* Contribute CGEN simulator build support code.
[binutils-gdb.git] / gdb / varobj.c
blob5cc6e88d1679ecdf89999cb25b6f4d9ea5ad9c91
1 /* Implementation of the GDB variable objects API.
2 Copyright 1999, 2000 Free Software Foundation, Inc.
4 This program is free software; you can redistribute it and/or modify
5 it under the terms of the GNU General Public License as published by
6 the Free Software Foundation; either version 2 of the License, or
7 (at your option) any later version.
9 This program is distributed in the hope that it will be useful,
10 but WITHOUT ANY WARRANTY; without even the implied warranty of
11 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 GNU General Public License for more details.
14 You should have received a copy of the GNU General Public License
15 along with this program; if not, write to the Free Software
16 Foundation, Inc., 59 Temple Place - Suite 330,
17 Boston, MA 02111-1307, USA. */
19 #include "defs.h"
20 #include "value.h"
21 #include "expression.h"
22 #include "frame.h"
23 #include "valprint.h"
24 #include "language.h"
25 #include "wrapper.h"
26 #include "gdbcmd.h"
27 #include <math.h>
29 #include "varobj.h"
31 /* Non-zero if we want to see trace of varobj level stuff. */
33 int varobjdebug = 0;
35 /* String representations of gdb's format codes */
36 char *varobj_format_string[] =
37 {"natural", "binary", "decimal", "hexadecimal", "octal"};
39 /* String representations of gdb's known languages */
40 char *varobj_language_string[] =
41 {"unknown", "C", "C++", "Java"};
43 /* Data structures */
45 /* Every root variable has one of these structures saved in its
46 varobj. Members which must be free'd are noted. */
47 struct varobj_root
50 /* Alloc'd expression for this parent. */
51 struct expression *exp;
53 /* Block for which this expression is valid */
54 struct block *valid_block;
56 /* The frame for this expression */
57 CORE_ADDR frame;
59 /* If 1, "update" always recomputes the frame & valid block
60 using the currently selected frame. */
61 int use_selected_frame;
63 /* Language info for this variable and its children */
64 struct language_specific *lang;
66 /* The varobj for this root node. */
67 struct varobj *rootvar;
69 /* Next root variable */
70 struct varobj_root *next;
73 /* Every variable in the system has a structure of this type defined
74 for it. This structure holds all information necessary to manipulate
75 a particular object variable. Members which must be freed are noted. */
76 struct varobj
79 /* Alloc'd name of the variable for this object.. If this variable is a
80 child, then this name will be the child's source name.
81 (bar, not foo.bar) */
82 /* NOTE: This is the "expression" */
83 char *name;
85 /* The alloc'd name for this variable's object. This is here for
86 convenience when constructing this object's children. */
87 char *obj_name;
89 /* Index of this variable in its parent or -1 */
90 int index;
92 /* The type of this variable. This may NEVER be NULL. */
93 struct type *type;
95 /* The value of this expression or subexpression. This may be NULL. */
96 value_ptr value;
98 /* Did an error occur evaluating the expression or getting its value? */
99 int error;
101 /* The number of (immediate) children this variable has */
102 int num_children;
104 /* If this object is a child, this points to its immediate parent. */
105 struct varobj *parent;
107 /* A list of this object's children */
108 struct varobj_child *children;
110 /* Description of the root variable. Points to root variable for children. */
111 struct varobj_root *root;
113 /* The format of the output for this object */
114 enum varobj_display_formats format;
117 /* Every variable keeps a linked list of its children, described
118 by the following structure. */
119 /* FIXME: Deprecated. All should use vlist instead */
121 struct varobj_child
124 /* Pointer to the child's data */
125 struct varobj *child;
127 /* Pointer to the next child */
128 struct varobj_child *next;
131 /* A stack of varobjs */
132 /* FIXME: Deprecated. All should use vlist instead */
134 struct vstack
136 struct varobj *var;
137 struct vstack *next;
140 struct cpstack
142 char *name;
143 struct cpstack *next;
146 /* A list of varobjs */
148 struct vlist
150 struct varobj *var;
151 struct vlist *next;
154 /* Private function prototypes */
156 /* Helper functions for the above subcommands. */
158 static int delete_variable (struct cpstack **, struct varobj *, int);
160 static void delete_variable_1 (struct cpstack **, int *,
161 struct varobj *, int, int);
163 static int install_variable (struct varobj *);
165 static void uninstall_variable (struct varobj *);
167 static struct varobj *child_exists (struct varobj *, char *);
169 static struct varobj *create_child (struct varobj *, int, char *);
171 static void save_child_in_parent (struct varobj *, struct varobj *);
173 static void remove_child_from_parent (struct varobj *, struct varobj *);
175 /* Utility routines */
177 static struct varobj *new_variable (void);
179 static struct varobj *new_root_variable (void);
181 static void free_variable (struct varobj *var);
183 static struct cleanup *make_cleanup_free_variable (struct varobj *var);
185 static struct type *get_type (struct varobj *var);
187 static struct type *get_type_deref (struct varobj *var);
189 static struct type *get_target_type (struct type *);
191 static enum varobj_display_formats variable_default_display (struct varobj *);
193 static int my_value_equal (value_ptr, value_ptr, int *);
195 static void vpush (struct vstack **pstack, struct varobj *var);
197 static struct varobj *vpop (struct vstack **pstack);
199 static void cppush (struct cpstack **pstack, char *name);
201 static char *cppop (struct cpstack **pstack);
203 /* Language-specific routines. */
205 static enum varobj_languages variable_language (struct varobj *var);
207 static int number_of_children (struct varobj *);
209 static char *name_of_variable (struct varobj *);
211 static char *name_of_child (struct varobj *, int);
213 static value_ptr value_of_root (struct varobj **var_handle, int *);
215 static value_ptr value_of_child (struct varobj *parent, int index);
217 static struct type *type_of_child (struct varobj *var);
219 static int variable_editable (struct varobj *var);
221 static char *my_value_of_variable (struct varobj *var);
223 static int type_changeable (struct varobj *var);
225 /* C implementation */
227 static int c_number_of_children (struct varobj *var);
229 static char *c_name_of_variable (struct varobj *parent);
231 static char *c_name_of_child (struct varobj *parent, int index);
233 static value_ptr c_value_of_root (struct varobj **var_handle);
235 static value_ptr c_value_of_child (struct varobj *parent, int index);
237 static struct type *c_type_of_child (struct varobj *parent, int index);
239 static int c_variable_editable (struct varobj *var);
241 static char *c_value_of_variable (struct varobj *var);
243 /* C++ implementation */
245 static int cplus_number_of_children (struct varobj *var);
247 static void cplus_class_num_children (struct type *type, int children[3]);
249 static char *cplus_name_of_variable (struct varobj *parent);
251 static char *cplus_name_of_child (struct varobj *parent, int index);
253 static value_ptr cplus_value_of_root (struct varobj **var_handle);
255 static value_ptr cplus_value_of_child (struct varobj *parent, int index);
257 static struct type *cplus_type_of_child (struct varobj *parent, int index);
259 static int cplus_variable_editable (struct varobj *var);
