1 /* MIPS-specific support for ELF
2 Copyright (C) 1993-2019 Free Software Foundation, Inc.
4 Most of the information added by Ian Lance Taylor, Cygnus Support,
6 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
7 <mark@codesourcery.com>
8 Traditional MIPS targets support added by Koundinya.K, Dansk Data
9 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
11 This file is part of BFD, the Binary File Descriptor library.
13 This program is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
15 the Free Software Foundation; either version 3 of the License, or
16 (at your option) any later version.
18 This program is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
23 You should have received a copy of the GNU General Public License
24 along with this program; if not, write to the Free Software
25 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
26 MA 02110-1301, USA. */
29 /* This file handles functionality common to the different MIPS ABI's. */
34 #include "libiberty.h"
36 #include "ecoff-bfd.h"
37 #include "elfxx-mips.h"
39 #include "elf-vxworks.h"
42 /* Get the ECOFF swapping routines. */
44 #include "coff/symconst.h"
45 #include "coff/ecoff.h"
46 #include "coff/mips.h"
50 /* Types of TLS GOT entry. */
51 enum mips_got_tls_type
{
58 /* This structure is used to hold information about one GOT entry.
59 There are four types of entry:
61 (1) an absolute address
62 requires: abfd == NULL
65 (2) a SYMBOL + OFFSET address, where SYMBOL is local to an input bfd
66 requires: abfd != NULL, symndx >= 0, tls_type != GOT_TLS_LDM
67 fields: abfd, symndx, d.addend, tls_type
69 (3) a SYMBOL address, where SYMBOL is not local to an input bfd
70 requires: abfd != NULL, symndx == -1
74 requires: abfd != NULL, symndx == 0, tls_type == GOT_TLS_LDM
75 fields: none; there's only one of these per GOT. */
78 /* One input bfd that needs the GOT entry. */
80 /* The index of the symbol, as stored in the relocation r_info, if
81 we have a local symbol; -1 otherwise. */
85 /* If abfd == NULL, an address that must be stored in the got. */
87 /* If abfd != NULL && symndx != -1, the addend of the relocation
88 that should be added to the symbol value. */
90 /* If abfd != NULL && symndx == -1, the hash table entry
91 corresponding to a symbol in the GOT. The symbol's entry
92 is in the local area if h->global_got_area is GGA_NONE,
93 otherwise it is in the global area. */
94 struct mips_elf_link_hash_entry
*h
;
97 /* The TLS type of this GOT entry. An LDM GOT entry will be a local
98 symbol entry with r_symndx == 0. */
99 unsigned char tls_type
;
101 /* True if we have filled in the GOT contents for a TLS entry,
102 and created the associated relocations. */
103 unsigned char tls_initialized
;
105 /* The offset from the beginning of the .got section to the entry
106 corresponding to this symbol+addend. If it's a global symbol
107 whose offset is yet to be decided, it's going to be -1. */
111 /* This structure represents a GOT page reference from an input bfd.
112 Each instance represents a symbol + ADDEND, where the representation
113 of the symbol depends on whether it is local to the input bfd.
114 If it is, then SYMNDX >= 0, and the symbol has index SYMNDX in U.ABFD.
115 Otherwise, SYMNDX < 0 and U.H points to the symbol's hash table entry.
117 Page references with SYMNDX >= 0 always become page references
118 in the output. Page references with SYMNDX < 0 only become page
119 references if the symbol binds locally; in other cases, the page
120 reference decays to a global GOT reference. */
121 struct mips_got_page_ref
126 struct mips_elf_link_hash_entry
*h
;
132 /* This structure describes a range of addends: [MIN_ADDEND, MAX_ADDEND].
133 The structures form a non-overlapping list that is sorted by increasing
135 struct mips_got_page_range
137 struct mips_got_page_range
*next
;
138 bfd_signed_vma min_addend
;
139 bfd_signed_vma max_addend
;
142 /* This structure describes the range of addends that are applied to page
143 relocations against a given section. */
144 struct mips_got_page_entry
146 /* The section that these entries are based on. */
148 /* The ranges for this page entry. */
149 struct mips_got_page_range
*ranges
;
150 /* The maximum number of page entries needed for RANGES. */
154 /* This structure is used to hold .got information when linking. */
158 /* The number of global .got entries. */
159 unsigned int global_gotno
;
160 /* The number of global .got entries that are in the GGA_RELOC_ONLY area. */
161 unsigned int reloc_only_gotno
;
162 /* The number of .got slots used for TLS. */
163 unsigned int tls_gotno
;
164 /* The first unused TLS .got entry. Used only during
165 mips_elf_initialize_tls_index. */
166 unsigned int tls_assigned_gotno
;
167 /* The number of local .got entries, eventually including page entries. */
168 unsigned int local_gotno
;
169 /* The maximum number of page entries needed. */
170 unsigned int page_gotno
;
171 /* The number of relocations needed for the GOT entries. */
173 /* The first unused local .got entry. */
174 unsigned int assigned_low_gotno
;
175 /* The last unused local .got entry. */
176 unsigned int assigned_high_gotno
;
177 /* A hash table holding members of the got. */
178 struct htab
*got_entries
;
179 /* A hash table holding mips_got_page_ref structures. */
180 struct htab
*got_page_refs
;
181 /* A hash table of mips_got_page_entry structures. */
182 struct htab
*got_page_entries
;
183 /* In multi-got links, a pointer to the next got (err, rather, most
184 of the time, it points to the previous got). */
185 struct mips_got_info
*next
;
188 /* Structure passed when merging bfds' gots. */
190 struct mips_elf_got_per_bfd_arg
192 /* The output bfd. */
194 /* The link information. */
195 struct bfd_link_info
*info
;
196 /* A pointer to the primary got, i.e., the one that's going to get
197 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
199 struct mips_got_info
*primary
;
200 /* A non-primary got we're trying to merge with other input bfd's
202 struct mips_got_info
*current
;
203 /* The maximum number of got entries that can be addressed with a
205 unsigned int max_count
;
206 /* The maximum number of page entries needed by each got. */
207 unsigned int max_pages
;
208 /* The total number of global entries which will live in the
209 primary got and be automatically relocated. This includes
210 those not referenced by the primary GOT but included in
212 unsigned int global_count
;
215 /* A structure used to pass information to htab_traverse callbacks
216 when laying out the GOT. */
218 struct mips_elf_traverse_got_arg
220 struct bfd_link_info
*info
;
221 struct mips_got_info
*g
;
225 struct _mips_elf_section_data
227 struct bfd_elf_section_data elf
;
234 #define mips_elf_section_data(sec) \
235 ((struct _mips_elf_section_data *) elf_section_data (sec))
237 #define is_mips_elf(bfd) \
238 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
239 && elf_tdata (bfd) != NULL \
240 && elf_object_id (bfd) == MIPS_ELF_DATA)
242 /* The ABI says that every symbol used by dynamic relocations must have
243 a global GOT entry. Among other things, this provides the dynamic
244 linker with a free, directly-indexed cache. The GOT can therefore
245 contain symbols that are not referenced by GOT relocations themselves
246 (in other words, it may have symbols that are not referenced by things
247 like R_MIPS_GOT16 and R_MIPS_GOT_PAGE).
249 GOT relocations are less likely to overflow if we put the associated
250 GOT entries towards the beginning. We therefore divide the global
251 GOT entries into two areas: "normal" and "reloc-only". Entries in
252 the first area can be used for both dynamic relocations and GP-relative
253 accesses, while those in the "reloc-only" area are for dynamic
256 These GGA_* ("Global GOT Area") values are organised so that lower
257 values are more general than higher values. Also, non-GGA_NONE
258 values are ordered by the position of the area in the GOT. */
260 #define GGA_RELOC_ONLY 1
263 /* Information about a non-PIC interface to a PIC function. There are
264 two ways of creating these interfaces. The first is to add:
267 addiu $25,$25,%lo(func)
269 immediately before a PIC function "func". The second is to add:
273 addiu $25,$25,%lo(func)
275 to a separate trampoline section.
277 Stubs of the first kind go in a new section immediately before the
278 target function. Stubs of the second kind go in a single section
279 pointed to by the hash table's "strampoline" field. */
280 struct mips_elf_la25_stub
{
281 /* The generated section that contains this stub. */
282 asection
*stub_section
;
284 /* The offset of the stub from the start of STUB_SECTION. */
287 /* One symbol for the original function. Its location is available
288 in H->root.root.u.def. */
289 struct mips_elf_link_hash_entry
*h
;
292 /* Macros for populating a mips_elf_la25_stub. */
294 #define LA25_LUI(VAL) (0x3c190000 | (VAL)) /* lui t9,VAL */
295 #define LA25_J(VAL) (0x08000000 | (((VAL) >> 2) & 0x3ffffff)) /* j VAL */
296 #define LA25_BC(VAL) (0xc8000000 | (((VAL) >> 2) & 0x3ffffff)) /* bc VAL */
297 #define LA25_ADDIU(VAL) (0x27390000 | (VAL)) /* addiu t9,t9,VAL */
298 #define LA25_LUI_MICROMIPS(VAL) \
299 (0x41b90000 | (VAL)) /* lui t9,VAL */
300 #define LA25_J_MICROMIPS(VAL) \
301 (0xd4000000 | (((VAL) >> 1) & 0x3ffffff)) /* j VAL */
302 #define LA25_ADDIU_MICROMIPS(VAL) \
303 (0x33390000 | (VAL)) /* addiu t9,t9,VAL */
305 /* This structure is passed to mips_elf_sort_hash_table_f when sorting
306 the dynamic symbols. */
308 struct mips_elf_hash_sort_data
310 /* The symbol in the global GOT with the lowest dynamic symbol table
312 struct elf_link_hash_entry
*low
;
313 /* The least dynamic symbol table index corresponding to a non-TLS
314 symbol with a GOT entry. */
315 bfd_size_type min_got_dynindx
;
316 /* The greatest dynamic symbol table index corresponding to a symbol
317 with a GOT entry that is not referenced (e.g., a dynamic symbol
318 with dynamic relocations pointing to it from non-primary GOTs). */
319 bfd_size_type max_unref_got_dynindx
;
320 /* The greatest dynamic symbol table index corresponding to a local
322 bfd_size_type max_local_dynindx
;
323 /* The greatest dynamic symbol table index corresponding to an external
324 symbol without a GOT entry. */
325 bfd_size_type max_non_got_dynindx
;
326 /* If non-NULL, output BFD for .MIPS.xhash finalization. */
328 /* If non-NULL, pointer to contents of .MIPS.xhash for filling in
329 real final dynindx. */
333 /* We make up to two PLT entries if needed, one for standard MIPS code
334 and one for compressed code, either a MIPS16 or microMIPS one. We
335 keep a separate record of traditional lazy-binding stubs, for easier
340 /* Traditional SVR4 stub offset, or -1 if none. */
343 /* Standard PLT entry offset, or -1 if none. */
346 /* Compressed PLT entry offset, or -1 if none. */
349 /* The corresponding .got.plt index, or -1 if none. */
350 bfd_vma gotplt_index
;
352 /* Whether we need a standard PLT entry. */
353 unsigned int need_mips
: 1;
355 /* Whether we need a compressed PLT entry. */
356 unsigned int need_comp
: 1;
359 /* The MIPS ELF linker needs additional information for each symbol in
360 the global hash table. */
362 struct mips_elf_link_hash_entry
364 struct elf_link_hash_entry root
;
366 /* External symbol information. */
369 /* The la25 stub we have created for ths symbol, if any. */
370 struct mips_elf_la25_stub
*la25_stub
;
372 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
374 unsigned int possibly_dynamic_relocs
;
376 /* If there is a stub that 32 bit functions should use to call this
377 16 bit function, this points to the section containing the stub. */
380 /* If there is a stub that 16 bit functions should use to call this
381 32 bit function, this points to the section containing the stub. */
384 /* This is like the call_stub field, but it is used if the function
385 being called returns a floating point value. */
386 asection
*call_fp_stub
;
388 /* If non-zero, location in .MIPS.xhash to write real final dynindx. */
389 bfd_vma mipsxhash_loc
;
391 /* The highest GGA_* value that satisfies all references to this symbol. */
392 unsigned int global_got_area
: 2;
394 /* True if all GOT relocations against this symbol are for calls. This is
395 a looser condition than no_fn_stub below, because there may be other
396 non-call non-GOT relocations against the symbol. */
397 unsigned int got_only_for_calls
: 1;
399 /* True if one of the relocations described by possibly_dynamic_relocs
400 is against a readonly section. */
401 unsigned int readonly_reloc
: 1;
403 /* True if there is a relocation against this symbol that must be
404 resolved by the static linker (in other words, if the relocation
405 cannot possibly be made dynamic). */
406 unsigned int has_static_relocs
: 1;
408 /* True if we must not create a .MIPS.stubs entry for this symbol.
409 This is set, for example, if there are relocations related to
410 taking the function's address, i.e. any but R_MIPS_CALL*16 ones.
411 See "MIPS ABI Supplement, 3rd Edition", p. 4-20. */
412 unsigned int no_fn_stub
: 1;
414 /* Whether we need the fn_stub; this is true if this symbol appears
415 in any relocs other than a 16 bit call. */
416 unsigned int need_fn_stub
: 1;
418 /* True if this symbol is referenced by branch relocations from
419 any non-PIC input file. This is used to determine whether an
420 la25 stub is required. */
421 unsigned int has_nonpic_branches
: 1;
423 /* Does this symbol need a traditional MIPS lazy-binding stub
424 (as opposed to a PLT entry)? */
425 unsigned int needs_lazy_stub
: 1;
427 /* Does this symbol resolve to a PLT entry? */
428 unsigned int use_plt_entry
: 1;
431 /* MIPS ELF linker hash table. */
433 struct mips_elf_link_hash_table
435 struct elf_link_hash_table root
;
437 /* The number of .rtproc entries. */
438 bfd_size_type procedure_count
;
440 /* The size of the .compact_rel section (if SGI_COMPAT). */
441 bfd_size_type compact_rel_size
;
443 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic entry
444 is set to the address of __rld_obj_head as in IRIX5 and IRIX6. */
445 bfd_boolean use_rld_obj_head
;
447 /* The __rld_map or __rld_obj_head symbol. */
448 struct elf_link_hash_entry
*rld_symbol
;
450 /* This is set if we see any mips16 stub sections. */
451 bfd_boolean mips16_stubs_seen
;
453 /* True if we can generate copy relocs and PLTs. */
454 bfd_boolean use_plts_and_copy_relocs
;
456 /* True if we can only use 32-bit microMIPS instructions. */
459 /* True if we suppress checks for invalid branches between ISA modes. */
460 bfd_boolean ignore_branch_isa
;
462 /* True if we are targetting R6 compact branches. */
463 bfd_boolean compact_branches
;
465 /* True if we're generating code for VxWorks. */
466 bfd_boolean is_vxworks
;
468 /* True if we already reported the small-data section overflow. */
469 bfd_boolean small_data_overflow_reported
;
471 /* True if we use the special `__gnu_absolute_zero' symbol. */
472 bfd_boolean use_absolute_zero
;
474 /* True if we have been configured for a GNU target. */
475 bfd_boolean gnu_target
;
477 /* Shortcuts to some dynamic sections, or NULL if they are not
482 /* The master GOT information. */
483 struct mips_got_info
*got_info
;
485 /* The global symbol in the GOT with the lowest index in the dynamic
487 struct elf_link_hash_entry
*global_gotsym
;
489 /* The size of the PLT header in bytes. */
490 bfd_vma plt_header_size
;
492 /* The size of a standard PLT entry in bytes. */
493 bfd_vma plt_mips_entry_size
;
495 /* The size of a compressed PLT entry in bytes. */
496 bfd_vma plt_comp_entry_size
;
498 /* The offset of the next standard PLT entry to create. */
499 bfd_vma plt_mips_offset
;
501 /* The offset of the next compressed PLT entry to create. */
502 bfd_vma plt_comp_offset
;
504 /* The index of the next .got.plt entry to create. */
505 bfd_vma plt_got_index
;
507 /* The number of functions that need a lazy-binding stub. */
508 bfd_vma lazy_stub_count
;
510 /* The size of a function stub entry in bytes. */
511 bfd_vma function_stub_size
;
513 /* The number of reserved entries at the beginning of the GOT. */
514 unsigned int reserved_gotno
;
516 /* The section used for mips_elf_la25_stub trampolines.
517 See the comment above that structure for details. */
518 asection
*strampoline
;
520 /* A table of mips_elf_la25_stubs, indexed by (input_section, offset)
524 /* A function FN (NAME, IS, OS) that creates a new input section
525 called NAME and links it to output section OS. If IS is nonnull,
526 the new section should go immediately before it, otherwise it
527 should go at the (current) beginning of OS.
529 The function returns the new section on success, otherwise it
531 asection
*(*add_stub_section
) (const char *, asection
*, asection
*);
533 /* Small local sym cache. */
534 struct sym_cache sym_cache
;
536 /* Is the PLT header compressed? */
537 unsigned int plt_header_is_comp
: 1;
540 /* Get the MIPS ELF linker hash table from a link_info structure. */
542 #define mips_elf_hash_table(p) \
543 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
544 == MIPS_ELF_DATA ? ((struct mips_elf_link_hash_table *) ((p)->hash)) : NULL)
546 /* A structure used to communicate with htab_traverse callbacks. */
547 struct mips_htab_traverse_info
549 /* The usual link-wide information. */
550 struct bfd_link_info
*info
;
553 /* Starts off FALSE and is set to TRUE if the link should be aborted. */
557 /* MIPS ELF private object data. */
559 struct mips_elf_obj_tdata
561 /* Generic ELF private object data. */
562 struct elf_obj_tdata root
;
564 /* Input BFD providing Tag_GNU_MIPS_ABI_FP attribute for output. */
567 /* Input BFD providing Tag_GNU_MIPS_ABI_MSA attribute for output. */
570 /* The abiflags for this object. */
571 Elf_Internal_ABIFlags_v0 abiflags
;
572 bfd_boolean abiflags_valid
;
574 /* The GOT requirements of input bfds. */
575 struct mips_got_info
*got
;
577 /* Used by _bfd_mips_elf_find_nearest_line. The structure could be
578 included directly in this one, but there's no point to wasting
579 the memory just for the infrequently called find_nearest_line. */
580 struct mips_elf_find_line
*find_line_info
;
582 /* An array of stub sections indexed by symbol number. */
583 asection
**local_stubs
;
584 asection
**local_call_stubs
;
586 /* The Irix 5 support uses two virtual sections, which represent
587 text/data symbols defined in dynamic objects. */
588 asymbol
*elf_data_symbol
;
589 asymbol
*elf_text_symbol
;
590 asection
*elf_data_section
;
591 asection
*elf_text_section
;
594 /* Get MIPS ELF private object data from BFD's tdata. */
596 #define mips_elf_tdata(bfd) \
597 ((struct mips_elf_obj_tdata *) (bfd)->tdata.any)
599 #define TLS_RELOC_P(r_type) \
600 (r_type == R_MIPS_TLS_DTPMOD32 \
601 || r_type == R_MIPS_TLS_DTPMOD64 \
602 || r_type == R_MIPS_TLS_DTPREL32 \
603 || r_type == R_MIPS_TLS_DTPREL64 \
604 || r_type == R_MIPS_TLS_GD \
605 || r_type == R_MIPS_TLS_LDM \
606 || r_type == R_MIPS_TLS_DTPREL_HI16 \
607 || r_type == R_MIPS_TLS_DTPREL_LO16 \
608 || r_type == R_MIPS_TLS_GOTTPREL \
609 || r_type == R_MIPS_TLS_TPREL32 \
610 || r_type == R_MIPS_TLS_TPREL64 \
611 || r_type == R_MIPS_TLS_TPREL_HI16 \
612 || r_type == R_MIPS_TLS_TPREL_LO16 \
613 || r_type == R_MIPS16_TLS_GD \
614 || r_type == R_MIPS16_TLS_LDM \
615 || r_type == R_MIPS16_TLS_DTPREL_HI16 \
616 || r_type == R_MIPS16_TLS_DTPREL_LO16 \
617 || r_type == R_MIPS16_TLS_GOTTPREL \
618 || r_type == R_MIPS16_TLS_TPREL_HI16 \
619 || r_type == R_MIPS16_TLS_TPREL_LO16 \
620 || r_type == R_MICROMIPS_TLS_GD \
621 || r_type == R_MICROMIPS_TLS_LDM \
622 || r_type == R_MICROMIPS_TLS_DTPREL_HI16 \
623 || r_type == R_MICROMIPS_TLS_DTPREL_LO16 \
624 || r_type == R_MICROMIPS_TLS_GOTTPREL \
625 || r_type == R_MICROMIPS_TLS_TPREL_HI16 \
626 || r_type == R_MICROMIPS_TLS_TPREL_LO16)
628 /* Structure used to pass information to mips_elf_output_extsym. */
633 struct bfd_link_info
*info
;
634 struct ecoff_debug_info
*debug
;
635 const struct ecoff_debug_swap
*swap
;
639 /* The names of the runtime procedure table symbols used on IRIX5. */
641 static const char * const mips_elf_dynsym_rtproc_names
[] =
644 "_procedure_string_table",
645 "_procedure_table_size",
649 /* These structures are used to generate the .compact_rel section on
654 unsigned long id1
; /* Always one? */
655 unsigned long num
; /* Number of compact relocation entries. */
656 unsigned long id2
; /* Always two? */
657 unsigned long offset
; /* The file offset of the first relocation. */
658 unsigned long reserved0
; /* Zero? */
659 unsigned long reserved1
; /* Zero? */
668 bfd_byte reserved0
[4];
669 bfd_byte reserved1
[4];
670 } Elf32_External_compact_rel
;
674 unsigned int ctype
: 1; /* 1: long 0: short format. See below. */
675 unsigned int rtype
: 4; /* Relocation types. See below. */
676 unsigned int dist2to
: 8;
677 unsigned int relvaddr
: 19; /* (VADDR - vaddr of the previous entry)/ 4 */
678 unsigned long konst
; /* KONST field. See below. */
679 unsigned long vaddr
; /* VADDR to be relocated. */
684 unsigned int ctype
: 1; /* 1: long 0: short format. See below. */
685 unsigned int rtype
: 4; /* Relocation types. See below. */
686 unsigned int dist2to
: 8;
687 unsigned int relvaddr
: 19; /* (VADDR - vaddr of the previous entry)/ 4 */
688 unsigned long konst
; /* KONST field. See below. */
696 } Elf32_External_crinfo
;
702 } Elf32_External_crinfo2
;
704 /* These are the constants used to swap the bitfields in a crinfo. */
706 #define CRINFO_CTYPE (0x1)
707 #define CRINFO_CTYPE_SH (31)
708 #define CRINFO_RTYPE (0xf)
709 #define CRINFO_RTYPE_SH (27)
710 #define CRINFO_DIST2TO (0xff)
711 #define CRINFO_DIST2TO_SH (19)
712 #define CRINFO_RELVADDR (0x7ffff)
713 #define CRINFO_RELVADDR_SH (0)
715 /* A compact relocation info has long (3 words) or short (2 words)
716 formats. A short format doesn't have VADDR field and relvaddr
717 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
718 #define CRF_MIPS_LONG 1
719 #define CRF_MIPS_SHORT 0
721 /* There are 4 types of compact relocation at least. The value KONST
722 has different meaning for each type:
725 CT_MIPS_REL32 Address in data
726 CT_MIPS_WORD Address in word (XXX)
727 CT_MIPS_GPHI_LO GP - vaddr
728 CT_MIPS_JMPAD Address to jump
731 #define CRT_MIPS_REL32 0xa
732 #define CRT_MIPS_WORD 0xb
733 #define CRT_MIPS_GPHI_LO 0xc
734 #define CRT_MIPS_JMPAD 0xd
736 #define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
737 #define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
738 #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
739 #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
741 /* The structure of the runtime procedure descriptor created by the
742 loader for use by the static exception system. */
744 typedef struct runtime_pdr
{
745 bfd_vma adr
; /* Memory address of start of procedure. */
746 long regmask
; /* Save register mask. */
747 long regoffset
; /* Save register offset. */
748 long fregmask
; /* Save floating point register mask. */
749 long fregoffset
; /* Save floating point register offset. */
750 long frameoffset
; /* Frame size. */
751 short framereg
; /* Frame pointer register. */
752 short pcreg
; /* Offset or reg of return pc. */
753 long irpss
; /* Index into the runtime string table. */
755 struct exception_info
*exception_info
;/* Pointer to exception array. */
757 #define cbRPDR sizeof (RPDR)
758 #define rpdNil ((pRPDR) 0)
760 static struct mips_got_entry
*mips_elf_create_local_got_entry
761 (bfd
*, struct bfd_link_info
*, bfd
*, bfd_vma
, unsigned long,
762 struct mips_elf_link_hash_entry
*, int);
763 static bfd_boolean mips_elf_sort_hash_table_f
764 (struct mips_elf_link_hash_entry
*, void *);
765 static bfd_vma mips_elf_high
767 static bfd_boolean mips_elf_create_dynamic_relocation
768 (bfd
*, struct bfd_link_info
*, const Elf_Internal_Rela
*,
769 struct mips_elf_link_hash_entry
*, asection
*, bfd_vma
,
770 bfd_vma
*, asection
*);
771 static bfd_vma mips_elf_adjust_gp
772 (bfd
*, struct mips_got_info
*, bfd
*);
774 /* This will be used when we sort the dynamic relocation records. */
775 static bfd
*reldyn_sorting_bfd
;
777 /* True if ABFD is for CPUs with load interlocking that include
778 non-MIPS1 CPUs and R3900. */
779 #define LOAD_INTERLOCKS_P(abfd) \
780 ( ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) != E_MIPS_ARCH_1) \
781 || ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_3900))
783 /* True if ABFD is for CPUs that are faster if JAL is converted to BAL.
784 This should be safe for all architectures. We enable this predicate
785 for RM9000 for now. */
786 #define JAL_TO_BAL_P(abfd) \
787 ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_9000)
789 /* True if ABFD is for CPUs that are faster if JALR is converted to BAL.
790 This should be safe for all architectures. We enable this predicate for
792 #define JALR_TO_BAL_P(abfd) 1
794 /* True if ABFD is for CPUs that are faster if JR is converted to B.
795 This should be safe for all architectures. We enable this predicate for
797 #define JR_TO_B_P(abfd) 1
799 /* True if ABFD is a PIC object. */
800 #define PIC_OBJECT_P(abfd) \
801 ((elf_elfheader (abfd)->e_flags & EF_MIPS_PIC) != 0)
803 /* Nonzero if ABFD is using the O32 ABI. */
804 #define ABI_O32_P(abfd) \
805 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
807 /* Nonzero if ABFD is using the N32 ABI. */
808 #define ABI_N32_P(abfd) \
809 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
811 /* Nonzero if ABFD is using the N64 ABI. */
812 #define ABI_64_P(abfd) \
813 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
815 /* Nonzero if ABFD is using NewABI conventions. */
816 #define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
818 /* Nonzero if ABFD has microMIPS code. */
819 #define MICROMIPS_P(abfd) \
820 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS) != 0)
822 /* Nonzero if ABFD is MIPS R6. */
823 #define MIPSR6_P(abfd) \
824 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6 \
825 || (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R6)
827 /* The IRIX compatibility level we are striving for. */
828 #define IRIX_COMPAT(abfd) \
829 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
831 /* Whether we are trying to be compatible with IRIX at all. */
832 #define SGI_COMPAT(abfd) \
833 (IRIX_COMPAT (abfd) != ict_none)
835 /* The name of the options section. */
836 #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
837 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
839 /* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
840 Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */
841 #define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
842 (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
844 /* True if NAME is the recognized name of any SHT_MIPS_ABIFLAGS section. */
845 #define MIPS_ELF_ABIFLAGS_SECTION_NAME_P(NAME) \
846 (strcmp (NAME, ".MIPS.abiflags") == 0)
848 /* Whether the section is readonly. */
849 #define MIPS_ELF_READONLY_SECTION(sec) \
850 ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) \
851 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
853 /* The name of the stub section. */
854 #define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
856 /* The size of an external REL relocation. */
857 #define MIPS_ELF_REL_SIZE(abfd) \
858 (get_elf_backend_data (abfd)->s->sizeof_rel)
860 /* The size of an external RELA relocation. */
861 #define MIPS_ELF_RELA_SIZE(abfd) \
862 (get_elf_backend_data (abfd)->s->sizeof_rela)
864 /* The size of an external dynamic table entry. */
865 #define MIPS_ELF_DYN_SIZE(abfd) \
866 (get_elf_backend_data (abfd)->s->sizeof_dyn)
868 /* The size of a GOT entry. */
869 #define MIPS_ELF_GOT_SIZE(abfd) \
870 (get_elf_backend_data (abfd)->s->arch_size / 8)
872 /* The size of the .rld_map section. */
873 #define MIPS_ELF_RLD_MAP_SIZE(abfd) \
874 (get_elf_backend_data (abfd)->s->arch_size / 8)
876 /* The size of a symbol-table entry. */
877 #define MIPS_ELF_SYM_SIZE(abfd) \
878 (get_elf_backend_data (abfd)->s->sizeof_sym)
880 /* The default alignment for sections, as a power of two. */
881 #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
882 (get_elf_backend_data (abfd)->s->log_file_align)
884 /* Get word-sized data. */
885 #define MIPS_ELF_GET_WORD(abfd, ptr) \
886 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
888 /* Put out word-sized data. */
889 #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
891 ? bfd_put_64 (abfd, val, ptr) \
892 : bfd_put_32 (abfd, val, ptr))
894 /* The opcode for word-sized loads (LW or LD). */
895 #define MIPS_ELF_LOAD_WORD(abfd) \
896 (ABI_64_P (abfd) ? 0xdc000000 : 0x8c000000)
898 /* Add a dynamic symbol table-entry. */
899 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
900 _bfd_elf_add_dynamic_entry (info, tag, val)
902 #define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
903 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (abfd, rtype, rela))
905 /* The name of the dynamic relocation section. */
906 #define MIPS_ELF_REL_DYN_NAME(INFO) \
907 (mips_elf_hash_table (INFO)->is_vxworks ? ".rela.dyn" : ".rel.dyn")
909 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
910 from smaller values. Start with zero, widen, *then* decrement. */
911 #define MINUS_ONE (((bfd_vma)0) - 1)
912 #define MINUS_TWO (((bfd_vma)0) - 2)
914 /* The value to write into got[1] for SVR4 targets, to identify it is
915 a GNU object. The dynamic linker can then use got[1] to store the
917 #define MIPS_ELF_GNU_GOT1_MASK(abfd) \
918 ((bfd_vma) 1 << (ABI_64_P (abfd) ? 63 : 31))
920 /* The offset of $gp from the beginning of the .got section. */
921 #define ELF_MIPS_GP_OFFSET(INFO) \
922 (mips_elf_hash_table (INFO)->is_vxworks ? 0x0 : 0x7ff0)
924 /* The maximum size of the GOT for it to be addressable using 16-bit
926 #define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff)
928 /* Instructions which appear in a stub. */
929 #define STUB_LW(abfd) \
931 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
932 : 0x8f998010)) /* lw t9,0x8010(gp) */
933 #define STUB_MOVE 0x03e07825 /* or t7,ra,zero */
934 #define STUB_LUI(VAL) (0x3c180000 + (VAL)) /* lui t8,VAL */
935 #define STUB_JALR 0x0320f809 /* jalr ra,t9 */
936 #define STUB_JALRC 0xf8190000 /* jalrc ra,t9 */
937 #define STUB_ORI(VAL) (0x37180000 + (VAL)) /* ori t8,t8,VAL */
938 #define STUB_LI16U(VAL) (0x34180000 + (VAL)) /* ori t8,zero,VAL unsigned */
939 #define STUB_LI16S(abfd, VAL) \
941 ? (0x64180000 + (VAL)) /* daddiu t8,zero,VAL sign extended */ \
942 : (0x24180000 + (VAL)))) /* addiu t8,zero,VAL sign extended */
944 /* Likewise for the microMIPS ASE. */
945 #define STUB_LW_MICROMIPS(abfd) \
947 ? 0xdf3c8010 /* ld t9,0x8010(gp) */ \
948 : 0xff3c8010) /* lw t9,0x8010(gp) */
949 #define STUB_MOVE_MICROMIPS 0x0dff /* move t7,ra */
950 #define STUB_MOVE32_MICROMIPS 0x001f7a90 /* or t7,ra,zero */
951 #define STUB_LUI_MICROMIPS(VAL) \
952 (0x41b80000 + (VAL)) /* lui t8,VAL */
953 #define STUB_JALR_MICROMIPS 0x45d9 /* jalr t9 */
954 #define STUB_JALR32_MICROMIPS 0x03f90f3c /* jalr ra,t9 */
955 #define STUB_ORI_MICROMIPS(VAL) \
956 (0x53180000 + (VAL)) /* ori t8,t8,VAL */
957 #define STUB_LI16U_MICROMIPS(VAL) \
958 (0x53000000 + (VAL)) /* ori t8,zero,VAL unsigned */
959 #define STUB_LI16S_MICROMIPS(abfd, VAL) \
961 ? 0x5f000000 + (VAL) /* daddiu t8,zero,VAL sign extended */ \
962 : 0x33000000 + (VAL)) /* addiu t8,zero,VAL sign extended */
964 #define MIPS_FUNCTION_STUB_NORMAL_SIZE 16
965 #define MIPS_FUNCTION_STUB_BIG_SIZE 20
966 #define MICROMIPS_FUNCTION_STUB_NORMAL_SIZE 12
967 #define MICROMIPS_FUNCTION_STUB_BIG_SIZE 16
968 #define MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE 16
969 #define MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE 20
971 /* The name of the dynamic interpreter. This is put in the .interp
974 #define ELF_DYNAMIC_INTERPRETER(abfd) \
975 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
976 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
977 : "/usr/lib/libc.so.1")
980 #define MNAME(bfd,pre,pos) \
981 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
982 #define ELF_R_SYM(bfd, i) \
983 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
984 #define ELF_R_TYPE(bfd, i) \
985 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
986 #define ELF_R_INFO(bfd, s, t) \
987 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
989 #define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
990 #define ELF_R_SYM(bfd, i) \
992 #define ELF_R_TYPE(bfd, i) \
994 #define ELF_R_INFO(bfd, s, t) \
995 (ELF32_R_INFO (s, t))
998 /* The mips16 compiler uses a couple of special sections to handle
999 floating point arguments.
1001 Section names that look like .mips16.fn.FNNAME contain stubs that
1002 copy floating point arguments from the fp regs to the gp regs and
1003 then jump to FNNAME. If any 32 bit function calls FNNAME, the
1004 call should be redirected to the stub instead. If no 32 bit
1005 function calls FNNAME, the stub should be discarded. We need to
1006 consider any reference to the function, not just a call, because
1007 if the address of the function is taken we will need the stub,
1008 since the address might be passed to a 32 bit function.
1010 Section names that look like .mips16.call.FNNAME contain stubs
1011 that copy floating point arguments from the gp regs to the fp
1012 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
1013 then any 16 bit function that calls FNNAME should be redirected
1014 to the stub instead. If FNNAME is not a 32 bit function, the
1015 stub should be discarded.
1017 .mips16.call.fp.FNNAME sections are similar, but contain stubs
1018 which call FNNAME and then copy the return value from the fp regs
1019 to the gp regs. These stubs store the return value in $18 while
1020 calling FNNAME; any function which might call one of these stubs
1021 must arrange to save $18 around the call. (This case is not
1022 needed for 32 bit functions that call 16 bit functions, because
1023 16 bit functions always return floating point values in both
1026 Note that in all cases FNNAME might be defined statically.
1027 Therefore, FNNAME is not used literally. Instead, the relocation
1028 information will indicate which symbol the section is for.
1030 We record any stubs that we find in the symbol table. */
1032 #define FN_STUB ".mips16.fn."
1033 #define CALL_STUB ".mips16.call."
1034 #define CALL_FP_STUB ".mips16.call.fp."
1036 #define FN_STUB_P(name) CONST_STRNEQ (name, FN_STUB)
1037 #define CALL_STUB_P(name) CONST_STRNEQ (name, CALL_STUB)
1038 #define CALL_FP_STUB_P(name) CONST_STRNEQ (name, CALL_FP_STUB)
1040 /* The format of the first PLT entry in an O32 executable. */
1041 static const bfd_vma mips_o32_exec_plt0_entry
[] =
1043 0x3c1c0000, /* lui $28, %hi(&GOTPLT[0]) */
1044 0x8f990000, /* lw $25, %lo(&GOTPLT[0])($28) */
1045 0x279c0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
1046 0x031cc023, /* subu $24, $24, $28 */
1047 0x03e07825, /* or t7, ra, zero */
1048 0x0018c082, /* srl $24, $24, 2 */
1049 0x0320f809, /* jalr $25 */
1050 0x2718fffe /* subu $24, $24, 2 */
1053 /* The format of the first PLT entry in an O32 executable using compact
1055 static const bfd_vma mipsr6_o32_exec_plt0_entry_compact
[] =
1057 0x3c1c0000, /* lui $28, %hi(&GOTPLT[0]) */
1058 0x8f990000, /* lw $25, %lo(&GOTPLT[0])($28) */
1059 0x279c0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
1060 0x031cc023, /* subu $24, $24, $28 */
1061 0x03e07821, /* move $15, $31 # 32-bit move (addu) */
1062 0x0018c082, /* srl $24, $24, 2 */
1063 0x2718fffe, /* subu $24, $24, 2 */
1064 0xf8190000 /* jalrc $25 */
1067 /* The format of the first PLT entry in an N32 executable. Different
1068 because gp ($28) is not available; we use t2 ($14) instead. */
1069 static const bfd_vma mips_n32_exec_plt0_entry
[] =
1071 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1072 0x8dd90000, /* lw $25, %lo(&GOTPLT[0])($14) */
1073 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1074 0x030ec023, /* subu $24, $24, $14 */
1075 0x03e07825, /* or t7, ra, zero */
1076 0x0018c082, /* srl $24, $24, 2 */
1077 0x0320f809, /* jalr $25 */
1078 0x2718fffe /* subu $24, $24, 2 */
1081 /* The format of the first PLT entry in an N32 executable using compact
1082 jumps. Different because gp ($28) is not available; we use t2 ($14)
1084 static const bfd_vma mipsr6_n32_exec_plt0_entry_compact
[] =
1086 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1087 0x8dd90000, /* lw $25, %lo(&GOTPLT[0])($14) */
1088 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1089 0x030ec023, /* subu $24, $24, $14 */
1090 0x03e07821, /* move $15, $31 # 32-bit move (addu) */
1091 0x0018c082, /* srl $24, $24, 2 */
1092 0x2718fffe, /* subu $24, $24, 2 */
1093 0xf8190000 /* jalrc $25 */
1096 /* The format of the first PLT entry in an N64 executable. Different
1097 from N32 because of the increased size of GOT entries. */
1098 static const bfd_vma mips_n64_exec_plt0_entry
[] =
1100 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1101 0xddd90000, /* ld $25, %lo(&GOTPLT[0])($14) */
1102 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1103 0x030ec023, /* subu $24, $24, $14 */
1104 0x03e07825, /* or t7, ra, zero */
1105 0x0018c0c2, /* srl $24, $24, 3 */
1106 0x0320f809, /* jalr $25 */
1107 0x2718fffe /* subu $24, $24, 2 */
1110 /* The format of the first PLT entry in an N64 executable using compact
1111 jumps. Different from N32 because of the increased size of GOT
1113 static const bfd_vma mipsr6_n64_exec_plt0_entry_compact
[] =
1115 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1116 0xddd90000, /* ld $25, %lo(&GOTPLT[0])($14) */
1117 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1118 0x030ec023, /* subu $24, $24, $14 */
1119 0x03e0782d, /* move $15, $31 # 64-bit move (daddu) */
1120 0x0018c0c2, /* srl $24, $24, 3 */
1121 0x2718fffe, /* subu $24, $24, 2 */
1122 0xf8190000 /* jalrc $25 */
1126 /* The format of the microMIPS first PLT entry in an O32 executable.
1127 We rely on v0 ($2) rather than t8 ($24) to contain the address
1128 of the GOTPLT entry handled, so this stub may only be used when
1129 all the subsequent PLT entries are microMIPS code too.
1131 The trailing NOP is for alignment and correct disassembly only. */
1132 static const bfd_vma micromips_o32_exec_plt0_entry
[] =
1134 0x7980, 0x0000, /* addiupc $3, (&GOTPLT[0]) - . */
1135 0xff23, 0x0000, /* lw $25, 0($3) */
1136 0x0535, /* subu $2, $2, $3 */
1137 0x2525, /* srl $2, $2, 2 */
1138 0x3302, 0xfffe, /* subu $24, $2, 2 */
1139 0x0dff, /* move $15, $31 */
1140 0x45f9, /* jalrs $25 */
1141 0x0f83, /* move $28, $3 */
1145 /* The format of the microMIPS first PLT entry in an O32 executable
1146 in the insn32 mode. */
1147 static const bfd_vma micromips_insn32_o32_exec_plt0_entry
[] =
1149 0x41bc, 0x0000, /* lui $28, %hi(&GOTPLT[0]) */
1150 0xff3c, 0x0000, /* lw $25, %lo(&GOTPLT[0])($28) */
1151 0x339c, 0x0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
1152 0x0398, 0xc1d0, /* subu $24, $24, $28 */
1153 0x001f, 0x7a90, /* or $15, $31, zero */
1154 0x0318, 0x1040, /* srl $24, $24, 2 */
1155 0x03f9, 0x0f3c, /* jalr $25 */
1156 0x3318, 0xfffe /* subu $24, $24, 2 */
1159 /* The format of subsequent standard PLT entries. */
1160 static const bfd_vma mips_exec_plt_entry
[] =
1162 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
1163 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
1164 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
1165 0x03200008 /* jr $25 */
1168 static const bfd_vma mipsr6_exec_plt_entry
[] =
1170 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
1171 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
1172 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
1173 0x03200009 /* jr $25 */
1176 static const bfd_vma mipsr6_exec_plt_entry_compact
[] =
1178 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
1179 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
1180 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
1181 0xd8190000 /* jic $25, 0 */
1184 /* The format of subsequent MIPS16 o32 PLT entries. We use v0 ($2)
1185 and v1 ($3) as temporaries because t8 ($24) and t9 ($25) are not
1186 directly addressable. */
1187 static const bfd_vma mips16_o32_exec_plt_entry
[] =
1189 0xb203, /* lw $2, 12($pc) */
1190 0x9a60, /* lw $3, 0($2) */
1191 0x651a, /* move $24, $2 */
1193 0x653b, /* move $25, $3 */
1195 0x0000, 0x0000 /* .word (.got.plt entry) */
1198 /* The format of subsequent microMIPS o32 PLT entries. We use v0 ($2)
1199 as a temporary because t8 ($24) is not addressable with ADDIUPC. */
1200 static const bfd_vma micromips_o32_exec_plt_entry
[] =
1202 0x7900, 0x0000, /* addiupc $2, (.got.plt entry) - . */
1203 0xff22, 0x0000, /* lw $25, 0($2) */
1204 0x4599, /* jr $25 */
1205 0x0f02 /* move $24, $2 */
1208 /* The format of subsequent microMIPS o32 PLT entries in the insn32 mode. */
1209 static const bfd_vma micromips_insn32_o32_exec_plt_entry
[] =
1211 0x41af, 0x0000, /* lui $15, %hi(.got.plt entry) */
1212 0xff2f, 0x0000, /* lw $25, %lo(.got.plt entry)($15) */
1213 0x0019, 0x0f3c, /* jr $25 */
1214 0x330f, 0x0000 /* addiu $24, $15, %lo(.got.plt entry) */
1217 /* The format of the first PLT entry in a VxWorks executable. */
1218 static const bfd_vma mips_vxworks_exec_plt0_entry
[] =
1220 0x3c190000, /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_) */
1221 0x27390000, /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_) */
1222 0x8f390008, /* lw t9, 8(t9) */
1223 0x00000000, /* nop */
1224 0x03200008, /* jr t9 */
1225 0x00000000 /* nop */
1228 /* The format of subsequent PLT entries. */
1229 static const bfd_vma mips_vxworks_exec_plt_entry
[] =
1231 0x10000000, /* b .PLT_resolver */
1232 0x24180000, /* li t8, <pltindex> */
1233 0x3c190000, /* lui t9, %hi(<.got.plt slot>) */
1234 0x27390000, /* addiu t9, t9, %lo(<.got.plt slot>) */
1235 0x8f390000, /* lw t9, 0(t9) */
1236 0x00000000, /* nop */
1237 0x03200008, /* jr t9 */
1238 0x00000000 /* nop */
1241 /* The format of the first PLT entry in a VxWorks shared object. */
1242 static const bfd_vma mips_vxworks_shared_plt0_entry
[] =
1244 0x8f990008, /* lw t9, 8(gp) */
1245 0x00000000, /* nop */
1246 0x03200008, /* jr t9 */
1247 0x00000000, /* nop */
1248 0x00000000, /* nop */
1249 0x00000000 /* nop */
1252 /* The format of subsequent PLT entries. */
1253 static const bfd_vma mips_vxworks_shared_plt_entry
[] =
1255 0x10000000, /* b .PLT_resolver */
1256 0x24180000 /* li t8, <pltindex> */
1259 /* microMIPS 32-bit opcode helper installer. */
1262 bfd_put_micromips_32 (const bfd
*abfd
, bfd_vma opcode
, bfd_byte
*ptr
)
1264 bfd_put_16 (abfd
, (opcode
>> 16) & 0xffff, ptr
);
1265 bfd_put_16 (abfd
, opcode
& 0xffff, ptr
+ 2);
1268 /* microMIPS 32-bit opcode helper retriever. */
1271 bfd_get_micromips_32 (const bfd
*abfd
, const bfd_byte
*ptr
)
1273 return (bfd_get_16 (abfd
, ptr
) << 16) | bfd_get_16 (abfd
, ptr
+ 2);
1276 /* Look up an entry in a MIPS ELF linker hash table. */
1278 #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
1279 ((struct mips_elf_link_hash_entry *) \
1280 elf_link_hash_lookup (&(table)->root, (string), (create), \
1283 /* Traverse a MIPS ELF linker hash table. */
1285 #define mips_elf_link_hash_traverse(table, func, info) \
1286 (elf_link_hash_traverse \
1288 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
1291 /* Find the base offsets for thread-local storage in this object,
1292 for GD/LD and IE/LE respectively. */
1294 #define TP_OFFSET 0x7000
1295 #define DTP_OFFSET 0x8000
1298 dtprel_base (struct bfd_link_info
*info
)
1300 /* If tls_sec is NULL, we should have signalled an error already. */
1301 if (elf_hash_table (info
)->tls_sec
== NULL
)
1303 return elf_hash_table (info
)->tls_sec
->vma
+ DTP_OFFSET
;
1307 tprel_base (struct bfd_link_info
*info
)
1309 /* If tls_sec is NULL, we should have signalled an error already. */
1310 if (elf_hash_table (info
)->tls_sec
== NULL
)
1312 return elf_hash_table (info
)->tls_sec
->vma
+ TP_OFFSET
;
1315 /* Create an entry in a MIPS ELF linker hash table. */
1317 static struct bfd_hash_entry
*
1318 mips_elf_link_hash_newfunc (struct bfd_hash_entry
*entry
,
1319 struct bfd_hash_table
*table
, const char *string
)
1321 struct mips_elf_link_hash_entry
*ret
=
1322 (struct mips_elf_link_hash_entry
*) entry
;
1324 /* Allocate the structure if it has not already been allocated by a
1327 ret
= bfd_hash_allocate (table
, sizeof (struct mips_elf_link_hash_entry
));
1329 return (struct bfd_hash_entry
*) ret
;
1331 /* Call the allocation method of the superclass. */
1332 ret
= ((struct mips_elf_link_hash_entry
*)
1333 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry
*) ret
,
1337 /* Set local fields. */
1338 memset (&ret
->esym
, 0, sizeof (EXTR
));
1339 /* We use -2 as a marker to indicate that the information has
1340 not been set. -1 means there is no associated ifd. */
1343 ret
->possibly_dynamic_relocs
= 0;
1344 ret
->fn_stub
= NULL
;
1345 ret
->call_stub
= NULL
;
1346 ret
->call_fp_stub
= NULL
;
1347 ret
->mipsxhash_loc
= 0;
1348 ret
->global_got_area
= GGA_NONE
;
1349 ret
->got_only_for_calls
= TRUE
;
1350 ret
->readonly_reloc
= FALSE
;
1351 ret
->has_static_relocs
= FALSE
;
1352 ret
->no_fn_stub
= FALSE
;
1353 ret
->need_fn_stub
= FALSE
;
1354 ret
->has_nonpic_branches
= FALSE
;
1355 ret
->needs_lazy_stub
= FALSE
;
1356 ret
->use_plt_entry
= FALSE
;
1359 return (struct bfd_hash_entry
*) ret
;
1362 /* Allocate MIPS ELF private object data. */
1365 _bfd_mips_elf_mkobject (bfd
*abfd
)
1367 return bfd_elf_allocate_object (abfd
, sizeof (struct mips_elf_obj_tdata
),
1372 _bfd_mips_elf_new_section_hook (bfd
*abfd
, asection
*sec
)
1374 if (!sec
->used_by_bfd
)
1376 struct _mips_elf_section_data
*sdata
;
1377 bfd_size_type amt
= sizeof (*sdata
);
1379 sdata
= bfd_zalloc (abfd
, amt
);
1382 sec
->used_by_bfd
= sdata
;
1385 return _bfd_elf_new_section_hook (abfd
, sec
);
1388 /* Read ECOFF debugging information from a .mdebug section into a
1389 ecoff_debug_info structure. */
1392 _bfd_mips_elf_read_ecoff_info (bfd
*abfd
, asection
*section
,
1393 struct ecoff_debug_info
*debug
)
1396 const struct ecoff_debug_swap
*swap
;
1399 swap
= get_elf_backend_data (abfd
)->elf_backend_ecoff_debug_swap
;
1400 memset (debug
, 0, sizeof (*debug
));
1402 ext_hdr
= bfd_malloc (swap
->external_hdr_size
);
1403 if (ext_hdr
== NULL
&& swap
->external_hdr_size
!= 0)
1406 if (! bfd_get_section_contents (abfd
, section
, ext_hdr
, 0,
1407 swap
->external_hdr_size
))
1410 symhdr
= &debug
->symbolic_header
;
1411 (*swap
->swap_hdr_in
) (abfd
, ext_hdr
, symhdr
);
1413 /* The symbolic header contains absolute file offsets and sizes to
1415 #define READ(ptr, offset, count, size, type) \
1416 if (symhdr->count == 0) \
1417 debug->ptr = NULL; \
1420 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
1421 debug->ptr = bfd_malloc (amt); \
1422 if (debug->ptr == NULL) \
1423 goto error_return; \
1424 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \
1425 || bfd_bread (debug->ptr, amt, abfd) != amt) \
1426 goto error_return; \
1429 READ (line
, cbLineOffset
, cbLine
, sizeof (unsigned char), unsigned char *);
1430 READ (external_dnr
, cbDnOffset
, idnMax
, swap
->external_dnr_size
, void *);
1431 READ (external_pdr
, cbPdOffset
, ipdMax
, swap
->external_pdr_size
, void *);
1432 READ (external_sym
, cbSymOffset
, isymMax
, swap
->external_sym_size
, void *);
1433 READ (external_opt
, cbOptOffset
, ioptMax
, swap
->external_opt_size
, void *);
1434 READ (external_aux
, cbAuxOffset
, iauxMax
, sizeof (union aux_ext
),
1436 READ (ss
, cbSsOffset
, issMax
, sizeof (char), char *);
1437 READ (ssext
, cbSsExtOffset
, issExtMax
, sizeof (char), char *);
1438 READ (external_fdr
, cbFdOffset
, ifdMax
, swap
->external_fdr_size
, void *);
1439 READ (external_rfd
, cbRfdOffset
, crfd
, swap
->external_rfd_size
, void *);
1440 READ (external_ext
, cbExtOffset
, iextMax
, swap
->external_ext_size
, void *);
1448 if (ext_hdr
!= NULL
)
1450 if (debug
->line
!= NULL
)
1452 if (debug
->external_dnr
!= NULL
)
1453 free (debug
->external_dnr
);
1454 if (debug
->external_pdr
!= NULL
)
1455 free (debug
->external_pdr
);
1456 if (debug
->external_sym
!= NULL
)
1457 free (debug
->external_sym
);
1458 if (debug
->external_opt
!= NULL
)
1459 free (debug
->external_opt
);
1460 if (debug
->external_aux
!= NULL
)
1461 free (debug
->external_aux
);
1462 if (debug
->ss
!= NULL
)
1464 if (debug
->ssext
!= NULL
)
1465 free (debug
->ssext
);
1466 if (debug
->external_fdr
!= NULL
)
1467 free (debug
->external_fdr
);
1468 if (debug
->external_rfd
!= NULL
)
1469 free (debug
->external_rfd
);
1470 if (debug
->external_ext
!= NULL
)
1471 free (debug
->external_ext
);
1475 /* Swap RPDR (runtime procedure table entry) for output. */
1478 ecoff_swap_rpdr_out (bfd
*abfd
, const RPDR
*in
, struct rpdr_ext
*ex
)
1480 H_PUT_S32 (abfd
, in
->adr
, ex
->p_adr
);
1481 H_PUT_32 (abfd
, in
->regmask
, ex
->p_regmask
);
1482 H_PUT_32 (abfd
, in
->regoffset
, ex
->p_regoffset
);
1483 H_PUT_32 (abfd
, in
->fregmask
, ex
->p_fregmask
);
1484 H_PUT_32 (abfd
, in
->fregoffset
, ex
->p_fregoffset
);
1485 H_PUT_32 (abfd
, in
->frameoffset
, ex
->p_frameoffset
);
1487 H_PUT_16 (abfd
, in
->framereg
, ex
->p_framereg
);
1488 H_PUT_16 (abfd
, in
->pcreg
, ex
->p_pcreg
);
1490 H_PUT_32 (abfd
, in
->irpss
, ex
->p_irpss
);
1493 /* Create a runtime procedure table from the .mdebug section. */
1496 mips_elf_create_procedure_table (void *handle
, bfd
*abfd
,
1497 struct bfd_link_info
*info
, asection
*s
,
1498 struct ecoff_debug_info
*debug
)
1500 const struct ecoff_debug_swap
*swap
;
1501 HDRR
*hdr
= &debug
->symbolic_header
;
1503 struct rpdr_ext
*erp
;
1505 struct pdr_ext
*epdr
;
1506 struct sym_ext
*esym
;
1510 bfd_size_type count
;
1511 unsigned long sindex
;
1515 const char *no_name_func
= _("static procedure (no name)");
1523 swap
= get_elf_backend_data (abfd
)->elf_backend_ecoff_debug_swap
;
1525 sindex
= strlen (no_name_func
) + 1;
1526 count
= hdr
->ipdMax
;
1529 size
= swap
->external_pdr_size
;
1531 epdr
= bfd_malloc (size
* count
);
1535 if (! _bfd_ecoff_get_accumulated_pdr (handle
, (bfd_byte
*) epdr
))
1538 size
= sizeof (RPDR
);
1539 rp
= rpdr
= bfd_malloc (size
* count
);
1543 size
= sizeof (char *);
1544 sv
= bfd_malloc (size
* count
);
1548 count
= hdr
->isymMax
;
1549 size
= swap
->external_sym_size
;
1550 esym
= bfd_malloc (size
* count
);
1554 if (! _bfd_ecoff_get_accumulated_sym (handle
, (bfd_byte
*) esym
))
1557 count
= hdr
->issMax
;
1558 ss
= bfd_malloc (count
);
1561 if (! _bfd_ecoff_get_accumulated_ss (handle
, (bfd_byte
*) ss
))
1564 count
= hdr
->ipdMax
;
1565 for (i
= 0; i
< (unsigned long) count
; i
++, rp
++)
1567 (*swap
->swap_pdr_in
) (abfd
, epdr
+ i
, &pdr
);
1568 (*swap
->swap_sym_in
) (abfd
, &esym
[pdr
.isym
], &sym
);
1569 rp
->adr
= sym
.value
;
1570 rp
->regmask
= pdr
.regmask
;
1571 rp
->regoffset
= pdr
.regoffset
;
1572 rp
->fregmask
= pdr
.fregmask
;
1573 rp
->fregoffset
= pdr
.fregoffset
;
1574 rp
->frameoffset
= pdr
.frameoffset
;
1575 rp
->framereg
= pdr
.framereg
;
1576 rp
->pcreg
= pdr
.pcreg
;
1578 sv
[i
] = ss
+ sym
.iss
;
1579 sindex
+= strlen (sv
[i
]) + 1;
1583 size
= sizeof (struct rpdr_ext
) * (count
+ 2) + sindex
;
1584 size
= BFD_ALIGN (size
, 16);
1585 rtproc
= bfd_alloc (abfd
, size
);
1588 mips_elf_hash_table (info
)->procedure_count
= 0;
1592 mips_elf_hash_table (info
)->procedure_count
= count
+ 2;
1595 memset (erp
, 0, sizeof (struct rpdr_ext
));
1597 str
= (char *) rtproc
+ sizeof (struct rpdr_ext
) * (count
+ 2);
1598 strcpy (str
, no_name_func
);
1599 str
+= strlen (no_name_func
) + 1;
1600 for (i
= 0; i
< count
; i
++)
1602 ecoff_swap_rpdr_out (abfd
, rpdr
+ i
, erp
+ i
);
1603 strcpy (str
, sv
[i
]);
1604 str
+= strlen (sv
[i
]) + 1;
1606 H_PUT_S32 (abfd
, -1, (erp
+ count
)->p_adr
);
1608 /* Set the size and contents of .rtproc section. */
1610 s
->contents
= rtproc
;
1612 /* Skip this section later on (I don't think this currently
1613 matters, but someday it might). */
1614 s
->map_head
.link_order
= NULL
;
1643 /* We're going to create a stub for H. Create a symbol for the stub's
1644 value and size, to help make the disassembly easier to read. */
1647 mips_elf_create_stub_symbol (struct bfd_link_info
*info
,
1648 struct mips_elf_link_hash_entry
*h
,
1649 const char *prefix
, asection
*s
, bfd_vma value
,
1652 bfd_boolean micromips_p
= ELF_ST_IS_MICROMIPS (h
->root
.other
);
1653 struct bfd_link_hash_entry
*bh
;
1654 struct elf_link_hash_entry
*elfh
;
1661 /* Create a new symbol. */
1662 name
= concat (prefix
, h
->root
.root
.root
.string
, NULL
);
1664 res
= _bfd_generic_link_add_one_symbol (info
, s
->owner
, name
,
1665 BSF_LOCAL
, s
, value
, NULL
,
1671 /* Make it a local function. */
1672 elfh
= (struct elf_link_hash_entry
*) bh
;
1673 elfh
->type
= ELF_ST_INFO (STB_LOCAL
, STT_FUNC
);
1675 elfh
->forced_local
= 1;
1677 elfh
->other
= ELF_ST_SET_MICROMIPS (elfh
->other
);
1681 /* We're about to redefine H. Create a symbol to represent H's
1682 current value and size, to help make the disassembly easier
1686 mips_elf_create_shadow_symbol (struct bfd_link_info
*info
,
1687 struct mips_elf_link_hash_entry
*h
,
1690 struct bfd_link_hash_entry
*bh
;
1691 struct elf_link_hash_entry
*elfh
;
1697 /* Read the symbol's value. */
1698 BFD_ASSERT (h
->root
.root
.type
== bfd_link_hash_defined
1699 || h
->root
.root
.type
== bfd_link_hash_defweak
);
1700 s
= h
->root
.root
.u
.def
.section
;
1701 value
= h
->root
.root
.u
.def
.value
;
1703 /* Create a new symbol. */
1704 name
= concat (prefix
, h
->root
.root
.root
.string
, NULL
);
1706 res
= _bfd_generic_link_add_one_symbol (info
, s
->owner
, name
,
1707 BSF_LOCAL
, s
, value
, NULL
,
1713 /* Make it local and copy the other attributes from H. */
1714 elfh
= (struct elf_link_hash_entry
*) bh
;
1715 elfh
->type
= ELF_ST_INFO (STB_LOCAL
, ELF_ST_TYPE (h
->root
.type
));
1716 elfh
->other
= h
->root
.other
;
1717 elfh
->size
= h
->root
.size
;
1718 elfh
->forced_local
= 1;
1722 /* Return TRUE if relocations in SECTION can refer directly to a MIPS16
1723 function rather than to a hard-float stub. */
1726 section_allows_mips16_refs_p (asection
*section
)
1730 name
= bfd_section_name (section
);
1731 return (FN_STUB_P (name
)
1732 || CALL_STUB_P (name
)
1733 || CALL_FP_STUB_P (name
)
1734 || strcmp (name
, ".pdr") == 0);
1737 /* [RELOCS, RELEND) are the relocations against SEC, which is a MIPS16
1738 stub section of some kind. Return the R_SYMNDX of the target
1739 function, or 0 if we can't decide which function that is. */
1741 static unsigned long
1742 mips16_stub_symndx (const struct elf_backend_data
*bed
,
1743 asection
*sec ATTRIBUTE_UNUSED
,
1744 const Elf_Internal_Rela
*relocs
,
1745 const Elf_Internal_Rela
*relend
)
1747 int int_rels_per_ext_rel
= bed
->s
->int_rels_per_ext_rel
;
1748 const Elf_Internal_Rela
*rel
;
1750 /* Trust the first R_MIPS_NONE relocation, if any, but not a subsequent
1751 one in a compound relocation. */
1752 for (rel
= relocs
; rel
< relend
; rel
+= int_rels_per_ext_rel
)
1753 if (ELF_R_TYPE (sec
->owner
, rel
->r_info
) == R_MIPS_NONE
)
1754 return ELF_R_SYM (sec
->owner
, rel
->r_info
);
1756 /* Otherwise trust the first relocation, whatever its kind. This is
1757 the traditional behavior. */
1758 if (relocs
< relend
)
1759 return ELF_R_SYM (sec
->owner
, relocs
->r_info
);
1764 /* Check the mips16 stubs for a particular symbol, and see if we can
1768 mips_elf_check_mips16_stubs (struct bfd_link_info
*info
,
1769 struct mips_elf_link_hash_entry
*h
)
1771 /* Dynamic symbols must use the standard call interface, in case other
1772 objects try to call them. */
1773 if (h
->fn_stub
!= NULL
1774 && h
->root
.dynindx
!= -1)
1776 mips_elf_create_shadow_symbol (info
, h
, ".mips16.");
1777 h
->need_fn_stub
= TRUE
;
1780 if (h
->fn_stub
!= NULL
1781 && ! h
->need_fn_stub
)
1783 /* We don't need the fn_stub; the only references to this symbol
1784 are 16 bit calls. Clobber the size to 0 to prevent it from
1785 being included in the link. */
1786 h
->fn_stub
->size
= 0;
1787 h
->fn_stub
->flags
&= ~SEC_RELOC
;
1788 h
->fn_stub
->reloc_count
= 0;
1789 h
->fn_stub
->flags
|= SEC_EXCLUDE
;
1790 h
->fn_stub
->output_section
= bfd_abs_section_ptr
;
1793 if (h
->call_stub
!= NULL
1794 && ELF_ST_IS_MIPS16 (h
->root
.other
))
1796 /* We don't need the call_stub; this is a 16 bit function, so
1797 calls from other 16 bit functions are OK. Clobber the size
1798 to 0 to prevent it from being included in the link. */
1799 h
->call_stub
->size
= 0;
1800 h
->call_stub
->flags
&= ~SEC_RELOC
;
1801 h
->call_stub
->reloc_count
= 0;
1802 h
->call_stub
->flags
|= SEC_EXCLUDE
;
1803 h
->call_stub
->output_section
= bfd_abs_section_ptr
;
1806 if (h
->call_fp_stub
!= NULL
1807 && ELF_ST_IS_MIPS16 (h
->root
.other
))
1809 /* We don't need the call_stub; this is a 16 bit function, so
1810 calls from other 16 bit functions are OK. Clobber the size
1811 to 0 to prevent it from being included in the link. */
1812 h
->call_fp_stub
->size
= 0;
1813 h
->call_fp_stub
->flags
&= ~SEC_RELOC
;
1814 h
->call_fp_stub
->reloc_count
= 0;
1815 h
->call_fp_stub
->flags
|= SEC_EXCLUDE
;
1816 h
->call_fp_stub
->output_section
= bfd_abs_section_ptr
;
1820 /* Hashtable callbacks for mips_elf_la25_stubs. */
1823 mips_elf_la25_stub_hash (const void *entry_
)
1825 const struct mips_elf_la25_stub
*entry
;
1827 entry
= (struct mips_elf_la25_stub
*) entry_
;
1828 return entry
->h
->root
.root
.u
.def
.section
->id
1829 + entry
->h
->root
.root
.u
.def
.value
;
1833 mips_elf_la25_stub_eq (const void *entry1_
, const void *entry2_
)
1835 const struct mips_elf_la25_stub
*entry1
, *entry2
;
1837 entry1
= (struct mips_elf_la25_stub
*) entry1_
;
1838 entry2
= (struct mips_elf_la25_stub
*) entry2_
;
1839 return ((entry1
->h
->root
.root
.u
.def
.section
1840 == entry2
->h
->root
.root
.u
.def
.section
)
1841 && (entry1
->h
->root
.root
.u
.def
.value
1842 == entry2
->h
->root
.root
.u
.def
.value
));
1845 /* Called by the linker to set up the la25 stub-creation code. FN is
1846 the linker's implementation of add_stub_function. Return true on
1850 _bfd_mips_elf_init_stubs (struct bfd_link_info
*info
,
1851 asection
*(*fn
) (const char *, asection
*,
1854 struct mips_elf_link_hash_table
*htab
;
1856 htab
= mips_elf_hash_table (info
);
1860 htab
->add_stub_section
= fn
;
1861 htab
->la25_stubs
= htab_try_create (1, mips_elf_la25_stub_hash
,
1862 mips_elf_la25_stub_eq
, NULL
);
1863 if (htab
->la25_stubs
== NULL
)
1869 /* Return true if H is a locally-defined PIC function, in the sense
1870 that it or its fn_stub might need $25 to be valid on entry.
1871 Note that MIPS16 functions set up $gp using PC-relative instructions,
1872 so they themselves never need $25 to be valid. Only non-MIPS16
1873 entry points are of interest here. */
1876 mips_elf_local_pic_function_p (struct mips_elf_link_hash_entry
*h
)
1878 return ((h
->root
.root
.type
== bfd_link_hash_defined
1879 || h
->root
.root
.type
== bfd_link_hash_defweak
)
1880 && h
->root
.def_regular
1881 && !bfd_is_abs_section (h
->root
.root
.u
.def
.section
)
1882 && !bfd_is_und_section (h
->root
.root
.u
.def
.section
)
1883 && (!ELF_ST_IS_MIPS16 (h
->root
.other
)
1884 || (h
->fn_stub
&& h
->need_fn_stub
))
1885 && (PIC_OBJECT_P (h
->root
.root
.u
.def
.section
->owner
)
1886 || ELF_ST_IS_MIPS_PIC (h
->root
.other
)));
1889 /* Set *SEC to the input section that contains the target of STUB.
1890 Return the offset of the target from the start of that section. */
1893 mips_elf_get_la25_target (struct mips_elf_la25_stub
*stub
,
1896 if (ELF_ST_IS_MIPS16 (stub
->h
->root
.other
))
1898 BFD_ASSERT (stub
->h
->need_fn_stub
);
1899 *sec
= stub
->h
->fn_stub
;
1904 *sec
= stub
->h
->root
.root
.u
.def
.section
;
1905 return stub
->h
->root
.root
.u
.def
.value
;
1909 /* STUB describes an la25 stub that we have decided to implement
1910 by inserting an LUI/ADDIU pair before the target function.
1911 Create the section and redirect the function symbol to it. */
1914 mips_elf_add_la25_intro (struct mips_elf_la25_stub
*stub
,
1915 struct bfd_link_info
*info
)
1917 struct mips_elf_link_hash_table
*htab
;
1919 asection
*s
, *input_section
;
1922 htab
= mips_elf_hash_table (info
);
1926 /* Create a unique name for the new section. */
1927 name
= bfd_malloc (11 + sizeof (".text.stub."));
1930 sprintf (name
, ".text.stub.%d", (int) htab_elements (htab
->la25_stubs
));
1932 /* Create the section. */
1933 mips_elf_get_la25_target (stub
, &input_section
);
1934 s
= htab
->add_stub_section (name
, input_section
,
1935 input_section
->output_section
);
1939 /* Make sure that any padding goes before the stub. */
1940 align
= input_section
->alignment_power
;
1941 if (!bfd_set_section_alignment (s
, align
))
1944 s
->size
= (1 << align
) - 8;
1946 /* Create a symbol for the stub. */
1947 mips_elf_create_stub_symbol (info
, stub
->h
, ".pic.", s
, s
->size
, 8);
1948 stub
->stub_section
= s
;
1949 stub
->offset
= s
->size
;
1951 /* Allocate room for it. */
1956 /* STUB describes an la25 stub that we have decided to implement
1957 with a separate trampoline. Allocate room for it and redirect
1958 the function symbol to it. */
1961 mips_elf_add_la25_trampoline (struct mips_elf_la25_stub
*stub
,
1962 struct bfd_link_info
*info
)
1964 struct mips_elf_link_hash_table
*htab
;
1967 htab
= mips_elf_hash_table (info
);
1971 /* Create a trampoline section, if we haven't already. */
1972 s
= htab
->strampoline
;
1975 asection
*input_section
= stub
->h
->root
.root
.u
.def
.section
;
1976 s
= htab
->add_stub_section (".text", NULL
,
1977 input_section
->output_section
);
1978 if (s
== NULL
|| !bfd_set_section_alignment (s
, 4))
1980 htab
->strampoline
= s
;
1983 /* Create a symbol for the stub. */
1984 mips_elf_create_stub_symbol (info
, stub
->h
, ".pic.", s
, s
->size
, 16);
1985 stub
->stub_section
= s
;
1986 stub
->offset
= s
->size
;
1988 /* Allocate room for it. */
1993 /* H describes a symbol that needs an la25 stub. Make sure that an
1994 appropriate stub exists and point H at it. */
1997 mips_elf_add_la25_stub (struct bfd_link_info
*info
,
1998 struct mips_elf_link_hash_entry
*h
)
2000 struct mips_elf_link_hash_table
*htab
;
2001 struct mips_elf_la25_stub search
, *stub
;
2002 bfd_boolean use_trampoline_p
;
2007 /* Describe the stub we want. */
2008 search
.stub_section
= NULL
;
2012 /* See if we've already created an equivalent stub. */
2013 htab
= mips_elf_hash_table (info
);
2017 slot
= htab_find_slot (htab
->la25_stubs
, &search
, INSERT
);
2021 stub
= (struct mips_elf_la25_stub
*) *slot
;
2024 /* We can reuse the existing stub. */
2025 h
->la25_stub
= stub
;
2029 /* Create a permanent copy of ENTRY and add it to the hash table. */
2030 stub
= bfd_malloc (sizeof (search
));
2036 /* Prefer to use LUI/ADDIU stubs if the function is at the beginning
2037 of the section and if we would need no more than 2 nops. */
2038 value
= mips_elf_get_la25_target (stub
, &s
);
2039 if (ELF_ST_IS_MICROMIPS (stub
->h
->root
.other
))
2041 use_trampoline_p
= (value
!= 0 || s
->alignment_power
> 4);
2043 h
->la25_stub
= stub
;
2044 return (use_trampoline_p
2045 ? mips_elf_add_la25_trampoline (stub
, info
)
2046 : mips_elf_add_la25_intro (stub
, info
));
2049 /* A mips_elf_link_hash_traverse callback that is called before sizing
2050 sections. DATA points to a mips_htab_traverse_info structure. */
2053 mips_elf_check_symbols (struct mips_elf_link_hash_entry
*h
, void *data
)
2055 struct mips_htab_traverse_info
*hti
;
2057 hti
= (struct mips_htab_traverse_info
*) data
;
2058 if (!bfd_link_relocatable (hti
->info
))
2059 mips_elf_check_mips16_stubs (hti
->info
, h
);
2061 if (mips_elf_local_pic_function_p (h
))
2063 /* PR 12845: If H is in a section that has been garbage
2064 collected it will have its output section set to *ABS*. */
2065 if (bfd_is_abs_section (h
->root
.root
.u
.def
.section
->output_section
))
2068 /* H is a function that might need $25 to be valid on entry.
2069 If we're creating a non-PIC relocatable object, mark H as
2070 being PIC. If we're creating a non-relocatable object with
2071 non-PIC branches and jumps to H, make sure that H has an la25
2073 if (bfd_link_relocatable (hti
->info
))
2075 if (!PIC_OBJECT_P (hti
->output_bfd
))
2076 h
->root
.other
= ELF_ST_SET_MIPS_PIC (h
->root
.other
);
2078 else if (h
->has_nonpic_branches
&& !mips_elf_add_la25_stub (hti
->info
, h
))
2087 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
2088 Most mips16 instructions are 16 bits, but these instructions
2091 The format of these instructions is:
2093 +--------------+--------------------------------+
2094 | JALX | X| Imm 20:16 | Imm 25:21 |
2095 +--------------+--------------------------------+
2097 +-----------------------------------------------+
2099 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
2100 Note that the immediate value in the first word is swapped.
2102 When producing a relocatable object file, R_MIPS16_26 is
2103 handled mostly like R_MIPS_26. In particular, the addend is
2104 stored as a straight 26-bit value in a 32-bit instruction.
2105 (gas makes life simpler for itself by never adjusting a
2106 R_MIPS16_26 reloc to be against a section, so the addend is
2107 always zero). However, the 32 bit instruction is stored as 2
2108 16-bit values, rather than a single 32-bit value. In a
2109 big-endian file, the result is the same; in a little-endian
2110 file, the two 16-bit halves of the 32 bit value are swapped.
2111 This is so that a disassembler can recognize the jal
2114 When doing a final link, R_MIPS16_26 is treated as a 32 bit
2115 instruction stored as two 16-bit values. The addend A is the
2116 contents of the targ26 field. The calculation is the same as
2117 R_MIPS_26. When storing the calculated value, reorder the
2118 immediate value as shown above, and don't forget to store the
2119 value as two 16-bit values.
2121 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
2125 +--------+----------------------+
2129 +--------+----------------------+
2132 +----------+------+-------------+
2136 +----------+--------------------+
2137 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
2138 ((sub1 << 16) | sub2)).
2140 When producing a relocatable object file, the calculation is
2141 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
2142 When producing a fully linked file, the calculation is
2143 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
2144 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
2146 The table below lists the other MIPS16 instruction relocations.
2147 Each one is calculated in the same way as the non-MIPS16 relocation
2148 given on the right, but using the extended MIPS16 layout of 16-bit
2151 R_MIPS16_GPREL R_MIPS_GPREL16
2152 R_MIPS16_GOT16 R_MIPS_GOT16
2153 R_MIPS16_CALL16 R_MIPS_CALL16
2154 R_MIPS16_HI16 R_MIPS_HI16
2155 R_MIPS16_LO16 R_MIPS_LO16
2157 A typical instruction will have a format like this:
2159 +--------------+--------------------------------+
2160 | EXTEND | Imm 10:5 | Imm 15:11 |
2161 +--------------+--------------------------------+
2162 | Major | rx | ry | Imm 4:0 |
2163 +--------------+--------------------------------+
2165 EXTEND is the five bit value 11110. Major is the instruction
2168 All we need to do here is shuffle the bits appropriately.
2169 As above, the two 16-bit halves must be swapped on a
2170 little-endian system.
