1 /* ELF linking support for BFD.
2 Copyright 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004,
3 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012
4 Free Software Foundation, Inc.
6 This file is part of BFD, the Binary File Descriptor library.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 MA 02110-1301, USA. */
29 #include "safe-ctype.h"
30 #include "libiberty.h"
33 /* This struct is used to pass information to routines called via
34 elf_link_hash_traverse which must return failure. */
36 struct elf_info_failed
38 struct bfd_link_info
*info
;
42 /* This structure is used to pass information to
43 _bfd_elf_link_find_version_dependencies. */
45 struct elf_find_verdep_info
47 /* General link information. */
48 struct bfd_link_info
*info
;
49 /* The number of dependencies. */
51 /* Whether we had a failure. */
55 static bfd_boolean _bfd_elf_fix_symbol_flags
56 (struct elf_link_hash_entry
*, struct elf_info_failed
*);
58 /* Define a symbol in a dynamic linkage section. */
60 struct elf_link_hash_entry
*
61 _bfd_elf_define_linkage_sym (bfd
*abfd
,
62 struct bfd_link_info
*info
,
66 struct elf_link_hash_entry
*h
;
67 struct bfd_link_hash_entry
*bh
;
68 const struct elf_backend_data
*bed
;
70 h
= elf_link_hash_lookup (elf_hash_table (info
), name
, FALSE
, FALSE
, FALSE
);
73 /* Zap symbol defined in an as-needed lib that wasn't linked.
74 This is a symptom of a larger problem: Absolute symbols
75 defined in shared libraries can't be overridden, because we
76 lose the link to the bfd which is via the symbol section. */
77 h
->root
.type
= bfd_link_hash_new
;
81 if (!_bfd_generic_link_add_one_symbol (info
, abfd
, name
, BSF_GLOBAL
,
83 get_elf_backend_data (abfd
)->collect
,
86 h
= (struct elf_link_hash_entry
*) bh
;
90 h
->other
= (h
->other
& ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN
;
92 bed
= get_elf_backend_data (abfd
);
93 (*bed
->elf_backend_hide_symbol
) (info
, h
, TRUE
);
98 _bfd_elf_create_got_section (bfd
*abfd
, struct bfd_link_info
*info
)
102 struct elf_link_hash_entry
*h
;
103 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
104 struct elf_link_hash_table
*htab
= elf_hash_table (info
);
106 /* This function may be called more than once. */
107 s
= bfd_get_linker_section (abfd
, ".got");
111 flags
= bed
->dynamic_sec_flags
;
113 s
= bfd_make_section_anyway_with_flags (abfd
,
114 (bed
->rela_plts_and_copies_p
115 ? ".rela.got" : ".rel.got"),
116 (bed
->dynamic_sec_flags
119 || ! bfd_set_section_alignment (abfd
, s
, bed
->s
->log_file_align
))
123 s
= bfd_make_section_anyway_with_flags (abfd
, ".got", flags
);
125 || !bfd_set_section_alignment (abfd
, s
, bed
->s
->log_file_align
))
129 if (bed
->want_got_plt
)
131 s
= bfd_make_section_anyway_with_flags (abfd
, ".got.plt", flags
);
133 || !bfd_set_section_alignment (abfd
, s
,
134 bed
->s
->log_file_align
))
139 /* The first bit of the global offset table is the header. */
140 s
->size
+= bed
->got_header_size
;
142 if (bed
->want_got_sym
)
144 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
145 (or .got.plt) section. We don't do this in the linker script
146 because we don't want to define the symbol if we are not creating
147 a global offset table. */
148 h
= _bfd_elf_define_linkage_sym (abfd
, info
, s
,
149 "_GLOBAL_OFFSET_TABLE_");
150 elf_hash_table (info
)->hgot
= h
;
158 /* Create a strtab to hold the dynamic symbol names. */
160 _bfd_elf_link_create_dynstrtab (bfd
*abfd
, struct bfd_link_info
*info
)
162 struct elf_link_hash_table
*hash_table
;
164 hash_table
= elf_hash_table (info
);
165 if (hash_table
->dynobj
== NULL
)
166 hash_table
->dynobj
= abfd
;
168 if (hash_table
->dynstr
== NULL
)
170 hash_table
->dynstr
= _bfd_elf_strtab_init ();
171 if (hash_table
->dynstr
== NULL
)
177 /* Create some sections which will be filled in with dynamic linking
178 information. ABFD is an input file which requires dynamic sections
179 to be created. The dynamic sections take up virtual memory space
180 when the final executable is run, so we need to create them before
181 addresses are assigned to the output sections. We work out the
182 actual contents and size of these sections later. */
185 _bfd_elf_link_create_dynamic_sections (bfd
*abfd
, struct bfd_link_info
*info
)
189 const struct elf_backend_data
*bed
;
191 if (! is_elf_hash_table (info
->hash
))
194 if (elf_hash_table (info
)->dynamic_sections_created
)
197 if (!_bfd_elf_link_create_dynstrtab (abfd
, info
))
200 abfd
= elf_hash_table (info
)->dynobj
;
201 bed
= get_elf_backend_data (abfd
);
203 flags
= bed
->dynamic_sec_flags
;
205 /* A dynamically linked executable has a .interp section, but a
206 shared library does not. */
207 if (info
->executable
)
209 s
= bfd_make_section_anyway_with_flags (abfd
, ".interp",
210 flags
| SEC_READONLY
);
215 /* Create sections to hold version informations. These are removed
216 if they are not needed. */
217 s
= bfd_make_section_anyway_with_flags (abfd
, ".gnu.version_d",
218 flags
| SEC_READONLY
);
220 || ! bfd_set_section_alignment (abfd
, s
, bed
->s
->log_file_align
))
223 s
= bfd_make_section_anyway_with_flags (abfd
, ".gnu.version",
224 flags
| SEC_READONLY
);
226 || ! bfd_set_section_alignment (abfd
, s
, 1))
229 s
= bfd_make_section_anyway_with_flags (abfd
, ".gnu.version_r",
230 flags
| SEC_READONLY
);
232 || ! bfd_set_section_alignment (abfd
, s
, bed
->s
->log_file_align
))
235 s
= bfd_make_section_anyway_with_flags (abfd
, ".dynsym",
236 flags
| SEC_READONLY
);
238 || ! bfd_set_section_alignment (abfd
, s
, bed
->s
->log_file_align
))
241 s
= bfd_make_section_anyway_with_flags (abfd
, ".dynstr",
242 flags
| SEC_READONLY
);
246 s
= bfd_make_section_anyway_with_flags (abfd
, ".dynamic", flags
);
248 || ! bfd_set_section_alignment (abfd
, s
, bed
->s
->log_file_align
))
251 /* The special symbol _DYNAMIC is always set to the start of the
252 .dynamic section. We could set _DYNAMIC in a linker script, but we
253 only want to define it if we are, in fact, creating a .dynamic
254 section. We don't want to define it if there is no .dynamic
255 section, since on some ELF platforms the start up code examines it
256 to decide how to initialize the process. */
257 if (!_bfd_elf_define_linkage_sym (abfd
, info
, s
, "_DYNAMIC"))
262 s
= bfd_make_section_anyway_with_flags (abfd
, ".hash",
263 flags
| SEC_READONLY
);
265 || ! bfd_set_section_alignment (abfd
, s
, bed
->s
->log_file_align
))
267 elf_section_data (s
)->this_hdr
.sh_entsize
= bed
->s
->sizeof_hash_entry
;
270 if (info
->emit_gnu_hash
)
272 s
= bfd_make_section_anyway_with_flags (abfd
, ".gnu.hash",
273 flags
| SEC_READONLY
);
275 || ! bfd_set_section_alignment (abfd
, s
, bed
->s
->log_file_align
))
277 /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section:
278 4 32-bit words followed by variable count of 64-bit words, then
279 variable count of 32-bit words. */
280 if (bed
->s
->arch_size
== 64)
281 elf_section_data (s
)->this_hdr
.sh_entsize
= 0;
283 elf_section_data (s
)->this_hdr
.sh_entsize
= 4;
286 /* Let the backend create the rest of the sections. This lets the
287 backend set the right flags. The backend will normally create
288 the .got and .plt sections. */
289 if (bed
->elf_backend_create_dynamic_sections
== NULL
290 || ! (*bed
->elf_backend_create_dynamic_sections
) (abfd
, info
))
293 elf_hash_table (info
)->dynamic_sections_created
= TRUE
;
298 /* Create dynamic sections when linking against a dynamic object. */
301 _bfd_elf_create_dynamic_sections (bfd
*abfd
, struct bfd_link_info
*info
)
303 flagword flags
, pltflags
;
304 struct elf_link_hash_entry
*h
;
306 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
307 struct elf_link_hash_table
*htab
= elf_hash_table (info
);
309 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
310 .rel[a].bss sections. */
311 flags
= bed
->dynamic_sec_flags
;
314 if (bed
->plt_not_loaded
)
315 /* We do not clear SEC_ALLOC here because we still want the OS to
316 allocate space for the section; it's just that there's nothing
317 to read in from the object file. */
318 pltflags
&= ~ (SEC_CODE
| SEC_LOAD
| SEC_HAS_CONTENTS
);
320 pltflags
|= SEC_ALLOC
| SEC_CODE
| SEC_LOAD
;
321 if (bed
->plt_readonly
)
322 pltflags
|= SEC_READONLY
;
324 s
= bfd_make_section_anyway_with_flags (abfd
, ".plt", pltflags
);
326 || ! bfd_set_section_alignment (abfd
, s
, bed
->plt_alignment
))
330 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
332 if (bed
->want_plt_sym
)
334 h
= _bfd_elf_define_linkage_sym (abfd
, info
, s
,
335 "_PROCEDURE_LINKAGE_TABLE_");
336 elf_hash_table (info
)->hplt
= h
;
341 s
= bfd_make_section_anyway_with_flags (abfd
,
342 (bed
->rela_plts_and_copies_p
343 ? ".rela.plt" : ".rel.plt"),
344 flags
| SEC_READONLY
);
346 || ! bfd_set_section_alignment (abfd
, s
, bed
->s
->log_file_align
))
350 if (! _bfd_elf_create_got_section (abfd
, info
))
353 if (bed
->want_dynbss
)
355 /* The .dynbss section is a place to put symbols which are defined
356 by dynamic objects, are referenced by regular objects, and are
357 not functions. We must allocate space for them in the process
358 image and use a R_*_COPY reloc to tell the dynamic linker to
359 initialize them at run time. The linker script puts the .dynbss
360 section into the .bss section of the final image. */
361 s
= bfd_make_section_anyway_with_flags (abfd
, ".dynbss",
362 (SEC_ALLOC
| SEC_LINKER_CREATED
));
366 /* The .rel[a].bss section holds copy relocs. This section is not
367 normally needed. We need to create it here, though, so that the
368 linker will map it to an output section. We can't just create it
369 only if we need it, because we will not know whether we need it
370 until we have seen all the input files, and the first time the
371 main linker code calls BFD after examining all the input files
372 (size_dynamic_sections) the input sections have already been
373 mapped to the output sections. If the section turns out not to
374 be needed, we can discard it later. We will never need this
375 section when generating a shared object, since they do not use
379 s
= bfd_make_section_anyway_with_flags (abfd
,
380 (bed
->rela_plts_and_copies_p
381 ? ".rela.bss" : ".rel.bss"),
382 flags
| SEC_READONLY
);
384 || ! bfd_set_section_alignment (abfd
, s
, bed
->s
->log_file_align
))
392 /* Record a new dynamic symbol. We record the dynamic symbols as we
393 read the input files, since we need to have a list of all of them
394 before we can determine the final sizes of the output sections.
395 Note that we may actually call this function even though we are not
396 going to output any dynamic symbols; in some cases we know that a
397 symbol should be in the dynamic symbol table, but only if there is
401 bfd_elf_link_record_dynamic_symbol (struct bfd_link_info
*info
,
402 struct elf_link_hash_entry
*h
)
404 if (h
->dynindx
== -1)
406 struct elf_strtab_hash
*dynstr
;
411 /* XXX: The ABI draft says the linker must turn hidden and
412 internal symbols into STB_LOCAL symbols when producing the
413 DSO. However, if ld.so honors st_other in the dynamic table,
414 this would not be necessary. */
415 switch (ELF_ST_VISIBILITY (h
->other
))
419 if (h
->root
.type
!= bfd_link_hash_undefined
420 && h
->root
.type
!= bfd_link_hash_undefweak
)
423 if (!elf_hash_table (info
)->is_relocatable_executable
)
431 h
->dynindx
= elf_hash_table (info
)->dynsymcount
;
432 ++elf_hash_table (info
)->dynsymcount
;
434 dynstr
= elf_hash_table (info
)->dynstr
;
437 /* Create a strtab to hold the dynamic symbol names. */
438 elf_hash_table (info
)->dynstr
= dynstr
= _bfd_elf_strtab_init ();
443 /* We don't put any version information in the dynamic string
445 name
= h
->root
.root
.string
;
446 p
= strchr (name
, ELF_VER_CHR
);
448 /* We know that the p points into writable memory. In fact,
449 there are only a few symbols that have read-only names, being
450 those like _GLOBAL_OFFSET_TABLE_ that are created specially
451 by the backends. Most symbols will have names pointing into
452 an ELF string table read from a file, or to objalloc memory. */
455 indx
= _bfd_elf_strtab_add (dynstr
, name
, p
!= NULL
);
460 if (indx
== (bfd_size_type
) -1)
462 h
->dynstr_index
= indx
;
468 /* Mark a symbol dynamic. */
471 bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info
*info
,
472 struct elf_link_hash_entry
*h
,
473 Elf_Internal_Sym
*sym
)
475 struct bfd_elf_dynamic_list
*d
= info
->dynamic_list
;
477 /* It may be called more than once on the same H. */
478 if(h
->dynamic
|| info
->relocatable
)
481 if ((info
->dynamic_data
482 && (h
->type
== STT_OBJECT
484 && ELF_ST_TYPE (sym
->st_info
) == STT_OBJECT
)))
486 && h
->root
.type
== bfd_link_hash_new
487 && (*d
->match
) (&d
->head
, NULL
, h
->root
.root
.string
)))
491 /* Record an assignment to a symbol made by a linker script. We need
492 this in case some dynamic object refers to this symbol. */
495 bfd_elf_record_link_assignment (bfd
*output_bfd
,
496 struct bfd_link_info
*info
,
501 struct elf_link_hash_entry
*h
, *hv
;
502 struct elf_link_hash_table
*htab
;
503 const struct elf_backend_data
*bed
;
505 if (!is_elf_hash_table (info
->hash
))
508 htab
= elf_hash_table (info
);
509 h
= elf_link_hash_lookup (htab
, name
, !provide
, TRUE
, FALSE
);
513 switch (h
->root
.type
)
515 case bfd_link_hash_defined
:
516 case bfd_link_hash_defweak
:
517 case bfd_link_hash_common
:
519 case bfd_link_hash_undefweak
:
520 case bfd_link_hash_undefined
:
521 /* Since we're defining the symbol, don't let it seem to have not
522 been defined. record_dynamic_symbol and size_dynamic_sections
523 may depend on this. */
524 h
->root
.type
= bfd_link_hash_new
;
525 if (h
->root
.u
.undef
.next
!= NULL
|| htab
->root
.undefs_tail
== &h
->root
)
526 bfd_link_repair_undef_list (&htab
->root
);
528 case bfd_link_hash_new
:
529 bfd_elf_link_mark_dynamic_symbol (info
, h
, NULL
);
532 case bfd_link_hash_indirect
:
533 /* We had a versioned symbol in a dynamic library. We make the
534 the versioned symbol point to this one. */
535 bed
= get_elf_backend_data (output_bfd
);
537 while (hv
->root
.type
== bfd_link_hash_indirect
538 || hv
->root
.type
== bfd_link_hash_warning
)
539 hv
= (struct elf_link_hash_entry
*) hv
->root
.u
.i
.link
;
540 /* We don't need to update h->root.u since linker will set them
542 h
->root
.type
= bfd_link_hash_undefined
;
543 hv
->root
.type
= bfd_link_hash_indirect
;
544 hv
->root
.u
.i
.link
= (struct bfd_link_hash_entry
*) h
;
545 (*bed
->elf_backend_copy_indirect_symbol
) (info
, h
, hv
);
547 case bfd_link_hash_warning
:
552 /* If this symbol is being provided by the linker script, and it is
553 currently defined by a dynamic object, but not by a regular
554 object, then mark it as undefined so that the generic linker will
555 force the correct value. */
559 h
->root
.type
= bfd_link_hash_undefined
;
561 /* If this symbol is not being provided by the linker script, and it is
562 currently defined by a dynamic object, but not by a regular object,
563 then clear out any version information because the symbol will not be
564 associated with the dynamic object any more. */
568 h
->verinfo
.verdef
= NULL
;
574 bed
= get_elf_backend_data (output_bfd
);
575 h
->other
= (h
->other
& ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN
;
576 (*bed
->elf_backend_hide_symbol
) (info
, h
, TRUE
);
579 /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
581 if (!info
->relocatable
583 && (ELF_ST_VISIBILITY (h
->other
) == STV_HIDDEN
584 || ELF_ST_VISIBILITY (h
->other
) == STV_INTERNAL
))
590 || (info
->executable
&& elf_hash_table (info
)->is_relocatable_executable
))
593 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
596 /* If this is a weak defined symbol, and we know a corresponding
597 real symbol from the same dynamic object, make sure the real
598 symbol is also made into a dynamic symbol. */
599 if (h
->u
.weakdef
!= NULL
600 && h
->u
.weakdef
->dynindx
== -1)
602 if (! bfd_elf_link_record_dynamic_symbol (info
, h
->u
.weakdef
))
610 /* Record a new local dynamic symbol. Returns 0 on failure, 1 on
611 success, and 2 on a failure caused by attempting to record a symbol
612 in a discarded section, eg. a discarded link-once section symbol. */
615 bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info
*info
,
620 struct elf_link_local_dynamic_entry
*entry
;
621 struct elf_link_hash_table
*eht
;
622 struct elf_strtab_hash
*dynstr
;
623 unsigned long dynstr_index
;
625 Elf_External_Sym_Shndx eshndx
;
626 char esym
[sizeof (Elf64_External_Sym
)];
628 if (! is_elf_hash_table (info
->hash
))
631 /* See if the entry exists already. */
632 for (entry
= elf_hash_table (info
)->dynlocal
; entry
; entry
= entry
->next
)
633 if (entry
->input_bfd
== input_bfd
&& entry
->input_indx
== input_indx
)
636 amt
= sizeof (*entry
);
637 entry
= (struct elf_link_local_dynamic_entry
*) bfd_alloc (input_bfd
, amt
);
641 /* Go find the symbol, so that we can find it's name. */
642 if (!bfd_elf_get_elf_syms (input_bfd
, &elf_tdata (input_bfd
)->symtab_hdr
,
643 1, input_indx
, &entry
->isym
, esym
, &eshndx
))
645 bfd_release (input_bfd
, entry
);
649 if (entry
->isym
.st_shndx
!= SHN_UNDEF
650 && entry
->isym
.st_shndx
< SHN_LORESERVE
)
654 s
= bfd_section_from_elf_index (input_bfd
, entry
->isym
.st_shndx
);
655 if (s
== NULL
|| bfd_is_abs_section (s
->output_section
))
657 /* We can still bfd_release here as nothing has done another
658 bfd_alloc. We can't do this later in this function. */
659 bfd_release (input_bfd
, entry
);
664 name
= (bfd_elf_string_from_elf_section
665 (input_bfd
, elf_tdata (input_bfd
)->symtab_hdr
.sh_link
,
666 entry
->isym
.st_name
));
668 dynstr
= elf_hash_table (info
)->dynstr
;
671 /* Create a strtab to hold the dynamic symbol names. */
672 elf_hash_table (info
)->dynstr
= dynstr
= _bfd_elf_strtab_init ();
677 dynstr_index
= _bfd_elf_strtab_add (dynstr
, name
, FALSE
);
678 if (dynstr_index
== (unsigned long) -1)
680 entry
->isym
.st_name
= dynstr_index
;
682 eht
= elf_hash_table (info
);
684 entry
->next
= eht
->dynlocal
;
685 eht
->dynlocal
= entry
;
686 entry
->input_bfd
= input_bfd
;
687 entry
->input_indx
= input_indx
;
690 /* Whatever binding the symbol had before, it's now local. */
692 = ELF_ST_INFO (STB_LOCAL
, ELF_ST_TYPE (entry
->isym
.st_info
));
694 /* The dynindx will be set at the end of size_dynamic_sections. */
699 /* Return the dynindex of a local dynamic symbol. */
702 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info
*info
,
706 struct elf_link_local_dynamic_entry
*e
;
708 for (e
= elf_hash_table (info
)->dynlocal
; e
; e
= e
->next
)
709 if (e
->input_bfd
== input_bfd
&& e
->input_indx
== input_indx
)
714 /* This function is used to renumber the dynamic symbols, if some of
715 them are removed because they are marked as local. This is called
716 via elf_link_hash_traverse. */
719 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry
*h
,
722 size_t *count
= (size_t *) data
;
727 if (h
->dynindx
!= -1)
728 h
->dynindx
= ++(*count
);
734 /* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
735 STB_LOCAL binding. */
738 elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry
*h
,
741 size_t *count
= (size_t *) data
;
743 if (!h
->forced_local
)
746 if (h
->dynindx
!= -1)
747 h
->dynindx
= ++(*count
);
752 /* Return true if the dynamic symbol for a given section should be
753 omitted when creating a shared library. */
755 _bfd_elf_link_omit_section_dynsym (bfd
*output_bfd ATTRIBUTE_UNUSED
,
756 struct bfd_link_info
*info
,
759 struct elf_link_hash_table
*htab
;
761 switch (elf_section_data (p
)->this_hdr
.sh_type
)
765 /* If sh_type is yet undecided, assume it could be
766 SHT_PROGBITS/SHT_NOBITS. */
768 htab
= elf_hash_table (info
);
769 if (p
== htab
->tls_sec
)
772 if (htab
->text_index_section
!= NULL
)
773 return p
!= htab
->text_index_section
&& p
!= htab
->data_index_section
;
775 if (strcmp (p
->name
, ".got") == 0
776 || strcmp (p
->name
, ".got.plt") == 0
777 || strcmp (p
->name
, ".plt") == 0)
781 if (htab
->dynobj
!= NULL
782 && (ip
= bfd_get_linker_section (htab
->dynobj
, p
->name
)) != NULL
783 && ip
->output_section
== p
)
788 /* There shouldn't be section relative relocations
789 against any other section. */
795 /* Assign dynsym indices. In a shared library we generate a section
796 symbol for each output section, which come first. Next come symbols
797 which have been forced to local binding. Then all of the back-end
798 allocated local dynamic syms, followed by the rest of the global
802 _bfd_elf_link_renumber_dynsyms (bfd
*output_bfd
,
803 struct bfd_link_info
*info
,
804 unsigned long *section_sym_count
)
806 unsigned long dynsymcount
= 0;
808 if (info
->shared
|| elf_hash_table (info
)->is_relocatable_executable
)
810 const struct elf_backend_data
*bed
= get_elf_backend_data (output_bfd
);
812 for (p
= output_bfd
->sections
; p
; p
= p
->next
)
813 if ((p
->flags
& SEC_EXCLUDE
) == 0
814 && (p
->flags
& SEC_ALLOC
) != 0
815 && !(*bed
->elf_backend_omit_section_dynsym
) (output_bfd
, info
, p
))
816 elf_section_data (p
)->dynindx
= ++dynsymcount
;
818 elf_section_data (p
)->dynindx
= 0;
820 *section_sym_count
= dynsymcount
;
822 elf_link_hash_traverse (elf_hash_table (info
),
823 elf_link_renumber_local_hash_table_dynsyms
,
826 if (elf_hash_table (info
)->dynlocal
)
828 struct elf_link_local_dynamic_entry
*p
;
829 for (p
= elf_hash_table (info
)->dynlocal
; p
; p
= p
->next
)
830 p
->dynindx
= ++dynsymcount
;
833 elf_link_hash_traverse (elf_hash_table (info
),
834 elf_link_renumber_hash_table_dynsyms
,
837 /* There is an unused NULL entry at the head of the table which
838 we must account for in our count. Unless there weren't any
839 symbols, which means we'll have no table at all. */
840 if (dynsymcount
!= 0)
843 elf_hash_table (info
)->dynsymcount
= dynsymcount
;
847 /* Merge st_other field. */
850 elf_merge_st_other (bfd
*abfd
, struct elf_link_hash_entry
*h
,
851 Elf_Internal_Sym
*isym
, bfd_boolean definition
,
854 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
856 /* If st_other has a processor-specific meaning, specific
857 code might be needed here. We never merge the visibility
858 attribute with the one from a dynamic object. */
859 if (bed
->elf_backend_merge_symbol_attribute
)
860 (*bed
->elf_backend_merge_symbol_attribute
) (h
, isym
, definition
,
863 /* If this symbol has default visibility and the user has requested
864 we not re-export it, then mark it as hidden. */
868 || (abfd
->my_archive
&& abfd
->my_archive
->no_export
))
869 && ELF_ST_VISIBILITY (isym
->st_other
) != STV_INTERNAL
)
870 isym
->st_other
= (STV_HIDDEN
871 | (isym
->st_other
& ~ELF_ST_VISIBILITY (-1)));
873 if (!dynamic
&& ELF_ST_VISIBILITY (isym
->st_other
) != 0)
875 unsigned char hvis
, symvis
, other
, nvis
;
877 /* Only merge the visibility. Leave the remainder of the
878 st_other field to elf_backend_merge_symbol_attribute. */
879 other
= h
->other
& ~ELF_ST_VISIBILITY (-1);
881 /* Combine visibilities, using the most constraining one. */
882 hvis
= ELF_ST_VISIBILITY (h
->other
);
883 symvis
= ELF_ST_VISIBILITY (isym
->st_other
);
889 nvis
= hvis
< symvis
? hvis
: symvis
;
891 h
->other
= other
| nvis
;
895 /* Mark if a symbol has a definition in a dynamic object or is
896 weak in all dynamic objects. */
899 _bfd_elf_mark_dynamic_def_weak (struct elf_link_hash_entry
*h
,
900 asection
*sec
, int bind
)
904 if (!bfd_is_und_section (sec
))
908 /* Check if this symbol is weak in all dynamic objects. If it
909 is the first time we see it in a dynamic object, we mark
910 if it is weak. Otherwise, we clear it. */
913 if (bind
== STB_WEAK
)
916 else if (bind
!= STB_WEAK
)
922 /* This function is called when we want to define a new symbol. It
923 handles the various cases which arise when we find a definition in
924 a dynamic object, or when there is already a definition in a
925 dynamic object. The new symbol is described by NAME, SYM, PSEC,
926 and PVALUE. We set SYM_HASH to the hash table entry. We set
927 OVERRIDE if the old symbol is overriding a new definition. We set
928 TYPE_CHANGE_OK if it is OK for the type to change. We set
929 SIZE_CHANGE_OK if it is OK for the size to change. By OK to
930 change, we mean that we shouldn't warn if the type or size does
931 change. We set POLD_ALIGNMENT if an old common symbol in a dynamic
932 object is overridden by a regular object. */
935 _bfd_elf_merge_symbol (bfd
*abfd
,
936 struct bfd_link_info
*info
,
938 Elf_Internal_Sym
*sym
,
941 unsigned int *pold_alignment
,
942 struct elf_link_hash_entry
**sym_hash
,
944 bfd_boolean
*override
,
945 bfd_boolean
*type_change_ok
,
946 bfd_boolean
*size_change_ok
)
948 asection
*sec
, *oldsec
;
949 struct elf_link_hash_entry
*h
;
950 struct elf_link_hash_entry
*hi
;
951 struct elf_link_hash_entry
*flip
;
954 bfd_boolean newdyn
, olddyn
, olddef
, newdef
, newdyncommon
, olddyncommon
;
955 bfd_boolean newweak
, oldweak
, newfunc
, oldfunc
;
956 const struct elf_backend_data
*bed
;
962 bind
= ELF_ST_BIND (sym
->st_info
);
964 /* Silently discard TLS symbols from --just-syms. There's no way to
965 combine a static TLS block with a new TLS block for this executable. */
966 if (ELF_ST_TYPE (sym
->st_info
) == STT_TLS
967 && sec
->sec_info_type
== SEC_INFO_TYPE_JUST_SYMS
)
973 if (! bfd_is_und_section (sec
))
974 h
= elf_link_hash_lookup (elf_hash_table (info
), name
, TRUE
, FALSE
, FALSE
);
976 h
= ((struct elf_link_hash_entry
*)
977 bfd_wrapped_link_hash_lookup (abfd
, info
, name
, TRUE
, FALSE
, FALSE
));
982 bed
= get_elf_backend_data (abfd
);
984 /* This code is for coping with dynamic objects, and is only useful
985 if we are doing an ELF link. */
986 if (!(*bed
->relocs_compatible
) (abfd
->xvec
, info
->output_bfd
->xvec
))
989 /* For merging, we only care about real symbols. But we need to make
990 sure that indirect symbol dynamic flags are updated. */
992 while (h
->root
.type
== bfd_link_hash_indirect
993 || h
->root
.type
== bfd_link_hash_warning
)
994 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
996 /* We have to check it for every instance since the first few may be
997 refereences and not all compilers emit symbol type for undefined
999 bfd_elf_link_mark_dynamic_symbol (info
, h
, sym
);
1001 /* If we just created the symbol, mark it as being an ELF symbol.
1002 Other than that, there is nothing to do--there is no merge issue
1003 with a newly defined symbol--so we just return. */
1005 if (h
->root
.type
== bfd_link_hash_new
)
1011 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
1014 switch (h
->root
.type
)
1021 case bfd_link_hash_undefined
:
1022 case bfd_link_hash_undefweak
:
1023 oldbfd
= h
->root
.u
.undef
.abfd
;
1027 case bfd_link_hash_defined
:
1028 case bfd_link_hash_defweak
:
1029 oldbfd
= h
->root
.u
.def
.section
->owner
;
1030 oldsec
= h
->root
.u
.def
.section
;
1033 case bfd_link_hash_common
:
1034 oldbfd
= h
->root
.u
.c
.p
->section
->owner
;
1035 oldsec
= h
->root
.u
.c
.p
->section
;
1039 /* Differentiate strong and weak symbols. */
1040 newweak
= bind
== STB_WEAK
;
1041 oldweak
= (h
->root
.type
== bfd_link_hash_defweak
1042 || h
->root
.type
== bfd_link_hash_undefweak
);
1044 /* In cases involving weak versioned symbols, we may wind up trying
1045 to merge a symbol with itself. Catch that here, to avoid the
1046 confusion that results if we try to override a symbol with
1047 itself. The additional tests catch cases like
1048 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
1049 dynamic object, which we do want to handle here. */
1051 && (newweak
|| oldweak
)
1052 && ((abfd
->flags
& DYNAMIC
) == 0
1053 || !h
->def_regular
))
1056 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
1057 respectively, is from a dynamic object. */
1059 newdyn
= (abfd
->flags
& DYNAMIC
) != 0;
1063 olddyn
= (oldbfd
->flags
& DYNAMIC
) != 0;
1064 else if (oldsec
!= NULL
)
1066 /* This handles the special SHN_MIPS_{TEXT,DATA} section
1067 indices used by MIPS ELF. */
1068 olddyn
= (oldsec
->symbol
->flags
& BSF_DYNAMIC
) != 0;
1071 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
1072 respectively, appear to be a definition rather than reference. */
1074 newdef
= !bfd_is_und_section (sec
) && !bfd_is_com_section (sec
);
1076 olddef
= (h
->root
.type
!= bfd_link_hash_undefined
1077 && h
->root
.type
!= bfd_link_hash_undefweak
1078 && h
->root
.type
!= bfd_link_hash_common
);
1080 /* NEWFUNC and OLDFUNC indicate whether the new or old symbol,
1081 respectively, appear to be a function. */
1083 newfunc
= (ELF_ST_TYPE (sym
->st_info
) != STT_NOTYPE
1084 && bed
->is_function_type (ELF_ST_TYPE (sym
->st_info
)));
1086 oldfunc
= (h
->type
!= STT_NOTYPE
1087 && bed
->is_function_type (h
->type
));
1089 /* When we try to create a default indirect symbol from the dynamic
1090 definition with the default version, we skip it if its type and
1091 the type of existing regular definition mismatch. We only do it
1092 if the existing regular definition won't be dynamic. */
1093 if (pold_alignment
== NULL
1095 && !info
->export_dynamic
1100 && (olddef
|| h
->root
.type
== bfd_link_hash_common
)
1101 && ELF_ST_TYPE (sym
->st_info
) != h
->type
1102 && ELF_ST_TYPE (sym
->st_info
) != STT_NOTYPE
1103 && h
->type
!= STT_NOTYPE
1104 && !(newfunc
&& oldfunc
))
1110 /* Plugin symbol type isn't currently set. Stop bogus errors. */
1111 if (oldbfd
!= NULL
&& (oldbfd
->flags
& BFD_PLUGIN
) != 0)
1112 *type_change_ok
= TRUE
;
1114 /* Check TLS symbol. We don't check undefined symbol introduced by
1116 else if (oldbfd
!= NULL
1117 && ELF_ST_TYPE (sym
->st_info
) != h
->type
1118 && (ELF_ST_TYPE (sym
->st_info
) == STT_TLS
|| h
->type
== STT_TLS
))
1121 bfd_boolean ntdef
, tdef
;
1122 asection
*ntsec
, *tsec
;
1124 if (h
->type
== STT_TLS
)
1144 (*_bfd_error_handler
)
1145 (_("%s: TLS definition in %B section %A mismatches non-TLS definition in %B section %A"),
1146 tbfd
, tsec
, ntbfd
, ntsec
, h
->root
.root
.string
);
1147 else if (!tdef
&& !ntdef
)
1148 (*_bfd_error_handler
)
1149 (_("%s: TLS reference in %B mismatches non-TLS reference in %B"),
1150 tbfd
, ntbfd
, h
->root
.root
.string
);
1152 (*_bfd_error_handler
)
1153 (_("%s: TLS definition in %B section %A mismatches non-TLS reference in %B"),
1154 tbfd
, tsec
, ntbfd
, h
->root
.root
.string
);
1156 (*_bfd_error_handler
)
1157 (_("%s: TLS reference in %B mismatches non-TLS definition in %B section %A"),
1158 tbfd
, ntbfd
, ntsec
, h
->root
.root
.string
);
1160 bfd_set_error (bfd_error_bad_value
);
1164 /* We need to remember if a symbol has a definition in a dynamic
1165 object or is weak in all dynamic objects. Internal and hidden
1166 visibility will make it unavailable to dynamic objects. */
1169 _bfd_elf_mark_dynamic_def_weak (h
, sec
, bind
);
1171 _bfd_elf_mark_dynamic_def_weak (hi
, sec
, bind
);
1174 /* If the old symbol has non-default visibility, we ignore the new
1175 definition from a dynamic object. */
1177 && ELF_ST_VISIBILITY (h
->other
) != STV_DEFAULT
1178 && !bfd_is_und_section (sec
))
1181 /* Make sure this symbol is dynamic. */
1183 hi
->ref_dynamic
= 1;
1184 /* A protected symbol has external availability. Make sure it is
1185 recorded as dynamic.
1187 FIXME: Should we check type and size for protected symbol? */
1188 if (ELF_ST_VISIBILITY (h
->other
) == STV_PROTECTED
)
1189 return bfd_elf_link_record_dynamic_symbol (info
, h
);
1194 && ELF_ST_VISIBILITY (sym
->st_other
) != STV_DEFAULT
1197 /* If the new symbol with non-default visibility comes from a
1198 relocatable file and the old definition comes from a dynamic
1199 object, we remove the old definition. */
1200 if ((*sym_hash
)->root
.type
== bfd_link_hash_indirect
)
1202 /* Handle the case where the old dynamic definition is
1203 default versioned. We need to copy the symbol info from
1204 the symbol with default version to the normal one if it
1205 was referenced before. */
1208 struct elf_link_hash_entry
*vh
= *sym_hash
;
1210 vh
->root
.type
= h
->root
.type
;
1211 h
->root
.type
= bfd_link_hash_indirect
;
1212 (*bed
->elf_backend_copy_indirect_symbol
) (info
, vh
, h
);
1213 /* Protected symbols will override the dynamic definition
1214 with default version. */
1215 if (ELF_ST_VISIBILITY (sym
->st_other
) == STV_PROTECTED
)
1217 h
->root
.u
.i
.link
= (struct bfd_link_hash_entry
*) vh
;
1218 vh
->dynamic_def
= 1;
1219 vh
->ref_dynamic
= 1;
1223 h
->root
.type
= vh
->root
.type
;
1224 vh
->ref_dynamic
= 0;
1225 /* We have to hide it here since it was made dynamic
1226 global with extra bits when the symbol info was
1227 copied from the old dynamic definition. */
1228 (*bed
->elf_backend_hide_symbol
) (info
, vh
, TRUE
);
1236 /* If the old symbol was undefined before, then it will still be
1237 on the undefs list. If the new symbol is undefined or
1238 common, we can't make it bfd_link_hash_new here, because new
1239 undefined or common symbols will be added to the undefs list
1240 by _bfd_generic_link_add_one_symbol. Symbols may not be
1241 added twice to the undefs list. Also, if the new symbol is
1242 undefweak then we don't want to lose the strong undef. */
1243 if (h
->root
.u
.undef
.next
|| info
->hash
->undefs_tail
== &h
->root
)
1245 h
->root
.type
= bfd_link_hash_undefined
;
1246 h
->root
.u
.undef
.abfd
= abfd
;
1250 h
->root
.type
= bfd_link_hash_new
;
1251 h
->root
.u
.undef
.abfd
= NULL
;
1254 if (ELF_ST_VISIBILITY (sym
->st_other
) != STV_PROTECTED
)
1256 /* If the new symbol is hidden or internal, completely undo
1257 any dynamic link state. */
1258 (*bed
->elf_backend_hide_symbol
) (info
, h
, TRUE
);
1259 h
->forced_local
= 0;
1266 /* FIXME: Should we check type and size for protected symbol? */
1272 if (bind
== STB_GNU_UNIQUE
)
1273 h
->unique_global
= 1;
1275 /* If a new weak symbol definition comes from a regular file and the
1276 old symbol comes from a dynamic library, we treat the new one as
1277 strong. Similarly, an old weak symbol definition from a regular
1278 file is treated as strong when the new symbol comes from a dynamic
1279 library. Further, an old weak symbol from a dynamic library is
1280 treated as strong if the new symbol is from a dynamic library.
1281 This reflects the way glibc's ld.so works.
1283 Do this before setting *type_change_ok or *size_change_ok so that
1284 we warn properly when dynamic library symbols are overridden. */
1286 if (newdef
&& !newdyn
&& olddyn
)
1288 if (olddef
&& newdyn
)
1291 /* Allow changes between different types of function symbol. */
1292 if (newfunc
&& oldfunc
)
1293 *type_change_ok
= TRUE
;
1295 /* It's OK to change the type if either the existing symbol or the
1296 new symbol is weak. A type change is also OK if the old symbol
1297 is undefined and the new symbol is defined. */
1302 && h
->root
.type
== bfd_link_hash_undefined
))
1303 *type_change_ok
= TRUE
;
1305 /* It's OK to change the size if either the existing symbol or the
1306 new symbol is weak, or if the old symbol is undefined. */
1309 || h
->root
.type
== bfd_link_hash_undefined
)
1310 *size_change_ok
= TRUE
;
1312 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1313 symbol, respectively, appears to be a common symbol in a dynamic
1314 object. If a symbol appears in an uninitialized section, and is
1315 not weak, and is not a function, then it may be a common symbol
1316 which was resolved when the dynamic object was created. We want
1317 to treat such symbols specially, because they raise special
1318 considerations when setting the symbol size: if the symbol
1319 appears as a common symbol in a regular object, and the size in
1320 the regular object is larger, we must make sure that we use the
1321 larger size. This problematic case can always be avoided in C,
1322 but it must be handled correctly when using Fortran shared
1325 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1326 likewise for OLDDYNCOMMON and OLDDEF.
1328 Note that this test is just a heuristic, and that it is quite
1329 possible to have an uninitialized symbol in a shared object which
1330 is really a definition, rather than a common symbol. This could
1331 lead to some minor confusion when the symbol really is a common
1332 symbol in some regular object. However, I think it will be
1338 && (sec
->flags
& SEC_ALLOC
) != 0
1339 && (sec
->flags
& SEC_LOAD
) == 0
1342 newdyncommon
= TRUE
;
1344 newdyncommon
= FALSE
;
1348 && h
->root
.type
== bfd_link_hash_defined
1350 && (h
->root
.u
.def
.section
->flags
& SEC_ALLOC
) != 0
1351 && (h
->root
.u
.def
.section
->flags
& SEC_LOAD
) == 0
1354 olddyncommon
= TRUE
;
1356 olddyncommon
= FALSE
;
1358 /* We now know everything about the old and new symbols. We ask the
1359 backend to check if we can merge them. */
1360 if (bed
->merge_symbol
1361 && !bed
->merge_symbol (info
, sym_hash
, h
, sym
, psec
, pvalue
,
1362 pold_alignment
, skip
, override
,
1363 type_change_ok
, size_change_ok
,
1364 &newdyn
, &newdef
, &newdyncommon
, &newweak
,
1366 &olddyn
, &olddef
, &olddyncommon
, &oldweak
,
1370 /* If both the old and the new symbols look like common symbols in a
1371 dynamic object, set the size of the symbol to the larger of the
1376 && sym
->st_size
!= h
->size
)
1378 /* Since we think we have two common symbols, issue a multiple
1379 common warning if desired. Note that we only warn if the
1380 size is different. If the size is the same, we simply let
1381 the old symbol override the new one as normally happens with
1382 symbols defined in dynamic objects. */
1384 if (! ((*info
->callbacks
->multiple_common
)
1385 (info
, &h
->root
, abfd
, bfd_link_hash_common
, sym
->st_size
)))
1388 if (sym
->st_size
> h
->size
)
1389 h
->size
= sym
->st_size
;
1391 *size_change_ok
= TRUE
;
1394 /* If we are looking at a dynamic object, and we have found a
1395 definition, we need to see if the symbol was already defined by
1396 some other object. If so, we want to use the existing
1397 definition, and we do not want to report a multiple symbol
1398 definition error; we do this by clobbering *PSEC to be
1399 bfd_und_section_ptr.
1401 We treat a common symbol as a definition if the symbol in the
1402 shared library is a function, since common symbols always
1403 represent variables; this can cause confusion in principle, but
1404 any such confusion would seem to indicate an erroneous program or
1405 shared library. We also permit a common symbol in a regular
1406 object to override a weak symbol in a shared object. */
1411 || (h
->root
.type
== bfd_link_hash_common
1412 && (newweak
|| newfunc
))))
1416 newdyncommon
= FALSE
;
1418 *psec
= sec
= bfd_und_section_ptr
;
1419 *size_change_ok
= TRUE
;
1421 /* If we get here when the old symbol is a common symbol, then
1422 we are explicitly letting it override a weak symbol or
1423 function in a dynamic object, and we don't want to warn about
1424 a type change. If the old symbol is a defined symbol, a type
1425 change warning may still be appropriate. */
1427 if (h
->root
.type
== bfd_link_hash_common
)
1428 *type_change_ok
= TRUE
;
1431 /* Handle the special case of an old common symbol merging with a
1432 new symbol which looks like a common symbol in a shared object.
1433 We change *PSEC and *PVALUE to make the new symbol look like a
1434 common symbol, and let _bfd_generic_link_add_one_symbol do the
1438 && h
->root
.type
== bfd_link_hash_common
)
1442 newdyncommon
= FALSE
;
1443 *pvalue
= sym
->st_size
;
1444 *psec
= sec
= bed
->common_section (oldsec
);
1445 *size_change_ok
= TRUE
;
1448 /* Skip weak definitions of symbols that are already defined. */
1449 if (newdef
&& olddef
&& newweak
)
1451 /* Don't skip new non-IR weak syms. */
1452 if (!(oldbfd
!= NULL
1453 && (oldbfd
->flags
& BFD_PLUGIN
) != 0
1454 && (abfd
->flags
& BFD_PLUGIN
) == 0))
1457 /* Merge st_other. If the symbol already has a dynamic index,
1458 but visibility says it should not be visible, turn it into a
1460 elf_merge_st_other (abfd
, h
, sym
, newdef
, newdyn
);
1461 if (h
->dynindx
!= -1)
1462 switch (ELF_ST_VISIBILITY (h
->other
))
1466 (*bed
->elf_backend_hide_symbol
) (info
, h
, TRUE
);
1471 /* If the old symbol is from a dynamic object, and the new symbol is
1472 a definition which is not from a dynamic object, then the new
1473 symbol overrides the old symbol. Symbols from regular files
1474 always take precedence over symbols from dynamic objects, even if
1475 they are defined after the dynamic object in the link.
1477 As above, we again permit a common symbol in a regular object to
1478 override a definition in a shared object if the shared object
1479 symbol is a function or is weak. */
1484 || (bfd_is_com_section (sec
)
1485 && (oldweak
|| oldfunc
)))
1490 /* Change the hash table entry to undefined, and let
1491 _bfd_generic_link_add_one_symbol do the right thing with the
1494 h
->root
.type
= bfd_link_hash_undefined
;
1495 h
->root
.u
.undef
.abfd
= h
->root
.u
.def
.section
->owner
;
1496 *size_change_ok
= TRUE
;
1499 olddyncommon
= FALSE
;
1501 /* We again permit a type change when a common symbol may be
1502 overriding a function. */
1504 if (bfd_is_com_section (sec
))
1508 /* If a common symbol overrides a function, make sure
1509 that it isn't defined dynamically nor has type
1512 h
->type
= STT_NOTYPE
;
1514 *type_change_ok
= TRUE
;
1517 if ((*sym_hash
)->root
.type
== bfd_link_hash_indirect
)
1520 /* This union may have been set to be non-NULL when this symbol
1521 was seen in a dynamic object. We must force the union to be
1522 NULL, so that it is correct for a regular symbol. */
1523 h
->verinfo
.vertree
= NULL
;
1526 /* Handle the special case of a new common symbol merging with an
1527 old symbol that looks like it might be a common symbol defined in
1528 a shared object. Note that we have already handled the case in
1529 which a new common symbol should simply override the definition
1530 in the shared library. */
1533 && bfd_is_com_section (sec
)
1536 /* It would be best if we could set the hash table entry to a
1537 common symbol, but we don't know what to use for the section
1538 or the alignment. */
1539 if (! ((*info
->callbacks
->multiple_common
)
1540 (info
, &h
->root
, abfd
, bfd_link_hash_common
, sym
->st_size
)))
1543 /* If the presumed common symbol in the dynamic object is
1544 larger, pretend that the new symbol has its size. */
1546 if (h
->size
> *pvalue
)
1549 /* We need to remember the alignment required by the symbol
1550 in the dynamic object. */
1551 BFD_ASSERT (pold_alignment
);
1552 *pold_alignment
= h
->root
.u
.def
.section
->alignment_power
;
1555 olddyncommon
= FALSE
;
1557 h
->root
.type
= bfd_link_hash_undefined
;
1558 h
->root
.u
.undef
.abfd
= h
->root
.u
.def
.section
->owner
;
1560 *size_change_ok
= TRUE
;
1561 *type_change_ok
= TRUE
;
1563 if ((*sym_hash
)->root
.type
== bfd_link_hash_indirect
)
1566 h
->verinfo
.vertree
= NULL
;
1571 /* Handle the case where we had a versioned symbol in a dynamic
1572 library and now find a definition in a normal object. In this
1573 case, we make the versioned symbol point to the normal one. */
1574 flip
->root
.type
= h
->root
.type
;
1575 flip
->root
.u
.undef
.abfd
= h
->root
.u
.undef
.abfd
;
1576 h
->root
.type
= bfd_link_hash_indirect
;
1577 h
->root
.u
.i
.link
= (struct bfd_link_hash_entry
*) flip
;
1578 (*bed
->elf_backend_copy_indirect_symbol
) (info
, flip
, h
);
1582 flip
->ref_dynamic
= 1;
1589 /* This function is called to create an indirect symbol from the
1590 default for the symbol with the default version if needed. The
1591 symbol is described by H, NAME, SYM, PSEC, VALUE, and OVERRIDE. We
1592 set DYNSYM if the new indirect symbol is dynamic. */
1595 _bfd_elf_add_default_symbol (bfd
*abfd
,
1596 struct bfd_link_info
*info
,
1597 struct elf_link_hash_entry
*h
,
1599 Elf_Internal_Sym
*sym
,
1602 bfd_boolean
*dynsym
,
1603 bfd_boolean override
)
1605 bfd_boolean type_change_ok
;
1606 bfd_boolean size_change_ok
;
1609 struct elf_link_hash_entry
*hi
;
1610 struct bfd_link_hash_entry
*bh
;
1611 const struct elf_backend_data
*bed
;
1612 bfd_boolean collect
;
1613 bfd_boolean dynamic
;
1615 size_t len
, shortlen
;
1618 /* If this symbol has a version, and it is the default version, we
1619 create an indirect symbol from the default name to the fully
1620 decorated name. This will cause external references which do not
1621 specify a version to be bound to this version of the symbol. */
1622 p
= strchr (name
, ELF_VER_CHR
);
1623 if (p
== NULL
|| p
[1] != ELF_VER_CHR
)
1628 /* We are overridden by an old definition. We need to check if we
1629 need to create the indirect symbol from the default name. */
1630 hi
= elf_link_hash_lookup (elf_hash_table (info
), name
, TRUE
,
1632 BFD_ASSERT (hi
!= NULL
);
1635 while (hi
->root
.type
== bfd_link_hash_indirect
1636 || hi
->root
.type
== bfd_link_hash_warning
)
1638 hi
= (struct elf_link_hash_entry
*) hi
->root
.u
.i
.link
;
1644 bed
= get_elf_backend_data (abfd
);
1645 collect
= bed
->collect
;
1646 dynamic
= (abfd
->flags
& DYNAMIC
) != 0;
1648 shortlen
= p
- name
;
1649 shortname
= (char *) bfd_hash_allocate (&info
->hash
->table
, shortlen
+ 1);
1650 if (shortname
== NULL
)
1652 memcpy (shortname
, name
, shortlen
);
1653 shortname
[shortlen
] = '\0';
1655 /* We are going to create a new symbol. Merge it with any existing
1656 symbol with this name. For the purposes of the merge, act as
1657 though we were defining the symbol we just defined, although we
1658 actually going to define an indirect symbol. */
1659 type_change_ok
= FALSE
;
1660 size_change_ok
= FALSE
;
1662 if (!_bfd_elf_merge_symbol (abfd
, info
, shortname
, sym
, &sec
, value
,
1663 NULL
, &hi
, &skip
, &override
,
1664 &type_change_ok
, &size_change_ok
))
1673 if (! (_bfd_generic_link_add_one_symbol
1674 (info
, abfd
, shortname
, BSF_INDIRECT
, bfd_ind_section_ptr
,
1675 0, name
, FALSE
, collect
, &bh
)))
1677 hi
= (struct elf_link_hash_entry
*) bh
;
1681 /* In this case the symbol named SHORTNAME is overriding the
1682 indirect symbol we want to add. We were planning on making
1683 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1684 is the name without a version. NAME is the fully versioned
1685 name, and it is the default version.
1687 Overriding means that we already saw a definition for the
1688 symbol SHORTNAME in a regular object, and it is overriding
1689 the symbol defined in the dynamic object.
