1 /* Print values for GDB, the GNU debugger.
3 Copyright (C) 1986, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
4 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
5 2009 Free Software Foundation, Inc.
7 This file is part of GDB.
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23 #include "gdb_string.h"
33 #include "floatformat.h"
35 #include "exceptions.h"
40 /* Prototypes for local functions */
42 static int partial_memory_read (CORE_ADDR memaddr
, gdb_byte
*myaddr
,
43 int len
, int *errnoptr
);
45 static void show_print (char *, int);
47 static void set_print (char *, int);
49 static void set_radix (char *, int);
51 static void show_radix (char *, int);
53 static void set_input_radix (char *, int, struct cmd_list_element
*);
55 static void set_input_radix_1 (int, unsigned);
57 static void set_output_radix (char *, int, struct cmd_list_element
*);
59 static void set_output_radix_1 (int, unsigned);
61 void _initialize_valprint (void);
63 #define PRINT_MAX_DEFAULT 200 /* Start print_max off at this value. */
65 struct value_print_options user_print_options
=
67 Val_pretty_default
, /* pretty */
68 0, /* prettyprint_arrays */
69 0, /* prettyprint_structs */
74 PRINT_MAX_DEFAULT
, /* print_max */
75 10, /* repeat_count_threshold */
76 0, /* output_format */
78 0, /* stop_print_at_null */
80 0, /* print_array_indexes */
82 1, /* static_field_print */
83 1 /* pascal_static_field_print */
86 /* Initialize *OPTS to be a copy of the user print options. */
88 get_user_print_options (struct value_print_options
*opts
)
90 *opts
= user_print_options
;
93 /* Initialize *OPTS to be a copy of the user print options, but with
94 pretty-printing disabled. */
96 get_raw_print_options (struct value_print_options
*opts
)
98 *opts
= user_print_options
;
99 opts
->pretty
= Val_no_prettyprint
;
102 /* Initialize *OPTS to be a copy of the user print options, but using
103 FORMAT as the formatting option. */
105 get_formatted_print_options (struct value_print_options
*opts
,
108 *opts
= user_print_options
;
109 opts
->format
= format
;
113 show_print_max (struct ui_file
*file
, int from_tty
,
114 struct cmd_list_element
*c
, const char *value
)
116 fprintf_filtered (file
, _("\
117 Limit on string chars or array elements to print is %s.\n"),
122 /* Default input and output radixes, and output format letter. */
124 unsigned input_radix
= 10;
126 show_input_radix (struct ui_file
*file
, int from_tty
,
127 struct cmd_list_element
*c
, const char *value
)
129 fprintf_filtered (file
, _("\
130 Default input radix for entering numbers is %s.\n"),
134 unsigned output_radix
= 10;
136 show_output_radix (struct ui_file
*file
, int from_tty
,
137 struct cmd_list_element
*c
, const char *value
)
139 fprintf_filtered (file
, _("\
140 Default output radix for printing of values is %s.\n"),
144 /* By default we print arrays without printing the index of each element in
145 the array. This behavior can be changed by setting PRINT_ARRAY_INDEXES. */
148 show_print_array_indexes (struct ui_file
*file
, int from_tty
,
149 struct cmd_list_element
*c
, const char *value
)
151 fprintf_filtered (file
, _("Printing of array indexes is %s.\n"), value
);
154 /* Print repeat counts if there are more than this many repetitions of an
155 element in an array. Referenced by the low level language dependent
159 show_repeat_count_threshold (struct ui_file
*file
, int from_tty
,
160 struct cmd_list_element
*c
, const char *value
)
162 fprintf_filtered (file
, _("Threshold for repeated print elements is %s.\n"),
166 /* If nonzero, stops printing of char arrays at first null. */
169 show_stop_print_at_null (struct ui_file
*file
, int from_tty
,
170 struct cmd_list_element
*c
, const char *value
)
172 fprintf_filtered (file
, _("\
173 Printing of char arrays to stop at first null char is %s.\n"),
177 /* Controls pretty printing of structures. */
180 show_prettyprint_structs (struct ui_file
*file
, int from_tty
,
181 struct cmd_list_element
*c
, const char *value
)
183 fprintf_filtered (file
, _("Prettyprinting of structures is %s.\n"), value
);
186 /* Controls pretty printing of arrays. */
189 show_prettyprint_arrays (struct ui_file
*file
, int from_tty
,
190 struct cmd_list_element
*c
, const char *value
)
192 fprintf_filtered (file
, _("Prettyprinting of arrays is %s.\n"), value
);
195 /* If nonzero, causes unions inside structures or other unions to be
199 show_unionprint (struct ui_file
*file
, int from_tty
,
200 struct cmd_list_element
*c
, const char *value
)
202 fprintf_filtered (file
, _("\
203 Printing of unions interior to structures is %s.\n"),
207 /* If nonzero, causes machine addresses to be printed in certain contexts. */
210 show_addressprint (struct ui_file
*file
, int from_tty
,
211 struct cmd_list_element
*c
, const char *value
)
213 fprintf_filtered (file
, _("Printing of addresses is %s.\n"), value
);
217 /* Print using the given LANGUAGE the data of type TYPE located at VALADDR
218 (within GDB), which came from the inferior at address ADDRESS, onto
219 stdio stream STREAM according to OPTIONS.
