1 /* Intel 386 target-dependent stuff.
3 Copyright (C) 1988-2022 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21 #include "opcode/i386.h"
22 #include "arch-utils.h"
24 #include "dummy-frame.h"
25 #include "dwarf2/frame.h"
27 #include "frame-base.h"
28 #include "frame-unwind.h"
37 #include "reggroups.h"
42 #include "target-float.h"
47 #include "i386-tdep.h"
48 #include "i387-tdep.h"
49 #include "gdbsupport/x86-xstate.h"
54 #include "record-full.h"
55 #include "target-descriptions.h"
56 #include "arch/i386.h"
61 #include "stap-probe.h"
62 #include "user-regs.h"
63 #include "cli/cli-utils.h"
64 #include "expression.h"
65 #include "parser-defs.h"
68 #include <unordered_set>
75 static const char * const i386_register_names
[] =
77 "eax", "ecx", "edx", "ebx",
78 "esp", "ebp", "esi", "edi",
79 "eip", "eflags", "cs", "ss",
80 "ds", "es", "fs", "gs",
81 "st0", "st1", "st2", "st3",
82 "st4", "st5", "st6", "st7",
83 "fctrl", "fstat", "ftag", "fiseg",
84 "fioff", "foseg", "fooff", "fop",
85 "xmm0", "xmm1", "xmm2", "xmm3",
86 "xmm4", "xmm5", "xmm6", "xmm7",
90 static const char * const i386_zmm_names
[] =
92 "zmm0", "zmm1", "zmm2", "zmm3",
93 "zmm4", "zmm5", "zmm6", "zmm7"
96 static const char * const i386_zmmh_names
[] =
98 "zmm0h", "zmm1h", "zmm2h", "zmm3h",
99 "zmm4h", "zmm5h", "zmm6h", "zmm7h"
102 static const char * const i386_k_names
[] =
104 "k0", "k1", "k2", "k3",
105 "k4", "k5", "k6", "k7"
108 static const char * const i386_ymm_names
[] =
110 "ymm0", "ymm1", "ymm2", "ymm3",
111 "ymm4", "ymm5", "ymm6", "ymm7",
114 static const char * const i386_ymmh_names
[] =
116 "ymm0h", "ymm1h", "ymm2h", "ymm3h",
117 "ymm4h", "ymm5h", "ymm6h", "ymm7h",
120 static const char * const i386_mpx_names
[] =
122 "bnd0raw", "bnd1raw", "bnd2raw", "bnd3raw", "bndcfgu", "bndstatus"
125 static const char * const i386_pkeys_names
[] =
130 /* Register names for MPX pseudo-registers. */
132 static const char * const i386_bnd_names
[] =
134 "bnd0", "bnd1", "bnd2", "bnd3"
137 /* Register names for MMX pseudo-registers. */
139 static const char * const i386_mmx_names
[] =
141 "mm0", "mm1", "mm2", "mm3",
142 "mm4", "mm5", "mm6", "mm7"
145 /* Register names for byte pseudo-registers. */
147 static const char * const i386_byte_names
[] =
149 "al", "cl", "dl", "bl",
150 "ah", "ch", "dh", "bh"
153 /* Register names for word pseudo-registers. */
155 static const char * const i386_word_names
[] =
157 "ax", "cx", "dx", "bx",
161 /* Constant used for reading/writing pseudo registers. In 64-bit mode, we have
162 16 lower ZMM regs that extend corresponding xmm/ymm registers. In addition,
163 we have 16 upper ZMM regs that have to be handled differently. */
165 const int num_lower_zmm_regs
= 16;
170 i386_mmx_regnum_p (struct gdbarch
*gdbarch
, int regnum
)
172 i386_gdbarch_tdep
*tdep
= gdbarch_tdep
<i386_gdbarch_tdep
> (gdbarch
);
173 int mm0_regnum
= tdep
->mm0_regnum
;
178 regnum
-= mm0_regnum
;
179 return regnum
>= 0 && regnum
< tdep
->num_mmx_regs
;
185 i386_byte_regnum_p (struct gdbarch
*gdbarch
, int regnum
)
187 i386_gdbarch_tdep
*tdep
= gdbarch_tdep
<i386_gdbarch_tdep
> (gdbarch
);
189 regnum
-= tdep
->al_regnum
;
190 return regnum
>= 0 && regnum
< tdep
->num_byte_regs
;
196 i386_word_regnum_p (struct gdbarch
*gdbarch
, int regnum
)
198 i386_gdbarch_tdep
*tdep
= gdbarch_tdep
<i386_gdbarch_tdep
> (gdbarch
);
200 regnum
-= tdep
->ax_regnum
;
201 return regnum
>= 0 && regnum
< tdep
->num_word_regs
;
204 /* Dword register? */
207 i386_dword_regnum_p (struct gdbarch
*gdbarch
, int regnum
)
209 i386_gdbarch_tdep
*tdep
= gdbarch_tdep
<i386_gdbarch_tdep
> (gdbarch
);
210 int eax_regnum
= tdep
->eax_regnum
;
215 regnum
-= eax_regnum
;
216 return regnum
>= 0 && regnum
< tdep
->num_dword_regs
;
219 /* AVX512 register? */
222 i386_zmmh_regnum_p (struct gdbarch
*gdbarch
, int regnum
)
224 i386_gdbarch_tdep
*tdep
= gdbarch_tdep
<i386_gdbarch_tdep
> (gdbarch
);
225 int zmm0h_regnum
= tdep
->zmm0h_regnum
;
227 if (zmm0h_regnum
< 0)
230 regnum
-= zmm0h_regnum
;
231 return regnum
>= 0 && regnum
< tdep
->num_zmm_regs
;
235 i386_zmm_regnum_p (struct gdbarch
*gdbarch
, int regnum
)
237 i386_gdbarch_tdep
*tdep
= gdbarch_tdep
<i386_gdbarch_tdep
> (gdbarch
);
238 int zmm0_regnum
= tdep
->zmm0_regnum
;
243 regnum
-= zmm0_regnum
;
244 return regnum
>= 0 && regnum
< tdep
->num_zmm_regs
;
248 i386_k_regnum_p (struct gdbarch
*gdbarch
, int regnum
)
250 i386_gdbarch_tdep
*tdep
= gdbarch_tdep
<i386_gdbarch_tdep
> (gdbarch
);
251 int k0_regnum
= tdep
->k0_regnum
;
257 return regnum
>= 0 && regnum
< I387_NUM_K_REGS
;
261 i386_ymmh_regnum_p (struct gdbarch
*gdbarch
, int regnum
)
263 i386_gdbarch_tdep
*tdep
= gdbarch_tdep
<i386_gdbarch_tdep
> (gdbarch
);
264 int ymm0h_regnum
= tdep
->ymm0h_regnum
;
266 if (ymm0h_regnum
< 0)
269 regnum
-= ymm0h_regnum
;
270 return regnum
>= 0 && regnum
< tdep
->num_ymm_regs
;
276 i386_ymm_regnum_p (struct gdbarch
*gdbarch
, int regnum
)
278 i386_gdbarch_tdep
*tdep
= gdbarch_tdep
<i386_gdbarch_tdep
> (gdbarch
);
279 int ymm0_regnum
= tdep
->ymm0_regnum
;
284 regnum
-= ymm0_regnum
;
285 return regnum
>= 0 && regnum
< tdep
->num_ymm_regs
;
289 i386_ymmh_avx512_regnum_p (struct gdbarch
*gdbarch
, int regnum
)
291 i386_gdbarch_tdep
*tdep
= gdbarch_tdep
<i386_gdbarch_tdep
> (gdbarch
);
292 int ymm16h_regnum
= tdep
->ymm16h_regnum
;
294 if (ymm16h_regnum
< 0)
297 regnum
-= ymm16h_regnum
;
298 return regnum
>= 0 && regnum
< tdep
->num_ymm_avx512_regs
;
302 i386_ymm_avx512_regnum_p (struct gdbarch
*gdbarch
, int regnum
)
304 i386_gdbarch_tdep
*tdep
= gdbarch_tdep
<i386_gdbarch_tdep
> (gdbarch
);
305 int ymm16_regnum
= tdep
->ymm16_regnum
;
307 if (ymm16_regnum
< 0)
310 regnum
-= ymm16_regnum
;
311 return regnum
>= 0 && regnum
< tdep
->num_ymm_avx512_regs
;
317 i386_bnd_regnum_p (struct gdbarch
*gdbarch
, int regnum
)
319 i386_gdbarch_tdep
*tdep
= gdbarch_tdep
<i386_gdbarch_tdep
> (gdbarch
);
320 int bnd0_regnum
= tdep
->bnd0_regnum
;
325 regnum
-= bnd0_regnum
;
326 return regnum
>= 0 && regnum
< I387_NUM_BND_REGS
;
332 i386_xmm_regnum_p (struct gdbarch
*gdbarch
, int regnum
)
334 i386_gdbarch_tdep
*tdep
= gdbarch_tdep
<i386_gdbarch_tdep
> (gdbarch
);
335 int num_xmm_regs
= I387_NUM_XMM_REGS (tdep
);
337 if (num_xmm_regs
== 0)
340 regnum
-= I387_XMM0_REGNUM (tdep
);
341 return regnum
>= 0 && regnum
< num_xmm_regs
;
344 /* XMM_512 register? */
347 i386_xmm_avx512_regnum_p (struct gdbarch
*gdbarch
, int regnum
)
349 i386_gdbarch_tdep
*tdep
= gdbarch_tdep
<i386_gdbarch_tdep
> (gdbarch
);
350 int num_xmm_avx512_regs
= I387_NUM_XMM_AVX512_REGS (tdep
);
352 if (num_xmm_avx512_regs
== 0)
355 regnum
-= I387_XMM16_REGNUM (tdep
);
356 return regnum
>= 0 && regnum
< num_xmm_avx512_regs
;
360 i386_mxcsr_regnum_p (struct gdbarch
*gdbarch
, int regnum
)
362 i386_gdbarch_tdep
*tdep
= gdbarch_tdep
<i386_gdbarch_tdep
> (gdbarch
);
364 if (I387_NUM_XMM_REGS (tdep
) == 0)
367 return (regnum
== I387_MXCSR_REGNUM (tdep
));
373 i386_fp_regnum_p (struct gdbarch
*gdbarch
, int regnum
)
375 i386_gdbarch_tdep
*tdep
= gdbarch_tdep
<i386_gdbarch_tdep
> (gdbarch
);
377 if (I387_ST0_REGNUM (tdep
) < 0)
380 return (I387_ST0_REGNUM (tdep
) <= regnum
381 && regnum
< I387_FCTRL_REGNUM (tdep
));
385 i386_fpc_regnum_p (struct gdbarch
*gdbarch
, int regnum
)
387 i386_gdbarch_tdep
*tdep
= gdbarch_tdep
<i386_gdbarch_tdep
> (gdbarch
);
389 if (I387_ST0_REGNUM (tdep
) < 0)
392 return (I387_FCTRL_REGNUM (tdep
) <= regnum
393 && regnum
< I387_XMM0_REGNUM (tdep
));
396 /* BNDr (raw) register? */
399 i386_bndr_regnum_p (struct gdbarch
*gdbarch
, int regnum
)
401 i386_gdbarch_tdep
*tdep
= gdbarch_tdep
<i386_gdbarch_tdep
> (gdbarch
);
403 if (I387_BND0R_REGNUM (tdep
) < 0)
406 regnum
-= tdep
->bnd0r_regnum
;
407 return regnum
>= 0 && regnum
< I387_NUM_BND_REGS
;
410 /* BND control register? */
413 i386_mpx_ctrl_regnum_p (struct gdbarch
*gdbarch
, int regnum
)
415 i386_gdbarch_tdep
*tdep
= gdbarch_tdep
<i386_gdbarch_tdep
> (gdbarch
);
417 if (I387_BNDCFGU_REGNUM (tdep
) < 0)
420 regnum
-= I387_BNDCFGU_REGNUM (tdep
);
421 return regnum
>= 0 && regnum
< I387_NUM_MPX_CTRL_REGS
;
427 i386_pkru_regnum_p (struct gdbarch
*gdbarch
, int regnum
)
429 i386_gdbarch_tdep
*tdep
= gdbarch_tdep
<i386_gdbarch_tdep
> (gdbarch
);
430 int pkru_regnum
= tdep
->pkru_regnum
;
435 regnum
-= pkru_regnum
;
436 return regnum
>= 0 && regnum
< I387_NUM_PKEYS_REGS
;
439 /* Return the name of register REGNUM, or the empty string if it is
440 an anonymous register. */
443 i386_register_name (struct gdbarch
*gdbarch
, int regnum
)
445 /* Hide the upper YMM registers. */
446 if (i386_ymmh_regnum_p (gdbarch
, regnum
))
449 /* Hide the upper YMM16-31 registers. */
450 if (i386_ymmh_avx512_regnum_p (gdbarch
, regnum
))
453 /* Hide the upper ZMM registers. */
454 if (i386_zmmh_regnum_p (gdbarch
, regnum
))
457 return tdesc_register_name (gdbarch
, regnum
);
460 /* Return the name of register REGNUM. */
463 i386_pseudo_register_name (struct gdbarch
*gdbarch
, int regnum
)
465 i386_gdbarch_tdep
*tdep
= gdbarch_tdep
<i386_gdbarch_tdep
> (gdbarch
);
466 if (i386_bnd_regnum_p (gdbarch
, regnum
))
467 return i386_bnd_names
[regnum
- tdep
->bnd0_regnum
];
468 if (i386_mmx_regnum_p (gdbarch
, regnum
))
469 return i386_mmx_names
[regnum
- I387_MM0_REGNUM (tdep
)];
470 else if (i386_ymm_regnum_p (gdbarch
, regnum
))
471 return i386_ymm_names
[regnum
- tdep
->ymm0_regnum
];
472 else if (i386_zmm_regnum_p (gdbarch
, regnum
))
473 return i386_zmm_names
[regnum
- tdep
->zmm0_regnum
];
474 else if (i386_byte_regnum_p (gdbarch
, regnum
))
475 return i386_byte_names
[regnum
- tdep
->al_regnum
];
476 else if (i386_word_regnum_p (gdbarch
, regnum
))
477 return i386_word_names
[regnum
- tdep
->ax_regnum
];
479 internal_error (__FILE__
, __LINE__
, _("invalid regnum"));
482 /* Convert a dbx register number REG to the appropriate register
483 number used by GDB. */
486 i386_dbx_reg_to_regnum (struct gdbarch
*gdbarch
, int reg
)
488 i386_gdbarch_tdep
*tdep
= gdbarch_tdep
<i386_gdbarch_tdep
> (gdbarch
);
490 /* This implements what GCC calls the "default" register map
491 (dbx_register_map[]). */
493 if (reg
>= 0 && reg
<= 7)
495 /* General-purpose registers. The debug info calls %ebp
496 register 4, and %esp register 5. */
503 else if (reg
>= 12 && reg
<= 19)
505 /* Floating-point registers. */
506 return reg
- 12 + I387_ST0_REGNUM (tdep
);
508 else if (reg
>= 21 && reg
<= 28)
511 int ymm0_regnum
= tdep
->ymm0_regnum
;
514 && i386_xmm_regnum_p (gdbarch
, reg
))
515 return reg
- 21 + ymm0_regnum
;
517 return reg
- 21 + I387_XMM0_REGNUM (tdep
);
519 else if (reg
>= 29 && reg
<= 36)
522 return reg
- 29 + I387_MM0_REGNUM (tdep
);
525 /* This will hopefully provoke a warning. */
526 return gdbarch_num_cooked_regs (gdbarch
);
529 /* Convert SVR4 DWARF register number REG to the appropriate register number
533 i386_svr4_dwarf_reg_to_regnum (struct gdbarch
*gdbarch
, int reg
)
535 i386_gdbarch_tdep
*tdep
= gdbarch_tdep
<i386_gdbarch_tdep
> (gdbarch
);
537 /* This implements the GCC register map that tries to be compatible
538 with the SVR4 C compiler for DWARF (svr4_dbx_register_map[]). */
540 /* The SVR4 register numbering includes %eip and %eflags, and
541 numbers the floating point registers differently. */
542 if (reg
>= 0 && reg
<= 9)
544 /* General-purpose registers. */
547 else if (reg
>= 11 && reg
<= 18)
549 /* Floating-point registers. */
550 return reg
- 11 + I387_ST0_REGNUM (tdep
);
552 else if (reg
>= 21 && reg
<= 36)
554 /* The SSE and MMX registers have the same numbers as with dbx. */
555 return i386_dbx_reg_to_regnum (gdbarch
, reg
);
560 case 37: return I387_FCTRL_REGNUM (tdep
);
561 case 38: return I387_FSTAT_REGNUM (tdep
);
562 case 39: return I387_MXCSR_REGNUM (tdep
);
563 case 40: return I386_ES_REGNUM
;
564 case 41: return I386_CS_REGNUM
;
565 case 42: return I386_SS_REGNUM
;
566 case 43: return I386_DS_REGNUM
;
567 case 44: return I386_FS_REGNUM
;
568 case 45: return I386_GS_REGNUM
;
574 /* Wrapper on i386_svr4_dwarf_reg_to_regnum to return
575 num_regs + num_pseudo_regs for other debug formats. */
578 i386_svr4_reg_to_regnum (struct gdbarch
*gdbarch
, int reg
)
580 int regnum
= i386_svr4_dwarf_reg_to_regnum (gdbarch
, reg
);
583 return gdbarch_num_cooked_regs (gdbarch
);
589 /* This is the variable that is set with "set disassembly-flavor", and
590 its legitimate values. */
591 static const char att_flavor
[] = "att";
592 static const char intel_flavor
[] = "intel";
593 static const char *const valid_flavors
[] =
599 static const char *disassembly_flavor
= att_flavor
;
602 /* Use the program counter to determine the contents and size of a
603 breakpoint instruction. Return a pointer to a string of bytes that
604 encode a breakpoint instruction, store the length of the string in
605 *LEN and optionally adjust *PC to point to the correct memory
606 location for inserting the breakpoint.
608 On the i386 we have a single breakpoint that fits in a single byte
609 and can be inserted anywhere.
611 This function is 64-bit safe. */
613 constexpr gdb_byte i386_break_insn
[] = { 0xcc }; /* int 3 */
615 typedef BP_MANIPULATION (i386_break_insn
) i386_breakpoint
;
618 /* Displaced instruction handling. */
620 /* Skip the legacy instruction prefixes in INSN.
621 Not all prefixes are valid for any particular insn
622 but we needn't care, the insn will fault if it's invalid.
623 The result is a pointer to the first opcode byte,
624 or NULL if we run off the end of the buffer. */
627 i386_skip_prefixes (gdb_byte
*insn
, size_t max_len
)
629 gdb_byte
*end
= insn
+ max_len
;
635 case DATA_PREFIX_OPCODE
:
636 case ADDR_PREFIX_OPCODE
:
637 case CS_PREFIX_OPCODE
:
638 case DS_PREFIX_OPCODE
:
639 case ES_PREFIX_OPCODE
:
640 case FS_PREFIX_OPCODE
:
641 case GS_PREFIX_OPCODE
:
642 case SS_PREFIX_OPCODE
:
643 case LOCK_PREFIX_OPCODE
:
644 case REPE_PREFIX_OPCODE
:
645 case REPNE_PREFIX_OPCODE
:
657 i386_absolute_jmp_p (const gdb_byte
*insn
)
659 /* jmp far (absolute address in operand). */
665 /* jump near, absolute indirect (/4). */
666 if ((insn
[1] & 0x38) == 0x20)
669 /* jump far, absolute indirect (/5). */
670 if ((insn
[1] & 0x38) == 0x28)
677 /* Return non-zero if INSN is a jump, zero otherwise. */
680 i386_jmp_p (const gdb_byte
*insn
)
682 /* jump short, relative. */
686 /* jump near, relative. */
690 return i386_absolute_jmp_p (insn
);
694 i386_absolute_call_p (const gdb_byte
*insn
)
696 /* call far, absolute. */
702 /* Call near, absolute indirect (/2). */
703 if ((insn
[1] & 0x38) == 0x10)
706 /* Call far, absolute indirect (/3). */
707 if ((insn
[1] & 0x38) == 0x18)
715 i386_ret_p (const gdb_byte
*insn
)
719 case 0xc2: /* ret near, pop N bytes. */
720 case 0xc3: /* ret near */
721 case 0xca: /* ret far, pop N bytes. */
722 case 0xcb: /* ret far */
723 case 0xcf: /* iret */
732 i386_call_p (const gdb_byte
*insn
)
734 if (i386_absolute_call_p (insn
))
737 /* call near, relative. */
744 /* Return non-zero if INSN is a system call, and set *LENGTHP to its
745 length in bytes. Otherwise, return zero. */
748 i386_syscall_p (const gdb_byte
*insn
, int *lengthp
)
750 /* Is it 'int $0x80'? */
751 if ((insn
[0] == 0xcd && insn
[1] == 0x80)
752 /* Or is it 'sysenter'? */
753 || (insn
[0] == 0x0f && insn
[1] == 0x34)
754 /* Or is it 'syscall'? */
755 || (insn
[0] == 0x0f && insn
[1] == 0x05))
764 /* The gdbarch insn_is_call method. */
767 i386_insn_is_call (struct gdbarch
*gdbarch
, CORE_ADDR addr
)
769 gdb_byte buf
[I386_MAX_INSN_LEN
], *insn
;
771 read_code (addr
, buf
, I386_MAX_INSN_LEN
);
772 insn
= i386_skip_prefixes (buf
, I386_MAX_INSN_LEN
);
774 return i386_call_p (insn
);
777 /* The gdbarch insn_is_ret method. */
780 i386_insn_is_ret (struct gdbarch
*gdbarch
, CORE_ADDR addr
)
782 gdb_byte buf
[I386_MAX_INSN_LEN
], *insn
;
784 read_code (addr
, buf
, I386_MAX_INSN_LEN
);
785 insn
= i386_skip_prefixes (buf
, I386_MAX_INSN_LEN
);
787 return i386_ret_p (insn
);
790 /* The gdbarch insn_is_jump method. */
793 i386_insn_is_jump (struct gdbarch
*gdbarch
, CORE_ADDR addr
)
795 gdb_byte buf
[I386_MAX_INSN_LEN
], *insn
;
797 read_code (addr
, buf
, I386_MAX_INSN_LEN
);
798 insn
= i386_skip_prefixes (buf
, I386_MAX_INSN_LEN
);
800 return i386_jmp_p (insn
);
803 /* Some kernels may run one past a syscall insn, so we have to cope. */
805 displaced_step_copy_insn_closure_up
806 i386_displaced_step_copy_insn (struct gdbarch
*gdbarch
,
807 CORE_ADDR from
, CORE_ADDR to
,
808 struct regcache
*regs
)
810 size_t len
= gdbarch_max_insn_length (gdbarch
);
811 std::unique_ptr
<i386_displaced_step_copy_insn_closure
> closure
812 (new i386_displaced_step_copy_insn_closure (len
));
813 gdb_byte
*buf
= closure
->buf
.data ();
815 read_memory (from
, buf
, len
);
817 /* GDB may get control back after the insn after the syscall.
818 Presumably this is a kernel bug.
819 If this is a syscall, make sure there's a nop afterwards. */
824 insn
= i386_skip_prefixes (buf
, len
);
825 if (insn
!= NULL
&& i386_syscall_p (insn
, &syscall_length
))
826 insn
[syscall_length
] = NOP_OPCODE
;
829 write_memory (to
, buf
, len
);
831 displaced_debug_printf ("%s->%s: %s",
832 paddress (gdbarch
, from
), paddress (gdbarch
, to
),
833 displaced_step_dump_bytes (buf
, len
).c_str ());
835 /* This is a work around for a problem with g++ 4.8. */
836 return displaced_step_copy_insn_closure_up (closure
.release ());
839 /* Fix up the state of registers and memory after having single-stepped
840 a displaced instruction. */
843 i386_displaced_step_fixup (struct gdbarch
*gdbarch
,
844 struct displaced_step_copy_insn_closure
*closure_
,
845 CORE_ADDR from
, CORE_ADDR to
,
846 struct regcache
*regs
)
848 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
850 /* The offset we applied to the instruction's address.
851 This could well be negative (when viewed as a signed 32-bit
852 value), but ULONGEST won't reflect that, so take care when
854 ULONGEST insn_offset
= to
- from
;
856 i386_displaced_step_copy_insn_closure
*closure
857 = (i386_displaced_step_copy_insn_closure
*) closure_
;
858 gdb_byte
*insn
= closure
->buf
.data ();
859 /* The start of the insn, needed in case we see some prefixes. */
860 gdb_byte
*insn_start
= insn
;
862 displaced_debug_printf ("fixup (%s, %s), insn = 0x%02x 0x%02x ...",
863 paddress (gdbarch
, from
), paddress (gdbarch
, to
),
866 /* The list of issues to contend with here is taken from
867 resume_execution in arch/i386/kernel/kprobes.c, Linux 2.6.20.
868 Yay for Free Software! */
870 /* Relocate the %eip, if necessary. */
872 /* The instruction recognizers we use assume any leading prefixes
873 have been skipped. */
875 /* This is the size of the buffer in closure. */
876 size_t max_insn_len
= gdbarch_max_insn_length (gdbarch
);
877 gdb_byte
*opcode
= i386_skip_prefixes (insn
, max_insn_len
);
878 /* If there are too many prefixes, just ignore the insn.
879 It will fault when run. */
884 /* Except in the case of absolute or indirect jump or call
885 instructions, or a return instruction, the new eip is relative to
886 the displaced instruction; make it relative. Well, signal
887 handler returns don't need relocation either, but we use the
888 value of %eip to recognize those; see below. */
889 if (! i386_absolute_jmp_p (insn
)
890 && ! i386_absolute_call_p (insn
)
891 && ! i386_ret_p (insn
))
896 regcache_cooked_read_unsigned (regs
, I386_EIP_REGNUM
, &orig_eip
);
898 /* A signal trampoline system call changes the %eip, resuming
899 execution of the main program after the signal handler has
900 returned. That makes them like 'return' instructions; we
901 shouldn't relocate %eip.
903 But most system calls don't, and we do need to relocate %eip.
905 Our heuristic for distinguishing these cases: if stepping
906 over the system call instruction left control directly after
907 the instruction, the we relocate --- control almost certainly
908 doesn't belong in the displaced copy. Otherwise, we assume
909 the instruction has put control where it belongs, and leave
910 it unrelocated. Goodness help us if there are PC-relative
912 if (i386_syscall_p (insn
, &insn_len
)
913 && orig_eip
!= to
+ (insn
- insn_start
) + insn_len
914 /* GDB can get control back after the insn after the syscall.
915 Presumably this is a kernel bug.
916 i386_displaced_step_copy_insn ensures its a nop,
917 we add one to the length for it. */
918 && orig_eip
!= to
+ (insn
- insn_start
) + insn_len
+ 1)
919 displaced_debug_printf ("syscall changed %%eip; not relocating");
922 ULONGEST eip
= (orig_eip
- insn_offset
) & 0xffffffffUL
;
924 /* If we just stepped over a breakpoint insn, we don't backup
925 the pc on purpose; this is to match behaviour without
928 regcache_cooked_write_unsigned (regs
, I386_EIP_REGNUM
, eip
);
930 displaced_debug_printf ("relocated %%eip from %s to %s",
931 paddress (gdbarch
, orig_eip
),
932 paddress (gdbarch
, eip
));
936 /* If the instruction was PUSHFL, then the TF bit will be set in the
937 pushed value, and should be cleared. We'll leave this for later,
938 since GDB already messes up the TF flag when stepping over a
941 /* If the instruction was a call, the return address now atop the
942 stack is the address following the copied instruction. We need
943 to make it the address following the original instruction. */
944 if (i386_call_p (insn
))
948 const ULONGEST retaddr_len
= 4;
950 regcache_cooked_read_unsigned (regs
, I386_ESP_REGNUM
, &esp
);
951 retaddr
= read_memory_unsigned_integer (esp
, retaddr_len
, byte_order
);
952 retaddr
= (retaddr
- insn_offset
) & 0xffffffffUL
;
953 write_memory_unsigned_integer (esp
, retaddr_len
, byte_order
, retaddr
);
955 displaced_debug_printf ("relocated return addr at %s to %s",
956 paddress (gdbarch
, esp
),
957 paddress (gdbarch
, retaddr
));
962 append_insns (CORE_ADDR
*to
, ULONGEST len
, const gdb_byte
*buf
)
964 target_write_memory (*to
, buf
, len
);
969 i386_relocate_instruction (struct gdbarch
*gdbarch
,
970 CORE_ADDR
*to
, CORE_ADDR oldloc
)
972 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
973 gdb_byte buf
[I386_MAX_INSN_LEN
];
974 int offset
= 0, rel32
, newrel
;
976 gdb_byte
*insn
= buf
;
978 read_memory (oldloc
, buf
, I386_MAX_INSN_LEN
);
980 insn_length
= gdb_buffered_insn_length (gdbarch
, insn
,
981 I386_MAX_INSN_LEN
, oldloc
);
983 /* Get past the prefixes. */
984 insn
= i386_skip_prefixes (insn
, I386_MAX_INSN_LEN
);
986 /* Adjust calls with 32-bit relative addresses as push/jump, with
987 the address pushed being the location where the original call in
988 the user program would return to. */
991 gdb_byte push_buf
[16];
992 unsigned int ret_addr
;
994 /* Where "ret" in the original code will return to. */
995 ret_addr
= oldloc
+ insn_length
;
996 push_buf
[0] = 0x68; /* pushq $... */
997 store_unsigned_integer (&push_buf
[1], 4, byte_order
, ret_addr
);
999 append_insns (to
, 5, push_buf
);
1001 /* Convert the relative call to a relative jump. */
1004 /* Adjust the destination offset. */
1005 rel32
= extract_signed_integer (insn
+ 1, 4, byte_order
);
1006 newrel
= (oldloc
- *to
) + rel32
;
1007 store_signed_integer (insn
+ 1, 4, byte_order
, newrel
);
1009 displaced_debug_printf ("adjusted insn rel32=%s at %s to rel32=%s at %s",
1010 hex_string (rel32
), paddress (gdbarch
, oldloc
),
1011 hex_string (newrel
), paddress (gdbarch
, *to
));
1013 /* Write the adjusted jump into its displaced location. */
1014 append_insns (to
, 5, insn
);
1018 /* Adjust jumps with 32-bit relative addresses. Calls are already
1020 if (insn
[0] == 0xe9)
1022 /* Adjust conditional jumps. */
1023 else if (insn
[0] == 0x0f && (insn
[1] & 0xf0) == 0x80)
1028 rel32
= extract_signed_integer (insn
+ offset
, 4, byte_order
);
1029 newrel
= (oldloc
- *to
) + rel32
;
1030 store_signed_integer (insn
+ offset
, 4, byte_order
, newrel
);
1031 displaced_debug_printf ("adjusted insn rel32=%s at %s to rel32=%s at %s",
1032 hex_string (rel32
), paddress (gdbarch
, oldloc
),
1033 hex_string (newrel
), paddress (gdbarch
, *to
));
1036 /* Write the adjusted instructions into their displaced
1038 append_insns (to
, insn_length
, buf
);
1042 #ifdef I386_REGNO_TO_SYMMETRY
1043 #error "The Sequent Symmetry is no longer supported."
