1 /* Native-dependent code for LynxOS.
2 Copyright 1993, 1994 Free Software Foundation, Inc.
4 This file is part of GDB.
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
27 #include <sys/ptrace.h>
31 static unsigned long registers_addr (int pid
);
32 static void fetch_core_registers (char *, unsigned, int, CORE_ADDR
);
34 #define X(ENTRY)(offsetof(struct econtext, ENTRY))
37 /* Mappings from tm-i386v.h */
55 X (ecode
), /* Lynx doesn't give us either fs or gs, so */
56 X (fault
), /* we just substitute these two in the hopes
57 that they are useful. */
62 /* Mappings from tm-m68k.h */
76 X (regs
[10]), /* a2 */
77 X (regs
[11]), /* a3 */
78 X (regs
[12]), /* a4 */
79 X (regs
[13]), /* a5 */
80 X (regs
[14]), /* fp */
81 offsetof (st_t
, usp
) - offsetof (st_t
, ec
), /* sp */
85 X (fregs
[0 * 3]), /* fp0 */
86 X (fregs
[1 * 3]), /* fp1 */
87 X (fregs
[2 * 3]), /* fp2 */
88 X (fregs
[3 * 3]), /* fp3 */
89 X (fregs
[4 * 3]), /* fp4 */
90 X (fregs
[5 * 3]), /* fp5 */
91 X (fregs
[6 * 3]), /* fp6 */
92 X (fregs
[7 * 3]), /* fp7 */
94 X (fcregs
[0]), /* fpcontrol */
95 X (fcregs
[1]), /* fpstatus */
96 X (fcregs
[2]), /* fpiaddr */
98 X (fault
), /* fpflags */
103 /* Mappings from tm-sparc.h */
105 #define FX(ENTRY)(offsetof(struct fcontext, ENTRY))
107 static int regmap
[] =
114 -1, /* g5->g7 aren't saved by Lynx */
127 -1, -1, -1, -1, -1, -1, -1, -1, /* l0 -> l7 */
129 -1, -1, -1, -1, -1, -1, -1, -1, /* i0 -> i7 */
131 FX (f
.fregs
[0]), /* f0 */
177 static int regmap
[] =
179 X (iregs
[0]), /* r0 */
212 X (fregs
[0]), /* f0 */
245 X (srr0
), /* IAR (PC) */
246 X (srr1
), /* MSR (PS) */
258 /* This routine handles some oddball cases for Sparc registers and LynxOS.
259 In partucular, it causes refs to G0, g5->7, and all fp regs to return zero.
260 It also handles knows where to find the I & L regs on the stack. */
263 fetch_inferior_registers (int regno
)
267 #define WHATREGS_FLOAT 1
268 #define WHATREGS_GEN 2
269 #define WHATREGS_STACK 4
272 whatregs
= WHATREGS_FLOAT
| WHATREGS_GEN
| WHATREGS_STACK
;
273 else if (regno
>= L0_REGNUM
&& regno
<= I7_REGNUM
)
274 whatregs
= WHATREGS_STACK
;
275 else if (regno
>= FP0_REGNUM
&& regno
< FP0_REGNUM
+ 32)
276 whatregs
= WHATREGS_FLOAT
;
278 whatregs
= WHATREGS_GEN
;
280 if (whatregs
& WHATREGS_GEN
)
282 struct econtext ec
; /* general regs */
283 char buf
[MAX_REGISTER_RAW_SIZE
];
288 retval
= ptrace (PTRACE_GETREGS
, inferior_pid
, (PTRACE_ARG3_TYPE
) & ec
,
291 perror_with_name ("ptrace(PTRACE_GETREGS)");
293 memset (buf
, 0, REGISTER_RAW_SIZE (G0_REGNUM
));
294 supply_register (G0_REGNUM
, buf
);
295 supply_register (TBR_REGNUM
, (char *) &ec
.tbr
);
297 memcpy (®isters
[REGISTER_BYTE (G1_REGNUM
)], &ec
.g1
,
298 4 * REGISTER_RAW_SIZE (G1_REGNUM
));
299 for (i
= G1_REGNUM
; i
<= G1_REGNUM
+ 3; i
++)
300 register_valid
[i