221 If the data are a string pointer, returns the number of string characters
224 FIXME: The data at VALADDR is in target byte order. If gdb is ever
225 enhanced to be able to debug more than the single target it was compiled
226 for (specific CPU type and thus specific target byte ordering), then
227 either the print routines are going to have to take this into account,
228 or the data is going to have to be passed into here already converted
229 to the host byte ordering, whichever is more convenient. */
233 val_print (struct type
*type
, const gdb_byte
*valaddr
, int embedded_offset
,
234 CORE_ADDR address
, struct ui_file
*stream
, int recurse
,
235 const struct value_print_options
*options
,
236 const struct language_defn
*language
)
238 volatile struct gdb_exception except
;
240 struct value_print_options local_opts
= *options
;
241 struct type
*real_type
= check_typedef (type
);
243 if (local_opts
.pretty
== Val_pretty_default
)
244 local_opts
.pretty
= (local_opts
.prettyprint_structs
245 ? Val_prettyprint
: Val_no_prettyprint
);
249 /* Ensure that the type is complete and not just a stub. If the type is
250 only a stub and we can't find and substitute its complete type, then
251 print appropriate string and return. */
253 if (TYPE_STUB (real_type
))
255 fprintf_filtered (stream
, "<incomplete type>");
260 TRY_CATCH (except
, RETURN_MASK_ERROR
)
262 ret
= language
->la_val_print (type
, valaddr
, embedded_offset
, address
,
263 stream
, recurse
, &local_opts
);
265 if (except
.reason
< 0)
266 fprintf_filtered (stream
, _("<error reading variable>"));
271 /* Check whether the value VAL is printable. Return 1 if it is;
272 return 0 and print an appropriate error message to STREAM if it
276 value_check_printable (struct value
*val
, struct ui_file
*stream
)
280 fprintf_filtered (stream
, _("<address of value unknown>"));
284 if (value_optimized_out (val
))
286 fprintf_filtered (stream
, _("<value optimized out>"));
290 if (TYPE_CODE (value_type (val
)) == TYPE_CODE_INTERNAL_FUNCTION
)
292 fprintf_filtered (stream
, _("<internal function %s>"),
293 value_internal_function_name (val
));
300 /* Print using the given LANGUAGE the value VAL onto stream STREAM according
303 If the data are a string pointer, returns the number of string characters
306 This is a preferable interface to val_print, above, because it uses
307 GDB's value mechanism. */
310 common_val_print (struct value
*val
, struct ui_file
*stream
, int recurse
,
311 const struct value_print_options
*options
,
312 const struct language_defn
*language
)
314 if (!value_check_printable (val
, stream
))
317 return val_print (value_type (val
), value_contents_all (val
),
318 value_embedded_offset (val
), VALUE_ADDRESS (val
),
319 stream
, recurse
, options
, language
);
322 /* Print the value VAL in C-ish syntax on stream STREAM according to
324 If the object printed is a string pointer, returns
325 the number of string bytes printed. */
328 value_print (struct value
*val
, struct ui_file
*stream
,
329 const struct value_print_options
*options
)
331 if (!value_check_printable (val
, stream
))
334 return LA_VALUE_PRINT (val
, stream
, options
);
337 /* Called by various <lang>_val_print routines to print
338 TYPE_CODE_INT's. TYPE is the type. VALADDR is the address of the
339 value. STREAM is where to print the value. */
342 val_print_type_code_int (struct type
*type
, const gdb_byte
*valaddr
,
343 struct ui_file
*stream
)
345 enum bfd_endian byte_order
= gdbarch_byte_order (current_gdbarch
);
347 if (TYPE_LENGTH (type
) > sizeof (LONGEST
))
351 if (TYPE_UNSIGNED (type
)
352 && extract_long_unsigned_integer (valaddr
, TYPE_LENGTH (type
),
355 print_longest (stream
, 'u', 0, val
);
359 /* Signed, or we couldn't turn an unsigned value into a
360 LONGEST. For signed values, one could assume two's
361 complement (a reasonable assumption, I think) and do
363 print_hex_chars (stream
, (unsigned char *) valaddr
,
364 TYPE_LENGTH (type
), byte_order
);
369 print_longest (stream
, TYPE_UNSIGNED (type
) ? 'u' : 'd', 0,
370 unpack_long (type
, valaddr
));
375 val_print_type_code_flags (struct type
*type
, const gdb_byte
*valaddr
,
376 struct ui_file
*stream
)
378 ULONGEST val
= unpack_long (type
, valaddr
);
379 int bitpos
, nfields
= TYPE_NFIELDS (type
);
381 fputs_filtered ("[ ", stream
);
382 for (bitpos
= 0; bitpos
< nfields
; bitpos
++)
384 if (TYPE_FIELD_BITPOS (type
, bitpos
) != -1
385 && (val
& ((ULONGEST
)1 << bitpos
)))
387 if (TYPE_FIELD_NAME (type
, bitpos
))
388 fprintf_filtered (stream
, "%s ", TYPE_FIELD_NAME (type
, bitpos
));
390 fprintf_filtered (stream
, "#%d ", bitpos
);
393 fputs_filtered ("]", stream
);
396 /* Print a number according to FORMAT which is one of d,u,x,o,b,h,w,g.
397 The raison d'etre of this function is to consolidate printing of
398 LONG_LONG's into this one function. The format chars b,h,w,g are
399 from print_scalar_formatted(). Numbers are printed using C
402 USE_C_FORMAT means to use C format in all cases. Without it,
403 'o' and 'x' format do not include the standard C radix prefix
406 Hilfinger/2004-09-09: USE_C_FORMAT was originally called USE_LOCAL
407 and was intended to request formating according to the current
408 language and would be used for most integers that GDB prints. The
409 exceptional cases were things like protocols where the format of
410 the integer is a protocol thing, not a user-visible thing). The
411 parameter remains to preserve the information of what things might
412 be printed with language-specific format, should we ever resurrect
416 print_longest (struct ui_file
*stream
, int format
, int use_c_format
,
424 val
= int_string (val_long
, 10, 1, 0, 1); break;
426 val
= int_string (val_long
, 10, 0, 0, 1); break;
428 val
= int_string (val_long
, 16, 0, 0, use_c_format
); break;
430 val
= int_string (val_long
, 16, 0, 2, 1); break;
432 val
= int_string (val_long
, 16, 0, 4, 1); break;
434 val
= int_string (val_long
, 16, 0, 8, 1); break;
436 val
= int_string (val_long
, 16, 0, 16, 1); break;
439 val
= int_string (val_long
, 8, 0, 0, use_c_format
); break;
441 internal_error (__FILE__
, __LINE__
, _("failed internal consistency check"));
443 fputs_filtered (val
, stream
);
446 /* This used to be a macro, but I don't think it is called often enough
447 to merit such treatment. */
448 /* Convert a LONGEST to an int. This is used in contexts (e.g. number of
449 arguments to a function, number in a value history, register number, etc.)
