elf_section (abfd
, hdr
->sh_link
,
7306 iverdaux
->vda_name
);
7307 if (iverdaux
->vda_nodename
== NULL
)
7308 goto error_return_verdef
;
7310 if (j
+ 1 < iverdef
->vd_cnt
)
7311 iverdaux
->vda_nextptr
= iverdaux
+ 1;
7313 iverdaux
->vda_nextptr
= NULL
;
7315 if (iverdaux
->vda_next
7316 > (size_t) (contents_end_aux
- (bfd_byte
*) everdaux
))
7317 goto error_return_verdef
;
7319 everdaux
= ((Elf_External_Verdaux
*)
7320 ((bfd_byte
*) everdaux
+ iverdaux
->vda_next
));
7323 if (iverdef
->vd_cnt
)
7324 iverdef
->vd_nodename
= iverdef
->vd_auxptr
->vda_nodename
;
7326 if ((size_t) (iverdef
- iverdefarr
) + 1 < maxidx
)
7327 iverdef
->vd_nextdef
= iverdef
+ 1;
7329 iverdef
->vd_nextdef
= NULL
;
7331 everdef
= ((Elf_External_Verdef
*)
7332 ((bfd_byte
*) everdef
+ iverdef
->vd_next
));
7338 else if (default_imported_symver
)
7345 elf_tdata (abfd
)->verdef
= (Elf_Internal_Verdef
*)
7346 bfd_zalloc2 (abfd
, freeidx
, sizeof (Elf_Internal_Verdef
));
7347 if (elf_tdata (abfd
)->verdef
== NULL
)
7350 elf_tdata (abfd
)->cverdefs
= freeidx
;
7353 /* Create a default version based on the soname. */
7354 if (default_imported_symver
)
7356 Elf_Internal_Verdef
*iverdef
;
7357 Elf_Internal_Verdaux
*iverdaux
;
7359 iverdef
= &elf_tdata (abfd
)->verdef
[freeidx
- 1];;
7361 iverdef
->vd_version
= VER_DEF_CURRENT
;
7362 iverdef
->vd_flags
= 0;
7363 iverdef
->vd_ndx
= freeidx
;
7364 iverdef
->vd_cnt
= 1;
7366 iverdef
->vd_bfd
= abfd
;
7368 iverdef
->vd_nodename
= bfd_elf_get_dt_soname (abfd
);
7369 if (iverdef
->vd_nodename
== NULL
)
7370 goto error_return_verdef
;
7371 iverdef
->vd_nextdef
= NULL
;
7372 iverdef
->vd_auxptr
= (struct elf_internal_verdaux
*)
7373 bfd_alloc (abfd
, sizeof (Elf_Internal_Verdaux
));
7374 if (iverdef
->vd_auxptr
== NULL
)
7375 goto error_return_verdef
;
7377 iverdaux
= iverdef
->vd_auxptr
;
7378 iverdaux
->vda_nodename
= iverdef
->vd_nodename
;
7379 iverdaux
->vda_nextptr
= NULL
;
7385 if (contents
!= NULL
)
7391 _bfd_elf_make_empty_symbol (bfd
*abfd
)
7393 elf_symbol_type
*newsym
;
7394 bfd_size_type amt
= sizeof (elf_symbol_type
);
7396 newsym
= (elf_symbol_type
*) bfd_zalloc (abfd
, amt
);
7401 newsym
->symbol
.the_bfd
= abfd
;
7402 return &newsym
->symbol
;
7407 _bfd_elf_get_symbol_info (bfd
*abfd ATTRIBUTE_UNUSED
,
7411 bfd_symbol_info (symbol
, ret
);
7414 /* Return whether a symbol name implies a local symbol. Most targets
7415 use this function for the is_local_label_name entry point, but some
7419 _bfd_elf_is_local_label_name (bfd
*abfd ATTRIBUTE_UNUSED
,
7422 /* Normal local symbols start with ``.L''. */
7423 if (name
[0] == '.' && name
[1] == 'L')
7426 /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
7427 DWARF debugging symbols starting with ``..''. */
7428 if (name
[0] == '.' && name
[1] == '.')
7431 /* gcc will sometimes generate symbols beginning with ``_.L_'' when
7432 emitting DWARF debugging output. I suspect this is actually a
7433 small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
7434 ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
7435 underscore to be emitted on some ELF targets). For ease of use,
7436 we treat such symbols as local. */
7437 if (name
[0] == '_' && name
[1] == '.' && name
[2] == 'L' && name
[3] == '_')
7444 _bfd_elf_get_lineno (bfd
*abfd ATTRIBUTE_UNUSED
,
7445 asymbol
*symbol ATTRIBUTE_UNUSED
)
7452 _bfd_elf_set_arch_mach (bfd
*abfd
,
7453 enum bfd_architecture arch
,
7454 unsigned long machine
)
7456 /* If this isn't the right architecture for this backend, and this
7457 isn't the generic backend, fail. */
7458 if (arch
!= get_elf_backend_data (abfd
)->arch
7459 && arch
!= bfd_arch_unknown
7460 && get_elf_backend_data (abfd
)->arch
!= bfd_arch_unknown
)
7463 return bfd_default_set_arch_mach (abfd
, arch
, machine
);
7466 /* Find the function to a particular section and offset,
7467 for error reporting. */
7470 elf_find_function (bfd
*abfd
,
7474 const char **filename_ptr
,
7475 const char **functionname_ptr
)
7477 static asection
*last_section
;
7478 static asymbol
*func
;
7479 static const char *filename
;
7480 static bfd_size_type func_size
;
7482 if (symbols
== NULL
)
7485 if (last_section
!= section
7487 || offset
< func
->value
7488 || offset
>= func
->value
+ func_size
)
7493 /* ??? Given multiple file symbols, it is impossible to reliably
7494 choose the right file name for global symbols. File symbols are
7495 local symbols, and thus all file symbols must sort before any
7496 global symbols. The ELF spec may be interpreted to say that a
7497 file symbol must sort before other local symbols, but currently
7498 ld -r doesn't do this. So, for ld -r output, it is possible to
7499 make a better choice of file name for local symbols by ignoring
7500 file symbols appearing after a given local symbol. */
7501 enum { nothing_seen
, symbol_seen
, file_after_symbol_seen
} state
;
7502 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
7508 state
= nothing_seen
;
7510 last_section
= section
;
7512 for (p
= symbols
; *p
!= NULL
; p
++)
7518 if ((sym
->flags
& BSF_FILE
) != 0)
7521 if (state
== symbol_seen
)
7522 state
= file_after_symbol_seen
;
7526 size
= bed
->maybe_function_sym (sym
, section
, &code_off
);
7528 && code_off
<= offset
7529 && (code_off
> low_func
7530 || (code_off
== low_func
7531 && size
> func_size
)))
7535 low_func
= code_off
;
7538 && ((sym
->flags
& BSF_LOCAL
) != 0
7539 || state
!= file_after_symbol_seen
))
7540 filename
= bfd_asymbol_name (file
);
7542 if (state
== nothing_seen
)
7543 state
= symbol_seen
;
7551 *filename_ptr
= filename
;
7552 if (functionname_ptr
)
7553 *functionname_ptr
= bfd_asymbol_name (func
);
7558 /* Find the nearest line to a particular section and offset,
7559 for error reporting. */
7562 _bfd_elf_find_nearest_line (bfd
*abfd
,
7566 const char **filename_ptr
,
7567 const char **functionname_ptr
,
7568 unsigned int *line_ptr
)
7570 return _bfd_elf_find_nearest_line_discriminator (abfd
, section
, symbols
,
7571 offset
, filename_ptr
,
7578 _bfd_elf_find_nearest_line_discriminator (bfd
*abfd
,
7582 const char **filename_ptr
,
7583 const char **functionname_ptr
,
7584 unsigned int *line_ptr
,
7585 unsigned int *discriminator_ptr
)
7589 if (_bfd_dwarf1_find_nearest_line (abfd
, section
, symbols
, offset
,
7590 filename_ptr
, functionname_ptr
,
7593 if (!*functionname_ptr
)
7594 elf_find_function (abfd
, section
, symbols
, offset
,
7595 *filename_ptr
? NULL
: filename_ptr
,
7601 if (_bfd_dwarf2_find_nearest_line (abfd
, dwarf_debug_sections
,
7602 section
, symbols
, offset
,
7603 filename_ptr
, functionname_ptr
,
7604 line_ptr
, discriminator_ptr
, 0,
