1 /* Xtensa-specific support for 32-bit ELF.
2 Copyright (C) 2003-2017 Free Software Foundation, Inc.
4 This file is part of BFD, the Binary File Descriptor library.
6 This program is free software; you can redistribute it and/or
7 modify it under the terms of the GNU General Public License as
8 published by the Free Software Foundation; either version 3 of the
9 License, or (at your option) any later version.
11 This program is distributed in the hope that it will be useful, but
12 WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA
30 #include "elf/xtensa.h"
31 #include "splay-tree.h"
32 #include "xtensa-isa.h"
33 #include "xtensa-config.h"
35 #define XTENSA_NO_NOP_REMOVAL 0
37 /* Local helper functions. */
39 static bfd_boolean
add_extra_plt_sections (struct bfd_link_info
*, int);
40 static char *vsprint_msg (const char *, const char *, int, ...) ATTRIBUTE_PRINTF(2,4);
41 static bfd_reloc_status_type bfd_elf_xtensa_reloc
42 (bfd
*, arelent
*, asymbol
*, void *, asection
*, bfd
*, char **);
43 static bfd_boolean do_fix_for_relocatable_link
44 (Elf_Internal_Rela
*, bfd
*, asection
*, bfd_byte
*);
45 static void do_fix_for_final_link
46 (Elf_Internal_Rela
*, bfd
*, asection
*, bfd_byte
*, bfd_vma
*);
48 /* Local functions to handle Xtensa configurability. */
50 static bfd_boolean
is_indirect_call_opcode (xtensa_opcode
);
51 static bfd_boolean
is_direct_call_opcode (xtensa_opcode
);
52 static bfd_boolean
is_windowed_call_opcode (xtensa_opcode
);
53 static xtensa_opcode
get_const16_opcode (void);
54 static xtensa_opcode
get_l32r_opcode (void);
55 static bfd_vma
l32r_offset (bfd_vma
, bfd_vma
);
56 static int get_relocation_opnd (xtensa_opcode
, int);
57 static int get_relocation_slot (int);
58 static xtensa_opcode get_relocation_opcode
59 (bfd
*, asection
*, bfd_byte
*, Elf_Internal_Rela
*);
60 static bfd_boolean is_l32r_relocation
61 (bfd
*, asection
*, bfd_byte
*, Elf_Internal_Rela
*);
62 static bfd_boolean
is_alt_relocation (int);
63 static bfd_boolean
is_operand_relocation (int);
64 static bfd_size_type insn_decode_len
65 (bfd_byte
*, bfd_size_type
, bfd_size_type
);
66 static xtensa_opcode insn_decode_opcode
67 (bfd_byte
*, bfd_size_type
, bfd_size_type
, int);
68 static bfd_boolean check_branch_target_aligned
69 (bfd_byte
*, bfd_size_type
, bfd_vma
, bfd_vma
);
70 static bfd_boolean check_loop_aligned
71 (bfd_byte
*, bfd_size_type
, bfd_vma
, bfd_vma
);
72 static bfd_boolean
check_branch_target_aligned_address (bfd_vma
, int);
73 static bfd_size_type get_asm_simplify_size
74 (bfd_byte
*, bfd_size_type
, bfd_size_type
);
76 /* Functions for link-time code simplifications. */
78 static bfd_reloc_status_type elf_xtensa_do_asm_simplify
79 (bfd_byte
*, bfd_vma
, bfd_vma
, char **);
80 static bfd_reloc_status_type contract_asm_expansion
81 (bfd_byte
*, bfd_vma
, Elf_Internal_Rela
*, char **);
82 static xtensa_opcode
swap_callx_for_call_opcode (xtensa_opcode
);
83 static xtensa_opcode
get_expanded_call_opcode (bfd_byte
*, int, bfd_boolean
*);
85 /* Access to internal relocations, section contents and symbols. */
87 static Elf_Internal_Rela
*retrieve_internal_relocs
88 (bfd
*, asection
*, bfd_boolean
);
89 static void pin_internal_relocs (asection
*, Elf_Internal_Rela
*);
90 static void release_internal_relocs (asection
*, Elf_Internal_Rela
*);
91 static bfd_byte
*retrieve_contents (bfd
*, asection
*, bfd_boolean
);
92 static void pin_contents (asection
*, bfd_byte
*);
93 static void release_contents (asection
*, bfd_byte
*);
94 static Elf_Internal_Sym
*retrieve_local_syms (bfd
*);
96 /* Miscellaneous utility functions. */
98 static asection
*elf_xtensa_get_plt_section (struct bfd_link_info
*, int);
99 static asection
*elf_xtensa_get_gotplt_section (struct bfd_link_info
*, int);
100 static asection
*get_elf_r_symndx_section (bfd
*, unsigned long);
101 static struct elf_link_hash_entry
*get_elf_r_symndx_hash_entry
102 (bfd
*, unsigned long);
103 static bfd_vma
get_elf_r_symndx_offset (bfd
*, unsigned long);
104 static bfd_boolean
is_reloc_sym_weak (bfd
*, Elf_Internal_Rela
*);
105 static bfd_boolean
pcrel_reloc_fits (xtensa_opcode
, int, bfd_vma
, bfd_vma
);
106 static bfd_boolean
xtensa_is_property_section (asection
*);
107 static bfd_boolean
xtensa_is_insntable_section (asection
*);
108 static bfd_boolean
xtensa_is_littable_section (asection
*);
109 static bfd_boolean
xtensa_is_proptable_section (asection
*);
110 static int internal_reloc_compare (const void *, const void *);
111 static int internal_reloc_matches (const void *, const void *);
112 static asection
*xtensa_get_property_section (asection
*, const char *);
113 static flagword
xtensa_get_property_predef_flags (asection
*);
115 /* Other functions called directly by the linker. */
117 typedef void (*deps_callback_t
)
118 (asection
*, bfd_vma
, asection
*, bfd_vma
, void *);
119 extern bfd_boolean xtensa_callback_required_dependence
120 (bfd
*, asection
*, struct bfd_link_info
*, deps_callback_t
, void *);
123 /* Globally visible flag for choosing size optimization of NOP removal
124 instead of branch-target-aware minimization for NOP removal.
125 When nonzero, narrow all instructions and remove all NOPs possible
126 around longcall expansions. */
128 int elf32xtensa_size_opt
;
131 /* The "new_section_hook" is used to set up a per-section
132 "xtensa_relax_info" data structure with additional information used
133 during relaxation. */
135 typedef struct xtensa_relax_info_struct xtensa_relax_info
;
138 /* The GNU tools do not easily allow extending interfaces to pass around
139 the pointer to the Xtensa ISA information, so instead we add a global
140 variable here (in BFD) that can be used by any of the tools that need
143 xtensa_isa xtensa_default_isa
;
146 /* When this is true, relocations may have been modified to refer to
147 symbols from other input files. The per-section list of "fix"
148 records needs to be checked when resolving relocations. */
150 static bfd_boolean relaxing_section
= FALSE
;
152 /* When this is true, during final links, literals that cannot be
153 coalesced and their relocations may be moved to other sections. */
155 int elf32xtensa_no_literal_movement
= 1;
157 /* Rename one of the generic section flags to better document how it
159 /* Whether relocations have been processed. */
160 #define reloc_done sec_flg0
162 static reloc_howto_type elf_howto_table
[] =
164 HOWTO (R_XTENSA_NONE
, 0, 3, 0, FALSE
, 0, complain_overflow_dont
,
165 bfd_elf_xtensa_reloc
, "R_XTENSA_NONE",
167 HOWTO (R_XTENSA_32
, 0, 2, 32, FALSE
, 0, complain_overflow_bitfield
,
168 bfd_elf_xtensa_reloc
, "R_XTENSA_32",
169 TRUE
, 0xffffffff, 0xffffffff, FALSE
),
171 /* Replace a 32-bit value with a value from the runtime linker (only
172 used by linker-generated stub functions). The r_addend value is
173 special: 1 means to substitute a pointer to the runtime linker's
174 dynamic resolver function; 2 means to substitute the link map for
175 the shared object. */
176 HOWTO (R_XTENSA_RTLD
, 0, 2, 32, FALSE
, 0, complain_overflow_dont
,
177 NULL
, "R_XTENSA_RTLD", FALSE
, 0, 0, FALSE
),
179 HOWTO (R_XTENSA_GLOB_DAT
, 0, 2, 32, FALSE
, 0, complain_overflow_bitfield
,
180 bfd_elf_generic_reloc
, "R_XTENSA_GLOB_DAT",
181 FALSE
, 0, 0xffffffff, FALSE
),
182 HOWTO (R_XTENSA_JMP_SLOT
, 0, 2, 32, FALSE
, 0, complain_overflow_bitfield
,
183 bfd_elf_generic_reloc
, "R_XTENSA_JMP_SLOT",
184 FALSE
, 0, 0xffffffff, FALSE
),
185 HOWTO (R_XTENSA_RELATIVE
, 0, 2, 32, FALSE
, 0, complain_overflow_bitfield
,
186 bfd_elf_generic_reloc
, "R_XTENSA_RELATIVE",
187 FALSE
, 0, 0xffffffff, FALSE
),
188 HOWTO (R_XTENSA_PLT
, 0, 2, 32, FALSE
, 0, complain_overflow_bitfield
,
189 bfd_elf_xtensa_reloc
, "R_XTENSA_PLT",
190 FALSE
, 0, 0xffffffff, FALSE
),
194 /* Old relocations for backward compatibility. */
195 HOWTO (R_XTENSA_OP0
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
196 bfd_elf_xtensa_reloc
, "R_XTENSA_OP0", FALSE
, 0, 0, TRUE
),
197 HOWTO (R_XTENSA_OP1
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
198 bfd_elf_xtensa_reloc
, "R_XTENSA_OP1", FALSE
, 0, 0, TRUE
),
199 HOWTO (R_XTENSA_OP2
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
200 bfd_elf_xtensa_reloc
, "R_XTENSA_OP2", FALSE
, 0, 0, TRUE
),
202 /* Assembly auto-expansion. */
203 HOWTO (R_XTENSA_ASM_EXPAND
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
204 bfd_elf_xtensa_reloc
, "R_XTENSA_ASM_EXPAND", FALSE
, 0, 0, TRUE
),
205 /* Relax assembly auto-expansion. */
206 HOWTO (R_XTENSA_ASM_SIMPLIFY
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
207 bfd_elf_xtensa_reloc
, "R_XTENSA_ASM_SIMPLIFY", FALSE
, 0, 0, TRUE
),
211 HOWTO (R_XTENSA_32_PCREL
, 0, 2, 32, TRUE
, 0, complain_overflow_bitfield
,
212 bfd_elf_xtensa_reloc
, "R_XTENSA_32_PCREL",
213 FALSE
, 0, 0xffffffff, TRUE
),
215 /* GNU extension to record C++ vtable hierarchy. */
216 HOWTO (R_XTENSA_GNU_VTINHERIT
, 0, 2, 0, FALSE
, 0, complain_overflow_dont
,
217 NULL
, "R_XTENSA_GNU_VTINHERIT",
219 /* GNU extension to record C++ vtable member usage. */
220 HOWTO (R_XTENSA_GNU_VTENTRY
, 0, 2, 0, FALSE
, 0, complain_overflow_dont
,
221 _bfd_elf_rel_vtable_reloc_fn
, "R_XTENSA_GNU_VTENTRY",
224 /* Relocations for supporting difference of symbols. */
225 HOWTO (R_XTENSA_DIFF8
, 0, 0, 8, FALSE
, 0, complain_overflow_signed
,
226 bfd_elf_xtensa_reloc
, "R_XTENSA_DIFF8", FALSE
, 0, 0xff, FALSE
),
227 HOWTO (R_XTENSA_DIFF16
, 0, 1, 16, FALSE
, 0, complain_overflow_signed
,
228 bfd_elf_xtensa_reloc
, "R_XTENSA_DIFF16", FALSE
, 0, 0xffff, FALSE
),
229 HOWTO (R_XTENSA_DIFF32
, 0, 2, 32, FALSE
, 0, complain_overflow_signed
,
230 bfd_elf_xtensa_reloc
, "R_XTENSA_DIFF32", FALSE
, 0, 0xffffffff, FALSE
),
232 /* General immediate operand relocations. */
233 HOWTO (R_XTENSA_SLOT0_OP
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
234 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT0_OP", FALSE
, 0, 0, TRUE
),
235 HOWTO (R_XTENSA_SLOT1_OP
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
236 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT1_OP", FALSE
, 0, 0, TRUE
),
237 HOWTO (R_XTENSA_SLOT2_OP
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
238 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT2_OP", FALSE
, 0, 0, TRUE
),
239 HOWTO (R_XTENSA_SLOT3_OP
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
240 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT3_OP", FALSE
, 0, 0, TRUE
),
241 HOWTO (R_XTENSA_SLOT4_OP
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
242 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT4_OP", FALSE
, 0, 0, TRUE
),
243 HOWTO (R_XTENSA_SLOT5_OP
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
244 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT5_OP", FALSE
, 0, 0, TRUE
),
245 HOWTO (R_XTENSA_SLOT6_OP
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
246 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT6_OP", FALSE
, 0, 0, TRUE
),
247 HOWTO (R_XTENSA_SLOT7_OP
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
248 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT7_OP", FALSE
, 0, 0, TRUE
),
249 HOWTO (R_XTENSA_SLOT8_OP
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
250 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT8_OP", FALSE
, 0, 0, TRUE
),
251 HOWTO (R_XTENSA_SLOT9_OP
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
252 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT9_OP", FALSE
, 0, 0, TRUE
),
253 HOWTO (R_XTENSA_SLOT10_OP
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
254 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT10_OP", FALSE
, 0, 0, TRUE
),
255 HOWTO (R_XTENSA_SLOT11_OP
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
256 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT11_OP", FALSE
, 0, 0, TRUE
),
257 HOWTO (R_XTENSA_SLOT12_OP
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
258 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT12_OP", FALSE
, 0, 0, TRUE
),
259 HOWTO (R_XTENSA_SLOT13_OP
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
260 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT13_OP", FALSE
, 0, 0, TRUE
),
261 HOWTO (R_XTENSA_SLOT14_OP
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
262 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT14_OP", FALSE
, 0, 0, TRUE
),
264 /* "Alternate" relocations. The meaning of these is opcode-specific. */
265 HOWTO (R_XTENSA_SLOT0_ALT
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
266 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT0_ALT", FALSE
, 0, 0, TRUE
),
267 HOWTO (R_XTENSA_SLOT1_ALT
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
268 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT1_ALT", FALSE
, 0, 0, TRUE
),
269 HOWTO (R_XTENSA_SLOT2_ALT
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
270 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT2_ALT", FALSE
, 0, 0, TRUE
),
271 HOWTO (R_XTENSA_SLOT3_ALT
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
272 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT3_ALT", FALSE
, 0, 0, TRUE
),
273 HOWTO (R_XTENSA_SLOT4_ALT
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
274 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT4_ALT", FALSE
, 0, 0, TRUE
),
275 HOWTO (R_XTENSA_SLOT5_ALT
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
276 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT5_ALT", FALSE
, 0, 0, TRUE
),
277 HOWTO (R_XTENSA_SLOT6_ALT
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
278 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT6_ALT", FALSE
, 0, 0, TRUE
),
279 HOWTO (R_XTENSA_SLOT7_ALT
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
280 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT7_ALT", FALSE
, 0, 0, TRUE
),
281 HOWTO (R_XTENSA_SLOT8_ALT
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
282 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT8_ALT", FALSE
, 0, 0, TRUE
),
283 HOWTO (R_XTENSA_SLOT9_ALT
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
284 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT9_ALT", FALSE
, 0, 0, TRUE
),
285 HOWTO (R_XTENSA_SLOT10_ALT
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
286 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT10_ALT", FALSE
, 0, 0, TRUE
),
287 HOWTO (R_XTENSA_SLOT11_ALT
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
288 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT11_ALT", FALSE
, 0, 0, TRUE
),
289 HOWTO (R_XTENSA_SLOT12_ALT
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
290 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT12_ALT", FALSE
, 0, 0, TRUE
),
291 HOWTO (R_XTENSA_SLOT13_ALT
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
292 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT13_ALT", FALSE
, 0, 0, TRUE
),
293 HOWTO (R_XTENSA_SLOT14_ALT
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
294 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT14_ALT", FALSE
, 0, 0, TRUE
),
296 /* TLS relocations. */
297 HOWTO (R_XTENSA_TLSDESC_FN
, 0, 2, 32, FALSE
, 0, complain_overflow_dont
,
298 bfd_elf_xtensa_reloc
, "R_XTENSA_TLSDESC_FN",
299 FALSE
, 0, 0xffffffff, FALSE
),
300 HOWTO (R_XTENSA_TLSDESC_ARG
, 0, 2, 32, FALSE
, 0, complain_overflow_dont
,
301 bfd_elf_xtensa_reloc
, "R_XTENSA_TLSDESC_ARG",
302 FALSE
, 0, 0xffffffff, FALSE
),
303 HOWTO (R_XTENSA_TLS_DTPOFF
, 0, 2, 32, FALSE
, 0, complain_overflow_dont
,
304 bfd_elf_xtensa_reloc
, "R_XTENSA_TLS_DTPOFF",
305 FALSE
, 0, 0xffffffff, FALSE
),
306 HOWTO (R_XTENSA_TLS_TPOFF
, 0, 2, 32, FALSE
, 0, complain_overflow_dont
,
307 bfd_elf_xtensa_reloc
, "R_XTENSA_TLS_TPOFF",
308 FALSE
, 0, 0xffffffff, FALSE
),
309 HOWTO (R_XTENSA_TLS_FUNC
, 0, 0, 0, FALSE
, 0, complain_overflow_dont
,
310 bfd_elf_xtensa_reloc
, "R_XTENSA_TLS_FUNC",
312 HOWTO (R_XTENSA_TLS_ARG
, 0, 0, 0, FALSE
, 0, complain_overflow_dont
,
313 bfd_elf_xtensa_reloc
, "R_XTENSA_TLS_ARG",
315 HOWTO (R_XTENSA_TLS_CALL
, 0, 0, 0, FALSE
, 0, complain_overflow_dont
,
316 bfd_elf_xtensa_reloc
, "R_XTENSA_TLS_CALL",
322 fprintf (stderr, "Xtensa bfd reloc lookup %d (%s)\n", code, str)
327 static reloc_howto_type
*
328 elf_xtensa_reloc_type_lookup (bfd
*abfd ATTRIBUTE_UNUSED
,
329 bfd_reloc_code_real_type code
)
334 TRACE ("BFD_RELOC_NONE");
335 return &elf_howto_table
[(unsigned) R_XTENSA_NONE
];
338 TRACE ("BFD_RELOC_32");
339 return &elf_howto_table
[(unsigned) R_XTENSA_32
];
341 case BFD_RELOC_32_PCREL
:
342 TRACE ("BFD_RELOC_32_PCREL");
343 return &elf_howto_table
[(unsigned) R_XTENSA_32_PCREL
];
345 case BFD_RELOC_XTENSA_DIFF8
:
346 TRACE ("BFD_RELOC_XTENSA_DIFF8");
347 return &elf_howto_table
[(unsigned) R_XTENSA_DIFF8
];
349 case BFD_RELOC_XTENSA_DIFF16
:
350 TRACE ("BFD_RELOC_XTENSA_DIFF16");
351 return &elf_howto_table
[(unsigned) R_XTENSA_DIFF16
];
353 case BFD_RELOC_XTENSA_DIFF32
:
354 TRACE ("BFD_RELOC_XTENSA_DIFF32");
355 return &elf_howto_table
[(unsigned) R_XTENSA_DIFF32
];
357 case BFD_RELOC_XTENSA_RTLD
:
358 TRACE ("BFD_RELOC_XTENSA_RTLD");
359 return &elf_howto_table
[(unsigned) R_XTENSA_RTLD
];
361 case BFD_RELOC_XTENSA_GLOB_DAT
:
362 TRACE ("BFD_RELOC_XTENSA_GLOB_DAT");
363 return &elf_howto_table
[(unsigned) R_XTENSA_GLOB_DAT
];
365 case BFD_RELOC_XTENSA_JMP_SLOT
:
366 TRACE ("BFD_RELOC_XTENSA_JMP_SLOT");
367 return &elf_howto_table
[(unsigned) R_XTENSA_JMP_SLOT
];
369 case BFD_RELOC_XTENSA_RELATIVE
:
370 TRACE ("BFD_RELOC_XTENSA_RELATIVE");
371 return &elf_howto_table
[(unsigned) R_XTENSA_RELATIVE
];
373 case BFD_RELOC_XTENSA_PLT
:
374 TRACE ("BFD_RELOC_XTENSA_PLT");
375 return &elf_howto_table
[(unsigned) R_XTENSA_PLT
];
377 case BFD_RELOC_XTENSA_OP0
:
378 TRACE ("BFD_RELOC_XTENSA_OP0");
379 return &elf_howto_table
[(unsigned) R_XTENSA_OP0
];
381 case BFD_RELOC_XTENSA_OP1
:
382 TRACE ("BFD_RELOC_XTENSA_OP1");
383 return &elf_howto_table
[(unsigned) R_XTENSA_OP1
];
385 case BFD_RELOC_XTENSA_OP2
:
386 TRACE ("BFD_RELOC_XTENSA_OP2");
387 return &elf_howto_table
[(unsigned) R_XTENSA_OP2
];
389 case BFD_RELOC_XTENSA_ASM_EXPAND
:
390 TRACE ("BFD_RELOC_XTENSA_ASM_EXPAND");
391 return &elf_howto_table
[(unsigned) R_XTENSA_ASM_EXPAND
];
393 case BFD_RELOC_XTENSA_ASM_SIMPLIFY
:
394 TRACE ("BFD_RELOC_XTENSA_ASM_SIMPLIFY");
395 return &elf_howto_table
[(unsigned) R_XTENSA_ASM_SIMPLIFY
];
397 case BFD_RELOC_VTABLE_INHERIT
:
398 TRACE ("BFD_RELOC_VTABLE_INHERIT");
399 return &elf_howto_table
[(unsigned) R_XTENSA_GNU_VTINHERIT
];
401 case BFD_RELOC_VTABLE_ENTRY
:
402 TRACE ("BFD_RELOC_VTABLE_ENTRY");
403 return &elf_howto_table
[(unsigned) R_XTENSA_GNU_VTENTRY
];
405 case BFD_RELOC_XTENSA_TLSDESC_FN
:
406 TRACE ("BFD_RELOC_XTENSA_TLSDESC_FN");
407 return &elf_howto_table
[(unsigned) R_XTENSA_TLSDESC_FN
];
409 case BFD_RELOC_XTENSA_TLSDESC_ARG
:
410 TRACE ("BFD_RELOC_XTENSA_TLSDESC_ARG");
411 return &elf_howto_table
[(unsigned) R_XTENSA_TLSDESC_ARG
];
413 case BFD_RELOC_XTENSA_TLS_DTPOFF
:
414 TRACE ("BFD_RELOC_XTENSA_TLS_DTPOFF");
415 return &elf_howto_table
[(unsigned) R_XTENSA_TLS_DTPOFF
];
417 case BFD_RELOC_XTENSA_TLS_TPOFF
:
418 TRACE ("BFD_RELOC_XTENSA_TLS_TPOFF");
419 return &elf_howto_table
[(unsigned) R_XTENSA_TLS_TPOFF
];
421 case BFD_RELOC_XTENSA_TLS_FUNC
:
422 TRACE ("BFD_RELOC_XTENSA_TLS_FUNC");
423 return &elf_howto_table
[(unsigned) R_XTENSA_TLS_FUNC
];
425 case BFD_RELOC_XTENSA_TLS_ARG
:
426 TRACE ("BFD_RELOC_XTENSA_TLS_ARG");
427 return &elf_howto_table
[(unsigned) R_XTENSA_TLS_ARG
];
429 case BFD_RELOC_XTENSA_TLS_CALL
:
430 TRACE ("BFD_RELOC_XTENSA_TLS_CALL");
431 return &elf_howto_table
[(unsigned) R_XTENSA_TLS_CALL
];
434 if (code
>= BFD_RELOC_XTENSA_SLOT0_OP
435 && code
<= BFD_RELOC_XTENSA_SLOT14_OP
)
437 unsigned n
= (R_XTENSA_SLOT0_OP
+
438 (code
- BFD_RELOC_XTENSA_SLOT0_OP
));
439 return &elf_howto_table
[n
];
442 if (code
>= BFD_RELOC_XTENSA_SLOT0_ALT
443 && code
<= BFD_RELOC_XTENSA_SLOT14_ALT
)
445 unsigned n
= (R_XTENSA_SLOT0_ALT
+
446 (code
- BFD_RELOC_XTENSA_SLOT0_ALT
));
447 return &elf_howto_table
[n
];
457 static reloc_howto_type
*
458 elf_xtensa_reloc_name_lookup (bfd
*abfd ATTRIBUTE_UNUSED
,
463 for (i
= 0; i
< sizeof (elf_howto_table
) / sizeof (elf_howto_table
[0]); i
++)
464 if (elf_howto_table
[i
].name
!= NULL
465 && strcasecmp (elf_howto_table
[i
].name
, r_name
) == 0)
466 return &elf_howto_table
[i
];
472 /* Given an ELF "rela" relocation, find the corresponding howto and record
473 it in the BFD internal arelent representation of the relocation. */
476 elf_xtensa_info_to_howto_rela (bfd
*abfd ATTRIBUTE_UNUSED
,
478 Elf_Internal_Rela
*dst
)
480 unsigned int r_type
= ELF32_R_TYPE (dst
->r_info
);
482 if (r_type
>= (unsigned int) R_XTENSA_max
)
484 /* xgettext:c-format */
485 _bfd_error_handler (_("%B: invalid XTENSA reloc number: %d"), abfd
, r_type
);
488 cache_ptr
->howto
= &elf_howto_table
[r_type
];
492 /* Functions for the Xtensa ELF linker. */
494 /* The name of the dynamic interpreter. This is put in the .interp
497 #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so"
499 /* The size in bytes of an entry in the procedure linkage table.
500 (This does _not_ include the space for the literals associated with
503 #define PLT_ENTRY_SIZE 16
505 /* For _really_ large PLTs, we may need to alternate between literals
506 and code to keep the literals within the 256K range of the L32R
507 instructions in the code. It's unlikely that anyone would ever need
508 such a big PLT, but an arbitrary limit on the PLT size would be bad.
509 Thus, we split the PLT into chunks. Since there's very little
510 overhead (2 extra literals) for each chunk, the chunk size is kept
511 small so that the code for handling multiple chunks get used and
512 tested regularly. With 254 entries, there are 1K of literals for
513 each chunk, and that seems like a nice round number. */
515 #define PLT_ENTRIES_PER_CHUNK 254
517 /* PLT entries are actually used as stub functions for lazy symbol
518 resolution. Once the symbol is resolved, the stub function is never
519 invoked. Note: the 32-byte frame size used here cannot be changed
520 without a corresponding change in the runtime linker. */
522 static const bfd_byte elf_xtensa_be_plt_entry
[][PLT_ENTRY_SIZE
] =
525 0x6c, 0x10, 0x04, /* entry sp, 32 */
526 0x18, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */
527 0x1a, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */
528 0x1b, 0x00, 0x00, /* l32r a11, [literal for reloc index] */
529 0x0a, 0x80, 0x00, /* jx a8 */
533 0x18, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */
534 0x1a, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */
535 0x1b, 0x00, 0x00, /* l32r a11, [literal for reloc index] */
536 0x0a, 0x80, 0x00, /* jx a8 */
541 static const bfd_byte elf_xtensa_le_plt_entry
[][PLT_ENTRY_SIZE
] =
544 0x36, 0x41, 0x00, /* entry sp, 32 */
545 0x81, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */
546 0xa1, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */
547 0xb1, 0x00, 0x00, /* l32r a11, [literal for reloc index] */
548 0xa0, 0x08, 0x00, /* jx a8 */
552 0x81, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */
553 0xa1, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */
554 0xb1, 0x00, 0x00, /* l32r a11, [literal for reloc index] */
555 0xa0, 0x08, 0x00, /* jx a8 */
560 /* The size of the thread control block. */
563 struct elf_xtensa_link_hash_entry
565 struct elf_link_hash_entry elf
;
567 bfd_signed_vma tlsfunc_refcount
;
569 #define GOT_UNKNOWN 0
571 #define GOT_TLS_GD 2 /* global or local dynamic */
572 #define GOT_TLS_IE 4 /* initial or local exec */
573 #define GOT_TLS_ANY (GOT_TLS_GD | GOT_TLS_IE)
574 unsigned char tls_type
;
577 #define elf_xtensa_hash_entry(ent) ((struct elf_xtensa_link_hash_entry *)(ent))
579 struct elf_xtensa_obj_tdata
581 struct elf_obj_tdata root
;
583 /* tls_type for each local got entry. */
584 char *local_got_tls_type
;
586 bfd_signed_vma
*local_tlsfunc_refcounts
;
589 #define elf_xtensa_tdata(abfd) \
590 ((struct elf_xtensa_obj_tdata *) (abfd)->tdata.any)
592 #define elf_xtensa_local_got_tls_type(abfd) \
593 (elf_xtensa_tdata (abfd)->local_got_tls_type)
595 #define elf_xtensa_local_tlsfunc_refcounts(abfd) \
596 (elf_xtensa_tdata (abfd)->local_tlsfunc_refcounts)
598 #define is_xtensa_elf(bfd) \
599 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
600 && elf_tdata (bfd) != NULL \
601 && elf_object_id (bfd) == XTENSA_ELF_DATA)
604 elf_xtensa_mkobject (bfd
*abfd
)
606 return bfd_elf_allocate_object (abfd
, sizeof (struct elf_xtensa_obj_tdata
),
610 /* Xtensa ELF linker hash table. */
612 struct elf_xtensa_link_hash_table
614 struct elf_link_hash_table elf
;
616 /* Short-cuts to get to dynamic linker sections. */
618 asection
*spltlittbl
;
620 /* Total count of PLT relocations seen during check_relocs.
621 The actual PLT code must be split into multiple sections and all
622 the sections have to be created before size_dynamic_sections,
623 where we figure out the exact number of PLT entries that will be
624 needed. It is OK if this count is an overestimate, e.g., some
625 relocations may be removed by GC. */
628 struct elf_xtensa_link_hash_entry
*tlsbase
;
631 /* Get the Xtensa ELF linker hash table from a link_info structure. */
633 #define elf_xtensa_hash_table(p) \
634 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
635 == XTENSA_ELF_DATA ? ((struct elf_xtensa_link_hash_table *) ((p)->hash)) : NULL)
637 /* Create an entry in an Xtensa ELF linker hash table. */
639 static struct bfd_hash_entry
*
640 elf_xtensa_link_hash_newfunc (struct bfd_hash_entry
*entry
,
641 struct bfd_hash_table
*table
,
644 /* Allocate the structure if it has not already been allocated by a
648 entry
= bfd_hash_allocate (table
,
649 sizeof (struct elf_xtensa_link_hash_entry
));
654 /* Call the allocation method of the superclass. */
655 entry
= _bfd_elf_link_hash_newfunc (entry
, table
, string
);
658 struct elf_xtensa_link_hash_entry
*eh
= elf_xtensa_hash_entry (entry
);
659 eh
->tlsfunc_refcount
= 0;
660 eh
->tls_type
= GOT_UNKNOWN
;
666 /* Create an Xtensa ELF linker hash table. */
668 static struct bfd_link_hash_table
*
669 elf_xtensa_link_hash_table_create (bfd
*abfd
)
671 struct elf_link_hash_entry
*tlsbase
;
672 struct elf_xtensa_link_hash_table
*ret
;
673 bfd_size_type amt
= sizeof (struct elf_xtensa_link_hash_table
);
675 ret
= bfd_zmalloc (amt
);
679 if (!_bfd_elf_link_hash_table_init (&ret
->elf
, abfd
,
680 elf_xtensa_link_hash_newfunc
,
681 sizeof (struct elf_xtensa_link_hash_entry
),
688 /* Create a hash entry for "_TLS_MODULE_BASE_" to speed up checking
690 tlsbase
= elf_link_hash_lookup (&ret
->elf
, "_TLS_MODULE_BASE_",
692 tlsbase
->root
.type
= bfd_link_hash_new
;
693 tlsbase
->root
.u
.undef
.abfd
= NULL
;
694 tlsbase
->non_elf
= 0;
695 ret
->tlsbase
= elf_xtensa_hash_entry (tlsbase
);
696 ret
->tlsbase
->tls_type
= GOT_UNKNOWN
;
698 return &ret
->elf
.root
;
701 /* Copy the extra info we tack onto an elf_link_hash_entry. */
704 elf_xtensa_copy_indirect_symbol (struct bfd_link_info
*info
,
705 struct elf_link_hash_entry
*dir
,
706 struct elf_link_hash_entry
*ind
)
708 struct elf_xtensa_link_hash_entry
*edir
, *eind
;
710 edir
= elf_xtensa_hash_entry (dir
);
711 eind
= elf_xtensa_hash_entry (ind
);
713 if (ind
->root
.type
== bfd_link_hash_indirect
)
715 edir
->tlsfunc_refcount
+= eind
->tlsfunc_refcount
;
716 eind
->tlsfunc_refcount
= 0;
718 if (dir
->got
.refcount
<= 0)
720 edir
->tls_type
= eind
->tls_type
;
721 eind
->tls_type
= GOT_UNKNOWN
;
725 _bfd_elf_link_hash_copy_indirect (info
, dir
, ind
);
728 static inline bfd_boolean
729 elf_xtensa_dynamic_symbol_p (struct elf_link_hash_entry
*h
,
730 struct bfd_link_info
*info
)
732 /* Check if we should do dynamic things to this symbol. The
733 "ignore_protected" argument need not be set, because Xtensa code
734 does not require special handling of STV_PROTECTED to make function
735 pointer comparisons work properly. The PLT addresses are never
736 used for function pointers. */
738 return _bfd_elf_dynamic_symbol_p (h
, info
, 0);
743 property_table_compare (const void *ap
, const void *bp
)
745 const property_table_entry
*a
= (const property_table_entry
*) ap
;
746 const property_table_entry
*b
= (const property_table_entry
*) bp
;
748 if (a
->address
== b
->address
)
750 if (a
->size
!= b
->size
)
751 return (a
->size
- b
->size
);
753 if ((a
->flags
& XTENSA_PROP_ALIGN
) != (b
->flags
& XTENSA_PROP_ALIGN
))
754 return ((b
->flags
& XTENSA_PROP_ALIGN
)
755 - (a
->flags
& XTENSA_PROP_ALIGN
));
757 if ((a
->flags
& XTENSA_PROP_ALIGN
)
758 && (GET_XTENSA_PROP_ALIGNMENT (a
->flags
)
759 != GET_XTENSA_PROP_ALIGNMENT (b
->flags
)))
760 return (GET_XTENSA_PROP_ALIGNMENT (a
->flags
)
761 - GET_XTENSA_PROP_ALIGNMENT (b
->flags
));
763 if ((a
->flags
& XTENSA_PROP_UNREACHABLE
)
764 != (b
->flags
& XTENSA_PROP_UNREACHABLE
))
765 return ((b
->flags
& XTENSA_PROP_UNREACHABLE
)
766 - (a
->flags
& XTENSA_PROP_UNREACHABLE
));
768 return (a
->flags
- b
->flags
);
771 return (a
->address
- b
->address
);
776 property_table_matches (const void *ap
, const void *bp
)
778 const property_table_entry
*a
= (const property_table_entry
*) ap
;
779 const property_table_entry
*b
= (const property_table_entry
*) bp
;
781 /* Check if one entry overlaps with the other. */
782 if ((b
->address
>= a
->address
&& b
->address
< (a
->address
+ a
->size
))
783 || (a
->address
>= b
->address
&& a
->address
< (b
->address
+ b
->size
)))
786 return (a
->address
- b
->address
);
790 /* Get the literal table or property table entries for the given
791 section. Sets TABLE_P and returns the number of entries. On
792 error, returns a negative value. */
795 xtensa_read_table_entries (bfd
*abfd
,
797 property_table_entry
**table_p
,
798 const char *sec_name
,
799 bfd_boolean output_addr
)
801 asection
*table_section
;
802 bfd_size_type table_size
= 0;
803 bfd_byte
*table_data
;
804 property_table_entry
*blocks
;
805 int blk
, block_count
;
806 bfd_size_type num_records
;
807 Elf_Internal_Rela
*internal_relocs
, *irel
, *rel_end
;
808 bfd_vma section_addr
, off
;
809 flagword predef_flags
;
810 bfd_size_type table_entry_size
, section_limit
;
813 || !(section
->flags
& SEC_ALLOC
)
814 || (section
->flags
& SEC_DEBUGGING
))
820 table_section
= xtensa_get_property_section (section
, sec_name
);
822 table_size
= table_section
->size
;
830 predef_flags
= xtensa_get_property_predef_flags (table_section
);
831 table_entry_size
= 12;
833 table_entry_size
-= 4;
835 num_records
= table_size
/ table_entry_size
;
836 table_data
= retrieve_contents (abfd
, table_section
, TRUE
);
837 blocks
= (property_table_entry
*)
838 bfd_malloc (num_records
* sizeof (property_table_entry
));
842 section_addr
= section
->output_section
->vma
+ section
->output_offset
;
844 section_addr
= section
->vma
;
846 internal_relocs
= retrieve_internal_relocs (abfd
, table_section
, TRUE
);
847 if (internal_relocs
&& !table_section
->reloc_done
)
849 qsort (internal_relocs
, table_section
->reloc_count
,
850 sizeof (Elf_Internal_Rela
), internal_reloc_compare
);
851 irel
= internal_relocs
;
856 section_limit
= bfd_get_section_limit (abfd
, section
);
857 rel_end
= internal_relocs
+ table_section
->reloc_count
;
859 for (off
= 0; off
< table_size
; off
+= table_entry_size
)
861 bfd_vma address
= bfd_get_32 (abfd
, table_data
+ off
);
863 /* Skip any relocations before the current offset. This should help
864 avoid confusion caused by unexpected relocations for the preceding
867 (irel
->r_offset
< off
868 || (irel
->r_offset
== off
869 && ELF32_R_TYPE (irel
->r_info
) == R_XTENSA_NONE
)))
876 if (irel
&& irel
->r_offset
== off
)
879 unsigned long r_symndx
= ELF32_R_SYM (irel
->r_info
);
880 BFD_ASSERT (ELF32_R_TYPE (irel
->r_info
) == R_XTENSA_32
);
882 if (get_elf_r_symndx_section (abfd
, r_symndx
) != section
)
885 sym_off
= get_elf_r_symndx_offset (abfd
, r_symndx
);
886 BFD_ASSERT (sym_off
== 0);
887 address
+= (section_addr
+ sym_off
+ irel
->r_addend
);
891 if (address
< section_addr
892 || address
>= section_addr
+ section_limit
)
896 blocks
[block_count
].address
= address
;
897 blocks
[block_count
].size
= bfd_get_32 (abfd
, table_data
+ off
+ 4);
899 blocks
[block_count
].flags
= predef_flags
;
901 blocks
[block_count
].flags
= bfd_get_32 (abfd
, table_data
+ off
+ 8);
905 release_contents (table_section
, table_data
);
906 release_internal_relocs (table_section
, internal_relocs
);
910 /* Now sort them into address order for easy reference. */
911 qsort (blocks
, block_count
, sizeof (property_table_entry
),
912 property_table_compare
);
914 /* Check that the table contents are valid. Problems may occur,
915 for example, if an unrelocated object file is stripped. */
916 for (blk
= 1; blk
< block_count
; blk
++)
918 /* The only circumstance where two entries may legitimately
919 have the same address is when one of them is a zero-size
920 placeholder to mark a place where fill can be inserted.
921 The zero-size entry should come first. */
922 if (blocks
[blk
- 1].address
== blocks
[blk
].address
&&
923 blocks
[blk
- 1].size
!= 0)
925 /* xgettext:c-format */
926 _bfd_error_handler (_("%B(%A): invalid property table"),
928 bfd_set_error (bfd_error_bad_value
);
940 static property_table_entry
*
941 elf_xtensa_find_property_entry (property_table_entry
*property_table
,
942 int property_table_size
,
945 property_table_entry entry
;
946 property_table_entry
*rv
;
948 if (property_table_size
== 0)
951 entry
.address
= addr
;
955 rv
= bsearch (&entry
, property_table
, property_table_size
,
956 sizeof (property_table_entry
), property_table_matches
);
962 elf_xtensa_in_literal_pool (property_table_entry
*lit_table
,
966 if (elf_xtensa_find_property_entry (lit_table
, lit_table_size
, addr
))
973 /* Look through the relocs for a section during the first phase, and
974 calculate needed space in the dynamic reloc sections. */
977 elf_xtensa_check_relocs (bfd
*abfd
,
978 struct bfd_link_info
*info
,
980 const Elf_Internal_Rela
*relocs
)
982 struct elf_xtensa_link_hash_table
*htab
;
983 Elf_Internal_Shdr
*symtab_hdr
;
984 struct elf_link_hash_entry
**sym_hashes
;
985 const Elf_Internal_Rela
*rel
;
986 const Elf_Internal_Rela
*rel_end
;
988 if (bfd_link_relocatable (info
) || (sec
->flags
& SEC_ALLOC
) == 0)
991 BFD_ASSERT (is_xtensa_elf (abfd
));
993 htab
= elf_xtensa_hash_table (info
);
997 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
998 sym_hashes
= elf_sym_hashes (abfd
);
1000 rel_end
= relocs
+ sec
->reloc_count
;
1001 for (rel
= relocs
; rel
< rel_end
; rel
++)
1003 unsigned int r_type
;
1005 struct elf_link_hash_entry
*h
= NULL
;
1006 struct elf_xtensa_link_hash_entry
*eh
;
1007 int tls_type
, old_tls_type
;
1008 bfd_boolean is_got
= FALSE
;
1009 bfd_boolean is_plt
= FALSE
;
1010 bfd_boolean is_tlsfunc
= FALSE
;
1012 r_symndx
= ELF32_R_SYM (rel
->r_info
);
1013 r_type
= ELF32_R_TYPE (rel
->r_info
);
1015 if (r_symndx
>= NUM_SHDR_ENTRIES (symtab_hdr
))
1017 /* xgettext:c-format */
1018 _bfd_error_handler (_("%B: bad symbol index: %d"),
1023 if (r_symndx
>= symtab_hdr
->sh_info
)
1025 h
= sym_hashes
[r_symndx
- symtab_hdr
->sh_info
];
1026 while (h
->root
.type
== bfd_link_hash_indirect
1027 || h
->root
.type
== bfd_link_hash_warning
)
1028 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
1030 /* PR15323, ref flags aren't set for references in the same
1032 h
->root
.non_ir_ref_regular
= 1;
1034 eh
= elf_xtensa_hash_entry (h
);
1038 case R_XTENSA_TLSDESC_FN
:
1039 if (bfd_link_pic (info
))
1041 tls_type
= GOT_TLS_GD
;
1046 tls_type
= GOT_TLS_IE
;
1049 case R_XTENSA_TLSDESC_ARG
:
1050 if (bfd_link_pic (info
))
1052 tls_type
= GOT_TLS_GD
;
1057 tls_type
= GOT_TLS_IE
;
1058 if (h
&& elf_xtensa_hash_entry (h
) != htab
->tlsbase
)
1063 case R_XTENSA_TLS_DTPOFF
:
1064 if (bfd_link_pic (info
))
1065 tls_type
= GOT_TLS_GD
;
1067 tls_type
= GOT_TLS_IE
;
1070 case R_XTENSA_TLS_TPOFF
:
1071 tls_type
= GOT_TLS_IE
;
1072 if (bfd_link_pic (info
))
1073 info
->flags
|= DF_STATIC_TLS
;
1074 if (bfd_link_pic (info
) || h
)
1079 tls_type
= GOT_NORMAL
;
1084 tls_type
= GOT_NORMAL
;
1088 case R_XTENSA_GNU_VTINHERIT
:
1089 /* This relocation describes the C++ object vtable hierarchy.