1691 When this happens, we actually want to change NAME, the
1692 symbol we just added, to refer to SHORTNAME. This will cause
1693 references to NAME in the shared object to become references
1694 to SHORTNAME in the regular object. This is what we expect
1695 when we override a function in a shared object: that the
1696 references in the shared object will be mapped to the
1697 definition in the regular object. */
1699 while (hi
->root
.type
== bfd_link_hash_indirect
1700 || hi
->root
.type
== bfd_link_hash_warning
)
1701 hi
= (struct elf_link_hash_entry
*) hi
->root
.u
.i
.link
;
1703 h
->root
.type
= bfd_link_hash_indirect
;
1704 h
->root
.u
.i
.link
= (struct bfd_link_hash_entry
*) hi
;
1708 hi
->ref_dynamic
= 1;
1712 if (! bfd_elf_link_record_dynamic_symbol (info
, hi
))
1717 /* Now set HI to H, so that the following code will set the
1718 other fields correctly. */
1722 /* Check if HI is a warning symbol. */
1723 if (hi
->root
.type
== bfd_link_hash_warning
)
1724 hi
= (struct elf_link_hash_entry
*) hi
->root
.u
.i
.link
;
1726 /* If there is a duplicate definition somewhere, then HI may not
1727 point to an indirect symbol. We will have reported an error to
1728 the user in that case. */
1730 if (hi
->root
.type
== bfd_link_hash_indirect
)
1732 struct elf_link_hash_entry
*ht
;
1734 ht
= (struct elf_link_hash_entry
*) hi
->root
.u
.i
.link
;
1735 (*bed
->elf_backend_copy_indirect_symbol
) (info
, ht
, hi
);
1737 /* See if the new flags lead us to realize that the symbol must
1743 if (! info
->executable
1750 if (hi
->ref_regular
)
1756 /* We also need to define an indirection from the nondefault version
1760 len
= strlen (name
);
1761 shortname
= (char *) bfd_hash_allocate (&info
->hash
->table
, len
);
1762 if (shortname
== NULL
)
1764 memcpy (shortname
, name
, shortlen
);
1765 memcpy (shortname
+ shortlen
, p
+ 1, len
- shortlen
);
1767 /* Once again, merge with any existing symbol. */
1768 type_change_ok
= FALSE
;
1769 size_change_ok
= FALSE
;
1771 if (!_bfd_elf_merge_symbol (abfd
, info
, shortname
, sym
, &sec
, value
,
1772 NULL
, &hi
, &skip
, &override
,
1773 &type_change_ok
, &size_change_ok
))
1781 /* Here SHORTNAME is a versioned name, so we don't expect to see
1782 the type of override we do in the case above unless it is
1783 overridden by a versioned definition. */
1784 if (hi
->root
.type
!= bfd_link_hash_defined
1785 && hi
->root
.type
!= bfd_link_hash_defweak
)
1786 (*_bfd_error_handler
)
1787 (_("%B: unexpected redefinition of indirect versioned symbol `%s'"),
1793 if (! (_bfd_generic_link_add_one_symbol
1794 (info
, abfd
, shortname
, BSF_INDIRECT
,
1795 bfd_ind_section_ptr
, 0, name
, FALSE
, collect
, &bh
)))
1797 hi
= (struct elf_link_hash_entry
*) bh
;
1799 /* If there is a duplicate definition somewhere, then HI may not
1800 point to an indirect symbol. We will have reported an error
1801 to the user in that case. */
1803 if (hi
->root
.type
== bfd_link_hash_indirect
)
1805 (*bed
->elf_backend_copy_indirect_symbol
) (info
, h
, hi
);
1807 /* See if the new flags lead us to realize that the symbol
1813 if (! info
->executable
1819 if (hi
->ref_regular
)
1829 /* This routine is used to export all defined symbols into the dynamic
1830 symbol table. It is called via elf_link_hash_traverse. */
1833 _bfd_elf_export_symbol (struct elf_link_hash_entry
*h
, void *data
)
1835 struct elf_info_failed
*eif
= (struct elf_info_failed
*) data
;
1837 /* Ignore indirect symbols. These are added by the versioning code. */
1838 if (h
->root
.type
== bfd_link_hash_indirect
)
1841 /* Ignore this if we won't export it. */
1842 if (!eif
->info
->export_dynamic
&& !h
->dynamic
)
1845 if (h
->dynindx
== -1
1846 && (h
->def_regular
|| h
->ref_regular
)
1847 && ! bfd_hide_sym_by_version (eif
->info
->version_info
,
1848 h
->root
.root
.string
))
1850 if (! bfd_elf_link_record_dynamic_symbol (eif
->info
, h
))
1860 /* Look through the symbols which are defined in other shared
1861 libraries and referenced here. Update the list of version
1862 dependencies. This will be put into the .gnu.version_r section.
1863 This function is called via elf_link_hash_traverse. */
1866 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry
*h
,
1869 struct elf_find_verdep_info
*rinfo
= (struct elf_find_verdep_info
*) data
;
1870 Elf_Internal_Verneed
*t
;
1871 Elf_Internal_Vernaux
*a
;
1874 /* We only care about symbols defined in shared objects with version
1879 || h
->verinfo
.verdef
== NULL
)
1882 /* See if we already know about this version. */
1883 for (t
= elf_tdata (rinfo
->info
->output_bfd
)->verref
;
1887 if (t
->vn_bfd
!= h
->verinfo
.verdef
->vd_bfd
)
1890 for (a
= t
->vn_auxptr
; a
!= NULL
; a
= a
->vna_nextptr
)
1891 if (a
->vna_nodename
== h
->verinfo
.verdef
->vd_nodename
)
1897 /* This is a new version. Add it to tree we are building. */
1902 t
= (Elf_Internal_Verneed
*) bfd_zalloc (rinfo
->info
->output_bfd
, amt
);
1905 rinfo
->failed
= TRUE
;
1909 t
->vn_bfd
= h
->verinfo
.verdef
->vd_bfd
;
1910 t
->vn_nextref
= elf_tdata (rinfo
->info
->output_bfd
)->verref
;
1911 elf_tdata (rinfo
->info
->output_bfd
)->verref
= t
;
1915 a
= (Elf_Internal_Vernaux
*) bfd_zalloc (rinfo
->info
->output_bfd
, amt
);
1918 rinfo
->failed
= TRUE
;
1922 /* Note that we are copying a string pointer here, and testing it
1923 above. If bfd_elf_string_from_elf_section is ever changed to
1924 discard the string data when low in memory, this will have to be
1926 a
->vna_nodename
= h
->verinfo
.verdef
->vd_nodename
;
1928 a
->vna_flags
= h
->verinfo
.verdef
->vd_flags
;
1929 a
->vna_nextptr
= t
->vn_auxptr
;
1931 h
->verinfo
.verdef
->vd_exp_refno
= rinfo
->vers
;
1934 a
->vna_other
= h
->verinfo
.verdef
->vd_exp_refno
+ 1;
1941 /* Figure out appropriate versions for all the symbols. We may not
1942 have the version number script until we have read all of the input
1943 files, so until that point we don't know which symbols should be
1944 local. This function is called via elf_link_hash_traverse. */
1947 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry
*h
, void *data
)
1949 struct elf_info_failed
*sinfo
;
1950 struct bfd_link_info
*info
;
1951 const struct elf_backend_data
*bed
;
1952 struct elf_info_failed eif
;
1956 sinfo
= (struct elf_info_failed
*) data
;
1959 /* Fix the symbol flags. */
1962 if (! _bfd_elf_fix_symbol_flags (h
, &eif
))
1965 sinfo
->failed
= TRUE
;
1969 /* We only need version numbers for symbols defined in regular
1971 if (!h
->def_regular
)
1974 bed
= get_elf_backend_data (info
->output_bfd
);
1975 p
= strchr (h
->root
.root
.string
, ELF_VER_CHR
);
1976 if (p
!= NULL
&& h
->verinfo
.vertree
== NULL
)
1978 struct bfd_elf_version_tree
*t
;
1983 /* There are two consecutive ELF_VER_CHR characters if this is
1984 not a hidden symbol. */
1986 if (*p
== ELF_VER_CHR
)
1992 /* If there is no version string, we can just return out. */
2000 /* Look for the version. If we find it, it is no longer weak. */
2001 for (t
= sinfo
->info
->version_info
; t
!= NULL
; t
= t
->next
)
2003 if (strcmp (t
->name
, p
) == 0)
2007 struct bfd_elf_version_expr
*d
;
2009 len
= p
- h
->root
.root
.string
;
2010 alc
= (char *) bfd_malloc (len
);
2013 sinfo
->failed
= TRUE
;
2016 memcpy (alc
, h
->root
.root
.string
, len
- 1);
2017 alc
[len
- 1] = '\0';
2018 if (alc
[len
- 2] == ELF_VER_CHR
)
2019 alc
[len
- 2] = '\0';
2021 h
->verinfo
.vertree
= t
;
2025 if (t
->globals
.list
!= NULL
)
2026 d
= (*t
->match
) (&t
->globals
, NULL
, alc
);
2028 /* See if there is anything to force this symbol to
2030 if (d
== NULL
&& t
->locals
.list
!= NULL
)
2032 d
= (*t
->match
) (&t
->locals
, NULL
, alc
);
2035 && ! info
->export_dynamic
)
2036 (*bed
->elf_backend_hide_symbol
) (info
, h
, TRUE
);
2044 /* If we are building an application, we need to create a
2045 version node for this version. */
2046 if (t
== NULL
&& info
->executable
)
2048 struct bfd_elf_version_tree
**pp
;
2051 /* If we aren't going to export this symbol, we don't need
2052 to worry about it. */
2053 if (h
->dynindx
== -1)
2057 t
= (struct bfd_elf_version_tree
*) bfd_zalloc (info
->output_bfd
, amt
);
2060 sinfo
->failed
= TRUE
;
2065 t
->name_indx
= (unsigned int) -1;
2069 /* Don't count anonymous version tag. */
2070 if (sinfo
->info
->version_info
!= NULL
2071 && sinfo
->info
->version_info
->vernum
== 0)
2073 for (pp
= &sinfo
->info
->version_info
;
2077 t
->vernum
= version_index
;
2081 h
->verinfo
.vertree
= t
;
2085 /* We could not find the version for a symbol when
2086 generating a shared archive. Return an error. */
2087 (*_bfd_error_handler
)
2088 (_("%B: version node not found for symbol %s"),
2089 info
->output_bfd
, h
->root
.root
.string
);
2090 bfd_set_error (bfd_error_bad_value
);
2091 sinfo
->failed
= TRUE
;
2099 /* If we don't have a version for this symbol, see if we can find
2101 if (h
->verinfo
.vertree
== NULL
&& sinfo
->info
->version_info
!= NULL
)
2106 = bfd_find_version_for_sym (sinfo
->info
->version_info
,
2107 h
->root
.root
.string
, &hide
);
2108 if (h
->verinfo
.vertree
!= NULL
&& hide
)
2109 (*bed
->elf_backend_hide_symbol
) (info
, h
, TRUE
);
2115 /* Read and swap the relocs from the section indicated by SHDR. This
2116 may be either a REL or a RELA section. The relocations are
2117 translated into RELA relocations and stored in INTERNAL_RELOCS,
2118 which should have already been allocated to contain enough space.
2119 The EXTERNAL_RELOCS are a buffer where the external form of the
2120 relocations should be stored.
2122 Returns FALSE if something goes wrong. */
2125 elf_link_read_relocs_from_section (bfd
*abfd
,
2127 Elf_Internal_Shdr
*shdr
,
2128 void *external_relocs
,
2129 Elf_Internal_Rela
*internal_relocs
)
2131 const struct elf_backend_data
*bed
;
2132 void (*swap_in
) (bfd
*, const bfd_byte
*, Elf_Internal_Rela
*);
2133 const bfd_byte
*erela
;
2134 const bfd_byte
*erelaend
;
2135 Elf_Internal_Rela
*irela
;
2136 Elf_Internal_Shdr
*symtab_hdr
;
2139 /* Position ourselves at the start of the section. */
2140 if (bfd_seek (abfd
, shdr
->sh_offset
, SEEK_SET
) != 0)
2143 /* Read the relocations. */
2144 if (bfd_bread (external_relocs
, shdr
->sh_size
, abfd
) != shdr
->sh_size
)
2147 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
2148 nsyms
= NUM_SHDR_ENTRIES (symtab_hdr
);
2150 bed
= get_elf_backend_data (abfd
);
2152 /* Convert the external relocations to the internal format. */
2153 if (shdr
->sh_entsize
== bed
->s
->sizeof_rel
)
2154 swap_in
= bed
->s
->swap_reloc_in
;
2155 else if (shdr
->sh_entsize
== bed
->s
->sizeof_rela
)
2156 swap_in
= bed
->s
->swap_reloca_in
;
2159 bfd_set_error (bfd_error_wrong_format
);
2163 erela
= (const bfd_byte
*) external_relocs
;
2164 erelaend
= erela
+ shdr
->sh_size
;
2165 irela
= internal_relocs
;
2166 while (erela
< erelaend
)
2170 (*swap_in
) (abfd
, erela
, irela
);
2171 r_symndx
= ELF32_R_SYM (irela
->r_info
);
2172 if (bed
->s
->arch_size
== 64)
2176 if ((size_t) r_symndx
>= nsyms
)
2178 (*_bfd_error_handler
)
2179 (_("%B: bad reloc symbol index (0x%lx >= 0x%lx)"
2180 " for offset 0x%lx in section `%A'"),
2182 (unsigned long) r_symndx
, (unsigned long) nsyms
, irela
->r_offset
);
2183 bfd_set_error (bfd_error_bad_value
);
2187 else if (r_symndx
!= STN_UNDEF
)
2189 (*_bfd_error_handler
)
2190 (_("%B: non-zero symbol index (0x%lx) for offset 0x%lx in section `%A'"
2191 " when the object file has no symbol table"),
2193 (unsigned long) r_symndx
, (unsigned long) nsyms
, irela
->r_offset
);
2194 bfd_set_error (bfd_error_bad_value
);
2197 irela
+= bed
->s
->int_rels_per_ext_rel
;
2198 erela
+= shdr
->sh_entsize
;
2204 /* Read and swap the relocs for a section O. They may have been
2205 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2206 not NULL, they are used as buffers to read into. They are known to
2207 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2208 the return value is allocated using either malloc or bfd_alloc,
2209 according to the KEEP_MEMORY argument. If O has two relocation
2210 sections (both REL and RELA relocations), then the REL_HDR
2211 relocations will appear first in INTERNAL_RELOCS, followed by the
2212 RELA_HDR relocations. */
2215 _bfd_elf_link_read_relocs (bfd
*abfd
,
2217 void *external_relocs
,
2218 Elf_Internal_Rela
*internal_relocs
,
2219 bfd_boolean keep_memory
)
2221 void *alloc1
= NULL
;
2222 Elf_Internal_Rela
*alloc2
= NULL
;
2223 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
2224 struct bfd_elf_section_data
*esdo
= elf_section_data (o
);
2225 Elf_Internal_Rela
*internal_rela_relocs
;
2227 if (esdo
->relocs
!= NULL
)
2228 return esdo
->relocs
;
2230 if (o
->reloc_count
== 0)
2233 if (internal_relocs
== NULL
)
2237 size
= o
->reloc_count
;
2238 size
*= bed
->s
->int_rels_per_ext_rel
* sizeof (Elf_Internal_Rela
);
2240 internal_relocs
= alloc2
= (Elf_Internal_Rela
*) bfd_alloc (abfd
, size
);
2242 internal_relocs
= alloc2
= (Elf_Internal_Rela
*) bfd_malloc (size
);
2243 if (internal_relocs
== NULL
)
2247 if (external_relocs
== NULL
)
2249 bfd_size_type size
= 0;
2252 size
+= esdo
->rel
.hdr
->sh_size
;
2254 size
+= esdo
->rela
.hdr
->sh_size
;
2256 alloc1
= bfd_malloc (size
);
2259 external_relocs
= alloc1
;
2262 internal_rela_relocs
= internal_relocs
;
2265 if (!elf_link_read_relocs_from_section (abfd
, o
, esdo
->rel
.hdr
,
2269 external_relocs
= (((bfd_byte
*) external_relocs
)
2270 + esdo
->rel
.hdr
->sh_size
);
2271 internal_rela_relocs
+= (NUM_SHDR_ENTRIES (esdo
->rel
.hdr
)
2272 * bed
->s
->int_rels_per_ext_rel
);
2276 && (!elf_link_read_relocs_from_section (abfd
, o
, esdo
->rela
.hdr
,
2278 internal_rela_relocs
)))
2281 /* Cache the results for next time, if we can. */
2283 esdo
->relocs
= internal_relocs
;
2288 /* Don't free alloc2, since if it was allocated we are passing it
2289 back (under the name of internal_relocs). */
2291 return internal_relocs
;
2299 bfd_release (abfd
, alloc2
);
2306 /* Compute the size of, and allocate space for, REL_HDR which is the
2307 section header for a section containing relocations for O. */
2310 _bfd_elf_link_size_reloc_section (bfd
*abfd
,
2311 struct bfd_elf_section_reloc_data
*reldata
)
2313 Elf_Internal_Shdr
*rel_hdr
= reldata
->hdr
;
2315 /* That allows us to calculate the size of the section. */
2316 rel_hdr
->sh_size
= rel_hdr
->sh_entsize
* reldata
->count
;
2318 /* The contents field must last into write_object_contents, so we
2319 allocate it with bfd_alloc rather than malloc. Also since we
2320 cannot be sure that the contents will actually be filled in,
2321 we zero the allocated space. */
2322 rel_hdr
->contents
= (unsigned char *) bfd_zalloc (abfd
, rel_hdr
->sh_size
);
2323 if (rel_hdr
->contents
== NULL
&& rel_hdr
->sh_size
!= 0)
2326 if (reldata
->hashes
== NULL
&& reldata
->count
)
2328 struct elf_link_hash_entry
**p
;
2330 p
= (struct elf_link_hash_entry
**)
2331 bfd_zmalloc (reldata
->count
* sizeof (struct elf_link_hash_entry
*));
2335 reldata
->hashes
= p
;
2341 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
2342 originated from the section given by INPUT_REL_HDR) to the
2346 _bfd_elf_link_output_relocs (bfd
*output_bfd
,
2347 asection
*input_section
,
2348 Elf_Internal_Shdr
*input_rel_hdr
,
2349 Elf_Internal_Rela
*internal_relocs
,
2350 struct elf_link_hash_entry
**rel_hash
2353 Elf_Internal_Rela
*irela
;
2354 Elf_Internal_Rela
*irelaend
;
2356 struct bfd_elf_section_reloc_data
*output_reldata
;
2357 asection
*output_section
;
2358 const struct elf_backend_data
*bed
;
2359 void (*swap_out
) (bfd
*, const Elf_Internal_Rela
*, bfd_byte
*);
2360 struct bfd_elf_section_data
*esdo
;
2362 output_section
= input_section
->output_section
;
2364 bed
= get_elf_backend_data (output_bfd
);
2365 esdo
= elf_section_data (output_section
);
2366 if (esdo
->rel
.hdr
&& esdo
->rel
.hdr
->sh_entsize
== input_rel_hdr
->sh_entsize
)
2368 output_reldata
= &esdo
->rel
;
2369 swap_out
= bed
->s
->swap_reloc_out
;
2371 else if (esdo
->rela
.hdr
2372 && esdo
->rela
.hdr
->sh_entsize
== input_rel_hdr
->sh_entsize
)
2374 output_reldata
= &esdo
->rela
;
2375 swap_out
= bed
->s
->swap_reloca_out
;
2379 (*_bfd_error_handler
)
2380 (_("%B: relocation size mismatch in %B section %A"),
2381 output_bfd
, input_section
->owner
, input_section
);
2382 bfd_set_error (bfd_error_wrong_format
);
2386 erel
= output_reldata
->hdr
->contents
;
2387 erel
+= output_reldata
->count
* input_rel_hdr
->sh_entsize
;
2388 irela
= internal_relocs
;
2389 irelaend
= irela
+ (NUM_SHDR_ENTRIES (input_rel_hdr
)
2390 * bed
->s
->int_rels_per_ext_rel
);
2391 while (irela
< irelaend
)
2393 (*swap_out
) (output_bfd
, irela
, erel
);
2394 irela
+= bed
->s
->int_rels_per_ext_rel
;
2395 erel
+= input_rel_hdr
->sh_entsize
;
2398 /* Bump the counter, so that we know where to add the next set of
2400 output_reldata
->count
+= NUM_SHDR_ENTRIES (input_rel_hdr
);
2405 /* Make weak undefined symbols in PIE dynamic. */
2408 _bfd_elf_link_hash_fixup_symbol (struct bfd_link_info
*info
,
2409 struct elf_link_hash_entry
*h
)
2413 && h
->root
.type
== bfd_link_hash_undefweak
)
2414 return bfd_elf_link_record_dynamic_symbol (info
, h
);
2419 /* Fix up the flags for a symbol. This handles various cases which
2420 can only be fixed after all the input files are seen. This is
2421 currently called by both adjust_dynamic_symbol and
2422 assign_sym_version, which is unnecessary but perhaps more robust in
2423 the face of future changes. */
2426 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry
*h
,
2427 struct elf_info_failed
*eif
)
2429 const struct elf_backend_data
*bed
;
2431 /* If this symbol was mentioned in a non-ELF file, try to set
2432 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2433 permit a non-ELF file to correctly refer to a symbol defined in
2434 an ELF dynamic object. */
2437 while (h
->root
.type
== bfd_link_hash_indirect
)
2438 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
2440 if (h
->root
.type
!= bfd_link_hash_defined
2441 && h
->root
.type
!= bfd_link_hash_defweak
)
2444 h
->ref_regular_nonweak
= 1;
2448 if (h
->root
.u
.def
.section
->owner
!= NULL
2449 && (bfd_get_flavour (h
->root
.u
.def
.section
->owner
)
2450 == bfd_target_elf_flavour
))
2453 h
->ref_regular_nonweak
= 1;
2459 if (h
->dynindx
== -1
2463 if (! bfd_elf_link_record_dynamic_symbol (eif
->info
, h
))
2472 /* Unfortunately, NON_ELF is only correct if the symbol
2473 was first seen in a non-ELF file. Fortunately, if the symbol
2474 was first seen in an ELF file, we're probably OK unless the
2475 symbol was defined in a non-ELF file. Catch that case here.
2476 FIXME: We're still in trouble if the symbol was first seen in
2477 a dynamic object, and then later in a non-ELF regular object. */
2478 if ((h
->root
.type
== bfd_link_hash_defined
2479 || h
->root
.type
== bfd_link_hash_defweak
)
2481 && (h
->root
.u
.def
.section
->owner
!= NULL
2482 ? (bfd_get_flavour (h
->root
.u
.def
.section
->owner
)
2483 != bfd_target_elf_flavour
)
2484 : (bfd_is_abs_section (h
->root
.u
.def
.section
)
2485 && !h
->def_dynamic
)))
2489 /* Backend specific symbol fixup. */
2490 bed
= get_elf_backend_data (elf_hash_table (eif
->info
)->dynobj
);
2491 if (bed
->elf_backend_fixup_symbol
2492 && !(*bed
->elf_backend_fixup_symbol
) (eif
->info
, h
))
2495 /* If this is a final link, and the symbol was defined as a common
2496 symbol in a regular object file, and there was no definition in
2497 any dynamic object, then the linker will have allocated space for
2498 the symbol in a common section but the DEF_REGULAR
2499 flag will not have been set. */
2500 if (h
->root
.type
== bfd_link_hash_defined
2504 && (h
->root
.u
.def
.section
->owner
->flags
& DYNAMIC
) == 0)
2507 /* If -Bsymbolic was used (which means to bind references to global
2508 symbols to the definition within the shared object), and this
2509 symbol was defined in a regular object, then it actually doesn't
2510 need a PLT entry. Likewise, if the symbol has non-default
2511 visibility. If the symbol has hidden or internal visibility, we
2512 will force it local. */
2514 && eif
->info
->shared
2515 && is_elf_hash_table (eif
->info
->hash
)
2516 && (SYMBOLIC_BIND (eif
->info
, h
)
2517 || ELF_ST_VISIBILITY (h
->other
) != STV_DEFAULT
)
2520 bfd_boolean force_local
;
2522 force_local
= (ELF_ST_VISIBILITY (h
->other
) == STV_INTERNAL
2523 || ELF_ST_VISIBILITY (h
->other
) == STV_HIDDEN
);
2524 (*bed
->elf_backend_hide_symbol
) (eif
->info
, h
, force_local
);
2527 /* If a weak undefined symbol has non-default visibility, we also
2528 hide it from the dynamic linker. */
2529 if (ELF_ST_VISIBILITY (h
->other
) != STV_DEFAULT
2530 && h
->root
.type
== bfd_link_hash_undefweak
)
2531 (*bed
->elf_backend_hide_symbol
) (eif
->info
, h
, TRUE
);
2533 /* If this is a weak defined symbol in a dynamic object, and we know
2534 the real definition in the dynamic object, copy interesting flags
2535 over to the real definition. */
2536 if (h
->u
.weakdef
!= NULL
)
2538 /* If the real definition is defined by a regular object file,
2539 don't do anything special. See the longer description in
2540 _bfd_elf_adjust_dynamic_symbol, below. */
2541 if (h
->u
.weakdef
->def_regular
)
2542 h
->u
.weakdef
= NULL
;
2545 struct elf_link_hash_entry
*weakdef
= h
->u
.weakdef
;
2547 while (h
->root
.type
== bfd_link_hash_indirect
)
2548 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
2550 BFD_ASSERT (h
->root
.type
== bfd_link_hash_defined
2551 || h
->root
.type
== bfd_link_hash_defweak
);
2552 BFD_ASSERT (weakdef
->def_dynamic
);
2553 BFD_ASSERT (weakdef
->root
.type
== bfd_link_hash_defined
2554 || weakdef
->root
.type
== bfd_link_hash_defweak
);
2555 (*bed
->elf_backend_copy_indirect_symbol
) (eif
->info
, weakdef
, h
);
2562 /* Make the backend pick a good value for a dynamic symbol. This is
2563 called via elf_link_hash_traverse, and also calls itself
2567 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry
*h
, void *data
)
2569 struct elf_info_failed
*eif
= (struct elf_info_failed
*) data
;
2571 const struct elf_backend_data
*bed
;
2573 if (! is_elf_hash_table (eif
->info
->hash
))
2576 /* Ignore indirect symbols. These are added by the versioning code. */
2577 if (h
->root
.type
== bfd_link_hash_indirect
)
2580 /* Fix the symbol flags. */
2581 if (! _bfd_elf_fix_symbol_flags (h
, eif
))
2584 /* If this symbol does not require a PLT entry, and it is not
2585 defined by a dynamic object, or is not referenced by a regular
2586 object, ignore it. We do have to handle a weak defined symbol,
2587 even if no regular object refers to it, if we decided to add it
2588 to the dynamic symbol table. FIXME: Do we normally need to worry
2589 about symbols which are defined by one dynamic object and
2590 referenced by another one? */
2592 && h
->type
!= STT_GNU_IFUNC
2596 && (h
->u
.weakdef
== NULL
|| h
->u
.weakdef
->dynindx
== -1))))
2598 h
->plt
= elf_hash_table (eif
->info
)->init_plt_offset
;
2602 /* If we've already adjusted this symbol, don't do it again. This
2603 can happen via a recursive call. */
2604 if (h
->dynamic_adjusted
)
2607 /* Don't look at this symbol again. Note that we must set this
2608 after checking the above conditions, because we may look at a
2609 symbol once, decide not to do anything, and then get called
2610 recursively later after REF_REGULAR is set below. */
2611 h
->dynamic_adjusted
= 1;
2613 /* If this is a weak definition, and we know a real definition, and
2614 the real symbol is not itself defined by a regular object file,
2615 then get a good value for the real definition. We handle the
2616 real symbol first, for the convenience of the backend routine.
2618 Note that there is a confusing case here. If the real definition
2619 is defined by a regular object file, we don't get the real symbol
2620 from the dynamic object, but we do get the weak symbol. If the
2621 processor backend uses a COPY reloc, then if some routine in the
2622 dynamic object changes the real symbol, we will not see that
2623 change in the corresponding weak symbol. This is the way other
2624 ELF linkers work as well, and seems to be a result of the shared
2627 I will clarify this issue. Most SVR4 shared libraries define the
2628 variable _timezone and define timezone as a weak synonym. The
2629 tzset call changes _timezone. If you write
2630 extern int timezone;
2632 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
2633 you might expect that, since timezone is a synonym for _timezone,
2634 the same number will print both times. However, if the processor
2635 backend uses a COPY reloc, then actually timezone will be copied
2636 into your process image, and, since you define _timezone
2637 yourself, _timezone will not. Thus timezone and _timezone will
2638 wind up at different memory locations. The tzset call will set
2639 _timezone, leaving timezone unchanged. */
2641 if (h
->u
.weakdef
!= NULL
)
2643 /* If we get to this point, there is an implicit reference to
2644 H->U.WEAKDEF by a regular object file via the weak symbol H. */
2645 h
->u
.weakdef
->ref_regular
= 1;
2647 /* Ensure that the backend adjust_dynamic_symbol function sees
2648 H->U.WEAKDEF before H by recursively calling ourselves. */
2649 if (! _bfd_elf_adjust_dynamic_symbol (h
->u
.weakdef
, eif
))
2653 /* If a symbol has no type and no size and does not require a PLT
2654 entry, then we are probably about to do the wrong thing here: we
2655 are probably going to create a COPY reloc for an empty object.
2656 This case can arise when a shared object is built with assembly
2657 code, and the assembly code fails to set the symbol type. */
2659 && h
->type
== STT_NOTYPE
2661 (*_bfd_error_handler
)
2662 (_("warning: type and size of dynamic symbol `%s' are not defined"),
2663 h
->root
.root
.string
);
2665 dynobj
= elf_hash_table (eif
->info
)->dynobj
;
2666 bed
= get_elf_backend_data (dynobj
);
2668 if (! (*bed
->elf_backend_adjust_dynamic_symbol
) (eif
->info
, h
))
2677 /* Adjust the dynamic symbol, H, for copy in the dynamic bss section,
2681 _bfd_elf_adjust_dynamic_copy (struct elf_link_hash_entry
*h
,
2684 unsigned int power_of_two
;
2686 asection
*sec
= h
->root
.u
.def
.section
;
2688 /* The section aligment of definition is the maximum alignment
2689 requirement of symbols defined in the section. Since we don't
2690 know the symbol alignment requirement, we start with the
2691 maximum alignment and check low bits of the symbol address
2692 for the minimum alignment. */
2693 power_of_two
= bfd_get_section_alignment (sec
->owner
, sec
);
2694 mask
= ((bfd_vma
) 1 << power_of_two
) - 1;
2695 while ((h
->root
.u
.def
.value
& mask
) != 0)
2701 if (power_of_two
> bfd_get_section_alignment (dynbss
->owner
,
2704 /* Adjust the section alignment if needed. */
2705 if (! bfd_set_section_alignment (dynbss
->owner
, dynbss
,
2710 /* We make sure that the symbol will be aligned properly. */
2711 dynbss
->size
= BFD_ALIGN (dynbss
->size
, mask
+ 1);
2713 /* Define the symbol as being at this point in DYNBSS. */
2714 h
->root
.u
.def
.section
= dynbss
;
2715 h
->root
.u
.def
.value
= dynbss
->size
;
2717 /* Increment the size of DYNBSS to make room for the symbol. */
2718 dynbss
->size
+= h
->size
;
2723 /* Adjust all external symbols pointing into SEC_MERGE sections
2724 to reflect the object merging within the sections. */
2727 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry
*h
, void *data
)
2731 if ((h
->root
.type
== bfd_link_hash_defined
2732 || h
->root
.type
== bfd_link_hash_defweak
)
2733 && ((sec
= h
->root
.u
.def
.section
)->flags
& SEC_MERGE
)
2734 && sec
->sec_info_type
== SEC_INFO_TYPE_MERGE
)
2736 bfd
*output_bfd
= (bfd
*) data
;
2738 h
->root
.u
.def
.value
=
2739 _bfd_merged_section_offset (output_bfd
,
2740 &h
->root
.u
.def
.section
,
2741 elf_section_data (sec
)->sec_info
,
2742 h
->root
.u
.def
.value
);
2748 /* Returns false if the symbol referred to by H should be considered
2749 to resolve local to the current module, and true if it should be
2750 considered to bind dynamically. */
2753 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry
*h
,
2754 struct bfd_link_info
*info
,
2755 bfd_boolean not_local_protected
)
2757 bfd_boolean binding_stays_local_p
;
2758 const struct elf_backend_data
*bed
;
2759 struct elf_link_hash_table
*hash_table
;
2764 while (h
->root
.type
== bfd_link_hash_indirect
2765 || h
->root
.type
== bfd_link_hash_warning
)
2766 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
2768 /* If it was forced local, then clearly it's not dynamic. */
2769 if (h
->dynindx
== -1)
2771 if (h
->forced_local
)
2774 /* Identify the cases where name binding rules say that a
2775 visible symbol resolves locally. */
2776 binding_stays_local_p
= info
->executable
|| SYMBOLIC_BIND (info
, h
);
2778 switch (ELF_ST_VISIBILITY (h
->other
))
2785 hash_table
= elf_hash_table (info
);
2786 if (!is_elf_hash_table (hash_table
))
2789 bed
= get_elf_backend_data (hash_table
->dynobj
);
2791 /* Proper resolution for function pointer equality may require
2792 that these symbols perhaps be resolved dynamically, even though
2793 we should be resolving them to the current module. */
2794 if (!not_local_protected
|| !bed
->is_function_type (h
->type
))
2795 binding_stays_local_p
= TRUE
;
2802 /* If it isn't defined locally, then clearly it's dynamic. */
2803 if (!h
->def_regular
&& !ELF_COMMON_DEF_P (h
))
2806 /* Otherwise, the symbol is dynamic if binding rules don't tell
2807 us that it remains local. */
2808 return !binding_stays_local_p
;
2811 /* Return true if the symbol referred to by H should be considered
2812 to resolve local to the current module, and false otherwise. Differs
2813 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
2814 undefined symbols. The two functions are virtually identical except
2815 for the place where forced_local and dynindx == -1 are tested. If
2816 either of those tests are true, _bfd_elf_dynamic_symbol_p will say
2817 the symbol is local, while _bfd_elf_symbol_refs_local_p will say
2818 the symbol is local only for defined symbols.
2819 It might seem that _bfd_elf_dynamic_symbol_p could be rewritten as
2820 !_bfd_elf_symbol_refs_local_p, except that targets differ in their
2821 treatment of undefined weak symbols. For those that do not make
2822 undefined weak symbols dynamic, both functions may return false. */
2825 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry
*h
,
2826 struct bfd_link_info
*info
,
2827 bfd_boolean local_protected
)
2829 const struct elf_backend_data
*bed
;
2830 struct elf_link_hash_table
*hash_table
;
2832 /* If it's a local sym, of course we resolve locally. */
2836 /* STV_HIDDEN or STV_INTERNAL ones must be local. */
2837 if (ELF_ST_VISIBILITY (h
->other
) == STV_HIDDEN
2838 || ELF_ST_VISIBILITY (h
->other
) == STV_INTERNAL
)
2841 /* Common symbols that become definitions don't get the DEF_REGULAR
2842 flag set, so test it first, and don't bail out. */
2843 if (ELF_COMMON_DEF_P (h
))
2845 /* If we don't have a definition in a regular file, then we can't
2846 resolve locally. The sym is either undefined or dynamic. */
2847 else if (!h
->def_regular
)
2850 /* Forced local symbols resolve locally. */
2851 if (h
->forced_local
)
2854 /* As do non-dynamic symbols. */
2855 if (h
->dynindx
== -1)
2858 /* At this point, we know the symbol is defined and dynamic. In an
2859 executable it must resolve locally, likewise when building symbolic
2860 shared libraries. */
2861 if (info
->executable
|| SYMBOLIC_BIND (info
, h
))
2864 /* Now deal with defined dynamic symbols in shared libraries. Ones
2865 with default visibility might not resolve locally. */
2866 if (ELF_ST_VISIBILITY (h
->other
) == STV_DEFAULT
)
2869 hash_table
= elf_hash_table (info
);
2870 if (!is_elf_hash_table (hash_table
))
2873 bed
= get_elf_backend_data (hash_table
->dynobj
);
2875 /* STV_PROTECTED non-function symbols are local. */
2876 if (!bed
->is_function_type (h
->type
))
2879 /* Function pointer equality tests may require that STV_PROTECTED
2880 symbols be treated as dynamic symbols. If the address of a
2881 function not defined in an executable is set to that function's
2882 plt entry in the executable, then the address of the function in
2883 a shared library must also be the plt entry in the executable. */
2884 return local_protected
;
2887 /* Caches some TLS segment info, and ensures that the TLS segment vma is
2888 aligned. Returns the first TLS output section. */
2890 struct bfd_section
*
2891 _bfd_elf_tls_setup (bfd
*obfd
, struct bfd_link_info
*info
)
2893 struct bfd_section
*sec
, *tls
;
2894 unsigned int align
= 0;
2896 for (sec
= obfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
2897 if ((sec
->flags
& SEC_THREAD_LOCAL
) != 0)
2901 for (; sec
!= NULL
&& (sec
->flags
& SEC_THREAD_LOCAL
) != 0; sec
= sec
->next
)
2902 if (sec
->alignment_power
> align
)
2903 align
= sec
->alignment_power
;
2905 elf_hash_table (info
)->tls_sec
= tls
;
2907 /* Ensure the alignment of the first section is the largest alignment,
2908 so that the tls segment starts aligned. */
2910 tls
->alignment_power
= align
;
2915 /* Return TRUE iff this is a non-common, definition of a non-function symbol. */
2917 is_global_data_symbol_definition (bfd
*abfd ATTRIBUTE_UNUSED
,
2918 Elf_Internal_Sym
*sym
)
2920 const struct elf_backend_data
*bed
;
2922 /* Local symbols do not count, but target specific ones might. */
2923 if (ELF_ST_BIND (sym
->st_info
) != STB_GLOBAL
2924 && ELF_ST_BIND (sym
->st_info
) < STB_LOOS
)
2927 bed
= get_elf_backend_data (abfd
);
2928 /* Function symbols do not count. */
2929 if (bed
->is_function_type (ELF_ST_TYPE (sym
->st_info
)))
2932 /* If the section is undefined, then so is the symbol. */
2933 if (sym
->st_shndx
== SHN_UNDEF
)
2936 /* If the symbol is defined in the common section, then
2937 it is a common definition and so does not count. */
2938 if (bed
->common_definition (sym
))
2941 /* If the symbol is in a target specific section then we
2942 must rely upon the backend to tell us what it is. */
2943 if (sym
->st_shndx
>= SHN_LORESERVE
&& sym
->st_shndx
< SHN_ABS
)
2944 /* FIXME - this function is not coded yet:
2946 return _bfd_is_global_symbol_definition (abfd, sym);
2948 Instead for now assume that the definition is not global,
2949 Even if this is wrong, at least the linker will behave
2950 in the same way that it used to do. */
2956 /* Search the symbol table of the archive element of the archive ABFD
2957 whose archive map contains a mention of SYMDEF, and determine if
2958 the symbol is defined in this element. */
2960 elf_link_is_defined_archive_symbol (bfd
* abfd
, carsym
* symdef
)
2962 Elf_Internal_Shdr
* hdr
;
2963 bfd_size_type symcount
;
2964 bfd_size_type extsymcount
;
2965 bfd_size_type extsymoff
;
2966 Elf_Internal_Sym
*isymbuf
;
2967 Elf_Internal_Sym
*isym
;
2968 Elf_Internal_Sym
*isymend
;
2971 abfd
= _bfd_get_elt_at_filepos (abfd
, symdef
->file_offset
);
2975 if (! bfd_check_format (abfd
, bfd_object
))
2978 /* If we have already included the element containing this symbol in the
2979 link then we do not need to include it again. Just claim that any symbol
2980 it contains is not a definition, so that our caller will not decide to
2981 (re)include this element. */
2982 if (abfd
->archive_pass
)
2985 /* Select the appropriate symbol table. */
2986 if ((abfd
->flags
& DYNAMIC
) == 0 || elf_dynsymtab (abfd
) == 0)
2987 hdr
= &elf_tdata (abfd
)->symtab_hdr
;
2989 hdr
= &elf_tdata (abfd
)->dynsymtab_hdr
;
2991 symcount
= hdr
->sh_size
/ get_elf_backend_data (abfd
)->s
->sizeof_sym
;
2993 /* The sh_info field of the symtab header tells us where the
2994 external symbols start. We don't care about the local symbols. */
2995 if (elf_bad_symtab (abfd
))
2997 extsymcount
= symcount
;
3002 extsymcount
= symcount
- hdr
->sh_info
;
3003 extsymoff
= hdr
->sh_info
;
3006 if (extsymcount
== 0)
3009 /* Read in the symbol table. */
3010 isymbuf
= bfd_elf_get_elf_syms (abfd
, hdr
, extsymcount
, extsymoff
,
3012 if (isymbuf
== NULL
)
3015 /* Scan the symbol table looking for SYMDEF. */
3017 for (isym
= isymbuf
, isymend
= isymbuf
+ extsymcount
; isym
< isymend
; isym
++)
3021 name
= bfd_elf_string_from_elf_section (abfd
, hdr
->sh_link
,
3026 if (strcmp (name
, symdef
->name
) == 0)
3028 result
= is_global_data_symbol_definition (abfd
, isym
);
3038 /* Add an entry to the .dynamic table. */
3041 _bfd_elf_add_dynamic_entry (struct bfd_link_info
*info
,
3045 struct elf_link_hash_table
*hash_table
;
3046 const struct elf_backend_data
*bed
;
3048 bfd_size_type newsize
;
3049 bfd_byte
*newcontents
;
3050 Elf_Internal_Dyn dyn
;
3052 hash_table
= elf_hash_table (info
);
3053 if (! is_elf_hash_table (hash_table
))
3056 bed
= get_elf_backend_data (hash_table
->dynobj
);
3057 s
= bfd_get_linker_section (hash_table
->dynobj
, ".dynamic");
3058 BFD_ASSERT (s
!= NULL
);
3060 newsize
= s
->size
+ bed
->s
->sizeof_dyn
;
3061 newcontents
= (bfd_byte
*) bfd_realloc (s
->contents
, newsize
);
3062 if (newcontents
== NULL
)
3066 dyn
.d_un
.d_val
= val
;
3067 bed
->s
->swap_dyn_out (hash_table
->dynobj
, &dyn
, newcontents
+ s
->size
);
3070 s
->contents
= newcontents
;
3075 /* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
3076 otherwise just check whether one already exists. Returns -1 on error,
3077 1 if a DT_NEEDED tag already exists, and 0 on success. */
3080 elf_add_dt_needed_tag (bfd
*abfd
,
3081 struct bfd_link_info
*info
,
3085 struct elf_link_hash_table
*hash_table
;
3086 bfd_size_type oldsize
;
3087 bfd_size_type strindex
;
3089 if (!_bfd_elf_link_create_dynstrtab (abfd
, info
))
3092 hash_table
= elf_hash_table (info
);
3093 oldsize
= _bfd_elf_strtab_size (hash_table
->dynstr
);
3094 strindex
= _bfd_elf_strtab_add (hash_table
->dynstr
, soname
, FALSE
);
3095 if (strindex
== (bfd_size_type
) -1)
3098 if (oldsize
== _bfd_elf_strtab_size (hash_table
->dynstr
))
3101 const struct elf_backend_data
*bed
;
3104 bed
= get_elf_backend_data (hash_table
->dynobj
);
3105 sdyn
= bfd_get_linker_section (hash_table
->dynobj
, ".dynamic");
3107 for (extdyn
= sdyn
->contents
;
3108 extdyn
< sdyn
->contents
+ sdyn
->size
;
3109 extdyn
+= bed
->s
->sizeof_dyn
)
3111 Elf_Internal_Dyn dyn
;
3113 bed
->s
->swap_dyn_in (hash_table
->dynobj
, extdyn
, &dyn
);
3114 if (dyn
.d_tag
== DT_NEEDED
3115 && dyn
.d_un
.d_val
== strindex
)
3117 _bfd_elf_strtab_delref (hash_table
->dynstr
, strindex
);
3125 if (!_bfd_elf_link_create_dynamic_sections (hash_table
->dynobj
, info
))
3128 if (!_bfd_elf_add_dynamic_entry (info
, DT_NEEDED
, strindex
))
3132 /* We were just checking for existence of the tag. */
3133 _bfd_elf_strtab_delref (hash_table
->dynstr
, strindex
);
3139 on_needed_list (const char *soname
, struct bfd_link_needed_list
*needed
)
3141 for (; needed
!= NULL
; needed
= needed
->next
)
3142 if (strcmp (soname
, needed
->name
) == 0)
3148 /* Sort symbol by value, section, and size. */
3150 elf_sort_symbol (const void *arg1
, const void *arg2
)
3152 const struct elf_link_hash_entry
*h1
;
3153 const struct elf_link_hash_entry
*h2
;
3154 bfd_signed_vma vdiff
;
3156 h1
= *(const struct elf_link_hash_entry
**) arg1
;
3157 h2
= *(const struct elf_link_hash_entry
**) arg2
;
3158 vdiff
= h1
->root
.u
.def
.value
- h2
->root
.u
.def
.value
;
3160 return vdiff
> 0 ? 1 : -1;
3163 long sdiff
= h1
->root
.u
.def
.section
->id
- h2
->root
.u
.def
.section
->id
;
3165 return sdiff
> 0 ? 1 : -1;
3167 vdiff
= h1
->size
- h2
->size
;
3168 return vdiff
== 0 ? 0 : vdiff
> 0 ? 1 : -1;
3171 /* This function is used to adjust offsets into .dynstr for
3172 dynamic symbols. This is called via elf_link_hash_traverse. */
3175 elf_adjust_dynstr_offsets (struct elf_link_hash_entry
*h
, void *data
)
3177 struct elf_strtab_hash
*dynstr
= (struct elf_strtab_hash
*) data
;
3179 if (h
->dynindx
!= -1)
3180 h
->dynstr_index
= _bfd_elf_strtab_offset (dynstr
, h
->dynstr_index
);
3184 /* Assign string offsets in .dynstr, update all structures referencing
3188 elf_finalize_dynstr (bfd
*output_bfd
, struct bfd_link_info
*info
)
3190 struct elf_link_hash_table
*hash_table
= elf_hash_table (info
);
3191 struct elf_link_local_dynamic_entry
*entry
;
3192 struct elf_strtab_hash
*dynstr
= hash_table
->dynstr
;
3193 bfd
*dynobj
= hash_table
->dynobj
;
3196 const struct elf_backend_data
*bed
;
3199 _bfd_elf_strtab_finalize (dynstr
);
3200 size
= _bfd_elf_strtab_size (dynstr
);
3202 bed
= get_elf_backend_data (dynobj
);
3203 sdyn
= bfd_get_linker_section (dynobj
, ".dynamic");
3204 BFD_ASSERT (sdyn
!= NULL
);
3206 /* Update all .dynamic entries referencing .dynstr strings. */
3207 for (extdyn
= sdyn
->contents
;
3208 extdyn
< sdyn
->contents
+ sdyn
->size
;
3209 extdyn
+= bed
->s
->sizeof_dyn
)
3211 Elf_Internal_Dyn dyn
;
3213 bed
->s
->swap_dyn_in (dynobj
, extdyn
, &dyn
);
3217 dyn
.d_un
.d_val
= size
;
3227 dyn
.d_un
.d_val
= _bfd_elf_strtab_offset (dynstr
, dyn
.d_un
.d_val
);
3232 bed
->s
->swap_dyn_out (dynobj
, &dyn
, extdyn
);
3235 /* Now update local dynamic symbols. */
3236 for (entry
= hash_table
->dynlocal
; entry
; entry
= entry
->next
)
3237 entry
->isym
.st_name
= _bfd_elf_strtab_offset (dynstr
,
3238 entry
->isym
.st_name
);
3240 /* And the rest of dynamic symbols. */
3241 elf_link_hash_traverse (hash_table
, elf_adjust_dynstr_offsets
, dynstr
);
3243 /* Adjust version definitions. */
3244 if (elf_tdata (output_bfd
)->cverdefs
)
3249 Elf_Internal_Verdef def
;
3250 Elf_Internal_Verdaux defaux
;
3252 s
= bfd_get_linker_section (dynobj
, ".gnu.version_d");
3256 _bfd_elf_swap_verdef_in (output_bfd
, (Elf_External_Verdef
*) p
,
3258 p
+= sizeof (Elf_External_Verdef
);
3259 if (def
.vd_aux
!= sizeof (Elf_External_Verdef
))
3261 for (i
= 0; i
< def
.vd_cnt
; ++i
)
3263 _bfd_elf_swap_verdaux_in (output_bfd
,
3264 (Elf_External_Verdaux
*) p
, &defaux
);
3265 defaux
.vda_name
= _bfd_elf_strtab_offset (dynstr
,
3267 _bfd_elf_swap_verdaux_out (output_bfd
,
3268 &defaux
, (Elf_External_Verdaux
*) p
);
3269 p
+= sizeof (Elf_External_Verdaux
);
3272 while (def
.vd_next
);
3275 /* Adjust version references. */
3276 if (elf_tdata (output_bfd
)->verref
)
3281 Elf_Internal_Verneed need
;
3282 Elf_Internal_Vernaux needaux
;
3284 s
= bfd_get_linker_section (dynobj
, ".gnu.version_r");
3288 _bfd_elf_swap_verneed_in (output_bfd
, (Elf_External_Verneed
*) p
,
3290 need
.vn_file
= _bfd_elf_strtab_offset (dynstr
, need
.vn_file
);
3291 _bfd_elf_swap_verneed_out (output_bfd
, &need
,
3292 (Elf_External_Verneed
*) p
);
3293 p
+= sizeof (Elf_External_Verneed
);
3294 for (i
= 0; i
< need
.vn_cnt
; ++i
)
3296 _bfd_elf_swap_vernaux_in (output_bfd
,
3297 (Elf_External_Vernaux
*) p
, &needaux
);
3298 needaux
.vna_name
= _bfd_elf_strtab_offset (dynstr
,
3300 _bfd_elf_swap_vernaux_out (output_bfd
,
3302 (Elf_External_Vernaux
*) p
);
3303 p
+= sizeof (Elf_External_Vernaux
);
3306 while (need
.vn_next
);
3312 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3313 The default is to only match when the INPUT and OUTPUT are exactly
3317 _bfd_elf_default_relocs_compatible (const bfd_target
*input
,
3318 const bfd_target
*output
)
3320 return input
== output
;
3323 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3324 This version is used when different targets for the same architecture
3325 are virtually identical. */
3328 _bfd_elf_relocs_compatible (const bfd_target
*input
,
3329 const bfd_target
*output
)
3331 const struct elf_backend_data
*obed
, *ibed
;
3333 if (input
== output
)
3336 ibed
= xvec_get_elf_backend_data (input
);
3337 obed
= xvec_get_elf_backend_data (output
);
3339 if (ibed
->arch
!= obed
->arch
)
3342 /* If both backends are using this function, deem them compatible. */
3343 return ibed
->relocs_compatible
== obed
->relocs_compatible
;
3346 /* Add symbols from an ELF object file to the linker hash table. */
3349 elf_link_add_object_symbols (bfd
*abfd
, struct bfd_link_info
*info
)
3351 Elf_Internal_Ehdr
*ehdr
;
3352 Elf_Internal_Shdr
*hdr
;
3353 bfd_size_type symcount
;
3354 bfd_size_type extsymcount
;
3355 bfd_size_type extsymoff
;
3356 struct elf_link_hash_entry
**sym_hash
;
3357 bfd_boolean dynamic
;
3358 Elf_External_Versym
*extversym
= NULL
;
3359 Elf_External_Versym
*ever
;
3360 struct elf_link_hash_entry
*weaks
;
3361 struct elf_link_hash_entry
**nondeflt_vers
= NULL
;
3362 bfd_size_type nondeflt_vers_cnt
= 0;
3363 Elf_Internal_Sym
*isymbuf
= NULL
;
3364 Elf_Internal_Sym
*isym
;
3365 Elf_Internal_Sym
*isymend
;
3366 const struct elf_backend_data
*bed
;
3367 bfd_boolean add_needed
;
3368 struct elf_link_hash_table
*htab
;
3370 void *alloc_mark
= NULL
;
3371 struct bfd_hash_entry
**old_table
= NULL
;
3372 unsigned int old_size
= 0;
3373 unsigned int old_count
= 0;
3374 void *old_tab
= NULL
;
3377 struct bfd_link_hash_entry
*old_undefs
= NULL
;
3378 struct bfd_link_hash_entry
*old_undefs_tail
= NULL
;
3379 long old_dynsymcount
= 0;
3381 size_t hashsize
= 0;
3383 htab
= elf_hash_table (info
);
3384 bed
= get_elf_backend_data (abfd
);
3386 if ((abfd
->flags
& DYNAMIC
) == 0)
3392 /* You can't use -r against a dynamic object. Also, there's no
3393 hope of using a dynamic object which does not exactly match
3394 the format of the output file. */
3395 if (info
->relocatable
3396 || !is_elf_hash_table (htab
)
3397 || info
->output_bfd
->xvec
!= abfd
->xvec
)
3399 if (info
->relocatable
)
3400 bfd_set_error (bfd_error_invalid_operation
);
3402 bfd_set_error (bfd_error_wrong_format
);
3407 ehdr
= elf_elfheader (abfd
);
3408 if (info
->warn_alternate_em
3409 && bed
->elf_machine_code
!= ehdr
->e_machine
3410 && ((bed
->elf_machine_alt1
!= 0
3411 && ehdr
->e_machine
== bed
->elf_machine_alt1
)
3412 || (bed
->elf_machine_alt2
!= 0
3413 && ehdr
->e_machine
== bed
->elf_machine_alt2
)))
3414 info
->callbacks
->einfo
3415 (_("%P: alternate ELF machine code found (%d) in %B, expecting %d\n"),
3416 ehdr
->e_machine
, abfd
, bed
->elf_machine_code
);
3418 /* As a GNU extension, any input sections which are named
3419 .gnu.warning.SYMBOL are treated as warning symbols for the given
3420 symbol. This differs from .gnu.warning sections, which generate
3421 warnings when they are included in an output file. */
3422 /* PR 12761: Also generate this warning when building shared libraries. */
3423 if (info
->executable
|| info
->shared
)
3427 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
3431 name
= bfd_get_section_name (abfd
, s
);
3432 if (CONST_STRNEQ (name
, ".gnu.warning."))
