1 /* Ada language support routines for GDB, the GNU debugger.
3 Copyright (C) 1992-2019 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
24 #include "gdb_regex.h"
29 #include "expression.h"
30 #include "parser-defs.h"
37 #include "breakpoint.h"
40 #include "gdb_obstack.h"
42 #include "completer.h"
47 #include "dictionary.h"
51 #include "observable.h"
52 #include "common/vec.h"
54 #include "common/gdb_vecs.h"
55 #include "typeprint.h"
56 #include "namespace.h"
60 #include "mi/mi-common.h"
61 #include "arch-utils.h"
62 #include "cli/cli-utils.h"
63 #include "common/function-view.h"
64 #include "common/byte-vector.h"
67 /* Define whether or not the C operator '/' truncates towards zero for
68 differently signed operands (truncation direction is undefined in C).
69 Copied from valarith.c. */
71 #ifndef TRUNCATION_TOWARDS_ZERO
72 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
75 static struct type
*desc_base_type (struct type
*);
77 static struct type
*desc_bounds_type (struct type
*);
79 static struct value
*desc_bounds (struct value
*);
81 static int fat_pntr_bounds_bitpos (struct type
*);
83 static int fat_pntr_bounds_bitsize (struct type
*);
85 static struct type
*desc_data_target_type (struct type
*);
87 static struct value
*desc_data (struct value
*);
89 static int fat_pntr_data_bitpos (struct type
*);
91 static int fat_pntr_data_bitsize (struct type
*);
93 static struct value
*desc_one_bound (struct value
*, int, int);
95 static int desc_bound_bitpos (struct type
*, int, int);
97 static int desc_bound_bitsize (struct type
*, int, int);
99 static struct type
*desc_index_type (struct type
*, int);
101 static int desc_arity (struct type
*);
103 static int ada_type_match (struct type
*, struct type
*, int);
105 static int ada_args_match (struct symbol
*, struct value
**, int);
107 static struct value
*make_array_descriptor (struct type
*, struct value
*);
109 static void ada_add_block_symbols (struct obstack
*,
110 const struct block
*,
111 const lookup_name_info
&lookup_name
,
112 domain_enum
, struct objfile
*);
114 static void ada_add_all_symbols (struct obstack
*, const struct block
*,
115 const lookup_name_info
&lookup_name
,
116 domain_enum
, int, int *);
118 static int is_nonfunction (struct block_symbol
*, int);
120 static void add_defn_to_vec (struct obstack
*, struct symbol
*,
121 const struct block
*);
123 static int num_defns_collected (struct obstack
*);
125 static struct block_symbol
*defns_collected (struct obstack
*, int);
127 static struct value
*resolve_subexp (expression_up
*, int *, int,
129 innermost_block_tracker
*);
131 static void replace_operator_with_call (expression_up
*, int, int, int,
132 struct symbol
*, const struct block
*);
134 static int possible_user_operator_p (enum exp_opcode
, struct value
**);
136 static const char *ada_op_name (enum exp_opcode
);
138 static const char *ada_decoded_op_name (enum exp_opcode
);
140 static int numeric_type_p (struct type
*);
142 static int integer_type_p (struct type
*);
144 static int scalar_type_p (struct type
*);
146 static int discrete_type_p (struct type
*);
148 static enum ada_renaming_category
parse_old_style_renaming (struct type
*,
153 static struct symbol
*find_old_style_renaming_symbol (const char *,
154 const struct block
*);
156 static struct type
*ada_lookup_struct_elt_type (struct type
*, const char *,
159 static struct value
*evaluate_subexp_type (struct expression
*, int *);
161 static struct type
*ada_find_parallel_type_with_name (struct type
*,
164 static int is_dynamic_field (struct type
*, int);
166 static struct type
*to_fixed_variant_branch_type (struct type
*,
168 CORE_ADDR
, struct value
*);
170 static struct type
*to_fixed_array_type (struct type
*, struct value
*, int);
172 static struct type
*to_fixed_range_type (struct type
*, struct value
*);
174 static struct type
*to_static_fixed_type (struct type
*);
175 static struct type
*static_unwrap_type (struct type
*type
);
177 static struct value
*unwrap_value (struct value
*);
179 static struct type
*constrained_packed_array_type (struct type
*, long *);
181 static struct type
*decode_constrained_packed_array_type (struct type
*);
183 static long decode_packed_array_bitsize (struct type
*);
185 static struct value
*decode_constrained_packed_array (struct value
*);
187 static int ada_is_packed_array_type (struct type
*);
189 static int ada_is_unconstrained_packed_array_type (struct type
*);
191 static struct value
*value_subscript_packed (struct value
*, int,
194 static struct value
*coerce_unspec_val_to_type (struct value
*,
197 static int lesseq_defined_than (struct symbol
*, struct symbol
*);
199 static int equiv_types (struct type
*, struct type
*);
201 static int is_name_suffix (const char *);
203 static int advance_wild_match (const char **, const char *, int);
205 static bool wild_match (const char *name
, const char *patn
);
207 static struct value
*ada_coerce_ref (struct value
*);
209 static LONGEST
pos_atr (struct value
*);
211 static struct value
*value_pos_atr (struct type
*, struct value
*);
213 static struct value
*value_val_atr (struct type
*, struct value
*);
215 static struct symbol
*standard_lookup (const char *, const struct block
*,
218 static struct value
*ada_search_struct_field (const char *, struct value
*, int,
221 static struct value
*ada_value_primitive_field (struct value
*, int, int,
224 static int find_struct_field (const char *, struct type
*, int,
225 struct type
**, int *, int *, int *, int *);
227 static int ada_resolve_function (struct block_symbol
*, int,
228 struct value
**, int, const char *,
231 static int ada_is_direct_array_type (struct type
*);
233 static void ada_language_arch_info (struct gdbarch
*,
234 struct language_arch_info
*);
236 static struct value
*ada_index_struct_field (int, struct value
*, int,
239 static struct value
*assign_aggregate (struct value
*, struct value
*,
243 static void aggregate_assign_from_choices (struct value
*, struct value
*,
245 int *, LONGEST
*, int *,
246 int, LONGEST
, LONGEST
);
248 static void aggregate_assign_positional (struct value
*, struct value
*,
250 int *, LONGEST
*, int *, int,
254 static void aggregate_assign_others (struct value
*, struct value
*,
256 int *, LONGEST
*, int, LONGEST
, LONGEST
);
259 static void add_component_interval (LONGEST
, LONGEST
, LONGEST
*, int *, int);
262 static struct value
*ada_evaluate_subexp (struct type
*, struct expression
*,
265 static void ada_forward_operator_length (struct expression
*, int, int *,
268 static struct type
*ada_find_any_type (const char *name
);
270 static symbol_name_matcher_ftype
*ada_get_symbol_name_matcher
271 (const lookup_name_info
&lookup_name
);
275 /* The result of a symbol lookup to be stored in our symbol cache. */
279 /* The name used to perform the lookup. */
281 /* The namespace used during the lookup. */
283 /* The symbol returned by the lookup, or NULL if no matching symbol
286 /* The block where the symbol was found, or NULL if no matching
288 const struct block
*block
;
289 /* A pointer to the next entry with the same hash. */
290 struct cache_entry
*next
;
293 /* The Ada symbol cache, used to store the result of Ada-mode symbol
294 lookups in the course of executing the user's commands.
296 The cache is implemented using a simple, fixed-sized hash.
297 The size is fixed on the grounds that there are not likely to be
298 all that many symbols looked up during any given session, regardless
299 of the size of the symbol table. If we decide to go to a resizable
300 table, let's just use the stuff from libiberty instead. */
302 #define HASH_SIZE 1009
304 struct ada_symbol_cache
306 /* An obstack used to store the entries in our cache. */
307 struct obstack cache_space
;
309 /* The root of the hash table used to implement our symbol cache. */
310 struct cache_entry
*root
[HASH_SIZE
];
313 static void ada_free_symbol_cache (struct ada_symbol_cache
*sym_cache
);
315 /* Maximum-sized dynamic type. */
316 static unsigned int varsize_limit
;
318 static const char ada_completer_word_break_characters
[] =
320 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
322 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
325 /* The name of the symbol to use to get the name of the main subprogram. */
326 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME
[]
327 = "__gnat_ada_main_program_name";
329 /* Limit on the number of warnings to raise per expression evaluation. */
330 static int warning_limit
= 2;
332 /* Number of warning messages issued; reset to 0 by cleanups after
333 expression evaluation. */
334 static int warnings_issued
= 0;
336 static const char *known_runtime_file_name_patterns
[] = {
337 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
340 static const char *known_auxiliary_function_name_patterns
[] = {
341 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
344 /* Maintenance-related settings for this module. */
346 static struct cmd_list_element
*maint_set_ada_cmdlist
;
347 static struct cmd_list_element
*maint_show_ada_cmdlist
;
349 /* Implement the "maintenance set ada" (prefix) command. */
352 maint_set_ada_cmd (const char *args
, int from_tty
)
354 help_list (maint_set_ada_cmdlist
, "maintenance set ada ", all_commands
,
358 /* Implement the "maintenance show ada" (prefix) command. */
361 maint_show_ada_cmd (const char *args
, int from_tty
)
363 cmd_show_list (maint_show_ada_cmdlist
, from_tty
, "");
366 /* The "maintenance ada set/show ignore-descriptive-type" value. */
368 static int ada_ignore_descriptive_types_p
= 0;
370 /* Inferior-specific data. */
372 /* Per-inferior data for this module. */
374 struct ada_inferior_data
376 /* The ada__tags__type_specific_data type, which is used when decoding
377 tagged types. With older versions of GNAT, this type was directly
378 accessible through a component ("tsd") in the object tag. But this
379 is no longer the case, so we cache it for each inferior. */
380 struct type
*tsd_type
;
382 /* The exception_support_info data. This data is used to determine
383 how to implement support for Ada exception catchpoints in a given
385 const struct exception_support_info
*exception_info
;
388 /* Our key to this module's inferior data. */
389 static const struct inferior_data
*ada_inferior_data
;
391 /* A cleanup routine for our inferior data. */
393 ada_inferior_data_cleanup (struct inferior
*inf
, void *arg
)
395 struct ada_inferior_data
*data
;
397 data
= (struct ada_inferior_data
*) inferior_data (inf
, ada_inferior_data
);
402 /* Return our inferior data for the given inferior (INF).
404 This function always returns a valid pointer to an allocated
405 ada_inferior_data structure. If INF's inferior data has not
406 been previously set, this functions creates a new one with all
407 fields set to zero, sets INF's inferior to it, and then returns
408 a pointer to that newly allocated ada_inferior_data. */
410 static struct ada_inferior_data
*
411 get_ada_inferior_data (struct inferior
*inf
)
413 struct ada_inferior_data
*data
;
415 data
= (struct ada_inferior_data
*) inferior_data (inf
, ada_inferior_data
);
418 data
= XCNEW (struct ada_inferior_data
);
419 set_inferior_data (inf
, ada_inferior_data
, data
);
425 /* Perform all necessary cleanups regarding our module's inferior data
426 that is required after the inferior INF just exited. */
429 ada_inferior_exit (struct inferior
*inf
)
431 ada_inferior_data_cleanup (inf
, NULL
);
432 set_inferior_data (inf
, ada_inferior_data
, NULL
);
436 /* program-space-specific data. */
438 /* This module's per-program-space data. */
439 struct ada_pspace_data
441 /* The Ada symbol cache. */
442 struct ada_symbol_cache
*sym_cache
;
445 /* Key to our per-program-space data. */
446 static const struct program_space_data
*ada_pspace_data_handle
;
448 /* Return this module's data for the given program space (PSPACE).
449 If not is found, add a zero'ed one now.
451 This function always returns a valid object. */
453 static struct ada_pspace_data
*
454 get_ada_pspace_data (struct program_space
*pspace
)
456 struct ada_pspace_data
*data
;
458 data
= ((struct ada_pspace_data
*)
459 program_space_data (pspace
, ada_pspace_data_handle
));
462 data
= XCNEW (struct ada_pspace_data
);
463 set_program_space_data (pspace
, ada_pspace_data_handle
, data
);
469 /* The cleanup callback for this module's per-program-space data. */
472 ada_pspace_data_cleanup (struct program_space
*pspace
, void *data
)
474 struct ada_pspace_data
*pspace_data
= (struct ada_pspace_data
*) data
;
476 if (pspace_data
->sym_cache
!= NULL
)
477 ada_free_symbol_cache (pspace_data
->sym_cache
);
483 /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
484 all typedef layers have been peeled. Otherwise, return TYPE.
486 Normally, we really expect a typedef type to only have 1 typedef layer.
487 In other words, we really expect the target type of a typedef type to be
488 a non-typedef type. This is particularly true for Ada units, because
489 the language does not have a typedef vs not-typedef distinction.
490 In that respect, the Ada compiler has been trying to eliminate as many
491 typedef definitions in the debugging information, since they generally
492 do not bring any extra information (we still use typedef under certain
493 circumstances related mostly to the GNAT encoding).
495 Unfortunately, we have seen situations where the debugging information
496 generated by the compiler leads to such multiple typedef layers. For
497 instance, consider the following example with stabs:
499 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
500 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
502 This is an error in the debugging information which causes type
503 pck__float_array___XUP to be defined twice, and the second time,
504 it is defined as a typedef of a typedef.
506 This is on the fringe of legality as far as debugging information is
507 concerned, and certainly unexpected. But it is easy to handle these
508 situations correctly, so we can afford to be lenient in this case. */
511 ada_typedef_target_type (struct type
*type
)
513 while (TYPE_CODE (type
) == TYPE_CODE_TYPEDEF
)
514 type
= TYPE_TARGET_TYPE (type
);
518 /* Given DECODED_NAME a string holding a symbol name in its
519 decoded form (ie using the Ada dotted notation), returns
520 its unqualified name. */
523 ada_unqualified_name (const char *decoded_name
)
527 /* If the decoded name starts with '<', it means that the encoded
528 name does not follow standard naming conventions, and thus that
529 it is not your typical Ada symbol name. Trying to unqualify it
530 is therefore pointless and possibly erroneous. */
531 if (decoded_name
[0] == '<')
534 result
= strrchr (decoded_name
, '.');
536 result
++; /* Skip the dot... */
538 result
= decoded_name
;
543 /* Return a string starting with '<', followed by STR, and '>'. */
546 add_angle_brackets (const char *str
)
548 return string_printf ("<%s>", str
);
552 ada_get_gdb_completer_word_break_characters (void)
554 return ada_completer_word_break_characters
;
557 /* Print an array element index using the Ada syntax. */
560 ada_print_array_index (struct value
*index_value
, struct ui_file
*stream
,
561 const struct value_print_options
*options
)
563 LA_VALUE_PRINT (index_value
, stream
, options
);
564 fprintf_filtered (stream
, " => ");
567 /* la_watch_location_expression for Ada. */
569 gdb::unique_xmalloc_ptr
<char>
570 ada_watch_location_expression (struct type
*type
, CORE_ADDR addr
)
572 type
= check_typedef (TYPE_TARGET_TYPE (check_typedef (type
)));
573 std::string name
= type_to_string (type
);
574 return gdb::unique_xmalloc_ptr
<char>
575 (xstrprintf ("{%s} %s", name
.c_str (), core_addr_to_string (addr
)));
578 /* Assuming VECT points to an array of *SIZE objects of size
579 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
580 updating *SIZE as necessary and returning the (new) array. */
583 grow_vect (void *vect
, size_t *size
, size_t min_size
, int element_size
)
585 if (*size
< min_size
)
588 if (*size
< min_size
)
590 vect
= xrealloc (vect
, *size
* element_size
);
595 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
596 suffix of FIELD_NAME beginning "___". */
599 field_name_match (const char *field_name
, const char *target
)
601 int len
= strlen (target
);
604 (strncmp (field_name
, target
, len
) == 0
605 && (field_name
[len
] == '\0'
606 || (startswith (field_name
+ len
, "___")
607 && strcmp (field_name
+ strlen (field_name
) - 6,
612 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
613 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
614 and return its index. This function also handles fields whose name
615 have ___ suffixes because the compiler sometimes alters their name
616 by adding such a suffix to represent fields with certain constraints.
617 If the field could not be found, return a negative number if
618 MAYBE_MISSING is set. Otherwise raise an error. */
621 ada_get_field_index (const struct type
*type
, const char *field_name
,
625 struct type
*struct_type
= check_typedef ((struct type
*) type
);
627 for (fieldno
= 0; fieldno
< TYPE_NFIELDS (struct_type
); fieldno
++)
628 if (field_name_match (TYPE_FIELD_NAME (struct_type
, fieldno
), field_name
))
632 error (_("Unable to find field %s in struct %s. Aborting"),
633 field_name
, TYPE_NAME (struct_type
));
638 /* The length of the prefix of NAME prior to any "___" suffix. */
641 ada_name_prefix_len (const char *name
)
647 const char *p
= strstr (name
, "___");
650 return strlen (name
);
656 /* Return non-zero if SUFFIX is a suffix of STR.
657 Return zero if STR is null. */
660 is_suffix (const char *str
, const char *suffix
)
667 len2
= strlen (suffix
);
668 return (len1
>= len2
&& strcmp (str
+ len1
- len2
, suffix
) == 0);
671 /* The contents of value VAL, treated as a value of type TYPE. The
672 result is an lval in memory if VAL is. */
674 static struct value
*
675 coerce_unspec_val_to_type (struct value
*val
, struct type
*type
)
677 type
= ada_check_typedef (type
);
678 if (value_type (val
) == type
)
682 struct value
*result
;
684 /* Make sure that the object size is not unreasonable before
685 trying to allocate some memory for it. */
686 ada_ensure_varsize_limit (type
);
689 || TYPE_LENGTH (type
) > TYPE_LENGTH (value_type (val
)))
690 result
= allocate_value_lazy (type
);
693 result
= allocate_value (type
);
694 value_contents_copy_raw (result
, 0, val
, 0, TYPE_LENGTH (type
));
696 set_value_component_location (result
, val
);
697 set_value_bitsize (result
, value_bitsize (val
));
698 set_value_bitpos (result
, value_bitpos (val
));
699 set_value_address (result
, value_address (val
));
704 static const gdb_byte
*
705 cond_offset_host (const gdb_byte
*valaddr
, long offset
)
710 return valaddr
+ offset
;
714 cond_offset_target (CORE_ADDR address
, long offset
)
719 return address
+ offset
;
722 /* Issue a warning (as for the definition of warning in utils.c, but
723 with exactly one argument rather than ...), unless the limit on the
724 number of warnings has passed during the evaluation of the current
727 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
728 provided by "complaint". */
729 static void lim_warning (const char *format
, ...) ATTRIBUTE_PRINTF (1, 2);
732 lim_warning (const char *format
, ...)
736 va_start (args
, format
);
737 warnings_issued
+= 1;
738 if (warnings_issued
<= warning_limit
)
739 vwarning (format
, args
);
744 /* Issue an error if the size of an object of type T is unreasonable,
745 i.e. if it would be a bad idea to allocate a value of this type in
749 ada_ensure_varsize_limit (const struct type
*type
)
751 if (TYPE_LENGTH (type
) > varsize_limit
)
752 error (_("object size is larger than varsize-limit"));
755 /* Maximum value of a SIZE-byte signed integer type. */
757 max_of_size (int size
)
759 LONGEST top_bit
= (LONGEST
) 1 << (size
* 8 - 2);
761 return top_bit
| (top_bit
- 1);
764 /* Minimum value of a SIZE-byte signed integer type. */
766 min_of_size (int size
)
768 return -max_of_size (size
) - 1;
771 /* Maximum value of a SIZE-byte unsigned integer type. */
773 umax_of_size (int size
)
775 ULONGEST top_bit
= (ULONGEST
) 1 << (size
* 8 - 1);
777 return top_bit
| (top_bit
- 1);
780 /* Maximum value of integral type T, as a signed quantity. */
782 max_of_type (struct type
*t
)
784 if (TYPE_UNSIGNED (t
))
785 return (LONGEST
) umax_of_size (TYPE_LENGTH (t
));
787 return max_of_size (TYPE_LENGTH (t
));
790 /* Minimum value of integral type T, as a signed quantity. */
792 min_of_type (struct type
*t
)
794 if (TYPE_UNSIGNED (t
))
797 return min_of_size (TYPE_LENGTH (t
));
800 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
802 ada_discrete_type_high_bound (struct type
*type
)
804 type
= resolve_dynamic_type (type
, NULL
, 0);
805 switch (TYPE_CODE (type
))
807 case TYPE_CODE_RANGE
:
808 return TYPE_HIGH_BOUND (type
);
810 return TYPE_FIELD_ENUMVAL (type
, TYPE_NFIELDS (type
) - 1);
815 return max_of_type (type
);
817 error (_("Unexpected type in ada_discrete_type_high_bound."));
821 /* The smallest value in the domain of TYPE, a discrete type, as an integer. */
823 ada_discrete_type_low_bound (struct type
*type
)
825 type
= resolve_dynamic_type (type
, NULL
, 0);
826 switch (TYPE_CODE (type
))
828 case TYPE_CODE_RANGE
:
829 return TYPE_LOW_BOUND (type
);
831 return TYPE_FIELD_ENUMVAL (type
, 0);
836 return min_of_type (type
);
838 error (_("Unexpected type in ada_discrete_type_low_bound."));
842 /* The identity on non-range types. For range types, the underlying
843 non-range scalar type. */
846 get_base_type (struct type
*type
)
848 while (type
!= NULL
&& TYPE_CODE (type
) == TYPE_CODE_RANGE
)
850 if (type
== TYPE_TARGET_TYPE (type
) || TYPE_TARGET_TYPE (type
) == NULL
)
852 type
= TYPE_TARGET_TYPE (type
);
857 /* Return a decoded version of the given VALUE. This means returning
858 a value whose type is obtained by applying all the GNAT-specific
859 encondings, making the resulting type a static but standard description
860 of the initial type. */
863 ada_get_decoded_value (struct value
*value
)
865 struct type
*type
= ada_check_typedef (value_type (value
));
867 if (ada_is_array_descriptor_type (type
)
868 || (ada_is_constrained_packed_array_type (type
)
869 && TYPE_CODE (type
) != TYPE_CODE_PTR
))
871 if (TYPE_CODE (type
) == TYPE_CODE_TYPEDEF
) /* array access type. */
872 value
= ada_coerce_to_simple_array_ptr (value
);
874 value
= ada_coerce_to_simple_array (value
);
877 value
= ada_to_fixed_value (value
);
882 /* Same as ada_get_decoded_value, but with the given TYPE.
883 Because there is no associated actual value for this type,
884 the resulting type might be a best-effort approximation in
885 the case of dynamic types. */
888 ada_get_decoded_type (struct type
*type
)
890 type
= to_static_fixed_type (type
);
891 if (ada_is_constrained_packed_array_type (type
))
892 type
= ada_coerce_to_simple_array_type (type
);
898 /* Language Selection */
900 /* If the main program is in Ada, return language_ada, otherwise return LANG
901 (the main program is in Ada iif the adainit symbol is found). */
904 ada_update_initial_language (enum language lang
)
906 if (lookup_minimal_symbol ("adainit", (const char *) NULL
,
907 (struct objfile
*) NULL
).minsym
!= NULL
)
913 /* If the main procedure is written in Ada, then return its name.
914 The result is good until the next call. Return NULL if the main
915 procedure doesn't appear to be in Ada. */
920 struct bound_minimal_symbol msym
;
921 static gdb::unique_xmalloc_ptr
<char> main_program_name
;
923 /* For Ada, the name of the main procedure is stored in a specific
924 string constant, generated by the binder. Look for that symbol,
925 extract its address, and then read that string. If we didn't find
926 that string, then most probably the main procedure is not written
928 msym
= lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME
, NULL
, NULL
);
930 if (msym
.minsym
!= NULL
)
932 CORE_ADDR main_program_name_addr
;
935 main_program_name_addr
= BMSYMBOL_VALUE_ADDRESS (msym
);
936 if (main_program_name_addr
== 0)
937 error (_("Invalid address for Ada main program name."));
939 target_read_string (main_program_name_addr
, &main_program_name
,
944 return main_program_name
.get ();
947 /* The main procedure doesn't seem to be in Ada. */
953 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
956 const struct ada_opname_map ada_opname_table
[] = {
957 {"Oadd", "\"+\"", BINOP_ADD
},
958 {"Osubtract", "\"-\"", BINOP_SUB
},
959 {"Omultiply", "\"*\"", BINOP_MUL
},
960 {"Odivide", "\"/\"", BINOP_DIV
},
961 {"Omod", "\"mod\"", BINOP_MOD
},
962 {"Orem", "\"rem\"", BINOP_REM
},
963 {"Oexpon", "\"**\"", BINOP_EXP
},
964 {"Olt", "\"<\"", BINOP_LESS
},
965 {"Ole", "\"<=\"", BINOP_LEQ
},
966 {"Ogt", "\">\"", BINOP_GTR
},
967 {"Oge", "\">=\"", BINOP_GEQ
},
968 {"Oeq", "\"=\"", BINOP_EQUAL
},
969 {"One", "\"/=\"", BINOP_NOTEQUAL
},
970 {"Oand", "\"and\"", BINOP_BITWISE_AND
},
971 {"Oor", "\"or\"", BINOP_BITWISE_IOR
},
972 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR
},
973 {"Oconcat", "\"&\"", BINOP_CONCAT
},
974 {"Oabs", "\"abs\"", UNOP_ABS
},
975 {"Onot", "\"not\"", UNOP_LOGICAL_NOT
},
976 {"Oadd", "\"+\"", UNOP_PLUS
},
977 {"Osubtract", "\"-\"", UNOP_NEG
},
981 /* The "encoded" form of DECODED, according to GNAT conventions. The
982 result is valid until the next call to ada_encode. If
983 THROW_ERRORS, throw an error if invalid operator name is found.
984 Otherwise, return NULL in that case. */
987 ada_encode_1 (const char *decoded
, bool throw_errors
)
989 static char *encoding_buffer
= NULL
;
990 static size_t encoding_buffer_size
= 0;
997 GROW_VECT (encoding_buffer
, encoding_buffer_size
,
998 2 * strlen (decoded
) + 10);
1001 for (p
= decoded
; *p
!= '\0'; p
+= 1)
1005 encoding_buffer
[k
] = encoding_buffer
[k
+ 1] = '_';
1010 const struct ada_opname_map
*mapping
;
1012 for (mapping
= ada_opname_table
;
1013 mapping
->encoded
!= NULL
1014 && !startswith (p
, mapping
->decoded
); mapping
+= 1)
1016 if (mapping
->encoded
== NULL
)
1019 error (_("invalid Ada operator name: %s"), p
);
1023 strcpy (encoding_buffer
+ k
, mapping
->encoded
);
1024 k
+= strlen (mapping
->encoded
);
1029 encoding_buffer
[k
] = *p
;
1034 encoding_buffer
[k
] = '\0';
1035 return encoding_buffer
;
1038 /* The "encoded" form of DECODED, according to GNAT conventions.
1039 The result is valid until the next call to ada_encode. */
1042 ada_encode (const char *decoded
)
1044 return ada_encode_1 (decoded
, true);
1047 /* Return NAME folded to lower case, or, if surrounded by single
1048 quotes, unfolded, but with the quotes stripped away. Result good
1052 ada_fold_name (const char *name
)
1054 static char *fold_buffer
= NULL
;
1055 static size_t fold_buffer_size
= 0;
1057 int len
= strlen (name
);
1058 GROW_VECT (fold_buffer
, fold_buffer_size
, len
+ 1);
1060 if (name
[0] == '\'')
1062 strncpy (fold_buffer
, name
+ 1, len
- 2);
1063 fold_buffer
[len
- 2] = '\000';
1069 for (i
= 0; i
<= len
; i
+= 1)
1070 fold_buffer
[i
] = tolower (name
[i
]);
1076 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
1079 is_lower_alphanum (const char c
)
1081 return (isdigit (c
) || (isalpha (c
) && islower (c
)));
1084 /* ENCODED is the linkage name of a symbol and LEN contains its length.
1085 This function saves in LEN the length of that same symbol name but
1086 without either of these suffixes:
1092 These are suffixes introduced by the compiler for entities such as
1093 nested subprogram for instance, in order to avoid name clashes.
1094 They do not serve any purpose for the debugger. */
1097 ada_remove_trailing_digits (const char *encoded
, int *len
)
1099 if (*len
> 1 && isdigit (encoded
[*len
- 1]))
1103 while (i
> 0 && isdigit (encoded
[i
]))
1105 if (i
>= 0 && encoded
[i
] == '.')
1107 else if (i
>= 0 && encoded
[i
] == '$')
1109 else if (i
>= 2 && startswith (encoded
+ i
- 2, "___"))
1111 else if (i
>= 1 && startswith (encoded
+ i
- 1, "__"))
1116 /* Remove the suffix introduced by the compiler for protected object
1120 ada_remove_po_subprogram_suffix (const char *encoded
, int *len
)
1122 /* Remove trailing N. */
1124 /* Protected entry subprograms are broken into two
1125 separate subprograms: The first one is unprotected, and has
1126 a 'N' suffix; the second is the protected version, and has
1127 the 'P' suffix. The second calls the first one after handling
1128 the protection. Since the P subprograms are internally generated,
1129 we leave these names undecoded, giving the user a clue that this
1130 entity is internal. */
1133 && encoded
[*len
- 1] == 'N'
1134 && (isdigit (encoded
[*len
- 2]) || islower (encoded
[*len
- 2])))
1138 /* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
1141 ada_remove_Xbn_suffix (const char *encoded
, int *len
)
1145 while (i
> 0 && (encoded
[i
] == 'b' || encoded
[i
] == 'n'))
1148 if (encoded
[i
] != 'X')
1154 if (isalnum (encoded
[i
-1]))
1158 /* If ENCODED follows the GNAT entity encoding conventions, then return
1159 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1160 replaced by ENCODED.
1162 The resulting string is valid until the next call of ada_decode.
1163 If the string is unchanged by decoding, the original string pointer
1167 ada_decode (const char *encoded
)
1174 static char *decoding_buffer
= NULL
;
1175 static size_t decoding_buffer_size
= 0;
1177 /* With function descriptors on PPC64, the value of a symbol named
1178 ".FN", if it exists, is the entry point of the function "FN". */
1179 if (encoded
[0] == '.')
1182 /* The name of the Ada main procedure starts with "_ada_".
1183 This prefix is not part of the decoded name, so skip this part
1184 if we see this prefix. */
1185 if (startswith (encoded
, "_ada_"))
1188 /* If the name starts with '_', then it is not a properly encoded
1189 name, so do not attempt to decode it. Similarly, if the name
1190 starts with '<', the name should not be decoded. */
1191 if (encoded
[0] == '_' || encoded
[0] == '<')
1194 len0
= strlen (encoded
);
1196 ada_remove_trailing_digits (encoded
, &len0
);
1197 ada_remove_po_subprogram_suffix (encoded
, &len0
);
1199 /* Remove the ___X.* suffix if present. Do not forget to verify that
1200 the suffix is located before the current "end" of ENCODED. We want
1201 to avoid re-matching parts of ENCODED that have previously been
1202 marked as discarded (by decrementing LEN0). */
1203 p
= strstr (encoded
, "___");
1204 if (p
!= NULL
&& p
- encoded
< len0
- 3)
1212 /* Remove any trailing TKB suffix. It tells us that this symbol
1213 is for the body of a task, but that information does not actually
1214 appear in the decoded name. */
1216 if (len0
> 3 && startswith (encoded
+ len0
- 3, "TKB"))
1219 /* Remove any trailing TB suffix. The TB suffix is slightly different
1220 from the TKB suffix because it is used for non-anonymous task
1223 if (len0
> 2 && startswith (encoded
+ len0
- 2, "TB"))
1226 /* Remove trailing "B" suffixes. */
1227 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1229 if (len0
> 1 && startswith (encoded
+ len0
- 1, "B"))
1232 /* Make decoded big enough for possible expansion by operator name. */
1234 GROW_VECT (decoding_buffer
, decoding_buffer_size
, 2 * len0
+ 1);
1235 decoded
= decoding_buffer
;
1237 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1239 if (len0
> 1 && isdigit (encoded
[len0
- 1]))
1242 while ((i
>= 0 && isdigit (encoded
[i
]))
1243 || (i
>= 1 && encoded
[i
] == '_' && isdigit (encoded
[i
- 1])))
1245 if (i
> 1 && encoded
[i
] == '_' && encoded
[i
- 1] == '_')
1247 else if (encoded
[i
] == '$')
1251 /* The first few characters that are not alphabetic are not part
1252 of any encoding we use, so we can copy them over verbatim. */
1254 for (i
= 0, j
= 0; i
< len0
&& !isalpha (encoded
[i
]); i
+= 1, j
+= 1)
1255 decoded
[j
] = encoded
[i
];
1260 /* Is this a symbol function? */
1261 if (at_start_name
&& encoded
[i
] == 'O')
1265 for (k
= 0; ada_opname_table
[k
].encoded
!= NULL
; k
+= 1)
1267 int op_len
= strlen (ada_opname_table
[k
].encoded
);
1268 if ((strncmp (ada_opname_table
[k
].encoded
+ 1, encoded
+ i
+ 1,
1270 && !isalnum (encoded
[i
+ op_len
]))
1272 strcpy (decoded
+ j
, ada_opname_table
[k
].decoded
);
1275 j
+= strlen (ada_opname_table
[k
].decoded
);
1279 if (ada_opname_table
[k
].encoded
!= NULL
)
1284 /* Replace "TK__" with "__", which will eventually be translated
1285 into "." (just below). */
1287 if (i
< len0
- 4 && startswith (encoded
+ i
, "TK__"))
1290 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1291 be translated into "." (just below). These are internal names
1292 generated for anonymous blocks inside which our symbol is nested. */
1294 if (len0
- i
> 5 && encoded
[i
] == '_' && encoded
[i
+1] == '_'
1295 && encoded
[i
+2] == 'B' && encoded
[i
+3] == '_'
1296 && isdigit (encoded
[i
+4]))
1300 while (k
< len0
&& isdigit (encoded
[k
]))
1301 k
++; /* Skip any extra digit. */
1303 /* Double-check that the "__B_{DIGITS}+" sequence we found
1304 is indeed followed by "__". */
1305 if (len0
- k
> 2 && encoded
[k
] == '_' && encoded
[k
+1] == '_')
1309 /* Remove _E{DIGITS}+[sb] */
1311 /* Just as for protected object subprograms, there are 2 categories
1312 of subprograms created by the compiler for each entry. The first
1313 one implements the actual entry code, and has a suffix following
1314 the convention above; the second one implements the barrier and
1315 uses the same convention as above, except that the 'E' is replaced
1318 Just as above, we do not decode the name of barrier functions
1319 to give the user a clue that the code he is debugging has been
1320 internally generated. */
1322 if (len0
- i
> 3 && encoded
[i
] == '_' && encoded
[i
+1] == 'E'
1323 && isdigit (encoded
[i
+2]))
1327 while (k
< len0
&& isdigit (encoded
[k
]))
1331 && (encoded
[k
] == 'b' || encoded
[k
] == 's'))
1334 /* Just as an extra precaution, make sure that if this
1335 suffix is followed by anything else, it is a '_'.
1336 Otherwise, we matched this sequence by accident. */
1338 || (k
< len0
&& encoded
[k
] == '_'))
1343 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1344 the GNAT front-end in protected object subprograms. */
1347 && encoded
[i
] == 'N' && encoded
[i
+1] == '_' && encoded
[i
+2] == '_')
1349 /* Backtrack a bit up until we reach either the begining of
1350 the encoded name, or "__". Make sure that we only find
1351 digits or lowercase characters. */
1352 const char *ptr
= encoded
+ i
- 1;
1354 while (ptr
>= encoded
&& is_lower_alphanum (ptr
[0]))
1357 || (ptr
> encoded
&& ptr
[0] == '_' && ptr
[-1] == '_'))
1361 if (encoded
[i
] == 'X' && i
!= 0 && isalnum (encoded
[i
- 1]))
1363 /* This is a X[bn]* sequence not separated from the previous
1364 part of the name with a non-alpha-numeric character (in other
1365 words, immediately following an alpha-numeric character), then
1366 verify that it is placed at the end of the encoded name. If
1367 not, then the encoding is not valid and we should abort the
1368 decoding. Otherwise, just skip it, it is used in body-nested
1372 while (i
< len0
&& (encoded
[i
] == 'b' || encoded
[i
] == 'n'));
1376 else if (i
< len0
- 2 && encoded
[i
] == '_' && encoded
[i
+ 1] == '_')
1378 /* Replace '__' by '.'. */
1386 /* It's a character part of the decoded name, so just copy it
1388 decoded
[j
] = encoded
[i
];
1393 decoded
[j
] = '\000';
1395 /* Decoded names should never contain any uppercase character.
1396 Double-check this, and abort the decoding if we find one. */
1398 for (i
= 0; decoded
[i
] != '\0'; i
+= 1)
1399 if (isupper (decoded
[i
]) || decoded
[i
] == ' ')
1402 if (strcmp (decoded
, encoded
) == 0)
1408 GROW_VECT (decoding_buffer
, decoding_buffer_size
, strlen (encoded
) + 3);
1409 decoded
= decoding_buffer
;
1410 if (encoded
[0] == '<')
1411 strcpy (decoded
, encoded
);
1413 xsnprintf (decoded
, decoding_buffer_size
, "<%s>", encoded
);
1418 /* Table for keeping permanent unique copies of decoded names. Once
1419 allocated, names in this table are never released. While this is a
1420 storage leak, it should not be significant unless there are massive
1421 changes in the set of decoded names in successive versions of a
1422 symbol table loaded during a single session. */
1423 static struct htab
*decoded_names_store
;
1425 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1426 in the language-specific part of GSYMBOL, if it has not been
1427 previously computed. Tries to save the decoded name in the same
1428 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1429 in any case, the decoded symbol has a lifetime at least that of
1431 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1432 const, but nevertheless modified to a semantically equivalent form
1433 when a decoded name is cached in it. */
1436 ada_decode_symbol (const struct general_symbol_info
*arg
)
1438 struct general_symbol_info
*gsymbol
= (struct general_symbol_info
*) arg
;
1439 const char **resultp
=
1440 &gsymbol
->language_specific
.demangled_name
;
1442 if (!gsymbol
->ada_mangled
)
1444 const char *decoded
= ada_decode (gsymbol
->name
);
1445 struct obstack
*obstack
= gsymbol
->language_specific
.obstack
;
1447 gsymbol
->ada_mangled
= 1;
1449 if (obstack
!= NULL
)
1451 = (const char *) obstack_copy0 (obstack
, decoded
, strlen (decoded
));
1454 /* Sometimes, we can't find a corresponding objfile, in
1455 which case, we put the result on the heap. Since we only
1456 decode when needed, we hope this usually does not cause a
1457 significant memory leak (FIXME). */
1459 char **slot
= (char **) htab_find_slot (decoded_names_store
,
1463 *slot
= xstrdup (decoded
);
1472 ada_la_decode (const char *encoded
, int options
)
1474 return xstrdup (ada_decode (encoded
));
1477 /* Implement la_sniff_from_mangled_name for Ada. */
1480 ada_sniff_from_mangled_name (const char *mangled
, char **out
)
1482 const char *demangled
= ada_decode (mangled
);
1486 if (demangled
!= mangled
&& demangled
!= NULL
&& demangled
[0] != '<')
1488 /* Set the gsymbol language to Ada, but still return 0.
1489 Two reasons for that:
1491 1. For Ada, we prefer computing the symbol's decoded name
1492 on the fly rather than pre-compute it, in order to save
1493 memory (Ada projects are typically very large).
1495 2. There are some areas in the definition of the GNAT
1496 encoding where, with a bit of bad luck, we might be able
1497 to decode a non-Ada symbol, generating an incorrect
1498 demangled name (Eg: names ending with "TB" for instance
1499 are identified as task bodies and so stripped from
1500 the decoded name returned).
1502 Returning 1, here, but not setting *DEMANGLED, helps us get a
1503 little bit of the best of both worlds. Because we're last,
1504 we should not affect any of the other languages that were
1505 able to demangle the symbol before us; we get to correctly
1506 tag Ada symbols as such; and even if we incorrectly tagged a
1507 non-Ada symbol, which should be rare, any routing through the
1508 Ada language should be transparent (Ada tries to behave much
1509 like C/C++ with non-Ada symbols). */
1520 /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1521 generated by the GNAT compiler to describe the index type used
1522 for each dimension of an array, check whether it follows the latest
1523 known encoding. If not, fix it up to conform to the latest encoding.
1524 Otherwise, do nothing. This function also does nothing if
1525 INDEX_DESC_TYPE is NULL.
1527 The GNAT encoding used to describle the array index type evolved a bit.
1528 Initially, the information would be provided through the name of each
1529 field of the structure type only, while the type of these fields was
1530 described as unspecified and irrelevant. The debugger was then expected
1531 to perform a global type lookup using the name of that field in order
1532 to get access to the full index type description. Because these global
1533 lookups can be very expensive, the encoding was later enhanced to make
1534 the global lookup unnecessary by defining the field type as being
1535 the full index type description.
1537 The purpose of this routine is to allow us to support older versions
1538 of the compiler by detecting the use of the older encoding, and by
1539 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1540 we essentially replace each field's meaningless type by the associated
1544 ada_fixup_array_indexes_type (struct type
*index_desc_type
)
1548 if (index_desc_type
== NULL
)
1550 gdb_assert (TYPE_NFIELDS (index_desc_type
) > 0);
1552 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1553 to check one field only, no need to check them all). If not, return
1556 If our INDEX_DESC_TYPE was generated using the older encoding,
1557 the field type should be a meaningless integer type whose name
1558 is not equal to the field name. */
1559 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type
, 0)) != NULL
1560 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type
, 0)),
1561 TYPE_FIELD_NAME (index_desc_type
, 0)) == 0)
1564 /* Fixup each field of INDEX_DESC_TYPE. */
1565 for (i
= 0; i
< TYPE_NFIELDS (index_desc_type
); i
++)
1567 const char *name
= TYPE_FIELD_NAME (index_desc_type
, i
);
1568 struct type
*raw_type
= ada_check_typedef (ada_find_any_type (name
));
1571 TYPE_FIELD_TYPE (index_desc_type
, i
) = raw_type
;
1575 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1577 static const char *bound_name
[] = {
1578 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1579 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1582 /* Maximum number of array dimensions we are prepared to handle. */
1584 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1587 /* The desc_* routines return primitive portions of array descriptors
1590 /* The descriptor or array type, if any, indicated by TYPE; removes
1591 level of indirection, if needed. */
1593 static struct type
*
1594 desc_base_type (struct type
*type
)
1598 type
= ada_check_typedef (type
);
1599 if (TYPE_CODE (type
) == TYPE_CODE_TYPEDEF
)
1600 type
= ada_typedef_target_type (type
);
1603 && (TYPE_CODE (type
) == TYPE_CODE_PTR
1604 || TYPE_CODE (type
) == TYPE_CODE_REF
))
1605 return ada_check_typedef (TYPE_TARGET_TYPE (type
));
1610 /* True iff TYPE indicates a "thin" array pointer type. */
1613 is_thin_pntr (struct type
*type
)
1616 is_suffix (ada_type_name (desc_base_type (type
)), "___XUT")
1617 || is_suffix (ada_type_name (desc_base_type (type
)), "___XUT___XVE");
1620 /* The descriptor type for thin pointer type TYPE. */
1622 static struct type
*
1623 thin_descriptor_type (struct type
*type
)
1625 struct type
*base_type
= desc_base_type (type
);
1627 if (base_type
== NULL
)
1629 if (is_suffix (ada_type_name (base_type
), "___XVE"))
1633 struct type
*alt_type
= ada_find_parallel_type (base_type
, "___XVE");
1635 if (alt_type
== NULL
)
1642 /* A pointer to the array data for thin-pointer value VAL. */
1644 static struct value
*
1645 thin_data_pntr (struct value
*val
)
1647 struct type
*type
= ada_check_typedef (value_type (val
));
1648 struct type
*data_type
= desc_data_target_type (thin_descriptor_type (type
));
1650 data_type
= lookup_pointer_type (data_type
);
1652 if (TYPE_CODE (type
) == TYPE_CODE_PTR
)
1653 return value_cast (data_type
, value_copy (val
));
1655 return value_from_longest (data_type
, value_address (val
));
1658 /* True iff TYPE indicates a "thick" array pointer type. */
1661 is_thick_pntr (struct type
*type
)
1663 type
= desc_base_type (type
);
1664 return (type
!= NULL
&& TYPE_CODE (type
) == TYPE_CODE_STRUCT
1665 && lookup_struct_elt_type (type
, "P_BOUNDS", 1) != NULL
);
1668 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1669 pointer to one, the type of its bounds data; otherwise, NULL. */
1671 static struct type
*
1672 desc_bounds_type (struct type
*type
)
1676 type
= desc_base_type (type
);
1680 else if (is_thin_pntr (type
))
1682 type
= thin_descriptor_type (type
);
1685 r
= lookup_struct_elt_type (type
, "BOUNDS", 1);
1687 return ada_check_typedef (r
);
1689 else if (TYPE_CODE (type
) == TYPE_CODE_STRUCT
)
1691 r
= lookup_struct_elt_type (type
, "P_BOUNDS", 1);
1693 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r
)));
1698 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1699 one, a pointer to its bounds data. Otherwise NULL. */
1701 static struct value
*
1702 desc_bounds (struct value
*arr
)
1704 struct type
*type
= ada_check_typedef (value_type (arr
));
1706 if (is_thin_pntr (type
))
1708 struct type
*bounds_type
=
1709 desc_bounds_type (thin_descriptor_type (type
));
1712 if (bounds_type
== NULL
)
1713 error (_("Bad GNAT array descriptor"));
1715 /* NOTE: The following calculation is not really kosher, but
1716 since desc_type is an XVE-encoded type (and shouldn't be),
1717 the correct calculation is a real pain. FIXME (and fix GCC). */
1718 if (TYPE_CODE (type
) == TYPE_CODE_PTR
)
1719 addr
= value_as_long (arr
);
1721 addr
= value_address (arr
);
1724 value_from_longest (lookup_pointer_type (bounds_type
),
1725 addr
- TYPE_LENGTH (bounds_type
));
1728 else if (is_thick_pntr (type
))
1730 struct value
*p_bounds
= value_struct_elt (&arr
, NULL
, "P_BOUNDS", NULL
,
1731 _("Bad GNAT array descriptor"));
1732 struct type
*p_bounds_type
= value_type (p_bounds
);
1735 && TYPE_CODE (p_bounds_type
) == TYPE_CODE_PTR
)
1737 struct type
*target_type
= TYPE_TARGET_TYPE (p_bounds_type
);
1739 if (TYPE_STUB (target_type
))
1740 p_bounds
= value_cast (lookup_pointer_type
1741 (ada_check_typedef (target_type
)),
1745 error (_("Bad GNAT array descriptor"));
1753 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1754 position of the field containing the address of the bounds data. */
1757 fat_pntr_bounds_bitpos (struct type
*type
)
1759 return TYPE_FIELD_BITPOS (desc_base_type (type
), 1);
1762 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1763 size of the field containing the address of the bounds data. */
1766 fat_pntr_bounds_bitsize (struct type
*type
)
1768 type
= desc_base_type (type
);
1770 if (TYPE_FIELD_BITSIZE (type
, 1) > 0)
1771 return TYPE_FIELD_BITSIZE (type
, 1);
1773 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type
, 1)));
1776 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1777 pointer to one, the type of its array data (a array-with-no-bounds type);
1778 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1781 static struct type
*
1782 desc_data_target_type (struct type
*type
)
1784 type
= desc_base_type (type
);
1786 /* NOTE: The following is bogus; see comment in desc_bounds. */
1787 if (is_thin_pntr (type
))
1788 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type
), 1));
1789 else if (is_thick_pntr (type
))
1791 struct type
*data_type
= lookup_struct_elt_type (type
, "P_ARRAY", 1);
1794 && TYPE_CODE (ada_check_typedef (data_type
)) == TYPE_CODE_PTR
)
1795 return ada_check_typedef (TYPE_TARGET_TYPE (data_type
));
1801 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1804 static struct value
*
1805 desc_data (struct value
*arr
)
1807 struct type
*type
= value_type (arr
);
1809 if (is_thin_pntr (type
))
1810 return thin_data_pntr (arr
);
1811 else if (is_thick_pntr (type
))
1812 return value_struct_elt (&arr
, NULL
, "P_ARRAY", NULL
,
1813 _("Bad GNAT array descriptor"));
1819 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1820 position of the field containing the address of the data. */
1823 fat_pntr_data_bitpos (struct type
*type
)
1825 return TYPE_FIELD_BITPOS (desc_base_type (type
), 0);
1828 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1829 size of the field containing the address of the data. */
1832 fat_pntr_data_bitsize (struct type
*type
)
1834 type
= desc_base_type (type
);
1836 if (TYPE_FIELD_BITSIZE (type
, 0) > 0)
1837 return TYPE_FIELD_BITSIZE (type
, 0);
1839 return TARGET_CHAR_BIT
* TYPE_LENGTH (TYPE_FIELD_TYPE (type
, 0));
1842 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1843 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1844 bound, if WHICH is 1. The first bound is I=1. */
1846 static struct value
*
1847 desc_one_bound (struct value
*bounds
, int i
, int which
)
1849 return value_struct_elt (&bounds
, NULL
, bound_name
[2 * i
+ which
- 2], NULL
,
1850 _("Bad GNAT array descriptor bounds"));
1853 /* If BOUNDS is an array-bounds structure type, return the bit position
1854 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1855 bound, if WHICH is 1. The first bound is I=1. */
1858 desc_bound_bitpos (struct type
*type
, int i
, int which
)
1860 return TYPE_FIELD_BITPOS (desc_base_type (type
), 2 * i
+ which
- 2);
1863 /* If BOUNDS is an array-bounds structure type, return the bit field size
1864 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1865 bound, if WHICH is 1. The first bound is I=1. */
1868 desc_bound_bitsize (struct type
*type
, int i
, int which
)
1870 type
= desc_base_type (type
);
1872 if (TYPE_FIELD_BITSIZE (type
, 2 * i
+ which
- 2) > 0)
1873 return TYPE_FIELD_BITSIZE (type
, 2 * i
+ which
- 2);
1875 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type
, 2 * i
+ which
- 2));
1878 /* If TYPE is the type of an array-bounds structure, the type of its
1879 Ith bound (numbering from 1). Otherwise, NULL. */
1881 static struct type
*
1882 desc_index_type (struct type
*type
, int i
)
1884 type
= desc_base_type (type
);
1886 if (TYPE_CODE (type
) == TYPE_CODE_STRUCT
)
1887 return lookup_struct_elt_type (type
, bound_name
[2 * i
- 2], 1);
1892 /* The number of index positions in the array-bounds type TYPE.
1893 Return 0 if TYPE is NULL. */
1896 desc_arity (struct type
*type
)
1898 type
= desc_base_type (type
);
1901 return TYPE_NFIELDS (type
) / 2;
1905 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1906 an array descriptor type (representing an unconstrained array
1910 ada_is_direct_array_type (struct type
*type
)
1914 type
= ada_check_typedef (type
);
1915 return (TYPE_CODE (type
) == TYPE_CODE_ARRAY
1916 || ada_is_array_descriptor_type (type
));
1919 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1923 ada_is_array_type (struct type
*type
)
1926 && (TYPE_CODE (type
) == TYPE_CODE_PTR
1927 || TYPE_CODE (type
) == TYPE_CODE_REF
))
1928 type
= TYPE_TARGET_TYPE (type
);
1929 return ada_is_direct_array_type (type
);
1932 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1935 ada_is_simple_array_type (struct type
*type
)
1939 type
= ada_check_typedef (type
);
1940 return (TYPE_CODE (type
) == TYPE_CODE_ARRAY
1941 || (TYPE_CODE (type
) == TYPE_CODE_PTR
1942 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type
)))
1943 == TYPE_CODE_ARRAY
));
1946 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1949 ada_is_array_descriptor_type (struct type
*type
)
1951 struct type
*data_type
= desc_data_target_type (type
);
1955 type
= ada_check_typedef (type
);
1956 return (data_type
!= NULL
1957 && TYPE_CODE (data_type
) == TYPE_CODE_ARRAY
1958 && desc_arity (desc_bounds_type (type
)) > 0);
1961 /* Non-zero iff type is a partially mal-formed GNAT array
1962 descriptor. FIXME: This is to compensate for some problems with
1963 debugging output from GNAT. Re-examine periodically to see if it
1967 ada_is_bogus_array_descriptor (struct type
*type
)
1971 && TYPE_CODE (type
) == TYPE_CODE_STRUCT
1972 && (lookup_struct_elt_type (type
, "P_BOUNDS", 1) != NULL
1973 || lookup_struct_elt_type (type
, "P_ARRAY", 1) != NULL
)
1974 && !ada_is_array_descriptor_type (type
);
1978 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1979 (fat pointer) returns the type of the array data described---specifically,
1980 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1981 in from the descriptor; otherwise, they are left unspecified. If
1982 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1983 returns NULL. The result is simply the type of ARR if ARR is not
1986 ada_type_of_array (struct value
*arr
, int bounds
)
1988 if (ada_is_constrained_packed_array_type (value_type (arr
)))
1989 return decode_constrained_packed_array_type (value_type (arr
));
1991 if (!ada_is_array_descriptor_type (value_type (arr
)))
1992 return value_type (arr
);
1996 struct type
*array_type
=
1997 ada_check_typedef (desc_data_target_type (value_type (arr
)));
1999 if (ada_is_unconstrained_packed_array_type (value_type (arr
)))
2000 TYPE_FIELD_BITSIZE (array_type
, 0) =
2001 decode_packed_array_bitsize (value_type (arr
));
2007 struct type
*elt_type
;
2009 struct value
*descriptor
;
2011 elt_type
= ada_array_element_type (value_type (arr
), -1);
2012 arity
= ada_array_arity (value_type (arr
));
2014 if (elt_type
== NULL
|| arity
== 0)
2015 return ada_check_typedef (value_type (arr
));
2017 descriptor
= desc_bounds (arr
);
2018 if (value_as_long (descriptor
) == 0)
2022 struct type
*range_type
= alloc_type_copy (value_type (arr
));
2023 struct type
*array_type
= alloc_type_copy (value_type (arr
));
2024 struct value
*low
= desc_one_bound (descriptor
, arity
, 0);
2025 struct value
*high
= desc_one_bound (descriptor
, arity
, 1);
2028 create_static_range_type (range_type
, value_type (low
),
2029 longest_to_int (value_as_long (low
)),
2030 longest_to_int (value_as_long (high
)));
2031 elt_type
= create_array_type (array_type
, elt_type
, range_type
);
2033 if (ada_is_unconstrained_packed_array_type (value_type (arr
)))
2035 /* We need to store the element packed bitsize, as well as
2036 recompute the array size, because it was previously
2037 computed based on the unpacked element size. */
2038 LONGEST lo
= value_as_long (low
);
2039 LONGEST hi
= value_as_long (high
);
2041 TYPE_FIELD_BITSIZE (elt_type
, 0) =
2042 decode_packed_array_bitsize (value_type (arr
));
2043 /* If the array has no element, then the size is already
2044 zero, and does not need to be recomputed. */
2048 (hi
- lo
+ 1) * TYPE_FIELD_BITSIZE (elt_type
, 0);
2050 TYPE_LENGTH (array_type
) = (array_bitsize
+ 7) / 8;
2055 return lookup_pointer_type (elt_type
);
2059 /* If ARR does not represent an array, returns ARR unchanged.
