* Contribute CGEN simulator build support code.
[binutils-gdb.git] / gdb / infptrace.c
blobb189f5077887f0270c8d2db85316ee27f1517b68
1 /* Low level Unix child interface to ptrace, for GDB when running under Unix.
2 Copyright 1988, 89, 90, 91, 92, 93, 94, 95, 96, 1998
3 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
22 #include "defs.h"
23 #include "frame.h"
24 #include "inferior.h"
25 #include "target.h"
26 #include "gdb_string.h"
28 #include "gdb_wait.h"
30 #include "command.h"
32 #ifdef USG
33 #include <sys/types.h>
34 #endif
36 #include <sys/param.h>
37 #include "gdb_dirent.h"
38 #include <signal.h>
39 #include <sys/ioctl.h>
41 #ifdef HAVE_PTRACE_H
42 #include <ptrace.h>
43 #else
44 #ifdef HAVE_SYS_PTRACE_H
45 #include <sys/ptrace.h>
46 #endif
47 #endif
49 #if !defined (PT_READ_I)
50 #define PT_READ_I 1 /* Read word from text space */
51 #endif
52 #if !defined (PT_READ_D)
53 #define PT_READ_D 2 /* Read word from data space */
54 #endif
55 #if !defined (PT_READ_U)
56 #define PT_READ_U 3 /* Read word from kernel user struct */
57 #endif
58 #if !defined (PT_WRITE_I)
59 #define PT_WRITE_I 4 /* Write word to text space */
60 #endif
61 #if !defined (PT_WRITE_D)
62 #define PT_WRITE_D 5 /* Write word to data space */
63 #endif
64 #if !defined (PT_WRITE_U)
65 #define PT_WRITE_U 6 /* Write word to kernel user struct */
66 #endif
67 #if !defined (PT_CONTINUE)
68 #define PT_CONTINUE 7 /* Continue after signal */
69 #endif
70 #if !defined (PT_STEP)
71 #define PT_STEP 9 /* Set flag for single stepping */
72 #endif
73 #if !defined (PT_KILL)
74 #define PT_KILL 8 /* Send child a SIGKILL signal */
75 #endif
77 #ifndef PT_ATTACH
78 #define PT_ATTACH PTRACE_ATTACH
79 #endif
80 #ifndef PT_DETACH
81 #define PT_DETACH PTRACE_DETACH
82 #endif
84 #include "gdbcore.h"
85 #ifndef NO_SYS_FILE
86 #include <sys/file.h>
87 #endif
88 #if 0
89 /* Don't think this is used anymore. On the sequent (not sure whether it's
90 dynix or ptx or both), it is included unconditionally by sys/user.h and
91 not protected against multiple inclusion. */
92 #include "gdb_stat.h"
93 #endif
95 #if !defined (FETCH_INFERIOR_REGISTERS)
96 #include <sys/user.h> /* Probably need to poke the user structure */
97 #if defined (KERNEL_U_ADDR_BSD)
98 #include <a.out.h> /* For struct nlist */
99 #endif /* KERNEL_U_ADDR_BSD. */
100 #endif /* !FETCH_INFERIOR_REGISTERS */
102 #if !defined (CHILD_XFER_MEMORY)
103 static void udot_info (char *, int);
104 #endif
106 #if !defined (FETCH_INFERIOR_REGISTERS)
107 static void fetch_register (int);
108 static void store_register (int);
109 #endif
112 * Some systems (Linux) may have threads implemented as pseudo-processes,
113 * in which case we may be tracing more than one process at a time.
114 * In that case, inferior_pid will contain the main process ID and the
115 * individual thread (process) id mashed together. These macros are
116 * used to separate them out. The definitions may be overridden in tm.h
118 * NOTE: default definitions here are for systems with no threads.
119 * Useful definitions MUST be provided in tm.h
122 #if !defined (PIDGET) /* Default definition for PIDGET/TIDGET. */
123 #define PIDGET(PID) PID
124 #define TIDGET(PID) 0
125 #endif
127 void _initialize_kernel_u_addr (void);
128 void _initialize_infptrace (void);
131 /* This function simply calls ptrace with the given arguments.