450 where the value must not be larger than can fit in an int. */
453 longest_to_int (LONGEST arg
)
455 /* Let the compiler do the work */
456 int rtnval
= (int) arg
;
458 /* Check for overflows or underflows */
459 if (sizeof (LONGEST
) > sizeof (int))
463 error (_("Value out of range."));
469 /* Print a floating point value of type TYPE (not always a
470 TYPE_CODE_FLT), pointed to in GDB by VALADDR, on STREAM. */
473 print_floating (const gdb_byte
*valaddr
, struct type
*type
,
474 struct ui_file
*stream
)
478 const struct floatformat
*fmt
= NULL
;
479 unsigned len
= TYPE_LENGTH (type
);
480 enum float_kind kind
;
482 /* If it is a floating-point, check for obvious problems. */
483 if (TYPE_CODE (type
) == TYPE_CODE_FLT
)
484 fmt
= floatformat_from_type (type
);
487 kind
= floatformat_classify (fmt
, valaddr
);
488 if (kind
== float_nan
)
490 if (floatformat_is_negative (fmt
, valaddr
))
491 fprintf_filtered (stream
, "-");
492 fprintf_filtered (stream
, "nan(");
493 fputs_filtered ("0x", stream
);
494 fputs_filtered (floatformat_mantissa (fmt
, valaddr
), stream
);
495 fprintf_filtered (stream
, ")");
498 else if (kind
== float_infinite
)
500 if (floatformat_is_negative (fmt
, valaddr
))
501 fputs_filtered ("-", stream
);
502 fputs_filtered ("inf", stream
);
507 /* NOTE: cagney/2002-01-15: The TYPE passed into print_floating()
508 isn't necessarily a TYPE_CODE_FLT. Consequently, unpack_double
509 needs to be used as that takes care of any necessary type
510 conversions. Such conversions are of course direct to DOUBLEST
511 and disregard any possible target floating point limitations.
512 For instance, a u64 would be converted and displayed exactly on a
513 host with 80 bit DOUBLEST but with loss of information on a host
514 with 64 bit DOUBLEST. */
516 doub
= unpack_double (type
, valaddr
, &inv
);
519 fprintf_filtered (stream
, "<invalid float value>");
523 /* FIXME: kettenis/2001-01-20: The following code makes too much
524 assumptions about the host and target floating point format. */
526 /* NOTE: cagney/2002-02-03: Since the TYPE of what was passed in may
527 not necessarily be a TYPE_CODE_FLT, the below ignores that and
528 instead uses the type's length to determine the precision of the
529 floating-point value being printed. */
531 if (len
< sizeof (double))
532 fprintf_filtered (stream
, "%.9g", (double) doub
);
533 else if (len
== sizeof (double))
534 fprintf_filtered (stream
, "%.17g", (double) doub
);
536 #ifdef PRINTF_HAS_LONG_DOUBLE
537 fprintf_filtered (stream
, "%.35Lg", doub
);
539 /* This at least wins with values that are representable as
541 fprintf_filtered (stream
, "%.17g", (double) doub
);
546 print_decimal_floating (const gdb_byte
*valaddr
, struct type
*type
,
547 struct ui_file
*stream
)
549 char decstr
[MAX_DECIMAL_STRING
];
550 unsigned len
= TYPE_LENGTH (type
);
552 decimal_to_string (valaddr
, len
, decstr
);
553 fputs_filtered (decstr
, stream
);
558 print_binary_chars (struct ui_file
*stream
, const gdb_byte
*valaddr
,
559 unsigned len
, enum bfd_endian byte_order
)
562 #define BITS_IN_BYTES 8
568 /* Declared "int" so it will be signed.
569 * This ensures that right shift will shift in zeros.
571 const int mask
= 0x080;
573 /* FIXME: We should be not printing leading zeroes in most cases. */
575 if (byte_order
== BFD_ENDIAN_BIG
)
581 /* Every byte has 8 binary characters; peel off
582 * and print from the MSB end.
584 for (i
= 0; i
< (BITS_IN_BYTES
* sizeof (*p
)); i
++)
586 if (*p
& (mask
>> i
))
591 fprintf_filtered (stream
, "%1d", b
);
597 for (p
= valaddr
+ len
- 1;
601 for (i
= 0; i
< (BITS_IN_BYTES
* sizeof (*p
)); i
++)
603 if (*p
& (mask
>> i
))
608 fprintf_filtered (stream
, "%1d", b
);
614 /* VALADDR points to an integer of LEN bytes.
615 * Print it in octal on stream or format it in buf.
618 print_octal_chars (struct ui_file
*stream
, const gdb_byte
*valaddr
,
619 unsigned len
, enum bfd_endian byte_order
)
622 unsigned char octa1
, octa2
, octa3
, carry
;
625 /* FIXME: We should be not printing leading zeroes in most cases. */
628 /* Octal is 3 bits, which doesn't fit. Yuk. So we have to track
629 * the extra bits, which cycle every three bytes:
633 * bit number 123 456 78 | 9 012 345 6 | 78 901 234 | 567 890 12 |
635 * Octal side: 0 1 carry 3 4 carry ...
637 * Cycle number: 0 1 2
639 * But of course we are printing from the high side, so we have to
640 * figure out where in the cycle we are so that we end up with no
641 * left over bits at the end.
643 #define BITS_IN_OCTAL 3
644 #define HIGH_ZERO 0340
645 #define LOW_ZERO 0016
646 #define CARRY_ZERO 0003
647 #define HIGH_ONE 0200
650 #define CARRY_ONE 0001
651 #define HIGH_TWO 0300
655 /* For 32 we start in cycle 2, with two bits and one bit carry;
656 * for 64 in cycle in cycle 1, with one bit and a two bit carry.
658 cycle
= (len
* BITS_IN_BYTES
) % BITS_IN_OCTAL
;
661 fputs_filtered ("0", stream
);
662 if (byte_order
== BFD_ENDIAN_BIG
)
671 /* No carry in, carry out two bits.
673 octa1
= (HIGH_ZERO
& *p
) >> 5;
674 octa2
= (LOW_ZERO
& *p
) >> 2;
675 carry
= (CARRY_ZERO
& *p
);
676 fprintf_filtered (stream
, "%o", octa1
);
677 fprintf_filtered (stream
, "%o", octa2
);
681 /* Carry in two bits, carry out one bit.
