1 /* Support for HPPA 64-bit ELF
2 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
4 Free Software Foundation, Inc.
6 This file is part of BFD, the Binary File Descriptor library.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 MA 02110-1301, USA. */
24 #include "alloca-conf.h"
30 #include "elf64-hppa.h"
35 #define PLT_ENTRY_SIZE 0x10
36 #define DLT_ENTRY_SIZE 0x8
37 #define OPD_ENTRY_SIZE 0x20
39 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/pa20_64/dld.sl"
41 /* The stub is supposed to load the target address and target's DP
42 value out of the PLT, then do an external branch to the target
47 LDD PLTOFF+8(%r27),%r27
49 Note that we must use the LDD with a 14 bit displacement, not the one
50 with a 5 bit displacement. */
51 static char plt_stub
[] = {0x53, 0x61, 0x00, 0x00, 0xe8, 0x20, 0xd0, 0x00,
52 0x53, 0x7b, 0x00, 0x00 };
54 struct elf64_hppa_link_hash_entry
56 struct elf_link_hash_entry eh
;
58 /* Offsets for this symbol in various linker sections. */
64 /* The index of the (possibly local) symbol in the input bfd and its
65 associated BFD. Needed so that we can have relocs against local
66 symbols in shared libraries. */
70 /* Dynamic symbols may need to have two different values. One for
71 the dynamic symbol table, one for the normal symbol table.
73 In such cases we store the symbol's real value and section
74 index here so we can restore the real value before we write
75 the normal symbol table. */
79 /* Used to count non-got, non-plt relocations for delayed sizing
80 of relocation sections. */
81 struct elf64_hppa_dyn_reloc_entry
83 /* Next relocation in the chain. */
84 struct elf64_hppa_dyn_reloc_entry
*next
;
86 /* The type of the relocation. */
89 /* The input section of the relocation. */
92 /* Number of relocs copied in this section. */
95 /* The index of the section symbol for the input section of
96 the relocation. Only needed when building shared libraries. */
99 /* The offset within the input section of the relocation. */
102 /* The addend for the relocation. */
107 /* Nonzero if this symbol needs an entry in one of the linker
115 struct elf64_hppa_link_hash_table
117 struct elf_link_hash_table root
;
119 /* Shortcuts to get to the various linker defined sections. */
121 asection
*dlt_rel_sec
;
123 asection
*plt_rel_sec
;
125 asection
*opd_rel_sec
;
126 asection
*other_rel_sec
;
128 /* Offset of __gp within .plt section. When the PLT gets large we want
129 to slide __gp into the PLT section so that we can continue to use
130 single DP relative instructions to load values out of the PLT. */
133 /* Note this is not strictly correct. We should create a stub section for
134 each input section with calls. The stub section should be placed before
135 the section with the call. */
138 bfd_vma text_segment_base
;
139 bfd_vma data_segment_base
;
141 /* We build tables to map from an input section back to its
142 symbol index. This is the BFD for which we currently have
144 bfd
*section_syms_bfd
;
146 /* Array of symbol numbers for each input section attached to the
151 #define hppa_link_hash_table(p) \
152 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
153 == HPPA64_ELF_DATA ? ((struct elf64_hppa_link_hash_table *) ((p)->hash)) : NULL)
155 #define hppa_elf_hash_entry(ent) \
156 ((struct elf64_hppa_link_hash_entry *)(ent))
158 #define eh_name(eh) \
159 (eh ? eh->root.root.string : "<undef>")
161 typedef struct bfd_hash_entry
*(*new_hash_entry_func
)
162 (struct bfd_hash_entry
*, struct bfd_hash_table
*, const char *);
164 static struct bfd_link_hash_table
*elf64_hppa_hash_table_create
167 /* This must follow the definitions of the various derived linker
168 hash tables and shared functions. */
169 #include "elf-hppa.h"
171 static bfd_boolean elf64_hppa_object_p
174 static void elf64_hppa_post_process_headers
175 (bfd
*, struct bfd_link_info
*);
177 static bfd_boolean elf64_hppa_create_dynamic_sections
178 (bfd
*, struct bfd_link_info
*);
180 static bfd_boolean elf64_hppa_adjust_dynamic_symbol
181 (struct bfd_link_info
*, struct elf_link_hash_entry
*);
183 static bfd_boolean elf64_hppa_mark_milli_and_exported_functions
184 (struct elf_link_hash_entry
*, void *);
186 static bfd_boolean elf64_hppa_size_dynamic_sections
187 (bfd
*, struct bfd_link_info
*);
189 static int elf64_hppa_link_output_symbol_hook
190 (struct bfd_link_info
*, const char *, Elf_Internal_Sym
*,
191 asection
*, struct elf_link_hash_entry
*);
193 static bfd_boolean elf64_hppa_finish_dynamic_symbol
194 (bfd
*, struct bfd_link_info
*,
195 struct elf_link_hash_entry
*, Elf_Internal_Sym
*);
197 static enum elf_reloc_type_class elf64_hppa_reloc_type_class
198 (const Elf_Internal_Rela
*);
200 static bfd_boolean elf64_hppa_finish_dynamic_sections
201 (bfd
*, struct bfd_link_info
*);
203 static bfd_boolean elf64_hppa_check_relocs
204 (bfd
*, struct bfd_link_info
*,
205 asection
*, const Elf_Internal_Rela
*);
207 static bfd_boolean elf64_hppa_dynamic_symbol_p
208 (struct elf_link_hash_entry
*, struct bfd_link_info
*);
210 static bfd_boolean elf64_hppa_mark_exported_functions
211 (struct elf_link_hash_entry
*, void *);
213 static bfd_boolean elf64_hppa_finalize_opd
214 (struct elf_link_hash_entry
*, void *);
216 static bfd_boolean elf64_hppa_finalize_dlt
217 (struct elf_link_hash_entry
*, void *);
219 static bfd_boolean allocate_global_data_dlt
220 (struct elf_link_hash_entry
*, void *);
222 static bfd_boolean allocate_global_data_plt
223 (struct elf_link_hash_entry
*, void *);
225 static bfd_boolean allocate_global_data_stub
226 (struct elf_link_hash_entry
*, void *);
228 static bfd_boolean allocate_global_data_opd
229 (struct elf_link_hash_entry
*, void *);
231 static bfd_boolean get_reloc_section
232 (bfd
*, struct elf64_hppa_link_hash_table
*, asection
*);
234 static bfd_boolean count_dyn_reloc
235 (bfd
*, struct elf64_hppa_link_hash_entry
*,
236 int, asection
*, int, bfd_vma
, bfd_vma
);
238 static bfd_boolean allocate_dynrel_entries
239 (struct elf_link_hash_entry
*, void *);
241 static bfd_boolean elf64_hppa_finalize_dynreloc
242 (struct elf_link_hash_entry
*, void *);
244 static bfd_boolean get_opd
245 (bfd
*, struct bfd_link_info
*, struct elf64_hppa_link_hash_table
*);
247 static bfd_boolean get_plt
248 (bfd
*, struct bfd_link_info
*, struct elf64_hppa_link_hash_table
*);
250 static bfd_boolean get_dlt
251 (bfd
*, struct bfd_link_info
*, struct elf64_hppa_link_hash_table
*);
253 static bfd_boolean get_stub
254 (bfd
*, struct bfd_link_info
*, struct elf64_hppa_link_hash_table
*);
256 static int elf64_hppa_elf_get_symbol_type
257 (Elf_Internal_Sym
*, int);
259 /* Initialize an entry in the link hash table. */
261 static struct bfd_hash_entry
*
262 hppa64_link_hash_newfunc (struct bfd_hash_entry
*entry
,
263 struct bfd_hash_table
*table
,
266 /* Allocate the structure if it has not already been allocated by a
270 entry
= bfd_hash_allocate (table
,
271 sizeof (struct elf64_hppa_link_hash_entry
));
276 /* Call the allocation method of the superclass. */
277 entry
= _bfd_elf_link_hash_newfunc (entry
, table
, string
);
280 struct elf64_hppa_link_hash_entry
*hh
;
282 /* Initialize our local data. All zeros. */
283 hh
= hppa_elf_hash_entry (entry
);
284 memset (&hh
->dlt_offset
, 0,
285 (sizeof (struct elf64_hppa_link_hash_entry
)
286 - offsetof (struct elf64_hppa_link_hash_entry
, dlt_offset
)));
292 /* Create the derived linker hash table. The PA64 ELF port uses this
293 derived hash table to keep information specific to the PA ElF
294 linker (without using static variables). */
296 static struct bfd_link_hash_table
*
297 elf64_hppa_hash_table_create (bfd
*abfd
)
299 struct elf64_hppa_link_hash_table
*htab
;
300 bfd_size_type amt
= sizeof (*htab
);
302 htab
= bfd_zalloc (abfd
, amt
);
306 if (!_bfd_elf_link_hash_table_init (&htab
->root
, abfd
,
307 hppa64_link_hash_newfunc
,
308 sizeof (struct elf64_hppa_link_hash_entry
),
311 bfd_release (abfd
, htab
);
315 htab
->text_segment_base
= (bfd_vma
) -1;
316 htab
->data_segment_base
= (bfd_vma
) -1;
318 return &htab
->root
.root
;
321 /* Return nonzero if ABFD represents a PA2.0 ELF64 file.
323 Additionally we set the default architecture and machine. */
325 elf64_hppa_object_p (bfd
*abfd
)
327 Elf_Internal_Ehdr
* i_ehdrp
;
330 i_ehdrp
= elf_elfheader (abfd
);
331 if (strcmp (bfd_get_target (abfd
), "elf64-hppa-linux") == 0)
333 /* GCC on hppa-linux produces binaries with OSABI=GNU,
334 but the kernel produces corefiles with OSABI=SysV. */
335 if (i_ehdrp
->e_ident
[EI_OSABI
] != ELFOSABI_GNU
336 && i_ehdrp
->e_ident
[EI_OSABI
] != ELFOSABI_NONE
) /* aka SYSV */
341 /* HPUX produces binaries with OSABI=HPUX,
342 but the kernel produces corefiles with OSABI=SysV. */
343 if (i_ehdrp
->e_ident
[EI_OSABI
] != ELFOSABI_HPUX
344 && i_ehdrp
->e_ident
[EI_OSABI
] != ELFOSABI_NONE
) /* aka SYSV */
348 flags
= i_ehdrp
->e_flags
;
349 switch (flags
& (EF_PARISC_ARCH
| EF_PARISC_WIDE
))
352 return bfd_default_set_arch_mach (abfd
, bfd_arch_hppa
, 10);
354 return bfd_default_set_arch_mach (abfd
, bfd_arch_hppa
, 11);
356 if (i_ehdrp
->e_ident
[EI_CLASS
] == ELFCLASS64
)
357 return bfd_default_set_arch_mach (abfd
, bfd_arch_hppa
, 25);
359 return bfd_default_set_arch_mach (abfd
, bfd_arch_hppa
, 20);
360 case EFA_PARISC_2_0
| EF_PARISC_WIDE
:
361 return bfd_default_set_arch_mach (abfd
, bfd_arch_hppa
, 25);
363 /* Don't be fussy. */
367 /* Given section type (hdr->sh_type), return a boolean indicating
368 whether or not the section is an elf64-hppa specific section. */
370 elf64_hppa_section_from_shdr (bfd
*abfd
,
371 Elf_Internal_Shdr
*hdr
,
375 switch (hdr
->sh_type
)
378 if (strcmp (name
, ".PARISC.archext") != 0)
381 case SHT_PARISC_UNWIND
:
382 if (strcmp (name
, ".PARISC.unwind") != 0)
386 case SHT_PARISC_ANNOT
:
391 if (! _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
))
397 /* SEC is a section containing relocs for an input BFD when linking; return
398 a suitable section for holding relocs in the output BFD for a link. */
401 get_reloc_section (bfd
*abfd
,
402 struct elf64_hppa_link_hash_table
*hppa_info
,
405 const char *srel_name
;
409 srel_name
= (bfd_elf_string_from_elf_section
410 (abfd
, elf_elfheader(abfd
)->e_shstrndx
,
411 _bfd_elf_single_rel_hdr(sec
)->sh_name
));
412 if (srel_name
== NULL
)
415 dynobj
= hppa_info
->root
.dynobj
;
417 hppa_info
->root
.dynobj
= dynobj
= abfd
;
419 srel
= bfd_get_linker_section (dynobj
, srel_name
);
422 srel
= bfd_make_section_anyway_with_flags (dynobj
, srel_name
,
430 || !bfd_set_section_alignment (dynobj
, srel
, 3))
434 hppa_info
->other_rel_sec
= srel
;
438 /* Add a new entry to the list of dynamic relocations against DYN_H.
440 We use this to keep a record of all the FPTR relocations against a
441 particular symbol so that we can create FPTR relocations in the
445 count_dyn_reloc (bfd
*abfd
,
446 struct elf64_hppa_link_hash_entry
*hh
,
453 struct elf64_hppa_dyn_reloc_entry
*rent
;
455 rent
= (struct elf64_hppa_dyn_reloc_entry
*)
456 bfd_alloc (abfd
, (bfd_size_type
) sizeof (*rent
));
460 rent
->next
= hh
->reloc_entries
;
463 rent
->sec_symndx
= sec_symndx
;
464 rent
->offset
= offset
;
465 rent
->addend
= addend
;
466 hh
->reloc_entries
= rent
;
471 /* Return a pointer to the local DLT, PLT and OPD reference counts
472 for ABFD. Returns NULL if the storage allocation fails. */
474 static bfd_signed_vma
*
475 hppa64_elf_local_refcounts (bfd
*abfd
)
477 Elf_Internal_Shdr
*symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
478 bfd_signed_vma
*local_refcounts
;
480 local_refcounts
= elf_local_got_refcounts (abfd
);
481 if (local_refcounts
== NULL
)
485 /* Allocate space for local DLT, PLT and OPD reference
486 counts. Done this way to save polluting elf_obj_tdata
487 with another target specific pointer. */
488 size
= symtab_hdr
->sh_info
;
489 size
*= 3 * sizeof (bfd_signed_vma
);
490 local_refcounts
= bfd_zalloc (abfd
, size
);
491 elf_local_got_refcounts (abfd
) = local_refcounts
;
493 return local_refcounts
;
496 /* Scan the RELOCS and record the type of dynamic entries that each
497 referenced symbol needs. */
500 elf64_hppa_check_relocs (bfd
*abfd
,
501 struct bfd_link_info
*info
,
503 const Elf_Internal_Rela
*relocs
)
505 struct elf64_hppa_link_hash_table
*hppa_info
;
506 const Elf_Internal_Rela
*relend
;
507 Elf_Internal_Shdr
*symtab_hdr
;
508 const Elf_Internal_Rela
*rel
;
509 unsigned int sec_symndx
;
511 if (info
->relocatable
)
514 /* If this is the first dynamic object found in the link, create
515 the special sections required for dynamic linking. */
516 if (! elf_hash_table (info
)->dynamic_sections_created
)
518 if (! _bfd_elf_link_create_dynamic_sections (abfd
, info
))
522 hppa_info
= hppa_link_hash_table (info
);
523 if (hppa_info
== NULL
)
525 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
527 /* If necessary, build a new table holding section symbols indices
530 if (info
->shared
&& hppa_info
->section_syms_bfd
!= abfd
)
533 unsigned int highest_shndx
;
534 Elf_Internal_Sym
*local_syms
= NULL
;
535 Elf_Internal_Sym
*isym
, *isymend
;
538 /* We're done with the old cache of section index to section symbol
539 index information. Free it.