7605 &elf_tdata (abfd
)->dwarf2_find_line_info
))
7607 if (!*functionname_ptr
)
7608 elf_find_function (abfd
, section
, symbols
, offset
,
7609 *filename_ptr
? NULL
: filename_ptr
,
7615 if (! _bfd_stab_section_find_nearest_line (abfd
, symbols
, section
, offset
,
7616 &found
, filename_ptr
,
7617 functionname_ptr
, line_ptr
,
7618 &elf_tdata (abfd
)->line_info
))
7620 if (found
&& (*functionname_ptr
|| *line_ptr
))
7623 if (symbols
== NULL
)
7626 if (! elf_find_function (abfd
, section
, symbols
, offset
,
7627 filename_ptr
, functionname_ptr
))
7634 /* Find the line for a symbol. */
7637 _bfd_elf_find_line (bfd
*abfd
, asymbol
**symbols
, asymbol
*symbol
,
7638 const char **filename_ptr
, unsigned int *line_ptr
)
7640 return _bfd_elf_find_line_discriminator (abfd
, symbols
, symbol
,
7641 filename_ptr
, line_ptr
,
7646 _bfd_elf_find_line_discriminator (bfd
*abfd
, asymbol
**symbols
, asymbol
*symbol
,
7647 const char **filename_ptr
,
7648 unsigned int *line_ptr
,
7649 unsigned int *discriminator_ptr
)
7651 return _bfd_dwarf2_find_line (abfd
, symbols
, symbol
,
7652 filename_ptr
, line_ptr
, discriminator_ptr
, 0,
7653 &elf_tdata (abfd
)->dwarf2_find_line_info
);
7656 /* After a call to bfd_find_nearest_line, successive calls to
7657 bfd_find_inliner_info can be used to get source information about
7658 each level of function inlining that terminated at the address
7659 passed to bfd_find_nearest_line. Currently this is only supported
7660 for DWARF2 with appropriate DWARF3 extensions. */
7663 _bfd_elf_find_inliner_info (bfd
*abfd
,
7664 const char **filename_ptr
,
7665 const char **functionname_ptr
,
7666 unsigned int *line_ptr
)
7669 found
= _bfd_dwarf2_find_inliner_info (abfd
, filename_ptr
,
7670 functionname_ptr
, line_ptr
,
7671 & elf_tdata (abfd
)->dwarf2_find_line_info
);
7676 _bfd_elf_sizeof_headers (bfd
*abfd
, struct bfd_link_info
*info
)
7678 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
7679 int ret
= bed
->s
->sizeof_ehdr
;
7681 if (!info
->relocatable
)
7683 bfd_size_type phdr_size
= elf_tdata (abfd
)->program_header_size
;
7685 if (phdr_size
== (bfd_size_type
) -1)
7687 struct elf_segment_map
*m
;
7690 for (m
= elf_tdata (abfd
)->segment_map
; m
!= NULL
; m
= m
->next
)
7691 phdr_size
+= bed
->s
->sizeof_phdr
;
7694 phdr_size
= get_program_header_size (abfd
, info
);
7697 elf_tdata (abfd
)->program_header_size
= phdr_size
;
7705 _bfd_elf_set_section_contents (bfd
*abfd
,
7707 const void *location
,
7709 bfd_size_type count
)
7711 Elf_Internal_Shdr
*hdr
;
7714 if (! abfd
->output_has_begun
7715 && ! _bfd_elf_compute_section_file_positions (abfd
, NULL
))
7718 hdr
= &elf_section_data (section
)->this_hdr
;
7719 pos
= hdr
->sh_offset
+ offset
;
7720 if (bfd_seek (abfd
, pos
, SEEK_SET
) != 0
7721 || bfd_bwrite (location
, count
, abfd
) != count
)
7728 _bfd_elf_no_info_to_howto (bfd
*abfd ATTRIBUTE_UNUSED
,
7729 arelent
*cache_ptr ATTRIBUTE_UNUSED
,
7730 Elf_Internal_Rela
*dst ATTRIBUTE_UNUSED
)
7735 /* Try to convert a non-ELF reloc into an ELF one. */
7738 _bfd_elf_validate_reloc (bfd
*abfd
, arelent
*areloc
)
7740 /* Check whether we really have an ELF howto. */
7742 if ((*areloc
->sym_ptr_ptr
)->the_bfd
->xvec
!= abfd
->xvec
)
7744 bfd_reloc_code_real_type code
;
7745 reloc_howto_type
*howto
;
7747 /* Alien reloc: Try to determine its type to replace it with an
7748 equivalent ELF reloc. */
7750 if (areloc
->howto
->pc_relative
)
7752 switch (areloc
->howto
->bitsize
)
7755 code
= BFD_RELOC_8_PCREL
;
7758 code
= BFD_RELOC_12_PCREL
;
7761 code
= BFD_RELOC_16_PCREL
;
7764 code
= BFD_RELOC_24_PCREL
;
7767 code
= BFD_RELOC_32_PCREL
;
7770 code
= BFD_RELOC_64_PCREL
;
7776 howto
= bfd_reloc_type_lookup (abfd
, code
);
7778 if (areloc
->howto
->pcrel_offset
!= howto
->pcrel_offset
)
7780 if (howto
->pcrel_offset
)
7781 areloc
->addend
+= areloc
->address
;
7783 areloc
->addend
-= areloc
->address
; /* addend is unsigned!! */
7788 switch (areloc
->howto
->bitsize
)
7794 code
= BFD_RELOC_14
;
7797 code
= BFD_RELOC_16
;
7800 code
= BFD_RELOC_26
;
7803 code
= BFD_RELOC_32
;
7806 code
= BFD_RELOC_64
;
7812 howto
= bfd_reloc_type_lookup (abfd
, code
);
7816 areloc
->howto
= howto
;
7824 (*_bfd_error_handler
)
7825 (_("%B: unsupported relocation type %s"),
7826 abfd
, areloc
->howto
->name
);
7827 bfd_set_error (bfd_error_bad_value
);
7832 _bfd_elf_close_and_cleanup (bfd
*abfd
)
7834 struct elf_obj_tdata
*tdata
= elf_tdata (abfd
);
7835 if (bfd_get_format (abfd
) == bfd_object
&& tdata
!= NULL
)
7837 if (elf_shstrtab (abfd
) != NULL
)
7838 _bfd_elf_strtab_free (elf_shstrtab (abfd
));
7839 _bfd_dwarf2_cleanup_debug_info (abfd
, &tdata
->dwarf2_find_line_info
);
7842 return _bfd_generic_close_and_cleanup (abfd
);
7845 /* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY
7846 in the relocation's offset. Thus we cannot allow any sort of sanity
7847 range-checking to interfere. There is nothing else to do in processing
7850 bfd_reloc_status_type
7851 _bfd_elf_rel_vtable_reloc_fn
7852 (bfd
*abfd ATTRIBUTE_UNUSED
, arelent
*re ATTRIBUTE_UNUSED
,
7853 struct bfd_symbol
*symbol ATTRIBUTE_UNUSED
,
7854 void *data ATTRIBUTE_UNUSED
, asection
*is ATTRIBUTE_UNUSED
,
7855 bfd
*obfd ATTRIBUTE_UNUSED
, char **errmsg ATTRIBUTE_UNUSED
)
7857 return bfd_reloc_ok
;
7860 /* Elf core file support. Much of this only works on native
7861 toolchains, since we rely on knowing the
7862 machine-dependent procfs structure in order to pick
7863 out details about the corefile. */
7865 #ifdef HAVE_SYS_PROCFS_H
7866 /* Needed for new procfs interface on sparc-solaris. */
7867 # define _STRUCTURED_PROC 1
7868 # include <sys/procfs.h>
7871 /* Return a PID that identifies a "thread" for threaded cores, or the
7872 PID of the main process for non-threaded cores. */
7875 elfcore_make_pid (bfd
*abfd
)
7879 pid
= elf_tdata (abfd
)->core_lwpid
;
7881 pid
= elf_tdata (abfd
)->core_pid
;
7886 /* If there isn't a section called NAME, make one, using
7887 data from SECT. Note, this function will generate a
7888 reference to NAME, so you shouldn't deallocate or
7892 elfcore_maybe_make_sect (bfd
*abfd
, char *name
, asection
*sect
)
7896 if (bfd_get_section_by_name (abfd
, name
) != NULL
)
7899 sect2
= bfd_make_section_with_flags (abfd
, name
, sect
->flags
);
7903 sect2
->size
= sect
->size
;
7904 sect2
->filepos
= sect
->filepos
;
7905 sect2
->alignment_power
= sect
->alignment_power
;
7909 /* Create a pseudosection containing SIZE bytes at FILEPOS. This
7910 actually creates up to two pseudosections:
7911 - For the single-threaded case, a section named NAME, unless
7912 such a section already exists.