683 octa1
= (carry
<< 1) | ((HIGH_ONE
& *p
) >> 7);
684 octa2
= (MID_ONE
& *p
) >> 4;
685 octa3
= (LOW_ONE
& *p
) >> 1;
686 carry
= (CARRY_ONE
& *p
);
687 fprintf_filtered (stream
, "%o", octa1
);
688 fprintf_filtered (stream
, "%o", octa2
);
689 fprintf_filtered (stream
, "%o", octa3
);
693 /* Carry in one bit, no carry out.
695 octa1
= (carry
<< 2) | ((HIGH_TWO
& *p
) >> 6);
696 octa2
= (MID_TWO
& *p
) >> 3;
697 octa3
= (LOW_TWO
& *p
);
699 fprintf_filtered (stream
, "%o", octa1
);
700 fprintf_filtered (stream
, "%o", octa2
);
701 fprintf_filtered (stream
, "%o", octa3
);
705 error (_("Internal error in octal conversion;"));
709 cycle
= cycle
% BITS_IN_OCTAL
;
714 for (p
= valaddr
+ len
- 1;
721 /* Carry out, no carry in */
722 octa1
= (HIGH_ZERO
& *p
) >> 5;
723 octa2
= (LOW_ZERO
& *p
) >> 2;
724 carry
= (CARRY_ZERO
& *p
);
725 fprintf_filtered (stream
, "%o", octa1
);
726 fprintf_filtered (stream
, "%o", octa2
);
730 /* Carry in, carry out */
731 octa1
= (carry
<< 1) | ((HIGH_ONE
& *p
) >> 7);
732 octa2
= (MID_ONE
& *p
) >> 4;
733 octa3
= (LOW_ONE
& *p
) >> 1;
734 carry
= (CARRY_ONE
& *p
);
735 fprintf_filtered (stream
, "%o", octa1
);
736 fprintf_filtered (stream
, "%o", octa2
);
737 fprintf_filtered (stream
, "%o", octa3
);
741 /* Carry in, no carry out */
742 octa1
= (carry
<< 2) | ((HIGH_TWO
& *p
) >> 6);
743 octa2
= (MID_TWO
& *p
) >> 3;
744 octa3
= (LOW_TWO
& *p
);
746 fprintf_filtered (stream
, "%o", octa1
);
747 fprintf_filtered (stream
, "%o", octa2
);
748 fprintf_filtered (stream
, "%o", octa3
);
752 error (_("Internal error in octal conversion;"));
756 cycle
= cycle
% BITS_IN_OCTAL
;
762 /* VALADDR points to an integer of LEN bytes.
763 * Print it in decimal on stream or format it in buf.
766 print_decimal_chars (struct ui_file
*stream
, const gdb_byte
*valaddr
,
767 unsigned len
, enum bfd_endian byte_order
)
770 #define CARRY_OUT( x ) ((x) / TEN) /* extend char to int */
771 #define CARRY_LEFT( x ) ((x) % TEN)
772 #define SHIFT( x ) ((x) << 4)
773 #define LOW_NIBBLE( x ) ( (x) & 0x00F)
774 #define HIGH_NIBBLE( x ) (((x) & 0x0F0) >> 4)
777 unsigned char *digits
;
780 int i
, j
, decimal_digits
;
784 /* Base-ten number is less than twice as many digits
785 * as the base 16 number, which is 2 digits per byte.
787 decimal_len
= len
* 2 * 2;
788 digits
= xmalloc (decimal_len
);
790 for (i
= 0; i
< decimal_len
; i
++)
795 /* Ok, we have an unknown number of bytes of data to be printed in
798 * Given a hex number (in nibbles) as XYZ, we start by taking X and
799 * decemalizing it as "x1 x2" in two decimal nibbles. Then we multiply
800 * the nibbles by 16, add Y and re-decimalize. Repeat with Z.
802 * The trick is that "digits" holds a base-10 number, but sometimes
803 * the individual digits are > 10.
805 * Outer loop is per nibble (hex digit) of input, from MSD end to
808 decimal_digits
= 0; /* Number of decimal digits so far */
809 p
= (byte_order
== BFD_ENDIAN_BIG
) ? valaddr
: valaddr
+ len
- 1;
811 while ((byte_order
== BFD_ENDIAN_BIG
) ? (p
< valaddr
+ len
) : (p
>= valaddr
))
814 * Multiply current base-ten number by 16 in place.
815 * Each digit was between 0 and 9, now is between
818 for (j
= 0; j
< decimal_digits
; j
++)
820 digits
[j
] = SHIFT (digits
[j
]);
823 /* Take the next nibble off the input and add it to what
824 * we've got in the LSB position. Bottom 'digit' is now
827 * "flip" is used to run this loop twice for each byte.
833 digits
[0] += HIGH_NIBBLE (*p
);
838 /* Take low nibble and bump our pointer "p".
840 digits
[0] += LOW_NIBBLE (*p
);
841 if (byte_order
== BFD_ENDIAN_BIG
)
848 /* Re-decimalize. We have to do this often enough
849 * that we don't overflow, but once per nibble is
850 * overkill. Easier this way, though. Note that the
851 * carry is often larger than 10 (e.g. max initial
852 * carry out of lowest nibble is 15, could bubble all
853 * the way up greater than 10). So we have to do
854 * the carrying beyond the last current digit.
857 for (j
= 0; j
< decimal_len
- 1; j
++)
861 /* "/" won't handle an unsigned char with
862 * a value that if signed would be negative.
863 * So extend to longword int via "dummy".
866 carry
= CARRY_OUT (dummy
);
867 digits
[j
] = CARRY_LEFT (dummy
);
869 if (j
>= decimal_digits
&& carry
== 0)
872 * All higher digits are 0 and we
873 * no longer have a carry.
875 * Note: "j" is 0-based, "decimal_digits" is
878 decimal_digits
= j
+ 1;
884 /* Ok, now "digits" is the decimal representation, with
885 * the "decimal_digits" actual digits. Print!