541 ?!? Note we leak the last section_syms array. Presumably we
542 could free it in one of the later routines in this file. */
543 if (hppa_info
->section_syms
)
544 free (hppa_info
->section_syms
);
546 /* Read this BFD's local symbols. */
547 if (symtab_hdr
->sh_info
!= 0)
549 local_syms
= (Elf_Internal_Sym
*) symtab_hdr
->contents
;
550 if (local_syms
== NULL
)
551 local_syms
= bfd_elf_get_elf_syms (abfd
, symtab_hdr
,
552 symtab_hdr
->sh_info
, 0,
554 if (local_syms
== NULL
)
558 /* Record the highest section index referenced by the local symbols. */
560 isymend
= local_syms
+ symtab_hdr
->sh_info
;
561 for (isym
= local_syms
; isym
< isymend
; isym
++)
563 if (isym
->st_shndx
> highest_shndx
564 && isym
->st_shndx
< SHN_LORESERVE
)
565 highest_shndx
= isym
->st_shndx
;
568 /* Allocate an array to hold the section index to section symbol index
569 mapping. Bump by one since we start counting at zero. */
573 hppa_info
->section_syms
= (int *) bfd_malloc (amt
);
575 /* Now walk the local symbols again. If we find a section symbol,
576 record the index of the symbol into the section_syms array. */
577 for (i
= 0, isym
= local_syms
; isym
< isymend
; i
++, isym
++)
579 if (ELF_ST_TYPE (isym
->st_info
) == STT_SECTION
)
580 hppa_info
->section_syms
[isym
->st_shndx
] = i
;
583 /* We are finished with the local symbols. */
584 if (local_syms
!= NULL
585 && symtab_hdr
->contents
!= (unsigned char *) local_syms
)
587 if (! info
->keep_memory
)
591 /* Cache the symbols for elf_link_input_bfd. */
592 symtab_hdr
->contents
= (unsigned char *) local_syms
;
596 /* Record which BFD we built the section_syms mapping for. */
597 hppa_info
->section_syms_bfd
= abfd
;
600 /* Record the symbol index for this input section. We may need it for
601 relocations when building shared libraries. When not building shared
602 libraries this value is never really used, but assign it to zero to
603 prevent out of bounds memory accesses in other routines. */
606 sec_symndx
= _bfd_elf_section_from_bfd_section (abfd
, sec
);
608 /* If we did not find a section symbol for this section, then
609 something went terribly wrong above. */
610 if (sec_symndx
== SHN_BAD
)
613 if (sec_symndx
< SHN_LORESERVE
)
614 sec_symndx
= hppa_info
->section_syms
[sec_symndx
];
621 relend
= relocs
+ sec
->reloc_count
;
622 for (rel
= relocs
; rel
< relend
; ++rel
)
633 unsigned long r_symndx
= ELF64_R_SYM (rel
->r_info
);
634 struct elf64_hppa_link_hash_entry
*hh
;
636 bfd_boolean maybe_dynamic
;
637 int dynrel_type
= R_PARISC_NONE
;
638 static reloc_howto_type
*howto
;
640 if (r_symndx
>= symtab_hdr
->sh_info
)
642 /* We're dealing with a global symbol -- find its hash entry
643 and mark it as being referenced. */
644 long indx
= r_symndx
- symtab_hdr
->sh_info
;
645 hh
= hppa_elf_hash_entry (elf_sym_hashes (abfd
)[indx
]);
646 while (hh
->eh
.root
.type
== bfd_link_hash_indirect
647 || hh
->eh
.root
.type
== bfd_link_hash_warning
)
648 hh
= hppa_elf_hash_entry (hh
->eh
.root
.u
.i
.link
);
650 hh
->eh
.ref_regular
= 1;
655 /* We can only get preliminary data on whether a symbol is
656 locally or externally defined, as not all of the input files
657 have yet been processed. Do something with what we know, as
658 this may help reduce memory usage and processing time later. */
659 maybe_dynamic
= FALSE
;
660 if (hh
&& ((info
->shared
662 || info
->unresolved_syms_in_shared_libs
== RM_IGNORE
))
663 || !hh
->eh
.def_regular
664 || hh
->eh
.root
.type
== bfd_link_hash_defweak
))
665 maybe_dynamic
= TRUE
;
667 howto
= elf_hppa_howto_table
+ ELF64_R_TYPE (rel
->r_info
);
671 /* These are simple indirect references to symbols through the
672 DLT. We need to create a DLT entry for any symbols which
673 appears in a DLTIND relocation. */
674 case R_PARISC_DLTIND21L
:
675 case R_PARISC_DLTIND14R
:
676 case R_PARISC_DLTIND14F
:
677 case R_PARISC_DLTIND14WR
:
678 case R_PARISC_DLTIND14DR
:
679 need_entry
= NEED_DLT
;
682 /* ?!? These need a DLT entry. But I have no idea what to do with
683 the "link time TP value. */
684 case R_PARISC_LTOFF_TP21L
:
685 case R_PARISC_LTOFF_TP14R
:
686 case R_PARISC_LTOFF_TP14F
:
687 case R_PARISC_LTOFF_TP64
:
688 case R_PARISC_LTOFF_TP14WR
:
689 case R_PARISC_LTOFF_TP14DR
:
690 case R_PARISC_LTOFF_TP16F
:
691 case R_PARISC_LTOFF_TP16WF
:
692 case R_PARISC_LTOFF_TP16DF
:
693 need_entry
= NEED_DLT
;
696 /* These are function calls. Depending on their precise target we
697 may need to make a stub for them. The stub uses the PLT, so we
698 need to create PLT entries for these symbols too. */
699 case R_PARISC_PCREL12F
:
700 case R_PARISC_PCREL17F
:
701 case R_PARISC_PCREL22F
:
702 case R_PARISC_PCREL32
:
703 case R_PARISC_PCREL64
:
704 case R_PARISC_PCREL21L
:
705 case R_PARISC_PCREL17R
:
706 case R_PARISC_PCREL17C
:
707 case R_PARISC_PCREL14R
:
708 case R_PARISC_PCREL14F
:
709 case R_PARISC_PCREL22C
:
710 case R_PARISC_PCREL14WR
:
711 case R_PARISC_PCREL14DR
:
712 case R_PARISC_PCREL16F
:
713 case R_PARISC_PCREL16WF
:
714 case R_PARISC_PCREL16DF
:
715 /* Function calls might need to go through the .plt, and
716 might need a long branch stub. */
717 if (hh
!= NULL
&& hh
->eh
.type
!= STT_PARISC_MILLI
)
718 need_entry
= (NEED_PLT
| NEED_STUB
);
723 case R_PARISC_PLTOFF21L
:
724 case R_PARISC_PLTOFF14R
:
725 case R_PARISC_PLTOFF14F
:
726 case R_PARISC_PLTOFF14WR
:
727 case R_PARISC_PLTOFF14DR
:
728 case R_PARISC_PLTOFF16F
:
729 case R_PARISC_PLTOFF16WF
:
730 case R_PARISC_PLTOFF16DF
:
731 need_entry
= (NEED_PLT
);
735 if (info
->shared
|| maybe_dynamic
)
736 need_entry
= (NEED_DYNREL
);
737 dynrel_type
= R_PARISC_DIR64
;
740 /* This is an indirect reference through the DLT to get the address
741 of a OPD descriptor. Thus we need to make a DLT entry that points
743 case R_PARISC_LTOFF_FPTR21L
:
744 case R_PARISC_LTOFF_FPTR14R
:
745 case R_PARISC_LTOFF_FPTR14WR
:
746 case R_PARISC_LTOFF_FPTR14DR
:
747 case R_PARISC_LTOFF_FPTR32
:
748 case R_PARISC_LTOFF_FPTR64
:
749 case R_PARISC_LTOFF_FPTR16F
:
750 case R_PARISC_LTOFF_FPTR16WF
:
751 case R_PARISC_LTOFF_FPTR16DF
:
752 if (info
->shared
|| maybe_dynamic
)
753 need_entry
= (NEED_DLT
| NEED_OPD
| NEED_PLT
);
755 need_entry
= (NEED_DLT
| NEED_OPD
| NEED_PLT
);
756 dynrel_type
= R_PARISC_FPTR64
;
759 /* This is a simple OPD entry. */
760 case R_PARISC_FPTR64
:
761 if (info
->shared
|| maybe_dynamic
)
762 need_entry
= (NEED_OPD
| NEED_PLT
| NEED_DYNREL
);
764 need_entry
= (NEED_OPD
| NEED_PLT
);
765 dynrel_type
= R_PARISC_FPTR64
;
768 /* Add more cases as needed. */
776 /* Stash away enough information to be able to find this symbol
777 regardless of whether or not it is local or global. */
779 hh
->sym_indx
= r_symndx
;
782 /* Create what's needed. */
783 if (need_entry
& NEED_DLT
)
785 /* Allocate space for a DLT entry, as well as a dynamic
786 relocation for this entry. */
787 if (! hppa_info
->dlt_sec
788 && ! get_dlt (abfd
, info
, hppa_info
))
794 hh
->eh
.got
.refcount
+= 1;
798 bfd_signed_vma
*local_dlt_refcounts
;
800 /* This is a DLT entry for a local symbol. */
801 local_dlt_refcounts
= hppa64_elf_local_refcounts (abfd
);
802 if (local_dlt_refcounts
== NULL
)
804 local_dlt_refcounts
[r_symndx
] += 1;
808 if (need_entry
& NEED_PLT
)
810 if (! hppa_info
->plt_sec
811 && ! get_plt (abfd
, info
, hppa_info
))
817 hh
->eh
.needs_plt
= 1;
818 hh
->eh
.plt
.refcount
+= 1;
822 bfd_signed_vma
*local_dlt_refcounts
;
823 bfd_signed_vma
*local_plt_refcounts
;
825 /* This is a PLT entry for a local symbol. */
826 local_dlt_refcounts
= hppa64_elf_local_refcounts (abfd
);
827 if (local_dlt_refcounts
== NULL
)
829 local_plt_refcounts
= local_dlt_refcounts
+ symtab_hdr
->sh_info
;
830 local_plt_refcounts
[r_symndx
] += 1;
834 if (need_entry
& NEED_STUB
)
836 if (! hppa_info
->stub_sec
837 && ! get_stub (abfd
, info
, hppa_info
))
843 if (need_entry
& NEED_OPD
)
845 if (! hppa_info
->opd_sec
846 && ! get_opd (abfd
, info
, hppa_info
))
849 /* FPTRs are not allocated by the dynamic linker for PA64,
850 though it is possible that will change in the future. */
856 bfd_signed_vma
*local_dlt_refcounts
;
857 bfd_signed_vma
*local_opd_refcounts
;
859 /* This is a OPD for a local symbol. */
860 local_dlt_refcounts
= hppa64_elf_local_refcounts (abfd
);
861 if (local_dlt_refcounts
== NULL
)
863 local_opd_refcounts
= (local_dlt_refcounts
864 + 2 * symtab_hdr
->sh_info
);
865 local_opd_refcounts
[r_symndx
] += 1;
869 /* Add a new dynamic relocation to the chain of dynamic
870 relocations for this symbol. */
871 if ((need_entry
& NEED_DYNREL
) && (sec
->flags
& SEC_ALLOC
))
873 if (! hppa_info
->other_rel_sec
874 && ! get_reloc_section (abfd
, hppa_info
, sec
))
877 /* Count dynamic relocations against global symbols. */
879 && !count_dyn_reloc (abfd
, hh
, dynrel_type
, sec
,
880 sec_symndx
, rel
->r_offset
, rel
->r_addend
))
883 /* If we are building a shared library and we just recorded
884 a dynamic R_PARISC_FPTR64 relocation, then make sure the
885 section symbol for this section ends up in the dynamic
887 if (info
->shared
&& dynrel_type
== R_PARISC_FPTR64
888 && ! (bfd_elf_link_record_local_dynamic_symbol
889 (info
, abfd
, sec_symndx
)))
900 struct elf64_hppa_allocate_data
902 struct bfd_link_info
*info
;
906 /* Should we do dynamic things to this symbol? */
909 elf64_hppa_dynamic_symbol_p (struct elf_link_hash_entry
*eh
,
910 struct bfd_link_info
*info
)
912 /* ??? What, if anything, needs to happen wrt STV_PROTECTED symbols
913 and relocations that retrieve a function descriptor? Assume the
915 if (_bfd_elf_dynamic_symbol_p (eh
, info
, 1))
917 /* ??? Why is this here and not elsewhere is_local_label_name. */
918 if (eh
->root
.root
.string
[0] == '$' && eh
->root
.root
.string
[1] == '$')
927 /* Mark all functions exported by this file so that we can later allocate
928 entries in .opd for them. */
931 elf64_hppa_mark_exported_functions (struct elf_link_hash_entry
*eh
, void *data
)
933 struct elf64_hppa_link_hash_entry
*hh
= hppa_elf_hash_entry (eh
);
934 struct bfd_link_info
*info
= (struct bfd_link_info
*)data
;
935 struct elf64_hppa_link_hash_table
*hppa_info
;
937 hppa_info
= hppa_link_hash_table (info
);
938 if (hppa_info
== NULL
)
942 && (eh
->root
.type
== bfd_link_hash_defined
943 || eh
->root
.type
== bfd_link_hash_defweak
)
944 && eh
->root
.u
.def
.section
->output_section
!= NULL
945 && eh
->type
== STT_FUNC
)
947 if (! hppa_info
->opd_sec
948 && ! get_opd (hppa_info
->root
.dynobj
, info
, hppa_info
))
953 /* Put a flag here for output_symbol_hook. */
961 /* Allocate space for a DLT entry. */
964 allocate_global_data_dlt (struct elf_link_hash_entry
*eh
, void *data
)
966 struct elf64_hppa_link_hash_entry
*hh
= hppa_elf_hash_entry (eh
);
967 struct elf64_hppa_allocate_data
*x
= (struct elf64_hppa_allocate_data
*)data
;
973 /* Possibly add the symbol to the local dynamic symbol
974 table since we might need to create a dynamic relocation
976 if (eh
->dynindx
== -1 && eh
->type
!= STT_PARISC_MILLI
)
978 bfd
*owner
= eh
->root
.u
.def
.section
->owner
;
980 if (! (bfd_elf_link_record_local_dynamic_symbol
981 (x
->info
, owner
, hh
->sym_indx
)))
986 hh
->dlt_offset
= x
->ofs
;
987 x
->ofs
+= DLT_ENTRY_SIZE
;
992 /* Allocate space for a DLT.PLT entry. */
995 allocate_global_data_plt (struct elf_link_hash_entry
*eh
, void *data
)
997 struct elf64_hppa_link_hash_entry
*hh
= hppa_elf_hash_entry (eh
);
998 struct elf64_hppa_allocate_data
*x
= (struct elf64_hppa_allocate_data
*) data
;
1001 && elf64_hppa_dynamic_symbol_p (eh
, x
->info
)
1002 && !((eh
->root
.type
== bfd_link_hash_defined
1003 || eh
->root
.type
== bfd_link_hash_defweak
)
1004 && eh
->root
.u
.def
.section
->output_section
!= NULL
))
1006 hh
->plt_offset
= x
->ofs
;
1007 x
->ofs
+= PLT_ENTRY_SIZE
;
1008 if (hh
->plt_offset
< 0x2000)
1010 struct elf64_hppa_link_hash_table
*hppa_info
;
1012 hppa_info
= hppa_link_hash_table (x
->info
);
1013 if (hppa_info
== NULL
)
1016 hppa_info
->gp_offset
= hh
->plt_offset
;
1025 /* Allocate space for a STUB entry. */
1028 allocate_global_data_stub (struct elf_link_hash_entry
*eh
, void *data
)
1030 struct elf64_hppa_link_hash_entry
*hh
= hppa_elf_hash_entry (eh
);
1031 struct elf64_hppa_allocate_data
*x
= (struct elf64_hppa_allocate_data
*)data
;
1034 && elf64_hppa_dynamic_symbol_p (eh
, x
->info
)
1035 && !((eh
->root
.type
== bfd_link_hash_defined
1036 || eh
->root
.type
== bfd_link_hash_defweak
)
1037 && eh
->root
.u
.def
.section
->output_section
!= NULL
))
1039 hh
->stub_offset
= x
->ofs
;
1040 x
->ofs
+= sizeof (plt_stub
);
1047 /* Allocate space for a FPTR entry. */
1050 allocate_global_data_opd (struct elf_link_hash_entry
*eh
, void *data
)
1052 struct elf64_hppa_link_hash_entry
*hh
= hppa_elf_hash_entry (eh
);
1053 struct elf64_hppa_allocate_data
*x
= (struct elf64_hppa_allocate_data
*)data
;
1055 if (hh
&& hh
->want_opd
)
1057 /* We never need an opd entry for a symbol which is not
1058 defined by this output file. */
1059 if (hh
&& (hh
->eh
.root
.type
== bfd_link_hash_undefined
1060 || hh
->eh
.root
.type
== bfd_link_hash_undefweak
1061 || hh
->eh
.root
.u
.def
.section
->output_section
== NULL
))
1064 /* If we are creating a shared library, took the address of a local
1065 function or might export this function from this object file, then
1066 we have to create an opd descriptor. */
1067 else if (x
->info
->shared
1069 || (hh
->eh
.dynindx
== -1 && hh
->eh
.type
!= STT_PARISC_MILLI
)
1070 || (hh
->eh
.root
.type
== bfd_link_hash_defined
1071 || hh
->eh
.root
.type
== bfd_link_hash_defweak
))
1073 /* If we are creating a shared library, then we will have to
1074 create a runtime relocation for the symbol to properly
1075 initialize the .opd entry. Make sure the symbol gets
1076 added to the dynamic symbol table. */
1078 && (hh
== NULL
|| (hh
->eh
.dynindx
== -1)))
1081 /* PR 6511: Default to using the dynamic symbol table. */
1082 owner
= (hh
->owner
? hh
->owner
: eh
->root
.u
.def
.section
->owner
);
1084 if (!bfd_elf_link_record_local_dynamic_symbol
1085 (x
->info
, owner
, hh
->sym_indx
))
1089 /* This may not be necessary or desirable anymore now that
1090 we have some support for dealing with section symbols
1091 in dynamic relocs. But name munging does make the result
1092 much easier to debug. ie, the EPLT reloc will reference
1093 a symbol like .foobar, instead of .text + offset. */
1094 if (x
->info
->shared
&& eh
)
1097 struct elf_link_hash_entry
*nh
;
1099 new_name
= alloca (strlen (eh
->root
.root
.string
) + 2);
1101 strcpy (new_name
+ 1, eh
->root
.root
.string
);
1103 nh
= elf_link_hash_lookup (elf_hash_table (x
->info
),
1104 new_name
, TRUE
, TRUE
, TRUE
);
1106 nh
->root
.type
= eh
->root
.type
;
1107 nh
->root
.u
.def
.value
= eh
->root
.u
.def
.value
;
1108 nh
->root
.u
.def
.section
= eh
->root
.u
.def
.section
;
1110 if (! bfd_elf_link_record_dynamic_symbol (x
->info
, nh
))
1114 hh
->opd_offset
= x
->ofs
;
1115 x
->ofs
+= OPD_ENTRY_SIZE
;
1118 /* Otherwise we do not need an opd entry. */
1125 /* HP requires the EI_OSABI field to be filled in. The assignment to
1126 EI_ABIVERSION may not be strictly necessary. */
1129 elf64_hppa_post_process_headers (bfd
*abfd
,
1130 struct bfd_link_info
*link_info ATTRIBUTE_UNUSED
)
1132 Elf_Internal_Ehdr
* i_ehdrp
;
1134 i_ehdrp
= elf_elfheader (abfd
);
1136 i_ehdrp
->e_ident
[EI_OSABI
] = get_elf_backend_data (abfd
)->elf_osabi
;
1137 i_ehdrp
->e_ident
[EI_ABIVERSION
] = 1;
1140 /* Create function descriptor section (.opd). This section is called .opd
1141 because it contains "official procedure descriptors". The "official"
1142 refers to the fact that these descriptors are used when taking the address
1143 of a procedure, thus ensuring a unique address for each procedure. */
1147 struct bfd_link_info
*info ATTRIBUTE_UNUSED
,
1148 struct elf64_hppa_link_hash_table
*hppa_info
)
1153 opd
= hppa_info
->opd_sec
;
1156 dynobj
= hppa_info
->root
.dynobj
;
1158 hppa_info
->root
.dynobj
= dynobj
= abfd
;
1160 opd
= bfd_make_section_anyway_with_flags (dynobj
, ".opd",
1165 | SEC_LINKER_CREATED
));
1167 || !bfd_set_section_alignment (abfd
, opd
, 3))
1173 hppa_info
->opd_sec
= opd
;
1179 /* Create the PLT section. */
1183 struct bfd_link_info
*info ATTRIBUTE_UNUSED
,
1184 struct elf64_hppa_link_hash_table
*hppa_info
)
1189 plt
= hppa_info
->plt_sec
;
1192 dynobj
= hppa_info
->root
.dynobj
;
1194 hppa_info
->root
.dynobj
= dynobj
= abfd
;
1196 plt
= bfd_make_section_anyway_with_flags (dynobj
, ".plt",
1201 | SEC_LINKER_CREATED
));
1203 || !bfd_set_section_alignment (abfd
, plt
, 3))
1209 hppa_info
->plt_sec
= plt
;
1215 /* Create the DLT section. */
1219 struct bfd_link_info
*info ATTRIBUTE_UNUSED
,
1220 struct elf64_hppa_link_hash_table
*hppa_info
)
1225 dlt
= hppa_info
->dlt_sec
;
1228 dynobj
= hppa_info
->root
.dynobj
;
1230 hppa_info
->root
.dynobj
= dynobj
= abfd
;
1232 dlt
= bfd_make_section_anyway_with_flags (dynobj
, ".dlt",
1237 | SEC_LINKER_CREATED
));
1239 || !bfd_set_section_alignment (abfd
, dlt
, 3))
1245 hppa_info
->dlt_sec
= dlt
;
1251 /* Create the stubs section. */
1254 get_stub (bfd
*abfd
,
1255 struct bfd_link_info
*info ATTRIBUTE_UNUSED
,
1256 struct elf64_hppa_link_hash_table
*hppa_info
)
1261 stub
= hppa_info
->stub_sec
;
1264 dynobj
= hppa_info
->root
.dynobj
;
1266 hppa_info
->root
.dynobj
= dynobj
= abfd
;
1268 stub
= bfd_make_section_anyway_with_flags (dynobj
, ".stub",
1269 (SEC_ALLOC
| SEC_LOAD
1273 | SEC_LINKER_CREATED
));
1275 || !bfd_set_section_alignment (abfd
, stub
, 3))
1281 hppa_info
->stub_sec
= stub
;
1287 /* Create sections necessary for dynamic linking. This is only a rough
1288 cut and will likely change as we learn more about the somewhat
1289 unusual dynamic linking scheme HP uses.