1046 /* According to the System V ABI, the registers %ebp, %ebx, %edi, %esi
1047 and %esp "belong" to the calling function. Therefore these
1048 registers should be saved if they're going to be modified. */
1050 /* The maximum number of saved registers. This should include all
1051 registers mentioned above, and %eip. */
1052 #define I386_NUM_SAVED_REGS I386_NUM_GREGS
1054 struct i386_frame_cache
1062 /* Saved registers. */
1063 CORE_ADDR saved_regs
[I386_NUM_SAVED_REGS
];
1068 /* Stack space reserved for local variables. */
1072 /* Allocate and initialize a frame cache. */
1074 static struct i386_frame_cache
*
1075 i386_alloc_frame_cache (void)
1077 struct i386_frame_cache
*cache
;
1080 cache
= FRAME_OBSTACK_ZALLOC (struct i386_frame_cache
);
1085 cache
->sp_offset
= -4;
1088 /* Saved registers. We initialize these to -1 since zero is a valid
1089 offset (that's where %ebp is supposed to be stored). */
1090 for (i
= 0; i
< I386_NUM_SAVED_REGS
; i
++)
1091 cache
->saved_regs
[i
] = -1;
1092 cache
->saved_sp
= 0;
1093 cache
->saved_sp_reg
= -1;
1094 cache
->pc_in_eax
= 0;
1096 /* Frameless until proven otherwise. */
1102 /* If the instruction at PC is a jump, return the address of its
1103 target. Otherwise, return PC. */
1106 i386_follow_jump (struct gdbarch
*gdbarch
, CORE_ADDR pc
)
1108 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
1113 if (target_read_code (pc
, &op
, 1))
1120 op
= read_code_unsigned_integer (pc
+ 1, 1, byte_order
);
1126 /* Relative jump: if data16 == 0, disp32, else disp16. */
1129 delta
= read_memory_integer (pc
+ 2, 2, byte_order
);
1131 /* Include the size of the jmp instruction (including the
1137 delta
= read_memory_integer (pc
+ 1, 4, byte_order
);
1139 /* Include the size of the jmp instruction. */
1144 /* Relative jump, disp8 (ignore data16). */
1145 delta
= read_memory_integer (pc
+ data16
+ 1, 1, byte_order
);
1147 delta
+= data16
+ 2;
1154 /* Check whether PC points at a prologue for a function returning a
1155 structure or union. If so, it updates CACHE and returns the
1156 address of the first instruction after the code sequence that
1157 removes the "hidden" argument from the stack or CURRENT_PC,
1158 whichever is smaller. Otherwise, return PC. */
1161 i386_analyze_struct_return (CORE_ADDR pc
, CORE_ADDR current_pc
,
1162 struct i386_frame_cache
*cache
)
1164 /* Functions that return a structure or union start with:
1167 xchgl %eax, (%esp) 0x87 0x04 0x24
1168 or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
1170 (the System V compiler puts out the second `xchg' instruction,
1171 and the assembler doesn't try to optimize it, so the 'sib' form
1172 gets generated). This sequence is used to get the address of the
1173 return buffer for a function that returns a structure. */
1174 static gdb_byte proto1
[3] = { 0x87, 0x04, 0x24 };
1175 static gdb_byte proto2
[4] = { 0x87, 0x44, 0x24, 0x00 };
1179 if (current_pc
<= pc
)
1182 if (target_read_code (pc
, &op
, 1))
1185 if (op
!= 0x58) /* popl %eax */
1188 if (target_read_code (pc
+ 1, buf
, 4))
1191 if (memcmp (buf
, proto1
, 3) != 0 && memcmp (buf
, proto2
, 4) != 0)
1194 if (current_pc
== pc
)
1196 cache
->sp_offset
+= 4;
1200 if (current_pc
== pc
+ 1)
1202 cache
->pc_in_eax
= 1;
1206 if (buf
[1] == proto1
[1])
1213 i386_skip_probe (CORE_ADDR pc
)
1215 /* A function may start with
1229 if (target_read_code (pc
, &op
, 1))
1232 if (op
== 0x68 || op
== 0x6a)
1236 /* Skip past the `pushl' instruction; it has either a one-byte or a
1237 four-byte operand, depending on the opcode. */
1243 /* Read the following 8 bytes, which should be `call _probe' (6
1244 bytes) followed by `addl $4,%esp' (2 bytes). */
1245 read_memory (pc
+ delta
, buf
, sizeof (buf
));
1246 if (buf
[0] == 0xe8 && buf
[6] == 0xc4 && buf
[7] == 0x4)
1247 pc
+= delta
+ sizeof (buf
);
1253 /* GCC 4.1 and later, can put code in the prologue to realign the
1254 stack pointer. Check whether PC points to such code, and update
1255 CACHE accordingly. Return the first instruction after the code
1256 sequence or CURRENT_PC, whichever is smaller. If we don't
1257 recognize the code, return PC. */
1260 i386_analyze_stack_align (CORE_ADDR pc
, CORE_ADDR current_pc
,
1261 struct i386_frame_cache
*cache
)
1263 /* There are 2 code sequences to re-align stack before the frame
1266 1. Use a caller-saved saved register:
1272 2. Use a callee-saved saved register:
1279 "andl $-XXX, %esp" can be either 3 bytes or 6 bytes:
1281 0x83 0xe4 0xf0 andl $-16, %esp
1282 0x81 0xe4 0x00 0xff 0xff 0xff andl $-256, %esp
1287 int offset
, offset_and
;
1288 static int regnums
[8] = {
1289 I386_EAX_REGNUM
, /* %eax */
1290 I386_ECX_REGNUM
, /* %ecx */
1291 I386_EDX_REGNUM
, /* %edx */
1292 I386_EBX_REGNUM
, /* %ebx */
1293 I386_ESP_REGNUM
, /* %esp */
1294 I386_EBP_REGNUM
, /* %ebp */
1295 I386_ESI_REGNUM
, /* %esi */
1296 I386_EDI_REGNUM
/* %edi */
1299 if (target_read_code (pc
, buf
, sizeof buf
))
1302 /* Check caller-saved saved register. The first instruction has
1303 to be "leal 4(%esp), %reg". */
1304 if (buf
[0] == 0x8d && buf
[2] == 0x24 && buf
[3] == 0x4)
1306 /* MOD must be binary 10 and R/M must be binary 100. */
1307 if ((buf
[1] & 0xc7) != 0x44)
1310 /* REG has register number. */
1311 reg
= (buf
[1] >> 3) & 7;
1316 /* Check callee-saved saved register. The first instruction
1317 has to be "pushl %reg". */
1318 if ((buf
[0] & 0xf8) != 0x50)
1324 /* The next instruction has to be "leal 8(%esp), %reg". */
1325 if (buf
[1] != 0x8d || buf
[3] != 0x24 || buf
[4] != 0x8)
1328 /* MOD must be binary 10 and R/M must be binary 100. */
1329 if ((buf
[2] & 0xc7) != 0x44)
1332 /* REG has register number. Registers in pushl and leal have to
1334 if (reg
!= ((buf
[2] >> 3) & 7))
1340 /* Rigister can't be %esp nor %ebp. */
1341 if (reg
== 4 || reg
== 5)
1344 /* The next instruction has to be "andl $-XXX, %esp". */
1345 if (buf
[offset
+ 1] != 0xe4
1346 || (buf
[offset
] != 0x81 && buf
[offset
] != 0x83))
1349 offset_and
= offset
;
1350 offset
+= buf
[offset
] == 0x81 ? 6 : 3;
1352 /* The next instruction has to be "pushl -4(%reg)". 8bit -4 is
1353 0xfc. REG must be binary 110 and MOD must be binary 01. */
1354 if (buf
[offset
] != 0xff
1355 || buf
[offset
+ 2] != 0xfc
1356 || (buf
[offset
+ 1] & 0xf8) != 0x70)
1359 /* R/M has register. Registers in leal and pushl have to be the
1361 if (reg
!= (buf
[offset
+ 1] & 7))
1364 if (current_pc
> pc
+ offset_and
)
1365 cache
->saved_sp_reg
= regnums
[reg
];
1367 return std::min (pc
+ offset
+ 3, current_pc
);
1370 /* Maximum instruction length we need to handle. */
1371 #define I386_MAX_MATCHED_INSN_LEN 6
1373 /* Instruction description. */
1377 gdb_byte insn
[I386_MAX_MATCHED_INSN_LEN
];
1378 gdb_byte mask
[I386_MAX_MATCHED_INSN_LEN
];
1381 /* Return whether instruction at PC matches PATTERN. */
1384 i386_match_pattern (CORE_ADDR pc
, struct i386_insn pattern
)
1388 if (target_read_code (pc
, &op
, 1))
1391 if ((op
& pattern
.mask
[0]) == pattern
.insn
[0])
1393 gdb_byte buf
[I386_MAX_MATCHED_INSN_LEN
- 1];
1394 int insn_matched
= 1;
1397 gdb_assert (pattern
.len
> 1);
1398 gdb_assert (pattern
.len
<= I386_MAX_MATCHED_INSN_LEN
);
1400 if (target_read_code (pc
+ 1, buf
, pattern
.len
- 1))
1403 for (i
= 1; i
< pattern
.len
; i
++)
1405 if ((buf
[i
- 1] & pattern
.mask
[i
]) != pattern
.insn
[i
])
1408 return insn_matched
;
1413 /* Search for the instruction at PC in the list INSN_PATTERNS. Return
1414 the first instruction description that matches. Otherwise, return
1417 static struct i386_insn
*
1418 i386_match_insn (CORE_ADDR pc
, struct i386_insn
*insn_patterns
)
1420 struct i386_insn
*pattern
;
1422 for (pattern
= insn_patterns
; pattern
->len
> 0; pattern
++)
1424 if (i386_match_pattern (pc
, *pattern
))
1431 /* Return whether PC points inside a sequence of instructions that
1432 matches INSN_PATTERNS. */
1435 i386_match_insn_block (CORE_ADDR pc
, struct i386_insn
*insn_patterns
)
1437 CORE_ADDR current_pc
;
1439 struct i386_insn
*insn
;
1441 insn
= i386_match_insn (pc
, insn_patterns
);
1446 ix
= insn
- insn_patterns
;
1447 for (i
= ix
- 1; i
>= 0; i
--)
1449 current_pc
-= insn_patterns
[i
].len
;
1451 if (!i386_match_pattern (current_pc
, insn_patterns
[i
]))
1455 current_pc
= pc
+ insn
->len
;
1456 for (insn
= insn_patterns
+ ix
+ 1; insn
->len
> 0; insn
++)
1458 if (!i386_match_pattern (current_pc
, *insn
))
1461 current_pc
+= insn
->len
;
1467 /* Some special instructions that might be migrated by GCC into the
1468 part of the prologue that sets up the new stack frame. Because the
1469 stack frame hasn't been setup yet, no registers have been saved
1470 yet, and only the scratch registers %eax, %ecx and %edx can be
1473 static i386_insn i386_frame_setup_skip_insns
[] =
1475 /* Check for `movb imm8, r' and `movl imm32, r'.
1477 ??? Should we handle 16-bit operand-sizes here? */
1479 /* `movb imm8, %al' and `movb imm8, %ah' */
1480 /* `movb imm8, %cl' and `movb imm8, %ch' */
1481 { 2, { 0xb0, 0x00 }, { 0xfa, 0x00 } },
1482 /* `movb imm8, %dl' and `movb imm8, %dh' */
1483 { 2, { 0xb2, 0x00 }, { 0xfb, 0x00 } },
1484 /* `movl imm32, %eax' and `movl imm32, %ecx' */
1485 { 5, { 0xb8 }, { 0xfe } },
1486 /* `movl imm32, %edx' */
1487 { 5, { 0xba }, { 0xff } },
1489 /* Check for `mov imm32, r32'. Note that there is an alternative
1490 encoding for `mov m32, %eax'.
1492 ??? Should we handle SIB addressing here?
1493 ??? Should we handle 16-bit operand-sizes here? */
1495 /* `movl m32, %eax' */
1496 { 5, { 0xa1 }, { 0xff } },
1497 /* `movl m32, %eax' and `mov; m32, %ecx' */
1498 { 6, { 0x89, 0x05 }, {0xff, 0xf7 } },
1499 /* `movl m32, %edx' */
1500 { 6, { 0x89, 0x15 }, {0xff, 0xff } },
1502 /* Check for `xorl r32, r32' and the equivalent `subl r32, r32'.
1503 Because of the symmetry, there are actually two ways to encode
1504 these instructions; opcode bytes 0x29 and 0x2b for `subl' and
1505 opcode bytes 0x31 and 0x33 for `xorl'. */
1507 /* `subl %eax, %eax' */
1508 { 2, { 0x29, 0xc0 }, { 0xfd, 0xff } },
1509 /* `subl %ecx, %ecx' */
1510 { 2, { 0x29, 0xc9 }, { 0xfd, 0xff } },
1511 /* `subl %edx, %edx' */
1512 { 2, { 0x29, 0xd2 }, { 0xfd, 0xff } },
1513 /* `xorl %eax, %eax' */
1514 { 2, { 0x31, 0xc0 }, { 0xfd, 0xff } },
1515 /* `xorl %ecx, %ecx' */
1516 { 2, { 0x31, 0xc9 }, { 0xfd, 0xff } },
1517 /* `xorl %edx, %edx' */
1518 { 2, { 0x31, 0xd2 }, { 0xfd, 0xff } },
1522 /* Check whether PC points to an endbr32 instruction. */
1524 i386_skip_endbr (CORE_ADDR pc
)
1526 static const gdb_byte endbr32
[] = { 0xf3, 0x0f, 0x1e, 0xfb };
1528 gdb_byte buf
[sizeof (endbr32
)];
1530 /* Stop there if we can't read the code */
1531 if (target_read_code (pc
, buf
, sizeof (endbr32
)))
1534 /* If the instruction isn't an endbr32, stop */
1535 if (memcmp (buf
, endbr32
, sizeof (endbr32
)) != 0)
1538 return pc
+ sizeof (endbr32
);
1541 /* Check whether PC points to a no-op instruction. */
1543 i386_skip_noop (CORE_ADDR pc
)
1548 if (target_read_code (pc
, &op
, 1))
1554 /* Ignore `nop' instruction. */
1558 if (target_read_code (pc
, &op
, 1))
1562 /* Ignore no-op instruction `mov %edi, %edi'.
1563 Microsoft system dlls often start with
1564 a `mov %edi,%edi' instruction.
1565 The 5 bytes before the function start are
1566 filled with `nop' instructions.
1567 This pattern can be used for hot-patching:
1568 The `mov %edi, %edi' instruction can be replaced by a
1569 near jump to the location of the 5 `nop' instructions
1570 which can be replaced by a 32-bit jump to anywhere
1571 in the 32-bit address space. */
1573 else if (op
== 0x8b)
1575 if (target_read_code (pc
+ 1, &op
, 1))
1581 if (target_read_code (pc
, &op
, 1))
1591 /* Check whether PC points at a code that sets up a new stack frame.
1592 If so, it updates CACHE and returns the address of the first
1593 instruction after the sequence that sets up the frame or LIMIT,
1594 whichever is smaller. If we don't recognize the code, return PC. */
1597 i386_analyze_frame_setup (struct gdbarch
*gdbarch
,
1598 CORE_ADDR pc
, CORE_ADDR limit
,
1599 struct i386_frame_cache
*cache
)
1601 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
1602 struct i386_insn
*insn
;
1609 if (target_read_code (pc
, &op
, 1))
1612 if (op
== 0x55) /* pushl %ebp */
1614 /* Take into account that we've executed the `pushl %ebp' that
1615 starts this instruction sequence. */
1616 cache
->saved_regs
[I386_EBP_REGNUM
] = 0;
1617 cache
->sp_offset
+= 4;
1620 /* If that's all, return now. */
1624 /* Check for some special instructions that might be migrated by
1625 GCC into the prologue and skip them. At this point in the
1626 prologue, code should only touch the scratch registers %eax,
1627 %ecx and %edx, so while the number of possibilities is sheer,
1630 Make sure we only skip these instructions if we later see the
1631 `movl %esp, %ebp' that actually sets up the frame. */
1632 while (pc
+ skip
< limit
)
1634 insn
= i386_match_insn (pc
+ skip
, i386_frame_setup_skip_insns
);
1641 /* If that's all, return now. */
1642 if (limit
<= pc
+ skip
)
1645 if (target_read_code (pc
+ skip
, &op
, 1))
1648 /* The i386 prologue looks like
1654 and a different prologue can be generated for atom.
1658 lea -0x10(%esp),%esp
1660 We handle both of them here. */
1664 /* Check for `movl %esp, %ebp' -- can be written in two ways. */
1666 if (read_code_unsigned_integer (pc
+ skip
+ 1, 1, byte_order
)
1672 if (read_code_unsigned_integer (pc
+ skip
+ 1, 1, byte_order
)
1677 case 0x8d: /* Check for 'lea (%ebp), %ebp'. */
1678 if (read_code_unsigned_integer (pc
+ skip
+ 1, 2, byte_order
)
1687 /* OK, we actually have a frame. We just don't know how large
1688 it is yet. Set its size to zero. We'll adjust it if
1689 necessary. We also now commit to skipping the special
1690 instructions mentioned before. */
1693 /* If that's all, return now. */
1697 /* Check for stack adjustment
1703 NOTE: You can't subtract a 16-bit immediate from a 32-bit
1704 reg, so we don't have to worry about a data16 prefix. */
1705 if (target_read_code (pc
, &op
, 1))
1709 /* `subl' with 8-bit immediate. */
1710 if (read_code_unsigned_integer (pc
+ 1, 1, byte_order
) != 0xec)
1711 /* Some instruction starting with 0x83 other than `subl'. */
1714 /* `subl' with signed 8-bit immediate (though it wouldn't
1715 make sense to be negative). */
1716 cache
->locals
= read_code_integer (pc
+ 2, 1, byte_order
);
1719 else if (op
== 0x81)
1721 /* Maybe it is `subl' with a 32-bit immediate. */
1722 if (read_code_unsigned_integer (pc
+ 1, 1, byte_order
) != 0xec)
1723 /* Some instruction starting with 0x81 other than `subl'. */
1726 /* It is `subl' with a 32-bit immediate. */
1727 cache
->locals
= read_code_integer (pc
+ 2, 4, byte_order
);
1730 else if (op
== 0x8d)
1732 /* The ModR/M byte is 0x64. */
1733 if (read_code_unsigned_integer (pc
+ 1, 1, byte_order
) != 0x64)
1735 /* 'lea' with 8-bit displacement. */
1736 cache
->locals
= -1 * read_code_integer (pc
+ 3, 1, byte_order
);
1741 /* Some instruction other than `subl' nor 'lea'. */
1745 else if (op
== 0xc8) /* enter */
1747 cache
->locals
= read_code_unsigned_integer (pc
+ 1, 2, byte_order
);
1754 /* Check whether PC points at code that saves registers on the stack.
1755 If so, it updates CACHE and returns the address of the first
1756 instruction after the register saves or CURRENT_PC, whichever is
1757 smaller. Otherwise, return PC. */
1760 i386_analyze_register_saves (CORE_ADDR pc
, CORE_ADDR current_pc
,
1761 struct i386_frame_cache
*cache
)
1763 CORE_ADDR offset
= 0;
1767 if (cache
->locals
> 0)
1768 offset
-= cache
->locals
;
1769 for (i
= 0; i
< 8 && pc
< current_pc
; i
++)
1771 if (target_read_code (pc
, &op
, 1))
1773 if (op
< 0x50 || op
> 0x57)
1777 cache
->saved_regs
[op
- 0x50] = offset
;
1778 cache
->sp_offset
+= 4;
1785 /* Do a full analysis of the prologue at PC and update CACHE
1786 accordingly. Bail out early if CURRENT_PC is reached. Return the
1787 address where the analysis stopped.
1789 We handle these cases:
1791 The startup sequence can be at the start of the function, or the
1792 function can start with a branch to startup code at the end.
1794 %ebp can be set up with either the 'enter' instruction, or "pushl
1795 %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
1796 once used in the System V compiler).
1798 Local space is allocated just below the saved %ebp by either the
1799 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a
1800 16-bit unsigned argument for space to allocate, and the 'addl'
1801 instruction could have either a signed byte, or 32-bit immediate.
1803 Next, the registers used by this function are pushed. With the
1804 System V compiler they will always be in the order: %edi, %esi,
1805 %ebx (and sometimes a harmless bug causes it to also save but not
1806 restore %eax); however, the code below is willing to see the pushes
1807 in any order, and will handle up to 8 of them.
1809 If the setup sequence is at the end of the function, then the next
1810 instruction will be a branch back to the start. */
1813 i386_analyze_prologue (struct gdbarch
*gdbarch
,
1814 CORE_ADDR pc
, CORE_ADDR current_pc
,
1815 struct i386_frame_cache
*cache
)
1817 pc
= i386_skip_endbr (pc
);
1818 pc
= i386_skip_noop (pc
);
1819 pc
= i386_follow_jump (gdbarch
, pc
);
1820 pc
= i386_analyze_struct_return (pc
, current_pc
, cache
);
1821 pc
= i386_skip_probe (pc
);
1822 pc
= i386_analyze_stack_align (pc
, current_pc
, cache
);
1823 pc
= i386_analyze_frame_setup (gdbarch
, pc
, current_pc
, cache
);
1824 return i386_analyze_register_saves (pc
, current_pc
, cache
);
1827 /* Return PC of first real instruction. */
1830 i386_skip_prologue (struct gdbarch
*gdbarch
, CORE_ADDR start_pc
)
1832 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
1834 static gdb_byte pic_pat
[6] =
1836 0xe8, 0, 0, 0, 0, /* call 0x0 */
1837 0x5b, /* popl %ebx */
1839 struct i386_frame_cache cache
;
1843 CORE_ADDR func_addr
;
1845 if (find_pc_partial_function (start_pc
, NULL
, &func_addr
, NULL
))
1847 CORE_ADDR post_prologue_pc
1848 = skip_prologue_using_sal (gdbarch
, func_addr
);
1849 struct compunit_symtab
*cust
= find_pc_compunit_symtab (func_addr
);
1851 /* LLVM backend (Clang/Flang) always emits a line note before the
1852 prologue and another one after. We trust clang and newer Intel
1853 compilers to emit usable line notes. */
1854 if (post_prologue_pc
1856 && cust
->producer () != NULL
1857 && (producer_is_llvm (cust
->producer ())
1858 || producer_is_icc_ge_19 (cust
->producer ()))))
1859 return std::max (start_pc
, post_prologue_pc
);
1863 pc
= i386_analyze_prologue (gdbarch
, start_pc
, 0xffffffff, &cache
);
1864 if (cache
.locals
< 0)
1867 /* Found valid frame setup. */
1869 /* The native cc on SVR4 in -K PIC mode inserts the following code
1870 to get the address of the global offset table (GOT) into register
1875 movl %ebx,x(%ebp) (optional)
1878 This code is with the rest of the prologue (at the end of the
1879 function), so we have to skip it to get to the first real
1880 instruction at the start of the function. */
1882 for (i
= 0; i
< 6; i
++)
1884 if (target_read_code (pc
+ i
, &op
, 1))
1887 if (pic_pat
[i
] != op
)
1894 if (target_read_code (pc
+ delta
, &op
, 1))
1897 if (op
== 0x89) /* movl %ebx, x(%ebp) */
1899 op
= read_code_unsigned_integer (pc
+ delta
+ 1, 1, byte_order
);
1901 if (op
== 0x5d) /* One byte offset from %ebp. */
1903 else if (op
== 0x9d) /* Four byte offset from %ebp. */
1905 else /* Unexpected instruction. */
1908 if (target_read_code (pc
+ delta
, &op
, 1))
1913 if (delta
> 0 && op
== 0x81
1914 && read_code_unsigned_integer (pc
+ delta
+ 1, 1, byte_order
)
1921 /* If the function starts with a branch (to startup code at the end)
1922 the last instruction should bring us back to the first
1923 instruction of the real code. */
1924 if (i386_follow_jump (gdbarch
, start_pc
) != start_pc
)
1925 pc
= i386_follow_jump (gdbarch
, pc
);
1930 /* Check that the code pointed to by PC corresponds to a call to
1931 __main, skip it if so. Return PC otherwise. */
1934 i386_skip_main_prologue (struct gdbarch
*gdbarch
, CORE_ADDR pc
)
1936 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
1939 if (target_read_code (pc
, &op
, 1))
1945 if (target_read_code (pc
+ 1, buf
, sizeof buf
) == 0)
1947 /* Make sure address is computed correctly as a 32bit
1948 integer even if CORE_ADDR is 64 bit wide. */
1949 struct bound_minimal_symbol s
;
1950 CORE_ADDR call_dest
;
1952 call_dest
= pc
+ 5 + extract_signed_integer (buf
, 4, byte_order
);
1953 call_dest
= call_dest
& 0xffffffffU
;
1954 s
= lookup_minimal_symbol_by_pc (call_dest
);
1955 if (s
.minsym
!= NULL
1956 && s
.minsym
->linkage_name () != NULL
1957 && strcmp (s
.minsym
->linkage_name (), "__main") == 0)
1965 /* This function is 64-bit safe. */
1968 i386_unwind_pc (struct gdbarch
*gdbarch
, struct frame_info
*next_frame
)
1972 frame_unwind_register (next_frame
, gdbarch_pc_regnum (gdbarch
), buf
);
1973 return extract_typed_address (buf
, builtin_type (gdbarch
)->builtin_func_ptr
);
1977 /* Normal frames. */
1980 i386_frame_cache_1 (struct frame_info
*this_frame
,
1981 struct i386_frame_cache
*cache
)
1983 struct gdbarch
*gdbarch
= get_frame_arch (this_frame
);
1984 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
1988 cache
->pc
= get_frame_func (this_frame
);
1990 /* In principle, for normal frames, %ebp holds the frame pointer,
1991 which holds the base address for the current stack frame.
1992 However, for functions that don't need it, the frame pointer is
1993 optional. For these "frameless" functions the frame pointer is
1994 actually the frame pointer of the calling frame. Signal
1995 trampolines are just a special case of a "frameless" function.
1996 They (usually) share their frame pointer with the frame that was
1997 in progress when the signal occurred. */
1999 get_frame_register (this_frame
, I386_EBP_REGNUM
, buf
);
2000 cache
->base
= extract_unsigned_integer (buf
, 4, byte_order
);
2001 if (cache
->base
== 0)
2007 /* For normal frames, %eip is stored at 4(%ebp). */
2008 cache
->saved_regs
[I386_EIP_REGNUM
] = 4;
2011 i386_analyze_prologue (gdbarch
, cache
->pc
, get_frame_pc (this_frame
),
2014 if (cache
->locals
< 0)
2016 /* We didn't find a valid frame, which means that CACHE->base
2017 currently holds the frame pointer for our calling frame. If
2018 we're at the start of a function, or somewhere half-way its
2019 prologue, the function's frame probably hasn't been fully
2020 setup yet. Try to reconstruct the base address for the stack
2021 frame by looking at the stack pointer. For truly "frameless"
2022 functions this might work too. */
2024 if (cache
->saved_sp_reg
!= -1)
2026 /* Saved stack pointer has been saved. */
2027 get_frame_register (this_frame
, cache
->saved_sp_reg
, buf
);
2028 cache
->saved_sp
= extract_unsigned_integer (buf
, 4, byte_order
);
2030 /* We're halfway aligning the stack. */
2031 cache
->base
= ((cache
->saved_sp
- 4) & 0xfffffff0) - 4;
2032 cache
->saved_regs
[I386_EIP_REGNUM
] = cache
->saved_sp
- 4;
2034 /* This will be added back below. */
2035 cache
->saved_regs
[I386_EIP_REGNUM
] -= cache
->base
;
2037 else if (cache
->pc
!= 0
2038 || target_read_code (get_frame_pc (this_frame
), buf
, 1))
2040 /* We're in a known function, but did not find a frame
2041 setup. Assume that the function does not use %ebp.
2042 Alternatively, we may have jumped to an invalid
2043 address; in that case there is definitely no new
2045 get_frame_register (this_frame
, I386_ESP_REGNUM
, buf
);
2046 cache
->base
= extract_unsigned_integer (buf
, 4, byte_order
)
2050 /* We're in an unknown function. We could not find the start
2051 of the function to analyze the prologue; our best option is
2052 to assume a typical frame layout with the caller's %ebp
2054 cache
->saved_regs
[I386_EBP_REGNUM
] = 0;
2057 if (cache
->saved_sp_reg
!= -1)
2059 /* Saved stack pointer has been saved (but the SAVED_SP_REG
2060 register may be unavailable). */
2061 if (cache
->saved_sp
== 0
2062 && deprecated_frame_register_read (this_frame
,
2063 cache
->saved_sp_reg
, buf
))
2064 cache
->saved_sp
= extract_unsigned_integer (buf
, 4, byte_order
);
2066 /* Now that we have the base address for the stack frame we can
2067 calculate the value of %esp in the calling frame. */
2068 else if (cache
->saved_sp
== 0)
2069 cache
->saved_sp
= cache
->base
+ 8;
2071 /* Adjust all the saved registers such that they contain addresses
2072 instead of offsets. */
2073 for (i
= 0; i
< I386_NUM_SAVED_REGS
; i
++)
2074 if (cache
->saved_regs
[i
] != -1)
2075 cache
->saved_regs
[i
] += cache
->base
;
2080 static struct i386_frame_cache
*
2081 i386_frame_cache (struct frame_info
*this_frame
, void **this_cache
)
2083 struct i386_frame_cache
*cache
;
2086 return (struct i386_frame_cache
*) *this_cache
;
2088 cache
= i386_alloc_frame_cache ();
2089 *this_cache
= cache
;
2093 i386_frame_cache_1 (this_frame
, cache
);
2095 catch (const gdb_exception_error
&ex
)
2097 if (ex
.error
!= NOT_AVAILABLE_ERROR
)
2105 i386_frame_this_id (struct frame_info
*this_frame
, void **this_cache
,
2106 struct frame_id
*this_id
)
2108 struct i386_frame_cache
*cache
= i386_frame_cache (this_frame
, this_cache
);
2111 (*this_id
) = frame_id_build_unavailable_stack (cache
->pc
);
2112 else if (cache
->base
== 0)
2114 /* This marks the outermost frame. */
2118 /* See the end of i386_push_dummy_call. */
2119 (*this_id
) = frame_id_build (cache
->base
+ 8, cache
->pc
);
2123 static enum unwind_stop_reason
2124 i386_frame_unwind_stop_reason (struct frame_info
*this_frame
,
2127 struct i386_frame_cache
*cache
= i386_frame_cache (this_frame
, this_cache
);
2130 return UNWIND_UNAVAILABLE
;
2132 /* This marks the outermost frame. */
2133 if (cache
->base
== 0)
2134 return UNWIND_OUTERMOST
;
2136 return UNWIND_NO_REASON
;
2139 static struct value
*
2140 i386_frame_prev_register (struct frame_info
*this_frame
, void **this_cache
,
2143 struct i386_frame_cache
*cache
= i386_frame_cache (this_frame
, this_cache
);
2145 gdb_assert (regnum
>= 0);
2147 /* The System V ABI says that:
2149 "The flags register contains the system flags, such as the
2150 direction flag and the carry flag. The direction flag must be
2151 set to the forward (that is, zero) direction before entry and
2152 upon exit from a function. Other user flags have no specified
2153 role in the standard calling sequence and are not preserved."
2155 To guarantee the "upon exit" part of that statement we fake a
2156 saved flags register that has its direction flag cleared.
2158 Note that GCC doesn't seem to rely on the fact that the direction
2159 flag is cleared after a function return; it always explicitly
2160 clears the flag before operations where it matters.
2162 FIXME: kettenis/20030316: I'm not quite sure whether this is the
2163 right thing to do. The way we fake the flags register here makes
2164 it impossible to change it. */
2166 if (regnum
== I386_EFLAGS_REGNUM
)
2170 val
= get_frame_register_unsigned (this_frame
, regnum
);
2172 return frame_unwind_got_constant (this_frame
, regnum
, val
);
2175 if (regnum
== I386_EIP_REGNUM
&& cache
->pc_in_eax
)
2176 return frame_unwind_got_register (this_frame
, regnum
, I386_EAX_REGNUM
);
2178 if (regnum
== I386_ESP_REGNUM
2179 && (cache
->saved_sp
!= 0 || cache
->saved_sp_reg
!= -1))
2181 /* If the SP has been saved, but we don't know where, then this
2182 means that SAVED_SP_REG register was found unavailable back
2183 when we built the cache. */
2184 if (cache
->saved_sp
== 0)
2185 return frame_unwind_got_register (this_frame
, regnum
,
2186 cache
->saved_sp_reg
);
2188 return frame_unwind_got_constant (this_frame
, regnum
,
2192 if (regnum
< I386_NUM_SAVED_REGS
&& cache
->saved_regs
[regnum
] != -1)
2193 return frame_unwind_got_memory (this_frame
, regnum
,
2194 cache
->saved_regs
[regnum
]);
2196 return frame_unwind_got_register (this_frame
, regnum
, regnum
);
2199 static const struct frame_unwind i386_frame_unwind
=
2203 i386_frame_unwind_stop_reason
,
2205 i386_frame_prev_register
,
2207 default_frame_sniffer
2210 /* Normal frames, but in a function epilogue. */
2212 /* Implement the stack_frame_destroyed_p gdbarch method.
