Document the GDB 7.11 release in gdb/ChangeLog
[binutils-gdb.git] / libiberty / floatformat.c
blob9190e1469d9fdf4587a5ed600197489a684148d9
1 /* IEEE floating point support routines, for GDB, the GNU Debugger.
2 Copyright 1991, 1994, 1999, 2000, 2003, 2005, 2006, 2010, 2012, 2015
3 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
21 /* This is needed to pick up the NAN macro on some systems. */
22 #ifndef _GNU_SOURCE
23 #define _GNU_SOURCE
24 #endif
26 #ifdef HAVE_CONFIG_H
27 #include "config.h"
28 #endif
30 #include <math.h>
32 #ifdef HAVE_STRING_H
33 #include <string.h>
34 #endif
36 /* On some platforms, <float.h> provides DBL_QNAN. */
37 #ifdef STDC_HEADERS
38 #include <float.h>
39 #endif
41 #include "ansidecl.h"
42 #include "libiberty.h"
43 #include "floatformat.h"
45 #ifndef INFINITY
46 #ifdef HUGE_VAL
47 #define INFINITY HUGE_VAL
48 #else
49 #define INFINITY (1.0 / 0.0)
50 #endif
51 #endif
53 #ifndef NAN
54 #ifdef DBL_QNAN
55 #define NAN DBL_QNAN
56 #else
57 #define NAN (0.0 / 0.0)
58 #endif
59 #endif
61 static int mant_bits_set (const struct floatformat *, const unsigned char *);
62 static unsigned long get_field (const unsigned char *,
63 enum floatformat_byteorders,
64 unsigned int,
65 unsigned int,
66 unsigned int);
67 static int floatformat_always_valid (const struct floatformat *fmt,
68 const void *from);
70 static int
71 floatformat_always_valid (const struct floatformat *fmt ATTRIBUTE_UNUSED,
72 const void *from ATTRIBUTE_UNUSED)
74 return 1;
77 /* The odds that CHAR_BIT will be anything but 8 are low enough that I'm not
78 going to bother with trying to muck around with whether it is defined in
79 a system header, what we do if not, etc. */
80 #define FLOATFORMAT_CHAR_BIT 8
82 /* floatformats for IEEE half, single and double, big and little endian. */
83 const struct floatformat floatformat_ieee_half_big =
85 floatformat_big, 16, 0, 1, 5, 15, 31, 6, 10,
86 floatformat_intbit_no,
87 "floatformat_ieee_half_big",
88 floatformat_always_valid,
89 NULL
91 const struct floatformat floatformat_ieee_half_little =
93 floatformat_little, 16, 0, 1, 5, 15, 31, 6, 10,
94 floatformat_intbit_no,
95 "floatformat_ieee_half_little",
96 floatformat_always_valid,
97 NULL
99 const struct floatformat floatformat_ieee_single_big =
101 floatformat_big, 32, 0, 1, 8, 127, 255, 9, 23,
102 floatformat_intbit_no,
103 "floatformat_ieee_single_big",
104 floatformat_always_valid,
105 NULL
107 const struct floatformat floatformat_ieee_single_little =
109 floatformat_little, 32, 0, 1, 8, 127, 255, 9, 23,
110 floatformat_intbit_no,
111 "floatformat_ieee_single_little",
112 floatformat_always_valid,
113 NULL
115 const struct floatformat floatformat_ieee_double_big =
117 floatformat_big, 64, 0, 1, 11, 1023, 2047, 12, 52,
118 floatformat_intbit_no,
119 "floatformat_ieee_double_big",
120 floatformat_always_valid,
121 NULL
123 const struct floatformat floatformat_ieee_double_little =
125 floatformat_little, 64, 0, 1, 11, 1023, 2047, 12, 52,
126 floatformat_intbit_no,
127 "floatformat_ieee_double_little",
128 floatformat_always_valid,
129 NULL
132 /* floatformat for IEEE double, little endian byte order, with big endian word
133 ordering, as on the ARM. */
135 const struct floatformat floatformat_ieee_double_littlebyte_bigword =
137 floatformat_littlebyte_bigword, 64, 0, 1, 11, 1023, 2047, 12, 52,
138 floatformat_intbit_no,
139 "floatformat_ieee_double_littlebyte_bigword",
140 floatformat_always_valid,
141 NULL
144 /* floatformat for VAX. Not quite IEEE, but close enough. */
146 const struct floatformat floatformat_vax_f =
148 floatformat_vax, 32, 0, 1, 8, 129, 0, 9, 23,
149 floatformat_intbit_no,
150 "floatformat_vax_f",