261 static char *cplus_value_of_variable (struct varobj *var);
263 /* Java implementation */
265 static int java_number_of_children (struct varobj *var);
267 static char *java_name_of_variable (struct varobj *parent);
269 static char *java_name_of_child (struct varobj *parent, int index);
271 static value_ptr java_value_of_root (struct varobj **var_handle);
273 static value_ptr java_value_of_child (struct varobj *parent, int index);
275 static struct type *java_type_of_child (struct varobj *parent, int index);
277 static int java_variable_editable (struct varobj *var);
279 static char *java_value_of_variable (struct varobj *var);
281 /* The language specific vector */
283 struct language_specific
286 /* The language of this variable */
287 enum varobj_languages language;
289 /* The number of children of PARENT. */
290 int (*number_of_children) (struct varobj * parent);
292 /* The name (expression) of a root varobj. */
293 char *(*name_of_variable) (struct varobj * parent);
295 /* The name of the INDEX'th child of PARENT. */
296 char *(*name_of_child) (struct varobj * parent, int index);
298 /* The value_ptr of the root variable ROOT. */
299 value_ptr (*value_of_root) (struct varobj ** root_handle);
301 /* The value_ptr of the INDEX'th child of PARENT. */
302 value_ptr (*value_of_child) (struct varobj * parent, int index);
304 /* The type of the INDEX'th child of PARENT. */
305 struct type *(*type_of_child) (struct varobj * parent, int index);
307 /* Is VAR editable? */
308 int (*variable_editable) (struct varobj * var);
310 /* The current value of VAR. */
311 char *(*value_of_variable) (struct varobj * var);
314 /* Array of known source language routines. */
315 static struct language_specific
316 languages[vlang_end][sizeof (struct language_specific)] =
318 /* Unknown (try treating as C */
320 vlang_unknown,
321 c_number_of_children,
322 c_name_of_variable,
323 c_name_of_child,
324 c_value_of_root,
325 c_value_of_child,
326 c_type_of_child,
327 c_variable_editable,
328 c_value_of_variable
331 /* C */
333 vlang_c,
334 c_number_of_children,
335 c_name_of_variable,
336 c_name_of_child,
337 c_value_of_root,
338 c_value_of_child,
339 c_type_of_child,
340 c_variable_editable,
341 c_value_of_variable
344 /* C++ */
346 vlang_cplus,
347 cplus_number_of_children,
348 cplus_name_of_variable,
349 cplus_name_of_child,
350 cplus_value_of_root,
351 cplus_value_of_child,
352 cplus_type_of_child,
353 cplus_variable_editable,
354 cplus_value_of_variable
357 /* Java */
359 vlang_java,
360 java_number_of_children,
361 java_name_of_variable,
362 java_name_of_child,
363 java_value_of_root,
364 java_value_of_child,
365 java_type_of_child,
366 java_variable_editable,
367 java_value_of_variable
371 /* A little convenience enum for dealing with C++/Java */
372 enum vsections
374 v_public = 0, v_private, v_protected
377 /* Private data */
379 /* Mappings of varobj_display_formats enums to gdb's format codes */
380 static int format_code[] =
381 {0, 't', 'd', 'x', 'o'};
383 /* Header of the list of root variable objects */
384 static struct varobj_root *rootlist;
385 static int rootcount = 0; /* number of root varobjs in the list */
387 /* Prime number indicating the number of buckets in the hash table */
388 /* A prime large enough to avoid too many colisions */
389 #define VAROBJ_TABLE_SIZE 227
391 /* Pointer to the varobj hash table (built at run time) */
392 static struct vlist **varobj_table;
394 #if defined(FREEIF)
395 #undef FREEIF
396 #endif
397 #define FREEIF(x) if (x != NULL) free((char *) (x))
399 /* Is the variable X one of our "fake" children? */
400 #define CPLUS_FAKE_CHILD(x) \
401 ((x) != NULL && (x)->type == NULL && (x)->value == NULL)
404 /* API Implementation */
406 /* Creates a varobj (not its children) */
408 struct varobj *
409 varobj_create (char *objname,
410 char *expression, CORE_ADDR frame,
411 enum varobj_type type)
413 struct varobj *var;
414 struct frame_info *fi, *old_fi;
415 struct block *block;
416 struct cleanup *old_chain;
418 /* Fill out a varobj structure for the (root) variable being constructed. */
419 var = new_root_variable ();
420 old_chain = make_cleanup_free_variable (var);
422 if (expression != NULL)
424 char *p;
425 enum varobj_languages lang;
427 /* Parse and evaluate the expression, filling in as much
428 of the variable's data as possible */
430 /* Allow creator to specify context of variable */
431 if ((type == USE_CURRENT_FRAME)
432 || (type == USE_SELECTED_FRAME))
433 fi = selected_frame;
434 else
435 fi = find_frame_addr_in_frame_chain (frame);
437 /* frame = -2 means always use selected frame */
438 if (type == USE_SELECTED_FRAME)
439 var->root->use_selected_frame = 1;
441 block = NULL;
442 if (fi != NULL)
443 block = get_frame_block (fi);
445 p = expression;
446 innermost_block = NULL;
447 /* Wrap the call to parse expression, so we can
448 return a sensible error. */
449 if (!gdb_parse_exp_1 (&p, block, 0, &var->root->exp))
451 return NULL;
454 /* Don't allow variables to be created for types. */
455 if (var->root->exp->elts[0].opcode == OP_TYPE)
457 do_cleanups (old_chain);
458 fprintf_unfiltered (gdb_stderr,
459 "Attempt to use a type name as an expression.");
460 return NULL;
463 var->format = variable_default_display (var);
464 var->root->valid_block = innermost_block;
465 var->name = savestring (expression, strlen (expression));
467 /* When the frame is different from the current frame,
468 we must select the appropriate frame before parsing
469 the expression, otherwise the value will not be current.
470 Since select_frame is so benign, just call it for all cases. */
471 if (fi != NULL)
473 var->root->frame = FRAME_FP (fi);
474 old_fi = selected_frame;
475 select_frame (fi, -1);
478 /* We definitively need to catch errors here.
479 If evaluate_expression succeeds we got the value we wanted.
480 But if it fails, we still go on with a call to evaluate_type() */
481 if (gdb_evaluate_expression (var->root->exp, &var->value))
483 /* no error */
484 release_value (var->value);
485 if (VALUE_LAZY (var->value))
486 gdb_value_fetch_lazy (var->value);
488 else
489 var->value = evaluate_type (var->root->exp);
491 var->type = VALUE_TYPE (var->value);
493 /* Set language info */
494 lang = variable_language (var);
495 var->root->lang = languages[lang];
497 /* Set ourselves as our root */
498 var->root->rootvar = var;
500 /* Reset the selected frame */
501 if (fi != NULL)
502 select_frame (old_fi, -1);
505 /* If the variable object name is null, that means this
506 is a temporary variable, so don't install it. */
508 if ((var != NULL) && (objname != NULL))
510 var->obj_name = savestring (objname, strlen (objname));
512 /* If a varobj name is duplicated, the install will fail so
513 we must clenup */
514 if (!install_variable (var))
516 do_cleanups (old_chain);
517 return NULL;
521 discard_cleanups (old_chain);
522 return var;
525 /* Generates an unique name that can be used for a varobj */
527 char *
528 varobj_gen_name (void)
530 static int id = 0;
531 char obj_name[31];
533 /* generate a name for this object */
534 id++;
535 sprintf (obj_name, "var%d", id);
537 return xstrdup (obj_name);
540 /* Given an "objname", returns the pointer to the corresponding varobj
541 or NULL if not found */
543 struct varobj *
544 varobj_get_handle (char *objname)
546 struct vlist *cv;
547 const char *chp;
548 unsigned int index = 0;
549 unsigned int i = 1;
551 for (chp = objname; *chp; chp++)
553 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
556 cv = *(varobj_table + index);