2214 The epilogue is defined here as the 'ret' instruction, which will
2215 follow any instruction such as 'leave' or 'pop %ebp' that destroys
2216 the function's stack frame. */
2219 i386_stack_frame_destroyed_p (struct gdbarch
*gdbarch
, CORE_ADDR pc
)
2222 struct compunit_symtab
*cust
;
2224 cust
= find_pc_compunit_symtab (pc
);
2225 if (cust
!= NULL
&& cust
->epilogue_unwind_valid ())
2228 if (target_read_memory (pc
, &insn
, 1))
2229 return 0; /* Can't read memory at pc. */
2231 if (insn
!= 0xc3) /* 'ret' instruction. */
2238 i386_epilogue_frame_sniffer (const struct frame_unwind
*self
,
2239 struct frame_info
*this_frame
,
2240 void **this_prologue_cache
)
2242 if (frame_relative_level (this_frame
) == 0)
2243 return i386_stack_frame_destroyed_p (get_frame_arch (this_frame
),
2244 get_frame_pc (this_frame
));
2249 static struct i386_frame_cache
*
2250 i386_epilogue_frame_cache (struct frame_info
*this_frame
, void **this_cache
)
2252 struct i386_frame_cache
*cache
;
2256 return (struct i386_frame_cache
*) *this_cache
;
2258 cache
= i386_alloc_frame_cache ();
2259 *this_cache
= cache
;
2263 cache
->pc
= get_frame_func (this_frame
);
2265 /* At this point the stack looks as if we just entered the
2266 function, with the return address at the top of the
2268 sp
= get_frame_register_unsigned (this_frame
, I386_ESP_REGNUM
);
2269 cache
->base
= sp
+ cache
->sp_offset
;
2270 cache
->saved_sp
= cache
->base
+ 8;
2271 cache
->saved_regs
[I386_EIP_REGNUM
] = cache
->base
+ 4;
2275 catch (const gdb_exception_error
&ex
)
2277 if (ex
.error
!= NOT_AVAILABLE_ERROR
)
2284 static enum unwind_stop_reason
2285 i386_epilogue_frame_unwind_stop_reason (struct frame_info
*this_frame
,
2288 struct i386_frame_cache
*cache
=
2289 i386_epilogue_frame_cache (this_frame
, this_cache
);
2292 return UNWIND_UNAVAILABLE
;
2294 return UNWIND_NO_REASON
;
2298 i386_epilogue_frame_this_id (struct frame_info
*this_frame
,
2300 struct frame_id
*this_id
)
2302 struct i386_frame_cache
*cache
=
2303 i386_epilogue_frame_cache (this_frame
, this_cache
);
2306 (*this_id
) = frame_id_build_unavailable_stack (cache
->pc
);
2308 (*this_id
) = frame_id_build (cache
->base
+ 8, cache
->pc
);
2311 static struct value
*
2312 i386_epilogue_frame_prev_register (struct frame_info
*this_frame
,
2313 void **this_cache
, int regnum
)
2315 /* Make sure we've initialized the cache. */
2316 i386_epilogue_frame_cache (this_frame
, this_cache
);
2318 return i386_frame_prev_register (this_frame
, this_cache
, regnum
);
2321 static const struct frame_unwind i386_epilogue_frame_unwind
=
2325 i386_epilogue_frame_unwind_stop_reason
,
2326 i386_epilogue_frame_this_id
,
2327 i386_epilogue_frame_prev_register
,
2329 i386_epilogue_frame_sniffer
2333 /* Stack-based trampolines. */
2335 /* These trampolines are used on cross x86 targets, when taking the
2336 address of a nested function. When executing these trampolines,
2337 no stack frame is set up, so we are in a similar situation as in
2338 epilogues and i386_epilogue_frame_this_id can be re-used. */
2340 /* Static chain passed in register. */
2342 static i386_insn i386_tramp_chain_in_reg_insns
[] =
2344 /* `movl imm32, %eax' and `movl imm32, %ecx' */
2345 { 5, { 0xb8 }, { 0xfe } },
2348 { 5, { 0xe9 }, { 0xff } },
2353 /* Static chain passed on stack (when regparm=3). */
2355 static i386_insn i386_tramp_chain_on_stack_insns
[] =
2358 { 5, { 0x68 }, { 0xff } },
2361 { 5, { 0xe9 }, { 0xff } },
2366 /* Return whether PC points inside a stack trampoline. */
2369 i386_in_stack_tramp_p (CORE_ADDR pc
)
2374 /* A stack trampoline is detected if no name is associated
2375 to the current pc and if it points inside a trampoline
2378 find_pc_partial_function (pc
, &name
, NULL
, NULL
);
2382 if (target_read_memory (pc
, &insn
, 1))
2385 if (!i386_match_insn_block (pc
, i386_tramp_chain_in_reg_insns
)
2386 && !i386_match_insn_block (pc
, i386_tramp_chain_on_stack_insns
))
2393 i386_stack_tramp_frame_sniffer (const struct frame_unwind
*self
,
2394 struct frame_info
*this_frame
,
2397 if (frame_relative_level (this_frame
) == 0)
2398 return i386_in_stack_tramp_p (get_frame_pc (this_frame
));
2403 static const struct frame_unwind i386_stack_tramp_frame_unwind
=
2407 i386_epilogue_frame_unwind_stop_reason
,
2408 i386_epilogue_frame_this_id
,
2409 i386_epilogue_frame_prev_register
,
2411 i386_stack_tramp_frame_sniffer
2414 /* Generate a bytecode expression to get the value of the saved PC. */
2417 i386_gen_return_address (struct gdbarch
*gdbarch
,
2418 struct agent_expr
*ax
, struct axs_value
*value
,
2421 /* The following sequence assumes the traditional use of the base
2423 ax_reg (ax
, I386_EBP_REGNUM
);
2425 ax_simple (ax
, aop_add
);
2426 value
->type
= register_type (gdbarch
, I386_EIP_REGNUM
);
2427 value
->kind
= axs_lvalue_memory
;
2431 /* Signal trampolines. */
2433 static struct i386_frame_cache
*
2434 i386_sigtramp_frame_cache (struct frame_info
*this_frame
, void **this_cache
)
2436 struct gdbarch
*gdbarch
= get_frame_arch (this_frame
);
2437 i386_gdbarch_tdep
*tdep
= gdbarch_tdep
<i386_gdbarch_tdep
> (gdbarch
);
2438 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
2439 struct i386_frame_cache
*cache
;
2444 return (struct i386_frame_cache
*) *this_cache
;
2446 cache
= i386_alloc_frame_cache ();
2450 get_frame_register (this_frame
, I386_ESP_REGNUM
, buf
);
2451 cache
->base
= extract_unsigned_integer (buf
, 4, byte_order
) - 4;
2453 addr
= tdep
->sigcontext_addr (this_frame
);
2454 if (tdep
->sc_reg_offset
)
2458 gdb_assert (tdep
->sc_num_regs
<= I386_NUM_SAVED_REGS
);
2460 for (i
= 0; i
< tdep
->sc_num_regs
; i
++)
2461 if (tdep
->sc_reg_offset
[i
] != -1)
2462 cache
->saved_regs
[i
] = addr
+ tdep
->sc_reg_offset
[i
];
2466 cache
->saved_regs
[I386_EIP_REGNUM
] = addr
+ tdep
->sc_pc_offset
;
2467 cache
->saved_regs
[I386_ESP_REGNUM
] = addr
+ tdep
->sc_sp_offset
;
2472 catch (const gdb_exception_error
&ex
)
2474 if (ex
.error
!= NOT_AVAILABLE_ERROR
)
2478 *this_cache
= cache
;
2482 static enum unwind_stop_reason
2483 i386_sigtramp_frame_unwind_stop_reason (struct frame_info
*this_frame
,
2486 struct i386_frame_cache
*cache
=
2487 i386_sigtramp_frame_cache (this_frame
, this_cache
);
2490 return UNWIND_UNAVAILABLE
;
2492 return UNWIND_NO_REASON
;
2496 i386_sigtramp_frame_this_id (struct frame_info
*this_frame
, void **this_cache
,
2497 struct frame_id
*this_id
)
2499 struct i386_frame_cache
*cache
=
2500 i386_sigtramp_frame_cache (this_frame
, this_cache
);
2503 (*this_id
) = frame_id_build_unavailable_stack (get_frame_pc (this_frame
));
2506 /* See the end of i386_push_dummy_call. */
2507 (*this_id
) = frame_id_build (cache
->base
+ 8, get_frame_pc (this_frame
));
2511 static struct value
*
2512 i386_sigtramp_frame_prev_register (struct frame_info
*this_frame
,
2513 void **this_cache
, int regnum
)
2515 /* Make sure we've initialized the cache. */
2516 i386_sigtramp_frame_cache (this_frame
, this_cache
);
2518 return i386_frame_prev_register (this_frame
, this_cache
, regnum
);
2522 i386_sigtramp_frame_sniffer (const struct frame_unwind
*self
,
2523 struct frame_info
*this_frame
,
2524 void **this_prologue_cache
)
2526 gdbarch
*arch
= get_frame_arch (this_frame
);
2527 i386_gdbarch_tdep
*tdep
= gdbarch_tdep
<i386_gdbarch_tdep
> (arch
);
2529 /* We shouldn't even bother if we don't have a sigcontext_addr
2531 if (tdep
->sigcontext_addr
== NULL
)
2534 if (tdep
->sigtramp_p
!= NULL
)
2536 if (tdep
->sigtramp_p (this_frame
))
2540 if (tdep
->sigtramp_start
!= 0)
2542 CORE_ADDR pc
= get_frame_pc (this_frame
);
2544 gdb_assert (tdep
->sigtramp_end
!= 0);
2545 if (pc
>= tdep
->sigtramp_start
&& pc
< tdep
->sigtramp_end
)
2552 static const struct frame_unwind i386_sigtramp_frame_unwind
=
2556 i386_sigtramp_frame_unwind_stop_reason
,
2557 i386_sigtramp_frame_this_id
,
2558 i386_sigtramp_frame_prev_register
,
2560 i386_sigtramp_frame_sniffer
2565 i386_frame_base_address (struct frame_info
*this_frame
, void **this_cache
)
2567 struct i386_frame_cache
*cache
= i386_frame_cache (this_frame
, this_cache
);
2572 static const struct frame_base i386_frame_base
=
2575 i386_frame_base_address
,
2576 i386_frame_base_address
,
2577 i386_frame_base_address
2580 static struct frame_id
2581 i386_dummy_id (struct gdbarch
*gdbarch
, struct frame_info
*this_frame
)
2585 fp
= get_frame_register_unsigned (this_frame
, I386_EBP_REGNUM
);
2587 /* See the end of i386_push_dummy_call. */
2588 return frame_id_build (fp
+ 8, get_frame_pc (this_frame
));
2591 /* _Decimal128 function return values need 16-byte alignment on the
2595 i386_frame_align (struct gdbarch
*gdbarch
, CORE_ADDR sp
)
2597 return sp
& -(CORE_ADDR
)16;
2601 /* Figure out where the longjmp will land. Slurp the args out of the
2602 stack. We expect the first arg to be a pointer to the jmp_buf
2603 structure from which we extract the address that we will land at.
2604 This address is copied into PC. This routine returns non-zero on
2608 i386_get_longjmp_target (struct frame_info
*frame
, CORE_ADDR
*pc
)
2611 CORE_ADDR sp
, jb_addr
;
2612 struct gdbarch
*gdbarch
= get_frame_arch (frame
);
2613 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
2614 i386_gdbarch_tdep
*tdep
= gdbarch_tdep
<i386_gdbarch_tdep
> (gdbarch
);
2615 int jb_pc_offset
= tdep
->jb_pc_offset
;
2617 /* If JB_PC_OFFSET is -1, we have no way to find out where the
2618 longjmp will land. */
2619 if (jb_pc_offset
== -1)
2622 get_frame_register (frame
, I386_ESP_REGNUM
, buf
);
2623 sp
= extract_unsigned_integer (buf
, 4, byte_order
);
2624 if (target_read_memory (sp
+ 4, buf
, 4))
2627 jb_addr
= extract_unsigned_integer (buf
, 4, byte_order
);
2628 if (target_read_memory (jb_addr
+ jb_pc_offset
, buf
, 4))
2631 *pc
= extract_unsigned_integer (buf
, 4, byte_order
);
2636 /* Check whether TYPE must be 16-byte-aligned when passed as a
2637 function argument. 16-byte vectors, _Decimal128 and structures or
2638 unions containing such types must be 16-byte-aligned; other
2639 arguments are 4-byte-aligned. */
2642 i386_16_byte_align_p (struct type
*type
)
2644 type
= check_typedef (type
);
2645 if ((type
->code () == TYPE_CODE_DECFLOAT
2646 || (type
->code () == TYPE_CODE_ARRAY
&& type
->is_vector ()))
2647 && type
->length () == 16)
2649 if (type
->code () == TYPE_CODE_ARRAY
)
2650 return i386_16_byte_align_p (type
->target_type ());
2651 if (type
->code () == TYPE_CODE_STRUCT
2652 || type
->code () == TYPE_CODE_UNION
)
2655 for (i
= 0; i
< type
->num_fields (); i
++)
2657 if (field_is_static (&type
->field (i
)))
2659 if (i386_16_byte_align_p (type
->field (i
).type ()))
2666 /* Implementation for set_gdbarch_push_dummy_code. */
2669 i386_push_dummy_code (struct gdbarch
*gdbarch
, CORE_ADDR sp
, CORE_ADDR funaddr
,
2670 struct value
**args
, int nargs
, struct type
*value_type
,
2671 CORE_ADDR
*real_pc
, CORE_ADDR
*bp_addr
,
2672 struct regcache
*regcache
)
2674 /* Use 0xcc breakpoint - 1 byte. */
2678 /* Keep the stack aligned. */
2682 /* The "push_dummy_call" gdbarch method, optionally with the thiscall
2683 calling convention. */
2686 i386_thiscall_push_dummy_call (struct gdbarch
*gdbarch
, struct value
*function
,
2687 struct regcache
*regcache
, CORE_ADDR bp_addr
,
2688 int nargs
, struct value
**args
, CORE_ADDR sp
,
2689 function_call_return_method return_method
,
2690 CORE_ADDR struct_addr
, bool thiscall
)
2692 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
2698 /* BND registers can be in arbitrary values at the moment of the
2699 inferior call. This can cause boundary violations that are not
2700 due to a real bug or even desired by the user. The best to be done
2701 is set the BND registers to allow access to the whole memory, INIT
2702 state, before pushing the inferior call. */
2703 i387_reset_bnd_regs (gdbarch
, regcache
);
2705 /* Determine the total space required for arguments and struct
2706 return address in a first pass (allowing for 16-byte-aligned
2707 arguments), then push arguments in a second pass. */
2709 for (write_pass
= 0; write_pass
< 2; write_pass
++)
2711 int args_space_used
= 0;
2713 if (return_method
== return_method_struct
)
2717 /* Push value address. */
2718 store_unsigned_integer (buf
, 4, byte_order
, struct_addr
);
2719 write_memory (sp
, buf
, 4);
2720 args_space_used
+= 4;
2726 for (i
= thiscall
? 1 : 0; i
< nargs
; i
++)
2728 int len
= value_enclosing_type (args
[i
])->length ();
2732 if (i386_16_byte_align_p (value_enclosing_type (args
[i
])))
2733 args_space_used
= align_up (args_space_used
, 16);
2735 write_memory (sp
+ args_space_used
,
2736 value_contents_all (args
[i
]).data (), len
);
2737 /* The System V ABI says that:
2739 "An argument's size is increased, if necessary, to make it a
2740 multiple of [32-bit] words. This may require tail padding,
2741 depending on the size of the argument."
2743 This makes sure the stack stays word-aligned. */
2744 args_space_used
+= align_up (len
, 4);
2748 if (i386_16_byte_align_p (value_enclosing_type (args
[i
])))
2749 args_space
= align_up (args_space
, 16);
2750 args_space
+= align_up (len
, 4);
2758 /* The original System V ABI only requires word alignment,
2759 but modern incarnations need 16-byte alignment in order
2760 to support SSE. Since wasting a few bytes here isn't
2761 harmful we unconditionally enforce 16-byte alignment. */
2766 /* Store return address. */
2768 store_unsigned_integer (buf
, 4, byte_order
, bp_addr
);
2769 write_memory (sp
, buf
, 4);
2771 /* Finally, update the stack pointer... */
2772 store_unsigned_integer (buf
, 4, byte_order
, sp
);
2773 regcache
->cooked_write (I386_ESP_REGNUM
, buf
);
2775 /* ...and fake a frame pointer. */
2776 regcache
->cooked_write (I386_EBP_REGNUM
, buf
);
2778 /* The 'this' pointer needs to be in ECX. */
2780 regcache
->cooked_write (I386_ECX_REGNUM
,
2781 value_contents_all (args
[0]).data ());
2783 /* If the PLT is position-independent, the SYSTEM V ABI requires %ebx to be
2784 set to the address of the GOT when doing a call to a PLT address.
2785 Note that we do not try to determine whether the PLT is
2786 position-independent, we just set the register regardless. */
2787 CORE_ADDR func_addr
= find_function_addr (function
, nullptr, nullptr);
2788 if (in_plt_section (func_addr
))
2790 struct objfile
*objf
= nullptr;
2791 asection
*asect
= nullptr;
2792 obj_section
*osect
= nullptr;
2794 /* Get object file containing func_addr. */
2795 obj_section
*func_section
= find_pc_section (func_addr
);
2796 if (func_section
!= nullptr)
2797 objf
= func_section
->objfile
;
2799 if (objf
!= nullptr)
2801 /* Get corresponding .got.plt or .got section. */
2802 asect
= bfd_get_section_by_name (objf
->obfd
.get (), ".got.plt");
2803 if (asect
== nullptr)
2804 asect
= bfd_get_section_by_name (objf
->obfd
.get (), ".got");
2807 if (asect
!= nullptr)
2808 /* Translate asection to obj_section. */
2809 osect
= maint_obj_section_from_bfd_section (objf
->obfd
.get (),
2812 if (osect
!= nullptr)
2814 /* Store the section address in %ebx. */
2815 store_unsigned_integer (buf
, 4, byte_order
, osect
->addr ());
2816 regcache
->cooked_write (I386_EBX_REGNUM
, buf
);
2820 /* If we would only do this for a position-independent PLT, it would
2821 make sense to issue a warning here. */
2825 /* MarkK wrote: This "+ 8" is all over the place:
2826 (i386_frame_this_id, i386_sigtramp_frame_this_id,
2827 i386_dummy_id). It's there, since all frame unwinders for
2828 a given target have to agree (within a certain margin) on the
2829 definition of the stack address of a frame. Otherwise frame id
2830 comparison might not work correctly. Since DWARF2/GCC uses the
2831 stack address *before* the function call as a frame's CFA. On
2832 the i386, when %ebp is used as a frame pointer, the offset
2833 between the contents %ebp and the CFA as defined by GCC. */
2837 /* Implement the "push_dummy_call" gdbarch method. */
2840 i386_push_dummy_call (struct gdbarch
*gdbarch
, struct value
*function
,
2841 struct regcache
*regcache
, CORE_ADDR bp_addr
, int nargs
,
2842 struct value
**args
, CORE_ADDR sp
,
2843 function_call_return_method return_method
,
2844 CORE_ADDR struct_addr
)
2846 return i386_thiscall_push_dummy_call (gdbarch
, function
, regcache
, bp_addr
,
2847 nargs
, args
, sp
, return_method
,
2848 struct_addr
, false);
2851 /* These registers are used for returning integers (and on some
2852 targets also for returning `struct' and `union' values when their
2853 size and alignment match an integer type). */
2854 #define LOW_RETURN_REGNUM I386_EAX_REGNUM /* %eax */
2855 #define HIGH_RETURN_REGNUM I386_EDX_REGNUM /* %edx */
2857 /* Read, for architecture GDBARCH, a function return value of TYPE
2858 from REGCACHE, and copy that into VALBUF. */
2861 i386_extract_return_value (struct gdbarch
*gdbarch
, struct type
*type
,
2862 struct regcache
*regcache
, gdb_byte
*valbuf
)
2864 i386_gdbarch_tdep
*tdep
= gdbarch_tdep
<i386_gdbarch_tdep
> (gdbarch
);
2865 int len
= type
->length ();
2866 gdb_byte buf
[I386_MAX_REGISTER_SIZE
];
2868 /* _Float16 and _Float16 _Complex values are returned via xmm0. */
2869 if (((type
->code () == TYPE_CODE_FLT
) && len
== 2)
2870 || ((type
->code () == TYPE_CODE_COMPLEX
) && len
== 4))
2872 regcache
->raw_read (I387_XMM0_REGNUM (tdep
), valbuf
);
2875 else if (type
->code () == TYPE_CODE_FLT
)
2877 if (tdep
->st0_regnum
< 0)
2879 warning (_("Cannot find floating-point return value."));
2880 memset (valbuf
, 0, len
);
2884 /* Floating-point return values can be found in %st(0). Convert
2885 its contents to the desired type. This is probably not
2886 exactly how it would happen on the target itself, but it is
2887 the best we can do. */
2888 regcache
->raw_read (I386_ST0_REGNUM
, buf
);
2889 target_float_convert (buf
, i387_ext_type (gdbarch
), valbuf
, type
);
2893 int low_size
= register_size (gdbarch
, LOW_RETURN_REGNUM
);
2894 int high_size
= register_size (gdbarch
, HIGH_RETURN_REGNUM
);
2896 if (len
<= low_size
)
2898 regcache
->raw_read (LOW_RETURN_REGNUM
, buf
);
2899 memcpy (valbuf
, buf
, len
);
2901 else if (len
<= (low_size
+ high_size
))
2903 regcache
->raw_read (LOW_RETURN_REGNUM
, buf
);
2904 memcpy (valbuf
, buf
, low_size
);
2905 regcache
->raw_read (HIGH_RETURN_REGNUM
, buf
);
2906 memcpy (valbuf
+ low_size
, buf
, len
- low_size
);
2909 internal_error (__FILE__
, __LINE__
,
2910 _("Cannot extract return value of %d bytes long."),
2915 /* Write, for architecture GDBARCH, a function return value of TYPE
2916 from VALBUF into REGCACHE. */
2919 i386_store_return_value (struct gdbarch
*gdbarch
, struct type
*type
,
2920 struct regcache
*regcache
, const gdb_byte
*valbuf
)
2922 i386_gdbarch_tdep
*tdep
= gdbarch_tdep
<i386_gdbarch_tdep
> (gdbarch
);
2923 int len
= type
->length ();
2925 if (type
->code () == TYPE_CODE_FLT
)
2928 gdb_byte buf
[I386_MAX_REGISTER_SIZE
];
2930 if (tdep
->st0_regnum
< 0)
2932 warning (_("Cannot set floating-point return value."));
2936 /* Returning floating-point values is a bit tricky. Apart from
2937 storing the return value in %st(0), we have to simulate the
2938 state of the FPU at function return point. */
2940 /* Convert the value found in VALBUF to the extended
2941 floating-point format used by the FPU. This is probably
2942 not exactly how it would happen on the target itself, but
2943 it is the best we can do. */
2944 target_float_convert (valbuf
, type
, buf
, i387_ext_type (gdbarch
));
2945 regcache
->raw_write (I386_ST0_REGNUM
, buf
);
2947 /* Set the top of the floating-point register stack to 7. The
2948 actual value doesn't really matter, but 7 is what a normal
2949 function return would end up with if the program started out
2950 with a freshly initialized FPU. */
2951 regcache_raw_read_unsigned (regcache
, I387_FSTAT_REGNUM (tdep
), &fstat
);
2953 regcache_raw_write_unsigned (regcache
, I387_FSTAT_REGNUM (tdep
), fstat
);
2955 /* Mark %st(1) through %st(7) as empty. Since we set the top of
2956 the floating-point register stack to 7, the appropriate value
2957 for the tag word is 0x3fff. */
2958 regcache_raw_write_unsigned (regcache
, I387_FTAG_REGNUM (tdep
), 0x3fff);
2962 int low_size
= register_size (gdbarch
, LOW_RETURN_REGNUM
);
2963 int high_size
= register_size (gdbarch
, HIGH_RETURN_REGNUM
);
2965 if (len
<= low_size
)
2966 regcache
->raw_write_part (LOW_RETURN_REGNUM
, 0, len
, valbuf
);
2967 else if (len
<= (low_size
+ high_size
))
2969 regcache
->raw_write (LOW_RETURN_REGNUM
, valbuf
);
2970 regcache
->raw_write_part (HIGH_RETURN_REGNUM
, 0, len
- low_size
,
2974 internal_error (__FILE__
, __LINE__
,
2975 _("Cannot store return value of %d bytes long."), len
);
2980 /* This is the variable that is set with "set struct-convention", and
2981 its legitimate values. */
2982 static const char default_struct_convention
[] = "default";
2983 static const char pcc_struct_convention
[] = "pcc";
2984 static const char reg_struct_convention
[] = "reg";
2985 static const char *const valid_conventions
[] =
2987 default_struct_convention
,
2988 pcc_struct_convention
,
2989 reg_struct_convention
,
2992 static const char *struct_convention
= default_struct_convention
;
2994 /* Return non-zero if TYPE, which is assumed to be a structure,
2995 a union type, or an array type, should be returned in registers
2996 for architecture GDBARCH. */
2999 i386_reg_struct_return_p (struct gdbarch
*gdbarch
, struct type
*type
)
3001 i386_gdbarch_tdep
*tdep
= gdbarch_tdep
<i386_gdbarch_tdep
> (gdbarch
);
3002 enum type_code code
= type
->code ();
3003 int len
= type
->length ();
3005 gdb_assert (code
== TYPE_CODE_STRUCT
3006 || code
== TYPE_CODE_UNION
3007 || code
== TYPE_CODE_ARRAY
);
3009 if (struct_convention
== pcc_struct_convention
3010 || (struct_convention
== default_struct_convention
3011 && tdep
->struct_return
== pcc_struct_return
))
3014 /* Structures consisting of a single `float', `double' or 'long
3015 double' member are returned in %st(0). */
3016 if (code
== TYPE_CODE_STRUCT
&& type
->num_fields () == 1)
3018 type
= check_typedef (type
->field (0).type ());
3019 if (type
->code () == TYPE_CODE_FLT
)
3020 return (len
== 4 || len
== 8 || len
== 12);
3023 return (len
== 1 || len
== 2 || len
== 4 || len
== 8);
3026 /* Determine, for architecture GDBARCH, how a return value of TYPE
3027 should be returned. If it is supposed to be returned in registers,
3028 and READBUF is non-zero, read the appropriate value from REGCACHE,
3029 and copy it into READBUF. If WRITEBUF is non-zero, write the value
3030 from WRITEBUF into REGCACHE. */
3032 static enum return_value_convention
3033 i386_return_value (struct gdbarch
*gdbarch
, struct value
*function
,
3034 struct type
*type
, struct regcache
*regcache
,
3035 gdb_byte
*readbuf
, const gdb_byte
*writebuf
)
3037 enum type_code code
= type
->code ();
3039 if (((code
== TYPE_CODE_STRUCT
3040 || code
== TYPE_CODE_UNION
3041 || code
== TYPE_CODE_ARRAY
)
3042 && !i386_reg_struct_return_p (gdbarch
, type
))
3043 /* Complex double and long double uses the struct return convention. */
3044 || (code
== TYPE_CODE_COMPLEX
&& type
->length () == 16)
3045 || (code
== TYPE_CODE_COMPLEX
&& type
->length () == 24)
3046 /* 128-bit decimal float uses the struct return convention. */
3047 || (code
== TYPE_CODE_DECFLOAT
&& type
->length () == 16))
3049 /* The System V ABI says that:
3051 "A function that returns a structure or union also sets %eax
3052 to the value of the original address of the caller's area
3053 before it returns. Thus when the caller receives control
3054 again, the address of the returned object resides in register
3055 %eax and can be used to access the object."
3057 So the ABI guarantees that we can always find the return
3058 value just after the function has returned. */
3060 /* Note that the ABI doesn't mention functions returning arrays,
3061 which is something possible in certain languages such as Ada.