] = 1;
302 supply_register (PS_REGNUM
, (char *) &ec
.psr
);
303 supply_register (Y_REGNUM
, (char *) &ec
.y
);
304 supply_register (PC_REGNUM
, (char *) &ec
.pc
);
305 supply_register (NPC_REGNUM
, (char *) &ec
.npc
);
306 supply_register (WIM_REGNUM
, (char *) &ec
.wim
);
308 memcpy (®isters
[REGISTER_BYTE (O0_REGNUM
)], ec
.o
,
309 8 * REGISTER_RAW_SIZE (O0_REGNUM
));
310 for (i
= O0_REGNUM
; i
<= O0_REGNUM
+ 7; i
++)
311 register_valid
[i
] = 1;
314 if (whatregs
& WHATREGS_STACK
)
319 sp
= read_register (SP_REGNUM
);
321 target_read_memory (sp
+ FRAME_SAVED_I0
,
322 ®isters
[REGISTER_BYTE (I0_REGNUM
)],
323 8 * REGISTER_RAW_SIZE (I0_REGNUM
));
324 for (i
= I0_REGNUM
; i
<= I7_REGNUM
; i
++)
325 register_valid
[i
] = 1;
327 target_read_memory (sp
+ FRAME_SAVED_L0
,
328 ®isters
[REGISTER_BYTE (L0_REGNUM
)],
329 8 * REGISTER_RAW_SIZE (L0_REGNUM
));
330 for (i
= L0_REGNUM
; i
<= L0_REGNUM
+ 7; i
++)
331 register_valid
[i
] = 1;
334 if (whatregs
& WHATREGS_FLOAT
)
336 struct fcontext fc
; /* fp regs */
341 retval
= ptrace (PTRACE_GETFPREGS
, inferior_pid
, (PTRACE_ARG3_TYPE
) & fc
,
344 perror_with_name ("ptrace(PTRACE_GETFPREGS)");
346 memcpy (®isters
[REGISTER_BYTE (FP0_REGNUM
)], fc
.f
.fregs
,
347 32 * REGISTER_RAW_SIZE (FP0_REGNUM
));
348 for (i
= FP0_REGNUM
; i
<= FP0_REGNUM
+ 31; i
++)
349 register_valid
[i
] = 1;
351 supply_register (FPS_REGNUM
, (char *) &fc
.fsr
);
355 /* This routine handles storing of the I & L regs for the Sparc. The trick
356 here is that they actually live on the stack. The really tricky part is
357 that when changing the stack pointer, the I & L regs must be written to
358 where the new SP points, otherwise the regs will be incorrect when the
359 process is started up again. We assume that the I & L regs are valid at
363 store_inferior_registers (int regno
)
368 whatregs
= WHATREGS_FLOAT
| WHATREGS_GEN
| WHATREGS_STACK
;
369 else if (regno
>= L0_REGNUM
&& regno
<= I7_REGNUM
)
370 whatregs
= WHATREGS_STACK
;
371 else if (regno
>= FP0_REGNUM
&& regno
< FP0_REGNUM
+ 32)
372 whatregs
= WHATREGS_FLOAT
;
373 else if (regno
== SP_REGNUM
)
374 whatregs
= WHATREGS_STACK
| WHATREGS_GEN
;
376 whatregs
= WHATREGS_GEN
;
378 if (whatregs
& WHATREGS_GEN
)
380 struct econtext ec
; /* general regs */
383 ec
.tbr
= read_register (TBR_REGNUM
);
384 memcpy (&ec
.g1
, ®isters
[REGISTER_BYTE (G1_REGNUM
)],
385 4 * REGISTER_RAW_SIZE (G1_REGNUM
));
387 ec
.psr
= read_register (PS_REGNUM
);
388 ec
.y
= read_register (Y_REGNUM
);
389 ec
.pc
= read_register (PC_REGNUM
);
390 ec
.npc
= read_register (NPC_REGNUM
);
391 ec
.wim
= read_register (WIM_REGNUM
);
393 memcpy (ec
.o
, ®isters
[REGISTER_BYTE (O0_REGNUM
)],
394 8 * REGISTER_RAW_SIZE (O0_REGNUM
));
397 retval
= ptrace (PTRACE_SETREGS
, inferior_pid
, (PTRACE_ARG3_TYPE
) & ec
,
400 perror_with_name ("ptrace(PTRACE_SETREGS)");