2060 Otherwise, returns either a standard GDB array with bounds set
2061 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
2062 GDB array. Returns NULL if ARR is a null fat pointer. */
2065 ada_coerce_to_simple_array_ptr (struct value
*arr
)
2067 if (ada_is_array_descriptor_type (value_type (arr
)))
2069 struct type
*arrType
= ada_type_of_array (arr
, 1);
2071 if (arrType
== NULL
)
2073 return value_cast (arrType
, value_copy (desc_data (arr
)));
2075 else if (ada_is_constrained_packed_array_type (value_type (arr
)))
2076 return decode_constrained_packed_array (arr
);
2081 /* If ARR does not represent an array, returns ARR unchanged.
2082 Otherwise, returns a standard GDB array describing ARR (which may
2083 be ARR itself if it already is in the proper form). */
2086 ada_coerce_to_simple_array (struct value
*arr
)
2088 if (ada_is_array_descriptor_type (value_type (arr
)))
2090 struct value
*arrVal
= ada_coerce_to_simple_array_ptr (arr
);
2093 error (_("Bounds unavailable for null array pointer."));
2094 ada_ensure_varsize_limit (TYPE_TARGET_TYPE (value_type (arrVal
)));
2095 return value_ind (arrVal
);
2097 else if (ada_is_constrained_packed_array_type (value_type (arr
)))
2098 return decode_constrained_packed_array (arr
);
2103 /* If TYPE represents a GNAT array type, return it translated to an
2104 ordinary GDB array type (possibly with BITSIZE fields indicating
2105 packing). For other types, is the identity. */
2108 ada_coerce_to_simple_array_type (struct type
*type
)
2110 if (ada_is_constrained_packed_array_type (type
))
2111 return decode_constrained_packed_array_type (type
);
2113 if (ada_is_array_descriptor_type (type
))
2114 return ada_check_typedef (desc_data_target_type (type
));
2119 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
2122 ada_is_packed_array_type (struct type
*type
)
2126 type
= desc_base_type (type
);
2127 type
= ada_check_typedef (type
);
2129 ada_type_name (type
) != NULL
2130 && strstr (ada_type_name (type
), "___XP") != NULL
;
2133 /* Non-zero iff TYPE represents a standard GNAT constrained
2134 packed-array type. */
2137 ada_is_constrained_packed_array_type (struct type
*type
)
2139 return ada_is_packed_array_type (type
)
2140 && !ada_is_array_descriptor_type (type
);
2143 /* Non-zero iff TYPE represents an array descriptor for a
2144 unconstrained packed-array type. */
2147 ada_is_unconstrained_packed_array_type (struct type
*type
)
2149 return ada_is_packed_array_type (type
)
2150 && ada_is_array_descriptor_type (type
);
2153 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
2154 return the size of its elements in bits. */
2157 decode_packed_array_bitsize (struct type
*type
)
2159 const char *raw_name
;
2163 /* Access to arrays implemented as fat pointers are encoded as a typedef
2164 of the fat pointer type. We need the name of the fat pointer type
2165 to do the decoding, so strip the typedef layer. */
2166 if (TYPE_CODE (type
) == TYPE_CODE_TYPEDEF
)
2167 type
= ada_typedef_target_type (type
);
2169 raw_name
= ada_type_name (ada_check_typedef (type
));
2171 raw_name
= ada_type_name (desc_base_type (type
));
2176 tail
= strstr (raw_name
, "___XP");
2177 gdb_assert (tail
!= NULL
);
2179 if (sscanf (tail
+ sizeof ("___XP") - 1, "%ld", &bits
) != 1)
2182 (_("could not understand bit size information on packed array"));
2189 /* Given that TYPE is a standard GDB array type with all bounds filled
2190 in, and that the element size of its ultimate scalar constituents
2191 (that is, either its elements, or, if it is an array of arrays, its
2192 elements' elements, etc.) is *ELT_BITS, return an identical type,
2193 but with the bit sizes of its elements (and those of any
2194 constituent arrays) recorded in the BITSIZE components of its
2195 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2198 Note that, for arrays whose index type has an XA encoding where
2199 a bound references a record discriminant, getting that discriminant,
2200 and therefore the actual value of that bound, is not possible
2201 because none of the given parameters gives us access to the record.
2202 This function assumes that it is OK in the context where it is being
2203 used to return an array whose bounds are still dynamic and where
2204 the length is arbitrary. */
2206 static struct type
*
2207 constrained_packed_array_type (struct type
*type
, long *elt_bits
)
2209 struct type
*new_elt_type
;
2210 struct type
*new_type
;
2211 struct type
*index_type_desc
;
2212 struct type
*index_type
;
2213 LONGEST low_bound
, high_bound
;
2215 type
= ada_check_typedef (type
);
2216 if (TYPE_CODE (type
) != TYPE_CODE_ARRAY
)
2219 index_type_desc
= ada_find_parallel_type (type
, "___XA");
2220 if (index_type_desc
)
2221 index_type
= to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc
, 0),
2224 index_type
= TYPE_INDEX_TYPE (type
);
2226 new_type
= alloc_type_copy (type
);
2228 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type
)),
2230 create_array_type (new_type
, new_elt_type
, index_type
);
2231 TYPE_FIELD_BITSIZE (new_type
, 0) = *elt_bits
;
2232 TYPE_NAME (new_type
) = ada_type_name (type
);
2234 if ((TYPE_CODE (check_typedef (index_type
)) == TYPE_CODE_RANGE
2235 && is_dynamic_type (check_typedef (index_type
)))
2236 || get_discrete_bounds (index_type
, &low_bound
, &high_bound
) < 0)
2237 low_bound
= high_bound
= 0;
2238 if (high_bound
< low_bound
)
2239 *elt_bits
= TYPE_LENGTH (new_type
) = 0;
2242 *elt_bits
*= (high_bound
- low_bound
+ 1);
2243 TYPE_LENGTH (new_type
) =
2244 (*elt_bits
+ HOST_CHAR_BIT
- 1) / HOST_CHAR_BIT
;
2247 TYPE_FIXED_INSTANCE (new_type
) = 1;
2251 /* The array type encoded by TYPE, where
2252 ada_is_constrained_packed_array_type (TYPE). */
2254 static struct type
*
2255 decode_constrained_packed_array_type (struct type
*type
)
2257 const char *raw_name
= ada_type_name (ada_check_typedef (type
));
2260 struct type
*shadow_type
;
2264 raw_name
= ada_type_name (desc_base_type (type
));
2269 name
= (char *) alloca (strlen (raw_name
) + 1);
2270 tail
= strstr (raw_name
, "___XP");
2271 type
= desc_base_type (type
);
2273 memcpy (name
, raw_name
, tail
- raw_name
);
2274 name
[tail
- raw_name
] = '\000';
2276 shadow_type
= ada_find_parallel_type_with_name (type
, name
);
2278 if (shadow_type
== NULL
)
2280 lim_warning (_("could not find bounds information on packed array"));
2283 shadow_type
= check_typedef (shadow_type
);
2285 if (TYPE_CODE (shadow_type
) != TYPE_CODE_ARRAY
)
2287 lim_warning (_("could not understand bounds "
2288 "information on packed array"));
2292 bits
= decode_packed_array_bitsize (type
);
2293 return constrained_packed_array_type (shadow_type
, &bits
);
2296 /* Given that ARR is a struct value *indicating a GNAT constrained packed
2297 array, returns a simple array that denotes that array. Its type is a
2298 standard GDB array type except that the BITSIZEs of the array
2299 target types are set to the number of bits in each element, and the
2300 type length is set appropriately. */
2302 static struct value
*
2303 decode_constrained_packed_array (struct value
*arr
)
2307 /* If our value is a pointer, then dereference it. Likewise if
2308 the value is a reference. Make sure that this operation does not
2309 cause the target type to be fixed, as this would indirectly cause
2310 this array to be decoded. The rest of the routine assumes that
2311 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2312 and "value_ind" routines to perform the dereferencing, as opposed
2313 to using "ada_coerce_ref" or "ada_value_ind". */
2314 arr
= coerce_ref (arr
);
2315 if (TYPE_CODE (ada_check_typedef (value_type (arr
))) == TYPE_CODE_PTR
)
2316 arr
= value_ind (arr
);
2318 type
= decode_constrained_packed_array_type (value_type (arr
));
2321 error (_("can't unpack array"));
2325 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr
)))
2326 && ada_is_modular_type (value_type (arr
)))
2328 /* This is a (right-justified) modular type representing a packed
2329 array with no wrapper. In order to interpret the value through
2330 the (left-justified) packed array type we just built, we must
2331 first left-justify it. */
2332 int bit_size
, bit_pos
;
2335 mod
= ada_modulus (value_type (arr
)) - 1;
2342 bit_pos
= HOST_CHAR_BIT
* TYPE_LENGTH (value_type (arr
)) - bit_size
;
2343 arr
= ada_value_primitive_packed_val (arr
, NULL
,
2344 bit_pos
/ HOST_CHAR_BIT
,
2345 bit_pos
% HOST_CHAR_BIT
,
2350 return coerce_unspec_val_to_type (arr
, type
);
2354 /* The value of the element of packed array ARR at the ARITY indices
2355 given in IND. ARR must be a simple array. */
2357 static struct value
*
2358 value_subscript_packed (struct value
*arr
, int arity
, struct value
**ind
)
2361 int bits
, elt_off
, bit_off
;
2362 long elt_total_bit_offset
;
2363 struct type
*elt_type
;
2367 elt_total_bit_offset
= 0;
2368 elt_type
= ada_check_typedef (value_type (arr
));
2369 for (i
= 0; i
< arity
; i
+= 1)
2371 if (TYPE_CODE (elt_type
) != TYPE_CODE_ARRAY
2372 || TYPE_FIELD_BITSIZE (elt_type
, 0) == 0)
2374 (_("attempt to do packed indexing of "
2375 "something other than a packed array"));
2378 struct type
*range_type
= TYPE_INDEX_TYPE (elt_type
);
2379 LONGEST lowerbound
, upperbound
;
2382 if (get_discrete_bounds (range_type
, &lowerbound
, &upperbound
) < 0)
2384 lim_warning (_("don't know bounds of array"));
2385 lowerbound
= upperbound
= 0;
2388 idx
= pos_atr (ind
[i
]);
2389 if (idx
< lowerbound
|| idx
> upperbound
)
2390 lim_warning (_("packed array index %ld out of bounds"),
2392 bits
= TYPE_FIELD_BITSIZE (elt_type
, 0);
2393 elt_total_bit_offset
+= (idx
- lowerbound
) * bits
;
2394 elt_type
= ada_check_typedef (TYPE_TARGET_TYPE (elt_type
));
2397 elt_off
= elt_total_bit_offset
/ HOST_CHAR_BIT
;
2398 bit_off
= elt_total_bit_offset
% HOST_CHAR_BIT
;
2400 v
= ada_value_primitive_packed_val (arr
, NULL
, elt_off
, bit_off
,
2405 /* Non-zero iff TYPE includes negative integer values. */
2408 has_negatives (struct type
*type
)
2410 switch (TYPE_CODE (type
))
2415 return !TYPE_UNSIGNED (type
);
2416 case TYPE_CODE_RANGE
:
2417 return TYPE_LOW_BOUND (type
) < 0;
2421 /* With SRC being a buffer containing BIT_SIZE bits of data at BIT_OFFSET,
2422 unpack that data into UNPACKED. UNPACKED_LEN is the size in bytes of
2423 the unpacked buffer.
2425 The size of the unpacked buffer (UNPACKED_LEN) is expected to be large
2426 enough to contain at least BIT_OFFSET bits. If not, an error is raised.
2428 IS_BIG_ENDIAN is nonzero if the data is stored in big endian mode,
2431 IS_SIGNED_TYPE is nonzero if the data corresponds to a signed type.
2433 IS_SCALAR is nonzero if the data corresponds to a signed type. */
2436 ada_unpack_from_contents (const gdb_byte
*src
, int bit_offset
, int bit_size
,
2437 gdb_byte
*unpacked
, int unpacked_len
,
2438 int is_big_endian
, int is_signed_type
,
2441 int src_len
= (bit_size
+ bit_offset
+ HOST_CHAR_BIT
- 1) / 8;
2442 int src_idx
; /* Index into the source area */
2443 int src_bytes_left
; /* Number of source bytes left to process. */
2444 int srcBitsLeft
; /* Number of source bits left to move */
2445 int unusedLS
; /* Number of bits in next significant
2446 byte of source that are unused */
2448 int unpacked_idx
; /* Index into the unpacked buffer */
2449 int unpacked_bytes_left
; /* Number of bytes left to set in unpacked. */
2451 unsigned long accum
; /* Staging area for bits being transferred */
2452 int accumSize
; /* Number of meaningful bits in accum */
2455 /* Transmit bytes from least to most significant; delta is the direction
2456 the indices move. */
2457 int delta
= is_big_endian
? -1 : 1;
2459 /* Make sure that unpacked is large enough to receive the BIT_SIZE
2461 if ((bit_size
+ HOST_CHAR_BIT
- 1) / HOST_CHAR_BIT
> unpacked_len
)
2462 error (_("Cannot unpack %d bits into buffer of %d bytes"),
2463 bit_size
, unpacked_len
);
2465 srcBitsLeft
= bit_size
;
2466 src_bytes_left
= src_len
;
2467 unpacked_bytes_left
= unpacked_len
;
2472 src_idx
= src_len
- 1;
2474 && ((src
[0] << bit_offset
) & (1 << (HOST_CHAR_BIT
- 1))))
2478 (HOST_CHAR_BIT
- (bit_size
+ bit_offset
) % HOST_CHAR_BIT
)
2484 unpacked_idx
= unpacked_len
- 1;
2488 /* Non-scalar values must be aligned at a byte boundary... */
2490 (HOST_CHAR_BIT
- bit_size
% HOST_CHAR_BIT
) % HOST_CHAR_BIT
;
2491 /* ... And are placed at the beginning (most-significant) bytes
2493 unpacked_idx
= (bit_size
+ HOST_CHAR_BIT
- 1) / HOST_CHAR_BIT
- 1;
2494 unpacked_bytes_left
= unpacked_idx
+ 1;
2499 int sign_bit_offset
= (bit_size
+ bit_offset
- 1) % 8;
2501 src_idx
= unpacked_idx
= 0;
2502 unusedLS
= bit_offset
;
2505 if (is_signed_type
&& (src
[src_len
- 1] & (1 << sign_bit_offset
)))
2510 while (src_bytes_left
> 0)
2512 /* Mask for removing bits of the next source byte that are not
2513 part of the value. */
2514 unsigned int unusedMSMask
=
2515 (1 << (srcBitsLeft
>= HOST_CHAR_BIT
? HOST_CHAR_BIT
: srcBitsLeft
)) -
2517 /* Sign-extend bits for this byte. */
2518 unsigned int signMask
= sign
& ~unusedMSMask
;
2521 (((src
[src_idx
] >> unusedLS
) & unusedMSMask
) | signMask
) << accumSize
;
2522 accumSize
+= HOST_CHAR_BIT
- unusedLS
;
2523 if (accumSize
>= HOST_CHAR_BIT
)
2525 unpacked
[unpacked_idx
] = accum
& ~(~0UL << HOST_CHAR_BIT
);
2526 accumSize
-= HOST_CHAR_BIT
;
2527 accum
>>= HOST_CHAR_BIT
;
2528 unpacked_bytes_left
-= 1;
2529 unpacked_idx
+= delta
;
2531 srcBitsLeft
-= HOST_CHAR_BIT
- unusedLS
;
2533 src_bytes_left
-= 1;
2536 while (unpacked_bytes_left
> 0)
2538 accum
|= sign
<< accumSize
;
2539 unpacked
[unpacked_idx
] = accum
& ~(~0UL << HOST_CHAR_BIT
);
2540 accumSize
-= HOST_CHAR_BIT
;
2543 accum
>>= HOST_CHAR_BIT
;
2544 unpacked_bytes_left
-= 1;
2545 unpacked_idx
+= delta
;
2549 /* Create a new value of type TYPE from the contents of OBJ starting
2550 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2551 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2552 assigning through the result will set the field fetched from.
2553 VALADDR is ignored unless OBJ is NULL, in which case,
2554 VALADDR+OFFSET must address the start of storage containing the
2555 packed value. The value returned in this case is never an lval.
2556 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2559 ada_value_primitive_packed_val (struct value
*obj
, const gdb_byte
*valaddr
,
2560 long offset
, int bit_offset
, int bit_size
,
2564 const gdb_byte
*src
; /* First byte containing data to unpack */
2566 const int is_scalar
= is_scalar_type (type
);
2567 const int is_big_endian
= gdbarch_bits_big_endian (get_type_arch (type
));
2568 gdb::byte_vector staging
;
2570 type
= ada_check_typedef (type
);
2573 src
= valaddr
+ offset
;
2575 src
= value_contents (obj
) + offset
;
2577 if (is_dynamic_type (type
))
2579 /* The length of TYPE might by dynamic, so we need to resolve
2580 TYPE in order to know its actual size, which we then use
2581 to create the contents buffer of the value we return.
2582 The difficulty is that the data containing our object is
2583 packed, and therefore maybe not at a byte boundary. So, what
2584 we do, is unpack the data into a byte-aligned buffer, and then
2585 use that buffer as our object's value for resolving the type. */
2586 int staging_len
= (bit_size
+ HOST_CHAR_BIT
- 1) / HOST_CHAR_BIT
;
2587 staging
.resize (staging_len
);
2589 ada_unpack_from_contents (src
, bit_offset
, bit_size
,
2590 staging
.data (), staging
.size (),
2591 is_big_endian
, has_negatives (type
),
2593 type
= resolve_dynamic_type (type
, staging
.data (), 0);
2594 if (TYPE_LENGTH (type
) < (bit_size
+ HOST_CHAR_BIT
- 1) / HOST_CHAR_BIT
)
2596 /* This happens when the length of the object is dynamic,
2597 and is actually smaller than the space reserved for it.
2598 For instance, in an array of variant records, the bit_size
2599 we're given is the array stride, which is constant and
2600 normally equal to the maximum size of its element.
2601 But, in reality, each element only actually spans a portion
2603 bit_size
= TYPE_LENGTH (type
) * HOST_CHAR_BIT
;
2609 v
= allocate_value (type
);
2610 src
= valaddr
+ offset
;
2612 else if (VALUE_LVAL (obj
) == lval_memory
&& value_lazy (obj
))
2614 int src_len
= (bit_size
+ bit_offset
+ HOST_CHAR_BIT
- 1) / 8;
2617 v
= value_at (type
, value_address (obj
) + offset
);
2618 buf
= (gdb_byte
*) alloca (src_len
);
2619 read_memory (value_address (v
), buf
, src_len
);
2624 v
= allocate_value (type
);
2625 src
= value_contents (obj
) + offset
;
2630 long new_offset
= offset
;
2632 set_value_component_location (v
, obj
);
2633 set_value_bitpos (v
, bit_offset
+ value_bitpos (obj
));
2634 set_value_bitsize (v
, bit_size
);
2635 if (value_bitpos (v
) >= HOST_CHAR_BIT
)
2638 set_value_bitpos (v
, value_bitpos (v
) - HOST_CHAR_BIT
);
2640 set_value_offset (v
, new_offset
);
2642 /* Also set the parent value. This is needed when trying to
2643 assign a new value (in inferior memory). */
2644 set_value_parent (v
, obj
);
2647 set_value_bitsize (v
, bit_size
);
2648 unpacked
= value_contents_writeable (v
);
2652 memset (unpacked
, 0, TYPE_LENGTH (type
));
2656 if (staging
.size () == TYPE_LENGTH (type
))
2658 /* Small short-cut: If we've unpacked the data into a buffer
2659 of the same size as TYPE's length, then we can reuse that,
2660 instead of doing the unpacking again. */
2661 memcpy (unpacked
, staging
.data (), staging
.size ());
2664 ada_unpack_from_contents (src
, bit_offset
, bit_size
,
2665 unpacked
, TYPE_LENGTH (type
),
2666 is_big_endian
, has_negatives (type
), is_scalar
);
2671 /* Store the contents of FROMVAL into the location of TOVAL.
2672 Return a new value with the location of TOVAL and contents of
2673 FROMVAL. Handles assignment into packed fields that have
2674 floating-point or non-scalar types. */
2676 static struct value
*
2677 ada_value_assign (struct value
*toval
, struct value
*fromval
)
2679 struct type
*type
= value_type (toval
);
2680 int bits
= value_bitsize (toval
);
2682 toval
= ada_coerce_ref (toval
);
2683 fromval
= ada_coerce_ref (fromval
);
2685 if (ada_is_direct_array_type (value_type (toval
)))
2686 toval
= ada_coerce_to_simple_array (toval
);
2687 if (ada_is_direct_array_type (value_type (fromval
)))
2688 fromval
= ada_coerce_to_simple_array (fromval
);
2690 if (!deprecated_value_modifiable (toval
))
2691 error (_("Left operand of assignment is not a modifiable lvalue."));
2693 if (VALUE_LVAL (toval
) == lval_memory
2695 && (TYPE_CODE (type
) == TYPE_CODE_FLT
2696 || TYPE_CODE (type
) == TYPE_CODE_STRUCT
))
2698 int len
= (value_bitpos (toval
)
2699 + bits
+ HOST_CHAR_BIT
- 1) / HOST_CHAR_BIT
;
2701 gdb_byte
*buffer
= (gdb_byte
*) alloca (len
);
2703 CORE_ADDR to_addr
= value_address (toval
);
2705 if (TYPE_CODE (type
) == TYPE_CODE_FLT
)
2706 fromval
= value_cast (type
, fromval
);
2708 read_memory (to_addr
, buffer
, len
);
2709 from_size
= value_bitsize (fromval
);
2711 from_size
= TYPE_LENGTH (value_type (fromval
)) * TARGET_CHAR_BIT
;
2712 if (gdbarch_bits_big_endian (get_type_arch (type
)))
2713 copy_bitwise (buffer
, value_bitpos (toval
),
2714 value_contents (fromval
), from_size
- bits
, bits
, 1);
2716 copy_bitwise (buffer
, value_bitpos (toval
),
2717 value_contents (fromval
), 0, bits
, 0);
2718 write_memory_with_notification (to_addr
, buffer
, len
);
2720 val
= value_copy (toval
);
2721 memcpy (value_contents_raw (val
), value_contents (fromval
),
2722 TYPE_LENGTH (type
));
2723 deprecated_set_value_type (val
, type
);
2728 return value_assign (toval
, fromval
);
2732 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2733 CONTAINER, assign the contents of VAL to COMPONENTS's place in
2734 CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2735 COMPONENT, and not the inferior's memory. The current contents
2736 of COMPONENT are ignored.
2738 Although not part of the initial design, this function also works
2739 when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER
2740 had a null address, and COMPONENT had an address which is equal to
2741 its offset inside CONTAINER. */
2744 value_assign_to_component (struct value
*container
, struct value
*component
,
2747 LONGEST offset_in_container
=
2748 (LONGEST
) (value_address (component
) - value_address (container
));
2749 int bit_offset_in_container
=
2750 value_bitpos (component
) - value_bitpos (container
);
2753 val
= value_cast (value_type (component
), val
);
2755 if (value_bitsize (component
) == 0)
2756 bits
= TARGET_CHAR_BIT
* TYPE_LENGTH (value_type (component
));
2758 bits
= value_bitsize (component
);
2760 if (gdbarch_bits_big_endian (get_type_arch (value_type (container
))))
2764 if (is_scalar_type (check_typedef (value_type (component
))))
2766 = TYPE_LENGTH (value_type (component
)) * TARGET_CHAR_BIT
- bits
;
2769 copy_bitwise (value_contents_writeable (container
) + offset_in_container
,
2770 value_bitpos (container
) + bit_offset_in_container
,
2771 value_contents (val
), src_offset
, bits
, 1);
2774 copy_bitwise (value_contents_writeable (container
) + offset_in_container
,
2775 value_bitpos (container
) + bit_offset_in_container
,
2776 value_contents (val
), 0, bits
, 0);
2779 /* Determine if TYPE is an access to an unconstrained array. */
2782 ada_is_access_to_unconstrained_array (struct type
*type
)
2784 return (TYPE_CODE (type
) == TYPE_CODE_TYPEDEF
2785 && is_thick_pntr (ada_typedef_target_type (type
)));
2788 /* The value of the element of array ARR at the ARITY indices given in IND.
2789 ARR may be either a simple array, GNAT array descriptor, or pointer
2793 ada_value_subscript (struct value
*arr
, int arity
, struct value
**ind
)
2797 struct type
*elt_type
;
2799 elt
= ada_coerce_to_simple_array (arr
);
2801 elt_type
= ada_check_typedef (value_type (elt
));
2802 if (TYPE_CODE (elt_type
) == TYPE_CODE_ARRAY
2803 && TYPE_FIELD_BITSIZE (elt_type
, 0) > 0)
2804 return value_subscript_packed (elt
, arity
, ind
);
2806 for (k
= 0; k
< arity
; k
+= 1)
2808 struct type
*saved_elt_type
= TYPE_TARGET_TYPE (elt_type
);
2810 if (TYPE_CODE (elt_type
) != TYPE_CODE_ARRAY
)
2811 error (_("too many subscripts (%d expected)"), k
);
2813 elt
= value_subscript (elt
, pos_atr (ind
[k
]));
2815 if (ada_is_access_to_unconstrained_array (saved_elt_type
)
2816 && TYPE_CODE (value_type (elt
)) != TYPE_CODE_TYPEDEF
)
2818 /* The element is a typedef to an unconstrained array,
2819 except that the value_subscript call stripped the
2820 typedef layer. The typedef layer is GNAT's way to
2821 specify that the element is, at the source level, an
2822 access to the unconstrained array, rather than the
2823 unconstrained array. So, we need to restore that
2824 typedef layer, which we can do by forcing the element's
2825 type back to its original type. Otherwise, the returned
2826 value is going to be printed as the array, rather
2827 than as an access. Another symptom of the same issue
2828 would be that an expression trying to dereference the
2829 element would also be improperly rejected. */
2830 deprecated_set_value_type (elt
, saved_elt_type
);
2833 elt_type
= ada_check_typedef (value_type (elt
));
2839 /* Assuming ARR is a pointer to a GDB array, the value of the element
2840 of *ARR at the ARITY indices given in IND.
2841 Does not read the entire array into memory.
2843 Note: Unlike what one would expect, this function is used instead of
2844 ada_value_subscript for basically all non-packed array types. The reason
2845 for this is that a side effect of doing our own pointer arithmetics instead
2846 of relying on value_subscript is that there is no implicit typedef peeling.
2847 This is important for arrays of array accesses, where it allows us to
2848 preserve the fact that the array's element is an array access, where the
2849 access part os encoded in a typedef layer. */
2851 static struct value
*
2852 ada_value_ptr_subscript (struct value
*arr
, int arity
, struct value
**ind
)
2855 struct value
*array_ind
= ada_value_ind (arr
);
2857 = check_typedef (value_enclosing_type (array_ind
));
2859 if (TYPE_CODE (type
) == TYPE_CODE_ARRAY
2860 && TYPE_FIELD_BITSIZE (type
, 0) > 0)
2861 return value_subscript_packed (array_ind
, arity
, ind
);
2863 for (k
= 0; k
< arity
; k
+= 1)
2866 struct value
*lwb_value
;
2868 if (TYPE_CODE (type
) != TYPE_CODE_ARRAY
)
2869 error (_("too many subscripts (%d expected)"), k
);
2870 arr
= value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type
)),
2872 get_discrete_bounds (TYPE_INDEX_TYPE (type
), &lwb
, &upb
);
2873 lwb_value
= value_from_longest (value_type(ind
[k
]), lwb
);
2874 arr
= value_ptradd (arr
, pos_atr (ind
[k
]) - pos_atr (lwb_value
));
2875 type
= TYPE_TARGET_TYPE (type
);
2878 return value_ind (arr
);
2881 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2882 actual type of ARRAY_PTR is ignored), returns the Ada slice of
2883 HIGH'Pos-LOW'Pos+1 elements starting at index LOW. The lower bound of
2884 this array is LOW, as per Ada rules. */
2885 static struct value
*
2886 ada_value_slice_from_ptr (struct value
*array_ptr
, struct type
*type
,
2889 struct type
*type0
= ada_check_typedef (type
);
2890 struct type
*base_index_type
= TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0
));
2891 struct type
*index_type
2892 = create_static_range_type (NULL
, base_index_type
, low
, high
);
2893 struct type
*slice_type
= create_array_type_with_stride
2894 (NULL
, TYPE_TARGET_TYPE (type0
), index_type
,
2895 get_dyn_prop (DYN_PROP_BYTE_STRIDE
, type0
),
2896 TYPE_FIELD_BITSIZE (type0
, 0));
2897 int base_low
= ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0
));
2898 LONGEST base_low_pos
, low_pos
;
2901 if (!discrete_position (base_index_type
, low
, &low_pos
)
2902 || !discrete_position (base_index_type
, base_low
, &base_low_pos
))
2904 warning (_("unable to get positions in slice, use bounds instead"));
2906 base_low_pos
= base_low
;
2909 base
= value_as_address (array_ptr
)
2910 + ((low_pos
- base_low_pos
)
2911 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0
)));
2912 return value_at_lazy (slice_type
, base
);
2916 static struct value
*
2917 ada_value_slice (struct value
*array
, int low
, int high
)
2919 struct type
*type
= ada_check_typedef (value_type (array
));
2920 struct type
*base_index_type
= TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type
));
2921 struct type
*index_type
2922 = create_static_range_type (NULL
, TYPE_INDEX_TYPE (type
), low
, high
);
2923 struct type
*slice_type
= create_array_type_with_stride
2924 (NULL
, TYPE_TARGET_TYPE (type
), index_type
,
2925 get_dyn_prop (DYN_PROP_BYTE_STRIDE
, type
),
2926 TYPE_FIELD_BITSIZE (type
, 0));
2927 LONGEST low_pos
, high_pos
;
2929 if (!discrete_position (base_index_type
, low
, &low_pos
)
2930 || !discrete_position (base_index_type
, high
, &high_pos
))
2932 warning (_("unable to get positions in slice, use bounds instead"));
2937 return value_cast (slice_type
,
2938 value_slice (array
, low
, high_pos
- low_pos
+ 1));
2941 /* If type is a record type in the form of a standard GNAT array
2942 descriptor, returns the number of dimensions for type. If arr is a
2943 simple array, returns the number of "array of"s that prefix its
2944 type designation. Otherwise, returns 0. */
2947 ada_array_arity (struct type
*type
)
2954 type
= desc_base_type (type
);
2957 if (TYPE_CODE (type
) == TYPE_CODE_STRUCT
)
2958 return desc_arity (desc_bounds_type (type
));
2960 while (TYPE_CODE (type
) == TYPE_CODE_ARRAY
)
2963 type
= ada_check_typedef (TYPE_TARGET_TYPE (type
));
2969 /* If TYPE is a record type in the form of a standard GNAT array
2970 descriptor or a simple array type, returns the element type for
2971 TYPE after indexing by NINDICES indices, or by all indices if
2972 NINDICES is -1. Otherwise, returns NULL. */
2975 ada_array_element_type (struct type
*type
, int nindices
)
2977 type
= desc_base_type (type
);
2979 if (TYPE_CODE (type
) == TYPE_CODE_STRUCT
)
2982 struct type
*p_array_type
;
2984 p_array_type
= desc_data_target_type (type
);
2986 k
= ada_array_arity (type
);
2990 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2991 if (nindices
>= 0 && k
> nindices
)
2993 while (k
> 0 && p_array_type
!= NULL
)
2995 p_array_type
= ada_check_typedef (TYPE_TARGET_TYPE (p_array_type
));
2998 return p_array_type
;
3000 else if (TYPE_CODE (type
) == TYPE_CODE_ARRAY
)
3002 while (nindices
!= 0 && TYPE_CODE (type
) == TYPE_CODE_ARRAY
)
3004 type
= TYPE_TARGET_TYPE (type
);
3013 /* The type of nth index in arrays of given type (n numbering from 1).
3014 Does not examine memory. Throws an error if N is invalid or TYPE
3015 is not an array type. NAME is the name of the Ada attribute being
3016 evaluated ('range, 'first, 'last, or 'length); it is used in building
3017 the error message. */
3019 static struct type
*
3020 ada_index_type (struct type
*type
, int n
, const char *name
)
3022 struct type
*result_type
;
3024 type
= desc_base_type (type
);
3026 if (n
< 0 || n
> ada_array_arity (type
))
3027 error (_("invalid dimension number to '%s"), name
);
3029 if (ada_is_simple_array_type (type
))
3033 for (i
= 1; i
< n
; i
+= 1)
3034 type
= TYPE_TARGET_TYPE (type
);
3035 result_type
= TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type
));
3036 /* FIXME: The stabs type r(0,0);bound;bound in an array type
3037 has a target type of TYPE_CODE_UNDEF. We compensate here, but
3038 perhaps stabsread.c would make more sense. */
3039 if (result_type
&& TYPE_CODE (result_type
) == TYPE_CODE_UNDEF
)
3044 result_type
= desc_index_type (desc_bounds_type (type
), n
);
3045 if (result_type
== NULL
)
3046 error (_("attempt to take bound of something that is not an array"));
3052 /* Given that arr is an array type, returns the lower bound of the
3053 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
3054 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
3055 array-descriptor type. It works for other arrays with bounds supplied
3056 by run-time quantities other than discriminants. */
3059 ada_array_bound_from_type (struct type
*arr_type
, int n
, int which
)
3061 struct type
*type
, *index_type_desc
, *index_type
;
3064 gdb_assert (which
== 0 || which
== 1);
3066 if (ada_is_constrained_packed_array_type (arr_type
))
3067 arr_type
= decode_constrained_packed_array_type (arr_type
);
3069 if (arr_type
== NULL
|| !ada_is_simple_array_type (arr_type
))
3070 return (LONGEST
) - which
;
3072 if (TYPE_CODE (arr_type
) == TYPE_CODE_PTR
)
3073 type
= TYPE_TARGET_TYPE (arr_type
);
3077 if (TYPE_FIXED_INSTANCE (type
))
3079 /* The array has already been fixed, so we do not need to
3080 check the parallel ___XA type again. That encoding has
3081 already been applied, so ignore it now. */
3082 index_type_desc
= NULL
;
3086 index_type_desc
= ada_find_parallel_type (type
, "___XA");
3087 ada_fixup_array_indexes_type (index_type_desc
);
3090 if (index_type_desc
!= NULL
)
3091 index_type
= to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc
, n
- 1),
3095 struct type
*elt_type
= check_typedef (type
);
3097 for (i
= 1; i
< n
; i
++)
3098 elt_type
= check_typedef (TYPE_TARGET_TYPE (elt_type
));
3100 index_type
= TYPE_INDEX_TYPE (elt_type
);
3104 (LONGEST
) (which
== 0
3105 ? ada_discrete_type_low_bound (index_type
)
3106 : ada_discrete_type_high_bound (index_type
));
3109 /* Given that arr is an array value, returns the lower bound of the
3110 nth index (numbering from 1) if WHICH is 0, and the upper bound if
3111 WHICH is 1. This routine will also work for arrays with bounds
3112 supplied by run-time quantities other than discriminants. */
3115 ada_array_bound (struct value
*arr
, int n
, int which
)
3117 struct type
*arr_type
;
3119 if (TYPE_CODE (check_typedef (value_type (arr
))) == TYPE_CODE_PTR
)
3120 arr
= value_ind (arr
);
3121 arr_type
= value_enclosing_type (arr
);
3123 if (ada_is_constrained_packed_array_type (arr_type
))
3124 return ada_array_bound (decode_constrained_packed_array (arr
), n
, which
);
3125 else if (ada_is_simple_array_type (arr_type
))
3126 return ada_array_bound_from_type (arr_type
, n
, which
);
3128 return value_as_long (desc_one_bound (desc_bounds (arr
), n
, which
));
3131 /* Given that arr is an array value, returns the length of the
3132 nth index. This routine will also work for arrays with bounds
3133 supplied by run-time quantities other than discriminants.
3134 Does not work for arrays indexed by enumeration types with representation
3135 clauses at the moment. */
3138 ada_array_length (struct value
*arr
, int n
)
3140 struct type
*arr_type
, *index_type
;
3143 if (TYPE_CODE (check_typedef (value_type (arr
))) == TYPE_CODE_PTR
)
3144 arr
= value_ind (arr
);
3145 arr_type
= value_enclosing_type (arr
);
3147 if (ada_is_constrained_packed_array_type (arr_type
))
3148 return ada_array_length (decode_constrained_packed_array (arr
), n
);
3150 if (ada_is_simple_array_type (arr_type
))
3152 low
= ada_array_bound_from_type (arr_type
, n
, 0);
3153 high
= ada_array_bound_from_type (arr_type
, n
, 1);
3157 low
= value_as_long (desc_one_bound (desc_bounds (arr
), n
, 0));
3158 high
= value_as_long (desc_one_bound (desc_bounds (arr
), n
, 1));
3161 arr_type
= check_typedef (arr_type
);
3162 index_type
= ada_index_type (arr_type
, n
, "length");
3163 if (index_type
!= NULL
)
3165 struct type
*base_type
;
3166 if (TYPE_CODE (index_type
) == TYPE_CODE_RANGE
)
3167 base_type
= TYPE_TARGET_TYPE (index_type
);
3169 base_type
= index_type
;
3171 low
= pos_atr (value_from_longest (base_type
, low
));
3172 high
= pos_atr (value_from_longest (base_type
, high
));
3174 return high
- low
+ 1;
3177 /* An array whose type is that of ARR_TYPE (an array type), with
3178 bounds LOW to HIGH, but whose contents are unimportant. If HIGH is
3179 less than LOW, then LOW-1 is used. */
3181 static struct value
*
3182 empty_array (struct type
*arr_type
, int low
, int high
)
3184 struct type
*arr_type0
= ada_check_typedef (arr_type
);
3185 struct type
*index_type
3186 = create_static_range_type
3187 (NULL
, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0
)), low
,
3188 high
< low
? low
- 1 : high
);
3189 struct type
*elt_type
= ada_array_element_type (arr_type0
, 1);
3191 return allocate_value (create_array_type (NULL
, elt_type
, index_type
));
3195 /* Name resolution */
3197 /* The "decoded" name for the user-definable Ada operator corresponding
3201 ada_decoded_op_name (enum exp_opcode op
)
3205 for (i
= 0; ada_opname_table
[i
].encoded
!= NULL
; i
+= 1)
3207 if (ada_opname_table
[i
].op
== op
)
3208 return ada_opname_table
[i
].decoded
;
3210 error (_("Could not find operator name for opcode"));
3214 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
3215 references (marked by OP_VAR_VALUE nodes in which the symbol has an
3216 undefined namespace) and converts operators that are
3217 user-defined into appropriate function calls. If CONTEXT_TYPE is
3218 non-null, it provides a preferred result type [at the moment, only
3219 type void has any effect---causing procedures to be preferred over
3220 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
3221 return type is preferred. May change (expand) *EXP. */
3224 resolve (expression_up
*expp
, int void_context_p
, int parse_completion
,
3225 innermost_block_tracker
*tracker
)
3227 struct type
*context_type
= NULL
;
3231 context_type
= builtin_type ((*expp
)->gdbarch
)->builtin_void
;
3233 resolve_subexp (expp
, &pc
, 1, context_type
, parse_completion
, tracker
);
3236 /* Resolve the operator of the subexpression beginning at
3237 position *POS of *EXPP. "Resolving" consists of replacing
3238 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
3239 with their resolutions, replacing built-in operators with
3240 function calls to user-defined operators, where appropriate, and,
3241 when DEPROCEDURE_P is non-zero, converting function-valued variables
3242 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
3243 are as in ada_resolve, above. */
3245 static struct value
*
3246 resolve_subexp (expression_up
*expp
, int *pos
, int deprocedure_p
,
3247 struct type
*context_type
, int parse_completion
,
3248 innermost_block_tracker
*tracker
)
3252 struct expression
*exp
; /* Convenience: == *expp. */
3253 enum exp_opcode op
= (*expp
)->elts
[pc
].opcode
;
3254 struct value
**argvec
; /* Vector of operand types (alloca'ed). */
3255 int nargs
; /* Number of operands. */
3262 /* Pass one: resolve operands, saving their types and updating *pos,
3267 if (exp
->elts
[pc
+ 3].opcode
== OP_VAR_VALUE
3268 && SYMBOL_DOMAIN (exp
->elts
[pc
+ 5].symbol
) == UNDEF_DOMAIN
)
3273 resolve_subexp (expp
, pos
, 0, NULL
, parse_completion
, tracker
);
3275 nargs
= longest_to_int (exp
->elts
[pc
+ 1].longconst
);
3280 resolve_subexp (expp
, pos
, 0, NULL
, parse_completion
, tracker
);
3285 resolve_subexp (expp
, pos
, 1, check_typedef (exp
->elts
[pc
+ 1].type
),
3286 parse_completion
, tracker
);
3289 case OP_ATR_MODULUS
:
3299 case TERNOP_IN_RANGE
:
3300 case BINOP_IN_BOUNDS
:
3306 case OP_DISCRETE_RANGE
:
3308 ada_forward_operator_length (exp
, pc
, &oplen
, &nargs
);
3317 arg1
= resolve_subexp (expp
, pos
, 0, NULL
, parse_completion
, tracker
);
3319 resolve_subexp (expp
, pos
, 1, NULL
, parse_completion
, tracker
);
3321 resolve_subexp (expp
, pos
, 1, value_type (arg1
), parse_completion
,
3339 case BINOP_LOGICAL_AND
:
3340 case BINOP_LOGICAL_OR
:
3341 case BINOP_BITWISE_AND
:
3342 case BINOP_BITWISE_IOR
:
3343 case BINOP_BITWISE_XOR
:
3346 case BINOP_NOTEQUAL
:
3353 case BINOP_SUBSCRIPT
:
3361 case UNOP_LOGICAL_NOT
:
3371 case OP_VAR_MSYM_VALUE
:
3378 case OP_INTERNALVAR
:
3388 *pos
+= 4 + BYTES_TO_EXP_ELEM (exp
->elts
[pc
+ 1].longconst
+ 1);
3391 case STRUCTOP_STRUCT
:
3392 *pos
+= 4 + BYTES_TO_EXP_ELEM (exp
->elts
[pc
+ 1].longconst
+ 1);
3405 error (_("Unexpected operator during name resolution"));
3408 argvec
= XALLOCAVEC (struct value
*, nargs
+ 1);
3409 for (i
= 0; i
< nargs
; i
+= 1)
3410 argvec
[i
] = resolve_subexp (expp
, pos
, 1, NULL
, parse_completion
,
3415 /* Pass two: perform any resolution on principal operator. */
3422 if (SYMBOL_DOMAIN (exp
->elts
[pc
+ 2].symbol
) == UNDEF_DOMAIN
)
3424 std::vector
<struct block_symbol
> candidates
;
3428 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3429 (exp
->elts
[pc
+ 2].symbol
),
3430 exp
->elts
[pc
+ 1].block
, VAR_DOMAIN
,
3433 if (n_candidates
> 1)
3435 /* Types tend to get re-introduced locally, so if there
3436 are any local symbols that are not types, first filter
3439 for (j
= 0; j
< n_candidates
; j
+= 1)
3440 switch (SYMBOL_CLASS (candidates
[j
].symbol
))
3445 case LOC_REGPARM_ADDR
:
3453 if (j
< n_candidates
)
3456 while (j
< n_candidates
)
3458 if (SYMBOL_CLASS (candidates
[j
].symbol
) == LOC_TYPEDEF
)
3460 candidates
[j
] = candidates
[n_candidates
- 1];
3469 if (n_candidates
== 0)
3470 error (_("No definition found for %s"),
3471 SYMBOL_PRINT_NAME (exp
->elts
[pc
+ 2].symbol
));
3472 else if (n_candidates
== 1)
3474 else if (deprocedure_p
3475 && !is_nonfunction (candidates
.data (), n_candidates
))
3477 i
= ada_resolve_function
3478 (candidates
.data (), n_candidates
, NULL
, 0,
3479 SYMBOL_LINKAGE_NAME (exp
->elts
[pc
+ 2].symbol
),
3480 context_type
, parse_completion
);
3482 error (_("Could not find a match for %s"),
3483 SYMBOL_PRINT_NAME (exp
->elts
[pc
+ 2].symbol
));
3487 printf_filtered (_("Multiple matches for %s\n"),
3488 SYMBOL_PRINT_NAME (exp
->elts
[pc
+ 2].symbol
));
3489 user_select_syms (candidates
.data (), n_candidates
, 1);
3493 exp
->elts
[pc
+ 1].block
= candidates
[i
].block
;
3494 exp
->elts
[pc
+ 2].symbol
= candidates
[i
].symbol
;
3495 tracker
->update (candidates
[i
]);
3499 && (TYPE_CODE (SYMBOL_TYPE (exp
->elts
[pc
+ 2].symbol
))
3502 replace_operator_with_call (expp
, pc
, 0, 4,
3503 exp
->elts
[pc
+ 2].symbol
,
3504 exp
->elts
[pc
+ 1].block
);
3511 if (exp
->elts
[pc
+ 3].opcode
== OP_VAR_VALUE
3512 && SYMBOL_DOMAIN (exp
->elts
[pc
+ 5].symbol
) == UNDEF_DOMAIN
)
3514 std::vector
<struct block_symbol
> candidates
;
3518 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3519 (exp
->elts
[pc
+ 5].symbol
),
3520 exp
->elts
[pc
+ 4].block
, VAR_DOMAIN
,
3523 if (n_candidates
== 1)
3527 i
= ada_resolve_function
3528 (candidates
.data (), n_candidates
,
3530 SYMBOL_LINKAGE_NAME (exp
->elts
[pc
+ 5].symbol
),
3531 context_type
, parse_completion
);
3533 error (_("Could not find a match for %s"),
3534 SYMBOL_PRINT_NAME (exp
->elts
[pc
+ 5].symbol
));
3537 exp
->elts
[pc
+ 4].block
= candidates
[i
].block
;
3538 exp
->elts
[pc
+ 5].symbol
= candidates
[i
].symbol
;
3539 tracker
->update (candidates
[i
]);
3550 case BINOP_BITWISE_AND
:
3551 case BINOP_BITWISE_IOR
:
3552 case BINOP_BITWISE_XOR
:
3554 case BINOP_NOTEQUAL
:
3562 case UNOP_LOGICAL_NOT
:
3564 if (possible_user_operator_p (op
, argvec
))
3566 std::vector
<struct block_symbol
> candidates
;
3570 ada_lookup_symbol_list (ada_decoded_op_name (op
),
3574 i
= ada_resolve_function (candidates
.data (), n_candidates
, argvec
,
3575 nargs
, ada_decoded_op_name (op
), NULL
,
3580 replace_operator_with_call (expp
, pc
, nargs
, 1,
3581 candidates
[i
].symbol
,
3582 candidates
[i
].block
);
3593 if (exp
->elts
[pc
].opcode
== OP_VAR_MSYM_VALUE
)
3594 return evaluate_var_msym_value (EVAL_AVOID_SIDE_EFFECTS
,
3595 exp
->elts
[pc
+ 1].objfile
,
3596 exp
->elts
[pc
+ 2].msymbol
);
3598 return evaluate_subexp_type (exp
, pos
);
3601 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3602 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3604 /* The term "match" here is rather loose. The match is heuristic and
3608 ada_type_match (struct type
*ftype
, struct type
*atype
, int may_deref
)
3610 ftype
= ada_check_typedef (ftype
);
3611 atype
= ada_check_typedef (atype
);
3613 if (TYPE_CODE (ftype
) == TYPE_CODE_REF
)
3614 ftype
= TYPE_TARGET_TYPE (ftype
);
3615 if (TYPE_CODE (atype
) == TYPE_CODE_REF
)
3616 atype
= TYPE_TARGET_TYPE (atype
);
3618 switch (TYPE_CODE (ftype
))
3621 return TYPE_CODE (ftype
) == TYPE_CODE (atype
);
3623 if (TYPE_CODE (atype
) == TYPE_CODE_PTR
)
3624 return ada_type_match (TYPE_TARGET_TYPE (ftype
),
3625 TYPE_TARGET_TYPE (atype
), 0);
3628 && ada_type_match (TYPE_TARGET_TYPE (ftype
), atype
, 0));
3630 case TYPE_CODE_ENUM
:
3631 case TYPE_CODE_RANGE
:
3632 switch (TYPE_CODE (atype
))
3635 case TYPE_CODE_ENUM
:
3636 case TYPE_CODE_RANGE
:
3642 case TYPE_CODE_ARRAY
:
3643 return (TYPE_CODE (atype
) == TYPE_CODE_ARRAY
3644 || ada_is_array_descriptor_type (atype
));
3646 case TYPE_CODE_STRUCT
:
3647 if (ada_is_array_descriptor_type (ftype
))
3648 return (TYPE_CODE (atype
) == TYPE_CODE_ARRAY
3649 || ada_is_array_descriptor_type (atype
));
3651 return (TYPE_CODE (atype
) == TYPE_CODE_STRUCT
3652 && !ada_is_array_descriptor_type (atype
));
3654 case TYPE_CODE_UNION
:
3656 return (TYPE_CODE (atype
) == TYPE_CODE (ftype
));
3660 /* Return non-zero if the formals of FUNC "sufficiently match" the
3661 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3662 may also be an enumeral, in which case it is treated as a 0-
3663 argument function. */
3666 ada_args_match (struct symbol
*func
, struct value
**actuals
, int n_actuals
)
3669 struct type
*func_type
= SYMBOL_TYPE (func
);
3671 if (SYMBOL_CLASS (func
) == LOC_CONST
3672 && TYPE_CODE (func_type
) == TYPE_CODE_ENUM
)
3673 return (n_actuals
== 0);
3674 else if (func_type
== NULL
|| TYPE_CODE (func_type
) != TYPE_CODE_FUNC
)
3677 if (TYPE_NFIELDS (func_type
) != n_actuals
)
3680 for (i
= 0; i
< n_actuals
; i
+= 1)
3682 if (actuals
[i
] == NULL
)
3686 struct type
*ftype
= ada_check_typedef (TYPE_FIELD_TYPE (func_type
,
3688 struct type
*atype
= ada_check_typedef (value_type (actuals
[i
]));
3690 if (!ada_type_match (ftype
, atype
, 1))
3697 /* False iff function type FUNC_TYPE definitely does not produce a value
3698 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3699 FUNC_TYPE is not a valid function type with a non-null return type
3700 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3703 return_match (struct type
*func_type
, struct type
*context_type
)
3705 struct type
*return_type
;
3707 if (func_type
== NULL
)
3710 if (TYPE_CODE (func_type
) == TYPE_CODE_FUNC
)
3711 return_type
= get_base_type (TYPE_TARGET_TYPE (func_type
));
3713 return_type
= get_base_type (func_type
);
3714 if (return_type
== NULL
)
3717 context_type
= get_base_type (context_type
);
3719 if (TYPE_CODE (return_type
) == TYPE_CODE_ENUM
)
3720 return context_type
== NULL
|| return_type
== context_type
;
3721 else if (context_type
== NULL
)
3722 return TYPE_CODE (return_type
) != TYPE_CODE_VOID
;
3724 return TYPE_CODE (return_type
) == TYPE_CODE (context_type
);
3728 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3729 function (if any) that matches the types of the NARGS arguments in
3730 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3731 that returns that type, then eliminate matches that don't. If
3732 CONTEXT_TYPE is void and there is at least one match that does not
3733 return void, eliminate all matches that do.
3735 Asks the user if there is more than one match remaining. Returns -1
3736 if there is no such symbol or none is selected. NAME is used
3737 solely for messages. May re-arrange and modify SYMS in
3738 the process; the index returned is for the modified vector. */
3741 ada_resolve_function (struct block_symbol syms
[],
3742 int nsyms
, struct value
**args
, int nargs
,
3743 const char *name
, struct type
*context_type
,
3744 int parse_completion
)
3748 int m
; /* Number of hits */
3751 /* In the first pass of the loop, we only accept functions matching
3752 context_type. If none are found, we add a second pass of the loop
3753 where every function is accepted. */
3754 for (fallback
= 0; m
== 0 && fallback
< 2; fallback
++)
3756 for (k
= 0; k
< nsyms
; k
+= 1)
3758 struct type
*type
= ada_check_typedef (SYMBOL_TYPE (syms
[k
].symbol
));
3760 if (ada_args_match (syms
[k
].symbol
, args
, nargs
)
3761 && (fallback
|| return_match (type
, context_type
)))
3769 /* If we got multiple matches, ask the user which one to use. Don't do this
3770 interactive thing during completion, though, as the purpose of the
3771 completion is providing a list of all possible matches. Prompting the
3772 user to filter it down would be completely unexpected in this case. */
3775 else if (m
> 1 && !parse_completion
)
3777 printf_filtered (_("Multiple matches for %s\n"), name
);
3778 user_select_syms (syms
, m
, 1);
3784 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3785 in a listing of choices during disambiguation (see sort_choices, below).
