1 /* YACC parser for Pascal expressions, for GDB.
2 Copyright (C) 2000-2021 Free Software Foundation, Inc.
4 This file is part of GDB.
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19 /* This file is derived from c-exp.y */
21 /* Parse a Pascal expression from text in a string,
22 and return the result as a struct expression pointer.
23 That structure contains arithmetic operations in reverse polish,
24 with constants represented by operations that are followed by special data.
25 See expression.h for the details of the format.
26 What is important here is that it can be built up sequentially
27 during the process of parsing; the lower levels of the tree always
28 come first in the result.
30 Note that malloc's and realloc's in this file are transformed to
31 xmalloc and xrealloc respectively by the same sed command in the
32 makefile that remaps any other malloc/realloc inserted by the parser
33 generator. Doing this with #defines and trying to control the interaction
34 with include files (<malloc.h> and <stdlib.h> for example) just became
35 too messy, particularly when such includes can be inserted at random
36 times by the parser generator. */
38 /* Known bugs or limitations:
39 - pascal string operations are not supported at all.
40 - there are some problems with boolean types.
41 - Pascal type hexadecimal constants are not supported
42 because they conflict with the internal variables format.
43 Probably also lots of other problems, less well defined PM. */
48 #include "expression.h"
50 #include "parser-defs.h"
53 #include "bfd.h" /* Required by objfiles.h. */
54 #include "symfile.h" /* Required by objfiles.h. */
55 #include "objfiles.h" /* For have_full_symbols and have_partial_symbols. */
57 #include "completer.h"
60 #define parse_type(ps) builtin_type (ps->gdbarch ())
62 /* Remap normal yacc parser interface names (yyparse, yylex, yyerror,
64 #define GDB_YY_REMAP_PREFIX pascal_
67 /* The state of the parser, used internally when we are parsing the
70 static struct parser_state
*pstate
= NULL
;
72 /* Depth of parentheses. */
73 static int paren_depth
;
77 static int yylex (void);
79 static void yyerror (const char *);
81 static char *uptok
(const char *, int);
86 /* Although the yacc "value" of an expression is not used,
87 since the result is stored in the structure being created,
88 other node types do have values. */
105 struct symtoken ssym
;
107 const struct block
*bval
;
108 enum exp_opcode opcode
;
109 struct internalvar
*ivar
;
116 /* YYSTYPE gets defined by %union */
117 static int parse_number
(struct parser_state
*,
118 const char *, int, int, YYSTYPE *);
120 static struct type
*current_type
;
121 static int leftdiv_is_integer
;
122 static void push_current_type
(void);
123 static void pop_current_type
(void);
124 static int search_field
;
127 %type
<voidval
> exp exp1 type_exp start normal_start variable qualified_name
128 %type
<tval
> type typebase
129 /* %type <bval> block */
131 /* Fancy type parsing. */
134 %token
<typed_val_int
> INT
135 %token
<typed_val_float
> FLOAT
137 /* Both NAME and TYPENAME tokens represent symbols in the input,
138 and both convey their data as strings.
139 But a TYPENAME is a string that happens to be defined as a typedef
140 or builtin type name (such as int or char)
141 and a NAME is any other symbol.
142 Contexts where this distinction is not important can use the
143 nonterminal "name", which matches either NAME or TYPENAME. */
146 %token
<sval
> FIELDNAME
147 %token
<voidval
> COMPLETE
148 %token
<ssym
> NAME
/* BLOCKNAME defined below to give it higher precedence. */
149 %token
<tsym
> TYPENAME
151 %type
<ssym
> name_not_typename
153 /* A NAME_OR_INT is a symbol which is not known in the symbol table,
154 but which would parse as a valid number in the current input radix.
155 E.g. "c" when input_radix==16. Depending on the parse, it will be
156 turned into a name or into a number. */
158 %token
<ssym
> NAME_OR_INT
160 %token STRUCT CLASS SIZEOF COLONCOLON
163 /* Special type cases, put in to allow the parser to distinguish different
166 %token
<sval
> DOLLAR_VARIABLE
171 %token
<lval
> TRUEKEYWORD FALSEKEYWORD
181 %left
'<' '>' LEQ GEQ
182 %left LSH RSH DIV MOD
186 %right UNARY INCREMENT DECREMENT
187 %right ARROW
'.' '[' '('
189 %token
<ssym
> BLOCKNAME
196 start
: { current_type
= NULL
;
198 leftdiv_is_integer
= 0;
210 pstate
->push_new
<type_operation
> ($1);