403 if (whatregs
& WHATREGS_STACK
)
408 sp
= read_register (SP_REGNUM
);
410 if (regno
== -1 || regno
== SP_REGNUM
)
412 if (!register_valid
[L0_REGNUM
+ 5])
414 target_write_memory (sp
+ FRAME_SAVED_I0
,
415 ®isters
[REGISTER_BYTE (I0_REGNUM
)],
416 8 * REGISTER_RAW_SIZE (I0_REGNUM
));
418 target_write_memory (sp
+ FRAME_SAVED_L0
,
419 ®isters
[REGISTER_BYTE (L0_REGNUM
)],
420 8 * REGISTER_RAW_SIZE (L0_REGNUM
));
422 else if (regno
>= L0_REGNUM
&& regno
<= I7_REGNUM
)
424 if (!register_valid
[regno
])
426 if (regno
>= L0_REGNUM
&& regno
<= L0_REGNUM
+ 7)
427 regoffset
= REGISTER_BYTE (regno
) - REGISTER_BYTE (L0_REGNUM
)
430 regoffset
= REGISTER_BYTE (regno
) - REGISTER_BYTE (I0_REGNUM
)
432 target_write_memory (sp
+ regoffset
,
433 ®isters
[REGISTER_BYTE (regno
)],
434 REGISTER_RAW_SIZE (regno
));
438 if (whatregs
& WHATREGS_FLOAT
)
440 struct fcontext fc
; /* fp regs */
443 /* We read fcontext first so that we can get good values for fq_t... */
445 retval
= ptrace (PTRACE_GETFPREGS
, inferior_pid
, (PTRACE_ARG3_TYPE
) & fc
,
448 perror_with_name ("ptrace(PTRACE_GETFPREGS)");
450 memcpy (fc
.f
.fregs
, ®isters
[REGISTER_BYTE (FP0_REGNUM
)],
451 32 * REGISTER_RAW_SIZE (FP0_REGNUM
));
453 fc
.fsr
= read_register (FPS_REGNUM
);
456 retval
= ptrace (PTRACE_SETFPREGS
, inferior_pid
, (PTRACE_ARG3_TYPE
) & fc
,
459 perror_with_name ("ptrace(PTRACE_SETFPREGS)");
464 #if defined (I386) || defined (M68K) || defined (rs6000)
466 /* Return the offset relative to the start of the per-thread data to the
467 saved context block. */
470 registers_addr (int pid
)
473 int ecpoff
= offsetof (st_t
, ecp
);
477 stblock
= (CORE_ADDR
) ptrace (PTRACE_THREADUSER
, pid
, (PTRACE_ARG3_TYPE
) 0,
480 perror_with_name ("ptrace(PTRACE_THREADUSER)");
482 ecp
= (CORE_ADDR
) ptrace (PTRACE_PEEKTHREAD
, pid
, (PTRACE_ARG3_TYPE
) ecpoff
,
485 perror_with_name ("ptrace(PTRACE_PEEKTHREAD)");
487 return ecp
- stblock
;
490 /* Fetch one or more registers from the inferior. REGNO == -1 to get
491 them all. We actually fetch more than requested, when convenient,
492 marking them as valid so we won't fetch them again. */
495 fetch_inferior_registers (int regno
)
504 reghi
= NUM_REGS
- 1;
507 reglo
= reghi
= regno
;
509 ecp
= registers_addr (inferior_pid
);
511 for (regno
= reglo
; regno
<= reghi
; regno
++)
513 char buf
[MAX_REGISTER_RAW_SIZE
];
514 int ptrace_fun
= PTRACE_PEEKTHREAD
;
517 ptrace_fun
= regno
== SP_REGNUM
? PTRACE_PEEKUSP
: PTRACE_PEEKTHREAD
;
520 for (i
= 0; i
< REGISTER_RAW_SIZE (regno
); i
+= sizeof (int))
525 reg
= ptrace (ptrace_fun
, inferior_pid
,
526 (PTRACE_ARG3_TYPE
) (ecp
+ regmap
[regno
] + i
), 0);
528 perror_with_name ("ptrace(PTRACE_PEEKUSP)");
530 *(int *) &buf
[i
] = reg
;
532 supply_register (regno
, buf
);
536 /* Store our register values back into the inferior.
