* config/tc-arm.c (arm_cpus): Add entry for ARM Cortex-M0.
[binutils-gdb.git] / gdb / m88k-tdep.c
blob9b1084f3cd31086f14829108e28a36c45530c53e
1 /* Target-dependent code for the Motorola 88000 series.
3 Copyright (C) 2004, 2005, 2007, 2008, 2009 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20 #include "defs.h"
21 #include "arch-utils.h"
22 #include "dis-asm.h"
23 #include "frame.h"
24 #include "frame-base.h"
25 #include "frame-unwind.h"
26 #include "gdbcore.h"
27 #include "gdbtypes.h"
28 #include "regcache.h"
29 #include "regset.h"
30 #include "symtab.h"
31 #include "trad-frame.h"
32 #include "value.h"
34 #include "gdb_assert.h"
35 #include "gdb_string.h"
37 #include "m88k-tdep.h"
39 /* Fetch the instruction at PC. */
41 static unsigned long
42 m88k_fetch_instruction (CORE_ADDR pc)
44 return read_memory_unsigned_integer (pc, 4);
47 /* Register information. */
49 /* Return the name of register REGNUM. */
51 static const char *
52 m88k_register_name (struct gdbarch *gdbarch, int regnum)
54 static char *register_names[] =
56 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
57 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
58 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
59 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
60 "epsr", "fpsr", "fpcr", "sxip", "snip", "sfip"
63 if (regnum >= 0 && regnum < ARRAY_SIZE (register_names))
64 return register_names[regnum];
66 return NULL;
69 /* Return the GDB type object for the "standard" data type of data in
70 register REGNUM. */
72 static struct type *
73 m88k_register_type (struct gdbarch *gdbarch, int regnum)
75 /* SXIP, SNIP, SFIP and R1 contain code addresses. */
76 if ((regnum >= M88K_SXIP_REGNUM && regnum <= M88K_SFIP_REGNUM)
77 || regnum == M88K_R1_REGNUM)
78 return builtin_type (gdbarch)->builtin_func_ptr;
80 /* R30 and R31 typically contains data addresses. */
81 if (regnum == M88K_R30_REGNUM || regnum == M88K_R31_REGNUM)
82 return builtin_type (gdbarch)->builtin_data_ptr;
84 return builtin_type_int32;
88 static CORE_ADDR
89 m88k_addr_bits_remove (struct gdbarch *gdbarch, CORE_ADDR addr)
91 /* All instructures are 4-byte aligned. The lower 2 bits of SXIP,
92 SNIP and SFIP are used for special purposes: bit 0 is the
93 exception bit and bit 1 is the valid bit. */
94 return addr & ~0x3;
97 /* Use the program counter to determine the contents and size of a
98 breakpoint instruction. Return a pointer to a string of bytes that
99 encode a breakpoint instruction, store the length of the string in
100 *LEN and optionally adjust *PC to point to the correct memory
101 location for inserting the breakpoint. */
103 static const gdb_byte *
104 m88k_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pc, int *len)
106 /* tb 0,r0,511 */
107 static gdb_byte break_insn[] = { 0xf0, 0x00, 0xd1, 0xff };
109 *len = sizeof (break_insn);
110 return break_insn;
113 static CORE_ADDR
114 m88k_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
116 CORE_ADDR pc;
118 pc = frame_unwind_register_unsigned (next_frame, M88K_SXIP_REGNUM);
119 return m88k_addr_bits_remove (gdbarch, pc);
122 static void
123 m88k_write_pc (struct regcache *regcache, CORE_ADDR pc)
125 /* According to the MC88100 RISC Microprocessor User's Manual,
126 section 6.4.3.1.2:
128 "... can be made to return to a particular instruction by placing
129 a valid instruction address in the SNIP and the next sequential
130 instruction address in the SFIP (with V bits set and E bits
131 clear). The rte resumes execution at the instruction pointed to
132 by the SNIP, then the SFIP."
