1 /* Support routines for manipulating internal types for GDB.
3 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1998, 1999, 2000, 2001, 2002,
4 2003, 2004, 2005, 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
6 Contributed by Cygnus Support, using pieces from other GDB modules.
8 This file is part of GDB.
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
24 #include "gdb_string.h"
30 #include "expression.h"
35 #include "complaints.h"
39 #include "gdb_assert.h"
42 /* These variables point to the objects
43 representing the predefined C data types. */
45 struct type
*builtin_type_int0
;
46 struct type
*builtin_type_int8
;
47 struct type
*builtin_type_uint8
;
48 struct type
*builtin_type_int16
;
49 struct type
*builtin_type_uint16
;
50 struct type
*builtin_type_int32
;
51 struct type
*builtin_type_uint32
;
52 struct type
*builtin_type_int64
;
53 struct type
*builtin_type_uint64
;
54 struct type
*builtin_type_int128
;
55 struct type
*builtin_type_uint128
;
57 /* Floatformat pairs. */
58 const struct floatformat
*floatformats_ieee_single
[BFD_ENDIAN_UNKNOWN
] = {
59 &floatformat_ieee_single_big
,
60 &floatformat_ieee_single_little
62 const struct floatformat
*floatformats_ieee_double
[BFD_ENDIAN_UNKNOWN
] = {
63 &floatformat_ieee_double_big
,
64 &floatformat_ieee_double_little
66 const struct floatformat
*floatformats_ieee_double_littlebyte_bigword
[BFD_ENDIAN_UNKNOWN
] = {
67 &floatformat_ieee_double_big
,
68 &floatformat_ieee_double_littlebyte_bigword
70 const struct floatformat
*floatformats_i387_ext
[BFD_ENDIAN_UNKNOWN
] = {
71 &floatformat_i387_ext
,
74 const struct floatformat
*floatformats_m68881_ext
[BFD_ENDIAN_UNKNOWN
] = {
75 &floatformat_m68881_ext
,
76 &floatformat_m68881_ext
78 const struct floatformat
*floatformats_arm_ext
[BFD_ENDIAN_UNKNOWN
] = {
79 &floatformat_arm_ext_big
,
80 &floatformat_arm_ext_littlebyte_bigword
82 const struct floatformat
*floatformats_ia64_spill
[BFD_ENDIAN_UNKNOWN
] = {
83 &floatformat_ia64_spill_big
,
84 &floatformat_ia64_spill_little
86 const struct floatformat
*floatformats_ia64_quad
[BFD_ENDIAN_UNKNOWN
] = {
87 &floatformat_ia64_quad_big
,
88 &floatformat_ia64_quad_little
90 const struct floatformat
*floatformats_vax_f
[BFD_ENDIAN_UNKNOWN
] = {
94 const struct floatformat
*floatformats_vax_d
[BFD_ENDIAN_UNKNOWN
] = {
98 const struct floatformat
*floatformats_ibm_long_double
[BFD_ENDIAN_UNKNOWN
] = {
99 &floatformat_ibm_long_double
,
100 &floatformat_ibm_long_double
103 struct type
*builtin_type_ieee_single
;
104 struct type
*builtin_type_ieee_double
;
105 struct type
*builtin_type_i387_ext
;
106 struct type
*builtin_type_m68881_ext
;
107 struct type
*builtin_type_arm_ext
;
108 struct type
*builtin_type_ia64_spill
;
109 struct type
*builtin_type_ia64_quad
;
111 /* Platform-neutral void type. */
112 struct type
*builtin_type_void
;
114 /* Platform-neutral character types. */
115 struct type
*builtin_type_true_char
;
116 struct type
*builtin_type_true_unsigned_char
;
119 int opaque_type_resolution
= 1;
121 show_opaque_type_resolution (struct ui_file
*file
, int from_tty
,
122 struct cmd_list_element
*c
,
125 fprintf_filtered (file
, _("\
126 Resolution of opaque struct/class/union types (if set before loading symbols) is %s.\n"),
130 int overload_debug
= 0;
132 show_overload_debug (struct ui_file
*file
, int from_tty
,
133 struct cmd_list_element
*c
, const char *value
)
135 fprintf_filtered (file
, _("Debugging of C++ overloading is %s.\n"),
143 }; /* Maximum extension is 128! FIXME */
145 static void print_bit_vector (B_TYPE
*, int);
146 static void print_arg_types (struct field
*, int, int);
147 static void dump_fn_fieldlists (struct type
*, int);
148 static void print_cplus_stuff (struct type
*, int);
151 /* Alloc a new type structure and fill it with some defaults. If
152 OBJFILE is non-NULL, then allocate the space for the type structure
153 in that objfile's objfile_obstack. Otherwise allocate the new type
154 structure by xmalloc () (for permanent types). */
157 alloc_type (struct objfile
*objfile
)
161 /* Alloc the structure and start off with all fields zeroed. */
165 type
= XZALLOC (struct type
);
166 TYPE_MAIN_TYPE (type
) = XZALLOC (struct main_type
);
170 type
= OBSTACK_ZALLOC (&objfile
->objfile_obstack
, struct type
);
171 TYPE_MAIN_TYPE (type
) = OBSTACK_ZALLOC (&objfile
->objfile_obstack
,
173 OBJSTAT (objfile
, n_types
++);
176 /* Initialize the fields that might not be zero. */
178 TYPE_CODE (type
) = TYPE_CODE_UNDEF
;
179 TYPE_OBJFILE (type
) = objfile
;
180 TYPE_VPTR_FIELDNO (type
) = -1;
181 TYPE_CHAIN (type
) = type
; /* Chain back to itself. */
186 /* Alloc a new type instance structure, fill it with some defaults,
187 and point it at OLDTYPE. Allocate the new type instance from the
188 same place as OLDTYPE. */
191 alloc_type_instance (struct type
*oldtype
)
195 /* Allocate the structure. */
197 if (TYPE_OBJFILE (oldtype
) == NULL
)
198 type
= XZALLOC (struct type
);
200 type
= OBSTACK_ZALLOC (&TYPE_OBJFILE (oldtype
)->objfile_obstack
,
203 TYPE_MAIN_TYPE (type
) = TYPE_MAIN_TYPE (oldtype
);
205 TYPE_CHAIN (type
) = type
; /* Chain back to itself for now. */
210 /* Clear all remnants of the previous type at TYPE, in preparation for
211 replacing it with something else. */
213 smash_type (struct type
*type
)
215 memset (TYPE_MAIN_TYPE (type
), 0, sizeof (struct main_type
));
217 /* For now, delete the rings. */
218 TYPE_CHAIN (type
) = type
;
220 /* For now, leave the pointer/reference types alone. */
223 /* Lookup a pointer to a type TYPE. TYPEPTR, if nonzero, points
224 to a pointer to memory where the pointer type should be stored.
225 If *TYPEPTR is zero, update it to point to the pointer type we return.
226 We allocate new memory if needed. */
229 make_pointer_type (struct type
*type
, struct type
**typeptr
)
231 struct type
*ntype
; /* New type */
232 struct objfile
*objfile
;
235 ntype
= TYPE_POINTER_TYPE (type
);
240 return ntype
; /* Don't care about alloc,
241 and have new type. */
242 else if (*typeptr
== 0)
244 *typeptr
= ntype
; /* Tracking alloc, and have new type. */
249 if (typeptr
== 0 || *typeptr
== 0) /* We'll need to allocate one. */
251 ntype
= alloc_type (TYPE_OBJFILE (type
));
255 else /* We have storage, but need to reset it. */
258 objfile
= TYPE_OBJFILE (ntype
);
259 chain
= TYPE_CHAIN (ntype
);
261 TYPE_CHAIN (ntype
) = chain
;
262 TYPE_OBJFILE (ntype
) = objfile
;
265 TYPE_TARGET_TYPE (ntype
) = type
;
266 TYPE_POINTER_TYPE (type
) = ntype
;
268 /* FIXME! Assume the machine has only one representation for
271 TYPE_LENGTH (ntype
) =
272 gdbarch_ptr_bit (current_gdbarch
) / TARGET_CHAR_BIT
;
273 TYPE_CODE (ntype
) = TYPE_CODE_PTR
;
275 /* Mark pointers as unsigned. The target converts between pointers
276 and addresses (CORE_ADDRs) using gdbarch_pointer_to_address and
277 gdbarch_address_to_pointer. */
278 TYPE_UNSIGNED (ntype
) = 1;
280 if (!TYPE_POINTER_TYPE (type
)) /* Remember it, if don't have one. */
281 TYPE_POINTER_TYPE (type
) = ntype
;
283 /* Update the length of all the other variants of this type. */
284 chain
= TYPE_CHAIN (ntype
);
285 while (chain
!= ntype
)
287 TYPE_LENGTH (chain
) = TYPE_LENGTH (ntype
);
288 chain
= TYPE_CHAIN (chain
);
294 /* Given a type TYPE, return a type of pointers to that type.
295 May need to construct such a type if this is the first use. */
298 lookup_pointer_type (struct type
*type
)
300 return make_pointer_type (type
, (struct type
**) 0);
303 /* Lookup a C++ `reference' to a type TYPE. TYPEPTR, if nonzero,
304 points to a pointer to memory where the reference type should be
305 stored. If *TYPEPTR is zero, update it to point to the reference
306 type we return. We allocate new memory if needed. */
309 make_reference_type (struct type
*type
, struct type
**typeptr
)
311 struct type
*ntype
; /* New type */
312 struct objfile
*objfile
;
315 ntype
= TYPE_REFERENCE_TYPE (type
);
320 return ntype
; /* Don't care about alloc,
321 and have new type. */
322 else if (*typeptr
== 0)
324 *typeptr
= ntype
; /* Tracking alloc, and have new type. */
329 if (typeptr
== 0 || *typeptr
== 0) /* We'll need to allocate one. */
331 ntype
= alloc_type (TYPE_OBJFILE (type
));
335 else /* We have storage, but need to reset it. */
338 objfile
= TYPE_OBJFILE (ntype
);
339 chain
= TYPE_CHAIN (ntype
);
341 TYPE_CHAIN (ntype
) = chain
;
342 TYPE_OBJFILE (ntype
) = objfile
;
345 TYPE_TARGET_TYPE (ntype
) = type
;
346 TYPE_REFERENCE_TYPE (type
) = ntype
;
348 /* FIXME! Assume the machine has only one representation for
349 references, and that it matches the (only) representation for
352 TYPE_LENGTH (ntype
) = gdbarch_ptr_bit (current_gdbarch
) / TARGET_CHAR_BIT
;
353 TYPE_CODE (ntype
) = TYPE_CODE_REF
;
355 if (!TYPE_REFERENCE_TYPE (type
)) /* Remember it, if don't have one. */
356 TYPE_REFERENCE_TYPE (type
) = ntype
;
358 /* Update the length of all the other variants of this type. */
359 chain
= TYPE_CHAIN (ntype
);
360 while (chain
!= ntype
)
362 TYPE_LENGTH (chain
) = TYPE_LENGTH (ntype
);
363 chain
= TYPE_CHAIN (chain
);
369 /* Same as above, but caller doesn't care about memory allocation
373 lookup_reference_type (struct type
*type
)
375 return make_reference_type (type
, (struct type
**) 0);
378 /* Lookup a function type that returns type TYPE. TYPEPTR, if
379 nonzero, points to a pointer to memory where the function type
380 should be stored. If *TYPEPTR is zero, update it to point to the
381 function type we return. We allocate new memory if needed. */
384 make_function_type (struct type
*type
, struct type
**typeptr
)
386 struct type
*ntype
; /* New type */
387 struct objfile
*objfile
;
389 if (typeptr
== 0 || *typeptr
== 0) /* We'll need to allocate one. */
391 ntype
= alloc_type (TYPE_OBJFILE (type
));
395 else /* We have storage, but need to reset it. */
398 objfile
= TYPE_OBJFILE (ntype
);
400 TYPE_OBJFILE (ntype
) = objfile
;
403 TYPE_TARGET_TYPE (ntype
) = type
;
405 TYPE_LENGTH (ntype
) = 1;
406 TYPE_CODE (ntype
) = TYPE_CODE_FUNC
;
412 /* Given a type TYPE, return a type of functions that return that type.
413 May need to construct such a type if this is the first use. */
416 lookup_function_type (struct type
*type
)
418 return make_function_type (type
, (struct type
**) 0);
421 /* Identify address space identifier by name --
422 return the integer flag defined in gdbtypes.h. */
424 address_space_name_to_int (char *space_identifier
)
426 struct gdbarch
*gdbarch
= current_gdbarch
;
428 /* Check for known address space delimiters. */
429 if (!strcmp (space_identifier
, "code"))
430 return TYPE_INSTANCE_FLAG_CODE_SPACE
;
431 else if (!strcmp (space_identifier
, "data"))
432 return TYPE_INSTANCE_FLAG_DATA_SPACE
;
433 else if (gdbarch_address_class_name_to_type_flags_p (gdbarch
)
434 && gdbarch_address_class_name_to_type_flags (gdbarch
,
439 error (_("Unknown address space specifier: \"%s\""), space_identifier
);
442 /* Identify address space identifier by integer flag as defined in
443 gdbtypes.h -- return the string version of the adress space name. */
446 address_space_int_to_name (int space_flag
)
448 struct gdbarch
*gdbarch
= current_gdbarch
;
449 if (space_flag
& TYPE_INSTANCE_FLAG_CODE_SPACE
)
451 else if (space_flag
& TYPE_INSTANCE_FLAG_DATA_SPACE
)
453 else if ((space_flag
& TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL
)
454 && gdbarch_address_class_type_flags_to_name_p (gdbarch
))
455 return gdbarch_address_class_type_flags_to_name (gdbarch
, space_flag
);
460 /* Create a new type with instance flags NEW_FLAGS, based on TYPE.