1090 Reconstruct it for later use during GC. */
1091 if (!bfd_elf_gc_record_vtinherit (abfd
, sec
, h
, rel
->r_offset
))
1095 case R_XTENSA_GNU_VTENTRY
:
1096 /* This relocation describes which C++ vtable entries are actually
1097 used. Record for later use during GC. */
1098 BFD_ASSERT (h
!= NULL
);
1100 && !bfd_elf_gc_record_vtentry (abfd
, sec
, h
, rel
->r_addend
))
1105 /* Nothing to do for any other relocations. */
1113 if (h
->plt
.refcount
<= 0)
1116 h
->plt
.refcount
= 1;
1119 h
->plt
.refcount
+= 1;
1121 /* Keep track of the total PLT relocation count even if we
1122 don't yet know whether the dynamic sections will be
1124 htab
->plt_reloc_count
+= 1;
1126 if (elf_hash_table (info
)->dynamic_sections_created
)
1128 if (! add_extra_plt_sections (info
, htab
->plt_reloc_count
))
1134 if (h
->got
.refcount
<= 0)
1135 h
->got
.refcount
= 1;
1137 h
->got
.refcount
+= 1;
1141 eh
->tlsfunc_refcount
+= 1;
1143 old_tls_type
= eh
->tls_type
;
1147 /* Allocate storage the first time. */
1148 if (elf_local_got_refcounts (abfd
) == NULL
)
1150 bfd_size_type size
= symtab_hdr
->sh_info
;
1153 mem
= bfd_zalloc (abfd
, size
* sizeof (bfd_signed_vma
));
1156 elf_local_got_refcounts (abfd
) = (bfd_signed_vma
*) mem
;
1158 mem
= bfd_zalloc (abfd
, size
);
1161 elf_xtensa_local_got_tls_type (abfd
) = (char *) mem
;
1163 mem
= bfd_zalloc (abfd
, size
* sizeof (bfd_signed_vma
));
1166 elf_xtensa_local_tlsfunc_refcounts (abfd
)
1167 = (bfd_signed_vma
*) mem
;
1170 /* This is a global offset table entry for a local symbol. */
1171 if (is_got
|| is_plt
)
1172 elf_local_got_refcounts (abfd
) [r_symndx
] += 1;
1175 elf_xtensa_local_tlsfunc_refcounts (abfd
) [r_symndx
] += 1;
1177 old_tls_type
= elf_xtensa_local_got_tls_type (abfd
) [r_symndx
];
1180 if ((old_tls_type
& GOT_TLS_IE
) && (tls_type
& GOT_TLS_IE
))
1181 tls_type
|= old_tls_type
;
1182 /* If a TLS symbol is accessed using IE at least once,
1183 there is no point to use a dynamic model for it. */
1184 else if (old_tls_type
!= tls_type
&& old_tls_type
!= GOT_UNKNOWN
1185 && ((old_tls_type
& GOT_TLS_GD
) == 0
1186 || (tls_type
& GOT_TLS_IE
) == 0))
1188 if ((old_tls_type
& GOT_TLS_IE
) && (tls_type
& GOT_TLS_GD
))
1189 tls_type
= old_tls_type
;
1190 else if ((old_tls_type
& GOT_TLS_GD
) && (tls_type
& GOT_TLS_GD
))
1191 tls_type
|= old_tls_type
;
1195 /* xgettext:c-format */
1196 (_("%B: `%s' accessed both as normal and thread local symbol"),
1198 h
? h
->root
.root
.string
: "<local>");
1203 if (old_tls_type
!= tls_type
)
1206 eh
->tls_type
= tls_type
;
1208 elf_xtensa_local_got_tls_type (abfd
) [r_symndx
] = tls_type
;
1217 elf_xtensa_make_sym_local (struct bfd_link_info
*info
,
1218 struct elf_link_hash_entry
*h
)
1220 if (bfd_link_pic (info
))
1222 if (h
->plt
.refcount
> 0)
1224 /* For shared objects, there's no need for PLT entries for local
1225 symbols (use RELATIVE relocs instead of JMP_SLOT relocs). */
1226 if (h
->got
.refcount
< 0)
1227 h
->got
.refcount
= 0;
1228 h
->got
.refcount
+= h
->plt
.refcount
;
1229 h
->plt
.refcount
= 0;
1234 /* Don't need any dynamic relocations at all. */
1235 h
->plt
.refcount
= 0;
1236 h
->got
.refcount
= 0;
1242 elf_xtensa_hide_symbol (struct bfd_link_info
*info
,
1243 struct elf_link_hash_entry
*h
,
1244 bfd_boolean force_local
)
1246 /* For a shared link, move the plt refcount to the got refcount to leave
1247 space for RELATIVE relocs. */
1248 elf_xtensa_make_sym_local (info
, h
);
1250 _bfd_elf_link_hash_hide_symbol (info
, h
, force_local
);
1254 /* Return the section that should be marked against GC for a given
1258 elf_xtensa_gc_mark_hook (asection
*sec
,
1259 struct bfd_link_info
*info
,
1260 Elf_Internal_Rela
*rel
,
1261 struct elf_link_hash_entry
*h
,
1262 Elf_Internal_Sym
*sym
)
1264 /* Property sections are marked "KEEP" in the linker scripts, but they
1265 should not cause other sections to be marked. (This approach relies
1266 on elf_xtensa_discard_info to remove property table entries that
1267 describe discarded sections. Alternatively, it might be more
1268 efficient to avoid using "KEEP" in the linker scripts and instead use
1269 the gc_mark_extra_sections hook to mark only the property sections
1270 that describe marked sections. That alternative does not work well
1271 with the current property table sections, which do not correspond
1272 one-to-one with the sections they describe, but that should be fixed
1274 if (xtensa_is_property_section (sec
))
1278 switch (ELF32_R_TYPE (rel
->r_info
))
1280 case R_XTENSA_GNU_VTINHERIT
:
1281 case R_XTENSA_GNU_VTENTRY
:
1285 return _bfd_elf_gc_mark_hook (sec
, info
, rel
, h
, sym
);
1289 /* Create all the dynamic sections. */
1292 elf_xtensa_create_dynamic_sections (bfd
*dynobj
, struct bfd_link_info
*info
)
1294 struct elf_xtensa_link_hash_table
*htab
;
1295 flagword flags
, noalloc_flags
;
1297 htab
= elf_xtensa_hash_table (info
);
1301 /* First do all the standard stuff. */
1302 if (! _bfd_elf_create_dynamic_sections (dynobj
, info
))
1305 /* Create any extra PLT sections in case check_relocs has already
1306 been called on all the non-dynamic input files. */
1307 if (! add_extra_plt_sections (info
, htab
->plt_reloc_count
))
1310 noalloc_flags
= (SEC_HAS_CONTENTS
| SEC_IN_MEMORY
1311 | SEC_LINKER_CREATED
| SEC_READONLY
);
1312 flags
= noalloc_flags
| SEC_ALLOC
| SEC_LOAD
;
1314 /* Mark the ".got.plt" section READONLY. */
1315 if (htab
->elf
.sgotplt
== NULL
1316 || ! bfd_set_section_flags (dynobj
, htab
->elf
.sgotplt
, flags
))
1319 /* Create ".got.loc" (literal tables for use by dynamic linker). */
1320 htab
->sgotloc
= bfd_make_section_anyway_with_flags (dynobj
, ".got.loc",
1322 if (htab
->sgotloc
== NULL
1323 || ! bfd_set_section_alignment (dynobj
, htab
->sgotloc
, 2))
1326 /* Create ".xt.lit.plt" (literal table for ".got.plt*"). */
1327 htab
->spltlittbl
= bfd_make_section_anyway_with_flags (dynobj
, ".xt.lit.plt",
1329 if (htab
->spltlittbl
== NULL
1330 || ! bfd_set_section_alignment (dynobj
, htab
->spltlittbl
, 2))
1338 add_extra_plt_sections (struct bfd_link_info
*info
, int count
)
1340 bfd
*dynobj
= elf_hash_table (info
)->dynobj
;
1343 /* Iterate over all chunks except 0 which uses the standard ".plt" and
1344 ".got.plt" sections. */
1345 for (chunk
= count
/ PLT_ENTRIES_PER_CHUNK
; chunk
> 0; chunk
--)
1351 /* Stop when we find a section has already been created. */
1352 if (elf_xtensa_get_plt_section (info
, chunk
))
1355 flags
= (SEC_ALLOC
| SEC_LOAD
| SEC_HAS_CONTENTS
| SEC_IN_MEMORY
1356 | SEC_LINKER_CREATED
| SEC_READONLY
);
1358 sname
= (char *) bfd_malloc (10);
1359 sprintf (sname
, ".plt.%u", chunk
);
1360 s
= bfd_make_section_anyway_with_flags (dynobj
, sname
, flags
| SEC_CODE
);
1362 || ! bfd_set_section_alignment (dynobj
, s
, 2))
1365 sname
= (char *) bfd_malloc (14);
1366 sprintf (sname
, ".got.plt.%u", chunk
);
1367 s
= bfd_make_section_anyway_with_flags (dynobj
, sname
, flags
);
1369 || ! bfd_set_section_alignment (dynobj
, s
, 2))
1377 /* Adjust a symbol defined by a dynamic object and referenced by a
1378 regular object. The current definition is in some section of the
1379 dynamic object, but we're not including those sections. We have to
1380 change the definition to something the rest of the link can
1384 elf_xtensa_adjust_dynamic_symbol (struct bfd_link_info
*info ATTRIBUTE_UNUSED
,
1385 struct elf_link_hash_entry
*h
)
1387 /* If this is a weak symbol, and there is a real definition, the
1388 processor independent code will have arranged for us to see the
1389 real definition first, and we can just use the same value. */
1392 BFD_ASSERT (h
->u
.weakdef
->root
.type
== bfd_link_hash_defined
1393 || h
->u
.weakdef
->root
.type
== bfd_link_hash_defweak
);
1394 h
->root
.u
.def
.section
= h
->u
.weakdef
->root
.u
.def
.section
;
1395 h
->root
.u
.def
.value
= h
->u
.weakdef
->root
.u
.def
.value
;
1399 /* This is a reference to a symbol defined by a dynamic object. The
1400 reference must go through the GOT, so there's no need for COPY relocs,
1408 elf_xtensa_allocate_dynrelocs (struct elf_link_hash_entry
*h
, void *arg
)
1410 struct bfd_link_info
*info
;
1411 struct elf_xtensa_link_hash_table
*htab
;
1412 struct elf_xtensa_link_hash_entry
*eh
= elf_xtensa_hash_entry (h
);
1414 if (h
->root
.type
== bfd_link_hash_indirect
)
1417 info
= (struct bfd_link_info
*) arg
;
1418 htab
= elf_xtensa_hash_table (info
);
1422 /* If we saw any use of an IE model for this symbol, we can then optimize
1423 away GOT entries for any TLSDESC_FN relocs. */
1424 if ((eh
->tls_type
& GOT_TLS_IE
) != 0)
1426 BFD_ASSERT (h
->got
.refcount
>= eh
->tlsfunc_refcount
);
1427 h
->got
.refcount
-= eh
->tlsfunc_refcount
;
1430 if (! elf_xtensa_dynamic_symbol_p (h
, info
))
1431 elf_xtensa_make_sym_local (info
, h
);
1433 if (h
->plt
.refcount
> 0)
1434 htab
->elf
.srelplt
->size
+= (h
->plt
.refcount
* sizeof (Elf32_External_Rela
));
1436 if (h
->got
.refcount
> 0)
1437 htab
->elf
.srelgot
->size
+= (h
->got
.refcount
* sizeof (Elf32_External_Rela
));
1444 elf_xtensa_allocate_local_got_size (struct bfd_link_info
*info
)
1446 struct elf_xtensa_link_hash_table
*htab
;
1449 htab
= elf_xtensa_hash_table (info
);
1453 for (i
= info
->input_bfds
; i
; i
= i
->link
.next
)
1455 bfd_signed_vma
*local_got_refcounts
;
1456 bfd_size_type j
, cnt
;
1457 Elf_Internal_Shdr
*symtab_hdr
;
1459 local_got_refcounts
= elf_local_got_refcounts (i
);
1460 if (!local_got_refcounts
)
1463 symtab_hdr
= &elf_tdata (i
)->symtab_hdr
;
1464 cnt
= symtab_hdr
->sh_info
;
1466 for (j
= 0; j
< cnt
; ++j
)
1468 /* If we saw any use of an IE model for this symbol, we can
1469 then optimize away GOT entries for any TLSDESC_FN relocs. */
1470 if ((elf_xtensa_local_got_tls_type (i
) [j
] & GOT_TLS_IE
) != 0)
1472 bfd_signed_vma
*tlsfunc_refcount
1473 = &elf_xtensa_local_tlsfunc_refcounts (i
) [j
];
1474 BFD_ASSERT (local_got_refcounts
[j
] >= *tlsfunc_refcount
);
1475 local_got_refcounts
[j
] -= *tlsfunc_refcount
;
1478 if (local_got_refcounts
[j
] > 0)
1479 htab
->elf
.srelgot
->size
+= (local_got_refcounts
[j
]
1480 * sizeof (Elf32_External_Rela
));
1486 /* Set the sizes of the dynamic sections. */
1489 elf_xtensa_size_dynamic_sections (bfd
*output_bfd ATTRIBUTE_UNUSED
,
1490 struct bfd_link_info
*info
)
1492 struct elf_xtensa_link_hash_table
*htab
;
1494 asection
*s
, *srelplt
, *splt
, *sgotplt
, *srelgot
, *spltlittbl
, *sgotloc
;
1495 bfd_boolean relplt
, relgot
;
1496 int plt_entries
, plt_chunks
, chunk
;
1501 htab
= elf_xtensa_hash_table (info
);
1505 dynobj
= elf_hash_table (info
)->dynobj
;
1508 srelgot
= htab
->elf
.srelgot
;
1509 srelplt
= htab
->elf
.srelplt
;
1511 if (elf_hash_table (info
)->dynamic_sections_created
)
1513 BFD_ASSERT (htab
->elf
.srelgot
!= NULL
1514 && htab
->elf
.srelplt
!= NULL
1515 && htab
->elf
.sgot
!= NULL
1516 && htab
->spltlittbl
!= NULL
1517 && htab
->sgotloc
!= NULL
);
1519 /* Set the contents of the .interp section to the interpreter. */
1520 if (bfd_link_executable (info
) && !info
->nointerp
)
1522 s
= bfd_get_linker_section (dynobj
, ".interp");
1525 s
->size
= sizeof ELF_DYNAMIC_INTERPRETER
;
1526 s
->contents
= (unsigned char *) ELF_DYNAMIC_INTERPRETER
;
1529 /* Allocate room for one word in ".got". */
1530 htab
->elf
.sgot
->size
= 4;
1532 /* Allocate space in ".rela.got" for literals that reference global
1533 symbols and space in ".rela.plt" for literals that have PLT
1535 elf_link_hash_traverse (elf_hash_table (info
),
1536 elf_xtensa_allocate_dynrelocs
,
1539 /* If we are generating a shared object, we also need space in
1540 ".rela.got" for R_XTENSA_RELATIVE relocs for literals that
1541 reference local symbols. */
1542 if (bfd_link_pic (info
))
1543 elf_xtensa_allocate_local_got_size (info
);
1545 /* Allocate space in ".plt" to match the size of ".rela.plt". For
1546 each PLT entry, we need the PLT code plus a 4-byte literal.
1547 For each chunk of ".plt", we also need two more 4-byte
1548 literals, two corresponding entries in ".rela.got", and an
1549 8-byte entry in ".xt.lit.plt". */
1550 spltlittbl
= htab
->spltlittbl
;
1551 plt_entries
= srelplt
->size
/ sizeof (Elf32_External_Rela
);
1553 (plt_entries
+ PLT_ENTRIES_PER_CHUNK
- 1) / PLT_ENTRIES_PER_CHUNK
;
1555 /* Iterate over all the PLT chunks, including any extra sections
1556 created earlier because the initial count of PLT relocations
1557 was an overestimate. */
1559 (splt
= elf_xtensa_get_plt_section (info
, chunk
)) != NULL
;
1564 sgotplt
= elf_xtensa_get_gotplt_section (info
, chunk
);
1565 BFD_ASSERT (sgotplt
!= NULL
);
1567 if (chunk
< plt_chunks
- 1)
1568 chunk_entries
= PLT_ENTRIES_PER_CHUNK
;
1569 else if (chunk
== plt_chunks
- 1)
1570 chunk_entries
= plt_entries
- (chunk
* PLT_ENTRIES_PER_CHUNK
);
1574 if (chunk_entries
!= 0)
1576 sgotplt
->size
= 4 * (chunk_entries
+ 2);
1577 splt
->size
= PLT_ENTRY_SIZE
* chunk_entries
;
1578 srelgot
->size
+= 2 * sizeof (Elf32_External_Rela
);
1579 spltlittbl
->size
+= 8;
1588 /* Allocate space in ".got.loc" to match the total size of all the
1590 sgotloc
= htab
->sgotloc
;
1591 sgotloc
->size
= spltlittbl
->size
;
1592 for (abfd
= info
->input_bfds
; abfd
!= NULL
; abfd
= abfd
->link
.next
)
1594 if (abfd
->flags
& DYNAMIC
)
1596 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
1598 if (! discarded_section (s
)
1599 && xtensa_is_littable_section (s
)
1601 sgotloc
->size
+= s
->size
;
1606 /* Allocate memory for dynamic sections. */
1609 for (s
= dynobj
->sections
; s
!= NULL
; s
= s
->next
)
1613 if ((s
->flags
& SEC_LINKER_CREATED
) == 0)
1616 /* It's OK to base decisions on the section name, because none
1617 of the dynobj section names depend upon the input files. */
1618 name
= bfd_get_section_name (dynobj
, s
);
1620 if (CONST_STRNEQ (name
, ".rela"))
1624 if (strcmp (name
, ".rela.plt") == 0)
1626 else if (strcmp (name
, ".rela.got") == 0)
1629 /* We use the reloc_count field as a counter if we need
1630 to copy relocs into the output file. */
1634 else if (! CONST_STRNEQ (name
, ".plt.")
1635 && ! CONST_STRNEQ (name
, ".got.plt.")
1636 && strcmp (name
, ".got") != 0
1637 && strcmp (name
, ".plt") != 0
1638 && strcmp (name
, ".got.plt") != 0
1639 && strcmp (name
, ".xt.lit.plt") != 0
1640 && strcmp (name
, ".got.loc") != 0)
1642 /* It's not one of our sections, so don't allocate space. */
1648 /* If we don't need this section, strip it from the output
1649 file. We must create the ".plt*" and ".got.plt*"
1650 sections in create_dynamic_sections and/or check_relocs
1651 based on a conservative estimate of the PLT relocation
1652 count, because the sections must be created before the
1653 linker maps input sections to output sections. The
1654 linker does that before size_dynamic_sections, where we
1655 compute the exact size of the PLT, so there may be more
1656 of these sections than are actually needed. */
1657 s
->flags
|= SEC_EXCLUDE
;
1659 else if ((s
->flags
& SEC_HAS_CONTENTS
) != 0)
1661 /* Allocate memory for the section contents. */
1662 s
->contents
= (bfd_byte
*) bfd_zalloc (dynobj
, s
->size
);
1663 if (s
->contents
== NULL
)
1668 if (elf_hash_table (info
)->dynamic_sections_created
)
1670 /* Add the special XTENSA_RTLD relocations now. The offsets won't be
1671 known until finish_dynamic_sections, but we need to get the relocs
1672 in place before they are sorted. */
1673 for (chunk
= 0; chunk
< plt_chunks
; chunk
++)
1675 Elf_Internal_Rela irela
;
1679 irela
.r_info
= ELF32_R_INFO (0, R_XTENSA_RTLD
);
1682 loc
= (srelgot
->contents
1683 + srelgot
->reloc_count
* sizeof (Elf32_External_Rela
));
1684 bfd_elf32_swap_reloca_out (output_bfd
, &irela
, loc
);
1685 bfd_elf32_swap_reloca_out (output_bfd
, &irela
,
1686 loc
+ sizeof (Elf32_External_Rela
));
1687 srelgot
->reloc_count
+= 2;
1690 /* Add some entries to the .dynamic section. We fill in the
1691 values later, in elf_xtensa_finish_dynamic_sections, but we
1692 must add the entries now so that we get the correct size for
1693 the .dynamic section. The DT_DEBUG entry is filled in by the
1694 dynamic linker and used by the debugger. */
1695 #define add_dynamic_entry(TAG, VAL) \
1696 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
1698 if (bfd_link_executable (info
))
1700 if (!add_dynamic_entry (DT_DEBUG
, 0))
1706 if (!add_dynamic_entry (DT_PLTRELSZ
, 0)
1707 || !add_dynamic_entry (DT_PLTREL
, DT_RELA
)
1708 || !add_dynamic_entry (DT_JMPREL
, 0))
1714 if (!add_dynamic_entry (DT_RELA
, 0)
1715 || !add_dynamic_entry (DT_RELASZ
, 0)
1716 || !add_dynamic_entry (DT_RELAENT
, sizeof (Elf32_External_Rela
)))
1720 if (!add_dynamic_entry (DT_PLTGOT
, 0)
1721 || !add_dynamic_entry (DT_XTENSA_GOT_LOC_OFF
, 0)
1722 || !add_dynamic_entry (DT_XTENSA_GOT_LOC_SZ
, 0))
1725 #undef add_dynamic_entry
1731 elf_xtensa_always_size_sections (bfd
*output_bfd
,
1732 struct bfd_link_info
*info
)
1734 struct elf_xtensa_link_hash_table
*htab
;
1737 htab
= elf_xtensa_hash_table (info
);
1741 tls_sec
= htab
->elf
.tls_sec
;
1743 if (tls_sec
&& (htab
->tlsbase
->tls_type
& GOT_TLS_ANY
) != 0)
1745 struct elf_link_hash_entry
*tlsbase
= &htab
->tlsbase
->elf
;
1746 struct bfd_link_hash_entry
*bh
= &tlsbase
->root
;
1747 const struct elf_backend_data
*bed
= get_elf_backend_data (output_bfd
);
1749 tlsbase
->type
= STT_TLS
;
1750 if (!(_bfd_generic_link_add_one_symbol
1751 (info
, output_bfd
, "_TLS_MODULE_BASE_", BSF_LOCAL
,
1752 tls_sec
, 0, NULL
, FALSE
,
1753 bed
->collect
, &bh
)))
1755 tlsbase
->def_regular
= 1;
1756 tlsbase
->other
= STV_HIDDEN
;
1757 (*bed
->elf_backend_hide_symbol
) (info
, tlsbase
, TRUE
);
1764 /* Return the base VMA address which should be subtracted from real addresses
1765 when resolving @dtpoff relocation.
1766 This is PT_TLS segment p_vaddr. */
1769 dtpoff_base (struct bfd_link_info
*info
)
1771 /* If tls_sec is NULL, we should have signalled an error already. */
1772 if (elf_hash_table (info
)->tls_sec
== NULL
)
1774 return elf_hash_table (info
)->tls_sec
->vma
;
1777 /* Return the relocation value for @tpoff relocation
1778 if STT_TLS virtual address is ADDRESS. */
1781 tpoff (struct bfd_link_info
*info
, bfd_vma address
)
1783 struct elf_link_hash_table
*htab
= elf_hash_table (info
);
1786 /* If tls_sec is NULL, we should have signalled an error already. */
1787 if (htab
->tls_sec
== NULL
)
1789 base
= align_power ((bfd_vma
) TCB_SIZE
, htab
->tls_sec
->alignment_power
);
1790 return address
- htab
->tls_sec
->vma
+ base
;
1793 /* Perform the specified relocation. The instruction at (contents + address)
1794 is modified to set one operand to represent the value in "relocation". The
1795 operand position is determined by the relocation type recorded in the
1798 #define CALL_SEGMENT_BITS (30)
1799 #define CALL_SEGMENT_SIZE (1 << CALL_SEGMENT_BITS)
1801 static bfd_reloc_status_type
1802 elf_xtensa_do_reloc (reloc_howto_type
*howto
,
1804 asection
*input_section
,
1808 bfd_boolean is_weak_undef
,
1809 char **error_message
)
1812 xtensa_opcode opcode
;
1813 xtensa_isa isa
= xtensa_default_isa
;
1814 static xtensa_insnbuf ibuff
= NULL
;
1815 static xtensa_insnbuf sbuff
= NULL
;
1816 bfd_vma self_address
;
1817 bfd_size_type input_size
;
1823 ibuff
= xtensa_insnbuf_alloc (isa
);
1824 sbuff
= xtensa_insnbuf_alloc (isa
);
1827 input_size
= bfd_get_section_limit (abfd
, input_section
);
1829 /* Calculate the PC address for this instruction. */
1830 self_address
= (input_section
->output_section
->vma
1831 + input_section
->output_offset
1834 switch (howto
->type
)
1837 case R_XTENSA_DIFF8
:
1838 case R_XTENSA_DIFF16
:
1839 case R_XTENSA_DIFF32
:
1840 case R_XTENSA_TLS_FUNC
:
1841 case R_XTENSA_TLS_ARG
:
1842 case R_XTENSA_TLS_CALL
:
1843 return bfd_reloc_ok
;
1845 case R_XTENSA_ASM_EXPAND
:
1848 /* Check for windowed CALL across a 1GB boundary. */
1849 opcode
= get_expanded_call_opcode (contents
+ address
,
1850 input_size
- address
, 0);
1851 if (is_windowed_call_opcode (opcode
))
1853 if ((self_address
>> CALL_SEGMENT_BITS
)
1854 != (relocation
>> CALL_SEGMENT_BITS
))
1856 *error_message
= "windowed longcall crosses 1GB boundary; "
1858 return bfd_reloc_dangerous
;
1862 return bfd_reloc_ok
;
1864 case R_XTENSA_ASM_SIMPLIFY
:
1866 /* Convert the L32R/CALLX to CALL. */
1867 bfd_reloc_status_type retval
=
1868 elf_xtensa_do_asm_simplify (contents
, address
, input_size
,
1870 if (retval
!= bfd_reloc_ok
)
1871 return bfd_reloc_dangerous
;
1873 /* The CALL needs to be relocated. Continue below for that part. */
1876 howto
= &elf_howto_table
[(unsigned) R_XTENSA_SLOT0_OP
];
1883 x
= bfd_get_32 (abfd
, contents
+ address
);
1885 bfd_put_32 (abfd
, x
, contents
+ address
);
1887 return bfd_reloc_ok
;
1889 case R_XTENSA_32_PCREL
:
1890 bfd_put_32 (abfd
, relocation
- self_address
, contents
+ address
);
1891 return bfd_reloc_ok
;
1894 case R_XTENSA_TLSDESC_FN
:
1895 case R_XTENSA_TLSDESC_ARG
:
1896 case R_XTENSA_TLS_DTPOFF
:
1897 case R_XTENSA_TLS_TPOFF
:
1898 bfd_put_32 (abfd
, relocation
, contents
+ address
);
1899 return bfd_reloc_ok
;
1902 /* Only instruction slot-specific relocations handled below.... */
1903 slot
= get_relocation_slot (howto
->type
);
1904 if (slot
== XTENSA_UNDEFINED
)
1906 *error_message
= "unexpected relocation";
1907 return bfd_reloc_dangerous
;
1910 /* Read the instruction into a buffer and decode the opcode. */
1911 xtensa_insnbuf_from_chars (isa
, ibuff
, contents
+ address
,
1912 input_size
- address
);
1913 fmt
= xtensa_format_decode (isa
, ibuff
);
1914 if (fmt
== XTENSA_UNDEFINED
)
1916 *error_message
= "cannot decode instruction format";
1917 return bfd_reloc_dangerous
;
1920 xtensa_format_get_slot (isa
, fmt
, slot
, ibuff
, sbuff
);
1922 opcode
= xtensa_opcode_decode (isa
, fmt
, slot
, sbuff
);
1923 if (opcode
== XTENSA_UNDEFINED
)
1925 *error_message
= "cannot decode instruction opcode";
1926 return bfd_reloc_dangerous
;
1929 /* Check for opcode-specific "alternate" relocations. */
1930 if (is_alt_relocation (howto
->type
))
1932 if (opcode
== get_l32r_opcode ())
1934 /* Handle the special-case of non-PC-relative L32R instructions. */
1935 bfd
*output_bfd
= input_section
->output_section
->owner
;
1936 asection
*lit4_sec
= bfd_get_section_by_name (output_bfd
, ".lit4");
1939 *error_message
= "relocation references missing .lit4 section";
1940 return bfd_reloc_dangerous
;
1942 self_address
= ((lit4_sec
->vma
& ~0xfff)
1943 + 0x40000 - 3); /* -3 to compensate for do_reloc */
1944 newval
= relocation
;
1947 else if (opcode
== get_const16_opcode ())
1949 /* ALT used for high 16 bits. */
1950 newval
= relocation
>> 16;
1955 /* No other "alternate" relocations currently defined. */
1956 *error_message
= "unexpected relocation";
1957 return bfd_reloc_dangerous
;
1960 else /* Not an "alternate" relocation.... */
1962 if (opcode
== get_const16_opcode ())
1964 newval
= relocation
& 0xffff;
1969 /* ...normal PC-relative relocation.... */
1971 /* Determine which operand is being relocated. */
1972 opnd
= get_relocation_opnd (opcode
, howto
->type
);
1973 if (opnd
== XTENSA_UNDEFINED
)
1975 *error_message
= "unexpected relocation";
1976 return bfd_reloc_dangerous
;
1979 if (!howto
->pc_relative
)
1981 *error_message
= "expected PC-relative relocation";
1982 return bfd_reloc_dangerous
;
1985 newval
= relocation
;
1989 /* Apply the relocation. */
1990 if (xtensa_operand_do_reloc (isa
, opcode
, opnd
, &newval
, self_address
)
1991 || xtensa_operand_encode (isa
, opcode
, opnd
, &newval
)
1992 || xtensa_operand_set_field (isa
, opcode
, opnd
, fmt
, slot
,
1995 const char *opname
= xtensa_opcode_name (isa
, opcode
);
1998 msg
= "cannot encode";
1999 if (is_direct_call_opcode (opcode
))
2001 if ((relocation
& 0x3) != 0)
2002 msg
= "misaligned call target";
2004 msg
= "call target out of range";
2006 else if (opcode
== get_l32r_opcode ())
2008 if ((relocation
& 0x3) != 0)
2009 msg
= "misaligned literal target";
2010 else if (is_alt_relocation (howto
->type
))
2011 msg
= "literal target out of range (too many literals)";
2012 else if (self_address
> relocation
)
2013 msg
= "literal target out of range (try using text-section-literals)";
2015 msg
= "literal placed after use";
2018 *error_message
= vsprint_msg (opname
, ": %s", strlen (msg
) + 2, msg
);
2019 return bfd_reloc_dangerous
;
2022 /* Check for calls across 1GB boundaries. */
2023 if (is_direct_call_opcode (opcode
)
2024 && is_windowed_call_opcode (opcode
))
2026 if ((self_address
>> CALL_SEGMENT_BITS
)
2027 != (relocation
>> CALL_SEGMENT_BITS
))
2030 "windowed call crosses 1GB boundary; return may fail";
2031 return bfd_reloc_dangerous
;
2035 /* Write the modified instruction back out of the buffer. */
2036 xtensa_format_set_slot (isa
, fmt
, slot
, ibuff
, sbuff
);
2037 xtensa_insnbuf_to_chars (isa
, ibuff
, contents
+ address
,
2038 input_size
- address
);
2039 return bfd_reloc_ok
;
2044 vsprint_msg (const char *origmsg
, const char *fmt
, int arglen
, ...)
2046 /* To reduce the size of the memory leak,
2047 we only use a single message buffer. */
2048 static bfd_size_type alloc_size
= 0;
2049 static char *message
= NULL
;
2050 bfd_size_type orig_len
, len
= 0;
2051 bfd_boolean is_append
;
2054 va_start (ap
, arglen
);
2056 is_append
= (origmsg
== message
);
2058 orig_len
= strlen (origmsg
);
2059 len
= orig_len
+ strlen (fmt
) + arglen
+ 20;
2060 if (len
> alloc_size
)
2062 message
= (char *) bfd_realloc_or_free (message
, len
);
2065 if (message
!= NULL
)
2068 memcpy (message
, origmsg
, orig_len
);
2069 vsprintf (message
+ orig_len
, fmt
, ap
);
2076 /* This function is registered as the "special_function" in the
2077 Xtensa howto for handling simplify operations.
2078 bfd_perform_relocation / bfd_install_relocation use it to
2079 perform (install) the specified relocation. Since this replaces the code
2080 in bfd_perform_relocation, it is basically an Xtensa-specific,
2081 stripped-down version of bfd_perform_relocation. */
2083 static bfd_reloc_status_type
2084 bfd_elf_xtensa_reloc (bfd
*abfd
,
2085 arelent
*reloc_entry
,
2088 asection
*input_section
,
2090 char **error_message
)
2093 bfd_reloc_status_type flag
;
2094 bfd_size_type octets
= reloc_entry
->address
* bfd_octets_per_byte (abfd
);
2095 bfd_vma output_base
= 0;
2096 reloc_howto_type
*howto
= reloc_entry
->howto
;
2097 asection
*reloc_target_output_section
;
2098 bfd_boolean is_weak_undef
;
2100 if (!xtensa_default_isa
)
2101 xtensa_default_isa
= xtensa_isa_init (0, 0);
2103 /* ELF relocs are against symbols. If we are producing relocatable
2104 output, and the reloc is against an external symbol, the resulting
2105 reloc will also be against the same symbol. In such a case, we
2106 don't want to change anything about the way the reloc is handled,
2107 since it will all be done at final link time. This test is similar
2108 to what bfd_elf_generic_reloc does except that it lets relocs with
2109 howto->partial_inplace go through even if the addend is non-zero.
2110 (The real problem is that partial_inplace is set for XTENSA_32
2111 relocs to begin with, but that's a long story and there's little we
2112 can do about it now....) */
2114 if (output_bfd
&& (symbol
->flags
& BSF_SECTION_SYM
) == 0)
2116 reloc_entry
->address
+= input_section
->output_offset
;
2117 return bfd_reloc_ok
;
2120 /* Is the address of the relocation really within the section? */
2121 if (reloc_entry
->address
> bfd_get_section_limit (abfd
, input_section
))
2122 return bfd_reloc_outofrange
;
2124 /* Work out which section the relocation is targeted at and the
2125 initial relocation command value. */
2127 /* Get symbol value. (Common symbols are special.) */
2128 if (bfd_is_com_section (symbol
->section
))
2131 relocation
= symbol
->value
;
2133 reloc_target_output_section
= symbol
->section
->output_section
;
2135 /* Convert input-section-relative symbol value to absolute. */
2136 if ((output_bfd
&& !howto
->partial_inplace
)
2137 || reloc_target_output_section
== NULL
)
2140 output_base
= reloc_target_output_section
->vma
;
2142 relocation
+= output_base
+ symbol
->section
->output_offset
;
2144 /* Add in supplied addend. */
2145 relocation
+= reloc_entry
->addend
;
2147 /* Here the variable relocation holds the final address of the
2148 symbol we are relocating against, plus any addend. */
2151 if (!howto
->partial_inplace
)
2153 /* This is a partial relocation, and we want to apply the relocation
2154 to the reloc entry rather than the raw data. Everything except
2155 relocations against section symbols has already been handled
2158 BFD_ASSERT (symbol
->flags
& BSF_SECTION_SYM
);
2159 reloc_entry
->addend
= relocation
;
2160 reloc_entry
->address
+= input_section
->output_offset
;
2161 return bfd_reloc_ok
;
2165 reloc_entry
->address
+= input_section
->output_offset
;
2166 reloc_entry
->addend
= 0;
2170 is_weak_undef
= (bfd_is_und_section (symbol
->section
)
2171 && (symbol
->flags
& BSF_WEAK
) != 0);
2172 flag
= elf_xtensa_do_reloc (howto
, abfd
, input_section
, relocation
,
2173 (bfd_byte
*) data
, (bfd_vma
) octets
,
2174 is_weak_undef
, error_message
);
2176 if (flag
== bfd_reloc_dangerous
)
2178 /* Add the symbol name to the error message. */
2179 if (! *error_message
)
2180 *error_message
= "";
2181 *error_message
= vsprint_msg (*error_message
, ": (%s + 0x%lx)",
2182 strlen (symbol
->name
) + 17,
2184 (unsigned long) reloc_entry
->addend
);
2191 /* Set up an entry in the procedure linkage table. */
2194 elf_xtensa_create_plt_entry (struct bfd_link_info
*info
,
2196 unsigned reloc_index
)
2198 asection
*splt
, *sgotplt
;
2199 bfd_vma plt_base
, got_base
;
2200 bfd_vma code_offset
, lit_offset
, abi_offset
;
2203 chunk
= reloc_index
/ PLT_ENTRIES_PER_CHUNK
;
2204 splt
= elf_xtensa_get_plt_section (info
, chunk
);
2205 sgotplt
= elf_xtensa_get_gotplt_section (info
, chunk
);
2206 BFD_ASSERT (splt
!= NULL
&& sgotplt
!= NULL
);
2208 plt_base
= splt
->output_section
->vma
+ splt
->output_offset
;
2209 got_base
= sgotplt
->output_section
->vma
+ sgotplt
->output_offset
;
2211 lit_offset
= 8 + (reloc_index
% PLT_ENTRIES_PER_CHUNK
) * 4;
2212 code_offset
= (reloc_index
% PLT_ENTRIES_PER_CHUNK
) * PLT_ENTRY_SIZE
;
2214 /* Fill in the literal entry. This is the offset of the dynamic
2215 relocation entry. */
2216 bfd_put_32 (output_bfd
, reloc_index
* sizeof (Elf32_External_Rela
),
2217 sgotplt
->contents
+ lit_offset
);
2219 /* Fill in the entry in the procedure linkage table. */
2220 memcpy (splt
->contents
+ code_offset
,
2221 (bfd_big_endian (output_bfd
)
2222 ? elf_xtensa_be_plt_entry
[XSHAL_ABI
!= XTHAL_ABI_WINDOWED
]
2223 : elf_xtensa_le_plt_entry
[XSHAL_ABI
!= XTHAL_ABI_WINDOWED
]),
2225 abi_offset
= XSHAL_ABI
== XTHAL_ABI_WINDOWED
? 3 : 0;
2226 bfd_put_16 (output_bfd
, l32r_offset (got_base
+ 0,
2227 plt_base
+ code_offset
+ abi_offset
),
2228 splt
->contents
+ code_offset
+ abi_offset
+ 1);
2229 bfd_put_16 (output_bfd
, l32r_offset (got_base
+ 4,
2230 plt_base
+ code_offset
+ abi_offset
+ 3),
2231 splt
->contents
+ code_offset
+ abi_offset
+ 4);
2232 bfd_put_16 (output_bfd
, l32r_offset (got_base
+ lit_offset
,
2233 plt_base
+ code_offset
+ abi_offset
+ 6),
2234 splt
->contents
+ code_offset
+ abi_offset
+ 7);
2236 return plt_base
+ code_offset
;
2240 static bfd_boolean
get_indirect_call_dest_reg (xtensa_opcode
, unsigned *);
2243 replace_tls_insn (Elf_Internal_Rela
*rel
,
2245 asection
*input_section
,
2247 bfd_boolean is_ld_model
,
2248 char **error_message
)
2250 static xtensa_insnbuf ibuff
= NULL
;
2251 static xtensa_insnbuf sbuff
= NULL
;
2252 xtensa_isa isa
= xtensa_default_isa
;
2254 xtensa_opcode old_op
, new_op
;
2255 bfd_size_type input_size
;
2257 unsigned dest_reg
, src_reg
;
2261 ibuff
= xtensa_insnbuf_alloc (isa
);
2262 sbuff
= xtensa_insnbuf_alloc (isa
);
2265 input_size
= bfd_get_section_limit (abfd
, input_section
);
2267 /* Read the instruction into a buffer and decode the opcode. */
2268 xtensa_insnbuf_from_chars (isa
, ibuff
, contents
+ rel
->r_offset
,
2269 input_size
- rel
->r_offset
);
2270 fmt
= xtensa_format_decode (isa
, ibuff
);
2271 if (fmt
== XTENSA_UNDEFINED
)
2273 *error_message
= "cannot decode instruction format";
2277 BFD_ASSERT (xtensa_format_num_slots (isa
, fmt
) == 1);
2278 xtensa_format_get_slot (isa
, fmt
, 0, ibuff
, sbuff
);
2280 old_op
= xtensa_opcode_decode (isa
, fmt
, 0, sbuff
);
2281 if (old_op
== XTENSA_UNDEFINED
)
2283 *error_message
= "cannot decode instruction opcode";
2287 r_type
= ELF32_R_TYPE (rel
->r_info
);
2290 case R_XTENSA_TLS_FUNC
:
2291 case R_XTENSA_TLS_ARG
:
2292 if (old_op
!= get_l32r_opcode ()
2293 || xtensa_operand_get_field (isa
, old_op
, 0, fmt
, 0,
2294 sbuff
, &dest_reg
) != 0)
2296 *error_message
= "cannot extract L32R destination for TLS access";
2301 case R_XTENSA_TLS_CALL
:
2302 if (! get_indirect_call_dest_reg (old_op
, &dest_reg
)
2303 || xtensa_operand_get_field (isa
, old_op
, 0, fmt
, 0,
2304 sbuff
, &src_reg
) != 0)
2306 *error_message
= "cannot extract CALLXn operands for TLS access";
2319 case R_XTENSA_TLS_FUNC
:
2320 case R_XTENSA_TLS_ARG
:
2321 /* Change the instruction to a NOP (or "OR a1, a1, a1" for older
2322 versions of Xtensa). */
2323 new_op
= xtensa_opcode_lookup (isa
, "nop");
2324 if (new_op
== XTENSA_UNDEFINED
)
2326 new_op
= xtensa_opcode_lookup (isa
, "or");
2327 if (new_op
== XTENSA_UNDEFINED
2328 || xtensa_opcode_encode (isa
, fmt
, 0, sbuff
, new_op
) != 0
2329 || xtensa_operand_set_field (isa
, new_op
, 0, fmt
, 0,
2331 || xtensa_operand_set_field (isa
, new_op
, 1, fmt
, 0,
2333 || xtensa_operand_set_field (isa
, new_op
, 2, fmt
, 0,
2336 *error_message
= "cannot encode OR for TLS access";
2342 if (xtensa_opcode_encode (isa
, fmt
, 0, sbuff
, new_op
) != 0)
2344 *error_message
= "cannot encode NOP for TLS access";
2350 case R_XTENSA_TLS_CALL
:
2351 /* Read THREADPTR into the CALLX's return value register. */
2352 new_op
= xtensa_opcode_lookup (isa
, "rur.threadptr");
2353 if (new_op
== XTENSA_UNDEFINED
2354 || xtensa_opcode_encode (isa
, fmt
, 0, sbuff
, new_op
) != 0
2355 || xtensa_operand_set_field (isa
, new_op
, 0, fmt
, 0,
2356 sbuff
, dest_reg
+ 2) != 0)
2358 *error_message
= "cannot encode RUR.THREADPTR for TLS access";
2368 case R_XTENSA_TLS_FUNC
:
2369 new_op
= xtensa_opcode_lookup (isa
, "rur.threadptr");
2370 if (new_op
== XTENSA_UNDEFINED
2371 || xtensa_opcode_encode (isa
, fmt
, 0, sbuff
, new_op
) != 0
2372 || xtensa_operand_set_field (isa
, new_op
, 0, fmt
, 0,
2373 sbuff
, dest_reg
) != 0)
2375 *error_message
= "cannot encode RUR.THREADPTR for TLS access";
2380 case R_XTENSA_TLS_ARG
:
2381 /* Nothing to do. Keep the original L32R instruction. */
2384 case R_XTENSA_TLS_CALL
:
2385 /* Add the CALLX's src register (holding the THREADPTR value)
2386 to the first argument register (holding the offset) and put
2387 the result in the CALLX's return value register. */
2388 new_op
= xtensa_opcode_lookup (isa
, "add");
2389 if (new_op
== XTENSA_UNDEFINED
2390 || xtensa_opcode_encode (isa
, fmt
, 0, sbuff
, new_op
) != 0
2391 || xtensa_operand_set_field (isa
, new_op
, 0, fmt
, 0,
2392 sbuff
, dest_reg
+ 2) != 0
2393 || xtensa_operand_set_field (isa
, new_op
, 1, fmt
, 0,
2394 sbuff
, dest_reg
+ 2) != 0
2395 || xtensa_operand_set_field (isa
, new_op
, 2, fmt
, 0,
2396 sbuff
, src_reg
) != 0)
2398 *error_message
= "cannot encode ADD for TLS access";
2405 xtensa_format_set_slot (isa
, fmt
, 0, ibuff
, sbuff
);
2406 xtensa_insnbuf_to_chars (isa
, ibuff
, contents
+ rel
->r_offset
,
2407 input_size
- rel
->r_offset
);
2413 #define IS_XTENSA_TLS_RELOC(R_TYPE) \
2414 ((R_TYPE) == R_XTENSA_TLSDESC_FN \
2415 || (R_TYPE) == R_XTENSA_TLSDESC_ARG \
2416 || (R_TYPE) == R_XTENSA_TLS_DTPOFF \
2417 || (R_TYPE) == R_XTENSA_TLS_TPOFF \
2418 || (R_TYPE) == R_XTENSA_TLS_FUNC \
2419 || (R_TYPE) == R_XTENSA_TLS_ARG \
2420 || (R_TYPE) == R_XTENSA_TLS_CALL)
2422 /* Relocate an Xtensa ELF section. This is invoked by the linker for
2423 both relocatable and final links. */
2426 elf_xtensa_relocate_section (bfd
*output_bfd
,
2427 struct bfd_link_info
*info
,
2429 asection
*input_section
,
2431 Elf_Internal_Rela
*relocs
,
2432 Elf_Internal_Sym
*local_syms
,
2433 asection
**local_sections
)
2435 struct elf_xtensa_link_hash_table
*htab
;
2436 Elf_Internal_Shdr
*symtab_hdr
;
2437 Elf_Internal_Rela
*rel
;
2438 Elf_Internal_Rela
*relend
;
2439 struct elf_link_hash_entry
**sym_hashes
;
2440 property_table_entry
*lit_table
= 0;
2442 char *local_got_tls_types
;
2443 char *error_message
= NULL
;
2444 bfd_size_type input_size
;
2447 if (!xtensa_default_isa
)
2448 xtensa_default_isa
= xtensa_isa_init (0, 0);
2450 BFD_ASSERT (is_xtensa_elf (input_bfd
));
2452 htab
= elf_xtensa_hash_table (info
);
2456 symtab_hdr
= &elf_tdata (input_bfd
)->symtab_hdr
;
2457 sym_hashes
= elf_sym_hashes (input_bfd
);
2458 local_got_tls_types
= elf_xtensa_local_got_tls_type (input_bfd
);
2460 if (elf_hash_table (info
)->dynamic_sections_created
)
2462 ltblsize
= xtensa_read_table_entries (input_bfd
, input_section
,
2463 &lit_table
, XTENSA_LIT_SEC_NAME
,
2469 input_size
= bfd_get_section_limit (input_bfd
, input_section
);
2472 relend
= relocs
+ input_section
->reloc_count
;
2473 for (; rel
< relend
; rel
++)
2476 reloc_howto_type
*howto
;
2477 unsigned long r_symndx
;
2478 struct elf_link_hash_entry
*h
;
2479 Elf_Internal_Sym
*sym
;
2484 bfd_reloc_status_type r
;
2485 bfd_boolean is_weak_undef
;
2486 bfd_boolean unresolved_reloc
;
2488 bfd_boolean dynamic_symbol
;
2490 r_type
= ELF32_R_TYPE (rel
->r_info
);
2491 if (r_type
== (int) R_XTENSA_GNU_VTINHERIT
2492 || r_type
== (int) R_XTENSA_GNU_VTENTRY
)
2495 if (r_type
< 0 || r_type
>= (int) R_XTENSA_max
)
2497 bfd_set_error (bfd_error_bad_value
);
2500 howto
= &elf_howto_table
[r_type
];
2502 r_symndx
= ELF32_R_SYM (rel
->r_info
);
2507 is_weak_undef
= FALSE
;
2508 unresolved_reloc
= FALSE
;
2511 if (howto
->partial_inplace
&& !bfd_link_relocatable (info
))
2513 /* Because R_XTENSA_32 was made partial_inplace to fix some
2514 problems with DWARF info in partial links, there may be
2515 an addend stored in the contents. Take it out of there
2516 and move it back into the addend field of the reloc. */
2517 rel
->r_addend
+= bfd_get_32 (input_bfd
, contents
+ rel
->r_offset
);
2518 bfd_put_32 (input_bfd
, 0, contents
+ rel
->r_offset
);
2521 if (r_symndx
< symtab_hdr
->sh_info
)
2523 sym
= local_syms
+ r_symndx
;
2524 sym_type
= ELF32_ST_TYPE (sym
->st_info
);
2525 sec
= local_sections
[r_symndx
];
2526 relocation
= _bfd_elf_rela_local_sym (output_bfd
, sym
, &sec
, rel
);
2530 bfd_boolean ignored
;
2532 RELOC_FOR_GLOBAL_SYMBOL (info
, input_bfd
, input_section
, rel
,
2533 r_symndx
, symtab_hdr
, sym_hashes
,
2535 unresolved_reloc
, warned
, ignored
);
2538 && !unresolved_reloc
2539 && h
->root
.type
== bfd_link_hash_undefweak
)
2540 is_weak_undef
= TRUE
;
2545 if (sec
!= NULL
&& discarded_section (sec
))
2546 RELOC_AGAINST_DISCARDED_SECTION (info
, input_bfd
, input_section
,
2547 rel
, 1, relend
, howto
, 0, contents
);
2549 if (bfd_link_relocatable (info
))
2552 asection
* sym_sec
= get_elf_r_symndx_section (input_bfd
, r_symndx
);
2554 /* This is a relocatable link.
