1 /* BFD back-end for Renesas Super-H COFF binaries.
2 Copyright (C) 1993-2017 Free Software Foundation, Inc.
3 Contributed by Cygnus Support.
4 Written by Steve Chamberlain, <sac@cygnus.com>.
5 Relaxing code written by Ian Lance Taylor, <ian@cygnus.com>.
7 This file is part of BFD, the Binary File Descriptor library.
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22 MA 02110-1301, USA. */
26 #include "libiberty.h"
30 #include "coff/internal.h"
32 #undef bfd_pe_print_pdata
37 #ifndef COFF_IMAGE_WITH_PE
38 static bfd_boolean sh_align_load_span
39 (bfd
*, asection
*, bfd_byte
*,
40 bfd_boolean (*) (bfd
*, asection
*, void *, bfd_byte
*, bfd_vma
),
41 void *, bfd_vma
**, bfd_vma
*, bfd_vma
, bfd_vma
, bfd_boolean
*);
43 #define _bfd_sh_align_load_span sh_align_load_span
46 #define bfd_pe_print_pdata _bfd_pe_print_ce_compressed_pdata
50 #define bfd_pe_print_pdata NULL
52 #endif /* COFF_WITH_PE. */
56 /* Internal functions. */
59 /* Can't build import tables with 2**4 alignment. */
60 #define COFF_DEFAULT_SECTION_ALIGNMENT_POWER 2
62 /* Default section alignment to 2**4. */
63 #define COFF_DEFAULT_SECTION_ALIGNMENT_POWER 4
66 #ifdef COFF_IMAGE_WITH_PE
67 /* Align PE executables. */
68 #define COFF_PAGE_SIZE 0x1000
71 /* Generate long file names. */
72 #define COFF_LONG_FILENAMES
75 /* Return TRUE if this relocation should
76 appear in the output .reloc section. */
79 in_reloc_p (bfd
* abfd ATTRIBUTE_UNUSED
,
80 reloc_howto_type
* howto
)
82 return ! howto
->pc_relative
&& howto
->type
!= R_SH_IMAGEBASE
;
86 static bfd_reloc_status_type
87 sh_reloc (bfd
*, arelent
*, asymbol
*, void *, asection
*, bfd
*, char **);
89 sh_relocate_section (bfd
*, struct bfd_link_info
*, bfd
*, asection
*,
90 bfd_byte
*, struct internal_reloc
*,
91 struct internal_syment
*, asection
**);
93 sh_align_loads (bfd
*, asection
*, struct internal_reloc
*,
94 bfd_byte
*, bfd_boolean
*);
96 /* The supported relocations. There are a lot of relocations defined
97 in coff/internal.h which we do not expect to ever see. */
98 static reloc_howto_type sh_coff_howtos
[] =
104 HOWTO (R_SH_IMM32CE
, /* type */
106 2, /* size (0 = byte, 1 = short, 2 = long) */
108 FALSE
, /* pc_relative */
110 complain_overflow_bitfield
, /* complain_on_overflow */
111 sh_reloc
, /* special_function */
112 "r_imm32ce", /* name */
113 TRUE
, /* partial_inplace */
114 0xffffffff, /* src_mask */
115 0xffffffff, /* dst_mask */
116 FALSE
), /* pcrel_offset */
120 EMPTY_HOWTO (3), /* R_SH_PCREL8 */
121 EMPTY_HOWTO (4), /* R_SH_PCREL16 */
122 EMPTY_HOWTO (5), /* R_SH_HIGH8 */
123 EMPTY_HOWTO (6), /* R_SH_IMM24 */
124 EMPTY_HOWTO (7), /* R_SH_LOW16 */
126 EMPTY_HOWTO (9), /* R_SH_PCDISP8BY4 */
128 HOWTO (R_SH_PCDISP8BY2
, /* type */
130 1, /* size (0 = byte, 1 = short, 2 = long) */
132 TRUE
, /* pc_relative */
134 complain_overflow_signed
, /* complain_on_overflow */
135 sh_reloc
, /* special_function */
136 "r_pcdisp8by2", /* name */
137 TRUE
, /* partial_inplace */
140 TRUE
), /* pcrel_offset */
142 EMPTY_HOWTO (11), /* R_SH_PCDISP8 */
144 HOWTO (R_SH_PCDISP
, /* type */
146 1, /* size (0 = byte, 1 = short, 2 = long) */
148 TRUE
, /* pc_relative */
150 complain_overflow_signed
, /* complain_on_overflow */
151 sh_reloc
, /* special_function */
152 "r_pcdisp12by2", /* name */
153 TRUE
, /* partial_inplace */
154 0xfff, /* src_mask */
155 0xfff, /* dst_mask */
156 TRUE
), /* pcrel_offset */
160 HOWTO (R_SH_IMM32
, /* type */
162 2, /* size (0 = byte, 1 = short, 2 = long) */
164 FALSE
, /* pc_relative */
166 complain_overflow_bitfield
, /* complain_on_overflow */
167 sh_reloc
, /* special_function */
168 "r_imm32", /* name */
169 TRUE
, /* partial_inplace */
170 0xffffffff, /* src_mask */
171 0xffffffff, /* dst_mask */
172 FALSE
), /* pcrel_offset */
176 HOWTO (R_SH_IMAGEBASE
, /* type */
178 2, /* size (0 = byte, 1 = short, 2 = long) */
180 FALSE
, /* pc_relative */
182 complain_overflow_bitfield
, /* complain_on_overflow */
183 sh_reloc
, /* special_function */
185 TRUE
, /* partial_inplace */
186 0xffffffff, /* src_mask */
187 0xffffffff, /* dst_mask */
188 FALSE
), /* pcrel_offset */
190 EMPTY_HOWTO (16), /* R_SH_IMM8 */
192 EMPTY_HOWTO (17), /* R_SH_IMM8BY2 */
193 EMPTY_HOWTO (18), /* R_SH_IMM8BY4 */
194 EMPTY_HOWTO (19), /* R_SH_IMM4 */
195 EMPTY_HOWTO (20), /* R_SH_IMM4BY2 */
196 EMPTY_HOWTO (21), /* R_SH_IMM4BY4 */
198 HOWTO (R_SH_PCRELIMM8BY2
, /* type */
200 1, /* size (0 = byte, 1 = short, 2 = long) */
202 TRUE
, /* pc_relative */
204 complain_overflow_unsigned
, /* complain_on_overflow */
205 sh_reloc
, /* special_function */
206 "r_pcrelimm8by2", /* name */
207 TRUE
, /* partial_inplace */
210 TRUE
), /* pcrel_offset */
212 HOWTO (R_SH_PCRELIMM8BY4
, /* type */
214 1, /* size (0 = byte, 1 = short, 2 = long) */
216 TRUE
, /* pc_relative */
218 complain_overflow_unsigned
, /* complain_on_overflow */
219 sh_reloc
, /* special_function */
220 "r_pcrelimm8by4", /* name */
221 TRUE
, /* partial_inplace */
224 TRUE
), /* pcrel_offset */
226 HOWTO (R_SH_IMM16
, /* type */
228 1, /* size (0 = byte, 1 = short, 2 = long) */
230 FALSE
, /* pc_relative */
232 complain_overflow_bitfield
, /* complain_on_overflow */
233 sh_reloc
, /* special_function */
234 "r_imm16", /* name */
235 TRUE
, /* partial_inplace */
236 0xffff, /* src_mask */
237 0xffff, /* dst_mask */
238 FALSE
), /* pcrel_offset */
240 HOWTO (R_SH_SWITCH16
, /* type */
242 1, /* size (0 = byte, 1 = short, 2 = long) */
244 FALSE
, /* pc_relative */
246 complain_overflow_bitfield
, /* complain_on_overflow */
247 sh_reloc
, /* special_function */
248 "r_switch16", /* name */
249 TRUE
, /* partial_inplace */
250 0xffff, /* src_mask */
251 0xffff, /* dst_mask */
252 FALSE
), /* pcrel_offset */
254 HOWTO (R_SH_SWITCH32
, /* type */
256 2, /* size (0 = byte, 1 = short, 2 = long) */
258 FALSE
, /* pc_relative */
260 complain_overflow_bitfield
, /* complain_on_overflow */
261 sh_reloc
, /* special_function */
262 "r_switch32", /* name */
263 TRUE
, /* partial_inplace */
264 0xffffffff, /* src_mask */
265 0xffffffff, /* dst_mask */
266 FALSE
), /* pcrel_offset */
268 HOWTO (R_SH_USES
, /* type */
270 1, /* size (0 = byte, 1 = short, 2 = long) */
272 FALSE
, /* pc_relative */
274 complain_overflow_bitfield
, /* complain_on_overflow */
275 sh_reloc
, /* special_function */
277 TRUE
, /* partial_inplace */
278 0xffff, /* src_mask */
279 0xffff, /* dst_mask */
280 FALSE
), /* pcrel_offset */
282 HOWTO (R_SH_COUNT
, /* type */
284 2, /* size (0 = byte, 1 = short, 2 = long) */
286 FALSE
, /* pc_relative */
288 complain_overflow_bitfield
, /* complain_on_overflow */
289 sh_reloc
, /* special_function */
290 "r_count", /* name */
291 TRUE
, /* partial_inplace */
292 0xffffffff, /* src_mask */
293 0xffffffff, /* dst_mask */
294 FALSE
), /* pcrel_offset */
296 HOWTO (R_SH_ALIGN
, /* type */
298 2, /* size (0 = byte, 1 = short, 2 = long) */
300 FALSE
, /* pc_relative */
302 complain_overflow_bitfield
, /* complain_on_overflow */
303 sh_reloc
, /* special_function */
304 "r_align", /* name */
305 TRUE
, /* partial_inplace */
306 0xffffffff, /* src_mask */
307 0xffffffff, /* dst_mask */
308 FALSE
), /* pcrel_offset */
310 HOWTO (R_SH_CODE
, /* type */
312 2, /* size (0 = byte, 1 = short, 2 = long) */
314 FALSE
, /* pc_relative */
316 complain_overflow_bitfield
, /* complain_on_overflow */
317 sh_reloc
, /* special_function */
319 TRUE
, /* partial_inplace */
320 0xffffffff, /* src_mask */
321 0xffffffff, /* dst_mask */
322 FALSE
), /* pcrel_offset */
324 HOWTO (R_SH_DATA
, /* type */
326 2, /* size (0 = byte, 1 = short, 2 = long) */
328 FALSE
, /* pc_relative */
330 complain_overflow_bitfield
, /* complain_on_overflow */
331 sh_reloc
, /* special_function */
333 TRUE
, /* partial_inplace */
334 0xffffffff, /* src_mask */
335 0xffffffff, /* dst_mask */
336 FALSE
), /* pcrel_offset */
338 HOWTO (R_SH_LABEL
, /* type */
340 2, /* size (0 = byte, 1 = short, 2 = long) */
342 FALSE
, /* pc_relative */
344 complain_overflow_bitfield
, /* complain_on_overflow */
345 sh_reloc
, /* special_function */
346 "r_label", /* name */
347 TRUE
, /* partial_inplace */
348 0xffffffff, /* src_mask */
349 0xffffffff, /* dst_mask */
350 FALSE
), /* pcrel_offset */
352 HOWTO (R_SH_SWITCH8
, /* type */
354 0, /* size (0 = byte, 1 = short, 2 = long) */
356 FALSE
, /* pc_relative */
358 complain_overflow_bitfield
, /* complain_on_overflow */
359 sh_reloc
, /* special_function */
360 "r_switch8", /* name */
361 TRUE
, /* partial_inplace */
364 FALSE
) /* pcrel_offset */
367 #define SH_COFF_HOWTO_COUNT (sizeof sh_coff_howtos / sizeof sh_coff_howtos[0])
369 /* Check for a bad magic number. */
370 #define BADMAG(x) SHBADMAG(x)
372 /* Customize coffcode.h (this is not currently used). */
375 /* FIXME: This should not be set here. */
376 #define __A_MAGIC_SET__
379 /* Swap the r_offset field in and out. */
380 #define SWAP_IN_RELOC_OFFSET H_GET_32
381 #define SWAP_OUT_RELOC_OFFSET H_PUT_32
383 /* Swap out extra information in the reloc structure. */
384 #define SWAP_OUT_RELOC_EXTRA(abfd, src, dst) \
387 dst->r_stuff[0] = 'S'; \
388 dst->r_stuff[1] = 'C'; \
393 /* Get the value of a symbol, when performing a relocation. */
396 get_symbol_value (asymbol
*symbol
)
400 if (bfd_is_com_section (symbol
->section
))
403 relocation
= (symbol
->value
+
404 symbol
->section
->output_section
->vma
+
405 symbol
->section
->output_offset
);
411 /* Convert an rtype to howto for the COFF backend linker.