151 floatformat_always_valid,
152 NULL
154 const struct floatformat floatformat_vax_d =
156 floatformat_vax, 64, 0, 1, 8, 129, 0, 9, 55,
157 floatformat_intbit_no,
158 "floatformat_vax_d",
159 floatformat_always_valid,
160 NULL
162 const struct floatformat floatformat_vax_g =
164 floatformat_vax, 64, 0, 1, 11, 1025, 0, 12, 52,
165 floatformat_intbit_no,
166 "floatformat_vax_g",
167 floatformat_always_valid,
168 NULL
171 static int floatformat_i387_ext_is_valid (const struct floatformat *fmt,
172 const void *from);
174 static int
175 floatformat_i387_ext_is_valid (const struct floatformat *fmt, const void *from)
177 /* In the i387 double-extended format, if the exponent is all ones,
178 then the integer bit must be set. If the exponent is neither 0
179 nor ~0, the intbit must also be set. Only if the exponent is
180 zero can it be zero, and then it must be zero. */
181 unsigned long exponent, int_bit;
182 const unsigned char *ufrom = (const unsigned char *) from;
184 exponent = get_field (ufrom, fmt->byteorder, fmt->totalsize,
185 fmt->exp_start, fmt->exp_len);
186 int_bit = get_field (ufrom, fmt->byteorder, fmt->totalsize,
187 fmt->man_start, 1);
189 if ((exponent == 0) != (int_bit == 0))
190 return 0;
191 else
192 return 1;
195 const struct floatformat floatformat_i387_ext =
197 floatformat_little, 80, 0, 1, 15, 0x3fff, 0x7fff, 16, 64,
198 floatformat_intbit_yes,
199 "floatformat_i387_ext",
200 floatformat_i387_ext_is_valid,
201 NULL
203 const struct floatformat floatformat_m68881_ext =
205 /* Note that the bits from 16 to 31 are unused. */
206 floatformat_big, 96, 0, 1, 15, 0x3fff, 0x7fff, 32, 64,
207 floatformat_intbit_yes,
208 "floatformat_m68881_ext",
209 floatformat_always_valid,
210 NULL
212 const struct floatformat floatformat_i960_ext =
214 /* Note that the bits from 0 to 15 are unused. */
215 floatformat_little, 96, 16, 17, 15, 0x3fff, 0x7fff, 32, 64,
216 floatformat_intbit_yes,
217 "floatformat_i960_ext",
218 floatformat_always_valid,
219 NULL
221 const struct floatformat floatformat_m88110_ext =
223 floatformat_big, 80, 0, 1, 15, 0x3fff, 0x7fff, 16, 64,
224 floatformat_intbit_yes,
225 "floatformat_m88110_ext",
226 floatformat_always_valid,
227 NULL
229 const struct floatformat floatformat_m88110_harris_ext =
231 /* Harris uses raw format 128 bytes long, but the number is just an ieee
232 double, and the last 64 bits are wasted. */
233 floatformat_big,128, 0, 1, 11, 0x3ff, 0x7ff, 12, 52,
234 floatformat_intbit_no,
235 "floatformat_m88110_ext_harris",
236 floatformat_always_valid,
237 NULL
239 const struct floatformat floatformat_arm_ext_big =
241 /* Bits 1 to 16 are unused. */
242 floatformat_big, 96, 0, 17, 15, 0x3fff, 0x7fff, 32, 64,
243 floatformat_intbit_yes,
244 "floatformat_arm_ext_big",
245 floatformat_always_valid,
246 NULL
248 const struct floatformat floatformat_arm_ext_littlebyte_bigword =
250 /* Bits 1 to 16 are unused. */
251 floatformat_littlebyte_bigword, 96, 0, 17, 15, 0x3fff, 0x7fff, 32, 64,
252 floatformat_intbit_yes,
253 "floatformat_arm_ext_littlebyte_bigword",
254 floatformat_always_valid,
255 NULL
257 const struct floatformat floatformat_ia64_spill_big =
259 floatformat_big, 128, 0, 1, 17, 65535, 0x1ffff, 18, 64,
260 floatformat_intbit_yes,
261 "floatformat_ia64_spill_big",
262 floatformat_always_valid,
263 NULL
265 const struct floatformat floatformat_ia64_spill_little =
267 floatformat_little, 128, 0, 1, 17, 65535, 0x1ffff, 18, 64,
268 floatformat_intbit_yes,
269 "floatformat_ia64_spill_little",
270 floatformat_always_valid,
271 NULL
273 const struct floatformat floatformat_ia64_quad_big =
275 floatformat_big, 128, 0, 1, 15, 16383, 0x7fff, 16, 112,
276 floatformat_intbit_no,