2555 1) If the reloc is against a section symbol, adjust
2556 according to the output section.
2557 2) If there is a new target for this relocation,
2558 the new target will be in the same output section.
2559 We adjust the relocation by the output section
2562 if (relaxing_section
)
2564 /* Check if this references a section in another input file. */
2565 if (!do_fix_for_relocatable_link (rel
, input_bfd
, input_section
,
2570 dest_addr
= sym_sec
->output_section
->vma
+ sym_sec
->output_offset
2571 + get_elf_r_symndx_offset (input_bfd
, r_symndx
) + rel
->r_addend
;
2573 if (r_type
== R_XTENSA_ASM_SIMPLIFY
)
2575 error_message
= NULL
;
2576 /* Convert ASM_SIMPLIFY into the simpler relocation
2577 so that they never escape a relaxing link. */
2578 r
= contract_asm_expansion (contents
, input_size
, rel
,
2580 if (r
!= bfd_reloc_ok
)
2581 (*info
->callbacks
->reloc_dangerous
)
2582 (info
, error_message
,
2583 input_bfd
, input_section
, rel
->r_offset
);
2585 r_type
= ELF32_R_TYPE (rel
->r_info
);
2588 /* This is a relocatable link, so we don't have to change
2589 anything unless the reloc is against a section symbol,
2590 in which case we have to adjust according to where the
2591 section symbol winds up in the output section. */
2592 if (r_symndx
< symtab_hdr
->sh_info
)
2594 sym
= local_syms
+ r_symndx
;
2595 if (ELF_ST_TYPE (sym
->st_info
) == STT_SECTION
)
2597 sec
= local_sections
[r_symndx
];
2598 rel
->r_addend
+= sec
->output_offset
+ sym
->st_value
;
2602 /* If there is an addend with a partial_inplace howto,
2603 then move the addend to the contents. This is a hack
2604 to work around problems with DWARF in relocatable links
2605 with some previous version of BFD. Now we can't easily get
2606 rid of the hack without breaking backward compatibility.... */
2608 howto
= &elf_howto_table
[r_type
];
2609 if (howto
->partial_inplace
&& rel
->r_addend
)
2611 r
= elf_xtensa_do_reloc (howto
, input_bfd
, input_section
,
2612 rel
->r_addend
, contents
,
2613 rel
->r_offset
, FALSE
,
2619 /* Put the correct bits in the target instruction, even
2620 though the relocation will still be present in the output
2621 file. This makes disassembly clearer, as well as
2622 allowing loadable kernel modules to work without needing
2623 relocations on anything other than calls and l32r's. */
2625 /* If it is not in the same section, there is nothing we can do. */
2626 if (r_type
>= R_XTENSA_SLOT0_OP
&& r_type
<= R_XTENSA_SLOT14_OP
&&
2627 sym_sec
->output_section
== input_section
->output_section
)
2629 r
= elf_xtensa_do_reloc (howto
, input_bfd
, input_section
,
2630 dest_addr
, contents
,
2631 rel
->r_offset
, FALSE
,
2635 if (r
!= bfd_reloc_ok
)
2636 (*info
->callbacks
->reloc_dangerous
)
2637 (info
, error_message
,
2638 input_bfd
, input_section
, rel
->r_offset
);
2640 /* Done with work for relocatable link; continue with next reloc. */
2644 /* This is a final link. */
2646 if (relaxing_section
)
2648 /* Check if this references a section in another input file. */
2649 do_fix_for_final_link (rel
, input_bfd
, input_section
, contents
,
2653 /* Sanity check the address. */
2654 if (rel
->r_offset
>= input_size
2655 && ELF32_R_TYPE (rel
->r_info
) != R_XTENSA_NONE
)
2658 /* xgettext:c-format */
2659 (_("%B(%A+%#Lx): relocation offset out of range (size=%#Lx)"),
2660 input_bfd
, input_section
, rel
->r_offset
, input_size
);
2661 bfd_set_error (bfd_error_bad_value
);
2666 name
= h
->root
.root
.string
;
2669 name
= (bfd_elf_string_from_elf_section
2670 (input_bfd
, symtab_hdr
->sh_link
, sym
->st_name
));
2671 if (name
== NULL
|| *name
== '\0')
2672 name
= bfd_section_name (input_bfd
, sec
);
2675 if (r_symndx
!= STN_UNDEF
2676 && r_type
!= R_XTENSA_NONE
2678 || h
->root
.type
== bfd_link_hash_defined
2679 || h
->root
.type
== bfd_link_hash_defweak
)
2680 && IS_XTENSA_TLS_RELOC (r_type
) != (sym_type
== STT_TLS
))
2683 ((sym_type
== STT_TLS
2684 /* xgettext:c-format */
2685 ? _("%B(%A+%#Lx): %s used with TLS symbol %s")
2686 /* xgettext:c-format */
2687 : _("%B(%A+%#Lx): %s used with non-TLS symbol %s")),
2695 dynamic_symbol
= elf_xtensa_dynamic_symbol_p (h
, info
);
2697 tls_type
= GOT_UNKNOWN
;
2699 tls_type
= elf_xtensa_hash_entry (h
)->tls_type
;
2700 else if (local_got_tls_types
)
2701 tls_type
= local_got_tls_types
[r_symndx
];
2707 if (elf_hash_table (info
)->dynamic_sections_created
2708 && (input_section
->flags
& SEC_ALLOC
) != 0
2709 && (dynamic_symbol
|| bfd_link_pic (info
)))
2711 Elf_Internal_Rela outrel
;
2715 if (dynamic_symbol
&& r_type
== R_XTENSA_PLT
)
2716 srel
= htab
->elf
.srelplt
;
2718 srel
= htab
->elf
.srelgot
;
2720 BFD_ASSERT (srel
!= NULL
);
2723 _bfd_elf_section_offset (output_bfd
, info
,
2724 input_section
, rel
->r_offset
);
2726 if ((outrel
.r_offset
| 1) == (bfd_vma
) -1)
2727 memset (&outrel
, 0, sizeof outrel
);
2730 outrel
.r_offset
+= (input_section
->output_section
->vma
2731 + input_section
->output_offset
);
2733 /* Complain if the relocation is in a read-only section
2734 and not in a literal pool. */
2735 if ((input_section
->flags
& SEC_READONLY
) != 0
2736 && !elf_xtensa_in_literal_pool (lit_table
, ltblsize
,
2740 _("dynamic relocation in read-only section");
2741 (*info
->callbacks
->reloc_dangerous
)
2742 (info
, error_message
,
2743 input_bfd
, input_section
, rel
->r_offset
);
2748 outrel
.r_addend
= rel
->r_addend
;
2751 if (r_type
== R_XTENSA_32
)
2754 ELF32_R_INFO (h
->dynindx
, R_XTENSA_GLOB_DAT
);
2757 else /* r_type == R_XTENSA_PLT */
2760 ELF32_R_INFO (h
->dynindx
, R_XTENSA_JMP_SLOT
);
2762 /* Create the PLT entry and set the initial
2763 contents of the literal entry to the address of
2766 elf_xtensa_create_plt_entry (info
, output_bfd
,
2769 unresolved_reloc
= FALSE
;
2773 /* Generate a RELATIVE relocation. */
2774 outrel
.r_info
= ELF32_R_INFO (0, R_XTENSA_RELATIVE
);
2775 outrel
.r_addend
= 0;
2779 loc
= (srel
->contents
2780 + srel
->reloc_count
++ * sizeof (Elf32_External_Rela
));
2781 bfd_elf32_swap_reloca_out (output_bfd
, &outrel
, loc
);
2782 BFD_ASSERT (sizeof (Elf32_External_Rela
) * srel
->reloc_count
2785 else if (r_type
== R_XTENSA_ASM_EXPAND
&& dynamic_symbol
)
2787 /* This should only happen for non-PIC code, which is not
2788 supposed to be used on systems with dynamic linking.
2789 Just ignore these relocations. */
2794 case R_XTENSA_TLS_TPOFF
:
2795 /* Switch to LE model for local symbols in an executable. */
2796 if (! bfd_link_pic (info
) && ! dynamic_symbol
)
2798 relocation
= tpoff (info
, relocation
);
2803 case R_XTENSA_TLSDESC_FN
:
2804 case R_XTENSA_TLSDESC_ARG
:
2806 if (r_type
== R_XTENSA_TLSDESC_FN
)
2808 if (! bfd_link_pic (info
) || (tls_type
& GOT_TLS_IE
) != 0)
2809 r_type
= R_XTENSA_NONE
;
2811 else if (r_type
== R_XTENSA_TLSDESC_ARG
)
2813 if (bfd_link_pic (info
))
2815 if ((tls_type
& GOT_TLS_IE
) != 0)
2816 r_type
= R_XTENSA_TLS_TPOFF
;
2820 r_type
= R_XTENSA_TLS_TPOFF
;
2821 if (! dynamic_symbol
)
2823 relocation
= tpoff (info
, relocation
);
2829 if (r_type
== R_XTENSA_NONE
)
2830 /* Nothing to do here; skip to the next reloc. */
2833 if (! elf_hash_table (info
)->dynamic_sections_created
)
2836 _("TLS relocation invalid without dynamic sections");
2837 (*info
->callbacks
->reloc_dangerous
)
2838 (info
, error_message
,
2839 input_bfd
, input_section
, rel
->r_offset
);
2843 Elf_Internal_Rela outrel
;
2845 asection
*srel
= htab
->elf
.srelgot
;
2848 outrel
.r_offset
= (input_section
->output_section
->vma
2849 + input_section
->output_offset
2852 /* Complain if the relocation is in a read-only section
2853 and not in a literal pool. */
2854 if ((input_section
->flags
& SEC_READONLY
) != 0
2855 && ! elf_xtensa_in_literal_pool (lit_table
, ltblsize
,
2859 _("dynamic relocation in read-only section");
2860 (*info
->callbacks
->reloc_dangerous
)
2861 (info
, error_message
,
2862 input_bfd
, input_section
, rel
->r_offset
);
2865 indx
= h
&& h
->dynindx
!= -1 ? h
->dynindx
: 0;
2867 outrel
.r_addend
= relocation
- dtpoff_base (info
);
2869 outrel
.r_addend
= 0;
2872 outrel
.r_info
= ELF32_R_INFO (indx
, r_type
);
2874 unresolved_reloc
= FALSE
;
2877 loc
= (srel
->contents
2878 + srel
->reloc_count
++ * sizeof (Elf32_External_Rela
));
2879 bfd_elf32_swap_reloca_out (output_bfd
, &outrel
, loc
);
2880 BFD_ASSERT (sizeof (Elf32_External_Rela
) * srel
->reloc_count
2886 case R_XTENSA_TLS_DTPOFF
:
2887 if (! bfd_link_pic (info
))
2888 /* Switch from LD model to LE model. */
2889 relocation
= tpoff (info
, relocation
);
2891 relocation
-= dtpoff_base (info
);
2894 case R_XTENSA_TLS_FUNC
:
2895 case R_XTENSA_TLS_ARG
:
2896 case R_XTENSA_TLS_CALL
:
2897 /* Check if optimizing to IE or LE model. */
2898 if ((tls_type
& GOT_TLS_IE
) != 0)
2900 bfd_boolean is_ld_model
=
2901 (h
&& elf_xtensa_hash_entry (h
) == htab
->tlsbase
);
2902 if (! replace_tls_insn (rel
, input_bfd
, input_section
, contents
,
2903 is_ld_model
, &error_message
))
2904 (*info
->callbacks
->reloc_dangerous
)
2905 (info
, error_message
,
2906 input_bfd
, input_section
, rel
->r_offset
);
2908 if (r_type
!= R_XTENSA_TLS_ARG
|| is_ld_model
)
2910 /* Skip subsequent relocations on the same instruction. */
2911 while (rel
+ 1 < relend
&& rel
[1].r_offset
== rel
->r_offset
)
2918 if (elf_hash_table (info
)->dynamic_sections_created
2919 && dynamic_symbol
&& (is_operand_relocation (r_type
)
2920 || r_type
== R_XTENSA_32_PCREL
))
2923 vsprint_msg ("invalid relocation for dynamic symbol", ": %s",
2924 strlen (name
) + 2, name
);
2925 (*info
->callbacks
->reloc_dangerous
)
2926 (info
, error_message
, input_bfd
, input_section
, rel
->r_offset
);
2932 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
2933 because such sections are not SEC_ALLOC and thus ld.so will
2934 not process them. */
2935 if (unresolved_reloc
2936 && !((input_section
->flags
& SEC_DEBUGGING
) != 0
2938 && _bfd_elf_section_offset (output_bfd
, info
, input_section
,
2939 rel
->r_offset
) != (bfd_vma
) -1)
2942 /* xgettext:c-format */
2943 (_("%B(%A+%#Lx): unresolvable %s relocation against symbol `%s'"),
2952 /* TLS optimizations may have changed r_type; update "howto". */
2953 howto
= &elf_howto_table
[r_type
];
2955 /* There's no point in calling bfd_perform_relocation here.
2956 Just go directly to our "special function". */
2957 r
= elf_xtensa_do_reloc (howto
, input_bfd
, input_section
,
2958 relocation
+ rel
->r_addend
,
2959 contents
, rel
->r_offset
, is_weak_undef
,
2962 if (r
!= bfd_reloc_ok
&& !warned
)
2964 BFD_ASSERT (r
== bfd_reloc_dangerous
|| r
== bfd_reloc_other
);
2965 BFD_ASSERT (error_message
!= NULL
);
2967 if (rel
->r_addend
== 0)
2968 error_message
= vsprint_msg (error_message
, ": %s",
2969 strlen (name
) + 2, name
);
2971 error_message
= vsprint_msg (error_message
, ": (%s+0x%x)",
2973 name
, (int) rel
->r_addend
);
2975 (*info
->callbacks
->reloc_dangerous
)
2976 (info
, error_message
, input_bfd
, input_section
, rel
->r_offset
);
2983 input_section
->reloc_done
= TRUE
;
2989 /* Finish up dynamic symbol handling. There's not much to do here since
2990 the PLT and GOT entries are all set up by relocate_section. */
2993 elf_xtensa_finish_dynamic_symbol (bfd
*output_bfd ATTRIBUTE_UNUSED
,
2994 struct bfd_link_info
*info ATTRIBUTE_UNUSED
,
2995 struct elf_link_hash_entry
*h
,
2996 Elf_Internal_Sym
*sym
)
2998 if (h
->needs_plt
&& !h
->def_regular
)
3000 /* Mark the symbol as undefined, rather than as defined in
3001 the .plt section. Leave the value alone. */
3002 sym
->st_shndx
= SHN_UNDEF
;
3003 /* If the symbol is weak, we do need to clear the value.
3004 Otherwise, the PLT entry would provide a definition for
3005 the symbol even if the symbol wasn't defined anywhere,
3006 and so the symbol would never be NULL. */
3007 if (!h
->ref_regular_nonweak
)
3011 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
3012 if (h
== elf_hash_table (info
)->hdynamic
3013 || h
== elf_hash_table (info
)->hgot
)
3014 sym
->st_shndx
= SHN_ABS
;
3020 /* Combine adjacent literal table entries in the output. Adjacent
3021 entries within each input section may have been removed during
3022 relaxation, but we repeat the process here, even though it's too late
3023 to shrink the output section, because it's important to minimize the
3024 number of literal table entries to reduce the start-up work for the
3025 runtime linker. Returns the number of remaining table entries or -1
3029 elf_xtensa_combine_prop_entries (bfd
*output_bfd
,
3034 property_table_entry
*table
;
3035 bfd_size_type section_size
, sgotloc_size
;
3039 section_size
= sxtlit
->size
;
3040 BFD_ASSERT (section_size
% 8 == 0);
3041 num
= section_size
/ 8;
3043 sgotloc_size
= sgotloc
->size
;
3044 if (sgotloc_size
!= section_size
)
3047 (_("internal inconsistency in size of .got.loc section"));
3051 table
= bfd_malloc (num
* sizeof (property_table_entry
));
3055 /* The ".xt.lit.plt" section has the SEC_IN_MEMORY flag set and this
3056 propagates to the output section, where it doesn't really apply and
3057 where it breaks the following call to bfd_malloc_and_get_section. */
3058 sxtlit
->flags
&= ~SEC_IN_MEMORY
;
3060 if (!bfd_malloc_and_get_section (output_bfd
, sxtlit
, &contents
))
3068 /* There should never be any relocations left at this point, so this
3069 is quite a bit easier than what is done during relaxation. */
3071 /* Copy the raw contents into a property table array and sort it. */
3073 for (n
= 0; n
< num
; n
++)
3075 table
[n
].address
= bfd_get_32 (output_bfd
, &contents
[offset
]);
3076 table
[n
].size
= bfd_get_32 (output_bfd
, &contents
[offset
+ 4]);
3079 qsort (table
, num
, sizeof (property_table_entry
), property_table_compare
);
3081 for (n
= 0; n
< num
; n
++)
3083 bfd_boolean remove_entry
= FALSE
;
3085 if (table
[n
].size
== 0)
3086 remove_entry
= TRUE
;
3088 && (table
[n
-1].address
+ table
[n
-1].size
== table
[n
].address
))
3090 table
[n
-1].size
+= table
[n
].size
;
3091 remove_entry
= TRUE
;
3096 for (m
= n
; m
< num
- 1; m
++)
3098 table
[m
].address
= table
[m
+1].address
;
3099 table
[m
].size
= table
[m
+1].size
;
3107 /* Copy the data back to the raw contents. */
3109 for (n
= 0; n
< num
; n
++)
3111 bfd_put_32 (output_bfd
, table
[n
].address
, &contents
[offset
]);
3112 bfd_put_32 (output_bfd
, table
[n
].size
, &contents
[offset
+ 4]);
3116 /* Clear the removed bytes. */
3117 if ((bfd_size_type
) (num
* 8) < section_size
)
3118 memset (&contents
[num
* 8], 0, section_size
- num
* 8);
3120 if (! bfd_set_section_contents (output_bfd
, sxtlit
, contents
, 0,
3124 /* Copy the contents to ".got.loc". */
3125 memcpy (sgotloc
->contents
, contents
, section_size
);
3133 /* Finish up the dynamic sections. */
3136 elf_xtensa_finish_dynamic_sections (bfd
*output_bfd
,
3137 struct bfd_link_info
*info
)
3139 struct elf_xtensa_link_hash_table
*htab
;
3141 asection
*sdyn
, *srelplt
, *sgot
, *sxtlit
, *sgotloc
;
3142 Elf32_External_Dyn
*dyncon
, *dynconend
;
3143 int num_xtlit_entries
= 0;
3145 if (! elf_hash_table (info
)->dynamic_sections_created
)
3148 htab
= elf_xtensa_hash_table (info
);
3152 dynobj
= elf_hash_table (info
)->dynobj
;
3153 sdyn
= bfd_get_linker_section (dynobj
, ".dynamic");
3154 BFD_ASSERT (sdyn
!= NULL
);
3156 /* Set the first entry in the global offset table to the address of
3157 the dynamic section. */
3158 sgot
= htab
->elf
.sgot
;
3161 BFD_ASSERT (sgot
->size
== 4);
3163 bfd_put_32 (output_bfd
, 0, sgot
->contents
);
3165 bfd_put_32 (output_bfd
,
3166 sdyn
->output_section
->vma
+ sdyn
->output_offset
,
3170 srelplt
= htab
->elf
.srelplt
;
3171 if (srelplt
&& srelplt
->size
!= 0)
3173 asection
*sgotplt
, *srelgot
, *spltlittbl
;
3174 int chunk
, plt_chunks
, plt_entries
;
3175 Elf_Internal_Rela irela
;
3177 unsigned rtld_reloc
;
3179 srelgot
= htab
->elf
.srelgot
;
3180 spltlittbl
= htab
->spltlittbl
;
3181 BFD_ASSERT (srelgot
!= NULL
&& spltlittbl
!= NULL
);
3183 /* Find the first XTENSA_RTLD relocation. Presumably the rest
3184 of them follow immediately after.... */
3185 for (rtld_reloc
= 0; rtld_reloc
< srelgot
->reloc_count
; rtld_reloc
++)
3187 loc
= srelgot
->contents
+ rtld_reloc
* sizeof (Elf32_External_Rela
);
3188 bfd_elf32_swap_reloca_in (output_bfd
, loc
, &irela
);
3189 if (ELF32_R_TYPE (irela
.r_info
) == R_XTENSA_RTLD
)
3192 BFD_ASSERT (rtld_reloc
< srelgot
->reloc_count
);
3194 plt_entries
= srelplt
->size
/ sizeof (Elf32_External_Rela
);
3196 (plt_entries
+ PLT_ENTRIES_PER_CHUNK
- 1) / PLT_ENTRIES_PER_CHUNK
;
3198 for (chunk
= 0; chunk
< plt_chunks
; chunk
++)
3200 int chunk_entries
= 0;
3202 sgotplt
= elf_xtensa_get_gotplt_section (info
, chunk
);
3203 BFD_ASSERT (sgotplt
!= NULL
);
3205 /* Emit special RTLD relocations for the first two entries in
3206 each chunk of the .got.plt section. */
3208 loc
= srelgot
->contents
+ rtld_reloc
* sizeof (Elf32_External_Rela
);
3209 bfd_elf32_swap_reloca_in (output_bfd
, loc
, &irela
);
3210 BFD_ASSERT (ELF32_R_TYPE (irela
.r_info
) == R_XTENSA_RTLD
);
3211 irela
.r_offset
= (sgotplt
->output_section
->vma
3212 + sgotplt
->output_offset
);
3213 irela
.r_addend
= 1; /* tell rtld to set value to resolver function */
3214 bfd_elf32_swap_reloca_out (output_bfd
, &irela
, loc
);
3216 BFD_ASSERT (rtld_reloc
<= srelgot
->reloc_count
);
3218 /* Next literal immediately follows the first. */
3219 loc
+= sizeof (Elf32_External_Rela
);
3220 bfd_elf32_swap_reloca_in (output_bfd
, loc
, &irela
);
3221 BFD_ASSERT (ELF32_R_TYPE (irela
.r_info
) == R_XTENSA_RTLD
);
3222 irela
.r_offset
= (sgotplt
->output_section
->vma
3223 + sgotplt
->output_offset
+ 4);
3224 /* Tell rtld to set value to object's link map. */
3226 bfd_elf32_swap_reloca_out (output_bfd
, &irela
, loc
);
3228 BFD_ASSERT (rtld_reloc
<= srelgot
->reloc_count
);
3230 /* Fill in the literal table. */
3231 if (chunk
< plt_chunks
- 1)
3232 chunk_entries
= PLT_ENTRIES_PER_CHUNK
;
3234 chunk_entries
= plt_entries
- (chunk
* PLT_ENTRIES_PER_CHUNK
);
3236 BFD_ASSERT ((unsigned) (chunk
+ 1) * 8 <= spltlittbl
->size
);
3237 bfd_put_32 (output_bfd
,
3238 sgotplt
->output_section
->vma
+ sgotplt
->output_offset
,
3239 spltlittbl
->contents
+ (chunk
* 8) + 0);
3240 bfd_put_32 (output_bfd
,
3241 8 + (chunk_entries
* 4),
3242 spltlittbl
->contents
+ (chunk
* 8) + 4);
3245 /* All the dynamic relocations have been emitted at this point.
3246 Make sure the relocation sections are the correct size. */
3247 if (srelgot
->size
!= (sizeof (Elf32_External_Rela
)
3248 * srelgot
->reloc_count
)
3249 || srelplt
->size
!= (sizeof (Elf32_External_Rela
)
3250 * srelplt
->reloc_count
))
3253 /* The .xt.lit.plt section has just been modified. This must
3254 happen before the code below which combines adjacent literal
3255 table entries, and the .xt.lit.plt contents have to be forced to
3257 if (! bfd_set_section_contents (output_bfd
,
3258 spltlittbl
->output_section
,
3259 spltlittbl
->contents
,
3260 spltlittbl
->output_offset
,
3263 /* Clear SEC_HAS_CONTENTS so the contents won't be output again. */
3264 spltlittbl
->flags
&= ~SEC_HAS_CONTENTS
;
3267 /* Combine adjacent literal table entries. */
3268 BFD_ASSERT (! bfd_link_relocatable (info
));
3269 sxtlit
= bfd_get_section_by_name (output_bfd
, ".xt.lit");
3270 sgotloc
= htab
->sgotloc
;
3271 BFD_ASSERT (sgotloc
);
3275 elf_xtensa_combine_prop_entries (output_bfd
, sxtlit
, sgotloc
);
3276 if (num_xtlit_entries
< 0)
3280 dyncon
= (Elf32_External_Dyn
*) sdyn
->contents
;
3281 dynconend
= (Elf32_External_Dyn
*) (sdyn
->contents
+ sdyn
->size
);
3282 for (; dyncon
< dynconend
; dyncon
++)
3284 Elf_Internal_Dyn dyn
;
3286 bfd_elf32_swap_dyn_in (dynobj
, dyncon
, &dyn
);
3293 case DT_XTENSA_GOT_LOC_SZ
:
3294 dyn
.d_un
.d_val
= num_xtlit_entries
;
3297 case DT_XTENSA_GOT_LOC_OFF
:
3298 dyn
.d_un
.d_ptr
= (htab
->sgotloc
->output_section
->vma
3299 + htab
->sgotloc
->output_offset
);
3303 dyn
.d_un
.d_ptr
= (htab
->elf
.sgot
->output_section
->vma
3304 + htab
->elf
.sgot
->output_offset
);
3308 dyn
.d_un
.d_ptr
= (htab
->elf
.srelplt
->output_section
->vma
3309 + htab
->elf
.srelplt
->output_offset
);
3313 dyn
.d_un
.d_val
= htab
->elf
.srelplt
->size
;
3317 bfd_elf32_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
3324 /* Functions for dealing with the e_flags field. */
3326 /* Merge backend specific data from an object file to the output
3327 object file when linking. */
3330 elf_xtensa_merge_private_bfd_data (bfd
*ibfd
, struct bfd_link_info
*info
)
3332 bfd
*obfd
= info
->output_bfd
;
3333 unsigned out_mach
, in_mach
;
3334 flagword out_flag
, in_flag
;
3336 /* Check if we have the same endianness. */
3337 if (!_bfd_generic_verify_endian_match (ibfd
, info
))
3340 /* Don't even pretend to support mixed-format linking. */
3341 if (bfd_get_flavour (ibfd
) != bfd_target_elf_flavour
3342 || bfd_get_flavour (obfd
) != bfd_target_elf_flavour
)
3345 out_flag
= elf_elfheader (obfd
)->e_flags
;
3346 in_flag
= elf_elfheader (ibfd
)->e_flags
;
3348 out_mach
= out_flag
& EF_XTENSA_MACH
;
3349 in_mach
= in_flag
& EF_XTENSA_MACH
;
3350 if (out_mach
!= in_mach
)
3353 /* xgettext:c-format */
3354 (_("%B: incompatible machine type. Output is 0x%x. Input is 0x%x"),
3355 ibfd
, out_mach
, in_mach
);
3356 bfd_set_error (bfd_error_wrong_format
);
3360 if (! elf_flags_init (obfd
))
3362 elf_flags_init (obfd
) = TRUE
;
3363 elf_elfheader (obfd
)->e_flags
= in_flag
;
3365 if (bfd_get_arch (obfd
) == bfd_get_arch (ibfd
)
3366 && bfd_get_arch_info (obfd
)->the_default
)
3367 return bfd_set_arch_mach (obfd
, bfd_get_arch (ibfd
),
3368 bfd_get_mach (ibfd
));
3373 if ((out_flag
& EF_XTENSA_XT_INSN
) != (in_flag
& EF_XTENSA_XT_INSN
))
3374 elf_elfheader (obfd
)->e_flags
&= (~ EF_XTENSA_XT_INSN
);
3376 if ((out_flag
& EF_XTENSA_XT_LIT
) != (in_flag
& EF_XTENSA_XT_LIT
))
3377 elf_elfheader (obfd
)->e_flags
&= (~ EF_XTENSA_XT_LIT
);
3384 elf_xtensa_set_private_flags (bfd
*abfd
, flagword flags
)
3386 BFD_ASSERT (!elf_flags_init (abfd
)
3387 || elf_elfheader (abfd
)->e_flags
== flags
);
3389 elf_elfheader (abfd
)->e_flags
|= flags
;
3390 elf_flags_init (abfd
) = TRUE
;
3397 elf_xtensa_print_private_bfd_data (bfd
*abfd
, void *farg
)
3399 FILE *f
= (FILE *) farg
;
3400 flagword e_flags
= elf_elfheader (abfd
)->e_flags
;
3402 fprintf (f
, "\nXtensa header:\n");
3403 if ((e_flags
& EF_XTENSA_MACH
) == E_XTENSA_MACH
)
3404 fprintf (f
, "\nMachine = Base\n");
3406 fprintf (f
, "\nMachine Id = 0x%x\n", e_flags
& EF_XTENSA_MACH
);
3408 fprintf (f
, "Insn tables = %s\n",
3409 (e_flags
& EF_XTENSA_XT_INSN
) ? "true" : "false");
3411 fprintf (f
, "Literal tables = %s\n",
3412 (e_flags
& EF_XTENSA_XT_LIT
) ? "true" : "false");
3414 return _bfd_elf_print_private_bfd_data (abfd
, farg
);
3418 /* Set the right machine number for an Xtensa ELF file. */
3421 elf_xtensa_object_p (bfd
*abfd
)
3424 unsigned long arch
= elf_elfheader (abfd
)->e_flags
& EF_XTENSA_MACH
;
3429 mach
= bfd_mach_xtensa
;
3435 (void) bfd_default_set_arch_mach (abfd
, bfd_arch_xtensa
, mach
);
3440 /* The final processing done just before writing out an Xtensa ELF object
3441 file. This gets the Xtensa architecture right based on the machine
3445 elf_xtensa_final_write_processing (bfd
*abfd
,
3446 bfd_boolean linker ATTRIBUTE_UNUSED
)
3451 switch (mach
= bfd_get_mach (abfd
))
3453 case bfd_mach_xtensa
:
3454 val
= E_XTENSA_MACH
;
3460 elf_elfheader (abfd
)->e_flags
&= (~ EF_XTENSA_MACH
);
3461 elf_elfheader (abfd
)->e_flags
|= val
;
3465 static enum elf_reloc_type_class
3466 elf_xtensa_reloc_type_class (const struct bfd_link_info
*info ATTRIBUTE_UNUSED
,
3467 const asection
*rel_sec ATTRIBUTE_UNUSED
,
3468 const Elf_Internal_Rela
*rela
)
3470 switch ((int) ELF32_R_TYPE (rela
->r_info
))
3472 case R_XTENSA_RELATIVE
:
3473 return reloc_class_relative
;
3474 case R_XTENSA_JMP_SLOT
:
3475 return reloc_class_plt
;
3477 return reloc_class_normal
;
3483 elf_xtensa_discard_info_for_section (bfd
*abfd
,
3484 struct elf_reloc_cookie
*cookie
,
3485 struct bfd_link_info
*info
,
3489 bfd_vma offset
, actual_offset
;
3490 bfd_size_type removed_bytes
= 0;
3491 bfd_size_type entry_size
;
3493 if (sec
->output_section
3494 && bfd_is_abs_section (sec
->output_section
))
3497 if (xtensa_is_proptable_section (sec
))
3502 if (sec
->size
== 0 || sec
->size
% entry_size
!= 0)
3505 contents
= retrieve_contents (abfd
, sec
, info
->keep_memory
);
3509 cookie
->rels
= retrieve_internal_relocs (abfd
, sec
, info
->keep_memory
);
3512 release_contents (sec
, contents
);
3516 /* Sort the relocations. They should already be in order when
3517 relaxation is enabled, but it might not be. */
3518 qsort (cookie
->rels
, sec
->reloc_count
, sizeof (Elf_Internal_Rela
),
3519 internal_reloc_compare
);
3521 cookie
->rel
= cookie
->rels
;
3522 cookie
->relend
= cookie
->rels
+ sec
->reloc_count
;
3524 for (offset
= 0; offset
< sec
->size
; offset
+= entry_size
)
3526 actual_offset
= offset
- removed_bytes
;
3528 /* The ...symbol_deleted_p function will skip over relocs but it
3529 won't adjust their offsets, so do that here. */
3530 while (cookie
->rel
< cookie
->relend
3531 && cookie
->rel
->r_offset
< offset
)
3533 cookie
->rel
->r_offset
-= removed_bytes
;
3537 while (cookie
->rel
< cookie
->relend
3538 && cookie
->rel
->r_offset
== offset
)
3540 if (bfd_elf_reloc_symbol_deleted_p (offset
, cookie
))
3542 /* Remove the table entry. (If the reloc type is NONE, then
3543 the entry has already been merged with another and deleted
3544 during relaxation.) */
3545 if (ELF32_R_TYPE (cookie
->rel
->r_info
) != R_XTENSA_NONE
)
3547 /* Shift the contents up. */
3548 if (offset
+ entry_size
< sec
->size
)
3549 memmove (&contents
[actual_offset
],
3550 &contents
[actual_offset
+ entry_size
],
3551 sec
->size
- offset
- entry_size
);
3552 removed_bytes
+= entry_size
;
3555 /* Remove this relocation. */
3556 cookie
->rel
->r_info
= ELF32_R_INFO (0, R_XTENSA_NONE
);
3559 /* Adjust the relocation offset for previous removals. This
3560 should not be done before calling ...symbol_deleted_p
3561 because it might mess up the offset comparisons there.
3562 Make sure the offset doesn't underflow in the case where
3563 the first entry is removed. */
3564 if (cookie
->rel
->r_offset
>= removed_bytes
)
3565 cookie
->rel
->r_offset
-= removed_bytes
;
3567 cookie
->rel
->r_offset
= 0;
3573 if (removed_bytes
!= 0)
3575 /* Adjust any remaining relocs (shouldn't be any). */
3576 for (; cookie
->rel
< cookie
->relend
; cookie
->rel
++)
3578 if (cookie
->rel
->r_offset
>= removed_bytes
)
3579 cookie
->rel
->r_offset
-= removed_bytes
;
3581 cookie
->rel
->r_offset
= 0;
3584 /* Clear the removed bytes. */
3585 memset (&contents
[sec
->size
- removed_bytes
], 0, removed_bytes
);
3587 pin_contents (sec
, contents
);
3588 pin_internal_relocs (sec
, cookie
->rels
);
3591 if (sec
->rawsize
== 0)
3592 sec
->rawsize
= sec
->size
;
3593 sec
->size
-= removed_bytes
;
3595 if (xtensa_is_littable_section (sec
))
3597 asection
*sgotloc
= elf_xtensa_hash_table (info
)->sgotloc
;
3599 sgotloc
->size
-= removed_bytes
;
3604 release_contents (sec
, contents
);
3605 release_internal_relocs (sec
, cookie
->rels
);
3608 return (removed_bytes
!= 0);
3613 elf_xtensa_discard_info (bfd
*abfd
,
3614 struct elf_reloc_cookie
*cookie
,
3615 struct bfd_link_info
*info
)
3618 bfd_boolean changed
= FALSE
;
3620 for (sec
= abfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
3622 if (xtensa_is_property_section (sec
))
3624 if (elf_xtensa_discard_info_for_section (abfd
, cookie
, info
, sec
))
3634 elf_xtensa_ignore_discarded_relocs (asection
*sec
)
3636 return xtensa_is_property_section (sec
);
3641 elf_xtensa_action_discarded (asection
*sec
)
3643 if (strcmp (".xt_except_table", sec
->name
) == 0)
3646 if (strcmp (".xt_except_desc", sec
->name
) == 0)
3649 return _bfd_elf_default_action_discarded (sec
);
3653 /* Support for core dump NOTE sections. */
3656 elf_xtensa_grok_prstatus (bfd
*abfd
, Elf_Internal_Note
*note
)
3661 /* The size for Xtensa is variable, so don't try to recognize the format
3662 based on the size. Just assume this is GNU/Linux. */
3665 elf_tdata (abfd
)->core
->signal
= bfd_get_16 (abfd
, note
->descdata
+ 12);
3668 elf_tdata (abfd
)->core
->lwpid
= bfd_get_32 (abfd
, note
->descdata
+ 24);
3672 size
= note
->descsz
- offset
- 4;
3674 /* Make a ".reg/999" section. */
3675 return _bfd_elfcore_make_pseudosection (abfd
, ".reg",
3676 size
, note
->descpos
+ offset
);
3681 elf_xtensa_grok_psinfo (bfd
*abfd
, Elf_Internal_Note
*note
)
3683 switch (note
->descsz
)
3688 case 128: /* GNU/Linux elf_prpsinfo */
3689 elf_tdata (abfd
)->core
->program
3690 = _bfd_elfcore_strndup (abfd
, note
->descdata
+ 32, 16);
3691 elf_tdata (abfd
)->core
->command
3692 = _bfd_elfcore_strndup (abfd
, note
->descdata
+ 48, 80);
3695 /* Note that for some reason, a spurious space is tacked
3696 onto the end of the args in some (at least one anyway)
3697 implementations, so strip it off if it exists. */
3700 char *command
= elf_tdata (abfd
)->core
->command
;
3701 int n
= strlen (command
);
3703 if (0 < n
&& command
[n
- 1] == ' ')
3704 command
[n
- 1] = '\0';
3711 /* Generic Xtensa configurability stuff. */
3713 static xtensa_opcode callx0_op
= XTENSA_UNDEFINED
;
3714 static xtensa_opcode callx4_op
= XTENSA_UNDEFINED
;
3715 static xtensa_opcode callx8_op
= XTENSA_UNDEFINED
;
3716 static xtensa_opcode callx12_op
= XTENSA_UNDEFINED
;
3717 static xtensa_opcode call0_op
= XTENSA_UNDEFINED
;
3718 static xtensa_opcode call4_op
= XTENSA_UNDEFINED
;
3719 static xtensa_opcode call8_op
= XTENSA_UNDEFINED
;
3720 static xtensa_opcode call12_op
= XTENSA_UNDEFINED
;
3723 init_call_opcodes (void)
3725 if (callx0_op
== XTENSA_UNDEFINED
)
3727 callx0_op
= xtensa_opcode_lookup (xtensa_default_isa
, "callx0");
3728 callx4_op
= xtensa_opcode_lookup (xtensa_default_isa
, "callx4");
3729 callx8_op
= xtensa_opcode_lookup (xtensa_default_isa
, "callx8");
3730 callx12_op
= xtensa_opcode_lookup (xtensa_default_isa
, "callx12");
3731 call0_op
= xtensa_opcode_lookup (xtensa_default_isa
, "call0");
3732 call4_op
= xtensa_opcode_lookup (xtensa_default_isa
, "call4");
3733 call8_op
= xtensa_opcode_lookup (xtensa_default_isa
, "call8");
3734 call12_op
= xtensa_opcode_lookup (xtensa_default_isa
, "call12");
3740 is_indirect_call_opcode (xtensa_opcode opcode
)
3742 init_call_opcodes ();
3743 return (opcode
== callx0_op
3744 || opcode
== callx4_op
3745 || opcode
== callx8_op
3746 || opcode
== callx12_op
);
3751 is_direct_call_opcode (xtensa_opcode opcode
)
3753 init_call_opcodes ();
3754 return (opcode
== call0_op
3755 || opcode
== call4_op
3756 || opcode
== call8_op
3757 || opcode
== call12_op
);
3762 is_windowed_call_opcode (xtensa_opcode opcode
)
3764 init_call_opcodes ();
3765 return (opcode
== call4_op
3766 || opcode
== call8_op
3767 || opcode
== call12_op
3768 || opcode
== callx4_op
3769 || opcode
== callx8_op
3770 || opcode
== callx12_op
);
3775 get_indirect_call_dest_reg (xtensa_opcode opcode
, unsigned *pdst
)
3777 unsigned dst
= (unsigned) -1;
3779 init_call_opcodes ();
3780 if (opcode
== callx0_op
)
3782 else if (opcode
== callx4_op
)
3784 else if (opcode
== callx8_op
)
3786 else if (opcode
== callx12_op
)
3789 if (dst
== (unsigned) -1)
3797 static xtensa_opcode
3798 get_const16_opcode (void)
3800 static bfd_boolean done_lookup
= FALSE
;
3801 static xtensa_opcode const16_opcode
= XTENSA_UNDEFINED
;
3804 const16_opcode
= xtensa_opcode_lookup (xtensa_default_isa
, "const16");
3807 return const16_opcode
;
3811 static xtensa_opcode
3812 get_l32r_opcode (void)
3814 static xtensa_opcode l32r_opcode
= XTENSA_UNDEFINED
;
3815 static bfd_boolean done_lookup
= FALSE
;
3819 l32r_opcode
= xtensa_opcode_lookup (xtensa_default_isa
, "l32r");
3827 l32r_offset (bfd_vma addr
, bfd_vma pc
)
3831 offset
= addr
- ((pc
+3) & -4);
3832 BFD_ASSERT ((offset
& ((1 << 2) - 1)) == 0);
3833 offset
= (signed int) offset
>> 2;
3834 BFD_ASSERT ((signed int) offset
>> 16 == -1);
3840 get_relocation_opnd (xtensa_opcode opcode
, int r_type
)
3842 xtensa_isa isa
= xtensa_default_isa
;
3843 int last_immed
, last_opnd
, opi
;
3845 if (opcode
== XTENSA_UNDEFINED
)
3846 return XTENSA_UNDEFINED
;
3848 /* Find the last visible PC-relative immediate operand for the opcode.
3849 If there are no PC-relative immediates, then choose the last visible
3850 immediate; otherwise, fail and return XTENSA_UNDEFINED. */
3851 last_immed
= XTENSA_UNDEFINED
;
3852 last_opnd
= xtensa_opcode_num_operands (isa
, opcode
);
3853 for (opi
= last_opnd
- 1; opi
>= 0; opi
--)
3855 if (xtensa_operand_is_visible (isa
, opcode
, opi
) == 0)
3857 if (xtensa_operand_is_PCrelative (isa
, opcode
, opi
) == 1)
3862 if (last_immed
== XTENSA_UNDEFINED
3863 && xtensa_operand_is_register (isa
, opcode
, opi
) == 0)
3867 return XTENSA_UNDEFINED
;
3869 /* If the operand number was specified in an old-style relocation,
3870 check for consistency with the operand computed above. */
3871 if (r_type
>= R_XTENSA_OP0
&& r_type
<= R_XTENSA_OP2
)
3873 int reloc_opnd
= r_type
- R_XTENSA_OP0
;
3874 if (reloc_opnd
!= last_immed
)
3875 return XTENSA_UNDEFINED
;
3883 get_relocation_slot (int r_type
)
3893 if (r_type
>= R_XTENSA_SLOT0_OP
&& r_type
<= R_XTENSA_SLOT14_OP
)
3894 return r_type
- R_XTENSA_SLOT0_OP
;
3895 if (r_type
>= R_XTENSA_SLOT0_ALT
&& r_type
<= R_XTENSA_SLOT14_ALT
)
3896 return r_type
- R_XTENSA_SLOT0_ALT
;
3900 return XTENSA_UNDEFINED
;
3904 /* Get the opcode for a relocation. */
3906 static xtensa_opcode
3907 get_relocation_opcode (bfd
*abfd
,
3910 Elf_Internal_Rela
*irel
)
3912 static xtensa_insnbuf ibuff
= NULL
;
3913 static xtensa_insnbuf sbuff
= NULL
;
3914 xtensa_isa isa
= xtensa_default_isa
;
3918 if (contents
== NULL
)
3919 return XTENSA_UNDEFINED
;
3921 if (bfd_get_section_limit (abfd
, sec
) <= irel
->r_offset
)
3922 return XTENSA_UNDEFINED
;
3926 ibuff
= xtensa_insnbuf_alloc (isa
);
3927 sbuff
= xtensa_insnbuf_alloc (isa
);
3930 /* Decode the instruction. */
3931 xtensa_insnbuf_from_chars (isa
, ibuff
, &contents
[irel
->r_offset
],
3932 sec
->size
- irel
->r_offset
);
3933 fmt
= xtensa_format_decode (isa
, ibuff
);
3934 slot
= get_relocation_slot (ELF32_R_TYPE (irel
->r_info
));
3935 if (slot
== XTENSA_UNDEFINED
)
3936 return XTENSA_UNDEFINED
;
3937 xtensa_format_get_slot (isa
, fmt
, slot
, ibuff
, sbuff
);
3938 return xtensa_opcode_decode (isa
, fmt
, slot
, sbuff
);
3943 is_l32r_relocation (bfd
*abfd
,
3946 Elf_Internal_Rela
*irel
)
3948 xtensa_opcode opcode
;
3949 if (!is_operand_relocation (ELF32_R_TYPE (irel
->r_info
)))
3951 opcode
= get_relocation_opcode (abfd
, sec
, contents
, irel
);
3952 return (opcode
== get_l32r_opcode ());
3956 static bfd_size_type
3957 get_asm_simplify_size (bfd_byte
*contents
,
3958 bfd_size_type content_len
,
3959 bfd_size_type offset
)
3961 bfd_size_type insnlen
, size
= 0;
3963 /* Decode the size of the next two instructions. */
3964 insnlen
= insn_decode_len (contents
, content_len
, offset
);
3970 insnlen
= insn_decode_len (contents
, content_len
, offset
+ size
);
3980 is_alt_relocation (int r_type
)
3982 return (r_type
>= R_XTENSA_SLOT0_ALT
3983 && r_type
<= R_XTENSA_SLOT14_ALT
);
3988 is_operand_relocation (int r_type
)
3998 if (r_type
>= R_XTENSA_SLOT0_OP
&& r_type
<= R_XTENSA_SLOT14_OP
)
4000 if (r_type
>= R_XTENSA_SLOT0_ALT
&& r_type
<= R_XTENSA_SLOT14_ALT
)
4009 #define MIN_INSN_LENGTH 2
4011 /* Return 0 if it fails to decode. */
4014 insn_decode_len (bfd_byte
*contents
,
4015 bfd_size_type content_len
,
4016 bfd_size_type offset
)
4019 xtensa_isa isa
= xtensa_default_isa
;
4021 static xtensa_insnbuf ibuff
= NULL
;
4023 if (offset
+ MIN_INSN_LENGTH
> content_len
)
4027 ibuff
= xtensa_insnbuf_alloc (isa
);
4028 xtensa_insnbuf_from_chars (isa
, ibuff
, &contents
[offset
],
4029 content_len
- offset
);
4030 fmt
= xtensa_format_decode (isa
, ibuff
);
4031 if (fmt
== XTENSA_UNDEFINED
)
4033 insn_len
= xtensa_format_length (isa
, fmt
);
4034 if (insn_len
== XTENSA_UNDEFINED
)
4040 /* Decode the opcode for a single slot instruction.