1292 Contains code to implement cross-space calls. The first time one
1293 of the stubs is used it will call into the dynamic linker, later
1294 calls will go straight to the target.
1296 The only stub we support right now looks like
1300 ldd OFFSET+8(%dp),%dp
1302 Other stubs may be needed in the future. We may want the remove
1303 the break/nop instruction. It is only used right now to keep the
1304 offset of a .plt entry and a .stub entry in sync.
1307 This is what most people call the .got. HP used a different name.
1311 Relocations for the DLT.
1314 Function pointers as address,gp pairs.
1317 Should contain dynamic IPLT (and EPLT?) relocations.
1323 EPLT relocations for symbols exported from shared libraries. */
1326 elf64_hppa_create_dynamic_sections (bfd
*abfd
,
1327 struct bfd_link_info
*info
)
1330 struct elf64_hppa_link_hash_table
*hppa_info
;
1332 hppa_info
= hppa_link_hash_table (info
);
1333 if (hppa_info
== NULL
)
1336 if (! get_stub (abfd
, info
, hppa_info
))
1339 if (! get_dlt (abfd
, info
, hppa_info
))
1342 if (! get_plt (abfd
, info
, hppa_info
))
1345 if (! get_opd (abfd
, info
, hppa_info
))
1348 s
= bfd_make_section_anyway_with_flags (abfd
, ".rela.dlt",
1349 (SEC_ALLOC
| SEC_LOAD
1353 | SEC_LINKER_CREATED
));
1355 || !bfd_set_section_alignment (abfd
, s
, 3))
1357 hppa_info
->dlt_rel_sec
= s
;
1359 s
= bfd_make_section_anyway_with_flags (abfd
, ".rela.plt",
1360 (SEC_ALLOC
| SEC_LOAD
1364 | SEC_LINKER_CREATED
));
1366 || !bfd_set_section_alignment (abfd
, s
, 3))
1368 hppa_info
->plt_rel_sec
= s
;
1370 s
= bfd_make_section_anyway_with_flags (abfd
, ".rela.data",
1371 (SEC_ALLOC
| SEC_LOAD
1375 | SEC_LINKER_CREATED
));
1377 || !bfd_set_section_alignment (abfd
, s
, 3))
1379 hppa_info
->other_rel_sec
= s
;
1381 s
= bfd_make_section_anyway_with_flags (abfd
, ".rela.opd",
1382 (SEC_ALLOC
| SEC_LOAD
1386 | SEC_LINKER_CREATED
));
1388 || !bfd_set_section_alignment (abfd
, s
, 3))
1390 hppa_info
->opd_rel_sec
= s
;
1395 /* Allocate dynamic relocations for those symbols that turned out
1399 allocate_dynrel_entries (struct elf_link_hash_entry
*eh
, void *data
)
1401 struct elf64_hppa_link_hash_entry
*hh
= hppa_elf_hash_entry (eh
);
1402 struct elf64_hppa_allocate_data
*x
= (struct elf64_hppa_allocate_data
*)data
;
1403 struct elf64_hppa_link_hash_table
*hppa_info
;
1404 struct elf64_hppa_dyn_reloc_entry
*rent
;
1405 bfd_boolean dynamic_symbol
, shared
;
1407 hppa_info
= hppa_link_hash_table (x
->info
);
1408 if (hppa_info
== NULL
)
1411 dynamic_symbol
= elf64_hppa_dynamic_symbol_p (eh
, x
->info
);
1412 shared
= x
->info
->shared
;
1414 /* We may need to allocate relocations for a non-dynamic symbol
1415 when creating a shared library. */
1416 if (!dynamic_symbol
&& !shared
)
1419 /* Take care of the normal data relocations. */
1421 for (rent
= hh
->reloc_entries
; rent
; rent
= rent
->next
)
1423 /* Allocate one iff we are building a shared library, the relocation
1424 isn't a R_PARISC_FPTR64, or we don't want an opd entry. */
1425 if (!shared
&& rent
->type
== R_PARISC_FPTR64
&& hh
->want_opd
)
1428 hppa_info
->other_rel_sec
->size
+= sizeof (Elf64_External_Rela
);
1430 /* Make sure this symbol gets into the dynamic symbol table if it is
1431 not already recorded. ?!? This should not be in the loop since
1432 the symbol need only be added once. */
1433 if (eh
->dynindx
== -1 && eh
->type
!= STT_PARISC_MILLI
)
1434 if (!bfd_elf_link_record_local_dynamic_symbol
1435 (x
->info
, rent
->sec
->owner
, hh
->sym_indx
))
1439 /* Take care of the GOT and PLT relocations. */
1441 if ((dynamic_symbol
|| shared
) && hh
->want_dlt
)
1442 hppa_info
->dlt_rel_sec
->size
+= sizeof (Elf64_External_Rela
);
1444 /* If we are building a shared library, then every symbol that has an
1445 opd entry will need an EPLT relocation to relocate the symbol's address
1446 and __gp value based on the runtime load address. */
1447 if (shared
&& hh
->want_opd
)
1448 hppa_info
->opd_rel_sec
->size
+= sizeof (Elf64_External_Rela
);
1450 if (hh
->want_plt
&& dynamic_symbol
)
1452 bfd_size_type t
= 0;
1454 /* Dynamic symbols get one IPLT relocation. Local symbols in
1455 shared libraries get two REL relocations. Local symbols in
1456 main applications get nothing. */
1458 t
= sizeof (Elf64_External_Rela
);
1460 t
= 2 * sizeof (Elf64_External_Rela
);
1462 hppa_info
->plt_rel_sec
->size
+= t
;
1468 /* Adjust a symbol defined by a dynamic object and referenced by a
1472 elf64_hppa_adjust_dynamic_symbol (struct bfd_link_info
*info ATTRIBUTE_UNUSED
,
1473 struct elf_link_hash_entry
*eh
)
1475 /* ??? Undefined symbols with PLT entries should be re-defined
1476 to be the PLT entry. */
1478 /* If this is a weak symbol, and there is a real definition, the
1479 processor independent code will have arranged for us to see the
1480 real definition first, and we can just use the same value. */
1481 if (eh
->u
.weakdef
!= NULL
)
1483 BFD_ASSERT (eh
->u
.weakdef
->root
.type
== bfd_link_hash_defined
1484 || eh
->u
.weakdef
->root
.type
== bfd_link_hash_defweak
);
1485 eh
->root
.u
.def
.section
= eh
->u
.weakdef
->root
.u
.def
.section
;
1486 eh
->root
.u
.def
.value
= eh
->u
.weakdef
->root
.u
.def
.value
;
1490 /* If this is a reference to a symbol defined by a dynamic object which
1491 is not a function, we might allocate the symbol in our .dynbss section
1492 and allocate a COPY dynamic relocation.
1494 But PA64 code is canonically PIC, so as a rule we can avoid this sort
1500 /* This function is called via elf_link_hash_traverse to mark millicode
1501 symbols with a dynindx of -1 and to remove the string table reference
1502 from the dynamic symbol table. If the symbol is not a millicode symbol,
1503 elf64_hppa_mark_exported_functions is called. */
1506 elf64_hppa_mark_milli_and_exported_functions (struct elf_link_hash_entry
*eh
,
1509 struct bfd_link_info
*info
= (struct bfd_link_info
*) data
;
1511 if (eh
->type
== STT_PARISC_MILLI
)
1513 if (eh
->dynindx
!= -1)
1516 _bfd_elf_strtab_delref (elf_hash_table (info
)->dynstr
,
1522 return elf64_hppa_mark_exported_functions (eh
, data
);
1525 /* Set the final sizes of the dynamic sections and allocate memory for
1526 the contents of our special sections. */
1529 elf64_hppa_size_dynamic_sections (bfd
*output_bfd
, struct bfd_link_info
*info
)
1531 struct elf64_hppa_link_hash_table
*hppa_info
;
1532 struct elf64_hppa_allocate_data data
;
1538 bfd_boolean reltext
;
1540 hppa_info
= hppa_link_hash_table (info
);
1541 if (hppa_info
== NULL
)
1544 dynobj
= elf_hash_table (info
)->dynobj
;
1545 BFD_ASSERT (dynobj
!= NULL
);
1547 /* Mark each function this program exports so that we will allocate
1548 space in the .opd section for each function's FPTR. If we are
1549 creating dynamic sections, change the dynamic index of millicode
1550 symbols to -1 and remove them from the string table for .dynstr.
1552 We have to traverse the main linker hash table since we have to
1553 find functions which may not have been mentioned in any relocs. */
1554 elf_link_hash_traverse (elf_hash_table (info
),
1555 (elf_hash_table (info
)->dynamic_sections_created
1556 ? elf64_hppa_mark_milli_and_exported_functions
1557 : elf64_hppa_mark_exported_functions
),
1560 if (elf_hash_table (info
)->dynamic_sections_created
)
1562 /* Set the contents of the .interp section to the interpreter. */
1563 if (info
->executable
)
1565 sec
= bfd_get_linker_section (dynobj
, ".interp");
1566 BFD_ASSERT (sec
!= NULL
);
1567 sec
->size
= sizeof ELF_DYNAMIC_INTERPRETER
;
1568 sec
->contents
= (unsigned char *) ELF_DYNAMIC_INTERPRETER
;
1573 /* We may have created entries in the .rela.got section.
1574 However, if we are not creating the dynamic sections, we will
1575 not actually use these entries. Reset the size of .rela.dlt,
1576 which will cause it to get stripped from the output file
1578 sec
= bfd_get_linker_section (dynobj
, ".rela.dlt");
1583 /* Set up DLT, PLT and OPD offsets for local syms, and space for local
1585 for (ibfd
= info
->input_bfds
; ibfd
!= NULL
; ibfd
= ibfd
->link_next
)
1587 bfd_signed_vma
*local_dlt
;
1588 bfd_signed_vma
*end_local_dlt
;
1589 bfd_signed_vma
*local_plt
;
1590 bfd_signed_vma
*end_local_plt
;
1591 bfd_signed_vma
*local_opd
;
1592 bfd_signed_vma
*end_local_opd
;
1593 bfd_size_type locsymcount
;
1594 Elf_Internal_Shdr
*symtab_hdr
;
1597 if (bfd_get_flavour (ibfd
) != bfd_target_elf_flavour
)
1600 for (sec
= ibfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
1602 struct elf64_hppa_dyn_reloc_entry
*hdh_p
;
1604 for (hdh_p
= ((struct elf64_hppa_dyn_reloc_entry
*)
1605 elf_section_data (sec
)->local_dynrel
);
1607 hdh_p
= hdh_p
->next
)
1609 if (!bfd_is_abs_section (hdh_p
->sec
)
1610 && bfd_is_abs_section (hdh_p
->sec
->output_section
))
1612 /* Input section has been discarded, either because
1613 it is a copy of a linkonce section or due to
1614 linker script /DISCARD/, so we'll be discarding
1617 else if (hdh_p
->count
!= 0)
1619 srel
= elf_section_data (hdh_p
->sec
)->sreloc
;
1620 srel
->size
+= hdh_p
->count
* sizeof (Elf64_External_Rela
);
1621 if ((hdh_p
->sec
->output_section
->flags
& SEC_READONLY
) != 0)
1622 info
->flags
|= DF_TEXTREL
;
1627 local_dlt
= elf_local_got_refcounts (ibfd
);
1631 symtab_hdr
= &elf_tdata (ibfd
)->symtab_hdr
;
1632 locsymcount
= symtab_hdr
->sh_info
;
1633 end_local_dlt
= local_dlt
+ locsymcount
;
1634 sec
= hppa_info
->dlt_sec
;
1635 srel
= hppa_info
->dlt_rel_sec
;
1636 for (; local_dlt
< end_local_dlt
; ++local_dlt
)
1640 *local_dlt
= sec
->size
;
1641 sec
->size
+= DLT_ENTRY_SIZE
;
1644 srel
->size
+= sizeof (Elf64_External_Rela
);
1648 *local_dlt
= (bfd_vma
) -1;
1651 local_plt
= end_local_dlt
;
1652 end_local_plt
= local_plt
+ locsymcount
;
1653 if (! hppa_info
->root
.dynamic_sections_created
)
1655 /* Won't be used, but be safe. */
1656 for (; local_plt
< end_local_plt
; ++local_plt
)
1657 *local_plt
= (bfd_vma
) -1;
1661 sec
= hppa_info
->plt_sec
;
1662 srel
= hppa_info
->plt_rel_sec
;
1663 for (; local_plt
< end_local_plt
; ++local_plt
)
1667 *local_plt
= sec
->size
;
1668 sec
->size
+= PLT_ENTRY_SIZE
;
1670 srel
->size
+= sizeof (Elf64_External_Rela
);
1673 *local_plt
= (bfd_vma
) -1;
1677 local_opd
= end_local_plt
;
1678 end_local_opd
= local_opd
+ locsymcount
;
1679 if (! hppa_info
->root
.dynamic_sections_created
)
1681 /* Won't be used, but be safe. */
1682 for (; local_opd
< end_local_opd
; ++local_opd
)
1683 *local_opd
= (bfd_vma
) -1;
1687 sec
= hppa_info
->opd_sec
;
1688 srel
= hppa_info
->opd_rel_sec
;
1689 for (; local_opd
< end_local_opd
; ++local_opd
)
1693 *local_opd
= sec
->size
;
1694 sec
->size
+= OPD_ENTRY_SIZE
;
1696 srel
->size
+= sizeof (Elf64_External_Rela
);
1699 *local_opd
= (bfd_vma
) -1;
1704 /* Allocate the GOT entries. */
1707 if (hppa_info
->dlt_sec
)
1709 data
.ofs
= hppa_info
->dlt_sec
->size
;
1710 elf_link_hash_traverse (elf_hash_table (info
),
1711 allocate_global_data_dlt
, &data
);
1712 hppa_info
->dlt_sec
->size
= data
.ofs
;
1715 if (hppa_info
->plt_sec
)
1717 data
.ofs
= hppa_info
->plt_sec
->size
;
1718 elf_link_hash_traverse (elf_hash_table (info
),
1719 allocate_global_data_plt
, &data
);
1720 hppa_info
->plt_sec
->size
= data
.ofs
;
1723 if (hppa_info
->stub_sec
)
1726 elf_link_hash_traverse (elf_hash_table (info
),
1727 allocate_global_data_stub
, &data
);
1728 hppa_info
->stub_sec
->size
= data
.ofs
;
1731 /* Allocate space for entries in the .opd section. */
1732 if (hppa_info
->opd_sec
)
1734 data
.ofs
= hppa_info
->opd_sec
->size
;
1735 elf_link_hash_traverse (elf_hash_table (info
),
1736 allocate_global_data_opd
, &data
);
1737 hppa_info
->opd_sec
->size
= data
.ofs
;
1740 /* Now allocate space for dynamic relocations, if necessary. */
1741 if (hppa_info
->root
.dynamic_sections_created
)
1742 elf_link_hash_traverse (elf_hash_table (info
),
1743 allocate_dynrel_entries
, &data
);
1745 /* The sizes of all the sections are set. Allocate memory for them. */
1749 for (sec
= dynobj
->sections
; sec
!= NULL
; sec
= sec
->next
)
1753 if ((sec
->flags
& SEC_LINKER_CREATED
) == 0)
1756 /* It's OK to base decisions on the section name, because none
1757 of the dynobj section names depend upon the input files. */
1758 name
= bfd_get_section_name (dynobj
, sec
);
1760 if (strcmp (name
, ".plt") == 0)
1762 /* Remember whether there is a PLT. */
1763 plt
= sec
->size
!= 0;
1765 else if (strcmp (name
, ".opd") == 0
1766 || CONST_STRNEQ (name
, ".dlt")
1767 || strcmp (name
, ".stub") == 0
1768 || strcmp (name
, ".got") == 0)
1770 /* Strip this section if we don't need it; see the comment below. */
1772 else if (CONST_STRNEQ (name
, ".rela"))
1778 /* Remember whether there are any reloc sections other
1780 if (strcmp (name
, ".rela.plt") != 0)
1782 const char *outname
;
1786 /* If this relocation section applies to a read only
1787 section, then we probably need a DT_TEXTREL
1788 entry. The entries in the .rela.plt section
1789 really apply to the .got section, which we
1790 created ourselves and so know is not readonly. */
1791 outname
= bfd_get_section_name (output_bfd
,
1792 sec
->output_section
);
1793 target
= bfd_get_section_by_name (output_bfd
, outname
+ 4);
1795 && (target
->flags
& SEC_READONLY
) != 0
1796 && (target
->flags
& SEC_ALLOC
) != 0)
1800 /* We use the reloc_count field as a counter if we need
1801 to copy relocs into the output file. */
1802 sec
->reloc_count
= 0;
1807 /* It's not one of our sections, so don't allocate space. */
1813 /* If we don't need this section, strip it from the
1814 output file. This is mostly to handle .rela.bss and
1815 .rela.plt. We must create both sections in
1816 create_dynamic_sections, because they must be created
1817 before the linker maps input sections to output
1818 sections. The linker does that before
1819 adjust_dynamic_symbol is called, and it is that
1820 function which decides whether anything needs to go
1821 into these sections. */
1822 sec
->flags
|= SEC_EXCLUDE
;
1826 if ((sec
->flags
& SEC_HAS_CONTENTS
) == 0)
1829 /* Allocate memory for the section contents if it has not
1830 been allocated already. We use bfd_zalloc here in case
1831 unused entries are not reclaimed before the section's
1832 contents are written out. This should not happen, but this
1833 way if it does, we get a R_PARISC_NONE reloc instead of
1835 if (sec
->contents
== NULL
)
1837 sec
->contents
= (bfd_byte
*) bfd_zalloc (dynobj
, sec
->size
);
1838 if (sec
->contents
== NULL
)
1843 if (elf_hash_table (info
)->dynamic_sections_created
)
1845 /* Always create a DT_PLTGOT. It actually has nothing to do with
1846 the PLT, it is how we communicate the __gp value of a load
1847 module to the dynamic linker. */
1848 #define add_dynamic_entry(TAG, VAL) \
1849 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
1851 if (!add_dynamic_entry (DT_HP_DLD_FLAGS
, 0)
1852 || !add_dynamic_entry (DT_PLTGOT
, 0))
1855 /* Add some entries to the .dynamic section. We fill in the
1856 values later, in elf64_hppa_finish_dynamic_sections, but we
1857 must add the entries now so that we get the correct size for
1858 the .dynamic section. The DT_DEBUG entry is filled in by the
1859 dynamic linker and used by the debugger. */
1862 if (!add_dynamic_entry (DT_DEBUG
, 0)
1863 || !add_dynamic_entry (DT_HP_DLD_HOOK
, 0)
1864 || !add_dynamic_entry (DT_HP_LOAD_MAP
, 0))
1868 /* Force DT_FLAGS to always be set.