412 Copied from coff-i386. */
413 #define coff_rtype_to_howto coff_sh_rtype_to_howto
416 static reloc_howto_type
*
417 coff_sh_rtype_to_howto (bfd
* abfd ATTRIBUTE_UNUSED
,
419 struct internal_reloc
* rel
,
420 struct coff_link_hash_entry
* h
,
421 struct internal_syment
* sym
,
424 reloc_howto_type
* howto
;
426 howto
= sh_coff_howtos
+ rel
->r_type
;
430 if (howto
->pc_relative
)
431 *addendp
+= sec
->vma
;
433 if (sym
!= NULL
&& sym
->n_scnum
== 0 && sym
->n_value
!= 0)
435 /* This is a common symbol. The section contents include the
436 size (sym->n_value) as an addend. The relocate_section
437 function will be adding in the final value of the symbol. We
438 need to subtract out the current size in order to get the
440 BFD_ASSERT (h
!= NULL
);
443 if (howto
->pc_relative
)
447 /* If the symbol is defined, then the generic code is going to
448 add back the symbol value in order to cancel out an
449 adjustment it made to the addend. However, we set the addend
450 to 0 at the start of this function. We need to adjust here,
451 to avoid the adjustment the generic code will make. FIXME:
452 This is getting a bit hackish. */
453 if (sym
!= NULL
&& sym
->n_scnum
!= 0)
454 *addendp
-= sym
->n_value
;
457 if (rel
->r_type
== R_SH_IMAGEBASE
)
458 *addendp
-= pe_data (sec
->output_section
->owner
)->pe_opthdr
.ImageBase
;
463 #endif /* COFF_WITH_PE */
465 /* This structure is used to map BFD reloc codes to SH PE relocs. */
466 struct shcoff_reloc_map
468 bfd_reloc_code_real_type bfd_reloc_val
;
469 unsigned char shcoff_reloc_val
;
473 /* An array mapping BFD reloc codes to SH PE relocs. */
474 static const struct shcoff_reloc_map sh_reloc_map
[] =
476 { BFD_RELOC_32
, R_SH_IMM32CE
},
477 { BFD_RELOC_RVA
, R_SH_IMAGEBASE
},
478 { BFD_RELOC_CTOR
, R_SH_IMM32CE
},
481 /* An array mapping BFD reloc codes to SH PE relocs. */
482 static const struct shcoff_reloc_map sh_reloc_map
[] =
484 { BFD_RELOC_32
, R_SH_IMM32
},
485 { BFD_RELOC_CTOR
, R_SH_IMM32
},
489 /* Given a BFD reloc code, return the howto structure for the
490 corresponding SH PE reloc. */
491 #define coff_bfd_reloc_type_lookup sh_coff_reloc_type_lookup
492 #define coff_bfd_reloc_name_lookup sh_coff_reloc_name_lookup
494 static reloc_howto_type
*
495 sh_coff_reloc_type_lookup (bfd
* abfd ATTRIBUTE_UNUSED
,
496 bfd_reloc_code_real_type code
)
500 for (i
= ARRAY_SIZE (sh_reloc_map
); i
--;)
501 if (sh_reloc_map
[i
].bfd_reloc_val
== code
)
502 return &sh_coff_howtos
[(int) sh_reloc_map
[i
].shcoff_reloc_val
];
504 _bfd_error_handler (_("SH Error: unknown reloc type %d"), code
);
508 static reloc_howto_type
*
509 sh_coff_reloc_name_lookup (bfd
*abfd ATTRIBUTE_UNUSED
,
514 for (i
= 0; i
< sizeof (sh_coff_howtos
) / sizeof (sh_coff_howtos
[0]); i
++)
515 if (sh_coff_howtos
[i
].name
!= NULL
516 && strcasecmp (sh_coff_howtos
[i
].name
, r_name
) == 0)
517 return &sh_coff_howtos
[i
];
522 /* This macro is used in coffcode.h to get the howto corresponding to
523 an internal reloc. */
525 #define RTYPE2HOWTO(relent, internal) \
527 ((internal)->r_type < SH_COFF_HOWTO_COUNT \
528 ? &sh_coff_howtos[(internal)->r_type] \
529 : (reloc_howto_type *) NULL))
531 /* This is the same as the macro in coffcode.h, except that it copies
532 r_offset into reloc_entry->addend for some relocs. */
533 #define CALC_ADDEND(abfd, ptr, reloc, cache_ptr) \
535 coff_symbol_type *coffsym = (coff_symbol_type *) NULL; \
536 if (ptr && bfd_asymbol_bfd (ptr) != abfd) \
537 coffsym = (obj_symbols (abfd) \
538 + (cache_ptr->sym_ptr_ptr - symbols)); \
540 coffsym = coff_symbol_from (ptr); \
541 if (coffsym != (coff_symbol_type *) NULL \
542 && coffsym->native->u.syment.n_scnum == 0) \
543 cache_ptr->addend = 0; \
544 else if (ptr && bfd_asymbol_bfd (ptr) == abfd \
545 && ptr->section != (asection *) NULL) \
546 cache_ptr->addend = - (ptr->section->vma + ptr->value); \
548 cache_ptr->addend = 0; \
549 if ((reloc).r_type == R_SH_SWITCH8 \
550 || (reloc).r_type == R_SH_SWITCH16 \
551 || (reloc).r_type == R_SH_SWITCH32 \
552 || (reloc).r_type == R_SH_USES \
553 || (reloc).r_type == R_SH_COUNT \
554 || (reloc).r_type == R_SH_ALIGN) \
555 cache_ptr->addend = (reloc).r_offset; \
558 /* This is the howto function for the SH relocations. */
560 static bfd_reloc_status_type
561 sh_reloc (bfd
* abfd
,
562 arelent
* reloc_entry
,
565 asection
* input_section
,
567 char ** error_message ATTRIBUTE_UNUSED
)
571 unsigned short r_type
;
572 bfd_vma addr
= reloc_entry
->address
;
573 bfd_byte
*hit_data
= addr
+ (bfd_byte
*) data
;
575 r_type
= reloc_entry
->howto
->type
;
577 if (output_bfd
!= NULL
)
579 /* Partial linking--do nothing. */
580 reloc_entry
->address
+= input_section
->output_offset
;
584 /* Almost all relocs have to do with relaxing. If any work must be
585 done for them, it has been done in sh_relax_section. */
586 if (r_type
!= R_SH_IMM32
588 && r_type
!= R_SH_IMM32CE
589 && r_type
!= R_SH_IMAGEBASE
591 && (r_type
!= R_SH_PCDISP
592 || (symbol_in
->flags
& BSF_LOCAL
) != 0))
595 if (symbol_in
!= NULL
596 && bfd_is_und_section (symbol_in
->section
))
597 return bfd_reloc_undefined
;
599 if (addr
> input_section
->size
)
600 return bfd_reloc_outofrange
;
602 sym_value
= get_symbol_value (symbol_in
);
610 insn
= bfd_get_32 (abfd
, hit_data
);
611 insn
+= sym_value
+ reloc_entry
->addend
;
612 bfd_put_32 (abfd
, (bfd_vma
) insn
, hit_data
);
616 insn
= bfd_get_32 (abfd
, hit_data
);
617 insn
+= sym_value
+ reloc_entry
->addend
;
618 insn
-= pe_data (input_section
->output_section
->owner
)->pe_opthdr
.ImageBase
;
619 bfd_put_32 (abfd
, (bfd_vma
) insn
, hit_data
);
623 insn
= bfd_get_16 (abfd
, hit_data
);
624 sym_value
+= reloc_entry
->addend
;
625 sym_value
-= (input_section
->output_section
->vma
626 + input_section
->output_offset
629 sym_value
+= (insn
& 0xfff) << 1;
632 insn
= (insn
& 0xf000) | (sym_value
& 0xfff);
633 bfd_put_16 (abfd
, (bfd_vma
) insn
, hit_data
);
634 if (sym_value
< (bfd_vma
) -0x1000 || sym_value
>= 0x1000)
635 return bfd_reloc_overflow
;
645 #define coff_bfd_merge_private_bfd_data _bfd_generic_verify_endian_match
647 /* We can do relaxing. */
648 #define coff_bfd_relax_section sh_relax_section
650 /* We use the special COFF backend linker. */
651 #define coff_relocate_section sh_relocate_section
653 /* When relaxing, we need to use special code to get the relocated
655 #define coff_bfd_get_relocated_section_contents \
656 sh_coff_get_relocated_section_contents
658 #include "coffcode.h"
661 sh_relax_delete_bytes (bfd
*, asection
*, bfd_vma
, int);
663 /* This function handles relaxing on the SH.
665 Function calls on the SH look like this:
674 The compiler and assembler will cooperate to create R_SH_USES
675 relocs on the jsr instructions. The r_offset field of the
676 R_SH_USES reloc is the PC relative offset to the instruction which
677 loads the register (the r_offset field is computed as though it
678 were a jump instruction, so the offset value is actually from four
679 bytes past the instruction). The linker can use this reloc to
680 determine just which function is being called, and thus decide
681 whether it is possible to replace the jsr with a bsr.
683 If multiple function calls are all based on a single register load
684 (i.e., the same function is called multiple times), the compiler
685 guarantees that each function call will have an R_SH_USES reloc.
686 Therefore, if the linker is able to convert each R_SH_USES reloc
687 which refers to that address, it can safely eliminate the register
690 When the assembler creates an R_SH_USES reloc, it examines it to
691 determine which address is being loaded (L1 in the above example).
692 It then counts the number of references to that address, and
693 creates an R_SH_COUNT reloc at that address. The r_offset field of
694 the R_SH_COUNT reloc will be the number of references. If the
695 linker is able to eliminate a register load, it can use the
696 R_SH_COUNT reloc to see whether it can also eliminate the function
699 SH relaxing also handles another, unrelated, matter. On the SH, if
700 a load or store instruction is not aligned on a four byte boundary,
701 the memory cycle interferes with the 32 bit instruction fetch,
702 causing a one cycle bubble in the pipeline. Therefore, we try to
703 align load and store instructions on four byte boundaries if we
704 can, by swapping them with one of the adjacent instructions. */
707 sh_relax_section (bfd
*abfd
,
709 struct bfd_link_info
*link_info
,
712 struct internal_reloc
*internal_relocs
;
713 bfd_boolean have_code
;
714 struct internal_reloc
*irel
, *irelend
;
715 bfd_byte
*contents
= NULL
;
719 if (bfd_link_relocatable (link_info
)
720 || (sec
->flags
& SEC_RELOC
) == 0
721 || sec
->reloc_count
== 0)
724 if (coff_section_data (abfd
, sec
) == NULL
)
726 bfd_size_type amt
= sizeof (struct coff_section_tdata
);
727 sec
->used_by_bfd
= bfd_zalloc (abfd
, amt
);
728 if (sec
->used_by_bfd
== NULL
)
732 internal_relocs
= (_bfd_coff_read_internal_relocs
733 (abfd
, sec
, link_info
->keep_memory
,
734 (bfd_byte
*) NULL
, FALSE
,
735 (struct internal_reloc
*) NULL
));
736 if (internal_relocs
== NULL
)
741 irelend
= internal_relocs
+ sec
->reloc_count
;
742 for (irel
= internal_relocs
; irel
< irelend
; irel
++)
744 bfd_vma laddr
, paddr
, symval
;
746 struct internal_reloc
*irelfn
, *irelscan
, *irelcount
;
747 struct internal_syment sym
;
750 if (irel
->r_type
== R_SH_CODE
)
753 if (irel
->r_type
!= R_SH_USES
)
756 /* Get the section contents. */
757 if (contents
== NULL
)
759 if (coff_section_data (abfd
, sec
)->contents
!= NULL
)
760 contents
= coff_section_data (abfd
, sec
)->contents
;
763 if (!bfd_malloc_and_get_section (abfd
, sec
, &contents
))
768 /* The r_offset field of the R_SH_USES reloc will point us to
769 the register load. The 4 is because the r_offset field is
770 computed as though it were a jump offset, which are based
771 from 4 bytes after the jump instruction. */
772 laddr
= irel
->r_vaddr
- sec
->vma
+ 4;
773 /* Careful to sign extend the 32-bit offset. */
774 laddr
+= ((irel
->r_offset
& 0xffffffff) ^ 0x80000000) - 0x80000000;
775 if (laddr
>= sec
->size
)
777 /* xgettext: c-format */
778 _bfd_error_handler (_("%B: %#Lx: warning: bad R_SH_USES offset"),
779 abfd
, irel
->r_vaddr
);
782 insn
= bfd_get_16 (abfd
, contents
+ laddr
);
784 /* If the instruction is not mov.l NN,rN, we don't know what to do. */
785 if ((insn
& 0xf000) != 0xd000)
788 /* xgettext: c-format */
789 (_("%B: %#Lx: warning: R_SH_USES points to unrecognized insn %#x"),
790 abfd
, irel
->r_vaddr
, insn
);
794 /* Get the address from which the register is being loaded. The
795 displacement in the mov.l instruction is quadrupled. It is a
796 displacement from four bytes after the movl instruction, but,
797 before adding in the PC address, two least significant bits
798 of the PC are cleared. We assume that the section is aligned
799 on a four byte boundary. */
802 paddr
+= (laddr
+ 4) &~ (bfd_vma
) 3;
803 if (paddr
>= sec
->size
)
806 /* xgettext: c-format */
807 (_("%B: %#Lx: warning: bad R_SH_USES load offset"),
808 abfd
, irel
->r_vaddr
);
812 /* Get the reloc for the address from which the register is
813 being loaded. This reloc will tell us which function is
814 actually being called. */
816 for (irelfn
= internal_relocs
; irelfn
< irelend
; irelfn
++)
817 if (irelfn
->r_vaddr
== paddr
819 && (irelfn
->r_type
== R_SH_IMM32
820 || irelfn
->r_type
== R_SH_IMM32CE
821 || irelfn
->r_type
== R_SH_IMAGEBASE
)
824 && irelfn
->r_type
== R_SH_IMM32
828 if (irelfn
>= irelend
)
831 /* xgettext: c-format */
832 (_("%B: %#Lx: warning: could not find expected reloc"),
837 /* Get the value of the symbol referred to by the reloc. */
838 if (! _bfd_coff_get_external_symbols (abfd
))
840 bfd_coff_swap_sym_in (abfd
,
841 ((bfd_byte
*) obj_coff_external_syms (abfd
)
843 * bfd_coff_symesz (abfd
))),
845 if (sym
.n_scnum
!= 0 && sym
.n_scnum
!= sec
->target_index
)
848 /* xgettext: c-format */
849 (_("%B: %#Lx: warning: symbol in unexpected section"),
854 if (sym
.n_sclass
!= C_EXT
)
856 symval
= (sym
.n_value
858 + sec
->output_section
->vma
859 + sec
->output_offset
);
863 struct coff_link_hash_entry
*h
;
865 h
= obj_coff_sym_hashes (abfd
)[irelfn
->r_symndx
];
866 BFD_ASSERT (h
!= NULL
);
867 if (h
->root
.type
!= bfd_link_hash_defined
868 && h
->root
.type
!= bfd_link_hash_defweak
)
870 /* This appears to be a reference to an undefined
871 symbol. Just ignore it--it will be caught by the
872 regular reloc processing. */
876 symval
= (h
->root
.u
.def
.value
877 + h
->root
.u
.def
.section
->output_section
->vma
878 + h
->root
.u
.def
.section
->output_offset
);
881 symval
+= bfd_get_32 (abfd
, contents
+ paddr
- sec
->vma
);
883 /* See if this function call can be shortened. */
887 + sec
->output_section
->vma
890 if (foff
< -0x1000 || foff
>= 0x1000)
892 /* After all that work, we can't shorten this function call. */
896 /* Shorten the function call. */
898 /* For simplicity of coding, we are going to modify the section
899 contents, the section relocs, and the BFD symbol table. We
900 must tell the rest of the code not to free up this
901 information. It would be possible to instead create a table
902 of changes which have to be made, as is done in coff-mips.c;
903 that would be more work, but would require less memory when
904 the linker is run. */
906 coff_section_data (abfd
, sec
)->relocs
= internal_relocs
;
907 coff_section_data (abfd
, sec
)->keep_relocs
= TRUE
;
909 coff_section_data (abfd
, sec
)->contents
= contents
;
910 coff_section_data (abfd
, sec
)->keep_contents
= TRUE
;
912 obj_coff_keep_syms (abfd
) = TRUE
;
914 /* Replace the jsr with a bsr. */
916 /* Change the R_SH_USES reloc into an R_SH_PCDISP reloc, and
917 replace the jsr with a bsr. */
918 irel
->r_type
= R_SH_PCDISP
;
919 irel
->r_symndx
= irelfn
->r_symndx
;
920 if (sym
.n_sclass
!= C_EXT
)
922 /* If this needs to be changed because of future relaxing,
923 it will be handled here like other internal PCDISP
926 (bfd_vma
) 0xb000 | ((foff
>> 1) & 0xfff),
927 contents
+ irel
->r_vaddr
- sec
->vma
);
931 /* We can't fully resolve this yet, because the external
932 symbol value may be changed by future relaxing. We let
933 the final link phase handle it. */
934 bfd_put_16 (abfd
, (bfd_vma
) 0xb000,
935 contents
+ irel
->r_vaddr
- sec
->vma
);
938 /* See if there is another R_SH_USES reloc referring to the same
940 for (irelscan
= internal_relocs
; irelscan
< irelend
; irelscan
++)
941 if (irelscan
->r_type
== R_SH_USES
942 && laddr
== irelscan
->r_vaddr
- sec
->vma
+ 4 + irelscan
->r_offset
)
944 if (irelscan
< irelend
)
946 /* Some other function call depends upon this register load,
947 and we have not yet converted that function call.