4041 Return 0 if it fails to decode or the instruction is multi-slot. */
4044 insn_decode_opcode (bfd_byte
*contents
,
4045 bfd_size_type content_len
,
4046 bfd_size_type offset
,
4049 xtensa_isa isa
= xtensa_default_isa
;
4051 static xtensa_insnbuf insnbuf
= NULL
;
4052 static xtensa_insnbuf slotbuf
= NULL
;
4054 if (offset
+ MIN_INSN_LENGTH
> content_len
)
4055 return XTENSA_UNDEFINED
;
4057 if (insnbuf
== NULL
)
4059 insnbuf
= xtensa_insnbuf_alloc (isa
);
4060 slotbuf
= xtensa_insnbuf_alloc (isa
);
4063 xtensa_insnbuf_from_chars (isa
, insnbuf
, &contents
[offset
],
4064 content_len
- offset
);
4065 fmt
= xtensa_format_decode (isa
, insnbuf
);
4066 if (fmt
== XTENSA_UNDEFINED
)
4067 return XTENSA_UNDEFINED
;
4069 if (slot
>= xtensa_format_num_slots (isa
, fmt
))
4070 return XTENSA_UNDEFINED
;
4072 xtensa_format_get_slot (isa
, fmt
, slot
, insnbuf
, slotbuf
);
4073 return xtensa_opcode_decode (isa
, fmt
, slot
, slotbuf
);
4077 /* The offset is the offset in the contents.
4078 The address is the address of that offset. */
4081 check_branch_target_aligned (bfd_byte
*contents
,
4082 bfd_size_type content_length
,
4086 bfd_size_type insn_len
= insn_decode_len (contents
, content_length
, offset
);
4089 return check_branch_target_aligned_address (address
, insn_len
);
4094 check_loop_aligned (bfd_byte
*contents
,
4095 bfd_size_type content_length
,
4099 bfd_size_type loop_len
, insn_len
;
4100 xtensa_opcode opcode
;
4102 opcode
= insn_decode_opcode (contents
, content_length
, offset
, 0);
4103 if (opcode
== XTENSA_UNDEFINED
4104 || xtensa_opcode_is_loop (xtensa_default_isa
, opcode
) != 1)
4110 loop_len
= insn_decode_len (contents
, content_length
, offset
);
4111 insn_len
= insn_decode_len (contents
, content_length
, offset
+ loop_len
);
4112 if (loop_len
== 0 || insn_len
== 0)
4118 return check_branch_target_aligned_address (address
+ loop_len
, insn_len
);
4123 check_branch_target_aligned_address (bfd_vma addr
, int len
)
4126 return (addr
% 8 == 0);
4127 return ((addr
>> 2) == ((addr
+ len
- 1) >> 2));
4131 /* Instruction widening and narrowing. */
4133 /* When FLIX is available we need to access certain instructions only
4134 when they are 16-bit or 24-bit instructions. This table caches
4135 information about such instructions by walking through all the
4136 opcodes and finding the smallest single-slot format into which each
4139 static xtensa_format
*op_single_fmt_table
= NULL
;
4143 init_op_single_format_table (void)
4145 xtensa_isa isa
= xtensa_default_isa
;
4146 xtensa_insnbuf ibuf
;
4147 xtensa_opcode opcode
;
4151 if (op_single_fmt_table
)
4154 ibuf
= xtensa_insnbuf_alloc (isa
);
4155 num_opcodes
= xtensa_isa_num_opcodes (isa
);
4157 op_single_fmt_table
= (xtensa_format
*)
4158 bfd_malloc (sizeof (xtensa_format
) * num_opcodes
);
4159 for (opcode
= 0; opcode
< num_opcodes
; opcode
++)
4161 op_single_fmt_table
[opcode
] = XTENSA_UNDEFINED
;
4162 for (fmt
= 0; fmt
< xtensa_isa_num_formats (isa
); fmt
++)
4164 if (xtensa_format_num_slots (isa
, fmt
) == 1
4165 && xtensa_opcode_encode (isa
, fmt
, 0, ibuf
, opcode
) == 0)
4167 xtensa_opcode old_fmt
= op_single_fmt_table
[opcode
];
4168 int fmt_length
= xtensa_format_length (isa
, fmt
);
4169 if (old_fmt
== XTENSA_UNDEFINED
4170 || fmt_length
< xtensa_format_length (isa
, old_fmt
))
4171 op_single_fmt_table
[opcode
] = fmt
;
4175 xtensa_insnbuf_free (isa
, ibuf
);
4179 static xtensa_format
4180 get_single_format (xtensa_opcode opcode
)
4182 init_op_single_format_table ();
4183 return op_single_fmt_table
[opcode
];
4187 /* For the set of narrowable instructions we do NOT include the
4188 narrowings beqz -> beqz.n or bnez -> bnez.n because of complexities
4189 involved during linker relaxation that may require these to
4190 re-expand in some conditions. Also, the narrowing "or" -> mov.n
4191 requires special case code to ensure it only works when op1 == op2. */
4199 struct string_pair narrowable
[] =
4202 { "addi", "addi.n" },
4203 { "addmi", "addi.n" },
4204 { "l32i", "l32i.n" },
4205 { "movi", "movi.n" },
4207 { "retw", "retw.n" },
4208 { "s32i", "s32i.n" },
4209 { "or", "mov.n" } /* special case only when op1 == op2 */
4212 struct string_pair widenable
[] =
4215 { "addi", "addi.n" },
4216 { "addmi", "addi.n" },
4217 { "beqz", "beqz.n" },
4218 { "bnez", "bnez.n" },
4219 { "l32i", "l32i.n" },
4220 { "movi", "movi.n" },
4222 { "retw", "retw.n" },
4223 { "s32i", "s32i.n" },
4224 { "or", "mov.n" } /* special case only when op1 == op2 */
4228 /* Check if an instruction can be "narrowed", i.e., changed from a standard
4229 3-byte instruction to a 2-byte "density" instruction. If it is valid,
4230 return the instruction buffer holding the narrow instruction. Otherwise,
4231 return 0. The set of valid narrowing are specified by a string table
4232 but require some special case operand checks in some cases. */
4234 static xtensa_insnbuf
4235 can_narrow_instruction (xtensa_insnbuf slotbuf
,
4237 xtensa_opcode opcode
)
4239 xtensa_isa isa
= xtensa_default_isa
;
4240 xtensa_format o_fmt
;
4243 static xtensa_insnbuf o_insnbuf
= NULL
;
4244 static xtensa_insnbuf o_slotbuf
= NULL
;
4246 if (o_insnbuf
== NULL
)
4248 o_insnbuf
= xtensa_insnbuf_alloc (isa
);
4249 o_slotbuf
= xtensa_insnbuf_alloc (isa
);
4252 for (opi
= 0; opi
< (sizeof (narrowable
)/sizeof (struct string_pair
)); opi
++)
4254 bfd_boolean is_or
= (strcmp ("or", narrowable
[opi
].wide
) == 0);
4256 if (opcode
== xtensa_opcode_lookup (isa
, narrowable
[opi
].wide
))
4258 uint32 value
, newval
;
4259 int i
, operand_count
, o_operand_count
;
4260 xtensa_opcode o_opcode
;
4262 /* Address does not matter in this case. We might need to
4263 fix it to handle branches/jumps. */
4264 bfd_vma self_address
= 0;
4266 o_opcode
= xtensa_opcode_lookup (isa
, narrowable
[opi
].narrow
);
4267 if (o_opcode
== XTENSA_UNDEFINED
)
4269 o_fmt
= get_single_format (o_opcode
);
4270 if (o_fmt
== XTENSA_UNDEFINED
)
4273 if (xtensa_format_length (isa
, fmt
) != 3
4274 || xtensa_format_length (isa
, o_fmt
) != 2)
4277 xtensa_format_encode (isa
, o_fmt
, o_insnbuf
);
4278 operand_count
= xtensa_opcode_num_operands (isa
, opcode
);
4279 o_operand_count
= xtensa_opcode_num_operands (isa
, o_opcode
);
4281 if (xtensa_opcode_encode (isa
, o_fmt
, 0, o_slotbuf
, o_opcode
) != 0)
4286 if (xtensa_opcode_num_operands (isa
, o_opcode
) != operand_count
)
4291 uint32 rawval0
, rawval1
, rawval2
;
4293 if (o_operand_count
+ 1 != operand_count
4294 || xtensa_operand_get_field (isa
, opcode
, 0,
4295 fmt
, 0, slotbuf
, &rawval0
) != 0
4296 || xtensa_operand_get_field (isa
, opcode
, 1,
4297 fmt
, 0, slotbuf
, &rawval1
) != 0
4298 || xtensa_operand_get_field (isa
, opcode
, 2,
4299 fmt
, 0, slotbuf
, &rawval2
) != 0
4300 || rawval1
!= rawval2
4301 || rawval0
== rawval1
/* it is a nop */)
4305 for (i
= 0; i
< o_operand_count
; ++i
)
4307 if (xtensa_operand_get_field (isa
, opcode
, i
, fmt
, 0,
4309 || xtensa_operand_decode (isa
, opcode
, i
, &value
))
4312 /* PC-relative branches need adjustment, but
4313 the PC-rel operand will always have a relocation. */
4315 if (xtensa_operand_do_reloc (isa
, o_opcode
, i
, &newval
,
4317 || xtensa_operand_encode (isa
, o_opcode
, i
, &newval
)
4318 || xtensa_operand_set_field (isa
, o_opcode
, i
, o_fmt
, 0,
4323 if (xtensa_format_set_slot (isa
, o_fmt
, 0, o_insnbuf
, o_slotbuf
))
4333 /* Attempt to narrow an instruction. If the narrowing is valid, perform
4334 the action in-place directly into the contents and return TRUE. Otherwise,
4335 the return value is FALSE and the contents are not modified. */
4338 narrow_instruction (bfd_byte
*contents
,
4339 bfd_size_type content_length
,
4340 bfd_size_type offset
)
4342 xtensa_opcode opcode
;
4343 bfd_size_type insn_len
;
4344 xtensa_isa isa
= xtensa_default_isa
;
4346 xtensa_insnbuf o_insnbuf
;
4348 static xtensa_insnbuf insnbuf
= NULL
;
4349 static xtensa_insnbuf slotbuf
= NULL
;
4351 if (insnbuf
== NULL
)
4353 insnbuf
= xtensa_insnbuf_alloc (isa
);
4354 slotbuf
= xtensa_insnbuf_alloc (isa
);
4357 BFD_ASSERT (offset
< content_length
);
4359 if (content_length
< 2)
4362 /* We will hand-code a few of these for a little while.
4363 These have all been specified in the assembler aleady. */
4364 xtensa_insnbuf_from_chars (isa
, insnbuf
, &contents
[offset
],
4365 content_length
- offset
);
4366 fmt
= xtensa_format_decode (isa
, insnbuf
);
4367 if (xtensa_format_num_slots (isa
, fmt
) != 1)
4370 if (xtensa_format_get_slot (isa
, fmt
, 0, insnbuf
, slotbuf
) != 0)
4373 opcode
= xtensa_opcode_decode (isa
, fmt
, 0, slotbuf
);
4374 if (opcode
== XTENSA_UNDEFINED
)
4376 insn_len
= xtensa_format_length (isa
, fmt
);
4377 if (insn_len
> content_length
)
4380 o_insnbuf
= can_narrow_instruction (slotbuf
, fmt
, opcode
);
4383 xtensa_insnbuf_to_chars (isa
, o_insnbuf
, contents
+ offset
,
4384 content_length
- offset
);
4392 /* Check if an instruction can be "widened", i.e., changed from a 2-byte
4393 "density" instruction to a standard 3-byte instruction. If it is valid,
4394 return the instruction buffer holding the wide instruction. Otherwise,
4395 return 0. The set of valid widenings are specified by a string table
4396 but require some special case operand checks in some cases. */
4398 static xtensa_insnbuf
4399 can_widen_instruction (xtensa_insnbuf slotbuf
,
4401 xtensa_opcode opcode
)
4403 xtensa_isa isa
= xtensa_default_isa
;
4404 xtensa_format o_fmt
;
4407 static xtensa_insnbuf o_insnbuf
= NULL
;
4408 static xtensa_insnbuf o_slotbuf
= NULL
;
4410 if (o_insnbuf
== NULL
)
4412 o_insnbuf
= xtensa_insnbuf_alloc (isa
);
4413 o_slotbuf
= xtensa_insnbuf_alloc (isa
);
4416 for (opi
= 0; opi
< (sizeof (widenable
)/sizeof (struct string_pair
)); opi
++)
4418 bfd_boolean is_or
= (strcmp ("or", widenable
[opi
].wide
) == 0);
4419 bfd_boolean is_branch
= (strcmp ("beqz", widenable
[opi
].wide
) == 0
4420 || strcmp ("bnez", widenable
[opi
].wide
) == 0);
4422 if (opcode
== xtensa_opcode_lookup (isa
, widenable
[opi
].narrow
))
4424 uint32 value
, newval
;
4425 int i
, operand_count
, o_operand_count
, check_operand_count
;
4426 xtensa_opcode o_opcode
;
4428 /* Address does not matter in this case. We might need to fix it
4429 to handle branches/jumps. */
4430 bfd_vma self_address
= 0;
4432 o_opcode
= xtensa_opcode_lookup (isa
, widenable
[opi
].wide
);
4433 if (o_opcode
== XTENSA_UNDEFINED
)
4435 o_fmt
= get_single_format (o_opcode
);
4436 if (o_fmt
== XTENSA_UNDEFINED
)
4439 if (xtensa_format_length (isa
, fmt
) != 2
4440 || xtensa_format_length (isa
, o_fmt
) != 3)
4443 xtensa_format_encode (isa
, o_fmt
, o_insnbuf
);
4444 operand_count
= xtensa_opcode_num_operands (isa
, opcode
);
4445 o_operand_count
= xtensa_opcode_num_operands (isa
, o_opcode
);
4446 check_operand_count
= o_operand_count
;
4448 if (xtensa_opcode_encode (isa
, o_fmt
, 0, o_slotbuf
, o_opcode
) != 0)
4453 if (xtensa_opcode_num_operands (isa
, o_opcode
) != operand_count
)
4458 uint32 rawval0
, rawval1
;
4460 if (o_operand_count
!= operand_count
+ 1
4461 || xtensa_operand_get_field (isa
, opcode
, 0,
4462 fmt
, 0, slotbuf
, &rawval0
) != 0
4463 || xtensa_operand_get_field (isa
, opcode
, 1,
4464 fmt
, 0, slotbuf
, &rawval1
) != 0
4465 || rawval0
== rawval1
/* it is a nop */)
4469 check_operand_count
--;
4471 for (i
= 0; i
< check_operand_count
; i
++)
4474 if (is_or
&& i
== o_operand_count
- 1)
4476 if (xtensa_operand_get_field (isa
, opcode
, new_i
, fmt
, 0,
4478 || xtensa_operand_decode (isa
, opcode
, new_i
, &value
))
4481 /* PC-relative branches need adjustment, but
4482 the PC-rel operand will always have a relocation. */
4484 if (xtensa_operand_do_reloc (isa
, o_opcode
, i
, &newval
,
4486 || xtensa_operand_encode (isa
, o_opcode
, i
, &newval
)
4487 || xtensa_operand_set_field (isa
, o_opcode
, i
, o_fmt
, 0,
4492 if (xtensa_format_set_slot (isa
, o_fmt
, 0, o_insnbuf
, o_slotbuf
))
4502 /* Attempt to widen an instruction. If the widening is valid, perform
4503 the action in-place directly into the contents and return TRUE. Otherwise,
4504 the return value is FALSE and the contents are not modified. */
4507 widen_instruction (bfd_byte
*contents
,
4508 bfd_size_type content_length
,
4509 bfd_size_type offset
)
4511 xtensa_opcode opcode
;
4512 bfd_size_type insn_len
;
4513 xtensa_isa isa
= xtensa_default_isa
;
4515 xtensa_insnbuf o_insnbuf
;
4517 static xtensa_insnbuf insnbuf
= NULL
;
4518 static xtensa_insnbuf slotbuf
= NULL
;
4520 if (insnbuf
== NULL
)
4522 insnbuf
= xtensa_insnbuf_alloc (isa
);
4523 slotbuf
= xtensa_insnbuf_alloc (isa
);
4526 BFD_ASSERT (offset
< content_length
);
4528 if (content_length
< 2)
4531 /* We will hand-code a few of these for a little while.
4532 These have all been specified in the assembler aleady. */
4533 xtensa_insnbuf_from_chars (isa
, insnbuf
, &contents
[offset
],
4534 content_length
- offset
);
4535 fmt
= xtensa_format_decode (isa
, insnbuf
);
4536 if (xtensa_format_num_slots (isa
, fmt
) != 1)
4539 if (xtensa_format_get_slot (isa
, fmt
, 0, insnbuf
, slotbuf
) != 0)
4542 opcode
= xtensa_opcode_decode (isa
, fmt
, 0, slotbuf
);
4543 if (opcode
== XTENSA_UNDEFINED
)
4545 insn_len
= xtensa_format_length (isa
, fmt
);
4546 if (insn_len
> content_length
)
4549 o_insnbuf
= can_widen_instruction (slotbuf
, fmt
, opcode
);
4552 xtensa_insnbuf_to_chars (isa
, o_insnbuf
, contents
+ offset
,
4553 content_length
- offset
);
4560 /* Code for transforming CALLs at link-time. */
4562 static bfd_reloc_status_type
4563 elf_xtensa_do_asm_simplify (bfd_byte
*contents
,
4565 bfd_vma content_length
,
4566 char **error_message
)
4568 static xtensa_insnbuf insnbuf
= NULL
;
4569 static xtensa_insnbuf slotbuf
= NULL
;
4570 xtensa_format core_format
= XTENSA_UNDEFINED
;
4571 xtensa_opcode opcode
;
4572 xtensa_opcode direct_call_opcode
;
4573 xtensa_isa isa
= xtensa_default_isa
;
4574 bfd_byte
*chbuf
= contents
+ address
;
4577 if (insnbuf
== NULL
)
4579 insnbuf
= xtensa_insnbuf_alloc (isa
);
4580 slotbuf
= xtensa_insnbuf_alloc (isa
);
4583 if (content_length
< address
)
4585 *error_message
= _("Attempt to convert L32R/CALLX to CALL failed");
4586 return bfd_reloc_other
;
4589 opcode
= get_expanded_call_opcode (chbuf
, content_length
- address
, 0);
4590 direct_call_opcode
= swap_callx_for_call_opcode (opcode
);
4591 if (direct_call_opcode
== XTENSA_UNDEFINED
)
4593 *error_message
= _("Attempt to convert L32R/CALLX to CALL failed");
4594 return bfd_reloc_other
;
4597 /* Assemble a NOP ("or a1, a1, a1") into the 0 byte offset. */
4598 core_format
= xtensa_format_lookup (isa
, "x24");
4599 opcode
= xtensa_opcode_lookup (isa
, "or");
4600 xtensa_opcode_encode (isa
, core_format
, 0, slotbuf
, opcode
);
4601 for (opn
= 0; opn
< 3; opn
++)
4604 xtensa_operand_encode (isa
, opcode
, opn
, ®no
);
4605 xtensa_operand_set_field (isa
, opcode
, opn
, core_format
, 0,
4608 xtensa_format_encode (isa
, core_format
, insnbuf
);
4609 xtensa_format_set_slot (isa
, core_format
, 0, insnbuf
, slotbuf
);
4610 xtensa_insnbuf_to_chars (isa
, insnbuf
, chbuf
, content_length
- address
);
4612 /* Assemble a CALL ("callN 0") into the 3 byte offset. */
4613 xtensa_opcode_encode (isa
, core_format
, 0, slotbuf
, direct_call_opcode
);
4614 xtensa_operand_set_field (isa
, opcode
, 0, core_format
, 0, slotbuf
, 0);
4616 xtensa_format_encode (isa
, core_format
, insnbuf
);
4617 xtensa_format_set_slot (isa
, core_format
, 0, insnbuf
, slotbuf
);
4618 xtensa_insnbuf_to_chars (isa
, insnbuf
, chbuf
+ 3,
4619 content_length
- address
- 3);
4621 return bfd_reloc_ok
;
4625 static bfd_reloc_status_type
4626 contract_asm_expansion (bfd_byte
*contents
,
4627 bfd_vma content_length
,
4628 Elf_Internal_Rela
*irel
,
4629 char **error_message
)
4631 bfd_reloc_status_type retval
=
4632 elf_xtensa_do_asm_simplify (contents
, irel
->r_offset
, content_length
,
4635 if (retval
!= bfd_reloc_ok
)
4636 return bfd_reloc_dangerous
;
4638 /* Update the irel->r_offset field so that the right immediate and
4639 the right instruction are modified during the relocation. */
4640 irel
->r_offset
+= 3;
4641 irel
->r_info
= ELF32_R_INFO (ELF32_R_SYM (irel
->r_info
), R_XTENSA_SLOT0_OP
);
4642 return bfd_reloc_ok
;
4646 static xtensa_opcode
4647 swap_callx_for_call_opcode (xtensa_opcode opcode
)
4649 init_call_opcodes ();
4651 if (opcode
== callx0_op
) return call0_op
;
4652 if (opcode
== callx4_op
) return call4_op
;
4653 if (opcode
== callx8_op
) return call8_op
;
4654 if (opcode
== callx12_op
) return call12_op
;
4656 /* Return XTENSA_UNDEFINED if the opcode is not an indirect call. */
4657 return XTENSA_UNDEFINED
;
4661 /* Check if "buf" is pointing to a "L32R aN; CALLX aN" or "CONST16 aN;
4662 CONST16 aN; CALLX aN" sequence, and if so, return the CALLX opcode.
4663 If not, return XTENSA_UNDEFINED. */
4665 #define L32R_TARGET_REG_OPERAND 0
4666 #define CONST16_TARGET_REG_OPERAND 0
4667 #define CALLN_SOURCE_OPERAND 0
4669 static xtensa_opcode
4670 get_expanded_call_opcode (bfd_byte
*buf
, int bufsize
, bfd_boolean
*p_uses_l32r
)
4672 static xtensa_insnbuf insnbuf
= NULL
;
4673 static xtensa_insnbuf slotbuf
= NULL
;
4675 xtensa_opcode opcode
;
4676 xtensa_isa isa
= xtensa_default_isa
;
4677 uint32 regno
, const16_regno
, call_regno
;
4680 if (insnbuf
== NULL
)
4682 insnbuf
= xtensa_insnbuf_alloc (isa
);
4683 slotbuf
= xtensa_insnbuf_alloc (isa
);
4686 xtensa_insnbuf_from_chars (isa
, insnbuf
, buf
, bufsize
);
4687 fmt
= xtensa_format_decode (isa
, insnbuf
);
4688 if (fmt
== XTENSA_UNDEFINED
4689 || xtensa_format_get_slot (isa
, fmt
, 0, insnbuf
, slotbuf
))
4690 return XTENSA_UNDEFINED
;
4692 opcode
= xtensa_opcode_decode (isa
, fmt
, 0, slotbuf
);
4693 if (opcode
== XTENSA_UNDEFINED
)
4694 return XTENSA_UNDEFINED
;
4696 if (opcode
== get_l32r_opcode ())
4699 *p_uses_l32r
= TRUE
;
4700 if (xtensa_operand_get_field (isa
, opcode
, L32R_TARGET_REG_OPERAND
,
4701 fmt
, 0, slotbuf
, ®no
)
4702 || xtensa_operand_decode (isa
, opcode
, L32R_TARGET_REG_OPERAND
,
4704 return XTENSA_UNDEFINED
;
4706 else if (opcode
== get_const16_opcode ())
4709 *p_uses_l32r
= FALSE
;
4710 if (xtensa_operand_get_field (isa
, opcode
, CONST16_TARGET_REG_OPERAND
,
4711 fmt
, 0, slotbuf
, ®no
)
4712 || xtensa_operand_decode (isa
, opcode
, CONST16_TARGET_REG_OPERAND
,
4714 return XTENSA_UNDEFINED
;
4716 /* Check that the next instruction is also CONST16. */
4717 offset
+= xtensa_format_length (isa
, fmt
);
4718 xtensa_insnbuf_from_chars (isa
, insnbuf
, buf
+ offset
, bufsize
- offset
);
4719 fmt
= xtensa_format_decode (isa
, insnbuf
);
4720 if (fmt
== XTENSA_UNDEFINED
4721 || xtensa_format_get_slot (isa
, fmt
, 0, insnbuf
, slotbuf
))
4722 return XTENSA_UNDEFINED
;
4723 opcode
= xtensa_opcode_decode (isa
, fmt
, 0, slotbuf
);
4724 if (opcode
!= get_const16_opcode ())
4725 return XTENSA_UNDEFINED
;
4727 if (xtensa_operand_get_field (isa
, opcode
, CONST16_TARGET_REG_OPERAND
,
4728 fmt
, 0, slotbuf
, &const16_regno
)
4729 || xtensa_operand_decode (isa
, opcode
, CONST16_TARGET_REG_OPERAND
,
4731 || const16_regno
!= regno
)
4732 return XTENSA_UNDEFINED
;
4735 return XTENSA_UNDEFINED
;
4737 /* Next instruction should be an CALLXn with operand 0 == regno. */
4738 offset
+= xtensa_format_length (isa
, fmt
);
4739 xtensa_insnbuf_from_chars (isa
, insnbuf
, buf
+ offset
, bufsize
- offset
);
4740 fmt
= xtensa_format_decode (isa
, insnbuf
);
4741 if (fmt
== XTENSA_UNDEFINED
4742 || xtensa_format_get_slot (isa
, fmt
, 0, insnbuf
, slotbuf
))
4743 return XTENSA_UNDEFINED
;
4744 opcode
= xtensa_opcode_decode (isa
, fmt
, 0, slotbuf
);
4745 if (opcode
== XTENSA_UNDEFINED
4746 || !is_indirect_call_opcode (opcode
))
4747 return XTENSA_UNDEFINED
;
4749 if (xtensa_operand_get_field (isa
, opcode
, CALLN_SOURCE_OPERAND
,
4750 fmt
, 0, slotbuf
, &call_regno
)
4751 || xtensa_operand_decode (isa
, opcode
, CALLN_SOURCE_OPERAND
,
4753 return XTENSA_UNDEFINED
;
4755 if (call_regno
!= regno
)
4756 return XTENSA_UNDEFINED
;
4762 /* Data structures used during relaxation. */
4764 /* r_reloc: relocation values. */
4766 /* Through the relaxation process, we need to keep track of the values
4767 that will result from evaluating relocations. The standard ELF
4768 relocation structure is not sufficient for this purpose because we're
4769 operating on multiple input files at once, so we need to know which
4770 input file a relocation refers to. The r_reloc structure thus
4771 records both the input file (bfd) and ELF relocation.
4773 For efficiency, an r_reloc also contains a "target_offset" field to
4774 cache the target-section-relative offset value that is represented by
4777 The r_reloc also contains a virtual offset that allows multiple
4778 inserted literals to be placed at the same "address" with
4779 different offsets. */
4781 typedef struct r_reloc_struct r_reloc
;
4783 struct r_reloc_struct
4786 Elf_Internal_Rela rela
;
4787 bfd_vma target_offset
;
4788 bfd_vma virtual_offset
;
4792 /* The r_reloc structure is included by value in literal_value, but not
4793 every literal_value has an associated relocation -- some are simple
4794 constants. In such cases, we set all the fields in the r_reloc
4795 struct to zero. The r_reloc_is_const function should be used to
4796 detect this case. */
4799 r_reloc_is_const (const r_reloc
*r_rel
)
4801 return (r_rel
->abfd
== NULL
);
4806 r_reloc_get_target_offset (const r_reloc
*r_rel
)
4808 bfd_vma target_offset
;
4809 unsigned long r_symndx
;
4811 BFD_ASSERT (!r_reloc_is_const (r_rel
));
4812 r_symndx
= ELF32_R_SYM (r_rel
->rela
.r_info
);
4813 target_offset
= get_elf_r_symndx_offset (r_rel
->abfd
, r_symndx
);
4814 return (target_offset
+ r_rel
->rela
.r_addend
);
4818 static struct elf_link_hash_entry
*
4819 r_reloc_get_hash_entry (const r_reloc
*r_rel
)
4821 unsigned long r_symndx
= ELF32_R_SYM (r_rel
->rela
.r_info
);
4822 return get_elf_r_symndx_hash_entry (r_rel
->abfd
, r_symndx
);
4827 r_reloc_get_section (const r_reloc
*r_rel
)
4829 unsigned long r_symndx
= ELF32_R_SYM (r_rel
->rela
.r_info
);
4830 return get_elf_r_symndx_section (r_rel
->abfd
, r_symndx
);
4835 r_reloc_is_defined (const r_reloc
*r_rel
)
4841 sec
= r_reloc_get_section (r_rel
);
4842 if (sec
== bfd_abs_section_ptr
4843 || sec
== bfd_com_section_ptr
4844 || sec
== bfd_und_section_ptr
)
4851 r_reloc_init (r_reloc
*r_rel
,
4853 Elf_Internal_Rela
*irel
,
4855 bfd_size_type content_length
)
4858 reloc_howto_type
*howto
;
4862 r_rel
->rela
= *irel
;
4864 r_rel
->target_offset
= r_reloc_get_target_offset (r_rel
);
4865 r_rel
->virtual_offset
= 0;
4866 r_type
= ELF32_R_TYPE (r_rel
->rela
.r_info
);
4867 howto
= &elf_howto_table
[r_type
];
4868 if (howto
->partial_inplace
)
4870 bfd_vma inplace_val
;
4871 BFD_ASSERT (r_rel
->rela
.r_offset
< content_length
);
4873 inplace_val
= bfd_get_32 (abfd
, &contents
[r_rel
->rela
.r_offset
]);
4874 r_rel
->target_offset
+= inplace_val
;
4878 memset (r_rel
, 0, sizeof (r_reloc
));
4885 print_r_reloc (FILE *fp
, const r_reloc
*r_rel
)
4887 if (r_reloc_is_defined (r_rel
))
4889 asection
*sec
= r_reloc_get_section (r_rel
);
4890 fprintf (fp
, " %s(%s + ", sec
->owner
->filename
, sec
->name
);
4892 else if (r_reloc_get_hash_entry (r_rel
))
4893 fprintf (fp
, " %s + ", r_reloc_get_hash_entry (r_rel
)->root
.root
.string
);
4895 fprintf (fp
, " ?? + ");
4897 fprintf_vma (fp
, r_rel
->target_offset
);
4898 if (r_rel
->virtual_offset
)
4900 fprintf (fp
, " + ");
4901 fprintf_vma (fp
, r_rel
->virtual_offset
);
4910 /* source_reloc: relocations that reference literals. */
4912 /* To determine whether literals can be coalesced, we need to first
4913 record all the relocations that reference the literals. The
4914 source_reloc structure below is used for this purpose. The
4915 source_reloc entries are kept in a per-literal-section array, sorted
4916 by offset within the literal section (i.e., target offset).
4918 The source_sec and r_rel.rela.r_offset fields identify the source of
4919 the relocation. The r_rel field records the relocation value, i.e.,
4920 the offset of the literal being referenced. The opnd field is needed
4921 to determine the range of the immediate field to which the relocation
4922 applies, so we can determine whether another literal with the same
4923 value is within range. The is_null field is true when the relocation
4924 is being removed (e.g., when an L32R is being removed due to a CALLX
4925 that is converted to a direct CALL). */
4927 typedef struct source_reloc_struct source_reloc
;
4929 struct source_reloc_struct
4931 asection
*source_sec
;
4933 xtensa_opcode opcode
;
4935 bfd_boolean is_null
;
4936 bfd_boolean is_abs_literal
;
4941 init_source_reloc (source_reloc
*reloc
,
4942 asection
*source_sec
,
4943 const r_reloc
*r_rel
,
4944 xtensa_opcode opcode
,
4946 bfd_boolean is_abs_literal
)
4948 reloc
->source_sec
= source_sec
;
4949 reloc
->r_rel
= *r_rel
;
4950 reloc
->opcode
= opcode
;
4952 reloc
->is_null
= FALSE
;
4953 reloc
->is_abs_literal
= is_abs_literal
;
4957 /* Find the source_reloc for a particular source offset and relocation
4958 type. Note that the array is sorted by _target_ offset, so this is
4959 just a linear search. */
4961 static source_reloc
*
4962 find_source_reloc (source_reloc
*src_relocs
,
4965 Elf_Internal_Rela
*irel
)
4969 for (i
= 0; i
< src_count
; i
++)
4971 if (src_relocs
[i
].source_sec
== sec
4972 && src_relocs
[i
].r_rel
.rela
.r_offset
== irel
->r_offset
4973 && (ELF32_R_TYPE (src_relocs
[i
].r_rel
.rela
.r_info
)
4974 == ELF32_R_TYPE (irel
->r_info
)))
4975 return &src_relocs
[i
];
4983 source_reloc_compare (const void *ap
, const void *bp
)
4985 const source_reloc
*a
= (const source_reloc
*) ap
;
4986 const source_reloc
*b
= (const source_reloc
*) bp
;
4988 if (a
->r_rel
.target_offset
!= b
->r_rel
.target_offset
)
4989 return (a
->r_rel
.target_offset
- b
->r_rel
.target_offset
);
4991 /* We don't need to sort on these criteria for correctness,
4992 but enforcing a more strict ordering prevents unstable qsort
4993 from behaving differently with different implementations.
4994 Without the code below we get correct but different results
4995 on Solaris 2.7 and 2.8. We would like to always produce the
4996 same results no matter the host. */
4998 if ((!a
->is_null
) - (!b
->is_null
))
4999 return ((!a
->is_null
) - (!b
->is_null
));
5000 return internal_reloc_compare (&a
->r_rel
.rela
, &b
->r_rel
.rela
);
5004 /* Literal values and value hash tables. */
5006 /* Literals with the same value can be coalesced. The literal_value
5007 structure records the value of a literal: the "r_rel" field holds the
5008 information from the relocation on the literal (if there is one) and
5009 the "value" field holds the contents of the literal word itself.
5011 The value_map structure records a literal value along with the
5012 location of a literal holding that value. The value_map hash table
5013 is indexed by the literal value, so that we can quickly check if a
5014 particular literal value has been seen before and is thus a candidate
5017 typedef struct literal_value_struct literal_value
;
5018 typedef struct value_map_struct value_map
;
5019 typedef struct value_map_hash_table_struct value_map_hash_table
;
5021 struct literal_value_struct
5024 unsigned long value
;
5025 bfd_boolean is_abs_literal
;
5028 struct value_map_struct
5030 literal_value val
; /* The literal value. */
5031 r_reloc loc
; /* Location of the literal. */
5035 struct value_map_hash_table_struct
5037 unsigned bucket_count
;
5038 value_map
**buckets
;
5040 bfd_boolean has_last_loc
;
5046 init_literal_value (literal_value
*lit
,
5047 const r_reloc
*r_rel
,
5048 unsigned long value
,
5049 bfd_boolean is_abs_literal
)
5051 lit
->r_rel
= *r_rel
;
5053 lit
->is_abs_literal
= is_abs_literal
;
5058 literal_value_equal (const literal_value
*src1
,
5059 const literal_value
*src2
,
5060 bfd_boolean final_static_link
)
5062 struct elf_link_hash_entry
*h1
, *h2
;
5064 if (r_reloc_is_const (&src1
->r_rel
) != r_reloc_is_const (&src2
->r_rel
))
5067 if (r_reloc_is_const (&src1
->r_rel
))
5068 return (src1
->value
== src2
->value
);
5070 if (ELF32_R_TYPE (src1
->r_rel
.rela
.r_info
)
5071 != ELF32_R_TYPE (src2
->r_rel
.rela
.r_info
))
5074 if (src1
->r_rel
.target_offset
!= src2
->r_rel
.target_offset
)
5077 if (src1
->r_rel
.virtual_offset
!= src2
->r_rel
.virtual_offset
)
5080 if (src1
->value
!= src2
->value
)
5083 /* Now check for the same section (if defined) or the same elf_hash
5084 (if undefined or weak). */
5085 h1
= r_reloc_get_hash_entry (&src1
->r_rel
);
5086 h2
= r_reloc_get_hash_entry (&src2
->r_rel
);
5087 if (r_reloc_is_defined (&src1
->r_rel
)
5088 && (final_static_link
5089 || ((!h1
|| h1
->root
.type
!= bfd_link_hash_defweak
)
5090 && (!h2
|| h2
->root
.type
!= bfd_link_hash_defweak
))))
5092 if (r_reloc_get_section (&src1
->r_rel
)
5093 != r_reloc_get_section (&src2
->r_rel
))
5098 /* Require that the hash entries (i.e., symbols) be identical. */
5099 if (h1
!= h2
|| h1
== 0)
5103 if (src1
->is_abs_literal
!= src2
->is_abs_literal
)
5110 /* Must be power of 2. */
5111 #define INITIAL_HASH_RELOC_BUCKET_COUNT 1024
5113 static value_map_hash_table
*
5114 value_map_hash_table_init (void)
5116 value_map_hash_table
*values
;
5118 values
= (value_map_hash_table
*)
5119 bfd_zmalloc (sizeof (value_map_hash_table
));
5120 values
->bucket_count
= INITIAL_HASH_RELOC_BUCKET_COUNT
;
5122 values
->buckets
= (value_map
**)
5123 bfd_zmalloc (sizeof (value_map
*) * values
->bucket_count
);
5124 if (values
->buckets
== NULL
)
5129 values
->has_last_loc
= FALSE
;
5136 value_map_hash_table_delete (value_map_hash_table
*table
)
5138 free (table
->buckets
);
5144 hash_bfd_vma (bfd_vma val
)
5146 return (val
>> 2) + (val
>> 10);
5151 literal_value_hash (const literal_value
*src
)
5155 hash_val
= hash_bfd_vma (src
->value
);
5156 if (!r_reloc_is_const (&src
->r_rel
))
5160 hash_val
+= hash_bfd_vma (src
->is_abs_literal
* 1000);
5161 hash_val
+= hash_bfd_vma (src
->r_rel
.target_offset
);
5162 hash_val
+= hash_bfd_vma (src
->r_rel
.virtual_offset
);
5164 /* Now check for the same section and the same elf_hash. */
5165 if (r_reloc_is_defined (&src
->r_rel
))
5166 sec_or_hash
= r_reloc_get_section (&src
->r_rel
);
5168 sec_or_hash
= r_reloc_get_hash_entry (&src
->r_rel
);
5169 hash_val
+= hash_bfd_vma ((bfd_vma
) (size_t) sec_or_hash
);
5175 /* Check if the specified literal_value has been seen before. */
5178 value_map_get_cached_value (value_map_hash_table
*map
,
5179 const literal_value
*val
,
5180 bfd_boolean final_static_link
)
5186 idx
= literal_value_hash (val
);
5187 idx
= idx
& (map
->bucket_count
- 1);
5188 bucket
= map
->buckets
[idx
];
5189 for (map_e
= bucket
; map_e
; map_e
= map_e
->next
)
5191 if (literal_value_equal (&map_e
->val
, val
, final_static_link
))
5198 /* Record a new literal value. It is illegal to call this if VALUE
5199 already has an entry here. */
5202 add_value_map (value_map_hash_table
*map
,
5203 const literal_value
*val
,
5205 bfd_boolean final_static_link
)
5207 value_map
**bucket_p
;
5210 value_map
*val_e
= (value_map
*) bfd_zmalloc (sizeof (value_map
));
5213 bfd_set_error (bfd_error_no_memory
);
5217 BFD_ASSERT (!value_map_get_cached_value (map
, val
, final_static_link
));
5221 idx
= literal_value_hash (val
);
5222 idx
= idx
& (map
->bucket_count
- 1);
5223 bucket_p
= &map
->buckets
[idx
];
5225 val_e
->next
= *bucket_p
;
5228 /* FIXME: Consider resizing the hash table if we get too many entries. */
5234 /* Lists of text actions (ta_) for narrowing, widening, longcall
5235 conversion, space fill, code & literal removal, etc. */
5237 /* The following text actions are generated:
5239 "ta_remove_insn" remove an instruction or instructions
5240 "ta_remove_longcall" convert longcall to call
5241 "ta_convert_longcall" convert longcall to nop/call
5242 "ta_narrow_insn" narrow a wide instruction
5243 "ta_widen" widen a narrow instruction
5244 "ta_fill" add fill or remove fill
5245 removed < 0 is a fill; branches to the fill address will be
5246 changed to address + fill size (e.g., address - removed)
5247 removed >= 0 branches to the fill address will stay unchanged
5248 "ta_remove_literal" remove a literal; this action is
5249 indicated when a literal is removed
5251 "ta_add_literal" insert a new literal; this action is
5252 indicated when a literal has been moved.