132 It exists so that all calls to ptrace are isolated in this
133 machine-dependent file. */
135 call_ptrace (int request, int pid, PTRACE_ARG3_TYPE addr, int data)
137 int pt_status = 0;
139 #if 0
140 int saved_errno;
142 printf ("call_ptrace(request=%d, pid=%d, addr=0x%x, data=0x%x)",
143 request, pid, addr, data);
144 #endif
145 #if defined(PT_SETTRC)
146 /* If the parent can be told to attach to us, try to do it. */
147 if (request == PT_SETTRC)
149 errno = 0;
150 #if !defined (FIVE_ARG_PTRACE)
151 pt_status = ptrace (PT_SETTRC, pid, addr, data);
152 #else
153 /* Deal with HPUX 8.0 braindamage. We never use the
154 calls which require the fifth argument. */
155 pt_status = ptrace (PT_SETTRC, pid, addr, data, 0);
156 #endif
157 if (errno)
158 perror_with_name ("ptrace");
159 #if 0
160 printf (" = %d\n", pt_status);
161 #endif
162 if (pt_status < 0)
163 return pt_status;
164 else
165 return parent_attach_all (pid, addr, data);
167 #endif
169 #if defined(PT_CONTIN1)
170 /* On HPUX, PT_CONTIN1 is a form of continue that preserves pending
171 signals. If it's available, use it. */
172 if (request == PT_CONTINUE)
173 request = PT_CONTIN1;
174 #endif
176 #if defined(PT_SINGLE1)
177 /* On HPUX, PT_SINGLE1 is a form of step that preserves pending
178 signals. If it's available, use it. */
179 if (request == PT_STEP)
180 request = PT_SINGLE1;
181 #endif
183 #if 0
184 saved_errno = errno;
185 errno = 0;
186 #endif
187 #if !defined (FIVE_ARG_PTRACE)
188 pt_status = ptrace (request, pid, addr, data);
189 #else
190 /* Deal with HPUX 8.0 braindamage. We never use the
191 calls which require the fifth argument. */
192 pt_status = ptrace (request, pid, addr, data, 0);
193 #endif
195 #if 0
196 if (errno)
197 printf (" [errno = %d]", errno);
199 errno = saved_errno;
200 printf (" = 0x%x\n", pt_status);
201 #endif
202 return pt_status;
206 #if defined (DEBUG_PTRACE) || defined (FIVE_ARG_PTRACE)
207 /* For the rest of the file, use an extra level of indirection */
208 /* This lets us breakpoint usefully on call_ptrace. */
209 #define ptrace call_ptrace
210 #endif
212 /* Wait for a process to finish, possibly running a target-specific
213 hook before returning. */
216 ptrace_wait (int pid, int *status)
218 int wstate;
220 wstate = wait (status);
221 target_post_wait (wstate, *status);
222 return wstate;
225 void
226 kill_inferior (void)
228 int status;
230 if (inferior_pid == 0)
231 return;
233 /* This once used to call "kill" to kill the inferior just in case
234 the inferior was still running. As others have noted in the past
235 (kingdon) there shouldn't be any way to get here if the inferior
236 is still running -- else there's a major problem elsewere in gdb
237 and it needs to be fixed.
239 The kill call causes problems under hpux10, so it's been removed;
240 if this causes problems we'll deal with them as they arise. */
241 ptrace (PT_KILL, inferior_pid, (PTRACE_ARG3_TYPE) 0, 0);
242 ptrace_wait (0, &status);
243 target_mourn_inferior ();
246 #ifndef CHILD_RESUME
248 /* Resume execution of the inferior process.
249 If STEP is nonzero, single-step it.
250 If SIGNAL is nonzero, give it that signal. */
252 void
253 child_resume (int pid, int step, enum target_signal signal)
255 errno = 0;
257 if (pid == -1)
258 /* Resume all threads. */
259 /* I think this only gets used in the non-threaded case, where "resume
260 all threads" and "resume inferior_pid" are the same. */
261 pid = inferior_pid;
263 /* An address of (PTRACE_ARG3_TYPE)1 tells ptrace to continue from where
264 it was. (If GDB wanted it to start some other way, we have already
265 written a new PC value to the child.)