557 while ((cv != NULL) && (strcmp (cv->var->obj_name, objname) != 0))
558 cv = cv->next;
560 if (cv == NULL)
561 error ("Variable object not found");
563 return cv->var;
566 /* Given the handle, return the name of the object */
568 char *
569 varobj_get_objname (struct varobj *var)
571 return var->obj_name;
574 /* Given the handle, return the expression represented by the object */
576 char *
577 varobj_get_expression (struct varobj *var)
579 return name_of_variable (var);
582 /* Deletes a varobj and all its children if only_children == 0,
583 otherwise deletes only the children; returns a malloc'ed list of all the
584 (malloc'ed) names of the variables that have been deleted (NULL terminated) */
587 varobj_delete (struct varobj *var, char ***dellist, int only_children)
589 int delcount;
590 int mycount;
591 struct cpstack *result = NULL;
592 char **cp;
594 /* Initialize a stack for temporary results */
595 cppush (&result, NULL);
597 if (only_children)
598 /* Delete only the variable children */
599 delcount = delete_variable (&result, var, 1 /* only the children */ );
600 else
601 /* Delete the variable and all its children */
602 delcount = delete_variable (&result, var, 0 /* parent+children */ );
604 /* We may have been asked to return a list of what has been deleted */
605 if (dellist != NULL)
607 *dellist = xmalloc ((delcount + 1) * sizeof (char *));
609 cp = *dellist;
610 mycount = delcount;
611 *cp = cppop (&result);
612 while ((*cp != NULL) && (mycount > 0))
614 mycount--;
615 cp++;
616 *cp = cppop (&result);
619 if (mycount || (*cp != NULL))
620 warning ("varobj_delete: assertion failed - mycount(=%d) <> 0", mycount);
623 return delcount;
626 /* Set/Get variable object display format */
628 enum varobj_display_formats
629 varobj_set_display_format (struct varobj *var,
630 enum varobj_display_formats format)
632 switch (format)
634 case FORMAT_NATURAL:
635 case FORMAT_BINARY:
636 case FORMAT_DECIMAL:
637 case FORMAT_HEXADECIMAL:
638 case FORMAT_OCTAL:
639 var->format = format;
640 break;
642 default:
643 var->format = variable_default_display (var);
646 return var->format;
649 enum varobj_display_formats
650 varobj_get_display_format (struct varobj *var)
652 return var->format;
656 varobj_get_num_children (struct varobj *var)
658 if (var->num_children == -1)
659 var->num_children = number_of_children (var);
661 return var->num_children;
664 /* Creates a list of the immediate children of a variable object;
665 the return code is the number of such children or -1 on error */
668 varobj_list_children (struct varobj *var, struct varobj ***childlist)
670 struct varobj *child;
671 char *name;
672 int i;
674 /* sanity check: have we been passed a pointer? */
675 if (childlist == NULL)
676 return -1;
678 *childlist = NULL;
680 if (var->num_children == -1)
681 var->num_children = number_of_children (var);
683 /* List of children */
684 *childlist = xmalloc ((var->num_children + 1) * sizeof (struct varobj *));
686 for (i = 0; i < var->num_children; i++)
688 /* Mark as the end in case we bail out */
689 *((*childlist) + i) = NULL;
691 /* check if child exists, if not create */
692 name = name_of_child (var, i);
693 child = child_exists (var, name);
694 if (child == NULL)
695 child = create_child (var, i, name);
697 *((*childlist) + i) = child;
700 /* End of list is marked by a NULL pointer */
701 *((*childlist) + i) = NULL;
703 return var->num_children;
706 /* Obtain the type of an object Variable as a string similar to the one gdb
707 prints on the console */
709 char *
710 varobj_get_type (struct varobj *var)
712 value_ptr val;
713 struct cleanup *old_chain;
714 struct ui_file *stb;
715 char *thetype;
716 long length;
718 /* For the "fake" variables, do not return a type. (It's type is
719 NULL, too.) */
720 if (CPLUS_FAKE_CHILD (var))
721 return NULL;
723 stb = mem_fileopen ();
724 old_chain = make_cleanup_ui_file_delete (stb);
726 /* To print the type, we simply create a zero value_ptr and
727 cast it to our type. We then typeprint this variable. */
728 val = value_zero (var->type, not_lval);
729 type_print (VALUE_TYPE (val), "", stb, -1);
731 thetype = ui_file_xstrdup (stb, &length);
732 do_cleanups (old_chain);
733 return thetype;
736 enum varobj_languages
737 varobj_get_language (struct varobj *var)
739 return variable_language (var);
743 varobj_get_attributes (struct varobj *var)
745 int attributes = 0;
747 if (variable_editable (var))
748 /* FIXME: define masks for attributes */
749 attributes |= 0x00000001; /* Editable */
751 return attributes;
754 char *
755 varobj_get_value (struct varobj *var)
757 return my_value_of_variable (var);
760 /* Set the value of an object variable (if it is editable) to the
761 value of the given expression */
762 /* Note: Invokes functions that can call error() */
765 varobj_set_value (struct varobj *var, char *expression)
767 value_ptr val;
768 int offset = 0;
770 /* The argument "expression" contains the variable's new value.
771 We need to first construct a legal expression for this -- ugh! */
772 /* Does this cover all the bases? */
773 struct expression *exp;
774 value_ptr value;
775 int saved_input_radix = input_radix;
777 if (variable_editable (var) && !var->error)
779 char *s = expression;
780 int i;
781 value_ptr temp;
783 input_radix = 10; /* ALWAYS reset to decimal temporarily */
784 /* FIXME: Callee may longjump */
785 exp = parse_exp_1 (&s, 0, 0);
786 if (!gdb_evaluate_expression (exp, &value))
788 /* We cannot proceed without a valid expression. */
789 FREEIF (exp);
790 return 0;
793 /* If our parent is "public", "private", or "protected", we could
794 be asking to modify the value of a baseclass. If so, we need to
795 adjust our address by the offset of our baseclass in the subclass,
796 since VALUE_ADDRESS (var->value) points at the start of the subclass.
797 For some reason, value_cast doesn't take care of this properly. */
798 temp = var->value;
799 if (var->parent != NULL && CPLUS_FAKE_CHILD (var->parent))
801 struct varobj *super, *sub;
802 struct type *type;
803 super = var->parent->parent;
804 sub = super->parent;
805 if (sub != NULL)
807 /* Yes, it is a baseclass */
808 type = get_type_deref (sub);
810 if (super->index < TYPE_N_BASECLASSES (type))
812 temp = value_copy (var->value);
813 for (i = 0; i < super->index; i++)
814 offset += TYPE_LENGTH (TYPE_FIELD_TYPE (type, i));
819 VALUE_ADDRESS (temp) += offset;
820 val = value_assign (temp, value);
821 VALUE_ADDRESS (val) -= offset;
822 value_free (var->value);
823 release_value (val);
824 var->value = val;
825 input_radix = saved_input_radix;
826 return 1;
829 return 0;
832 /* Returns a malloc'ed list with all root variable objects */
834 varobj_list (struct varobj ***varlist)
836 struct varobj **cv;
837 struct varobj_root *croot;
838 int mycount = rootcount;
840 /* Alloc (rootcount + 1) entries for the result */
841 *varlist = xmalloc ((rootcount + 1) * sizeof (struct varobj *));
843 cv = *varlist;
844 croot = rootlist;
845 while ((croot != NULL) && (mycount > 0))
847 *cv = croot->rootvar;
848 mycount--;
849 cv++;
850 croot = croot->next;
852 /* Mark the end of the list */
853 *cv = NULL;
855 if (mycount || (croot != NULL))
856 warning ("varobj_list: assertion failed - wrong tally of root vars (%d:%d)",
857 rootcount, mycount);
859 return rootcount;
862 /* Update the values for a variable and its children. This is a
863 two-pronged attack. First, re-parse the value for the root's
864 expression to see if it's changed. Then go all the way
865 through its children, reconstructing them and noting if they've
866 changed.