2172 Finally R_MIPS16_PC16_S1 corresponds to R_MIPS_PC16, however the
2173 relocatable field is shifted by 1 rather than 2 and the same bit
2174 shuffling is done as with the relocations above. */
2176 static inline bfd_boolean
2177 mips16_reloc_p (int r_type
)
2182 case R_MIPS16_GPREL
:
2183 case R_MIPS16_GOT16
:
2184 case R_MIPS16_CALL16
:
2187 case R_MIPS16_TLS_GD
:
2188 case R_MIPS16_TLS_LDM
:
2189 case R_MIPS16_TLS_DTPREL_HI16
:
2190 case R_MIPS16_TLS_DTPREL_LO16
:
2191 case R_MIPS16_TLS_GOTTPREL
:
2192 case R_MIPS16_TLS_TPREL_HI16
:
2193 case R_MIPS16_TLS_TPREL_LO16
:
2194 case R_MIPS16_PC16_S1
:
2202 /* Check if a microMIPS reloc. */
2204 static inline bfd_boolean
2205 micromips_reloc_p (unsigned int r_type
)
2207 return r_type
>= R_MICROMIPS_min
&& r_type
< R_MICROMIPS_max
;
2210 /* Similar to MIPS16, the two 16-bit halves in microMIPS must be swapped
2211 on a little-endian system. This does not apply to R_MICROMIPS_PC7_S1
2212 and R_MICROMIPS_PC10_S1 relocs that apply to 16-bit instructions. */
2214 static inline bfd_boolean
2215 micromips_reloc_shuffle_p (unsigned int r_type
)
2217 return (micromips_reloc_p (r_type
)
2218 && r_type
!= R_MICROMIPS_PC7_S1
2219 && r_type
!= R_MICROMIPS_PC10_S1
);
2222 static inline bfd_boolean
2223 got16_reloc_p (int r_type
)
2225 return (r_type
== R_MIPS_GOT16
2226 || r_type
== R_MIPS16_GOT16
2227 || r_type
== R_MICROMIPS_GOT16
);
2230 static inline bfd_boolean
2231 call16_reloc_p (int r_type
)
2233 return (r_type
== R_MIPS_CALL16
2234 || r_type
== R_MIPS16_CALL16
2235 || r_type
== R_MICROMIPS_CALL16
);
2238 static inline bfd_boolean
2239 got_disp_reloc_p (unsigned int r_type
)
2241 return r_type
== R_MIPS_GOT_DISP
|| r_type
== R_MICROMIPS_GOT_DISP
;
2244 static inline bfd_boolean
2245 got_page_reloc_p (unsigned int r_type
)
2247 return r_type
== R_MIPS_GOT_PAGE
|| r_type
== R_MICROMIPS_GOT_PAGE
;
2250 static inline bfd_boolean
2251 got_lo16_reloc_p (unsigned int r_type
)
2253 return r_type
== R_MIPS_GOT_LO16
|| r_type
== R_MICROMIPS_GOT_LO16
;
2256 static inline bfd_boolean
2257 call_hi16_reloc_p (unsigned int r_type
)
2259 return r_type
== R_MIPS_CALL_HI16
|| r_type
== R_MICROMIPS_CALL_HI16
;
2262 static inline bfd_boolean
2263 call_lo16_reloc_p (unsigned int r_type
)
2265 return r_type
== R_MIPS_CALL_LO16
|| r_type
== R_MICROMIPS_CALL_LO16
;
2268 static inline bfd_boolean
2269 hi16_reloc_p (int r_type
)
2271 return (r_type
== R_MIPS_HI16
2272 || r_type
== R_MIPS16_HI16
2273 || r_type
== R_MICROMIPS_HI16
2274 || r_type
== R_MIPS_PCHI16
);
2277 static inline bfd_boolean
2278 lo16_reloc_p (int r_type
)
2280 return (r_type
== R_MIPS_LO16
2281 || r_type
== R_MIPS16_LO16
2282 || r_type
== R_MICROMIPS_LO16
2283 || r_type
== R_MIPS_PCLO16
);
2286 static inline bfd_boolean
2287 mips16_call_reloc_p (int r_type
)
2289 return r_type
== R_MIPS16_26
|| r_type
== R_MIPS16_CALL16
;
2292 static inline bfd_boolean
2293 jal_reloc_p (int r_type
)
2295 return (r_type
== R_MIPS_26
2296 || r_type
== R_MIPS16_26
2297 || r_type
== R_MICROMIPS_26_S1
);
2300 static inline bfd_boolean
2301 b_reloc_p (int r_type
)
2303 return (r_type
== R_MIPS_PC26_S2
2304 || r_type
== R_MIPS_PC21_S2
2305 || r_type
== R_MIPS_PC16
2306 || r_type
== R_MIPS_GNU_REL16_S2
2307 || r_type
== R_MIPS16_PC16_S1
2308 || r_type
== R_MICROMIPS_PC16_S1
2309 || r_type
== R_MICROMIPS_PC10_S1
2310 || r_type
== R_MICROMIPS_PC7_S1
);
2313 static inline bfd_boolean
2314 aligned_pcrel_reloc_p (int r_type
)
2316 return (r_type
== R_MIPS_PC18_S3
2317 || r_type
== R_MIPS_PC19_S2
);
2320 static inline bfd_boolean
2321 branch_reloc_p (int r_type
)
2323 return (r_type
== R_MIPS_26
2324 || r_type
== R_MIPS_PC26_S2
2325 || r_type
== R_MIPS_PC21_S2
2326 || r_type
== R_MIPS_PC16
2327 || r_type
== R_MIPS_GNU_REL16_S2
);
2330 static inline bfd_boolean
2331 mips16_branch_reloc_p (int r_type
)
2333 return (r_type
== R_MIPS16_26
2334 || r_type
== R_MIPS16_PC16_S1
);
2337 static inline bfd_boolean
2338 micromips_branch_reloc_p (int r_type
)
2340 return (r_type
== R_MICROMIPS_26_S1
2341 || r_type
== R_MICROMIPS_PC16_S1
2342 || r_type
== R_MICROMIPS_PC10_S1
2343 || r_type
== R_MICROMIPS_PC7_S1
);
2346 static inline bfd_boolean
2347 tls_gd_reloc_p (unsigned int r_type
)
2349 return (r_type
== R_MIPS_TLS_GD
2350 || r_type
== R_MIPS16_TLS_GD
2351 || r_type
== R_MICROMIPS_TLS_GD
);
2354 static inline bfd_boolean
2355 tls_ldm_reloc_p (unsigned int r_type
)
2357 return (r_type
== R_MIPS_TLS_LDM
2358 || r_type
== R_MIPS16_TLS_LDM
2359 || r_type
== R_MICROMIPS_TLS_LDM
);
2362 static inline bfd_boolean
2363 tls_gottprel_reloc_p (unsigned int r_type
)
2365 return (r_type
== R_MIPS_TLS_GOTTPREL
2366 || r_type
== R_MIPS16_TLS_GOTTPREL
2367 || r_type
== R_MICROMIPS_TLS_GOTTPREL
);
2371 _bfd_mips_elf_reloc_unshuffle (bfd
*abfd
, int r_type
,
2372 bfd_boolean jal_shuffle
, bfd_byte
*data
)
2374 bfd_vma first
, second
, val
;
2376 if (!mips16_reloc_p (r_type
) && !micromips_reloc_shuffle_p (r_type
))
2379 /* Pick up the first and second halfwords of the instruction. */
2380 first
= bfd_get_16 (abfd
, data
);
2381 second
= bfd_get_16 (abfd
, data
+ 2);
2382 if (micromips_reloc_p (r_type
) || (r_type
== R_MIPS16_26
&& !jal_shuffle
))
2383 val
= first
<< 16 | second
;
2384 else if (r_type
!= R_MIPS16_26
)
2385 val
= (((first
& 0xf800) << 16) | ((second
& 0xffe0) << 11)
2386 | ((first
& 0x1f) << 11) | (first
& 0x7e0) | (second
& 0x1f));
2388 val
= (((first
& 0xfc00) << 16) | ((first
& 0x3e0) << 11)
2389 | ((first
& 0x1f) << 21) | second
);
2390 bfd_put_32 (abfd
, val
, data
);
2394 _bfd_mips_elf_reloc_shuffle (bfd
*abfd
, int r_type
,
2395 bfd_boolean jal_shuffle
, bfd_byte
*data
)
2397 bfd_vma first
, second
, val
;
2399 if (!mips16_reloc_p (r_type
) && !micromips_reloc_shuffle_p (r_type
))
2402 val
= bfd_get_32 (abfd
, data
);
2403 if (micromips_reloc_p (r_type
) || (r_type
== R_MIPS16_26
&& !jal_shuffle
))
2405 second
= val
& 0xffff;
2408 else if (r_type
!= R_MIPS16_26
)
2410 second
= ((val
>> 11) & 0xffe0) | (val
& 0x1f);
2411 first
= ((val
>> 16) & 0xf800) | ((val
>> 11) & 0x1f) | (val
& 0x7e0);
2415 second
= val
& 0xffff;
2416 first
= ((val
>> 16) & 0xfc00) | ((val
>> 11) & 0x3e0)
2417 | ((val
>> 21) & 0x1f);
2419 bfd_put_16 (abfd
, second
, data
+ 2);
2420 bfd_put_16 (abfd
, first
, data
);
2423 bfd_reloc_status_type
2424 _bfd_mips_elf_gprel16_with_gp (bfd
*abfd
, asymbol
*symbol
,
2425 arelent
*reloc_entry
, asection
*input_section
,
2426 bfd_boolean relocatable
, void *data
, bfd_vma gp
)
2430 bfd_reloc_status_type status
;
2432 if (bfd_is_com_section (symbol
->section
))
2435 relocation
= symbol
->value
;
2437 relocation
+= symbol
->section
->output_section
->vma
;
2438 relocation
+= symbol
->section
->output_offset
;
2440 if (reloc_entry
->address
> bfd_get_section_limit (abfd
, input_section
))
2441 return bfd_reloc_outofrange
;
2443 /* Set val to the offset into the section or symbol. */
2444 val
= reloc_entry
->addend
;
2446 _bfd_mips_elf_sign_extend (val
, 16);
2448 /* Adjust val for the final section location and GP value. If we
2449 are producing relocatable output, we don't want to do this for
2450 an external symbol. */
2452 || (symbol
->flags
& BSF_SECTION_SYM
) != 0)
2453 val
+= relocation
- gp
;
2455 if (reloc_entry
->howto
->partial_inplace
)
2457 status
= _bfd_relocate_contents (reloc_entry
->howto
, abfd
, val
,
2459 + reloc_entry
->address
);
2460 if (status
!= bfd_reloc_ok
)
2464 reloc_entry
->addend
= val
;
2467 reloc_entry
->address
+= input_section
->output_offset
;
2469 return bfd_reloc_ok
;
2472 /* Used to store a REL high-part relocation such as R_MIPS_HI16 or
2473 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
2474 that contains the relocation field and DATA points to the start of
2479 struct mips_hi16
*next
;
2481 asection
*input_section
;
2485 /* FIXME: This should not be a static variable. */
2487 static struct mips_hi16
*mips_hi16_list
;
2489 /* A howto special_function for REL *HI16 relocations. We can only
2490 calculate the correct value once we've seen the partnering
2491 *LO16 relocation, so just save the information for later.
2493 The ABI requires that the *LO16 immediately follow the *HI16.
2494 However, as a GNU extension, we permit an arbitrary number of
2495 *HI16s to be associated with a single *LO16. This significantly
2496 simplies the relocation handling in gcc. */
2498 bfd_reloc_status_type
2499 _bfd_mips_elf_hi16_reloc (bfd
*abfd ATTRIBUTE_UNUSED
, arelent
*reloc_entry
,
2500 asymbol
*symbol ATTRIBUTE_UNUSED
, void *data
,
2501 asection
*input_section
, bfd
*output_bfd
,
2502 char **error_message ATTRIBUTE_UNUSED
)
2504 struct mips_hi16
*n
;
2506 if (reloc_entry
->address
> bfd_get_section_limit (abfd
, input_section
))
2507 return bfd_reloc_outofrange
;
2509 n
= bfd_malloc (sizeof *n
);
2511 return bfd_reloc_outofrange
;
2513 n
->next
= mips_hi16_list
;
2515 n
->input_section
= input_section
;
2516 n
->rel
= *reloc_entry
;
2519 if (output_bfd
!= NULL
)
2520 reloc_entry
->address
+= input_section
->output_offset
;
2522 return bfd_reloc_ok
;
2525 /* A howto special_function for REL R_MIPS*_GOT16 relocations. This is just
2526 like any other 16-bit relocation when applied to global symbols, but is
2527 treated in the same as R_MIPS_HI16 when applied to local symbols. */
2529 bfd_reloc_status_type
2530 _bfd_mips_elf_got16_reloc (bfd
*abfd
, arelent
*reloc_entry
, asymbol
*symbol
,
2531 void *data
, asection
*input_section
,
2532 bfd
*output_bfd
, char **error_message
)
2534 if ((symbol
->flags
& (BSF_GLOBAL
| BSF_WEAK
)) != 0
2535 || bfd_is_und_section (bfd_asymbol_section (symbol
))
2536 || bfd_is_com_section (bfd_asymbol_section (symbol
)))
2537 /* The relocation is against a global symbol. */
2538 return _bfd_mips_elf_generic_reloc (abfd
, reloc_entry
, symbol
, data
,
2539 input_section
, output_bfd
,
2542 return _bfd_mips_elf_hi16_reloc (abfd
, reloc_entry
, symbol
, data
,
2543 input_section
, output_bfd
, error_message
);
2546 /* A howto special_function for REL *LO16 relocations. The *LO16 itself
2547 is a straightforward 16 bit inplace relocation, but we must deal with
2548 any partnering high-part relocations as well. */
2550 bfd_reloc_status_type
2551 _bfd_mips_elf_lo16_reloc (bfd
*abfd
, arelent
*reloc_entry
, asymbol
*symbol
,
2552 void *data
, asection
*input_section
,
2553 bfd
*output_bfd
, char **error_message
)
2556 bfd_byte
*location
= (bfd_byte
*) data
+ reloc_entry
->address
;
2558 if (reloc_entry
->address
> bfd_get_section_limit (abfd
, input_section
))
2559 return bfd_reloc_outofrange
;
2561 _bfd_mips_elf_reloc_unshuffle (abfd
, reloc_entry
->howto
->type
, FALSE
,
2563 vallo
= bfd_get_32 (abfd
, location
);
2564 _bfd_mips_elf_reloc_shuffle (abfd
, reloc_entry
->howto
->type
, FALSE
,
2567 while (mips_hi16_list
!= NULL
)
2569 bfd_reloc_status_type ret
;
2570 struct mips_hi16
*hi
;
2572 hi
= mips_hi16_list
;
2574 /* R_MIPS*_GOT16 relocations are something of a special case. We
2575 want to install the addend in the same way as for a R_MIPS*_HI16
2576 relocation (with a rightshift of 16). However, since GOT16
2577 relocations can also be used with global symbols, their howto
2578 has a rightshift of 0. */
2579 if (hi
->rel
.howto
->type
== R_MIPS_GOT16
)
2580 hi
->rel
.howto
= MIPS_ELF_RTYPE_TO_HOWTO (abfd
, R_MIPS_HI16
, FALSE
);
2581 else if (hi
->rel
.howto
->type
== R_MIPS16_GOT16
)
2582 hi
->rel
.howto
= MIPS_ELF_RTYPE_TO_HOWTO (abfd
, R_MIPS16_HI16
, FALSE
);
2583 else if (hi
->rel
.howto
->type
== R_MICROMIPS_GOT16
)
2584 hi
->rel
.howto
= MIPS_ELF_RTYPE_TO_HOWTO (abfd
, R_MICROMIPS_HI16
, FALSE
);
2586 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
2587 carry or borrow will induce a change of +1 or -1 in the high part. */
2588 hi
->rel
.addend
+= (vallo
+ 0x8000) & 0xffff;
2590 ret
= _bfd_mips_elf_generic_reloc (abfd
, &hi
->rel
, symbol
, hi
->data
,
2591 hi
->input_section
, output_bfd
,
2593 if (ret
!= bfd_reloc_ok
)
2596 mips_hi16_list
= hi
->next
;
2600 return _bfd_mips_elf_generic_reloc (abfd
, reloc_entry
, symbol
, data
,
2601 input_section
, output_bfd
,
2605 /* A generic howto special_function. This calculates and installs the
2606 relocation itself, thus avoiding the oft-discussed problems in
2607 bfd_perform_relocation and bfd_install_relocation. */
2609 bfd_reloc_status_type
2610 _bfd_mips_elf_generic_reloc (bfd
*abfd ATTRIBUTE_UNUSED
, arelent
*reloc_entry
,
2611 asymbol
*symbol
, void *data ATTRIBUTE_UNUSED
,
2612 asection
*input_section
, bfd
*output_bfd
,
2613 char **error_message ATTRIBUTE_UNUSED
)
2616 bfd_reloc_status_type status
;
2617 bfd_boolean relocatable
;
2619 relocatable
= (output_bfd
!= NULL
);
2621 if (reloc_entry
->address
> bfd_get_section_limit (abfd
, input_section
))
2622 return bfd_reloc_outofrange
;
2624 /* Build up the field adjustment in VAL. */
2626 if (!relocatable
|| (symbol
->flags
& BSF_SECTION_SYM
) != 0)
2628 /* Either we're calculating the final field value or we have a
2629 relocation against a section symbol. Add in the section's
2630 offset or address. */
2631 val
+= symbol
->section
->output_section
->vma
;
2632 val
+= symbol
->section
->output_offset
;
2637 /* We're calculating the final field value. Add in the symbol's value
2638 and, if pc-relative, subtract the address of the field itself. */
2639 val
+= symbol
->value
;
2640 if (reloc_entry
->howto
->pc_relative
)
2642 val
-= input_section
->output_section
->vma
;
2643 val
-= input_section
->output_offset
;
2644 val
-= reloc_entry
->address
;
2648 /* VAL is now the final adjustment. If we're keeping this relocation
2649 in the output file, and if the relocation uses a separate addend,
2650 we just need to add VAL to that addend. Otherwise we need to add
2651 VAL to the relocation field itself. */
2652 if (relocatable
&& !reloc_entry
->howto
->partial_inplace
)
2653 reloc_entry
->addend
+= val
;
2656 bfd_byte
*location
= (bfd_byte
*) data
+ reloc_entry
->address
;
2658 /* Add in the separate addend, if any. */
2659 val
+= reloc_entry
->addend
;
2661 /* Add VAL to the relocation field. */
2662 _bfd_mips_elf_reloc_unshuffle (abfd
, reloc_entry
->howto
->type
, FALSE
,
2664 status
= _bfd_relocate_contents (reloc_entry
->howto
, abfd
, val
,
2666 _bfd_mips_elf_reloc_shuffle (abfd
, reloc_entry
->howto
->type
, FALSE
,
2669 if (status
!= bfd_reloc_ok
)
2674 reloc_entry
->address
+= input_section
->output_offset
;
2676 return bfd_reloc_ok
;
2679 /* Swap an entry in a .gptab section. Note that these routines rely
2680 on the equivalence of the two elements of the union. */
2683 bfd_mips_elf32_swap_gptab_in (bfd
*abfd
, const Elf32_External_gptab
*ex
,
2686 in
->gt_entry
.gt_g_value
= H_GET_32 (abfd
, ex
->gt_entry
.gt_g_value
);
2687 in
->gt_entry
.gt_bytes
= H_GET_32 (abfd
, ex
->gt_entry
.gt_bytes
);
2691 bfd_mips_elf32_swap_gptab_out (bfd
*abfd
, const Elf32_gptab
*in
,
2692 Elf32_External_gptab
*ex
)
2694 H_PUT_32 (abfd
, in
->gt_entry
.gt_g_value
, ex
->gt_entry
.gt_g_value
);
2695 H_PUT_32 (abfd
, in
->gt_entry
.gt_bytes
, ex
->gt_entry
.gt_bytes
);
2699 bfd_elf32_swap_compact_rel_out (bfd
*abfd
, const Elf32_compact_rel
*in
,
2700 Elf32_External_compact_rel
*ex
)
2702 H_PUT_32 (abfd
, in
->id1
, ex
->id1
);
2703 H_PUT_32 (abfd
, in
->num
, ex
->num
);
2704 H_PUT_32 (abfd
, in
->id2
, ex
->id2
);
2705 H_PUT_32 (abfd
, in
->offset
, ex
->offset
);
2706 H_PUT_32 (abfd
, in
->reserved0
, ex
->reserved0
);
2707 H_PUT_32 (abfd
, in
->reserved1
, ex
->reserved1
);
2711 bfd_elf32_swap_crinfo_out (bfd
*abfd
, const Elf32_crinfo
*in
,
2712 Elf32_External_crinfo
*ex
)
2716 l
= (((in
->ctype
& CRINFO_CTYPE
) << CRINFO_CTYPE_SH
)
2717 | ((in
->rtype
& CRINFO_RTYPE
) << CRINFO_RTYPE_SH
)
2718 | ((in
->dist2to
& CRINFO_DIST2TO
) << CRINFO_DIST2TO_SH
)
2719 | ((in
->relvaddr
& CRINFO_RELVADDR
) << CRINFO_RELVADDR_SH
));
2720 H_PUT_32 (abfd
, l
, ex
->info
);
2721 H_PUT_32 (abfd
, in
->konst
, ex
->konst
);
2722 H_PUT_32 (abfd
, in
->vaddr
, ex
->vaddr
);
2725 /* A .reginfo section holds a single Elf32_RegInfo structure. These
2726 routines swap this structure in and out. They are used outside of
2727 BFD, so they are globally visible. */
2730 bfd_mips_elf32_swap_reginfo_in (bfd
*abfd
, const Elf32_External_RegInfo
*ex
,
2733 in
->ri_gprmask
= H_GET_32 (abfd
, ex
->ri_gprmask
);
2734 in
->ri_cprmask
[0] = H_GET_32 (abfd
, ex
->ri_cprmask
[0]);
2735 in
->ri_cprmask
[1] = H_GET_32 (abfd
, ex
->ri_cprmask
[1]);
2736 in
->ri_cprmask
[2] = H_GET_32 (abfd
, ex
->ri_cprmask
[2]);
2737 in
->ri_cprmask
[3] = H_GET_32 (abfd
, ex
->ri_cprmask
[3]);
2738 in
->ri_gp_value
= H_GET_32 (abfd
, ex
->ri_gp_value
);
2742 bfd_mips_elf32_swap_reginfo_out (bfd
*abfd
, const Elf32_RegInfo
*in
,
2743 Elf32_External_RegInfo
*ex
)
2745 H_PUT_32 (abfd
, in
->ri_gprmask
, ex
->ri_gprmask
);
2746 H_PUT_32 (abfd
, in
->ri_cprmask
[0], ex
->ri_cprmask
[0]);
2747 H_PUT_32 (abfd
, in
->ri_cprmask
[1], ex
->ri_cprmask
[1]);
2748 H_PUT_32 (abfd
, in
->ri_cprmask
[2], ex
->ri_cprmask
[2]);
2749 H_PUT_32 (abfd
, in
->ri_cprmask
[3], ex
->ri_cprmask
[3]);
2750 H_PUT_32 (abfd
, in
->ri_gp_value
, ex
->ri_gp_value
);
2753 /* In the 64 bit ABI, the .MIPS.options section holds register
2754 information in an Elf64_Reginfo structure. These routines swap
2755 them in and out. They are globally visible because they are used
2756 outside of BFD. These routines are here so that gas can call them
2757 without worrying about whether the 64 bit ABI has been included. */
2760 bfd_mips_elf64_swap_reginfo_in (bfd
*abfd
, const Elf64_External_RegInfo
*ex
,
2761 Elf64_Internal_RegInfo
*in
)
2763 in
->ri_gprmask
= H_GET_32 (abfd
, ex
->ri_gprmask
);
2764 in
->ri_pad
= H_GET_32 (abfd
, ex
->ri_pad
);
2765 in
->ri_cprmask
[0] = H_GET_32 (abfd
, ex
->ri_cprmask
[0]);
2766 in
->ri_cprmask
[1] = H_GET_32 (abfd
, ex
->ri_cprmask
[1]);
2767 in
->ri_cprmask
[2] = H_GET_32 (abfd
, ex
->ri_cprmask
[2]);
2768 in
->ri_cprmask
[3] = H_GET_32 (abfd
, ex
->ri_cprmask
[3]);
2769 in
->ri_gp_value
= H_GET_64 (abfd
, ex
->ri_gp_value
);
2773 bfd_mips_elf64_swap_reginfo_out (bfd
*abfd
, const Elf64_Internal_RegInfo
*in
,
2774 Elf64_External_RegInfo
*ex
)
2776 H_PUT_32 (abfd
, in
->ri_gprmask
, ex
->ri_gprmask
);
2777 H_PUT_32 (abfd
, in
->ri_pad
, ex
->ri_pad
);
2778 H_PUT_32 (abfd
, in
->ri_cprmask
[0], ex
->ri_cprmask
[0]);
2779 H_PUT_32 (abfd
, in
->ri_cprmask
[1], ex
->ri_cprmask
[1]);
2780 H_PUT_32 (abfd
, in
->ri_cprmask
[2], ex
->ri_cprmask
[2]);
2781 H_PUT_32 (abfd
, in
->ri_cprmask
[3], ex
->ri_cprmask
[3]);
2782 H_PUT_64 (abfd
, in
->ri_gp_value
, ex
->ri_gp_value
);
2785 /* Swap in an options header. */
2788 bfd_mips_elf_swap_options_in (bfd
*abfd
, const Elf_External_Options
*ex
,
2789 Elf_Internal_Options
*in
)
2791 in
->kind
= H_GET_8 (abfd
, ex
->kind
);
2792 in
->size
= H_GET_8 (abfd
, ex
->size
);
2793 in
->section
= H_GET_16 (abfd
, ex
->section
);
2794 in
->info
= H_GET_32 (abfd
, ex
->info
);
2797 /* Swap out an options header. */
2800 bfd_mips_elf_swap_options_out (bfd
*abfd
, const Elf_Internal_Options
*in
,
2801 Elf_External_Options
*ex
)
2803 H_PUT_8 (abfd
, in
->kind
, ex
->kind
);
2804 H_PUT_8 (abfd
, in
->size
, ex
->size
);
2805 H_PUT_16 (abfd
, in
->section
, ex
->section
);
2806 H_PUT_32 (abfd
, in
->info
, ex
->info
);
2809 /* Swap in an abiflags structure. */
2812 bfd_mips_elf_swap_abiflags_v0_in (bfd
*abfd
,
2813 const Elf_External_ABIFlags_v0
*ex
,
2814 Elf_Internal_ABIFlags_v0
*in
)
2816 in
->version
= H_GET_16 (abfd
, ex
->version
);
2817 in
->isa_level
= H_GET_8 (abfd
, ex
->isa_level
);
2818 in
->isa_rev
= H_GET_8 (abfd
, ex
->isa_rev
);
2819 in
->gpr_size
= H_GET_8 (abfd
, ex
->gpr_size
);
2820 in
->cpr1_size
= H_GET_8 (abfd
, ex
->cpr1_size
);
2821 in
->cpr2_size
= H_GET_8 (abfd
, ex
->cpr2_size
);
2822 in
->fp_abi
= H_GET_8 (abfd
, ex
->fp_abi
);
2823 in
->isa_ext
= H_GET_32 (abfd
, ex
->isa_ext
);
2824 in
->ases
= H_GET_32 (abfd
, ex
->ases
);
2825 in
->flags1
= H_GET_32 (abfd
, ex
->flags1
);
2826 in
->flags2
= H_GET_32 (abfd
, ex
->flags2
);
2829 /* Swap out an abiflags structure. */
2832 bfd_mips_elf_swap_abiflags_v0_out (bfd
*abfd
,
2833 const Elf_Internal_ABIFlags_v0
*in
,
2834 Elf_External_ABIFlags_v0
*ex
)
2836 H_PUT_16 (abfd
, in
->version
, ex
->version
);
2837 H_PUT_8 (abfd
, in
->isa_level
, ex
->isa_level
);
2838 H_PUT_8 (abfd
, in
->isa_rev
, ex
->isa_rev
);
2839 H_PUT_8 (abfd
, in
->gpr_size
, ex
->gpr_size
);
2840 H_PUT_8 (abfd
, in
->cpr1_size
, ex
->cpr1_size
);
2841 H_PUT_8 (abfd
, in
->cpr2_size
, ex
->cpr2_size
);
2842 H_PUT_8 (abfd
, in
->fp_abi
, ex
->fp_abi
);
2843 H_PUT_32 (abfd
, in
->isa_ext
, ex
->isa_ext
);
2844 H_PUT_32 (abfd
, in
->ases
, ex
->ases
);
2845 H_PUT_32 (abfd
, in
->flags1
, ex
->flags1
);
2846 H_PUT_32 (abfd
, in
->flags2
, ex
->flags2
);
2849 /* This function is called via qsort() to sort the dynamic relocation
2850 entries by increasing r_symndx value. */
2853 sort_dynamic_relocs (const void *arg1
, const void *arg2
)
2855 Elf_Internal_Rela int_reloc1
;
2856 Elf_Internal_Rela int_reloc2
;
2859 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd
, arg1
, &int_reloc1
);
2860 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd
, arg2
, &int_reloc2
);
2862 diff
= ELF32_R_SYM (int_reloc1
.r_info
) - ELF32_R_SYM (int_reloc2
.r_info
);
2866 if (int_reloc1
.r_offset
< int_reloc2
.r_offset
)
2868 if (int_reloc1
.r_offset
> int_reloc2
.r_offset
)
2873 /* Like sort_dynamic_relocs, but used for elf64 relocations. */
2876 sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED
,
2877 const void *arg2 ATTRIBUTE_UNUSED
)
2880 Elf_Internal_Rela int_reloc1
[3];
2881 Elf_Internal_Rela int_reloc2
[3];
2883 (*get_elf_backend_data (reldyn_sorting_bfd
)->s
->swap_reloc_in
)
2884 (reldyn_sorting_bfd
, arg1
, int_reloc1
);
2885 (*get_elf_backend_data (reldyn_sorting_bfd
)->s
->swap_reloc_in
)
2886 (reldyn_sorting_bfd
, arg2
, int_reloc2
);
2888 if (ELF64_R_SYM (int_reloc1
[0].r_info
) < ELF64_R_SYM (int_reloc2
[0].r_info
))
2890 if (ELF64_R_SYM (int_reloc1
[0].r_info
) > ELF64_R_SYM (int_reloc2
[0].r_info
))
2893 if (int_reloc1
[0].r_offset
< int_reloc2
[0].r_offset
)
2895 if (int_reloc1
[0].r_offset
> int_reloc2
[0].r_offset
)
2904 /* This routine is used to write out ECOFF debugging external symbol
2905 information. It is called via mips_elf_link_hash_traverse. The
2906 ECOFF external symbol information must match the ELF external
2907 symbol information. Unfortunately, at this point we don't know
2908 whether a symbol is required by reloc information, so the two
2909 tables may wind up being different. We must sort out the external
2910 symbol information before we can set the final size of the .mdebug
2911 section, and we must set the size of the .mdebug section before we
2912 can relocate any sections, and we can't know which symbols are
2913 required by relocation until we relocate the sections.
2914 Fortunately, it is relatively unlikely that any symbol will be
2915 stripped but required by a reloc. In particular, it can not happen
2916 when generating a final executable. */
2919 mips_elf_output_extsym (struct mips_elf_link_hash_entry
*h
, void *data
)
2921 struct extsym_info
*einfo
= data
;
2923 asection
*sec
, *output_section
;
2925 if (h
->root
.indx
== -2)
2927 else if ((h
->root
.def_dynamic
2928 || h
->root
.ref_dynamic
2929 || h
->root
.type
== bfd_link_hash_new
)
2930 && !h
->root
.def_regular
2931 && !h
->root
.ref_regular
)
2933 else if (einfo
->info
->strip
== strip_all
2934 || (einfo
->info
->strip
== strip_some
2935 && bfd_hash_lookup (einfo
->info
->keep_hash
,
2936 h
->root
.root
.root
.string
,
2937 FALSE
, FALSE
) == NULL
))
2945 if (h
->esym
.ifd
== -2)
2948 h
->esym
.cobol_main
= 0;
2949 h
->esym
.weakext
= 0;
2950 h
->esym
.reserved
= 0;
2951 h
->esym
.ifd
= ifdNil
;
2952 h
->esym
.asym
.value
= 0;
2953 h
->esym
.asym
.st
= stGlobal
;
2955 if (h
->root
.root
.type
== bfd_link_hash_undefined
2956 || h
->root
.root
.type
== bfd_link_hash_undefweak
)
2960 /* Use undefined class. Also, set class and type for some
2962 name
= h
->root
.root
.root
.string
;
2963 if (strcmp (name
, mips_elf_dynsym_rtproc_names
[0]) == 0
2964 || strcmp (name
, mips_elf_dynsym_rtproc_names
[1]) == 0)
2966 h
->esym
.asym
.sc
= scData
;
2967 h
->esym
.asym
.st
= stLabel
;
2968 h
->esym
.asym
.value
= 0;
2970 else if (strcmp (name
, mips_elf_dynsym_rtproc_names
[2]) == 0)
2972 h
->esym
.asym
.sc
= scAbs
;
2973 h
->esym
.asym
.st
= stLabel
;
2974 h
->esym
.asym
.value
=
2975 mips_elf_hash_table (einfo
->info
)->procedure_count
;
2978 h
->esym
.asym
.sc
= scUndefined
;
2980 else if (h
->root
.root
.type
!= bfd_link_hash_defined
2981 && h
->root
.root
.type
!= bfd_link_hash_defweak
)
2982 h
->esym
.asym
.sc
= scAbs
;
2987 sec
= h
->root
.root
.u
.def
.section
;
2988 output_section
= sec
->output_section
;
2990 /* When making a shared library and symbol h is the one from
2991 the another shared library, OUTPUT_SECTION may be null. */
2992 if (output_section
== NULL
)
2993 h
->esym
.asym
.sc
= scUndefined
;
2996 name
= bfd_section_name (output_section
);
2998 if (strcmp (name
, ".text") == 0)
2999 h
->esym
.asym
.sc
= scText
;
3000 else if (strcmp (name
, ".data") == 0)
3001 h
->esym
.asym
.sc
= scData
;
3002 else if (strcmp (name
, ".sdata") == 0)
3003 h
->esym
.asym
.sc
= scSData
;
3004 else if (strcmp (name
, ".rodata") == 0
3005 || strcmp (name
, ".rdata") == 0)
3006 h
->esym
.asym
.sc
= scRData
;
3007 else if (strcmp (name
, ".bss") == 0)
3008 h
->esym
.asym
.sc
= scBss
;
3009 else if (strcmp (name
, ".sbss") == 0)
3010 h
->esym
.asym
.sc
= scSBss
;
3011 else if (strcmp (name
, ".init") == 0)
3012 h
->esym
.asym
.sc
= scInit
;
3013 else if (strcmp (name
, ".fini") == 0)
3014 h
->esym
.asym
.sc
= scFini
;
3016 h
->esym
.asym
.sc
= scAbs
;
3020 h
->esym
.asym
.reserved
= 0;
3021 h
->esym
.asym
.index
= indexNil
;
3024 if (h
->root
.root
.type
== bfd_link_hash_common
)
3025 h
->esym
.asym
.value
= h
->root
.root
.u
.c
.size
;
3026 else if (h
->root
.root
.type
== bfd_link_hash_defined
3027 || h
->root
.root
.type
== bfd_link_hash_defweak
)
3029 if (h
->esym
.asym
.sc
== scCommon
)
3030 h
->esym
.asym
.sc
= scBss
;
3031 else if (h
->esym
.asym
.sc
== scSCommon
)
3032 h
->esym
.asym
.sc
= scSBss
;
3034 sec
= h
->root
.root
.u
.def
.section
;
3035 output_section
= sec
->output_section
;
3036 if (output_section
!= NULL
)
3037 h
->esym
.asym
.value
= (h
->root
.root
.u
.def
.value
3038 + sec
->output_offset
3039 + output_section
->vma
);
3041 h
->esym
.asym
.value
= 0;
3045 struct mips_elf_link_hash_entry
*hd
= h
;
3047 while (hd
->root
.root
.type
== bfd_link_hash_indirect
)
3048 hd
= (struct mips_elf_link_hash_entry
*)h
->root
.root
.u
.i
.link
;
3050 if (hd
->needs_lazy_stub
)
3052 BFD_ASSERT (hd
->root
.plt
.plist
!= NULL
);
3053 BFD_ASSERT (hd
->root
.plt
.plist
->stub_offset
!= MINUS_ONE
);
3054 /* Set type and value for a symbol with a function stub. */
3055 h
->esym
.asym
.st
= stProc
;
3056 sec
= hd
->root
.root
.u
.def
.section
;
3058 h
->esym
.asym
.value
= 0;
3061 output_section
= sec
->output_section
;
3062 if (output_section
!= NULL
)
3063 h
->esym
.asym
.value
= (hd
->root
.plt
.plist
->stub_offset
3064 + sec
->output_offset
3065 + output_section
->vma
);
3067 h
->esym
.asym
.value
= 0;
3072 if (! bfd_ecoff_debug_one_external (einfo
->abfd
, einfo
->debug
, einfo
->swap
,
3073 h
->root
.root
.root
.string
,
3076 einfo
->failed
= TRUE
;
3083 /* A comparison routine used to sort .gptab entries. */
3086 gptab_compare (const void *p1
, const void *p2
)
3088 const Elf32_gptab
*a1
= p1
;
3089 const Elf32_gptab
*a2
= p2
;
3091 return a1
->gt_entry
.gt_g_value
- a2
->gt_entry
.gt_g_value
;
3094 /* Functions to manage the got entry hash table. */
3096 /* Use all 64 bits of a bfd_vma for the computation of a 32-bit
3099 static INLINE hashval_t
3100 mips_elf_hash_bfd_vma (bfd_vma addr
)
3103 return addr
+ (addr
>> 32);
3110 mips_elf_got_entry_hash (const void *entry_
)
3112 const struct mips_got_entry
*entry
= (struct mips_got_entry
*)entry_
;
3114 return (entry
->symndx
3115 + ((entry
->tls_type
== GOT_TLS_LDM
) << 18)
3116 + (entry
->tls_type
== GOT_TLS_LDM
? 0
3117 : !entry
->abfd
? mips_elf_hash_bfd_vma (entry
->d
.address
)
3118 : entry
->symndx
>= 0 ? (entry
->abfd
->id
3119 + mips_elf_hash_bfd_vma (entry
->d
.addend
))
3120 : entry
->d
.h
->root
.root
.root
.hash
));
3124 mips_elf_got_entry_eq (const void *entry1
, const void *entry2
)
3126 const struct mips_got_entry
*e1
= (struct mips_got_entry
*)entry1
;
3127 const struct mips_got_entry
*e2
= (struct mips_got_entry
*)entry2
;
3129 return (e1
->symndx
== e2
->symndx
3130 && e1
->tls_type
== e2
->tls_type
3131 && (e1
->tls_type
== GOT_TLS_LDM
? TRUE
3132 : !e1
->abfd
? !e2
->abfd
&& e1
->d
.address
== e2
->d
.address
3133 : e1
->symndx
>= 0 ? (e1
->abfd
== e2
->abfd
3134 && e1
->d
.addend
== e2
->d
.addend
)
3135 : e2
->abfd
&& e1
->d
.h
== e2
->d
.h
));
3139 mips_got_page_ref_hash (const void *ref_
)
3141 const struct mips_got_page_ref
*ref
;
3143 ref
= (const struct mips_got_page_ref
*) ref_
;
3144 return ((ref
->symndx
>= 0
3145 ? (hashval_t
) (ref
->u
.abfd
->id
+ ref
->symndx
)
3146 : ref
->u
.h
->root
.root
.root
.hash
)
3147 + mips_elf_hash_bfd_vma (ref
->addend
));
3151 mips_got_page_ref_eq (const void *ref1_
, const void *ref2_
)
3153 const struct mips_got_page_ref
*ref1
, *ref2
;
3155 ref1
= (const struct mips_got_page_ref
*) ref1_
;
3156 ref2
= (const struct mips_got_page_ref
*) ref2_
;
3157 return (ref1
->symndx
== ref2
->symndx
3158 && (ref1
->symndx
< 0
3159 ? ref1
->u
.h
== ref2
->u
.h
3160 : ref1
->u
.abfd
== ref2
->u
.abfd
)
3161 && ref1
->addend
== ref2
->addend
);
3165 mips_got_page_entry_hash (const void *entry_
)
3167 const struct mips_got_page_entry
*entry
;
3169 entry
= (const struct mips_got_page_entry
*) entry_
;
3170 return entry
->sec
->id
;
3174 mips_got_page_entry_eq (const void *entry1_
, const void *entry2_
)
3176 const struct mips_got_page_entry
*entry1
, *entry2
;
3178 entry1
= (const struct mips_got_page_entry
*) entry1_
;
3179 entry2
= (const struct mips_got_page_entry
*) entry2_
;
3180 return entry1
->sec
== entry2
->sec
;
3183 /* Create and return a new mips_got_info structure. */
3185 static struct mips_got_info
*
3186 mips_elf_create_got_info (bfd
*abfd
)
3188 struct mips_got_info
*g
;
3190 g
= bfd_zalloc (abfd
, sizeof (struct mips_got_info
));
3194 g
->got_entries
= htab_try_create (1, mips_elf_got_entry_hash
,
3195 mips_elf_got_entry_eq
, NULL
);
3196 if (g
->got_entries
== NULL
)
3199 g
->got_page_refs
= htab_try_create (1, mips_got_page_ref_hash
,
3200 mips_got_page_ref_eq
, NULL
);
3201 if (g
->got_page_refs
== NULL
)
3207 /* Return the GOT info for input bfd ABFD, trying to create a new one if
3208 CREATE_P and if ABFD doesn't already have a GOT. */
3210 static struct mips_got_info
*
3211 mips_elf_bfd_got (bfd
*abfd
, bfd_boolean create_p
)
3213 struct mips_elf_obj_tdata
*tdata
;
3215 if (!is_mips_elf (abfd
))
3218 tdata
= mips_elf_tdata (abfd
);
3219 if (!tdata
->got
&& create_p
)
3220 tdata
->got
= mips_elf_create_got_info (abfd
);
3224 /* Record that ABFD should use output GOT G. */
3227 mips_elf_replace_bfd_got (bfd
*abfd
, struct mips_got_info
*g
)
3229 struct mips_elf_obj_tdata
*tdata
;
3231 BFD_ASSERT (is_mips_elf (abfd
));
3232 tdata
= mips_elf_tdata (abfd
);
3235 /* The GOT structure itself and the hash table entries are
3236 allocated to a bfd, but the hash tables aren't. */
3237 htab_delete (tdata
->got
->got_entries
);
3238 htab_delete (tdata
->got
->got_page_refs
);
3239 if (tdata
->got
->got_page_entries
)
3240 htab_delete (tdata
->got
->got_page_entries
);
3245 /* Return the dynamic relocation section. If it doesn't exist, try to
3246 create a new it if CREATE_P, otherwise return NULL. Also return NULL
3247 if creation fails. */
3250 mips_elf_rel_dyn_section (struct bfd_link_info
*info
, bfd_boolean create_p
)
3256 dname
= MIPS_ELF_REL_DYN_NAME (info
);
3257 dynobj
= elf_hash_table (info
)->dynobj
;
3258 sreloc
= bfd_get_linker_section (dynobj
, dname
);
3259 if (sreloc
== NULL
&& create_p
)
3261 sreloc
= bfd_make_section_anyway_with_flags (dynobj
, dname
,
3266 | SEC_LINKER_CREATED
3269 || !bfd_set_section_alignment (sreloc
,
3270 MIPS_ELF_LOG_FILE_ALIGN (dynobj
)))
3276 /* Return the GOT_TLS_* type required by relocation type R_TYPE. */
3279 mips_elf_reloc_tls_type (unsigned int r_type
)
3281 if (tls_gd_reloc_p (r_type
))
3284 if (tls_ldm_reloc_p (r_type
))
3287 if (tls_gottprel_reloc_p (r_type
))
3290 return GOT_TLS_NONE
;
3293 /* Return the number of GOT slots needed for GOT TLS type TYPE. */
3296 mips_tls_got_entries (unsigned int type
)
3313 /* Count the number of relocations needed for a TLS GOT entry, with
3314 access types from TLS_TYPE, and symbol H (or a local symbol if H
3318 mips_tls_got_relocs (struct bfd_link_info
*info
, unsigned char tls_type
,
3319 struct elf_link_hash_entry
*h
)
3322 bfd_boolean need_relocs
= FALSE
;
3323 bfd_boolean dyn
= elf_hash_table (info
)->dynamic_sections_created
;
3327 && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn
, bfd_link_pic (info
), h
)
3328 && (bfd_link_dll (info
) || !SYMBOL_REFERENCES_LOCAL (info
, h
)))
3331 if ((bfd_link_dll (info
) || indx
!= 0)
3333 || ELF_ST_VISIBILITY (h
->other
) == STV_DEFAULT
3334 || h
->root
.type
!= bfd_link_hash_undefweak
))
3343 return indx
!= 0 ? 2 : 1;
3349 return bfd_link_dll (info
) ? 1 : 0;
3356 /* Add the number of GOT entries and TLS relocations required by ENTRY
3360 mips_elf_count_got_entry (struct bfd_link_info
*info
,
3361 struct mips_got_info
*g
,
3362 struct mips_got_entry
*entry
)
3364 if (entry
->tls_type
)
3366 g
->tls_gotno
+= mips_tls_got_entries (entry
->tls_type
);
3367 g
->relocs
+= mips_tls_got_relocs (info
, entry
->tls_type
,
3369 ? &entry
->d
.h
->root
: NULL
);
3371 else if (entry
->symndx
>= 0 || entry
->d
.h
->global_got_area
== GGA_NONE
)
3372 g
->local_gotno
+= 1;
3374 g
->global_gotno
+= 1;
3377 /* Output a simple dynamic relocation into SRELOC. */
3380 mips_elf_output_dynamic_relocation (bfd
*output_bfd
,
3382 unsigned long reloc_index
,
3387 Elf_Internal_Rela rel
[3];
3389 memset (rel
, 0, sizeof (rel
));
3391 rel
[0].r_info
= ELF_R_INFO (output_bfd
, indx
, r_type
);
3392 rel
[0].r_offset
= rel
[1].r_offset
= rel
[2].r_offset
= offset
;
3394 if (ABI_64_P (output_bfd
))
3396 (*get_elf_backend_data (output_bfd
)->s
->swap_reloc_out
)
3397 (output_bfd
, &rel
[0],
3399 + reloc_index
* sizeof (Elf64_Mips_External_Rel
)));
3402 bfd_elf32_swap_reloc_out
3403 (output_bfd
, &rel
[0],
3405 + reloc_index
* sizeof (Elf32_External_Rel
)));
3408 /* Initialize a set of TLS GOT entries for one symbol. */
3411 mips_elf_initialize_tls_slots (bfd
*abfd
, struct bfd_link_info
*info
,
3412 struct mips_got_entry
*entry
,
3413 struct mips_elf_link_hash_entry
*h
,
3416 bfd_boolean dyn
= elf_hash_table (info
)->dynamic_sections_created
;
3417 struct mips_elf_link_hash_table
*htab
;
3419 asection
*sreloc
, *sgot
;
3420 bfd_vma got_offset
, got_offset2
;
3421 bfd_boolean need_relocs
= FALSE
;
3423 htab
= mips_elf_hash_table (info
);
3427 sgot
= htab
->root
.sgot
;
3431 && h
->root
.dynindx
!= -1
3432 && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn
, bfd_link_pic (info
), &h
->root
)
3433 && (bfd_link_dll (info
) || !SYMBOL_REFERENCES_LOCAL (info
, &h
->root
)))
3434 indx
= h
->root
.dynindx
;
3436 if (entry
->tls_initialized
)
3439 if ((bfd_link_dll (info
) || indx
!= 0)
3441 || ELF_ST_VISIBILITY (h
->root
.other
) == STV_DEFAULT
3442 || h
->root
.type
!= bfd_link_hash_undefweak
))
3445 /* MINUS_ONE means the symbol is not defined in this object. It may not
3446 be defined at all; assume that the value doesn't matter in that
3447 case. Otherwise complain if we would use the value. */
3448 BFD_ASSERT (value
!= MINUS_ONE
|| (indx
!= 0 && need_relocs
)
3449 || h
->root
.root
.type
== bfd_link_hash_undefweak
);
3451 /* Emit necessary relocations. */
3452 sreloc
= mips_elf_rel_dyn_section (info
, FALSE
);
3453 got_offset
= entry
->gotidx
;
3455 switch (entry
->tls_type
)
3458 /* General Dynamic. */
3459 got_offset2
= got_offset
+ MIPS_ELF_GOT_SIZE (abfd
);
3463 mips_elf_output_dynamic_relocation
3464 (abfd
, sreloc
, sreloc
->reloc_count
++, indx
,
3465 ABI_64_P (abfd
) ? R_MIPS_TLS_DTPMOD64
: R_MIPS_TLS_DTPMOD32
,
3466 sgot
->output_offset
+ sgot
->output_section
->vma
+ got_offset
);
3469 mips_elf_output_dynamic_relocation
3470 (abfd
, sreloc
, sreloc
->reloc_count
++, indx
,
3471 ABI_64_P (abfd
) ? R_MIPS_TLS_DTPREL64
: R_MIPS_TLS_DTPREL32
,
3472 sgot
->output_offset
+ sgot
->output_section
->vma
+ got_offset2
);
3474 MIPS_ELF_PUT_WORD (abfd
, value
- dtprel_base (info
),
3475 sgot
->contents
+ got_offset2
);
3479 MIPS_ELF_PUT_WORD (abfd
, 1,
3480 sgot
->contents
+ got_offset
);
3481 MIPS_ELF_PUT_WORD (abfd
, value
- dtprel_base (info
),
3482 sgot
->contents
+ got_offset2
);
3487 /* Initial Exec model. */
3491 MIPS_ELF_PUT_WORD (abfd
, value
- elf_hash_table (info
)->tls_sec
->vma
,
3492 sgot
->contents
+ got_offset
);
3494 MIPS_ELF_PUT_WORD (abfd
, 0,
3495 sgot
->contents
+ got_offset
);
3497 mips_elf_output_dynamic_relocation
3498 (abfd
, sreloc
, sreloc
->reloc_count
++, indx
,
3499 ABI_64_P (abfd
) ? R_MIPS_TLS_TPREL64
: R_MIPS_TLS_TPREL32
,
3500 sgot
->output_offset
+ sgot
->output_section
->vma
+ got_offset
);
3503 MIPS_ELF_PUT_WORD (abfd
, value
- tprel_base (info
),
3504 sgot
->contents
+ got_offset
);
3508 /* The initial offset is zero, and the LD offsets will include the
3509 bias by DTP_OFFSET. */
3510 MIPS_ELF_PUT_WORD (abfd
, 0,
3511 sgot
->contents
+ got_offset
3512 + MIPS_ELF_GOT_SIZE (abfd
));
3514 if (!bfd_link_dll (info
))
3515 MIPS_ELF_PUT_WORD (abfd
, 1,
3516 sgot
->contents
+ got_offset
);
3518 mips_elf_output_dynamic_relocation
3519 (abfd
, sreloc
, sreloc
->reloc_count
++, indx
,
3520 ABI_64_P (abfd
) ? R_MIPS_TLS_DTPMOD64
: R_MIPS_TLS_DTPMOD32
,
3521 sgot
->output_offset
+ sgot
->output_section
->vma
+ got_offset
);
3528 entry
->tls_initialized
= TRUE
;
3531 /* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry
3532 for global symbol H. .got.plt comes before the GOT, so the offset
3533 will be negative. */
3536 mips_elf_gotplt_index (struct bfd_link_info
*info
,
3537 struct elf_link_hash_entry
*h
)
3539 bfd_vma got_address
, got_value
;
3540 struct mips_elf_link_hash_table
*htab
;
3542 htab
= mips_elf_hash_table (info
);
3543 BFD_ASSERT (htab
!= NULL
);
3545 BFD_ASSERT (h
->plt
.plist
!= NULL
);
3546 BFD_ASSERT (h
->plt
.plist
->gotplt_index
!= MINUS_ONE
);
3548 /* Calculate the address of the associated .got.plt entry. */
3549 got_address
= (htab
->root
.sgotplt
->output_section
->vma
3550 + htab
->root
.sgotplt
->output_offset
3551 + (h
->plt
.plist
->gotplt_index
3552 * MIPS_ELF_GOT_SIZE (info
->output_bfd
)));
3554 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
3555 got_value
= (htab
->root
.hgot
->root
.u
.def
.section
->output_section
->vma
3556 + htab
->root
.hgot
->root
.u
.def
.section
->output_offset
3557 + htab
->root
.hgot
->root
.u
.def
.value
);
3559 return got_address
- got_value
;
3562 /* Return the GOT offset for address VALUE. If there is not yet a GOT
3563 entry for this value, create one. If R_SYMNDX refers to a TLS symbol,
3564 create a TLS GOT entry instead. Return -1 if no satisfactory GOT
3565 offset can be found. */
3568 mips_elf_local_got_index (bfd
*abfd
, bfd
*ibfd
, struct bfd_link_info
*info
,
3569 bfd_vma value
, unsigned long r_symndx
,
3570 struct mips_elf_link_hash_entry
*h
, int r_type
)
3572 struct mips_elf_link_hash_table
*htab
;
3573 struct mips_got_entry
*entry
;
3575 htab
= mips_elf_hash_table (info
);
3576 BFD_ASSERT (htab
!= NULL
);
3578 entry
= mips_elf_create_local_got_entry (abfd
, info
, ibfd
, value
,
3579 r_symndx
, h
, r_type
);
3583 if (entry
->tls_type
)
3584 mips_elf_initialize_tls_slots (abfd
, info
, entry
, h
, value
);
3585 return entry
->gotidx
;
3588 /* Return the GOT index of global symbol H in the primary GOT. */
3591 mips_elf_primary_global_got_index (bfd
*obfd
, struct bfd_link_info
*info
,
3592 struct elf_link_hash_entry
*h
)
3594 struct mips_elf_link_hash_table
*htab
;
3595 long global_got_dynindx
;
3596 struct mips_got_info
*g
;
3599 htab
= mips_elf_hash_table (info
);
3600 BFD_ASSERT (htab
!= NULL
);
3602 global_got_dynindx
= 0;
3603 if (htab
->global_gotsym
!= NULL
)
3604 global_got_dynindx
= htab
->global_gotsym
->dynindx
;
3606 /* Once we determine the global GOT entry with the lowest dynamic
3607 symbol table index, we must put all dynamic symbols with greater
3608 indices into the primary GOT. That makes it easy to calculate the
3610 BFD_ASSERT (h
->dynindx
>= global_got_dynindx
);
3611 g
= mips_elf_bfd_got (obfd
, FALSE
);
3612 got_index
= ((h
->dynindx
- global_got_dynindx
+ g
->local_gotno
)
3613 * MIPS_ELF_GOT_SIZE (obfd
));
3614 BFD_ASSERT (got_index
< htab
->root
.sgot
->size
);
3619 /* Return the GOT index for the global symbol indicated by H, which is
3620 referenced by a relocation of type R_TYPE in IBFD. */
3623 mips_elf_global_got_index (bfd
*obfd
, struct bfd_link_info
*info
, bfd
*ibfd
,
3624 struct elf_link_hash_entry
*h
, int r_type
)
3626 struct mips_elf_link_hash_table
*htab
;
3627 struct mips_got_info
*g
;
3628 struct mips_got_entry lookup
, *entry
;
3631 htab
= mips_elf_hash_table (info
);
3632 BFD_ASSERT (htab
!= NULL
);
3634 g
= mips_elf_bfd_got (ibfd
, FALSE
);
3637 lookup
.tls_type
= mips_elf_reloc_tls_type (r_type
);
3638 if (!lookup
.tls_type
&& g
== mips_elf_bfd_got (obfd
, FALSE
))
3639 return mips_elf_primary_global_got_index (obfd
, info
, h
);
3643 lookup
.d
.h
= (struct mips_elf_link_hash_entry
*) h
;
3644 entry
= htab_find (g
->got_entries
, &lookup
);
3647 gotidx
= entry
->gotidx
;
3648 BFD_ASSERT (gotidx
> 0 && gotidx
< htab
->root
.sgot
->size
);
3650 if (lookup
.tls_type
)
3652 bfd_vma value
= MINUS_ONE
;
3654 if ((h
->root
.type
== bfd_link_hash_defined
3655 || h
->root
.type
== bfd_link_hash_defweak
)
3656 && h
->root
.u
.def
.section
->output_section
)
3657 value
= (h
->root
.u
.def
.value
3658 + h
->root
.u
.def
.section
->output_offset
3659 + h
->root
.u
.def
.section
->output_section
->vma
);
3661 mips_elf_initialize_tls_slots (obfd
, info
, entry
, lookup
.d
.h
, value
);
3666 /* Find a GOT page entry that points to within 32KB of VALUE. These
3667 entries are supposed to be placed at small offsets in the GOT, i.e.,
3668 within 32KB of GP. Return the index of the GOT entry, or -1 if no
3669 entry could be created. If OFFSETP is nonnull, use it to return the
3670 offset of the GOT entry from VALUE. */
3673 mips_elf_got_page (bfd
*abfd
, bfd
*ibfd
, struct bfd_link_info
*info
,
3674 bfd_vma value
, bfd_vma
*offsetp
)
3676 bfd_vma page
, got_index
;
3677 struct mips_got_entry
*entry
;
3679 page
= (value
+ 0x8000) & ~(bfd_vma
) 0xffff;
3680 entry
= mips_elf_create_local_got_entry (abfd
, info
, ibfd
, page
, 0,
3681 NULL
, R_MIPS_GOT_PAGE
);
3686 got_index
= entry
->gotidx
;
3689 *offsetp
= value
- entry
->d
.address
;
3694 /* Find a local GOT entry for an R_MIPS*_GOT16 relocation against VALUE.
3695 EXTERNAL is true if the relocation was originally against a global
3696 symbol that binds locally. */
3699 mips_elf_got16_entry (bfd
*abfd
, bfd
*ibfd
, struct bfd_link_info
*info
,
3700 bfd_vma value
, bfd_boolean external
)
3702 struct mips_got_entry
*entry
;
3704 /* GOT16 relocations against local symbols are followed by a LO16
3705 relocation; those against global symbols are not. Thus if the
3706 symbol was originally local, the GOT16 relocation should load the
3707 equivalent of %hi(VALUE), otherwise it should load VALUE itself. */
3709 value
= mips_elf_high (value
) << 16;
3711 /* It doesn't matter whether the original relocation was R_MIPS_GOT16,
3712 R_MIPS16_GOT16, R_MIPS_CALL16, etc. The format of the entry is the
3713 same in all cases. */
3714 entry
= mips_elf_create_local_got_entry (abfd
, info
, ibfd
, value
, 0,
3715 NULL
, R_MIPS_GOT16
);
3717 return entry
->gotidx
;
3722 /* Returns the offset for the entry at the INDEXth position
3726 mips_elf_got_offset_from_index (struct bfd_link_info
*info
, bfd
*output_bfd
,
3727 bfd
*input_bfd
, bfd_vma got_index
)
3729 struct mips_elf_link_hash_table
*htab
;
3733 htab
= mips_elf_hash_table (info
);
3734 BFD_ASSERT (htab
!= NULL
);
3736 sgot
= htab
->root
.sgot
;
3737 gp
= _bfd_get_gp_value (output_bfd
)
3738 + mips_elf_adjust_gp (output_bfd
, htab
->got_info
, input_bfd
);
3740 return sgot
->output_section
->vma
+ sgot
->output_offset
+ got_index
- gp
;
3743 /* Create and return a local GOT entry for VALUE, which was calculated
3744 from a symbol belonging to INPUT_SECTON. Return NULL if it could not
3745 be created. If R_SYMNDX refers to a TLS symbol, create a TLS entry
3748 static struct mips_got_entry
*
3749 mips_elf_create_local_got_entry (bfd
*abfd
, struct bfd_link_info
*info
,
3750 bfd
*ibfd
, bfd_vma value
,
3751 unsigned long r_symndx
,
3752 struct mips_elf_link_hash_entry
*h
,
3755 struct mips_got_entry lookup
, *entry
;
3757 struct mips_got_info
*g
;
3758 struct mips_elf_link_hash_table
*htab
;
3761 htab
= mips_elf_hash_table (info
);
3762 BFD_ASSERT (htab
!= NULL
);
3764 g
= mips_elf_bfd_got (ibfd
, FALSE
);
3767 g
= mips_elf_bfd_got (abfd
, FALSE
);
3768 BFD_ASSERT (g
!= NULL
);
3771 /* This function shouldn't be called for symbols that live in the global
3773 BFD_ASSERT (h
== NULL
|| h
->global_got_area
== GGA_NONE
);
3775 lookup
.tls_type
= mips_elf_reloc_tls_type (r_type
);
3776 if (lookup
.tls_type
)
3779 if (tls_ldm_reloc_p (r_type
))
3782 lookup
.d
.addend
= 0;
3786 lookup
.symndx
= r_symndx
;
3787 lookup
.d
.addend
= 0;
3795 entry
= (struct mips_got_entry
*) htab_find (g
->got_entries
, &lookup
);
3798 gotidx
= entry
->gotidx
;
3799 BFD_ASSERT (gotidx
> 0 && gotidx
< htab
->root
.sgot
->size
);
3806 lookup
.d
.address
= value
;
3807 loc
= htab_find_slot (g
->got_entries
, &lookup
, INSERT
);
3811 entry
= (struct mips_got_entry
*) *loc
;
3815 if (g
->assigned_low_gotno
> g
->assigned_high_gotno
)
3817 /* We didn't allocate enough space in the GOT. */
3819 (_("not enough GOT space for local GOT entries"));
3820 bfd_set_error (bfd_error_bad_value
);
3824 entry
= (struct mips_got_entry
*) bfd_alloc (abfd
, sizeof (*entry
));
3828 if (got16_reloc_p (r_type
)
3829 || call16_reloc_p (r_type
)
3830 || got_page_reloc_p (r_type
)
3831 || got_disp_reloc_p (r_type
))
3832 lookup
.gotidx
= MIPS_ELF_GOT_SIZE (abfd
) * g
->assigned_low_gotno
++;
3834 lookup
.gotidx
= MIPS_ELF_GOT_SIZE (abfd
) * g
->assigned_high_gotno
--;
3839 MIPS_ELF_PUT_WORD (abfd
, value
, htab
->root
.sgot
->contents
+ entry
->gotidx
);
3841 /* These GOT entries need a dynamic relocation on VxWorks. */
3842 if (htab
->is_vxworks
)
3844 Elf_Internal_Rela outrel
;
3847 bfd_vma got_address
;
3849 s
= mips_elf_rel_dyn_section (info
, FALSE
);
3850 got_address
= (htab
->root
.sgot
->output_section
->vma
3851 + htab
->root
.sgot
->output_offset
3854 rloc
= s
->contents
+ (s
->reloc_count
++ * sizeof (Elf32_External_Rela
));
3855 outrel
.r_offset
= got_address
;
3856 outrel
.r_info
= ELF32_R_INFO (STN_UNDEF
, R_MIPS_32
);
3857 outrel
.r_addend
= value
;
3858 bfd_elf32_swap_reloca_out (abfd
, &outrel
, rloc
);
3864 /* Return the number of dynamic section symbols required by OUTPUT_BFD.
3865 The number might be exact or a worst-case estimate, depending on how
3866 much information is available to elf_backend_omit_section_dynsym at
3867 the current linking stage. */
3869 static bfd_size_type
3870 count_section_dynsyms (bfd
*output_bfd
, struct bfd_link_info
*info
)
3872 bfd_size_type count
;
3875 if (bfd_link_pic (info
)
3876 || elf_hash_table (info
)->is_relocatable_executable
)
3879 const struct elf_backend_data
*bed
;
3881 bed
= get_elf_backend_data (output_bfd
);
3882 for (p
= output_bfd
->sections
; p
; p
= p
->next
)
3883 if ((p
->flags
& SEC_EXCLUDE
) == 0
3884 && (p
->flags
& SEC_ALLOC
) != 0
3885 && elf_hash_table (info
)->dynamic_relocs
3886 && !(*bed
->elf_backend_omit_section_dynsym
) (output_bfd
, info
, p
))
3892 /* Sort the dynamic symbol table so that symbols that need GOT entries
3893 appear towards the end. */
3896 mips_elf_sort_hash_table (bfd
*abfd
, struct bfd_link_info
*info
)
3898 struct mips_elf_link_hash_table
*htab
;
3899 struct mips_elf_hash_sort_data hsd
;
3900 struct mips_got_info
*g
;
3902 htab
= mips_elf_hash_table (info
);
3903 BFD_ASSERT (htab
!= NULL
);
3905 if (htab
->root
.dynsymcount
== 0)
3913 hsd
.max_unref_got_dynindx
3914 = hsd
.min_got_dynindx
3915 = (htab
->root
.dynsymcount
- g
->reloc_only_gotno
);
3916 /* Add 1 to local symbol indices to account for the mandatory NULL entry
3917 at the head of the table; see `_bfd_elf_link_renumber_dynsyms'. */
3918 hsd
.max_local_dynindx
= count_section_dynsyms (abfd
, info
) + 1;
3919 hsd
.max_non_got_dynindx
= htab
->root
.local_dynsymcount
+ 1;
3920 hsd
.output_bfd
= abfd
;
3921 if (htab
->root
.dynobj
!= NULL
3922 && htab
->root
.dynamic_sections_created
3923 && info
->emit_gnu_hash
)
3925 asection
*s
= bfd_get_linker_section (htab
->root
.dynobj
, ".MIPS.xhash");
3926 BFD_ASSERT (s
!= NULL
);
3927 hsd
.mipsxhash
= s
->contents
;
3928 BFD_ASSERT (hsd
.mipsxhash
!= NULL
);
3931 hsd
.mipsxhash
= NULL
;
3932 mips_elf_link_hash_traverse (htab
, mips_elf_sort_hash_table_f
, &hsd
);
3934 /* There should have been enough room in the symbol table to
3935 accommodate both the GOT and non-GOT symbols. */
3936 BFD_ASSERT (hsd
.max_local_dynindx
<= htab
->root
.local_dynsymcount
+ 1);
3937 BFD_ASSERT (hsd
.max_non_got_dynindx
<= hsd
.min_got_dynindx
);
3938 BFD_ASSERT (hsd
.max_unref_got_dynindx
== htab
->root
.dynsymcount
);
3939 BFD_ASSERT (htab
->root
.dynsymcount
- hsd
.min_got_dynindx
== g
->global_gotno
);
3941 /* Now we know which dynamic symbol has the lowest dynamic symbol
3942 table index in the GOT. */
3943 htab
->global_gotsym
= hsd
.low
;
3948 /* If H needs a GOT entry, assign it the highest available dynamic
3949 index. Otherwise, assign it the lowest available dynamic
3953 mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry
*h
, void *data
)
3955 struct mips_elf_hash_sort_data
*hsd
= data
;
3957 /* Symbols without dynamic symbol table entries aren't interesting
3959 if (h
->root
.dynindx
== -1)
3962 switch (h
->global_got_area
)
3965 if (h
->root
.forced_local
)
3966 h
->root
.dynindx
= hsd
->max_local_dynindx
++;
3968 h
->root
.dynindx
= hsd
->max_non_got_dynindx
++;
3972 h
->root
.dynindx
= --hsd
->min_got_dynindx
;
3973 hsd
->low
= (struct elf_link_hash_entry
*) h
;
3976 case GGA_RELOC_ONLY
:
3977 if (hsd
->max_unref_got_dynindx
== hsd
->min_got_dynindx
)
3978 hsd
->low
= (struct elf_link_hash_entry
*) h
;
3979 h
->root
.dynindx
= hsd
->max_unref_got_dynindx
++;
3983 /* Populate the .MIPS.xhash translation table entry with
3984 the symbol dynindx. */
3985 if (h
->mipsxhash_loc
!= 0 && hsd
->mipsxhash
!= NULL
)
3986 bfd_put_32 (hsd
->output_bfd
, h
->root
.dynindx
,
3987 hsd
->mipsxhash
+ h
->mipsxhash_loc
);
3992 /* Record that input bfd ABFD requires a GOT entry like *LOOKUP
3993 (which is owned by the caller and shouldn't be added to the
3994 hash table directly). */
3997 mips_elf_record_got_entry (struct bfd_link_info
*info
, bfd
*abfd
,
3998 struct mips_got_entry
*lookup
)
4000 struct mips_elf_link_hash_table
*htab
;
4001 struct mips_got_entry
*entry
;
4002 struct mips_got_info
*g
;
4003 void **loc
, **bfd_loc
;
4005 /* Make sure there's a slot for this entry in the master GOT. */
4006 htab
= mips_elf_hash_table (info
);
4008 loc
= htab_find_slot (g
->got_entries
, lookup
, INSERT
);
4012 /* Populate the entry if it isn't already. */
4013 entry
= (struct mips_got_entry
*) *loc
;
4016 entry
= (struct mips_got_entry
*) bfd_alloc (abfd
, sizeof (*entry
));
4020 lookup
->tls_initialized
= FALSE
;
4021 lookup
->gotidx
= -1;
4026 /* Reuse the same GOT entry for the BFD's GOT. */
4027 g
= mips_elf_bfd_got (abfd
, TRUE
);
4031 bfd_loc
= htab_find_slot (g
->got_entries
, lookup
, INSERT
);
4040 /* ABFD has a GOT relocation of type R_TYPE against H. Reserve a GOT
4041 entry for it. FOR_CALL is true if the caller is only interested in
4042 using the GOT entry for calls. */
4045 mips_elf_record_global_got_symbol (struct elf_link_hash_entry
*h
,
4046 bfd
*abfd
, struct bfd_link_info
*info
,
4047 bfd_boolean for_call
, int r_type
)
4049 struct mips_elf_link_hash_table
*htab
;
4050 struct mips_elf_link_hash_entry
*hmips
;
4051 struct mips_got_entry entry
;
4052 unsigned char tls_type
;
4054 htab
= mips_elf_hash_table (info
);
4055 BFD_ASSERT (htab
!= NULL
);
4057 hmips
= (struct mips_elf_link_hash_entry
*) h
;
4059 hmips
->got_only_for_calls
= FALSE
;
4061 /* A global symbol in the GOT must also be in the dynamic symbol
4063 if (h
->dynindx
== -1)
4065 switch (ELF_ST_VISIBILITY (h
->other
))
4069 _bfd_mips_elf_hide_symbol (info
, h
, TRUE
);
4072 if (!bfd_elf_link_record_dynamic_symbol (info
, h
))
4076 tls_type
= mips_elf_reloc_tls_type (r_type
);
4077 if (tls_type
== GOT_TLS_NONE
&& hmips
->global_got_area
> GGA_NORMAL
)
4078 hmips
->global_got_area
= GGA_NORMAL
;
4082 entry
.d
.h
= (struct mips_elf_link_hash_entry
*) h
;
4083 entry
.tls_type
= tls_type
;
4084 return mips_elf_record_got_entry (info
, abfd
, &entry
);
4087 /* ABFD has a GOT relocation of type R_TYPE against symbol SYMNDX + ADDEND,
4088 where SYMNDX is a local symbol. Reserve a GOT entry for it. */
4091 mips_elf_record_local_got_symbol (bfd
*abfd
, long symndx
, bfd_vma addend
,
4092 struct bfd_link_info
*info
, int r_type
)
4094 struct mips_elf_link_hash_table
*htab
;
4095 struct mips_got_info
*g
;
4096 struct mips_got_entry entry
;
4098 htab
= mips_elf_hash_table (info
);
4099 BFD_ASSERT (htab
!= NULL
);
4102 BFD_ASSERT (g
!= NULL
);
4105 entry
.symndx
= symndx
;
4106 entry
.d
.addend
= addend
;
4107 entry
.tls_type
= mips_elf_reloc_tls_type (r_type
);
4108 return mips_elf_record_got_entry (info
, abfd
, &entry
);
4111 /* Record that ABFD has a page relocation against SYMNDX + ADDEND.