134 The E bit is the least significant bit (bit 0). The V (valid)
135 bit is bit 1. This is why we logical or 2 into the values we are
136 writing below. It turns out that SXIP plays no role when
137 returning from an exception so nothing special has to be done
138 with it. We could even (presumably) give it a totally bogus
139 value. */
141 regcache_cooked_write_unsigned (regcache, M88K_SXIP_REGNUM, pc);
142 regcache_cooked_write_unsigned (regcache, M88K_SNIP_REGNUM, pc | 2);
143 regcache_cooked_write_unsigned (regcache, M88K_SFIP_REGNUM, (pc + 4) | 2);
147 /* The functions on this page are intended to be used to classify
148 function arguments. */
150 /* Check whether TYPE is "Integral or Pointer". */
152 static int
153 m88k_integral_or_pointer_p (const struct type *type)
155 switch (TYPE_CODE (type))
157 case TYPE_CODE_INT:
158 case TYPE_CODE_BOOL:
159 case TYPE_CODE_CHAR:
160 case TYPE_CODE_ENUM:
161 case TYPE_CODE_RANGE:
163 /* We have byte, half-word, word and extended-word/doubleword
164 integral types. */
165 int len = TYPE_LENGTH (type);
166 return (len == 1 || len == 2 || len == 4 || len == 8);
168 return 1;
169 case TYPE_CODE_PTR:
170 case TYPE_CODE_REF:
172 /* Allow only 32-bit pointers. */
173 return (TYPE_LENGTH (type) == 4);
175 return 1;
176 default:
177 break;
180 return 0;
183 /* Check whether TYPE is "Floating". */
185 static int
186 m88k_floating_p (const struct type *type)
188 switch (TYPE_CODE (type))
190 case TYPE_CODE_FLT:
192 int len = TYPE_LENGTH (type);
193 return (len == 4 || len == 8);
195 default:
196 break;
199 return 0;
202 /* Check whether TYPE is "Structure or Union". */
204 static int
205 m88k_structure_or_union_p (const struct type *type)
207 switch (TYPE_CODE (type))
209 case TYPE_CODE_STRUCT:
210 case TYPE_CODE_UNION:
211 return 1;
212 default:
213 break;
216 return 0;
219 /* Check whether TYPE has 8-byte alignment. */
221 static int
222 m88k_8_byte_align_p (struct type *type)
224 if (m88k_structure_or_union_p (type))
226 int i;
228 for (i = 0; i < TYPE_NFIELDS (type); i++)
230 struct type *subtype = check_typedef (TYPE_FIELD_TYPE (type, i));
232 if (m88k_8_byte_align_p (subtype))
233 return 1;
237 if (m88k_integral_or_pointer_p (type) || m88k_floating_p (type))
238 return (TYPE_LENGTH (type) == 8);
240 return 0;
243 /* Check whether TYPE can be passed in a register. */
245 static int
246 m88k_in_register_p (struct type *type)
248 if (m88k_integral_or_pointer_p (type) || m88k_floating_p (type))
249 return 1;
251 if (m88k_structure_or_union_p (type) && TYPE_LENGTH (type) == 4)
252 return 1;
254 return 0;
257 static CORE_ADDR
258 m88k_store_arguments (struct regcache *regcache, int nargs,
259 struct value **args, CORE_ADDR sp)
261 int num_register_words = 0;
262 int num_stack_words = 0;
263 int i;
265 for (i = 0; i < nargs; i++)
267 struct type *type = value_type (args[i]);
268 int len = TYPE_LENGTH (type);
270 if (m88k_integral_or_pointer_p (type) && len < 4)
272 args[i] = value_cast (builtin_type_int32, args[i]);
273 type = value_type (args[i]);
274 len = TYPE_LENGTH (type);
277 if (m88k_in_register_p (type))
279 int num_words = 0;
281 if (num_register_words % 2 == 1 && m88k_8_byte_align_p (type))
282 num_words++;
284 num_words += ((len + 3) / 4);
285 if (num_register_words + num_words <= 8)
287 num_register_words += num_words;
288 continue;