7913 - For the multi-threaded case, a section named "NAME/PID", where
7914 PID is elfcore_make_pid (abfd).
7915 Both pseudosections have identical contents. */
7917 _bfd_elfcore_make_pseudosection (bfd
*abfd
,
7923 char *threaded_name
;
7927 /* Build the section name. */
7929 sprintf (buf
, "%s/%d", name
, elfcore_make_pid (abfd
));
7930 len
= strlen (buf
) + 1;
7931 threaded_name
= (char *) bfd_alloc (abfd
, len
);
7932 if (threaded_name
== NULL
)
7934 memcpy (threaded_name
, buf
, len
);
7936 sect
= bfd_make_section_anyway_with_flags (abfd
, threaded_name
,
7941 sect
->filepos
= filepos
;
7942 sect
->alignment_power
= 2;
7944 return elfcore_maybe_make_sect (abfd
, name
, sect
);
7947 /* prstatus_t exists on:
7949 linux 2.[01] + glibc
7953 #if defined (HAVE_PRSTATUS_T)
7956 elfcore_grok_prstatus (bfd
*abfd
, Elf_Internal_Note
*note
)
7961 if (note
->descsz
== sizeof (prstatus_t
))
7965 size
= sizeof (prstat
.pr_reg
);
7966 offset
= offsetof (prstatus_t
, pr_reg
);
7967 memcpy (&prstat
, note
->descdata
, sizeof (prstat
));
7969 /* Do not overwrite the core signal if it
7970 has already been set by another thread. */
7971 if (elf_tdata (abfd
)->core_signal
== 0)
7972 elf_tdata (abfd
)->core_signal
= prstat
.pr_cursig
;
7973 if (elf_tdata (abfd
)->core_pid
== 0)
7974 elf_tdata (abfd
)->core_pid
= prstat
.pr_pid
;
7976 /* pr_who exists on:
7979 pr_who doesn't exist on:
7982 #if defined (HAVE_PRSTATUS_T_PR_WHO)
7983 elf_tdata (abfd
)->core_lwpid
= prstat
.pr_who
;
7985 elf_tdata (abfd
)->core_lwpid
= prstat
.pr_pid
;
7988 #if defined (HAVE_PRSTATUS32_T)
7989 else if (note
->descsz
== sizeof (prstatus32_t
))
7991 /* 64-bit host, 32-bit corefile */
7992 prstatus32_t prstat
;
7994 size
= sizeof (prstat
.pr_reg
);
7995 offset
= offsetof (prstatus32_t
, pr_reg
);
7996 memcpy (&prstat
, note
->descdata
, sizeof (prstat
));
7998 /* Do not overwrite the core signal if it
7999 has already been set by another thread. */
8000 if (elf_tdata (abfd
)->core_signal
== 0)
8001 elf_tdata (abfd
)->core_signal
= prstat
.pr_cursig
;
8002 if (elf_tdata (abfd
)->core_pid
== 0)
8003 elf_tdata (abfd
)->core_pid
= prstat
.pr_pid
;
8005 /* pr_who exists on:
8008 pr_who doesn't exist on:
8011 #if defined (HAVE_PRSTATUS32_T_PR_WHO)
8012 elf_tdata (abfd
)->core_lwpid
= prstat
.pr_who
;
8014 elf_tdata (abfd
)->core_lwpid
= prstat
.pr_pid
;
8017 #endif /* HAVE_PRSTATUS32_T */
8020 /* Fail - we don't know how to handle any other
8021 note size (ie. data object type). */
8025 /* Make a ".reg/999" section and a ".reg" section. */
8026 return _bfd_elfcore_make_pseudosection (abfd
, ".reg",
8027 size
, note
->descpos
+ offset
);
8029 #endif /* defined (HAVE_PRSTATUS_T) */
8031 /* Create a pseudosection containing the exact contents of NOTE. */
8033 elfcore_make_note_pseudosection (bfd
*abfd
,
8035 Elf_Internal_Note
*note
)
8037 return _bfd_elfcore_make_pseudosection (abfd
, name
,
8038 note
->descsz
, note
->descpos
);
8041 /* There isn't a consistent prfpregset_t across platforms,
8042 but it doesn't matter, because we don't have to pick this
8043 data structure apart. */
8046 elfcore_grok_prfpreg (bfd
*abfd
, Elf_Internal_Note
*note
)
8048 return elfcore_make_note_pseudosection (abfd
, ".reg2", note
);
8051 /* Linux dumps the Intel SSE regs in a note named "LINUX" with a note
8052 type of NT_PRXFPREG. Just include the whole note's contents
8056 elfcore_grok_prxfpreg (bfd
*abfd
, Elf_Internal_Note
*note
)
8058 return elfcore_make_note_pseudosection (abfd
, ".reg-xfp", note
);
8061 /* Linux dumps the Intel XSAVE extended state in a note named "LINUX"
8062 with a note type of NT_X86_XSTATE. Just include the whole note's
8063 contents literally. */
8066 elfcore_grok_xstatereg (bfd
*abfd
, Elf_Internal_Note
*note
)
8068 return elfcore_make_note_pseudosection (abfd
, ".reg-xstate", note
);
8072 elfcore_grok_ppc_vmx (bfd
*abfd
, Elf_Internal_Note
*note
)
8074 return elfcore_make_note_pseudosection (abfd
, ".reg-ppc-vmx", note
);
8078 elfcore_grok_ppc_vsx (bfd
*abfd
, Elf_Internal_Note
*note
)
8080 return elfcore_make_note_pseudosection (abfd
, ".reg-ppc-vsx", note
);
8084 elfcore_grok_s390_high_gprs (bfd
*abfd
, Elf_Internal_Note
*note
)
8086 return elfcore_make_note_pseudosection (abfd
, ".reg-s390-high-gprs", note
);
8090 elfcore_grok_s390_timer (bfd
*abfd
, Elf_Internal_Note
*note
)
8092 return elfcore_make_note_pseudosection (abfd
, ".reg-s390-timer", note
);
8096 elfcore_grok_s390_todcmp (bfd
*abfd
, Elf_Internal_Note
*note
)
8098 return elfcore_make_note_pseudosection (abfd
, ".reg-s390-todcmp", note
);
8102 elfcore_grok_s390_todpreg (bfd
*abfd
, Elf_Internal_Note
*note
)
8104 return elfcore_make_note_pseudosection (abfd
, ".reg-s390-todpreg", note
);
8108 elfcore_grok_s390_ctrs (bfd
*abfd
, Elf_Internal_Note
*note
)
8110 return elfcore_make_note_pseudosection (abfd
, ".reg-s390-ctrs", note
);
8114 elfcore_grok_s390_prefix (bfd
*abfd
, Elf_Internal_Note
*note
)
8116 return elfcore_make_note_pseudosection (abfd
, ".reg-s390-prefix", note
);
8120 elfcore_grok_s390_last_break (bfd
*abfd
, Elf_Internal_Note
*note
)
8122 return elfcore_make_note_pseudosection (abfd
, ".reg-s390-last-break", note
);
8126 elfcore_grok_s390_system_call (bfd
*abfd
, Elf_Internal_Note
*note
)
8128 return elfcore_make_note_pseudosection (abfd
, ".reg-s390-system-call", note
);
8132 elfcore_grok_arm_vfp (bfd
*abfd
, Elf_Internal_Note
*note
)
8134 return elfcore_make_note_pseudosection (abfd
, ".reg-arm-vfp", note
);
8137 #if defined (HAVE_PRPSINFO_T)
8138 typedef prpsinfo_t elfcore_psinfo_t
;
8139 #if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */
8140 typedef prpsinfo32_t elfcore_psinfo32_t
;
8144 #if defined (HAVE_PSINFO_T)
8145 typedef psinfo_t elfcore_psinfo_t
;
8146 #if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */
8147 typedef psinfo32_t elfcore_psinfo32_t
;
8151 /* return a malloc'ed copy of a string at START which is at
8152 most MAX bytes long, possibly without a terminating '\0'.
8153 the copy will always have a terminating '\0'. */
8156 _bfd_elfcore_strndup (bfd
*abfd
, char *start
, size_t max
)
8159 char *end
= (char *) memchr (start
, '\0', max
);
8167 dups
= (char *) bfd_alloc (abfd
, len
+ 1);
8171 memcpy (dups
, start
, len
);
8177 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
8179 elfcore_grok_psinfo (bfd
*abfd
, Elf_Internal_Note
*note
)
8181 if (note
->descsz
== sizeof (elfcore_psinfo_t
))
8183 elfcore_psinfo_t psinfo
;
8185 memcpy (&psinfo
, note
->descdata
, sizeof (psinfo
));
8187 #if defined (HAVE_PSINFO_T_PR_PID) || defined (HAVE_PRPSINFO_T_PR_PID)
8188 elf_tdata (abfd
)->core_pid
= psinfo
.pr_pid
;
8190 elf_tdata (abfd
)->core_program
8191 = _bfd_elfcore_strndup (abfd
, psinfo
.pr_fname
,
8192 sizeof (psinfo
.pr_fname
));
8194 elf_tdata (abfd
)->core_command
8195 = _bfd_elfcore_strndup (abfd
, psinfo
.pr_psargs
,
8196 sizeof (psinfo
.pr_psargs
));
8198 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
8199 else if (note
->descsz
== sizeof (elfcore_psinfo32_t
))
8201 /* 64-bit host, 32-bit corefile */
8202 elfcore_psinfo32_t psinfo
;
8204 memcpy (&psinfo
, note
->descdata
, sizeof (psinfo
));
8206 #if defined (HAVE_PSINFO32_T_PR_PID) || defined (HAVE_PRPSINFO32_T_PR_PID)
8207 elf_tdata (abfd
)->core_pid
= psinfo
.pr_pid
;
8209 elf_tdata (abfd
)->core_program
8210 = _bfd_elfcore_strndup (abfd
, psinfo
.pr_fname
,
8211 sizeof (psinfo
.pr_fname
));
8213 elf_tdata (abfd
)->core_command
8214 = _bfd_elfcore_strndup (abfd
, psinfo
.pr_psargs
,
8215 sizeof (psinfo
.pr_psargs
));
8221 /* Fail - we don't know how to handle any other
8222 note size (ie. data object type). */
8226 /* Note that for some reason, a spurious space is tacked
8227 onto the end of the args in some (at least one anyway)
8228 implementations, so strip it off if it exists. */
8231 char *command
= elf_tdata (abfd
)->core_command
;
8232 int n
= strlen (command
);
8234 if (0 < n
&& command
[n
- 1] == ' ')
8235 command
[n
- 1] = '\0';
8240 #endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */
8242 #if defined (HAVE_PSTATUS_T)
8244 elfcore_grok_pstatus (bfd
*abfd
, Elf_Internal_Note
*note
)
8246 if (note
->descsz
== sizeof (pstatus_t
)
8247 #if defined (HAVE_PXSTATUS_T)
8248 || note
->descsz
== sizeof (pxstatus_t
)
8254 memcpy (&pstat
, note
->descdata
, sizeof (pstat
));
8256 elf_tdata (abfd
)->core_pid
= pstat
.pr_pid
;
8258 #if defined (HAVE_PSTATUS32_T)
8259 else if (note
->descsz
== sizeof (pstatus32_t
))
8261 /* 64-bit host, 32-bit corefile */
8264 memcpy (&pstat
, note
->descdata
, sizeof (pstat
));
8266 elf_tdata (abfd
)->core_pid
= pstat
.pr_pid
;
8269 /* Could grab some more details from the "representative"
8270 lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
8271 NT_LWPSTATUS note, presumably. */
8275 #endif /* defined (HAVE_PSTATUS_T) */
8277 #if defined (HAVE_LWPSTATUS_T)
8279 elfcore_grok_lwpstatus (bfd
*abfd
, Elf_Internal_Note
*note
)
8281 lwpstatus_t lwpstat
;
8287 if (note
->descsz
!= sizeof (lwpstat
)
8288 #if defined (HAVE_LWPXSTATUS_T)
8289 && note
->descsz
!= sizeof (lwpxstatus_t
)
8294 memcpy (&lwpstat
, note
->descdata
, sizeof (lwpstat
));
8296 elf_tdata (abfd
)->core_lwpid
= lwpstat
.pr_lwpid
;
8297 /* Do not overwrite the core signal if it has already been set by
8299 if (elf_tdata (abfd
)->core_signal
== 0)
8300 elf_tdata (abfd
)->core_signal
= lwpstat
.pr_cursig
;
8302 /* Make a ".reg/999" section. */
8304 sprintf (buf
, ".reg/%d", elfcore_make_pid (abfd
));
8305 len
= strlen (buf
) + 1;
8306 name
= bfd_alloc (abfd
, len
);
8309 memcpy (name
, buf
, len
);
8311 sect
= bfd_make_section_anyway_with_flags (abfd
, name
, SEC_HAS_CONTENTS
);
8315 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
8316 sect
->size
= sizeof (lwpstat
.pr_context
.uc_mcontext
.gregs
);
8317 sect
->filepos
= note
->descpos
8318 + offsetof (lwpstatus_t
, pr_context
.uc_mcontext
.gregs
);
8321 #if defined (HAVE_LWPSTATUS_T_PR_REG)
8322 sect
->size
= sizeof (lwpstat
.pr_reg
);
8323 sect
->filepos
= note
->descpos
+ offsetof (lwpstatus_t
, pr_reg
);
8326 sect
->alignment_power
= 2;
8328 if (!elfcore_maybe_make_sect (abfd
, ".reg", sect
))
8331 /* Make a ".reg2/999" section */
8333 sprintf (buf
, ".reg2/%d", elfcore_make_pid (abfd
));
8334 len
= strlen (buf
) + 1;
8335 name
= bfd_alloc (abfd
, len
);
8338 memcpy (name
, buf
, len
);
8340 sect
= bfd_make_section_anyway_with_flags (abfd
, name
, SEC_HAS_CONTENTS
);
8344 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
8345 sect
->size
= sizeof (lwpstat
.pr_context
.uc_mcontext
.fpregs
);
8346 sect
->filepos
= note
->descpos
8347 + offsetof (lwpstatus_t
, pr_context
.uc_mcontext
.fpregs
);
8350 #if defined (HAVE_LWPSTATUS_T_PR_FPREG)
8351 sect
->size
= sizeof (lwpstat
.pr_fpreg
);
8352 sect
->filepos
= note
->descpos
+ offsetof (lwpstatus_t
, pr_fpreg
);
8355 sect
->alignment_power
= 2;
8357 return elfcore_maybe_make_sect (abfd
, ".reg2", sect
);
8359 #endif /* defined (HAVE_LWPSTATUS_T) */
8362 elfcore_grok_win32pstatus (bfd
*abfd
, Elf_Internal_Note
*note
)
8369 int is_active_thread
;
8372 if (note
->descsz
< 728)
8375 if (! CONST_STRNEQ (note
->namedata
, "win32"))
8378 type
= bfd_get_32 (abfd
, note
->descdata
);
8382 case 1 /* NOTE_INFO_PROCESS */:
8383 /* FIXME: need to add ->core_command. */
8384 /* process_info.pid */
8385 elf_tdata (abfd
)->core_pid
= bfd_get_32 (abfd
, note
->descdata
+ 8);
8386 /* process_info.signal */
8387 elf_tdata (abfd
)->core_signal
= bfd_get_32 (abfd
, note
->descdata
+ 12);
8390 case 2 /* NOTE_INFO_THREAD */:
8391 /* Make a ".reg/999" section. */
8392 /* thread_info.tid */
8393 sprintf (buf
, ".reg/%ld", (long) bfd_get_32 (abfd
, note
->descdata
+ 8));
8395 len
= strlen (buf
) + 1;
8396 name
= (char *) bfd_alloc (abfd
, len
);
8400 memcpy (name
, buf
, len
);
8402 sect
= bfd_make_section_anyway_with_flags (abfd
, name
, SEC_HAS_CONTENTS
);
8406 /* sizeof (thread_info.thread_context) */
8408 /* offsetof (thread_info.thread_context) */
8409 sect
->filepos
= note
->descpos
+ 12;
8410 sect
->alignment_power
= 2;
8412 /* thread_info.is_active_thread */
8413 is_active_thread
= bfd_get_32 (abfd
, note
->descdata
+ 8);
8415 if (is_active_thread
)
8416 if (! elfcore_maybe_make_sect (abfd
, ".reg", sect
))
8420 case 3 /* NOTE_INFO_MODULE */:
8421 /* Make a ".module/xxxxxxxx" section. */
8422 /* module_info.base_address */
8423 base_addr
= bfd_get_32 (abfd
, note
->descdata
+ 4);
8424 sprintf (buf
, ".module/%08lx", (unsigned long) base_addr
);
8426 len
= strlen (buf
) + 1;
8427 name
= (char *) bfd_alloc (abfd
, len
);
8431 memcpy (name
, buf
, len
);
8433 sect
= bfd_make_section_anyway_with_flags (abfd
, name
, SEC_HAS_CONTENTS
);
8438 sect
->size
= note
->descsz
;
8439 sect
->filepos
= note
->descpos
;
8440 sect
->alignment_power
= 2;
8451 elfcore_grok_note (bfd
*abfd
, Elf_Internal_Note
*note
)
8453 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
8461 if (bed
->elf_backend_grok_prstatus
)
8462 if ((*bed
->elf_backend_grok_prstatus
) (abfd
, note
))
8464 #if defined (HAVE_PRSTATUS_T)
8465 return elfcore_grok_prstatus (abfd
, note
);
8470 #if defined (HAVE_PSTATUS_T)
8472 return elfcore_grok_pstatus (abfd
, note
);
8475 #if defined (HAVE_LWPSTATUS_T)
8477 return elfcore_grok_lwpstatus (abfd
, note
);
8480 case NT_FPREGSET
: /* FIXME: rename to NT_PRFPREG */
8481 return elfcore_grok_prfpreg (abfd
, note
);
8483 case NT_WIN32PSTATUS
:
8484 return elfcore_grok_win32pstatus (abfd
, note
);
8486 case NT_PRXFPREG
: /* Linux SSE extension */
8487 if (note
->namesz
== 6
8488 && strcmp (note
->namedata
, "LINUX") == 0)
8489 return elfcore_grok_prxfpreg (abfd
, note
);
8493 case NT_X86_XSTATE
: /* Linux XSAVE extension */
8494 if (note
->namesz
== 6
8495 && strcmp (note
->namedata
, "LINUX") == 0)
8496 return elfcore_grok_xstatereg (abfd
, note
);
8501 if (note
->namesz
== 6
8502 && strcmp (note
->namedata
, "LINUX") == 0)
8503 return elfcore_grok_ppc_vmx (abfd
, note
);
8508 if (note
->namesz
== 6
8509 && strcmp (note
->namedata
, "LINUX") == 0)
8510 return elfcore_grok_ppc_vsx (abfd
, note
);
8514 case NT_S390_HIGH_GPRS
:
8515 if (note
->namesz
== 6
8516 && strcmp (note
->namedata
, "LINUX") == 0)
8517 return elfcore_grok_s390_high_gprs (abfd
, note
);
8522 if (note
->namesz
== 6
8523 && strcmp (note
->namedata
, "LINUX") == 0)
8524 return elfcore_grok_s390_timer (abfd
, note
);
8528 case NT_S390_TODCMP
:
8529 if (note
->namesz
== 6
8530 && strcmp (note
->namedata
, "LINUX") == 0)
8531 return elfcore_grok_s390_todcmp (abfd
, note
);
8535 case NT_S390_TODPREG
:
8536 if (note
->namesz
== 6
8537 && strcmp (note
->namedata
, "LINUX") == 0)
8538 return elfcore_grok_s390_todpreg (abfd
, note
);
8543 if (note
->namesz
== 6
8544 && strcmp (note
->namedata
, "LINUX") == 0)
8545 return elfcore_grok_s390_ctrs (abfd
, note
);
8549 case NT_S390_PREFIX
:
8550 if (note
->namesz
== 6
8551 && strcmp (note
->namedata
, "LINUX") == 0)
8552 return elfcore_grok_s390_prefix (abfd
, note
);
8556 case NT_S390_LAST_BREAK
:
8557 if (note
->namesz
== 6
8558 && strcmp (note
->namedata
, "LINUX") == 0)
8559 return elfcore_grok_s390_last_break (abfd
, note
);
8563 case NT_S390_SYSTEM_CALL
:
8564 if (note
->namesz
== 6
8565 && strcmp (note
->namedata
, "LINUX") == 0)
8566 return elfcore_grok_s390_system_call (abfd
, note
);
8571 if (note
->namesz
== 6
8572 && strcmp (note
->namedata
, "LINUX") == 0)
8573 return elfcore_grok_arm_vfp (abfd
, note
);
8579 if (bed
->elf_backend_grok_psinfo
)
8580 if ((*bed
->elf_backend_grok_psinfo
) (abfd
, note
))
8582 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
8583 return elfcore_grok_psinfo (abfd
, note
);
8590 asection
*sect
= bfd_make_section_anyway_with_flags (abfd
, ".auxv",
8595 sect
->size
= note
->descsz
;
8596 sect
->filepos
= note
->descpos
;
8597 sect
->alignment_power
= 1 + bfd_get_arch_size (abfd
) / 32;
8605 elfobj_grok_gnu_build_id (bfd
*abfd
, Elf_Internal_Note
*note
)
8607 elf_tdata (abfd
)->build_id_size
= note
->descsz
;
8608 elf_tdata (abfd
)->build_id
= (bfd_byte
*) bfd_alloc (abfd
, note