4112 H is the symbol's hash table entry, or null if SYMNDX is local
4116 mips_elf_record_got_page_ref (struct bfd_link_info
*info
, bfd
*abfd
,
4117 long symndx
, struct elf_link_hash_entry
*h
,
4118 bfd_signed_vma addend
)
4120 struct mips_elf_link_hash_table
*htab
;
4121 struct mips_got_info
*g1
, *g2
;
4122 struct mips_got_page_ref lookup
, *entry
;
4123 void **loc
, **bfd_loc
;
4125 htab
= mips_elf_hash_table (info
);
4126 BFD_ASSERT (htab
!= NULL
);
4128 g1
= htab
->got_info
;
4129 BFD_ASSERT (g1
!= NULL
);
4134 lookup
.u
.h
= (struct mips_elf_link_hash_entry
*) h
;
4138 lookup
.symndx
= symndx
;
4139 lookup
.u
.abfd
= abfd
;
4141 lookup
.addend
= addend
;
4142 loc
= htab_find_slot (g1
->got_page_refs
, &lookup
, INSERT
);
4146 entry
= (struct mips_got_page_ref
*) *loc
;
4149 entry
= bfd_alloc (abfd
, sizeof (*entry
));
4157 /* Add the same entry to the BFD's GOT. */
4158 g2
= mips_elf_bfd_got (abfd
, TRUE
);
4162 bfd_loc
= htab_find_slot (g2
->got_page_refs
, &lookup
, INSERT
);
4172 /* Add room for N relocations to the .rel(a).dyn section in ABFD. */
4175 mips_elf_allocate_dynamic_relocations (bfd
*abfd
, struct bfd_link_info
*info
,
4179 struct mips_elf_link_hash_table
*htab
;
4181 htab
= mips_elf_hash_table (info
);
4182 BFD_ASSERT (htab
!= NULL
);
4184 s
= mips_elf_rel_dyn_section (info
, FALSE
);
4185 BFD_ASSERT (s
!= NULL
);
4187 if (htab
->is_vxworks
)
4188 s
->size
+= n
* MIPS_ELF_RELA_SIZE (abfd
);
4193 /* Make room for a null element. */
4194 s
->size
+= MIPS_ELF_REL_SIZE (abfd
);
4197 s
->size
+= n
* MIPS_ELF_REL_SIZE (abfd
);
4201 /* A htab_traverse callback for GOT entries, with DATA pointing to a
4202 mips_elf_traverse_got_arg structure. Count the number of GOT
4203 entries and TLS relocs. Set DATA->value to true if we need
4204 to resolve indirect or warning symbols and then recreate the GOT. */
4207 mips_elf_check_recreate_got (void **entryp
, void *data
)
4209 struct mips_got_entry
*entry
;
4210 struct mips_elf_traverse_got_arg
*arg
;
4212 entry
= (struct mips_got_entry
*) *entryp
;
4213 arg
= (struct mips_elf_traverse_got_arg
*) data
;
4214 if (entry
->abfd
!= NULL
&& entry
->symndx
== -1)
4216 struct mips_elf_link_hash_entry
*h
;
4219 if (h
->root
.root
.type
== bfd_link_hash_indirect
4220 || h
->root
.root
.type
== bfd_link_hash_warning
)
4226 mips_elf_count_got_entry (arg
->info
, arg
->g
, entry
);
4230 /* A htab_traverse callback for GOT entries, with DATA pointing to a
4231 mips_elf_traverse_got_arg structure. Add all entries to DATA->g,
4232 converting entries for indirect and warning symbols into entries
4233 for the target symbol. Set DATA->g to null on error. */
4236 mips_elf_recreate_got (void **entryp
, void *data
)
4238 struct mips_got_entry new_entry
, *entry
;
4239 struct mips_elf_traverse_got_arg
*arg
;
4242 entry
= (struct mips_got_entry
*) *entryp
;
4243 arg
= (struct mips_elf_traverse_got_arg
*) data
;
4244 if (entry
->abfd
!= NULL
4245 && entry
->symndx
== -1
4246 && (entry
->d
.h
->root
.root
.type
== bfd_link_hash_indirect
4247 || entry
->d
.h
->root
.root
.type
== bfd_link_hash_warning
))
4249 struct mips_elf_link_hash_entry
*h
;
4256 BFD_ASSERT (h
->global_got_area
== GGA_NONE
);
4257 h
= (struct mips_elf_link_hash_entry
*) h
->root
.root
.u
.i
.link
;
4259 while (h
->root
.root
.type
== bfd_link_hash_indirect
4260 || h
->root
.root
.type
== bfd_link_hash_warning
);
4263 slot
= htab_find_slot (arg
->g
->got_entries
, entry
, INSERT
);
4271 if (entry
== &new_entry
)
4273 entry
= bfd_alloc (entry
->abfd
, sizeof (*entry
));
4282 mips_elf_count_got_entry (arg
->info
, arg
->g
, entry
);
4287 /* Return the maximum number of GOT page entries required for RANGE. */
4290 mips_elf_pages_for_range (const struct mips_got_page_range
*range
)
4292 return (range
->max_addend
- range
->min_addend
+ 0x1ffff) >> 16;
4295 /* Record that G requires a page entry that can reach SEC + ADDEND. */
4298 mips_elf_record_got_page_entry (struct mips_elf_traverse_got_arg
*arg
,
4299 asection
*sec
, bfd_signed_vma addend
)
4301 struct mips_got_info
*g
= arg
->g
;
4302 struct mips_got_page_entry lookup
, *entry
;
4303 struct mips_got_page_range
**range_ptr
, *range
;
4304 bfd_vma old_pages
, new_pages
;
4307 /* Find the mips_got_page_entry hash table entry for this section. */
4309 loc
= htab_find_slot (g
->got_page_entries
, &lookup
, INSERT
);
4313 /* Create a mips_got_page_entry if this is the first time we've
4314 seen the section. */
4315 entry
= (struct mips_got_page_entry
*) *loc
;
4318 entry
= bfd_zalloc (arg
->info
->output_bfd
, sizeof (*entry
));
4326 /* Skip over ranges whose maximum extent cannot share a page entry
4328 range_ptr
= &entry
->ranges
;
4329 while (*range_ptr
&& addend
> (*range_ptr
)->max_addend
+ 0xffff)
4330 range_ptr
= &(*range_ptr
)->next
;
4332 /* If we scanned to the end of the list, or found a range whose
4333 minimum extent cannot share a page entry with ADDEND, create
4334 a new singleton range. */
4336 if (!range
|| addend
< range
->min_addend
- 0xffff)
4338 range
= bfd_zalloc (arg
->info
->output_bfd
, sizeof (*range
));
4342 range
->next
= *range_ptr
;
4343 range
->min_addend
= addend
;
4344 range
->max_addend
= addend
;
4352 /* Remember how many pages the old range contributed. */
4353 old_pages
= mips_elf_pages_for_range (range
);
4355 /* Update the ranges. */
4356 if (addend
< range
->min_addend
)
4357 range
->min_addend
= addend
;
4358 else if (addend
> range
->max_addend
)
4360 if (range
->next
&& addend
>= range
->next
->min_addend
- 0xffff)
4362 old_pages
+= mips_elf_pages_for_range (range
->next
);
4363 range
->max_addend
= range
->next
->max_addend
;
4364 range
->next
= range
->next
->next
;
4367 range
->max_addend
= addend
;
4370 /* Record any change in the total estimate. */
4371 new_pages
= mips_elf_pages_for_range (range
);
4372 if (old_pages
!= new_pages
)
4374 entry
->num_pages
+= new_pages
- old_pages
;
4375 g
->page_gotno
+= new_pages
- old_pages
;
4381 /* A htab_traverse callback for which *REFP points to a mips_got_page_ref
4382 and for which DATA points to a mips_elf_traverse_got_arg. Work out
4383 whether the page reference described by *REFP needs a GOT page entry,
4384 and record that entry in DATA->g if so. Set DATA->g to null on failure. */
4387 mips_elf_resolve_got_page_ref (void **refp
, void *data
)
4389 struct mips_got_page_ref
*ref
;
4390 struct mips_elf_traverse_got_arg
*arg
;
4391 struct mips_elf_link_hash_table
*htab
;
4395 ref
= (struct mips_got_page_ref
*) *refp
;
4396 arg
= (struct mips_elf_traverse_got_arg
*) data
;
4397 htab
= mips_elf_hash_table (arg
->info
);
4399 if (ref
->symndx
< 0)
4401 struct mips_elf_link_hash_entry
*h
;
4403 /* Global GOT_PAGEs decay to GOT_DISP and so don't need page entries. */
4405 if (!SYMBOL_REFERENCES_LOCAL (arg
->info
, &h
->root
))
4408 /* Ignore undefined symbols; we'll issue an error later if
4410 if (!((h
->root
.root
.type
== bfd_link_hash_defined
4411 || h
->root
.root
.type
== bfd_link_hash_defweak
)
4412 && h
->root
.root
.u
.def
.section
))
4415 sec
= h
->root
.root
.u
.def
.section
;
4416 addend
= h
->root
.root
.u
.def
.value
+ ref
->addend
;
4420 Elf_Internal_Sym
*isym
;
4422 /* Read in the symbol. */
4423 isym
= bfd_sym_from_r_symndx (&htab
->sym_cache
, ref
->u
.abfd
,
4431 /* Get the associated input section. */
4432 sec
= bfd_section_from_elf_index (ref
->u
.abfd
, isym
->st_shndx
);
4439 /* If this is a mergable section, work out the section and offset
4440 of the merged data. For section symbols, the addend specifies
4441 of the offset _of_ the first byte in the data, otherwise it
4442 specifies the offset _from_ the first byte. */
4443 if (sec
->flags
& SEC_MERGE
)
4447 secinfo
= elf_section_data (sec
)->sec_info
;
4448 if (ELF_ST_TYPE (isym
->st_info
) == STT_SECTION
)
4449 addend
= _bfd_merged_section_offset (ref
->u
.abfd
, &sec
, secinfo
,
4450 isym
->st_value
+ ref
->addend
);
4452 addend
= _bfd_merged_section_offset (ref
->u
.abfd
, &sec
, secinfo
,
4453 isym
->st_value
) + ref
->addend
;
4456 addend
= isym
->st_value
+ ref
->addend
;
4458 if (!mips_elf_record_got_page_entry (arg
, sec
, addend
))
4466 /* If any entries in G->got_entries are for indirect or warning symbols,
4467 replace them with entries for the target symbol. Convert g->got_page_refs
4468 into got_page_entry structures and estimate the number of page entries
4469 that they require. */
4472 mips_elf_resolve_final_got_entries (struct bfd_link_info
*info
,
4473 struct mips_got_info
*g
)
4475 struct mips_elf_traverse_got_arg tga
;
4476 struct mips_got_info oldg
;
4483 htab_traverse (g
->got_entries
, mips_elf_check_recreate_got
, &tga
);
4487 g
->got_entries
= htab_create (htab_size (oldg
.got_entries
),
4488 mips_elf_got_entry_hash
,
4489 mips_elf_got_entry_eq
, NULL
);
4490 if (!g
->got_entries
)
4493 htab_traverse (oldg
.got_entries
, mips_elf_recreate_got
, &tga
);
4497 htab_delete (oldg
.got_entries
);
4500 g
->got_page_entries
= htab_try_create (1, mips_got_page_entry_hash
,
4501 mips_got_page_entry_eq
, NULL
);
4502 if (g
->got_page_entries
== NULL
)
4507 htab_traverse (g
->got_page_refs
, mips_elf_resolve_got_page_ref
, &tga
);
4512 /* Return true if a GOT entry for H should live in the local rather than
4516 mips_use_local_got_p (struct bfd_link_info
*info
,
4517 struct mips_elf_link_hash_entry
*h
)
4519 /* Symbols that aren't in the dynamic symbol table must live in the
4520 local GOT. This includes symbols that are completely undefined
4521 and which therefore don't bind locally. We'll report undefined
4522 symbols later if appropriate. */
4523 if (h
->root
.dynindx
== -1)
4526 /* Absolute symbols, if ever they need a GOT entry, cannot ever go
4527 to the local GOT, as they would be implicitly relocated by the
4528 base address by the dynamic loader. */
4529 if (bfd_is_abs_symbol (&h
->root
.root
))
4532 /* Symbols that bind locally can (and in the case of forced-local
4533 symbols, must) live in the local GOT. */
4534 if (h
->got_only_for_calls
4535 ? SYMBOL_CALLS_LOCAL (info
, &h
->root
)
4536 : SYMBOL_REFERENCES_LOCAL (info
, &h
->root
))
4539 /* If this is an executable that must provide a definition of the symbol,
4540 either though PLTs or copy relocations, then that address should go in
4541 the local rather than global GOT. */
4542 if (bfd_link_executable (info
) && h
->has_static_relocs
)
4548 /* A mips_elf_link_hash_traverse callback for which DATA points to the
4549 link_info structure. Decide whether the hash entry needs an entry in
4550 the global part of the primary GOT, setting global_got_area accordingly.
4551 Count the number of global symbols that are in the primary GOT only
4552 because they have relocations against them (reloc_only_gotno). */
4555 mips_elf_count_got_symbols (struct mips_elf_link_hash_entry
*h
, void *data
)
4557 struct bfd_link_info
*info
;
4558 struct mips_elf_link_hash_table
*htab
;
4559 struct mips_got_info
*g
;
4561 info
= (struct bfd_link_info
*) data
;
4562 htab
= mips_elf_hash_table (info
);
4564 if (h
->global_got_area
!= GGA_NONE
)
4566 /* Make a final decision about whether the symbol belongs in the
4567 local or global GOT. */
4568 if (mips_use_local_got_p (info
, h
))
4569 /* The symbol belongs in the local GOT. We no longer need this
4570 entry if it was only used for relocations; those relocations
4571 will be against the null or section symbol instead of H. */
4572 h
->global_got_area
= GGA_NONE
;
4573 else if (htab
->is_vxworks
4574 && h
->got_only_for_calls
4575 && h
->root
.plt
.plist
->mips_offset
!= MINUS_ONE
)
4576 /* On VxWorks, calls can refer directly to the .got.plt entry;
4577 they don't need entries in the regular GOT. .got.plt entries
4578 will be allocated by _bfd_mips_elf_adjust_dynamic_symbol. */
4579 h
->global_got_area
= GGA_NONE
;
4580 else if (h
->global_got_area
== GGA_RELOC_ONLY
)
4582 g
->reloc_only_gotno
++;
4589 /* A htab_traverse callback for GOT entries. Add each one to the GOT
4590 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */
4593 mips_elf_add_got_entry (void **entryp
, void *data
)
4595 struct mips_got_entry
*entry
;
4596 struct mips_elf_traverse_got_arg
*arg
;
4599 entry
= (struct mips_got_entry
*) *entryp
;
4600 arg
= (struct mips_elf_traverse_got_arg
*) data
;
4601 slot
= htab_find_slot (arg
->g
->got_entries
, entry
, INSERT
);
4610 mips_elf_count_got_entry (arg
->info
, arg
->g
, entry
);
4615 /* A htab_traverse callback for GOT page entries. Add each one to the GOT
4616 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */
4619 mips_elf_add_got_page_entry (void **entryp
, void *data
)
4621 struct mips_got_page_entry
*entry
;
4622 struct mips_elf_traverse_got_arg
*arg
;
4625 entry
= (struct mips_got_page_entry
*) *entryp
;
4626 arg
= (struct mips_elf_traverse_got_arg
*) data
;
4627 slot
= htab_find_slot (arg
->g
->got_page_entries
, entry
, INSERT
);
4636 arg
->g
->page_gotno
+= entry
->num_pages
;
4641 /* Consider merging FROM, which is ABFD's GOT, into TO. Return -1 if
4642 this would lead to overflow, 1 if they were merged successfully,
4643 and 0 if a merge failed due to lack of memory. (These values are chosen
4644 so that nonnegative return values can be returned by a htab_traverse
4648 mips_elf_merge_got_with (bfd
*abfd
, struct mips_got_info
*from
,
4649 struct mips_got_info
*to
,
4650 struct mips_elf_got_per_bfd_arg
*arg
)
4652 struct mips_elf_traverse_got_arg tga
;
4653 unsigned int estimate
;
4655 /* Work out how many page entries we would need for the combined GOT. */
4656 estimate
= arg
->max_pages
;
4657 if (estimate
>= from
->page_gotno
+ to
->page_gotno
)
4658 estimate
= from
->page_gotno
+ to
->page_gotno
;
4660 /* And conservatively estimate how many local and TLS entries
4662 estimate
+= from
->local_gotno
+ to
->local_gotno
;
4663 estimate
+= from
->tls_gotno
+ to
->tls_gotno
;
4665 /* If we're merging with the primary got, any TLS relocations will
4666 come after the full set of global entries. Otherwise estimate those
4667 conservatively as well. */
4668 if (to
== arg
->primary
&& from
->tls_gotno
+ to
->tls_gotno
)
4669 estimate
+= arg
->global_count
;
4671 estimate
+= from
->global_gotno
+ to
->global_gotno
;
4673 /* Bail out if the combined GOT might be too big. */
4674 if (estimate
> arg
->max_count
)
4677 /* Transfer the bfd's got information from FROM to TO. */
4678 tga
.info
= arg
->info
;
4680 htab_traverse (from
->got_entries
, mips_elf_add_got_entry
, &tga
);
4684 htab_traverse (from
->got_page_entries
, mips_elf_add_got_page_entry
, &tga
);
4688 mips_elf_replace_bfd_got (abfd
, to
);
4692 /* Attempt to merge GOT G, which belongs to ABFD. Try to use as much
4693 as possible of the primary got, since it doesn't require explicit
4694 dynamic relocations, but don't use bfds that would reference global
4695 symbols out of the addressable range. Failing the primary got,
4696 attempt to merge with the current got, or finish the current got
4697 and then make make the new got current. */
4700 mips_elf_merge_got (bfd
*abfd
, struct mips_got_info
*g
,
4701 struct mips_elf_got_per_bfd_arg
*arg
)
4703 unsigned int estimate
;
4706 if (!mips_elf_resolve_final_got_entries (arg
->info
, g
))
4709 /* Work out the number of page, local and TLS entries. */
4710 estimate
= arg
->max_pages
;
4711 if (estimate
> g
->page_gotno
)
4712 estimate
= g
->page_gotno
;
4713 estimate
+= g
->local_gotno
+ g
->tls_gotno
;
4715 /* We place TLS GOT entries after both locals and globals. The globals
4716 for the primary GOT may overflow the normal GOT size limit, so be
4717 sure not to merge a GOT which requires TLS with the primary GOT in that
4718 case. This doesn't affect non-primary GOTs. */
4719 estimate
+= (g
->tls_gotno
> 0 ? arg
->global_count
: g
->global_gotno
);
4721 if (estimate
<= arg
->max_count
)
4723 /* If we don't have a primary GOT, use it as
4724 a starting point for the primary GOT. */
4731 /* Try merging with the primary GOT. */
4732 result
= mips_elf_merge_got_with (abfd
, g
, arg
->primary
, arg
);
4737 /* If we can merge with the last-created got, do it. */
4740 result
= mips_elf_merge_got_with (abfd
, g
, arg
->current
, arg
);
4745 /* Well, we couldn't merge, so create a new GOT. Don't check if it
4746 fits; if it turns out that it doesn't, we'll get relocation
4747 overflows anyway. */
4748 g
->next
= arg
->current
;
4754 /* ENTRYP is a hash table entry for a mips_got_entry. Set its gotidx
4755 to GOTIDX, duplicating the entry if it has already been assigned
4756 an index in a different GOT. */
4759 mips_elf_set_gotidx (void **entryp
, long gotidx
)
4761 struct mips_got_entry
*entry
;
4763 entry
= (struct mips_got_entry
*) *entryp
;
4764 if (entry
->gotidx
> 0)
4766 struct mips_got_entry
*new_entry
;
4768 new_entry
= bfd_alloc (entry
->abfd
, sizeof (*entry
));
4772 *new_entry
= *entry
;
4773 *entryp
= new_entry
;
4776 entry
->gotidx
= gotidx
;
4780 /* Set the TLS GOT index for the GOT entry in ENTRYP. DATA points to a
4781 mips_elf_traverse_got_arg in which DATA->value is the size of one
4782 GOT entry. Set DATA->g to null on failure. */
4785 mips_elf_initialize_tls_index (void **entryp
, void *data
)
4787 struct mips_got_entry
*entry
;
4788 struct mips_elf_traverse_got_arg
*arg
;
4790 /* We're only interested in TLS symbols. */
4791 entry
= (struct mips_got_entry
*) *entryp
;
4792 if (entry
->tls_type
== GOT_TLS_NONE
)
4795 arg
= (struct mips_elf_traverse_got_arg
*) data
;
4796 if (!mips_elf_set_gotidx (entryp
, arg
->value
* arg
->g
->tls_assigned_gotno
))
4802 /* Account for the entries we've just allocated. */
4803 arg
->g
->tls_assigned_gotno
+= mips_tls_got_entries (entry
->tls_type
);
4807 /* A htab_traverse callback for GOT entries, where DATA points to a
4808 mips_elf_traverse_got_arg. Set the global_got_area of each global
4809 symbol to DATA->value. */
4812 mips_elf_set_global_got_area (void **entryp
, void *data
)
4814 struct mips_got_entry
*entry
;
4815 struct mips_elf_traverse_got_arg
*arg
;
4817 entry
= (struct mips_got_entry
*) *entryp
;
4818 arg
= (struct mips_elf_traverse_got_arg
*) data
;
4819 if (entry
->abfd
!= NULL
4820 && entry
->symndx
== -1
4821 && entry
->d
.h
->global_got_area
!= GGA_NONE
)
4822 entry
->d
.h
->global_got_area
= arg
->value
;
4826 /* A htab_traverse callback for secondary GOT entries, where DATA points
4827 to a mips_elf_traverse_got_arg. Assign GOT indices to global entries
4828 and record the number of relocations they require. DATA->value is
4829 the size of one GOT entry. Set DATA->g to null on failure. */
4832 mips_elf_set_global_gotidx (void **entryp
, void *data
)
4834 struct mips_got_entry
*entry
;
4835 struct mips_elf_traverse_got_arg
*arg
;
4837 entry
= (struct mips_got_entry
*) *entryp
;
4838 arg
= (struct mips_elf_traverse_got_arg
*) data
;
4839 if (entry
->abfd
!= NULL
4840 && entry
->symndx
== -1
4841 && entry
->d
.h
->global_got_area
!= GGA_NONE
)
4843 if (!mips_elf_set_gotidx (entryp
, arg
->value
* arg
->g
->assigned_low_gotno
))
4848 arg
->g
->assigned_low_gotno
+= 1;
4850 if (bfd_link_pic (arg
->info
)
4851 || (elf_hash_table (arg
->info
)->dynamic_sections_created
4852 && entry
->d
.h
->root
.def_dynamic
4853 && !entry
->d
.h
->root
.def_regular
))
4854 arg
->g
->relocs
+= 1;
4860 /* A htab_traverse callback for GOT entries for which DATA is the
4861 bfd_link_info. Forbid any global symbols from having traditional
4862 lazy-binding stubs. */
4865 mips_elf_forbid_lazy_stubs (void **entryp
, void *data
)
4867 struct bfd_link_info
*info
;
4868 struct mips_elf_link_hash_table
*htab
;
4869 struct mips_got_entry
*entry
;
4871 entry
= (struct mips_got_entry
*) *entryp
;
4872 info
= (struct bfd_link_info
*) data
;
4873 htab
= mips_elf_hash_table (info
);
4874 BFD_ASSERT (htab
!= NULL
);
4876 if (entry
->abfd
!= NULL
4877 && entry
->symndx
== -1
4878 && entry
->d
.h
->needs_lazy_stub
)
4880 entry
->d
.h
->needs_lazy_stub
= FALSE
;
4881 htab
->lazy_stub_count
--;
4887 /* Return the offset of an input bfd IBFD's GOT from the beginning of
4890 mips_elf_adjust_gp (bfd
*abfd
, struct mips_got_info
*g
, bfd
*ibfd
)
4895 g
= mips_elf_bfd_got (ibfd
, FALSE
);
4899 BFD_ASSERT (g
->next
);
4903 return (g
->local_gotno
+ g
->global_gotno
+ g
->tls_gotno
)
4904 * MIPS_ELF_GOT_SIZE (abfd
);
4907 /* Turn a single GOT that is too big for 16-bit addressing into
4908 a sequence of GOTs, each one 16-bit addressable. */
4911 mips_elf_multi_got (bfd
*abfd
, struct bfd_link_info
*info
,
4912 asection
*got
, bfd_size_type pages
)
4914 struct mips_elf_link_hash_table
*htab
;
4915 struct mips_elf_got_per_bfd_arg got_per_bfd_arg
;
4916 struct mips_elf_traverse_got_arg tga
;
4917 struct mips_got_info
*g
, *gg
;
4918 unsigned int assign
, needed_relocs
;
4921 dynobj
= elf_hash_table (info
)->dynobj
;
4922 htab
= mips_elf_hash_table (info
);
4923 BFD_ASSERT (htab
!= NULL
);
4927 got_per_bfd_arg
.obfd
= abfd
;
4928 got_per_bfd_arg
.info
= info
;
4929 got_per_bfd_arg
.current
= NULL
;
4930 got_per_bfd_arg
.primary
= NULL
;
4931 got_per_bfd_arg
.max_count
= ((MIPS_ELF_GOT_MAX_SIZE (info
)
4932 / MIPS_ELF_GOT_SIZE (abfd
))
4933 - htab
->reserved_gotno
);
4934 got_per_bfd_arg
.max_pages
= pages
;
4935 /* The number of globals that will be included in the primary GOT.
4936 See the calls to mips_elf_set_global_got_area below for more
4938 got_per_bfd_arg
.global_count
= g
->global_gotno
;
4940 /* Try to merge the GOTs of input bfds together, as long as they
4941 don't seem to exceed the maximum GOT size, choosing one of them
4942 to be the primary GOT. */
4943 for (ibfd
= info
->input_bfds
; ibfd
; ibfd
= ibfd
->link
.next
)
4945 gg
= mips_elf_bfd_got (ibfd
, FALSE
);
4946 if (gg
&& !mips_elf_merge_got (ibfd
, gg
, &got_per_bfd_arg
))
4950 /* If we do not find any suitable primary GOT, create an empty one. */
4951 if (got_per_bfd_arg
.primary
== NULL
)
4952 g
->next
= mips_elf_create_got_info (abfd
);
4954 g
->next
= got_per_bfd_arg
.primary
;
4955 g
->next
->next
= got_per_bfd_arg
.current
;
4957 /* GG is now the master GOT, and G is the primary GOT. */
4961 /* Map the output bfd to the primary got. That's what we're going
4962 to use for bfds that use GOT16 or GOT_PAGE relocations that we
4963 didn't mark in check_relocs, and we want a quick way to find it.
4964 We can't just use gg->next because we're going to reverse the
4966 mips_elf_replace_bfd_got (abfd
, g
);
4968 /* Every symbol that is referenced in a dynamic relocation must be
4969 present in the primary GOT, so arrange for them to appear after
4970 those that are actually referenced. */
4971 gg
->reloc_only_gotno
= gg
->global_gotno
- g
->global_gotno
;
4972 g
->global_gotno
= gg
->global_gotno
;
4975 tga
.value
= GGA_RELOC_ONLY
;
4976 htab_traverse (gg
->got_entries
, mips_elf_set_global_got_area
, &tga
);
4977 tga
.value
= GGA_NORMAL
;
4978 htab_traverse (g
->got_entries
, mips_elf_set_global_got_area
, &tga
);
4980 /* Now go through the GOTs assigning them offset ranges.
4981 [assigned_low_gotno, local_gotno[ will be set to the range of local
4982 entries in each GOT. We can then compute the end of a GOT by
4983 adding local_gotno to global_gotno. We reverse the list and make
4984 it circular since then we'll be able to quickly compute the
4985 beginning of a GOT, by computing the end of its predecessor. To
4986 avoid special cases for the primary GOT, while still preserving
4987 assertions that are valid for both single- and multi-got links,
4988 we arrange for the main got struct to have the right number of
4989 global entries, but set its local_gotno such that the initial
4990 offset of the primary GOT is zero. Remember that the primary GOT
4991 will become the last item in the circular linked list, so it
4992 points back to the master GOT. */
4993 gg
->local_gotno
= -g
->global_gotno
;
4994 gg
->global_gotno
= g
->global_gotno
;
5001 struct mips_got_info
*gn
;
5003 assign
+= htab
->reserved_gotno
;
5004 g
->assigned_low_gotno
= assign
;
5005 g
->local_gotno
+= assign
;
5006 g
->local_gotno
+= (pages
< g
->page_gotno
? pages
: g
->page_gotno
);
5007 g
->assigned_high_gotno
= g
->local_gotno
- 1;
5008 assign
= g
->local_gotno
+ g
->global_gotno
+ g
->tls_gotno
;
5010 /* Take g out of the direct list, and push it onto the reversed
5011 list that gg points to. g->next is guaranteed to be nonnull after
5012 this operation, as required by mips_elf_initialize_tls_index. */
5017 /* Set up any TLS entries. We always place the TLS entries after
5018 all non-TLS entries. */
5019 g
->tls_assigned_gotno
= g
->local_gotno
+ g
->global_gotno
;
5021 tga
.value
= MIPS_ELF_GOT_SIZE (abfd
);
5022 htab_traverse (g
->got_entries
, mips_elf_initialize_tls_index
, &tga
);
5025 BFD_ASSERT (g
->tls_assigned_gotno
== assign
);
5027 /* Move onto the next GOT. It will be a secondary GOT if nonull. */
5030 /* Forbid global symbols in every non-primary GOT from having
5031 lazy-binding stubs. */
5033 htab_traverse (g
->got_entries
, mips_elf_forbid_lazy_stubs
, info
);
5037 got
->size
= assign
* MIPS_ELF_GOT_SIZE (abfd
);
5040 for (g
= gg
->next
; g
&& g
->next
!= gg
; g
= g
->next
)
5042 unsigned int save_assign
;
5044 /* Assign offsets to global GOT entries and count how many
5045 relocations they need. */
5046 save_assign
= g
->assigned_low_gotno
;
5047 g
->assigned_low_gotno
= g
->local_gotno
;
5049 tga
.value
= MIPS_ELF_GOT_SIZE (abfd
);
5051 htab_traverse (g
->got_entries
, mips_elf_set_global_gotidx
, &tga
);
5054 BFD_ASSERT (g
->assigned_low_gotno
== g
->local_gotno
+ g
->global_gotno
);
5055 g
->assigned_low_gotno
= save_assign
;
5057 if (bfd_link_pic (info
))
5059 g
->relocs
+= g
->local_gotno
- g
->assigned_low_gotno
;
5060 BFD_ASSERT (g
->assigned_low_gotno
== g
->next
->local_gotno
5061 + g
->next
->global_gotno
5062 + g
->next
->tls_gotno
5063 + htab
->reserved_gotno
);
5065 needed_relocs
+= g
->relocs
;
5067 needed_relocs
+= g
->relocs
;
5070 mips_elf_allocate_dynamic_relocations (dynobj
, info
,
5077 /* Returns the first relocation of type r_type found, beginning with
5078 RELOCATION. RELEND is one-past-the-end of the relocation table. */
5080 static const Elf_Internal_Rela
*
5081 mips_elf_next_relocation (bfd
*abfd ATTRIBUTE_UNUSED
, unsigned int r_type
,
5082 const Elf_Internal_Rela
*relocation
,
5083 const Elf_Internal_Rela
*relend
)
5085 unsigned long r_symndx
= ELF_R_SYM (abfd
, relocation
->r_info
);
5087 while (relocation
< relend
)
5089 if (ELF_R_TYPE (abfd
, relocation
->r_info
) == r_type
5090 && ELF_R_SYM (abfd
, relocation
->r_info
) == r_symndx
)
5096 /* We didn't find it. */
5100 /* Return whether an input relocation is against a local symbol. */
5103 mips_elf_local_relocation_p (bfd
*input_bfd
,
5104 const Elf_Internal_Rela
*relocation
,
5105 asection
**local_sections
)
5107 unsigned long r_symndx
;
5108 Elf_Internal_Shdr
*symtab_hdr
;
5111 r_symndx
= ELF_R_SYM (input_bfd
, relocation
->r_info
);
5112 symtab_hdr
= &elf_tdata (input_bfd
)->symtab_hdr
;
5113 extsymoff
= (elf_bad_symtab (input_bfd
)) ? 0 : symtab_hdr
->sh_info
;
5115 if (r_symndx
< extsymoff
)
5117 if (elf_bad_symtab (input_bfd
) && local_sections
[r_symndx
] != NULL
)
5123 /* Sign-extend VALUE, which has the indicated number of BITS. */
5126 _bfd_mips_elf_sign_extend (bfd_vma value
, int bits
)
5128 if (value
& ((bfd_vma
) 1 << (bits
- 1)))
5129 /* VALUE is negative. */
5130 value
|= ((bfd_vma
) - 1) << bits
;
5135 /* Return non-zero if the indicated VALUE has overflowed the maximum
5136 range expressible by a signed number with the indicated number of
5140 mips_elf_overflow_p (bfd_vma value
, int bits
)
5142 bfd_signed_vma svalue
= (bfd_signed_vma
) value
;
5144 if (svalue
> (1 << (bits
- 1)) - 1)
5145 /* The value is too big. */
5147 else if (svalue
< -(1 << (bits
- 1)))
5148 /* The value is too small. */
5155 /* Calculate the %high function. */
5158 mips_elf_high (bfd_vma value
)
5160 return ((value
+ (bfd_vma
) 0x8000) >> 16) & 0xffff;
5163 /* Calculate the %higher function. */
5166 mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED
)
5169 return ((value
+ (bfd_vma
) 0x80008000) >> 32) & 0xffff;
5176 /* Calculate the %highest function. */
5179 mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED
)
5182 return ((value
+ (((bfd_vma
) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
5189 /* Create the .compact_rel section. */
5192 mips_elf_create_compact_rel_section
5193 (bfd
*abfd
, struct bfd_link_info
*info ATTRIBUTE_UNUSED
)
5196 register asection
*s
;
5198 if (bfd_get_linker_section (abfd
, ".compact_rel") == NULL
)
5200 flags
= (SEC_HAS_CONTENTS
| SEC_IN_MEMORY
| SEC_LINKER_CREATED
5203 s
= bfd_make_section_anyway_with_flags (abfd
, ".compact_rel", flags
);
5205 || !bfd_set_section_alignment (s
, MIPS_ELF_LOG_FILE_ALIGN (abfd
)))
5208 s
->size
= sizeof (Elf32_External_compact_rel
);
5214 /* Create the .got section to hold the global offset table. */
5217 mips_elf_create_got_section (bfd
*abfd
, struct bfd_link_info
*info
)
5220 register asection
*s
;
5221 struct elf_link_hash_entry
*h
;
5222 struct bfd_link_hash_entry
*bh
;
5223 struct mips_elf_link_hash_table
*htab
;
5225 htab
= mips_elf_hash_table (info
);
5226 BFD_ASSERT (htab
!= NULL
);
5228 /* This function may be called more than once. */
5229 if (htab
->root
.sgot
)
5232 flags
= (SEC_ALLOC
| SEC_LOAD
| SEC_HAS_CONTENTS
| SEC_IN_MEMORY
5233 | SEC_LINKER_CREATED
);
5235 /* We have to use an alignment of 2**4 here because this is hardcoded
5236 in the function stub generation and in the linker script. */
5237 s
= bfd_make_section_anyway_with_flags (abfd
, ".got", flags
);
5239 || !bfd_set_section_alignment (s
, 4))
5241 htab
->root
.sgot
= s
;
5243 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
5244 linker script because we don't want to define the symbol if we
5245 are not creating a global offset table. */
5247 if (! (_bfd_generic_link_add_one_symbol
5248 (info
, abfd
, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL
, s
,
5249 0, NULL
, FALSE
, get_elf_backend_data (abfd
)->collect
, &bh
)))
5252 h
= (struct elf_link_hash_entry
*) bh
;
5255 h
->type
= STT_OBJECT
;
5256 h
->other
= (h
->other
& ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN
;
5257 elf_hash_table (info
)->hgot
= h
;
5259 if (bfd_link_pic (info
)
5260 && ! bfd_elf_link_record_dynamic_symbol (info
, h
))
5263 htab
->got_info
= mips_elf_create_got_info (abfd
);
5264 mips_elf_section_data (s
)->elf
.this_hdr
.sh_flags
5265 |= SHF_ALLOC
| SHF_WRITE
| SHF_MIPS_GPREL
;
5267 /* We also need a .got.plt section when generating PLTs. */
5268 s
= bfd_make_section_anyway_with_flags (abfd
, ".got.plt",
5269 SEC_ALLOC
| SEC_LOAD
5272 | SEC_LINKER_CREATED
);
5275 htab
->root
.sgotplt
= s
;
5280 /* Return true if H refers to the special VxWorks __GOTT_BASE__ or
5281 __GOTT_INDEX__ symbols. These symbols are only special for
5282 shared objects; they are not used in executables. */
5285 is_gott_symbol (struct bfd_link_info
*info
, struct elf_link_hash_entry
*h
)
5287 return (mips_elf_hash_table (info
)->is_vxworks
5288 && bfd_link_pic (info
)
5289 && (strcmp (h
->root
.root
.string
, "__GOTT_BASE__") == 0
5290 || strcmp (h
->root
.root
.string
, "__GOTT_INDEX__") == 0));
5293 /* Return TRUE if a relocation of type R_TYPE from INPUT_BFD might
5294 require an la25 stub. See also mips_elf_local_pic_function_p,
5295 which determines whether the destination function ever requires a
5299 mips_elf_relocation_needs_la25_stub (bfd
*input_bfd
, int r_type
,
5300 bfd_boolean target_is_16_bit_code_p
)
5302 /* We specifically ignore branches and jumps from EF_PIC objects,
5303 where the onus is on the compiler or programmer to perform any
5304 necessary initialization of $25. Sometimes such initialization
5305 is unnecessary; for example, -mno-shared functions do not use
5306 the incoming value of $25, and may therefore be called directly. */
5307 if (PIC_OBJECT_P (input_bfd
))
5314 case R_MIPS_PC21_S2
:
5315 case R_MIPS_PC26_S2
:
5316 case R_MICROMIPS_26_S1
:
5317 case R_MICROMIPS_PC7_S1
:
5318 case R_MICROMIPS_PC10_S1
:
5319 case R_MICROMIPS_PC16_S1
:
5320 case R_MICROMIPS_PC23_S2
:
5324 return !target_is_16_bit_code_p
;
5331 /* Obtain the field relocated by RELOCATION. */
5334 mips_elf_obtain_contents (reloc_howto_type
*howto
,
5335 const Elf_Internal_Rela
*relocation
,
5336 bfd
*input_bfd
, bfd_byte
*contents
)
5339 bfd_byte
*location
= contents
+ relocation
->r_offset
;
5340 unsigned int size
= bfd_get_reloc_size (howto
);
5342 /* Obtain the bytes. */
5344 x
= bfd_get (8 * size
, input_bfd
, location
);
5349 /* Store the field relocated by RELOCATION. */
5352 mips_elf_store_contents (reloc_howto_type
*howto
,
5353 const Elf_Internal_Rela
*relocation
,
5354 bfd
*input_bfd
, bfd_byte
*contents
, bfd_vma x
)
5356 bfd_byte
*location
= contents
+ relocation
->r_offset
;
5357 unsigned int size
= bfd_get_reloc_size (howto
);
5359 /* Put the value into the output. */
5361 bfd_put (8 * size
, input_bfd
, x
, location
);
5364 /* Try to patch a load from GOT instruction in CONTENTS pointed to by
5365 RELOCATION described by HOWTO, with a move of 0 to the load target
5366 register, returning TRUE if that is successful and FALSE otherwise.
5367 If DOIT is FALSE, then only determine it patching is possible and
5368 return status without actually changing CONTENTS.
5372 mips_elf_nullify_got_load (bfd
*input_bfd
, bfd_byte
*contents
,
5373 const Elf_Internal_Rela
*relocation
,
5374 reloc_howto_type
*howto
, bfd_boolean doit
)
5376 int r_type
= ELF_R_TYPE (input_bfd
, relocation
->r_info
);
5377 bfd_byte
*location
= contents
+ relocation
->r_offset
;
5378 bfd_boolean nullified
= TRUE
;
5381 _bfd_mips_elf_reloc_unshuffle (input_bfd
, r_type
, FALSE
, location
);
5383 /* Obtain the current value. */
5384 x
= mips_elf_obtain_contents (howto
, relocation
, input_bfd
, contents
);
5386 /* Note that in the unshuffled MIPS16 encoding RX is at bits [21:19]
5387 while RY is at bits [18:16] of the combined 32-bit instruction word. */
5388 if (mips16_reloc_p (r_type
)
5389 && (((x
>> 22) & 0x3ff) == 0x3d3 /* LW */
5390 || ((x
>> 22) & 0x3ff) == 0x3c7)) /* LD */
5391 x
= (0x3cd << 22) | (x
& (7 << 16)) << 3; /* LI */
5392 else if (micromips_reloc_p (r_type
)
5393 && ((x
>> 26) & 0x37) == 0x37) /* LW/LD */
5394 x
= (0xc << 26) | (x
& (0x1f << 21)); /* ADDIU */
5395 else if (((x
>> 26) & 0x3f) == 0x23 /* LW */
5396 || ((x
>> 26) & 0x3f) == 0x37) /* LD */
5397 x
= (0x9 << 26) | (x
& (0x1f << 16)); /* ADDIU */
5401 /* Put the value into the output. */
5402 if (doit
&& nullified
)
5403 mips_elf_store_contents (howto
, relocation
, input_bfd
, contents
, x
);
5405 _bfd_mips_elf_reloc_shuffle (input_bfd
, r_type
, FALSE
, location
);
5410 /* Calculate the value produced by the RELOCATION (which comes from
5411 the INPUT_BFD). The ADDEND is the addend to use for this
5412 RELOCATION; RELOCATION->R_ADDEND is ignored.
5414 The result of the relocation calculation is stored in VALUEP.
5415 On exit, set *CROSS_MODE_JUMP_P to true if the relocation field
5416 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
5418 This function returns bfd_reloc_continue if the caller need take no
5419 further action regarding this relocation, bfd_reloc_notsupported if
5420 something goes dramatically wrong, bfd_reloc_overflow if an
5421 overflow occurs, and bfd_reloc_ok to indicate success. */
5423 static bfd_reloc_status_type
5424 mips_elf_calculate_relocation (bfd
*abfd
, bfd
*input_bfd
,
5425 asection
*input_section
, bfd_byte
*contents
,
5426 struct bfd_link_info
*info
,
5427 const Elf_Internal_Rela
*relocation
,
5428 bfd_vma addend
, reloc_howto_type
*howto
,
5429 Elf_Internal_Sym
*local_syms
,
5430 asection
**local_sections
, bfd_vma
*valuep
,
5432 bfd_boolean
*cross_mode_jump_p
,
5433 bfd_boolean save_addend
)
5435 /* The eventual value we will return. */
5437 /* The address of the symbol against which the relocation is
5440 /* The final GP value to be used for the relocatable, executable, or
5441 shared object file being produced. */
5443 /* The place (section offset or address) of the storage unit being
5446 /* The value of GP used to create the relocatable object. */
5448 /* The offset into the global offset table at which the address of
5449 the relocation entry symbol, adjusted by the addend, resides
5450 during execution. */
5451 bfd_vma g
= MINUS_ONE
;
5452 /* The section in which the symbol referenced by the relocation is
5454 asection
*sec
= NULL
;
5455 struct mips_elf_link_hash_entry
*h
= NULL
;
5456 /* TRUE if the symbol referred to by this relocation is a local
5458 bfd_boolean local_p
, was_local_p
;
5459 /* TRUE if the symbol referred to by this relocation is a section
5461 bfd_boolean section_p
= FALSE
;
5462 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
5463 bfd_boolean gp_disp_p
= FALSE
;
5464 /* TRUE if the symbol referred to by this relocation is
5465 "__gnu_local_gp". */
5466 bfd_boolean gnu_local_gp_p
= FALSE
;
5467 Elf_Internal_Shdr
*symtab_hdr
;
5469 unsigned long r_symndx
;
5471 /* TRUE if overflow occurred during the calculation of the
5472 relocation value. */
5473 bfd_boolean overflowed_p
;
5474 /* TRUE if this relocation refers to a MIPS16 function. */
5475 bfd_boolean target_is_16_bit_code_p
= FALSE
;
5476 bfd_boolean target_is_micromips_code_p
= FALSE
;
5477 struct mips_elf_link_hash_table
*htab
;
5479 bfd_boolean resolved_to_zero
;
5481 dynobj
= elf_hash_table (info
)->dynobj
;
5482 htab
= mips_elf_hash_table (info
);
5483 BFD_ASSERT (htab
!= NULL
);
5485 /* Parse the relocation. */
5486 r_symndx
= ELF_R_SYM (input_bfd
, relocation
->r_info
);
5487 r_type
= ELF_R_TYPE (input_bfd
, relocation
->r_info
);
5488 p
= (input_section
->output_section
->vma
5489 + input_section
->output_offset
5490 + relocation
->r_offset
);
5492 /* Assume that there will be no overflow. */
5493 overflowed_p
= FALSE
;
5495 /* Figure out whether or not the symbol is local, and get the offset
5496 used in the array of hash table entries. */
5497 symtab_hdr
= &elf_tdata (input_bfd
)->symtab_hdr
;
5498 local_p
= mips_elf_local_relocation_p (input_bfd
, relocation
,
5500 was_local_p
= local_p
;
5501 if (! elf_bad_symtab (input_bfd
))
5502 extsymoff
= symtab_hdr
->sh_info
;
5505 /* The symbol table does not follow the rule that local symbols
5506 must come before globals. */
5510 /* Figure out the value of the symbol. */
5513 bfd_boolean micromips_p
= MICROMIPS_P (abfd
);
5514 Elf_Internal_Sym
*sym
;
5516 sym
= local_syms
+ r_symndx
;
5517 sec
= local_sections
[r_symndx
];
5519 section_p
= ELF_ST_TYPE (sym
->st_info
) == STT_SECTION
;
5521 symbol
= sec
->output_section
->vma
+ sec
->output_offset
;
5522 if (!section_p
|| (sec
->flags
& SEC_MERGE
))
5523 symbol
+= sym
->st_value
;
5524 if ((sec
->flags
& SEC_MERGE
) && section_p
)
5526 addend
= _bfd_elf_rel_local_sym (abfd
, sym
, &sec
, addend
);
5528 addend
+= sec
->output_section
->vma
+ sec
->output_offset
;
5531 /* MIPS16/microMIPS text labels should be treated as odd. */
5532 if (ELF_ST_IS_COMPRESSED (sym
->st_other
))
5535 /* Record the name of this symbol, for our caller. */
5536 *namep
= bfd_elf_string_from_elf_section (input_bfd
,
5537 symtab_hdr
->sh_link
,
5539 if (*namep
== NULL
|| **namep
== '\0')
5540 *namep
= bfd_section_name (sec
);
5542 /* For relocations against a section symbol and ones against no
5543 symbol (absolute relocations) infer the ISA mode from the addend. */
5544 if (section_p
|| r_symndx
== STN_UNDEF
)
5546 target_is_16_bit_code_p
= (addend
& 1) && !micromips_p
;
5547 target_is_micromips_code_p
= (addend
& 1) && micromips_p
;
5549 /* For relocations against an absolute symbol infer the ISA mode
5550 from the value of the symbol plus addend. */
5551 else if (bfd_is_abs_section (sec
))
5553 target_is_16_bit_code_p
= ((symbol
+ addend
) & 1) && !micromips_p
;
5554 target_is_micromips_code_p
= ((symbol
+ addend
) & 1) && micromips_p
;
5556 /* Otherwise just use the regular symbol annotation available. */
5559 target_is_16_bit_code_p
= ELF_ST_IS_MIPS16 (sym
->st_other
);
5560 target_is_micromips_code_p
= ELF_ST_IS_MICROMIPS (sym
->st_other
);
5565 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
5567 /* For global symbols we look up the symbol in the hash-table. */
5568 h
= ((struct mips_elf_link_hash_entry
*)
5569 elf_sym_hashes (input_bfd
) [r_symndx
- extsymoff
]);
5570 /* Find the real hash-table entry for this symbol. */
5571 while (h
->root
.root
.type
== bfd_link_hash_indirect
5572 || h
->root
.root
.type
== bfd_link_hash_warning
)
5573 h
= (struct mips_elf_link_hash_entry
*) h
->root
.root
.u
.i
.link
;
5575 /* Record the name of this symbol, for our caller. */
5576 *namep
= h
->root
.root
.root
.string
;
5578 /* See if this is the special _gp_disp symbol. Note that such a
5579 symbol must always be a global symbol. */
5580 if (strcmp (*namep
, "_gp_disp") == 0
5581 && ! NEWABI_P (input_bfd
))
5583 /* Relocations against _gp_disp are permitted only with
5584 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
5585 if (!hi16_reloc_p (r_type
) && !lo16_reloc_p (r_type
))
5586 return bfd_reloc_notsupported
;
5590 /* See if this is the special _gp symbol. Note that such a
5591 symbol must always be a global symbol. */
5592 else if (strcmp (*namep
, "__gnu_local_gp") == 0)
5593 gnu_local_gp_p
= TRUE
;
5596 /* If this symbol is defined, calculate its address. Note that
5597 _gp_disp is a magic symbol, always implicitly defined by the
5598 linker, so it's inappropriate to check to see whether or not
5600 else if ((h
->root
.root
.type
== bfd_link_hash_defined
5601 || h
->root
.root
.type
== bfd_link_hash_defweak
)
5602 && h
->root
.root
.u
.def
.section
)
5604 sec
= h
->root
.root
.u
.def
.section
;
5605 if (sec
->output_section
)
5606 symbol
= (h
->root
.root
.u
.def
.value
5607 + sec
->output_section
->vma
5608 + sec
->output_offset
);
5610 symbol
= h
->root
.root
.u
.def
.value
;
5612 else if (h
->root
.root
.type
== bfd_link_hash_undefweak
)
5613 /* We allow relocations against undefined weak symbols, giving
5614 it the value zero, so that you can undefined weak functions
5615 and check to see if they exist by looking at their
5618 else if (info
->unresolved_syms_in_objects
== RM_IGNORE
5619 && ELF_ST_VISIBILITY (h
->root
.other
) == STV_DEFAULT
)
5621 else if (strcmp (*namep
, SGI_COMPAT (input_bfd
)
5622 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
5624 /* If this is a dynamic link, we should have created a
5625 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
5626 in _bfd_mips_elf_create_dynamic_sections.
5627 Otherwise, we should define the symbol with a value of 0.
5628 FIXME: It should probably get into the symbol table
5630 BFD_ASSERT (! bfd_link_pic (info
));
5631 BFD_ASSERT (bfd_get_section_by_name (abfd
, ".dynamic") == NULL
);
5634 else if (ELF_MIPS_IS_OPTIONAL (h
->root
.other
))
5636 /* This is an optional symbol - an Irix specific extension to the
5637 ELF spec. Ignore it for now.
5638 XXX - FIXME - there is more to the spec for OPTIONAL symbols
5639 than simply ignoring them, but we do not handle this for now.
5640 For information see the "64-bit ELF Object File Specification"
5641 which is available from here:
5642 http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */
5647 bfd_boolean reject_undefined
5648 = (info
->unresolved_syms_in_objects
== RM_GENERATE_ERROR
5649 || ELF_ST_VISIBILITY (h
->root
.other
) != STV_DEFAULT
);
5651 (*info
->callbacks
->undefined_symbol
)
5652 (info
, h
->root
.root
.root
.string
, input_bfd
,
5653 input_section
, relocation
->r_offset
, reject_undefined
);
5655 if (reject_undefined
)
5656 return bfd_reloc_undefined
;
5661 target_is_16_bit_code_p
= ELF_ST_IS_MIPS16 (h
->root
.other
);
5662 target_is_micromips_code_p
= ELF_ST_IS_MICROMIPS (h
->root
.other
);
5665 /* If this is a reference to a 16-bit function with a stub, we need
5666 to redirect the relocation to the stub unless:
5668 (a) the relocation is for a MIPS16 JAL;
5670 (b) the relocation is for a MIPS16 PIC call, and there are no
5671 non-MIPS16 uses of the GOT slot; or
5673 (c) the section allows direct references to MIPS16 functions. */
5674 if (r_type
!= R_MIPS16_26
5675 && !bfd_link_relocatable (info
)
5677 && h
->fn_stub
!= NULL
5678 && (r_type
!= R_MIPS16_CALL16
|| h
->need_fn_stub
))
5680 && mips_elf_tdata (input_bfd
)->local_stubs
!= NULL
5681 && mips_elf_tdata (input_bfd
)->local_stubs
[r_symndx
] != NULL
))
5682 && !section_allows_mips16_refs_p (input_section
))
5684 /* This is a 32- or 64-bit call to a 16-bit function. We should
5685 have already noticed that we were going to need the
5689 sec
= mips_elf_tdata (input_bfd
)->local_stubs
[r_symndx
];
5694 BFD_ASSERT (h
->need_fn_stub
);
5697 /* If a LA25 header for the stub itself exists, point to the
5698 prepended LUI/ADDIU sequence. */
5699 sec
= h
->la25_stub
->stub_section
;
5700 value
= h
->la25_stub
->offset
;
5709 symbol
= sec
->output_section
->vma
+ sec
->output_offset
+ value
;
5710 /* The target is 16-bit, but the stub isn't. */
5711 target_is_16_bit_code_p
= FALSE
;
5713 /* If this is a MIPS16 call with a stub, that is made through the PLT or
5714 to a standard MIPS function, we need to redirect the call to the stub.
5715 Note that we specifically exclude R_MIPS16_CALL16 from this behavior;
5716 indirect calls should use an indirect stub instead. */
5717 else if (r_type
== R_MIPS16_26
&& !bfd_link_relocatable (info
)
5718 && ((h
!= NULL
&& (h
->call_stub
!= NULL
|| h
->call_fp_stub
!= NULL
))
5720 && mips_elf_tdata (input_bfd
)->local_call_stubs
!= NULL
5721 && mips_elf_tdata (input_bfd
)->local_call_stubs
[r_symndx
] != NULL
))
5722 && ((h
!= NULL
&& h
->use_plt_entry
) || !target_is_16_bit_code_p
))
5725 sec
= mips_elf_tdata (input_bfd
)->local_call_stubs
[r_symndx
];
5728 /* If both call_stub and call_fp_stub are defined, we can figure
5729 out which one to use by checking which one appears in the input
5731 if (h
->call_stub
!= NULL
&& h
->call_fp_stub
!= NULL
)
5736 for (o
= input_bfd
->sections
; o
!= NULL
; o
= o
->next
)
5738 if (CALL_FP_STUB_P (bfd_section_name (o
)))
5740 sec
= h
->call_fp_stub
;
5747 else if (h
->call_stub
!= NULL
)
5750 sec
= h
->call_fp_stub
;
5753 BFD_ASSERT (sec
->size
> 0);
5754 symbol
= sec
->output_section
->vma
+ sec
->output_offset
;
5756 /* If this is a direct call to a PIC function, redirect to the
5758 else if (h
!= NULL
&& h
->la25_stub
5759 && mips_elf_relocation_needs_la25_stub (input_bfd
, r_type
,
5760 target_is_16_bit_code_p
))
5762 symbol
= (h
->la25_stub
->stub_section
->output_section
->vma
5763 + h
->la25_stub
->stub_section
->output_offset
5764 + h
->la25_stub
->offset
);
5765 if (ELF_ST_IS_MICROMIPS (h
->root
.other
))
5768 /* For direct MIPS16 and microMIPS calls make sure the compressed PLT
5769 entry is used if a standard PLT entry has also been made. In this
5770 case the symbol will have been set by mips_elf_set_plt_sym_value
5771 to point to the standard PLT entry, so redirect to the compressed
5773 else if ((mips16_branch_reloc_p (r_type
)
5774 || micromips_branch_reloc_p (r_type
))
5775 && !bfd_link_relocatable (info
)
5778 && h
->root
.plt
.plist
->comp_offset
!= MINUS_ONE
5779 && h
->root
.plt
.plist
->mips_offset
!= MINUS_ONE
)
5781 bfd_boolean micromips_p
= MICROMIPS_P (abfd
);
5783 sec
= htab
->root
.splt
;
5784 symbol
= (sec
->output_section
->vma
5785 + sec
->output_offset
5786 + htab
->plt_header_size
5787 + htab
->plt_mips_offset
5788 + h
->root
.plt
.plist
->comp_offset
5791 target_is_16_bit_code_p
= !micromips_p
;
5792 target_is_micromips_code_p
= micromips_p
;
5795 /* Make sure MIPS16 and microMIPS are not used together. */
5796 if ((mips16_branch_reloc_p (r_type
) && target_is_micromips_code_p
)
5797 || (micromips_branch_reloc_p (r_type
) && target_is_16_bit_code_p
))
5800 (_("MIPS16 and microMIPS functions cannot call each other"));
5801 return bfd_reloc_notsupported
;
5804 /* Calls from 16-bit code to 32-bit code and vice versa require the
5805 mode change. However, we can ignore calls to undefined weak symbols,
5806 which should never be executed at runtime. This exception is important
5807 because the assembly writer may have "known" that any definition of the
5808 symbol would be 16-bit code, and that direct jumps were therefore
5810 *cross_mode_jump_p
= (!bfd_link_relocatable (info
)
5811 && !(h
&& h
->root
.root
.type
== bfd_link_hash_undefweak
)
5812 && ((mips16_branch_reloc_p (r_type
)
5813 && !target_is_16_bit_code_p
)
5814 || (micromips_branch_reloc_p (r_type
)
5815 && !target_is_micromips_code_p
)
5816 || ((branch_reloc_p (r_type
)
5817 || r_type
== R_MIPS_JALR
)
5818 && (target_is_16_bit_code_p
5819 || target_is_micromips_code_p
))));
5821 resolved_to_zero
= (h
!= NULL
5822 && UNDEFWEAK_NO_DYNAMIC_RELOC (info
, &h
->root
));
5826 case R_MIPS16_CALL16
:
5827 case R_MIPS16_GOT16
:
5830 case R_MIPS_GOT_PAGE
:
5831 case R_MIPS_GOT_DISP
:
5832 case R_MIPS_GOT_LO16
:
5833 case R_MIPS_CALL_LO16
:
5834 case R_MICROMIPS_CALL16
:
5835 case R_MICROMIPS_GOT16
:
5836 case R_MICROMIPS_GOT_PAGE
:
5837 case R_MICROMIPS_GOT_DISP
:
5838 case R_MICROMIPS_GOT_LO16
:
5839 case R_MICROMIPS_CALL_LO16
:
5840 if (resolved_to_zero
5841 && !bfd_link_relocatable (info
)
5842 && mips_elf_nullify_got_load (input_bfd
, contents
,
5843 relocation
, howto
, TRUE
))
5844 return bfd_reloc_continue
;
5847 case R_MIPS_GOT_HI16
:
5848 case R_MIPS_CALL_HI16
:
5849 case R_MICROMIPS_GOT_HI16
:
5850 case R_MICROMIPS_CALL_HI16
:
5851 if (resolved_to_zero
5852 && htab
->use_absolute_zero
5853 && bfd_link_pic (info
))
5855 /* Redirect to the special `__gnu_absolute_zero' symbol. */
5856 h
= mips_elf_link_hash_lookup (htab
, "__gnu_absolute_zero",
5857 FALSE
, FALSE
, FALSE
);
5858 BFD_ASSERT (h
!= NULL
);
5863 local_p
= (h
== NULL
|| mips_use_local_got_p (info
, h
));
5865 gp0
= _bfd_get_gp_value (input_bfd
);
5866 gp
= _bfd_get_gp_value (abfd
);
5868 gp
+= mips_elf_adjust_gp (abfd
, htab
->got_info
, input_bfd
);
5873 /* Global R_MIPS_GOT_PAGE/R_MICROMIPS_GOT_PAGE relocations are equivalent
5874 to R_MIPS_GOT_DISP/R_MICROMIPS_GOT_DISP. The addend is applied by the
5875 corresponding R_MIPS_GOT_OFST/R_MICROMIPS_GOT_OFST. */
5876 if (got_page_reloc_p (r_type
) && !local_p
)
5878 r_type
= (micromips_reloc_p (r_type
)
5879 ? R_MICROMIPS_GOT_DISP
: R_MIPS_GOT_DISP
);
5883 /* If we haven't already determined the GOT offset, and we're going
5884 to need it, get it now. */
5887 case R_MIPS16_CALL16
:
5888 case R_MIPS16_GOT16
:
5891 case R_MIPS_GOT_DISP
:
5892 case R_MIPS_GOT_HI16
:
5893 case R_MIPS_CALL_HI16
:
5894 case R_MIPS_GOT_LO16
:
5895 case R_MIPS_CALL_LO16
:
5896 case R_MICROMIPS_CALL16
:
5897 case R_MICROMIPS_GOT16
:
5898 case R_MICROMIPS_GOT_DISP
:
5899 case R_MICROMIPS_GOT_HI16
:
5900 case R_MICROMIPS_CALL_HI16
:
5901 case R_MICROMIPS_GOT_LO16
:
5902 case R_MICROMIPS_CALL_LO16
:
5904 case R_MIPS_TLS_GOTTPREL
:
5905 case R_MIPS_TLS_LDM
:
5906 case R_MIPS16_TLS_GD
:
5907 case R_MIPS16_TLS_GOTTPREL
:
5908 case R_MIPS16_TLS_LDM
:
5909 case R_MICROMIPS_TLS_GD
:
5910 case R_MICROMIPS_TLS_GOTTPREL
:
5911 case R_MICROMIPS_TLS_LDM
:
5912 /* Find the index into the GOT where this value is located. */
5913 if (tls_ldm_reloc_p (r_type
))
5915 g
= mips_elf_local_got_index (abfd
, input_bfd
, info
,
5916 0, 0, NULL
, r_type
);
5918 return bfd_reloc_outofrange
;
5922 /* On VxWorks, CALL relocations should refer to the .got.plt
5923 entry, which is initialized to point at the PLT stub. */
5924 if (htab
->is_vxworks
5925 && (call_hi16_reloc_p (r_type
)
5926 || call_lo16_reloc_p (r_type
)
5927 || call16_reloc_p (r_type
)))
5929 BFD_ASSERT (addend
== 0);
5930 BFD_ASSERT (h
->root
.needs_plt
);
5931 g
= mips_elf_gotplt_index (info
, &h
->root
);
5935 BFD_ASSERT (addend
== 0);
5936 g
= mips_elf_global_got_index (abfd
, info
, input_bfd
,
5938 if (!TLS_RELOC_P (r_type
)
5939 && !elf_hash_table (info
)->dynamic_sections_created
)
5940 /* This is a static link. We must initialize the GOT entry. */
5941 MIPS_ELF_PUT_WORD (dynobj
, symbol
, htab
->root
.sgot
->contents
+ g
);
5944 else if (!htab
->is_vxworks
5945 && (call16_reloc_p (r_type
) || got16_reloc_p (r_type
)))
5946 /* The calculation below does not involve "g". */
5950 g
= mips_elf_local_got_index (abfd
, input_bfd
, info
,
5951 symbol
+ addend
, r_symndx
, h
, r_type
);
5953 return bfd_reloc_outofrange
;
5956 /* Convert GOT indices to actual offsets. */
5957 g
= mips_elf_got_offset_from_index (info
, abfd
, input_bfd
, g
);
5961 /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__
5962 symbols are resolved by the loader. Add them to .rela.dyn. */
5963 if (h
!= NULL
&& is_gott_symbol (info
, &h
->root
))
5965 Elf_Internal_Rela outrel
;
5969 s
= mips_elf_rel_dyn_section (info
, FALSE
);
5970 loc
= s
->contents
+ s
->reloc_count
++ * sizeof (Elf32_External_Rela
);
5972 outrel
.r_offset
= (input_section
->output_section
->vma
5973 + input_section
->output_offset
5974 + relocation
->r_offset
);
5975 outrel
.r_info
= ELF32_R_INFO (h
->root
.dynindx
, r_type
);
5976 outrel
.r_addend
= addend
;
5977 bfd_elf32_swap_reloca_out (abfd
, &outrel
, loc
);
5979 /* If we've written this relocation for a readonly section,
5980 we need to set DF_TEXTREL again, so that we do not delete the
5982 if (MIPS_ELF_READONLY_SECTION (input_section
))
5983 info
->flags
|= DF_TEXTREL
;
5986 return bfd_reloc_ok
;
5989 /* Figure out what kind of relocation is being performed. */
5993 return bfd_reloc_continue
;
5996 if (howto
->partial_inplace
)
5997 addend
= _bfd_mips_elf_sign_extend (addend
, 16);
5998 value
= symbol
+ addend
;
5999 overflowed_p
= mips_elf_overflow_p (value
, 16);
6005 if ((bfd_link_pic (info
)
6006 || (htab
->root
.dynamic_sections_created
6008 && h
->root
.def_dynamic
6009 && !h
->root
.def_regular
6010 && !h
->has_static_relocs
))
6011 && r_symndx
!= STN_UNDEF
6013 || h
->root
.root
.type
!= bfd_link_hash_undefweak
6014 || (ELF_ST_VISIBILITY (h
->root
.other
) == STV_DEFAULT
6015 && !resolved_to_zero
))
6016 && (input_section
->flags
& SEC_ALLOC
) != 0)
6018 /* If we're creating a shared library, then we can't know
6019 where the symbol will end up. So, we create a relocation
6020 record in the output, and leave the job up to the dynamic
6021 linker. We must do the same for executable references to
6022 shared library symbols, unless we've decided to use copy
6023 relocs or PLTs instead. */
6025 if (!mips_elf_create_dynamic_relocation (abfd
,
6033 return bfd_reloc_undefined
;
6037 if (r_type
!= R_MIPS_REL32
)
6038 value
= symbol
+ addend
;
6042 value
&= howto
->dst_mask
;
6046 value
= symbol
+ addend
- p
;
6047 value
&= howto
->dst_mask
;
6051 /* The calculation for R_MIPS16_26 is just the same as for an
6052 R_MIPS_26. It's only the storage of the relocated field into
6053 the output file that's different. That's handled in
6054 mips_elf_perform_relocation. So, we just fall through to the
6055 R_MIPS_26 case here. */
6057 case R_MICROMIPS_26_S1
:
6061 /* Shift is 2, unusually, for microMIPS JALX. */
6062 shift
= (!*cross_mode_jump_p
&& r_type
== R_MICROMIPS_26_S1
) ? 1 : 2;
6064 if (howto
->partial_inplace
&& !section_p
)
6065 value
= _bfd_mips_elf_sign_extend (addend
, 26 + shift
);
6070 /* Make sure the target of a jump is suitably aligned. Bit 0 must
6071 be the correct ISA mode selector except for weak undefined
6073 if ((was_local_p
|| h
->root
.root
.type
!= bfd_link_hash_undefweak
)
6074 && (*cross_mode_jump_p
6075 ? (value
& 3) != (r_type
== R_MIPS_26
)
6076 : (value
& ((1 << shift
) - 1)) != (r_type
!= R_MIPS_26
)))
6077 return bfd_reloc_outofrange
;
6080 if (was_local_p
|| h
->root
.root
.type
!= bfd_link_hash_undefweak
)
6081 overflowed_p
= (value
>> 26) != ((p
+ 4) >> (26 + shift
));
6082 value
&= howto
->dst_mask
;
6086 case R_MIPS_TLS_DTPREL_HI16
:
6087 case R_MIPS16_TLS_DTPREL_HI16
:
6088 case R_MICROMIPS_TLS_DTPREL_HI16
:
6089 value
= (mips_elf_high (addend
+ symbol
- dtprel_base (info
))
6093 case R_MIPS_TLS_DTPREL_LO16
:
6094 case R_MIPS_TLS_DTPREL32
:
6095 case R_MIPS_TLS_DTPREL64
:
6096 case R_MIPS16_TLS_DTPREL_LO16
:
6097 case R_MICROMIPS_TLS_DTPREL_LO16
:
6098 value
= (symbol
+ addend
- dtprel_base (info
)) & howto
->dst_mask
;
6101 case R_MIPS_TLS_TPREL_HI16
:
6102 case R_MIPS16_TLS_TPREL_HI16
:
6103 case R_MICROMIPS_TLS_TPREL_HI16
:
6104 value
= (mips_elf_high (addend
+ symbol
- tprel_base (info
))
6108 case R_MIPS_TLS_TPREL_LO16
:
6109 case R_MIPS_TLS_TPREL32
:
6110 case R_MIPS_TLS_TPREL64
:
6111 case R_MIPS16_TLS_TPREL_LO16
:
6112 case R_MICROMIPS_TLS_TPREL_LO16
:
6113 value
= (symbol
+ addend
- tprel_base (info
)) & howto
->dst_mask
;
6118 case R_MICROMIPS_HI16
:
6121 value
= mips_elf_high (addend
+ symbol
);
6122 value
&= howto
->dst_mask
;
6126 /* For MIPS16 ABI code we generate this sequence
6127 0: li $v0,%hi(_gp_disp)
6128 4: addiupc $v1,%lo(_gp_disp)
6132 So the offsets of hi and lo relocs are the same, but the
6133 base $pc is that used by the ADDIUPC instruction at $t9 + 4.
6134 ADDIUPC clears the low two bits of the instruction address,
6135 so the base is ($t9 + 4) & ~3. */
6136 if (r_type
== R_MIPS16_HI16
)
6137 value
= mips_elf_high (addend
+ gp
- ((p
+ 4) & ~(bfd_vma
) 0x3));
6138 /* The microMIPS .cpload sequence uses the same assembly
6139 instructions as the traditional psABI version, but the
6140 incoming $t9 has the low bit set. */
6141 else if (r_type
== R_MICROMIPS_HI16
)
6142 value
= mips_elf_high (addend
+ gp
- p
- 1);
6144 value
= mips_elf_high (addend
+ gp
- p
);
6150 case R_MICROMIPS_LO16
:
6151 case R_MICROMIPS_HI0_LO16
:
6153 value
= (symbol
+ addend
) & howto
->dst_mask
;
6156 /* See the comment for R_MIPS16_HI16 above for the reason
6157 for this conditional. */
6158 if (r_type
== R_MIPS16_LO16
)
6159 value
= addend
+ gp
- (p
& ~(bfd_vma
) 0x3);
6160 else if (r_type
== R_MICROMIPS_LO16
6161 || r_type
== R_MICROMIPS_HI0_LO16
)
6162 value
= addend
+ gp
- p
+ 3;
6164 value
= addend
+ gp
- p
+ 4;
6165 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
6166 for overflow. But, on, say, IRIX5, relocations against
6167 _gp_disp are normally generated from the .cpload
6168 pseudo-op. It generates code that normally looks like
6171 lui $gp,%hi(_gp_disp)
6172 addiu $gp,$gp,%lo(_gp_disp)
6175 Here $t9 holds the address of the function being called,
6176 as required by the MIPS ELF ABI. The R_MIPS_LO16
6177 relocation can easily overflow in this situation, but the
6178 R_MIPS_HI16 relocation will handle the overflow.
6179 Therefore, we consider this a bug in the MIPS ABI, and do
6180 not check for overflow here. */
6184 case R_MIPS_LITERAL
:
6185 case R_MICROMIPS_LITERAL
:
6186 /* Because we don't merge literal sections, we can handle this
6187 just like R_MIPS_GPREL16. In the long run, we should merge
6188 shared literals, and then we will need to additional work
6193 case R_MIPS16_GPREL
:
6194 /* The R_MIPS16_GPREL performs the same calculation as
6195 R_MIPS_GPREL16, but stores the relocated bits in a different
6196 order. We don't need to do anything special here; the
6197 differences are handled in mips_elf_perform_relocation. */
6198 case R_MIPS_GPREL16
:
6199 case R_MICROMIPS_GPREL7_S2
:
6200 case R_MICROMIPS_GPREL16
:
6201 /* Only sign-extend the addend if it was extracted from the
6202 instruction. If the addend was separate, leave it alone,
6203 otherwise we may lose significant bits. */
6204 if (howto
->partial_inplace
)
6205 addend
= _bfd_mips_elf_sign_extend (addend
, 16);
6206 value
= symbol
+ addend
- gp
;
6207 /* If the symbol was local, any earlier relocatable links will
6208 have adjusted its addend with the gp offset, so compensate
6209 for that now. Don't do it for symbols forced local in this
6210 link, though, since they won't have had the gp offset applied
6214 if (was_local_p
|| h
->root
.root
.type
!= bfd_link_hash_undefweak
)
6215 overflowed_p
= mips_elf_overflow_p (value
, 16);
6218 case R_MIPS16_GOT16
:
6219 case R_MIPS16_CALL16
:
6222 case R_MICROMIPS_GOT16
:
6223 case R_MICROMIPS_CALL16
:
6224 /* VxWorks does not have separate local and global semantics for
6225 R_MIPS*_GOT16; every relocation evaluates to "G". */
6226 if (!htab
->is_vxworks
&& local_p
)
6228 value
= mips_elf_got16_entry (abfd
, input_bfd
, info
,
6229 symbol
+ addend
, !was_local_p
);
6230 if (value
== MINUS_ONE
)
6231 return bfd_reloc_outofrange
;
6233 = mips_elf_got_offset_from_index (info
, abfd
, input_bfd
, value
);
6234 overflowed_p
= mips_elf_overflow_p (value
, 16);
6241 case R_MIPS_TLS_GOTTPREL
:
6242 case R_MIPS_TLS_LDM
:
6243 case R_MIPS_GOT_DISP
:
6244 case R_MIPS16_TLS_GD
:
6245 case R_MIPS16_TLS_GOTTPREL
:
6246 case R_MIPS16_TLS_LDM
:
6247 case R_MICROMIPS_TLS_GD
:
6248 case R_MICROMIPS_TLS_GOTTPREL
:
6249 case R_MICROMIPS_TLS_LDM
:
6250 case R_MICROMIPS_GOT_DISP
:
6252 overflowed_p
= mips_elf_overflow_p (value
, 16);
6255 case R_MIPS_GPREL32
:
6256 value
= (addend
+ symbol
+ gp0
- gp
);
6258 value
&= howto
->dst_mask
;
6262 case R_MIPS_GNU_REL16_S2
:
6263 if (howto
->partial_inplace
)
6264 addend
= _bfd_mips_elf_sign_extend (addend
, 18);
6266 /* No need to exclude weak undefined symbols here as they resolve
6267 to 0 and never set `*cross_mode_jump_p', so this alignment check
6268 will never trigger for them. */
6269 if (*cross_mode_jump_p
6270 ? ((symbol
+ addend
) & 3) != 1
6271 : ((symbol
+ addend
) & 3) != 0)
6272 return bfd_reloc_outofrange
;
6274 value
= symbol
+ addend
- p
;
6275 if (was_local_p
|| h
->root
.root
.type
!= bfd_link_hash_undefweak
)
6276 overflowed_p
= mips_elf_overflow_p (value
, 18);
6277 value
>>= howto
->rightshift
;
6278 value
&= howto
->dst_mask
;
6281 case R_MIPS16_PC16_S1
:
6282 if (howto
->partial_inplace
)
6283 addend
= _bfd_mips_elf_sign_extend (addend
, 17);
6285 if ((was_local_p
|| h
->root
.root
.type
!= bfd_link_hash_undefweak
)
6286 && (*cross_mode_jump_p
6287 ? ((symbol
+ addend
) & 3) != 0
6288 : ((symbol
+ addend
) & 1) == 0))
6289 return bfd_reloc_outofrange
;
6291 value
= symbol
+ addend
- p
;
6292 if (was_local_p
|| h
->root
.root
.type
!= bfd_link_hash_undefweak
)
6293 overflowed_p
= mips_elf_overflow_p (value
, 17);
6294 value
>>= howto
->rightshift
;
6295 value
&= howto
->dst_mask
;
6298 case R_MIPS_PC21_S2
:
6299 if (howto
->partial_inplace
)
6300 addend
= _bfd_mips_elf_sign_extend (addend
, 23);
6302 if ((symbol
+ addend
) & 3)
6303 return bfd_reloc_outofrange
;
6305 value
= symbol
+ addend
- p
;
6306 if (was_local_p
|| h
->root
.root
.type
!= bfd_link_hash_undefweak
)
6307 overflowed_p
= mips_elf_overflow_p (value
, 23);
6308 value
>>= howto
->rightshift
;
6309 value
&= howto
->dst_mask
;
6312 case R_MIPS_PC26_S2
:
6313 if (howto
->partial_inplace
)
6314 addend
= _bfd_mips_elf_sign_extend (addend
, 28);
6316 if ((symbol
+ addend
) & 3)
6317 return bfd_reloc_outofrange
;
6319 value
= symbol
+ addend
- p
;
6320 if (was_local_p
|| h
->root
.root
.type
!= bfd_link_hash_undefweak
)
6321 overflowed_p
= mips_elf_overflow_p (value
, 28);
6322 value
>>= howto
->rightshift
;
6323 value
&= howto
->dst_mask
;
6326 case R_MIPS_PC18_S3
:
6327 if (howto
->partial_inplace
)
6328 addend
= _bfd_mips_elf_sign_extend (addend
, 21);
6330 if ((symbol
+ addend
) & 7)
6331 return bfd_reloc_outofrange
;
6333 value
= symbol
+ addend
- ((p
| 7) ^ 7);
6334 if (was_local_p
|| h
->root
.root
.type
!= bfd_link_hash_undefweak
)
6335 overflowed_p
= mips_elf_overflow_p (value
, 21);
6336 value
>>= howto
->rightshift
;
6337 value
&= howto
->dst_mask
;
6340 case R_MIPS_PC19_S2
:
6341 if (howto
->partial_inplace
)
6342 addend
= _bfd_mips_elf_sign_extend (addend
, 21);
6344 if ((symbol
+ addend
) & 3)
6345 return bfd_reloc_outofrange
;
6347 value
= symbol
+ addend
- p
;
6348 if (was_local_p
|| h
->root
.root
.type
!= bfd_link_hash_undefweak
)
6349 overflowed_p
= mips_elf_overflow_p (value
, 21);
6350 value
>>= howto
->rightshift
;
6351 value
&= howto
->dst_mask
;
6355 value
= mips_elf_high (symbol
+ addend
- p
);
6356 value
&= howto
->dst_mask
;
6360 if (howto
->partial_inplace
)
6361 addend
= _bfd_mips_elf_sign_extend (addend
, 16);
6362 value
= symbol
+ addend
- p
;
6363 value
&= howto
->dst_mask
;
6366 case R_MICROMIPS_PC7_S1
:
6367 if (howto
->partial_inplace
)
6368 addend
= _bfd_mips_elf_sign_extend (addend
, 8);
6370 if ((was_local_p
|| h
->root
.root
.type
!= bfd_link_hash_undefweak
)
6371 && (*cross_mode_jump_p
6372 ? ((symbol
+ addend
+ 2) & 3) != 0
6373 : ((symbol
+ addend
+ 2) & 1) == 0))
6374 return bfd_reloc_outofrange
;
6376 value
= symbol
+ addend
- p
;
6377 if (was_local_p
|| h
->root
.root
.type
!= bfd_link_hash_undefweak
)
6378 overflowed_p
= mips_elf_overflow_p (value
, 8);
6379 value
>>= howto
->rightshift
;
6380 value
&= howto
->dst_mask
;
6383 case R_MICROMIPS_PC10_S1
:
6384 if (howto
->partial_inplace
)
6385 addend
= _bfd_mips_elf_sign_extend (addend
, 11);
6387 if ((was_local_p
|| h
->root
.root
.type
!= bfd_link_hash_undefweak
)
6388 && (*cross_mode_jump_p
6389 ? ((symbol
+ addend
+ 2) & 3) != 0
6390 : ((symbol
+ addend
+ 2) & 1) == 0))
6391 return bfd_reloc_outofrange
;
6393 value
= symbol
+ addend
- p
;
6394 if (was_local_p
|| h
->root
.root
.type
!= bfd_link_hash_undefweak
)
6395 overflowed_p
= mips_elf_overflow_p (value
, 11);
6396 value
>>= howto
->rightshift
;
6397 value
&= howto
->dst_mask
;
6400 case R_MICROMIPS_PC16_S1
:
6401 if (howto
->partial_inplace
)
6402 addend
= _bfd_mips_elf_sign_extend (addend
, 17);
6404 if ((was_local_p
|| h
->root
.root
.type
!= bfd_link_hash_undefweak
)
6405 && (*cross_mode_jump_p
6406 ? ((symbol
+ addend
) & 3) != 0
6407 : ((symbol
+ addend
) & 1) == 0))
6408 return bfd_reloc_outofrange
;
6410 value
= symbol
+ addend
- p
;
6411 if (was_local_p
|| h
->root
.root
.type
!= bfd_link_hash_undefweak
)
6412 overflowed_p
= mips_elf_overflow_p (value
, 17);
6413 value
>>= howto
->rightshift
;
6414 value
&= howto
->dst_mask
;
6417 case R_MICROMIPS_PC23_S2
:
6418 if (howto
->partial_inplace
)
6419 addend
= _bfd_mips_elf_sign_extend (addend
, 25);
6420 value
= symbol
+ addend
- ((p
| 3) ^ 3);
6421 if (was_local_p
|| h
->root
.root
.type
!= bfd_link_hash_undefweak
)
6422 overflowed_p
= mips_elf_overflow_p (value
, 25);
6423 value
>>= howto
->rightshift
;
6424 value
&= howto
->dst_mask
;
6427 case R_MIPS_GOT_HI16
:
6428 case R_MIPS_CALL_HI16
:
6429 case R_MICROMIPS_GOT_HI16
:
6430 case R_MICROMIPS_CALL_HI16
:
6431 /* We're allowed to handle these two relocations identically.