3786 The idea is that overloadings of a subprogram name from the
3787 same package should sort in their source order. We settle for ordering
3788 such symbols by their trailing number (__N or $N). */
3791 encoded_ordered_before (const char *N0
, const char *N1
)
3795 else if (N0
== NULL
)
3801 for (k0
= strlen (N0
) - 1; k0
> 0 && isdigit (N0
[k0
]); k0
-= 1)
3803 for (k1
= strlen (N1
) - 1; k1
> 0 && isdigit (N1
[k1
]); k1
-= 1)
3805 if ((N0
[k0
] == '_' || N0
[k0
] == '$') && N0
[k0
+ 1] != '\000'
3806 && (N1
[k1
] == '_' || N1
[k1
] == '$') && N1
[k1
+ 1] != '\000')
3811 while (N0
[n0
] == '_' && n0
> 0 && N0
[n0
- 1] == '_')
3814 while (N1
[n1
] == '_' && n1
> 0 && N1
[n1
- 1] == '_')
3816 if (n0
== n1
&& strncmp (N0
, N1
, n0
) == 0)
3817 return (atoi (N0
+ k0
+ 1) < atoi (N1
+ k1
+ 1));
3819 return (strcmp (N0
, N1
) < 0);
3823 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3827 sort_choices (struct block_symbol syms
[], int nsyms
)
3831 for (i
= 1; i
< nsyms
; i
+= 1)
3833 struct block_symbol sym
= syms
[i
];
3836 for (j
= i
- 1; j
>= 0; j
-= 1)
3838 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms
[j
].symbol
),
3839 SYMBOL_LINKAGE_NAME (sym
.symbol
)))
3841 syms
[j
+ 1] = syms
[j
];
3847 /* Whether GDB should display formals and return types for functions in the
3848 overloads selection menu. */
3849 static int print_signatures
= 1;
3851 /* Print the signature for SYM on STREAM according to the FLAGS options. For
3852 all but functions, the signature is just the name of the symbol. For
3853 functions, this is the name of the function, the list of types for formals
3854 and the return type (if any). */
3857 ada_print_symbol_signature (struct ui_file
*stream
, struct symbol
*sym
,
3858 const struct type_print_options
*flags
)
3860 struct type
*type
= SYMBOL_TYPE (sym
);
3862 fprintf_filtered (stream
, "%s", SYMBOL_PRINT_NAME (sym
));
3863 if (!print_signatures
3865 || TYPE_CODE (type
) != TYPE_CODE_FUNC
)
3868 if (TYPE_NFIELDS (type
) > 0)
3872 fprintf_filtered (stream
, " (");
3873 for (i
= 0; i
< TYPE_NFIELDS (type
); ++i
)
3876 fprintf_filtered (stream
, "; ");
3877 ada_print_type (TYPE_FIELD_TYPE (type
, i
), NULL
, stream
, -1, 0,
3880 fprintf_filtered (stream
, ")");
3882 if (TYPE_TARGET_TYPE (type
) != NULL
3883 && TYPE_CODE (TYPE_TARGET_TYPE (type
)) != TYPE_CODE_VOID
)
3885 fprintf_filtered (stream
, " return ");
3886 ada_print_type (TYPE_TARGET_TYPE (type
), NULL
, stream
, -1, 0, flags
);
3890 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3891 by asking the user (if necessary), returning the number selected,
3892 and setting the first elements of SYMS items. Error if no symbols
3895 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3896 to be re-integrated one of these days. */
3899 user_select_syms (struct block_symbol
*syms
, int nsyms
, int max_results
)
3902 int *chosen
= XALLOCAVEC (int , nsyms
);
3904 int first_choice
= (max_results
== 1) ? 1 : 2;
3905 const char *select_mode
= multiple_symbols_select_mode ();
3907 if (max_results
< 1)
3908 error (_("Request to select 0 symbols!"));
3912 if (select_mode
== multiple_symbols_cancel
)
3914 canceled because the command is ambiguous\n\
3915 See set/show multiple-symbol."));
3917 /* If select_mode is "all", then return all possible symbols.
3918 Only do that if more than one symbol can be selected, of course.
3919 Otherwise, display the menu as usual. */
3920 if (select_mode
== multiple_symbols_all
&& max_results
> 1)
3923 printf_filtered (_("[0] cancel\n"));
3924 if (max_results
> 1)
3925 printf_filtered (_("[1] all\n"));
3927 sort_choices (syms
, nsyms
);
3929 for (i
= 0; i
< nsyms
; i
+= 1)
3931 if (syms
[i
].symbol
== NULL
)
3934 if (SYMBOL_CLASS (syms
[i
].symbol
) == LOC_BLOCK
)
3936 struct symtab_and_line sal
=
3937 find_function_start_sal (syms
[i
].symbol
, 1);
3939 printf_filtered ("[%d] ", i
+ first_choice
);
3940 ada_print_symbol_signature (gdb_stdout
, syms
[i
].symbol
,
3941 &type_print_raw_options
);
3942 if (sal
.symtab
== NULL
)
3943 printf_filtered (_(" at <no source file available>:%d\n"),
3946 printf_filtered (_(" at %s:%d\n"),
3947 symtab_to_filename_for_display (sal
.symtab
),
3954 (SYMBOL_CLASS (syms
[i
].symbol
) == LOC_CONST
3955 && SYMBOL_TYPE (syms
[i
].symbol
) != NULL
3956 && TYPE_CODE (SYMBOL_TYPE (syms
[i
].symbol
)) == TYPE_CODE_ENUM
);
3957 struct symtab
*symtab
= NULL
;
3959 if (SYMBOL_OBJFILE_OWNED (syms
[i
].symbol
))
3960 symtab
= symbol_symtab (syms
[i
].symbol
);
3962 if (SYMBOL_LINE (syms
[i
].symbol
) != 0 && symtab
!= NULL
)
3964 printf_filtered ("[%d] ", i
+ first_choice
);
3965 ada_print_symbol_signature (gdb_stdout
, syms
[i
].symbol
,
3966 &type_print_raw_options
);
3967 printf_filtered (_(" at %s:%d\n"),
3968 symtab_to_filename_for_display (symtab
),
3969 SYMBOL_LINE (syms
[i
].symbol
));
3971 else if (is_enumeral
3972 && TYPE_NAME (SYMBOL_TYPE (syms
[i
].symbol
)) != NULL
)
3974 printf_filtered (("[%d] "), i
+ first_choice
);
3975 ada_print_type (SYMBOL_TYPE (syms
[i
].symbol
), NULL
,
3976 gdb_stdout
, -1, 0, &type_print_raw_options
);
3977 printf_filtered (_("'(%s) (enumeral)\n"),
3978 SYMBOL_PRINT_NAME (syms
[i
].symbol
));
3982 printf_filtered ("[%d] ", i
+ first_choice
);
3983 ada_print_symbol_signature (gdb_stdout
, syms
[i
].symbol
,
3984 &type_print_raw_options
);
3987 printf_filtered (is_enumeral
3988 ? _(" in %s (enumeral)\n")
3990 symtab_to_filename_for_display (symtab
));
3992 printf_filtered (is_enumeral
3993 ? _(" (enumeral)\n")
3999 n_chosen
= get_selections (chosen
, nsyms
, max_results
, max_results
> 1,
4002 for (i
= 0; i
< n_chosen
; i
+= 1)
4003 syms
[i
] = syms
[chosen
[i
]];
4008 /* Read and validate a set of numeric choices from the user in the
4009 range 0 .. N_CHOICES-1. Place the results in increasing
4010 order in CHOICES[0 .. N-1], and return N.
4012 The user types choices as a sequence of numbers on one line
4013 separated by blanks, encoding them as follows:
4015 + A choice of 0 means to cancel the selection, throwing an error.
4016 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
4017 + The user chooses k by typing k+IS_ALL_CHOICE+1.
4019 The user is not allowed to choose more than MAX_RESULTS values.
4021 ANNOTATION_SUFFIX, if present, is used to annotate the input
4022 prompts (for use with the -f switch). */
4025 get_selections (int *choices
, int n_choices
, int max_results
,
4026 int is_all_choice
, const char *annotation_suffix
)
4031 int first_choice
= is_all_choice
? 2 : 1;
4033 prompt
= getenv ("PS2");
4037 args
= command_line_input (prompt
, annotation_suffix
);
4040 error_no_arg (_("one or more choice numbers"));
4044 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
4045 order, as given in args. Choices are validated. */
4051 args
= skip_spaces (args
);
4052 if (*args
== '\0' && n_chosen
== 0)
4053 error_no_arg (_("one or more choice numbers"));
4054 else if (*args
== '\0')
4057 choice
= strtol (args
, &args2
, 10);
4058 if (args
== args2
|| choice
< 0
4059 || choice
> n_choices
+ first_choice
- 1)
4060 error (_("Argument must be choice number"));
4064 error (_("cancelled"));
4066 if (choice
< first_choice
)
4068 n_chosen
= n_choices
;
4069 for (j
= 0; j
< n_choices
; j
+= 1)
4073 choice
-= first_choice
;
4075 for (j
= n_chosen
- 1; j
>= 0 && choice
< choices
[j
]; j
-= 1)
4079 if (j
< 0 || choice
!= choices
[j
])
4083 for (k
= n_chosen
- 1; k
> j
; k
-= 1)
4084 choices
[k
+ 1] = choices
[k
];
4085 choices
[j
+ 1] = choice
;
4090 if (n_chosen
> max_results
)
4091 error (_("Select no more than %d of the above"), max_results
);
4096 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
4097 on the function identified by SYM and BLOCK, and taking NARGS
4098 arguments. Update *EXPP as needed to hold more space. */
4101 replace_operator_with_call (expression_up
*expp
, int pc
, int nargs
,
4102 int oplen
, struct symbol
*sym
,
4103 const struct block
*block
)
4105 /* A new expression, with 6 more elements (3 for funcall, 4 for function
4106 symbol, -oplen for operator being replaced). */
4107 struct expression
*newexp
= (struct expression
*)
4108 xzalloc (sizeof (struct expression
)
4109 + EXP_ELEM_TO_BYTES ((*expp
)->nelts
+ 7 - oplen
));
4110 struct expression
*exp
= expp
->get ();
4112 newexp
->nelts
= exp
->nelts
+ 7 - oplen
;
4113 newexp
->language_defn
= exp
->language_defn
;
4114 newexp
->gdbarch
= exp
->gdbarch
;
4115 memcpy (newexp
->elts
, exp
->elts
, EXP_ELEM_TO_BYTES (pc
));
4116 memcpy (newexp
->elts
+ pc
+ 7, exp
->elts
+ pc
+ oplen
,
4117 EXP_ELEM_TO_BYTES (exp
->nelts
- pc
- oplen
));
4119 newexp
->elts
[pc
].opcode
= newexp
->elts
[pc
+ 2].opcode
= OP_FUNCALL
;
4120 newexp
->elts
[pc
+ 1].longconst
= (LONGEST
) nargs
;
4122 newexp
->elts
[pc
+ 3].opcode
= newexp
->elts
[pc
+ 6].opcode
= OP_VAR_VALUE
;
4123 newexp
->elts
[pc
+ 4].block
= block
;
4124 newexp
->elts
[pc
+ 5].symbol
= sym
;
4126 expp
->reset (newexp
);
4129 /* Type-class predicates */
4131 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
4135 numeric_type_p (struct type
*type
)
4141 switch (TYPE_CODE (type
))
4146 case TYPE_CODE_RANGE
:
4147 return (type
== TYPE_TARGET_TYPE (type
)
4148 || numeric_type_p (TYPE_TARGET_TYPE (type
)));
4155 /* True iff TYPE is integral (an INT or RANGE of INTs). */
4158 integer_type_p (struct type
*type
)
4164 switch (TYPE_CODE (type
))
4168 case TYPE_CODE_RANGE
:
4169 return (type
== TYPE_TARGET_TYPE (type
)
4170 || integer_type_p (TYPE_TARGET_TYPE (type
)));
4177 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
4180 scalar_type_p (struct type
*type
)
4186 switch (TYPE_CODE (type
))
4189 case TYPE_CODE_RANGE
:
4190 case TYPE_CODE_ENUM
:
4199 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
4202 discrete_type_p (struct type
*type
)
4208 switch (TYPE_CODE (type
))
4211 case TYPE_CODE_RANGE
:
4212 case TYPE_CODE_ENUM
:
4213 case TYPE_CODE_BOOL
:
4221 /* Returns non-zero if OP with operands in the vector ARGS could be
4222 a user-defined function. Errs on the side of pre-defined operators
4223 (i.e., result 0). */
4226 possible_user_operator_p (enum exp_opcode op
, struct value
*args
[])
4228 struct type
*type0
=
4229 (args
[0] == NULL
) ? NULL
: ada_check_typedef (value_type (args
[0]));
4230 struct type
*type1
=
4231 (args
[1] == NULL
) ? NULL
: ada_check_typedef (value_type (args
[1]));
4245 return (!(numeric_type_p (type0
) && numeric_type_p (type1
)));
4249 case BINOP_BITWISE_AND
:
4250 case BINOP_BITWISE_IOR
:
4251 case BINOP_BITWISE_XOR
:
4252 return (!(integer_type_p (type0
) && integer_type_p (type1
)));
4255 case BINOP_NOTEQUAL
:
4260 return (!(scalar_type_p (type0
) && scalar_type_p (type1
)));
4263 return !ada_is_array_type (type0
) || !ada_is_array_type (type1
);
4266 return (!(numeric_type_p (type0
) && integer_type_p (type1
)));
4270 case UNOP_LOGICAL_NOT
:
4272 return (!numeric_type_p (type0
));
4281 1. In the following, we assume that a renaming type's name may
4282 have an ___XD suffix. It would be nice if this went away at some
4284 2. We handle both the (old) purely type-based representation of
4285 renamings and the (new) variable-based encoding. At some point,
4286 it is devoutly to be hoped that the former goes away
4287 (FIXME: hilfinger-2007-07-09).
4288 3. Subprogram renamings are not implemented, although the XRS
4289 suffix is recognized (FIXME: hilfinger-2007-07-09). */
4291 /* If SYM encodes a renaming,
4293 <renaming> renames <renamed entity>,
4295 sets *LEN to the length of the renamed entity's name,
4296 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4297 the string describing the subcomponent selected from the renamed
4298 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
4299 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4300 are undefined). Otherwise, returns a value indicating the category
4301 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4302 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4303 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
4304 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4305 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4306 may be NULL, in which case they are not assigned.
4308 [Currently, however, GCC does not generate subprogram renamings.] */
4310 enum ada_renaming_category
4311 ada_parse_renaming (struct symbol
*sym
,
4312 const char **renamed_entity
, int *len
,
4313 const char **renaming_expr
)
4315 enum ada_renaming_category kind
;
4320 return ADA_NOT_RENAMING
;
4321 switch (SYMBOL_CLASS (sym
))
4324 return ADA_NOT_RENAMING
;
4326 return parse_old_style_renaming (SYMBOL_TYPE (sym
),
4327 renamed_entity
, len
, renaming_expr
);
4331 case LOC_OPTIMIZED_OUT
:
4332 info
= strstr (SYMBOL_LINKAGE_NAME (sym
), "___XR");
4334 return ADA_NOT_RENAMING
;
4338 kind
= ADA_OBJECT_RENAMING
;
4342 kind
= ADA_EXCEPTION_RENAMING
;
4346 kind
= ADA_PACKAGE_RENAMING
;
4350 kind
= ADA_SUBPROGRAM_RENAMING
;
4354 return ADA_NOT_RENAMING
;
4358 if (renamed_entity
!= NULL
)
4359 *renamed_entity
= info
;
4360 suffix
= strstr (info
, "___XE");
4361 if (suffix
== NULL
|| suffix
== info
)
4362 return ADA_NOT_RENAMING
;
4364 *len
= strlen (info
) - strlen (suffix
);
4366 if (renaming_expr
!= NULL
)
4367 *renaming_expr
= suffix
;
4371 /* Assuming TYPE encodes a renaming according to the old encoding in
4372 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
4373 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
4374 ADA_NOT_RENAMING otherwise. */
4375 static enum ada_renaming_category
4376 parse_old_style_renaming (struct type
*type
,
4377 const char **renamed_entity
, int *len
,
4378 const char **renaming_expr
)
4380 enum ada_renaming_category kind
;
4385 if (type
== NULL
|| TYPE_CODE (type
) != TYPE_CODE_ENUM
4386 || TYPE_NFIELDS (type
) != 1)
4387 return ADA_NOT_RENAMING
;
4389 name
= TYPE_NAME (type
);
4391 return ADA_NOT_RENAMING
;
4393 name
= strstr (name
, "___XR");
4395 return ADA_NOT_RENAMING
;
4400 kind
= ADA_OBJECT_RENAMING
;
4403 kind
= ADA_EXCEPTION_RENAMING
;
4406 kind
= ADA_PACKAGE_RENAMING
;
4409 kind
= ADA_SUBPROGRAM_RENAMING
;
4412 return ADA_NOT_RENAMING
;
4415 info
= TYPE_FIELD_NAME (type
, 0);
4417 return ADA_NOT_RENAMING
;
4418 if (renamed_entity
!= NULL
)
4419 *renamed_entity
= info
;
4420 suffix
= strstr (info
, "___XE");
4421 if (renaming_expr
!= NULL
)
4422 *renaming_expr
= suffix
+ 5;
4423 if (suffix
== NULL
|| suffix
== info
)
4424 return ADA_NOT_RENAMING
;
4426 *len
= suffix
- info
;
4430 /* Compute the value of the given RENAMING_SYM, which is expected to
4431 be a symbol encoding a renaming expression. BLOCK is the block
4432 used to evaluate the renaming. */
4434 static struct value
*
4435 ada_read_renaming_var_value (struct symbol
*renaming_sym
,
4436 const struct block
*block
)
4438 const char *sym_name
;
4440 sym_name
= SYMBOL_LINKAGE_NAME (renaming_sym
);
4441 expression_up expr
= parse_exp_1 (&sym_name
, 0, block
, 0);
4442 return evaluate_expression (expr
.get ());
4446 /* Evaluation: Function Calls */
4448 /* Return an lvalue containing the value VAL. This is the identity on
4449 lvalues, and otherwise has the side-effect of allocating memory
4450 in the inferior where a copy of the value contents is copied. */
4452 static struct value
*
4453 ensure_lval (struct value
*val
)
4455 if (VALUE_LVAL (val
) == not_lval
4456 || VALUE_LVAL (val
) == lval_internalvar
)
4458 int len
= TYPE_LENGTH (ada_check_typedef (value_type (val
)));
4459 const CORE_ADDR addr
=
4460 value_as_long (value_allocate_space_in_inferior (len
));
4462 VALUE_LVAL (val
) = lval_memory
;
4463 set_value_address (val
, addr
);
4464 write_memory (addr
, value_contents (val
), len
);
4470 /* Return the value ACTUAL, converted to be an appropriate value for a
4471 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4472 allocating any necessary descriptors (fat pointers), or copies of
4473 values not residing in memory, updating it as needed. */
4476 ada_convert_actual (struct value
*actual
, struct type
*formal_type0
)
4478 struct type
*actual_type
= ada_check_typedef (value_type (actual
));
4479 struct type
*formal_type
= ada_check_typedef (formal_type0
);
4480 struct type
*formal_target
=
4481 TYPE_CODE (formal_type
) == TYPE_CODE_PTR
4482 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type
)) : formal_type
;
4483 struct type
*actual_target
=
4484 TYPE_CODE (actual_type
) == TYPE_CODE_PTR
4485 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type
)) : actual_type
;
4487 if (ada_is_array_descriptor_type (formal_target
)
4488 && TYPE_CODE (actual_target
) == TYPE_CODE_ARRAY
)
4489 return make_array_descriptor (formal_type
, actual
);
4490 else if (TYPE_CODE (formal_type
) == TYPE_CODE_PTR
4491 || TYPE_CODE (formal_type
) == TYPE_CODE_REF
)
4493 struct value
*result
;
4495 if (TYPE_CODE (formal_target
) == TYPE_CODE_ARRAY
4496 && ada_is_array_descriptor_type (actual_target
))
4497 result
= desc_data (actual
);
4498 else if (TYPE_CODE (formal_type
) != TYPE_CODE_PTR
)
4500 if (VALUE_LVAL (actual
) != lval_memory
)
4504 actual_type
= ada_check_typedef (value_type (actual
));
4505 val
= allocate_value (actual_type
);
4506 memcpy ((char *) value_contents_raw (val
),
4507 (char *) value_contents (actual
),
4508 TYPE_LENGTH (actual_type
));
4509 actual
= ensure_lval (val
);
4511 result
= value_addr (actual
);
4515 return value_cast_pointers (formal_type
, result
, 0);
4517 else if (TYPE_CODE (actual_type
) == TYPE_CODE_PTR
)
4518 return ada_value_ind (actual
);
4519 else if (ada_is_aligner_type (formal_type
))
4521 /* We need to turn this parameter into an aligner type
4523 struct value
*aligner
= allocate_value (formal_type
);
4524 struct value
*component
= ada_value_struct_elt (aligner
, "F", 0);
4526 value_assign_to_component (aligner
, component
, actual
);
4533 /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4534 type TYPE. This is usually an inefficient no-op except on some targets
4535 (such as AVR) where the representation of a pointer and an address
4539 value_pointer (struct value
*value
, struct type
*type
)
4541 struct gdbarch
*gdbarch
= get_type_arch (type
);
4542 unsigned len
= TYPE_LENGTH (type
);
4543 gdb_byte
*buf
= (gdb_byte
*) alloca (len
);
4546 addr
= value_address (value
);
4547 gdbarch_address_to_pointer (gdbarch
, type
, buf
, addr
);
4548 addr
= extract_unsigned_integer (buf
, len
, gdbarch_byte_order (gdbarch
));
4553 /* Push a descriptor of type TYPE for array value ARR on the stack at
4554 *SP, updating *SP to reflect the new descriptor. Return either
4555 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4556 to-descriptor type rather than a descriptor type), a struct value *
4557 representing a pointer to this descriptor. */
4559 static struct value
*
4560 make_array_descriptor (struct type
*type
, struct value
*arr
)
4562 struct type
*bounds_type
= desc_bounds_type (type
);
4563 struct type
*desc_type
= desc_base_type (type
);
4564 struct value
*descriptor
= allocate_value (desc_type
);
4565 struct value
*bounds
= allocate_value (bounds_type
);
4568 for (i
= ada_array_arity (ada_check_typedef (value_type (arr
)));
4571 modify_field (value_type (bounds
), value_contents_writeable (bounds
),
4572 ada_array_bound (arr
, i
, 0),
4573 desc_bound_bitpos (bounds_type
, i
, 0),
4574 desc_bound_bitsize (bounds_type
, i
, 0));
4575 modify_field (value_type (bounds
), value_contents_writeable (bounds
),
4576 ada_array_bound (arr
, i
, 1),
4577 desc_bound_bitpos (bounds_type
, i
, 1),
4578 desc_bound_bitsize (bounds_type
, i
, 1));
4581 bounds
= ensure_lval (bounds
);
4583 modify_field (value_type (descriptor
),
4584 value_contents_writeable (descriptor
),
4585 value_pointer (ensure_lval (arr
),
4586 TYPE_FIELD_TYPE (desc_type
, 0)),
4587 fat_pntr_data_bitpos (desc_type
),
4588 fat_pntr_data_bitsize (desc_type
));
4590 modify_field (value_type (descriptor
),
4591 value_contents_writeable (descriptor
),
4592 value_pointer (bounds
,
4593 TYPE_FIELD_TYPE (desc_type
, 1)),
4594 fat_pntr_bounds_bitpos (desc_type
),
4595 fat_pntr_bounds_bitsize (desc_type
));
4597 descriptor
= ensure_lval (descriptor
);
4599 if (TYPE_CODE (type
) == TYPE_CODE_PTR
)
4600 return value_addr (descriptor
);
4605 /* Symbol Cache Module */
4607 /* Performance measurements made as of 2010-01-15 indicate that
4608 this cache does bring some noticeable improvements. Depending
4609 on the type of entity being printed, the cache can make it as much
4610 as an order of magnitude faster than without it.
4612 The descriptive type DWARF extension has significantly reduced
4613 the need for this cache, at least when DWARF is being used. However,
4614 even in this case, some expensive name-based symbol searches are still
4615 sometimes necessary - to find an XVZ variable, mostly. */
4617 /* Initialize the contents of SYM_CACHE. */
4620 ada_init_symbol_cache (struct ada_symbol_cache
*sym_cache
)
4622 obstack_init (&sym_cache
->cache_space
);
4623 memset (sym_cache
->root
, '\000', sizeof (sym_cache
->root
));
4626 /* Free the memory used by SYM_CACHE. */
4629 ada_free_symbol_cache (struct ada_symbol_cache
*sym_cache
)
4631 obstack_free (&sym_cache
->cache_space
, NULL
);
4635 /* Return the symbol cache associated to the given program space PSPACE.
4636 If not allocated for this PSPACE yet, allocate and initialize one. */
4638 static struct ada_symbol_cache
*
4639 ada_get_symbol_cache (struct program_space
*pspace
)
4641 struct ada_pspace_data
*pspace_data
= get_ada_pspace_data (pspace
);
4643 if (pspace_data
->sym_cache
== NULL
)
4645 pspace_data
->sym_cache
= XCNEW (struct ada_symbol_cache
);
4646 ada_init_symbol_cache (pspace_data
->sym_cache
);
4649 return pspace_data
->sym_cache
;
4652 /* Clear all entries from the symbol cache. */
4655 ada_clear_symbol_cache (void)
4657 struct ada_symbol_cache
*sym_cache
4658 = ada_get_symbol_cache (current_program_space
);
4660 obstack_free (&sym_cache
->cache_space
, NULL
);
4661 ada_init_symbol_cache (sym_cache
);
4664 /* Search our cache for an entry matching NAME and DOMAIN.
4665 Return it if found, or NULL otherwise. */
4667 static struct cache_entry
**
4668 find_entry (const char *name
, domain_enum domain
)
4670 struct ada_symbol_cache
*sym_cache
4671 = ada_get_symbol_cache (current_program_space
);
4672 int h
= msymbol_hash (name
) % HASH_SIZE
;
4673 struct cache_entry
**e
;
4675 for (e
= &sym_cache
->root
[h
]; *e
!= NULL
; e
= &(*e
)->next
)
4677 if (domain
== (*e
)->domain
&& strcmp (name
, (*e
)->name
) == 0)
4683 /* Search the symbol cache for an entry matching NAME and DOMAIN.
4684 Return 1 if found, 0 otherwise.
4686 If an entry was found and SYM is not NULL, set *SYM to the entry's
4687 SYM. Same principle for BLOCK if not NULL. */
4690 lookup_cached_symbol (const char *name
, domain_enum domain
,
4691 struct symbol
**sym
, const struct block
**block
)
4693 struct cache_entry
**e
= find_entry (name
, domain
);
4700 *block
= (*e
)->block
;
4704 /* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
4705 in domain DOMAIN, save this result in our symbol cache. */
4708 cache_symbol (const char *name
, domain_enum domain
, struct symbol
*sym
,
4709 const struct block
*block
)
4711 struct ada_symbol_cache
*sym_cache
4712 = ada_get_symbol_cache (current_program_space
);
4715 struct cache_entry
*e
;
4717 /* Symbols for builtin types don't have a block.
4718 For now don't cache such symbols. */
4719 if (sym
!= NULL
&& !SYMBOL_OBJFILE_OWNED (sym
))
4722 /* If the symbol is a local symbol, then do not cache it, as a search
4723 for that symbol depends on the context. To determine whether
4724 the symbol is local or not, we check the block where we found it
4725 against the global and static blocks of its associated symtab. */
4727 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym
)),
4728 GLOBAL_BLOCK
) != block
4729 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym
)),
4730 STATIC_BLOCK
) != block
)
4733 h
= msymbol_hash (name
) % HASH_SIZE
;
4734 e
= XOBNEW (&sym_cache
->cache_space
, cache_entry
);
4735 e
->next
= sym_cache
->root
[h
];
4736 sym_cache
->root
[h
] = e
;
4738 = (char *) obstack_alloc (&sym_cache
->cache_space
, strlen (name
) + 1);
4739 strcpy (copy
, name
);
4747 /* Return the symbol name match type that should be used used when
4748 searching for all symbols matching LOOKUP_NAME.
4750 LOOKUP_NAME is expected to be a symbol name after transformation
4753 static symbol_name_match_type
4754 name_match_type_from_name (const char *lookup_name
)
4756 return (strstr (lookup_name
, "__") == NULL
4757 ? symbol_name_match_type::WILD
4758 : symbol_name_match_type::FULL
);
4761 /* Return the result of a standard (literal, C-like) lookup of NAME in
4762 given DOMAIN, visible from lexical block BLOCK. */
4764 static struct symbol
*
4765 standard_lookup (const char *name
, const struct block
*block
,
4768 /* Initialize it just to avoid a GCC false warning. */
4769 struct block_symbol sym
= {};
4771 if (lookup_cached_symbol (name
, domain
, &sym
.symbol
, NULL
))
4773 ada_lookup_encoded_symbol (name
, block
, domain
, &sym
);
4774 cache_symbol (name
, domain
, sym
.symbol
, sym
.block
);
4779 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4780 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4781 since they contend in overloading in the same way. */
4783 is_nonfunction (struct block_symbol syms
[], int n
)
4787 for (i
= 0; i
< n
; i
+= 1)
4788 if (TYPE_CODE (SYMBOL_TYPE (syms
[i
].symbol
)) != TYPE_CODE_FUNC
4789 && (TYPE_CODE (SYMBOL_TYPE (syms
[i
].symbol
)) != TYPE_CODE_ENUM
4790 || SYMBOL_CLASS (syms
[i
].symbol
) != LOC_CONST
))
4796 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4797 struct types. Otherwise, they may not. */
4800 equiv_types (struct type
*type0
, struct type
*type1
)
4804 if (type0
== NULL
|| type1
== NULL
4805 || TYPE_CODE (type0
) != TYPE_CODE (type1
))
4807 if ((TYPE_CODE (type0
) == TYPE_CODE_STRUCT
4808 || TYPE_CODE (type0
) == TYPE_CODE_ENUM
)
4809 && ada_type_name (type0
) != NULL
&& ada_type_name (type1
) != NULL
4810 && strcmp (ada_type_name (type0
), ada_type_name (type1
)) == 0)
4816 /* True iff SYM0 represents the same entity as SYM1, or one that is
4817 no more defined than that of SYM1. */
4820 lesseq_defined_than (struct symbol
*sym0
, struct symbol
*sym1
)
4824 if (SYMBOL_DOMAIN (sym0
) != SYMBOL_DOMAIN (sym1
)
4825 || SYMBOL_CLASS (sym0
) != SYMBOL_CLASS (sym1
))
4828 switch (SYMBOL_CLASS (sym0
))
4834 struct type
*type0
= SYMBOL_TYPE (sym0
);
4835 struct type
*type1
= SYMBOL_TYPE (sym1
);
4836 const char *name0
= SYMBOL_LINKAGE_NAME (sym0
);
4837 const char *name1
= SYMBOL_LINKAGE_NAME (sym1
);
4838 int len0
= strlen (name0
);
4841 TYPE_CODE (type0
) == TYPE_CODE (type1
)
4842 && (equiv_types (type0
, type1
)
4843 || (len0
< strlen (name1
) && strncmp (name0
, name1
, len0
) == 0
4844 && startswith (name1
+ len0
, "___XV")));
4847 return SYMBOL_VALUE (sym0
) == SYMBOL_VALUE (sym1
)
4848 && equiv_types (SYMBOL_TYPE (sym0
), SYMBOL_TYPE (sym1
));
4854 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct block_symbol
4855 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4858 add_defn_to_vec (struct obstack
*obstackp
,
4860 const struct block
*block
)
4863 struct block_symbol
*prevDefns
= defns_collected (obstackp
, 0);
4865 /* Do not try to complete stub types, as the debugger is probably
4866 already scanning all symbols matching a certain name at the
4867 time when this function is called. Trying to replace the stub
4868 type by its associated full type will cause us to restart a scan
4869 which may lead to an infinite recursion. Instead, the client
4870 collecting the matching symbols will end up collecting several
4871 matches, with at least one of them complete. It can then filter
4872 out the stub ones if needed. */
4874 for (i
= num_defns_collected (obstackp
) - 1; i
>= 0; i
-= 1)
4876 if (lesseq_defined_than (sym
, prevDefns
[i
].symbol
))
4878 else if (lesseq_defined_than (prevDefns
[i
].symbol
, sym
))
4880 prevDefns
[i
].symbol
= sym
;
4881 prevDefns
[i
].block
= block
;
4887 struct block_symbol info
;
4891 obstack_grow (obstackp
, &info
, sizeof (struct block_symbol
));
4895 /* Number of block_symbol structures currently collected in current vector in
4899 num_defns_collected (struct obstack
*obstackp
)
4901 return obstack_object_size (obstackp
) / sizeof (struct block_symbol
);
4904 /* Vector of block_symbol structures currently collected in current vector in
4905 OBSTACKP. If FINISH, close off the vector and return its final address. */
4907 static struct block_symbol
*
4908 defns_collected (struct obstack
*obstackp
, int finish
)
4911 return (struct block_symbol
*) obstack_finish (obstackp
);
4913 return (struct block_symbol
*) obstack_base (obstackp
);
4916 /* Return a bound minimal symbol matching NAME according to Ada
4917 decoding rules. Returns an invalid symbol if there is no such
4918 minimal symbol. Names prefixed with "standard__" are handled
4919 specially: "standard__" is first stripped off, and only static and
4920 global symbols are searched. */
4922 struct bound_minimal_symbol
4923 ada_lookup_simple_minsym (const char *name
)
4925 struct bound_minimal_symbol result
;
4927 memset (&result
, 0, sizeof (result
));
4929 symbol_name_match_type match_type
= name_match_type_from_name (name
);
4930 lookup_name_info
lookup_name (name
, match_type
);
4932 symbol_name_matcher_ftype
*match_name
4933 = ada_get_symbol_name_matcher (lookup_name
);
4935 for (objfile
*objfile
: current_program_space
->objfiles ())
4937 for (minimal_symbol
*msymbol
: objfile
->msymbols ())
4939 if (match_name (MSYMBOL_LINKAGE_NAME (msymbol
), lookup_name
, NULL
)
4940 && MSYMBOL_TYPE (msymbol
) != mst_solib_trampoline
)
4942 result
.minsym
= msymbol
;
4943 result
.objfile
= objfile
;
4952 /* For all subprograms that statically enclose the subprogram of the
4953 selected frame, add symbols matching identifier NAME in DOMAIN
4954 and their blocks to the list of data in OBSTACKP, as for
4955 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4956 with a wildcard prefix. */
4959 add_symbols_from_enclosing_procs (struct obstack
*obstackp
,
4960 const lookup_name_info
&lookup_name
,
4965 /* True if TYPE is definitely an artificial type supplied to a symbol
4966 for which no debugging information was given in the symbol file. */
4969 is_nondebugging_type (struct type
*type
)
4971 const char *name
= ada_type_name (type
);
4973 return (name
!= NULL
&& strcmp (name
, "<variable, no debug info>") == 0);
4976 /* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4977 that are deemed "identical" for practical purposes.
4979 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4980 types and that their number of enumerals is identical (in other
4981 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
4984 ada_identical_enum_types_p (struct type
*type1
, struct type
*type2
)
4988 /* The heuristic we use here is fairly conservative. We consider
4989 that 2 enumerate types are identical if they have the same
4990 number of enumerals and that all enumerals have the same
4991 underlying value and name. */
4993 /* All enums in the type should have an identical underlying value. */
4994 for (i
= 0; i
< TYPE_NFIELDS (type1
); i
++)
4995 if (TYPE_FIELD_ENUMVAL (type1
, i
) != TYPE_FIELD_ENUMVAL (type2
, i
))
4998 /* All enumerals should also have the same name (modulo any numerical
5000 for (i
= 0; i
< TYPE_NFIELDS (type1
); i
++)
5002 const char *name_1
= TYPE_FIELD_NAME (type1
, i
);
5003 const char *name_2
= TYPE_FIELD_NAME (type2
, i
);
5004 int len_1
= strlen (name_1
);
5005 int len_2
= strlen (name_2
);
5007 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1
, i
), &len_1
);
5008 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2
, i
), &len_2
);
5010 || strncmp (TYPE_FIELD_NAME (type1
, i
),
5011 TYPE_FIELD_NAME (type2
, i
),
5019 /* Return nonzero if all the symbols in SYMS are all enumeral symbols
5020 that are deemed "identical" for practical purposes. Sometimes,
5021 enumerals are not strictly identical, but their types are so similar
5022 that they can be considered identical.
5024 For instance, consider the following code:
5026 type Color is (Black, Red, Green, Blue, White);
5027 type RGB_Color is new Color range Red .. Blue;
5029 Type RGB_Color is a subrange of an implicit type which is a copy
5030 of type Color. If we call that implicit type RGB_ColorB ("B" is
5031 for "Base Type"), then type RGB_ColorB is a copy of type Color.
5032 As a result, when an expression references any of the enumeral
5033 by name (Eg. "print green"), the expression is technically
5034 ambiguous and the user should be asked to disambiguate. But
5035 doing so would only hinder the user, since it wouldn't matter
5036 what choice he makes, the outcome would always be the same.
5037 So, for practical purposes, we consider them as the same. */
5040 symbols_are_identical_enums (const std::vector
<struct block_symbol
> &syms
)
5044 /* Before performing a thorough comparison check of each type,
5045 we perform a series of inexpensive checks. We expect that these
5046 checks will quickly fail in the vast majority of cases, and thus
5047 help prevent the unnecessary use of a more expensive comparison.
5048 Said comparison also expects us to make some of these checks
5049 (see ada_identical_enum_types_p). */
5051 /* Quick check: All symbols should have an enum type. */
5052 for (i
= 0; i
< syms
.size (); i
++)
5053 if (TYPE_CODE (SYMBOL_TYPE (syms
[i
].symbol
)) != TYPE_CODE_ENUM
)
5056 /* Quick check: They should all have the same value. */
5057 for (i
= 1; i
< syms
.size (); i
++)
5058 if (SYMBOL_VALUE (syms
[i
].symbol
) != SYMBOL_VALUE (syms
[0].symbol
))
5061 /* Quick check: They should all have the same number of enumerals. */
5062 for (i
= 1; i
< syms
.size (); i
++)
5063 if (TYPE_NFIELDS (SYMBOL_TYPE (syms
[i
].symbol
))
5064 != TYPE_NFIELDS (SYMBOL_TYPE (syms
[0].symbol
)))
5067 /* All the sanity checks passed, so we might have a set of
5068 identical enumeration types. Perform a more complete
5069 comparison of the type of each symbol. */
5070 for (i
= 1; i
< syms
.size (); i
++)
5071 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms
[i
].symbol
),
5072 SYMBOL_TYPE (syms
[0].symbol
)))
5078 /* Remove any non-debugging symbols in SYMS that definitely
5079 duplicate other symbols in the list (The only case I know of where
5080 this happens is when object files containing stabs-in-ecoff are
5081 linked with files containing ordinary ecoff debugging symbols (or no
5082 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
5083 Returns the number of items in the modified list. */
5086 remove_extra_symbols (std::vector
<struct block_symbol
> *syms
)
5090 /* We should never be called with less than 2 symbols, as there
5091 cannot be any extra symbol in that case. But it's easy to
5092 handle, since we have nothing to do in that case. */
5093 if (syms
->size () < 2)
5094 return syms
->size ();
5097 while (i
< syms
->size ())
5101 /* If two symbols have the same name and one of them is a stub type,
5102 the get rid of the stub. */
5104 if (TYPE_STUB (SYMBOL_TYPE ((*syms
)[i
].symbol
))
5105 && SYMBOL_LINKAGE_NAME ((*syms
)[i
].symbol
) != NULL
)
5107 for (j
= 0; j
< syms
->size (); j
++)
5110 && !TYPE_STUB (SYMBOL_TYPE ((*syms
)[j
].symbol
))
5111 && SYMBOL_LINKAGE_NAME ((*syms
)[j
].symbol
) != NULL
5112 && strcmp (SYMBOL_LINKAGE_NAME ((*syms
)[i
].symbol
),
5113 SYMBOL_LINKAGE_NAME ((*syms
)[j
].symbol
)) == 0)
5118 /* Two symbols with the same name, same class and same address
5119 should be identical. */
5121 else if (SYMBOL_LINKAGE_NAME ((*syms
)[i
].symbol
) != NULL
5122 && SYMBOL_CLASS ((*syms
)[i
].symbol
) == LOC_STATIC
5123 && is_nondebugging_type (SYMBOL_TYPE ((*syms
)[i
].symbol
)))
5125 for (j
= 0; j
< syms
->size (); j
+= 1)
5128 && SYMBOL_LINKAGE_NAME ((*syms
)[j
].symbol
) != NULL
5129 && strcmp (SYMBOL_LINKAGE_NAME ((*syms
)[i
].symbol
),
5130 SYMBOL_LINKAGE_NAME ((*syms
)[j
].symbol
)) == 0
5131 && SYMBOL_CLASS ((*syms
)[i
].symbol
)
5132 == SYMBOL_CLASS ((*syms
)[j
].symbol
)
5133 && SYMBOL_VALUE_ADDRESS ((*syms
)[i
].symbol
)
5134 == SYMBOL_VALUE_ADDRESS ((*syms
)[j
].symbol
))
5140 syms
->erase (syms
->begin () + i
);
5145 /* If all the remaining symbols are identical enumerals, then
5146 just keep the first one and discard the rest.
5148 Unlike what we did previously, we do not discard any entry
5149 unless they are ALL identical. This is because the symbol
5150 comparison is not a strict comparison, but rather a practical
5151 comparison. If all symbols are considered identical, then
5152 we can just go ahead and use the first one and discard the rest.
5153 But if we cannot reduce the list to a single element, we have
5154 to ask the user to disambiguate anyways. And if we have to
5155 present a multiple-choice menu, it's less confusing if the list
5156 isn't missing some choices that were identical and yet distinct. */
5157 if (symbols_are_identical_enums (*syms
))
5160 return syms
->size ();
5163 /* Given a type that corresponds to a renaming entity, use the type name
5164 to extract the scope (package name or function name, fully qualified,
5165 and following the GNAT encoding convention) where this renaming has been
5169 xget_renaming_scope (struct type
*renaming_type
)
5171 /* The renaming types adhere to the following convention:
5172 <scope>__<rename>___<XR extension>.
5173 So, to extract the scope, we search for the "___XR" extension,
5174 and then backtrack until we find the first "__". */
5176 const char *name
= TYPE_NAME (renaming_type
);
5177 const char *suffix
= strstr (name
, "___XR");
5180 /* Now, backtrack a bit until we find the first "__". Start looking
5181 at suffix - 3, as the <rename> part is at least one character long. */
5183 for (last
= suffix
- 3; last
> name
; last
--)
5184 if (last
[0] == '_' && last
[1] == '_')
5187 /* Make a copy of scope and return it. */
5188 return std::string (name
, last
);
5191 /* Return nonzero if NAME corresponds to a package name. */
5194 is_package_name (const char *name
)
5196 /* Here, We take advantage of the fact that no symbols are generated
5197 for packages, while symbols are generated for each function.
5198 So the condition for NAME represent a package becomes equivalent
5199 to NAME not existing in our list of symbols. There is only one
5200 small complication with library-level functions (see below). */
5202 /* If it is a function that has not been defined at library level,
5203 then we should be able to look it up in the symbols. */
5204 if (standard_lookup (name
, NULL
, VAR_DOMAIN
) != NULL
)
5207 /* Library-level function names start with "_ada_". See if function
5208 "_ada_" followed by NAME can be found. */
5210 /* Do a quick check that NAME does not contain "__", since library-level
5211 functions names cannot contain "__" in them. */
5212 if (strstr (name
, "__") != NULL
)
5215 std::string fun_name
= string_printf ("_ada_%s", name
);
5217 return (standard_lookup (fun_name
.c_str (), NULL
, VAR_DOMAIN
) == NULL
);
5220 /* Return nonzero if SYM corresponds to a renaming entity that is
5221 not visible from FUNCTION_NAME. */
5224 old_renaming_is_invisible (const struct symbol
*sym
, const char *function_name
)
5226 if (SYMBOL_CLASS (sym
) != LOC_TYPEDEF
)
5229 std::string scope
= xget_renaming_scope (SYMBOL_TYPE (sym
));
5231 /* If the rename has been defined in a package, then it is visible. */
5232 if (is_package_name (scope
.c_str ()))
5235 /* Check that the rename is in the current function scope by checking
5236 that its name starts with SCOPE. */
5238 /* If the function name starts with "_ada_", it means that it is
5239 a library-level function. Strip this prefix before doing the
5240 comparison, as the encoding for the renaming does not contain
5242 if (startswith (function_name
, "_ada_"))
5245 return !startswith (function_name
, scope
.c_str ());
5248 /* Remove entries from SYMS that corresponds to a renaming entity that
5249 is not visible from the function associated with CURRENT_BLOCK or
5250 that is superfluous due to the presence of more specific renaming
5251 information. Places surviving symbols in the initial entries of
5252 SYMS and returns the number of surviving symbols.
5255 First, in cases where an object renaming is implemented as a
5256 reference variable, GNAT may produce both the actual reference
5257 variable and the renaming encoding. In this case, we discard the
5260 Second, GNAT emits a type following a specified encoding for each renaming
5261 entity. Unfortunately, STABS currently does not support the definition
5262 of types that are local to a given lexical block, so all renamings types
5263 are emitted at library level. As a consequence, if an application
5264 contains two renaming entities using the same name, and a user tries to
5265 print the value of one of these entities, the result of the ada symbol
5266 lookup will also contain the wrong renaming type.
5268 This function partially covers for this limitation by attempting to
5269 remove from the SYMS list renaming symbols that should be visible
5270 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
5271 method with the current information available. The implementation
5272 below has a couple of limitations (FIXME: brobecker-2003-05-12):
5274 - When the user tries to print a rename in a function while there
5275 is another rename entity defined in a package: Normally, the
5276 rename in the function has precedence over the rename in the
5277 package, so the latter should be removed from the list. This is
5278 currently not the case.
5280 - This function will incorrectly remove valid renames if
5281 the CURRENT_BLOCK corresponds to a function which symbol name
5282 has been changed by an "Export" pragma. As a consequence,
5283 the user will be unable to print such rename entities. */
5286 remove_irrelevant_renamings (std::vector
<struct block_symbol
> *syms
,
5287 const struct block
*current_block
)
5289 struct symbol
*current_function
;
5290 const char *current_function_name
;
5292 int is_new_style_renaming
;
5294 /* If there is both a renaming foo___XR... encoded as a variable and
5295 a simple variable foo in the same block, discard the latter.
5296 First, zero out such symbols, then compress. */
5297 is_new_style_renaming
= 0;
5298 for (i
= 0; i
< syms
->size (); i
+= 1)
5300 struct symbol
*sym
= (*syms
)[i
].symbol
;
5301 const struct block
*block
= (*syms
)[i
].block
;
5305 if (sym
== NULL
|| SYMBOL_CLASS (sym
) == LOC_TYPEDEF
)
5307 name
= SYMBOL_LINKAGE_NAME (sym
);
5308 suffix
= strstr (name
, "___XR");
5312 int name_len
= suffix
- name
;
5315 is_new_style_renaming
= 1;
5316 for (j
= 0; j
< syms
->size (); j
+= 1)
5317 if (i
!= j
&& (*syms
)[j
].symbol
!= NULL
5318 && strncmp (name
, SYMBOL_LINKAGE_NAME ((*syms
)[j
].symbol
),
5320 && block
== (*syms
)[j
].block
)
5321 (*syms
)[j
].symbol
= NULL
;
5324 if (is_new_style_renaming
)
5328 for (j
= k
= 0; j
< syms
->size (); j
+= 1)
5329 if ((*syms
)[j
].symbol
!= NULL
)
5331 (*syms
)[k
] = (*syms
)[j
];
5337 /* Extract the function name associated to CURRENT_BLOCK.
5338 Abort if unable to do so. */
5340 if (current_block
== NULL
)
5341 return syms
->size ();
5343 current_function
= block_linkage_function (current_block
);
5344 if (current_function
== NULL
)
5345 return syms
->size ();
5347 current_function_name
= SYMBOL_LINKAGE_NAME (current_function
);
5348 if (current_function_name
== NULL
)
5349 return syms
->size ();
5351 /* Check each of the symbols, and remove it from the list if it is
5352 a type corresponding to a renaming that is out of the scope of
5353 the current block. */
5356 while (i
< syms
->size ())
5358 if (ada_parse_renaming ((*syms
)[i
].symbol
, NULL
, NULL
, NULL
)
5359 == ADA_OBJECT_RENAMING
5360 && old_renaming_is_invisible ((*syms
)[i
].symbol
,
5361 current_function_name
))
5362 syms
->erase (syms
->begin () + i
);
5367 return syms
->size ();
5370 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
5371 whose name and domain match NAME and DOMAIN respectively.
5372 If no match was found, then extend the search to "enclosing"
5373 routines (in other words, if we're inside a nested function,
5374 search the symbols defined inside the enclosing functions).
5375 If WILD_MATCH_P is nonzero, perform the naming matching in
5376 "wild" mode (see function "wild_match" for more info).
5378 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
5381 ada_add_local_symbols (struct obstack
*obstackp
,
5382 const lookup_name_info
&lookup_name
,
5383 const struct block
*block
, domain_enum domain
)
5385 int block_depth
= 0;
5387 while (block
!= NULL
)
5390 ada_add_block_symbols (obstackp
, block
, lookup_name
, domain
, NULL
);
5392 /* If we found a non-function match, assume that's the one. */
5393 if (is_nonfunction (defns_collected (obstackp
, 0),
5394 num_defns_collected (obstackp
)))
5397 block
= BLOCK_SUPERBLOCK (block
);
5400 /* If no luck so far, try to find NAME as a local symbol in some lexically
5401 enclosing subprogram. */
5402 if (num_defns_collected (obstackp
) == 0 && block_depth
> 2)
5403 add_symbols_from_enclosing_procs (obstackp
, lookup_name
, domain
);
5406 /* An object of this type is used as the user_data argument when
5407 calling the map_matching_symbols method. */
5411 struct objfile
*objfile
;
5412 struct obstack
*obstackp
;
5413 struct symbol
*arg_sym
;
5417 /* A callback for add_nonlocal_symbols that adds SYM, found in BLOCK,
5418 to a list of symbols. DATA0 is a pointer to a struct match_data *
5419 containing the obstack that collects the symbol list, the file that SYM
5420 must come from, a flag indicating whether a non-argument symbol has
5421 been found in the current block, and the last argument symbol
5422 passed in SYM within the current block (if any). When SYM is null,
5423 marking the end of a block, the argument symbol is added if no
5424 other has been found. */
5427 aux_add_nonlocal_symbols (const struct block
*block
, struct symbol
*sym
,
5430 struct match_data
*data
= (struct match_data
*) data0
;
5434 if (!data
->found_sym
&& data
->arg_sym
!= NULL
)
5435 add_defn_to_vec (data
->obstackp
,
5436 fixup_symbol_section (data
->arg_sym
, data
->objfile
),
5438 data
->found_sym
= 0;
5439 data
->arg_sym
= NULL
;
5443 if (SYMBOL_CLASS (sym
) == LOC_UNRESOLVED
)
5445 else if (SYMBOL_IS_ARGUMENT (sym
))
5446 data
->arg_sym
= sym
;
5449 data
->found_sym
= 1;
5450 add_defn_to_vec (data
->obstackp
,
5451 fixup_symbol_section (sym
, data
->objfile
),
5458 /* Helper for add_nonlocal_symbols. Find symbols in DOMAIN which are
5459 targeted by renamings matching LOOKUP_NAME in BLOCK. Add these
5460 symbols to OBSTACKP. Return whether we found such symbols. */
5463 ada_add_block_renamings (struct obstack
*obstackp
,
5464 const struct block
*block
,
5465 const lookup_name_info
&lookup_name
,
5468 struct using_direct
*renaming
;
5469 int defns_mark
= num_defns_collected (obstackp
);
5471 symbol_name_matcher_ftype
*name_match
5472 = ada_get_symbol_name_matcher (lookup_name
);
5474 for (renaming
= block_using (block
);
5476 renaming
= renaming
->next
)
5480 /* Avoid infinite recursions: skip this renaming if we are actually
5481 already traversing it.
5483 Currently, symbol lookup in Ada don't use the namespace machinery from
5484 C++/Fortran support: skip namespace imports that use them. */
5485 if (renaming
->searched
5486 || (renaming
->import_src
!= NULL
5487 && renaming
->import_src
[0] != '\0')
5488 || (renaming
->import_dest
!= NULL
5489 && renaming
->import_dest
[0] != '\0'))
5491 renaming
->searched
= 1;
5493 /* TODO: here, we perform another name-based symbol lookup, which can
5494 pull its own multiple overloads. In theory, we should be able to do
5495 better in this case since, in DWARF, DW_AT_import is a DIE reference,
5496 not a simple name. But in order to do this, we would need to enhance
5497 the DWARF reader to associate a symbol to this renaming, instead of a
5498 name. So, for now, we do something simpler: re-use the C++/Fortran
5499 namespace machinery. */
5500 r_name
= (renaming
->alias
!= NULL
5502 : renaming
->declaration
);
5503 if (name_match (r_name
, lookup_name
, NULL
))
5505 lookup_name_info
decl_lookup_name (renaming
->declaration
,
5506 lookup_name
.match_type ());
5507 ada_add_all_symbols (obstackp
, block
, decl_lookup_name
, domain
,
5510 renaming
->searched
= 0;
5512 return num_defns_collected (obstackp
) != defns_mark
;
5515 /* Implements compare_names, but only applying the comparision using
5516 the given CASING. */
5519 compare_names_with_case (const char *string1
, const char *string2
,
5520 enum case_sensitivity casing
)
5522 while (*string1
!= '\0' && *string2
!= '\0')
5526 if (isspace (*string1
) || isspace (*string2
))
5527 return strcmp_iw_ordered (string1
, string2
);
5529 if (casing
== case_sensitive_off
)
5531 c1
= tolower (*string1
);
5532 c2
= tolower (*string2
);
5549 return strcmp_iw_ordered (string1
, string2
);
5551 if (*string2
== '\0')
5553 if (is_name_suffix (string1
))
5560 if (*string2
== '(')
5561 return strcmp_iw_ordered (string1
, string2
);
5564 if (casing
== case_sensitive_off
)
5565 return tolower (*string1
) - tolower (*string2
);
5567 return *string1
- *string2
;
5572 /* Compare STRING1 to STRING2, with results as for strcmp.
5573 Compatible with strcmp_iw_ordered in that...
5575 strcmp_iw_ordered (STRING1, STRING2) <= 0
5579 compare_names (STRING1, STRING2) <= 0
5581 (they may differ as to what symbols compare equal). */
5584 compare_names (const char *string1
, const char *string2
)
5588 /* Similar to what strcmp_iw_ordered does, we need to perform
5589 a case-insensitive comparison first, and only resort to
5590 a second, case-sensitive, comparison if the first one was
5591 not sufficient to differentiate the two strings. */
5593 result
= compare_names_with_case (string1
, string2
, case_sensitive_off
);
5595 result
= compare_names_with_case (string1
, string2
, case_sensitive_on
);
5600 /* Convenience function to get at the Ada encoded lookup name for
5601 LOOKUP_NAME, as a C string. */
5604 ada_lookup_name (const lookup_name_info
&lookup_name
)
5606 return lookup_name
.ada ().lookup_name ().c_str ();
5609 /* Add to OBSTACKP all non-local symbols whose name and domain match
5610 LOOKUP_NAME and DOMAIN respectively. The search is performed on
5611 GLOBAL_BLOCK symbols if GLOBAL is non-zero, or on STATIC_BLOCK
5612 symbols otherwise. */
5615 add_nonlocal_symbols (struct obstack
*obstackp
,
5616 const lookup_name_info
&lookup_name
,
5617 domain_enum domain
, int global
)
5619 struct match_data data
;
5621 memset (&data
, 0, sizeof data
);
5622 data
.obstackp
= obstackp
;
5624 bool is_wild_match
= lookup_name
.ada ().wild_match_p ();
5626 for (objfile
*objfile
: current_program_space
->objfiles ())
5628 data
.objfile
= objfile
;
5631 objfile
->sf
->qf
->map_matching_symbols (objfile
, lookup_name
.name ().c_str (),
5633 aux_add_nonlocal_symbols
, &data
,
5634 symbol_name_match_type::WILD
,
5637 objfile
->sf
->qf
->map_matching_symbols (objfile
, lookup_name
.name ().c_str (),
5639 aux_add_nonlocal_symbols
, &data
,
5640 symbol_name_match_type::FULL
,
5643 for (compunit_symtab
*cu
: objfile
->compunits ())
5645 const struct block
*global_block
5646 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cu
), GLOBAL_BLOCK
);
5648 if (ada_add_block_renamings (obstackp
, global_block
, lookup_name
,
5654 if (num_defns_collected (obstackp
) == 0 && global
&& !is_wild_match
)
5656 const char *name
= ada_lookup_name (lookup_name
);
5657 std::string name1
= std::string ("<_ada_") + name
+ '>';
5659 for (objfile
*objfile
: current_program_space
->objfiles ())
5661 data
.objfile
= objfile
;
5662 objfile
->sf
->qf
->map_matching_symbols (objfile
, name1
.c_str (),
5664 aux_add_nonlocal_symbols
,
5666 symbol_name_match_type::FULL
,
5672 /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if
5673 FULL_SEARCH is non-zero, enclosing scope and in global scopes,
5674 returning the number of matches. Add these to OBSTACKP.