537 If REGNO is -1, do this for all registers.
538 Otherwise, REGNO specifies which register (so we can save time). */
540 /* Registers we shouldn't try to store. */
541 #if !defined (CANNOT_STORE_REGISTER)
542 #define CANNOT_STORE_REGISTER(regno) 0
546 store_inferior_registers (int regno
)
555 reghi
= NUM_REGS
- 1;
558 reglo
= reghi
= regno
;
560 ecp
= registers_addr (inferior_pid
);
562 for (regno
= reglo
; regno
<= reghi
; regno
++)
564 int ptrace_fun
= PTRACE_POKEUSER
;
566 if (CANNOT_STORE_REGISTER (regno
))
570 ptrace_fun
= regno
== SP_REGNUM
? PTRACE_POKEUSP
: PTRACE_POKEUSER
;
573 for (i
= 0; i
< REGISTER_RAW_SIZE (regno
); i
+= sizeof (int))
577 reg
= *(unsigned int *) ®isters
[REGISTER_BYTE (regno
) + i
];
580 ptrace (ptrace_fun
, inferior_pid
,
581 (PTRACE_ARG3_TYPE
) (ecp
+ regmap
[regno
] + i
), reg
);
583 perror_with_name ("ptrace(PTRACE_POKEUSP)");
587 #endif /* defined (I386) || defined (M68K) || defined (rs6000) */
589 /* Wait for child to do something. Return pid of child, or -1 in case
590 of error; store status through argument pointer OURSTATUS. */
593 child_wait (int pid
, struct target_waitstatus
*ourstatus
)
603 set_sigint_trap (); /* Causes SIGINT to be passed on to the
605 pid
= wait (&status
);
609 clear_sigint_trap ();
613 if (save_errno
== EINTR
)
615 fprintf_unfiltered (gdb_stderr
, "Child process unexpectedly missing: %s.\n",
616 safe_strerror (save_errno
));
617 /* Claim it exited with unknown signal. */
618 ourstatus
->kind
= TARGET_WAITKIND_SIGNALLED
;
619 ourstatus
->value
.sig
= TARGET_SIGNAL_UNKNOWN
;
623 if (pid
!= PIDGET (inferior_pid
)) /* Some other process?!? */
626 thread
= status
.w_tid
; /* Get thread id from status */
628 /* Initial thread value can only be acquired via wait, so we have to
629 resort to this hack. */
631 if (TIDGET (inferior_pid
) == 0 && thread
!= 0)
633 inferior_pid
= BUILDPID (inferior_pid
, thread
);
634 add_thread (inferior_pid
);
637 pid
= BUILDPID (pid
, thread
);
639 /* We've become a single threaded process again. */
643 /* Check for thread creation. */
644 if (WIFSTOPPED (status
)
645 && WSTOPSIG (status
) == SIGTRAP
646 && !in_thread_list (pid
))
650 realsig
= ptrace (PTRACE_GETTRACESIG
, pid
, (PTRACE_ARG3_TYPE
) 0, 0);
652 if (realsig
== SIGNEWTHREAD
)
654 /* It's a new thread notification. We don't want to much with
655 realsig -- the code in wait_for_inferior expects SIGTRAP. */
656 ourstatus
->kind
= TARGET_WAITKIND_SPURIOUS
;
657 ourstatus
->value
.sig
= TARGET_SIGNAL_0
;
661 error ("Signal for unknown thread was not SIGNEWTHREAD");
664 /* Check for thread termination. */
665 else if (WIFSTOPPED (status
)
666 && WSTOPSIG (status
) == SIGTRAP
667 && in_thread_list (pid
))
671 realsig
= ptrace (PTRACE_GETTRACESIG
, pid
, (PTRACE_ARG3_TYPE
) 0, 0);
673 if (realsig
== SIGTHREADEXIT
)
675 ptrace (PTRACE_CONT
, PIDGET (pid
), (PTRACE_ARG3_TYPE
) 0, 0);
681 /* SPARC Lynx uses an byte reversed wait status; we must use the
682 host macros to access it. These lines just a copy of
683 store_waitstatus. We can't use CHILD_SPECIAL_WAITSTATUS
684 because target.c can't include the Lynx <sys/wait.h>. */
685 if (WIFEXITED (status
))
687 ourstatus
->kind
= TARGET_WAITKIND_EXITED
;
688 ourstatus
->value
.integer
= WEXITSTATUS (status
);
690 else if (!WIFSTOPPED (status
))
692 ourstatus
->kind
= TARGET_WAITKIND_SIGNALLED
;
693 ourstatus
->value
.sig
=
694 target_signal_from_host (WTERMSIG (status
));
698 ourstatus
->kind
= TARGET_WAITKIND_STOPPED
;
699 ourstatus
->value
.sig
=
700 target_signal_from_host (WSTOPSIG (status
));
703 store_waitstatus (ourstatus
, status
.w_status
);
710 /* Return nonzero if the given thread is still alive. */
712 child_thread_alive (int pid
)
714 /* Arggh. Apparently pthread_kill only works for threads within
715 the process that calls pthread_kill.