267 If this system does not support PT_STEP, a higher level function will
268 have called single_step() to transmute the step request into a
269 continue request (by setting breakpoints on all possible successor
270 instructions), so we don't have to worry about that here. */
272 if (step)
274 if (SOFTWARE_SINGLE_STEP_P)
275 abort (); /* Make sure this doesn't happen. */
276 else
277 ptrace (PT_STEP, pid, (PTRACE_ARG3_TYPE) 1,
278 target_signal_to_host (signal));
280 else
281 ptrace (PT_CONTINUE, pid, (PTRACE_ARG3_TYPE) 1,
282 target_signal_to_host (signal));
284 if (errno)
286 perror_with_name ("ptrace");
289 #endif /* CHILD_RESUME */
292 #ifdef ATTACH_DETACH
293 /* Start debugging the process whose number is PID. */
295 attach (int pid)
297 errno = 0;
298 ptrace (PT_ATTACH, pid, (PTRACE_ARG3_TYPE) 0, 0);
299 if (errno)
300 perror_with_name ("ptrace");
301 attach_flag = 1;
302 return pid;
305 /* Stop debugging the process whose number is PID
306 and continue it with signal number SIGNAL.
307 SIGNAL = 0 means just continue it. */
309 void
310 detach (int signal)
312 errno = 0;
313 ptrace (PT_DETACH, inferior_pid, (PTRACE_ARG3_TYPE) 1, signal);
314 if (errno)
315 perror_with_name ("ptrace");
316 attach_flag = 0;
318 #endif /* ATTACH_DETACH */
320 /* Default the type of the ptrace transfer to int. */
321 #ifndef PTRACE_XFER_TYPE
322 #define PTRACE_XFER_TYPE int
323 #endif
325 /* KERNEL_U_ADDR is the amount to subtract from u.u_ar0
326 to get the offset in the core file of the register values. */
327 #if defined (KERNEL_U_ADDR_BSD) && !defined (FETCH_INFERIOR_REGISTERS)
328 /* Get kernel_u_addr using BSD-style nlist(). */
329 CORE_ADDR kernel_u_addr;
330 #endif /* KERNEL_U_ADDR_BSD. */
332 void
333 _initialize_kernel_u_addr (void)
335 #if defined (KERNEL_U_ADDR_BSD) && !defined (FETCH_INFERIOR_REGISTERS)
336 struct nlist names[2];
338 names[0].n_un.n_name = "_u";
339 names[1].n_un.n_name = NULL;
340 if (nlist ("/vmunix", names) == 0)
341 kernel_u_addr = names[0].n_value;
342 else
343 internal_error ("Unable to get kernel u area address.");
344 #endif /* KERNEL_U_ADDR_BSD. */
347 #if !defined (FETCH_INFERIOR_REGISTERS)
349 #if !defined (offsetof)
350 #define offsetof(TYPE, MEMBER) ((unsigned long) &((TYPE *)0)->MEMBER)
351 #endif
353 /* U_REGS_OFFSET is the offset of the registers within the u area. */
354 #if !defined (U_REGS_OFFSET)
355 #define U_REGS_OFFSET \
356 ptrace (PT_READ_U, inferior_pid, \
357 (PTRACE_ARG3_TYPE) (offsetof (struct user, u_ar0)), 0) \
358 - KERNEL_U_ADDR
359 #endif
361 /* Registers we shouldn't try to fetch. */
362 #if !defined (CANNOT_FETCH_REGISTER)
363 #define CANNOT_FETCH_REGISTER(regno) 0
364 #endif
366 /* Fetch one register. */
368 static void
369 fetch_register (int regno)
371 /* This isn't really an address. But ptrace thinks of it as one. */
372 CORE_ADDR regaddr;
373 char mess[128]; /* For messages */
374 register int i;
375 unsigned int offset; /* Offset of registers within the u area. */
376 char buf[MAX_REGISTER_RAW_SIZE];
377 int tid;
379 if (CANNOT_FETCH_REGISTER (regno))
381 memset (buf, '\0', REGISTER_RAW_SIZE (regno)); /* Supply zeroes */
382 supply_register (regno, buf);
383 return;
386 /* Overload thread id onto process id */
387 if ((tid = TIDGET (inferior_pid)) == 0)
388 tid = inferior_pid; /* no thread id, just use process id */
390 offset = U_REGS_OFFSET;
392 regaddr = register_addr (regno, offset);
393 for (i = 0; i < REGISTER_RAW_SIZE (regno); i += sizeof (PTRACE_XFER_TYPE))
395 errno = 0;
396 *(PTRACE_XFER_TYPE *) & buf[i] = ptrace (PT_READ_U, tid,
397 (PTRACE_ARG3_TYPE) regaddr, 0);
398 regaddr += sizeof (PTRACE_XFER_TYPE);
399 if (errno != 0)
401 sprintf (mess, "reading register %s (#%d)",
402 REGISTER_NAME (regno), regno);
403 perror_with_name (mess);
406 supply_register (regno, buf);
410 /* Fetch register values from the inferior.