462 If STORAGE is non-NULL, create the new type instance there.
463 STORAGE must be in the same obstack as TYPE. */
466 make_qualified_type (struct type
*type
, int new_flags
,
467 struct type
*storage
)
474 if (TYPE_INSTANCE_FLAGS (ntype
) == new_flags
)
476 ntype
= TYPE_CHAIN (ntype
);
478 while (ntype
!= type
);
480 /* Create a new type instance. */
482 ntype
= alloc_type_instance (type
);
485 /* If STORAGE was provided, it had better be in the same objfile
486 as TYPE. Otherwise, we can't link it into TYPE's cv chain:
487 if one objfile is freed and the other kept, we'd have
488 dangling pointers. */
489 gdb_assert (TYPE_OBJFILE (type
) == TYPE_OBJFILE (storage
));
492 TYPE_MAIN_TYPE (ntype
) = TYPE_MAIN_TYPE (type
);
493 TYPE_CHAIN (ntype
) = ntype
;
496 /* Pointers or references to the original type are not relevant to
498 TYPE_POINTER_TYPE (ntype
) = (struct type
*) 0;
499 TYPE_REFERENCE_TYPE (ntype
) = (struct type
*) 0;
501 /* Chain the new qualified type to the old type. */
502 TYPE_CHAIN (ntype
) = TYPE_CHAIN (type
);
503 TYPE_CHAIN (type
) = ntype
;
505 /* Now set the instance flags and return the new type. */
506 TYPE_INSTANCE_FLAGS (ntype
) = new_flags
;
508 /* Set length of new type to that of the original type. */
509 TYPE_LENGTH (ntype
) = TYPE_LENGTH (type
);
514 /* Make an address-space-delimited variant of a type -- a type that
515 is identical to the one supplied except that it has an address
516 space attribute attached to it (such as "code" or "data").
518 The space attributes "code" and "data" are for Harvard
519 architectures. The address space attributes are for architectures
520 which have alternately sized pointers or pointers with alternate
524 make_type_with_address_space (struct type
*type
, int space_flag
)
527 int new_flags
= ((TYPE_INSTANCE_FLAGS (type
)
528 & ~(TYPE_INSTANCE_FLAG_CODE_SPACE
529 | TYPE_INSTANCE_FLAG_DATA_SPACE
530 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL
))
533 return make_qualified_type (type
, new_flags
, NULL
);
536 /* Make a "c-v" variant of a type -- a type that is identical to the
537 one supplied except that it may have const or volatile attributes
538 CNST is a flag for setting the const attribute
539 VOLTL is a flag for setting the volatile attribute
540 TYPE is the base type whose variant we are creating.
542 If TYPEPTR and *TYPEPTR are non-zero, then *TYPEPTR points to
543 storage to hold the new qualified type; *TYPEPTR and TYPE must be
544 in the same objfile. Otherwise, allocate fresh memory for the new
545 type whereever TYPE lives. If TYPEPTR is non-zero, set it to the
546 new type we construct. */
548 make_cv_type (int cnst
, int voltl
,
550 struct type
**typeptr
)
552 struct type
*ntype
; /* New type */
553 struct type
*tmp_type
= type
; /* tmp type */
554 struct objfile
*objfile
;
556 int new_flags
= (TYPE_INSTANCE_FLAGS (type
)
557 & ~(TYPE_INSTANCE_FLAG_CONST
| TYPE_INSTANCE_FLAG_VOLATILE
));
560 new_flags
|= TYPE_INSTANCE_FLAG_CONST
;
563 new_flags
|= TYPE_INSTANCE_FLAG_VOLATILE
;
565 if (typeptr
&& *typeptr
!= NULL
)
567 /* TYPE and *TYPEPTR must be in the same objfile. We can't have
568 a C-V variant chain that threads across objfiles: if one
569 objfile gets freed, then the other has a broken C-V chain.
571 This code used to try to copy over the main type from TYPE to
572 *TYPEPTR if they were in different objfiles, but that's
573 wrong, too: TYPE may have a field list or member function
574 lists, which refer to types of their own, etc. etc. The
575 whole shebang would need to be copied over recursively; you
576 can't have inter-objfile pointers. The only thing to do is
577 to leave stub types as stub types, and look them up afresh by
578 name each time you encounter them. */
579 gdb_assert (TYPE_OBJFILE (*typeptr
) == TYPE_OBJFILE (type
));
582 ntype
= make_qualified_type (type
, new_flags
,
583 typeptr
? *typeptr
: NULL
);
591 /* Replace the contents of ntype with the type *type. This changes the
592 contents, rather than the pointer for TYPE_MAIN_TYPE (ntype); thus
593 the changes are propogated to all types in the TYPE_CHAIN.
595 In order to build recursive types, it's inevitable that we'll need
596 to update types in place --- but this sort of indiscriminate
597 smashing is ugly, and needs to be replaced with something more
598 controlled. TYPE_MAIN_TYPE is a step in this direction; it's not
599 clear if more steps are needed. */
601 replace_type (struct type
*ntype
, struct type
*type
)
605 /* These two types had better be in the same objfile. Otherwise,
606 the assignment of one type's main type structure to the other
607 will produce a type with references to objects (names; field
608 lists; etc.) allocated on an objfile other than its own. */
609 gdb_assert (TYPE_OBJFILE (ntype
) == TYPE_OBJFILE (ntype
));
611 *TYPE_MAIN_TYPE (ntype
) = *TYPE_MAIN_TYPE (type
);
613 /* The type length is not a part of the main type. Update it for
614 each type on the variant chain. */
618 /* Assert that this element of the chain has no address-class bits
619 set in its flags. Such type variants might have type lengths
620 which are supposed to be different from the non-address-class
621 variants. This assertion shouldn't ever be triggered because
622 symbol readers which do construct address-class variants don't
623 call replace_type(). */
624 gdb_assert (TYPE_ADDRESS_CLASS_ALL (chain
) == 0);
626 TYPE_LENGTH (chain
) = TYPE_LENGTH (type
);
627 chain
= TYPE_CHAIN (chain
);
629 while (ntype
!= chain
);
631 /* Assert that the two types have equivalent instance qualifiers.
632 This should be true for at least all of our debug readers. */
633 gdb_assert (TYPE_INSTANCE_FLAGS (ntype
) == TYPE_INSTANCE_FLAGS (type
));
636 /* Implement direct support for MEMBER_TYPE in GNU C++.
637 May need to construct such a type if this is the first use.
638 The TYPE is the type of the member. The DOMAIN is the type
639 of the aggregate that the member belongs to. */
642 lookup_memberptr_type (struct type
*type
, struct type
*domain
)
646 mtype
= alloc_type (TYPE_OBJFILE (type
));
647 smash_to_memberptr_type (mtype
, domain
, type
);
651 /* Return a pointer-to-method type, for a method of type TO_TYPE. */
654 lookup_methodptr_type (struct type
*to_type
)
658 mtype
= alloc_type (TYPE_OBJFILE (to_type
));
659 TYPE_TARGET_TYPE (mtype
) = to_type
;
660 TYPE_DOMAIN_TYPE (mtype
) = TYPE_DOMAIN_TYPE (to_type
);
661 TYPE_LENGTH (mtype
) = cplus_method_ptr_size (to_type
);
662 TYPE_CODE (mtype
) = TYPE_CODE_METHODPTR
;
666 /* Allocate a stub method whose return type is TYPE. This apparently
667 happens for speed of symbol reading, since parsing out the
668 arguments to the method is cpu-intensive, the way we are doing it.
669 So, we will fill in arguments later. This always returns a fresh
673 allocate_stub_method (struct type
*type
)
677 mtype
= init_type (TYPE_CODE_METHOD
, 1, TYPE_FLAG_STUB
, NULL
,
678 TYPE_OBJFILE (type
));
679 TYPE_TARGET_TYPE (mtype
) = type
;
680 /* _DOMAIN_TYPE (mtype) = unknown yet */
684 /* Create a range type using either a blank type supplied in
685 RESULT_TYPE, or creating a new type, inheriting the objfile from
688 Indices will be of type INDEX_TYPE, and will range from LOW_BOUND
689 to HIGH_BOUND, inclusive.
691 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
692 sure it is TYPE_CODE_UNDEF before we bash it into a range type? */
695 create_range_type (struct type
*result_type
, struct type
*index_type
,
696 int low_bound
, int high_bound
)
698 if (result_type
== NULL
)
699 result_type
= alloc_type (TYPE_OBJFILE (index_type
));
700 TYPE_CODE (result_type
) = TYPE_CODE_RANGE
;
701 TYPE_TARGET_TYPE (result_type
) = index_type
;
702 if (TYPE_STUB (index_type
))
703 TYPE_TARGET_STUB (result_type
) = 1;
705 TYPE_LENGTH (result_type
) = TYPE_LENGTH (check_typedef (index_type
));
706 TYPE_NFIELDS (result_type
) = 2;
707 TYPE_FIELDS (result_type
) = TYPE_ZALLOC (result_type
,
708 TYPE_NFIELDS (result_type
)
709 * sizeof (struct field
));
710 TYPE_LOW_BOUND (result_type
) = low_bound
;
711 TYPE_HIGH_BOUND (result_type
) = high_bound
;
714 TYPE_UNSIGNED (result_type
) = 1;
719 /* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type
720 TYPE. Return 1 if type is a range type, 0 if it is discrete (and
721 bounds will fit in LONGEST), or -1 otherwise. */
724 get_discrete_bounds (struct type
*type
, LONGEST
*lowp
, LONGEST
*highp
)
726 CHECK_TYPEDEF (type
);
727 switch (TYPE_CODE (type
))
729 case TYPE_CODE_RANGE
:
730 *lowp
= TYPE_LOW_BOUND (type
);
731 *highp
= TYPE_HIGH_BOUND (type
);
734 if (TYPE_NFIELDS (type
) > 0)
736 /* The enums may not be sorted by value, so search all
740 *lowp
= *highp
= TYPE_FIELD_BITPOS (type
, 0);
741 for (i
= 0; i
< TYPE_NFIELDS (type
); i
++)
743 if (TYPE_FIELD_BITPOS (type
, i
) < *lowp
)
744 *lowp
= TYPE_FIELD_BITPOS (type
, i
);
745 if (TYPE_FIELD_BITPOS (type
, i
) > *highp
)
746 *highp
= TYPE_FIELD_BITPOS (type
, i
);
749 /* Set unsigned indicator if warranted. */
752 TYPE_UNSIGNED (type
) = 1;
766 if (TYPE_LENGTH (type
) > sizeof (LONGEST
)) /* Too big */
768 if (!TYPE_UNSIGNED (type
))
770 *lowp
= -(1 << (TYPE_LENGTH (type
) * TARGET_CHAR_BIT
- 1));
774 /* ... fall through for unsigned ints ... */
777 /* This round-about calculation is to avoid shifting by
778 TYPE_LENGTH (type) * TARGET_CHAR_BIT, which will not work
779 if TYPE_LENGTH (type) == sizeof (LONGEST). */
780 *highp
= 1 << (TYPE_LENGTH (type
) * TARGET_CHAR_BIT
- 1);
781 *highp
= (*highp
- 1) | *highp
;
788 /* Create an array type using either a blank type supplied in
789 RESULT_TYPE, or creating a new type, inheriting the objfile from
792 Elements will be of type ELEMENT_TYPE, the indices will be of type
795 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
796 sure it is TYPE_CODE_UNDEF before we bash it into an array
800 create_array_type (struct type
*result_type
,
801 struct type
*element_type
,
802 struct type
*range_type
)
804 LONGEST low_bound
, high_bound
;
806 if (result_type
== NULL
)
808 result_type
= alloc_type (TYPE_OBJFILE (range_type
));
810 TYPE_CODE (result_type
) = TYPE_CODE_ARRAY
;
811 TYPE_TARGET_TYPE (result_type
) = element_type
;
812 if (get_discrete_bounds (range_type
, &low_bound
, &high_bound
) < 0)
813 low_bound
= high_bound
= 0;
814 CHECK_TYPEDEF (element_type
);
815 /* Be careful when setting the array length. Ada arrays can be
816 empty arrays with the high_bound being smaller than the low_bound.
817 In such cases, the array length should be zero. */
818 if (high_bound
< low_bound
)
819 TYPE_LENGTH (result_type
) = 0;
821 TYPE_LENGTH (result_type
) =
822 TYPE_LENGTH (element_type
) * (high_bound
- low_bound
+ 1);
823 TYPE_NFIELDS (result_type
) = 1;
824 TYPE_FIELDS (result_type
) =
825 (struct field
*) TYPE_ZALLOC (result_type
, sizeof (struct field
));
826 TYPE_INDEX_TYPE (result_type
) = range_type
;
827 TYPE_VPTR_FIELDNO (result_type
) = -1;
829 /* TYPE_FLAG_TARGET_STUB will take care of zero length arrays */
830 if (TYPE_LENGTH (result_type
) == 0)
831 TYPE_TARGET_STUB (result_type
) = 1;
833 return (result_type
);
836 /* Create a string type using either a blank type supplied in
837 RESULT_TYPE, or creating a new type. String types are similar
838 enough to array of char types that we can use create_array_type to
839 build the basic type and then bash it into a string type.
841 For fixed length strings, the range type contains 0 as the lower
842 bound and the length of the string minus one as the upper bound.