6432 The dynamic linker is allowed to handle the CALL relocations
6433 differently by creating a lazy evaluation stub. */
6435 value
= mips_elf_high (value
);
6436 value
&= howto
->dst_mask
;
6439 case R_MIPS_GOT_LO16
:
6440 case R_MIPS_CALL_LO16
:
6441 case R_MICROMIPS_GOT_LO16
:
6442 case R_MICROMIPS_CALL_LO16
:
6443 value
= g
& howto
->dst_mask
;
6446 case R_MIPS_GOT_PAGE
:
6447 case R_MICROMIPS_GOT_PAGE
:
6448 value
= mips_elf_got_page (abfd
, input_bfd
, info
, symbol
+ addend
, NULL
);
6449 if (value
== MINUS_ONE
)
6450 return bfd_reloc_outofrange
;
6451 value
= mips_elf_got_offset_from_index (info
, abfd
, input_bfd
, value
);
6452 overflowed_p
= mips_elf_overflow_p (value
, 16);
6455 case R_MIPS_GOT_OFST
:
6456 case R_MICROMIPS_GOT_OFST
:
6458 mips_elf_got_page (abfd
, input_bfd
, info
, symbol
+ addend
, &value
);
6461 overflowed_p
= mips_elf_overflow_p (value
, 16);
6465 case R_MICROMIPS_SUB
:
6466 value
= symbol
- addend
;
6467 value
&= howto
->dst_mask
;
6471 case R_MICROMIPS_HIGHER
:
6472 value
= mips_elf_higher (addend
+ symbol
);
6473 value
&= howto
->dst_mask
;
6476 case R_MIPS_HIGHEST
:
6477 case R_MICROMIPS_HIGHEST
:
6478 value
= mips_elf_highest (addend
+ symbol
);
6479 value
&= howto
->dst_mask
;
6482 case R_MIPS_SCN_DISP
:
6483 case R_MICROMIPS_SCN_DISP
:
6484 value
= symbol
+ addend
- sec
->output_offset
;
6485 value
&= howto
->dst_mask
;
6489 case R_MICROMIPS_JALR
:
6490 /* This relocation is only a hint. In some cases, we optimize
6491 it into a bal instruction. But we don't try to optimize
6492 when the symbol does not resolve locally. */
6493 if (h
!= NULL
&& !SYMBOL_CALLS_LOCAL (info
, &h
->root
))
6494 return bfd_reloc_continue
;
6495 /* We can't optimize cross-mode jumps either. */
6496 if (*cross_mode_jump_p
)
6497 return bfd_reloc_continue
;
6498 value
= symbol
+ addend
;
6499 /* Neither we can non-instruction-aligned targets. */
6500 if (r_type
== R_MIPS_JALR
? (value
& 3) != 0 : (value
& 1) == 0)
6501 return bfd_reloc_continue
;
6505 case R_MIPS_GNU_VTINHERIT
:
6506 case R_MIPS_GNU_VTENTRY
:
6507 /* We don't do anything with these at present. */
6508 return bfd_reloc_continue
;
6511 /* An unrecognized relocation type. */
6512 return bfd_reloc_notsupported
;
6515 /* Store the VALUE for our caller. */
6517 return overflowed_p
? bfd_reloc_overflow
: bfd_reloc_ok
;
6520 /* It has been determined that the result of the RELOCATION is the
6521 VALUE. Use HOWTO to place VALUE into the output file at the
6522 appropriate position. The SECTION is the section to which the
6524 CROSS_MODE_JUMP_P is true if the relocation field
6525 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
6527 Returns FALSE if anything goes wrong. */
6530 mips_elf_perform_relocation (struct bfd_link_info
*info
,
6531 reloc_howto_type
*howto
,
6532 const Elf_Internal_Rela
*relocation
,
6533 bfd_vma value
, bfd
*input_bfd
,
6534 asection
*input_section
, bfd_byte
*contents
,
6535 bfd_boolean cross_mode_jump_p
)
6539 int r_type
= ELF_R_TYPE (input_bfd
, relocation
->r_info
);
6541 /* Figure out where the relocation is occurring. */
6542 location
= contents
+ relocation
->r_offset
;
6544 _bfd_mips_elf_reloc_unshuffle (input_bfd
, r_type
, FALSE
, location
);
6546 /* Obtain the current value. */
6547 x
= mips_elf_obtain_contents (howto
, relocation
, input_bfd
, contents
);
6549 /* Clear the field we are setting. */
6550 x
&= ~howto
->dst_mask
;
6552 /* Set the field. */
6553 x
|= (value
& howto
->dst_mask
);
6555 /* Detect incorrect JALX usage. If required, turn JAL or BAL into JALX. */
6556 if (!cross_mode_jump_p
&& jal_reloc_p (r_type
))
6558 bfd_vma opcode
= x
>> 26;
6560 if (r_type
== R_MIPS16_26
? opcode
== 0x7
6561 : r_type
== R_MICROMIPS_26_S1
? opcode
== 0x3c
6564 info
->callbacks
->einfo
6565 (_("%X%H: unsupported JALX to the same ISA mode\n"),
6566 input_bfd
, input_section
, relocation
->r_offset
);
6570 if (cross_mode_jump_p
&& jal_reloc_p (r_type
))
6573 bfd_vma opcode
= x
>> 26;
6574 bfd_vma jalx_opcode
;
6576 /* Check to see if the opcode is already JAL or JALX. */
6577 if (r_type
== R_MIPS16_26
)
6579 ok
= ((opcode
== 0x6) || (opcode
== 0x7));
6582 else if (r_type
== R_MICROMIPS_26_S1
)
6584 ok
= ((opcode
== 0x3d) || (opcode
== 0x3c));
6589 ok
= ((opcode
== 0x3) || (opcode
== 0x1d));
6593 /* If the opcode is not JAL or JALX, there's a problem. We cannot
6594 convert J or JALS to JALX. */
6597 info
->callbacks
->einfo
6598 (_("%X%H: unsupported jump between ISA modes; "
6599 "consider recompiling with interlinking enabled\n"),
6600 input_bfd
, input_section
, relocation
->r_offset
);
6604 /* Make this the JALX opcode. */
6605 x
= (x
& ~(0x3fu
<< 26)) | (jalx_opcode
<< 26);
6607 else if (cross_mode_jump_p
&& b_reloc_p (r_type
))
6609 bfd_boolean ok
= FALSE
;
6610 bfd_vma opcode
= x
>> 16;
6611 bfd_vma jalx_opcode
= 0;
6612 bfd_vma sign_bit
= 0;
6616 if (r_type
== R_MICROMIPS_PC16_S1
)
6618 ok
= opcode
== 0x4060;
6623 else if (r_type
== R_MIPS_PC16
|| r_type
== R_MIPS_GNU_REL16_S2
)
6625 ok
= opcode
== 0x411;
6631 if (ok
&& !bfd_link_pic (info
))
6633 addr
= (input_section
->output_section
->vma
6634 + input_section
->output_offset
6635 + relocation
->r_offset
6638 + (((value
& ((sign_bit
<< 1) - 1)) ^ sign_bit
) - sign_bit
));
6640 if ((addr
>> 28) << 28 != (dest
>> 28) << 28)
6642 info
->callbacks
->einfo
6643 (_("%X%H: cannot convert branch between ISA modes "
6644 "to JALX: relocation out of range\n"),
6645 input_bfd
, input_section
, relocation
->r_offset
);
6649 /* Make this the JALX opcode. */
6650 x
= ((dest
>> 2) & 0x3ffffff) | jalx_opcode
<< 26;
6652 else if (!mips_elf_hash_table (info
)->ignore_branch_isa
)
6654 info
->callbacks
->einfo
6655 (_("%X%H: unsupported branch between ISA modes\n"),
6656 input_bfd
, input_section
, relocation
->r_offset
);
6661 /* Try converting JAL to BAL and J(AL)R to B(AL), if the target is in
6663 if (!bfd_link_relocatable (info
)
6664 && !cross_mode_jump_p
6665 && ((JAL_TO_BAL_P (input_bfd
)
6666 && r_type
== R_MIPS_26
6667 && (x
>> 26) == 0x3) /* jal addr */
6668 || (JALR_TO_BAL_P (input_bfd
)
6669 && r_type
== R_MIPS_JALR
6670 && x
== 0x0320f809) /* jalr t9 */
6671 || (JR_TO_B_P (input_bfd
)
6672 && r_type
== R_MIPS_JALR
6673 && (x
& ~1) == 0x03200008))) /* jr t9 / jalr zero, t9 */
6679 addr
= (input_section
->output_section
->vma
6680 + input_section
->output_offset
6681 + relocation
->r_offset
6683 if (r_type
== R_MIPS_26
)
6684 dest
= (value
<< 2) | ((addr
>> 28) << 28);
6688 if (off
<= 0x1ffff && off
>= -0x20000)
6690 if ((x
& ~1) == 0x03200008) /* jr t9 / jalr zero, t9 */
6691 x
= 0x10000000 | (((bfd_vma
) off
>> 2) & 0xffff); /* b addr */
6693 x
= 0x04110000 | (((bfd_vma
) off
>> 2) & 0xffff); /* bal addr */
6697 /* Put the value into the output. */
6698 mips_elf_store_contents (howto
, relocation
, input_bfd
, contents
, x
);
6700 _bfd_mips_elf_reloc_shuffle (input_bfd
, r_type
, !bfd_link_relocatable (info
),
6706 /* Create a rel.dyn relocation for the dynamic linker to resolve. REL
6707 is the original relocation, which is now being transformed into a
6708 dynamic relocation. The ADDENDP is adjusted if necessary; the
6709 caller should store the result in place of the original addend. */
6712 mips_elf_create_dynamic_relocation (bfd
*output_bfd
,
6713 struct bfd_link_info
*info
,
6714 const Elf_Internal_Rela
*rel
,
6715 struct mips_elf_link_hash_entry
*h
,
6716 asection
*sec
, bfd_vma symbol
,
6717 bfd_vma
*addendp
, asection
*input_section
)
6719 Elf_Internal_Rela outrel
[3];
6724 bfd_boolean defined_p
;
6725 struct mips_elf_link_hash_table
*htab
;
6727 htab
= mips_elf_hash_table (info
);
6728 BFD_ASSERT (htab
!= NULL
);
6730 r_type
= ELF_R_TYPE (output_bfd
, rel
->r_info
);
6731 dynobj
= elf_hash_table (info
)->dynobj
;
6732 sreloc
= mips_elf_rel_dyn_section (info
, FALSE
);
6733 BFD_ASSERT (sreloc
!= NULL
);
6734 BFD_ASSERT (sreloc
->contents
!= NULL
);
6735 BFD_ASSERT (sreloc
->reloc_count
* MIPS_ELF_REL_SIZE (output_bfd
)
6738 outrel
[0].r_offset
=
6739 _bfd_elf_section_offset (output_bfd
, info
, input_section
, rel
[0].r_offset
);
6740 if (ABI_64_P (output_bfd
))
6742 outrel
[1].r_offset
=
6743 _bfd_elf_section_offset (output_bfd
, info
, input_section
, rel
[1].r_offset
);
6744 outrel
[2].r_offset
=
6745 _bfd_elf_section_offset (output_bfd
, info
, input_section
, rel
[2].r_offset
);
6748 if (outrel
[0].r_offset
== MINUS_ONE
)
6749 /* The relocation field has been deleted. */
6752 if (outrel
[0].r_offset
== MINUS_TWO
)
6754 /* The relocation field has been converted into a relative value of
6755 some sort. Functions like _bfd_elf_write_section_eh_frame expect
6756 the field to be fully relocated, so add in the symbol's value. */
6761 /* We must now calculate the dynamic symbol table index to use
6762 in the relocation. */
6763 if (h
!= NULL
&& ! SYMBOL_REFERENCES_LOCAL (info
, &h
->root
))
6765 BFD_ASSERT (htab
->is_vxworks
|| h
->global_got_area
!= GGA_NONE
);
6766 indx
= h
->root
.dynindx
;
6767 if (SGI_COMPAT (output_bfd
))
6768 defined_p
= h
->root
.def_regular
;
6770 /* ??? glibc's ld.so just adds the final GOT entry to the
6771 relocation field. It therefore treats relocs against
6772 defined symbols in the same way as relocs against
6773 undefined symbols. */
6778 if (sec
!= NULL
&& bfd_is_abs_section (sec
))
6780 else if (sec
== NULL
|| sec
->owner
== NULL
)
6782 bfd_set_error (bfd_error_bad_value
);
6787 indx
= elf_section_data (sec
->output_section
)->dynindx
;
6790 asection
*osec
= htab
->root
.text_index_section
;
6791 indx
= elf_section_data (osec
)->dynindx
;
6797 /* Instead of generating a relocation using the section
6798 symbol, we may as well make it a fully relative
6799 relocation. We want to avoid generating relocations to
6800 local symbols because we used to generate them
6801 incorrectly, without adding the original symbol value,
6802 which is mandated by the ABI for section symbols. In
6803 order to give dynamic loaders and applications time to
6804 phase out the incorrect use, we refrain from emitting
6805 section-relative relocations. It's not like they're
6806 useful, after all. This should be a bit more efficient
6808 /* ??? Although this behavior is compatible with glibc's ld.so,
6809 the ABI says that relocations against STN_UNDEF should have
6810 a symbol value of 0. Irix rld honors this, so relocations
6811 against STN_UNDEF have no effect. */
6812 if (!SGI_COMPAT (output_bfd
))
6817 /* If the relocation was previously an absolute relocation and
6818 this symbol will not be referred to by the relocation, we must
6819 adjust it by the value we give it in the dynamic symbol table.
6820 Otherwise leave the job up to the dynamic linker. */
6821 if (defined_p
&& r_type
!= R_MIPS_REL32
)
6824 if (htab
->is_vxworks
)
6825 /* VxWorks uses non-relative relocations for this. */
6826 outrel
[0].r_info
= ELF32_R_INFO (indx
, R_MIPS_32
);
6828 /* The relocation is always an REL32 relocation because we don't
6829 know where the shared library will wind up at load-time. */
6830 outrel
[0].r_info
= ELF_R_INFO (output_bfd
, (unsigned long) indx
,
6833 /* For strict adherence to the ABI specification, we should
6834 generate a R_MIPS_64 relocation record by itself before the
6835 _REL32/_64 record as well, such that the addend is read in as
6836 a 64-bit value (REL32 is a 32-bit relocation, after all).
6837 However, since none of the existing ELF64 MIPS dynamic
6838 loaders seems to care, we don't waste space with these
6839 artificial relocations. If this turns out to not be true,
6840 mips_elf_allocate_dynamic_relocation() should be tweaked so
6841 as to make room for a pair of dynamic relocations per
6842 invocation if ABI_64_P, and here we should generate an
6843 additional relocation record with R_MIPS_64 by itself for a
6844 NULL symbol before this relocation record. */
6845 outrel
[1].r_info
= ELF_R_INFO (output_bfd
, 0,
6846 ABI_64_P (output_bfd
)
6849 outrel
[2].r_info
= ELF_R_INFO (output_bfd
, 0, R_MIPS_NONE
);
6851 /* Adjust the output offset of the relocation to reference the
6852 correct location in the output file. */
6853 outrel
[0].r_offset
+= (input_section
->output_section
->vma
6854 + input_section
->output_offset
);
6855 outrel
[1].r_offset
+= (input_section
->output_section
->vma
6856 + input_section
->output_offset
);
6857 outrel
[2].r_offset
+= (input_section
->output_section
->vma
6858 + input_section
->output_offset
);
6860 /* Put the relocation back out. We have to use the special
6861 relocation outputter in the 64-bit case since the 64-bit
6862 relocation format is non-standard. */
6863 if (ABI_64_P (output_bfd
))
6865 (*get_elf_backend_data (output_bfd
)->s
->swap_reloc_out
)
6866 (output_bfd
, &outrel
[0],
6868 + sreloc
->reloc_count
* sizeof (Elf64_Mips_External_Rel
)));
6870 else if (htab
->is_vxworks
)
6872 /* VxWorks uses RELA rather than REL dynamic relocations. */
6873 outrel
[0].r_addend
= *addendp
;
6874 bfd_elf32_swap_reloca_out
6875 (output_bfd
, &outrel
[0],
6877 + sreloc
->reloc_count
* sizeof (Elf32_External_Rela
)));
6880 bfd_elf32_swap_reloc_out
6881 (output_bfd
, &outrel
[0],
6882 (sreloc
->contents
+ sreloc
->reloc_count
* sizeof (Elf32_External_Rel
)));
6884 /* We've now added another relocation. */
6885 ++sreloc
->reloc_count
;
6887 /* Make sure the output section is writable. The dynamic linker
6888 will be writing to it. */
6889 elf_section_data (input_section
->output_section
)->this_hdr
.sh_flags
6892 /* On IRIX5, make an entry of compact relocation info. */
6893 if (IRIX_COMPAT (output_bfd
) == ict_irix5
)
6895 asection
*scpt
= bfd_get_linker_section (dynobj
, ".compact_rel");
6900 Elf32_crinfo cptrel
;
6902 mips_elf_set_cr_format (cptrel
, CRF_MIPS_LONG
);
6903 cptrel
.vaddr
= (rel
->r_offset
6904 + input_section
->output_section
->vma
6905 + input_section
->output_offset
);
6906 if (r_type
== R_MIPS_REL32
)
6907 mips_elf_set_cr_type (cptrel
, CRT_MIPS_REL32
);
6909 mips_elf_set_cr_type (cptrel
, CRT_MIPS_WORD
);
6910 mips_elf_set_cr_dist2to (cptrel
, 0);
6911 cptrel
.konst
= *addendp
;
6913 cr
= (scpt
->contents
6914 + sizeof (Elf32_External_compact_rel
));
6915 mips_elf_set_cr_relvaddr (cptrel
, 0);
6916 bfd_elf32_swap_crinfo_out (output_bfd
, &cptrel
,
6917 ((Elf32_External_crinfo
*) cr
6918 + scpt
->reloc_count
));
6919 ++scpt
->reloc_count
;
6923 /* If we've written this relocation for a readonly section,
6924 we need to set DF_TEXTREL again, so that we do not delete the
6926 if (MIPS_ELF_READONLY_SECTION (input_section
))
6927 info
->flags
|= DF_TEXTREL
;
6932 /* Return the MACH for a MIPS e_flags value. */
6935 _bfd_elf_mips_mach (flagword flags
)
6937 switch (flags
& EF_MIPS_MACH
)
6939 case E_MIPS_MACH_3900
:
6940 return bfd_mach_mips3900
;
6942 case E_MIPS_MACH_4010
:
6943 return bfd_mach_mips4010
;
6945 case E_MIPS_MACH_4100
:
6946 return bfd_mach_mips4100
;
6948 case E_MIPS_MACH_4111
:
6949 return bfd_mach_mips4111
;
6951 case E_MIPS_MACH_4120
:
6952 return bfd_mach_mips4120
;
6954 case E_MIPS_MACH_4650
:
6955 return bfd_mach_mips4650
;
6957 case E_MIPS_MACH_5400
:
6958 return bfd_mach_mips5400
;
6960 case E_MIPS_MACH_5500
:
6961 return bfd_mach_mips5500
;
6963 case E_MIPS_MACH_5900
:
6964 return bfd_mach_mips5900
;
6966 case E_MIPS_MACH_9000
:
6967 return bfd_mach_mips9000
;
6969 case E_MIPS_MACH_SB1
:
6970 return bfd_mach_mips_sb1
;
6972 case E_MIPS_MACH_LS2E
:
6973 return bfd_mach_mips_loongson_2e
;
6975 case E_MIPS_MACH_LS2F
:
6976 return bfd_mach_mips_loongson_2f
;
6978 case E_MIPS_MACH_GS464
:
6979 return bfd_mach_mips_gs464
;
6981 case E_MIPS_MACH_GS464E
:
6982 return bfd_mach_mips_gs464e
;
6984 case E_MIPS_MACH_GS264E
:
6985 return bfd_mach_mips_gs264e
;
6987 case E_MIPS_MACH_OCTEON3
:
6988 return bfd_mach_mips_octeon3
;
6990 case E_MIPS_MACH_OCTEON2
:
6991 return bfd_mach_mips_octeon2
;
6993 case E_MIPS_MACH_OCTEON
:
6994 return bfd_mach_mips_octeon
;
6996 case E_MIPS_MACH_XLR
:
6997 return bfd_mach_mips_xlr
;
6999 case E_MIPS_MACH_IAMR2
:
7000 return bfd_mach_mips_interaptiv_mr2
;
7003 switch (flags
& EF_MIPS_ARCH
)
7007 return bfd_mach_mips3000
;
7010 return bfd_mach_mips6000
;
7013 return bfd_mach_mips4000
;
7016 return bfd_mach_mips8000
;
7019 return bfd_mach_mips5
;
7021 case E_MIPS_ARCH_32
:
7022 return bfd_mach_mipsisa32
;
7024 case E_MIPS_ARCH_64
:
7025 return bfd_mach_mipsisa64
;
7027 case E_MIPS_ARCH_32R2
:
7028 return bfd_mach_mipsisa32r2
;
7030 case E_MIPS_ARCH_64R2
:
7031 return bfd_mach_mipsisa64r2
;
7033 case E_MIPS_ARCH_32R6
:
7034 return bfd_mach_mipsisa32r6
;
7036 case E_MIPS_ARCH_64R6
:
7037 return bfd_mach_mipsisa64r6
;
7044 /* Return printable name for ABI. */
7046 static INLINE
char *
7047 elf_mips_abi_name (bfd
*abfd
)
7051 flags
= elf_elfheader (abfd
)->e_flags
;
7052 switch (flags
& EF_MIPS_ABI
)
7055 if (ABI_N32_P (abfd
))
7057 else if (ABI_64_P (abfd
))
7061 case E_MIPS_ABI_O32
:
7063 case E_MIPS_ABI_O64
:
7065 case E_MIPS_ABI_EABI32
:
7067 case E_MIPS_ABI_EABI64
:
7070 return "unknown abi";
7074 /* MIPS ELF uses two common sections. One is the usual one, and the
7075 other is for small objects. All the small objects are kept
7076 together, and then referenced via the gp pointer, which yields
7077 faster assembler code. This is what we use for the small common
7078 section. This approach is copied from ecoff.c. */
7079 static asection mips_elf_scom_section
;
7080 static asymbol mips_elf_scom_symbol
;
7081 static asymbol
*mips_elf_scom_symbol_ptr
;
7083 /* MIPS ELF also uses an acommon section, which represents an
7084 allocated common symbol which may be overridden by a
7085 definition in a shared library. */
7086 static asection mips_elf_acom_section
;
7087 static asymbol mips_elf_acom_symbol
;
7088 static asymbol
*mips_elf_acom_symbol_ptr
;
7090 /* This is used for both the 32-bit and the 64-bit ABI. */
7093 _bfd_mips_elf_symbol_processing (bfd
*abfd
, asymbol
*asym
)
7095 elf_symbol_type
*elfsym
;
7097 /* Handle the special MIPS section numbers that a symbol may use. */
7098 elfsym
= (elf_symbol_type
*) asym
;
7099 switch (elfsym
->internal_elf_sym
.st_shndx
)
7101 case SHN_MIPS_ACOMMON
:
7102 /* This section is used in a dynamically linked executable file.
7103 It is an allocated common section. The dynamic linker can
7104 either resolve these symbols to something in a shared
7105 library, or it can just leave them here. For our purposes,
7106 we can consider these symbols to be in a new section. */
7107 if (mips_elf_acom_section
.name
== NULL
)
7109 /* Initialize the acommon section. */
7110 mips_elf_acom_section
.name
= ".acommon";
7111 mips_elf_acom_section
.flags
= SEC_ALLOC
;
7112 mips_elf_acom_section
.output_section
= &mips_elf_acom_section
;
7113 mips_elf_acom_section
.symbol
= &mips_elf_acom_symbol
;
7114 mips_elf_acom_section
.symbol_ptr_ptr
= &mips_elf_acom_symbol_ptr
;
7115 mips_elf_acom_symbol
.name
= ".acommon";
7116 mips_elf_acom_symbol
.flags
= BSF_SECTION_SYM
;
7117 mips_elf_acom_symbol
.section
= &mips_elf_acom_section
;
7118 mips_elf_acom_symbol_ptr
= &mips_elf_acom_symbol
;
7120 asym
->section
= &mips_elf_acom_section
;
7124 /* Common symbols less than the GP size are automatically
7125 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
7126 if (asym
->value
> elf_gp_size (abfd
)
7127 || ELF_ST_TYPE (elfsym
->internal_elf_sym
.st_info
) == STT_TLS
7128 || IRIX_COMPAT (abfd
) == ict_irix6
)
7131 case SHN_MIPS_SCOMMON
:
7132 if (mips_elf_scom_section
.name
== NULL
)
7134 /* Initialize the small common section. */
7135 mips_elf_scom_section
.name
= ".scommon";
7136 mips_elf_scom_section
.flags
= SEC_IS_COMMON
;
7137 mips_elf_scom_section
.output_section
= &mips_elf_scom_section
;
7138 mips_elf_scom_section
.symbol
= &mips_elf_scom_symbol
;
7139 mips_elf_scom_section
.symbol_ptr_ptr
= &mips_elf_scom_symbol_ptr
;
7140 mips_elf_scom_symbol
.name
= ".scommon";
7141 mips_elf_scom_symbol
.flags
= BSF_SECTION_SYM
;
7142 mips_elf_scom_symbol
.section
= &mips_elf_scom_section
;
7143 mips_elf_scom_symbol_ptr
= &mips_elf_scom_symbol
;
7145 asym
->section
= &mips_elf_scom_section
;
7146 asym
->value
= elfsym
->internal_elf_sym
.st_size
;
7149 case SHN_MIPS_SUNDEFINED
:
7150 asym
->section
= bfd_und_section_ptr
;
7155 asection
*section
= bfd_get_section_by_name (abfd
, ".text");
7157 if (section
!= NULL
)
7159 asym
->section
= section
;
7160 /* MIPS_TEXT is a bit special, the address is not an offset
7161 to the base of the .text section. So subtract the section
7162 base address to make it an offset. */
7163 asym
->value
-= section
->vma
;
7170 asection
*section
= bfd_get_section_by_name (abfd
, ".data");
7172 if (section
!= NULL
)
7174 asym
->section
= section
;
7175 /* MIPS_DATA is a bit special, the address is not an offset
7176 to the base of the .data section. So subtract the section
7177 base address to make it an offset. */
7178 asym
->value
-= section
->vma
;
7184 /* If this is an odd-valued function symbol, assume it's a MIPS16
7185 or microMIPS one. */
7186 if (ELF_ST_TYPE (elfsym
->internal_elf_sym
.st_info
) == STT_FUNC
7187 && (asym
->value
& 1) != 0)
7190 if (MICROMIPS_P (abfd
))
7191 elfsym
->internal_elf_sym
.st_other
7192 = ELF_ST_SET_MICROMIPS (elfsym
->internal_elf_sym
.st_other
);
7194 elfsym
->internal_elf_sym
.st_other
7195 = ELF_ST_SET_MIPS16 (elfsym
->internal_elf_sym
.st_other
);
7199 /* Implement elf_backend_eh_frame_address_size. This differs from
7200 the default in the way it handles EABI64.
7202 EABI64 was originally specified as an LP64 ABI, and that is what
7203 -mabi=eabi normally gives on a 64-bit target. However, gcc has
7204 historically accepted the combination of -mabi=eabi and -mlong32,
7205 and this ILP32 variation has become semi-official over time.
7206 Both forms use elf32 and have pointer-sized FDE addresses.
7208 If an EABI object was generated by GCC 4.0 or above, it will have
7209 an empty .gcc_compiled_longXX section, where XX is the size of longs
7210 in bits. Unfortunately, ILP32 objects generated by earlier compilers
7211 have no special marking to distinguish them from LP64 objects.
7213 We don't want users of the official LP64 ABI to be punished for the
7214 existence of the ILP32 variant, but at the same time, we don't want
7215 to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
7216 We therefore take the following approach:
7218 - If ABFD contains a .gcc_compiled_longXX section, use it to
7219 determine the pointer size.
7221 - Otherwise check the type of the first relocation. Assume that
7222 the LP64 ABI is being used if the relocation is of type R_MIPS_64.
7226 The second check is enough to detect LP64 objects generated by pre-4.0
7227 compilers because, in the kind of output generated by those compilers,
7228 the first relocation will be associated with either a CIE personality
7229 routine or an FDE start address. Furthermore, the compilers never
7230 used a special (non-pointer) encoding for this ABI.
7232 Checking the relocation type should also be safe because there is no
7233 reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never
7237 _bfd_mips_elf_eh_frame_address_size (bfd
*abfd
, const asection
*sec
)
7239 if (elf_elfheader (abfd
)->e_ident
[EI_CLASS
] == ELFCLASS64
)
7241 if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ABI
) == E_MIPS_ABI_EABI64
)
7243 bfd_boolean long32_p
, long64_p
;
7245 long32_p
= bfd_get_section_by_name (abfd
, ".gcc_compiled_long32") != 0;
7246 long64_p
= bfd_get_section_by_name (abfd
, ".gcc_compiled_long64") != 0;
7247 if (long32_p
&& long64_p
)
7254 if (sec
->reloc_count
> 0
7255 && elf_section_data (sec
)->relocs
!= NULL
7256 && (ELF32_R_TYPE (elf_section_data (sec
)->relocs
[0].r_info
)
7265 /* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
7266 relocations against two unnamed section symbols to resolve to the
7267 same address. For example, if we have code like:
7269 lw $4,%got_disp(.data)($gp)
7270 lw $25,%got_disp(.text)($gp)
7273 then the linker will resolve both relocations to .data and the program
7274 will jump there rather than to .text.
7276 We can work around this problem by giving names to local section symbols.
7277 This is also what the MIPSpro tools do. */
7280 _bfd_mips_elf_name_local_section_symbols (bfd
*abfd
)
7282 return SGI_COMPAT (abfd
);
7285 /* Work over a section just before writing it out. This routine is
7286 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
7287 sections that need the SHF_MIPS_GPREL flag by name; there has to be
7291 _bfd_mips_elf_section_processing (bfd
*abfd
, Elf_Internal_Shdr
*hdr
)
7293 if (hdr
->sh_type
== SHT_MIPS_REGINFO
7294 && hdr
->sh_size
> 0)
7298 BFD_ASSERT (hdr
->contents
== NULL
);
7300 if (hdr
->sh_size
!= sizeof (Elf32_External_RegInfo
))
7303 (_("%pB: incorrect `.reginfo' section size; "
7304 "expected %" PRIu64
", got %" PRIu64
),
7305 abfd
, (uint64_t) sizeof (Elf32_External_RegInfo
),
7306 (uint64_t) hdr
->sh_size
);
7307 bfd_set_error (bfd_error_bad_value
);
7312 hdr
->sh_offset
+ sizeof (Elf32_External_RegInfo
) - 4,
7315 H_PUT_32 (abfd
, elf_gp (abfd
), buf
);
7316 if (bfd_bwrite (buf
, 4, abfd
) != 4)
7320 if (hdr
->sh_type
== SHT_MIPS_OPTIONS
7321 && hdr
->bfd_section
!= NULL
7322 && mips_elf_section_data (hdr
->bfd_section
) != NULL
7323 && mips_elf_section_data (hdr
->bfd_section
)->u
.tdata
!= NULL
)
7325 bfd_byte
*contents
, *l
, *lend
;
7327 /* We stored the section contents in the tdata field in the
7328 set_section_contents routine. We save the section contents
7329 so that we don't have to read them again.
7330 At this point we know that elf_gp is set, so we can look
7331 through the section contents to see if there is an
7332 ODK_REGINFO structure. */
7334 contents
= mips_elf_section_data (hdr
->bfd_section
)->u
.tdata
;
7336 lend
= contents
+ hdr
->sh_size
;
7337 while (l
+ sizeof (Elf_External_Options
) <= lend
)
7339 Elf_Internal_Options intopt
;
7341 bfd_mips_elf_swap_options_in (abfd
, (Elf_External_Options
*) l
,
7343 if (intopt
.size
< sizeof (Elf_External_Options
))
7346 /* xgettext:c-format */
7347 (_("%pB: warning: bad `%s' option size %u smaller than"
7349 abfd
, MIPS_ELF_OPTIONS_SECTION_NAME (abfd
), intopt
.size
);
7352 if (ABI_64_P (abfd
) && intopt
.kind
== ODK_REGINFO
)
7359 + sizeof (Elf_External_Options
)
7360 + (sizeof (Elf64_External_RegInfo
) - 8)),
7363 H_PUT_64 (abfd
, elf_gp (abfd
), buf
);
7364 if (bfd_bwrite (buf
, 8, abfd
) != 8)
7367 else if (intopt
.kind
== ODK_REGINFO
)
7374 + sizeof (Elf_External_Options
)
7375 + (sizeof (Elf32_External_RegInfo
) - 4)),
7378 H_PUT_32 (abfd
, elf_gp (abfd
), buf
);
7379 if (bfd_bwrite (buf
, 4, abfd
) != 4)
7386 if (hdr
->bfd_section
!= NULL
)
7388 const char *name
= bfd_section_name (hdr
->bfd_section
);
7390 /* .sbss is not handled specially here because the GNU/Linux
7391 prelinker can convert .sbss from NOBITS to PROGBITS and
7392 changing it back to NOBITS breaks the binary. The entry in
7393 _bfd_mips_elf_special_sections will ensure the correct flags
7394 are set on .sbss if BFD creates it without reading it from an
7395 input file, and without special handling here the flags set
7396 on it in an input file will be followed. */
7397 if (strcmp (name
, ".sdata") == 0
7398 || strcmp (name
, ".lit8") == 0
7399 || strcmp (name
, ".lit4") == 0)
7400 hdr
->sh_flags
|= SHF_ALLOC
| SHF_WRITE
| SHF_MIPS_GPREL
;
7401 else if (strcmp (name
, ".srdata") == 0)
7402 hdr
->sh_flags
|= SHF_ALLOC
| SHF_MIPS_GPREL
;
7403 else if (strcmp (name
, ".compact_rel") == 0)
7405 else if (strcmp (name
, ".rtproc") == 0)
7407 if (hdr
->sh_addralign
!= 0 && hdr
->sh_entsize
== 0)
7409 unsigned int adjust
;
7411 adjust
= hdr
->sh_size
% hdr
->sh_addralign
;
7413 hdr
->sh_size
+= hdr
->sh_addralign
- adjust
;
7421 /* Handle a MIPS specific section when reading an object file. This
7422 is called when elfcode.h finds a section with an unknown type.
7423 This routine supports both the 32-bit and 64-bit ELF ABI.
7425 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
7429 _bfd_mips_elf_section_from_shdr (bfd
*abfd
,
7430 Elf_Internal_Shdr
*hdr
,
7436 /* There ought to be a place to keep ELF backend specific flags, but
7437 at the moment there isn't one. We just keep track of the
7438 sections by their name, instead. Fortunately, the ABI gives
7439 suggested names for all the MIPS specific sections, so we will
7440 probably get away with this. */
7441 switch (hdr
->sh_type
)
7443 case SHT_MIPS_LIBLIST
:
7444 if (strcmp (name
, ".liblist") != 0)
7448 if (strcmp (name
, ".msym") != 0)
7451 case SHT_MIPS_CONFLICT
:
7452 if (strcmp (name
, ".conflict") != 0)
7455 case SHT_MIPS_GPTAB
:
7456 if (! CONST_STRNEQ (name
, ".gptab."))
7459 case SHT_MIPS_UCODE
:
7460 if (strcmp (name
, ".ucode") != 0)
7463 case SHT_MIPS_DEBUG
:
7464 if (strcmp (name
, ".mdebug") != 0)
7466 flags
= SEC_DEBUGGING
;
7468 case SHT_MIPS_REGINFO
:
7469 if (strcmp (name
, ".reginfo") != 0
7470 || hdr
->sh_size
!= sizeof (Elf32_External_RegInfo
))
7472 flags
= (SEC_LINK_ONCE
| SEC_LINK_DUPLICATES_SAME_SIZE
);
7474 case SHT_MIPS_IFACE
:
7475 if (strcmp (name
, ".MIPS.interfaces") != 0)
7478 case SHT_MIPS_CONTENT
:
7479 if (! CONST_STRNEQ (name
, ".MIPS.content"))
7482 case SHT_MIPS_OPTIONS
:
7483 if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name
))
7486 case SHT_MIPS_ABIFLAGS
:
7487 if (!MIPS_ELF_ABIFLAGS_SECTION_NAME_P (name
))
7489 flags
= (SEC_LINK_ONCE
| SEC_LINK_DUPLICATES_SAME_SIZE
);
7491 case SHT_MIPS_DWARF
:
7492 if (! CONST_STRNEQ (name
, ".debug_")
7493 && ! CONST_STRNEQ (name
, ".zdebug_"))
7496 case SHT_MIPS_SYMBOL_LIB
:
7497 if (strcmp (name
, ".MIPS.symlib") != 0)
7500 case SHT_MIPS_EVENTS
:
7501 if (! CONST_STRNEQ (name
, ".MIPS.events")
7502 && ! CONST_STRNEQ (name
, ".MIPS.post_rel"))
7505 case SHT_MIPS_XHASH
:
7506 if (strcmp (name
, ".MIPS.xhash") != 0)
7512 if (! _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
))
7517 if (!bfd_set_section_flags (hdr
->bfd_section
,
7518 (bfd_section_flags (hdr
->bfd_section
)
7523 if (hdr
->sh_type
== SHT_MIPS_ABIFLAGS
)
7525 Elf_External_ABIFlags_v0 ext
;
7527 if (! bfd_get_section_contents (abfd
, hdr
->bfd_section
,
7528 &ext
, 0, sizeof ext
))
7530 bfd_mips_elf_swap_abiflags_v0_in (abfd
, &ext
,
7531 &mips_elf_tdata (abfd
)->abiflags
);
7532 if (mips_elf_tdata (abfd
)->abiflags
.version
!= 0)
7534 mips_elf_tdata (abfd
)->abiflags_valid
= TRUE
;
7537 /* FIXME: We should record sh_info for a .gptab section. */
7539 /* For a .reginfo section, set the gp value in the tdata information
7540 from the contents of this section. We need the gp value while
7541 processing relocs, so we just get it now. The .reginfo section
7542 is not used in the 64-bit MIPS ELF ABI. */
7543 if (hdr
->sh_type
== SHT_MIPS_REGINFO
)
7545 Elf32_External_RegInfo ext
;
7548 if (! bfd_get_section_contents (abfd
, hdr
->bfd_section
,
7549 &ext
, 0, sizeof ext
))
7551 bfd_mips_elf32_swap_reginfo_in (abfd
, &ext
, &s
);
7552 elf_gp (abfd
) = s
.ri_gp_value
;
7555 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
7556 set the gp value based on what we find. We may see both
7557 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
7558 they should agree. */
7559 if (hdr
->sh_type
== SHT_MIPS_OPTIONS
)
7561 bfd_byte
*contents
, *l
, *lend
;
7563 contents
= bfd_malloc (hdr
->sh_size
);
7564 if (contents
== NULL
)
7566 if (! bfd_get_section_contents (abfd
, hdr
->bfd_section
, contents
,
7573 lend
= contents
+ hdr
->sh_size
;
7574 while (l
+ sizeof (Elf_External_Options
) <= lend
)
7576 Elf_Internal_Options intopt
;
7578 bfd_mips_elf_swap_options_in (abfd
, (Elf_External_Options
*) l
,
7580 if (intopt
.size
< sizeof (Elf_External_Options
))
7583 /* xgettext:c-format */
7584 (_("%pB: warning: bad `%s' option size %u smaller than"
7586 abfd
, MIPS_ELF_OPTIONS_SECTION_NAME (abfd
), intopt
.size
);
7589 if (ABI_64_P (abfd
) && intopt
.kind
== ODK_REGINFO
)
7591 Elf64_Internal_RegInfo intreg
;
7593 bfd_mips_elf64_swap_reginfo_in
7595 ((Elf64_External_RegInfo
*)
7596 (l
+ sizeof (Elf_External_Options
))),
7598 elf_gp (abfd
) = intreg
.ri_gp_value
;
7600 else if (intopt
.kind
== ODK_REGINFO
)
7602 Elf32_RegInfo intreg
;
7604 bfd_mips_elf32_swap_reginfo_in
7606 ((Elf32_External_RegInfo
*)
7607 (l
+ sizeof (Elf_External_Options
))),
7609 elf_gp (abfd
) = intreg
.ri_gp_value
;
7619 /* Set the correct type for a MIPS ELF section. We do this by the
7620 section name, which is a hack, but ought to work. This routine is
7621 used by both the 32-bit and the 64-bit ABI. */
7624 _bfd_mips_elf_fake_sections (bfd
*abfd
, Elf_Internal_Shdr
*hdr
, asection
*sec
)
7626 const char *name
= bfd_section_name (sec
);
7628 if (strcmp (name
, ".liblist") == 0)
7630 hdr
->sh_type
= SHT_MIPS_LIBLIST
;
7631 hdr
->sh_info
= sec
->size
/ sizeof (Elf32_Lib
);
7632 /* The sh_link field is set in final_write_processing. */
7634 else if (strcmp (name
, ".conflict") == 0)
7635 hdr
->sh_type
= SHT_MIPS_CONFLICT
;
7636 else if (CONST_STRNEQ (name
, ".gptab."))
7638 hdr
->sh_type
= SHT_MIPS_GPTAB
;
7639 hdr
->sh_entsize
= sizeof (Elf32_External_gptab
);
7640 /* The sh_info field is set in final_write_processing. */
7642 else if (strcmp (name
, ".ucode") == 0)
7643 hdr
->sh_type
= SHT_MIPS_UCODE
;
7644 else if (strcmp (name
, ".mdebug") == 0)
7646 hdr
->sh_type
= SHT_MIPS_DEBUG
;
7647 /* In a shared object on IRIX 5.3, the .mdebug section has an
7648 entsize of 0. FIXME: Does this matter? */
7649 if (SGI_COMPAT (abfd
) && (abfd
->flags
& DYNAMIC
) != 0)
7650 hdr
->sh_entsize
= 0;
7652 hdr
->sh_entsize
= 1;
7654 else if (strcmp (name
, ".reginfo") == 0)
7656 hdr
->sh_type
= SHT_MIPS_REGINFO
;
7657 /* In a shared object on IRIX 5.3, the .reginfo section has an
7658 entsize of 0x18. FIXME: Does this matter? */
7659 if (SGI_COMPAT (abfd
))
7661 if ((abfd
->flags
& DYNAMIC
) != 0)
7662 hdr
->sh_entsize
= sizeof (Elf32_External_RegInfo
);
7664 hdr
->sh_entsize
= 1;
7667 hdr
->sh_entsize
= sizeof (Elf32_External_RegInfo
);
7669 else if (SGI_COMPAT (abfd
)
7670 && (strcmp (name
, ".hash") == 0
7671 || strcmp (name
, ".dynamic") == 0
7672 || strcmp (name
, ".dynstr") == 0))
7674 if (SGI_COMPAT (abfd
))
7675 hdr
->sh_entsize
= 0;
7677 /* This isn't how the IRIX6 linker behaves. */
7678 hdr
->sh_info
= SIZEOF_MIPS_DYNSYM_SECNAMES
;
7681 else if (strcmp (name
, ".got") == 0
7682 || strcmp (name
, ".srdata") == 0
7683 || strcmp (name
, ".sdata") == 0
7684 || strcmp (name
, ".sbss") == 0
7685 || strcmp (name
, ".lit4") == 0
7686 || strcmp (name
, ".lit8") == 0)
7687 hdr
->sh_flags
|= SHF_MIPS_GPREL
;
7688 else if (strcmp (name
, ".MIPS.interfaces") == 0)
7690 hdr
->sh_type
= SHT_MIPS_IFACE
;
7691 hdr
->sh_flags
|= SHF_MIPS_NOSTRIP
;
7693 else if (CONST_STRNEQ (name
, ".MIPS.content"))
7695 hdr
->sh_type
= SHT_MIPS_CONTENT
;
7696 hdr
->sh_flags
|= SHF_MIPS_NOSTRIP
;
7697 /* The sh_info field is set in final_write_processing. */
7699 else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name
))
7701 hdr
->sh_type
= SHT_MIPS_OPTIONS
;
7702 hdr
->sh_entsize
= 1;
7703 hdr
->sh_flags
|= SHF_MIPS_NOSTRIP
;
7705 else if (CONST_STRNEQ (name
, ".MIPS.abiflags"))
7707 hdr
->sh_type
= SHT_MIPS_ABIFLAGS
;
7708 hdr
->sh_entsize
= sizeof (Elf_External_ABIFlags_v0
);
7710 else if (CONST_STRNEQ (name
, ".debug_")
7711 || CONST_STRNEQ (name
, ".zdebug_"))
7713 hdr
->sh_type
= SHT_MIPS_DWARF
;
7715 /* Irix facilities such as libexc expect a single .debug_frame
7716 per executable, the system ones have NOSTRIP set and the linker
7717 doesn't merge sections with different flags so ... */
7718 if (SGI_COMPAT (abfd
) && CONST_STRNEQ (name
, ".debug_frame"))
7719 hdr
->sh_flags
|= SHF_MIPS_NOSTRIP
;
7721 else if (strcmp (name
, ".MIPS.symlib") == 0)
7723 hdr
->sh_type
= SHT_MIPS_SYMBOL_LIB
;
7724 /* The sh_link and sh_info fields are set in
7725 final_write_processing. */
7727 else if (CONST_STRNEQ (name
, ".MIPS.events")
7728 || CONST_STRNEQ (name
, ".MIPS.post_rel"))
7730 hdr
->sh_type
= SHT_MIPS_EVENTS
;
7731 hdr
->sh_flags
|= SHF_MIPS_NOSTRIP
;
7732 /* The sh_link field is set in final_write_processing. */
7734 else if (strcmp (name
, ".msym") == 0)
7736 hdr
->sh_type
= SHT_MIPS_MSYM
;
7737 hdr
->sh_flags
|= SHF_ALLOC
;
7738 hdr
->sh_entsize
= 8;
7740 else if (strcmp (name
, ".MIPS.xhash") == 0)
7742 hdr
->sh_type
= SHT_MIPS_XHASH
;
7743 hdr
->sh_flags
|= SHF_ALLOC
;
7744 hdr
->sh_entsize
= get_elf_backend_data(abfd
)->s
->arch_size
== 64 ? 0 : 4;
7747 /* The generic elf_fake_sections will set up REL_HDR using the default
7748 kind of relocations. We used to set up a second header for the
7749 non-default kind of relocations here, but only NewABI would use
7750 these, and the IRIX ld doesn't like resulting empty RELA sections.
7751 Thus we create those header only on demand now. */
7756 /* Given a BFD section, try to locate the corresponding ELF section
7757 index. This is used by both the 32-bit and the 64-bit ABI.
7758 Actually, it's not clear to me that the 64-bit ABI supports these,
7759 but for non-PIC objects we will certainly want support for at least
7760 the .scommon section. */
7763 _bfd_mips_elf_section_from_bfd_section (bfd
*abfd ATTRIBUTE_UNUSED
,
7764 asection
*sec
, int *retval
)
7766 if (strcmp (bfd_section_name (sec
), ".scommon") == 0)
7768 *retval
= SHN_MIPS_SCOMMON
;
7771 if (strcmp (bfd_section_name (sec
), ".acommon") == 0)
7773 *retval
= SHN_MIPS_ACOMMON
;
7779 /* Hook called by the linker routine which adds symbols from an object
7780 file. We must handle the special MIPS section numbers here. */
7783 _bfd_mips_elf_add_symbol_hook (bfd
*abfd
, struct bfd_link_info
*info
,
7784 Elf_Internal_Sym
*sym
, const char **namep
,
7785 flagword
*flagsp ATTRIBUTE_UNUSED
,
7786 asection
**secp
, bfd_vma
*valp
)
7788 if (SGI_COMPAT (abfd
)
7789 && (abfd
->flags
& DYNAMIC
) != 0
7790 && strcmp (*namep
, "_rld_new_interface") == 0)
7792 /* Skip IRIX5 rld entry name. */
7797 /* Shared objects may have a dynamic symbol '_gp_disp' defined as
7798 a SECTION *ABS*. This causes ld to think it can resolve _gp_disp
7799 by setting a DT_NEEDED for the shared object. Since _gp_disp is
7800 a magic symbol resolved by the linker, we ignore this bogus definition
7801 of _gp_disp. New ABI objects do not suffer from this problem so this
7802 is not done for them. */
7804 && (sym
->st_shndx
== SHN_ABS
)
7805 && (strcmp (*namep
, "_gp_disp") == 0))
7811 switch (sym
->st_shndx
)
7814 /* Common symbols less than the GP size are automatically
7815 treated as SHN_MIPS_SCOMMON symbols. */
7816 if (sym
->st_size
> elf_gp_size (abfd
)
7817 || ELF_ST_TYPE (sym
->st_info
) == STT_TLS
7818 || IRIX_COMPAT (abfd
) == ict_irix6
)
7821 case SHN_MIPS_SCOMMON
:
7822 *secp
= bfd_make_section_old_way (abfd
, ".scommon");
7823 (*secp
)->flags
|= SEC_IS_COMMON
;
7824 *valp
= sym
->st_size
;
7828 /* This section is used in a shared object. */
7829 if (mips_elf_tdata (abfd
)->elf_text_section
== NULL
)
7831 asymbol
*elf_text_symbol
;
7832 asection
*elf_text_section
;
7833 bfd_size_type amt
= sizeof (asection
);
7835 elf_text_section
= bfd_zalloc (abfd
, amt
);
7836 if (elf_text_section
== NULL
)
7839 amt
= sizeof (asymbol
);
7840 elf_text_symbol
= bfd_zalloc (abfd
, amt
);
7841 if (elf_text_symbol
== NULL
)
7844 /* Initialize the section. */
7846 mips_elf_tdata (abfd
)->elf_text_section
= elf_text_section
;
7847 mips_elf_tdata (abfd
)->elf_text_symbol
= elf_text_symbol
;
7849 elf_text_section
->symbol
= elf_text_symbol
;
7850 elf_text_section
->symbol_ptr_ptr
= &mips_elf_tdata (abfd
)->elf_text_symbol
;
7852 elf_text_section
->name
= ".text";
7853 elf_text_section
->flags
= SEC_NO_FLAGS
;
7854 elf_text_section
->output_section
= NULL
;
7855 elf_text_section
->owner
= abfd
;
7856 elf_text_symbol
->name
= ".text";
7857 elf_text_symbol
->flags
= BSF_SECTION_SYM
| BSF_DYNAMIC
;
7858 elf_text_symbol
->section
= elf_text_section
;
7860 /* This code used to do *secp = bfd_und_section_ptr if
7861 bfd_link_pic (info). I don't know why, and that doesn't make sense,
7862 so I took it out. */
7863 *secp
= mips_elf_tdata (abfd
)->elf_text_section
;
7866 case SHN_MIPS_ACOMMON
:
7867 /* Fall through. XXX Can we treat this as allocated data? */
7869 /* This section is used in a shared object. */
7870 if (mips_elf_tdata (abfd
)->elf_data_section
== NULL
)
7872 asymbol
*elf_data_symbol
;
7873 asection
*elf_data_section
;
7874 bfd_size_type amt
= sizeof (asection
);
7876 elf_data_section
= bfd_zalloc (abfd
, amt
);
7877 if (elf_data_section
== NULL
)
7880 amt
= sizeof (asymbol
);
7881 elf_data_symbol
= bfd_zalloc (abfd
, amt
);
7882 if (elf_data_symbol
== NULL
)
7885 /* Initialize the section. */
7887 mips_elf_tdata (abfd
)->elf_data_section
= elf_data_section
;
7888 mips_elf_tdata (abfd
)->elf_data_symbol
= elf_data_symbol
;
7890 elf_data_section
->symbol
= elf_data_symbol
;
7891 elf_data_section
->symbol_ptr_ptr
= &mips_elf_tdata (abfd
)->elf_data_symbol
;
7893 elf_data_section
->name
= ".data";
7894 elf_data_section
->flags
= SEC_NO_FLAGS
;
7895 elf_data_section
->output_section
= NULL
;
7896 elf_data_section
->owner
= abfd
;
7897 elf_data_symbol
->name
= ".data";
7898 elf_data_symbol
->flags
= BSF_SECTION_SYM
| BSF_DYNAMIC
;
7899 elf_data_symbol
->section
= elf_data_section
;
7901 /* This code used to do *secp = bfd_und_section_ptr if
7902 bfd_link_pic (info). I don't know why, and that doesn't make sense,
7903 so I took it out. */
7904 *secp
= mips_elf_tdata (abfd
)->elf_data_section
;
7907 case SHN_MIPS_SUNDEFINED
:
7908 *secp
= bfd_und_section_ptr
;
7912 if (SGI_COMPAT (abfd
)
7913 && ! bfd_link_pic (info
)
7914 && info
->output_bfd
->xvec
== abfd
->xvec
7915 && strcmp (*namep
, "__rld_obj_head") == 0)
7917 struct elf_link_hash_entry
*h
;
7918 struct bfd_link_hash_entry
*bh
;
7920 /* Mark __rld_obj_head as dynamic. */
7922 if (! (_bfd_generic_link_add_one_symbol
7923 (info
, abfd
, *namep
, BSF_GLOBAL
, *secp
, *valp
, NULL
, FALSE
,
7924 get_elf_backend_data (abfd
)->collect
, &bh
)))
7927 h
= (struct elf_link_hash_entry
*) bh
;
7930 h
->type
= STT_OBJECT
;
7932 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
7935 mips_elf_hash_table (info
)->use_rld_obj_head
= TRUE
;
7936 mips_elf_hash_table (info
)->rld_symbol
= h
;
7939 /* If this is a mips16 text symbol, add 1 to the value to make it
7940 odd. This will cause something like .word SYM to come up with
7941 the right value when it is loaded into the PC. */
7942 if (ELF_ST_IS_COMPRESSED (sym
->st_other
))
7948 /* This hook function is called before the linker writes out a global
7949 symbol. We mark symbols as small common if appropriate. This is
7950 also where we undo the increment of the value for a mips16 symbol. */
7953 _bfd_mips_elf_link_output_symbol_hook
7954 (struct bfd_link_info
*info ATTRIBUTE_UNUSED
,
7955 const char *name ATTRIBUTE_UNUSED
, Elf_Internal_Sym
*sym
,
7956 asection
*input_sec
, struct elf_link_hash_entry
*h ATTRIBUTE_UNUSED
)
7958 /* If we see a common symbol, which implies a relocatable link, then
7959 if a symbol was small common in an input file, mark it as small
7960 common in the output file. */
7961 if (sym
->st_shndx
== SHN_COMMON
7962 && strcmp (input_sec
->name
, ".scommon") == 0)
7963 sym
->st_shndx
= SHN_MIPS_SCOMMON
;
7965 if (ELF_ST_IS_COMPRESSED (sym
->st_other
))
7966 sym
->st_value
&= ~1;
7971 /* Functions for the dynamic linker. */
7973 /* Create dynamic sections when linking against a dynamic object. */
7976 _bfd_mips_elf_create_dynamic_sections (bfd
*abfd
, struct bfd_link_info
*info
)
7978 struct elf_link_hash_entry
*h
;
7979 struct bfd_link_hash_entry
*bh
;
7981 register asection
*s
;
7982 const char * const *namep
;
7983 struct mips_elf_link_hash_table
*htab
;
7985 htab
= mips_elf_hash_table (info
);
7986 BFD_ASSERT (htab
!= NULL
);
7988 flags
= (SEC_ALLOC
| SEC_LOAD
| SEC_HAS_CONTENTS
| SEC_IN_MEMORY
7989 | SEC_LINKER_CREATED
| SEC_READONLY
);
7991 /* The psABI requires a read-only .dynamic section, but the VxWorks
7993 if (!htab
->is_vxworks
)
7995 s
= bfd_get_linker_section (abfd
, ".dynamic");
7998 if (!bfd_set_section_flags (s
, flags
))
8003 /* We need to create .got section. */
8004 if (!mips_elf_create_got_section (abfd
, info
))
8007 if (! mips_elf_rel_dyn_section (info
, TRUE
))
8010 /* Create .stub section. */
8011 s
= bfd_make_section_anyway_with_flags (abfd
,
8012 MIPS_ELF_STUB_SECTION_NAME (abfd
),
8015 || !bfd_set_section_alignment (s
, MIPS_ELF_LOG_FILE_ALIGN (abfd
)))
8019 if (!mips_elf_hash_table (info
)->use_rld_obj_head
8020 && bfd_link_executable (info
)
8021 && bfd_get_linker_section (abfd
, ".rld_map") == NULL
)
8023 s
= bfd_make_section_anyway_with_flags (abfd
, ".rld_map",
8024 flags
&~ (flagword
) SEC_READONLY
);
8026 || !bfd_set_section_alignment (s
, MIPS_ELF_LOG_FILE_ALIGN (abfd
)))
8030 /* Create .MIPS.xhash section. */
8031 if (info
->emit_gnu_hash
)
8032 s
= bfd_make_section_anyway_with_flags (abfd
, ".MIPS.xhash",
8033 flags
| SEC_READONLY
);
8035 /* On IRIX5, we adjust add some additional symbols and change the
8036 alignments of several sections. There is no ABI documentation
8037 indicating that this is necessary on IRIX6, nor any evidence that
8038 the linker takes such action. */
8039 if (IRIX_COMPAT (abfd
) == ict_irix5
)
8041 for (namep
= mips_elf_dynsym_rtproc_names
; *namep
!= NULL
; namep
++)
8044 if (! (_bfd_generic_link_add_one_symbol
8045 (info
, abfd
, *namep
, BSF_GLOBAL
, bfd_und_section_ptr
, 0,
8046 NULL
, FALSE
, get_elf_backend_data (abfd
)->collect
, &bh
)))
8049 h
= (struct elf_link_hash_entry
*) bh
;
8053 h
->type
= STT_SECTION
;
8055 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
8059 /* We need to create a .compact_rel section. */
8060 if (SGI_COMPAT (abfd
))
8062 if (!mips_elf_create_compact_rel_section (abfd
, info
))
8066 /* Change alignments of some sections. */
8067 s
= bfd_get_linker_section (abfd
, ".hash");
8069 bfd_set_section_alignment (s
, MIPS_ELF_LOG_FILE_ALIGN (abfd
));
8071 s
= bfd_get_linker_section (abfd
, ".dynsym");
8073 bfd_set_section_alignment (s
, MIPS_ELF_LOG_FILE_ALIGN (abfd
));
8075 s
= bfd_get_linker_section (abfd
, ".dynstr");
8077 bfd_set_section_alignment (s
, MIPS_ELF_LOG_FILE_ALIGN (abfd
));
8080 s
= bfd_get_section_by_name (abfd
, ".reginfo");
8082 bfd_set_section_alignment (s
, MIPS_ELF_LOG_FILE_ALIGN (abfd
));
8084 s
= bfd_get_linker_section (abfd
, ".dynamic");
8086 bfd_set_section_alignment (s
, MIPS_ELF_LOG_FILE_ALIGN (abfd
));
8089 if (bfd_link_executable (info
))
8093 name
= SGI_COMPAT (abfd
) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
8095 if (!(_bfd_generic_link_add_one_symbol
8096 (info
, abfd
, name
, BSF_GLOBAL
, bfd_abs_section_ptr
, 0,
8097 NULL
, FALSE
, get_elf_backend_data (abfd
)->collect
, &bh
)))
8100 h
= (struct elf_link_hash_entry
*) bh
;
8103 h
->type
= STT_SECTION
;
8105 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
8108 if (! mips_elf_hash_table (info
)->use_rld_obj_head
)
8110 /* __rld_map is a four byte word located in the .data section
8111 and is filled in by the rtld to contain a pointer to
8112 the _r_debug structure. Its symbol value will be set in
8113 _bfd_mips_elf_finish_dynamic_symbol. */
8114 s
= bfd_get_linker_section (abfd
, ".rld_map");
8115 BFD_ASSERT (s
!= NULL
);
8117 name
= SGI_COMPAT (abfd
) ? "__rld_map" : "__RLD_MAP";
8119 if (!(_bfd_generic_link_add_one_symbol
8120 (info
, abfd
, name
, BSF_GLOBAL
, s
, 0, NULL
, FALSE
,
8121 get_elf_backend_data (abfd
)->collect
, &bh
)))
8124 h
= (struct elf_link_hash_entry
*) bh
;
8127 h
->type
= STT_OBJECT
;
8129 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
8131 mips_elf_hash_table (info
)->rld_symbol
= h
;
8135 /* Create the .plt, .rel(a).plt, .dynbss and .rel(a).bss sections.
8136 Also, on VxWorks, create the _PROCEDURE_LINKAGE_TABLE_ symbol. */
8137 if (!_bfd_elf_create_dynamic_sections (abfd
, info
))
8140 /* Do the usual VxWorks handling. */
8141 if (htab
->is_vxworks
8142 && !elf_vxworks_create_dynamic_sections (abfd
, info
, &htab
->srelplt2
))
8148 /* Return true if relocation REL against section SEC is a REL rather than
8149 RELA relocation. RELOCS is the first relocation in the section and
8150 ABFD is the bfd that contains SEC. */
8153 mips_elf_rel_relocation_p (bfd
*abfd
, asection
*sec
,
8154 const Elf_Internal_Rela
*relocs
,
8155 const Elf_Internal_Rela
*rel
)
8157 Elf_Internal_Shdr
*rel_hdr
;
8158 const struct elf_backend_data
*bed
;
8160 /* To determine which flavor of relocation this is, we depend on the
8161 fact that the INPUT_SECTION's REL_HDR is read before RELA_HDR. */
8162 rel_hdr
= elf_section_data (sec
)->rel
.hdr
;
8163 if (rel_hdr
== NULL
)
8165 bed
= get_elf_backend_data (abfd
);
8166 return ((size_t) (rel
- relocs
)
8167 < NUM_SHDR_ENTRIES (rel_hdr
) * bed
->s
->int_rels_per_ext_rel
);
8170 /* Read the addend for REL relocation REL, which belongs to bfd ABFD.
8171 HOWTO is the relocation's howto and CONTENTS points to the contents
8172 of the section that REL is against. */
8175 mips_elf_read_rel_addend (bfd
*abfd
, const Elf_Internal_Rela
*rel
,
8176 reloc_howto_type
*howto
, bfd_byte
*contents
)
8179 unsigned int r_type
;
8183 r_type
= ELF_R_TYPE (abfd
, rel
->r_info
);
8184 location
= contents
+ rel
->r_offset
;
8186 /* Get the addend, which is stored in the input file. */
8187 _bfd_mips_elf_reloc_unshuffle (abfd
, r_type
, FALSE
, location
);
8188 bytes
= mips_elf_obtain_contents (howto
, rel
, abfd
, contents
);
8189 _bfd_mips_elf_reloc_shuffle (abfd
, r_type
, FALSE
, location
);
8191 addend
= bytes
& howto
->src_mask
;
8193 /* Shift is 2, unusually, for microMIPS JALX. Adjust the addend
8195 if (r_type
== R_MICROMIPS_26_S1
&& (bytes
>> 26) == 0x3c)
8201 /* REL is a relocation in ABFD that needs a partnering LO16 relocation
8202 and *ADDEND is the addend for REL itself. Look for the LO16 relocation
8203 and update *ADDEND with the final addend. Return true on success
8204 or false if the LO16 could not be found. RELEND is the exclusive
8205 upper bound on the relocations for REL's section. */
8208 mips_elf_add_lo16_rel_addend (bfd
*abfd
,
8209 const Elf_Internal_Rela
*rel
,
8210 const Elf_Internal_Rela
*relend
,
8211 bfd_byte
*contents
, bfd_vma
*addend
)
8213 unsigned int r_type
, lo16_type
;
8214 const Elf_Internal_Rela
*lo16_relocation
;
8215 reloc_howto_type
*lo16_howto
;
8218 r_type
= ELF_R_TYPE (abfd
, rel
->r_info
);
8219 if (mips16_reloc_p (r_type
))
8220 lo16_type
= R_MIPS16_LO16
;
8221 else if (micromips_reloc_p (r_type
))
8222 lo16_type
= R_MICROMIPS_LO16
;
8223 else if (r_type
== R_MIPS_PCHI16
)
8224 lo16_type
= R_MIPS_PCLO16
;
8226 lo16_type
= R_MIPS_LO16
;
8228 /* The combined value is the sum of the HI16 addend, left-shifted by
8229 sixteen bits, and the LO16 addend, sign extended. (Usually, the
8230 code does a `lui' of the HI16 value, and then an `addiu' of the
8233 Scan ahead to find a matching LO16 relocation.
8235 According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must
8236 be immediately following. However, for the IRIX6 ABI, the next
8237 relocation may be a composed relocation consisting of several
8238 relocations for the same address. In that case, the R_MIPS_LO16
8239 relocation may occur as one of these. We permit a similar
8240 extension in general, as that is useful for GCC.
8242 In some cases GCC dead code elimination removes the LO16 but keeps
8243 the corresponding HI16. This is strictly speaking a violation of
8244 the ABI but not immediately harmful. */
8245 lo16_relocation
= mips_elf_next_relocation (abfd
, lo16_type
, rel
, relend
);
8246 if (lo16_relocation
== NULL
)
8249 /* Obtain the addend kept there. */
8250 lo16_howto
= MIPS_ELF_RTYPE_TO_HOWTO (abfd
, lo16_type
, FALSE
);
8251 l
= mips_elf_read_rel_addend (abfd
, lo16_relocation
, lo16_howto
, contents
);
8253 l
<<= lo16_howto
->rightshift
;
8254 l
= _bfd_mips_elf_sign_extend (l
, 16);
8261 /* Try to read the contents of section SEC in bfd ABFD. Return true and
8262 store the contents in *CONTENTS on success. Assume that *CONTENTS
8263 already holds the contents if it is nonull on entry. */
8266 mips_elf_get_section_contents (bfd
*abfd
, asection
*sec
, bfd_byte
**contents
)
8271 /* Get cached copy if it exists. */
8272 if (elf_section_data (sec
)->this_hdr
.contents
!= NULL
)
8274 *contents
= elf_section_data (sec
)->this_hdr
.contents
;
8278 return bfd_malloc_and_get_section (abfd
, sec
, contents
);
8281 /* Make a new PLT record to keep internal data. */
8283 static struct plt_entry
*
8284 mips_elf_make_plt_record (bfd
*abfd
)
8286 struct plt_entry
*entry
;
8288 entry
= bfd_zalloc (abfd
, sizeof (*entry
));
8292 entry
->stub_offset
= MINUS_ONE
;
8293 entry
->mips_offset
= MINUS_ONE
;
8294 entry
->comp_offset
= MINUS_ONE
;
8295 entry
->gotplt_index
= MINUS_ONE
;
8299 /* Define the special `__gnu_absolute_zero' symbol. We only need this
8300 for PIC code, as otherwise there is no load-time relocation involved
8301 and local GOT entries whose value is zero at static link time will
8302 retain their value at load time. */
8305 mips_elf_define_absolute_zero (bfd
*abfd
, struct bfd_link_info
*info
,
8306 struct mips_elf_link_hash_table
*htab
,
8307 unsigned int r_type
)
8311 struct elf_link_hash_entry
*eh
;
8312 struct bfd_link_hash_entry
*bh
;
8316 BFD_ASSERT (!htab
->use_absolute_zero
);
8317 BFD_ASSERT (bfd_link_pic (info
));
8320 if (!_bfd_generic_link_add_one_symbol (info
, abfd
, "__gnu_absolute_zero",
8321 BSF_GLOBAL
, bfd_abs_section_ptr
, 0,
8322 NULL
, FALSE
, FALSE
, &hzero
.bh
))
8325 BFD_ASSERT (hzero
.bh
!= NULL
);
8327 hzero
.eh
->type
= STT_NOTYPE
;
8328 hzero
.eh
->other
= STV_PROTECTED
;
8329 hzero
.eh
->def_regular
= 1;
8330 hzero
.eh
->non_elf
= 0;
8332 if (!mips_elf_record_global_got_symbol (hzero
.eh
, abfd
, info
, TRUE
, r_type
))
8335 htab
->use_absolute_zero
= TRUE
;
8340 /* Look through the relocs for a section during the first phase, and
8341 allocate space in the global offset table and record the need for
8342 standard MIPS and compressed procedure linkage table entries. */
8345 _bfd_mips_elf_check_relocs (bfd
*abfd
, struct bfd_link_info
*info
,
8346 asection
*sec
, const Elf_Internal_Rela
*relocs
)
8350 Elf_Internal_Shdr
*symtab_hdr
;
8351 struct elf_link_hash_entry
**sym_hashes
;
8353 const Elf_Internal_Rela
*rel
;
8354 const Elf_Internal_Rela
*rel_end
;
8356 const struct elf_backend_data
*bed
;
8357 struct mips_elf_link_hash_table
*htab
;
8360 reloc_howto_type
*howto
;
8362 if (bfd_link_relocatable (info
))
8365 htab
= mips_elf_hash_table (info
);
8366 BFD_ASSERT (htab
!= NULL
);
8368 dynobj
= elf_hash_table (info
)->dynobj
;
8369 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
8370 sym_hashes
= elf_sym_hashes (abfd
);
8371 extsymoff
= (elf_bad_symtab (abfd
)) ? 0 : symtab_hdr
->sh_info
;
8373 bed
= get_elf_backend_data (abfd
);
8374 rel_end
= relocs
+ sec
->reloc_count
;
8376 /* Check for the mips16 stub sections. */
8378 name
= bfd_section_name (sec
);
8379 if (FN_STUB_P (name
))
8381 unsigned long r_symndx
;
8383 /* Look at the relocation information to figure out which symbol
8386 r_symndx
= mips16_stub_symndx (bed
, sec
, relocs
, rel_end
);
8390 /* xgettext:c-format */
8391 (_("%pB: warning: cannot determine the target function for"
8392 " stub section `%s'"),
8394 bfd_set_error (bfd_error_bad_value
);
8398 if (r_symndx
< extsymoff
8399 || sym_hashes
[r_symndx
- extsymoff
] == NULL
)
8403 /* This stub is for a local symbol. This stub will only be
8404 needed if there is some relocation in this BFD, other
8405 than a 16 bit function call, which refers to this symbol. */
8406 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
8408 Elf_Internal_Rela
*sec_relocs
;
8409 const Elf_Internal_Rela
*r
, *rend
;
8411 /* We can ignore stub sections when looking for relocs. */
8412 if ((o
->flags
& SEC_RELOC
) == 0
8413 || o
->reloc_count
== 0
8414 || section_allows_mips16_refs_p (o
))
8418 = _bfd_elf_link_read_relocs (abfd
, o
, NULL
, NULL
,
8420 if (sec_relocs
== NULL
)
8423 rend
= sec_relocs
+ o
->reloc_count
;
8424 for (r
= sec_relocs
; r
< rend
; r
++)
8425 if (ELF_R_SYM (abfd
, r
->r_info
) == r_symndx
8426 && !mips16_call_reloc_p (ELF_R_TYPE (abfd
, r
->r_info
)))
8429 if (elf_section_data (o
)->relocs
!= sec_relocs
)
8438 /* There is no non-call reloc for this stub, so we do
8439 not need it. Since this function is called before
8440 the linker maps input sections to output sections, we
8441 can easily discard it by setting the SEC_EXCLUDE
8443 sec
->flags
|= SEC_EXCLUDE
;
8447 /* Record this stub in an array of local symbol stubs for
8449 if (mips_elf_tdata (abfd
)->local_stubs
== NULL
)
8451 unsigned long symcount
;
8455 if (elf_bad_symtab (abfd
))
8456 symcount
= NUM_SHDR_ENTRIES (symtab_hdr
);
8458 symcount
= symtab_hdr
->sh_info
;
8459 amt
= symcount
* sizeof (asection
*);
8460 n
= bfd_zalloc (abfd
, amt
);
8463 mips_elf_tdata (abfd
)->local_stubs
= n
;
8466 sec
->flags
|= SEC_KEEP
;
8467 mips_elf_tdata (abfd
)->local_stubs
[r_symndx
] = sec
;
8469 /* We don't need to set mips16_stubs_seen in this case.