3062 In this case, the value is returned as if it was wrapped in
3063 a record, so the convention applied to records also applies
3070 regcache_raw_read_unsigned (regcache
, I386_EAX_REGNUM
, &addr
);
3071 read_memory (addr
, readbuf
, type
->length ());
3074 return RETURN_VALUE_ABI_RETURNS_ADDRESS
;
3077 /* This special case is for structures consisting of a single
3078 `float', `double' or 'long double' member. These structures are
3079 returned in %st(0). For these structures, we call ourselves
3080 recursively, changing TYPE into the type of the first member of
3081 the structure. Since that should work for all structures that
3082 have only one member, we don't bother to check the member's type
3084 if (code
== TYPE_CODE_STRUCT
&& type
->num_fields () == 1)
3086 type
= check_typedef (type
->field (0).type ());
3087 return i386_return_value (gdbarch
, function
, type
, regcache
,
3092 i386_extract_return_value (gdbarch
, type
, regcache
, readbuf
);
3094 i386_store_return_value (gdbarch
, type
, regcache
, writebuf
);
3096 return RETURN_VALUE_REGISTER_CONVENTION
;
3101 i387_ext_type (struct gdbarch
*gdbarch
)
3103 i386_gdbarch_tdep
*tdep
= gdbarch_tdep
<i386_gdbarch_tdep
> (gdbarch
);
3105 if (!tdep
->i387_ext_type
)
3107 tdep
->i387_ext_type
= tdesc_find_type (gdbarch
, "i387_ext");
3108 gdb_assert (tdep
->i387_ext_type
!= NULL
);
3111 return tdep
->i387_ext_type
;
3114 /* Construct type for pseudo BND registers. We can't use
3115 tdesc_find_type since a complement of one value has to be used
3116 to describe the upper bound. */
3118 static struct type
*
3119 i386_bnd_type (struct gdbarch
*gdbarch
)
3121 i386_gdbarch_tdep
*tdep
= gdbarch_tdep
<i386_gdbarch_tdep
> (gdbarch
);
3124 if (!tdep
->i386_bnd_type
)
3127 const struct builtin_type
*bt
= builtin_type (gdbarch
);
3129 /* The type we're building is described bellow: */
3134 void *ubound
; /* One complement of raw ubound field. */
3138 t
= arch_composite_type (gdbarch
,
3139 "__gdb_builtin_type_bound128", TYPE_CODE_STRUCT
);
3141 append_composite_type_field (t
, "lbound", bt
->builtin_data_ptr
);
3142 append_composite_type_field (t
, "ubound", bt
->builtin_data_ptr
);
3144 t
->set_name ("builtin_type_bound128");
3145 tdep
->i386_bnd_type
= t
;
3148 return tdep
->i386_bnd_type
;
3151 /* Construct vector type for pseudo ZMM registers. We can't use
3152 tdesc_find_type since ZMM isn't described in target description. */
3154 static struct type
*
3155 i386_zmm_type (struct gdbarch
*gdbarch
)
3157 i386_gdbarch_tdep
*tdep
= gdbarch_tdep
<i386_gdbarch_tdep
> (gdbarch
);
3159 if (!tdep
->i386_zmm_type
)
3161 const struct builtin_type
*bt
= builtin_type (gdbarch
);
3163 /* The type we're building is this: */
3165 union __gdb_builtin_type_vec512i
3167 int128_t v4_int128
[4];
3168 int64_t v8_int64
[8];
3169 int32_t v16_int32
[16];
3170 int16_t v32_int16
[32];
3171 int8_t v64_int8
[64];
3172 double v8_double
[8];
3173 float v16_float
[16];
3174 float16_t v32_half
[32];
3175 bfloat16_t v32_bfloat16
[32];
3181 t
= arch_composite_type (gdbarch
,
3182 "__gdb_builtin_type_vec512i", TYPE_CODE_UNION
);
3183 append_composite_type_field (t
, "v32_bfloat16",
3184 init_vector_type (bt
->builtin_bfloat16
, 32));
3185 append_composite_type_field (t
, "v32_half",
3186 init_vector_type (bt
->builtin_half
, 32));
3187 append_composite_type_field (t
, "v16_float",
3188 init_vector_type (bt
->builtin_float
, 16));
3189 append_composite_type_field (t
, "v8_double",
3190 init_vector_type (bt
->builtin_double
, 8));
3191 append_composite_type_field (t
, "v64_int8",
3192 init_vector_type (bt
->builtin_int8
, 64));
3193 append_composite_type_field (t
, "v32_int16",
3194 init_vector_type (bt
->builtin_int16
, 32));
3195 append_composite_type_field (t
, "v16_int32",
3196 init_vector_type (bt
->builtin_int32
, 16));
3197 append_composite_type_field (t
, "v8_int64",
3198 init_vector_type (bt
->builtin_int64
, 8));
3199 append_composite_type_field (t
, "v4_int128",
3200 init_vector_type (bt
->builtin_int128
, 4));
3202 t
->set_is_vector (true);
3203 t
->set_name ("builtin_type_vec512i");
3204 tdep
->i386_zmm_type
= t
;
3207 return tdep
->i386_zmm_type
;
3210 /* Construct vector type for pseudo YMM registers. We can't use
3211 tdesc_find_type since YMM isn't described in target description. */
3213 static struct type
*
3214 i386_ymm_type (struct gdbarch
*gdbarch
)
3216 i386_gdbarch_tdep
*tdep
= gdbarch_tdep
<i386_gdbarch_tdep
> (gdbarch
);
3218 if (!tdep
->i386_ymm_type
)
3220 const struct builtin_type
*bt
= builtin_type (gdbarch
);
3222 /* The type we're building is this: */
3224 union __gdb_builtin_type_vec256i
3226 int128_t v2_int128
[2];
3227 int64_t v4_int64
[4];
3228 int32_t v8_int32
[8];
3229 int16_t v16_int16
[16];
3230 int8_t v32_int8
[32];
3231 double v4_double
[4];
3233 float16_t v16_half
[16];
3234 bfloat16_t v16_bfloat16
[16];
3240 t
= arch_composite_type (gdbarch
,
3241 "__gdb_builtin_type_vec256i", TYPE_CODE_UNION
);
3242 append_composite_type_field (t
, "v16_bfloat16",
3243 init_vector_type (bt
->builtin_bfloat16
, 16));
3244 append_composite_type_field (t
, "v16_half",
3245 init_vector_type (bt
->builtin_half
, 16));
3246 append_composite_type_field (t
, "v8_float",
3247 init_vector_type (bt
->builtin_float
, 8));
3248 append_composite_type_field (t
, "v4_double",
3249 init_vector_type (bt
->builtin_double
, 4));
3250 append_composite_type_field (t
, "v32_int8",
3251 init_vector_type (bt
->builtin_int8
, 32));
3252 append_composite_type_field (t
, "v16_int16",
3253 init_vector_type (bt
->builtin_int16
, 16));
3254 append_composite_type_field (t
, "v8_int32",
3255 init_vector_type (bt
->builtin_int32
, 8));
3256 append_composite_type_field (t
, "v4_int64",
3257 init_vector_type (bt
->builtin_int64
, 4));
3258 append_composite_type_field (t
, "v2_int128",
3259 init_vector_type (bt
->builtin_int128
, 2));
3261 t
->set_is_vector (true);
3262 t
->set_name ("builtin_type_vec256i");
3263 tdep
->i386_ymm_type
= t
;
3266 return tdep
->i386_ymm_type
;
3269 /* Construct vector type for MMX registers. */
3270 static struct type
*
3271 i386_mmx_type (struct gdbarch
*gdbarch
)
3273 i386_gdbarch_tdep
*tdep
= gdbarch_tdep
<i386_gdbarch_tdep
> (gdbarch
);
3275 if (!tdep
->i386_mmx_type
)
3277 const struct builtin_type
*bt
= builtin_type (gdbarch
);
3279 /* The type we're building is this: */
3281 union __gdb_builtin_type_vec64i
3284 int32_t v2_int32
[2];
3285 int16_t v4_int16
[4];
3292 t
= arch_composite_type (gdbarch
,
3293 "__gdb_builtin_type_vec64i", TYPE_CODE_UNION
);
3295 append_composite_type_field (t
, "uint64", bt
->builtin_int64
);
3296 append_composite_type_field (t
, "v2_int32",
3297 init_vector_type (bt
->builtin_int32
, 2));
3298 append_composite_type_field (t
, "v4_int16",
3299 init_vector_type (bt
->builtin_int16
, 4));
3300 append_composite_type_field (t
, "v8_int8",
3301 init_vector_type (bt
->builtin_int8
, 8));
3303 t
->set_is_vector (true);
3304 t
->set_name ("builtin_type_vec64i");
3305 tdep
->i386_mmx_type
= t
;
3308 return tdep
->i386_mmx_type
;
3311 /* Return the GDB type object for the "standard" data type of data in
3315 i386_pseudo_register_type (struct gdbarch
*gdbarch
, int regnum
)
3317 if (i386_bnd_regnum_p (gdbarch
, regnum
))
3318 return i386_bnd_type (gdbarch
);
3319 if (i386_mmx_regnum_p (gdbarch
, regnum
))
3320 return i386_mmx_type (gdbarch
);
3321 else if (i386_ymm_regnum_p (gdbarch
, regnum
))
3322 return i386_ymm_type (gdbarch
);
3323 else if (i386_ymm_avx512_regnum_p (gdbarch
, regnum
))
3324 return i386_ymm_type (gdbarch
);
3325 else if (i386_zmm_regnum_p (gdbarch
, regnum
))
3326 return i386_zmm_type (gdbarch
);
3329 const struct builtin_type
*bt
= builtin_type (gdbarch
);
3330 if (i386_byte_regnum_p (gdbarch
, regnum
))
3331 return bt
->builtin_int8
;
3332 else if (i386_word_regnum_p (gdbarch
, regnum
))
3333 return bt
->builtin_int16
;
3334 else if (i386_dword_regnum_p (gdbarch
, regnum
))
3335 return bt
->builtin_int32
;
3336 else if (i386_k_regnum_p (gdbarch
, regnum
))
3337 return bt
->builtin_int64
;
3340 internal_error (__FILE__
, __LINE__
, _("invalid regnum"));
3343 /* Map a cooked register onto a raw register or memory. For the i386,
3344 the MMX registers need to be mapped onto floating point registers. */
3347 i386_mmx_regnum_to_fp_regnum (readable_regcache
*regcache
, int regnum
)
3349 gdbarch
*arch
= regcache
->arch ();
3350 i386_gdbarch_tdep
*tdep
= gdbarch_tdep
<i386_gdbarch_tdep
> (arch
);
3355 mmxreg
= regnum
- tdep
->mm0_regnum
;
3356 regcache
->raw_read (I387_FSTAT_REGNUM (tdep
), &fstat
);
3357 tos
= (fstat
>> 11) & 0x7;
3358 fpreg
= (mmxreg
+ tos
) % 8;
3360 return (I387_ST0_REGNUM (tdep
) + fpreg
);
3363 /* A helper function for us by i386_pseudo_register_read_value and
3364 amd64_pseudo_register_read_value. It does all the work but reads
3365 the data into an already-allocated value. */
3368 i386_pseudo_register_read_into_value (struct gdbarch
*gdbarch
,
3369 readable_regcache
*regcache
,
3371 struct value
*result_value
)
3373 gdb_byte raw_buf
[I386_MAX_REGISTER_SIZE
];
3374 enum register_status status
;
3375 gdb_byte
*buf
= value_contents_raw (result_value
).data ();
3377 if (i386_mmx_regnum_p (gdbarch
, regnum
))
3379 int fpnum
= i386_mmx_regnum_to_fp_regnum (regcache
, regnum
);
3381 /* Extract (always little endian). */
3382 status
= regcache
->raw_read (fpnum
, raw_buf
);
3383 if (status
!= REG_VALID
)
3384 mark_value_bytes_unavailable (result_value
, 0,
3385 value_type (result_value
)->length ());
3387 memcpy (buf
, raw_buf
, register_size (gdbarch
, regnum
));
3391 i386_gdbarch_tdep
*tdep
= gdbarch_tdep
<i386_gdbarch_tdep
> (gdbarch
);
3392 if (i386_bnd_regnum_p (gdbarch
, regnum
))
3394 regnum
-= tdep
->bnd0_regnum
;
3396 /* Extract (always little endian). Read lower 128bits. */
3397 status
= regcache
->raw_read (I387_BND0R_REGNUM (tdep
) + regnum
,
3399 if (status
!= REG_VALID
)
3400 mark_value_bytes_unavailable (result_value
, 0, 16);
3403 enum bfd_endian byte_order
= gdbarch_byte_order (target_gdbarch ());
3404 LONGEST upper
, lower
;
3405 int size
= builtin_type (gdbarch
)->builtin_data_ptr
->length ();
3407 lower
= extract_unsigned_integer (raw_buf
, 8, byte_order
);
3408 upper
= extract_unsigned_integer (raw_buf
+ 8, 8, byte_order
);
3411 memcpy (buf
, &lower
, size
);
3412 memcpy (buf
+ size
, &upper
, size
);
3415 else if (i386_k_regnum_p (gdbarch
, regnum
))
3417 regnum
-= tdep
->k0_regnum
;
3419 /* Extract (always little endian). */
3420 status
= regcache
->raw_read (tdep
->k0_regnum
+ regnum
, raw_buf
);
3421 if (status
!= REG_VALID
)
3422 mark_value_bytes_unavailable (result_value
, 0, 8);
3424 memcpy (buf
, raw_buf
, 8);
3426 else if (i386_zmm_regnum_p (gdbarch
, regnum
))
3428 regnum
-= tdep
->zmm0_regnum
;
3430 if (regnum
< num_lower_zmm_regs
)
3432 /* Extract (always little endian). Read lower 128bits. */
3433 status
= regcache
->raw_read (I387_XMM0_REGNUM (tdep
) + regnum
,
3435 if (status
!= REG_VALID
)
3436 mark_value_bytes_unavailable (result_value
, 0, 16);
3438 memcpy (buf
, raw_buf
, 16);
3440 /* Extract (always little endian). Read upper 128bits. */
3441 status
= regcache
->raw_read (tdep
->ymm0h_regnum
+ regnum
,
3443 if (status
!= REG_VALID
)
3444 mark_value_bytes_unavailable (result_value
, 16, 16);
3446 memcpy (buf
+ 16, raw_buf
, 16);
3450 /* Extract (always little endian). Read lower 128bits. */
3451 status
= regcache
->raw_read (I387_XMM16_REGNUM (tdep
) + regnum
3452 - num_lower_zmm_regs
,
3454 if (status
!= REG_VALID
)
3455 mark_value_bytes_unavailable (result_value
, 0, 16);
3457 memcpy (buf
, raw_buf
, 16);
3459 /* Extract (always little endian). Read upper 128bits. */
3460 status
= regcache
->raw_read (I387_YMM16H_REGNUM (tdep
) + regnum
3461 - num_lower_zmm_regs
,
3463 if (status
!= REG_VALID
)
3464 mark_value_bytes_unavailable (result_value
, 16, 16);
3466 memcpy (buf
+ 16, raw_buf
, 16);
3469 /* Read upper 256bits. */
3470 status
= regcache
->raw_read (tdep
->zmm0h_regnum
+ regnum
,
3472 if (status
!= REG_VALID
)
3473 mark_value_bytes_unavailable (result_value
, 32, 32);
3475 memcpy (buf
+ 32, raw_buf
, 32);
3477 else if (i386_ymm_regnum_p (gdbarch
, regnum
))
3479 regnum
-= tdep
->ymm0_regnum
;
3481 /* Extract (always little endian). Read lower 128bits. */
3482 status
= regcache
->raw_read (I387_XMM0_REGNUM (tdep
) + regnum
,
3484 if (status
!= REG_VALID
)
3485 mark_value_bytes_unavailable (result_value
, 0, 16);
3487 memcpy (buf
, raw_buf
, 16);
3488 /* Read upper 128bits. */
3489 status
= regcache
->raw_read (tdep
->ymm0h_regnum
+ regnum
,
3491 if (status
!= REG_VALID
)
3492 mark_value_bytes_unavailable (result_value
, 16, 32);
3494 memcpy (buf
+ 16, raw_buf
, 16);
3496 else if (i386_ymm_avx512_regnum_p (gdbarch
, regnum
))
3498 regnum
-= tdep
->ymm16_regnum
;
3499 /* Extract (always little endian). Read lower 128bits. */
3500 status
= regcache
->raw_read (I387_XMM16_REGNUM (tdep
) + regnum
,
3502 if (status
!= REG_VALID
)
3503 mark_value_bytes_unavailable (result_value
, 0, 16);
3505 memcpy (buf
, raw_buf
, 16);
3506 /* Read upper 128bits. */
3507 status
= regcache
->raw_read (tdep
->ymm16h_regnum
+ regnum
,
3509 if (status
!= REG_VALID
)
3510 mark_value_bytes_unavailable (result_value
, 16, 16);
3512 memcpy (buf
+ 16, raw_buf
, 16);
3514 else if (i386_word_regnum_p (gdbarch
, regnum
))
3516 int gpnum
= regnum
- tdep
->ax_regnum
;
3518 /* Extract (always little endian). */
3519 status
= regcache
->raw_read (gpnum
, raw_buf
);
3520 if (status
!= REG_VALID
)
3521 mark_value_bytes_unavailable (result_value
, 0,
3522 value_type (result_value
)->length ());
3524 memcpy (buf
, raw_buf
, 2);
3526 else if (i386_byte_regnum_p (gdbarch
, regnum
))
3528 int gpnum
= regnum
- tdep
->al_regnum
;
3530 /* Extract (always little endian). We read both lower and
3532 status
= regcache
->raw_read (gpnum
% 4, raw_buf
);
3533 if (status
!= REG_VALID
)
3534 mark_value_bytes_unavailable (result_value
, 0,
3535 value_type (result_value
)->length ());
3536 else if (gpnum
>= 4)
3537 memcpy (buf
, raw_buf
+ 1, 1);
3539 memcpy (buf
, raw_buf
, 1);
3542 internal_error (__FILE__
, __LINE__
, _("invalid regnum"));
3546 static struct value
*
3547 i386_pseudo_register_read_value (struct gdbarch
*gdbarch
,
3548 readable_regcache
*regcache
,
3551 struct value
*result
;
3553 result
= allocate_value (register_type (gdbarch
, regnum
));
3554 VALUE_LVAL (result
) = lval_register
;
3555 VALUE_REGNUM (result
) = regnum
;
3557 i386_pseudo_register_read_into_value (gdbarch
, regcache
, regnum
, result
);
3563 i386_pseudo_register_write (struct gdbarch
*gdbarch
, struct regcache
*regcache
,
3564 int regnum
, const gdb_byte
*buf
)
3566 gdb_byte raw_buf
[I386_MAX_REGISTER_SIZE
];
3568 if (i386_mmx_regnum_p (gdbarch
, regnum
))
3570 int fpnum
= i386_mmx_regnum_to_fp_regnum (regcache
, regnum
);
3573 regcache
->raw_read (fpnum
, raw_buf
);
3574 /* ... Modify ... (always little endian). */
3575 memcpy (raw_buf
, buf
, register_size (gdbarch
, regnum
));
3577 regcache
->raw_write (fpnum
, raw_buf
);
3581 i386_gdbarch_tdep
*tdep
= gdbarch_tdep
<i386_gdbarch_tdep
> (gdbarch
);
3583 if (i386_bnd_regnum_p (gdbarch
, regnum
))
3585 ULONGEST upper
, lower
;
3586 int size
= builtin_type (gdbarch
)->builtin_data_ptr
->length ();
3587 enum bfd_endian byte_order
= gdbarch_byte_order (target_gdbarch ());
3589 /* New values from input value. */
3590 regnum
-= tdep
->bnd0_regnum
;
3591 lower
= extract_unsigned_integer (buf
, size
, byte_order
);
3592 upper
= extract_unsigned_integer (buf
+ size
, size
, byte_order
);
3594 /* Fetching register buffer. */
3595 regcache
->raw_read (I387_BND0R_REGNUM (tdep
) + regnum
,
3600 /* Set register bits. */
3601 memcpy (raw_buf
, &lower
, 8);
3602 memcpy (raw_buf
+ 8, &upper
, 8);
3604 regcache
->raw_write (I387_BND0R_REGNUM (tdep
) + regnum
, raw_buf
);
3606 else if (i386_k_regnum_p (gdbarch
, regnum
))
3608 regnum
-= tdep
->k0_regnum
;
3610 regcache
->raw_write (tdep
->k0_regnum
+ regnum
, buf
);
3612 else if (i386_zmm_regnum_p (gdbarch
, regnum
))
3614 regnum
-= tdep
->zmm0_regnum
;
3616 if (regnum
< num_lower_zmm_regs
)
3618 /* Write lower 128bits. */
3619 regcache
->raw_write (I387_XMM0_REGNUM (tdep
) + regnum
, buf
);
3620 /* Write upper 128bits. */
3621 regcache
->raw_write (I387_YMM0_REGNUM (tdep
) + regnum
, buf
+ 16);
3625 /* Write lower 128bits. */
3626 regcache
->raw_write (I387_XMM16_REGNUM (tdep
) + regnum
3627 - num_lower_zmm_regs
, buf
);
3628 /* Write upper 128bits. */
3629 regcache
->raw_write (I387_YMM16H_REGNUM (tdep
) + regnum
3630 - num_lower_zmm_regs
, buf
+ 16);
3632 /* Write upper 256bits. */
3633 regcache
->raw_write (tdep
->zmm0h_regnum
+ regnum
, buf
+ 32);
3635 else if (i386_ymm_regnum_p (gdbarch
, regnum
))
3637 regnum
-= tdep
->ymm0_regnum
;
3639 /* ... Write lower 128bits. */
3640 regcache
->raw_write (I387_XMM0_REGNUM (tdep
) + regnum
, buf
);
3641 /* ... Write upper 128bits. */
3642 regcache
->raw_write (tdep
->ymm0h_regnum
+ regnum
, buf
+ 16);
3644 else if (i386_ymm_avx512_regnum_p (gdbarch
, regnum
))
3646 regnum
-= tdep
->ymm16_regnum
;
3648 /* ... Write lower 128bits. */
3649 regcache
->raw_write (I387_XMM16_REGNUM (tdep
) + regnum
, buf
);
3650 /* ... Write upper 128bits. */
3651 regcache
->raw_write (tdep
->ymm16h_regnum
+ regnum
, buf
+ 16);
3653 else if (i386_word_regnum_p (gdbarch
, regnum
))
3655 int gpnum
= regnum
- tdep
->ax_regnum
;
3658 regcache
->raw_read (gpnum
, raw_buf
);
3659 /* ... Modify ... (always little endian). */
3660 memcpy (raw_buf
, buf
, 2);
3662 regcache
->raw_write (gpnum
, raw_buf
);
3664 else if (i386_byte_regnum_p (gdbarch
, regnum
))
3666 int gpnum
= regnum
- tdep
->al_regnum
;
3668 /* Read ... We read both lower and upper registers. */
3669 regcache
->raw_read (gpnum
% 4, raw_buf
);
3670 /* ... Modify ... (always little endian). */
3672 memcpy (raw_buf
+ 1, buf
, 1);
3674 memcpy (raw_buf
, buf
, 1);
3676 regcache
->raw_write (gpnum
% 4, raw_buf
);
3679 internal_error (__FILE__
, __LINE__
, _("invalid regnum"));
3683 /* Implement the 'ax_pseudo_register_collect' gdbarch method. */
3686 i386_ax_pseudo_register_collect (struct gdbarch
*gdbarch
,
3687 struct agent_expr
*ax
, int regnum
)
3689 i386_gdbarch_tdep
*tdep
= gdbarch_tdep
<i386_gdbarch_tdep
> (gdbarch
);
3691 if (i386_mmx_regnum_p (gdbarch
, regnum
))
3693 /* MMX to FPU register mapping depends on current TOS. Let's just
3694 not care and collect everything... */
3697 ax_reg_mask (ax
, I387_FSTAT_REGNUM (tdep
));
3698 for (i
= 0; i
< 8; i
++)
3699 ax_reg_mask (ax
, I387_ST0_REGNUM (tdep
) + i
);
3702 else if (i386_bnd_regnum_p (gdbarch
, regnum
))
3704 regnum
-= tdep
->bnd0_regnum
;
3705 ax_reg_mask (ax
, I387_BND0R_REGNUM (tdep
) + regnum
);
3708 else if (i386_k_regnum_p (gdbarch
, regnum
))
3710 regnum
-= tdep
->k0_regnum
;
3711 ax_reg_mask (ax
, tdep
->k0_regnum
+ regnum
);
3714 else if (i386_zmm_regnum_p (gdbarch
, regnum
))
3716 regnum
-= tdep
->zmm0_regnum
;
3717 if (regnum
< num_lower_zmm_regs
)
3719 ax_reg_mask (ax
, I387_XMM0_REGNUM (tdep
) + regnum
);
3720 ax_reg_mask (ax
, tdep
->ymm0h_regnum
+ regnum
);
3724 ax_reg_mask (ax
, I387_XMM16_REGNUM (tdep
) + regnum
3725 - num_lower_zmm_regs
);
3726 ax_reg_mask (ax
, I387_YMM16H_REGNUM (tdep
) + regnum
3727 - num_lower_zmm_regs
);
3729 ax_reg_mask (ax
, tdep
->zmm0h_regnum
+ regnum
);
3732 else if (i386_ymm_regnum_p (gdbarch
, regnum
))
3734 regnum
-= tdep
->ymm0_regnum
;
3735 ax_reg_mask (ax
, I387_XMM0_REGNUM (tdep
) + regnum
);
3736 ax_reg_mask (ax
, tdep
->ymm0h_regnum
+ regnum
);
3739 else if (i386_ymm_avx512_regnum_p (gdbarch
, regnum
))
3741 regnum
-= tdep
->ymm16_regnum
;
3742 ax_reg_mask (ax
, I387_XMM16_REGNUM (tdep
) + regnum
);
3743 ax_reg_mask (ax
, tdep
->ymm16h_regnum
+ regnum
);
3746 else if (i386_word_regnum_p (gdbarch
, regnum
))
3748 int gpnum
= regnum
- tdep
->ax_regnum
;
3750 ax_reg_mask (ax
, gpnum
);
3753 else if (i386_byte_regnum_p (gdbarch
, regnum
))
3755 int gpnum
= regnum
- tdep
->al_regnum
;
3757 ax_reg_mask (ax
, gpnum
% 4);
3761 internal_error (__FILE__
, __LINE__
, _("invalid regnum"));
3766 /* Return the register number of the register allocated by GCC after
3767 REGNUM, or -1 if there is no such register. */
3770 i386_next_regnum (int regnum
)
3772 /* GCC allocates the registers in the order:
3774 %eax, %edx, %ecx, %ebx, %esi, %edi, %ebp, %esp, ...
3776 Since storing a variable in %esp doesn't make any sense we return
3777 -1 for %ebp and for %esp itself. */
3778 static int next_regnum
[] =
3780 I386_EDX_REGNUM
, /* Slot for %eax. */
3781 I386_EBX_REGNUM
, /* Slot for %ecx. */
3782 I386_ECX_REGNUM
, /* Slot for %edx. */
3783 I386_ESI_REGNUM
, /* Slot for %ebx. */
3784 -1, -1, /* Slots for %esp and %ebp. */
3785 I386_EDI_REGNUM
, /* Slot for %esi. */
3786 I386_EBP_REGNUM
/* Slot for %edi. */
3789 if (regnum
>= 0 && regnum
< sizeof (next_regnum
) / sizeof (next_regnum
[0]))
3790 return next_regnum
[regnum
];
3795 /* Return nonzero if a value of type TYPE stored in register REGNUM
3796 needs any special handling. */
3799 i386_convert_register_p (struct gdbarch
*gdbarch
,
3800 int regnum
, struct type
*type
)
3802 int len
= type
->length ();
3804 /* Values may be spread across multiple registers. Most debugging
3805 formats aren't expressive enough to specify the locations, so
3806 some heuristics is involved. Right now we only handle types that
3807 have a length that is a multiple of the word size, since GCC
3808 doesn't seem to put any other types into registers. */
3809 if (len
> 4 && len
% 4 == 0)
3811 int last_regnum
= regnum
;
3815 last_regnum
= i386_next_regnum (last_regnum
);
3819 if (last_regnum
!= -1)
3823 return i387_convert_register_p (gdbarch
, regnum
, type
);
3826 /* Read a value of type TYPE from register REGNUM in frame FRAME, and
3827 return its contents in TO. */
3830 i386_register_to_value (struct frame_info
*frame
, int regnum
,
3831 struct type
*type
, gdb_byte
*to
,
3832 int *optimizedp
, int *unavailablep
)
3834 struct gdbarch
*gdbarch
= get_frame_arch (frame
);
3835 int len
= type
->length ();
3837 if (i386_fp_regnum_p (gdbarch
, regnum
))
3838 return i387_register_to_value (frame
, regnum
, type
, to
,
3839 optimizedp
, unavailablep
);
3841 /* Read a value spread across multiple registers. */
3843 gdb_assert (len
> 4 && len
% 4 == 0);
3847 gdb_assert (regnum
!= -1);
3848 gdb_assert (register_size (gdbarch
, regnum
) == 4);
3850 if (!get_frame_register_bytes (frame
, regnum
, 0,
3851 gdb::make_array_view (to
,
3852 register_size (gdbarch
,
3854 optimizedp
, unavailablep
))
3857 regnum
= i386_next_regnum (regnum
);
3862 *optimizedp
= *unavailablep
= 0;
3866 /* Write the contents FROM of a value of type TYPE into register
3867 REGNUM in frame FRAME. */
3870 i386_value_to_register (struct frame_info
*frame
, int regnum
,
3871 struct type
*type
, const gdb_byte
*from
)
3873 int len
= type
->length ();
3875 if (i386_fp_regnum_p (get_frame_arch (frame
), regnum
))
3877 i387_value_to_register (frame
, regnum
, type
, from
);
3881 /* Write a value spread across multiple registers. */
3883 gdb_assert (len
> 4 && len
% 4 == 0);
3887 gdb_assert (regnum
!= -1);
3888 gdb_assert (register_size (get_frame_arch (frame
), regnum
) == 4);
3890 put_frame_register (frame
, regnum
, from
);
3891 regnum
= i386_next_regnum (regnum
);
3897 /* Supply register REGNUM from the buffer specified by GREGS and LEN
3898 in the general-purpose register set REGSET to register cache
3899 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
3902 i386_supply_gregset (const struct regset
*regset
, struct regcache
*regcache
,
3903 int regnum
, const void *gregs
, size_t len
)
3905 struct gdbarch
*gdbarch
= regcache
->arch ();
3906 const i386_gdbarch_tdep
*tdep
= gdbarch_tdep
<i386_gdbarch_tdep
> (gdbarch
);
3907 const gdb_byte
*regs
= (const gdb_byte
*) gregs
;
3910 gdb_assert (len
>= tdep
->sizeof_gregset
);
3912 for (i
= 0; i
< tdep
->gregset_num_regs
; i
++)
3914 if ((regnum
== i
|| regnum
== -1)
3915 && tdep
->gregset_reg_offset
[i
] != -1)
3916 regcache
->raw_supply (i
, regs
+ tdep
->gregset_reg_offset
[i
]);
3920 /* Collect register REGNUM from the register cache REGCACHE and store
3921 it in the buffer specified by GREGS and LEN as described by the
3922 general-purpose register set REGSET. If REGNUM is -1, do this for
3923 all registers in REGSET. */
3926 i386_collect_gregset (const struct regset
*regset
,
3927 const struct regcache
*regcache
,
3928 int regnum
, void *gregs
, size_t len
)
3930 struct gdbarch
*gdbarch
= regcache
->arch ();
3931 const i386_gdbarch_tdep
*tdep
= gdbarch_tdep
<i386_gdbarch_tdep
> (gdbarch
);
3932 gdb_byte
*regs
= (gdb_byte
*) gregs
;
3935 gdb_assert (len
>= tdep
->sizeof_gregset
);
3937 for (i
= 0; i
< tdep
->gregset_num_regs
; i
++)
3939 if ((regnum
== i
|| regnum
== -1)
3940 && tdep
->gregset_reg_offset
[i
] != -1)
3941 regcache
->raw_collect (i
, regs
+ tdep
->gregset_reg_offset
[i
]);
3945 /* Supply register REGNUM from the buffer specified by FPREGS and LEN
3946 in the floating-point register set REGSET to register cache
3947 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
3950 i386_supply_fpregset (const struct regset
*regset
, struct regcache
*regcache
,
3951 int regnum
, const void *fpregs
, size_t len
)
3953 struct gdbarch
*gdbarch
= regcache
->arch ();
3954 const i386_gdbarch_tdep
*tdep
= gdbarch_tdep
<i386_gdbarch_tdep
> (gdbarch
);
3956 if (len
== I387_SIZEOF_FXSAVE
)
3958 i387_supply_fxsave (regcache
, regnum
, fpregs
);
3962 gdb_assert (len
>= tdep
->sizeof_fpregset
);
3963 i387_supply_fsave (regcache
, regnum
, fpregs
);
3966 /* Collect register REGNUM from the register cache REGCACHE and store
3967 it in the buffer specified by FPREGS and LEN as described by the
3968 floating-point register set REGSET. If REGNUM is -1, do this for
3969 all registers in REGSET. */
3972 i386_collect_fpregset (const struct regset
*regset
,
3973 const struct regcache
*regcache
,
3974 int regnum
, void *fpregs
, size_t len
)
3976 struct gdbarch
*gdbarch
= regcache
->arch ();
3977 const i386_gdbarch_tdep
*tdep
= gdbarch_tdep
<i386_gdbarch_tdep
> (gdbarch
);
3979 if (len
== I387_SIZEOF_FXSAVE
)
3981 i387_collect_fxsave (regcache
, regnum
, fpregs
);
3985 gdb_assert (len
>= tdep
->sizeof_fpregset
);
3986 i387_collect_fsave (regcache
, regnum
, fpregs
);
3989 /* Register set definitions. */
3991 const struct regset i386_gregset
=
3993 NULL
, i386_supply_gregset
, i386_collect_gregset
3996 const struct regset i386_fpregset
=
3998 NULL
, i386_supply_fpregset
, i386_collect_fpregset
4001 /* Default iterator over core file register note sections. */
4004 i386_iterate_over_regset_sections (struct gdbarch
*gdbarch
,
4005 iterate_over_regset_sections_cb
*cb
,
4007 const struct regcache
*regcache
)
4009 i386_gdbarch_tdep
*tdep
= gdbarch_tdep
<i386_gdbarch_tdep
> (gdbarch
);
4011 cb (".reg", tdep
->sizeof_gregset
, tdep
->sizeof_gregset
, &i386_gregset
, NULL
,
4013 if (tdep
->sizeof_fpregset
)
4014 cb (".reg2", tdep
->sizeof_fpregset
, tdep
->sizeof_fpregset
, tdep
->fpregset
,
4019 /* Stuff for WIN32 PE style DLL's but is pretty generic really. */
4022 i386_pe_skip_trampoline_code (struct frame_info
*frame
,
4023 CORE_ADDR pc
, char *name
)
4025 struct gdbarch
*gdbarch
= get_frame_arch (frame
);
4026 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
4029 if (pc
&& read_memory_unsigned_integer (pc
, 2, byte_order
) == 0x25ff)
4031 unsigned long indirect
=
4032 read_memory_unsigned_integer (pc
+ 2, 4, byte_order
);
4033 struct minimal_symbol
*indsym
=
4034 indirect
? lookup_minimal_symbol_by_pc (indirect
).minsym
: 0;
4035 const char *symname
= indsym
? indsym
->linkage_name () : 0;
4039 if (startswith (symname
, "__imp_")
4040 || startswith (symname
, "_imp_"))
4042 read_memory_unsigned_integer (indirect
, 4, byte_order
);
4045 return 0; /* Not a trampoline. */
4049 /* Return whether the THIS_FRAME corresponds to a sigtramp
4053 i386_sigtramp_p (struct frame_info
*this_frame
)
4055 CORE_ADDR pc
= get_frame_pc (this_frame
);
4058 find_pc_partial_function (pc
, &name
, NULL
, NULL
);
4059 return (name
&& strcmp ("_sigtramp", name
) == 0);
4063 /* We have two flavours of disassembly. The machinery on this page
4064 deals with switching between those. */
4067 i386_print_insn (bfd_vma pc
, struct disassemble_info
*info
)
4069 gdb_assert (disassembly_flavor
== att_flavor
4070 || disassembly_flavor
== intel_flavor
);
4072 info
->disassembler_options
= disassembly_flavor
;
4074 return default_print_insn (pc
, info
);
4078 /* There are a few i386 architecture variants that differ only
4079 slightly from the generic i386 target. For now, we don't give them
4080 their own source file, but include them here. As a consequence,
4081 they'll always be included. */
4083 /* System V Release 4 (SVR4). */
4085 /* Return whether THIS_FRAME corresponds to a SVR4 sigtramp
4089 i386_svr4_sigtramp_p (struct frame_info
*this_frame
)
4091 CORE_ADDR pc
= get_frame_pc (this_frame
);
4094 /* The origin of these symbols is currently unknown. */
4095 find_pc_partial_function (pc
, &name
, NULL
, NULL
);
4096 return (name
&& (strcmp ("_sigreturn", name
) == 0
4097 || strcmp ("sigvechandler", name
) == 0));
4100 /* Assuming THIS_FRAME is for a SVR4 sigtramp routine, return the
4101 address of the associated sigcontext (ucontext) structure. */
4104 i386_svr4_sigcontext_addr (struct frame_info
*this_frame
)
4106 struct gdbarch
*gdbarch
= get_frame_arch (this_frame
);
4107 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
4111 get_frame_register (this_frame
, I386_ESP_REGNUM
, buf
);
4112 sp
= extract_unsigned_integer (buf
, 4, byte_order
);
4114 return read_memory_unsigned_integer (sp
+ 8, 4, byte_order
);
4119 /* Implementation of `gdbarch_stap_is_single_operand', as defined in
4123 i386_stap_is_single_operand (struct gdbarch
*gdbarch
, const char *s
)
4125 return (*s
== '$' /* Literal number. */
4126 || (isdigit (*s
) && s
[1] == '(' && s
[2] == '%') /* Displacement. */
4127 || (*s
== '(' && s
[1] == '%') /* Register indirection. */
4128 || (*s
== '%' && isalpha (s
[1]))); /* Register access. */
4131 /* Helper function for i386_stap_parse_special_token.
4133 This function parses operands of the form `-8+3+1(%rbp)', which
4134 must be interpreted as `*(-8 + 3 - 1 + (void *) $eax)'.
4136 Return true if the operand was parsed successfully, false
4139 static expr::operation_up
4140 i386_stap_parse_special_token_triplet (struct gdbarch
*gdbarch
,
4141 struct stap_parse_info
*p
)
4143 const char *s
= p
->arg
;
4145 if (isdigit (*s
) || *s
== '-' || *s
== '+')
4149 long displacements
[3];
4154 got_minus
[0] = false;
4160 got_minus
[0] = true;
4163 if (!isdigit ((unsigned char) *s
))
4166 displacements
[0] = strtol (s
, &endp
, 10);
4169 if (*s
!= '+' && *s
!= '-')
4171 /* We are not dealing with a triplet. */
4175 got_minus
[1] = false;
4181 got_minus
[1] = true;
4184 if (!isdigit ((unsigned char) *s
))
4187 displacements
[1] = strtol (s
, &endp
, 10);
4190 if (*s
!= '+' && *s
!= '-')
4192 /* We are not dealing with a triplet. */
4196 got_minus
[2] = false;
4202 got_minus
[2] = true;
4205 if (!isdigit ((unsigned char) *s
))
4208 displacements
[2] = strtol (s
, &endp
, 10);
4211 if (*s
!= '(' || s
[1] != '%')
4217 while (isalnum (*s
))
4223 len
= s
- start
- 1;
4224 std::string
regname (start
, len
);
4226 if (user_reg_map_name_to_regnum (gdbarch
, regname
.c_str (), len
) == -1)
4227 error (_("Invalid register name `%s' on expression `%s'."),
4228 regname
.c_str (), p
->saved_arg
);
4231 for (i
= 0; i
< 3; i
++)
4233 LONGEST this_val
= displacements
[i
];
4235 this_val
= -this_val
;
4241 using namespace expr
;
4243 struct type
*long_type
= builtin_type (gdbarch
)->builtin_long
;
4245 = make_operation
<long_const_operation
> (long_type
, value
);
4248 = make_operation
<register_operation
> (std::move (regname
));
4249 struct type
*void_ptr
= builtin_type (gdbarch
)->builtin_data_ptr
;
4250 reg
= make_operation
<unop_cast_operation
> (std::move (reg
), void_ptr
);
4253 = make_operation
<add_operation
> (std::move (reg
), std::move (offset
));
4254 struct type
*arg_ptr_type
= lookup_pointer_type (p
->arg_type
);
4255 sum
= make_operation
<unop_cast_operation
> (std::move (sum
),
4257 return make_operation
<unop_ind_operation
> (std::move (sum
));
4263 /* Helper function for i386_stap_parse_special_token.