844 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
845 sure it is TYPE_CODE_UNDEF before we bash it into a string
849 create_string_type (struct type
*result_type
,
850 struct type
*range_type
)
852 struct type
*string_char_type
;
854 string_char_type
= language_string_char_type (current_language
,
856 result_type
= create_array_type (result_type
,
859 TYPE_CODE (result_type
) = TYPE_CODE_STRING
;
860 return (result_type
);
864 create_set_type (struct type
*result_type
, struct type
*domain_type
)
866 if (result_type
== NULL
)
868 result_type
= alloc_type (TYPE_OBJFILE (domain_type
));
870 TYPE_CODE (result_type
) = TYPE_CODE_SET
;
871 TYPE_NFIELDS (result_type
) = 1;
872 TYPE_FIELDS (result_type
) = TYPE_ZALLOC (result_type
, sizeof (struct field
));
874 if (!TYPE_STUB (domain_type
))
876 LONGEST low_bound
, high_bound
, bit_length
;
877 if (get_discrete_bounds (domain_type
, &low_bound
, &high_bound
) < 0)
878 low_bound
= high_bound
= 0;
879 bit_length
= high_bound
- low_bound
+ 1;
880 TYPE_LENGTH (result_type
)
881 = (bit_length
+ TARGET_CHAR_BIT
- 1) / TARGET_CHAR_BIT
;
883 TYPE_UNSIGNED (result_type
) = 1;
885 TYPE_FIELD_TYPE (result_type
, 0) = domain_type
;
887 return (result_type
);
891 append_flags_type_flag (struct type
*type
, int bitpos
, char *name
)
893 gdb_assert (TYPE_CODE (type
) == TYPE_CODE_FLAGS
);
894 gdb_assert (bitpos
< TYPE_NFIELDS (type
));
895 gdb_assert (bitpos
>= 0);
899 TYPE_FIELD_NAME (type
, bitpos
) = xstrdup (name
);
900 TYPE_FIELD_BITPOS (type
, bitpos
) = bitpos
;
904 /* Don't show this field to the user. */
905 TYPE_FIELD_BITPOS (type
, bitpos
) = -1;
910 init_flags_type (char *name
, int length
)
912 int nfields
= length
* TARGET_CHAR_BIT
;
915 type
= init_type (TYPE_CODE_FLAGS
, length
,
916 TYPE_FLAG_UNSIGNED
, name
, NULL
);
917 TYPE_NFIELDS (type
) = nfields
;
918 TYPE_FIELDS (type
) = TYPE_ZALLOC (type
, nfields
* sizeof (struct field
));
923 /* Convert ARRAY_TYPE to a vector type. This may modify ARRAY_TYPE
924 and any array types nested inside it. */
927 make_vector_type (struct type
*array_type
)
929 struct type
*inner_array
, *elt_type
;
932 /* Find the innermost array type, in case the array is
933 multi-dimensional. */
934 inner_array
= array_type
;
935 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array
)) == TYPE_CODE_ARRAY
)
936 inner_array
= TYPE_TARGET_TYPE (inner_array
);
938 elt_type
= TYPE_TARGET_TYPE (inner_array
);
939 if (TYPE_CODE (elt_type
) == TYPE_CODE_INT
)
941 flags
= TYPE_INSTANCE_FLAGS (elt_type
) | TYPE_FLAG_NOTTEXT
;
942 elt_type
= make_qualified_type (elt_type
, flags
, NULL
);
943 TYPE_TARGET_TYPE (inner_array
) = elt_type
;
946 TYPE_VECTOR (array_type
) = 1;
950 init_vector_type (struct type
*elt_type
, int n
)
952 struct type
*array_type
;
954 array_type
= create_array_type (0, elt_type
,
955 create_range_type (0,
958 make_vector_type (array_type
);
962 /* Smash TYPE to be a type of pointers to members of DOMAIN with type
963 TO_TYPE. A member pointer is a wierd thing -- it amounts to a
964 typed offset into a struct, e.g. "an int at offset 8". A MEMBER
965 TYPE doesn't include the offset (that's the value of the MEMBER
966 itself), but does include the structure type into which it points
969 When "smashing" the type, we preserve the objfile that the old type
970 pointed to, since we aren't changing where the type is actually
974 smash_to_memberptr_type (struct type
*type
, struct type
*domain
,
975 struct type
*to_type
)
977 struct objfile
*objfile
;
979 objfile
= TYPE_OBJFILE (type
);
982 TYPE_OBJFILE (type
) = objfile
;
983 TYPE_TARGET_TYPE (type
) = to_type
;
984 TYPE_DOMAIN_TYPE (type
) = domain
;
985 /* Assume that a data member pointer is the same size as a normal
987 TYPE_LENGTH (type
) = gdbarch_ptr_bit (current_gdbarch
) / TARGET_CHAR_BIT
;
988 TYPE_CODE (type
) = TYPE_CODE_MEMBERPTR
;
991 /* Smash TYPE to be a type of method of DOMAIN with type TO_TYPE.
992 METHOD just means `function that gets an extra "this" argument'.
994 When "smashing" the type, we preserve the objfile that the old type
995 pointed to, since we aren't changing where the type is actually
999 smash_to_method_type (struct type
*type
, struct type
*domain
,
1000 struct type
*to_type
, struct field
*args
,
1001 int nargs
, int varargs
)
1003 struct objfile
*objfile
;
1005 objfile
= TYPE_OBJFILE (type
);
1008 TYPE_OBJFILE (type
) = objfile
;
1009 TYPE_TARGET_TYPE (type
) = to_type
;
1010 TYPE_DOMAIN_TYPE (type
) = domain
;
1011 TYPE_FIELDS (type
) = args
;
1012 TYPE_NFIELDS (type
) = nargs
;
1014 TYPE_VARARGS (type
) = 1;
1015 TYPE_LENGTH (type
) = 1; /* In practice, this is never needed. */
1016 TYPE_CODE (type
) = TYPE_CODE_METHOD
;
1019 /* Return a typename for a struct/union/enum type without "struct ",
1020 "union ", or "enum ". If the type has a NULL name, return NULL. */
1023 type_name_no_tag (const struct type
*type
)
1025 if (TYPE_TAG_NAME (type
) != NULL
)
1026 return TYPE_TAG_NAME (type
);
1028 /* Is there code which expects this to return the name if there is
1029 no tag name? My guess is that this is mainly used for C++ in
1030 cases where the two will always be the same. */
1031 return TYPE_NAME (type
);
1034 /* Lookup a typedef or primitive type named NAME, visible in lexical
1035 block BLOCK. If NOERR is nonzero, return zero if NAME is not
1036 suitably defined. */
1039 lookup_typename (char *name
, struct block
*block
, int noerr
)
1044 sym
= lookup_symbol (name
, block
, VAR_DOMAIN
, 0);
1045 if (sym
== NULL
|| SYMBOL_CLASS (sym
) != LOC_TYPEDEF
)
1047 tmp
= language_lookup_primitive_type_by_name (current_language
,
1054 else if (!tmp
&& noerr
)
1060 error (_("No type named %s."), name
);
1063 return (SYMBOL_TYPE (sym
));
1067 lookup_unsigned_typename (char *name
)
1069 char *uns
= alloca (strlen (name
) + 10);
1071 strcpy (uns
, "unsigned ");
1072 strcpy (uns
+ 9, name
);
1073 return (lookup_typename (uns
, (struct block
*) NULL
, 0));
1077 lookup_signed_typename (char *name
)
1080 char *uns
= alloca (strlen (name
) + 8);
1082 strcpy (uns
, "signed ");
1083 strcpy (uns
+ 7, name
);
1084 t
= lookup_typename (uns
, (struct block
*) NULL
, 1);
1085 /* If we don't find "signed FOO" just try again with plain "FOO". */
1088 return lookup_typename (name
, (struct block
*) NULL
, 0);
1091 /* Lookup a structure type named "struct NAME",
1092 visible in lexical block BLOCK. */
1095 lookup_struct (char *name
, struct block
*block
)
1099 sym
= lookup_symbol (name
, block
, STRUCT_DOMAIN
, 0);
1103 error (_("No struct type named %s."), name
);
1105 if (TYPE_CODE (SYMBOL_TYPE (sym
)) != TYPE_CODE_STRUCT
)
1107 error (_("This context has class, union or enum %s, not a struct."),
1110 return (SYMBOL_TYPE (sym
));
1113 /* Lookup a union type named "union NAME",
1114 visible in lexical block BLOCK. */
1117 lookup_union (char *name
, struct block
*block
)
1122 sym
= lookup_symbol (name
, block
, STRUCT_DOMAIN
, 0);
1125 error (_("No union type named %s."), name
);
1127 t
= SYMBOL_TYPE (sym
);
1129 if (TYPE_CODE (t
) == TYPE_CODE_UNION
)
1132 /* C++ unions may come out with TYPE_CODE_CLASS, but we look at
1133 * a further "declared_type" field to discover it is really a union.
1135 if (HAVE_CPLUS_STRUCT (t
))
1136 if (TYPE_DECLARED_TYPE (t
) == DECLARED_TYPE_UNION
)
1139 /* If we get here, it's not a union. */
1140 error (_("This context has class, struct or enum %s, not a union."),
1145 /* Lookup an enum type named "enum NAME",
1146 visible in lexical block BLOCK. */
1149 lookup_enum (char *name
, struct block
*block
)
1153 sym
= lookup_symbol (name
, block
, STRUCT_DOMAIN
, 0);
1156 error (_("No enum type named %s."), name
);
1158 if (TYPE_CODE (SYMBOL_TYPE (sym
)) != TYPE_CODE_ENUM
)
1160 error (_("This context has class, struct or union %s, not an enum."),
1163 return (SYMBOL_TYPE (sym
));
1166 /* Lookup a template type named "template NAME<TYPE>",
1167 visible in lexical block BLOCK. */
1170 lookup_template_type (char *name
, struct type
*type
,
1171 struct block
*block
)
1174 char *nam
= (char *)
1175 alloca (strlen (name
) + strlen (TYPE_NAME (type
)) + 4);
1178 strcat (nam
, TYPE_NAME (type
));
1179 strcat (nam
, " >"); /* FIXME, extra space still introduced in gcc? */
1181 sym
= lookup_symbol (nam
, block
, VAR_DOMAIN
, 0);
1185 error (_("No template type named %s."), name
);
1187 if (TYPE_CODE (SYMBOL_TYPE (sym
)) != TYPE_CODE_STRUCT
)
1189 error (_("This context has class, union or enum %s, not a struct."),
1192 return (SYMBOL_TYPE (sym
));
1195 /* Given a type TYPE, lookup the type of the component of type named
1198 TYPE can be either a struct or union, or a pointer or reference to
1199 a struct or union. If it is a pointer or reference, its target
1200 type is automatically used. Thus '.' and '->' are interchangable,
1201 as specified for the definitions of the expression element types
1202 STRUCTOP_STRUCT and STRUCTOP_PTR.
1204 If NOERR is nonzero, return zero if NAME is not suitably defined.
1205 If NAME is the name of a baseclass type, return that type. */
1208 lookup_struct_elt_type (struct type
*type
, char *name
, int noerr
)
1214 CHECK_TYPEDEF (type
);
1215 if (TYPE_CODE (type
) != TYPE_CODE_PTR
1216 && TYPE_CODE (type
) != TYPE_CODE_REF
)
1218 type
= TYPE_TARGET_TYPE (type
);
1221 if (TYPE_CODE (type
) != TYPE_CODE_STRUCT
1222 && TYPE_CODE (type
) != TYPE_CODE_UNION
)
1224 target_terminal_ours ();
1225 gdb_flush (gdb_stdout
);
1226 fprintf_unfiltered (gdb_stderr
, "Type ");
1227 type_print (type
, "", gdb_stderr
, -1);
1228 error (_(" is not a structure or union type."));
1232 /* FIXME: This change put in by Michael seems incorrect for the case
1233 where the structure tag name is the same as the member name.
1234 I.E. when doing "ptype bell->bar" for "struct foo { int bar; int
1235 foo; } bell;" Disabled by fnf. */
1239 typename
= type_name_no_tag (type
);
1240 if (typename
!= NULL
&& strcmp (typename
, name
) == 0)
1245 for (i
= TYPE_NFIELDS (type
) - 1; i
>= TYPE_N_BASECLASSES (type
); i
--)
1247 char *t_field_name
= TYPE_FIELD_NAME (type
, i
);
1249 if (t_field_name
&& (strcmp_iw (t_field_name
, name
) == 0))
1251 return TYPE_FIELD_TYPE (type
, i
);
1255 /* OK, it's not in this class. Recursively check the baseclasses. */
1256 for (i
= TYPE_N_BASECLASSES (type
) - 1; i
>= 0; i
--)
1260 t
= lookup_struct_elt_type (TYPE_BASECLASS (type
, i
), name
, 1);
1272 target_terminal_ours ();
1273 gdb_flush (gdb_stdout
);
1274 fprintf_unfiltered (gdb_stderr
, "Type ");
1275 type_print (type
, "", gdb_stderr
, -1);
1276 fprintf_unfiltered (gdb_stderr
, " has no component named ");
1277 fputs_filtered (name
, gdb_stderr
);
1279 return (struct type
*) -1; /* For lint */
1282 /* Lookup the vptr basetype/fieldno values for TYPE.
1283 If found store vptr_basetype in *BASETYPEP if non-NULL, and return
1284 vptr_fieldno. Also, if found and basetype is from the same objfile,
1286 If not found, return -1 and ignore BASETYPEP.
1287 Callers should be aware that in some cases (for example,
1288 the type or one of its baseclasses is a stub type and we are
1289 debugging a .o file), this function will not be able to find the
1290 virtual function table pointer, and vptr_fieldno will remain -1 and
1291 vptr_basetype will remain NULL or incomplete. */
1294 get_vptr_fieldno (struct type
*type
, struct type
**basetypep
)
1296 CHECK_TYPEDEF (type
);
1298 if (TYPE_VPTR_FIELDNO (type
) < 0)
1302 /* We must start at zero in case the first (and only) baseclass
1303 is virtual (and hence we cannot share the table pointer). */
1304 for (i
= 0; i
< TYPE_N_BASECLASSES (type
); i
++)
1306 struct type
*baseclass
= check_typedef (TYPE_BASECLASS (type
, i
));
1308 struct type
*basetype
;
1310 fieldno
= get_vptr_fieldno (baseclass
, &basetype
);
1313 /* If the type comes from a different objfile we can't cache
1314 it, it may have a different lifetime. PR 2384 */
1315 if (TYPE_OBJFILE (type
) == TYPE_OBJFILE (basetype
))
1317 TYPE_VPTR_FIELDNO (type
) = fieldno
;
1318 TYPE_VPTR_BASETYPE (type
) = basetype
;
1321 *basetypep
= basetype
;
1332 *basetypep
= TYPE_VPTR_BASETYPE (type
);
1333 return TYPE_VPTR_FIELDNO (type
);
1337 /* Find the method and field indices for the destructor in class type T.
1338 Return 1 if the destructor was found, otherwise, return 0. */
1341 get_destructor_fn_field (struct type
*t
,
1347 for (i
= 0; i
< TYPE_NFN_FIELDS (t
); i
++)
1350 struct fn_field
*f
= TYPE_FN_FIELDLIST1 (t
, i
);
1352 for (j
= 0; j
< TYPE_FN_FIELDLIST_LENGTH (t
, i
); j
++)
1354 if (is_destructor_name (TYPE_FN_FIELD_PHYSNAME (f
, j
)) != 0)
1366 stub_noname_complaint (void)
1368 complaint (&symfile_complaints
, _("stub type has NULL name"));
1371 /* Added by Bryan Boreham, Kewill, Sun Sep 17 18:07:17 1989.
1373 If this is a stubbed struct (i.e. declared as struct foo *), see if
1374 we can find a full definition in some other file. If so, copy this
1375 definition, so we can use it in future. There used to be a comment
1376 (but not any code) that if we don't find a full definition, we'd
1377 set a flag so we don't spend time in the future checking the same
1378 type. That would be a mistake, though--we might load in more
1379 symbols which contain a full definition for the type.