211 current_type
= $1; } ;
213 /* Expressions, including the comma operator. */
216 { pstate
->wrap2
<comma_operation
> (); }
219 /* Expressions, not including the comma operator. */
220 exp
: exp
'^' %prec UNARY
221 { pstate
->wrap
<unop_ind_operation
> ();
223 current_type
= TYPE_TARGET_TYPE
(current_type
); }
226 exp
: '@' exp %prec UNARY
227 { pstate
->wrap
<unop_addr_operation
> ();
229 current_type
= TYPE_POINTER_TYPE
(current_type
); }
232 exp
: '-' exp %prec UNARY
233 { pstate
->wrap
<unary_neg_operation
> (); }
236 exp
: NOT exp %prec UNARY
237 { pstate
->wrap
<unary_logical_not_operation
> (); }
240 exp
: INCREMENT
'(' exp
')' %prec UNARY
241 { pstate
->wrap
<preinc_operation
> (); }
244 exp
: DECREMENT
'(' exp
')' %prec UNARY
245 { pstate
->wrap
<predec_operation
> (); }
249 field_exp
: exp
'.' %prec UNARY
250 { search_field
= 1; }
253 exp
: field_exp FIELDNAME
255 pstate
->push_new
<structop_operation
>
256 (pstate
->pop
(), copy_name
($2));
260 while
(current_type
->code
()
263 TYPE_TARGET_TYPE
(current_type
);
264 current_type
= lookup_struct_elt_type
(
265 current_type
, $2.ptr
, 0);
273 pstate
->push_new
<structop_operation
>
274 (pstate
->pop
(), copy_name
($2));
278 while
(current_type
->code
()
281 TYPE_TARGET_TYPE
(current_type
);
282 current_type
= lookup_struct_elt_type
(
283 current_type
, $2.ptr
, 0);
287 exp
: field_exp name COMPLETE
289 structop_base_operation
*op
290 = new structop_ptr_operation
(pstate
->pop
(),
292 pstate
->mark_struct_expression
(op
);
293 pstate
->push
(operation_up
(op
));
296 exp
: field_exp COMPLETE
298 structop_base_operation
*op
299 = new structop_ptr_operation
(pstate
->pop
(), "");
300 pstate
->mark_struct_expression
(op
);
301 pstate
->push
(operation_up
(op
));
306 /* We need to save the current_type value. */
307 { const char *arrayname
;
309 = pascal_is_string_type
(current_type
, NULL
, NULL
,
310 NULL
, NULL
, &arrayname
);
315 ->field
(arrayfieldindex
- 1).type
());
316 pstate
->push_new
<structop_operation
>
317 (pstate
->pop
(), arrayname
);
319 push_current_type
(); }
321 { pop_current_type
();
322 pstate
->wrap2
<subscript_operation
> ();
324 current_type
= TYPE_TARGET_TYPE
(current_type
); }
328 /* This is to save the value of arglist_len
329 being accumulated by an outer function call. */
330 { push_current_type
();
331 pstate
->start_arglist
(); }
332 arglist
')' %prec ARROW
334 std
::vector
<operation_up
> args
335 = pstate
->pop_vector
(pstate
->end_arglist
());
336 pstate
->push_new
<funcall_operation
>
337 (pstate
->pop
(), std
::move
(args
));
340 current_type
= TYPE_TARGET_TYPE
(current_type
);
346 { pstate
->arglist_len
= 1; }
347 | arglist
',' exp %prec ABOVE_COMMA
348 { pstate
->arglist_len
++; }
351 exp
: type
'(' exp
')' %prec UNARY
354 /* Allow automatic dereference of classes. */
355 if
((current_type
->code
() == TYPE_CODE_PTR
)
356 && (TYPE_TARGET_TYPE
(current_type
)->code
() == TYPE_CODE_STRUCT
)
357 && (($1)->code
() == TYPE_CODE_STRUCT
))
358 pstate
->wrap
<unop_ind_operation
> ();
360 pstate
->push_new
<unop_cast_operation
>
361 (pstate
->pop
(), $1);
369 /* Binary operators in order of decreasing precedence. */
372 { pstate
->wrap2
<mul_operation
> (); }
376 if
(current_type
&& is_integral_type
(current_type
))
377 leftdiv_is_integer
= 1;
381 if
(leftdiv_is_integer
&& current_type
382 && is_integral_type
(current_type
))
384 pstate
->push_new
<unop_cast_operation
>
386 parse_type
(pstate
)->builtin_long_double
);
388 = parse_type
(pstate
)->builtin_long_double
;
389 leftdiv_is_integer
= 0;
392 pstate
->wrap2
<div_operation
> ();
397 { pstate
->wrap2
<intdiv_operation
> (); }
401 { pstate
->wrap2
<rem_operation
> (); }
405 { pstate
->wrap2
<add_operation
> (); }
409 { pstate
->wrap2
<sub_operation
> (); }
413 { pstate
->wrap2
<lsh_operation
> (); }
417 { pstate
->wrap2
<rsh_operation
> (); }
422 pstate
->wrap2
<equal_operation
> ();
423 current_type
= parse_type
(pstate
)->builtin_bool
;
427 exp
: exp NOTEQUAL exp
429 pstate
->wrap2
<notequal_operation
> ();
430 current_type
= parse_type
(pstate
)->builtin_bool
;
436 pstate
->wrap2
<leq_operation
> ();
437 current_type
= parse_type
(pstate
)->builtin_bool
;
443 pstate
->wrap2
<geq_operation
> ();
444 current_type
= parse_type
(pstate
)->builtin_bool
;
450 pstate
->wrap2
<less_operation
> ();
451 current_type
= parse_type
(pstate
)->builtin_bool
;
457 pstate
->wrap2
<gtr_operation
> ();