8470 That flag is used to see whether we need to look through
8471 the global symbol table for stubs. We don't need to set
8472 it here, because we just have a local stub. */
8476 struct mips_elf_link_hash_entry
*h
;
8478 h
= ((struct mips_elf_link_hash_entry
*)
8479 sym_hashes
[r_symndx
- extsymoff
]);
8481 while (h
->root
.root
.type
== bfd_link_hash_indirect
8482 || h
->root
.root
.type
== bfd_link_hash_warning
)
8483 h
= (struct mips_elf_link_hash_entry
*) h
->root
.root
.u
.i
.link
;
8485 /* H is the symbol this stub is for. */
8487 /* If we already have an appropriate stub for this function, we
8488 don't need another one, so we can discard this one. Since
8489 this function is called before the linker maps input sections
8490 to output sections, we can easily discard it by setting the
8491 SEC_EXCLUDE flag. */
8492 if (h
->fn_stub
!= NULL
)
8494 sec
->flags
|= SEC_EXCLUDE
;
8498 sec
->flags
|= SEC_KEEP
;
8500 mips_elf_hash_table (info
)->mips16_stubs_seen
= TRUE
;
8503 else if (CALL_STUB_P (name
) || CALL_FP_STUB_P (name
))
8505 unsigned long r_symndx
;
8506 struct mips_elf_link_hash_entry
*h
;
8509 /* Look at the relocation information to figure out which symbol
8512 r_symndx
= mips16_stub_symndx (bed
, sec
, relocs
, rel_end
);
8516 /* xgettext:c-format */
8517 (_("%pB: warning: cannot determine the target function for"
8518 " stub section `%s'"),
8520 bfd_set_error (bfd_error_bad_value
);
8524 if (r_symndx
< extsymoff
8525 || sym_hashes
[r_symndx
- extsymoff
] == NULL
)
8529 /* This stub is for a local symbol. This stub will only be
8530 needed if there is some relocation (R_MIPS16_26) in this BFD
8531 that refers to this symbol. */
8532 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
8534 Elf_Internal_Rela
*sec_relocs
;
8535 const Elf_Internal_Rela
*r
, *rend
;
8537 /* We can ignore stub sections when looking for relocs. */
8538 if ((o
->flags
& SEC_RELOC
) == 0
8539 || o
->reloc_count
== 0
8540 || section_allows_mips16_refs_p (o
))
8544 = _bfd_elf_link_read_relocs (abfd
, o
, NULL
, NULL
,
8546 if (sec_relocs
== NULL
)
8549 rend
= sec_relocs
+ o
->reloc_count
;
8550 for (r
= sec_relocs
; r
< rend
; r
++)
8551 if (ELF_R_SYM (abfd
, r
->r_info
) == r_symndx
8552 && ELF_R_TYPE (abfd
, r
->r_info
) == R_MIPS16_26
)
8555 if (elf_section_data (o
)->relocs
!= sec_relocs
)
8564 /* There is no non-call reloc for this stub, so we do
8565 not need it. Since this function is called before
8566 the linker maps input sections to output sections, we
8567 can easily discard it by setting the SEC_EXCLUDE
8569 sec
->flags
|= SEC_EXCLUDE
;
8573 /* Record this stub in an array of local symbol call_stubs for
8575 if (mips_elf_tdata (abfd
)->local_call_stubs
== NULL
)
8577 unsigned long symcount
;
8581 if (elf_bad_symtab (abfd
))
8582 symcount
= NUM_SHDR_ENTRIES (symtab_hdr
);
8584 symcount
= symtab_hdr
->sh_info
;
8585 amt
= symcount
* sizeof (asection
*);
8586 n
= bfd_zalloc (abfd
, amt
);
8589 mips_elf_tdata (abfd
)->local_call_stubs
= n
;
8592 sec
->flags
|= SEC_KEEP
;
8593 mips_elf_tdata (abfd
)->local_call_stubs
[r_symndx
] = sec
;
8595 /* We don't need to set mips16_stubs_seen in this case.
8596 That flag is used to see whether we need to look through
8597 the global symbol table for stubs. We don't need to set
8598 it here, because we just have a local stub. */
8602 h
= ((struct mips_elf_link_hash_entry
*)
8603 sym_hashes
[r_symndx
- extsymoff
]);
8605 /* H is the symbol this stub is for. */
8607 if (CALL_FP_STUB_P (name
))
8608 loc
= &h
->call_fp_stub
;
8610 loc
= &h
->call_stub
;
8612 /* If we already have an appropriate stub for this function, we
8613 don't need another one, so we can discard this one. Since
8614 this function is called before the linker maps input sections
8615 to output sections, we can easily discard it by setting the
8616 SEC_EXCLUDE flag. */
8619 sec
->flags
|= SEC_EXCLUDE
;
8623 sec
->flags
|= SEC_KEEP
;
8625 mips_elf_hash_table (info
)->mips16_stubs_seen
= TRUE
;
8631 for (rel
= relocs
; rel
< rel_end
; ++rel
)
8633 unsigned long r_symndx
;
8634 unsigned int r_type
;
8635 struct elf_link_hash_entry
*h
;
8636 bfd_boolean can_make_dynamic_p
;
8637 bfd_boolean call_reloc_p
;
8638 bfd_boolean constrain_symbol_p
;
8640 r_symndx
= ELF_R_SYM (abfd
, rel
->r_info
);
8641 r_type
= ELF_R_TYPE (abfd
, rel
->r_info
);
8643 if (r_symndx
< extsymoff
)
8645 else if (r_symndx
>= extsymoff
+ NUM_SHDR_ENTRIES (symtab_hdr
))
8648 /* xgettext:c-format */
8649 (_("%pB: malformed reloc detected for section %s"),
8651 bfd_set_error (bfd_error_bad_value
);
8656 h
= sym_hashes
[r_symndx
- extsymoff
];
8659 while (h
->root
.type
== bfd_link_hash_indirect
8660 || h
->root
.type
== bfd_link_hash_warning
)
8661 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
8665 /* Set CAN_MAKE_DYNAMIC_P to true if we can convert this
8666 relocation into a dynamic one. */
8667 can_make_dynamic_p
= FALSE
;
8669 /* Set CALL_RELOC_P to true if the relocation is for a call,
8670 and if pointer equality therefore doesn't matter. */
8671 call_reloc_p
= FALSE
;
8673 /* Set CONSTRAIN_SYMBOL_P if we need to take the relocation
8674 into account when deciding how to define the symbol.
8675 Relocations in nonallocatable sections such as .pdr and
8676 .debug* should have no effect. */
8677 constrain_symbol_p
= ((sec
->flags
& SEC_ALLOC
) != 0);
8682 case R_MIPS_CALL_HI16
:
8683 case R_MIPS_CALL_LO16
:
8684 case R_MIPS16_CALL16
:
8685 case R_MICROMIPS_CALL16
:
8686 case R_MICROMIPS_CALL_HI16
:
8687 case R_MICROMIPS_CALL_LO16
:
8688 call_reloc_p
= TRUE
;
8692 case R_MIPS_GOT_LO16
:
8693 case R_MIPS_GOT_PAGE
:
8694 case R_MIPS_GOT_DISP
:
8695 case R_MIPS16_GOT16
:
8696 case R_MICROMIPS_GOT16
:
8697 case R_MICROMIPS_GOT_LO16
:
8698 case R_MICROMIPS_GOT_PAGE
:
8699 case R_MICROMIPS_GOT_DISP
:
8700 /* If we have a symbol that will resolve to zero at static link
8701 time and it is used by a GOT relocation applied to code we
8702 cannot relax to an immediate zero load, then we will be using
8703 the special `__gnu_absolute_zero' symbol whose value is zero
8704 at dynamic load time. We ignore HI16-type GOT relocations at
8705 this stage, because their handling will depend entirely on
8706 the corresponding LO16-type GOT relocation. */
8707 if (!call_hi16_reloc_p (r_type
)
8709 && bfd_link_pic (info
)
8710 && !htab
->use_absolute_zero
8711 && UNDEFWEAK_NO_DYNAMIC_RELOC (info
, h
))
8713 bfd_boolean rel_reloc
;
8715 if (!mips_elf_get_section_contents (abfd
, sec
, &contents
))
8718 rel_reloc
= mips_elf_rel_relocation_p (abfd
, sec
, relocs
, rel
);
8719 howto
= MIPS_ELF_RTYPE_TO_HOWTO (abfd
, r_type
, !rel_reloc
);
8721 if (!mips_elf_nullify_got_load (abfd
, contents
, rel
, howto
,
8723 if (!mips_elf_define_absolute_zero (abfd
, info
, htab
, r_type
))
8728 case R_MIPS_GOT_HI16
:
8729 case R_MIPS_GOT_OFST
:
8730 case R_MIPS_TLS_GOTTPREL
:
8732 case R_MIPS_TLS_LDM
:
8733 case R_MIPS16_TLS_GOTTPREL
:
8734 case R_MIPS16_TLS_GD
:
8735 case R_MIPS16_TLS_LDM
:
8736 case R_MICROMIPS_GOT_HI16
:
8737 case R_MICROMIPS_GOT_OFST
:
8738 case R_MICROMIPS_TLS_GOTTPREL
:
8739 case R_MICROMIPS_TLS_GD
:
8740 case R_MICROMIPS_TLS_LDM
:
8742 elf_hash_table (info
)->dynobj
= dynobj
= abfd
;
8743 if (!mips_elf_create_got_section (dynobj
, info
))
8745 if (htab
->is_vxworks
&& !bfd_link_pic (info
))
8748 /* xgettext:c-format */
8749 (_("%pB: GOT reloc at %#" PRIx64
" not expected in executables"),
8750 abfd
, (uint64_t) rel
->r_offset
);
8751 bfd_set_error (bfd_error_bad_value
);
8754 can_make_dynamic_p
= TRUE
;
8759 case R_MICROMIPS_JALR
:
8760 /* These relocations have empty fields and are purely there to
8761 provide link information. The symbol value doesn't matter. */
8762 constrain_symbol_p
= FALSE
;
8765 case R_MIPS_GPREL16
:
8766 case R_MIPS_GPREL32
:
8767 case R_MIPS16_GPREL
:
8768 case R_MICROMIPS_GPREL16
:
8769 /* GP-relative relocations always resolve to a definition in a
8770 regular input file, ignoring the one-definition rule. This is
8771 important for the GP setup sequence in NewABI code, which
8772 always resolves to a local function even if other relocations
8773 against the symbol wouldn't. */
8774 constrain_symbol_p
= FALSE
;
8780 /* In VxWorks executables, references to external symbols
8781 must be handled using copy relocs or PLT entries; it is not
8782 possible to convert this relocation into a dynamic one.
8784 For executables that use PLTs and copy-relocs, we have a
8785 choice between converting the relocation into a dynamic
8786 one or using copy relocations or PLT entries. It is
8787 usually better to do the former, unless the relocation is
8788 against a read-only section. */
8789 if ((bfd_link_pic (info
)
8791 && !htab
->is_vxworks
8792 && strcmp (h
->root
.root
.string
, "__gnu_local_gp") != 0
8793 && !(!info
->nocopyreloc
8794 && !PIC_OBJECT_P (abfd
)
8795 && MIPS_ELF_READONLY_SECTION (sec
))))
8796 && (sec
->flags
& SEC_ALLOC
) != 0)
8798 can_make_dynamic_p
= TRUE
;
8800 elf_hash_table (info
)->dynobj
= dynobj
= abfd
;
8806 case R_MIPS_PC21_S2
:
8807 case R_MIPS_PC26_S2
:
8809 case R_MIPS16_PC16_S1
:
8810 case R_MICROMIPS_26_S1
:
8811 case R_MICROMIPS_PC7_S1
:
8812 case R_MICROMIPS_PC10_S1
:
8813 case R_MICROMIPS_PC16_S1
:
8814 case R_MICROMIPS_PC23_S2
:
8815 call_reloc_p
= TRUE
;
8821 if (constrain_symbol_p
)
8823 if (!can_make_dynamic_p
)
8824 ((struct mips_elf_link_hash_entry
*) h
)->has_static_relocs
= 1;
8827 h
->pointer_equality_needed
= 1;
8829 /* We must not create a stub for a symbol that has
8830 relocations related to taking the function's address.
8831 This doesn't apply to VxWorks, where CALL relocs refer
8832 to a .got.plt entry instead of a normal .got entry. */
8833 if (!htab
->is_vxworks
&& (!can_make_dynamic_p
|| !call_reloc_p
))
8834 ((struct mips_elf_link_hash_entry
*) h
)->no_fn_stub
= TRUE
;
8837 /* Relocations against the special VxWorks __GOTT_BASE__ and
8838 __GOTT_INDEX__ symbols must be left to the loader. Allocate
8839 room for them in .rela.dyn. */
8840 if (is_gott_symbol (info
, h
))
8844 sreloc
= mips_elf_rel_dyn_section (info
, TRUE
);
8848 mips_elf_allocate_dynamic_relocations (dynobj
, info
, 1);
8849 if (MIPS_ELF_READONLY_SECTION (sec
))
8850 /* We tell the dynamic linker that there are
8851 relocations against the text segment. */
8852 info
->flags
|= DF_TEXTREL
;
8855 else if (call_lo16_reloc_p (r_type
)
8856 || got_lo16_reloc_p (r_type
)
8857 || got_disp_reloc_p (r_type
)
8858 || (got16_reloc_p (r_type
) && htab
->is_vxworks
))
8860 /* We may need a local GOT entry for this relocation. We
8861 don't count R_MIPS_GOT_PAGE because we can estimate the
8862 maximum number of pages needed by looking at the size of
8863 the segment. Similar comments apply to R_MIPS*_GOT16 and
8864 R_MIPS*_CALL16, except on VxWorks, where GOT relocations
8865 always evaluate to "G". We don't count R_MIPS_GOT_HI16, or
8866 R_MIPS_CALL_HI16 because these are always followed by an
8867 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
8868 if (!mips_elf_record_local_got_symbol (abfd
, r_symndx
,
8869 rel
->r_addend
, info
, r_type
))
8874 && mips_elf_relocation_needs_la25_stub (abfd
, r_type
,
8875 ELF_ST_IS_MIPS16 (h
->other
)))
8876 ((struct mips_elf_link_hash_entry
*) h
)->has_nonpic_branches
= TRUE
;
8881 case R_MIPS16_CALL16
:
8882 case R_MICROMIPS_CALL16
:
8886 /* xgettext:c-format */
8887 (_("%pB: CALL16 reloc at %#" PRIx64
" not against global symbol"),
8888 abfd
, (uint64_t) rel
->r_offset
);
8889 bfd_set_error (bfd_error_bad_value
);
8894 case R_MIPS_CALL_HI16
:
8895 case R_MIPS_CALL_LO16
:
8896 case R_MICROMIPS_CALL_HI16
:
8897 case R_MICROMIPS_CALL_LO16
:
8900 /* Make sure there is room in the regular GOT to hold the
8901 function's address. We may eliminate it in favour of
8902 a .got.plt entry later; see mips_elf_count_got_symbols. */
8903 if (!mips_elf_record_global_got_symbol (h
, abfd
, info
, TRUE
,
8907 /* We need a stub, not a plt entry for the undefined
8908 function. But we record it as if it needs plt. See
8909 _bfd_elf_adjust_dynamic_symbol. */
8915 case R_MIPS_GOT_PAGE
:
8916 case R_MICROMIPS_GOT_PAGE
:
8917 case R_MIPS16_GOT16
:
8919 case R_MIPS_GOT_HI16
:
8920 case R_MIPS_GOT_LO16
:
8921 case R_MICROMIPS_GOT16
:
8922 case R_MICROMIPS_GOT_HI16
:
8923 case R_MICROMIPS_GOT_LO16
:
8924 if (!h
|| got_page_reloc_p (r_type
))
8926 /* This relocation needs (or may need, if h != NULL) a
8927 page entry in the GOT. For R_MIPS_GOT_PAGE we do not
8928 know for sure until we know whether the symbol is
8930 if (mips_elf_rel_relocation_p (abfd
, sec
, relocs
, rel
))
8932 if (!mips_elf_get_section_contents (abfd
, sec
, &contents
))
8934 howto
= MIPS_ELF_RTYPE_TO_HOWTO (abfd
, r_type
, FALSE
);
8935 addend
= mips_elf_read_rel_addend (abfd
, rel
,
8937 if (got16_reloc_p (r_type
))
8938 mips_elf_add_lo16_rel_addend (abfd
, rel
, rel_end
,
8941 addend
<<= howto
->rightshift
;
8944 addend
= rel
->r_addend
;
8945 if (!mips_elf_record_got_page_ref (info
, abfd
, r_symndx
,
8951 struct mips_elf_link_hash_entry
*hmips
=
8952 (struct mips_elf_link_hash_entry
*) h
;
8954 /* This symbol is definitely not overridable. */
8955 if (hmips
->root
.def_regular
8956 && ! (bfd_link_pic (info
) && ! info
->symbolic
8957 && ! hmips
->root
.forced_local
))
8961 /* If this is a global, overridable symbol, GOT_PAGE will
8962 decay to GOT_DISP, so we'll need a GOT entry for it. */
8965 case R_MIPS_GOT_DISP
:
8966 case R_MICROMIPS_GOT_DISP
:
8967 if (h
&& !mips_elf_record_global_got_symbol (h
, abfd
, info
,
8972 case R_MIPS_TLS_GOTTPREL
:
8973 case R_MIPS16_TLS_GOTTPREL
:
8974 case R_MICROMIPS_TLS_GOTTPREL
:
8975 if (bfd_link_pic (info
))
8976 info
->flags
|= DF_STATIC_TLS
;
8979 case R_MIPS_TLS_LDM
:
8980 case R_MIPS16_TLS_LDM
:
8981 case R_MICROMIPS_TLS_LDM
:
8982 if (tls_ldm_reloc_p (r_type
))
8984 r_symndx
= STN_UNDEF
;
8990 case R_MIPS16_TLS_GD
:
8991 case R_MICROMIPS_TLS_GD
:
8992 /* This symbol requires a global offset table entry, or two
8993 for TLS GD relocations. */
8996 if (!mips_elf_record_global_got_symbol (h
, abfd
, info
,
9002 if (!mips_elf_record_local_got_symbol (abfd
, r_symndx
,
9012 /* In VxWorks executables, references to external symbols
9013 are handled using copy relocs or PLT stubs, so there's
9014 no need to add a .rela.dyn entry for this relocation. */
9015 if (can_make_dynamic_p
)
9019 sreloc
= mips_elf_rel_dyn_section (info
, TRUE
);
9023 if (bfd_link_pic (info
) && h
== NULL
)
9025 /* When creating a shared object, we must copy these
9026 reloc types into the output file as R_MIPS_REL32
9027 relocs. Make room for this reloc in .rel(a).dyn. */
9028 mips_elf_allocate_dynamic_relocations (dynobj
, info
, 1);
9029 if (MIPS_ELF_READONLY_SECTION (sec
))
9030 /* We tell the dynamic linker that there are
9031 relocations against the text segment. */
9032 info
->flags
|= DF_TEXTREL
;
9036 struct mips_elf_link_hash_entry
*hmips
;
9038 /* For a shared object, we must copy this relocation
9039 unless the symbol turns out to be undefined and
9040 weak with non-default visibility, in which case
9041 it will be left as zero.
9043 We could elide R_MIPS_REL32 for locally binding symbols
9044 in shared libraries, but do not yet do so.
9046 For an executable, we only need to copy this
9047 reloc if the symbol is defined in a dynamic
9049 hmips
= (struct mips_elf_link_hash_entry
*) h
;
9050 ++hmips
->possibly_dynamic_relocs
;
9051 if (MIPS_ELF_READONLY_SECTION (sec
))
9052 /* We need it to tell the dynamic linker if there
9053 are relocations against the text segment. */
9054 hmips
->readonly_reloc
= TRUE
;
9058 if (SGI_COMPAT (abfd
))
9059 mips_elf_hash_table (info
)->compact_rel_size
+=
9060 sizeof (Elf32_External_crinfo
);
9064 case R_MIPS_GPREL16
:
9065 case R_MIPS_LITERAL
:
9066 case R_MIPS_GPREL32
:
9067 case R_MICROMIPS_26_S1
:
9068 case R_MICROMIPS_GPREL16
:
9069 case R_MICROMIPS_LITERAL
:
9070 case R_MICROMIPS_GPREL7_S2
:
9071 if (SGI_COMPAT (abfd
))
9072 mips_elf_hash_table (info
)->compact_rel_size
+=
9073 sizeof (Elf32_External_crinfo
);
9076 /* This relocation describes the C++ object vtable hierarchy.
9077 Reconstruct it for later use during GC. */
9078 case R_MIPS_GNU_VTINHERIT
:
9079 if (!bfd_elf_gc_record_vtinherit (abfd
, sec
, h
, rel
->r_offset
))
9083 /* This relocation describes which C++ vtable entries are actually
9084 used. Record for later use during GC. */
9085 case R_MIPS_GNU_VTENTRY
:
9086 if (!bfd_elf_gc_record_vtentry (abfd
, sec
, h
, rel
->r_offset
))
9094 /* Record the need for a PLT entry. At this point we don't know
9095 yet if we are going to create a PLT in the first place, but
9096 we only record whether the relocation requires a standard MIPS
9097 or a compressed code entry anyway. If we don't make a PLT after
9098 all, then we'll just ignore these arrangements. Likewise if
9099 a PLT entry is not created because the symbol is satisfied
9102 && (branch_reloc_p (r_type
)
9103 || mips16_branch_reloc_p (r_type
)
9104 || micromips_branch_reloc_p (r_type
))
9105 && !SYMBOL_CALLS_LOCAL (info
, h
))
9107 if (h
->plt
.plist
== NULL
)
9108 h
->plt
.plist
= mips_elf_make_plt_record (abfd
);
9109 if (h
->plt
.plist
== NULL
)
9112 if (branch_reloc_p (r_type
))
9113 h
->plt
.plist
->need_mips
= TRUE
;
9115 h
->plt
.plist
->need_comp
= TRUE
;
9118 /* See if this reloc would need to refer to a MIPS16 hard-float stub,
9119 if there is one. We only need to handle global symbols here;
9120 we decide whether to keep or delete stubs for local symbols
9121 when processing the stub's relocations. */
9123 && !mips16_call_reloc_p (r_type
)
9124 && !section_allows_mips16_refs_p (sec
))
9126 struct mips_elf_link_hash_entry
*mh
;
9128 mh
= (struct mips_elf_link_hash_entry
*) h
;
9129 mh
->need_fn_stub
= TRUE
;
9132 /* Refuse some position-dependent relocations when creating a
9133 shared library. Do not refuse R_MIPS_32 / R_MIPS_64; they're
9134 not PIC, but we can create dynamic relocations and the result
9135 will be fine. Also do not refuse R_MIPS_LO16, which can be
9136 combined with R_MIPS_GOT16. */
9137 if (bfd_link_pic (info
))
9141 case R_MIPS_TLS_TPREL_HI16
:
9142 case R_MIPS16_TLS_TPREL_HI16
:
9143 case R_MICROMIPS_TLS_TPREL_HI16
:
9144 case R_MIPS_TLS_TPREL_LO16
:
9145 case R_MIPS16_TLS_TPREL_LO16
:
9146 case R_MICROMIPS_TLS_TPREL_LO16
:
9147 /* These are okay in PIE, but not in a shared library. */
9148 if (bfd_link_executable (info
))
9156 case R_MIPS_HIGHEST
:
9157 case R_MICROMIPS_HI16
:
9158 case R_MICROMIPS_HIGHER
:
9159 case R_MICROMIPS_HIGHEST
:
9160 /* Don't refuse a high part relocation if it's against
9161 no symbol (e.g. part of a compound relocation). */
9162 if (r_symndx
== STN_UNDEF
)
9165 /* Likewise an absolute symbol. */
9166 if (h
!= NULL
&& bfd_is_abs_symbol (&h
->root
))
9169 /* R_MIPS_HI16 against _gp_disp is used for $gp setup,
9170 and has a special meaning. */
9171 if (!NEWABI_P (abfd
) && h
!= NULL
9172 && strcmp (h
->root
.root
.string
, "_gp_disp") == 0)
9175 /* Likewise __GOTT_BASE__ and __GOTT_INDEX__ on VxWorks. */
9176 if (is_gott_symbol (info
, h
))
9183 case R_MICROMIPS_26_S1
:
9184 howto
= MIPS_ELF_RTYPE_TO_HOWTO (abfd
, r_type
, NEWABI_P (abfd
));
9185 /* An error for unsupported relocations is raised as part
9186 of the above search, so we can skip the following. */
9188 info
->callbacks
->einfo
9189 /* xgettext:c-format */
9190 (_("%X%H: relocation %s against `%s' cannot be used"
9191 " when making a shared object; recompile with -fPIC\n"),
9192 abfd
, sec
, rel
->r_offset
, howto
->name
,
9193 (h
) ? h
->root
.root
.string
: "a local symbol");
9204 /* Allocate space for global sym dynamic relocs. */
9207 allocate_dynrelocs (struct elf_link_hash_entry
*h
, void *inf
)
9209 struct bfd_link_info
*info
= inf
;
9211 struct mips_elf_link_hash_entry
*hmips
;
9212 struct mips_elf_link_hash_table
*htab
;
9214 htab
= mips_elf_hash_table (info
);
9215 BFD_ASSERT (htab
!= NULL
);
9217 dynobj
= elf_hash_table (info
)->dynobj
;
9218 hmips
= (struct mips_elf_link_hash_entry
*) h
;
9220 /* VxWorks executables are handled elsewhere; we only need to
9221 allocate relocations in shared objects. */
9222 if (htab
->is_vxworks
&& !bfd_link_pic (info
))
9225 /* Ignore indirect symbols. All relocations against such symbols
9226 will be redirected to the target symbol. */
9227 if (h
->root
.type
== bfd_link_hash_indirect
)
9230 /* If this symbol is defined in a dynamic object, or we are creating
9231 a shared library, we will need to copy any R_MIPS_32 or
9232 R_MIPS_REL32 relocs against it into the output file. */
9233 if (! bfd_link_relocatable (info
)
9234 && hmips
->possibly_dynamic_relocs
!= 0
9235 && (h
->root
.type
== bfd_link_hash_defweak
9236 || (!h
->def_regular
&& !ELF_COMMON_DEF_P (h
))
9237 || bfd_link_pic (info
)))
9239 bfd_boolean do_copy
= TRUE
;
9241 if (h
->root
.type
== bfd_link_hash_undefweak
)
9243 /* Do not copy relocations for undefined weak symbols that
9244 we are not going to export. */
9245 if (UNDEFWEAK_NO_DYNAMIC_RELOC (info
, h
))
9248 /* Make sure undefined weak symbols are output as a dynamic
9250 else if (h
->dynindx
== -1 && !h
->forced_local
)
9252 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
9259 /* Even though we don't directly need a GOT entry for this symbol,
9260 the SVR4 psABI requires it to have a dynamic symbol table
9261 index greater that DT_MIPS_GOTSYM if there are dynamic
9262 relocations against it.
9264 VxWorks does not enforce the same mapping between the GOT
9265 and the symbol table, so the same requirement does not
9267 if (!htab
->is_vxworks
)
9269 if (hmips
->global_got_area
> GGA_RELOC_ONLY
)
9270 hmips
->global_got_area
= GGA_RELOC_ONLY
;
9271 hmips
->got_only_for_calls
= FALSE
;
9274 mips_elf_allocate_dynamic_relocations
9275 (dynobj
, info
, hmips
->possibly_dynamic_relocs
);
9276 if (hmips
->readonly_reloc
)
9277 /* We tell the dynamic linker that there are relocations
9278 against the text segment. */
9279 info
->flags
|= DF_TEXTREL
;
9286 /* Adjust a symbol defined by a dynamic object and referenced by a
9287 regular object. The current definition is in some section of the
9288 dynamic object, but we're not including those sections. We have to
9289 change the definition to something the rest of the link can
9293 _bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info
*info
,
9294 struct elf_link_hash_entry
*h
)
9297 struct mips_elf_link_hash_entry
*hmips
;
9298 struct mips_elf_link_hash_table
*htab
;
9301 htab
= mips_elf_hash_table (info
);
9302 BFD_ASSERT (htab
!= NULL
);
9304 dynobj
= elf_hash_table (info
)->dynobj
;
9305 hmips
= (struct mips_elf_link_hash_entry
*) h
;
9307 /* Make sure we know what is going on here. */
9308 BFD_ASSERT (dynobj
!= NULL
9313 && !h
->def_regular
)));
9315 hmips
= (struct mips_elf_link_hash_entry
*) h
;
9317 /* If there are call relocations against an externally-defined symbol,
9318 see whether we can create a MIPS lazy-binding stub for it. We can
9319 only do this if all references to the function are through call
9320 relocations, and in that case, the traditional lazy-binding stubs
9321 are much more efficient than PLT entries.
9323 Traditional stubs are only available on SVR4 psABI-based systems;
9324 VxWorks always uses PLTs instead. */
9325 if (!htab
->is_vxworks
&& h
->needs_plt
&& !hmips
->no_fn_stub
)
9327 if (! elf_hash_table (info
)->dynamic_sections_created
)
9330 /* If this symbol is not defined in a regular file, then set
9331 the symbol to the stub location. This is required to make
9332 function pointers compare as equal between the normal
9333 executable and the shared library. */
9335 && !bfd_is_abs_section (htab
->sstubs
->output_section
))
9337 hmips
->needs_lazy_stub
= TRUE
;
9338 htab
->lazy_stub_count
++;
9342 /* As above, VxWorks requires PLT entries for externally-defined
9343 functions that are only accessed through call relocations.
9345 Both VxWorks and non-VxWorks targets also need PLT entries if there
9346 are static-only relocations against an externally-defined function.
9347 This can technically occur for shared libraries if there are
9348 branches to the symbol, although it is unlikely that this will be
9349 used in practice due to the short ranges involved. It can occur
9350 for any relative or absolute relocation in executables; in that
9351 case, the PLT entry becomes the function's canonical address. */
9352 else if (((h
->needs_plt
&& !hmips
->no_fn_stub
)
9353 || (h
->type
== STT_FUNC
&& hmips
->has_static_relocs
))
9354 && htab
->use_plts_and_copy_relocs
9355 && !SYMBOL_CALLS_LOCAL (info
, h
)
9356 && !(ELF_ST_VISIBILITY (h
->other
) != STV_DEFAULT
9357 && h
->root
.type
== bfd_link_hash_undefweak
))
9359 bfd_boolean micromips_p
= MICROMIPS_P (info
->output_bfd
);
9360 bfd_boolean newabi_p
= NEWABI_P (info
->output_bfd
);
9362 /* If this is the first symbol to need a PLT entry, then make some
9363 basic setup. Also work out PLT entry sizes. We'll need them
9364 for PLT offset calculations. */
9365 if (htab
->plt_mips_offset
+ htab
->plt_comp_offset
== 0)
9367 BFD_ASSERT (htab
->root
.sgotplt
->size
== 0);
9368 BFD_ASSERT (htab
->plt_got_index
== 0);
9370 /* If we're using the PLT additions to the psABI, each PLT
9371 entry is 16 bytes and the PLT0 entry is 32 bytes.
9372 Encourage better cache usage by aligning. We do this
9373 lazily to avoid pessimizing traditional objects. */
9374 if (!htab
->is_vxworks
9375 && !bfd_set_section_alignment (htab
->root
.splt
, 5))
9378 /* Make sure that .got.plt is word-aligned. We do this lazily
9379 for the same reason as above. */
9380 if (!bfd_set_section_alignment (htab
->root
.sgotplt
,
9381 MIPS_ELF_LOG_FILE_ALIGN (dynobj
)))
9384 /* On non-VxWorks targets, the first two entries in .got.plt
9386 if (!htab
->is_vxworks
)
9388 += (get_elf_backend_data (dynobj
)->got_header_size
9389 / MIPS_ELF_GOT_SIZE (dynobj
));
9391 /* On VxWorks, also allocate room for the header's
9392 .rela.plt.unloaded entries. */
9393 if (htab
->is_vxworks
&& !bfd_link_pic (info
))
9394 htab
->srelplt2
->size
+= 2 * sizeof (Elf32_External_Rela
);
9396 /* Now work out the sizes of individual PLT entries. */
9397 if (htab
->is_vxworks
&& bfd_link_pic (info
))
9398 htab
->plt_mips_entry_size
9399 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry
);
9400 else if (htab
->is_vxworks
)
9401 htab
->plt_mips_entry_size
9402 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry
);
9404 htab
->plt_mips_entry_size
9405 = 4 * ARRAY_SIZE (mips_exec_plt_entry
);
9406 else if (!micromips_p
)
9408 htab
->plt_mips_entry_size
9409 = 4 * ARRAY_SIZE (mips_exec_plt_entry
);
9410 htab
->plt_comp_entry_size
9411 = 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry
);
9413 else if (htab
->insn32
)
9415 htab
->plt_mips_entry_size
9416 = 4 * ARRAY_SIZE (mips_exec_plt_entry
);
9417 htab
->plt_comp_entry_size
9418 = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry
);
9422 htab
->plt_mips_entry_size
9423 = 4 * ARRAY_SIZE (mips_exec_plt_entry
);
9424 htab
->plt_comp_entry_size
9425 = 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry
);
9429 if (h
->plt
.plist
== NULL
)
9430 h
->plt
.plist
= mips_elf_make_plt_record (dynobj
);
9431 if (h
->plt
.plist
== NULL
)
9434 /* There are no defined MIPS16 or microMIPS PLT entries for VxWorks,
9435 n32 or n64, so always use a standard entry there.
9437 If the symbol has a MIPS16 call stub and gets a PLT entry, then
9438 all MIPS16 calls will go via that stub, and there is no benefit
9439 to having a MIPS16 entry. And in the case of call_stub a
9440 standard entry actually has to be used as the stub ends with a J
9445 || hmips
->call_fp_stub
)
9447 h
->plt
.plist
->need_mips
= TRUE
;
9448 h
->plt
.plist
->need_comp
= FALSE
;
9451 /* Otherwise, if there are no direct calls to the function, we
9452 have a free choice of whether to use standard or compressed
9453 entries. Prefer microMIPS entries if the object is known to
9454 contain microMIPS code, so that it becomes possible to create
9455 pure microMIPS binaries. Prefer standard entries otherwise,
9456 because MIPS16 ones are no smaller and are usually slower. */
9457 if (!h
->plt
.plist
->need_mips
&& !h
->plt
.plist
->need_comp
)
9460 h
->plt
.plist
->need_comp
= TRUE
;
9462 h
->plt
.plist
->need_mips
= TRUE
;
9465 if (h
->plt
.plist
->need_mips
)
9467 h
->plt
.plist
->mips_offset
= htab
->plt_mips_offset
;
9468 htab
->plt_mips_offset
+= htab
->plt_mips_entry_size
;
9470 if (h
->plt
.plist
->need_comp
)
9472 h
->plt
.plist
->comp_offset
= htab
->plt_comp_offset
;
9473 htab
->plt_comp_offset
+= htab
->plt_comp_entry_size
;
9476 /* Reserve the corresponding .got.plt entry now too. */
9477 h
->plt
.plist
->gotplt_index
= htab
->plt_got_index
++;
9479 /* If the output file has no definition of the symbol, set the
9480 symbol's value to the address of the stub. */
9481 if (!bfd_link_pic (info
) && !h
->def_regular
)
9482 hmips
->use_plt_entry
= TRUE
;
9484 /* Make room for the R_MIPS_JUMP_SLOT relocation. */
9485 htab
->root
.srelplt
->size
+= (htab
->is_vxworks
9486 ? MIPS_ELF_RELA_SIZE (dynobj
)
9487 : MIPS_ELF_REL_SIZE (dynobj
));
9489 /* Make room for the .rela.plt.unloaded relocations. */
9490 if (htab
->is_vxworks
&& !bfd_link_pic (info
))
9491 htab
->srelplt2
->size
+= 3 * sizeof (Elf32_External_Rela
);
9493 /* All relocations against this symbol that could have been made
9494 dynamic will now refer to the PLT entry instead. */
9495 hmips
->possibly_dynamic_relocs
= 0;
9500 /* If this is a weak symbol, and there is a real definition, the
9501 processor independent code will have arranged for us to see the
9502 real definition first, and we can just use the same value. */
9503 if (h
->is_weakalias
)
9505 struct elf_link_hash_entry
*def
= weakdef (h
);
9506 BFD_ASSERT (def
->root
.type
== bfd_link_hash_defined
);
9507 h
->root
.u
.def
.section
= def
->root
.u
.def
.section
;
9508 h
->root
.u
.def
.value
= def
->root
.u
.def
.value
;
9512 /* Otherwise, there is nothing further to do for symbols defined
9513 in regular objects. */
9517 /* There's also nothing more to do if we'll convert all relocations
9518 against this symbol into dynamic relocations. */
9519 if (!hmips
->has_static_relocs
)
9522 /* We're now relying on copy relocations. Complain if we have
9523 some that we can't convert. */
9524 if (!htab
->use_plts_and_copy_relocs
|| bfd_link_pic (info
))
9526 _bfd_error_handler (_("non-dynamic relocations refer to "
9527 "dynamic symbol %s"),
9528 h
->root
.root
.string
);
9529 bfd_set_error (bfd_error_bad_value
);
9533 /* We must allocate the symbol in our .dynbss section, which will
9534 become part of the .bss section of the executable. There will be
9535 an entry for this symbol in the .dynsym section. The dynamic
9536 object will contain position independent code, so all references
9537 from the dynamic object to this symbol will go through the global
9538 offset table. The dynamic linker will use the .dynsym entry to
9539 determine the address it must put in the global offset table, so
9540 both the dynamic object and the regular object will refer to the
9541 same memory location for the variable. */
9543 if ((h
->root
.u
.def
.section
->flags
& SEC_READONLY
) != 0)
9545 s
= htab
->root
.sdynrelro
;
9546 srel
= htab
->root
.sreldynrelro
;
9550 s
= htab
->root
.sdynbss
;
9551 srel
= htab
->root
.srelbss
;
9553 if ((h
->root
.u
.def
.section
->flags
& SEC_ALLOC
) != 0)
9555 if (htab
->is_vxworks
)
9556 srel
->size
+= sizeof (Elf32_External_Rela
);
9558 mips_elf_allocate_dynamic_relocations (dynobj
, info
, 1);
9562 /* All relocations against this symbol that could have been made
9563 dynamic will now refer to the local copy instead. */
9564 hmips
->possibly_dynamic_relocs
= 0;
9566 return _bfd_elf_adjust_dynamic_copy (info
, h
, s
);
9569 /* This function is called after all the input files have been read,
9570 and the input sections have been assigned to output sections. We
9571 check for any mips16 stub sections that we can discard. */
9574 _bfd_mips_elf_always_size_sections (bfd
*output_bfd
,
9575 struct bfd_link_info
*info
)
9578 struct mips_elf_link_hash_table
*htab
;
9579 struct mips_htab_traverse_info hti
;
9581 htab
= mips_elf_hash_table (info
);
9582 BFD_ASSERT (htab
!= NULL
);
9584 /* The .reginfo section has a fixed size. */
9585 sect
= bfd_get_section_by_name (output_bfd
, ".reginfo");
9588 bfd_set_section_size (sect
, sizeof (Elf32_External_RegInfo
));
9589 sect
->flags
|= SEC_FIXED_SIZE
| SEC_HAS_CONTENTS
;
9592 /* The .MIPS.abiflags section has a fixed size. */
9593 sect
= bfd_get_section_by_name (output_bfd
, ".MIPS.abiflags");
9596 bfd_set_section_size (sect
, sizeof (Elf_External_ABIFlags_v0
));
9597 sect
->flags
|= SEC_FIXED_SIZE
| SEC_HAS_CONTENTS
;
9601 hti
.output_bfd
= output_bfd
;
9603 mips_elf_link_hash_traverse (mips_elf_hash_table (info
),
9604 mips_elf_check_symbols
, &hti
);
9611 /* If the link uses a GOT, lay it out and work out its size. */
9614 mips_elf_lay_out_got (bfd
*output_bfd
, struct bfd_link_info
*info
)
9618 struct mips_got_info
*g
;
9619 bfd_size_type loadable_size
= 0;
9620 bfd_size_type page_gotno
;
9622 struct mips_elf_traverse_got_arg tga
;
9623 struct mips_elf_link_hash_table
*htab
;
9625 htab
= mips_elf_hash_table (info
);
9626 BFD_ASSERT (htab
!= NULL
);
9628 s
= htab
->root
.sgot
;
9632 dynobj
= elf_hash_table (info
)->dynobj
;
9635 /* Allocate room for the reserved entries. VxWorks always reserves
9636 3 entries; other objects only reserve 2 entries. */
9637 BFD_ASSERT (g
->assigned_low_gotno
== 0);
9638 if (htab
->is_vxworks
)
9639 htab
->reserved_gotno
= 3;
9641 htab
->reserved_gotno
= 2;
9642 g
->local_gotno
+= htab
->reserved_gotno
;
9643 g
->assigned_low_gotno
= htab
->reserved_gotno
;
9645 /* Decide which symbols need to go in the global part of the GOT and
9646 count the number of reloc-only GOT symbols. */
9647 mips_elf_link_hash_traverse (htab
, mips_elf_count_got_symbols
, info
);
9649 if (!mips_elf_resolve_final_got_entries (info
, g
))
9652 /* Calculate the total loadable size of the output. That
9653 will give us the maximum number of GOT_PAGE entries
9655 for (ibfd
= info
->input_bfds
; ibfd
; ibfd
= ibfd
->link
.next
)
9657 asection
*subsection
;
9659 for (subsection
= ibfd
->sections
;
9661 subsection
= subsection
->next
)
9663 if ((subsection
->flags
& SEC_ALLOC
) == 0)
9665 loadable_size
+= ((subsection
->size
+ 0xf)
9666 &~ (bfd_size_type
) 0xf);
9670 if (htab
->is_vxworks
)
9671 /* There's no need to allocate page entries for VxWorks; R_MIPS*_GOT16
9672 relocations against local symbols evaluate to "G", and the EABI does
9673 not include R_MIPS_GOT_PAGE. */
9676 /* Assume there are two loadable segments consisting of contiguous
9677 sections. Is 5 enough? */
9678 page_gotno
= (loadable_size
>> 16) + 5;
9680 /* Choose the smaller of the two page estimates; both are intended to be
9682 if (page_gotno
> g
->page_gotno
)
9683 page_gotno
= g
->page_gotno
;
9685 g
->local_gotno
+= page_gotno
;
9686 g
->assigned_high_gotno
= g
->local_gotno
- 1;
9688 s
->size
+= g
->local_gotno
* MIPS_ELF_GOT_SIZE (output_bfd
);
9689 s
->size
+= g
->global_gotno
* MIPS_ELF_GOT_SIZE (output_bfd
);
9690 s
->size
+= g
->tls_gotno
* MIPS_ELF_GOT_SIZE (output_bfd
);
9692 /* VxWorks does not support multiple GOTs. It initializes $gp to
9693 __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the
9695 if (!htab
->is_vxworks
&& s
->size
> MIPS_ELF_GOT_MAX_SIZE (info
))
9697 if (!mips_elf_multi_got (output_bfd
, info
, s
, page_gotno
))
9702 /* Record that all bfds use G. This also has the effect of freeing
9703 the per-bfd GOTs, which we no longer need. */
9704 for (ibfd
= info
->input_bfds
; ibfd
; ibfd
= ibfd
->link
.next
)
9705 if (mips_elf_bfd_got (ibfd
, FALSE
))
9706 mips_elf_replace_bfd_got (ibfd
, g
);
9707 mips_elf_replace_bfd_got (output_bfd
, g
);
9709 /* Set up TLS entries. */
9710 g
->tls_assigned_gotno
= g
->global_gotno
+ g
->local_gotno
;
9713 tga
.value
= MIPS_ELF_GOT_SIZE (output_bfd
);
9714 htab_traverse (g
->got_entries
, mips_elf_initialize_tls_index
, &tga
);
9717 BFD_ASSERT (g
->tls_assigned_gotno
9718 == g
->global_gotno
+ g
->local_gotno
+ g
->tls_gotno
);
9720 /* Each VxWorks GOT entry needs an explicit relocation. */
9721 if (htab
->is_vxworks
&& bfd_link_pic (info
))
9722 g
->relocs
+= g
->global_gotno
+ g
->local_gotno
- htab
->reserved_gotno
;
9724 /* Allocate room for the TLS relocations. */
9726 mips_elf_allocate_dynamic_relocations (dynobj
, info
, g
->relocs
);
9732 /* Estimate the size of the .MIPS.stubs section. */
9735 mips_elf_estimate_stub_size (bfd
*output_bfd
, struct bfd_link_info
*info
)
9737 struct mips_elf_link_hash_table
*htab
;
9738 bfd_size_type dynsymcount
;
9740 htab
= mips_elf_hash_table (info
);
9741 BFD_ASSERT (htab
!= NULL
);
9743 if (htab
->lazy_stub_count
== 0)
9746 /* IRIX rld assumes that a function stub isn't at the end of the .text
9747 section, so add a dummy entry to the end. */
9748 htab
->lazy_stub_count
++;
9750 /* Get a worst-case estimate of the number of dynamic symbols needed.
9751 At this point, dynsymcount does not account for section symbols
9752 and count_section_dynsyms may overestimate the number that will
9754 dynsymcount
= (elf_hash_table (info
)->dynsymcount
9755 + count_section_dynsyms (output_bfd
, info
));
9757 /* Determine the size of one stub entry. There's no disadvantage
9758 from using microMIPS code here, so for the sake of pure-microMIPS
9759 binaries we prefer it whenever there's any microMIPS code in
9760 output produced at all. This has a benefit of stubs being
9761 shorter by 4 bytes each too, unless in the insn32 mode. */
9762 if (!MICROMIPS_P (output_bfd
))
9763 htab
->function_stub_size
= (dynsymcount
> 0x10000
9764 ? MIPS_FUNCTION_STUB_BIG_SIZE
9765 : MIPS_FUNCTION_STUB_NORMAL_SIZE
);
9766 else if (htab
->insn32
)
9767 htab
->function_stub_size
= (dynsymcount
> 0x10000
9768 ? MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE
9769 : MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE
);
9771 htab
->function_stub_size
= (dynsymcount
> 0x10000
9772 ? MICROMIPS_FUNCTION_STUB_BIG_SIZE
9773 : MICROMIPS_FUNCTION_STUB_NORMAL_SIZE
);
9775 htab
->sstubs
->size
= htab
->lazy_stub_count
* htab
->function_stub_size
;
9778 /* A mips_elf_link_hash_traverse callback for which DATA points to a
9779 mips_htab_traverse_info. If H needs a traditional MIPS lazy-binding
9780 stub, allocate an entry in the stubs section. */
9783 mips_elf_allocate_lazy_stub (struct mips_elf_link_hash_entry
*h
, void *data
)
9785 struct mips_htab_traverse_info
*hti
= data
;
9786 struct mips_elf_link_hash_table
*htab
;
9787 struct bfd_link_info
*info
;
9791 output_bfd
= hti
->output_bfd
;
9792 htab
= mips_elf_hash_table (info
);
9793 BFD_ASSERT (htab
!= NULL
);
9795 if (h
->needs_lazy_stub
)
9797 bfd_boolean micromips_p
= MICROMIPS_P (output_bfd
);
9798 unsigned int other
= micromips_p
? STO_MICROMIPS
: 0;
9799 bfd_vma isa_bit
= micromips_p
;
9801 BFD_ASSERT (htab
->root
.dynobj
!= NULL
);
9802 if (h
->root
.plt
.plist
== NULL
)
9803 h
->root
.plt
.plist
= mips_elf_make_plt_record (htab
->sstubs
->owner
);
9804 if (h
->root
.plt
.plist
== NULL
)
9809 h
->root
.root
.u
.def
.section
= htab
->sstubs
;
9810 h
->root
.root
.u
.def
.value
= htab
->sstubs
->size
+ isa_bit
;
9811 h
->root
.plt
.plist
->stub_offset
= htab
->sstubs
->size
;
9812 h
->root
.other
= other
;
9813 htab
->sstubs
->size
+= htab
->function_stub_size
;
9818 /* Allocate offsets in the stubs section to each symbol that needs one.
9819 Set the final size of the .MIPS.stub section. */
9822 mips_elf_lay_out_lazy_stubs (struct bfd_link_info
*info
)
9824 bfd
*output_bfd
= info
->output_bfd
;
9825 bfd_boolean micromips_p
= MICROMIPS_P (output_bfd
);
9826 unsigned int other
= micromips_p
? STO_MICROMIPS
: 0;
9827 bfd_vma isa_bit
= micromips_p
;
9828 struct mips_elf_link_hash_table
*htab
;
9829 struct mips_htab_traverse_info hti
;
9830 struct elf_link_hash_entry
*h
;
9833 htab
= mips_elf_hash_table (info
);
9834 BFD_ASSERT (htab
!= NULL
);
9836 if (htab
->lazy_stub_count
== 0)
9839 htab
->sstubs
->size
= 0;
9841 hti
.output_bfd
= output_bfd
;
9843 mips_elf_link_hash_traverse (htab
, mips_elf_allocate_lazy_stub
, &hti
);
9846 htab
->sstubs
->size
+= htab
->function_stub_size
;
9847 BFD_ASSERT (htab
->sstubs
->size
9848 == htab
->lazy_stub_count
* htab
->function_stub_size
);
9850 dynobj
= elf_hash_table (info
)->dynobj
;
9851 BFD_ASSERT (dynobj
!= NULL
);
9852 h
= _bfd_elf_define_linkage_sym (dynobj
, info
, htab
->sstubs
, "_MIPS_STUBS_");
9855 h
->root
.u
.def
.value
= isa_bit
;
9862 /* A mips_elf_link_hash_traverse callback for which DATA points to a
9863 bfd_link_info. If H uses the address of a PLT entry as the value
9864 of the symbol, then set the entry in the symbol table now. Prefer
9865 a standard MIPS PLT entry. */
9868 mips_elf_set_plt_sym_value (struct mips_elf_link_hash_entry
*h
, void *data
)
9870 struct bfd_link_info
*info
= data
;
9871 bfd_boolean micromips_p
= MICROMIPS_P (info
->output_bfd
);
9872 struct mips_elf_link_hash_table
*htab
;
9877 htab
= mips_elf_hash_table (info
);
9878 BFD_ASSERT (htab
!= NULL
);
9880 if (h
->use_plt_entry
)
9882 BFD_ASSERT (h
->root
.plt
.plist
!= NULL
);
9883 BFD_ASSERT (h
->root
.plt
.plist
->mips_offset
!= MINUS_ONE
9884 || h
->root
.plt
.plist
->comp_offset
!= MINUS_ONE
);
9886 val
= htab
->plt_header_size
;
9887 if (h
->root
.plt
.plist
->mips_offset
!= MINUS_ONE
)
9890 val
+= h
->root
.plt
.plist
->mips_offset
;
9896 val
+= htab
->plt_mips_offset
+ h
->root
.plt
.plist
->comp_offset
;
9897 other
= micromips_p
? STO_MICROMIPS
: STO_MIPS16
;
9900 /* For VxWorks, point at the PLT load stub rather than the lazy
9901 resolution stub; this stub will become the canonical function
9903 if (htab
->is_vxworks
)
9906 h
->root
.root
.u
.def
.section
= htab
->root
.splt
;
9907 h
->root
.root
.u
.def
.value
= val
;
9908 h
->root
.other
= other
;
9914 /* Set the sizes of the dynamic sections. */
9917 _bfd_mips_elf_size_dynamic_sections (bfd
*output_bfd
,
9918 struct bfd_link_info
*info
)
9921 asection
*s
, *sreldyn
;
9922 bfd_boolean reltext
;
9923 struct mips_elf_link_hash_table
*htab
;
9925 htab
= mips_elf_hash_table (info
);
9926 BFD_ASSERT (htab
!= NULL
);
9927 dynobj
= elf_hash_table (info
)->dynobj
;
9928 BFD_ASSERT (dynobj
!= NULL
);
9930 if (elf_hash_table (info
)->dynamic_sections_created
)
9932 /* Set the contents of the .interp section to the interpreter. */
9933 if (bfd_link_executable (info
) && !info
->nointerp
)
9935 s
= bfd_get_linker_section (dynobj
, ".interp");
9936 BFD_ASSERT (s
!= NULL
);
9938 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd
)) + 1;
9940 = (bfd_byte
*) ELF_DYNAMIC_INTERPRETER (output_bfd
);
9943 /* Figure out the size of the PLT header if we know that we
9944 are using it. For the sake of cache alignment always use
9945 a standard header whenever any standard entries are present
9946 even if microMIPS entries are present as well. This also
9947 lets the microMIPS header rely on the value of $v0 only set
9948 by microMIPS entries, for a small size reduction.
9950 Set symbol table entry values for symbols that use the
9951 address of their PLT entry now that we can calculate it.
9953 Also create the _PROCEDURE_LINKAGE_TABLE_ symbol if we
9954 haven't already in _bfd_elf_create_dynamic_sections. */
9955 if (htab
->root
.splt
&& htab
->plt_mips_offset
+ htab
->plt_comp_offset
!= 0)
9957 bfd_boolean micromips_p
= (MICROMIPS_P (output_bfd
)
9958 && !htab
->plt_mips_offset
);
9959 unsigned int other
= micromips_p
? STO_MICROMIPS
: 0;
9960 bfd_vma isa_bit
= micromips_p
;
9961 struct elf_link_hash_entry
*h
;
9964 BFD_ASSERT (htab
->use_plts_and_copy_relocs
);
9965 BFD_ASSERT (htab
->root
.sgotplt
->size
== 0);
9966 BFD_ASSERT (htab
->root
.splt
->size
== 0);
9968 if (htab
->is_vxworks
&& bfd_link_pic (info
))
9969 size
= 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry
);
9970 else if (htab
->is_vxworks
)
9971 size
= 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry
);
9972 else if (ABI_64_P (output_bfd
))
9973 size
= 4 * ARRAY_SIZE (mips_n64_exec_plt0_entry
);
9974 else if (ABI_N32_P (output_bfd
))
9975 size
= 4 * ARRAY_SIZE (mips_n32_exec_plt0_entry
);
9976 else if (!micromips_p
)
9977 size
= 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry
);
9978 else if (htab
->insn32
)
9979 size
= 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry
);
9981 size
= 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry
);
9983 htab
->plt_header_is_comp
= micromips_p
;
9984 htab
->plt_header_size
= size
;
9985 htab
->root
.splt
->size
= (size
9986 + htab
->plt_mips_offset
9987 + htab
->plt_comp_offset
);
9988 htab
->root
.sgotplt
->size
= (htab
->plt_got_index
9989 * MIPS_ELF_GOT_SIZE (dynobj
));
9991 mips_elf_link_hash_traverse (htab
, mips_elf_set_plt_sym_value
, info
);
9993 if (htab
->root
.hplt
== NULL
)
9995 h
= _bfd_elf_define_linkage_sym (dynobj
, info
, htab
->root
.splt
,
9996 "_PROCEDURE_LINKAGE_TABLE_");
9997 htab
->root
.hplt
= h
;
10002 h
= htab
->root
.hplt
;
10003 h
->root
.u
.def
.value
= isa_bit
;
10005 h
->type
= STT_FUNC
;
10009 /* Allocate space for global sym dynamic relocs. */
10010 elf_link_hash_traverse (&htab
->root
, allocate_dynrelocs
, info
);
10012 mips_elf_estimate_stub_size (output_bfd
, info
);
10014 if (!mips_elf_lay_out_got (output_bfd
, info
))
10017 mips_elf_lay_out_lazy_stubs (info
);
10019 /* The check_relocs and adjust_dynamic_symbol entry points have
10020 determined the sizes of the various dynamic sections. Allocate
10021 memory for them. */
10023 for (s
= dynobj
->sections
; s
!= NULL
; s
= s
->next
)
10027 /* It's OK to base decisions on the section name, because none
10028 of the dynobj section names depend upon the input files. */
10029 name
= bfd_section_name (s
);
10031 if ((s
->flags
& SEC_LINKER_CREATED
) == 0)
10034 if (CONST_STRNEQ (name
, ".rel"))
10038 const char *outname
;
10041 /* If this relocation section applies to a read only
10042 section, then we probably need a DT_TEXTREL entry.
10043 If the relocation section is .rel(a).dyn, we always
10044 assert a DT_TEXTREL entry rather than testing whether
10045 there exists a relocation to a read only section or
10047 outname
= bfd_section_name (s
->output_section
);
10048 target
= bfd_get_section_by_name (output_bfd
, outname
+ 4);
10049 if ((target
!= NULL
10050 && (target
->flags
& SEC_READONLY
) != 0
10051 && (target
->flags
& SEC_ALLOC
) != 0)
10052 || strcmp (outname
, MIPS_ELF_REL_DYN_NAME (info
)) == 0)
10055 /* We use the reloc_count field as a counter if we need
10056 to copy relocs into the output file. */
10057 if (strcmp (name
, MIPS_ELF_REL_DYN_NAME (info
)) != 0)
10058 s
->reloc_count
= 0;
10060 /* If combreloc is enabled, elf_link_sort_relocs() will
10061 sort relocations, but in a different way than we do,
10062 and before we're done creating relocations. Also, it
10063 will move them around between input sections'
10064 relocation's contents, so our sorting would be
10065 broken, so don't let it run. */
10066 info
->combreloc
= 0;
10069 else if (bfd_link_executable (info
)
10070 && ! mips_elf_hash_table (info
)->use_rld_obj_head
10071 && CONST_STRNEQ (name
, ".rld_map"))
10073 /* We add a room for __rld_map. It will be filled in by the
10074 rtld to contain a pointer to the _r_debug structure. */
10075 s
->size
+= MIPS_ELF_RLD_MAP_SIZE (output_bfd
);
10077 else if (SGI_COMPAT (output_bfd
)
10078 && CONST_STRNEQ (name
, ".compact_rel"))
10079 s
->size
+= mips_elf_hash_table (info
)->compact_rel_size
;
10080 else if (s
== htab
->root
.splt
)
10082 /* If the last PLT entry has a branch delay slot, allocate
10083 room for an extra nop to fill the delay slot. This is
10084 for CPUs without load interlocking. */
10085 if (! LOAD_INTERLOCKS_P (output_bfd
)
10086 && ! htab
->is_vxworks
&& s
->size
> 0)
10089 else if (! CONST_STRNEQ (name
, ".init")
10090 && s
!= htab
->root
.sgot
10091 && s
!= htab
->root
.sgotplt
10092 && s
!= htab
->sstubs
10093 && s
!= htab
->root
.sdynbss
10094 && s
!= htab
->root
.sdynrelro
)
10096 /* It's not one of our sections, so don't allocate space. */
10102 s
->flags
|= SEC_EXCLUDE
;
10106 if ((s
->flags
& SEC_HAS_CONTENTS
) == 0)
10109 /* Allocate memory for the section contents. */
10110 s
->contents
= bfd_zalloc (dynobj
, s
->size
);
10111 if (s
->contents
== NULL
)
10113 bfd_set_error (bfd_error_no_memory
);
10118 if (elf_hash_table (info
)->dynamic_sections_created
)
10120 /* Add some entries to the .dynamic section. We fill in the
10121 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
10122 must add the entries now so that we get the correct size for
10123 the .dynamic section. */
10125 /* SGI object has the equivalence of DT_DEBUG in the
10126 DT_MIPS_RLD_MAP entry. This must come first because glibc
10127 only fills in DT_MIPS_RLD_MAP (not DT_DEBUG) and some tools
10128 may only look at the first one they see. */
10129 if (!bfd_link_pic (info
)
10130 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_RLD_MAP
, 0))
10133 if (bfd_link_executable (info
)
10134 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_RLD_MAP_REL
, 0))
10137 /* The DT_DEBUG entry may be filled in by the dynamic linker and
10138 used by the debugger. */
10139 if (bfd_link_executable (info
)
10140 && !SGI_COMPAT (output_bfd
)
10141 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_DEBUG
, 0))
10144 if (reltext
&& (SGI_COMPAT (output_bfd
) || htab
->is_vxworks
))
10145 info
->flags
|= DF_TEXTREL
;
10147 if ((info
->flags
& DF_TEXTREL
) != 0)
10149 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_TEXTREL
, 0))
10152 /* Clear the DF_TEXTREL flag. It will be set again if we
10153 write out an actual text relocation; we may not, because
10154 at this point we do not know whether e.g. any .eh_frame
10155 absolute relocations have been converted to PC-relative. */
10156 info
->flags
&= ~DF_TEXTREL
;
10159 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_PLTGOT
, 0))
10162 sreldyn
= mips_elf_rel_dyn_section (info
, FALSE
);
10163 if (htab
->is_vxworks
)
10165 /* VxWorks uses .rela.dyn instead of .rel.dyn. It does not
10166 use any of the DT_MIPS_* tags. */
10167 if (sreldyn
&& sreldyn
->size
> 0)
10169 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_RELA
, 0))
10172 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_RELASZ
, 0))
10175 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_RELAENT
, 0))
10181 if (sreldyn
&& sreldyn
->size
> 0
10182 && !bfd_is_abs_section (sreldyn
->output_section
))
10184 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_REL
, 0))
10187 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_RELSZ
, 0))
10190 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_RELENT
, 0))
10194 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_RLD_VERSION
, 0))
10197 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_FLAGS
, 0))
10200 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_BASE_ADDRESS
, 0))
10203 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_LOCAL_GOTNO
, 0))
10206 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_SYMTABNO
, 0))
10209 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_UNREFEXTNO
, 0))
10212 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_GOTSYM
, 0))
10215 if (info
->emit_gnu_hash
10216 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_XHASH
, 0))
10219 if (IRIX_COMPAT (dynobj
) == ict_irix5
10220 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_HIPAGENO
, 0))
10223 if (IRIX_COMPAT (dynobj
) == ict_irix6
10224 && (bfd_get_section_by_name
10225 (output_bfd
, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj
)))
10226 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_OPTIONS
, 0))
10229 if (htab
->root
.splt
->size
> 0)
10231 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_PLTREL
, 0))
10234 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_JMPREL
, 0))
10237 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_PLTRELSZ
, 0))
10240 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_PLTGOT
, 0))
10243 if (htab
->is_vxworks
10244 && !elf_vxworks_add_dynamic_entries (output_bfd
, info
))
10251 /* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD.
10252 Adjust its R_ADDEND field so that it is correct for the output file.
10253 LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols
10254 and sections respectively; both use symbol indexes. */
10257 mips_elf_adjust_addend (bfd
*output_bfd
, struct bfd_link_info
*info
,
10258 bfd
*input_bfd
, Elf_Internal_Sym
*local_syms
,
10259 asection
**local_sections
, Elf_Internal_Rela
*rel
)
10261 unsigned int r_type
, r_symndx
;
10262 Elf_Internal_Sym
*sym
;
10265 if (mips_elf_local_relocation_p (input_bfd
, rel
, local_sections
))
10267 r_type
= ELF_R_TYPE (output_bfd
, rel
->r_info
);
10268 if (gprel16_reloc_p (r_type
)
10269 || r_type
== R_MIPS_GPREL32
10270 || literal_reloc_p (r_type
))
10272 rel
->r_addend
+= _bfd_get_gp_value (input_bfd
);
10273 rel
->r_addend
-= _bfd_get_gp_value (output_bfd
);
10276 r_symndx
= ELF_R_SYM (output_bfd
, rel
->r_info
);
10277 sym
= local_syms
+ r_symndx
;
10279 /* Adjust REL's addend to account for section merging. */
10280 if (!bfd_link_relocatable (info
))
10282 sec
= local_sections
[r_symndx
];
10283 _bfd_elf_rela_local_sym (output_bfd
, sym
, &sec
, rel
);
10286 /* This would normally be done by the rela_normal code in elflink.c. */
10287 if (ELF_ST_TYPE (sym
->st_info
) == STT_SECTION
)
10288 rel
->r_addend
+= local_sections
[r_symndx
]->output_offset
;
10292 /* Handle relocations against symbols from removed linkonce sections,
10293 or sections discarded by a linker script. We use this wrapper around
10294 RELOC_AGAINST_DISCARDED_SECTION to handle triplets of compound relocs
10295 on 64-bit ELF targets. In this case for any relocation handled, which
10296 always be the first in a triplet, the remaining two have to be processed
10297 together with the first, even if they are R_MIPS_NONE. It is the symbol
10298 index referred by the first reloc that applies to all the three and the
10299 remaining two never refer to an object symbol. And it is the final
10300 relocation (the last non-null one) that determines the output field of
10301 the whole relocation so retrieve the corresponding howto structure for
10302 the relocatable field to be cleared by RELOC_AGAINST_DISCARDED_SECTION.