4265 This function parses operands of the form `register base +
4266 (register index * size) + offset', as represented in
4267 `(%rcx,%rax,8)', or `[OFFSET](BASE_REG,INDEX_REG[,SIZE])'.
4269 Return true if the operand was parsed successfully, false
4272 static expr::operation_up
4273 i386_stap_parse_special_token_three_arg_disp (struct gdbarch
*gdbarch
,
4274 struct stap_parse_info
*p
)
4276 const char *s
= p
->arg
;
4278 if (isdigit (*s
) || *s
== '(' || *s
== '-' || *s
== '+')
4280 bool offset_minus
= false;
4282 bool size_minus
= false;
4293 offset_minus
= true;
4296 if (offset_minus
&& !isdigit (*s
))
4303 offset
= strtol (s
, &endp
, 10);
4307 if (*s
!= '(' || s
[1] != '%')
4313 while (isalnum (*s
))
4316 if (*s
!= ',' || s
[1] != '%')
4319 len_base
= s
- start
;
4320 std::string
base (start
, len_base
);
4322 if (user_reg_map_name_to_regnum (gdbarch
, base
.c_str (), len_base
) == -1)
4323 error (_("Invalid register name `%s' on expression `%s'."),
4324 base
.c_str (), p
->saved_arg
);
4329 while (isalnum (*s
))
4332 len_index
= s
- start
;
4333 std::string
index (start
, len_index
);
4335 if (user_reg_map_name_to_regnum (gdbarch
, index
.c_str (),
4337 error (_("Invalid register name `%s' on expression `%s'."),
4338 index
.c_str (), p
->saved_arg
);
4340 if (*s
!= ',' && *s
!= ')')
4356 size
= strtol (s
, &endp
, 10);
4366 using namespace expr
;
4368 struct type
*long_type
= builtin_type (gdbarch
)->builtin_long
;
4369 operation_up reg
= make_operation
<register_operation
> (std::move (base
));
4376 = make_operation
<long_const_operation
> (long_type
, offset
);
4377 reg
= make_operation
<add_operation
> (std::move (reg
),
4381 operation_up ind_reg
4382 = make_operation
<register_operation
> (std::move (index
));
4389 = make_operation
<long_const_operation
> (long_type
, size
);
4390 ind_reg
= make_operation
<mul_operation
> (std::move (ind_reg
),
4395 = make_operation
<add_operation
> (std::move (reg
),
4396 std::move (ind_reg
));
4398 struct type
*arg_ptr_type
= lookup_pointer_type (p
->arg_type
);
4399 sum
= make_operation
<unop_cast_operation
> (std::move (sum
),
4401 return make_operation
<unop_ind_operation
> (std::move (sum
));
4407 /* Implementation of `gdbarch_stap_parse_special_token', as defined in
4411 i386_stap_parse_special_token (struct gdbarch
*gdbarch
,
4412 struct stap_parse_info
*p
)
4414 /* The special tokens to be parsed here are:
4416 - `register base + (register index * size) + offset', as represented
4417 in `(%rcx,%rax,8)', or `[OFFSET](BASE_REG,INDEX_REG[,SIZE])'.
4419 - Operands of the form `-8+3+1(%rbp)', which must be interpreted as
4420 `*(-8 + 3 - 1 + (void *) $eax)'. */
4422 expr::operation_up result
4423 = i386_stap_parse_special_token_triplet (gdbarch
, p
);
4425 if (result
== nullptr)
4426 result
= i386_stap_parse_special_token_three_arg_disp (gdbarch
, p
);
4431 /* Implementation of 'gdbarch_stap_adjust_register', as defined in
4435 i386_stap_adjust_register (struct gdbarch
*gdbarch
, struct stap_parse_info
*p
,
4436 const std::string
®name
, int regnum
)
4438 static const std::unordered_set
<std::string
> reg_assoc
4439 = { "ax", "bx", "cx", "dx",
4440 "si", "di", "bp", "sp" };
4442 /* If we are dealing with a register whose size is less than the size
4443 specified by the "[-]N@" prefix, and it is one of the registers that
4444 we know has an extended variant available, then use the extended
4445 version of the register instead. */
4446 if (register_size (gdbarch
, regnum
) < p
->arg_type
->length ()
4447 && reg_assoc
.find (regname
) != reg_assoc
.end ())
4448 return "e" + regname
;
4450 /* Otherwise, just use the requested register. */
4456 /* gdbarch gnu_triplet_regexp method. Both arches are acceptable as GDB always
4457 also supplies -m64 or -m32 by gdbarch_gcc_target_options. */
4460 i386_gnu_triplet_regexp (struct gdbarch
*gdbarch
)
4462 return "(x86_64|i.86)";
4467 /* Implement the "in_indirect_branch_thunk" gdbarch function. */
4470 i386_in_indirect_branch_thunk (struct gdbarch
*gdbarch
, CORE_ADDR pc
)
4472 return x86_in_indirect_branch_thunk (pc
, i386_register_names
,
4473 I386_EAX_REGNUM
, I386_EIP_REGNUM
);
4479 i386_elf_init_abi (struct gdbarch_info info
, struct gdbarch
*gdbarch
)
4481 static const char *const stap_integer_prefixes
[] = { "$", NULL
};
4482 static const char *const stap_register_prefixes
[] = { "%", NULL
};
4483 static const char *const stap_register_indirection_prefixes
[] = { "(",
4485 static const char *const stap_register_indirection_suffixes
[] = { ")",
4488 /* We typically use stabs-in-ELF with the SVR4 register numbering. */
4489 set_gdbarch_stab_reg_to_regnum (gdbarch
, i386_svr4_reg_to_regnum
);
4491 /* Registering SystemTap handlers. */
4492 set_gdbarch_stap_integer_prefixes (gdbarch
, stap_integer_prefixes
);
4493 set_gdbarch_stap_register_prefixes (gdbarch
, stap_register_prefixes
);
4494 set_gdbarch_stap_register_indirection_prefixes (gdbarch
,
4495 stap_register_indirection_prefixes
);
4496 set_gdbarch_stap_register_indirection_suffixes (gdbarch
,
4497 stap_register_indirection_suffixes
);
4498 set_gdbarch_stap_is_single_operand (gdbarch
,
4499 i386_stap_is_single_operand
);
4500 set_gdbarch_stap_parse_special_token (gdbarch
,
4501 i386_stap_parse_special_token
);
4502 set_gdbarch_stap_adjust_register (gdbarch
,
4503 i386_stap_adjust_register
);
4505 set_gdbarch_in_indirect_branch_thunk (gdbarch
,
4506 i386_in_indirect_branch_thunk
);
4509 /* System V Release 4 (SVR4). */
4512 i386_svr4_init_abi (struct gdbarch_info info
, struct gdbarch
*gdbarch
)
4514 i386_gdbarch_tdep
*tdep
= gdbarch_tdep
<i386_gdbarch_tdep
> (gdbarch
);
4516 /* System V Release 4 uses ELF. */
4517 i386_elf_init_abi (info
, gdbarch
);
4519 /* System V Release 4 has shared libraries. */
4520 set_gdbarch_skip_trampoline_code (gdbarch
, find_solib_trampoline_target
);
4522 tdep
->sigtramp_p
= i386_svr4_sigtramp_p
;
4523 tdep
->sigcontext_addr
= i386_svr4_sigcontext_addr
;
4524 tdep
->sc_pc_offset
= 36 + 14 * 4;
4525 tdep
->sc_sp_offset
= 36 + 17 * 4;
4527 tdep
->jb_pc_offset
= 20;
4532 /* i386 register groups. In addition to the normal groups, add "mmx"
4535 static const reggroup
*i386_sse_reggroup
;
4536 static const reggroup
*i386_mmx_reggroup
;
4539 i386_init_reggroups (void)
4541 i386_sse_reggroup
= reggroup_new ("sse", USER_REGGROUP
);
4542 i386_mmx_reggroup
= reggroup_new ("mmx", USER_REGGROUP
);
4546 i386_add_reggroups (struct gdbarch
*gdbarch
)
4548 reggroup_add (gdbarch
, i386_sse_reggroup
);
4549 reggroup_add (gdbarch
, i386_mmx_reggroup
);
4553 i386_register_reggroup_p (struct gdbarch
*gdbarch
, int regnum
,
4554 const struct reggroup
*group
)
4556 const i386_gdbarch_tdep
*tdep
= gdbarch_tdep
<i386_gdbarch_tdep
> (gdbarch
);
4557 int fp_regnum_p
, mmx_regnum_p
, xmm_regnum_p
, mxcsr_regnum_p
,
4558 ymm_regnum_p
, ymmh_regnum_p
, ymm_avx512_regnum_p
, ymmh_avx512_regnum_p
,
4559 bndr_regnum_p
, bnd_regnum_p
, zmm_regnum_p
, zmmh_regnum_p
,
4560 mpx_ctrl_regnum_p
, xmm_avx512_regnum_p
,
4561 avx512_p
, avx_p
, sse_p
, pkru_regnum_p
;
4563 /* Don't include pseudo registers, except for MMX, in any register
4565 if (i386_byte_regnum_p (gdbarch
, regnum
))
4568 if (i386_word_regnum_p (gdbarch
, regnum
))
4571 if (i386_dword_regnum_p (gdbarch
, regnum
))
4574 mmx_regnum_p
= i386_mmx_regnum_p (gdbarch
, regnum
);
4575 if (group
== i386_mmx_reggroup
)
4576 return mmx_regnum_p
;
4578 pkru_regnum_p
= i386_pkru_regnum_p(gdbarch
, regnum
);
4579 xmm_regnum_p
= i386_xmm_regnum_p (gdbarch
, regnum
);
4580 xmm_avx512_regnum_p
= i386_xmm_avx512_regnum_p (gdbarch
, regnum
);
4581 mxcsr_regnum_p
= i386_mxcsr_regnum_p (gdbarch
, regnum
);
4582 if (group
== i386_sse_reggroup
)
4583 return xmm_regnum_p
|| xmm_avx512_regnum_p
|| mxcsr_regnum_p
;
4585 ymm_regnum_p
= i386_ymm_regnum_p (gdbarch
, regnum
);
4586 ymm_avx512_regnum_p
= i386_ymm_avx512_regnum_p (gdbarch
, regnum
);
4587 zmm_regnum_p
= i386_zmm_regnum_p (gdbarch
, regnum
);
4589 avx512_p
= ((tdep
->xcr0
& X86_XSTATE_AVX_AVX512_MASK
)
4590 == X86_XSTATE_AVX_AVX512_MASK
);
4591 avx_p
= ((tdep
->xcr0
& X86_XSTATE_AVX_AVX512_MASK
)
4592 == X86_XSTATE_AVX_MASK
) && !avx512_p
;
4593 sse_p
= ((tdep
->xcr0
& X86_XSTATE_AVX_AVX512_MASK
)
4594 == X86_XSTATE_SSE_MASK
) && !avx512_p
&& ! avx_p
;
4596 if (group
== vector_reggroup
)
4597 return (mmx_regnum_p
4598 || (zmm_regnum_p
&& avx512_p
)
4599 || ((ymm_regnum_p
|| ymm_avx512_regnum_p
) && avx_p
)
4600 || ((xmm_regnum_p
|| xmm_avx512_regnum_p
) && sse_p
)
4603 fp_regnum_p
= (i386_fp_regnum_p (gdbarch
, regnum
)
4604 || i386_fpc_regnum_p (gdbarch
, regnum
));
4605 if (group
== float_reggroup
)
4608 /* For "info reg all", don't include upper YMM registers nor XMM
4609 registers when AVX is supported. */
4610 ymmh_regnum_p
= i386_ymmh_regnum_p (gdbarch
, regnum
);
4611 ymmh_avx512_regnum_p
= i386_ymmh_avx512_regnum_p (gdbarch
, regnum
);
4612 zmmh_regnum_p
= i386_zmmh_regnum_p (gdbarch
, regnum
);
4613 if (group
== all_reggroup
4614 && (((xmm_regnum_p
|| xmm_avx512_regnum_p
) && !sse_p
)
4615 || ((ymm_regnum_p
|| ymm_avx512_regnum_p
) && !avx_p
)
4617 || ymmh_avx512_regnum_p
4621 bnd_regnum_p
= i386_bnd_regnum_p (gdbarch
, regnum
);
4622 if (group
== all_reggroup
4623 && ((bnd_regnum_p
&& (tdep
->xcr0
& X86_XSTATE_MPX_MASK
))))
4624 return bnd_regnum_p
;
4626 bndr_regnum_p
= i386_bndr_regnum_p (gdbarch
, regnum
);
4627 if (group
== all_reggroup
4628 && ((bndr_regnum_p
&& (tdep
->xcr0
& X86_XSTATE_MPX_MASK
))))
4631 mpx_ctrl_regnum_p
= i386_mpx_ctrl_regnum_p (gdbarch
, regnum
);
4632 if (group
== all_reggroup
4633 && ((mpx_ctrl_regnum_p
&& (tdep
->xcr0
& X86_XSTATE_MPX_MASK
))))
4634 return mpx_ctrl_regnum_p
;
4636 if (group
== general_reggroup
)
4637 return (!fp_regnum_p
4641 && !xmm_avx512_regnum_p
4644 && !ymm_avx512_regnum_p
4645 && !ymmh_avx512_regnum_p
4648 && !mpx_ctrl_regnum_p
4653 return default_register_reggroup_p (gdbarch
, regnum
, group
);
4657 /* Get the ARGIth function argument for the current function. */
4660 i386_fetch_pointer_argument (struct frame_info
*frame
, int argi
,
4663 struct gdbarch
*gdbarch
= get_frame_arch (frame
);
4664 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
4665 CORE_ADDR sp
= get_frame_register_unsigned (frame
, I386_ESP_REGNUM
);
4666 return read_memory_unsigned_integer (sp
+ (4 * (argi
+ 1)), 4, byte_order
);
4669 #define PREFIX_REPZ 0x01
4670 #define PREFIX_REPNZ 0x02
4671 #define PREFIX_LOCK 0x04
4672 #define PREFIX_DATA 0x08
4673 #define PREFIX_ADDR 0x10
4685 /* i386 arith/logic operations */
4698 struct i386_record_s
4700 struct gdbarch
*gdbarch
;
4701 struct regcache
*regcache
;
4702 CORE_ADDR orig_addr
;
4708 uint8_t mod
, reg
, rm
;
4717 /* Parse the "modrm" part of the memory address irp->addr points at.
4718 Returns -1 if something goes wrong, 0 otherwise. */
4721 i386_record_modrm (struct i386_record_s
*irp
)
4723 struct gdbarch
*gdbarch
= irp
->gdbarch
;
4725 if (record_read_memory (gdbarch
, irp
->addr
, &irp
->modrm
, 1))
4729 irp
->mod
= (irp
->modrm
>> 6) & 3;
4730 irp
->reg
= (irp
->modrm
>> 3) & 7;
4731 irp
->rm
= irp
->modrm
& 7;
4736 /* Extract the memory address that the current instruction writes to,
4737 and return it in *ADDR. Return -1 if something goes wrong. */
4740 i386_record_lea_modrm_addr (struct i386_record_s
*irp
, uint64_t *addr
)
4742 struct gdbarch
*gdbarch
= irp
->gdbarch
;
4743 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
4748 if (irp
->aflag
|| irp
->regmap
[X86_RECORD_R8_REGNUM
])
4755 uint8_t base
= irp
->rm
;
4760 if (record_read_memory (gdbarch
, irp
->addr
, &byte
, 1))
4763 scale
= (byte
>> 6) & 3;
4764 index
= ((byte
>> 3) & 7) | irp
->rex_x
;
4772 if ((base
& 7) == 5)
4775 if (record_read_memory (gdbarch
, irp
->addr
, buf
, 4))
4778 *addr
= extract_signed_integer (buf
, 4, byte_order
);
4779 if (irp
->regmap
[X86_RECORD_R8_REGNUM
] && !havesib
)
4780 *addr
+= irp
->addr
+ irp
->rip_offset
;
4784 if (record_read_memory (gdbarch
, irp
->addr
, buf
, 1))
4787 *addr
= (int8_t) buf
[0];
4790 if (record_read_memory (gdbarch
, irp
->addr
, buf
, 4))
4792 *addr
= extract_signed_integer (buf
, 4, byte_order
);
4800 if (base
== 4 && irp
->popl_esp_hack
)
4801 *addr
+= irp
->popl_esp_hack
;
4802 regcache_raw_read_unsigned (irp
->regcache
, irp
->regmap
[base
],
4805 if (irp
->aflag
== 2)
4810 *addr
= (uint32_t) (offset64
+ *addr
);
4812 if (havesib
&& (index
!= 4 || scale
!= 0))
4814 regcache_raw_read_unsigned (irp
->regcache
, irp
->regmap
[index
],
4816 if (irp
->aflag
== 2)
4817 *addr
+= offset64
<< scale
;
4819 *addr
= (uint32_t) (*addr
+ (offset64
<< scale
));
4824 /* Since we are in 64-bit mode with ADDR32 prefix, zero-extend
4825 address from 32-bit to 64-bit. */
4826 *addr
= (uint32_t) *addr
;
4837 if (record_read_memory (gdbarch
, irp
->addr
, buf
, 2))
4840 *addr
= extract_signed_integer (buf
, 2, byte_order
);
4846 if (record_read_memory (gdbarch
, irp
->addr
, buf
, 1))
4849 *addr
= (int8_t) buf
[0];
4852 if (record_read_memory (gdbarch
, irp
->addr
, buf
, 2))
4855 *addr
= extract_signed_integer (buf
, 2, byte_order
);
4862 regcache_raw_read_unsigned (irp
->regcache
,
4863 irp
->regmap
[X86_RECORD_REBX_REGNUM
],
4865 *addr
= (uint32_t) (*addr
+ offset64
);
4866 regcache_raw_read_unsigned (irp
->regcache
,
4867 irp
->regmap
[X86_RECORD_RESI_REGNUM
],
4869 *addr
= (uint32_t) (*addr
+ offset64
);
4872 regcache_raw_read_unsigned (irp
->regcache
,
4873 irp
->regmap
[X86_RECORD_REBX_REGNUM
],
4875 *addr
= (uint32_t) (*addr
+ offset64
);
4876 regcache_raw_read_unsigned (irp
->regcache
,
4877 irp
->regmap
[X86_RECORD_REDI_REGNUM
],
4879 *addr
= (uint32_t) (*addr
+ offset64
);
4882 regcache_raw_read_unsigned (irp
->regcache
,
4883 irp
->regmap
[X86_RECORD_REBP_REGNUM
],
4885 *addr
= (uint32_t) (*addr
+ offset64
);
4886 regcache_raw_read_unsigned (irp
->regcache
,
4887 irp
->regmap
[X86_RECORD_RESI_REGNUM
],
4889 *addr
= (uint32_t) (*addr
+ offset64
);
4892 regcache_raw_read_unsigned (irp
->regcache
,
4893 irp
->regmap
[X86_RECORD_REBP_REGNUM
],
4895 *addr
= (uint32_t) (*addr
+ offset64
);
4896 regcache_raw_read_unsigned (irp
->regcache
,
4897 irp
->regmap
[X86_RECORD_REDI_REGNUM
],
4899 *addr
= (uint32_t) (*addr
+ offset64
);
4902 regcache_raw_read_unsigned (irp
->regcache
,
4903 irp
->regmap
[X86_RECORD_RESI_REGNUM
],
4905 *addr
= (uint32_t) (*addr
+ offset64
);
4908 regcache_raw_read_unsigned (irp
->regcache
,
4909 irp
->regmap
[X86_RECORD_REDI_REGNUM
],
4911 *addr
= (uint32_t) (*addr
+ offset64
);
4914 regcache_raw_read_unsigned (irp
->regcache
,
4915 irp
->regmap
[X86_RECORD_REBP_REGNUM
],
4917 *addr
= (uint32_t) (*addr
+ offset64
);
4920 regcache_raw_read_unsigned (irp
->regcache
,
4921 irp
->regmap
[X86_RECORD_REBX_REGNUM
],
4923 *addr
= (uint32_t) (*addr
+ offset64
);
4933 /* Record the address and contents of the memory that will be changed
4934 by the current instruction. Return -1 if something goes wrong, 0
4938 i386_record_lea_modrm (struct i386_record_s
*irp
)
4940 struct gdbarch
*gdbarch
= irp
->gdbarch
;
4943 if (irp
->override
>= 0)
4945 if (record_full_memory_query
)
4948 Process record ignores the memory change of instruction at address %s\n\
4949 because it can't get the value of the segment register.\n\
4950 Do you want to stop the program?"),
4951 paddress (gdbarch
, irp
->orig_addr
)))
4958 if (i386_record_lea_modrm_addr (irp
, &addr
))
4961 if (record_full_arch_list_add_mem (addr
, 1 << irp
->ot
))
4967 /* Record the effects of a push operation. Return -1 if something
4968 goes wrong, 0 otherwise. */
4971 i386_record_push (struct i386_record_s
*irp
, int size
)
4975 if (record_full_arch_list_add_reg (irp
->regcache
,
4976 irp
->regmap
[X86_RECORD_RESP_REGNUM
]))
4978 regcache_raw_read_unsigned (irp
->regcache
,
4979 irp
->regmap
[X86_RECORD_RESP_REGNUM
],
4981 if (record_full_arch_list_add_mem ((CORE_ADDR
) addr
- size
, size
))
4988 /* Defines contents to record. */
4989 #define I386_SAVE_FPU_REGS 0xfffd
4990 #define I386_SAVE_FPU_ENV 0xfffe
4991 #define I386_SAVE_FPU_ENV_REG_STACK 0xffff
4993 /* Record the values of the floating point registers which will be
4994 changed by the current instruction. Returns -1 if something is
4995 wrong, 0 otherwise. */
4997 static int i386_record_floats (struct gdbarch
*gdbarch
,
4998 struct i386_record_s
*ir
,
5001 i386_gdbarch_tdep
*tdep
= gdbarch_tdep
<i386_gdbarch_tdep
> (gdbarch
);
5004 /* Oza: Because of floating point insn push/pop of fpu stack is going to
5005 happen. Currently we store st0-st7 registers, but we need not store all
5006 registers all the time, in future we use ftag register and record only
5007 those who are not marked as an empty. */
5009 if (I386_SAVE_FPU_REGS
== iregnum
)
5011 for (i
= I387_ST0_REGNUM (tdep
); i
<= I387_ST0_REGNUM (tdep
) + 7; i
++)
5013 if (record_full_arch_list_add_reg (ir
->regcache
, i
))
5017 else if (I386_SAVE_FPU_ENV
== iregnum
)
5019 for (i
= I387_FCTRL_REGNUM (tdep
); i
<= I387_FOP_REGNUM (tdep
); i
++)
5021 if (record_full_arch_list_add_reg (ir
->regcache
, i
))
5025 else if (I386_SAVE_FPU_ENV_REG_STACK
== iregnum
)
5027 for (i
= I387_ST0_REGNUM (tdep
); i
<= I387_FOP_REGNUM (tdep
); i
++)
5028 if (record_full_arch_list_add_reg (ir
->regcache
, i
))
5031 else if ((iregnum
>= I387_ST0_REGNUM (tdep
)) &&
5032 (iregnum
<= I387_FOP_REGNUM (tdep
)))
5034 if (record_full_arch_list_add_reg (ir
->regcache
,iregnum
))
5039 /* Parameter error. */
5042 if(I386_SAVE_FPU_ENV
!= iregnum
)
5044 for (i
= I387_FCTRL_REGNUM (tdep
); i
<= I387_FOP_REGNUM (tdep
); i
++)
5046 if (record_full_arch_list_add_reg (ir
->regcache
, i
))
5053 /* Parse the current instruction, and record the values of the
5054 registers and memory that will be changed by the current
5055 instruction. Returns -1 if something goes wrong, 0 otherwise. */
5057 #define I386_RECORD_FULL_ARCH_LIST_ADD_REG(regnum) \
5058 record_full_arch_list_add_reg (ir.regcache, ir.regmap[(regnum)])
5061 i386_process_record (struct gdbarch
*gdbarch
, struct regcache
*regcache
,
5062 CORE_ADDR input_addr
)
5064 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
5070 gdb_byte buf
[I386_MAX_REGISTER_SIZE
];
5071 struct i386_record_s ir
;
5072 i386_gdbarch_tdep
*tdep
= gdbarch_tdep
<i386_gdbarch_tdep
> (gdbarch
);
5076 memset (&ir
, 0, sizeof (struct i386_record_s
));
5077 ir
.regcache
= regcache
;
5078 ir
.addr
= input_addr
;
5079 ir
.orig_addr
= input_addr
;
5083 ir
.popl_esp_hack
= 0;
5084 ir
.regmap
= tdep
->record_regmap
;
5085 ir
.gdbarch
= gdbarch
;
5087 if (record_debug
> 1)
5088 gdb_printf (gdb_stdlog
, "Process record: i386_process_record "
5090 paddress (gdbarch
, ir
.addr
));
5095 if (record_read_memory (gdbarch
, ir
.addr
, &opcode8
, 1))
5098 switch (opcode8
) /* Instruction prefixes */
5100 case REPE_PREFIX_OPCODE
:
5101 prefixes
|= PREFIX_REPZ
;
5103 case REPNE_PREFIX_OPCODE
:
5104 prefixes
|= PREFIX_REPNZ
;
5106 case LOCK_PREFIX_OPCODE
:
5107 prefixes
|= PREFIX_LOCK
;
5109 case CS_PREFIX_OPCODE
:
5110 ir
.override
= X86_RECORD_CS_REGNUM
;
5112 case SS_PREFIX_OPCODE
:
5113 ir
.override
= X86_RECORD_SS_REGNUM
;
5115 case DS_PREFIX_OPCODE
:
5116 ir
.override
= X86_RECORD_DS_REGNUM
;
5118 case ES_PREFIX_OPCODE
:
5119 ir
.override
= X86_RECORD_ES_REGNUM
;
5121 case FS_PREFIX_OPCODE
:
5122 ir
.override
= X86_RECORD_FS_REGNUM
;
5124 case GS_PREFIX_OPCODE
:
5125 ir
.override
= X86_RECORD_GS_REGNUM
;
5127 case DATA_PREFIX_OPCODE
:
5128 prefixes
|= PREFIX_DATA
;
5130 case ADDR_PREFIX_OPCODE
:
5131 prefixes
|= PREFIX_ADDR
;
5133 case 0x40: /* i386 inc %eax */
5134 case 0x41: /* i386 inc %ecx */
5135 case 0x42: /* i386 inc %edx */
5136 case 0x43: /* i386 inc %ebx */
5137 case 0x44: /* i386 inc %esp */
5138 case 0x45: /* i386 inc %ebp */
5139 case 0x46: /* i386 inc %esi */
5140 case 0x47: /* i386 inc %edi */
5141 case 0x48: /* i386 dec %eax */
5142 case 0x49: /* i386 dec %ecx */
5143 case 0x4a: /* i386 dec %edx */
5144 case 0x4b: /* i386 dec %ebx */
5145 case 0x4c: /* i386 dec %esp */
5146 case 0x4d: /* i386 dec %ebp */
5147 case 0x4e: /* i386 dec %esi */
5148 case 0x4f: /* i386 dec %edi */
5149 if (ir
.regmap
[X86_RECORD_R8_REGNUM
]) /* 64 bit target */
5152 rex_w
= (opcode8
>> 3) & 1;
5153 rex_r
= (opcode8
& 0x4) << 1;
5154 ir
.rex_x
= (opcode8
& 0x2) << 2;
5155 ir
.rex_b
= (opcode8
& 0x1) << 3;
5157 else /* 32 bit target */
5166 if (ir
.regmap
[X86_RECORD_R8_REGNUM
] && rex_w
== 1)
5172 if (prefixes
& PREFIX_DATA
)
5175 if (prefixes
& PREFIX_ADDR
)
5177 else if (ir
.regmap
[X86_RECORD_R8_REGNUM
])
5180 /* Now check op code. */
5181 opcode
= (uint32_t) opcode8
;
5186 if (record_read_memory (gdbarch
, ir
.addr
, &opcode8
, 1))
5189 opcode
= (uint32_t) opcode8
| 0x0f00;
5193 case 0x00: /* arith & logic */
5241 if (((opcode
>> 3) & 7) != OP_CMPL
)
5243 if ((opcode
& 1) == 0)
5246 ir
.ot
= ir
.dflag
+ OT_WORD
;
5248 switch ((opcode
>> 1) & 3)
5250 case 0: /* OP Ev, Gv */
5251 if (i386_record_modrm (&ir
))
5255 if (i386_record_lea_modrm (&ir
))
5261 if (ir
.ot
== OT_BYTE
&& !ir
.regmap
[X86_RECORD_R8_REGNUM
])
5263 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir
.rm
);
5266 case 1: /* OP Gv, Ev */
5267 if (i386_record_modrm (&ir
))
5270 if (ir
.ot
== OT_BYTE
&& !ir
.regmap
[X86_RECORD_R8_REGNUM
])
5272 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir
.reg
);
5274 case 2: /* OP A, Iv */
5275 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM
);
5279 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
5282 case 0x80: /* GRP1 */
5286 if (i386_record_modrm (&ir
))
5289 if (ir
.reg
!= OP_CMPL
)
5291 if ((opcode
& 1) == 0)
5294 ir
.ot
= ir
.dflag
+ OT_WORD
;
5301 ir
.rip_offset
= (ir
.ot
> OT_LONG
) ? 4 : (1 << ir
.ot
);
5302 if (i386_record_lea_modrm (&ir
))
5306 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir
.rm
| ir
.rex_b
);
5308 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
5311 case 0x40: /* inc */
5320 case 0x48: /* dec */
5329 I386_RECORD_FULL_ARCH_LIST_ADD_REG (opcode
& 7);
5330 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
5333 case 0xf6: /* GRP3 */
5335 if ((opcode
& 1) == 0)
5338 ir
.ot
= ir
.dflag
+ OT_WORD
;
5339 if (i386_record_modrm (&ir
))
5342 if (ir
.mod
!= 3 && ir
.reg
== 0)
5343 ir
.rip_offset
= (ir
.ot
> OT_LONG
) ? 4 : (1 << ir
.ot
);
5348 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
5354 if (i386_record_lea_modrm (&ir
))
5360 if (ir
.ot
== OT_BYTE
&& !ir
.regmap
[X86_RECORD_R8_REGNUM
])
5362 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir
.rm
);
5364 if (ir
.reg
== 3) /* neg */
5365 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
5371 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM
);
5372 if (ir
.ot
!= OT_BYTE
)
5373 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM
);
5374 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
5378 opcode
= opcode
<< 8 | ir
.modrm
;
5384 case 0xfe: /* GRP4 */
5385 case 0xff: /* GRP5 */
5386 if (i386_record_modrm (&ir
))
5388 if (ir
.reg
>= 2 && opcode
== 0xfe)
5391 opcode
= opcode
<< 8 | ir
.modrm
;
5398 if ((opcode
& 1) == 0)
5401 ir
.ot
= ir
.dflag
+ OT_WORD
;
5404 if (i386_record_lea_modrm (&ir
))
5410 if (ir
.ot
== OT_BYTE
&& !ir
.regmap
[X86_RECORD_R8_REGNUM
])
5412 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir
.rm
);
5414 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
5417 if (ir
.regmap
[X86_RECORD_R8_REGNUM
] && ir
.dflag
)
5419 if (i386_record_push (&ir
, 1 << (ir
.dflag
+ 1)))
5421 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
5424 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM
);
5425 if (i386_record_push (&ir
, 1 << (ir
.dflag
+ 1)))
5427 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
5431 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
5434 if (ir
.regmap
[X86_RECORD_R8_REGNUM
] && ir
.dflag
)
5436 if (i386_record_push (&ir
, 1 << (ir
.dflag
+ 1)))
5441 opcode
= opcode
<< 8 | ir
.modrm
;
5447 case 0x84: /* test */
5451 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
5454 case 0x98: /* CWDE/CBW */
5455 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM
);
5458 case 0x99: /* CDQ/CWD */
5459 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM
);
5460 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM
);
5463 case 0x0faf: /* imul */
5466 ir
.ot
= ir
.dflag
+ OT_WORD
;
5467 if (i386_record_modrm (&ir
))
5470 ir
.rip_offset
= (ir
.ot
> OT_LONG
) ? 4 : (1 << ir
.ot
);
5471 else if (opcode
== 0x6b)
5474 if (ir
.ot
== OT_BYTE
&& !ir
.regmap
[X86_RECORD_R8_REGNUM
])
5476 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir
.reg
);
5477 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
5480 case 0x0fc0: /* xadd */
5482 if ((opcode
& 1) == 0)
5485 ir
.ot
= ir
.dflag
+ OT_WORD
;
5486 if (i386_record_modrm (&ir
))
5491 if (ir
.ot
== OT_BYTE
&& !ir
.regmap
[X86_RECORD_R8_REGNUM
])
5493 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir
.reg
);
5494 if (ir
.ot
== OT_BYTE
&& !ir
.regmap
[X86_RECORD_R8_REGNUM
])
5496 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir
.rm
);
5500 if (i386_record_lea_modrm (&ir
))
5502 if (ir
.ot
== OT_BYTE
&& !ir
.regmap
[X86_RECORD_R8_REGNUM
])
5504 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir
.reg
);
5506 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
5509 case 0x0fb0: /* cmpxchg */
5511 if ((opcode
& 1) == 0)
5514 ir
.ot
= ir
.dflag
+ OT_WORD
;
5515 if (i386_record_modrm (&ir
))
5520 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM
);
5521 if (ir
.ot
== OT_BYTE
&& !ir
.regmap
[X86_RECORD_R8_REGNUM
])
5523 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir
.reg
);
5527 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM
);
5528 if (i386_record_lea_modrm (&ir
))
5531 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
5534 case 0x0fc7: /* cmpxchg8b / rdrand / rdseed */
5535 if (i386_record_modrm (&ir
))
5539 /* rdrand and rdseed use the 3 bits of the REG field of ModR/M as
5540 an extended opcode. rdrand has bits 110 (/6) and rdseed
5541 has bits 111 (/7). */
5542 if (ir
.reg
== 6 || ir
.reg
== 7)
5544 /* The storage register is described by the 3 R/M bits, but the
5545 REX.B prefix may be used to give access to registers
5546 R8~R15. In this case ir.rex_b + R/M will give us the register
5547 in the range R8~R15.