291 /* We've run out of available registers. Pass the argument
292 on the stack. */
295 if (num_stack_words % 2 == 1 && m88k_8_byte_align_p (type))
296 num_stack_words++;
298 num_stack_words += ((len + 3) / 4);
301 /* Allocate stack space. */
302 sp = align_down (sp - 32 - num_stack_words * 4, 16);
303 num_stack_words = num_register_words = 0;
305 for (i = 0; i < nargs; i++)
307 const bfd_byte *valbuf = value_contents (args[i]);
308 struct type *type = value_type (args[i]);
309 int len = TYPE_LENGTH (type);
310 int stack_word = num_stack_words;
312 if (m88k_in_register_p (type))
314 int register_word = num_register_words;
316 if (register_word % 2 == 1 && m88k_8_byte_align_p (type))
317 register_word++;
319 gdb_assert (len == 4 || len == 8);
321 if (register_word + len / 8 < 8)
323 int regnum = M88K_R2_REGNUM + register_word;
325 regcache_raw_write (regcache, regnum, valbuf);
326 if (len > 4)
327 regcache_raw_write (regcache, regnum + 1, valbuf + 4);
329 num_register_words = (register_word + len / 4);
330 continue;
334 if (stack_word % 2 == -1 && m88k_8_byte_align_p (type))
335 stack_word++;
337 write_memory (sp + stack_word * 4, valbuf, len);
338 num_stack_words = (stack_word + (len + 3) / 4);
341 return sp;
344 static CORE_ADDR
345 m88k_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
346 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
347 struct value **args, CORE_ADDR sp, int struct_return,
348 CORE_ADDR struct_addr)
350 /* Set up the function arguments. */
351 sp = m88k_store_arguments (regcache, nargs, args, sp);
352 gdb_assert (sp % 16 == 0);
354 /* Store return value address. */
355 if (struct_return)
356 regcache_raw_write_unsigned (regcache, M88K_R12_REGNUM, struct_addr);
358 /* Store the stack pointer and return address in the appropriate
359 registers. */
360 regcache_raw_write_unsigned (regcache, M88K_R31_REGNUM, sp);
361 regcache_raw_write_unsigned (regcache, M88K_R1_REGNUM, bp_addr);
363 /* Return the stack pointer. */
364 return sp;
367 static struct frame_id
368 m88k_dummy_id (struct gdbarch *arch, struct frame_info *this_frame)
370 CORE_ADDR sp;
372 sp = get_frame_register_unsigned (this_frame, M88K_R31_REGNUM);
373 return frame_id_build (sp, get_frame_pc (this_frame));
377 /* Determine, for architecture GDBARCH, how a return value of TYPE
378 should be returned. If it is supposed to be returned in registers,
379 and READBUF is non-zero, read the appropriate value from REGCACHE,
380 and copy it into READBUF. If WRITEBUF is non-zero, write the value
381 from WRITEBUF into REGCACHE. */
383 static enum return_value_convention
384 m88k_return_value (struct gdbarch *gdbarch, struct type *func_type,
385 struct type *type, struct regcache *regcache,
386 gdb_byte *readbuf, const gdb_byte *writebuf)
388 int len = TYPE_LENGTH (type);
389 gdb_byte buf[8];
391 if (!m88k_integral_or_pointer_p (type) && !m88k_floating_p (type))
392 return RETURN_VALUE_STRUCT_CONVENTION;
394 if (readbuf)
396 /* Read the contents of R2 and (if necessary) R3. */
397 regcache_cooked_read (regcache, M88K_R2_REGNUM, buf);
398 if (len > 4)
400 regcache_cooked_read (regcache, M88K_R3_REGNUM, buf + 4);
401 gdb_assert (len == 8);
402 memcpy (readbuf, buf, len);
404 else
406 /* Just stripping off any unused bytes should preserve the
407 signed-ness just fine. */
408 memcpy (readbuf, buf + 4 - len, len);
412 if (writebuf)