3437 name
+= sizeof ".gnu.warning." - 1;
3439 /* If this is a shared object, then look up the symbol
3440 in the hash table. If it is there, and it is already
3441 been defined, then we will not be using the entry
3442 from this shared object, so we don't need to warn.
3443 FIXME: If we see the definition in a regular object
3444 later on, we will warn, but we shouldn't. The only
3445 fix is to keep track of what warnings we are supposed
3446 to emit, and then handle them all at the end of the
3450 struct elf_link_hash_entry
*h
;
3452 h
= elf_link_hash_lookup (htab
, name
, FALSE
, FALSE
, TRUE
);
3454 /* FIXME: What about bfd_link_hash_common? */
3456 && (h
->root
.type
== bfd_link_hash_defined
3457 || h
->root
.type
== bfd_link_hash_defweak
))
3459 /* We don't want to issue this warning. Clobber
3460 the section size so that the warning does not
3461 get copied into the output file. */
3468 msg
= (char *) bfd_alloc (abfd
, sz
+ 1);
3472 if (! bfd_get_section_contents (abfd
, s
, msg
, 0, sz
))
3477 if (! (_bfd_generic_link_add_one_symbol
3478 (info
, abfd
, name
, BSF_WARNING
, s
, 0, msg
,
3479 FALSE
, bed
->collect
, NULL
)))
3482 if (! info
->relocatable
)
3484 /* Clobber the section size so that the warning does
3485 not get copied into the output file. */
3488 /* Also set SEC_EXCLUDE, so that symbols defined in
3489 the warning section don't get copied to the output. */
3490 s
->flags
|= SEC_EXCLUDE
;
3499 /* If we are creating a shared library, create all the dynamic
3500 sections immediately. We need to attach them to something,
3501 so we attach them to this BFD, provided it is the right
3502 format. FIXME: If there are no input BFD's of the same
3503 format as the output, we can't make a shared library. */
3505 && is_elf_hash_table (htab
)
3506 && info
->output_bfd
->xvec
== abfd
->xvec
3507 && !htab
->dynamic_sections_created
)
3509 if (! _bfd_elf_link_create_dynamic_sections (abfd
, info
))
3513 else if (!is_elf_hash_table (htab
))
3518 const char *soname
= NULL
;
3520 struct bfd_link_needed_list
*rpath
= NULL
, *runpath
= NULL
;
3523 /* ld --just-symbols and dynamic objects don't mix very well.
3524 ld shouldn't allow it. */
3525 if ((s
= abfd
->sections
) != NULL
3526 && s
->sec_info_type
== SEC_INFO_TYPE_JUST_SYMS
)
3529 /* If this dynamic lib was specified on the command line with
3530 --as-needed in effect, then we don't want to add a DT_NEEDED
3531 tag unless the lib is actually used. Similary for libs brought
3532 in by another lib's DT_NEEDED. When --no-add-needed is used
3533 on a dynamic lib, we don't want to add a DT_NEEDED entry for
3534 any dynamic library in DT_NEEDED tags in the dynamic lib at
3536 add_needed
= (elf_dyn_lib_class (abfd
)
3537 & (DYN_AS_NEEDED
| DYN_DT_NEEDED
3538 | DYN_NO_NEEDED
)) == 0;
3540 s
= bfd_get_section_by_name (abfd
, ".dynamic");
3545 unsigned int elfsec
;
3546 unsigned long shlink
;
3548 if (!bfd_malloc_and_get_section (abfd
, s
, &dynbuf
))
3555 elfsec
= _bfd_elf_section_from_bfd_section (abfd
, s
);
3556 if (elfsec
== SHN_BAD
)
3557 goto error_free_dyn
;
3558 shlink
= elf_elfsections (abfd
)[elfsec
]->sh_link
;
3560 for (extdyn
= dynbuf
;
3561 extdyn
< dynbuf
+ s
->size
;
3562 extdyn
+= bed
->s
->sizeof_dyn
)
3564 Elf_Internal_Dyn dyn
;
3566 bed
->s
->swap_dyn_in (abfd
, extdyn
, &dyn
);
3567 if (dyn
.d_tag
== DT_SONAME
)
3569 unsigned int tagv
= dyn
.d_un
.d_val
;
3570 soname
= bfd_elf_string_from_elf_section (abfd
, shlink
, tagv
);
3572 goto error_free_dyn
;
3574 if (dyn
.d_tag
== DT_NEEDED
)
3576 struct bfd_link_needed_list
*n
, **pn
;
3578 unsigned int tagv
= dyn
.d_un
.d_val
;
3580 amt
= sizeof (struct bfd_link_needed_list
);
3581 n
= (struct bfd_link_needed_list
*) bfd_alloc (abfd
, amt
);
3582 fnm
= bfd_elf_string_from_elf_section (abfd
, shlink
, tagv
);
3583 if (n
== NULL
|| fnm
== NULL
)
3584 goto error_free_dyn
;
3585 amt
= strlen (fnm
) + 1;
3586 anm
= (char *) bfd_alloc (abfd
, amt
);
3588 goto error_free_dyn
;
3589 memcpy (anm
, fnm
, amt
);
3593 for (pn
= &htab
->needed
; *pn
!= NULL
; pn
= &(*pn
)->next
)
3597 if (dyn
.d_tag
== DT_RUNPATH
)
3599 struct bfd_link_needed_list
*n
, **pn
;
3601 unsigned int tagv
= dyn
.d_un
.d_val
;
3603 amt
= sizeof (struct bfd_link_needed_list
);
3604 n
= (struct bfd_link_needed_list
*) bfd_alloc (abfd
, amt
);
3605 fnm
= bfd_elf_string_from_elf_section (abfd
, shlink
, tagv
);
3606 if (n
== NULL
|| fnm
== NULL
)
3607 goto error_free_dyn
;
3608 amt
= strlen (fnm
) + 1;
3609 anm
= (char *) bfd_alloc (abfd
, amt
);
3611 goto error_free_dyn
;
3612 memcpy (anm
, fnm
, amt
);
3616 for (pn
= & runpath
;
3622 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
3623 if (!runpath
&& dyn
.d_tag
== DT_RPATH
)
3625 struct bfd_link_needed_list
*n
, **pn
;
3627 unsigned int tagv
= dyn
.d_un
.d_val
;
3629 amt
= sizeof (struct bfd_link_needed_list
);
3630 n
= (struct bfd_link_needed_list
*) bfd_alloc (abfd
, amt
);
3631 fnm
= bfd_elf_string_from_elf_section (abfd
, shlink
, tagv
);
3632 if (n
== NULL
|| fnm
== NULL
)
3633 goto error_free_dyn
;
3634 amt
= strlen (fnm
) + 1;
3635 anm
= (char *) bfd_alloc (abfd
, amt
);
3637 goto error_free_dyn
;
3638 memcpy (anm
, fnm
, amt
);
3648 if (dyn
.d_tag
== DT_AUDIT
)
3650 unsigned int tagv
= dyn
.d_un
.d_val
;
3651 audit
= bfd_elf_string_from_elf_section (abfd
, shlink
, tagv
);
3658 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
3659 frees all more recently bfd_alloc'd blocks as well. */
3665 struct bfd_link_needed_list
**pn
;
3666 for (pn
= &htab
->runpath
; *pn
!= NULL
; pn
= &(*pn
)->next
)
3671 /* We do not want to include any of the sections in a dynamic
3672 object in the output file. We hack by simply clobbering the
3673 list of sections in the BFD. This could be handled more
3674 cleanly by, say, a new section flag; the existing
3675 SEC_NEVER_LOAD flag is not the one we want, because that one
3676 still implies that the section takes up space in the output
3678 bfd_section_list_clear (abfd
);
3680 /* Find the name to use in a DT_NEEDED entry that refers to this
3681 object. If the object has a DT_SONAME entry, we use it.
3682 Otherwise, if the generic linker stuck something in
3683 elf_dt_name, we use that. Otherwise, we just use the file
3685 if (soname
== NULL
|| *soname
== '\0')
3687 soname
= elf_dt_name (abfd
);
3688 if (soname
== NULL
|| *soname
== '\0')
3689 soname
= bfd_get_filename (abfd
);
3692 /* Save the SONAME because sometimes the linker emulation code
3693 will need to know it. */
3694 elf_dt_name (abfd
) = soname
;
3696 ret
= elf_add_dt_needed_tag (abfd
, info
, soname
, add_needed
);
3700 /* If we have already included this dynamic object in the
3701 link, just ignore it. There is no reason to include a
3702 particular dynamic object more than once. */
3706 /* Save the DT_AUDIT entry for the linker emulation code. */
3707 elf_dt_audit (abfd
) = audit
;
3710 /* If this is a dynamic object, we always link against the .dynsym
3711 symbol table, not the .symtab symbol table. The dynamic linker
3712 will only see the .dynsym symbol table, so there is no reason to
3713 look at .symtab for a dynamic object. */
3715 if (! dynamic
|| elf_dynsymtab (abfd
) == 0)
3716 hdr
= &elf_tdata (abfd
)->symtab_hdr
;
3718 hdr
= &elf_tdata (abfd
)->dynsymtab_hdr
;
3720 symcount
= hdr
->sh_size
/ bed
->s
->sizeof_sym
;
3722 /* The sh_info field of the symtab header tells us where the
3723 external symbols start. We don't care about the local symbols at
3725 if (elf_bad_symtab (abfd
))
3727 extsymcount
= symcount
;
3732 extsymcount
= symcount
- hdr
->sh_info
;
3733 extsymoff
= hdr
->sh_info
;
3737 if (extsymcount
!= 0)
3739 isymbuf
= bfd_elf_get_elf_syms (abfd
, hdr
, extsymcount
, extsymoff
,
3741 if (isymbuf
== NULL
)
3744 /* We store a pointer to the hash table entry for each external
3746 amt
= extsymcount
* sizeof (struct elf_link_hash_entry
*);
3747 sym_hash
= (struct elf_link_hash_entry
**) bfd_alloc (abfd
, amt
);
3748 if (sym_hash
== NULL
)
3749 goto error_free_sym
;
3750 elf_sym_hashes (abfd
) = sym_hash
;
3755 /* Read in any version definitions. */
3756 if (!_bfd_elf_slurp_version_tables (abfd
,
3757 info
->default_imported_symver
))
3758 goto error_free_sym
;
3760 /* Read in the symbol versions, but don't bother to convert them
3761 to internal format. */
3762 if (elf_dynversym (abfd
) != 0)
3764 Elf_Internal_Shdr
*versymhdr
;
3766 versymhdr
= &elf_tdata (abfd
)->dynversym_hdr
;
3767 extversym
= (Elf_External_Versym
*) bfd_malloc (versymhdr
->sh_size
);
3768 if (extversym
== NULL
)
3769 goto error_free_sym
;
3770 amt
= versymhdr
->sh_size
;
3771 if (bfd_seek (abfd
, versymhdr
->sh_offset
, SEEK_SET
) != 0
3772 || bfd_bread (extversym
, amt
, abfd
) != amt
)
3773 goto error_free_vers
;
3777 /* If we are loading an as-needed shared lib, save the symbol table
3778 state before we start adding symbols. If the lib turns out
3779 to be unneeded, restore the state. */
3780 if ((elf_dyn_lib_class (abfd
) & DYN_AS_NEEDED
) != 0)
3785 for (entsize
= 0, i
= 0; i
< htab
->root
.table
.size
; i
++)
3787 struct bfd_hash_entry
*p
;
3788 struct elf_link_hash_entry
*h
;
3790 for (p
= htab
->root
.table
.table
[i
]; p
!= NULL
; p
= p
->next
)
3792 h
= (struct elf_link_hash_entry
*) p
;
3793 entsize
+= htab
->root
.table
.entsize
;
3794 if (h
->root
.type
== bfd_link_hash_warning
)
3795 entsize
+= htab
->root
.table
.entsize
;
3799 tabsize
= htab
->root
.table
.size
* sizeof (struct bfd_hash_entry
*);
3800 hashsize
= extsymcount
* sizeof (struct elf_link_hash_entry
*);
3801 old_tab
= bfd_malloc (tabsize
+ entsize
+ hashsize
);
3802 if (old_tab
== NULL
)
3803 goto error_free_vers
;
3805 /* Remember the current objalloc pointer, so that all mem for
3806 symbols added can later be reclaimed. */
3807 alloc_mark
= bfd_hash_allocate (&htab
->root
.table
, 1);
3808 if (alloc_mark
== NULL
)
3809 goto error_free_vers
;
3811 /* Make a special call to the linker "notice" function to
3812 tell it that we are about to handle an as-needed lib. */
3813 if (!(*info
->callbacks
->notice
) (info
, NULL
, abfd
, NULL
,
3814 notice_as_needed
, 0, NULL
))
3815 goto error_free_vers
;
3817 /* Clone the symbol table and sym hashes. Remember some
3818 pointers into the symbol table, and dynamic symbol count. */
3819 old_hash
= (char *) old_tab
+ tabsize
;
3820 old_ent
= (char *) old_hash
+ hashsize
;
3821 memcpy (old_tab
, htab
->root
.table
.table
, tabsize
);
3822 memcpy (old_hash
, sym_hash
, hashsize
);
3823 old_undefs
= htab
->root
.undefs
;
3824 old_undefs_tail
= htab
->root
.undefs_tail
;
3825 old_table
= htab
->root
.table
.table
;
3826 old_size
= htab
->root
.table
.size
;
3827 old_count
= htab
->root
.table
.count
;
3828 old_dynsymcount
= htab
->dynsymcount
;
3830 for (i
= 0; i
< htab
->root
.table
.size
; i
++)
3832 struct bfd_hash_entry
*p
;
3833 struct elf_link_hash_entry
*h
;
3835 for (p
= htab
->root
.table
.table
[i
]; p
!= NULL
; p
= p
->next
)
3837 memcpy (old_ent
, p
, htab
->root
.table
.entsize
);
3838 old_ent
= (char *) old_ent
+ htab
->root
.table
.entsize
;
3839 h
= (struct elf_link_hash_entry
*) p
;
3840 if (h
->root
.type
== bfd_link_hash_warning
)
3842 memcpy (old_ent
, h
->root
.u
.i
.link
, htab
->root
.table
.entsize
);
3843 old_ent
= (char *) old_ent
+ htab
->root
.table
.entsize
;
3850 ever
= extversym
!= NULL
? extversym
+ extsymoff
: NULL
;
3851 for (isym
= isymbuf
, isymend
= isymbuf
+ extsymcount
;
3853 isym
++, sym_hash
++, ever
= (ever
!= NULL
? ever
+ 1 : NULL
))
3857 asection
*sec
, *new_sec
;
3860 struct elf_link_hash_entry
*h
;
3861 struct elf_link_hash_entry
*hi
;
3862 bfd_boolean definition
;
3863 bfd_boolean size_change_ok
;
3864 bfd_boolean type_change_ok
;
3865 bfd_boolean new_weakdef
;
3866 bfd_boolean override
;
3868 unsigned int old_alignment
;
3870 bfd
* undef_bfd
= NULL
;
3874 flags
= BSF_NO_FLAGS
;
3876 value
= isym
->st_value
;
3878 common
= bed
->common_definition (isym
);
3880 bind
= ELF_ST_BIND (isym
->st_info
);
3884 /* This should be impossible, since ELF requires that all
3885 global symbols follow all local symbols, and that sh_info
3886 point to the first global symbol. Unfortunately, Irix 5
3891 if (isym
->st_shndx
!= SHN_UNDEF
&& !common
)
3899 case STB_GNU_UNIQUE
:
3900 flags
= BSF_GNU_UNIQUE
;
3904 /* Leave it up to the processor backend. */
3908 if (isym
->st_shndx
== SHN_UNDEF
)
3909 sec
= bfd_und_section_ptr
;
3910 else if (isym
->st_shndx
== SHN_ABS
)
3911 sec
= bfd_abs_section_ptr
;
3912 else if (isym
->st_shndx
== SHN_COMMON
)
3914 sec
= bfd_com_section_ptr
;
3915 /* What ELF calls the size we call the value. What ELF
3916 calls the value we call the alignment. */
3917 value
= isym
->st_size
;
3921 sec
= bfd_section_from_elf_index (abfd
, isym
->st_shndx
);
3923 sec
= bfd_abs_section_ptr
;
3924 else if (discarded_section (sec
))
3926 /* Symbols from discarded section are undefined. We keep
3928 sec
= bfd_und_section_ptr
;
3929 isym
->st_shndx
= SHN_UNDEF
;
3931 else if ((abfd
->flags
& (EXEC_P
| DYNAMIC
)) != 0)
3935 name
= bfd_elf_string_from_elf_section (abfd
, hdr
->sh_link
,
3938 goto error_free_vers
;
3940 if (isym
->st_shndx
== SHN_COMMON
3941 && (abfd
->flags
& BFD_PLUGIN
) != 0)
3943 asection
*xc
= bfd_get_section_by_name (abfd
, "COMMON");
3947 flagword sflags
= (SEC_ALLOC
| SEC_IS_COMMON
| SEC_KEEP
3949 xc
= bfd_make_section_with_flags (abfd
, "COMMON", sflags
);
3951 goto error_free_vers
;
3955 else if (isym
->st_shndx
== SHN_COMMON
3956 && ELF_ST_TYPE (isym
->st_info
) == STT_TLS
3957 && !info
->relocatable
)
3959 asection
*tcomm
= bfd_get_section_by_name (abfd
, ".tcommon");
3963 flagword sflags
= (SEC_ALLOC
| SEC_THREAD_LOCAL
| SEC_IS_COMMON
3964 | SEC_LINKER_CREATED
);
3965 tcomm
= bfd_make_section_with_flags (abfd
, ".tcommon", sflags
);
3967 goto error_free_vers
;
3971 else if (bed
->elf_add_symbol_hook
)
3973 if (! (*bed
->elf_add_symbol_hook
) (abfd
, info
, isym
, &name
, &flags
,
3975 goto error_free_vers
;
3977 /* The hook function sets the name to NULL if this symbol
3978 should be skipped for some reason. */
3983 /* Sanity check that all possibilities were handled. */
3986 bfd_set_error (bfd_error_bad_value
);
3987 goto error_free_vers
;
3990 if (bfd_is_und_section (sec
)
3991 || bfd_is_com_section (sec
))
3996 size_change_ok
= FALSE
;
3997 type_change_ok
= bed
->type_change_ok
;
4002 if (is_elf_hash_table (htab
))
4004 Elf_Internal_Versym iver
;
4005 unsigned int vernum
= 0;
4008 /* If this is a definition of a symbol which was previously
4009 referenced in a non-weak manner then make a note of the bfd
4010 that contained the reference. This is used if we need to
4011 refer to the source of the reference later on. */
4012 if (! bfd_is_und_section (sec
))
4014 h
= elf_link_hash_lookup (elf_hash_table (info
), name
, FALSE
, FALSE
, FALSE
);
4017 && h
->root
.type
== bfd_link_hash_undefined
4018 && h
->root
.u
.undef
.abfd
)
4019 undef_bfd
= h
->root
.u
.undef
.abfd
;
4024 if (info
->default_imported_symver
)
4025 /* Use the default symbol version created earlier. */
4026 iver
.vs_vers
= elf_tdata (abfd
)->cverdefs
;
4031 _bfd_elf_swap_versym_in (abfd
, ever
, &iver
);
4033 vernum
= iver
.vs_vers
& VERSYM_VERSION
;
4035 /* If this is a hidden symbol, or if it is not version
4036 1, we append the version name to the symbol name.
4037 However, we do not modify a non-hidden absolute symbol
4038 if it is not a function, because it might be the version
4039 symbol itself. FIXME: What if it isn't? */
4040 if ((iver
.vs_vers
& VERSYM_HIDDEN
) != 0
4042 && (!bfd_is_abs_section (sec
)
4043 || bed
->is_function_type (ELF_ST_TYPE (isym
->st_info
)))))
4046 size_t namelen
, verlen
, newlen
;
4049 if (isym
->st_shndx
!= SHN_UNDEF
)
4051 if (vernum
> elf_tdata (abfd
)->cverdefs
)
4053 else if (vernum
> 1)
4055 elf_tdata (abfd
)->verdef
[vernum
- 1].vd_nodename
;
4061 (*_bfd_error_handler
)
4062 (_("%B: %s: invalid version %u (max %d)"),
4064 elf_tdata (abfd
)->cverdefs
);
4065 bfd_set_error (bfd_error_bad_value
);
4066 goto error_free_vers
;
4071 /* We cannot simply test for the number of
4072 entries in the VERNEED section since the
4073 numbers for the needed versions do not start
4075 Elf_Internal_Verneed
*t
;
4078 for (t
= elf_tdata (abfd
)->verref
;
4082 Elf_Internal_Vernaux
*a
;
4084 for (a
= t
->vn_auxptr
; a
!= NULL
; a
= a
->vna_nextptr
)
4086 if (a
->vna_other
== vernum
)
4088 verstr
= a
->vna_nodename
;
4097 (*_bfd_error_handler
)
4098 (_("%B: %s: invalid needed version %d"),
4099 abfd
, name
, vernum
);
4100 bfd_set_error (bfd_error_bad_value
);
4101 goto error_free_vers
;
4105 namelen
= strlen (name
);
4106 verlen
= strlen (verstr
);
4107 newlen
= namelen
+ verlen
+ 2;
4108 if ((iver
.vs_vers
& VERSYM_HIDDEN
) == 0
4109 && isym
->st_shndx
!= SHN_UNDEF
)
4112 newname
= (char *) bfd_hash_allocate (&htab
->root
.table
, newlen
);
4113 if (newname
== NULL
)
4114 goto error_free_vers
;
4115 memcpy (newname
, name
, namelen
);
4116 p
= newname
+ namelen
;
4118 /* If this is a defined non-hidden version symbol,
4119 we add another @ to the name. This indicates the
4120 default version of the symbol. */
4121 if ((iver
.vs_vers
& VERSYM_HIDDEN
) == 0
4122 && isym
->st_shndx
!= SHN_UNDEF
)
4124 memcpy (p
, verstr
, verlen
+ 1);
4129 /* If necessary, make a second attempt to locate the bfd
4130 containing an unresolved, non-weak reference to the
4132 if (! bfd_is_und_section (sec
) && undef_bfd
== NULL
)
4134 h
= elf_link_hash_lookup (elf_hash_table (info
), name
, FALSE
, FALSE
, FALSE
);
4137 && h
->root
.type
== bfd_link_hash_undefined
4138 && h
->root
.u
.undef
.abfd
)
4139 undef_bfd
= h
->root
.u
.undef
.abfd
;
4142 if (!_bfd_elf_merge_symbol (abfd
, info
, name
, isym
, &sec
,
4143 &value
, &old_alignment
,
4144 sym_hash
, &skip
, &override
,
4145 &type_change_ok
, &size_change_ok
))
4146 goto error_free_vers
;
4155 while (h
->root
.type
== bfd_link_hash_indirect
4156 || h
->root
.type
== bfd_link_hash_warning
)
4157 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
4159 /* Remember the old alignment if this is a common symbol, so
4160 that we don't reduce the alignment later on. We can't
4161 check later, because _bfd_generic_link_add_one_symbol
4162 will set a default for the alignment which we want to
4163 override. We also remember the old bfd where the existing
4164 definition comes from. */
4165 switch (h
->root
.type
)
4170 case bfd_link_hash_defined
:
4171 case bfd_link_hash_defweak
:
4172 old_bfd
= h
->root
.u
.def
.section
->owner
;
4175 case bfd_link_hash_common
:
4176 old_bfd
= h
->root
.u
.c
.p
->section
->owner
;
4177 old_alignment
= h
->root
.u
.c
.p
->alignment_power
;
4181 if (elf_tdata (abfd
)->verdef
!= NULL
4185 h
->verinfo
.verdef
= &elf_tdata (abfd
)->verdef
[vernum
- 1];
4188 if (! (_bfd_generic_link_add_one_symbol
4189 (info
, abfd
, name
, flags
, sec
, value
, NULL
, FALSE
, bed
->collect
,
4190 (struct bfd_link_hash_entry
**) sym_hash
)))
4191 goto error_free_vers
;
4194 /* We need to make sure that indirect symbol dynamic flags are
4197 while (h
->root
.type
== bfd_link_hash_indirect
4198 || h
->root
.type
== bfd_link_hash_warning
)
4199 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
4202 if (is_elf_hash_table (htab
))
4203 h
->unique_global
= (flags
& BSF_GNU_UNIQUE
) != 0;
4205 new_weakdef
= FALSE
;
4208 && (flags
& BSF_WEAK
) != 0
4209 && !bed
->is_function_type (ELF_ST_TYPE (isym
->st_info
))
4210 && is_elf_hash_table (htab
)
4211 && h
->u
.weakdef
== NULL
)
4213 /* Keep a list of all weak defined non function symbols from
4214 a dynamic object, using the weakdef field. Later in this
4215 function we will set the weakdef field to the correct
4216 value. We only put non-function symbols from dynamic
4217 objects on this list, because that happens to be the only
4218 time we need to know the normal symbol corresponding to a
4219 weak symbol, and the information is time consuming to
4220 figure out. If the weakdef field is not already NULL,
4221 then this symbol was already defined by some previous
4222 dynamic object, and we will be using that previous
4223 definition anyhow. */
4225 h
->u
.weakdef
= weaks
;
4230 /* Set the alignment of a common symbol. */
4231 if ((common
|| bfd_is_com_section (sec
))
4232 && h
->root
.type
== bfd_link_hash_common
)
4237 align
= bfd_log2 (isym
->st_value
);
4240 /* The new symbol is a common symbol in a shared object.
4241 We need to get the alignment from the section. */
4242 align
= new_sec
->alignment_power
;
4244 if (align
> old_alignment
)
4245 h
->root
.u
.c
.p
->alignment_power
= align
;
4247 h
->root
.u
.c
.p
->alignment_power
= old_alignment
;
4250 if (is_elf_hash_table (htab
))
4254 /* Check the alignment when a common symbol is involved. This
4255 can change when a common symbol is overridden by a normal
4256 definition or a common symbol is ignored due to the old
4257 normal definition. We need to make sure the maximum
4258 alignment is maintained. */
4259 if ((old_alignment
|| common
)
4260 && h
->root
.type
!= bfd_link_hash_common
)
4262 unsigned int common_align
;
4263 unsigned int normal_align
;
4264 unsigned int symbol_align
;
4268 symbol_align
= ffs (h
->root
.u
.def
.value
) - 1;
4269 if (h
->root
.u
.def
.section
->owner
!= NULL
4270 && (h
->root
.u
.def
.section
->owner
->flags
& DYNAMIC
) == 0)
4272 normal_align
= h
->root
.u
.def
.section
->alignment_power
;
4273 if (normal_align
> symbol_align
)
4274 normal_align
= symbol_align
;
4277 normal_align
= symbol_align
;
4281 common_align
= old_alignment
;
4282 common_bfd
= old_bfd
;
4287 common_align
= bfd_log2 (isym
->st_value
);
4289 normal_bfd
= old_bfd
;
4292 if (normal_align
< common_align
)
4294 /* PR binutils/2735 */
4295 if (normal_bfd
== NULL
)
4296 (*_bfd_error_handler
)
4297 (_("Warning: alignment %u of common symbol `%s' in %B"
4298 " is greater than the alignment (%u) of its section %A"),
4299 common_bfd
, h
->root
.u
.def
.section
,
4300 1 << common_align
, name
, 1 << normal_align
);
4302 (*_bfd_error_handler
)
4303 (_("Warning: alignment %u of symbol `%s' in %B"
4304 " is smaller than %u in %B"),
4305 normal_bfd
, common_bfd
,
4306 1 << normal_align
, name
, 1 << common_align
);
4310 /* Remember the symbol size if it isn't undefined. */
4311 if ((isym
->st_size
!= 0 && isym
->st_shndx
!= SHN_UNDEF
)
4312 && (definition
|| h
->size
== 0))
4315 && h
->size
!= isym
->st_size
4316 && ! size_change_ok
)
4317 (*_bfd_error_handler
)
4318 (_("Warning: size of symbol `%s' changed"
4319 " from %lu in %B to %lu in %B"),
4321 name
, (unsigned long) h
->size
,
4322 (unsigned long) isym
->st_size
);
4324 h
->size
= isym
->st_size
;
4327 /* If this is a common symbol, then we always want H->SIZE
4328 to be the size of the common symbol. The code just above
4329 won't fix the size if a common symbol becomes larger. We
4330 don't warn about a size change here, because that is
4331 covered by --warn-common. Allow changed between different
4333 if (h
->root
.type
== bfd_link_hash_common
)
4334 h
->size
= h
->root
.u
.c
.size
;
4336 if (ELF_ST_TYPE (isym
->st_info
) != STT_NOTYPE
4337 && (definition
|| h
->type
== STT_NOTYPE
))
4339 unsigned int type
= ELF_ST_TYPE (isym
->st_info
);
4341 /* Turn an IFUNC symbol from a DSO into a normal FUNC
4343 if (type
== STT_GNU_IFUNC
4344 && (abfd
->flags
& DYNAMIC
) != 0)
4347 if (h
->type
!= type
)
4349 if (h
->type
!= STT_NOTYPE
&& ! type_change_ok
)
4350 (*_bfd_error_handler
)
4351 (_("Warning: type of symbol `%s' changed"
4352 " from %d to %d in %B"),
4353 abfd
, name
, h
->type
, type
);
4359 /* Merge st_other field. */
4360 elf_merge_st_other (abfd
, h
, isym
, definition
, dynamic
);
4362 /* Set a flag in the hash table entry indicating the type of
4363 reference or definition we just found. Keep a count of
4364 the number of dynamic symbols we find. A dynamic symbol
4365 is one which is referenced or defined by both a regular
4366 object and a shared object. */
4373 if (bind
!= STB_WEAK
)
4374 h
->ref_regular_nonweak
= 1;
4386 /* If the indirect symbol has been forced local, don't
4387 make the real symbol dynamic. */
4388 if ((h
== hi
|| !hi
->forced_local
)
4389 && (! info
->executable
4399 hi
->ref_dynamic
= 1;
4405 hi
->def_dynamic
= 1;
4406 hi
->dynamic_def
= 1;
4409 /* If the indirect symbol has been forced local, don't
4410 make the real symbol dynamic. */
4411 if ((h
== hi
|| !hi
->forced_local
)
4414 || (h
->u
.weakdef
!= NULL
4416 && h
->u
.weakdef
->dynindx
!= -1)))
4420 /* We don't want to make debug symbol dynamic. */
4421 if (definition
&& (sec
->flags
& SEC_DEBUGGING
) && !info
->relocatable
)
4424 /* Nor should we make plugin symbols dynamic. */
4425 if ((abfd
->flags
& BFD_PLUGIN
) != 0)
4429 h
->target_internal
= isym
->st_target_internal
;
4431 /* Check to see if we need to add an indirect symbol for
4432 the default name. */
4433 if (definition
|| h
->root
.type
== bfd_link_hash_common
)
4434 if (!_bfd_elf_add_default_symbol (abfd
, info
, h
, name
, isym
,
4435 &sec
, &value
, &dynsym
,
4437 goto error_free_vers
;
4439 if (definition
&& !dynamic
)
4441 char *p
= strchr (name
, ELF_VER_CHR
);
4442 if (p
!= NULL
&& p
[1] != ELF_VER_CHR
)
4444 /* Queue non-default versions so that .symver x, x@FOO
4445 aliases can be checked. */
4448 amt
= ((isymend
- isym
+ 1)
4449 * sizeof (struct elf_link_hash_entry
*));
4451 (struct elf_link_hash_entry
**) bfd_malloc (amt
);
4453 goto error_free_vers
;
4455 nondeflt_vers
[nondeflt_vers_cnt
++] = h
;
4459 if (dynsym
&& h
->dynindx
== -1)
4461 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
4462 goto error_free_vers
;
4463 if (h
->u
.weakdef
!= NULL
4465 && h
->u
.weakdef
->dynindx
== -1)
4467 if (!bfd_elf_link_record_dynamic_symbol (info
, h
->u
.weakdef
))
4468 goto error_free_vers
;
4471 else if (dynsym
&& h
->dynindx
!= -1)
4472 /* If the symbol already has a dynamic index, but
4473 visibility says it should not be visible, turn it into
4475 switch (ELF_ST_VISIBILITY (h
->other
))
4479 (*bed
->elf_backend_hide_symbol
) (info
, h
, TRUE
);
4489 && (elf_dyn_lib_class (abfd
) & DYN_AS_NEEDED
) != 0
4490 && !on_needed_list (elf_dt_name (abfd
), htab
->needed
))))
4493 const char *soname
= elf_dt_name (abfd
);
4495 /* A symbol from a library loaded via DT_NEEDED of some
4496 other library is referenced by a regular object.
4497 Add a DT_NEEDED entry for it. Issue an error if
4498 --no-add-needed is used and the reference was not
4500 if (undef_bfd
!= NULL
4501 && (elf_dyn_lib_class (abfd
) & DYN_NO_NEEDED
) != 0)
4503 (*_bfd_error_handler
)
4504 (_("%B: undefined reference to symbol '%s'"),
4506 (*_bfd_error_handler
)
4507 (_("note: '%s' is defined in DSO %B so try adding it to the linker command line"),
4509 bfd_set_error (bfd_error_invalid_operation
);
4510 goto error_free_vers
;
4513 elf_dyn_lib_class (abfd
) = (enum dynamic_lib_link_class
)
4514 (elf_dyn_lib_class (abfd
) & ~DYN_AS_NEEDED
);
4517 ret
= elf_add_dt_needed_tag (abfd
, info
, soname
, add_needed
);
4519 goto error_free_vers
;
4521 BFD_ASSERT (ret
== 0);
4526 if (extversym
!= NULL
)
4532 if (isymbuf
!= NULL
)
4538 if ((elf_dyn_lib_class (abfd
) & DYN_AS_NEEDED
) != 0)
4542 /* Restore the symbol table. */
4543 if (bed
->as_needed_cleanup
)
4544 (*bed
->as_needed_cleanup
) (abfd
, info
);
4545 old_hash
= (char *) old_tab
+ tabsize
;
4546 old_ent
= (char *) old_hash
+ hashsize
;
4547 sym_hash
= elf_sym_hashes (abfd
);
4548 htab
->root
.table
.table
= old_table
;
4549 htab
->root
.table
.size
= old_size
;
4550 htab
->root
.table
.count
= old_count
;
4551 memcpy (htab
->root
.table
.table
, old_tab
, tabsize
);
4552 memcpy (sym_hash
, old_hash
, hashsize
);
4553 htab
->root
.undefs
= old_undefs
;
4554 htab
->root
.undefs_tail
= old_undefs_tail
;
4555 for (i
= 0; i
< htab
->root
.table
.size
; i
++)
4557 struct bfd_hash_entry
*p
;
4558 struct elf_link_hash_entry
*h
;
4560 unsigned int alignment_power
;
4562 for (p
= htab
->root
.table
.table
[i
]; p
!= NULL
; p
= p
->next
)
4564 h
= (struct elf_link_hash_entry
*) p
;
4565 if (h
->root
.type
== bfd_link_hash_warning
)
4566 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
4567 if (h
->dynindx
>= old_dynsymcount
)
4568 _bfd_elf_strtab_delref (htab
->dynstr
, h
->dynstr_index
);
4570 /* Preserve the maximum alignment and size for common
4571 symbols even if this dynamic lib isn't on DT_NEEDED
4572 since it can still be loaded at the run-time by another
4574 if (h
->root
.type
== bfd_link_hash_common
)
4576 size
= h
->root
.u
.c
.size
;
4577 alignment_power
= h
->root
.u
.c
.p
->alignment_power
;
4582 alignment_power
= 0;
4584 memcpy (p
, old_ent
, htab
->root
.table
.entsize
);
4585 old_ent
= (char *) old_ent
+ htab
->root
.table
.entsize
;
4586 h
= (struct elf_link_hash_entry
*) p
;
4587 if (h
->root
.type
== bfd_link_hash_warning
)
4589 memcpy (h
->root
.u
.i
.link
, old_ent
, htab
->root
.table
.entsize
);
4590 old_ent
= (char *) old_ent
+ htab
->root
.table
.entsize
;
4592 else if (h
->root
.type
== bfd_link_hash_common
)
4594 if (size
> h
->root
.u
.c
.size
)
4595 h
->root
.u
.c
.size
= size
;
4596 if (alignment_power
> h
->root
.u
.c
.p
->alignment_power
)
4597 h
->root
.u
.c
.p
->alignment_power
= alignment_power
;
4602 /* Make a special call to the linker "notice" function to
4603 tell it that symbols added for crefs may need to be removed. */
4604 if (!(*info
->callbacks
->notice
) (info
, NULL
, abfd
, NULL
,
4605 notice_not_needed
, 0, NULL
))
4606 goto error_free_vers
;
4609 objalloc_free_block ((struct objalloc
*) htab
->root
.table
.memory
,
4611 if (nondeflt_vers
!= NULL
)
4612 free (nondeflt_vers
);
4616 if (old_tab
!= NULL
)
4618 if (!(*info
->callbacks
->notice
) (info
, NULL
, abfd
, NULL
,
4619 notice_needed
, 0, NULL
))
4620 goto error_free_vers
;
4625 /* Now that all the symbols from this input file are created, handle
4626 .symver foo, foo@BAR such that any relocs against foo become foo@BAR. */
4627 if (nondeflt_vers
!= NULL
)
4629 bfd_size_type cnt
, symidx
;
4631 for (cnt
= 0; cnt
< nondeflt_vers_cnt
; ++cnt
)
4633 struct elf_link_hash_entry
*h
= nondeflt_vers
[cnt
], *hi
;
4634 char *shortname
, *p
;
4636 p
= strchr (h
->root
.root
.string
, ELF_VER_CHR
);
4638 || (h
->root
.type
!= bfd_link_hash_defined
4639 && h
->root
.type
!= bfd_link_hash_defweak
))
4642 amt
= p
- h
->root
.root
.string
;
4643 shortname
= (char *) bfd_malloc (amt
+ 1);
4645 goto error_free_vers
;
4646 memcpy (shortname
, h
->root
.root
.string
, amt
);
4647 shortname
[amt
] = '\0';
4649 hi
= (struct elf_link_hash_entry
*)
4650 bfd_link_hash_lookup (&htab
->root
, shortname
,
4651 FALSE
, FALSE
, FALSE
);
4653 && hi
->root
.type
== h
->root
.type
4654 && hi
->root
.u
.def
.value
== h
->root
.u
.def
.value
4655 && hi
->root
.u
.def
.section
== h
->root
.u
.def
.section
)
4657 (*bed
->elf_backend_hide_symbol
) (info
, hi
, TRUE
);
4658 hi
->root
.type
= bfd_link_hash_indirect
;
4659 hi
->root
.u
.i
.link
= (struct bfd_link_hash_entry
*) h
;
4660 (*bed
->elf_backend_copy_indirect_symbol
) (info
, h
, hi
);
4661 sym_hash
= elf_sym_hashes (abfd
);
4663 for (symidx
= 0; symidx
< extsymcount
; ++symidx
)
4664 if (sym_hash
[symidx
] == hi
)
4666 sym_hash
[symidx
] = h
;
4672 free (nondeflt_vers
);
4673 nondeflt_vers
= NULL
;
4676 /* Now set the weakdefs field correctly for all the weak defined
4677 symbols we found. The only way to do this is to search all the
4678 symbols. Since we only need the information for non functions in
4679 dynamic objects, that's the only time we actually put anything on
4680 the list WEAKS. We need this information so that if a regular
4681 object refers to a symbol defined weakly in a dynamic object, the
4682 real symbol in the dynamic object is also put in the dynamic
4683 symbols; we also must arrange for both symbols to point to the
4684 same memory location. We could handle the general case of symbol
4685 aliasing, but a general symbol alias can only be generated in
4686 assembler code, handling it correctly would be very time
4687 consuming, and other ELF linkers don't handle general aliasing
4691 struct elf_link_hash_entry
**hpp
;
4692 struct elf_link_hash_entry
**hppend
;
4693 struct elf_link_hash_entry
**sorted_sym_hash
;
4694 struct elf_link_hash_entry
*h
;
4697 /* Since we have to search the whole symbol list for each weak
4698 defined symbol, search time for N weak defined symbols will be
4699 O(N^2). Binary search will cut it down to O(NlogN). */
4700 amt
= extsymcount
* sizeof (struct elf_link_hash_entry
*);
4701 sorted_sym_hash
= (struct elf_link_hash_entry
**) bfd_malloc (amt
);
4702 if (sorted_sym_hash
== NULL
)
4704 sym_hash
= sorted_sym_hash
;
4705 hpp
= elf_sym_hashes (abfd
);
4706 hppend
= hpp
+ extsymcount
;
4708 for (; hpp
< hppend
; hpp
++)
4712 && h
->root
.type
== bfd_link_hash_defined
4713 && !bed
->is_function_type (h
->type
))
4721 qsort (sorted_sym_hash
, sym_count
,
4722 sizeof (struct elf_link_hash_entry
*),
4725 while (weaks
!= NULL
)
4727 struct elf_link_hash_entry
*hlook
;
4733 weaks
= hlook
->u
.weakdef
;
4734 hlook
->u
.weakdef
= NULL
;
4736 BFD_ASSERT (hlook
->root
.type
== bfd_link_hash_defined
4737 || hlook
->root
.type
== bfd_link_hash_defweak
4738 || hlook
->root
.type
== bfd_link_hash_common
4739 || hlook
->root
.type
== bfd_link_hash_indirect
);
4740 slook
= hlook
->root
.u
.def
.section
;
4741 vlook
= hlook
->root
.u
.def
.value
;
4747 bfd_signed_vma vdiff
;
4749 h
= sorted_sym_hash
[idx
];
4750 vdiff
= vlook
- h
->root
.u
.def
.value
;
4757 long sdiff
= slook
->id
- h
->root
.u
.def
.section
->id
;
4767 /* We didn't find a value/section match. */
4771 /* With multiple aliases, or when the weak symbol is already
4772 strongly defined, we have multiple matching symbols and
4773 the binary search above may land on any of them. Step
4774 one past the matching symbol(s). */
4777 h
= sorted_sym_hash
[idx
];
4778 if (h
->root
.u
.def
.section
!= slook
4779 || h
->root
.u
.def
.value
!= vlook
)
4783 /* Now look back over the aliases. Since we sorted by size
4784 as well as value and section, we'll choose the one with
4785 the largest size. */
4788 h
= sorted_sym_hash
[idx
];
4790 /* Stop if value or section doesn't match. */
4791 if (h
->root
.u
.def
.section
!= slook
4792 || h
->root
.u
.def
.value
!= vlook
)
4794 else if (h
!= hlook
)
4796 hlook
->u
.weakdef
= h
;
4798 /* If the weak definition is in the list of dynamic
4799 symbols, make sure the real definition is put
4801 if (hlook
->dynindx
!= -1 && h
->dynindx
== -1)
4803 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
4806 free (sorted_sym_hash
);
4811 /* If the real definition is in the list of dynamic
4812 symbols, make sure the weak definition is put
4813 there as well. If we don't do this, then the
4814 dynamic loader might not merge the entries for the
4815 real definition and the weak definition. */
4816 if (h
->dynindx
!= -1 && hlook
->dynindx
== -1)
4818 if (! bfd_elf_link_record_dynamic_symbol (info
, hlook
))
4819 goto err_free_sym_hash
;
4826 free (sorted_sym_hash
);
4829 if (bed
->check_directives
4830 && !(*bed
->check_directives
) (abfd
, info
))
4833 /* If this object is the same format as the output object, and it is
4834 not a shared library, then let the backend look through the
4837 This is required to build global offset table entries and to
4838 arrange for dynamic relocs. It is not required for the
4839 particular common case of linking non PIC code, even when linking
4840 against shared libraries, but unfortunately there is no way of
4841 knowing whether an object file has been compiled PIC or not.
4842 Looking through the relocs is not particularly time consuming.
4843 The problem is that we must either (1) keep the relocs in memory,
4844 which causes the linker to require additional runtime memory or
4845 (2) read the relocs twice from the input file, which wastes time.
4846 This would be a good case for using mmap.
4848 I have no idea how to handle linking PIC code into a file of a
4849 different format. It probably can't be done. */
4851 && is_elf_hash_table (htab
)
4852 && bed
->check_relocs
!= NULL
4853 && elf_object_id (abfd
) == elf_hash_table_id (htab
)
4854 && (*bed
->relocs_compatible
) (abfd
->xvec
, info
->output_bfd
->xvec
))
4858 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
4860 Elf_Internal_Rela
*internal_relocs
;
4863 if ((o
->flags
& SEC_RELOC
) == 0
4864 || o
->reloc_count
== 0
4865 || ((info
->strip
== strip_all
|| info
->strip
== strip_debugger
)
4866 && (o
->flags
& SEC_DEBUGGING
) != 0)
4867 || bfd_is_abs_section (o
->output_section
))
4870 internal_relocs
= _bfd_elf_link_read_relocs (abfd
, o
, NULL
, NULL
,
4872 if (internal_relocs
== NULL
)
4875 ok
= (*bed
->check_relocs
) (abfd
, info
, o
, internal_relocs
);
4877 if (elf_section_data (o
)->relocs
!= internal_relocs
)
4878 free (internal_relocs
);
4885 /* If this is a non-traditional link, try to optimize the handling
4886 of the .stab/.stabstr sections. */
4888 && ! info
->traditional_format
4889 && is_elf_hash_table (htab
)
4890 && (info
->strip
!= strip_all
&& info
->strip
!= strip_debugger
))
4894 stabstr
= bfd_get_section_by_name (abfd
, ".stabstr");
4895 if (stabstr
!= NULL
)
4897 bfd_size_type string_offset
= 0;
4900 for (stab
= abfd
->sections
; stab
; stab
= stab
->next
)
4901 if (CONST_STRNEQ (stab
->name
, ".stab")
4902 && (!stab
->name
[5] ||
4903 (stab
->name
[5] == '.' && ISDIGIT (stab
->name
[6])))
4904 && (stab
->flags
& SEC_MERGE
) == 0
4905 && !bfd_is_abs_section (stab
->output_section
))
4907 struct bfd_elf_section_data
*secdata
;
4909 secdata
= elf_section_data (stab
);
4910 if (! _bfd_link_section_stabs (abfd
, &htab
->stab_info
, stab
,
4911 stabstr
, &secdata
->sec_info
,
4914 if (secdata
->sec_info
)
4915 stab
->sec_info_type
= SEC_INFO_TYPE_STABS
;
4920 if (is_elf_hash_table (htab
) && add_needed
)
4922 /* Add this bfd to the loaded list. */
4923 struct elf_link_loaded_list
*n
;
4925 n
= (struct elf_link_loaded_list
*)
4926 bfd_alloc (abfd
, sizeof (struct elf_link_loaded_list
));
4930 n
->next
= htab
->loaded
;
4937 if (old_tab
!= NULL
)
4939 if (nondeflt_vers
!= NULL
)
4940 free (nondeflt_vers
);
4941 if (extversym
!= NULL
)
4944 if (isymbuf
!= NULL
)
4950 /* Return the linker hash table entry of a symbol that might be
4951 satisfied by an archive symbol. Return -1 on error. */
4953 struct elf_link_hash_entry
*
4954 _bfd_elf_archive_symbol_lookup (bfd
*abfd
,
4955 struct bfd_link_info
*info
,
4958 struct elf_link_hash_entry
*h
;
4962 h
= elf_link_hash_lookup (elf_hash_table (info
), name
, FALSE
, FALSE
, TRUE
);
4966 /* If this is a default version (the name contains @@), look up the
4967 symbol again with only one `@' as well as without the version.
4968 The effect is that references to the symbol with and without the
4969 version will be matched by the default symbol in the archive. */
4971 p
= strchr (name
, ELF_VER_CHR
);
4972 if (p
== NULL
|| p
[1] != ELF_VER_CHR
)
4975 /* First check with only one `@'. */
4976 len
= strlen (name
);
4977 copy
= (char *) bfd_alloc (abfd
, len
);
4979 return (struct elf_link_hash_entry
*) 0 - 1;
4981 first
= p
- name
+ 1;
4982 memcpy (copy
, name
, first
);
4983 memcpy (copy
+ first
, name
+ first
+ 1, len
- first
);
4985 h
= elf_link_hash_lookup (elf_hash_table (info
), copy
, FALSE
, FALSE
, TRUE
);
4988 /* We also need to check references to the symbol without the
4990 copy
[first
- 1] = '\0';
4991 h
= elf_link_hash_lookup (elf_hash_table (info
), copy
,
4992 FALSE
, FALSE
, TRUE
);
4995 bfd_release (abfd
, copy
);
4999 /* Add symbols from an ELF archive file to the linker hash table. We
5000 don't use _bfd_generic_link_add_archive_symbols because of a
5001 problem which arises on UnixWare. The UnixWare libc.so is an
5002 archive which includes an entry libc.so.1 which defines a bunch of
5003 symbols. The libc.so archive also includes a number of other
5004 object files, which also define symbols, some of which are the same
5005 as those defined in libc.so.1. Correct linking requires that we
5006 consider each object file in turn, and include it if it defines any
5007 symbols we need. _bfd_generic_link_add_archive_symbols does not do
5008 this; it looks through the list of undefined symbols, and includes
5009 any object file which defines them. When this algorithm is used on
5010 UnixWare, it winds up pulling in libc.so.1 early and defining a
5011 bunch of symbols. This means that some of the other objects in the
5012 archive are not included in the link, which is incorrect since they
5013 precede libc.so.1 in the archive.