5676 When FULL_SEARCH is non-zero, any non-function/non-enumeral
5677 symbol match within the nest of blocks whose innermost member is BLOCK,
5678 is the one match returned (no other matches in that or
5679 enclosing blocks is returned). If there are any matches in or
5680 surrounding BLOCK, then these alone are returned.
5682 Names prefixed with "standard__" are handled specially:
5683 "standard__" is first stripped off (by the lookup_name
5684 constructor), and only static and global symbols are searched.
5686 If MADE_GLOBAL_LOOKUP_P is non-null, set it before return to whether we had
5687 to lookup global symbols. */
5690 ada_add_all_symbols (struct obstack
*obstackp
,
5691 const struct block
*block
,
5692 const lookup_name_info
&lookup_name
,
5695 int *made_global_lookup_p
)
5699 if (made_global_lookup_p
)
5700 *made_global_lookup_p
= 0;
5702 /* Special case: If the user specifies a symbol name inside package
5703 Standard, do a non-wild matching of the symbol name without
5704 the "standard__" prefix. This was primarily introduced in order
5705 to allow the user to specifically access the standard exceptions
5706 using, for instance, Standard.Constraint_Error when Constraint_Error
5707 is ambiguous (due to the user defining its own Constraint_Error
5708 entity inside its program). */
5709 if (lookup_name
.ada ().standard_p ())
5712 /* Check the non-global symbols. If we have ANY match, then we're done. */
5717 ada_add_local_symbols (obstackp
, lookup_name
, block
, domain
);
5720 /* In the !full_search case we're are being called by
5721 ada_iterate_over_symbols, and we don't want to search
5723 ada_add_block_symbols (obstackp
, block
, lookup_name
, domain
, NULL
);
5725 if (num_defns_collected (obstackp
) > 0 || !full_search
)
5729 /* No non-global symbols found. Check our cache to see if we have
5730 already performed this search before. If we have, then return
5733 if (lookup_cached_symbol (ada_lookup_name (lookup_name
),
5734 domain
, &sym
, &block
))
5737 add_defn_to_vec (obstackp
, sym
, block
);
5741 if (made_global_lookup_p
)
5742 *made_global_lookup_p
= 1;
5744 /* Search symbols from all global blocks. */
5746 add_nonlocal_symbols (obstackp
, lookup_name
, domain
, 1);
5748 /* Now add symbols from all per-file blocks if we've gotten no hits
5749 (not strictly correct, but perhaps better than an error). */
5751 if (num_defns_collected (obstackp
) == 0)
5752 add_nonlocal_symbols (obstackp
, lookup_name
, domain
, 0);
5755 /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if FULL_SEARCH
5756 is non-zero, enclosing scope and in global scopes, returning the number of
5758 Fills *RESULTS with (SYM,BLOCK) tuples, indicating the symbols
5759 found and the blocks and symbol tables (if any) in which they were
5762 When full_search is non-zero, any non-function/non-enumeral
5763 symbol match within the nest of blocks whose innermost member is BLOCK,
5764 is the one match returned (no other matches in that or
5765 enclosing blocks is returned). If there are any matches in or
5766 surrounding BLOCK, then these alone are returned.
5768 Names prefixed with "standard__" are handled specially: "standard__"
5769 is first stripped off, and only static and global symbols are searched. */
5772 ada_lookup_symbol_list_worker (const lookup_name_info
&lookup_name
,
5773 const struct block
*block
,
5775 std::vector
<struct block_symbol
> *results
,
5778 int syms_from_global_search
;
5780 auto_obstack obstack
;
5782 ada_add_all_symbols (&obstack
, block
, lookup_name
,
5783 domain
, full_search
, &syms_from_global_search
);
5785 ndefns
= num_defns_collected (&obstack
);
5787 struct block_symbol
*base
= defns_collected (&obstack
, 1);
5788 for (int i
= 0; i
< ndefns
; ++i
)
5789 results
->push_back (base
[i
]);
5791 ndefns
= remove_extra_symbols (results
);
5793 if (ndefns
== 0 && full_search
&& syms_from_global_search
)
5794 cache_symbol (ada_lookup_name (lookup_name
), domain
, NULL
, NULL
);
5796 if (ndefns
== 1 && full_search
&& syms_from_global_search
)
5797 cache_symbol (ada_lookup_name (lookup_name
), domain
,
5798 (*results
)[0].symbol
, (*results
)[0].block
);
5800 ndefns
= remove_irrelevant_renamings (results
, block
);
5805 /* Find symbols in DOMAIN matching NAME, in BLOCK and enclosing scope and
5806 in global scopes, returning the number of matches, and filling *RESULTS
5807 with (SYM,BLOCK) tuples.
5809 See ada_lookup_symbol_list_worker for further details. */
5812 ada_lookup_symbol_list (const char *name
, const struct block
*block
,
5814 std::vector
<struct block_symbol
> *results
)
5816 symbol_name_match_type name_match_type
= name_match_type_from_name (name
);
5817 lookup_name_info
lookup_name (name
, name_match_type
);
5819 return ada_lookup_symbol_list_worker (lookup_name
, block
, domain
, results
, 1);
5822 /* Implementation of the la_iterate_over_symbols method. */
5825 ada_iterate_over_symbols
5826 (const struct block
*block
, const lookup_name_info
&name
,
5828 gdb::function_view
<symbol_found_callback_ftype
> callback
)
5831 std::vector
<struct block_symbol
> results
;
5833 ndefs
= ada_lookup_symbol_list_worker (name
, block
, domain
, &results
, 0);
5835 for (i
= 0; i
< ndefs
; ++i
)
5837 if (!callback (&results
[i
]))
5842 /* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5843 to 1, but choosing the first symbol found if there are multiple
5846 The result is stored in *INFO, which must be non-NULL.
5847 If no match is found, INFO->SYM is set to NULL. */
5850 ada_lookup_encoded_symbol (const char *name
, const struct block
*block
,
5852 struct block_symbol
*info
)
5854 /* Since we already have an encoded name, wrap it in '<>' to force a
5855 verbatim match. Otherwise, if the name happens to not look like
5856 an encoded name (because it doesn't include a "__"),
5857 ada_lookup_name_info would re-encode/fold it again, and that
5858 would e.g., incorrectly lowercase object renaming names like
5859 "R28b" -> "r28b". */
5860 std::string verbatim
= std::string ("<") + name
+ '>';
5862 gdb_assert (info
!= NULL
);
5863 *info
= ada_lookup_symbol (verbatim
.c_str (), block
, domain
, NULL
);
5866 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5867 scope and in global scopes, or NULL if none. NAME is folded and
5868 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
5869 choosing the first symbol if there are multiple choices.
5870 If IS_A_FIELD_OF_THIS is not NULL, it is set to zero. */
5873 ada_lookup_symbol (const char *name
, const struct block
*block0
,
5874 domain_enum domain
, int *is_a_field_of_this
)
5876 if (is_a_field_of_this
!= NULL
)
5877 *is_a_field_of_this
= 0;
5879 std::vector
<struct block_symbol
> candidates
;
5882 n_candidates
= ada_lookup_symbol_list (name
, block0
, domain
, &candidates
);
5884 if (n_candidates
== 0)
5887 block_symbol info
= candidates
[0];
5888 info
.symbol
= fixup_symbol_section (info
.symbol
, NULL
);
5892 static struct block_symbol
5893 ada_lookup_symbol_nonlocal (const struct language_defn
*langdef
,
5895 const struct block
*block
,
5896 const domain_enum domain
)
5898 struct block_symbol sym
;
5900 sym
= ada_lookup_symbol (name
, block_static_block (block
), domain
, NULL
);
5901 if (sym
.symbol
!= NULL
)
5904 /* If we haven't found a match at this point, try the primitive
5905 types. In other languages, this search is performed before
5906 searching for global symbols in order to short-circuit that
5907 global-symbol search if it happens that the name corresponds
5908 to a primitive type. But we cannot do the same in Ada, because
5909 it is perfectly legitimate for a program to declare a type which
5910 has the same name as a standard type. If looking up a type in
5911 that situation, we have traditionally ignored the primitive type
5912 in favor of user-defined types. This is why, unlike most other
5913 languages, we search the primitive types this late and only after
5914 having searched the global symbols without success. */
5916 if (domain
== VAR_DOMAIN
)
5918 struct gdbarch
*gdbarch
;
5921 gdbarch
= target_gdbarch ();
5923 gdbarch
= block_gdbarch (block
);
5924 sym
.symbol
= language_lookup_primitive_type_as_symbol (langdef
, gdbarch
, name
);
5925 if (sym
.symbol
!= NULL
)
5933 /* True iff STR is a possible encoded suffix of a normal Ada name
5934 that is to be ignored for matching purposes. Suffixes of parallel
5935 names (e.g., XVE) are not included here. Currently, the possible suffixes
5936 are given by any of the regular expressions:
5938 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5939 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
5940 TKB [subprogram suffix for task bodies]
5941 _E[0-9]+[bs]$ [protected object entry suffixes]
5942 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
5944 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5945 match is performed. This sequence is used to differentiate homonyms,
5946 is an optional part of a valid name suffix. */
5949 is_name_suffix (const char *str
)
5952 const char *matching
;
5953 const int len
= strlen (str
);
5955 /* Skip optional leading __[0-9]+. */
5957 if (len
> 3 && str
[0] == '_' && str
[1] == '_' && isdigit (str
[2]))
5960 while (isdigit (str
[0]))
5966 if (str
[0] == '.' || str
[0] == '$')
5969 while (isdigit (matching
[0]))
5971 if (matching
[0] == '\0')
5977 if (len
> 3 && str
[0] == '_' && str
[1] == '_' && str
[2] == '_')
5980 while (isdigit (matching
[0]))
5982 if (matching
[0] == '\0')
5986 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5988 if (strcmp (str
, "TKB") == 0)
5992 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
5993 with a N at the end. Unfortunately, the compiler uses the same
5994 convention for other internal types it creates. So treating
5995 all entity names that end with an "N" as a name suffix causes
5996 some regressions. For instance, consider the case of an enumerated
5997 type. To support the 'Image attribute, it creates an array whose
5999 Having a single character like this as a suffix carrying some
6000 information is a bit risky. Perhaps we should change the encoding
6001 to be something like "_N" instead. In the meantime, do not do
6002 the following check. */
6003 /* Protected Object Subprograms */
6004 if (len
== 1 && str
[0] == 'N')
6009 if (len
> 3 && str
[0] == '_' && str
[1] == 'E' && isdigit (str
[2]))
6012 while (isdigit (matching
[0]))
6014 if ((matching
[0] == 'b' || matching
[0] == 's')
6015 && matching
[1] == '\0')
6019 /* ??? We should not modify STR directly, as we are doing below. This
6020 is fine in this case, but may become problematic later if we find
6021 that this alternative did not work, and want to try matching
6022 another one from the begining of STR. Since we modified it, we
6023 won't be able to find the begining of the string anymore! */
6027 while (str
[0] != '_' && str
[0] != '\0')
6029 if (str
[0] != 'n' && str
[0] != 'b')
6035 if (str
[0] == '\000')
6040 if (str
[1] != '_' || str
[2] == '\000')
6044 if (strcmp (str
+ 3, "JM") == 0)
6046 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
6047 the LJM suffix in favor of the JM one. But we will
6048 still accept LJM as a valid suffix for a reasonable
6049 amount of time, just to allow ourselves to debug programs
6050 compiled using an older version of GNAT. */
6051 if (strcmp (str
+ 3, "LJM") == 0)
6055 if (str
[4] == 'F' || str
[4] == 'D' || str
[4] == 'B'
6056 || str
[4] == 'U' || str
[4] == 'P')
6058 if (str
[4] == 'R' && str
[5] != 'T')
6062 if (!isdigit (str
[2]))
6064 for (k
= 3; str
[k
] != '\0'; k
+= 1)
6065 if (!isdigit (str
[k
]) && str
[k
] != '_')
6069 if (str
[0] == '$' && isdigit (str
[1]))
6071 for (k
= 2; str
[k
] != '\0'; k
+= 1)
6072 if (!isdigit (str
[k
]) && str
[k
] != '_')
6079 /* Return non-zero if the string starting at NAME and ending before
6080 NAME_END contains no capital letters. */
6083 is_valid_name_for_wild_match (const char *name0
)
6085 const char *decoded_name
= ada_decode (name0
);
6088 /* If the decoded name starts with an angle bracket, it means that
6089 NAME0 does not follow the GNAT encoding format. It should then
6090 not be allowed as a possible wild match. */
6091 if (decoded_name
[0] == '<')
6094 for (i
=0; decoded_name
[i
] != '\0'; i
++)
6095 if (isalpha (decoded_name
[i
]) && !islower (decoded_name
[i
]))
6101 /* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
6102 that could start a simple name. Assumes that *NAMEP points into
6103 the string beginning at NAME0. */
6106 advance_wild_match (const char **namep
, const char *name0
, int target0
)
6108 const char *name
= *namep
;
6118 if ((t1
>= 'a' && t1
<= 'z') || (t1
>= '0' && t1
<= '9'))
6121 if (name
== name0
+ 5 && startswith (name0
, "_ada"))
6126 else if (t1
== '_' && ((name
[2] >= 'a' && name
[2] <= 'z')
6127 || name
[2] == target0
))
6135 else if ((t0
>= 'a' && t0
<= 'z') || (t0
>= '0' && t0
<= '9'))
6145 /* Return true iff NAME encodes a name of the form prefix.PATN.
6146 Ignores any informational suffixes of NAME (i.e., for which
6147 is_name_suffix is true). Assumes that PATN is a lower-cased Ada
6151 wild_match (const char *name
, const char *patn
)
6154 const char *name0
= name
;
6158 const char *match
= name
;
6162 for (name
+= 1, p
= patn
+ 1; *p
!= '\0'; name
+= 1, p
+= 1)
6165 if (*p
== '\0' && is_name_suffix (name
))
6166 return match
== name0
|| is_valid_name_for_wild_match (name0
);
6168 if (name
[-1] == '_')
6171 if (!advance_wild_match (&name
, name0
, *patn
))
6176 /* Returns true iff symbol name SYM_NAME matches SEARCH_NAME, ignoring
6177 any trailing suffixes that encode debugging information or leading
6178 _ada_ on SYM_NAME (see is_name_suffix commentary for the debugging
6179 information that is ignored). */
6182 full_match (const char *sym_name
, const char *search_name
)
6184 size_t search_name_len
= strlen (search_name
);
6186 if (strncmp (sym_name
, search_name
, search_name_len
) == 0
6187 && is_name_suffix (sym_name
+ search_name_len
))
6190 if (startswith (sym_name
, "_ada_")
6191 && strncmp (sym_name
+ 5, search_name
, search_name_len
) == 0
6192 && is_name_suffix (sym_name
+ search_name_len
+ 5))
6198 /* Add symbols from BLOCK matching LOOKUP_NAME in DOMAIN to vector
6199 *defn_symbols, updating the list of symbols in OBSTACKP (if
6200 necessary). OBJFILE is the section containing BLOCK. */
6203 ada_add_block_symbols (struct obstack
*obstackp
,
6204 const struct block
*block
,
6205 const lookup_name_info
&lookup_name
,
6206 domain_enum domain
, struct objfile
*objfile
)
6208 struct block_iterator iter
;
6209 /* A matching argument symbol, if any. */
6210 struct symbol
*arg_sym
;
6211 /* Set true when we find a matching non-argument symbol. */
6217 for (sym
= block_iter_match_first (block
, lookup_name
, &iter
);
6219 sym
= block_iter_match_next (lookup_name
, &iter
))
6221 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym
),
6222 SYMBOL_DOMAIN (sym
), domain
))
6224 if (SYMBOL_CLASS (sym
) != LOC_UNRESOLVED
)
6226 if (SYMBOL_IS_ARGUMENT (sym
))
6231 add_defn_to_vec (obstackp
,
6232 fixup_symbol_section (sym
, objfile
),
6239 /* Handle renamings. */
6241 if (ada_add_block_renamings (obstackp
, block
, lookup_name
, domain
))
6244 if (!found_sym
&& arg_sym
!= NULL
)
6246 add_defn_to_vec (obstackp
,
6247 fixup_symbol_section (arg_sym
, objfile
),
6251 if (!lookup_name
.ada ().wild_match_p ())
6255 const std::string
&ada_lookup_name
= lookup_name
.ada ().lookup_name ();
6256 const char *name
= ada_lookup_name
.c_str ();
6257 size_t name_len
= ada_lookup_name
.size ();
6259 ALL_BLOCK_SYMBOLS (block
, iter
, sym
)
6261 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym
),
6262 SYMBOL_DOMAIN (sym
), domain
))
6266 cmp
= (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym
)[0];
6269 cmp
= !startswith (SYMBOL_LINKAGE_NAME (sym
), "_ada_");
6271 cmp
= strncmp (name
, SYMBOL_LINKAGE_NAME (sym
) + 5,
6276 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym
) + name_len
+ 5))
6278 if (SYMBOL_CLASS (sym
) != LOC_UNRESOLVED
)
6280 if (SYMBOL_IS_ARGUMENT (sym
))
6285 add_defn_to_vec (obstackp
,
6286 fixup_symbol_section (sym
, objfile
),
6294 /* NOTE: This really shouldn't be needed for _ada_ symbols.
6295 They aren't parameters, right? */
6296 if (!found_sym
&& arg_sym
!= NULL
)
6298 add_defn_to_vec (obstackp
,
6299 fixup_symbol_section (arg_sym
, objfile
),
6306 /* Symbol Completion */
6311 ada_lookup_name_info::matches
6312 (const char *sym_name
,
6313 symbol_name_match_type match_type
,
6314 completion_match_result
*comp_match_res
) const
6317 const char *text
= m_encoded_name
.c_str ();
6318 size_t text_len
= m_encoded_name
.size ();
6320 /* First, test against the fully qualified name of the symbol. */
6322 if (strncmp (sym_name
, text
, text_len
) == 0)
6325 if (match
&& !m_encoded_p
)
6327 /* One needed check before declaring a positive match is to verify
6328 that iff we are doing a verbatim match, the decoded version
6329 of the symbol name starts with '<'. Otherwise, this symbol name
6330 is not a suitable completion. */
6331 const char *sym_name_copy
= sym_name
;
6332 bool has_angle_bracket
;
6334 sym_name
= ada_decode (sym_name
);
6335 has_angle_bracket
= (sym_name
[0] == '<');
6336 match
= (has_angle_bracket
== m_verbatim_p
);
6337 sym_name
= sym_name_copy
;
6340 if (match
&& !m_verbatim_p
)
6342 /* When doing non-verbatim match, another check that needs to
6343 be done is to verify that the potentially matching symbol name
6344 does not include capital letters, because the ada-mode would
6345 not be able to understand these symbol names without the
6346 angle bracket notation. */
6349 for (tmp
= sym_name
; *tmp
!= '\0' && !isupper (*tmp
); tmp
++);
6354 /* Second: Try wild matching... */
6356 if (!match
&& m_wild_match_p
)
6358 /* Since we are doing wild matching, this means that TEXT
6359 may represent an unqualified symbol name. We therefore must
6360 also compare TEXT against the unqualified name of the symbol. */
6361 sym_name
= ada_unqualified_name (ada_decode (sym_name
));
6363 if (strncmp (sym_name
, text
, text_len
) == 0)
6367 /* Finally: If we found a match, prepare the result to return. */
6372 if (comp_match_res
!= NULL
)
6374 std::string
&match_str
= comp_match_res
->match
.storage ();
6377 match_str
= ada_decode (sym_name
);
6381 match_str
= add_angle_brackets (sym_name
);
6383 match_str
= sym_name
;
6387 comp_match_res
->set_match (match_str
.c_str ());
6393 /* Add the list of possible symbol names completing TEXT to TRACKER.
6394 WORD is the entire command on which completion is made. */
6397 ada_collect_symbol_completion_matches (completion_tracker
&tracker
,
6398 complete_symbol_mode mode
,
6399 symbol_name_match_type name_match_type
,
6400 const char *text
, const char *word
,
6401 enum type_code code
)
6404 const struct block
*b
, *surrounding_static_block
= 0;
6405 struct block_iterator iter
;
6407 gdb_assert (code
== TYPE_CODE_UNDEF
);
6409 lookup_name_info
lookup_name (text
, name_match_type
, true);
6411 /* First, look at the partial symtab symbols. */
6412 expand_symtabs_matching (NULL
,
6418 /* At this point scan through the misc symbol vectors and add each
6419 symbol you find to the list. Eventually we want to ignore
6420 anything that isn't a text symbol (everything else will be
6421 handled by the psymtab code above). */
6423 for (objfile
*objfile
: current_program_space
->objfiles ())
6425 for (minimal_symbol
*msymbol
: objfile
->msymbols ())
6429 if (completion_skip_symbol (mode
, msymbol
))
6432 language symbol_language
= MSYMBOL_LANGUAGE (msymbol
);
6434 /* Ada minimal symbols won't have their language set to Ada. If
6435 we let completion_list_add_name compare using the
6436 default/C-like matcher, then when completing e.g., symbols in a
6437 package named "pck", we'd match internal Ada symbols like
6438 "pckS", which are invalid in an Ada expression, unless you wrap
6439 them in '<' '>' to request a verbatim match.
6441 Unfortunately, some Ada encoded names successfully demangle as
6442 C++ symbols (using an old mangling scheme), such as "name__2Xn"
6443 -> "Xn::name(void)" and thus some Ada minimal symbols end up
6444 with the wrong language set. Paper over that issue here. */
6445 if (symbol_language
== language_auto
6446 || symbol_language
== language_cplus
)
6447 symbol_language
= language_ada
;
6449 completion_list_add_name (tracker
,
6451 MSYMBOL_LINKAGE_NAME (msymbol
),
6452 lookup_name
, text
, word
);
6456 /* Search upwards from currently selected frame (so that we can
6457 complete on local vars. */
6459 for (b
= get_selected_block (0); b
!= NULL
; b
= BLOCK_SUPERBLOCK (b
))
6461 if (!BLOCK_SUPERBLOCK (b
))
6462 surrounding_static_block
= b
; /* For elmin of dups */
6464 ALL_BLOCK_SYMBOLS (b
, iter
, sym
)
6466 if (completion_skip_symbol (mode
, sym
))
6469 completion_list_add_name (tracker
,
6470 SYMBOL_LANGUAGE (sym
),
6471 SYMBOL_LINKAGE_NAME (sym
),
6472 lookup_name
, text
, word
);
6476 /* Go through the symtabs and check the externs and statics for
6477 symbols which match. */
6479 for (objfile
*objfile
: current_program_space
->objfiles ())
6481 for (compunit_symtab
*s
: objfile
->compunits ())
6484 b
= BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s
), GLOBAL_BLOCK
);
6485 ALL_BLOCK_SYMBOLS (b
, iter
, sym
)
6487 if (completion_skip_symbol (mode
, sym
))
6490 completion_list_add_name (tracker
,
6491 SYMBOL_LANGUAGE (sym
),
6492 SYMBOL_LINKAGE_NAME (sym
),
6493 lookup_name
, text
, word
);
6498 for (objfile
*objfile
: current_program_space
->objfiles ())
6500 for (compunit_symtab
*s
: objfile
->compunits ())
6503 b
= BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s
), STATIC_BLOCK
);
6504 /* Don't do this block twice. */
6505 if (b
== surrounding_static_block
)
6507 ALL_BLOCK_SYMBOLS (b
, iter
, sym
)
6509 if (completion_skip_symbol (mode
, sym
))
6512 completion_list_add_name (tracker
,
6513 SYMBOL_LANGUAGE (sym
),
6514 SYMBOL_LINKAGE_NAME (sym
),
6515 lookup_name
, text
, word
);
6523 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6524 for tagged types. */
6527 ada_is_dispatch_table_ptr_type (struct type
*type
)
6531 if (TYPE_CODE (type
) != TYPE_CODE_PTR
)
6534 name
= TYPE_NAME (TYPE_TARGET_TYPE (type
));
6538 return (strcmp (name
, "ada__tags__dispatch_table") == 0);
6541 /* Return non-zero if TYPE is an interface tag. */
6544 ada_is_interface_tag (struct type
*type
)
6546 const char *name
= TYPE_NAME (type
);
6551 return (strcmp (name
, "ada__tags__interface_tag") == 0);
6554 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
6555 to be invisible to users. */
6558 ada_is_ignored_field (struct type
*type
, int field_num
)
6560 if (field_num
< 0 || field_num
> TYPE_NFIELDS (type
))
6563 /* Check the name of that field. */
6565 const char *name
= TYPE_FIELD_NAME (type
, field_num
);
6567 /* Anonymous field names should not be printed.
6568 brobecker/2007-02-20: I don't think this can actually happen
6569 but we don't want to print the value of annonymous fields anyway. */
6573 /* Normally, fields whose name start with an underscore ("_")
6574 are fields that have been internally generated by the compiler,
6575 and thus should not be printed. The "_parent" field is special,
6576 however: This is a field internally generated by the compiler
6577 for tagged types, and it contains the components inherited from
6578 the parent type. This field should not be printed as is, but
6579 should not be ignored either. */
6580 if (name
[0] == '_' && !startswith (name
, "_parent"))
6584 /* If this is the dispatch table of a tagged type or an interface tag,
6586 if (ada_is_tagged_type (type
, 1)
6587 && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type
, field_num
))
6588 || ada_is_interface_tag (TYPE_FIELD_TYPE (type
, field_num
))))
6591 /* Not a special field, so it should not be ignored. */
6595 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
6596 pointer or reference type whose ultimate target has a tag field. */
6599 ada_is_tagged_type (struct type
*type
, int refok
)
6601 return (ada_lookup_struct_elt_type (type
, "_tag", refok
, 1) != NULL
);
6604 /* True iff TYPE represents the type of X'Tag */
6607 ada_is_tag_type (struct type
*type
)
6609 type
= ada_check_typedef (type
);
6611 if (type
== NULL
|| TYPE_CODE (type
) != TYPE_CODE_PTR
)
6615 const char *name
= ada_type_name (TYPE_TARGET_TYPE (type
));
6617 return (name
!= NULL
6618 && strcmp (name
, "ada__tags__dispatch_table") == 0);
6622 /* The type of the tag on VAL. */
6625 ada_tag_type (struct value
*val
)
6627 return ada_lookup_struct_elt_type (value_type (val
), "_tag", 1, 0);
6630 /* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6631 retired at Ada 05). */
6634 is_ada95_tag (struct value
*tag
)
6636 return ada_value_struct_elt (tag
, "tsd", 1) != NULL
;
6639 /* The value of the tag on VAL. */
6642 ada_value_tag (struct value
*val
)
6644 return ada_value_struct_elt (val
, "_tag", 0);
6647 /* The value of the tag on the object of type TYPE whose contents are
6648 saved at VALADDR, if it is non-null, or is at memory address
6651 static struct value
*
6652 value_tag_from_contents_and_address (struct type
*type
,
6653 const gdb_byte
*valaddr
,
6656 int tag_byte_offset
;
6657 struct type
*tag_type
;
6659 if (find_struct_field ("_tag", type
, 0, &tag_type
, &tag_byte_offset
,
6662 const gdb_byte
*valaddr1
= ((valaddr
== NULL
)
6664 : valaddr
+ tag_byte_offset
);
6665 CORE_ADDR address1
= (address
== 0) ? 0 : address
+ tag_byte_offset
;
6667 return value_from_contents_and_address (tag_type
, valaddr1
, address1
);
6672 static struct type
*
6673 type_from_tag (struct value
*tag
)
6675 const char *type_name
= ada_tag_name (tag
);
6677 if (type_name
!= NULL
)
6678 return ada_find_any_type (ada_encode (type_name
));
6682 /* Given a value OBJ of a tagged type, return a value of this
6683 type at the base address of the object. The base address, as
6684 defined in Ada.Tags, it is the address of the primary tag of
6685 the object, and therefore where the field values of its full
6686 view can be fetched. */
6689 ada_tag_value_at_base_address (struct value
*obj
)
6692 LONGEST offset_to_top
= 0;
6693 struct type
*ptr_type
, *obj_type
;
6695 CORE_ADDR base_address
;
6697 obj_type
= value_type (obj
);
6699 /* It is the responsability of the caller to deref pointers. */
6701 if (TYPE_CODE (obj_type
) == TYPE_CODE_PTR
6702 || TYPE_CODE (obj_type
) == TYPE_CODE_REF
)
6705 tag
= ada_value_tag (obj
);
6709 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6711 if (is_ada95_tag (tag
))
6714 ptr_type
= language_lookup_primitive_type
6715 (language_def (language_ada
), target_gdbarch(), "storage_offset");
6716 ptr_type
= lookup_pointer_type (ptr_type
);
6717 val
= value_cast (ptr_type
, tag
);
6721 /* It is perfectly possible that an exception be raised while
6722 trying to determine the base address, just like for the tag;
6723 see ada_tag_name for more details. We do not print the error
6724 message for the same reason. */
6728 offset_to_top
= value_as_long (value_ind (value_ptradd (val
, -2)));
6731 catch (const gdb_exception_error
&e
)
6736 /* If offset is null, nothing to do. */
6738 if (offset_to_top
== 0)
6741 /* -1 is a special case in Ada.Tags; however, what should be done
6742 is not quite clear from the documentation. So do nothing for
6745 if (offset_to_top
== -1)
6748 /* OFFSET_TO_TOP used to be a positive value to be subtracted
6749 from the base address. This was however incompatible with
6750 C++ dispatch table: C++ uses a *negative* value to *add*
6751 to the base address. Ada's convention has therefore been
6752 changed in GNAT 19.0w 20171023: since then, C++ and Ada
6753 use the same convention. Here, we support both cases by
6754 checking the sign of OFFSET_TO_TOP. */
6756 if (offset_to_top
> 0)
6757 offset_to_top
= -offset_to_top
;
6759 base_address
= value_address (obj
) + offset_to_top
;
6760 tag
= value_tag_from_contents_and_address (obj_type
, NULL
, base_address
);
6762 /* Make sure that we have a proper tag at the new address.
6763 Otherwise, offset_to_top is bogus (which can happen when
6764 the object is not initialized yet). */
6769 obj_type
= type_from_tag (tag
);
6774 return value_from_contents_and_address (obj_type
, NULL
, base_address
);
6777 /* Return the "ada__tags__type_specific_data" type. */
6779 static struct type
*
6780 ada_get_tsd_type (struct inferior
*inf
)
6782 struct ada_inferior_data
*data
= get_ada_inferior_data (inf
);
6784 if (data
->tsd_type
== 0)
6785 data
->tsd_type
= ada_find_any_type ("ada__tags__type_specific_data");
6786 return data
->tsd_type
;
6789 /* Return the TSD (type-specific data) associated to the given TAG.
6790 TAG is assumed to be the tag of a tagged-type entity.
6792 May return NULL if we are unable to get the TSD. */
6794 static struct value
*
6795 ada_get_tsd_from_tag (struct value
*tag
)
6800 /* First option: The TSD is simply stored as a field of our TAG.
6801 Only older versions of GNAT would use this format, but we have
6802 to test it first, because there are no visible markers for
6803 the current approach except the absence of that field. */
6805 val
= ada_value_struct_elt (tag
, "tsd", 1);
6809 /* Try the second representation for the dispatch table (in which
6810 there is no explicit 'tsd' field in the referent of the tag pointer,
6811 and instead the tsd pointer is stored just before the dispatch
6814 type
= ada_get_tsd_type (current_inferior());
6817 type
= lookup_pointer_type (lookup_pointer_type (type
));
6818 val
= value_cast (type
, tag
);
6821 return value_ind (value_ptradd (val
, -1));
6824 /* Given the TSD of a tag (type-specific data), return a string
6825 containing the name of the associated type.
6827 The returned value is good until the next call. May return NULL
6828 if we are unable to determine the tag name. */
6831 ada_tag_name_from_tsd (struct value
*tsd
)
6833 static char name
[1024];
6837 val
= ada_value_struct_elt (tsd
, "expanded_name", 1);
6840 read_memory_string (value_as_address (val
), name
, sizeof (name
) - 1);
6841 for (p
= name
; *p
!= '\0'; p
+= 1)
6847 /* The type name of the dynamic type denoted by the 'tag value TAG, as
6850 Return NULL if the TAG is not an Ada tag, or if we were unable to
6851 determine the name of that tag. The result is good until the next
6855 ada_tag_name (struct value
*tag
)
6859 if (!ada_is_tag_type (value_type (tag
)))
6862 /* It is perfectly possible that an exception be raised while trying
6863 to determine the TAG's name, even under normal circumstances:
6864 The associated variable may be uninitialized or corrupted, for
6865 instance. We do not let any exception propagate past this point.
6866 instead we return NULL.
6868 We also do not print the error message either (which often is very
6869 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6870 the caller print a more meaningful message if necessary. */
6873 struct value
*tsd
= ada_get_tsd_from_tag (tag
);
6876 name
= ada_tag_name_from_tsd (tsd
);
6878 catch (const gdb_exception_error
&e
)
6885 /* The parent type of TYPE, or NULL if none. */
6888 ada_parent_type (struct type
*type
)
6892 type
= ada_check_typedef (type
);
6894 if (type
== NULL
|| TYPE_CODE (type
) != TYPE_CODE_STRUCT
)
6897 for (i
= 0; i
< TYPE_NFIELDS (type
); i
+= 1)
6898 if (ada_is_parent_field (type
, i
))
6900 struct type
*parent_type
= TYPE_FIELD_TYPE (type
, i
);
6902 /* If the _parent field is a pointer, then dereference it. */
6903 if (TYPE_CODE (parent_type
) == TYPE_CODE_PTR
)
6904 parent_type
= TYPE_TARGET_TYPE (parent_type
);
6905 /* If there is a parallel XVS type, get the actual base type. */
6906 parent_type
= ada_get_base_type (parent_type
);
6908 return ada_check_typedef (parent_type
);
6914 /* True iff field number FIELD_NUM of structure type TYPE contains the
6915 parent-type (inherited) fields of a derived type. Assumes TYPE is
6916 a structure type with at least FIELD_NUM+1 fields. */
6919 ada_is_parent_field (struct type
*type
, int field_num
)
6921 const char *name
= TYPE_FIELD_NAME (ada_check_typedef (type
), field_num
);
6923 return (name
!= NULL
6924 && (startswith (name
, "PARENT")
6925 || startswith (name
, "_parent")));
6928 /* True iff field number FIELD_NUM of structure type TYPE is a
6929 transparent wrapper field (which should be silently traversed when doing
6930 field selection and flattened when printing). Assumes TYPE is a
6931 structure type with at least FIELD_NUM+1 fields. Such fields are always
6935 ada_is_wrapper_field (struct type
*type
, int field_num
)
6937 const char *name
= TYPE_FIELD_NAME (type
, field_num
);
6939 if (name
!= NULL
&& strcmp (name
, "RETVAL") == 0)
6941 /* This happens in functions with "out" or "in out" parameters
6942 which are passed by copy. For such functions, GNAT describes
6943 the function's return type as being a struct where the return
6944 value is in a field called RETVAL, and where the other "out"
6945 or "in out" parameters are fields of that struct. This is not
6950 return (name
!= NULL
6951 && (startswith (name
, "PARENT")
6952 || strcmp (name
, "REP") == 0
6953 || startswith (name
, "_parent")
6954 || name
[0] == 'S' || name
[0] == 'R' || name
[0] == 'O'));
6957 /* True iff field number FIELD_NUM of structure or union type TYPE
6958 is a variant wrapper. Assumes TYPE is a structure type with at least
6959 FIELD_NUM+1 fields. */
6962 ada_is_variant_part (struct type
*type
, int field_num
)
6964 struct type
*field_type
= TYPE_FIELD_TYPE (type
, field_num
);
6966 return (TYPE_CODE (field_type
) == TYPE_CODE_UNION
6967 || (is_dynamic_field (type
, field_num
)
6968 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type
))
6969 == TYPE_CODE_UNION
)));
6972 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
6973 whose discriminants are contained in the record type OUTER_TYPE,
6974 returns the type of the controlling discriminant for the variant.
6975 May return NULL if the type could not be found. */
6978 ada_variant_discrim_type (struct type
*var_type
, struct type
*outer_type
)
6980 const char *name
= ada_variant_discrim_name (var_type
);
6982 return ada_lookup_struct_elt_type (outer_type
, name
, 1, 1);
6985 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
6986 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
6987 represents a 'when others' clause; otherwise 0. */
6990 ada_is_others_clause (struct type
*type
, int field_num
)
6992 const char *name
= TYPE_FIELD_NAME (type
, field_num
);
6994 return (name
!= NULL
&& name
[0] == 'O');
6997 /* Assuming that TYPE0 is the type of the variant part of a record,
6998 returns the name of the discriminant controlling the variant.
6999 The value is valid until the next call to ada_variant_discrim_name. */
7002 ada_variant_discrim_name (struct type
*type0
)
7004 static char *result
= NULL
;
7005 static size_t result_len
= 0;
7008 const char *discrim_end
;
7009 const char *discrim_start
;
7011 if (TYPE_CODE (type0
) == TYPE_CODE_PTR
)
7012 type
= TYPE_TARGET_TYPE (type0
);
7016 name
= ada_type_name (type
);
7018 if (name
== NULL
|| name
[0] == '\000')
7021 for (discrim_end
= name
+ strlen (name
) - 6; discrim_end
!= name
;
7024 if (startswith (discrim_end
, "___XVN"))
7027 if (discrim_end
== name
)
7030 for (discrim_start
= discrim_end
; discrim_start
!= name
+ 3;
7033 if (discrim_start
== name
+ 1)
7035 if ((discrim_start
> name
+ 3
7036 && startswith (discrim_start
- 3, "___"))
7037 || discrim_start
[-1] == '.')
7041 GROW_VECT (result
, result_len
, discrim_end
- discrim_start
+ 1);
7042 strncpy (result
, discrim_start
, discrim_end
- discrim_start
);
7043 result
[discrim_end
- discrim_start
] = '\0';
7047 /* Scan STR for a subtype-encoded number, beginning at position K.
7048 Put the position of the character just past the number scanned in
7049 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
7050 Return 1 if there was a valid number at the given position, and 0
7051 otherwise. A "subtype-encoded" number consists of the absolute value
7052 in decimal, followed by the letter 'm' to indicate a negative number.
7053 Assumes 0m does not occur. */
7056 ada_scan_number (const char str
[], int k
, LONGEST
* R
, int *new_k
)
7060 if (!isdigit (str
[k
]))
7063 /* Do it the hard way so as not to make any assumption about
7064 the relationship of unsigned long (%lu scan format code) and
7067 while (isdigit (str
[k
]))
7069 RU
= RU
* 10 + (str
[k
] - '0');
7076 *R
= (-(LONGEST
) (RU
- 1)) - 1;
7082 /* NOTE on the above: Technically, C does not say what the results of
7083 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
7084 number representable as a LONGEST (although either would probably work
7085 in most implementations). When RU>0, the locution in the then branch
7086 above is always equivalent to the negative of RU. */
7093 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
7094 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
7095 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
7098 ada_in_variant (LONGEST val
, struct type
*type
, int field_num
)
7100 const char *name
= TYPE_FIELD_NAME (type
, field_num
);
7114 if (!ada_scan_number (name
, p
+ 1, &W
, &p
))
7124 if (!ada_scan_number (name
, p
+ 1, &L
, &p
)
7125 || name
[p
] != 'T' || !ada_scan_number (name
, p
+ 1, &U
, &p
))
7127 if (val
>= L
&& val
<= U
)
7139 /* FIXME: Lots of redundancy below. Try to consolidate. */
7141 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
7142 ARG_TYPE, extract and return the value of one of its (non-static)
7143 fields. FIELDNO says which field. Differs from value_primitive_field
7144 only in that it can handle packed values of arbitrary type. */
7146 static struct value
*
7147 ada_value_primitive_field (struct value
*arg1
, int offset
, int fieldno
,
7148 struct type
*arg_type
)
7152 arg_type
= ada_check_typedef (arg_type
);
7153 type
= TYPE_FIELD_TYPE (arg_type
, fieldno
);
7155 /* Handle packed fields. */
7157 if (TYPE_FIELD_BITSIZE (arg_type
, fieldno
) != 0)
7159 int bit_pos
= TYPE_FIELD_BITPOS (arg_type
, fieldno
);
7160 int bit_size
= TYPE_FIELD_BITSIZE (arg_type
, fieldno
);
7162 return ada_value_primitive_packed_val (arg1
, value_contents (arg1
),
7163 offset
+ bit_pos
/ 8,
7164 bit_pos
% 8, bit_size
, type
);
7167 return value_primitive_field (arg1
, offset
, fieldno
, arg_type
);
7170 /* Find field with name NAME in object of type TYPE. If found,
7171 set the following for each argument that is non-null:
7172 - *FIELD_TYPE_P to the field's type;
7173 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
7174 an object of that type;
7175 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
7176 - *BIT_SIZE_P to its size in bits if the field is packed, and
7178 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
7179 fields up to but not including the desired field, or by the total
7180 number of fields if not found. A NULL value of NAME never
7181 matches; the function just counts visible fields in this case.
7183 Notice that we need to handle when a tagged record hierarchy
7184 has some components with the same name, like in this scenario:
7186 type Top_T is tagged record
7192 type Middle_T is new Top.Top_T with record
7193 N : Character := 'a';
7197 type Bottom_T is new Middle.Middle_T with record
7199 C : Character := '5';
7201 A : Character := 'J';
7204 Let's say we now have a variable declared and initialized as follow:
7206 TC : Top_A := new Bottom_T;
7208 And then we use this variable to call this function
7210 procedure Assign (Obj: in out Top_T; TV : Integer);
7214 Assign (Top_T (B), 12);
7216 Now, we're in the debugger, and we're inside that procedure
7217 then and we want to print the value of obj.c:
7219 Usually, the tagged record or one of the parent type owns the
7220 component to print and there's no issue but in this particular
7221 case, what does it mean to ask for Obj.C? Since the actual
7222 type for object is type Bottom_T, it could mean two things: type
7223 component C from the Middle_T view, but also component C from
7224 Bottom_T. So in that "undefined" case, when the component is
7225 not found in the non-resolved type (which includes all the
7226 components of the parent type), then resolve it and see if we
7227 get better luck once expanded.
7229 In the case of homonyms in the derived tagged type, we don't
7230 guaranty anything, and pick the one that's easiest for us
7233 Returns 1 if found, 0 otherwise. */
7236 find_struct_field (const char *name
, struct type
*type
, int offset
,
7237 struct type
**field_type_p
,
7238 int *byte_offset_p
, int *bit_offset_p
, int *bit_size_p
,
7242 int parent_offset
= -1;
7244 type
= ada_check_typedef (type
);
7246 if (field_type_p
!= NULL
)
7247 *field_type_p
= NULL
;
7248 if (byte_offset_p
!= NULL
)
7250 if (bit_offset_p
!= NULL
)
7252 if (bit_size_p
!= NULL
)
7255 for (i
= 0; i
< TYPE_NFIELDS (type
); i
+= 1)
7257 int bit_pos
= TYPE_FIELD_BITPOS (type
, i
);
7258 int fld_offset
= offset
+ bit_pos
/ 8;
7259 const char *t_field_name
= TYPE_FIELD_NAME (type
, i
);
7261 if (t_field_name
== NULL
)
7264 else if (ada_is_parent_field (type
, i
))
7266 /* This is a field pointing us to the parent type of a tagged
7267 type. As hinted in this function's documentation, we give
7268 preference to fields in the current record first, so what
7269 we do here is just record the index of this field before
7270 we skip it. If it turns out we couldn't find our field
7271 in the current record, then we'll get back to it and search
7272 inside it whether the field might exist in the parent. */
7278 else if (name
!= NULL
&& field_name_match (t_field_name
, name
))
7280 int bit_size
= TYPE_FIELD_BITSIZE (type
, i
);
7282 if (field_type_p
!= NULL
)
7283 *field_type_p
= TYPE_FIELD_TYPE (type
, i
);
7284 if (byte_offset_p
!= NULL
)
7285 *byte_offset_p
= fld_offset
;
7286 if (bit_offset_p
!= NULL
)
7287 *bit_offset_p
= bit_pos
% 8;
7288 if (bit_size_p
!= NULL
)
7289 *bit_size_p
= bit_size
;
7292 else if (ada_is_wrapper_field (type
, i
))
7294 if (find_struct_field (name
, TYPE_FIELD_TYPE (type
, i
), fld_offset
,
7295 field_type_p
, byte_offset_p
, bit_offset_p
,
7296 bit_size_p
, index_p
))
7299 else if (ada_is_variant_part (type
, i
))
7301 /* PNH: Wait. Do we ever execute this section, or is ARG always of
7304 struct type
*field_type
7305 = ada_check_typedef (TYPE_FIELD_TYPE (type
, i
));
7307 for (j
= 0; j
< TYPE_NFIELDS (field_type
); j
+= 1)
7309 if (find_struct_field (name
, TYPE_FIELD_TYPE (field_type
, j
),
7311 + TYPE_FIELD_BITPOS (field_type
, j
) / 8,
7312 field_type_p
, byte_offset_p
,
7313 bit_offset_p
, bit_size_p
, index_p
))
7317 else if (index_p
!= NULL
)
7321 /* Field not found so far. If this is a tagged type which
7322 has a parent, try finding that field in the parent now. */
7324 if (parent_offset
!= -1)
7326 int bit_pos
= TYPE_FIELD_BITPOS (type
, parent_offset
);
7327 int fld_offset
= offset
+ bit_pos
/ 8;
7329 if (find_struct_field (name
, TYPE_FIELD_TYPE (type
, parent_offset
),
7330 fld_offset
, field_type_p
, byte_offset_p
,
7331 bit_offset_p
, bit_size_p
, index_p
))
7338 /* Number of user-visible fields in record type TYPE. */
7341 num_visible_fields (struct type
*type
)
7346 find_struct_field (NULL
, type
, 0, NULL
, NULL
, NULL
, NULL
, &n
);
7350 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
7351 and search in it assuming it has (class) type TYPE.
7352 If found, return value, else return NULL.
7354 Searches recursively through wrapper fields (e.g., '_parent').
7356 In the case of homonyms in the tagged types, please refer to the
7357 long explanation in find_struct_field's function documentation. */
7359 static struct value
*
7360 ada_search_struct_field (const char *name
, struct value
*arg
, int offset
,
7364 int parent_offset
= -1;
7366 type
= ada_check_typedef (type
);
7367 for (i
= 0; i
< TYPE_NFIELDS (type
); i
+= 1)
7369 const char *t_field_name
= TYPE_FIELD_NAME (type
, i
);
7371 if (t_field_name
== NULL
)
7374 else if (ada_is_parent_field (type
, i
))
7376 /* This is a field pointing us to the parent type of a tagged
7377 type. As hinted in this function's documentation, we give
7378 preference to fields in the current record first, so what
7379 we do here is just record the index of this field before
7380 we skip it. If it turns out we couldn't find our field
7381 in the current record, then we'll get back to it and search
7382 inside it whether the field might exist in the parent. */
7388 else if (field_name_match (t_field_name
, name
))
7389 return ada_value_primitive_field (arg
, offset
, i
, type
);
7391 else if (ada_is_wrapper_field (type
, i
))
7393 struct value
*v
= /* Do not let indent join lines here. */
7394 ada_search_struct_field (name
, arg
,
7395 offset
+ TYPE_FIELD_BITPOS (type
, i
) / 8,
7396 TYPE_FIELD_TYPE (type
, i
));
7402 else if (ada_is_variant_part (type
, i
))
7404 /* PNH: Do we ever get here? See find_struct_field. */
7406 struct type
*field_type
= ada_check_typedef (TYPE_FIELD_TYPE (type
,
7408 int var_offset
= offset
+ TYPE_FIELD_BITPOS (type
, i
) / 8;
7410 for (j
= 0; j
< TYPE_NFIELDS (field_type
); j
+= 1)
7412 struct value
*v
= ada_search_struct_field
/* Force line
7415 var_offset
+ TYPE_FIELD_BITPOS (field_type
, j
) / 8,
7416 TYPE_FIELD_TYPE (field_type
, j
));
7424 /* Field not found so far. If this is a tagged type which
7425 has a parent, try finding that field in the parent now. */
7427 if (parent_offset
!= -1)
7429 struct value
*v
= ada_search_struct_field (
7430 name
, arg
, offset
+ TYPE_FIELD_BITPOS (type
, parent_offset
) / 8,
7431 TYPE_FIELD_TYPE (type
, parent_offset
));
7440 static struct value
*ada_index_struct_field_1 (int *, struct value
*,
7441 int, struct type
*);
7444 /* Return field #INDEX in ARG, where the index is that returned by
7445 * find_struct_field through its INDEX_P argument. Adjust the address
7446 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
7447 * If found, return value, else return NULL. */
7449 static struct value
*
7450 ada_index_struct_field (int index
, struct value
*arg
, int offset
,
7453 return ada_index_struct_field_1 (&index
, arg
, offset
, type
);
7457 /* Auxiliary function for ada_index_struct_field. Like
7458 * ada_index_struct_field, but takes index from *INDEX_P and modifies
7461 static struct value
*
7462 ada_index_struct_field_1 (int *index_p
, struct value
*arg
, int offset
,
7466 type
= ada_check_typedef (type
);
7468 for (i
= 0; i
< TYPE_NFIELDS (type
); i
+= 1)
7470 if (TYPE_FIELD_NAME (type
, i
) == NULL
)
7472 else if (ada_is_wrapper_field (type
, i
))
7474 struct value
*v
= /* Do not let indent join lines here. */
7475 ada_index_struct_field_1 (index_p
, arg
,
7476 offset
+ TYPE_FIELD_BITPOS (type
, i
) / 8,
7477 TYPE_FIELD_TYPE (type
, i
));
7483 else if (ada_is_variant_part (type
, i
))
7485 /* PNH: Do we ever get here? See ada_search_struct_field,
7486 find_struct_field. */
7487 error (_("Cannot assign this kind of variant record"));
7489 else if (*index_p
== 0)
7490 return ada_value_primitive_field (arg
, offset
, i
, type
);
7497 /* Given ARG, a value of type (pointer or reference to a)*
7498 structure/union, extract the component named NAME from the ultimate
7499 target structure/union and return it as a value with its
7502 The routine searches for NAME among all members of the structure itself
7503 and (recursively) among all members of any wrapper members
7506 If NO_ERR, then simply return NULL in case of error, rather than
7510 ada_value_struct_elt (struct value
*arg
, const char *name
, int no_err
)
7512 struct type
*t
, *t1
;
7517 t1
= t
= ada_check_typedef (value_type (arg
));
7518 if (TYPE_CODE (t
) == TYPE_CODE_REF
)
7520 t1
= TYPE_TARGET_TYPE (t
);
7523 t1
= ada_check_typedef (t1
);
7524 if (TYPE_CODE (t1
) == TYPE_CODE_PTR
)
7526 arg
= coerce_ref (arg
);
7531 while (TYPE_CODE (t
) == TYPE_CODE_PTR
)
7533 t1
= TYPE_TARGET_TYPE (t
);
7536 t1
= ada_check_typedef (t1
);
7537 if (TYPE_CODE (t1
) == TYPE_CODE_PTR
)
7539 arg
= value_ind (arg
);
7546 if (TYPE_CODE (t1
) != TYPE_CODE_STRUCT
&& TYPE_CODE (t1
) != TYPE_CODE_UNION
)
7550 v
= ada_search_struct_field (name
, arg
, 0, t
);
7553 int bit_offset
, bit_size
, byte_offset
;
7554 struct type
*field_type
;
7557 if (TYPE_CODE (t
) == TYPE_CODE_PTR
)
7558 address
= value_address (ada_value_ind (arg
));
7560 address
= value_address (ada_coerce_ref (arg
));
7562 /* Check to see if this is a tagged type. We also need to handle
7563 the case where the type is a reference to a tagged type, but
7564 we have to be careful to exclude pointers to tagged types.
7565 The latter should be shown as usual (as a pointer), whereas
7566 a reference should mostly be transparent to the user. */
7568 if (ada_is_tagged_type (t1
, 0)
7569 || (TYPE_CODE (t1
) == TYPE_CODE_REF
7570 && ada_is_tagged_type (TYPE_TARGET_TYPE (t1
), 0)))
7572 /* We first try to find the searched field in the current type.
7573 If not found then let's look in the fixed type. */
7575 if (!find_struct_field (name
, t1
, 0,
7576 &field_type
, &byte_offset
, &bit_offset
,
7585 /* Convert to fixed type in all cases, so that we have proper
7586 offsets to each field in unconstrained record types. */
7587 t1
= ada_to_fixed_type (ada_get_base_type (t1
), NULL
,
7588 address
, NULL
, check_tag
);
7590 if (find_struct_field (name
, t1
, 0,
7591 &field_type
, &byte_offset
, &bit_offset
,
7596 if (TYPE_CODE (t
) == TYPE_CODE_REF
)
7597 arg
= ada_coerce_ref (arg
);
7599 arg
= ada_value_ind (arg
);
7600 v
= ada_value_primitive_packed_val (arg
, NULL
, byte_offset
,
7601 bit_offset
, bit_size
,
7605 v
= value_at_lazy (field_type
, address
+ byte_offset
);
7609 if (v
!= NULL
|| no_err
)
7612 error (_("There is no member named %s."), name
);
7618 error (_("Attempt to extract a component of "
7619 "a value that is not a record."));
7622 /* Return a string representation of type TYPE. */
7625 type_as_string (struct type
*type
)
7627 string_file tmp_stream
;
7629 type_print (type
, "", &tmp_stream
, -1);
7631 return std::move (tmp_stream
.string ());
7634 /* Given a type TYPE, look up the type of the component of type named NAME.
7635 If DISPP is non-null, add its byte displacement from the beginning of a
7636 structure (pointed to by a value) of type TYPE to *DISPP (does not
7637 work for packed fields).
7639 Matches any field whose name has NAME as a prefix, possibly
7642 TYPE can be either a struct or union. If REFOK, TYPE may also
7643 be a (pointer or reference)+ to a struct or union, and the
7644 ultimate target type will be searched.
7646 Looks recursively into variant clauses and parent types.
7648 In the case of homonyms in the tagged types, please refer to the
7649 long explanation in find_struct_field's function documentation.