414 /* Read the contents to R2 and (if necessary) R3. */
415 if (len > 4)
417 gdb_assert (len == 8);
418 memcpy (buf, writebuf, 8);
419 regcache_cooked_write (regcache, M88K_R3_REGNUM, buf + 4);
421 else
423 /* ??? Do we need to do any sign-extension here? */
424 memcpy (buf + 4 - len, writebuf, len);
426 regcache_cooked_write (regcache, M88K_R2_REGNUM, buf);
429 return RETURN_VALUE_REGISTER_CONVENTION;
432 /* Default frame unwinder. */
434 struct m88k_frame_cache
436 /* Base address. */
437 CORE_ADDR base;
438 CORE_ADDR pc;
440 int sp_offset;
441 int fp_offset;
443 /* Table of saved registers. */
444 struct trad_frame_saved_reg *saved_regs;
447 /* Prologue analysis. */
449 /* Macros for extracting fields from instructions. */
451 #define BITMASK(pos, width) (((0x1 << (width)) - 1) << (pos))
452 #define EXTRACT_FIELD(val, pos, width) ((val) >> (pos) & BITMASK (0, width))
453 #define SUBU_OFFSET(x) ((unsigned)(x & 0xFFFF))
454 #define ST_OFFSET(x) ((unsigned)((x) & 0xFFFF))
455 #define ST_SRC(x) EXTRACT_FIELD ((x), 21, 5)
456 #define ADDU_OFFSET(x) ((unsigned)(x & 0xFFFF))
458 /* Possible actions to be taken by the prologue analyzer for the
459 instructions it encounters. */
461 enum m88k_prologue_insn_action
463 M88K_PIA_SKIP, /* Ignore. */
464 M88K_PIA_NOTE_ST, /* Note register store. */
465 M88K_PIA_NOTE_STD, /* Note register pair store. */
466 M88K_PIA_NOTE_SP_ADJUSTMENT, /* Note stack pointer adjustment. */
467 M88K_PIA_NOTE_FP_ASSIGNMENT, /* Note frame pointer assignment. */
468 M88K_PIA_NOTE_BRANCH, /* Note branch. */
469 M88K_PIA_NOTE_PROLOGUE_END /* Note end of prologue. */
472 /* Table of instructions that may comprise a function prologue. */
474 struct m88k_prologue_insn
476 unsigned long insn;
477 unsigned long mask;
478 enum m88k_prologue_insn_action action;
481 struct m88k_prologue_insn m88k_prologue_insn_table[] =
483 /* Various register move instructions. */
484 { 0x58000000, 0xf800ffff, M88K_PIA_SKIP }, /* or/or.u with immed of 0 */
485 { 0xf4005800, 0xfc1fffe0, M88K_PIA_SKIP }, /* or rd,r0,rs */
486 { 0xf4005800, 0xfc00ffff, M88K_PIA_SKIP }, /* or rd,rs,r0 */
488 /* Various other instructions. */
489 { 0x58000000, 0xf8000000, M88K_PIA_SKIP }, /* or/or.u */
491 /* Stack pointer setup: "subu sp,sp,n" where n is a multiple of 8. */
492 { 0x67ff0000, 0xffff0007, M88K_PIA_NOTE_SP_ADJUSTMENT },
494 /* Frame pointer assignment: "addu r30,r31,n". */
495 { 0x63df0000, 0xffff0000, M88K_PIA_NOTE_FP_ASSIGNMENT },
497 /* Store to stack instructions; either "st rx,sp,n" or "st.d rx,sp,n". */
498 { 0x241f0000, 0xfc1f0000, M88K_PIA_NOTE_ST }, /* st rx,sp,n */
499 { 0x201f0000, 0xfc1f0000, M88K_PIA_NOTE_STD }, /* st.d rs,sp,n */
501 /* Instructions needed for setting up r25 for pic code. */
502 { 0x5f200000, 0xffff0000, M88K_PIA_SKIP }, /* or.u r25,r0,offset_high */
503 { 0xcc000002, 0xffffffff, M88K_PIA_SKIP }, /* bsr.n Lab */
504 { 0x5b390000, 0xffff0000, M88K_PIA_SKIP }, /* or r25,r25,offset_low */
505 { 0xf7396001, 0xffffffff, M88K_PIA_SKIP }, /* Lab: addu r25,r25,r1 */
507 /* Various branch or jump instructions which have a delay slot --
508 these do not form part of the prologue, but the instruction in
509 the delay slot might be a store instruction which should be
510 noted. */
511 { 0xc4000000, 0xe4000000, M88K_PIA_NOTE_BRANCH },
512 /* br.n, bsr.n, bb0.n, or bb1.n */
513 { 0xec000000, 0xfc000000, M88K_PIA_NOTE_BRANCH }, /* bcnd.n */