1869 Required by HPUX 11.00 patch PHSS_26559. */
1870 if (!add_dynamic_entry (DT_FLAGS
, (info
)->flags
))
1875 if (!add_dynamic_entry (DT_PLTRELSZ
, 0)
1876 || !add_dynamic_entry (DT_PLTREL
, DT_RELA
)
1877 || !add_dynamic_entry (DT_JMPREL
, 0))
1883 if (!add_dynamic_entry (DT_RELA
, 0)
1884 || !add_dynamic_entry (DT_RELASZ
, 0)
1885 || !add_dynamic_entry (DT_RELAENT
, sizeof (Elf64_External_Rela
)))
1891 if (!add_dynamic_entry (DT_TEXTREL
, 0))
1893 info
->flags
|= DF_TEXTREL
;
1896 #undef add_dynamic_entry
1901 /* Called after we have output the symbol into the dynamic symbol
1902 table, but before we output the symbol into the normal symbol
1905 For some symbols we had to change their address when outputting
1906 the dynamic symbol table. We undo that change here so that
1907 the symbols have their expected value in the normal symbol
1911 elf64_hppa_link_output_symbol_hook (struct bfd_link_info
*info ATTRIBUTE_UNUSED
,
1913 Elf_Internal_Sym
*sym
,
1914 asection
*input_sec ATTRIBUTE_UNUSED
,
1915 struct elf_link_hash_entry
*eh
)
1917 struct elf64_hppa_link_hash_entry
*hh
= hppa_elf_hash_entry (eh
);
1919 /* We may be called with the file symbol or section symbols.
1920 They never need munging, so it is safe to ignore them. */
1924 /* Function symbols for which we created .opd entries *may* have been
1925 munged by finish_dynamic_symbol and have to be un-munged here.
1927 Note that finish_dynamic_symbol sometimes turns dynamic symbols
1928 into non-dynamic ones, so we initialize st_shndx to -1 in
1929 mark_exported_functions and check to see if it was overwritten
1930 here instead of just checking eh->dynindx. */
1931 if (hh
->want_opd
&& hh
->st_shndx
!= -1)
1933 /* Restore the saved value and section index. */
1934 sym
->st_value
= hh
->st_value
;
1935 sym
->st_shndx
= hh
->st_shndx
;
1941 /* Finish up dynamic symbol handling. We set the contents of various
1942 dynamic sections here. */
1945 elf64_hppa_finish_dynamic_symbol (bfd
*output_bfd
,
1946 struct bfd_link_info
*info
,
1947 struct elf_link_hash_entry
*eh
,
1948 Elf_Internal_Sym
*sym
)
1950 struct elf64_hppa_link_hash_entry
*hh
= hppa_elf_hash_entry (eh
);
1951 asection
*stub
, *splt
, *sopd
, *spltrel
;
1952 struct elf64_hppa_link_hash_table
*hppa_info
;
1954 hppa_info
= hppa_link_hash_table (info
);
1955 if (hppa_info
== NULL
)
1958 stub
= hppa_info
->stub_sec
;
1959 splt
= hppa_info
->plt_sec
;
1960 sopd
= hppa_info
->opd_sec
;
1961 spltrel
= hppa_info
->plt_rel_sec
;
1963 /* Incredible. It is actually necessary to NOT use the symbol's real
1964 value when building the dynamic symbol table for a shared library.
1965 At least for symbols that refer to functions.
1967 We will store a new value and section index into the symbol long
1968 enough to output it into the dynamic symbol table, then we restore
1969 the original values (in elf64_hppa_link_output_symbol_hook). */
1972 BFD_ASSERT (sopd
!= NULL
);
1974 /* Save away the original value and section index so that we
1975 can restore them later. */
1976 hh
->st_value
= sym
->st_value
;
1977 hh
->st_shndx
= sym
->st_shndx
;
1979 /* For the dynamic symbol table entry, we want the value to be
1980 address of this symbol's entry within the .opd section. */
1981 sym
->st_value
= (hh
->opd_offset
1982 + sopd
->output_offset
1983 + sopd
->output_section
->vma
);
1984 sym
->st_shndx
= _bfd_elf_section_from_bfd_section (output_bfd
,
1985 sopd
->output_section
);
1988 /* Initialize a .plt entry if requested. */
1990 && elf64_hppa_dynamic_symbol_p (eh
, info
))
1993 Elf_Internal_Rela rel
;
1996 BFD_ASSERT (splt
!= NULL
&& spltrel
!= NULL
);
1998 /* We do not actually care about the value in the PLT entry
1999 if we are creating a shared library and the symbol is
2000 still undefined, we create a dynamic relocation to fill
2001 in the correct value. */
2002 if (info
->shared
&& eh
->root
.type
== bfd_link_hash_undefined
)
2005 value
= (eh
->root
.u
.def
.value
+ eh
->root
.u
.def
.section
->vma
);
2007 /* Fill in the entry in the procedure linkage table.
2009 The format of a plt entry is
2012 plt_offset is the offset within the PLT section at which to
2013 install the PLT entry.
2015 We are modifying the in-memory PLT contents here, so we do not add
2016 in the output_offset of the PLT section. */
2018 bfd_put_64 (splt
->owner
, value
, splt
->contents
+ hh
->plt_offset
);
2019 value
= _bfd_get_gp_value (splt
->output_section
->owner
);
2020 bfd_put_64 (splt
->owner
, value
, splt
->contents
+ hh
->plt_offset
+ 0x8);
2022 /* Create a dynamic IPLT relocation for this entry.
2024 We are creating a relocation in the output file's PLT section,
2025 which is included within the DLT secton. So we do need to include
2026 the PLT's output_offset in the computation of the relocation's
2028 rel
.r_offset
= (hh
->plt_offset
+ splt
->output_offset
2029 + splt
->output_section
->vma
);
2030 rel
.r_info
= ELF64_R_INFO (hh
->eh
.dynindx
, R_PARISC_IPLT
);
2033 loc
= spltrel
->contents
;
2034 loc
+= spltrel
->reloc_count
++ * sizeof (Elf64_External_Rela
);
2035 bfd_elf64_swap_reloca_out (splt
->output_section
->owner
, &rel
, loc
);
2038 /* Initialize an external call stub entry if requested. */
2040 && elf64_hppa_dynamic_symbol_p (eh
, info
))
2044 unsigned int max_offset
;
2046 BFD_ASSERT (stub
!= NULL
);
2048 /* Install the generic stub template.
2050 We are modifying the contents of the stub section, so we do not
2051 need to include the stub section's output_offset here. */
2052 memcpy (stub
->contents
+ hh
->stub_offset
, plt_stub
, sizeof (plt_stub
));
2054 /* Fix up the first ldd instruction.
2056 We are modifying the contents of the STUB section in memory,
2057 so we do not need to include its output offset in this computation.
2059 Note the plt_offset value is the value of the PLT entry relative to
2060 the start of the PLT section. These instructions will reference
2061 data relative to the value of __gp, which may not necessarily have
2062 the same address as the start of the PLT section.
2064 gp_offset contains the offset of __gp within the PLT section. */
2065 value
= hh
->plt_offset
- hppa_info
->gp_offset
;
2067 insn
= bfd_get_32 (stub
->owner
, stub
->contents
+ hh
->stub_offset
);
2068 if (output_bfd
->arch_info
->mach
>= 25)
2070 /* Wide mode allows 16 bit offsets. */
2073 insn
|= re_assemble_16 ((int) value
);
2079 insn
|= re_assemble_14 ((int) value
);
2082 if ((value
& 7) || value
+ max_offset
>= 2*max_offset
- 8)
2084 (*_bfd_error_handler
) (_("stub entry for %s cannot load .plt, dp offset = %ld"),
2085 hh
->eh
.root
.root
.string
,
2090 bfd_put_32 (stub
->owner
, (bfd_vma
) insn
,
2091 stub
->contents
+ hh
->stub_offset
);
2093 /* Fix up the second ldd instruction. */
2095 insn
= bfd_get_32 (stub
->owner
, stub
->contents
+ hh
->stub_offset
+ 8);
2096 if (output_bfd
->arch_info
->mach
>= 25)
2099 insn
|= re_assemble_16 ((int) value
);
2104 insn
|= re_assemble_14 ((int) value
);
2106 bfd_put_32 (stub
->owner
, (bfd_vma
) insn
,
2107 stub
->contents
+ hh
->stub_offset
+ 8);
2113 /* The .opd section contains FPTRs for each function this file
2114 exports. Initialize the FPTR entries. */
2117 elf64_hppa_finalize_opd (struct elf_link_hash_entry
*eh
, void *data
)
2119 struct elf64_hppa_link_hash_entry
*hh
= hppa_elf_hash_entry (eh
);
2120 struct bfd_link_info
*info
= (struct bfd_link_info
*)data
;
2121 struct elf64_hppa_link_hash_table
*hppa_info
;
2125 hppa_info
= hppa_link_hash_table (info
);
2126 if (hppa_info
== NULL
)
2129 sopd
= hppa_info
->opd_sec
;
2130 sopdrel
= hppa_info
->opd_rel_sec
;
2136 /* The first two words of an .opd entry are zero.
2138 We are modifying the contents of the OPD section in memory, so we
2139 do not need to include its output offset in this computation. */
2140 memset (sopd
->contents
+ hh
->opd_offset
, 0, 16);
2142 value
= (eh
->root
.u
.def
.value
2143 + eh
->root
.u
.def
.section
->output_section
->vma
2144 + eh
->root
.u
.def
.section
->output_offset
);
2146 /* The next word is the address of the function. */
2147 bfd_put_64 (sopd
->owner
, value
, sopd
->contents
+ hh
->opd_offset
+ 16);
2149 /* The last word is our local __gp value. */
2150 value
= _bfd_get_gp_value (sopd
->output_section
->owner
);
2151 bfd_put_64 (sopd
->owner
, value
, sopd
->contents
+ hh
->opd_offset
+ 24);
2154 /* If we are generating a shared library, we must generate EPLT relocations
2155 for each entry in the .opd, even for static functions (they may have
2156 had their address taken). */
2157 if (info
->shared
&& hh
->want_opd
)
2159 Elf_Internal_Rela rel
;
2163 /* We may need to do a relocation against a local symbol, in
2164 which case we have to look up it's dynamic symbol index off
2165 the local symbol hash table. */
2166 if (eh
->dynindx
!= -1)
2167 dynindx
= eh
->dynindx
;
2170 = _bfd_elf_link_lookup_local_dynindx (info
, hh
->owner
,
2173 /* The offset of this relocation is the absolute address of the
2174 .opd entry for this symbol. */
2175 rel
.r_offset
= (hh
->opd_offset
+ sopd
->output_offset
2176 + sopd
->output_section
->vma
);
2178 /* If H is non-null, then we have an external symbol.
2180 It is imperative that we use a different dynamic symbol for the
2181 EPLT relocation if the symbol has global scope.
2183 In the dynamic symbol table, the function symbol will have a value
2184 which is address of the function's .opd entry.
2186 Thus, we can not use that dynamic symbol for the EPLT relocation
2187 (if we did, the data in the .opd would reference itself rather
2188 than the actual address of the function). Instead we have to use
2189 a new dynamic symbol which has the same value as the original global
2192 We prefix the original symbol with a "." and use the new symbol in
2193 the EPLT relocation. This new symbol has already been recorded in
2194 the symbol table, we just have to look it up and use it.
2196 We do not have such problems with static functions because we do
2197 not make their addresses in the dynamic symbol table point to
2198 the .opd entry. Ultimately this should be safe since a static
2199 function can not be directly referenced outside of its shared
2202 We do have to play similar games for FPTR relocations in shared
2203 libraries, including those for static symbols. See the FPTR
2204 handling in elf64_hppa_finalize_dynreloc. */
2208 struct elf_link_hash_entry
*nh
;
2210 new_name
= alloca (strlen (eh
->root
.root
.string
) + 2);
2212 strcpy (new_name
+ 1, eh
->root
.root
.string
);
2214 nh
= elf_link_hash_lookup (elf_hash_table (info
),
2215 new_name
, TRUE
, TRUE
, FALSE
);
2217 /* All we really want from the new symbol is its dynamic
2220 dynindx
= nh
->dynindx
;
2224 rel
.r_info
= ELF64_R_INFO (dynindx
, R_PARISC_EPLT
);
2226 loc
= sopdrel
->contents
;
2227 loc
+= sopdrel
->reloc_count
++ * sizeof (Elf64_External_Rela
);
2228 bfd_elf64_swap_reloca_out (sopd
->output_section
->owner
, &rel
, loc
);
2233 /* The .dlt section contains addresses for items referenced through the
2234 dlt. Note that we can have a DLTIND relocation for a local symbol, thus
2235 we can not depend on finish_dynamic_symbol to initialize the .dlt. */
2238 elf64_hppa_finalize_dlt (struct elf_link_hash_entry
*eh
, void *data
)
2240 struct elf64_hppa_link_hash_entry
*hh
= hppa_elf_hash_entry (eh
);
2241 struct bfd_link_info
*info
= (struct bfd_link_info
*)data
;
2242 struct elf64_hppa_link_hash_table
*hppa_info
;
2243 asection
*sdlt
, *sdltrel
;
2245 hppa_info
= hppa_link_hash_table (info
);
2246 if (hppa_info
== NULL
)
2249 sdlt
= hppa_info
->dlt_sec
;
2250 sdltrel
= hppa_info
->dlt_rel_sec
;
2252 /* H/DYN_H may refer to a local variable and we know it's
2253 address, so there is no need to create a relocation. Just install
2254 the proper value into the DLT, note this shortcut can not be
2255 skipped when building a shared library. */
2256 if (! info
->shared
&& hh
&& hh
->want_dlt
)
2260 /* If we had an LTOFF_FPTR style relocation we want the DLT entry
2261 to point to the FPTR entry in the .opd section.