717 We want to avoid the lynx signal extensions as they simply don't
718 map well to the generic gdb interface we want to keep.
720 All we want to do is determine if a particular thread is alive;
721 it appears as if we can just make a harmless thread specific
722 ptrace call to do that. */
723 return (ptrace (PTRACE_THREADUSER
, pid
, 0, 0) != -1);
726 /* Resume execution of the inferior process.
727 If STEP is nonzero, single-step it.
728 If SIGNAL is nonzero, give it that signal. */
731 child_resume (int pid
, int step
, enum target_signal signal
)
737 /* If pid == -1, then we want to step/continue all threads, else
738 we only want to step/continue a single thread. */
742 func
= step
? PTRACE_SINGLESTEP
: PTRACE_CONT
;
745 func
= step
? PTRACE_SINGLESTEP_ONE
: PTRACE_CONT_ONE
;
748 /* An address of (PTRACE_ARG3_TYPE)1 tells ptrace to continue from where
749 it was. (If GDB wanted it to start some other way, we have already
750 written a new PC value to the child.)
752 If this system does not support PT_STEP, a higher level function will
753 have called single_step() to transmute the step request into a
754 continue request (by setting breakpoints on all possible successor
755 instructions), so we don't have to worry about that here. */
757 ptrace (func
, pid
, (PTRACE_ARG3_TYPE
) 1, target_signal_to_host (signal
));
760 perror_with_name ("ptrace");
763 /* Convert a Lynx process ID to a string. Returns the string in a static
767 child_pid_to_str (int pid
)
771 sprintf (buf
, "process %d thread %d", PIDGET (pid
), TIDGET (pid
));
776 /* Extract the register values out of the core file and store
777 them where `read_register' will find them.
779 CORE_REG_SECT points to the register values themselves, read into memory.
780 CORE_REG_SIZE is the size of that area.
781 WHICH says which set of registers we are handling (0 = int, 2 = float
782 on machines where they are discontiguous).
783 REG_ADDR is the offset from u.u_ar0 to the register values relative to
784 core_reg_sect. This is used with old-fashioned core files to
785 locate the registers in a large upage-plus-stack ".reg" section.
786 Original upage address X is at location core_reg_sect+x+reg_addr.
790 fetch_core_registers (char *core_reg_sect
, unsigned core_reg_size
, int which
,
796 for (regno
= 0; regno
< NUM_REGS
; regno
++)
797 if (regmap
[regno
] != -1)
798 supply_register (regno
, core_reg_sect
+ offsetof (st_t
, ec
)
802 /* Fetching this register causes all of the I & L regs to be read from the
803 stack and validated. */
805 fetch_inferior_registers (I0_REGNUM
);
810 /* Register that we are able to handle lynx core file formats.
811 FIXME: is this really bfd_target_unknown_flavour? */
813 static struct core_fns lynx_core_fns
=
815 bfd_target_unknown_flavour
, /* core_flavour */
816 default_check_format
, /* check_format */
817 default_core_sniffer
, /* core_sniffer */
818 fetch_core_registers
, /* core_read_registers */
823 _initialize_core_lynx (void)
825 add_core_fns (&lynx_core_fns
);