514 { 0xf400c400, 0xfffff7e0, M88K_PIA_NOTE_BRANCH }, /* jmp.n or jsr.n */
516 /* Catch all. Ends prologue analysis. */
517 { 0x00000000, 0x00000000, M88K_PIA_NOTE_PROLOGUE_END }
520 /* Do a full analysis of the function prologue at PC and update CACHE
521 accordingly. Bail out early if LIMIT is reached. Return the
522 address where the analysis stopped. If LIMIT points beyond the
523 function prologue, the return address should be the end of the
524 prologue. */
526 static CORE_ADDR
527 m88k_analyze_prologue (CORE_ADDR pc, CORE_ADDR limit,
528 struct m88k_frame_cache *cache)
530 CORE_ADDR end = limit;
532 /* Provide a dummy cache if necessary. */
533 if (cache == NULL)
535 size_t sizeof_saved_regs =
536 (M88K_R31_REGNUM + 1) * sizeof (struct trad_frame_saved_reg);
538 cache = alloca (sizeof (struct m88k_frame_cache));
539 cache->saved_regs = alloca (sizeof_saved_regs);
541 /* We only initialize the members we care about. */
542 cache->saved_regs[M88K_R1_REGNUM].addr = -1;
543 cache->fp_offset = -1;
546 while (pc < limit)
548 struct m88k_prologue_insn *pi = m88k_prologue_insn_table;
549 unsigned long insn = m88k_fetch_instruction (pc);
551 while ((insn & pi->mask) != pi->insn)
552 pi++;
554 switch (pi->action)
556 case M88K_PIA_SKIP:
557 /* If we have a frame pointer, and R1 has been saved,
558 consider this instruction as not being part of the
559 prologue. */
560 if (cache->fp_offset != -1
561 && cache->saved_regs[M88K_R1_REGNUM].addr != -1)
562 return min (pc, end);
563 break;
565 case M88K_PIA_NOTE_ST:
566 case M88K_PIA_NOTE_STD:
567 /* If no frame has been allocated, the stores aren't part of
568 the prologue. */
569 if (cache->sp_offset == 0)
570 return min (pc, end);
572 /* Record location of saved registers. */
574 int regnum = ST_SRC (insn) + M88K_R0_REGNUM;
575 ULONGEST offset = ST_OFFSET (insn);
577 cache->saved_regs[regnum].addr = offset;
578 if (pi->action == M88K_PIA_NOTE_STD && regnum < M88K_R31_REGNUM)
579 cache->saved_regs[regnum + 1].addr = offset + 4;
581 break;
583 case M88K_PIA_NOTE_SP_ADJUSTMENT:
584 /* A second stack pointer adjustment isn't part of the
585 prologue. */
586 if (cache->sp_offset != 0)
587 return min (pc, end);
589 /* Store stack pointer adjustment. */
590 cache->sp_offset = -SUBU_OFFSET (insn);
591 break;
593 case M88K_PIA_NOTE_FP_ASSIGNMENT:
594 /* A second frame pointer assignment isn't part of the
595 prologue. */
596 if (cache->fp_offset != -1)
597 return min (pc, end);
599 /* Record frame pointer assignment. */
600 cache->fp_offset = ADDU_OFFSET (insn);
601 break;
603 case M88K_PIA_NOTE_BRANCH:
604 /* The branch instruction isn't part of the prologue, but
605 the instruction in the delay slot might be. Limit the
606 prologue analysis to the delay slot and record the branch
607 instruction as the end of the prologue. */
608 limit = min (limit, pc + 2 * M88K_INSN_SIZE);
609 end = pc;
610 break;
612 case M88K_PIA_NOTE_PROLOGUE_END:
613 return min (pc, end);
616 pc += M88K_INSN_SIZE;
619 return end;
622 /* An upper limit to the size of the prologue. */
623 const int m88k_max_prologue_size = 128 * M88K_INSN_SIZE;
625 /* Return the address of first real instruction of the function
626 starting at PC. */
628 static CORE_ADDR
629 m88k_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
631 struct symtab_and_line sal;