948 Indeed, we may never be able to convert it. There is
949 nothing else we can do at this point. */
953 /* Look for a R_SH_COUNT reloc on the location where the
954 function address is stored. Do this before deleting any
955 bytes, to avoid confusion about the address. */
956 for (irelcount
= internal_relocs
; irelcount
< irelend
; irelcount
++)
957 if (irelcount
->r_vaddr
== paddr
958 && irelcount
->r_type
== R_SH_COUNT
)
961 /* Delete the register load. */
962 if (! sh_relax_delete_bytes (abfd
, sec
, laddr
, 2))
965 /* That will change things, so, just in case it permits some
966 other function call to come within range, we should relax
967 again. Note that this is not required, and it may be slow. */
970 /* Now check whether we got a COUNT reloc. */
971 if (irelcount
>= irelend
)
974 /* xgettext: c-format */
975 (_("%B: %#Lx: warning: could not find expected COUNT reloc"),
980 /* The number of uses is stored in the r_offset field. We've
982 if (irelcount
->r_offset
== 0)
984 /* xgettext: c-format */
985 _bfd_error_handler (_("%B: %#Lx: warning: bad count"),
990 --irelcount
->r_offset
;
992 /* If there are no more uses, we can delete the address. Reload
993 the address from irelfn, in case it was changed by the
994 previous call to sh_relax_delete_bytes. */
995 if (irelcount
->r_offset
== 0)
997 if (! sh_relax_delete_bytes (abfd
, sec
,
998 irelfn
->r_vaddr
- sec
->vma
, 4))
1002 /* We've done all we can with that function call. */
1005 /* Look for load and store instructions that we can align on four
1009 bfd_boolean swapped
;
1011 /* Get the section contents. */
1012 if (contents
== NULL
)
1014 if (coff_section_data (abfd
, sec
)->contents
!= NULL
)
1015 contents
= coff_section_data (abfd
, sec
)->contents
;
1018 if (!bfd_malloc_and_get_section (abfd
, sec
, &contents
))
1023 if (! sh_align_loads (abfd
, sec
, internal_relocs
, contents
, &swapped
))
1028 coff_section_data (abfd
, sec
)->relocs
= internal_relocs
;
1029 coff_section_data (abfd
, sec
)->keep_relocs
= TRUE
;
1031 coff_section_data (abfd
, sec
)->contents
= contents
;
1032 coff_section_data (abfd
, sec
)->keep_contents
= TRUE
;
1034 obj_coff_keep_syms (abfd
) = TRUE
;
1038 if (internal_relocs
!= NULL
1039 && internal_relocs
!= coff_section_data (abfd
, sec
)->relocs
)
1041 if (! link_info
->keep_memory
)
1042 free (internal_relocs
);
1044 coff_section_data (abfd
, sec
)->relocs
= internal_relocs
;
1047 if (contents
!= NULL
&& contents
!= coff_section_data (abfd
, sec
)->contents
)
1049 if (! link_info
->keep_memory
)
1052 /* Cache the section contents for coff_link_input_bfd. */
1053 coff_section_data (abfd
, sec
)->contents
= contents
;
1059 if (internal_relocs
!= NULL
1060 && internal_relocs
!= coff_section_data (abfd
, sec
)->relocs
)
1061 free (internal_relocs
);
1062 if (contents
!= NULL
&& contents
!= coff_section_data (abfd
, sec
)->contents
)
1067 /* Delete some bytes from a section while relaxing. */
1070 sh_relax_delete_bytes (bfd
*abfd
,
1076 struct internal_reloc
*irel
, *irelend
;
1077 struct internal_reloc
*irelalign
;
1079 bfd_byte
*esym
, *esymend
;
1080 bfd_size_type symesz
;
1081 struct coff_link_hash_entry
**sym_hash
;
1084 contents
= coff_section_data (abfd
, sec
)->contents
;
1086 /* The deletion must stop at the next ALIGN reloc for an alignment
1087 power larger than the number of bytes we are deleting. */
1092 irel
= coff_section_data (abfd
, sec
)->relocs
;
1093 irelend
= irel
+ sec
->reloc_count
;
1094 for (; irel
< irelend
; irel
++)
1096 if (irel
->r_type
== R_SH_ALIGN
1097 && irel
->r_vaddr
- sec
->vma
> addr
1098 && count
< (1 << irel
->r_offset
))
1101 toaddr
= irel
->r_vaddr
- sec
->vma
;
1106 /* Actually delete the bytes. */
1107 memmove (contents
+ addr
, contents
+ addr
+ count
,
1108 (size_t) (toaddr
- addr
- count
));
1109 if (irelalign
== NULL
)
1115 #define NOP_OPCODE (0x0009)
1117 BFD_ASSERT ((count
& 1) == 0);
1118 for (i
= 0; i
< count
; i
+= 2)
1119 bfd_put_16 (abfd
, (bfd_vma
) NOP_OPCODE
, contents
+ toaddr
- count
+ i
);
1122 /* Adjust all the relocs. */
1123 for (irel
= coff_section_data (abfd
, sec
)->relocs
; irel
< irelend
; irel
++)
1125 bfd_vma nraddr
, stop
;
1128 struct internal_syment sym
;
1129 int off
, adjust
, oinsn
;
1130 bfd_signed_vma voff
= 0;
1131 bfd_boolean overflow
;
1133 /* Get the new reloc address. */
1134 nraddr
= irel
->r_vaddr
- sec
->vma
;
1135 if ((irel
->r_vaddr
- sec
->vma
> addr
1136 && irel
->r_vaddr
- sec
->vma
< toaddr
)
1137 || (irel
->r_type
== R_SH_ALIGN
1138 && irel
->r_vaddr
- sec
->vma
== toaddr
))
1141 /* See if this reloc was for the bytes we have deleted, in which
1142 case we no longer care about it. Don't delete relocs which
1143 represent addresses, though. */
1144 if (irel
->r_vaddr
- sec
->vma
>= addr
1145 && irel
->r_vaddr
- sec
->vma
< addr
+ count
1146 && irel
->r_type
!= R_SH_ALIGN
1147 && irel
->r_type
!= R_SH_CODE
1148 && irel
->r_type
!= R_SH_DATA
1149 && irel
->r_type
!= R_SH_LABEL
)
1150 irel
->r_type
= R_SH_UNUSED
;
1152 /* If this is a PC relative reloc, see if the range it covers
1153 includes the bytes we have deleted. */
1154 switch (irel
->r_type
)
1159 case R_SH_PCDISP8BY2
:
1161 case R_SH_PCRELIMM8BY2
:
1162 case R_SH_PCRELIMM8BY4
:
1163 start
= irel
->r_vaddr
- sec
->vma
;
1164 insn
= bfd_get_16 (abfd
, contents
+ nraddr
);
1168 switch (irel
->r_type
)
1171 start
= stop
= addr
;
1177 case R_SH_IMAGEBASE
:
1179 /* If this reloc is against a symbol defined in this
1180 section, and the symbol will not be adjusted below, we
1181 must check the addend to see it will put the value in
1182 range to be adjusted, and hence must be changed. */
1183 bfd_coff_swap_sym_in (abfd
,
1184 ((bfd_byte
*) obj_coff_external_syms (abfd
)
1186 * bfd_coff_symesz (abfd
))),
1188 if (sym
.n_sclass
!= C_EXT
1189 && sym
.n_scnum
== sec
->target_index
1190 && ((bfd_vma
) sym
.n_value
<= addr
1191 || (bfd_vma
) sym
.n_value
>= toaddr
))
1195 val
= bfd_get_32 (abfd
, contents
+ nraddr
);
1197 if (val
> addr
&& val
< toaddr
)
1198 bfd_put_32 (abfd
, val
- count
, contents
+ nraddr
);
1200 start
= stop
= addr
;
1203 case R_SH_PCDISP8BY2
:
1207 stop
= (bfd_vma
) ((bfd_signed_vma
) start
+ 4 + off
* 2);
1211 bfd_coff_swap_sym_in (abfd
,
1212 ((bfd_byte
*) obj_coff_external_syms (abfd
)
1214 * bfd_coff_symesz (abfd
))),
1216 if (sym
.n_sclass
== C_EXT
)
1217 start
= stop
= addr
;
1223 stop
= (bfd_vma
) ((bfd_signed_vma
) start
+ 4 + off
* 2);
1227 case R_SH_PCRELIMM8BY2
:
1229 stop
= start
+ 4 + off
* 2;
1232 case R_SH_PCRELIMM8BY4
:
1234 stop
= (start
&~ (bfd_vma
) 3) + 4 + off
* 4;
1240 /* These relocs types represent
1242 The r_offset field holds the difference between the reloc
1243 address and L1. That is the start of the reloc, and
1244 adding in the contents gives us the top. We must adjust
1245 both the r_offset field and the section contents. */
1247 start
= irel
->r_vaddr
- sec
->vma
;
1248 stop
= (bfd_vma
) ((bfd_signed_vma
) start
- (long) irel
->r_offset
);
1252 && (stop
<= addr
|| stop
>= toaddr
))
1253 irel
->r_offset
+= count
;
1254 else if (stop
> addr
1256 && (start
<= addr
|| start
>= toaddr
))
1257 irel
->r_offset
-= count
;
1261 if (irel
->r_type
== R_SH_SWITCH16
)
1262 voff
= bfd_get_signed_16 (abfd
, contents
+ nraddr
);
1263 else if (irel
->r_type
== R_SH_SWITCH8
)
1264 voff
= bfd_get_8 (abfd
, contents
+ nraddr
);
1266 voff
= bfd_get_signed_32 (abfd
, contents
+ nraddr
);
1267 stop
= (bfd_vma
) ((bfd_signed_vma
) start
+ voff
);
1272 start
= irel
->r_vaddr
- sec
->vma
;
1273 stop
= (bfd_vma
) ((bfd_signed_vma
) start
1274 + (long) irel
->r_offset
1281 && (stop
<= addr
|| stop
>= toaddr
))
1283 else if (stop
> addr
1285 && (start
<= addr
|| start
>= toaddr
))
1294 switch (irel
->r_type
)
1300 case R_SH_PCDISP8BY2
:
1301 case R_SH_PCRELIMM8BY2
:
1303 if ((oinsn
& 0xff00) != (insn
& 0xff00))
1305 bfd_put_16 (abfd
, (bfd_vma
) insn
, contents
+ nraddr
);
1310 if ((oinsn
& 0xf000) != (insn
& 0xf000))
1312 bfd_put_16 (abfd
, (bfd_vma
) insn
, contents
+ nraddr
);
1315 case R_SH_PCRELIMM8BY4
:
1316 BFD_ASSERT (adjust
== count
|| count
>= 4);
1321 if ((irel
->r_vaddr
& 3) == 0)
1324 if ((oinsn
& 0xff00) != (insn
& 0xff00))
1326 bfd_put_16 (abfd
, (bfd_vma
) insn
, contents
+ nraddr
);
1331 if (voff
< 0 || voff
>= 0xff)
1333 bfd_put_8 (abfd
, (bfd_vma
) voff
, contents
+ nraddr
);
1338 if (voff
< - 0x8000 || voff
>= 0x8000)
1340 bfd_put_signed_16 (abfd
, (bfd_vma
) voff
, contents
+ nraddr
);
1345 bfd_put_signed_32 (abfd
, (bfd_vma
) voff
, contents
+ nraddr
);
1349 irel
->r_offset
+= adjust
;
1356 /* xgettext: c-format */
1357 (_("%B: %#Lx: fatal: reloc overflow while relaxing"),
1358 abfd
, irel
->r_vaddr
);
1359 bfd_set_error (bfd_error_bad_value
);
1364 irel
->r_vaddr
= nraddr
+ sec
->vma
;
1367 /* Look through all the other sections. If there contain any IMM32
1368 relocs against internal symbols which we are not going to adjust
1369 below, we may need to adjust the addends. */
1370 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
1372 struct internal_reloc
*internal_relocs
;
1373 struct internal_reloc
*irelscan
, *irelscanend
;
1374 bfd_byte
*ocontents
;
1377 || (o
->flags
& SEC_RELOC
) == 0
1378 || o
->reloc_count
== 0)
1381 /* We always cache the relocs. Perhaps, if info->keep_memory is
1382 FALSE, we should free them, if we are permitted to, when we
1383 leave sh_coff_relax_section. */
1384 internal_relocs
= (_bfd_coff_read_internal_relocs
1385 (abfd
, o
, TRUE
, (bfd_byte
*) NULL
, FALSE
,
1386 (struct internal_reloc
*) NULL
));
1387 if (internal_relocs
== NULL
)
1391 irelscanend
= internal_relocs
+ o
->reloc_count
;
1392 for (irelscan
= internal_relocs
; irelscan
< irelscanend
; irelscan
++)
1394 struct internal_syment sym
;
1397 if (irelscan
->r_type
!= R_SH_IMM32
1398 && irelscan
->r_type
!= R_SH_IMAGEBASE
1399 && irelscan
->r_type
!= R_SH_IMM32CE
)
1401 if (irelscan
->r_type
!= R_SH_IMM32
)
1405 bfd_coff_swap_sym_in (abfd
,
1406 ((bfd_byte
*) obj_coff_external_syms (abfd
)
1407 + (irelscan
->r_symndx
1408 * bfd_coff_symesz (abfd
))),
1410 if (sym
.n_sclass
!= C_EXT
1411 && sym
.n_scnum
== sec
->target_index
1412 && ((bfd_vma
) sym
.n_value
<= addr
1413 || (bfd_vma
) sym
.n_value
>= toaddr
))
1417 if (ocontents
== NULL
)
1419 if (coff_section_data (abfd
, o
)->contents
!= NULL
)
1420 ocontents
= coff_section_data (abfd
, o
)->contents
;
1423 if (!bfd_malloc_and_get_section (abfd
, o
, &ocontents
))
1425 /* We always cache the section contents.