10304 Note that RELOC_AGAINST_DISCARDED_SECTION is a macro that uses "continue"
10305 and therefore requires to be pasted in a loop. It also defines a block
10306 and does not protect any of its arguments, hence the extra brackets. */
10309 mips_reloc_against_discarded_section (bfd
*output_bfd
,
10310 struct bfd_link_info
*info
,
10311 bfd
*input_bfd
, asection
*input_section
,
10312 Elf_Internal_Rela
**rel
,
10313 const Elf_Internal_Rela
**relend
,
10314 bfd_boolean rel_reloc
,
10315 reloc_howto_type
*howto
,
10316 bfd_byte
*contents
)
10318 const struct elf_backend_data
*bed
= get_elf_backend_data (output_bfd
);
10319 int count
= bed
->s
->int_rels_per_ext_rel
;
10320 unsigned int r_type
;
10323 for (i
= count
- 1; i
> 0; i
--)
10325 r_type
= ELF_R_TYPE (output_bfd
, (*rel
)[i
].r_info
);
10326 if (r_type
!= R_MIPS_NONE
)
10328 howto
= MIPS_ELF_RTYPE_TO_HOWTO (input_bfd
, r_type
, !rel_reloc
);
10334 RELOC_AGAINST_DISCARDED_SECTION (info
, input_bfd
, input_section
,
10335 (*rel
), count
, (*relend
),
10336 howto
, i
, contents
);
10341 /* Relocate a MIPS ELF section. */
10344 _bfd_mips_elf_relocate_section (bfd
*output_bfd
, struct bfd_link_info
*info
,
10345 bfd
*input_bfd
, asection
*input_section
,
10346 bfd_byte
*contents
, Elf_Internal_Rela
*relocs
,
10347 Elf_Internal_Sym
*local_syms
,
10348 asection
**local_sections
)
10350 Elf_Internal_Rela
*rel
;
10351 const Elf_Internal_Rela
*relend
;
10352 bfd_vma addend
= 0;
10353 bfd_boolean use_saved_addend_p
= FALSE
;
10355 relend
= relocs
+ input_section
->reloc_count
;
10356 for (rel
= relocs
; rel
< relend
; ++rel
)
10360 reloc_howto_type
*howto
;
10361 bfd_boolean cross_mode_jump_p
= FALSE
;
10362 /* TRUE if the relocation is a RELA relocation, rather than a
10364 bfd_boolean rela_relocation_p
= TRUE
;
10365 unsigned int r_type
= ELF_R_TYPE (output_bfd
, rel
->r_info
);
10367 unsigned long r_symndx
;
10369 Elf_Internal_Shdr
*symtab_hdr
;
10370 struct elf_link_hash_entry
*h
;
10371 bfd_boolean rel_reloc
;
10373 rel_reloc
= (NEWABI_P (input_bfd
)
10374 && mips_elf_rel_relocation_p (input_bfd
, input_section
,
10376 /* Find the relocation howto for this relocation. */
10377 howto
= MIPS_ELF_RTYPE_TO_HOWTO (input_bfd
, r_type
, !rel_reloc
);
10379 r_symndx
= ELF_R_SYM (input_bfd
, rel
->r_info
);
10380 symtab_hdr
= &elf_tdata (input_bfd
)->symtab_hdr
;
10381 if (mips_elf_local_relocation_p (input_bfd
, rel
, local_sections
))
10383 sec
= local_sections
[r_symndx
];
10388 unsigned long extsymoff
;
10391 if (!elf_bad_symtab (input_bfd
))
10392 extsymoff
= symtab_hdr
->sh_info
;
10393 h
= elf_sym_hashes (input_bfd
) [r_symndx
- extsymoff
];
10394 while (h
->root
.type
== bfd_link_hash_indirect
10395 || h
->root
.type
== bfd_link_hash_warning
)
10396 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
10399 if (h
->root
.type
== bfd_link_hash_defined
10400 || h
->root
.type
== bfd_link_hash_defweak
)
10401 sec
= h
->root
.u
.def
.section
;
10404 if (sec
!= NULL
&& discarded_section (sec
))
10406 mips_reloc_against_discarded_section (output_bfd
, info
, input_bfd
,
10407 input_section
, &rel
, &relend
,
10408 rel_reloc
, howto
, contents
);
10412 if (r_type
== R_MIPS_64
&& ! NEWABI_P (input_bfd
))
10414 /* Some 32-bit code uses R_MIPS_64. In particular, people use
10415 64-bit code, but make sure all their addresses are in the
10416 lowermost or uppermost 32-bit section of the 64-bit address
10417 space. Thus, when they use an R_MIPS_64 they mean what is
10418 usually meant by R_MIPS_32, with the exception that the
10419 stored value is sign-extended to 64 bits. */
10420 howto
= MIPS_ELF_RTYPE_TO_HOWTO (input_bfd
, R_MIPS_32
, FALSE
);
10422 /* On big-endian systems, we need to lie about the position
10424 if (bfd_big_endian (input_bfd
))
10425 rel
->r_offset
+= 4;
10428 if (!use_saved_addend_p
)
10430 /* If these relocations were originally of the REL variety,
10431 we must pull the addend out of the field that will be
10432 relocated. Otherwise, we simply use the contents of the
10433 RELA relocation. */
10434 if (mips_elf_rel_relocation_p (input_bfd
, input_section
,
10437 rela_relocation_p
= FALSE
;
10438 addend
= mips_elf_read_rel_addend (input_bfd
, rel
,
10440 if (hi16_reloc_p (r_type
)
10441 || (got16_reloc_p (r_type
)
10442 && mips_elf_local_relocation_p (input_bfd
, rel
,
10445 if (!mips_elf_add_lo16_rel_addend (input_bfd
, rel
, relend
,
10446 contents
, &addend
))
10449 name
= h
->root
.root
.string
;
10451 name
= bfd_elf_sym_name (input_bfd
, symtab_hdr
,
10452 local_syms
+ r_symndx
,
10455 /* xgettext:c-format */
10456 (_("%pB: can't find matching LO16 reloc against `%s'"
10457 " for %s at %#" PRIx64
" in section `%pA'"),
10459 howto
->name
, (uint64_t) rel
->r_offset
, input_section
);
10463 addend
<<= howto
->rightshift
;
10466 addend
= rel
->r_addend
;
10467 mips_elf_adjust_addend (output_bfd
, info
, input_bfd
,
10468 local_syms
, local_sections
, rel
);
10471 if (bfd_link_relocatable (info
))
10473 if (r_type
== R_MIPS_64
&& ! NEWABI_P (output_bfd
)
10474 && bfd_big_endian (input_bfd
))
10475 rel
->r_offset
-= 4;
10477 if (!rela_relocation_p
&& rel
->r_addend
)
10479 addend
+= rel
->r_addend
;
10480 if (hi16_reloc_p (r_type
) || got16_reloc_p (r_type
))
10481 addend
= mips_elf_high (addend
);
10482 else if (r_type
== R_MIPS_HIGHER
)
10483 addend
= mips_elf_higher (addend
);
10484 else if (r_type
== R_MIPS_HIGHEST
)
10485 addend
= mips_elf_highest (addend
);
10487 addend
>>= howto
->rightshift
;
10489 /* We use the source mask, rather than the destination
10490 mask because the place to which we are writing will be
10491 source of the addend in the final link. */
10492 addend
&= howto
->src_mask
;
10494 if (r_type
== R_MIPS_64
&& ! NEWABI_P (output_bfd
))
10495 /* See the comment above about using R_MIPS_64 in the 32-bit
10496 ABI. Here, we need to update the addend. It would be
10497 possible to get away with just using the R_MIPS_32 reloc
10498 but for endianness. */
10504 if (addend
& ((bfd_vma
) 1 << 31))
10506 sign_bits
= ((bfd_vma
) 1 << 32) - 1;
10513 /* If we don't know that we have a 64-bit type,
10514 do two separate stores. */
10515 if (bfd_big_endian (input_bfd
))
10517 /* Store the sign-bits (which are most significant)
10519 low_bits
= sign_bits
;
10520 high_bits
= addend
;
10525 high_bits
= sign_bits
;
10527 bfd_put_32 (input_bfd
, low_bits
,
10528 contents
+ rel
->r_offset
);
10529 bfd_put_32 (input_bfd
, high_bits
,
10530 contents
+ rel
->r_offset
+ 4);
10534 if (! mips_elf_perform_relocation (info
, howto
, rel
, addend
,
10535 input_bfd
, input_section
,
10540 /* Go on to the next relocation. */
10544 /* In the N32 and 64-bit ABIs there may be multiple consecutive
10545 relocations for the same offset. In that case we are
10546 supposed to treat the output of each relocation as the addend
10548 if (rel
+ 1 < relend
10549 && rel
->r_offset
== rel
[1].r_offset
10550 && ELF_R_TYPE (input_bfd
, rel
[1].r_info
) != R_MIPS_NONE
)
10551 use_saved_addend_p
= TRUE
;
10553 use_saved_addend_p
= FALSE
;
10555 /* Figure out what value we are supposed to relocate. */
10556 switch (mips_elf_calculate_relocation (output_bfd
, input_bfd
,
10557 input_section
, contents
,
10558 info
, rel
, addend
, howto
,
10559 local_syms
, local_sections
,
10560 &value
, &name
, &cross_mode_jump_p
,
10561 use_saved_addend_p
))
10563 case bfd_reloc_continue
:
10564 /* There's nothing to do. */
10567 case bfd_reloc_undefined
:
10568 /* mips_elf_calculate_relocation already called the
10569 undefined_symbol callback. There's no real point in
10570 trying to perform the relocation at this point, so we
10571 just skip ahead to the next relocation. */
10574 case bfd_reloc_notsupported
:
10575 msg
= _("internal error: unsupported relocation error");
10576 info
->callbacks
->warning
10577 (info
, msg
, name
, input_bfd
, input_section
, rel
->r_offset
);
10580 case bfd_reloc_overflow
:
10581 if (use_saved_addend_p
)
10582 /* Ignore overflow until we reach the last relocation for
10583 a given location. */
10587 struct mips_elf_link_hash_table
*htab
;
10589 htab
= mips_elf_hash_table (info
);
10590 BFD_ASSERT (htab
!= NULL
);
10591 BFD_ASSERT (name
!= NULL
);
10592 if (!htab
->small_data_overflow_reported
10593 && (gprel16_reloc_p (howto
->type
)
10594 || literal_reloc_p (howto
->type
)))
10596 msg
= _("small-data section exceeds 64KB;"
10597 " lower small-data size limit (see option -G)");
10599 htab
->small_data_overflow_reported
= TRUE
;
10600 (*info
->callbacks
->einfo
) ("%P: %s\n", msg
);
10602 (*info
->callbacks
->reloc_overflow
)
10603 (info
, NULL
, name
, howto
->name
, (bfd_vma
) 0,
10604 input_bfd
, input_section
, rel
->r_offset
);
10611 case bfd_reloc_outofrange
:
10613 if (jal_reloc_p (howto
->type
))
10614 msg
= (cross_mode_jump_p
10615 ? _("cannot convert a jump to JALX "
10616 "for a non-word-aligned address")
10617 : (howto
->type
== R_MIPS16_26
10618 ? _("jump to a non-word-aligned address")
10619 : _("jump to a non-instruction-aligned address")));
10620 else if (b_reloc_p (howto
->type
))
10621 msg
= (cross_mode_jump_p
10622 ? _("cannot convert a branch to JALX "
10623 "for a non-word-aligned address")
10624 : _("branch to a non-instruction-aligned address"));
10625 else if (aligned_pcrel_reloc_p (howto
->type
))
10626 msg
= _("PC-relative load from unaligned address");
10629 info
->callbacks
->einfo
10630 ("%X%H: %s\n", input_bfd
, input_section
, rel
->r_offset
, msg
);
10633 /* Fall through. */
10640 /* If we've got another relocation for the address, keep going
10641 until we reach the last one. */
10642 if (use_saved_addend_p
)
10648 if (r_type
== R_MIPS_64
&& ! NEWABI_P (output_bfd
))
10649 /* See the comment above about using R_MIPS_64 in the 32-bit
10650 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
10651 that calculated the right value. Now, however, we
10652 sign-extend the 32-bit result to 64-bits, and store it as a
10653 64-bit value. We are especially generous here in that we
10654 go to extreme lengths to support this usage on systems with
10655 only a 32-bit VMA. */
10661 if (value
& ((bfd_vma
) 1 << 31))
10663 sign_bits
= ((bfd_vma
) 1 << 32) - 1;
10670 /* If we don't know that we have a 64-bit type,
10671 do two separate stores. */
10672 if (bfd_big_endian (input_bfd
))
10674 /* Undo what we did above. */
10675 rel
->r_offset
-= 4;
10676 /* Store the sign-bits (which are most significant)
10678 low_bits
= sign_bits
;
10684 high_bits
= sign_bits
;
10686 bfd_put_32 (input_bfd
, low_bits
,
10687 contents
+ rel
->r_offset
);
10688 bfd_put_32 (input_bfd
, high_bits
,
10689 contents
+ rel
->r_offset
+ 4);
10693 /* Actually perform the relocation. */
10694 if (! mips_elf_perform_relocation (info
, howto
, rel
, value
,
10695 input_bfd
, input_section
,
10696 contents
, cross_mode_jump_p
))
10703 /* A function that iterates over each entry in la25_stubs and fills
10704 in the code for each one. DATA points to a mips_htab_traverse_info. */
10707 mips_elf_create_la25_stub (void **slot
, void *data
)
10709 struct mips_htab_traverse_info
*hti
;
10710 struct mips_elf_link_hash_table
*htab
;
10711 struct mips_elf_la25_stub
*stub
;
10714 bfd_vma offset
, target
, target_high
, target_low
;
10716 bfd_signed_vma pcrel_offset
= 0;
10718 stub
= (struct mips_elf_la25_stub
*) *slot
;
10719 hti
= (struct mips_htab_traverse_info
*) data
;
10720 htab
= mips_elf_hash_table (hti
->info
);
10721 BFD_ASSERT (htab
!= NULL
);
10723 /* Create the section contents, if we haven't already. */
10724 s
= stub
->stub_section
;
10728 loc
= bfd_malloc (s
->size
);
10737 /* Work out where in the section this stub should go. */
10738 offset
= stub
->offset
;
10740 /* We add 8 here to account for the LUI/ADDIU instructions
10741 before the branch instruction. This cannot be moved down to
10742 where pcrel_offset is calculated as 's' is updated in
10743 mips_elf_get_la25_target. */
10744 branch_pc
= s
->output_section
->vma
+ s
->output_offset
+ offset
+ 8;
10746 /* Work out the target address. */
10747 target
= mips_elf_get_la25_target (stub
, &s
);
10748 target
+= s
->output_section
->vma
+ s
->output_offset
;
10750 target_high
= ((target
+ 0x8000) >> 16) & 0xffff;
10751 target_low
= (target
& 0xffff);
10753 /* Calculate the PC of the compact branch instruction (for the case where
10754 compact branches are used for either microMIPSR6 or MIPSR6 with
10755 compact branches. Add 4-bytes to account for BC using the PC of the
10756 next instruction as the base. */
10757 pcrel_offset
= target
- (branch_pc
+ 4);
10759 if (stub
->stub_section
!= htab
->strampoline
)
10761 /* This is a simple LUI/ADDIU stub. Zero out the beginning
10762 of the section and write the two instructions at the end. */
10763 memset (loc
, 0, offset
);
10765 if (ELF_ST_IS_MICROMIPS (stub
->h
->root
.other
))
10767 bfd_put_micromips_32 (hti
->output_bfd
,
10768 LA25_LUI_MICROMIPS (target_high
),
10770 bfd_put_micromips_32 (hti
->output_bfd
,
10771 LA25_ADDIU_MICROMIPS (target_low
),
10776 bfd_put_32 (hti
->output_bfd
, LA25_LUI (target_high
), loc
);
10777 bfd_put_32 (hti
->output_bfd
, LA25_ADDIU (target_low
), loc
+ 4);
10782 /* This is trampoline. */
10784 if (ELF_ST_IS_MICROMIPS (stub
->h
->root
.other
))
10786 bfd_put_micromips_32 (hti
->output_bfd
,
10787 LA25_LUI_MICROMIPS (target_high
), loc
);
10788 bfd_put_micromips_32 (hti
->output_bfd
,
10789 LA25_J_MICROMIPS (target
), loc
+ 4);
10790 bfd_put_micromips_32 (hti
->output_bfd
,
10791 LA25_ADDIU_MICROMIPS (target_low
), loc
+ 8);
10792 bfd_put_32 (hti
->output_bfd
, 0, loc
+ 12);
10796 bfd_put_32 (hti
->output_bfd
, LA25_LUI (target_high
), loc
);
10797 if (MIPSR6_P (hti
->output_bfd
) && htab
->compact_branches
)
10799 bfd_put_32 (hti
->output_bfd
, LA25_ADDIU (target_low
), loc
+ 4);
10800 bfd_put_32 (hti
->output_bfd
, LA25_BC (pcrel_offset
), loc
+ 8);
10804 bfd_put_32 (hti
->output_bfd
, LA25_J (target
), loc
+ 4);
10805 bfd_put_32 (hti
->output_bfd
, LA25_ADDIU (target_low
), loc
+ 8);
10807 bfd_put_32 (hti
->output_bfd
, 0, loc
+ 12);
10813 /* If NAME is one of the special IRIX6 symbols defined by the linker,
10814 adjust it appropriately now. */
10817 mips_elf_irix6_finish_dynamic_symbol (bfd
*abfd ATTRIBUTE_UNUSED
,
10818 const char *name
, Elf_Internal_Sym
*sym
)
10820 /* The linker script takes care of providing names and values for
10821 these, but we must place them into the right sections. */
10822 static const char* const text_section_symbols
[] = {
10825 "__dso_displacement",
10827 "__program_header_table",
10831 static const char* const data_section_symbols
[] = {
10839 const char* const *p
;
10842 for (i
= 0; i
< 2; ++i
)
10843 for (p
= (i
== 0) ? text_section_symbols
: data_section_symbols
;
10846 if (strcmp (*p
, name
) == 0)
10848 /* All of these symbols are given type STT_SECTION by the
10850 sym
->st_info
= ELF_ST_INFO (STB_GLOBAL
, STT_SECTION
);
10851 sym
->st_other
= STO_PROTECTED
;
10853 /* The IRIX linker puts these symbols in special sections. */
10855 sym
->st_shndx
= SHN_MIPS_TEXT
;
10857 sym
->st_shndx
= SHN_MIPS_DATA
;
10863 /* Finish up dynamic symbol handling. We set the contents of various
10864 dynamic sections here. */
10867 _bfd_mips_elf_finish_dynamic_symbol (bfd
*output_bfd
,
10868 struct bfd_link_info
*info
,
10869 struct elf_link_hash_entry
*h
,
10870 Elf_Internal_Sym
*sym
)
10874 struct mips_got_info
*g
, *gg
;
10877 struct mips_elf_link_hash_table
*htab
;
10878 struct mips_elf_link_hash_entry
*hmips
;
10880 htab
= mips_elf_hash_table (info
);
10881 BFD_ASSERT (htab
!= NULL
);
10882 dynobj
= elf_hash_table (info
)->dynobj
;
10883 hmips
= (struct mips_elf_link_hash_entry
*) h
;
10885 BFD_ASSERT (!htab
->is_vxworks
);
10887 if (h
->plt
.plist
!= NULL
10888 && (h
->plt
.plist
->mips_offset
!= MINUS_ONE
10889 || h
->plt
.plist
->comp_offset
!= MINUS_ONE
))
10891 /* We've decided to create a PLT entry for this symbol. */
10893 bfd_vma header_address
, got_address
;
10894 bfd_vma got_address_high
, got_address_low
, load
;
10898 got_index
= h
->plt
.plist
->gotplt_index
;
10900 BFD_ASSERT (htab
->use_plts_and_copy_relocs
);
10901 BFD_ASSERT (h
->dynindx
!= -1);
10902 BFD_ASSERT (htab
->root
.splt
!= NULL
);
10903 BFD_ASSERT (got_index
!= MINUS_ONE
);
10904 BFD_ASSERT (!h
->def_regular
);
10906 /* Calculate the address of the PLT header. */
10907 isa_bit
= htab
->plt_header_is_comp
;
10908 header_address
= (htab
->root
.splt
->output_section
->vma
10909 + htab
->root
.splt
->output_offset
+ isa_bit
);
10911 /* Calculate the address of the .got.plt entry. */
10912 got_address
= (htab
->root
.sgotplt
->output_section
->vma
10913 + htab
->root
.sgotplt
->output_offset
10914 + got_index
* MIPS_ELF_GOT_SIZE (dynobj
));
10916 got_address_high
= ((got_address
+ 0x8000) >> 16) & 0xffff;
10917 got_address_low
= got_address
& 0xffff;
10919 /* The PLT sequence is not safe for N64 if .got.plt entry's address
10920 cannot be loaded in two instructions. */
10921 if (ABI_64_P (output_bfd
)
10922 && ((got_address
+ 0x80008000) & ~(bfd_vma
) 0xffffffff) != 0)
10925 /* xgettext:c-format */
10926 (_("%pB: `%pA' entry VMA of %#" PRIx64
" outside the 32-bit range "
10927 "supported; consider using `-Ttext-segment=...'"),
10929 htab
->root
.sgotplt
->output_section
,
10930 (int64_t) got_address
);
10931 bfd_set_error (bfd_error_no_error
);
10935 /* Initially point the .got.plt entry at the PLT header. */
10936 loc
= (htab
->root
.sgotplt
->contents
10937 + got_index
* MIPS_ELF_GOT_SIZE (dynobj
));
10938 if (ABI_64_P (output_bfd
))
10939 bfd_put_64 (output_bfd
, header_address
, loc
);
10941 bfd_put_32 (output_bfd
, header_address
, loc
);
10943 /* Now handle the PLT itself. First the standard entry (the order
10944 does not matter, we just have to pick one). */
10945 if (h
->plt
.plist
->mips_offset
!= MINUS_ONE
)
10947 const bfd_vma
*plt_entry
;
10948 bfd_vma plt_offset
;
10950 plt_offset
= htab
->plt_header_size
+ h
->plt
.plist
->mips_offset
;
10952 BFD_ASSERT (plt_offset
<= htab
->root
.splt
->size
);
10954 /* Find out where the .plt entry should go. */
10955 loc
= htab
->root
.splt
->contents
+ plt_offset
;
10957 /* Pick the load opcode. */
10958 load
= MIPS_ELF_LOAD_WORD (output_bfd
);
10960 /* Fill in the PLT entry itself. */
10962 if (MIPSR6_P (output_bfd
))
10963 plt_entry
= htab
->compact_branches
? mipsr6_exec_plt_entry_compact
10964 : mipsr6_exec_plt_entry
;
10966 plt_entry
= mips_exec_plt_entry
;
10967 bfd_put_32 (output_bfd
, plt_entry
[0] | got_address_high
, loc
);
10968 bfd_put_32 (output_bfd
, plt_entry
[1] | got_address_low
| load
,
10971 if (! LOAD_INTERLOCKS_P (output_bfd
)
10972 || (MIPSR6_P (output_bfd
) && htab
->compact_branches
))
10974 bfd_put_32 (output_bfd
, plt_entry
[2] | got_address_low
, loc
+ 8);
10975 bfd_put_32 (output_bfd
, plt_entry
[3], loc
+ 12);
10979 bfd_put_32 (output_bfd
, plt_entry
[3], loc
+ 8);
10980 bfd_put_32 (output_bfd
, plt_entry
[2] | got_address_low
,
10985 /* Now the compressed entry. They come after any standard ones. */
10986 if (h
->plt
.plist
->comp_offset
!= MINUS_ONE
)
10988 bfd_vma plt_offset
;
10990 plt_offset
= (htab
->plt_header_size
+ htab
->plt_mips_offset
10991 + h
->plt
.plist
->comp_offset
);
10993 BFD_ASSERT (plt_offset
<= htab
->root
.splt
->size
);
10995 /* Find out where the .plt entry should go. */
10996 loc
= htab
->root
.splt
->contents
+ plt_offset
;
10998 /* Fill in the PLT entry itself. */
10999 if (!MICROMIPS_P (output_bfd
))
11001 const bfd_vma
*plt_entry
= mips16_o32_exec_plt_entry
;
11003 bfd_put_16 (output_bfd
, plt_entry
[0], loc
);
11004 bfd_put_16 (output_bfd
, plt_entry
[1], loc
+ 2);
11005 bfd_put_16 (output_bfd
, plt_entry
[2], loc
+ 4);
11006 bfd_put_16 (output_bfd
, plt_entry
[3], loc
+ 6);
11007 bfd_put_16 (output_bfd
, plt_entry
[4], loc
+ 8);
11008 bfd_put_16 (output_bfd
, plt_entry
[5], loc
+ 10);
11009 bfd_put_32 (output_bfd
, got_address
, loc
+ 12);
11011 else if (htab
->insn32
)
11013 const bfd_vma
*plt_entry
= micromips_insn32_o32_exec_plt_entry
;
11015 bfd_put_16 (output_bfd
, plt_entry
[0], loc
);
11016 bfd_put_16 (output_bfd
, got_address_high
, loc
+ 2);
11017 bfd_put_16 (output_bfd
, plt_entry
[2], loc
+ 4);
11018 bfd_put_16 (output_bfd
, got_address_low
, loc
+ 6);
11019 bfd_put_16 (output_bfd
, plt_entry
[4], loc
+ 8);
11020 bfd_put_16 (output_bfd
, plt_entry
[5], loc
+ 10);
11021 bfd_put_16 (output_bfd
, plt_entry
[6], loc
+ 12);
11022 bfd_put_16 (output_bfd
, got_address_low
, loc
+ 14);
11026 const bfd_vma
*plt_entry
= micromips_o32_exec_plt_entry
;
11027 bfd_signed_vma gotpc_offset
;
11028 bfd_vma loc_address
;
11030 BFD_ASSERT (got_address
% 4 == 0);
11032 loc_address
= (htab
->root
.splt
->output_section
->vma
11033 + htab
->root
.splt
->output_offset
+ plt_offset
);
11034 gotpc_offset
= got_address
- ((loc_address
| 3) ^ 3);
11036 /* ADDIUPC has a span of +/-16MB, check we're in range. */
11037 if (gotpc_offset
+ 0x1000000 >= 0x2000000)
11040 /* xgettext:c-format */
11041 (_("%pB: `%pA' offset of %" PRId64
" from `%pA' "
11042 "beyond the range of ADDIUPC"),
11044 htab
->root
.sgotplt
->output_section
,
11045 (int64_t) gotpc_offset
,
11046 htab
->root
.splt
->output_section
);
11047 bfd_set_error (bfd_error_no_error
);
11050 bfd_put_16 (output_bfd
,
11051 plt_entry
[0] | ((gotpc_offset
>> 18) & 0x7f), loc
);
11052 bfd_put_16 (output_bfd
, (gotpc_offset
>> 2) & 0xffff, loc
+ 2);
11053 bfd_put_16 (output_bfd
, plt_entry
[2], loc
+ 4);
11054 bfd_put_16 (output_bfd
, plt_entry
[3], loc
+ 6);
11055 bfd_put_16 (output_bfd
, plt_entry
[4], loc
+ 8);
11056 bfd_put_16 (output_bfd
, plt_entry
[5], loc
+ 10);
11060 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
11061 mips_elf_output_dynamic_relocation (output_bfd
, htab
->root
.srelplt
,
11062 got_index
- 2, h
->dynindx
,
11063 R_MIPS_JUMP_SLOT
, got_address
);
11065 /* We distinguish between PLT entries and lazy-binding stubs by
11066 giving the former an st_other value of STO_MIPS_PLT. Set the
11067 flag and leave the value if there are any relocations in the
11068 binary where pointer equality matters. */
11069 sym
->st_shndx
= SHN_UNDEF
;
11070 if (h
->pointer_equality_needed
)
11071 sym
->st_other
= ELF_ST_SET_MIPS_PLT (sym
->st_other
);
11079 if (h
->plt
.plist
!= NULL
&& h
->plt
.plist
->stub_offset
!= MINUS_ONE
)
11081 /* We've decided to create a lazy-binding stub. */
11082 bfd_boolean micromips_p
= MICROMIPS_P (output_bfd
);
11083 unsigned int other
= micromips_p
? STO_MICROMIPS
: 0;
11084 bfd_vma stub_size
= htab
->function_stub_size
;
11085 bfd_byte stub
[MIPS_FUNCTION_STUB_BIG_SIZE
];
11086 bfd_vma isa_bit
= micromips_p
;
11087 bfd_vma stub_big_size
;
11090 stub_big_size
= MIPS_FUNCTION_STUB_BIG_SIZE
;
11091 else if (htab
->insn32
)
11092 stub_big_size
= MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE
;
11094 stub_big_size
= MICROMIPS_FUNCTION_STUB_BIG_SIZE
;
11096 /* This symbol has a stub. Set it up. */
11098 BFD_ASSERT (h
->dynindx
!= -1);
11100 BFD_ASSERT (stub_size
== stub_big_size
|| h
->dynindx
<= 0xffff);
11102 /* Values up to 2^31 - 1 are allowed. Larger values would cause
11103 sign extension at runtime in the stub, resulting in a negative
11105 if (h
->dynindx
& ~0x7fffffff)
11108 /* Fill the stub. */
11112 bfd_put_micromips_32 (output_bfd
, STUB_LW_MICROMIPS (output_bfd
),
11117 bfd_put_micromips_32 (output_bfd
,
11118 STUB_MOVE32_MICROMIPS
, stub
+ idx
);
11123 bfd_put_16 (output_bfd
, STUB_MOVE_MICROMIPS
, stub
+ idx
);
11126 if (stub_size
== stub_big_size
)
11128 long dynindx_hi
= (h
->dynindx
>> 16) & 0x7fff;
11130 bfd_put_micromips_32 (output_bfd
,
11131 STUB_LUI_MICROMIPS (dynindx_hi
),
11137 bfd_put_micromips_32 (output_bfd
, STUB_JALR32_MICROMIPS
,
11143 bfd_put_16 (output_bfd
, STUB_JALR_MICROMIPS
, stub
+ idx
);
11147 /* If a large stub is not required and sign extension is not a
11148 problem, then use legacy code in the stub. */
11149 if (stub_size
== stub_big_size
)
11150 bfd_put_micromips_32 (output_bfd
,
11151 STUB_ORI_MICROMIPS (h
->dynindx
& 0xffff),
11153 else if (h
->dynindx
& ~0x7fff)
11154 bfd_put_micromips_32 (output_bfd
,
11155 STUB_LI16U_MICROMIPS (h
->dynindx
& 0xffff),
11158 bfd_put_micromips_32 (output_bfd
,
11159 STUB_LI16S_MICROMIPS (output_bfd
,
11166 bfd_put_32 (output_bfd
, STUB_LW (output_bfd
), stub
+ idx
);
11168 bfd_put_32 (output_bfd
, STUB_MOVE
, stub
+ idx
);
11170 if (stub_size
== stub_big_size
)
11172 bfd_put_32 (output_bfd
, STUB_LUI ((h
->dynindx
>> 16) & 0x7fff),
11177 if (!(MIPSR6_P (output_bfd
) && htab
->compact_branches
))
11179 bfd_put_32 (output_bfd
, STUB_JALR
, stub
+ idx
);
11183 /* If a large stub is not required and sign extension is not a
11184 problem, then use legacy code in the stub. */
11185 if (stub_size
== stub_big_size
)
11186 bfd_put_32 (output_bfd
, STUB_ORI (h
->dynindx
& 0xffff),
11188 else if (h
->dynindx
& ~0x7fff)
11189 bfd_put_32 (output_bfd
, STUB_LI16U (h
->dynindx
& 0xffff),
11192 bfd_put_32 (output_bfd
, STUB_LI16S (output_bfd
, h
->dynindx
),
11196 if (MIPSR6_P (output_bfd
) && htab
->compact_branches
)
11197 bfd_put_32 (output_bfd
, STUB_JALRC
, stub
+ idx
);
11200 BFD_ASSERT (h
->plt
.plist
->stub_offset
<= htab
->sstubs
->size
);
11201 memcpy (htab
->sstubs
->contents
+ h
->plt
.plist
->stub_offset
,
11204 /* Mark the symbol as undefined. stub_offset != -1 occurs
11205 only for the referenced symbol. */
11206 sym
->st_shndx
= SHN_UNDEF
;
11208 /* The run-time linker uses the st_value field of the symbol
11209 to reset the global offset table entry for this external
11210 to its stub address when unlinking a shared object. */
11211 sym
->st_value
= (htab
->sstubs
->output_section
->vma
11212 + htab
->sstubs
->output_offset
11213 + h
->plt
.plist
->stub_offset
11215 sym
->st_other
= other
;
11218 /* If we have a MIPS16 function with a stub, the dynamic symbol must
11219 refer to the stub, since only the stub uses the standard calling
11221 if (h
->dynindx
!= -1 && hmips
->fn_stub
!= NULL
)
11223 BFD_ASSERT (hmips
->need_fn_stub
);
11224 sym
->st_value
= (hmips
->fn_stub
->output_section
->vma
11225 + hmips
->fn_stub
->output_offset
);
11226 sym
->st_size
= hmips
->fn_stub
->size
;
11227 sym
->st_other
= ELF_ST_VISIBILITY (sym
->st_other
);
11230 BFD_ASSERT (h
->dynindx
!= -1
11231 || h
->forced_local
);
11233 sgot
= htab
->root
.sgot
;
11234 g
= htab
->got_info
;
11235 BFD_ASSERT (g
!= NULL
);
11237 /* Run through the global symbol table, creating GOT entries for all
11238 the symbols that need them. */
11239 if (hmips
->global_got_area
!= GGA_NONE
)
11244 value
= sym
->st_value
;
11245 offset
= mips_elf_primary_global_got_index (output_bfd
, info
, h
);
11246 MIPS_ELF_PUT_WORD (output_bfd
, value
, sgot
->contents
+ offset
);
11249 if (hmips
->global_got_area
!= GGA_NONE
&& g
->next
)
11251 struct mips_got_entry e
, *p
;
11257 e
.abfd
= output_bfd
;
11260 e
.tls_type
= GOT_TLS_NONE
;
11262 for (g
= g
->next
; g
->next
!= gg
; g
= g
->next
)
11265 && (p
= (struct mips_got_entry
*) htab_find (g
->got_entries
,
11268 offset
= p
->gotidx
;
11269 BFD_ASSERT (offset
> 0 && offset
< htab
->root
.sgot
->size
);
11270 if (bfd_link_pic (info
)
11271 || (elf_hash_table (info
)->dynamic_sections_created
11273 && p
->d
.h
->root
.def_dynamic
11274 && !p
->d
.h
->root
.def_regular
))
11276 /* Create an R_MIPS_REL32 relocation for this entry. Due to
11277 the various compatibility problems, it's easier to mock
11278 up an R_MIPS_32 or R_MIPS_64 relocation and leave
11279 mips_elf_create_dynamic_relocation to calculate the
11280 appropriate addend. */
11281 Elf_Internal_Rela rel
[3];
11283 memset (rel
, 0, sizeof (rel
));
11284 if (ABI_64_P (output_bfd
))
11285 rel
[0].r_info
= ELF_R_INFO (output_bfd
, 0, R_MIPS_64
);
11287 rel
[0].r_info
= ELF_R_INFO (output_bfd
, 0, R_MIPS_32
);
11288 rel
[0].r_offset
= rel
[1].r_offset
= rel
[2].r_offset
= offset
;
11291 if (! (mips_elf_create_dynamic_relocation
11292 (output_bfd
, info
, rel
,
11293 e
.d
.h
, NULL
, sym
->st_value
, &entry
, sgot
)))
11297 entry
= sym
->st_value
;
11298 MIPS_ELF_PUT_WORD (output_bfd
, entry
, sgot
->contents
+ offset
);
11303 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
11304 name
= h
->root
.root
.string
;
11305 if (h
== elf_hash_table (info
)->hdynamic
11306 || h
== elf_hash_table (info
)->hgot
)
11307 sym
->st_shndx
= SHN_ABS
;
11308 else if (strcmp (name
, "_DYNAMIC_LINK") == 0
11309 || strcmp (name
, "_DYNAMIC_LINKING") == 0)
11311 sym
->st_shndx
= SHN_ABS
;
11312 sym
->st_info
= ELF_ST_INFO (STB_GLOBAL
, STT_SECTION
);
11315 else if (SGI_COMPAT (output_bfd
))
11317 if (strcmp (name
, mips_elf_dynsym_rtproc_names
[0]) == 0
11318 || strcmp (name
, mips_elf_dynsym_rtproc_names
[1]) == 0)
11320 sym
->st_info
= ELF_ST_INFO (STB_GLOBAL
, STT_SECTION
);
11321 sym
->st_other
= STO_PROTECTED
;
11323 sym
->st_shndx
= SHN_MIPS_DATA
;
11325 else if (strcmp (name
, mips_elf_dynsym_rtproc_names
[2]) == 0)
11327 sym
->st_info
= ELF_ST_INFO (STB_GLOBAL
, STT_SECTION
);
11328 sym
->st_other
= STO_PROTECTED
;
11329 sym
->st_value
= mips_elf_hash_table (info
)->procedure_count
;
11330 sym
->st_shndx
= SHN_ABS
;
11332 else if (sym
->st_shndx
!= SHN_UNDEF
&& sym
->st_shndx
!= SHN_ABS
)
11334 if (h
->type
== STT_FUNC
)
11335 sym
->st_shndx
= SHN_MIPS_TEXT
;
11336 else if (h
->type
== STT_OBJECT
)
11337 sym
->st_shndx
= SHN_MIPS_DATA
;
11341 /* Emit a copy reloc, if needed. */
11347 BFD_ASSERT (h
->dynindx
!= -1);
11348 BFD_ASSERT (htab
->use_plts_and_copy_relocs
);
11350 s
= mips_elf_rel_dyn_section (info
, FALSE
);
11351 symval
= (h
->root
.u
.def
.section
->output_section
->vma
11352 + h
->root
.u
.def
.section
->output_offset
11353 + h
->root
.u
.def
.value
);
11354 mips_elf_output_dynamic_relocation (output_bfd
, s
, s
->reloc_count
++,
11355 h
->dynindx
, R_MIPS_COPY
, symval
);
11358 /* Handle the IRIX6-specific symbols. */
11359 if (IRIX_COMPAT (output_bfd
) == ict_irix6
)
11360 mips_elf_irix6_finish_dynamic_symbol (output_bfd
, name
, sym
);
11362 /* Keep dynamic compressed symbols odd. This allows the dynamic linker
11363 to treat compressed symbols like any other. */
11364 if (ELF_ST_IS_MIPS16 (sym
->st_other
))
11366 BFD_ASSERT (sym
->st_value
& 1);
11367 sym
->st_other
-= STO_MIPS16
;
11369 else if (ELF_ST_IS_MICROMIPS (sym
->st_other
))
11371 BFD_ASSERT (sym
->st_value
& 1);
11372 sym
->st_other
-= STO_MICROMIPS
;
11378 /* Likewise, for VxWorks. */
11381 _bfd_mips_vxworks_finish_dynamic_symbol (bfd
*output_bfd
,
11382 struct bfd_link_info
*info
,
11383 struct elf_link_hash_entry
*h
,
11384 Elf_Internal_Sym
*sym
)
11388 struct mips_got_info
*g
;
11389 struct mips_elf_link_hash_table
*htab
;
11390 struct mips_elf_link_hash_entry
*hmips
;
11392 htab
= mips_elf_hash_table (info
);
11393 BFD_ASSERT (htab
!= NULL
);
11394 dynobj
= elf_hash_table (info
)->dynobj
;
11395 hmips
= (struct mips_elf_link_hash_entry
*) h
;
11397 if (h
->plt
.plist
!= NULL
&& h
->plt
.plist
->mips_offset
!= MINUS_ONE
)
11400 bfd_vma plt_address
, got_address
, got_offset
, branch_offset
;
11401 Elf_Internal_Rela rel
;
11402 static const bfd_vma
*plt_entry
;
11403 bfd_vma gotplt_index
;
11404 bfd_vma plt_offset
;
11406 plt_offset
= htab
->plt_header_size
+ h
->plt
.plist
->mips_offset
;
11407 gotplt_index
= h
->plt
.plist
->gotplt_index
;
11409 BFD_ASSERT (h
->dynindx
!= -1);
11410 BFD_ASSERT (htab
->root
.splt
!= NULL
);
11411 BFD_ASSERT (gotplt_index
!= MINUS_ONE
);
11412 BFD_ASSERT (plt_offset
<= htab
->root
.splt
->size
);
11414 /* Calculate the address of the .plt entry. */
11415 plt_address
= (htab
->root
.splt
->output_section
->vma
11416 + htab
->root
.splt
->output_offset
11419 /* Calculate the address of the .got.plt entry. */
11420 got_address
= (htab
->root
.sgotplt
->output_section
->vma
11421 + htab
->root
.sgotplt
->output_offset
11422 + gotplt_index
* MIPS_ELF_GOT_SIZE (output_bfd
));
11424 /* Calculate the offset of the .got.plt entry from
11425 _GLOBAL_OFFSET_TABLE_. */
11426 got_offset
= mips_elf_gotplt_index (info
, h
);
11428 /* Calculate the offset for the branch at the start of the PLT
11429 entry. The branch jumps to the beginning of .plt. */
11430 branch_offset
= -(plt_offset
/ 4 + 1) & 0xffff;
11432 /* Fill in the initial value of the .got.plt entry. */
11433 bfd_put_32 (output_bfd
, plt_address
,
11434 (htab
->root
.sgotplt
->contents
11435 + gotplt_index
* MIPS_ELF_GOT_SIZE (output_bfd
)));
11437 /* Find out where the .plt entry should go. */
11438 loc
= htab
->root
.splt
->contents
+ plt_offset
;
11440 if (bfd_link_pic (info
))
11442 plt_entry
= mips_vxworks_shared_plt_entry
;
11443 bfd_put_32 (output_bfd
, plt_entry
[0] | branch_offset
, loc
);
11444 bfd_put_32 (output_bfd
, plt_entry
[1] | gotplt_index
, loc
+ 4);
11448 bfd_vma got_address_high
, got_address_low
;
11450 plt_entry
= mips_vxworks_exec_plt_entry
;
11451 got_address_high
= ((got_address
+ 0x8000) >> 16) & 0xffff;
11452 got_address_low
= got_address
& 0xffff;
11454 bfd_put_32 (output_bfd
, plt_entry
[0] | branch_offset
, loc
);
11455 bfd_put_32 (output_bfd
, plt_entry
[1] | gotplt_index
, loc
+ 4);
11456 bfd_put_32 (output_bfd
, plt_entry
[2] | got_address_high
, loc
+ 8);
11457 bfd_put_32 (output_bfd
, plt_entry
[3] | got_address_low
, loc
+ 12);
11458 bfd_put_32 (output_bfd
, plt_entry
[4], loc
+ 16);
11459 bfd_put_32 (output_bfd
, plt_entry
[5], loc
+ 20);
11460 bfd_put_32 (output_bfd
, plt_entry
[6], loc
+ 24);
11461 bfd_put_32 (output_bfd
, plt_entry
[7], loc
+ 28);
11463 loc
= (htab
->srelplt2
->contents
11464 + (gotplt_index
* 3 + 2) * sizeof (Elf32_External_Rela
));
11466 /* Emit a relocation for the .got.plt entry. */
11467 rel
.r_offset
= got_address
;
11468 rel
.r_info
= ELF32_R_INFO (htab
->root
.hplt
->indx
, R_MIPS_32
);
11469 rel
.r_addend
= plt_offset
;
11470 bfd_elf32_swap_reloca_out (output_bfd
, &rel
, loc
);
11472 /* Emit a relocation for the lui of %hi(<.got.plt slot>). */
11473 loc
+= sizeof (Elf32_External_Rela
);
11474 rel
.r_offset
= plt_address
+ 8;
11475 rel
.r_info
= ELF32_R_INFO (htab
->root
.hgot
->indx
, R_MIPS_HI16
);
11476 rel
.r_addend
= got_offset
;
11477 bfd_elf32_swap_reloca_out (output_bfd
, &rel
, loc
);
11479 /* Emit a relocation for the addiu of %lo(<.got.plt slot>). */
11480 loc
+= sizeof (Elf32_External_Rela
);
11482 rel
.r_info
= ELF32_R_INFO (htab
->root
.hgot
->indx
, R_MIPS_LO16
);
11483 bfd_elf32_swap_reloca_out (output_bfd
, &rel
, loc
);
11486 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
11487 loc
= (htab
->root
.srelplt
->contents
11488 + gotplt_index
* sizeof (Elf32_External_Rela
));
11489 rel
.r_offset
= got_address
;
11490 rel
.r_info
= ELF32_R_INFO (h
->dynindx
, R_MIPS_JUMP_SLOT
);
11492 bfd_elf32_swap_reloca_out (output_bfd
, &rel
, loc
);
11494 if (!h
->def_regular
)
11495 sym
->st_shndx
= SHN_UNDEF
;
11498 BFD_ASSERT (h
->dynindx
!= -1 || h
->forced_local
);
11500 sgot
= htab
->root
.sgot
;
11501 g
= htab
->got_info
;
11502 BFD_ASSERT (g
!= NULL
);
11504 /* See if this symbol has an entry in the GOT. */
11505 if (hmips
->global_got_area
!= GGA_NONE
)
11508 Elf_Internal_Rela outrel
;
11512 /* Install the symbol value in the GOT. */
11513 offset
= mips_elf_primary_global_got_index (output_bfd
, info
, h
);
11514 MIPS_ELF_PUT_WORD (output_bfd
, sym
->st_value
, sgot
->contents
+ offset
);
11516 /* Add a dynamic relocation for it. */
11517 s
= mips_elf_rel_dyn_section (info
, FALSE
);
11518 loc
= s
->contents
+ (s
->reloc_count
++ * sizeof (Elf32_External_Rela
));
11519 outrel
.r_offset
= (sgot
->output_section
->vma
11520 + sgot
->output_offset
11522 outrel
.r_info
= ELF32_R_INFO (h
->dynindx
, R_MIPS_32
);
11523 outrel
.r_addend
= 0;
11524 bfd_elf32_swap_reloca_out (dynobj
, &outrel
, loc
);
11527 /* Emit a copy reloc, if needed. */
11530 Elf_Internal_Rela rel
;
11534 BFD_ASSERT (h
->dynindx
!= -1);
11536 rel
.r_offset
= (h
->root
.u
.def
.section
->output_section
->vma
11537 + h
->root
.u
.def
.section
->output_offset
11538 + h
->root
.u
.def
.value
);
11539 rel
.r_info
= ELF32_R_INFO (h
->dynindx
, R_MIPS_COPY
);
11541 if (h
->root
.u
.def
.section
== htab
->root
.sdynrelro
)
11542 srel
= htab
->root
.sreldynrelro
;
11544 srel
= htab
->root
.srelbss
;
11545 loc
= srel
->contents
+ srel
->reloc_count
* sizeof (Elf32_External_Rela
);
11546 bfd_elf32_swap_reloca_out (output_bfd
, &rel
, loc
);
11547 ++srel
->reloc_count
;
11550 /* If this is a mips16/microMIPS symbol, force the value to be even. */
11551 if (ELF_ST_IS_COMPRESSED (sym
->st_other
))
11552 sym
->st_value
&= ~1;
11557 /* Write out a plt0 entry to the beginning of .plt. */
11560 mips_finish_exec_plt (bfd
*output_bfd
, struct bfd_link_info
*info
)
11563 bfd_vma gotplt_value
, gotplt_value_high
, gotplt_value_low
;
11564 static const bfd_vma
*plt_entry
;
11565 struct mips_elf_link_hash_table
*htab
;
11567 htab
= mips_elf_hash_table (info
);
11568 BFD_ASSERT (htab
!= NULL
);
11570 if (ABI_64_P (output_bfd
))
11571 plt_entry
= (htab
->compact_branches
11572 ? mipsr6_n64_exec_plt0_entry_compact
11573 : mips_n64_exec_plt0_entry
);
11574 else if (ABI_N32_P (output_bfd
))
11575 plt_entry
= (htab
->compact_branches
11576 ? mipsr6_n32_exec_plt0_entry_compact
11577 : mips_n32_exec_plt0_entry
);
11578 else if (!htab
->plt_header_is_comp
)
11579 plt_entry
= (htab
->compact_branches
11580 ? mipsr6_o32_exec_plt0_entry_compact
11581 : mips_o32_exec_plt0_entry
);
11582 else if (htab
->insn32
)
11583 plt_entry
= micromips_insn32_o32_exec_plt0_entry
;
11585 plt_entry
= micromips_o32_exec_plt0_entry
;
11587 /* Calculate the value of .got.plt. */
11588 gotplt_value
= (htab
->root
.sgotplt
->output_section
->vma
11589 + htab
->root
.sgotplt
->output_offset
);
11590 gotplt_value_high
= ((gotplt_value
+ 0x8000) >> 16) & 0xffff;
11591 gotplt_value_low
= gotplt_value
& 0xffff;
11593 /* The PLT sequence is not safe for N64 if .got.plt's address can
11594 not be loaded in two instructions. */
11595 if (ABI_64_P (output_bfd
)
11596 && ((gotplt_value
+ 0x80008000) & ~(bfd_vma
) 0xffffffff) != 0)
11599 /* xgettext:c-format */
11600 (_("%pB: `%pA' start VMA of %#" PRIx64
" outside the 32-bit range "
11601 "supported; consider using `-Ttext-segment=...'"),
11603 htab
->root
.sgotplt
->output_section
,
11604 (int64_t) gotplt_value
);
11605 bfd_set_error (bfd_error_no_error
);
11609 /* Install the PLT header. */
11610 loc
= htab
->root
.splt
->contents
;
11611 if (plt_entry
== micromips_o32_exec_plt0_entry
)
11613 bfd_vma gotpc_offset
;
11614 bfd_vma loc_address
;
11617 BFD_ASSERT (gotplt_value
% 4 == 0);
11619 loc_address
= (htab
->root
.splt
->output_section
->vma
11620 + htab
->root
.splt
->output_offset
);
11621 gotpc_offset
= gotplt_value
- ((loc_address
| 3) ^ 3);
11623 /* ADDIUPC has a span of +/-16MB, check we're in range. */
11624 if (gotpc_offset
+ 0x1000000 >= 0x2000000)
11627 /* xgettext:c-format */
11628 (_("%pB: `%pA' offset of %" PRId64
" from `%pA' "
11629 "beyond the range of ADDIUPC"),
11631 htab
->root
.sgotplt
->output_section
,
11632 (int64_t) gotpc_offset
,
11633 htab
->root
.splt
->output_section
);
11634 bfd_set_error (bfd_error_no_error
);
11637 bfd_put_16 (output_bfd
,
11638 plt_entry
[0] | ((gotpc_offset
>> 18) & 0x7f), loc
);
11639 bfd_put_16 (output_bfd
, (gotpc_offset
>> 2) & 0xffff, loc
+ 2);
11640 for (i
= 2; i
< ARRAY_SIZE (micromips_o32_exec_plt0_entry
); i
++)
11641 bfd_put_16 (output_bfd
, plt_entry
[i
], loc
+ (i
* 2));
11643 else if (plt_entry
== micromips_insn32_o32_exec_plt0_entry
)
11647 bfd_put_16 (output_bfd
, plt_entry
[0], loc
);
11648 bfd_put_16 (output_bfd
, gotplt_value_high
, loc
+ 2);
11649 bfd_put_16 (output_bfd
, plt_entry
[2], loc
+ 4);
11650 bfd_put_16 (output_bfd
, gotplt_value_low
, loc
+ 6);
11651 bfd_put_16 (output_bfd
, plt_entry
[4], loc
+ 8);
11652 bfd_put_16 (output_bfd
, gotplt_value_low
, loc
+ 10);
11653 for (i
= 6; i
< ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry
); i
++)
11654 bfd_put_16 (output_bfd
, plt_entry
[i
], loc
+ (i
* 2));
11658 bfd_put_32 (output_bfd
, plt_entry
[0] | gotplt_value_high
, loc
);
11659 bfd_put_32 (output_bfd
, plt_entry
[1] | gotplt_value_low
, loc
+ 4);
11660 bfd_put_32 (output_bfd
, plt_entry
[2] | gotplt_value_low
, loc
+ 8);
11661 bfd_put_32 (output_bfd
, plt_entry
[3], loc
+ 12);
11662 bfd_put_32 (output_bfd
, plt_entry
[4], loc
+ 16);
11663 bfd_put_32 (output_bfd
, plt_entry
[5], loc
+ 20);
11664 bfd_put_32 (output_bfd
, plt_entry
[6], loc
+ 24);
11665 bfd_put_32 (output_bfd
, plt_entry
[7], loc
+ 28);
11671 /* Install the PLT header for a VxWorks executable and finalize the
11672 contents of .rela.plt.unloaded. */
11675 mips_vxworks_finish_exec_plt (bfd
*output_bfd
, struct bfd_link_info
*info
)
11677 Elf_Internal_Rela rela
;
11679 bfd_vma got_value
, got_value_high
, got_value_low
, plt_address
;
11680 static const bfd_vma
*plt_entry
;
11681 struct mips_elf_link_hash_table
*htab
;
11683 htab
= mips_elf_hash_table (info
);
11684 BFD_ASSERT (htab
!= NULL
);
11686 plt_entry
= mips_vxworks_exec_plt0_entry
;
11688 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
11689 got_value
= (htab
->root
.hgot
->root
.u
.def
.section
->output_section
->vma
11690 + htab
->root
.hgot
->root
.u
.def
.section
->output_offset
11691 + htab
->root
.hgot
->root
.u
.def
.value
);
11693 got_value_high
= ((got_value
+ 0x8000) >> 16) & 0xffff;
11694 got_value_low
= got_value
& 0xffff;
11696 /* Calculate the address of the PLT header. */
11697 plt_address
= (htab
->root
.splt
->output_section
->vma
11698 + htab
->root
.splt
->output_offset
);
11700 /* Install the PLT header. */
11701 loc
= htab
->root
.splt
->contents
;
11702 bfd_put_32 (output_bfd
, plt_entry
[0] | got_value_high
, loc
);
11703 bfd_put_32 (output_bfd
, plt_entry
[1] | got_value_low
, loc
+ 4);
11704 bfd_put_32 (output_bfd
, plt_entry
[2], loc
+ 8);
11705 bfd_put_32 (output_bfd
, plt_entry
[3], loc
+ 12);
11706 bfd_put_32 (output_bfd
, plt_entry
[4], loc
+ 16);
11707 bfd_put_32 (output_bfd
, plt_entry
[5], loc
+ 20);
11709 /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_). */
11710 loc
= htab
->srelplt2
->contents
;
11711 rela
.r_offset
= plt_address
;
11712 rela
.r_info
= ELF32_R_INFO (htab
->root
.hgot
->indx
, R_MIPS_HI16
);
11714 bfd_elf32_swap_reloca_out (output_bfd
, &rela
, loc
);
11715 loc
+= sizeof (Elf32_External_Rela
);
11717 /* Output the relocation for the following addiu of
11718 %lo(_GLOBAL_OFFSET_TABLE_). */
11719 rela
.r_offset
+= 4;
11720 rela
.r_info
= ELF32_R_INFO (htab
->root
.hgot
->indx
, R_MIPS_LO16
);
11721 bfd_elf32_swap_reloca_out (output_bfd
, &rela
, loc
);
11722 loc
+= sizeof (Elf32_External_Rela
);
11724 /* Fix up the remaining relocations. They may have the wrong
11725 symbol index for _G_O_T_ or _P_L_T_ depending on the order
11726 in which symbols were output. */
11727 while (loc
< htab
->srelplt2
->contents
+ htab
->srelplt2
->size
)
11729 Elf_Internal_Rela rel
;
11731 bfd_elf32_swap_reloca_in (output_bfd
, loc
, &rel
);
11732 rel
.r_info
= ELF32_R_INFO (htab
->root
.hplt
->indx
, R_MIPS_32
);
11733 bfd_elf32_swap_reloca_out (output_bfd
, &rel
, loc
);
11734 loc
+= sizeof (Elf32_External_Rela
);
11736 bfd_elf32_swap_reloca_in (output_bfd
, loc
, &rel
);
11737 rel
.r_info
= ELF32_R_INFO (htab
->root
.hgot
->indx
, R_MIPS_HI16
);
11738 bfd_elf32_swap_reloca_out (output_bfd
, &rel
, loc
);
11739 loc
+= sizeof (Elf32_External_Rela
);
11741 bfd_elf32_swap_reloca_in (output_bfd
, loc
, &rel
);
11742 rel
.r_info
= ELF32_R_INFO (htab
->root
.hgot
->indx
, R_MIPS_LO16
);
11743 bfd_elf32_swap_reloca_out (output_bfd
, &rel
, loc
);
11744 loc
+= sizeof (Elf32_External_Rela
);
11748 /* Install the PLT header for a VxWorks shared library. */
11751 mips_vxworks_finish_shared_plt (bfd
*output_bfd
, struct bfd_link_info
*info
)
11754 struct mips_elf_link_hash_table
*htab
;
11756 htab
= mips_elf_hash_table (info
);
11757 BFD_ASSERT (htab
!= NULL
);
11759 /* We just need to copy the entry byte-by-byte. */
11760 for (i
= 0; i
< ARRAY_SIZE (mips_vxworks_shared_plt0_entry
); i
++)
11761 bfd_put_32 (output_bfd
, mips_vxworks_shared_plt0_entry
[i
],
11762 htab
->root
.splt
->contents
+ i
* 4);
11765 /* Finish up the dynamic sections. */
11768 _bfd_mips_elf_finish_dynamic_sections (bfd
*output_bfd
,
11769 struct bfd_link_info
*info
)
11774 struct mips_got_info
*gg
, *g
;
11775 struct mips_elf_link_hash_table
*htab
;
11777 htab
= mips_elf_hash_table (info
);
11778 BFD_ASSERT (htab
!= NULL
);
11780 dynobj
= elf_hash_table (info
)->dynobj
;
11782 sdyn
= bfd_get_linker_section (dynobj
, ".dynamic");
11784 sgot
= htab
->root
.sgot
;
11785 gg
= htab
->got_info
;
11787 if (elf_hash_table (info
)->dynamic_sections_created
)
11790 int dyn_to_skip
= 0, dyn_skipped
= 0;
11792 BFD_ASSERT (sdyn
!= NULL
);
11793 BFD_ASSERT (gg
!= NULL
);
11795 g
= mips_elf_bfd_got (output_bfd
, FALSE
);
11796 BFD_ASSERT (g
!= NULL
);
11798 for (b
= sdyn
->contents
;
11799 b
< sdyn
->contents
+ sdyn
->size
;
11800 b
+= MIPS_ELF_DYN_SIZE (dynobj
))
11802 Elf_Internal_Dyn dyn
;
11806 bfd_boolean swap_out_p
;
11808 /* Read in the current dynamic entry. */
11809 (*get_elf_backend_data (dynobj
)->s
->swap_dyn_in
) (dynobj
, b
, &dyn
);
11811 /* Assume that we're going to modify it and write it out. */
11817 dyn
.d_un
.d_val
= MIPS_ELF_REL_SIZE (dynobj
);
11821 BFD_ASSERT (htab
->is_vxworks
);
11822 dyn
.d_un
.d_val
= MIPS_ELF_RELA_SIZE (dynobj
);
11826 /* Rewrite DT_STRSZ. */
11828 _bfd_elf_strtab_size (elf_hash_table (info
)->dynstr
);
11832 s
= htab
->root
.sgot
;
11833 dyn
.d_un
.d_ptr
= s
->output_section
->vma
+ s
->output_offset
;
11836 case DT_MIPS_PLTGOT
:
11837 s
= htab
->root
.sgotplt
;
11838 dyn
.d_un
.d_ptr
= s
->output_section
->vma
+ s
->output_offset
;
11841 case DT_MIPS_RLD_VERSION
:
11842 dyn
.d_un
.d_val
= 1; /* XXX */
11845 case DT_MIPS_FLAGS
:
11846 dyn
.d_un
.d_val
= RHF_NOTPOT
; /* XXX */
11849 case DT_MIPS_TIME_STAMP
:
11853 dyn
.d_un
.d_val
= t
;
11857 case DT_MIPS_ICHECKSUM
:
11859 swap_out_p
= FALSE
;
11862 case DT_MIPS_IVERSION
:
11864 swap_out_p
= FALSE
;
11867 case DT_MIPS_BASE_ADDRESS
:
11868 s
= output_bfd
->sections
;
11869 BFD_ASSERT (s
!= NULL
);
11870 dyn
.d_un
.d_ptr
= s
->vma
& ~(bfd_vma
) 0xffff;
11873 case DT_MIPS_LOCAL_GOTNO
:
11874 dyn
.d_un
.d_val
= g
->local_gotno
;
11877 case DT_MIPS_UNREFEXTNO
:
11878 /* The index into the dynamic symbol table which is the
11879 entry of the first external symbol that is not
11880 referenced within the same object. */
11881 dyn
.d_un
.d_val
= bfd_count_sections (output_bfd
) + 1;
11884 case DT_MIPS_GOTSYM
:
11885 if (htab
->global_gotsym
)
11887 dyn
.d_un
.d_val
= htab
->global_gotsym
->dynindx
;
11890 /* In case if we don't have global got symbols we default
11891 to setting DT_MIPS_GOTSYM to the same value as
11892 DT_MIPS_SYMTABNO. */
11893 /* Fall through. */
11895 case DT_MIPS_SYMTABNO
:
11897 elemsize
= MIPS_ELF_SYM_SIZE (output_bfd
);
11898 s
= bfd_get_linker_section (dynobj
, name
);
11901 dyn
.d_un
.d_val
= s
->size
/ elemsize
;
11903 dyn
.d_un
.d_val
= 0;
11906 case DT_MIPS_HIPAGENO
:
11907 dyn
.d_un
.d_val
= g
->local_gotno
- htab
->reserved_gotno
;
11910 case DT_MIPS_RLD_MAP
:
11912 struct elf_link_hash_entry
*h
;
11913 h
= mips_elf_hash_table (info
)->rld_symbol
;
11916 dyn_to_skip
= MIPS_ELF_DYN_SIZE (dynobj
);
11917 swap_out_p
= FALSE
;
11920 s
= h
->root
.u
.def
.section
;
11922 /* The MIPS_RLD_MAP tag stores the absolute address of the
11924 dyn
.d_un
.d_ptr
= (s
->output_section
->vma
+ s
->output_offset
11925 + h
->root
.u
.def
.value
);
11929 case DT_MIPS_RLD_MAP_REL
:
11931 struct elf_link_hash_entry
*h
;
11932 bfd_vma dt_addr
, rld_addr
;
11933 h
= mips_elf_hash_table (info
)->rld_symbol
;
11936 dyn_to_skip
= MIPS_ELF_DYN_SIZE (dynobj
);
11937 swap_out_p
= FALSE
;
11940 s
= h
->root
.u
.def
.section
;
11942 /* The MIPS_RLD_MAP_REL tag stores the offset to the debug
11943 pointer, relative to the address of the tag. */
11944 dt_addr
= (sdyn
->output_section
->vma
+ sdyn
->output_offset
11945 + (b
- sdyn
->contents
));
11946 rld_addr
= (s
->output_section
->vma
+ s
->output_offset
11947 + h
->root
.u
.def
.value
);
11948 dyn
.d_un
.d_ptr
= rld_addr
- dt_addr
;
11952 case DT_MIPS_OPTIONS
:
11953 s
= (bfd_get_section_by_name
11954 (output_bfd
, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd
)));
11955 dyn
.d_un
.d_ptr
= s
->vma
;
11959 BFD_ASSERT (htab
->use_plts_and_copy_relocs
);
11960 if (htab
->is_vxworks
)
11961 dyn
.d_un
.d_val
= DT_RELA
;
11963 dyn
.d_un
.d_val
= DT_REL
;
11967 BFD_ASSERT (htab
->use_plts_and_copy_relocs
);
11968 dyn
.d_un
.d_val
= htab
->root
.srelplt
->size
;
11972 BFD_ASSERT (htab
->use_plts_and_copy_relocs
);
11973 dyn
.d_un
.d_ptr
= (htab
->root
.srelplt
->output_section
->vma
11974 + htab
->root
.srelplt
->output_offset
);
11978 /* If we didn't need any text relocations after all, delete
11979 the dynamic tag. */
11980 if (!(info
->flags
& DF_TEXTREL
))
11982 dyn_to_skip
= MIPS_ELF_DYN_SIZE (dynobj
);
11983 swap_out_p
= FALSE
;
11988 /* If we didn't need any text relocations after all, clear
11989 DF_TEXTREL from DT_FLAGS. */
11990 if (!(info
->flags
& DF_TEXTREL
))
11991 dyn
.d_un
.d_val
&= ~DF_TEXTREL
;
11993 swap_out_p
= FALSE
;
11996 case DT_MIPS_XHASH
:
11997 name
= ".MIPS.xhash";
11998 s
= bfd_get_linker_section (dynobj
, name
);
11999 dyn
.d_un
.d_ptr
= s
->output_section
->vma
+ s
->output_offset
;
12003 swap_out_p
= FALSE
;
12004 if (htab
->is_vxworks
12005 && elf_vxworks_finish_dynamic_entry (output_bfd
, &dyn
))
12010 if (swap_out_p
|| dyn_skipped
)
12011 (*get_elf_backend_data (dynobj
)->s
->swap_dyn_out
)
12012 (dynobj
, &dyn
, b
- dyn_skipped
);
12016 dyn_skipped
+= dyn_to_skip
;
12021 /* Wipe out any trailing entries if we shifted down a dynamic tag. */
12022 if (dyn_skipped
> 0)
12023 memset (b
- dyn_skipped
, 0, dyn_skipped
);
12026 if (sgot
!= NULL
&& sgot
->size
> 0
12027 && !bfd_is_abs_section (sgot
->output_section
))
12029 if (htab
->is_vxworks
)
12031 /* The first entry of the global offset table points to the
12032 ".dynamic" section. The second is initialized by the
12033 loader and contains the shared library identifier.
12034 The third is also initialized by the loader and points
12035 to the lazy resolution stub. */
12036 MIPS_ELF_PUT_WORD (output_bfd
,
12037 sdyn
->output_offset
+ sdyn
->output_section
->vma
,
12039 MIPS_ELF_PUT_WORD (output_bfd
, 0,
12040 sgot
->contents
+ MIPS_ELF_GOT_SIZE (output_bfd
));
12041 MIPS_ELF_PUT_WORD (output_bfd
, 0,
12043 + 2 * MIPS_ELF_GOT_SIZE (output_bfd
));
12047 /* The first entry of the global offset table will be filled at
12048 runtime. The second entry will be used by some runtime loaders.
12049 This isn't the case of IRIX rld. */
12050 MIPS_ELF_PUT_WORD (output_bfd
, (bfd_vma
) 0, sgot
->contents
);
12051 MIPS_ELF_PUT_WORD (output_bfd
, MIPS_ELF_GNU_GOT1_MASK (output_bfd
),
12052 sgot
->contents
+ MIPS_ELF_GOT_SIZE (output_bfd
));
12055 elf_section_data (sgot
->output_section
)->this_hdr
.sh_entsize
12056 = MIPS_ELF_GOT_SIZE (output_bfd
);
12059 /* Generate dynamic relocations for the non-primary gots. */
12060 if (gg
!= NULL
&& gg
->next
)
12062 Elf_Internal_Rela rel
[3];
12063 bfd_vma addend
= 0;
12065 memset (rel
, 0, sizeof (rel
));
12066 rel
[0].r_info
= ELF_R_INFO (output_bfd
, 0, R_MIPS_REL32
);
12068 for (g
= gg
->next
; g
->next
!= gg
; g
= g
->next
)
12070 bfd_vma got_index
= g
->next
->local_gotno
+ g
->next
->global_gotno
12071 + g
->next
->tls_gotno
;
12073 MIPS_ELF_PUT_WORD (output_bfd
, 0, sgot
->contents
12074 + got_index
++ * MIPS_ELF_GOT_SIZE (output_bfd
));
12075 MIPS_ELF_PUT_WORD (output_bfd
, MIPS_ELF_GNU_GOT1_MASK (output_bfd
),
12077 + got_index
++ * MIPS_ELF_GOT_SIZE (output_bfd
));
12079 if (! bfd_link_pic (info
))
12082 for (; got_index
< g
->local_gotno
; got_index
++)
12084 if (got_index
>= g
->assigned_low_gotno
12085 && got_index
<= g
->assigned_high_gotno
)
12088 rel
[0].r_offset
= rel
[1].r_offset
= rel
[2].r_offset
12089 = got_index
* MIPS_ELF_GOT_SIZE (output_bfd
);
12090 if (!(mips_elf_create_dynamic_relocation
12091 (output_bfd
, info
, rel
, NULL
,
12092 bfd_abs_section_ptr
,
12093 0, &addend
, sgot
)))
12095 BFD_ASSERT (addend
== 0);
12100 /* The generation of dynamic relocations for the non-primary gots
12101 adds more dynamic relocations. We cannot count them until
12104 if (elf_hash_table (info
)->dynamic_sections_created
)
12107 bfd_boolean swap_out_p
;
12109 BFD_ASSERT (sdyn
!= NULL
);
12111 for (b
= sdyn
->contents
;
12112 b
< sdyn
->contents
+ sdyn
->size
;
12113 b
+= MIPS_ELF_DYN_SIZE (dynobj
))
12115 Elf_Internal_Dyn dyn
;
12118 /* Read in the current dynamic entry. */
12119 (*get_elf_backend_data (dynobj
)->s
->swap_dyn_in
) (dynobj
, b
, &dyn
);
12121 /* Assume that we're going to modify it and write it out. */
12127 /* Reduce DT_RELSZ to account for any relocations we
12128 decided not to make. This is for the n64 irix rld,
12129 which doesn't seem to apply any relocations if there
12130 are trailing null entries. */
12131 s
= mips_elf_rel_dyn_section (info
, FALSE
);
12132 dyn
.d_un
.d_val
= (s
->reloc_count
12133 * (ABI_64_P (output_bfd
)
12134 ? sizeof (Elf64_Mips_External_Rel
)
12135 : sizeof (Elf32_External_Rel
)));
12136 /* Adjust the section size too. Tools like the prelinker
12137 can reasonably expect the values to the same. */
12138 BFD_ASSERT (!bfd_is_abs_section (s
->output_section
));
12139 elf_section_data (s
->output_section
)->this_hdr
.sh_size
12144 swap_out_p
= FALSE
;
12149 (*get_elf_backend_data (dynobj
)->s
->swap_dyn_out
)
12156 Elf32_compact_rel cpt
;
12158 if (SGI_COMPAT (output_bfd
))
12160 /* Write .compact_rel section out. */
12161 s
= bfd_get_linker_section (dynobj
, ".compact_rel");
12165 cpt
.num
= s
->reloc_count
;
12167 cpt
.offset
= (s
->output_section
->filepos
12168 + sizeof (Elf32_External_compact_rel
));
12171 bfd_elf32_swap_compact_rel_out (output_bfd
, &cpt
,
12172 ((Elf32_External_compact_rel
*)
12175 /* Clean up a dummy stub function entry in .text. */
12176 if (htab
->sstubs
!= NULL
)
12178 file_ptr dummy_offset
;
12180 BFD_ASSERT (htab
->sstubs
->size
>= htab
->function_stub_size
);
12181 dummy_offset
= htab
->sstubs
->size
- htab
->function_stub_size
;
12182 memset (htab
->sstubs
->contents
+ dummy_offset
, 0,
12183 htab
->function_stub_size
);
12188 /* The psABI says that the dynamic relocations must be sorted in
12189 increasing order of r_symndx. The VxWorks EABI doesn't require
12190 this, and because the code below handles REL rather than RELA
12191 relocations, using it for VxWorks would be outright harmful. */
12192 if (!htab
->is_vxworks
)
12194 s
= mips_elf_rel_dyn_section (info
, FALSE
);
12196 && s
->size
> (bfd_vma
)2 * MIPS_ELF_REL_SIZE (output_bfd
))
12198 reldyn_sorting_bfd
= output_bfd
;
12200 if (ABI_64_P (output_bfd
))
12201 qsort ((Elf64_External_Rel
*) s
->contents
+ 1,
12202 s
->reloc_count
- 1, sizeof (Elf64_Mips_External_Rel
),
12203 sort_dynamic_relocs_64
);
12205 qsort ((Elf32_External_Rel
*) s
->contents
+ 1,
12206 s
->reloc_count
- 1, sizeof (Elf32_External_Rel
),
12207 sort_dynamic_relocs
);
12212 if (htab
->root
.splt
&& htab
->root
.splt
->size
> 0)
12214 if (htab
->is_vxworks
)
12216 if (bfd_link_pic (info
))
12217 mips_vxworks_finish_shared_plt (output_bfd
, info
);
12219 mips_vxworks_finish_exec_plt (output_bfd
, info
);
12223 BFD_ASSERT (!bfd_link_pic (info
));
12224 if (!mips_finish_exec_plt (output_bfd
, info
))
12232 /* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
12235 mips_set_isa_flags (bfd
*abfd
)
12239 switch (bfd_get_mach (abfd
))
12242 if (ABI_N32_P (abfd
) || ABI_64_P (abfd
))
12243 val
= E_MIPS_ARCH_3
;
12245 val
= E_MIPS_ARCH_1
;
12248 case bfd_mach_mips3000
:
12249 val
= E_MIPS_ARCH_1
;
12252 case bfd_mach_mips3900
:
12253 val
= E_MIPS_ARCH_1
| E_MIPS_MACH_3900
;
12256 case bfd_mach_mips6000
:
12257 val
= E_MIPS_ARCH_2
;
12260 case bfd_mach_mips4010
:
12261 val
= E_MIPS_ARCH_2
| E_MIPS_MACH_4010
;
12264 case bfd_mach_mips4000
:
12265 case bfd_mach_mips4300
:
12266 case bfd_mach_mips4400
:
12267 case bfd_mach_mips4600
:
12268 val
= E_MIPS_ARCH_3
;
12271 case bfd_mach_mips4100
:
12272 val
= E_MIPS_ARCH_3
| E_MIPS_MACH_4100
;
12275 case bfd_mach_mips4111
:
12276 val
= E_MIPS_ARCH_3
| E_MIPS_MACH_4111
;
12279 case bfd_mach_mips4120
:
12280 val
= E_MIPS_ARCH_3
| E_MIPS_MACH_4120
;
12283 case bfd_mach_mips4650
:
12284 val
= E_MIPS_ARCH_3
| E_MIPS_MACH_4650
;
12287 case bfd_mach_mips5400
:
12288 val
= E_MIPS_ARCH_4
| E_MIPS_MACH_5400
;
12291 case bfd_mach_mips5500
:
12292 val
= E_MIPS_ARCH_4
| E_MIPS_MACH_5500
;
12295 case bfd_mach_mips5900
:
12296 val
= E_MIPS_ARCH_3
| E_MIPS_MACH_5900
;
12299 case bfd_mach_mips9000
:
12300 val
= E_MIPS_ARCH_4
| E_MIPS_MACH_9000
;
12303 case bfd_mach_mips5000
:
12304 case bfd_mach_mips7000
:
12305 case bfd_mach_mips8000
:
12306 case bfd_mach_mips10000
:
12307 case bfd_mach_mips12000
:
12308 case bfd_mach_mips14000
:
12309 case bfd_mach_mips16000
:
12310 val
= E_MIPS_ARCH_4
;
12313 case bfd_mach_mips5
:
12314 val
= E_MIPS_ARCH_5
;
12317 case bfd_mach_mips_loongson_2e
:
12318 val
= E_MIPS_ARCH_3
| E_MIPS_MACH_LS2E
;
12321 case bfd_mach_mips_loongson_2f
:
12322 val
= E_MIPS_ARCH_3
| E_MIPS_MACH_LS2F
;
12325 case bfd_mach_mips_sb1
:
12326 val
= E_MIPS_ARCH_64
| E_MIPS_MACH_SB1
;
12329 case bfd_mach_mips_gs464
:
12330 val
= E_MIPS_ARCH_64R2
| E_MIPS_MACH_GS464
;
12333 case bfd_mach_mips_gs464e
:
12334 val
= E_MIPS_ARCH_64R2
| E_MIPS_MACH_GS464E
;
12337 case bfd_mach_mips_gs264e
:
12338 val
= E_MIPS_ARCH_64R2
| E_MIPS_MACH_GS264E
;
12341 case bfd_mach_mips_octeon
:
12342 case bfd_mach_mips_octeonp
:
12343 val
= E_MIPS_ARCH_64R2
| E_MIPS_MACH_OCTEON
;
12346 case bfd_mach_mips_octeon3
:
12347 val
= E_MIPS_ARCH_64R2
| E_MIPS_MACH_OCTEON3
;
12350 case bfd_mach_mips_xlr
:
12351 val
= E_MIPS_ARCH_64
| E_MIPS_MACH_XLR
;
12354 case bfd_mach_mips_octeon2
:
12355 val
= E_MIPS_ARCH_64R2
| E_MIPS_MACH_OCTEON2
;
12358 case bfd_mach_mipsisa32
:
12359 val
= E_MIPS_ARCH_32
;
12362 case bfd_mach_mipsisa64
:
12363 val
= E_MIPS_ARCH_64
;
12366 case bfd_mach_mipsisa32r2
:
12367 case bfd_mach_mipsisa32r3
:
12368 case bfd_mach_mipsisa32r5
:
12369 val
= E_MIPS_ARCH_32R2
;
12372 case bfd_mach_mips_interaptiv_mr2
:
12373 val
= E_MIPS_ARCH_32R2
| E_MIPS_MACH_IAMR2
;
12376 case bfd_mach_mipsisa64r2
:
12377 case bfd_mach_mipsisa64r3
:
12378 case bfd_mach_mipsisa64r5
:
12379 val
= E_MIPS_ARCH_64R2
;
12382 case bfd_mach_mipsisa32r6
:
12383 val
= E_MIPS_ARCH_32R6
;
12386 case bfd_mach_mipsisa64r6
:
12387 val
= E_MIPS_ARCH_64R6
;
12390 elf_elfheader (abfd
)->e_flags
&= ~(EF_MIPS_ARCH
| EF_MIPS_MACH
);
12391 elf_elfheader (abfd
)->e_flags
|= val
;
12396 /* Whether to sort relocs output by ld -r or ld --emit-relocs, by r_offset.
12397 Don't do so for code sections. We want to keep ordering of HI16/LO16
12398 as is. On the other hand, elf-eh-frame.c processing requires .eh_frame
12399 relocs to be sorted. */
12402 _bfd_mips_elf_sort_relocs_p (asection
*sec
)
12404 return (sec
->flags
& SEC_CODE
) == 0;
12408 /* The final processing done just before writing out a MIPS ELF object
12409 file. This gets the MIPS architecture right based on the machine
12410 number. This is used by both the 32-bit and the 64-bit ABI. */
12413 _bfd_mips_final_write_processing (bfd
*abfd
)
12416 Elf_Internal_Shdr
**hdrpp
;
12420 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
12421 is nonzero. This is for compatibility with old objects, which used
12422 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
12423 if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_MACH
) == 0)
12424 mips_set_isa_flags (abfd
);
12426 /* Set the sh_info field for .gptab sections and other appropriate
12427 info for each special section. */
12428 for (i
= 1, hdrpp
= elf_elfsections (abfd
) + 1;
12429 i
< elf_numsections (abfd
);
12432 switch ((*hdrpp
)->sh_type
)
12434 case SHT_MIPS_MSYM
:
12435 case SHT_MIPS_LIBLIST
:
12436 sec
= bfd_get_section_by_name (abfd
, ".dynstr");
12438 (*hdrpp
)->sh_link
= elf_section_data (sec
)->this_idx
;
12441 case SHT_MIPS_GPTAB
:
12442 BFD_ASSERT ((*hdrpp
)->bfd_section
!= NULL
);
12443 name
= bfd_section_name ((*hdrpp
)->bfd_section
);
12444 BFD_ASSERT (name
!= NULL
12445 && CONST_STRNEQ (name
, ".gptab."));
12446 sec
= bfd_get_section_by_name (abfd
, name
+ sizeof ".gptab" - 1);
12447 BFD_ASSERT (sec
!= NULL
);
12448 (*hdrpp
)->sh_info
= elf_section_data (sec
)->this_idx
;
12451 case SHT_MIPS_CONTENT
:
12452 BFD_ASSERT ((*hdrpp
)->bfd_section
!= NULL
);
12453 name
= bfd_section_name ((*hdrpp
)->bfd_section
);
12454 BFD_ASSERT (name
!= NULL
12455 && CONST_STRNEQ (name
, ".MIPS.content"));
12456 sec
= bfd_get_section_by_name (abfd
,
12457 name
+ sizeof ".MIPS.content" - 1);
12458 BFD_ASSERT (sec
!= NULL
);
12459 (*hdrpp
)->sh_link
= elf_section_data (sec
)->this_idx
;
12462 case SHT_MIPS_SYMBOL_LIB
:
12463 sec
= bfd_get_section_by_name (abfd
, ".dynsym");
12465 (*hdrpp
)->sh_link
= elf_section_data (sec
)->this_idx
;
12466 sec
= bfd_get_section_by_name (abfd
, ".liblist");
12468 (*hdrpp
)->sh_info
= elf_section_data (sec
)->this_idx
;
12471 case SHT_MIPS_EVENTS
:
12472 BFD_ASSERT ((*hdrpp
)->bfd_section
!= NULL
);
12473 name
= bfd_section_name ((*hdrpp
)->bfd_section
);
12474 BFD_ASSERT (name
!= NULL
);
12475 if (CONST_STRNEQ (name
, ".MIPS.events"))
12476 sec
= bfd_get_section_by_name (abfd
,
12477 name
+ sizeof ".MIPS.events" - 1);
12480 BFD_ASSERT (CONST_STRNEQ (name
, ".MIPS.post_rel"));
12481 sec
= bfd_get_section_by_name (abfd
,
12483 + sizeof ".MIPS.post_rel" - 1));
12485 BFD_ASSERT (sec
!= NULL
);
12486 (*hdrpp
)->sh_link
= elf_section_data (sec
)->this_idx
;
12489 case SHT_MIPS_XHASH
:
12490 sec
= bfd_get_section_by_name (abfd
, ".dynsym");
12492 (*hdrpp
)->sh_link
= elf_section_data (sec
)->this_idx
;
12498 _bfd_mips_elf_final_write_processing (bfd
*abfd
)
12500 _bfd_mips_final_write_processing (abfd
);
12501 return _bfd_elf_final_write_processing (abfd
);
12504 /* When creating an IRIX5 executable, we need REGINFO and RTPROC
12508 _bfd_mips_elf_additional_program_headers (bfd
*abfd
,
12509 struct bfd_link_info
*info ATTRIBUTE_UNUSED
)
12514 /* See if we need a PT_MIPS_REGINFO segment. */
12515 s
= bfd_get_section_by_name (abfd
, ".reginfo");
12516 if (s
&& (s
->flags
& SEC_LOAD
))
12519 /* See if we need a PT_MIPS_ABIFLAGS segment. */
12520 if (bfd_get_section_by_name (abfd
, ".MIPS.abiflags"))
12523 /* See if we need a PT_MIPS_OPTIONS segment. */
12524 if (IRIX_COMPAT (abfd
) == ict_irix6
12525 && bfd_get_section_by_name (abfd
,
12526 MIPS_ELF_OPTIONS_SECTION_NAME (abfd
)))
12529 /* See if we need a PT_MIPS_RTPROC segment. */
12530 if (IRIX_COMPAT (abfd
) == ict_irix5
12531 && bfd_get_section_by_name (abfd
, ".dynamic")
12532 && bfd_get_section_by_name (abfd
, ".mdebug"))
12535 /* Allocate a PT_NULL header in dynamic objects. See
12536 _bfd_mips_elf_modify_segment_map for details. */
12537 if (!SGI_COMPAT (abfd
)
12538 && bfd_get_section_by_name (abfd
, ".dynamic"))
12544 /* Modify the segment map for an IRIX5 executable. */
12547 _bfd_mips_elf_modify_segment_map (bfd
*abfd
,
12548 struct bfd_link_info
*info
)
12551 struct elf_segment_map
*m
, **pm
;
12554 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
12556 s
= bfd_get_section_by_name (abfd
, ".reginfo");
12557 if (s
!= NULL
&& (s
->flags
& SEC_LOAD
) != 0)
12559 for (m
= elf_seg_map (abfd
); m
!= NULL
; m
= m
->next
)
12560 if (m
->p_type
== PT_MIPS_REGINFO
)
12565 m
= bfd_zalloc (abfd
, amt
);
12569 m
->p_type
= PT_MIPS_REGINFO
;
12571 m
->sections
[0] = s
;
12573 /* We want to put it after the PHDR and INTERP segments. */
12574 pm
= &elf_seg_map (abfd
);
12576 && ((*pm
)->p_type
== PT_PHDR
12577 || (*pm
)->p_type
== PT_INTERP
))
12585 /* If there is a .MIPS.abiflags section, we need a PT_MIPS_ABIFLAGS
12587 s
= bfd_get_section_by_name (abfd
, ".MIPS.abiflags");
12588 if (s
!= NULL
&& (s
->flags
& SEC_LOAD
) != 0)
12590 for (m
= elf_seg_map (abfd
); m
!= NULL
; m
= m
->next
)
12591 if (m
->p_type
== PT_MIPS_ABIFLAGS
)
12596 m
= bfd_zalloc (abfd
, amt
);
12600 m
->p_type
= PT_MIPS_ABIFLAGS
;
12602 m
->sections
[0] = s
;
12604 /* We want to put it after the PHDR and INTERP segments. */
12605 pm
= &elf_seg_map (abfd
);
12607 && ((*pm
)->p_type
== PT_PHDR
12608 || (*pm
)->p_type
== PT_INTERP
))
12616 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
12617 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
12618 PT_MIPS_OPTIONS segment immediately following the program header
12620 if (NEWABI_P (abfd
)
12621 /* On non-IRIX6 new abi, we'll have already created a segment
12622 for this section, so don't create another. I'm not sure this
12623 is not also the case for IRIX 6, but I can't test it right
12625 && IRIX_COMPAT (abfd
) == ict_irix6
)
12627 for (s
= abfd
->sections
; s
; s
= s
->next
)
12628 if (elf_section_data (s
)->this_hdr
.sh_type
== SHT_MIPS_OPTIONS
)
12633 struct elf_segment_map
*options_segment
;
12635 pm
= &elf_seg_map (abfd
);
12637 && ((*pm
)->p_type
== PT_PHDR
12638 || (*pm
)->p_type
== PT_INTERP
))
12641 if (*pm
== NULL
|| (*pm
)->p_type
!= PT_MIPS_OPTIONS
)
12643 amt
= sizeof (struct elf_segment_map
);
12644 options_segment
= bfd_zalloc (abfd
, amt
);
12645 options_segment
->next
= *pm
;
12646 options_segment
->p_type
= PT_MIPS_OPTIONS
;
12647 options_segment
->p_flags
= PF_R
;
12648 options_segment
->p_flags_valid
= TRUE
;
12649 options_segment
->count
= 1;
12650 options_segment
->sections
[0] = s
;
12651 *pm
= options_segment
;
12657 if (IRIX_COMPAT (abfd
) == ict_irix5
)
12659 /* If there are .dynamic and .mdebug sections, we make a room
12660 for the RTPROC header. FIXME: Rewrite without section names. */
12661 if (bfd_get_section_by_name (abfd
, ".interp") == NULL
12662 && bfd_get_section_by_name (abfd
, ".dynamic") != NULL
12663 && bfd_get_section_by_name (abfd
, ".mdebug") != NULL
)
12665 for (m
= elf_seg_map (abfd
); m
!= NULL
; m
= m
->next
)
12666 if (m
->p_type
== PT_MIPS_RTPROC
)
12671 m
= bfd_zalloc (abfd
, amt
);
12675 m
->p_type
= PT_MIPS_RTPROC
;
12677 s
= bfd_get_section_by_name (abfd
, ".rtproc");
12682 m
->p_flags_valid
= 1;
12687 m
->sections
[0] = s
;
12690 /* We want to put it after the DYNAMIC segment. */
12691 pm
= &elf_seg_map (abfd
);
12692 while (*pm
!= NULL
&& (*pm
)->p_type
!= PT_DYNAMIC
)
12702 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
12703 .dynstr, .dynsym, and .hash sections, and everything in
12705 for (pm
= &elf_seg_map (abfd
); *pm
!= NULL
;
12707 if ((*pm
)->p_type
== PT_DYNAMIC
)
12710 /* GNU/Linux binaries do not need the extended PT_DYNAMIC section.