7651 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7652 TYPE is not a type of the right kind. */
7654 static struct type
*
7655 ada_lookup_struct_elt_type (struct type
*type
, const char *name
, int refok
,
7659 int parent_offset
= -1;
7664 if (refok
&& type
!= NULL
)
7667 type
= ada_check_typedef (type
);
7668 if (TYPE_CODE (type
) != TYPE_CODE_PTR
7669 && TYPE_CODE (type
) != TYPE_CODE_REF
)
7671 type
= TYPE_TARGET_TYPE (type
);
7675 || (TYPE_CODE (type
) != TYPE_CODE_STRUCT
7676 && TYPE_CODE (type
) != TYPE_CODE_UNION
))
7681 error (_("Type %s is not a structure or union type"),
7682 type
!= NULL
? type_as_string (type
).c_str () : _("(null)"));
7685 type
= to_static_fixed_type (type
);
7687 for (i
= 0; i
< TYPE_NFIELDS (type
); i
+= 1)
7689 const char *t_field_name
= TYPE_FIELD_NAME (type
, i
);
7692 if (t_field_name
== NULL
)
7695 else if (ada_is_parent_field (type
, i
))
7697 /* This is a field pointing us to the parent type of a tagged
7698 type. As hinted in this function's documentation, we give
7699 preference to fields in the current record first, so what
7700 we do here is just record the index of this field before
7701 we skip it. If it turns out we couldn't find our field
7702 in the current record, then we'll get back to it and search
7703 inside it whether the field might exist in the parent. */
7709 else if (field_name_match (t_field_name
, name
))
7710 return TYPE_FIELD_TYPE (type
, i
);
7712 else if (ada_is_wrapper_field (type
, i
))
7714 t
= ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type
, i
), name
,
7720 else if (ada_is_variant_part (type
, i
))
7723 struct type
*field_type
= ada_check_typedef (TYPE_FIELD_TYPE (type
,
7726 for (j
= TYPE_NFIELDS (field_type
) - 1; j
>= 0; j
-= 1)
7728 /* FIXME pnh 2008/01/26: We check for a field that is
7729 NOT wrapped in a struct, since the compiler sometimes
7730 generates these for unchecked variant types. Revisit
7731 if the compiler changes this practice. */
7732 const char *v_field_name
= TYPE_FIELD_NAME (field_type
, j
);
7734 if (v_field_name
!= NULL
7735 && field_name_match (v_field_name
, name
))
7736 t
= TYPE_FIELD_TYPE (field_type
, j
);
7738 t
= ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type
,
7749 /* Field not found so far. If this is a tagged type which
7750 has a parent, try finding that field in the parent now. */
7752 if (parent_offset
!= -1)
7756 t
= ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type
, parent_offset
),
7765 const char *name_str
= name
!= NULL
? name
: _("<null>");
7767 error (_("Type %s has no component named %s"),
7768 type_as_string (type
).c_str (), name_str
);
7774 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7775 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7776 represents an unchecked union (that is, the variant part of a
7777 record that is named in an Unchecked_Union pragma). */
7780 is_unchecked_variant (struct type
*var_type
, struct type
*outer_type
)
7782 const char *discrim_name
= ada_variant_discrim_name (var_type
);
7784 return (ada_lookup_struct_elt_type (outer_type
, discrim_name
, 0, 1) == NULL
);
7788 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7789 within a value of type OUTER_TYPE that is stored in GDB at
7790 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
7791 numbering from 0) is applicable. Returns -1 if none are. */
7794 ada_which_variant_applies (struct type
*var_type
, struct type
*outer_type
,
7795 const gdb_byte
*outer_valaddr
)
7799 const char *discrim_name
= ada_variant_discrim_name (var_type
);
7800 struct value
*outer
;
7801 struct value
*discrim
;
7802 LONGEST discrim_val
;
7804 /* Using plain value_from_contents_and_address here causes problems
7805 because we will end up trying to resolve a type that is currently
7806 being constructed. */
7807 outer
= value_from_contents_and_address_unresolved (outer_type
,
7809 discrim
= ada_value_struct_elt (outer
, discrim_name
, 1);
7810 if (discrim
== NULL
)
7812 discrim_val
= value_as_long (discrim
);
7815 for (i
= 0; i
< TYPE_NFIELDS (var_type
); i
+= 1)
7817 if (ada_is_others_clause (var_type
, i
))
7819 else if (ada_in_variant (discrim_val
, var_type
, i
))
7823 return others_clause
;
7828 /* Dynamic-Sized Records */
7830 /* Strategy: The type ostensibly attached to a value with dynamic size
7831 (i.e., a size that is not statically recorded in the debugging
7832 data) does not accurately reflect the size or layout of the value.
7833 Our strategy is to convert these values to values with accurate,
7834 conventional types that are constructed on the fly. */
7836 /* There is a subtle and tricky problem here. In general, we cannot
7837 determine the size of dynamic records without its data. However,
7838 the 'struct value' data structure, which GDB uses to represent
7839 quantities in the inferior process (the target), requires the size
7840 of the type at the time of its allocation in order to reserve space
7841 for GDB's internal copy of the data. That's why the
7842 'to_fixed_xxx_type' routines take (target) addresses as parameters,
7843 rather than struct value*s.
7845 However, GDB's internal history variables ($1, $2, etc.) are
7846 struct value*s containing internal copies of the data that are not, in
7847 general, the same as the data at their corresponding addresses in
7848 the target. Fortunately, the types we give to these values are all
7849 conventional, fixed-size types (as per the strategy described
7850 above), so that we don't usually have to perform the
7851 'to_fixed_xxx_type' conversions to look at their values.
7852 Unfortunately, there is one exception: if one of the internal
7853 history variables is an array whose elements are unconstrained
7854 records, then we will need to create distinct fixed types for each
7855 element selected. */
7857 /* The upshot of all of this is that many routines take a (type, host
7858 address, target address) triple as arguments to represent a value.
7859 The host address, if non-null, is supposed to contain an internal
7860 copy of the relevant data; otherwise, the program is to consult the
7861 target at the target address. */
7863 /* Assuming that VAL0 represents a pointer value, the result of
7864 dereferencing it. Differs from value_ind in its treatment of
7865 dynamic-sized types. */
7868 ada_value_ind (struct value
*val0
)
7870 struct value
*val
= value_ind (val0
);
7872 if (ada_is_tagged_type (value_type (val
), 0))
7873 val
= ada_tag_value_at_base_address (val
);
7875 return ada_to_fixed_value (val
);
7878 /* The value resulting from dereferencing any "reference to"
7879 qualifiers on VAL0. */
7881 static struct value
*
7882 ada_coerce_ref (struct value
*val0
)
7884 if (TYPE_CODE (value_type (val0
)) == TYPE_CODE_REF
)
7886 struct value
*val
= val0
;
7888 val
= coerce_ref (val
);
7890 if (ada_is_tagged_type (value_type (val
), 0))
7891 val
= ada_tag_value_at_base_address (val
);
7893 return ada_to_fixed_value (val
);
7899 /* Return OFF rounded upward if necessary to a multiple of
7900 ALIGNMENT (a power of 2). */
7903 align_value (unsigned int off
, unsigned int alignment
)
7905 return (off
+ alignment
- 1) & ~(alignment
- 1);
7908 /* Return the bit alignment required for field #F of template type TYPE. */
7911 field_alignment (struct type
*type
, int f
)
7913 const char *name
= TYPE_FIELD_NAME (type
, f
);
7917 /* The field name should never be null, unless the debugging information
7918 is somehow malformed. In this case, we assume the field does not
7919 require any alignment. */
7923 len
= strlen (name
);
7925 if (!isdigit (name
[len
- 1]))
7928 if (isdigit (name
[len
- 2]))
7929 align_offset
= len
- 2;
7931 align_offset
= len
- 1;
7933 if (align_offset
< 7 || !startswith (name
+ align_offset
- 6, "___XV"))
7934 return TARGET_CHAR_BIT
;
7936 return atoi (name
+ align_offset
) * TARGET_CHAR_BIT
;
7939 /* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
7941 static struct symbol
*
7942 ada_find_any_type_symbol (const char *name
)
7946 sym
= standard_lookup (name
, get_selected_block (NULL
), VAR_DOMAIN
);
7947 if (sym
!= NULL
&& SYMBOL_CLASS (sym
) == LOC_TYPEDEF
)
7950 sym
= standard_lookup (name
, NULL
, STRUCT_DOMAIN
);
7954 /* Find a type named NAME. Ignores ambiguity. This routine will look
7955 solely for types defined by debug info, it will not search the GDB
7958 static struct type
*
7959 ada_find_any_type (const char *name
)
7961 struct symbol
*sym
= ada_find_any_type_symbol (name
);
7964 return SYMBOL_TYPE (sym
);
7969 /* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7970 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7971 symbol, in which case it is returned. Otherwise, this looks for
7972 symbols whose name is that of NAME_SYM suffixed with "___XR".
7973 Return symbol if found, and NULL otherwise. */
7976 ada_find_renaming_symbol (struct symbol
*name_sym
, const struct block
*block
)
7978 const char *name
= SYMBOL_LINKAGE_NAME (name_sym
);
7981 if (strstr (name
, "___XR") != NULL
)
7984 sym
= find_old_style_renaming_symbol (name
, block
);
7989 /* Not right yet. FIXME pnh 7/20/2007. */
7990 sym
= ada_find_any_type_symbol (name
);
7991 if (sym
!= NULL
&& strstr (SYMBOL_LINKAGE_NAME (sym
), "___XR") != NULL
)
7997 static struct symbol
*
7998 find_old_style_renaming_symbol (const char *name
, const struct block
*block
)
8000 const struct symbol
*function_sym
= block_linkage_function (block
);
8003 if (function_sym
!= NULL
)
8005 /* If the symbol is defined inside a function, NAME is not fully
8006 qualified. This means we need to prepend the function name
8007 as well as adding the ``___XR'' suffix to build the name of
8008 the associated renaming symbol. */
8009 const char *function_name
= SYMBOL_LINKAGE_NAME (function_sym
);
8010 /* Function names sometimes contain suffixes used
8011 for instance to qualify nested subprograms. When building
8012 the XR type name, we need to make sure that this suffix is
8013 not included. So do not include any suffix in the function
8014 name length below. */
8015 int function_name_len
= ada_name_prefix_len (function_name
);
8016 const int rename_len
= function_name_len
+ 2 /* "__" */
8017 + strlen (name
) + 6 /* "___XR\0" */ ;
8019 /* Strip the suffix if necessary. */
8020 ada_remove_trailing_digits (function_name
, &function_name_len
);
8021 ada_remove_po_subprogram_suffix (function_name
, &function_name_len
);
8022 ada_remove_Xbn_suffix (function_name
, &function_name_len
);
8024 /* Library-level functions are a special case, as GNAT adds
8025 a ``_ada_'' prefix to the function name to avoid namespace
8026 pollution. However, the renaming symbols themselves do not
8027 have this prefix, so we need to skip this prefix if present. */
8028 if (function_name_len
> 5 /* "_ada_" */
8029 && strstr (function_name
, "_ada_") == function_name
)
8032 function_name_len
-= 5;
8035 rename
= (char *) alloca (rename_len
* sizeof (char));
8036 strncpy (rename
, function_name
, function_name_len
);
8037 xsnprintf (rename
+ function_name_len
, rename_len
- function_name_len
,
8042 const int rename_len
= strlen (name
) + 6;
8044 rename
= (char *) alloca (rename_len
* sizeof (char));
8045 xsnprintf (rename
, rename_len
* sizeof (char), "%s___XR", name
);
8048 return ada_find_any_type_symbol (rename
);
8051 /* Because of GNAT encoding conventions, several GDB symbols may match a
8052 given type name. If the type denoted by TYPE0 is to be preferred to
8053 that of TYPE1 for purposes of type printing, return non-zero;
8054 otherwise return 0. */
8057 ada_prefer_type (struct type
*type0
, struct type
*type1
)
8061 else if (type0
== NULL
)
8063 else if (TYPE_CODE (type1
) == TYPE_CODE_VOID
)
8065 else if (TYPE_CODE (type0
) == TYPE_CODE_VOID
)
8067 else if (TYPE_NAME (type1
) == NULL
&& TYPE_NAME (type0
) != NULL
)
8069 else if (ada_is_constrained_packed_array_type (type0
))
8071 else if (ada_is_array_descriptor_type (type0
)
8072 && !ada_is_array_descriptor_type (type1
))
8076 const char *type0_name
= TYPE_NAME (type0
);
8077 const char *type1_name
= TYPE_NAME (type1
);
8079 if (type0_name
!= NULL
&& strstr (type0_name
, "___XR") != NULL
8080 && (type1_name
== NULL
|| strstr (type1_name
, "___XR") == NULL
))
8086 /* The name of TYPE, which is its TYPE_NAME. Null if TYPE is
8090 ada_type_name (struct type
*type
)
8094 return TYPE_NAME (type
);
8097 /* Search the list of "descriptive" types associated to TYPE for a type
8098 whose name is NAME. */
8100 static struct type
*
8101 find_parallel_type_by_descriptive_type (struct type
*type
, const char *name
)
8103 struct type
*result
, *tmp
;
8105 if (ada_ignore_descriptive_types_p
)
8108 /* If there no descriptive-type info, then there is no parallel type
8110 if (!HAVE_GNAT_AUX_INFO (type
))
8113 result
= TYPE_DESCRIPTIVE_TYPE (type
);
8114 while (result
!= NULL
)
8116 const char *result_name
= ada_type_name (result
);
8118 if (result_name
== NULL
)
8120 warning (_("unexpected null name on descriptive type"));
8124 /* If the names match, stop. */
8125 if (strcmp (result_name
, name
) == 0)
8128 /* Otherwise, look at the next item on the list, if any. */
8129 if (HAVE_GNAT_AUX_INFO (result
))
8130 tmp
= TYPE_DESCRIPTIVE_TYPE (result
);
8134 /* If not found either, try after having resolved the typedef. */
8139 result
= check_typedef (result
);
8140 if (HAVE_GNAT_AUX_INFO (result
))
8141 result
= TYPE_DESCRIPTIVE_TYPE (result
);
8147 /* If we didn't find a match, see whether this is a packed array. With
8148 older compilers, the descriptive type information is either absent or
8149 irrelevant when it comes to packed arrays so the above lookup fails.
8150 Fall back to using a parallel lookup by name in this case. */
8151 if (result
== NULL
&& ada_is_constrained_packed_array_type (type
))
8152 return ada_find_any_type (name
);
8157 /* Find a parallel type to TYPE with the specified NAME, using the
8158 descriptive type taken from the debugging information, if available,
8159 and otherwise using the (slower) name-based method. */
8161 static struct type
*
8162 ada_find_parallel_type_with_name (struct type
*type
, const char *name
)
8164 struct type
*result
= NULL
;
8166 if (HAVE_GNAT_AUX_INFO (type
))
8167 result
= find_parallel_type_by_descriptive_type (type
, name
);
8169 result
= ada_find_any_type (name
);
8174 /* Same as above, but specify the name of the parallel type by appending
8175 SUFFIX to the name of TYPE. */
8178 ada_find_parallel_type (struct type
*type
, const char *suffix
)
8181 const char *type_name
= ada_type_name (type
);
8184 if (type_name
== NULL
)
8187 len
= strlen (type_name
);
8189 name
= (char *) alloca (len
+ strlen (suffix
) + 1);
8191 strcpy (name
, type_name
);
8192 strcpy (name
+ len
, suffix
);
8194 return ada_find_parallel_type_with_name (type
, name
);
8197 /* If TYPE is a variable-size record type, return the corresponding template
8198 type describing its fields. Otherwise, return NULL. */
8200 static struct type
*
8201 dynamic_template_type (struct type
*type
)
8203 type
= ada_check_typedef (type
);
8205 if (type
== NULL
|| TYPE_CODE (type
) != TYPE_CODE_STRUCT
8206 || ada_type_name (type
) == NULL
)
8210 int len
= strlen (ada_type_name (type
));
8212 if (len
> 6 && strcmp (ada_type_name (type
) + len
- 6, "___XVE") == 0)
8215 return ada_find_parallel_type (type
, "___XVE");
8219 /* Assuming that TEMPL_TYPE is a union or struct type, returns
8220 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
8223 is_dynamic_field (struct type
*templ_type
, int field_num
)
8225 const char *name
= TYPE_FIELD_NAME (templ_type
, field_num
);
8228 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type
, field_num
)) == TYPE_CODE_PTR
8229 && strstr (name
, "___XVL") != NULL
;
8232 /* The index of the variant field of TYPE, or -1 if TYPE does not
8233 represent a variant record type. */
8236 variant_field_index (struct type
*type
)
8240 if (type
== NULL
|| TYPE_CODE (type
) != TYPE_CODE_STRUCT
)
8243 for (f
= 0; f
< TYPE_NFIELDS (type
); f
+= 1)
8245 if (ada_is_variant_part (type
, f
))
8251 /* A record type with no fields. */
8253 static struct type
*
8254 empty_record (struct type
*templ
)
8256 struct type
*type
= alloc_type_copy (templ
);
8258 TYPE_CODE (type
) = TYPE_CODE_STRUCT
;
8259 TYPE_NFIELDS (type
) = 0;
8260 TYPE_FIELDS (type
) = NULL
;
8261 INIT_CPLUS_SPECIFIC (type
);
8262 TYPE_NAME (type
) = "<empty>";
8263 TYPE_LENGTH (type
) = 0;
8267 /* An ordinary record type (with fixed-length fields) that describes
8268 the value of type TYPE at VALADDR or ADDRESS (see comments at
8269 the beginning of this section) VAL according to GNAT conventions.
8270 DVAL0 should describe the (portion of a) record that contains any
8271 necessary discriminants. It should be NULL if value_type (VAL) is
8272 an outer-level type (i.e., as opposed to a branch of a variant.) A
8273 variant field (unless unchecked) is replaced by a particular branch
8276 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
8277 length are not statically known are discarded. As a consequence,
8278 VALADDR, ADDRESS and DVAL0 are ignored.
8280 NOTE: Limitations: For now, we assume that dynamic fields and
8281 variants occupy whole numbers of bytes. However, they need not be
8285 ada_template_to_fixed_record_type_1 (struct type
*type
,
8286 const gdb_byte
*valaddr
,
8287 CORE_ADDR address
, struct value
*dval0
,
8288 int keep_dynamic_fields
)
8290 struct value
*mark
= value_mark ();
8293 int nfields
, bit_len
;
8299 /* Compute the number of fields in this record type that are going
8300 to be processed: unless keep_dynamic_fields, this includes only
8301 fields whose position and length are static will be processed. */
8302 if (keep_dynamic_fields
)
8303 nfields
= TYPE_NFIELDS (type
);
8307 while (nfields
< TYPE_NFIELDS (type
)
8308 && !ada_is_variant_part (type
, nfields
)
8309 && !is_dynamic_field (type
, nfields
))
8313 rtype
= alloc_type_copy (type
);
8314 TYPE_CODE (rtype
) = TYPE_CODE_STRUCT
;
8315 INIT_CPLUS_SPECIFIC (rtype
);
8316 TYPE_NFIELDS (rtype
) = nfields
;
8317 TYPE_FIELDS (rtype
) = (struct field
*)
8318 TYPE_ALLOC (rtype
, nfields
* sizeof (struct field
));
8319 memset (TYPE_FIELDS (rtype
), 0, sizeof (struct field
) * nfields
);
8320 TYPE_NAME (rtype
) = ada_type_name (type
);
8321 TYPE_FIXED_INSTANCE (rtype
) = 1;
8327 for (f
= 0; f
< nfields
; f
+= 1)
8329 off
= align_value (off
, field_alignment (type
, f
))
8330 + TYPE_FIELD_BITPOS (type
, f
);
8331 SET_FIELD_BITPOS (TYPE_FIELD (rtype
, f
), off
);
8332 TYPE_FIELD_BITSIZE (rtype
, f
) = 0;
8334 if (ada_is_variant_part (type
, f
))
8339 else if (is_dynamic_field (type
, f
))
8341 const gdb_byte
*field_valaddr
= valaddr
;
8342 CORE_ADDR field_address
= address
;
8343 struct type
*field_type
=
8344 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type
, f
));
8348 /* rtype's length is computed based on the run-time
8349 value of discriminants. If the discriminants are not
8350 initialized, the type size may be completely bogus and
8351 GDB may fail to allocate a value for it. So check the
8352 size first before creating the value. */
8353 ada_ensure_varsize_limit (rtype
);
8354 /* Using plain value_from_contents_and_address here
8355 causes problems because we will end up trying to
8356 resolve a type that is currently being
8358 dval
= value_from_contents_and_address_unresolved (rtype
,
8361 rtype
= value_type (dval
);
8366 /* If the type referenced by this field is an aligner type, we need
8367 to unwrap that aligner type, because its size might not be set.
8368 Keeping the aligner type would cause us to compute the wrong
8369 size for this field, impacting the offset of the all the fields
8370 that follow this one. */
8371 if (ada_is_aligner_type (field_type
))
8373 long field_offset
= TYPE_FIELD_BITPOS (field_type
, f
);
8375 field_valaddr
= cond_offset_host (field_valaddr
, field_offset
);
8376 field_address
= cond_offset_target (field_address
, field_offset
);
8377 field_type
= ada_aligned_type (field_type
);
8380 field_valaddr
= cond_offset_host (field_valaddr
,
8381 off
/ TARGET_CHAR_BIT
);
8382 field_address
= cond_offset_target (field_address
,
8383 off
/ TARGET_CHAR_BIT
);
8385 /* Get the fixed type of the field. Note that, in this case,
8386 we do not want to get the real type out of the tag: if
8387 the current field is the parent part of a tagged record,
8388 we will get the tag of the object. Clearly wrong: the real
8389 type of the parent is not the real type of the child. We
8390 would end up in an infinite loop. */
8391 field_type
= ada_get_base_type (field_type
);
8392 field_type
= ada_to_fixed_type (field_type
, field_valaddr
,
8393 field_address
, dval
, 0);
8394 /* If the field size is already larger than the maximum
8395 object size, then the record itself will necessarily
8396 be larger than the maximum object size. We need to make
8397 this check now, because the size might be so ridiculously
8398 large (due to an uninitialized variable in the inferior)
8399 that it would cause an overflow when adding it to the
8401 ada_ensure_varsize_limit (field_type
);
8403 TYPE_FIELD_TYPE (rtype
, f
) = field_type
;
8404 TYPE_FIELD_NAME (rtype
, f
) = TYPE_FIELD_NAME (type
, f
);
8405 /* The multiplication can potentially overflow. But because
8406 the field length has been size-checked just above, and
8407 assuming that the maximum size is a reasonable value,
8408 an overflow should not happen in practice. So rather than
8409 adding overflow recovery code to this already complex code,
8410 we just assume that it's not going to happen. */
8412 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype
, f
)) * TARGET_CHAR_BIT
;
8416 /* Note: If this field's type is a typedef, it is important
8417 to preserve the typedef layer.
8419 Otherwise, we might be transforming a typedef to a fat
8420 pointer (encoding a pointer to an unconstrained array),
8421 into a basic fat pointer (encoding an unconstrained
8422 array). As both types are implemented using the same
8423 structure, the typedef is the only clue which allows us
8424 to distinguish between the two options. Stripping it
8425 would prevent us from printing this field appropriately. */
8426 TYPE_FIELD_TYPE (rtype
, f
) = TYPE_FIELD_TYPE (type
, f
);
8427 TYPE_FIELD_NAME (rtype
, f
) = TYPE_FIELD_NAME (type
, f
);
8428 if (TYPE_FIELD_BITSIZE (type
, f
) > 0)
8430 TYPE_FIELD_BITSIZE (rtype
, f
) = TYPE_FIELD_BITSIZE (type
, f
);
8433 struct type
*field_type
= TYPE_FIELD_TYPE (type
, f
);
8435 /* We need to be careful of typedefs when computing
8436 the length of our field. If this is a typedef,
8437 get the length of the target type, not the length
8439 if (TYPE_CODE (field_type
) == TYPE_CODE_TYPEDEF
)
8440 field_type
= ada_typedef_target_type (field_type
);
8443 TYPE_LENGTH (ada_check_typedef (field_type
)) * TARGET_CHAR_BIT
;
8446 if (off
+ fld_bit_len
> bit_len
)
8447 bit_len
= off
+ fld_bit_len
;
8449 TYPE_LENGTH (rtype
) =
8450 align_value (bit_len
, TARGET_CHAR_BIT
) / TARGET_CHAR_BIT
;
8453 /* We handle the variant part, if any, at the end because of certain
8454 odd cases in which it is re-ordered so as NOT to be the last field of
8455 the record. This can happen in the presence of representation
8457 if (variant_field
>= 0)
8459 struct type
*branch_type
;
8461 off
= TYPE_FIELD_BITPOS (rtype
, variant_field
);
8465 /* Using plain value_from_contents_and_address here causes
8466 problems because we will end up trying to resolve a type
8467 that is currently being constructed. */
8468 dval
= value_from_contents_and_address_unresolved (rtype
, valaddr
,
8470 rtype
= value_type (dval
);
8476 to_fixed_variant_branch_type
8477 (TYPE_FIELD_TYPE (type
, variant_field
),
8478 cond_offset_host (valaddr
, off
/ TARGET_CHAR_BIT
),
8479 cond_offset_target (address
, off
/ TARGET_CHAR_BIT
), dval
);
8480 if (branch_type
== NULL
)
8482 for (f
= variant_field
+ 1; f
< TYPE_NFIELDS (rtype
); f
+= 1)
8483 TYPE_FIELDS (rtype
)[f
- 1] = TYPE_FIELDS (rtype
)[f
];
8484 TYPE_NFIELDS (rtype
) -= 1;
8488 TYPE_FIELD_TYPE (rtype
, variant_field
) = branch_type
;
8489 TYPE_FIELD_NAME (rtype
, variant_field
) = "S";
8491 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype
, variant_field
)) *
8493 if (off
+ fld_bit_len
> bit_len
)
8494 bit_len
= off
+ fld_bit_len
;
8495 TYPE_LENGTH (rtype
) =
8496 align_value (bit_len
, TARGET_CHAR_BIT
) / TARGET_CHAR_BIT
;
8500 /* According to exp_dbug.ads, the size of TYPE for variable-size records
8501 should contain the alignment of that record, which should be a strictly
8502 positive value. If null or negative, then something is wrong, most
8503 probably in the debug info. In that case, we don't round up the size
8504 of the resulting type. If this record is not part of another structure,
8505 the current RTYPE length might be good enough for our purposes. */
8506 if (TYPE_LENGTH (type
) <= 0)
8508 if (TYPE_NAME (rtype
))
8509 warning (_("Invalid type size for `%s' detected: %s."),
8510 TYPE_NAME (rtype
), pulongest (TYPE_LENGTH (type
)));
8512 warning (_("Invalid type size for <unnamed> detected: %s."),
8513 pulongest (TYPE_LENGTH (type
)));
8517 TYPE_LENGTH (rtype
) = align_value (TYPE_LENGTH (rtype
),
8518 TYPE_LENGTH (type
));
8521 value_free_to_mark (mark
);
8522 if (TYPE_LENGTH (rtype
) > varsize_limit
)
8523 error (_("record type with dynamic size is larger than varsize-limit"));
8527 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8530 static struct type
*
8531 template_to_fixed_record_type (struct type
*type
, const gdb_byte
*valaddr
,
8532 CORE_ADDR address
, struct value
*dval0
)
8534 return ada_template_to_fixed_record_type_1 (type
, valaddr
,
8538 /* An ordinary record type in which ___XVL-convention fields and
8539 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8540 static approximations, containing all possible fields. Uses
8541 no runtime values. Useless for use in values, but that's OK,
8542 since the results are used only for type determinations. Works on both
8543 structs and unions. Representation note: to save space, we memorize
8544 the result of this function in the TYPE_TARGET_TYPE of the
8547 static struct type
*
8548 template_to_static_fixed_type (struct type
*type0
)
8554 /* No need no do anything if the input type is already fixed. */
8555 if (TYPE_FIXED_INSTANCE (type0
))
8558 /* Likewise if we already have computed the static approximation. */
8559 if (TYPE_TARGET_TYPE (type0
) != NULL
)
8560 return TYPE_TARGET_TYPE (type0
);
8562 /* Don't clone TYPE0 until we are sure we are going to need a copy. */
8564 nfields
= TYPE_NFIELDS (type0
);
8566 /* Whether or not we cloned TYPE0, cache the result so that we don't do
8567 recompute all over next time. */
8568 TYPE_TARGET_TYPE (type0
) = type
;
8570 for (f
= 0; f
< nfields
; f
+= 1)
8572 struct type
*field_type
= TYPE_FIELD_TYPE (type0
, f
);
8573 struct type
*new_type
;
8575 if (is_dynamic_field (type0
, f
))
8577 field_type
= ada_check_typedef (field_type
);
8578 new_type
= to_static_fixed_type (TYPE_TARGET_TYPE (field_type
));
8581 new_type
= static_unwrap_type (field_type
);
8583 if (new_type
!= field_type
)
8585 /* Clone TYPE0 only the first time we get a new field type. */
8588 TYPE_TARGET_TYPE (type0
) = type
= alloc_type_copy (type0
);
8589 TYPE_CODE (type
) = TYPE_CODE (type0
);
8590 INIT_CPLUS_SPECIFIC (type
);
8591 TYPE_NFIELDS (type
) = nfields
;
8592 TYPE_FIELDS (type
) = (struct field
*)
8593 TYPE_ALLOC (type
, nfields
* sizeof (struct field
));
8594 memcpy (TYPE_FIELDS (type
), TYPE_FIELDS (type0
),
8595 sizeof (struct field
) * nfields
);
8596 TYPE_NAME (type
) = ada_type_name (type0
);
8597 TYPE_FIXED_INSTANCE (type
) = 1;
8598 TYPE_LENGTH (type
) = 0;
8600 TYPE_FIELD_TYPE (type
, f
) = new_type
;
8601 TYPE_FIELD_NAME (type
, f
) = TYPE_FIELD_NAME (type0
, f
);
8608 /* Given an object of type TYPE whose contents are at VALADDR and
8609 whose address in memory is ADDRESS, returns a revision of TYPE,
8610 which should be a non-dynamic-sized record, in which the variant
8611 part, if any, is replaced with the appropriate branch. Looks
8612 for discriminant values in DVAL0, which can be NULL if the record
8613 contains the necessary discriminant values. */
8615 static struct type
*
8616 to_record_with_fixed_variant_part (struct type
*type
, const gdb_byte
*valaddr
,
8617 CORE_ADDR address
, struct value
*dval0
)
8619 struct value
*mark
= value_mark ();
8622 struct type
*branch_type
;
8623 int nfields
= TYPE_NFIELDS (type
);
8624 int variant_field
= variant_field_index (type
);
8626 if (variant_field
== -1)
8631 dval
= value_from_contents_and_address (type
, valaddr
, address
);
8632 type
= value_type (dval
);
8637 rtype
= alloc_type_copy (type
);
8638 TYPE_CODE (rtype
) = TYPE_CODE_STRUCT
;
8639 INIT_CPLUS_SPECIFIC (rtype
);
8640 TYPE_NFIELDS (rtype
) = nfields
;
8641 TYPE_FIELDS (rtype
) =
8642 (struct field
*) TYPE_ALLOC (rtype
, nfields
* sizeof (struct field
));
8643 memcpy (TYPE_FIELDS (rtype
), TYPE_FIELDS (type
),
8644 sizeof (struct field
) * nfields
);
8645 TYPE_NAME (rtype
) = ada_type_name (type
);
8646 TYPE_FIXED_INSTANCE (rtype
) = 1;
8647 TYPE_LENGTH (rtype
) = TYPE_LENGTH (type
);
8649 branch_type
= to_fixed_variant_branch_type
8650 (TYPE_FIELD_TYPE (type
, variant_field
),
8651 cond_offset_host (valaddr
,
8652 TYPE_FIELD_BITPOS (type
, variant_field
)
8654 cond_offset_target (address
,
8655 TYPE_FIELD_BITPOS (type
, variant_field
)
8656 / TARGET_CHAR_BIT
), dval
);
8657 if (branch_type
== NULL
)
8661 for (f
= variant_field
+ 1; f
< nfields
; f
+= 1)
8662 TYPE_FIELDS (rtype
)[f
- 1] = TYPE_FIELDS (rtype
)[f
];
8663 TYPE_NFIELDS (rtype
) -= 1;
8667 TYPE_FIELD_TYPE (rtype
, variant_field
) = branch_type
;
8668 TYPE_FIELD_NAME (rtype
, variant_field
) = "S";
8669 TYPE_FIELD_BITSIZE (rtype
, variant_field
) = 0;
8670 TYPE_LENGTH (rtype
) += TYPE_LENGTH (branch_type
);
8672 TYPE_LENGTH (rtype
) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type
, variant_field
));
8674 value_free_to_mark (mark
);
8678 /* An ordinary record type (with fixed-length fields) that describes
8679 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8680 beginning of this section]. Any necessary discriminants' values
8681 should be in DVAL, a record value; it may be NULL if the object
8682 at ADDR itself contains any necessary discriminant values.
8683 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8684 values from the record are needed. Except in the case that DVAL,
8685 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8686 unchecked) is replaced by a particular branch of the variant.
8688 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8689 is questionable and may be removed. It can arise during the
8690 processing of an unconstrained-array-of-record type where all the
8691 variant branches have exactly the same size. This is because in
8692 such cases, the compiler does not bother to use the XVS convention
8693 when encoding the record. I am currently dubious of this
8694 shortcut and suspect the compiler should be altered. FIXME. */
8696 static struct type
*
8697 to_fixed_record_type (struct type
*type0
, const gdb_byte
*valaddr
,
8698 CORE_ADDR address
, struct value
*dval
)
8700 struct type
*templ_type
;
8702 if (TYPE_FIXED_INSTANCE (type0
))
8705 templ_type
= dynamic_template_type (type0
);
8707 if (templ_type
!= NULL
)
8708 return template_to_fixed_record_type (templ_type
, valaddr
, address
, dval
);
8709 else if (variant_field_index (type0
) >= 0)
8711 if (dval
== NULL
&& valaddr
== NULL
&& address
== 0)
8713 return to_record_with_fixed_variant_part (type0
, valaddr
, address
,
8718 TYPE_FIXED_INSTANCE (type0
) = 1;
8724 /* An ordinary record type (with fixed-length fields) that describes
8725 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8726 union type. Any necessary discriminants' values should be in DVAL,
8727 a record value. That is, this routine selects the appropriate
8728 branch of the union at ADDR according to the discriminant value
8729 indicated in the union's type name. Returns VAR_TYPE0 itself if
8730 it represents a variant subject to a pragma Unchecked_Union. */
8732 static struct type
*
8733 to_fixed_variant_branch_type (struct type
*var_type0
, const gdb_byte
*valaddr
,
8734 CORE_ADDR address
, struct value
*dval
)
8737 struct type
*templ_type
;
8738 struct type
*var_type
;
8740 if (TYPE_CODE (var_type0
) == TYPE_CODE_PTR
)
8741 var_type
= TYPE_TARGET_TYPE (var_type0
);
8743 var_type
= var_type0
;
8745 templ_type
= ada_find_parallel_type (var_type
, "___XVU");
8747 if (templ_type
!= NULL
)
8748 var_type
= templ_type
;
8750 if (is_unchecked_variant (var_type
, value_type (dval
)))
8753 ada_which_variant_applies (var_type
,
8754 value_type (dval
), value_contents (dval
));
8757 return empty_record (var_type
);
8758 else if (is_dynamic_field (var_type
, which
))
8759 return to_fixed_record_type
8760 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type
, which
)),
8761 valaddr
, address
, dval
);
8762 else if (variant_field_index (TYPE_FIELD_TYPE (var_type
, which
)) >= 0)
8764 to_fixed_record_type
8765 (TYPE_FIELD_TYPE (var_type
, which
), valaddr
, address
, dval
);
8767 return TYPE_FIELD_TYPE (var_type
, which
);
8770 /* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
8771 ENCODING_TYPE, a type following the GNAT conventions for discrete
8772 type encodings, only carries redundant information. */
8775 ada_is_redundant_range_encoding (struct type
*range_type
,
8776 struct type
*encoding_type
)
8778 const char *bounds_str
;
8782 gdb_assert (TYPE_CODE (range_type
) == TYPE_CODE_RANGE
);
8784 if (TYPE_CODE (get_base_type (range_type
))
8785 != TYPE_CODE (get_base_type (encoding_type
)))
8787 /* The compiler probably used a simple base type to describe
8788 the range type instead of the range's actual base type,
8789 expecting us to get the real base type from the encoding
8790 anyway. In this situation, the encoding cannot be ignored
8795 if (is_dynamic_type (range_type
))
8798 if (TYPE_NAME (encoding_type
) == NULL
)
8801 bounds_str
= strstr (TYPE_NAME (encoding_type
), "___XDLU_");
8802 if (bounds_str
== NULL
)
8805 n
= 8; /* Skip "___XDLU_". */
8806 if (!ada_scan_number (bounds_str
, n
, &lo
, &n
))
8808 if (TYPE_LOW_BOUND (range_type
) != lo
)
8811 n
+= 2; /* Skip the "__" separator between the two bounds. */
8812 if (!ada_scan_number (bounds_str
, n
, &hi
, &n
))
8814 if (TYPE_HIGH_BOUND (range_type
) != hi
)
8820 /* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
8821 a type following the GNAT encoding for describing array type
8822 indices, only carries redundant information. */
8825 ada_is_redundant_index_type_desc (struct type
*array_type
,
8826 struct type
*desc_type
)
8828 struct type
*this_layer
= check_typedef (array_type
);
8831 for (i
= 0; i
< TYPE_NFIELDS (desc_type
); i
++)
8833 if (!ada_is_redundant_range_encoding (TYPE_INDEX_TYPE (this_layer
),
8834 TYPE_FIELD_TYPE (desc_type
, i
)))
8836 this_layer
= check_typedef (TYPE_TARGET_TYPE (this_layer
));
8842 /* Assuming that TYPE0 is an array type describing the type of a value
8843 at ADDR, and that DVAL describes a record containing any
8844 discriminants used in TYPE0, returns a type for the value that
8845 contains no dynamic components (that is, no components whose sizes
8846 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8847 true, gives an error message if the resulting type's size is over
8850 static struct type
*
8851 to_fixed_array_type (struct type
*type0
, struct value
*dval
,
8854 struct type
*index_type_desc
;
8855 struct type
*result
;
8856 int constrained_packed_array_p
;
8857 static const char *xa_suffix
= "___XA";
8859 type0
= ada_check_typedef (type0
);
8860 if (TYPE_FIXED_INSTANCE (type0
))
8863 constrained_packed_array_p
= ada_is_constrained_packed_array_type (type0
);
8864 if (constrained_packed_array_p
)
8865 type0
= decode_constrained_packed_array_type (type0
);
8867 index_type_desc
= ada_find_parallel_type (type0
, xa_suffix
);
8869 /* As mentioned in exp_dbug.ads, for non bit-packed arrays an
8870 encoding suffixed with 'P' may still be generated. If so,
8871 it should be used to find the XA type. */
8873 if (index_type_desc
== NULL
)
8875 const char *type_name
= ada_type_name (type0
);
8877 if (type_name
!= NULL
)
8879 const int len
= strlen (type_name
);
8880 char *name
= (char *) alloca (len
+ strlen (xa_suffix
));
8882 if (type_name
[len
- 1] == 'P')
8884 strcpy (name
, type_name
);
8885 strcpy (name
+ len
- 1, xa_suffix
);
8886 index_type_desc
= ada_find_parallel_type_with_name (type0
, name
);
8891 ada_fixup_array_indexes_type (index_type_desc
);
8892 if (index_type_desc
!= NULL
8893 && ada_is_redundant_index_type_desc (type0
, index_type_desc
))
8895 /* Ignore this ___XA parallel type, as it does not bring any
8896 useful information. This allows us to avoid creating fixed
8897 versions of the array's index types, which would be identical
8898 to the original ones. This, in turn, can also help avoid
8899 the creation of fixed versions of the array itself. */
8900 index_type_desc
= NULL
;
8903 if (index_type_desc
== NULL
)
8905 struct type
*elt_type0
= ada_check_typedef (TYPE_TARGET_TYPE (type0
));
8907 /* NOTE: elt_type---the fixed version of elt_type0---should never
8908 depend on the contents of the array in properly constructed
8910 /* Create a fixed version of the array element type.
8911 We're not providing the address of an element here,
8912 and thus the actual object value cannot be inspected to do
8913 the conversion. This should not be a problem, since arrays of
8914 unconstrained objects are not allowed. In particular, all
8915 the elements of an array of a tagged type should all be of
8916 the same type specified in the debugging info. No need to
8917 consult the object tag. */
8918 struct type
*elt_type
= ada_to_fixed_type (elt_type0
, 0, 0, dval
, 1);
8920 /* Make sure we always create a new array type when dealing with
8921 packed array types, since we're going to fix-up the array
8922 type length and element bitsize a little further down. */
8923 if (elt_type0
== elt_type
&& !constrained_packed_array_p
)
8926 result
= create_array_type (alloc_type_copy (type0
),
8927 elt_type
, TYPE_INDEX_TYPE (type0
));
8932 struct type
*elt_type0
;
8935 for (i
= TYPE_NFIELDS (index_type_desc
); i
> 0; i
-= 1)
8936 elt_type0
= TYPE_TARGET_TYPE (elt_type0
);
8938 /* NOTE: result---the fixed version of elt_type0---should never
8939 depend on the contents of the array in properly constructed
8941 /* Create a fixed version of the array element type.
8942 We're not providing the address of an element here,
8943 and thus the actual object value cannot be inspected to do
8944 the conversion. This should not be a problem, since arrays of
8945 unconstrained objects are not allowed. In particular, all
8946 the elements of an array of a tagged type should all be of
8947 the same type specified in the debugging info. No need to
8948 consult the object tag. */
8950 ada_to_fixed_type (ada_check_typedef (elt_type0
), 0, 0, dval
, 1);
8953 for (i
= TYPE_NFIELDS (index_type_desc
) - 1; i
>= 0; i
-= 1)
8955 struct type
*range_type
=
8956 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc
, i
), dval
);
8958 result
= create_array_type (alloc_type_copy (elt_type0
),
8959 result
, range_type
);
8960 elt_type0
= TYPE_TARGET_TYPE (elt_type0
);
8962 if (!ignore_too_big
&& TYPE_LENGTH (result
) > varsize_limit
)
8963 error (_("array type with dynamic size is larger than varsize-limit"));
8966 /* We want to preserve the type name. This can be useful when
8967 trying to get the type name of a value that has already been
8968 printed (for instance, if the user did "print VAR; whatis $". */
8969 TYPE_NAME (result
) = TYPE_NAME (type0
);
8971 if (constrained_packed_array_p
)
8973 /* So far, the resulting type has been created as if the original
8974 type was a regular (non-packed) array type. As a result, the
8975 bitsize of the array elements needs to be set again, and the array
8976 length needs to be recomputed based on that bitsize. */
8977 int len
= TYPE_LENGTH (result
) / TYPE_LENGTH (TYPE_TARGET_TYPE (result
));
8978 int elt_bitsize
= TYPE_FIELD_BITSIZE (type0
, 0);
8980 TYPE_FIELD_BITSIZE (result
, 0) = TYPE_FIELD_BITSIZE (type0
, 0);
8981 TYPE_LENGTH (result
) = len
* elt_bitsize
/ HOST_CHAR_BIT
;
8982 if (TYPE_LENGTH (result
) * HOST_CHAR_BIT
< len
* elt_bitsize
)
8983 TYPE_LENGTH (result
)++;
8986 TYPE_FIXED_INSTANCE (result
) = 1;
8991 /* A standard type (containing no dynamically sized components)
8992 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8993 DVAL describes a record containing any discriminants used in TYPE0,
8994 and may be NULL if there are none, or if the object of type TYPE at
8995 ADDRESS or in VALADDR contains these discriminants.
8997 If CHECK_TAG is not null, in the case of tagged types, this function
8998 attempts to locate the object's tag and use it to compute the actual
8999 type. However, when ADDRESS is null, we cannot use it to determine the
9000 location of the tag, and therefore compute the tagged type's actual type.
9001 So we return the tagged type without consulting the tag. */
9003 static struct type
*
9004 ada_to_fixed_type_1 (struct type
*type
, const gdb_byte
*valaddr
,
9005 CORE_ADDR address
, struct value
*dval
, int check_tag
)
9007 type
= ada_check_typedef (type
);
9008 switch (TYPE_CODE (type
))
9012 case TYPE_CODE_STRUCT
:
9014 struct type
*static_type
= to_static_fixed_type (type
);
9015 struct type
*fixed_record_type
=
9016 to_fixed_record_type (type
, valaddr
, address
, NULL
);
9018 /* If STATIC_TYPE is a tagged type and we know the object's address,
9019 then we can determine its tag, and compute the object's actual
9020 type from there. Note that we have to use the fixed record
9021 type (the parent part of the record may have dynamic fields
9022 and the way the location of _tag is expressed may depend on
9025 if (check_tag
&& address
!= 0 && ada_is_tagged_type (static_type
, 0))
9028 value_tag_from_contents_and_address
9032 struct type
*real_type
= type_from_tag (tag
);
9034 value_from_contents_and_address (fixed_record_type
,
9037 fixed_record_type
= value_type (obj
);
9038 if (real_type
!= NULL
)
9039 return to_fixed_record_type
9041 value_address (ada_tag_value_at_base_address (obj
)), NULL
);
9044 /* Check to see if there is a parallel ___XVZ variable.
9045 If there is, then it provides the actual size of our type. */
9046 else if (ada_type_name (fixed_record_type
) != NULL
)
9048 const char *name
= ada_type_name (fixed_record_type
);
9050 = (char *) alloca (strlen (name
) + 7 /* "___XVZ\0" */);
9051 bool xvz_found
= false;
9054 xsnprintf (xvz_name
, strlen (name
) + 7, "%s___XVZ", name
);
9057 xvz_found
= get_int_var_value (xvz_name
, size
);
9059 catch (const gdb_exception_error
&except
)
9061 /* We found the variable, but somehow failed to read
9062 its value. Rethrow the same error, but with a little
9063 bit more information, to help the user understand
9064 what went wrong (Eg: the variable might have been
9066 throw_error (except
.error
,
9067 _("unable to read value of %s (%s)"),
9068 xvz_name
, except
.what ());
9071 if (xvz_found
&& TYPE_LENGTH (fixed_record_type
) != size
)
9073 fixed_record_type
= copy_type (fixed_record_type
);
9074 TYPE_LENGTH (fixed_record_type
) = size
;
9076 /* The FIXED_RECORD_TYPE may have be a stub. We have
9077 observed this when the debugging info is STABS, and
9078 apparently it is something that is hard to fix.
9080 In practice, we don't need the actual type definition
9081 at all, because the presence of the XVZ variable allows us
9082 to assume that there must be a XVS type as well, which we
9083 should be able to use later, when we need the actual type
9086 In the meantime, pretend that the "fixed" type we are
9087 returning is NOT a stub, because this can cause trouble
9088 when using this type to create new types targeting it.
9089 Indeed, the associated creation routines often check
9090 whether the target type is a stub and will try to replace
9091 it, thus using a type with the wrong size. This, in turn,
9092 might cause the new type to have the wrong size too.
9093 Consider the case of an array, for instance, where the size
9094 of the array is computed from the number of elements in
9095 our array multiplied by the size of its element. */
9096 TYPE_STUB (fixed_record_type
) = 0;
9099 return fixed_record_type
;
9101 case TYPE_CODE_ARRAY
:
9102 return to_fixed_array_type (type
, dval
, 1);
9103 case TYPE_CODE_UNION
:
9107 return to_fixed_variant_branch_type (type
, valaddr
, address
, dval
);
9111 /* The same as ada_to_fixed_type_1, except that it preserves the type
9112 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
9114 The typedef layer needs be preserved in order to differentiate between
9115 arrays and array pointers when both types are implemented using the same
9116 fat pointer. In the array pointer case, the pointer is encoded as
9117 a typedef of the pointer type. For instance, considering:
9119 type String_Access is access String;
9120 S1 : String_Access := null;
9122 To the debugger, S1 is defined as a typedef of type String. But
9123 to the user, it is a pointer. So if the user tries to print S1,
9124 we should not dereference the array, but print the array address
9127 If we didn't preserve the typedef layer, we would lose the fact that
9128 the type is to be presented as a pointer (needs de-reference before
9129 being printed). And we would also use the source-level type name. */
9132 ada_to_fixed_type (struct type
*type
, const gdb_byte
*valaddr
,
9133 CORE_ADDR address
, struct value
*dval
, int check_tag
)
9136 struct type
*fixed_type
=
9137 ada_to_fixed_type_1 (type
, valaddr
, address
, dval
, check_tag
);
9139 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
9140 then preserve the typedef layer.
9142 Implementation note: We can only check the main-type portion of
9143 the TYPE and FIXED_TYPE, because eliminating the typedef layer
9144 from TYPE now returns a type that has the same instance flags
9145 as TYPE. For instance, if TYPE is a "typedef const", and its
9146 target type is a "struct", then the typedef elimination will return
9147 a "const" version of the target type. See check_typedef for more
9148 details about how the typedef layer elimination is done.
9150 brobecker/2010-11-19: It seems to me that the only case where it is
9151 useful to preserve the typedef layer is when dealing with fat pointers.
9152 Perhaps, we could add a check for that and preserve the typedef layer
9153 only in that situation. But this seems unecessary so far, probably
9154 because we call check_typedef/ada_check_typedef pretty much everywhere.
9156 if (TYPE_CODE (type
) == TYPE_CODE_TYPEDEF
9157 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type
))
9158 == TYPE_MAIN_TYPE (fixed_type
)))
9164 /* A standard (static-sized) type corresponding as well as possible to
9165 TYPE0, but based on no runtime data. */
9167 static struct type
*
9168 to_static_fixed_type (struct type
*type0
)
9175 if (TYPE_FIXED_INSTANCE (type0
))
9178 type0
= ada_check_typedef (type0
);
9180 switch (TYPE_CODE (type0
))
9184 case TYPE_CODE_STRUCT
:
9185 type
= dynamic_template_type (type0
);
9187 return template_to_static_fixed_type (type
);
9189 return template_to_static_fixed_type (type0
);
9190 case TYPE_CODE_UNION
:
9191 type
= ada_find_parallel_type (type0
, "___XVU");
9193 return template_to_static_fixed_type (type
);
9195 return template_to_static_fixed_type (type0
);
9199 /* A static approximation of TYPE with all type wrappers removed. */
9201 static struct type
*
9202 static_unwrap_type (struct type
*type
)
9204 if (ada_is_aligner_type (type
))
9206 struct type
*type1
= TYPE_FIELD_TYPE (ada_check_typedef (type
), 0);
9207 if (ada_type_name (type1
) == NULL
)
9208 TYPE_NAME (type1
) = ada_type_name (type
);
9210 return static_unwrap_type (type1
);
9214 struct type
*raw_real_type
= ada_get_base_type (type
);
9216 if (raw_real_type
== type
)
9219 return to_static_fixed_type (raw_real_type
);
9223 /* In some cases, incomplete and private types require
9224 cross-references that are not resolved as records (for example,
9226 type FooP is access Foo;
9228 type Foo is array ...;
9229 ). In these cases, since there is no mechanism for producing
9230 cross-references to such types, we instead substitute for FooP a
9231 stub enumeration type that is nowhere resolved, and whose tag is
9232 the name of the actual type. Call these types "non-record stubs". */
9234 /* A type equivalent to TYPE that is not a non-record stub, if one
9235 exists, otherwise TYPE. */
9238 ada_check_typedef (struct type
*type
)
9243 /* If our type is an access to an unconstrained array, which is encoded
9244 as a TYPE_CODE_TYPEDEF of a fat pointer, then we're done.
9245 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
9246 what allows us to distinguish between fat pointers that represent
9247 array types, and fat pointers that represent array access types
9248 (in both cases, the compiler implements them as fat pointers). */
9249 if (ada_is_access_to_unconstrained_array (type
))
9252 type
= check_typedef (type
);
9253 if (type
== NULL
|| TYPE_CODE (type
) != TYPE_CODE_ENUM
9254 || !TYPE_STUB (type
)
9255 || TYPE_NAME (type
) == NULL
)
9259 const char *name
= TYPE_NAME (type
);
9260 struct type
*type1
= ada_find_any_type (name
);
9265 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
9266 stubs pointing to arrays, as we don't create symbols for array
9267 types, only for the typedef-to-array types). If that's the case,
9268 strip the typedef layer. */
9269 if (TYPE_CODE (type1
) == TYPE_CODE_TYPEDEF
)
9270 type1
= ada_check_typedef (type1
);
9276 /* A value representing the data at VALADDR/ADDRESS as described by
9277 type TYPE0, but with a standard (static-sized) type that correctly
9278 describes it. If VAL0 is not NULL and TYPE0 already is a standard
9279 type, then return VAL0 [this feature is simply to avoid redundant
9280 creation of struct values]. */
9282 static struct value
*
9283 ada_to_fixed_value_create (struct type
*type0
, CORE_ADDR address
,
9286 struct type
*type
= ada_to_fixed_type (type0
, 0, address
, NULL
, 1);
9288 if (type
== type0
&& val0
!= NULL
)
9291 if (VALUE_LVAL (val0
) != lval_memory
)
9293 /* Our value does not live in memory; it could be a convenience
9294 variable, for instance. Create a not_lval value using val0's
9296 return value_from_contents (type
, value_contents (val0
));
9299 return value_from_contents_and_address (type
, 0, address
);
9302 /* A value representing VAL, but with a standard (static-sized) type
9303 that correctly describes it. Does not necessarily create a new
9307 ada_to_fixed_value (struct value
*val
)
9309 val
= unwrap_value (val
);
9310 val
= ada_to_fixed_value_create (value_type (val
), value_address (val
), val
);
9317 /* Table mapping attribute numbers to names.
9318 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
9320 static const char *attribute_names
[] = {
9338 ada_attribute_name (enum exp_opcode n
)
9340 if (n
>= OP_ATR_FIRST
&& n
<= (int) OP_ATR_VAL
)
9341 return attribute_names
[n
- OP_ATR_FIRST
+ 1];
9343 return attribute_names
[0];
9346 /* Evaluate the 'POS attribute applied to ARG. */
9349 pos_atr (struct value
*arg
)
9351 struct value
*val
= coerce_ref (arg
);
9352 struct type
*type
= value_type (val
);
9355 if (!discrete_type_p (type
))
9356 error (_("'POS only defined on discrete types"));
9358 if (!discrete_position (type
, value_as_long (val
), &result
))
9359 error (_("enumeration value is invalid: can't find 'POS"));
9364 static struct value
*
9365 value_pos_atr (struct type
*type
, struct value
*arg
)
9367 return value_from_longest (type
, pos_atr (arg
));
9370 /* Evaluate the TYPE'VAL attribute applied to ARG. */
9372 static struct value
*
9373 value_val_atr (struct type
*type
, struct value
*arg
)
9375 if (!discrete_type_p (type
))
9376 error (_("'VAL only defined on discrete types"));
9377 if (!integer_type_p (value_type (arg
)))
9378 error (_("'VAL requires integral argument"));
9380 if (TYPE_CODE (type
) == TYPE_CODE_ENUM
)
9382 long pos
= value_as_long (arg
);
9384 if (pos
< 0 || pos
>= TYPE_NFIELDS (type
))
9385 error (_("argument to 'VAL out of range"));
9386 return value_from_longest (type
, TYPE_FIELD_ENUMVAL (type
, pos
));
9389 return value_from_longest (type
, value_as_long (arg
));
9395 /* True if TYPE appears to be an Ada character type.