1426 Perhaps, if info->keep_memory is FALSE, we
1427 should free them, if we are permitted to,
1428 when we leave sh_coff_relax_section. */
1429 coff_section_data (abfd
, o
)->contents
= ocontents
;
1433 val
= bfd_get_32 (abfd
, ocontents
+ irelscan
->r_vaddr
- o
->vma
);
1435 if (val
> addr
&& val
< toaddr
)
1436 bfd_put_32 (abfd
, val
- count
,
1437 ocontents
+ irelscan
->r_vaddr
- o
->vma
);
1439 coff_section_data (abfd
, o
)->keep_contents
= TRUE
;
1444 /* Adjusting the internal symbols will not work if something has
1445 already retrieved the generic symbols. It would be possible to
1446 make this work by adjusting the generic symbols at the same time.
1447 However, this case should not arise in normal usage. */
1448 if (obj_symbols (abfd
) != NULL
1449 || obj_raw_syments (abfd
) != NULL
)
1452 (_("%B: fatal: generic symbols retrieved before relaxing"), abfd
);
1453 bfd_set_error (bfd_error_invalid_operation
);
1457 /* Adjust all the symbols. */
1458 sym_hash
= obj_coff_sym_hashes (abfd
);
1459 symesz
= bfd_coff_symesz (abfd
);
1460 esym
= (bfd_byte
*) obj_coff_external_syms (abfd
);
1461 esymend
= esym
+ obj_raw_syment_count (abfd
) * symesz
;
1462 while (esym
< esymend
)
1464 struct internal_syment isym
;
1466 bfd_coff_swap_sym_in (abfd
, esym
, &isym
);
1468 if (isym
.n_scnum
== sec
->target_index
1469 && (bfd_vma
) isym
.n_value
> addr
1470 && (bfd_vma
) isym
.n_value
< toaddr
)
1472 isym
.n_value
-= count
;
1474 bfd_coff_swap_sym_out (abfd
, &isym
, esym
);
1476 if (*sym_hash
!= NULL
)
1478 BFD_ASSERT ((*sym_hash
)->root
.type
== bfd_link_hash_defined
1479 || (*sym_hash
)->root
.type
== bfd_link_hash_defweak
);
1480 BFD_ASSERT ((*sym_hash
)->root
.u
.def
.value
>= addr
1481 && (*sym_hash
)->root
.u
.def
.value
< toaddr
);
1482 (*sym_hash
)->root
.u
.def
.value
-= count
;
1486 esym
+= (isym
.n_numaux
+ 1) * symesz
;
1487 sym_hash
+= isym
.n_numaux
+ 1;
1490 /* See if we can move the ALIGN reloc forward. We have adjusted
1491 r_vaddr for it already. */
1492 if (irelalign
!= NULL
)
1494 bfd_vma alignto
, alignaddr
;
1496 alignto
= BFD_ALIGN (toaddr
, 1 << irelalign
->r_offset
);
1497 alignaddr
= BFD_ALIGN (irelalign
->r_vaddr
- sec
->vma
,
1498 1 << irelalign
->r_offset
);
1499 if (alignto
!= alignaddr
)
1501 /* Tail recursion. */
1502 return sh_relax_delete_bytes (abfd
, sec
, alignaddr
,
1503 (int) (alignto
- alignaddr
));
1510 /* This is yet another version of the SH opcode table, used to rapidly
1511 get information about a particular instruction. */
1513 /* The opcode map is represented by an array of these structures. The
1514 array is indexed by the high order four bits in the instruction. */
1516 struct sh_major_opcode
1518 /* A pointer to the instruction list. This is an array which
1519 contains all the instructions with this major opcode. */
1520 const struct sh_minor_opcode
*minor_opcodes
;
1521 /* The number of elements in minor_opcodes. */
1522 unsigned short count
;
1525 /* This structure holds information for a set of SH opcodes. The
1526 instruction code is anded with the mask value, and the resulting
1527 value is used to search the order opcode list. */
1529 struct sh_minor_opcode
1531 /* The sorted opcode list. */
1532 const struct sh_opcode
*opcodes
;
1533 /* The number of elements in opcodes. */
1534 unsigned short count
;
1535 /* The mask value to use when searching the opcode list. */
1536 unsigned short mask
;
1539 /* This structure holds information for an SH instruction. An array
1540 of these structures is sorted in order by opcode. */
1544 /* The code for this instruction, after it has been anded with the
1545 mask value in the sh_major_opcode structure. */
1546 unsigned short opcode
;
1547 /* Flags for this instruction. */
1548 unsigned long flags
;
1551 /* Flag which appear in the sh_opcode structure. */
1553 /* This instruction loads a value from memory. */
1556 /* This instruction stores a value to memory. */
1559 /* This instruction is a branch. */
1560 #define BRANCH (0x4)
1562 /* This instruction has a delay slot. */
1565 /* This instruction uses the value in the register in the field at
1566 mask 0x0f00 of the instruction. */
1567 #define USES1 (0x10)
1568 #define USES1_REG(x) ((x & 0x0f00) >> 8)
1570 /* This instruction uses the value in the register in the field at
1571 mask 0x00f0 of the instruction. */
1572 #define USES2 (0x20)
1573 #define USES2_REG(x) ((x & 0x00f0) >> 4)
1575 /* This instruction uses the value in register 0. */
1576 #define USESR0 (0x40)
1578 /* This instruction sets the value in the register in the field at
1579 mask 0x0f00 of the instruction. */
1580 #define SETS1 (0x80)
1581 #define SETS1_REG(x) ((x & 0x0f00) >> 8)
1583 /* This instruction sets the value in the register in the field at
1584 mask 0x00f0 of the instruction. */
1585 #define SETS2 (0x100)
1586 #define SETS2_REG(x) ((x & 0x00f0) >> 4)
1588 /* This instruction sets register 0. */
1589 #define SETSR0 (0x200)
1591 /* This instruction sets a special register. */
1592 #define SETSSP (0x400)
1594 /* This instruction uses a special register. */
1595 #define USESSP (0x800)
1597 /* This instruction uses the floating point register in the field at
1598 mask 0x0f00 of the instruction. */
1599 #define USESF1 (0x1000)
1600 #define USESF1_REG(x) ((x & 0x0f00) >> 8)
1602 /* This instruction uses the floating point register in the field at
1603 mask 0x00f0 of the instruction. */
1604 #define USESF2 (0x2000)
1605 #define USESF2_REG(x) ((x & 0x00f0) >> 4)
1607 /* This instruction uses floating point register 0. */
1608 #define USESF0 (0x4000)
1610 /* This instruction sets the floating point register in the field at
1611 mask 0x0f00 of the instruction. */
1612 #define SETSF1 (0x8000)
1613 #define SETSF1_REG(x) ((x & 0x0f00) >> 8)
1615 #define USESAS (0x10000)
1616 #define USESAS_REG(x) (((((x) >> 8) - 2) & 3) + 2)
1617 #define USESR8 (0x20000)
1618 #define SETSAS (0x40000)
1619 #define SETSAS_REG(x) USESAS_REG (x)
1621 #define MAP(a) a, sizeof a / sizeof a[0]
1623 #ifndef COFF_IMAGE_WITH_PE
1625 /* The opcode maps. */
1627 static const struct sh_opcode sh_opcode00
[] =
1629 { 0x0008, SETSSP
}, /* clrt */
1630 { 0x0009, 0 }, /* nop */
1631 { 0x000b, BRANCH
| DELAY
| USESSP
}, /* rts */
1632 { 0x0018, SETSSP
}, /* sett */
1633 { 0x0019, SETSSP
}, /* div0u */
1634 { 0x001b, 0 }, /* sleep */
1635 { 0x0028, SETSSP
}, /* clrmac */
1636 { 0x002b, BRANCH
| DELAY
| SETSSP
}, /* rte */
1637 { 0x0038, USESSP
| SETSSP
}, /* ldtlb */
1638 { 0x0048, SETSSP
}, /* clrs */
1639 { 0x0058, SETSSP
} /* sets */
1642 static const struct sh_opcode sh_opcode01
[] =
1644 { 0x0003, BRANCH
| DELAY
| USES1
| SETSSP
}, /* bsrf rn */
1645 { 0x000a, SETS1
| USESSP
}, /* sts mach,rn */
1646 { 0x001a, SETS1
| USESSP
}, /* sts macl,rn */
1647 { 0x0023, BRANCH
| DELAY
| USES1
}, /* braf rn */
1648 { 0x0029, SETS1
| USESSP
}, /* movt rn */
1649 { 0x002a, SETS1
| USESSP
}, /* sts pr,rn */
1650 { 0x005a, SETS1
| USESSP
}, /* sts fpul,rn */
1651 { 0x006a, SETS1
| USESSP
}, /* sts fpscr,rn / sts dsr,rn */
1652 { 0x0083, LOAD
| USES1
}, /* pref @rn */
1653 { 0x007a, SETS1
| USESSP
}, /* sts a0,rn */
1654 { 0x008a, SETS1
| USESSP
}, /* sts x0,rn */
1655 { 0x009a, SETS1
| USESSP
}, /* sts x1,rn */
1656 { 0x00aa, SETS1
| USESSP
}, /* sts y0,rn */
1657 { 0x00ba, SETS1
| USESSP
} /* sts y1,rn */
1660 static const struct sh_opcode sh_opcode02
[] =
1662 { 0x0002, SETS1
| USESSP
}, /* stc <special_reg>,rn */
1663 { 0x0004, STORE
| USES1
| USES2
| USESR0
}, /* mov.b rm,@(r0,rn) */
1664 { 0x0005, STORE
| USES1
| USES2
| USESR0
}, /* mov.w rm,@(r0,rn) */
1665 { 0x0006, STORE
| USES1
| USES2
| USESR0
}, /* mov.l rm,@(r0,rn) */
1666 { 0x0007, SETSSP
| USES1
| USES2
}, /* mul.l rm,rn */
1667 { 0x000c, LOAD
| SETS1
| USES2
| USESR0
}, /* mov.b @(r0,rm),rn */
1668 { 0x000d, LOAD
| SETS1
| USES2
| USESR0
}, /* mov.w @(r0,rm),rn */
1669 { 0x000e, LOAD
| SETS1
| USES2
| USESR0
}, /* mov.l @(r0,rm),rn */
1670 { 0x000f, LOAD
|SETS1
|SETS2
|SETSSP
|USES1
|USES2
|USESSP
}, /* mac.l @rm+,@rn+ */
1673 static const struct sh_minor_opcode sh_opcode0
[] =
1675 { MAP (sh_opcode00
), 0xffff },
1676 { MAP (sh_opcode01
), 0xf0ff },
1677 { MAP (sh_opcode02
), 0xf00f }
1680 static const struct sh_opcode sh_opcode10
[] =
1682 { 0x1000, STORE
| USES1
| USES2
} /* mov.l rm,@(disp,rn) */
1685 static const struct sh_minor_opcode sh_opcode1
[] =
1687 { MAP (sh_opcode10
), 0xf000 }
1690 static const struct sh_opcode sh_opcode20
[] =
1692 { 0x2000, STORE
| USES1
| USES2
}, /* mov.b rm,@rn */
1693 { 0x2001, STORE
| USES1
| USES2
}, /* mov.w rm,@rn */
1694 { 0x2002, STORE
| USES1
| USES2
}, /* mov.l rm,@rn */
1695 { 0x2004, STORE
| SETS1
| USES1
| USES2
}, /* mov.b rm,@-rn */
1696 { 0x2005, STORE
| SETS1
| USES1
| USES2
}, /* mov.w rm,@-rn */
1697 { 0x2006, STORE
| SETS1
| USES1
| USES2
}, /* mov.l rm,@-rn */
1698 { 0x2007, SETSSP
| USES1
| USES2
| USESSP
}, /* div0s */
1699 { 0x2008, SETSSP
| USES1
| USES2
}, /* tst rm,rn */
1700 { 0x2009, SETS1
| USES1
| USES2
}, /* and rm,rn */
1701 { 0x200a, SETS1
| USES1
| USES2
}, /* xor rm,rn */
1702 { 0x200b, SETS1
| USES1
| USES2
}, /* or rm,rn */
1703 { 0x200c, SETSSP
| USES1
| USES2
}, /* cmp/str rm,rn */
1704 { 0x200d, SETS1
| USES1
| USES2
}, /* xtrct rm,rn */
1705 { 0x200e, SETSSP
| USES1
| USES2