5253 It may use a virtual_offset because
5254 multiple literals can be placed at the
5257 For each of these text actions, we also record the number of bytes
5258 removed by performing the text action. In the case of a "ta_widen"
5259 or a "ta_fill" that adds space, the removed_bytes will be negative. */
5261 typedef struct text_action_struct text_action
;
5262 typedef struct text_action_list_struct text_action_list
;
5263 typedef enum text_action_enum_t text_action_t
;
5265 enum text_action_enum_t
5268 ta_remove_insn
, /* removed = -size */
5269 ta_remove_longcall
, /* removed = -size */
5270 ta_convert_longcall
, /* removed = 0 */
5271 ta_narrow_insn
, /* removed = -1 */
5272 ta_widen_insn
, /* removed = +1 */
5273 ta_fill
, /* removed = +size */
5279 /* Structure for a text action record. */
5280 struct text_action_struct
5282 text_action_t action
;
5283 asection
*sec
; /* Optional */
5285 bfd_vma virtual_offset
; /* Zero except for adding literals. */
5287 literal_value value
; /* Only valid when adding literals. */
5290 struct removal_by_action_entry_struct
5295 int eq_removed_before_fill
;
5297 typedef struct removal_by_action_entry_struct removal_by_action_entry
;
5299 struct removal_by_action_map_struct
5302 removal_by_action_entry
*entry
;
5304 typedef struct removal_by_action_map_struct removal_by_action_map
;
5307 /* List of all of the actions taken on a text section. */
5308 struct text_action_list_struct
5312 removal_by_action_map map
;
5316 static text_action
*
5317 find_fill_action (text_action_list
*l
, asection
*sec
, bfd_vma offset
)
5321 /* It is not necessary to fill at the end of a section. */
5322 if (sec
->size
== offset
)
5328 splay_tree_node node
= splay_tree_lookup (l
->tree
, (splay_tree_key
)&a
);
5330 return (text_action
*)node
->value
;
5336 compute_removed_action_diff (const text_action
*ta
,
5340 int removable_space
)
5343 int current_removed
= 0;
5346 current_removed
= ta
->removed_bytes
;
5348 BFD_ASSERT (ta
== NULL
|| ta
->offset
== offset
);
5349 BFD_ASSERT (ta
== NULL
|| ta
->action
== ta_fill
);
5351 /* It is not necessary to fill at the end of a section. Clean this up. */
5352 if (sec
->size
== offset
)
5353 new_removed
= removable_space
- 0;
5357 int added
= -removed
- current_removed
;
5358 /* Ignore multiples of the section alignment. */
5359 added
= ((1 << sec
->alignment_power
) - 1) & added
;
5360 new_removed
= (-added
);
5362 /* Modify for removable. */
5363 space
= removable_space
- new_removed
;
5364 new_removed
= (removable_space
5365 - (((1 << sec
->alignment_power
) - 1) & space
));
5367 return (new_removed
- current_removed
);
5372 adjust_fill_action (text_action
*ta
, int fill_diff
)
5374 ta
->removed_bytes
+= fill_diff
;
5379 text_action_compare (splay_tree_key a
, splay_tree_key b
)
5381 text_action
*pa
= (text_action
*)a
;
5382 text_action
*pb
= (text_action
*)b
;
5383 static const int action_priority
[] =
5387 [ta_convert_longcall
] = 2,
5388 [ta_narrow_insn
] = 3,
5389 [ta_remove_insn
] = 4,
5390 [ta_remove_longcall
] = 5,
5391 [ta_remove_literal
] = 6,
5392 [ta_widen_insn
] = 7,
5393 [ta_add_literal
] = 8,
5396 if (pa
->offset
== pb
->offset
)
5398 if (pa
->action
== pb
->action
)
5400 return action_priority
[pa
->action
] - action_priority
[pb
->action
];
5403 return pa
->offset
< pb
->offset
? -1 : 1;
5406 static text_action
*
5407 action_first (text_action_list
*action_list
)
5409 splay_tree_node node
= splay_tree_min (action_list
->tree
);
5410 return node
? (text_action
*)node
->value
: NULL
;
5413 static text_action
*
5414 action_next (text_action_list
*action_list
, text_action
*action
)
5416 splay_tree_node node
= splay_tree_successor (action_list
->tree
,
5417 (splay_tree_key
)action
);
5418 return node
? (text_action
*)node
->value
: NULL
;
5421 /* Add a modification action to the text. For the case of adding or
5422 removing space, modify any current fill and assume that
5423 "unreachable_space" bytes can be freely contracted. Note that a
5424 negative removed value is a fill. */
5427 text_action_add (text_action_list
*l
,
5428 text_action_t action
,
5436 /* It is not necessary to fill at the end of a section. */
5437 if (action
== ta_fill
&& sec
->size
== offset
)
5440 /* It is not necessary to fill 0 bytes. */
5441 if (action
== ta_fill
&& removed
== 0)
5447 if (action
== ta_fill
)
5449 splay_tree_node node
= splay_tree_lookup (l
->tree
, (splay_tree_key
)&a
);
5453 ta
= (text_action
*)node
->value
;
5454 ta
->removed_bytes
+= removed
;
5459 BFD_ASSERT (splay_tree_lookup (l
->tree
, (splay_tree_key
)&a
) == NULL
);
5461 ta
= (text_action
*) bfd_zmalloc (sizeof (text_action
));
5462 ta
->action
= action
;
5464 ta
->offset
= offset
;
5465 ta
->removed_bytes
= removed
;
5466 splay_tree_insert (l
->tree
, (splay_tree_key
)ta
, (splay_tree_value
)ta
);
5472 text_action_add_literal (text_action_list
*l
,
5473 text_action_t action
,
5475 const literal_value
*value
,
5479 asection
*sec
= r_reloc_get_section (loc
);
5480 bfd_vma offset
= loc
->target_offset
;
5481 bfd_vma virtual_offset
= loc
->virtual_offset
;
5483 BFD_ASSERT (action
== ta_add_literal
);
5485 /* Create a new record and fill it up. */
5486 ta
= (text_action
*) bfd_zmalloc (sizeof (text_action
));
5487 ta
->action
= action
;
5489 ta
->offset
= offset
;
5490 ta
->virtual_offset
= virtual_offset
;
5492 ta
->removed_bytes
= removed
;
5494 BFD_ASSERT (splay_tree_lookup (l
->tree
, (splay_tree_key
)ta
) == NULL
);
5495 splay_tree_insert (l
->tree
, (splay_tree_key
)ta
, (splay_tree_value
)ta
);
5500 /* Find the total offset adjustment for the relaxations specified by
5501 text_actions, beginning from a particular starting action. This is
5502 typically used from offset_with_removed_text to search an entire list of
5503 actions, but it may also be called directly when adjusting adjacent offsets
5504 so that each search may begin where the previous one left off. */
5507 removed_by_actions (text_action_list
*action_list
,
5508 text_action
**p_start_action
,
5510 bfd_boolean before_fill
)
5515 r
= *p_start_action
;
5518 splay_tree_node node
= splay_tree_lookup (action_list
->tree
,
5520 BFD_ASSERT (node
!= NULL
&& r
== (text_action
*)node
->value
);
5525 if (r
->offset
> offset
)
5528 if (r
->offset
== offset
5529 && (before_fill
|| r
->action
!= ta_fill
|| r
->removed_bytes
>= 0))
5532 removed
+= r
->removed_bytes
;
5534 r
= action_next (action_list
, r
);
5537 *p_start_action
= r
;
5543 offset_with_removed_text (text_action_list
*action_list
, bfd_vma offset
)
5545 text_action
*r
= action_first (action_list
);
5547 return offset
- removed_by_actions (action_list
, &r
, offset
, FALSE
);
5552 action_list_count (text_action_list
*action_list
)
5554 return action_list
->count
;
5557 typedef struct map_action_fn_context_struct map_action_fn_context
;
5558 struct map_action_fn_context_struct
5561 removal_by_action_map map
;
5562 bfd_boolean eq_complete
;
5566 map_action_fn (splay_tree_node node
, void *p
)
5568 map_action_fn_context
*ctx
= p
;
5569 text_action
*r
= (text_action
*)node
->value
;
5570 removal_by_action_entry
*ientry
= ctx
->map
.entry
+ ctx
->map
.n_entries
;
5572 if (ctx
->map
.n_entries
&& (ientry
- 1)->offset
== r
->offset
)
5578 ++ctx
->map
.n_entries
;
5579 ctx
->eq_complete
= FALSE
;
5580 ientry
->offset
= r
->offset
;
5581 ientry
->eq_removed_before_fill
= ctx
->removed
;
5584 if (!ctx
->eq_complete
)
5586 if (r
->action
!= ta_fill
|| r
->removed_bytes
>= 0)
5588 ientry
->eq_removed
= ctx
->removed
;
5589 ctx
->eq_complete
= TRUE
;
5592 ientry
->eq_removed
= ctx
->removed
+ r
->removed_bytes
;
5595 ctx
->removed
+= r
->removed_bytes
;
5596 ientry
->removed
= ctx
->removed
;
5601 map_removal_by_action (text_action_list
*action_list
)
5603 map_action_fn_context ctx
;
5606 ctx
.map
.n_entries
= 0;
5607 ctx
.map
.entry
= bfd_malloc (action_list_count (action_list
) *
5608 sizeof (removal_by_action_entry
));
5609 ctx
.eq_complete
= FALSE
;
5611 splay_tree_foreach (action_list
->tree
, map_action_fn
, &ctx
);
5612 action_list
->map
= ctx
.map
;
5616 removed_by_actions_map (text_action_list
*action_list
, bfd_vma offset
,
5617 bfd_boolean before_fill
)
5621 if (!action_list
->map
.entry
)
5622 map_removal_by_action (action_list
);
5624 if (!action_list
->map
.n_entries
)
5628 b
= action_list
->map
.n_entries
;
5632 unsigned c
= (a
+ b
) / 2;
5634 if (action_list
->map
.entry
[c
].offset
<= offset
)
5640 if (action_list
->map
.entry
[a
].offset
< offset
)
5642 return action_list
->map
.entry
[a
].removed
;
5644 else if (action_list
->map
.entry
[a
].offset
== offset
)
5646 return before_fill
?
5647 action_list
->map
.entry
[a
].eq_removed_before_fill
:
5648 action_list
->map
.entry
[a
].eq_removed
;
5657 offset_with_removed_text_map (text_action_list
*action_list
, bfd_vma offset
)
5659 int removed
= removed_by_actions_map (action_list
, offset
, FALSE
);
5660 return offset
- removed
;
5664 /* The find_insn_action routine will only find non-fill actions. */
5666 static text_action
*
5667 find_insn_action (text_action_list
*action_list
, bfd_vma offset
)
5669 static const text_action_t action
[] =
5671 ta_convert_longcall
,
5681 for (i
= 0; i
< sizeof (action
) / sizeof (*action
); ++i
)
5683 splay_tree_node node
;
5685 a
.action
= action
[i
];
5686 node
= splay_tree_lookup (action_list
->tree
, (splay_tree_key
)&a
);
5688 return (text_action
*)node
->value
;
5697 print_action (FILE *fp
, text_action
*r
)
5699 const char *t
= "unknown";
5702 case ta_remove_insn
:
5703 t
= "remove_insn"; break;
5704 case ta_remove_longcall
:
5705 t
= "remove_longcall"; break;
5706 case ta_convert_longcall
:
5707 t
= "convert_longcall"; break;
5708 case ta_narrow_insn
:
5709 t
= "narrow_insn"; break;
5711 t
= "widen_insn"; break;
5716 case ta_remove_literal
:
5717 t
= "remove_literal"; break;
5718 case ta_add_literal
:
5719 t
= "add_literal"; break;
5722 fprintf (fp
, "%s: %s[0x%lx] \"%s\" %d\n",
5723 r
->sec
->owner
->filename
,
5724 r
->sec
->name
, (unsigned long) r
->offset
, t
, r
->removed_bytes
);
5728 print_action_list_fn (splay_tree_node node
, void *p
)
5730 text_action
*r
= (text_action
*)node
->value
;
5732 print_action (p
, r
);
5737 print_action_list (FILE *fp
, text_action_list
*action_list
)
5739 fprintf (fp
, "Text Action\n");
5740 splay_tree_foreach (action_list
->tree
, print_action_list_fn
, fp
);
5746 /* Lists of literals being coalesced or removed. */
5748 /* In the usual case, the literal identified by "from" is being
5749 coalesced with another literal identified by "to". If the literal is
5750 unused and is being removed altogether, "to.abfd" will be NULL.
5751 The removed_literal entries are kept on a per-section list, sorted
5752 by the "from" offset field. */
5754 typedef struct removed_literal_struct removed_literal
;
5755 typedef struct removed_literal_map_entry_struct removed_literal_map_entry
;
5756 typedef struct removed_literal_list_struct removed_literal_list
;
5758 struct removed_literal_struct
5762 removed_literal
*next
;
5765 struct removed_literal_map_entry_struct
5768 removed_literal
*literal
;
5771 struct removed_literal_list_struct
5773 removed_literal
*head
;
5774 removed_literal
*tail
;
5777 removed_literal_map_entry
*map
;
5781 /* Record that the literal at "from" is being removed. If "to" is not
5782 NULL, the "from" literal is being coalesced with the "to" literal. */
5785 add_removed_literal (removed_literal_list
*removed_list
,
5786 const r_reloc
*from
,
5789 removed_literal
*r
, *new_r
, *next_r
;
5791 new_r
= (removed_literal
*) bfd_zmalloc (sizeof (removed_literal
));
5793 new_r
->from
= *from
;
5797 new_r
->to
.abfd
= NULL
;
5800 r
= removed_list
->head
;
5803 removed_list
->head
= new_r
;
5804 removed_list
->tail
= new_r
;
5806 /* Special check for common case of append. */
5807 else if (removed_list
->tail
->from
.target_offset
< from
->target_offset
)
5809 removed_list
->tail
->next
= new_r
;
5810 removed_list
->tail
= new_r
;
5814 while (r
->from
.target_offset
< from
->target_offset
&& r
->next
)
5820 new_r
->next
= next_r
;
5822 removed_list
->tail
= new_r
;
5827 map_removed_literal (removed_literal_list
*removed_list
)
5831 removed_literal_map_entry
*map
= NULL
;
5832 removed_literal
*r
= removed_list
->head
;
5834 for (i
= 0; r
; ++i
, r
= r
->next
)
5838 n_map
= (n_map
* 2) + 2;
5839 map
= bfd_realloc (map
, n_map
* sizeof (*map
));
5841 map
[i
].addr
= r
->from
.target_offset
;
5844 removed_list
->map
= map
;
5845 removed_list
->n_map
= i
;
5849 removed_literal_compare (const void *a
, const void *b
)
5851 const removed_literal_map_entry
*pa
= a
;
5852 const removed_literal_map_entry
*pb
= b
;
5854 if (pa
->addr
== pb
->addr
)
5857 return pa
->addr
< pb
->addr
? -1 : 1;
5860 /* Check if the list of removed literals contains an entry for the
5861 given address. Return the entry if found. */
5863 static removed_literal
*
5864 find_removed_literal (removed_literal_list
*removed_list
, bfd_vma addr
)
5866 removed_literal_map_entry
*p
;
5867 removed_literal
*r
= NULL
;
5869 if (removed_list
->map
== NULL
)
5870 map_removed_literal (removed_list
);
5872 p
= bsearch (&addr
, removed_list
->map
, removed_list
->n_map
,
5873 sizeof (*removed_list
->map
), removed_literal_compare
);
5876 while (p
!= removed_list
->map
&& (p
- 1)->addr
== addr
)
5887 print_removed_literals (FILE *fp
, removed_literal_list
*removed_list
)
5890 r
= removed_list
->head
;
5892 fprintf (fp
, "Removed Literals\n");
5893 for (; r
!= NULL
; r
= r
->next
)
5895 print_r_reloc (fp
, &r
->from
);
5896 fprintf (fp
, " => ");
5897 if (r
->to
.abfd
== NULL
)
5898 fprintf (fp
, "REMOVED");
5900 print_r_reloc (fp
, &r
->to
);
5908 /* Per-section data for relaxation. */
5910 typedef struct reloc_bfd_fix_struct reloc_bfd_fix
;
5912 struct xtensa_relax_info_struct
5914 bfd_boolean is_relaxable_literal_section
;
5915 bfd_boolean is_relaxable_asm_section
;
5916 int visited
; /* Number of times visited. */
5918 source_reloc
*src_relocs
; /* Array[src_count]. */
5920 int src_next
; /* Next src_relocs entry to assign. */
5922 removed_literal_list removed_list
;
5923 text_action_list action_list
;
5925 reloc_bfd_fix
*fix_list
;
5926 reloc_bfd_fix
*fix_array
;
5927 unsigned fix_array_count
;
5929 /* Support for expanding the reloc array that is stored
5930 in the section structure. If the relocations have been
5931 reallocated, the newly allocated relocations will be referenced
5932 here along with the actual size allocated. The relocation
5933 count will always be found in the section structure. */
5934 Elf_Internal_Rela
*allocated_relocs
;
5935 unsigned relocs_count
;
5936 unsigned allocated_relocs_count
;
5939 struct elf_xtensa_section_data
5941 struct bfd_elf_section_data elf
;
5942 xtensa_relax_info relax_info
;
5947 elf_xtensa_new_section_hook (bfd
*abfd
, asection
*sec
)
5949 if (!sec
->used_by_bfd
)
5951 struct elf_xtensa_section_data
*sdata
;
5952 bfd_size_type amt
= sizeof (*sdata
);
5954 sdata
= bfd_zalloc (abfd
, amt
);
5957 sec
->used_by_bfd
= sdata
;
5960 return _bfd_elf_new_section_hook (abfd
, sec
);
5964 static xtensa_relax_info
*
5965 get_xtensa_relax_info (asection
*sec
)
5967 struct elf_xtensa_section_data
*section_data
;
5969 /* No info available if no section or if it is an output section. */
5970 if (!sec
|| sec
== sec
->output_section
)
5973 section_data
= (struct elf_xtensa_section_data
*) elf_section_data (sec
);
5974 return §ion_data
->relax_info
;
5979 init_xtensa_relax_info (asection
*sec
)
5981 xtensa_relax_info
*relax_info
= get_xtensa_relax_info (sec
);
5983 relax_info
->is_relaxable_literal_section
= FALSE
;
5984 relax_info
->is_relaxable_asm_section
= FALSE
;
5985 relax_info
->visited
= 0;
5987 relax_info
->src_relocs
= NULL
;
5988 relax_info
->src_count
= 0;
5989 relax_info
->src_next
= 0;
5991 relax_info
->removed_list
.head
= NULL
;
5992 relax_info
->removed_list
.tail
= NULL
;
5994 relax_info
->action_list
.tree
= splay_tree_new (text_action_compare
,
5996 relax_info
->action_list
.map
.n_entries
= 0;
5997 relax_info
->action_list
.map
.entry
= NULL
;
5999 relax_info
->fix_list
= NULL
;
6000 relax_info
->fix_array
= NULL
;
6001 relax_info
->fix_array_count
= 0;
6003 relax_info
->allocated_relocs
= NULL
;
6004 relax_info
->relocs_count
= 0;
6005 relax_info
->allocated_relocs_count
= 0;
6009 /* Coalescing literals may require a relocation to refer to a section in
6010 a different input file, but the standard relocation information
6011 cannot express that. Instead, the reloc_bfd_fix structures are used
6012 to "fix" the relocations that refer to sections in other input files.
6013 These structures are kept on per-section lists. The "src_type" field
6014 records the relocation type in case there are multiple relocations on
6015 the same location. FIXME: This is ugly; an alternative might be to
6016 add new symbols with the "owner" field to some other input file. */
6018 struct reloc_bfd_fix_struct
6022 unsigned src_type
; /* Relocation type. */
6024 asection
*target_sec
;
6025 bfd_vma target_offset
;
6026 bfd_boolean translated
;
6028 reloc_bfd_fix
*next
;
6032 static reloc_bfd_fix
*
6033 reloc_bfd_fix_init (asection
*src_sec
,
6036 asection
*target_sec
,
6037 bfd_vma target_offset
,
6038 bfd_boolean translated
)
6042 fix
= (reloc_bfd_fix
*) bfd_malloc (sizeof (reloc_bfd_fix
));
6043 fix
->src_sec
= src_sec
;
6044 fix
->src_offset
= src_offset
;
6045 fix
->src_type
= src_type
;
6046 fix
->target_sec
= target_sec
;
6047 fix
->target_offset
= target_offset
;
6048 fix
->translated
= translated
;
6055 add_fix (asection
*src_sec
, reloc_bfd_fix
*fix
)
6057 xtensa_relax_info
*relax_info
;
6059 relax_info
= get_xtensa_relax_info (src_sec
);
6060 fix
->next
= relax_info
->fix_list
;
6061 relax_info
->fix_list
= fix
;
6066 fix_compare (const void *ap
, const void *bp
)
6068 const reloc_bfd_fix
*a
= (const reloc_bfd_fix
*) ap
;
6069 const reloc_bfd_fix
*b
= (const reloc_bfd_fix
*) bp
;
6071 if (a
->src_offset
!= b
->src_offset
)
6072 return (a
->src_offset
- b
->src_offset
);
6073 return (a
->src_type
- b
->src_type
);
6078 cache_fix_array (asection
*sec
)
6080 unsigned i
, count
= 0;
6082 xtensa_relax_info
*relax_info
= get_xtensa_relax_info (sec
);
6084 if (relax_info
== NULL
)
6086 if (relax_info
->fix_list
== NULL
)
6089 for (r
= relax_info
->fix_list
; r
!= NULL
; r
= r
->next
)
6092 relax_info
->fix_array
=
6093 (reloc_bfd_fix
*) bfd_malloc (sizeof (reloc_bfd_fix
) * count
);
6094 relax_info
->fix_array_count
= count
;
6096 r
= relax_info
->fix_list
;
6097 for (i
= 0; i
< count
; i
++, r
= r
->next
)
6099 relax_info
->fix_array
[count
- 1 - i
] = *r
;
6100 relax_info
->fix_array
[count
- 1 - i
].next
= NULL
;
6103 qsort (relax_info
->fix_array
, relax_info
->fix_array_count
,
6104 sizeof (reloc_bfd_fix
), fix_compare
);
6108 static reloc_bfd_fix
*
6109 get_bfd_fix (asection
*sec
, bfd_vma offset
, unsigned type
)
6111 xtensa_relax_info
*relax_info
= get_xtensa_relax_info (sec
);
6115 if (relax_info
== NULL
)
6117 if (relax_info
->fix_list
== NULL
)
6120 if (relax_info
->fix_array
== NULL
)
6121 cache_fix_array (sec
);
6123 key
.src_offset
= offset
;
6124 key
.src_type
= type
;
6125 rv
= bsearch (&key
, relax_info
->fix_array
, relax_info
->fix_array_count
,
6126 sizeof (reloc_bfd_fix
), fix_compare
);
6131 /* Section caching. */
6133 typedef struct section_cache_struct section_cache_t
;
6135 struct section_cache_struct
6139 bfd_byte
*contents
; /* Cache of the section contents. */
6140 bfd_size_type content_length
;
6142 property_table_entry
*ptbl
; /* Cache of the section property table. */
6145 Elf_Internal_Rela
*relocs
; /* Cache of the section relocations. */
6146 unsigned reloc_count
;
6151 init_section_cache (section_cache_t
*sec_cache
)
6153 memset (sec_cache
, 0, sizeof (*sec_cache
));
6158 free_section_cache (section_cache_t
*sec_cache
)
6162 release_contents (sec_cache
->sec
, sec_cache
->contents
);
6163 release_internal_relocs (sec_cache
->sec
, sec_cache
->relocs
);
6164 if (sec_cache
->ptbl
)
6165 free (sec_cache
->ptbl
);
6171 section_cache_section (section_cache_t
*sec_cache
,
6173 struct bfd_link_info
*link_info
)
6176 property_table_entry
*prop_table
= NULL
;
6178 bfd_byte
*contents
= NULL
;
6179 Elf_Internal_Rela
*internal_relocs
= NULL
;
6180 bfd_size_type sec_size
;
6184 if (sec
== sec_cache
->sec
)
6188 sec_size
= bfd_get_section_limit (abfd
, sec
);
6190 /* Get the contents. */
6191 contents
= retrieve_contents (abfd
, sec
, link_info
->keep_memory
);
6192 if (contents
== NULL
&& sec_size
!= 0)
6195 /* Get the relocations. */
6196 internal_relocs
= retrieve_internal_relocs (abfd
, sec
,
6197 link_info
->keep_memory
);
6199 /* Get the entry table. */
6200 ptblsize
= xtensa_read_table_entries (abfd
, sec
, &prop_table
,
6201 XTENSA_PROP_SEC_NAME
, FALSE
);
6205 /* Fill in the new section cache. */
6206 free_section_cache (sec_cache
);
6207 init_section_cache (sec_cache
);
6209 sec_cache
->sec
= sec
;
6210 sec_cache
->contents
= contents
;
6211 sec_cache
->content_length
= sec_size
;
6212 sec_cache
->relocs
= internal_relocs
;
6213 sec_cache
->reloc_count
= sec
->reloc_count
;
6214 sec_cache
->pte_count
= ptblsize
;
6215 sec_cache
->ptbl
= prop_table
;
6220 release_contents (sec
, contents
);
6221 release_internal_relocs (sec
, internal_relocs
);
6228 /* Extended basic blocks. */
6230 /* An ebb_struct represents an Extended Basic Block. Within this
6231 range, we guarantee that all instructions are decodable, the
6232 property table entries are contiguous, and no property table
6233 specifies a segment that cannot have instructions moved. This
6234 structure contains caches of the contents, property table and
6235 relocations for the specified section for easy use. The range is
6236 specified by ranges of indices for the byte offset, property table
6237 offsets and relocation offsets. These must be consistent. */
6239 typedef struct ebb_struct ebb_t
;
6245 bfd_byte
*contents
; /* Cache of the section contents. */
6246 bfd_size_type content_length
;
6248 property_table_entry
*ptbl
; /* Cache of the section property table. */
6251 Elf_Internal_Rela
*relocs
; /* Cache of the section relocations. */
6252 unsigned reloc_count
;
6254 bfd_vma start_offset
; /* Offset in section. */
6255 unsigned start_ptbl_idx
; /* Offset in the property table. */
6256 unsigned start_reloc_idx
; /* Offset in the relocations. */
6259 unsigned end_ptbl_idx
;
6260 unsigned end_reloc_idx
;
6262 bfd_boolean ends_section
; /* Is this the last ebb in a section? */
6264 /* The unreachable property table at the end of this set of blocks;
6265 NULL if the end is not an unreachable block. */
6266 property_table_entry
*ends_unreachable
;
6270 enum ebb_target_enum
6273 EBB_DESIRE_TGT_ALIGN
,
6274 EBB_REQUIRE_TGT_ALIGN
,
6275 EBB_REQUIRE_LOOP_ALIGN
,
6280 /* proposed_action_struct is similar to the text_action_struct except
6281 that is represents a potential transformation, not one that will
6282 occur. We build a list of these for an extended basic block
6283 and use them to compute the actual actions desired. We must be
6284 careful that the entire set of actual actions we perform do not
6285 break any relocations that would fit if the actions were not
6288 typedef struct proposed_action_struct proposed_action
;
6290 struct proposed_action_struct
6292 enum ebb_target_enum align_type
; /* for the target alignment */
6293 bfd_vma alignment_pow
;
6294 text_action_t action
;
6297 bfd_boolean do_action
; /* If false, then we will not perform the action. */
6301 /* The ebb_constraint_struct keeps a set of proposed actions for an
6302 extended basic block. */
6304 typedef struct ebb_constraint_struct ebb_constraint
;
6306 struct ebb_constraint_struct
6309 bfd_boolean start_movable
;
6311 /* Bytes of extra space at the beginning if movable. */
6312 int start_extra_space
;
6314 enum ebb_target_enum start_align
;
6316 bfd_boolean end_movable
;
6318 /* Bytes of extra space at the end if movable. */
6319 int end_extra_space
;
6321 unsigned action_count
;
6322 unsigned action_allocated
;
6324 /* Array of proposed actions. */
6325 proposed_action
*actions
;
6327 /* Action alignments -- one for each proposed action. */
6328 enum ebb_target_enum
*action_aligns
;
6333 init_ebb_constraint (ebb_constraint
*c
)
6335 memset (c
, 0, sizeof (ebb_constraint
));
6340 free_ebb_constraint (ebb_constraint
*c
)
6348 init_ebb (ebb_t
*ebb
,
6351 bfd_size_type content_length
,
6352 property_table_entry
*prop_table
,
6354 Elf_Internal_Rela
*internal_relocs
,
6355 unsigned reloc_count
)
6357 memset (ebb
, 0, sizeof (ebb_t
));
6359 ebb
->contents
= contents
;
6360 ebb
->content_length
= content_length
;
6361 ebb
->ptbl
= prop_table
;
6362 ebb
->pte_count
= ptblsize
;
6363 ebb
->relocs
= internal_relocs
;
6364 ebb
->reloc_count
= reloc_count
;
6365 ebb
->start_offset
= 0;
6366 ebb
->end_offset
= ebb
->content_length
- 1;
6367 ebb
->start_ptbl_idx
= 0;
6368 ebb
->end_ptbl_idx
= ptblsize
;
6369 ebb
->start_reloc_idx
= 0;
6370 ebb
->end_reloc_idx
= reloc_count
;
6374 /* Extend the ebb to all decodable contiguous sections. The algorithm
6375 for building a basic block around an instruction is to push it
6376 forward until we hit the end of a section, an unreachable block or
6377 a block that cannot be transformed. Then we push it backwards
6378 searching for similar conditions. */
6380 static bfd_boolean
extend_ebb_bounds_forward (ebb_t
*);
6381 static bfd_boolean
extend_ebb_bounds_backward (ebb_t
*);
6382 static bfd_size_type insn_block_decodable_len
6383 (bfd_byte
*, bfd_size_type
, bfd_vma
, bfd_size_type
);
6386 extend_ebb_bounds (ebb_t
*ebb
)
6388 if (!extend_ebb_bounds_forward (ebb
))
6390 if (!extend_ebb_bounds_backward (ebb
))
6397 extend_ebb_bounds_forward (ebb_t
*ebb
)
6399 property_table_entry
*the_entry
, *new_entry
;
6401 the_entry
= &ebb
->ptbl
[ebb
->end_ptbl_idx
];
6403 /* Stop when (1) we cannot decode an instruction, (2) we are at
6404 the end of the property tables, (3) we hit a non-contiguous property
6405 table entry, (4) we hit a NO_TRANSFORM region. */
6410 bfd_size_type insn_block_len
;
6412 entry_end
= the_entry
->address
- ebb
->sec
->vma
+ the_entry
->size
;
6414 insn_block_decodable_len (ebb
->contents
, ebb
->content_length
,
6416 entry_end
- ebb
->end_offset
);
6417 if (insn_block_len
!= (entry_end
- ebb
->end_offset
))
6420 /* xgettext:c-format */
6421 (_("%B(%A+%#Lx): could not decode instruction; "
6422 "possible configuration mismatch"),
6423 ebb
->sec
->owner
, ebb
->sec
, ebb
->end_offset
+ insn_block_len
);
6426 ebb
->end_offset
+= insn_block_len
;
6428 if (ebb
->end_offset
== ebb
->sec
->size
)
6429 ebb
->ends_section
= TRUE
;
6431 /* Update the reloc counter. */
6432 while (ebb
->end_reloc_idx
+ 1 < ebb
->reloc_count
6433 && (ebb
->relocs
[ebb
->end_reloc_idx
+ 1].r_offset
6436 ebb
->end_reloc_idx
++;
6439 if (ebb
->end_ptbl_idx
+ 1 == ebb
->pte_count
)
6442 new_entry
= &ebb
->ptbl
[ebb
->end_ptbl_idx
+ 1];
6443 if (((new_entry
->flags
& XTENSA_PROP_INSN
) == 0)
6444 || ((new_entry
->flags
& XTENSA_PROP_NO_TRANSFORM
) != 0)
6445 || ((the_entry
->flags
& XTENSA_PROP_ALIGN
) != 0))
6448 if (the_entry
->address
+ the_entry
->size
!= new_entry
->address
)
6451 the_entry
= new_entry
;
6452 ebb
->end_ptbl_idx
++;
6455 /* Quick check for an unreachable or end of file just at the end. */
6456 if (ebb
->end_ptbl_idx
+ 1 == ebb
->pte_count
)
6458 if (ebb
->end_offset
== ebb
->content_length
)
6459 ebb
->ends_section
= TRUE
;
6463 new_entry
= &ebb
->ptbl
[ebb
->end_ptbl_idx
+ 1];
6464 if ((new_entry
->flags
& XTENSA_PROP_UNREACHABLE
) != 0
6465 && the_entry
->address
+ the_entry
->size
== new_entry
->address
)
6466 ebb
->ends_unreachable
= new_entry
;
6469 /* Any other ending requires exact alignment. */
6475 extend_ebb_bounds_backward (ebb_t
*ebb
)
6477 property_table_entry
*the_entry
, *new_entry
;
6479 the_entry
= &ebb
->ptbl
[ebb
->start_ptbl_idx
];
6481 /* Stop when (1) we cannot decode the instructions in the current entry.
6482 (2) we are at the beginning of the property tables, (3) we hit a
6483 non-contiguous property table entry, (4) we hit a NO_TRANSFORM region. */
6487 bfd_vma block_begin
;
6488 bfd_size_type insn_block_len
;
6490 block_begin
= the_entry
->address
- ebb
->sec
->vma
;
6492 insn_block_decodable_len (ebb
->contents
, ebb
->content_length
,
6494 ebb
->start_offset
- block_begin
);
6495 if (insn_block_len
!= ebb
->start_offset
- block_begin
)
6498 /* xgettext:c-format */
6499 (_("%B(%A+%#Lx): could not decode instruction; "
6500 "possible configuration mismatch"),
6501 ebb
->sec
->owner
, ebb
->sec
, ebb
->end_offset
+ insn_block_len
);
6504 ebb
->start_offset
-= insn_block_len
;
6506 /* Update the reloc counter. */
6507 while (ebb
->start_reloc_idx
> 0
6508 && (ebb
->relocs
[ebb
->start_reloc_idx
- 1].r_offset
6509 >= ebb
->start_offset
))
6511 ebb
->start_reloc_idx
--;
6514 if (ebb
->start_ptbl_idx
== 0)
6517 new_entry
= &ebb
->ptbl
[ebb
->start_ptbl_idx
- 1];
6518 if ((new_entry
->flags
& XTENSA_PROP_INSN
) == 0
6519 || ((new_entry
->flags
& XTENSA_PROP_NO_TRANSFORM
) != 0)
6520 || ((new_entry
->flags
& XTENSA_PROP_ALIGN
) != 0))
6522 if (new_entry
->address
+ new_entry
->size
!= the_entry
->address
)
6525 the_entry
= new_entry
;
6526 ebb
->start_ptbl_idx
--;
6532 static bfd_size_type
6533 insn_block_decodable_len (bfd_byte
*contents
,
6534 bfd_size_type content_len
,
6535 bfd_vma block_offset
,
6536 bfd_size_type block_len
)
6538 bfd_vma offset
= block_offset
;
6540 while (offset
< block_offset
+ block_len
)
6542 bfd_size_type insn_len
= 0;
6544 insn_len
= insn_decode_len (contents
, content_len
, offset
);
6546 return (offset
- block_offset
);
6549 return (offset
- block_offset
);
6554 ebb_propose_action (ebb_constraint
*c
,
6555 enum ebb_target_enum align_type
,
6556 bfd_vma alignment_pow
,
6557 text_action_t action
,
6560 bfd_boolean do_action
)
6562 proposed_action
*act
;
6564 if (c
->action_allocated
<= c
->action_count
)
6566 unsigned new_allocated
, i
;
6567 proposed_action
*new_actions
;
6569 new_allocated
= (c
->action_count
+ 2) * 2;
6570 new_actions
= (proposed_action
*)
6571 bfd_zmalloc (sizeof (proposed_action
) * new_allocated
);
6573 for (i
= 0; i
< c
->action_count
; i
++)
6574 new_actions
[i
] = c
->actions
[i
];
6577 c
->actions
= new_actions
;
6578 c
->action_allocated
= new_allocated
;
6581 act
= &c
->actions
[c
->action_count
];
6582 act
->align_type
= align_type
;
6583 act
->alignment_pow
= alignment_pow
;
6584 act
->action
= action
;
6585 act
->offset
= offset
;
6586 act
->removed_bytes
= removed_bytes
;
6587 act
->do_action
= do_action
;
6593 /* Access to internal relocations, section contents and symbols. */
6595 /* During relaxation, we need to modify relocations, section contents,
6596 and symbol definitions, and we need to keep the original values from
6597 being reloaded from the input files, i.e., we need to "pin" the
6598 modified values in memory. We also want to continue to observe the
6599 setting of the "keep-memory" flag. The following functions wrap the
6600 standard BFD functions to take care of this for us. */
6602 static Elf_Internal_Rela
*
6603 retrieve_internal_relocs (bfd
*abfd
, asection
*sec
, bfd_boolean keep_memory
)
6605 Elf_Internal_Rela
*internal_relocs
;
6607 if ((sec
->flags
& SEC_LINKER_CREATED
) != 0)
6610 internal_relocs
= elf_section_data (sec
)->relocs
;
6611 if (internal_relocs
== NULL
)
6612 internal_relocs
= (_bfd_elf_link_read_relocs
6613 (abfd
, sec
, NULL
, NULL
, keep_memory
));
6614 return internal_relocs
;
6619 pin_internal_relocs (asection
*sec
, Elf_Internal_Rela
*internal_relocs
)
6621 elf_section_data (sec
)->relocs
= internal_relocs
;
6626 release_internal_relocs (asection
*sec
, Elf_Internal_Rela
*internal_relocs
)
6629 && elf_section_data (sec
)->relocs
!= internal_relocs
)
6630 free (internal_relocs
);
6635 retrieve_contents (bfd
*abfd
, asection
*sec
, bfd_boolean keep_memory
)
6638 bfd_size_type sec_size
;
6640 sec_size
= bfd_get_section_limit (abfd
, sec
);
6641 contents
= elf_section_data (sec
)->this_hdr
.contents
;
6643 if (contents
== NULL
&& sec_size
!= 0)
6645 if (!bfd_malloc_and_get_section (abfd
, sec
, &contents
))
6652 elf_section_data (sec
)->this_hdr
.contents
= contents
;
6659 pin_contents (asection
*sec
, bfd_byte
*contents
)
6661 elf_section_data (sec
)->this_hdr
.contents
= contents
;
6666 release_contents (asection
*sec
, bfd_byte
*contents
)
6668 if (contents
&& elf_section_data (sec
)->this_hdr
.contents
!= contents
)
6673 static Elf_Internal_Sym
*
6674 retrieve_local_syms (bfd
*input_bfd
)
6676 Elf_Internal_Shdr
*symtab_hdr
;
6677 Elf_Internal_Sym
*isymbuf
;
6680 symtab_hdr
= &elf_tdata (input_bfd
)->symtab_hdr
;
6681 locsymcount
= symtab_hdr
->sh_info
;
6683 isymbuf
= (Elf_Internal_Sym
*) symtab_hdr
->contents
;
6684 if (isymbuf
== NULL
&& locsymcount
!= 0)
6685 isymbuf
= bfd_elf_get_elf_syms (input_bfd
, symtab_hdr
, locsymcount
, 0,
6688 /* Save the symbols for this input file so they won't be read again. */
6689 if (isymbuf
&& isymbuf
!= (Elf_Internal_Sym
*) symtab_hdr
->contents
)
6690 symtab_hdr
->contents
= (unsigned char *) isymbuf
;
6696 /* Code for link-time relaxation. */
6698 /* Initialization for relaxation: */
6699 static bfd_boolean
analyze_relocations (struct bfd_link_info
*);
6700 static bfd_boolean find_relaxable_sections
6701 (bfd
*, asection
*, struct bfd_link_info
*, bfd_boolean
*);
6702 static bfd_boolean collect_source_relocs
6703 (bfd
*, asection
*, struct bfd_link_info
*);
6704 static bfd_boolean is_resolvable_asm_expansion
6705 (bfd
*, asection
*, bfd_byte
*, Elf_Internal_Rela
*, struct bfd_link_info
*,
6707 static Elf_Internal_Rela
*find_associated_l32r_irel
6708 (bfd
*, asection
*, bfd_byte
*, Elf_Internal_Rela
*, Elf_Internal_Rela
*);
6709 static bfd_boolean compute_text_actions
6710 (bfd
*, asection
*, struct bfd_link_info
*);
6711 static bfd_boolean
compute_ebb_proposed_actions (ebb_constraint
*);
6712 static bfd_boolean
compute_ebb_actions (ebb_constraint
*);
6713 typedef struct reloc_range_list_struct reloc_range_list
;
6714 static bfd_boolean check_section_ebb_pcrels_fit
6715 (bfd
*, asection
*, bfd_byte
*, Elf_Internal_Rela
*,
6716 reloc_range_list
*, const ebb_constraint
*,
6717 const xtensa_opcode
*);
6718 static bfd_boolean
check_section_ebb_reduces (const ebb_constraint
*);
6719 static void text_action_add_proposed
6720 (text_action_list
*, const ebb_constraint
*, asection
*);
6721 static int compute_fill_extra_space (property_table_entry
*);
6724 static bfd_boolean compute_removed_literals
6725 (bfd
*, asection
*, struct bfd_link_info
*, value_map_hash_table
*);
6726 static Elf_Internal_Rela
*get_irel_at_offset
6727 (asection
*, Elf_Internal_Rela
*, bfd_vma
);
6728 static bfd_boolean is_removable_literal
6729 (const source_reloc
*, int, const source_reloc
*, int, asection
*,
6730 property_table_entry
*, int);
6731 static bfd_boolean remove_dead_literal
6732 (bfd
*, asection
*, struct bfd_link_info
*, Elf_Internal_Rela
*,
6733 Elf_Internal_Rela
*, source_reloc
*, property_table_entry
*, int);
6734 static bfd_boolean identify_literal_placement
6735 (bfd
*, asection
*, bfd_byte
*, struct bfd_link_info
*,
6736 value_map_hash_table
*, bfd_boolean
*, Elf_Internal_Rela
*, int,
6737 source_reloc
*, property_table_entry
*, int, section_cache_t
*,
6739 static bfd_boolean
relocations_reach (source_reloc
*, int, const r_reloc
*);
6740 static bfd_boolean coalesce_shared_literal
6741 (asection
*, source_reloc
*, property_table_entry
*, int, value_map
*);
6742 static bfd_boolean move_shared_literal
6743 (asection
*, struct bfd_link_info
*, source_reloc
*, property_table_entry
*,
6744 int, const r_reloc
*, const literal_value
*, section_cache_t
*);
6747 static bfd_boolean
relax_section (bfd
*, asection
*, struct bfd_link_info
*);
6748 static bfd_boolean
translate_section_fixes (asection
*);
6749 static bfd_boolean
translate_reloc_bfd_fix (reloc_bfd_fix
*);
6750 static asection
*translate_reloc (const r_reloc
*, r_reloc
*, asection
*);
6751 static void shrink_dynamic_reloc_sections
6752 (struct bfd_link_info
*, bfd
*, asection
*, Elf_Internal_Rela
*);
6753 static bfd_boolean move_literal
6754 (bfd
*, struct bfd_link_info
*, asection
*, bfd_vma
, bfd_byte
*,
6755 xtensa_relax_info
*, Elf_Internal_Rela
**, const literal_value
*);
6756 static bfd_boolean relax_property_section
6757 (bfd
*, asection
*, struct bfd_link_info
*);
6760 static bfd_boolean
relax_section_symbols (bfd
*, asection
*);
6764 elf_xtensa_relax_section (bfd
*abfd
,
6766 struct bfd_link_info
*link_info
,
6769 static value_map_hash_table
*values
= NULL
;
6770 static bfd_boolean relocations_analyzed
= FALSE
;
6771 xtensa_relax_info
*relax_info
;
6773 if (!relocations_analyzed
)
6775 /* Do some overall initialization for relaxation. */
6776 values
= value_map_hash_table_init ();
6779 relaxing_section
= TRUE
;
6780 if (!analyze_relocations (link_info
))
6782 relocations_analyzed
= TRUE
;
6786 /* Don't mess with linker-created sections. */
6787 if ((sec
->flags
& SEC_LINKER_CREATED
) != 0)
6790 relax_info
= get_xtensa_relax_info (sec
);
6791 BFD_ASSERT (relax_info
!= NULL
);
6793 switch (relax_info
->visited
)
6796 /* Note: It would be nice to fold this pass into
6797 analyze_relocations, but it is important for this step that the
6798 sections be examined in link order. */
6799 if (!compute_removed_literals (abfd
, sec
, link_info
, values
))
6806 value_map_hash_table_delete (values
);
6808 if (!relax_section (abfd
, sec
, link_info
))
6814 if (!relax_section_symbols (abfd
, sec
))
6819 relax_info
->visited
++;
6824 /* Initialization for relaxation. */
6826 /* This function is called once at the start of relaxation. It scans
6827 all the input sections and marks the ones that are relaxable (i.e.,
6828 literal sections with L32R relocations against them), and then
6829 collects source_reloc information for all the relocations against
6830 those relaxable sections. During this process, it also detects
6831 longcalls, i.e., calls relaxed by the assembler into indirect
6832 calls, that can be optimized back into direct calls. Within each
6833 extended basic block (ebb) containing an optimized longcall, it
6834 computes a set of "text actions" that can be performed to remove
6835 the L32R associated with the longcall while optionally preserving
6836 branch target alignments. */
6839 analyze_relocations (struct bfd_link_info
*link_info
)
6843 bfd_boolean is_relaxable
= FALSE
;
6845 /* Initialize the per-section relaxation info. */
6846 for (abfd
= link_info
->input_bfds
; abfd
!= NULL
; abfd
= abfd
->link
.next
)
6847 for (sec
= abfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
6849 init_xtensa_relax_info (sec
);
6852 /* Mark relaxable sections (and count relocations against each one). */
6853 for (abfd
= link_info
->input_bfds
; abfd
!= NULL
; abfd
= abfd
->link
.next
)
6854 for (sec
= abfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
6856 if (!find_relaxable_sections (abfd
, sec
, link_info
, &is_relaxable
))
6860 /* Bail out if there are no relaxable sections. */
6864 /* Allocate space for source_relocs. */
6865 for (abfd
= link_info
->input_bfds
; abfd
!= NULL
; abfd
= abfd
->link
.next
)
6866 for (sec
= abfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
6868 xtensa_relax_info
*relax_info
;
6870 relax_info
= get_xtensa_relax_info (sec
);
6871 if (relax_info
->is_relaxable_literal_section
6872 || relax_info
->is_relaxable_asm_section
)
6874 relax_info
->src_relocs
= (source_reloc
*)
6875 bfd_malloc (relax_info
->src_count
* sizeof (source_reloc
));
6878 relax_info
->src_count
= 0;
6881 /* Collect info on relocations against each relaxable section. */
6882 for (abfd
= link_info
->input_bfds
; abfd
!= NULL
; abfd
= abfd
->link
.next
)
6883 for (sec
= abfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
6885 if (!collect_source_relocs (abfd
, sec
, link_info
))
6889 /* Compute the text actions. */
6890 for (abfd
= link_info
->input_bfds
; abfd
!= NULL
; abfd
= abfd
->link
.next
)
6891 for (sec
= abfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
6893 if (!compute_text_actions (abfd
, sec
, link_info
))
6901 /* Find all the sections that might be relaxed. The motivation for
6902 this pass is that collect_source_relocs() needs to record _all_ the
6903 relocations that target each relaxable section. That is expensive
6904 and unnecessary unless the target section is actually going to be
6905 relaxed. This pass identifies all such sections by checking if
6906 they have L32Rs pointing to them. In the process, the total number
6907 of relocations targeting each section is also counted so that we
6908 know how much space to allocate for source_relocs against each
6909 relaxable literal section. */
6912 find_relaxable_sections (bfd
*abfd
,
6914 struct bfd_link_info
*link_info
,
6915 bfd_boolean
*is_relaxable_p
)
6917 Elf_Internal_Rela
*internal_relocs
;
6919 bfd_boolean ok
= TRUE
;
6921 xtensa_relax_info
*source_relax_info
;
6922 bfd_boolean is_l32r_reloc
;
6924 internal_relocs
= retrieve_internal_relocs (abfd
, sec
,
6925 link_info
->keep_memory
);
6926 if (internal_relocs
== NULL
)
6929 contents
= retrieve_contents (abfd
, sec
, link_info
->keep_memory
);
6930 if (contents
== NULL
&& sec
->size
!= 0)
6936 source_relax_info
= get_xtensa_relax_info (sec
);
6937 for (i
= 0; i
< sec
->reloc_count
; i
++)
6939 Elf_Internal_Rela
*irel
= &internal_relocs
[i
];
6941 asection
*target_sec
;
6942 xtensa_relax_info
*target_relax_info
;
6944 /* If this section has not already been marked as "relaxable", and
6945 if it contains any ASM_EXPAND relocations (marking expanded
6946 longcalls) that can be optimized into direct calls, then mark
6947 the section as "relaxable". */
6948 if (source_relax_info
6949 && !source_relax_info
->is_relaxable_asm_section
6950 && ELF32_R_TYPE (irel
->r_info
) == R_XTENSA_ASM_EXPAND
)
6952 bfd_boolean is_reachable
= FALSE
;
6953 if (is_resolvable_asm_expansion (abfd
, sec
, contents
, irel
,
6954 link_info
, &is_reachable
)
6957 source_relax_info
->is_relaxable_asm_section
= TRUE
;
6958 *is_relaxable_p
= TRUE
;
6962 r_reloc_init (&r_rel
, abfd
, irel
, contents
,
6963 bfd_get_section_limit (abfd
, sec
));
6965 target_sec
= r_reloc_get_section (&r_rel
);
6966 target_relax_info
= get_xtensa_relax_info (target_sec
);
6967 if (!target_relax_info
)
6970 /* Count PC-relative operand relocations against the target section.