458 current_type
= parse_type
(pstate
)->builtin_bool
;
463 { pstate
->wrap2
<bitwise_and_operation
> (); }
467 { pstate
->wrap2
<bitwise_xor_operation
> (); }
471 { pstate
->wrap2
<bitwise_ior_operation
> (); }
475 { pstate
->wrap2
<assign_operation
> (); }
480 pstate
->push_new
<bool_operation
> ($1);
481 current_type
= parse_type
(pstate
)->builtin_bool
;
487 pstate
->push_new
<bool_operation
> ($1);
488 current_type
= parse_type
(pstate
)->builtin_bool
;
494 pstate
->push_new
<long_const_operation
>
496 current_type
= $1.type
;
502 parse_number
(pstate
, $1.stoken.ptr
,
503 $1.stoken.length
, 0, &val
);
504 pstate
->push_new
<long_const_operation
>
505 (val.typed_val_int.type
,
506 val.typed_val_int.val
);
507 current_type
= val.typed_val_int.type
;
515 std
::copy
(std
::begin
($1.val
), std
::end
($1.val
),
517 pstate
->push_new
<float_const_operation
> ($1.type
, data
);
524 exp
: DOLLAR_VARIABLE
526 pstate
->push_dollar
($1);
528 /* $ is the normal prefix for pascal
529 hexadecimal values but this conflicts
530 with the GDB use for debugger variables
531 so in expression to enter hexadecimal
532 values we still need to use C syntax with
534 std
::string tmp
($1.ptr
, $1.length
);
535 /* Handle current_type. */
536 struct internalvar
*intvar
537 = lookup_only_internalvar
(tmp.c_str
() + 1);
538 if
(intvar
!= nullptr
)
540 scoped_value_mark mark
;
543 = value_of_internalvar
(pstate
->gdbarch
(),
545 current_type
= value_type
(val
);
550 exp
: SIZEOF
'(' type
')' %prec UNARY
552 current_type
= parse_type
(pstate
)->builtin_int
;
553 $3 = check_typedef
($3);
554 pstate
->push_new
<long_const_operation
>
555 (parse_type
(pstate
)->builtin_int
,
559 exp
: SIZEOF
'(' exp
')' %prec UNARY
560 { pstate
->wrap
<unop_sizeof_operation
> ();
561 current_type
= parse_type
(pstate
)->builtin_int
; }
564 { /* C strings are converted into array constants with
565 an explicit null byte added at the end. Thus
566 the array upper bound is the string length.
567 There is no such thing in C as a completely empty
569 const char *sp
= $1.ptr
; int count
= $1.length
;
571 std
::vector
<operation_up
> args
(count
+ 1);
572 for
(int i
= 0; i
< count
; ++i
)
573 args
[i
] = (make_operation
<long_const_operation
>
574 (parse_type
(pstate
)->builtin_char
,
576 args
[count
] = (make_operation
<long_const_operation
>
577 (parse_type
(pstate
)->builtin_char
,
579 pstate
->push_new
<array_operation
>
580 (0, $1.length
, std
::move
(args
));
587 struct value
* this_val
;
588 struct type
* this_type
;
589 pstate
->push_new
<op_this_operation
> ();
590 /* We need type of this. */
592 = value_of_this_silent
(pstate
->language
());
594 this_type
= value_type
(this_val
);
599 if
(this_type
->code
() == TYPE_CODE_PTR
)
601 this_type
= TYPE_TARGET_TYPE
(this_type
);
602 pstate
->wrap
<unop_ind_operation
> ();
606 current_type
= this_type
;
610 /* end of object pascal. */
614 if
($1.sym.symbol
!= 0)
615 $$
= SYMBOL_BLOCK_VALUE
($1.sym.symbol
);
618 std
::string copy
= copy_name
($1.stoken
);
620 lookup_symtab
(copy.c_str
());
622 $$
= BLOCKVECTOR_BLOCK
(SYMTAB_BLOCKVECTOR
(tem
),
625 error (_
("No file or function \"%s\"."),
631 block
: block COLONCOLON name
633 std
::string copy
= copy_name
($3);
635 = lookup_symbol
(copy.c_str
(), $1,
636 VAR_DOMAIN
, NULL
).symbol
;
638 if
(!tem || SYMBOL_CLASS
(tem
) != LOC_BLOCK
)
639 error (_
("No function \"%s\" in specified context."),
641 $$
= SYMBOL_BLOCK_VALUE
(tem
); }
644 variable: block COLONCOLON name
645 { struct block_symbol sym
;
647 std
::string copy
= copy_name
($3);
648 sym
= lookup_symbol
(copy.c_str
(), $1,
651 error (_
("No symbol \"%s\" in specified context."),
654 pstate
->push_new
<var_value_operation
> (sym
);
658 qualified_name: typebase COLONCOLON name
660 struct type
*type
= $1;
662 if
(type
->code
() != TYPE_CODE_STRUCT
663 && type
->code
() != TYPE_CODE_UNION
)
664 error (_
("`%s' is not defined as an aggregate type."),
667 pstate
->push_new
<scope_operation
>
668 (type
, copy_name
($3));
672 variable: qualified_name
675 std
::string name
= copy_name
($2);
677 struct block_symbol sym
678 = lookup_symbol
(name.c_str
(), nullptr
,
679 VAR_DOMAIN
, nullptr
);
680 pstate
->push_symbol
(name.c_str
(), sym
);
684 variable: name_not_typename
685 { struct block_symbol sym
= $1.sym
;
689 if
(symbol_read_needs_frame
(sym.symbol
))
690 pstate
->block_tracker
->update
(sym
);
692 pstate
->push_new