632 CORE_ADDR func_start, func_end;
634 /* This is the preferred method, find the end of the prologue by
635 using the debugging information. */
636 if (find_pc_partial_function (pc, NULL, &func_start, &func_end))
638 sal = find_pc_line (func_start, 0);
640 if (sal.end < func_end && pc <= sal.end)
641 return sal.end;
644 return m88k_analyze_prologue (pc, pc + m88k_max_prologue_size, NULL);
647 static struct m88k_frame_cache *
648 m88k_frame_cache (struct frame_info *this_frame, void **this_cache)
650 struct m88k_frame_cache *cache;
651 CORE_ADDR frame_sp;
653 if (*this_cache)
654 return *this_cache;
656 cache = FRAME_OBSTACK_ZALLOC (struct m88k_frame_cache);
657 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
658 cache->fp_offset = -1;
660 cache->pc = get_frame_func (this_frame);
661 if (cache->pc != 0)
662 m88k_analyze_prologue (cache->pc, get_frame_pc (this_frame), cache);
664 /* Calculate the stack pointer used in the prologue. */
665 if (cache->fp_offset != -1)
667 CORE_ADDR fp;
669 fp = get_frame_register_unsigned (this_frame, M88K_R30_REGNUM);
670 frame_sp = fp - cache->fp_offset;
672 else
674 /* If we know where the return address is saved, we can take a
675 solid guess at what the frame pointer should be. */
676 if (cache->saved_regs[M88K_R1_REGNUM].addr != -1)
677 cache->fp_offset = cache->saved_regs[M88K_R1_REGNUM].addr - 4;
678 frame_sp = get_frame_register_unsigned (this_frame, M88K_R31_REGNUM);
681 /* Now that we know the stack pointer, adjust the location of the
682 saved registers. */
684 int regnum;
686 for (regnum = M88K_R0_REGNUM; regnum < M88K_R31_REGNUM; regnum ++)
687 if (cache->saved_regs[regnum].addr != -1)
688 cache->saved_regs[regnum].addr += frame_sp;
691 /* Calculate the frame's base. */
692 cache->base = frame_sp - cache->sp_offset;
693 trad_frame_set_value (cache->saved_regs, M88K_R31_REGNUM, cache->base);
695 /* Identify SXIP with the return address in R1. */
696 cache->saved_regs[M88K_SXIP_REGNUM] = cache->saved_regs[M88K_R1_REGNUM];
698 *this_cache = cache;
699 return cache;
702 static void
703 m88k_frame_this_id (struct frame_info *this_frame, void **this_cache,
704 struct frame_id *this_id)
706 struct m88k_frame_cache *cache = m88k_frame_cache (this_frame, this_cache);
708 /* This marks the outermost frame. */
709 if (cache->base == 0)
710 return;
712 (*this_id) = frame_id_build (cache->base, cache->pc);
715 static struct value *
716 m88k_frame_prev_register (struct frame_info *this_frame,
717 void **this_cache, int regnum)
719 struct m88k_frame_cache *cache = m88k_frame_cache (this_frame, this_cache);
721 if (regnum == M88K_SNIP_REGNUM || regnum == M88K_SFIP_REGNUM)
723 struct value *value;
724 CORE_ADDR pc;
726 value = trad_frame_get_prev_register (this_frame, cache->saved_regs,
727 M88K_SXIP_REGNUM);
728 pc = value_as_long (value);
729 release_value (value);
730 value_free (value);
732 if (regnum == M88K_SFIP_REGNUM)
733 pc += 4;
735 return frame_unwind_got_constant (this_frame, regnum, pc + 4);
738 return trad_frame_get_prev_register (this_frame, cache->saved_regs, regnum);
741 static const struct frame_unwind m88k_frame_unwind =
743 NORMAL_FRAME,
744 m88k_frame_this_id,
745 m88k_frame_prev_register,
746 NULL,
747 default_frame_sniffer
751 static CORE_ADDR
752 m88k_frame_base_address (struct frame_info *this_frame, void **this_cache)