2263 We include the OPD's output offset in this computation as
2264 we are referring to an absolute address in the resulting
2268 value
= (hh
->opd_offset
2269 + hppa_info
->opd_sec
->output_offset
2270 + hppa_info
->opd_sec
->output_section
->vma
);
2272 else if ((eh
->root
.type
== bfd_link_hash_defined
2273 || eh
->root
.type
== bfd_link_hash_defweak
)
2274 && eh
->root
.u
.def
.section
)
2276 value
= eh
->root
.u
.def
.value
+ eh
->root
.u
.def
.section
->output_offset
;
2277 if (eh
->root
.u
.def
.section
->output_section
)
2278 value
+= eh
->root
.u
.def
.section
->output_section
->vma
;
2280 value
+= eh
->root
.u
.def
.section
->vma
;
2283 /* We have an undefined function reference. */
2286 /* We do not need to include the output offset of the DLT section
2287 here because we are modifying the in-memory contents. */
2288 bfd_put_64 (sdlt
->owner
, value
, sdlt
->contents
+ hh
->dlt_offset
);
2291 /* Create a relocation for the DLT entry associated with this symbol.
2292 When building a shared library the symbol does not have to be dynamic. */
2294 && (elf64_hppa_dynamic_symbol_p (eh
, info
) || info
->shared
))
2296 Elf_Internal_Rela rel
;
2300 /* We may need to do a relocation against a local symbol, in
2301 which case we have to look up it's dynamic symbol index off
2302 the local symbol hash table. */
2303 if (eh
&& eh
->dynindx
!= -1)
2304 dynindx
= eh
->dynindx
;
2307 = _bfd_elf_link_lookup_local_dynindx (info
, hh
->owner
,
2310 /* Create a dynamic relocation for this entry. Do include the output
2311 offset of the DLT entry since we need an absolute address in the
2312 resulting object file. */
2313 rel
.r_offset
= (hh
->dlt_offset
+ sdlt
->output_offset
2314 + sdlt
->output_section
->vma
);
2315 if (eh
&& eh
->type
== STT_FUNC
)
2316 rel
.r_info
= ELF64_R_INFO (dynindx
, R_PARISC_FPTR64
);
2318 rel
.r_info
= ELF64_R_INFO (dynindx
, R_PARISC_DIR64
);
2321 loc
= sdltrel
->contents
;
2322 loc
+= sdltrel
->reloc_count
++ * sizeof (Elf64_External_Rela
);
2323 bfd_elf64_swap_reloca_out (sdlt
->output_section
->owner
, &rel
, loc
);
2328 /* Finalize the dynamic relocations. Specifically the FPTR relocations
2329 for dynamic functions used to initialize static data. */
2332 elf64_hppa_finalize_dynreloc (struct elf_link_hash_entry
*eh
,
2335 struct elf64_hppa_link_hash_entry
*hh
= hppa_elf_hash_entry (eh
);
2336 struct bfd_link_info
*info
= (struct bfd_link_info
*)data
;
2337 struct elf64_hppa_link_hash_table
*hppa_info
;
2340 dynamic_symbol
= elf64_hppa_dynamic_symbol_p (eh
, info
);
2342 if (!dynamic_symbol
&& !info
->shared
)
2345 if (hh
->reloc_entries
)
2347 struct elf64_hppa_dyn_reloc_entry
*rent
;
2350 hppa_info
= hppa_link_hash_table (info
);
2351 if (hppa_info
== NULL
)
2354 /* We may need to do a relocation against a local symbol, in
2355 which case we have to look up it's dynamic symbol index off
2356 the local symbol hash table. */
2357 if (eh
->dynindx
!= -1)
2358 dynindx
= eh
->dynindx
;
2361 = _bfd_elf_link_lookup_local_dynindx (info
, hh
->owner
,
2364 for (rent
= hh
->reloc_entries
; rent
; rent
= rent
->next
)
2366 Elf_Internal_Rela rel
;
2369 /* Allocate one iff we are building a shared library, the relocation
2370 isn't a R_PARISC_FPTR64, or we don't want an opd entry. */
2371 if (!info
->shared
&& rent
->type
== R_PARISC_FPTR64
&& hh
->want_opd
)
2374 /* Create a dynamic relocation for this entry.
2376 We need the output offset for the reloc's section because
2377 we are creating an absolute address in the resulting object
2379 rel
.r_offset
= (rent
->offset
+ rent
->sec
->output_offset
2380 + rent
->sec
->output_section
->vma
);
2382 /* An FPTR64 relocation implies that we took the address of
2383 a function and that the function has an entry in the .opd
2384 section. We want the FPTR64 relocation to reference the
2387 We could munge the symbol value in the dynamic symbol table
2388 (in fact we already do for functions with global scope) to point
2389 to the .opd entry. Then we could use that dynamic symbol in
2392 Or we could do something sensible, not munge the symbol's
2393 address and instead just use a different symbol to reference
2394 the .opd entry. At least that seems sensible until you
2395 realize there's no local dynamic symbols we can use for that
2396 purpose. Thus the hair in the check_relocs routine.
2398 We use a section symbol recorded by check_relocs as the
2399 base symbol for the relocation. The addend is the difference
2400 between the section symbol and the address of the .opd entry. */
2401 if (info
->shared
&& rent
->type
== R_PARISC_FPTR64
&& hh
->want_opd
)
2403 bfd_vma value
, value2
;
2405 /* First compute the address of the opd entry for this symbol. */
2406 value
= (hh
->opd_offset
2407 + hppa_info
->opd_sec
->output_section
->vma
2408 + hppa_info
->opd_sec
->output_offset
);
2410 /* Compute the value of the start of the section with
2412 value2
= (rent
->sec
->output_section
->vma
2413 + rent
->sec
->output_offset
);
2415 /* Compute the difference between the start of the section
2416 with the relocation and the opd entry. */
2419 /* The result becomes the addend of the relocation. */
2420 rel
.r_addend
= value
;
2422 /* The section symbol becomes the symbol for the dynamic
2425 = _bfd_elf_link_lookup_local_dynindx (info
,
2430 rel
.r_addend
= rent
->addend
;
2432 rel
.r_info
= ELF64_R_INFO (dynindx
, rent
->type
);
2434 loc
= hppa_info
->other_rel_sec
->contents
;
2435 loc
+= (hppa_info
->other_rel_sec
->reloc_count
++
2436 * sizeof (Elf64_External_Rela
));
2437 bfd_elf64_swap_reloca_out (hppa_info
->other_rel_sec
->output_section
->owner
,
2445 /* Used to decide how to sort relocs in an optimal manner for the
2446 dynamic linker, before writing them out. */
2448 static enum elf_reloc_type_class
2449 elf64_hppa_reloc_type_class (const Elf_Internal_Rela
*rela
)
2451 if (ELF64_R_SYM (rela
->r_info
) == STN_UNDEF
)
2452 return reloc_class_relative
;
2454 switch ((int) ELF64_R_TYPE (rela
->r_info
))
2457 return reloc_class_plt
;
2459 return reloc_class_copy
;
2461 return reloc_class_normal
;
2465 /* Finish up the dynamic sections. */
2468 elf64_hppa_finish_dynamic_sections (bfd
*output_bfd
,
2469 struct bfd_link_info
*info
)
2473 struct elf64_hppa_link_hash_table
*hppa_info
;
2475 hppa_info
= hppa_link_hash_table (info
);
2476 if (hppa_info
== NULL
)
2479 /* Finalize the contents of the .opd section. */
2480 elf_link_hash_traverse (elf_hash_table (info
),
2481 elf64_hppa_finalize_opd
,
2484 elf_link_hash_traverse (elf_hash_table (info
),
2485 elf64_hppa_finalize_dynreloc
,
2488 /* Finalize the contents of the .dlt section. */
2489 dynobj
= elf_hash_table (info
)->dynobj
;
2490 /* Finalize the contents of the .dlt section. */
2491 elf_link_hash_traverse (elf_hash_table (info
),
2492 elf64_hppa_finalize_dlt
,
2495 sdyn
= bfd_get_linker_section (dynobj
, ".dynamic");
2497 if (elf_hash_table (info
)->dynamic_sections_created
)
2499 Elf64_External_Dyn
*dyncon
, *dynconend
;
2501 BFD_ASSERT (sdyn
!= NULL
);
2503 dyncon
= (Elf64_External_Dyn
*) sdyn
->contents
;
2504 dynconend
= (Elf64_External_Dyn
*) (sdyn
->contents
+ sdyn
->size
);
2505 for (; dyncon
< dynconend
; dyncon
++)
2507 Elf_Internal_Dyn dyn
;
2510 bfd_elf64_swap_dyn_in (dynobj
, dyncon
, &dyn
);
2517 case DT_HP_LOAD_MAP
:
2518 /* Compute the absolute address of 16byte scratchpad area
2519 for the dynamic linker.
2521 By convention the linker script will allocate the scratchpad
2522 area at the start of the .data section. So all we have to
2523 to is find the start of the .data section. */
2524 s
= bfd_get_section_by_name (output_bfd
, ".data");
2525 dyn
.d_un
.d_ptr
= s
->vma
;
2526 bfd_elf64_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
2530 /* HP's use PLTGOT to set the GOT register. */
2531 dyn
.d_un
.d_ptr
= _bfd_get_gp_value (output_bfd
);
2532 bfd_elf64_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
2536 s
= hppa_info
->plt_rel_sec
;
2537 dyn
.d_un
.d_ptr
= s
->output_section
->vma
+ s
->output_offset
;
2538 bfd_elf64_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
2542 s
= hppa_info
->plt_rel_sec
;
2543 dyn
.d_un
.d_val
= s
->size
;
2544 bfd_elf64_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
2548 s
= hppa_info
->other_rel_sec
;
2549 if (! s
|| ! s
->size
)
2550 s
= hppa_info
->dlt_rel_sec
;
2551 if (! s
|| ! s
->size
)
2552 s
= hppa_info
->opd_rel_sec
;
2553 dyn
.d_un
.d_ptr
= s
->output_section
->vma
+ s
->output_offset
;
2554 bfd_elf64_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
2558 s
= hppa_info
->other_rel_sec
;
2559 dyn
.d_un
.d_val
= s
->size
;
2560 s
= hppa_info
->dlt_rel_sec
;
2561 dyn
.d_un
.d_val
+= s
->size
;
2562 s
= hppa_info
->opd_rel_sec
;
2563 dyn
.d_un
.d_val
+= s
->size
;
2564 /* There is some question about whether or not the size of
2565 the PLT relocs should be included here. HP's tools do
2566 it, so we'll emulate them. */
2567 s
= hppa_info
->plt_rel_sec
;
2568 dyn
.d_un
.d_val
+= s
->size
;
2569 bfd_elf64_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
2579 /* Support for core dump NOTE sections. */
2582 elf64_hppa_grok_prstatus (bfd
*abfd
, Elf_Internal_Note
*note
)
2587 switch (note
->descsz
)
2592 case 760: /* Linux/hppa */
2594 elf_tdata (abfd
)->core_signal
= bfd_get_16 (abfd
, note
->descdata
+ 12);
2597 elf_tdata (abfd
)->core_lwpid
= bfd_get_32 (abfd
, note
->descdata
+ 32);
2606 /* Make a ".reg/999" section. */
2607 return _bfd_elfcore_make_pseudosection (abfd
, ".reg",
2608 size
, note
->descpos
+ offset
);
2612 elf64_hppa_grok_psinfo (bfd
*abfd
, Elf_Internal_Note
*note
)
2617 switch (note
->descsz
)
2622 case 136: /* Linux/hppa elf_prpsinfo. */
2623 elf_tdata (abfd
)->core_program
2624 = _bfd_elfcore_strndup (abfd
, note
->descdata
+ 40, 16);
2625 elf_tdata (abfd
)->core_command
2626 = _bfd_elfcore_strndup (abfd
, note
->descdata
+ 56, 80);
2629 /* Note that for some reason, a spurious space is tacked
2630 onto the end of the args in some (at least one anyway)
2631 implementations, so strip it off if it exists. */
2632 command
= elf_tdata (abfd
)->core_command
;
2633 n
= strlen (command
);
2635 if (0 < n
&& command
[n
- 1] == ' ')
2636 command
[n
- 1] = '\0';
2641 /* Return the number of additional phdrs we will need.
2643 The generic ELF code only creates PT_PHDRs for executables. The HP
2644 dynamic linker requires PT_PHDRs for dynamic libraries too.
2646 This routine indicates that the backend needs one additional program
2647 header for that case.
2649 Note we do not have access to the link info structure here, so we have
2650 to guess whether or not we are building a shared library based on the
2651 existence of a .interp section. */
2654 elf64_hppa_additional_program_headers (bfd
*abfd
,
2655 struct bfd_link_info
*info ATTRIBUTE_UNUSED
)
2659 /* If we are creating a shared library, then we have to create a
2660 PT_PHDR segment. HP's dynamic linker chokes without it. */
2661 s
= bfd_get_section_by_name (abfd
, ".interp");
2667 /* Allocate and initialize any program headers required by this
2670 The generic ELF code only creates PT_PHDRs for executables. The HP
2671 dynamic linker requires PT_PHDRs for dynamic libraries too.
2673 This allocates the PT_PHDR and initializes it in a manner suitable
2676 Note we do not have access to the link info structure here, so we have
2677 to guess whether or not we are building a shared library based on the
2678 existence of a .interp section. */
2681 elf64_hppa_modify_segment_map (bfd
*abfd
,
2682 struct bfd_link_info
*info ATTRIBUTE_UNUSED
)
2684 struct elf_segment_map
*m
;
2687 s
= bfd_get_section_by_name (abfd
, ".interp");
2690 for (m
= elf_tdata (abfd
)->segment_map
; m
!= NULL
; m
= m
->next
)
2691 if (m
->p_type
== PT_PHDR
)
2695 m
= ((struct elf_segment_map
*)
2696 bfd_zalloc (abfd
, (bfd_size_type
) sizeof *m
));
2700 m
->p_type
= PT_PHDR
;
2701 m
->p_flags
= PF_R
| PF_X
;
2702 m
->p_flags_valid
= 1;
2703 m
->p_paddr_valid
= 1;
2704 m
->includes_phdrs
= 1;
2706 m
->next
= elf_tdata (abfd
)->segment_map
;
2707 elf_tdata (abfd
)->segment_map
= m
;
2711 for (m
= elf_tdata (abfd
)->segment_map
; m
!= NULL
; m
= m
->next
)
2712 if (m
->p_type
== PT_LOAD
)
2716 for (i
= 0; i
< m
->count
; i
++)
2718 /* The code "hint" is not really a hint. It is a requirement
2719 for certain versions of the HP dynamic linker. Worse yet,
2720 it must be set even if the shared library does not have
2721 any code in its "text" segment (thus the check for .hash
2722 to catch this situation). */
2723 if (m
->sections
[i
]->flags
& SEC_CODE
2724 || (strcmp (m
->sections
[i
]->name
, ".hash") == 0))
2725 m
->p_flags
|= (PF_X
| PF_HP_CODE
);
2732 /* Called when writing out an object file to decide the type of a
2735 elf64_hppa_elf_get_symbol_type (Elf_Internal_Sym
*elf_sym
,
2738 if (ELF_ST_TYPE (elf_sym
->st_info
) == STT_PARISC_MILLI
)
2739 return STT_PARISC_MILLI
;
2744 /* Support HP specific sections for core files. */
2747 elf64_hppa_section_from_phdr (bfd
*abfd
, Elf_Internal_Phdr
*hdr
, int sec_index
,
2748 const char *typename
)
2750 if (hdr
->p_type
== PT_HP_CORE_KERNEL
)
2754 if (!_bfd_elf_make_section_from_phdr (abfd
, hdr
, sec_index
, typename
))
2757 sect
= bfd_make_section_anyway (abfd
, ".kernel");
2760 sect
->size
= hdr
->p_filesz
;
2761 sect
->filepos
= hdr
->p_offset
;
2762 sect
->flags
= SEC_HAS_CONTENTS
| SEC_READONLY
;
2766 if (hdr
->p_type
== PT_HP_CORE_PROC
)
2770 if (bfd_seek (abfd
, hdr
->p_offset
, SEEK_SET
) != 0)
2772 if (bfd_bread (&sig
, 4, abfd
) != 4)
2775 elf_tdata (abfd
)->core_signal
= sig
;
2777 if (!_bfd_elf_make_section_from_phdr (abfd
, hdr
, sec_index
, typename
))
2780 /* GDB uses the ".reg" section to read register contents. */
2781 return _bfd_elfcore_make_pseudosection (abfd
, ".reg", hdr
->p_filesz
,
2785 if (hdr
->p_type
== PT_HP_CORE_LOADABLE
2786 || hdr
->p_type
== PT_HP_CORE_STACK
2787 || hdr
->p_type
== PT_HP_CORE_MMF
)
2788 hdr
->p_type
= PT_LOAD
;
2790 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, sec_index
, typename
);
2793 /* Hook called by the linker routine which adds symbols from an object
2794 file. HP's libraries define symbols with HP specific section
2795 indices, which we have to handle. */
2798 elf_hppa_add_symbol_hook (bfd
*abfd
,
2799 struct bfd_link_info
*info ATTRIBUTE_UNUSED
,
2800 Elf_Internal_Sym
*sym
,
2801 const char **namep ATTRIBUTE_UNUSED
,
2802 flagword
*flagsp ATTRIBUTE_UNUSED
,
2806 unsigned int sec_index
= sym
->st_shndx
;
2810 case SHN_PARISC_ANSI_COMMON
:
2811 *secp
= bfd_make_section_old_way (abfd
, ".PARISC.ansi.common");
2812 (*secp
)->flags
|= SEC_IS_COMMON
;
2813 *valp
= sym
->st_size
;
2816 case SHN_PARISC_HUGE_COMMON
:
2817 *secp
= bfd_make_section_old_way (abfd
, ".PARISC.huge.common");
2818 (*secp
)->flags
|= SEC_IS_COMMON
;
2819 *valp
= sym
->st_size
;
2827 elf_hppa_unmark_useless_dynamic_symbols (struct elf_link_hash_entry
*h
,
2830 struct bfd_link_info
*info
= data
;
2832 /* If we are not creating a shared library, and this symbol is
2833 referenced by a shared library but is not defined anywhere, then
2834 the generic code will warn that it is undefined.