6971 Note: The conditions tested here must match the conditions under
6972 which init_source_reloc is called in collect_source_relocs(). */
6973 is_l32r_reloc
= FALSE
;
6974 if (is_operand_relocation (ELF32_R_TYPE (irel
->r_info
)))
6976 xtensa_opcode opcode
=
6977 get_relocation_opcode (abfd
, sec
, contents
, irel
);
6978 if (opcode
!= XTENSA_UNDEFINED
)
6980 is_l32r_reloc
= (opcode
== get_l32r_opcode ());
6981 if (!is_alt_relocation (ELF32_R_TYPE (irel
->r_info
))
6983 target_relax_info
->src_count
++;
6987 if (is_l32r_reloc
&& r_reloc_is_defined (&r_rel
))
6989 /* Mark the target section as relaxable. */
6990 target_relax_info
->is_relaxable_literal_section
= TRUE
;
6991 *is_relaxable_p
= TRUE
;
6996 release_contents (sec
, contents
);
6997 release_internal_relocs (sec
, internal_relocs
);
7002 /* Record _all_ the relocations that point to relaxable sections, and
7003 get rid of ASM_EXPAND relocs by either converting them to
7004 ASM_SIMPLIFY or by removing them. */
7007 collect_source_relocs (bfd
*abfd
,
7009 struct bfd_link_info
*link_info
)
7011 Elf_Internal_Rela
*internal_relocs
;
7013 bfd_boolean ok
= TRUE
;
7015 bfd_size_type sec_size
;
7017 internal_relocs
= retrieve_internal_relocs (abfd
, sec
,
7018 link_info
->keep_memory
);
7019 if (internal_relocs
== NULL
)
7022 sec_size
= bfd_get_section_limit (abfd
, sec
);
7023 contents
= retrieve_contents (abfd
, sec
, link_info
->keep_memory
);
7024 if (contents
== NULL
&& sec_size
!= 0)
7030 /* Record relocations against relaxable literal sections. */
7031 for (i
= 0; i
< sec
->reloc_count
; i
++)
7033 Elf_Internal_Rela
*irel
= &internal_relocs
[i
];
7035 asection
*target_sec
;
7036 xtensa_relax_info
*target_relax_info
;
7038 r_reloc_init (&r_rel
, abfd
, irel
, contents
, sec_size
);
7040 target_sec
= r_reloc_get_section (&r_rel
);
7041 target_relax_info
= get_xtensa_relax_info (target_sec
);
7043 if (target_relax_info
7044 && (target_relax_info
->is_relaxable_literal_section
7045 || target_relax_info
->is_relaxable_asm_section
))
7047 xtensa_opcode opcode
= XTENSA_UNDEFINED
;
7049 bfd_boolean is_abs_literal
= FALSE
;
7051 if (is_alt_relocation (ELF32_R_TYPE (irel
->r_info
)))
7053 /* None of the current alternate relocs are PC-relative,
7054 and only PC-relative relocs matter here. However, we
7055 still need to record the opcode for literal
7057 opcode
= get_relocation_opcode (abfd
, sec
, contents
, irel
);
7058 if (opcode
== get_l32r_opcode ())
7060 is_abs_literal
= TRUE
;
7064 opcode
= XTENSA_UNDEFINED
;
7066 else if (is_operand_relocation (ELF32_R_TYPE (irel
->r_info
)))
7068 opcode
= get_relocation_opcode (abfd
, sec
, contents
, irel
);
7069 opnd
= get_relocation_opnd (opcode
, ELF32_R_TYPE (irel
->r_info
));
7072 if (opcode
!= XTENSA_UNDEFINED
)
7074 int src_next
= target_relax_info
->src_next
++;
7075 source_reloc
*s_reloc
= &target_relax_info
->src_relocs
[src_next
];
7077 init_source_reloc (s_reloc
, sec
, &r_rel
, opcode
, opnd
,
7083 /* Now get rid of ASM_EXPAND relocations. At this point, the
7084 src_relocs array for the target literal section may still be
7085 incomplete, but it must at least contain the entries for the L32R
7086 relocations associated with ASM_EXPANDs because they were just
7087 added in the preceding loop over the relocations. */
7089 for (i
= 0; i
< sec
->reloc_count
; i
++)
7091 Elf_Internal_Rela
*irel
= &internal_relocs
[i
];
7092 bfd_boolean is_reachable
;
7094 if (!is_resolvable_asm_expansion (abfd
, sec
, contents
, irel
, link_info
,
7100 Elf_Internal_Rela
*l32r_irel
;
7102 asection
*target_sec
;
7103 xtensa_relax_info
*target_relax_info
;
7105 /* Mark the source_reloc for the L32R so that it will be
7106 removed in compute_removed_literals(), along with the
7107 associated literal. */
7108 l32r_irel
= find_associated_l32r_irel (abfd
, sec
, contents
,
7109 irel
, internal_relocs
);
7110 if (l32r_irel
== NULL
)
7113 r_reloc_init (&r_rel
, abfd
, l32r_irel
, contents
, sec_size
);
7115 target_sec
= r_reloc_get_section (&r_rel
);
7116 target_relax_info
= get_xtensa_relax_info (target_sec
);
7118 if (target_relax_info
7119 && (target_relax_info
->is_relaxable_literal_section
7120 || target_relax_info
->is_relaxable_asm_section
))
7122 source_reloc
*s_reloc
;
7124 /* Search the source_relocs for the entry corresponding to
7125 the l32r_irel. Note: The src_relocs array is not yet
7126 sorted, but it wouldn't matter anyway because we're
7127 searching by source offset instead of target offset. */
7128 s_reloc
= find_source_reloc (target_relax_info
->src_relocs
,
7129 target_relax_info
->src_next
,
7131 BFD_ASSERT (s_reloc
);
7132 s_reloc
->is_null
= TRUE
;
7135 /* Convert this reloc to ASM_SIMPLIFY. */
7136 irel
->r_info
= ELF32_R_INFO (ELF32_R_SYM (irel
->r_info
),
7137 R_XTENSA_ASM_SIMPLIFY
);
7138 l32r_irel
->r_info
= ELF32_R_INFO (0, R_XTENSA_NONE
);
7140 pin_internal_relocs (sec
, internal_relocs
);
7144 /* It is resolvable but doesn't reach. We resolve now
7145 by eliminating the relocation -- the call will remain
7146 expanded into L32R/CALLX. */
7147 irel
->r_info
= ELF32_R_INFO (0, R_XTENSA_NONE
);
7148 pin_internal_relocs (sec
, internal_relocs
);
7153 release_contents (sec
, contents
);
7154 release_internal_relocs (sec
, internal_relocs
);
7159 /* Return TRUE if the asm expansion can be resolved. Generally it can
7160 be resolved on a final link or when a partial link locates it in the
7161 same section as the target. Set "is_reachable" flag if the target of
7162 the call is within the range of a direct call, given the current VMA
7163 for this section and the target section. */
7166 is_resolvable_asm_expansion (bfd
*abfd
,
7169 Elf_Internal_Rela
*irel
,
7170 struct bfd_link_info
*link_info
,
7171 bfd_boolean
*is_reachable_p
)
7173 asection
*target_sec
;
7174 bfd_vma target_offset
;
7176 xtensa_opcode opcode
, direct_call_opcode
;
7177 bfd_vma self_address
;
7178 bfd_vma dest_address
;
7179 bfd_boolean uses_l32r
;
7180 bfd_size_type sec_size
;
7182 *is_reachable_p
= FALSE
;
7184 if (contents
== NULL
)
7187 if (ELF32_R_TYPE (irel
->r_info
) != R_XTENSA_ASM_EXPAND
)
7190 sec_size
= bfd_get_section_limit (abfd
, sec
);
7191 opcode
= get_expanded_call_opcode (contents
+ irel
->r_offset
,
7192 sec_size
- irel
->r_offset
, &uses_l32r
);
7193 /* Optimization of longcalls that use CONST16 is not yet implemented. */
7197 direct_call_opcode
= swap_callx_for_call_opcode (opcode
);
7198 if (direct_call_opcode
== XTENSA_UNDEFINED
)
7201 /* Check and see that the target resolves. */
7202 r_reloc_init (&r_rel
, abfd
, irel
, contents
, sec_size
);
7203 if (!r_reloc_is_defined (&r_rel
))
7206 target_sec
= r_reloc_get_section (&r_rel
);
7207 target_offset
= r_rel
.target_offset
;
7209 /* If the target is in a shared library, then it doesn't reach. This
7210 isn't supposed to come up because the compiler should never generate
7211 non-PIC calls on systems that use shared libraries, but the linker
7212 shouldn't crash regardless. */
7213 if (!target_sec
->output_section
)
7216 /* For relocatable sections, we can only simplify when the output
7217 section of the target is the same as the output section of the
7219 if (bfd_link_relocatable (link_info
)
7220 && (target_sec
->output_section
!= sec
->output_section
7221 || is_reloc_sym_weak (abfd
, irel
)))
7224 if (target_sec
->output_section
!= sec
->output_section
)
7226 /* If the two sections are sufficiently far away that relaxation
7227 might take the call out of range, we can't simplify. For
7228 example, a positive displacement call into another memory
7229 could get moved to a lower address due to literal removal,
7230 but the destination won't move, and so the displacment might
7233 If the displacement is negative, assume the destination could
7234 move as far back as the start of the output section. The
7235 self_address will be at least as far into the output section
7236 as it is prior to relaxation.
7238 If the displacement is postive, assume the destination will be in
7239 it's pre-relaxed location (because relaxation only makes sections
7240 smaller). The self_address could go all the way to the beginning
7241 of the output section. */
7243 dest_address
= target_sec
->output_section
->vma
;
7244 self_address
= sec
->output_section
->vma
;
7246 if (sec
->output_section
->vma
> target_sec
->output_section
->vma
)
7247 self_address
+= sec
->output_offset
+ irel
->r_offset
+ 3;
7249 dest_address
+= bfd_get_section_limit (abfd
, target_sec
->output_section
);
7250 /* Call targets should be four-byte aligned. */
7251 dest_address
= (dest_address
+ 3) & ~3;
7256 self_address
= (sec
->output_section
->vma
7257 + sec
->output_offset
+ irel
->r_offset
+ 3);
7258 dest_address
= (target_sec
->output_section
->vma
7259 + target_sec
->output_offset
+ target_offset
);
7262 *is_reachable_p
= pcrel_reloc_fits (direct_call_opcode
, 0,
7263 self_address
, dest_address
);
7265 if ((self_address
>> CALL_SEGMENT_BITS
) !=
7266 (dest_address
>> CALL_SEGMENT_BITS
))
7273 static Elf_Internal_Rela
*
7274 find_associated_l32r_irel (bfd
*abfd
,
7277 Elf_Internal_Rela
*other_irel
,
7278 Elf_Internal_Rela
*internal_relocs
)
7282 for (i
= 0; i
< sec
->reloc_count
; i
++)
7284 Elf_Internal_Rela
*irel
= &internal_relocs
[i
];
7286 if (irel
== other_irel
)
7288 if (irel
->r_offset
!= other_irel
->r_offset
)
7290 if (is_l32r_relocation (abfd
, sec
, contents
, irel
))
7298 static xtensa_opcode
*
7299 build_reloc_opcodes (bfd
*abfd
,
7302 Elf_Internal_Rela
*internal_relocs
)
7305 xtensa_opcode
*reloc_opcodes
=
7306 (xtensa_opcode
*) bfd_malloc (sizeof (xtensa_opcode
) * sec
->reloc_count
);
7307 for (i
= 0; i
< sec
->reloc_count
; i
++)
7309 Elf_Internal_Rela
*irel
= &internal_relocs
[i
];
7310 reloc_opcodes
[i
] = get_relocation_opcode (abfd
, sec
, contents
, irel
);
7312 return reloc_opcodes
;
7315 struct reloc_range_struct
7318 bfd_boolean add
; /* TRUE if start of a range, FALSE otherwise. */
7319 /* Original irel index in the array of relocations for a section. */
7320 unsigned irel_index
;
7322 typedef struct reloc_range_struct reloc_range
;
7324 typedef struct reloc_range_list_entry_struct reloc_range_list_entry
;
7325 struct reloc_range_list_entry_struct
7327 reloc_range_list_entry
*next
;
7328 reloc_range_list_entry
*prev
;
7329 Elf_Internal_Rela
*irel
;
7330 xtensa_opcode opcode
;
7334 struct reloc_range_list_struct
7336 /* The rest of the structure is only meaningful when ok is TRUE. */
7339 unsigned n_range
; /* Number of range markers. */
7340 reloc_range
*range
; /* Sorted range markers. */
7342 unsigned first
; /* Index of a first range element in the list. */
7343 unsigned last
; /* One past index of a last range element in the list. */
7345 unsigned n_list
; /* Number of list elements. */
7346 reloc_range_list_entry
*reloc
; /* */
7347 reloc_range_list_entry list_root
;
7351 reloc_range_compare (const void *a
, const void *b
)
7353 const reloc_range
*ra
= a
;
7354 const reloc_range
*rb
= b
;
7356 if (ra
->addr
!= rb
->addr
)
7357 return ra
->addr
< rb
->addr
? -1 : 1;
7358 if (ra
->add
!= rb
->add
)
7359 return ra
->add
? -1 : 1;
7364 build_reloc_ranges (bfd
*abfd
, asection
*sec
,
7366 Elf_Internal_Rela
*internal_relocs
,
7367 xtensa_opcode
*reloc_opcodes
,
7368 reloc_range_list
*list
)
7373 reloc_range
*ranges
= NULL
;
7374 reloc_range_list_entry
*reloc
=
7375 bfd_malloc (sec
->reloc_count
* sizeof (*reloc
));
7377 memset (list
, 0, sizeof (*list
));
7380 for (i
= 0; i
< sec
->reloc_count
; i
++)
7382 Elf_Internal_Rela
*irel
= &internal_relocs
[i
];
7383 int r_type
= ELF32_R_TYPE (irel
->r_info
);
7384 reloc_howto_type
*howto
= &elf_howto_table
[r_type
];
7387 if (r_type
== R_XTENSA_ASM_SIMPLIFY
7388 || r_type
== R_XTENSA_32_PCREL
7389 || !howto
->pc_relative
)
7392 r_reloc_init (&r_rel
, abfd
, irel
, contents
,
7393 bfd_get_section_limit (abfd
, sec
));
7395 if (r_reloc_get_section (&r_rel
) != sec
)
7400 max_n
= (max_n
+ 2) * 2;
7401 ranges
= bfd_realloc (ranges
, max_n
* sizeof (*ranges
));
7404 ranges
[n
].addr
= irel
->r_offset
;
7405 ranges
[n
+ 1].addr
= r_rel
.target_offset
;
7407 ranges
[n
].add
= ranges
[n
].addr
< ranges
[n
+ 1].addr
;
7408 ranges
[n
+ 1].add
= !ranges
[n
].add
;
7410 ranges
[n
].irel_index
= i
;
7411 ranges
[n
+ 1].irel_index
= i
;
7415 reloc
[i
].irel
= irel
;
7417 /* Every relocation won't possibly be checked in the optimized version of
7418 check_section_ebb_pcrels_fit, so this needs to be done here. */
7419 if (is_alt_relocation (ELF32_R_TYPE (irel
->r_info
)))
7421 /* None of the current alternate relocs are PC-relative,
7422 and only PC-relative relocs matter here. */
7426 xtensa_opcode opcode
;
7430 opcode
= reloc_opcodes
[i
];
7432 opcode
= get_relocation_opcode (abfd
, sec
, contents
, irel
);
7434 if (opcode
== XTENSA_UNDEFINED
)
7440 opnum
= get_relocation_opnd (opcode
, ELF32_R_TYPE (irel
->r_info
));
7441 if (opnum
== XTENSA_UNDEFINED
)
7447 /* Record relocation opcode and opnum as we've calculated them
7448 anyway and they won't change. */
7449 reloc
[i
].opcode
= opcode
;
7450 reloc
[i
].opnum
= opnum
;
7456 ranges
= bfd_realloc (ranges
, n
* sizeof (*ranges
));
7457 qsort (ranges
, n
, sizeof (*ranges
), reloc_range_compare
);
7460 list
->range
= ranges
;
7461 list
->reloc
= reloc
;
7462 list
->list_root
.prev
= &list
->list_root
;
7463 list
->list_root
.next
= &list
->list_root
;
7472 static void reloc_range_list_append (reloc_range_list
*list
,
7473 unsigned irel_index
)
7475 reloc_range_list_entry
*entry
= list
->reloc
+ irel_index
;
7477 entry
->prev
= list
->list_root
.prev
;
7478 entry
->next
= &list
->list_root
;
7479 entry
->prev
->next
= entry
;
7480 entry
->next
->prev
= entry
;
7484 static void reloc_range_list_remove (reloc_range_list
*list
,
7485 unsigned irel_index
)
7487 reloc_range_list_entry
*entry
= list
->reloc
+ irel_index
;
7489 entry
->next
->prev
= entry
->prev
;
7490 entry
->prev
->next
= entry
->next
;
7494 /* Update relocation list object so that it lists all relocations that cross
7495 [first; last] range. Range bounds should not decrease with successive
7497 static void reloc_range_list_update_range (reloc_range_list
*list
,
7498 bfd_vma first
, bfd_vma last
)
7500 /* This should not happen: EBBs are iterated from lower addresses to higher.
7501 But even if that happens there's no need to break: just flush current list
7502 and start from scratch. */
7503 if ((list
->last
> 0 && list
->range
[list
->last
- 1].addr
> last
) ||
7504 (list
->first
> 0 && list
->range
[list
->first
- 1].addr
>= first
))
7509 list
->list_root
.next
= &list
->list_root
;
7510 list
->list_root
.prev
= &list
->list_root
;
7511 fprintf (stderr
, "%s: move backwards requested\n", __func__
);
7514 for (; list
->last
< list
->n_range
&&
7515 list
->range
[list
->last
].addr
<= last
; ++list
->last
)
7516 if (list
->range
[list
->last
].add
)
7517 reloc_range_list_append (list
, list
->range
[list
->last
].irel_index
);
7519 for (; list
->first
< list
->n_range
&&
7520 list
->range
[list
->first
].addr
< first
; ++list
->first
)
7521 if (!list
->range
[list
->first
].add
)
7522 reloc_range_list_remove (list
, list
->range
[list
->first
].irel_index
);
7525 static void free_reloc_range_list (reloc_range_list
*list
)
7531 /* The compute_text_actions function will build a list of potential
7532 transformation actions for code in the extended basic block of each
7533 longcall that is optimized to a direct call. From this list we
7534 generate a set of actions to actually perform that optimizes for
7535 space and, if not using size_opt, maintains branch target
7538 These actions to be performed are placed on a per-section list.
7539 The actual changes are performed by relax_section() in the second
7543 compute_text_actions (bfd
*abfd
,
7545 struct bfd_link_info
*link_info
)
7547 xtensa_opcode
*reloc_opcodes
= NULL
;
7548 xtensa_relax_info
*relax_info
;
7550 Elf_Internal_Rela
*internal_relocs
;
7551 bfd_boolean ok
= TRUE
;
7553 property_table_entry
*prop_table
= 0;
7555 bfd_size_type sec_size
;
7556 reloc_range_list relevant_relocs
;
7558 relax_info
= get_xtensa_relax_info (sec
);
7559 BFD_ASSERT (relax_info
);
7560 BFD_ASSERT (relax_info
->src_next
== relax_info
->src_count
);
7562 /* Do nothing if the section contains no optimized longcalls. */
7563 if (!relax_info
->is_relaxable_asm_section
)
7566 internal_relocs
= retrieve_internal_relocs (abfd
, sec
,
7567 link_info
->keep_memory
);
7569 if (internal_relocs
)
7570 qsort (internal_relocs
, sec
->reloc_count
, sizeof (Elf_Internal_Rela
),
7571 internal_reloc_compare
);
7573 sec_size
= bfd_get_section_limit (abfd
, sec
);
7574 contents
= retrieve_contents (abfd
, sec
, link_info
->keep_memory
);
7575 if (contents
== NULL
&& sec_size
!= 0)
7581 ptblsize
= xtensa_read_table_entries (abfd
, sec
, &prop_table
,
7582 XTENSA_PROP_SEC_NAME
, FALSE
);
7589 /* Precompute the opcode for each relocation. */
7590 reloc_opcodes
= build_reloc_opcodes (abfd
, sec
, contents
, internal_relocs
);
7592 build_reloc_ranges (abfd
, sec
, contents
, internal_relocs
, reloc_opcodes
,
7595 for (i
= 0; i
< sec
->reloc_count
; i
++)
7597 Elf_Internal_Rela
*irel
= &internal_relocs
[i
];
7599 property_table_entry
*the_entry
;
7602 ebb_constraint ebb_table
;
7603 bfd_size_type simplify_size
;
7605 if (irel
&& ELF32_R_TYPE (irel
->r_info
) != R_XTENSA_ASM_SIMPLIFY
)
7607 r_offset
= irel
->r_offset
;
7609 simplify_size
= get_asm_simplify_size (contents
, sec_size
, r_offset
);
7610 if (simplify_size
== 0)
7613 /* xgettext:c-format */
7614 (_("%B(%A+%#Lx): could not decode instruction for "
7615 "XTENSA_ASM_SIMPLIFY relocation; "
7616 "possible configuration mismatch"),
7617 sec
->owner
, sec
, r_offset
);
7621 /* If the instruction table is not around, then don't do this
7623 the_entry
= elf_xtensa_find_property_entry (prop_table
, ptblsize
,
7624 sec
->vma
+ irel
->r_offset
);
7625 if (the_entry
== NULL
|| XTENSA_NO_NOP_REMOVAL
)
7627 text_action_add (&relax_info
->action_list
,
7628 ta_convert_longcall
, sec
, r_offset
,
7633 /* If the next longcall happens to be at the same address as an
7634 unreachable section of size 0, then skip forward. */
7635 ptbl_idx
= the_entry
- prop_table
;
7636 while ((the_entry
->flags
& XTENSA_PROP_UNREACHABLE
)
7637 && the_entry
->size
== 0
7638 && ptbl_idx
+ 1 < ptblsize
7639 && (prop_table
[ptbl_idx
+ 1].address
7640 == prop_table
[ptbl_idx
].address
))
7646 if (the_entry
->flags
& XTENSA_PROP_NO_TRANSFORM
)
7647 /* NO_REORDER is OK */
7650 init_ebb_constraint (&ebb_table
);
7651 ebb
= &ebb_table
.ebb
;
7652 init_ebb (ebb
, sec
, contents
, sec_size
, prop_table
, ptblsize
,
7653 internal_relocs
, sec
->reloc_count
);
7654 ebb
->start_offset
= r_offset
+ simplify_size
;
7655 ebb
->end_offset
= r_offset
+ simplify_size
;
7656 ebb
->start_ptbl_idx
= ptbl_idx
;
7657 ebb
->end_ptbl_idx
= ptbl_idx
;
7658 ebb
->start_reloc_idx
= i
;
7659 ebb
->end_reloc_idx
= i
;
7661 if (!extend_ebb_bounds (ebb
)
7662 || !compute_ebb_proposed_actions (&ebb_table
)
7663 || !compute_ebb_actions (&ebb_table
)
7664 || !check_section_ebb_pcrels_fit (abfd
, sec
, contents
,
7667 &ebb_table
, reloc_opcodes
)
7668 || !check_section_ebb_reduces (&ebb_table
))
7670 /* If anything goes wrong or we get unlucky and something does
7671 not fit, with our plan because of expansion between
7672 critical branches, just convert to a NOP. */
7674 text_action_add (&relax_info
->action_list
,
7675 ta_convert_longcall
, sec
, r_offset
, 0);
7676 i
= ebb_table
.ebb
.end_reloc_idx
;
7677 free_ebb_constraint (&ebb_table
);
7681 text_action_add_proposed (&relax_info
->action_list
, &ebb_table
, sec
);
7683 /* Update the index so we do not go looking at the relocations
7684 we have already processed. */
7685 i
= ebb_table
.ebb
.end_reloc_idx
;
7686 free_ebb_constraint (&ebb_table
);
7689 free_reloc_range_list (&relevant_relocs
);
7692 if (action_list_count (&relax_info
->action_list
))
7693 print_action_list (stderr
, &relax_info
->action_list
);
7697 release_contents (sec
, contents
);
7698 release_internal_relocs (sec
, internal_relocs
);
7702 free (reloc_opcodes
);
7708 /* Do not widen an instruction if it is preceeded by a
7709 loop opcode. It might cause misalignment. */
7712 prev_instr_is_a_loop (bfd_byte
*contents
,
7713 bfd_size_type content_length
,
7714 bfd_size_type offset
)
7716 xtensa_opcode prev_opcode
;
7720 prev_opcode
= insn_decode_opcode (contents
, content_length
, offset
-3, 0);
7721 return (xtensa_opcode_is_loop (xtensa_default_isa
, prev_opcode
) == 1);
7725 /* Find all of the possible actions for an extended basic block. */
7728 compute_ebb_proposed_actions (ebb_constraint
*ebb_table
)
7730 const ebb_t
*ebb
= &ebb_table
->ebb
;
7731 unsigned rel_idx
= ebb
->start_reloc_idx
;
7732 property_table_entry
*entry
, *start_entry
, *end_entry
;
7734 xtensa_isa isa
= xtensa_default_isa
;
7736 static xtensa_insnbuf insnbuf
= NULL
;
7737 static xtensa_insnbuf slotbuf
= NULL
;
7739 if (insnbuf
== NULL
)
7741 insnbuf
= xtensa_insnbuf_alloc (isa
);
7742 slotbuf
= xtensa_insnbuf_alloc (isa
);
7745 start_entry
= &ebb
->ptbl
[ebb
->start_ptbl_idx
];
7746 end_entry
= &ebb
->ptbl
[ebb
->end_ptbl_idx
];
7748 for (entry
= start_entry
; entry
<= end_entry
; entry
++)
7750 bfd_vma start_offset
, end_offset
;
7751 bfd_size_type insn_len
;
7753 start_offset
= entry
->address
- ebb
->sec
->vma
;
7754 end_offset
= entry
->address
+ entry
->size
- ebb
->sec
->vma
;
7756 if (entry
== start_entry
)
7757 start_offset
= ebb
->start_offset
;
7758 if (entry
== end_entry
)
7759 end_offset
= ebb
->end_offset
;
7760 offset
= start_offset
;
7762 if (offset
== entry
->address
- ebb
->sec
->vma
7763 && (entry
->flags
& XTENSA_PROP_INSN_BRANCH_TARGET
) != 0)
7765 enum ebb_target_enum align_type
= EBB_DESIRE_TGT_ALIGN
;
7766 BFD_ASSERT (offset
!= end_offset
);
7767 if (offset
== end_offset
)
7770 insn_len
= insn_decode_len (ebb
->contents
, ebb
->content_length
,
7775 if (check_branch_target_aligned_address (offset
, insn_len
))
7776 align_type
= EBB_REQUIRE_TGT_ALIGN
;
7778 ebb_propose_action (ebb_table
, align_type
, 0,
7779 ta_none
, offset
, 0, TRUE
);
7782 while (offset
!= end_offset
)
7784 Elf_Internal_Rela
*irel
;
7785 xtensa_opcode opcode
;
7787 while (rel_idx
< ebb
->end_reloc_idx
7788 && (ebb
->relocs
[rel_idx
].r_offset
< offset
7789 || (ebb
->relocs
[rel_idx
].r_offset
== offset
7790 && (ELF32_R_TYPE (ebb
->relocs
[rel_idx
].r_info
)
7791 != R_XTENSA_ASM_SIMPLIFY
))))
7794 /* Check for longcall. */
7795 irel
= &ebb
->relocs
[rel_idx
];
7796 if (irel
->r_offset
== offset
7797 && ELF32_R_TYPE (irel
->r_info
) == R_XTENSA_ASM_SIMPLIFY
)
7799 bfd_size_type simplify_size
;
7801 simplify_size
= get_asm_simplify_size (ebb
->contents
,
7802 ebb
->content_length
,
7804 if (simplify_size
== 0)
7807 ebb_propose_action (ebb_table
, EBB_NO_ALIGN
, 0,
7808 ta_convert_longcall
, offset
, 0, TRUE
);
7810 offset
+= simplify_size
;
7814 if (offset
+ MIN_INSN_LENGTH
> ebb
->content_length
)
7816 xtensa_insnbuf_from_chars (isa
, insnbuf
, &ebb
->contents
[offset
],
7817 ebb
->content_length
- offset
);
7818 fmt
= xtensa_format_decode (isa
, insnbuf
);
7819 if (fmt
== XTENSA_UNDEFINED
)
7821 insn_len
= xtensa_format_length (isa
, fmt
);
7822 if (insn_len
== (bfd_size_type
) XTENSA_UNDEFINED
)
7825 if (xtensa_format_num_slots (isa
, fmt
) != 1)
7831 xtensa_format_get_slot (isa
, fmt
, 0, insnbuf
, slotbuf
);
7832 opcode
= xtensa_opcode_decode (isa
, fmt
, 0, slotbuf
);
7833 if (opcode
== XTENSA_UNDEFINED
)
7836 if ((entry
->flags
& XTENSA_PROP_INSN_NO_DENSITY
) == 0
7837 && (entry
->flags
& XTENSA_PROP_NO_TRANSFORM
) == 0
7838 && can_narrow_instruction (slotbuf
, fmt
, opcode
) != 0)
7840 /* Add an instruction narrow action. */
7841 ebb_propose_action (ebb_table
, EBB_NO_ALIGN
, 0,
7842 ta_narrow_insn
, offset
, 0, FALSE
);
7844 else if ((entry
->flags
& XTENSA_PROP_NO_TRANSFORM
) == 0
7845 && can_widen_instruction (slotbuf
, fmt
, opcode
) != 0
7846 && ! prev_instr_is_a_loop (ebb
->contents
,
7847 ebb
->content_length
, offset
))
7849 /* Add an instruction widen action. */
7850 ebb_propose_action (ebb_table
, EBB_NO_ALIGN
, 0,
7851 ta_widen_insn
, offset
, 0, FALSE
);
7853 else if (xtensa_opcode_is_loop (xtensa_default_isa
, opcode
) == 1)
7855 /* Check for branch targets. */
7856 ebb_propose_action (ebb_table
, EBB_REQUIRE_LOOP_ALIGN
, 0,
7857 ta_none
, offset
, 0, TRUE
);
7864 if (ebb
->ends_unreachable
)
7866 ebb_propose_action (ebb_table
, EBB_NO_ALIGN
, 0,
7867 ta_fill
, ebb
->end_offset
, 0, TRUE
);
7874 /* xgettext:c-format */
7875 (_("%B(%A+%#Lx): could not decode instruction; "
7876 "possible configuration mismatch"),
7877 ebb
->sec
->owner
, ebb
->sec
, offset
);
7882 /* After all of the information has collected about the
7883 transformations possible in an EBB, compute the appropriate actions
7884 here in compute_ebb_actions. We still must check later to make
7885 sure that the actions do not break any relocations. The algorithm
7886 used here is pretty greedy. Basically, it removes as many no-ops
7887 as possible so that the end of the EBB has the same alignment
7888 characteristics as the original. First, it uses narrowing, then
7889 fill space at the end of the EBB, and finally widenings. If that
7890 does not work, it tries again with one fewer no-op removed. The
7891 optimization will only be performed if all of the branch targets
7892 that were aligned before transformation are also aligned after the
7895 When the size_opt flag is set, ignore the branch target alignments,
7896 narrow all wide instructions, and remove all no-ops unless the end
7897 of the EBB prevents it. */
7900 compute_ebb_actions (ebb_constraint
*ebb_table
)
7904 int removed_bytes
= 0;
7905 ebb_t
*ebb
= &ebb_table
->ebb
;
7906 unsigned seg_idx_start
= 0;
7907 unsigned seg_idx_end
= 0;
7909 /* We perform this like the assembler relaxation algorithm: Start by
7910 assuming all instructions are narrow and all no-ops removed; then
7913 /* For each segment of this that has a solid constraint, check to
7914 see if there are any combinations that will keep the constraint.
7916 for (seg_idx_end
= 0; seg_idx_end
< ebb_table
->action_count
; seg_idx_end
++)
7918 bfd_boolean requires_text_end_align
= FALSE
;
7919 unsigned longcall_count
= 0;
7920 unsigned longcall_convert_count
= 0;
7921 unsigned narrowable_count
= 0;
7922 unsigned narrowable_convert_count
= 0;
7923 unsigned widenable_count
= 0;
7924 unsigned widenable_convert_count
= 0;
7926 proposed_action
*action
= NULL
;
7927 int align
= (1 << ebb_table
->ebb
.sec
->alignment_power
);
7929 seg_idx_start
= seg_idx_end
;
7931 for (i
= seg_idx_start
; i
< ebb_table
->action_count
; i
++)
7933 action
= &ebb_table
->actions
[i
];
7934 if (action
->action
== ta_convert_longcall
)
7936 if (action
->action
== ta_narrow_insn
)
7938 if (action
->action
== ta_widen_insn
)
7940 if (action
->action
== ta_fill
)
7942 if (action
->align_type
== EBB_REQUIRE_LOOP_ALIGN
)
7944 if (action
->align_type
== EBB_REQUIRE_TGT_ALIGN
7945 && !elf32xtensa_size_opt
)
7950 if (seg_idx_end
== ebb_table
->action_count
&& !ebb
->ends_unreachable
)
7951 requires_text_end_align
= TRUE
;
7953 if (elf32xtensa_size_opt
&& !requires_text_end_align
7954 && action
->align_type
!= EBB_REQUIRE_LOOP_ALIGN
7955 && action
->align_type
!= EBB_REQUIRE_TGT_ALIGN
)
7957 longcall_convert_count
= longcall_count
;
7958 narrowable_convert_count
= narrowable_count
;
7959 widenable_convert_count
= 0;
7963 /* There is a constraint. Convert the max number of longcalls. */
7964 narrowable_convert_count
= 0;
7965 longcall_convert_count
= 0;
7966 widenable_convert_count
= 0;
7968 for (j
= 0; j
< longcall_count
; j
++)
7970 int removed
= (longcall_count
- j
) * 3 & (align
- 1);
7971 unsigned desire_narrow
= (align
- removed
) & (align
- 1);
7972 unsigned desire_widen
= removed
;
7973 if (desire_narrow
<= narrowable_count
)
7975 narrowable_convert_count
= desire_narrow
;
7976 narrowable_convert_count
+=
7977 (align
* ((narrowable_count
- narrowable_convert_count
)
7979 longcall_convert_count
= (longcall_count
- j
);
7980 widenable_convert_count
= 0;
7983 if (desire_widen
<= widenable_count
&& !elf32xtensa_size_opt
)
7985 narrowable_convert_count
= 0;
7986 longcall_convert_count
= longcall_count
- j
;
7987 widenable_convert_count
= desire_widen
;
7993 /* Now the number of conversions are saved. Do them. */
7994 for (i
= seg_idx_start
; i
< seg_idx_end
; i
++)
7996 action
= &ebb_table
->actions
[i
];
7997 switch (action
->action
)
7999 case ta_convert_longcall
:
8000 if (longcall_convert_count
!= 0)
8002 action
->action
= ta_remove_longcall
;
8003 action
->do_action
= TRUE
;
8004 action
->removed_bytes
+= 3;
8005 longcall_convert_count
--;
8008 case ta_narrow_insn
:
8009 if (narrowable_convert_count
!= 0)
8011 action
->do_action
= TRUE
;
8012 action
->removed_bytes
+= 1;
8013 narrowable_convert_count
--;
8017 if (widenable_convert_count
!= 0)
8019 action
->do_action
= TRUE
;
8020 action
->removed_bytes
-= 1;
8021 widenable_convert_count
--;
8030 /* Now we move on to some local opts. Try to remove each of the
8031 remaining longcalls. */
8033 if (ebb_table
->ebb
.ends_section
|| ebb_table
->ebb
.ends_unreachable
)
8036 for (i
= 0; i
< ebb_table
->action_count
; i
++)
8038 int old_removed_bytes
= removed_bytes
;
8039 proposed_action
*action
= &ebb_table
->actions
[i
];
8041 if (action
->do_action
&& action
->action
== ta_convert_longcall
)
8043 bfd_boolean bad_alignment
= FALSE
;
8045 for (j
= i
+ 1; j
< ebb_table
->action_count
; j
++)
8047 proposed_action
*new_action
= &ebb_table
->actions
[j
];
8048 bfd_vma offset
= new_action
->offset
;
8049 if (new_action
->align_type
== EBB_REQUIRE_TGT_ALIGN
)
8051 if (!check_branch_target_aligned
8052 (ebb_table
->ebb
.contents
,
8053 ebb_table
->ebb
.content_length
,
8054 offset
, offset
- removed_bytes
))
8056 bad_alignment
= TRUE
;
8060 if (new_action
->align_type
== EBB_REQUIRE_LOOP_ALIGN
)
8062 if (!check_loop_aligned (ebb_table
->ebb
.contents
,
8063 ebb_table
->ebb
.content_length
,
8065 offset
- removed_bytes
))
8067 bad_alignment
= TRUE
;
8071 if (new_action
->action
== ta_narrow_insn
8072 && !new_action
->do_action
8073 && ebb_table
->ebb
.sec
->alignment_power
== 2)
8075 /* Narrow an instruction and we are done. */
8076 new_action
->do_action
= TRUE
;
8077 new_action
->removed_bytes
+= 1;
8078 bad_alignment
= FALSE
;
8081 if (new_action
->action
== ta_widen_insn
8082 && new_action
->do_action
8083 && ebb_table
->ebb
.sec
->alignment_power
== 2)
8085 /* Narrow an instruction and we are done. */
8086 new_action
->do_action
= FALSE
;
8087 new_action
->removed_bytes
+= 1;
8088 bad_alignment
= FALSE
;
8091 if (new_action
->do_action
)
8092 removed_bytes
+= new_action
->removed_bytes
;
8096 action
->removed_bytes
+= 3;
8097 action
->action
= ta_remove_longcall
;
8098 action
->do_action
= TRUE
;
8101 removed_bytes
= old_removed_bytes
;
8102 if (action
->do_action
)
8103 removed_bytes
+= action
->removed_bytes
;
8108 for (i
= 0; i
< ebb_table
->action_count
; ++i
)
8110 proposed_action
*action
= &ebb_table
->actions
[i
];
8111 if (action
->do_action
)
8112 removed_bytes
+= action
->removed_bytes
;
8115 if ((removed_bytes
% (1 << ebb_table
->ebb
.sec
->alignment_power
)) != 0
8116 && ebb
->ends_unreachable
)
8118 proposed_action
*action
;
8122 BFD_ASSERT (ebb_table
->action_count
!= 0);
8123 action
= &ebb_table
->actions
[ebb_table
->action_count
- 1];
8124 BFD_ASSERT (action
->action
== ta_fill
);
8125 BFD_ASSERT (ebb
->ends_unreachable
->flags
& XTENSA_PROP_UNREACHABLE
);
8127 extra_space
= compute_fill_extra_space (ebb
->ends_unreachable
);
8128 br
= action
->removed_bytes
+ removed_bytes
+ extra_space
;
8129 br
= br
& ((1 << ebb
->sec
->alignment_power
) - 1);
8131 action
->removed_bytes
= extra_space
- br
;
8137 /* The xlate_map is a sorted array of address mappings designed to
8138 answer the offset_with_removed_text() query with a binary search instead
8139 of a linear search through the section's action_list. */
8141 typedef struct xlate_map_entry xlate_map_entry_t
;
8142 typedef struct xlate_map xlate_map_t
;
8144 struct xlate_map_entry
8146 unsigned orig_address
;
8147 unsigned new_address
;
8153 unsigned entry_count
;
8154 xlate_map_entry_t
*entry
;
8159 xlate_compare (const void *a_v
, const void *b_v
)
8161 const xlate_map_entry_t
*a
= (const xlate_map_entry_t
*) a_v
;
8162 const xlate_map_entry_t
*b
= (const xlate_map_entry_t
*) b_v
;
8163 if (a
->orig_address
< b
->orig_address
)
8165 if (a
->orig_address
> (b
->orig_address
+ b
->size
- 1))
8172 xlate_offset_with_removed_text (const xlate_map_t
*map
,
8173 text_action_list
*action_list
,
8177 xlate_map_entry_t
*e
;
8180 return offset_with_removed_text (action_list
, offset
);
8182 if (map
->entry_count
== 0)
8185 r
= bsearch (&offset
, map
->entry
, map
->entry_count
,
8186 sizeof (xlate_map_entry_t
), &xlate_compare
);
8187 e
= (xlate_map_entry_t
*) r
;
8189 BFD_ASSERT (e
!= NULL
);
8192 return e
->new_address
- e
->orig_address
+ offset
;
8195 typedef struct xlate_map_context_struct xlate_map_context
;
8196 struct xlate_map_context_struct
8199 xlate_map_entry_t
*current_entry
;
8204 xlate_map_fn (splay_tree_node node
, void *p
)
8206 text_action
*r
= (text_action
*)node
->value
;
8207 xlate_map_context
*ctx
= p
;
8208 unsigned orig_size
= 0;
8213 case ta_remove_insn
:
8214 case ta_convert_longcall
:
8215 case ta_remove_literal
:
8216 case ta_add_literal
:
8218 case ta_remove_longcall
:
8221 case ta_narrow_insn
:
8230 ctx
->current_entry
->size
=
8231 r
->offset
+ orig_size
- ctx
->current_entry
->orig_address
;
8232 if (ctx
->current_entry
->size
!= 0)
8234 ctx
->current_entry
++;
8235 ctx
->map
->entry_count
++;
8237 ctx
->current_entry
->orig_address
= r
->offset
+ orig_size
;
8238 ctx
->removed
+= r
->removed_bytes
;
8239 ctx
->current_entry
->new_address
= r
->offset
+ orig_size
- ctx
->removed
;
8240 ctx
->current_entry
->size
= 0;
8244 /* Build a binary searchable offset translation map from a section's
8247 static xlate_map_t
*
8248 build_xlate_map (asection
*sec
, xtensa_relax_info
*relax_info
)
8250 text_action_list
*action_list
= &relax_info
->action_list
;
8251 unsigned num_actions
= 0;
8252 xlate_map_context ctx
;
8254 ctx
.map
= (xlate_map_t
*) bfd_malloc (sizeof (xlate_map_t
));
8256 if (ctx
.map
== NULL
)
8259 num_actions
= action_list_count (action_list
);
8260 ctx
.map
->entry
= (xlate_map_entry_t
*)
8261 bfd_malloc (sizeof (xlate_map_entry_t
) * (num_actions
+ 1));
8262 if (ctx
.map
->entry
== NULL
)
8267 ctx
.map
->entry_count
= 0;
8270 ctx
.current_entry
= &ctx
.map
->entry
[0];
8272 ctx
.current_entry
->orig_address
= 0;
8273 ctx
.current_entry
->new_address
= 0;
8274 ctx
.current_entry
->size
= 0;
8276 splay_tree_foreach (action_list
->tree
, xlate_map_fn
, &ctx
);
8278 ctx
.current_entry
->size
= (bfd_get_section_limit (sec
->owner
, sec
)
8279 - ctx
.current_entry
->orig_address
);
8280 if (ctx
.current_entry
->size
!= 0)
8281 ctx
.map
->entry_count
++;
8287 /* Free an offset translation map. */
8290 free_xlate_map (xlate_map_t
*map
)
8292 if (map
&& map
->entry
)
8299 /* Use check_section_ebb_pcrels_fit to make sure that all of the
8300 relocations in a section will fit if a proposed set of actions
8304 check_section_ebb_pcrels_fit (bfd
*abfd
,
8307 Elf_Internal_Rela
*internal_relocs
,
8308 reloc_range_list
*relevant_relocs
,
8309 const ebb_constraint
*constraint
,
8310 const xtensa_opcode
*reloc_opcodes
)
8313 unsigned n
= sec
->reloc_count
;
8314 Elf_Internal_Rela
*irel
;
8315 xlate_map_t
*xmap
= NULL
;
8316 bfd_boolean ok
= TRUE
;
8317 xtensa_relax_info
*relax_info
;
8318 reloc_range_list_entry
*entry
= NULL
;
8320 relax_info
= get_xtensa_relax_info (sec
);
8322 if (relax_info
&& sec
->reloc_count
> 100)
8324 xmap
= build_xlate_map (sec
, relax_info
);
8325 /* NULL indicates out of memory, but the slow version
8326 can still be used. */
8329 if (relevant_relocs
&& constraint
->action_count
)
8331 if (!relevant_relocs
->ok
)
8338 bfd_vma min_offset
, max_offset
;
8339 min_offset
= max_offset
= constraint
->actions
[0].offset
;
8341 for (i
= 1; i
< constraint
->action_count
; ++i
)
8343 proposed_action
*action
= &constraint
->actions
[i
];
8344 bfd_vma offset
= action
->offset
;
8346 if (offset
< min_offset
)
8347 min_offset
= offset
;
8348 if (offset
> max_offset
)
8349 max_offset
= offset
;
8351 reloc_range_list_update_range (relevant_relocs
, min_offset
,
8353 n
= relevant_relocs
->n_list
;
8354 entry
= &relevant_relocs
->list_root
;
8359 relevant_relocs
= NULL
;
8362 for (i
= 0; i
< n
; i
++)
8365 bfd_vma orig_self_offset
, orig_target_offset
;
8366 bfd_vma self_offset
, target_offset
;
8368 reloc_howto_type
*howto
;
8369 int self_removed_bytes
, target_removed_bytes
;
8371 if (relevant_relocs
)
8373 entry
= entry
->next
;
8378 irel
= internal_relocs
+ i
;
8380 r_type
= ELF32_R_TYPE (irel
->r_info
);
8382 howto
= &elf_howto_table
[r_type
];
8383 /* We maintain the required invariant: PC-relative relocations
8384 that fit before linking must fit after linking. Thus we only
8385 need to deal with relocations to the same section that are
8387 if (r_type
== R_XTENSA_ASM_SIMPLIFY
8388 || r_type
== R_XTENSA_32_PCREL
8389 || !howto
->pc_relative
)
8392 r_reloc_init (&r_rel
, abfd
, irel
, contents
,
8393 bfd_get_section_limit (abfd
, sec
));
8395 if (r_reloc_get_section (&r_rel
) != sec
)
8398 orig_self_offset
= irel
->r_offset
;
8399 orig_target_offset
= r_rel
.target_offset
;
8401 self_offset
= orig_self_offset
;
8402 target_offset
= orig_target_offset
;
8407 xlate_offset_with_removed_text (xmap
, &relax_info
->action_list
,
8410 xlate_offset_with_removed_text (xmap
, &relax_info
->action_list
,
8411 orig_target_offset
);
8414 self_removed_bytes
= 0;
8415 target_removed_bytes
= 0;
8417 for (j
= 0; j
< constraint
->action_count
; ++j
)
8419 proposed_action
*action
= &constraint
->actions
[j
];
8420 bfd_vma offset
= action
->offset
;
8421 int removed_bytes
= action
->removed_bytes
;
8422 if (offset
< orig_self_offset
8423 || (offset
== orig_self_offset
&& action
->action
== ta_fill
8424 && action
->removed_bytes
< 0))
8425 self_removed_bytes
+= removed_bytes
;
8426 if (offset
< orig_target_offset
8427 || (offset
== orig_target_offset
&& action
->action
== ta_fill
8428 && action
->removed_bytes
< 0))
8429 target_removed_bytes
+= removed_bytes
;
8431 self_offset
-= self_removed_bytes
;
8432 target_offset
-= target_removed_bytes
;
8434 /* Try to encode it. Get the operand and check. */
8435 if (is_alt_relocation (ELF32_R_TYPE (irel
->r_info
)))
8437 /* None of the current alternate relocs are PC-relative,
8438 and only PC-relative relocs matter here. */
8442 xtensa_opcode opcode
;
8445 if (relevant_relocs
)
8447 opcode
= entry
->opcode
;
8448 opnum
= entry
->opnum
;
8453 opcode
= reloc_opcodes
[relevant_relocs
?