5549 REX.W may also be used to access 64-bit registers, but we
5550 already record entire registers and not just partial bits
5552 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir
.rex_b
+ ir
.rm
);
5553 /* These instructions also set conditional bits. */
5554 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
5559 /* We don't handle this particular instruction yet. */
5561 opcode
= opcode
<< 8 | ir
.modrm
;
5565 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM
);
5566 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM
);
5567 if (i386_record_lea_modrm (&ir
))
5569 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
5572 case 0x50: /* push */
5582 if (ir
.regmap
[X86_RECORD_R8_REGNUM
] && ir
.dflag
)
5584 if (i386_record_push (&ir
, 1 << (ir
.dflag
+ 1)))
5588 case 0x06: /* push es */
5589 case 0x0e: /* push cs */
5590 case 0x16: /* push ss */
5591 case 0x1e: /* push ds */
5592 if (ir
.regmap
[X86_RECORD_R8_REGNUM
])
5597 if (i386_record_push (&ir
, 1 << (ir
.dflag
+ 1)))
5601 case 0x0fa0: /* push fs */
5602 case 0x0fa8: /* push gs */
5603 if (ir
.regmap
[X86_RECORD_R8_REGNUM
])
5608 if (i386_record_push (&ir
, 1 << (ir
.dflag
+ 1)))
5612 case 0x60: /* pusha */
5613 if (ir
.regmap
[X86_RECORD_R8_REGNUM
])
5618 if (i386_record_push (&ir
, 1 << (ir
.dflag
+ 4)))
5622 case 0x58: /* pop */
5630 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM
);
5631 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode
& 0x7) | ir
.rex_b
);
5634 case 0x61: /* popa */
5635 if (ir
.regmap
[X86_RECORD_R8_REGNUM
])
5640 for (regnum
= X86_RECORD_REAX_REGNUM
;
5641 regnum
<= X86_RECORD_REDI_REGNUM
;
5643 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum
);
5646 case 0x8f: /* pop */
5647 if (ir
.regmap
[X86_RECORD_R8_REGNUM
])
5648 ir
.ot
= ir
.dflag
? OT_QUAD
: OT_WORD
;
5650 ir
.ot
= ir
.dflag
+ OT_WORD
;
5651 if (i386_record_modrm (&ir
))
5654 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir
.rm
| ir
.rex_b
);
5657 ir
.popl_esp_hack
= 1 << ir
.ot
;
5658 if (i386_record_lea_modrm (&ir
))
5661 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM
);
5664 case 0xc8: /* enter */
5665 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM
);
5666 if (ir
.regmap
[X86_RECORD_R8_REGNUM
] && ir
.dflag
)
5668 if (i386_record_push (&ir
, 1 << (ir
.dflag
+ 1)))
5672 case 0xc9: /* leave */
5673 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM
);
5674 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM
);
5677 case 0x07: /* pop es */
5678 if (ir
.regmap
[X86_RECORD_R8_REGNUM
])
5683 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM
);
5684 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_ES_REGNUM
);
5685 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
5688 case 0x17: /* pop ss */
5689 if (ir
.regmap
[X86_RECORD_R8_REGNUM
])
5694 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM
);
5695 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_SS_REGNUM
);
5696 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
5699 case 0x1f: /* pop ds */
5700 if (ir
.regmap
[X86_RECORD_R8_REGNUM
])
5705 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM
);
5706 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_DS_REGNUM
);
5707 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
5710 case 0x0fa1: /* pop fs */
5711 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM
);
5712 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_FS_REGNUM
);
5713 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
5716 case 0x0fa9: /* pop gs */
5717 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM
);
5718 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM
);
5719 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
5722 case 0x88: /* mov */
5726 if ((opcode
& 1) == 0)
5729 ir
.ot
= ir
.dflag
+ OT_WORD
;
5731 if (i386_record_modrm (&ir
))
5736 if (opcode
== 0xc6 || opcode
== 0xc7)
5737 ir
.rip_offset
= (ir
.ot
> OT_LONG
) ? 4 : (1 << ir
.ot
);
5738 if (i386_record_lea_modrm (&ir
))
5743 if (opcode
== 0xc6 || opcode
== 0xc7)
5745 if (ir
.ot
== OT_BYTE
&& !ir
.regmap
[X86_RECORD_R8_REGNUM
])
5747 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir
.rm
);
5751 case 0x8a: /* mov */
5753 if ((opcode
& 1) == 0)
5756 ir
.ot
= ir
.dflag
+ OT_WORD
;
5757 if (i386_record_modrm (&ir
))
5760 if (ir
.ot
== OT_BYTE
&& !ir
.regmap
[X86_RECORD_R8_REGNUM
])
5762 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir
.reg
);
5765 case 0x8c: /* mov seg */
5766 if (i386_record_modrm (&ir
))
5771 opcode
= opcode
<< 8 | ir
.modrm
;
5776 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir
.rm
);
5780 if (i386_record_lea_modrm (&ir
))
5785 case 0x8e: /* mov seg */
5786 if (i386_record_modrm (&ir
))
5791 regnum
= X86_RECORD_ES_REGNUM
;
5794 regnum
= X86_RECORD_SS_REGNUM
;
5797 regnum
= X86_RECORD_DS_REGNUM
;
5800 regnum
= X86_RECORD_FS_REGNUM
;
5803 regnum
= X86_RECORD_GS_REGNUM
;
5807 opcode
= opcode
<< 8 | ir
.modrm
;
5811 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum
);
5812 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
5815 case 0x0fb6: /* movzbS */
5816 case 0x0fb7: /* movzwS */
5817 case 0x0fbe: /* movsbS */
5818 case 0x0fbf: /* movswS */
5819 if (i386_record_modrm (&ir
))
5821 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir
.reg
| rex_r
);
5824 case 0x8d: /* lea */
5825 if (i386_record_modrm (&ir
))
5830 opcode
= opcode
<< 8 | ir
.modrm
;
5835 if (ir
.ot
== OT_BYTE
&& !ir
.regmap
[X86_RECORD_R8_REGNUM
])
5837 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir
.reg
);
5840 case 0xa0: /* mov EAX */
5843 case 0xd7: /* xlat */
5844 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM
);
5847 case 0xa2: /* mov EAX */
5849 if (ir
.override
>= 0)
5851 if (record_full_memory_query
)
5854 Process record ignores the memory change of instruction at address %s\n\
5855 because it can't get the value of the segment register.\n\
5856 Do you want to stop the program?"),
5857 paddress (gdbarch
, ir
.orig_addr
)))
5863 if ((opcode
& 1) == 0)
5866 ir
.ot
= ir
.dflag
+ OT_WORD
;
5869 if (record_read_memory (gdbarch
, ir
.addr
, buf
, 8))
5872 addr
= extract_unsigned_integer (buf
, 8, byte_order
);
5876 if (record_read_memory (gdbarch
, ir
.addr
, buf
, 4))
5879 addr
= extract_unsigned_integer (buf
, 4, byte_order
);
5883 if (record_read_memory (gdbarch
, ir
.addr
, buf
, 2))
5886 addr
= extract_unsigned_integer (buf
, 2, byte_order
);
5888 if (record_full_arch_list_add_mem (addr
, 1 << ir
.ot
))
5893 case 0xb0: /* mov R, Ib */
5901 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((ir
.regmap
[X86_RECORD_R8_REGNUM
])
5902 ? ((opcode
& 0x7) | ir
.rex_b
)
5903 : ((opcode
& 0x7) & 0x3));
5906 case 0xb8: /* mov R, Iv */
5914 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode
& 0x7) | ir
.rex_b
);
5917 case 0x91: /* xchg R, EAX */
5924 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM
);
5925 I386_RECORD_FULL_ARCH_LIST_ADD_REG (opcode
& 0x7);
5928 case 0x86: /* xchg Ev, Gv */
5930 if ((opcode
& 1) == 0)
5933 ir
.ot
= ir
.dflag
+ OT_WORD
;
5934 if (i386_record_modrm (&ir
))
5939 if (ir
.ot
== OT_BYTE
&& !ir
.regmap
[X86_RECORD_R8_REGNUM
])
5941 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir
.rm
);
5945 if (i386_record_lea_modrm (&ir
))
5949 if (ir
.ot
== OT_BYTE
&& !ir
.regmap
[X86_RECORD_R8_REGNUM
])
5951 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir
.reg
);
5954 case 0xc4: /* les Gv */
5955 case 0xc5: /* lds Gv */
5956 if (ir
.regmap
[X86_RECORD_R8_REGNUM
])
5962 case 0x0fb2: /* lss Gv */
5963 case 0x0fb4: /* lfs Gv */
5964 case 0x0fb5: /* lgs Gv */
5965 if (i386_record_modrm (&ir
))
5973 opcode
= opcode
<< 8 | ir
.modrm
;
5978 case 0xc4: /* les Gv */
5979 regnum
= X86_RECORD_ES_REGNUM
;
5981 case 0xc5: /* lds Gv */
5982 regnum
= X86_RECORD_DS_REGNUM
;
5984 case 0x0fb2: /* lss Gv */
5985 regnum
= X86_RECORD_SS_REGNUM
;
5987 case 0x0fb4: /* lfs Gv */
5988 regnum
= X86_RECORD_FS_REGNUM
;
5990 case 0x0fb5: /* lgs Gv */
5991 regnum
= X86_RECORD_GS_REGNUM
;
5994 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum
);
5995 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir
.reg
| rex_r
);
5996 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
5999 case 0xc0: /* shifts */
6005 if ((opcode
& 1) == 0)
6008 ir
.ot
= ir
.dflag
+ OT_WORD
;
6009 if (i386_record_modrm (&ir
))
6011 if (ir
.mod
!= 3 && (opcode
== 0xd2 || opcode
== 0xd3))
6013 if (i386_record_lea_modrm (&ir
))
6019 if (ir
.ot
== OT_BYTE
&& !ir
.regmap
[X86_RECORD_R8_REGNUM
])
6021 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir
.rm
);
6023 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
6030 if (i386_record_modrm (&ir
))
6034 if (record_full_arch_list_add_reg (ir
.regcache
, ir
.rm
))
6039 if (i386_record_lea_modrm (&ir
))
6044 case 0xd8: /* Floats. */
6052 if (i386_record_modrm (&ir
))
6054 ir
.reg
|= ((opcode
& 7) << 3);
6060 if (i386_record_lea_modrm_addr (&ir
, &addr64
))
6068 /* For fcom, ficom nothing to do. */
6074 /* For fcomp, ficomp pop FPU stack, store all. */
6075 if (i386_record_floats (gdbarch
, &ir
, I386_SAVE_FPU_REGS
))
6102 /* For fadd, fmul, fsub, fsubr, fdiv, fdivr, fiadd, fimul,
6103 fisub, fisubr, fidiv, fidivr, modR/M.reg is an extension
6104 of code, always affects st(0) register. */
6105 if (i386_record_floats (gdbarch
, &ir
, I387_ST0_REGNUM (tdep
)))
6129 /* Handling fld, fild. */
6130 if (i386_record_floats (gdbarch
, &ir
, I386_SAVE_FPU_REGS
))
6134 switch (ir
.reg
>> 4)
6137 if (record_full_arch_list_add_mem (addr64
, 4))
6141 if (record_full_arch_list_add_mem (addr64
, 8))
6147 if (record_full_arch_list_add_mem (addr64
, 2))
6153 switch (ir
.reg
>> 4)
6156 if (record_full_arch_list_add_mem (addr64
, 4))
6158 if (3 == (ir
.reg
& 7))
6160 /* For fstp m32fp. */
6161 if (i386_record_floats (gdbarch
, &ir
,
6162 I386_SAVE_FPU_REGS
))
6167 if (record_full_arch_list_add_mem (addr64
, 4))
6169 if ((3 == (ir
.reg
& 7))
6170 || (5 == (ir
.reg
& 7))
6171 || (7 == (ir
.reg
& 7)))
6173 /* For fstp insn. */
6174 if (i386_record_floats (gdbarch
, &ir
,
6175 I386_SAVE_FPU_REGS
))
6180 if (record_full_arch_list_add_mem (addr64
, 8))
6182 if (3 == (ir
.reg
& 7))
6184 /* For fstp m64fp. */
6185 if (i386_record_floats (gdbarch
, &ir
,
6186 I386_SAVE_FPU_REGS
))
6191 if ((3 <= (ir
.reg
& 7)) && (6 <= (ir
.reg
& 7)))
6193 /* For fistp, fbld, fild, fbstp. */
6194 if (i386_record_floats (gdbarch
, &ir
,
6195 I386_SAVE_FPU_REGS
))
6200 if (record_full_arch_list_add_mem (addr64
, 2))
6209 if (i386_record_floats (gdbarch
, &ir
,
6210 I386_SAVE_FPU_ENV_REG_STACK
))
6215 if (i386_record_floats (gdbarch
, &ir
, I387_FCTRL_REGNUM (tdep
)))
6220 if (i386_record_floats (gdbarch
, &ir
,
6221 I386_SAVE_FPU_ENV_REG_STACK
))
6227 if (record_full_arch_list_add_mem (addr64
, 28))
6232 if (record_full_arch_list_add_mem (addr64
, 14))
6238 if (record_full_arch_list_add_mem (addr64
, 2))
6240 /* Insn fstp, fbstp. */
6241 if (i386_record_floats (gdbarch
, &ir
, I386_SAVE_FPU_REGS
))
6246 if (record_full_arch_list_add_mem (addr64
, 10))
6252 if (record_full_arch_list_add_mem (addr64
, 28))
6258 if (record_full_arch_list_add_mem (addr64
, 14))
6262 if (record_full_arch_list_add_mem (addr64
, 80))
6265 if (i386_record_floats (gdbarch
, &ir
,
6266 I386_SAVE_FPU_ENV_REG_STACK
))
6270 if (record_full_arch_list_add_mem (addr64
, 8))
6273 if (i386_record_floats (gdbarch
, &ir
, I386_SAVE_FPU_REGS
))
6278 opcode
= opcode
<< 8 | ir
.modrm
;
6283 /* Opcode is an extension of modR/M byte. */
6289 if (i386_record_floats (gdbarch
, &ir
, I387_ST0_REGNUM (tdep
)))
6293 if (0x0c == (ir
.modrm
>> 4))
6295 if ((ir
.modrm
& 0x0f) <= 7)
6297 if (i386_record_floats (gdbarch
, &ir
,
6298 I386_SAVE_FPU_REGS
))
6303 if (i386_record_floats (gdbarch
, &ir
,
6304 I387_ST0_REGNUM (tdep
)))
6306 /* If only st(0) is changing, then we have already
6308 if ((ir
.modrm
& 0x0f) - 0x08)
6310 if (i386_record_floats (gdbarch
, &ir
,
6311 I387_ST0_REGNUM (tdep
) +
6312 ((ir
.modrm
& 0x0f) - 0x08)))
6330 if (i386_record_floats (gdbarch
, &ir
,
6331 I387_ST0_REGNUM (tdep
)))
6349 if (i386_record_floats (gdbarch
, &ir
,
6350 I386_SAVE_FPU_REGS
))
6354 if (i386_record_floats (gdbarch
, &ir
,
6355 I387_ST0_REGNUM (tdep
)))
6357 if (i386_record_floats (gdbarch
, &ir
,
6358 I387_ST0_REGNUM (tdep
) + 1))
6365 if (0xe9 == ir
.modrm
)
6367 if (i386_record_floats (gdbarch
, &ir
, I386_SAVE_FPU_REGS
))
6370 else if ((0x0c == ir
.modrm
>> 4) || (0x0d == ir
.modrm
>> 4))
6372 if (i386_record_floats (gdbarch
, &ir
,
6373 I387_ST0_REGNUM (tdep
)))
6375 if (((ir
.modrm
& 0x0f) > 0) && ((ir
.modrm
& 0x0f) <= 7))
6377 if (i386_record_floats (gdbarch
, &ir
,
6378 I387_ST0_REGNUM (tdep
) +
6382 else if ((ir
.modrm
& 0x0f) - 0x08)
6384 if (i386_record_floats (gdbarch
, &ir
,
6385 I387_ST0_REGNUM (tdep
) +
6386 ((ir
.modrm
& 0x0f) - 0x08)))
6392 if (0xe3 == ir
.modrm
)
6394 if (i386_record_floats (gdbarch
, &ir
, I386_SAVE_FPU_ENV
))
6397 else if ((0x0c == ir
.modrm
>> 4) || (0x0d == ir
.modrm
>> 4))
6399 if (i386_record_floats (gdbarch
, &ir
,
6400 I387_ST0_REGNUM (tdep
)))
6402 if (((ir
.modrm
& 0x0f) > 0) && ((ir
.modrm
& 0x0f) <= 7))
6404 if (i386_record_floats (gdbarch
, &ir
,
6405 I387_ST0_REGNUM (tdep
) +
6409 else if ((ir
.modrm
& 0x0f) - 0x08)
6411 if (i386_record_floats (gdbarch
, &ir
,
6412 I387_ST0_REGNUM (tdep
) +
6413 ((ir
.modrm
& 0x0f) - 0x08)))
6419 if ((0x0c == ir
.modrm
>> 4)
6420 || (0x0d == ir
.modrm
>> 4)
6421 || (0x0f == ir
.modrm
>> 4))
6423 if ((ir
.modrm
& 0x0f) <= 7)
6425 if (i386_record_floats (gdbarch
, &ir
,
6426 I387_ST0_REGNUM (tdep
) +
6432 if (i386_record_floats (gdbarch
, &ir
,
6433 I387_ST0_REGNUM (tdep
) +
6434 ((ir
.modrm
& 0x0f) - 0x08)))
6440 if (0x0c == ir
.modrm
>> 4)
6442 if (i386_record_floats (gdbarch
, &ir
,
6443 I387_FTAG_REGNUM (tdep
)))
6446 else if ((0x0d == ir
.modrm
>> 4) || (0x0e == ir
.modrm
>> 4))
6448 if ((ir
.modrm
& 0x0f) <= 7)
6450 if (i386_record_floats (gdbarch
, &ir
,
6451 I387_ST0_REGNUM (tdep
) +
6457 if (i386_record_floats (gdbarch
, &ir
,
6458 I386_SAVE_FPU_REGS
))
6464 if ((0x0c == ir
.modrm
>> 4)
6465 || (0x0e == ir
.modrm
>> 4)
6466 || (0x0f == ir
.modrm
>> 4)
6467 || (0xd9 == ir
.modrm
))
6469 if (i386_record_floats (gdbarch
, &ir
, I386_SAVE_FPU_REGS
))
6474 if (0xe0 == ir
.modrm
)
6476 if (record_full_arch_list_add_reg (ir
.regcache
,
6480 else if ((0x0f == ir
.modrm
>> 4) || (0x0e == ir
.modrm
>> 4))
6482 if (i386_record_floats (gdbarch
, &ir
, I386_SAVE_FPU_REGS
))
6490 case 0xa4: /* movsS */
6492 case 0xaa: /* stosS */
6494 case 0x6c: /* insS */
6496 regcache_raw_read_unsigned (ir
.regcache
,
6497 ir
.regmap
[X86_RECORD_RECX_REGNUM
],
6503 if ((opcode
& 1) == 0)
6506 ir
.ot
= ir
.dflag
+ OT_WORD
;
6507 regcache_raw_read_unsigned (ir
.regcache
,
6508 ir
.regmap
[X86_RECORD_REDI_REGNUM
],
6511 regcache_raw_read_unsigned (ir
.regcache
,
6512 ir
.regmap
[X86_RECORD_ES_REGNUM
],
6514 regcache_raw_read_unsigned (ir
.regcache
,
6515 ir
.regmap
[X86_RECORD_DS_REGNUM
],
6517 if (ir
.aflag
&& (es
!= ds
))
6519 /* addr += ((uint32_t) read_register (I386_ES_REGNUM)) << 4; */
6520 if (record_full_memory_query
)
6523 Process record ignores the memory change of instruction at address %s\n\
6524 because it can't get the value of the segment register.\n\
6525 Do you want to stop the program?"),
6526 paddress (gdbarch
, ir
.orig_addr
)))
6532 if (record_full_arch_list_add_mem (addr
, 1 << ir
.ot
))
6536 if (prefixes
& (PREFIX_REPZ
| PREFIX_REPNZ
))
6537 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM
);
6538 if (opcode
== 0xa4 || opcode
== 0xa5)
6539 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM
);
6540 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM
);
6541 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
6545 case 0xa6: /* cmpsS */
6547 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM
);
6548 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM
);
6549 if (prefixes
& (PREFIX_REPZ
| PREFIX_REPNZ
))
6550 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM
);
6551 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
6554 case 0xac: /* lodsS */
6556 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM
);
6557 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM
);
6558 if (prefixes
& (PREFIX_REPZ
| PREFIX_REPNZ
))
6559 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM
);
6560 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
6563 case 0xae: /* scasS */
6565 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM
);
6566 if (prefixes
& (PREFIX_REPZ
| PREFIX_REPNZ
))
6567 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM
);
6568 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
6571 case 0x6e: /* outsS */
6573 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM
);
6574 if (prefixes
& (PREFIX_REPZ
| PREFIX_REPNZ
))
6575 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM
);
6576 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
6579 case 0xe4: /* port I/O */
6583 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
6584 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM
);
6594 case 0xc2: /* ret im */
6595 case 0xc3: /* ret */
6596 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM
);
6597 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
6600 case 0xca: /* lret im */
6601 case 0xcb: /* lret */
6602 case 0xcf: /* iret */
6603 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM
);
6604 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM
);
6605 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
6608 case 0xe8: /* call im */
6609 if (ir
.regmap
[X86_RECORD_R8_REGNUM
] && ir
.dflag
)
6611 if (i386_record_push (&ir
, 1 << (ir
.dflag
+ 1)))
6615 case 0x9a: /* lcall im */
6616 if (ir
.regmap
[X86_RECORD_R8_REGNUM
])
6621 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM
);
6622 if (i386_record_push (&ir
, 1 << (ir
.dflag
+ 1)))
6626 case 0xe9: /* jmp im */
6627 case 0xea: /* ljmp im */
6628 case 0xeb: /* jmp Jb */
6629 case 0x70: /* jcc Jb */
6645 case 0x0f80: /* jcc Jv */
6663 case 0x0f90: /* setcc Gv */
6679 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
6681 if (i386_record_modrm (&ir
))
6684 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir
.rex_b
? (ir
.rm
| ir
.rex_b
)
6688 if (i386_record_lea_modrm (&ir
))
6693 case 0x0f40: /* cmov Gv, Ev */
6709 if (i386_record_modrm (&ir
))
6712 if (ir
.dflag
== OT_BYTE
)
6714 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir
.reg
);
6718 case 0x9c: /* pushf */
6719 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
6720 if (ir
.regmap
[X86_RECORD_R8_REGNUM
] && ir
.dflag
)
6722 if (i386_record_push (&ir
, 1 << (ir
.dflag
+ 1)))
6726 case 0x9d: /* popf */
6727 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM
);
6728 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
6731 case 0x9e: /* sahf */
6732 if (ir
.regmap
[X86_RECORD_R8_REGNUM
])
6738 case 0xf5: /* cmc */
6739 case 0xf8: /* clc */
6740 case 0xf9: /* stc */
6741 case 0xfc: /* cld */
6742 case 0xfd: /* std */
6743 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
6746 case 0x9f: /* lahf */
6747 if (ir
.regmap
[X86_RECORD_R8_REGNUM
])
6752 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
6753 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM
);
6756 /* bit operations */
6757 case 0x0fba: /* bt/bts/btr/btc Gv, im */
6758 ir
.ot
= ir
.dflag
+ OT_WORD
;
6759 if (i386_record_modrm (&ir
))
6764 opcode
= opcode
<< 8 | ir
.modrm
;
6770 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir
.rm
| ir
.rex_b
);
6773 if (i386_record_lea_modrm (&ir
))
6777 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
6780 case 0x0fa3: /* bt Gv, Ev */
6781 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
6784 case 0x0fab: /* bts */
6785 case 0x0fb3: /* btr */
6786 case 0x0fbb: /* btc */
6787 ir
.ot
= ir
.dflag
+ OT_WORD
;
6788 if (i386_record_modrm (&ir
))
6791 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir
.rm
| ir
.rex_b
);
6795 if (i386_record_lea_modrm_addr (&ir
, &addr64
))
6797 regcache_raw_read_unsigned (ir
.regcache
,
6798 ir
.regmap
[ir
.reg
| rex_r
],
6803 addr64
+= ((int16_t) addr
>> 4) << 4;
6806 addr64
+= ((int32_t) addr
>> 5) << 5;
6809 addr64
+= ((int64_t) addr
>> 6) << 6;
6812 if (record_full_arch_list_add_mem (addr64
, 1 << ir
.ot
))
6814 if (i386_record_lea_modrm (&ir
))
6817 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
6820 case 0x0fbc: /* bsf */
6821 case 0x0fbd: /* bsr */
6822 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir
.reg
| rex_r
);
6823 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
6827 case 0x27: /* daa */
6828 case 0x2f: /* das */
6829 case 0x37: /* aaa */
6830 case 0x3f: /* aas */
6831 case 0xd4: /* aam */
6832 case 0xd5: /* aad */
6833 if (ir
.regmap
[X86_RECORD_R8_REGNUM
])
6838 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM
);
6839 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
6843 case 0x90: /* nop */
6844 if (prefixes
& PREFIX_LOCK
)
6851 case 0x9b: /* fwait */
6852 if (record_read_memory (gdbarch
, ir
.addr
, &opcode8
, 1))
6854 opcode
= (uint32_t) opcode8
;
6860 case 0xcc: /* int3 */
6861 gdb_printf (gdb_stderr
,
6862 _("Process record does not support instruction "
6869 case 0xcd: /* int */
6873 if (record_read_memory (gdbarch
, ir
.addr
, &interrupt
, 1))
6876 if (interrupt
!= 0x80
6877 || tdep
->i386_intx80_record
== NULL
)
6879 gdb_printf (gdb_stderr
,
6880 _("Process record does not support "
6881 "instruction int 0x%02x.\n"),
6886 ret
= tdep
->i386_intx80_record (ir
.regcache
);
6893 case 0xce: /* into */
6894 gdb_printf (gdb_stderr
,
6895 _("Process record does not support "
6896 "instruction into.\n"));
6901 case 0xfa: /* cli */
6902 case 0xfb: /* sti */
6905 case 0x62: /* bound */
6906 gdb_printf (gdb_stderr
,
6907 _("Process record does not support "
6908 "instruction bound.\n"));
6913 case 0x0fc8: /* bswap reg */
6921 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode
& 7) | ir
.rex_b
);
6924 case 0xd6: /* salc */
6925 if (ir
.regmap
[X86_RECORD_R8_REGNUM
])
6930 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM
);
6931 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
6934 case 0xe0: /* loopnz */
6935 case 0xe1: /* loopz */
6936 case 0xe2: /* loop */
6937 case 0xe3: /* jecxz */
6938 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM
);
6939 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
6942 case 0x0f30: /* wrmsr */
6943 gdb_printf (gdb_stderr
,
6944 _("Process record does not support "
6945 "instruction wrmsr.\n"));
6950 case 0x0f32: /* rdmsr */
6951 gdb_printf (gdb_stderr
,
6952 _("Process record does not support "
6953 "instruction rdmsr.\n"));
6958 case 0x0f31: /* rdtsc */
6959 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM
);
6960 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM
);
6963 case 0x0f34: /* sysenter */
6966 if (ir
.regmap
[X86_RECORD_R8_REGNUM
])
6971 if (tdep
->i386_sysenter_record
== NULL
)
6973 gdb_printf (gdb_stderr
,
6974 _("Process record does not support "
6975 "instruction sysenter.\n"));
6979 ret
= tdep
->i386_sysenter_record (ir
.regcache
);
6985 case 0x0f35: /* sysexit */
6986 gdb_printf (gdb_stderr
,
6987 _("Process record does not support "
6988 "instruction sysexit.\n"));
6993 case 0x0f05: /* syscall */
6996 if (tdep
->i386_syscall_record
== NULL
)
6998 gdb_printf (gdb_stderr
,
6999 _("Process record does not support "
7000 "instruction syscall.\n"));
7004 ret
= tdep
->i386_syscall_record (ir
.regcache
);
7010 case 0x0f07: /* sysret */
7011 gdb_printf (gdb_stderr
,
7012 _("Process record does not support "
7013 "instruction sysret.\n"));
7018 case 0x0fa2: /* cpuid */
7019 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM
);
7020 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM
);
7021 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM
);
7022 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM
);
7025 case 0xf4: /* hlt */
7026 gdb_printf (gdb_stderr
,
7027 _("Process record does not support "
7028 "instruction hlt.\n"));
7034 if (i386_record_modrm (&ir
))
7041 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir
.rm
| ir
.rex_b
);
7045 if (i386_record_lea_modrm (&ir
))
7054 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
7058 opcode
= opcode
<< 8 | ir
.modrm
;
7065 if (i386_record_modrm (&ir