867 Return value:
868 -1 if there was an error updating the varobj
869 -2 if the type changed
870 Otherwise it is the number of children + parent changed
872 Only root variables can be updated... */
875 varobj_update (struct varobj *var, struct varobj ***changelist)
877 int changed = 0;
878 int type_changed;
879 int i;
880 int vleft;
881 int error2;
882 struct varobj *v;
883 struct varobj **cv;
884 struct varobj **templist;
885 value_ptr new;
886 struct vstack *stack = NULL;
887 struct vstack *result = NULL;
888 struct frame_info *old_fi;
890 /* sanity check: have we been passed a pointer? */
891 if (changelist == NULL)
892 return -1;
894 /* Only root variables can be updated... */
895 if (var->root->rootvar != var)
896 /* Not a root var */
897 return -1;
899 /* Save the selected stack frame, since we will need to change it
900 in order to evaluate expressions. */
901 old_fi = selected_frame;
903 /* Update the root variable. value_of_root can return NULL
904 if the variable is no longer around, i.e. we stepped out of
905 the frame in which a local existed. We are letting the
906 value_of_root variable dispose of the varobj if the type
907 has changed. */
908 type_changed = 1;
909 new = value_of_root (&var, &type_changed);
910 if (new == NULL)
912 var->error = 1;
913 return -1;
916 /* Initialize a stack for temporary results */
917 vpush (&result, NULL);
919 if (type_changed || !my_value_equal (var->value, new, &error2))
921 /* Note that it's changed There a couple of exceptions here,
922 though. We don't want some types to be reported as
923 "changed". The exception to this is if this is a
924 "use_selected_frame" varobj, and its type has changed. */
925 if (type_changed || type_changeable (var))
927 vpush (&result, var);
928 changed++;
931 /* error2 replaces var->error since this new value
932 WILL replace the old one. */
933 var->error = error2;
935 /* We must always keep around the new value for this root
936 variable expression, or we lose the updated children! */
937 value_free (var->value);
938 var->value = new;
940 /* Initialize a stack */
941 vpush (&stack, NULL);
943 /* Push the root's children */
944 if (var->children != NULL)
946 struct varobj_child *c;
947 for (c = var->children; c != NULL; c = c->next)
948 vpush (&stack, c->child);
951 /* Walk through the children, reconstructing them all. */
952 v = vpop (&stack);
953 while (v != NULL)
955 /* Push any children */
956 if (v->children != NULL)
958 struct varobj_child *c;
959 for (c = v->children; c != NULL; c = c->next)
960 vpush (&stack, c->child);
963 /* Update this variable */
964 new = value_of_child (v->parent, v->index);
965 if (type_changeable (v) && !my_value_equal (v->value, new, &error2))
967 /* Note that it's changed */
968 vpush (&result, v);
969 changed++;
971 /* error2 replaces v->error since this new value
972 WILL replace the old one. */
973 v->error = error2;
975 /* We must always keep new values, since children depend on it. */
976 if (v->value != NULL)
977 value_free (v->value);
978 v->value = new;
980 /* Get next child */
981 v = vpop (&stack);
984 /* Alloc (changed + 1) list entries */
985 /* FIXME: add a cleanup for the allocated list(s)
986 because one day the select_frame called below can longjump */
987 *changelist = xmalloc ((changed + 1) * sizeof (struct varobj *));
988 if (changed > 1)
990 templist = xmalloc ((changed + 1) * sizeof (struct varobj *));
991 cv = templist;
993 else
994 cv = *changelist;
996 /* Copy from result stack to list */
997 vleft = changed;
998 *cv = vpop (&result);
999 while ((*cv != NULL) && (vleft > 0))
1001 vleft--;
1002 cv++;
1003 *cv = vpop (&result);
1005 if (vleft)
1006 warning ("varobj_update: assertion failed - vleft <> 0");
1008 if (changed > 1)
1010 /* Now we revert the order. */
1011 for (i=0; i < changed; i++)
1012 *(*changelist + i) = *(templist + changed -1 - i);
1013 *(*changelist + changed) = NULL;
1016 /* Restore selected frame */
1017 select_frame (old_fi, -1);
1019 if (type_changed)
1020 return -2;
1021 else
1022 return changed;
1026 /* Helper functions */
1029 * Variable object construction/destruction
1032 static int
1033 delete_variable (struct cpstack **resultp, struct varobj *var,
1034 int only_children_p)
1036 int delcount = 0;
1038 delete_variable_1 (resultp, &delcount, var,
1039 only_children_p, 1 /* remove_from_parent_p */ );
1041 return delcount;
1044 /* Delete the variable object VAR and its children */
1045 /* IMPORTANT NOTE: If we delete a variable which is a child
1046 and the parent is not removed we dump core. It must be always
1047 initially called with remove_from_parent_p set */
1048 static void
1049 delete_variable_1 (struct cpstack **resultp, int *delcountp, struct varobj *var,
1050 int only_children_p, int remove_from_parent_p)
1052 struct varobj_child *vc;
1053 struct varobj_child *next;
1055 /* Delete any children of this variable, too. */
1056 for (vc = var->children; vc != NULL; vc = next)
1058 if (!remove_from_parent_p)
1059 vc->child->parent = NULL;
1060 delete_variable_1 (resultp, delcountp, vc->child, 0, only_children_p);
1061 next = vc->next;
1062 free (vc);
1065 /* if we were called to delete only the children we are done here */
1066 if (only_children_p)
1067 return;
1069 /* Otherwise, add it to the list of deleted ones and proceed to do so */
1070 /* If the name is null, this is a temporary variable, that has not
1071 yet been installed, don't report it, it belongs to the caller... */
1072 if (var->obj_name != NULL)
1074 cppush (resultp, strdup (var->obj_name));
1075 *delcountp = *delcountp + 1;
1078 /* If this variable has a parent, remove it from its parent's list */
1079 /* OPTIMIZATION: if the parent of this variable is also being deleted,
1080 (as indicated by remove_from_parent_p) we don't bother doing an
1081 expensive list search to find the element to remove when we are
1082 discarding the list afterwards */
1083 if ((remove_from_parent_p) &&
1084 (var->parent != NULL))
1086 remove_child_from_parent (var->parent, var);
1089 if (var->obj_name != NULL)
1090 uninstall_variable (var);
1092 /* Free memory associated with this variable */
1093 free_variable (var);
1096 /* Install the given variable VAR with the object name VAR->OBJ_NAME. */
1097 static int
1098 install_variable (struct varobj *var)
1100 struct vlist *cv;
1101 struct vlist *newvl;
1102 const char *chp;
1103 unsigned int index = 0;
1104 unsigned int i = 1;
1106 for (chp = var->obj_name; *chp; chp++)
1108 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
1111 cv = *(varobj_table + index);
1112 while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0))
1113 cv = cv->next;
1115 if (cv != NULL)
1116 error ("Duplicate variable object name");
1118 /* Add varobj to hash table */
1119 newvl = xmalloc (sizeof (struct vlist));
1120 newvl->next = *(varobj_table + index);
1121 newvl->var = var;
1122 *(varobj_table + index) = newvl;
1124 /* If root, add varobj to root list */
1125 if (var->root->rootvar == var)
1127 /* Add to list of root variables */
1128 if (rootlist == NULL)
1129 var->root->next = NULL;
1130 else
1131 var->root->next = rootlist;
1132 rootlist = var->root;
1133 rootcount++;
1136 return 1; /* OK */
1139 /* Unistall the object VAR. */
1140 static void
1141 uninstall_variable (struct varobj *var)
1143 struct vlist *cv;
1144 struct vlist *prev;
1145 struct varobj_root *cr;
1146 struct varobj_root *prer;
1147 const char *chp;
1148 unsigned int index = 0;
1149 unsigned int i = 1;
1151 /* Remove varobj from hash table */
1152 for (chp = var->obj_name; *chp; chp++)
1154 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
1157 cv = *(varobj_table + index);
1158 prev = NULL;
1159 while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0))
1161 prev = cv;
1162 cv = cv->next;
1165 if (varobjdebug)
1166 fprintf_unfiltered (gdb_stdlog, "Deleting %s\n", var->obj_name);
1168 if (cv == NULL)
1170 warning ("Assertion failed: Could not find variable object \"%s\" to delete", var->obj_name);
1171 return;
1174 if (prev == NULL)
1175 *(varobj_table + index) = cv->next;
1176 else
1177 prev->next = cv->next;
1179 free (cv);
1181 /* If root, remove varobj from root list */
1182 if (var->root->rootvar == var)
1184 /* Remove from list of root variables */
1185 if (rootlist == var->root)
1186 rootlist = var->root->next;
1187 else
1189 prer = NULL;
1190 cr = rootlist;
1191 while ((cr != NULL) && (cr->rootvar != var))
1193 prer = cr;
1194 cr = cr->next;
1196 if (cr == NULL)
1198 warning ("Assertion failed: Could not find varobj \"%s\" in root list", var->obj_name);
1199 return;
1201 if (prer == NULL)
1202 rootlist = NULL;
1203 else
1204 prer->next = cr->next;
1206 rootcount--;
1211 /* Does a child with the name NAME exist in VAR? If so, return its data.