1381 This used to be coded as a macro, but I don't think it is called
1382 often enough to merit such treatment. */
1384 /* Find the real type of TYPE. This function returns the real type,
1385 after removing all layers of typedefs and completing opaque or stub
1386 types. Completion changes the TYPE argument, but stripping of
1387 typedefs does not. */
1390 check_typedef (struct type
*type
)
1392 struct type
*orig_type
= type
;
1393 int is_const
, is_volatile
;
1397 while (TYPE_CODE (type
) == TYPE_CODE_TYPEDEF
)
1399 if (!TYPE_TARGET_TYPE (type
))
1404 /* It is dangerous to call lookup_symbol if we are currently
1405 reading a symtab. Infinite recursion is one danger. */
1406 if (currently_reading_symtab
)
1409 name
= type_name_no_tag (type
);
1410 /* FIXME: shouldn't we separately check the TYPE_NAME and
1411 the TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or
1412 VAR_DOMAIN as appropriate? (this code was written before
1413 TYPE_NAME and TYPE_TAG_NAME were separate). */
1416 stub_noname_complaint ();
1419 sym
= lookup_symbol (name
, 0, STRUCT_DOMAIN
, 0);
1421 TYPE_TARGET_TYPE (type
) = SYMBOL_TYPE (sym
);
1422 else /* TYPE_CODE_UNDEF */
1423 TYPE_TARGET_TYPE (type
) = alloc_type (NULL
);
1425 type
= TYPE_TARGET_TYPE (type
);
1428 is_const
= TYPE_CONST (type
);
1429 is_volatile
= TYPE_VOLATILE (type
);
1431 /* If this is a struct/class/union with no fields, then check
1432 whether a full definition exists somewhere else. This is for
1433 systems where a type definition with no fields is issued for such
1434 types, instead of identifying them as stub types in the first
1437 if (TYPE_IS_OPAQUE (type
)
1438 && opaque_type_resolution
1439 && !currently_reading_symtab
)
1441 char *name
= type_name_no_tag (type
);
1442 struct type
*newtype
;
1445 stub_noname_complaint ();
1448 newtype
= lookup_transparent_type (name
);
1452 /* If the resolved type and the stub are in the same
1453 objfile, then replace the stub type with the real deal.
1454 But if they're in separate objfiles, leave the stub
1455 alone; we'll just look up the transparent type every time
1456 we call check_typedef. We can't create pointers between
1457 types allocated to different objfiles, since they may
1458 have different lifetimes. Trying to copy NEWTYPE over to
1459 TYPE's objfile is pointless, too, since you'll have to
1460 move over any other types NEWTYPE refers to, which could
1461 be an unbounded amount of stuff. */
1462 if (TYPE_OBJFILE (newtype
) == TYPE_OBJFILE (type
))
1463 make_cv_type (is_const
, is_volatile
, newtype
, &type
);
1468 /* Otherwise, rely on the stub flag being set for opaque/stubbed
1470 else if (TYPE_STUB (type
) && !currently_reading_symtab
)
1472 char *name
= type_name_no_tag (type
);
1473 /* FIXME: shouldn't we separately check the TYPE_NAME and the
1474 TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or VAR_DOMAIN
1475 as appropriate? (this code was written before TYPE_NAME and
1476 TYPE_TAG_NAME were separate). */
1480 stub_noname_complaint ();
1483 sym
= lookup_symbol (name
, 0, STRUCT_DOMAIN
, 0);
1486 /* Same as above for opaque types, we can replace the stub
1487 with the complete type only if they are int the same
1489 if (TYPE_OBJFILE (SYMBOL_TYPE(sym
)) == TYPE_OBJFILE (type
))
1490 make_cv_type (is_const
, is_volatile
,
1491 SYMBOL_TYPE (sym
), &type
);
1493 type
= SYMBOL_TYPE (sym
);
1497 if (TYPE_TARGET_STUB (type
))
1499 struct type
*range_type
;
1500 struct type
*target_type
= check_typedef (TYPE_TARGET_TYPE (type
));
1502 if (TYPE_STUB (target_type
) || TYPE_TARGET_STUB (target_type
))
1506 else if (TYPE_CODE (type
) == TYPE_CODE_ARRAY
1507 && TYPE_NFIELDS (type
) == 1
1508 && (TYPE_CODE (range_type
= TYPE_INDEX_TYPE (type
))
1509 == TYPE_CODE_RANGE
))
1511 /* Now recompute the length of the array type, based on its
1512 number of elements and the target type's length.
1513 Watch out for Ada null Ada arrays where the high bound
1514 is smaller than the low bound. */
1515 const int low_bound
= TYPE_LOW_BOUND (range_type
);
1516 const int high_bound
= TYPE_HIGH_BOUND (range_type
);
1519 if (high_bound
< low_bound
)
1522 nb_elements
= high_bound
- low_bound
+ 1;
1524 TYPE_LENGTH (type
) = nb_elements
* TYPE_LENGTH (target_type
);
1525 TYPE_TARGET_STUB (type
) = 0;
1527 else if (TYPE_CODE (type
) == TYPE_CODE_RANGE
)
1529 TYPE_LENGTH (type
) = TYPE_LENGTH (target_type
);
1530 TYPE_TARGET_STUB (type
) = 0;
1533 /* Cache TYPE_LENGTH for future use. */
1534 TYPE_LENGTH (orig_type
) = TYPE_LENGTH (type
);
1538 /* Parse a type expression in the string [P..P+LENGTH). If an error
1539 occurs, silently return builtin_type_void. */
1541 static struct type
*
1542 safe_parse_type (char *p
, int length
)
1544 struct ui_file
*saved_gdb_stderr
;
1547 /* Suppress error messages. */
1548 saved_gdb_stderr
= gdb_stderr
;
1549 gdb_stderr
= ui_file_new ();
1551 /* Call parse_and_eval_type() without fear of longjmp()s. */
1552 if (!gdb_parse_and_eval_type (p
, length
, &type
))
1553 type
= builtin_type_void
;
1555 /* Stop suppressing error messages. */
1556 ui_file_delete (gdb_stderr
);
1557 gdb_stderr
= saved_gdb_stderr
;
1562 /* Ugly hack to convert method stubs into method types.
1564 He ain't kiddin'. This demangles the name of the method into a
1565 string including argument types, parses out each argument type,
1566 generates a string casting a zero to that type, evaluates the
1567 string, and stuffs the resulting type into an argtype vector!!!
1568 Then it knows the type of the whole function (including argument
1569 types for overloading), which info used to be in the stab's but was
1570 removed to hack back the space required for them. */
1573 check_stub_method (struct type
*type
, int method_id
, int signature_id
)
1576 char *mangled_name
= gdb_mangle_name (type
, method_id
, signature_id
);
1577 char *demangled_name
= cplus_demangle (mangled_name
,
1578 DMGL_PARAMS
| DMGL_ANSI
);
1579 char *argtypetext
, *p
;
1580 int depth
= 0, argcount
= 1;
1581 struct field
*argtypes
;
1584 /* Make sure we got back a function string that we can use. */
1586 p
= strchr (demangled_name
, '(');
1590 if (demangled_name
== NULL
|| p
== NULL
)
1591 error (_("Internal: Cannot demangle mangled name `%s'."),
1594 /* Now, read in the parameters that define this type. */
1599 if (*p
== '(' || *p
== '<')
1603 else if (*p
== ')' || *p
== '>')
1607 else if (*p
== ',' && depth
== 0)
1615 /* If we read one argument and it was ``void'', don't count it. */
1616 if (strncmp (argtypetext
, "(void)", 6) == 0)
1619 /* We need one extra slot, for the THIS pointer. */
1621 argtypes
= (struct field
*)
1622 TYPE_ALLOC (type
, (argcount
+ 1) * sizeof (struct field
));
1625 /* Add THIS pointer for non-static methods. */
1626 f
= TYPE_FN_FIELDLIST1 (type
, method_id
);
1627 if (TYPE_FN_FIELD_STATIC_P (f
, signature_id
))
1631 argtypes
[0].type
= lookup_pointer_type (type
);
1635 if (*p
!= ')') /* () means no args, skip while */
1640 if (depth
<= 0 && (*p
== ',' || *p
== ')'))
1642 /* Avoid parsing of ellipsis, they will be handled below.
1643 Also avoid ``void'' as above. */
1644 if (strncmp (argtypetext
, "...", p
- argtypetext
) != 0
1645 && strncmp (argtypetext
, "void", p
- argtypetext
) != 0)
1647 argtypes
[argcount
].type
=
1648 safe_parse_type (argtypetext
, p
- argtypetext
);
1651 argtypetext
= p
+ 1;
1654 if (*p
== '(' || *p
== '<')
1658 else if (*p
== ')' || *p
== '>')
1667 TYPE_FN_FIELD_PHYSNAME (f
, signature_id
) = mangled_name
;
1669 /* Now update the old "stub" type into a real type. */
1670 mtype
= TYPE_FN_FIELD_TYPE (f
, signature_id
);
1671 TYPE_DOMAIN_TYPE (mtype
) = type
;
1672 TYPE_FIELDS (mtype
) = argtypes
;
1673 TYPE_NFIELDS (mtype
) = argcount
;
1674 TYPE_STUB (mtype
) = 0;
1675 TYPE_FN_FIELD_STUB (f
, signature_id
) = 0;
1677 TYPE_VARARGS (mtype
) = 1;
1679 xfree (demangled_name
);
1682 /* This is the external interface to check_stub_method, above. This
1683 function unstubs all of the signatures for TYPE's METHOD_ID method
1684 name. After calling this function TYPE_FN_FIELD_STUB will be
1685 cleared for each signature and TYPE_FN_FIELDLIST_NAME will be
1688 This function unfortunately can not die until stabs do. */
1691 check_stub_method_group (struct type
*type
, int method_id
)
1693 int len
= TYPE_FN_FIELDLIST_LENGTH (type
, method_id
);
1694 struct fn_field
*f
= TYPE_FN_FIELDLIST1 (type
, method_id
);
1695 int j
, found_stub
= 0;
1697 for (j
= 0; j
< len
; j
++)
1698 if (TYPE_FN_FIELD_STUB (f
, j
))
1701 check_stub_method (type
, method_id
, j
);
1704 /* GNU v3 methods with incorrect names were corrected when we read
1705 in type information, because it was cheaper to do it then. The
1706 only GNU v2 methods with incorrect method names are operators and
1707 destructors; destructors were also corrected when we read in type
1710 Therefore the only thing we need to handle here are v2 operator
1712 if (found_stub
&& strncmp (TYPE_FN_FIELD_PHYSNAME (f
, 0), "_Z", 2) != 0)
1715 char dem_opname
[256];
1717 ret
= cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type
,
1719 dem_opname
, DMGL_ANSI
);
1721 ret
= cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type
,
1725 TYPE_FN_FIELDLIST_NAME (type
, method_id
) = xstrdup (dem_opname
);
1729 const struct cplus_struct_type cplus_struct_default
;
1732 allocate_cplus_struct_type (struct type
*type
)
1734 if (!HAVE_CPLUS_STRUCT (type
))
1736 TYPE_CPLUS_SPECIFIC (type
) = (struct cplus_struct_type
*)
1737 TYPE_ALLOC (type
, sizeof (struct cplus_struct_type
));
1738 *(TYPE_CPLUS_SPECIFIC (type
)) = cplus_struct_default
;
1742 /* Helper function to initialize the standard scalar types.
1744 If NAME is non-NULL and OBJFILE is non-NULL, then we make a copy of
1745 the string pointed to by name in the objfile_obstack for that
1746 objfile, and initialize the type name to that copy. There are
1747 places (mipsread.c in particular, where init_type is called with a
1748 NULL value for NAME). */
1751 init_type (enum type_code code
, int length
, int flags
,
1752 char *name
, struct objfile
*objfile
)
1756 type
= alloc_type (objfile
);
1757 TYPE_CODE (type
) = code
;
1758 TYPE_LENGTH (type
) = length
;
1760 gdb_assert (!(flags
& (TYPE_FLAG_MIN
- 1)));
1761 if (flags
& TYPE_FLAG_UNSIGNED
)
1762 TYPE_UNSIGNED (type
) = 1;
1763 if (flags
& TYPE_FLAG_NOSIGN
)
1764 TYPE_NOSIGN (type
) = 1;
1765 if (flags
& TYPE_FLAG_STUB
)
1766 TYPE_STUB (type
) = 1;
1767 if (flags
& TYPE_FLAG_TARGET_STUB
)
1768 TYPE_TARGET_STUB (type
) = 1;
1769 if (flags
& TYPE_FLAG_STATIC
)
1770 TYPE_STATIC (type
) = 1;
1771 if (flags
& TYPE_FLAG_PROTOTYPED
)
1772 TYPE_PROTOTYPED (type
) = 1;
1773 if (flags
& TYPE_FLAG_INCOMPLETE
)
1774 TYPE_INCOMPLETE (type
) = 1;
1775 if (flags
& TYPE_FLAG_VARARGS
)
1776 TYPE_VARARGS (type
) = 1;
1777 if (flags
& TYPE_FLAG_VECTOR
)
1778 TYPE_VECTOR (type
) = 1;
1779 if (flags
& TYPE_FLAG_STUB_SUPPORTED
)
1780 TYPE_STUB_SUPPORTED (type
) = 1;
1781 if (flags
& TYPE_FLAG_NOTTEXT
)
1782 TYPE_NOTTEXT (type
) = 1;
1783 if (flags
& TYPE_FLAG_FIXED_INSTANCE
)
1784 TYPE_FIXED_INSTANCE (type
) = 1;
1786 if ((name
!= NULL
) && (objfile
!= NULL
))
1788 TYPE_NAME (type
) = obsavestring (name
, strlen (name
),
1789 &objfile
->objfile_obstack
);
1793 TYPE_NAME (type
) = name
;
1798 if (name
&& strcmp (name
, "char") == 0)
1799 TYPE_NOSIGN (type
) = 1;
1801 if (code
== TYPE_CODE_STRUCT
|| code
== TYPE_CODE_UNION
1802 || code
== TYPE_CODE_NAMESPACE
)
1804 INIT_CPLUS_SPECIFIC (type
);
1809 /* Helper function. Create an empty composite type. */
1812 init_composite_type (char *name
, enum type_code code
)
1815 gdb_assert (code
== TYPE_CODE_STRUCT
1816 || code
== TYPE_CODE_UNION
);
1817 t
= init_type (code
, 0, 0, NULL
, NULL
);
1818 TYPE_TAG_NAME (t
) = name
;
1822 /* Helper function. Append a field to a composite type. */
1825 append_composite_type_field_aligned (struct type
*t
, char *name
,
1826 struct type
*field
, int alignment
)
1829 TYPE_NFIELDS (t
) = TYPE_NFIELDS (t
) + 1;
1830 TYPE_FIELDS (t
) = xrealloc (TYPE_FIELDS (t
),
1831 sizeof (struct field
) * TYPE_NFIELDS (t
));
1832 f
= &(TYPE_FIELDS (t
)[TYPE_NFIELDS (t
) - 1]);
1833 memset (f
, 0, sizeof f
[0]);
1834 FIELD_TYPE (f
[0]) = field
;
1835 FIELD_NAME (f
[0]) = name
;
1836 if (TYPE_CODE (t
) == TYPE_CODE_UNION
)
1838 if (TYPE_LENGTH (t
) < TYPE_LENGTH (field
))
1839 TYPE_LENGTH (t
) = TYPE_LENGTH (field
);
1841 else if (TYPE_CODE (t
) == TYPE_CODE_STRUCT
)
1843 TYPE_LENGTH (t
) = TYPE_LENGTH (t
) + TYPE_LENGTH (field
);
1844 if (TYPE_NFIELDS (t
) > 1)
1846 FIELD_BITPOS (f
[0]) = (FIELD_BITPOS (f
[-1])
1847 + (TYPE_LENGTH (FIELD_TYPE (f
[-1]))
1848 * TARGET_CHAR_BIT
));
1852 int left
= FIELD_BITPOS (f
[0]) % (alignment
* TARGET_CHAR_BIT
);
1855 FIELD_BITPOS (f
[0]) += left
;
1856 TYPE_LENGTH (t
) += left
/ TARGET_CHAR_BIT
;
1864 append_composite_type_field (struct type
*t
, char *name
,
1867 append_composite_type_field_aligned (t
, name
, field
, 0);
1871 can_dereference (struct type
*t
)
1873 /* FIXME: Should we return true for references as well as
1878 && TYPE_CODE (t
) == TYPE_CODE_PTR
1879 && TYPE_CODE (TYPE_TARGET_TYPE (t
)) != TYPE_CODE_VOID
);
1883 is_integral_type (struct type
*t
)
1888 && ((TYPE_CODE (t
) == TYPE_CODE_INT
)
1889 || (TYPE_CODE (t
) == TYPE_CODE_ENUM
)
1890 || (TYPE_CODE (t
) == TYPE_CODE_FLAGS
)
1891 || (TYPE_CODE (t
) == TYPE_CODE_CHAR
)
1892 || (TYPE_CODE (t
) == TYPE_CODE_RANGE
)
1893 || (TYPE_CODE (t
) == TYPE_CODE_BOOL
)));