->descsz
);
8609 if (elf_tdata (abfd
)->build_id
== NULL
)
8612 memcpy (elf_tdata (abfd
)->build_id
, note
->descdata
, note
->descsz
);
8618 elfobj_grok_gnu_note (bfd
*abfd
, Elf_Internal_Note
*note
)
8625 case NT_GNU_BUILD_ID
:
8626 return elfobj_grok_gnu_build_id (abfd
, note
);
8631 elfobj_grok_stapsdt_note_1 (bfd
*abfd
, Elf_Internal_Note
*note
)
8633 struct sdt_note
*cur
=
8634 (struct sdt_note
*) bfd_alloc (abfd
, sizeof (struct sdt_note
)
8637 cur
->next
= (struct sdt_note
*) (elf_tdata (abfd
))->sdt_note_head
;
8638 cur
->size
= (bfd_size_type
) note
->descsz
;
8639 memcpy (cur
->data
, note
->descdata
, note
->descsz
);
8641 elf_tdata (abfd
)->sdt_note_head
= cur
;
8647 elfobj_grok_stapsdt_note (bfd
*abfd
, Elf_Internal_Note
*note
)
8652 return elfobj_grok_stapsdt_note_1 (abfd
, note
);
8660 elfcore_netbsd_get_lwpid (Elf_Internal_Note
*note
, int *lwpidp
)
8664 cp
= strchr (note
->namedata
, '@');
8667 *lwpidp
= atoi(cp
+ 1);
8674 elfcore_grok_netbsd_procinfo (bfd
*abfd
, Elf_Internal_Note
*note
)
8676 /* Signal number at offset 0x08. */
8677 elf_tdata (abfd
)->core_signal
8678 = bfd_h_get_32 (abfd
, (bfd_byte
*) note
->descdata
+ 0x08);
8680 /* Process ID at offset 0x50. */
8681 elf_tdata (abfd
)->core_pid
8682 = bfd_h_get_32 (abfd
, (bfd_byte
*) note
->descdata
+ 0x50);
8684 /* Command name at 0x7c (max 32 bytes, including nul). */
8685 elf_tdata (abfd
)->core_command
8686 = _bfd_elfcore_strndup (abfd
, note
->descdata
+ 0x7c, 31);
8688 return elfcore_make_note_pseudosection (abfd
, ".note.netbsdcore.procinfo",
8693 elfcore_grok_netbsd_note (bfd
*abfd
, Elf_Internal_Note
*note
)
8697 if (elfcore_netbsd_get_lwpid (note
, &lwp
))
8698 elf_tdata (abfd
)->core_lwpid
= lwp
;
8700 if (note
->type
== NT_NETBSDCORE_PROCINFO
)
8702 /* NetBSD-specific core "procinfo". Note that we expect to
8703 find this note before any of the others, which is fine,
8704 since the kernel writes this note out first when it
8705 creates a core file. */
8707 return elfcore_grok_netbsd_procinfo (abfd
, note
);
8710 /* As of Jan 2002 there are no other machine-independent notes
8711 defined for NetBSD core files. If the note type is less
8712 than the start of the machine-dependent note types, we don't
8715 if (note
->type
< NT_NETBSDCORE_FIRSTMACH
)
8719 switch (bfd_get_arch (abfd
))
8721 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and
8722 PT_GETFPREGS == mach+2. */
8724 case bfd_arch_alpha
:
8725 case bfd_arch_sparc
:
8728 case NT_NETBSDCORE_FIRSTMACH
+0:
8729 return elfcore_make_note_pseudosection (abfd
, ".reg", note
);
8731 case NT_NETBSDCORE_FIRSTMACH
+2:
8732 return elfcore_make_note_pseudosection (abfd
, ".reg2", note
);
8738 /* On all other arch's, PT_GETREGS == mach+1 and
8739 PT_GETFPREGS == mach+3. */
8744 case NT_NETBSDCORE_FIRSTMACH
+1:
8745 return elfcore_make_note_pseudosection (abfd
, ".reg", note
);
8747 case NT_NETBSDCORE_FIRSTMACH
+3:
8748 return elfcore_make_note_pseudosection (abfd
, ".reg2", note
);
8758 elfcore_grok_openbsd_procinfo (bfd
*abfd
, Elf_Internal_Note
*note
)
8760 /* Signal number at offset 0x08. */
8761 elf_tdata (abfd
)->core_signal
8762 = bfd_h_get_32 (abfd
, (bfd_byte
*) note
->descdata
+ 0x08);
8764 /* Process ID at offset 0x20. */
8765 elf_tdata (abfd
)->core_pid
8766 = bfd_h_get_32 (abfd
, (bfd_byte
*) note
->descdata
+ 0x20);
8768 /* Command name at 0x48 (max 32 bytes, including nul). */
8769 elf_tdata (abfd
)->core_command
8770 = _bfd_elfcore_strndup (abfd
, note
->descdata
+ 0x48, 31);
8776 elfcore_grok_openbsd_note (bfd
*abfd
, Elf_Internal_Note
*note
)
8778 if (note
->type
== NT_OPENBSD_PROCINFO
)
8779 return elfcore_grok_openbsd_procinfo (abfd
, note
);
8781 if (note
->type
== NT_OPENBSD_REGS
)
8782 return elfcore_make_note_pseudosection (abfd
, ".reg", note
);
8784 if (note
->type
== NT_OPENBSD_FPREGS
)
8785 return elfcore_make_note_pseudosection (abfd
, ".reg2", note
);
8787 if (note
->type
== NT_OPENBSD_XFPREGS
)
8788 return elfcore_make_note_pseudosection (abfd
, ".reg-xfp", note
);
8790 if (note
->type
== NT_OPENBSD_AUXV
)
8792 asection
*sect
= bfd_make_section_anyway_with_flags (abfd
, ".auxv",
8797 sect
->size
= note
->descsz
;
8798 sect
->filepos
= note
->descpos
;
8799 sect
->alignment_power
= 1 + bfd_get_arch_size (abfd
) / 32;
8804 if (note
->type
== NT_OPENBSD_WCOOKIE
)
8806 asection
*sect
= bfd_make_section_anyway_with_flags (abfd
, ".wcookie",
8811 sect
->size
= note
->descsz
;
8812 sect
->filepos
= note
->descpos
;
8813 sect
->alignment_power
= 1 + bfd_get_arch_size (abfd
) / 32;
8822 elfcore_grok_nto_status (bfd
*abfd
, Elf_Internal_Note
*note
, long *tid
)
8824 void *ddata
= note
->descdata
;
8831 /* nto_procfs_status 'pid' field is at offset 0. */
8832 elf_tdata (abfd
)->core_pid
= bfd_get_32 (abfd
, (bfd_byte
*) ddata
);
8834 /* nto_procfs_status 'tid' field is at offset 4. Pass it back. */
8835 *tid
= bfd_get_32 (abfd
, (bfd_byte
*) ddata
+ 4);
8837 /* nto_procfs_status 'flags' field is at offset 8. */
8838 flags
= bfd_get_32 (abfd
, (bfd_byte
*) ddata
+ 8);
8840 /* nto_procfs_status 'what' field is at offset 14. */
8841 if ((sig
= bfd_get_16 (abfd
, (bfd_byte
*) ddata
+ 14)) > 0)
8843 elf_tdata (abfd
)->core_signal
= sig
;
8844 elf_tdata (abfd
)->core_lwpid
= *tid
;
8847 /* _DEBUG_FLAG_CURTID (current thread) is 0x80. Some cores
8848 do not come from signals so we make sure we set the current
8849 thread just in case. */
8850 if (flags
& 0x00000080)
8851 elf_tdata (abfd
)->core_lwpid
= *tid
;
8853 /* Make a ".qnx_core_status/%d" section. */
8854 sprintf (buf
, ".qnx_core_status/%ld", *tid
);
8856 name
= (char *) bfd_alloc (abfd
, strlen (buf
) + 1);
8861 sect
= bfd_make_section_anyway_with_flags (abfd
, name
, SEC_HAS_CONTENTS
);
8865 sect
->size
= note
->descsz
;
8866 sect
->filepos
= note
->descpos
;
8867 sect
->alignment_power
= 2;
8869 return (elfcore_maybe_make_sect (abfd
, ".qnx_core_status", sect
));
8873 elfcore_grok_nto_regs (bfd
*abfd
,
8874 Elf_Internal_Note
*note
,
8882 /* Make a "(base)/%d" section. */
8883 sprintf (buf
, "%s/%ld", base
, tid
);
8885 name
= (char *) bfd_alloc (abfd
, strlen (buf
) + 1);
8890 sect
= bfd_make_section_anyway_with_flags (abfd
, name
, SEC_HAS_CONTENTS
);
8894 sect
->size
= note
->descsz
;
8895 sect
->filepos
= note
->descpos
;
8896 sect
->alignment_power
= 2;
8898 /* This is the current thread. */
8899 if (elf_tdata (abfd
)->core_lwpid
== tid
)
8900 return elfcore_maybe_make_sect (abfd
, base
, sect
);
8905 #define BFD_QNT_CORE_INFO 7
8906 #define BFD_QNT_CORE_STATUS 8
8907 #define BFD_QNT_CORE_GREG 9
8908 #define BFD_QNT_CORE_FPREG 10
8911 elfcore_grok_nto_note (bfd
*abfd
, Elf_Internal_Note
*note
)
8913 /* Every GREG section has a STATUS section before it. Store the
8914 tid from the previous call to pass down to the next gregs
8916 static long tid
= 1;
8920 case BFD_QNT_CORE_INFO
:
8921 return elfcore_make_note_pseudosection (abfd
, ".qnx_core_info", note
);
8922 case BFD_QNT_CORE_STATUS
:
8923 return elfcore_grok_nto_status (abfd
, note
, &tid
);
8924 case BFD_QNT_CORE_GREG
:
8925 return elfcore_grok_nto_regs (abfd
, note
, tid
, ".reg");
8926 case BFD_QNT_CORE_FPREG
:
8927 return elfcore_grok_nto_regs (abfd
, note
, tid
, ".reg2");
8934 elfcore_grok_spu_note (bfd
*abfd
, Elf_Internal_Note
*note
)
8940 /* Use note name as section name. */
8942 name
= (char *) bfd_alloc (abfd
, len
);
8945 memcpy (name
, note
->namedata
, len
);
8946 name
[len
- 1] = '\0';
8948 sect
= bfd_make_section_anyway_with_flags (abfd
, name
, SEC_HAS_CONTENTS
);
8952 sect
->size
= note
->descsz
;
8953 sect
->filepos
= note
->descpos
;
8954 sect
->alignment_power
= 1;
8959 /* Function: elfcore_write_note
8962 buffer to hold note, and current size of buffer
8966 size of data for note
8968 Writes note to end of buffer. ELF64 notes are written exactly as
8969 for ELF32, despite the current (as of 2006) ELF gabi specifying
8970 that they ought to have 8-byte namesz and descsz field, and have
8971 8-byte alignment. Other writers, eg. Linux kernel, do the same.