<var_value_operation
> (sym
);
693 current_type
= sym.symbol
->type
; }
694 else if
($1.is_a_field_of_this
)
696 struct value
* this_val
;
697 struct type
* this_type
;
698 /* Object pascal: it hangs off of `this'. Must
699 not inadvertently convert from a method call
701 pstate
->block_tracker
->update
(sym
);
703 = make_operation
<op_this_operation
> ();
704 pstate
->push_new
<structop_operation
>
705 (std
::move
(thisop
), copy_name
($1.stoken
));
706 /* We need type of this. */
708 = value_of_this_silent
(pstate
->language
());
710 this_type
= value_type
(this_val
);
714 current_type
= lookup_struct_elt_type
(
716 copy_name
($1.stoken
).c_str
(), 0);
722 struct bound_minimal_symbol msymbol
;
723 std
::string arg
= copy_name
($1.stoken
);
726 lookup_bound_minimal_symbol
(arg.c_str
());
727 if
(msymbol.minsym
!= NULL
)
728 pstate
->push_new
<var_msym_value_operation
>
730 else if
(!have_full_symbols
()
731 && !have_partial_symbols
())
732 error (_
("No symbol table is loaded. "
733 "Use the \"file\" command."));
735 error (_
("No symbol \"%s\" in current context."),
745 /* We used to try to recognize more pointer to member types here, but
746 that didn't work (shift/reduce conflicts meant that these rules never
747 got executed). The problem is that
748 int (foo::bar::baz::bizzle)
749 is a function type but
750 int (foo::bar::baz::bizzle::*)
751 is a pointer to member type. Stroustrup loses again! */
756 typebase
/* Implements (approximately): (type-qualifier)* type-specifier */
758 { $$
= lookup_pointer_type
($2); }
763 = lookup_struct
(copy_name
($2).c_str
(),
764 pstate
->expression_context_block
);
768 = lookup_struct
(copy_name
($2).c_str
(),
769 pstate
->expression_context_block
);
771 /* "const" and "volatile" are curently ignored. A type qualifier
772 after the type is handled in the ptype rule. I think these could
776 name
: NAME
{ $$
= $1.stoken
; }
777 | BLOCKNAME
{ $$
= $1.stoken
; }
778 | TYPENAME
{ $$
= $1.stoken
; }
779 | NAME_OR_INT
{ $$
= $1.stoken
; }
782 name_not_typename
: NAME
784 /* These would be useful if name_not_typename was useful, but it is just
785 a fake for "variable", so these cause reduce/reduce conflicts because
786 the parser can't tell whether NAME_OR_INT is a name_not_typename (=variable,
787 =exp) or just an exp. If name_not_typename was ever used in an lvalue
788 context where only a name could occur, this might be useful.
795 /* Take care of parsing a number (anything that starts with a digit).
796 Set yylval and return the token type; update lexptr.
797 LEN is the number of characters in it. */
799 /*** Needs some error checking for the float case ***/
802 parse_number
(struct parser_state
*par_state
,
803 const char *p
, int len
, int parsed_float
, YYSTYPE *putithere
)
805 /* FIXME: Shouldn't these be unsigned? We don't deal with negative values
806 here, and we do kind of silly things like cast to unsigned. */
813 int base
= input_radix
;
816 /* Number of "L" suffixes encountered. */
819 /* We have found a "L" or "U" suffix. */
820 int found_suffix
= 0;
823 struct type
*signed_type
;
824 struct type
*unsigned_type
;
828 /* Handle suffixes: 'f' for float, 'l' for long double.
829 FIXME: This appears to be an extension -- do we want this? */
830 if
(len
>= 1 && tolower
(p
[len
- 1]) == 'f')
832 putithere
->typed_val_float.type
833 = parse_type
(par_state
)->builtin_float
;
836 else if
(len
>= 1 && tolower
(p
[len
- 1]) == 'l')
838 putithere
->typed_val_float.type
839 = parse_type
(par_state
)->builtin_long_double
;
842 /* Default type for floating-point literals is double. */
845 putithere
->typed_val_float.type
846 = parse_type
(par_state
)->builtin_double
;
849 if
(!parse_float
(p
, len
,
850 putithere
->typed_val_float.type
,
851 putithere
->typed_val_float.val
))
856 /* Handle base-switching prefixes 0x, 0t, 0d, 0. */
890 if
(c
>= 'A' && c
<= 'Z')
892 if
(c
!= 'l' && c
!= 'u')
894 if
(c
>= '0' && c
<= '9')
902 if
(base
> 10 && c
>= 'a' && c
<= 'f')
906 n
+= i
= c
- 'a' + 10;
919 return ERROR
; /* Char not a digit */
922 return ERROR
; /* Invalid digit in this base. */
924 /* Portably test for overflow (only works for nonzero values, so make
925 a second check for zero). FIXME: Can't we just make n and prevn
926 unsigned and avoid this? */
927 if
(c
!= 'l' && c
!= 'u' && (prevn
>= n
) && n
!= 0)
928 unsigned_p
= 1; /* Try something unsigned. */
930 /* Portably test for unsigned overflow.