887 for (i
= decimal_digits
- 1; i
>= 0; i
--)
889 fprintf_filtered (stream
, "%1d", digits
[i
]);
894 /* VALADDR points to an integer of LEN bytes. Print it in hex on stream. */
897 print_hex_chars (struct ui_file
*stream
, const gdb_byte
*valaddr
,
898 unsigned len
, enum bfd_endian byte_order
)
902 /* FIXME: We should be not printing leading zeroes in most cases. */
904 fputs_filtered ("0x", stream
);
905 if (byte_order
== BFD_ENDIAN_BIG
)
911 fprintf_filtered (stream
, "%02x", *p
);
916 for (p
= valaddr
+ len
- 1;
920 fprintf_filtered (stream
, "%02x", *p
);
925 /* VALADDR points to a char integer of LEN bytes. Print it out in appropriate language form on stream.
926 Omit any leading zero chars. */
929 print_char_chars (struct ui_file
*stream
, struct type
*type
,
930 const gdb_byte
*valaddr
,
931 unsigned len
, enum bfd_endian byte_order
)
935 if (byte_order
== BFD_ENDIAN_BIG
)
938 while (p
< valaddr
+ len
- 1 && *p
== 0)
941 while (p
< valaddr
+ len
)
943 LA_EMIT_CHAR (*p
, type
, stream
, '\'');
949 p
= valaddr
+ len
- 1;
950 while (p
> valaddr
&& *p
== 0)
955 LA_EMIT_CHAR (*p
, type
, stream
, '\'');
961 /* Assuming TYPE is a simple, non-empty array type, compute its upper
962 and lower bound. Save the low bound into LOW_BOUND if not NULL.
963 Save the high bound into HIGH_BOUND if not NULL.
965 Return 1 if the operation was successful. Return zero otherwise,
966 in which case the values of LOW_BOUND and HIGH_BOUNDS are unmodified.
968 Computing the array upper and lower bounds is pretty easy, but this
969 function does some additional verifications before returning them.
970 If something incorrect is detected, it is better to return a status
971 rather than throwing an error, making it easier for the caller to
972 implement an error-recovery plan. For instance, it may decide to
973 warn the user that the bounds were not found and then use some
974 default values instead. */
977 get_array_bounds (struct type
*type
, long *low_bound
, long *high_bound
)
979 struct type
*index
= TYPE_INDEX_TYPE (type
);
986 if (TYPE_CODE (index
) == TYPE_CODE_RANGE
)
988 low
= TYPE_LOW_BOUND (index
);
989 high
= TYPE_HIGH_BOUND (index
);
991 else if (TYPE_CODE (index
) == TYPE_CODE_ENUM
)
993 const int n_enums
= TYPE_NFIELDS (index
);
995 low
= TYPE_FIELD_BITPOS (index
, 0);
996 high
= TYPE_FIELD_BITPOS (index
, n_enums
- 1);
1001 /* Abort if the lower bound is greater than the higher bound, except
1002 when low = high + 1. This is a very common idiom used in Ada when
1003 defining empty ranges (for instance "range 1 .. 0"). */
1016 /* Print on STREAM using the given OPTIONS the index for the element
1017 at INDEX of an array whose index type is INDEX_TYPE. */
1020 maybe_print_array_index (struct type
*index_type
, LONGEST index
,
1021 struct ui_file
*stream
,
1022 const struct value_print_options
*options
)
1024 struct value
*index_value
;
1026 if (!options
->print_array_indexes
)
1029 index_value
= value_from_longest (index_type
, index
);
1031 LA_PRINT_ARRAY_INDEX (index_value
, stream
, options
);
1034 /* Called by various <lang>_val_print routines to print elements of an
1035 array in the form "<elem1>, <elem2>, <elem3>, ...".
1037 (FIXME?) Assumes array element separator is a comma, which is correct
1038 for all languages currently handled.
1039 (FIXME?) Some languages have a notation for repeated array elements,
1040 perhaps we should try to use that notation when appropriate.
1044 val_print_array_elements (struct type
*type
, const gdb_byte
*valaddr
,
1045 CORE_ADDR address
, struct ui_file
*stream
,
1047 const struct value_print_options
*options
,
1050 unsigned int things_printed
= 0;
1052 struct type
*elttype
, *index_type
;
1054 /* Position of the array element we are examining to see
1055 whether it is repeated. */
1057 /* Number of repetitions we have detected so far. */
1059 long low_bound_index
= 0;
1061 elttype
= TYPE_TARGET_TYPE (type
);
1062 eltlen
= TYPE_LENGTH (check_typedef (elttype
));
1063 index_type
= TYPE_INDEX_TYPE (type
);
1065 /* Compute the number of elements in the array. On most arrays,
1066 the size of its elements is not zero, and so the number of elements
1067 is simply the size of the array divided by the size of the elements.