411 If REGNO is negative, do this for all registers.
412 Otherwise, REGNO specifies which register (so we can save time). */
414 void
415 fetch_inferior_registers (int regno)
417 if (regno >= 0)
419 fetch_register (regno);
421 else
423 for (regno = 0; regno < ARCH_NUM_REGS; regno++)
425 fetch_register (regno);
430 /* Registers we shouldn't try to store. */
431 #if !defined (CANNOT_STORE_REGISTER)
432 #define CANNOT_STORE_REGISTER(regno) 0
433 #endif
435 /* Store one register. */
437 static void
438 store_register (int regno)
440 /* This isn't really an address. But ptrace thinks of it as one. */
441 CORE_ADDR regaddr;
442 char mess[128]; /* For messages */
443 register int i;
444 unsigned int offset; /* Offset of registers within the u area. */
445 int tid;
447 if (CANNOT_STORE_REGISTER (regno))
449 return;
452 /* Overload thread id onto process id */
453 if ((tid = TIDGET (inferior_pid)) == 0)
454 tid = inferior_pid; /* no thread id, just use process id */
456 offset = U_REGS_OFFSET;
458 regaddr = register_addr (regno, offset);
459 for (i = 0; i < REGISTER_RAW_SIZE (regno); i += sizeof (PTRACE_XFER_TYPE))
461 errno = 0;
462 ptrace (PT_WRITE_U, tid, (PTRACE_ARG3_TYPE) regaddr,
463 *(PTRACE_XFER_TYPE *) & registers[REGISTER_BYTE (regno) + i]);
464 regaddr += sizeof (PTRACE_XFER_TYPE);
465 if (errno != 0)
467 sprintf (mess, "writing register %s (#%d)",
468 REGISTER_NAME (regno), regno);
469 perror_with_name (mess);
474 /* Store our register values back into the inferior.
475 If REGNO is negative, do this for all registers.
476 Otherwise, REGNO specifies which register (so we can save time). */
478 void
479 store_inferior_registers (int regno)
481 if (regno >= 0)
483 store_register (regno);
485 else
487 for (regno = 0; regno < ARCH_NUM_REGS; regno++)
489 store_register (regno);
493 #endif /* !defined (FETCH_INFERIOR_REGISTERS). */
496 #if !defined (CHILD_XFER_MEMORY)
497 /* NOTE! I tried using PTRACE_READDATA, etc., to read and write memory
498 in the NEW_SUN_PTRACE case.