5015 Fortunately, ELF archive handling is simpler than that done by
5016 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
5017 oddities. In ELF, if we find a symbol in the archive map, and the
5018 symbol is currently undefined, we know that we must pull in that
5021 Unfortunately, we do have to make multiple passes over the symbol
5022 table until nothing further is resolved. */
5025 elf_link_add_archive_symbols (bfd
*abfd
, struct bfd_link_info
*info
)
5028 bfd_boolean
*defined
= NULL
;
5029 bfd_boolean
*included
= NULL
;
5033 const struct elf_backend_data
*bed
;
5034 struct elf_link_hash_entry
* (*archive_symbol_lookup
)
5035 (bfd
*, struct bfd_link_info
*, const char *);
5037 if (! bfd_has_map (abfd
))
5039 /* An empty archive is a special case. */
5040 if (bfd_openr_next_archived_file (abfd
, NULL
) == NULL
)
5042 bfd_set_error (bfd_error_no_armap
);
5046 /* Keep track of all symbols we know to be already defined, and all
5047 files we know to be already included. This is to speed up the
5048 second and subsequent passes. */
5049 c
= bfd_ardata (abfd
)->symdef_count
;
5053 amt
*= sizeof (bfd_boolean
);
5054 defined
= (bfd_boolean
*) bfd_zmalloc (amt
);
5055 included
= (bfd_boolean
*) bfd_zmalloc (amt
);
5056 if (defined
== NULL
|| included
== NULL
)
5059 symdefs
= bfd_ardata (abfd
)->symdefs
;
5060 bed
= get_elf_backend_data (abfd
);
5061 archive_symbol_lookup
= bed
->elf_backend_archive_symbol_lookup
;
5074 symdefend
= symdef
+ c
;
5075 for (i
= 0; symdef
< symdefend
; symdef
++, i
++)
5077 struct elf_link_hash_entry
*h
;
5079 struct bfd_link_hash_entry
*undefs_tail
;
5082 if (defined
[i
] || included
[i
])
5084 if (symdef
->file_offset
== last
)
5090 h
= archive_symbol_lookup (abfd
, info
, symdef
->name
);
5091 if (h
== (struct elf_link_hash_entry
*) 0 - 1)
5097 if (h
->root
.type
== bfd_link_hash_common
)
5099 /* We currently have a common symbol. The archive map contains
5100 a reference to this symbol, so we may want to include it. We
5101 only want to include it however, if this archive element
5102 contains a definition of the symbol, not just another common
5105 Unfortunately some archivers (including GNU ar) will put
5106 declarations of common symbols into their archive maps, as
5107 well as real definitions, so we cannot just go by the archive
5108 map alone. Instead we must read in the element's symbol
5109 table and check that to see what kind of symbol definition
5111 if (! elf_link_is_defined_archive_symbol (abfd
, symdef
))
5114 else if (h
->root
.type
!= bfd_link_hash_undefined
)
5116 if (h
->root
.type
!= bfd_link_hash_undefweak
)
5121 /* We need to include this archive member. */
5122 element
= _bfd_get_elt_at_filepos (abfd
, symdef
->file_offset
);
5123 if (element
== NULL
)
5126 if (! bfd_check_format (element
, bfd_object
))
5129 /* Doublecheck that we have not included this object
5130 already--it should be impossible, but there may be
5131 something wrong with the archive. */
5132 if (element
->archive_pass
!= 0)
5134 bfd_set_error (bfd_error_bad_value
);
5137 element
->archive_pass
= 1;
5139 undefs_tail
= info
->hash
->undefs_tail
;
5141 if (!(*info
->callbacks
5142 ->add_archive_element
) (info
, element
, symdef
->name
, &element
))
5144 if (!bfd_link_add_symbols (element
, info
))
5147 /* If there are any new undefined symbols, we need to make
5148 another pass through the archive in order to see whether
5149 they can be defined. FIXME: This isn't perfect, because
5150 common symbols wind up on undefs_tail and because an
5151 undefined symbol which is defined later on in this pass
5152 does not require another pass. This isn't a bug, but it
5153 does make the code less efficient than it could be. */
5154 if (undefs_tail
!= info
->hash
->undefs_tail
)
5157 /* Look backward to mark all symbols from this object file
5158 which we have already seen in this pass. */
5162 included
[mark
] = TRUE
;
5167 while (symdefs
[mark
].file_offset
== symdef
->file_offset
);
5169 /* We mark subsequent symbols from this object file as we go
5170 on through the loop. */
5171 last
= symdef
->file_offset
;
5182 if (defined
!= NULL
)
5184 if (included
!= NULL
)
5189 /* Given an ELF BFD, add symbols to the global hash table as
5193 bfd_elf_link_add_symbols (bfd
*abfd
, struct bfd_link_info
*info
)
5195 switch (bfd_get_format (abfd
))
5198 return elf_link_add_object_symbols (abfd
, info
);
5200 return elf_link_add_archive_symbols (abfd
, info
);
5202 bfd_set_error (bfd_error_wrong_format
);
5207 struct hash_codes_info
5209 unsigned long *hashcodes
;
5213 /* This function will be called though elf_link_hash_traverse to store
5214 all hash value of the exported symbols in an array. */
5217 elf_collect_hash_codes (struct elf_link_hash_entry
*h
, void *data
)
5219 struct hash_codes_info
*inf
= (struct hash_codes_info
*) data
;
5225 /* Ignore indirect symbols. These are added by the versioning code. */
5226 if (h
->dynindx
== -1)
5229 name
= h
->root
.root
.string
;
5230 p
= strchr (name
, ELF_VER_CHR
);
5233 alc
= (char *) bfd_malloc (p
- name
+ 1);
5239 memcpy (alc
, name
, p
- name
);
5240 alc
[p
- name
] = '\0';
5244 /* Compute the hash value. */
5245 ha
= bfd_elf_hash (name
);
5247 /* Store the found hash value in the array given as the argument. */
5248 *(inf
->hashcodes
)++ = ha
;
5250 /* And store it in the struct so that we can put it in the hash table
5252 h
->u
.elf_hash_value
= ha
;
5260 struct collect_gnu_hash_codes
5263 const struct elf_backend_data
*bed
;
5264 unsigned long int nsyms
;
5265 unsigned long int maskbits
;
5266 unsigned long int *hashcodes
;
5267 unsigned long int *hashval
;
5268 unsigned long int *indx
;
5269 unsigned long int *counts
;
5272 long int min_dynindx
;
5273 unsigned long int bucketcount
;
5274 unsigned long int symindx
;
5275 long int local_indx
;
5276 long int shift1
, shift2
;
5277 unsigned long int mask
;
5281 /* This function will be called though elf_link_hash_traverse to store
5282 all hash value of the exported symbols in an array. */
5285 elf_collect_gnu_hash_codes (struct elf_link_hash_entry
*h
, void *data
)
5287 struct collect_gnu_hash_codes
*s
= (struct collect_gnu_hash_codes
*) data
;
5293 /* Ignore indirect symbols. These are added by the versioning code. */
5294 if (h
->dynindx
== -1)
5297 /* Ignore also local symbols and undefined symbols. */
5298 if (! (*s
->bed
->elf_hash_symbol
) (h
))
5301 name
= h
->root
.root
.string
;
5302 p
= strchr (name
, ELF_VER_CHR
);
5305 alc
= (char *) bfd_malloc (p
- name
+ 1);
5311 memcpy (alc
, name
, p
- name
);
5312 alc
[p
- name
] = '\0';
5316 /* Compute the hash value. */
5317 ha
= bfd_elf_gnu_hash (name
);
5319 /* Store the found hash value in the array for compute_bucket_count,
5320 and also for .dynsym reordering purposes. */
5321 s
->hashcodes
[s
->nsyms
] = ha
;
5322 s
->hashval
[h
->dynindx
] = ha
;
5324 if (s
->min_dynindx
< 0 || s
->min_dynindx
> h
->dynindx
)
5325 s
->min_dynindx
= h
->dynindx
;
5333 /* This function will be called though elf_link_hash_traverse to do
5334 final dynaminc symbol renumbering. */
5337 elf_renumber_gnu_hash_syms (struct elf_link_hash_entry
*h
, void *data
)
5339 struct collect_gnu_hash_codes
*s
= (struct collect_gnu_hash_codes
*) data
;
5340 unsigned long int bucket
;
5341 unsigned long int val
;
5343 /* Ignore indirect symbols. */
5344 if (h
->dynindx
== -1)
5347 /* Ignore also local symbols and undefined symbols. */
5348 if (! (*s
->bed
->elf_hash_symbol
) (h
))
5350 if (h
->dynindx
>= s
->min_dynindx
)
5351 h
->dynindx
= s
->local_indx
++;
5355 bucket
= s
->hashval
[h
->dynindx
] % s
->bucketcount
;
5356 val
= (s
->hashval
[h
->dynindx
] >> s
->shift1
)
5357 & ((s
->maskbits
>> s
->shift1
) - 1);
5358 s
->bitmask
[val
] |= ((bfd_vma
) 1) << (s
->hashval
[h
->dynindx
] & s
->mask
);
5360 |= ((bfd_vma
) 1) << ((s
->hashval
[h
->dynindx
] >> s
->shift2
) & s
->mask
);
5361 val
= s
->hashval
[h
->dynindx
] & ~(unsigned long int) 1;
5362 if (s
->counts
[bucket
] == 1)
5363 /* Last element terminates the chain. */
5365 bfd_put_32 (s
->output_bfd
, val
,
5366 s
->contents
+ (s
->indx
[bucket
] - s
->symindx
) * 4);
5367 --s
->counts
[bucket
];
5368 h
->dynindx
= s
->indx
[bucket
]++;
5372 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
5375 _bfd_elf_hash_symbol (struct elf_link_hash_entry
*h
)
5377 return !(h
->forced_local
5378 || h
->root
.type
== bfd_link_hash_undefined
5379 || h
->root
.type
== bfd_link_hash_undefweak
5380 || ((h
->root
.type
== bfd_link_hash_defined
5381 || h
->root
.type
== bfd_link_hash_defweak
)
5382 && h
->root
.u
.def
.section
->output_section
== NULL
));
5385 /* Array used to determine the number of hash table buckets to use
5386 based on the number of symbols there are. If there are fewer than
5387 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
5388 fewer than 37 we use 17 buckets, and so forth. We never use more
5389 than 32771 buckets. */
5391 static const size_t elf_buckets
[] =
5393 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
5397 /* Compute bucket count for hashing table. We do not use a static set
5398 of possible tables sizes anymore. Instead we determine for all
5399 possible reasonable sizes of the table the outcome (i.e., the
5400 number of collisions etc) and choose the best solution. The
5401 weighting functions are not too simple to allow the table to grow
5402 without bounds. Instead one of the weighting factors is the size.
5403 Therefore the result is always a good payoff between few collisions
5404 (= short chain lengths) and table size. */
5406 compute_bucket_count (struct bfd_link_info
*info ATTRIBUTE_UNUSED
,
5407 unsigned long int *hashcodes ATTRIBUTE_UNUSED
,
5408 unsigned long int nsyms
,
5411 size_t best_size
= 0;
5412 unsigned long int i
;
5414 /* We have a problem here. The following code to optimize the table
5415 size requires an integer type with more the 32 bits. If
5416 BFD_HOST_U_64_BIT is set we know about such a type. */
5417 #ifdef BFD_HOST_U_64_BIT
5422 BFD_HOST_U_64_BIT best_chlen
= ~((BFD_HOST_U_64_BIT
) 0);
5423 bfd
*dynobj
= elf_hash_table (info
)->dynobj
;
5424 size_t dynsymcount
= elf_hash_table (info
)->dynsymcount
;
5425 const struct elf_backend_data
*bed
= get_elf_backend_data (dynobj
);
5426 unsigned long int *counts
;
5428 unsigned int no_improvement_count
= 0;
5430 /* Possible optimization parameters: if we have NSYMS symbols we say
5431 that the hashing table must at least have NSYMS/4 and at most
5433 minsize
= nsyms
/ 4;
5436 best_size
= maxsize
= nsyms
* 2;
5441 if ((best_size
& 31) == 0)
5445 /* Create array where we count the collisions in. We must use bfd_malloc
5446 since the size could be large. */
5448 amt
*= sizeof (unsigned long int);
5449 counts
= (unsigned long int *) bfd_malloc (amt
);
5453 /* Compute the "optimal" size for the hash table. The criteria is a
5454 minimal chain length. The minor criteria is (of course) the size
5456 for (i
= minsize
; i
< maxsize
; ++i
)
5458 /* Walk through the array of hashcodes and count the collisions. */
5459 BFD_HOST_U_64_BIT max
;
5460 unsigned long int j
;
5461 unsigned long int fact
;
5463 if (gnu_hash
&& (i
& 31) == 0)
5466 memset (counts
, '\0', i
* sizeof (unsigned long int));
5468 /* Determine how often each hash bucket is used. */
5469 for (j
= 0; j
< nsyms
; ++j
)
5470 ++counts
[hashcodes
[j
] % i
];
5472 /* For the weight function we need some information about the
5473 pagesize on the target. This is information need not be 100%
5474 accurate. Since this information is not available (so far) we
5475 define it here to a reasonable default value. If it is crucial
5476 to have a better value some day simply define this value. */
5477 # ifndef BFD_TARGET_PAGESIZE
5478 # define BFD_TARGET_PAGESIZE (4096)
5481 /* We in any case need 2 + DYNSYMCOUNT entries for the size values
5483 max
= (2 + dynsymcount
) * bed
->s
->sizeof_hash_entry
;
5486 /* Variant 1: optimize for short chains. We add the squares
5487 of all the chain lengths (which favors many small chain
5488 over a few long chains). */
5489 for (j
= 0; j
< i
; ++j
)
5490 max
+= counts
[j
] * counts
[j
];
5492 /* This adds penalties for the overall size of the table. */
5493 fact
= i
/ (BFD_TARGET_PAGESIZE
/ bed
->s
->sizeof_hash_entry
) + 1;
5496 /* Variant 2: Optimize a lot more for small table. Here we
5497 also add squares of the size but we also add penalties for
5498 empty slots (the +1 term). */
5499 for (j
= 0; j
< i
; ++j
)
5500 max
+= (1 + counts
[j
]) * (1 + counts
[j
]);
5502 /* The overall size of the table is considered, but not as
5503 strong as in variant 1, where it is squared. */
5504 fact
= i
/ (BFD_TARGET_PAGESIZE
/ bed
->s
->sizeof_hash_entry
) + 1;
5508 /* Compare with current best results. */
5509 if (max
< best_chlen
)
5513 no_improvement_count
= 0;
5515 /* PR 11843: Avoid futile long searches for the best bucket size
5516 when there are a large number of symbols. */
5517 else if (++no_improvement_count
== 100)
5524 #endif /* defined (BFD_HOST_U_64_BIT) */
5526 /* This is the fallback solution if no 64bit type is available or if we
5527 are not supposed to spend much time on optimizations. We select the
5528 bucket count using a fixed set of numbers. */
5529 for (i
= 0; elf_buckets
[i
] != 0; i
++)
5531 best_size
= elf_buckets
[i
];
5532 if (nsyms
< elf_buckets
[i
+ 1])
5535 if (gnu_hash
&& best_size
< 2)
5542 /* Size any SHT_GROUP section for ld -r. */
5545 _bfd_elf_size_group_sections (struct bfd_link_info
*info
)
5549 for (ibfd
= info
->input_bfds
; ibfd
!= NULL
; ibfd
= ibfd
->link_next
)
5550 if (bfd_get_flavour (ibfd
) == bfd_target_elf_flavour
5551 && !_bfd_elf_fixup_group_sections (ibfd
, bfd_abs_section_ptr
))
5556 /* Set up the sizes and contents of the ELF dynamic sections. This is
5557 called by the ELF linker emulation before_allocation routine. We
5558 must set the sizes of the sections before the linker sets the
5559 addresses of the various sections. */
5562 bfd_elf_size_dynamic_sections (bfd
*output_bfd
,
5565 const char *filter_shlib
,
5567 const char *depaudit
,
5568 const char * const *auxiliary_filters
,
5569 struct bfd_link_info
*info
,
5570 asection
**sinterpptr
)
5572 bfd_size_type soname_indx
;
5574 const struct elf_backend_data
*bed
;
5575 struct elf_info_failed asvinfo
;
5579 soname_indx
= (bfd_size_type
) -1;
5581 if (!is_elf_hash_table (info
->hash
))
5584 bed
= get_elf_backend_data (output_bfd
);
5585 if (info
->execstack
)
5586 elf_tdata (output_bfd
)->stack_flags
= PF_R
| PF_W
| PF_X
;
5587 else if (info
->noexecstack
)
5588 elf_tdata (output_bfd
)->stack_flags
= PF_R
| PF_W
;
5592 asection
*notesec
= NULL
;
5595 for (inputobj
= info
->input_bfds
;
5597 inputobj
= inputobj
->link_next
)
5602 & (DYNAMIC
| EXEC_P
| BFD_PLUGIN
| BFD_LINKER_CREATED
))
5604 s
= bfd_get_section_by_name (inputobj
, ".note.GNU-stack");
5607 if (s
->flags
& SEC_CODE
)
5611 else if (bed
->default_execstack
)
5616 elf_tdata (output_bfd
)->stack_flags
= PF_R
| PF_W
| exec
;
5617 if (exec
&& info
->relocatable
5618 && notesec
->output_section
!= bfd_abs_section_ptr
)
5619 notesec
->output_section
->flags
|= SEC_CODE
;
5623 /* Any syms created from now on start with -1 in
5624 got.refcount/offset and plt.refcount/offset. */
5625 elf_hash_table (info
)->init_got_refcount
5626 = elf_hash_table (info
)->init_got_offset
;
5627 elf_hash_table (info
)->init_plt_refcount
5628 = elf_hash_table (info
)->init_plt_offset
;
5630 if (info
->relocatable
5631 && !_bfd_elf_size_group_sections (info
))
5634 /* The backend may have to create some sections regardless of whether
5635 we're dynamic or not. */
5636 if (bed
->elf_backend_always_size_sections
5637 && ! (*bed
->elf_backend_always_size_sections
) (output_bfd
, info
))
5640 dynobj
= elf_hash_table (info
)->dynobj
;
5642 if (dynobj
!= NULL
&& elf_hash_table (info
)->dynamic_sections_created
)
5644 struct elf_info_failed eif
;
5645 struct elf_link_hash_entry
*h
;
5647 struct bfd_elf_version_tree
*t
;
5648 struct bfd_elf_version_expr
*d
;
5650 bfd_boolean all_defined
;
5652 *sinterpptr
= bfd_get_linker_section (dynobj
, ".interp");
5653 BFD_ASSERT (*sinterpptr
!= NULL
|| !info
->executable
);
5657 soname_indx
= _bfd_elf_strtab_add (elf_hash_table (info
)->dynstr
,
5659 if (soname_indx
== (bfd_size_type
) -1
5660 || !_bfd_elf_add_dynamic_entry (info
, DT_SONAME
, soname_indx
))
5666 if (!_bfd_elf_add_dynamic_entry (info
, DT_SYMBOLIC
, 0))
5668 info
->flags
|= DF_SYMBOLIC
;
5675 indx
= _bfd_elf_strtab_add (elf_hash_table (info
)->dynstr
, rpath
,
5677 if (indx
== (bfd_size_type
) -1
5678 || !_bfd_elf_add_dynamic_entry (info
, DT_RPATH
, indx
))
5681 if (info
->new_dtags
)
5683 _bfd_elf_strtab_addref (elf_hash_table (info
)->dynstr
, indx
);
5684 if (!_bfd_elf_add_dynamic_entry (info
, DT_RUNPATH
, indx
))
5689 if (filter_shlib
!= NULL
)
5693 indx
= _bfd_elf_strtab_add (elf_hash_table (info
)->dynstr
,
5694 filter_shlib
, TRUE
);
5695 if (indx
== (bfd_size_type
) -1
5696 || !_bfd_elf_add_dynamic_entry (info
, DT_FILTER
, indx
))
5700 if (auxiliary_filters
!= NULL
)
5702 const char * const *p
;
5704 for (p
= auxiliary_filters
; *p
!= NULL
; p
++)
5708 indx
= _bfd_elf_strtab_add (elf_hash_table (info
)->dynstr
,
5710 if (indx
== (bfd_size_type
) -1
5711 || !_bfd_elf_add_dynamic_entry (info
, DT_AUXILIARY
, indx
))
5720 indx
= _bfd_elf_strtab_add (elf_hash_table (info
)->dynstr
, audit
,
5722 if (indx
== (bfd_size_type
) -1
5723 || !_bfd_elf_add_dynamic_entry (info
, DT_AUDIT
, indx
))
5727 if (depaudit
!= NULL
)
5731 indx
= _bfd_elf_strtab_add (elf_hash_table (info
)->dynstr
, depaudit
,
5733 if (indx
== (bfd_size_type
) -1
5734 || !_bfd_elf_add_dynamic_entry (info
, DT_DEPAUDIT
, indx
))
5741 /* If we are supposed to export all symbols into the dynamic symbol
5742 table (this is not the normal case), then do so. */
5743 if (info
->export_dynamic
5744 || (info
->executable
&& info
->dynamic
))
5746 elf_link_hash_traverse (elf_hash_table (info
),
5747 _bfd_elf_export_symbol
,
5753 /* Make all global versions with definition. */
5754 for (t
= info
->version_info
; t
!= NULL
; t
= t
->next
)
5755 for (d
= t
->globals
.list
; d
!= NULL
; d
= d
->next
)
5756 if (!d
->symver
&& d
->literal
)
5758 const char *verstr
, *name
;
5759 size_t namelen
, verlen
, newlen
;
5760 char *newname
, *p
, leading_char
;
5761 struct elf_link_hash_entry
*newh
;
5763 leading_char
= bfd_get_symbol_leading_char (output_bfd
);
5765 namelen
= strlen (name
) + (leading_char
!= '\0');
5767 verlen
= strlen (verstr
);
5768 newlen
= namelen
+ verlen
+ 3;
5770 newname
= (char *) bfd_malloc (newlen
);
5771 if (newname
== NULL
)
5773 newname
[0] = leading_char
;
5774 memcpy (newname
+ (leading_char
!= '\0'), name
, namelen
);
5776 /* Check the hidden versioned definition. */
5777 p
= newname
+ namelen
;
5779 memcpy (p
, verstr
, verlen
+ 1);
5780 newh
= elf_link_hash_lookup (elf_hash_table (info
),
5781 newname
, FALSE
, FALSE
,
5784 || (newh
->root
.type
!= bfd_link_hash_defined
5785 && newh
->root
.type
!= bfd_link_hash_defweak
))
5787 /* Check the default versioned definition. */
5789 memcpy (p
, verstr
, verlen
+ 1);
5790 newh
= elf_link_hash_lookup (elf_hash_table (info
),
5791 newname
, FALSE
, FALSE
,
5796 /* Mark this version if there is a definition and it is
5797 not defined in a shared object. */
5799 && !newh
->def_dynamic
5800 && (newh
->root
.type
== bfd_link_hash_defined
5801 || newh
->root
.type
== bfd_link_hash_defweak
))
5805 /* Attach all the symbols to their version information. */
5806 asvinfo
.info
= info
;
5807 asvinfo
.failed
= FALSE
;
5809 elf_link_hash_traverse (elf_hash_table (info
),
5810 _bfd_elf_link_assign_sym_version
,
5815 if (!info
->allow_undefined_version
)
5817 /* Check if all global versions have a definition. */
5819 for (t
= info
->version_info
; t
!= NULL
; t
= t
->next
)
5820 for (d
= t
->globals
.list
; d
!= NULL
; d
= d
->next
)
5821 if (d
->literal
&& !d
->symver
&& !d
->script
)
5823 (*_bfd_error_handler
)
5824 (_("%s: undefined version: %s"),
5825 d
->pattern
, t
->name
);
5826 all_defined
= FALSE
;
5831 bfd_set_error (bfd_error_bad_value
);
5836 /* Find all symbols which were defined in a dynamic object and make
5837 the backend pick a reasonable value for them. */
5838 elf_link_hash_traverse (elf_hash_table (info
),
5839 _bfd_elf_adjust_dynamic_symbol
,
5844 /* Add some entries to the .dynamic section. We fill in some of the
5845 values later, in bfd_elf_final_link, but we must add the entries
5846 now so that we know the final size of the .dynamic section. */
5848 /* If there are initialization and/or finalization functions to
5849 call then add the corresponding DT_INIT/DT_FINI entries. */
5850 h
= (info
->init_function
5851 ? elf_link_hash_lookup (elf_hash_table (info
),
5852 info
->init_function
, FALSE
,
5859 if (!_bfd_elf_add_dynamic_entry (info
, DT_INIT
, 0))
5862 h
= (info
->fini_function
5863 ? elf_link_hash_lookup (elf_hash_table (info
),
5864 info
->fini_function
, FALSE
,
5871 if (!_bfd_elf_add_dynamic_entry (info
, DT_FINI
, 0))
5875 s
= bfd_get_section_by_name (output_bfd
, ".preinit_array");
5876 if (s
!= NULL
&& s
->linker_has_input
)
5878 /* DT_PREINIT_ARRAY is not allowed in shared library. */
5879 if (! info
->executable
)
5884 for (sub
= info
->input_bfds
; sub
!= NULL
;
5885 sub
= sub
->link_next
)
5886 if (bfd_get_flavour (sub
) == bfd_target_elf_flavour
)
5887 for (o
= sub
->sections
; o
!= NULL
; o
= o
->next
)
5888 if (elf_section_data (o
)->this_hdr
.sh_type
5889 == SHT_PREINIT_ARRAY
)
5891 (*_bfd_error_handler
)
5892 (_("%B: .preinit_array section is not allowed in DSO"),
5897 bfd_set_error (bfd_error_nonrepresentable_section
);
5901 if (!_bfd_elf_add_dynamic_entry (info
, DT_PREINIT_ARRAY
, 0)
5902 || !_bfd_elf_add_dynamic_entry (info
, DT_PREINIT_ARRAYSZ
, 0))
5905 s
= bfd_get_section_by_name (output_bfd
, ".init_array");
5906 if (s
!= NULL
&& s
->linker_has_input
)
5908 if (!_bfd_elf_add_dynamic_entry (info
, DT_INIT_ARRAY
, 0)
5909 || !_bfd_elf_add_dynamic_entry (info
, DT_INIT_ARRAYSZ
, 0))
5912 s
= bfd_get_section_by_name (output_bfd
, ".fini_array");
5913 if (s
!= NULL
&& s
->linker_has_input
)
5915 if (!_bfd_elf_add_dynamic_entry (info
, DT_FINI_ARRAY
, 0)
5916 || !_bfd_elf_add_dynamic_entry (info
, DT_FINI_ARRAYSZ
, 0))
5920 dynstr
= bfd_get_linker_section (dynobj
, ".dynstr");
5921 /* If .dynstr is excluded from the link, we don't want any of
5922 these tags. Strictly, we should be checking each section
5923 individually; This quick check covers for the case where
5924 someone does a /DISCARD/ : { *(*) }. */
5925 if (dynstr
!= NULL
&& dynstr
->output_section
!= bfd_abs_section_ptr
)
5927 bfd_size_type strsize
;
5929 strsize
= _bfd_elf_strtab_size (elf_hash_table (info
)->dynstr
);
5930 if ((info
->emit_hash
5931 && !_bfd_elf_add_dynamic_entry (info
, DT_HASH
, 0))
5932 || (info
->emit_gnu_hash
5933 && !_bfd_elf_add_dynamic_entry (info
, DT_GNU_HASH
, 0))
5934 || !_bfd_elf_add_dynamic_entry (info
, DT_STRTAB
, 0)
5935 || !_bfd_elf_add_dynamic_entry (info
, DT_SYMTAB
, 0)
5936 || !_bfd_elf_add_dynamic_entry (info
, DT_STRSZ
, strsize
)
5937 || !_bfd_elf_add_dynamic_entry (info
, DT_SYMENT
,
5938 bed
->s
->sizeof_sym
))
5943 /* The backend must work out the sizes of all the other dynamic
5946 && bed
->elf_backend_size_dynamic_sections
!= NULL
5947 && ! (*bed
->elf_backend_size_dynamic_sections
) (output_bfd
, info
))
5950 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info
))
5953 if (dynobj
!= NULL
&& elf_hash_table (info
)->dynamic_sections_created
)
5955 unsigned long section_sym_count
;
5956 struct bfd_elf_version_tree
*verdefs
;
5959 /* Set up the version definition section. */
5960 s
= bfd_get_linker_section (dynobj
, ".gnu.version_d");
5961 BFD_ASSERT (s
!= NULL
);
5963 /* We may have created additional version definitions if we are
5964 just linking a regular application. */
5965 verdefs
= info
->version_info
;
5967 /* Skip anonymous version tag. */
5968 if (verdefs
!= NULL
&& verdefs
->vernum
== 0)
5969 verdefs
= verdefs
->next
;
5971 if (verdefs
== NULL
&& !info
->create_default_symver
)
5972 s
->flags
|= SEC_EXCLUDE
;
5977 struct bfd_elf_version_tree
*t
;
5979 Elf_Internal_Verdef def
;
5980 Elf_Internal_Verdaux defaux
;
5981 struct bfd_link_hash_entry
*bh
;
5982 struct elf_link_hash_entry
*h
;
5988 /* Make space for the base version. */
5989 size
+= sizeof (Elf_External_Verdef
);
5990 size
+= sizeof (Elf_External_Verdaux
);
5993 /* Make space for the default version. */
5994 if (info
->create_default_symver
)
5996 size
+= sizeof (Elf_External_Verdef
);
6000 for (t
= verdefs
; t
!= NULL
; t
= t
->next
)
6002 struct bfd_elf_version_deps
*n
;
6004 /* Don't emit base version twice. */
6008 size
+= sizeof (Elf_External_Verdef
);
6009 size
+= sizeof (Elf_External_Verdaux
);
6012 for (n
= t
->deps
; n
!= NULL
; n
= n
->next
)
6013 size
+= sizeof (Elf_External_Verdaux
);
6017 s
->contents
= (unsigned char *) bfd_alloc (output_bfd
, s
->size
);
6018 if (s
->contents
== NULL
&& s
->size
!= 0)
6021 /* Fill in the version definition section. */
6025 def
.vd_version
= VER_DEF_CURRENT
;
6026 def
.vd_flags
= VER_FLG_BASE
;
6029 if (info
->create_default_symver
)
6031 def
.vd_aux
= 2 * sizeof (Elf_External_Verdef
);
6032 def
.vd_next
= sizeof (Elf_External_Verdef
);
6036 def
.vd_aux
= sizeof (Elf_External_Verdef
);
6037 def
.vd_next
= (sizeof (Elf_External_Verdef
)
6038 + sizeof (Elf_External_Verdaux
));
6041 if (soname_indx
!= (bfd_size_type
) -1)
6043 _bfd_elf_strtab_addref (elf_hash_table (info
)->dynstr
,
6045 def
.vd_hash
= bfd_elf_hash (soname
);
6046 defaux
.vda_name
= soname_indx
;
6053 name
= lbasename (output_bfd
->filename
);
6054 def
.vd_hash
= bfd_elf_hash (name
);
6055 indx
= _bfd_elf_strtab_add (elf_hash_table (info
)->dynstr
,
6057 if (indx
== (bfd_size_type
) -1)
6059 defaux
.vda_name
= indx
;
6061 defaux
.vda_next
= 0;
6063 _bfd_elf_swap_verdef_out (output_bfd
, &def
,
6064 (Elf_External_Verdef
*) p
);
6065 p
+= sizeof (Elf_External_Verdef
);
6066 if (info
->create_default_symver
)
6068 /* Add a symbol representing this version. */
6070 if (! (_bfd_generic_link_add_one_symbol
6071 (info
, dynobj
, name
, BSF_GLOBAL
, bfd_abs_section_ptr
,
6073 get_elf_backend_data (dynobj
)->collect
, &bh
)))
6075 h
= (struct elf_link_hash_entry
*) bh
;
6078 h
->type
= STT_OBJECT
;
6079 h
->verinfo
.vertree
= NULL
;
6081 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
6084 /* Create a duplicate of the base version with the same
6085 aux block, but different flags. */
6088 def
.vd_aux
= sizeof (Elf_External_Verdef
);
6090 def
.vd_next
= (sizeof (Elf_External_Verdef
)
6091 + sizeof (Elf_External_Verdaux
));
6094 _bfd_elf_swap_verdef_out (output_bfd
, &def
,
6095 (Elf_External_Verdef
*) p
);
6096 p
+= sizeof (Elf_External_Verdef
);
6098 _bfd_elf_swap_verdaux_out (output_bfd
, &defaux
,
6099 (Elf_External_Verdaux
*) p
);
6100 p
+= sizeof (Elf_External_Verdaux
);
6102 for (t
= verdefs
; t
!= NULL
; t
= t
->next
)
6105 struct bfd_elf_version_deps
*n
;
6107 /* Don't emit the base version twice. */
6112 for (n
= t
->deps
; n
!= NULL
; n
= n
->next
)
6115 /* Add a symbol representing this version. */
6117 if (! (_bfd_generic_link_add_one_symbol
6118 (info
, dynobj
, t
->name
, BSF_GLOBAL
, bfd_abs_section_ptr
,
6120 get_elf_backend_data (dynobj
)->collect
, &bh
)))
6122 h
= (struct elf_link_hash_entry
*) bh
;
6125 h
->type
= STT_OBJECT
;
6126 h
->verinfo
.vertree
= t
;
6128 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
6131 def
.vd_version
= VER_DEF_CURRENT
;
6133 if (t
->globals
.list
== NULL
6134 && t
->locals
.list
== NULL
6136 def
.vd_flags
|= VER_FLG_WEAK
;
6137 def
.vd_ndx
= t
->vernum
+ (info
->create_default_symver
? 2 : 1);
6138 def
.vd_cnt
= cdeps
+ 1;
6139 def
.vd_hash
= bfd_elf_hash (t
->name
);
6140 def
.vd_aux
= sizeof (Elf_External_Verdef
);
6143 /* If a basever node is next, it *must* be the last node in
6144 the chain, otherwise Verdef construction breaks. */
6145 if (t
->next
!= NULL
&& t
->next
->vernum
== 0)
6146 BFD_ASSERT (t
->next
->next
== NULL
);
6148 if (t
->next
!= NULL
&& t
->next
->vernum
!= 0)
6149 def
.vd_next
= (sizeof (Elf_External_Verdef
)
6150 + (cdeps
+ 1) * sizeof (Elf_External_Verdaux
));
6152 _bfd_elf_swap_verdef_out (output_bfd
, &def
,
6153 (Elf_External_Verdef
*) p
);
6154 p
+= sizeof (Elf_External_Verdef
);
6156 defaux
.vda_name
= h
->dynstr_index
;
6157 _bfd_elf_strtab_addref (elf_hash_table (info
)->dynstr
,
6159 defaux
.vda_next
= 0;
6160 if (t
->deps
!= NULL
)
6161 defaux
.vda_next
= sizeof (Elf_External_Verdaux
);
6162 t
->name_indx
= defaux
.vda_name
;
6164 _bfd_elf_swap_verdaux_out (output_bfd
, &defaux
,
6165 (Elf_External_Verdaux
*) p
);
6166 p
+= sizeof (Elf_External_Verdaux
);
6168 for (n
= t
->deps
; n
!= NULL
; n
= n
->next
)
6170 if (n
->version_needed
== NULL
)
6172 /* This can happen if there was an error in the
6174 defaux
.vda_name
= 0;
6178 defaux
.vda_name
= n
->version_needed
->name_indx
;
6179 _bfd_elf_strtab_addref (elf_hash_table (info
)->dynstr
,
6182 if (n
->next
== NULL
)
6183 defaux
.vda_next
= 0;
6185 defaux
.vda_next
= sizeof (Elf_External_Verdaux
);
6187 _bfd_elf_swap_verdaux_out (output_bfd
, &defaux
,
6188 (Elf_External_Verdaux
*) p
);
6189 p
+= sizeof (Elf_External_Verdaux
);
6193 if (!_bfd_elf_add_dynamic_entry (info
, DT_VERDEF
, 0)
6194 || !_bfd_elf_add_dynamic_entry (info
, DT_VERDEFNUM
, cdefs
))
6197 elf_tdata (output_bfd
)->cverdefs
= cdefs
;
6200 if ((info
->new_dtags
&& info
->flags
) || (info
->flags
& DF_STATIC_TLS
))
6202 if (!_bfd_elf_add_dynamic_entry (info
, DT_FLAGS
, info
->flags
))
6205 else if (info
->flags
& DF_BIND_NOW
)
6207 if (!_bfd_elf_add_dynamic_entry (info
, DT_BIND_NOW
, 0))
6213 if (info
->executable
)
6214 info
->flags_1
&= ~ (DF_1_INITFIRST
6217 if (!_bfd_elf_add_dynamic_entry (info
, DT_FLAGS_1
, info
->flags_1
))
6221 /* Work out the size of the version reference section. */
6223 s
= bfd_get_linker_section (dynobj
, ".gnu.version_r");
6224 BFD_ASSERT (s
!= NULL
);
6226 struct elf_find_verdep_info sinfo
;
6229 sinfo
.vers
= elf_tdata (output_bfd
)->cverdefs
;
6230 if (sinfo
.vers
== 0)
6232 sinfo
.failed
= FALSE
;
6234 elf_link_hash_traverse (elf_hash_table (info
),
6235 _bfd_elf_link_find_version_dependencies
,
6240 if (elf_tdata (output_bfd
)->verref
== NULL
)
6241 s
->flags
|= SEC_EXCLUDE
;
6244 Elf_Internal_Verneed
*t
;
6249 /* Build the version dependency section. */
6252 for (t
= elf_tdata (output_bfd
)->verref
;
6256 Elf_Internal_Vernaux
*a
;
6258 size
+= sizeof (Elf_External_Verneed
);
6260 for (a
= t
->vn_auxptr
; a
!= NULL
; a
= a
->vna_nextptr
)
6261 size
+= sizeof (Elf_External_Vernaux
);
6265 s
->contents
= (unsigned char *) bfd_alloc (output_bfd
, s
->size
);
6266 if (s
->contents
== NULL
)
6270 for (t
= elf_tdata (output_bfd
)->verref
;
6275 Elf_Internal_Vernaux
*a
;
6279 for (a
= t
->vn_auxptr
; a
!= NULL
; a
= a
->vna_nextptr
)
6282 t
->vn_version
= VER_NEED_CURRENT
;
6284 indx
= _bfd_elf_strtab_add (elf_hash_table (info
)->dynstr
,
6285 elf_dt_name (t
->vn_bfd
) != NULL
6286 ? elf_dt_name (t
->vn_bfd
)
6287 : lbasename (t
->vn_bfd
->filename
),
6289 if (indx
== (bfd_size_type
) -1)
6292 t
->vn_aux
= sizeof (Elf_External_Verneed
);
6293 if (t
->vn_nextref
== NULL
)
6296 t
->vn_next
= (sizeof (Elf_External_Verneed
)
6297 + caux
* sizeof (Elf_External_Vernaux
));
6299 _bfd_elf_swap_verneed_out (output_bfd
, t
,
6300 (Elf_External_Verneed
*) p
);
6301 p
+= sizeof (Elf_External_Verneed
);
6303 for (a
= t
->vn_auxptr
; a
!= NULL
; a
= a
->vna_nextptr
)
6305 a
->vna_hash
= bfd_elf_hash (a
->vna_nodename
);
6306 indx
= _bfd_elf_strtab_add (elf_hash_table (info
)->dynstr
,
6307 a
->vna_nodename
, FALSE
);
6308 if (indx
== (bfd_size_type
) -1)
6311 if (a
->vna_nextptr
== NULL
)
6314 a
->vna_next
= sizeof (Elf_External_Vernaux
);
6316 _bfd_elf_swap_vernaux_out (output_bfd
, a
,
6317 (Elf_External_Vernaux
*) p
);
6318 p
+= sizeof (Elf_External_Vernaux
);
6322 if (!_bfd_elf_add_dynamic_entry (info
, DT_VERNEED
, 0)
6323 || !_bfd_elf_add_dynamic_entry (info
, DT_VERNEEDNUM
, crefs
))
6326 elf_tdata (output_bfd
)->cverrefs
= crefs
;
6330 if ((elf_tdata (output_bfd
)->cverrefs
== 0
6331 && elf_tdata (output_bfd
)->cverdefs
== 0)
6332 || _bfd_elf_link_renumber_dynsyms (output_bfd
, info
,
6333 §ion_sym_count
) == 0)
6335 s
= bfd_get_linker_section (dynobj
, ".gnu.version");
6336 s
->flags
|= SEC_EXCLUDE
;
6342 /* Find the first non-excluded output section. We'll use its
6343 section symbol for some emitted relocs. */
6345 _bfd_elf_init_1_index_section (bfd
*output_bfd
, struct bfd_link_info
*info
)
6349 for (s
= output_bfd
->sections
; s
!= NULL
; s
= s
->next
)
6350 if ((s
->flags
& (SEC_EXCLUDE
| SEC_ALLOC
)) == SEC_ALLOC
6351 && !_bfd_elf_link_omit_section_dynsym (output_bfd
, info
, s
))
6353 elf_hash_table (info
)->text_index_section
= s
;
6358 /* Find two non-excluded output sections, one for code, one for data.
6359 We'll use their section symbols for some emitted relocs. */
6361 _bfd_elf_init_2_index_sections (bfd
*output_bfd
, struct bfd_link_info
*info
)
6365 /* Data first, since setting text_index_section changes
6366 _bfd_elf_link_omit_section_dynsym. */
6367 for (s
= output_bfd
->sections
; s
!= NULL
; s
= s
->next
)
6368 if (((s
->flags
& (SEC_EXCLUDE
| SEC_ALLOC
| SEC_READONLY
)) == SEC_ALLOC
)
6369 && !_bfd_elf_link_omit_section_dynsym (output_bfd
, info
, s
))
6371 elf_hash_table (info
)->data_index_section
= s
;
6375 for (s
= output_bfd
->sections
; s
!= NULL
; s
= s
->next
)
6376 if (((s
->flags
& (SEC_EXCLUDE
| SEC_ALLOC
| SEC_READONLY
))
6377 == (SEC_ALLOC
| SEC_READONLY
))
6378 && !_bfd_elf_link_omit_section_dynsym (output_bfd
, info
, s
))
6380 elf_hash_table (info
)->text_index_section
= s
;
6384 if (elf_hash_table (info
)->text_index_section
== NULL
)
6385 elf_hash_table (info
)->text_index_section
6386 = elf_hash_table (info
)->data_index_section
;
6390 bfd_elf_size_dynsym_hash_dynstr (bfd
*output_bfd
, struct bfd_link_info
*info
)
6392 const struct elf_backend_data
*bed
;
6394 if (!is_elf_hash_table (info
->hash
))
6397 bed
= get_elf_backend_data (output_bfd
);
6398 (*bed
->elf_backend_init_index_section
) (output_bfd
, info
);
6400 if (elf_hash_table (info
)->dynamic_sections_created
)
6404 bfd_size_type dynsymcount
;
6405 unsigned long section_sym_count
;
6406 unsigned int dtagcount
;
6408 dynobj
= elf_hash_table (info
)->dynobj
;
6410 /* Assign dynsym indicies. In a shared library we generate a
6411 section symbol for each output section, which come first.
6412 Next come all of the back-end allocated local dynamic syms,
6413 followed by the rest of the global symbols. */
6415 dynsymcount
= _bfd_elf_link_renumber_dynsyms (output_bfd
, info
,
6416 §ion_sym_count
);
6418 /* Work out the size of the symbol version section. */
6419 s
= bfd_get_linker_section (dynobj
, ".gnu.version");
6420 BFD_ASSERT (s
!= NULL
);
6421 if (dynsymcount
!= 0
6422 && (s
->flags
& SEC_EXCLUDE
) == 0)
6424 s
->size
= dynsymcount
* sizeof (Elf_External_Versym
);
6425 s
->contents
= (unsigned char *) bfd_zalloc (output_bfd
, s
->size
);
6426 if (s
->contents
== NULL
)
6429 if (!_bfd_elf_add_dynamic_entry (info
, DT_VERSYM
, 0))
6433 /* Set the size of the .dynsym and .hash sections. We counted
6434 the number of dynamic symbols in elf_link_add_object_symbols.
6435 We will build the contents of .dynsym and .hash when we build
6436 the final symbol table, because until then we do not know the
6437 correct value to give the symbols. We built the .dynstr
6438 section as we went along in elf_link_add_object_symbols. */
6439 s
= bfd_get_linker_section (dynobj
, ".dynsym");
6440 BFD_ASSERT (s
!= NULL
);
6441 s
->size
= dynsymcount
* bed
->s
->sizeof_sym
;
6443 if (dynsymcount
!= 0)
6445 s
->contents
= (unsigned char *) bfd_alloc (output_bfd
, s
->size
);
6446 if (s
->contents
== NULL
)
6449 /* The first entry in .dynsym is a dummy symbol.
6450 Clear all the section syms, in case we don't output them all. */
6451 ++section_sym_count
;
6452 memset (s
->contents
, 0, section_sym_count
* bed
->s
->sizeof_sym
);
6455 elf_hash_table (info
)->bucketcount
= 0;
6457 /* Compute the size of the hashing table. As a side effect this
6458 computes the hash values for all the names we export. */
6459 if (info
->emit_hash
)
6461 unsigned long int *hashcodes
;
6462 struct hash_codes_info hashinf
;
6464 unsigned long int nsyms
;
6466 size_t hash_entry_size
;
6468 /* Compute the hash values for all exported symbols. At the same
6469 time store the values in an array so that we could use them for
6471 amt
= dynsymcount
* sizeof (unsigned long int);
6472 hashcodes
= (unsigned long int *) bfd_malloc (amt
);
6473 if (hashcodes
== NULL
)
6475 hashinf
.hashcodes
= hashcodes
;
6476 hashinf
.error
= FALSE
;
6478 /* Put all hash values in HASHCODES. */
6479 elf_link_hash_traverse (elf_hash_table (info
),
6480 elf_collect_hash_codes
, &hashinf
);
6487 nsyms
= hashinf
.hashcodes
- hashcodes
;
6489 = compute_bucket_count (info
, hashcodes
, nsyms
, 0);
6492 if (bucketcount
== 0)
6495 elf_hash_table (info
)->bucketcount
= bucketcount
;
6497 s
= bfd_get_linker_section (dynobj
, ".hash");
6498 BFD_ASSERT (s
!= NULL
);
6499 hash_entry_size
= elf_section_data (s
)->this_hdr
.sh_entsize
;
6500 s
->size
= ((2 + bucketcount
+ dynsymcount
) * hash_entry_size
);
6501 s
->contents
= (unsigned char *) bfd_zalloc (output_bfd
, s
->size
);
6502 if (s
->contents
== NULL
)
6505 bfd_put (8 * hash_entry_size
, output_bfd
, bucketcount
, s
->contents
);
6506 bfd_put (8 * hash_entry_size
, output_bfd
, dynsymcount
,
6507 s
->contents
+ hash_entry_size
);
6510 if (info
->emit_gnu_hash
)
6513 unsigned char *contents
;
6514 struct collect_gnu_hash_codes cinfo
;
6518 memset (&cinfo
, 0, sizeof (cinfo
));
6520 /* Compute the hash values for all exported symbols. At the same
6521 time store the values in an array so that we could use them for
6523 amt
= dynsymcount
* 2 * sizeof (unsigned long int);
6524 cinfo
.hashcodes
= (long unsigned int *) bfd_malloc (amt
);
6525 if (cinfo
.hashcodes
== NULL
)
6528 cinfo
.hashval
= cinfo
.hashcodes
+ dynsymcount
;
6529 cinfo
.min_dynindx
= -1;
6530 cinfo
.output_bfd
= output_bfd
;
6533 /* Put all hash values in HASHCODES. */
6534 elf_link_hash_traverse (elf_hash_table (info
),
6535 elf_collect_gnu_hash_codes
, &cinfo
);
6538 free (cinfo
.hashcodes
);
6543 = compute_bucket_count (info
, cinfo
.hashcodes
, cinfo
.nsyms
, 1);
6545 if (bucketcount
== 0)
6547 free (cinfo
.hashcodes
);
6551 s
= bfd_get_linker_section (dynobj
, ".gnu.hash");
6552 BFD_ASSERT (s
!= NULL
);
6554 if (cinfo
.nsyms
== 0)
6556 /* Empty .gnu.hash section is special. */
6557 BFD_ASSERT (cinfo
.min_dynindx
== -1);
6558 free (cinfo
.hashcodes
);
6559 s
->size
= 5 * 4 + bed
->s
->arch_size
/ 8;
6560 contents
= (unsigned char *) bfd_zalloc (output_bfd
, s
->size
);
6561 if (contents
== NULL
)
6563 s
->contents
= contents
;
6564 /* 1 empty bucket. */
6565 bfd_put_32 (output_bfd
, 1, contents
);
6566 /* SYMIDX above the special symbol 0. */
6567 bfd_put_32 (output_bfd
, 1, contents
+ 4);
6568 /* Just one word for bitmask. */
6569 bfd_put_32 (output_bfd
, 1, contents
+ 8);
6570 /* Only hash fn bloom filter. */
6571 bfd_put_32 (output_bfd
, 0, contents
+ 12);
6572 /* No hashes are valid - empty bitmask. */
6573 bfd_put (bed
->s
->arch_size
, output_bfd
, 0, contents
+ 16);
6574 /* No hashes in the only bucket. */
6575 bfd_put_32 (output_bfd
, 0,
6576 contents
+ 16 + bed
->s
->arch_size
/ 8);
6580 unsigned long int maskwords
, maskbitslog2
, x
;
6581 BFD_ASSERT (cinfo
.min_dynindx
!= -1);
6585 while ((x
>>= 1) != 0)
6587 if (maskbitslog2
< 3)
6589 else if ((1 << (maskbitslog2
- 2)) & cinfo
.nsyms
)
6590 maskbitslog2
= maskbitslog2
+ 3;
6592 maskbitslog2
= maskbitslog2
+ 2;
6593 if (bed
->s
->arch_size
== 64)
6595 if (maskbitslog2
== 5)
6601 cinfo
.mask
= (1 << cinfo
.shift1
) - 1;
6602 cinfo
.shift2
= maskbitslog2
;
6603 cinfo
.maskbits
= 1 << maskbitslog2
;
6604 maskwords
= 1 << (maskbitslog2
- cinfo
.shift1
);
6605 amt
= bucketcount
* sizeof (unsigned long int) * 2;
6606 amt
+= maskwords
* sizeof (bfd_vma
);
6607 cinfo
.bitmask
= (bfd_vma
*) bfd_malloc (amt
);
6608 if (cinfo
.bitmask
== NULL
)
6610 free (cinfo
.hashcodes
);
6614 cinfo
.counts
= (long unsigned int *) (cinfo
.bitmask
+ maskwords
);
6615 cinfo
.indx
= cinfo
.counts
+ bucketcount
;
6616 cinfo
.symindx
= dynsymcount
- cinfo
.nsyms
;
6617 memset (cinfo
.bitmask
, 0, maskwords
* sizeof (bfd_vma
));
6619 /* Determine how often each hash bucket is used. */
6620 memset (cinfo
.counts
, 0, bucketcount
* sizeof (cinfo
.counts
[0]));
6621 for (i
= 0; i
< cinfo
.nsyms
; ++i
)
6622 ++cinfo
.counts
[cinfo
.hashcodes
[i
] % bucketcount
];
6624 for (i
= 0, cnt
= cinfo
.symindx
; i
< bucketcount
; ++i
)
6625 if (cinfo
.counts
[i
] != 0)
6627 cinfo
.indx
[i
] = cnt
;
6628 cnt
+= cinfo
.counts
[i
];
6630 BFD_ASSERT (cnt
== dynsymcount
);
6631 cinfo
.bucketcount
= bucketcount
;
6632 cinfo
.local_indx
= cinfo
.min_dynindx
;
6634 s
->size
= (4 + bucketcount
+ cinfo
.nsyms
) * 4;
6635 s
->size
+= cinfo
.maskbits
/ 8;
6636 contents
= (unsigned char *) bfd_zalloc (output_bfd
, s
->size
);
6637 if (contents
== NULL
)
6639 free (cinfo
.bitmask
);
6640 free (cinfo
.hashcodes
);
6644 s
->contents
= contents
;
6645 bfd_put_32 (output_bfd
, bucketcount
, contents
);
6646 bfd_put_32 (output_bfd
, cinfo
.symindx
, contents
+ 4);
6647 bfd_put_32 (output_bfd
, maskwords
, contents
+ 8);
6648 bfd_put_32 (output_bfd
, cinfo
.shift2
, contents
+ 12);
6649 contents
+= 16 + cinfo
.maskbits
/ 8;
6651 for (i
= 0; i
< bucketcount
; ++i
)
6653 if (cinfo
.counts
[i
] == 0)
6654 bfd_put_32 (output_bfd
, 0, contents
);
6656 bfd_put_32 (output_bfd
, cinfo
.indx
[i
], contents
);
6660 cinfo
.contents
= contents
;
6662 /* Renumber dynamic symbols, populate .gnu.hash section. */
6663 elf_link_hash_traverse (elf_hash_table (info
),
6664 elf_renumber_gnu_hash_syms
, &cinfo
);
6666 contents
= s
->contents
+ 16;
6667 for (i
= 0; i
< maskwords
; ++i
)
6669 bfd_put (bed
->s
->arch_size
, output_bfd
, cinfo
.bitmask
[i
],
6671 contents
+= bed
->s
->arch_size
/ 8;
6674 free (cinfo
.bitmask
);
6675 free (cinfo
.hashcodes
);
6679 s
= bfd_get_linker_section (dynobj
, ".dynstr");
6680 BFD_ASSERT (s
!= NULL
);
6682 elf_finalize_dynstr (output_bfd
, info
);
6684 s
->size
= _bfd_elf_strtab_size (elf_hash_table (info
)->dynstr
);
6686 for (dtagcount
= 0; dtagcount
<= info
->spare_dynamic_tags
; ++dtagcount
)
6687 if (!_bfd_elf_add_dynamic_entry (info
, DT_NULL
, 0))
6694 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
6697 merge_sections_remove_hook (bfd
*abfd ATTRIBUTE_UNUSED
,
6700 BFD_ASSERT (sec
->sec_info_type
== SEC_INFO_TYPE_MERGE
);
6701 sec
->sec_info_type
= SEC_INFO_TYPE_NONE
;
6704 /* Finish SHF_MERGE section merging. */
6707 _bfd_elf_merge_sections (bfd
*abfd
, struct bfd_link_info
*info
)
6712 if (!is_elf_hash_table (info
->hash
))
6715 for (ibfd
= info
->input_bfds
; ibfd
!= NULL
; ibfd
= ibfd
->link_next
)
6716 if ((ibfd
->flags
& DYNAMIC
) == 0)
6717 for (sec
= ibfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
6718 if ((sec
->flags
& SEC_MERGE
) != 0
6719 && !bfd_is_abs_section (sec
->output_section
))
6721 struct bfd_elf_section_data
*secdata
;
6723 secdata
= elf_section_data (sec
);
6724 if (! _bfd_add_merge_section (abfd
,
6725 &elf_hash_table (info
)->merge_info
,
6726 sec
, &secdata
->sec_info
))
6728 else if (secdata
->sec_info
)
6729 sec
->sec_info_type
= SEC_INFO_TYPE_MERGE
;
6732 if (elf_hash_table (info
)->merge_info
!= NULL
)
6733 _bfd_merge_sections (abfd
, info
, elf_hash_table (info
)->merge_info
,
6734 merge_sections_remove_hook
);
6738 /* Create an entry in an ELF linker hash table. */
6740 struct bfd_hash_entry
*
6741 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry
*entry
,
6742 struct bfd_hash_table
*table
,
6745 /* Allocate the structure if it has not already been allocated by a
6749 entry
= (struct bfd_hash_entry
*)
6750 bfd_hash_allocate (table
, sizeof (struct elf_link_hash_entry
));
6755 /* Call the allocation method of the superclass. */
6756 entry
= _bfd_link_hash_newfunc (entry
, table
, string
);
6759 struct elf_link_hash_entry
*ret
= (struct elf_link_hash_entry
*) entry
;
6760 struct elf_link_hash_table
*htab
= (struct elf_link_hash_table
*) table
;
6762 /* Set local fields. */
6765 ret
->got
= htab
->init_got_refcount
;
6766 ret
->plt
= htab
->init_plt_refcount
;
6767 memset (&ret
->size
, 0, (sizeof (struct elf_link_hash_entry
)
6768 - offsetof (struct elf_link_hash_entry
, size
)));
6769 /* Assume that we have been called by a non-ELF symbol reader.
