1 /* BFD backend for CRIS a.out binaries.
2 Copyright (C) 2000-2017 Free Software Foundation, Inc.
3 Contributed by Axis Communications AB.
4 Written by Hans-Peter Nilsson.
6 This file is part of BFD, the Binary File Descriptor library.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 MA 02110-1301, USA. */
23 /* See info in the file PORTING for documentation of these macros and
24 functions. Beware; some of the information there is outdated. */
26 #define N_HEADER_IN_TEXT(x) 0
27 #define N_TXTOFF(x) 32
28 #define ENTRY_CAN_BE_ZERO
29 #define TEXT_START_ADDR 0
31 /* Without reading symbols to get the text start symbol, there is no way
32 to know where the text segment starts in an a.out file. Defaulting to
33 anything as constant as TEXT_START_ADDR is bad. But we can guess from
34 the entry point, which is usually within the first 64k of the text
35 segment. We also assume here that the text segment is 64k-aligned.
36 FIXME: It is also wrong to assume that data and bss follow immediately
37 after text, but with those, we don't have any choice besides reading
38 symbol info, and luckily there's no pressing need for correctness for
39 those vma:s at this time. */
40 #define N_TXTADDR(x) ((x)->a_entry & ~(bfd_vma) 0xffff)
42 /* If you change this to 4, you can not link to an address N*4+2. */
43 #define SEGMENT_SIZE 2
45 /* For some reason, if the a.out file has Z_MAGIC, then
46 adata(abfd).exec_bytes_size is not used, but rather
47 adata(abfd).zmagic_disk_block_size, even though the exec_header is
48 *not* included in the text segment. A simple workaround is to
49 #define ZMAGIC_DISK_BLOCK_SIZE, which is used if defined; otherwise
50 TARGET_PAGE_SIZE is used. */
51 #define ZMAGIC_DISK_BLOCK_SIZE N_TXTOFF (0)
53 /* It seems odd at first to set a page-size this low, but gives greater
54 freedom in where things can be linked. The drawback is that you have
55 to set alignment and padding in linker scripts. */
56 #define TARGET_PAGE_SIZE SEGMENT_SIZE
57 #define TARGETNAME "a.out-cris"
59 /* The definition here seems not used; just provided as a convention. */
60 #define DEFAULT_ARCH bfd_arch_cris
62 /* Do not "beautify" the CONCAT* macro args. Traditional C will not
63 remove whitespace added here, and thus will fail to concatenate
65 #define MY(OP) CONCAT2 (cris_aout_,OP)
66 #define NAME(x, y) CONCAT3 (cris_aout,_32_,y)
71 /* Version 1 of the header. */
72 #define MY_exec_hdr_flags 1
74 #define MY_write_object_contents MY (write_object_contents)
75 static bfd_boolean
MY (write_object_contents
) (bfd
*);
77 /* Forward this, so we can use a pointer to it in PARAMS. */
78 struct reloc_ext_external
;
80 #define MY_swap_ext_reloc_out MY (swap_ext_reloc_out)
81 static void MY (swap_ext_reloc_out
) (bfd
*, arelent
*, struct reloc_ext_external
*);
83 #define MY_swap_ext_reloc_in MY (swap_ext_reloc_in)
84 static void MY (swap_ext_reloc_in
) (bfd
*, struct reloc_ext_external
*,
85 arelent
*, asymbol
**, bfd_size_type
);
87 #define MY_set_sizes MY (set_sizes)
88 static bfd_boolean
MY (set_sizes
) (bfd
*);
90 /* To set back reloc_size to ext, we make MY (set_sizes) be called
91 through this construct. Note that MY_set_arch_mach is only called
92 through SET_ARCH_MACH. The default bfd_default_set_arch_mach will
93 not call set_sizes. */
95 #define MY_set_arch_mach NAME (aout, set_arch_mach)
96 #define SET_ARCH_MACH(BFD, EXECP) \
97 MY_set_arch_mach (BFD, DEFAULT_ARCH, N_MACHTYPE (EXECP))
99 /* These macros describe the binary layout of the reloc information we
101 #define RELOC_EXT_BITS_EXTERN_LITTLE 0x80
102 #define RELOC_EXT_BITS_TYPE_LITTLE 3
103 #define RELOC_EXT_BITS_TYPE_SH_LITTLE 0
105 #ifndef MY_get_section_contents
106 #define MY_get_section_contents aout_32_get_section_contents
109 #define MACHTYPE_OK(mtype) ((mtype) == M_CRIS)
111 /* Include generic functions (some are overridden above). */
113 #include "aout-target.h"
115 /* We need our own version to set header flags. */
118 MY (write_object_contents
) (bfd
*abfd
)
120 struct external_exec exec_bytes
;
121 struct internal_exec
*execp
= exec_hdr (abfd
);
123 /* We set the reloc type to RELOC_EXT_SIZE, although setting it at all
124 seems unnecessary when inspecting as and ld behavior (not an
125 exhaustive inspection). The default write_object_contents
126 definition sets RELOC_EXT_SIZE, so we follow suite and set it too. */
127 obj_reloc_entry_size (abfd
) = RELOC_EXT_SIZE
;
129 /* Setting N_SET_MACHTYPE and using N_SET_FLAGS is not performed by
130 the default definition. */
131 if (bfd_get_arch (abfd
) == bfd_arch_cris
)
132 N_SET_MACHTYPE (execp
, M_CRIS
);
134 N_SET_FLAGS (execp
, aout_backend_info (abfd
)->exec_hdr_flags
);
136 WRITE_HEADERS (abfd
, execp
);
141 /* We need our own for these reasons:
142 - Assert that a normal 8, 16 or 32 reloc is output.