8454 (unsigned)(entry
- relevant_relocs
->reloc
) : i
];
8456 opcode
= get_relocation_opcode (abfd
, sec
, contents
, irel
);
8457 if (opcode
== XTENSA_UNDEFINED
)
8463 opnum
= get_relocation_opnd (opcode
, ELF32_R_TYPE (irel
->r_info
));
8464 if (opnum
== XTENSA_UNDEFINED
)
8471 if (!pcrel_reloc_fits (opcode
, opnum
, self_offset
, target_offset
))
8480 free_xlate_map (xmap
);
8487 check_section_ebb_reduces (const ebb_constraint
*constraint
)
8492 for (i
= 0; i
< constraint
->action_count
; i
++)
8494 const proposed_action
*action
= &constraint
->actions
[i
];
8495 if (action
->do_action
)
8496 removed
+= action
->removed_bytes
;
8506 text_action_add_proposed (text_action_list
*l
,
8507 const ebb_constraint
*ebb_table
,
8512 for (i
= 0; i
< ebb_table
->action_count
; i
++)
8514 proposed_action
*action
= &ebb_table
->actions
[i
];
8516 if (!action
->do_action
)
8518 switch (action
->action
)
8520 case ta_remove_insn
:
8521 case ta_remove_longcall
:
8522 case ta_convert_longcall
:
8523 case ta_narrow_insn
:
8526 case ta_remove_literal
:
8527 text_action_add (l
, action
->action
, sec
, action
->offset
,
8528 action
->removed_bytes
);
8541 compute_fill_extra_space (property_table_entry
*entry
)
8543 int fill_extra_space
;
8548 if ((entry
->flags
& XTENSA_PROP_UNREACHABLE
) == 0)
8551 fill_extra_space
= entry
->size
;
8552 if ((entry
->flags
& XTENSA_PROP_ALIGN
) != 0)
8554 /* Fill bytes for alignment:
8555 (2**n)-1 - (addr + (2**n)-1) & (2**n -1) */
8556 int pow
= GET_XTENSA_PROP_ALIGNMENT (entry
->flags
);
8557 int nsm
= (1 << pow
) - 1;
8558 bfd_vma addr
= entry
->address
+ entry
->size
;
8559 bfd_vma align_fill
= nsm
- ((addr
+ nsm
) & nsm
);
8560 fill_extra_space
+= align_fill
;
8562 return fill_extra_space
;
8566 /* First relaxation pass. */
8568 /* If the section contains relaxable literals, check each literal to
8569 see if it has the same value as another literal that has already
8570 been seen, either in the current section or a previous one. If so,
8571 add an entry to the per-section list of removed literals. The
8572 actual changes are deferred until the next pass. */
8575 compute_removed_literals (bfd
*abfd
,
8577 struct bfd_link_info
*link_info
,
8578 value_map_hash_table
*values
)
8580 xtensa_relax_info
*relax_info
;
8582 Elf_Internal_Rela
*internal_relocs
;
8583 source_reloc
*src_relocs
, *rel
;
8584 bfd_boolean ok
= TRUE
;
8585 property_table_entry
*prop_table
= NULL
;
8588 bfd_boolean last_loc_is_prev
= FALSE
;
8589 bfd_vma last_target_offset
= 0;
8590 section_cache_t target_sec_cache
;
8591 bfd_size_type sec_size
;
8593 init_section_cache (&target_sec_cache
);
8595 /* Do nothing if it is not a relaxable literal section. */
8596 relax_info
= get_xtensa_relax_info (sec
);
8597 BFD_ASSERT (relax_info
);
8598 if (!relax_info
->is_relaxable_literal_section
)
8601 internal_relocs
= retrieve_internal_relocs (abfd
, sec
,
8602 link_info
->keep_memory
);
8604 sec_size
= bfd_get_section_limit (abfd
, sec
);
8605 contents
= retrieve_contents (abfd
, sec
, link_info
->keep_memory
);
8606 if (contents
== NULL
&& sec_size
!= 0)
8612 /* Sort the source_relocs by target offset. */
8613 src_relocs
= relax_info
->src_relocs
;
8614 qsort (src_relocs
, relax_info
->src_count
,
8615 sizeof (source_reloc
), source_reloc_compare
);
8616 qsort (internal_relocs
, sec
->reloc_count
, sizeof (Elf_Internal_Rela
),
8617 internal_reloc_compare
);
8619 ptblsize
= xtensa_read_table_entries (abfd
, sec
, &prop_table
,
8620 XTENSA_PROP_SEC_NAME
, FALSE
);
8628 for (i
= 0; i
< relax_info
->src_count
; i
++)
8630 Elf_Internal_Rela
*irel
= NULL
;
8632 rel
= &src_relocs
[i
];
8633 if (get_l32r_opcode () != rel
->opcode
)
8635 irel
= get_irel_at_offset (sec
, internal_relocs
,
8636 rel
->r_rel
.target_offset
);
8638 /* If the relocation on this is not a simple R_XTENSA_32 or
8639 R_XTENSA_PLT then do not consider it. This may happen when
8640 the difference of two symbols is used in a literal. */
8641 if (irel
&& (ELF32_R_TYPE (irel
->r_info
) != R_XTENSA_32
8642 && ELF32_R_TYPE (irel
->r_info
) != R_XTENSA_PLT
))
8645 /* If the target_offset for this relocation is the same as the
8646 previous relocation, then we've already considered whether the
8647 literal can be coalesced. Skip to the next one.... */
8648 if (i
!= 0 && prev_i
!= -1
8649 && src_relocs
[i
-1].r_rel
.target_offset
== rel
->r_rel
.target_offset
)
8653 if (last_loc_is_prev
&&
8654 last_target_offset
+ 4 != rel
->r_rel
.target_offset
)
8655 last_loc_is_prev
= FALSE
;
8657 /* Check if the relocation was from an L32R that is being removed
8658 because a CALLX was converted to a direct CALL, and check if
8659 there are no other relocations to the literal. */
8660 if (is_removable_literal (rel
, i
, src_relocs
, relax_info
->src_count
,
8661 sec
, prop_table
, ptblsize
))
8663 if (!remove_dead_literal (abfd
, sec
, link_info
, internal_relocs
,
8664 irel
, rel
, prop_table
, ptblsize
))
8669 last_target_offset
= rel
->r_rel
.target_offset
;
8673 if (!identify_literal_placement (abfd
, sec
, contents
, link_info
,
8675 &last_loc_is_prev
, irel
,
8676 relax_info
->src_count
- i
, rel
,
8677 prop_table
, ptblsize
,
8678 &target_sec_cache
, rel
->is_abs_literal
))
8683 last_target_offset
= rel
->r_rel
.target_offset
;
8687 print_removed_literals (stderr
, &relax_info
->removed_list
);
8688 print_action_list (stderr
, &relax_info
->action_list
);
8694 free_section_cache (&target_sec_cache
);
8696 release_contents (sec
, contents
);
8697 release_internal_relocs (sec
, internal_relocs
);
8702 static Elf_Internal_Rela
*
8703 get_irel_at_offset (asection
*sec
,
8704 Elf_Internal_Rela
*internal_relocs
,
8708 Elf_Internal_Rela
*irel
;
8710 Elf_Internal_Rela key
;
8712 if (!internal_relocs
)
8715 key
.r_offset
= offset
;
8716 irel
= bsearch (&key
, internal_relocs
, sec
->reloc_count
,
8717 sizeof (Elf_Internal_Rela
), internal_reloc_matches
);
8721 /* bsearch does not guarantee which will be returned if there are
8722 multiple matches. We need the first that is not an alignment. */
8723 i
= irel
- internal_relocs
;
8726 if (internal_relocs
[i
-1].r_offset
!= offset
)
8730 for ( ; i
< sec
->reloc_count
; i
++)
8732 irel
= &internal_relocs
[i
];
8733 r_type
= ELF32_R_TYPE (irel
->r_info
);
8734 if (irel
->r_offset
== offset
&& r_type
!= R_XTENSA_NONE
)
8743 is_removable_literal (const source_reloc
*rel
,
8745 const source_reloc
*src_relocs
,
8748 property_table_entry
*prop_table
,
8751 const source_reloc
*curr_rel
;
8752 property_table_entry
*entry
;
8757 entry
= elf_xtensa_find_property_entry (prop_table
, ptblsize
,
8758 sec
->vma
+ rel
->r_rel
.target_offset
);
8759 if (entry
&& (entry
->flags
& XTENSA_PROP_NO_TRANSFORM
))
8762 for (++i
; i
< src_count
; ++i
)
8764 curr_rel
= &src_relocs
[i
];
8765 /* If all others have the same target offset.... */
8766 if (curr_rel
->r_rel
.target_offset
!= rel
->r_rel
.target_offset
)
8769 if (!curr_rel
->is_null
8770 && !xtensa_is_property_section (curr_rel
->source_sec
)
8771 && !(curr_rel
->source_sec
->flags
& SEC_DEBUGGING
))
8779 remove_dead_literal (bfd
*abfd
,
8781 struct bfd_link_info
*link_info
,
8782 Elf_Internal_Rela
*internal_relocs
,
8783 Elf_Internal_Rela
*irel
,
8785 property_table_entry
*prop_table
,
8788 property_table_entry
*entry
;
8789 xtensa_relax_info
*relax_info
;
8791 relax_info
= get_xtensa_relax_info (sec
);
8795 entry
= elf_xtensa_find_property_entry (prop_table
, ptblsize
,
8796 sec
->vma
+ rel
->r_rel
.target_offset
);
8798 /* Mark the unused literal so that it will be removed. */
8799 add_removed_literal (&relax_info
->removed_list
, &rel
->r_rel
, NULL
);
8801 text_action_add (&relax_info
->action_list
,
8802 ta_remove_literal
, sec
, rel
->r_rel
.target_offset
, 4);
8804 /* If the section is 4-byte aligned, do not add fill. */
8805 if (sec
->alignment_power
> 2)
8807 int fill_extra_space
;
8808 bfd_vma entry_sec_offset
;
8810 property_table_entry
*the_add_entry
;
8814 entry_sec_offset
= entry
->address
- sec
->vma
+ entry
->size
;
8816 entry_sec_offset
= rel
->r_rel
.target_offset
+ 4;
8818 /* If the literal range is at the end of the section,
8820 the_add_entry
= elf_xtensa_find_property_entry (prop_table
, ptblsize
,
8822 fill_extra_space
= compute_fill_extra_space (the_add_entry
);
8824 fa
= find_fill_action (&relax_info
->action_list
, sec
, entry_sec_offset
);
8825 removed_diff
= compute_removed_action_diff (fa
, sec
, entry_sec_offset
,
8826 -4, fill_extra_space
);
8828 adjust_fill_action (fa
, removed_diff
);
8830 text_action_add (&relax_info
->action_list
,
8831 ta_fill
, sec
, entry_sec_offset
, removed_diff
);
8834 /* Zero out the relocation on this literal location. */
8837 if (elf_hash_table (link_info
)->dynamic_sections_created
)
8838 shrink_dynamic_reloc_sections (link_info
, abfd
, sec
, irel
);
8840 irel
->r_info
= ELF32_R_INFO (0, R_XTENSA_NONE
);
8841 pin_internal_relocs (sec
, internal_relocs
);
8844 /* Do not modify "last_loc_is_prev". */
8850 identify_literal_placement (bfd
*abfd
,
8853 struct bfd_link_info
*link_info
,
8854 value_map_hash_table
*values
,
8855 bfd_boolean
*last_loc_is_prev_p
,
8856 Elf_Internal_Rela
*irel
,
8857 int remaining_src_rels
,
8859 property_table_entry
*prop_table
,
8861 section_cache_t
*target_sec_cache
,
8862 bfd_boolean is_abs_literal
)
8866 xtensa_relax_info
*relax_info
;
8867 bfd_boolean literal_placed
= FALSE
;
8869 unsigned long value
;
8870 bfd_boolean final_static_link
;
8871 bfd_size_type sec_size
;
8873 relax_info
= get_xtensa_relax_info (sec
);
8877 sec_size
= bfd_get_section_limit (abfd
, sec
);
8880 (!bfd_link_relocatable (link_info
)
8881 && !elf_hash_table (link_info
)->dynamic_sections_created
);
8883 /* The placement algorithm first checks to see if the literal is
8884 already in the value map. If so and the value map is reachable
8885 from all uses, then the literal is moved to that location. If
8886 not, then we identify the last location where a fresh literal was
8887 placed. If the literal can be safely moved there, then we do so.
8888 If not, then we assume that the literal is not to move and leave
8889 the literal where it is, marking it as the last literal
8892 /* Find the literal value. */
8894 r_reloc_init (&r_rel
, abfd
, irel
, contents
, sec_size
);
8897 BFD_ASSERT (rel
->r_rel
.target_offset
< sec_size
);
8898 value
= bfd_get_32 (abfd
, contents
+ rel
->r_rel
.target_offset
);
8900 init_literal_value (&val
, &r_rel
, value
, is_abs_literal
);
8902 /* Check if we've seen another literal with the same value that
8903 is in the same output section. */
8904 val_map
= value_map_get_cached_value (values
, &val
, final_static_link
);
8907 && (r_reloc_get_section (&val_map
->loc
)->output_section
8908 == sec
->output_section
)
8909 && relocations_reach (rel
, remaining_src_rels
, &val_map
->loc
)
8910 && coalesce_shared_literal (sec
, rel
, prop_table
, ptblsize
, val_map
))
8912 /* No change to last_loc_is_prev. */
8913 literal_placed
= TRUE
;
8916 /* For relocatable links, do not try to move literals. To do it
8917 correctly might increase the number of relocations in an input
8918 section making the default relocatable linking fail. */
8919 if (!bfd_link_relocatable (link_info
) && !literal_placed
8920 && values
->has_last_loc
&& !(*last_loc_is_prev_p
))
8922 asection
*target_sec
= r_reloc_get_section (&values
->last_loc
);
8923 if (target_sec
&& target_sec
->output_section
== sec
->output_section
)
8925 /* Increment the virtual offset. */
8926 r_reloc try_loc
= values
->last_loc
;
8927 try_loc
.virtual_offset
+= 4;
8929 /* There is a last loc that was in the same output section. */
8930 if (relocations_reach (rel
, remaining_src_rels
, &try_loc
)
8931 && move_shared_literal (sec
, link_info
, rel
,
8932 prop_table
, ptblsize
,
8933 &try_loc
, &val
, target_sec_cache
))
8935 values
->last_loc
.virtual_offset
+= 4;
8936 literal_placed
= TRUE
;
8938 val_map
= add_value_map (values
, &val
, &try_loc
,
8941 val_map
->loc
= try_loc
;
8946 if (!literal_placed
)
8948 /* Nothing worked, leave the literal alone but update the last loc. */
8949 values
->has_last_loc
= TRUE
;
8950 values
->last_loc
= rel
->r_rel
;
8952 val_map
= add_value_map (values
, &val
, &rel
->r_rel
, final_static_link
);
8954 val_map
->loc
= rel
->r_rel
;
8955 *last_loc_is_prev_p
= TRUE
;
8962 /* Check if the original relocations (presumably on L32R instructions)
8963 identified by reloc[0..N] can be changed to reference the literal
8964 identified by r_rel. If r_rel is out of range for any of the
8965 original relocations, then we don't want to coalesce the original
8966 literal with the one at r_rel. We only check reloc[0..N], where the
8967 offsets are all the same as for reloc[0] (i.e., they're all
8968 referencing the same literal) and where N is also bounded by the
8969 number of remaining entries in the "reloc" array. The "reloc" array
8970 is sorted by target offset so we know all the entries for the same
8971 literal will be contiguous. */
8974 relocations_reach (source_reloc
*reloc
,
8975 int remaining_relocs
,
8976 const r_reloc
*r_rel
)
8978 bfd_vma from_offset
, source_address
, dest_address
;
8982 if (!r_reloc_is_defined (r_rel
))
8985 sec
= r_reloc_get_section (r_rel
);
8986 from_offset
= reloc
[0].r_rel
.target_offset
;
8988 for (i
= 0; i
< remaining_relocs
; i
++)
8990 if (reloc
[i
].r_rel
.target_offset
!= from_offset
)
8993 /* Ignore relocations that have been removed. */
8994 if (reloc
[i
].is_null
)
8997 /* The original and new output section for these must be the same
8998 in order to coalesce. */
8999 if (r_reloc_get_section (&reloc
[i
].r_rel
)->output_section
9000 != sec
->output_section
)
9003 /* Absolute literals in the same output section can always be
9005 if (reloc
[i
].is_abs_literal
)
9008 /* A literal with no PC-relative relocations can be moved anywhere. */
9009 if (reloc
[i
].opnd
!= -1)
9011 /* Otherwise, check to see that it fits. */
9012 source_address
= (reloc
[i
].source_sec
->output_section
->vma
9013 + reloc
[i
].source_sec
->output_offset
9014 + reloc
[i
].r_rel
.rela
.r_offset
);
9015 dest_address
= (sec
->output_section
->vma
9016 + sec
->output_offset
9017 + r_rel
->target_offset
);
9019 if (!pcrel_reloc_fits (reloc
[i
].opcode
, reloc
[i
].opnd
,
9020 source_address
, dest_address
))
9029 /* Move a literal to another literal location because it is
9030 the same as the other literal value. */
9033 coalesce_shared_literal (asection
*sec
,
9035 property_table_entry
*prop_table
,
9039 property_table_entry
*entry
;
9041 property_table_entry
*the_add_entry
;
9043 xtensa_relax_info
*relax_info
;
9045 relax_info
= get_xtensa_relax_info (sec
);
9049 entry
= elf_xtensa_find_property_entry
9050 (prop_table
, ptblsize
, sec
->vma
+ rel
->r_rel
.target_offset
);
9051 if (entry
&& (entry
->flags
& XTENSA_PROP_NO_TRANSFORM
))
9054 /* Mark that the literal will be coalesced. */
9055 add_removed_literal (&relax_info
->removed_list
, &rel
->r_rel
, &val_map
->loc
);
9057 text_action_add (&relax_info
->action_list
,
9058 ta_remove_literal
, sec
, rel
->r_rel
.target_offset
, 4);
9060 /* If the section is 4-byte aligned, do not add fill. */
9061 if (sec
->alignment_power
> 2)
9063 int fill_extra_space
;
9064 bfd_vma entry_sec_offset
;
9067 entry_sec_offset
= entry
->address
- sec
->vma
+ entry
->size
;
9069 entry_sec_offset
= rel
->r_rel
.target_offset
+ 4;
9071 /* If the literal range is at the end of the section,
9073 fill_extra_space
= 0;
9074 the_add_entry
= elf_xtensa_find_property_entry (prop_table
, ptblsize
,
9076 if (the_add_entry
&& (the_add_entry
->flags
& XTENSA_PROP_UNREACHABLE
))
9077 fill_extra_space
= the_add_entry
->size
;
9079 fa
= find_fill_action (&relax_info
->action_list
, sec
, entry_sec_offset
);
9080 removed_diff
= compute_removed_action_diff (fa
, sec
, entry_sec_offset
,
9081 -4, fill_extra_space
);
9083 adjust_fill_action (fa
, removed_diff
);
9085 text_action_add (&relax_info
->action_list
,
9086 ta_fill
, sec
, entry_sec_offset
, removed_diff
);
9093 /* Move a literal to another location. This may actually increase the
9094 total amount of space used because of alignments so we need to do
9095 this carefully. Also, it may make a branch go out of range. */
9098 move_shared_literal (asection
*sec
,
9099 struct bfd_link_info
*link_info
,
9101 property_table_entry
*prop_table
,
9103 const r_reloc
*target_loc
,
9104 const literal_value
*lit_value
,
9105 section_cache_t
*target_sec_cache
)
9107 property_table_entry
*the_add_entry
, *src_entry
, *target_entry
= NULL
;
9108 text_action
*fa
, *target_fa
;
9110 xtensa_relax_info
*relax_info
, *target_relax_info
;
9111 asection
*target_sec
;
9113 ebb_constraint ebb_table
;
9114 bfd_boolean relocs_fit
;
9116 /* If this routine always returns FALSE, the literals that cannot be
9117 coalesced will not be moved. */
9118 if (elf32xtensa_no_literal_movement
)
9121 relax_info
= get_xtensa_relax_info (sec
);
9125 target_sec
= r_reloc_get_section (target_loc
);
9126 target_relax_info
= get_xtensa_relax_info (target_sec
);
9128 /* Literals to undefined sections may not be moved because they
9129 must report an error. */
9130 if (bfd_is_und_section (target_sec
))
9133 src_entry
= elf_xtensa_find_property_entry
9134 (prop_table
, ptblsize
, sec
->vma
+ rel
->r_rel
.target_offset
);
9136 if (!section_cache_section (target_sec_cache
, target_sec
, link_info
))
9139 target_entry
= elf_xtensa_find_property_entry
9140 (target_sec_cache
->ptbl
, target_sec_cache
->pte_count
,
9141 target_sec
->vma
+ target_loc
->target_offset
);
9146 /* Make sure that we have not broken any branches. */
9149 init_ebb_constraint (&ebb_table
);
9150 ebb
= &ebb_table
.ebb
;
9151 init_ebb (ebb
, target_sec_cache
->sec
, target_sec_cache
->contents
,
9152 target_sec_cache
->content_length
,
9153 target_sec_cache
->ptbl
, target_sec_cache
->pte_count
,
9154 target_sec_cache
->relocs
, target_sec_cache
->reloc_count
);
9156 /* Propose to add 4 bytes + worst-case alignment size increase to
9158 ebb_propose_action (&ebb_table
, EBB_NO_ALIGN
, 0,
9159 ta_fill
, target_loc
->target_offset
,
9160 -4 - (1 << target_sec
->alignment_power
), TRUE
);
9162 /* Check all of the PC-relative relocations to make sure they still fit. */
9163 relocs_fit
= check_section_ebb_pcrels_fit (target_sec
->owner
, target_sec
,
9164 target_sec_cache
->contents
,
9165 target_sec_cache
->relocs
, NULL
,
9171 text_action_add_literal (&target_relax_info
->action_list
,
9172 ta_add_literal
, target_loc
, lit_value
, -4);
9174 if (target_sec
->alignment_power
> 2 && target_entry
!= src_entry
)
9176 /* May need to add or remove some fill to maintain alignment. */
9177 int fill_extra_space
;
9178 bfd_vma entry_sec_offset
;
9181 target_entry
->address
- target_sec
->vma
+ target_entry
->size
;
9183 /* If the literal range is at the end of the section,
9185 fill_extra_space
= 0;
9187 elf_xtensa_find_property_entry (target_sec_cache
->ptbl
,
9188 target_sec_cache
->pte_count
,
9190 if (the_add_entry
&& (the_add_entry
->flags
& XTENSA_PROP_UNREACHABLE
))
9191 fill_extra_space
= the_add_entry
->size
;
9193 target_fa
= find_fill_action (&target_relax_info
->action_list
,
9194 target_sec
, entry_sec_offset
);
9195 removed_diff
= compute_removed_action_diff (target_fa
, target_sec
,
9196 entry_sec_offset
, 4,
9199 adjust_fill_action (target_fa
, removed_diff
);
9201 text_action_add (&target_relax_info
->action_list
,
9202 ta_fill
, target_sec
, entry_sec_offset
, removed_diff
);
9205 /* Mark that the literal will be moved to the new location. */
9206 add_removed_literal (&relax_info
->removed_list
, &rel
->r_rel
, target_loc
);
9208 /* Remove the literal. */
9209 text_action_add (&relax_info
->action_list
,
9210 ta_remove_literal
, sec
, rel
->r_rel
.target_offset
, 4);
9212 /* If the section is 4-byte aligned, do not add fill. */
9213 if (sec
->alignment_power
> 2 && target_entry
!= src_entry
)
9215 int fill_extra_space
;
9216 bfd_vma entry_sec_offset
;
9219 entry_sec_offset
= src_entry
->address
- sec
->vma
+ src_entry
->size
;
9221 entry_sec_offset
= rel
->r_rel
.target_offset
+4;
9223 /* If the literal range is at the end of the section,
9225 fill_extra_space
= 0;
9226 the_add_entry
= elf_xtensa_find_property_entry (prop_table
, ptblsize
,
9228 if (the_add_entry
&& (the_add_entry
->flags
& XTENSA_PROP_UNREACHABLE
))
9229 fill_extra_space
= the_add_entry
->size
;
9231 fa
= find_fill_action (&relax_info
->action_list
, sec
, entry_sec_offset
);
9232 removed_diff
= compute_removed_action_diff (fa
, sec
, entry_sec_offset
,
9233 -4, fill_extra_space
);
9235 adjust_fill_action (fa
, removed_diff
);
9237 text_action_add (&relax_info
->action_list
,
9238 ta_fill
, sec
, entry_sec_offset
, removed_diff
);
9245 /* Second relaxation pass. */
9248 action_remove_bytes_fn (splay_tree_node node
, void *p
)
9250 bfd_size_type
*final_size
= p
;
9251 text_action
*action
= (text_action
*)node
->value
;
9253 *final_size
-= action
->removed_bytes
;
9257 /* Modify all of the relocations to point to the right spot, and if this
9258 is a relaxable section, delete the unwanted literals and fix the
9262 relax_section (bfd
*abfd
, asection
*sec
, struct bfd_link_info
*link_info
)
9264 Elf_Internal_Rela
*internal_relocs
;
9265 xtensa_relax_info
*relax_info
;
9267 bfd_boolean ok
= TRUE
;
9269 bfd_boolean rv
= FALSE
;
9270 bfd_boolean virtual_action
;
9271 bfd_size_type sec_size
;
9273 sec_size
= bfd_get_section_limit (abfd
, sec
);
9274 relax_info
= get_xtensa_relax_info (sec
);
9275 BFD_ASSERT (relax_info
);
9277 /* First translate any of the fixes that have been added already. */
9278 translate_section_fixes (sec
);
9280 /* Handle property sections (e.g., literal tables) specially. */
9281 if (xtensa_is_property_section (sec
))
9283 BFD_ASSERT (!relax_info
->is_relaxable_literal_section
);
9284 return relax_property_section (abfd
, sec
, link_info
);
9287 internal_relocs
= retrieve_internal_relocs (abfd
, sec
,
9288 link_info
->keep_memory
);
9289 if (!internal_relocs
&& !action_list_count (&relax_info
->action_list
))
9292 contents
= retrieve_contents (abfd
, sec
, link_info
->keep_memory
);
9293 if (contents
== NULL
&& sec_size
!= 0)
9299 if (internal_relocs
)
9301 for (i
= 0; i
< sec
->reloc_count
; i
++)
9303 Elf_Internal_Rela
*irel
;
9304 xtensa_relax_info
*target_relax_info
;
9305 bfd_vma source_offset
, old_source_offset
;
9308 asection
*target_sec
;
9310 /* Locally change the source address.
9311 Translate the target to the new target address.
9312 If it points to this section and has been removed,
9316 irel
= &internal_relocs
[i
];
9317 source_offset
= irel
->r_offset
;
9318 old_source_offset
= source_offset
;
9320 r_type
= ELF32_R_TYPE (irel
->r_info
);
9321 r_reloc_init (&r_rel
, abfd
, irel
, contents
,
9322 bfd_get_section_limit (abfd
, sec
));
9324 /* If this section could have changed then we may need to
9325 change the relocation's offset. */
9327 if (relax_info
->is_relaxable_literal_section
9328 || relax_info
->is_relaxable_asm_section
)
9330 pin_internal_relocs (sec
, internal_relocs
);
9332 if (r_type
!= R_XTENSA_NONE
9333 && find_removed_literal (&relax_info
->removed_list
,
9336 /* Remove this relocation. */
9337 if (elf_hash_table (link_info
)->dynamic_sections_created
)
9338 shrink_dynamic_reloc_sections (link_info
, abfd
, sec
, irel
);
9339 irel
->r_info
= ELF32_R_INFO (0, R_XTENSA_NONE
);
9340 irel
->r_offset
= offset_with_removed_text_map
9341 (&relax_info
->action_list
, irel
->r_offset
);
9345 if (r_type
== R_XTENSA_ASM_SIMPLIFY
)
9347 text_action
*action
=
9348 find_insn_action (&relax_info
->action_list
,
9350 if (action
&& (action
->action
== ta_convert_longcall
9351 || action
->action
== ta_remove_longcall
))
9353 bfd_reloc_status_type retval
;
9354 char *error_message
= NULL
;
9356 retval
= contract_asm_expansion (contents
, sec_size
,
9357 irel
, &error_message
);
9358 if (retval
!= bfd_reloc_ok
)
9360 (*link_info
->callbacks
->reloc_dangerous
)
9361 (link_info
, error_message
, abfd
, sec
,
9365 /* Update the action so that the code that moves
9366 the contents will do the right thing. */
9367 /* ta_remove_longcall and ta_remove_insn actions are
9368 grouped together in the tree as well as
9369 ta_convert_longcall and ta_none, so that changes below
9370 can be done w/o removing and reinserting action into
9373 if (action
->action
== ta_remove_longcall
)
9374 action
->action
= ta_remove_insn
;
9376 action
->action
= ta_none
;
9377 /* Refresh the info in the r_rel. */
9378 r_reloc_init (&r_rel
, abfd
, irel
, contents
, sec_size
);
9379 r_type
= ELF32_R_TYPE (irel
->r_info
);
9383 source_offset
= offset_with_removed_text_map
9384 (&relax_info
->action_list
, irel
->r_offset
);
9385 irel
->r_offset
= source_offset
;
9388 /* If the target section could have changed then
9389 we may need to change the relocation's target offset. */
9391 target_sec
= r_reloc_get_section (&r_rel
);
9393 /* For a reference to a discarded section from a DWARF section,
9394 i.e., where action_discarded is PRETEND, the symbol will
9395 eventually be modified to refer to the kept section (at least if
9396 the kept and discarded sections are the same size). Anticipate
9397 that here and adjust things accordingly. */
9398 if (! elf_xtensa_ignore_discarded_relocs (sec
)
9399 && elf_xtensa_action_discarded (sec
) == PRETEND
9400 && sec
->sec_info_type
!= SEC_INFO_TYPE_STABS
9401 && target_sec
!= NULL
9402 && discarded_section (target_sec
))
9404 /* It would be natural to call _bfd_elf_check_kept_section
9405 here, but it's not exported from elflink.c. It's also a
9406 fairly expensive check. Adjusting the relocations to the
9407 discarded section is fairly harmless; it will only adjust
9408 some addends and difference values. If it turns out that
9409 _bfd_elf_check_kept_section fails later, it won't matter,
9410 so just compare the section names to find the right group
9412 asection
*kept
= target_sec
->kept_section
;
9415 if ((kept
->flags
& SEC_GROUP
) != 0)
9417 asection
*first
= elf_next_in_group (kept
);
9418 asection
*s
= first
;
9423 if (strcmp (s
->name
, target_sec
->name
) == 0)
9428 s
= elf_next_in_group (s
);
9435 && ((target_sec
->rawsize
!= 0
9436 ? target_sec
->rawsize
: target_sec
->size
)
9437 == (kept
->rawsize
!= 0 ? kept
->rawsize
: kept
->size
)))
9441 target_relax_info
= get_xtensa_relax_info (target_sec
);
9442 if (target_relax_info
9443 && (target_relax_info
->is_relaxable_literal_section
9444 || target_relax_info
->is_relaxable_asm_section
))
9447 target_sec
= translate_reloc (&r_rel
, &new_reloc
, target_sec
);
9449 if (r_type
== R_XTENSA_DIFF8
9450 || r_type
== R_XTENSA_DIFF16
9451 || r_type
== R_XTENSA_DIFF32
)
9453 bfd_signed_vma diff_value
= 0;
9454 bfd_vma new_end_offset
, diff_mask
= 0;
9456 if (bfd_get_section_limit (abfd
, sec
) < old_source_offset
)
9458 (*link_info
->callbacks
->reloc_dangerous
)
9459 (link_info
, _("invalid relocation address"),
9460 abfd
, sec
, old_source_offset
);
9466 case R_XTENSA_DIFF8
:
9468 bfd_get_signed_8 (abfd
, &contents
[old_source_offset
]);
9470 case R_XTENSA_DIFF16
:
9472 bfd_get_signed_16 (abfd
, &contents
[old_source_offset
]);
9474 case R_XTENSA_DIFF32
:
9476 bfd_get_signed_32 (abfd
, &contents
[old_source_offset
]);
9480 new_end_offset
= offset_with_removed_text_map
9481 (&target_relax_info
->action_list
,
9482 r_rel
.target_offset
+ diff_value
);
9483 diff_value
= new_end_offset
- new_reloc
.target_offset
;
9487 case R_XTENSA_DIFF8
:
9489 bfd_put_signed_8 (abfd
, diff_value
,
9490 &contents
[old_source_offset
]);
9492 case R_XTENSA_DIFF16
:
9494 bfd_put_signed_16 (abfd
, diff_value
,
9495 &contents
[old_source_offset
]);
9497 case R_XTENSA_DIFF32
:
9498 diff_mask
= 0x7fffffff;
9499 bfd_put_signed_32 (abfd
, diff_value
,
9500 &contents
[old_source_offset
]);
9504 /* Check for overflow. Sign bits must be all zeroes or all ones */
9505 if ((diff_value
& ~diff_mask
) != 0 &&
9506 (diff_value
& ~diff_mask
) != (-1 & ~diff_mask
))
9508 (*link_info
->callbacks
->reloc_dangerous
)
9509 (link_info
, _("overflow after relaxation"),
9510 abfd
, sec
, old_source_offset
);
9514 pin_contents (sec
, contents
);
9517 /* If the relocation still references a section in the same
9518 input file, modify the relocation directly instead of
9519 adding a "fix" record. */
9520 if (target_sec
->owner
== abfd
)
9522 unsigned r_symndx
= ELF32_R_SYM (new_reloc
.rela
.r_info
);
9523 irel
->r_info
= ELF32_R_INFO (r_symndx
, r_type
);
9524 irel
->r_addend
= new_reloc
.rela
.r_addend
;
9525 pin_internal_relocs (sec
, internal_relocs
);
9529 bfd_vma addend_displacement
;
9532 addend_displacement
=
9533 new_reloc
.target_offset
+ new_reloc
.virtual_offset
;
9534 fix
= reloc_bfd_fix_init (sec
, source_offset
, r_type
,
9536 addend_displacement
, TRUE
);
9543 if ((relax_info
->is_relaxable_literal_section
9544 || relax_info
->is_relaxable_asm_section
)
9545 && action_list_count (&relax_info
->action_list
))
9547 /* Walk through the planned actions and build up a table
9548 of move, copy and fill records. Use the move, copy and
9549 fill records to perform the actions once. */
9551 bfd_size_type final_size
, copy_size
, orig_insn_size
;
9552 bfd_byte
*scratch
= NULL
;
9553 bfd_byte
*dup_contents
= NULL
;
9554 bfd_size_type orig_size
= sec
->size
;
9555 bfd_vma orig_dot
= 0;
9556 bfd_vma orig_dot_copied
= 0; /* Byte copied already from
9557 orig dot in physical memory. */
9558 bfd_vma orig_dot_vo
= 0; /* Virtual offset from orig_dot. */
9559 bfd_vma dup_dot
= 0;
9561 text_action
*action
;
9563 final_size
= sec
->size
;
9565 splay_tree_foreach (relax_info
->action_list
.tree
,
9566 action_remove_bytes_fn
, &final_size
);
9567 scratch
= (bfd_byte
*) bfd_zmalloc (final_size
);
9568 dup_contents
= (bfd_byte
*) bfd_zmalloc (final_size
);
9570 /* The dot is the current fill location. */
9572 print_action_list (stderr
, &relax_info
->action_list
);
9575 for (action
= action_first (&relax_info
->action_list
); action
;
9576 action
= action_next (&relax_info
->action_list
, action
))
9578 virtual_action
= FALSE
;
9579 if (action
->offset
> orig_dot
)
9581 orig_dot
+= orig_dot_copied
;
9582 orig_dot_copied
= 0;
9584 /* Out of the virtual world. */
9587 if (action
->offset
> orig_dot
)
9589 copy_size
= action
->offset
- orig_dot
;
9590 memmove (&dup_contents
[dup_dot
], &contents
[orig_dot
], copy_size
);
9591 orig_dot
+= copy_size
;
9592 dup_dot
+= copy_size
;
9593 BFD_ASSERT (action
->offset
== orig_dot
);
9595 else if (action
->offset
< orig_dot
)
9597 if (action
->action
== ta_fill
9598 && action
->offset
- action
->removed_bytes
== orig_dot
)
9600 /* This is OK because the fill only effects the dup_dot. */
9602 else if (action
->action
== ta_add_literal
)
9604 /* TBD. Might need to handle this. */
9607 if (action
->offset
== orig_dot
)
9609 if (action
->virtual_offset
> orig_dot_vo
)
9611 if (orig_dot_vo
== 0)
9613 /* Need to copy virtual_offset bytes. Probably four. */
9614 copy_size
= action
->virtual_offset
- orig_dot_vo
;
9615 memmove (&dup_contents
[dup_dot
],
9616 &contents
[orig_dot
], copy_size
);
9617 orig_dot_copied
= copy_size
;
9618 dup_dot
+= copy_size
;
9620 virtual_action
= TRUE
;
9623 BFD_ASSERT (action
->virtual_offset
<= orig_dot_vo
);
9625 switch (action
->action
)
9627 case ta_remove_literal
:
9628 case ta_remove_insn
:
9629 BFD_ASSERT (action
->removed_bytes
>= 0);
9630 orig_dot
+= action
->removed_bytes
;
9633 case ta_narrow_insn
:
9636 memmove (scratch
, &contents
[orig_dot
], orig_insn_size
);
9637 BFD_ASSERT (action
->removed_bytes
== 1);
9638 rv
= narrow_instruction (scratch
, final_size
, 0);
9640 memmove (&dup_contents
[dup_dot
], scratch
, copy_size
);
9641 orig_dot
+= orig_insn_size
;
9642 dup_dot
+= copy_size
;
9646 if (action
->removed_bytes
>= 0)
9647 orig_dot
+= action
->removed_bytes
;
9650 /* Already zeroed in dup_contents. Just bump the
9652 dup_dot
+= (-action
->removed_bytes
);
9657 BFD_ASSERT (action
->removed_bytes
== 0);
9660 case ta_convert_longcall
:
9661 case ta_remove_longcall
:
9662 /* These will be removed or converted before we get here. */
9669 memmove (scratch
, &contents
[orig_dot
], orig_insn_size
);
9670 BFD_ASSERT (action
->removed_bytes
== -1);
9671 rv
= widen_instruction (scratch
, final_size
, 0);
9673 memmove (&dup_contents
[dup_dot
], scratch
, copy_size
);
9674 orig_dot
+= orig_insn_size
;
9675 dup_dot
+= copy_size
;
9678 case ta_add_literal
:
9681 BFD_ASSERT (action
->removed_bytes
== -4);
9682 /* TBD -- place the literal value here and insert
9684 memset (&dup_contents
[dup_dot
], 0, 4);
9685 pin_internal_relocs (sec
, internal_relocs
);
9686 pin_contents (sec
, contents
);
9688 if (!move_literal (abfd
, link_info
, sec
, dup_dot
, dup_contents
,
9689 relax_info
, &internal_relocs
, &action
->value
))
9693 orig_dot_vo
+= copy_size
;
9695 orig_dot
+= orig_insn_size
;
9696 dup_dot
+= copy_size
;
9700 /* Not implemented yet. */
9705 BFD_ASSERT (dup_dot
<= final_size
);
9706 BFD_ASSERT (orig_dot
<= orig_size
);
9709 orig_dot
+= orig_dot_copied
;
9710 orig_dot_copied
= 0;
9712 if (orig_dot
!= orig_size
)
9714 copy_size
= orig_size
- orig_dot
;
9715 BFD_ASSERT (orig_size
> orig_dot
);
9716 BFD_ASSERT (dup_dot
+ copy_size
== final_size
);
9717 memmove (&dup_contents
[dup_dot
], &contents
[orig_dot
], copy_size
);
9718 orig_dot
+= copy_size
;
9719 dup_dot
+= copy_size
;
9721 BFD_ASSERT (orig_size
== orig_dot
);
9722 BFD_ASSERT (final_size
== dup_dot
);
9724 /* Move the dup_contents back. */
9725 if (final_size
> orig_size
)
9727 /* Contents need to be reallocated. Swap the dup_contents into
9729 sec
->contents
= dup_contents
;
9731 contents
= dup_contents
;
9732 pin_contents (sec
, contents
);
9736 BFD_ASSERT (final_size
<= orig_size
);
9737 memset (contents
, 0, orig_size
);
9738 memcpy (contents
, dup_contents
, final_size
);
9739 free (dup_contents
);
9742 pin_contents (sec
, contents
);
9744 if (sec
->rawsize
== 0)
9745 sec
->rawsize
= sec
->size
;
9746 sec
->size
= final_size
;
9750 release_internal_relocs (sec
, internal_relocs
);
9751 release_contents (sec
, contents
);
9757 translate_section_fixes (asection
*sec
)
9759 xtensa_relax_info
*relax_info
;
9762 relax_info
= get_xtensa_relax_info (sec
);
9766 for (r
= relax_info
->fix_list
; r
!= NULL
; r
= r
->next
)
9767 if (!translate_reloc_bfd_fix (r
))
9774 /* Translate a fix given the mapping in the relax info for the target
9775 section. If it has already been translated, no work is required. */
9778 translate_reloc_bfd_fix (reloc_bfd_fix
*fix
)
9780 reloc_bfd_fix new_fix
;
9782 xtensa_relax_info
*relax_info
;
9783 removed_literal
*removed
;
9784 bfd_vma new_offset
, target_offset
;
9786 if (fix
->translated
)
9789 sec
= fix
->target_sec
;
9790 target_offset
= fix
->target_offset
;
9792 relax_info
= get_xtensa_relax_info (sec
);
9795 fix
->translated
= TRUE
;
9801 /* The fix does not need to be translated if the section cannot change. */
9802 if (!relax_info
->is_relaxable_literal_section
9803 && !relax_info
->is_relaxable_asm_section
)
9805 fix
->translated
= TRUE
;
9809 /* If the literal has been moved and this relocation was on an
9810 opcode, then the relocation should move to the new literal
9811 location. Otherwise, the relocation should move within the
9815 if (is_operand_relocation (fix
->src_type
))
9817 /* Check if the original relocation is against a literal being
9819 removed
= find_removed_literal (&relax_info
->removed_list
,
9827 /* The fact that there is still a relocation to this literal indicates
9828 that the literal is being coalesced, not simply removed. */
9829 BFD_ASSERT (removed
->to
.abfd
!= NULL
);
9831 /* This was moved to some other address (possibly another section). */
9832 new_sec
= r_reloc_get_section (&removed
->to
);
9836 relax_info
= get_xtensa_relax_info (sec
);
9838 (!relax_info
->is_relaxable_literal_section
9839 && !relax_info
->is_relaxable_asm_section
))
9841 target_offset
= removed
->to
.target_offset
;
9842 new_fix
.target_sec
= new_sec
;
9843 new_fix
.target_offset
= target_offset
;
9844 new_fix
.translated
= TRUE
;
9849 target_offset
= removed
->to
.target_offset
;
9850 new_fix
.target_sec
= new_sec
;
9853 /* The target address may have been moved within its section. */
9854 new_offset
= offset_with_removed_text (&relax_info
->action_list
,
9857 new_fix
.target_offset
= new_offset
;
9858 new_fix
.target_offset
= new_offset
;
9859 new_fix
.translated
= TRUE
;
9865 /* Fix up a relocation to take account of removed literals. */
9868 translate_reloc (const r_reloc
*orig_rel
, r_reloc
*new_rel
, asection
*sec
)
9870 xtensa_relax_info
*relax_info
;
9871 removed_literal
*removed
;
9872 bfd_vma target_offset
, base_offset
;
9874 *new_rel
= *orig_rel
;
9876 if (!r_reloc_is_defined (orig_rel
))
9879 relax_info
= get_xtensa_relax_info (sec
);
9880 BFD_ASSERT (relax_info
&& (relax_info
->is_relaxable_literal_section
9881 || relax_info
->is_relaxable_asm_section
));
9883 target_offset
= orig_rel
->target_offset
;
9886 if (is_operand_relocation (ELF32_R_TYPE (orig_rel
->rela
.r_info
)))
9888 /* Check if the original relocation is against a literal being
9890 removed
= find_removed_literal (&relax_info
->removed_list
,
9893 if (removed
&& removed
->to
.abfd
)
9897 /* The fact that there is still a relocation to this literal indicates
9898 that the literal is being coalesced, not simply removed. */
9899 BFD_ASSERT (removed
->to
.abfd
!= NULL
);
9901 /* This was moved to some other address
9902 (possibly in another section). */
9903 *new_rel
= removed
->to
;
9904 new_sec
= r_reloc_get_section (new_rel
);
9908 relax_info
= get_xtensa_relax_info (sec
);
9910 || (!relax_info
->is_relaxable_literal_section
9911 && !relax_info
->is_relaxable_asm_section
))
9914 target_offset
= new_rel
->target_offset
;
9917 /* Find the base offset of the reloc symbol, excluding any addend from the
9918 reloc or from the section contents (for a partial_inplace reloc). Then
9919 find the adjusted values of the offsets due to relaxation. The base
9920 offset is needed to determine the change to the reloc's addend; the reloc
9921 addend should not be adjusted due to relaxations located before the base
9924 base_offset
= r_reloc_get_target_offset (new_rel
) - new_rel
->rela
.r_addend
;
9925 if (base_offset
<= target_offset
)
9927 int base_removed
= removed_by_actions_map (&relax_info
->action_list
,
9928 base_offset
, FALSE
);
9929 int addend_removed
= removed_by_actions_map (&relax_info
->action_list
,
9930 target_offset
, FALSE
) -
9933 new_rel
->target_offset
= target_offset
- base_removed
- addend_removed
;
9934 new_rel
->rela
.r_addend
-= addend_removed
;
9938 /* Handle a negative addend. The base offset comes first. */
9939 int tgt_removed
= removed_by_actions_map (&relax_info
->action_list
,
9940 target_offset
, FALSE
);
9941 int addend_removed
= removed_by_actions_map (&relax_info
->action_list
,
9942 base_offset
, FALSE
) -
9945 new_rel
->target_offset
= target_offset
- tgt_removed
;
9946 new_rel
->rela
.r_addend
+= addend_removed
;
9953 /* For dynamic links, there may be a dynamic relocation for each
9954 literal. The number of dynamic relocations must be computed in
9955 size_dynamic_sections, which occurs before relaxation. When a
9956 literal is removed, this function checks if there is a corresponding
9957 dynamic relocation and shrinks the size of the appropriate dynamic
9958 relocation section accordingly. At this point, the contents of the
9959 dynamic relocation sections have not yet been filled in, so there's
9960 nothing else that needs to be done. */
9963 shrink_dynamic_reloc_sections (struct bfd_link_info
*info
,
9965 asection
*input_section
,
9966 Elf_Internal_Rela
*rel
)
9968 struct elf_xtensa_link_hash_table
*htab
;
9969 Elf_Internal_Shdr
*symtab_hdr
;
9970 struct elf_link_hash_entry
**sym_hashes
;
9971 unsigned long r_symndx
;
9973 struct elf_link_hash_entry
*h
;
9974 bfd_boolean dynamic_symbol
;
9976 htab
= elf_xtensa_hash_table (info
);
9980 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
9981 sym_hashes
= elf_sym_hashes (abfd
);
9983 r_type
= ELF32_R_TYPE (rel
->r_info
);
9984 r_symndx
= ELF32_R_SYM (rel
->r_info
);
9986 if (r_symndx
< symtab_hdr
->sh_info
)
9989 h
= sym_hashes
[r_symndx
- symtab_hdr
->sh_info
];
9991 dynamic_symbol
= elf_xtensa_dynamic_symbol_p (h
, info
);
9993 if ((r_type
== R_XTENSA_32
|| r_type
== R_XTENSA_PLT
)
9994 && (input_section
->flags
& SEC_ALLOC
) != 0
9995 && (dynamic_symbol
|| bfd_link_pic (info
)))
9998 bfd_boolean is_plt
= FALSE
;
10000 if (dynamic_symbol
&& r_type
== R_XTENSA_PLT
)
10002 srel
= htab
->elf
.srelplt
;
10006 srel
= htab
->elf
.srelgot
;
10008 /* Reduce size of the .rela.* section by one reloc. */
10009 BFD_ASSERT (srel
!= NULL
);
10010 BFD_ASSERT (srel
->size
>= sizeof (Elf32_External_Rela
));
10011 srel
->size
-= sizeof (Elf32_External_Rela
);
10015 asection
*splt
, *sgotplt
, *srelgot
;
10016 int reloc_index
, chunk
;
10018 /* Find the PLT reloc index of the entry being removed. This
10019 is computed from the size of ".rela.plt". It is needed to
10020 figure out which PLT chunk to resize. Usually "last index
10021 = size - 1" since the index starts at zero, but in this
10022 context, the size has just been decremented so there's no
10023 need to subtract one. */
10024 reloc_index
= srel
->size
/ sizeof (Elf32_External_Rela
);
10026 chunk
= reloc_index
/ PLT_ENTRIES_PER_CHUNK
;
10027 splt
= elf_xtensa_get_plt_section (info
, chunk
);
10028 sgotplt
= elf_xtensa_get_gotplt_section (info
, chunk
);
10029 BFD_ASSERT (splt
!= NULL
&& sgotplt
!= NULL
);
10031 /* Check if an entire PLT chunk has just been eliminated. */
10032 if (reloc_index
% PLT_ENTRIES_PER_CHUNK
== 0)
10034 /* The two magic GOT entries for that chunk can go away. */
10035 srelgot
= htab
->elf
.srelgot
;
10036 BFD_ASSERT (srelgot
!= NULL
);
10037 srelgot
->reloc_count
-= 2;
10038 srelgot
->size
-= 2 * sizeof (Elf32_External_Rela
);
10039 sgotplt
->size
-= 8;
10041 /* There should be only one entry left (and it will be
10043 BFD_ASSERT (sgotplt
->size
== 4);
10044 BFD_ASSERT (splt
->size
== PLT_ENTRY_SIZE
);
10047 BFD_ASSERT (sgotplt
->size
>= 4);
10048 BFD_ASSERT (splt
->size
>= PLT_ENTRY_SIZE
);
10050 sgotplt
->size
-= 4;
10051 splt
->size
-= PLT_ENTRY_SIZE
;
10057 /* Take an r_rel and move it to another section. This usually
10058 requires extending the interal_relocation array and pinning it. If
10059 the original r_rel is from the same BFD, we can complete this here.