277 "floatformat_ia64_quad_big",
278 floatformat_always_valid,
279 NULL
281 const struct floatformat floatformat_ia64_quad_little =
283 floatformat_little, 128, 0, 1, 15, 16383, 0x7fff, 16, 112,
284 floatformat_intbit_no,
285 "floatformat_ia64_quad_little",
286 floatformat_always_valid,
287 NULL
290 static int
291 floatformat_ibm_long_double_is_valid (const struct floatformat *fmt,
292 const void *from)
294 const unsigned char *ufrom = (const unsigned char *) from;
295 const struct floatformat *hfmt = fmt->split_half;
296 long top_exp, bot_exp;
297 int top_nan = 0;
299 top_exp = get_field (ufrom, hfmt->byteorder, hfmt->totalsize,
300 hfmt->exp_start, hfmt->exp_len);
301 bot_exp = get_field (ufrom + 8, hfmt->byteorder, hfmt->totalsize,
302 hfmt->exp_start, hfmt->exp_len);
304 if ((unsigned long) top_exp == hfmt->exp_nan)
305 top_nan = mant_bits_set (hfmt, ufrom);
307 /* A NaN is valid with any low part. */
308 if (top_nan)
309 return 1;
311 /* An infinity, zero or denormal requires low part 0 (positive or
312 negative). */
313 if ((unsigned long) top_exp == hfmt->exp_nan || top_exp == 0)
315 if (bot_exp != 0)
316 return 0;
318 return !mant_bits_set (hfmt, ufrom + 8);
321 /* The top part is now a finite normal value. The long double value
322 is the sum of the two parts, and the top part must equal the
323 result of rounding the long double value to nearest double. Thus
324 the bottom part must be <= 0.5ulp of the top part in absolute
325 value, and if it is < 0.5ulp then the long double is definitely
326 valid. */
327 if (bot_exp < top_exp - 53)
328 return 1;
329 if (bot_exp > top_exp - 53 && bot_exp != 0)
330 return 0;
331 if (bot_exp == 0)
333 /* The bottom part is 0 or denormal. Determine which, and if
334 denormal the first two set bits. */
335 int first_bit = -1, second_bit = -1, cur_bit;
336 for (cur_bit = 0; (unsigned int) cur_bit < hfmt->man_len; cur_bit++)
337 if (get_field (ufrom + 8, hfmt->byteorder, hfmt->totalsize,
338 hfmt->man_start + cur_bit, 1))
340 if (first_bit == -1)
341 first_bit = cur_bit;
342 else
344 second_bit = cur_bit;
345 break;
348 /* Bottom part 0 is OK. */
349 if (first_bit == -1)
350 return 1;
351 /* The real exponent of the bottom part is -first_bit. */
352 if (-first_bit < top_exp - 53)
353 return 1;
354 if (-first_bit > top_exp - 53)
355 return 0;
356 /* The bottom part is at least 0.5ulp of the top part. For this
357 to be OK, the bottom part must be exactly 0.5ulp (i.e. no
358 more bits set) and the top part must have last bit 0. */
359 if (second_bit != -1)
360 return 0;
361 return !get_field (ufrom, hfmt->byteorder, hfmt->totalsize,
362 hfmt->man_start + hfmt->man_len - 1, 1);
364 else
366 /* The bottom part is at least 0.5ulp of the top part. For this
367 to be OK, it must be exactly 0.5ulp (i.e. no explicit bits
368 set) and the top part must have last bit 0. */
369 if (get_field (ufrom, hfmt->byteorder, hfmt->totalsize,
370 hfmt->man_start + hfmt->man_len - 1, 1))
371 return 0;
372 return !mant_bits_set (hfmt, ufrom + 8);
376 const struct floatformat floatformat_ibm_long_double_big =
378 floatformat_big, 128, 0, 1, 11, 1023, 2047, 12, 52,
379 floatformat_intbit_no,
380 "floatformat_ibm_long_double_big",
381 floatformat_ibm_long_double_is_valid,
382 &floatformat_ieee_double_big
385 const struct floatformat floatformat_ibm_long_double_little =
387 floatformat_little, 128, 0, 1, 11, 1023, 2047, 12, 52,
388 floatformat_intbit_no,
389 "floatformat_ibm_long_double_little",
390 floatformat_ibm_long_double_is_valid,
391 &floatformat_ieee_double_little
395 #ifndef min
396 #define min(a, b) ((a) < (b) ? (a) : (b))
397 #endif
399 /* Return 1 if any bits are explicitly set in the mantissa of UFROM,