}, /* mulu.w rm,rn */
1706 { 0x200f, SETSSP
| USES1
| USES2
} /* muls.w rm,rn */
1709 static const struct sh_minor_opcode sh_opcode2
[] =
1711 { MAP (sh_opcode20
), 0xf00f }
1714 static const struct sh_opcode sh_opcode30
[] =
1716 { 0x3000, SETSSP
| USES1
| USES2
}, /* cmp/eq rm,rn */
1717 { 0x3002, SETSSP
| USES1
| USES2
}, /* cmp/hs rm,rn */
1718 { 0x3003, SETSSP
| USES1
| USES2
}, /* cmp/ge rm,rn */
1719 { 0x3004, SETSSP
| USESSP
| USES1
| USES2
}, /* div1 rm,rn */
1720 { 0x3005, SETSSP
| USES1
| USES2
}, /* dmulu.l rm,rn */
1721 { 0x3006, SETSSP
| USES1
| USES2
}, /* cmp/hi rm,rn */
1722 { 0x3007, SETSSP
| USES1
| USES2
}, /* cmp/gt rm,rn */
1723 { 0x3008, SETS1
| USES1
| USES2
}, /* sub rm,rn */
1724 { 0x300a, SETS1
| SETSSP
| USES1
| USES2
| USESSP
}, /* subc rm,rn */
1725 { 0x300b, SETS1
| SETSSP
| USES1
| USES2
}, /* subv rm,rn */
1726 { 0x300c, SETS1
| USES1
| USES2
}, /* add rm,rn */
1727 { 0x300d, SETSSP
| USES1
| USES2
}, /* dmuls.l rm,rn */
1728 { 0x300e, SETS1
| SETSSP
| USES1
| USES2
| USESSP
}, /* addc rm,rn */
1729 { 0x300f, SETS1
| SETSSP
| USES1
| USES2
} /* addv rm,rn */
1732 static const struct sh_minor_opcode sh_opcode3
[] =
1734 { MAP (sh_opcode30
), 0xf00f }
1737 static const struct sh_opcode sh_opcode40
[] =
1739 { 0x4000, SETS1
| SETSSP
| USES1
}, /* shll rn */
1740 { 0x4001, SETS1
| SETSSP
| USES1
}, /* shlr rn */
1741 { 0x4002, STORE
| SETS1
| USES1
| USESSP
}, /* sts.l mach,@-rn */
1742 { 0x4004, SETS1
| SETSSP
| USES1
}, /* rotl rn */
1743 { 0x4005, SETS1
| SETSSP
| USES1
}, /* rotr rn */
1744 { 0x4006, LOAD
| SETS1
| SETSSP
| USES1
}, /* lds.l @rm+,mach */
1745 { 0x4008, SETS1
| USES1
}, /* shll2 rn */
1746 { 0x4009, SETS1
| USES1
}, /* shlr2 rn */
1747 { 0x400a, SETSSP
| USES1
}, /* lds rm,mach */
1748 { 0x400b, BRANCH
| DELAY
| USES1
}, /* jsr @rn */
1749 { 0x4010, SETS1
| SETSSP
| USES1
}, /* dt rn */
1750 { 0x4011, SETSSP
| USES1
}, /* cmp/pz rn */
1751 { 0x4012, STORE
| SETS1
| USES1
| USESSP
}, /* sts.l macl,@-rn */
1752 { 0x4014, SETSSP
| USES1
}, /* setrc rm */
1753 { 0x4015, SETSSP
| USES1
}, /* cmp/pl rn */
1754 { 0x4016, LOAD
| SETS1
| SETSSP
| USES1
}, /* lds.l @rm+,macl */
1755 { 0x4018, SETS1
| USES1
}, /* shll8 rn */
1756 { 0x4019, SETS1
| USES1
}, /* shlr8 rn */
1757 { 0x401a, SETSSP
| USES1
}, /* lds rm,macl */
1758 { 0x401b, LOAD
| SETSSP
| USES1
}, /* tas.b @rn */
1759 { 0x4020, SETS1
| SETSSP
| USES1
}, /* shal rn */
1760 { 0x4021, SETS1
| SETSSP
| USES1
}, /* shar rn */
1761 { 0x4022, STORE
| SETS1
| USES1
| USESSP
}, /* sts.l pr,@-rn */
1762 { 0x4024, SETS1
| SETSSP
| USES1
| USESSP
}, /* rotcl rn */
1763 { 0x4025, SETS1
| SETSSP
| USES1
| USESSP
}, /* rotcr rn */
1764 { 0x4026, LOAD
| SETS1
| SETSSP
| USES1
}, /* lds.l @rm+,pr */
1765 { 0x4028, SETS1
| USES1
}, /* shll16 rn */
1766 { 0x4029, SETS1
| USES1
}, /* shlr16 rn */
1767 { 0x402a, SETSSP
| USES1
}, /* lds rm,pr */
1768 { 0x402b, BRANCH
| DELAY
| USES1
}, /* jmp @rn */
1769 { 0x4052, STORE
| SETS1
| USES1
| USESSP
}, /* sts.l fpul,@-rn */
1770 { 0x4056, LOAD
| SETS1
| SETSSP
| USES1
}, /* lds.l @rm+,fpul */
1771 { 0x405a, SETSSP
| USES1
}, /* lds.l rm,fpul */
1772 { 0x4062, STORE
| SETS1
| USES1
| USESSP
}, /* sts.l fpscr / dsr,@-rn */
1773 { 0x4066, LOAD
| SETS1
| SETSSP
| USES1
}, /* lds.l @rm+,fpscr / dsr */
1774 { 0x406a, SETSSP
| USES1
}, /* lds rm,fpscr / lds rm,dsr */
1775 { 0x4072, STORE
| SETS1
| USES1
| USESSP
}, /* sts.l a0,@-rn */
1776 { 0x4076, LOAD
| SETS1
| SETSSP
| USES1
}, /* lds.l @rm+,a0 */
1777 { 0x407a, SETSSP
| USES1
}, /* lds.l rm,a0 */
1778 { 0x4082, STORE
| SETS1
| USES1
| USESSP
}, /* sts.l x0,@-rn */
1779 { 0x4086, LOAD
| SETS1
| SETSSP
| USES1
}, /* lds.l @rm+,x0 */
1780 { 0x408a, SETSSP
| USES1
}, /* lds.l rm,x0 */
1781 { 0x4092, STORE
| SETS1
| USES1
| USESSP
}, /* sts.l x1,@-rn */
1782 { 0x4096, LOAD
| SETS1
| SETSSP
| USES1
}, /* lds.l @rm+,x1 */
1783 { 0x409a, SETSSP
| USES1
}, /* lds.l rm,x1 */
1784 { 0x40a2, STORE
| SETS1
| USES1
| USESSP
}, /* sts.l y0,@-rn */
1785 { 0x40a6, LOAD
| SETS1
| SETSSP
| USES1
}, /* lds.l @rm+,y0 */
1786 { 0x40aa, SETSSP
| USES1
}, /* lds.l rm,y0 */
1787 { 0x40b2, STORE
| SETS1
| USES1
| USESSP
}, /* sts.l y1,@-rn */
1788 { 0x40b6, LOAD
| SETS1
| SETSSP
| USES1
}, /* lds.l @rm+,y1 */
1789 { 0x40ba, SETSSP
| USES1
} /* lds.l rm,y1 */
1792 static const struct sh_opcode sh_opcode41
[] =
1794 { 0x4003, STORE
| SETS1
| USES1
| USESSP
}, /* stc.l <special_reg>,@-rn */
1795 { 0x4007, LOAD
| SETS1
| SETSSP
| USES1
}, /* ldc.l @rm+,<special_reg> */
1796 { 0x400c, SETS1
| USES1
| USES2
}, /* shad rm,rn */
1797 { 0x400d, SETS1
| USES1
| USES2
}, /* shld rm,rn */
1798 { 0x400e, SETSSP
| USES1
}, /* ldc rm,<special_reg> */
1799 { 0x400f, LOAD
|SETS1
|SETS2
|SETSSP
|USES1
|USES2
|USESSP
}, /* mac.w @rm+,@rn+ */
1802 static const struct sh_minor_opcode sh_opcode4
[] =
1804 { MAP (sh_opcode40
), 0xf0ff },
1805 { MAP (sh_opcode41
), 0xf00f }
1808 static const struct sh_opcode sh_opcode50
[] =
1810 { 0x5000, LOAD
| SETS1
| USES2
} /* mov.l @(disp,rm),rn */
1813 static const struct sh_minor_opcode sh_opcode5
[] =
1815 { MAP (sh_opcode50
), 0xf000 }
1818 static const struct sh_opcode sh_opcode60
[] =
1820 { 0x6000, LOAD
| SETS1
| USES2
}, /* mov.b @rm,rn */
1821 { 0x6001, LOAD
| SETS1
| USES2
}, /* mov.w @rm,rn */
1822 { 0x6002, LOAD
| SETS1
| USES2
}, /* mov.l @rm,rn */
1823 { 0x6003, SETS1
| USES2
}, /* mov rm,rn */
1824 { 0x6004, LOAD
| SETS1
| SETS2
| USES2
}, /* mov.b @rm+,rn */
1825 { 0x6005, LOAD
| SETS1
| SETS2
| USES2
}, /* mov.w @rm+,rn */
1826 { 0x6006, LOAD
| SETS1
| SETS2
| USES2
}, /* mov.l @rm+,rn */
1827 { 0x6007, SETS1
| USES2
}, /* not rm,rn */
1828 { 0x6008, SETS1
| USES2
}, /* swap.b rm,rn */
1829 { 0x6009, SETS1
| USES2
}, /* swap.w rm,rn */
1830 { 0x600a, SETS1
| SETSSP
| USES2
| USESSP
}, /* negc rm,rn */
1831 { 0x600b, SETS1
| USES2
}, /* neg rm,rn */
1832 { 0x600c, SETS1
| USES2
}, /* extu.b rm,rn */
1833 { 0x600d, SETS1
| USES2
}, /* extu.w rm,rn */
1834 { 0x600e, SETS1
| USES2
}, /* exts.b rm,rn */
1835 { 0x600f, SETS1
| USES2
} /* exts.w rm,rn */
1838 static const struct sh_minor_opcode sh_opcode6
[] =
1840 { MAP (sh_opcode60
), 0xf00f }
1843 static const struct sh_opcode sh_opcode70
[] =
1845 { 0x7000, SETS1
| USES1
} /* add #imm,rn */
1848 static const struct sh_minor_opcode sh_opcode7
[] =
1850 { MAP (sh_opcode70
), 0xf000 }
1853 static const struct sh_opcode sh_opcode80
[] =
1855 { 0x8000, STORE
| USES2
| USESR0
}, /* mov.b r0,@(disp,rn) */
1856 { 0x8100, STORE
| USES2
| USESR0
}, /* mov.w r0,@(disp,rn) */
1857 { 0x8200, SETSSP
}, /* setrc #imm */
1858 { 0x8400, LOAD
| SETSR0
| USES2
}, /* mov.b @(disp,rm),r0 */
1859 { 0x8500, LOAD
| SETSR0
| USES2
}, /* mov.w @(disp,rn),r0 */
1860 { 0x8800, SETSSP
| USESR0
}, /* cmp/eq #imm,r0 */
1861 { 0x8900, BRANCH
| USESSP
}, /* bt label */
1862 { 0x8b00, BRANCH
| USESSP
}, /* bf label */
1863 { 0x8c00, SETSSP
}, /* ldrs @(disp,pc) */
1864 { 0x8d00, BRANCH
| DELAY
| USESSP
}, /* bt/s label */
1865 { 0x8e00, SETSSP
}, /* ldre @(disp,pc) */
1866 { 0x8f00, BRANCH
| DELAY
| USESSP
} /* bf/s label */
1869 static const struct sh_minor_opcode sh_opcode8
[] =
1871 { MAP (sh_opcode80
), 0xff00 }
1874 static const struct sh_opcode sh_opcode90
[] =
1876 { 0x9000, LOAD
| SETS1
} /* mov.w @(disp,pc),rn */
1879 static const struct sh_minor_opcode sh_opcode9
[] =
1881 { MAP (sh_opcode90
), 0xf000 }
1884 static const struct sh_opcode sh_opcodea0
[] =
1886 { 0xa000, BRANCH
| DELAY
} /* bra label */
1889 static const struct sh_minor_opcode sh_opcodea
[] =
1891 { MAP (sh_opcodea0
), 0xf000 }
1894 static const struct sh_opcode sh_opcodeb0
[] =
1896 { 0xb000, BRANCH
| DELAY
} /* bsr label */
1899 static const struct sh_minor_opcode sh_opcodeb
[] =
1901 { MAP (sh_opcodeb0
), 0xf000 }
1904 static const struct sh_opcode sh_opcodec0
[] =
1906 { 0xc000, STORE
| USESR0
| USESSP
}, /* mov.b r0,@(disp,gbr) */
1907 { 0xc100, STORE
| USESR0
| USESSP
}, /* mov.w r0,@(disp,gbr) */
1908 { 0xc200, STORE
| USESR0
| USESSP
}, /* mov.l r0,@(disp,gbr) */
1909 { 0xc300, BRANCH
| USESSP
}, /* trapa #imm */
1910 { 0xc400, LOAD
| SETSR0
| USESSP
}, /* mov.b @(disp,gbr),r0 */
1911 { 0xc500, LOAD
| SETSR0
| USESSP
}, /* mov.w @(disp,gbr),r0 */
1912 { 0xc600, LOAD
| SETSR0
| USESSP
}, /* mov.l @(disp,gbr),r0 */
1913 { 0xc700, SETSR0
}, /* mova @(disp,pc),r0 */
1914 { 0xc800, SETSSP
| USESR0
}, /* tst #imm,r0 */
1915 { 0xc900, SETSR0
| USESR0
}, /* and #imm,r0 */
1916 { 0xca00, SETSR0
| USESR0
}, /* xor #imm,r0 */
1917 { 0xcb00, SETSR0
| USESR0
}, /* or #imm,r0 */
1918 { 0xcc00, LOAD
| SETSSP
| USESR0
| USESSP
}, /* tst.b #imm,@(r0,gbr) */
1919 { 0xcd00, LOAD
| STORE
| USESR0
| USESSP
}, /* and.b #imm,@(r0,gbr) */
1920 { 0xce00, LOAD
| STORE
| USESR0
| USESSP
}, /* xor.b #imm,@(r0,gbr) */
1921 { 0xcf00, LOAD
| STORE
| USESR0
| USESSP
} /* or.b #imm,@(r0,gbr) */
1924 static const struct sh_minor_opcode sh_opcodec
[] =
1926 { MAP (sh_opcodec0
), 0xff00 }
1929 static const struct sh_opcode sh_opcoded0
[] =
1931 { 0xd000, LOAD
| SETS1
} /* mov.l @(disp,pc),rn */
1934 static const struct sh_minor_opcode sh_opcoded
[] =
1936 { MAP (sh_opcoded0
), 0xf000 }
1939 static const struct sh_opcode sh_opcodee0
[] =
1941 { 0xe000, SETS1
} /* mov #imm,rn */
1944 static const struct sh_minor_opcode sh_opcodee
[] =