6770 This flag is then reset by the code which reads an ELF input
6771 file. This ensures that a symbol created by a non-ELF symbol
6772 reader will have the flag set correctly. */
6779 /* Copy data from an indirect symbol to its direct symbol, hiding the
6780 old indirect symbol. Also used for copying flags to a weakdef. */
6783 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info
*info
,
6784 struct elf_link_hash_entry
*dir
,
6785 struct elf_link_hash_entry
*ind
)
6787 struct elf_link_hash_table
*htab
;
6789 /* Copy down any references that we may have already seen to the
6790 symbol which just became indirect. */
6792 dir
->ref_dynamic
|= ind
->ref_dynamic
;
6793 dir
->ref_regular
|= ind
->ref_regular
;
6794 dir
->ref_regular_nonweak
|= ind
->ref_regular_nonweak
;
6795 dir
->non_got_ref
|= ind
->non_got_ref
;
6796 dir
->needs_plt
|= ind
->needs_plt
;
6797 dir
->pointer_equality_needed
|= ind
->pointer_equality_needed
;
6799 if (ind
->root
.type
!= bfd_link_hash_indirect
)
6802 /* Copy over the global and procedure linkage table refcount entries.
6803 These may have been already set up by a check_relocs routine. */
6804 htab
= elf_hash_table (info
);
6805 if (ind
->got
.refcount
> htab
->init_got_refcount
.refcount
)
6807 if (dir
->got
.refcount
< 0)
6808 dir
->got
.refcount
= 0;
6809 dir
->got
.refcount
+= ind
->got
.refcount
;
6810 ind
->got
.refcount
= htab
->init_got_refcount
.refcount
;
6813 if (ind
->plt
.refcount
> htab
->init_plt_refcount
.refcount
)
6815 if (dir
->plt
.refcount
< 0)
6816 dir
->plt
.refcount
= 0;
6817 dir
->plt
.refcount
+= ind
->plt
.refcount
;
6818 ind
->plt
.refcount
= htab
->init_plt_refcount
.refcount
;
6821 if (ind
->dynindx
!= -1)
6823 if (dir
->dynindx
!= -1)
6824 _bfd_elf_strtab_delref (htab
->dynstr
, dir
->dynstr_index
);
6825 dir
->dynindx
= ind
->dynindx
;
6826 dir
->dynstr_index
= ind
->dynstr_index
;
6828 ind
->dynstr_index
= 0;
6833 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info
*info
,
6834 struct elf_link_hash_entry
*h
,
6835 bfd_boolean force_local
)
6837 /* STT_GNU_IFUNC symbol must go through PLT. */
6838 if (h
->type
!= STT_GNU_IFUNC
)
6840 h
->plt
= elf_hash_table (info
)->init_plt_offset
;
6845 h
->forced_local
= 1;
6846 if (h
->dynindx
!= -1)
6849 _bfd_elf_strtab_delref (elf_hash_table (info
)->dynstr
,
6855 /* Initialize an ELF linker hash table. */
6858 _bfd_elf_link_hash_table_init
6859 (struct elf_link_hash_table
*table
,
6861 struct bfd_hash_entry
*(*newfunc
) (struct bfd_hash_entry
*,
6862 struct bfd_hash_table
*,
6864 unsigned int entsize
,
6865 enum elf_target_id target_id
)
6868 int can_refcount
= get_elf_backend_data (abfd
)->can_refcount
;
6870 memset (table
, 0, sizeof * table
);
6871 table
->init_got_refcount
.refcount
= can_refcount
- 1;
6872 table
->init_plt_refcount
.refcount
= can_refcount
- 1;
6873 table
->init_got_offset
.offset
= -(bfd_vma
) 1;
6874 table
->init_plt_offset
.offset
= -(bfd_vma
) 1;
6875 /* The first dynamic symbol is a dummy. */
6876 table
->dynsymcount
= 1;
6878 ret
= _bfd_link_hash_table_init (&table
->root
, abfd
, newfunc
, entsize
);
6880 table
->root
.type
= bfd_link_elf_hash_table
;
6881 table
->hash_table_id
= target_id
;
6886 /* Create an ELF linker hash table. */
6888 struct bfd_link_hash_table
*
6889 _bfd_elf_link_hash_table_create (bfd
*abfd
)
6891 struct elf_link_hash_table
*ret
;
6892 bfd_size_type amt
= sizeof (struct elf_link_hash_table
);
6894 ret
= (struct elf_link_hash_table
*) bfd_malloc (amt
);
6898 if (! _bfd_elf_link_hash_table_init (ret
, abfd
, _bfd_elf_link_hash_newfunc
,
6899 sizeof (struct elf_link_hash_entry
),
6909 /* This is a hook for the ELF emulation code in the generic linker to
6910 tell the backend linker what file name to use for the DT_NEEDED
6911 entry for a dynamic object. */
6914 bfd_elf_set_dt_needed_name (bfd
*abfd
, const char *name
)
6916 if (bfd_get_flavour (abfd
) == bfd_target_elf_flavour
6917 && bfd_get_format (abfd
) == bfd_object
)
6918 elf_dt_name (abfd
) = name
;
6922 bfd_elf_get_dyn_lib_class (bfd
*abfd
)
6925 if (bfd_get_flavour (abfd
) == bfd_target_elf_flavour
6926 && bfd_get_format (abfd
) == bfd_object
)
6927 lib_class
= elf_dyn_lib_class (abfd
);
6934 bfd_elf_set_dyn_lib_class (bfd
*abfd
, enum dynamic_lib_link_class lib_class
)
6936 if (bfd_get_flavour (abfd
) == bfd_target_elf_flavour
6937 && bfd_get_format (abfd
) == bfd_object
)
6938 elf_dyn_lib_class (abfd
) = lib_class
;
6941 /* Get the list of DT_NEEDED entries for a link. This is a hook for
6942 the linker ELF emulation code. */
6944 struct bfd_link_needed_list
*
6945 bfd_elf_get_needed_list (bfd
*abfd ATTRIBUTE_UNUSED
,
6946 struct bfd_link_info
*info
)
6948 if (! is_elf_hash_table (info
->hash
))
6950 return elf_hash_table (info
)->needed
;
6953 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
6954 hook for the linker ELF emulation code. */
6956 struct bfd_link_needed_list
*
6957 bfd_elf_get_runpath_list (bfd
*abfd ATTRIBUTE_UNUSED
,
6958 struct bfd_link_info
*info
)
6960 if (! is_elf_hash_table (info
->hash
))
6962 return elf_hash_table (info
)->runpath
;
6965 /* Get the name actually used for a dynamic object for a link. This
6966 is the SONAME entry if there is one. Otherwise, it is the string
6967 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
6970 bfd_elf_get_dt_soname (bfd
*abfd
)
6972 if (bfd_get_flavour (abfd
) == bfd_target_elf_flavour
6973 && bfd_get_format (abfd
) == bfd_object
)
6974 return elf_dt_name (abfd
);
6978 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
6979 the ELF linker emulation code. */
6982 bfd_elf_get_bfd_needed_list (bfd
*abfd
,
6983 struct bfd_link_needed_list
**pneeded
)
6986 bfd_byte
*dynbuf
= NULL
;
6987 unsigned int elfsec
;
6988 unsigned long shlink
;
6989 bfd_byte
*extdyn
, *extdynend
;
6991 void (*swap_dyn_in
) (bfd
*, const void *, Elf_Internal_Dyn
*);
6995 if (bfd_get_flavour (abfd
) != bfd_target_elf_flavour
6996 || bfd_get_format (abfd
) != bfd_object
)
6999 s
= bfd_get_section_by_name (abfd
, ".dynamic");
7000 if (s
== NULL
|| s
->size
== 0)
7003 if (!bfd_malloc_and_get_section (abfd
, s
, &dynbuf
))
7006 elfsec
= _bfd_elf_section_from_bfd_section (abfd
, s
);
7007 if (elfsec
== SHN_BAD
)
7010 shlink
= elf_elfsections (abfd
)[elfsec
]->sh_link
;
7012 extdynsize
= get_elf_backend_data (abfd
)->s
->sizeof_dyn
;
7013 swap_dyn_in
= get_elf_backend_data (abfd
)->s
->swap_dyn_in
;
7016 extdynend
= extdyn
+ s
->size
;
7017 for (; extdyn
< extdynend
; extdyn
+= extdynsize
)
7019 Elf_Internal_Dyn dyn
;
7021 (*swap_dyn_in
) (abfd
, extdyn
, &dyn
);
7023 if (dyn
.d_tag
== DT_NULL
)
7026 if (dyn
.d_tag
== DT_NEEDED
)
7029 struct bfd_link_needed_list
*l
;
7030 unsigned int tagv
= dyn
.d_un
.d_val
;
7033 string
= bfd_elf_string_from_elf_section (abfd
, shlink
, tagv
);
7038 l
= (struct bfd_link_needed_list
*) bfd_alloc (abfd
, amt
);
7059 struct elf_symbuf_symbol
7061 unsigned long st_name
; /* Symbol name, index in string tbl */
7062 unsigned char st_info
; /* Type and binding attributes */
7063 unsigned char st_other
; /* Visibilty, and target specific */
7066 struct elf_symbuf_head
7068 struct elf_symbuf_symbol
*ssym
;
7069 bfd_size_type count
;
7070 unsigned int st_shndx
;
7077 Elf_Internal_Sym
*isym
;
7078 struct elf_symbuf_symbol
*ssym
;
7083 /* Sort references to symbols by ascending section number. */
7086 elf_sort_elf_symbol (const void *arg1
, const void *arg2
)
7088 const Elf_Internal_Sym
*s1
= *(const Elf_Internal_Sym
**) arg1
;
7089 const Elf_Internal_Sym
*s2
= *(const Elf_Internal_Sym
**) arg2
;
7091 return s1
->st_shndx
- s2
->st_shndx
;
7095 elf_sym_name_compare (const void *arg1
, const void *arg2
)
7097 const struct elf_symbol
*s1
= (const struct elf_symbol
*) arg1
;
7098 const struct elf_symbol
*s2
= (const struct elf_symbol
*) arg2
;
7099 return strcmp (s1
->name
, s2
->name
);
7102 static struct elf_symbuf_head
*
7103 elf_create_symbuf (bfd_size_type symcount
, Elf_Internal_Sym
*isymbuf
)
7105 Elf_Internal_Sym
**ind
, **indbufend
, **indbuf
;
7106 struct elf_symbuf_symbol
*ssym
;
7107 struct elf_symbuf_head
*ssymbuf
, *ssymhead
;
7108 bfd_size_type i
, shndx_count
, total_size
;
7110 indbuf
= (Elf_Internal_Sym
**) bfd_malloc2 (symcount
, sizeof (*indbuf
));
7114 for (ind
= indbuf
, i
= 0; i
< symcount
; i
++)
7115 if (isymbuf
[i
].st_shndx
!= SHN_UNDEF
)
7116 *ind
++ = &isymbuf
[i
];
7119 qsort (indbuf
, indbufend
- indbuf
, sizeof (Elf_Internal_Sym
*),
7120 elf_sort_elf_symbol
);
7123 if (indbufend
> indbuf
)
7124 for (ind
= indbuf
, shndx_count
++; ind
< indbufend
- 1; ind
++)
7125 if (ind
[0]->st_shndx
!= ind
[1]->st_shndx
)
7128 total_size
= ((shndx_count
+ 1) * sizeof (*ssymbuf
)
7129 + (indbufend
- indbuf
) * sizeof (*ssym
));
7130 ssymbuf
= (struct elf_symbuf_head
*) bfd_malloc (total_size
);
7131 if (ssymbuf
== NULL
)
7137 ssym
= (struct elf_symbuf_symbol
*) (ssymbuf
+ shndx_count
+ 1);
7138 ssymbuf
->ssym
= NULL
;
7139 ssymbuf
->count
= shndx_count
;
7140 ssymbuf
->st_shndx
= 0;
7141 for (ssymhead
= ssymbuf
, ind
= indbuf
; ind
< indbufend
; ssym
++, ind
++)
7143 if (ind
== indbuf
|| ssymhead
->st_shndx
!= (*ind
)->st_shndx
)
7146 ssymhead
->ssym
= ssym
;
7147 ssymhead
->count
= 0;
7148 ssymhead
->st_shndx
= (*ind
)->st_shndx
;
7150 ssym
->st_name
= (*ind
)->st_name
;
7151 ssym
->st_info
= (*ind
)->st_info
;
7152 ssym
->st_other
= (*ind
)->st_other
;
7155 BFD_ASSERT ((bfd_size_type
) (ssymhead
- ssymbuf
) == shndx_count
7156 && (((bfd_hostptr_t
) ssym
- (bfd_hostptr_t
) ssymbuf
)
7163 /* Check if 2 sections define the same set of local and global
7167 bfd_elf_match_symbols_in_sections (asection
*sec1
, asection
*sec2
,
7168 struct bfd_link_info
*info
)
7171 const struct elf_backend_data
*bed1
, *bed2
;
7172 Elf_Internal_Shdr
*hdr1
, *hdr2
;
7173 bfd_size_type symcount1
, symcount2
;
7174 Elf_Internal_Sym
*isymbuf1
, *isymbuf2
;
7175 struct elf_symbuf_head
*ssymbuf1
, *ssymbuf2
;
7176 Elf_Internal_Sym
*isym
, *isymend
;
7177 struct elf_symbol
*symtable1
= NULL
, *symtable2
= NULL
;
7178 bfd_size_type count1
, count2
, i
;
7179 unsigned int shndx1
, shndx2
;
7185 /* Both sections have to be in ELF. */
7186 if (bfd_get_flavour (bfd1
) != bfd_target_elf_flavour
7187 || bfd_get_flavour (bfd2
) != bfd_target_elf_flavour
)
7190 if (elf_section_type (sec1
) != elf_section_type (sec2
))
7193 shndx1
= _bfd_elf_section_from_bfd_section (bfd1
, sec1
);
7194 shndx2
= _bfd_elf_section_from_bfd_section (bfd2
, sec2
);
7195 if (shndx1
== SHN_BAD
|| shndx2
== SHN_BAD
)
7198 bed1
= get_elf_backend_data (bfd1
);
7199 bed2
= get_elf_backend_data (bfd2
);
7200 hdr1
= &elf_tdata (bfd1
)->symtab_hdr
;
7201 symcount1
= hdr1
->sh_size
/ bed1
->s
->sizeof_sym
;
7202 hdr2
= &elf_tdata (bfd2
)->symtab_hdr
;
7203 symcount2
= hdr2
->sh_size
/ bed2
->s
->sizeof_sym
;
7205 if (symcount1
== 0 || symcount2
== 0)
7211 ssymbuf1
= (struct elf_symbuf_head
*) elf_tdata (bfd1
)->symbuf
;
7212 ssymbuf2
= (struct elf_symbuf_head
*) elf_tdata (bfd2
)->symbuf
;
7214 if (ssymbuf1
== NULL
)
7216 isymbuf1
= bfd_elf_get_elf_syms (bfd1
, hdr1
, symcount1
, 0,
7218 if (isymbuf1
== NULL
)
7221 if (!info
->reduce_memory_overheads
)
7222 elf_tdata (bfd1
)->symbuf
= ssymbuf1
7223 = elf_create_symbuf (symcount1
, isymbuf1
);
7226 if (ssymbuf1
== NULL
|| ssymbuf2
== NULL
)
7228 isymbuf2
= bfd_elf_get_elf_syms (bfd2
, hdr2
, symcount2
, 0,
7230 if (isymbuf2
== NULL
)
7233 if (ssymbuf1
!= NULL
&& !info
->reduce_memory_overheads
)
7234 elf_tdata (bfd2
)->symbuf
= ssymbuf2
7235 = elf_create_symbuf (symcount2
, isymbuf2
);
7238 if (ssymbuf1
!= NULL
&& ssymbuf2
!= NULL
)
7240 /* Optimized faster version. */
7241 bfd_size_type lo
, hi
, mid
;
7242 struct elf_symbol
*symp
;
7243 struct elf_symbuf_symbol
*ssym
, *ssymend
;
7246 hi
= ssymbuf1
->count
;
7251 mid
= (lo
+ hi
) / 2;
7252 if (shndx1
< ssymbuf1
[mid
].st_shndx
)
7254 else if (shndx1
> ssymbuf1
[mid
].st_shndx
)
7258 count1
= ssymbuf1
[mid
].count
;
7265 hi
= ssymbuf2
->count
;
7270 mid
= (lo
+ hi
) / 2;
7271 if (shndx2
< ssymbuf2
[mid
].st_shndx
)
7273 else if (shndx2
> ssymbuf2
[mid
].st_shndx
)
7277 count2
= ssymbuf2
[mid
].count
;
7283 if (count1
== 0 || count2
== 0 || count1
!= count2
)
7286 symtable1
= (struct elf_symbol
*)
7287 bfd_malloc (count1
* sizeof (struct elf_symbol
));
7288 symtable2
= (struct elf_symbol
*)
7289 bfd_malloc (count2
* sizeof (struct elf_symbol
));
7290 if (symtable1
== NULL
|| symtable2
== NULL
)
7294 for (ssym
= ssymbuf1
->ssym
, ssymend
= ssym
+ count1
;
7295 ssym
< ssymend
; ssym
++, symp
++)
7297 symp
->u
.ssym
= ssym
;
7298 symp
->name
= bfd_elf_string_from_elf_section (bfd1
,
7304 for (ssym
= ssymbuf2
->ssym
, ssymend
= ssym
+ count2
;
7305 ssym
< ssymend
; ssym
++, symp
++)
7307 symp
->u
.ssym
= ssym
;
7308 symp
->name
= bfd_elf_string_from_elf_section (bfd2
,
7313 /* Sort symbol by name. */
7314 qsort (symtable1
, count1
, sizeof (struct elf_symbol
),
7315 elf_sym_name_compare
);
7316 qsort (symtable2
, count1
, sizeof (struct elf_symbol
),
7317 elf_sym_name_compare
);
7319 for (i
= 0; i
< count1
; i
++)
7320 /* Two symbols must have the same binding, type and name. */
7321 if (symtable1
[i
].u
.ssym
->st_info
!= symtable2
[i
].u
.ssym
->st_info
7322 || symtable1
[i
].u
.ssym
->st_other
!= symtable2
[i
].u
.ssym
->st_other
7323 || strcmp (symtable1
[i
].name
, symtable2
[i
].name
) != 0)
7330 symtable1
= (struct elf_symbol
*)
7331 bfd_malloc (symcount1
* sizeof (struct elf_symbol
));
7332 symtable2
= (struct elf_symbol
*)
7333 bfd_malloc (symcount2
* sizeof (struct elf_symbol
));
7334 if (symtable1
== NULL
|| symtable2
== NULL
)
7337 /* Count definitions in the section. */
7339 for (isym
= isymbuf1
, isymend
= isym
+ symcount1
; isym
< isymend
; isym
++)
7340 if (isym
->st_shndx
== shndx1
)
7341 symtable1
[count1
++].u
.isym
= isym
;
7344 for (isym
= isymbuf2
, isymend
= isym
+ symcount2
; isym
< isymend
; isym
++)
7345 if (isym
->st_shndx
== shndx2
)
7346 symtable2
[count2
++].u
.isym
= isym
;
7348 if (count1
== 0 || count2
== 0 || count1
!= count2
)
7351 for (i
= 0; i
< count1
; i
++)
7353 = bfd_elf_string_from_elf_section (bfd1
, hdr1
->sh_link
,
7354 symtable1
[i
].u
.isym
->st_name
);
7356 for (i
= 0; i
< count2
; i
++)
7358 = bfd_elf_string_from_elf_section (bfd2
, hdr2
->sh_link
,
7359 symtable2
[i
].u
.isym
->st_name
);
7361 /* Sort symbol by name. */
7362 qsort (symtable1
, count1
, sizeof (struct elf_symbol
),
7363 elf_sym_name_compare
);
7364 qsort (symtable2
, count1
, sizeof (struct elf_symbol
),
7365 elf_sym_name_compare
);
7367 for (i
= 0; i
< count1
; i
++)
7368 /* Two symbols must have the same binding, type and name. */
7369 if (symtable1
[i
].u
.isym
->st_info
!= symtable2
[i
].u
.isym
->st_info
7370 || symtable1
[i
].u
.isym
->st_other
!= symtable2
[i
].u
.isym
->st_other
7371 || strcmp (symtable1
[i
].name
, symtable2
[i
].name
) != 0)
7389 /* Return TRUE if 2 section types are compatible. */
7392 _bfd_elf_match_sections_by_type (bfd
*abfd
, const asection
*asec
,
7393 bfd
*bbfd
, const asection
*bsec
)
7397 || abfd
->xvec
->flavour
!= bfd_target_elf_flavour
7398 || bbfd
->xvec
->flavour
!= bfd_target_elf_flavour
)
7401 return elf_section_type (asec
) == elf_section_type (bsec
);
7404 /* Final phase of ELF linker. */
7406 /* A structure we use to avoid passing large numbers of arguments. */
7408 struct elf_final_link_info
7410 /* General link information. */
7411 struct bfd_link_info
*info
;
7414 /* Symbol string table. */
7415 struct bfd_strtab_hash
*symstrtab
;
7416 /* .dynsym section. */
7417 asection
*dynsym_sec
;
7418 /* .hash section. */
7420 /* symbol version section (.gnu.version). */
7421 asection
*symver_sec
;
7422 /* Buffer large enough to hold contents of any section. */
7424 /* Buffer large enough to hold external relocs of any section. */
7425 void *external_relocs
;
7426 /* Buffer large enough to hold internal relocs of any section. */
7427 Elf_Internal_Rela
*internal_relocs
;
7428 /* Buffer large enough to hold external local symbols of any input
7430 bfd_byte
*external_syms
;
7431 /* And a buffer for symbol section indices. */
7432 Elf_External_Sym_Shndx
*locsym_shndx
;
7433 /* Buffer large enough to hold internal local symbols of any input
7435 Elf_Internal_Sym
*internal_syms
;
7436 /* Array large enough to hold a symbol index for each local symbol
7437 of any input BFD. */
7439 /* Array large enough to hold a section pointer for each local
7440 symbol of any input BFD. */
7441 asection
**sections
;
7442 /* Buffer to hold swapped out symbols. */
7444 /* And one for symbol section indices. */
7445 Elf_External_Sym_Shndx
*symshndxbuf
;
7446 /* Number of swapped out symbols in buffer. */
7447 size_t symbuf_count
;
7448 /* Number of symbols which fit in symbuf. */
7450 /* And same for symshndxbuf. */
7451 size_t shndxbuf_size
;
7452 /* Number of STT_FILE syms seen. */
7453 size_t filesym_count
;
7456 /* This struct is used to pass information to elf_link_output_extsym. */
7458 struct elf_outext_info
7461 bfd_boolean localsyms
;
7462 bfd_boolean need_second_pass
;
7463 bfd_boolean second_pass
;
7464 struct elf_final_link_info
*flinfo
;
7468 /* Support for evaluating a complex relocation.
7470 Complex relocations are generalized, self-describing relocations. The
7471 implementation of them consists of two parts: complex symbols, and the
7472 relocations themselves.
7474 The relocations are use a reserved elf-wide relocation type code (R_RELC
7475 external / BFD_RELOC_RELC internal) and an encoding of relocation field
7476 information (start bit, end bit, word width, etc) into the addend. This
7477 information is extracted from CGEN-generated operand tables within gas.
7479 Complex symbols are mangled symbols (BSF_RELC external / STT_RELC
7480 internal) representing prefix-notation expressions, including but not
7481 limited to those sorts of expressions normally encoded as addends in the
7482 addend field. The symbol mangling format is:
7485 | <unary-operator> ':' <node>
7486 | <binary-operator> ':' <node> ':' <node>
7489 <literal> := 's' <digits=N> ':' <N character symbol name>
7490 | 'S' <digits=N> ':' <N character section name>
7494 <binary-operator> := as in C
7495 <unary-operator> := as in C, plus "0-" for unambiguous negation. */
7498 set_symbol_value (bfd
*bfd_with_globals
,
7499 Elf_Internal_Sym
*isymbuf
,
7504 struct elf_link_hash_entry
**sym_hashes
;
7505 struct elf_link_hash_entry
*h
;
7506 size_t extsymoff
= locsymcount
;
7508 if (symidx
< locsymcount
)
7510 Elf_Internal_Sym
*sym
;
7512 sym
= isymbuf
+ symidx
;
7513 if (ELF_ST_BIND (sym
->st_info
) == STB_LOCAL
)
7515 /* It is a local symbol: move it to the
7516 "absolute" section and give it a value. */
7517 sym
->st_shndx
= SHN_ABS
;
7518 sym
->st_value
= val
;
7521 BFD_ASSERT (elf_bad_symtab (bfd_with_globals
));
7525 /* It is a global symbol: set its link type
7526 to "defined" and give it a value. */
7528 sym_hashes
= elf_sym_hashes (bfd_with_globals
);
7529 h
= sym_hashes
[symidx
- extsymoff
];
7530 while (h
->root
.type
== bfd_link_hash_indirect
7531 || h
->root
.type
== bfd_link_hash_warning
)
7532 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
7533 h
->root
.type
= bfd_link_hash_defined
;
7534 h
->root
.u
.def
.value
= val
;
7535 h
->root
.u
.def
.section
= bfd_abs_section_ptr
;
7539 resolve_symbol (const char *name
,
7541 struct elf_final_link_info
*flinfo
,
7543 Elf_Internal_Sym
*isymbuf
,
7546 Elf_Internal_Sym
*sym
;
7547 struct bfd_link_hash_entry
*global_entry
;
7548 const char *candidate
= NULL
;
7549 Elf_Internal_Shdr
*symtab_hdr
;
7552 symtab_hdr
= & elf_tdata (input_bfd
)->symtab_hdr
;
7554 for (i
= 0; i
< locsymcount
; ++ i
)
7558 if (ELF_ST_BIND (sym
->st_info
) != STB_LOCAL
)
7561 candidate
= bfd_elf_string_from_elf_section (input_bfd
,
7562 symtab_hdr
->sh_link
,
7565 printf ("Comparing string: '%s' vs. '%s' = 0x%lx\n",
7566 name
, candidate
, (unsigned long) sym
->st_value
);
7568 if (candidate
&& strcmp (candidate
, name
) == 0)
7570 asection
*sec
= flinfo
->sections
[i
];
7572 *result
= _bfd_elf_rel_local_sym (input_bfd
, sym
, &sec
, 0);
7573 *result
+= sec
->output_offset
+ sec
->output_section
->vma
;
7575 printf ("Found symbol with value %8.8lx\n",
7576 (unsigned long) *result
);
7582 /* Hmm, haven't found it yet. perhaps it is a global. */
7583 global_entry
= bfd_link_hash_lookup (flinfo
->info
->hash
, name
,
7584 FALSE
, FALSE
, TRUE
);
7588 if (global_entry
->type
== bfd_link_hash_defined
7589 || global_entry
->type
== bfd_link_hash_defweak
)
7591 *result
= (global_entry
->u
.def
.value
7592 + global_entry
->u
.def
.section
->output_section
->vma
7593 + global_entry
->u
.def
.section
->output_offset
);
7595 printf ("Found GLOBAL symbol '%s' with value %8.8lx\n",
7596 global_entry
->root
.string
, (unsigned long) *result
);
7605 resolve_section (const char *name
,
7612 for (curr
= sections
; curr
; curr
= curr
->next
)
7613 if (strcmp (curr
->name
, name
) == 0)
7615 *result
= curr
->vma
;
7619 /* Hmm. still haven't found it. try pseudo-section names. */
7620 for (curr
= sections
; curr
; curr
= curr
->next
)
7622 len
= strlen (curr
->name
);
7623 if (len
> strlen (name
))
7626 if (strncmp (curr
->name
, name
, len
) == 0)
7628 if (strncmp (".end", name
+ len
, 4) == 0)
7630 *result
= curr
->vma
+ curr
->size
;
7634 /* Insert more pseudo-section names here, if you like. */
7642 undefined_reference (const char *reftype
, const char *name
)
7644 _bfd_error_handler (_("undefined %s reference in complex symbol: %s"),
7649 eval_symbol (bfd_vma
*result
,
7652 struct elf_final_link_info
*flinfo
,
7654 Elf_Internal_Sym
*isymbuf
,
7663 const char *sym
= *symp
;
7665 bfd_boolean symbol_is_section
= FALSE
;
7670 if (len
< 1 || len
> sizeof (symbuf
))
7672 bfd_set_error (bfd_error_invalid_operation
);
7685 *result
= strtoul (sym
, (char **) symp
, 16);
7689 symbol_is_section
= TRUE
;
7692 symlen
= strtol (sym
, (char **) symp
, 10);
7693 sym
= *symp
+ 1; /* Skip the trailing ':'. */
7695 if (symend
< sym
|| symlen
+ 1 > sizeof (symbuf
))
7697 bfd_set_error (bfd_error_invalid_operation
);
7701 memcpy (symbuf
, sym
, symlen
);
7702 symbuf
[symlen
] = '\0';
7703 *symp
= sym
+ symlen
;
7705 /* Is it always possible, with complex symbols, that gas "mis-guessed"
7706 the symbol as a section, or vice-versa. so we're pretty liberal in our
7707 interpretation here; section means "try section first", not "must be a
7708 section", and likewise with symbol. */
7710 if (symbol_is_section
)
7712 if (!resolve_section (symbuf
, flinfo
->output_bfd
->sections
, result
)
7713 && !resolve_symbol (symbuf
, input_bfd
, flinfo
, result
,
7714 isymbuf
, locsymcount
))
7716 undefined_reference ("section", symbuf
);
7722 if (!resolve_symbol (symbuf
, input_bfd
, flinfo
, result
,
7723 isymbuf
, locsymcount
)
7724 && !resolve_section (symbuf
, flinfo
->output_bfd
->sections
,
7727 undefined_reference ("symbol", symbuf
);
7734 /* All that remains are operators. */
7736 #define UNARY_OP(op) \
7737 if (strncmp (sym, #op, strlen (#op)) == 0) \
7739 sym += strlen (#op); \
7743 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
7744 isymbuf, locsymcount, signed_p)) \
7747 *result = op ((bfd_signed_vma) a); \
7753 #define BINARY_OP(op) \
7754 if (strncmp (sym, #op, strlen (#op)) == 0) \
7756 sym += strlen (#op); \
7760 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
7761 isymbuf, locsymcount, signed_p)) \
7764 if (!eval_symbol (&b, symp, input_bfd, flinfo, dot, \
7765 isymbuf, locsymcount, signed_p)) \
7768 *result = ((bfd_signed_vma) a) op ((bfd_signed_vma) b); \
7798 _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym
);
7799 bfd_set_error (bfd_error_invalid_operation
);
7805 put_value (bfd_vma size
,
7806 unsigned long chunksz
,
7811 location
+= (size
- chunksz
);
7813 for (; size
; size
-= chunksz
, location
-= chunksz
, x
>>= (chunksz
* 8))
7821 bfd_put_8 (input_bfd
, x
, location
);
7824 bfd_put_16 (input_bfd
, x
, location
);
7827 bfd_put_32 (input_bfd
, x
, location
);
7831 bfd_put_64 (input_bfd
, x
, location
);
7841 get_value (bfd_vma size
,
7842 unsigned long chunksz
,
7848 for (; size
; size
-= chunksz
, location
+= chunksz
)
7856 x
= (x
<< (8 * chunksz
)) | bfd_get_8 (input_bfd
, location
);
7859 x
= (x
<< (8 * chunksz
)) | bfd_get_16 (input_bfd
, location
);
7862 x
= (x
<< (8 * chunksz
)) | bfd_get_32 (input_bfd
, location
);
7866 x
= (x
<< (8 * chunksz
)) | bfd_get_64 (input_bfd
, location
);
7877 decode_complex_addend (unsigned long *start
, /* in bits */
7878 unsigned long *oplen
, /* in bits */
7879 unsigned long *len
, /* in bits */
7880 unsigned long *wordsz
, /* in bytes */
7881 unsigned long *chunksz
, /* in bytes */
7882 unsigned long *lsb0_p
,
7883 unsigned long *signed_p
,
7884 unsigned long *trunc_p
,
7885 unsigned long encoded
)
7887 * start
= encoded
& 0x3F;
7888 * len
= (encoded
>> 6) & 0x3F;
7889 * oplen
= (encoded
>> 12) & 0x3F;
7890 * wordsz
= (encoded
>> 18) & 0xF;
7891 * chunksz
= (encoded
>> 22) & 0xF;
7892 * lsb0_p
= (encoded
>> 27) & 1;
7893 * signed_p
= (encoded
>> 28) & 1;
7894 * trunc_p
= (encoded
>> 29) & 1;
7897 bfd_reloc_status_type
7898 bfd_elf_perform_complex_relocation (bfd
*input_bfd
,
7899 asection
*input_section ATTRIBUTE_UNUSED
,
7901 Elf_Internal_Rela
*rel
,
7904 bfd_vma shift
, x
, mask
;
7905 unsigned long start
, oplen
, len
, wordsz
, chunksz
, lsb0_p
, signed_p
, trunc_p
;
7906 bfd_reloc_status_type r
;
7908 /* Perform this reloc, since it is complex.
7909 (this is not to say that it necessarily refers to a complex
7910 symbol; merely that it is a self-describing CGEN based reloc.
7911 i.e. the addend has the complete reloc information (bit start, end,
7912 word size, etc) encoded within it.). */
7914 decode_complex_addend (&start
, &oplen
, &len
, &wordsz
,
7915 &chunksz
, &lsb0_p
, &signed_p
,
7916 &trunc_p
, rel
->r_addend
);
7918 mask
= (((1L << (len
- 1)) - 1) << 1) | 1;
7921 shift
= (start
+ 1) - len
;
7923 shift
= (8 * wordsz
) - (start
+ len
);
7925 /* FIXME: octets_per_byte. */
7926 x
= get_value (wordsz
, chunksz
, input_bfd
, contents
+ rel
->r_offset
);
7929 printf ("Doing complex reloc: "
7930 "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, "
7931 "chunksz %ld, start %ld, len %ld, oplen %ld\n"
7932 " dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n",
7933 lsb0_p
, signed_p
, trunc_p
, wordsz
, chunksz
, start
, len
,
7934 oplen
, (unsigned long) x
, (unsigned long) mask
,
7935 (unsigned long) relocation
);
7940 /* Now do an overflow check. */
7941 r
= bfd_check_overflow ((signed_p
7942 ? complain_overflow_signed
7943 : complain_overflow_unsigned
),
7944 len
, 0, (8 * wordsz
),
7948 x
= (x
& ~(mask
<< shift
)) | ((relocation
& mask
) << shift
);
7951 printf (" relocation: %8.8lx\n"
7952 " shifted mask: %8.8lx\n"
7953 " shifted/masked reloc: %8.8lx\n"
7954 " result: %8.8lx\n",
7955 (unsigned long) relocation
, (unsigned long) (mask
<< shift
),
7956 (unsigned long) ((relocation
& mask
) << shift
), (unsigned long) x
);
7958 /* FIXME: octets_per_byte. */
7959 put_value (wordsz
, chunksz
, input_bfd
, x
, contents
+ rel
->r_offset
);
7963 /* When performing a relocatable link, the input relocations are
7964 preserved. But, if they reference global symbols, the indices
7965 referenced must be updated. Update all the relocations found in
7969 elf_link_adjust_relocs (bfd
*abfd
,
7970 struct bfd_elf_section_reloc_data
*reldata
)
7973 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
7975 void (*swap_in
) (bfd
*, const bfd_byte
*, Elf_Internal_Rela
*);
7976 void (*swap_out
) (bfd
*, const Elf_Internal_Rela
*, bfd_byte
*);
7977 bfd_vma r_type_mask
;
7979 unsigned int count
= reldata
->count
;
7980 struct elf_link_hash_entry
**rel_hash
= reldata
->hashes
;
7982 if (reldata
->hdr
->sh_entsize
== bed
->s
->sizeof_rel
)
7984 swap_in
= bed
->s
->swap_reloc_in
;
7985 swap_out
= bed
->s
->swap_reloc_out
;
7987 else if (reldata
->hdr
->sh_entsize
== bed
->s
->sizeof_rela
)
7989 swap_in
= bed
->s
->swap_reloca_in
;
7990 swap_out
= bed
->s
->swap_reloca_out
;
7995 if (bed
->s
->int_rels_per_ext_rel
> MAX_INT_RELS_PER_EXT_REL
)
7998 if (bed
->s
->arch_size
== 32)
8005 r_type_mask
= 0xffffffff;
8009 erela
= reldata
->hdr
->contents
;
8010 for (i
= 0; i
< count
; i
++, rel_hash
++, erela
+= reldata
->hdr
->sh_entsize
)
8012 Elf_Internal_Rela irela
[MAX_INT_RELS_PER_EXT_REL
];
8015 if (*rel_hash
== NULL
)
8018 BFD_ASSERT ((*rel_hash
)->indx
>= 0);
8020 (*swap_in
) (abfd
, erela
, irela
);
8021 for (j
= 0; j
< bed
->s
->int_rels_per_ext_rel
; j
++)
8022 irela
[j
].r_info
= ((bfd_vma
) (*rel_hash
)->indx
<< r_sym_shift
8023 | (irela
[j
].r_info
& r_type_mask
));
8024 (*swap_out
) (abfd
, irela
, erela
);
8028 struct elf_link_sort_rela
8034 enum elf_reloc_type_class type
;
8035 /* We use this as an array of size int_rels_per_ext_rel. */
8036 Elf_Internal_Rela rela
[1];
8040 elf_link_sort_cmp1 (const void *A
, const void *B
)
8042 const struct elf_link_sort_rela
*a
= (const struct elf_link_sort_rela
*) A
;
8043 const struct elf_link_sort_rela
*b
= (const struct elf_link_sort_rela
*) B
;
8044 int relativea
, relativeb
;
8046 relativea
= a
->type
== reloc_class_relative
;
8047 relativeb
= b
->type
== reloc_class_relative
;
8049 if (relativea
< relativeb
)
8051 if (relativea
> relativeb
)
8053 if ((a
->rela
->r_info
& a
->u
.sym_mask
) < (b
->rela
->r_info
& b
->u
.sym_mask
))
8055 if ((a
->rela
->r_info
& a
->u
.sym_mask
) > (b
->rela
->r_info
& b
->u
.sym_mask
))
8057 if (a
->rela
->r_offset
< b
->rela
->r_offset
)
8059 if (a
->rela
->r_offset
> b
->rela
->r_offset
)
8065 elf_link_sort_cmp2 (const void *A
, const void *B
)
8067 const struct elf_link_sort_rela
*a
= (const struct elf_link_sort_rela
*) A
;
8068 const struct elf_link_sort_rela
*b
= (const struct elf_link_sort_rela
*) B
;
8071 if (a
->u
.offset
< b
->u
.offset
)
8073 if (a
->u
.offset
> b
->u
.offset
)
8075 copya
= (a
->type
== reloc_class_copy
) * 2 + (a
->type
== reloc_class_plt
);
8076 copyb
= (b
->type
== reloc_class_copy
) * 2 + (b
->type
== reloc_class_plt
);
8081 if (a
->rela
->r_offset
< b
->rela
->r_offset
)
8083 if (a
->rela
->r_offset
> b
->rela
->r_offset
)
8089 elf_link_sort_relocs (bfd
*abfd
, struct bfd_link_info
*info
, asection
**psec
)
8091 asection
*dynamic_relocs
;
8094 bfd_size_type count
, size
;
8095 size_t i
, ret
, sort_elt
, ext_size
;
8096 bfd_byte
*sort
, *s_non_relative
, *p
;
8097 struct elf_link_sort_rela
*sq
;
8098 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
8099 int i2e
= bed
->s
->int_rels_per_ext_rel
;
8100 void (*swap_in
) (bfd
*, const bfd_byte
*, Elf_Internal_Rela
*);
8101 void (*swap_out
) (bfd
*, const Elf_Internal_Rela
*, bfd_byte
*);
8102 struct bfd_link_order
*lo
;
8104 bfd_boolean use_rela
;
8106 /* Find a dynamic reloc section. */
8107 rela_dyn
= bfd_get_section_by_name (abfd
, ".rela.dyn");
8108 rel_dyn
= bfd_get_section_by_name (abfd
, ".rel.dyn");
8109 if (rela_dyn
!= NULL
&& rela_dyn
->size
> 0
8110 && rel_dyn
!= NULL
&& rel_dyn
->size
> 0)
8112 bfd_boolean use_rela_initialised
= FALSE
;
8114 /* This is just here to stop gcc from complaining.
8115 It's initialization checking code is not perfect. */
8118 /* Both sections are present. Examine the sizes
8119 of the indirect sections to help us choose. */
8120 for (lo
= rela_dyn
->map_head
.link_order
; lo
!= NULL
; lo
= lo
->next
)
8121 if (lo
->type
== bfd_indirect_link_order
)
8123 asection
*o
= lo
->u
.indirect
.section
;
8125 if ((o
->size
% bed
->s
->sizeof_rela
) == 0)
8127 if ((o
->size
% bed
->s
->sizeof_rel
) == 0)
8128 /* Section size is divisible by both rel and rela sizes.
8129 It is of no help to us. */
8133 /* Section size is only divisible by rela. */
8134 if (use_rela_initialised
&& (use_rela
== FALSE
))
8137 (_("%B: Unable to sort relocs - they are in more than one size"), abfd
);
8138 bfd_set_error (bfd_error_invalid_operation
);
8144 use_rela_initialised
= TRUE
;
8148 else if ((o
->size
% bed
->s
->sizeof_rel
) == 0)
8150 /* Section size is only divisible by rel. */
8151 if (use_rela_initialised
&& (use_rela
== TRUE
))
8154 (_("%B: Unable to sort relocs - they are in more than one size"), abfd
);
8155 bfd_set_error (bfd_error_invalid_operation
);
8161 use_rela_initialised
= TRUE
;
8166 /* The section size is not divisible by either - something is wrong. */
8168 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd
);
8169 bfd_set_error (bfd_error_invalid_operation
);
8174 for (lo
= rel_dyn
->map_head
.link_order
; lo
!= NULL
; lo
= lo
->next
)
8175 if (lo
->type
== bfd_indirect_link_order
)
8177 asection
*o
= lo
->u
.indirect
.section
;
8179 if ((o
->size
% bed
->s
->sizeof_rela
) == 0)
8181 if ((o
->size
% bed
->s
->sizeof_rel
) == 0)
8182 /* Section size is divisible by both rel and rela sizes.