9396 [At the moment, this is true only for Character and Wide_Character;
9397 It is a heuristic test that could stand improvement]. */
9400 ada_is_character_type (struct type
*type
)
9404 /* If the type code says it's a character, then assume it really is,
9405 and don't check any further. */
9406 if (TYPE_CODE (type
) == TYPE_CODE_CHAR
)
9409 /* Otherwise, assume it's a character type iff it is a discrete type
9410 with a known character type name. */
9411 name
= ada_type_name (type
);
9412 return (name
!= NULL
9413 && (TYPE_CODE (type
) == TYPE_CODE_INT
9414 || TYPE_CODE (type
) == TYPE_CODE_RANGE
)
9415 && (strcmp (name
, "character") == 0
9416 || strcmp (name
, "wide_character") == 0
9417 || strcmp (name
, "wide_wide_character") == 0
9418 || strcmp (name
, "unsigned char") == 0));
9421 /* True if TYPE appears to be an Ada string type. */
9424 ada_is_string_type (struct type
*type
)
9426 type
= ada_check_typedef (type
);
9428 && TYPE_CODE (type
) != TYPE_CODE_PTR
9429 && (ada_is_simple_array_type (type
)
9430 || ada_is_array_descriptor_type (type
))
9431 && ada_array_arity (type
) == 1)
9433 struct type
*elttype
= ada_array_element_type (type
, 1);
9435 return ada_is_character_type (elttype
);
9441 /* The compiler sometimes provides a parallel XVS type for a given
9442 PAD type. Normally, it is safe to follow the PAD type directly,
9443 but older versions of the compiler have a bug that causes the offset
9444 of its "F" field to be wrong. Following that field in that case
9445 would lead to incorrect results, but this can be worked around
9446 by ignoring the PAD type and using the associated XVS type instead.
9448 Set to True if the debugger should trust the contents of PAD types.
9449 Otherwise, ignore the PAD type if there is a parallel XVS type. */
9450 static int trust_pad_over_xvs
= 1;
9452 /* True if TYPE is a struct type introduced by the compiler to force the
9453 alignment of a value. Such types have a single field with a
9454 distinctive name. */
9457 ada_is_aligner_type (struct type
*type
)
9459 type
= ada_check_typedef (type
);
9461 if (!trust_pad_over_xvs
&& ada_find_parallel_type (type
, "___XVS") != NULL
)
9464 return (TYPE_CODE (type
) == TYPE_CODE_STRUCT
9465 && TYPE_NFIELDS (type
) == 1
9466 && strcmp (TYPE_FIELD_NAME (type
, 0), "F") == 0);
9469 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
9470 the parallel type. */
9473 ada_get_base_type (struct type
*raw_type
)
9475 struct type
*real_type_namer
;
9476 struct type
*raw_real_type
;
9478 if (raw_type
== NULL
|| TYPE_CODE (raw_type
) != TYPE_CODE_STRUCT
)
9481 if (ada_is_aligner_type (raw_type
))
9482 /* The encoding specifies that we should always use the aligner type.
9483 So, even if this aligner type has an associated XVS type, we should
9486 According to the compiler gurus, an XVS type parallel to an aligner
9487 type may exist because of a stabs limitation. In stabs, aligner
9488 types are empty because the field has a variable-sized type, and
9489 thus cannot actually be used as an aligner type. As a result,
9490 we need the associated parallel XVS type to decode the type.
9491 Since the policy in the compiler is to not change the internal
9492 representation based on the debugging info format, we sometimes
9493 end up having a redundant XVS type parallel to the aligner type. */
9496 real_type_namer
= ada_find_parallel_type (raw_type
, "___XVS");
9497 if (real_type_namer
== NULL
9498 || TYPE_CODE (real_type_namer
) != TYPE_CODE_STRUCT
9499 || TYPE_NFIELDS (real_type_namer
) != 1)
9502 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer
, 0)) != TYPE_CODE_REF
)
9504 /* This is an older encoding form where the base type needs to be
9505 looked up by name. We prefer the newer enconding because it is
9507 raw_real_type
= ada_find_any_type (TYPE_FIELD_NAME (real_type_namer
, 0));
9508 if (raw_real_type
== NULL
)
9511 return raw_real_type
;
9514 /* The field in our XVS type is a reference to the base type. */
9515 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer
, 0));
9518 /* The type of value designated by TYPE, with all aligners removed. */
9521 ada_aligned_type (struct type
*type
)
9523 if (ada_is_aligner_type (type
))
9524 return ada_aligned_type (TYPE_FIELD_TYPE (type
, 0));
9526 return ada_get_base_type (type
);
9530 /* The address of the aligned value in an object at address VALADDR
9531 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
9534 ada_aligned_value_addr (struct type
*type
, const gdb_byte
*valaddr
)
9536 if (ada_is_aligner_type (type
))
9537 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type
, 0),
9539 TYPE_FIELD_BITPOS (type
,
9540 0) / TARGET_CHAR_BIT
);
9547 /* The printed representation of an enumeration literal with encoded
9548 name NAME. The value is good to the next call of ada_enum_name. */
9550 ada_enum_name (const char *name
)
9552 static char *result
;
9553 static size_t result_len
= 0;
9556 /* First, unqualify the enumeration name:
9557 1. Search for the last '.' character. If we find one, then skip
9558 all the preceding characters, the unqualified name starts
9559 right after that dot.
9560 2. Otherwise, we may be debugging on a target where the compiler
9561 translates dots into "__". Search forward for double underscores,
9562 but stop searching when we hit an overloading suffix, which is
9563 of the form "__" followed by digits. */
9565 tmp
= strrchr (name
, '.');
9570 while ((tmp
= strstr (name
, "__")) != NULL
)
9572 if (isdigit (tmp
[2]))
9583 if (name
[1] == 'U' || name
[1] == 'W')
9585 if (sscanf (name
+ 2, "%x", &v
) != 1)
9591 GROW_VECT (result
, result_len
, 16);
9592 if (isascii (v
) && isprint (v
))
9593 xsnprintf (result
, result_len
, "'%c'", v
);
9594 else if (name
[1] == 'U')
9595 xsnprintf (result
, result_len
, "[\"%02x\"]", v
);
9597 xsnprintf (result
, result_len
, "[\"%04x\"]", v
);
9603 tmp
= strstr (name
, "__");
9605 tmp
= strstr (name
, "$");
9608 GROW_VECT (result
, result_len
, tmp
- name
+ 1);
9609 strncpy (result
, name
, tmp
- name
);
9610 result
[tmp
- name
] = '\0';
9618 /* Evaluate the subexpression of EXP starting at *POS as for
9619 evaluate_type, updating *POS to point just past the evaluated
9622 static struct value
*
9623 evaluate_subexp_type (struct expression
*exp
, int *pos
)
9625 return evaluate_subexp (NULL_TYPE
, exp
, pos
, EVAL_AVOID_SIDE_EFFECTS
);
9628 /* If VAL is wrapped in an aligner or subtype wrapper, return the
9631 static struct value
*
9632 unwrap_value (struct value
*val
)
9634 struct type
*type
= ada_check_typedef (value_type (val
));
9636 if (ada_is_aligner_type (type
))
9638 struct value
*v
= ada_value_struct_elt (val
, "F", 0);
9639 struct type
*val_type
= ada_check_typedef (value_type (v
));
9641 if (ada_type_name (val_type
) == NULL
)
9642 TYPE_NAME (val_type
) = ada_type_name (type
);
9644 return unwrap_value (v
);
9648 struct type
*raw_real_type
=
9649 ada_check_typedef (ada_get_base_type (type
));
9651 /* If there is no parallel XVS or XVE type, then the value is
9652 already unwrapped. Return it without further modification. */
9653 if ((type
== raw_real_type
)
9654 && ada_find_parallel_type (type
, "___XVE") == NULL
)
9658 coerce_unspec_val_to_type
9659 (val
, ada_to_fixed_type (raw_real_type
, 0,
9660 value_address (val
),
9665 static struct value
*
9666 cast_from_fixed (struct type
*type
, struct value
*arg
)
9668 struct value
*scale
= ada_scaling_factor (value_type (arg
));
9669 arg
= value_cast (value_type (scale
), arg
);
9671 arg
= value_binop (arg
, scale
, BINOP_MUL
);
9672 return value_cast (type
, arg
);
9675 static struct value
*
9676 cast_to_fixed (struct type
*type
, struct value
*arg
)
9678 if (type
== value_type (arg
))
9681 struct value
*scale
= ada_scaling_factor (type
);
9682 if (ada_is_fixed_point_type (value_type (arg
)))
9683 arg
= cast_from_fixed (value_type (scale
), arg
);
9685 arg
= value_cast (value_type (scale
), arg
);
9687 arg
= value_binop (arg
, scale
, BINOP_DIV
);
9688 return value_cast (type
, arg
);
9691 /* Given two array types T1 and T2, return nonzero iff both arrays
9692 contain the same number of elements. */
9695 ada_same_array_size_p (struct type
*t1
, struct type
*t2
)
9697 LONGEST lo1
, hi1
, lo2
, hi2
;
9699 /* Get the array bounds in order to verify that the size of
9700 the two arrays match. */
9701 if (!get_array_bounds (t1
, &lo1
, &hi1
)
9702 || !get_array_bounds (t2
, &lo2
, &hi2
))
9703 error (_("unable to determine array bounds"));
9705 /* To make things easier for size comparison, normalize a bit
9706 the case of empty arrays by making sure that the difference
9707 between upper bound and lower bound is always -1. */
9713 return (hi1
- lo1
== hi2
- lo2
);
9716 /* Assuming that VAL is an array of integrals, and TYPE represents
9717 an array with the same number of elements, but with wider integral
9718 elements, return an array "casted" to TYPE. In practice, this
9719 means that the returned array is built by casting each element
9720 of the original array into TYPE's (wider) element type. */
9722 static struct value
*
9723 ada_promote_array_of_integrals (struct type
*type
, struct value
*val
)
9725 struct type
*elt_type
= TYPE_TARGET_TYPE (type
);
9730 /* Verify that both val and type are arrays of scalars, and
9731 that the size of val's elements is smaller than the size
9732 of type's element. */
9733 gdb_assert (TYPE_CODE (type
) == TYPE_CODE_ARRAY
);
9734 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type
)));
9735 gdb_assert (TYPE_CODE (value_type (val
)) == TYPE_CODE_ARRAY
);
9736 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val
))));
9737 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type
))
9738 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val
))));
9740 if (!get_array_bounds (type
, &lo
, &hi
))
9741 error (_("unable to determine array bounds"));
9743 res
= allocate_value (type
);
9745 /* Promote each array element. */
9746 for (i
= 0; i
< hi
- lo
+ 1; i
++)
9748 struct value
*elt
= value_cast (elt_type
, value_subscript (val
, lo
+ i
));
9750 memcpy (value_contents_writeable (res
) + (i
* TYPE_LENGTH (elt_type
)),
9751 value_contents_all (elt
), TYPE_LENGTH (elt_type
));
9757 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9758 return the converted value. */
9760 static struct value
*
9761 coerce_for_assign (struct type
*type
, struct value
*val
)
9763 struct type
*type2
= value_type (val
);
9768 type2
= ada_check_typedef (type2
);
9769 type
= ada_check_typedef (type
);
9771 if (TYPE_CODE (type2
) == TYPE_CODE_PTR
9772 && TYPE_CODE (type
) == TYPE_CODE_ARRAY
)
9774 val
= ada_value_ind (val
);
9775 type2
= value_type (val
);
9778 if (TYPE_CODE (type2
) == TYPE_CODE_ARRAY
9779 && TYPE_CODE (type
) == TYPE_CODE_ARRAY
)
9781 if (!ada_same_array_size_p (type
, type2
))
9782 error (_("cannot assign arrays of different length"));
9784 if (is_integral_type (TYPE_TARGET_TYPE (type
))
9785 && is_integral_type (TYPE_TARGET_TYPE (type2
))
9786 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2
))
9787 < TYPE_LENGTH (TYPE_TARGET_TYPE (type
)))
9789 /* Allow implicit promotion of the array elements to
9791 return ada_promote_array_of_integrals (type
, val
);
9794 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2
))
9795 != TYPE_LENGTH (TYPE_TARGET_TYPE (type
)))
9796 error (_("Incompatible types in assignment"));
9797 deprecated_set_value_type (val
, type
);
9802 static struct value
*
9803 ada_value_binop (struct value
*arg1
, struct value
*arg2
, enum exp_opcode op
)
9806 struct type
*type1
, *type2
;
9809 arg1
= coerce_ref (arg1
);
9810 arg2
= coerce_ref (arg2
);
9811 type1
= get_base_type (ada_check_typedef (value_type (arg1
)));
9812 type2
= get_base_type (ada_check_typedef (value_type (arg2
)));
9814 if (TYPE_CODE (type1
) != TYPE_CODE_INT
9815 || TYPE_CODE (type2
) != TYPE_CODE_INT
)
9816 return value_binop (arg1
, arg2
, op
);
9825 return value_binop (arg1
, arg2
, op
);
9828 v2
= value_as_long (arg2
);
9830 error (_("second operand of %s must not be zero."), op_string (op
));
9832 if (TYPE_UNSIGNED (type1
) || op
== BINOP_MOD
)
9833 return value_binop (arg1
, arg2
, op
);
9835 v1
= value_as_long (arg1
);
9840 if (!TRUNCATION_TOWARDS_ZERO
&& v1
* (v1
% v2
) < 0)
9841 v
+= v
> 0 ? -1 : 1;
9849 /* Should not reach this point. */
9853 val
= allocate_value (type1
);
9854 store_unsigned_integer (value_contents_raw (val
),
9855 TYPE_LENGTH (value_type (val
)),
9856 gdbarch_byte_order (get_type_arch (type1
)), v
);
9861 ada_value_equal (struct value
*arg1
, struct value
*arg2
)
9863 if (ada_is_direct_array_type (value_type (arg1
))
9864 || ada_is_direct_array_type (value_type (arg2
)))
9866 struct type
*arg1_type
, *arg2_type
;
9868 /* Automatically dereference any array reference before
9869 we attempt to perform the comparison. */
9870 arg1
= ada_coerce_ref (arg1
);
9871 arg2
= ada_coerce_ref (arg2
);
9873 arg1
= ada_coerce_to_simple_array (arg1
);
9874 arg2
= ada_coerce_to_simple_array (arg2
);
9876 arg1_type
= ada_check_typedef (value_type (arg1
));
9877 arg2_type
= ada_check_typedef (value_type (arg2
));
9879 if (TYPE_CODE (arg1_type
) != TYPE_CODE_ARRAY
9880 || TYPE_CODE (arg2_type
) != TYPE_CODE_ARRAY
)
9881 error (_("Attempt to compare array with non-array"));
9882 /* FIXME: The following works only for types whose
9883 representations use all bits (no padding or undefined bits)
9884 and do not have user-defined equality. */
9885 return (TYPE_LENGTH (arg1_type
) == TYPE_LENGTH (arg2_type
)
9886 && memcmp (value_contents (arg1
), value_contents (arg2
),
9887 TYPE_LENGTH (arg1_type
)) == 0);
9889 return value_equal (arg1
, arg2
);
9892 /* Total number of component associations in the aggregate starting at
9893 index PC in EXP. Assumes that index PC is the start of an
9897 num_component_specs (struct expression
*exp
, int pc
)
9901 m
= exp
->elts
[pc
+ 1].longconst
;
9904 for (i
= 0; i
< m
; i
+= 1)
9906 switch (exp
->elts
[pc
].opcode
)
9912 n
+= exp
->elts
[pc
+ 1].longconst
;
9915 ada_evaluate_subexp (NULL
, exp
, &pc
, EVAL_SKIP
);
9920 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
9921 component of LHS (a simple array or a record), updating *POS past
9922 the expression, assuming that LHS is contained in CONTAINER. Does
9923 not modify the inferior's memory, nor does it modify LHS (unless
9924 LHS == CONTAINER). */
9927 assign_component (struct value
*container
, struct value
*lhs
, LONGEST index
,
9928 struct expression
*exp
, int *pos
)
9930 struct value
*mark
= value_mark ();
9932 struct type
*lhs_type
= check_typedef (value_type (lhs
));
9934 if (TYPE_CODE (lhs_type
) == TYPE_CODE_ARRAY
)
9936 struct type
*index_type
= builtin_type (exp
->gdbarch
)->builtin_int
;
9937 struct value
*index_val
= value_from_longest (index_type
, index
);
9939 elt
= unwrap_value (ada_value_subscript (lhs
, 1, &index_val
));
9943 elt
= ada_index_struct_field (index
, lhs
, 0, value_type (lhs
));
9944 elt
= ada_to_fixed_value (elt
);
9947 if (exp
->elts
[*pos
].opcode
== OP_AGGREGATE
)
9948 assign_aggregate (container
, elt
, exp
, pos
, EVAL_NORMAL
);
9950 value_assign_to_component (container
, elt
,
9951 ada_evaluate_subexp (NULL
, exp
, pos
,
9954 value_free_to_mark (mark
);
9957 /* Assuming that LHS represents an lvalue having a record or array
9958 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9959 of that aggregate's value to LHS, advancing *POS past the
9960 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
9961 lvalue containing LHS (possibly LHS itself). Does not modify
9962 the inferior's memory, nor does it modify the contents of
9963 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
9965 static struct value
*
9966 assign_aggregate (struct value
*container
,
9967 struct value
*lhs
, struct expression
*exp
,
9968 int *pos
, enum noside noside
)
9970 struct type
*lhs_type
;
9971 int n
= exp
->elts
[*pos
+1].longconst
;
9972 LONGEST low_index
, high_index
;
9975 int max_indices
, num_indices
;
9979 if (noside
!= EVAL_NORMAL
)
9981 for (i
= 0; i
< n
; i
+= 1)
9982 ada_evaluate_subexp (NULL
, exp
, pos
, noside
);
9986 container
= ada_coerce_ref (container
);
9987 if (ada_is_direct_array_type (value_type (container
)))
9988 container
= ada_coerce_to_simple_array (container
);
9989 lhs
= ada_coerce_ref (lhs
);
9990 if (!deprecated_value_modifiable (lhs
))
9991 error (_("Left operand of assignment is not a modifiable lvalue."));
9993 lhs_type
= check_typedef (value_type (lhs
));
9994 if (ada_is_direct_array_type (lhs_type
))
9996 lhs
= ada_coerce_to_simple_array (lhs
);
9997 lhs_type
= check_typedef (value_type (lhs
));
9998 low_index
= TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type
);
9999 high_index
= TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type
);
10001 else if (TYPE_CODE (lhs_type
) == TYPE_CODE_STRUCT
)
10004 high_index
= num_visible_fields (lhs_type
) - 1;
10007 error (_("Left-hand side must be array or record."));
10009 num_specs
= num_component_specs (exp
, *pos
- 3);
10010 max_indices
= 4 * num_specs
+ 4;
10011 indices
= XALLOCAVEC (LONGEST
, max_indices
);
10012 indices
[0] = indices
[1] = low_index
- 1;
10013 indices
[2] = indices
[3] = high_index
+ 1;
10016 for (i
= 0; i
< n
; i
+= 1)
10018 switch (exp
->elts
[*pos
].opcode
)
10021 aggregate_assign_from_choices (container
, lhs
, exp
, pos
, indices
,
10022 &num_indices
, max_indices
,
10023 low_index
, high_index
);
10025 case OP_POSITIONAL
:
10026 aggregate_assign_positional (container
, lhs
, exp
, pos
, indices
,
10027 &num_indices
, max_indices
,
10028 low_index
, high_index
);
10032 error (_("Misplaced 'others' clause"));
10033 aggregate_assign_others (container
, lhs
, exp
, pos
, indices
,
10034 num_indices
, low_index
, high_index
);
10037 error (_("Internal error: bad aggregate clause"));
10044 /* Assign into the component of LHS indexed by the OP_POSITIONAL
10045 construct at *POS, updating *POS past the construct, given that
10046 the positions are relative to lower bound LOW, where HIGH is the
10047 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
10048 updating *NUM_INDICES as needed. CONTAINER is as for
10049 assign_aggregate. */
10051 aggregate_assign_positional (struct value
*container
,
10052 struct value
*lhs
, struct expression
*exp
,
10053 int *pos
, LONGEST
*indices
, int *num_indices
,
10054 int max_indices
, LONGEST low
, LONGEST high
)
10056 LONGEST ind
= longest_to_int (exp
->elts
[*pos
+ 1].longconst
) + low
;
10058 if (ind
- 1 == high
)
10059 warning (_("Extra components in aggregate ignored."));
10062 add_component_interval (ind
, ind
, indices
, num_indices
, max_indices
);
10064 assign_component (container
, lhs
, ind
, exp
, pos
);
10067 ada_evaluate_subexp (NULL
, exp
, pos
, EVAL_SKIP
);
10070 /* Assign into the components of LHS indexed by the OP_CHOICES
10071 construct at *POS, updating *POS past the construct, given that
10072 the allowable indices are LOW..HIGH. Record the indices assigned
10073 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
10074 needed. CONTAINER is as for assign_aggregate. */
10076 aggregate_assign_from_choices (struct value
*container
,
10077 struct value
*lhs
, struct expression
*exp
,
10078 int *pos
, LONGEST
*indices
, int *num_indices
,
10079 int max_indices
, LONGEST low
, LONGEST high
)
10082 int n_choices
= longest_to_int (exp
->elts
[*pos
+1].longconst
);
10083 int choice_pos
, expr_pc
;
10084 int is_array
= ada_is_direct_array_type (value_type (lhs
));
10086 choice_pos
= *pos
+= 3;
10088 for (j
= 0; j
< n_choices
; j
+= 1)
10089 ada_evaluate_subexp (NULL
, exp
, pos
, EVAL_SKIP
);
10091 ada_evaluate_subexp (NULL
, exp
, pos
, EVAL_SKIP
);
10093 for (j
= 0; j
< n_choices
; j
+= 1)
10095 LONGEST lower
, upper
;
10096 enum exp_opcode op
= exp
->elts
[choice_pos
].opcode
;
10098 if (op
== OP_DISCRETE_RANGE
)
10101 lower
= value_as_long (ada_evaluate_subexp (NULL
, exp
, pos
,
10103 upper
= value_as_long (ada_evaluate_subexp (NULL
, exp
, pos
,
10108 lower
= value_as_long (ada_evaluate_subexp (NULL
, exp
, &choice_pos
,
10120 name
= &exp
->elts
[choice_pos
+ 2].string
;
10123 name
= SYMBOL_NATURAL_NAME (exp
->elts
[choice_pos
+ 2].symbol
);
10126 error (_("Invalid record component association."));
10128 ada_evaluate_subexp (NULL
, exp
, &choice_pos
, EVAL_SKIP
);
10130 if (! find_struct_field (name
, value_type (lhs
), 0,
10131 NULL
, NULL
, NULL
, NULL
, &ind
))
10132 error (_("Unknown component name: %s."), name
);
10133 lower
= upper
= ind
;
10136 if (lower
<= upper
&& (lower
< low
|| upper
> high
))
10137 error (_("Index in component association out of bounds."));
10139 add_component_interval (lower
, upper
, indices
, num_indices
,
10141 while (lower
<= upper
)
10146 assign_component (container
, lhs
, lower
, exp
, &pos1
);
10152 /* Assign the value of the expression in the OP_OTHERS construct in
10153 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
10154 have not been previously assigned. The index intervals already assigned
10155 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
10156 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
10158 aggregate_assign_others (struct value
*container
,
10159 struct value
*lhs
, struct expression
*exp
,
10160 int *pos
, LONGEST
*indices
, int num_indices
,
10161 LONGEST low
, LONGEST high
)
10164 int expr_pc
= *pos
+ 1;
10166 for (i
= 0; i
< num_indices
- 2; i
+= 2)
10170 for (ind
= indices
[i
+ 1] + 1; ind
< indices
[i
+ 2]; ind
+= 1)
10174 localpos
= expr_pc
;
10175 assign_component (container
, lhs
, ind
, exp
, &localpos
);
10178 ada_evaluate_subexp (NULL
, exp
, pos
, EVAL_SKIP
);
10181 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
10182 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
10183 modifying *SIZE as needed. It is an error if *SIZE exceeds
10184 MAX_SIZE. The resulting intervals do not overlap. */
10186 add_component_interval (LONGEST low
, LONGEST high
,
10187 LONGEST
* indices
, int *size
, int max_size
)
10191 for (i
= 0; i
< *size
; i
+= 2) {
10192 if (high
>= indices
[i
] && low
<= indices
[i
+ 1])
10196 for (kh
= i
+ 2; kh
< *size
; kh
+= 2)
10197 if (high
< indices
[kh
])
10199 if (low
< indices
[i
])
10201 indices
[i
+ 1] = indices
[kh
- 1];
10202 if (high
> indices
[i
+ 1])
10203 indices
[i
+ 1] = high
;
10204 memcpy (indices
+ i
+ 2, indices
+ kh
, *size
- kh
);
10205 *size
-= kh
- i
- 2;
10208 else if (high
< indices
[i
])
10212 if (*size
== max_size
)
10213 error (_("Internal error: miscounted aggregate components."));
10215 for (j
= *size
-1; j
>= i
+2; j
-= 1)
10216 indices
[j
] = indices
[j
- 2];
10218 indices
[i
+ 1] = high
;
10221 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
10224 static struct value
*
10225 ada_value_cast (struct type
*type
, struct value
*arg2
)
10227 if (type
== ada_check_typedef (value_type (arg2
)))
10230 if (ada_is_fixed_point_type (type
))
10231 return cast_to_fixed (type
, arg2
);
10233 if (ada_is_fixed_point_type (value_type (arg2
)))
10234 return cast_from_fixed (type
, arg2
);
10236 return value_cast (type
, arg2
);
10239 /* Evaluating Ada expressions, and printing their result.
10240 ------------------------------------------------------
10245 We usually evaluate an Ada expression in order to print its value.
10246 We also evaluate an expression in order to print its type, which
10247 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
10248 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
10249 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
10250 the evaluation compared to the EVAL_NORMAL, but is otherwise very
10253 Evaluating expressions is a little more complicated for Ada entities
10254 than it is for entities in languages such as C. The main reason for
10255 this is that Ada provides types whose definition might be dynamic.
10256 One example of such types is variant records. Or another example
10257 would be an array whose bounds can only be known at run time.
10259 The following description is a general guide as to what should be
10260 done (and what should NOT be done) in order to evaluate an expression
10261 involving such types, and when. This does not cover how the semantic
10262 information is encoded by GNAT as this is covered separatly. For the
10263 document used as the reference for the GNAT encoding, see exp_dbug.ads
10264 in the GNAT sources.
10266 Ideally, we should embed each part of this description next to its
10267 associated code. Unfortunately, the amount of code is so vast right
10268 now that it's hard to see whether the code handling a particular
10269 situation might be duplicated or not. One day, when the code is
10270 cleaned up, this guide might become redundant with the comments
10271 inserted in the code, and we might want to remove it.
10273 2. ``Fixing'' an Entity, the Simple Case:
10274 -----------------------------------------
10276 When evaluating Ada expressions, the tricky issue is that they may
10277 reference entities whose type contents and size are not statically
10278 known. Consider for instance a variant record:
10280 type Rec (Empty : Boolean := True) is record
10283 when False => Value : Integer;
10286 Yes : Rec := (Empty => False, Value => 1);
10287 No : Rec := (empty => True);
10289 The size and contents of that record depends on the value of the
10290 descriminant (Rec.Empty). At this point, neither the debugging
10291 information nor the associated type structure in GDB are able to
10292 express such dynamic types. So what the debugger does is to create
10293 "fixed" versions of the type that applies to the specific object.
10294 We also informally refer to this opperation as "fixing" an object,
10295 which means creating its associated fixed type.
10297 Example: when printing the value of variable "Yes" above, its fixed
10298 type would look like this:
10305 On the other hand, if we printed the value of "No", its fixed type
10312 Things become a little more complicated when trying to fix an entity
10313 with a dynamic type that directly contains another dynamic type,
10314 such as an array of variant records, for instance. There are
10315 two possible cases: Arrays, and records.
10317 3. ``Fixing'' Arrays:
10318 ---------------------
10320 The type structure in GDB describes an array in terms of its bounds,
10321 and the type of its elements. By design, all elements in the array
10322 have the same type and we cannot represent an array of variant elements
10323 using the current type structure in GDB. When fixing an array,
10324 we cannot fix the array element, as we would potentially need one
10325 fixed type per element of the array. As a result, the best we can do
10326 when fixing an array is to produce an array whose bounds and size
10327 are correct (allowing us to read it from memory), but without having
10328 touched its element type. Fixing each element will be done later,
10329 when (if) necessary.
10331 Arrays are a little simpler to handle than records, because the same
10332 amount of memory is allocated for each element of the array, even if
10333 the amount of space actually used by each element differs from element
10334 to element. Consider for instance the following array of type Rec:
10336 type Rec_Array is array (1 .. 2) of Rec;
10338 The actual amount of memory occupied by each element might be different
10339 from element to element, depending on the value of their discriminant.
10340 But the amount of space reserved for each element in the array remains
10341 fixed regardless. So we simply need to compute that size using
10342 the debugging information available, from which we can then determine
10343 the array size (we multiply the number of elements of the array by
10344 the size of each element).
10346 The simplest case is when we have an array of a constrained element
10347 type. For instance, consider the following type declarations:
10349 type Bounded_String (Max_Size : Integer) is
10351 Buffer : String (1 .. Max_Size);
10353 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
10355 In this case, the compiler describes the array as an array of
10356 variable-size elements (identified by its XVS suffix) for which
10357 the size can be read in the parallel XVZ variable.
10359 In the case of an array of an unconstrained element type, the compiler
10360 wraps the array element inside a private PAD type. This type should not
10361 be shown to the user, and must be "unwrap"'ed before printing. Note
10362 that we also use the adjective "aligner" in our code to designate
10363 these wrapper types.
10365 In some cases, the size allocated for each element is statically
10366 known. In that case, the PAD type already has the correct size,
10367 and the array element should remain unfixed.
10369 But there are cases when this size is not statically known.
10370 For instance, assuming that "Five" is an integer variable:
10372 type Dynamic is array (1 .. Five) of Integer;
10373 type Wrapper (Has_Length : Boolean := False) is record
10376 when True => Length : Integer;
10377 when False => null;
10380 type Wrapper_Array is array (1 .. 2) of Wrapper;
10382 Hello : Wrapper_Array := (others => (Has_Length => True,
10383 Data => (others => 17),
10387 The debugging info would describe variable Hello as being an
10388 array of a PAD type. The size of that PAD type is not statically
10389 known, but can be determined using a parallel XVZ variable.
10390 In that case, a copy of the PAD type with the correct size should
10391 be used for the fixed array.
10393 3. ``Fixing'' record type objects:
10394 ----------------------------------
10396 Things are slightly different from arrays in the case of dynamic
10397 record types. In this case, in order to compute the associated
10398 fixed type, we need to determine the size and offset of each of
10399 its components. This, in turn, requires us to compute the fixed
10400 type of each of these components.
10402 Consider for instance the example:
10404 type Bounded_String (Max_Size : Natural) is record
10405 Str : String (1 .. Max_Size);
10408 My_String : Bounded_String (Max_Size => 10);
10410 In that case, the position of field "Length" depends on the size
10411 of field Str, which itself depends on the value of the Max_Size
10412 discriminant. In order to fix the type of variable My_String,
10413 we need to fix the type of field Str. Therefore, fixing a variant
10414 record requires us to fix each of its components.
10416 However, if a component does not have a dynamic size, the component
10417 should not be fixed. In particular, fields that use a PAD type
10418 should not fixed. Here is an example where this might happen
10419 (assuming type Rec above):
10421 type Container (Big : Boolean) is record
10425 when True => Another : Integer;
10426 when False => null;
10429 My_Container : Container := (Big => False,
10430 First => (Empty => True),
10433 In that example, the compiler creates a PAD type for component First,
10434 whose size is constant, and then positions the component After just
10435 right after it. The offset of component After is therefore constant
10438 The debugger computes the position of each field based on an algorithm
10439 that uses, among other things, the actual position and size of the field
10440 preceding it. Let's now imagine that the user is trying to print
10441 the value of My_Container. If the type fixing was recursive, we would
10442 end up computing the offset of field After based on the size of the
10443 fixed version of field First. And since in our example First has
10444 only one actual field, the size of the fixed type is actually smaller
10445 than the amount of space allocated to that field, and thus we would
10446 compute the wrong offset of field After.
10448 To make things more complicated, we need to watch out for dynamic
10449 components of variant records (identified by the ___XVL suffix in
10450 the component name). Even if the target type is a PAD type, the size
10451 of that type might not be statically known. So the PAD type needs
10452 to be unwrapped and the resulting type needs to be fixed. Otherwise,
10453 we might end up with the wrong size for our component. This can be
10454 observed with the following type declarations:
10456 type Octal is new Integer range 0 .. 7;
10457 type Octal_Array is array (Positive range <>) of Octal;
10458 pragma Pack (Octal_Array);
10460 type Octal_Buffer (Size : Positive) is record
10461 Buffer : Octal_Array (1 .. Size);
10465 In that case, Buffer is a PAD type whose size is unset and needs
10466 to be computed by fixing the unwrapped type.
10468 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
10469 ----------------------------------------------------------
10471 Lastly, when should the sub-elements of an entity that remained unfixed
10472 thus far, be actually fixed?
10474 The answer is: Only when referencing that element. For instance
10475 when selecting one component of a record, this specific component
10476 should be fixed at that point in time. Or when printing the value
10477 of a record, each component should be fixed before its value gets
10478 printed. Similarly for arrays, the element of the array should be
10479 fixed when printing each element of the array, or when extracting
10480 one element out of that array. On the other hand, fixing should
10481 not be performed on the elements when taking a slice of an array!
10483 Note that one of the side effects of miscomputing the offset and
10484 size of each field is that we end up also miscomputing the size
10485 of the containing type. This can have adverse results when computing
10486 the value of an entity. GDB fetches the value of an entity based
10487 on the size of its type, and thus a wrong size causes GDB to fetch
10488 the wrong amount of memory. In the case where the computed size is
10489 too small, GDB fetches too little data to print the value of our
10490 entity. Results in this case are unpredictable, as we usually read
10491 past the buffer containing the data =:-o. */
10493 /* Evaluate a subexpression of EXP, at index *POS, and return a value
10494 for that subexpression cast to TO_TYPE. Advance *POS over the
10498 ada_evaluate_subexp_for_cast (expression
*exp
, int *pos
,
10499 enum noside noside
, struct type
*to_type
)
10503 if (exp
->elts
[pc
].opcode
== OP_VAR_MSYM_VALUE
10504 || exp
->elts
[pc
].opcode
== OP_VAR_VALUE
)
10509 if (exp
->elts
[pc
].opcode
== OP_VAR_MSYM_VALUE
)
10511 if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
10512 return value_zero (to_type
, not_lval
);
10514 val
= evaluate_var_msym_value (noside
,
10515 exp
->elts
[pc
+ 1].objfile
,
10516 exp
->elts
[pc
+ 2].msymbol
);
10519 val
= evaluate_var_value (noside
,
10520 exp
->elts
[pc
+ 1].block
,
10521 exp
->elts
[pc
+ 2].symbol
);
10523 if (noside
== EVAL_SKIP
)
10524 return eval_skip_value (exp
);
10526 val
= ada_value_cast (to_type
, val
);
10528 /* Follow the Ada language semantics that do not allow taking
10529 an address of the result of a cast (view conversion in Ada). */
10530 if (VALUE_LVAL (val
) == lval_memory
)
10532 if (value_lazy (val
))
10533 value_fetch_lazy (val
);
10534 VALUE_LVAL (val
) = not_lval
;
10539 value
*val
= evaluate_subexp (to_type
, exp
, pos
, noside
);
10540 if (noside
== EVAL_SKIP
)
10541 return eval_skip_value (exp
);
10542 return ada_value_cast (to_type
, val
);
10545 /* Implement the evaluate_exp routine in the exp_descriptor structure
10546 for the Ada language. */
10548 static struct value
*
10549 ada_evaluate_subexp (struct type
*expect_type
, struct expression
*exp
,
10550 int *pos
, enum noside noside
)
10552 enum exp_opcode op
;
10556 struct value
*arg1
= NULL
, *arg2
= NULL
, *arg3
;
10559 struct value
**argvec
;
10563 op
= exp
->elts
[pc
].opcode
;
10569 arg1
= evaluate_subexp_standard (expect_type
, exp
, pos
, noside
);
10571 if (noside
== EVAL_NORMAL
)
10572 arg1
= unwrap_value (arg1
);
10574 /* If evaluating an OP_FLOAT and an EXPECT_TYPE was provided,
10575 then we need to perform the conversion manually, because
10576 evaluate_subexp_standard doesn't do it. This conversion is
10577 necessary in Ada because the different kinds of float/fixed
10578 types in Ada have different representations.
10580 Similarly, we need to perform the conversion from OP_LONG
10582 if ((op
== OP_FLOAT
|| op
== OP_LONG
) && expect_type
!= NULL
)
10583 arg1
= ada_value_cast (expect_type
, arg1
);
10589 struct value
*result
;
10592 result
= evaluate_subexp_standard (expect_type
, exp
, pos
, noside
);
10593 /* The result type will have code OP_STRING, bashed there from
10594 OP_ARRAY. Bash it back. */
10595 if (TYPE_CODE (value_type (result
)) == TYPE_CODE_STRING
)
10596 TYPE_CODE (value_type (result
)) = TYPE_CODE_ARRAY
;
10602 type
= exp
->elts
[pc
+ 1].type
;
10603 return ada_evaluate_subexp_for_cast (exp
, pos
, noside
, type
);
10607 type
= exp
->elts
[pc
+ 1].type
;
10608 return ada_evaluate_subexp (type
, exp
, pos
, noside
);
10611 arg1
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
10612 if (exp
->elts
[*pos
].opcode
== OP_AGGREGATE
)
10614 arg1
= assign_aggregate (arg1
, arg1
, exp
, pos
, noside
);
10615 if (noside
== EVAL_SKIP
|| noside
== EVAL_AVOID_SIDE_EFFECTS
)
10617 return ada_value_assign (arg1
, arg1
);
10619 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
10620 except if the lhs of our assignment is a convenience variable.
10621 In the case of assigning to a convenience variable, the lhs
10622 should be exactly the result of the evaluation of the rhs. */
10623 type
= value_type (arg1
);
10624 if (VALUE_LVAL (arg1
) == lval_internalvar
)
10626 arg2
= evaluate_subexp (type
, exp
, pos
, noside
);
10627 if (noside
== EVAL_SKIP
|| noside
== EVAL_AVOID_SIDE_EFFECTS
)
10629 if (ada_is_fixed_point_type (value_type (arg1
)))
10630 arg2
= cast_to_fixed (value_type (arg1
), arg2
);
10631 else if (ada_is_fixed_point_type (value_type (arg2
)))
10633 (_("Fixed-point values must be assigned to fixed-point variables"));
10635 arg2
= coerce_for_assign (value_type (arg1
), arg2
);
10636 return ada_value_assign (arg1
, arg2
);
10639 arg1
= evaluate_subexp_with_coercion (exp
, pos
, noside
);
10640 arg2
= evaluate_subexp_with_coercion (exp
, pos
, noside
);
10641 if (noside
== EVAL_SKIP
)
10643 if (TYPE_CODE (value_type (arg1
)) == TYPE_CODE_PTR
)
10644 return (value_from_longest
10645 (value_type (arg1
),
10646 value_as_long (arg1
) + value_as_long (arg2
)));
10647 if (TYPE_CODE (value_type (arg2
)) == TYPE_CODE_PTR
)
10648 return (value_from_longest
10649 (value_type (arg2
),
10650 value_as_long (arg1
) + value_as_long (arg2
)));
10651 if ((ada_is_fixed_point_type (value_type (arg1
))
10652 || ada_is_fixed_point_type (value_type (arg2
)))
10653 && value_type (arg1
) != value_type (arg2
))
10654 error (_("Operands of fixed-point addition must have the same type"));
10655 /* Do the addition, and cast the result to the type of the first
10656 argument. We cannot cast the result to a reference type, so if
10657 ARG1 is a reference type, find its underlying type. */
10658 type
= value_type (arg1
);
10659 while (TYPE_CODE (type
) == TYPE_CODE_REF
)
10660 type
= TYPE_TARGET_TYPE (type
);
10661 binop_promote (exp
->language_defn
, exp
->gdbarch
, &arg1
, &arg2
);
10662 return value_cast (type
, value_binop (arg1
, arg2
, BINOP_ADD
));
10665 arg1
= evaluate_subexp_with_coercion (exp
, pos
, noside
);
10666 arg2
= evaluate_subexp_with_coercion (exp
, pos
, noside
);
10667 if (noside
== EVAL_SKIP
)
10669 if (TYPE_CODE (value_type (arg1
)) == TYPE_CODE_PTR
)
10670 return (value_from_longest
10671 (value_type (arg1
),
10672 value_as_long (arg1
) - value_as_long (arg2
)));
10673 if (TYPE_CODE (value_type (arg2
)) == TYPE_CODE_PTR
)
10674 return (value_from_longest
10675 (value_type (arg2
),
10676 value_as_long (arg1
) - value_as_long (arg2
)));
10677 if ((ada_is_fixed_point_type (value_type (arg1
))
10678 || ada_is_fixed_point_type (value_type (arg2
)))
10679 && value_type (arg1
) != value_type (arg2
))
10680 error (_("Operands of fixed-point subtraction "
10681 "must have the same type"));
10682 /* Do the substraction, and cast the result to the type of the first
10683 argument. We cannot cast the result to a reference type, so if
10684 ARG1 is a reference type, find its underlying type. */
10685 type
= value_type (arg1
);
10686 while (TYPE_CODE (type
) == TYPE_CODE_REF
)
10687 type
= TYPE_TARGET_TYPE (type
);
10688 binop_promote (exp
->language_defn
, exp
->gdbarch
, &arg1
, &arg2
);
10689 return value_cast (type
, value_binop (arg1
, arg2
, BINOP_SUB
));
10695 arg1
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
10696 arg2
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
10697 if (noside
== EVAL_SKIP
)
10699 else if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
10701 binop_promote (exp
->language_defn
, exp
->gdbarch
, &arg1
, &arg2
);
10702 return value_zero (value_type (arg1
), not_lval
);
10706 type
= builtin_type (exp
->gdbarch
)->builtin_double
;
10707 if (ada_is_fixed_point_type (value_type (arg1
)))
10708 arg1
= cast_from_fixed (type
, arg1
);
10709 if (ada_is_fixed_point_type (value_type (arg2
)))
10710 arg2
= cast_from_fixed (type
, arg2
);
10711 binop_promote (exp
->language_defn
, exp
->gdbarch
, &arg1
, &arg2
);
10712 return ada_value_binop (arg1
, arg2
, op
);
10716 case BINOP_NOTEQUAL
:
10717 arg1
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
10718 arg2
= evaluate_subexp (value_type (arg1
), exp
, pos
, noside
);
10719 if (noside
== EVAL_SKIP
)
10721 if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
10725 binop_promote (exp
->language_defn
, exp
->gdbarch
, &arg1
, &arg2
);
10726 tem
= ada_value_equal (arg1
, arg2
);
10728 if (op
== BINOP_NOTEQUAL
)
10730 type
= language_bool_type (exp
->language_defn
, exp
->gdbarch
);
10731 return value_from_longest (type
, (LONGEST
) tem
);
10734 arg1
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
10735 if (noside
== EVAL_SKIP
)
10737 else if (ada_is_fixed_point_type (value_type (arg1
)))
10738 return value_cast (value_type (arg1
), value_neg (arg1
));
10741 unop_promote (exp
->language_defn
, exp
->gdbarch
, &arg1
);
10742 return value_neg (arg1
);
10745 case BINOP_LOGICAL_AND
:
10746 case BINOP_LOGICAL_OR
:
10747 case UNOP_LOGICAL_NOT
:
10752 val
= evaluate_subexp_standard (expect_type
, exp
, pos
, noside
);
10753 type
= language_bool_type (exp
->language_defn
, exp
->gdbarch
);
10754 return value_cast (type
, val
);
10757 case BINOP_BITWISE_AND
:
10758 case BINOP_BITWISE_IOR
:
10759 case BINOP_BITWISE_XOR
:
10763 arg1
= evaluate_subexp (NULL_TYPE
, exp
, pos
, EVAL_AVOID_SIDE_EFFECTS
);
10765 val
= evaluate_subexp_standard (expect_type
, exp
, pos
, noside
);
10767 return value_cast (value_type (arg1
), val
);
10773 if (noside
== EVAL_SKIP
)
10779 if (SYMBOL_DOMAIN (exp
->elts
[pc
+ 2].symbol
) == UNDEF_DOMAIN
)
10780 /* Only encountered when an unresolved symbol occurs in a
10781 context other than a function call, in which case, it is
10783 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10784 SYMBOL_PRINT_NAME (exp
->elts
[pc
+ 2].symbol
));
10786 if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
10788 type
= static_unwrap_type (SYMBOL_TYPE (exp
->elts
[pc
+ 2].symbol
));
10789 /* Check to see if this is a tagged type. We also need to handle
10790 the case where the type is a reference to a tagged type, but
10791 we have to be careful to exclude pointers to tagged types.
10792 The latter should be shown as usual (as a pointer), whereas
10793 a reference should mostly be transparent to the user. */
10794 if (ada_is_tagged_type (type
, 0)
10795 || (TYPE_CODE (type
) == TYPE_CODE_REF
10796 && ada_is_tagged_type (TYPE_TARGET_TYPE (type
), 0)))
10798 /* Tagged types are a little special in the fact that the real
10799 type is dynamic and can only be determined by inspecting the
10800 object's tag. This means that we need to get the object's
10801 value first (EVAL_NORMAL) and then extract the actual object
10804 Note that we cannot skip the final step where we extract
10805 the object type from its tag, because the EVAL_NORMAL phase
10806 results in dynamic components being resolved into fixed ones.
10807 This can cause problems when trying to print the type
10808 description of tagged types whose parent has a dynamic size:
10809 We use the type name of the "_parent" component in order
10810 to print the name of the ancestor type in the type description.
10811 If that component had a dynamic size, the resolution into
10812 a fixed type would result in the loss of that type name,
10813 thus preventing us from printing the name of the ancestor
10814 type in the type description. */
10815 arg1
= evaluate_subexp (NULL_TYPE
, exp
, pos
, EVAL_NORMAL
);
10817 if (TYPE_CODE (type
) != TYPE_CODE_REF
)
10819 struct type
*actual_type
;
10821 actual_type
= type_from_tag (ada_value_tag (arg1
));
10822 if (actual_type
== NULL
)
10823 /* If, for some reason, we were unable to determine
10824 the actual type from the tag, then use the static
10825 approximation that we just computed as a fallback.
10826 This can happen if the debugging information is
10827 incomplete, for instance. */
10828 actual_type
= type
;
10829 return value_zero (actual_type
, not_lval
);
10833 /* In the case of a ref, ada_coerce_ref takes care
10834 of determining the actual type. But the evaluation
10835 should return a ref as it should be valid to ask
10836 for its address; so rebuild a ref after coerce. */
10837 arg1
= ada_coerce_ref (arg1
);
10838 return value_ref (arg1
, TYPE_CODE_REF
);
10842 /* Records and unions for which GNAT encodings have been
10843 generated need to be statically fixed as well.
10844 Otherwise, non-static fixing produces a type where
10845 all dynamic properties are removed, which prevents "ptype"
10846 from being able to completely describe the type.