1212 If not, return NULL. */
1213 static struct varobj *
1214 child_exists (var, name)
1215 struct varobj *var; /* Parent */
1216 char *name; /* name of child */
1218 struct varobj_child *vc;
1220 for (vc = var->children; vc != NULL; vc = vc->next)
1222 if (STREQ (vc->child->name, name))
1223 return vc->child;
1226 return NULL;
1229 /* Create and install a child of the parent of the given name */
1230 static struct varobj *
1231 create_child (struct varobj *parent, int index, char *name)
1233 struct varobj *child;
1234 char *childs_name;
1236 child = new_variable ();
1238 /* name is allocated by name_of_child */
1239 child->name = name;
1240 child->index = index;
1241 child->value = value_of_child (parent, index);
1242 if (child->value == NULL || parent->error)
1243 child->error = 1;
1244 child->parent = parent;
1245 child->root = parent->root;
1246 childs_name = (char *) xmalloc ((strlen (parent->obj_name) + strlen (name) + 2)
1247 * sizeof (char));
1248 sprintf (childs_name, "%s.%s", parent->obj_name, name);
1249 child->obj_name = childs_name;
1250 install_variable (child);
1252 /* Save a pointer to this child in the parent */
1253 save_child_in_parent (parent, child);
1255 /* Note the type of this child */
1256 child->type = type_of_child (child);
1258 return child;
1261 /* FIXME: This should be a generic add to list */
1262 /* Save CHILD in the PARENT's data. */
1263 static void
1264 save_child_in_parent (struct varobj *parent, struct varobj *child)
1266 struct varobj_child *vc;
1268 /* Insert the child at the top */
1269 vc = parent->children;
1270 parent->children =
1271 (struct varobj_child *) xmalloc (sizeof (struct varobj_child));
1273 parent->children->next = vc;
1274 parent->children->child = child;
1277 /* FIXME: This should be a generic remove from list */
1278 /* Remove the CHILD from the PARENT's list of children. */
1279 static void
1280 remove_child_from_parent (struct varobj *parent, struct varobj *child)
1282 struct varobj_child *vc, *prev;
1284 /* Find the child in the parent's list */
1285 prev = NULL;
1286 for (vc = parent->children; vc != NULL;)
1288 if (vc->child == child)
1289 break;
1290 prev = vc;
1291 vc = vc->next;
1294 if (prev == NULL)
1295 parent->children = vc->next;
1296 else
1297 prev->next = vc->next;
1303 * Miscellaneous utility functions.
1306 /* Allocate memory and initialize a new variable */
1307 static struct varobj *
1308 new_variable (void)
1310 struct varobj *var;
1312 var = (struct varobj *) xmalloc (sizeof (struct varobj));
1313 var->name = NULL;
1314 var->obj_name = NULL;
1315 var->index = -1;
1316 var->type = NULL;
1317 var->value = NULL;
1318 var->error = 0;
1319 var->num_children = -1;
1320 var->parent = NULL;
1321 var->children = NULL;
1322 var->format = 0;
1323 var->root = NULL;
1325 return var;
1328 /* Allocate memory and initialize a new root variable */
1329 static struct varobj *
1330 new_root_variable (void)
1332 struct varobj *var = new_variable ();
1333 var->root = (struct varobj_root *) xmalloc (sizeof (struct varobj_root));;
1334 var->root->lang = NULL;
1335 var->root->exp = NULL;
1336 var->root->valid_block = NULL;
1337 var->root->frame = (CORE_ADDR) -1;
1338 var->root->use_selected_frame = 0;
1339 var->root->rootvar = NULL;
1341 return var;
1344 /* Free any allocated memory associated with VAR. */
1345 static void
1346 free_variable (struct varobj *var)
1348 /* Free the expression if this is a root variable. */
1349 if (var->root->rootvar == var)
1351 free_current_contents ((char **) &var->root->exp);
1352 FREEIF (var->root);
1355 FREEIF (var->name);
1356 FREEIF (var->obj_name);
1357 FREEIF (var);
1360 static void
1361 do_free_variable_cleanup (void *var)
1363 free_variable (var);
1366 static struct cleanup *
1367 make_cleanup_free_variable (struct varobj *var)
1369 return make_cleanup (do_free_variable_cleanup, var);
1372 /* This returns the type of the variable. This skips past typedefs
1373 and returns the real type of the variable. It also dereferences
1374 pointers and references. */
1375 static struct type *
1376 get_type (struct varobj *var)
1378 struct type *type;
1379 type = var->type;
1381 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1382 type = TYPE_TARGET_TYPE (type);
1384 return type;
1387 /* This returns the type of the variable, dereferencing pointers, too. */
1388 static struct type *
1389 get_type_deref (struct varobj *var)
1391 struct type *type;
1393 type = get_type (var);
1395 if (type != NULL && (TYPE_CODE (type) == TYPE_CODE_PTR
1396 || TYPE_CODE (type) == TYPE_CODE_REF))
1397 type = get_target_type (type);
1399 return type;
1402 /* This returns the target type (or NULL) of TYPE, also skipping
1403 past typedefs, just like get_type (). */
1404 static struct type *
1405 get_target_type (struct type *type)
1407 if (type != NULL)
1409 type = TYPE_TARGET_TYPE (type);
1410 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1411 type = TYPE_TARGET_TYPE (type);
1414 return type;
1417 /* What is the default display for this variable? We assume that
1418 everything is "natural". Any exceptions? */
1419 static enum varobj_display_formats
1420 variable_default_display (struct varobj *var)
1422 return FORMAT_NATURAL;
1425 /* This function is similar to gdb's value_equal, except that this
1426 one is "safe" -- it NEVER longjmps. It determines if the VAR's
1427 value is the same as VAL2. */
1428 static int
1429 my_value_equal (value_ptr val1, value_ptr val2, int *error2)
1431 int r, err1, err2;
1433 *error2 = 0;
1434 /* Special case: NULL values. If both are null, say
1435 they're equal. */
1436 if (val1 == NULL && val2 == NULL)
1437 return 1;
1438 else if (val1 == NULL || val2 == NULL)
1439 return 0;
1441 /* This is bogus, but unfortunately necessary. We must know
1442 exactly what caused an error -- reading val1 or val2 -- so
1443 that we can really determine if we think that something has changed. */
1444 err1 = 0;
1445 err2 = 0;
1446 /* We do need to catch errors here because the whole purpose
1447 is to test if value_equal() has errored */
1448 if (!gdb_value_equal (val1, val1, &r))
1449 err1 = 1;
1451 if (!gdb_value_equal (val2, val2, &r))
1452 *error2 = err2 = 1;
1454 if (err1 != err2)
1455 return 0;
1457 if (!gdb_value_equal (val1, val2, &r))
1459 /* An error occurred, this could have happened if
1460 either val1 or val2 errored. ERR1 and ERR2 tell
1461 us which of these it is. If both errored, then
1462 we assume nothing has changed. If one of them is
1463 valid, though, then something has changed. */
1464 if (err1 == err2)
1466 /* both the old and new values caused errors, so
1467 we say the value did not change */
1468 /* This is indeterminate, though. Perhaps we should
1469 be safe and say, yes, it changed anyway?? */
1470 return 1;
1472 else
1474 return 0;
1478 return r;
1481 /* FIXME: The following should be generic for any pointer */
1482 static void
1483 vpush (struct vstack **pstack, struct varobj *var)
1485 struct vstack *s;
1487 s = (struct vstack *) xmalloc (sizeof (struct vstack));
1488 s->var = var;
1489 s->next = *pstack;
1490 *pstack = s;
1493 /* FIXME: The following should be generic for any pointer */
1494 static struct varobj *
1495 vpop (struct vstack **pstack)
1497 struct vstack *s;
1498 struct varobj *v;
1500 if ((*pstack)->var == NULL && (*pstack)->next == NULL)
1501 return NULL;
1503 s = *pstack;
1504 v = s->var;
1505 *pstack = (*pstack)->next;
1506 free (s);
1508 return v;
1511 /* FIXME: The following should be generic for any pointer */
1512 static void
1513 cppush (struct cpstack **pstack, char *name)
1515 struct cpstack *s;
1517 s = (struct cpstack *) xmalloc (sizeof (struct cpstack));
1518 s->name = name;
1519 s->next = *pstack;
1520 *pstack = s;
1523 /* FIXME: The following should be generic for any pointer */
1524 static char *
1525 cppop (struct cpstack **pstack)
1527 struct cpstack *s;
1528 char *v;
1530 if ((*pstack)->name == NULL && (*pstack)->next == NULL)
1531 return NULL;
1533 s = *pstack;
1534 v = s->name;
1535 *pstack = (*pstack)->next;
1536 free (s);
1538 return v;
1542 * Language-dependencies
1545 /* Common entry points */
1547 /* Get the language of variable VAR. */
1548 static enum varobj_languages
1549 variable_language (struct varobj *var)
1551 enum varobj_languages lang;
1553 switch (var->root->exp->language_defn->la_language)
1555 default:
1556 case language_c:
1557 lang = vlang_c;
1558 break;
1559 case language_cplus:
1560 lang = vlang_cplus;
1561 break;
1562 case language_java:
1563 lang = vlang_java;
1564 break;
1567 return lang;
1570 /* Return the number of children for a given variable.