12711 glibc's dynamic linker has traditionally derived the number of
12712 tags from the p_filesz field, and sometimes allocates stack
12713 arrays of that size. An overly-big PT_DYNAMIC segment can
12714 be actively harmful in such cases. Making PT_DYNAMIC contain
12715 other sections can also make life hard for the prelinker,
12716 which might move one of the other sections to a different
12717 PT_LOAD segment. */
12718 if (SGI_COMPAT (abfd
)
12721 && strcmp (m
->sections
[0]->name
, ".dynamic") == 0)
12723 static const char *sec_names
[] =
12725 ".dynamic", ".dynstr", ".dynsym", ".hash"
12729 struct elf_segment_map
*n
;
12731 low
= ~(bfd_vma
) 0;
12733 for (i
= 0; i
< sizeof sec_names
/ sizeof sec_names
[0]; i
++)
12735 s
= bfd_get_section_by_name (abfd
, sec_names
[i
]);
12736 if (s
!= NULL
&& (s
->flags
& SEC_LOAD
) != 0)
12743 if (high
< s
->vma
+ sz
)
12744 high
= s
->vma
+ sz
;
12749 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
12750 if ((s
->flags
& SEC_LOAD
) != 0
12752 && s
->vma
+ s
->size
<= high
)
12755 amt
= sizeof *n
+ (bfd_size_type
) (c
- 1) * sizeof (asection
*);
12756 n
= bfd_zalloc (abfd
, amt
);
12763 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
12765 if ((s
->flags
& SEC_LOAD
) != 0
12767 && s
->vma
+ s
->size
<= high
)
12769 n
->sections
[i
] = s
;
12778 /* Allocate a spare program header in dynamic objects so that tools
12779 like the prelinker can add an extra PT_LOAD entry.
12781 If the prelinker needs to make room for a new PT_LOAD entry, its
12782 standard procedure is to move the first (read-only) sections into
12783 the new (writable) segment. However, the MIPS ABI requires
12784 .dynamic to be in a read-only segment, and the section will often
12785 start within sizeof (ElfNN_Phdr) bytes of the last program header.
12787 Although the prelinker could in principle move .dynamic to a
12788 writable segment, it seems better to allocate a spare program
12789 header instead, and avoid the need to move any sections.
12790 There is a long tradition of allocating spare dynamic tags,
12791 so allocating a spare program header seems like a natural
12794 If INFO is NULL, we may be copying an already prelinked binary
12795 with objcopy or strip, so do not add this header. */
12797 && !SGI_COMPAT (abfd
)
12798 && bfd_get_section_by_name (abfd
, ".dynamic"))
12800 for (pm
= &elf_seg_map (abfd
); *pm
!= NULL
; pm
= &(*pm
)->next
)
12801 if ((*pm
)->p_type
== PT_NULL
)
12805 m
= bfd_zalloc (abfd
, sizeof (*m
));
12809 m
->p_type
= PT_NULL
;
12817 /* Return the section that should be marked against GC for a given
12821 _bfd_mips_elf_gc_mark_hook (asection
*sec
,
12822 struct bfd_link_info
*info
,
12823 Elf_Internal_Rela
*rel
,
12824 struct elf_link_hash_entry
*h
,
12825 Elf_Internal_Sym
*sym
)
12827 /* ??? Do mips16 stub sections need to be handled special? */
12830 switch (ELF_R_TYPE (sec
->owner
, rel
->r_info
))
12832 case R_MIPS_GNU_VTINHERIT
:
12833 case R_MIPS_GNU_VTENTRY
:
12837 return _bfd_elf_gc_mark_hook (sec
, info
, rel
, h
, sym
);
12840 /* Prevent .MIPS.abiflags from being discarded with --gc-sections. */
12843 _bfd_mips_elf_gc_mark_extra_sections (struct bfd_link_info
*info
,
12844 elf_gc_mark_hook_fn gc_mark_hook
)
12848 _bfd_elf_gc_mark_extra_sections (info
, gc_mark_hook
);
12850 for (sub
= info
->input_bfds
; sub
!= NULL
; sub
= sub
->link
.next
)
12854 if (! is_mips_elf (sub
))
12857 for (o
= sub
->sections
; o
!= NULL
; o
= o
->next
)
12859 && MIPS_ELF_ABIFLAGS_SECTION_NAME_P (bfd_section_name (o
)))
12861 if (!_bfd_elf_gc_mark (info
, o
, gc_mark_hook
))
12869 /* Copy data from a MIPS ELF indirect symbol to its direct symbol,
12870 hiding the old indirect symbol. Process additional relocation
12871 information. Also called for weakdefs, in which case we just let
12872 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
12875 _bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info
*info
,
12876 struct elf_link_hash_entry
*dir
,
12877 struct elf_link_hash_entry
*ind
)
12879 struct mips_elf_link_hash_entry
*dirmips
, *indmips
;
12881 _bfd_elf_link_hash_copy_indirect (info
, dir
, ind
);
12883 dirmips
= (struct mips_elf_link_hash_entry
*) dir
;
12884 indmips
= (struct mips_elf_link_hash_entry
*) ind
;
12885 /* Any absolute non-dynamic relocations against an indirect or weak
12886 definition will be against the target symbol. */
12887 if (indmips
->has_static_relocs
)
12888 dirmips
->has_static_relocs
= TRUE
;
12890 if (ind
->root
.type
!= bfd_link_hash_indirect
)
12893 dirmips
->possibly_dynamic_relocs
+= indmips
->possibly_dynamic_relocs
;
12894 if (indmips
->readonly_reloc
)
12895 dirmips
->readonly_reloc
= TRUE
;
12896 if (indmips
->no_fn_stub
)
12897 dirmips
->no_fn_stub
= TRUE
;
12898 if (indmips
->fn_stub
)
12900 dirmips
->fn_stub
= indmips
->fn_stub
;
12901 indmips
->fn_stub
= NULL
;
12903 if (indmips
->need_fn_stub
)
12905 dirmips
->need_fn_stub
= TRUE
;
12906 indmips
->need_fn_stub
= FALSE
;
12908 if (indmips
->call_stub
)
12910 dirmips
->call_stub
= indmips
->call_stub
;
12911 indmips
->call_stub
= NULL
;
12913 if (indmips
->call_fp_stub
)
12915 dirmips
->call_fp_stub
= indmips
->call_fp_stub
;
12916 indmips
->call_fp_stub
= NULL
;
12918 if (indmips
->global_got_area
< dirmips
->global_got_area
)
12919 dirmips
->global_got_area
= indmips
->global_got_area
;
12920 if (indmips
->global_got_area
< GGA_NONE
)
12921 indmips
->global_got_area
= GGA_NONE
;
12922 if (indmips
->has_nonpic_branches
)
12923 dirmips
->has_nonpic_branches
= TRUE
;
12926 /* Take care of the special `__gnu_absolute_zero' symbol and ignore attempts
12927 to hide it. It has to remain global (it will also be protected) so as to
12928 be assigned a global GOT entry, which will then remain unchanged at load
12932 _bfd_mips_elf_hide_symbol (struct bfd_link_info
*info
,
12933 struct elf_link_hash_entry
*entry
,
12934 bfd_boolean force_local
)
12936 struct mips_elf_link_hash_table
*htab
;
12938 htab
= mips_elf_hash_table (info
);
12939 BFD_ASSERT (htab
!= NULL
);
12940 if (htab
->use_absolute_zero
12941 && strcmp (entry
->root
.root
.string
, "__gnu_absolute_zero") == 0)
12944 _bfd_elf_link_hash_hide_symbol (info
, entry
, force_local
);
12947 #define PDR_SIZE 32
12950 _bfd_mips_elf_discard_info (bfd
*abfd
, struct elf_reloc_cookie
*cookie
,
12951 struct bfd_link_info
*info
)
12954 bfd_boolean ret
= FALSE
;
12955 unsigned char *tdata
;
12958 o
= bfd_get_section_by_name (abfd
, ".pdr");
12963 if (o
->size
% PDR_SIZE
!= 0)
12965 if (o
->output_section
!= NULL
12966 && bfd_is_abs_section (o
->output_section
))
12969 tdata
= bfd_zmalloc (o
->size
/ PDR_SIZE
);
12973 cookie
->rels
= _bfd_elf_link_read_relocs (abfd
, o
, NULL
, NULL
,
12974 info
->keep_memory
);
12981 cookie
->rel
= cookie
->rels
;
12982 cookie
->relend
= cookie
->rels
+ o
->reloc_count
;
12984 for (i
= 0, skip
= 0; i
< o
->size
/ PDR_SIZE
; i
++)
12986 if (bfd_elf_reloc_symbol_deleted_p (i
* PDR_SIZE
, cookie
))
12995 mips_elf_section_data (o
)->u
.tdata
= tdata
;
12996 if (o
->rawsize
== 0)
12997 o
->rawsize
= o
->size
;
12998 o
->size
-= skip
* PDR_SIZE
;
13004 if (! info
->keep_memory
)
13005 free (cookie
->rels
);
13011 _bfd_mips_elf_ignore_discarded_relocs (asection
*sec
)
13013 if (strcmp (sec
->name
, ".pdr") == 0)
13019 _bfd_mips_elf_write_section (bfd
*output_bfd
,
13020 struct bfd_link_info
*link_info ATTRIBUTE_UNUSED
,
13021 asection
*sec
, bfd_byte
*contents
)
13023 bfd_byte
*to
, *from
, *end
;
13026 if (strcmp (sec
->name
, ".pdr") != 0)
13029 if (mips_elf_section_data (sec
)->u
.tdata
== NULL
)
13033 end
= contents
+ sec
->size
;
13034 for (from
= contents
, i
= 0;
13036 from
+= PDR_SIZE
, i
++)
13038 if ((mips_elf_section_data (sec
)->u
.tdata
)[i
] == 1)
13041 memcpy (to
, from
, PDR_SIZE
);
13044 bfd_set_section_contents (output_bfd
, sec
->output_section
, contents
,
13045 sec
->output_offset
, sec
->size
);
13049 /* microMIPS code retains local labels for linker relaxation. Omit them
13050 from output by default for clarity. */
13053 _bfd_mips_elf_is_target_special_symbol (bfd
*abfd
, asymbol
*sym
)
13055 return _bfd_elf_is_local_label_name (abfd
, sym
->name
);
13058 /* MIPS ELF uses a special find_nearest_line routine in order the
13059 handle the ECOFF debugging information. */
13061 struct mips_elf_find_line
13063 struct ecoff_debug_info d
;
13064 struct ecoff_find_line i
;
13068 _bfd_mips_elf_find_nearest_line (bfd
*abfd
, asymbol
**symbols
,
13069 asection
*section
, bfd_vma offset
,
13070 const char **filename_ptr
,
13071 const char **functionname_ptr
,
13072 unsigned int *line_ptr
,
13073 unsigned int *discriminator_ptr
)
13077 if (_bfd_dwarf2_find_nearest_line (abfd
, symbols
, NULL
, section
, offset
,
13078 filename_ptr
, functionname_ptr
,
13079 line_ptr
, discriminator_ptr
,
13080 dwarf_debug_sections
,
13081 &elf_tdata (abfd
)->dwarf2_find_line_info
)
13085 if (_bfd_dwarf1_find_nearest_line (abfd
, symbols
, section
, offset
,
13086 filename_ptr
, functionname_ptr
,
13089 if (!*functionname_ptr
)
13090 _bfd_elf_find_function (abfd
, symbols
, section
, offset
,
13091 *filename_ptr
? NULL
: filename_ptr
,
13096 msec
= bfd_get_section_by_name (abfd
, ".mdebug");
13099 flagword origflags
;
13100 struct mips_elf_find_line
*fi
;
13101 const struct ecoff_debug_swap
* const swap
=
13102 get_elf_backend_data (abfd
)->elf_backend_ecoff_debug_swap
;
13104 /* If we are called during a link, mips_elf_final_link may have
13105 cleared the SEC_HAS_CONTENTS field. We force it back on here
13106 if appropriate (which it normally will be). */
13107 origflags
= msec
->flags
;
13108 if (elf_section_data (msec
)->this_hdr
.sh_type
!= SHT_NOBITS
)
13109 msec
->flags
|= SEC_HAS_CONTENTS
;
13111 fi
= mips_elf_tdata (abfd
)->find_line_info
;
13114 bfd_size_type external_fdr_size
;
13117 struct fdr
*fdr_ptr
;
13118 bfd_size_type amt
= sizeof (struct mips_elf_find_line
);
13120 fi
= bfd_zalloc (abfd
, amt
);
13123 msec
->flags
= origflags
;
13127 if (! _bfd_mips_elf_read_ecoff_info (abfd
, msec
, &fi
->d
))
13129 msec
->flags
= origflags
;
13133 /* Swap in the FDR information. */
13134 amt
= fi
->d
.symbolic_header
.ifdMax
* sizeof (struct fdr
);
13135 fi
->d
.fdr
= bfd_alloc (abfd
, amt
);
13136 if (fi
->d
.fdr
== NULL
)
13138 msec
->flags
= origflags
;
13141 external_fdr_size
= swap
->external_fdr_size
;
13142 fdr_ptr
= fi
->d
.fdr
;
13143 fraw_src
= (char *) fi
->d
.external_fdr
;
13144 fraw_end
= (fraw_src
13145 + fi
->d
.symbolic_header
.ifdMax
* external_fdr_size
);
13146 for (; fraw_src
< fraw_end
; fraw_src
+= external_fdr_size
, fdr_ptr
++)
13147 (*swap
->swap_fdr_in
) (abfd
, fraw_src
, fdr_ptr
);
13149 mips_elf_tdata (abfd
)->find_line_info
= fi
;
13151 /* Note that we don't bother to ever free this information.
13152 find_nearest_line is either called all the time, as in
13153 objdump -l, so the information should be saved, or it is
13154 rarely called, as in ld error messages, so the memory
13155 wasted is unimportant. Still, it would probably be a
13156 good idea for free_cached_info to throw it away. */
13159 if (_bfd_ecoff_locate_line (abfd
, section
, offset
, &fi
->d
, swap
,
13160 &fi
->i
, filename_ptr
, functionname_ptr
,
13163 msec
->flags
= origflags
;
13167 msec
->flags
= origflags
;
13170 /* Fall back on the generic ELF find_nearest_line routine. */
13172 return _bfd_elf_find_nearest_line (abfd
, symbols
, section
, offset
,
13173 filename_ptr
, functionname_ptr
,
13174 line_ptr
, discriminator_ptr
);
13178 _bfd_mips_elf_find_inliner_info (bfd
*abfd
,
13179 const char **filename_ptr
,
13180 const char **functionname_ptr
,
13181 unsigned int *line_ptr
)
13184 found
= _bfd_dwarf2_find_inliner_info (abfd
, filename_ptr
,
13185 functionname_ptr
, line_ptr
,
13186 & elf_tdata (abfd
)->dwarf2_find_line_info
);
13191 /* When are writing out the .options or .MIPS.options section,
13192 remember the bytes we are writing out, so that we can install the
13193 GP value in the section_processing routine. */
13196 _bfd_mips_elf_set_section_contents (bfd
*abfd
, sec_ptr section
,
13197 const void *location
,
13198 file_ptr offset
, bfd_size_type count
)
13200 if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section
->name
))
13204 if (elf_section_data (section
) == NULL
)
13206 bfd_size_type amt
= sizeof (struct bfd_elf_section_data
);
13207 section
->used_by_bfd
= bfd_zalloc (abfd
, amt
);
13208 if (elf_section_data (section
) == NULL
)
13211 c
= mips_elf_section_data (section
)->u
.tdata
;
13214 c
= bfd_zalloc (abfd
, section
->size
);
13217 mips_elf_section_data (section
)->u
.tdata
= c
;
13220 memcpy (c
+ offset
, location
, count
);
13223 return _bfd_elf_set_section_contents (abfd
, section
, location
, offset
,
13227 /* This is almost identical to bfd_generic_get_... except that some
13228 MIPS relocations need to be handled specially. Sigh. */
13231 _bfd_elf_mips_get_relocated_section_contents
13233 struct bfd_link_info
*link_info
,
13234 struct bfd_link_order
*link_order
,
13236 bfd_boolean relocatable
,
13239 /* Get enough memory to hold the stuff */
13240 bfd
*input_bfd
= link_order
->u
.indirect
.section
->owner
;
13241 asection
*input_section
= link_order
->u
.indirect
.section
;
13244 long reloc_size
= bfd_get_reloc_upper_bound (input_bfd
, input_section
);
13245 arelent
**reloc_vector
= NULL
;
13248 if (reloc_size
< 0)
13251 reloc_vector
= bfd_malloc (reloc_size
);
13252 if (reloc_vector
== NULL
&& reloc_size
!= 0)
13255 /* read in the section */
13256 sz
= input_section
->rawsize
? input_section
->rawsize
: input_section
->size
;
13257 if (!bfd_get_section_contents (input_bfd
, input_section
, data
, 0, sz
))
13260 reloc_count
= bfd_canonicalize_reloc (input_bfd
,
13264 if (reloc_count
< 0)
13267 if (reloc_count
> 0)
13272 bfd_vma gp
= 0x12345678; /* initialize just to shut gcc up */
13275 struct bfd_hash_entry
*h
;
13276 struct bfd_link_hash_entry
*lh
;
13277 /* Skip all this stuff if we aren't mixing formats. */
13278 if (abfd
&& input_bfd
13279 && abfd
->xvec
== input_bfd
->xvec
)
13283 h
= bfd_hash_lookup (&link_info
->hash
->table
, "_gp", FALSE
, FALSE
);
13284 lh
= (struct bfd_link_hash_entry
*) h
;
13291 case bfd_link_hash_undefined
:
13292 case bfd_link_hash_undefweak
:
13293 case bfd_link_hash_common
:
13296 case bfd_link_hash_defined
:
13297 case bfd_link_hash_defweak
:
13299 gp
= lh
->u
.def
.value
;
13301 case bfd_link_hash_indirect
:
13302 case bfd_link_hash_warning
:
13304 /* @@FIXME ignoring warning for now */
13306 case bfd_link_hash_new
:
13315 for (parent
= reloc_vector
; *parent
!= NULL
; parent
++)
13317 char *error_message
= NULL
;
13318 bfd_reloc_status_type r
;
13320 /* Specific to MIPS: Deal with relocation types that require
13321 knowing the gp of the output bfd. */
13322 asymbol
*sym
= *(*parent
)->sym_ptr_ptr
;
13324 /* If we've managed to find the gp and have a special
13325 function for the relocation then go ahead, else default
13326 to the generic handling. */
13328 && (*parent
)->howto
->special_function
13329 == _bfd_mips_elf32_gprel16_reloc
)
13330 r
= _bfd_mips_elf_gprel16_with_gp (input_bfd
, sym
, *parent
,
13331 input_section
, relocatable
,
13334 r
= bfd_perform_relocation (input_bfd
, *parent
, data
,
13336 relocatable
? abfd
: NULL
,
13341 asection
*os
= input_section
->output_section
;
13343 /* A partial link, so keep the relocs */
13344 os
->orelocation
[os
->reloc_count
] = *parent
;
13348 if (r
!= bfd_reloc_ok
)
13352 case bfd_reloc_undefined
:
13353 (*link_info
->callbacks
->undefined_symbol
)
13354 (link_info
, bfd_asymbol_name (*(*parent
)->sym_ptr_ptr
),
13355 input_bfd
, input_section
, (*parent
)->address
, TRUE
);
13357 case bfd_reloc_dangerous
:
13358 BFD_ASSERT (error_message
!= NULL
);
13359 (*link_info
->callbacks
->reloc_dangerous
)
13360 (link_info
, error_message
,
13361 input_bfd
, input_section
, (*parent
)->address
);
13363 case bfd_reloc_overflow
:
13364 (*link_info
->callbacks
->reloc_overflow
)
13366 bfd_asymbol_name (*(*parent
)->sym_ptr_ptr
),
13367 (*parent
)->howto
->name
, (*parent
)->addend
,
13368 input_bfd
, input_section
, (*parent
)->address
);
13370 case bfd_reloc_outofrange
:
13379 if (reloc_vector
!= NULL
)
13380 free (reloc_vector
);
13384 if (reloc_vector
!= NULL
)
13385 free (reloc_vector
);
13390 mips_elf_relax_delete_bytes (bfd
*abfd
,
13391 asection
*sec
, bfd_vma addr
, int count
)
13393 Elf_Internal_Shdr
*symtab_hdr
;
13394 unsigned int sec_shndx
;
13395 bfd_byte
*contents
;
13396 Elf_Internal_Rela
*irel
, *irelend
;
13397 Elf_Internal_Sym
*isym
;
13398 Elf_Internal_Sym
*isymend
;
13399 struct elf_link_hash_entry
**sym_hashes
;
13400 struct elf_link_hash_entry
**end_hashes
;
13401 struct elf_link_hash_entry
**start_hashes
;
13402 unsigned int symcount
;
13404 sec_shndx
= _bfd_elf_section_from_bfd_section (abfd
, sec
);
13405 contents
= elf_section_data (sec
)->this_hdr
.contents
;
13407 irel
= elf_section_data (sec
)->relocs
;
13408 irelend
= irel
+ sec
->reloc_count
;
13410 /* Actually delete the bytes. */
13411 memmove (contents
+ addr
, contents
+ addr
+ count
,
13412 (size_t) (sec
->size
- addr
- count
));
13413 sec
->size
-= count
;
13415 /* Adjust all the relocs. */
13416 for (irel
= elf_section_data (sec
)->relocs
; irel
< irelend
; irel
++)
13418 /* Get the new reloc address. */
13419 if (irel
->r_offset
> addr
)
13420 irel
->r_offset
-= count
;
13423 BFD_ASSERT (addr
% 2 == 0);
13424 BFD_ASSERT (count
% 2 == 0);
13426 /* Adjust the local symbols defined in this section. */
13427 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
13428 isym
= (Elf_Internal_Sym
*) symtab_hdr
->contents
;
13429 for (isymend
= isym
+ symtab_hdr
->sh_info
; isym
< isymend
; isym
++)
13430 if (isym
->st_shndx
== sec_shndx
&& isym
->st_value
> addr
)
13431 isym
->st_value
-= count
;
13433 /* Now adjust the global symbols defined in this section. */
13434 symcount
= (symtab_hdr
->sh_size
/ sizeof (Elf32_External_Sym
)
13435 - symtab_hdr
->sh_info
);
13436 sym_hashes
= start_hashes
= elf_sym_hashes (abfd
);
13437 end_hashes
= sym_hashes
+ symcount
;
13439 for (; sym_hashes
< end_hashes
; sym_hashes
++)
13441 struct elf_link_hash_entry
*sym_hash
= *sym_hashes
;
13443 if ((sym_hash
->root
.type
== bfd_link_hash_defined
13444 || sym_hash
->root
.type
== bfd_link_hash_defweak
)
13445 && sym_hash
->root
.u
.def
.section
== sec
)
13447 bfd_vma value
= sym_hash
->root
.u
.def
.value
;
13449 if (ELF_ST_IS_MICROMIPS (sym_hash
->other
))
13450 value
&= MINUS_TWO
;
13452 sym_hash
->root
.u
.def
.value
-= count
;
13460 /* Opcodes needed for microMIPS relaxation as found in
13461 opcodes/micromips-opc.c. */
13463 struct opcode_descriptor
{
13464 unsigned long match
;
13465 unsigned long mask
;
13468 /* The $ra register aka $31. */
13472 /* 32-bit instruction format register fields. */
13474 #define OP32_SREG(opcode) (((opcode) >> 16) & 0x1f)
13475 #define OP32_TREG(opcode) (((opcode) >> 21) & 0x1f)
13477 /* Check if a 5-bit register index can be abbreviated to 3 bits. */
13479 #define OP16_VALID_REG(r) \
13480 ((2 <= (r) && (r) <= 7) || (16 <= (r) && (r) <= 17))
13483 /* 32-bit and 16-bit branches. */
13485 static const struct opcode_descriptor b_insns_32
[] = {
13486 { /* "b", "p", */ 0x40400000, 0xffff0000 }, /* bgez 0 */
13487 { /* "b", "p", */ 0x94000000, 0xffff0000 }, /* beq 0, 0 */
13488 { 0, 0 } /* End marker for find_match(). */
13491 static const struct opcode_descriptor bc_insn_32
=
13492 { /* "bc(1|2)(ft)", "N,p", */ 0x42800000, 0xfec30000 };
13494 static const struct opcode_descriptor bz_insn_32
=
13495 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 };
13497 static const struct opcode_descriptor bzal_insn_32
=
13498 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 };
13500 static const struct opcode_descriptor beq_insn_32
=
13501 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 };
13503 static const struct opcode_descriptor b_insn_16
=
13504 { /* "b", "mD", */ 0xcc00, 0xfc00 };
13506 static const struct opcode_descriptor bz_insn_16
=
13507 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 };
13510 /* 32-bit and 16-bit branch EQ and NE zero. */
13512 /* NOTE: All opcode tables have BEQ/BNE in the same order: first the
13513 eq and second the ne. This convention is used when replacing a
13514 32-bit BEQ/BNE with the 16-bit version. */
13516 #define BZC32_REG_FIELD(r) (((r) & 0x1f) << 16)
13518 static const struct opcode_descriptor bz_rs_insns_32
[] = {
13519 { /* "beqz", "s,p", */ 0x94000000, 0xffe00000 },
13520 { /* "bnez", "s,p", */ 0xb4000000, 0xffe00000 },
13521 { 0, 0 } /* End marker for find_match(). */
13524 static const struct opcode_descriptor bz_rt_insns_32
[] = {
13525 { /* "beqz", "t,p", */ 0x94000000, 0xfc01f000 },
13526 { /* "bnez", "t,p", */ 0xb4000000, 0xfc01f000 },
13527 { 0, 0 } /* End marker for find_match(). */
13530 static const struct opcode_descriptor bzc_insns_32
[] = {
13531 { /* "beqzc", "s,p", */ 0x40e00000, 0xffe00000 },
13532 { /* "bnezc", "s,p", */ 0x40a00000, 0xffe00000 },
13533 { 0, 0 } /* End marker for find_match(). */
13536 static const struct opcode_descriptor bz_insns_16
[] = {
13537 { /* "beqz", "md,mE", */ 0x8c00, 0xfc00 },
13538 { /* "bnez", "md,mE", */ 0xac00, 0xfc00 },
13539 { 0, 0 } /* End marker for find_match(). */
13542 /* Switch between a 5-bit register index and its 3-bit shorthand. */
13544 #define BZ16_REG(opcode) ((((((opcode) >> 7) & 7) + 0x1e) & 0xf) + 2)
13545 #define BZ16_REG_FIELD(r) (((r) & 7) << 7)
13548 /* 32-bit instructions with a delay slot. */
13550 static const struct opcode_descriptor jal_insn_32_bd16
=
13551 { /* "jals", "a", */ 0x74000000, 0xfc000000 };
13553 static const struct opcode_descriptor jal_insn_32_bd32
=
13554 { /* "jal", "a", */ 0xf4000000, 0xfc000000 };
13556 static const struct opcode_descriptor jal_x_insn_32_bd32
=
13557 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 };
13559 static const struct opcode_descriptor j_insn_32
=
13560 { /* "j", "a", */ 0xd4000000, 0xfc000000 };
13562 static const struct opcode_descriptor jalr_insn_32
=
13563 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff };
13565 /* This table can be compacted, because no opcode replacement is made. */
13567 static const struct opcode_descriptor ds_insns_32_bd16
[] = {
13568 { /* "jals", "a", */ 0x74000000, 0xfc000000 },
13570 { /* "jalrs[.hb]", "t,s", */ 0x00004f3c, 0xfc00efff },
13571 { /* "b(ge|lt)zals", "s,p", */ 0x42200000, 0xffa00000 },
13573 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 },
13574 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 },
13575 { /* "j", "a", */ 0xd4000000, 0xfc000000 },
13576 { 0, 0 } /* End marker for find_match(). */
13579 /* This table can be compacted, because no opcode replacement is made. */
13581 static const struct opcode_descriptor ds_insns_32_bd32
[] = {
13582 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 },
13584 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff },
13585 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 },
13586 { 0, 0 } /* End marker for find_match(). */
13590 /* 16-bit instructions with a delay slot. */
13592 static const struct opcode_descriptor jalr_insn_16_bd16
=
13593 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 };
13595 static const struct opcode_descriptor jalr_insn_16_bd32
=
13596 { /* "jalr", "my,mj", */ 0x45c0, 0xffe0 };
13598 static const struct opcode_descriptor jr_insn_16
=
13599 { /* "jr", "mj", */ 0x4580, 0xffe0 };
13601 #define JR16_REG(opcode) ((opcode) & 0x1f)
13603 /* This table can be compacted, because no opcode replacement is made. */
13605 static const struct opcode_descriptor ds_insns_16_bd16
[] = {
13606 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 },
13608 { /* "b", "mD", */ 0xcc00, 0xfc00 },
13609 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 },
13610 { /* "jr", "mj", */ 0x4580, 0xffe0 },
13611 { 0, 0 } /* End marker for find_match(). */
13615 /* LUI instruction. */
13617 static const struct opcode_descriptor lui_insn
=
13618 { /* "lui", "s,u", */ 0x41a00000, 0xffe00000 };
13621 /* ADDIU instruction. */
13623 static const struct opcode_descriptor addiu_insn
=
13624 { /* "addiu", "t,r,j", */ 0x30000000, 0xfc000000 };
13626 static const struct opcode_descriptor addiupc_insn
=
13627 { /* "addiu", "mb,$pc,mQ", */ 0x78000000, 0xfc000000 };
13629 #define ADDIUPC_REG_FIELD(r) \
13630 (((2 <= (r) && (r) <= 7) ? (r) : ((r) - 16)) << 23)
13633 /* Relaxable instructions in a JAL delay slot: MOVE. */
13635 /* The 16-bit move has rd in 9:5 and rs in 4:0. The 32-bit moves
13636 (ADDU, OR) have rd in 15:11 and rs in 10:16. */
13637 #define MOVE32_RD(opcode) (((opcode) >> 11) & 0x1f)
13638 #define MOVE32_RS(opcode) (((opcode) >> 16) & 0x1f)
13640 #define MOVE16_RD_FIELD(r) (((r) & 0x1f) << 5)
13641 #define MOVE16_RS_FIELD(r) (((r) & 0x1f) )
13643 static const struct opcode_descriptor move_insns_32
[] = {
13644 { /* "move", "d,s", */ 0x00000290, 0xffe007ff }, /* or d,s,$0 */
13645 { /* "move", "d,s", */ 0x00000150, 0xffe007ff }, /* addu d,s,$0 */
13646 { 0, 0 } /* End marker for find_match(). */
13649 static const struct opcode_descriptor move_insn_16
=
13650 { /* "move", "mp,mj", */ 0x0c00, 0xfc00 };
13653 /* NOP instructions. */
13655 static const struct opcode_descriptor nop_insn_32
=
13656 { /* "nop", "", */ 0x00000000, 0xffffffff };
13658 static const struct opcode_descriptor nop_insn_16
=
13659 { /* "nop", "", */ 0x0c00, 0xffff };
13662 /* Instruction match support. */
13664 #define MATCH(opcode, insn) ((opcode & insn.mask) == insn.match)
13667 find_match (unsigned long opcode
, const struct opcode_descriptor insn
[])
13669 unsigned long indx
;
13671 for (indx
= 0; insn
[indx
].mask
!= 0; indx
++)
13672 if (MATCH (opcode
, insn
[indx
]))
13679 /* Branch and delay slot decoding support. */
13681 /* If PTR points to what *might* be a 16-bit branch or jump, then
13682 return the minimum length of its delay slot, otherwise return 0.
13683 Non-zero results are not definitive as we might be checking against
13684 the second half of another instruction. */
13687 check_br16_dslot (bfd
*abfd
, bfd_byte
*ptr
)
13689 unsigned long opcode
;
13692 opcode
= bfd_get_16 (abfd
, ptr
);
13693 if (MATCH (opcode
, jalr_insn_16_bd32
) != 0)
13694 /* 16-bit branch/jump with a 32-bit delay slot. */
13696 else if (MATCH (opcode
, jalr_insn_16_bd16
) != 0
13697 || find_match (opcode
, ds_insns_16_bd16
) >= 0)
13698 /* 16-bit branch/jump with a 16-bit delay slot. */
13701 /* No delay slot. */
13707 /* If PTR points to what *might* be a 32-bit branch or jump, then
13708 return the minimum length of its delay slot, otherwise return 0.
13709 Non-zero results are not definitive as we might be checking against
13710 the second half of another instruction. */
13713 check_br32_dslot (bfd
*abfd
, bfd_byte
*ptr
)
13715 unsigned long opcode
;
13718 opcode
= bfd_get_micromips_32 (abfd
, ptr
);
13719 if (find_match (opcode
, ds_insns_32_bd32
) >= 0)
13720 /* 32-bit branch/jump with a 32-bit delay slot. */
13722 else if (find_match (opcode
, ds_insns_32_bd16
) >= 0)
13723 /* 32-bit branch/jump with a 16-bit delay slot. */
13726 /* No delay slot. */
13732 /* If PTR points to a 16-bit branch or jump with a 32-bit delay slot
13733 that doesn't fiddle with REG, then return TRUE, otherwise FALSE. */
13736 check_br16 (bfd
*abfd
, bfd_byte
*ptr
, unsigned long reg
)
13738 unsigned long opcode
;
13740 opcode
= bfd_get_16 (abfd
, ptr
);
13741 if (MATCH (opcode
, b_insn_16
)
13743 || (MATCH (opcode
, jr_insn_16
) && reg
!= JR16_REG (opcode
))
13745 || (MATCH (opcode
, bz_insn_16
) && reg
!= BZ16_REG (opcode
))
13746 /* BEQZ16, BNEZ16 */
13747 || (MATCH (opcode
, jalr_insn_16_bd32
)
13749 && reg
!= JR16_REG (opcode
) && reg
!= RA
))
13755 /* If PTR points to a 32-bit branch or jump that doesn't fiddle with REG,
13756 then return TRUE, otherwise FALSE. */
13759 check_br32 (bfd
*abfd
, bfd_byte
*ptr
, unsigned long reg
)
13761 unsigned long opcode
;
13763 opcode
= bfd_get_micromips_32 (abfd
, ptr
);
13764 if (MATCH (opcode
, j_insn_32
)
13766 || MATCH (opcode
, bc_insn_32
)
13767 /* BC1F, BC1T, BC2F, BC2T */
13768 || (MATCH (opcode
, jal_x_insn_32_bd32
) && reg
!= RA
)
13770 || (MATCH (opcode
, bz_insn_32
) && reg
!= OP32_SREG (opcode
))
13771 /* BGEZ, BGTZ, BLEZ, BLTZ */
13772 || (MATCH (opcode
, bzal_insn_32
)
13773 /* BGEZAL, BLTZAL */
13774 && reg
!= OP32_SREG (opcode
) && reg
!= RA
)
13775 || ((MATCH (opcode
, jalr_insn_32
) || MATCH (opcode
, beq_insn_32
))
13776 /* JALR, JALR.HB, BEQ, BNE */
13777 && reg
!= OP32_SREG (opcode
) && reg
!= OP32_TREG (opcode
)))
13783 /* If the instruction encoding at PTR and relocations [INTERNAL_RELOCS,
13784 IRELEND) at OFFSET indicate that there must be a compact branch there,
13785 then return TRUE, otherwise FALSE. */
13788 check_relocated_bzc (bfd
*abfd
, const bfd_byte
*ptr
, bfd_vma offset
,
13789 const Elf_Internal_Rela
*internal_relocs
,
13790 const Elf_Internal_Rela
*irelend
)
13792 const Elf_Internal_Rela
*irel
;
13793 unsigned long opcode
;
13795 opcode
= bfd_get_micromips_32 (abfd
, ptr
);
13796 if (find_match (opcode
, bzc_insns_32
) < 0)
13799 for (irel
= internal_relocs
; irel
< irelend
; irel
++)
13800 if (irel
->r_offset
== offset
13801 && ELF32_R_TYPE (irel
->r_info
) == R_MICROMIPS_PC16_S1
)
13807 /* Bitsize checking. */
13808 #define IS_BITSIZE(val, N) \
13809 (((((val) & ((1ULL << (N)) - 1)) ^ (1ULL << ((N) - 1))) \
13810 - (1ULL << ((N) - 1))) == (val))
13814 _bfd_mips_elf_relax_section (bfd
*abfd
, asection
*sec
,
13815 struct bfd_link_info
*link_info
,
13816 bfd_boolean
*again
)
13818 bfd_boolean insn32
= mips_elf_hash_table (link_info
)->insn32
;
13819 Elf_Internal_Shdr
*symtab_hdr
;
13820 Elf_Internal_Rela
*internal_relocs
;
13821 Elf_Internal_Rela
*irel
, *irelend
;
13822 bfd_byte
*contents
= NULL
;
13823 Elf_Internal_Sym
*isymbuf
= NULL
;
13825 /* Assume nothing changes. */
13828 /* We don't have to do anything for a relocatable link, if
13829 this section does not have relocs, or if this is not a
13832 if (bfd_link_relocatable (link_info
)
13833 || (sec
->flags
& SEC_RELOC
) == 0
13834 || sec
->reloc_count
== 0
13835 || (sec
->flags
& SEC_CODE
) == 0)
13838 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
13840 /* Get a copy of the native relocations. */
13841 internal_relocs
= (_bfd_elf_link_read_relocs
13842 (abfd
, sec
, NULL
, (Elf_Internal_Rela
*) NULL
,
13843 link_info
->keep_memory
));
13844 if (internal_relocs
== NULL
)
13847 /* Walk through them looking for relaxing opportunities. */
13848 irelend
= internal_relocs
+ sec
->reloc_count
;
13849 for (irel
= internal_relocs
; irel
< irelend
; irel
++)
13851 unsigned long r_symndx
= ELF32_R_SYM (irel
->r_info
);
13852 unsigned int r_type
= ELF32_R_TYPE (irel
->r_info
);
13853 bfd_boolean target_is_micromips_code_p
;
13854 unsigned long opcode
;
13860 /* The number of bytes to delete for relaxation and from where
13861 to delete these bytes starting at irel->r_offset. */
13865 /* If this isn't something that can be relaxed, then ignore
13867 if (r_type
!= R_MICROMIPS_HI16
13868 && r_type
!= R_MICROMIPS_PC16_S1
13869 && r_type
!= R_MICROMIPS_26_S1
)
13872 /* Get the section contents if we haven't done so already. */
13873 if (contents
== NULL
)
13875 /* Get cached copy if it exists. */
13876 if (elf_section_data (sec
)->this_hdr
.contents
!= NULL
)
13877 contents
= elf_section_data (sec
)->this_hdr
.contents
;
13878 /* Go get them off disk. */
13879 else if (!bfd_malloc_and_get_section (abfd
, sec
, &contents
))
13882 ptr
= contents
+ irel
->r_offset
;
13884 /* Read this BFD's local symbols if we haven't done so already. */
13885 if (isymbuf
== NULL
&& symtab_hdr
->sh_info
!= 0)
13887 isymbuf
= (Elf_Internal_Sym
*) symtab_hdr
->contents
;
13888 if (isymbuf
== NULL
)
13889 isymbuf
= bfd_elf_get_elf_syms (abfd
, symtab_hdr
,
13890 symtab_hdr
->sh_info
, 0,
13892 if (isymbuf
== NULL
)
13896 /* Get the value of the symbol referred to by the reloc. */
13897 if (r_symndx
< symtab_hdr
->sh_info
)
13899 /* A local symbol. */
13900 Elf_Internal_Sym
*isym
;
13903 isym
= isymbuf
+ r_symndx
;
13904 if (isym
->st_shndx
== SHN_UNDEF
)
13905 sym_sec
= bfd_und_section_ptr
;
13906 else if (isym
->st_shndx
== SHN_ABS
)
13907 sym_sec
= bfd_abs_section_ptr
;
13908 else if (isym
->st_shndx
== SHN_COMMON
)
13909 sym_sec
= bfd_com_section_ptr
;
13911 sym_sec
= bfd_section_from_elf_index (abfd
, isym
->st_shndx
);
13912 symval
= (isym
->st_value
13913 + sym_sec
->output_section
->vma
13914 + sym_sec
->output_offset
);
13915 target_is_micromips_code_p
= ELF_ST_IS_MICROMIPS (isym
->st_other
);
13919 unsigned long indx
;
13920 struct elf_link_hash_entry
*h
;
13922 /* An external symbol. */
13923 indx
= r_symndx
- symtab_hdr
->sh_info
;
13924 h
= elf_sym_hashes (abfd
)[indx
];
13925 BFD_ASSERT (h
!= NULL
);
13927 if (h
->root
.type
!= bfd_link_hash_defined
13928 && h
->root
.type
!= bfd_link_hash_defweak
)
13929 /* This appears to be a reference to an undefined
13930 symbol. Just ignore it -- it will be caught by the
13931 regular reloc processing. */
13934 symval
= (h
->root
.u
.def
.value
13935 + h
->root
.u
.def
.section
->output_section
->vma
13936 + h
->root
.u
.def
.section
->output_offset
);
13937 target_is_micromips_code_p
= (!h
->needs_plt
13938 && ELF_ST_IS_MICROMIPS (h
->other
));
13942 /* For simplicity of coding, we are going to modify the
13943 section contents, the section relocs, and the BFD symbol
13944 table. We must tell the rest of the code not to free up this
13945 information. It would be possible to instead create a table
13946 of changes which have to be made, as is done in coff-mips.c;
13947 that would be more work, but would require less memory when
13948 the linker is run. */
13950 /* Only 32-bit instructions relaxed. */
13951 if (irel
->r_offset
+ 4 > sec
->size
)
13954 opcode
= bfd_get_micromips_32 (abfd
, ptr
);
13956 /* This is the pc-relative distance from the instruction the
13957 relocation is applied to, to the symbol referred. */
13959 - (sec
->output_section
->vma
+ sec
->output_offset
)
13962 /* R_MICROMIPS_HI16 / LUI relaxation to nil, performing relaxation
13963 of corresponding R_MICROMIPS_LO16 to R_MICROMIPS_HI0_LO16 or
13964 R_MICROMIPS_PC23_S2. The R_MICROMIPS_PC23_S2 condition is
13966 (symval % 4 == 0 && IS_BITSIZE (pcrval, 25))
13968 where pcrval has first to be adjusted to apply against the LO16
13969 location (we make the adjustment later on, when we have figured
13970 out the offset). */
13971 if (r_type
== R_MICROMIPS_HI16
&& MATCH (opcode
, lui_insn
))
13973 bfd_boolean bzc
= FALSE
;
13974 unsigned long nextopc
;
13978 /* Give up if the previous reloc was a HI16 against this symbol
13980 if (irel
> internal_relocs
13981 && ELF32_R_TYPE (irel
[-1].r_info
) == R_MICROMIPS_HI16
13982 && ELF32_R_SYM (irel
[-1].r_info
) == r_symndx
)
13985 /* Or if the next reloc is not a LO16 against this symbol. */
13986 if (irel
+ 1 >= irelend
13987 || ELF32_R_TYPE (irel
[1].r_info
) != R_MICROMIPS_LO16
13988 || ELF32_R_SYM (irel
[1].r_info
) != r_symndx
)
13991 /* Or if the second next reloc is a LO16 against this symbol too. */
13992 if (irel
+ 2 >= irelend
13993 && ELF32_R_TYPE (irel
[2].r_info
) == R_MICROMIPS_LO16
13994 && ELF32_R_SYM (irel
[2].r_info
) == r_symndx
)
13997 /* See if the LUI instruction *might* be in a branch delay slot.
13998 We check whether what looks like a 16-bit branch or jump is
13999 actually an immediate argument to a compact branch, and let
14000 it through if so. */
14001 if (irel
->r_offset
>= 2
14002 && check_br16_dslot (abfd
, ptr
- 2)
14003 && !(irel
->r_offset
>= 4
14004 && (bzc
= check_relocated_bzc (abfd
,
14005 ptr
- 4, irel
->r_offset
- 4,
14006 internal_relocs
, irelend
))))
14008 if (irel
->r_offset
>= 4
14010 && check_br32_dslot (abfd
, ptr
- 4))
14013 reg
= OP32_SREG (opcode
);
14015 /* We only relax adjacent instructions or ones separated with
14016 a branch or jump that has a delay slot. The branch or jump
14017 must not fiddle with the register used to hold the address.
14018 Subtract 4 for the LUI itself. */
14019 offset
= irel
[1].r_offset
- irel
[0].r_offset
;
14020 switch (offset
- 4)
14025 if (check_br16 (abfd
, ptr
+ 4, reg
))
14029 if (check_br32 (abfd
, ptr
+ 4, reg
))
14036 nextopc
= bfd_get_micromips_32 (abfd
, contents
+ irel
[1].r_offset
);
14038 /* Give up unless the same register is used with both
14040 if (OP32_SREG (nextopc
) != reg
)
14043 /* Now adjust pcrval, subtracting the offset to the LO16 reloc
14044 and rounding up to take masking of the two LSBs into account. */
14045 pcrval
= ((pcrval
- offset
+ 3) | 3) ^ 3;
14047 /* R_MICROMIPS_LO16 relaxation to R_MICROMIPS_HI0_LO16. */
14048 if (IS_BITSIZE (symval
, 16))
14050 /* Fix the relocation's type. */
14051 irel
[1].r_info
= ELF32_R_INFO (r_symndx
, R_MICROMIPS_HI0_LO16
);
14053 /* Instructions using R_MICROMIPS_LO16 have the base or
14054 source register in bits 20:16. This register becomes $0
14055 (zero) as the result of the R_MICROMIPS_HI16 being 0. */
14056 nextopc
&= ~0x001f0000;
14057 bfd_put_16 (abfd
, (nextopc
>> 16) & 0xffff,
14058 contents
+ irel
[1].r_offset
);
14061 /* R_MICROMIPS_LO16 / ADDIU relaxation to R_MICROMIPS_PC23_S2.
14062 We add 4 to take LUI deletion into account while checking
14063 the PC-relative distance. */
14064 else if (symval
% 4 == 0
14065 && IS_BITSIZE (pcrval
+ 4, 25)
14066 && MATCH (nextopc
, addiu_insn
)
14067 && OP32_TREG (nextopc
) == OP32_SREG (nextopc
)
14068 && OP16_VALID_REG (OP32_TREG (nextopc
)))
14070 /* Fix the relocation's type. */
14071 irel
[1].r_info
= ELF32_R_INFO (r_symndx
, R_MICROMIPS_PC23_S2
);
14073 /* Replace ADDIU with the ADDIUPC version. */
14074 nextopc
= (addiupc_insn
.match
14075 | ADDIUPC_REG_FIELD (OP32_TREG (nextopc
)));
14077 bfd_put_micromips_32 (abfd
, nextopc
,
14078 contents
+ irel
[1].r_offset
);
14081 /* Can't do anything, give up, sigh... */
14085 /* Fix the relocation's type. */
14086 irel
->r_info
= ELF32_R_INFO (r_symndx
, R_MIPS_NONE
);
14088 /* Delete the LUI instruction: 4 bytes at irel->r_offset. */
14093 /* Compact branch relaxation -- due to the multitude of macros
14094 employed by the compiler/assembler, compact branches are not
14095 always generated. Obviously, this can/will be fixed elsewhere,
14096 but there is no drawback in double checking it here. */
14097 else if (r_type
== R_MICROMIPS_PC16_S1
14098 && irel
->r_offset
+ 5 < sec
->size
14099 && ((fndopc
= find_match (opcode
, bz_rs_insns_32
)) >= 0
14100 || (fndopc
= find_match (opcode
, bz_rt_insns_32
)) >= 0)
14102 && (delcnt
= MATCH (bfd_get_16 (abfd
, ptr
+ 4),
14103 nop_insn_16
) ? 2 : 0))
14104 || (irel
->r_offset
+ 7 < sec
->size
14105 && (delcnt
= MATCH (bfd_get_micromips_32 (abfd
,
14107 nop_insn_32
) ? 4 : 0))))
14111 reg
= OP32_SREG (opcode
) ? OP32_SREG (opcode
) : OP32_TREG (opcode
);
14113 /* Replace BEQZ/BNEZ with the compact version. */
14114 opcode
= (bzc_insns_32
[fndopc
].match
14115 | BZC32_REG_FIELD (reg
)
14116 | (opcode
& 0xffff)); /* Addend value. */
14118 bfd_put_micromips_32 (abfd
, opcode
, ptr
);
14120 /* Delete the delay slot NOP: two or four bytes from
14121 irel->offset + 4; delcnt has already been set above. */
14125 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC10_S1. We need
14126 to check the distance from the next instruction, so subtract 2. */
14128 && r_type
== R_MICROMIPS_PC16_S1
14129 && IS_BITSIZE (pcrval
- 2, 11)
14130 && find_match (opcode
, b_insns_32
) >= 0)
14132 /* Fix the relocation's type. */
14133 irel
->r_info
= ELF32_R_INFO (r_symndx
, R_MICROMIPS_PC10_S1
);
14135 /* Replace the 32-bit opcode with a 16-bit opcode. */
14138 | (opcode
& 0x3ff)), /* Addend value. */
14141 /* Delete 2 bytes from irel->r_offset + 2. */
14146 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC7_S1. We need
14147 to check the distance from the next instruction, so subtract 2. */
14149 && r_type
== R_MICROMIPS_PC16_S1
14150 && IS_BITSIZE (pcrval
- 2, 8)
14151 && (((fndopc
= find_match (opcode
, bz_rs_insns_32
)) >= 0
14152 && OP16_VALID_REG (OP32_SREG (opcode
)))
14153 || ((fndopc
= find_match (opcode
, bz_rt_insns_32
)) >= 0
14154 && OP16_VALID_REG (OP32_TREG (opcode
)))))
14158 reg
= OP32_SREG (opcode
) ? OP32_SREG (opcode
) : OP32_TREG (opcode
);
14160 /* Fix the relocation's type. */
14161 irel
->r_info
= ELF32_R_INFO (r_symndx
, R_MICROMIPS_PC7_S1
);
14163 /* Replace the 32-bit opcode with a 16-bit opcode. */
14165 (bz_insns_16
[fndopc
].match
14166 | BZ16_REG_FIELD (reg
)
14167 | (opcode
& 0x7f)), /* Addend value. */
14170 /* Delete 2 bytes from irel->r_offset + 2. */
14175 /* R_MICROMIPS_26_S1 -- JAL to JALS relaxation for microMIPS targets. */
14177 && r_type
== R_MICROMIPS_26_S1
14178 && target_is_micromips_code_p
14179 && irel
->r_offset
+ 7 < sec
->size
14180 && MATCH (opcode
, jal_insn_32_bd32
))
14182 unsigned long n32opc
;
14183 bfd_boolean relaxed
= FALSE
;
14185 n32opc
= bfd_get_micromips_32 (abfd
, ptr
+ 4);
14187 if (MATCH (n32opc
, nop_insn_32
))
14189 /* Replace delay slot 32-bit NOP with a 16-bit NOP. */
14190 bfd_put_16 (abfd
, nop_insn_16
.match
, ptr
+ 4);
14194 else if (find_match (n32opc
, move_insns_32
) >= 0)
14196 /* Replace delay slot 32-bit MOVE with 16-bit MOVE. */
14198 (move_insn_16
.match
14199 | MOVE16_RD_FIELD (MOVE32_RD (n32opc
))
14200 | MOVE16_RS_FIELD (MOVE32_RS (n32opc
))),
14205 /* Other 32-bit instructions relaxable to 16-bit
14206 instructions will be handled here later. */
14210 /* JAL with 32-bit delay slot that is changed to a JALS
14211 with 16-bit delay slot. */
14212 bfd_put_micromips_32 (abfd
, jal_insn_32_bd16
.match
, ptr
);
14214 /* Delete 2 bytes from irel->r_offset + 6. */
14222 /* Note that we've changed the relocs, section contents, etc. */
14223 elf_section_data (sec
)->relocs
= internal_relocs
;
14224 elf_section_data (sec
)->this_hdr
.contents
= contents
;
14225 symtab_hdr
->contents
= (unsigned char *) isymbuf
;
14227 /* Delete bytes depending on the delcnt and deloff. */
14228 if (!mips_elf_relax_delete_bytes (abfd
, sec
,
14229 irel
->r_offset
+ deloff
, delcnt
))
14232 /* That will change things, so we should relax again.
14233 Note that this is not required, and it may be slow. */
14238 if (isymbuf
!= NULL
14239 && symtab_hdr
->contents
!= (unsigned char *) isymbuf
)
14241 if (! link_info
->keep_memory
)
14245 /* Cache the symbols for elf_link_input_bfd. */
14246 symtab_hdr
->contents
= (unsigned char *) isymbuf
;
14250 if (contents
!= NULL
14251 && elf_section_data (sec
)->this_hdr
.contents
!= contents
)
14253 if (! link_info
->keep_memory
)
14257 /* Cache the section contents for elf_link_input_bfd. */
14258 elf_section_data (sec
)->this_hdr
.contents
= contents
;
14262 if (internal_relocs
!= NULL
14263 && elf_section_data (sec
)->relocs
!= internal_relocs
)
14264 free (internal_relocs
);
14269 if (isymbuf
!= NULL
14270 && symtab_hdr
->contents
!= (unsigned char *) isymbuf
)
14272 if (contents
!= NULL
14273 && elf_section_data (sec
)->this_hdr
.contents
!= contents
)
14275 if (internal_relocs
!= NULL
14276 && elf_section_data (sec
)->relocs
!= internal_relocs
)
14277 free (internal_relocs
);
14282 /* Create a MIPS ELF linker hash table. */
14284 struct bfd_link_hash_table
*
14285 _bfd_mips_elf_link_hash_table_create (bfd
*abfd
)
14287 struct mips_elf_link_hash_table
*ret
;
14288 bfd_size_type amt
= sizeof (struct mips_elf_link_hash_table
);
14290 ret
= bfd_zmalloc (amt
);
14294 if (!_bfd_elf_link_hash_table_init (&ret
->root
, abfd
,
14295 mips_elf_link_hash_newfunc
,
14296 sizeof (struct mips_elf_link_hash_entry
),
14302 ret
->root
.init_plt_refcount
.plist
= NULL
;
14303 ret
->root
.init_plt_offset
.plist
= NULL
;
14305 return &ret
->root
.root
;
14308 /* Likewise, but indicate that the target is VxWorks. */
14310 struct bfd_link_hash_table
*
14311 _bfd_mips_vxworks_link_hash_table_create (bfd
*abfd
)
14313 struct bfd_link_hash_table
*ret
;
14315 ret
= _bfd_mips_elf_link_hash_table_create (abfd
);
14318 struct mips_elf_link_hash_table
*htab
;
14320 htab
= (struct mips_elf_link_hash_table
*) ret
;
14321 htab
->use_plts_and_copy_relocs
= TRUE
;
14322 htab
->is_vxworks
= TRUE
;
14327 /* A function that the linker calls if we are allowed to use PLTs
14328 and copy relocs. */
14331 _bfd_mips_elf_use_plts_and_copy_relocs (struct bfd_link_info
*info
)
14333 mips_elf_hash_table (info
)->use_plts_and_copy_relocs
= TRUE
;
14336 /* A function that the linker calls to select between all or only
14337 32-bit microMIPS instructions, and between making or ignoring
14338 branch relocation checks for invalid transitions between ISA modes.
14339 Also record whether we have been configured for a GNU target. */
14342 _bfd_mips_elf_linker_flags (struct bfd_link_info
*info
, bfd_boolean insn32
,
14343 bfd_boolean ignore_branch_isa
,
14344 bfd_boolean gnu_target
)
14346 mips_elf_hash_table (info
)->insn32
= insn32
;
14347 mips_elf_hash_table (info
)->ignore_branch_isa
= ignore_branch_isa
;
14348 mips_elf_hash_table (info
)->gnu_target
= gnu_target
;
14351 /* A function that the linker calls to enable use of compact branches in
14352 linker generated code for MIPSR6. */
14355 _bfd_mips_elf_compact_branches (struct bfd_link_info
*info
, bfd_boolean on
)
14357 mips_elf_hash_table (info
)->compact_branches
= on
;
14361 /* Structure for saying that BFD machine EXTENSION extends BASE. */
14363 struct mips_mach_extension
14365 unsigned long extension
, base
;
14369 /* An array describing how BFD machines relate to one another. The entries
14370 are ordered topologically with MIPS I extensions listed last. */
14372 static const struct mips_mach_extension mips_mach_extensions
[] =
14374 /* MIPS64r2 extensions. */
14375 { bfd_mach_mips_octeon3
, bfd_mach_mips_octeon2
},
14376 { bfd_mach_mips_octeon2
, bfd_mach_mips_octeonp
},
14377 { bfd_mach_mips_octeonp
, bfd_mach_mips_octeon
},
14378 { bfd_mach_mips_octeon
, bfd_mach_mipsisa64r2
},
14379 { bfd_mach_mips_gs264e
, bfd_mach_mips_gs464e
},
14380 { bfd_mach_mips_gs464e
, bfd_mach_mips_gs464
},
14381 { bfd_mach_mips_gs464
, bfd_mach_mipsisa64r2
},
14383 /* MIPS64 extensions. */
14384 { bfd_mach_mipsisa64r2
, bfd_mach_mipsisa64
},
14385 { bfd_mach_mips_sb1
, bfd_mach_mipsisa64
},
14386 { bfd_mach_mips_xlr
, bfd_mach_mipsisa64
},
14388 /* MIPS V extensions. */
14389 { bfd_mach_mipsisa64
, bfd_mach_mips5
},
14391 /* R10000 extensions. */
14392 { bfd_mach_mips12000
, bfd_mach_mips10000
},
14393 { bfd_mach_mips14000
, bfd_mach_mips10000
},
14394 { bfd_mach_mips16000
, bfd_mach_mips10000
},
14396 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
14397 vr5400 ISA, but doesn't include the multimedia stuff. It seems
14398 better to allow vr5400 and vr5500 code to be merged anyway, since
14399 many libraries will just use the core ISA. Perhaps we could add
14400 some sort of ASE flag if this ever proves a problem. */
14401 { bfd_mach_mips5500
, bfd_mach_mips5400
},
14402 { bfd_mach_mips5400
, bfd_mach_mips5000
},
14404 /* MIPS IV extensions. */
14405 { bfd_mach_mips5
, bfd_mach_mips8000
},
14406 { bfd_mach_mips10000
, bfd_mach_mips8000
},
14407 { bfd_mach_mips5000
, bfd_mach_mips8000
},
14408 { bfd_mach_mips7000
, bfd_mach_mips8000
},
14409 { bfd_mach_mips9000
, bfd_mach_mips8000
},
14411 /* VR4100 extensions. */
14412 { bfd_mach_mips4120
, bfd_mach_mips4100
},
14413 { bfd_mach_mips4111
, bfd_mach_mips4100
},
14415 /* MIPS III extensions. */
14416 { bfd_mach_mips_loongson_2e
, bfd_mach_mips4000
},
14417 { bfd_mach_mips_loongson_2f
, bfd_mach_mips4000
},
14418 { bfd_mach_mips8000
, bfd_mach_mips4000
},
14419 { bfd_mach_mips4650
, bfd_mach_mips4000
},
14420 { bfd_mach_mips4600
, bfd_mach_mips4000
},
14421 { bfd_mach_mips4400
, bfd_mach_mips4000
},
14422 { bfd_mach_mips4300
, bfd_mach_mips4000
},
14423 { bfd_mach_mips4100
, bfd_mach_mips4000
},
14424 { bfd_mach_mips5900
, bfd_mach_mips4000
},
14426 /* MIPS32r3 extensions. */
14427 { bfd_mach_mips_interaptiv_mr2
, bfd_mach_mipsisa32r3
},
14429 /* MIPS32r2 extensions. */
14430 { bfd_mach_mipsisa32r3
, bfd_mach_mipsisa32r2
},
14432 /* MIPS32 extensions. */
14433 { bfd_mach_mipsisa32r2
, bfd_mach_mipsisa32
},
14435 /* MIPS II extensions. */
14436 { bfd_mach_mips4000
, bfd_mach_mips6000
},
14437 { bfd_mach_mipsisa32
, bfd_mach_mips6000
},
14438 { bfd_mach_mips4010
, bfd_mach_mips6000
},
14440 /* MIPS I extensions. */
14441 { bfd_mach_mips6000
, bfd_mach_mips3000
},
14442 { bfd_mach_mips3900
, bfd_mach_mips3000
}
14445 /* Return true if bfd machine EXTENSION is an extension of machine BASE. */
14448 mips_mach_extends_p (unsigned long base
, unsigned long extension
)
14452 if (extension
== base
)
14455 if (base
== bfd_mach_mipsisa32
14456 && mips_mach_extends_p (bfd_mach_mipsisa64
, extension
))
14459 if (base
== bfd_mach_mipsisa32r2
14460 && mips_mach_extends_p (bfd_mach_mipsisa64r2
, extension
))
14463 for (i
= 0; i
< ARRAY_SIZE (mips_mach_extensions
); i
++)
14464 if (extension
== mips_mach_extensions
[i
].extension
)
14466 extension
= mips_mach_extensions
[i
].base
;
14467 if (extension
== base
)
14474 /* Return the BFD mach for each .MIPS.abiflags ISA Extension. */
14476 static unsigned long
14477 bfd_mips_isa_ext_mach (unsigned int isa_ext
)
14481 case AFL_EXT_3900
: return bfd_mach_mips3900
;
14482 case AFL_EXT_4010
: return bfd_mach_mips4010
;
14483 case AFL_EXT_4100
: return bfd_mach_mips4100
;
14484 case AFL_EXT_4111
: return bfd_mach_mips4111
;
14485 case AFL_EXT_4120
: return bfd_mach_mips4120
;
14486 case AFL_EXT_4650
: return bfd_mach_mips4650
;
14487 case AFL_EXT_5400
: return bfd_mach_mips5400
;
14488 case AFL_EXT_5500
: return bfd_mach_mips5500
;
14489 case AFL_EXT_5900
: return bfd_mach_mips5900
;
14490 case AFL_EXT_10000
: return bfd_mach_mips10000
;
14491 case AFL_EXT_LOONGSON_2E
: return bfd_mach_mips_loongson_2e
;
14492 case AFL_EXT_LOONGSON_2F
: return bfd_mach_mips_loongson_2f
;
14493 case AFL_EXT_SB1
: return bfd_mach_mips_sb1
;
14494 case AFL_EXT_OCTEON
: return bfd_mach_mips_octeon
;
14495 case AFL_EXT_OCTEONP
: return bfd_mach_mips_octeonp
;
14496 case AFL_EXT_OCTEON2
: return bfd_mach_mips_octeon2
;
14497 case AFL_EXT_XLR
: return bfd_mach_mips_xlr
;
14498 default: return bfd_mach_mips3000
;
14502 /* Return the .MIPS.abiflags value representing each ISA Extension. */
14505 bfd_mips_isa_ext (bfd
*abfd
)
14507 switch (bfd_get_mach (abfd
))
14509 case bfd_mach_mips3900
: return AFL_EXT_3900
;
14510 case bfd_mach_mips4010
: return AFL_EXT_4010
;
14511 case bfd_mach_mips4100
: return AFL_EXT_4100
;
14512 case bfd_mach_mips4111
: return AFL_EXT_4111
;
14513 case bfd_mach_mips4120
: return AFL_EXT_4120
;
14514 case bfd_mach_mips4650
: return AFL_EXT_4650
;
14515 case bfd_mach_mips5400
: return AFL_EXT_5400
;
14516 case bfd_mach_mips5500
: return AFL_EXT_5500
;
14517 case bfd_mach_mips5900
: return AFL_EXT_5900
;
14518 case bfd_mach_mips10000
: return AFL_EXT_10000
;
14519 case bfd_mach_mips_loongson_2e
: return AFL_EXT_LOONGSON_2E
;
14520 case bfd_mach_mips_loongson_2f
: return AFL_EXT_LOONGSON_2F
;
14521 case bfd_mach_mips_sb1
: return AFL_EXT_SB1
;
14522 case bfd_mach_mips_octeon
: return AFL_EXT_OCTEON
;
14523 case bfd_mach_mips_octeonp
: return AFL_EXT_OCTEONP
;
14524 case bfd_mach_mips_octeon3
: return AFL_EXT_OCTEON3
;
14525 case bfd_mach_mips_octeon2
: return AFL_EXT_OCTEON2
;
14526 case bfd_mach_mips_xlr
: return AFL_EXT_XLR
;
14527 case bfd_mach_mips_interaptiv_mr2
:
14528 return AFL_EXT_INTERAPTIV_MR2
;
14533 /* Encode ISA level and revision as a single value. */
14534 #define LEVEL_REV(LEV,REV) ((LEV) << 3 | (REV))
14536 /* Decode a single value into level and revision. */
14537 #define ISA_LEVEL(LEVREV) ((LEVREV) >> 3)
14538 #define ISA_REV(LEVREV) ((LEVREV) & 0x7)
14540 /* Update the isa_level, isa_rev, isa_ext fields of abiflags. */
14543 update_mips_abiflags_isa (bfd
*abfd
, Elf_Internal_ABIFlags_v0
*abiflags
)
14546 switch (elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH
)
14548 case E_MIPS_ARCH_1
: new_isa
= LEVEL_REV (1, 0); break;
14549 case E_MIPS_ARCH_2
: new_isa
= LEVEL_REV (2, 0); break;
14550 case E_MIPS_ARCH_3
: new_isa
= LEVEL_REV (3, 0); break;
14551 case E_MIPS_ARCH_4
: new_isa
= LEVEL_REV (4, 0); break;
14552 case E_MIPS_ARCH_5
: new_isa
= LEVEL_REV (5, 0); break;
14553 case E_MIPS_ARCH_32
: new_isa
= LEVEL_REV (32, 1); break;
14554 case E_MIPS_ARCH_32R2
: new_isa
= LEVEL_REV (32, 2); break;
14555 case E_MIPS_ARCH_32R6
: new_isa
= LEVEL_REV (32, 6); break;
14556 case E_MIPS_ARCH_64
: new_isa
= LEVEL_REV (64, 1); break;
14557 case E_MIPS_ARCH_64R2
: new_isa
= LEVEL_REV (64, 2); break;
14558 case E_MIPS_ARCH_64R6
: new_isa
= LEVEL_REV (64, 6); break;
14561 /* xgettext:c-format */
14562 (_("%pB: unknown architecture %s"),
14563 abfd
, bfd_printable_name (abfd
));
14566 if (new_isa
> LEVEL_REV (abiflags
->isa_level
, abiflags
->isa_rev
))
14568 abiflags
->isa_level
= ISA_LEVEL (new_isa
);
14569 abiflags
->isa_rev
= ISA_REV (new_isa
);
14572 /* Update the isa_ext if ABFD describes a further extension. */
14573 if (mips_mach_extends_p (bfd_mips_isa_ext_mach (abiflags
->isa_ext
),
14574 bfd_get_mach (abfd
)))
14575 abiflags
->isa_ext
= bfd_mips_isa_ext (abfd
);
14578 /* Return true if the given ELF header flags describe a 32-bit binary. */
14581 mips_32bit_flags_p (flagword flags
)
14583 return ((flags
& EF_MIPS_32BITMODE
) != 0
14584 || (flags
& EF_MIPS_ABI
) == E_MIPS_ABI_O32
14585 || (flags
& EF_MIPS_ABI
) == E_MIPS_ABI_EABI32
14586 || (flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_1
14587 || (flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_2
14588 || (flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_32
14589 || (flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_32R2
14590 || (flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_32R6
);
14593 /* Infer the content of the ABI flags based on the elf header. */
14596 infer_mips_abiflags (bfd
*abfd
, Elf_Internal_ABIFlags_v0
* abiflags
)
14598 obj_attribute
*in_attr
;
14600 memset (abiflags
, 0, sizeof (Elf_Internal_ABIFlags_v0
));
14601 update_mips_abiflags_isa (abfd
, abiflags
);
14603 if (mips_32bit_flags_p (elf_elfheader (abfd
)->e_flags
))
14604 abiflags
->gpr_size
= AFL_REG_32
;
14606 abiflags
->gpr_size
= AFL_REG_64
;
14608 abiflags
->cpr1_size
= AFL_REG_NONE
;
14610 in_attr
= elf_known_obj_attributes (abfd
)[OBJ_ATTR_GNU
];
14611 abiflags
->fp_abi
= in_attr
[Tag_GNU_MIPS_ABI_FP
].i
;
14613 if (abiflags
->fp_abi
== Val_GNU_MIPS_ABI_FP_SINGLE
14614 || abiflags
->fp_abi
== Val_GNU_MIPS_ABI_FP_XX
14615 || (abiflags
->fp_abi
== Val_GNU_MIPS_ABI_FP_DOUBLE
14616 && abiflags
->gpr_size
== AFL_REG_32
))
14617 abiflags
->cpr1_size
= AFL_REG_32
;
14618 else if (abiflags
->fp_abi
== Val_GNU_MIPS_ABI_FP_DOUBLE
14619 || abiflags
->fp_abi
== Val_GNU_MIPS_ABI_FP_64
14620 || abiflags
->fp_abi
== Val_GNU_MIPS_ABI_FP_64A
)
14621 abiflags
->cpr1_size
= AFL_REG_64
;
14623 abiflags
->cpr2_size
= AFL_REG_NONE
;
14625 if (elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH_ASE_MDMX
)
14626 abiflags
->ases
|= AFL_ASE_MDMX
;
14627 if (elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH_ASE_M16
)
14628 abiflags
->ases
|= AFL_ASE_MIPS16
;
14629 if (elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH_ASE_MICROMIPS
)
14630 abiflags
->ases
|= AFL_ASE_MICROMIPS
;
14632 if (abiflags
->fp_abi
!= Val_GNU_MIPS_ABI_FP_ANY
14633 && abiflags
->fp_abi
!= Val_GNU_MIPS_ABI_FP_SOFT
14634 && abiflags
->fp_abi
!= Val_GNU_MIPS_ABI_FP_64A
14635 && abiflags
->isa_level
>= 32
14636 && abiflags
->ases
!= AFL_ASE_LOONGSON_EXT
)
14637 abiflags
->flags1
|= AFL_FLAGS1_ODDSPREG
;
14640 /* We need to use a special link routine to handle the .reginfo and
14641 the .mdebug sections. We need to merge all instances of these
14642 sections together, not write them all out sequentially. */
14645 _bfd_mips_elf_final_link (bfd
*abfd
, struct bfd_link_info
*info
)
14648 struct bfd_link_order
*p
;
14649 asection
*reginfo_sec
, *mdebug_sec
, *gptab_data_sec
, *gptab_bss_sec
;
14650 asection
*rtproc_sec
, *abiflags_sec
;
14651 Elf32_RegInfo reginfo
;
14652 struct ecoff_debug_info debug
;
14653 struct mips_htab_traverse_info hti
;
14654 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
14655 const struct ecoff_debug_swap
*swap
= bed
->elf_backend_ecoff_debug_swap
;
14656 HDRR
*symhdr
= &debug
.symbolic_header
;
14657 void *mdebug_handle
= NULL
;
14662 struct mips_elf_link_hash_table
*htab
;
14664 static const char * const secname
[] =
14666 ".text", ".init", ".fini", ".data",
14667 ".rodata", ".sdata", ".sbss", ".bss"
14669 static const int sc
[] =
14671 scText
, scInit
, scFini
, scData
,
14672 scRData
, scSData
, scSBss
, scBss
14675 htab
= mips_elf_hash_table (info
);
14676 BFD_ASSERT (htab
!= NULL
);
14678 /* Sort the dynamic symbols so that those with GOT entries come after
14680 if (!mips_elf_sort_hash_table (abfd
, info
))
14683 /* Create any scheduled LA25 stubs. */
14685 hti
.output_bfd
= abfd
;
14687 htab_traverse (htab
->la25_stubs
, mips_elf_create_la25_stub
, &hti
);
14691 /* Get a value for the GP register. */
14692 if (elf_gp (abfd
) == 0)
14694 struct bfd_link_hash_entry
*h
;
14696 h
= bfd_link_hash_lookup (info
->hash
, "_gp", FALSE
, FALSE
, TRUE
);
14697 if (h
!= NULL
&& h
->type
== bfd_link_hash_defined
)
14698 elf_gp (abfd
) = (h
->u
.def
.value
14699 + h
->u
.def
.section
->output_section
->vma
14700 + h
->u
.def
.section
->output_offset
);
14701 else if (htab
->is_vxworks
14702 && (h
= bfd_link_hash_lookup (info
->hash
,
14703 "_GLOBAL_OFFSET_TABLE_",
14704 FALSE
, FALSE
, TRUE
))
14705 && h
->type
== bfd_link_hash_defined
)
14706 elf_gp (abfd
) = (h
->u
.def
.section
->output_section
->vma
14707 + h
->u
.def
.section
->output_offset
14709 else if (bfd_link_relocatable (info
))
14711 bfd_vma lo
= MINUS_ONE
;
14713 /* Find the GP-relative section with the lowest offset. */
14714 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
14716 && (elf_section_data (o
)->this_hdr
.sh_flags
& SHF_MIPS_GPREL
))
14719 /* And calculate GP relative to that. */
14720 elf_gp (abfd
) = lo
+ ELF_MIPS_GP_OFFSET (info
);
14724 /* If the relocate_section function needs to do a reloc
14725 involving the GP value, it should make a reloc_dangerous
14726 callback to warn that GP is not defined. */
14730 /* Go through the sections and collect the .reginfo and .mdebug
14732 abiflags_sec
= NULL
;
14733 reginfo_sec
= NULL
;
14735 gptab_data_sec
= NULL
;
14736 gptab_bss_sec
= NULL
;
14737 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
14739 if (strcmp (o
->name
, ".MIPS.abiflags") == 0)
14741 /* We have found the .MIPS.abiflags section in the output file.