10847 For instance, a case statement in a variant record would be
10848 replaced by the relevant components based on the actual
10849 value of the discriminants. */
10850 if ((TYPE_CODE (type
) == TYPE_CODE_STRUCT
10851 && dynamic_template_type (type
) != NULL
)
10852 || (TYPE_CODE (type
) == TYPE_CODE_UNION
10853 && ada_find_parallel_type (type
, "___XVU") != NULL
))
10856 return value_zero (to_static_fixed_type (type
), not_lval
);
10860 arg1
= evaluate_subexp_standard (expect_type
, exp
, pos
, noside
);
10861 return ada_to_fixed_value (arg1
);
10866 /* Allocate arg vector, including space for the function to be
10867 called in argvec[0] and a terminating NULL. */
10868 nargs
= longest_to_int (exp
->elts
[pc
+ 1].longconst
);
10869 argvec
= XALLOCAVEC (struct value
*, nargs
+ 2);
10871 if (exp
->elts
[*pos
].opcode
== OP_VAR_VALUE
10872 && SYMBOL_DOMAIN (exp
->elts
[pc
+ 5].symbol
) == UNDEF_DOMAIN
)
10873 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10874 SYMBOL_PRINT_NAME (exp
->elts
[pc
+ 5].symbol
));
10877 for (tem
= 0; tem
<= nargs
; tem
+= 1)
10878 argvec
[tem
] = evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
10881 if (noside
== EVAL_SKIP
)
10885 if (ada_is_constrained_packed_array_type
10886 (desc_base_type (value_type (argvec
[0]))))
10887 argvec
[0] = ada_coerce_to_simple_array (argvec
[0]);
10888 else if (TYPE_CODE (value_type (argvec
[0])) == TYPE_CODE_ARRAY
10889 && TYPE_FIELD_BITSIZE (value_type (argvec
[0]), 0) != 0)
10890 /* This is a packed array that has already been fixed, and
10891 therefore already coerced to a simple array. Nothing further
10894 else if (TYPE_CODE (value_type (argvec
[0])) == TYPE_CODE_REF
)
10896 /* Make sure we dereference references so that all the code below
10897 feels like it's really handling the referenced value. Wrapping
10898 types (for alignment) may be there, so make sure we strip them as
10900 argvec
[0] = ada_to_fixed_value (coerce_ref (argvec
[0]));
10902 else if (TYPE_CODE (value_type (argvec
[0])) == TYPE_CODE_ARRAY
10903 && VALUE_LVAL (argvec
[0]) == lval_memory
)
10904 argvec
[0] = value_addr (argvec
[0]);
10906 type
= ada_check_typedef (value_type (argvec
[0]));
10908 /* Ada allows us to implicitly dereference arrays when subscripting
10909 them. So, if this is an array typedef (encoding use for array
10910 access types encoded as fat pointers), strip it now. */
10911 if (TYPE_CODE (type
) == TYPE_CODE_TYPEDEF
)
10912 type
= ada_typedef_target_type (type
);
10914 if (TYPE_CODE (type
) == TYPE_CODE_PTR
)
10916 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type
))))
10918 case TYPE_CODE_FUNC
:
10919 type
= ada_check_typedef (TYPE_TARGET_TYPE (type
));
10921 case TYPE_CODE_ARRAY
:
10923 case TYPE_CODE_STRUCT
:
10924 if (noside
!= EVAL_AVOID_SIDE_EFFECTS
)
10925 argvec
[0] = ada_value_ind (argvec
[0]);
10926 type
= ada_check_typedef (TYPE_TARGET_TYPE (type
));
10929 error (_("cannot subscript or call something of type `%s'"),
10930 ada_type_name (value_type (argvec
[0])));
10935 switch (TYPE_CODE (type
))
10937 case TYPE_CODE_FUNC
:
10938 if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
10940 if (TYPE_TARGET_TYPE (type
) == NULL
)
10941 error_call_unknown_return_type (NULL
);
10942 return allocate_value (TYPE_TARGET_TYPE (type
));
10944 return call_function_by_hand (argvec
[0], NULL
,
10945 gdb::make_array_view (argvec
+ 1,
10947 case TYPE_CODE_INTERNAL_FUNCTION
:
10948 if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
10949 /* We don't know anything about what the internal
10950 function might return, but we have to return
10952 return value_zero (builtin_type (exp
->gdbarch
)->builtin_int
,
10955 return call_internal_function (exp
->gdbarch
, exp
->language_defn
,
10956 argvec
[0], nargs
, argvec
+ 1);
10958 case TYPE_CODE_STRUCT
:
10962 arity
= ada_array_arity (type
);
10963 type
= ada_array_element_type (type
, nargs
);
10965 error (_("cannot subscript or call a record"));
10966 if (arity
!= nargs
)
10967 error (_("wrong number of subscripts; expecting %d"), arity
);
10968 if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
10969 return value_zero (ada_aligned_type (type
), lval_memory
);
10971 unwrap_value (ada_value_subscript
10972 (argvec
[0], nargs
, argvec
+ 1));
10974 case TYPE_CODE_ARRAY
:
10975 if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
10977 type
= ada_array_element_type (type
, nargs
);
10979 error (_("element type of array unknown"));
10981 return value_zero (ada_aligned_type (type
), lval_memory
);
10984 unwrap_value (ada_value_subscript
10985 (ada_coerce_to_simple_array (argvec
[0]),
10986 nargs
, argvec
+ 1));
10987 case TYPE_CODE_PTR
: /* Pointer to array */
10988 if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
10990 type
= to_fixed_array_type (TYPE_TARGET_TYPE (type
), NULL
, 1);
10991 type
= ada_array_element_type (type
, nargs
);
10993 error (_("element type of array unknown"));
10995 return value_zero (ada_aligned_type (type
), lval_memory
);
10998 unwrap_value (ada_value_ptr_subscript (argvec
[0],
10999 nargs
, argvec
+ 1));
11002 error (_("Attempt to index or call something other than an "
11003 "array or function"));
11008 struct value
*array
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
11009 struct value
*low_bound_val
=
11010 evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
11011 struct value
*high_bound_val
=
11012 evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
11014 LONGEST high_bound
;
11016 low_bound_val
= coerce_ref (low_bound_val
);
11017 high_bound_val
= coerce_ref (high_bound_val
);
11018 low_bound
= value_as_long (low_bound_val
);
11019 high_bound
= value_as_long (high_bound_val
);
11021 if (noside
== EVAL_SKIP
)
11024 /* If this is a reference to an aligner type, then remove all
11026 if (TYPE_CODE (value_type (array
)) == TYPE_CODE_REF
11027 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array
))))
11028 TYPE_TARGET_TYPE (value_type (array
)) =
11029 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array
)));
11031 if (ada_is_constrained_packed_array_type (value_type (array
)))
11032 error (_("cannot slice a packed array"));
11034 /* If this is a reference to an array or an array lvalue,
11035 convert to a pointer. */
11036 if (TYPE_CODE (value_type (array
)) == TYPE_CODE_REF
11037 || (TYPE_CODE (value_type (array
)) == TYPE_CODE_ARRAY
11038 && VALUE_LVAL (array
) == lval_memory
))
11039 array
= value_addr (array
);
11041 if (noside
== EVAL_AVOID_SIDE_EFFECTS
11042 && ada_is_array_descriptor_type (ada_check_typedef
11043 (value_type (array
))))
11044 return empty_array (ada_type_of_array (array
, 0), low_bound
,
11047 array
= ada_coerce_to_simple_array_ptr (array
);
11049 /* If we have more than one level of pointer indirection,
11050 dereference the value until we get only one level. */
11051 while (TYPE_CODE (value_type (array
)) == TYPE_CODE_PTR
11052 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array
)))
11054 array
= value_ind (array
);
11056 /* Make sure we really do have an array type before going further,
11057 to avoid a SEGV when trying to get the index type or the target
11058 type later down the road if the debug info generated by
11059 the compiler is incorrect or incomplete. */
11060 if (!ada_is_simple_array_type (value_type (array
)))
11061 error (_("cannot take slice of non-array"));
11063 if (TYPE_CODE (ada_check_typedef (value_type (array
)))
11066 struct type
*type0
= ada_check_typedef (value_type (array
));
11068 if (high_bound
< low_bound
|| noside
== EVAL_AVOID_SIDE_EFFECTS
)
11069 return empty_array (TYPE_TARGET_TYPE (type0
), low_bound
, high_bound
);
11072 struct type
*arr_type0
=
11073 to_fixed_array_type (TYPE_TARGET_TYPE (type0
), NULL
, 1);
11075 return ada_value_slice_from_ptr (array
, arr_type0
,
11076 longest_to_int (low_bound
),
11077 longest_to_int (high_bound
));
11080 else if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
11082 else if (high_bound
< low_bound
)
11083 return empty_array (value_type (array
), low_bound
, high_bound
);
11085 return ada_value_slice (array
, longest_to_int (low_bound
),
11086 longest_to_int (high_bound
));
11089 case UNOP_IN_RANGE
:
11091 arg1
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
11092 type
= check_typedef (exp
->elts
[pc
+ 1].type
);
11094 if (noside
== EVAL_SKIP
)
11097 switch (TYPE_CODE (type
))
11100 lim_warning (_("Membership test incompletely implemented; "
11101 "always returns true"));
11102 type
= language_bool_type (exp
->language_defn
, exp
->gdbarch
);
11103 return value_from_longest (type
, (LONGEST
) 1);
11105 case TYPE_CODE_RANGE
:
11106 arg2
= value_from_longest (type
, TYPE_LOW_BOUND (type
));
11107 arg3
= value_from_longest (type
, TYPE_HIGH_BOUND (type
));
11108 binop_promote (exp
->language_defn
, exp
->gdbarch
, &arg1
, &arg2
);
11109 binop_promote (exp
->language_defn
, exp
->gdbarch
, &arg1
, &arg3
);
11110 type
= language_bool_type (exp
->language_defn
, exp
->gdbarch
);
11112 value_from_longest (type
,
11113 (value_less (arg1
, arg3
)
11114 || value_equal (arg1
, arg3
))
11115 && (value_less (arg2
, arg1
)
11116 || value_equal (arg2
, arg1
)));
11119 case BINOP_IN_BOUNDS
:
11121 arg1
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
11122 arg2
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
11124 if (noside
== EVAL_SKIP
)
11127 if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
11129 type
= language_bool_type (exp
->language_defn
, exp
->gdbarch
);
11130 return value_zero (type
, not_lval
);
11133 tem
= longest_to_int (exp
->elts
[pc
+ 1].longconst
);
11135 type
= ada_index_type (value_type (arg2
), tem
, "range");
11137 type
= value_type (arg1
);
11139 arg3
= value_from_longest (type
, ada_array_bound (arg2
, tem
, 1));
11140 arg2
= value_from_longest (type
, ada_array_bound (arg2
, tem
, 0));
11142 binop_promote (exp
->language_defn
, exp
->gdbarch
, &arg1
, &arg2
);
11143 binop_promote (exp
->language_defn
, exp
->gdbarch
, &arg1
, &arg3
);
11144 type
= language_bool_type (exp
->language_defn
, exp
->gdbarch
);
11146 value_from_longest (type
,
11147 (value_less (arg1
, arg3
)
11148 || value_equal (arg1
, arg3
))
11149 && (value_less (arg2
, arg1
)
11150 || value_equal (arg2
, arg1
)));
11152 case TERNOP_IN_RANGE
:
11153 arg1
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
11154 arg2
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
11155 arg3
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
11157 if (noside
== EVAL_SKIP
)
11160 binop_promote (exp
->language_defn
, exp
->gdbarch
, &arg1
, &arg2
);
11161 binop_promote (exp
->language_defn
, exp
->gdbarch
, &arg1
, &arg3
);
11162 type
= language_bool_type (exp
->language_defn
, exp
->gdbarch
);
11164 value_from_longest (type
,
11165 (value_less (arg1
, arg3
)
11166 || value_equal (arg1
, arg3
))
11167 && (value_less (arg2
, arg1
)
11168 || value_equal (arg2
, arg1
)));
11172 case OP_ATR_LENGTH
:
11174 struct type
*type_arg
;
11176 if (exp
->elts
[*pos
].opcode
== OP_TYPE
)
11178 evaluate_subexp (NULL_TYPE
, exp
, pos
, EVAL_SKIP
);
11180 type_arg
= check_typedef (exp
->elts
[pc
+ 2].type
);
11184 arg1
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
11188 if (exp
->elts
[*pos
].opcode
!= OP_LONG
)
11189 error (_("Invalid operand to '%s"), ada_attribute_name (op
));
11190 tem
= longest_to_int (exp
->elts
[*pos
+ 2].longconst
);
11193 if (noside
== EVAL_SKIP
)
11196 if (type_arg
== NULL
)
11198 arg1
= ada_coerce_ref (arg1
);
11200 if (ada_is_constrained_packed_array_type (value_type (arg1
)))
11201 arg1
= ada_coerce_to_simple_array (arg1
);
11203 if (op
== OP_ATR_LENGTH
)
11204 type
= builtin_type (exp
->gdbarch
)->builtin_int
;
11207 type
= ada_index_type (value_type (arg1
), tem
,
11208 ada_attribute_name (op
));
11210 type
= builtin_type (exp
->gdbarch
)->builtin_int
;
11213 if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
11214 return allocate_value (type
);
11218 default: /* Should never happen. */
11219 error (_("unexpected attribute encountered"));
11221 return value_from_longest
11222 (type
, ada_array_bound (arg1
, tem
, 0));
11224 return value_from_longest
11225 (type
, ada_array_bound (arg1
, tem
, 1));
11226 case OP_ATR_LENGTH
:
11227 return value_from_longest
11228 (type
, ada_array_length (arg1
, tem
));
11231 else if (discrete_type_p (type_arg
))
11233 struct type
*range_type
;
11234 const char *name
= ada_type_name (type_arg
);
11237 if (name
!= NULL
&& TYPE_CODE (type_arg
) != TYPE_CODE_ENUM
)
11238 range_type
= to_fixed_range_type (type_arg
, NULL
);
11239 if (range_type
== NULL
)
11240 range_type
= type_arg
;
11244 error (_("unexpected attribute encountered"));
11246 return value_from_longest
11247 (range_type
, ada_discrete_type_low_bound (range_type
));
11249 return value_from_longest
11250 (range_type
, ada_discrete_type_high_bound (range_type
));
11251 case OP_ATR_LENGTH
:
11252 error (_("the 'length attribute applies only to array types"));
11255 else if (TYPE_CODE (type_arg
) == TYPE_CODE_FLT
)
11256 error (_("unimplemented type attribute"));
11261 if (ada_is_constrained_packed_array_type (type_arg
))
11262 type_arg
= decode_constrained_packed_array_type (type_arg
);
11264 if (op
== OP_ATR_LENGTH
)
11265 type
= builtin_type (exp
->gdbarch
)->builtin_int
;
11268 type
= ada_index_type (type_arg
, tem
, ada_attribute_name (op
));
11270 type
= builtin_type (exp
->gdbarch
)->builtin_int
;
11273 if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
11274 return allocate_value (type
);
11279 error (_("unexpected attribute encountered"));
11281 low
= ada_array_bound_from_type (type_arg
, tem
, 0);
11282 return value_from_longest (type
, low
);
11284 high
= ada_array_bound_from_type (type_arg
, tem
, 1);
11285 return value_from_longest (type
, high
);
11286 case OP_ATR_LENGTH
:
11287 low
= ada_array_bound_from_type (type_arg
, tem
, 0);
11288 high
= ada_array_bound_from_type (type_arg
, tem
, 1);
11289 return value_from_longest (type
, high
- low
+ 1);
11295 arg1
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
11296 if (noside
== EVAL_SKIP
)
11299 if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
11300 return value_zero (ada_tag_type (arg1
), not_lval
);
11302 return ada_value_tag (arg1
);
11306 evaluate_subexp (NULL_TYPE
, exp
, pos
, EVAL_SKIP
);
11307 arg1
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
11308 arg2
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
11309 if (noside
== EVAL_SKIP
)
11311 else if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
11312 return value_zero (value_type (arg1
), not_lval
);
11315 binop_promote (exp
->language_defn
, exp
->gdbarch
, &arg1
, &arg2
);
11316 return value_binop (arg1
, arg2
,
11317 op
== OP_ATR_MIN
? BINOP_MIN
: BINOP_MAX
);
11320 case OP_ATR_MODULUS
:
11322 struct type
*type_arg
= check_typedef (exp
->elts
[pc
+ 2].type
);
11324 evaluate_subexp (NULL_TYPE
, exp
, pos
, EVAL_SKIP
);
11325 if (noside
== EVAL_SKIP
)
11328 if (!ada_is_modular_type (type_arg
))
11329 error (_("'modulus must be applied to modular type"));
11331 return value_from_longest (TYPE_TARGET_TYPE (type_arg
),
11332 ada_modulus (type_arg
));
11337 evaluate_subexp (NULL_TYPE
, exp
, pos
, EVAL_SKIP
);
11338 arg1
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
11339 if (noside
== EVAL_SKIP
)
11341 type
= builtin_type (exp
->gdbarch
)->builtin_int
;
11342 if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
11343 return value_zero (type
, not_lval
);
11345 return value_pos_atr (type
, arg1
);
11348 arg1
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
11349 type
= value_type (arg1
);
11351 /* If the argument is a reference, then dereference its type, since
11352 the user is really asking for the size of the actual object,
11353 not the size of the pointer. */
11354 if (TYPE_CODE (type
) == TYPE_CODE_REF
)
11355 type
= TYPE_TARGET_TYPE (type
);
11357 if (noside
== EVAL_SKIP
)
11359 else if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
11360 return value_zero (builtin_type (exp
->gdbarch
)->builtin_int
, not_lval
);
11362 return value_from_longest (builtin_type (exp
->gdbarch
)->builtin_int
,
11363 TARGET_CHAR_BIT
* TYPE_LENGTH (type
));
11366 evaluate_subexp (NULL_TYPE
, exp
, pos
, EVAL_SKIP
);
11367 arg1
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
11368 type
= exp
->elts
[pc
+ 2].type
;
11369 if (noside
== EVAL_SKIP
)
11371 else if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
11372 return value_zero (type
, not_lval
);
11374 return value_val_atr (type
, arg1
);
11377 arg1
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
11378 arg2
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
11379 if (noside
== EVAL_SKIP
)
11381 else if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
11382 return value_zero (value_type (arg1
), not_lval
);
11385 /* For integer exponentiation operations,
11386 only promote the first argument. */
11387 if (is_integral_type (value_type (arg2
)))
11388 unop_promote (exp
->language_defn
, exp
->gdbarch
, &arg1
);
11390 binop_promote (exp
->language_defn
, exp
->gdbarch
, &arg1
, &arg2
);
11392 return value_binop (arg1
, arg2
, op
);
11396 arg1
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
11397 if (noside
== EVAL_SKIP
)
11403 arg1
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
11404 if (noside
== EVAL_SKIP
)
11406 unop_promote (exp
->language_defn
, exp
->gdbarch
, &arg1
);
11407 if (value_less (arg1
, value_zero (value_type (arg1
), not_lval
)))
11408 return value_neg (arg1
);
11413 preeval_pos
= *pos
;
11414 arg1
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
11415 if (noside
== EVAL_SKIP
)
11417 type
= ada_check_typedef (value_type (arg1
));
11418 if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
11420 if (ada_is_array_descriptor_type (type
))
11421 /* GDB allows dereferencing GNAT array descriptors. */
11423 struct type
*arrType
= ada_type_of_array (arg1
, 0);
11425 if (arrType
== NULL
)
11426 error (_("Attempt to dereference null array pointer."));
11427 return value_at_lazy (arrType
, 0);
11429 else if (TYPE_CODE (type
) == TYPE_CODE_PTR
11430 || TYPE_CODE (type
) == TYPE_CODE_REF
11431 /* In C you can dereference an array to get the 1st elt. */
11432 || TYPE_CODE (type
) == TYPE_CODE_ARRAY
)
11434 /* As mentioned in the OP_VAR_VALUE case, tagged types can
11435 only be determined by inspecting the object's tag.
11436 This means that we need to evaluate completely the
11437 expression in order to get its type. */
11439 if ((TYPE_CODE (type
) == TYPE_CODE_REF
11440 || TYPE_CODE (type
) == TYPE_CODE_PTR
)
11441 && ada_is_tagged_type (TYPE_TARGET_TYPE (type
), 0))
11443 arg1
= evaluate_subexp (NULL_TYPE
, exp
, &preeval_pos
,
11445 type
= value_type (ada_value_ind (arg1
));
11449 type
= to_static_fixed_type
11451 (ada_check_typedef (TYPE_TARGET_TYPE (type
))));
11453 ada_ensure_varsize_limit (type
);
11454 return value_zero (type
, lval_memory
);
11456 else if (TYPE_CODE (type
) == TYPE_CODE_INT
)
11458 /* GDB allows dereferencing an int. */
11459 if (expect_type
== NULL
)
11460 return value_zero (builtin_type (exp
->gdbarch
)->builtin_int
,
11465 to_static_fixed_type (ada_aligned_type (expect_type
));
11466 return value_zero (expect_type
, lval_memory
);
11470 error (_("Attempt to take contents of a non-pointer value."));
11472 arg1
= ada_coerce_ref (arg1
); /* FIXME: What is this for?? */
11473 type
= ada_check_typedef (value_type (arg1
));
11475 if (TYPE_CODE (type
) == TYPE_CODE_INT
)
11476 /* GDB allows dereferencing an int. If we were given
11477 the expect_type, then use that as the target type.
11478 Otherwise, assume that the target type is an int. */
11480 if (expect_type
!= NULL
)
11481 return ada_value_ind (value_cast (lookup_pointer_type (expect_type
),
11484 return value_at_lazy (builtin_type (exp
->gdbarch
)->builtin_int
,
11485 (CORE_ADDR
) value_as_address (arg1
));
11488 if (ada_is_array_descriptor_type (type
))
11489 /* GDB allows dereferencing GNAT array descriptors. */
11490 return ada_coerce_to_simple_array (arg1
);
11492 return ada_value_ind (arg1
);
11494 case STRUCTOP_STRUCT
:
11495 tem
= longest_to_int (exp
->elts
[pc
+ 1].longconst
);
11496 (*pos
) += 3 + BYTES_TO_EXP_ELEM (tem
+ 1);
11497 preeval_pos
= *pos
;
11498 arg1
= evaluate_subexp (NULL_TYPE
, exp
, pos
, noside
);
11499 if (noside
== EVAL_SKIP
)
11501 if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
11503 struct type
*type1
= value_type (arg1
);
11505 if (ada_is_tagged_type (type1
, 1))
11507 type
= ada_lookup_struct_elt_type (type1
,
11508 &exp
->elts
[pc
+ 2].string
,
11511 /* If the field is not found, check if it exists in the
11512 extension of this object's type. This means that we
11513 need to evaluate completely the expression. */
11517 arg1
= evaluate_subexp (NULL_TYPE
, exp
, &preeval_pos
,
11519 arg1
= ada_value_struct_elt (arg1
,
11520 &exp
->elts
[pc
+ 2].string
,
11522 arg1
= unwrap_value (arg1
);
11523 type
= value_type (ada_to_fixed_value (arg1
));
11528 ada_lookup_struct_elt_type (type1
, &exp
->elts
[pc
+ 2].string
, 1,
11531 return value_zero (ada_aligned_type (type
), lval_memory
);
11535 arg1
= ada_value_struct_elt (arg1
, &exp
->elts
[pc
+ 2].string
, 0);
11536 arg1
= unwrap_value (arg1
);
11537 return ada_to_fixed_value (arg1
);
11541 /* The value is not supposed to be used. This is here to make it
11542 easier to accommodate expressions that contain types. */
11544 if (noside
== EVAL_SKIP
)
11546 else if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
11547 return allocate_value (exp
->elts
[pc
+ 1].type
);
11549 error (_("Attempt to use a type name as an expression"));
11554 case OP_DISCRETE_RANGE
:
11555 case OP_POSITIONAL
:
11557 if (noside
== EVAL_NORMAL
)
11561 error (_("Undefined name, ambiguous name, or renaming used in "
11562 "component association: %s."), &exp
->elts
[pc
+2].string
);
11564 error (_("Aggregates only allowed on the right of an assignment"));
11566 internal_error (__FILE__
, __LINE__
,
11567 _("aggregate apparently mangled"));
11570 ada_forward_operator_length (exp
, pc
, &oplen
, &nargs
);
11572 for (tem
= 0; tem
< nargs
; tem
+= 1)
11573 ada_evaluate_subexp (NULL
, exp
, pos
, noside
);
11578 return eval_skip_value (exp
);
11584 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
11585 type name that encodes the 'small and 'delta information.
11586 Otherwise, return NULL. */
11588 static const char *
11589 fixed_type_info (struct type
*type
)
11591 const char *name
= ada_type_name (type
);
11592 enum type_code code
= (type
== NULL
) ? TYPE_CODE_UNDEF
: TYPE_CODE (type
);
11594 if ((code
== TYPE_CODE_INT
|| code
== TYPE_CODE_RANGE
) && name
!= NULL
)
11596 const char *tail
= strstr (name
, "___XF_");
11603 else if (code
== TYPE_CODE_RANGE
&& TYPE_TARGET_TYPE (type
) != type
)
11604 return fixed_type_info (TYPE_TARGET_TYPE (type
));
11609 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
11612 ada_is_fixed_point_type (struct type
*type
)
11614 return fixed_type_info (type
) != NULL
;
11617 /* Return non-zero iff TYPE represents a System.Address type. */
11620 ada_is_system_address_type (struct type
*type
)
11622 return (TYPE_NAME (type
)
11623 && strcmp (TYPE_NAME (type
), "system__address") == 0);
11626 /* Assuming that TYPE is the representation of an Ada fixed-point
11627 type, return the target floating-point type to be used to represent
11628 of this type during internal computation. */
11630 static struct type
*
11631 ada_scaling_type (struct type
*type
)
11633 return builtin_type (get_type_arch (type
))->builtin_long_double
;
11636 /* Assuming that TYPE is the representation of an Ada fixed-point
11637 type, return its delta, or NULL if the type is malformed and the
11638 delta cannot be determined. */
11641 ada_delta (struct type
*type
)
11643 const char *encoding
= fixed_type_info (type
);
11644 struct type
*scale_type
= ada_scaling_type (type
);
11646 long long num
, den
;
11648 if (sscanf (encoding
, "_%lld_%lld", &num
, &den
) < 2)
11651 return value_binop (value_from_longest (scale_type
, num
),
11652 value_from_longest (scale_type
, den
), BINOP_DIV
);
11655 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
11656 factor ('SMALL value) associated with the type. */
11659 ada_scaling_factor (struct type
*type
)
11661 const char *encoding
= fixed_type_info (type
);
11662 struct type
*scale_type
= ada_scaling_type (type
);
11664 long long num0
, den0
, num1
, den1
;
11667 n
= sscanf (encoding
, "_%lld_%lld_%lld_%lld",
11668 &num0
, &den0
, &num1
, &den1
);
11671 return value_from_longest (scale_type
, 1);
11673 return value_binop (value_from_longest (scale_type
, num1
),
11674 value_from_longest (scale_type
, den1
), BINOP_DIV
);
11676 return value_binop (value_from_longest (scale_type
, num0
),
11677 value_from_longest (scale_type
, den0
), BINOP_DIV
);
11684 /* Scan STR beginning at position K for a discriminant name, and
11685 return the value of that discriminant field of DVAL in *PX. If
11686 PNEW_K is not null, put the position of the character beyond the
11687 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
11688 not alter *PX and *PNEW_K if unsuccessful. */
11691 scan_discrim_bound (const char *str
, int k
, struct value
*dval
, LONGEST
* px
,
11694 static char *bound_buffer
= NULL
;
11695 static size_t bound_buffer_len
= 0;
11696 const char *pstart
, *pend
, *bound
;
11697 struct value
*bound_val
;
11699 if (dval
== NULL
|| str
== NULL
|| str
[k
] == '\0')
11703 pend
= strstr (pstart
, "__");
11707 k
+= strlen (bound
);
11711 int len
= pend
- pstart
;
11713 /* Strip __ and beyond. */
11714 GROW_VECT (bound_buffer
, bound_buffer_len
, len
+ 1);
11715 strncpy (bound_buffer
, pstart
, len
);
11716 bound_buffer
[len
] = '\0';
11718 bound
= bound_buffer
;
11722 bound_val
= ada_search_struct_field (bound
, dval
, 0, value_type (dval
));
11723 if (bound_val
== NULL
)
11726 *px
= value_as_long (bound_val
);
11727 if (pnew_k
!= NULL
)
11732 /* Value of variable named NAME in the current environment. If
11733 no such variable found, then if ERR_MSG is null, returns 0, and
11734 otherwise causes an error with message ERR_MSG. */
11736 static struct value
*
11737 get_var_value (const char *name
, const char *err_msg
)
11739 lookup_name_info
lookup_name (name
, symbol_name_match_type::FULL
);
11741 std::vector
<struct block_symbol
> syms
;
11742 int nsyms
= ada_lookup_symbol_list_worker (lookup_name
,
11743 get_selected_block (0),
11744 VAR_DOMAIN
, &syms
, 1);
11748 if (err_msg
== NULL
)
11751 error (("%s"), err_msg
);
11754 return value_of_variable (syms
[0].symbol
, syms
[0].block
);
11757 /* Value of integer variable named NAME in the current environment.
11758 If no such variable is found, returns false. Otherwise, sets VALUE
11759 to the variable's value and returns true. */
11762 get_int_var_value (const char *name
, LONGEST
&value
)
11764 struct value
*var_val
= get_var_value (name
, 0);
11769 value
= value_as_long (var_val
);
11774 /* Return a range type whose base type is that of the range type named
11775 NAME in the current environment, and whose bounds are calculated
11776 from NAME according to the GNAT range encoding conventions.
11777 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
11778 corresponding range type from debug information; fall back to using it
11779 if symbol lookup fails. If a new type must be created, allocate it
11780 like ORIG_TYPE was. The bounds information, in general, is encoded
11781 in NAME, the base type given in the named range type. */
11783 static struct type
*
11784 to_fixed_range_type (struct type
*raw_type
, struct value
*dval
)
11787 struct type
*base_type
;
11788 const char *subtype_info
;
11790 gdb_assert (raw_type
!= NULL
);
11791 gdb_assert (TYPE_NAME (raw_type
) != NULL
);
11793 if (TYPE_CODE (raw_type
) == TYPE_CODE_RANGE
)
11794 base_type
= TYPE_TARGET_TYPE (raw_type
);
11796 base_type
= raw_type
;
11798 name
= TYPE_NAME (raw_type
);
11799 subtype_info
= strstr (name
, "___XD");
11800 if (subtype_info
== NULL
)
11802 LONGEST L
= ada_discrete_type_low_bound (raw_type
);
11803 LONGEST U
= ada_discrete_type_high_bound (raw_type
);
11805 if (L
< INT_MIN
|| U
> INT_MAX
)
11808 return create_static_range_type (alloc_type_copy (raw_type
), raw_type
,
11813 static char *name_buf
= NULL
;
11814 static size_t name_len
= 0;
11815 int prefix_len
= subtype_info
- name
;
11818 const char *bounds_str
;
11821 GROW_VECT (name_buf
, name_len
, prefix_len
+ 5);
11822 strncpy (name_buf
, name
, prefix_len
);
11823 name_buf
[prefix_len
] = '\0';
11826 bounds_str
= strchr (subtype_info
, '_');
11829 if (*subtype_info
== 'L')
11831 if (!ada_scan_number (bounds_str
, n
, &L
, &n
)
11832 && !scan_discrim_bound (bounds_str
, n
, dval
, &L
, &n
))
11834 if (bounds_str
[n
] == '_')
11836 else if (bounds_str
[n
] == '.') /* FIXME? SGI Workshop kludge. */
11842 strcpy (name_buf
+ prefix_len
, "___L");
11843 if (!get_int_var_value (name_buf
, L
))
11845 lim_warning (_("Unknown lower bound, using 1."));
11850 if (*subtype_info
== 'U')
11852 if (!ada_scan_number (bounds_str
, n
, &U
, &n
)
11853 && !scan_discrim_bound (bounds_str
, n
, dval
, &U
, &n
))
11858 strcpy (name_buf
+ prefix_len
, "___U");
11859 if (!get_int_var_value (name_buf
, U
))
11861 lim_warning (_("Unknown upper bound, using %ld."), (long) L
);
11866 type
= create_static_range_type (alloc_type_copy (raw_type
),
11868 /* create_static_range_type alters the resulting type's length
11869 to match the size of the base_type, which is not what we want.
11870 Set it back to the original range type's length. */
11871 TYPE_LENGTH (type
) = TYPE_LENGTH (raw_type
);
11872 TYPE_NAME (type
) = name
;
11877 /* True iff NAME is the name of a range type. */
11880 ada_is_range_type_name (const char *name
)
11882 return (name
!= NULL
&& strstr (name
, "___XD"));
11886 /* Modular types */
11888 /* True iff TYPE is an Ada modular type. */
11891 ada_is_modular_type (struct type
*type
)
11893 struct type
*subranged_type
= get_base_type (type
);
11895 return (subranged_type
!= NULL
&& TYPE_CODE (type
) == TYPE_CODE_RANGE
11896 && TYPE_CODE (subranged_type
) == TYPE_CODE_INT
11897 && TYPE_UNSIGNED (subranged_type
));
11900 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11903 ada_modulus (struct type
*type
)
11905 return (ULONGEST
) TYPE_HIGH_BOUND (type
) + 1;
11909 /* Ada exception catchpoint support:
11910 ---------------------------------
11912 We support 3 kinds of exception catchpoints:
11913 . catchpoints on Ada exceptions
11914 . catchpoints on unhandled Ada exceptions
11915 . catchpoints on failed assertions
11917 Exceptions raised during failed assertions, or unhandled exceptions
11918 could perfectly be caught with the general catchpoint on Ada exceptions.
11919 However, we can easily differentiate these two special cases, and having
11920 the option to distinguish these two cases from the rest can be useful
11921 to zero-in on certain situations.
11923 Exception catchpoints are a specialized form of breakpoint,
11924 since they rely on inserting breakpoints inside known routines
11925 of the GNAT runtime. The implementation therefore uses a standard
11926 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11929 Support in the runtime for exception catchpoints have been changed
11930 a few times already, and these changes affect the implementation
11931 of these catchpoints. In order to be able to support several
11932 variants of the runtime, we use a sniffer that will determine
11933 the runtime variant used by the program being debugged. */
11935 /* Ada's standard exceptions.
11937 The Ada 83 standard also defined Numeric_Error. But there so many
11938 situations where it was unclear from the Ada 83 Reference Manual
11939 (RM) whether Constraint_Error or Numeric_Error should be raised,
11940 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11941 Interpretation saying that anytime the RM says that Numeric_Error
11942 should be raised, the implementation may raise Constraint_Error.
11943 Ada 95 went one step further and pretty much removed Numeric_Error
11944 from the list of standard exceptions (it made it a renaming of
11945 Constraint_Error, to help preserve compatibility when compiling
11946 an Ada83 compiler). As such, we do not include Numeric_Error from
11947 this list of standard exceptions. */
11949 static const char *standard_exc
[] = {
11950 "constraint_error",
11956 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype
) (void);
11958 /* A structure that describes how to support exception catchpoints
11959 for a given executable. */
11961 struct exception_support_info
11963 /* The name of the symbol to break on in order to insert
11964 a catchpoint on exceptions. */
11965 const char *catch_exception_sym
;
11967 /* The name of the symbol to break on in order to insert
11968 a catchpoint on unhandled exceptions. */
11969 const char *catch_exception_unhandled_sym
;
11971 /* The name of the symbol to break on in order to insert
11972 a catchpoint on failed assertions. */
11973 const char *catch_assert_sym
;
11975 /* The name of the symbol to break on in order to insert
11976 a catchpoint on exception handling. */
11977 const char *catch_handlers_sym
;
11979 /* Assuming that the inferior just triggered an unhandled exception
11980 catchpoint, this function is responsible for returning the address
11981 in inferior memory where the name of that exception is stored.
11982 Return zero if the address could not be computed. */
11983 ada_unhandled_exception_name_addr_ftype
*unhandled_exception_name_addr
;
11986 static CORE_ADDR
ada_unhandled_exception_name_addr (void);
11987 static CORE_ADDR
ada_unhandled_exception_name_addr_from_raise (void);
11989 /* The following exception support info structure describes how to
11990 implement exception catchpoints with the latest version of the
11991 Ada runtime (as of 2007-03-06). */
11993 static const struct exception_support_info default_exception_support_info
=
11995 "__gnat_debug_raise_exception", /* catch_exception_sym */
11996 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11997 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11998 "__gnat_begin_handler", /* catch_handlers_sym */
11999 ada_unhandled_exception_name_addr
12002 /* The following exception support info structure describes how to
12003 implement exception catchpoints with a slightly older version
12004 of the Ada runtime. */
12006 static const struct exception_support_info exception_support_info_fallback
=
12008 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
12009 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
12010 "system__assertions__raise_assert_failure", /* catch_assert_sym */
12011 "__gnat_begin_handler", /* catch_handlers_sym */
12012 ada_unhandled_exception_name_addr_from_raise
12015 /* Return nonzero if we can detect the exception support routines
12016 described in EINFO.
12018 This function errors out if an abnormal situation is detected
12019 (for instance, if we find the exception support routines, but
12020 that support is found to be incomplete). */
12023 ada_has_this_exception_support (const struct exception_support_info
*einfo
)
12025 struct symbol
*sym
;
12027 /* The symbol we're looking up is provided by a unit in the GNAT runtime
12028 that should be compiled with debugging information. As a result, we
12029 expect to find that symbol in the symtabs. */
12031 sym
= standard_lookup (einfo
->catch_exception_sym
, NULL
, VAR_DOMAIN
);
12034 /* Perhaps we did not find our symbol because the Ada runtime was
12035 compiled without debugging info, or simply stripped of it.
12036 It happens on some GNU/Linux distributions for instance, where
12037 users have to install a separate debug package in order to get
12038 the runtime's debugging info. In that situation, let the user
12039 know why we cannot insert an Ada exception catchpoint.
12041 Note: Just for the purpose of inserting our Ada exception
12042 catchpoint, we could rely purely on the associated minimal symbol.
12043 But we would be operating in degraded mode anyway, since we are
12044 still lacking the debugging info needed later on to extract
12045 the name of the exception being raised (this name is printed in
12046 the catchpoint message, and is also used when trying to catch
12047 a specific exception). We do not handle this case for now. */
12048 struct bound_minimal_symbol msym
12049 = lookup_minimal_symbol (einfo
->catch_exception_sym
, NULL
, NULL
);
12051 if (msym
.minsym
&& MSYMBOL_TYPE (msym
.minsym
) != mst_solib_trampoline
)
12052 error (_("Your Ada runtime appears to be missing some debugging "
12053 "information.\nCannot insert Ada exception catchpoint "
12054 "in this configuration."));
12059 /* Make sure that the symbol we found corresponds to a function. */
12061 if (SYMBOL_CLASS (sym
) != LOC_BLOCK
)
12062 error (_("Symbol \"%s\" is not a function (class = %d)"),
12063 SYMBOL_LINKAGE_NAME (sym
), SYMBOL_CLASS (sym
));
12068 /* Inspect the Ada runtime and determine which exception info structure
12069 should be used to provide support for exception catchpoints.
12071 This function will always set the per-inferior exception_info,
12072 or raise an error. */
12075 ada_exception_support_info_sniffer (void)
12077 struct ada_inferior_data
*data
= get_ada_inferior_data (current_inferior ());
12079 /* If the exception info is already known, then no need to recompute it. */
12080 if (data
->exception_info
!= NULL
)
12083 /* Check the latest (default) exception support info. */
12084 if (ada_has_this_exception_support (&default_exception_support_info
))
12086 data
->exception_info
= &default_exception_support_info
;
12090 /* Try our fallback exception suport info. */
12091 if (ada_has_this_exception_support (&exception_support_info_fallback
))
12093 data
->exception_info
= &exception_support_info_fallback
;
12097 /* Sometimes, it is normal for us to not be able to find the routine
12098 we are looking for. This happens when the program is linked with
12099 the shared version of the GNAT runtime, and the program has not been
12100 started yet. Inform the user of these two possible causes if
12103 if (ada_update_initial_language (language_unknown
) != language_ada
)
12104 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
12106 /* If the symbol does not exist, then check that the program is
12107 already started, to make sure that shared libraries have been
12108 loaded. If it is not started, this may mean that the symbol is
12109 in a shared library. */
12111 if (inferior_ptid
.pid () == 0)
12112 error (_("Unable to insert catchpoint. Try to start the program first."));
12114 /* At this point, we know that we are debugging an Ada program and
12115 that the inferior has been started, but we still are not able to
12116 find the run-time symbols. That can mean that we are in
12117 configurable run time mode, or that a-except as been optimized
12118 out by the linker... In any case, at this point it is not worth
12119 supporting this feature. */
12121 error (_("Cannot insert Ada exception catchpoints in this configuration."));
12124 /* True iff FRAME is very likely to be that of a function that is
12125 part of the runtime system. This is all very heuristic, but is
12126 intended to be used as advice as to what frames are uninteresting
12130 is_known_support_routine (struct frame_info
*frame
)
12132 enum language func_lang
;
12134 const char *fullname
;
12136 /* If this code does not have any debugging information (no symtab),
12137 This cannot be any user code. */
12139 symtab_and_line sal
= find_frame_sal (frame
);
12140 if (sal
.symtab
== NULL
)
12143 /* If there is a symtab, but the associated source file cannot be
12144 located, then assume this is not user code: Selecting a frame
12145 for which we cannot display the code would not be very helpful
12146 for the user. This should also take care of case such as VxWorks
12147 where the kernel has some debugging info provided for a few units. */
12149 fullname
= symtab_to_fullname (sal
.symtab
);
12150 if (access (fullname
, R_OK
) != 0)
12153 /* Check the unit filename againt the Ada runtime file naming.
12154 We also check the name of the objfile against the name of some
12155 known system libraries that sometimes come with debugging info
12158 for (i
= 0; known_runtime_file_name_patterns
[i
] != NULL
; i
+= 1)
12160 re_comp (known_runtime_file_name_patterns
[i
]);
12161 if (re_exec (lbasename (sal
.symtab
->filename
)))
12163 if (SYMTAB_OBJFILE (sal
.symtab
) != NULL
12164 && re_exec (objfile_name (SYMTAB_OBJFILE (sal
.symtab
))))
12168 /* Check whether the function is a GNAT-generated entity. */
12170 gdb::unique_xmalloc_ptr
<char> func_name
12171 = find_frame_funname (frame
, &func_lang
, NULL
);
12172 if (func_name
== NULL
)
12175 for (i
= 0; known_auxiliary_function_name_patterns
[i
] != NULL
; i
+= 1)
12177 re_comp (known_auxiliary_function_name_patterns
[i
]);
12178 if (re_exec (func_name
.get ()))
12185 /* Find the first frame that contains debugging information and that is not
12186 part of the Ada run-time, starting from FI and moving upward. */
12189 ada_find_printable_frame (struct frame_info
*fi
)
12191 for (; fi
!= NULL
; fi
= get_prev_frame (fi
))
12193 if (!is_known_support_routine (fi
))
12202 /* Assuming that the inferior just triggered an unhandled exception
12203 catchpoint, return the address in inferior memory where the name
12204 of the exception is stored.
12206 Return zero if the address could not be computed. */
12209 ada_unhandled_exception_name_addr (void)
12211 return parse_and_eval_address ("e.full_name");
12214 /* Same as ada_unhandled_exception_name_addr, except that this function
12215 should be used when the inferior uses an older version of the runtime,
12216 where the exception name needs to be extracted from a specific frame
12217 several frames up in the callstack. */
12220 ada_unhandled_exception_name_addr_from_raise (void)
12223 struct frame_info
*fi
;
12224 struct ada_inferior_data
*data
= get_ada_inferior_data (current_inferior ());
12226 /* To determine the name of this exception, we need to select
12227 the frame corresponding to RAISE_SYM_NAME. This frame is
12228 at least 3 levels up, so we simply skip the first 3 frames
12229 without checking the name of their associated function. */
12230 fi
= get_current_frame ();
12231 for (frame_level
= 0; frame_level
< 3; frame_level
+= 1)
12233 fi
= get_prev_frame (fi
);
12237 enum language func_lang
;
12239 gdb::unique_xmalloc_ptr
<char> func_name
12240 = find_frame_funname (fi
, &func_lang
, NULL
);
12241 if (func_name
!= NULL
)
12243 if (strcmp (func_name
.get (),
12244 data
->exception_info
->catch_exception_sym
) == 0)
12245 break; /* We found the frame we were looking for... */
12247 fi
= get_prev_frame (fi
);
12254 return parse_and_eval_address ("id.full_name");
12257 /* Assuming the inferior just triggered an Ada exception catchpoint
12258 (of any type), return the address in inferior memory where the name
12259 of the exception is stored, if applicable.
12261 Assumes the selected frame is the current frame.
12263 Return zero if the address could not be computed, or if not relevant. */
12266 ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex
,
12267 struct breakpoint
*b
)
12269 struct ada_inferior_data
*data
= get_ada_inferior_data (current_inferior ());
12273 case ada_catch_exception
:
12274 return (parse_and_eval_address ("e.full_name"));
12277 case ada_catch_exception_unhandled
:
12278 return data
->exception_info
->unhandled_exception_name_addr ();
12281 case ada_catch_handlers
:
12282 return 0; /* The runtimes does not provide access to the exception
12286 case ada_catch_assert
:
12287 return 0; /* Exception name is not relevant in this case. */
12291 internal_error (__FILE__
, __LINE__
, _("unexpected catchpoint type"));
12295 return 0; /* Should never be reached. */
12298 /* Assuming the inferior is stopped at an exception catchpoint,
12299 return the message which was associated to the exception, if
12300 available. Return NULL if the message could not be retrieved.
12302 Note: The exception message can be associated to an exception
12303 either through the use of the Raise_Exception function, or
12304 more simply (Ada 2005 and later), via:
12306 raise Exception_Name with "exception message";
12310 static gdb::unique_xmalloc_ptr
<char>
12311 ada_exception_message_1 (void)
12313 struct value
*e_msg_val
;
12316 /* For runtimes that support this feature, the exception message
12317 is passed as an unbounded string argument called "message". */
12318 e_msg_val
= parse_and_eval ("message");
12319 if (e_msg_val
== NULL
)
12320 return NULL
; /* Exception message not supported. */
12322 e_msg_val
= ada_coerce_to_simple_array (e_msg_val
);
12323 gdb_assert (e_msg_val
!= NULL
);
12324 e_msg_len
= TYPE_LENGTH (value_type (e_msg_val
));
12326 /* If the message string is empty, then treat it as if there was
12327 no exception message. */
12328 if (e_msg_len
<= 0)
12331 gdb::unique_xmalloc_ptr
<char> e_msg ((char *) xmalloc (e_msg_len
+ 1));
12332 read_memory_string (value_address (e_msg_val
), e_msg
.get (), e_msg_len
+ 1);
12333 e_msg
.get ()[e_msg_len
] = '\0';
12338 /* Same as ada_exception_message_1, except that all exceptions are
12339 contained here (returning NULL instead). */
12341 static gdb::unique_xmalloc_ptr
<char>
12342 ada_exception_message (void)
12344 gdb::unique_xmalloc_ptr
<char> e_msg
;
12348 e_msg
= ada_exception_message_1 ();
12350 catch (const gdb_exception_error
&e
)
12352 e_msg
.reset (nullptr);
12358 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
12359 any error that ada_exception_name_addr_1 might cause to be thrown.
12360 When an error is intercepted, a warning with the error message is printed,
12361 and zero is returned. */
12364 ada_exception_name_addr (enum ada_exception_catchpoint_kind ex
,
12365 struct breakpoint
*b
)
12367 CORE_ADDR result
= 0;
12371 result
= ada_exception_name_addr_1 (ex
, b
);
12374 catch (const gdb_exception_error
&e
)
12376 warning (_("failed to get exception name: %s"), e
.what ());
12383 static std::string ada_exception_catchpoint_cond_string
12384 (const char *excep_string
,
12385 enum ada_exception_catchpoint_kind ex
);
12387 /* Ada catchpoints.
12389 In the case of catchpoints on Ada exceptions, the catchpoint will
12390 stop the target on every exception the program throws. When a user
12391 specifies the name of a specific exception, we translate this
12392 request into a condition expression (in text form), and then parse
12393 it into an expression stored in each of the catchpoint's locations.
12394 We then use this condition to check whether the exception that was
12395 raised is the one the user is interested in. If not, then the
12396 target is resumed again. We store the name of the requested
12397 exception, in order to be able to re-set the condition expression
12398 when symbols change. */
12400 /* An instance of this type is used to represent an Ada catchpoint
12401 breakpoint location. */
12403 class ada_catchpoint_location
: public bp_location
12406 ada_catchpoint_location (breakpoint
*owner
)
12407 : bp_location (owner
)
12410 /* The condition that checks whether the exception that was raised
12411 is the specific exception the user specified on catchpoint
12413 expression_up excep_cond_expr
;
12416 /* An instance of this type is used to represent an Ada catchpoint. */
12418 struct ada_catchpoint
: public breakpoint
12420 /* The name of the specific exception the user specified. */
12421 std::string excep_string
;
12424 /* Parse the exception condition string in the context of each of the
12425 catchpoint's locations, and store them for later evaluation. */
12428 create_excep_cond_exprs (struct ada_catchpoint
*c
,
12429 enum ada_exception_catchpoint_kind ex
)
12431 struct bp_location
*bl
;
12433 /* Nothing to do if there's no specific exception to catch. */
12434 if (c
->excep_string
.empty ())
12437 /* Same if there are no locations... */
12438 if (c
->loc
== NULL
)
12441 /* Compute the condition expression in text form, from the specific
12442 expection we want to catch. */
12443 std::string cond_string
12444 = ada_exception_catchpoint_cond_string (c
->excep_string
.c_str (), ex
);
12446 /* Iterate over all the catchpoint's locations, and parse an
12447 expression for each. */
12448 for (bl
= c
->loc
; bl
!= NULL
; bl
= bl
->next
)
12450 struct ada_catchpoint_location
*ada_loc
12451 = (struct ada_catchpoint_location
*) bl
;
12454 if (!bl
->shlib_disabled
)
12458 s
= cond_string
.c_str ();
12461 exp
= parse_exp_1 (&s
, bl
->address
,
12462 block_for_pc (bl
->address
),
12465 catch (const gdb_exception_error
&e
)
12467 warning (_("failed to reevaluate internal exception condition "
12468 "for catchpoint %d: %s"),
12469 c
->number
, e
.what ());
12473 ada_loc
->excep_cond_expr
= std::move (exp
);
12477 /* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
12478 structure for all exception catchpoint kinds. */
12480 static struct bp_location
*
12481 allocate_location_exception (enum ada_exception_catchpoint_kind ex
,
12482 struct breakpoint
*self
)
12484 return new ada_catchpoint_location (self
);
12487 /* Implement the RE_SET method in the breakpoint_ops structure for all
12488 exception catchpoint kinds. */
12491 re_set_exception (enum ada_exception_catchpoint_kind ex
, struct breakpoint
*b
)
12493 struct ada_catchpoint
*c
= (struct ada_catchpoint
*) b
;
12495 /* Call the base class's method. This updates the catchpoint's
12497 bkpt_breakpoint_ops
.re_set (b
);
12499 /* Reparse the exception conditional expressions. One for each
12501 create_excep_cond_exprs (c
, ex
);
12504 /* Returns true if we should stop for this breakpoint hit. If the
12505 user specified a specific exception, we only want to cause a stop
12506 if the program thrown that exception. */
12509 should_stop_exception (const struct bp_location
*bl
)
12511 struct ada_catchpoint
*c
= (struct ada_catchpoint
*) bl
->owner
;
12512 const struct ada_catchpoint_location
*ada_loc
12513 = (const struct ada_catchpoint_location
*) bl
;
12516 /* With no specific exception, should always stop. */
12517 if (c
->excep_string
.empty ())
12520 if (ada_loc
->excep_cond_expr
== NULL
)
12522 /* We will have a NULL expression if back when we were creating
12523 the expressions, this location's had failed to parse. */
12530 struct value
*mark
;
12532 mark
= value_mark ();
12533 stop
= value_true (evaluate_expression (ada_loc
->excep_cond_expr
.get ()));
12534 value_free_to_mark (mark
);
12536 catch (const gdb_exception
&ex
)
12538 exception_fprintf (gdb_stderr
, ex
,
12539 _("Error in testing exception condition:\n"));
12545 /* Implement the CHECK_STATUS method in the breakpoint_ops structure
12546 for all exception catchpoint kinds. */
12549 check_status_exception (enum ada_exception_catchpoint_kind ex
, bpstat bs
)
12551 bs
->stop
= should_stop_exception (bs
->bp_location_at
);
12554 /* Implement the PRINT_IT method in the breakpoint_ops structure
12555 for all exception catchpoint kinds. */
12557 static enum print_stop_action
12558 print_it_exception (enum ada_exception_catchpoint_kind ex
, bpstat bs
)
12560 struct ui_out
*uiout
= current_uiout
;
12561 struct breakpoint
*b
= bs
->breakpoint_at
;
12563 annotate_catchpoint (b
->number
);
12565 if (uiout
->is_mi_like_p ())
12567 uiout
->field_string ("reason",
12568 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT
));
12569 uiout
->field_string ("disp", bpdisp_text (b
->disposition
));
12572 uiout
->text (b
->disposition
== disp_del
12573 ? "\nTemporary catchpoint " : "\nCatchpoint ");
12574 uiout
->field_int ("bkptno", b
->number
);
12575 uiout
->text (", ");
12577 /* ada_exception_name_addr relies on the selected frame being the
12578 current frame. Need to do this here because this function may be
12579 called more than once when printing a stop, and below, we'll
12580 select the first frame past the Ada run-time (see
12581 ada_find_printable_frame). */
12582 select_frame (get_current_frame ());
12586 case ada_catch_exception
:
12587 case ada_catch_exception_unhandled
:
12588 case ada_catch_handlers
:
12590 const CORE_ADDR addr
= ada_exception_name_addr (ex
, b
);
12591 char exception_name
[256];
12595 read_memory (addr
, (gdb_byte
*) exception_name
,
12596 sizeof (exception_name
) - 1);
12597 exception_name
[sizeof (exception_name
) - 1] = '\0';
12601 /* For some reason, we were unable to read the exception
12602 name. This could happen if the Runtime was compiled
12603 without debugging info, for instance. In that case,
12604 just replace the exception name by the generic string
12605 "exception" - it will read as "an exception" in the
12606 notification we are about to print. */
12607 memcpy (exception_name
, "exception", sizeof ("exception"));
12609 /* In the case of unhandled exception breakpoints, we print
12610 the exception name as "unhandled EXCEPTION_NAME", to make
12611 it clearer to the user which kind of catchpoint just got
12612 hit. We used ui_out_text to make sure that this extra
12613 info does not pollute the exception name in the MI case. */
12614 if (ex
== ada_catch_exception_unhandled
)
12615 uiout
->text ("unhandled ");
12616 uiout
->field_string ("exception-name", exception_name
);
12619 case ada_catch_assert
:
12620 /* In this case, the name of the exception is not really
12621 important. Just print "failed assertion" to make it clearer
12622 that his program just hit an assertion-failure catchpoint.
12623 We used ui_out_text because this info does not belong in
12625 uiout
->text ("failed assertion");
12629 gdb::unique_xmalloc_ptr
<char> exception_message
= ada_exception_message ();
12630 if (exception_message
!= NULL
)
12632 uiout
->text (" (");
12633 uiout
->field_string ("exception-message", exception_message
.get ());
12637 uiout
->text (" at ");
12638 ada_find_printable_frame (get_current_frame ());
12640 return PRINT_SRC_AND_LOC
;
12643 /* Implement the PRINT_ONE method in the breakpoint_ops structure
12644 for all exception catchpoint kinds. */
12647 print_one_exception (enum ada_exception_catchpoint_kind ex
,
12648 struct breakpoint
*b
, struct bp_location
**last_loc
)
12650 struct ui_out
*uiout
= current_uiout
;
12651 struct ada_catchpoint
*c
= (struct ada_catchpoint
*) b
;
12652 struct value_print_options opts
;
12654 get_user_print_options (&opts
);
12655 if (opts
.addressprint
)
12657 annotate_field (4);
12658 uiout
->field_core_addr ("addr", b
->loc
->gdbarch
, b
->loc
->address
);
12661 annotate_field (5);
12662 *last_loc
= b
->loc
;
12665 case ada_catch_exception
:
12666 if (!c
->excep_string
.empty ())
12668 std::string msg
= string_printf (_("`%s' Ada exception"),
12669 c
->excep_string
.c_str ());
12671 uiout
->field_string ("what", msg
);
12674 uiout
->field_string ("what", "all Ada exceptions");
12678 case ada_catch_exception_unhandled
:
12679 uiout
->field_string ("what", "unhandled Ada exceptions");
12682 case ada_catch_handlers
:
12683 if (!c
->excep_string
.empty ())
12685 uiout
->field_fmt ("what",
12686 _("`%s' Ada exception handlers"),
12687 c
->excep_string
.c_str ());
12690 uiout
->field_string ("what", "all Ada exceptions handlers");
12693 case ada_catch_assert
:
12694 uiout
->field_string ("what", "failed Ada assertions");
12698 internal_error (__FILE__
, __LINE__
, _("unexpected catchpoint type"));
12703 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
12704 for all exception catchpoint kinds. */
12707 print_mention_exception (enum ada_exception_catchpoint_kind ex
,
12708 struct breakpoint
*b
)
12710 struct ada_catchpoint
*c
= (struct ada_catchpoint
*) b
;
12711 struct ui_out
*uiout
= current_uiout
;
12713 uiout
->text (b
->disposition
== disp_del
? _("Temporary catchpoint ")
12714 : _("Catchpoint "));
12715 uiout
->field_int ("bkptno", b
->number
);
12716 uiout
->text (": ");
12720 case ada_catch_exception
:
12721 if (!c
->excep_string
.empty ())
12723 std::string info
= string_printf (_("`%s' Ada exception"),
12724 c
->excep_string
.c_str ());
12725 uiout
->text (info
.c_str ());
12728 uiout
->text (_("all Ada exceptions"));
12731 case ada_catch_exception_unhandled
:
12732 uiout
->text (_("unhandled Ada exceptions"));
12735 case ada_catch_handlers
:
12736 if (!c
->excep_string
.empty ())
12739 = string_printf (_("`%s' Ada exception handlers"),
12740 c
->excep_string
.c_str ());
12741 uiout
->text (info
.c_str ());
12744 uiout
->text (_("all Ada exceptions handlers"));
12747 case ada_catch_assert
:
12748 uiout
->text (_("failed Ada assertions"));
12752 internal_error (__FILE__
, __LINE__
, _("unexpected catchpoint type"));
12757 /* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12758 for all exception catchpoint kinds. */
12761 print_recreate_exception (enum ada_exception_catchpoint_kind ex
,
12762 struct breakpoint
*b
, struct ui_file
*fp
)
12764 struct ada_catchpoint
*c
= (struct ada_catchpoint
*) b
;
12768 case ada_catch_exception
:
12769 fprintf_filtered (fp
, "catch exception");
12770 if (!c
->excep_string
.empty ())
12771 fprintf_filtered (fp
, " %s", c
->excep_string
.c_str ());
12774 case ada_catch_exception_unhandled
:
12775 fprintf_filtered (fp
, "catch exception unhandled");
12778 case ada_catch_handlers
:
12779 fprintf_filtered (fp
, "catch handlers");
12782 case ada_catch_assert
:
12783 fprintf_filtered (fp
, "catch assert");
12787 internal_error (__FILE__
, __LINE__
, _("unexpected catchpoint type"));
12789 print_recreate_thread (b
, fp
);
12792 /* Virtual table for "catch exception" breakpoints. */
12794 static struct bp_location
*
12795 allocate_location_catch_exception (struct breakpoint
*self
)
12797 return allocate_location_exception (ada_catch_exception
, self
);
12801 re_set_catch_exception (struct breakpoint
*b
)
12803 re_set_exception (ada_catch_exception
, b
);
12807 check_status_catch_exception (bpstat bs
)
12809 check_status_exception (ada_catch_exception
, bs
);
12812 static enum print_stop_action
12813 print_it_catch_exception (bpstat bs
)
12815 return print_it_exception (ada_catch_exception
, bs
);
12819 print_one_catch_exception (struct breakpoint
*b
, struct bp_location
**last_loc
)
12821 print_one_exception (ada_catch_exception
, b
, last_loc
);
12825 print_mention_catch_exception (struct breakpoint
*b
)
12827 print_mention_exception (ada_catch_exception
, b
);
12831 print_recreate_catch_exception (struct breakpoint
*b
, struct ui_file
*fp
)
12833 print_recreate_exception (ada_catch_exception
, b
, fp
);
12836 static struct breakpoint_ops catch_exception_breakpoint_ops
;
12838 /* Virtual table for "catch exception unhandled" breakpoints. */
12840 static struct bp_location
*
12841 allocate_location_catch_exception_unhandled (struct breakpoint
*self
)
12843 return allocate_location_exception (ada_catch_exception_unhandled
, self
);
12847 re_set_catch_exception_unhandled (struct breakpoint
*b
)
12849 re_set_exception (ada_catch_exception_unhandled
, b
);
12853 check_status_catch_exception_unhandled (bpstat bs
)
12855 check_status_exception (ada_catch_exception_unhandled
, bs
);
12858 static enum print_stop_action
12859 print_it_catch_exception_unhandled (bpstat bs
)
12861 return print_it_exception (ada_catch_exception_unhandled
, bs
);
12865 print_one_catch_exception_unhandled (struct breakpoint
*b
,
12866 struct bp_location
**last_loc
)
12868 print_one_exception (ada_catch_exception_unhandled
, b
, last_loc
);
12872 print_mention_catch_exception_unhandled (struct breakpoint
*b
)
12874 print_mention_exception (ada_catch_exception_unhandled
, b
);
12878 print_recreate_catch_exception_unhandled (struct breakpoint
*b
,
12879 struct ui_file
*fp
)
12881 print_recreate_exception (ada_catch_exception_unhandled
, b
, fp
);
12884 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops
;
12886 /* Virtual table for "catch assert" breakpoints. */
12888 static struct bp_location
*
12889 allocate_location_catch_assert (struct breakpoint
*self
)
12891 return allocate_location_exception (ada_catch_assert
, self
);
12895 re_set_catch_assert (struct breakpoint
*b
)
12897 re_set_exception (ada_catch_assert
, b
);
12901 check_status_catch_assert (bpstat bs
)
12903 check_status_exception (ada_catch_assert
, bs
);
12906 static enum print_stop_action
12907 print_it_catch_assert (bpstat bs
)
12909 return print_it_exception (ada_catch_assert
, bs
);
12913 print_one_catch_assert (struct breakpoint
*b
, struct bp_location
**last_loc
)
12915 print_one_exception (ada_catch_assert
, b
, last_loc
);
12919 print_mention_catch_assert (struct breakpoint
*b
)
12921 print_mention_exception (ada_catch_assert
, b
);
12925 print_recreate_catch_assert (struct breakpoint
*b
, struct ui_file
*fp
)
12927 print_recreate_exception (ada_catch_assert
, b
, fp
);
12930 static struct breakpoint_ops catch_assert_breakpoint_ops
;
12932 /* Virtual table for "catch handlers" breakpoints. */
12934 static struct bp_location
*
12935 allocate_location_catch_handlers (struct breakpoint
*self
)
12937 return allocate_location_exception (ada_catch_handlers
, self
);
12941 re_set_catch_handlers (struct breakpoint
*b
)
12943 re_set_exception (ada_catch_handlers
, b
);
12947 check_status_catch_handlers (bpstat bs
)
12949 check_status_exception (ada_catch_handlers
, bs
);
12952 static enum print_stop_action
12953 print_it_catch_handlers (bpstat bs
)
12955 return print_it_exception (ada_catch_handlers
, bs
);
12959 print_one_catch_handlers (struct breakpoint
*b
,
12960 struct bp_location
**last_loc
)
12962 print_one_exception (ada_catch_handlers
, b
, last_loc
);
12966 print_mention_catch_handlers (struct breakpoint
*b
)
12968 print_mention_exception (ada_catch_handlers
, b
);
12972 print_recreate_catch_handlers (struct breakpoint
*b
,
12973 struct ui_file
*fp
)
12975 print_recreate_exception (ada_catch_handlers
, b
, fp
);
12978 static struct breakpoint_ops catch_handlers_breakpoint_ops
;
12980 /* Split the arguments specified in a "catch exception" command.