931 FIXME: This check is wrong; for example it doesn't find overflow
932 on 0x123456789 when LONGEST is 32 bits. */
933 if
(c
!= 'l' && c
!= 'u' && n
!= 0)
935 if
((unsigned_p
&& (ULONGEST
) prevn
>= (ULONGEST
) n
))
936 error (_
("Numeric constant too large."));
941 /* An integer constant is an int, a long, or a long long. An L
942 suffix forces it to be long; an LL suffix forces it to be long
943 long. If not forced to a larger size, it gets the first type of
944 the above that it fits in. To figure out whether it fits, we
945 shift it right and see whether anything remains. Note that we
946 can't shift sizeof (LONGEST) * HOST_CHAR_BIT bits or more in one
947 operation, because many compilers will warn about such a shift
948 (which always produces a zero result). Sometimes gdbarch_int_bit
949 or gdbarch_long_bit will be that big, sometimes not. To deal with
950 the case where it is we just always shift the value more than
951 once, with fewer bits each time. */
953 un
= (ULONGEST
)n
>> 2;
955 && (un
>> (gdbarch_int_bit
(par_state
->gdbarch
()) - 2)) == 0)
958 = ((ULONGEST
)1) << (gdbarch_int_bit
(par_state
->gdbarch
()) - 1);
960 /* A large decimal (not hex or octal) constant (between INT_MAX
961 and UINT_MAX) is a long or unsigned long, according to ANSI,
962 never an unsigned int, but this code treats it as unsigned
963 int. This probably should be fixed. GCC gives a warning on
966 unsigned_type
= parse_type
(par_state
)->builtin_unsigned_int
;
967 signed_type
= parse_type
(par_state
)->builtin_int
;
970 && (un
>> (gdbarch_long_bit
(par_state
->gdbarch
()) - 2)) == 0)
973 = ((ULONGEST
)1) << (gdbarch_long_bit
(par_state
->gdbarch
()) - 1);
974 unsigned_type
= parse_type
(par_state
)->builtin_unsigned_long
;
975 signed_type
= parse_type
(par_state
)->builtin_long
;
980 if
(sizeof
(ULONGEST
) * HOST_CHAR_BIT
981 < gdbarch_long_long_bit
(par_state
->gdbarch
()))
982 /* A long long does not fit in a LONGEST. */
983 shift
= (sizeof
(ULONGEST
) * HOST_CHAR_BIT
- 1);
985 shift
= (gdbarch_long_long_bit
(par_state
->gdbarch
()) - 1);
986 high_bit
= (ULONGEST
) 1 << shift
;
987 unsigned_type
= parse_type
(par_state
)->builtin_unsigned_long_long
;
988 signed_type
= parse_type
(par_state
)->builtin_long_long
;
991 putithere
->typed_val_int.val
= n
;
993 /* If the high bit of the worked out type is set then this number
994 has to be unsigned. */
996 if
(unsigned_p ||
(n
& high_bit
))
998 putithere
->typed_val_int.type
= unsigned_type
;
1002 putithere
->typed_val_int.type
= signed_type
;
1011 struct type
*stored
;
1012 struct type_push
*next
;
1015 static struct type_push
*tp_top
= NULL
;
1018 push_current_type
(void)
1020 struct type_push
*tpnew
;
1021 tpnew
= (struct type_push
*) malloc
(sizeof
(struct type_push
));
1022 tpnew
->next
= tp_top
;
1023 tpnew
->stored
= current_type
;
1024 current_type
= NULL
;
1029 pop_current_type
(void)
1031 struct type_push
*tp
= tp_top
;
1034 current_type
= tp
->stored
;
1044 enum exp_opcode opcode
;
1047 static const struct token tokentab3
[] =
1049 {"shr", RSH
, OP_NULL
},
1050 {"shl", LSH
, OP_NULL
},
1051 {"and", ANDAND
, OP_NULL
},
1052 {"div", DIV
, OP_NULL
},
1053 {"not", NOT
, OP_NULL
},
1054 {"mod", MOD
, OP_NULL
},
1055 {"inc", INCREMENT
, OP_NULL
},
1056 {"dec", DECREMENT
, OP_NULL
},
1057 {"xor", XOR
, OP_NULL
}
1060 static const struct token tokentab2
[] =
1062 {"or", OR
, OP_NULL
},
1063 {"<>", NOTEQUAL
, OP_NULL
},
1064 {"<=", LEQ
, OP_NULL
},
1065 {">=", GEQ
, OP_NULL
},
1066 {":=", ASSIGN
, OP_NULL
},
1067 {"::", COLONCOLON
, OP_NULL
} };
1069 /* Allocate uppercased var: */
1070 /* make an uppercased copy of tokstart. */
1072 uptok
(const char *tokstart
, int namelen
)
1075 char *uptokstart
= (char *)malloc
(namelen
+1);
1076 for
(i
= 0;i
<= namelen
;i
++)
1078 if
((tokstart
[i
]>='a' && tokstart
[i
]<='z'))
1079 uptokstart
[i
] = tokstart
[i
]-('a'-'A');
1081 uptokstart
[i
] = tokstart
[i
];
1083 uptokstart
[namelen
]='\0';
1087 /* Read one token, getting characters through lexptr. */
1094 const char *tokstart
;
1097 int explen
, tempbufindex
;
1098 static char *tempbuf
;
1099 static int tempbufsize
;
1103 pstate
->prev_lexptr
= pstate
->lexptr
;
1105 tokstart
= pstate
->lexptr
;
1106 explen
= strlen
(pstate
->lexptr
);
1108 /* See if it is a special token of length 3. */
1110 for
(int i
= 0; i
< sizeof
(tokentab3
) / sizeof
(tokentab3
[0]); i
++)
1111 if
(strncasecmp
(tokstart
, tokentab3
[i
].oper
, 3) == 0
1112 && (!isalpha
(tokentab3
[i
].oper
[0]) || explen
== 3
1113 ||
(!isalpha
(tokstart
[3])
1114 && !isdigit
(tokstart
[3]) && tokstart
[3] != '_')))
1116 pstate
->lexptr
+= 3;
1117 yylval.opcode