))
7076 opcode
= opcode
<< 8 | ir
.modrm
;
7079 if (ir
.override
>= 0)
7081 if (record_full_memory_query
)
7084 Process record ignores the memory change of instruction at address %s\n\
7085 because it can't get the value of the segment register.\n\
7086 Do you want to stop the program?"),
7087 paddress (gdbarch
, ir
.orig_addr
)))
7093 if (i386_record_lea_modrm_addr (&ir
, &addr64
))
7095 if (record_full_arch_list_add_mem (addr64
, 2))
7098 if (ir
.regmap
[X86_RECORD_R8_REGNUM
])
7100 if (record_full_arch_list_add_mem (addr64
, 8))
7105 if (record_full_arch_list_add_mem (addr64
, 4))
7116 case 0: /* monitor */
7119 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
7123 opcode
= opcode
<< 8 | ir
.modrm
;
7131 if (ir
.override
>= 0)
7133 if (record_full_memory_query
)
7136 Process record ignores the memory change of instruction at address %s\n\
7137 because it can't get the value of the segment register.\n\
7138 Do you want to stop the program?"),
7139 paddress (gdbarch
, ir
.orig_addr
)))
7147 if (i386_record_lea_modrm_addr (&ir
, &addr64
))
7149 if (record_full_arch_list_add_mem (addr64
, 2))
7152 if (ir
.regmap
[X86_RECORD_R8_REGNUM
])
7154 if (record_full_arch_list_add_mem (addr64
, 8))
7159 if (record_full_arch_list_add_mem (addr64
, 4))
7171 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM
);
7172 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM
);
7176 else if (ir
.rm
== 1)
7184 opcode
= opcode
<< 8 | ir
.modrm
;
7191 if (record_full_arch_list_add_reg (ir
.regcache
, ir
.rm
| ir
.rex_b
))
7197 if (i386_record_lea_modrm (&ir
))
7200 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
7203 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
7205 case 7: /* invlpg */
7208 if (ir
.rm
== 0 && ir
.regmap
[X86_RECORD_R8_REGNUM
])
7209 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM
);
7213 opcode
= opcode
<< 8 | ir
.modrm
;
7218 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
7222 opcode
= opcode
<< 8 | ir
.modrm
;
7228 case 0x0f08: /* invd */
7229 case 0x0f09: /* wbinvd */
7232 case 0x63: /* arpl */
7233 if (i386_record_modrm (&ir
))
7235 if (ir
.mod
== 3 || ir
.regmap
[X86_RECORD_R8_REGNUM
])
7237 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir
.regmap
[X86_RECORD_R8_REGNUM
]
7238 ? (ir
.reg
| rex_r
) : ir
.rm
);
7242 ir
.ot
= ir
.dflag
? OT_LONG
: OT_WORD
;
7243 if (i386_record_lea_modrm (&ir
))
7246 if (!ir
.regmap
[X86_RECORD_R8_REGNUM
])
7247 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
7250 case 0x0f02: /* lar */
7251 case 0x0f03: /* lsl */
7252 if (i386_record_modrm (&ir
))
7254 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir
.reg
| rex_r
);
7255 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
7259 if (i386_record_modrm (&ir
))
7261 if (ir
.mod
== 3 && ir
.reg
== 3)
7264 opcode
= opcode
<< 8 | ir
.modrm
;
7276 /* nop (multi byte) */
7279 case 0x0f20: /* mov reg, crN */
7280 case 0x0f22: /* mov crN, reg */
7281 if (i386_record_modrm (&ir
))
7283 if ((ir
.modrm
& 0xc0) != 0xc0)
7286 opcode
= opcode
<< 8 | ir
.modrm
;
7297 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
7299 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir
.rm
| ir
.rex_b
);
7303 opcode
= opcode
<< 8 | ir
.modrm
;
7309 case 0x0f21: /* mov reg, drN */
7310 case 0x0f23: /* mov drN, reg */
7311 if (i386_record_modrm (&ir
))
7313 if ((ir
.modrm
& 0xc0) != 0xc0 || ir
.reg
== 4
7314 || ir
.reg
== 5 || ir
.reg
>= 8)
7317 opcode
= opcode
<< 8 | ir
.modrm
;
7321 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
7323 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir
.rm
| ir
.rex_b
);
7326 case 0x0f06: /* clts */
7327 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
7330 /* MMX 3DNow! SSE SSE2 SSE3 SSSE3 SSE4 */
7332 case 0x0f0d: /* 3DNow! prefetch */
7335 case 0x0f0e: /* 3DNow! femms */
7336 case 0x0f77: /* emms */
7337 if (i386_fpc_regnum_p (gdbarch
, I387_FTAG_REGNUM(tdep
)))
7339 record_full_arch_list_add_reg (ir
.regcache
, I387_FTAG_REGNUM(tdep
));
7342 case 0x0f0f: /* 3DNow! data */
7343 if (i386_record_modrm (&ir
))
7345 if (record_read_memory (gdbarch
, ir
.addr
, &opcode8
, 1))
7350 case 0x0c: /* 3DNow! pi2fw */
7351 case 0x0d: /* 3DNow! pi2fd */
7352 case 0x1c: /* 3DNow! pf2iw */
7353 case 0x1d: /* 3DNow! pf2id */
7354 case 0x8a: /* 3DNow! pfnacc */
7355 case 0x8e: /* 3DNow! pfpnacc */
7356 case 0x90: /* 3DNow! pfcmpge */
7357 case 0x94: /* 3DNow! pfmin */
7358 case 0x96: /* 3DNow! pfrcp */
7359 case 0x97: /* 3DNow! pfrsqrt */
7360 case 0x9a: /* 3DNow! pfsub */
7361 case 0x9e: /* 3DNow! pfadd */
7362 case 0xa0: /* 3DNow! pfcmpgt */
7363 case 0xa4: /* 3DNow! pfmax */
7364 case 0xa6: /* 3DNow! pfrcpit1 */
7365 case 0xa7: /* 3DNow! pfrsqit1 */
7366 case 0xaa: /* 3DNow! pfsubr */
7367 case 0xae: /* 3DNow! pfacc */
7368 case 0xb0: /* 3DNow! pfcmpeq */
7369 case 0xb4: /* 3DNow! pfmul */
7370 case 0xb6: /* 3DNow! pfrcpit2 */
7371 case 0xb7: /* 3DNow! pmulhrw */
7372 case 0xbb: /* 3DNow! pswapd */
7373 case 0xbf: /* 3DNow! pavgusb */
7374 if (!i386_mmx_regnum_p (gdbarch
, I387_MM0_REGNUM (tdep
) + ir
.reg
))
7375 goto no_support_3dnow_data
;
7376 record_full_arch_list_add_reg (ir
.regcache
, ir
.reg
);
7380 no_support_3dnow_data
:
7381 opcode
= (opcode
<< 8) | opcode8
;
7387 case 0x0faa: /* rsm */
7388 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
7389 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM
);
7390 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM
);
7391 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM
);
7392 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM
);
7393 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM
);
7394 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM
);
7395 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM
);
7396 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM
);
7400 if (i386_record_modrm (&ir
))
7404 case 0: /* fxsave */
7408 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
7409 if (i386_record_lea_modrm_addr (&ir
, &tmpu64
))
7411 if (record_full_arch_list_add_mem (tmpu64
, 512))
7416 case 1: /* fxrstor */
7420 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
7422 for (i
= I387_MM0_REGNUM (tdep
);
7423 i386_mmx_regnum_p (gdbarch
, i
); i
++)
7424 record_full_arch_list_add_reg (ir
.regcache
, i
);
7426 for (i
= I387_XMM0_REGNUM (tdep
);
7427 i386_xmm_regnum_p (gdbarch
, i
); i
++)
7428 record_full_arch_list_add_reg (ir
.regcache
, i
);
7430 if (i386_mxcsr_regnum_p (gdbarch
, I387_MXCSR_REGNUM(tdep
)))
7431 record_full_arch_list_add_reg (ir
.regcache
,
7432 I387_MXCSR_REGNUM(tdep
));
7434 for (i
= I387_ST0_REGNUM (tdep
);
7435 i386_fp_regnum_p (gdbarch
, i
); i
++)
7436 record_full_arch_list_add_reg (ir
.regcache
, i
);
7438 for (i
= I387_FCTRL_REGNUM (tdep
);
7439 i386_fpc_regnum_p (gdbarch
, i
); i
++)
7440 record_full_arch_list_add_reg (ir
.regcache
, i
);
7444 case 2: /* ldmxcsr */
7445 if (!i386_mxcsr_regnum_p (gdbarch
, I387_MXCSR_REGNUM(tdep
)))
7447 record_full_arch_list_add_reg (ir
.regcache
, I387_MXCSR_REGNUM(tdep
));
7450 case 3: /* stmxcsr */
7452 if (i386_record_lea_modrm (&ir
))
7456 case 5: /* lfence */
7457 case 6: /* mfence */
7458 case 7: /* sfence clflush */
7462 opcode
= (opcode
<< 8) | ir
.modrm
;
7468 case 0x0fc3: /* movnti */
7469 ir
.ot
= (ir
.dflag
== 2) ? OT_QUAD
: OT_LONG
;
7470 if (i386_record_modrm (&ir
))
7475 if (i386_record_lea_modrm (&ir
))
7479 /* Add prefix to opcode. */
7594 /* Mask out PREFIX_ADDR. */
7595 switch ((prefixes
& ~PREFIX_ADDR
))
7607 reswitch_prefix_add
:
7615 if (record_read_memory (gdbarch
, ir
.addr
, &opcode8
, 1))
7618 opcode
= (uint32_t) opcode8
| opcode
<< 8;
7619 goto reswitch_prefix_add
;
7622 case 0x0f10: /* movups */
7623 case 0x660f10: /* movupd */
7624 case 0xf30f10: /* movss */
7625 case 0xf20f10: /* movsd */
7626 case 0x0f12: /* movlps */
7627 case 0x660f12: /* movlpd */
7628 case 0xf30f12: /* movsldup */
7629 case 0xf20f12: /* movddup */
7630 case 0x0f14: /* unpcklps */
7631 case 0x660f14: /* unpcklpd */
7632 case 0x0f15: /* unpckhps */
7633 case 0x660f15: /* unpckhpd */
7634 case 0x0f16: /* movhps */
7635 case 0x660f16: /* movhpd */
7636 case 0xf30f16: /* movshdup */
7637 case 0x0f28: /* movaps */
7638 case 0x660f28: /* movapd */
7639 case 0x0f2a: /* cvtpi2ps */
7640 case 0x660f2a: /* cvtpi2pd */
7641 case 0xf30f2a: /* cvtsi2ss */
7642 case 0xf20f2a: /* cvtsi2sd */
7643 case 0x0f2c: /* cvttps2pi */
7644 case 0x660f2c: /* cvttpd2pi */
7645 case 0x0f2d: /* cvtps2pi */
7646 case 0x660f2d: /* cvtpd2pi */
7647 case 0x660f3800: /* pshufb */
7648 case 0x660f3801: /* phaddw */
7649 case 0x660f3802: /* phaddd */
7650 case 0x660f3803: /* phaddsw */
7651 case 0x660f3804: /* pmaddubsw */
7652 case 0x660f3805: /* phsubw */
7653 case 0x660f3806: /* phsubd */
7654 case 0x660f3807: /* phsubsw */
7655 case 0x660f3808: /* psignb */
7656 case 0x660f3809: /* psignw */
7657 case 0x660f380a: /* psignd */
7658 case 0x660f380b: /* pmulhrsw */
7659 case 0x660f3810: /* pblendvb */
7660 case 0x660f3814: /* blendvps */
7661 case 0x660f3815: /* blendvpd */
7662 case 0x660f381c: /* pabsb */
7663 case 0x660f381d: /* pabsw */
7664 case 0x660f381e: /* pabsd */
7665 case 0x660f3820: /* pmovsxbw */
7666 case 0x660f3821: /* pmovsxbd */
7667 case 0x660f3822: /* pmovsxbq */
7668 case 0x660f3823: /* pmovsxwd */
7669 case 0x660f3824: /* pmovsxwq */
7670 case 0x660f3825: /* pmovsxdq */
7671 case 0x660f3828: /* pmuldq */
7672 case 0x660f3829: /* pcmpeqq */
7673 case 0x660f382a: /* movntdqa */
7674 case 0x660f3a08: /* roundps */
7675 case 0x660f3a09: /* roundpd */
7676 case 0x660f3a0a: /* roundss */
7677 case 0x660f3a0b: /* roundsd */
7678 case 0x660f3a0c: /* blendps */
7679 case 0x660f3a0d: /* blendpd */
7680 case 0x660f3a0e: /* pblendw */
7681 case 0x660f3a0f: /* palignr */
7682 case 0x660f3a20: /* pinsrb */
7683 case 0x660f3a21: /* insertps */
7684 case 0x660f3a22: /* pinsrd pinsrq */
7685 case 0x660f3a40: /* dpps */
7686 case 0x660f3a41: /* dppd */
7687 case 0x660f3a42: /* mpsadbw */
7688 case 0x660f3a60: /* pcmpestrm */
7689 case 0x660f3a61: /* pcmpestri */
7690 case 0x660f3a62: /* pcmpistrm */
7691 case 0x660f3a63: /* pcmpistri */
7692 case 0x0f51: /* sqrtps */
7693 case 0x660f51: /* sqrtpd */
7694 case 0xf20f51: /* sqrtsd */
7695 case 0xf30f51: /* sqrtss */
7696 case 0x0f52: /* rsqrtps */
7697 case 0xf30f52: /* rsqrtss */
7698 case 0x0f53: /* rcpps */
7699 case 0xf30f53: /* rcpss */
7700 case 0x0f54: /* andps */
7701 case 0x660f54: /* andpd */
7702 case 0x0f55: /* andnps */
7703 case 0x660f55: /* andnpd */
7704 case 0x0f56: /* orps */
7705 case 0x660f56: /* orpd */
7706 case 0x0f57: /* xorps */
7707 case 0x660f57: /* xorpd */
7708 case 0x0f58: /* addps */
7709 case 0x660f58: /* addpd */
7710 case 0xf20f58: /* addsd */
7711 case 0xf30f58: /* addss */
7712 case 0x0f59: /* mulps */
7713 case 0x660f59: /* mulpd */
7714 case 0xf20f59: /* mulsd */
7715 case 0xf30f59: /* mulss */
7716 case 0x0f5a: /* cvtps2pd */
7717 case 0x660f5a: /* cvtpd2ps */
7718 case 0xf20f5a: /* cvtsd2ss */
7719 case 0xf30f5a: /* cvtss2sd */
7720 case 0x0f5b: /* cvtdq2ps */
7721 case 0x660f5b: /* cvtps2dq */
7722 case 0xf30f5b: /* cvttps2dq */
7723 case 0x0f5c: /* subps */
7724 case 0x660f5c: /* subpd */
7725 case 0xf20f5c: /* subsd */
7726 case 0xf30f5c: /* subss */
7727 case 0x0f5d: /* minps */
7728 case 0x660f5d: /* minpd */
7729 case 0xf20f5d: /* minsd */
7730 case 0xf30f5d: /* minss */
7731 case 0x0f5e: /* divps */
7732 case 0x660f5e: /* divpd */
7733 case 0xf20f5e: /* divsd */
7734 case 0xf30f5e: /* divss */
7735 case 0x0f5f: /* maxps */
7736 case 0x660f5f: /* maxpd */
7737 case 0xf20f5f: /* maxsd */
7738 case 0xf30f5f: /* maxss */
7739 case 0x660f60: /* punpcklbw */
7740 case 0x660f61: /* punpcklwd */
7741 case 0x660f62: /* punpckldq */
7742 case 0x660f63: /* packsswb */
7743 case 0x660f64: /* pcmpgtb */
7744 case 0x660f65: /* pcmpgtw */
7745 case 0x660f66: /* pcmpgtd */
7746 case 0x660f67: /* packuswb */
7747 case 0x660f68: /* punpckhbw */
7748 case 0x660f69: /* punpckhwd */
7749 case 0x660f6a: /* punpckhdq */
7750 case 0x660f6b: /* packssdw */
7751 case 0x660f6c: /* punpcklqdq */
7752 case 0x660f6d: /* punpckhqdq */
7753 case 0x660f6e: /* movd */
7754 case 0x660f6f: /* movdqa */
7755 case 0xf30f6f: /* movdqu */
7756 case 0x660f70: /* pshufd */
7757 case 0xf20f70: /* pshuflw */
7758 case 0xf30f70: /* pshufhw */
7759 case 0x660f74: /* pcmpeqb */
7760 case 0x660f75: /* pcmpeqw */
7761 case 0x660f76: /* pcmpeqd */
7762 case 0x660f7c: /* haddpd */
7763 case 0xf20f7c: /* haddps */
7764 case 0x660f7d: /* hsubpd */
7765 case 0xf20f7d: /* hsubps */
7766 case 0xf30f7e: /* movq */
7767 case 0x0fc2: /* cmpps */
7768 case 0x660fc2: /* cmppd */
7769 case 0xf20fc2: /* cmpsd */
7770 case 0xf30fc2: /* cmpss */
7771 case 0x660fc4: /* pinsrw */
7772 case 0x0fc6: /* shufps */
7773 case 0x660fc6: /* shufpd */
7774 case 0x660fd0: /* addsubpd */
7775 case 0xf20fd0: /* addsubps */
7776 case 0x660fd1: /* psrlw */
7777 case 0x660fd2: /* psrld */
7778 case 0x660fd3: /* psrlq */
7779 case 0x660fd4: /* paddq */
7780 case 0x660fd5: /* pmullw */
7781 case 0xf30fd6: /* movq2dq */
7782 case 0x660fd8: /* psubusb */
7783 case 0x660fd9: /* psubusw */
7784 case 0x660fda: /* pminub */
7785 case 0x660fdb: /* pand */
7786 case 0x660fdc: /* paddusb */
7787 case 0x660fdd: /* paddusw */
7788 case 0x660fde: /* pmaxub */
7789 case 0x660fdf: /* pandn */
7790 case 0x660fe0: /* pavgb */
7791 case 0x660fe1: /* psraw */
7792 case 0x660fe2: /* psrad */
7793 case 0x660fe3: /* pavgw */
7794 case 0x660fe4: /* pmulhuw */
7795 case 0x660fe5: /* pmulhw */
7796 case 0x660fe6: /* cvttpd2dq */
7797 case 0xf20fe6: /* cvtpd2dq */
7798 case 0xf30fe6: /* cvtdq2pd */
7799 case 0x660fe8: /* psubsb */
7800 case 0x660fe9: /* psubsw */
7801 case 0x660fea: /* pminsw */
7802 case 0x660feb: /* por */
7803 case 0x660fec: /* paddsb */
7804 case 0x660fed: /* paddsw */
7805 case 0x660fee: /* pmaxsw */
7806 case 0x660fef: /* pxor */
7807 case 0xf20ff0: /* lddqu */
7808 case 0x660ff1: /* psllw */
7809 case 0x660ff2: /* pslld */
7810 case 0x660ff3: /* psllq */
7811 case 0x660ff4: /* pmuludq */
7812 case 0x660ff5: /* pmaddwd */
7813 case 0x660ff6: /* psadbw */
7814 case 0x660ff8: /* psubb */
7815 case 0x660ff9: /* psubw */
7816 case 0x660ffa: /* psubd */
7817 case 0x660ffb: /* psubq */
7818 case 0x660ffc: /* paddb */
7819 case 0x660ffd: /* paddw */
7820 case 0x660ffe: /* paddd */
7821 if (i386_record_modrm (&ir
))
7824 if (!i386_xmm_regnum_p (gdbarch
, I387_XMM0_REGNUM (tdep
) + ir
.reg
))
7826 record_full_arch_list_add_reg (ir
.regcache
,
7827 I387_XMM0_REGNUM (tdep
) + ir
.reg
);
7828 if ((opcode
& 0xfffffffc) == 0x660f3a60)
7829 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
7832 case 0x0f11: /* movups */
7833 case 0x660f11: /* movupd */
7834 case 0xf30f11: /* movss */
7835 case 0xf20f11: /* movsd */
7836 case 0x0f13: /* movlps */
7837 case 0x660f13: /* movlpd */
7838 case 0x0f17: /* movhps */
7839 case 0x660f17: /* movhpd */
7840 case 0x0f29: /* movaps */
7841 case 0x660f29: /* movapd */
7842 case 0x660f3a14: /* pextrb */
7843 case 0x660f3a15: /* pextrw */
7844 case 0x660f3a16: /* pextrd pextrq */
7845 case 0x660f3a17: /* extractps */
7846 case 0x660f7f: /* movdqa */
7847 case 0xf30f7f: /* movdqu */
7848 if (i386_record_modrm (&ir
))
7852 if (opcode
== 0x0f13 || opcode
== 0x660f13
7853 || opcode
== 0x0f17 || opcode
== 0x660f17)
7856 if (!i386_xmm_regnum_p (gdbarch
,
7857 I387_XMM0_REGNUM (tdep
) + ir
.rm
))
7859 record_full_arch_list_add_reg (ir
.regcache
,
7860 I387_XMM0_REGNUM (tdep
) + ir
.rm
);
7882 if (i386_record_lea_modrm (&ir
))
7887 case 0x0f2b: /* movntps */
7888 case 0x660f2b: /* movntpd */
7889 case 0x0fe7: /* movntq */
7890 case 0x660fe7: /* movntdq */
7893 if (opcode
== 0x0fe7)
7897 if (i386_record_lea_modrm (&ir
))
7901 case 0xf30f2c: /* cvttss2si */
7902 case 0xf20f2c: /* cvttsd2si */
7903 case 0xf30f2d: /* cvtss2si */
7904 case 0xf20f2d: /* cvtsd2si */
7905 case 0xf20f38f0: /* crc32 */
7906 case 0xf20f38f1: /* crc32 */
7907 case 0x0f50: /* movmskps */
7908 case 0x660f50: /* movmskpd */
7909 case 0x0fc5: /* pextrw */
7910 case 0x660fc5: /* pextrw */
7911 case 0x0fd7: /* pmovmskb */
7912 case 0x660fd7: /* pmovmskb */
7913 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir
.reg
| rex_r
);
7916 case 0x0f3800: /* pshufb */
7917 case 0x0f3801: /* phaddw */
7918 case 0x0f3802: /* phaddd */
7919 case 0x0f3803: /* phaddsw */
7920 case 0x0f3804: /* pmaddubsw */
7921 case 0x0f3805: /* phsubw */
7922 case 0x0f3806: /* phsubd */
7923 case 0x0f3807: /* phsubsw */
7924 case 0x0f3808: /* psignb */
7925 case 0x0f3809: /* psignw */
7926 case 0x0f380a: /* psignd */
7927 case 0x0f380b: /* pmulhrsw */
7928 case 0x0f381c: /* pabsb */
7929 case 0x0f381d: /* pabsw */
7930 case 0x0f381e: /* pabsd */
7931 case 0x0f382b: /* packusdw */
7932 case 0x0f3830: /* pmovzxbw */
7933 case 0x0f3831: /* pmovzxbd */
7934 case 0x0f3832: /* pmovzxbq */
7935 case 0x0f3833: /* pmovzxwd */
7936 case 0x0f3834: /* pmovzxwq */
7937 case 0x0f3835: /* pmovzxdq */
7938 case 0x0f3837: /* pcmpgtq */
7939 case 0x0f3838: /* pminsb */
7940 case 0x0f3839: /* pminsd */
7941 case 0x0f383a: /* pminuw */
7942 case 0x0f383b: /* pminud */
7943 case 0x0f383c: /* pmaxsb */
7944 case 0x0f383d: /* pmaxsd */
7945 case 0x0f383e: /* pmaxuw */
7946 case 0x0f383f: /* pmaxud */
7947 case 0x0f3840: /* pmulld */
7948 case 0x0f3841: /* phminposuw */
7949 case 0x0f3a0f: /* palignr */
7950 case 0x0f60: /* punpcklbw */
7951 case 0x0f61: /* punpcklwd */
7952 case 0x0f62: /* punpckldq */
7953 case 0x0f63: /* packsswb */
7954 case 0x0f64: /* pcmpgtb */
7955 case 0x0f65: /* pcmpgtw */
7956 case 0x0f66: /* pcmpgtd */
7957 case 0x0f67: /* packuswb */
7958 case 0x0f68: /* punpckhbw */
7959 case 0x0f69: /* punpckhwd */
7960 case 0x0f6a: /* punpckhdq */
7961 case 0x0f6b: /* packssdw */
7962 case 0x0f6e: /* movd */
7963 case 0x0f6f: /* movq */
7964 case 0x0f70: /* pshufw */
7965 case 0x0f74: /* pcmpeqb */
7966 case 0x0f75: /* pcmpeqw */
7967 case 0x0f76: /* pcmpeqd */
7968 case 0x0fc4: /* pinsrw */
7969 case 0x0fd1: /* psrlw */
7970 case 0x0fd2: /* psrld */
7971 case 0x0fd3: /* psrlq */
7972 case 0x0fd4: /* paddq */
7973 case 0x0fd5: /* pmullw */
7974 case 0xf20fd6: /* movdq2q */
7975 case 0x0fd8: /* psubusb */
7976 case 0x0fd9: /* psubusw */
7977 case 0x0fda: /* pminub */
7978 case 0x0fdb: /* pand */
7979 case 0x0fdc: /* paddusb */
7980 case 0x0fdd: /* paddusw */
7981 case 0x0fde: /* pmaxub */
7982 case 0x0fdf: /* pandn */
7983 case 0x0fe0: /* pavgb */
7984 case 0x0fe1: /* psraw */
7985 case 0x0fe2: /* psrad */
7986 case 0x0fe3: /* pavgw */
7987 case 0x0fe4: /* pmulhuw */
7988 case 0x0fe5: /* pmulhw */
7989 case 0x0fe8: /* psubsb */
7990 case 0x0fe9: /* psubsw */
7991 case 0x0fea: /* pminsw */
7992 case 0x0feb: /* por */
7993 case 0x0fec: /* paddsb */
7994 case 0x0fed: /* paddsw */
7995 case 0x0fee: /* pmaxsw */
7996 case 0x0fef: /* pxor */
7997 case 0x0ff1: /* psllw */
7998 case 0x0ff2: /* pslld */
7999 case 0x0ff3: /* psllq */
8000 case 0x0ff4: /* pmuludq */
8001 case 0x0ff5: /* pmaddwd */
8002 case 0x0ff6: /* psadbw */
8003 case 0x0ff8: /* psubb */
8004 case 0x0ff9: /* psubw */
8005 case 0x0ffa: /* psubd */
8006 case 0x0ffb: /* psubq */
8007 case 0x0ffc: /* paddb */
8008 case 0x0ffd: /* paddw */
8009 case 0x0ffe: /* paddd */
8010 if (i386_record_modrm (&ir
))
8012 if (!i386_mmx_regnum_p (gdbarch
, I387_MM0_REGNUM (tdep
) + ir
.reg
))
8014 record_full_arch_list_add_reg (ir
.regcache
,
8015 I387_MM0_REGNUM (tdep
) + ir
.reg
);
8018 case 0x0f71: /* psllw */
8019 case 0x0f72: /* pslld */
8020 case 0x0f73: /* psllq */
8021 if (i386_record_modrm (&ir
))
8023 if (!i386_mmx_regnum_p (gdbarch
, I387_MM0_REGNUM (tdep
) + ir
.rm
))
8025 record_full_arch_list_add_reg (ir
.regcache
,
8026 I387_MM0_REGNUM (tdep
) + ir
.rm
);
8029 case 0x660f71: /* psllw */
8030 case 0x660f72: /* pslld */
8031 case 0x660f73: /* psllq */
8032 if (i386_record_modrm (&ir
))
8035 if (!i386_xmm_regnum_p (gdbarch
, I387_XMM0_REGNUM (tdep
) + ir
.rm
))
8037 record_full_arch_list_add_reg (ir
.regcache
,
8038 I387_XMM0_REGNUM (tdep
) + ir
.rm
);
8041 case 0x0f7e: /* movd */
8042 case 0x660f7e: /* movd */
8043 if (i386_record_modrm (&ir
))
8046 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir
.rm
| ir
.rex_b
);
8053 if (i386_record_lea_modrm (&ir
))
8058 case 0x0f7f: /* movq */
8059 if (i386_record_modrm (&ir
))
8063 if (!i386_mmx_regnum_p (gdbarch
, I387_MM0_REGNUM (tdep
) + ir
.rm
))
8065 record_full_arch_list_add_reg (ir
.regcache
,
8066 I387_MM0_REGNUM (tdep
) + ir
.rm
);
8071 if (i386_record_lea_modrm (&ir
))
8076 case 0xf30fb8: /* popcnt */
8077 if (i386_record_modrm (&ir
))
8079 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir
.reg
);
8080 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
8083 case 0x660fd6: /* movq */
8084 if (i386_record_modrm (&ir
))
8089 if (!i386_xmm_regnum_p (gdbarch
,
8090 I387_XMM0_REGNUM (tdep
) + ir
.rm
))
8092 record_full_arch_list_add_reg (ir
.regcache
,
8093 I387_XMM0_REGNUM (tdep
) + ir
.rm
);
8098 if (i386_record_lea_modrm (&ir
))
8103 case 0x660f3817: /* ptest */
8104 case 0x0f2e: /* ucomiss */
8105 case 0x660f2e: /* ucomisd */
8106 case 0x0f2f: /* comiss */
8107 case 0x660f2f: /* comisd */
8108 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM
);
8111 case 0x0ff7: /* maskmovq */
8112 regcache_raw_read_unsigned (ir
.regcache
,
8113 ir
.regmap
[X86_RECORD_REDI_REGNUM
],
8115 if (record_full_arch_list_add_mem (addr
, 64))
8119 case 0x660ff7: /* maskmovdqu */
8120 regcache_raw_read_unsigned (ir
.regcache
,
8121 ir
.regmap
[X86_RECORD_REDI_REGNUM
],
8123 if (record_full_arch_list_add_mem (addr
, 128))
8138 /* In the future, maybe still need to deal with need_dasm. */
8139 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REIP_REGNUM
);
8140 if (record_full_arch_list_add_end ())
8146 gdb_printf (gdb_stderr
,
8147 _("Process record does not support instruction 0x%02x "
8148 "at address %s.\n"),
8149 (unsigned int) (opcode
),
8150 paddress (gdbarch
, ir
.orig_addr
));
8154 static const int i386_record_regmap
[] =
8156 I386_EAX_REGNUM
, I386_ECX_REGNUM
, I386_EDX_REGNUM
, I386_EBX_REGNUM
,
8157 I386_ESP_REGNUM
, I386_EBP_REGNUM
, I386_ESI_REGNUM
, I386_EDI_REGNUM
,
8158 0, 0, 0, 0, 0, 0, 0, 0,
8159 I386_EIP_REGNUM
, I386_EFLAGS_REGNUM
, I386_CS_REGNUM
, I386_SS_REGNUM
,
8160 I386_DS_REGNUM
, I386_ES_REGNUM
, I386_FS_REGNUM
, I386_GS_REGNUM
8163 /* Check that the given address appears suitable for a fast
8164 tracepoint, which on x86-64 means that we need an instruction of at
8165 least 5 bytes, so that we can overwrite it with a 4-byte-offset
8166 jump and not have to worry about program jumps to an address in the
8167 middle of the tracepoint jump. On x86, it may be possible to use
8168 4-byte jumps with a 2-byte offset to a trampoline located in the
8169 bottom 64 KiB of memory. Returns 1 if OK, and writes a size
8170 of instruction to replace, and 0 if not, plus an explanatory
8174 i386_fast_tracepoint_valid_at (struct gdbarch
*gdbarch
, CORE_ADDR addr
,
8179 /* Ask the target for the minimum instruction length supported. */
8180 jumplen
= target_get_min_fast_tracepoint_insn_len ();
8184 /* If the target does not support the get_min_fast_tracepoint_insn_len
8185 operation, assume that fast tracepoints will always be implemented
8186 using 4-byte relative jumps on both x86 and x86-64. */
8189 else if (jumplen
== 0)
8191 /* If the target does support get_min_fast_tracepoint_insn_len but
8192 returns zero, then the IPA has not loaded yet. In this case,
8193 we optimistically assume that truncated 2-byte relative jumps
8194 will be available on x86, and compensate later if this assumption
8195 turns out to be incorrect. On x86-64 architectures, 4-byte relative
8196 jumps will always be used. */
8197 jumplen
= (register_size (gdbarch
, 0) == 8) ? 5 : 4;
8200 /* Check for fit. */
8201 len
= gdb_insn_length (gdbarch
, addr
);
8205 /* Return a bit of target-specific detail to add to the caller's
8206 generic failure message. */
8208 *msg
= string_printf (_("; instruction is only %d bytes long, "
8209 "need at least %d bytes for the jump"),
8221 /* Return a floating-point format for a floating-point variable of
8222 length LEN in bits. If non-NULL, NAME is the name of its type.