8183 It is of no help to us. */
8187 /* Section size is only divisible by rela. */
8188 if (use_rela_initialised
&& (use_rela
== FALSE
))
8191 (_("%B: Unable to sort relocs - they are in more than one size"), abfd
);
8192 bfd_set_error (bfd_error_invalid_operation
);
8198 use_rela_initialised
= TRUE
;
8202 else if ((o
->size
% bed
->s
->sizeof_rel
) == 0)
8204 /* Section size is only divisible by rel. */
8205 if (use_rela_initialised
&& (use_rela
== TRUE
))
8208 (_("%B: Unable to sort relocs - they are in more than one size"), abfd
);
8209 bfd_set_error (bfd_error_invalid_operation
);
8215 use_rela_initialised
= TRUE
;
8220 /* The section size is not divisible by either - something is wrong. */
8222 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd
);
8223 bfd_set_error (bfd_error_invalid_operation
);
8228 if (! use_rela_initialised
)
8232 else if (rela_dyn
!= NULL
&& rela_dyn
->size
> 0)
8234 else if (rel_dyn
!= NULL
&& rel_dyn
->size
> 0)
8241 dynamic_relocs
= rela_dyn
;
8242 ext_size
= bed
->s
->sizeof_rela
;
8243 swap_in
= bed
->s
->swap_reloca_in
;
8244 swap_out
= bed
->s
->swap_reloca_out
;
8248 dynamic_relocs
= rel_dyn
;
8249 ext_size
= bed
->s
->sizeof_rel
;
8250 swap_in
= bed
->s
->swap_reloc_in
;
8251 swap_out
= bed
->s
->swap_reloc_out
;
8255 for (lo
= dynamic_relocs
->map_head
.link_order
; lo
!= NULL
; lo
= lo
->next
)
8256 if (lo
->type
== bfd_indirect_link_order
)
8257 size
+= lo
->u
.indirect
.section
->size
;
8259 if (size
!= dynamic_relocs
->size
)
8262 sort_elt
= (sizeof (struct elf_link_sort_rela
)
8263 + (i2e
- 1) * sizeof (Elf_Internal_Rela
));
8265 count
= dynamic_relocs
->size
/ ext_size
;
8268 sort
= (bfd_byte
*) bfd_zmalloc (sort_elt
* count
);
8272 (*info
->callbacks
->warning
)
8273 (info
, _("Not enough memory to sort relocations"), 0, abfd
, 0, 0);
8277 if (bed
->s
->arch_size
== 32)
8278 r_sym_mask
= ~(bfd_vma
) 0xff;
8280 r_sym_mask
= ~(bfd_vma
) 0xffffffff;
8282 for (lo
= dynamic_relocs
->map_head
.link_order
; lo
!= NULL
; lo
= lo
->next
)
8283 if (lo
->type
== bfd_indirect_link_order
)
8285 bfd_byte
*erel
, *erelend
;
8286 asection
*o
= lo
->u
.indirect
.section
;
8288 if (o
->contents
== NULL
&& o
->size
!= 0)
8290 /* This is a reloc section that is being handled as a normal
8291 section. See bfd_section_from_shdr. We can't combine
8292 relocs in this case. */
8297 erelend
= o
->contents
+ o
->size
;
8298 /* FIXME: octets_per_byte. */
8299 p
= sort
+ o
->output_offset
/ ext_size
* sort_elt
;
8301 while (erel
< erelend
)
8303 struct elf_link_sort_rela
*s
= (struct elf_link_sort_rela
*) p
;
8305 (*swap_in
) (abfd
, erel
, s
->rela
);
8306 s
->type
= (*bed
->elf_backend_reloc_type_class
) (s
->rela
);
8307 s
->u
.sym_mask
= r_sym_mask
;
8313 qsort (sort
, count
, sort_elt
, elf_link_sort_cmp1
);
8315 for (i
= 0, p
= sort
; i
< count
; i
++, p
+= sort_elt
)
8317 struct elf_link_sort_rela
*s
= (struct elf_link_sort_rela
*) p
;
8318 if (s
->type
!= reloc_class_relative
)
8324 sq
= (struct elf_link_sort_rela
*) s_non_relative
;
8325 for (; i
< count
; i
++, p
+= sort_elt
)
8327 struct elf_link_sort_rela
*sp
= (struct elf_link_sort_rela
*) p
;
8328 if (((sp
->rela
->r_info
^ sq
->rela
->r_info
) & r_sym_mask
) != 0)
8330 sp
->u
.offset
= sq
->rela
->r_offset
;
8333 qsort (s_non_relative
, count
- ret
, sort_elt
, elf_link_sort_cmp2
);
8335 for (lo
= dynamic_relocs
->map_head
.link_order
; lo
!= NULL
; lo
= lo
->next
)
8336 if (lo
->type
== bfd_indirect_link_order
)
8338 bfd_byte
*erel
, *erelend
;
8339 asection
*o
= lo
->u
.indirect
.section
;
8342 erelend
= o
->contents
+ o
->size
;
8343 /* FIXME: octets_per_byte. */
8344 p
= sort
+ o
->output_offset
/ ext_size
* sort_elt
;
8345 while (erel
< erelend
)
8347 struct elf_link_sort_rela
*s
= (struct elf_link_sort_rela
*) p
;
8348 (*swap_out
) (abfd
, s
->rela
, erel
);
8355 *psec
= dynamic_relocs
;
8359 /* Flush the output symbols to the file. */
8362 elf_link_flush_output_syms (struct elf_final_link_info
*flinfo
,
8363 const struct elf_backend_data
*bed
)
8365 if (flinfo
->symbuf_count
> 0)
8367 Elf_Internal_Shdr
*hdr
;
8371 hdr
= &elf_tdata (flinfo
->output_bfd
)->symtab_hdr
;
8372 pos
= hdr
->sh_offset
+ hdr
->sh_size
;
8373 amt
= flinfo
->symbuf_count
* bed
->s
->sizeof_sym
;
8374 if (bfd_seek (flinfo
->output_bfd
, pos
, SEEK_SET
) != 0
8375 || bfd_bwrite (flinfo
->symbuf
, amt
, flinfo
->output_bfd
) != amt
)
8378 hdr
->sh_size
+= amt
;
8379 flinfo
->symbuf_count
= 0;
8385 /* Add a symbol to the output symbol table. */
8388 elf_link_output_sym (struct elf_final_link_info
*flinfo
,
8390 Elf_Internal_Sym
*elfsym
,
8391 asection
*input_sec
,
8392 struct elf_link_hash_entry
*h
)
8395 Elf_External_Sym_Shndx
*destshndx
;
8396 int (*output_symbol_hook
)
8397 (struct bfd_link_info
*, const char *, Elf_Internal_Sym
*, asection
*,
8398 struct elf_link_hash_entry
*);
8399 const struct elf_backend_data
*bed
;
8401 bed
= get_elf_backend_data (flinfo
->output_bfd
);
8402 output_symbol_hook
= bed
->elf_backend_link_output_symbol_hook
;
8403 if (output_symbol_hook
!= NULL
)
8405 int ret
= (*output_symbol_hook
) (flinfo
->info
, name
, elfsym
, input_sec
, h
);
8410 if (name
== NULL
|| *name
== '\0')
8411 elfsym
->st_name
= 0;
8412 else if (input_sec
->flags
& SEC_EXCLUDE
)
8413 elfsym
->st_name
= 0;
8416 elfsym
->st_name
= (unsigned long) _bfd_stringtab_add (flinfo
->symstrtab
,
8418 if (elfsym
->st_name
== (unsigned long) -1)
8422 if (flinfo
->symbuf_count
>= flinfo
->symbuf_size
)
8424 if (! elf_link_flush_output_syms (flinfo
, bed
))
8428 dest
= flinfo
->symbuf
+ flinfo
->symbuf_count
* bed
->s
->sizeof_sym
;
8429 destshndx
= flinfo
->symshndxbuf
;
8430 if (destshndx
!= NULL
)
8432 if (bfd_get_symcount (flinfo
->output_bfd
) >= flinfo
->shndxbuf_size
)
8436 amt
= flinfo
->shndxbuf_size
* sizeof (Elf_External_Sym_Shndx
);
8437 destshndx
= (Elf_External_Sym_Shndx
*) bfd_realloc (destshndx
,
8439 if (destshndx
== NULL
)
8441 flinfo
->symshndxbuf
= destshndx
;
8442 memset ((char *) destshndx
+ amt
, 0, amt
);
8443 flinfo
->shndxbuf_size
*= 2;
8445 destshndx
+= bfd_get_symcount (flinfo
->output_bfd
);
8448 bed
->s
->swap_symbol_out (flinfo
->output_bfd
, elfsym
, dest
, destshndx
);
8449 flinfo
->symbuf_count
+= 1;
8450 bfd_get_symcount (flinfo
->output_bfd
) += 1;
8455 /* Return TRUE if the dynamic symbol SYM in ABFD is supported. */
8458 check_dynsym (bfd
*abfd
, Elf_Internal_Sym
*sym
)
8460 if (sym
->st_shndx
>= (SHN_LORESERVE
& 0xffff)
8461 && sym
->st_shndx
< SHN_LORESERVE
)
8463 /* The gABI doesn't support dynamic symbols in output sections
8465 (*_bfd_error_handler
)
8466 (_("%B: Too many sections: %d (>= %d)"),
8467 abfd
, bfd_count_sections (abfd
), SHN_LORESERVE
& 0xffff);
8468 bfd_set_error (bfd_error_nonrepresentable_section
);
8474 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
8475 allowing an unsatisfied unversioned symbol in the DSO to match a
8476 versioned symbol that would normally require an explicit version.
8477 We also handle the case that a DSO references a hidden symbol
8478 which may be satisfied by a versioned symbol in another DSO. */
8481 elf_link_check_versioned_symbol (struct bfd_link_info
*info
,
8482 const struct elf_backend_data
*bed
,
8483 struct elf_link_hash_entry
*h
)
8486 struct elf_link_loaded_list
*loaded
;
8488 if (!is_elf_hash_table (info
->hash
))
8491 /* Check indirect symbol. */
8492 while (h
->root
.type
== bfd_link_hash_indirect
)
8493 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
8495 switch (h
->root
.type
)
8501 case bfd_link_hash_undefined
:
8502 case bfd_link_hash_undefweak
:
8503 abfd
= h
->root
.u
.undef
.abfd
;
8504 if ((abfd
->flags
& DYNAMIC
) == 0
8505 || (elf_dyn_lib_class (abfd
) & DYN_DT_NEEDED
) == 0)
8509 case bfd_link_hash_defined
:
8510 case bfd_link_hash_defweak
:
8511 abfd
= h
->root
.u
.def
.section
->owner
;
8514 case bfd_link_hash_common
:
8515 abfd
= h
->root
.u
.c
.p
->section
->owner
;
8518 BFD_ASSERT (abfd
!= NULL
);
8520 for (loaded
= elf_hash_table (info
)->loaded
;
8522 loaded
= loaded
->next
)
8525 Elf_Internal_Shdr
*hdr
;
8526 bfd_size_type symcount
;
8527 bfd_size_type extsymcount
;
8528 bfd_size_type extsymoff
;
8529 Elf_Internal_Shdr
*versymhdr
;
8530 Elf_Internal_Sym
*isym
;
8531 Elf_Internal_Sym
*isymend
;
8532 Elf_Internal_Sym
*isymbuf
;
8533 Elf_External_Versym
*ever
;
8534 Elf_External_Versym
*extversym
;
8536 input
= loaded
->abfd
;
8538 /* We check each DSO for a possible hidden versioned definition. */
8540 || (input
->flags
& DYNAMIC
) == 0
8541 || elf_dynversym (input
) == 0)
8544 hdr
= &elf_tdata (input
)->dynsymtab_hdr
;
8546 symcount
= hdr
->sh_size
/ bed
->s
->sizeof_sym
;
8547 if (elf_bad_symtab (input
))
8549 extsymcount
= symcount
;
8554 extsymcount
= symcount
- hdr
->sh_info
;
8555 extsymoff
= hdr
->sh_info
;
8558 if (extsymcount
== 0)
8561 isymbuf
= bfd_elf_get_elf_syms (input
, hdr
, extsymcount
, extsymoff
,
8563 if (isymbuf
== NULL
)
8566 /* Read in any version definitions. */
8567 versymhdr
= &elf_tdata (input
)->dynversym_hdr
;
8568 extversym
= (Elf_External_Versym
*) bfd_malloc (versymhdr
->sh_size
);
8569 if (extversym
== NULL
)
8572 if (bfd_seek (input
, versymhdr
->sh_offset
, SEEK_SET
) != 0
8573 || (bfd_bread (extversym
, versymhdr
->sh_size
, input
)
8574 != versymhdr
->sh_size
))
8582 ever
= extversym
+ extsymoff
;
8583 isymend
= isymbuf
+ extsymcount
;
8584 for (isym
= isymbuf
; isym
< isymend
; isym
++, ever
++)
8587 Elf_Internal_Versym iver
;
8588 unsigned short version_index
;
8590 if (ELF_ST_BIND (isym
->st_info
) == STB_LOCAL
8591 || isym
->st_shndx
== SHN_UNDEF
)
8594 name
= bfd_elf_string_from_elf_section (input
,
8597 if (strcmp (name
, h
->root
.root
.string
) != 0)
8600 _bfd_elf_swap_versym_in (input
, ever
, &iver
);
8602 if ((iver
.vs_vers
& VERSYM_HIDDEN
) == 0
8604 && h
->forced_local
))
8606 /* If we have a non-hidden versioned sym, then it should
8607 have provided a definition for the undefined sym unless
8608 it is defined in a non-shared object and forced local.
8613 version_index
= iver
.vs_vers
& VERSYM_VERSION
;
8614 if (version_index
== 1 || version_index
== 2)
8616 /* This is the base or first version. We can use it. */
8630 /* Add an external symbol to the symbol table. This is called from
8631 the hash table traversal routine. When generating a shared object,
8632 we go through the symbol table twice. The first time we output
8633 anything that might have been forced to local scope in a version
8634 script. The second time we output the symbols that are still
8638 elf_link_output_extsym (struct bfd_hash_entry
*bh
, void *data
)
8640 struct elf_link_hash_entry
*h
= (struct elf_link_hash_entry
*) bh
;
8641 struct elf_outext_info
*eoinfo
= (struct elf_outext_info
*) data
;
8642 struct elf_final_link_info
*flinfo
= eoinfo
->flinfo
;
8644 Elf_Internal_Sym sym
;
8645 asection
*input_sec
;
8646 const struct elf_backend_data
*bed
;
8650 if (h
->root
.type
== bfd_link_hash_warning
)
8652 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
8653 if (h
->root
.type
== bfd_link_hash_new
)
8657 /* Decide whether to output this symbol in this pass. */
8658 if (eoinfo
->localsyms
)
8660 if (!h
->forced_local
)
8662 if (eoinfo
->second_pass
8663 && !((h
->root
.type
== bfd_link_hash_defined
8664 || h
->root
.type
== bfd_link_hash_defweak
)
8665 && h
->root
.u
.def
.section
->output_section
!= NULL
))
8670 if (h
->forced_local
)
8674 bed
= get_elf_backend_data (flinfo
->output_bfd
);
8676 if (h
->root
.type
== bfd_link_hash_undefined
)
8678 /* If we have an undefined symbol reference here then it must have
8679 come from a shared library that is being linked in. (Undefined
8680 references in regular files have already been handled unless
8681 they are in unreferenced sections which are removed by garbage
8683 bfd_boolean ignore_undef
= FALSE
;
8685 /* Some symbols may be special in that the fact that they're
8686 undefined can be safely ignored - let backend determine that. */
8687 if (bed
->elf_backend_ignore_undef_symbol
)
8688 ignore_undef
= bed
->elf_backend_ignore_undef_symbol (h
);
8690 /* If we are reporting errors for this situation then do so now. */
8693 && (!h
->ref_regular
|| flinfo
->info
->gc_sections
)
8694 && !elf_link_check_versioned_symbol (flinfo
->info
, bed
, h
)
8695 && flinfo
->info
->unresolved_syms_in_shared_libs
!= RM_IGNORE
)
8697 if (!(flinfo
->info
->callbacks
->undefined_symbol
8698 (flinfo
->info
, h
->root
.root
.string
,
8699 h
->ref_regular
? NULL
: h
->root
.u
.undef
.abfd
,
8701 (flinfo
->info
->unresolved_syms_in_shared_libs
8702 == RM_GENERATE_ERROR
))))
8704 bfd_set_error (bfd_error_bad_value
);
8705 eoinfo
->failed
= TRUE
;
8711 /* We should also warn if a forced local symbol is referenced from
8712 shared libraries. */
8713 if (!flinfo
->info
->relocatable
8714 && flinfo
->info
->executable
8720 && !elf_link_check_versioned_symbol (flinfo
->info
, bed
, h
))
8724 struct elf_link_hash_entry
*hi
= h
;
8726 /* Check indirect symbol. */
8727 while (hi
->root
.type
== bfd_link_hash_indirect
)
8728 hi
= (struct elf_link_hash_entry
*) hi
->root
.u
.i
.link
;
8730 if (ELF_ST_VISIBILITY (h
->other
) == STV_INTERNAL
)
8731 msg
= _("%B: internal symbol `%s' in %B is referenced by DSO");
8732 else if (ELF_ST_VISIBILITY (h
->other
) == STV_HIDDEN
)
8733 msg
= _("%B: hidden symbol `%s' in %B is referenced by DSO");
8735 msg
= _("%B: local symbol `%s' in %B is referenced by DSO");
8736 def_bfd
= flinfo
->output_bfd
;
8737 if (hi
->root
.u
.def
.section
!= bfd_abs_section_ptr
)
8738 def_bfd
= hi
->root
.u
.def
.section
->owner
;
8739 (*_bfd_error_handler
) (msg
, flinfo
->output_bfd
, def_bfd
,
8740 h
->root
.root
.string
);
8741 bfd_set_error (bfd_error_bad_value
);
8742 eoinfo
->failed
= TRUE
;
8746 /* We don't want to output symbols that have never been mentioned by
8747 a regular file, or that we have been told to strip. However, if
8748 h->indx is set to -2, the symbol is used by a reloc and we must
8752 else if ((h
->def_dynamic
8754 || h
->root
.type
== bfd_link_hash_new
)
8758 else if (flinfo
->info
->strip
== strip_all
)
8760 else if (flinfo
->info
->strip
== strip_some
8761 && bfd_hash_lookup (flinfo
->info
->keep_hash
,
8762 h
->root
.root
.string
, FALSE
, FALSE
) == NULL
)
8764 else if ((h
->root
.type
== bfd_link_hash_defined
8765 || h
->root
.type
== bfd_link_hash_defweak
)
8766 && ((flinfo
->info
->strip_discarded
8767 && discarded_section (h
->root
.u
.def
.section
))
8768 || (h
->root
.u
.def
.section
->owner
!= NULL
8769 && (h
->root
.u
.def
.section
->owner
->flags
& BFD_PLUGIN
) != 0)))
8771 else if ((h
->root
.type
== bfd_link_hash_undefined
8772 || h
->root
.type
== bfd_link_hash_undefweak
)
8773 && h
->root
.u
.undef
.abfd
!= NULL
8774 && (h
->root
.u
.undef
.abfd
->flags
& BFD_PLUGIN
) != 0)
8779 /* If we're stripping it, and it's not a dynamic symbol, there's
8780 nothing else to do unless it is a forced local symbol or a
8781 STT_GNU_IFUNC symbol. */
8784 && h
->type
!= STT_GNU_IFUNC
8785 && !h
->forced_local
)
8789 sym
.st_size
= h
->size
;
8790 sym
.st_other
= h
->other
;
8791 if (h
->forced_local
)
8793 sym
.st_info
= ELF_ST_INFO (STB_LOCAL
, h
->type
);
8794 /* Turn off visibility on local symbol. */
8795 sym
.st_other
&= ~ELF_ST_VISIBILITY (-1);
8797 else if (h
->unique_global
)
8798 sym
.st_info
= ELF_ST_INFO (STB_GNU_UNIQUE
, h
->type
);
8799 else if (h
->root
.type
== bfd_link_hash_undefweak
8800 || h
->root
.type
== bfd_link_hash_defweak
)
8801 sym
.st_info
= ELF_ST_INFO (STB_WEAK
, h
->type
);
8803 sym
.st_info
= ELF_ST_INFO (STB_GLOBAL
, h
->type
);
8804 sym
.st_target_internal
= h
->target_internal
;
8806 switch (h
->root
.type
)
8809 case bfd_link_hash_new
:
8810 case bfd_link_hash_warning
:
8814 case bfd_link_hash_undefined
:
8815 case bfd_link_hash_undefweak
:
8816 input_sec
= bfd_und_section_ptr
;
8817 sym
.st_shndx
= SHN_UNDEF
;
8820 case bfd_link_hash_defined
:
8821 case bfd_link_hash_defweak
:
8823 input_sec
= h
->root
.u
.def
.section
;
8824 if (input_sec
->output_section
!= NULL
)
8826 if (eoinfo
->localsyms
&& flinfo
->filesym_count
== 1)
8828 bfd_boolean second_pass_sym
8829 = (input_sec
->owner
== flinfo
->output_bfd
8830 || input_sec
->owner
== NULL
8831 || (input_sec
->flags
& SEC_LINKER_CREATED
) != 0
8832 || (input_sec
->owner
->flags
& BFD_LINKER_CREATED
) != 0);
8834 eoinfo
->need_second_pass
|= second_pass_sym
;
8835 if (eoinfo
->second_pass
!= second_pass_sym
)
8840 _bfd_elf_section_from_bfd_section (flinfo
->output_bfd
,
8841 input_sec
->output_section
);
8842 if (sym
.st_shndx
== SHN_BAD
)
8844 (*_bfd_error_handler
)
8845 (_("%B: could not find output section %A for input section %A"),
8846 flinfo
->output_bfd
, input_sec
->output_section
, input_sec
);
8847 bfd_set_error (bfd_error_nonrepresentable_section
);
8848 eoinfo
->failed
= TRUE
;
8852 /* ELF symbols in relocatable files are section relative,
8853 but in nonrelocatable files they are virtual
8855 sym
.st_value
= h
->root
.u
.def
.value
+ input_sec
->output_offset
;
8856 if (!flinfo
->info
->relocatable
)
8858 sym
.st_value
+= input_sec
->output_section
->vma
;
8859 if (h
->type
== STT_TLS
)
8861 asection
*tls_sec
= elf_hash_table (flinfo
->info
)->tls_sec
;
8862 if (tls_sec
!= NULL
)
8863 sym
.st_value
-= tls_sec
->vma
;
8866 /* The TLS section may have been garbage collected. */
8867 BFD_ASSERT (flinfo
->info
->gc_sections
8868 && !input_sec
->gc_mark
);
8875 BFD_ASSERT (input_sec
->owner
== NULL
8876 || (input_sec
->owner
->flags
& DYNAMIC
) != 0);
8877 sym
.st_shndx
= SHN_UNDEF
;
8878 input_sec
= bfd_und_section_ptr
;
8883 case bfd_link_hash_common
:
8884 input_sec
= h
->root
.u
.c
.p
->section
;
8885 sym
.st_shndx
= bed
->common_section_index (input_sec
);
8886 sym
.st_value
= 1 << h
->root
.u
.c
.p
->alignment_power
;
8889 case bfd_link_hash_indirect
:
8890 /* These symbols are created by symbol versioning. They point
8891 to the decorated version of the name. For example, if the
8892 symbol foo@@GNU_1.2 is the default, which should be used when
8893 foo is used with no version, then we add an indirect symbol
8894 foo which points to foo@@GNU_1.2. We ignore these symbols,
8895 since the indirected symbol is already in the hash table. */
8899 /* Give the processor backend a chance to tweak the symbol value,
8900 and also to finish up anything that needs to be done for this
8901 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
8902 forced local syms when non-shared is due to a historical quirk.
8903 STT_GNU_IFUNC symbol must go through PLT. */
8904 if ((h
->type
== STT_GNU_IFUNC
8906 && !flinfo
->info
->relocatable
)
8907 || ((h
->dynindx
!= -1
8909 && ((flinfo
->info
->shared
8910 && (ELF_ST_VISIBILITY (h
->other
) == STV_DEFAULT
8911 || h
->root
.type
!= bfd_link_hash_undefweak
))
8912 || !h
->forced_local
)
8913 && elf_hash_table (flinfo
->info
)->dynamic_sections_created
))
8915 if (! ((*bed
->elf_backend_finish_dynamic_symbol
)
8916 (flinfo
->output_bfd
, flinfo
->info
, h
, &sym
)))
8918 eoinfo
->failed
= TRUE
;
8923 /* If we are marking the symbol as undefined, and there are no
8924 non-weak references to this symbol from a regular object, then
8925 mark the symbol as weak undefined; if there are non-weak
8926 references, mark the symbol as strong. We can't do this earlier,
8927 because it might not be marked as undefined until the
8928 finish_dynamic_symbol routine gets through with it. */
8929 if (sym
.st_shndx
== SHN_UNDEF
8931 && (ELF_ST_BIND (sym
.st_info
) == STB_GLOBAL
8932 || ELF_ST_BIND (sym
.st_info
) == STB_WEAK
))
8935 unsigned int type
= ELF_ST_TYPE (sym
.st_info
);
8937 /* Turn an undefined IFUNC symbol into a normal FUNC symbol. */
8938 if (type
== STT_GNU_IFUNC
)
8941 if (h
->ref_regular_nonweak
)
8942 bindtype
= STB_GLOBAL
;
8944 bindtype
= STB_WEAK
;
8945 sym
.st_info
= ELF_ST_INFO (bindtype
, type
);
8948 /* If this is a symbol defined in a dynamic library, don't use the
8949 symbol size from the dynamic library. Relinking an executable
8950 against a new library may introduce gratuitous changes in the
8951 executable's symbols if we keep the size. */
8952 if (sym
.st_shndx
== SHN_UNDEF
8957 /* If a non-weak symbol with non-default visibility is not defined
8958 locally, it is a fatal error. */
8959 if (!flinfo
->info
->relocatable
8960 && ELF_ST_VISIBILITY (sym
.st_other
) != STV_DEFAULT
8961 && ELF_ST_BIND (sym
.st_info
) != STB_WEAK
8962 && h
->root
.type
== bfd_link_hash_undefined
8967 if (ELF_ST_VISIBILITY (sym
.st_other
) == STV_PROTECTED
)
8968 msg
= _("%B: protected symbol `%s' isn't defined");
8969 else if (ELF_ST_VISIBILITY (sym
.st_other
) == STV_INTERNAL
)
8970 msg
= _("%B: internal symbol `%s' isn't defined");
8972 msg
= _("%B: hidden symbol `%s' isn't defined");
8973 (*_bfd_error_handler
) (msg
, flinfo
->output_bfd
, h
->root
.root
.string
);
8974 bfd_set_error (bfd_error_bad_value
);
8975 eoinfo
->failed
= TRUE
;
8979 /* If this symbol should be put in the .dynsym section, then put it
8980 there now. We already know the symbol index. We also fill in
8981 the entry in the .hash section. */
8982 if (flinfo
->dynsym_sec
!= NULL
8984 && elf_hash_table (flinfo
->info
)->dynamic_sections_created
)
8988 /* Since there is no version information in the dynamic string,
8989 if there is no version info in symbol version section, we will
8990 have a run-time problem. */
8991 if (h
->verinfo
.verdef
== NULL
)
8993 char *p
= strrchr (h
->root
.root
.string
, ELF_VER_CHR
);
8995 if (p
&& p
[1] != '\0')
8997 (*_bfd_error_handler
)
8998 (_("%B: No symbol version section for versioned symbol `%s'"),
8999 flinfo
->output_bfd
, h
->root
.root
.string
);
9000 eoinfo
->failed
= TRUE
;
9005 sym
.st_name
= h
->dynstr_index
;
9006 esym
= flinfo
->dynsym_sec
->contents
+ h
->dynindx
* bed
->s
->sizeof_sym
;
9007 if (!check_dynsym (flinfo
->output_bfd
, &sym
))
9009 eoinfo
->failed
= TRUE
;
9012 bed
->s
->swap_symbol_out (flinfo
->output_bfd
, &sym
, esym
, 0);
9014 if (flinfo
->hash_sec
!= NULL
)
9016 size_t hash_entry_size
;
9017 bfd_byte
*bucketpos
;
9022 bucketcount
= elf_hash_table (flinfo
->info
)->bucketcount
;
9023 bucket
= h
->u
.elf_hash_value
% bucketcount
;
9026 = elf_section_data (flinfo
->hash_sec
)->this_hdr
.sh_entsize
;
9027 bucketpos
= ((bfd_byte
*) flinfo
->hash_sec
->contents
9028 + (bucket
+ 2) * hash_entry_size
);
9029 chain
= bfd_get (8 * hash_entry_size
, flinfo
->output_bfd
, bucketpos
);
9030 bfd_put (8 * hash_entry_size
, flinfo
->output_bfd
, h
->dynindx
,
9032 bfd_put (8 * hash_entry_size
, flinfo
->output_bfd
, chain
,
9033 ((bfd_byte
*) flinfo
->hash_sec
->contents
9034 + (bucketcount
+ 2 + h
->dynindx
) * hash_entry_size
));
9037 if (flinfo
->symver_sec
!= NULL
&& flinfo
->symver_sec
->contents
!= NULL
)
9039 Elf_Internal_Versym iversym
;
9040 Elf_External_Versym
*eversym
;
9042 if (!h
->def_regular
)
9044 if (h
->verinfo
.verdef
== NULL
)
9045 iversym
.vs_vers
= 0;
9047 iversym
.vs_vers
= h
->verinfo
.verdef
->vd_exp_refno
+ 1;
9051 if (h
->verinfo
.vertree
== NULL
)
9052 iversym
.vs_vers
= 1;
9054 iversym
.vs_vers
= h
->verinfo
.vertree
->vernum
+ 1;
9055 if (flinfo
->info
->create_default_symver
)
9060 iversym
.vs_vers
|= VERSYM_HIDDEN
;
9062 eversym
= (Elf_External_Versym
*) flinfo
->symver_sec
->contents
;
9063 eversym
+= h
->dynindx
;
9064 _bfd_elf_swap_versym_out (flinfo
->output_bfd
, &iversym
, eversym
);
9068 /* If we're stripping it, then it was just a dynamic symbol, and
9069 there's nothing else to do. */
9070 if (strip
|| (input_sec
->flags
& SEC_EXCLUDE
) != 0)
9073 indx
= bfd_get_symcount (flinfo
->output_bfd
);
9074 ret
= elf_link_output_sym (flinfo
, h
->root
.root
.string
, &sym
, input_sec
, h
);
9077 eoinfo
->failed
= TRUE
;
9082 else if (h
->indx
== -2)
9088 /* Return TRUE if special handling is done for relocs in SEC against
9089 symbols defined in discarded sections. */
9092 elf_section_ignore_discarded_relocs (asection
*sec
)
9094 const struct elf_backend_data
*bed
;
9096 switch (sec
->sec_info_type
)
9098 case SEC_INFO_TYPE_STABS
:
9099 case SEC_INFO_TYPE_EH_FRAME
:
9105 bed
= get_elf_backend_data (sec
->owner
);
9106 if (bed
->elf_backend_ignore_discarded_relocs
!= NULL
9107 && (*bed
->elf_backend_ignore_discarded_relocs
) (sec
))
9113 /* Return a mask saying how ld should treat relocations in SEC against
9114 symbols defined in discarded sections. If this function returns
9115 COMPLAIN set, ld will issue a warning message. If this function
9116 returns PRETEND set, and the discarded section was link-once and the
9117 same size as the kept link-once section, ld will pretend that the
9118 symbol was actually defined in the kept section. Otherwise ld will
9119 zero the reloc (at least that is the intent, but some cooperation by
9120 the target dependent code is needed, particularly for REL targets). */
9123 _bfd_elf_default_action_discarded (asection
*sec
)
9125 if (sec
->flags
& SEC_DEBUGGING
)
9128 if (strcmp (".eh_frame", sec
->name
) == 0)
9131 if (strcmp (".gcc_except_table", sec
->name
) == 0)
9134 return COMPLAIN
| PRETEND
;
9137 /* Find a match between a section and a member of a section group. */
9140 match_group_member (asection
*sec
, asection
*group
,
9141 struct bfd_link_info
*info
)
9143 asection
*first
= elf_next_in_group (group
);
9144 asection
*s
= first
;
9148 if (bfd_elf_match_symbols_in_sections (s
, sec
, info
))
9151 s
= elf_next_in_group (s
);
9159 /* Check if the kept section of a discarded section SEC can be used
9160 to replace it. Return the replacement if it is OK. Otherwise return
9164 _bfd_elf_check_kept_section (asection
*sec
, struct bfd_link_info
*info
)
9168 kept
= sec
->kept_section
;
9171 if ((kept
->flags
& SEC_GROUP
) != 0)
9172 kept
= match_group_member (sec
, kept
, info
);
9174 && ((sec
->rawsize
!= 0 ? sec
->rawsize
: sec
->size
)
9175 != (kept
->rawsize
!= 0 ? kept
->rawsize
: kept
->size
)))
9177 sec
->kept_section
= kept
;
9182 /* Link an input file into the linker output file. This function
9183 handles all the sections and relocations of the input file at once.
9184 This is so that we only have to read the local symbols once, and
9185 don't have to keep them in memory. */
9188 elf_link_input_bfd (struct elf_final_link_info
*flinfo
, bfd
*input_bfd
)
9190 int (*relocate_section
)
9191 (bfd
*, struct bfd_link_info
*, bfd
*, asection
*, bfd_byte
*,
9192 Elf_Internal_Rela
*, Elf_Internal_Sym
*, asection
**);
9194 Elf_Internal_Shdr
*symtab_hdr
;
9197 Elf_Internal_Sym
*isymbuf
;
9198 Elf_Internal_Sym
*isym
;
9199 Elf_Internal_Sym
*isymend
;
9201 asection
**ppsection
;
9203 const struct elf_backend_data
*bed
;
9204 struct elf_link_hash_entry
**sym_hashes
;
9205 bfd_size_type address_size
;
9206 bfd_vma r_type_mask
;
9208 bfd_boolean have_file_sym
= FALSE
;
9210 output_bfd
= flinfo
->output_bfd
;
9211 bed
= get_elf_backend_data (output_bfd
);
9212 relocate_section
= bed
->elf_backend_relocate_section
;
9214 /* If this is a dynamic object, we don't want to do anything here:
9215 we don't want the local symbols, and we don't want the section
9217 if ((input_bfd
->flags
& DYNAMIC
) != 0)
9220 symtab_hdr
= &elf_tdata (input_bfd
)->symtab_hdr
;
9221 if (elf_bad_symtab (input_bfd
))
9223 locsymcount
= symtab_hdr
->sh_size
/ bed
->s
->sizeof_sym
;
9228 locsymcount
= symtab_hdr
->sh_info
;
9229 extsymoff
= symtab_hdr
->sh_info
;
9232 /* Read the local symbols. */
9233 isymbuf
= (Elf_Internal_Sym
*) symtab_hdr
->contents
;
9234 if (isymbuf
== NULL
&& locsymcount
!= 0)
9236 isymbuf
= bfd_elf_get_elf_syms (input_bfd
, symtab_hdr
, locsymcount
, 0,
9237 flinfo
->internal_syms
,
9238 flinfo
->external_syms
,
9239 flinfo
->locsym_shndx
);
9240 if (isymbuf
== NULL
)
9244 /* Find local symbol sections and adjust values of symbols in
9245 SEC_MERGE sections. Write out those local symbols we know are
9246 going into the output file. */
9247 isymend
= isymbuf
+ locsymcount
;
9248 for (isym
= isymbuf
, pindex
= flinfo
->indices
, ppsection
= flinfo
->sections
;
9250 isym
++, pindex
++, ppsection
++)
9254 Elf_Internal_Sym osym
;
9260 if (elf_bad_symtab (input_bfd
))
9262 if (ELF_ST_BIND (isym
->st_info
) != STB_LOCAL
)
9269 if (isym
->st_shndx
== SHN_UNDEF
)
9270 isec
= bfd_und_section_ptr
;
9271 else if (isym
->st_shndx
== SHN_ABS
)
9272 isec
= bfd_abs_section_ptr
;
9273 else if (isym
->st_shndx
== SHN_COMMON
)
9274 isec
= bfd_com_section_ptr
;
9277 isec
= bfd_section_from_elf_index (input_bfd
, isym
->st_shndx
);
9280 /* Don't attempt to output symbols with st_shnx in the
9281 reserved range other than SHN_ABS and SHN_COMMON. */
9285 else if (isec
->sec_info_type
== SEC_INFO_TYPE_MERGE
9286 && ELF_ST_TYPE (isym
->st_info
) != STT_SECTION
)
9288 _bfd_merged_section_offset (output_bfd
, &isec
,
9289 elf_section_data (isec
)->sec_info
,
9295 /* Don't output the first, undefined, symbol. */
9296 if (ppsection
== flinfo
->sections
)
9299 if (ELF_ST_TYPE (isym
->st_info
) == STT_SECTION
)
9301 /* We never output section symbols. Instead, we use the
9302 section symbol of the corresponding section in the output
9307 /* If we are stripping all symbols, we don't want to output this
9309 if (flinfo
->info
->strip
== strip_all
)
9312 /* If we are discarding all local symbols, we don't want to
9313 output this one. If we are generating a relocatable output
9314 file, then some of the local symbols may be required by
9315 relocs; we output them below as we discover that they are
9317 if (flinfo
->info
->discard
== discard_all
)
9320 /* If this symbol is defined in a section which we are
9321 discarding, we don't need to keep it. */
9322 if (isym
->st_shndx
!= SHN_UNDEF
9323 && isym
->st_shndx
< SHN_LORESERVE
9324 && bfd_section_removed_from_list (output_bfd
,
9325 isec
->output_section
))
9328 /* Get the name of the symbol. */
9329 name
= bfd_elf_string_from_elf_section (input_bfd
, symtab_hdr
->sh_link
,
9334 /* See if we are discarding symbols with this name. */
9335 if ((flinfo
->info
->strip
== strip_some
9336 && (bfd_hash_lookup (flinfo
->info
->keep_hash
, name
, FALSE
, FALSE
)
9338 || (((flinfo
->info
->discard
== discard_sec_merge
9339 && (isec
->flags
& SEC_MERGE
) && !flinfo
->info
->relocatable
)
9340 || flinfo
->info
->discard
== discard_l
)
9341 && bfd_is_local_label_name (input_bfd
, name
)))
9344 if (ELF_ST_TYPE (isym
->st_info
) == STT_FILE
)
9346 have_file_sym
= TRUE
;
9347 flinfo
->filesym_count
+= 1;
9351 /* In the absence of debug info, bfd_find_nearest_line uses
9352 FILE symbols to determine the source file for local
9353 function symbols. Provide a FILE symbol here if input
9354 files lack such, so that their symbols won't be
9355 associated with a previous input file. It's not the
9356 source file, but the best we can do. */
9357 have_file_sym
= TRUE
;
9358 flinfo
->filesym_count
+= 1;
9359 memset (&osym
, 0, sizeof (osym
));
9360 osym
.st_info
= ELF_ST_INFO (STB_LOCAL
, STT_FILE
);
9361 osym
.st_shndx
= SHN_ABS
;
9362 if (!elf_link_output_sym (flinfo
, input_bfd
->filename
, &osym
,
9363 bfd_abs_section_ptr
, NULL
))
9369 /* Adjust the section index for the output file. */
9370 osym
.st_shndx
= _bfd_elf_section_from_bfd_section (output_bfd
,
9371 isec
->output_section
);
9372 if (osym
.st_shndx
== SHN_BAD
)
9375 /* ELF symbols in relocatable files are section relative, but
9376 in executable files they are virtual addresses. Note that
9377 this code assumes that all ELF sections have an associated
9378 BFD section with a reasonable value for output_offset; below
9379 we assume that they also have a reasonable value for
9380 output_section. Any special sections must be set up to meet
9381 these requirements. */
9382 osym
.st_value
+= isec
->output_offset
;
9383 if (!flinfo
->info
->relocatable
)
9385 osym
.st_value
+= isec
->output_section
->vma
;
9386 if (ELF_ST_TYPE (osym
.st_info
) == STT_TLS
)
9388 /* STT_TLS symbols are relative to PT_TLS segment base. */
9389 BFD_ASSERT (elf_hash_table (flinfo
->info
)->tls_sec
!= NULL
);
9390 osym
.st_value
-= elf_hash_table (flinfo
->info
)->tls_sec
->vma
;
9394 indx
= bfd_get_symcount (output_bfd
);
9395 ret
= elf_link_output_sym (flinfo
, name
, &osym
, isec
, NULL
);
9402 if (bed
->s
->arch_size
== 32)
9410 r_type_mask
= 0xffffffff;
9415 /* Relocate the contents of each section. */
9416 sym_hashes
= elf_sym_hashes (input_bfd
);
9417 for (o
= input_bfd
->sections
; o
!= NULL
; o
= o
->next
)
9421 if (! o
->linker_mark
)
9423 /* This section was omitted from the link. */
9427 if (flinfo
->info
->relocatable
9428 && (o
->flags
& (SEC_LINKER_CREATED
| SEC_GROUP
)) == SEC_GROUP
)
9430 /* Deal with the group signature symbol. */
9431 struct bfd_elf_section_data
*sec_data
= elf_section_data (o
);
9432 unsigned long symndx
= sec_data
->this_hdr
.sh_info
;
9433 asection
*osec
= o
->output_section
;
9435 if (symndx
>= locsymcount
9436 || (elf_bad_symtab (input_bfd
)
9437 && flinfo
->sections
[symndx
] == NULL
))
9439 struct elf_link_hash_entry
*h
= sym_hashes
[symndx
- extsymoff
];
9440 while (h
->root
.type
== bfd_link_hash_indirect
9441 || h
->root
.type
== bfd_link_hash_warning
)
9442 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
9443 /* Arrange for symbol to be output. */
9445 elf_section_data (osec
)->this_hdr
.sh_info
= -2;
9447 else if (ELF_ST_TYPE (isymbuf
[symndx
].st_info
) == STT_SECTION
)
9449 /* We'll use the output section target_index. */
9450 asection
*sec
= flinfo
->sections
[symndx
]->output_section
;
9451 elf_section_data (osec
)->this_hdr
.sh_info
= sec
->target_index
;
9455 if (flinfo
->indices
[symndx
] == -1)
9457 /* Otherwise output the local symbol now. */
9458 Elf_Internal_Sym sym
= isymbuf
[symndx
];
9459 asection
*sec
= flinfo
->sections
[symndx
]->output_section
;
9464 name
= bfd_elf_string_from_elf_section (input_bfd
,
9465 symtab_hdr
->sh_link
,
9470 sym
.st_shndx
= _bfd_elf_section_from_bfd_section (output_bfd
,
9472 if (sym
.st_shndx
== SHN_BAD
)
9475 sym
.st_value
+= o
->output_offset
;
9477 indx
= bfd_get_symcount (output_bfd
);
9478 ret
= elf_link_output_sym (flinfo
, name
, &sym
, o
, NULL
);
9482 flinfo
->indices
[symndx
] = indx
;
9486 elf_section_data (osec
)->this_hdr
.sh_info
9487 = flinfo
->indices
[symndx
];
9491 if ((o
->flags
& SEC_HAS_CONTENTS
) == 0
9492 || (o
->size
== 0 && (o
->flags
& SEC_RELOC
) == 0))
9495 if ((o
->flags
& SEC_LINKER_CREATED
) != 0)
9497 /* Section was created by _bfd_elf_link_create_dynamic_sections
9502 /* Get the contents of the section. They have been cached by a
9503 relaxation routine. Note that o is a section in an input
9504 file, so the contents field will not have been set by any of
9505 the routines which work on output files. */
9506 if (elf_section_data (o
)->this_hdr
.contents
!= NULL
)
9507 contents
= elf_section_data (o
)->this_hdr
.contents
;
9510 contents
= flinfo
->contents
;
9511 if (! bfd_get_full_section_contents (input_bfd
, o
, &contents
))
9515 if ((o
->flags
& SEC_RELOC
) != 0)
9517 Elf_Internal_Rela
*internal_relocs
;
9518 Elf_Internal_Rela
*rel
, *relend
;
9519 int action_discarded
;
9522 /* Get the swapped relocs. */
9524 = _bfd_elf_link_read_relocs (input_bfd
, o
, flinfo
->external_relocs
,
9525 flinfo
->internal_relocs
, FALSE
);
9526 if (internal_relocs
== NULL
9527 && o
->reloc_count
> 0)
9530 /* We need to reverse-copy input .ctors/.dtors sections if
9531 they are placed in .init_array/.finit_array for output. */
9532 if (o
->size
> address_size
9533 && ((strncmp (o
->name
, ".ctors", 6) == 0
9534 && strcmp (o
->output_section
->name
,
9535 ".init_array") == 0)
9536 || (strncmp (o
->name
, ".dtors", 6) == 0
9537 && strcmp (o
->output_section
->name
,
9538 ".fini_array") == 0))
9539 && (o
->name
[6] == 0 || o
->name
[6] == '.'))
9541 if (o
->size
!= o
->reloc_count
* address_size
)
9543 (*_bfd_error_handler
)
9544 (_("error: %B: size of section %A is not "
9545 "multiple of address size"),
9547 bfd_set_error (bfd_error_on_input
);
9550 o
->flags
|= SEC_ELF_REVERSE_COPY
;
9553 action_discarded
= -1;
9554 if (!elf_section_ignore_discarded_relocs (o
))
9555 action_discarded
= (*bed
->action_discarded
) (o
);
9557 /* Run through the relocs evaluating complex reloc symbols and
9558 looking for relocs against symbols from discarded sections
9559 or section symbols from removed link-once sections.
9560 Complain about relocs against discarded sections. Zero
9561 relocs against removed link-once sections. */
9563 rel
= internal_relocs
;
9564 relend
= rel
+ o
->reloc_count
* bed
->s
->int_rels_per_ext_rel
;
9565 for ( ; rel
< relend
; rel
++)
9567 unsigned long r_symndx
= rel
->r_info
>> r_sym_shift
;
9568 unsigned int s_type
;
9569 asection
**ps
, *sec
;
9570 struct elf_link_hash_entry
*h
= NULL
;
9571 const char *sym_name
;
9573 if (r_symndx
== STN_UNDEF
)
9576 if (r_symndx
>= locsymcount
9577 || (elf_bad_symtab (input_bfd
)
9578 && flinfo
->sections
[r_symndx
] == NULL
))
9580 h
= sym_hashes
[r_symndx
- extsymoff
];
9582 /* Badly formatted input files can contain relocs that
9583 reference non-existant symbols. Check here so that
9584 we do not seg fault. */
9589 sprintf_vma (buffer
, rel
->r_info
);
9590 (*_bfd_error_handler
)
9591 (_("error: %B contains a reloc (0x%s) for section %A "
9592 "that references a non-existent global symbol"),
9593 input_bfd
, o
, buffer
);
9594 bfd_set_error (bfd_error_bad_value
);
9598 while (h
->root
.type
== bfd_link_hash_indirect
9599 || h
->root
.type
== bfd_link_hash_warning
)
9600 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
9605 if (h
->root
.type
== bfd_link_hash_defined
9606 || h
->root
.type
== bfd_link_hash_defweak
)
9607 ps
= &h
->root
.u
.def
.section
;
9609 sym_name
= h
->root
.root
.string
;
9613 Elf_Internal_Sym
*sym
= isymbuf
+ r_symndx
;
9615 s_type
= ELF_ST_TYPE (sym
->st_info
);
9616 ps
= &flinfo
->sections
[r_symndx
];
9617 sym_name
= bfd_elf_sym_name (input_bfd
, symtab_hdr
,
9621 if ((s_type
== STT_RELC
|| s_type
== STT_SRELC
)
9622 && !flinfo
->info
->relocatable
)
9625 bfd_vma dot
= (rel
->r_offset
9626 + o
->output_offset
+ o
->output_section
->vma
);
9628 printf ("Encountered a complex symbol!");
9629 printf (" (input_bfd %s, section %s, reloc %ld\n",
9630 input_bfd
->filename
, o
->name
,
9631 (long) (rel
- internal_relocs
));
9632 printf (" symbol: idx %8.8lx, name %s\n",
9633 r_symndx
, sym_name
);
9634 printf (" reloc : info %8.8lx, addr %8.8lx\n",
9635 (unsigned long) rel
->r_info
,
9636 (unsigned long) rel
->r_offset
);
9638 if (!eval_symbol (&val
, &sym_name
, input_bfd
, flinfo
, dot
,
9639 isymbuf
, locsymcount
, s_type
== STT_SRELC
))
9642 /* Symbol evaluated OK. Update to absolute value. */
9643 set_symbol_value (input_bfd
, isymbuf
, locsymcount
,
9648 if (action_discarded
!= -1 && ps
!= NULL
)
9650 /* Complain if the definition comes from a
9651 discarded section. */
9652 if ((sec
= *ps
) != NULL
&& discarded_section (sec
))
9654 BFD_ASSERT (r_symndx
!= STN_UNDEF
);
9655 if (action_discarded
& COMPLAIN
)
9656 (*flinfo
->info
->callbacks
->einfo
)
9657 (_("%X`%s' referenced in section `%A' of %B: "
9658 "defined in discarded section `%A' of %B\n"),
9659 sym_name
, o
, input_bfd
, sec
, sec
->owner
);
9661 /* Try to do the best we can to support buggy old
9662 versions of gcc. Pretend that the symbol is
9663 really defined in the kept linkonce section.
9664 FIXME: This is quite broken. Modifying the
9665 symbol here means we will be changing all later
9666 uses of the symbol, not just in this section. */
9667 if (action_discarded
& PRETEND
)
9671 kept
= _bfd_elf_check_kept_section (sec
,
9683 /* Relocate the section by invoking a back end routine.
9685 The back end routine is responsible for adjusting the
9686 section contents as necessary, and (if using Rela relocs
9687 and generating a relocatable output file) adjusting the
9688 reloc addend as necessary.
9690 The back end routine does not have to worry about setting
9691 the reloc address or the reloc symbol index.
9693 The back end routine is given a pointer to the swapped in
9694 internal symbols, and can access the hash table entries
9695 for the external symbols via elf_sym_hashes (input_bfd).
9697 When generating relocatable output, the back end routine
9698 must handle STB_LOCAL/STT_SECTION symbols specially. The
9699 output symbol is going to be a section symbol
9700 corresponding to the output section, which will require
9701 the addend to be adjusted. */
9703 ret
= (*relocate_section
) (output_bfd
, flinfo
->info
,
9704 input_bfd
, o
, contents
,
9712 || flinfo
->info
->relocatable
9713 || flinfo
->info
->emitrelocations
)
9715 Elf_Internal_Rela
*irela
;
9716 Elf_Internal_Rela
*irelaend
, *irelamid
;
9717 bfd_vma last_offset
;
9718 struct elf_link_hash_entry
**rel_hash
;
9719 struct elf_link_hash_entry
**rel_hash_list
, **rela_hash_list
;
9720 Elf_Internal_Shdr
*input_rel_hdr
, *input_rela_hdr
;
9721 unsigned int next_erel
;
9722 bfd_boolean rela_normal
;
9723 struct bfd_elf_section_data
*esdi
, *esdo
;
9725 esdi
= elf_section_data (o
);
9726 esdo
= elf_section_data (o
->output_section
);
9727 rela_normal
= FALSE
;
9729 /* Adjust the reloc addresses and symbol indices. */
9731 irela
= internal_relocs
;
9732 irelaend
= irela
+ o
->reloc_count
* bed
->s
->int_rels_per_ext_rel
;
9733 rel_hash
= esdo
->rel
.hashes
+ esdo
->rel
.count
;
9734 /* We start processing the REL relocs, if any. When we reach
9735 IRELAMID in the loop, we switch to the RELA relocs. */
9737 if (esdi
->rel
.hdr
!= NULL
)
9738 irelamid
+= (NUM_SHDR_ENTRIES (esdi
->rel
.hdr
)
9739 * bed
->s
->int_rels_per_ext_rel
);
9740 rel_hash_list
= rel_hash
;
9741 rela_hash_list
= NULL
;
9742 last_offset
= o
->output_offset
;
9743 if (!flinfo
->info
->relocatable
)
9744 last_offset
+= o
->output_section
->vma
;
9745 for (next_erel
= 0; irela
< irelaend
; irela
++, next_erel
++)
9747 unsigned long r_symndx
;
9749 Elf_Internal_Sym sym
;
9751 if (next_erel
== bed
->s
->int_rels_per_ext_rel
)
9757 if (irela
== irelamid
)
9759 rel_hash
= esdo
->rela
.hashes
+ esdo
->rela
.count
;
9760 rela_hash_list
= rel_hash
;
9761 rela_normal
= bed
->rela_normal
;
9764 irela
->r_offset
= _bfd_elf_section_offset (output_bfd
,
9767 if (irela
->r_offset
>= (bfd_vma
) -2)
9769 /* This is a reloc for a deleted entry or somesuch.