2836 This behavior is undesirable on HPs since the standard shared
2837 libraries contain references to undefined symbols.
2839 So we twiddle the flags associated with such symbols so that they
2840 will not trigger the warning. ?!? FIXME. This is horribly fragile.
2842 Ultimately we should have better controls over the generic ELF BFD
2844 if (! info
->relocatable
2845 && info
->unresolved_syms_in_shared_libs
!= RM_IGNORE
2846 && h
->root
.type
== bfd_link_hash_undefined
2851 h
->pointer_equality_needed
= 1;
2858 elf_hppa_remark_useless_dynamic_symbols (struct elf_link_hash_entry
*h
,
2861 struct bfd_link_info
*info
= data
;
2863 /* If we are not creating a shared library, and this symbol is
2864 referenced by a shared library but is not defined anywhere, then
2865 the generic code will warn that it is undefined.
2867 This behavior is undesirable on HPs since the standard shared
2868 libraries contain references to undefined symbols.
2870 So we twiddle the flags associated with such symbols so that they
2871 will not trigger the warning. ?!? FIXME. This is horribly fragile.
2873 Ultimately we should have better controls over the generic ELF BFD
2875 if (! info
->relocatable
2876 && info
->unresolved_syms_in_shared_libs
!= RM_IGNORE
2877 && h
->root
.type
== bfd_link_hash_undefined
2880 && h
->pointer_equality_needed
)
2883 h
->pointer_equality_needed
= 0;
2890 elf_hppa_is_dynamic_loader_symbol (const char *name
)
2892 return (! strcmp (name
, "__CPU_REVISION")
2893 || ! strcmp (name
, "__CPU_KEYBITS_1")
2894 || ! strcmp (name
, "__SYSTEM_ID_D")
2895 || ! strcmp (name
, "__FPU_MODEL")
2896 || ! strcmp (name
, "__FPU_REVISION")
2897 || ! strcmp (name
, "__ARGC")
2898 || ! strcmp (name
, "__ARGV")
2899 || ! strcmp (name
, "__ENVP")
2900 || ! strcmp (name
, "__TLS_SIZE_D")
2901 || ! strcmp (name
, "__LOAD_INFO")
2902 || ! strcmp (name
, "__systab"));
2905 /* Record the lowest address for the data and text segments. */
2907 elf_hppa_record_segment_addrs (bfd
*abfd
,
2911 struct elf64_hppa_link_hash_table
*hppa_info
= data
;
2913 if ((section
->flags
& (SEC_ALLOC
| SEC_LOAD
)) == (SEC_ALLOC
| SEC_LOAD
))
2916 Elf_Internal_Phdr
*p
;
2918 p
= _bfd_elf_find_segment_containing_section (abfd
, section
->output_section
);
2919 BFD_ASSERT (p
!= NULL
);
2922 if (section
->flags
& SEC_READONLY
)
2924 if (value
< hppa_info
->text_segment_base
)
2925 hppa_info
->text_segment_base
= value
;
2929 if (value
< hppa_info
->data_segment_base
)
2930 hppa_info
->data_segment_base
= value
;
2935 /* Called after we have seen all the input files/sections, but before
2936 final symbol resolution and section placement has been determined.
2938 We use this hook to (possibly) provide a value for __gp, then we
2939 fall back to the generic ELF final link routine. */
2942 elf_hppa_final_link (bfd
*abfd
, struct bfd_link_info
*info
)
2945 struct elf64_hppa_link_hash_table
*hppa_info
= hppa_link_hash_table (info
);
2947 if (hppa_info
== NULL
)
2950 if (! info
->relocatable
)
2952 struct elf_link_hash_entry
*gp
;
2955 /* The linker script defines a value for __gp iff it was referenced
2956 by one of the objects being linked. First try to find the symbol
2957 in the hash table. If that fails, just compute the value __gp
2959 gp
= elf_link_hash_lookup (elf_hash_table (info
), "__gp", FALSE
,
2965 /* Adjust the value of __gp as we may want to slide it into the
2966 .plt section so that the stubs can access PLT entries without
2967 using an addil sequence. */
2968 gp
->root
.u
.def
.value
+= hppa_info
->gp_offset
;
2970 gp_val
= (gp
->root
.u
.def
.section
->output_section
->vma
2971 + gp
->root
.u
.def
.section
->output_offset
2972 + gp
->root
.u
.def
.value
);
2978 /* First look for a .plt section. If found, then __gp is the
2979 address of the .plt + gp_offset.
2981 If no .plt is found, then look for .dlt, .opd and .data (in
2982 that order) and set __gp to the base address of whichever
2983 section is found first. */
2985 sec
= hppa_info
->plt_sec
;
2986 if (sec
&& ! (sec
->flags
& SEC_EXCLUDE
))
2987 gp_val
= (sec
->output_offset
2988 + sec
->output_section
->vma
2989 + hppa_info
->gp_offset
);
2992 sec
= hppa_info
->dlt_sec
;
2993 if (!sec
|| (sec
->flags
& SEC_EXCLUDE
))
2994 sec
= hppa_info
->opd_sec
;
2995 if (!sec
|| (sec
->flags
& SEC_EXCLUDE
))
2996 sec
= bfd_get_section_by_name (abfd
, ".data");
2997 if (!sec
|| (sec
->flags
& SEC_EXCLUDE
))
3000 gp_val
= sec
->output_offset
+ sec
->output_section
->vma
;
3004 /* Install whatever value we found/computed for __gp. */
3005 _bfd_set_gp_value (abfd
, gp_val
);
3008 /* We need to know the base of the text and data segments so that we
3009 can perform SEGREL relocations. We will record the base addresses
3010 when we encounter the first SEGREL relocation. */
3011 hppa_info
->text_segment_base
= (bfd_vma
)-1;
3012 hppa_info
->data_segment_base
= (bfd_vma
)-1;
3014 /* HP's shared libraries have references to symbols that are not
3015 defined anywhere. The generic ELF BFD linker code will complain
3018 So we detect the losing case and arrange for the flags on the symbol
3019 to indicate that it was never referenced. This keeps the generic
3020 ELF BFD link code happy and appears to not create any secondary
3021 problems. Ultimately we need a way to control the behavior of the
3022 generic ELF BFD link code better. */
3023 elf_link_hash_traverse (elf_hash_table (info
),
3024 elf_hppa_unmark_useless_dynamic_symbols
,
3027 /* Invoke the regular ELF backend linker to do all the work. */
3028 retval
= bfd_elf_final_link (abfd
, info
);
3030 elf_link_hash_traverse (elf_hash_table (info
),
3031 elf_hppa_remark_useless_dynamic_symbols
,
3034 /* If we're producing a final executable, sort the contents of the
3036 if (retval
&& !info
->relocatable
)
3037 retval
= elf_hppa_sort_unwind (abfd
);
3042 /* Relocate the given INSN. VALUE should be the actual value we want
3043 to insert into the instruction, ie by this point we should not be
3044 concerned with computing an offset relative to the DLT, PC, etc.
3045 Instead this routine is meant to handle the bit manipulations needed
3046 to insert the relocation into the given instruction. */
3049 elf_hppa_relocate_insn (int insn
, int sym_value
, unsigned int r_type
)
3053 /* This is any 22 bit branch. In PA2.0 syntax it corresponds to
3054 the "B" instruction. */
3055 case R_PARISC_PCREL22F
:
3056 case R_PARISC_PCREL22C
:
3057 return (insn
& ~0x3ff1ffd) | re_assemble_22 (sym_value
);
3059 /* This is any 12 bit branch. */
3060 case R_PARISC_PCREL12F
:
3061 return (insn
& ~0x1ffd) | re_assemble_12 (sym_value
);
3063 /* This is any 17 bit branch. In PA2.0 syntax it also corresponds
3064 to the "B" instruction as well as BE. */
3065 case R_PARISC_PCREL17F
:
3066 case R_PARISC_DIR17F
:
3067 case R_PARISC_DIR17R
:
3068 case R_PARISC_PCREL17C
:
3069 case R_PARISC_PCREL17R
:
3070 return (insn
& ~0x1f1ffd) | re_assemble_17 (sym_value
);
3072 /* ADDIL or LDIL instructions. */
3073 case R_PARISC_DLTREL21L
:
3074 case R_PARISC_DLTIND21L
:
3075 case R_PARISC_LTOFF_FPTR21L
:
3076 case R_PARISC_PCREL21L
:
3077 case R_PARISC_LTOFF_TP21L
:
3078 case R_PARISC_DPREL21L
:
3079 case R_PARISC_PLTOFF21L
:
3080 case R_PARISC_DIR21L
:
3081 return (insn
& ~0x1fffff) | re_assemble_21 (sym_value
);
3083 /* LDO and integer loads/stores with 14 bit displacements. */
3084 case R_PARISC_DLTREL14R
:
3085 case R_PARISC_DLTREL14F
:
3086 case R_PARISC_DLTIND14R
:
3087 case R_PARISC_DLTIND14F
:
3088 case R_PARISC_LTOFF_FPTR14R
:
3089 case R_PARISC_PCREL14R
:
3090 case R_PARISC_PCREL14F
:
3091 case R_PARISC_LTOFF_TP14R
:
3092 case R_PARISC_LTOFF_TP14F
:
3093 case R_PARISC_DPREL14R
:
3094 case R_PARISC_DPREL14F
:
3095 case R_PARISC_PLTOFF14R
:
3096 case R_PARISC_PLTOFF14F
:
3097 case R_PARISC_DIR14R
:
3098 case R_PARISC_DIR14F
:
3099 return (insn
& ~0x3fff) | low_sign_unext (sym_value
, 14);
3101 /* PA2.0W LDO and integer loads/stores with 16 bit displacements. */
3102 case R_PARISC_LTOFF_FPTR16F
:
3103 case R_PARISC_PCREL16F
:
3104 case R_PARISC_LTOFF_TP16F
:
3105 case R_PARISC_GPREL16F
:
3106 case R_PARISC_PLTOFF16F
:
3107 case R_PARISC_DIR16F
:
3108 case R_PARISC_LTOFF16F
:
3109 return (insn
& ~0xffff) | re_assemble_16 (sym_value
);
3111 /* Doubleword loads and stores with a 14 bit displacement. */
3112 case R_PARISC_DLTREL14DR
:
3113 case R_PARISC_DLTIND14DR
:
3114 case R_PARISC_LTOFF_FPTR14DR
:
3115 case R_PARISC_LTOFF_FPTR16DF
:
3116 case R_PARISC_PCREL14DR
:
3117 case R_PARISC_PCREL16DF
:
3118 case R_PARISC_LTOFF_TP14DR
:
3119 case R_PARISC_LTOFF_TP16DF
:
3120 case R_PARISC_DPREL14DR
:
3121 case R_PARISC_GPREL16DF
:
3122 case R_PARISC_PLTOFF14DR
:
3123 case R_PARISC_PLTOFF16DF
:
3124 case R_PARISC_DIR14DR
:
3125 case R_PARISC_DIR16DF
:
3126 case R_PARISC_LTOFF16DF
:
3127 return (insn
& ~0x3ff1) | (((sym_value
& 0x2000) >> 13)
3128 | ((sym_value
& 0x1ff8) << 1));
3130 /* Floating point single word load/store instructions. */
3131 case R_PARISC_DLTREL14WR
:
3132 case R_PARISC_DLTIND14WR
:
3133 case R_PARISC_LTOFF_FPTR14WR
:
3134 case R_PARISC_LTOFF_FPTR16WF
:
3135 case R_PARISC_PCREL14WR
:
3136 case R_PARISC_PCREL16WF
:
3137 case R_PARISC_LTOFF_TP14WR
:
3138 case R_PARISC_LTOFF_TP16WF
:
3139 case R_PARISC_DPREL14WR
:
3140 case R_PARISC_GPREL16WF
:
3141 case R_PARISC_PLTOFF14WR
:
3142 case R_PARISC_PLTOFF16WF
:
3143 case R_PARISC_DIR16WF
:
3144 case R_PARISC_DIR14WR
:
3145 case R_PARISC_LTOFF16WF
:
3146 return (insn
& ~0x3ff9) | (((sym_value
& 0x2000) >> 13)
3147 | ((sym_value
& 0x1ffc) << 1));
3154 /* Compute the value for a relocation (REL) during a final link stage,
3155 then insert the value into the proper location in CONTENTS.
3157 VALUE is a tentative value for the relocation and may be overridden
3158 and modified here based on the specific relocation to be performed.
3160 For example we do conversions for PC-relative branches in this routine
3161 or redirection of calls to external routines to stubs.
3163 The work of actually applying the relocation is left to a helper
3164 routine in an attempt to reduce the complexity and size of this
3167 static bfd_reloc_status_type
3168 elf_hppa_final_link_relocate (Elf_Internal_Rela
*rel
,
3171 asection
*input_section
,
3174 struct bfd_link_info
*info
,
3176 struct elf_link_hash_entry
*eh
)
3178 struct elf64_hppa_link_hash_table
*hppa_info
= hppa_link_hash_table (info
);
3179 struct elf64_hppa_link_hash_entry
*hh
= hppa_elf_hash_entry (eh
);
3180 bfd_vma
*local_offsets
;
3181 Elf_Internal_Shdr
*symtab_hdr
;
3183 bfd_vma max_branch_offset
= 0;
3184 bfd_vma offset
= rel
->r_offset
;
3185 bfd_signed_vma addend
= rel
->r_addend
;
3186 reloc_howto_type
*howto
= elf_hppa_howto_table
+ ELF_R_TYPE (rel
->r_info
);
3187 unsigned int r_symndx
= ELF_R_SYM (rel
->r_info
);
3188 unsigned int r_type
= howto
->type
;
3189 bfd_byte
*hit_data
= contents
+ offset
;
3191 if (hppa_info
== NULL
)
3192 return bfd_reloc_notsupported
;
3194 symtab_hdr
= &elf_tdata (input_bfd
)->symtab_hdr
;
3195 local_offsets
= elf_local_got_offsets (input_bfd
);
3196 insn
= bfd_get_32 (input_bfd
, hit_data
);
3203 /* Basic function call support.