8974 Pointer to realloc'd buffer, *BUFSIZ updated. */
8977 elfcore_write_note (bfd
*abfd
,
8985 Elf_External_Note
*xnp
;
8992 namesz
= strlen (name
) + 1;
8994 newspace
= 12 + ((namesz
+ 3) & -4) + ((size
+ 3) & -4);
8996 buf
= (char *) realloc (buf
, *bufsiz
+ newspace
);
8999 dest
= buf
+ *bufsiz
;
9000 *bufsiz
+= newspace
;
9001 xnp
= (Elf_External_Note
*) dest
;
9002 H_PUT_32 (abfd
, namesz
, xnp
->namesz
);
9003 H_PUT_32 (abfd
, size
, xnp
->descsz
);
9004 H_PUT_32 (abfd
, type
, xnp
->type
);
9008 memcpy (dest
, name
, namesz
);
9016 memcpy (dest
, input
, size
);
9027 elfcore_write_prpsinfo (bfd
*abfd
,
9033 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
9035 if (bed
->elf_backend_write_core_note
!= NULL
)
9038 ret
= (*bed
->elf_backend_write_core_note
) (abfd
, buf
, bufsiz
,
9039 NT_PRPSINFO
, fname
, psargs
);
9044 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
9045 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
9046 if (bed
->s
->elfclass
== ELFCLASS32
)
9048 #if defined (HAVE_PSINFO32_T)
9050 int note_type
= NT_PSINFO
;
9053 int note_type
= NT_PRPSINFO
;
9056 memset (&data
, 0, sizeof (data
));
9057 strncpy (data
.pr_fname
, fname
, sizeof (data
.pr_fname
));
9058 strncpy (data
.pr_psargs
, psargs
, sizeof (data
.pr_psargs
));
9059 return elfcore_write_note (abfd
, buf
, bufsiz
,
9060 "CORE", note_type
, &data
, sizeof (data
));
9065 #if defined (HAVE_PSINFO_T)
9067 int note_type
= NT_PSINFO
;
9070 int note_type
= NT_PRPSINFO
;
9073 memset (&data
, 0, sizeof (data
));
9074 strncpy (data
.pr_fname
, fname
, sizeof (data
.pr_fname
));
9075 strncpy (data
.pr_psargs
, psargs
, sizeof (data
.pr_psargs
));
9076 return elfcore_write_note (abfd
, buf
, bufsiz
,
9077 "CORE", note_type
, &data
, sizeof (data
));
9079 #endif /* PSINFO_T or PRPSINFO_T */
9086 elfcore_write_prstatus (bfd
*abfd
,
9093 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
9095 if (bed
->elf_backend_write_core_note
!= NULL
)
9098 ret
= (*bed
->elf_backend_write_core_note
) (abfd
, buf
, bufsiz
,
9100 pid
, cursig
, gregs
);
9105 #if defined (HAVE_PRSTATUS_T)
9106 #if defined (HAVE_PRSTATUS32_T)
9107 if (bed
->s
->elfclass
== ELFCLASS32
)
9109 prstatus32_t prstat
;
9111 memset (&prstat
, 0, sizeof (prstat
));
9112 prstat
.pr_pid
= pid
;
9113 prstat
.pr_cursig
= cursig
;
9114 memcpy (&prstat
.pr_reg
, gregs
, sizeof (prstat
.pr_reg
));
9115 return elfcore_write_note (abfd
, buf
, bufsiz
, "CORE",
9116 NT_PRSTATUS
, &prstat
, sizeof (prstat
));
9123 memset (&prstat
, 0, sizeof (prstat
));
9124 prstat
.pr_pid
= pid
;
9125 prstat
.pr_cursig
= cursig
;
9126 memcpy (&prstat
.pr_reg
, gregs
, sizeof (prstat
.pr_reg
));
9127 return elfcore_write_note (abfd
, buf
, bufsiz
, "CORE",
9128 NT_PRSTATUS
, &prstat
, sizeof (prstat
));
9130 #endif /* HAVE_PRSTATUS_T */
9136 #if defined (HAVE_LWPSTATUS_T)
9138 elfcore_write_lwpstatus (bfd
*abfd
,
9145 lwpstatus_t lwpstat
;
9146 const char *note_name
= "CORE";
9148 memset (&lwpstat
, 0, sizeof (lwpstat
));
9149 lwpstat
.pr_lwpid
= pid
>> 16;
9150 lwpstat
.pr_cursig
= cursig
;
9151 #if defined (HAVE_LWPSTATUS_T_PR_REG)
9152 memcpy (lwpstat
.pr_reg
, gregs
, sizeof (lwpstat
.pr_reg
));
9153 #elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
9155 memcpy (lwpstat
.pr_context
.uc_mcontext
.gregs
,
9156 gregs
, sizeof (lwpstat
.pr_context
.uc_mcontext
.gregs
));
9158 memcpy (lwpstat
.pr_context
.uc_mcontext
.__gregs
,
9159 gregs
, sizeof (lwpstat
.pr_context
.uc_mcontext
.__gregs
));
9162 return elfcore_write_note (abfd
, buf
, bufsiz
, note_name
,
9163 NT_LWPSTATUS
, &lwpstat
, sizeof (lwpstat
));
9165 #endif /* HAVE_LWPSTATUS_T */
9167 #if defined (HAVE_PSTATUS_T)
9169 elfcore_write_pstatus (bfd
*abfd
,
9173 int cursig ATTRIBUTE_UNUSED
,
9174 const void *gregs ATTRIBUTE_UNUSED
)
9176 const char *note_name
= "CORE";
9177 #if defined (HAVE_PSTATUS32_T)
9178 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
9180 if (bed
->s
->elfclass
== ELFCLASS32
)
9184 memset (&pstat
, 0, sizeof (pstat
));
9185 pstat
.pr_pid
= pid
& 0xffff;
9186 buf
= elfcore_write_note (abfd
, buf
, bufsiz
, note_name
,
9187 NT_PSTATUS
, &pstat
, sizeof (pstat
));
9195 memset (&pstat
, 0, sizeof (pstat
));
9196 pstat
.pr_pid
= pid
& 0xffff;
9197 buf
= elfcore_write_note (abfd
, buf
, bufsiz
, note_name
,
9198 NT_PSTATUS
, &pstat
, sizeof (pstat
));
9202 #endif /* HAVE_PSTATUS_T */
9205 elfcore_write_prfpreg (bfd
*abfd
,
9211 const char *note_name
= "CORE";
9212 return elfcore_write_note (abfd
, buf
, bufsiz
,
9213 note_name
, NT_FPREGSET
, fpregs
, size
);
9217 elfcore_write_prxfpreg (bfd
*abfd
,
9220 const void *xfpregs
,
9223 char *note_name
= "LINUX";
9224 return elfcore_write_note (abfd
, buf
, bufsiz
,
9225 note_name
, NT_PRXFPREG
, xfpregs
, size
);
9229 elfcore_write_xstatereg (bfd
*abfd
, char *buf
, int *bufsiz
,
9230 const void *xfpregs
, int size
)
9232 char *note_name
= "LINUX";
9233 return elfcore_write_note (abfd
, buf
, bufsiz
,
9234 note_name
, NT_X86_XSTATE
, xfpregs
, size
);
9238 elfcore_write_ppc_vmx (bfd
*abfd
,
9241 const void *ppc_vmx
,
9244 char *note_name
= "LINUX";
9245 return elfcore_write_note (abfd
, buf
, bufsiz
,
9246 note_name
, NT_PPC_VMX
, ppc_vmx
, size
);
9250 elfcore_write_ppc_vsx (bfd
*abfd
,
9253 const void *ppc_vsx
,
9256 char *note_name
= "LINUX";
9257 return elfcore_write_note (abfd
, buf
, bufsiz
,
9258 note_name
, NT_PPC_VSX
, ppc_vsx
, size
);
9262 elfcore_write_s390_high_gprs (bfd
*abfd
,
9265 const void *s390_high_gprs
,
9268 char *note_name
= "LINUX";
9269 return elfcore_write_note (abfd
, buf
, bufsiz
,
9270 note_name
, NT_S390_HIGH_GPRS
,
9271 s390_high_gprs
, size
);
9275 elfcore_write_s390_timer (bfd
*abfd
,
9278 const void *s390_timer
,
9281 char *note_name
= "LINUX";
9282 return elfcore_write_note (abfd
, buf
, bufsiz
,
9283 note_name
, NT_S390_TIMER
, s390_timer
, size
);
9287 elfcore_write_s390_todcmp (bfd
*abfd
,
9290 const void *s390_todcmp