143 - Fix what seems to be a weak-bug (perhaps there for valid reasons). */
146 MY (swap_ext_reloc_out
) (bfd
*abfd
,
148 struct reloc_ext_external
*natptr
)
154 asymbol
*sym
= *(g
->sym_ptr_ptr
);
155 asection
*output_section
= sym
->section
->output_section
;
157 PUT_WORD (abfd
, g
->address
, natptr
->r_address
);
159 r_type
= (unsigned int) g
->howto
->type
;
161 r_addend
= g
->addend
;
162 if ((sym
->flags
& BSF_SECTION_SYM
) != 0)
163 r_addend
+= (*(g
->sym_ptr_ptr
))->section
->output_section
->vma
;
165 /* If this relocation is relative to a symbol then set the
166 r_index to the symbols index, and the r_extern bit.
168 Absolute symbols can come in in two ways, either as an offset
169 from the abs section, or as a symbol which has an abs value.
170 check for that here. */
172 if (bfd_is_abs_section (bfd_get_section (sym
)))
177 else if ((sym
->flags
& BSF_SECTION_SYM
) == 0)
179 if (bfd_is_und_section (bfd_get_section (sym
))
180 /* Remember to check for weak symbols; they count as global. */
181 || (sym
->flags
& (BSF_GLOBAL
| BSF_WEAK
)) != 0)
185 r_index
= (*(g
->sym_ptr_ptr
))->KEEPIT
;
189 /* Just an ordinary section. */
191 r_index
= output_section
->target_index
;
194 /* The relocation type is the same as the canonical ones, but only
195 the first 3 are used: RELOC_8, RELOC_16, RELOC_32.
196 We may change this later, but assert this for the moment. */
199 /* xgettext:c-format */
200 _bfd_error_handler (_("%B: Invalid relocation type exported: %d"),
203 bfd_set_error (bfd_error_wrong_format
);
206 /* Now the fun stuff. */
207 natptr
->r_index
[2] = r_index
>> 16;
208 natptr
->r_index
[1] = r_index
>> 8;
209 natptr
->r_index
[0] = r_index
;
211 (r_extern
? RELOC_EXT_BITS_EXTERN_LITTLE
: 0)
212 | (r_type
<< RELOC_EXT_BITS_TYPE_SH_LITTLE
);
214 PUT_WORD (abfd
, r_addend
, natptr
->r_addend
);
217 /* We need our own to assert that a normal 8, 16 or 32 reloc is input. */
220 MY (swap_ext_reloc_in
) (bfd
*abfd
,
221 struct reloc_ext_external
*bytes
,
224 bfd_size_type symcount
)
226 unsigned int r_index
;
229 struct aoutdata
*su
= &(abfd
->tdata
.aout_data
->a
);
231 cache_ptr
->address
= (GET_SWORD (abfd
, bytes
->r_address
));
233 /* Now the fun stuff. */
234 r_index
= (bytes
->r_index
[2] << 16)
235 | (bytes
->r_index
[1] << 8)
237 r_extern
= (0 != (bytes
->r_type
[0] & RELOC_EXT_BITS_EXTERN_LITTLE
));
238 r_type
= ((bytes
->r_type
[0]) >> RELOC_EXT_BITS_TYPE_SH_LITTLE
)
239 & RELOC_EXT_BITS_TYPE_LITTLE
;
243 /* xgettext:c-format */
244 _bfd_error_handler (_("%B: Invalid relocation type imported: %d"),
247 bfd_set_error (bfd_error_wrong_format
);
250 cache_ptr
->howto
= howto_table_ext
+ r_type
;
252 if (r_extern
&& r_index
> symcount
)
255 /* xgettext:c-format */
256 (_("%B: Bad relocation record imported: %d"), abfd
, r_index
);
258 bfd_set_error (bfd_error_wrong_format
);
260 /* We continue, so we can catch further errors. */
265 /* Magically uses r_extern, symbols etc. Ugly, but it's what's in the
267 MOVE_ADDRESS (GET_SWORD (abfd
, bytes
->r_addend
));
270 /* We use the same as the default, except that we also set
271 "obj_reloc_entry_size (abfd) = RELOC_EXT_SIZE;", to avoid changing
272 NAME (aout, set_arch_mach) in aoutx. */
275 MY (set_sizes
) (bfd
*abfd
)
277 /* Just as the default in aout-target.h (with some #ifdefs folded)... */
279 adata (abfd
).page_size
= TARGET_PAGE_SIZE
;
280 adata (abfd
).segment_size
= SEGMENT_SIZE
;
281 adata (abfd
).zmagic_disk_block_size
= ZMAGIC_DISK_BLOCK_SIZE
;
282 adata (abfd
).exec_bytes_size
= EXEC_BYTES_SIZE
;
284 /* ... except for that we have the extended reloc. The alternative
285 would be to add a check on bfd_arch_cris in NAME (aout,
286 set_arch_mach) in aoutx.h, but I don't want to do that since
287 target-specific things should not be added there. */
289 obj_reloc_entry_size (abfd
) = RELOC_EXT_SIZE
;