8223 If no suitable type is found, return NULL. */
8225 static const struct floatformat
**
8226 i386_floatformat_for_type (struct gdbarch
*gdbarch
,
8227 const char *name
, int len
)
8229 if (len
== 128 && name
)
8230 if (strcmp (name
, "__float128") == 0
8231 || strcmp (name
, "_Float128") == 0
8232 || strcmp (name
, "complex _Float128") == 0
8233 || strcmp (name
, "complex(kind=16)") == 0
8234 || strcmp (name
, "complex*32") == 0
8235 || strcmp (name
, "COMPLEX*32") == 0
8236 || strcmp (name
, "quad complex") == 0
8237 || strcmp (name
, "real(kind=16)") == 0
8238 || strcmp (name
, "real*16") == 0
8239 || strcmp (name
, "REAL*16") == 0)
8240 return floatformats_ieee_quad
;
8242 return default_floatformat_for_type (gdbarch
, name
, len
);
8246 i386_validate_tdesc_p (i386_gdbarch_tdep
*tdep
,
8247 struct tdesc_arch_data
*tdesc_data
)
8249 const struct target_desc
*tdesc
= tdep
->tdesc
;
8250 const struct tdesc_feature
*feature_core
;
8252 const struct tdesc_feature
*feature_sse
, *feature_avx
, *feature_mpx
,
8253 *feature_avx512
, *feature_pkeys
, *feature_segments
;
8254 int i
, num_regs
, valid_p
;
8256 if (! tdesc_has_registers (tdesc
))
8259 /* Get core registers. */
8260 feature_core
= tdesc_find_feature (tdesc
, "org.gnu.gdb.i386.core");
8261 if (feature_core
== NULL
)
8264 /* Get SSE registers. */
8265 feature_sse
= tdesc_find_feature (tdesc
, "org.gnu.gdb.i386.sse");
8267 /* Try AVX registers. */
8268 feature_avx
= tdesc_find_feature (tdesc
, "org.gnu.gdb.i386.avx");
8270 /* Try MPX registers. */
8271 feature_mpx
= tdesc_find_feature (tdesc
, "org.gnu.gdb.i386.mpx");
8273 /* Try AVX512 registers. */
8274 feature_avx512
= tdesc_find_feature (tdesc
, "org.gnu.gdb.i386.avx512");
8276 /* Try segment base registers. */
8277 feature_segments
= tdesc_find_feature (tdesc
, "org.gnu.gdb.i386.segments");
8280 feature_pkeys
= tdesc_find_feature (tdesc
, "org.gnu.gdb.i386.pkeys");
8284 /* The XCR0 bits. */
8287 /* AVX512 register description requires AVX register description. */
8291 tdep
->xcr0
= X86_XSTATE_AVX_AVX512_MASK
;
8293 /* It may have been set by OSABI initialization function. */
8294 if (tdep
->k0_regnum
< 0)
8296 tdep
->k_register_names
= i386_k_names
;
8297 tdep
->k0_regnum
= I386_K0_REGNUM
;
8300 for (i
= 0; i
< I387_NUM_K_REGS
; i
++)
8301 valid_p
&= tdesc_numbered_register (feature_avx512
, tdesc_data
,
8302 tdep
->k0_regnum
+ i
,
8305 if (tdep
->num_zmm_regs
== 0)
8307 tdep
->zmmh_register_names
= i386_zmmh_names
;
8308 tdep
->num_zmm_regs
= 8;
8309 tdep
->zmm0h_regnum
= I386_ZMM0H_REGNUM
;
8312 for (i
= 0; i
< tdep
->num_zmm_regs
; i
++)
8313 valid_p
&= tdesc_numbered_register (feature_avx512
, tdesc_data
,
8314 tdep
->zmm0h_regnum
+ i
,
8315 tdep
->zmmh_register_names
[i
]);
8317 for (i
= 0; i
< tdep
->num_xmm_avx512_regs
; i
++)
8318 valid_p
&= tdesc_numbered_register (feature_avx512
, tdesc_data
,
8319 tdep
->xmm16_regnum
+ i
,
8320 tdep
->xmm_avx512_register_names
[i
]);
8322 for (i
= 0; i
< tdep
->num_ymm_avx512_regs
; i
++)
8323 valid_p
&= tdesc_numbered_register (feature_avx512
, tdesc_data
,
8324 tdep
->ymm16h_regnum
+ i
,
8325 tdep
->ymm16h_register_names
[i
]);
8329 /* AVX register description requires SSE register description. */
8333 if (!feature_avx512
)
8334 tdep
->xcr0
= X86_XSTATE_AVX_MASK
;
8336 /* It may have been set by OSABI initialization function. */
8337 if (tdep
->num_ymm_regs
== 0)
8339 tdep
->ymmh_register_names
= i386_ymmh_names
;
8340 tdep
->num_ymm_regs
= 8;
8341 tdep
->ymm0h_regnum
= I386_YMM0H_REGNUM
;
8344 for (i
= 0; i
< tdep
->num_ymm_regs
; i
++)
8345 valid_p
&= tdesc_numbered_register (feature_avx
, tdesc_data
,
8346 tdep
->ymm0h_regnum
+ i
,
8347 tdep
->ymmh_register_names
[i
]);
8349 else if (feature_sse
)
8350 tdep
->xcr0
= X86_XSTATE_SSE_MASK
;
8353 tdep
->xcr0
= X86_XSTATE_X87_MASK
;
8354 tdep
->num_xmm_regs
= 0;
8357 num_regs
= tdep
->num_core_regs
;
8358 for (i
= 0; i
< num_regs
; i
++)
8359 valid_p
&= tdesc_numbered_register (feature_core
, tdesc_data
, i
,
8360 tdep
->register_names
[i
]);
8364 /* Need to include %mxcsr, so add one. */
8365 num_regs
+= tdep
->num_xmm_regs
+ 1;
8366 for (; i
< num_regs
; i
++)
8367 valid_p
&= tdesc_numbered_register (feature_sse
, tdesc_data
, i
,
8368 tdep
->register_names
[i
]);
8373 tdep
->xcr0
|= X86_XSTATE_MPX_MASK
;
8375 if (tdep
->bnd0r_regnum
< 0)
8377 tdep
->mpx_register_names
= i386_mpx_names
;
8378 tdep
->bnd0r_regnum
= I386_BND0R_REGNUM
;
8379 tdep
->bndcfgu_regnum
= I386_BNDCFGU_REGNUM
;
8382 for (i
= 0; i
< I387_NUM_MPX_REGS
; i
++)
8383 valid_p
&= tdesc_numbered_register (feature_mpx
, tdesc_data
,
8384 I387_BND0R_REGNUM (tdep
) + i
,
8385 tdep
->mpx_register_names
[i
]);
8388 if (feature_segments
)
8390 if (tdep
->fsbase_regnum
< 0)
8391 tdep
->fsbase_regnum
= I386_FSBASE_REGNUM
;
8392 valid_p
&= tdesc_numbered_register (feature_segments
, tdesc_data
,
8393 tdep
->fsbase_regnum
, "fs_base");
8394 valid_p
&= tdesc_numbered_register (feature_segments
, tdesc_data
,
8395 tdep
->fsbase_regnum
+ 1, "gs_base");
8400 tdep
->xcr0
|= X86_XSTATE_PKRU
;
8401 if (tdep
->pkru_regnum
< 0)
8403 tdep
->pkeys_register_names
= i386_pkeys_names
;
8404 tdep
->pkru_regnum
= I386_PKRU_REGNUM
;
8405 tdep
->num_pkeys_regs
= 1;
8408 for (i
= 0; i
< I387_NUM_PKEYS_REGS
; i
++)
8409 valid_p
&= tdesc_numbered_register (feature_pkeys
, tdesc_data
,
8410 I387_PKRU_REGNUM (tdep
) + i
,
8411 tdep
->pkeys_register_names
[i
]);
8419 /* Implement the type_align gdbarch function. */
8422 i386_type_align (struct gdbarch
*gdbarch
, struct type
*type
)
8424 type
= check_typedef (type
);
8426 if (gdbarch_ptr_bit (gdbarch
) == 32)
8428 if ((type
->code () == TYPE_CODE_INT
8429 || type
->code () == TYPE_CODE_FLT
)
8430 && type
->length () > 4)
8433 /* Handle x86's funny long double. */
8434 if (type
->code () == TYPE_CODE_FLT
8435 && gdbarch_long_double_bit (gdbarch
) == type
->length () * 8)
8443 /* Note: This is called for both i386 and amd64. */
8445 static struct gdbarch
*
8446 i386_gdbarch_init (struct gdbarch_info info
, struct gdbarch_list
*arches
)
8448 struct gdbarch
*gdbarch
;
8449 const struct target_desc
*tdesc
;
8455 /* If there is already a candidate, use it. */
8456 arches
= gdbarch_list_lookup_by_info (arches
, &info
);
8458 return arches
->gdbarch
;
8460 /* Allocate space for the new architecture. Assume i386 for now. */
8461 i386_gdbarch_tdep
*tdep
= new i386_gdbarch_tdep
;
8462 gdbarch
= gdbarch_alloc (&info
, tdep
);
8464 /* General-purpose registers. */
8465 tdep
->gregset_reg_offset
= NULL
;
8466 tdep
->gregset_num_regs
= I386_NUM_GREGS
;
8467 tdep
->sizeof_gregset
= 0;
8469 /* Floating-point registers. */
8470 tdep
->sizeof_fpregset
= I387_SIZEOF_FSAVE
;
8471 tdep
->fpregset
= &i386_fpregset
;
8473 /* The default settings include the FPU registers, the MMX registers
8474 and the SSE registers. This can be overridden for a specific ABI
8475 by adjusting the members `st0_regnum', `mm0_regnum' and
8476 `num_xmm_regs' of `struct gdbarch_tdep', otherwise the registers
8477 will show up in the output of "info all-registers". */
8479 tdep
->st0_regnum
= I386_ST0_REGNUM
;
8481 /* I386_NUM_XREGS includes %mxcsr, so substract one. */
8482 tdep
->num_xmm_regs
= I386_NUM_XREGS
- 1;
8484 tdep
->jb_pc_offset
= -1;
8485 tdep
->struct_return
= pcc_struct_return
;
8486 tdep
->sigtramp_start
= 0;
8487 tdep
->sigtramp_end
= 0;
8488 tdep
->sigtramp_p
= i386_sigtramp_p
;
8489 tdep
->sigcontext_addr
= NULL
;
8490 tdep
->sc_reg_offset
= NULL
;
8491 tdep
->sc_pc_offset
= -1;
8492 tdep
->sc_sp_offset
= -1;
8494 tdep
->xsave_xcr0_offset
= -1;
8496 tdep
->record_regmap
= i386_record_regmap
;
8498 set_gdbarch_type_align (gdbarch
, i386_type_align
);
8500 /* The format used for `long double' on almost all i386 targets is
8501 the i387 extended floating-point format. In fact, of all targets
8502 in the GCC 2.95 tree, only OSF/1 does it different, and insists
8503 on having a `long double' that's not `long' at all. */
8504 set_gdbarch_long_double_format (gdbarch
, floatformats_i387_ext
);
8506 /* Although the i387 extended floating-point has only 80 significant
8507 bits, a `long double' actually takes up 96, probably to enforce
8509 set_gdbarch_long_double_bit (gdbarch
, 96);
8511 /* Support of bfloat16 format. */
8512 set_gdbarch_bfloat16_format (gdbarch
, floatformats_bfloat16
);
8514 /* Support for floating-point data type variants. */
8515 set_gdbarch_floatformat_for_type (gdbarch
, i386_floatformat_for_type
);
8517 /* Register numbers of various important registers. */
8518 set_gdbarch_sp_regnum (gdbarch
, I386_ESP_REGNUM
); /* %esp */
8519 set_gdbarch_pc_regnum (gdbarch
, I386_EIP_REGNUM
); /* %eip */
8520 set_gdbarch_ps_regnum (gdbarch
, I386_EFLAGS_REGNUM
); /* %eflags */
8521 set_gdbarch_fp0_regnum (gdbarch
, I386_ST0_REGNUM
); /* %st(0) */
8523 /* NOTE: kettenis/20040418: GCC does have two possible register
8524 numbering schemes on the i386: dbx and SVR4. These schemes
8525 differ in how they number %ebp, %esp, %eflags, and the
8526 floating-point registers, and are implemented by the arrays
8527 dbx_register_map[] and svr4_dbx_register_map in
8528 gcc/config/i386.c. GCC also defines a third numbering scheme in
8529 gcc/config/i386.c, which it designates as the "default" register
8530 map used in 64bit mode. This last register numbering scheme is
8531 implemented in dbx64_register_map, and is used for AMD64; see
8534 Currently, each GCC i386 target always uses the same register
8535 numbering scheme across all its supported debugging formats
8536 i.e. SDB (COFF), stabs and DWARF 2. This is because
8537 gcc/sdbout.c, gcc/dbxout.c and gcc/dwarf2out.c all use the
8538 DBX_REGISTER_NUMBER macro which is defined by each target's
8539 respective config header in a manner independent of the requested
8540 output debugging format.
8542 This does not match the arrangement below, which presumes that
8543 the SDB and stabs numbering schemes differ from the DWARF and
8544 DWARF 2 ones. The reason for this arrangement is that it is
8545 likely to get the numbering scheme for the target's
8546 default/native debug format right. For targets where GCC is the
8547 native compiler (FreeBSD, NetBSD, OpenBSD, GNU/Linux) or for
8548 targets where the native toolchain uses a different numbering
8549 scheme for a particular debug format (stabs-in-ELF on Solaris)
8550 the defaults below will have to be overridden, like
8551 i386_elf_init_abi() does. */
8553 /* Use the dbx register numbering scheme for stabs and COFF. */
8554 set_gdbarch_stab_reg_to_regnum (gdbarch
, i386_dbx_reg_to_regnum
);
8555 set_gdbarch_sdb_reg_to_regnum (gdbarch
, i386_dbx_reg_to_regnum
);
8557 /* Use the SVR4 register numbering scheme for DWARF 2. */
8558 set_gdbarch_dwarf2_reg_to_regnum (gdbarch
, i386_svr4_dwarf_reg_to_regnum
);
8560 /* We don't set gdbarch_stab_reg_to_regnum, since ECOFF doesn't seem to
8561 be in use on any of the supported i386 targets. */
8563 set_gdbarch_print_float_info (gdbarch
, i387_print_float_info
);
8565 set_gdbarch_get_longjmp_target (gdbarch
, i386_get_longjmp_target
);
8567 /* Call dummy code. */
8568 set_gdbarch_call_dummy_location (gdbarch
, ON_STACK
);
8569 set_gdbarch_push_dummy_code (gdbarch
, i386_push_dummy_code
);
8570 set_gdbarch_push_dummy_call (gdbarch
, i386_push_dummy_call
);
8571 set_gdbarch_frame_align (gdbarch
, i386_frame_align
);
8573 set_gdbarch_convert_register_p (gdbarch
, i386_convert_register_p
);
8574 set_gdbarch_register_to_value (gdbarch
, i386_register_to_value
);
8575 set_gdbarch_value_to_register (gdbarch
, i386_value_to_register
);
8577 set_gdbarch_return_value (gdbarch
, i386_return_value
);
8579 set_gdbarch_skip_prologue (gdbarch
, i386_skip_prologue
);
8581 /* Stack grows downward. */
8582 set_gdbarch_inner_than (gdbarch
, core_addr_lessthan
);
8584 set_gdbarch_breakpoint_kind_from_pc (gdbarch
, i386_breakpoint::kind_from_pc
);
8585 set_gdbarch_sw_breakpoint_from_kind (gdbarch
, i386_breakpoint::bp_from_kind
);
8587 set_gdbarch_decr_pc_after_break (gdbarch
, 1);
8588 set_gdbarch_max_insn_length (gdbarch
, I386_MAX_INSN_LEN
);
8590 set_gdbarch_frame_args_skip (gdbarch
, 8);
8592 set_gdbarch_print_insn (gdbarch
, i386_print_insn
);
8594 set_gdbarch_dummy_id (gdbarch
, i386_dummy_id
);
8596 set_gdbarch_unwind_pc (gdbarch
, i386_unwind_pc
);
8598 /* Add the i386 register groups. */
8599 i386_add_reggroups (gdbarch
);
8600 tdep
->register_reggroup_p
= i386_register_reggroup_p
;
8602 /* Helper for function argument information. */
8603 set_gdbarch_fetch_pointer_argument (gdbarch
, i386_fetch_pointer_argument
);
8605 /* Hook the function epilogue frame unwinder. This unwinder is
8606 appended to the list first, so that it supercedes the DWARF
8607 unwinder in function epilogues (where the DWARF unwinder
8608 currently fails). */
8609 frame_unwind_append_unwinder (gdbarch
, &i386_epilogue_frame_unwind
);
8611 /* Hook in the DWARF CFI frame unwinder. This unwinder is appended
8612 to the list before the prologue-based unwinders, so that DWARF
8613 CFI info will be used if it is available. */
8614 dwarf2_append_unwinders (gdbarch
);
8616 frame_base_set_default (gdbarch
, &i386_frame_base
);
8618 /* Pseudo registers may be changed by amd64_init_abi. */
8619 set_gdbarch_pseudo_register_read_value (gdbarch
,
8620 i386_pseudo_register_read_value
);
8621 set_gdbarch_pseudo_register_write (gdbarch
, i386_pseudo_register_write
);
8622 set_gdbarch_ax_pseudo_register_collect (gdbarch
,
8623 i386_ax_pseudo_register_collect
);
8625 set_tdesc_pseudo_register_type (gdbarch
, i386_pseudo_register_type
);
8626 set_tdesc_pseudo_register_name (gdbarch
, i386_pseudo_register_name
);
8628 /* Override the normal target description method to make the AVX
8629 upper halves anonymous. */
8630 set_gdbarch_register_name (gdbarch
, i386_register_name
);
8632 /* Even though the default ABI only includes general-purpose registers,
8633 floating-point registers and the SSE registers, we have to leave a
8634 gap for the upper AVX, MPX and AVX512 registers. */
8635 set_gdbarch_num_regs (gdbarch
, I386_NUM_REGS
);
8637 set_gdbarch_gnu_triplet_regexp (gdbarch
, i386_gnu_triplet_regexp
);
8639 /* Get the x86 target description from INFO. */
8640 tdesc
= info
.target_desc
;
8641 if (! tdesc_has_registers (tdesc
))
8642 tdesc
= i386_target_description (X86_XSTATE_SSE_MASK
, false);
8643 tdep
->tdesc
= tdesc
;
8645 tdep
->num_core_regs
= I386_NUM_GREGS
+ I387_NUM_REGS
;
8646 tdep
->register_names
= i386_register_names
;
8648 /* No upper YMM registers. */
8649 tdep
->ymmh_register_names
= NULL
;
8650 tdep
->ymm0h_regnum
= -1;
8652 /* No upper ZMM registers. */
8653 tdep
->zmmh_register_names
= NULL
;
8654 tdep
->zmm0h_regnum
= -1;
8656 /* No high XMM registers. */
8657 tdep
->xmm_avx512_register_names
= NULL
;
8658 tdep
->xmm16_regnum
= -1;
8660 /* No upper YMM16-31 registers. */
8661 tdep
->ymm16h_register_names
= NULL
;
8662 tdep
->ymm16h_regnum
= -1;
8664 tdep
->num_byte_regs
= 8;
8665 tdep
->num_word_regs
= 8;
8666 tdep
->num_dword_regs
= 0;
8667 tdep
->num_mmx_regs
= 8;
8668 tdep
->num_ymm_regs
= 0;
8670 /* No MPX registers. */
8671 tdep
->bnd0r_regnum
= -1;
8672 tdep
->bndcfgu_regnum
= -1;
8674 /* No AVX512 registers. */
8675 tdep
->k0_regnum
= -1;
8676 tdep
->num_zmm_regs
= 0;
8677 tdep
->num_ymm_avx512_regs
= 0;
8678 tdep
->num_xmm_avx512_regs
= 0;
8680 /* No PKEYS registers */
8681 tdep
->pkru_regnum
= -1;
8682 tdep
->num_pkeys_regs
= 0;
8684 /* No segment base registers. */
8685 tdep
->fsbase_regnum
= -1;
8687 tdesc_arch_data_up tdesc_data
= tdesc_data_alloc ();
8689 set_gdbarch_relocate_instruction (gdbarch
, i386_relocate_instruction
);
8691 set_gdbarch_gen_return_address (gdbarch
, i386_gen_return_address
);
8693 set_gdbarch_insn_is_call (gdbarch
, i386_insn_is_call
);
8694 set_gdbarch_insn_is_ret (gdbarch
, i386_insn_is_ret
);
8695 set_gdbarch_insn_is_jump (gdbarch
, i386_insn_is_jump
);
8697 /* Hook in ABI-specific overrides, if they have been registered.
8698 Note: If INFO specifies a 64 bit arch, this is where we turn
8699 a 32-bit i386 into a 64-bit amd64. */
8700 info
.tdesc_data
= tdesc_data
.get ();
8701 gdbarch_init_osabi (info
, gdbarch
);
8703 if (!i386_validate_tdesc_p (tdep
, tdesc_data
.get ()))
8706 gdbarch_free (gdbarch
);
8710 num_bnd_cooked
= (tdep
->bnd0r_regnum
> 0 ? I387_NUM_BND_REGS
: 0);
8712 /* Wire in pseudo registers. Number of pseudo registers may be
8714 set_gdbarch_num_pseudo_regs (gdbarch
, (tdep
->num_byte_regs
8715 + tdep
->num_word_regs
8716 + tdep
->num_dword_regs
8717 + tdep
->num_mmx_regs
8718 + tdep
->num_ymm_regs
8720 + tdep
->num_ymm_avx512_regs
8721 + tdep
->num_zmm_regs
));
8723 /* Target description may be changed. */
8724 tdesc
= tdep
->tdesc
;
8726 tdesc_use_registers (gdbarch
, tdesc
, std::move (tdesc_data
));
8728 /* Override gdbarch_register_reggroup_p set in tdesc_use_registers. */
8729 set_gdbarch_register_reggroup_p (gdbarch
, tdep
->register_reggroup_p
);
8731 /* Make %al the first pseudo-register. */
8732 tdep
->al_regnum
= gdbarch_num_regs (gdbarch
);
8733 tdep
->ax_regnum
= tdep
->al_regnum
+ tdep
->num_byte_regs
;
8735 ymm0_regnum
= tdep
->ax_regnum
+ tdep
->num_word_regs
;
8736 if (tdep
->num_dword_regs
)
8738 /* Support dword pseudo-register if it hasn't been disabled. */
8739 tdep
->eax_regnum
= ymm0_regnum
;
8740 ymm0_regnum
+= tdep
->num_dword_regs
;
8743 tdep
->eax_regnum
= -1;
8745 mm0_regnum
= ymm0_regnum
;
8746 if (tdep
->num_ymm_regs
)
8748 /* Support YMM pseudo-register if it is available. */
8749 tdep
->ymm0_regnum
= ymm0_regnum
;
8750 mm0_regnum
+= tdep
->num_ymm_regs
;
8753 tdep
->ymm0_regnum
= -1;
8755 if (tdep
->num_ymm_avx512_regs
)
8757 /* Support YMM16-31 pseudo registers if available. */
8758 tdep
->ymm16_regnum
= mm0_regnum
;
8759 mm0_regnum
+= tdep
->num_ymm_avx512_regs
;
8762 tdep
->ymm16_regnum
= -1;
8764 if (tdep
->num_zmm_regs
)
8766 /* Support ZMM pseudo-register if it is available. */
8767 tdep
->zmm0_regnum
= mm0_regnum
;
8768 mm0_regnum
+= tdep
->num_zmm_regs
;
8771 tdep
->zmm0_regnum
= -1;
8773 bnd0_regnum
= mm0_regnum
;
8774 if (tdep
->num_mmx_regs
!= 0)
8776 /* Support MMX pseudo-register if MMX hasn't been disabled. */
8777 tdep
->mm0_regnum
= mm0_regnum
;
8778 bnd0_regnum
+= tdep
->num_mmx_regs
;
8781 tdep
->mm0_regnum
= -1;
8783 if (tdep
->bnd0r_regnum
> 0)
8784 tdep
->bnd0_regnum
= bnd0_regnum
;
8786 tdep
-> bnd0_regnum
= -1;
8788 /* Hook in the legacy prologue-based unwinders last (fallback). */
8789 frame_unwind_append_unwinder (gdbarch
, &i386_stack_tramp_frame_unwind
);
8790 frame_unwind_append_unwinder (gdbarch
, &i386_sigtramp_frame_unwind
);
8791 frame_unwind_append_unwinder (gdbarch
, &i386_frame_unwind
);
8793 /* If we have a register mapping, enable the generic core file
8794 support, unless it has already been enabled. */
8795 if (tdep
->gregset_reg_offset
8796 && !gdbarch_iterate_over_regset_sections_p (gdbarch
))
8797 set_gdbarch_iterate_over_regset_sections
8798 (gdbarch
, i386_iterate_over_regset_sections
);
8800 set_gdbarch_fast_tracepoint_valid_at (gdbarch
,
8801 i386_fast_tracepoint_valid_at
);
8808 /* Return the target description for a specified XSAVE feature mask. */
8810 const struct target_desc
*
8811 i386_target_description (uint64_t xcr0
, bool segments
)
8813 static target_desc
*i386_tdescs \
8814 [2/*SSE*/][2/*AVX*/][2/*MPX*/][2/*AVX512*/][2/*PKRU*/][2/*segments*/] = {};
8815 target_desc
**tdesc
;
8817 tdesc
= &i386_tdescs
[(xcr0
& X86_XSTATE_SSE
) ? 1 : 0]
8818 [(xcr0
& X86_XSTATE_AVX
) ? 1 : 0]
8819 [(xcr0
& X86_XSTATE_MPX
) ? 1 : 0]
8820 [(xcr0
& X86_XSTATE_AVX512
) ? 1 : 0]
8821 [(xcr0
& X86_XSTATE_PKRU
) ? 1 : 0]
8825 *tdesc
= i386_create_target_description (xcr0
, false, segments
);
8830 #define MPX_BASE_MASK (~(ULONGEST) 0xfff)
8832 /* Find the bound directory base address. */
8834 static unsigned long
8835 i386_mpx_bd_base (void)
8837 struct regcache
*rcache
;
8839 enum register_status regstatus
;
8841 rcache
= get_current_regcache ();
8842 gdbarch
*arch
= rcache
->arch ();
8843 i386_gdbarch_tdep
*tdep
= gdbarch_tdep
<i386_gdbarch_tdep
> (arch
);
8845 regstatus
= regcache_raw_read_unsigned (rcache
, tdep
->bndcfgu_regnum
, &ret
);
8847 if (regstatus
!= REG_VALID
)
8848 error (_("BNDCFGU register invalid, read status %d."), regstatus
);
8850 return ret
& MPX_BASE_MASK
;
8854 i386_mpx_enabled (void)
8856 gdbarch
*arch
= get_current_arch ();
8857 i386_gdbarch_tdep
*tdep
= gdbarch_tdep
<i386_gdbarch_tdep
> (arch
);
8858 const struct target_desc
*tdesc
= tdep
->tdesc
;
8860 return (tdesc_find_feature (tdesc
, "org.gnu.gdb.i386.mpx") != NULL
);
8863 #define MPX_BD_MASK 0xfffffff00000ULL /* select bits [47:20] */
8864 #define MPX_BT_MASK 0x0000000ffff8 /* select bits [19:3] */
8865 #define MPX_BD_MASK_32 0xfffff000 /* select bits [31:12] */
8866 #define MPX_BT_MASK_32 0x00000ffc /* select bits [11:2] */
8868 /* Find the bound table entry given the pointer location and the base
8869 address of the table. */
8872 i386_mpx_get_bt_entry (CORE_ADDR ptr
, CORE_ADDR bd_base
)
8876 CORE_ADDR mpx_bd_mask
, bd_ptr_r_shift
, bd_ptr_l_shift
;
8877 CORE_ADDR bt_mask
, bt_select_r_shift
, bt_select_l_shift
;
8878 CORE_ADDR bd_entry_addr
;
8881 struct gdbarch
*gdbarch
= get_current_arch ();
8882 struct type
*data_ptr_type
= builtin_type (gdbarch
)->builtin_data_ptr
;
8885 if (gdbarch_ptr_bit (gdbarch
) == 64)
8887 mpx_bd_mask
= (CORE_ADDR
) MPX_BD_MASK
;
8888 bd_ptr_r_shift
= 20;
8890 bt_select_r_shift
= 3;
8891 bt_select_l_shift
= 5;
8892 bt_mask
= (CORE_ADDR
) MPX_BT_MASK
;
8894 if ( sizeof (CORE_ADDR
) == 4)
8895 error (_("bound table examination not supported\
8896 for 64-bit process with 32-bit GDB"));
8900 mpx_bd_mask
= MPX_BD_MASK_32
;
8901 bd_ptr_r_shift
= 12;
8903 bt_select_r_shift
= 2;
8904 bt_select_l_shift
= 4;
8905 bt_mask
= MPX_BT_MASK_32
;
8908 offset1
= ((ptr
& mpx_bd_mask
) >> bd_ptr_r_shift
) << bd_ptr_l_shift
;
8909 bd_entry_addr
= bd_base
+ offset1
;
8910 bd_entry
= read_memory_typed_address (bd_entry_addr
, data_ptr_type
);
8912 if ((bd_entry
& 0x1) == 0)
8913 error (_("Invalid bounds directory entry at %s."),
8914 paddress (get_current_arch (), bd_entry_addr
));
8916 /* Clearing status bit. */
8918 bt_addr
= bd_entry
& ~bt_select_r_shift
;
8919 offset2
= ((ptr
& bt_mask
) >> bt_select_r_shift
) << bt_select_l_shift
;
8921 return bt_addr
+ offset2
;
8924 /* Print routine for the mpx bounds. */
8927 i386_mpx_print_bounds (const CORE_ADDR bt_entry
[4])
8929 struct ui_out
*uiout
= current_uiout
;
8931 struct gdbarch
*gdbarch
= get_current_arch ();
8932 CORE_ADDR onecompl
= ~((CORE_ADDR
) 0);
8933 int bounds_in_map
= ((~bt_entry
[1] == 0 && bt_entry
[0] == onecompl
) ? 1 : 0);
8935 if (bounds_in_map
== 1)
8937 uiout
->text ("Null bounds on map:");
8938 uiout
->text (" pointer value = ");
8939 uiout
->field_core_addr ("pointer-value", gdbarch
, bt_entry
[2]);
8945 uiout
->text ("{lbound = ");
8946 uiout
->field_core_addr ("lower-bound", gdbarch
, bt_entry
[0]);
8947 uiout
->text (", ubound = ");
8949 /* The upper bound is stored in 1's complement. */
8950 uiout
->field_core_addr ("upper-bound", gdbarch
, ~bt_entry
[1]);
8951 uiout
->text ("}: pointer value = ");
8952 uiout
->field_core_addr ("pointer-value", gdbarch
, bt_entry
[2]);
8954 if (gdbarch_ptr_bit (gdbarch
) == 64)
8955 size
= ( (~(int64_t) bt_entry
[1]) - (int64_t) bt_entry
[0]);
8957 size
= ( ~((int32_t) bt_entry
[1]) - (int32_t) bt_entry
[0]);
8959 /* In case the bounds are 0x0 and 0xffff... the difference will be -1.
8960 -1 represents in this sense full memory access, and there is no need
8963 size
= (size
> -1 ? size
+ 1 : size
);
8964 uiout
->text (", size = ");
8965 uiout
->field_string ("size", plongest (size
));
8967 uiout
->text (", metadata = ");
8968 uiout
->field_core_addr ("metadata", gdbarch
, bt_entry
[3]);
8973 /* Implement the command "show mpx bound". */
8976 i386_mpx_info_bounds (const char *args
, int from_tty
)
8978 CORE_ADDR bd_base
= 0;
8980 CORE_ADDR bt_entry_addr
= 0;
8981 CORE_ADDR bt_entry
[4];
8983 struct gdbarch
*gdbarch
= get_current_arch ();
8984 struct type
*data_ptr_type
= builtin_type (gdbarch
)->builtin_data_ptr
;
8986 if (gdbarch_bfd_arch_info (gdbarch
)->arch
!= bfd_arch_i386
8987 || !i386_mpx_enabled ())
8989 gdb_printf (_("Intel Memory Protection Extensions not "
8990 "supported on this target.\n"));
8996 gdb_printf (_("Address of pointer variable expected.\n"));
9000 addr
= parse_and_eval_address (args
);
9002 bd_base
= i386_mpx_bd_base ();
9003 bt_entry_addr
= i386_mpx_get_bt_entry (addr
, bd_base
);
9005 memset (bt_entry
, 0, sizeof (bt_entry
));
9007 for (i
= 0; i
< 4; i
++)
9008 bt_entry
[i
] = read_memory_typed_address (bt_entry_addr
9009 + i
* data_ptr_type
->length (),
9012 i386_mpx_print_bounds (bt_entry
);
9015 /* Implement the command "set mpx bound". */
9018 i386_mpx_set_bounds (const char *args
, int from_tty
)
9020 CORE_ADDR bd_base
= 0;
9021 CORE_ADDR addr
, lower
, upper
;
9022 CORE_ADDR bt_entry_addr
= 0;
9023 CORE_ADDR bt_entry
[2];
9024 const char *input
= args
;
9026 struct gdbarch
*gdbarch
= get_current_arch ();
9027 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
9028 struct type
*data_ptr_type
= builtin_type (gdbarch
)->builtin_data_ptr
;
9030 if (gdbarch_bfd_arch_info (gdbarch
)->arch
!= bfd_arch_i386
9031 || !i386_mpx_enabled ())
9032 error (_("Intel Memory Protection Extensions not supported\
9036 error (_("Pointer value expected."));
9038 addr
= value_as_address (parse_to_comma_and_eval (&input
));
9040 if (input
[0] == ',')
9042 if (input
[0] == '\0')
9043 error (_("wrong number of arguments: missing lower and upper bound."));
9044 lower
= value_as_address (parse_to_comma_and_eval (&input
));
9046 if (input
[0] == ',')
9048 if (input
[0] == '\0')
9049 error (_("Wrong number of arguments; Missing upper bound."));
9050 upper
= value_as_address (parse_to_comma_and_eval (&input
));
9052 bd_base
= i386_mpx_bd_base ();
9053 bt_entry_addr
= i386_mpx_get_bt_entry (addr
, bd_base
);
9054 for (i
= 0; i
< 2; i
++)
9055 bt_entry
[i
] = read_memory_typed_address (bt_entry_addr
9056 + i
* data_ptr_type
->length (),
9058 bt_entry
[0] = (uint64_t) lower
;
9059 bt_entry
[1] = ~(uint64_t) upper
;
9061 for (i
= 0; i
< 2; i
++)
9062 write_memory_unsigned_integer (bt_entry_addr
9063 + i
* data_ptr_type
->length (),
9064 data_ptr_type
->length (), byte_order
,
9068 static struct cmd_list_element
*mpx_set_cmdlist
, *mpx_show_cmdlist
;
9070 void _initialize_i386_tdep ();
9072 _initialize_i386_tdep ()
9074 gdbarch_register (bfd_arch_i386
, i386_gdbarch_init
);
9076 /* Add the variable that controls the disassembly flavor. */
9077 add_setshow_enum_cmd ("disassembly-flavor", no_class
, valid_flavors
,
9078 &disassembly_flavor
, _("\
9079 Set the disassembly flavor."), _("\
9080 Show the disassembly flavor."), _("\
9081 The valid values are \"att\" and \"intel\", and the default value is \"att\"."),
9083 NULL
, /* FIXME: i18n: */
9084 &setlist
, &showlist
);
9086 /* Add the variable that controls the convention for returning
9088 add_setshow_enum_cmd ("struct-convention", no_class
, valid_conventions
,
9089 &struct_convention
, _("\
9090 Set the convention for returning small structs."), _("\
9091 Show the convention for returning small structs."), _("\
9092 Valid values are \"default\", \"pcc\" and \"reg\", and the default value\n\
9095 NULL
, /* FIXME: i18n: */
9096 &setlist
, &showlist
);
9098 /* Add "mpx" prefix for the set and show commands. */
9100 add_setshow_prefix_cmd
9101 ("mpx", class_support
,
9102 _("Set Intel Memory Protection Extensions specific variables."),
9103 _("Show Intel Memory Protection Extensions specific variables."),
9104 &mpx_set_cmdlist
, &mpx_show_cmdlist
, &setlist
, &showlist
);
9106 /* Add "bound" command for the show mpx commands list. */
9108 add_cmd ("bound", no_class
, i386_mpx_info_bounds
,
9109 "Show the memory bounds for a given array/pointer storage\
9110 in the bound table.",
9113 /* Add "bound" command for the set mpx commands list. */
9115 add_cmd ("bound", no_class
, i386_mpx_set_bounds
,
9116 "Set the memory bounds for a given array/pointer storage\
9117 in the bound table.",
9120 gdbarch_register_osabi (bfd_arch_i386
, 0, GDB_OSABI_SVR4
,
9121 i386_svr4_init_abi
);
9123 /* Initialize the i386-specific register groups. */
9124 i386_init_reggroups ();
9126 /* Tell remote stub that we support XML target description. */
9127 register_remote_support_xml ("i386");