1068 But for arrays of elements whose size is zero, we need to look at
1071 len
= TYPE_LENGTH (type
) / eltlen
;
1075 if (get_array_bounds (type
, &low
, &hi
))
1079 warning (_("unable to get bounds of array, assuming null array"));
1084 /* Get the array low bound. This only makes sense if the array
1085 has one or more element in it. */
1086 if (len
> 0 && !get_array_bounds (type
, &low_bound_index
, NULL
))
1088 warning (_("unable to get low bound of array, using zero as default"));
1089 low_bound_index
= 0;
1092 annotate_array_section_begin (i
, elttype
);
1094 for (; i
< len
&& things_printed
< options
->print_max
; i
++)
1098 if (options
->prettyprint_arrays
)
1100 fprintf_filtered (stream
, ",\n");
1101 print_spaces_filtered (2 + 2 * recurse
, stream
);
1105 fprintf_filtered (stream
, ", ");
1108 wrap_here (n_spaces (2 + 2 * recurse
));
1109 maybe_print_array_index (index_type
, i
+ low_bound_index
,
1114 while ((rep1
< len
) &&
1115 !memcmp (valaddr
+ i
* eltlen
, valaddr
+ rep1
* eltlen
, eltlen
))
1121 if (reps
> options
->repeat_count_threshold
)
1123 val_print (elttype
, valaddr
+ i
* eltlen
, 0, address
+ i
* eltlen
,
1124 stream
, recurse
+ 1, options
, current_language
);
1125 annotate_elt_rep (reps
);
1126 fprintf_filtered (stream
, " <repeats %u times>", reps
);
1127 annotate_elt_rep_end ();
1130 things_printed
+= options
->repeat_count_threshold
;
1134 val_print (elttype
, valaddr
+ i
* eltlen
, 0, address
+ i
* eltlen
,
1135 stream
, recurse
+ 1, options
, current_language
);
1140 annotate_array_section_end ();
1143 fprintf_filtered (stream
, "...");
1147 /* Read LEN bytes of target memory at address MEMADDR, placing the
1148 results in GDB's memory at MYADDR. Returns a count of the bytes
1149 actually read, and optionally an errno value in the location
1150 pointed to by ERRNOPTR if ERRNOPTR is non-null. */
1152 /* FIXME: cagney/1999-10-14: Only used by val_print_string. Can this
1153 function be eliminated. */
1156 partial_memory_read (CORE_ADDR memaddr
, gdb_byte
*myaddr
, int len
, int *errnoptr
)
1158 int nread
; /* Number of bytes actually read. */
1159 int errcode
; /* Error from last read. */
1161 /* First try a complete read. */
1162 errcode
= target_read_memory (memaddr
, myaddr
, len
);
1170 /* Loop, reading one byte at a time until we get as much as we can. */
1171 for (errcode
= 0, nread
= 0; len
> 0 && errcode
== 0; nread
++, len
--)
1173 errcode
= target_read_memory (memaddr
++, myaddr
++, 1);
1175 /* If an error, the last read was unsuccessful, so adjust count. */
1181 if (errnoptr
!= NULL
)
1183 *errnoptr
= errcode
;
1188 /* Read a string from the inferior, at ADDR, with LEN characters of WIDTH bytes
1189 each. Fetch at most FETCHLIMIT characters. BUFFER will be set to a newly
1190 allocated buffer containing the string, which the caller is responsible to
1191 free, and BYTES_READ will be set to the number of bytes read. Returns 0 on
1192 success, or errno on failure.
1194 If LEN > 0, reads exactly LEN characters (including eventual NULs in
1195 the middle or end of the string). If LEN is -1, stops at the first
1196 null character (not necessarily the first null byte) up to a maximum
1197 of FETCHLIMIT characters. Set FETCHLIMIT to UINT_MAX to read as many
1198 characters as possible from the string.
1200 Unless an exception is thrown, BUFFER will always be allocated, even on
1201 failure. In this case, some characters might have been read before the
1202 failure happened. Check BYTES_READ to recognize this situation.
1204 Note: There was a FIXME asking to make this code use target_read_string,
1205 but this function is more general (can read past null characters, up to
1206 given LEN). Besides, it is used much more often than target_read_string
1207 so it is more tested. Perhaps callers of target_read_string should use
1208 this function instead? */
1211 read_string (CORE_ADDR addr
, int len
, int width
, unsigned int fetchlimit
,
1212 gdb_byte
**buffer
, int *bytes_read
)
1214 int found_nul
; /* Non-zero if we found the nul char. */
1215 int errcode
; /* Errno returned from bad reads. */
1216 unsigned int nfetch
; /* Chars to fetch / chars fetched. */
1217 unsigned int chunksize
; /* Size of each fetch, in chars. */
1218 gdb_byte
*bufptr
; /* Pointer to next available byte in buffer. */
1219 gdb_byte
*limit
; /* First location past end of fetch buffer. */
1220 struct cleanup
*old_chain
= NULL
; /* Top of the old cleanup chain. */
1222 /* Decide how large of chunks to try to read in one operation. This
1223 is also pretty simple. If LEN >= zero, then we want fetchlimit chars,
1224 so we might as well read them all in one operation. If LEN is -1, we
1225 are looking for a NUL terminator to end the fetching, so we might as
1226 well read in blocks that are large enough to be efficient, but not so
1227 large as to be slow if fetchlimit happens to be large. So we choose the
1228 minimum of 8 and fetchlimit. We used to use 200 instead of 8 but
1229 200 is way too big for remote debugging over a serial line. */
1231 chunksize
= (len
== -1 ? min (8, fetchlimit
) : fetchlimit
);
1233 /* Loop until we either have all the characters, or we encounter
1234 some error, such as bumping into the end of the address space. */
1239 old_chain
= make_cleanup (free_current_contents
, buffer
);
1243 *buffer
= (gdb_byte
*) xmalloc (len
* width
);
1246 nfetch
= partial_memory_read (addr
, bufptr
, len
* width
, &errcode
)
1248 addr
+= nfetch
* width
;
1249 bufptr
+= nfetch
* width
;
1253 unsigned long bufsize
= 0;
1258 nfetch
= min (chunksize
, fetchlimit
- bufsize
);
1260 if (*buffer
== NULL
)
1261 *buffer
= (gdb_byte
*) xmalloc (nfetch
* width
);
1263 *buffer
= (gdb_byte
*) xrealloc (*buffer
,
1264 (nfetch
+ bufsize
) * width
);
1266 bufptr
= *buffer
+ bufsize
* width
;
1269 /* Read as much as we can. */
1270 nfetch
= partial_memory_read (addr
, bufptr
, nfetch
* width
, &errcode
)
1273 /* Scan this chunk for the null character that terminates the string
1274 to print. If found, we don't need to fetch any more. Note
1275 that bufptr is explicitly left pointing at the next character
1276 after the null character, or at the next character after the end
1279 limit
= bufptr
+ nfetch
* width
;
1280 while (bufptr
< limit
)
1284 c
= extract_unsigned_integer (bufptr
, width
);
1289 /* We don't care about any error which happened after