= tokentab3
[i
].opcode
;
1118 return tokentab3
[i
].token
;
1121 /* See if it is a special token of length 2. */
1123 for
(int i
= 0; i
< sizeof
(tokentab2
) / sizeof
(tokentab2
[0]); i
++)
1124 if
(strncasecmp
(tokstart
, tokentab2
[i
].oper
, 2) == 0
1125 && (!isalpha
(tokentab2
[i
].oper
[0]) || explen
== 2
1126 ||
(!isalpha
(tokstart
[2])
1127 && !isdigit
(tokstart
[2]) && tokstart
[2] != '_')))
1129 pstate
->lexptr
+= 2;
1130 yylval.opcode
= tokentab2
[i
].opcode
;
1131 return tokentab2
[i
].token
;
1134 switch
(c
= *tokstart
)
1137 if
(search_field
&& pstate
->parse_completion
)
1149 /* We either have a character constant ('0' or '\177' for example)
1150 or we have a quoted symbol reference ('foo(int,int)' in object pascal
1153 c
= *pstate
->lexptr
++;
1155 c
= parse_escape
(pstate
->gdbarch
(), &pstate
->lexptr
);
1157 error (_
("Empty character constant."));
1159 yylval.typed_val_int.val
= c
;
1160 yylval.typed_val_int.type
= parse_type
(pstate
)->builtin_char
;
1162 c
= *pstate
->lexptr
++;
1165 namelen
= skip_quoted
(tokstart
) - tokstart
;
1168 pstate
->lexptr
= tokstart
+ namelen
;
1169 if
(pstate
->lexptr
[-1] != '\'')
1170 error (_
("Unmatched single quote."));
1173 uptokstart
= uptok
(tokstart
,namelen
);
1176 error (_
("Invalid character constant."));
1186 if
(paren_depth
== 0)
1193 if
(pstate
->comma_terminates
&& paren_depth
== 0)
1199 /* Might be a floating point number. */
1200 if
(pstate
->lexptr
[1] < '0' || pstate
->lexptr
[1] > '9')
1202 goto symbol
; /* Nope, must be a symbol. */
1218 /* It's a number. */
1219 int got_dot
= 0, got_e
= 0, toktype
;
1220 const char *p
= tokstart
;
1221 int hex
= input_radix
> 10;
1223 if
(c
== '0' && (p
[1] == 'x' || p
[1] == 'X'))
1228 else if
(c
== '0' && (p
[1]=='t' || p
[1]=='T'
1229 || p
[1]=='d' || p
[1]=='D'))
1237 /* This test includes !hex because 'e' is a valid hex digit
1238 and thus does not indicate a floating point number when
1239 the radix is hex. */
1240 if
(!hex
&& !got_e
&& (*p
== 'e' ||
*p
== 'E'))
1241 got_dot
= got_e
= 1;
1242 /* This test does not include !hex, because a '.' always indicates
1243 a decimal floating point number regardless of the radix. */
1244 else if
(!got_dot
&& *p
== '.')
1246 else if
(got_e
&& (p
[-1] == 'e' || p
[-1] == 'E')
1247 && (*p
== '-' ||
*p
== '+'))
1248 /* This is the sign of the exponent, not the end of the
1251 /* We will take any letters or digits. parse_number will
1252 complain if past the radix, or if L or U are not final. */
1253 else if
((*p
< '0' ||
*p
> '9')
1254 && ((*p
< 'a' ||
*p
> 'z')
1255 && (*p
< 'A' ||
*p
> 'Z')))
1258 toktype
= parse_number
(pstate
, tokstart
,
1259 p
- tokstart
, got_dot | got_e
, &yylval);
1260 if
(toktype
== ERROR
)
1262 char *err_copy
= (char *) alloca
(p
- tokstart
+ 1);
1264 memcpy
(err_copy
, tokstart
, p
- tokstart
);
1265 err_copy
[p
- tokstart
] = 0;
1266 error (_
("Invalid number \"%s\"."), err_copy
);
1297 /* Build the gdb internal form of the input string in tempbuf,
1298 translating any standard C escape forms seen. Note that the
1299 buffer is null byte terminated *only* for the convenience of
1300 debugging gdb itself and printing the buffer contents when
1301 the buffer contains no embedded nulls. Gdb does not depend
1302 upon the buffer being null byte terminated, it uses the length
1303 string instead. This allows gdb to handle C strings (as well
1304 as strings in other languages) with embedded null bytes. */
1306 tokptr
= ++tokstart
;
1310 /* Grow the static temp buffer if necessary, including allocating
1311 the first one on demand. */
1312 if
(tempbufindex
+ 1 >= tempbufsize
)
1314 tempbuf
= (char *) realloc
(tempbuf
, tempbufsize
+= 64);
1321 /* Do nothing, loop will terminate. */
1325 c
= parse_escape
(pstate
->gdbarch
(), &tokptr
);
1330 tempbuf
[tempbufindex
++] = c
;
1333 tempbuf
[tempbufindex
++] = *tokptr
++;
1336 } while
((*tokptr
!= '"') && (*tokptr
!= '\0'));
1337 if
(*tokptr
++ != '"')
1339 error (_
("Unterminated string in expression."));
1341 tempbuf
[tempbufindex
] = '\0'; /* See note above. */
1342 yylval.sval.ptr
= tempbuf
;
1343 yylval.sval.length
= tempbufindex
;
1344 pstate
->lexptr
= tokptr
;
1348 if
(!(c
== '_' || c
== '$'
1349 ||
(c
>= 'a' && c
<= 'z') ||
(c
>= 'A' && c
<= 'Z')))
1350 /* We must have come across a bad character (e.g. ';'). */
1351 error (_
("Invalid character '%c' in expression."), c
);
1353 /* It's a name. See how long it is. */
1355 for
(c
= tokstart
[namelen
];
1356 (c
== '_' || c
== '$' ||
(c
>= '0' && c
<= '9')
1357 ||
(c
>= 'a' && c
<= 'z') ||
(c
>= 'A' && c
<= 'Z') || c
== '<');)
1359 /* Template parameter lists are part of the name.