9770 Turn it into an R_*_NONE reloc, at the same
9771 offset as the last reloc. elf_eh_frame.c and
9772 bfd_elf_discard_info rely on reloc offsets
9774 irela
->r_offset
= last_offset
;
9776 irela
->r_addend
= 0;
9780 irela
->r_offset
+= o
->output_offset
;
9782 /* Relocs in an executable have to be virtual addresses. */
9783 if (!flinfo
->info
->relocatable
)
9784 irela
->r_offset
+= o
->output_section
->vma
;
9786 last_offset
= irela
->r_offset
;
9788 r_symndx
= irela
->r_info
>> r_sym_shift
;
9789 if (r_symndx
== STN_UNDEF
)
9792 if (r_symndx
>= locsymcount
9793 || (elf_bad_symtab (input_bfd
)
9794 && flinfo
->sections
[r_symndx
] == NULL
))
9796 struct elf_link_hash_entry
*rh
;
9799 /* This is a reloc against a global symbol. We
9800 have not yet output all the local symbols, so
9801 we do not know the symbol index of any global
9802 symbol. We set the rel_hash entry for this
9803 reloc to point to the global hash table entry
9804 for this symbol. The symbol index is then
9805 set at the end of bfd_elf_final_link. */
9806 indx
= r_symndx
- extsymoff
;
9807 rh
= elf_sym_hashes (input_bfd
)[indx
];
9808 while (rh
->root
.type
== bfd_link_hash_indirect
9809 || rh
->root
.type
== bfd_link_hash_warning
)
9810 rh
= (struct elf_link_hash_entry
*) rh
->root
.u
.i
.link
;
9812 /* Setting the index to -2 tells
9813 elf_link_output_extsym that this symbol is
9815 BFD_ASSERT (rh
->indx
< 0);
9823 /* This is a reloc against a local symbol. */
9826 sym
= isymbuf
[r_symndx
];
9827 sec
= flinfo
->sections
[r_symndx
];
9828 if (ELF_ST_TYPE (sym
.st_info
) == STT_SECTION
)
9830 /* I suppose the backend ought to fill in the
9831 section of any STT_SECTION symbol against a
9832 processor specific section. */
9833 r_symndx
= STN_UNDEF
;
9834 if (bfd_is_abs_section (sec
))
9836 else if (sec
== NULL
|| sec
->owner
== NULL
)
9838 bfd_set_error (bfd_error_bad_value
);
9843 asection
*osec
= sec
->output_section
;
9845 /* If we have discarded a section, the output
9846 section will be the absolute section. In
9847 case of discarded SEC_MERGE sections, use
9848 the kept section. relocate_section should
9849 have already handled discarded linkonce
9851 if (bfd_is_abs_section (osec
)
9852 && sec
->kept_section
!= NULL
9853 && sec
->kept_section
->output_section
!= NULL
)
9855 osec
= sec
->kept_section
->output_section
;
9856 irela
->r_addend
-= osec
->vma
;
9859 if (!bfd_is_abs_section (osec
))
9861 r_symndx
= osec
->target_index
;
9862 if (r_symndx
== STN_UNDEF
)
9864 irela
->r_addend
+= osec
->vma
;
9865 osec
= _bfd_nearby_section (output_bfd
, osec
,
9867 irela
->r_addend
-= osec
->vma
;
9868 r_symndx
= osec
->target_index
;
9873 /* Adjust the addend according to where the
9874 section winds up in the output section. */
9876 irela
->r_addend
+= sec
->output_offset
;
9880 if (flinfo
->indices
[r_symndx
] == -1)
9882 unsigned long shlink
;
9887 if (flinfo
->info
->strip
== strip_all
)
9889 /* You can't do ld -r -s. */
9890 bfd_set_error (bfd_error_invalid_operation
);
9894 /* This symbol was skipped earlier, but
9895 since it is needed by a reloc, we
9896 must output it now. */
9897 shlink
= symtab_hdr
->sh_link
;
9898 name
= (bfd_elf_string_from_elf_section
9899 (input_bfd
, shlink
, sym
.st_name
));
9903 osec
= sec
->output_section
;
9905 _bfd_elf_section_from_bfd_section (output_bfd
,
9907 if (sym
.st_shndx
== SHN_BAD
)
9910 sym
.st_value
+= sec
->output_offset
;
9911 if (!flinfo
->info
->relocatable
)
9913 sym
.st_value
+= osec
->vma
;
9914 if (ELF_ST_TYPE (sym
.st_info
) == STT_TLS
)
9916 /* STT_TLS symbols are relative to PT_TLS
9918 BFD_ASSERT (elf_hash_table (flinfo
->info
)
9920 sym
.st_value
-= (elf_hash_table (flinfo
->info
)
9925 indx
= bfd_get_symcount (output_bfd
);
9926 ret
= elf_link_output_sym (flinfo
, name
, &sym
, sec
,
9931 flinfo
->indices
[r_symndx
] = indx
;
9936 r_symndx
= flinfo
->indices
[r_symndx
];
9939 irela
->r_info
= ((bfd_vma
) r_symndx
<< r_sym_shift
9940 | (irela
->r_info
& r_type_mask
));
9943 /* Swap out the relocs. */
9944 input_rel_hdr
= esdi
->rel
.hdr
;
9945 if (input_rel_hdr
&& input_rel_hdr
->sh_size
!= 0)
9947 if (!bed
->elf_backend_emit_relocs (output_bfd
, o
,
9952 internal_relocs
+= (NUM_SHDR_ENTRIES (input_rel_hdr
)
9953 * bed
->s
->int_rels_per_ext_rel
);
9954 rel_hash_list
+= NUM_SHDR_ENTRIES (input_rel_hdr
);
9957 input_rela_hdr
= esdi
->rela
.hdr
;
9958 if (input_rela_hdr
&& input_rela_hdr
->sh_size
!= 0)
9960 if (!bed
->elf_backend_emit_relocs (output_bfd
, o
,
9969 /* Write out the modified section contents. */
9970 if (bed
->elf_backend_write_section
9971 && (*bed
->elf_backend_write_section
) (output_bfd
, flinfo
->info
, o
,
9974 /* Section written out. */
9976 else switch (o
->sec_info_type
)
9978 case SEC_INFO_TYPE_STABS
:
9979 if (! (_bfd_write_section_stabs
9981 &elf_hash_table (flinfo
->info
)->stab_info
,
9982 o
, &elf_section_data (o
)->sec_info
, contents
)))
9985 case SEC_INFO_TYPE_MERGE
:
9986 if (! _bfd_write_merged_section (output_bfd
, o
,
9987 elf_section_data (o
)->sec_info
))
9990 case SEC_INFO_TYPE_EH_FRAME
:
9992 if (! _bfd_elf_write_section_eh_frame (output_bfd
, flinfo
->info
,
9999 /* FIXME: octets_per_byte. */
10000 if (! (o
->flags
& SEC_EXCLUDE
))
10002 file_ptr offset
= (file_ptr
) o
->output_offset
;
10003 bfd_size_type todo
= o
->size
;
10004 if ((o
->flags
& SEC_ELF_REVERSE_COPY
))
10006 /* Reverse-copy input section to output. */
10009 todo
-= address_size
;
10010 if (! bfd_set_section_contents (output_bfd
,
10018 offset
+= address_size
;
10022 else if (! bfd_set_section_contents (output_bfd
,
10036 /* Generate a reloc when linking an ELF file. This is a reloc
10037 requested by the linker, and does not come from any input file. This
10038 is used to build constructor and destructor tables when linking
10042 elf_reloc_link_order (bfd
*output_bfd
,
10043 struct bfd_link_info
*info
,
10044 asection
*output_section
,
10045 struct bfd_link_order
*link_order
)
10047 reloc_howto_type
*howto
;
10051 struct bfd_elf_section_reloc_data
*reldata
;
10052 struct elf_link_hash_entry
**rel_hash_ptr
;
10053 Elf_Internal_Shdr
*rel_hdr
;
10054 const struct elf_backend_data
*bed
= get_elf_backend_data (output_bfd
);
10055 Elf_Internal_Rela irel
[MAX_INT_RELS_PER_EXT_REL
];
10058 struct bfd_elf_section_data
*esdo
= elf_section_data (output_section
);
10060 howto
= bfd_reloc_type_lookup (output_bfd
, link_order
->u
.reloc
.p
->reloc
);
10063 bfd_set_error (bfd_error_bad_value
);
10067 addend
= link_order
->u
.reloc
.p
->addend
;
10070 reldata
= &esdo
->rel
;
10071 else if (esdo
->rela
.hdr
)
10072 reldata
= &esdo
->rela
;
10079 /* Figure out the symbol index. */
10080 rel_hash_ptr
= reldata
->hashes
+ reldata
->count
;
10081 if (link_order
->type
== bfd_section_reloc_link_order
)
10083 indx
= link_order
->u
.reloc
.p
->u
.section
->target_index
;
10084 BFD_ASSERT (indx
!= 0);
10085 *rel_hash_ptr
= NULL
;
10089 struct elf_link_hash_entry
*h
;
10091 /* Treat a reloc against a defined symbol as though it were
10092 actually against the section. */
10093 h
= ((struct elf_link_hash_entry
*)
10094 bfd_wrapped_link_hash_lookup (output_bfd
, info
,
10095 link_order
->u
.reloc
.p
->u
.name
,
10096 FALSE
, FALSE
, TRUE
));
10098 && (h
->root
.type
== bfd_link_hash_defined
10099 || h
->root
.type
== bfd_link_hash_defweak
))
10103 section
= h
->root
.u
.def
.section
;
10104 indx
= section
->output_section
->target_index
;
10105 *rel_hash_ptr
= NULL
;
10106 /* It seems that we ought to add the symbol value to the
10107 addend here, but in practice it has already been added
10108 because it was passed to constructor_callback. */
10109 addend
+= section
->output_section
->vma
+ section
->output_offset
;
10111 else if (h
!= NULL
)
10113 /* Setting the index to -2 tells elf_link_output_extsym that
10114 this symbol is used by a reloc. */
10121 if (! ((*info
->callbacks
->unattached_reloc
)
10122 (info
, link_order
->u
.reloc
.p
->u
.name
, NULL
, NULL
, 0)))
10128 /* If this is an inplace reloc, we must write the addend into the
10130 if (howto
->partial_inplace
&& addend
!= 0)
10132 bfd_size_type size
;
10133 bfd_reloc_status_type rstat
;
10136 const char *sym_name
;
10138 size
= (bfd_size_type
) bfd_get_reloc_size (howto
);
10139 buf
= (bfd_byte
*) bfd_zmalloc (size
);
10142 rstat
= _bfd_relocate_contents (howto
, output_bfd
, addend
, buf
);
10149 case bfd_reloc_outofrange
:
10152 case bfd_reloc_overflow
:
10153 if (link_order
->type
== bfd_section_reloc_link_order
)
10154 sym_name
= bfd_section_name (output_bfd
,
10155 link_order
->u
.reloc
.p
->u
.section
);
10157 sym_name
= link_order
->u
.reloc
.p
->u
.name
;
10158 if (! ((*info
->callbacks
->reloc_overflow
)
10159 (info
, NULL
, sym_name
, howto
->name
, addend
, NULL
,
10160 NULL
, (bfd_vma
) 0)))
10167 ok
= bfd_set_section_contents (output_bfd
, output_section
, buf
,
10168 link_order
->offset
, size
);
10174 /* The address of a reloc is relative to the section in a
10175 relocatable file, and is a virtual address in an executable
10177 offset
= link_order
->offset
;
10178 if (! info
->relocatable
)
10179 offset
+= output_section
->vma
;
10181 for (i
= 0; i
< bed
->s
->int_rels_per_ext_rel
; i
++)
10183 irel
[i
].r_offset
= offset
;
10184 irel
[i
].r_info
= 0;
10185 irel
[i
].r_addend
= 0;
10187 if (bed
->s
->arch_size
== 32)
10188 irel
[0].r_info
= ELF32_R_INFO (indx
, howto
->type
);
10190 irel
[0].r_info
= ELF64_R_INFO (indx
, howto
->type
);
10192 rel_hdr
= reldata
->hdr
;
10193 erel
= rel_hdr
->contents
;
10194 if (rel_hdr
->sh_type
== SHT_REL
)
10196 erel
+= reldata
->count
* bed
->s
->sizeof_rel
;
10197 (*bed
->s
->swap_reloc_out
) (output_bfd
, irel
, erel
);
10201 irel
[0].r_addend
= addend
;
10202 erel
+= reldata
->count
* bed
->s
->sizeof_rela
;
10203 (*bed
->s
->swap_reloca_out
) (output_bfd
, irel
, erel
);
10212 /* Get the output vma of the section pointed to by the sh_link field. */
10215 elf_get_linked_section_vma (struct bfd_link_order
*p
)
10217 Elf_Internal_Shdr
**elf_shdrp
;
10221 s
= p
->u
.indirect
.section
;
10222 elf_shdrp
= elf_elfsections (s
->owner
);
10223 elfsec
= _bfd_elf_section_from_bfd_section (s
->owner
, s
);
10224 elfsec
= elf_shdrp
[elfsec
]->sh_link
;
10226 The Intel C compiler generates SHT_IA_64_UNWIND with
10227 SHF_LINK_ORDER. But it doesn't set the sh_link or
10228 sh_info fields. Hence we could get the situation
10229 where elfsec is 0. */
10232 const struct elf_backend_data
*bed
10233 = get_elf_backend_data (s
->owner
);
10234 if (bed
->link_order_error_handler
)
10235 bed
->link_order_error_handler
10236 (_("%B: warning: sh_link not set for section `%A'"), s
->owner
, s
);
10241 s
= elf_shdrp
[elfsec
]->bfd_section
;
10242 return s
->output_section
->vma
+ s
->output_offset
;
10247 /* Compare two sections based on the locations of the sections they are
10248 linked to. Used by elf_fixup_link_order. */
10251 compare_link_order (const void * a
, const void * b
)
10256 apos
= elf_get_linked_section_vma (*(struct bfd_link_order
**)a
);
10257 bpos
= elf_get_linked_section_vma (*(struct bfd_link_order
**)b
);
10260 return apos
> bpos
;
10264 /* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same
10265 order as their linked sections. Returns false if this could not be done
10266 because an output section includes both ordered and unordered
10267 sections. Ideally we'd do this in the linker proper. */
10270 elf_fixup_link_order (bfd
*abfd
, asection
*o
)
10272 int seen_linkorder
;
10275 struct bfd_link_order
*p
;
10277 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
10279 struct bfd_link_order
**sections
;
10280 asection
*s
, *other_sec
, *linkorder_sec
;
10284 linkorder_sec
= NULL
;
10286 seen_linkorder
= 0;
10287 for (p
= o
->map_head
.link_order
; p
!= NULL
; p
= p
->next
)
10289 if (p
->type
== bfd_indirect_link_order
)
10291 s
= p
->u
.indirect
.section
;
10293 if (bfd_get_flavour (sub
) == bfd_target_elf_flavour
10294 && elf_elfheader (sub
)->e_ident
[EI_CLASS
] == bed
->s
->elfclass
10295 && (elfsec
= _bfd_elf_section_from_bfd_section (sub
, s
))
10296 && elfsec
< elf_numsections (sub
)
10297 && elf_elfsections (sub
)[elfsec
]->sh_flags
& SHF_LINK_ORDER
10298 && elf_elfsections (sub
)[elfsec
]->sh_link
< elf_numsections (sub
))
10312 if (seen_other
&& seen_linkorder
)
10314 if (other_sec
&& linkorder_sec
)
10315 (*_bfd_error_handler
) (_("%A has both ordered [`%A' in %B] and unordered [`%A' in %B] sections"),
10317 linkorder_sec
->owner
, other_sec
,
10320 (*_bfd_error_handler
) (_("%A has both ordered and unordered sections"),
10322 bfd_set_error (bfd_error_bad_value
);
10327 if (!seen_linkorder
)
10330 sections
= (struct bfd_link_order
**)
10331 bfd_malloc (seen_linkorder
* sizeof (struct bfd_link_order
*));
10332 if (sections
== NULL
)
10334 seen_linkorder
= 0;
10336 for (p
= o
->map_head
.link_order
; p
!= NULL
; p
= p
->next
)
10338 sections
[seen_linkorder
++] = p
;
10340 /* Sort the input sections in the order of their linked section. */
10341 qsort (sections
, seen_linkorder
, sizeof (struct bfd_link_order
*),
10342 compare_link_order
);
10344 /* Change the offsets of the sections. */
10346 for (n
= 0; n
< seen_linkorder
; n
++)
10348 s
= sections
[n
]->u
.indirect
.section
;
10349 offset
&= ~(bfd_vma
) 0 << s
->alignment_power
;
10350 s
->output_offset
= offset
;
10351 sections
[n
]->offset
= offset
;
10352 /* FIXME: octets_per_byte. */
10353 offset
+= sections
[n
]->size
;
10361 /* Do the final step of an ELF link. */
10364 bfd_elf_final_link (bfd
*abfd
, struct bfd_link_info
*info
)
10366 bfd_boolean dynamic
;
10367 bfd_boolean emit_relocs
;
10369 struct elf_final_link_info flinfo
;
10371 struct bfd_link_order
*p
;
10373 bfd_size_type max_contents_size
;
10374 bfd_size_type max_external_reloc_size
;
10375 bfd_size_type max_internal_reloc_count
;
10376 bfd_size_type max_sym_count
;
10377 bfd_size_type max_sym_shndx_count
;
10379 Elf_Internal_Sym elfsym
;
10381 Elf_Internal_Shdr
*symtab_hdr
;
10382 Elf_Internal_Shdr
*symtab_shndx_hdr
;
10383 Elf_Internal_Shdr
*symstrtab_hdr
;
10384 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
10385 struct elf_outext_info eoinfo
;
10386 bfd_boolean merged
;
10387 size_t relativecount
= 0;
10388 asection
*reldyn
= 0;
10390 asection
*attr_section
= NULL
;
10391 bfd_vma attr_size
= 0;
10392 const char *std_attrs_section
;
10394 if (! is_elf_hash_table (info
->hash
))
10398 abfd
->flags
|= DYNAMIC
;
10400 dynamic
= elf_hash_table (info
)->dynamic_sections_created
;
10401 dynobj
= elf_hash_table (info
)->dynobj
;
10403 emit_relocs
= (info
->relocatable
10404 || info
->emitrelocations
);
10406 flinfo
.info
= info
;
10407 flinfo
.output_bfd
= abfd
;
10408 flinfo
.symstrtab
= _bfd_elf_stringtab_init ();
10409 if (flinfo
.symstrtab
== NULL
)
10414 flinfo
.dynsym_sec
= NULL
;
10415 flinfo
.hash_sec
= NULL
;
10416 flinfo
.symver_sec
= NULL
;
10420 flinfo
.dynsym_sec
= bfd_get_linker_section (dynobj
, ".dynsym");
10421 flinfo
.hash_sec
= bfd_get_linker_section (dynobj
, ".hash");
10422 /* Note that dynsym_sec can be NULL (on VMS). */
10423 flinfo
.symver_sec
= bfd_get_linker_section (dynobj
, ".gnu.version");
10424 /* Note that it is OK if symver_sec is NULL. */
10427 flinfo
.contents
= NULL
;
10428 flinfo
.external_relocs
= NULL
;
10429 flinfo
.internal_relocs
= NULL
;
10430 flinfo
.external_syms
= NULL
;
10431 flinfo
.locsym_shndx
= NULL
;
10432 flinfo
.internal_syms
= NULL
;
10433 flinfo
.indices
= NULL
;
10434 flinfo
.sections
= NULL
;
10435 flinfo
.symbuf
= NULL
;
10436 flinfo
.symshndxbuf
= NULL
;
10437 flinfo
.symbuf_count
= 0;
10438 flinfo
.shndxbuf_size
= 0;
10439 flinfo
.filesym_count
= 0;
10441 /* The object attributes have been merged. Remove the input
10442 sections from the link, and set the contents of the output
10444 std_attrs_section
= get_elf_backend_data (abfd
)->obj_attrs_section
;
10445 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
10447 if ((std_attrs_section
&& strcmp (o
->name
, std_attrs_section
) == 0)
10448 || strcmp (o
->name
, ".gnu.attributes") == 0)
10450 for (p
= o
->map_head
.link_order
; p
!= NULL
; p
= p
->next
)
10452 asection
*input_section
;
10454 if (p
->type
!= bfd_indirect_link_order
)
10456 input_section
= p
->u
.indirect
.section
;
10457 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10458 elf_link_input_bfd ignores this section. */
10459 input_section
->flags
&= ~SEC_HAS_CONTENTS
;
10462 attr_size
= bfd_elf_obj_attr_size (abfd
);
10465 bfd_set_section_size (abfd
, o
, attr_size
);
10467 /* Skip this section later on. */
10468 o
->map_head
.link_order
= NULL
;
10471 o
->flags
|= SEC_EXCLUDE
;
10475 /* Count up the number of relocations we will output for each output
10476 section, so that we know the sizes of the reloc sections. We
10477 also figure out some maximum sizes. */
10478 max_contents_size
= 0;
10479 max_external_reloc_size
= 0;
10480 max_internal_reloc_count
= 0;
10482 max_sym_shndx_count
= 0;
10484 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
10486 struct bfd_elf_section_data
*esdo
= elf_section_data (o
);
10487 o
->reloc_count
= 0;
10489 for (p
= o
->map_head
.link_order
; p
!= NULL
; p
= p
->next
)
10491 unsigned int reloc_count
= 0;
10492 struct bfd_elf_section_data
*esdi
= NULL
;
10494 if (p
->type
== bfd_section_reloc_link_order
10495 || p
->type
== bfd_symbol_reloc_link_order
)
10497 else if (p
->type
== bfd_indirect_link_order
)
10501 sec
= p
->u
.indirect
.section
;
10502 esdi
= elf_section_data (sec
);
10504 /* Mark all sections which are to be included in the
10505 link. This will normally be every section. We need
10506 to do this so that we can identify any sections which
10507 the linker has decided to not include. */
10508 sec
->linker_mark
= TRUE
;
10510 if (sec
->flags
& SEC_MERGE
)
10513 if (esdo
->this_hdr
.sh_type
== SHT_REL
10514 || esdo
->this_hdr
.sh_type
== SHT_RELA
)
10515 /* Some backends use reloc_count in relocation sections
10516 to count particular types of relocs. Of course,
10517 reloc sections themselves can't have relocations. */
10519 else if (info
->relocatable
|| info
->emitrelocations
)
10520 reloc_count
= sec
->reloc_count
;
10521 else if (bed
->elf_backend_count_relocs
)
10522 reloc_count
= (*bed
->elf_backend_count_relocs
) (info
, sec
);
10524 if (sec
->rawsize
> max_contents_size
)
10525 max_contents_size
= sec
->rawsize
;
10526 if (sec
->size
> max_contents_size
)
10527 max_contents_size
= sec
->size
;
10529 /* We are interested in just local symbols, not all
10531 if (bfd_get_flavour (sec
->owner
) == bfd_target_elf_flavour
10532 && (sec
->owner
->flags
& DYNAMIC
) == 0)
10536 if (elf_bad_symtab (sec
->owner
))
10537 sym_count
= (elf_tdata (sec
->owner
)->symtab_hdr
.sh_size
10538 / bed
->s
->sizeof_sym
);
10540 sym_count
= elf_tdata (sec
->owner
)->symtab_hdr
.sh_info
;
10542 if (sym_count
> max_sym_count
)
10543 max_sym_count
= sym_count
;
10545 if (sym_count
> max_sym_shndx_count
10546 && elf_symtab_shndx (sec
->owner
) != 0)
10547 max_sym_shndx_count
= sym_count
;
10549 if ((sec
->flags
& SEC_RELOC
) != 0)
10551 size_t ext_size
= 0;
10553 if (esdi
->rel
.hdr
!= NULL
)
10554 ext_size
= esdi
->rel
.hdr
->sh_size
;
10555 if (esdi
->rela
.hdr
!= NULL
)
10556 ext_size
+= esdi
->rela
.hdr
->sh_size
;
10558 if (ext_size
> max_external_reloc_size
)
10559 max_external_reloc_size
= ext_size
;
10560 if (sec
->reloc_count
> max_internal_reloc_count
)
10561 max_internal_reloc_count
= sec
->reloc_count
;
10566 if (reloc_count
== 0)
10569 o
->reloc_count
+= reloc_count
;
10571 if (p
->type
== bfd_indirect_link_order
10572 && (info
->relocatable
|| info
->emitrelocations
))
10575 esdo
->rel
.count
+= NUM_SHDR_ENTRIES (esdi
->rel
.hdr
);
10576 if (esdi
->rela
.hdr
)
10577 esdo
->rela
.count
+= NUM_SHDR_ENTRIES (esdi
->rela
.hdr
);
10582 esdo
->rela
.count
+= reloc_count
;
10584 esdo
->rel
.count
+= reloc_count
;
10588 if (o
->reloc_count
> 0)
10589 o
->flags
|= SEC_RELOC
;
10592 /* Explicitly clear the SEC_RELOC flag. The linker tends to
10593 set it (this is probably a bug) and if it is set
10594 assign_section_numbers will create a reloc section. */
10595 o
->flags
&=~ SEC_RELOC
;
10598 /* If the SEC_ALLOC flag is not set, force the section VMA to
10599 zero. This is done in elf_fake_sections as well, but forcing
10600 the VMA to 0 here will ensure that relocs against these
10601 sections are handled correctly. */
10602 if ((o
->flags
& SEC_ALLOC
) == 0
10603 && ! o
->user_set_vma
)
10607 if (! info
->relocatable
&& merged
)
10608 elf_link_hash_traverse (elf_hash_table (info
),
10609 _bfd_elf_link_sec_merge_syms
, abfd
);
10611 /* Figure out the file positions for everything but the symbol table
10612 and the relocs. We set symcount to force assign_section_numbers
10613 to create a symbol table. */
10614 bfd_get_symcount (abfd
) = info
->strip
== strip_all
? 0 : 1;
10615 BFD_ASSERT (! abfd
->output_has_begun
);
10616 if (! _bfd_elf_compute_section_file_positions (abfd
, info
))
10619 /* Set sizes, and assign file positions for reloc sections. */
10620 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
10622 struct bfd_elf_section_data
*esdo
= elf_section_data (o
);
10623 if ((o
->flags
& SEC_RELOC
) != 0)
10626 && !(_bfd_elf_link_size_reloc_section (abfd
, &esdo
->rel
)))
10630 && !(_bfd_elf_link_size_reloc_section (abfd
, &esdo
->rela
)))
10634 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
10635 to count upwards while actually outputting the relocations. */
10636 esdo
->rel
.count
= 0;
10637 esdo
->rela
.count
= 0;
10640 _bfd_elf_assign_file_positions_for_relocs (abfd
);
10642 /* We have now assigned file positions for all the sections except
10643 .symtab and .strtab. We start the .symtab section at the current
10644 file position, and write directly to it. We build the .strtab
10645 section in memory. */
10646 bfd_get_symcount (abfd
) = 0;
10647 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
10648 /* sh_name is set in prep_headers. */
10649 symtab_hdr
->sh_type
= SHT_SYMTAB
;
10650 /* sh_flags, sh_addr and sh_size all start off zero. */
10651 symtab_hdr
->sh_entsize
= bed
->s
->sizeof_sym
;
10652 /* sh_link is set in assign_section_numbers. */
10653 /* sh_info is set below. */
10654 /* sh_offset is set just below. */
10655 symtab_hdr
->sh_addralign
= (bfd_vma
) 1 << bed
->s
->log_file_align
;
10657 off
= elf_tdata (abfd
)->next_file_pos
;
10658 off
= _bfd_elf_assign_file_position_for_section (symtab_hdr
, off
, TRUE
);
10660 /* Note that at this point elf_tdata (abfd)->next_file_pos is
10661 incorrect. We do not yet know the size of the .symtab section.
10662 We correct next_file_pos below, after we do know the size. */
10664 /* Allocate a buffer to hold swapped out symbols. This is to avoid
10665 continuously seeking to the right position in the file. */
10666 if (! info
->keep_memory
|| max_sym_count
< 20)
10667 flinfo
.symbuf_size
= 20;
10669 flinfo
.symbuf_size
= max_sym_count
;
10670 amt
= flinfo
.symbuf_size
;
10671 amt
*= bed
->s
->sizeof_sym
;
10672 flinfo
.symbuf
= (bfd_byte
*) bfd_malloc (amt
);
10673 if (flinfo
.symbuf
== NULL
)
10675 if (elf_numsections (abfd
) > (SHN_LORESERVE
& 0xFFFF))
10677 /* Wild guess at number of output symbols. realloc'd as needed. */
10678 amt
= 2 * max_sym_count
+ elf_numsections (abfd
) + 1000;
10679 flinfo
.shndxbuf_size
= amt
;
10680 amt
*= sizeof (Elf_External_Sym_Shndx
);
10681 flinfo
.symshndxbuf
= (Elf_External_Sym_Shndx
*) bfd_zmalloc (amt
);
10682 if (flinfo
.symshndxbuf
== NULL
)
10686 /* Start writing out the symbol table. The first symbol is always a
10688 if (info
->strip
!= strip_all
10691 elfsym
.st_value
= 0;
10692 elfsym
.st_size
= 0;
10693 elfsym
.st_info
= 0;
10694 elfsym
.st_other
= 0;
10695 elfsym
.st_shndx
= SHN_UNDEF
;
10696 elfsym
.st_target_internal
= 0;
10697 if (elf_link_output_sym (&flinfo
, NULL
, &elfsym
, bfd_und_section_ptr
,
10702 /* Output a symbol for each section. We output these even if we are
10703 discarding local symbols, since they are used for relocs. These
10704 symbols have no names. We store the index of each one in the
10705 index field of the section, so that we can find it again when
10706 outputting relocs. */
10707 if (info
->strip
!= strip_all
10710 elfsym
.st_size
= 0;
10711 elfsym
.st_info
= ELF_ST_INFO (STB_LOCAL
, STT_SECTION
);
10712 elfsym
.st_other
= 0;
10713 elfsym
.st_value
= 0;
10714 elfsym
.st_target_internal
= 0;
10715 for (i
= 1; i
< elf_numsections (abfd
); i
++)
10717 o
= bfd_section_from_elf_index (abfd
, i
);
10720 o
->target_index
= bfd_get_symcount (abfd
);
10721 elfsym
.st_shndx
= i
;
10722 if (!info
->relocatable
)
10723 elfsym
.st_value
= o
->vma
;
10724 if (elf_link_output_sym (&flinfo
, NULL
, &elfsym
, o
, NULL
) != 1)
10730 /* Allocate some memory to hold information read in from the input
10732 if (max_contents_size
!= 0)
10734 flinfo
.contents
= (bfd_byte
*) bfd_malloc (max_contents_size
);
10735 if (flinfo
.contents
== NULL
)
10739 if (max_external_reloc_size
!= 0)
10741 flinfo
.external_relocs
= bfd_malloc (max_external_reloc_size
);
10742 if (flinfo
.external_relocs
== NULL
)
10746 if (max_internal_reloc_count
!= 0)
10748 amt
= max_internal_reloc_count
* bed
->s
->int_rels_per_ext_rel
;
10749 amt
*= sizeof (Elf_Internal_Rela
);
10750 flinfo
.internal_relocs
= (Elf_Internal_Rela
*) bfd_malloc (amt
);
10751 if (flinfo
.internal_relocs
== NULL
)
10755 if (max_sym_count
!= 0)
10757 amt
= max_sym_count
* bed
->s
->sizeof_sym
;
10758 flinfo
.external_syms
= (bfd_byte
*) bfd_malloc (amt
);
10759 if (flinfo
.external_syms
== NULL
)
10762 amt
= max_sym_count
* sizeof (Elf_Internal_Sym
);
10763 flinfo
.internal_syms
= (Elf_Internal_Sym
*) bfd_malloc (amt
);
10764 if (flinfo
.internal_syms
== NULL
)
10767 amt
= max_sym_count
* sizeof (long);
10768 flinfo
.indices
= (long int *) bfd_malloc (amt
);
10769 if (flinfo
.indices
== NULL
)
10772 amt
= max_sym_count
* sizeof (asection
*);
10773 flinfo
.sections
= (asection
**) bfd_malloc (amt
);
10774 if (flinfo
.sections
== NULL
)
10778 if (max_sym_shndx_count
!= 0)
10780 amt
= max_sym_shndx_count
* sizeof (Elf_External_Sym_Shndx
);
10781 flinfo
.locsym_shndx
= (Elf_External_Sym_Shndx
*) bfd_malloc (amt
);
10782 if (flinfo
.locsym_shndx
== NULL
)
10786 if (elf_hash_table (info
)->tls_sec
)
10788 bfd_vma base
, end
= 0;
10791 for (sec
= elf_hash_table (info
)->tls_sec
;
10792 sec
&& (sec
->flags
& SEC_THREAD_LOCAL
);
10795 bfd_size_type size
= sec
->size
;
10798 && (sec
->flags
& SEC_HAS_CONTENTS
) == 0)
10800 struct bfd_link_order
*ord
= sec
->map_tail
.link_order
;
10803 size
= ord
->offset
+ ord
->size
;
10805 end
= sec
->vma
+ size
;
10807 base
= elf_hash_table (info
)->tls_sec
->vma
;
10808 /* Only align end of TLS section if static TLS doesn't have special
10809 alignment requirements. */
10810 if (bed
->static_tls_alignment
== 1)
10811 end
= align_power (end
,
10812 elf_hash_table (info
)->tls_sec
->alignment_power
);
10813 elf_hash_table (info
)->tls_size
= end
- base
;
10816 /* Reorder SHF_LINK_ORDER sections. */
10817 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
10819 if (!elf_fixup_link_order (abfd
, o
))
10823 /* Since ELF permits relocations to be against local symbols, we
10824 must have the local symbols available when we do the relocations.
10825 Since we would rather only read the local symbols once, and we
10826 would rather not keep them in memory, we handle all the
10827 relocations for a single input file at the same time.
10829 Unfortunately, there is no way to know the total number of local
10830 symbols until we have seen all of them, and the local symbol
10831 indices precede the global symbol indices. This means that when
10832 we are generating relocatable output, and we see a reloc against
10833 a global symbol, we can not know the symbol index until we have
10834 finished examining all the local symbols to see which ones we are
10835 going to output. To deal with this, we keep the relocations in
10836 memory, and don't output them until the end of the link. This is
10837 an unfortunate waste of memory, but I don't see a good way around
10838 it. Fortunately, it only happens when performing a relocatable
10839 link, which is not the common case. FIXME: If keep_memory is set
10840 we could write the relocs out and then read them again; I don't
10841 know how bad the memory loss will be. */
10843 for (sub
= info
->input_bfds
; sub
!= NULL
; sub
= sub
->link_next
)
10844 sub
->output_has_begun
= FALSE
;
10845 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
10847 for (p
= o
->map_head
.link_order
; p
!= NULL
; p
= p
->next
)
10849 if (p
->type
== bfd_indirect_link_order
10850 && (bfd_get_flavour ((sub
= p
->u
.indirect
.section
->owner
))
10851 == bfd_target_elf_flavour
)
10852 && elf_elfheader (sub
)->e_ident
[EI_CLASS
] == bed
->s
->elfclass
)
10854 if (! sub
->output_has_begun
)
10856 if (! elf_link_input_bfd (&flinfo
, sub
))
10858 sub
->output_has_begun
= TRUE
;
10861 else if (p
->type
== bfd_section_reloc_link_order
10862 || p
->type
== bfd_symbol_reloc_link_order
)
10864 if (! elf_reloc_link_order (abfd
, info
, o
, p
))
10869 if (! _bfd_default_link_order (abfd
, info
, o
, p
))
10871 if (p
->type
== bfd_indirect_link_order
10872 && (bfd_get_flavour (sub
)
10873 == bfd_target_elf_flavour
)
10874 && (elf_elfheader (sub
)->e_ident
[EI_CLASS
]
10875 != bed
->s
->elfclass
))
10877 const char *iclass
, *oclass
;
10879 if (bed
->s
->elfclass
== ELFCLASS64
)
10881 iclass
= "ELFCLASS32";
10882 oclass
= "ELFCLASS64";
10886 iclass
= "ELFCLASS64";
10887 oclass
= "ELFCLASS32";
10890 bfd_set_error (bfd_error_wrong_format
);
10891 (*_bfd_error_handler
)
10892 (_("%B: file class %s incompatible with %s"),
10893 sub
, iclass
, oclass
);
10902 /* Free symbol buffer if needed. */
10903 if (!info
->reduce_memory_overheads
)
10905 for (sub
= info
->input_bfds
; sub
!= NULL
; sub
= sub
->link_next
)
10906 if (bfd_get_flavour (sub
) == bfd_target_elf_flavour
10907 && elf_tdata (sub
)->symbuf
)
10909 free (elf_tdata (sub
)->symbuf
);
10910 elf_tdata (sub
)->symbuf
= NULL
;
10914 /* Output a FILE symbol so that following locals are not associated
10915 with the wrong input file. */
10916 memset (&elfsym
, 0, sizeof (elfsym
));
10917 elfsym
.st_info
= ELF_ST_INFO (STB_LOCAL
, STT_FILE
);
10918 elfsym
.st_shndx
= SHN_ABS
;
10920 if (flinfo
.filesym_count
> 1
10921 && !elf_link_output_sym (&flinfo
, NULL
, &elfsym
,
10922 bfd_und_section_ptr
, NULL
))
10925 /* Output any global symbols that got converted to local in a
10926 version script or due to symbol visibility. We do this in a
10927 separate step since ELF requires all local symbols to appear
10928 prior to any global symbols. FIXME: We should only do this if
10929 some global symbols were, in fact, converted to become local.
10930 FIXME: Will this work correctly with the Irix 5 linker? */
10931 eoinfo
.failed
= FALSE
;
10932 eoinfo
.flinfo
= &flinfo
;
10933 eoinfo
.localsyms
= TRUE
;
10934 eoinfo
.need_second_pass
= FALSE
;
10935 eoinfo
.second_pass
= FALSE
;
10936 bfd_hash_traverse (&info
->hash
->table
, elf_link_output_extsym
, &eoinfo
);
10940 if (flinfo
.filesym_count
== 1
10941 && !elf_link_output_sym (&flinfo
, NULL
, &elfsym
,
10942 bfd_und_section_ptr
, NULL
))
10945 if (eoinfo
.need_second_pass
)
10947 eoinfo
.second_pass
= TRUE
;
10948 bfd_hash_traverse (&info
->hash
->table
, elf_link_output_extsym
, &eoinfo
);
10953 /* If backend needs to output some local symbols not present in the hash
10954 table, do it now. */
10955 if (bed
->elf_backend_output_arch_local_syms
)
10957 typedef int (*out_sym_func
)
10958 (void *, const char *, Elf_Internal_Sym
*, asection
*,
10959 struct elf_link_hash_entry
*);
10961 if (! ((*bed
->elf_backend_output_arch_local_syms
)
10962 (abfd
, info
, &flinfo
, (out_sym_func
) elf_link_output_sym
)))
10966 /* That wrote out all the local symbols. Finish up the symbol table
10967 with the global symbols. Even if we want to strip everything we
10968 can, we still need to deal with those global symbols that got
10969 converted to local in a version script. */
10971 /* The sh_info field records the index of the first non local symbol. */
10972 symtab_hdr
->sh_info
= bfd_get_symcount (abfd
);
10975 && flinfo
.dynsym_sec
!= NULL
10976 && flinfo
.dynsym_sec
->output_section
!= bfd_abs_section_ptr
)
10978 Elf_Internal_Sym sym
;
10979 bfd_byte
*dynsym
= flinfo
.dynsym_sec
->contents
;
10980 long last_local
= 0;
10982 /* Write out the section symbols for the output sections. */
10983 if (info
->shared
|| elf_hash_table (info
)->is_relocatable_executable
)
10989 sym
.st_info
= ELF_ST_INFO (STB_LOCAL
, STT_SECTION
);
10991 sym
.st_target_internal
= 0;
10993 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
10999 dynindx
= elf_section_data (s
)->dynindx
;
11002 indx
= elf_section_data (s
)->this_idx
;
11003 BFD_ASSERT (indx
> 0);
11004 sym
.st_shndx
= indx
;
11005 if (! check_dynsym (abfd
, &sym
))
11007 sym
.st_value
= s
->vma
;
11008 dest
= dynsym
+ dynindx
* bed
->s
->sizeof_sym
;
11009 if (last_local
< dynindx
)
11010 last_local
= dynindx
;
11011 bed
->s
->swap_symbol_out (abfd
, &sym
, dest
, 0);
11015 /* Write out the local dynsyms. */
11016 if (elf_hash_table (info
)->dynlocal
)
11018 struct elf_link_local_dynamic_entry
*e
;
11019 for (e
= elf_hash_table (info
)->dynlocal
; e
; e
= e
->next
)
11024 /* Copy the internal symbol and turn off visibility.