12981 Set EX to the appropriate catchpoint type.
12982 Set EXCEP_STRING to the name of the specific exception if
12983 specified by the user.
12984 IS_CATCH_HANDLERS_CMD: True if the arguments are for a
12985 "catch handlers" command. False otherwise.
12986 If a condition is found at the end of the arguments, the condition
12987 expression is stored in COND_STRING (memory must be deallocated
12988 after use). Otherwise COND_STRING is set to NULL. */
12991 catch_ada_exception_command_split (const char *args
,
12992 bool is_catch_handlers_cmd
,
12993 enum ada_exception_catchpoint_kind
*ex
,
12994 std::string
*excep_string
,
12995 std::string
*cond_string
)
12997 std::string exception_name
;
12999 exception_name
= extract_arg (&args
);
13000 if (exception_name
== "if")
13002 /* This is not an exception name; this is the start of a condition
13003 expression for a catchpoint on all exceptions. So, "un-get"
13004 this token, and set exception_name to NULL. */
13005 exception_name
.clear ();
13009 /* Check to see if we have a condition. */
13011 args
= skip_spaces (args
);
13012 if (startswith (args
, "if")
13013 && (isspace (args
[2]) || args
[2] == '\0'))
13016 args
= skip_spaces (args
);
13018 if (args
[0] == '\0')
13019 error (_("Condition missing after `if' keyword"));
13020 *cond_string
= args
;
13022 args
+= strlen (args
);
13025 /* Check that we do not have any more arguments. Anything else
13028 if (args
[0] != '\0')
13029 error (_("Junk at end of expression"));
13031 if (is_catch_handlers_cmd
)
13033 /* Catch handling of exceptions. */
13034 *ex
= ada_catch_handlers
;
13035 *excep_string
= exception_name
;
13037 else if (exception_name
.empty ())
13039 /* Catch all exceptions. */
13040 *ex
= ada_catch_exception
;
13041 excep_string
->clear ();
13043 else if (exception_name
== "unhandled")
13045 /* Catch unhandled exceptions. */
13046 *ex
= ada_catch_exception_unhandled
;
13047 excep_string
->clear ();
13051 /* Catch a specific exception. */
13052 *ex
= ada_catch_exception
;
13053 *excep_string
= exception_name
;
13057 /* Return the name of the symbol on which we should break in order to
13058 implement a catchpoint of the EX kind. */
13060 static const char *
13061 ada_exception_sym_name (enum ada_exception_catchpoint_kind ex
)
13063 struct ada_inferior_data
*data
= get_ada_inferior_data (current_inferior ());
13065 gdb_assert (data
->exception_info
!= NULL
);
13069 case ada_catch_exception
:
13070 return (data
->exception_info
->catch_exception_sym
);
13072 case ada_catch_exception_unhandled
:
13073 return (data
->exception_info
->catch_exception_unhandled_sym
);
13075 case ada_catch_assert
:
13076 return (data
->exception_info
->catch_assert_sym
);
13078 case ada_catch_handlers
:
13079 return (data
->exception_info
->catch_handlers_sym
);
13082 internal_error (__FILE__
, __LINE__
,
13083 _("unexpected catchpoint kind (%d)"), ex
);
13087 /* Return the breakpoint ops "virtual table" used for catchpoints
13090 static const struct breakpoint_ops
*
13091 ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex
)
13095 case ada_catch_exception
:
13096 return (&catch_exception_breakpoint_ops
);
13098 case ada_catch_exception_unhandled
:
13099 return (&catch_exception_unhandled_breakpoint_ops
);
13101 case ada_catch_assert
:
13102 return (&catch_assert_breakpoint_ops
);
13104 case ada_catch_handlers
:
13105 return (&catch_handlers_breakpoint_ops
);
13108 internal_error (__FILE__
, __LINE__
,
13109 _("unexpected catchpoint kind (%d)"), ex
);
13113 /* Return the condition that will be used to match the current exception
13114 being raised with the exception that the user wants to catch. This
13115 assumes that this condition is used when the inferior just triggered
13116 an exception catchpoint.
13117 EX: the type of catchpoints used for catching Ada exceptions. */
13120 ada_exception_catchpoint_cond_string (const char *excep_string
,
13121 enum ada_exception_catchpoint_kind ex
)
13124 bool is_standard_exc
= false;
13125 std::string result
;
13127 if (ex
== ada_catch_handlers
)
13129 /* For exception handlers catchpoints, the condition string does
13130 not use the same parameter as for the other exceptions. */
13131 result
= ("long_integer (GNAT_GCC_exception_Access"
13132 "(gcc_exception).all.occurrence.id)");
13135 result
= "long_integer (e)";
13137 /* The standard exceptions are a special case. They are defined in
13138 runtime units that have been compiled without debugging info; if
13139 EXCEP_STRING is the not-fully-qualified name of a standard
13140 exception (e.g. "constraint_error") then, during the evaluation
13141 of the condition expression, the symbol lookup on this name would
13142 *not* return this standard exception. The catchpoint condition
13143 may then be set only on user-defined exceptions which have the
13144 same not-fully-qualified name (e.g. my_package.constraint_error).
13146 To avoid this unexcepted behavior, these standard exceptions are
13147 systematically prefixed by "standard". This means that "catch
13148 exception constraint_error" is rewritten into "catch exception
13149 standard.constraint_error".
13151 If an exception named contraint_error is defined in another package of
13152 the inferior program, then the only way to specify this exception as a
13153 breakpoint condition is to use its fully-qualified named:
13154 e.g. my_package.constraint_error. */
13156 for (i
= 0; i
< sizeof (standard_exc
) / sizeof (char *); i
++)
13158 if (strcmp (standard_exc
[i
], excep_string
) == 0)
13160 is_standard_exc
= true;
13167 if (is_standard_exc
)
13168 string_appendf (result
, "long_integer (&standard.%s)", excep_string
);
13170 string_appendf (result
, "long_integer (&%s)", excep_string
);
13175 /* Return the symtab_and_line that should be used to insert an exception
13176 catchpoint of the TYPE kind.
13178 ADDR_STRING returns the name of the function where the real
13179 breakpoint that implements the catchpoints is set, depending on the
13180 type of catchpoint we need to create. */
13182 static struct symtab_and_line
13183 ada_exception_sal (enum ada_exception_catchpoint_kind ex
,
13184 std::string
*addr_string
, const struct breakpoint_ops
**ops
)
13186 const char *sym_name
;
13187 struct symbol
*sym
;
13189 /* First, find out which exception support info to use. */
13190 ada_exception_support_info_sniffer ();
13192 /* Then lookup the function on which we will break in order to catch
13193 the Ada exceptions requested by the user. */
13194 sym_name
= ada_exception_sym_name (ex
);
13195 sym
= standard_lookup (sym_name
, NULL
, VAR_DOMAIN
);
13198 error (_("Catchpoint symbol not found: %s"), sym_name
);
13200 if (SYMBOL_CLASS (sym
) != LOC_BLOCK
)
13201 error (_("Unable to insert catchpoint. %s is not a function."), sym_name
);
13203 /* Set ADDR_STRING. */
13204 *addr_string
= sym_name
;
13207 *ops
= ada_exception_breakpoint_ops (ex
);
13209 return find_function_start_sal (sym
, 1);
13212 /* Create an Ada exception catchpoint.
13214 EX_KIND is the kind of exception catchpoint to be created.
13216 If EXCEPT_STRING is empty, this catchpoint is expected to trigger
13217 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
13218 of the exception to which this catchpoint applies.
13220 COND_STRING, if not empty, is the catchpoint condition.
13222 TEMPFLAG, if nonzero, means that the underlying breakpoint
13223 should be temporary.
13225 FROM_TTY is the usual argument passed to all commands implementations. */
13228 create_ada_exception_catchpoint (struct gdbarch
*gdbarch
,
13229 enum ada_exception_catchpoint_kind ex_kind
,
13230 const std::string
&excep_string
,
13231 const std::string
&cond_string
,
13236 std::string addr_string
;
13237 const struct breakpoint_ops
*ops
= NULL
;
13238 struct symtab_and_line sal
= ada_exception_sal (ex_kind
, &addr_string
, &ops
);
13240 std::unique_ptr
<ada_catchpoint
> c (new ada_catchpoint ());
13241 init_ada_exception_breakpoint (c
.get (), gdbarch
, sal
, addr_string
.c_str (),
13242 ops
, tempflag
, disabled
, from_tty
);
13243 c
->excep_string
= excep_string
;
13244 create_excep_cond_exprs (c
.get (), ex_kind
);
13245 if (!cond_string
.empty ())
13246 set_breakpoint_condition (c
.get (), cond_string
.c_str (), from_tty
);
13247 install_breakpoint (0, std::move (c
), 1);
13250 /* Implement the "catch exception" command. */
13253 catch_ada_exception_command (const char *arg_entry
, int from_tty
,
13254 struct cmd_list_element
*command
)
13256 const char *arg
= arg_entry
;
13257 struct gdbarch
*gdbarch
= get_current_arch ();
13259 enum ada_exception_catchpoint_kind ex_kind
;
13260 std::string excep_string
;
13261 std::string cond_string
;
13263 tempflag
= get_cmd_context (command
) == CATCH_TEMPORARY
;
13267 catch_ada_exception_command_split (arg
, false, &ex_kind
, &excep_string
,
13269 create_ada_exception_catchpoint (gdbarch
, ex_kind
,
13270 excep_string
, cond_string
,
13271 tempflag
, 1 /* enabled */,
13275 /* Implement the "catch handlers" command. */
13278 catch_ada_handlers_command (const char *arg_entry
, int from_tty
,
13279 struct cmd_list_element
*command
)
13281 const char *arg
= arg_entry
;
13282 struct gdbarch
*gdbarch
= get_current_arch ();
13284 enum ada_exception_catchpoint_kind ex_kind
;
13285 std::string excep_string
;
13286 std::string cond_string
;
13288 tempflag
= get_cmd_context (command
) == CATCH_TEMPORARY
;
13292 catch_ada_exception_command_split (arg
, true, &ex_kind
, &excep_string
,
13294 create_ada_exception_catchpoint (gdbarch
, ex_kind
,
13295 excep_string
, cond_string
,
13296 tempflag
, 1 /* enabled */,
13300 /* Split the arguments specified in a "catch assert" command.
13302 ARGS contains the command's arguments (or the empty string if
13303 no arguments were passed).
13305 If ARGS contains a condition, set COND_STRING to that condition
13306 (the memory needs to be deallocated after use). */
13309 catch_ada_assert_command_split (const char *args
, std::string
&cond_string
)
13311 args
= skip_spaces (args
);
13313 /* Check whether a condition was provided. */
13314 if (startswith (args
, "if")
13315 && (isspace (args
[2]) || args
[2] == '\0'))
13318 args
= skip_spaces (args
);
13319 if (args
[0] == '\0')
13320 error (_("condition missing after `if' keyword"));
13321 cond_string
.assign (args
);
13324 /* Otherwise, there should be no other argument at the end of
13326 else if (args
[0] != '\0')
13327 error (_("Junk at end of arguments."));
13330 /* Implement the "catch assert" command. */
13333 catch_assert_command (const char *arg_entry
, int from_tty
,
13334 struct cmd_list_element
*command
)
13336 const char *arg
= arg_entry
;
13337 struct gdbarch
*gdbarch
= get_current_arch ();
13339 std::string cond_string
;
13341 tempflag
= get_cmd_context (command
) == CATCH_TEMPORARY
;
13345 catch_ada_assert_command_split (arg
, cond_string
);
13346 create_ada_exception_catchpoint (gdbarch
, ada_catch_assert
,
13348 tempflag
, 1 /* enabled */,
13352 /* Return non-zero if the symbol SYM is an Ada exception object. */
13355 ada_is_exception_sym (struct symbol
*sym
)
13357 const char *type_name
= TYPE_NAME (SYMBOL_TYPE (sym
));
13359 return (SYMBOL_CLASS (sym
) != LOC_TYPEDEF
13360 && SYMBOL_CLASS (sym
) != LOC_BLOCK
13361 && SYMBOL_CLASS (sym
) != LOC_CONST
13362 && SYMBOL_CLASS (sym
) != LOC_UNRESOLVED
13363 && type_name
!= NULL
&& strcmp (type_name
, "exception") == 0);
13366 /* Given a global symbol SYM, return non-zero iff SYM is a non-standard
13367 Ada exception object. This matches all exceptions except the ones
13368 defined by the Ada language. */
13371 ada_is_non_standard_exception_sym (struct symbol
*sym
)
13375 if (!ada_is_exception_sym (sym
))
13378 for (i
= 0; i
< ARRAY_SIZE (standard_exc
); i
++)
13379 if (strcmp (SYMBOL_LINKAGE_NAME (sym
), standard_exc
[i
]) == 0)
13380 return 0; /* A standard exception. */
13382 /* Numeric_Error is also a standard exception, so exclude it.
13383 See the STANDARD_EXC description for more details as to why
13384 this exception is not listed in that array. */
13385 if (strcmp (SYMBOL_LINKAGE_NAME (sym
), "numeric_error") == 0)
13391 /* A helper function for std::sort, comparing two struct ada_exc_info
13394 The comparison is determined first by exception name, and then
13395 by exception address. */
13398 ada_exc_info::operator< (const ada_exc_info
&other
) const
13402 result
= strcmp (name
, other
.name
);
13405 if (result
== 0 && addr
< other
.addr
)
13411 ada_exc_info::operator== (const ada_exc_info
&other
) const
13413 return addr
== other
.addr
&& strcmp (name
, other
.name
) == 0;
13416 /* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
13417 routine, but keeping the first SKIP elements untouched.
13419 All duplicates are also removed. */
13422 sort_remove_dups_ada_exceptions_list (std::vector
<ada_exc_info
> *exceptions
,
13425 std::sort (exceptions
->begin () + skip
, exceptions
->end ());
13426 exceptions
->erase (std::unique (exceptions
->begin () + skip
, exceptions
->end ()),
13427 exceptions
->end ());
13430 /* Add all exceptions defined by the Ada standard whose name match
13431 a regular expression.
13433 If PREG is not NULL, then this regexp_t object is used to
13434 perform the symbol name matching. Otherwise, no name-based
13435 filtering is performed.
13437 EXCEPTIONS is a vector of exceptions to which matching exceptions
13441 ada_add_standard_exceptions (compiled_regex
*preg
,
13442 std::vector
<ada_exc_info
> *exceptions
)
13446 for (i
= 0; i
< ARRAY_SIZE (standard_exc
); i
++)
13449 || preg
->exec (standard_exc
[i
], 0, NULL
, 0) == 0)
13451 struct bound_minimal_symbol msymbol
13452 = ada_lookup_simple_minsym (standard_exc
[i
]);
13454 if (msymbol
.minsym
!= NULL
)
13456 struct ada_exc_info info
13457 = {standard_exc
[i
], BMSYMBOL_VALUE_ADDRESS (msymbol
)};
13459 exceptions
->push_back (info
);
13465 /* Add all Ada exceptions defined locally and accessible from the given
13468 If PREG is not NULL, then this regexp_t object is used to
13469 perform the symbol name matching. Otherwise, no name-based
13470 filtering is performed.
13472 EXCEPTIONS is a vector of exceptions to which matching exceptions
13476 ada_add_exceptions_from_frame (compiled_regex
*preg
,
13477 struct frame_info
*frame
,
13478 std::vector
<ada_exc_info
> *exceptions
)
13480 const struct block
*block
= get_frame_block (frame
, 0);
13484 struct block_iterator iter
;
13485 struct symbol
*sym
;
13487 ALL_BLOCK_SYMBOLS (block
, iter
, sym
)
13489 switch (SYMBOL_CLASS (sym
))
13496 if (ada_is_exception_sym (sym
))
13498 struct ada_exc_info info
= {SYMBOL_PRINT_NAME (sym
),
13499 SYMBOL_VALUE_ADDRESS (sym
)};
13501 exceptions
->push_back (info
);
13505 if (BLOCK_FUNCTION (block
) != NULL
)
13507 block
= BLOCK_SUPERBLOCK (block
);
13511 /* Return true if NAME matches PREG or if PREG is NULL. */
13514 name_matches_regex (const char *name
, compiled_regex
*preg
)
13516 return (preg
== NULL
13517 || preg
->exec (ada_decode (name
), 0, NULL
, 0) == 0);
13520 /* Add all exceptions defined globally whose name name match
13521 a regular expression, excluding standard exceptions.
13523 The reason we exclude standard exceptions is that they need
13524 to be handled separately: Standard exceptions are defined inside
13525 a runtime unit which is normally not compiled with debugging info,
13526 and thus usually do not show up in our symbol search. However,
13527 if the unit was in fact built with debugging info, we need to
13528 exclude them because they would duplicate the entry we found
13529 during the special loop that specifically searches for those
13530 standard exceptions.
13532 If PREG is not NULL, then this regexp_t object is used to
13533 perform the symbol name matching. Otherwise, no name-based
13534 filtering is performed.
13536 EXCEPTIONS is a vector of exceptions to which matching exceptions
13540 ada_add_global_exceptions (compiled_regex
*preg
,
13541 std::vector
<ada_exc_info
> *exceptions
)
13543 /* In Ada, the symbol "search name" is a linkage name, whereas the
13544 regular expression used to do the matching refers to the natural
13545 name. So match against the decoded name. */
13546 expand_symtabs_matching (NULL
,
13547 lookup_name_info::match_any (),
13548 [&] (const char *search_name
)
13550 const char *decoded
= ada_decode (search_name
);
13551 return name_matches_regex (decoded
, preg
);
13556 for (objfile
*objfile
: current_program_space
->objfiles ())
13558 for (compunit_symtab
*s
: objfile
->compunits ())
13560 const struct blockvector
*bv
= COMPUNIT_BLOCKVECTOR (s
);
13563 for (i
= GLOBAL_BLOCK
; i
<= STATIC_BLOCK
; i
++)
13565 const struct block
*b
= BLOCKVECTOR_BLOCK (bv
, i
);
13566 struct block_iterator iter
;
13567 struct symbol
*sym
;
13569 ALL_BLOCK_SYMBOLS (b
, iter
, sym
)
13570 if (ada_is_non_standard_exception_sym (sym
)
13571 && name_matches_regex (SYMBOL_NATURAL_NAME (sym
), preg
))
13573 struct ada_exc_info info
13574 = {SYMBOL_PRINT_NAME (sym
), SYMBOL_VALUE_ADDRESS (sym
)};
13576 exceptions
->push_back (info
);
13583 /* Implements ada_exceptions_list with the regular expression passed
13584 as a regex_t, rather than a string.
13586 If not NULL, PREG is used to filter out exceptions whose names
13587 do not match. Otherwise, all exceptions are listed. */
13589 static std::vector
<ada_exc_info
>
13590 ada_exceptions_list_1 (compiled_regex
*preg
)
13592 std::vector
<ada_exc_info
> result
;
13595 /* First, list the known standard exceptions. These exceptions
13596 need to be handled separately, as they are usually defined in
13597 runtime units that have been compiled without debugging info. */
13599 ada_add_standard_exceptions (preg
, &result
);
13601 /* Next, find all exceptions whose scope is local and accessible
13602 from the currently selected frame. */
13604 if (has_stack_frames ())
13606 prev_len
= result
.size ();
13607 ada_add_exceptions_from_frame (preg
, get_selected_frame (NULL
),
13609 if (result
.size () > prev_len
)
13610 sort_remove_dups_ada_exceptions_list (&result
, prev_len
);
13613 /* Add all exceptions whose scope is global. */
13615 prev_len
= result
.size ();
13616 ada_add_global_exceptions (preg
, &result
);
13617 if (result
.size () > prev_len
)
13618 sort_remove_dups_ada_exceptions_list (&result
, prev_len
);
13623 /* Return a vector of ada_exc_info.
13625 If REGEXP is NULL, all exceptions are included in the result.
13626 Otherwise, it should contain a valid regular expression,
13627 and only the exceptions whose names match that regular expression
13628 are included in the result.
13630 The exceptions are sorted in the following order:
13631 - Standard exceptions (defined by the Ada language), in
13632 alphabetical order;
13633 - Exceptions only visible from the current frame, in
13634 alphabetical order;
13635 - Exceptions whose scope is global, in alphabetical order. */
13637 std::vector
<ada_exc_info
>
13638 ada_exceptions_list (const char *regexp
)
13640 if (regexp
== NULL
)
13641 return ada_exceptions_list_1 (NULL
);
13643 compiled_regex
reg (regexp
, REG_NOSUB
, _("invalid regular expression"));
13644 return ada_exceptions_list_1 (®
);
13647 /* Implement the "info exceptions" command. */
13650 info_exceptions_command (const char *regexp
, int from_tty
)
13652 struct gdbarch
*gdbarch
= get_current_arch ();
13654 std::vector
<ada_exc_info
> exceptions
= ada_exceptions_list (regexp
);
13656 if (regexp
!= NULL
)
13658 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp
);
13660 printf_filtered (_("All defined Ada exceptions:\n"));
13662 for (const ada_exc_info
&info
: exceptions
)
13663 printf_filtered ("%s: %s\n", info
.name
, paddress (gdbarch
, info
.addr
));
13667 /* Information about operators given special treatment in functions
13669 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
13671 #define ADA_OPERATORS \
13672 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
13673 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
13674 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
13675 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
13676 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
13677 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
13678 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
13679 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
13680 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
13681 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
13682 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
13683 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
13684 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
13685 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
13686 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
13687 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
13688 OP_DEFN (OP_OTHERS, 1, 1, 0) \
13689 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
13690 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
13693 ada_operator_length (const struct expression
*exp
, int pc
, int *oplenp
,
13696 switch (exp
->elts
[pc
- 1].opcode
)
13699 operator_length_standard (exp
, pc
, oplenp
, argsp
);
13702 #define OP_DEFN(op, len, args, binop) \
13703 case op: *oplenp = len; *argsp = args; break;
13709 *argsp
= longest_to_int (exp
->elts
[pc
- 2].longconst
);
13714 *argsp
= longest_to_int (exp
->elts
[pc
- 2].longconst
) + 1;
13719 /* Implementation of the exp_descriptor method operator_check. */
13722 ada_operator_check (struct expression
*exp
, int pos
,
13723 int (*objfile_func
) (struct objfile
*objfile
, void *data
),
13726 const union exp_element
*const elts
= exp
->elts
;
13727 struct type
*type
= NULL
;
13729 switch (elts
[pos
].opcode
)
13731 case UNOP_IN_RANGE
:
13733 type
= elts
[pos
+ 1].type
;
13737 return operator_check_standard (exp
, pos
, objfile_func
, data
);
13740 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
13742 if (type
&& TYPE_OBJFILE (type
)
13743 && (*objfile_func
) (TYPE_OBJFILE (type
), data
))
13749 static const char *
13750 ada_op_name (enum exp_opcode opcode
)
13755 return op_name_standard (opcode
);
13757 #define OP_DEFN(op, len, args, binop) case op: return #op;
13762 return "OP_AGGREGATE";
13764 return "OP_CHOICES";
13770 /* As for operator_length, but assumes PC is pointing at the first
13771 element of the operator, and gives meaningful results only for the
13772 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
13775 ada_forward_operator_length (struct expression
*exp
, int pc
,
13776 int *oplenp
, int *argsp
)
13778 switch (exp
->elts
[pc
].opcode
)
13781 *oplenp
= *argsp
= 0;
13784 #define OP_DEFN(op, len, args, binop) \
13785 case op: *oplenp = len; *argsp = args; break;
13791 *argsp
= longest_to_int (exp
->elts
[pc
+ 1].longconst
);
13796 *argsp
= longest_to_int (exp
->elts
[pc
+ 1].longconst
) + 1;
13802 int len
= longest_to_int (exp
->elts
[pc
+ 1].longconst
);
13804 *oplenp
= 4 + BYTES_TO_EXP_ELEM (len
+ 1);
13812 ada_dump_subexp_body (struct expression
*exp
, struct ui_file
*stream
, int elt
)
13814 enum exp_opcode op
= exp
->elts
[elt
].opcode
;
13819 ada_forward_operator_length (exp
, elt
, &oplen
, &nargs
);
13823 /* Ada attributes ('Foo). */
13826 case OP_ATR_LENGTH
:
13830 case OP_ATR_MODULUS
:
13837 case UNOP_IN_RANGE
:
13839 /* XXX: gdb_sprint_host_address, type_sprint */
13840 fprintf_filtered (stream
, _("Type @"));
13841 gdb_print_host_address (exp
->elts
[pc
+ 1].type
, stream
);
13842 fprintf_filtered (stream
, " (");
13843 type_print (exp
->elts
[pc
+ 1].type
, NULL
, stream
, 0);
13844 fprintf_filtered (stream
, ")");
13846 case BINOP_IN_BOUNDS
:
13847 fprintf_filtered (stream
, " (%d)",
13848 longest_to_int (exp
->elts
[pc
+ 2].longconst
));
13850 case TERNOP_IN_RANGE
:
13855 case OP_DISCRETE_RANGE
:
13856 case OP_POSITIONAL
:
13863 char *name
= &exp
->elts
[elt
+ 2].string
;
13864 int len
= longest_to_int (exp
->elts
[elt
+ 1].longconst
);
13866 fprintf_filtered (stream
, "Text: `%.*s'", len
, name
);
13871 return dump_subexp_body_standard (exp
, stream
, elt
);
13875 for (i
= 0; i
< nargs
; i
+= 1)
13876 elt
= dump_subexp (exp
, stream
, elt
);
13881 /* The Ada extension of print_subexp (q.v.). */
13884 ada_print_subexp (struct expression
*exp
, int *pos
,
13885 struct ui_file
*stream
, enum precedence prec
)
13887 int oplen
, nargs
, i
;
13889 enum exp_opcode op
= exp
->elts
[pc
].opcode
;
13891 ada_forward_operator_length (exp
, pc
, &oplen
, &nargs
);
13898 print_subexp_standard (exp
, pos
, stream
, prec
);
13902 fputs_filtered (SYMBOL_NATURAL_NAME (exp
->elts
[pc
+ 2].symbol
), stream
);
13905 case BINOP_IN_BOUNDS
:
13906 /* XXX: sprint_subexp */
13907 print_subexp (exp
, pos
, stream
, PREC_SUFFIX
);
13908 fputs_filtered (" in ", stream
);
13909 print_subexp (exp
, pos
, stream
, PREC_SUFFIX
);
13910 fputs_filtered ("'range", stream
);
13911 if (exp
->elts
[pc
+ 1].longconst
> 1)
13912 fprintf_filtered (stream
, "(%ld)",
13913 (long) exp
->elts
[pc
+ 1].longconst
);
13916 case TERNOP_IN_RANGE
:
13917 if (prec
>= PREC_EQUAL
)
13918 fputs_filtered ("(", stream
);
13919 /* XXX: sprint_subexp */
13920 print_subexp (exp
, pos
, stream
, PREC_SUFFIX
);
13921 fputs_filtered (" in ", stream
);
13922 print_subexp (exp
, pos
, stream
, PREC_EQUAL
);
13923 fputs_filtered (" .. ", stream
);
13924 print_subexp (exp
, pos
, stream
, PREC_EQUAL
);
13925 if (prec
>= PREC_EQUAL
)
13926 fputs_filtered (")", stream
);
13931 case OP_ATR_LENGTH
:
13935 case OP_ATR_MODULUS
:
13940 if (exp
->elts
[*pos
].opcode
== OP_TYPE
)
13942 if (TYPE_CODE (exp
->elts
[*pos
+ 1].type
) != TYPE_CODE_VOID
)
13943 LA_PRINT_TYPE (exp
->elts
[*pos
+ 1].type
, "", stream
, 0, 0,
13944 &type_print_raw_options
);
13948 print_subexp (exp
, pos
, stream
, PREC_SUFFIX
);
13949 fprintf_filtered (stream
, "'%s", ada_attribute_name (op
));
13954 for (tem
= 1; tem
< nargs
; tem
+= 1)
13956 fputs_filtered ((tem
== 1) ? " (" : ", ", stream
);
13957 print_subexp (exp
, pos
, stream
, PREC_ABOVE_COMMA
);
13959 fputs_filtered (")", stream
);
13964 type_print (exp
->elts
[pc
+ 1].type
, "", stream
, 0);
13965 fputs_filtered ("'(", stream
);
13966 print_subexp (exp
, pos
, stream
, PREC_PREFIX
);
13967 fputs_filtered (")", stream
);
13970 case UNOP_IN_RANGE
:
13971 /* XXX: sprint_subexp */
13972 print_subexp (exp
, pos
, stream
, PREC_SUFFIX
);
13973 fputs_filtered (" in ", stream
);
13974 LA_PRINT_TYPE (exp
->elts
[pc
+ 1].type
, "", stream
, 1, 0,
13975 &type_print_raw_options
);
13978 case OP_DISCRETE_RANGE
:
13979 print_subexp (exp
, pos
, stream
, PREC_SUFFIX
);
13980 fputs_filtered ("..", stream
);
13981 print_subexp (exp
, pos
, stream
, PREC_SUFFIX
);
13985 fputs_filtered ("others => ", stream
);
13986 print_subexp (exp
, pos
, stream
, PREC_SUFFIX
);
13990 for (i
= 0; i
< nargs
-1; i
+= 1)
13993 fputs_filtered ("|", stream
);
13994 print_subexp (exp
, pos
, stream
, PREC_SUFFIX
);
13996 fputs_filtered (" => ", stream
);
13997 print_subexp (exp
, pos
, stream
, PREC_SUFFIX
);
14000 case OP_POSITIONAL
:
14001 print_subexp (exp
, pos
, stream
, PREC_SUFFIX
);
14005 fputs_filtered ("(", stream
);
14006 for (i
= 0; i
< nargs
; i
+= 1)
14009 fputs_filtered (", ", stream
);
14010 print_subexp (exp
, pos
, stream
, PREC_SUFFIX
);
14012 fputs_filtered (")", stream
);
14017 /* Table mapping opcodes into strings for printing operators
14018 and precedences of the operators. */
14020 static const struct op_print ada_op_print_tab
[] = {
14021 {":=", BINOP_ASSIGN
, PREC_ASSIGN
, 1},
14022 {"or else", BINOP_LOGICAL_OR
, PREC_LOGICAL_OR
, 0},
14023 {"and then", BINOP_LOGICAL_AND
, PREC_LOGICAL_AND
, 0},
14024 {"or", BINOP_BITWISE_IOR
, PREC_BITWISE_IOR
, 0},
14025 {"xor", BINOP_BITWISE_XOR
, PREC_BITWISE_XOR
, 0},
14026 {"and", BINOP_BITWISE_AND
, PREC_BITWISE_AND
, 0},
14027 {"=", BINOP_EQUAL
, PREC_EQUAL
, 0},
14028 {"/=", BINOP_NOTEQUAL
, PREC_EQUAL
, 0},
14029 {"<=", BINOP_LEQ
, PREC_ORDER
, 0},
14030 {">=", BINOP_GEQ
, PREC_ORDER
, 0},
14031 {">", BINOP_GTR
, PREC_ORDER
, 0},
14032 {"<", BINOP_LESS
, PREC_ORDER
, 0},
14033 {">>", BINOP_RSH
, PREC_SHIFT
, 0},
14034 {"<<", BINOP_LSH
, PREC_SHIFT
, 0},
14035 {"+", BINOP_ADD
, PREC_ADD
, 0},
14036 {"-", BINOP_SUB
, PREC_ADD
, 0},
14037 {"&", BINOP_CONCAT
, PREC_ADD
, 0},
14038 {"*", BINOP_MUL
, PREC_MUL
, 0},
14039 {"/", BINOP_DIV
, PREC_MUL
, 0},
14040 {"rem", BINOP_REM
, PREC_MUL
, 0},
14041 {"mod", BINOP_MOD
, PREC_MUL
, 0},
14042 {"**", BINOP_EXP
, PREC_REPEAT
, 0},
14043 {"@", BINOP_REPEAT
, PREC_REPEAT
, 0},
14044 {"-", UNOP_NEG
, PREC_PREFIX
, 0},
14045 {"+", UNOP_PLUS
, PREC_PREFIX
, 0},
14046 {"not ", UNOP_LOGICAL_NOT
, PREC_PREFIX
, 0},
14047 {"not ", UNOP_COMPLEMENT
, PREC_PREFIX
, 0},
14048 {"abs ", UNOP_ABS
, PREC_PREFIX
, 0},
14049 {".all", UNOP_IND
, PREC_SUFFIX
, 1},
14050 {"'access", UNOP_ADDR
, PREC_SUFFIX
, 1},
14051 {"'size", OP_ATR_SIZE
, PREC_SUFFIX
, 1},
14052 {NULL
, OP_NULL
, PREC_SUFFIX
, 0}
14055 enum ada_primitive_types
{
14056 ada_primitive_type_int
,
14057 ada_primitive_type_long
,
14058 ada_primitive_type_short
,
14059 ada_primitive_type_char
,
14060 ada_primitive_type_float
,
14061 ada_primitive_type_double
,
14062 ada_primitive_type_void
,
14063 ada_primitive_type_long_long
,
14064 ada_primitive_type_long_double
,
14065 ada_primitive_type_natural
,
14066 ada_primitive_type_positive
,
14067 ada_primitive_type_system_address
,
14068 ada_primitive_type_storage_offset
,
14069 nr_ada_primitive_types
14073 ada_language_arch_info (struct gdbarch
*gdbarch
,
14074 struct language_arch_info
*lai
)
14076 const struct builtin_type
*builtin
= builtin_type (gdbarch
);
14078 lai
->primitive_type_vector
14079 = GDBARCH_OBSTACK_CALLOC (gdbarch
, nr_ada_primitive_types
+ 1,
14082 lai
->primitive_type_vector
[ada_primitive_type_int
]
14083 = arch_integer_type (gdbarch
, gdbarch_int_bit (gdbarch
),
14085 lai
->primitive_type_vector
[ada_primitive_type_long
]
14086 = arch_integer_type (gdbarch
, gdbarch_long_bit (gdbarch
),
14087 0, "long_integer");
14088 lai
->primitive_type_vector
[ada_primitive_type_short
]
14089 = arch_integer_type (gdbarch
, gdbarch_short_bit (gdbarch
),
14090 0, "short_integer");
14091 lai
->string_char_type
14092 = lai
->primitive_type_vector
[ada_primitive_type_char
]
14093 = arch_character_type (gdbarch
, TARGET_CHAR_BIT
, 0, "character");
14094 lai
->primitive_type_vector
[ada_primitive_type_float
]
14095 = arch_float_type (gdbarch
, gdbarch_float_bit (gdbarch
),
14096 "float", gdbarch_float_format (gdbarch
));
14097 lai
->primitive_type_vector
[ada_primitive_type_double
]
14098 = arch_float_type (gdbarch
, gdbarch_double_bit (gdbarch
),
14099 "long_float", gdbarch_double_format (gdbarch
));
14100 lai
->primitive_type_vector
[ada_primitive_type_long_long
]
14101 = arch_integer_type (gdbarch
, gdbarch_long_long_bit (gdbarch
),
14102 0, "long_long_integer");
14103 lai
->primitive_type_vector
[ada_primitive_type_long_double
]
14104 = arch_float_type (gdbarch
, gdbarch_long_double_bit (gdbarch
),
14105 "long_long_float", gdbarch_long_double_format (gdbarch
));
14106 lai
->primitive_type_vector
[ada_primitive_type_natural
]
14107 = arch_integer_type (gdbarch
, gdbarch_int_bit (gdbarch
),
14109 lai
->primitive_type_vector
[ada_primitive_type_positive
]
14110 = arch_integer_type (gdbarch
, gdbarch_int_bit (gdbarch
),
14112 lai
->primitive_type_vector
[ada_primitive_type_void
]
14113 = builtin
->builtin_void
;
14115 lai
->primitive_type_vector
[ada_primitive_type_system_address
]
14116 = lookup_pointer_type (arch_type (gdbarch
, TYPE_CODE_VOID
, TARGET_CHAR_BIT
,
14118 TYPE_NAME (lai
->primitive_type_vector
[ada_primitive_type_system_address
])
14119 = "system__address";
14121 /* Create the equivalent of the System.Storage_Elements.Storage_Offset
14122 type. This is a signed integral type whose size is the same as
14123 the size of addresses. */
14125 unsigned int addr_length
= TYPE_LENGTH
14126 (lai
->primitive_type_vector
[ada_primitive_type_system_address
]);
14128 lai
->primitive_type_vector
[ada_primitive_type_storage_offset
]
14129 = arch_integer_type (gdbarch
, addr_length
* HOST_CHAR_BIT
, 0,
14133 lai
->bool_type_symbol
= NULL
;
14134 lai
->bool_type_default
= builtin
->builtin_bool
;
14137 /* Language vector */
14139 /* Not really used, but needed in the ada_language_defn. */
14142 emit_char (int c
, struct type
*type
, struct ui_file
*stream
, int quoter
)
14144 ada_emit_char (c
, type
, stream
, quoter
, 1);
14148 parse (struct parser_state
*ps
)
14150 warnings_issued
= 0;
14151 return ada_parse (ps
);
14154 static const struct exp_descriptor ada_exp_descriptor
= {
14156 ada_operator_length
,
14157 ada_operator_check
,
14159 ada_dump_subexp_body
,
14160 ada_evaluate_subexp
14163 /* symbol_name_matcher_ftype adapter for wild_match. */
14166 do_wild_match (const char *symbol_search_name
,
14167 const lookup_name_info
&lookup_name
,
14168 completion_match_result
*comp_match_res
)
14170 return wild_match (symbol_search_name
, ada_lookup_name (lookup_name
));
14173 /* symbol_name_matcher_ftype adapter for full_match. */
14176 do_full_match (const char *symbol_search_name
,
14177 const lookup_name_info
&lookup_name
,
14178 completion_match_result
*comp_match_res
)
14180 return full_match (symbol_search_name
, ada_lookup_name (lookup_name
));
14183 /* symbol_name_matcher_ftype for exact (verbatim) matches. */
14186 do_exact_match (const char *symbol_search_name
,
14187 const lookup_name_info
&lookup_name
,
14188 completion_match_result
*comp_match_res
)
14190 return strcmp (symbol_search_name
, ada_lookup_name (lookup_name
)) == 0;
14193 /* Build the Ada lookup name for LOOKUP_NAME. */
14195 ada_lookup_name_info::ada_lookup_name_info (const lookup_name_info
&lookup_name
)
14197 const std::string
&user_name
= lookup_name
.name ();
14199 if (user_name
[0] == '<')
14201 if (user_name
.back () == '>')
14202 m_encoded_name
= user_name
.substr (1, user_name
.size () - 2);
14204 m_encoded_name
= user_name
.substr (1, user_name
.size () - 1);
14205 m_encoded_p
= true;
14206 m_verbatim_p
= true;
14207 m_wild_match_p
= false;
14208 m_standard_p
= false;
14212 m_verbatim_p
= false;
14214 m_encoded_p
= user_name
.find ("__") != std::string::npos
;
14218 const char *folded
= ada_fold_name (user_name
.c_str ());
14219 const char *encoded
= ada_encode_1 (folded
, false);
14220 if (encoded
!= NULL
)
14221 m_encoded_name
= encoded
;
14223 m_encoded_name
= user_name
;
14226 m_encoded_name
= user_name
;
14228 /* Handle the 'package Standard' special case. See description
14229 of m_standard_p. */
14230 if (startswith (m_encoded_name
.c_str (), "standard__"))
14232 m_encoded_name
= m_encoded_name
.substr (sizeof ("standard__") - 1);
14233 m_standard_p
= true;
14236 m_standard_p
= false;
14238 /* If the name contains a ".", then the user is entering a fully
14239 qualified entity name, and the match must not be done in wild
14240 mode. Similarly, if the user wants to complete what looks
14241 like an encoded name, the match must not be done in wild
14242 mode. Also, in the standard__ special case always do
14243 non-wild matching. */
14245 = (lookup_name
.match_type () != symbol_name_match_type::FULL
14248 && user_name
.find ('.') == std::string::npos
);
14252 /* symbol_name_matcher_ftype method for Ada. This only handles
14253 completion mode. */
14256 ada_symbol_name_matches (const char *symbol_search_name
,
14257 const lookup_name_info
&lookup_name
,
14258 completion_match_result
*comp_match_res
)
14260 return lookup_name
.ada ().matches (symbol_search_name
,
14261 lookup_name
.match_type (),
14265 /* A name matcher that matches the symbol name exactly, with
14269 literal_symbol_name_matcher (const char *symbol_search_name
,
14270 const lookup_name_info
&lookup_name
,
14271 completion_match_result
*comp_match_res
)
14273 const std::string
&name
= lookup_name
.name ();
14275 int cmp
= (lookup_name
.completion_mode ()
14276 ? strncmp (symbol_search_name
, name
.c_str (), name
.size ())
14277 : strcmp (symbol_search_name
, name
.c_str ()));
14280 if (comp_match_res
!= NULL
)
14281 comp_match_res
->set_match (symbol_search_name
);
14288 /* Implement the "la_get_symbol_name_matcher" language_defn method for
14291 static symbol_name_matcher_ftype
*
14292 ada_get_symbol_name_matcher (const lookup_name_info
&lookup_name
)
14294 if (lookup_name
.match_type () == symbol_name_match_type::SEARCH_NAME
)
14295 return literal_symbol_name_matcher
;
14297 if (lookup_name
.completion_mode ())
14298 return ada_symbol_name_matches
;
14301 if (lookup_name
.ada ().wild_match_p ())
14302 return do_wild_match
;
14303 else if (lookup_name
.ada ().verbatim_p ())
14304 return do_exact_match
;
14306 return do_full_match
;
14310 /* Implement the "la_read_var_value" language_defn method for Ada. */
14312 static struct value
*
14313 ada_read_var_value (struct symbol
*var
, const struct block
*var_block
,
14314 struct frame_info
*frame
)
14316 const struct block
*frame_block
= NULL
;
14317 struct symbol
*renaming_sym
= NULL
;
14319 /* The only case where default_read_var_value is not sufficient
14320 is when VAR is a renaming... */
14322 frame_block
= get_frame_block (frame
, NULL
);
14324 renaming_sym
= ada_find_renaming_symbol (var
, frame_block
);
14325 if (renaming_sym
!= NULL
)
14326 return ada_read_renaming_var_value (renaming_sym
, frame_block
);
14328 /* This is a typical case where we expect the default_read_var_value
14329 function to work. */
14330 return default_read_var_value (var
, var_block
, frame
);
14333 static const char *ada_extensions
[] =
14335 ".adb", ".ads", ".a", ".ada", ".dg", NULL
14338 extern const struct language_defn ada_language_defn
= {
14339 "ada", /* Language name */
14343 case_sensitive_on
, /* Yes, Ada is case-insensitive, but
14344 that's not quite what this means. */
14346 macro_expansion_no
,
14348 &ada_exp_descriptor
,
14351 ada_printchar
, /* Print a character constant */
14352 ada_printstr
, /* Function to print string constant */
14353 emit_char
, /* Function to print single char (not used) */
14354 ada_print_type
, /* Print a type using appropriate syntax */
14355 ada_print_typedef
, /* Print a typedef using appropriate syntax */
14356 ada_val_print
, /* Print a value using appropriate syntax */
14357 ada_value_print
, /* Print a top-level value */
14358 ada_read_var_value
, /* la_read_var_value */
14359 NULL
, /* Language specific skip_trampoline */
14360 NULL
, /* name_of_this */
14361 true, /* la_store_sym_names_in_linkage_form_p */
14362 ada_lookup_symbol_nonlocal
, /* Looking up non-local symbols. */
14363 basic_lookup_transparent_type
, /* lookup_transparent_type */
14364 ada_la_decode
, /* Language specific symbol demangler */
14365 ada_sniff_from_mangled_name
,
14366 NULL
, /* Language specific
14367 class_name_from_physname */
14368 ada_op_print_tab
, /* expression operators for printing */
14369 0, /* c-style arrays */
14370 1, /* String lower bound */
14371 ada_get_gdb_completer_word_break_characters
,
14372 ada_collect_symbol_completion_matches
,
14373 ada_language_arch_info
,
14374 ada_print_array_index
,
14375 default_pass_by_reference
,
14377 ada_watch_location_expression
,
14378 ada_get_symbol_name_matcher
, /* la_get_symbol_name_matcher */
14379 ada_iterate_over_symbols
,
14380 default_search_name_hash
,
14386 /* Command-list for the "set/show ada" prefix command. */
14387 static struct cmd_list_element
*set_ada_list
;
14388 static struct cmd_list_element
*show_ada_list
;
14390 /* Implement the "set ada" prefix command. */
14393 set_ada_command (const char *arg
, int from_tty
)
14395 printf_unfiltered (_(\
14396 "\"set ada\" must be followed by the name of a setting.\n"));
14397 help_list (set_ada_list
, "set ada ", all_commands
, gdb_stdout
);
14400 /* Implement the "show ada" prefix command. */
14403 show_ada_command (const char *args
, int from_tty
)
14405 cmd_show_list (show_ada_list
, from_tty
, "");
14409 initialize_ada_catchpoint_ops (void)
14411 struct breakpoint_ops
*ops
;
14413 initialize_breakpoint_ops ();
14415 ops
= &catch_exception_breakpoint_ops
;
14416 *ops
= bkpt_breakpoint_ops
;
14417 ops
->allocate_location
= allocate_location_catch_exception
;
14418 ops
->re_set
= re_set_catch_exception
;
14419 ops
->check_status
= check_status_catch_exception
;
14420 ops
->print_it
= print_it_catch_exception
;
14421 ops
->print_one
= print_one_catch_exception
;
14422 ops
->print_mention
= print_mention_catch_exception
;
14423 ops
->print_recreate
= print_recreate_catch_exception
;
14425 ops
= &catch_exception_unhandled_breakpoint_ops
;
14426 *ops
= bkpt_breakpoint_ops
;
14427 ops
->allocate_location
= allocate_location_catch_exception_unhandled
;
14428 ops
->re_set
= re_set_catch_exception_unhandled
;
14429 ops
->check_status
= check_status_catch_exception_unhandled
;
14430 ops
->print_it
= print_it_catch_exception_unhandled
;
14431 ops
->print_one
= print_one_catch_exception_unhandled
;
14432 ops
->print_mention
= print_mention_catch_exception_unhandled
;
14433 ops
->print_recreate
= print_recreate_catch_exception_unhandled
;
14435 ops
= &catch_assert_breakpoint_ops
;
14436 *ops
= bkpt_breakpoint_ops
;
14437 ops
->allocate_location
= allocate_location_catch_assert
;
14438 ops
->re_set
= re_set_catch_assert
;
14439 ops
->check_status
= check_status_catch_assert
;
14440 ops
->print_it
= print_it_catch_assert
;
14441 ops
->print_one
= print_one_catch_assert
;
14442 ops
->print_mention
= print_mention_catch_assert
;
14443 ops
->print_recreate
= print_recreate_catch_assert
;
14445 ops
= &catch_handlers_breakpoint_ops
;
14446 *ops
= bkpt_breakpoint_ops
;
14447 ops
->allocate_location
= allocate_location_catch_handlers
;
14448 ops
->re_set
= re_set_catch_handlers
;
14449 ops
->check_status
= check_status_catch_handlers
;
14450 ops
->print_it
= print_it_catch_handlers
;
14451 ops
->print_one
= print_one_catch_handlers
;
14452 ops
->print_mention
= print_mention_catch_handlers
;
14453 ops
->print_recreate
= print_recreate_catch_handlers
;
14456 /* This module's 'new_objfile' observer. */
14459 ada_new_objfile_observer (struct objfile
*objfile
)
14461 ada_clear_symbol_cache ();
14464 /* This module's 'free_objfile' observer. */
14467 ada_free_objfile_observer (struct objfile
*objfile
)
14469 ada_clear_symbol_cache ();
14473 _initialize_ada_language (void)
14475 initialize_ada_catchpoint_ops ();
14477 add_prefix_cmd ("ada", no_class
, set_ada_command
,
14478 _("Prefix command for changing Ada-specific settings"),
14479 &set_ada_list
, "set ada ", 0, &setlist
);
14481 add_prefix_cmd ("ada", no_class
, show_ada_command
,
14482 _("Generic command for showing Ada-specific settings."),
14483 &show_ada_list
, "show ada ", 0, &showlist
);
14485 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure
,
14486 &trust_pad_over_xvs
, _("\
14487 Enable or disable an optimization trusting PAD types over XVS types"), _("\
14488 Show whether an optimization trusting PAD types over XVS types is activated"),
14490 This is related to the encoding used by the GNAT compiler. The debugger\n\
14491 should normally trust the contents of PAD types, but certain older versions\n\
14492 of GNAT have a bug that sometimes causes the information in the PAD type\n\
14493 to be incorrect. Turning this setting \"off\" allows the debugger to\n\
14494 work around this bug. It is always safe to turn this option \"off\", but\n\
14495 this incurs a slight performance penalty, so it is recommended to NOT change\n\
14496 this option to \"off\" unless necessary."),
14497 NULL
, NULL
, &set_ada_list
, &show_ada_list
);
14499 add_setshow_boolean_cmd ("print-signatures", class_vars
,
14500 &print_signatures
, _("\
14501 Enable or disable the output of formal and return types for functions in the \
14502 overloads selection menu"), _("\
14503 Show whether the output of formal and return types for functions in the \
14504 overloads selection menu is activated"),
14505 NULL
, NULL
, NULL
, &set_ada_list
, &show_ada_list
);
14507 add_catch_command ("exception", _("\
14508 Catch Ada exceptions, when raised.\n\
14509 Usage: catch exception [ ARG ]\n\
14511 Without any argument, stop when any Ada exception is raised.\n\
14512 If ARG is \"unhandled\" (without the quotes), only stop when the exception\n\
14513 being raised does not have a handler (and will therefore lead to the task's\n\
14515 Otherwise, the catchpoint only stops when the name of the exception being\n\
14516 raised is the same as ARG."),
14517 catch_ada_exception_command
,
14522 add_catch_command ("handlers", _("\
14523 Catch Ada exceptions, when handled.\n\
14524 With an argument, catch only exceptions with the given name."),
14525 catch_ada_handlers_command
,
14529 add_catch_command ("assert", _("\
14530 Catch failed Ada assertions, when raised.\n\
14531 With an argument, catch only exceptions with the given name."),
14532 catch_assert_command
,
14537 varsize_limit
= 65536;
14538 add_setshow_uinteger_cmd ("varsize-limit", class_support
,
14539 &varsize_limit
, _("\
14540 Set the maximum number of bytes allowed in a variable-size object."), _("\
14541 Show the maximum number of bytes allowed in a variable-size object."), _("\
14542 Attempts to access an object whose size is not a compile-time constant\n\
14543 and exceeds this limit will cause an error."),
14544 NULL
, NULL
, &setlist
, &showlist
);
14546 add_info ("exceptions", info_exceptions_command
,
14548 List all Ada exception names.\n\
14549 If a regular expression is passed as an argument, only those matching\n\
14550 the regular expression are listed."));
14552 add_prefix_cmd ("ada", class_maintenance
, maint_set_ada_cmd
,
14553 _("Set Ada maintenance-related variables."),
14554 &maint_set_ada_cmdlist
, "maintenance set ada ",
14555 0/*allow-unknown*/, &maintenance_set_cmdlist
);
14557 add_prefix_cmd ("ada", class_maintenance
, maint_show_ada_cmd
,
14558 _("Show Ada maintenance-related variables"),
14559 &maint_show_ada_cmdlist
, "maintenance show ada ",
14560 0/*allow-unknown*/, &maintenance_show_cmdlist
);
14562 add_setshow_boolean_cmd
14563 ("ignore-descriptive-types", class_maintenance
,
14564 &ada_ignore_descriptive_types_p
,
14565 _("Set whether descriptive types generated by GNAT should be ignored."),
14566 _("Show whether descriptive types generated by GNAT should be ignored."),
14568 When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
14569 DWARF attribute."),
14570 NULL
, NULL
, &maint_set_ada_cmdlist
, &maint_show_ada_cmdlist
);
14572 decoded_names_store
= htab_create_alloc (256, htab_hash_string
, streq_hash
,
14573 NULL
, xcalloc
, xfree
);
14575 /* The ada-lang observers. */
14576 gdb::observers::new_objfile
.attach (ada_new_objfile_observer
);
14577 gdb::observers::free_objfile
.attach (ada_free_objfile_observer
);
14578 gdb::observers::inferior_exit
.attach (ada_inferior_exit
);
14580 /* Setup various context-specific data. */
14582 = register_inferior_data_with_cleanup (NULL
, ada_inferior_data_cleanup
);
14583 ada_pspace_data_handle
14584 = register_program_space_data_with_cleanup (NULL
, ada_pspace_data_cleanup
);