400 format FMT, 0 otherwise. */
401 static int
402 mant_bits_set (const struct floatformat *fmt, const unsigned char *ufrom)
404 unsigned int mant_bits, mant_off;
405 int mant_bits_left;
407 mant_off = fmt->man_start;
408 mant_bits_left = fmt->man_len;
409 while (mant_bits_left > 0)
411 mant_bits = min (mant_bits_left, 32);
413 if (get_field (ufrom, fmt->byteorder, fmt->totalsize,
414 mant_off, mant_bits) != 0)
415 return 1;
417 mant_off += mant_bits;
418 mant_bits_left -= mant_bits;
420 return 0;
423 /* Extract a field which starts at START and is LEN bits long. DATA and
424 TOTAL_LEN are the thing we are extracting it from, in byteorder ORDER. */
425 static unsigned long
426 get_field (const unsigned char *data, enum floatformat_byteorders order,
427 unsigned int total_len, unsigned int start, unsigned int len)
429 unsigned long result = 0;
430 unsigned int cur_byte;
431 int lo_bit, hi_bit, cur_bitshift = 0;
432 int nextbyte = (order == floatformat_little) ? 1 : -1;
434 /* Start is in big-endian bit order! Fix that first. */
435 start = total_len - (start + len);
437 /* Start at the least significant part of the field. */
438 if (order == floatformat_little)
439 cur_byte = start / FLOATFORMAT_CHAR_BIT;
440 else
441 cur_byte = (total_len - start - 1) / FLOATFORMAT_CHAR_BIT;
443 lo_bit = start % FLOATFORMAT_CHAR_BIT;
444 hi_bit = min (lo_bit + len, FLOATFORMAT_CHAR_BIT);
448 unsigned int shifted = *(data + cur_byte) >> lo_bit;
449 unsigned int bits = hi_bit - lo_bit;
450 unsigned int mask = (1 << bits) - 1;
451 result |= (shifted & mask) << cur_bitshift;
452 len -= bits;
453 cur_bitshift += bits;
454 cur_byte += nextbyte;
455 lo_bit = 0;
456 hi_bit = min (len, FLOATFORMAT_CHAR_BIT);
458 while (len != 0);
460 return result;
463 /* Convert from FMT to a double.
464 FROM is the address of the extended float.
465 Store the double in *TO. */
467 void
468 floatformat_to_double (const struct floatformat *fmt,
469 const void *from, double *to)
471 const unsigned char *ufrom = (const unsigned char *) from;
472 double dto;
473 long exponent;
474 unsigned long mant;
475 unsigned int mant_bits, mant_off;
476 int mant_bits_left;
478 /* Split values are not handled specially, since the top half has
479 the correctly rounded double value (in the only supported case of
480 split values). */
482 exponent = get_field (ufrom, fmt->byteorder, fmt->totalsize,
483 fmt->exp_start, fmt->exp_len);
485 /* If the exponent indicates a NaN, we don't have information to
486 decide what to do. So we handle it like IEEE, except that we
487 don't try to preserve the type of NaN. FIXME. */
488 if ((unsigned long) exponent == fmt->exp_nan)
490 int nan = mant_bits_set (fmt, ufrom);
492 /* On certain systems (such as GNU/Linux), the use of the
493 INFINITY macro below may generate a warning that can not be
494 silenced due to a bug in GCC (PR preprocessor/11931). The
495 preprocessor fails to recognise the __extension__ keyword in
496 conjunction with the GNU/C99 extension for hexadecimal
497 floating point constants and will issue a warning when
498 compiling with -pedantic. */
499 if (nan)
500 dto = NAN;
501 else
502 dto = INFINITY;
504 if (get_field (ufrom, fmt->byteorder, fmt->totalsize, fmt->sign_start, 1))
505 dto = -dto;
507 *to = dto;
509 return;
512 mant_bits_left = fmt->man_len;
513 mant_off = fmt->man_start;
514 dto = 0.0;
516 /* Build the result algebraically. Might go infinite, underflow, etc;
517 who cares. */
519 /* For denorms use minimum exponent. */
520 if (exponent == 0)
521 exponent = 1 - fmt->exp_bias;
522 else
524 exponent -= fmt->exp_bias;
526 /* If this format uses a hidden bit, explicitly add it in now.