1896 /* Check whether BASE is an ancestor or base class or DCLASS
1897 Return 1 if so, and 0 if not.
1898 Note: callers may want to check for identity of the types before
1899 calling this function -- identical types are considered to satisfy
1900 the ancestor relationship even if they're identical. */
1903 is_ancestor (struct type
*base
, struct type
*dclass
)
1907 CHECK_TYPEDEF (base
);
1908 CHECK_TYPEDEF (dclass
);
1912 if (TYPE_NAME (base
) && TYPE_NAME (dclass
)
1913 && !strcmp (TYPE_NAME (base
), TYPE_NAME (dclass
)))
1916 for (i
= 0; i
< TYPE_N_BASECLASSES (dclass
); i
++)
1917 if (is_ancestor (base
, TYPE_BASECLASS (dclass
, i
)))
1925 /* Functions for overload resolution begin here */
1927 /* Compare two badness vectors A and B and return the result.
1928 0 => A and B are identical
1929 1 => A and B are incomparable
1930 2 => A is better than B
1931 3 => A is worse than B */
1934 compare_badness (struct badness_vector
*a
, struct badness_vector
*b
)
1938 short found_pos
= 0; /* any positives in c? */
1939 short found_neg
= 0; /* any negatives in c? */
1941 /* differing lengths => incomparable */
1942 if (a
->length
!= b
->length
)
1945 /* Subtract b from a */
1946 for (i
= 0; i
< a
->length
; i
++)
1948 tmp
= a
->rank
[i
] - b
->rank
[i
];
1958 return 1; /* incomparable */
1960 return 3; /* A > B */
1966 return 2; /* A < B */
1968 return 0; /* A == B */
1972 /* Rank a function by comparing its parameter types (PARMS, length
1973 NPARMS), to the types of an argument list (ARGS, length NARGS).
1974 Return a pointer to a badness vector. This has NARGS + 1
1977 struct badness_vector
*
1978 rank_function (struct type
**parms
, int nparms
,
1979 struct type
**args
, int nargs
)
1982 struct badness_vector
*bv
;
1983 int min_len
= nparms
< nargs
? nparms
: nargs
;
1985 bv
= xmalloc (sizeof (struct badness_vector
));
1986 bv
->length
= nargs
+ 1; /* add 1 for the length-match rank */
1987 bv
->rank
= xmalloc ((nargs
+ 1) * sizeof (int));
1989 /* First compare the lengths of the supplied lists.
1990 If there is a mismatch, set it to a high value. */
1992 /* pai/1997-06-03 FIXME: when we have debug info about default
1993 arguments and ellipsis parameter lists, we should consider those
1994 and rank the length-match more finely. */
1996 LENGTH_MATCH (bv
) = (nargs
!= nparms
) ? LENGTH_MISMATCH_BADNESS
: 0;
1998 /* Now rank all the parameters of the candidate function */
1999 for (i
= 1; i
<= min_len
; i
++)
2000 bv
->rank
[i
] = rank_one_type (parms
[i
-1], args
[i
-1]);
2002 /* If more arguments than parameters, add dummy entries */
2003 for (i
= min_len
+ 1; i
<= nargs
; i
++)
2004 bv
->rank
[i
] = TOO_FEW_PARAMS_BADNESS
;
2009 /* Compare the names of two integer types, assuming that any sign
2010 qualifiers have been checked already. We do it this way because
2011 there may be an "int" in the name of one of the types. */
2014 integer_types_same_name_p (const char *first
, const char *second
)
2016 int first_p
, second_p
;
2018 /* If both are shorts, return 1; if neither is a short, keep
2020 first_p
= (strstr (first
, "short") != NULL
);
2021 second_p
= (strstr (second
, "short") != NULL
);
2022 if (first_p
&& second_p
)
2024 if (first_p
|| second_p
)
2027 /* Likewise for long. */
2028 first_p
= (strstr (first
, "long") != NULL
);
2029 second_p
= (strstr (second
, "long") != NULL
);
2030 if (first_p
&& second_p
)
2032 if (first_p
|| second_p
)
2035 /* Likewise for char. */
2036 first_p
= (strstr (first
, "char") != NULL
);
2037 second_p
= (strstr (second
, "char") != NULL
);
2038 if (first_p
&& second_p
)
2040 if (first_p
|| second_p
)
2043 /* They must both be ints. */
2047 /* Compare one type (PARM) for compatibility with another (ARG).
2048 * PARM is intended to be the parameter type of a function; and
2049 * ARG is the supplied argument's type. This function tests if
2050 * the latter can be converted to the former.
2052 * Return 0 if they are identical types;
2053 * Otherwise, return an integer which corresponds to how compatible
2054 * PARM is to ARG. The higher the return value, the worse the match.
2055 * Generally the "bad" conversions are all uniformly assigned a 100. */
2058 rank_one_type (struct type
*parm
, struct type
*arg
)
2060 /* Identical type pointers. */
2061 /* However, this still doesn't catch all cases of same type for arg
2062 and param. The reason is that builtin types are different from
2063 the same ones constructed from the object. */
2067 /* Resolve typedefs */
2068 if (TYPE_CODE (parm
) == TYPE_CODE_TYPEDEF
)
2069 parm
= check_typedef (parm
);
2070 if (TYPE_CODE (arg
) == TYPE_CODE_TYPEDEF
)
2071 arg
= check_typedef (arg
);
2074 Well, damnit, if the names are exactly the same, I'll say they
2075 are exactly the same. This happens when we generate method
2076 stubs. The types won't point to the same address, but they
2077 really are the same.
2080 if (TYPE_NAME (parm
) && TYPE_NAME (arg
)
2081 && !strcmp (TYPE_NAME (parm
), TYPE_NAME (arg
)))
2084 /* Check if identical after resolving typedefs. */
2088 /* See through references, since we can almost make non-references
2090 if (TYPE_CODE (arg
) == TYPE_CODE_REF
)
2091 return (rank_one_type (parm
, TYPE_TARGET_TYPE (arg
))
2092 + REFERENCE_CONVERSION_BADNESS
);
2093 if (TYPE_CODE (parm
) == TYPE_CODE_REF
)
2094 return (rank_one_type (TYPE_TARGET_TYPE (parm
), arg
)
2095 + REFERENCE_CONVERSION_BADNESS
);
2097 /* Debugging only. */
2098 fprintf_filtered (gdb_stderr
,
2099 "------ Arg is %s [%d], parm is %s [%d]\n",
2100 TYPE_NAME (arg
), TYPE_CODE (arg
),
2101 TYPE_NAME (parm
), TYPE_CODE (parm
));
2103 /* x -> y means arg of type x being supplied for parameter of type y */
2105 switch (TYPE_CODE (parm
))
2108 switch (TYPE_CODE (arg
))
2111 if (TYPE_CODE (TYPE_TARGET_TYPE (parm
)) == TYPE_CODE_VOID
)
2112 return VOID_PTR_CONVERSION_BADNESS
;
2114 return rank_one_type (TYPE_TARGET_TYPE (parm
),
2115 TYPE_TARGET_TYPE (arg
));
2116 case TYPE_CODE_ARRAY
:
2117 return rank_one_type (TYPE_TARGET_TYPE (parm
),
2118 TYPE_TARGET_TYPE (arg
));
2119 case TYPE_CODE_FUNC
:
2120 return rank_one_type (TYPE_TARGET_TYPE (parm
), arg
);
2122 case TYPE_CODE_ENUM
:
2123 case TYPE_CODE_FLAGS
:
2124 case TYPE_CODE_CHAR
:
2125 case TYPE_CODE_RANGE
:
2126 case TYPE_CODE_BOOL
:
2127 return POINTER_CONVERSION_BADNESS
;
2129 return INCOMPATIBLE_TYPE_BADNESS
;
2131 case TYPE_CODE_ARRAY
:
2132 switch (TYPE_CODE (arg
))
2135 case TYPE_CODE_ARRAY
:
2136 return rank_one_type (TYPE_TARGET_TYPE (parm
),
2137 TYPE_TARGET_TYPE (arg
));
2139 return INCOMPATIBLE_TYPE_BADNESS
;
2141 case TYPE_CODE_FUNC
:
2142 switch (TYPE_CODE (arg
))
2144 case TYPE_CODE_PTR
: /* funcptr -> func */
2145 return rank_one_type (parm
, TYPE_TARGET_TYPE (arg
));
2147 return INCOMPATIBLE_TYPE_BADNESS
;
2150 switch (TYPE_CODE (arg
))
2153 if (TYPE_LENGTH (arg
) == TYPE_LENGTH (parm
))
2155 /* Deal with signed, unsigned, and plain chars and
2156 signed and unsigned ints. */
2157 if (TYPE_NOSIGN (parm
))
2159 /* This case only for character types */
2160 if (TYPE_NOSIGN (arg
))
2161 return 0; /* plain char -> plain char */
2162 else /* signed/unsigned char -> plain char */
2163 return INTEGER_CONVERSION_BADNESS
;
2165 else if (TYPE_UNSIGNED (parm
))
2167 if (TYPE_UNSIGNED (arg
))
2169 /* unsigned int -> unsigned int, or
2170 unsigned long -> unsigned long */
2171 if (integer_types_same_name_p (TYPE_NAME (parm
),
2174 else if (integer_types_same_name_p (TYPE_NAME (arg
),
2176 && integer_types_same_name_p (TYPE_NAME (parm
),
2178 return INTEGER_PROMOTION_BADNESS
; /* unsigned int -> unsigned long */
2180 return INTEGER_CONVERSION_BADNESS
; /* unsigned long -> unsigned int */
2184 if (integer_types_same_name_p (TYPE_NAME (arg
),
2186 && integer_types_same_name_p (TYPE_NAME (parm
),
2188 return INTEGER_CONVERSION_BADNESS
; /* signed long -> unsigned int */
2190 return INTEGER_CONVERSION_BADNESS
; /* signed int/long -> unsigned int/long */
2193 else if (!TYPE_NOSIGN (arg
) && !TYPE_UNSIGNED (arg
))
2195 if (integer_types_same_name_p (TYPE_NAME (parm
),
2198 else if (integer_types_same_name_p (TYPE_NAME (arg
),
2200 && integer_types_same_name_p (TYPE_NAME (parm
),
2202 return INTEGER_PROMOTION_BADNESS
;
2204 return INTEGER_CONVERSION_BADNESS
;
2207 return INTEGER_CONVERSION_BADNESS
;
2209 else if (TYPE_LENGTH (arg
) < TYPE_LENGTH (parm
))
2210 return INTEGER_PROMOTION_BADNESS
;
2212 return INTEGER_CONVERSION_BADNESS
;
2213 case TYPE_CODE_ENUM
:
2214 case TYPE_CODE_FLAGS
:
2215 case TYPE_CODE_CHAR
:
2216 case TYPE_CODE_RANGE
:
2217 case TYPE_CODE_BOOL
:
2218 return INTEGER_PROMOTION_BADNESS
;
2220 return INT_FLOAT_CONVERSION_BADNESS
;
2222 return NS_POINTER_CONVERSION_BADNESS
;
2224 return INCOMPATIBLE_TYPE_BADNESS
;
2227 case TYPE_CODE_ENUM
:
2228 switch (TYPE_CODE (arg
))
2231 case TYPE_CODE_CHAR
:
2232 case TYPE_CODE_RANGE
:
2233 case TYPE_CODE_BOOL
:
2234 case TYPE_CODE_ENUM
:
2235 return INTEGER_CONVERSION_BADNESS
;
2237 return INT_FLOAT_CONVERSION_BADNESS
;
2239 return INCOMPATIBLE_TYPE_BADNESS
;
2242 case TYPE_CODE_CHAR
:
2243 switch (TYPE_CODE (arg
))
2245 case TYPE_CODE_RANGE
:
2246 case TYPE_CODE_BOOL
:
2247 case TYPE_CODE_ENUM
:
2248 return INTEGER_CONVERSION_BADNESS
;
2250 return INT_FLOAT_CONVERSION_BADNESS
;
2252 if (TYPE_LENGTH (arg
) > TYPE_LENGTH (parm
))
2253 return INTEGER_CONVERSION_BADNESS
;
2254 else if (TYPE_LENGTH (arg
) < TYPE_LENGTH (parm
))
2255 return INTEGER_PROMOTION_BADNESS
;
2256 /* >>> !! else fall through !! <<< */
2257 case TYPE_CODE_CHAR
:
2258 /* Deal with signed, unsigned, and plain chars for C++ and
2259 with int cases falling through from previous case. */
2260 if (TYPE_NOSIGN (parm
))
2262 if (TYPE_NOSIGN (arg
))
2265 return INTEGER_CONVERSION_BADNESS
;
2267 else if (TYPE_UNSIGNED (parm
))
2269 if (TYPE_UNSIGNED (arg
))
2272 return INTEGER_PROMOTION_BADNESS
;
2274 else if (!TYPE_NOSIGN (arg
) && !TYPE_UNSIGNED (arg
))
2277 return INTEGER_CONVERSION_BADNESS
;
2279 return INCOMPATIBLE_TYPE_BADNESS
;
2282 case TYPE_CODE_RANGE
:
2283 switch (TYPE_CODE (arg