1946 { MAP (sh_opcodee0
), 0xf000 }
1949 static const struct sh_opcode sh_opcodef0
[] =
1951 { 0xf000, SETSF1
| USESF1
| USESF2
}, /* fadd fm,fn */
1952 { 0xf001, SETSF1
| USESF1
| USESF2
}, /* fsub fm,fn */
1953 { 0xf002, SETSF1
| USESF1
| USESF2
}, /* fmul fm,fn */
1954 { 0xf003, SETSF1
| USESF1
| USESF2
}, /* fdiv fm,fn */
1955 { 0xf004, SETSSP
| USESF1
| USESF2
}, /* fcmp/eq fm,fn */
1956 { 0xf005, SETSSP
| USESF1
| USESF2
}, /* fcmp/gt fm,fn */
1957 { 0xf006, LOAD
| SETSF1
| USES2
| USESR0
}, /* fmov.s @(r0,rm),fn */
1958 { 0xf007, STORE
| USES1
| USESF2
| USESR0
}, /* fmov.s fm,@(r0,rn) */
1959 { 0xf008, LOAD
| SETSF1
| USES2
}, /* fmov.s @rm,fn */
1960 { 0xf009, LOAD
| SETS2
| SETSF1
| USES2
}, /* fmov.s @rm+,fn */
1961 { 0xf00a, STORE
| USES1
| USESF2
}, /* fmov.s fm,@rn */
1962 { 0xf00b, STORE
| SETS1
| USES1
| USESF2
}, /* fmov.s fm,@-rn */
1963 { 0xf00c, SETSF1
| USESF2
}, /* fmov fm,fn */
1964 { 0xf00e, SETSF1
| USESF1
| USESF2
| USESF0
} /* fmac f0,fm,fn */
1967 static const struct sh_opcode sh_opcodef1
[] =
1969 { 0xf00d, SETSF1
| USESSP
}, /* fsts fpul,fn */
1970 { 0xf01d, SETSSP
| USESF1
}, /* flds fn,fpul */
1971 { 0xf02d, SETSF1
| USESSP
}, /* float fpul,fn */
1972 { 0xf03d, SETSSP
| USESF1
}, /* ftrc fn,fpul */
1973 { 0xf04d, SETSF1
| USESF1
}, /* fneg fn */
1974 { 0xf05d, SETSF1
| USESF1
}, /* fabs fn */
1975 { 0xf06d, SETSF1
| USESF1
}, /* fsqrt fn */
1976 { 0xf07d, SETSSP
| USESF1
}, /* ftst/nan fn */
1977 { 0xf08d, SETSF1
}, /* fldi0 fn */
1978 { 0xf09d, SETSF1
} /* fldi1 fn */
1981 static const struct sh_minor_opcode sh_opcodef
[] =
1983 { MAP (sh_opcodef0
), 0xf00f },
1984 { MAP (sh_opcodef1
), 0xf0ff }
1987 static struct sh_major_opcode sh_opcodes
[] =
1989 { MAP (sh_opcode0
) },
1990 { MAP (sh_opcode1
) },
1991 { MAP (sh_opcode2
) },
1992 { MAP (sh_opcode3
) },
1993 { MAP (sh_opcode4
) },
1994 { MAP (sh_opcode5
) },
1995 { MAP (sh_opcode6
) },
1996 { MAP (sh_opcode7
) },
1997 { MAP (sh_opcode8
) },
1998 { MAP (sh_opcode9
) },
1999 { MAP (sh_opcodea
) },
2000 { MAP (sh_opcodeb
) },
2001 { MAP (sh_opcodec
) },
2002 { MAP (sh_opcoded
) },
2003 { MAP (sh_opcodee
) },
2004 { MAP (sh_opcodef
) }
2007 /* The double data transfer / parallel processing insns are not
2008 described here. This will cause sh_align_load_span to leave them alone. */
2010 static const struct sh_opcode sh_dsp_opcodef0
[] =
2012 { 0xf400, USESAS
| SETSAS
| LOAD
| SETSSP
}, /* movs.x @-as,ds */
2013 { 0xf401, USESAS
| SETSAS
| STORE
| USESSP
}, /* movs.x ds,@-as */
2014 { 0xf404, USESAS
| LOAD
| SETSSP
}, /* movs.x @as,ds */
2015 { 0xf405, USESAS
| STORE
| USESSP
}, /* movs.x ds,@as */
2016 { 0xf408, USESAS
| SETSAS
| LOAD
| SETSSP
}, /* movs.x @as+,ds */
2017 { 0xf409, USESAS
| SETSAS
| STORE
| USESSP
}, /* movs.x ds,@as+ */
2018 { 0xf40c, USESAS
| SETSAS
| LOAD
| SETSSP
| USESR8
}, /* movs.x @as+r8,ds */
2019 { 0xf40d, USESAS
| SETSAS
| STORE
| USESSP
| USESR8
} /* movs.x ds,@as+r8 */
2022 static const struct sh_minor_opcode sh_dsp_opcodef
[] =
2024 { MAP (sh_dsp_opcodef0
), 0xfc0d }
2027 /* Given an instruction, return a pointer to the corresponding
2028 sh_opcode structure. Return NULL if the instruction is not
2031 static const struct sh_opcode
*
2032 sh_insn_info (unsigned int insn
)
2034 const struct sh_major_opcode
*maj
;
2035 const struct sh_minor_opcode
*min
, *minend
;
2037 maj
= &sh_opcodes
[(insn
& 0xf000) >> 12];
2038 min
= maj
->minor_opcodes
;
2039 minend
= min
+ maj
->count
;
2040 for (; min
< minend
; min
++)
2043 const struct sh_opcode
*op
, *opend
;
2045 l
= insn
& min
->mask
;
2047 opend
= op
+ min
->count
;
2049 /* Since the opcodes tables are sorted, we could use a binary
2050 search here if the count were above some cutoff value. */
2051 for (; op
< opend
; op
++)
2052 if (op
->opcode
== l
)
2059 /* See whether an instruction uses a general purpose register. */
2062 sh_insn_uses_reg (unsigned int insn
,
2063 const struct sh_opcode
*op
,
2070 if ((f
& USES1
) != 0
2071 && USES1_REG (insn
) == reg
)
2073 if ((f
& USES2
) != 0
2074 && USES2_REG (insn
) == reg
)
2076 if ((f
& USESR0
) != 0
2079 if ((f
& USESAS
) && reg
== USESAS_REG (insn
))
2081 if ((f
& USESR8
) && reg
== 8)
2087 /* See whether an instruction sets a general purpose register. */
2090 sh_insn_sets_reg (unsigned int insn
,
2091 const struct sh_opcode
*op
,
2098 if ((f
& SETS1
) != 0
2099 && SETS1_REG (insn
) == reg
)
2101 if ((f
& SETS2
) != 0
2102 && SETS2_REG (insn
) == reg
)
2104 if ((f
& SETSR0
) != 0
2107 if ((f
& SETSAS
) && reg
== SETSAS_REG (insn
))
2113 /* See whether an instruction uses or sets a general purpose register */
2116 sh_insn_uses_or_sets_reg (unsigned int insn
,
2117 const struct sh_opcode
*op
,
2120 if (sh_insn_uses_reg (insn
, op
, reg
))
2123 return sh_insn_sets_reg (insn
, op
, reg
);
2126 /* See whether an instruction uses a floating point register. */
2129 sh_insn_uses_freg (unsigned int insn
,
2130 const struct sh_opcode
*op
,
2137 /* We can't tell if this is a double-precision insn, so just play safe
2138 and assume that it might be. So not only have we test FREG against
2139 itself, but also even FREG against FREG+1 - if the using insn uses
2140 just the low part of a double precision value - but also an odd
2141 FREG against FREG-1 - if the setting insn sets just the low part
2142 of a double precision value.
2143 So what this all boils down to is that we have to ignore the lowest
2144 bit of the register number. */
2146 if ((f
& USESF1
) != 0
2147 && (USESF1_REG (insn
) & 0xe) == (freg
& 0xe))
2149 if ((f
& USESF2
) != 0
2150 && (USESF2_REG (insn
) & 0xe) == (freg
& 0xe))
2152 if ((f
& USESF0
) != 0
2159 /* See whether an instruction sets a floating point register. */
2162 sh_insn_sets_freg (unsigned int insn
,
2163 const struct sh_opcode
*op
,
2170 /* We can't tell if this is a double-precision insn, so just play safe
2171 and assume that it might be. So not only have we test FREG against
2172 itself, but also even FREG against FREG+1 - if the using insn uses
2173 just the low part of a double precision value - but also an odd
2174 FREG against FREG-1 - if the setting insn sets just the low part
2175 of a double precision value.
2176 So what this all boils down to is that we have to ignore the lowest
2177 bit of the register number. */
2179 if ((f
& SETSF1
) != 0
2180 && (SETSF1_REG (insn
) & 0xe) == (freg
& 0xe))
2186 /* See whether an instruction uses or sets a floating point register */
2189 sh_insn_uses_or_sets_freg (unsigned int insn
,
2190 const struct sh_opcode
*op
,
2193 if (sh_insn_uses_freg (insn
, op
, reg
))
2196 return sh_insn_sets_freg (insn
, op
, reg
);
2199 /* See whether instructions I1 and I2 conflict, assuming I1 comes
2200 before I2. OP1 and OP2 are the corresponding sh_opcode structures.
2201 This should return TRUE if there is a conflict, or FALSE if the
2202 instructions can be swapped safely. */
2205 sh_insns_conflict (unsigned int i1
,
2206 const struct sh_opcode
*op1
,
2208 const struct sh_opcode
*op2
)
2210 unsigned int f1
, f2
;
2215 /* Load of fpscr conflicts with floating point operations.
2216 FIXME: shouldn't test raw opcodes here. */
2217 if (((i1
& 0xf0ff) == 0x4066 && (i2
& 0xf000) == 0xf000)
2218 || ((i2
& 0xf0ff) == 0x4066 && (i1
& 0xf000) == 0xf000))
2221 if ((f1
& (BRANCH
| DELAY
)) != 0
2222 || (f2
& (BRANCH
| DELAY
)) != 0)
2225 if (((f1
| f2
) & SETSSP
)
2226 && (f1
& (SETSSP
| USESSP
))
2227 && (f2
& (SETSSP
| USESSP
)))
2230 if ((f1
& SETS1
) != 0
2231 && sh_insn_uses_or_sets_reg (i2
, op2
, SETS1_REG (i1
)))
2233 if ((f1
& SETS2
) != 0
2234 && sh_insn_uses_or_sets_reg (i2
, op2
, SETS2_REG (i1
)))
2236 if ((f1
& SETSR0
) != 0
2237 && sh_insn_uses_or_sets_reg (i2
, op2
, 0))
2240 && sh_insn_uses_or_sets_reg (i2
, op2
, SETSAS_REG (i1
)))
2242 if ((f1
& SETSF1
) != 0
2243 && sh_insn_uses_or_sets_freg (i2
, op2
, SETSF1_REG (i1
)))
2246 if ((f2
& SETS1
) != 0
2247 && sh_insn_uses_or_sets_reg (i1
, op1
, SETS1_REG (i2
)))
2249 if ((f2
& SETS2
) != 0
2250 && sh_insn_uses_or_sets_reg (i1
, op1
, SETS2_REG (i2
)))
2252 if ((f2
& SETSR0
) != 0
2253 && sh_insn_uses_or_sets_reg (i1
, op1
, 0))
2256 && sh_insn_uses_or_sets_reg (i1
, op1
, SETSAS_REG (i2
)))
2258 if ((f2
& SETSF1
) != 0
2259 && sh_insn_uses_or_sets_freg (i1
, op1
, SETSF1_REG (i2
)))
2262 /* The instructions do not conflict. */
2266 /* I1 is a load instruction, and I2 is some other instruction. Return
2267 TRUE if I1 loads a register which I2 uses. */
2270 sh_load_use (unsigned int i1
,
2271 const struct sh_opcode
*op1
,
2273 const struct sh_opcode
*op2
)
2279 if ((f1
& LOAD
) == 0)
2282 /* If both SETS1 and SETSSP are set, that means a load to a special
2283 register using postincrement addressing mode, which we don't care
2285 if ((f1
& SETS1
) != 0
2286 && (f1
& SETSSP
) == 0
2287 && sh_insn_uses_reg (i2
, op2
, (i1
& 0x0f00) >> 8))
2290 if ((f1
& SETSR0
) != 0
2291 && sh_insn_uses_reg (i2
, op2
, 0))
2294 if ((f1
& SETSF1
) != 0
2295 && sh_insn_uses_freg (i2
, op2
, (i1
& 0x0f00) >> 8))
2301 /* Try to align loads and stores within a span of memory. This is
2302 called by both the ELF and the COFF sh targets. ABFD and SEC are
2303 the BFD and section we are examining. CONTENTS is the contents of
2304 the section. SWAP is the routine to call to swap two instructions.