14742 Look through all the link_orders comprising it and remove them.
14743 The data is merged in _bfd_mips_elf_merge_private_bfd_data. */
14744 for (p
= o
->map_head
.link_order
; p
!= NULL
; p
= p
->next
)
14746 asection
*input_section
;
14748 if (p
->type
!= bfd_indirect_link_order
)
14750 if (p
->type
== bfd_data_link_order
)
14755 input_section
= p
->u
.indirect
.section
;
14757 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14758 elf_link_input_bfd ignores this section. */
14759 input_section
->flags
&= ~SEC_HAS_CONTENTS
;
14762 /* Size has been set in _bfd_mips_elf_always_size_sections. */
14763 BFD_ASSERT(o
->size
== sizeof (Elf_External_ABIFlags_v0
));
14765 /* Skip this section later on (I don't think this currently
14766 matters, but someday it might). */
14767 o
->map_head
.link_order
= NULL
;
14772 if (strcmp (o
->name
, ".reginfo") == 0)
14774 memset (®info
, 0, sizeof reginfo
);
14776 /* We have found the .reginfo section in the output file.
14777 Look through all the link_orders comprising it and merge
14778 the information together. */
14779 for (p
= o
->map_head
.link_order
; p
!= NULL
; p
= p
->next
)
14781 asection
*input_section
;
14783 Elf32_External_RegInfo ext
;
14787 if (p
->type
!= bfd_indirect_link_order
)
14789 if (p
->type
== bfd_data_link_order
)
14794 input_section
= p
->u
.indirect
.section
;
14795 input_bfd
= input_section
->owner
;
14797 sz
= (input_section
->size
< sizeof (ext
)
14798 ? input_section
->size
: sizeof (ext
));
14799 memset (&ext
, 0, sizeof (ext
));
14800 if (! bfd_get_section_contents (input_bfd
, input_section
,
14804 bfd_mips_elf32_swap_reginfo_in (input_bfd
, &ext
, &sub
);
14806 reginfo
.ri_gprmask
|= sub
.ri_gprmask
;
14807 reginfo
.ri_cprmask
[0] |= sub
.ri_cprmask
[0];
14808 reginfo
.ri_cprmask
[1] |= sub
.ri_cprmask
[1];
14809 reginfo
.ri_cprmask
[2] |= sub
.ri_cprmask
[2];
14810 reginfo
.ri_cprmask
[3] |= sub
.ri_cprmask
[3];
14812 /* ri_gp_value is set by the function
14813 `_bfd_mips_elf_section_processing' when the section is
14814 finally written out. */
14816 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14817 elf_link_input_bfd ignores this section. */
14818 input_section
->flags
&= ~SEC_HAS_CONTENTS
;
14821 /* Size has been set in _bfd_mips_elf_always_size_sections. */
14822 BFD_ASSERT(o
->size
== sizeof (Elf32_External_RegInfo
));
14824 /* Skip this section later on (I don't think this currently
14825 matters, but someday it might). */
14826 o
->map_head
.link_order
= NULL
;
14831 if (strcmp (o
->name
, ".mdebug") == 0)
14833 struct extsym_info einfo
;
14836 /* We have found the .mdebug section in the output file.
14837 Look through all the link_orders comprising it and merge
14838 the information together. */
14839 symhdr
->magic
= swap
->sym_magic
;
14840 /* FIXME: What should the version stamp be? */
14841 symhdr
->vstamp
= 0;
14842 symhdr
->ilineMax
= 0;
14843 symhdr
->cbLine
= 0;
14844 symhdr
->idnMax
= 0;
14845 symhdr
->ipdMax
= 0;
14846 symhdr
->isymMax
= 0;
14847 symhdr
->ioptMax
= 0;
14848 symhdr
->iauxMax
= 0;
14849 symhdr
->issMax
= 0;
14850 symhdr
->issExtMax
= 0;
14851 symhdr
->ifdMax
= 0;
14853 symhdr
->iextMax
= 0;
14855 /* We accumulate the debugging information itself in the
14856 debug_info structure. */
14858 debug
.external_dnr
= NULL
;
14859 debug
.external_pdr
= NULL
;
14860 debug
.external_sym
= NULL
;
14861 debug
.external_opt
= NULL
;
14862 debug
.external_aux
= NULL
;
14864 debug
.ssext
= debug
.ssext_end
= NULL
;
14865 debug
.external_fdr
= NULL
;
14866 debug
.external_rfd
= NULL
;
14867 debug
.external_ext
= debug
.external_ext_end
= NULL
;
14869 mdebug_handle
= bfd_ecoff_debug_init (abfd
, &debug
, swap
, info
);
14870 if (mdebug_handle
== NULL
)
14874 esym
.cobol_main
= 0;
14878 esym
.asym
.iss
= issNil
;
14879 esym
.asym
.st
= stLocal
;
14880 esym
.asym
.reserved
= 0;
14881 esym
.asym
.index
= indexNil
;
14883 for (i
= 0; i
< sizeof (secname
) / sizeof (secname
[0]); i
++)
14885 esym
.asym
.sc
= sc
[i
];
14886 s
= bfd_get_section_by_name (abfd
, secname
[i
]);
14889 esym
.asym
.value
= s
->vma
;
14890 last
= s
->vma
+ s
->size
;
14893 esym
.asym
.value
= last
;
14894 if (!bfd_ecoff_debug_one_external (abfd
, &debug
, swap
,
14895 secname
[i
], &esym
))
14899 for (p
= o
->map_head
.link_order
; p
!= NULL
; p
= p
->next
)
14901 asection
*input_section
;
14903 const struct ecoff_debug_swap
*input_swap
;
14904 struct ecoff_debug_info input_debug
;
14908 if (p
->type
!= bfd_indirect_link_order
)
14910 if (p
->type
== bfd_data_link_order
)
14915 input_section
= p
->u
.indirect
.section
;
14916 input_bfd
= input_section
->owner
;
14918 if (!is_mips_elf (input_bfd
))
14920 /* I don't know what a non MIPS ELF bfd would be
14921 doing with a .mdebug section, but I don't really
14922 want to deal with it. */
14926 input_swap
= (get_elf_backend_data (input_bfd
)
14927 ->elf_backend_ecoff_debug_swap
);
14929 BFD_ASSERT (p
->size
== input_section
->size
);
14931 /* The ECOFF linking code expects that we have already
14932 read in the debugging information and set up an
14933 ecoff_debug_info structure, so we do that now. */
14934 if (! _bfd_mips_elf_read_ecoff_info (input_bfd
, input_section
,
14938 if (! (bfd_ecoff_debug_accumulate
14939 (mdebug_handle
, abfd
, &debug
, swap
, input_bfd
,
14940 &input_debug
, input_swap
, info
)))
14943 /* Loop through the external symbols. For each one with
14944 interesting information, try to find the symbol in
14945 the linker global hash table and save the information
14946 for the output external symbols. */
14947 eraw_src
= input_debug
.external_ext
;
14948 eraw_end
= (eraw_src
14949 + (input_debug
.symbolic_header
.iextMax
14950 * input_swap
->external_ext_size
));
14952 eraw_src
< eraw_end
;
14953 eraw_src
+= input_swap
->external_ext_size
)
14957 struct mips_elf_link_hash_entry
*h
;
14959 (*input_swap
->swap_ext_in
) (input_bfd
, eraw_src
, &ext
);
14960 if (ext
.asym
.sc
== scNil
14961 || ext
.asym
.sc
== scUndefined
14962 || ext
.asym
.sc
== scSUndefined
)
14965 name
= input_debug
.ssext
+ ext
.asym
.iss
;
14966 h
= mips_elf_link_hash_lookup (mips_elf_hash_table (info
),
14967 name
, FALSE
, FALSE
, TRUE
);
14968 if (h
== NULL
|| h
->esym
.ifd
!= -2)
14973 BFD_ASSERT (ext
.ifd
14974 < input_debug
.symbolic_header
.ifdMax
);
14975 ext
.ifd
= input_debug
.ifdmap
[ext
.ifd
];
14981 /* Free up the information we just read. */
14982 free (input_debug
.line
);
14983 free (input_debug
.external_dnr
);
14984 free (input_debug
.external_pdr
);
14985 free (input_debug
.external_sym
);
14986 free (input_debug
.external_opt
);
14987 free (input_debug
.external_aux
);
14988 free (input_debug
.ss
);
14989 free (input_debug
.ssext
);
14990 free (input_debug
.external_fdr
);
14991 free (input_debug
.external_rfd
);
14992 free (input_debug
.external_ext
);
14994 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14995 elf_link_input_bfd ignores this section. */
14996 input_section
->flags
&= ~SEC_HAS_CONTENTS
;
14999 if (SGI_COMPAT (abfd
) && bfd_link_pic (info
))
15001 /* Create .rtproc section. */
15002 rtproc_sec
= bfd_get_linker_section (abfd
, ".rtproc");
15003 if (rtproc_sec
== NULL
)
15005 flagword flags
= (SEC_HAS_CONTENTS
| SEC_IN_MEMORY
15006 | SEC_LINKER_CREATED
| SEC_READONLY
);
15008 rtproc_sec
= bfd_make_section_anyway_with_flags (abfd
,
15011 if (rtproc_sec
== NULL
15012 || !bfd_set_section_alignment (rtproc_sec
, 4))
15016 if (! mips_elf_create_procedure_table (mdebug_handle
, abfd
,
15022 /* Build the external symbol information. */
15025 einfo
.debug
= &debug
;
15027 einfo
.failed
= FALSE
;
15028 mips_elf_link_hash_traverse (mips_elf_hash_table (info
),
15029 mips_elf_output_extsym
, &einfo
);
15033 /* Set the size of the .mdebug section. */
15034 o
->size
= bfd_ecoff_debug_size (abfd
, &debug
, swap
);
15036 /* Skip this section later on (I don't think this currently
15037 matters, but someday it might). */
15038 o
->map_head
.link_order
= NULL
;
15043 if (CONST_STRNEQ (o
->name
, ".gptab."))
15045 const char *subname
;
15048 Elf32_External_gptab
*ext_tab
;
15051 /* The .gptab.sdata and .gptab.sbss sections hold
15052 information describing how the small data area would
15053 change depending upon the -G switch. These sections
15054 not used in executables files. */
15055 if (! bfd_link_relocatable (info
))
15057 for (p
= o
->map_head
.link_order
; p
!= NULL
; p
= p
->next
)
15059 asection
*input_section
;
15061 if (p
->type
!= bfd_indirect_link_order
)
15063 if (p
->type
== bfd_data_link_order
)
15068 input_section
= p
->u
.indirect
.section
;
15070 /* Hack: reset the SEC_HAS_CONTENTS flag so that
15071 elf_link_input_bfd ignores this section. */
15072 input_section
->flags
&= ~SEC_HAS_CONTENTS
;
15075 /* Skip this section later on (I don't think this
15076 currently matters, but someday it might). */
15077 o
->map_head
.link_order
= NULL
;
15079 /* Really remove the section. */
15080 bfd_section_list_remove (abfd
, o
);
15081 --abfd
->section_count
;
15086 /* There is one gptab for initialized data, and one for
15087 uninitialized data. */
15088 if (strcmp (o
->name
, ".gptab.sdata") == 0)
15089 gptab_data_sec
= o
;
15090 else if (strcmp (o
->name
, ".gptab.sbss") == 0)
15095 /* xgettext:c-format */
15096 (_("%pB: illegal section name `%pA'"), abfd
, o
);
15097 bfd_set_error (bfd_error_nonrepresentable_section
);
15101 /* The linker script always combines .gptab.data and
15102 .gptab.sdata into .gptab.sdata, and likewise for
15103 .gptab.bss and .gptab.sbss. It is possible that there is
15104 no .sdata or .sbss section in the output file, in which
15105 case we must change the name of the output section. */
15106 subname
= o
->name
+ sizeof ".gptab" - 1;
15107 if (bfd_get_section_by_name (abfd
, subname
) == NULL
)
15109 if (o
== gptab_data_sec
)
15110 o
->name
= ".gptab.data";
15112 o
->name
= ".gptab.bss";
15113 subname
= o
->name
+ sizeof ".gptab" - 1;
15114 BFD_ASSERT (bfd_get_section_by_name (abfd
, subname
) != NULL
);
15117 /* Set up the first entry. */
15119 amt
= c
* sizeof (Elf32_gptab
);
15120 tab
= bfd_malloc (amt
);
15123 tab
[0].gt_header
.gt_current_g_value
= elf_gp_size (abfd
);
15124 tab
[0].gt_header
.gt_unused
= 0;
15126 /* Combine the input sections. */
15127 for (p
= o
->map_head
.link_order
; p
!= NULL
; p
= p
->next
)
15129 asection
*input_section
;
15131 bfd_size_type size
;
15132 unsigned long last
;
15133 bfd_size_type gpentry
;
15135 if (p
->type
!= bfd_indirect_link_order
)
15137 if (p
->type
== bfd_data_link_order
)
15142 input_section
= p
->u
.indirect
.section
;
15143 input_bfd
= input_section
->owner
;
15145 /* Combine the gptab entries for this input section one
15146 by one. We know that the input gptab entries are
15147 sorted by ascending -G value. */
15148 size
= input_section
->size
;
15150 for (gpentry
= sizeof (Elf32_External_gptab
);
15152 gpentry
+= sizeof (Elf32_External_gptab
))
15154 Elf32_External_gptab ext_gptab
;
15155 Elf32_gptab int_gptab
;
15161 if (! (bfd_get_section_contents
15162 (input_bfd
, input_section
, &ext_gptab
, gpentry
,
15163 sizeof (Elf32_External_gptab
))))
15169 bfd_mips_elf32_swap_gptab_in (input_bfd
, &ext_gptab
,
15171 val
= int_gptab
.gt_entry
.gt_g_value
;
15172 add
= int_gptab
.gt_entry
.gt_bytes
- last
;
15175 for (look
= 1; look
< c
; look
++)
15177 if (tab
[look
].gt_entry
.gt_g_value
>= val
)
15178 tab
[look
].gt_entry
.gt_bytes
+= add
;
15180 if (tab
[look
].gt_entry
.gt_g_value
== val
)
15186 Elf32_gptab
*new_tab
;
15189 /* We need a new table entry. */
15190 amt
= (bfd_size_type
) (c
+ 1) * sizeof (Elf32_gptab
);
15191 new_tab
= bfd_realloc (tab
, amt
);
15192 if (new_tab
== NULL
)
15198 tab
[c
].gt_entry
.gt_g_value
= val
;
15199 tab
[c
].gt_entry
.gt_bytes
= add
;
15201 /* Merge in the size for the next smallest -G
15202 value, since that will be implied by this new
15205 for (look
= 1; look
< c
; look
++)
15207 if (tab
[look
].gt_entry
.gt_g_value
< val
15209 || (tab
[look
].gt_entry
.gt_g_value
15210 > tab
[max
].gt_entry
.gt_g_value
)))
15214 tab
[c
].gt_entry
.gt_bytes
+=
15215 tab
[max
].gt_entry
.gt_bytes
;
15220 last
= int_gptab
.gt_entry
.gt_bytes
;
15223 /* Hack: reset the SEC_HAS_CONTENTS flag so that
15224 elf_link_input_bfd ignores this section. */
15225 input_section
->flags
&= ~SEC_HAS_CONTENTS
;
15228 /* The table must be sorted by -G value. */
15230 qsort (tab
+ 1, c
- 1, sizeof (tab
[0]), gptab_compare
);
15232 /* Swap out the table. */
15233 amt
= (bfd_size_type
) c
* sizeof (Elf32_External_gptab
);
15234 ext_tab
= bfd_alloc (abfd
, amt
);
15235 if (ext_tab
== NULL
)
15241 for (j
= 0; j
< c
; j
++)
15242 bfd_mips_elf32_swap_gptab_out (abfd
, tab
+ j
, ext_tab
+ j
);
15245 o
->size
= c
* sizeof (Elf32_External_gptab
);
15246 o
->contents
= (bfd_byte
*) ext_tab
;
15248 /* Skip this section later on (I don't think this currently
15249 matters, but someday it might). */
15250 o
->map_head
.link_order
= NULL
;
15254 /* Invoke the regular ELF backend linker to do all the work. */
15255 if (!bfd_elf_final_link (abfd
, info
))
15258 /* Now write out the computed sections. */
15260 if (abiflags_sec
!= NULL
)
15262 Elf_External_ABIFlags_v0 ext
;
15263 Elf_Internal_ABIFlags_v0
*abiflags
;
15265 abiflags
= &mips_elf_tdata (abfd
)->abiflags
;
15267 /* Set up the abiflags if no valid input sections were found. */
15268 if (!mips_elf_tdata (abfd
)->abiflags_valid
)
15270 infer_mips_abiflags (abfd
, abiflags
);
15271 mips_elf_tdata (abfd
)->abiflags_valid
= TRUE
;
15273 bfd_mips_elf_swap_abiflags_v0_out (abfd
, abiflags
, &ext
);
15274 if (! bfd_set_section_contents (abfd
, abiflags_sec
, &ext
, 0, sizeof ext
))
15278 if (reginfo_sec
!= NULL
)
15280 Elf32_External_RegInfo ext
;
15282 bfd_mips_elf32_swap_reginfo_out (abfd
, ®info
, &ext
);
15283 if (! bfd_set_section_contents (abfd
, reginfo_sec
, &ext
, 0, sizeof ext
))
15287 if (mdebug_sec
!= NULL
)
15289 BFD_ASSERT (abfd
->output_has_begun
);
15290 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle
, abfd
, &debug
,
15292 mdebug_sec
->filepos
))
15295 bfd_ecoff_debug_free (mdebug_handle
, abfd
, &debug
, swap
, info
);
15298 if (gptab_data_sec
!= NULL
)
15300 if (! bfd_set_section_contents (abfd
, gptab_data_sec
,
15301 gptab_data_sec
->contents
,
15302 0, gptab_data_sec
->size
))
15306 if (gptab_bss_sec
!= NULL
)
15308 if (! bfd_set_section_contents (abfd
, gptab_bss_sec
,
15309 gptab_bss_sec
->contents
,
15310 0, gptab_bss_sec
->size
))
15314 if (SGI_COMPAT (abfd
))
15316 rtproc_sec
= bfd_get_section_by_name (abfd
, ".rtproc");
15317 if (rtproc_sec
!= NULL
)
15319 if (! bfd_set_section_contents (abfd
, rtproc_sec
,
15320 rtproc_sec
->contents
,
15321 0, rtproc_sec
->size
))
15329 /* Merge object file header flags from IBFD into OBFD. Raise an error
15330 if there are conflicting settings. */
15333 mips_elf_merge_obj_e_flags (bfd
*ibfd
, struct bfd_link_info
*info
)
15335 bfd
*obfd
= info
->output_bfd
;
15336 struct mips_elf_obj_tdata
*out_tdata
= mips_elf_tdata (obfd
);
15337 flagword old_flags
;
15338 flagword new_flags
;
15341 new_flags
= elf_elfheader (ibfd
)->e_flags
;
15342 elf_elfheader (obfd
)->e_flags
|= new_flags
& EF_MIPS_NOREORDER
;
15343 old_flags
= elf_elfheader (obfd
)->e_flags
;
15345 /* Check flag compatibility. */
15347 new_flags
&= ~EF_MIPS_NOREORDER
;
15348 old_flags
&= ~EF_MIPS_NOREORDER
;
15350 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
15351 doesn't seem to matter. */
15352 new_flags
&= ~EF_MIPS_XGOT
;
15353 old_flags
&= ~EF_MIPS_XGOT
;
15355 /* MIPSpro generates ucode info in n64 objects. Again, we should
15356 just be able to ignore this. */
15357 new_flags
&= ~EF_MIPS_UCODE
;
15358 old_flags
&= ~EF_MIPS_UCODE
;
15360 /* DSOs should only be linked with CPIC code. */
15361 if ((ibfd
->flags
& DYNAMIC
) != 0)
15362 new_flags
|= EF_MIPS_PIC
| EF_MIPS_CPIC
;
15364 if (new_flags
== old_flags
)
15369 if (((new_flags
& (EF_MIPS_PIC
| EF_MIPS_CPIC
)) != 0)
15370 != ((old_flags
& (EF_MIPS_PIC
| EF_MIPS_CPIC
)) != 0))
15373 (_("%pB: warning: linking abicalls files with non-abicalls files"),
15378 if (new_flags
& (EF_MIPS_PIC
| EF_MIPS_CPIC
))
15379 elf_elfheader (obfd
)->e_flags
|= EF_MIPS_CPIC
;
15380 if (! (new_flags
& EF_MIPS_PIC
))
15381 elf_elfheader (obfd
)->e_flags
&= ~EF_MIPS_PIC
;
15383 new_flags
&= ~ (EF_MIPS_PIC
| EF_MIPS_CPIC
);
15384 old_flags
&= ~ (EF_MIPS_PIC
| EF_MIPS_CPIC
);
15386 /* Compare the ISAs. */
15387 if (mips_32bit_flags_p (old_flags
) != mips_32bit_flags_p (new_flags
))
15390 (_("%pB: linking 32-bit code with 64-bit code"),
15394 else if (!mips_mach_extends_p (bfd_get_mach (ibfd
), bfd_get_mach (obfd
)))
15396 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
15397 if (mips_mach_extends_p (bfd_get_mach (obfd
), bfd_get_mach (ibfd
)))
15399 /* Copy the architecture info from IBFD to OBFD. Also copy
15400 the 32-bit flag (if set) so that we continue to recognise
15401 OBFD as a 32-bit binary. */
15402 bfd_set_arch_info (obfd
, bfd_get_arch_info (ibfd
));
15403 elf_elfheader (obfd
)->e_flags
&= ~(EF_MIPS_ARCH
| EF_MIPS_MACH
);
15404 elf_elfheader (obfd
)->e_flags
15405 |= new_flags
& (EF_MIPS_ARCH
| EF_MIPS_MACH
| EF_MIPS_32BITMODE
);
15407 /* Update the ABI flags isa_level, isa_rev, isa_ext fields. */
15408 update_mips_abiflags_isa (obfd
, &out_tdata
->abiflags
);
15410 /* Copy across the ABI flags if OBFD doesn't use them
15411 and if that was what caused us to treat IBFD as 32-bit. */
15412 if ((old_flags
& EF_MIPS_ABI
) == 0
15413 && mips_32bit_flags_p (new_flags
)
15414 && !mips_32bit_flags_p (new_flags
& ~EF_MIPS_ABI
))
15415 elf_elfheader (obfd
)->e_flags
|= new_flags
& EF_MIPS_ABI
;
15419 /* The ISAs aren't compatible. */
15421 /* xgettext:c-format */
15422 (_("%pB: linking %s module with previous %s modules"),
15424 bfd_printable_name (ibfd
),
15425 bfd_printable_name (obfd
));
15430 new_flags
&= ~(EF_MIPS_ARCH
| EF_MIPS_MACH
| EF_MIPS_32BITMODE
);
15431 old_flags
&= ~(EF_MIPS_ARCH
| EF_MIPS_MACH
| EF_MIPS_32BITMODE
);
15433 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
15434 does set EI_CLASS differently from any 32-bit ABI. */
15435 if ((new_flags
& EF_MIPS_ABI
) != (old_flags
& EF_MIPS_ABI
)
15436 || (elf_elfheader (ibfd
)->e_ident
[EI_CLASS
]
15437 != elf_elfheader (obfd
)->e_ident
[EI_CLASS
]))
15439 /* Only error if both are set (to different values). */
15440 if (((new_flags
& EF_MIPS_ABI
) && (old_flags
& EF_MIPS_ABI
))
15441 || (elf_elfheader (ibfd
)->e_ident
[EI_CLASS
]
15442 != elf_elfheader (obfd
)->e_ident
[EI_CLASS
]))
15445 /* xgettext:c-format */
15446 (_("%pB: ABI mismatch: linking %s module with previous %s modules"),
15448 elf_mips_abi_name (ibfd
),
15449 elf_mips_abi_name (obfd
));
15452 new_flags
&= ~EF_MIPS_ABI
;
15453 old_flags
&= ~EF_MIPS_ABI
;
15456 /* Compare ASEs. Forbid linking MIPS16 and microMIPS ASE modules together
15457 and allow arbitrary mixing of the remaining ASEs (retain the union). */
15458 if ((new_flags
& EF_MIPS_ARCH_ASE
) != (old_flags
& EF_MIPS_ARCH_ASE
))
15460 int old_micro
= old_flags
& EF_MIPS_ARCH_ASE_MICROMIPS
;
15461 int new_micro
= new_flags
& EF_MIPS_ARCH_ASE_MICROMIPS
;
15462 int old_m16
= old_flags
& EF_MIPS_ARCH_ASE_M16
;
15463 int new_m16
= new_flags
& EF_MIPS_ARCH_ASE_M16
;
15464 int micro_mis
= old_m16
&& new_micro
;
15465 int m16_mis
= old_micro
&& new_m16
;
15467 if (m16_mis
|| micro_mis
)
15470 /* xgettext:c-format */
15471 (_("%pB: ASE mismatch: linking %s module with previous %s modules"),
15473 m16_mis
? "MIPS16" : "microMIPS",
15474 m16_mis
? "microMIPS" : "MIPS16");
15478 elf_elfheader (obfd
)->e_flags
|= new_flags
& EF_MIPS_ARCH_ASE
;
15480 new_flags
&= ~ EF_MIPS_ARCH_ASE
;
15481 old_flags
&= ~ EF_MIPS_ARCH_ASE
;
15484 /* Compare NaN encodings. */
15485 if ((new_flags
& EF_MIPS_NAN2008
) != (old_flags
& EF_MIPS_NAN2008
))
15487 /* xgettext:c-format */
15488 _bfd_error_handler (_("%pB: linking %s module with previous %s modules"),
15490 (new_flags
& EF_MIPS_NAN2008
15491 ? "-mnan=2008" : "-mnan=legacy"),
15492 (old_flags
& EF_MIPS_NAN2008
15493 ? "-mnan=2008" : "-mnan=legacy"));
15495 new_flags
&= ~EF_MIPS_NAN2008
;
15496 old_flags
&= ~EF_MIPS_NAN2008
;
15499 /* Compare FP64 state. */
15500 if ((new_flags
& EF_MIPS_FP64
) != (old_flags
& EF_MIPS_FP64
))
15502 /* xgettext:c-format */
15503 _bfd_error_handler (_("%pB: linking %s module with previous %s modules"),
15505 (new_flags
& EF_MIPS_FP64
15506 ? "-mfp64" : "-mfp32"),
15507 (old_flags
& EF_MIPS_FP64
15508 ? "-mfp64" : "-mfp32"));
15510 new_flags
&= ~EF_MIPS_FP64
;
15511 old_flags
&= ~EF_MIPS_FP64
;
15514 /* Warn about any other mismatches */
15515 if (new_flags
!= old_flags
)
15517 /* xgettext:c-format */
15519 (_("%pB: uses different e_flags (%#x) fields than previous modules "
15521 ibfd
, new_flags
, old_flags
);
15528 /* Merge object attributes from IBFD into OBFD. Raise an error if
15529 there are conflicting attributes. */
15531 mips_elf_merge_obj_attributes (bfd
*ibfd
, struct bfd_link_info
*info
)
15533 bfd
*obfd
= info
->output_bfd
;
15534 obj_attribute
*in_attr
;
15535 obj_attribute
*out_attr
;
15539 abi_fp_bfd
= mips_elf_tdata (obfd
)->abi_fp_bfd
;
15540 in_attr
= elf_known_obj_attributes (ibfd
)[OBJ_ATTR_GNU
];
15541 if (!abi_fp_bfd
&& in_attr
[Tag_GNU_MIPS_ABI_FP
].i
!= Val_GNU_MIPS_ABI_FP_ANY
)
15542 mips_elf_tdata (obfd
)->abi_fp_bfd
= ibfd
;
15544 abi_msa_bfd
= mips_elf_tdata (obfd
)->abi_msa_bfd
;
15546 && in_attr
[Tag_GNU_MIPS_ABI_MSA
].i
!= Val_GNU_MIPS_ABI_MSA_ANY
)
15547 mips_elf_tdata (obfd
)->abi_msa_bfd
= ibfd
;
15549 if (!elf_known_obj_attributes_proc (obfd
)[0].i
)
15551 /* This is the first object. Copy the attributes. */
15552 _bfd_elf_copy_obj_attributes (ibfd
, obfd
);
15554 /* Use the Tag_null value to indicate the attributes have been
15556 elf_known_obj_attributes_proc (obfd
)[0].i
= 1;
15561 /* Check for conflicting Tag_GNU_MIPS_ABI_FP attributes and merge
15562 non-conflicting ones. */
15563 out_attr
= elf_known_obj_attributes (obfd
)[OBJ_ATTR_GNU
];
15564 if (in_attr
[Tag_GNU_MIPS_ABI_FP
].i
!= out_attr
[Tag_GNU_MIPS_ABI_FP
].i
)
15568 out_fp
= out_attr
[Tag_GNU_MIPS_ABI_FP
].i
;
15569 in_fp
= in_attr
[Tag_GNU_MIPS_ABI_FP
].i
;
15570 out_attr
[Tag_GNU_MIPS_ABI_FP
].type
= 1;
15571 if (out_fp
== Val_GNU_MIPS_ABI_FP_ANY
)
15572 out_attr
[Tag_GNU_MIPS_ABI_FP
].i
= in_fp
;
15573 else if (out_fp
== Val_GNU_MIPS_ABI_FP_XX
15574 && (in_fp
== Val_GNU_MIPS_ABI_FP_DOUBLE
15575 || in_fp
== Val_GNU_MIPS_ABI_FP_64
15576 || in_fp
== Val_GNU_MIPS_ABI_FP_64A
))
15578 mips_elf_tdata (obfd
)->abi_fp_bfd
= ibfd
;
15579 out_attr
[Tag_GNU_MIPS_ABI_FP
].i
= in_attr
[Tag_GNU_MIPS_ABI_FP
].i
;
15581 else if (in_fp
== Val_GNU_MIPS_ABI_FP_XX
15582 && (out_fp
== Val_GNU_MIPS_ABI_FP_DOUBLE
15583 || out_fp
== Val_GNU_MIPS_ABI_FP_64
15584 || out_fp
== Val_GNU_MIPS_ABI_FP_64A
))
15585 /* Keep the current setting. */;
15586 else if (out_fp
== Val_GNU_MIPS_ABI_FP_64A
15587 && in_fp
== Val_GNU_MIPS_ABI_FP_64
)
15589 mips_elf_tdata (obfd
)->abi_fp_bfd
= ibfd
;
15590 out_attr
[Tag_GNU_MIPS_ABI_FP
].i
= in_attr
[Tag_GNU_MIPS_ABI_FP
].i
;
15592 else if (in_fp
== Val_GNU_MIPS_ABI_FP_64A
15593 && out_fp
== Val_GNU_MIPS_ABI_FP_64
)
15594 /* Keep the current setting. */;
15595 else if (in_fp
!= Val_GNU_MIPS_ABI_FP_ANY
)
15597 const char *out_string
, *in_string
;
15599 out_string
= _bfd_mips_fp_abi_string (out_fp
);
15600 in_string
= _bfd_mips_fp_abi_string (in_fp
);
15601 /* First warn about cases involving unrecognised ABIs. */
15602 if (!out_string
&& !in_string
)
15603 /* xgettext:c-format */
15605 (_("warning: %pB uses unknown floating point ABI %d "
15606 "(set by %pB), %pB uses unknown floating point ABI %d"),
15607 obfd
, out_fp
, abi_fp_bfd
, ibfd
, in_fp
);
15608 else if (!out_string
)
15610 /* xgettext:c-format */
15611 (_("warning: %pB uses unknown floating point ABI %d "
15612 "(set by %pB), %pB uses %s"),
15613 obfd
, out_fp
, abi_fp_bfd
, ibfd
, in_string
);
15614 else if (!in_string
)
15616 /* xgettext:c-format */
15617 (_("warning: %pB uses %s (set by %pB), "
15618 "%pB uses unknown floating point ABI %d"),
15619 obfd
, out_string
, abi_fp_bfd
, ibfd
, in_fp
);
15622 /* If one of the bfds is soft-float, the other must be
15623 hard-float. The exact choice of hard-float ABI isn't
15624 really relevant to the error message. */
15625 if (in_fp
== Val_GNU_MIPS_ABI_FP_SOFT
)
15626 out_string
= "-mhard-float";
15627 else if (out_fp
== Val_GNU_MIPS_ABI_FP_SOFT
)
15628 in_string
= "-mhard-float";
15630 /* xgettext:c-format */
15631 (_("warning: %pB uses %s (set by %pB), %pB uses %s"),
15632 obfd
, out_string
, abi_fp_bfd
, ibfd
, in_string
);
15637 /* Check for conflicting Tag_GNU_MIPS_ABI_MSA attributes and merge
15638 non-conflicting ones. */
15639 if (in_attr
[Tag_GNU_MIPS_ABI_MSA
].i
!= out_attr
[Tag_GNU_MIPS_ABI_MSA
].i
)
15641 out_attr
[Tag_GNU_MIPS_ABI_MSA
].type
= 1;
15642 if (out_attr
[Tag_GNU_MIPS_ABI_MSA
].i
== Val_GNU_MIPS_ABI_MSA_ANY
)
15643 out_attr
[Tag_GNU_MIPS_ABI_MSA
].i
= in_attr
[Tag_GNU_MIPS_ABI_MSA
].i
;
15644 else if (in_attr
[Tag_GNU_MIPS_ABI_MSA
].i
!= Val_GNU_MIPS_ABI_MSA_ANY
)
15645 switch (out_attr
[Tag_GNU_MIPS_ABI_MSA
].i
)
15647 case Val_GNU_MIPS_ABI_MSA_128
:
15649 /* xgettext:c-format */
15650 (_("warning: %pB uses %s (set by %pB), "
15651 "%pB uses unknown MSA ABI %d"),
15652 obfd
, "-mmsa", abi_msa_bfd
,
15653 ibfd
, in_attr
[Tag_GNU_MIPS_ABI_MSA
].i
);
15657 switch (in_attr
[Tag_GNU_MIPS_ABI_MSA
].i
)
15659 case Val_GNU_MIPS_ABI_MSA_128
:
15661 /* xgettext:c-format */
15662 (_("warning: %pB uses unknown MSA ABI %d "
15663 "(set by %pB), %pB uses %s"),
15664 obfd
, out_attr
[Tag_GNU_MIPS_ABI_MSA
].i
,
15665 abi_msa_bfd
, ibfd
, "-mmsa");
15670 /* xgettext:c-format */
15671 (_("warning: %pB uses unknown MSA ABI %d "
15672 "(set by %pB), %pB uses unknown MSA ABI %d"),
15673 obfd
, out_attr
[Tag_GNU_MIPS_ABI_MSA
].i
,
15674 abi_msa_bfd
, ibfd
, in_attr
[Tag_GNU_MIPS_ABI_MSA
].i
);
15680 /* Merge Tag_compatibility attributes and any common GNU ones. */
15681 return _bfd_elf_merge_object_attributes (ibfd
, info
);
15684 /* Merge object ABI flags from IBFD into OBFD. Raise an error if
15685 there are conflicting settings. */
15688 mips_elf_merge_obj_abiflags (bfd
*ibfd
, bfd
*obfd
)
15690 obj_attribute
*out_attr
= elf_known_obj_attributes (obfd
)[OBJ_ATTR_GNU
];
15691 struct mips_elf_obj_tdata
*out_tdata
= mips_elf_tdata (obfd
);
15692 struct mips_elf_obj_tdata
*in_tdata
= mips_elf_tdata (ibfd
);
15694 /* Update the output abiflags fp_abi using the computed fp_abi. */
15695 out_tdata
->abiflags
.fp_abi
= out_attr
[Tag_GNU_MIPS_ABI_FP
].i
;
15697 #define max(a, b) ((a) > (b) ? (a) : (b))
15698 /* Merge abiflags. */
15699 out_tdata
->abiflags
.isa_level
= max (out_tdata
->abiflags
.isa_level
,
15700 in_tdata
->abiflags
.isa_level
);
15701 out_tdata
->abiflags
.isa_rev
= max (out_tdata
->abiflags
.isa_rev
,
15702 in_tdata
->abiflags
.isa_rev
);
15703 out_tdata
->abiflags
.gpr_size
= max (out_tdata
->abiflags
.gpr_size
,
15704 in_tdata
->abiflags
.gpr_size
);
15705 out_tdata
->abiflags
.cpr1_size
= max (out_tdata
->abiflags
.cpr1_size
,
15706 in_tdata
->abiflags
.cpr1_size
);
15707 out_tdata
->abiflags
.cpr2_size
= max (out_tdata
->abiflags
.cpr2_size
,
15708 in_tdata
->abiflags
.cpr2_size
);
15710 out_tdata
->abiflags
.ases
|= in_tdata
->abiflags
.ases
;
15711 out_tdata
->abiflags
.flags1
|= in_tdata
->abiflags
.flags1
;
15716 /* Merge backend specific data from an object file to the output
15717 object file when linking. */
15720 _bfd_mips_elf_merge_private_bfd_data (bfd
*ibfd
, struct bfd_link_info
*info
)
15722 bfd
*obfd
= info
->output_bfd
;
15723 struct mips_elf_obj_tdata
*out_tdata
;
15724 struct mips_elf_obj_tdata
*in_tdata
;
15725 bfd_boolean null_input_bfd
= TRUE
;
15729 /* Check if we have the same endianness. */
15730 if (! _bfd_generic_verify_endian_match (ibfd
, info
))
15733 (_("%pB: endianness incompatible with that of the selected emulation"),
15738 if (!is_mips_elf (ibfd
) || !is_mips_elf (obfd
))
15741 in_tdata
= mips_elf_tdata (ibfd
);
15742 out_tdata
= mips_elf_tdata (obfd
);
15744 if (strcmp (bfd_get_target (ibfd
), bfd_get_target (obfd
)) != 0)
15747 (_("%pB: ABI is incompatible with that of the selected emulation"),
15752 /* Check to see if the input BFD actually contains any sections. If not,
15753 then it has no attributes, and its flags may not have been initialized
15754 either, but it cannot actually cause any incompatibility. */
15755 for (sec
= ibfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
15757 /* Ignore synthetic sections and empty .text, .data and .bss sections
15758 which are automatically generated by gas. Also ignore fake
15759 (s)common sections, since merely defining a common symbol does
15760 not affect compatibility. */
15761 if ((sec
->flags
& SEC_IS_COMMON
) == 0
15762 && strcmp (sec
->name
, ".reginfo")
15763 && strcmp (sec
->name
, ".mdebug")
15765 || (strcmp (sec
->name
, ".text")
15766 && strcmp (sec
->name
, ".data")
15767 && strcmp (sec
->name
, ".bss"))))
15769 null_input_bfd
= FALSE
;
15773 if (null_input_bfd
)
15776 /* Populate abiflags using existing information. */
15777 if (in_tdata
->abiflags_valid
)
15779 obj_attribute
*in_attr
= elf_known_obj_attributes (ibfd
)[OBJ_ATTR_GNU
];
15780 Elf_Internal_ABIFlags_v0 in_abiflags
;
15781 Elf_Internal_ABIFlags_v0 abiflags
;
15783 /* Set up the FP ABI attribute from the abiflags if it is not already
15785 if (in_attr
[Tag_GNU_MIPS_ABI_FP
].i
== Val_GNU_MIPS_ABI_FP_ANY
)
15786 in_attr
[Tag_GNU_MIPS_ABI_FP
].i
= in_tdata
->abiflags
.fp_abi
;
15788 infer_mips_abiflags (ibfd
, &abiflags
);
15789 in_abiflags
= in_tdata
->abiflags
;
15791 /* It is not possible to infer the correct ISA revision
15792 for R3 or R5 so drop down to R2 for the checks. */
15793 if (in_abiflags
.isa_rev
== 3 || in_abiflags
.isa_rev
== 5)
15794 in_abiflags
.isa_rev
= 2;
15796 if (LEVEL_REV (in_abiflags
.isa_level
, in_abiflags
.isa_rev
)
15797 < LEVEL_REV (abiflags
.isa_level
, abiflags
.isa_rev
))
15799 (_("%pB: warning: inconsistent ISA between e_flags and "
15800 ".MIPS.abiflags"), ibfd
);
15801 if (abiflags
.fp_abi
!= Val_GNU_MIPS_ABI_FP_ANY
15802 && in_abiflags
.fp_abi
!= abiflags
.fp_abi
)
15804 (_("%pB: warning: inconsistent FP ABI between .gnu.attributes and "
15805 ".MIPS.abiflags"), ibfd
);
15806 if ((in_abiflags
.ases
& abiflags
.ases
) != abiflags
.ases
)
15808 (_("%pB: warning: inconsistent ASEs between e_flags and "
15809 ".MIPS.abiflags"), ibfd
);
15810 /* The isa_ext is allowed to be an extension of what can be inferred
15812 if (!mips_mach_extends_p (bfd_mips_isa_ext_mach (abiflags
.isa_ext
),
15813 bfd_mips_isa_ext_mach (in_abiflags
.isa_ext
)))
15815 (_("%pB: warning: inconsistent ISA extensions between e_flags and "
15816 ".MIPS.abiflags"), ibfd
);
15817 if (in_abiflags
.flags2
!= 0)
15819 (_("%pB: warning: unexpected flag in the flags2 field of "
15820 ".MIPS.abiflags (0x%lx)"), ibfd
,
15821 in_abiflags
.flags2
);
15825 infer_mips_abiflags (ibfd
, &in_tdata
->abiflags
);
15826 in_tdata
->abiflags_valid
= TRUE
;
15829 if (!out_tdata
->abiflags_valid
)
15831 /* Copy input abiflags if output abiflags are not already valid. */
15832 out_tdata
->abiflags
= in_tdata
->abiflags
;
15833 out_tdata
->abiflags_valid
= TRUE
;
15836 if (! elf_flags_init (obfd
))
15838 elf_flags_init (obfd
) = TRUE
;
15839 elf_elfheader (obfd
)->e_flags
= elf_elfheader (ibfd
)->e_flags
;
15840 elf_elfheader (obfd
)->e_ident
[EI_CLASS
]
15841 = elf_elfheader (ibfd
)->e_ident
[EI_CLASS
];
15843 if (bfd_get_arch (obfd
) == bfd_get_arch (ibfd
)
15844 && (bfd_get_arch_info (obfd
)->the_default
15845 || mips_mach_extends_p (bfd_get_mach (obfd
),
15846 bfd_get_mach (ibfd
))))
15848 if (! bfd_set_arch_mach (obfd
, bfd_get_arch (ibfd
),
15849 bfd_get_mach (ibfd
)))
15852 /* Update the ABI flags isa_level, isa_rev and isa_ext fields. */
15853 update_mips_abiflags_isa (obfd
, &out_tdata
->abiflags
);
15859 ok
= mips_elf_merge_obj_e_flags (ibfd
, info
);
15861 ok
= mips_elf_merge_obj_attributes (ibfd
, info
) && ok
;
15863 ok
= mips_elf_merge_obj_abiflags (ibfd
, obfd
) && ok
;
15867 bfd_set_error (bfd_error_bad_value
);
15874 /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
15877 _bfd_mips_elf_set_private_flags (bfd
*abfd
, flagword flags
)
15879 BFD_ASSERT (!elf_flags_init (abfd
)
15880 || elf_elfheader (abfd
)->e_flags
== flags
);
15882 elf_elfheader (abfd
)->e_flags
= flags
;
15883 elf_flags_init (abfd
) = TRUE
;
15888 _bfd_mips_elf_get_target_dtag (bfd_vma dtag
)
15892 default: return "";
15893 case DT_MIPS_RLD_VERSION
:
15894 return "MIPS_RLD_VERSION";
15895 case DT_MIPS_TIME_STAMP
:
15896 return "MIPS_TIME_STAMP";
15897 case DT_MIPS_ICHECKSUM
:
15898 return "MIPS_ICHECKSUM";
15899 case DT_MIPS_IVERSION
:
15900 return "MIPS_IVERSION";
15901 case DT_MIPS_FLAGS
:
15902 return "MIPS_FLAGS";
15903 case DT_MIPS_BASE_ADDRESS
:
15904 return "MIPS_BASE_ADDRESS";
15906 return "MIPS_MSYM";
15907 case DT_MIPS_CONFLICT
:
15908 return "MIPS_CONFLICT";
15909 case DT_MIPS_LIBLIST
:
15910 return "MIPS_LIBLIST";
15911 case DT_MIPS_LOCAL_GOTNO
:
15912 return "MIPS_LOCAL_GOTNO";
15913 case DT_MIPS_CONFLICTNO
:
15914 return "MIPS_CONFLICTNO";
15915 case DT_MIPS_LIBLISTNO
:
15916 return "MIPS_LIBLISTNO";
15917 case DT_MIPS_SYMTABNO
:
15918 return "MIPS_SYMTABNO";
15919 case DT_MIPS_UNREFEXTNO
:
15920 return "MIPS_UNREFEXTNO";
15921 case DT_MIPS_GOTSYM
:
15922 return "MIPS_GOTSYM";
15923 case DT_MIPS_HIPAGENO
:
15924 return "MIPS_HIPAGENO";
15925 case DT_MIPS_RLD_MAP
:
15926 return "MIPS_RLD_MAP";
15927 case DT_MIPS_RLD_MAP_REL
:
15928 return "MIPS_RLD_MAP_REL";
15929 case DT_MIPS_DELTA_CLASS
:
15930 return "MIPS_DELTA_CLASS";
15931 case DT_MIPS_DELTA_CLASS_NO
:
15932 return "MIPS_DELTA_CLASS_NO";
15933 case DT_MIPS_DELTA_INSTANCE
:
15934 return "MIPS_DELTA_INSTANCE";
15935 case DT_MIPS_DELTA_INSTANCE_NO
:
15936 return "MIPS_DELTA_INSTANCE_NO";
15937 case DT_MIPS_DELTA_RELOC
:
15938 return "MIPS_DELTA_RELOC";
15939 case DT_MIPS_DELTA_RELOC_NO
:
15940 return "MIPS_DELTA_RELOC_NO";
15941 case DT_MIPS_DELTA_SYM
:
15942 return "MIPS_DELTA_SYM";
15943 case DT_MIPS_DELTA_SYM_NO
:
15944 return "MIPS_DELTA_SYM_NO";
15945 case DT_MIPS_DELTA_CLASSSYM
:
15946 return "MIPS_DELTA_CLASSSYM";
15947 case DT_MIPS_DELTA_CLASSSYM_NO
:
15948 return "MIPS_DELTA_CLASSSYM_NO";
15949 case DT_MIPS_CXX_FLAGS
:
15950 return "MIPS_CXX_FLAGS";
15951 case DT_MIPS_PIXIE_INIT
:
15952 return "MIPS_PIXIE_INIT";
15953 case DT_MIPS_SYMBOL_LIB
:
15954 return "MIPS_SYMBOL_LIB";
15955 case DT_MIPS_LOCALPAGE_GOTIDX
:
15956 return "MIPS_LOCALPAGE_GOTIDX";
15957 case DT_MIPS_LOCAL_GOTIDX
:
15958 return "MIPS_LOCAL_GOTIDX";
15959 case DT_MIPS_HIDDEN_GOTIDX
:
15960 return "MIPS_HIDDEN_GOTIDX";
15961 case DT_MIPS_PROTECTED_GOTIDX
:
15962 return "MIPS_PROTECTED_GOT_IDX";
15963 case DT_MIPS_OPTIONS
:
15964 return "MIPS_OPTIONS";
15965 case DT_MIPS_INTERFACE
:
15966 return "MIPS_INTERFACE";
15967 case DT_MIPS_DYNSTR_ALIGN
:
15968 return "DT_MIPS_DYNSTR_ALIGN";
15969 case DT_MIPS_INTERFACE_SIZE
:
15970 return "DT_MIPS_INTERFACE_SIZE";
15971 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR
:
15972 return "DT_MIPS_RLD_TEXT_RESOLVE_ADDR";
15973 case DT_MIPS_PERF_SUFFIX
:
15974 return "DT_MIPS_PERF_SUFFIX";
15975 case DT_MIPS_COMPACT_SIZE
:
15976 return "DT_MIPS_COMPACT_SIZE";
15977 case DT_MIPS_GP_VALUE
:
15978 return "DT_MIPS_GP_VALUE";
15979 case DT_MIPS_AUX_DYNAMIC
:
15980 return "DT_MIPS_AUX_DYNAMIC";
15981 case DT_MIPS_PLTGOT
:
15982 return "DT_MIPS_PLTGOT";
15983 case DT_MIPS_RWPLT
:
15984 return "DT_MIPS_RWPLT";
15985 case DT_MIPS_XHASH
:
15986 return "DT_MIPS_XHASH";
15990 /* Return the meaning of Tag_GNU_MIPS_ABI_FP value FP, or null if
15994 _bfd_mips_fp_abi_string (int fp
)
15998 /* These strings aren't translated because they're simply
16000 case Val_GNU_MIPS_ABI_FP_DOUBLE
:
16001 return "-mdouble-float";
16003 case Val_GNU_MIPS_ABI_FP_SINGLE
:
16004 return "-msingle-float";
16006 case Val_GNU_MIPS_ABI_FP_SOFT
:
16007 return "-msoft-float";
16009 case Val_GNU_MIPS_ABI_FP_OLD_64
:
16010 return _("-mips32r2 -mfp64 (12 callee-saved)");
16012 case Val_GNU_MIPS_ABI_FP_XX
:
16015 case Val_GNU_MIPS_ABI_FP_64
:
16016 return "-mgp32 -mfp64";
16018 case Val_GNU_MIPS_ABI_FP_64A
:
16019 return "-mgp32 -mfp64 -mno-odd-spreg";
16027 print_mips_ases (FILE *file
, unsigned int mask
)
16029 if (mask
& AFL_ASE_DSP
)
16030 fputs ("\n\tDSP ASE", file
);
16031 if (mask
& AFL_ASE_DSPR2
)
16032 fputs ("\n\tDSP R2 ASE", file
);
16033 if (mask
& AFL_ASE_DSPR3
)
16034 fputs ("\n\tDSP R3 ASE", file
);
16035 if (mask
& AFL_ASE_EVA
)
16036 fputs ("\n\tEnhanced VA Scheme", file
);
16037 if (mask
& AFL_ASE_MCU
)
16038 fputs ("\n\tMCU (MicroController) ASE", file
);
16039 if (mask
& AFL_ASE_MDMX
)
16040 fputs ("\n\tMDMX ASE", file
);
16041 if (mask
& AFL_ASE_MIPS3D
)
16042 fputs ("\n\tMIPS-3D ASE", file
);
16043 if (mask
& AFL_ASE_MT
)
16044 fputs ("\n\tMT ASE", file
);
16045 if (mask
& AFL_ASE_SMARTMIPS
)
16046 fputs ("\n\tSmartMIPS ASE", file
);
16047 if (mask
& AFL_ASE_VIRT
)
16048 fputs ("\n\tVZ ASE", file
);
16049 if (mask
& AFL_ASE_MSA
)
16050 fputs ("\n\tMSA ASE", file
);
16051 if (mask
& AFL_ASE_MIPS16
)
16052 fputs ("\n\tMIPS16 ASE", file
);
16053 if (mask
& AFL_ASE_MICROMIPS
)
16054 fputs ("\n\tMICROMIPS ASE", file
);
16055 if (mask
& AFL_ASE_XPA
)
16056 fputs ("\n\tXPA ASE", file
);
16057 if (mask
& AFL_ASE_MIPS16E2
)
16058 fputs ("\n\tMIPS16e2 ASE", file
);
16059 if (mask
& AFL_ASE_CRC
)
16060 fputs ("\n\tCRC ASE", file
);
16061 if (mask
& AFL_ASE_GINV
)
16062 fputs ("\n\tGINV ASE", file
);
16063 if (mask
& AFL_ASE_LOONGSON_MMI
)
16064 fputs ("\n\tLoongson MMI ASE", file
);
16065 if (mask
& AFL_ASE_LOONGSON_CAM
)
16066 fputs ("\n\tLoongson CAM ASE", file
);
16067 if (mask
& AFL_ASE_LOONGSON_EXT
)
16068 fputs ("\n\tLoongson EXT ASE", file
);
16069 if (mask
& AFL_ASE_LOONGSON_EXT2
)
16070 fputs ("\n\tLoongson EXT2 ASE", file
);
16072 fprintf (file
, "\n\t%s", _("None"));
16073 else if ((mask
& ~AFL_ASE_MASK
) != 0)
16074 fprintf (stdout
, "\n\t%s (%x)", _("Unknown"), mask
& ~AFL_ASE_MASK
);
16078 print_mips_isa_ext (FILE *file
, unsigned int isa_ext
)
16083 fputs (_("None"), file
);
16086 fputs ("RMI XLR", file
);
16088 case AFL_EXT_OCTEON3
:
16089 fputs ("Cavium Networks Octeon3", file
);
16091 case AFL_EXT_OCTEON2
:
16092 fputs ("Cavium Networks Octeon2", file
);
16094 case AFL_EXT_OCTEONP
:
16095 fputs ("Cavium Networks OcteonP", file
);
16097 case AFL_EXT_OCTEON
:
16098 fputs ("Cavium Networks Octeon", file
);
16101 fputs ("Toshiba R5900", file
);
16104 fputs ("MIPS R4650", file
);
16107 fputs ("LSI R4010", file
);
16110 fputs ("NEC VR4100", file
);
16113 fputs ("Toshiba R3900", file
);
16115 case AFL_EXT_10000
:
16116 fputs ("MIPS R10000", file
);
16119 fputs ("Broadcom SB-1", file
);
16122 fputs ("NEC VR4111/VR4181", file
);
16125 fputs ("NEC VR4120", file
);
16128 fputs ("NEC VR5400", file
);
16131 fputs ("NEC VR5500", file
);
16133 case AFL_EXT_LOONGSON_2E
:
16134 fputs ("ST Microelectronics Loongson 2E", file
);
16136 case AFL_EXT_LOONGSON_2F
:
16137 fputs ("ST Microelectronics Loongson 2F", file
);
16139 case AFL_EXT_INTERAPTIV_MR2
:
16140 fputs ("Imagination interAptiv MR2", file
);
16143 fprintf (file
, "%s (%d)", _("Unknown"), isa_ext
);
16149 print_mips_fp_abi_value (FILE *file
, int val
)
16153 case Val_GNU_MIPS_ABI_FP_ANY
:
16154 fprintf (file
, _("Hard or soft float\n"));
16156 case Val_GNU_MIPS_ABI_FP_DOUBLE
:
16157 fprintf (file
, _("Hard float (double precision)\n"));
16159 case Val_GNU_MIPS_ABI_FP_SINGLE
:
16160 fprintf (file
, _("Hard float (single precision)\n"));
16162 case Val_GNU_MIPS_ABI_FP_SOFT
:
16163 fprintf (file
, _("Soft float\n"));
16165 case Val_GNU_MIPS_ABI_FP_OLD_64
:
16166 fprintf (file
, _("Hard float (MIPS32r2 64-bit FPU 12 callee-saved)\n"));
16168 case Val_GNU_MIPS_ABI_FP_XX
:
16169 fprintf (file
, _("Hard float (32-bit CPU, Any FPU)\n"));
16171 case Val_GNU_MIPS_ABI_FP_64
:
16172 fprintf (file
, _("Hard float (32-bit CPU, 64-bit FPU)\n"));
16174 case Val_GNU_MIPS_ABI_FP_64A
:
16175 fprintf (file
, _("Hard float compat (32-bit CPU, 64-bit FPU)\n"));
16178 fprintf (file
, "??? (%d)\n", val
);
16184 get_mips_reg_size (int reg_size
)
16186 return (reg_size
== AFL_REG_NONE
) ? 0
16187 : (reg_size
== AFL_REG_32
) ? 32
16188 : (reg_size
== AFL_REG_64
) ? 64
16189 : (reg_size
== AFL_REG_128
) ? 128
16194 _bfd_mips_elf_print_private_bfd_data (bfd
*abfd
, void *ptr
)
16198 BFD_ASSERT (abfd
!= NULL
&& ptr
!= NULL
);
16200 /* Print normal ELF private data. */
16201 _bfd_elf_print_private_bfd_data (abfd
, ptr
);
16203 /* xgettext:c-format */
16204 fprintf (file
, _("private flags = %lx:"), elf_elfheader (abfd
)->e_flags
);
16206 if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ABI
) == E_MIPS_ABI_O32
)
16207 fprintf (file
, _(" [abi=O32]"));
16208 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ABI
) == E_MIPS_ABI_O64
)
16209 fprintf (file
, _(" [abi=O64]"));
16210 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ABI
) == E_MIPS_ABI_EABI32
)
16211 fprintf (file
, _(" [abi=EABI32]"));
16212 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ABI
) == E_MIPS_ABI_EABI64
)
16213 fprintf (file
, _(" [abi=EABI64]"));
16214 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ABI
))
16215 fprintf (file
, _(" [abi unknown]"));
16216 else if (ABI_N32_P (abfd
))
16217 fprintf (file
, _(" [abi=N32]"));
16218 else if (ABI_64_P (abfd
))
16219 fprintf (file
, _(" [abi=64]"));
16221 fprintf (file
, _(" [no abi set]"));
16223 if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_1
)
16224 fprintf (file
, " [mips1]");
16225 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_2
)
16226 fprintf (file
, " [mips2]");
16227 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_3
)
16228 fprintf (file
, " [mips3]");
16229 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_4
)
16230 fprintf (file
, " [mips4]");
16231 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_5
)
16232 fprintf (file
, " [mips5]");
16233 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_32
)
16234 fprintf (file
, " [mips32]");
16235 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_64
)
16236 fprintf (file
, " [mips64]");
16237 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_32R2
)
16238 fprintf (file
, " [mips32r2]");
16239 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_64R2
)
16240 fprintf (file
, " [mips64r2]");
16241 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_32R6
)
16242 fprintf (file
, " [mips32r6]");
16243 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_64R6
)
16244 fprintf (file
, " [mips64r6]");
16246 fprintf (file
, _(" [unknown ISA]"));
16248 if (elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH_ASE_MDMX
)
16249 fprintf (file
, " [mdmx]");
16251 if (elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH_ASE_M16
)
16252 fprintf (file
, " [mips16]");
16254 if (elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH_ASE_MICROMIPS
)
16255 fprintf (file
, " [micromips]");
16257 if (elf_elfheader (abfd
)->e_flags
& EF_MIPS_NAN2008
)
16258 fprintf (file
, " [nan2008]");
16260 if (elf_elfheader (abfd
)->e_flags
& EF_MIPS_FP64
)
16261 fprintf (file
, " [old fp64]");
16263 if (elf_elfheader (abfd
)->e_flags
& EF_MIPS_32BITMODE
)
16264 fprintf (file
, " [32bitmode]");
16266 fprintf (file
, _(" [not 32bitmode]"));
16268 if (elf_elfheader (abfd
)->e_flags
& EF_MIPS_NOREORDER
)
16269 fprintf (file
, " [noreorder]");
16271 if (elf_elfheader (abfd
)->e_flags
& EF_MIPS_PIC
)
16272 fprintf (file
, " [PIC]");
16274 if (elf_elfheader (abfd
)->e_flags
& EF_MIPS_CPIC
)
16275 fprintf (file
, " [CPIC]");
16277 if (elf_elfheader (abfd
)->e_flags
& EF_MIPS_XGOT
)
16278 fprintf (file
, " [XGOT]");
16280 if (elf_elfheader (abfd
)->e_flags
& EF_MIPS_UCODE
)
16281 fprintf (file
, " [UCODE]");
16283 fputc ('\n', file
);
16285 if (mips_elf_tdata (abfd
)->abiflags_valid
)
16287 Elf_Internal_ABIFlags_v0
*abiflags
= &mips_elf_tdata (abfd
)->abiflags
;
16288 fprintf (file
, "\nMIPS ABI Flags Version: %d\n", abiflags
->version
);
16289 fprintf (file
, "\nISA: MIPS%d", abiflags
->isa_level
);
16290 if (abiflags
->isa_rev
> 1)
16291 fprintf (file
, "r%d", abiflags
->isa_rev
);
16292 fprintf (file
, "\nGPR size: %d",
16293 get_mips_reg_size (abiflags
->gpr_size
));
16294 fprintf (file
, "\nCPR1 size: %d",
16295 get_mips_reg_size (abiflags
->cpr1_size
));
16296 fprintf (file
, "\nCPR2 size: %d",
16297 get_mips_reg_size (abiflags
->cpr2_size
));
16298 fputs ("\nFP ABI: ", file
);
16299 print_mips_fp_abi_value (file
, abiflags
->fp_abi
);
16300 fputs ("ISA Extension: ", file
);
16301 print_mips_isa_ext (file
, abiflags
->isa_ext
);
16302 fputs ("\nASEs:", file
);
16303 print_mips_ases (file
, abiflags
->ases
);
16304 fprintf (file
, "\nFLAGS 1: %8.8lx", abiflags
->flags1
);
16305 fprintf (file
, "\nFLAGS 2: %8.8lx", abiflags
->flags2
);
16306 fputc ('\n', file
);
16312 const struct bfd_elf_special_section _bfd_mips_elf_special_sections
[] =
16314 { STRING_COMMA_LEN (".lit4"), 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_WRITE
+ SHF_MIPS_GPREL
},
16315 { STRING_COMMA_LEN (".lit8"), 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_WRITE
+ SHF_MIPS_GPREL
},
16316 { STRING_COMMA_LEN (".mdebug"), 0, SHT_MIPS_DEBUG
, 0 },
16317 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS
, SHF_ALLOC
+ SHF_WRITE
+ SHF_MIPS_GPREL
},
16318 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS
, SHF_ALLOC
+ SHF_WRITE
+ SHF_MIPS_GPREL
},
16319 { STRING_COMMA_LEN (".ucode"), 0, SHT_MIPS_UCODE
, 0 },
16320 { STRING_COMMA_LEN (".MIPS.xhash"), 0, SHT_MIPS_XHASH
, SHF_ALLOC
},
16321 { NULL
, 0, 0, 0, 0 }
16324 /* Merge non visibility st_other attributes. Ensure that the
16325 STO_OPTIONAL flag is copied into h->other, even if this is not a
16326 definiton of the symbol. */
16328 _bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry
*h
,
16329 const Elf_Internal_Sym
*isym
,
16330 bfd_boolean definition
,
16331 bfd_boolean dynamic ATTRIBUTE_UNUSED
)
16333 if ((isym
->st_other
& ~ELF_ST_VISIBILITY (-1)) != 0)
16335 unsigned char other
;
16337 other
= (definition
? isym
->st_other
: h
->other
);
16338 other
&= ~ELF_ST_VISIBILITY (-1);
16339 h
->other
= other
| ELF_ST_VISIBILITY (h
->other
);
16343 && ELF_MIPS_IS_OPTIONAL (isym
->st_other
))
16344 h
->other
|= STO_OPTIONAL
;
16347 /* Decide whether an undefined symbol is special and can be ignored.
16348 This is the case for OPTIONAL symbols on IRIX. */
16350 _bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry
*h
)
16352 return ELF_MIPS_IS_OPTIONAL (h
->other
) ? TRUE
: FALSE
;
16356 _bfd_mips_elf_common_definition (Elf_Internal_Sym
*sym
)
16358 return (sym
->st_shndx
== SHN_COMMON
16359 || sym
->st_shndx
== SHN_MIPS_ACOMMON
16360 || sym
->st_shndx
== SHN_MIPS_SCOMMON
);
16363 /* Return address for Ith PLT stub in section PLT, for relocation REL
16364 or (bfd_vma) -1 if it should not be included. */
16367 _bfd_mips_elf_plt_sym_val (bfd_vma i
, const asection
*plt
,
16368 const arelent
*rel ATTRIBUTE_UNUSED
)
16371 + 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry
)
16372 + i
* 4 * ARRAY_SIZE (mips_exec_plt_entry
));
16375 /* Build a table of synthetic symbols to represent the PLT. As with MIPS16
16376 and microMIPS PLT slots we may have a many-to-one mapping between .plt
16377 and .got.plt and also the slots may be of a different size each we walk
16378 the PLT manually fetching instructions and matching them against known
16379 patterns. To make things easier standard MIPS slots, if any, always come
16380 first. As we don't create proper ELF symbols we use the UDATA.I member
16381 of ASYMBOL to carry ISA annotation. The encoding used is the same as
16382 with the ST_OTHER member of the ELF symbol. */
16385 _bfd_mips_elf_get_synthetic_symtab (bfd
*abfd
,
16386 long symcount ATTRIBUTE_UNUSED
,
16387 asymbol
**syms ATTRIBUTE_UNUSED
,
16388 long dynsymcount
, asymbol
**dynsyms
,
16391 static const char pltname
[] = "_PROCEDURE_LINKAGE_TABLE_";
16392 static const char microsuffix
[] = "@micromipsplt";
16393 static const char m16suffix
[] = "@mips16plt";
16394 static const char mipssuffix
[] = "@plt";
16396 bfd_boolean (*slurp_relocs
) (bfd
*, asection
*, asymbol
**, bfd_boolean
);
16397 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
16398 bfd_boolean micromips_p
= MICROMIPS_P (abfd
);
16399 Elf_Internal_Shdr
*hdr
;
16400 bfd_byte
*plt_data
;
16401 bfd_vma plt_offset
;
16402 unsigned int other
;
16403 bfd_vma entry_size
;
16422 if ((abfd
->flags
& (DYNAMIC
| EXEC_P
)) == 0 || dynsymcount
<= 0)
16425 relplt
= bfd_get_section_by_name (abfd
, ".rel.plt");
16426 if (relplt
== NULL
)
16429 hdr
= &elf_section_data (relplt
)->this_hdr
;
16430 if (hdr
->sh_link
!= elf_dynsymtab (abfd
) || hdr
->sh_type
!= SHT_REL
)
16433 plt
= bfd_get_section_by_name (abfd
, ".plt");
16437 slurp_relocs
= get_elf_backend_data (abfd
)->s
->slurp_reloc_table
;
16438 if (!(*slurp_relocs
) (abfd
, relplt
, dynsyms
, TRUE
))
16440 p
= relplt
->relocation
;
16442 /* Calculating the exact amount of space required for symbols would
16443 require two passes over the PLT, so just pessimise assuming two
16444 PLT slots per relocation. */
16445 count
= relplt
->size
/ hdr
->sh_entsize
;
16446 counti
= count
* bed
->s
->int_rels_per_ext_rel
;
16447 size
= 2 * count
* sizeof (asymbol
);
16448 size
+= count
* (sizeof (mipssuffix
) +
16449 (micromips_p
? sizeof (microsuffix
) : sizeof (m16suffix
)));
16450 for (pi
= 0; pi
< counti
; pi
+= bed
->s
->int_rels_per_ext_rel
)
16451 size
+= 2 * strlen ((*p
[pi
].sym_ptr_ptr
)->name
);
16453 /* Add the size of "_PROCEDURE_LINKAGE_TABLE_" too. */
16454 size
+= sizeof (asymbol
) + sizeof (pltname
);
16456 if (!bfd_malloc_and_get_section (abfd
, plt
, &plt_data
))
16459 if (plt
->size
< 16)
16462 s
= *ret
= bfd_malloc (size
);
16465 send
= s
+ 2 * count
+ 1;
16467 names
= (char *) send
;
16468 nend
= (char *) s
+ size
;
16471 opcode
= bfd_get_micromips_32 (abfd
, plt_data
+ 12);
16472 if (opcode
== 0x3302fffe)
16476 plt0_size
= 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry
);
16477 other
= STO_MICROMIPS
;
16479 else if (opcode
== 0x0398c1d0)
16483 plt0_size
= 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry
);
16484 other
= STO_MICROMIPS
;
16488 plt0_size
= 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry
);
16493 s
->flags
= BSF_SYNTHETIC
| BSF_FUNCTION
| BSF_LOCAL
;
16497 s
->udata
.i
= other
;
16498 memcpy (names
, pltname
, sizeof (pltname
));
16499 names
+= sizeof (pltname
);
16503 for (plt_offset
= plt0_size
;
16504 plt_offset
+ 8 <= plt
->size
&& s
< send
;
16505 plt_offset
+= entry_size
)
16507 bfd_vma gotplt_addr
;
16508 const char *suffix
;
16513 opcode
= bfd_get_micromips_32 (abfd
, plt_data
+ plt_offset
+ 4);
16515 /* Check if the second word matches the expected MIPS16 instruction. */
16516 if (opcode
== 0x651aeb00)
16520 /* Truncated table??? */
16521 if (plt_offset
+ 16 > plt
->size
)
16523 gotplt_addr
= bfd_get_32 (abfd
, plt_data
+ plt_offset
+ 12);
16524 entry_size
= 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry
);
16525 suffixlen
= sizeof (m16suffix
);
16526 suffix
= m16suffix
;
16527 other
= STO_MIPS16
;
16529 /* Likewise the expected microMIPS instruction (no insn32 mode). */
16530 else if (opcode
== 0xff220000)
16534 gotplt_hi
= bfd_get_16 (abfd
, plt_data
+ plt_offset
) & 0x7f;
16535 gotplt_lo
= bfd_get_16 (abfd
, plt_data
+ plt_offset
+ 2) & 0xffff;
16536 gotplt_hi
= ((gotplt_hi
^ 0x40) - 0x40) << 18;
16538 gotplt_addr
= gotplt_hi
+ gotplt_lo
;
16539 gotplt_addr
+= ((plt
->vma
+ plt_offset
) | 3) ^ 3;
16540 entry_size
= 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry
);
16541 suffixlen
= sizeof (microsuffix
);
16542 suffix
= microsuffix
;
16543 other
= STO_MICROMIPS
;
16545 /* Likewise the expected microMIPS instruction (insn32 mode). */
16546 else if ((opcode
& 0xffff0000) == 0xff2f0000)
16548 gotplt_hi
= bfd_get_16 (abfd
, plt_data
+ plt_offset
+ 2) & 0xffff;
16549 gotplt_lo
= bfd_get_16 (abfd
, plt_data
+ plt_offset
+ 6) & 0xffff;
16550 gotplt_hi
= ((gotplt_hi
^ 0x8000) - 0x8000) << 16;
16551 gotplt_lo
= (gotplt_lo
^ 0x8000) - 0x8000;
16552 gotplt_addr
= gotplt_hi
+ gotplt_lo
;
16553 entry_size
= 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry
);
16554 suffixlen
= sizeof (microsuffix
);
16555 suffix
= microsuffix
;
16556 other
= STO_MICROMIPS
;
16558 /* Otherwise assume standard MIPS code. */
16561 gotplt_hi
= bfd_get_32 (abfd
, plt_data
+ plt_offset
) & 0xffff;
16562 gotplt_lo
= bfd_get_32 (abfd
, plt_data
+ plt_offset
+ 4) & 0xffff;
16563 gotplt_hi
= ((gotplt_hi
^ 0x8000) - 0x8000) << 16;
16564 gotplt_lo
= (gotplt_lo
^ 0x8000) - 0x8000;
16565 gotplt_addr
= gotplt_hi
+ gotplt_lo
;
16566 entry_size
= 4 * ARRAY_SIZE (mips_exec_plt_entry
);
16567 suffixlen
= sizeof (mipssuffix
);
16568 suffix
= mipssuffix
;
16571 /* Truncated table??? */
16572 if (plt_offset
+ entry_size
> plt
->size
)
16576 i
< count
&& p
[pi
].address
!= gotplt_addr
;
16577 i
++, pi
= (pi
+ bed
->s
->int_rels_per_ext_rel
) % counti
);
16584 *s
= **p
[pi
].sym_ptr_ptr
;
16585 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
16586 we are defining a symbol, ensure one of them is set. */
16587 if ((s
->flags
& BSF_LOCAL
) == 0)
16588 s
->flags
|= BSF_GLOBAL
;
16589 s
->flags
|= BSF_SYNTHETIC
;
16591 s
->value
= plt_offset
;
16593 s
->udata
.i
= other
;
16595 len
= strlen ((*p
[pi
].sym_ptr_ptr
)->name
);
16596 namelen
= len
+ suffixlen
;
16597 if (names
+ namelen
> nend
)
16600 memcpy (names
, (*p
[pi
].sym_ptr_ptr
)->name
, len
);
16602 memcpy (names
, suffix
, suffixlen
);
16603 names
+= suffixlen
;
16606 pi
= (pi
+ bed
->s
->int_rels_per_ext_rel
) % counti
;
16615 /* Return the ABI flags associated with ABFD if available. */
16617 Elf_Internal_ABIFlags_v0
*
16618 bfd_mips_elf_get_abiflags (bfd
*abfd
)
16620 struct mips_elf_obj_tdata
*tdata
= mips_elf_tdata (abfd
);
16622 return tdata
->abiflags_valid
? &tdata
->abiflags
: NULL
;
16625 /* MIPS libc ABI versions, used with the EI_ABIVERSION ELF file header
16626 field. Taken from `libc-abis.h' generated at GNU libc build time.
16627 Using a MIPS_ prefix as other libc targets use different values. */
16630 MIPS_LIBC_ABI_DEFAULT
= 0,
16631 MIPS_LIBC_ABI_MIPS_PLT
,
16632 MIPS_LIBC_ABI_UNIQUE
,
16633 MIPS_LIBC_ABI_MIPS_O32_FP64
,
16634 MIPS_LIBC_ABI_ABSOLUTE
,
16635 MIPS_LIBC_ABI_XHASH
,
16640 _bfd_mips_init_file_header (bfd
*abfd
, struct bfd_link_info
*link_info
)
16642 struct mips_elf_link_hash_table
*htab
= NULL
;
16643 Elf_Internal_Ehdr
*i_ehdrp
;
16645 if (!_bfd_elf_init_file_header (abfd
, link_info
))
16648 i_ehdrp
= elf_elfheader (abfd
);
16651 htab
= mips_elf_hash_table (link_info
);
16652 BFD_ASSERT (htab
!= NULL
);
16655 if (htab
!= NULL
&& htab
->use_plts_and_copy_relocs
&& !htab
->is_vxworks
)
16656 i_ehdrp
->e_ident
[EI_ABIVERSION
] = MIPS_LIBC_ABI_MIPS_PLT
;
16658 if (mips_elf_tdata (abfd
)->abiflags
.fp_abi
== Val_GNU_MIPS_ABI_FP_64
16659 || mips_elf_tdata (abfd
)->abiflags
.fp_abi
== Val_GNU_MIPS_ABI_FP_64A
)
16660 i_ehdrp
->e_ident
[EI_ABIVERSION
] = MIPS_LIBC_ABI_MIPS_O32_FP64
;
16662 /* Mark that we need support for absolute symbols in the dynamic loader. */
16663 if (htab
!= NULL
&& htab
->use_absolute_zero
&& htab
->gnu_target
)
16664 i_ehdrp
->e_ident
[EI_ABIVERSION
] = MIPS_LIBC_ABI_ABSOLUTE
;
16666 /* Mark that we need support for .MIPS.xhash in the dynamic linker,
16667 if it is the only hash section that will be created. */
16668 if (link_info
&& link_info
->emit_gnu_hash
&& !link_info
->emit_hash
)
16669 i_ehdrp
->e_ident
[EI_ABIVERSION
] = MIPS_LIBC_ABI_XHASH
;
16674 _bfd_mips_elf_compact_eh_encoding
16675 (struct bfd_link_info
*link_info ATTRIBUTE_UNUSED
)
16677 return DW_EH_PE_pcrel
| DW_EH_PE_sdata4
;
16680 /* Return the opcode for can't unwind. */
16683 _bfd_mips_elf_cant_unwind_opcode
16684 (struct bfd_link_info
*link_info ATTRIBUTE_UNUSED
)
16686 return COMPACT_EH_CANT_UNWIND_OPCODE
;
16689 /* Record a position XLAT_LOC in the xlat translation table, associated with
16690 the hash entry H. The entry in the translation table will later be
16691 populated with the real symbol dynindx. */
16694 _bfd_mips_elf_record_xhash_symbol (struct elf_link_hash_entry
*h
,
16697 struct mips_elf_link_hash_entry
*hmips
;
16699 hmips
= (struct mips_elf_link_hash_entry
*) h
;
16700 hmips
->mipsxhash_loc
= xlat_loc
;