3205 Note for a call to a function defined in another dynamic library
3206 we want to redirect the call to a stub. */
3208 /* PC relative relocs without an implicit offset. */
3209 case R_PARISC_PCREL21L
:
3210 case R_PARISC_PCREL14R
:
3211 case R_PARISC_PCREL14F
:
3212 case R_PARISC_PCREL14WR
:
3213 case R_PARISC_PCREL14DR
:
3214 case R_PARISC_PCREL16F
:
3215 case R_PARISC_PCREL16WF
:
3216 case R_PARISC_PCREL16DF
:
3218 /* If this is a call to a function defined in another dynamic
3219 library, then redirect the call to the local stub for this
3221 if (sym_sec
== NULL
|| sym_sec
->output_section
== NULL
)
3222 value
= (hh
->stub_offset
+ hppa_info
->stub_sec
->output_offset
3223 + hppa_info
->stub_sec
->output_section
->vma
);
3225 /* Turn VALUE into a proper PC relative address. */
3226 value
-= (offset
+ input_section
->output_offset
3227 + input_section
->output_section
->vma
);
3229 /* Adjust for any field selectors. */
3230 if (r_type
== R_PARISC_PCREL21L
)
3231 value
= hppa_field_adjust (value
, -8 + addend
, e_lsel
);
3232 else if (r_type
== R_PARISC_PCREL14F
3233 || r_type
== R_PARISC_PCREL16F
3234 || r_type
== R_PARISC_PCREL16WF
3235 || r_type
== R_PARISC_PCREL16DF
)
3236 value
= hppa_field_adjust (value
, -8 + addend
, e_fsel
);
3238 value
= hppa_field_adjust (value
, -8 + addend
, e_rsel
);
3240 /* Apply the relocation to the given instruction. */
3241 insn
= elf_hppa_relocate_insn (insn
, (int) value
, r_type
);
3245 case R_PARISC_PCREL12F
:
3246 case R_PARISC_PCREL22F
:
3247 case R_PARISC_PCREL17F
:
3248 case R_PARISC_PCREL22C
:
3249 case R_PARISC_PCREL17C
:
3250 case R_PARISC_PCREL17R
:
3252 /* If this is a call to a function defined in another dynamic
3253 library, then redirect the call to the local stub for this
3255 if (sym_sec
== NULL
|| sym_sec
->output_section
== NULL
)
3256 value
= (hh
->stub_offset
+ hppa_info
->stub_sec
->output_offset
3257 + hppa_info
->stub_sec
->output_section
->vma
);
3259 /* Turn VALUE into a proper PC relative address. */
3260 value
-= (offset
+ input_section
->output_offset
3261 + input_section
->output_section
->vma
);
3264 if (r_type
== (unsigned int) R_PARISC_PCREL22F
)
3265 max_branch_offset
= (1 << (22-1)) << 2;
3266 else if (r_type
== (unsigned int) R_PARISC_PCREL17F
)
3267 max_branch_offset
= (1 << (17-1)) << 2;
3268 else if (r_type
== (unsigned int) R_PARISC_PCREL12F
)
3269 max_branch_offset
= (1 << (12-1)) << 2;
3271 /* Make sure we can reach the branch target. */
3272 if (max_branch_offset
!= 0
3273 && value
+ addend
+ max_branch_offset
>= 2*max_branch_offset
)
3275 (*_bfd_error_handler
)
3276 (_("%B(%A+0x" BFD_VMA_FMT
"x): cannot reach %s"),
3280 eh
? eh
->root
.root
.string
: "unknown");
3281 bfd_set_error (bfd_error_bad_value
);
3282 return bfd_reloc_overflow
;
3285 /* Adjust for any field selectors. */
3286 if (r_type
== R_PARISC_PCREL17R
)
3287 value
= hppa_field_adjust (value
, addend
, e_rsel
);
3289 value
= hppa_field_adjust (value
, addend
, e_fsel
);
3291 /* All branches are implicitly shifted by 2 places. */
3294 /* Apply the relocation to the given instruction. */
3295 insn
= elf_hppa_relocate_insn (insn
, (int) value
, r_type
);
3299 /* Indirect references to data through the DLT. */
3300 case R_PARISC_DLTIND14R
:
3301 case R_PARISC_DLTIND14F
:
3302 case R_PARISC_DLTIND14DR
:
3303 case R_PARISC_DLTIND14WR
:
3304 case R_PARISC_DLTIND21L
:
3305 case R_PARISC_LTOFF_FPTR14R
:
3306 case R_PARISC_LTOFF_FPTR14DR
:
3307 case R_PARISC_LTOFF_FPTR14WR
:
3308 case R_PARISC_LTOFF_FPTR21L
:
3309 case R_PARISC_LTOFF_FPTR16F
:
3310 case R_PARISC_LTOFF_FPTR16WF
:
3311 case R_PARISC_LTOFF_FPTR16DF
:
3312 case R_PARISC_LTOFF_TP21L
:
3313 case R_PARISC_LTOFF_TP14R
:
3314 case R_PARISC_LTOFF_TP14F
:
3315 case R_PARISC_LTOFF_TP14WR
:
3316 case R_PARISC_LTOFF_TP14DR
:
3317 case R_PARISC_LTOFF_TP16F
:
3318 case R_PARISC_LTOFF_TP16WF
:
3319 case R_PARISC_LTOFF_TP16DF
:
3320 case R_PARISC_LTOFF16F
:
3321 case R_PARISC_LTOFF16WF
:
3322 case R_PARISC_LTOFF16DF
:
3326 /* If this relocation was against a local symbol, then we still
3327 have not set up the DLT entry (it's not convenient to do so
3328 in the "finalize_dlt" routine because it is difficult to get
3329 to the local symbol's value).
3331 So, if this is a local symbol (h == NULL), then we need to
3332 fill in its DLT entry.
3334 Similarly we may still need to set up an entry in .opd for
3335 a local function which had its address taken. */
3338 bfd_vma
*local_opd_offsets
, *local_dlt_offsets
;
3340 if (local_offsets
== NULL
)
3343 /* Now do .opd creation if needed. */
3344 if (r_type
== R_PARISC_LTOFF_FPTR14R
3345 || r_type
== R_PARISC_LTOFF_FPTR14DR
3346 || r_type
== R_PARISC_LTOFF_FPTR14WR
3347 || r_type
== R_PARISC_LTOFF_FPTR21L
3348 || r_type
== R_PARISC_LTOFF_FPTR16F
3349 || r_type
== R_PARISC_LTOFF_FPTR16WF
3350 || r_type
== R_PARISC_LTOFF_FPTR16DF
)
3352 local_opd_offsets
= local_offsets
+ 2 * symtab_hdr
->sh_info
;
3353 off
= local_opd_offsets
[r_symndx
];
3355 /* The last bit records whether we've already initialised
3356 this local .opd entry. */
3359 BFD_ASSERT (off
!= (bfd_vma
) -1);
3364 local_opd_offsets
[r_symndx
] |= 1;
3366 /* The first two words of an .opd entry are zero. */
3367 memset (hppa_info
->opd_sec
->contents
+ off
, 0, 16);
3369 /* The next word is the address of the function. */
3370 bfd_put_64 (hppa_info
->opd_sec
->owner
, value
+ addend
,
3371 (hppa_info
->opd_sec
->contents
+ off
+ 16));
3373 /* The last word is our local __gp value. */
3374 value
= _bfd_get_gp_value
3375 (hppa_info
->opd_sec
->output_section
->owner
);
3376 bfd_put_64 (hppa_info
->opd_sec
->owner
, value
,
3377 (hppa_info
->opd_sec
->contents
+ off
+ 24));
3380 /* The DLT value is the address of the .opd entry. */
3382 + hppa_info
->opd_sec
->output_offset
3383 + hppa_info
->opd_sec
->output_section
->vma
);
3387 local_dlt_offsets
= local_offsets
;
3388 off
= local_dlt_offsets
[r_symndx
];
3392 BFD_ASSERT (off
!= (bfd_vma
) -1);
3397 local_dlt_offsets
[r_symndx
] |= 1;
3398 bfd_put_64 (hppa_info
->dlt_sec
->owner
,
3400 hppa_info
->dlt_sec
->contents
+ off
);
3404 off
= hh
->dlt_offset
;
3406 /* We want the value of the DLT offset for this symbol, not
3407 the symbol's actual address. Note that __gp may not point
3408 to the start of the DLT, so we have to compute the absolute
3409 address, then subtract out the value of __gp. */
3411 + hppa_info
->dlt_sec
->output_offset
3412 + hppa_info
->dlt_sec
->output_section
->vma
);
3413 value
-= _bfd_get_gp_value (output_bfd
);
3415 /* All DLTIND relocations are basically the same at this point,
3416 except that we need different field selectors for the 21bit
3417 version vs the 14bit versions. */
3418 if (r_type
== R_PARISC_DLTIND21L
3419 || r_type
== R_PARISC_LTOFF_FPTR21L
3420 || r_type
== R_PARISC_LTOFF_TP21L
)
3421 value
= hppa_field_adjust (value
, 0, e_lsel
);
3422 else if (r_type
== R_PARISC_DLTIND14F
3423 || r_type
== R_PARISC_LTOFF_FPTR16F
3424 || r_type
== R_PARISC_LTOFF_FPTR16WF
3425 || r_type
== R_PARISC_LTOFF_FPTR16DF
3426 || r_type
== R_PARISC_LTOFF16F
3427 || r_type
== R_PARISC_LTOFF16DF
3428 || r_type
== R_PARISC_LTOFF16WF
3429 || r_type
== R_PARISC_LTOFF_TP16F
3430 || r_type
== R_PARISC_LTOFF_TP16WF
3431 || r_type
== R_PARISC_LTOFF_TP16DF
)
3432 value
= hppa_field_adjust (value
, 0, e_fsel
);
3434 value
= hppa_field_adjust (value
, 0, e_rsel
);
3436 insn
= elf_hppa_relocate_insn (insn
, (int) value
, r_type
);
3440 case R_PARISC_DLTREL14R
:
3441 case R_PARISC_DLTREL14F
:
3442 case R_PARISC_DLTREL14DR
:
3443 case R_PARISC_DLTREL14WR
:
3444 case R_PARISC_DLTREL21L
:
3445 case R_PARISC_DPREL21L
:
3446 case R_PARISC_DPREL14WR
:
3447 case R_PARISC_DPREL14DR
:
3448 case R_PARISC_DPREL14R
:
3449 case R_PARISC_DPREL14F
:
3450 case R_PARISC_GPREL16F
:
3451 case R_PARISC_GPREL16WF
:
3452 case R_PARISC_GPREL16DF
:
3454 /* Subtract out the global pointer value to make value a DLT
3455 relative address. */
3456 value
-= _bfd_get_gp_value (output_bfd
);
3458 /* All DLTREL relocations are basically the same at this point,
3459 except that we need different field selectors for the 21bit
3460 version vs the 14bit versions. */
3461 if (r_type
== R_PARISC_DLTREL21L
3462 || r_type
== R_PARISC_DPREL21L
)
3463 value
= hppa_field_adjust (value
, addend
, e_lrsel
);
3464 else if (r_type
== R_PARISC_DLTREL14F
3465 || r_type
== R_PARISC_DPREL14F
3466 || r_type
== R_PARISC_GPREL16F
3467 || r_type
== R_PARISC_GPREL16WF
3468 || r_type
== R_PARISC_GPREL16DF
)
3469 value
= hppa_field_adjust (value
, addend
, e_fsel
);
3471 value
= hppa_field_adjust (value
, addend
, e_rrsel
);
3473 insn
= elf_hppa_relocate_insn (insn
, (int) value
, r_type
);
3477 case R_PARISC_DIR21L
:
3478 case R_PARISC_DIR17R
:
3479 case R_PARISC_DIR17F
:
3480 case R_PARISC_DIR14R
:
3481 case R_PARISC_DIR14F
:
3482 case R_PARISC_DIR14WR
:
3483 case R_PARISC_DIR14DR
:
3484 case R_PARISC_DIR16F
:
3485 case R_PARISC_DIR16WF
:
3486 case R_PARISC_DIR16DF
:
3488 /* All DIR relocations are basically the same at this point,
3489 except that branch offsets need to be divided by four, and
3490 we need different field selectors. Note that we don't
3491 redirect absolute calls to local stubs. */
3493 if (r_type
== R_PARISC_DIR21L
)
3494 value
= hppa_field_adjust (value
, addend
, e_lrsel
);
3495 else if (r_type
== R_PARISC_DIR17F
3496 || r_type
== R_PARISC_DIR16F
3497 || r_type
== R_PARISC_DIR16WF
3498 || r_type
== R_PARISC_DIR16DF
3499 || r_type
== R_PARISC_DIR14F
)
3500 value
= hppa_field_adjust (value
, addend
, e_fsel
);
3502 value
= hppa_field_adjust (value
, addend
, e_rrsel
);
3504 if (r_type
== R_PARISC_DIR17R
|| r_type
== R_PARISC_DIR17F
)
3505 /* All branches are implicitly shifted by 2 places. */
3508 insn
= elf_hppa_relocate_insn (insn
, (int) value
, r_type
);
3512 case R_PARISC_PLTOFF21L
:
3513 case R_PARISC_PLTOFF14R
:
3514 case R_PARISC_PLTOFF14F
:
3515 case R_PARISC_PLTOFF14WR
:
3516 case R_PARISC_PLTOFF14DR
:
3517 case R_PARISC_PLTOFF16F
:
3518 case R_PARISC_PLTOFF16WF
:
3519 case R_PARISC_PLTOFF16DF
:
3521 /* We want the value of the PLT offset for this symbol, not
3522 the symbol's actual address. Note that __gp may not point
3523 to the start of the DLT, so we have to compute the absolute
3524 address, then subtract out the value of __gp. */
3525 value
= (hh
->plt_offset
3526 + hppa_info
->plt_sec
->output_offset
3527 + hppa_info
->plt_sec
->output_section
->vma
);
3528 value
-= _bfd_get_gp_value (output_bfd
);
3530 /* All PLTOFF relocations are basically the same at this point,
3531 except that we need different field selectors for the 21bit
3532 version vs the 14bit versions. */
3533 if (r_type
== R_PARISC_PLTOFF21L
)
3534 value
= hppa_field_adjust (value
, addend
, e_lrsel
);
3535 else if (r_type
== R_PARISC_PLTOFF14F
3536 || r_type
== R_PARISC_PLTOFF16F
3537 || r_type
== R_PARISC_PLTOFF16WF
3538 || r_type
== R_PARISC_PLTOFF16DF
)
3539 value
= hppa_field_adjust (value
, addend
, e_fsel
);
3541 value
= hppa_field_adjust (value
, addend
, e_rrsel
);
3543 insn
= elf_hppa_relocate_insn (insn
, (int) value
, r_type
);
3547 case R_PARISC_LTOFF_FPTR32
:
3549 /* We may still need to create the FPTR itself if it was for
3553 /* The first two words of an .opd entry are zero. */
3554 memset (hppa_info
->opd_sec
->contents
+ hh
->opd_offset
, 0, 16);
3556 /* The next word is the address of the function. */
3557 bfd_put_64 (hppa_info
->opd_sec
->owner
, value
+ addend
,
3558 (hppa_info
->opd_sec
->contents
3559 + hh
->opd_offset
+ 16));
3561 /* The last word is our local __gp value. */
3562 value
= _bfd_get_gp_value
3563 (hppa_info
->opd_sec
->output_section
->owner
);
3564 bfd_put_64 (hppa_info
->opd_sec
->owner
, value
,
3565 hppa_info
->opd_sec
->contents
+ hh
->opd_offset
+ 24);
3567 /* The DLT value is the address of the .opd entry. */
3568 value
= (hh
->opd_offset
3569 + hppa_info
->opd_sec
->output_offset
3570 + hppa_info
->opd_sec
->output_section
->vma
);
3572 bfd_put_64 (hppa_info
->dlt_sec
->owner
,
3574 hppa_info
->dlt_sec
->contents
+ hh
->dlt_offset
);
3577 /* We want the value of the DLT offset for this symbol, not
3578 the symbol's actual address. Note that __gp may not point
3579 to the start of the DLT, so we have to compute the absolute
3580 address, then subtract out the value of __gp. */
3581 value
= (hh
->dlt_offset
3582 + hppa_info
->dlt_sec
->output_offset
3583 + hppa_info
->dlt_sec
->output_section
->vma
);
3584 value
-= _bfd_get_gp_value (output_bfd
);
3585 bfd_put_32 (input_bfd
, value
, hit_data
);
3586 return bfd_reloc_ok
;
3589 case R_PARISC_LTOFF_FPTR64
:
3590 case R_PARISC_LTOFF_TP64
:
3592 /* We may still need to create the FPTR itself if it was for
3594 if (eh
== NULL
&& r_type
== R_PARISC_LTOFF_FPTR64
)
3596 /* The first two words of an .opd entry are zero. */
3597 memset (hppa_info
->opd_sec
->contents
+ hh
->opd_offset
, 0, 16);
3599 /* The next word is the address of the function. */
3600 bfd_put_64 (hppa_info
->opd_sec
->owner
, value
+ addend
,
3601 (hppa_info
->opd_sec
->contents
3602 + hh
->opd_offset
+ 16));
3604 /* The last word is our local __gp value. */
3605 value
= _bfd_get_gp_value
3606 (hppa_info
->opd_sec
->output_section
->owner
);
3607 bfd_put_64 (hppa_info
->opd_sec
->owner
, value
,
3608 hppa_info
->opd_sec
->contents
+ hh
->opd_offset
+ 24);
3610 /* The DLT value is the address of the .opd entry. */
3611 value
= (hh
->opd_offset
3612 + hppa_info
->opd_sec
->output_offset
3613 + hppa_info
->opd_sec
->output_section
->vma
);
3615 bfd_put_64 (hppa_info
->dlt_sec
->owner
,
3617 hppa_info
->dlt_sec
->contents
+ hh
->dlt_offset
);
3620 /* We want the value of the DLT offset for this symbol, not
3621 the symbol's actual address. Note that __gp may not point
3622 to the start of the DLT, so we have to compute the absolute
3623 address, then subtract out the value of __gp. */
3624 value
= (hh
->dlt_offset
3625 + hppa_info
->dlt_sec
->output_offset
3626 + hppa_info
->dlt_sec
->output_section
->vma
);
3627 value
-= _bfd_get_gp_value (output_bfd
);
3628 bfd_put_64 (input_bfd
, value
, hit_data
);
3629 return bfd_reloc_ok
;
3632 case R_PARISC_DIR32
:
3633 bfd_put_32 (input_bfd
, value
+ addend
, hit_data
);
3634 return bfd_reloc_ok
;
3636 case R_PARISC_DIR64
:
3637 bfd_put_64 (input_bfd
, value
+ addend
, hit_data
);
3638 return bfd_reloc_ok
;
3640 case R_PARISC_GPREL64
:
3641 /* Subtract out the global pointer value to make value a DLT
3642 relative address. */
3643 value
-= _bfd_get_gp_value (output_bfd
);
3645 bfd_put_64 (input_bfd
, value
+ addend
, hit_data
);
3646 return bfd_reloc_ok
;
3648 case R_PARISC_LTOFF64
:
3649 /* We want the value of the DLT offset for this symbol, not
3650 the symbol's actual address. Note that __gp may not point
3651 to the start of the DLT, so we have to compute the absolute
3652 address, then subtract out the value of __gp. */
3653 value
= (hh
->dlt_offset
3654 + hppa_info
->dlt_sec
->output_offset
3655 + hppa_info
->dlt_sec
->output_section
->vma
);
3656 value
-= _bfd_get_gp_value (output_bfd
);
3658 bfd_put_64 (input_bfd
, value
+ addend
, hit_data
);
3659 return bfd_reloc_ok
;
3661 case R_PARISC_PCREL32
:
3663 /* If this is a call to a function defined in another dynamic
3664 library, then redirect the call to the local stub for this
3666 if (sym_sec
== NULL
|| sym_sec
->output_section
== NULL
)
3667 value
= (hh
->stub_offset
+ hppa_info
->stub_sec
->output_offset
3668 + hppa_info
->stub_sec
->output_section
->vma
);
3670 /* Turn VALUE into a proper PC relative address. */
3671 value
-= (offset
+ input_section
->output_offset
3672 + input_section
->output_section
->vma
);
3676 bfd_put_32 (input_bfd
, value
, hit_data
);
3677 return bfd_reloc_ok
;
3680 case R_PARISC_PCREL64
:
3682 /* If this is a call to a function defined in another dynamic
3683 library, then redirect the call to the local stub for this
3685 if (sym_sec
== NULL
|| sym_sec
->output_section
== NULL
)
3686 value
= (hh
->stub_offset
+ hppa_info
->stub_sec
->output_offset
3687 + hppa_info
->stub_sec
->output_section
->vma
);
3689 /* Turn VALUE into a proper PC relative address. */
3690 value
-= (offset
+ input_section
->output_offset
3691 + input_section
->output_section
->vma
);
3695 bfd_put_64 (input_bfd
, value
, hit_data
);
3696 return bfd_reloc_ok
;
3699 case R_PARISC_FPTR64
:
3703 /* We may still need to create the FPTR itself if it was for
3707 bfd_vma
*local_opd_offsets
;
3709 if (local_offsets
== NULL
)
3712 local_opd_offsets
= local_offsets
+ 2 * symtab_hdr
->sh_info
;
3713 off
= local_opd_offsets
[r_symndx
];
3715 /* The last bit records whether we've already initialised
3716 this local .opd entry. */
3719 BFD_ASSERT (off
!= (bfd_vma
) -1);
3724 /* The first two words of an .opd entry are zero. */
3725 memset (hppa_info
->opd_sec
->contents
+ off
, 0, 16);
3727 /* The next word is the address of the function. */
3728 bfd_put_64 (hppa_info
->opd_sec
->owner
, value
+ addend
,
3729 (hppa_info
->opd_sec
->contents
+ off
+ 16));
3731 /* The last word is our local __gp value. */
3732 value
= _bfd_get_gp_value
3733 (hppa_info
->opd_sec
->output_section
->owner
);
3734 bfd_put_64 (hppa_info
->opd_sec
->owner
, value
,
3735 hppa_info
->opd_sec
->contents
+ off
+ 24);
3739 off
= hh
->opd_offset
;
3741 if (hh
== NULL
|| hh
->want_opd
)
3742 /* We want the value of the OPD offset for this symbol. */
3744 + hppa_info
->opd_sec
->output_offset
3745 + hppa_info
->opd_sec
->output_section
->vma
);
3747 /* We want the address of the symbol. */
3750 bfd_put_64 (input_bfd
, value
, hit_data
);
3751 return bfd_reloc_ok
;
3754 case R_PARISC_SECREL32
:
3756 value
-= sym_sec
->output_section
->vma
;
3757 bfd_put_32 (input_bfd
, value
+ addend
, hit_data
);
3758 return bfd_reloc_ok
;
3760 case R_PARISC_SEGREL32
:
3761 case R_PARISC_SEGREL64
:
3763 /* If this is the first SEGREL relocation, then initialize
3764 the segment base values. */
3765 if (hppa_info
->text_segment_base
== (bfd_vma
) -1)
3766 bfd_map_over_sections (output_bfd
, elf_hppa_record_segment_addrs
,
3769 /* VALUE holds the absolute address. We want to include the
3770 addend, then turn it into a segment relative address.