11025 Note that we saved a word of storage and overwrote
11026 the original st_name with the dynstr_index. */
11028 sym
.st_other
&= ~ELF_ST_VISIBILITY (-1);
11030 s
= bfd_section_from_elf_index (e
->input_bfd
,
11035 elf_section_data (s
->output_section
)->this_idx
;
11036 if (! check_dynsym (abfd
, &sym
))
11038 sym
.st_value
= (s
->output_section
->vma
11040 + e
->isym
.st_value
);
11043 if (last_local
< e
->dynindx
)
11044 last_local
= e
->dynindx
;
11046 dest
= dynsym
+ e
->dynindx
* bed
->s
->sizeof_sym
;
11047 bed
->s
->swap_symbol_out (abfd
, &sym
, dest
, 0);
11051 elf_section_data (flinfo
.dynsym_sec
->output_section
)->this_hdr
.sh_info
=
11055 /* We get the global symbols from the hash table. */
11056 eoinfo
.failed
= FALSE
;
11057 eoinfo
.localsyms
= FALSE
;
11058 eoinfo
.flinfo
= &flinfo
;
11059 bfd_hash_traverse (&info
->hash
->table
, elf_link_output_extsym
, &eoinfo
);
11063 /* If backend needs to output some symbols not present in the hash
11064 table, do it now. */
11065 if (bed
->elf_backend_output_arch_syms
)
11067 typedef int (*out_sym_func
)
11068 (void *, const char *, Elf_Internal_Sym
*, asection
*,
11069 struct elf_link_hash_entry
*);
11071 if (! ((*bed
->elf_backend_output_arch_syms
)
11072 (abfd
, info
, &flinfo
, (out_sym_func
) elf_link_output_sym
)))
11076 /* Flush all symbols to the file. */
11077 if (! elf_link_flush_output_syms (&flinfo
, bed
))
11080 /* Now we know the size of the symtab section. */
11081 off
+= symtab_hdr
->sh_size
;
11083 symtab_shndx_hdr
= &elf_tdata (abfd
)->symtab_shndx_hdr
;
11084 if (symtab_shndx_hdr
->sh_name
!= 0)
11086 symtab_shndx_hdr
->sh_type
= SHT_SYMTAB_SHNDX
;
11087 symtab_shndx_hdr
->sh_entsize
= sizeof (Elf_External_Sym_Shndx
);
11088 symtab_shndx_hdr
->sh_addralign
= sizeof (Elf_External_Sym_Shndx
);
11089 amt
= bfd_get_symcount (abfd
) * sizeof (Elf_External_Sym_Shndx
);
11090 symtab_shndx_hdr
->sh_size
= amt
;
11092 off
= _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr
,
11095 if (bfd_seek (abfd
, symtab_shndx_hdr
->sh_offset
, SEEK_SET
) != 0
11096 || (bfd_bwrite (flinfo
.symshndxbuf
, amt
, abfd
) != amt
))
11101 /* Finish up and write out the symbol string table (.strtab)
11103 symstrtab_hdr
= &elf_tdata (abfd
)->strtab_hdr
;
11104 /* sh_name was set in prep_headers. */
11105 symstrtab_hdr
->sh_type
= SHT_STRTAB
;
11106 symstrtab_hdr
->sh_flags
= 0;
11107 symstrtab_hdr
->sh_addr
= 0;
11108 symstrtab_hdr
->sh_size
= _bfd_stringtab_size (flinfo
.symstrtab
);
11109 symstrtab_hdr
->sh_entsize
= 0;
11110 symstrtab_hdr
->sh_link
= 0;
11111 symstrtab_hdr
->sh_info
= 0;
11112 /* sh_offset is set just below. */
11113 symstrtab_hdr
->sh_addralign
= 1;
11115 off
= _bfd_elf_assign_file_position_for_section (symstrtab_hdr
, off
, TRUE
);
11116 elf_tdata (abfd
)->next_file_pos
= off
;
11118 if (bfd_get_symcount (abfd
) > 0)
11120 if (bfd_seek (abfd
, symstrtab_hdr
->sh_offset
, SEEK_SET
) != 0
11121 || ! _bfd_stringtab_emit (abfd
, flinfo
.symstrtab
))
11125 /* Adjust the relocs to have the correct symbol indices. */
11126 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
11128 struct bfd_elf_section_data
*esdo
= elf_section_data (o
);
11129 if ((o
->flags
& SEC_RELOC
) == 0)
11132 if (esdo
->rel
.hdr
!= NULL
)
11133 elf_link_adjust_relocs (abfd
, &esdo
->rel
);
11134 if (esdo
->rela
.hdr
!= NULL
)
11135 elf_link_adjust_relocs (abfd
, &esdo
->rela
);
11137 /* Set the reloc_count field to 0 to prevent write_relocs from
11138 trying to swap the relocs out itself. */
11139 o
->reloc_count
= 0;
11142 if (dynamic
&& info
->combreloc
&& dynobj
!= NULL
)
11143 relativecount
= elf_link_sort_relocs (abfd
, info
, &reldyn
);
11145 /* If we are linking against a dynamic object, or generating a
11146 shared library, finish up the dynamic linking information. */
11149 bfd_byte
*dyncon
, *dynconend
;
11151 /* Fix up .dynamic entries. */
11152 o
= bfd_get_linker_section (dynobj
, ".dynamic");
11153 BFD_ASSERT (o
!= NULL
);
11155 dyncon
= o
->contents
;
11156 dynconend
= o
->contents
+ o
->size
;
11157 for (; dyncon
< dynconend
; dyncon
+= bed
->s
->sizeof_dyn
)
11159 Elf_Internal_Dyn dyn
;
11163 bed
->s
->swap_dyn_in (dynobj
, dyncon
, &dyn
);
11170 if (relativecount
> 0 && dyncon
+ bed
->s
->sizeof_dyn
< dynconend
)
11172 switch (elf_section_data (reldyn
)->this_hdr
.sh_type
)
11174 case SHT_REL
: dyn
.d_tag
= DT_RELCOUNT
; break;
11175 case SHT_RELA
: dyn
.d_tag
= DT_RELACOUNT
; break;
11178 dyn
.d_un
.d_val
= relativecount
;
11185 name
= info
->init_function
;
11188 name
= info
->fini_function
;
11191 struct elf_link_hash_entry
*h
;
11193 h
= elf_link_hash_lookup (elf_hash_table (info
), name
,
11194 FALSE
, FALSE
, TRUE
);
11196 && (h
->root
.type
== bfd_link_hash_defined
11197 || h
->root
.type
== bfd_link_hash_defweak
))
11199 dyn
.d_un
.d_ptr
= h
->root
.u
.def
.value
;
11200 o
= h
->root
.u
.def
.section
;
11201 if (o
->output_section
!= NULL
)
11202 dyn
.d_un
.d_ptr
+= (o
->output_section
->vma
11203 + o
->output_offset
);
11206 /* The symbol is imported from another shared
11207 library and does not apply to this one. */
11208 dyn
.d_un
.d_ptr
= 0;
11215 case DT_PREINIT_ARRAYSZ
:
11216 name
= ".preinit_array";
11218 case DT_INIT_ARRAYSZ
:
11219 name
= ".init_array";
11221 case DT_FINI_ARRAYSZ
:
11222 name
= ".fini_array";
11224 o
= bfd_get_section_by_name (abfd
, name
);
11227 (*_bfd_error_handler
)
11228 (_("%B: could not find output section %s"), abfd
, name
);
11232 (*_bfd_error_handler
)
11233 (_("warning: %s section has zero size"), name
);
11234 dyn
.d_un
.d_val
= o
->size
;
11237 case DT_PREINIT_ARRAY
:
11238 name
= ".preinit_array";
11240 case DT_INIT_ARRAY
:
11241 name
= ".init_array";
11243 case DT_FINI_ARRAY
:
11244 name
= ".fini_array";
11251 name
= ".gnu.hash";
11260 name
= ".gnu.version_d";
11263 name
= ".gnu.version_r";
11266 name
= ".gnu.version";
11268 o
= bfd_get_section_by_name (abfd
, name
);
11271 (*_bfd_error_handler
)
11272 (_("%B: could not find output section %s"), abfd
, name
);
11275 if (elf_section_data (o
->output_section
)->this_hdr
.sh_type
== SHT_NOTE
)
11277 (*_bfd_error_handler
)
11278 (_("warning: section '%s' is being made into a note"), name
);
11279 bfd_set_error (bfd_error_nonrepresentable_section
);
11282 dyn
.d_un
.d_ptr
= o
->vma
;
11289 if (dyn
.d_tag
== DT_REL
|| dyn
.d_tag
== DT_RELSZ
)
11293 dyn
.d_un
.d_val
= 0;
11294 dyn
.d_un
.d_ptr
= 0;
11295 for (i
= 1; i
< elf_numsections (abfd
); i
++)
11297 Elf_Internal_Shdr
*hdr
;
11299 hdr
= elf_elfsections (abfd
)[i
];
11300 if (hdr
->sh_type
== type
11301 && (hdr
->sh_flags
& SHF_ALLOC
) != 0)
11303 if (dyn
.d_tag
== DT_RELSZ
|| dyn
.d_tag
== DT_RELASZ
)
11304 dyn
.d_un
.d_val
+= hdr
->sh_size
;
11307 if (dyn
.d_un
.d_ptr
== 0
11308 || hdr
->sh_addr
< dyn
.d_un
.d_ptr
)
11309 dyn
.d_un
.d_ptr
= hdr
->sh_addr
;
11315 bed
->s
->swap_dyn_out (dynobj
, &dyn
, dyncon
);
11319 /* If we have created any dynamic sections, then output them. */
11320 if (dynobj
!= NULL
)
11322 if (! (*bed
->elf_backend_finish_dynamic_sections
) (abfd
, info
))
11325 /* Check for DT_TEXTREL (late, in case the backend removes it). */
11326 if (((info
->warn_shared_textrel
&& info
->shared
)
11327 || info
->error_textrel
)
11328 && (o
= bfd_get_linker_section (dynobj
, ".dynamic")) != NULL
)
11330 bfd_byte
*dyncon
, *dynconend
;
11332 dyncon
= o
->contents
;
11333 dynconend
= o
->contents
+ o
->size
;
11334 for (; dyncon
< dynconend
; dyncon
+= bed
->s
->sizeof_dyn
)
11336 Elf_Internal_Dyn dyn
;
11338 bed
->s
->swap_dyn_in (dynobj
, dyncon
, &dyn
);
11340 if (dyn
.d_tag
== DT_TEXTREL
)
11342 if (info
->error_textrel
)
11343 info
->callbacks
->einfo
11344 (_("%P%X: read-only segment has dynamic relocations.\n"));
11346 info
->callbacks
->einfo
11347 (_("%P: warning: creating a DT_TEXTREL in a shared object.\n"));
11353 for (o
= dynobj
->sections
; o
!= NULL
; o
= o
->next
)
11355 if ((o
->flags
& SEC_HAS_CONTENTS
) == 0
11357 || o
->output_section
== bfd_abs_section_ptr
)
11359 if ((o
->flags
& SEC_LINKER_CREATED
) == 0)
11361 /* At this point, we are only interested in sections
11362 created by _bfd_elf_link_create_dynamic_sections. */
11365 if (elf_hash_table (info
)->stab_info
.stabstr
== o
)
11367 if (elf_hash_table (info
)->eh_info
.hdr_sec
== o
)
11369 if (strcmp (o
->name
, ".dynstr") != 0)
11371 /* FIXME: octets_per_byte. */
11372 if (! bfd_set_section_contents (abfd
, o
->output_section
,
11374 (file_ptr
) o
->output_offset
,
11380 /* The contents of the .dynstr section are actually in a
11382 off
= elf_section_data (o
->output_section
)->this_hdr
.sh_offset
;
11383 if (bfd_seek (abfd
, off
, SEEK_SET
) != 0
11384 || ! _bfd_elf_strtab_emit (abfd
,
11385 elf_hash_table (info
)->dynstr
))
11391 if (info
->relocatable
)
11393 bfd_boolean failed
= FALSE
;
11395 bfd_map_over_sections (abfd
, bfd_elf_set_group_contents
, &failed
);
11400 /* If we have optimized stabs strings, output them. */
11401 if (elf_hash_table (info
)->stab_info
.stabstr
!= NULL
)
11403 if (! _bfd_write_stab_strings (abfd
, &elf_hash_table (info
)->stab_info
))
11407 if (info
->eh_frame_hdr
)
11409 if (! _bfd_elf_write_section_eh_frame_hdr (abfd
, info
))
11413 if (flinfo
.symstrtab
!= NULL
)
11414 _bfd_stringtab_free (flinfo
.symstrtab
);
11415 if (flinfo
.contents
!= NULL
)
11416 free (flinfo
.contents
);
11417 if (flinfo
.external_relocs
!= NULL
)
11418 free (flinfo
.external_relocs
);
11419 if (flinfo
.internal_relocs
!= NULL
)
11420 free (flinfo
.internal_relocs
);
11421 if (flinfo
.external_syms
!= NULL
)
11422 free (flinfo
.external_syms
);
11423 if (flinfo
.locsym_shndx
!= NULL
)
11424 free (flinfo
.locsym_shndx
);
11425 if (flinfo
.internal_syms
!= NULL
)
11426 free (flinfo
.internal_syms
);
11427 if (flinfo
.indices
!= NULL
)
11428 free (flinfo
.indices
);
11429 if (flinfo
.sections
!= NULL
)
11430 free (flinfo
.sections
);
11431 if (flinfo
.symbuf
!= NULL
)
11432 free (flinfo
.symbuf
);
11433 if (flinfo
.symshndxbuf
!= NULL
)
11434 free (flinfo
.symshndxbuf
);
11435 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
11437 struct bfd_elf_section_data
*esdo
= elf_section_data (o
);
11438 if ((o
->flags
& SEC_RELOC
) != 0 && esdo
->rel
.hashes
!= NULL
)
11439 free (esdo
->rel
.hashes
);
11440 if ((o
->flags
& SEC_RELOC
) != 0 && esdo
->rela
.hashes
!= NULL
)
11441 free (esdo
->rela
.hashes
);
11444 elf_tdata (abfd
)->linker
= TRUE
;
11448 bfd_byte
*contents
= (bfd_byte
*) bfd_malloc (attr_size
);
11449 if (contents
== NULL
)
11450 return FALSE
; /* Bail out and fail. */
11451 bfd_elf_set_obj_attr_contents (abfd
, contents
, attr_size
);
11452 bfd_set_section_contents (abfd
, attr_section
, contents
, 0, attr_size
);
11459 if (flinfo
.symstrtab
!= NULL
)
11460 _bfd_stringtab_free (flinfo
.symstrtab
);
11461 if (flinfo
.contents
!= NULL
)
11462 free (flinfo
.contents
);
11463 if (flinfo
.external_relocs
!= NULL
)
11464 free (flinfo
.external_relocs
);
11465 if (flinfo
.internal_relocs
!= NULL
)
11466 free (flinfo
.internal_relocs
);
11467 if (flinfo
.external_syms
!= NULL
)
11468 free (flinfo
.external_syms
);
11469 if (flinfo
.locsym_shndx
!= NULL
)
11470 free (flinfo
.locsym_shndx
);
11471 if (flinfo
.internal_syms
!= NULL
)
11472 free (flinfo
.internal_syms
);
11473 if (flinfo
.indices
!= NULL
)
11474 free (flinfo
.indices
);
11475 if (flinfo
.sections
!= NULL
)
11476 free (flinfo
.sections
);
11477 if (flinfo
.symbuf
!= NULL
)
11478 free (flinfo
.symbuf
);
11479 if (flinfo
.symshndxbuf
!= NULL
)
11480 free (flinfo
.symshndxbuf
);
11481 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
11483 struct bfd_elf_section_data
*esdo
= elf_section_data (o
);
11484 if ((o
->flags
& SEC_RELOC
) != 0 && esdo
->rel
.hashes
!= NULL
)
11485 free (esdo
->rel
.hashes
);
11486 if ((o
->flags
& SEC_RELOC
) != 0 && esdo
->rela
.hashes
!= NULL
)
11487 free (esdo
->rela
.hashes
);
11493 /* Initialize COOKIE for input bfd ABFD. */
11496 init_reloc_cookie (struct elf_reloc_cookie
*cookie
,
11497 struct bfd_link_info
*info
, bfd
*abfd
)
11499 Elf_Internal_Shdr
*symtab_hdr
;
11500 const struct elf_backend_data
*bed
;
11502 bed
= get_elf_backend_data (abfd
);
11503 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
11505 cookie
->abfd
= abfd
;
11506 cookie
->sym_hashes
= elf_sym_hashes (abfd
);
11507 cookie
->bad_symtab
= elf_bad_symtab (abfd
);
11508 if (cookie
->bad_symtab
)
11510 cookie
->locsymcount
= symtab_hdr
->sh_size
/ bed
->s
->sizeof_sym
;
11511 cookie
->extsymoff
= 0;
11515 cookie
->locsymcount
= symtab_hdr
->sh_info
;
11516 cookie
->extsymoff
= symtab_hdr
->sh_info
;
11519 if (bed
->s
->arch_size
== 32)
11520 cookie
->r_sym_shift
= 8;
11522 cookie
->r_sym_shift
= 32;
11524 cookie
->locsyms
= (Elf_Internal_Sym
*) symtab_hdr
->contents
;
11525 if (cookie
->locsyms
== NULL
&& cookie
->locsymcount
!= 0)
11527 cookie
->locsyms
= bfd_elf_get_elf_syms (abfd
, symtab_hdr
,
11528 cookie
->locsymcount
, 0,
11530 if (cookie
->locsyms
== NULL
)
11532 info
->callbacks
->einfo (_("%P%X: can not read symbols: %E\n"));
11535 if (info
->keep_memory
)
11536 symtab_hdr
->contents
= (bfd_byte
*) cookie
->locsyms
;
11541 /* Free the memory allocated by init_reloc_cookie, if appropriate. */
11544 fini_reloc_cookie (struct elf_reloc_cookie
*cookie
, bfd
*abfd
)
11546 Elf_Internal_Shdr
*symtab_hdr
;
11548 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
11549 if (cookie
->locsyms
!= NULL
11550 && symtab_hdr
->contents
!= (unsigned char *) cookie
->locsyms
)
11551 free (cookie
->locsyms
);
11554 /* Initialize the relocation information in COOKIE for input section SEC
11555 of input bfd ABFD. */
11558 init_reloc_cookie_rels (struct elf_reloc_cookie
*cookie
,
11559 struct bfd_link_info
*info
, bfd
*abfd
,
11562 const struct elf_backend_data
*bed
;
11564 if (sec
->reloc_count
== 0)
11566 cookie
->rels
= NULL
;
11567 cookie
->relend
= NULL
;
11571 bed
= get_elf_backend_data (abfd
);
11573 cookie
->rels
= _bfd_elf_link_read_relocs (abfd
, sec
, NULL
, NULL
,
11574 info
->keep_memory
);
11575 if (cookie
->rels
== NULL
)
11577 cookie
->rel
= cookie
->rels
;
11578 cookie
->relend
= (cookie
->rels
11579 + sec
->reloc_count
* bed
->s
->int_rels_per_ext_rel
);
11581 cookie
->rel
= cookie
->rels
;
11585 /* Free the memory allocated by init_reloc_cookie_rels,
11589 fini_reloc_cookie_rels (struct elf_reloc_cookie
*cookie
,
11592 if (cookie
->rels
&& elf_section_data (sec
)->relocs
!= cookie
->rels
)
11593 free (cookie
->rels
);
11596 /* Initialize the whole of COOKIE for input section SEC. */
11599 init_reloc_cookie_for_section (struct elf_reloc_cookie
*cookie
,
11600 struct bfd_link_info
*info
,
11603 if (!init_reloc_cookie (cookie
, info
, sec
->owner
))
11605 if (!init_reloc_cookie_rels (cookie
, info
, sec
->owner
, sec
))
11610 fini_reloc_cookie (cookie
, sec
->owner
);
11615 /* Free the memory allocated by init_reloc_cookie_for_section,
11619 fini_reloc_cookie_for_section (struct elf_reloc_cookie
*cookie
,
11622 fini_reloc_cookie_rels (cookie
, sec
);
11623 fini_reloc_cookie (cookie
, sec
->owner
);
11626 /* Garbage collect unused sections. */
11628 /* Default gc_mark_hook. */
11631 _bfd_elf_gc_mark_hook (asection
*sec
,
11632 struct bfd_link_info
*info ATTRIBUTE_UNUSED
,
11633 Elf_Internal_Rela
*rel ATTRIBUTE_UNUSED
,
11634 struct elf_link_hash_entry
*h
,
11635 Elf_Internal_Sym
*sym
)
11637 const char *sec_name
;
11641 switch (h
->root
.type
)
11643 case bfd_link_hash_defined
:
11644 case bfd_link_hash_defweak
:
11645 return h
->root
.u
.def
.section
;
11647 case bfd_link_hash_common
:
11648 return h
->root
.u
.c
.p
->section
;
11650 case bfd_link_hash_undefined
:
11651 case bfd_link_hash_undefweak
:
11652 /* To work around a glibc bug, keep all XXX input sections
11653 when there is an as yet undefined reference to __start_XXX
11654 or __stop_XXX symbols. The linker will later define such
11655 symbols for orphan input sections that have a name
11656 representable as a C identifier. */
11657 if (strncmp (h
->root
.root
.string
, "__start_", 8) == 0)
11658 sec_name
= h
->root
.root
.string
+ 8;
11659 else if (strncmp (h
->root
.root
.string
, "__stop_", 7) == 0)
11660 sec_name
= h
->root
.root
.string
+ 7;
11664 if (sec_name
&& *sec_name
!= '\0')
11668 for (i
= info
->input_bfds
; i
; i
= i
->link_next
)
11670 sec
= bfd_get_section_by_name (i
, sec_name
);
11672 sec
->flags
|= SEC_KEEP
;
11682 return bfd_section_from_elf_index (sec
->owner
, sym
->st_shndx
);
11687 /* COOKIE->rel describes a relocation against section SEC, which is
11688 a section we've decided to keep. Return the section that contains
11689 the relocation symbol, or NULL if no section contains it. */
11692 _bfd_elf_gc_mark_rsec (struct bfd_link_info
*info
, asection
*sec
,
11693 elf_gc_mark_hook_fn gc_mark_hook
,
11694 struct elf_reloc_cookie
*cookie
)
11696 unsigned long r_symndx
;
11697 struct elf_link_hash_entry
*h
;
11699 r_symndx
= cookie
->rel
->r_info
>> cookie
->r_sym_shift
;
11700 if (r_symndx
== STN_UNDEF
)
11703 if (r_symndx
>= cookie
->locsymcount
11704 || ELF_ST_BIND (cookie
->locsyms
[r_symndx
].st_info
) != STB_LOCAL
)
11706 h
= cookie
->sym_hashes
[r_symndx
- cookie
->extsymoff
];
11707 while (h
->root
.type
== bfd_link_hash_indirect
11708 || h
->root
.type
== bfd_link_hash_warning
)
11709 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
11711 /* If this symbol is weak and there is a non-weak definition, we
11712 keep the non-weak definition because many backends put
11713 dynamic reloc info on the non-weak definition for code
11714 handling copy relocs. */
11715 if (h
->u
.weakdef
!= NULL
)
11716 h
->u
.weakdef
->mark
= 1;
11717 return (*gc_mark_hook
) (sec
, info
, cookie
->rel
, h
, NULL
);
11720 return (*gc_mark_hook
) (sec
, info
, cookie
->rel
, NULL
,
11721 &cookie
->locsyms
[r_symndx
]);
11724 /* COOKIE->rel describes a relocation against section SEC, which is
11725 a section we've decided to keep. Mark the section that contains
11726 the relocation symbol. */
11729 _bfd_elf_gc_mark_reloc (struct bfd_link_info
*info
,
11731 elf_gc_mark_hook_fn gc_mark_hook
,
11732 struct elf_reloc_cookie
*cookie
)
11736 rsec
= _bfd_elf_gc_mark_rsec (info
, sec
, gc_mark_hook
, cookie
);
11737 if (rsec
&& !rsec
->gc_mark
)
11739 if (bfd_get_flavour (rsec
->owner
) != bfd_target_elf_flavour
11740 || (rsec
->owner
->flags
& DYNAMIC
) != 0)
11742 else if (!_bfd_elf_gc_mark (info
, rsec
, gc_mark_hook
))
11748 /* The mark phase of garbage collection. For a given section, mark
11749 it and any sections in this section's group, and all the sections
11750 which define symbols to which it refers. */
11753 _bfd_elf_gc_mark (struct bfd_link_info
*info
,
11755 elf_gc_mark_hook_fn gc_mark_hook
)
11758 asection
*group_sec
, *eh_frame
;
11762 /* Mark all the sections in the group. */
11763 group_sec
= elf_section_data (sec
)->next_in_group
;
11764 if (group_sec
&& !group_sec
->gc_mark
)
11765 if (!_bfd_elf_gc_mark (info
, group_sec
, gc_mark_hook
))
11768 /* Look through the section relocs. */
11770 eh_frame
= elf_eh_frame_section (sec
->owner
);
11771 if ((sec
->flags
& SEC_RELOC
) != 0
11772 && sec
->reloc_count
> 0
11773 && sec
!= eh_frame
)
11775 struct elf_reloc_cookie cookie
;
11777 if (!init_reloc_cookie_for_section (&cookie
, info
, sec
))
11781 for (; cookie
.rel
< cookie
.relend
; cookie
.rel
++)
11782 if (!_bfd_elf_gc_mark_reloc (info
, sec
, gc_mark_hook
, &cookie
))
11787 fini_reloc_cookie_for_section (&cookie
, sec
);
11791 if (ret
&& eh_frame
&& elf_fde_list (sec
))
11793 struct elf_reloc_cookie cookie
;
11795 if (!init_reloc_cookie_for_section (&cookie
, info
, eh_frame
))
11799 if (!_bfd_elf_gc_mark_fdes (info
, sec
, eh_frame
,
11800 gc_mark_hook
, &cookie
))
11802 fini_reloc_cookie_for_section (&cookie
, eh_frame
);
11809 /* Keep debug and special sections. */
11812 _bfd_elf_gc_mark_extra_sections (struct bfd_link_info
*info
,
11813 elf_gc_mark_hook_fn mark_hook ATTRIBUTE_UNUSED
)
11817 for (ibfd
= info
->input_bfds
; ibfd
!= NULL
; ibfd
= ibfd
->link_next
)
11820 bfd_boolean some_kept
;
11822 if (bfd_get_flavour (ibfd
) != bfd_target_elf_flavour
)
11825 /* Ensure all linker created sections are kept, and see whether
11826 any other section is already marked. */
11828 for (isec
= ibfd
->sections
; isec
!= NULL
; isec
= isec
->next
)
11830 if ((isec
->flags
& SEC_LINKER_CREATED
) != 0)
11832 else if (isec
->gc_mark
)
11836 /* If no section in this file will be kept, then we can
11837 toss out debug sections. */
11841 /* Keep debug and special sections like .comment when they are
11842 not part of a group, or when we have single-member groups. */
11843 for (isec
= ibfd
->sections
; isec
!= NULL
; isec
= isec
->next
)
11844 if ((elf_next_in_group (isec
) == NULL
11845 || elf_next_in_group (isec
) == isec
)
11846 && ((isec
->flags
& SEC_DEBUGGING
) != 0
11847 || (isec
->flags
& (SEC_ALLOC
| SEC_LOAD
| SEC_RELOC
)) == 0))
11853 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
11855 struct elf_gc_sweep_symbol_info
11857 struct bfd_link_info
*info
;
11858 void (*hide_symbol
) (struct bfd_link_info
*, struct elf_link_hash_entry
*,
11863 elf_gc_sweep_symbol (struct elf_link_hash_entry
*h
, void *data
)
11866 && (((h
->root
.type
== bfd_link_hash_defined
11867 || h
->root
.type
== bfd_link_hash_defweak
)
11868 && !(h
->def_regular
11869 && h
->root
.u
.def
.section
->gc_mark
))
11870 || h
->root
.type
== bfd_link_hash_undefined
11871 || h
->root
.type
== bfd_link_hash_undefweak
))
11873 struct elf_gc_sweep_symbol_info
*inf
;
11875 inf
= (struct elf_gc_sweep_symbol_info
*) data
;
11876 (*inf
->hide_symbol
) (inf
->info
, h
, TRUE
);
11877 h
->def_regular
= 0;
11878 h
->ref_regular
= 0;
11879 h
->ref_regular_nonweak
= 0;
11885 /* The sweep phase of garbage collection. Remove all garbage sections. */
11887 typedef bfd_boolean (*gc_sweep_hook_fn
)
11888 (bfd
*, struct bfd_link_info
*, asection
*, const Elf_Internal_Rela
*);
11891 elf_gc_sweep (bfd
*abfd
, struct bfd_link_info
*info
)
11894 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
11895 gc_sweep_hook_fn gc_sweep_hook
= bed
->gc_sweep_hook
;
11896 unsigned long section_sym_count
;
11897 struct elf_gc_sweep_symbol_info sweep_info
;
11899 for (sub
= info
->input_bfds
; sub
!= NULL
; sub
= sub
->link_next
)
11903 if (bfd_get_flavour (sub
) != bfd_target_elf_flavour
)
11906 for (o
= sub
->sections
; o
!= NULL
; o
= o
->next
)
11908 /* When any section in a section group is kept, we keep all
11909 sections in the section group. If the first member of
11910 the section group is excluded, we will also exclude the
11912 if (o
->flags
& SEC_GROUP
)
11914 asection
*first
= elf_next_in_group (o
);
11915 o
->gc_mark
= first
->gc_mark
;
11921 /* Skip sweeping sections already excluded. */
11922 if (o
->flags
& SEC_EXCLUDE
)
11925 /* Since this is early in the link process, it is simple
11926 to remove a section from the output. */
11927 o
->flags
|= SEC_EXCLUDE
;
11929 if (info
->print_gc_sections
&& o
->size
!= 0)
11930 _bfd_error_handler (_("Removing unused section '%s' in file '%B'"), sub
, o
->name
);
11932 /* But we also have to update some of the relocation
11933 info we collected before. */
11935 && (o
->flags
& SEC_RELOC
) != 0
11936 && o
->reloc_count
> 0
11937 && !bfd_is_abs_section (o
->output_section
))
11939 Elf_Internal_Rela
*internal_relocs
;
11943 = _bfd_elf_link_read_relocs (o
->owner
, o
, NULL
, NULL
,
11944 info
->keep_memory
);
11945 if (internal_relocs
== NULL
)
11948 r
= (*gc_sweep_hook
) (o
->owner
, info
, o
, internal_relocs
);
11950 if (elf_section_data (o
)->relocs
!= internal_relocs
)
11951 free (internal_relocs
);
11959 /* Remove the symbols that were in the swept sections from the dynamic
11960 symbol table. GCFIXME: Anyone know how to get them out of the
11961 static symbol table as well? */
11962 sweep_info
.info
= info
;
11963 sweep_info
.hide_symbol
= bed
->elf_backend_hide_symbol
;
11964 elf_link_hash_traverse (elf_hash_table (info
), elf_gc_sweep_symbol
,
11967 _bfd_elf_link_renumber_dynsyms (abfd
, info
, §ion_sym_count
);
11971 /* Propagate collected vtable information. This is called through
11972 elf_link_hash_traverse. */
11975 elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry
*h
, void *okp
)
11977 /* Those that are not vtables. */
11978 if (h
->vtable
== NULL
|| h
->vtable
->parent
== NULL
)
11981 /* Those vtables that do not have parents, we cannot merge. */
11982 if (h
->vtable
->parent
== (struct elf_link_hash_entry
*) -1)
11985 /* If we've already been done, exit. */
11986 if (h
->vtable
->used
&& h
->vtable
->used
[-1])
11989 /* Make sure the parent's table is up to date. */
11990 elf_gc_propagate_vtable_entries_used (h
->vtable
->parent
, okp
);
11992 if (h
->vtable
->used
== NULL
)
11994 /* None of this table's entries were referenced. Re-use the
11996 h
->vtable
->used
= h
->vtable
->parent
->vtable
->used
;
11997 h
->vtable
->size
= h
->vtable
->parent
->vtable
->size
;
12002 bfd_boolean
*cu
, *pu
;
12004 /* Or the parent's entries into ours. */
12005 cu
= h
->vtable
->used
;
12007 pu
= h
->vtable
->parent
->vtable
->used
;
12010 const struct elf_backend_data
*bed
;
12011 unsigned int log_file_align
;
12013 bed
= get_elf_backend_data (h
->root
.u
.def
.section
->owner
);
12014 log_file_align
= bed
->s
->log_file_align
;
12015 n
= h
->vtable
->parent
->vtable
->size
>> log_file_align
;
12030 elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry
*h
, void *okp
)
12033 bfd_vma hstart
, hend
;
12034 Elf_Internal_Rela
*relstart
, *relend
, *rel
;
12035 const struct elf_backend_data
*bed
;
12036 unsigned int log_file_align
;
12038 /* Take care of both those symbols that do not describe vtables as
12039 well as those that are not loaded. */
12040 if (h
->vtable
== NULL
|| h
->vtable
->parent
== NULL
)
12043 BFD_ASSERT (h
->root
.type
== bfd_link_hash_defined
12044 || h
->root
.type
== bfd_link_hash_defweak
);
12046 sec
= h
->root
.u
.def
.section
;
12047 hstart
= h
->root
.u
.def
.value
;
12048 hend
= hstart
+ h
->size
;
12050 relstart
= _bfd_elf_link_read_relocs (sec
->owner
, sec
, NULL
, NULL
, TRUE
);
12052 return *(bfd_boolean
*) okp
= FALSE
;
12053 bed
= get_elf_backend_data (sec
->owner
);
12054 log_file_align
= bed
->s
->log_file_align
;
12056 relend
= relstart
+ sec
->reloc_count
* bed
->s
->int_rels_per_ext_rel
;
12058 for (rel
= relstart
; rel
< relend
; ++rel
)
12059 if (rel
->r_offset
>= hstart
&& rel
->r_offset
< hend
)
12061 /* If the entry is in use, do nothing. */
12062 if (h
->vtable
->used
12063 && (rel
->r_offset
- hstart
) < h
->vtable
->size
)
12065 bfd_vma entry
= (rel
->r_offset
- hstart
) >> log_file_align
;
12066 if (h
->vtable
->used
[entry
])
12069 /* Otherwise, kill it. */
12070 rel
->r_offset
= rel
->r_info
= rel
->r_addend
= 0;
12076 /* Mark sections containing dynamically referenced symbols. When
12077 building shared libraries, we must assume that any visible symbol is
12081 bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry
*h
, void *inf
)
12083 struct bfd_link_info
*info
= (struct bfd_link_info
*) inf
;
12085 if ((h
->root
.type
== bfd_link_hash_defined
12086 || h
->root
.type
== bfd_link_hash_defweak
)
12088 || ((!info
->executable
|| info
->export_dynamic
)
12090 && ELF_ST_VISIBILITY (h
->other
) != STV_INTERNAL
12091 && ELF_ST_VISIBILITY (h
->other
) != STV_HIDDEN
12092 && (strchr (h
->root
.root
.string
, ELF_VER_CHR
) != NULL
12093 || !bfd_hide_sym_by_version (info
->version_info
,
12094 h
->root
.root
.string
)))))
12095 h
->root
.u
.def
.section
->flags
|= SEC_KEEP
;
12100 /* Keep all sections containing symbols undefined on the command-line,
12101 and the section containing the entry symbol. */
12104 _bfd_elf_gc_keep (struct bfd_link_info
*info
)
12106 struct bfd_sym_chain
*sym
;
12108 for (sym
= info
->gc_sym_list
; sym
!= NULL
; sym
= sym
->next
)
12110 struct elf_link_hash_entry
*h
;
12112 h
= elf_link_hash_lookup (elf_hash_table (info
), sym
->name
,
12113 FALSE
, FALSE
, FALSE
);
12116 && (h
->root
.type
== bfd_link_hash_defined
12117 || h
->root
.type
== bfd_link_hash_defweak
)
12118 && !bfd_is_abs_section (h
->root
.u
.def
.section
))
12119 h
->root
.u
.def
.section
->flags
|= SEC_KEEP
;
12123 /* Do mark and sweep of unused sections. */
12126 bfd_elf_gc_sections (bfd
*abfd
, struct bfd_link_info
*info
)
12128 bfd_boolean ok
= TRUE
;
12130 elf_gc_mark_hook_fn gc_mark_hook
;
12131 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
12133 if (!bed
->can_gc_sections
12134 || !is_elf_hash_table (info
->hash
))
12136 (*_bfd_error_handler
)(_("Warning: gc-sections option ignored"));
12140 bed
->gc_keep (info
);
12142 /* Try to parse each bfd's .eh_frame section. Point elf_eh_frame_section
12143 at the .eh_frame section if we can mark the FDEs individually. */
12144 _bfd_elf_begin_eh_frame_parsing (info
);
12145 for (sub
= info
->input_bfds
; sub
!= NULL
; sub
= sub
->link_next
)
12148 struct elf_reloc_cookie cookie
;
12150 sec
= bfd_get_section_by_name (sub
, ".eh_frame");
12151 while (sec
&& init_reloc_cookie_for_section (&cookie
, info
, sec
))
12153 _bfd_elf_parse_eh_frame (sub
, info
, sec
, &cookie
);
12154 if (elf_section_data (sec
)->sec_info
12155 && (sec
->flags
& SEC_LINKER_CREATED
) == 0)
12156 elf_eh_frame_section (sub
) = sec
;
12157 fini_reloc_cookie_for_section (&cookie
, sec
);
12158 sec
= bfd_get_next_section_by_name (sec
);
12161 _bfd_elf_end_eh_frame_parsing (info
);
12163 /* Apply transitive closure to the vtable entry usage info. */
12164 elf_link_hash_traverse (elf_hash_table (info
),
12165 elf_gc_propagate_vtable_entries_used
,
12170 /* Kill the vtable relocations that were not used. */
12171 elf_link_hash_traverse (elf_hash_table (info
),
12172 elf_gc_smash_unused_vtentry_relocs
,
12177 /* Mark dynamically referenced symbols. */
12178 if (elf_hash_table (info
)->dynamic_sections_created
)
12179 elf_link_hash_traverse (elf_hash_table (info
),
12180 bed
->gc_mark_dynamic_ref
,
12183 /* Grovel through relocs to find out who stays ... */
12184 gc_mark_hook
= bed
->gc_mark_hook
;
12185 for (sub
= info
->input_bfds
; sub
!= NULL
; sub
= sub
->link_next
)
12189 if (bfd_get_flavour (sub
) != bfd_target_elf_flavour
)
12192 /* Start at sections marked with SEC_KEEP (ref _bfd_elf_gc_keep).
12193 Also treat note sections as a root, if the section is not part
12195 for (o
= sub
->sections
; o
!= NULL
; o
= o
->next
)
12197 && (o
->flags
& SEC_EXCLUDE
) == 0
12198 && ((o
->flags
& SEC_KEEP
) != 0
12199 || (elf_section_data (o
)->this_hdr
.sh_type
== SHT_NOTE
12200 && elf_next_in_group (o
) == NULL
)))
12202 if (!_bfd_elf_gc_mark (info
, o
, gc_mark_hook
))
12207 /* Allow the backend to mark additional target specific sections. */
12208 bed
->gc_mark_extra_sections (info
, gc_mark_hook
);
12210 /* ... and mark SEC_EXCLUDE for those that go. */
12211 return elf_gc_sweep (abfd
, info
);
12214 /* Called from check_relocs to record the existence of a VTINHERIT reloc. */
12217 bfd_elf_gc_record_vtinherit (bfd
*abfd
,
12219 struct elf_link_hash_entry
*h
,
12222 struct elf_link_hash_entry
**sym_hashes
, **sym_hashes_end
;
12223 struct elf_link_hash_entry
**search
, *child
;
12224 bfd_size_type extsymcount
;
12225 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
12227 /* The sh_info field of the symtab header tells us where the
12228 external symbols start. We don't care about the local symbols at
12230 extsymcount
= elf_tdata (abfd
)->symtab_hdr
.sh_size
/ bed
->s
->sizeof_sym
;
12231 if (!elf_bad_symtab (abfd
))
12232 extsymcount
-= elf_tdata (abfd
)->symtab_hdr
.sh_info
;
12234 sym_hashes
= elf_sym_hashes (abfd
);
12235 sym_hashes_end
= sym_hashes
+ extsymcount
;
12237 /* Hunt down the child symbol, which is in this section at the same
12238 offset as the relocation. */
12239 for (search
= sym_hashes
; search
!= sym_hashes_end
; ++search
)
12241 if ((child
= *search
) != NULL
12242 && (child
->root
.type
== bfd_link_hash_defined
12243 || child
->root
.type
== bfd_link_hash_defweak
)
12244 && child
->root
.u
.def
.section
== sec
12245 && child
->root
.u
.def
.value
== offset
)
12249 (*_bfd_error_handler
) ("%B: %A+%lu: No symbol found for INHERIT",
12250 abfd
, sec
, (unsigned long) offset
);
12251 bfd_set_error (bfd_error_invalid_operation
);
12255 if (!child
->vtable
)
12257 child
->vtable
= (struct elf_link_virtual_table_entry
*)
12258 bfd_zalloc (abfd
, sizeof (*child
->vtable
));
12259 if (!child
->vtable
)
12264 /* This *should* only be the absolute section. It could potentially
12265 be that someone has defined a non-global vtable though, which
12266 would be bad. It isn't worth paging in the local symbols to be
12267 sure though; that case should simply be handled by the assembler. */
12269 child
->vtable
->parent
= (struct elf_link_hash_entry
*) -1;
12272 child
->vtable
->parent
= h
;
12277 /* Called from check_relocs to record the existence of a VTENTRY reloc. */
12280 bfd_elf_gc_record_vtentry (bfd
*abfd ATTRIBUTE_UNUSED
,
12281 asection
*sec ATTRIBUTE_UNUSED
,
12282 struct elf_link_hash_entry
*h
,
12285 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
12286 unsigned int log_file_align
= bed
->s
->log_file_align
;
12290 h
->vtable
= (struct elf_link_virtual_table_entry
*)
12291 bfd_zalloc (abfd
, sizeof (*h
->vtable
));
12296 if (addend
>= h
->vtable
->size
)
12298 size_t size
, bytes
, file_align
;
12299 bfd_boolean
*ptr
= h
->vtable
->used
;
12301 /* While the symbol is undefined, we have to be prepared to handle
12303 file_align
= 1 << log_file_align
;
12304 if (h
->root
.type
== bfd_link_hash_undefined
)
12305 size
= addend
+ file_align
;
12309 if (addend
>= size
)
12311 /* Oops! We've got a reference past the defined end of
12312 the table. This is probably a bug -- shall we warn? */
12313 size
= addend
+ file_align
;
12316 size
= (size
+ file_align
- 1) & -file_align
;
12318 /* Allocate one extra entry for use as a "done" flag for the
12319 consolidation pass. */
12320 bytes
= ((size
>> log_file_align
) + 1) * sizeof (bfd_boolean
);
12324 ptr
= (bfd_boolean
*) bfd_realloc (ptr
- 1, bytes
);
12330 oldbytes
= (((h
->vtable
->size
>> log_file_align
) + 1)
12331 * sizeof (bfd_boolean
));
12332 memset (((char *) ptr
) + oldbytes
, 0, bytes
- oldbytes
);
12336 ptr
= (bfd_boolean
*) bfd_zmalloc (bytes
);
12341 /* And arrange for that done flag to be at index -1. */
12342 h
->vtable
->used
= ptr
+ 1;
12343 h
->vtable
->size
= size
;
12346 h
->vtable
->used
[addend
>> log_file_align
] = TRUE
;
12351 /* Map an ELF section header flag to its corresponding string. */
12355 flagword flag_value
;
12356 } elf_flags_to_name_table
;
12358 static elf_flags_to_name_table elf_flags_to_names
[] =
12360 { "SHF_WRITE", SHF_WRITE
},
12361 { "SHF_ALLOC", SHF_ALLOC
},
12362 { "SHF_EXECINSTR", SHF_EXECINSTR
},
12363 { "SHF_MERGE", SHF_MERGE
},
12364 { "SHF_STRINGS", SHF_STRINGS
},
12365 { "SHF_INFO_LINK", SHF_INFO_LINK
},
12366 { "SHF_LINK_ORDER", SHF_LINK_ORDER
},
12367 { "SHF_OS_NONCONFORMING", SHF_OS_NONCONFORMING
},
12368 { "SHF_GROUP", SHF_GROUP
},
12369 { "SHF_TLS", SHF_TLS
},
12370 { "SHF_MASKOS", SHF_MASKOS
},
12371 { "SHF_EXCLUDE", SHF_EXCLUDE
},
12374 /* Returns TRUE if the section is to be included, otherwise FALSE. */
12376 bfd_elf_lookup_section_flags (struct bfd_link_info
*info
,
12377 struct flag_info
*flaginfo
,
12380 const bfd_vma sh_flags
= elf_section_flags (section
);
12382 if (!flaginfo
->flags_initialized
)
12384 bfd
*obfd
= info
->output_bfd
;
12385 const struct elf_backend_data
*bed
= get_elf_backend_data (obfd
);
12386 struct flag_info_list
*tf
= flaginfo
->flag_list
;
12388 int without_hex
= 0;
12390 for (tf
= flaginfo
->flag_list
; tf
!= NULL
; tf
= tf
->next
)
12393 flagword (*lookup
) (char *);
12395 lookup
= bed
->elf_backend_lookup_section_flags_hook
;
12396 if (lookup
!= NULL
)
12398 flagword hexval
= (*lookup
) ((char *) tf
->name
);
12402 if (tf
->with
== with_flags
)
12403 with_hex
|= hexval
;
12404 else if (tf
->with
== without_flags
)
12405 without_hex
|= hexval
;
12410 for (i
= 0; i
< ARRAY_SIZE (elf_flags_to_names
); ++i
)
12412 if (strcmp (tf
->name
, elf_flags_to_names
[i
].flag_name
) == 0)
12414 if (tf
->with
== with_flags
)
12415 with_hex
|= elf_flags_to_names
[i
].flag_value
;
12416 else if (tf
->with
== without_flags
)
12417 without_hex
|= elf_flags_to_names
[i
].flag_value
;
12424 info
->callbacks
->einfo
12425 (_("Unrecognized INPUT_SECTION_FLAG %s\n"), tf
->name
);
12429 flaginfo
->flags_initialized
= TRUE
;
12430 flaginfo
->only_with_flags
|= with_hex
;
12431 flaginfo
->not_with_flags
|= without_hex
;
12434 if ((flaginfo
->only_with_flags
& sh_flags
) != flaginfo
->only_with_flags
)
12437 if ((flaginfo
->not_with_flags
& sh_flags
) != 0)
12443 struct alloc_got_off_arg
{
12445 struct bfd_link_info
*info
;
12448 /* We need a special top-level link routine to convert got reference counts
12449 to real got offsets. */
12452 elf_gc_allocate_got_offsets (struct elf_link_hash_entry
*h
, void *arg
)
12454 struct alloc_got_off_arg
*gofarg
= (struct alloc_got_off_arg
*) arg
;
12455 bfd
*obfd
= gofarg
->info
->output_bfd
;
12456 const struct elf_backend_data
*bed
= get_elf_backend_data (obfd
);
12458 if (h
->got
.refcount
> 0)
12460 h
->got
.offset
= gofarg
->gotoff
;
12461 gofarg
->gotoff
+= bed
->got_elt_size (obfd
, gofarg
->info
, h
, NULL
, 0);
12464 h
->got
.offset
= (bfd_vma
) -1;
12469 /* And an accompanying bit to work out final got entry offsets once
12470 we're done. Should be called from final_link. */
12473 bfd_elf_gc_common_finalize_got_offsets (bfd
*abfd
,
12474 struct bfd_link_info
*info
)
12477 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
12479 struct alloc_got_off_arg gofarg
;
12481 BFD_ASSERT (abfd
== info
->output_bfd
);
12483 if (! is_elf_hash_table (info
->hash
))
12486 /* The GOT offset is relative to the .got section, but the GOT header is
12487 put into the .got.plt section, if the backend uses it. */
12488 if (bed
->want_got_plt
)
12491 gotoff
= bed
->got_header_size
;
12493 /* Do the local .got entries first. */
12494 for (i
= info
->input_bfds
; i
; i
= i
->link_next
)
12496 bfd_signed_vma
*local_got
;
12497 bfd_size_type j
, locsymcount
;
12498 Elf_Internal_Shdr
*symtab_hdr
;
12500 if (bfd_get_flavour (i
) != bfd_target_elf_flavour
)
12503 local_got
= elf_local_got_refcounts (i
);
12507 symtab_hdr
= &elf_tdata (i
)->symtab_hdr
;
12508 if (elf_bad_symtab (i
))
12509 locsymcount
= symtab_hdr
->sh_size
/ bed
->s
->sizeof_sym
;
12511 locsymcount
= symtab_hdr
->sh_info
;
12513 for (j
= 0; j
< locsymcount
; ++j
)
12515 if (local_got
[j
] > 0)
12517 local_got
[j
] = gotoff
;
12518 gotoff
+= bed
->got_elt_size (abfd
, info
, NULL
, i
, j
);
12521 local_got
[j
] = (bfd_vma
) -1;
12525 /* Then the global .got entries. .plt refcounts are handled by
12526 adjust_dynamic_symbol */
12527 gofarg
.gotoff
= gotoff
;
12528 gofarg
.info
= info
;
12529 elf_link_hash_traverse (elf_hash_table (info
),
12530 elf_gc_allocate_got_offsets
,
12535 /* Many folk need no more in the way of final link than this, once
12536 got entry reference counting is enabled. */
12539 bfd_elf_gc_common_final_link (bfd
*abfd
, struct bfd_link_info
*info
)
12541 if (!bfd_elf_gc_common_finalize_got_offsets (abfd
, info
))
12544 /* Invoke the regular ELF backend linker to do all the work. */
12545 return bfd_elf_final_link (abfd
, info
);
12549 bfd_elf_reloc_symbol_deleted_p (bfd_vma offset
, void *cookie
)
12551 struct elf_reloc_cookie
*rcookie
= (struct elf_reloc_cookie
*) cookie
;
12553 if (rcookie
->bad_symtab
)
12554 rcookie
->rel
= rcookie
->rels
;
12556 for (; rcookie
->rel
< rcookie
->relend
; rcookie
->rel
++)
12558 unsigned long r_symndx
;
12560 if (! rcookie
->bad_symtab
)
12561 if (rcookie
->rel
->r_offset
> offset
)
12563 if (rcookie
->rel
->r_offset
!= offset
)
12566 r_symndx
= rcookie
->rel
->r_info
>> rcookie
->r_sym_shift
;
12567 if (r_symndx
== STN_UNDEF
)
12570 if (r_symndx
>= rcookie
->locsymcount
12571 || ELF_ST_BIND (rcookie
->locsyms
[r_symndx
].st_info
) != STB_LOCAL
)
12573 struct elf_link_hash_entry
*h
;
12575 h
= rcookie
->sym_hashes
[r_symndx
- rcookie
->extsymoff
];
12577 while (h
->root
.type
== bfd_link_hash_indirect
12578 || h
->root
.type
== bfd_link_hash_warning
)
12579 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
12581 if ((h
->root
.type
== bfd_link_hash_defined
12582 || h
->root
.type
== bfd_link_hash_defweak
)
12583 && discarded_section (h
->root
.u
.def
.section
))
12590 /* It's not a relocation against a global symbol,
12591 but it could be a relocation against a local
12592 symbol for a discarded section. */
12594 Elf_Internal_Sym
*isym
;
12596 /* Need to: get the symbol; get the section. */
12597 isym
= &rcookie
->locsyms
[r_symndx
];
12598 isec
= bfd_section_from_elf_index (rcookie
->abfd
, isym
->st_shndx
);
12599 if (isec
!= NULL
&& discarded_section (isec
))
12607 /* Discard unneeded references to discarded sections.
12608 Returns TRUE if any section's size was changed. */
12609 /* This function assumes that the relocations are in sorted order,
12610 which is true for all known assemblers. */
12613 bfd_elf_discard_info (bfd
*output_bfd
, struct bfd_link_info
*info
)
12615 struct elf_reloc_cookie cookie
;
12616 asection
*stab
, *eh
;
12617 const struct elf_backend_data
*bed
;
12619 bfd_boolean ret
= FALSE
;
12621 if (info
->traditional_format
12622 || !is_elf_hash_table (info
->hash
))
12625 _bfd_elf_begin_eh_frame_parsing (info
);
12626 for (abfd
= info
->input_bfds
; abfd
!= NULL
; abfd
= abfd
->link_next
)
12628 if (bfd_get_flavour (abfd
) != bfd_target_elf_flavour
)
12631 bed
= get_elf_backend_data (abfd
);
12634 if (!info
->relocatable
)
12636 eh
= bfd_get_section_by_name (abfd
, ".eh_frame");
12639 || bfd_is_abs_section (eh
->output_section
)))
12640 eh
= bfd_get_next_section_by_name (eh
);
12643 stab
= bfd_get_section_by_name (abfd
, ".stab");
12645 && (stab
->size
== 0
12646 || bfd_is_abs_section (stab
->output_section
)
12647 || stab
->sec_info_type
!= SEC_INFO_TYPE_STABS
))
12652 && bed
->elf_backend_discard_info
== NULL
)
12655 if (!init_reloc_cookie (&cookie
, info
, abfd
))
12659 && stab
->reloc_count
> 0
12660 && init_reloc_cookie_rels (&cookie
, info
, abfd
, stab
))
12662 if (_bfd_discard_section_stabs (abfd
, stab
,
12663 elf_section_data (stab
)->sec_info
,
12664 bfd_elf_reloc_symbol_deleted_p
,
12667 fini_reloc_cookie_rels (&cookie
, stab
);
12671 && init_reloc_cookie_rels (&cookie
, info
, abfd
, eh
))
12673 _bfd_elf_parse_eh_frame (abfd
, info
, eh
, &cookie
);
12674 if (_bfd_elf_discard_section_eh_frame (abfd
, info
, eh
,
12675 bfd_elf_reloc_symbol_deleted_p
,
12678 fini_reloc_cookie_rels (&cookie
, eh
);
12679 eh
= bfd_get_next_section_by_name (eh
);
12682 if (bed
->elf_backend_discard_info
!= NULL
12683 && (*bed
->elf_backend_discard_info
) (abfd
, &cookie
, info
))
12686 fini_reloc_cookie (&cookie
, abfd
);
12688 _bfd_elf_end_eh_frame_parsing (info
);
12690 if (info
->eh_frame_hdr
12691 && !info
->relocatable
12692 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd
, info
))
12699 _bfd_elf_section_already_linked (bfd
*abfd
,
12701 struct bfd_link_info
*info
)
12704 const char *name
, *key
;
12705 struct bfd_section_already_linked
*l
;
12706 struct bfd_section_already_linked_hash_entry
*already_linked_list
;
12708 if (sec
->output_section
== bfd_abs_section_ptr
)
12711 flags
= sec
->flags
;
12713 /* Return if it isn't a linkonce section. A comdat group section
12714 also has SEC_LINK_ONCE set. */
12715 if ((flags
& SEC_LINK_ONCE
) == 0)
12718 /* Don't put group member sections on our list of already linked
12719 sections. They are handled as a group via their group section. */
12720 if (elf_sec_group (sec
) != NULL
)
12723 /* For a SHT_GROUP section, use the group signature as the key. */
12725 if ((flags
& SEC_GROUP
) != 0
12726 && elf_next_in_group (sec
) != NULL
12727 && elf_group_name (elf_next_in_group (sec
)) != NULL
)
12728 key
= elf_group_name (elf_next_in_group (sec
));
12731 /* Otherwise we should have a .gnu.linkonce.<type>.<key> section. */
12732 if (CONST_STRNEQ (name
, ".gnu.linkonce.")
12733 && (key
= strchr (name
+ sizeof (".gnu.linkonce.") - 1, '.')) != NULL
)
12736 /* Must be a user linkonce section that doesn't follow gcc's
12737 naming convention. In this case we won't be matching
12738 single member groups. */
12742 already_linked_list
= bfd_section_already_linked_table_lookup (key
);
12744 for (l
= already_linked_list
->entry
; l
!= NULL
; l
= l
->next
)
12746 /* We may have 2 different types of sections on the list: group
12747 sections with a signature of <key> (<key> is some string),
12748 and linkonce sections named .gnu.linkonce.<type>.<key>.
12749 Match like sections. LTO plugin sections are an exception.
12750 They are always named .gnu.linkonce.t.<key> and match either
12751 type of section. */
12752 if (((flags
& SEC_GROUP
) == (l
->sec
->flags
& SEC_GROUP
)
12753 && ((flags
& SEC_GROUP
) != 0
12754 || strcmp (name
, l
->sec
->name
) == 0))
12755 || (l
->sec
->owner
->flags
& BFD_PLUGIN
) != 0)
12757 /* The section has already been linked. See if we should
12758 issue a warning. */
12759 if (!_bfd_handle_already_linked (sec
, l
, info
))
12762 if (flags
& SEC_GROUP
)
12764 asection
*first
= elf_next_in_group (sec
);
12765 asection
*s
= first
;
12769 s
->output_section
= bfd_abs_section_ptr
;
12770 /* Record which group discards it. */
12771 s
->kept_section
= l
->sec
;
12772 s
= elf_next_in_group (s
);
12773 /* These lists are circular. */
12783 /* A single member comdat group section may be discarded by a
12784 linkonce section and vice versa. */
12785 if ((flags
& SEC_GROUP
) != 0)
12787 asection
*first
= elf_next_in_group (sec
);
12789 if (first
!= NULL
&& elf_next_in_group (first
) == first
)
12790 /* Check this single member group against linkonce sections. */
12791 for (l
= already_linked_list
->entry
; l
!= NULL
; l
= l
->next
)
12792 if ((l
->sec
->flags
& SEC_GROUP
) == 0
12793 && bfd_elf_match_symbols_in_sections (l
->sec
, first
, info
))
12795 first
->output_section
= bfd_abs_section_ptr
;
12796 first
->kept_section
= l
->sec
;
12797 sec
->output_section
= bfd_abs_section_ptr
;
12802 /* Check this linkonce section against single member groups. */
12803 for (l
= already_linked_list
->entry
; l
!= NULL
; l
= l
->next
)
12804 if (l
->sec
->flags
& SEC_GROUP
)
12806 asection
*first
= elf_next_in_group (l
->sec
);
12809 && elf_next_in_group (first
) == first
12810 && bfd_elf_match_symbols_in_sections (first
, sec
, info
))
12812 sec
->output_section
= bfd_abs_section_ptr
;
12813 sec
->kept_section
= first
;
12818 /* Do not complain on unresolved relocations in `.gnu.linkonce.r.F'
12819 referencing its discarded `.gnu.linkonce.t.F' counterpart - g++-3.4
12820 specific as g++-4.x is using COMDAT groups (without the `.gnu.linkonce'
12821 prefix) instead. `.gnu.linkonce.r.*' were the `.rodata' part of its
12822 matching `.gnu.linkonce.t.*'. If `.gnu.linkonce.r.F' is not discarded
12823 but its `.gnu.linkonce.t.F' is discarded means we chose one-only
12824 `.gnu.linkonce.t.F' section from a different bfd not requiring any
12825 `.gnu.linkonce.r.F'. Thus `.gnu.linkonce.r.F' should be discarded.
12826 The reverse order cannot happen as there is never a bfd with only the
12827 `.gnu.linkonce.r.F' section. The order of sections in a bfd does not
12828 matter as here were are looking only for cross-bfd sections. */
12830 if ((flags
& SEC_GROUP
) == 0 && CONST_STRNEQ (name
, ".gnu.linkonce.r."))
12831 for (l
= already_linked_list
->entry
; l
!= NULL
; l
= l
->next
)
12832 if ((l
->sec
->flags
& SEC_GROUP
) == 0
12833 && CONST_STRNEQ (l
->sec
->name
, ".gnu.linkonce.t."))
12835 if (abfd
!= l
->sec
->owner
)
12836 sec
->output_section
= bfd_abs_section_ptr
;
12840 /* This is the first section with this name. Record it. */
12841 if (!bfd_section_already_linked_table_insert (already_linked_list
, sec
))
12842 info
->callbacks
->einfo (_("%F%P: already_linked_table: %E\n"));
12843 return sec
->output_section
== bfd_abs_section_ptr
;
12847 _bfd_elf_common_definition (Elf_Internal_Sym
*sym
)
12849 return sym
->st_shndx
== SHN_COMMON
;
12853 _bfd_elf_common_section_index (asection
*sec ATTRIBUTE_UNUSED
)
12859 _bfd_elf_common_section (asection
*sec ATTRIBUTE_UNUSED
)
12861 return bfd_com_section_ptr
;
12865 _bfd_elf_default_got_elt_size (bfd
*abfd
,
12866 struct bfd_link_info
*info ATTRIBUTE_UNUSED
,
12867 struct elf_link_hash_entry
*h ATTRIBUTE_UNUSED
,
12868 bfd
*ibfd ATTRIBUTE_UNUSED
,
12869 unsigned long symndx ATTRIBUTE_UNUSED
)
12871 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
12872 return bed
->s
->arch_size
/ 8;
12875 /* Routines to support the creation of dynamic relocs. */
12877 /* Returns the name of the dynamic reloc section associated with SEC. */
12879 static const char *
12880 get_dynamic_reloc_section_name (bfd
* abfd
,
12882 bfd_boolean is_rela
)
12885 const char *old_name
= bfd_get_section_name (NULL
, sec
);
12886 const char *prefix
= is_rela
? ".rela" : ".rel";
12888 if (old_name
== NULL
)
12891 name
= bfd_alloc (abfd
, strlen (prefix
) + strlen (old_name
) + 1);
12892 sprintf (name
, "%s%s", prefix
, old_name
);
12897 /* Returns the dynamic reloc section associated with SEC.
12898 If necessary compute the name of the dynamic reloc section based
12899 on SEC's name (looked up in ABFD's string table) and the setting
12903 _bfd_elf_get_dynamic_reloc_section (bfd
* abfd
,
12905 bfd_boolean is_rela
)
12907 asection
* reloc_sec
= elf_section_data (sec
)->sreloc
;
12909 if (reloc_sec
== NULL
)
12911 const char * name
= get_dynamic_reloc_section_name (abfd
, sec
, is_rela
);
12915 reloc_sec
= bfd_get_linker_section (abfd
, name
);
12917 if (reloc_sec
!= NULL
)
12918 elf_section_data (sec
)->sreloc
= reloc_sec
;
12925 /* Returns the dynamic reloc section associated with SEC. If the
12926 section does not exist it is created and attached to the DYNOBJ
12927 bfd and stored in the SRELOC field of SEC's elf_section_data
12930 ALIGNMENT is the alignment for the newly created section and
12931 IS_RELA defines whether the name should be .rela.<SEC's name>
12932 or .rel.<SEC's name>. The section name is looked up in the
12933 string table associated with ABFD. */
12936 _bfd_elf_make_dynamic_reloc_section (asection
* sec
,
12938 unsigned int alignment
,
12940 bfd_boolean is_rela
)
12942 asection
* reloc_sec
= elf_section_data (sec
)->sreloc
;
12944 if (reloc_sec
== NULL
)
12946 const char * name
= get_dynamic_reloc_section_name (abfd
, sec
, is_rela
);
12951 reloc_sec
= bfd_get_linker_section (dynobj
, name
);
12953 if (reloc_sec
== NULL
)
12955 flagword flags
= (SEC_HAS_CONTENTS
| SEC_READONLY
12956 | SEC_IN_MEMORY
| SEC_LINKER_CREATED
);
12957 if ((sec
->flags
& SEC_ALLOC
) != 0)
12958 flags
|= SEC_ALLOC
| SEC_LOAD
;
12960 reloc_sec
= bfd_make_section_anyway_with_flags (dynobj
, name
, flags
);
12961 if (reloc_sec
!= NULL
)
12963 if (! bfd_set_section_alignment (dynobj
, reloc_sec
, alignment
))
12968 elf_section_data (sec
)->sreloc
= reloc_sec
;
12974 /* Copy the ELF symbol type associated with a linker hash entry. */
12976 _bfd_elf_copy_link_hash_symbol_type (bfd
*abfd ATTRIBUTE_UNUSED
,
12977 struct bfd_link_hash_entry
* hdest
,
12978 struct bfd_link_hash_entry
* hsrc
)
12980 struct elf_link_hash_entry
*ehdest
= (struct elf_link_hash_entry
*)hdest
;
12981 struct elf_link_hash_entry
*ehsrc
= (struct elf_link_hash_entry
*)hsrc
;
12983 ehdest
->type
= ehsrc
->type
;
12984 ehdest
->target_internal
= ehsrc
->target_internal
;
12987 /* Append a RELA relocation REL to section S in BFD. */
12990 elf_append_rela (bfd
*abfd
, asection
*s
, Elf_Internal_Rela
*rel
)
12992 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
12993 bfd_byte
*loc
= s
->contents
+ (s
->reloc_count
++ * bed
->s
->sizeof_rela
);
12994 BFD_ASSERT (loc
+ bed
->s
->sizeof_rela
<= s
->contents
+ s
->size
);
12995 bed
->s
->swap_reloca_out (abfd
, rel
, loc
);
12998 /* Append a REL relocation REL to section S in BFD. */
13001 elf_append_rel (bfd
*abfd
, asection
*s
, Elf_Internal_Rela
*rel
)
13003 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
13004 bfd_byte
*loc
= s
->contents
+ (s
->reloc_count
++ * bed
->s
->sizeof_rel
);
13005 BFD_ASSERT (loc
+ bed
->s
->sizeof_rel
<= s
->contents
+ s
->size
);
13006 bed
->s
->swap_reloca_out (abfd
, rel
, loc
);