))
2286 case TYPE_CODE_CHAR
:
2287 case TYPE_CODE_RANGE
:
2288 case TYPE_CODE_BOOL
:
2289 case TYPE_CODE_ENUM
:
2290 return INTEGER_CONVERSION_BADNESS
;
2292 return INT_FLOAT_CONVERSION_BADNESS
;
2294 return INCOMPATIBLE_TYPE_BADNESS
;
2297 case TYPE_CODE_BOOL
:
2298 switch (TYPE_CODE (arg
))
2301 case TYPE_CODE_CHAR
:
2302 case TYPE_CODE_RANGE
:
2303 case TYPE_CODE_ENUM
:
2306 return BOOLEAN_CONVERSION_BADNESS
;
2307 case TYPE_CODE_BOOL
:
2310 return INCOMPATIBLE_TYPE_BADNESS
;
2314 switch (TYPE_CODE (arg
))
2317 if (TYPE_LENGTH (arg
) < TYPE_LENGTH (parm
))
2318 return FLOAT_PROMOTION_BADNESS
;
2319 else if (TYPE_LENGTH (arg
) == TYPE_LENGTH (parm
))
2322 return FLOAT_CONVERSION_BADNESS
;
2324 case TYPE_CODE_BOOL
:
2325 case TYPE_CODE_ENUM
:
2326 case TYPE_CODE_RANGE
:
2327 case TYPE_CODE_CHAR
:
2328 return INT_FLOAT_CONVERSION_BADNESS
;
2330 return INCOMPATIBLE_TYPE_BADNESS
;
2333 case TYPE_CODE_COMPLEX
:
2334 switch (TYPE_CODE (arg
))
2335 { /* Strictly not needed for C++, but... */
2337 return FLOAT_PROMOTION_BADNESS
;
2338 case TYPE_CODE_COMPLEX
:
2341 return INCOMPATIBLE_TYPE_BADNESS
;
2344 case TYPE_CODE_STRUCT
:
2345 /* currently same as TYPE_CODE_CLASS */
2346 switch (TYPE_CODE (arg
))
2348 case TYPE_CODE_STRUCT
:
2349 /* Check for derivation */
2350 if (is_ancestor (parm
, arg
))
2351 return BASE_CONVERSION_BADNESS
;
2352 /* else fall through */
2354 return INCOMPATIBLE_TYPE_BADNESS
;
2357 case TYPE_CODE_UNION
:
2358 switch (TYPE_CODE (arg
))
2360 case TYPE_CODE_UNION
:
2362 return INCOMPATIBLE_TYPE_BADNESS
;
2365 case TYPE_CODE_MEMBERPTR
:
2366 switch (TYPE_CODE (arg
))
2369 return INCOMPATIBLE_TYPE_BADNESS
;
2372 case TYPE_CODE_METHOD
:
2373 switch (TYPE_CODE (arg
))
2377 return INCOMPATIBLE_TYPE_BADNESS
;
2381 switch (TYPE_CODE (arg
))
2385 return INCOMPATIBLE_TYPE_BADNESS
;
2390 switch (TYPE_CODE (arg
))
2394 return rank_one_type (TYPE_FIELD_TYPE (parm
, 0),
2395 TYPE_FIELD_TYPE (arg
, 0));
2397 return INCOMPATIBLE_TYPE_BADNESS
;
2400 case TYPE_CODE_VOID
:
2402 return INCOMPATIBLE_TYPE_BADNESS
;
2403 } /* switch (TYPE_CODE (arg)) */
2407 /* End of functions for overload resolution */
2410 print_bit_vector (B_TYPE
*bits
, int nbits
)
2414 for (bitno
= 0; bitno
< nbits
; bitno
++)
2416 if ((bitno
% 8) == 0)
2418 puts_filtered (" ");
2420 if (B_TST (bits
, bitno
))
2421 printf_filtered (("1"));
2423 printf_filtered (("0"));
2427 /* Note the first arg should be the "this" pointer, we may not want to
2428 include it since we may get into a infinitely recursive
2432 print_arg_types (struct field
*args
, int nargs
, int spaces
)
2438 for (i
= 0; i
< nargs
; i
++)
2439 recursive_dump_type (args
[i
].type
, spaces
+ 2);
2444 field_is_static (struct field
*f
)
2446 /* "static" fields are the fields whose location is not relative
2447 to the address of the enclosing struct. It would be nice to
2448 have a dedicated flag that would be set for static fields when
2449 the type is being created. But in practice, checking the field
2450 loc_kind should give us an accurate answer (at least as long as
2451 we assume that DWARF block locations are not going to be used
2452 for static fields). FIXME? */
2453 return (FIELD_LOC_KIND (*f
) == FIELD_LOC_KIND_PHYSNAME
2454 || FIELD_LOC_KIND (*f
) == FIELD_LOC_KIND_PHYSADDR
);
2458 dump_fn_fieldlists (struct type
*type
, int spaces
)
2464 printfi_filtered (spaces
, "fn_fieldlists ");
2465 gdb_print_host_address (TYPE_FN_FIELDLISTS (type
), gdb_stdout
);
2466 printf_filtered ("\n");
2467 for (method_idx
= 0; method_idx
< TYPE_NFN_FIELDS (type
); method_idx
++)
2469 f
= TYPE_FN_FIELDLIST1 (type
, method_idx
);
2470 printfi_filtered (spaces
+ 2, "[%d] name '%s' (",
2472 TYPE_FN_FIELDLIST_NAME (type
, method_idx
));
2473 gdb_print_host_address (TYPE_FN_FIELDLIST_NAME (type
, method_idx
),
2475 printf_filtered (_(") length %d\n"),
2476 TYPE_FN_FIELDLIST_LENGTH (type
, method_idx
));
2477 for (overload_idx
= 0;
2478 overload_idx
< TYPE_FN_FIELDLIST_LENGTH (type
, method_idx
);
2481 printfi_filtered (spaces
+ 4, "[%d] physname '%s' (",
2483 TYPE_FN_FIELD_PHYSNAME (f
, overload_idx
));
2484 gdb_print_host_address (TYPE_FN_FIELD_PHYSNAME (f
, overload_idx
),
2486 printf_filtered (")\n");
2487 printfi_filtered (spaces
+ 8, "type ");
2488 gdb_print_host_address (TYPE_FN_FIELD_TYPE (f
, overload_idx
),
2490 printf_filtered ("\n");
2492 recursive_dump_type (TYPE_FN_FIELD_TYPE (f
, overload_idx
),
2495 printfi_filtered (spaces
+ 8, "args ");
2496 gdb_print_host_address (TYPE_FN_FIELD_ARGS (f
, overload_idx
),
2498 printf_filtered ("\n");
2500 print_arg_types (TYPE_FN_FIELD_ARGS (f
, overload_idx
),
2501 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f
,
2504 printfi_filtered (spaces
+ 8, "fcontext ");
2505 gdb_print_host_address (TYPE_FN_FIELD_FCONTEXT (f
, overload_idx
),
2507 printf_filtered ("\n");
2509 printfi_filtered (spaces
+ 8, "is_const %d\n",
2510 TYPE_FN_FIELD_CONST (f
, overload_idx
));
2511 printfi_filtered (spaces
+ 8, "is_volatile %d\n",
2512 TYPE_FN_FIELD_VOLATILE (f
, overload_idx
));
2513 printfi_filtered (spaces
+ 8, "is_private %d\n",
2514 TYPE_FN_FIELD_PRIVATE (f
, overload_idx
));
2515 printfi_filtered (spaces
+ 8, "is_protected %d\n",
2516 TYPE_FN_FIELD_PROTECTED (f
, overload_idx
));
2517 printfi_filtered (spaces
+ 8, "is_stub %d\n",
2518 TYPE_FN_FIELD_STUB (f
, overload_idx
));
2519 printfi_filtered (spaces
+ 8, "voffset %u\n",
2520 TYPE_FN_FIELD_VOFFSET (f
, overload_idx
));
2526 print_cplus_stuff (struct type
*type
, int spaces
)
2528 printfi_filtered (spaces
, "n_baseclasses %d\n",
2529 TYPE_N_BASECLASSES (type
));
2530 printfi_filtered (spaces
, "nfn_fields %d\n",
2531 TYPE_NFN_FIELDS (type
));
2532 printfi_filtered (spaces
, "nfn_fields_total %d\n",
2533 TYPE_NFN_FIELDS_TOTAL (type
));
2534 if (TYPE_N_BASECLASSES (type
) > 0)
2536 printfi_filtered (spaces
, "virtual_field_bits (%d bits at *",
2537 TYPE_N_BASECLASSES (type
));
2538 gdb_print_host_address (TYPE_FIELD_VIRTUAL_BITS (type
),
2540 printf_filtered (")");
2542 print_bit_vector (TYPE_FIELD_VIRTUAL_BITS (type
),
2543 TYPE_N_BASECLASSES (type
));
2544 puts_filtered ("\n");
2546 if (TYPE_NFIELDS (type
) > 0)
2548 if (TYPE_FIELD_PRIVATE_BITS (type
) != NULL
)
2550 printfi_filtered (spaces
,
2551 "private_field_bits (%d bits at *",
2552 TYPE_NFIELDS (type
));
2553 gdb_print_host_address (TYPE_FIELD_PRIVATE_BITS (type
),
2555 printf_filtered (")");
2556 print_bit_vector (TYPE_FIELD_PRIVATE_BITS (type
),
2557 TYPE_NFIELDS (type
));
2558 puts_filtered ("\n");
2560 if (TYPE_FIELD_PROTECTED_BITS (type
) != NULL
)
2562 printfi_filtered (spaces
,
2563 "protected_field_bits (%d bits at *",
2564 TYPE_NFIELDS (type
));
2565 gdb_print_host_address (TYPE_FIELD_PROTECTED_BITS (type
),
2567 printf_filtered (")");
2568 print_bit_vector (TYPE_FIELD_PROTECTED_BITS (type
),
2569 TYPE_NFIELDS (type
));
2570 puts_filtered ("\n");
2573 if (TYPE_NFN_FIELDS (type
) > 0)
2575 dump_fn_fieldlists (type
, spaces
);
2579 static struct obstack dont_print_type_obstack
;
2582 recursive_dump_type (struct type
*type
, int spaces
)
2587 obstack_begin (&dont_print_type_obstack
, 0);
2589 if (TYPE_NFIELDS (type
) > 0
2590 || (TYPE_CPLUS_SPECIFIC (type
) && TYPE_NFN_FIELDS (type
) > 0))
2592 struct type
**first_dont_print
2593 = (struct type
**) obstack_base (&dont_print_type_obstack
);
2595 int i
= (struct type
**)
2596 obstack_next_free (&dont_print_type_obstack
) - first_dont_print
;
2600 if (type
== first_dont_print
[i
])
2602 printfi_filtered (spaces
, "type node ");
2603 gdb_print_host_address (type
, gdb_stdout
);
2604 printf_filtered (_(" <same as already seen type>\n"));
2609 obstack_ptr_grow (&dont_print_type_obstack
, type
);
2612 printfi_filtered (spaces
, "type node ");
2613 gdb_print_host_address (type
, gdb_stdout
);
2614 printf_filtered ("\n");
2615 printfi_filtered (spaces
, "name '%s' (",
2616 TYPE_NAME (type
) ? TYPE_NAME (type
) : "<NULL>");
2617 gdb_print_host_address (TYPE_NAME (type
), gdb_stdout
);
2618 printf_filtered (")\n");
2619 printfi_filtered (spaces
, "tagname '%s' (",
2620 TYPE_TAG_NAME (type
) ? TYPE_TAG_NAME (type
) : "<NULL>");
2621 gdb_print_host_address (TYPE_TAG_NAME (type
), gdb_stdout
);
2622 printf_filtered (")\n");
2623 printfi_filtered (spaces
, "code 0x%x ", TYPE_CODE (type
));
2624 switch (TYPE_CODE (type
))
2626 case TYPE_CODE_UNDEF
:
2627 printf_filtered ("(TYPE_CODE_UNDEF)");
2630 printf_filtered ("(TYPE_CODE_PTR)");
2632 case TYPE_CODE_ARRAY
:
2633 printf_filtered ("(TYPE_CODE_ARRAY)");
2635 case TYPE_CODE_STRUCT
:
2636 printf_filtered ("(TYPE_CODE_STRUCT)");
2638 case TYPE_CODE_UNION
:
2639 printf_filtered ("(TYPE_CODE_UNION)");
2641 case TYPE_CODE_ENUM
:
2642 printf_filtered ("(TYPE_CODE_ENUM)");
2644 case TYPE_CODE_FLAGS
:
2645 printf_filtered ("(TYPE_CODE_FLAGS)");
2647 case TYPE_CODE_FUNC
:
2648 printf_filtered ("(TYPE_CODE_FUNC)");
2651 printf_filtered ("(TYPE_CODE_INT)");
2654 printf_filtered ("(TYPE_CODE_FLT)");
2656 case TYPE_CODE_VOID
:
2657 printf_filtered ("(TYPE_CODE_VOID)");
2660 printf_filtered ("(TYPE_CODE_SET)");
2662 case TYPE_CODE_RANGE
:
2663 printf_filtered ("(TYPE_CODE_RANGE)");
2665 case TYPE_CODE_STRING
:
2666 printf_filtered ("(TYPE_CODE_STRING)");
2668 case TYPE_CODE_BITSTRING
:
2669 printf_filtered ("(TYPE_CODE_BITSTRING)");
2671 case TYPE_CODE_ERROR
:
2672 printf_filtered ("(TYPE_CODE_ERROR)");
2674 case TYPE_CODE_MEMBERPTR
:
2675 printf_filtered ("(TYPE_CODE_MEMBERPTR)");
2677 case TYPE_CODE_METHODPTR
:
2678 printf_filtered ("(TYPE_CODE_METHODPTR)");
2680 case TYPE_CODE_METHOD
:
2681 printf_filtered ("(TYPE_CODE_METHOD)");
2684 printf_filtered ("(TYPE_CODE_REF)");
2686 case TYPE_CODE_CHAR
:
2687 printf_filtered ("(TYPE_CODE_CHAR)");
2689 case TYPE_CODE_BOOL
:
2690 printf_filtered ("(TYPE_CODE_BOOL)");
2692 case TYPE_CODE_COMPLEX
:
2693 printf_filtered ("(TYPE_CODE_COMPLEX)");
2695 case TYPE_CODE_TYPEDEF
:
2696 printf_filtered ("(TYPE_CODE_TYPEDEF)");
2698 case TYPE_CODE_TEMPLATE
:
2699 printf_filtered ("(TYPE_CODE_TEMPLATE)");