,
9293 char *note_name
= "LINUX";
9294 return elfcore_write_note (abfd
, buf
, bufsiz
,
9295 note_name
, NT_S390_TODCMP
, s390_todcmp
, size
);
9299 elfcore_write_s390_todpreg (bfd
*abfd
,
9302 const void *s390_todpreg
,
9305 char *note_name
= "LINUX";
9306 return elfcore_write_note (abfd
, buf
, bufsiz
,
9307 note_name
, NT_S390_TODPREG
, s390_todpreg
, size
);
9311 elfcore_write_s390_ctrs (bfd
*abfd
,
9314 const void *s390_ctrs
,
9317 char *note_name
= "LINUX";
9318 return elfcore_write_note (abfd
, buf
, bufsiz
,
9319 note_name
, NT_S390_CTRS
, s390_ctrs
, size
);
9323 elfcore_write_s390_prefix (bfd
*abfd
,
9326 const void *s390_prefix
,
9329 char *note_name
= "LINUX";
9330 return elfcore_write_note (abfd
, buf
, bufsiz
,
9331 note_name
, NT_S390_PREFIX
, s390_prefix
, size
);
9335 elfcore_write_s390_last_break (bfd
*abfd
,
9338 const void *s390_last_break
,
9341 char *note_name
= "LINUX";
9342 return elfcore_write_note (abfd
, buf
, bufsiz
,
9343 note_name
, NT_S390_LAST_BREAK
,
9344 s390_last_break
, size
);
9348 elfcore_write_s390_system_call (bfd
*abfd
,
9351 const void *s390_system_call
,
9354 char *note_name
= "LINUX";
9355 return elfcore_write_note (abfd
, buf
, bufsiz
,
9356 note_name
, NT_S390_SYSTEM_CALL
,
9357 s390_system_call
, size
);
9361 elfcore_write_arm_vfp (bfd
*abfd
,
9364 const void *arm_vfp
,
9367 char *note_name
= "LINUX";
9368 return elfcore_write_note (abfd
, buf
, bufsiz
,
9369 note_name
, NT_ARM_VFP
, arm_vfp
, size
);
9373 elfcore_write_register_note (bfd
*abfd
,
9376 const char *section
,
9380 if (strcmp (section
, ".reg2") == 0)
9381 return elfcore_write_prfpreg (abfd
, buf
, bufsiz
, data
, size
);
9382 if (strcmp (section
, ".reg-xfp") == 0)
9383 return elfcore_write_prxfpreg (abfd
, buf
, bufsiz
, data
, size
);
9384 if (strcmp (section
, ".reg-xstate") == 0)
9385 return elfcore_write_xstatereg (abfd
, buf
, bufsiz
, data
, size
);
9386 if (strcmp (section
, ".reg-ppc-vmx") == 0)
9387 return elfcore_write_ppc_vmx (abfd
, buf
, bufsiz
, data
, size
);
9388 if (strcmp (section
, ".reg-ppc-vsx") == 0)
9389 return elfcore_write_ppc_vsx (abfd
, buf
, bufsiz
, data
, size
);
9390 if (strcmp (section
, ".reg-s390-high-gprs") == 0)
9391 return elfcore_write_s390_high_gprs (abfd
, buf
, bufsiz
, data
, size
);
9392 if (strcmp (section
, ".reg-s390-timer") == 0)
9393 return elfcore_write_s390_timer (abfd
, buf
, bufsiz
, data
, size
);
9394 if (strcmp (section
, ".reg-s390-todcmp") == 0)
9395 return elfcore_write_s390_todcmp (abfd
, buf
, bufsiz
, data
, size
);
9396 if (strcmp (section
, ".reg-s390-todpreg") == 0)
9397 return elfcore_write_s390_todpreg (abfd
, buf
, bufsiz
, data
, size
);
9398 if (strcmp (section
, ".reg-s390-ctrs") == 0)
9399 return elfcore_write_s390_ctrs (abfd
, buf
, bufsiz
, data
, size
);
9400 if (strcmp (section
, ".reg-s390-prefix") == 0)
9401 return elfcore_write_s390_prefix (abfd
, buf
, bufsiz
, data
, size
);
9402 if (strcmp (section
, ".reg-s390-last-break") == 0)
9403 return elfcore_write_s390_last_break (abfd
, buf
, bufsiz
, data
, size
);
9404 if (strcmp (section
, ".reg-s390-system-call") == 0)
9405 return elfcore_write_s390_system_call (abfd
, buf
, bufsiz
, data
, size
);
9406 if (strcmp (section
, ".reg-arm-vfp") == 0)
9407 return elfcore_write_arm_vfp (abfd
, buf
, bufsiz
, data
, size
);
9412 elf_parse_notes (bfd
*abfd
, char *buf
, size_t size
, file_ptr offset
)
9417 while (p
< buf
+ size
)
9419 /* FIXME: bad alignment assumption. */
9420 Elf_External_Note
*xnp
= (Elf_External_Note
*) p
;
9421 Elf_Internal_Note in
;
9423 if (offsetof (Elf_External_Note
, name
) > buf
- p
+ size
)
9426 in
.type
= H_GET_32 (abfd
, xnp
->type
);
9428 in
.namesz
= H_GET_32 (abfd
, xnp
->namesz
);
9429 in
.namedata
= xnp
->name
;
9430 if (in
.namesz
> buf
- in
.namedata
+ size
)
9433 in
.descsz
= H_GET_32 (abfd
, xnp
->descsz
);
9434 in
.descdata
= in
.namedata
+ BFD_ALIGN (in
.namesz
, 4);
9435 in
.descpos
= offset
+ (in
.descdata
- buf
);
9437 && (in
.descdata
>= buf
+ size
9438 || in
.descsz
> buf
- in
.descdata
+ size
))
9441 switch (bfd_get_format (abfd
))
9447 if (CONST_STRNEQ (in
.namedata
, "NetBSD-CORE"))
9449 if (! elfcore_grok_netbsd_note (abfd
, &in
))
9452 else if (CONST_STRNEQ (in
.namedata
, "OpenBSD"))
9454 if (! elfcore_grok_openbsd_note (abfd
, &in
))
9457 else if (CONST_STRNEQ (in
.namedata
, "QNX"))
9459 if (! elfcore_grok_nto_note (abfd
, &in
))
9462 else if (CONST_STRNEQ (in
.namedata
, "SPU/"))
9464 if (! elfcore_grok_spu_note (abfd
, &in
))
9469 if (! elfcore_grok_note (abfd
, &in
))
9475 if (in
.namesz
== sizeof "GNU" && strcmp (in
.namedata
, "GNU") == 0)
9477 if (! elfobj_grok_gnu_note (abfd
, &in
))
9480 else if (in
.namesz
== sizeof "stapsdt"
9481 && strcmp (in
.namedata
, "stapsdt") == 0)
9483 if (! elfobj_grok_stapsdt_note (abfd
, &in
))
9489 p
= in
.descdata
+ BFD_ALIGN (in
.descsz
, 4);
9496 elf_read_notes (bfd
*abfd
, file_ptr offset
, bfd_size_type size
)
9503 if (bfd_seek (abfd
, offset
, SEEK_SET
) != 0)
9506 buf
= (char *) bfd_malloc (size
);
9510 if (bfd_bread (buf
, size
, abfd
) != size
9511 || !elf_parse_notes (abfd
, buf
, size
, offset
))
9521 /* Providing external access to the ELF program header table. */
9523 /* Return an upper bound on the number of bytes required to store a
9524 copy of ABFD's program header table entries. Return -1 if an error
9525 occurs; bfd_get_error will return an appropriate code. */
9528 bfd_get_elf_phdr_upper_bound (bfd
*abfd
)
9530 if (abfd
->xvec
->flavour
!= bfd_target_elf_flavour
)
9532 bfd_set_error (bfd_error_wrong_format
);
9536 return elf_elfheader (abfd
)->e_phnum
* sizeof (Elf_Internal_Phdr
);
9539 /* Copy ABFD's program header table entries to *PHDRS. The entries
9540 will be stored as an array of Elf_Internal_Phdr structures, as
9541 defined in include/elf/internal.h. To find out how large the
9542 buffer needs to be, call bfd_get_elf_phdr_upper_bound.