527 Otherwise, increment the exponent by one to account for the
528 integer bit. */
530 if (fmt->intbit == floatformat_intbit_no)
531 dto = ldexp (1.0, exponent);
532 else
533 exponent++;
536 while (mant_bits_left > 0)
538 mant_bits = min (mant_bits_left, 32);
540 mant = get_field (ufrom, fmt->byteorder, fmt->totalsize,
541 mant_off, mant_bits);
543 dto += ldexp ((double) mant, exponent - mant_bits);
544 exponent -= mant_bits;
545 mant_off += mant_bits;
546 mant_bits_left -= mant_bits;
549 /* Negate it if negative. */
550 if (get_field (ufrom, fmt->byteorder, fmt->totalsize, fmt->sign_start, 1))
551 dto = -dto;
552 *to = dto;
555 static void put_field (unsigned char *, enum floatformat_byteorders,
556 unsigned int,
557 unsigned int,
558 unsigned int,
559 unsigned long);
561 /* Set a field which starts at START and is LEN bits long. DATA and
562 TOTAL_LEN are the thing we are extracting it from, in byteorder ORDER. */
563 static void
564 put_field (unsigned char *data, enum floatformat_byteorders order,
565 unsigned int total_len, unsigned int start, unsigned int len,
566 unsigned long stuff_to_put)
568 unsigned int cur_byte;
569 int lo_bit, hi_bit;
570 int nextbyte = (order == floatformat_little) ? 1 : -1;
572 /* Start is in big-endian bit order! Fix that first. */
573 start = total_len - (start + len);
575 /* Start at the least significant part of the field. */
576 if (order == floatformat_little)
577 cur_byte = start / FLOATFORMAT_CHAR_BIT;
578 else
579 cur_byte = (total_len - start - 1) / FLOATFORMAT_CHAR_BIT;
581 lo_bit = start % FLOATFORMAT_CHAR_BIT;
582 hi_bit = min (lo_bit + len, FLOATFORMAT_CHAR_BIT);
586 unsigned char *byte_ptr = data + cur_byte;
587 unsigned int bits = hi_bit - lo_bit;
588 unsigned int mask = ((1 << bits) - 1) << lo_bit;
589 *byte_ptr = (*byte_ptr & ~mask) | ((stuff_to_put << lo_bit) & mask);
590 stuff_to_put >>= bits;
591 len -= bits;
592 cur_byte += nextbyte;
593 lo_bit = 0;
594 hi_bit = min (len, FLOATFORMAT_CHAR_BIT);
596 while (len != 0);
599 /* The converse: convert the double *FROM to an extended float
600 and store where TO points. Neither FROM nor TO have any alignment
601 restrictions. */
603 void
604 floatformat_from_double (const struct floatformat *fmt,
605 const double *from, void *to)
607 double dfrom;
608 int exponent;
609 double mant;
610 unsigned int mant_bits, mant_off;
611 int mant_bits_left;
612 unsigned char *uto = (unsigned char *) to;
614 dfrom = *from;
615 memset (uto, 0, fmt->totalsize / FLOATFORMAT_CHAR_BIT);
617 /* Split values are not handled specially, since a bottom half of
618 zero is correct for any value representable as double (in the
619 only supported case of split values). */
621 /* If negative, set the sign bit. */
622 if (dfrom < 0)
624 put_field (uto, fmt->byteorder, fmt->totalsize, fmt->sign_start, 1, 1);
625 dfrom = -dfrom;
628 if (dfrom == 0)
630 /* 0.0. */
631 return;
634 if (dfrom != dfrom)
636 /* NaN. */
637 put_field (uto, fmt->byteorder, fmt->totalsize, fmt->exp_start,
638 fmt->exp_len, fmt->exp_nan);
639 /* Be sure it's not infinity, but NaN value is irrelevant. */
640 put_field (uto, fmt->byteorder, fmt->totalsize, fmt->man_start,
641 32, 1);
642 return;
645 if (dfrom + dfrom == dfrom)
647 /* This can only happen for an infinite value (or zero, which we
648 already handled above). */