1360 FIXME: This mishandles `print $a<4&&$a>3'. */
1364 int nesting_level
= 1;
1365 while
(tokstart
[++i
])
1367 if
(tokstart
[i
] == '<')
1369 else if
(tokstart
[i
] == '>')
1371 if
(--nesting_level
== 0)
1375 if
(tokstart
[i
] == '>')
1381 /* do NOT uppercase internals because of registers !!! */
1382 c
= tokstart
[++namelen
];
1385 uptokstart
= uptok
(tokstart
,namelen
);
1387 /* The token "if" terminates the expression and is NOT
1388 removed from the input stream. */
1389 if
(namelen
== 2 && uptokstart
[0] == 'I' && uptokstart
[1] == 'F')
1395 pstate
->lexptr
+= namelen
;
1399 /* Catch specific keywords. Should be done with a data structure. */
1403 if
(strcmp
(uptokstart
, "OBJECT") == 0)
1408 if
(strcmp
(uptokstart
, "RECORD") == 0)
1413 if
(strcmp
(uptokstart
, "SIZEOF") == 0)
1420 if
(strcmp
(uptokstart
, "CLASS") == 0)
1425 if
(strcmp
(uptokstart
, "FALSE") == 0)
1429 return FALSEKEYWORD
;
1433 if
(strcmp
(uptokstart
, "TRUE") == 0)
1439 if
(strcmp
(uptokstart
, "SELF") == 0)
1441 /* Here we search for 'this' like
1442 inserted in FPC stabs debug info. */
1443 static const char this_name
[] = "this";
1445 if
(lookup_symbol
(this_name
, pstate
->expression_context_block
,
1446 VAR_DOMAIN
, NULL
).symbol
)
1457 yylval.sval.ptr
= tokstart
;
1458 yylval.sval.length
= namelen
;
1460 if
(*tokstart
== '$')
1463 return DOLLAR_VARIABLE
;
1466 /* Use token-type BLOCKNAME for symbols that happen to be defined as
1467 functions or symtabs. If this is not so, then ...
1468 Use token-type TYPENAME for symbols that happen to be defined
1469 currently as names of types; NAME for other symbols.
1470 The caller is not constrained to care about the distinction. */
1472 std
::string tmp
= copy_name
(yylval.sval
);
1474 struct field_of_this_result is_a_field_of_this
;
1478 is_a_field_of_this.type
= NULL
;
1479 if
(search_field
&& current_type
)
1480 is_a_field
= (lookup_struct_elt_type
(current_type
,
1481 tmp.c_str
(), 1) != NULL
);
1485 sym
= lookup_symbol
(tmp.c_str
(), pstate
->expression_context_block
,
1486 VAR_DOMAIN
, &is_a_field_of_this
).symbol
;
1487 /* second chance uppercased (as Free Pascal does). */
1488 if
(!sym
&& is_a_field_of_this.type
== NULL
&& !is_a_field
)
1490 for
(int i
= 0; i
<= namelen
; i
++)
1492 if
((tmp
[i
] >= 'a' && tmp
[i
] <= 'z'))
1493 tmp
[i
] -= ('a'-'A');
1495 if
(search_field
&& current_type
)
1496 is_a_field
= (lookup_struct_elt_type
(current_type
,
1497 tmp.c_str
(), 1) != NULL
);
1501 sym
= lookup_symbol
(tmp.c_str
(), pstate
->expression_context_block
,
1502 VAR_DOMAIN
, &is_a_field_of_this
).symbol
;
1504 /* Third chance Capitalized (as GPC does). */
1505 if
(!sym
&& is_a_field_of_this.type
== NULL
&& !is_a_field
)
1507 for
(int i
= 0; i
<= namelen
; i
++)
1511 if
((tmp
[i
] >= 'a' && tmp
[i
] <= 'z'))
1512 tmp
[i
] -= ('a'-'A');
1515 if
((tmp
[i
] >= 'A' && tmp
[i
] <= 'Z'))
1516 tmp
[i
] -= ('A'-'a');
1518 if
(search_field
&& current_type
)
1519 is_a_field
= (lookup_struct_elt_type
(current_type
,
1520 tmp.c_str
(), 1) != NULL
);
1524 sym
= lookup_symbol
(tmp.c_str
(), pstate
->expression_context_block
,
1525 VAR_DOMAIN
, &is_a_field_of_this
).symbol
;
1528 if
(is_a_field ||
(is_a_field_of_this.type
!= NULL
))
1530 tempbuf
= (char *) realloc
(tempbuf
, namelen
+ 1);
1531 strncpy
(tempbuf
, tmp.c_str
(), namelen
);
1532 tempbuf
[namelen
] = 0;
1533 yylval.sval.ptr
= tempbuf
;
1534 yylval.sval.length
= namelen
;
1535 yylval.ssym.sym.symbol
= NULL
;
1536 yylval.ssym.sym.block
= NULL
;
1538 yylval.ssym.is_a_field_of_this
= is_a_field_of_this.type
!= NULL
;
1544 /* Call lookup_symtab, not lookup_partial_symtab, in case there are
1545 no psymtabs (coff, xcoff, or some future change to blow away the
1546 psymtabs once once symbols are read). */
1547 if
((sym
&& SYMBOL_CLASS
(sym
) == LOC_BLOCK
)
1548 || lookup_symtab
(tmp.c_str
()))
1550 yylval.ssym.sym.symbol
= sym
;
1551 yylval.ssym.sym.block
= NULL
;
1552 yylval.ssym.is_a_field_of_this
= is_a_field_of_this.type
!= NULL
;
1556 if
(sym
&& SYMBOL_CLASS
(sym
) == LOC_TYPEDEF
)
1559 /* Despite the following flaw, we need to keep this code enabled.