10060 Otherwise, we add a fix record to let the final link fix the
10061 appropriate address. Contents and internal relocations for the
10062 section must be pinned after calling this routine. */
10065 move_literal (bfd
*abfd
,
10066 struct bfd_link_info
*link_info
,
10069 bfd_byte
*contents
,
10070 xtensa_relax_info
*relax_info
,
10071 Elf_Internal_Rela
**internal_relocs_p
,
10072 const literal_value
*lit
)
10074 Elf_Internal_Rela
*new_relocs
= NULL
;
10075 size_t new_relocs_count
= 0;
10076 Elf_Internal_Rela this_rela
;
10077 const r_reloc
*r_rel
;
10079 r_rel
= &lit
->r_rel
;
10080 BFD_ASSERT (elf_section_data (sec
)->relocs
== *internal_relocs_p
);
10082 if (r_reloc_is_const (r_rel
))
10083 bfd_put_32 (abfd
, lit
->value
, contents
+ offset
);
10088 reloc_bfd_fix
*fix
;
10089 unsigned insert_at
;
10091 r_type
= ELF32_R_TYPE (r_rel
->rela
.r_info
);
10093 /* This is the difficult case. We have to create a fix up. */
10094 this_rela
.r_offset
= offset
;
10095 this_rela
.r_info
= ELF32_R_INFO (0, r_type
);
10096 this_rela
.r_addend
=
10097 r_rel
->target_offset
- r_reloc_get_target_offset (r_rel
);
10098 bfd_put_32 (abfd
, lit
->value
, contents
+ offset
);
10100 /* Currently, we cannot move relocations during a relocatable link. */
10101 BFD_ASSERT (!bfd_link_relocatable (link_info
));
10102 fix
= reloc_bfd_fix_init (sec
, offset
, r_type
,
10103 r_reloc_get_section (r_rel
),
10104 r_rel
->target_offset
+ r_rel
->virtual_offset
,
10106 /* We also need to mark that relocations are needed here. */
10107 sec
->flags
|= SEC_RELOC
;
10109 translate_reloc_bfd_fix (fix
);
10110 /* This fix has not yet been translated. */
10111 add_fix (sec
, fix
);
10113 /* Add the relocation. If we have already allocated our own
10114 space for the relocations and we have room for more, then use
10115 it. Otherwise, allocate new space and move the literals. */
10116 insert_at
= sec
->reloc_count
;
10117 for (i
= 0; i
< sec
->reloc_count
; ++i
)
10119 if (this_rela
.r_offset
< (*internal_relocs_p
)[i
].r_offset
)
10126 if (*internal_relocs_p
!= relax_info
->allocated_relocs
10127 || sec
->reloc_count
+ 1 > relax_info
->allocated_relocs_count
)
10129 BFD_ASSERT (relax_info
->allocated_relocs
== NULL
10130 || sec
->reloc_count
== relax_info
->relocs_count
);
10132 if (relax_info
->allocated_relocs_count
== 0)
10133 new_relocs_count
= (sec
->reloc_count
+ 2) * 2;
10135 new_relocs_count
= (relax_info
->allocated_relocs_count
+ 2) * 2;
10137 new_relocs
= (Elf_Internal_Rela
*)
10138 bfd_zmalloc (sizeof (Elf_Internal_Rela
) * (new_relocs_count
));
10142 /* We could handle this more quickly by finding the split point. */
10143 if (insert_at
!= 0)
10144 memcpy (new_relocs
, *internal_relocs_p
,
10145 insert_at
* sizeof (Elf_Internal_Rela
));
10147 new_relocs
[insert_at
] = this_rela
;
10149 if (insert_at
!= sec
->reloc_count
)
10150 memcpy (new_relocs
+ insert_at
+ 1,
10151 (*internal_relocs_p
) + insert_at
,
10152 (sec
->reloc_count
- insert_at
)
10153 * sizeof (Elf_Internal_Rela
));
10155 if (*internal_relocs_p
!= relax_info
->allocated_relocs
)
10157 /* The first time we re-allocate, we can only free the
10158 old relocs if they were allocated with bfd_malloc.
10159 This is not true when keep_memory is in effect. */
10160 if (!link_info
->keep_memory
)
10161 free (*internal_relocs_p
);
10164 free (*internal_relocs_p
);
10165 relax_info
->allocated_relocs
= new_relocs
;
10166 relax_info
->allocated_relocs_count
= new_relocs_count
;
10167 elf_section_data (sec
)->relocs
= new_relocs
;
10168 sec
->reloc_count
++;
10169 relax_info
->relocs_count
= sec
->reloc_count
;
10170 *internal_relocs_p
= new_relocs
;
10174 if (insert_at
!= sec
->reloc_count
)
10177 for (idx
= sec
->reloc_count
; idx
> insert_at
; idx
--)
10178 (*internal_relocs_p
)[idx
] = (*internal_relocs_p
)[idx
-1];
10180 (*internal_relocs_p
)[insert_at
] = this_rela
;
10181 sec
->reloc_count
++;
10182 if (relax_info
->allocated_relocs
)
10183 relax_info
->relocs_count
= sec
->reloc_count
;
10190 /* This is similar to relax_section except that when a target is moved,
10191 we shift addresses up. We also need to modify the size. This
10192 algorithm does NOT allow for relocations into the middle of the
10193 property sections. */
10196 relax_property_section (bfd
*abfd
,
10198 struct bfd_link_info
*link_info
)
10200 Elf_Internal_Rela
*internal_relocs
;
10201 bfd_byte
*contents
;
10203 bfd_boolean ok
= TRUE
;
10204 bfd_boolean is_full_prop_section
;
10205 size_t last_zfill_target_offset
= 0;
10206 asection
*last_zfill_target_sec
= NULL
;
10207 bfd_size_type sec_size
;
10208 bfd_size_type entry_size
;
10210 sec_size
= bfd_get_section_limit (abfd
, sec
);
10211 internal_relocs
= retrieve_internal_relocs (abfd
, sec
,
10212 link_info
->keep_memory
);
10213 contents
= retrieve_contents (abfd
, sec
, link_info
->keep_memory
);
10214 if (contents
== NULL
&& sec_size
!= 0)
10220 is_full_prop_section
= xtensa_is_proptable_section (sec
);
10221 if (is_full_prop_section
)
10226 if (internal_relocs
)
10228 for (i
= 0; i
< sec
->reloc_count
; i
++)
10230 Elf_Internal_Rela
*irel
;
10231 xtensa_relax_info
*target_relax_info
;
10233 asection
*target_sec
;
10235 bfd_byte
*size_p
, *flags_p
;
10237 /* Locally change the source address.
10238 Translate the target to the new target address.
10239 If it points to this section and has been removed, MOVE IT.
10240 Also, don't forget to modify the associated SIZE at
10243 irel
= &internal_relocs
[i
];
10244 r_type
= ELF32_R_TYPE (irel
->r_info
);
10245 if (r_type
== R_XTENSA_NONE
)
10248 /* Find the literal value. */
10249 r_reloc_init (&val
.r_rel
, abfd
, irel
, contents
, sec_size
);
10250 size_p
= &contents
[irel
->r_offset
+ 4];
10252 if (is_full_prop_section
)
10253 flags_p
= &contents
[irel
->r_offset
+ 8];
10254 BFD_ASSERT (irel
->r_offset
+ entry_size
<= sec_size
);
10256 target_sec
= r_reloc_get_section (&val
.r_rel
);
10257 target_relax_info
= get_xtensa_relax_info (target_sec
);
10259 if (target_relax_info
10260 && (target_relax_info
->is_relaxable_literal_section
10261 || target_relax_info
->is_relaxable_asm_section
))
10263 /* Translate the relocation's destination. */
10264 bfd_vma old_offset
= val
.r_rel
.target_offset
;
10265 bfd_vma new_offset
;
10266 long old_size
, new_size
;
10267 int removed_by_old_offset
=
10268 removed_by_actions_map (&target_relax_info
->action_list
,
10269 old_offset
, FALSE
);
10270 new_offset
= old_offset
- removed_by_old_offset
;
10272 /* Assert that we are not out of bounds. */
10273 old_size
= bfd_get_32 (abfd
, size_p
);
10274 new_size
= old_size
;
10278 /* Only the first zero-sized unreachable entry is
10279 allowed to expand. In this case the new offset
10280 should be the offset before the fill and the new
10281 size is the expansion size. For other zero-sized
10282 entries the resulting size should be zero with an
10283 offset before or after the fill address depending
10284 on whether the expanding unreachable entry
10286 if (last_zfill_target_sec
== 0
10287 || last_zfill_target_sec
!= target_sec
10288 || last_zfill_target_offset
!= old_offset
)
10290 bfd_vma new_end_offset
= new_offset
;
10292 /* Recompute the new_offset, but this time don't
10293 include any fill inserted by relaxation. */
10294 removed_by_old_offset
=
10295 removed_by_actions_map (&target_relax_info
->action_list
,
10297 new_offset
= old_offset
- removed_by_old_offset
;
10299 /* If it is not unreachable and we have not yet
10300 seen an unreachable at this address, place it
10301 before the fill address. */
10302 if (flags_p
&& (bfd_get_32 (abfd
, flags_p
)
10303 & XTENSA_PROP_UNREACHABLE
) != 0)
10305 new_size
= new_end_offset
- new_offset
;
10307 last_zfill_target_sec
= target_sec
;
10308 last_zfill_target_offset
= old_offset
;
10314 int removed_by_old_offset_size
=
10315 removed_by_actions_map (&target_relax_info
->action_list
,
10316 old_offset
+ old_size
, TRUE
);
10317 new_size
-= removed_by_old_offset_size
- removed_by_old_offset
;
10320 if (new_size
!= old_size
)
10322 bfd_put_32 (abfd
, new_size
, size_p
);
10323 pin_contents (sec
, contents
);
10326 if (new_offset
!= old_offset
)
10328 bfd_vma diff
= new_offset
- old_offset
;
10329 irel
->r_addend
+= diff
;
10330 pin_internal_relocs (sec
, internal_relocs
);
10336 /* Combine adjacent property table entries. This is also done in
10337 finish_dynamic_sections() but at that point it's too late to
10338 reclaim the space in the output section, so we do this twice. */
10340 if (internal_relocs
&& (!bfd_link_relocatable (link_info
)
10341 || xtensa_is_littable_section (sec
)))
10343 Elf_Internal_Rela
*last_irel
= NULL
;
10344 Elf_Internal_Rela
*irel
, *next_rel
, *rel_end
;
10345 int removed_bytes
= 0;
10347 flagword predef_flags
;
10349 predef_flags
= xtensa_get_property_predef_flags (sec
);
10351 /* Walk over memory and relocations at the same time.
10352 This REQUIRES that the internal_relocs be sorted by offset. */
10353 qsort (internal_relocs
, sec
->reloc_count
, sizeof (Elf_Internal_Rela
),
10354 internal_reloc_compare
);
10356 pin_internal_relocs (sec
, internal_relocs
);
10357 pin_contents (sec
, contents
);
10359 next_rel
= internal_relocs
;
10360 rel_end
= internal_relocs
+ sec
->reloc_count
;
10362 BFD_ASSERT (sec
->size
% entry_size
== 0);
10364 for (offset
= 0; offset
< sec
->size
; offset
+= entry_size
)
10366 Elf_Internal_Rela
*offset_rel
, *extra_rel
;
10367 bfd_vma bytes_to_remove
, size
, actual_offset
;
10368 bfd_boolean remove_this_rel
;
10371 /* Find the first relocation for the entry at the current offset.
10372 Adjust the offsets of any extra relocations for the previous
10377 for (irel
= next_rel
; irel
< rel_end
; irel
++)
10379 if ((irel
->r_offset
== offset
10380 && ELF32_R_TYPE (irel
->r_info
) != R_XTENSA_NONE
)
10381 || irel
->r_offset
> offset
)
10386 irel
->r_offset
-= removed_bytes
;
10390 /* Find the next relocation (if there are any left). */
10394 for (irel
= offset_rel
+ 1; irel
< rel_end
; irel
++)
10396 if (ELF32_R_TYPE (irel
->r_info
) != R_XTENSA_NONE
)
10404 /* Check if there are relocations on the current entry. There
10405 should usually be a relocation on the offset field. If there
10406 are relocations on the size or flags, then we can't optimize
10407 this entry. Also, find the next relocation to examine on the
10411 if (offset_rel
->r_offset
>= offset
+ entry_size
)
10413 next_rel
= offset_rel
;
10414 /* There are no relocations on the current entry, but we
10415 might still be able to remove it if the size is zero. */
10418 else if (offset_rel
->r_offset
> offset
10420 && extra_rel
->r_offset
< offset
+ entry_size
))
10422 /* There is a relocation on the size or flags, so we can't
10423 do anything with this entry. Continue with the next. */
10424 next_rel
= offset_rel
;
10429 BFD_ASSERT (offset_rel
->r_offset
== offset
);
10430 offset_rel
->r_offset
-= removed_bytes
;
10431 next_rel
= offset_rel
+ 1;
10437 remove_this_rel
= FALSE
;
10438 bytes_to_remove
= 0;
10439 actual_offset
= offset
- removed_bytes
;
10440 size
= bfd_get_32 (abfd
, &contents
[actual_offset
+ 4]);
10442 if (is_full_prop_section
)
10443 flags
= bfd_get_32 (abfd
, &contents
[actual_offset
+ 8]);
10445 flags
= predef_flags
;
10448 && (flags
& XTENSA_PROP_ALIGN
) == 0
10449 && (flags
& XTENSA_PROP_UNREACHABLE
) == 0)
10451 /* Always remove entries with zero size and no alignment. */
10452 bytes_to_remove
= entry_size
;
10454 remove_this_rel
= TRUE
;
10456 else if (offset_rel
10457 && ELF32_R_TYPE (offset_rel
->r_info
) == R_XTENSA_32
)
10461 flagword old_flags
;
10463 bfd_get_32 (abfd
, &contents
[last_irel
->r_offset
+ 4]);
10464 bfd_vma old_address
=
10465 (last_irel
->r_addend
10466 + bfd_get_32 (abfd
, &contents
[last_irel
->r_offset
]));
10467 bfd_vma new_address
=
10468 (offset_rel
->r_addend
10469 + bfd_get_32 (abfd
, &contents
[actual_offset
]));
10470 if (is_full_prop_section
)
10471 old_flags
= bfd_get_32
10472 (abfd
, &contents
[last_irel
->r_offset
+ 8]);
10474 old_flags
= predef_flags
;
10476 if ((ELF32_R_SYM (offset_rel
->r_info
)
10477 == ELF32_R_SYM (last_irel
->r_info
))
10478 && old_address
+ old_size
== new_address
10479 && old_flags
== flags
10480 && (old_flags
& XTENSA_PROP_INSN_BRANCH_TARGET
) == 0
10481 && (old_flags
& XTENSA_PROP_INSN_LOOP_TARGET
) == 0)
10483 /* Fix the old size. */
10484 bfd_put_32 (abfd
, old_size
+ size
,
10485 &contents
[last_irel
->r_offset
+ 4]);
10486 bytes_to_remove
= entry_size
;
10487 remove_this_rel
= TRUE
;
10490 last_irel
= offset_rel
;
10493 last_irel
= offset_rel
;
10496 if (remove_this_rel
)
10498 offset_rel
->r_info
= ELF32_R_INFO (0, R_XTENSA_NONE
);
10499 offset_rel
->r_offset
= 0;
10502 if (bytes_to_remove
!= 0)
10504 removed_bytes
+= bytes_to_remove
;
10505 if (offset
+ bytes_to_remove
< sec
->size
)
10506 memmove (&contents
[actual_offset
],
10507 &contents
[actual_offset
+ bytes_to_remove
],
10508 sec
->size
- offset
- bytes_to_remove
);
10514 /* Fix up any extra relocations on the last entry. */
10515 for (irel
= next_rel
; irel
< rel_end
; irel
++)
10516 irel
->r_offset
-= removed_bytes
;
10518 /* Clear the removed bytes. */
10519 memset (&contents
[sec
->size
- removed_bytes
], 0, removed_bytes
);
10521 if (sec
->rawsize
== 0)
10522 sec
->rawsize
= sec
->size
;
10523 sec
->size
-= removed_bytes
;
10525 if (xtensa_is_littable_section (sec
))
10527 asection
*sgotloc
= elf_xtensa_hash_table (link_info
)->sgotloc
;
10529 sgotloc
->size
-= removed_bytes
;
10535 release_internal_relocs (sec
, internal_relocs
);
10536 release_contents (sec
, contents
);
10541 /* Third relaxation pass. */
10543 /* Change symbol values to account for removed literals. */
10546 relax_section_symbols (bfd
*abfd
, asection
*sec
)
10548 xtensa_relax_info
*relax_info
;
10549 unsigned int sec_shndx
;
10550 Elf_Internal_Shdr
*symtab_hdr
;
10551 Elf_Internal_Sym
*isymbuf
;
10552 unsigned i
, num_syms
, num_locals
;
10554 relax_info
= get_xtensa_relax_info (sec
);
10555 BFD_ASSERT (relax_info
);
10557 if (!relax_info
->is_relaxable_literal_section
10558 && !relax_info
->is_relaxable_asm_section
)
10561 sec_shndx
= _bfd_elf_section_from_bfd_section (abfd
, sec
);
10563 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
10564 isymbuf
= retrieve_local_syms (abfd
);
10566 num_syms
= symtab_hdr
->sh_size
/ sizeof (Elf32_External_Sym
);
10567 num_locals
= symtab_hdr
->sh_info
;
10569 /* Adjust the local symbols defined in this section. */
10570 for (i
= 0; i
< num_locals
; i
++)
10572 Elf_Internal_Sym
*isym
= &isymbuf
[i
];
10574 if (isym
->st_shndx
== sec_shndx
)
10576 bfd_vma orig_addr
= isym
->st_value
;
10577 int removed
= removed_by_actions_map (&relax_info
->action_list
,
10580 isym
->st_value
-= removed
;
10581 if (ELF32_ST_TYPE (isym
->st_info
) == STT_FUNC
)
10583 removed_by_actions_map (&relax_info
->action_list
,
10584 orig_addr
+ isym
->st_size
, FALSE
) -
10589 /* Now adjust the global symbols defined in this section. */
10590 for (i
= 0; i
< (num_syms
- num_locals
); i
++)
10592 struct elf_link_hash_entry
*sym_hash
;
10594 sym_hash
= elf_sym_hashes (abfd
)[i
];
10596 if (sym_hash
->root
.type
== bfd_link_hash_warning
)
10597 sym_hash
= (struct elf_link_hash_entry
*) sym_hash
->root
.u
.i
.link
;
10599 if ((sym_hash
->root
.type
== bfd_link_hash_defined
10600 || sym_hash
->root
.type
== bfd_link_hash_defweak
)
10601 && sym_hash
->root
.u
.def
.section
== sec
)
10603 bfd_vma orig_addr
= sym_hash
->root
.u
.def
.value
;
10604 int removed
= removed_by_actions_map (&relax_info
->action_list
,
10607 sym_hash
->root
.u
.def
.value
-= removed
;
10609 if (sym_hash
->type
== STT_FUNC
)
10611 removed_by_actions_map (&relax_info
->action_list
,
10612 orig_addr
+ sym_hash
->size
, FALSE
) -
10621 /* "Fix" handling functions, called while performing relocations. */
10624 do_fix_for_relocatable_link (Elf_Internal_Rela
*rel
,
10626 asection
*input_section
,
10627 bfd_byte
*contents
)
10630 asection
*sec
, *old_sec
;
10631 bfd_vma old_offset
;
10632 int r_type
= ELF32_R_TYPE (rel
->r_info
);
10633 reloc_bfd_fix
*fix
;
10635 if (r_type
== R_XTENSA_NONE
)
10638 fix
= get_bfd_fix (input_section
, rel
->r_offset
, r_type
);
10642 r_reloc_init (&r_rel
, input_bfd
, rel
, contents
,
10643 bfd_get_section_limit (input_bfd
, input_section
));
10644 old_sec
= r_reloc_get_section (&r_rel
);
10645 old_offset
= r_rel
.target_offset
;
10647 if (!old_sec
|| !r_reloc_is_defined (&r_rel
))
10649 if (r_type
!= R_XTENSA_ASM_EXPAND
)
10652 /* xgettext:c-format */
10653 (_("%B(%A+%#Lx): unexpected fix for %s relocation"),
10654 input_bfd
, input_section
, rel
->r_offset
,
10655 elf_howto_table
[r_type
].name
);
10658 /* Leave it be. Resolution will happen in a later stage. */
10662 sec
= fix
->target_sec
;
10663 rel
->r_addend
+= ((sec
->output_offset
+ fix
->target_offset
)
10664 - (old_sec
->output_offset
+ old_offset
));
10671 do_fix_for_final_link (Elf_Internal_Rela
*rel
,
10673 asection
*input_section
,
10674 bfd_byte
*contents
,
10675 bfd_vma
*relocationp
)
10678 int r_type
= ELF32_R_TYPE (rel
->r_info
);
10679 reloc_bfd_fix
*fix
;
10680 bfd_vma fixup_diff
;
10682 if (r_type
== R_XTENSA_NONE
)
10685 fix
= get_bfd_fix (input_section
, rel
->r_offset
, r_type
);
10689 sec
= fix
->target_sec
;
10691 fixup_diff
= rel
->r_addend
;
10692 if (elf_howto_table
[fix
->src_type
].partial_inplace
)
10694 bfd_vma inplace_val
;
10695 BFD_ASSERT (fix
->src_offset
10696 < bfd_get_section_limit (input_bfd
, input_section
));
10697 inplace_val
= bfd_get_32 (input_bfd
, &contents
[fix
->src_offset
]);
10698 fixup_diff
+= inplace_val
;
10701 *relocationp
= (sec
->output_section
->vma
10702 + sec
->output_offset
10703 + fix
->target_offset
- fixup_diff
);
10707 /* Miscellaneous utility functions.... */
10710 elf_xtensa_get_plt_section (struct bfd_link_info
*info
, int chunk
)
10716 return elf_hash_table (info
)->splt
;
10718 dynobj
= elf_hash_table (info
)->dynobj
;
10719 sprintf (plt_name
, ".plt.%u", chunk
);
10720 return bfd_get_linker_section (dynobj
, plt_name
);
10725 elf_xtensa_get_gotplt_section (struct bfd_link_info
*info
, int chunk
)
10731 return elf_hash_table (info
)->sgotplt
;
10733 dynobj
= elf_hash_table (info
)->dynobj
;
10734 sprintf (got_name
, ".got.plt.%u", chunk
);
10735 return bfd_get_linker_section (dynobj
, got_name
);
10739 /* Get the input section for a given symbol index.
10741 . a section symbol, return the section;
10742 . a common symbol, return the common section;
10743 . an undefined symbol, return the undefined section;
10744 . an indirect symbol, follow the links;
10745 . an absolute value, return the absolute section. */
10748 get_elf_r_symndx_section (bfd
*abfd
, unsigned long r_symndx
)
10750 Elf_Internal_Shdr
*symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
10751 asection
*target_sec
= NULL
;
10752 if (r_symndx
< symtab_hdr
->sh_info
)
10754 Elf_Internal_Sym
*isymbuf
;
10755 unsigned int section_index
;
10757 isymbuf
= retrieve_local_syms (abfd
);
10758 section_index
= isymbuf
[r_symndx
].st_shndx
;
10760 if (section_index
== SHN_UNDEF
)
10761 target_sec
= bfd_und_section_ptr
;
10762 else if (section_index
== SHN_ABS
)
10763 target_sec
= bfd_abs_section_ptr
;
10764 else if (section_index
== SHN_COMMON
)
10765 target_sec
= bfd_com_section_ptr
;
10767 target_sec
= bfd_section_from_elf_index (abfd
, section_index
);
10771 unsigned long indx
= r_symndx
- symtab_hdr
->sh_info
;
10772 struct elf_link_hash_entry
*h
= elf_sym_hashes (abfd
)[indx
];
10774 while (h
->root
.type
== bfd_link_hash_indirect
10775 || h
->root
.type
== bfd_link_hash_warning
)
10776 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
10778 switch (h
->root
.type
)
10780 case bfd_link_hash_defined
:
10781 case bfd_link_hash_defweak
:
10782 target_sec
= h
->root
.u
.def
.section
;
10784 case bfd_link_hash_common
:
10785 target_sec
= bfd_com_section_ptr
;
10787 case bfd_link_hash_undefined
:
10788 case bfd_link_hash_undefweak
:
10789 target_sec
= bfd_und_section_ptr
;
10791 default: /* New indirect warning. */
10792 target_sec
= bfd_und_section_ptr
;
10800 static struct elf_link_hash_entry
*
10801 get_elf_r_symndx_hash_entry (bfd
*abfd
, unsigned long r_symndx
)
10803 unsigned long indx
;
10804 struct elf_link_hash_entry
*h
;
10805 Elf_Internal_Shdr
*symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
10807 if (r_symndx
< symtab_hdr
->sh_info
)
10810 indx
= r_symndx
- symtab_hdr
->sh_info
;
10811 h
= elf_sym_hashes (abfd
)[indx
];
10812 while (h
->root
.type
== bfd_link_hash_indirect
10813 || h
->root
.type
== bfd_link_hash_warning
)
10814 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
10819 /* Get the section-relative offset for a symbol number. */
10822 get_elf_r_symndx_offset (bfd
*abfd
, unsigned long r_symndx
)
10824 Elf_Internal_Shdr
*symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
10825 bfd_vma offset
= 0;
10827 if (r_symndx
< symtab_hdr
->sh_info
)
10829 Elf_Internal_Sym
*isymbuf
;
10830 isymbuf
= retrieve_local_syms (abfd
);
10831 offset
= isymbuf
[r_symndx
].st_value
;
10835 unsigned long indx
= r_symndx
- symtab_hdr
->sh_info
;
10836 struct elf_link_hash_entry
*h
=
10837 elf_sym_hashes (abfd
)[indx
];
10839 while (h
->root
.type
== bfd_link_hash_indirect
10840 || h
->root
.type
== bfd_link_hash_warning
)
10841 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
10842 if (h
->root
.type
== bfd_link_hash_defined
10843 || h
->root
.type
== bfd_link_hash_defweak
)
10844 offset
= h
->root
.u
.def
.value
;
10851 is_reloc_sym_weak (bfd
*abfd
, Elf_Internal_Rela
*rel
)
10853 unsigned long r_symndx
= ELF32_R_SYM (rel
->r_info
);
10854 struct elf_link_hash_entry
*h
;
10856 h
= get_elf_r_symndx_hash_entry (abfd
, r_symndx
);
10857 if (h
&& h
->root
.type
== bfd_link_hash_defweak
)
10864 pcrel_reloc_fits (xtensa_opcode opc
,
10866 bfd_vma self_address
,
10867 bfd_vma dest_address
)
10869 xtensa_isa isa
= xtensa_default_isa
;
10870 uint32 valp
= dest_address
;
10871 if (xtensa_operand_do_reloc (isa
, opc
, opnd
, &valp
, self_address
)
10872 || xtensa_operand_encode (isa
, opc
, opnd
, &valp
))
10879 xtensa_is_property_section (asection
*sec
)
10881 if (xtensa_is_insntable_section (sec
)
10882 || xtensa_is_littable_section (sec
)
10883 || xtensa_is_proptable_section (sec
))
10891 xtensa_is_insntable_section (asection
*sec
)
10893 if (CONST_STRNEQ (sec
->name
, XTENSA_INSN_SEC_NAME
)
10894 || CONST_STRNEQ (sec
->name
, ".gnu.linkonce.x."))
10902 xtensa_is_littable_section (asection
*sec
)
10904 if (CONST_STRNEQ (sec
->name
, XTENSA_LIT_SEC_NAME
)
10905 || CONST_STRNEQ (sec
->name
, ".gnu.linkonce.p."))
10913 xtensa_is_proptable_section (asection
*sec
)
10915 if (CONST_STRNEQ (sec
->name
, XTENSA_PROP_SEC_NAME
)
10916 || CONST_STRNEQ (sec
->name
, ".gnu.linkonce.prop."))
10924 internal_reloc_compare (const void *ap
, const void *bp
)
10926 const Elf_Internal_Rela
*a
= (const Elf_Internal_Rela
*) ap
;
10927 const Elf_Internal_Rela
*b
= (const Elf_Internal_Rela
*) bp
;
10929 if (a
->r_offset
!= b
->r_offset
)
10930 return (a
->r_offset
- b
->r_offset
);
10932 /* We don't need to sort on these criteria for correctness,
10933 but enforcing a more strict ordering prevents unstable qsort
10934 from behaving differently with different implementations.
10935 Without the code below we get correct but different results
10936 on Solaris 2.7 and 2.8. We would like to always produce the
10937 same results no matter the host. */
10939 if (a
->r_info
!= b
->r_info
)
10940 return (a
->r_info
- b
->r_info
);
10942 return (a
->r_addend
- b
->r_addend
);
10947 internal_reloc_matches (const void *ap
, const void *bp
)
10949 const Elf_Internal_Rela
*a
= (const Elf_Internal_Rela
*) ap
;
10950 const Elf_Internal_Rela
*b
= (const Elf_Internal_Rela
*) bp
;
10952 /* Check if one entry overlaps with the other; this shouldn't happen
10953 except when searching for a match. */
10954 return (a
->r_offset
- b
->r_offset
);
10958 /* Predicate function used to look up a section in a particular group. */
10961 match_section_group (bfd
*abfd ATTRIBUTE_UNUSED
, asection
*sec
, void *inf
)
10963 const char *gname
= inf
;
10964 const char *group_name
= elf_group_name (sec
);
10966 return (group_name
== gname
10967 || (group_name
!= NULL
10969 && strcmp (group_name
, gname
) == 0));
10973 static int linkonce_len
= sizeof (".gnu.linkonce.") - 1;
10976 xtensa_property_section_name (asection
*sec
, const char *base_name
)
10978 const char *suffix
, *group_name
;
10979 char *prop_sec_name
;
10981 group_name
= elf_group_name (sec
);
10984 suffix
= strrchr (sec
->name
, '.');
10985 if (suffix
== sec
->name
)
10987 prop_sec_name
= (char *) bfd_malloc (strlen (base_name
) + 1
10988 + (suffix
? strlen (suffix
) : 0));
10989 strcpy (prop_sec_name
, base_name
);
10991 strcat (prop_sec_name
, suffix
);
10993 else if (strncmp (sec
->name
, ".gnu.linkonce.", linkonce_len
) == 0)
10995 char *linkonce_kind
= 0;
10997 if (strcmp (base_name
, XTENSA_INSN_SEC_NAME
) == 0)
10998 linkonce_kind
= "x.";
10999 else if (strcmp (base_name
, XTENSA_LIT_SEC_NAME
) == 0)
11000 linkonce_kind
= "p.";
11001 else if (strcmp (base_name
, XTENSA_PROP_SEC_NAME
) == 0)
11002 linkonce_kind
= "prop.";
11006 prop_sec_name
= (char *) bfd_malloc (strlen (sec
->name
)
11007 + strlen (linkonce_kind
) + 1);
11008 memcpy (prop_sec_name
, ".gnu.linkonce.", linkonce_len
);
11009 strcpy (prop_sec_name
+ linkonce_len
, linkonce_kind
);
11011 suffix
= sec
->name
+ linkonce_len
;
11012 /* For backward compatibility, replace "t." instead of inserting
11013 the new linkonce_kind (but not for "prop" sections). */
11014 if (CONST_STRNEQ (suffix
, "t.") && linkonce_kind
[1] == '.')
11016 strcat (prop_sec_name
+ linkonce_len
, suffix
);
11019 prop_sec_name
= strdup (base_name
);
11021 return prop_sec_name
;
11026 xtensa_get_property_section (asection
*sec
, const char *base_name
)
11028 char *prop_sec_name
;
11029 asection
*prop_sec
;
11031 prop_sec_name
= xtensa_property_section_name (sec
, base_name
);
11032 prop_sec
= bfd_get_section_by_name_if (sec
->owner
, prop_sec_name
,
11033 match_section_group
,
11034 (void *) elf_group_name (sec
));
11035 free (prop_sec_name
);
11041 xtensa_make_property_section (asection
*sec
, const char *base_name
)
11043 char *prop_sec_name
;
11044 asection
*prop_sec
;
11046 /* Check if the section already exists. */
11047 prop_sec_name
= xtensa_property_section_name (sec
, base_name
);
11048 prop_sec
= bfd_get_section_by_name_if (sec
->owner
, prop_sec_name
,
11049 match_section_group
,
11050 (void *) elf_group_name (sec
));
11051 /* If not, create it. */
11054 flagword flags
= (SEC_RELOC
| SEC_HAS_CONTENTS
| SEC_READONLY
);
11055 flags
|= (bfd_get_section_flags (sec
->owner
, sec
)
11056 & (SEC_LINK_ONCE
| SEC_LINK_DUPLICATES
));
11058 prop_sec
= bfd_make_section_anyway_with_flags
11059 (sec
->owner
, strdup (prop_sec_name
), flags
);
11063 elf_group_name (prop_sec
) = elf_group_name (sec
);
11066 free (prop_sec_name
);
11072 xtensa_get_property_predef_flags (asection
*sec
)
11074 if (xtensa_is_insntable_section (sec
))
11075 return (XTENSA_PROP_INSN
11076 | XTENSA_PROP_NO_TRANSFORM
11077 | XTENSA_PROP_INSN_NO_REORDER
);
11079 if (xtensa_is_littable_section (sec
))
11080 return (XTENSA_PROP_LITERAL
11081 | XTENSA_PROP_NO_TRANSFORM
11082 | XTENSA_PROP_INSN_NO_REORDER
);
11088 /* Other functions called directly by the linker. */
11091 xtensa_callback_required_dependence (bfd
*abfd
,
11093 struct bfd_link_info
*link_info
,
11094 deps_callback_t callback
,
11097 Elf_Internal_Rela
*internal_relocs
;
11098 bfd_byte
*contents
;
11100 bfd_boolean ok
= TRUE
;
11101 bfd_size_type sec_size
;
11103 sec_size
= bfd_get_section_limit (abfd
, sec
);
11105 /* ".plt*" sections have no explicit relocations but they contain L32R
11106 instructions that reference the corresponding ".got.plt*" sections. */
11107 if ((sec
->flags
& SEC_LINKER_CREATED
) != 0
11108 && CONST_STRNEQ (sec
->name
, ".plt"))
11112 /* Find the corresponding ".got.plt*" section. */
11113 if (sec
->name
[4] == '\0')
11114 sgotplt
= elf_hash_table (link_info
)->sgotplt
;
11120 BFD_ASSERT (sec
->name
[4] == '.');
11121 chunk
= strtol (&sec
->name
[5], NULL
, 10);
11123 sprintf (got_name
, ".got.plt.%u", chunk
);
11124 sgotplt
= bfd_get_linker_section (sec
->owner
, got_name
);
11126 BFD_ASSERT (sgotplt
);
11128 /* Assume worst-case offsets: L32R at the very end of the ".plt"
11129 section referencing a literal at the very beginning of
11130 ".got.plt". This is very close to the real dependence, anyway. */
11131 (*callback
) (sec
, sec_size
, sgotplt
, 0, closure
);
11134 /* Only ELF files are supported for Xtensa. Check here to avoid a segfault
11135 when building uclibc, which runs "ld -b binary /dev/null". */
11136 if (bfd_get_flavour (abfd
) != bfd_target_elf_flavour
)
11139 internal_relocs
= retrieve_internal_relocs (abfd
, sec
,
11140 link_info
->keep_memory
);
11141 if (internal_relocs
== NULL
11142 || sec
->reloc_count
== 0)
11145 /* Cache the contents for the duration of this scan. */
11146 contents
= retrieve_contents (abfd
, sec
, link_info
->keep_memory
);
11147 if (contents
== NULL
&& sec_size
!= 0)
11153 if (!xtensa_default_isa
)
11154 xtensa_default_isa
= xtensa_isa_init (0, 0);
11156 for (i
= 0; i
< sec
->reloc_count
; i
++)
11158 Elf_Internal_Rela
*irel
= &internal_relocs
[i
];
11159 if (is_l32r_relocation (abfd
, sec
, contents
, irel
))
11162 asection
*target_sec
;
11163 bfd_vma target_offset
;
11165 r_reloc_init (&l32r_rel
, abfd
, irel
, contents
, sec_size
);
11168 /* L32Rs must be local to the input file. */
11169 if (r_reloc_is_defined (&l32r_rel
))
11171 target_sec
= r_reloc_get_section (&l32r_rel
);
11172 target_offset
= l32r_rel
.target_offset
;
11174 (*callback
) (sec
, irel
->r_offset
, target_sec
, target_offset
,
11180 release_internal_relocs (sec
, internal_relocs
);
11181 release_contents (sec
, contents
);
11185 /* The default literal sections should always be marked as "code" (i.e.,
11186 SHF_EXECINSTR). This is particularly important for the Linux kernel
11187 module loader so that the literals are not placed after the text. */
11188 static const struct bfd_elf_special_section elf_xtensa_special_sections
[] =
11190 { STRING_COMMA_LEN (".fini.literal"), 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_EXECINSTR
},
11191 { STRING_COMMA_LEN (".init.literal"), 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_EXECINSTR
},
11192 { STRING_COMMA_LEN (".literal"), 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_EXECINSTR
},
11193 { STRING_COMMA_LEN (".xtensa.info"), 0, SHT_NOTE
, 0 },
11194 { NULL
, 0, 0, 0, 0 }
11197 #define ELF_TARGET_ID XTENSA_ELF_DATA
11199 #define TARGET_LITTLE_SYM xtensa_elf32_le_vec
11200 #define TARGET_LITTLE_NAME "elf32-xtensa-le"
11201 #define TARGET_BIG_SYM xtensa_elf32_be_vec
11202 #define TARGET_BIG_NAME "elf32-xtensa-be"
11203 #define ELF_ARCH bfd_arch_xtensa
11205 #define ELF_MACHINE_CODE EM_XTENSA
11206 #define ELF_MACHINE_ALT1 EM_XTENSA_OLD
11208 #define ELF_MAXPAGESIZE 0x1000
11209 #endif /* ELF_ARCH */
11211 #define elf_backend_can_gc_sections 1
11212 #define elf_backend_can_refcount 1
11213 #define elf_backend_plt_readonly 1
11214 #define elf_backend_got_header_size 4
11215 #define elf_backend_want_dynbss 0
11216 #define elf_backend_want_got_plt 1
11217 #define elf_backend_dtrel_excludes_plt 1
11219 #define elf_info_to_howto elf_xtensa_info_to_howto_rela
11221 #define bfd_elf32_mkobject elf_xtensa_mkobject
11223 #define bfd_elf32_bfd_merge_private_bfd_data elf_xtensa_merge_private_bfd_data
11224 #define bfd_elf32_new_section_hook elf_xtensa_new_section_hook
11225 #define bfd_elf32_bfd_print_private_bfd_data elf_xtensa_print_private_bfd_data
11226 #define bfd_elf32_bfd_relax_section elf_xtensa_relax_section
11227 #define bfd_elf32_bfd_reloc_type_lookup elf_xtensa_reloc_type_lookup
11228 #define bfd_elf32_bfd_reloc_name_lookup \
11229 elf_xtensa_reloc_name_lookup
11230 #define bfd_elf32_bfd_set_private_flags elf_xtensa_set_private_flags
11231 #define bfd_elf32_bfd_link_hash_table_create elf_xtensa_link_hash_table_create
11233 #define elf_backend_adjust_dynamic_symbol elf_xtensa_adjust_dynamic_symbol
11234 #define elf_backend_check_relocs elf_xtensa_check_relocs
11235 #define elf_backend_create_dynamic_sections elf_xtensa_create_dynamic_sections
11236 #define elf_backend_discard_info elf_xtensa_discard_info
11237 #define elf_backend_ignore_discarded_relocs elf_xtensa_ignore_discarded_relocs
11238 #define elf_backend_final_write_processing elf_xtensa_final_write_processing
11239 #define elf_backend_finish_dynamic_sections elf_xtensa_finish_dynamic_sections
11240 #define elf_backend_finish_dynamic_symbol elf_xtensa_finish_dynamic_symbol
11241 #define elf_backend_gc_mark_hook elf_xtensa_gc_mark_hook
11242 #define elf_backend_grok_prstatus elf_xtensa_grok_prstatus
11243 #define elf_backend_grok_psinfo elf_xtensa_grok_psinfo
11244 #define elf_backend_hide_symbol elf_xtensa_hide_symbol
11245 #define elf_backend_object_p elf_xtensa_object_p
11246 #define elf_backend_reloc_type_class elf_xtensa_reloc_type_class
11247 #define elf_backend_relocate_section elf_xtensa_relocate_section
11248 #define elf_backend_size_dynamic_sections elf_xtensa_size_dynamic_sections
11249 #define elf_backend_always_size_sections elf_xtensa_always_size_sections
11250 #define elf_backend_omit_section_dynsym \
11251 ((bfd_boolean (*) (bfd *, struct bfd_link_info *, asection *)) bfd_true)
11252 #define elf_backend_special_sections elf_xtensa_special_sections
11253 #define elf_backend_action_discarded elf_xtensa_action_discarded
11254 #define elf_backend_copy_indirect_symbol elf_xtensa_copy_indirect_symbol
11256 #include "elf32-target.h"