1290 the NUL terminator. */
1297 while (errcode
== 0 /* no error */
1298 && bufptr
- *buffer
< fetchlimit
* width
/* no overrun */
1299 && !found_nul
); /* haven't found NUL yet */
1302 { /* Length of string is really 0! */
1303 /* We always allocate *buffer. */
1304 *buffer
= bufptr
= xmalloc (1);
1308 /* bufptr and addr now point immediately beyond the last byte which we
1309 consider part of the string (including a '\0' which ends the string). */
1310 *bytes_read
= bufptr
- *buffer
;
1314 discard_cleanups (old_chain
);
1319 /* Print a string from the inferior, starting at ADDR and printing up to LEN
1320 characters, of WIDTH bytes a piece, to STREAM. If LEN is -1, printing
1321 stops at the first null byte, otherwise printing proceeds (including null
1322 bytes) until either print_max or LEN characters have been printed,
1323 whichever is smaller. */
1326 val_print_string (struct type
*elttype
, CORE_ADDR addr
, int len
,
1327 struct ui_file
*stream
,
1328 const struct value_print_options
*options
)
1330 int force_ellipsis
= 0; /* Force ellipsis to be printed if nonzero. */
1331 int errcode
; /* Errno returned from bad reads. */
1332 int found_nul
; /* Non-zero if we found the nul char */
1333 unsigned int fetchlimit
; /* Maximum number of chars to print. */
1335 gdb_byte
*buffer
= NULL
; /* Dynamically growable fetch buffer. */
1336 struct cleanup
*old_chain
= NULL
; /* Top of the old cleanup chain. */
1337 int width
= TYPE_LENGTH (elttype
);
1339 /* First we need to figure out the limit on the number of characters we are
1340 going to attempt to fetch and print. This is actually pretty simple. If
1341 LEN >= zero, then the limit is the minimum of LEN and print_max. If
1342 LEN is -1, then the limit is print_max. This is true regardless of
1343 whether print_max is zero, UINT_MAX (unlimited), or something in between,
1344 because finding the null byte (or available memory) is what actually
1345 limits the fetch. */
1347 fetchlimit
= (len
== -1 ? options
->print_max
: min (len
, options
->print_max
));
1349 errcode
= read_string (addr
, len
, width
, fetchlimit
, &buffer
, &bytes_read
);
1350 old_chain
= make_cleanup (xfree
, buffer
);
1354 /* We now have either successfully filled the buffer to fetchlimit, or
1355 terminated early due to an error or finding a null char when LEN is -1. */
1357 /* Determine found_nul by looking at the last character read. */
1358 found_nul
= extract_unsigned_integer (buffer
+ bytes_read
- width
, width
) == 0;
1360 if (len
== -1 && !found_nul
)
1364 /* We didn't find a NUL terminator we were looking for. Attempt
1365 to peek at the next character. If not successful, or it is not
1366 a null byte, then force ellipsis to be printed. */
1368 peekbuf
= (gdb_byte
*) alloca (width
);
1370 if (target_read_memory (addr
, peekbuf
, width
) == 0
1371 && extract_unsigned_integer (peekbuf
, width
) != 0)
1374 else if ((len
>= 0 && errcode
!= 0) || (len
> bytes_read
/ width
))
1376 /* Getting an error when we have a requested length, or fetching less
1377 than the number of characters actually requested, always make us
1382 /* If we get an error before fetching anything, don't print a string.
1383 But if we fetch something and then get an error, print the string
1384 and then the error message. */
1385 if (errcode
== 0 || bytes_read
> 0)
1387 if (options
->addressprint
)
1389 fputs_filtered (" ", stream
);
1391 LA_PRINT_STRING (stream
, elttype
, buffer
, bytes_read
/ width
, force_ellipsis
, options
);
1398 fprintf_filtered (stream
, " <Address ");
1399 fputs_filtered (paddress (addr
), stream
);
1400 fprintf_filtered (stream
, " out of bounds>");
1404 fprintf_filtered (stream
, " <Error reading address ");
1405 fputs_filtered (paddress (addr
), stream
);
1406 fprintf_filtered (stream
, ": %s>", safe_strerror (errcode
));
1411 do_cleanups (old_chain
);
1413 return (bytes_read
/ width
);
1417 /* The 'set input-radix' command writes to this auxiliary variable.
1418 If the requested radix is valid, INPUT_RADIX is updated; otherwise,
1419 it is left unchanged. */
1421 static unsigned input_radix_1
= 10;
1423 /* Validate an input or output radix setting, and make sure the user
1424 knows what they really did here. Radix setting is confusing, e.g.
1425 setting the input radix to "10" never changes it! */
1428 set_input_radix (char *args
, int from_tty
, struct cmd_list_element
*c
)
1430 set_input_radix_1 (from_tty
, input_radix_1
);
1434 set_input_radix_1 (int from_tty
, unsigned radix
)
1436 /* We don't currently disallow any input radix except 0 or 1, which don't
1437 make any mathematical sense. In theory, we can deal with any input
1438 radix greater than 1, even if we don't have unique digits for every
1439 value from 0 to radix-1, but in practice we lose on large radix values.
1440 We should either fix the lossage or restrict the radix range more.
1445 input_radix_1
= input_radix
;
1446 error (_("Nonsense input radix ``decimal %u''; input radix unchanged."),
1449 input_radix_1
= input_radix
= radix
;
1452 printf_filtered (_("Input radix now set to decimal %u, hex %x, octal %o.\n"),
1453 radix
, radix
, radix
);
1457 /* The 'set output-radix' command writes to this auxiliary variable.
1458 If the requested radix is valid, OUTPUT_RADIX is updated,
1459 otherwise, it is left unchanged. */
1461 static unsigned output_radix_1
= 10;
1464 set_output_radix (char *args
, int from_tty
, struct cmd_list_element
*c
)
1466 set_output_radix_1 (from_tty
, output_radix_1
);
1470 set_output_radix_1 (int from_tty
, unsigned radix
)
1472 /* Validate the radix and disallow ones that we aren't prepared to
1473 handle correctly, leaving the radix unchanged. */
1477 user_print_options
.output_format
= 'x'; /* hex */
1480 user_print_options
.output_format
= 0; /* decimal */
1483 user_print_options
.output_format
= 'o'; /* octal */
1486 output_radix_1
= output_radix
;
1487 error (_("Unsupported output radix ``decimal %u''; output radix unchanged."),
1490 output_radix_1
= output_radix
= radix
;
1493 printf_filtered (_("Output radix now set to decimal %u, hex %x, octal %o.\n"),
1494 radix
, radix
, radix
);
1498 /* Set both the input and output radix at once. Try to set the output radix
1499 first, since it has the most restrictive range. An radix that is valid as
1500 an output radix is also valid as an input radix.