2305 RELOCS is a pointer to the internal relocation information, to be
2306 passed to SWAP. PLABEL is a pointer to the current label in a
2307 sorted list of labels; LABEL_END is the end of the list. START and
2308 STOP are the range of memory to examine. If a swap is made,
2309 *PSWAPPED is set to TRUE. */
2315 _bfd_sh_align_load_span (bfd
*abfd
,
2318 bfd_boolean (*swap
) (bfd
*, asection
*, void *, bfd_byte
*, bfd_vma
),
2324 bfd_boolean
*pswapped
)
2326 int dsp
= (abfd
->arch_info
->mach
== bfd_mach_sh_dsp
2327 || abfd
->arch_info
->mach
== bfd_mach_sh3_dsp
);
2330 /* The SH4 has a Harvard architecture, hence aligning loads is not
2331 desirable. In fact, it is counter-productive, since it interferes
2332 with the schedules generated by the compiler. */
2333 if (abfd
->arch_info
->mach
== bfd_mach_sh4
)
2336 /* If we are linking sh[3]-dsp code, swap the FPU instructions for DSP
2340 sh_opcodes
[0xf].minor_opcodes
= sh_dsp_opcodef
;
2341 sh_opcodes
[0xf].count
= sizeof sh_dsp_opcodef
/ sizeof sh_dsp_opcodef
[0];
2344 /* Instructions should be aligned on 2 byte boundaries. */
2345 if ((start
& 1) == 1)
2348 /* Now look through the unaligned addresses. */
2352 for (; i
< stop
; i
+= 4)
2355 const struct sh_opcode
*op
;
2356 unsigned int prev_insn
= 0;
2357 const struct sh_opcode
*prev_op
= NULL
;
2359 insn
= bfd_get_16 (abfd
, contents
+ i
);
2360 op
= sh_insn_info (insn
);
2362 || (op
->flags
& (LOAD
| STORE
)) == 0)
2365 /* This is a load or store which is not on a four byte boundary. */
2367 while (*plabel
< label_end
&& **plabel
< i
)
2372 prev_insn
= bfd_get_16 (abfd
, contents
+ i
- 2);
2373 /* If INSN is the field b of a parallel processing insn, it is not
2374 a load / store after all. Note that the test here might mistake
2375 the field_b of a pcopy insn for the starting code of a parallel
2376 processing insn; this might miss a swapping opportunity, but at
2377 least we're on the safe side. */
2378 if (dsp
&& (prev_insn
& 0xfc00) == 0xf800)
2381 /* Check if prev_insn is actually the field b of a parallel
2382 processing insn. Again, this can give a spurious match
2384 if (dsp
&& i
- 2 > start
)
2386 unsigned pprev_insn
= bfd_get_16 (abfd
, contents
+ i
- 4);
2388 if ((pprev_insn
& 0xfc00) == 0xf800)
2391 prev_op
= sh_insn_info (prev_insn
);
2394 prev_op
= sh_insn_info (prev_insn
);
2396 /* If the load/store instruction is in a delay slot, we
2399 || (prev_op
->flags
& DELAY
) != 0)
2403 && (*plabel
>= label_end
|| **plabel
!= i
)
2405 && (prev_op
->flags
& (LOAD
| STORE
)) == 0
2406 && ! sh_insns_conflict (prev_insn
, prev_op
, insn
, op
))
2410 /* The load/store instruction does not have a label, and
2411 there is a previous instruction; PREV_INSN is not
2412 itself a load/store instruction, and PREV_INSN and
2413 INSN do not conflict. */
2419 unsigned int prev2_insn
;
2420 const struct sh_opcode
*prev2_op
;
2422 prev2_insn
= bfd_get_16 (abfd
, contents
+ i
- 4);
2423 prev2_op
= sh_insn_info (prev2_insn
);
2425 /* If the instruction before PREV_INSN has a delay
2426 slot--that is, PREV_INSN is in a delay slot--we
2428 if (prev2_op
== NULL
2429 || (prev2_op
->flags
& DELAY
) != 0)
2432 /* If the instruction before PREV_INSN is a load,
2433 and it sets a register which INSN uses, then
2434 putting INSN immediately after PREV_INSN will
2435 cause a pipeline bubble, so there is no point to
2438 && (prev2_op
->flags
& LOAD
) != 0
2439 && sh_load_use (prev2_insn
, prev2_op
, insn
, op
))
2445 if (! (*swap
) (abfd
, sec
, relocs
, contents
, i
- 2))
2452 while (*plabel
< label_end
&& **plabel
< i
+ 2)
2456 && (*plabel
>= label_end
|| **plabel
!= i
+ 2))
2458 unsigned int next_insn
;
2459 const struct sh_opcode
*next_op
;
2461 /* There is an instruction after the load/store
2462 instruction, and it does not have a label. */
2463 next_insn
= bfd_get_16 (abfd
, contents
+ i
+ 2);
2464 next_op
= sh_insn_info (next_insn
);
2466 && (next_op
->flags
& (LOAD
| STORE
)) == 0
2467 && ! sh_insns_conflict (insn
, op
, next_insn
, next_op
))
2471 /* NEXT_INSN is not itself a load/store instruction,
2472 and it does not conflict with INSN. */
2476 /* If PREV_INSN is a load, and it sets a register
2477 which NEXT_INSN uses, then putting NEXT_INSN
2478 immediately after PREV_INSN will cause a pipeline
2479 bubble, so there is no reason to make this swap. */
2481 && (prev_op
->flags
& LOAD
) != 0
2482 && sh_load_use (prev_insn
, prev_op
, next_insn
, next_op
))
2485 /* If INSN is a load, and it sets a register which
2486 the insn after NEXT_INSN uses, then doing the
2487 swap will cause a pipeline bubble, so there is no
2488 reason to make the swap. However, if the insn
2489 after NEXT_INSN is itself a load or store
2490 instruction, then it is misaligned, so
2491 optimistically hope that it will be swapped
2492 itself, and just live with the pipeline bubble if
2496 && (op
->flags
& LOAD
) != 0)
2498 unsigned int next2_insn
;
2499 const struct sh_opcode
*next2_op
;
2501 next2_insn
= bfd_get_16 (abfd
, contents
+ i
+ 4);
2502 next2_op
= sh_insn_info (next2_insn
);
2503 if (next2_op
== NULL
2504 || ((next2_op
->flags
& (LOAD
| STORE
)) == 0
2505 && sh_load_use (insn
, op
, next2_insn
, next2_op
)))
2511 if (! (*swap
) (abfd
, sec
, relocs
, contents
, i
))
2522 #endif /* not COFF_IMAGE_WITH_PE */
2524 /* Swap two SH instructions. */
2527 sh_swap_insns (bfd
* abfd
,
2530 bfd_byte
* contents
,
2533 struct internal_reloc
*internal_relocs
= (struct internal_reloc
*) relocs
;
2534 unsigned short i1
, i2
;
2535 struct internal_reloc
*irel
, *irelend
;
2537 /* Swap the instructions themselves. */
2538 i1
= bfd_get_16 (abfd
, contents
+ addr
);
2539 i2
= bfd_get_16 (abfd
, contents
+ addr
+ 2);
2540 bfd_put_16 (abfd
, (bfd_vma
) i2
, contents
+ addr
);
2541 bfd_put_16 (abfd
, (bfd_vma
) i1
, contents
+ addr
+ 2);
2543 /* Adjust all reloc addresses. */
2544 irelend
= internal_relocs
+ sec
->reloc_count
;
2545 for (irel
= internal_relocs
; irel
< irelend
; irel
++)
2549 /* There are a few special types of relocs that we don't want to
2550 adjust. These relocs do not apply to the instruction itself,
2551 but are only associated with the address. */
2552 type
= irel
->r_type
;
2553 if (type
== R_SH_ALIGN
2554 || type
== R_SH_CODE
2555 || type
== R_SH_DATA
2556 || type
== R_SH_LABEL
)
2559 /* If an R_SH_USES reloc points to one of the addresses being
2560 swapped, we must adjust it. It would be incorrect to do this
2561 for a jump, though, since we want to execute both
2562 instructions after the jump. (We have avoided swapping
2563 around a label, so the jump will not wind up executing an
2564 instruction it shouldn't). */
2565 if (type
== R_SH_USES
)
2569 off
= irel
->r_vaddr
- sec
->vma
+ 4 + irel
->r_offset
;
2571 irel
->r_offset
+= 2;
2572 else if (off
== addr
+ 2)
2573 irel
->r_offset
-= 2;
2576 if (irel
->r_vaddr
- sec
->vma
== addr
)
2581 else if (irel
->r_vaddr
- sec
->vma
== addr
+ 2)
2592 unsigned short insn
, oinsn
;
2593 bfd_boolean overflow
;
2595 loc
= contents
+ irel
->r_vaddr
- sec
->vma
;
2602 case R_SH_PCDISP8BY2
:
2603 case R_SH_PCRELIMM8BY2
:
2604 insn
= bfd_get_16 (abfd
, loc
);
2607 if ((oinsn
& 0xff00) != (insn
& 0xff00))
2609 bfd_put_16 (abfd
, (bfd_vma
) insn
, loc
);
2613 insn
= bfd_get_16 (abfd
, loc
);
2616 if ((oinsn
& 0xf000) != (insn
& 0xf000))
2618 bfd_put_16 (abfd
, (bfd_vma
) insn
, loc
);
2621 case R_SH_PCRELIMM8BY4
:
2622 /* This reloc ignores the least significant 3 bits of
2623 the program counter before adding in the offset.
2624 This means that if ADDR is at an even address, the
2625 swap will not affect the offset. If ADDR is an at an
2626 odd address, then the instruction will be crossing a
2627 four byte boundary, and must be adjusted. */
2628 if ((addr
& 3) != 0)
2630 insn
= bfd_get_16 (abfd
, loc
);
2633 if ((oinsn
& 0xff00) != (insn
& 0xff00))
2635 bfd_put_16 (abfd
, (bfd_vma
) insn
, loc
);
2644 /* xgettext: c-format */
2645 (_("%B: %#Lx: fatal: reloc overflow while relaxing"),
2646 abfd
, irel
->r_vaddr
);
2647 bfd_set_error (bfd_error_bad_value
);
2656 /* Look for loads and stores which we can align to four byte
2657 boundaries. See the longer comment above sh_relax_section for why
2658 this is desirable. This sets *PSWAPPED if some instruction was
2662 sh_align_loads (bfd
*abfd
,
2664 struct internal_reloc
*internal_relocs
,
2666 bfd_boolean
*pswapped
)
2668 struct internal_reloc
*irel
, *irelend
;
2669 bfd_vma
*labels
= NULL
;
2670 bfd_vma
*label
, *label_end
;
2675 irelend
= internal_relocs
+ sec
->reloc_count
;
2677 /* Get all the addresses with labels on them. */
2678 amt
= (bfd_size_type
) sec
->reloc_count
* sizeof (bfd_vma
);
2679 labels
= (bfd_vma
*) bfd_malloc (amt
);
2683 for (irel
= internal_relocs
; irel
< irelend
; irel
++)
2685 if (irel
->r_type
== R_SH_LABEL
)
2687 *label_end
= irel
->r_vaddr
- sec
->vma
;
2692 /* Note that the assembler currently always outputs relocs in
2693 address order. If that ever changes, this code will need to sort
2694 the label values and the relocs. */
2698 for (irel
= internal_relocs
; irel
< irelend
; irel
++)
2700 bfd_vma start
, stop
;
2702 if (irel
->r_type
!= R_SH_CODE
)
2705 start
= irel
->r_vaddr
- sec
->vma
;
2707 for (irel
++; irel
< irelend
; irel
++)
2708 if (irel
->r_type
== R_SH_DATA
)
2711 stop
= irel
->r_vaddr
- sec
->vma
;
2715 if (! _bfd_sh_align_load_span (abfd
, sec
, contents
, sh_swap_insns
,
2716 internal_relocs
, &label
,
2717 label_end
, start
, stop
, pswapped
))
2731 /* This is a modification of _bfd_coff_generic_relocate_section, which
2732 will handle SH relaxing. */
2735 sh_relocate_section (bfd
*output_bfd ATTRIBUTE_UNUSED
,
2736 struct bfd_link_info
*info
,
2738 asection
*input_section
,
2740 struct internal_reloc
*relocs
,
2741 struct internal_syment
*syms
,
2742 asection
**sections
)
2744 struct internal_reloc
*rel
;
2745 struct internal_reloc
*relend
;
2748 relend
= rel
+ input_section
->reloc_count
;
2749 for (; rel
< relend
; rel
++)
2752 struct coff_link_hash_entry
*h
;
2753 struct internal_syment
*sym
;
2756 reloc_howto_type
*howto
;
2757 bfd_reloc_status_type rstat
;
2759 /* Almost all relocs have to do with relaxing. If any work must
2760 be done for them, it has been done in sh_relax_section. */
2761 if (rel
->r_type
!= R_SH_IMM32
2763 && rel
->r_type
!= R_SH_IMM32CE
2764 && rel
->r_type
!= R_SH_IMAGEBASE
2766 && rel
->r_type
!= R_SH_PCDISP
)
2769 symndx
= rel
->r_symndx
;
2779 || (unsigned long) symndx
>= obj_raw_syment_count (input_bfd
))
2782 /* xgettext: c-format */
2783 (_("%B: illegal symbol index %ld in relocs"),
2785 bfd_set_error (bfd_error_bad_value
);
2788 h
= obj_coff_sym_hashes (input_bfd
)[symndx
];
2789 sym
= syms
+ symndx
;
2792 if (sym
!= NULL
&& sym
->n_scnum
!= 0)
2793 addend
= - sym
->n_value
;
2797 if (rel
->r_type
== R_SH_PCDISP
)
2800 if (rel
->r_type
>= SH_COFF_HOWTO_COUNT
)
2803 howto
= &sh_coff_howtos
[rel
->r_type
];
2807 bfd_set_error (bfd_error_bad_value
);
2812 if (rel
->r_type
== R_SH_IMAGEBASE
)
2813 addend
-= pe_data (input_section