499 It ought to be straightforward. But it appears that writing did
500 not write the data that I specified. I cannot understand where
501 it got the data that it actually did write. */
503 /* Copy LEN bytes to or from inferior's memory starting at MEMADDR
504 to debugger memory starting at MYADDR. Copy to inferior if
505 WRITE is nonzero.
507 Returns the length copied, which is either the LEN argument or zero.
508 This xfer function does not do partial moves, since child_ops
509 doesn't allow memory operations to cross below us in the target stack
510 anyway. */
513 child_xfer_memory (memaddr, myaddr, len, write, target)
514 CORE_ADDR memaddr;
515 char *myaddr;
516 int len;
517 int write;
518 struct target_ops *target; /* ignored */
520 register int i;
521 /* Round starting address down to longword boundary. */
522 register CORE_ADDR addr = memaddr & -sizeof (PTRACE_XFER_TYPE);
523 /* Round ending address up; get number of longwords that makes. */
524 register int count
525 = (((memaddr + len) - addr) + sizeof (PTRACE_XFER_TYPE) - 1)
526 / sizeof (PTRACE_XFER_TYPE);
527 /* Allocate buffer of that many longwords. */
528 register PTRACE_XFER_TYPE *buffer
529 = (PTRACE_XFER_TYPE *) alloca (count * sizeof (PTRACE_XFER_TYPE));
531 if (write)
533 /* Fill start and end extra bytes of buffer with existing memory data. */
535 if (addr != memaddr || len < (int) sizeof (PTRACE_XFER_TYPE))
537 /* Need part of initial word -- fetch it. */
538 buffer[0] = ptrace (PT_READ_I, PIDGET (inferior_pid),
539 (PTRACE_ARG3_TYPE) addr, 0);
542 if (count > 1) /* FIXME, avoid if even boundary */
544 buffer[count - 1]
545 = ptrace (PT_READ_I, PIDGET (inferior_pid),
546 ((PTRACE_ARG3_TYPE)
547 (addr + (count - 1) * sizeof (PTRACE_XFER_TYPE))),
551 /* Copy data to be written over corresponding part of buffer */
553 memcpy ((char *) buffer + (memaddr & (sizeof (PTRACE_XFER_TYPE) - 1)),
554 myaddr,
555 len);
557 /* Write the entire buffer. */
559 for (i = 0; i < count; i++, addr += sizeof (PTRACE_XFER_TYPE))
561 errno = 0;
562 ptrace (PT_WRITE_D, PIDGET (inferior_pid),
563 (PTRACE_ARG3_TYPE) addr, buffer[i]);
564 if (errno)
566 /* Using the appropriate one (I or D) is necessary for
567 Gould NP1, at least. */
568 errno = 0;
569 ptrace (PT_WRITE_I, PIDGET (inferior_pid),
570 (PTRACE_ARG3_TYPE) addr, buffer[i]);
572 if (errno)
573 return 0;
575 #ifdef CLEAR_INSN_CACHE
576 CLEAR_INSN_CACHE ();
577 #endif
579 else
581 /* Read all the longwords */
582 for (i = 0; i < count; i++, addr += sizeof (PTRACE_XFER_TYPE))
584 errno = 0;
585 buffer[i] = ptrace (PT_READ_I, PIDGET (inferior_pid),
586 (PTRACE_ARG3_TYPE) addr, 0);
587 if (errno)
588 return 0;
589 QUIT;
592 /* Copy appropriate bytes out of the buffer. */
593 memcpy (myaddr,
594 (char *) buffer + (memaddr & (sizeof (PTRACE_XFER_TYPE) - 1)),
595 len);
597 return len;
601 static void
602 udot_info (char *dummy1, int dummy2)
604 #if defined (KERNEL_U_SIZE)
605 int udot_off; /* Offset into user struct */
606 int udot_val; /* Value from user struct at udot_off */
607 char mess[128]; /* For messages */
608 #endif
610 if (!target_has_execution)
612 error ("The program is not being run.");
615 #if !defined (KERNEL_U_SIZE)
617 /* Adding support for this command is easy. Typically you just add a
618 routine, called "kernel_u_size" that returns the size of the user
619 struct, to the appropriate *-nat.c file and then add to the native
620 config file "#define KERNEL_U_SIZE kernel_u_size()" */
621 error ("Don't know how large ``struct user'' is in this version of gdb.");
623 #else
625 for (udot_off = 0; udot_off < KERNEL_U_SIZE; udot_off += sizeof (udot_val))
627 if ((udot_off % 24) == 0)
629 if (udot_off > 0)
631 printf_filtered ("\n");
633 printf_filtered ("%04x:", udot_off);
635 udot_val = ptrace (PT_READ_U, inferior_pid, (PTRACE_ARG3_TYPE) udot_off, 0);
636 if (errno != 0)
638 sprintf (mess, "\nreading user struct at offset 0x%x", udot_off);
639 perror_with_name (mess);
641 /* Avoid using nonportable (?) "*" in print specs */
642 printf_filtered (sizeof (int) == 4 ? " 0x%08x" : " 0x%16x", udot_val);
644 printf_filtered ("\n");
646 #endif
648 #endif /* !defined (CHILD_XFER_MEMORY). */
651 void
652 _initialize_infptrace (void)
654 #if !defined (CHILD_XFER_MEMORY)
655 add_info ("udot", udot_info,
656 "Print contents of kernel ``struct user'' for current child.");
657 #endif