1502 It may be useful to have an unusual input radix. If the user wishes to
1503 set an input radix that is not valid as an output radix, he needs to use
1504 the 'set input-radix' command. */
1507 set_radix (char *arg
, int from_tty
)
1511 radix
= (arg
== NULL
) ? 10 : parse_and_eval_long (arg
);
1512 set_output_radix_1 (0, radix
);
1513 set_input_radix_1 (0, radix
);
1516 printf_filtered (_("Input and output radices now set to decimal %u, hex %x, octal %o.\n"),
1517 radix
, radix
, radix
);
1521 /* Show both the input and output radices. */
1524 show_radix (char *arg
, int from_tty
)
1528 if (input_radix
== output_radix
)
1530 printf_filtered (_("Input and output radices set to decimal %u, hex %x, octal %o.\n"),
1531 input_radix
, input_radix
, input_radix
);
1535 printf_filtered (_("Input radix set to decimal %u, hex %x, octal %o.\n"),
1536 input_radix
, input_radix
, input_radix
);
1537 printf_filtered (_("Output radix set to decimal %u, hex %x, octal %o.\n"),
1538 output_radix
, output_radix
, output_radix
);
1545 set_print (char *arg
, int from_tty
)
1548 "\"set print\" must be followed by the name of a print subcommand.\n");
1549 help_list (setprintlist
, "set print ", -1, gdb_stdout
);
1553 show_print (char *args
, int from_tty
)
1555 cmd_show_list (showprintlist
, from_tty
, "");
1559 _initialize_valprint (void)
1561 struct cmd_list_element
*c
;
1563 add_prefix_cmd ("print", no_class
, set_print
,
1564 _("Generic command for setting how things print."),
1565 &setprintlist
, "set print ", 0, &setlist
);
1566 add_alias_cmd ("p", "print", no_class
, 1, &setlist
);
1567 /* prefer set print to set prompt */
1568 add_alias_cmd ("pr", "print", no_class
, 1, &setlist
);
1570 add_prefix_cmd ("print", no_class
, show_print
,
1571 _("Generic command for showing print settings."),
1572 &showprintlist
, "show print ", 0, &showlist
);
1573 add_alias_cmd ("p", "print", no_class
, 1, &showlist
);
1574 add_alias_cmd ("pr", "print", no_class
, 1, &showlist
);
1576 add_setshow_uinteger_cmd ("elements", no_class
,
1577 &user_print_options
.print_max
, _("\
1578 Set limit on string chars or array elements to print."), _("\
1579 Show limit on string chars or array elements to print."), _("\
1580 \"set print elements 0\" causes there to be no limit."),
1583 &setprintlist
, &showprintlist
);
1585 add_setshow_boolean_cmd ("null-stop", no_class
,
1586 &user_print_options
.stop_print_at_null
, _("\
1587 Set printing of char arrays to stop at first null char."), _("\
1588 Show printing of char arrays to stop at first null char."), NULL
,
1590 show_stop_print_at_null
,
1591 &setprintlist
, &showprintlist
);
1593 add_setshow_uinteger_cmd ("repeats", no_class
,
1594 &user_print_options
.repeat_count_threshold
, _("\
1595 Set threshold for repeated print elements."), _("\
1596 Show threshold for repeated print elements."), _("\
1597 \"set print repeats 0\" causes all elements to be individually printed."),
1599 show_repeat_count_threshold
,
1600 &setprintlist
, &showprintlist
);
1602 add_setshow_boolean_cmd ("pretty", class_support
,
1603 &user_print_options
.prettyprint_structs
, _("\
1604 Set prettyprinting of structures."), _("\
1605 Show prettyprinting of structures."), NULL
,
1607 show_prettyprint_structs
,
1608 &setprintlist
, &showprintlist
);
1610 add_setshow_boolean_cmd ("union", class_support
,
1611 &user_print_options
.unionprint
, _("\
1612 Set printing of unions interior to structures."), _("\
1613 Show printing of unions interior to structures."), NULL
,
1616 &setprintlist
, &showprintlist
);
1618 add_setshow_boolean_cmd ("array", class_support
,
1619 &user_print_options
.prettyprint_arrays
, _("\
1620 Set prettyprinting of arrays."), _("\
1621 Show prettyprinting of arrays."), NULL
,
1623 show_prettyprint_arrays
,
1624 &setprintlist
, &showprintlist
);
1626 add_setshow_boolean_cmd ("address", class_support
,
1627 &user_print_options
.addressprint
, _("\
1628 Set printing of addresses."), _("\
1629 Show printing of addresses."), NULL
,
1632 &setprintlist
, &showprintlist
);
1634 add_setshow_zuinteger_cmd ("input-radix", class_support
, &input_radix_1
,
1636 Set default input radix for entering numbers."), _("\
1637 Show default input radix for entering numbers."), NULL
,
1640 &setlist
, &showlist
);
1642 add_setshow_zuinteger_cmd ("output-radix", class_support
, &output_radix_1
,
1644 Set default output radix for printing of values."), _("\
1645 Show default output radix for printing of values."), NULL
,
1648 &setlist
, &showlist
);
1650 /* The "set radix" and "show radix" commands are special in that
1651 they are like normal set and show commands but allow two normally
1652 independent variables to be either set or shown with a single
1653 command. So the usual deprecated_add_set_cmd() and [deleted]
1654 add_show_from_set() commands aren't really appropriate. */
1655 /* FIXME: i18n: With the new add_setshow_integer command, that is no
1656 longer true - show can display anything. */
1657 add_cmd ("radix", class_support
, set_radix
, _("\
1658 Set default input and output number radices.\n\
1659 Use 'set input-radix' or 'set output-radix' to independently set each.\n\
1660 Without an argument, sets both radices back to the default value of 10."),
1662 add_cmd ("radix", class_support
, show_radix
, _("\
1663 Show the default input and output number radices.\n\
1664 Use 'show input-radix' or 'show output-radix' to independently show each."),
1667 add_setshow_boolean_cmd ("array-indexes", class_support
,
1668 &user_print_options
.print_array_indexes
, _("\
1669 Set printing of array indexes."), _("\
1670 Show printing of array indexes"), NULL
, NULL
, show_print_array_indexes
,
1671 &setprintlist
, &showprintlist
);