754 struct m88k_frame_cache *cache = m88k_frame_cache (this_frame, this_cache);
756 if (cache->fp_offset != -1)
757 return cache->base + cache->sp_offset + cache->fp_offset;
759 return 0;
762 static const struct frame_base m88k_frame_base =
764 &m88k_frame_unwind,
765 m88k_frame_base_address,
766 m88k_frame_base_address,
767 m88k_frame_base_address
771 /* Core file support. */
773 /* Supply register REGNUM from the buffer specified by GREGS and LEN
774 in the general-purpose register set REGSET to register cache
775 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
777 static void
778 m88k_supply_gregset (const struct regset *regset,
779 struct regcache *regcache,
780 int regnum, const void *gregs, size_t len)
782 const gdb_byte *regs = gregs;
783 int i;
785 for (i = 0; i < M88K_NUM_REGS; i++)
787 if (regnum == i || regnum == -1)
788 regcache_raw_supply (regcache, i, regs + i * 4);
792 /* Motorola 88000 register set. */
794 static struct regset m88k_gregset =
796 NULL,
797 m88k_supply_gregset
800 /* Return the appropriate register set for the core section identified
801 by SECT_NAME and SECT_SIZE. */
803 static const struct regset *
804 m88k_regset_from_core_section (struct gdbarch *gdbarch,
805 const char *sect_name, size_t sect_size)
807 if (strcmp (sect_name, ".reg") == 0 && sect_size >= M88K_NUM_REGS * 4)
808 return &m88k_gregset;
810 return NULL;
814 static struct gdbarch *
815 m88k_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
817 struct gdbarch *gdbarch;
819 /* If there is already a candidate, use it. */
820 arches = gdbarch_list_lookup_by_info (arches, &info);
821 if (arches != NULL)
822 return arches->gdbarch;
824 /* Allocate space for the new architecture. */
825 gdbarch = gdbarch_alloc (&info, NULL);
827 /* There is no real `long double'. */
828 set_gdbarch_long_double_bit (gdbarch, 64);
829 set_gdbarch_long_double_format (gdbarch, floatformats_ieee_double);
831 set_gdbarch_num_regs (gdbarch, M88K_NUM_REGS);
832 set_gdbarch_register_name (gdbarch, m88k_register_name);
833 set_gdbarch_register_type (gdbarch, m88k_register_type);
835 /* Register numbers of various important registers. */
836 set_gdbarch_sp_regnum (gdbarch, M88K_R31_REGNUM);
837 set_gdbarch_pc_regnum (gdbarch, M88K_SXIP_REGNUM);
839 /* Core file support. */
840 set_gdbarch_regset_from_core_section
841 (gdbarch, m88k_regset_from_core_section);
843 set_gdbarch_print_insn (gdbarch, print_insn_m88k);
845 set_gdbarch_skip_prologue (gdbarch, m88k_skip_prologue);
847 /* Stack grows downward. */
848 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
850 /* Call dummy code. */
851 set_gdbarch_push_dummy_call (gdbarch, m88k_push_dummy_call);
852 set_gdbarch_dummy_id (gdbarch, m88k_dummy_id);
854 /* Return value info */
855 set_gdbarch_return_value (gdbarch, m88k_return_value);
857 set_gdbarch_addr_bits_remove (gdbarch, m88k_addr_bits_remove);
858 set_gdbarch_breakpoint_from_pc (gdbarch, m88k_breakpoint_from_pc);
859 set_gdbarch_unwind_pc (gdbarch, m88k_unwind_pc);
860 set_gdbarch_write_pc (gdbarch, m88k_write_pc);
862 frame_base_set_default (gdbarch, &m88k_frame_base);
863 frame_unwind_append_unwinder (gdbarch, &m88k_frame_unwind);
865 return gdbarch;
869 /* Provide a prototype to silence -Wmissing-prototypes. */
870 void _initialize_m88k_tdep (void);
872 void
873 _initialize_m88k_tdep (void)
875 gdbarch_register (bfd_arch_m88k, m88k_gdbarch_init, NULL);