649 put_field (uto, fmt->byteorder, fmt->totalsize, fmt->exp_start,
650 fmt->exp_len, fmt->exp_nan);
651 return;
654 mant = frexp (dfrom, &exponent);
655 if (exponent + fmt->exp_bias - 1 > 0)
656 put_field (uto, fmt->byteorder, fmt->totalsize, fmt->exp_start,
657 fmt->exp_len, exponent + fmt->exp_bias - 1);
658 else
660 /* Handle a denormalized number. FIXME: What should we do for
661 non-IEEE formats? */
662 put_field (uto, fmt->byteorder, fmt->totalsize, fmt->exp_start,
663 fmt->exp_len, 0);
664 mant = ldexp (mant, exponent + fmt->exp_bias - 1);
667 mant_bits_left = fmt->man_len;
668 mant_off = fmt->man_start;
669 while (mant_bits_left > 0)
671 unsigned long mant_long;
672 mant_bits = mant_bits_left < 32 ? mant_bits_left : 32;
674 mant *= 4294967296.0;
675 mant_long = (unsigned long)mant;
676 mant -= mant_long;
678 /* If the integer bit is implicit, and we are not creating a
679 denormalized number, then we need to discard it. */
680 if ((unsigned int) mant_bits_left == fmt->man_len
681 && fmt->intbit == floatformat_intbit_no
682 && exponent + fmt->exp_bias - 1 > 0)
684 mant_long &= 0x7fffffff;
685 mant_bits -= 1;
687 else if (mant_bits < 32)
689 /* The bits we want are in the most significant MANT_BITS bits of
690 mant_long. Move them to the least significant. */
691 mant_long >>= 32 - mant_bits;
694 put_field (uto, fmt->byteorder, fmt->totalsize,
695 mant_off, mant_bits, mant_long);
696 mant_off += mant_bits;
697 mant_bits_left -= mant_bits;
701 /* Return non-zero iff the data at FROM is a valid number in format FMT. */
704 floatformat_is_valid (const struct floatformat *fmt, const void *from)
706 return fmt->is_valid (fmt, from);
710 #ifdef IEEE_DEBUG
712 #include <stdio.h>
714 /* This is to be run on a host which uses IEEE floating point. */
716 void
717 ieee_test (double n)
719 double result;
721 floatformat_to_double (&floatformat_ieee_double_little, &n, &result);
722 if ((n != result && (! isnan (n) || ! isnan (result)))
723 || (n < 0 && result >= 0)
724 || (n >= 0 && result < 0))
725 printf ("Differ(to): %.20g -> %.20g\n", n, result);
727 floatformat_from_double (&floatformat_ieee_double_little, &n, &result);
728 if ((n != result && (! isnan (n) || ! isnan (result)))
729 || (n < 0 && result >= 0)
730 || (n >= 0 && result < 0))
731 printf ("Differ(from): %.20g -> %.20g\n", n, result);
733 #if 0
735 char exten[16];
737 floatformat_from_double (&floatformat_m68881_ext, &n, exten);
738 floatformat_to_double (&floatformat_m68881_ext, exten, &result);
739 if (n != result)
740 printf ("Differ(to+from): %.20g -> %.20g\n", n, result);
742 #endif
744 #if IEEE_DEBUG > 1
745 /* This is to be run on a host which uses 68881 format. */
747 long double ex = *(long double *)exten;
748 if (ex != n)
749 printf ("Differ(from vs. extended): %.20g\n", n);
751 #endif
755 main (void)
757 ieee_test (0.0);
758 ieee_test (0.5);
759 ieee_test (1.1);
760 ieee_test (256.0);
761 ieee_test (0.12345);
762 ieee_test (234235.78907234);
763 ieee_test (-512.0);
764 ieee_test (-0.004321);
765 ieee_test (1.2E-70);
766 ieee_test (1.2E-316);
767 ieee_test (4.9406564584124654E-324);
768 ieee_test (- 4.9406564584124654E-324);
769 ieee_test (- 0.0);
770 ieee_test (- INFINITY);
771 ieee_test (- NAN);
772 ieee_test (INFINITY);
773 ieee_test (NAN);
774 return 0;
776 #endif