1571 The result of this function is defined by the language
1572 implementation. The number of children returned by this function
1573 is the number of children that the user will see in the variable
1574 display. */
1575 static int
1576 number_of_children (struct varobj *var)
1578 return (*var->root->lang->number_of_children) (var);;
1581 /* What is the expression for the root varobj VAR? Returns a malloc'd string. */
1582 static char *
1583 name_of_variable (struct varobj *var)
1585 return (*var->root->lang->name_of_variable) (var);
1588 /* What is the name of the INDEX'th child of VAR? Returns a malloc'd string. */
1589 static char *
1590 name_of_child (struct varobj *var, int index)
1592 return (*var->root->lang->name_of_child) (var, index);
1595 /* What is the value_ptr of the root variable VAR?
1596 TYPE_CHANGED controls what to do if the type of a
1597 use_selected_frame = 1 variable changes. On input,
1598 TYPE_CHANGED = 1 means discard the old varobj, and replace
1599 it with this one. TYPE_CHANGED = 0 means leave it around.
1600 NB: In both cases, var_handle will point to the new varobj,
1601 so if you use TYPE_CHANGED = 0, you will have to stash the
1602 old varobj pointer away somewhere before calling this.
1603 On return, TYPE_CHANGED will be 1 if the type has changed, and
1604 0 otherwise. */
1605 static value_ptr
1606 value_of_root (struct varobj **var_handle, int *type_changed)
1608 struct varobj *var;
1610 if (var_handle == NULL)
1611 return NULL;
1613 var = *var_handle;
1615 /* This should really be an exception, since this should
1616 only get called with a root variable. */
1618 if (var->root->rootvar != var)
1619 return NULL;
1621 if (var->root->use_selected_frame)
1623 struct varobj *tmp_var;
1624 char *old_type, *new_type;
1625 old_type = varobj_get_type (var);
1626 tmp_var = varobj_create (NULL, var->name, (CORE_ADDR) 0,
1627 USE_SELECTED_FRAME);
1628 if (tmp_var == NULL)
1630 return NULL;
1632 new_type = varobj_get_type (tmp_var);
1633 if (strcmp(old_type, new_type) == 0)
1635 varobj_delete (tmp_var, NULL, 0);
1636 *type_changed = 0;
1638 else
1640 if (*type_changed)
1642 tmp_var->obj_name =
1643 savestring (var->obj_name, strlen (var->obj_name));
1644 uninstall_variable (var);
1646 else
1648 tmp_var->obj_name = varobj_gen_name ();
1650 install_variable (tmp_var);
1651 *var_handle = tmp_var;
1652 *type_changed = 1;
1655 else
1657 *type_changed = 0;
1660 return (*var->root->lang->value_of_root) (var_handle);
1663 /* What is the value_ptr for the INDEX'th child of PARENT? */
1664 static value_ptr
1665 value_of_child (struct varobj *parent, int index)
1667 value_ptr value;
1669 value = (*parent->root->lang->value_of_child) (parent, index);
1671 /* If we're being lazy, fetch the real value of the variable. */
1672 if (value != NULL && VALUE_LAZY (value))
1673 gdb_value_fetch_lazy (value);
1675 return value;
1678 /* What is the type of VAR? */
1679 static struct type *
1680 type_of_child (struct varobj *var)
1683 /* If the child had no evaluation errors, var->value
1684 will be non-NULL and contain a valid type. */
1685 if (var->value != NULL)
1686 return VALUE_TYPE (var->value);
1688 /* Otherwise, we must compute the type. */
1689 return (*var->root->lang->type_of_child) (var->parent, var->index);
1692 /* Is this variable editable? Use the variable's type to make
1693 this determination. */
1694 static int
1695 variable_editable (struct varobj *var)
1697 return (*var->root->lang->variable_editable) (var);
1700 /* GDB already has a command called "value_of_variable". Sigh. */
1701 static char *
1702 my_value_of_variable (struct varobj *var)
1704 return (*var->root->lang->value_of_variable) (var);
1707 /* Is VAR something that can change? Depending on language,
1708 some variable's values never change. For example,
1709 struct and unions never change values. */
1710 static int
1711 type_changeable (struct varobj *var)
1713 int r;
1714 struct type *type;
1716 if (CPLUS_FAKE_CHILD (var))
1717 return 0;
1719 type = get_type (var);
1721 switch (TYPE_CODE (type))
1723 case TYPE_CODE_STRUCT:
1724 case TYPE_CODE_UNION:
1725 r = 0;
1726 break;
1728 default:
1729 r = 1;
1732 return r;
1735 /* C */
1736 static int
1737 c_number_of_children (struct varobj *var)
1739 struct type *type;
1740 struct type *target;
1741 int children;
1743 type = get_type (var);
1744 target = get_target_type (type);
1745 children = 0;
1747 switch (TYPE_CODE (type))
1749 case TYPE_CODE_ARRAY:
1750 if (TYPE_LENGTH (type) > 0 && TYPE_LENGTH (target) > 0
1751 && TYPE_ARRAY_UPPER_BOUND_TYPE (type) != BOUND_CANNOT_BE_DETERMINED)
1752 children = TYPE_LENGTH (type) / TYPE_LENGTH (target);
1753 else
1754 children = -1;
1755 break;
1757 case TYPE_CODE_STRUCT:
1758 case TYPE_CODE_UNION:
1759 children = TYPE_NFIELDS (type);
1760 break;
1762 case TYPE_CODE_PTR:
1763 /* This is where things get compilcated. All pointers have one child.