2701 case TYPE_CODE_TEMPLATE_ARG
:
2702 printf_filtered ("(TYPE_CODE_TEMPLATE_ARG)");
2704 case TYPE_CODE_NAMESPACE
:
2705 printf_filtered ("(TYPE_CODE_NAMESPACE)");
2708 printf_filtered ("(UNKNOWN TYPE CODE)");
2711 puts_filtered ("\n");
2712 printfi_filtered (spaces
, "length %d\n", TYPE_LENGTH (type
));
2713 printfi_filtered (spaces
, "objfile ");
2714 gdb_print_host_address (TYPE_OBJFILE (type
), gdb_stdout
);
2715 printf_filtered ("\n");
2716 printfi_filtered (spaces
, "target_type ");
2717 gdb_print_host_address (TYPE_TARGET_TYPE (type
), gdb_stdout
);
2718 printf_filtered ("\n");
2719 if (TYPE_TARGET_TYPE (type
) != NULL
)
2721 recursive_dump_type (TYPE_TARGET_TYPE (type
), spaces
+ 2);
2723 printfi_filtered (spaces
, "pointer_type ");
2724 gdb_print_host_address (TYPE_POINTER_TYPE (type
), gdb_stdout
);
2725 printf_filtered ("\n");
2726 printfi_filtered (spaces
, "reference_type ");
2727 gdb_print_host_address (TYPE_REFERENCE_TYPE (type
), gdb_stdout
);
2728 printf_filtered ("\n");
2729 printfi_filtered (spaces
, "type_chain ");
2730 gdb_print_host_address (TYPE_CHAIN (type
), gdb_stdout
);
2731 printf_filtered ("\n");
2732 printfi_filtered (spaces
, "instance_flags 0x%x",
2733 TYPE_INSTANCE_FLAGS (type
));
2734 if (TYPE_CONST (type
))
2736 puts_filtered (" TYPE_FLAG_CONST");
2738 if (TYPE_VOLATILE (type
))
2740 puts_filtered (" TYPE_FLAG_VOLATILE");
2742 if (TYPE_CODE_SPACE (type
))
2744 puts_filtered (" TYPE_FLAG_CODE_SPACE");
2746 if (TYPE_DATA_SPACE (type
))
2748 puts_filtered (" TYPE_FLAG_DATA_SPACE");
2750 if (TYPE_ADDRESS_CLASS_1 (type
))
2752 puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_1");
2754 if (TYPE_ADDRESS_CLASS_2 (type
))
2756 puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_2");
2758 puts_filtered ("\n");
2760 printfi_filtered (spaces
, "flags");
2761 if (TYPE_UNSIGNED (type
))
2763 puts_filtered (" TYPE_FLAG_UNSIGNED");
2765 if (TYPE_NOSIGN (type
))
2767 puts_filtered (" TYPE_FLAG_NOSIGN");
2769 if (TYPE_STUB (type
))
2771 puts_filtered (" TYPE_FLAG_STUB");
2773 if (TYPE_TARGET_STUB (type
))
2775 puts_filtered (" TYPE_FLAG_TARGET_STUB");
2777 if (TYPE_STATIC (type
))
2779 puts_filtered (" TYPE_FLAG_STATIC");
2781 if (TYPE_PROTOTYPED (type
))
2783 puts_filtered (" TYPE_FLAG_PROTOTYPED");
2785 if (TYPE_INCOMPLETE (type
))
2787 puts_filtered (" TYPE_FLAG_INCOMPLETE");
2789 if (TYPE_VARARGS (type
))
2791 puts_filtered (" TYPE_FLAG_VARARGS");
2793 /* This is used for things like AltiVec registers on ppc. Gcc emits
2794 an attribute for the array type, which tells whether or not we
2795 have a vector, instead of a regular array. */
2796 if (TYPE_VECTOR (type
))
2798 puts_filtered (" TYPE_FLAG_VECTOR");
2800 if (TYPE_FIXED_INSTANCE (type
))
2802 puts_filtered (" TYPE_FIXED_INSTANCE");
2804 if (TYPE_STUB_SUPPORTED (type
))
2806 puts_filtered (" TYPE_STUB_SUPPORTED");
2808 if (TYPE_NOTTEXT (type
))
2810 puts_filtered (" TYPE_NOTTEXT");
2812 puts_filtered ("\n");
2813 printfi_filtered (spaces
, "nfields %d ", TYPE_NFIELDS (type
));
2814 gdb_print_host_address (TYPE_FIELDS (type
), gdb_stdout
);
2815 puts_filtered ("\n");
2816 for (idx
= 0; idx
< TYPE_NFIELDS (type
); idx
++)
2818 printfi_filtered (spaces
+ 2,
2819 "[%d] bitpos %d bitsize %d type ",
2820 idx
, TYPE_FIELD_BITPOS (type
, idx
),
2821 TYPE_FIELD_BITSIZE (type
, idx
));
2822 gdb_print_host_address (TYPE_FIELD_TYPE (type
, idx
), gdb_stdout
);
2823 printf_filtered (" name '%s' (",
2824 TYPE_FIELD_NAME (type
, idx
) != NULL
2825 ? TYPE_FIELD_NAME (type
, idx
)
2827 gdb_print_host_address (TYPE_FIELD_NAME (type
, idx
), gdb_stdout
);
2828 printf_filtered (")\n");
2829 if (TYPE_FIELD_TYPE (type
, idx
) != NULL
)
2831 recursive_dump_type (TYPE_FIELD_TYPE (type
, idx
), spaces
+ 4);
2834 printfi_filtered (spaces
, "vptr_basetype ");
2835 gdb_print_host_address (TYPE_VPTR_BASETYPE (type
), gdb_stdout
);
2836 puts_filtered ("\n");
2837 if (TYPE_VPTR_BASETYPE (type
) != NULL
)
2839 recursive_dump_type (TYPE_VPTR_BASETYPE (type
), spaces
+ 2);
2841 printfi_filtered (spaces
, "vptr_fieldno %d\n",
2842 TYPE_VPTR_FIELDNO (type
));
2843 switch (TYPE_CODE (type
))
2845 case TYPE_CODE_STRUCT
:
2846 printfi_filtered (spaces
, "cplus_stuff ");
2847 gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type
),
2849 puts_filtered ("\n");
2850 print_cplus_stuff (type
, spaces
);
2854 printfi_filtered (spaces
, "floatformat ");
2855 if (TYPE_FLOATFORMAT (type
) == NULL
)
2856 puts_filtered ("(null)");
2859 puts_filtered ("{ ");
2860 if (TYPE_FLOATFORMAT (type
)[0] == NULL
2861 || TYPE_FLOATFORMAT (type
)[0]->name
== NULL
)
2862 puts_filtered ("(null)");
2864 puts_filtered (TYPE_FLOATFORMAT (type
)[0]->name
);
2866 puts_filtered (", ");
2867 if (TYPE_FLOATFORMAT (type
)[1] == NULL
2868 || TYPE_FLOATFORMAT (type
)[1]->name
== NULL
)
2869 puts_filtered ("(null)");
2871 puts_filtered (TYPE_FLOATFORMAT (type
)[1]->name
);
2873 puts_filtered (" }");
2875 puts_filtered ("\n");
2879 /* We have to pick one of the union types to be able print and
2880 test the value. Pick cplus_struct_type, even though we know
2881 it isn't any particular one. */
2882 printfi_filtered (spaces
, "type_specific ");
2883 gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type
), gdb_stdout
);
2884 if (TYPE_CPLUS_SPECIFIC (type
) != NULL
)
2886 printf_filtered (_(" (unknown data form)"));
2888 printf_filtered ("\n");
2893 obstack_free (&dont_print_type_obstack
, NULL
);
2896 /* Trivial helpers for the libiberty hash table, for mapping one
2901 struct type
*old
, *new;
2905 type_pair_hash (const void *item
)
2907 const struct type_pair
*pair
= item
;
2908 return htab_hash_pointer (pair
->old
);
2912 type_pair_eq (const void *item_lhs
, const void *item_rhs
)
2914 const struct type_pair
*lhs
= item_lhs
, *rhs
= item_rhs
;
2915 return lhs
->old
== rhs
->old
;
2918 /* Allocate the hash table used by copy_type_recursive to walk
2919 types without duplicates. We use OBJFILE's obstack, because
2920 OBJFILE is about to be deleted. */
2923 create_copied_types_hash (struct objfile
*objfile
)
2925 return htab_create_alloc_ex (1, type_pair_hash
, type_pair_eq
,
2926 NULL
, &objfile
->objfile_obstack
,
2927 hashtab_obstack_allocate
,
2928 dummy_obstack_deallocate
);
2931 /* Recursively copy (deep copy) TYPE, if it is associated with
2932 OBJFILE. Return a new type allocated using malloc, a saved type if
2933 we have already visited TYPE (using COPIED_TYPES), or TYPE if it is
2934 not associated with OBJFILE. */
2937 copy_type_recursive (struct objfile
*objfile
,
2939 htab_t copied_types
)
2941 struct type_pair
*stored
, pair
;
2943 struct type
*new_type
;
2945 if (TYPE_OBJFILE (type
) == NULL
)
2948 /* This type shouldn't be pointing to any types in other objfiles;
2949 if it did, the type might disappear unexpectedly. */
2950 gdb_assert (TYPE_OBJFILE (type
) == objfile
);
2953 slot
= htab_find_slot (copied_types
, &pair
, INSERT
);
2955 return ((struct type_pair
*) *slot
)->new;
2957 new_type
= alloc_type (NULL
);
2959 /* We must add the new type to the hash table immediately, in case
2960 we encounter this type again during a recursive call below. */
2961 stored
= obstack_alloc (&objfile
->objfile_obstack
, sizeof (struct type_pair
));
2963 stored
->new = new_type
;
2966 /* Copy the common fields of types. For the main type, we simply
2967 copy the entire thing and then update specific fields as needed. */
2968 *TYPE_MAIN_TYPE (new_type
) = *TYPE_MAIN_TYPE (type
);
2969 TYPE_OBJFILE (new_type
) = NULL
;
2971 if (TYPE_NAME (type
))
2972 TYPE_NAME (new_type
) = xstrdup (TYPE_NAME (type
));
2973 if (TYPE_TAG_NAME (type
))
2974 TYPE_TAG_NAME (new_type
) = xstrdup (TYPE_TAG_NAME (type
));
2976 TYPE_INSTANCE_FLAGS (new_type
) = TYPE_INSTANCE_FLAGS (type
);
2977 TYPE_LENGTH (new_type
) = TYPE_LENGTH (type
);
2979 /* Copy the fields. */
2980 if (TYPE_NFIELDS (type
))
2984 nfields
= TYPE_NFIELDS (type
);
2985 TYPE_FIELDS (new_type
) = XCALLOC (nfields
, struct field
);
2986 for (i
= 0; i
< nfields
; i
++)
2988 TYPE_FIELD_ARTIFICIAL (new_type
, i
) =
2989 TYPE_FIELD_ARTIFICIAL (type
, i
);
2990 TYPE_FIELD_BITSIZE (new_type
, i
) = TYPE_FIELD_BITSIZE (type
, i
);
2991 if (TYPE_FIELD_TYPE (type
, i
))
2992 TYPE_FIELD_TYPE (new_type
, i
)
2993 = copy_type_recursive (objfile
, TYPE_FIELD_TYPE (type
, i
),
2995 if (TYPE_FIELD_NAME (type
, i
))
2996 TYPE_FIELD_NAME (new_type
, i
) =
2997 xstrdup (TYPE_FIELD_NAME (type
, i
));
2998 switch (TYPE_FIELD_LOC_KIND (type
, i
))
3000 case FIELD_LOC_KIND_BITPOS
:
3001 SET_FIELD_BITPOS (TYPE_FIELD (new_type
, i
),
3002 TYPE_FIELD_BITPOS (type
, i
));
3004 case FIELD_LOC_KIND_PHYSADDR
:
3005 SET_FIELD_PHYSADDR (TYPE_FIELD (new_type
, i
),
3006 TYPE_FIELD_STATIC_PHYSADDR (type
, i
));
3008 case FIELD_LOC_KIND_PHYSNAME
:
3009 SET_FIELD_PHYSNAME (TYPE_FIELD (new_type
, i
),
3010 xstrdup (TYPE_FIELD_STATIC_PHYSNAME (type
,
3014 internal_error (__FILE__
, __LINE__
,
3015 _("Unexpected type field location kind: %d"),
3016 TYPE_FIELD_LOC_KIND (type
, i
));
3021 /* Copy pointers to other types. */
3022 if (TYPE_TARGET_TYPE (type
))
3023 TYPE_TARGET_TYPE (new_type
) =
3024 copy_type_recursive (objfile
,
3025 TYPE_TARGET_TYPE (type
),
3027 if (TYPE_VPTR_BASETYPE (type
))
3028 TYPE_VPTR_BASETYPE (new_type
) =
3029 copy_type_recursive (objfile
,
3030 TYPE_VPTR_BASETYPE (type
),
3032 /* Maybe copy the type_specific bits.
3034 NOTE drow/2005-12-09: We do not copy the C++-specific bits like
3035 base classes and methods. There's no fundamental reason why we
3036 can't, but at the moment it is not needed. */
3038 if (TYPE_CODE (type
) == TYPE_CODE_FLT
)
3039 TYPE_FLOATFORMAT (new_type
) = TYPE_FLOATFORMAT (type
);
3040 else if (TYPE_CODE (type
) == TYPE_CODE_STRUCT
3041 || TYPE_CODE (type
) == TYPE_CODE_UNION
3042 || TYPE_CODE (type
) == TYPE_CODE_TEMPLATE
3043 || TYPE_CODE (type
) == TYPE_CODE_NAMESPACE
)
3044 INIT_CPLUS_SPECIFIC (new_type
);
3049 /* Make a copy of the given TYPE, except that the pointer & reference
3050 types are not preserved.