1560 Because we can get called from check_stub_method, if we don't
1561 handle nested types then it screws many operations in any
1562 program which uses nested types. */
1563 /* In "A::x", if x is a member function of A and there happens
1564 to be a type (nested or not, since the stabs don't make that
1565 distinction) named x, then this code incorrectly thinks we
1566 are dealing with nested types rather than a member function. */
1569 const char *namestart
;
1570 struct symbol
*best_sym
;
1572 /* Look ahead to detect nested types. This probably should be
1573 done in the grammar, but trying seemed to introduce a lot
1574 of shift/reduce and reduce/reduce conflicts. It's possible
1575 that it could be done, though. Or perhaps a non-grammar, but
1576 less ad hoc, approach would work well. */
1578 /* Since we do not currently have any way of distinguishing
1579 a nested type from a non-nested one (the stabs don't tell
1580 us whether a type is nested), we just ignore the
1587 /* Skip whitespace. */
1588 while
(*p
== ' ' ||
*p
== '\t' ||
*p
== '\n')
1590 if
(*p
== ':' && p
[1] == ':')
1592 /* Skip the `::'. */
1594 /* Skip whitespace. */
1595 while
(*p
== ' ' ||
*p
== '\t' ||
*p
== '\n')
1598 while
(*p
== '_' ||
*p
== '$' ||
(*p
>= '0' && *p
<= '9')
1599 ||
(*p
>= 'a' && *p
<= 'z')
1600 ||
(*p
>= 'A' && *p
<= 'Z'))
1604 struct symbol
*cur_sym
;
1605 /* As big as the whole rest of the expression, which is
1606 at least big enough. */
1608 = (char *) alloca
(tmp.size
() + strlen
(namestart
)
1613 memcpy
(tmp1
, tmp.c_str
(), tmp.size
());
1614 tmp1
+= tmp.size
();
1615 memcpy
(tmp1
, "::", 2);
1617 memcpy
(tmp1
, namestart
, p
- namestart
);
1618 tmp1
[p
- namestart
] = '\0';
1620 = lookup_symbol
(ncopy
,
1621 pstate
->expression_context_block
,
1622 VAR_DOMAIN
, NULL
).symbol
;
1625 if
(SYMBOL_CLASS
(cur_sym
) == LOC_TYPEDEF
)
1643 yylval.tsym.type
= SYMBOL_TYPE
(best_sym
);
1645 yylval.tsym.type
= SYMBOL_TYPE
(sym
);
1651 = language_lookup_primitive_type
(pstate
->language
(),
1652 pstate
->gdbarch
(), tmp.c_str
());
1653 if
(yylval.tsym.type
!= NULL
)
1659 /* Input names that aren't symbols but ARE valid hex numbers,
1660 when the input radix permits them, can be names or numbers
1661 depending on the parse. Note we support radixes > 16 here. */
1663 && ((tokstart
[0] >= 'a' && tokstart
[0] < 'a' + input_radix
- 10)
1664 ||
(tokstart
[0] >= 'A' && tokstart
[0] < 'A' + input_radix
- 10)))
1666 YYSTYPE newlval
; /* Its value is ignored. */
1667 hextype
= parse_number
(pstate
, tokstart
, namelen
, 0, &newlval
);
1670 yylval.ssym.sym.symbol
= sym
;
1671 yylval.ssym.sym.block
= NULL
;
1672 yylval.ssym.is_a_field_of_this
= is_a_field_of_this.type
!= NULL
;
1679 /* Any other kind of symbol. */
1680 yylval.ssym.sym.symbol
= sym
;
1681 yylval.ssym.sym.block
= NULL
;
1686 /* See language.h. */
1689 pascal_language::parser
(struct parser_state
*par_state
) const
1691 /* Setting up the parser state. */
1692 scoped_restore pstate_restore
= make_scoped_restore
(&pstate
);
1693 gdb_assert
(par_state
!= NULL
);
1697 int result
= yyparse ();
1699 pstate
->set_operation
(pstate
->pop
());
1704 yyerror (const char *msg
)
1706 if
(pstate
->prev_lexptr
)
1707 pstate
->lexptr
= pstate
->prev_lexptr
;
1709 error (_
("A %s in expression, near `%s'."), msg
, pstate
->lexptr
);