1764 Except, of course, for struct and union ptr, which we automagically
1765 dereference for the user and function ptrs, which have no children. */
1766 switch (TYPE_CODE (target))
1768 case TYPE_CODE_STRUCT:
1769 case TYPE_CODE_UNION:
1770 children = TYPE_NFIELDS (target);
1771 break;
1773 case TYPE_CODE_FUNC:
1774 children = 0;
1775 break;
1777 default:
1778 /* Don't dereference char* or void*. */
1779 if (TYPE_NAME (target) != NULL
1780 && (STREQ (TYPE_NAME (target), "char")
1781 || STREQ (TYPE_NAME (target), "void")))
1782 children = 0;
1783 else
1784 children = 1;
1786 break;
1788 default:
1789 /* Other types have no children */
1790 break;
1793 return children;
1796 static char *
1797 c_name_of_variable (struct varobj *parent)
1799 return savestring (parent->name, strlen (parent->name));
1802 static char *
1803 c_name_of_child (struct varobj *parent, int index)
1805 struct type *type;
1806 struct type *target;
1807 char *name;
1808 char *string;
1810 type = get_type (parent);
1811 target = get_target_type (type);
1813 switch (TYPE_CODE (type))
1815 case TYPE_CODE_ARRAY:
1817 /* We never get here unless parent->num_children is greater than 0... */
1818 int len = 1;
1819 while ((int) pow ((double) 10, (double) len) < index)
1820 len++;
1821 name = (char *) xmalloc (1 + len * sizeof (char));
1822 sprintf (name, "%d", index);
1824 break;
1826 case TYPE_CODE_STRUCT:
1827 case TYPE_CODE_UNION:
1828 string = TYPE_FIELD_NAME (type, index);
1829 name = savestring (string, strlen (string));
1830 break;
1832 case TYPE_CODE_PTR:
1833 switch (TYPE_CODE (target))
1835 case TYPE_CODE_STRUCT:
1836 case TYPE_CODE_UNION:
1837 string = TYPE_FIELD_NAME (target, index);
1838 name = savestring (string, strlen (string));
1839 break;
1841 default:
1842 name = (char *) xmalloc ((strlen (parent->name) + 2) * sizeof (char));
1843 sprintf (name, "*%s", parent->name);
1844 break;
1846 break;
1848 default:
1849 /* This should not happen */
1850 name = xstrdup ("???");
1853 return name;
1856 static value_ptr
1857 c_value_of_root (struct varobj **var_handle)
1859 value_ptr new_val;
1860 struct varobj *var = *var_handle;
1861 struct frame_info *fi;
1862 int within_scope;
1864 /* Only root variables can be updated... */
1865 if (var->root->rootvar != var)
1866 /* Not a root var */
1867 return NULL;
1870 /* Determine whether the variable is still around. */
1871 if (var->root->valid_block == NULL)
1872 within_scope = 1;
1873 else
1875 reinit_frame_cache ();
1878 fi = find_frame_addr_in_frame_chain (var->root->frame);
1880 within_scope = fi != NULL;
1881 /* FIXME: select_frame could fail */
1882 if (within_scope)
1883 select_frame (fi, -1);
1886 if (within_scope)
1888 /* We need to catch errors here, because if evaluate
1889 expression fails we just want to make val->error = 1 and
1890 go on */
1891 if (gdb_evaluate_expression (var->root->exp, &new_val))
1893 if (VALUE_LAZY (new_val))
1895 /* We need to catch errors because if
1896 value_fetch_lazy fails we still want to continue
1897 (after making val->error = 1) */
1898 /* FIXME: Shouldn't be using VALUE_CONTENTS? The
1899 comment on value_fetch_lazy() says it is only
1900 called from the macro... */
1901 if (!gdb_value_fetch_lazy (new_val))
1902 var->error = 1;
1903 else
1904 var->error = 0;
1907 else
1908 var->error = 1;
1910 release_value (new_val);
1911 return new_val;
1914 return NULL;
1917 static value_ptr
1918 c_value_of_child (struct varobj *parent, int index)
1920 value_ptr value, temp, indval;
1921 struct type *type, *target;
1922 char *name;
1924 type = get_type (parent);
1925 target = get_target_type (type);
1926 name = name_of_child (parent, index);
1927 temp = parent->value;
1928 value = NULL;
1930 if (temp != NULL)
1932 switch (TYPE_CODE (type))
1934 case TYPE_CODE_ARRAY:
1935 #if 0
1936 /* This breaks if the array lives in a (vector) register. */
1937 value = value_slice (temp, index, 1);
1938 temp = value_coerce_array (value);
1939 gdb_value_ind (temp, &value);
1940 #else
1941 indval = value_from_longest (builtin_type_int, (LONGEST) index);
1942 gdb_value_subscript (temp, indval, &value);
1943 #endif
1944 break;
1946 case TYPE_CODE_STRUCT:
1947 case TYPE_CODE_UNION:
1948 value = value_struct_elt (&temp, NULL, name, NULL, "vstructure");
1949 break;
1951 case TYPE_CODE_PTR:
1952 switch (TYPE_CODE (target))
1954 case TYPE_CODE_STRUCT:
1955 case TYPE_CODE_UNION:
1956 value = value_struct_elt (&temp, NULL, name, NULL, "vstructure");
1957 break;
1959 default:
1960 gdb_value_ind (temp, &value);
1961 break;
1963 break;
1965 default:
1966 break;
1970 if (value != NULL)
1971 release_value (value);
1973 return value;
1976 static struct type *
1977 c_type_of_child (struct varobj *parent, int index)
1979 struct type *type;
1980 char *name = name_of_child (parent, index);
1982 switch (TYPE_CODE (parent->type))
1984 case TYPE_CODE_ARRAY:
1985 type = TYPE_TARGET_TYPE (parent->type);
1986 break;
1988 case TYPE_CODE_STRUCT:
1989 case TYPE_CODE_UNION:
1990 type = lookup_struct_elt_type (parent->type, name, 0);
1991 break;
1993 case TYPE_CODE_PTR:
1994 switch (TYPE_CODE (TYPE_TARGET_TYPE (parent->type)))
1996 case TYPE_CODE_STRUCT:
1997 case TYPE_CODE_UNION:
1998 type = lookup_struct_elt_type (parent->type, name, 0);
1999 break;
2001 default:
2002 type = TYPE_TARGET_TYPE (parent->type);
2003 break;
2005 break;
2007 default:
2008 /* This should not happen as only the above types have children */
2009 warning ("Child of parent whose type does not allow children");
2010 /* FIXME: Can we still go on? */
2011 type = NULL;
2012 break;
2015 return type;
2018 static int
2019 c_variable_editable (struct varobj *var)
2021 switch (TYPE_CODE (get_type (var)))
2023 case TYPE_CODE_STRUCT:
2024 case TYPE_CODE_UNION:
2025 case TYPE_CODE_ARRAY:
2026 case TYPE_CODE_FUNC:
2027 case TYPE_CODE_MEMBER:
2028 case TYPE_CODE_METHOD:
2029 return 0;
2030 break;
2032 default:
2033 return 1;
2034 break;
2038 static char *
2039 c_value_of_variable (struct varobj *var)
2041 struct type *type;
2042 value_ptr val;
2044 if (var->value != NULL)
2045 val = var->value;
2046 else
2048 /* This can happen if we attempt to get the value of a struct
2049 member when the parent is an invalid pointer. */
2050 return xstrdup ("???");
2053 /* BOGUS: if val_print sees a struct/class, it will print out its
2054 children instead of "{...}" */
2055 type = get_type (var);
2056 switch (TYPE_CODE (type))
2058 case TYPE_CODE_STRUCT:
2059 case TYPE_CODE_UNION:
2060 return xstrdup ("{...}");
2061 /* break; */
2063 case TYPE_CODE_ARRAY:
2065 char number[18];
2066 sprintf (number, "[%d]", var->num_children);
2067 return xstrdup (number);
2069 /* break; */
2071 default:
2073 long dummy;
2074 struct ui_file *stb = mem_fileopen ();
2075 struct cleanup *old_chain = make_cleanup_ui_file_delete (stb);
2076 char *thevalue;
2078 if (VALUE_LAZY (val))
2079 gdb_value_fetch_lazy (val);
2080 val_print (VALUE_TYPE (val), VALUE_CONTENTS_RAW (val), 0,
2081 VALUE_ADDRESS (val),
2082 stb, format_code[(int) var->format], 1, 0, 0);
2083 thevalue = ui_file_xstrdup (stb, &dummy);
2084 do_cleanups (old_chain);
2085 return thevalue;
2087 /* break; */
2092 /* C++ */
2094 static int
2095 cplus_number_of_children (struct varobj *var)
2097 struct type *type;
2098 int children, dont_know;
2100 dont_know = 1;
2101 children = 0;
2103 if (!CPLUS_FAKE_CHILD (var))
2105 type = get_type_deref (var);
2107 if (((TYPE_CODE (type)) == TYPE_CODE_STRUCT) ||
2108 ((TYPE_CODE (type)) == TYPE_CODE_UNION))
2110 int kids[3];
2112 cplus_class_num_children (type, kids);
2113 if (kids[v_public] != 0)
2114 children++;
2115 if (kids[v_private] != 0)
2116 children++;
2117 if (kids[v_protected] != 0)
2118 children++;
2120 /* Add any baseclasses */
2121 children += TYPE_N_BASECLASSES (type);
2122 dont_know = 0;
2124 /* FIXME: save children in var */
2127 else
2129 int kids[3];
2131 type = get_type_deref (var->parent);
2133 cplus_class_num_children (type, kids);
2134 if (STREQ (var->name, "public"))
2135 children = kids[v_public];
2136 else if (STREQ (var->name, "private"))
2137 children = kids[v_private];
2138 else
2139 children = kids[v_protected];
2140 dont_know = 0;
2143 if (dont_know)
2144 children = c_number_of_children (var);
2146 return children;
2149 /* Compute # of public, private, and protected variables in this class.