3772 The segment is derived from SYM_SEC. We assume that there are
3773 only two segments of note in the resulting executable/shlib.
3774 A readonly segment (.text) and a readwrite segment (.data). */
3777 if (sym_sec
->flags
& SEC_CODE
)
3778 value
-= hppa_info
->text_segment_base
;
3780 value
-= hppa_info
->data_segment_base
;
3782 if (r_type
== R_PARISC_SEGREL32
)
3783 bfd_put_32 (input_bfd
, value
, hit_data
);
3785 bfd_put_64 (input_bfd
, value
, hit_data
);
3786 return bfd_reloc_ok
;
3789 /* Something we don't know how to handle. */
3791 return bfd_reloc_notsupported
;
3794 /* Update the instruction word. */
3795 bfd_put_32 (input_bfd
, (bfd_vma
) insn
, hit_data
);
3796 return bfd_reloc_ok
;
3799 /* Relocate an HPPA ELF section. */
3802 elf64_hppa_relocate_section (bfd
*output_bfd
,
3803 struct bfd_link_info
*info
,
3805 asection
*input_section
,
3807 Elf_Internal_Rela
*relocs
,
3808 Elf_Internal_Sym
*local_syms
,
3809 asection
**local_sections
)
3811 Elf_Internal_Shdr
*symtab_hdr
;
3812 Elf_Internal_Rela
*rel
;
3813 Elf_Internal_Rela
*relend
;
3814 struct elf64_hppa_link_hash_table
*hppa_info
;
3816 hppa_info
= hppa_link_hash_table (info
);
3817 if (hppa_info
== NULL
)
3820 symtab_hdr
= &elf_tdata (input_bfd
)->symtab_hdr
;
3823 relend
= relocs
+ input_section
->reloc_count
;
3824 for (; rel
< relend
; rel
++)
3827 reloc_howto_type
*howto
= elf_hppa_howto_table
+ ELF_R_TYPE (rel
->r_info
);
3828 unsigned long r_symndx
;
3829 struct elf_link_hash_entry
*eh
;
3830 Elf_Internal_Sym
*sym
;
3833 bfd_reloc_status_type r
;
3835 r_type
= ELF_R_TYPE (rel
->r_info
);
3836 if (r_type
< 0 || r_type
>= (int) R_PARISC_UNIMPLEMENTED
)
3838 bfd_set_error (bfd_error_bad_value
);
3841 if (r_type
== (unsigned int) R_PARISC_GNU_VTENTRY
3842 || r_type
== (unsigned int) R_PARISC_GNU_VTINHERIT
)
3845 /* This is a final link. */
3846 r_symndx
= ELF_R_SYM (rel
->r_info
);
3850 if (r_symndx
< symtab_hdr
->sh_info
)
3852 /* This is a local symbol, hh defaults to NULL. */
3853 sym
= local_syms
+ r_symndx
;
3854 sym_sec
= local_sections
[r_symndx
];
3855 relocation
= _bfd_elf_rela_local_sym (output_bfd
, sym
, &sym_sec
, rel
);
3859 /* This is not a local symbol. */
3860 struct elf_link_hash_entry
**sym_hashes
= elf_sym_hashes (input_bfd
);
3862 /* It seems this can happen with erroneous or unsupported
3863 input (mixing a.out and elf in an archive, for example.) */
3864 if (sym_hashes
== NULL
)
3867 eh
= sym_hashes
[r_symndx
- symtab_hdr
->sh_info
];
3869 while (eh
->root
.type
== bfd_link_hash_indirect
3870 || eh
->root
.type
== bfd_link_hash_warning
)
3871 eh
= (struct elf_link_hash_entry
*) eh
->root
.u
.i
.link
;
3874 if (eh
->root
.type
== bfd_link_hash_defined
3875 || eh
->root
.type
== bfd_link_hash_defweak
)
3877 sym_sec
= eh
->root
.u
.def
.section
;
3879 && sym_sec
->output_section
!= NULL
)
3880 relocation
= (eh
->root
.u
.def
.value
3881 + sym_sec
->output_section
->vma
3882 + sym_sec
->output_offset
);
3884 else if (eh
->root
.type
== bfd_link_hash_undefweak
)
3886 else if (info
->unresolved_syms_in_objects
== RM_IGNORE
3887 && ELF_ST_VISIBILITY (eh
->other
) == STV_DEFAULT
)
3889 else if (!info
->relocatable
3890 && elf_hppa_is_dynamic_loader_symbol (eh
->root
.root
.string
))
3892 else if (!info
->relocatable
)
3895 err
= (info
->unresolved_syms_in_objects
== RM_GENERATE_ERROR
3896 || ELF_ST_VISIBILITY (eh
->other
) != STV_DEFAULT
);
3897 if (!info
->callbacks
->undefined_symbol (info
,
3898 eh
->root
.root
.string
,
3901 rel
->r_offset
, err
))
3905 if (!info
->relocatable
3907 && eh
->root
.type
!= bfd_link_hash_defined
3908 && eh
->root
.type
!= bfd_link_hash_defweak
3909 && eh
->root
.type
!= bfd_link_hash_undefweak
)
3911 if (info
->unresolved_syms_in_objects
== RM_IGNORE
3912 && ELF_ST_VISIBILITY (eh
->other
) == STV_DEFAULT
3913 && eh
->type
== STT_PARISC_MILLI
)
3915 if (! info
->callbacks
->undefined_symbol
3916 (info
, eh_name (eh
), input_bfd
,
3917 input_section
, rel
->r_offset
, FALSE
))
3923 if (sym_sec
!= NULL
&& discarded_section (sym_sec
))
3924 RELOC_AGAINST_DISCARDED_SECTION (info
, input_bfd
, input_section
,
3925 rel
, 1, relend
, howto
, 0, contents
);
3927 if (info
->relocatable
)
3930 r
= elf_hppa_final_link_relocate (rel
, input_bfd
, output_bfd
,
3931 input_section
, contents
,
3932 relocation
, info
, sym_sec
,
3935 if (r
!= bfd_reloc_ok
)
3941 case bfd_reloc_overflow
:
3943 const char *sym_name
;
3949 sym_name
= bfd_elf_string_from_elf_section (input_bfd
,
3950 symtab_hdr
->sh_link
,
3952 if (sym_name
== NULL
)
3954 if (*sym_name
== '\0')
3955 sym_name
= bfd_section_name (input_bfd
, sym_sec
);
3958 if (!((*info
->callbacks
->reloc_overflow
)
3959 (info
, (eh
? &eh
->root
: NULL
), sym_name
,
3960 howto
->name
, (bfd_vma
) 0, input_bfd
,
3961 input_section
, rel
->r_offset
)))
3971 static const struct bfd_elf_special_section elf64_hppa_special_sections
[] =
3973 { STRING_COMMA_LEN (".fini"), 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_WRITE
},
3974 { STRING_COMMA_LEN (".init"), 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_WRITE
},
3975 { STRING_COMMA_LEN (".plt"), 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_WRITE
+ SHF_PARISC_SHORT
},
3976 { STRING_COMMA_LEN (".dlt"), 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_WRITE
+ SHF_PARISC_SHORT
},
3977 { STRING_COMMA_LEN (".sdata"), 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_WRITE
+ SHF_PARISC_SHORT
},
3978 { STRING_COMMA_LEN (".sbss"), 0, SHT_NOBITS
, SHF_ALLOC
+ SHF_WRITE
+ SHF_PARISC_SHORT
},
3979 { STRING_COMMA_LEN (".tbss"), 0, SHT_NOBITS
, SHF_ALLOC
+ SHF_WRITE
+ SHF_HP_TLS
},
3980 { NULL
, 0, 0, 0, 0 }
3983 /* The hash bucket size is the standard one, namely 4. */
3985 const struct elf_size_info hppa64_elf_size_info
=
3987 sizeof (Elf64_External_Ehdr
),
3988 sizeof (Elf64_External_Phdr
),
3989 sizeof (Elf64_External_Shdr
),
3990 sizeof (Elf64_External_Rel
),
3991 sizeof (Elf64_External_Rela
),
3992 sizeof (Elf64_External_Sym
),
3993 sizeof (Elf64_External_Dyn
),
3994 sizeof (Elf_External_Note
),
3998 ELFCLASS64
, EV_CURRENT
,
3999 bfd_elf64_write_out_phdrs
,
4000 bfd_elf64_write_shdrs_and_ehdr
,
4001 bfd_elf64_checksum_contents
,
4002 bfd_elf64_write_relocs
,
4003 bfd_elf64_swap_symbol_in
,
4004 bfd_elf64_swap_symbol_out
,
4005 bfd_elf64_slurp_reloc_table
,
4006 bfd_elf64_slurp_symbol_table
,
4007 bfd_elf64_swap_dyn_in
,
4008 bfd_elf64_swap_dyn_out
,
4009 bfd_elf64_swap_reloc_in
,
4010 bfd_elf64_swap_reloc_out
,
4011 bfd_elf64_swap_reloca_in
,
4012 bfd_elf64_swap_reloca_out
4015 #define TARGET_BIG_SYM bfd_elf64_hppa_vec
4016 #define TARGET_BIG_NAME "elf64-hppa"
4017 #define ELF_ARCH bfd_arch_hppa
4018 #define ELF_TARGET_ID HPPA64_ELF_DATA
4019 #define ELF_MACHINE_CODE EM_PARISC
4020 /* This is not strictly correct. The maximum page size for PA2.0 is
4021 64M. But everything still uses 4k. */
4022 #define ELF_MAXPAGESIZE 0x1000
4023 #define ELF_OSABI ELFOSABI_HPUX
4025 #define bfd_elf64_bfd_reloc_type_lookup elf_hppa_reloc_type_lookup
4026 #define bfd_elf64_bfd_reloc_name_lookup elf_hppa_reloc_name_lookup
4027 #define bfd_elf64_bfd_is_local_label_name elf_hppa_is_local_label_name
4028 #define elf_info_to_howto elf_hppa_info_to_howto
4029 #define elf_info_to_howto_rel elf_hppa_info_to_howto_rel
4031 #define elf_backend_section_from_shdr elf64_hppa_section_from_shdr
4032 #define elf_backend_object_p elf64_hppa_object_p
4033 #define elf_backend_final_write_processing \
4034 elf_hppa_final_write_processing
4035 #define elf_backend_fake_sections elf_hppa_fake_sections
4036 #define elf_backend_add_symbol_hook elf_hppa_add_symbol_hook
4038 #define elf_backend_relocate_section elf_hppa_relocate_section
4040 #define bfd_elf64_bfd_final_link elf_hppa_final_link
4042 #define elf_backend_create_dynamic_sections \
4043 elf64_hppa_create_dynamic_sections
4044 #define elf_backend_post_process_headers elf64_hppa_post_process_headers
4046 #define elf_backend_omit_section_dynsym \
4047 ((bfd_boolean (*) (bfd *, struct bfd_link_info *, asection *)) bfd_true)
4048 #define elf_backend_adjust_dynamic_symbol \
4049 elf64_hppa_adjust_dynamic_symbol
4051 #define elf_backend_size_dynamic_sections \
4052 elf64_hppa_size_dynamic_sections
4054 #define elf_backend_finish_dynamic_symbol \
4055 elf64_hppa_finish_dynamic_symbol
4056 #define elf_backend_finish_dynamic_sections \
4057 elf64_hppa_finish_dynamic_sections
4058 #define elf_backend_grok_prstatus elf64_hppa_grok_prstatus
4059 #define elf_backend_grok_psinfo elf64_hppa_grok_psinfo
4061 /* Stuff for the BFD linker: */
4062 #define bfd_elf64_bfd_link_hash_table_create \
4063 elf64_hppa_hash_table_create
4065 #define elf_backend_check_relocs \
4066 elf64_hppa_check_relocs
4068 #define elf_backend_size_info \
4069 hppa64_elf_size_info
4071 #define elf_backend_additional_program_headers \
4072 elf64_hppa_additional_program_headers
4074 #define elf_backend_modify_segment_map \
4075 elf64_hppa_modify_segment_map
4077 #define elf_backend_link_output_symbol_hook \
4078 elf64_hppa_link_output_symbol_hook
4080 #define elf_backend_want_got_plt 0
4081 #define elf_backend_plt_readonly 0
4082 #define elf_backend_want_plt_sym 0
4083 #define elf_backend_got_header_size 0
4084 #define elf_backend_type_change_ok TRUE
4085 #define elf_backend_get_symbol_type elf64_hppa_elf_get_symbol_type
4086 #define elf_backend_reloc_type_class elf64_hppa_reloc_type_class
4087 #define elf_backend_rela_normal 1
4088 #define elf_backend_special_sections elf64_hppa_special_sections
4089 #define elf_backend_action_discarded elf_hppa_action_discarded
4090 #define elf_backend_section_from_phdr elf64_hppa_section_from_phdr
4092 #define elf64_bed elf64_hppa_hpux_bed
4094 #include "elf64-target.h"
4096 #undef TARGET_BIG_SYM
4097 #define TARGET_BIG_SYM bfd_elf64_hppa_linux_vec
4098 #undef TARGET_BIG_NAME
4099 #define TARGET_BIG_NAME "elf64-hppa-linux"
4101 #define ELF_OSABI ELFOSABI_GNU
4102 #undef elf_backend_post_process_headers
4103 #define elf_backend_post_process_headers _bfd_elf_set_osabi
4105 #define elf64_bed elf64_hppa_linux_bed
4107 #include "elf64-target.h"