3052 This function assumes that the given type has an associated objfile.
3053 This objfile is used to allocate the new type. */
3056 copy_type (const struct type
*type
)
3058 struct type
*new_type
;
3060 gdb_assert (TYPE_OBJFILE (type
) != NULL
);
3062 new_type
= alloc_type (TYPE_OBJFILE (type
));
3063 TYPE_INSTANCE_FLAGS (new_type
) = TYPE_INSTANCE_FLAGS (type
);
3064 TYPE_LENGTH (new_type
) = TYPE_LENGTH (type
);
3065 memcpy (TYPE_MAIN_TYPE (new_type
), TYPE_MAIN_TYPE (type
),
3066 sizeof (struct main_type
));
3071 static struct type
*
3072 build_flt (int bit
, char *name
, const struct floatformat
**floatformats
)
3078 gdb_assert (floatformats
!= NULL
);
3079 gdb_assert (floatformats
[0] != NULL
&& floatformats
[1] != NULL
);
3080 bit
= floatformats
[0]->totalsize
;
3082 gdb_assert (bit
>= 0);
3084 t
= init_type (TYPE_CODE_FLT
, bit
/ TARGET_CHAR_BIT
, 0, name
, NULL
);
3085 TYPE_FLOATFORMAT (t
) = floatformats
;
3089 static struct gdbarch_data
*gdbtypes_data
;
3091 const struct builtin_type
*
3092 builtin_type (struct gdbarch
*gdbarch
)
3094 return gdbarch_data (gdbarch
, gdbtypes_data
);
3098 static struct type
*
3099 build_complex (int bit
, char *name
, struct type
*target_type
)
3102 if (bit
<= 0 || target_type
== builtin_type_error
)
3104 gdb_assert (builtin_type_error
!= NULL
);
3105 return builtin_type_error
;
3107 t
= init_type (TYPE_CODE_COMPLEX
, 2 * bit
/ TARGET_CHAR_BIT
,
3108 0, name
, (struct objfile
*) NULL
);
3109 TYPE_TARGET_TYPE (t
) = target_type
;
3114 gdbtypes_post_init (struct gdbarch
*gdbarch
)
3116 struct builtin_type
*builtin_type
3117 = GDBARCH_OBSTACK_ZALLOC (gdbarch
, struct builtin_type
);
3119 builtin_type
->builtin_void
=
3120 init_type (TYPE_CODE_VOID
, 1,
3122 "void", (struct objfile
*) NULL
);
3123 builtin_type
->builtin_char
=
3124 init_type (TYPE_CODE_INT
, TARGET_CHAR_BIT
/ TARGET_CHAR_BIT
,
3126 | (gdbarch_char_signed (gdbarch
) ? 0 : TYPE_FLAG_UNSIGNED
)),
3127 "char", (struct objfile
*) NULL
);
3128 builtin_type
->builtin_signed_char
=
3129 init_type (TYPE_CODE_INT
, TARGET_CHAR_BIT
/ TARGET_CHAR_BIT
,
3131 "signed char", (struct objfile
*) NULL
);
3132 builtin_type
->builtin_unsigned_char
=
3133 init_type (TYPE_CODE_INT
, TARGET_CHAR_BIT
/ TARGET_CHAR_BIT
,
3135 "unsigned char", (struct objfile
*) NULL
);
3136 builtin_type
->builtin_short
=
3137 init_type (TYPE_CODE_INT
,
3138 gdbarch_short_bit (gdbarch
) / TARGET_CHAR_BIT
,
3139 0, "short", (struct objfile
*) NULL
);
3140 builtin_type
->builtin_unsigned_short
=
3141 init_type (TYPE_CODE_INT
,
3142 gdbarch_short_bit (gdbarch
) / TARGET_CHAR_BIT
,
3143 TYPE_FLAG_UNSIGNED
, "unsigned short",
3144 (struct objfile
*) NULL
);
3145 builtin_type
->builtin_int
=
3146 init_type (TYPE_CODE_INT
,
3147 gdbarch_int_bit (gdbarch
) / TARGET_CHAR_BIT
,
3148 0, "int", (struct objfile
*) NULL
);
3149 builtin_type
->builtin_unsigned_int
=
3150 init_type (TYPE_CODE_INT
,
3151 gdbarch_int_bit (gdbarch
) / TARGET_CHAR_BIT
,
3152 TYPE_FLAG_UNSIGNED
, "unsigned int",
3153 (struct objfile
*) NULL
);
3154 builtin_type
->builtin_long
=
3155 init_type (TYPE_CODE_INT
,
3156 gdbarch_long_bit (gdbarch
) / TARGET_CHAR_BIT
,
3157 0, "long", (struct objfile
*) NULL
);
3158 builtin_type
->builtin_unsigned_long
=
3159 init_type (TYPE_CODE_INT
,
3160 gdbarch_long_bit (gdbarch
) / TARGET_CHAR_BIT
,
3161 TYPE_FLAG_UNSIGNED
, "unsigned long",
3162 (struct objfile
*) NULL
);
3163 builtin_type
->builtin_long_long
=
3164 init_type (TYPE_CODE_INT
,
3165 gdbarch_long_long_bit (gdbarch
) / TARGET_CHAR_BIT
,
3166 0, "long long", (struct objfile
*) NULL
);
3167 builtin_type
->builtin_unsigned_long_long
=
3168 init_type (TYPE_CODE_INT
,
3169 gdbarch_long_long_bit (gdbarch
) / TARGET_CHAR_BIT
,
3170 TYPE_FLAG_UNSIGNED
, "unsigned long long",
3171 (struct objfile
*) NULL
);
3172 builtin_type
->builtin_float
3173 = build_flt (gdbarch_float_bit (gdbarch
), "float",
3174 gdbarch_float_format (gdbarch
));
3175 builtin_type
->builtin_double
3176 = build_flt (gdbarch_double_bit (gdbarch
), "double",
3177 gdbarch_double_format (gdbarch
));
3178 builtin_type
->builtin_long_double
3179 = build_flt (gdbarch_long_double_bit (gdbarch
), "long double",
3180 gdbarch_long_double_format (gdbarch
));
3181 builtin_type
->builtin_complex
3182 = build_complex (gdbarch_float_bit (gdbarch
), "complex",
3183 builtin_type
->builtin_float
);
3184 builtin_type
->builtin_double_complex
3185 = build_complex (gdbarch_double_bit (gdbarch
), "double complex",
3186 builtin_type
->builtin_double
);
3187 builtin_type
->builtin_string
=
3188 init_type (TYPE_CODE_STRING
, TARGET_CHAR_BIT
/ TARGET_CHAR_BIT
,
3190 "string", (struct objfile
*) NULL
);
3191 builtin_type
->builtin_bool
=
3192 init_type (TYPE_CODE_BOOL
, TARGET_CHAR_BIT
/ TARGET_CHAR_BIT
,
3194 "bool", (struct objfile
*) NULL
);
3196 /* The following three are about decimal floating point types, which
3197 are 32-bits, 64-bits and 128-bits respectively. */
3198 builtin_type
->builtin_decfloat
3199 = init_type (TYPE_CODE_DECFLOAT
, 32 / 8,
3201 "_Decimal32", (struct objfile
*) NULL
);
3202 builtin_type
->builtin_decdouble
3203 = init_type (TYPE_CODE_DECFLOAT
, 64 / 8,
3205 "_Decimal64", (struct objfile
*) NULL
);
3206 builtin_type
->builtin_declong
3207 = init_type (TYPE_CODE_DECFLOAT
, 128 / 8,
3209 "_Decimal128", (struct objfile
*) NULL
);
3211 /* Pointer/Address types. */
3213 /* NOTE: on some targets, addresses and pointers are not necessarily
3214 the same --- for example, on the D10V, pointers are 16 bits long,
3215 but addresses are 32 bits long. See doc/gdbint.texinfo,
3216 ``Pointers Are Not Always Addresses''.
3219 - gdb's `struct type' always describes the target's
3221 - gdb's `struct value' objects should always hold values in
3223 - gdb's CORE_ADDR values are addresses in the unified virtual
3224 address space that the assembler and linker work with. Thus,
3225 since target_read_memory takes a CORE_ADDR as an argument, it
3226 can access any memory on the target, even if the processor has
3227 separate code and data address spaces.
3230 - If v is a value holding a D10V code pointer, its contents are
3231 in target form: a big-endian address left-shifted two bits.
3232 - If p is a D10V pointer type, TYPE_LENGTH (p) == 2, just as
3233 sizeof (void *) == 2 on the target.
3235 In this context, builtin_type->CORE_ADDR is a bit odd: it's a
3236 target type for a value the target will never see. It's only
3237 used to hold the values of (typeless) linker symbols, which are
3238 indeed in the unified virtual address space. */
3240 builtin_type
->builtin_data_ptr
=
3241 make_pointer_type (builtin_type
->builtin_void
, NULL
);
3242 builtin_type
->builtin_func_ptr
=
3243 lookup_pointer_type (lookup_function_type (builtin_type
->builtin_void
));
3244 builtin_type
->builtin_core_addr
=
3245 init_type (TYPE_CODE_INT
,
3246 gdbarch_addr_bit (gdbarch
) / 8,
3248 "__CORE_ADDR", (struct objfile
*) NULL
);
3251 /* The following set of types is used for symbols with no
3252 debug information. */
3253 builtin_type
->nodebug_text_symbol
=
3254 init_type (TYPE_CODE_FUNC
, 1, 0,
3255 "<text variable, no debug info>", NULL
);
3256 TYPE_TARGET_TYPE (builtin_type
->nodebug_text_symbol
) =
3257 builtin_type
->builtin_int
;
3258 builtin_type
->nodebug_data_symbol
=
3259 init_type (TYPE_CODE_INT
,
3260 gdbarch_int_bit (gdbarch
) / HOST_CHAR_BIT
, 0,
3261 "<data variable, no debug info>", NULL
);
3262 builtin_type
->nodebug_unknown_symbol
=
3263 init_type (TYPE_CODE_INT
, 1, 0,
3264 "<variable (not text or data), no debug info>", NULL
);
3265 builtin_type
->nodebug_tls_symbol
=
3266 init_type (TYPE_CODE_INT
,
3267 gdbarch_int_bit (gdbarch
) / HOST_CHAR_BIT
, 0,
3268 "<thread local variable, no debug info>", NULL
);
3270 return builtin_type
;
3273 extern void _initialize_gdbtypes (void);
3275 _initialize_gdbtypes (void)
3277 gdbtypes_data
= gdbarch_data_register_post_init (gdbtypes_post_init
);
3279 /* FIXME: The following types are architecture-neutral. However,
3280 they contain pointer_type and reference_type fields potentially
3281 caching pointer or reference types that *are* architecture
3285 init_type (TYPE_CODE_INT
, 0 / 8,
3287 "int0_t", (struct objfile
*) NULL
);
3289 init_type (TYPE_CODE_INT
, 8 / 8,
3291 "int8_t", (struct objfile
*) NULL
);
3292 builtin_type_uint8
=
3293 init_type (TYPE_CODE_INT
, 8 / 8,
3294 TYPE_FLAG_UNSIGNED
| TYPE_FLAG_NOTTEXT
,
3295 "uint8_t", (struct objfile
*) NULL
);
3296 builtin_type_int16
=
3297 init_type (TYPE_CODE_INT
, 16 / 8,
3299 "int16_t", (struct objfile
*) NULL
);
3300 builtin_type_uint16
=
3301 init_type (TYPE_CODE_INT
, 16 / 8,
3303 "uint16_t", (struct objfile
*) NULL
);
3304 builtin_type_int32
=
3305 init_type (TYPE_CODE_INT
, 32 / 8,
3307 "int32_t", (struct objfile
*) NULL
);
3308 builtin_type_uint32
=
3309 init_type (TYPE_CODE_INT
, 32 / 8,
3311 "uint32_t", (struct objfile
*) NULL
);
3312 builtin_type_int64
=
3313 init_type (TYPE_CODE_INT
, 64 / 8,
3315 "int64_t", (struct objfile
*) NULL
);
3316 builtin_type_uint64
=
3317 init_type (TYPE_CODE_INT
, 64 / 8,
3319 "uint64_t", (struct objfile
*) NULL
);
3320 builtin_type_int128
=
3321 init_type (TYPE_CODE_INT
, 128 / 8,
3323 "int128_t", (struct objfile
*) NULL
);
3324 builtin_type_uint128
=
3325 init_type (TYPE_CODE_INT
, 128 / 8,
3327 "uint128_t", (struct objfile
*) NULL
);
3329 builtin_type_ieee_single
=
3330 build_flt (-1, "builtin_type_ieee_single", floatformats_ieee_single
);
3331 builtin_type_ieee_double
=
3332 build_flt (-1, "builtin_type_ieee_double", floatformats_ieee_double
);
3333 builtin_type_i387_ext
=
3334 build_flt (-1, "builtin_type_i387_ext", floatformats_i387_ext
);
3335 builtin_type_m68881_ext
=
3336 build_flt (-1, "builtin_type_m68881_ext", floatformats_m68881_ext
);
3337 builtin_type_arm_ext
=
3338 build_flt (-1, "builtin_type_arm_ext", floatformats_arm_ext
);
3339 builtin_type_ia64_spill
=
3340 build_flt (-1, "builtin_type_ia64_spill", floatformats_ia64_spill
);
3341 builtin_type_ia64_quad
=
3342 build_flt (-1, "builtin_type_ia64_quad", floatformats_ia64_quad
);
3345 init_type (TYPE_CODE_VOID
, 1,
3347 "void", (struct objfile
*) NULL
);
3348 builtin_type_true_char
=
3349 init_type (TYPE_CODE_CHAR
, TARGET_CHAR_BIT
/ TARGET_CHAR_BIT
,
3351 "true character", (struct objfile
*) NULL
);
3352 builtin_type_true_unsigned_char
=
3353 init_type (TYPE_CODE_CHAR
, TARGET_CHAR_BIT
/ TARGET_CHAR_BIT
,
3355 "true character", (struct objfile
*) NULL
);
3357 add_setshow_zinteger_cmd ("overload", no_class
, &overload_debug
, _("\
3358 Set debugging of C++ overloading."), _("\
3359 Show debugging of C++ overloading."), _("\
3360 When enabled, ranking of the functions is displayed."),
3362 show_overload_debug
,
3363 &setdebuglist
, &showdebuglist
);
3365 /* Add user knob for controlling resolution of opaque types. */
3366 add_setshow_boolean_cmd ("opaque-type-resolution", class_support
,
3367 &opaque_type_resolution
, _("\
3368 Set resolution of opaque struct/class/union types (if set before loading symbols)."), _("\
3369 Show resolution of opaque struct/class/union types (if set before loading symbols)."), NULL
,
3371 show_opaque_type_resolution
,
3372 &setlist
, &showlist
);