9544 Return the number of program header table entries read, or -1 if an
9545 error occurs; bfd_get_error will return an appropriate code. */
9548 bfd_get_elf_phdrs (bfd
*abfd
, void *phdrs
)
9552 if (abfd
->xvec
->flavour
!= bfd_target_elf_flavour
)
9554 bfd_set_error (bfd_error_wrong_format
);
9558 num_phdrs
= elf_elfheader (abfd
)->e_phnum
;
9559 memcpy (phdrs
, elf_tdata (abfd
)->phdr
,
9560 num_phdrs
* sizeof (Elf_Internal_Phdr
));
9565 enum elf_reloc_type_class
9566 _bfd_elf_reloc_type_class (const Elf_Internal_Rela
*rela ATTRIBUTE_UNUSED
)
9568 return reloc_class_normal
;
9571 /* For RELA architectures, return the relocation value for a
9572 relocation against a local symbol. */
9575 _bfd_elf_rela_local_sym (bfd
*abfd
,
9576 Elf_Internal_Sym
*sym
,
9578 Elf_Internal_Rela
*rel
)
9580 asection
*sec
= *psec
;
9583 relocation
= (sec
->output_section
->vma
9584 + sec
->output_offset
9586 if ((sec
->flags
& SEC_MERGE
)
9587 && ELF_ST_TYPE (sym
->st_info
) == STT_SECTION
9588 && sec
->sec_info_type
== SEC_INFO_TYPE_MERGE
)
9591 _bfd_merged_section_offset (abfd
, psec
,
9592 elf_section_data (sec
)->sec_info
,
9593 sym
->st_value
+ rel
->r_addend
);
9596 /* If we have changed the section, and our original section is
9597 marked with SEC_EXCLUDE, it means that the original
9598 SEC_MERGE section has been completely subsumed in some
9599 other SEC_MERGE section. In this case, we need to leave
9600 some info around for --emit-relocs. */
9601 if ((sec
->flags
& SEC_EXCLUDE
) != 0)
9602 sec
->kept_section
= *psec
;
9605 rel
->r_addend
-= relocation
;
9606 rel
->r_addend
+= sec
->output_section
->vma
+ sec
->output_offset
;
9612 _bfd_elf_rel_local_sym (bfd
*abfd
,
9613 Elf_Internal_Sym
*sym
,
9617 asection
*sec
= *psec
;
9619 if (sec
->sec_info_type
!= SEC_INFO_TYPE_MERGE
)
9620 return sym
->st_value
+ addend
;
9622 return _bfd_merged_section_offset (abfd
, psec
,
9623 elf_section_data (sec
)->sec_info
,
9624 sym
->st_value
+ addend
);
9628 _bfd_elf_section_offset (bfd
*abfd
,
9629 struct bfd_link_info
*info
,
9633 switch (sec
->sec_info_type
)
9635 case SEC_INFO_TYPE_STABS
:
9636 return _bfd_stab_section_offset (sec
, elf_section_data (sec
)->sec_info
,
9638 case SEC_INFO_TYPE_EH_FRAME
:
9639 return _bfd_elf_eh_frame_section_offset (abfd
, info
, sec
, offset
);
9641 if ((sec
->flags
& SEC_ELF_REVERSE_COPY
) != 0)
9643 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
9644 bfd_size_type address_size
= bed
->s
->arch_size
/ 8;
9645 offset
= sec
->size
- offset
- address_size
;
9651 /* Create a new BFD as if by bfd_openr. Rather than opening a file,
9652 reconstruct an ELF file by reading the segments out of remote memory
9653 based on the ELF file header at EHDR_VMA and the ELF program headers it
9654 points to. If not null, *LOADBASEP is filled in with the difference
9655 between the VMAs from which the segments were read, and the VMAs the
9656 file headers (and hence BFD's idea of each section's VMA) put them at.
9658 The function TARGET_READ_MEMORY is called to copy LEN bytes from the
9659 remote memory at target address VMA into the local buffer at MYADDR; it
9660 should return zero on success or an `errno' code on failure. TEMPL must
9661 be a BFD for an ELF target with the word size and byte order found in
9662 the remote memory. */
9665 bfd_elf_bfd_from_remote_memory
9669 int (*target_read_memory
) (bfd_vma
, bfd_byte
*, bfd_size_type
))
9671 return (*get_elf_backend_data (templ
)->elf_backend_bfd_from_remote_memory
)
9672 (templ
, ehdr_vma
, loadbasep
, target_read_memory
);
9676 _bfd_elf_get_synthetic_symtab (bfd
*abfd
,
9677 long symcount ATTRIBUTE_UNUSED
,
9678 asymbol
**syms ATTRIBUTE_UNUSED
,
9683 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
9686 const char *relplt_name
;
9687 bfd_boolean (*slurp_relocs
) (bfd
*, asection
*, asymbol
**, bfd_boolean
);
9691 Elf_Internal_Shdr
*hdr
;
9697 if ((abfd
->flags
& (DYNAMIC
| EXEC_P
)) == 0)
9700 if (dynsymcount
<= 0)
9703 if (!bed
->plt_sym_val
)
9706 relplt_name
= bed
->relplt_name
;
9707 if (relplt_name
== NULL
)
9708 relplt_name
= bed
->rela_plts_and_copies_p
? ".rela.plt" : ".rel.plt";
9709 relplt
= bfd_get_section_by_name (abfd
, relplt_name
);
9713 hdr
= &elf_section_data (relplt
)->this_hdr
;
9714 if (hdr
->sh_link
!= elf_dynsymtab (abfd
)
9715 || (hdr
->sh_type
!= SHT_REL
&& hdr
->sh_type
!= SHT_RELA
))
9718 plt
= bfd_get_section_by_name (abfd
, ".plt");
9722 slurp_relocs
= get_elf_backend_data (abfd
)->s
->slurp_reloc_table
;
9723 if (! (*slurp_relocs
) (abfd
, relplt
, dynsyms
, TRUE
))
9726 count
= relplt
->size
/ hdr
->sh_entsize
;
9727 size
= count
* sizeof (asymbol
);
9728 p
= relplt
->relocation
;
9729 for (i
= 0; i
< count
; i
++, p
+= bed
->s
->int_rels_per_ext_rel
)
9731 size
+= strlen ((*p
->sym_ptr_ptr
)->name
) + sizeof ("@plt");
9735 size
+= sizeof ("+0x") - 1 + 8 + 8 * (bed
->s
->elfclass
== ELFCLASS64
);
9737 size
+= sizeof ("+0x") - 1 + 8;
9742 s
= *ret
= (asymbol
*) bfd_malloc (size
);
9746 names
= (char *) (s
+ count
);
9747 p
= relplt
->relocation
;
9749 for (i
= 0; i
< count
; i
++, p
+= bed
->s
->int_rels_per_ext_rel
)
9754 addr
= bed
->plt_sym_val (i
, plt
, p
);
9755 if (addr
== (bfd_vma
) -1)
9758 *s
= **p
->sym_ptr_ptr
;
9759 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
9760 we are defining a symbol, ensure one of them is set. */
9761 if ((s
->flags
& BSF_LOCAL
) == 0)
9762 s
->flags
|= BSF_GLOBAL
;
9763 s
->flags
|= BSF_SYNTHETIC
;
9765 s
->value
= addr
- plt
->vma
;
9768 len
= strlen ((*p
->sym_ptr_ptr
)->name
);
9769 memcpy (names
, (*p
->sym_ptr_ptr
)->name
, len
);
9775 memcpy (names
, "+0x", sizeof ("+0x") - 1);
9776 names
+= sizeof ("+0x") - 1;
9777 bfd_sprintf_vma (abfd
, buf
, p
->addend
);
9778 for (a
= buf
; *a
== '0'; ++a
)
9781 memcpy (names
, a
, len
);
9784 memcpy (names
, "@plt", sizeof ("@plt"));
9785 names
+= sizeof ("@plt");
9792 /* It is only used by x86-64 so far. */
9793 asection _bfd_elf_large_com_section
9794 = BFD_FAKE_SECTION (_bfd_elf_large_com_section
,
9795 SEC_IS_COMMON
, NULL
, "LARGE_COMMON", 0);
9798 _bfd_elf_set_osabi (bfd
* abfd
,
9799 struct bfd_link_info
* link_info ATTRIBUTE_UNUSED
)
9801 Elf_Internal_Ehdr
* i_ehdrp
; /* ELF file header, internal form. */
9803 i_ehdrp
= elf_elfheader (abfd
);
9805 i_ehdrp
->e_ident
[EI_OSABI
] = get_elf_backend_data (abfd
)->elf_osabi
;
9807 /* To make things simpler for the loader on Linux systems we set the
9808 osabi field to ELFOSABI_GNU if the binary contains symbols of
9809 the STT_GNU_IFUNC type or STB_GNU_UNIQUE binding. */
9810 if (i_ehdrp
->e_ident
[EI_OSABI
] == ELFOSABI_NONE
9811 && elf_tdata (abfd
)->has_gnu_symbols
)
9812 i_ehdrp
->e_ident
[EI_OSABI
] = ELFOSABI_GNU
;
9816 /* Return TRUE for ELF symbol types that represent functions.
9817 This is the default version of this function, which is sufficient for
9818 most targets. It returns true if TYPE is STT_FUNC or STT_GNU_IFUNC. */
9821 _bfd_elf_is_function_type (unsigned int type
)
9823 return (type
== STT_FUNC
9824 || type
== STT_GNU_IFUNC
);
9827 /* If the ELF symbol SYM might be a function in SEC, return the
9828 function size and set *CODE_OFF to the function's entry point,
9829 otherwise return zero. */
9832 _bfd_elf_maybe_function_sym (const asymbol
*sym
, asection
*sec
,
9837 if ((sym
->flags
& (BSF_SECTION_SYM
| BSF_FILE
| BSF_OBJECT
9838 | BSF_THREAD_LOCAL
| BSF_RELC
| BSF_SRELC
)) != 0
9839 || sym
->section
!= sec
)
9842 *code_off
= sym
->value
;
9844 if (!(sym
->flags
& BSF_SYNTHETIC
))
9845 size
= ((elf_symbol_type
*) sym
)->internal_elf_sym
.st_size
;