2150 That means we need to descend into all baseclasses and find out
2151 how many are there, too. */
2152 static void
2153 cplus_class_num_children (type, children)
2154 struct type *type;
2155 int children[3];
2157 int i;
2159 children[v_public] = 0;
2160 children[v_private] = 0;
2161 children[v_protected] = 0;
2163 for (i = TYPE_N_BASECLASSES (type); i < TYPE_NFIELDS (type); i++)
2165 /* If we have a virtual table pointer, omit it. */
2166 if (TYPE_VPTR_BASETYPE (type) == type
2167 && TYPE_VPTR_FIELDNO (type) == i)
2168 continue;
2170 if (TYPE_FIELD_PROTECTED (type, i))
2171 children[v_protected]++;
2172 else if (TYPE_FIELD_PRIVATE (type, i))
2173 children[v_private]++;
2174 else
2175 children[v_public]++;
2179 static char *
2180 cplus_name_of_variable (struct varobj *parent)
2182 return c_name_of_variable (parent);
2185 static char *
2186 cplus_name_of_child (struct varobj *parent, int index)
2188 char *name;
2189 struct type *type;
2190 int children[3];
2192 if (CPLUS_FAKE_CHILD (parent))
2194 /* Looking for children of public, private, or protected. */
2195 type = get_type_deref (parent->parent);
2197 else
2198 type = get_type_deref (parent);
2200 name = NULL;
2201 switch (TYPE_CODE (type))
2203 case TYPE_CODE_STRUCT:
2204 case TYPE_CODE_UNION:
2205 cplus_class_num_children (type, children);
2207 if (CPLUS_FAKE_CHILD (parent))
2209 /* FIXME: This assumes that type orders
2210 inherited, public, private, protected */
2211 int i = index + TYPE_N_BASECLASSES (type);
2212 if (STREQ (parent->name, "private") || STREQ (parent->name, "protected"))
2213 i += children[v_public];
2214 if (STREQ (parent->name, "protected"))
2215 i += children[v_private];
2217 name = TYPE_FIELD_NAME (type, i);
2219 else if (index < TYPE_N_BASECLASSES (type))
2220 name = TYPE_FIELD_NAME (type, index);
2221 else
2223 /* Everything beyond the baseclasses can
2224 only be "public", "private", or "protected" */
2225 index -= TYPE_N_BASECLASSES (type);
2226 switch (index)
2228 case 0:
2229 if (children[v_public] != 0)
2231 name = "public";
2232 break;
2234 case 1:
2235 if (children[v_private] != 0)
2237 name = "private";
2238 break;
2240 case 2:
2241 if (children[v_protected] != 0)
2243 name = "protected";
2244 break;
2246 default:
2247 /* error! */
2248 break;
2251 break;
2253 default:
2254 break;
2257 if (name == NULL)
2258 return c_name_of_child (parent, index);
2259 else
2261 if (name != NULL)
2262 name = savestring (name, strlen (name));
2265 return name;
2268 static value_ptr
2269 cplus_value_of_root (struct varobj **var_handle)
2271 return c_value_of_root (var_handle);
2274 static value_ptr
2275 cplus_value_of_child (struct varobj *parent, int index)
2277 struct type *type;
2278 value_ptr value;
2279 char *name;
2281 if (CPLUS_FAKE_CHILD (parent))
2282 type = get_type_deref (parent->parent);
2283 else
2284 type = get_type_deref (parent);
2286 value = NULL;
2287 name = name_of_child (parent, index);
2289 if (((TYPE_CODE (type)) == TYPE_CODE_STRUCT) ||
2290 ((TYPE_CODE (type)) == TYPE_CODE_UNION))
2292 if (CPLUS_FAKE_CHILD (parent))
2294 value_ptr temp = parent->parent->value;
2295 value = value_struct_elt (&temp, NULL, name,
2296 NULL, "cplus_structure");
2297 release_value (value);
2299 else if (index >= TYPE_N_BASECLASSES (type))
2301 /* public, private, or protected */
2302 return NULL;
2304 else
2306 /* Baseclass */
2307 if (parent->value != NULL)
2309 value_ptr temp;
2311 if (TYPE_CODE (VALUE_TYPE (parent->value)) == TYPE_CODE_PTR
2312 || TYPE_CODE (VALUE_TYPE (parent->value)) == TYPE_CODE_REF)
2313 gdb_value_ind (parent->value, &temp);
2314 else
2315 temp = parent->value;
2317 value = value_cast (TYPE_FIELD_TYPE (type, index), temp);
2318 release_value (value);
2323 if (value == NULL)
2324 return c_value_of_child (parent, index);
2326 return value;
2329 static struct type *
2330 cplus_type_of_child (struct varobj *parent, int index)
2332 struct type *type, *t;
2334 t = get_type_deref (parent);
2335 type = NULL;
2336 switch (TYPE_CODE (t))
2338 case TYPE_CODE_STRUCT:
2339 case TYPE_CODE_UNION:
2340 if (index >= TYPE_N_BASECLASSES (t))
2342 /* special */
2343 return NULL;
2345 else
2347 /* Baseclass */
2348 type = TYPE_FIELD_TYPE (t, index);
2350 break;
2352 default:
2353 break;
2356 if (type == NULL)
2357 return c_type_of_child (parent, index);
2359 return type;
2362 static int
2363 cplus_variable_editable (struct varobj *var)
2365 if (CPLUS_FAKE_CHILD (var))
2366 return 0;
2368 return c_variable_editable (var);
2371 static char *
2372 cplus_value_of_variable (struct varobj *var)
2375 /* If we have one of our special types, don't print out
2376 any value. */
2377 if (CPLUS_FAKE_CHILD (var))
2378 return xstrdup ("");
2380 return c_value_of_variable (var);
2383 /* Java */
2385 static int
2386 java_number_of_children (struct varobj *var)
2388 return cplus_number_of_children (var);
2391 static char *
2392 java_name_of_variable (struct varobj *parent)
2394 char *p, *name;
2396 name = cplus_name_of_variable (parent);
2397 /* If the name has "-" in it, it is because we
2398 needed to escape periods in the name... */
2399 p = name;
2401 while (*p != '\000')
2403 if (*p == '-')
2404 *p = '.';
2405 p++;
2408 return name;
2411 static char *
2412 java_name_of_child (struct varobj *parent, int index)
2414 char *name, *p;
2416 name = cplus_name_of_child (parent, index);
2417 /* Escape any periods in the name... */
2418 p = name;
2420 while (*p != '\000')
2422 if (*p == '.')
2423 *p = '-';
2424 p++;
2427 return name;
2430 static value_ptr
2431 java_value_of_root (struct varobj **var_handle)
2433 return cplus_value_of_root (var_handle);
2436 static value_ptr
2437 java_value_of_child (struct varobj *parent, int index)
2439 return cplus_value_of_child (parent, index);
2442 static struct type *
2443 java_type_of_child (struct varobj *parent, int index)
2445 return cplus_type_of_child (parent, index);
2448 static int
2449 java_variable_editable (struct varobj *var)
2451 return cplus_variable_editable (var);
2454 static char *
2455 java_value_of_variable (struct varobj *var)
2457 return cplus_value_of_variable (var);
2460 extern void _initialize_varobj (void);
2461 void
2462 _initialize_varobj (void)
2464 int sizeof_table = sizeof (struct vlist *) * VAROBJ_TABLE_SIZE;
2466 varobj_table = xmalloc (sizeof_table);
2467 memset (varobj_table, 0, sizeof_table);
2469 add_show_from_set (
2470 add_set_cmd ("debugvarobj", class_maintenance, var_zinteger,
2471 (char *) &varobjdebug,
2472 "Set varobj debugging.\n\
2473 When non-zero, varobj debugging is enabled.", &setlist),
2474 &showlist);