->output_section
->owner
)->pe_opthdr
.ImageBase
;
2822 /* There is nothing to do for an internal PCDISP reloc. */
2823 if (rel
->r_type
== R_SH_PCDISP
)
2828 sec
= bfd_abs_section_ptr
;
2833 sec
= sections
[symndx
];
2834 val
= (sec
->output_section
->vma
2835 + sec
->output_offset
2842 if (h
->root
.type
== bfd_link_hash_defined
2843 || h
->root
.type
== bfd_link_hash_defweak
)
2847 sec
= h
->root
.u
.def
.section
;
2848 val
= (h
->root
.u
.def
.value
2849 + sec
->output_section
->vma
2850 + sec
->output_offset
);
2852 else if (! bfd_link_relocatable (info
))
2853 (*info
->callbacks
->undefined_symbol
)
2854 (info
, h
->root
.root
.string
, input_bfd
, input_section
,
2855 rel
->r_vaddr
- input_section
->vma
, TRUE
);
2858 rstat
= _bfd_final_link_relocate (howto
, input_bfd
, input_section
,
2860 rel
->r_vaddr
- input_section
->vma
,
2869 case bfd_reloc_overflow
:
2872 char buf
[SYMNMLEN
+ 1];
2878 else if (sym
->_n
._n_n
._n_zeroes
== 0
2879 && sym
->_n
._n_n
._n_offset
!= 0)
2880 name
= obj_coff_strings (input_bfd
) + sym
->_n
._n_n
._n_offset
;
2883 strncpy (buf
, sym
->_n
._n_name
, SYMNMLEN
);
2884 buf
[SYMNMLEN
] = '\0';
2888 (*info
->callbacks
->reloc_overflow
)
2889 (info
, (h
? &h
->root
: NULL
), name
, howto
->name
,
2890 (bfd_vma
) 0, input_bfd
, input_section
,
2891 rel
->r_vaddr
- input_section
->vma
);
2899 /* This is a version of bfd_generic_get_relocated_section_contents
2900 which uses sh_relocate_section. */
2903 sh_coff_get_relocated_section_contents (bfd
*output_bfd
,
2904 struct bfd_link_info
*link_info
,
2905 struct bfd_link_order
*link_order
,
2907 bfd_boolean relocatable
,
2910 asection
*input_section
= link_order
->u
.indirect
.section
;
2911 bfd
*input_bfd
= input_section
->owner
;
2912 asection
**sections
= NULL
;
2913 struct internal_reloc
*internal_relocs
= NULL
;
2914 struct internal_syment
*internal_syms
= NULL
;
2916 /* We only need to handle the case of relaxing, or of having a
2917 particular set of section contents, specially. */
2919 || coff_section_data (input_bfd
, input_section
) == NULL
2920 || coff_section_data (input_bfd
, input_section
)->contents
== NULL
)
2921 return bfd_generic_get_relocated_section_contents (output_bfd
, link_info
,
2926 memcpy (data
, coff_section_data (input_bfd
, input_section
)->contents
,
2927 (size_t) input_section
->size
);
2929 if ((input_section
->flags
& SEC_RELOC
) != 0
2930 && input_section
->reloc_count
> 0)
2932 bfd_size_type symesz
= bfd_coff_symesz (input_bfd
);
2933 bfd_byte
*esym
, *esymend
;
2934 struct internal_syment
*isymp
;
2938 if (! _bfd_coff_get_external_symbols (input_bfd
))
2941 internal_relocs
= (_bfd_coff_read_internal_relocs
2942 (input_bfd
, input_section
, FALSE
, (bfd_byte
*) NULL
,
2943 FALSE
, (struct internal_reloc
*) NULL
));
2944 if (internal_relocs
== NULL
)
2947 amt
= obj_raw_syment_count (input_bfd
);
2948 amt
*= sizeof (struct internal_syment
);
2949 internal_syms
= (struct internal_syment
*) bfd_malloc (amt
);
2950 if (internal_syms
== NULL
)
2953 amt
= obj_raw_syment_count (input_bfd
);
2954 amt
*= sizeof (asection
*);
2955 sections
= (asection
**) bfd_malloc (amt
);
2956 if (sections
== NULL
)
2959 isymp
= internal_syms
;
2961 esym
= (bfd_byte
*) obj_coff_external_syms (input_bfd
);
2962 esymend
= esym
+ obj_raw_syment_count (input_bfd
) * symesz
;
2963 while (esym
< esymend
)
2965 bfd_coff_swap_sym_in (input_bfd
, esym
, isymp
);
2967 if (isymp
->n_scnum
!= 0)
2968 *secpp
= coff_section_from_bfd_index (input_bfd
, isymp
->n_scnum
);
2971 if (isymp
->n_value
== 0)
2972 *secpp
= bfd_und_section_ptr
;
2974 *secpp
= bfd_com_section_ptr
;
2977 esym
+= (isymp
->n_numaux
+ 1) * symesz
;
2978 secpp
+= isymp
->n_numaux
+ 1;
2979 isymp
+= isymp
->n_numaux
+ 1;
2982 if (! sh_relocate_section (output_bfd
, link_info
, input_bfd
,
2983 input_section
, data
, internal_relocs
,
2984 internal_syms
, sections
))
2989 free (internal_syms
);
2990 internal_syms
= NULL
;
2991 free (internal_relocs
);
2992 internal_relocs
= NULL
;
2998 if (internal_relocs
!= NULL
)
2999 free (internal_relocs
);
3000 if (internal_syms
!= NULL
)
3001 free (internal_syms
);
3002 if (sections
!= NULL
)
3007 /* The target vectors. */
3009 #ifndef TARGET_SHL_SYM
3010 CREATE_BIG_COFF_TARGET_VEC (sh_coff_vec
, "coff-sh", BFD_IS_RELAXABLE
, 0, '_', NULL
, COFF_SWAP_TABLE
)
3013 #ifdef TARGET_SHL_SYM
3014 #define TARGET_SYM TARGET_SHL_SYM
3016 #define TARGET_SYM sh_coff_le_vec
3019 #ifndef TARGET_SHL_NAME
3020 #define TARGET_SHL_NAME "coff-shl"
3024 CREATE_LITTLE_COFF_TARGET_VEC (TARGET_SYM
, TARGET_SHL_NAME
, BFD_IS_RELAXABLE
,
3025 SEC_CODE
| SEC_DATA
, '_', NULL
, COFF_SWAP_TABLE
);
3027 CREATE_LITTLE_COFF_TARGET_VEC (TARGET_SYM
, TARGET_SHL_NAME
, BFD_IS_RELAXABLE
,
3028 0, '_', NULL
, COFF_SWAP_TABLE
)
3031 #ifndef TARGET_SHL_SYM
3033 /* Some people want versions of the SH COFF target which do not align
3034 to 16 byte boundaries. We implement that by adding a couple of new
3035 target vectors. These are just like the ones above, but they
3036 change the default section alignment. To generate them in the
3037 assembler, use -small. To use them in the linker, use -b
3038 coff-sh{l}-small and -oformat coff-sh{l}-small.
3040 Yes, this is a horrible hack. A general solution for setting
3041 section alignment in COFF is rather complex. ELF handles this
3044 /* Only recognize the small versions if the target was not defaulted.
3045 Otherwise we won't recognize the non default endianness. */
3047 static const bfd_target
*
3048 coff_small_object_p (bfd
*abfd
)
3050 if (abfd
->target_defaulted
)
3052 bfd_set_error (bfd_error_wrong_format
);
3055 return coff_object_p (abfd
);
3058 /* Set the section alignment for the small versions. */
3061 coff_small_new_section_hook (bfd
*abfd
, asection
*section
)
3063 if (! coff_new_section_hook (abfd
, section
))
3066 /* We must align to at least a four byte boundary, because longword
3067 accesses must be on a four byte boundary. */
3068 if (section
->alignment_power
== COFF_DEFAULT_SECTION_ALIGNMENT_POWER
)
3069 section
->alignment_power
= 2;
3074 /* This is copied from bfd_coff_std_swap_table so that we can change
3075 the default section alignment power. */
3077 static bfd_coff_backend_data bfd_coff_small_swap_table
=
3079 coff_swap_aux_in
, coff_swap_sym_in
, coff_swap_lineno_in
,
3080 coff_swap_aux_out
, coff_swap_sym_out
,
3081 coff_swap_lineno_out
, coff_swap_reloc_out
,
3082 coff_swap_filehdr_out
, coff_swap_aouthdr_out
,
3083 coff_swap_scnhdr_out
,
3084 FILHSZ
, AOUTSZ
, SCNHSZ
, SYMESZ
, AUXESZ
, RELSZ
, LINESZ
, FILNMLEN
,
3085 #ifdef COFF_LONG_FILENAMES
3090 COFF_DEFAULT_LONG_SECTION_NAMES
,
3092 #ifdef COFF_FORCE_SYMBOLS_IN_STRINGS
3097 #ifdef COFF_DEBUG_STRING_WIDE_PREFIX
3103 coff_swap_filehdr_in
, coff_swap_aouthdr_in
, coff_swap_scnhdr_in
,
3104 coff_swap_reloc_in
, coff_bad_format_hook
, coff_set_arch_mach_hook
,
3105 coff_mkobject_hook
, styp_to_sec_flags
, coff_set_alignment_hook
,
3106 coff_slurp_symbol_table
, symname_in_debug_hook
, coff_pointerize_aux_hook
,
3107 coff_print_aux
, coff_reloc16_extra_cases
, coff_reloc16_estimate
,
3108 coff_classify_symbol
, coff_compute_section_file_positions
,
3109 coff_start_final_link
, coff_relocate_section
, coff_rtype_to_howto
,
3110 coff_adjust_symndx
, coff_link_add_one_symbol
,
3111 coff_link_output_has_begun
, coff_final_link_postscript
,
3115 #define coff_small_close_and_cleanup \
3116 coff_close_and_cleanup
3117 #define coff_small_bfd_free_cached_info \
3118 coff_bfd_free_cached_info
3119 #define coff_small_get_section_contents \
3120 coff_get_section_contents
3121 #define coff_small_get_section_contents_in_window \
3122 coff_get_section_contents_in_window
3124 extern const bfd_target sh_coff_small_le_vec
;
3126 const bfd_target sh_coff_small_vec
=
3128 "coff-sh-small", /* name */
3129 bfd_target_coff_flavour
,
3130 BFD_ENDIAN_BIG
, /* data byte order is big */
3131 BFD_ENDIAN_BIG
, /* header byte order is big */
3133 (HAS_RELOC
| EXEC_P
| /* object flags */
3134 HAS_LINENO
| HAS_DEBUG
|
3135 HAS_SYMS
| HAS_LOCALS
| WP_TEXT
| BFD_IS_RELAXABLE
),
3137 (SEC_HAS_CONTENTS
| SEC_ALLOC
| SEC_LOAD
| SEC_RELOC
),
3138 '_', /* leading symbol underscore */
3139 '/', /* ar_pad_char */
3140 15, /* ar_max_namelen */
3141 0, /* match priority. */
3142 bfd_getb64
, bfd_getb_signed_64
, bfd_putb64
,
3143 bfd_getb32
, bfd_getb_signed_32
, bfd_putb32
,
3144 bfd_getb16
, bfd_getb_signed_16
, bfd_putb16
, /* data */
3145 bfd_getb64
, bfd_getb_signed_64
, bfd_putb64
,
3146 bfd_getb32
, bfd_getb_signed_32
, bfd_putb32
,
3147 bfd_getb16
, bfd_getb_signed_16
, bfd_putb16
, /* hdrs */
3149 {_bfd_dummy_target
, coff_small_object_p
, /* bfd_check_format */
3150 bfd_generic_archive_p
, _bfd_dummy_target
},
3151 {bfd_false
, coff_mkobject
, _bfd_generic_mkarchive
, /* bfd_set_format */
3153 {bfd_false
, coff_write_object_contents
, /* bfd_write_contents */
3154 _bfd_write_archive_contents
, bfd_false
},
3156 BFD_JUMP_TABLE_GENERIC (coff_small
),
3157 BFD_JUMP_TABLE_COPY (coff
),
3158 BFD_JUMP_TABLE_CORE (_bfd_nocore
),
3159 BFD_JUMP_TABLE_ARCHIVE (_bfd_archive_coff
),
3160 BFD_JUMP_TABLE_SYMBOLS (coff
),
3161 BFD_JUMP_TABLE_RELOCS (coff
),
3162 BFD_JUMP_TABLE_WRITE (coff
),
3163 BFD_JUMP_TABLE_LINK (coff
),
3164 BFD_JUMP_TABLE_DYNAMIC (_bfd_nodynamic
),
3166 & sh_coff_small_le_vec
,
3168 & bfd_coff_small_swap_table
3171 const bfd_target sh_coff_small_le_vec
=
3173 "coff-shl-small", /* name */
3174 bfd_target_coff_flavour
,
3175 BFD_ENDIAN_LITTLE
, /* data byte order is little */
3176 BFD_ENDIAN_LITTLE
, /* header byte order is little endian too*/
3178 (HAS_RELOC
| EXEC_P
| /* object flags */
3179 HAS_LINENO
| HAS_DEBUG
|
3180 HAS_SYMS
| HAS_LOCALS
| WP_TEXT
| BFD_IS_RELAXABLE
),
3182 (SEC_HAS_CONTENTS
| SEC_ALLOC
| SEC_LOAD
| SEC_RELOC
),
3183 '_', /* leading symbol underscore */
3184 '/', /* ar_pad_char */
3185 15, /* ar_max_namelen */
3186 0, /* match priority. */
3187 bfd_getl64
, bfd_getl_signed_64
, bfd_putl64
,
3188 bfd_getl32
, bfd_getl_signed_32
, bfd_putl32
,
3189 bfd_getl16
, bfd_getl_signed_16
, bfd_putl16
, /* data */
3190 bfd_getl64
, bfd_getl_signed_64
, bfd_putl64
,
3191 bfd_getl32
, bfd_getl_signed_32
, bfd_putl32
,
3192 bfd_getl16
, bfd_getl_signed_16
, bfd_putl16
, /* hdrs */
3194 {_bfd_dummy_target
, coff_small_object_p
, /* bfd_check_format */
3195 bfd_generic_archive_p
, _bfd_dummy_target
},
3196 {bfd_false
, coff_mkobject
, _bfd_generic_mkarchive
, /* bfd_set_format */
3198 {bfd_false
, coff_write_object_contents
, /* bfd_write_contents */
3199 _bfd_write_archive_contents
, bfd_false
},
3201 BFD_JUMP_TABLE_GENERIC (coff_small
),
3202 BFD_JUMP_TABLE_COPY (coff
),
3203 BFD_JUMP_TABLE_CORE (_bfd_nocore
),
3204 BFD_JUMP_TABLE_ARCHIVE (_bfd_archive_coff
),
3205 BFD_JUMP_TABLE_SYMBOLS (coff
),
3206 BFD_JUMP_TABLE_RELOCS (coff
),
3207 BFD_JUMP_TABLE_WRITE (coff
),
3208 BFD_JUMP_TABLE_LINK (coff
),
3209 BFD_JUMP_TABLE_DYNAMIC (_bfd_nodynamic
),
3211 & sh_coff_small_vec
,
3213 & bfd_coff_small_swap_table